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ABSTRACT 

 

Introduction 

HIV-1 has become one of the world’s most serious health and development challenges. 

HIV/AIDS is a pandemic and represents a major development crisis for the African continent in 

particular, which is the worst affected region in the world.  Despite highly active antiretroviral 

therapy (HAART) intervention which has dramatically reduced HIV-1-associated morbidity and 

mortality, HIV incidence globally remains unacceptably high, especially in low income countries. 

There is therefore an urgent need to develop an effective vaccine that will halt the spread of HIV.  

A major obstacle to HIV vaccine development is the genetic diversity of the virus world-wide, 

with various subtypes prevalent in different regions of the world.  A successful HIV vaccine will 

need to protect against these diverse subtypes, especially the non-B strains that predominate in 

high-burdened countries.  In addition to the implications of this diversity for vaccine development, 

subtype-specific differences in disease progression rate have been reported; however the 

mechanisms underlying this heterogeneity are not fully understood.  An interplay of viral and host 

factors contribute to HIV control and may thus be responsible for differences in disease 

progression.  In particular, HIV-1 infection induces a strong host cellular immune response, 

mediated by the highly polymorphic human leukocyte antigen (HLA) class I molecules.  

Cytotoxic T lymphocyte responses play a critical role in controlling viral replication and may 

drive viral escape, which in turn may impact on viral replicative fitness and ultimately influence 

the clinical outcome of infection.  In particular, fitness costly escape mutations in the Gag protein 

have been associated with clinical benefit and there is evidence that Gag-driven viral fitness is a 

significant determinant of the rate of disease progression.  The overall aim of this study was to 

investigate whether there were subtype-specific replication capacity differences in recombinant 

viruses possessing patient-derived gag-protease genes from subtypes A, C, D and inter-subtype 

recombinants which predominate in the HIV-1 epidemic in East Africa.  We investigated whether 
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viral replication capacity was associated with markers of disease progression and whether viral 

replication capacities differed according to host HLA class I molecules.  We also sought to 

identify amino acids associated with differences in replication capacity within different subtypes. 

 

Methods 

Antiretroviral therapy-naïve (ARV) patients were recruited (n=103) from the Majengo sex worker 

cohort based in Nairobi, Kenya.  Recombinant NL4-3 viruses bearing patient-derived gag-

protease genes were generated by homologous recombination and their replication capacities, 

normalized to the growth of the wild type NL4-3 virus, were assayed in an HIV-1-inducible green 

fluorescent protein reporter T cell line.  Replication capacities of NL4-3 recombinant viruses 

bearing gag-protease genes from subtypes A, C, D and inter-subtype recombinants were 

compared.  To further assess subtype differences in Gag-protease-driven replication capacity, 10 

recombinant viruses each from patients infected with subtypes A, D and A/D recombinants were 

constructed from the UARTO cohort in Uganda.  Associations between viral replication capacities 

and markers of disease progression (viral load and CD4 T cell counts) and HLA class I molecules 

were investigated.  An exploratory codon-by-codon analysis was performed using the Kruskal-

Wallis test to identify amino acid residues associated with differences in replication capacity for 

the subtype A recombinant viruses. 

 

Results 

There were 57 (56%) subtype A, 16 (15.5%) C, 13 (12.6%) D and 17 (16%) inter-subtype 

recombinant viruses from the Majengo cohort studied.  Replication capacities differed 

significantly by subtype.  Gag-protease inter-subtype recombinants had the highest mean 

replication capacity of 1.13 (p<0.001 compared to subtypes A, C and D) followed by subtype D 

with a mean replication capacity of 0.94 (p<0.001 compared to subtype A, p<0.01 compared to 

subtype C) then subtype C and A with means of 0.78 and 0.69, respectively.  Overall, there was 

no correlation between replication capacities and CD4+ T cell counts or viral loads (Spearman’s 
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correlation; r=0.16 and p=0.10 and r=0.08 and p=0.40 respectively).  There were also no 

significant differences in CD4 T cell counts or viral loads according to subtypes (ANOVA; p=0.53 

and p=0.91 respectively), indicating that this did not drive inter-subtype differences in Gag-

protease-driven replication capacity.  Our finding of subtype-specific differences in Gag-

protease-driven replication capacity were reproduced in the UARTO cohort.  Gag-protease AD 

recombinants had the greatest mean replication capacity of 1.42 (p<0.01 compared to subtype A) 

followed by subtype D with mean of 1.07 (p<0.05 compared to subtype A) and lastly subtype A 

with a mean 0.76.  Overall, our replication capacity differences between subtypes were 

reproducible across different cohorts and geographical regions.  We found no significant 

differences in replication capacity of patients expressing protective HLA alleles versus those with 

non-protective HLA alleles in HIV-1 subtype A, subtype D and inter-subtype recombinants. 

However, for subtype C, protective alleles were associated with lower replication capacity, 

suggesting that the protective alleles for HIV- 1 subtypes A and D may not be the same as for the 

well-defined protective alleles for subtypes B and C.  We additionally showed that HLA alleles 

A*74, A*68 and A*03 were associated with lower replication capacities, however the 

associations did not remain significant after correction for multiple comparisons.  We identified 

six amino acids that were significantly (p<0.05 and q<0.2) associated with reduced replication 

capacity in subtype A (L75I, I107L, S125S, S126S, N315N and S499S).  The polymorphism 107L 

and consensus amino acid 315N were significantly more frequent in subtype A (Chi square test; 

p=10-8 and p=0.01, respectively) and were associated with reduced replication capacity, 

suggesting that these amino acid variants may contribute to the lower replication capacity of 

subtype A.  We additionally found that 247X in the TW10 epitope was associated with reduced 

replication capacity in subtype A. 
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Discussion 

Our data show a hierarchy of Gag-protease driven replicative fitness where subtypes A/C are less 

fit than D, which is also less fit than inter-subtype recombinants.  The data are consistent with 

reported subtype-specific differences in disease progression in East Africa, suggesting that Gag-

protease-driven replication capacity is a determinant of differences in disease progression 

between subtypes.  It is likely that the lower functionality of subtypes A and C Gag-proteases 

slows disease progression in individuals infected with these subtypes, leading to greater 

opportunity for transmission and consequently, increased prevalence of these subtypes.  We found 

that none of the typical protective HLA alleles defined for subtypes B and C were associated with 

lower replication capacity in subtypes A and D, suggesting that protective HLA alleles may differ 

according to subtype and geographic region.  We did however identify weak associations between 

specific HLA alleles and reduced replication capacity, including HLA-A*74, which has 

previously been associated with improved clinical outcome, suggesting a plausible mechanism of 

viral control by this allele.  Furthermore, we identified amino acids associated with altered 

replication capacity in subtype A viruses and thus we have extended previous studies that 

described fitness associations in Gag-protease from subtypes B and C.  Of interest, the subtype 

A-specific mutation 247X in the HLA-B*57 restricted TW10 epitope was associated with lower 

replication capacity, indicating that this mutation may contribute to the protective effect of HLA-

B*57 in subtype A infection.  Further studies to better understand the mechanisms underlying 

subtype-specific differences in replication capacity are warranted.  Furthermore, these data may 

have implications for the differences observed in the rate of disease progression and for the 

uneven spread and expansion of HIV-1 subtypes in the global epidemic. 
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CHAPTER I -INTRODUCTION 

1.1 Human Immunodeficiency Virus (HIV) 

1.1.1 HIV/AIDS history 

Human immunodeficiency virus type 1 (HIV-1) is a lentivirus, belonging to the Retroviridae 

family, that causes acquired immunodeficiency syndrome (AIDS), a complex disease that 

severely affects the immune system leading to death [1].  There exist a number of theories 

proposed about the origin of AIDS; nonetheless, the unifying feature in all the theories is the fact 

that the AIDS virus originated from non-human primate sources which is strongly suggestive of 

cross-species transmission [2, 3].  One explanation is that cross-transmission occurred through 

the exposure of humans to the blood of chimpanzees butchered locally for bush meat [4].  AIDS 

was initially discovered in June 1981 in homosexual men presenting with Pneumocystis carinii 

pneumonia and mucosal candidiasis [5, 6].  Similar symptoms were later clinically described in 

non-homosexuals, intravenous drug users, hemophiliacs, blood transfusion patients, as well as the 

sexual partners of these individuals [7].  Initially, the first AIDS viruses isolated were branded 

lymphadenopathy-associated virus (LAV) by Dr. Luc Montagnier's laboratory, and human T-cell 

lymphotropic virus type III B (HTLV-IIIB) by Dr. Robert Gallo’s laboratory at the Pasteur 

Institute and National Cancer Institute respectively [8, 9].  HIV was identified as the causative 

agent of AIDS in 1984 [10-12].  Since the isolation of HIV, the rapid development and application 

of various molecular tools have substantially improved understanding of the origins and evolution 

of HIV [13].  

 

1.1.2 HIV/AIDS epidemiology   

HIV infection has become one of the world’s most serious health and development challenges.  

Effective control of HIV infection remains elusive.  By the end of 2014, it was estimated that 37 

million people were living with HIV/AIDS globally and 70 % of people living with HIV resided 

in sub-Saharan Africa [14].  In Kenya, where our study cohort is based, HIV prevalence was 5.6% 
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(95% CI: 4.9 to 6.3) and HIV incidence was 0.5% (95% CI: 0.2 to 0.9) at the end of 2013 [15, 

16].  The epidemic in Kenya is deeply rooted in the general population, as well as concentrated 

in high risk populations, such as sex workers and their clients, intravenous drug users, and men 

who have sex with men.  The HIV/AIDS pandemic represents a major crisis for the progress of 

the African continent, which is the most affected region in the world.  Despite the intervention of 

highly active antiretroviral therapy (HAART), which has dramatically reduced HIV-associated 

morbidity and mortality, HIV incidence globally remains unacceptably high, especially in the low 

income countries in sub-Saharan Africa where nearly 1 in every 20 adults lives with the disease 

[17, 18].  Treatment regimens are based on WHO guidelines and generally consist of a 

combination of at least three antiretroviral (ARV) drugs to maximally suppress the HIV virus and 

stop the progression of disease [19, 20].  The drugs are divided into first line and second line 

treatment regimens.  There is also third line treatment which is the last option available to an HIV-

infected individual should second line treatment fail [21].  The antiretroviral drug classes include 

entry inhibitors, fusion inhibitors, reverse transcriptase inhibitors [(nucleoside reverse 

transcriptase inhibitors (NRTIs) and  non-nucleoside reverse transcriptase Inhibitors (NNRTIs)], 

integrase inhibitors and protease inhibitors (PI)  [22]. 

 

1.1.3 HIV classification and origin 

There are two major types of HIV, namely HIV-1 and HIV-2.  The two types are genetically 

distinct and greatly differ in terms of disease outcome and in geographic patterns of distribution. 

HIV-2 was first isolated from West African patients with AIDS in 1986 and is closely related to 

SIV that infects the sooty mangabeys (Cercocebus atys atys) from West Africa [4, 5, 23].  The 

HIV-2 virus has continued to be geographically restricted to West African countries, such as Cape 

Verde, Cote d’Ivoire, Gambia, Guinea-Bissau, Mali, Senegal, Sierra Leone and Nigeria [24, 25] 

where sooty mangabeys are hunted for food and are kept as household pets [3, 26-28].  HIV-2, 

which is less transmissible and less pathogenic than HIV-1, is generally characterized by a longer 
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asymptomatic stage [29-33].  HIV-2 is divided into eight groups A-H based on phylogenetic 

criteria.  Groups A and B are the most prevalent subtypes [20] originating from common ancestors 

in 1940 and 1945 respectively [5]; however, groups C-H have only been identified in individuals 

[34].  On the other hand, HIV-1 viruses are closely related to SIVs from chimpanzees (Pan 

troglodytes troglodytes) [35-38].  The first case of an HIV-1 sequence from a human being was 

characterized from a frozen 1959 plasma sample of an apparently healthy man from Leopoldville 

(Kinshasa) in Central Africa, which turned out to be HIV infected when the sample was assessed 

in the mid-1980s and it was found to cluster around ancestral nodes of subtypes B and D in the 

phylogenetic tree [39].  HIV-1 accounts for  most  of the HIV infections globally and is divided 

into four major groups: M (major), O (outlier), N (non-M, non-O) and P [40, 41].  Groups O and 

N are mainly restricted to the Cameroon and the Democratic Republic of Congo [42].  Group M, 

which is assumed to have originated from the Democratic Republic of Congo [25, 43], constitutes 

approximately 95% of HIV-1 infections and is responsible for most of the global epidemic [44-

49].  It was inferred that group M subtypes originated from a 1931 common ancestor based on 

sequence analyses [37, 50].  Group M is further divided into nine subtypes (A–D, F-H, J, K) [51-

53].  HIV-1 subtypes A and F are further sub-divided into subtypes A1-A4 and F1-F2 [52].  There 

is a possible tenth group L from which two full length sequences have been identified [54].  The 

subtypes are able to combine their genetic material to form hybrid viruses called circulating 

recombinant forms (CRFs).  To date, 72 CRFs and multiple unique recombinant forms (URFs) 

have been identified [55] which are unevenly distributed globally [48]. 

 

1.1.4 HIV-1 diversity and geographical distribution  

HIV-1 is characterized by a high level of genetic heterogeneity [44, 46, 56, 57] which may have 

a dire impact on diagnostic methodologies, disease progression, virus transmission, treatment 

outcomes, and eventually, vaccine development [58-61].  HIV-1 subtypes have diversified to a 

great extent through a number of mechanisms.  Firstly, several zoonotic cross-species 
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transmission of the simian lentivirus has led to the different major subtypes of HIV [3, 62, 63]. 

Secondly, the high error rate of its reverse transcriptase (RT) enzyme results in  0.2–2 mutations 

per genome per replication cycle [64-66], and this, combined with a high turnover rate of  about 

1010 virions per day, has contributed immensely to increased genetic diversity [66-68].  Thirdly, 

the diversity between HIV-1 subtypes allows for the virus to recombine effectively, creating 

virulent forms in the occurrence of co-infection where two individual subtypes of the virus are 

multiplying the same cell.  Lastly, HIV-1 mutates to avoid host selective immune pressures such 

as antibodies and cytotoxic T-lymphocytes (CTL) leading to the creation of a highly diverse 

“quasi-species” [69-72].  Also therapeutic pressure could lead to mutations contributing to 

diversity [73-78]. Molecular epidemiological studies show that HIV-1 subtypes have distinct 

geographic distribution patterns [44, 79], and this is illustrated for the African continent in Figure 

1.1[80].  HIV-1 subtype B is predominant in Europe and America, and is the well-characterized 

subtype, however, it only accounts for 11% of all HIV-1 infections.  It is also present in some 

Asian countries like Korea and Singapore [44, 81].  Furthermore, subtypes A, C, D and inter-

subtype recombinants prevail in sub-Saharan Africa, which bears the largest global burden of 

HIV-1 disease [82].  Subtype A accounts for 80% of the HIV infections in Eastern Africa (Kenya, 

Uganda, Tanzania, and Rwanda), and about 15-30% in West Africa [44, 83, 84].  Subtype C 

accounts for approximately 50 % of infections globally [44, 85] and is particularly predominant 

in southern, Central and Eastern Africa and has expanded faster than other HIV-1 subtypes [86].  

Subtype D constitutes up to 40% of HIV infections in countries of East and Central Africa where 

it co-circulates with subtype A [87-92].  Subtype E conventionally defined as CRF_01 AE 

predominates in South East Asia [93, 94], whereas subtypes G and A/G recombinants have been 

found in Western and Eastern Africa [95, 96], and subtypes H and K are mostly found in Central 

Africa [95, 97, 98].  CRFs and URFs are estimated to account for more than 20% of HIV-1 global 

infections [99-104].  Kenya is one of the countries in sub-Saharan Africa where HIV-1 subtypes 

are heterogeneous with subtypes A, C, D and inter-subtype recombinants co-existing [92, 101, 

105-109].   
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Figure 1.1 Distribution of most prevalent HIV subtypes 
A map showing an overview of the geographical dispersal of the most prevalent HIV-1 subtypes 

in Africa from 2005-2015. It shows a distinct distribution pattern highlighting the predominance 

of different subtypes in specific regions, as is shown by the various colours.  

Source: http://www.vaccineenterprise.org/sites/default/files/150316_S3_Modjarrad.Kayvon.pdf 

(accessed January 2016) 
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These subtypes also dominate in Uganda, Rwanda and Tanzania [110-115].  A study done prior 

to 2000 revealed regional heterogeneity in Kenya based on the env C2-V3 classification, where 

subtype A predominated (71%-87%), with significant components of subtype D (7%-29%) and 

subtype C (7%-17%) [116].  Studies done after 2000 in Kenya show that subtype A continues to 

dominate in most of the regions [92, 101, 109, 117, 118]. 

 

1.1.5 HIV genome organization  

The HIV genome comprises approximately 9,749 nucleotides situated in the viral capsid as two 

non-covalently linked positive stranded RNAs.  The integrated provirus of the HIV genome is 

flanked by 5’ and 3’ long terminal repeat (LTR) regions.  HIV encodes for 9 genes in its genomic 

structure, with three major genes - group specific antigen (gag), polymerase (pol) and envelope 

glycoprotein (env) - which code for structural proteins as well as enzymes.  These genes are 

expressed as polyproteins.  Additionally, HIV encodes for proteins which have regulatory and 

auxiliary functions.  These include trans-activator of transcription (tat), regulator of virion protein 

expression (rev), negative replication factor (nef), virion infectivity factor (vif), viral protein R 

(vpr), viral protein U (vpu) (present in HIV-1) and virion-associated protein X (vpx) (present in 

HIV-2).  The genome arrangement is illustrated in Figure 1.2 (i) [119].  The structure of HIV, 

which is composed of a nucleoprotein core enclosed by the proteolipid envelope, has been 

illustrated as a schematic in Figure 1.2 (ii) [120]. The structure comprises of an inner and outer 

core.  The inner core comprises of matrix, capsid and nucleocapsid proteins, whereas as the outer 

core consists of a lipid bilayer which is synthesized from the host cell and consists of exposed 

surface glycoproteins (gp120) that are attached to trans-membrane proteins (gp41).  The HIV 

genome can generally be divided into four portions - the LTR, core structural proteins, viral 

enzymes, and coat proteins.  The LTR consists of the R (repeat) sequence segment, the U3 region 

and the untranslated 5’ segment (U5).  The structural proteins include matrix, capsid, 

nucleocapsid, the p6 protein and two spacer proteins (p2 and p1) which are all encoded by the 
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Figure 1.2 Schematic illustration of HIV-1 genome arrangement and virion and 

structure 
(i) A diagram representing the map of the HIV genome illustrating the various structural and 

accessory genes. Long terminal repeats flank the 9 genes at 5’ and 3’ ends.  

Source: http://www.microbiologybook.org/lecture/Image138.gif (accessed December 2015). 

(ii) A drawing showing the structure of HIV with the approximate locations of Gag proteins, the 

Env glycoproteins, and the pol-encoded enzymes. 

Source: https://en.wikipedia.org/wiki/Structure_and_genome_of_HIV#/media/File:HI-virion-

structure_en.svg (accessed December 2015). 
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 gag gene [121].  The viral enzymes include protease (PR), reverse transcriptase (RT), and 

integrase (IN) which are encoded by the pol gene [122].  The coat proteins consist of the structural 

unit (gp120) and the trans-membrane unit (gp41) which are encoded by the env gene [123]. 

 

1.1.5.2 Accessory genes 

The HIV genome has six additional genes known as accessory genes which have supporting 

functions whereas two of these genes, tat and rev code for regulatory proteins.  Tat is a 101 kDa 

protein encoded by two different exons from spliced mRNAs that activates viral transcription 

through binding to the trans-activation response element (TAR) (TAR forms the necessary 

attachment sites for RNA pol II and cellular proteins).  Tat is also used to induce apoptosis of 

predominantly uninfected cells [124].  Rev is a 13 kDa protein that facilitates the synthesis of 

viral structural proteins and enzymes by altering the splicing of genomic viral RNA [ordinarily 

cellular  messenger RNA (mRNAs) are spliced before leaving the nucleus] via an arginine-rich 

RNA-binding motif during replication [125, 126].  The Nef protein, on the other hand, is 27 kDa 

in molecular weight.  Its role is to modulate the expression of cluster of differentiation 4 (CD4) 

antigen by the infected cell hence facilitating viral budding and egress from infected cells.  It 

manipulates the host’s cellular machinery by interfering with signal transduction pathways, 

thereby enhancing viral infectivity and production [127].  The 23 kDa Vif protein increases the 

infectivity of the HIV particle by preventing the inhibitory effect of cellular host cell factor 

apoliprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G).  Vif 

sequesters APOBEC3G and related proteins from the budding virion and promotes their 

ubiquitin-mediated proteosomal degradation [128].  The Vpr protein is 14 kDa and it transports 

the pre-integration complex (the complex consists of viral RNA, reverse transcriptase and 

integrase proteins) into the nucleus where viral integration is concluded [129, 130].  Additionally, 

the Vpr protein induces cell cycle arrest at the G2 phase (pre-mitotic phase) and apoptosis, which 

allows the virus to replicate more efficiently [131].  Lastly, the Vpu protein, which is 16 kDa, 
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facilitates assembly of new virus particles and promotes CD4 protein degradation within the 

infected cell thereby assisting in budding [132, 133].  It also interacts with and down-regulates a 

host cell factor called tetherin, aiding in virion release from the cell membrane [134, 135].  The 

role of the Vpx protein in HIV-2 is not clearly defined, but it is associated with enhancing viral 

replication by counteracting the host antiviral factor SAM domain and HD domain-containing 

protein 1 (SAMHD1) which blocks HIV replication [136].  The Vpx protein is approximately 16 

kDa. 

 

1.1.5.3 Core structural proteins 

 Gag is synthesized as a 55 kDa polyprotein (Pr55Gag) which is cleaved into the five domains 

essential in viral assembly and release namely: matrix (MA; p17), capsid (CA; p24), nucleocapsid 

(NC; p7), p6 and spacer peptides 1 and 2.  The MA, at the N terminus of the Gag polyprotein, 

forms the inner layer of the virus and it is believed to be involved in the active transport of proviral 

DNA into the nucleus and in virion assembly upon myristoylation (addition of specific fatty acids) 

[137].  In addition, MA also contributes to infection in non-dividing cells, such as macrophages, 

because it is identified by cellular nuclear import machinery and is involved in the specific 

incorporation of viral glycoproteins into the virion [138].  The CA forms the main portion of the 

virion core shell.  It contains precursor forms of the enzymes needed for replication and it 

regulates uncoating of the virus by interacting with cyclophilin A, a host factor necessary for HIV 

replication [139].  Basically, the CA is the portion of the virus that gets inserted into the host cell 

upon infection [140].  The NC coats the viral RNA, forming a protective complex by binding to 

the packaging signal of RNA.  The NC transports the viral RNA during assembly and also shields 

it from nucleases [141].  The p6 comes from the C-terminal portion of the Gag polyprotein and it 

facilitates particle release of virions from infected cells [142].  Lastly, the spacer peptide 1, which 

separates NC and p6 regions, is derived from proteolytic cleavages.  It coordinates binding of the 

membrane and mediates Gag-Gag lattice formation during Gag processing [143].  On the other 
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hand, space peptide 2, which separates CA and NC, facilitates the p6 protein cleavage efficiency 

during virion maturation [144, 145]. 

 

1.1.5.4 Viral enzymes 

The Pol polyprotein encoded by the pol gene is consecutively cleaved into three enzymes -  PR, 

RT, and IN - following the 5’ to 3’end direction [146].  All 3 proteins are found within the capsid 

of free HIV-1 virions.  The enzymes are not active in their monomeric forms; they must interact 

into their catalytic state to be active [147].  HIV PR is a retroviral aspartyl protease that acts as a 

dimer.  It mainly mediates the proteolytic cleavage of specific amino acid sequences.  During or 

shortly after the virus buds off from the host cell, PR splits Pr55Gag   into mature Gag proteins MA, 

CA, NC and p6.  This cleaving is an important step in the life cycle because it activates the viral 

particles to functional enzymes and proteins without which the virion would not be infectious 

[148, 149].  On the other hand, RT (a heterodimer of p65 and p50) synthesises DNA from the 

viral RNA and RNase H (cleaved from RT) degrades viral RNA during DNA synthesis [150, 

151].  Lastly, IN, which is a tetramer, mediates the incorporation of the viral nucleic acid into that 

of the host.  The enzyme consists of three domains namely: the N-terminal domain (the zinc 

binding portion that is involved in DNA binding), the core domain (the catalytic portion speeding 

up the incorporation process), and the C-terminal domain (where non-specific DNA binding 

occurs) [152-154].  The enzyme works in a three step direction: the exonuclease activity step, the 

endonuclease activity step, and lastly, the ligase activity step.  These three enzymes have been 

used as targets for antiretroviral drugs [155, 156]. 

 

1.1.5.5 Envelope structural proteins 

The Env protein is paramount in binding the target cell and is exposed to the outside environment 

during HIV-1 replication, hence it becomes an important target of host immune responses and is 

an important determinant of viral pathogenesis [157].  The 160 kDa Env (gp160) heavily 
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glycosylated polyprotein is encoded by the env gene and is cleaved by cellular furin in the 

endoplasmic reticulum into two main units namely, the external surface protein (gp120) and the 

transmembrane protein (gp41).  The Env proteins, which are covalently bound to each other and 

are responsible for viral binding, are found in the lipid bilayer (derived from host membrane) that 

surrounds the viral capsid.  The gp120 glycoprotein exists as trimers anchored on the viral 

membrane [158] and is responsible for the tropism of  a virus because it is the unit that is 

concerned with the receptor binding function.  It covers most of the exposed surface of the viral 

envelope.  The crystal structure of core gp120 reveals an outer domain, an inner domain with 

respect to its termini, and a bridging sheet [159].  The inner domain sequences are not homologous 

to any other organisms, while the outer domains have sporadic homology [159].  It has five 

conserved core domains (C1-C5) scattered between five hypervariable glycosalated loops (V1-

V5) and C4 region which mediates the binding to CD4 molecule leading to conformational 

changes in the gp120.  On the other hand, the fusion gp41 subunit consists of a six helical bundle 

in its core and several peptide sites within its membrane domains [160].  

 

1.1.6 HIV lifecycle 

The life cycle of HIV-1 comprises a series of steps necessary for the successful infection of a 

human target cell, as illustrated in Figure 1.3 [161] and summarized in sections 1.1.6.1 - 1.1.6.4. 

 

1.1.6.1 HIV-1 entry 

The initial step of the life cycle is attachment, which occurs due to the high affinity interaction of 

the gp120 envelope glycoprotein and CD4 ligand on the host cell surface.  The gp120 undergoes 

conformational changes [162], which facilitates its binding to the chemokine receptor molecules 

-C-C chemokine receptor 5 (CCR5) found on macrophages and dendritic cells or the CXC 

chemokine receptor 4 (CXCR4) found on T cells [163, 164].  The interaction with the chemokine 

receptor (HIV coreceptor) initiates the membrane fusion process which exposes gp41 fusion  
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Figure 1.3 Steps in the HIV-1 replication cycle 
A figure showing the main steps of the HIV-1 replication cycle.  Also highlighted are the major 

classes of antiretroviral drugs (in green) at every major step of the life cycle and the key restriction 

factors (in red) coupled with their corresponding antagonists (in blue).  

Source: http://www.nature.com/nrmicro/journal/v11/n12/fig_tab/nrmicro3132_F2.html 

(accessed January 2015). 
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peptides facilitating entry into the cell [165, 166].  Depending on the coreceptor usage, viruses 

are known as M-tropic or T-tropic.  Entry and fusion inhibitors work by interfering with binding 

or fusion by binding to either viral gp41 or host CD4+ cell or chemokine receptors [167-169].  

 

1.1.6.2 Reverse transcription and integration 

Upon entry into the host cell, uncoating of the capsid and reverse transcription of the viral genome 

occur. RT has two enzymatic units - DNA polymerase and RNAse H - that it uses to synthesize a 

double stranded complementary DNA from the single stranded genetic RNA template and 

degrade the RNA template, respectively [170].  The newly synthesised DNA is then translocated 

to the nucleus via the nuclear pore where it is inserted into the host cellular DNA genome.  A key 

unique feature of HIV is to integrate its genome into that of the host cell mediated by IN.  IN 

recognizes the LTRs at the ends of the newly synthesized viral DNA duplex and cleaves 2-3 bases 

from the 3’ end.  This is then followed by a trans-esterification reaction that takes place joining 

proviral and cellular DNA ends where 4-6 base pair gaps of mismatched ends are trimmed, filled 

and ligated [171].  NRTIs are nucleic acid analogues that mimic the normal building blocks of 

DNA, preventing transcription of viral RNA to DNA.  NNRTIs block the genomic HIV binding 

site of RT [172], whereas IN inhibitors prevent the transfer of proviral DNA strands into the host 

chromosomal DNA [173]. 

 

1.1.6.3 Transcription and translation 

After integration, transcription of the integrated DNA is initiated (initiated by Tat and using the 

host’s cellular machinery), starting with the short spliced mRNAs encoding for Tat, Rev and Nef 

[174].  The RNAs generated could be spliced mRNA (used for translation for viral proteins) or 

unspliced genomic RNA [175].  Rev is involved in exporting viral RNAs into the cytoplasm [176]. 

The virus then uses the host’s own cellular machinery to generate viral proteins.  The mRNA is 
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transcribed to form polypeptide chains (long chains of amino-acids), which fold to form the 

protein and enzyme components of new virus particles [177]. 

 

1.1.6.4 Assembly and maturation 

Once the viral subunits have been generated and processed, they move to the inner surface cellular 

membrane where they are assembled and packaged, and then separated for the final assembly of 

a new virus.  The structural subunits network with the cell's membrane deforming a section of the 

membrane, which permits the nucleocapsid to take shape and the viral RNA is coiled tightly to 

fit inside the nucleocapsid [178, 179].  Once the new viral particles are assembled, they bud off 

the host cell, and create a new virus.  The virus enters the maturation step which is the final step 

where HIV-1 PR cleaves Gag and Gag-Pol polyproteins precursors in a sequential manner into 

mature functional proteins in well-defined sites, hence making  the viral particles infectious [179]. 

Maturation is dynamic and involves sequential conformational changes and structural protein 

rearrangement.  Some of these include activation of the fusogenic activity of the viral Env protein, 

stabilization of genomic RNA, and CA assembly, among others [180, 181].  PIs block the final 

maturation stages of HIV replication, resulting in the formation of non-infective viral particles 

[182]. 

 

1.1.6.5 Role of Gag 

The Gag protein is essential during the assembly of viral particles during the replication cycle. It 

recruits all the building blocks required for the formation of fully infectious mature viruses.  Gag 

cleavage occurs sequentially at specific sites [183-185] as depicted in Figure 1.4 [185].  The MA 

remains associated with lipid envelope of the mature viral membrane.  The MA takes part in the 

early stages of virus replication as well as in RNA targeting to the plasma membrane, 

incorporation of Env proteins into virions and particle assembly [137]. 
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Figure 1.4 Structure of Gag protein 

The diagram shows the arrangement of Gag proteins.  The cleavage sites are highlighted in order 

of cleavage. Source: http://www.microbiologybook.org/lecture/hiv-gag.gif  

(accessed December 2015). 
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The CA protein is paramount in the particle assembly and forms the shell of the core in a mature 

virion.  The CA consists of protein hexamer subunits to which host restriction factors, such as 

TRIM5-alpha, bind to, causing premature capsid disassembly [139].  The NC encapsulates and 

protects viral dimeric unspliced genomic RNA (gRNA). The p6 region adheres to the tumor 

susceptibility protein 101 (Tsg101) (a human cellular protein required for HIV replication) during 

the viral budding process [186] and the C terminal part of p6 binds to endosomal sorting complex 

required for transport (ESCRT) machinery required for retroviral budding [187].  The peptide 

spacers are also important in HIV assembly and budding [188]. 

 

1.1.7 HIV-1 pathogenesis 

HIV-1 infection leads to destruction of a person’s immune system, particularly CD4+ T 

lymphocytes which are the preferred target cells [189].  The effect of HIV on the immune system 

is monitored by measuring the CD4+ T (T helper) lymphocyte count and, together with viral loads 

(amount of HIV in a body fluid), and markers of immune activation the three parameters are used 

as markers of  HIV-1 disease progression.  The course of progression is dependent on a number 

of factors which contribute to the pathogenesis of the infection including viral, immunological 

and other host factors, such as age, gender, mode of transmission, body mass index, haemoglobin 

and physiological factors [190, 191].  Individuals progress at different rates to AIDS, which is 

defined as a CD4+ T cell count below 200 cells per µL [192], and may be classified as rapid 

progressors (individuals who develop AIDS within 3-5 years post infection in the absence of 

ARVs), typical progressors (individuals who develop AIDS within approximately 10 years after 

seroconversion) or long term non progressors (LTNP; individuals who remain asymptomatic for 

over 10 years post infection in the absence of ARVs) [193, 194].  Based on the viral loads, 

individuals who are slow progressors may be categorized as either elite controllers (HIV RNA 

<50 copies/mL) or viremic controllers (HIV RNA <2,000 copies/mL) [195-197].  HIV-1 infection 

can be categorized into three distinct phases: primary infection, chronic infection and clinical 
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AIDS [198].  The first phase is the primary or acute or seroconversion phase.  It develops within 

2-4 weeks of infection, with many people developing flu-like symptoms referred to as acute 

retroviral syndrome (ARS).  Severity varies considerably between individuals but the phase is 

characterized by high viral loads as the amount of virus released is massive.  During this phase 

there is a rapid decrease in CD4 count as the virus replicates in activated CD4 T cells. This is the 

most contagious phase of infection due to the extremely high viral loads [199-201].  Next is the 

chronic or clinical latency phase or asymptomatic phase.  Subjects in this phase usually recover 

from the symptoms associated with the previous phase as the viral load reaches a set point where 

it stabilizes.  Despite relatively stable viral loads during the clinical latency phase, HIV replication 

is substantial and there is rapid turnover of CD4+ T cells.  The clinically asymptomatic phase can 

last for years and during this phase there is gradual decrease in CD4 T cells [202, 203].  Lastly, 

clinical AIDS develops and this is the last phase of infection characterized by a damaged immune 

system which is vulnerable to opportunistic infections and cancers. The end point is usually death 

[121, 204, 205].  

 

1.1.8 HIV-1 subtype differences 

HIV-1 subtypes exhibit differences in their epidemiological and clinical disease outcomes as well 

as their biological properties, such as their genetic variation and cellular tropism [206-213].  

 

1.1.8.1 Epidemiological and clinical outcome 

 

1.1.8.1.1 Distribution and uneven expansion 

The hallmark of HIV-1 is its extreme genetic diversity exhibited by the uneven global distribution 

and expansion of groups, subtypes, inter-subtype recombinants, CRFs and URFs, as discussed in 

sections 1.1.2 to 1.1.4.  The reason for the uneven expansion and diverse distribution of HIV-1 

subtypes is not fully understood; however, several theories have been assumed.  In the first place, 
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the most common assumption is the founder effect influence - i.e., HIV-1 subtypes predominate 

according to the strains that first established infection in a particular area giving the subtype 

precedence for its dominance over other subtypes [214].  Then there is the prevalent route of 

transmission theory, which may favour one subtype over another, assuming that there are subtype 

specific differences in the preferred route of transmission rendering the particular subtype with a 

transmission advantage [85, 214].  Lastly, behavioral patterns/cultural practices and  

environmental limitations could also, to some extent, influence the geographical distribution of 

HIV-1 subtypes [215].  This global uneven expansion and distribution of HIV-1 subtypes has led 

to a divergent HIV evolution which could contribute to the differences in virulence between the 

subtypes [48], and may have a dire impact on public health, clinical consequences (diagnosis, 

treatment and prevention strategies) and, ultimately, vaccine development.  

 

1.1.8.1.2 Transmission efficiency 

HIV-1 subtypes differ in their ability to establish initial infection [216, 217].  There are recognized 

differences in transmission efficiency of the different HIV-1 subtypes [218-222], however, it is 

uncertain whether the geographical distribution or timing of initial entry of subtypes in the 

population determines the transmission dynamics.  Primarily, high viral load burden during acute 

HIV-1 infection has been identified as a major determinant of HIV-1 transmission [200, 223].  

Besides that, certain HIV-1 subtypes have been associated with particular modes of transmission.  

For instance, subtype B appears to spread better through homosexual contact and intravenous 

drug use, while subtype E and C may thrive better through heterosexual transmission [95, 224-

227].  It was also reported that subtype E had a slightly higher potential of vertical transmission 

than subtype B in a study done in Japan [228].  Moreover, higher heterosexual transmission of 

subtype A compared to subtype D [88] has been observed, which may have contributed to the 

expansion of subtype A in Uganda [229].  Reports differ on whether subtype C is associated with 

higher transmission efficiency compared to other subtypes.  Some studies suggest that subtype C 
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has equal transmission efficiency with other M group subtypes [230-232], whereas other studies 

reported that subtype C was associated with increased transmissibility compared to subtypes A 

and D [218, 222, 233, 234].  Interestingly, subtype A, which has been shown to have a slower 

disease progression to AIDS or death, has been associated with significantly higher transmission 

rate than subtype D [88].  Also, a study in Thailand suggested that subtype E had a higher potential 

of heterosexual transmission as compared to subtype B [221].  This was attributed to the higher 

tropism of subtype E for Langerhans cells which line the vaginal mucosa and the penile foreskin 

[235-237], however, these observations have been fiercely contested [221, 238].  

 

1.1.8.1.3 Disease progression 

There have been varying reports on HIV-1 subtype differences in the rate of disease progression 

[105, 239-246].  Several studies in East Africa, where subtypes A and D co-circulate, have 

established that subtype D is associated with a faster disease progression than subtype A [105, 

206, 240-242, 245, 247-249].  In addition, there is evidence showing that recombinant forms have 

a faster rate of progression to AIDS when compared with subtype A [240, 250]; however, this 

was not observed in another cohort in Tanzania [242].  There are also inconsistent reports of HIV-

1 subtype C disease progression relative to other subtypes [242, 246, 248, 251].  In Kenya, for 

instance, women infected with subtype C had a faster rate of disease progression and 

immunosuppression than those infected with subtypes A or D [116, 220], whereas a study in 

Tanzania did not find any difference in disease progression between subtypes C or A and 

recombinants in mothers infected with these subtypes [242].  In West Africa, subtype A has been 

associated with slower disease progression compared to other prevalent subtypes [252].  There 

are also a number of studies that have documented differences in viral loads between the different 

subtypes [213, 241].  These authors suggest that the viral load differences resulted from inter-

subtype biological differences.  A few studies that compared the clinical symptoms in acute 

infection between subtypes have shown that subtype D patients experienced more symptoms and 
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suggested that this was due to increased viral fitness of subtype D and therefore more 

inflammatory response in the subtype D infected patients [241, 244, 246, 253, 254].  However, 

the mechanisms underlying subtype differences in terms of HIV-1 disease progression have not 

been fully understood.  

 

1.1.8.2 Biological differences 

The high diversity of HIV has impacted the development of antiretroviral therapy and vaccines 

since these interventions target the viral proteins [255].  Diversity occurs as a result of high rates 

of mutations facilitated by the error-prone reverse transcriptase, recombination events, viral 

replication differences and pressures exerted by the immune system [256].  There is large genetic 

variation between subtypes.  For example, 25-35% variation has been reported in the env gene 

between subtypes based on amino acid sequences [97, 241, 257, 258], and LTR sequences vary 

considerably from subtype to subtype in the copy numbers of enhancers and promoter structures 

used in the replication cycle [234, 259-262].  Furthermore, differences in efficiency of protein 

function between subtypes have been reported for several HIV proteins, namely Env [263], RT 

[264], PR [265], Vif [266], Pol [206], and Nef  [267].  Furthermore, inter-subtype differences in 

LTR activity have been reported [259].  Most of these studies analysed small numbers of samples 

or lacked clinical data, therefore the implications of these inter-subtype differences for disease 

progression and the epidemic in general remain largely undetermined.  

 

HIV-1 interacts with the CD4 molecule (primary receptor) and beta-chemokine receptors CCR5 

and or CXCR4 (secondary receptors) and depending on coreceptor utilization the strain is 

classified as either M- tropic (R5 viruses) or T-tropic (R4 viruses).  Coreceptor usage has been 

recognized to have an impact on the rate of disease progression [185, 247-252] and differences in 

coreceptor usage between subtypes have been reported.  Studies have shown that HIV-1 subtype 

D exhibits a greater degree of dual-tropism than other subtypes [268, 269].  Interestingly, it has 
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been reported that subtype C is associated with predominant usage of the CCR5 coreceptor 

throughout infection, whereas a coreceptor switch to CXCR4 or an alternative coreceptor is quite 

common for other subtypes [207, 270].  Overall, although genetic differences between subtypes 

are uncontested, it remains unclear whether biological differences may explain epidemiological 

differences in geographic spread and reported differences in viral loads and rates of disease 

progression. 

 

1.2 CTL immune control of HIV-1 infection  

The design of potentially efficacious HIV-1 vaccine will be dependent on the identification of 

correlates of protection of the adaptive immune response such as virus-specific CTL responses. 

The cluster of differentiation 8 (CD8) is a membrane glycoprotein which acts as a coreceptor for 

the T cell receptor (TCR) and it is expressed on the surface of cytotoxic T cells.  CD8 forms a 

dimer comprising of a pair of chains (CD8-α and CD8-β) both with an immunoglobulin variable 

(IgV)- like extracellular domain.  CD8 has a high affinity for HLA class I molecules.  HLA class 

I molecules present epitopes to the TCR during antigen-specific interaction leading to the 

formation of epitope-HLA complex [271].  CD8 assists with the binding of the TCR to the 

epitope-HLA complex.  This activates CTL enabling them to recognize and lyse the infected cell 

by secretion of perforin and granzymes [272].  HIV-1 infection induces a strong host cellular 

immune response that is critical in controlling viral replication [273, 274].  CTL responses against 

HIV-1 exert a immune selection pressure on the virus, causing selection of HIV-1 variants that 

readily adopt to the selective pressure exerted by the host immune system through developing 

escape mutations [275-278].  Escape mutations alter the formation of the epitope-HLA complex 

by disturbing the processing [75, 277, 279, 280], presentation [281-283] and/or recognition of the 

target epitope [284].  Viral escape from CTL in certain epitopes and flanking regions have been 

associated with HIV-1 control [277, 280, 285], however other studies have associated CTL escape 

with loss of virus suppression [286-288].  Preferential Gag T-cell immune responses have been 
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associated with HIV-1 control [274, 289-292], although another study did not observe any such 

association with viral control [293].  Overall, CTL responses play an important role in HIV-1 

control and targeting of specific Gag epitopes may be beneficial. 

 

1.2.1 Impact of HLA on immune control 

HLA proteins play a significant role in immune responses particularly to intracellular pathogens 

such as viruses.  HLA class I molecules are well adapted to present epitopes of HIV proteins on 

the surfaces of infected cells dictating immune recognition, which viral epitopes are to be targeted 

and CTL repertoire  [294].  HLA class I profile is an important genetic determinant of clinical 

outcome, and immune control of HIV-1 largely depends on the HLA genes expressed by each 

individual [295-298].  There are six HLA class I alleles expressed by every individual, namely 

two HLA-A, two HLA-B and two HLA-C alleles, and HLA frequencies vary significantly 

between different populations (which are infected with the different subtypes) [299-301].  HIV-1 

viral control has been associated with specific protective HLA class I alleles, such as HLA-B*27, 

HLA-B*57:01, HLA-B*58:01 and HLA-B*81, mostly in subtype B and/or subtype C infected 

populations [296, 302-305].  These protective HLA restricted CTL responses target several 

epitopes within the HIV-1 Gag CA protein and this may mediate their association with better 

clinical outcome [276, 282, 303, 306-310].  Other HLA alleles, however, such as HLA-B*18:01, 

HLA-B*35 and HLA-B*58:02, have been associated with rapid disease progression [311, 312]. 

 

1.2.2 HLA-driven determinant of HIV-1 fitness 

Replication fitness is the efficiency with which a virus replicates owing to the selective pressure 

of its environment [313].  Replication capacity is defined as the ability to infect target cells under 

ideal conditions, for instance in in vitro assays, and is usually used as a marker of viral fitness 

(the ability of the virus to reproduce).  HIV replication fitness has been shown to influence the 

predominating variants in patient quasispecies [314].  In addition, it was shown that there were 
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viral fitness differences in ARV-naïve patients’ isolates indicative of natural genetic 

polymorphisms existing in each viral strain [315].  A number of studies have associated some 

HLA class I alleles with a Gag-mediated fitness differences, attributed by ability of these 

molecules to exert immune pressure and thereby alter viral sequences as the virus attempts 

to evades immune recognition [306, 316-320].  Specifically HLA-B*57/HLA-B*58:01-

restricted CTL responses to key epitopes in the Gag CA results in fitness costly mutations such 

as A146P [277], A163G [321] and T242N [281].  However, most studies investigating 

relationships between HLA, escape and viral fitness have been conducted on subtypes B and C. 

Identification of regions of viral vulnerability that lower viral fitness as a consequence of immune 

pressure may have implications for vaccine design, as these regions can be targeted in immunogen 

design strategies.  Therefore, there is an urgent need to identify such regions in epidemiologically 

important subtypes such as A, D and intersubtype recombinants that have not been investigated 

before, and in regions of the world where HLA class I alleles that may impact on disease outcome 

have not been fully characterized.  

 

1.3 Project aims and strategy  

The HIV-1 epidemic is heterogeneous with various subtypes being prevalent. Subtype-specific 

differences in the rate of disease progression have been reported; however, the mechanisms 

underlying this heterogeneity are still unknown (Section 1.1.8).  The Gag protein is a relatively 

conserved region of the HIV proteome, and it plays an essential role in the virus life cycle and 

virus tropism (Section 1.1.6.5).  The Gag protein is also a known preferred target of HIV specific 

CTL.  Some studies have shown that immune responses focused on Gag are associated with viral 

control (Section 1.2) and it has been shown that certain mutations in the gag gene which are driven 

by the host CTL responses may reduce viral fitness in subtypes B and C (Section 1.1.2).  

Additionally, previous studies of HIV-1 subtype B and C showed that Gag-protease-driven viral 

fitness correlated with markers of disease progression, suggesting that it is a significant 
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determinant of disease progression (Section 1.2.2).  Therefore, our major aims were to determine 

whether subtype-specific sequence variability in Gag is associated with differences in Gag-

mediated viral replication capacity and to investigate whether this may contribute inter-subtype 

differences in disease progression and prevalence.  We sought to address these questions using 

the ARV naïve patients of the Majengo sex worker cohort based in Nairobi, Kenya.  To do this, 

we generated patient derived gag-protease NL4-3 recombinant viruses and assayed their 

replication capacities in an HIV-1-inducible green fluorescent protein reporter T cell line, using 

previously published techniques [317, 322].  Protease was included in the patients’ chimeric 

constructs because it cleaves the Gag protein and protease sequence may co-evolve the Gag 

protein sequences within an individual to allow for efficient Gag processing.  Thus Gag-protease 

amplicons from patients preserved the naturally occurring interaction and between the protein and 

allows for efficient processing of the Gag polyproteins.  In addition to our main aim of 

investigating whether there were subtype-specific replication capacity differences in recombinant 

viruses possessing patient-derived gag-protease genes, we aimed to determine whether 

individuals who express protective HLA class I alleles would have lower viral replication 

capacity.  Furthermore, we sought to identify specific amino acid polymorphisms in HIV-1 

subtype A (which represented the majority of sequences samples) that were associated with 

differences in replication capacity.  An effective vaccine intervention would be that which would 

cover a wide range of subtypes and inter-subtype recombinants to curb further the spread of HIV-

1, and our cohort allowed us to extend previous studies of subtypes B and C to identify regions 

of Gag-protease vulnerability in subtype A, D and intersubtype recombinants which, together 

with subtype C, characterize the East African epidemic.  The objectives of our study were as 

follows:  

 Generate Gag-protease NL4-3 recombinant viruses using plasma samples from ARV 

naïve HIV-1 infected patients and measure their replication capacities;  
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 Associate viral replication capacities with markers of disease progression, namely viral 

load and CD4 cell counts, and determine whether there are differences in Gag-protease- 

driven viral replication capacities according to HIV-1 subtype; 

 Determine whether there are host HLA associations with viral replication capacities in 

the study population; and  

 Identify amino acid sequences associated with decreased or increased viral replication 

capacity. 
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CHAPTER 2- MATERIALS AND METHODS 

 

2.1 Ethics and study populations 

2.1.1 Majengo cohort 

The Pumwani Majengo female sex worker cohort was established in 1985 and to date has a total 

of over 4,000 women enrolled [323].  It is one of the largest, most comprehensively studied sex 

worker cohorts and has been used to conduct HIV immunobiology and sexually transmitted 

infection (STI) research.  103 patients were recruited in this study with the following inclusion 

criteria; sufficient plasma sample available for analysis, CD4 counts with follow up for at least 

two years post sample collection, HLA profile available and ARV naïve. The study subjects gave 

informed consent at recruitment and enrollment for immunological, genetic and virological 

studies for which ethical approval was given by the Kenyatta National Hospital Ethics Review 

Board (KNH/ERC/IR/121, protocol P211/09/2006).  Our study protocol was also approved by 

Biomedical Research Ethics Committee of the University of KwaZulu-Natal (BREC no: 

BE181/12).  Plasma samples (stored at -80 ◦C) that were collected between 2006 and 2010 were 

the study material used to generate Gag-protease recombinant viruses, for which replication 

capacity was subsequently measured. CD4 counts and HLA typing were previously determined 

using standard assays for all participants, as previously described [324].  Viral loads were 

measured at Global labs using Nuclisens Easy Q platform with a detection limit of 50 RNA 

copies/ml, according to the manufacturer's instructions.  Cohort characteristics and demographics 

are summarized in Table 2.1. 

2.1.2 Uganda AIDS Rural Treatment Outcomes (UARTO) cohort   

The UARTO cohort study was approved by the University of British Columbia (UBC) Providence 

Health Care Research Institute (UBC-PHC REB NO: H11-01642). In order to validate our results 

from the Majengo cohort, we used gag-protease reverse transcription polymerase chain reaction 

(RT-PCR) products from 30 HIV-1 infected patients (10 each from subtypes A, D and AD) 
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Table 2.1 Clinical and demographic characteristics of the Majengo cohort   

                       Characteristics              Median (interquartile ranges) 

                       Age              30 a (30-40) years 

                       CD4 T cell count             359 (342-520) cells/mm3 

                      Viral load              5.23 (3.82-5.27) log10 copies/ml 

a  The mean is reported. 
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from the UARTO cohort (kindly donated by Dr Zabrina Brumme from Simon Fraser University) 

to generate Gag-protease recombinant viruses and measure their replication capacities.  The 

clinical characteristics of the cohort are summarized in Table 2.2. 

 

2.2 Generation of Gag-protease NL4-3 recombinant virus stocks 

HIV-1 RNA was extracted from the patients’ plasma and the, gag–protease region was amplified 

to generate amplicons for recombination.  Gag-protease NL4-3 recombinant viruses were 

generated by co-transfection of a CEM-derived T cell line with patient-derived gag-protease 

amplicons and NL4-3 gag-protease-deleted plasmid (pNL4-3Δgag-protease) based on methods 

previously described [325].  The procedures followed are summarized in Figure 2.1. 

 

2.2.1 Plasma RNA extraction  

The plasma samples were thawed at room temperature. HIV-1 RNA was extracted from 150 µl 

plasma using the Nucleospin RNA virus kit (Machery-Nagel, Versmold, Germany) as per 

manufacturer’s instructions.  In brief, the kit employs the silica membrane technology using mini 

spin columns with a binding capacity of 40 µg for nucleic acids.  All plasma samples were 

concentrated by centrifugation (Jouan MR23i, Thermo Scientific, Delaware, USA) at 14,000 rpm 

(radius of rotor 100 mm) for 2 hours at 4 °C prior to RNA extraction.  The extracted RNA was 

stored at -80 ˚C until use. The extraction process is summarized in Figure 2.2. 

 

2.2.2 Amplification of HIV-1 gag-protease 

The gag–protease region was amplified by RT-PCR using the Superscript III One-Step RT-PCR 

system with platinum Taq DNA polymerase (Invitrogen, Carlsbad, USA) and the following 

forward and reverse primers, respectively, were used: 5’ GAG GAG ATC TCT CGA CGC AGG 

AC3’ (HXB2 nucleotides 675- 697) and 5’GAG TAT TGT ATG GAT TTT CAG GCC CAA T 

3’(2,696-2,724).  The master mix for the RT-PCR reaction consisted of 14.4 μl  
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Table 2.2 Clinical characteristics of the UARTO cohort   

                       Characteristics           Median (interquartile ranges) 

                       CD4 T cell count           164 (112-216) cells/mm3 

                      Viral load           4.98 (4.48-5.71) log10 copies/ml 
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Figure 2.1 Generation of Gag-protease NL4-3 recombinant virus stocks 
Diagram showing the recombination of patient-derived HIV-1 gag-protease PCR product and 

gag-protease-deleted viral NL4-3 backbone (pNL4-3Δgag-protease) to produce recombinant 

viruses. 
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Figure 2.2 Summary of the extraction process 
The flow chart summarizes the RNA extraction process using the Nucleospin RNA virus kit from 

Machery-Nagel (taken from the kit manual). 
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diethylpyrocarbonate (DEPC) treated water (Invitrogen), 20 μl 2X buffer, 0.8 μl of each primer 

(10 μM), 0.8 μl RT/Taq enzyme mix, and 4 μl RNA extract.  The reaction mixture was then run 

in a thermocycler (Gene Amp PCR system 9700, Applied Bio systems, Foster City, USA) at 30 

°C for 55 minutes (cDNA synthesis) and 94 °C for 2 minutes (initial denaturation), followed by 

35 cycles of 94 °C for 15 seconds (denaturation), 55 °C for 30 seconds (primer annealing), and 

72 °C for 2 minutes (extension), and ended with a 7 minute incubation at 72 °C (final extension). 

Once the RT-PCR program was completed, the samples were held in the thermocycler at 8 °C for 

at least 10 minutes (on hold).  Nested PCR was performed using a TaKaRa Ex Taq HS enzyme 

kit (Takara, Shiga, Japan) and 100-mer forward (5’ GAC TCG GCT TGC TGA AGC GCG CAC 

GGC AAG AGG CGA GGG GCG GCG ACT GGT GAG TAC GCC AAA AAT TTT GAC TAG 

CGG AGG CTA GAA GGA GAG AGA TGG G 3’; HXB2 nucleotides 695–794) and reverse  

(5’ GGC CCA ATT TTT GAA ATT TTT CCT TCC TTT TCC ATT TCT GTA CAA ATT TCT 

ACT AAT GCT TTTATT TTT TCT TCT GTC AAT GGC CAT TGT TTA ACT TTT G 3’; 

2,706-2,805) primers that were exactly complementary to NL4-3 on either side of gag-protease, 

resulting in an overlap that was necessary for recombination of the gag-protease PCR product 

and pNL4-3Δgag-protease following cotransfection.  Two 50 μl PCR reactions were prepared 

per sample.  Each reaction consisted of 37 μl DEPC water, 5 μl 10X Ex Taq buffer, 4 μl 

deoxyribonucleotide triphosphate (dNTP), 0.8 μl forward primer (10 μM), 0.8 μl reverse primer 

(10 μM), 0.25 μl Ex Taq and 2 μl RT-PCR product.  The mixture was then incubated in a 

thermocycler at 94 °C for 2 minutes (initial denaturation), 35 cycles of 94 °C for 15 seconds 

(denaturation), 55 °C for 30 seconds (primer annealing), and 72 °C for 2 minutes (extension), 

followed by 72 °C for 7 minutes (final extension).  Once the nested PCR was completed, the 

amplicons from the two 50 μl PCR reactions were combined and stored at -20 °C.  Gel 

electrophoresis was used to confirm gag-protease amplification.  The 1% polyacrylamide gel was 

prepared by adding one 0.5 g agarose tablet (Bioline, Taunton, USA) to 50 ml of 1X TBE buffer 

(Sigma-Aldrich, St. Louis, USA; composition: 89 mM tribase, 89 mM boric acid, and 2 mM 

ethylenediaminetetraacetic acid [EDTA]) in a flask. A low DNA mass ladder (Roche, Penzberg, 
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Germany) and 5 μl PCR product and 2 μl of gel loading buffer mix which comprised of Gelred 

Nucleic Acid Stain (Biotium, Hayward, USA) and loading dye (Sigma-Aldrich) at a ratio of 1:4) 

were run on the gel at 120 V, 500 mA for 30 minutes using an Electrophoresis Power Supply - 

EPS 301 (Amersham Biosciences, Uppsala Sweden).  The gel was viewed under ultraviolet (UV) 

light using the GelVue UV Trans illuminator (SynGene, London, United Kingdom).  The gag-

protease PCR product corresponded to a size of approximately 1.7 kb as shown in Figure 2.3. 

Approximately 5 µl of the product was set aside for bulk sequencing and the remaining 80-90 μl 

of PCR product was used in the generation of recombinant viruses. 

 

2.2.3 Sequencing of patient-derived gag-protease and sequence analysis 

PCR products were diluted 1:15 in DEPC water for bulk sequencing using the Big Dye ready 

reaction termination mix V3 (Applied Biosystems) and the following sequencing primers: 5’  

GAC GCA GGA CTC GGC TTG CTG A 3’ (688-710), 5’ TTA TCT AAA GCT TCC TTG GTG 

TCT 3’ (1,073-1,097), 5’ CAG CAT TAT CAG AAG GAG CCA C 3’(1,307-1,329), 5’ GGT 

TCT CTC ATC TGG CCT GGT 3’ (1,461-1,482), 5’ TGA CAT GCT GTC ATC ATT TCT TCT 

A 3’ (1,816-1,841), 5’ GAA GGG CAC ACA GCC AGA AAT TGC 3’(1,981-1,953), 5’ GAT 

AAA ACC TCC AAT TCC3’ (2,396-2,414), 5’ TCT TCT GTC AAT GGC CAT TGT TTA AC 

3’(2,609-2,635).  The sequencing reaction was performed in a Micro Amp optical 96-well plate 

(Applied Biosystems).  Each well consisted of 0.4 μl big dye mix, 2.6 μl sequencing primer, 2 μl 

sequencing buffer, 4 μl DEPC water, and 1 μl diluted template.  The reaction was incubated at 96 

°C for 1 minute (initial denaturation), followed by 25 cycles of 96 °C for 10 seconds 

(denaturation), 50 °C for 5 seconds (primer annealing), and 60 °C for 4 minutes (extension).  Once 

the sequencing reaction was complete, the products were immediately purified.  Briefly, the 

sequencing product was firstly diluted with 1 μl of 125 mM EDTA solution at pH 8.0 (Sigma-

Aldrich).  Thereafter, 26 μl of a mixture of 1 μl 3M sodium acetate (NaOAc) at pH 5.2 (Sigma-

Aldrich) and 25 μl 99% chilled ethanol solution was added to each well,  followed by   
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Figure 2.3 Image showing an agarose gel loaded with low DNA mass ladder and 

gag-protease PCR products 
A representative image of six gag-protease amplicons corresponding to approximately 1.7 kb.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

centrifugation (Eppendorf centrifuge 5810R, Merck, Germany) at 3,000 g for 20 minutes.  The 

products were dried by inverting the plate on paper towel and then centrifuging at 150 g for 1 

minute.  Subsequently, 35 μl of 70% ethanol was added to the products to resuspend the pellet 

followed by centrifugation at 3,000 g for 5 minutes.  Following inversion and centrifugation at 

150 g for 1 minute, products were dried in a thermocycler at 50  ̊C for 5 minutes and then stored 

at -20  ̊C until analysis.  The sequencing products were suspended in HiDi formamide and 

denatured in a thermocycler at 95  ̊C for 3 minutes followed by cooling at 4  ̊C for 3 minutes before 

being run on an ABI 3130 XL Genetic analyzer (Applied Biosystems).  Sequences were edited in 

Sequencher version ®5.1 (Gene Codes, Corporation, Ann Arbor, MI USA; 

(http://www.genecodes.com) and aligned to the HIV-1 subtype B reference strain HXB2 

(Genbank accession number K03455) using the Gene Cutter tool from Los Alamos HIV sequence 

database (http://www.hiv.lanl.gov/content-sequence/GENECUTTER/cutter.html).  Insertions  

with respect to HXB2 were stripped out manually in Bioedit Version 7.2.5 [5].  Classifications of 

the subtypes were based on the gag gene using the Rega HIV1 subtyping tool from the Stanford  

database (http://dbpartners.stanford.edu:8080/RegaSubtyping/stanfordhiv/typingtool).   

A maximum likelihood phylogenetic tree was drawn using the Phyml tool from the Los Alamos  

HIV sequence database (http://www.hiv.lanl.gov/content/sequence/PHYML/interface) [326].   

The tree was rooted using a subtype B reference sequence (GenBank accession number 

DQ383746). All reference subtypes and circulating recombinant forms were obtained from the 

Los Alamos HIV Sequence Database and were incorporated to construct the tree.  The 

recombination breakpoints were determined by Simplot version 3.5.1 software of the Phylip 

package program (http://sray.med.som.jhmi.edu/SCRoftware/simplot).  

 

 

http://www.hiv.lanl.gov/content-sequence/GENECUTTER/cutter.html
http://dbpartners.stanford.edu:8080/RegaSubtyping/stanfordhiv/typingtool
http://www.hiv.lanl.gov/content/sequence/PHYML/interface
http://sray.med.som.jhmi.edu/SCRoftware/simplot
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2.2.4 Preparation of the pNL4-3Δgag-protease backbone  

The pNL4-3gag-protease plasmid in STBL3 cells was donated by Dr. Toshiyuki Miura 

(University of Tokyo, Japan). pNL4-3gag-protease was previously prepared by the introduction 

of the unique restriction enzyme site BstEII at the 5’ end of the gag gene and then 45 bases 

downstream from the 3’end of the protease gene of pNL4-3, followed by BstEII digestion to 

remove gag-protease and self-ligation of the plasmid [317].  To propagate the plasmid, 100 ml of 

Luria-Bertani (LB) broth (Sigma-Aldrich) with 100 μg/ml ampicillin was inoculated with 25 μl 

STBL3 stock and incubated for 12-16 hours at 37 °C at 230 rpm in a shaking incubator (Infors 

HT, Bottmingen, Switzerland).  The plasmid was then purified using the Plasmid Maxi kit 

(Qiagen, Valencia, USA) as per manufacturer’s instructions.  The purified DNA was later 

quantified using a Nano drop spectrophotometer (Thermo Scientific) and stored in a -80 °C ultra-

freezer (Snijders Scientific, Holland) until use. 

 

 

2.2.4.1 Confirming specificity of the purified DNA product  

The specificity of the purified plasmid was then confirmed by digestion with the restriction 

endonuclease Hind III (Thermo scientific).  Restriction endonucleases cleave the double–stranded 

(dsDNA) at specific sites within their recognition sequences.  Briefly, the reaction consisted of 

15 μl of nuclease free water, 2 μl of 10x fast digest buffer, 1 μl of fast digest enzyme and 2 μl of 

diluted (up to 1 μg) purified  plasmid product.  The mixture was gently mixed, spun down and 

then incubated at 37 °C in a thermocycler for 30 minutes.  Following gel electrophoresis of the 

digested plasmid 4 bands were observed as shown in Figure 2.4. 

 

 

-  
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Figure 2.4 An agarose gel loaded with low DNA mass ladder and HindIII digested 

pNL4-3Δgag-protease 
A gel confirming the specificity of the maxiprepped pNL4-3Δgag-protease. Four bands are 

observed following HindIII digest.  
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2.2.5 Thawing, culturing, and storing of CEM-GXR25 cells 

The reporter T-cell line CEM–GXR25 (GXR cells) donated by Dr Mark Brockman (Simon Fraser 

University, Canada) was used [6].  This cell line encodes for green fluorescent protein (GFP) 

which is driven by HIV-1 long terminal repeat (LTR).  The LTR plays a major role in viral gene 

expression.  Upon HIV infection, GFP expression is induced in a Tat-dependent manner and HIV1 

spread is monitored by flow cytometry.  A frozen 1 ml aliquot of GXR cells stock was transported 

from the liquid nitrogen freezer (Custom Biogenics Systems, Romeo, USA) on dry ice and 

incubated in a 37 °C water bath by swirling until thawed. Afterwards, the thawed cells were 

moved to 4 ml of pre-warmed R10 medium (RPMI-1640 supplemented with 2 mM L-glutamine 

[both from Sigma-Aldrich], 50 U/ml penicillin-streptomycin, 10% foetal calf serum, and 10 mM 

HEPES [all from Gibco, New York, USA]) in a T25 flask (Corning-Costar, New York, USA) and 

incubated in a humidified Heraeus incubator (Thermo Scientific) at 37 °C and 5% CO2.  The next 

day, the GXR cells were spun at 1,500 rpm (radius of rotor 100 mm) for 10 minutes (Heraeus 

multifuge 3SR+, Thermo Scientific) and then suspended in 10 ml fresh R10 medium to remove 

dimethylsulfoxide (DMSO; Sigma-Aldrich) used in the storing of cells. Cell counts were 

performed by mixing 10 μl cell suspension with 10 μl of trypan blue dye, loading this onto a slide 

(Bio-rad, South Africa) and reading the count using an automated TC20 cell counter (Bio-rad).  

On growing to approximately 90% viability, the cells were transferred to a T75 flask (Corning-

Costar) and a stock culture was maintained in 25 ml R10 medium for maximum of three months.  

Every two days approximately 20% of the culture medium was discarded and replaced with fresh 

medium. GXR cells were stored in 1 ml R10 medium at a concentration of approximately 5 

million per ml in 10% DMSO.  Following approximately 20 minutes of equilibration in DMSO, 

cells were placed in a Mr Frosty container (Nalgene, Thermo Scientific), which insulates the cells 

making them to cool at a rate of approximately 1 °C per minute, in the -80 °C freezer (Snijders 

Scientific) overnight and thereafter in liquid nitrogen until use. 
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2.2.6 Co-transfection of GXR cells with gag-protease and pNL4-3Δgag-protease 

The purified plasmid (10 μg per sample) was digested with BstEII (Promega, Madison, USA) to 

obtain a linear DNA fragment.  Digestion was performed on the morning of the co-transfection 

experiment to reduce re-ligation of the restriction site [327].  The digestion reaction consisted of 

the plasmid, 1/10 reaction volume of the 10X buffer, and 1/100 reaction volume of bovine serum 

albumin (BSA) and was made up to the final reaction volume with sterile deionized water. The 

reaction was incubated in a water bath at 60 °C for 2 hours.  The gag-protease PCR amplified 

fragment (80-90 μl) was then co-transfected with the linearized pNL4-3Δgag-protease (10 μg 

digested plasmid) into GXR cells (4 million cells per sample) by electroporation (Gene Pulser II, 

Bio-rad, Hercules, USA) in 4 mm cuvettes (Bio-rad, South Africa) at 250 V and 950 μF with 

resistance at ∞ (infinity).  The electric field induces pore formation in the cell wall and enhances 

the permeability of the host cells, which allows for the uptake of DNA  [328, 329].  The cells 

were then rested for 5 minutes before being moved to a T25 flask with 10 ml of prewarmed R10 

medium (supplemented with 4 μg/ml of polybrene [EMD Millipore, Darmstadt, Germany], which 

enhances virus infection of cells) and 1 million non-electroporated GXR cells.  The cells were 

then incubated at 37 °C and 5% CO2 and 5 days later 5 ml of R10 media was added to the flask 

followed by further incubation.  

 

2.2.7 Monitoring of virus infection by flow cytometry   

The percentage infected cells was monitored quantitatively using a FACS Calibur flow cytometer 

(Becton Dickinson, San Jose, USA). Flow cytometry measures multiple characteristics of 

individual cells flowing in single file in a stream of fluid. Light scattering at different angles can 

distinguish differences in size and internal complexity, and light is also emitted from fluorescent 

molecules [330].  On the 10th day post cotransfection, and every 2 days thereafter, HIV-induced 

expression of GFP was quantified as described in published protocols [322].  Briefly, the culture 

suspension was well mixed, after which 2 ml was removed and replaced with fresh R10 medium. 
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1 ml was discarded and the remaining 1 ml was transferred to a matrix cluster tube (Corning-

Costar) followed by centrifugation at 1,500 rpm for 10 minutes at 20 °C.  The excess supernatant 

was aspirated leaving approximately 50 μl with the pellet, which was then fixed with 200 μl of 

2% paraformaldehyde (PFA) for 15 minutes at room temperature before it was read on the FACS 

calibur.  Instrument settings used were: forward scatter = E-1, side scatter = 411 FL1 = 2806, FL2 

= 493, and FL3 = 721.  The gating for GFP (using the uninfected negative control sample) was 

set at 0.05, above which cells were considered GFP positive. 15,000 events were acquired. Data 

analysis to accurately determine the amount of GFP positive cells was conducted using FlowJo 

version 8.1 (TreeStar, USA) (http://www.flowjo.com/v8/html/reference.html). When cells 

reached ~30% infection, the culture supernatant was harvested. 

 

2.2.8 Harvesting of the recombinant virus  

At ~30% GFP positive (infected) cells, the culture was centrifuged at 1,700 rpm for 5 minutes at 

4 °C.  The supernatant was aliquotted and stored at -80 °C prior to use in assays. 

 

2.3 Viral replication assay 

The replication assay was performed in duplicate to confirm reproducibility. Prior to this assay 

all the recombinant viruses were titered.  These methods were previously established in our 

laboratory [325] as described briefly below. The process is summarized in Figure 2.5.  

 

2.3.1 Titration of the viruses 

The objective of the replication assay is to measure the ability of recombinant viruses generated 

to reproduce by assessing multiple rounds of infection. It is therefore paramount to ensure that all 

viruses start at a similar infection level, which we set at a multiplicity of infection (MOI) of 0.003 

i.e. 0.3% infection after 2 days.  To determine the volume of virus stock that would yield 0.3% 

infection after 2 days, we infected 1 million GXR cells (corresponding to 0.1 ml) with 0.4 ml  

http://www.flowjo.com/v8/html/reference.html
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Figure 2.5 Replication assay summary 
The diagram shows a summary of the titration and replication assay.  
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ours later, 1 ml of pre-warmed R10 medium was added to each well and incubation was continued 

under same conditions.  At 48 hours post-infe 
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virus stock in a 24 well plate (Corning-Costar) followed by incubation at 37 °C and 5% CO2.  24 

hours later, 1 ml of pre-warmed R10 medium was added to each well and incubation was 

continued under same conditions. At 48 hours post-infection, the percentage of infected cells was 

determined by flow cytometry as described in Section 2.2.7 (with the exception that 0.5 ml instead 

of 1 ml was prepared for flow cytometry). The volume of virus stock to use in the replication 

assay was calculated as follows:  

Volume of virus stock (ml) = (0.3%/% cells infected on day 2 of the titration)*0.4 ml. 

 

2.3.2 Replication capacity assay  

To perform the replication capacity assay, a new viral stock was thawed and the calculated volume 

of virus stock (from the titration experiment, Section 2.3.1) was diluted to a final volume of 0.4 

ml with R10 medium.  As described in Section 2.3.1, 1 million GXR cells in 0.1 ml of R10 

medium were infected with the 0.4 ml diluted virus stock.  The assay was set up in a 24 well 

culture plate (Corning-Costar) and was incubated at 37 °C and 5% CO2 for 6 days.  At 24 hours 

post-infection, 1 ml of fresh R10 medium was added to each well.  On days 2-6 post-infection, 

0.5 ml of the culture was prepared for flow cytometry (as described in Section 2.2.7) and was 

replaced with 0.5 ml fresh R10 medium.  Wild-type NL4-3 virus was included as a positive 

control in each assay (the average of three measurements was taken in each assay).  The negative 

control was 1 million uninfected cells.  The replication capacity was defined as the natural log of 

the slope of exponential increase in GFP percentage monitored on day 3 to 6 post-infection, 

expressed relative to the wild type NL4-3 growth, by employing the semi-log method in MS 

Excel.  To ensure calculation of the slope only during the period of exponential viral spread, if 

the percentage infected cells exceeded a cut off of 11% on day 5 post-infection, the slope was 

calculated from day 3-5 post-infection instead.  
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2.4 Data analysis 

Statistics were performed and graphs drawn using GraphPad Prism version 5.01 (GraphPad 

Software, Inc., San Diego, CA, USA) unless otherwise stated.  For all analyses, p<0.05 was 

considered significant.  The clinical parameters and demographics were compared between the 

patient groups infected with different subtypes using the Kruskal-Wallis test.  The replication 

capacity frequency distribution of the entire cohort, as well as grouped according to subtype, was 

analysed using histograms on the IBM SPSS statistics program 23.  To confirm reproducibility of 

duplicate replication measurements and concordance between our replication measurements with 

those of previously assayed samples, we used Pearson’s correlation tests.  Analysis of variance 

(ANOVA) was used to assess whether there were significant differences in replication capacities 

between the different subtypes.  Tukey post- hoc tests were used to compare individual subtypes, 

with p<0.05 (*), p<0.01 (**) and p<0.001 (***) considered for the level of significance.  Students 

T tests or Mann-Whitney U tests (when the data failed assumptions of the Students T test) were 

used to compare the replication capacities of viruses when divided into 2 groups based on different 

parameters (for example geographical location or the presence/absence of a mutation). 

Spearman’s correlation tests were used to correlate viral replication capacities with several 

parameters including the percentage similarity of sequences to the consensus B sequence, markers 

of disease progression (namely CD4 counts and viral loads) and the number of HLA-associated 

polymorphisms present in sequences.  To assess whether there were significant differences in 

replication capacities within expressed HLA-A, -B and –C allele groups, ANOVA was used. 

Student’s t-tests were employed for each individual allele to compare replication capacities of 

viruses from hosts expressing the particular allele and those not expressing that allele.  Finally, to 

assess relationship between individual amino acids and replication capacity in our cohort, an 

exploratory codon-by-codon tool that uses the Kruskal-Wallis test was employed using a cut off 

of q<0.2 (http://brockman-srv.mbb.sfu.ca/~B_Team_iMac/Codon_by_codon) [331].   Briefly, for 

each coordinate, the algorithm identifies an amino acid that satisfies the minimum count. (The 

http://brockman-srv.mbb.sfu.ca/~B_Team_iMac/Codon_by_codon
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minimum count is used to determine whether or not to test the cases in the test group). A minimum 

count of 3 is provided by the tool by default in order to achieve a p value of less than 0.05. This 

tool independently looks at each coordinate and determines whether the presence or absence of a 

particular amino acid is significantly associated with change in replication capacity functionality. 

The Chi square test was used [332] to test for significant differences in the frequencies of amino 

acid variants associated with altered replication capacity between subtypes A and D. 
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CHAPTER 3 -RESULTS 

Introduction 

The purpose of this study was to generate Gag-protease NL4-3 recombinant viruses using plasma 

samples from ARV naïve patients in the Majengo sex worker cohort from Nairobi, Kenya; where 

A, C, and D subtypes as well as inter-subtype recombinants co-exist.  The replication capacity of 

each virus was measured using a standardized GFP based reporter T cell line assay.  We 

investigated whether there were differences in Gag-protease driven viral replication capacities 

according to HIV-1 subtype.  We then associated the replication capacities of the recombinant 

viruses with markers of disease progression and host HLA class I types.  We also identified 

specific amino acids associated with decreased or increased viral replication capacity.  

 

3.1 Subtype classification 

Viral RNA was extracted from patient plasma samples and the gag-protease region of the HIV-1 

genome was amplified by nested RT-PCR.  The patient-derived gag-protease amplicons were 

then sequenced using Sanger bulk sequencing for HIV-1 subtyping.  Classifications of the 

subtypes were based on the gag gene using the Rega HIV-1 subtyping tool from the Stanford 

database (http://dbpartners.stanford.edu/RegaSubtyping).  A maximum likelihood phylogenetic 

tree drawn using Phyml tool on Los Alamos Database illustrated that the patient-derived 

sequences clustered with the respective reference sequences for each subtype as shown in Figure 

3.1 (http://www.hiv.lanl.gov/content/sequence/PHYML/interface).  The tree was rooted using a 

subtype B reference sequence from Los Alamos.  The inter-subtype recombinants were confirmed 

by boot scanning analysis using Simplot version 3.5.1 [200 base pairs window, 20 base pairs step 

increment and 50-1000 bootstrap replicates at every window (JC, Kimura (2-parameter) model)] 

and further assessed for recombination patterns, as illustrated in Figure 3.2.  Interestingly, 

common patterns of recombination breakpoints were observed: specifically, breakpoints at amino 

acids 150, 410 and 435 occurred 5 times each. 

http://dbpartners.stanford.edu/RegaSubtyping
http://www.hiv.lanl.gov/content/sequence/PHYML/interface
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Figure 3.1 Phylogenetic tree showing the subtypes classification 
A maximum likelihood phylogenic tree showing clustering of gag from all patient-derived 

sequences into distinct subtypes.  Subtype references, A, C, D, and inter-subtype recombinant 

sequences are represented by black, red, purple, blue and green colours respectively. The scale 

bar indicates 2% nucleotide sequence divergence. 
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Figure 3.2 Recombination patterns of inter-subtype recombinants 
An illustration map showing a distinct pattern of recombination breakpoints of the inter-subtype 

recombinants. The subtypes A, C and D are represented by red, purple and blue colours 

respectively. The amino acids codons are positioned according to gag HXB2 reference strain 

numbering.  Residues at which breakpoints were common are highlighted in bold. 
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3.2 Demographic and clinical data 

The patients were categorized according to infecting subtype (percentage composition of 

infecting subtypes) as displayed in Figure 3.3 and the demographic and clinical data was 

compared between subtype groups (Table 3.1) since differences in these parameters may 

potentially confound analyses comparing replication capacities between subtypes.  However, 

there were no significant differences in age, CD4 counts or viral loads between the different 

subtype groups (Table 3.1). 

 

3.3 Replication capacity measurements  

The amplified patient-derived gag-protease amplicons and the gag-protease deleted plasmid 

(pNL4-3Δgag-protease) were co-transfected into CEM-GXR T cell line via electroporation to 

generate Gag-protease NL4-3 recombinant viruses.  The replication capacities of the Gag-

protease recombinant viruses were assayed in duplicate independent experiments by infecting the 

cell line at a multiplicity of infection (MOI) of 0.003 and then calculating the mean slope of 

exponential growth from day 3-6 post infection normalized to wild-type NL4-3.  Duplicate 

measurements were in strong agreement indicating reproducibility of the assay as shown in Figure 

3.4.  Furthermore, supporting reproducibility of the assay, we used 20 gag-protease amplicons 

for which Gag-protease replication capacity was previously measured [325], constructed Gag-

protease recombinant viruses and found that the replication capacities measured correlated 

strongly with previous measurements (Pearson’s correlation r=0.92, p=0.0001) as shown in 

Figure 3.5.  The overall replication capacities of recombinants viruses encoding patient-derived 

Gag-protease were gathered to draw a frequency distribution histogram for the 103 patients 

(Figure 3.6).  Histograms of the replication capacities of viruses within subtype A, subtype C, 

subtype D and inter-subtype recombinant groups were also drawn and showed a normal 

distribution of replication capacities within each subtype group (Figure 3.7)
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Figure 3.3 Distribution of subtypes 
A pie chart illustrating the percentage composition of the different subtypes in the 103 study 

patients. The subtypes A, C, and D and inter-subtype recombinants are indicated by red, purple, 

blue and green colours respectively. 
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Table 3.1 Cohort characteristics and demographic data 

  

a Medians with inter-quartile ranges in brackets are shown.                                           

b p-values calculated using the Kruskal-Wallis test 

HIV – human immunodeficiency virus; CD4 – cluster of differentiation 4                            

 

HIV-1 Subtype 

n=103 

A 

n=57 

C 

n=16 

D 

n=13 

Recombinants 

n=17 

 

p- 

valuesb 

Age (years; mean) 
 

35 

 

37 

 

31 

 

35 

 

0.39 

CD4 count (cells/mm3) a 421 [342-590] 376 [307-471] 427 [356-509] 358 [351- 400] 
 

0.14 

Viral load (log10 copies/ml)a 4.20 [3.71-5.18] 4.04 [3.81-4.95] 5.00 [4.21-5.73] 5.23 [4.65-5.32] 
 

0.16 
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Figure 3.4 Quality control: concordance of duplicate measurements 
A graph showing good concordance of the duplicate measurements of the replication capacity 

assay (Pearson’s correlation; r=0.98, p=0.0001).  
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Figure 3.5 Quality control: concordance with previous measurements 
A graph showing good concordance of replication capacity of previously assayed measurements 

and replication capacity from same amplicons (Pearson’s correlation; r=0.92, p=0.0001). On the 

X-axis (JM SK) are measurements done previously and on the Y-axis (MWK SK) are repeat 

measurements from the same samples.  
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Figure 3.6 The frequency distribution of the replication capacities of the entire 

cohort 
A histogram showing a wide range distribution of the viral replication capacities from the 103 

patients.  The mean replication capacity was 0.81 with a standard deviation of 0.2.    
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Figure 3.7 Replication capacity frequency distribution among specific subtypes 
Histograms (i-iv) showing  the  distribution of viral replication capacities within subtypes A, C 

and D as well as  inter-subtype recombinants, indicated by red, purple, blue and green colours 

respectively. Replication capacities approximated a normal distribution with mean replication 

capacities of 0.69 (standard deviation) (SD=0.1), 0.78 (SD=0.08), 0.94 (SD=0.1) and 1.13 

(SD=0.2) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

i                                                        ii 

i                   ii  

 

 

 

 

 

 

 

 

 

iii                                                                                   iv 

 

 

 

 

 

 

 

 

 

 



74 
 

3.3.1 Replication capacity differences among subtypes 

Previous studies have shown differences in disease progression, immunogenicity and 

transmission among HIV-1 subtypes [105, 239, 242, 243, 245, 333] however the underlying 

biological mechanisms remains unknown.  We investigated whether there were differences in 

Gag-protease-driven viral replication capacities according to HIV-1 subtype as viral replication 

capacity is a factor influencing disease progression [325, 334, 335].  Marked differences in 

replication capacities were observed among subtypes (Figure 3.8). Gag-protease inter-subtype 

recombinants had the highest mean replication capacity of 1.13 (p<0.001 compared to subtypes 

A, C and D) followed by subtype D with a mean replication capacity of 0.94 (p<0.001 compared 

to subtype A, p<0.01 compared to subtype C) then subtype C and A with means of 0.78 and 0.69 

respectively. There were no significant differences in CD4 count or viral load between the 

different subtype groups (Table 3.1), indicating that these factors were not driving the replication 

differences between subtypes. 

 

3.3.2 Reproducibility of subtype differences  

We subsequently wanted to investigate whether similar inter-subtype differences in viral 

replication capacity would be observed in a different cohort from another region with similar 

infecting subtypes.  Therefore, we generated and assessed the replication capacity of 30 Gag-

protease recombinant viruses, 10 samples each from subtypes A, D and AD recombinants, from 

the UARTO cohort in Uganda. In order to control for CD4 count and viral load as potential 

confounding factors, the samples from the different subtype groups were matched for CD4 counts 

and viral loads.  There was no significant difference in the CD4 counts (ANOVA; p=0.53) or viral  
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Figure 3.8 Replication capacity differences in subtypes 
A graph showing differences in Gag-protease replication capacities among the subtypes and inter-

subtype recombinants (ANOVA; p=0.0001).  Subtypes A, C, D and inter-subtype recombinants 

are represented in red, purple, blue and green respectively.  The bars and whiskers represent the 

means and interquartile ranges respectively. The number of asterisks denotes the level of 

significance, namely, p<0.05 (*), p<0.01 (**) and p<0.001 (***). 
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loads (ANOVA; p=0.91) between the different subtype groups.  The medians of CD4 T cell counts 

and viral loads respectively for each group were as follows: 171 cells/mm3 and 5.20 log10 

copies/ml for subtype A, 154 cells /mm3 and 4.98 log10 copies/ml for subtype D and 147 cells 

/mm3 and 4.98 log10 copies/ml for AD recombinants.  Consistent with our observations from the 

Majengo cohort, there were marked differences in replication capacity observed between subtypes 

shown in Figure 3.9.  AD recombinants had the greatest replication capacity of 1.42 (p<0.01) 

compared to subtype A) followed by subtype D with mean of 1.07 (p<0.05) compared to subtype 

A) and lastly subtype A with a mean 0.76.  Overall, our replication capacity results for the 

different subtypes are reproducible across different cohorts and geographical regions.  To further 

assess comparability between cohorts of different geographical regions, we measured the Gag-

protease driven replication capacities of 20 subtype C viruses derived from the Sinikithemba 

cohort in Durban and compared these to the replication capacities of the subtype C viruses 

generated from the Majengo cohort in Nairobi.  Replication capacities of the subtype C viruses 

from the two geographically diverse regions were similar (Mann-Whitney U test; p=0.75) (Figure 

3.10).   

 

3.4 Impact of NL4-3 backbone on replication capacity  

One of the limitations of our study is the use of a subtype B backbone (NL4-3) to generate 

recombinant viruses encoding Gag-protease from different subtypes, which could potentially 

influence our analysis of inter-subtype replication capacity differences.  For instance, a number 

of studies have previously reported that subtype D is nearer to subtype B  than subtypes A or C 

are to subtype B in terms of sequence phylogeny analysis [319, 320].  Therefore, it would be 

expected that the subtype D Gag-protease recombinants may be more compatible with the subtype 

B backbone resulting in fitter viruses compared to subtype A or C Gag-protease recombinants. 

We sought to exclude any concerns that this factor could have influenced the differences we 

observed in replication capacity between the subtypes in our cohort.  Firstly, we compared the  
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Figure 3.9 Reproducibility of subtype differences in the UARTO cohort 
A graph showing significant differences in Gag-protease viral replication capacities among the 

subtypes A, D and inter-subtype recombinants (ANOVA; p=0.0029) represented in red, purple 

and green respectively. The bars and whiskers represent the means and interquartile ranges 

respectively. The number of asterisks denotes the level of significance, namely, p<0.05 (*), 

p<0.01 (**). 
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Figure 3.10 Replication capacity comparison of subtype C in different cohorts 
Graph showing no significant differences between Gag-protease driven replication capacities of 

subtype C viruses from Sinikithemba cohort (SK) in Durban and Majengo cohort (ML) in Nairobi 

(Mann-Whitney U test; p=0.75). The bars and whiskers represent the means and interquartile 

ranges respectively. 
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replication capacities of subtype D recombinants versus non-subtype D recombinants to 

investigate whether the subtype B NL4-3 backbone could bias subtype D recombinants in favour 

of higher replication capacity.  However, we established that there were no significant differences 

in replication capacity of the subtype D recombinants and non-subtype D recombinants (Mann-

Whitney U test; p=0.73) (Figure 3.11).  Secondly, we expected that if the subtype B NL4-3 

backbone influenced replication capacity results that the viruses most similar to the consensus B 

sequence would be fitter [319, 320].  We therefore calculated the similarity of Gag from all 

patient-derived sequences to the consensus B Gag sequence and correlated the percentage 

similarity with the replication capacities of the corresponding viruses (Figure 3.12).  No 

significant correlation was observed between these two parameters (Spearman’s correlation; 

r=0.13, p=0.34 for subtype A; r=0.44, p=0.09 for subtype C; r=-0.32, p=0.29 for subtype D and 

r=0.14, p=0.63 for inter-subtype recombinants), supporting that the subtype B backbone was not 

driving the differences in Gag-protease driven replication capacity observed between viruses 

encoding different subtypes in our cohort. 

 

 3.5 Replication capacity versus markers of disease progression 

Previous studies of HIV-1 subtypes B and C [318, 327, 337, 338] have demonstrated an 

association between Gag-protease replication capacity and markers of disease progression.  We 

therefore assessed the relationship between Gag-protease driven replication capacity and markers 

of disease progression, namely CD4 counts and viral loads, in the different subtypes. As shown 

in Figure 3.13, overall there were no significant correlations observed between replication 

capacity and CD4 T cell counts (Spearman’s correlation; r=0.16 and p=0.10 or viral loads 

(Spearman’s correlation; r=0.08 and p=0.40). However, since we had shown significant 

differences in Gag-protease replication capacity among the subtypes we further assessed the 

correlation of replication capacity and markers of disease progression by subtype.    
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Figure 3.11 Replication capacities of subtype D and non-subtype D recombinants 
Graph showing no significant differences in replication capacities between subtype D and non-

subtype D inter-subtype recombinants (Mann-Whitney U test; p=0.73). The bars and whiskers 

represent the means and interquartile ranges respectively. 
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Figure 3.12 Similarity to consensus B versus replication capacity 
Graphs showing no correlation between percentage similarities of Gag sequences to the consensus 

B Gag sequence and replication capacity (Spearman’s correlation). Subtype A, subtype C, 

subtype D and inter-subtype recombinants are represented in panels (i-iv) respectively. 
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Figure 3.13 Replication capacity versus markers of disease progression 

Graphs showing no correlation between Gag-protease driven replication capacity and markers of 

disease progression, namely CD4 counts and viral loads (Spearman’s correlation). 
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Similarly, no significant correlations were observed between replication capacities and CD4 

counts (Spearman’s correlation; r=-.0.13 and p=0.32 for subtype A, r=-0.09 and p=0.71 for 

subtype C, r=-0.03 and p=0.92 for subtype D, and r=-0.18 and p=0.44 for inter-subtype 

recombinants) or viral loads (Spearman’s correlation; r=0.09 and p=0.48 for subtype A, r=0.48 

and p=0.08 for subtype C, r=-0.15 and p=0.62 for subtype D, and  r=-0.19 and p=0.43 for inter-

subtype recombinants) as shown in Figure 3.14.  

 

3.6 Impact of HLA class I on replication capacity 

The vastly polymorphic human leukocyte antigen (HLA) class I locus has been shown to play a 

major role in immune control of HIV-1 infection [296, 336, 337].  In particular, host HLA-B 

alleles exert a considerable influence on HIV-1 disease progression [309, 338].  Recent studies 

on the impact of HLA-mediated immune pressure on HIV-1 Gag-protease fitness in HIV-1 

subtype B and C have demonstrated lower replication capacities in patients who have protective 

alleles [325, 339, 340].  Consequently, we compared viral replication capacity from patients 

expressing known protective alleles (HLA-B*57:01, -B*57:02, -B*57:03, -B*58:01 -B*27 and –

B*81:01) [338, 341-343] versus those who did not express protective alleles (Figure 3.15).  

However, for subtype A, HLA-B*58:01 was excluded from the protective HLA allele group as 

this HLA allele was not associated with lower CD4 counts  or viral loads in subtype A infection 

[344, 345].  Generally we show that there were no significant differences in replication capacity 

of patients expressing protective alleles versus those with non-protective HLA alleles within 

subtype A, subtype D and inter-subtype recombinant groups (Mann-Whitney U test; p=0.92 for 

subtype A, p=0.87 for subtype D and p=0.53 for inter-subtype recombinants) (Figure 3.15). 

However, for subtype C, protective alleles were associated with lower replication capacity (Mann-

Whitney U test; p=0.004).  Interestingly, three out of four of the subtype C sequences from the 

patients expressing the protective HLA alleles harboured mutations, namely 186S and 242N, 

which were previously reported to have a fitness cost [346-348]. 
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Figure 3.14 Replication capacity versus markers of disease progression in subtypes 
Graphs showing no correlation between Gag-protease driven replication capacity and markers of 

disease progression, namely CD4 counts and viral loads, in the different subtypes (Spearman’s 

correlation).  Subtype A is shown in panels (i) and (ii), subtype C in (iii) and (iv), subtype D in 

(v) and (vi) and finally inter-subtype recombinants in (vii) and (viii) respectively. 
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Figure 3.15 Impact of protective HLA class I alleles on replication capacity in 

individual subtypes 
Graphs (i-iii) showing no significant differences in replication capacity of patients expressing 

protective HLA alleles versus non-protective HLA alleles in subtype A, subtype D and inter-

subtype recombinants. 

Graph (iv) showing significant differences in replication capacity of patients expressing 

protective HLA alleles versus those with non-protective HLA alleles in subtype C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             

 

 



93 
 

                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
ro

te
ct

iv
e 

N
on P

ro
te

ct
iv

e
0.4

0.6

0.8

1.0

1.2 p=0.92

  HLA

i

R
e
p

lic
a
ti
o

n
 c

a
p

a
c
it
y

P
ro

te
ct

iv
e 

N
on P

ro
te

ct
iv

e 
0.8

1.0

1.2

1.4

1.6 p=0.53

HLA

iii

R
e
p

lic
a
ti
o

n
 c

a
p

a
c
it
y

P
ro

te
ct

iv
e 

N
on P

ro
te

ct
iv

e
0.4

0.6

0.8

1.0

1.2 p=0.004

HLA

iv

R
e
p

lic
a
ti
o

n
 c

a
p

a
c
it
y

Pro
te

ct
iv

e 

N
on P

ro
te

ct
iv

e 0.6

0.8

1.0

1.2

1.4

1.6 p=0.87

HLA

ii

R
e
p

lic
a
ti
o

n
 c

a
p

a
c
it
y



94 
 

3.6.1 HLA class I effect on replication capacity within subtype A 

A number of studies have shown that different individual HLA class I alleles are associated with 

loss of viral fitness in subtype B and C due to immune selection pressure and sequence changes 

in the gag gene [306, 316-318]. We sought to assess the impact of specific HLA class I alleles on 

Gag-protease driven replication capacity in the different subtypes in our cohort, however we were  

limited in numbers for subtypes C and D and inter-subtype recombinants (n<20 for all), therefore 

we focussed this analysis on subtype A for which we had the most samples (n=57).  Viral 

replication capacities were grouped according to the HLA class I alleles expressed by the host for 

subtype A infected patients.  There were no significant differences in replication capacity overall 

between different HLA-A, -B, or –C alleles as assessed by ANOVA (Figure 3.16).  For each 

individual allele, the replication capacities of patients expressing that particular HLA allele versus 

those who did not express the allele were compared (only for HLA alleles present at n≥5), and it 

was observed that A*74, A*68 and A*03 were associated with lower replication capacities 

(Student’s T test; p=0.04, p=0.01 and p=0.04, respectively).  However, when Bonferroni 

correction was applied to account for multiple comparisons, these alleles were no longer 

significantly associated with lower replication capacity.  Therefore, we did not find strong 

evidence of HLA alleles driving viral attenuation in subtype A.   

 

3.7 Sequence determinants of replication capacity  

We subsequently wanted to identify sequence determinants of Gag-protease driven replication 

capacity.  Specifically we investigated whether there was any association between replication 

capacity and different recombination breakpoints as well as the number of HLA-associated 

polymorphisms present in a given sequence.  In addition, we performed analyses to identify 

specific amino acids associated with altered replication capacity. 
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Figure 3.16 HLA allele effect on Gag-protease driven replication capacity within 

subtype A 
Graphs showing Gag-protease replication capacities grouped according to HLA-A (i), -B (ii) and 

–C (iii) alleles expressed by patients infected with subtype A. Double asterisks (**) indicate 

ANOVA p values for HLA-A, -B and –C groups.  Individual HLA alleles associated with reduced 

replication capacity as determined by the Student’s T test (p<0.05) are highlighted in red. The 

vertical line shows the mean replication capacity, the edges of the boxes show interquartile ranges, 

and the edges of the whiskers show the most extreme value. 
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3.7.1 Recombination breakpoints 

We hypothesised that the pattern of recombination might affect the replication capacities of the 

inter-subtype recombinants.  Therefore, we compared the replication capacities of inter-subtype 

recombinants with and without the common breakpoints 150, 410 and 435. However, there were  

no significant differences in replication capacities in the presence or absence of these breakpoints 

(Mann-Whitney U test; p=0.79, p=0.79, p=0.53, respectively).  Furthermore, there was no 

significant difference in replication capacity between recombinants with a single breakpoint and 

those with multiple breakpoints (Mann-Whitney U test; p=0.92) as shown in Figure 3.17. 

 

3.7.2 HLA-associated polymorphisms 

Studies done previously in subtypes B and C identified negative relationships between HLA-

associated polymorphisms and replication capacity [316, 319, 325].  Therefore we explored the 

relationship between the number of HLA-associated polymorphisms and replication capacity in 

our cohort.  For each subtype, we used a list of HLA-associated polymorphisms that were based 

on sequences from that subtype and were previously defined using methods that account for the 

phylogenetic relatedness of sequences, amino acid co-variation, and HLA linkage disequilibrium 

effects [349].  The list of HLA-associated polymorphisms for subtype C (Table A2) was 

previously published [325], and the lists for subtypes A (Table A1) and D (Table A3) were kindly 

provided by Dr Zabrina Brumme from Simon Fraser University [350].  We considered only those 

polymorphisms that were non-consensus and positively associated with the presence of a 

particular HLA allele (i.e. adapted associations) at p<0.05 and q<0.2.  We found that the quantity 

of HLA-associated polymorphisms specific to the host HLA alleles did not correlate with the 

replication capacity (Spearman’s correlation; r=-0.22 and p=0.10 for subtype A, r=-0.17 and 

p=0.52 for subtype C, r=-0.57 and p=0.85 for subtype D, and r=0.06 and p=0.86 for inter-subtype 

recombinants (Figure 3.18).  Since HLA-B-associated polymorphisms in particular, especially 

those in or immediately adjacent to epitopes, were previously shown to correlate 
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Figure 3.17 Recombination patterns and replication capacity 
Graphs panels (i-iii) showing no significant differences in replication capacities in the presence 

or absences of breakpoints at positions 150, 410 and 435, respectively. 

Graph (iv) showing no significant differences in replication capacities of recombinants with single 

breakpoints or multiple breakpoints. 
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Figure 3.18 Correlation of host HLA-associated polymorphism counts with 

replication capacity within the individual subtypes 
Graphs showing no correlation between the number of HLA-associated polymorphisms that the 

host could have selected based on their HLA alleles and replication capacity (Spearman’s 

correlation).   Subtype A, subtype C, subtype D and inter-subtype recombinants are represented 

in panels i-iv, respectively. 
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significantly with reduced replication capacity in previous studies on subtypes B and C [1, 10, 

12], we repeated this analysis considering only HLA-B-associated polymorphisms in or within 5 

amino acids of optimal epitopes.  We used the optimal list also referred to “A list” (Table 

A4) from the Los Alamos HIV database (http://www.hiv.lanl.gov/content/immunology 

/variants/variantsearch.html).  These are more likely to represent CTL escape mutations.  With 

these specific criteria we observed no correlation between the number of the HLA-associated 

polymorphisms restricted by HLA-B alleles and replication capacity (Spearman’s correlation; r=-

0.12 and p=0.37 for subtype A, r=-0.06 and p=0.85 for subtype D, and analysis for subtype C and 

inter-subtype recombinants was obsolete as there were no counts associated with any HLA alleles) 

(data not shown).  We additionally counted the polymorphisms regardless of the HLA alleles 

expressed by the host. With the exception of a weak positive relationship between the number of 

polymorphisms and replication capacity in subtype D (p=0.04; data not shown), there were no 

significant relationships observed (data not shown). When only HLA-B-associated 

polymorphisms in or next to optimal epitopes were included, we similarly found that there were 

no significant associations between HLA-associated polymorphisms and replication capacity 

(data not shown).   In summary, we did not observe an attenuating effect of HLA-associated 

polymorphisms on Gag-protease driven replication capacity.  

 

3.7.3 Specific amino acid variants 

A number of studies have shown an impact of specific amino acids in subtype B and C Gag–

protease on viral fitness [319, 351-353].  We performed an exploratory codon-by-codon analysis 

(http://brockman-srv.mbb.sfu.ca/~B_Team_iMac/Codon_by_codon) to assess whether we could 

identify specific amino acid variants that were significantly associated with altered Gag-protease 

driven replication capacity in our cohort.  Due to limitation in numbers for the other subtypes, 

only subtype A was considered for this analysis.  Considering only amino acid variants occurring 

at a frequency of n≥5, we identified six amino acids which were significantly (p<0.05 and q<0.2) 

http://www.hiv.lanl.gov/content/immunology%20/variants/variantsearch.html
http://www.hiv.lanl.gov/content/immunology%20/variants/variantsearch.html
http://brockman-srv.mbb.sfu.ca/~B_Team_iMac/Codon_by_codon/
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Table 3.2 Amino acid variants significantly associated with altered replication capacity  

Codon Amino acid  Consensus With amino 

acid 

Without 

amino acid 

n=with 

amino acid  

n=without 

amino acid  

p-value q-value 

75 I L 0.65 0.70 13 40 0.07 0.04 

107 L I 0.64 0.69 9 43 0.007 0.03 

125 S S 0.70 0.65 37 15 0.02 0.03 

126 S S 0.69 0.62 47 8 0.01 0.03 

315 N N 0.67 0.71 18 36 0.05 0.04 

499 S S 0.70 0.62 48 6 0.03 0.04 
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associated with reduced or increased replication capacity (Table 3.2).  In order to explore potential 

sequence determinants of the inter-subtype differences in replication capacity we compared the 

frequency of these amino acid variants between subtypes A and D, for which 400 sequences each 

were available from the Los Alamos HIV sequence database, (http://www.hiv. lanl.gov/ 

components/sequence/HIV/search/search.html).  Four out of the six amino acid variants 

associated with altered replication capacity differed significantly in frequency between subtypes 

A and D.  Interestingly, the mutation 107L and consensus amino acid 315N were significantly 

more frequent in subtype A (Chi square test; p=10-8 and p=0.01 respectively) and were associated 

with reduced replication capacity (Table 3.3).  Therefore it is possible that these differences 

contribute to the lower replication capacity of subtype A sequences.   

 

3.7.4 TW10 epitope mutations in subtype A 

The HLA-B*57-restricted TW10 epitope is one of the most extensively studied epitopes in light 

of immune escape and viral control in HIV-1 infection.  HLA-B*57-mediated selection pressure 

has been shown to result in a predictable escape pathway in TW10 epitope [283, 323, 348, 349, 

356].  Specifically, the 242N mutation is common in subtypes B, C and D, and has been shown 

to result in a significant fitness cost [323, 348].  However, it was shown recently that there is 

clade-specific evolution mediated by HLA-B*57 in HIV-1 clade A1 p24: T242N is rare in subtype 

A, while escape mutations at residues 243 and 247 are more common [346].  These authors also 

observed that mutations at codon 247 are associated with a longer time for CD4 counts to drop 

below 500 (L McKinnon 2014, personal communication, 13 August 2014) suggesting that these 

mutations may carry a fitness cost. Therefore, we compared the replication capacity of viruses 

with and without mutations at this codon, and found that viruses encoding 247X had a lower 

replication capacity than those expressing the consensus residue at codon 247 (Student’s T test; 

p=0.01) (Figure 3.19).  A comparison of the replication capacities of viruses with and without 

mutations at codon 243 showed no significant difference (Student’s T test; p=0.27) (Figure 3.20).   
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Table 3.3 Frequencies of amino acids associated with altered replication capacity 

in subtypes A and D 
 

 

Codon Subtype A 

n=400 

Subtype D 

n=400 

p- value 

75I               264         262 0.88 

107L 32 0 10-8 

125S 346 320 0.01 

126S 274 280 0.64 

315N 264 229 0.01 

499S 302 163 0.77 
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Figure 3.19 The effect of mutations at codon 247 in the TW10 epitope on viral  

replication capacity 
Graph showing a significant difference in replication capacity between viruses encoding a 

mutation at position 247 (I247X) versus those that did not a have a mutation at that position (247I) 
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Figure 3.20 The effect of mutations at codon 243 in the TW10 epitope on viral 

replication capacity 
Graph showing no significant difference in replication capacity between viruses encoding a 

mutation at position 243 (P243X) versus those that did not a have a mutation at that position 

(243P). 
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CHAPTER 4- DISCUSSION 

4.1 Background   

The HIV-1 epidemic is heterogeneous with various subtypes in circulation. The subtypes are 

unevenly distributed globally, unevenly expanding and have been associated with differences in 

rates of disease progression [48, 49, 354, 355].  The reasons for these subtype-dependent 

differences in prevalence, rates of expansion in the epidemic and clinical progression are 

unknown [249].  The Gag protein plays an essential role in the replication cycle of HIV [356-361] 

and is a preferred target of the immune system [290, 291, 362].  Since there is evidence supporting 

Gag-protease-driven replication capacity as a determinant of disease progression [363-365], we 

hypothesized that differences in Gag-protease driven replication capacity between subtypes may 

be responsible for HIV-1 subtype specific differences in disease progression.  We sought to 

address subtype differences within a relatively genetically homogenous population, since HLA 

class I (the most polymorphic human genetic loci) has been shown to significantly impact Gag-

protease-driven virus replication capacity [316, 317, 366]. We therefore undertook this study in 

the well characterized Majengo sex worker cohort based in Nairobi, Kenya, where multiple 

subtypes and inter-subtype recombinants coexist [367, 368]. 

 

4.2 Subtype classification and distribution 

In East Africa, heterogeneity has been reported with HIV-1 subtypes A, C, D and their 

recombinants being prevalent [25-28]. In this study of samples collected between the years 2000 

and 2010, HIV-1 subtype distribution based on gag gene sequencing was as follows: A (n=57, 

55.4%), C (n=16, 15.5%), D (n=13, 12.6%) and inter-subtype recombinants (n=17, 16.5%). The 

HIV-1 subtype distribution pattern in our study is comparable to that of other studies done in East 

Africa between the years 1995 - 2007 [92, 105, 240, 242, 369].  Subtype A is the most prevalent 

subtype and this could possibly be attributed to founder effects [48, 229, 370, 371].  We also 

found that there was a relatively high percentage of inter-subtype recombinants in our cohort as 
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compared to studies done prior to the year 2000 [49, 87] (for example, a study in Kenya done in 

the year 1999 reported that env inter-subtype recombinants had a prevalence of 2-5% [116]), 

indicating that inter-subtype recombinants have increased in prevalence [111].  The increase in 

inter-subtype recombinants has been thought to arise from the increase in HIV-1 dual infections 

[372-377].   In addition, the increase and spread of inter-subtype recombinants has also been 

linked to human migration and movements from different regions/countries in search of better job 

opportunities [376-378].  It should be noted that it is possible that we are underestimating the 

prevalence of inter-subtype recombinants since our classification is based on one genomic region 

and therefore excludes recombination that could occur in other genomic regions [379].  The 

knowledge of HIV-1 subtype distribution and continuous changes in the genetic profile of the 

HIV epidemic is essential in understanding HIV-1 pathogenesis and these insights will have an 

impact on diagnostics, virulence, treatment strategies and, ultimately, contribute to vaccine 

developments. 

 

4.3 Recombination patterns  

Interestingly, the inter-subtype recombinants had distinct breakpoint patterns, with breakpoints 

commonly occurring at amino acids positions 150, 410 and 435 (according to HXB2 numbering).  

This suggests that recombination in the gag gene is not random. The common breakpoints may 

represent a protein structural advantage favouring recombination at these points.  This finding is 

consistent with other studies showing that recombination has discrete breakpoints along the HIV-

1 genome with potential localized “hot spots” [369, 380-385]. Similarly, another study done in 

the same cohort showed a pattern of recombination breakpoints within the gag region of the inter-

subtype recombinants [369].  Other studies in the env gene have illustrated that recombination 

breakpoint patterns are not random [382, 386-388].  The recombination breakdown from our study 

(3 AD patients, 12 AC patients and 1 CD patient) demonstrated that for most recombinants 

subtype A is a component, likely reflecting the predominance of subtype A.  
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4.4 Replication capacity differences among subtypes  

In this study, we hypothesized that Gag-protease NL4-3 recombinant viruses derived from 

subjects infected with different HIV-1 subtypes would show differences in viral replicative 

fitness. We observed a hierarchy of Gag-protease driven replicative fitness where subtypes A/C 

were less fit than D, which was also less fit than inter-subtype recombinants, and found that this 

hierarchy was reproducible across different cohorts and geographical regions.  These inter-

subtype differences in Gag-protease driven replication capacity are largely consistent with those 

observed for the fitness of whole virus isolates in studies where competition assays were 

performed in PBMCs for limited numbers of isolates of different subtypes [127, 230, 231]. 

Consistent with our findings, in these previous studies subtype C isolates from Africa were shown 

to have lower fitness than other M group isolates and subtype A isolates had a lower fitness than 

those of subtype D [231].  However, these previous studies found that subtype C isolates had a 

significantly lower fitness than those of subtype A; while in our study we observed that subtype 

C Gag-protease-driven replication capacity was higher than that of subtype A, but the two means 

were not statistically different. This may suggest that genetic determinants other than Gag-

protease may distinguish the fitness of subtype A and C isolates. Our finding that inter-subtype 

recombinants have the highest Gag-protease-driven replication capacity is consistent with studies 

showing that the circulating recombinant form CRF02_AG has a higher ex vivo replicative fitness 

than its parental subtypes [250].  In addition, a study by Tarosso et al., demonstrated that subtype 

recombinant BF was associated with a faster CD4+ T cell loss than parent subtype B in Brazil, 

suggesting that the recombinant form had a greater fitness than the parent subtypes [389].  Our 

data is consistent with recombination conferring replicative advantage of viable progeny 

compared to parental strains [390].  In line with this, a previous study found that recombination 

was associated with fitness recovery in viral quasispecies [391]. Our findings that inter-subtype 

differences in Gag-protease driven-replication capacity are largely consistent with fitness 

differences between whole isolates of different subtypes indicates that Gag-protease is a 
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significant determinant of overall viral fitness, in addition to other genes, namely env [230], pol 

[206] and protease-reverse transcriptase [392], which have been shown to correlate with whole 

isolate fitness. 

The hierarchy of Gag-protease-driven replication capacity that we observed in East African 

cohorts is also consistent with reported inter-subtype differences in disease progression in these 

populations; where subtype A has exhibited a slower disease progression than subtype D in 

cohorts from Uganda [88, 241], Kenya [105, 245] and Tanzania [242].  Inter-subtype 

recombinants in Uganda have resulted in faster disease progression to AIDS/death than subtype 

A and had a slightly higher hazard ratio for death compared with subtype D [240]; however, this 

increased virulence of inter-subtype recombinants was not observed in Tanzania [242].  In 

addition, in Guinea-Bissau, infection with recombinant A3/02 was associated with increased risk 

of AIDS or death compared with subtype A3 [250].  Together with previous studies showing an 

association between Gag-protease or Gag driven replication capacity and markers of disease 

progression [316, 325, 363, 393], the consistency between inter-subtype differences in Gag-

protease driven replication capacity and disease progression indicates an important influence of 

Gag-protease on disease progression.  We speculate that the lower Gag-protease driven replication 

capacity of subtypes A and C slows disease progression in individuals infected with these 

subtypes, leading to greater opportunity for transmission [394] and consequently increased 

prevalence of these subtypes [48].  Indeed, subtype C is the most prevalent subtype world-wide 

and subtype A is the predominant subtype in East Africa [48, 49, 104, 395, 396].  Furthermore, 

the increase in prevalence and spread of subtype C has been reported in Brazil and in Western 

Europe, the Americas, and Australia [85, 397, 398].  Additionally, a study by Conroy et al., 

showed the expansion of subtype A at the expense of subtype D in a cohort in Uganda [229].  This 

expansion has been observed in Kenyan cohorts as well [371].  Increasing expansion of subtypes 

A and C may also be partly attributed to a transmission advantage of these subtypes[88, 399].  

High transmission efficiency of subtype C may be at least partly due to its low frequency of 
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classical switch from CCR5-tropic virus to CXCR4-tropic virus relative to other subtypes and 

maintenance of predominant CCR5 tropism throughout infection [400].  

 

4.5 Replication capacity of the same subtype across different geographical regions 

In this study we also investigated Gag-protease driven replication capacities of 20 subtype C 

viruses derived from the Sinikithemba cohort in Durban and compared these to the replication 

capacities of the subtype C viruses generated from the Majengo cohort in Nairobi.  We found that 

the replication capacities of the subtype C viruses from the two geographically diverse regions 

were similar.  Therefore, we can conclude that, at least within the African continent, the same 

subtype portrays similar Gag-protease driven replication capacity.  However, it is possible that 

the Gag-protease-driven replication capacity for subtype C from India may differ from subtype C 

from Africa, since it has been shown subtype C isolates from India replicated faster in PBMCs 

than subtype A isolates [233]. 

 

4.6 Replication capacity versus markers of disease progression 

In previous studies, it has been established that Gag-protease-driven or Gag-driven replication 

capacity correlates with markers of disease progression for subtypes B and C [316, 319, 325, 335, 

363].  We therefore hypothesized that there would be a correlation of Gag-protease replication 

capacity with markers of disease progression in our data set; however, this was not observed. The 

lack of correlation with markers of disease progression maybe be due to compensatory mutations 

which occur in chronic infection, considering these particular patients were chronically infected 

and it has been shown that during chronic infection compensatory mutations restore fitness [273, 

319, 321, 393, 401].  More recently, a study in Uganda showed restored fitness in subtypes A and 

D  due to compensatory mutations in chronic infection [402].  In addition it could be attributed to 

the limitation in sample size in our cohort. In previous studies showing a significant correlation 
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between Gag-protease driven replication capacity and markers of disease progression, the 

correlation co-efficient is weak, suggesting that a large population is needed to observe a 

significant correlation.  Similarly, a study in Japan did not find any significant impact of Gag-

Protease-mediated HIV-1 replication capacity on clinical parameters in treatment-naïve patients 

[403].  Furthermore, this correlation tested only one gene (gag-protease) of the viral genome and 

thus may not fully capture viral replication capacity of the entire HIV-1 genome from the patients. 

 

4.7 Impact of HLA class I on replication capacity 

4.7.1 Protective HLA alleles 

Previous studies of HIV-1 subtypes B and C have demonstrated that Gag-protease viral replication 

capacities differ across HLA-B alleles [319, 325] and have hypothesized that some protective 

HLA class I alleles mediate their effects by driving the virus to a less fit state. We thus 

hypothesized that viruses from individuals who express protective HLA class I alleles would have 

lower viral replication capacity irrespective of subtype. We only considered already defined 

protective alleles: HLA-B*57:01, -B*57:02, -B*57:03, -B*58:01 -B*27 and –B*81:01 [309, 338, 

404-406]. Contrary to what was expected, there were no significant differences in replication 

capacity of patients expressing protective alleles versus those with non-protective HLA alleles in 

HIV-1 subtypes A, subtype D and inter-subtype recombinants. However, for subtype C, protective 

alleles were associated with lower replication capacity. Interestingly, three out of four of the 

subtype C sequences from the patients expressing the protective HLA alleles, harboured 

mutations namely 186S and 242N, which were previously reported to have a fitness cost [346-

348]. These results could perhaps suggest that the protective alleles for HIV- 1 subtypes A and D 

are not the same as the well-defined protective alleles for subtype B and C. We speculate that 

different HIV-1 subtypes have distinct HLA class I associations with clinical outcome and that 

mechanisms or patterns of Gag-protease-mediated differences in replication capacity are not 

overlapping. However, it should also be noted that there are other non-HLA and non-CTL factors 
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that may impact on viral fitness and these are largely undetermined. Nevertheless, our data 

suggests that there are differences in HLA-associated pressure, with protective HLA alleles 

possibly different across the various HIV-1 subtypes. A combination of HLA-mediated pressure 

and intrinsic differences in viral fitness may therefore contribute to the differences seen in 

pathogenesis and disease progression.   

 

4.7.2 HLA class I effect on replication capacity within subtype A 

We further assessed the impact of each specific HLA class I allele on Gag-protease driven 

replication capacity for subtype A since we had the most samples (n=57) for this subtype. We 

found that A*74, A*68 and A*03 were associated with lower replication capacities (p<0.05), 

although these associations did not remain significant after Bonferroni correction for multiple 

comparisons was employed which may be attributed to a limitation in numbers. A study done in 

the Majengo cohort recently (2014) showed  that the frequencies of A*74, A*68 and A*03 were 

9.12%, 6.76% and 4.72%, respectively [407]. Interestingly, A*74:01 has been associated with 

protection from HIV-1 acquisition and disease progression in Tanzania [408], and also in children 

in a Kenyan cohort [409]. In addition, HLA-A*74:01 has also been shown to mediate control of 

viremia in a subtype C population [410]. Moreover, HLA-A*74:01 been associated with a 

favourable CD4:CD8 ratio in a Zambian cohort [411]. Thus, our data suggest that lowered viral 

fitness could be a mechanism contributing to the beneficial effect of A*74:01.  Even though HLA-

A*68 has been associated with strong Gag CTL responses in subtype C (HLA-A*68:02 is one of 

the most prevalent alleles in African populations) [412], it has not been directly linked with altered 

disease progression or protection in subtype A. HLA-A*03 has not been linked with altered 

disease progression, however it has been negatively associated with HIV-1 infection in China 

[413].  In addition, HLA-A*03 has been reported to play an important role in inducing immune 

responses to a variety of CTL epitopes [414]. 
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4.8 Sequence determinants of replication capacity 

4.8.1 Recombination patterns 

Amino acid sequence variations could have a substantial impact on the secondary and tertiary 

structure of a protein, thereby affecting its function.  We initially investigated whether 

recombination breakpoint patterns could be associated with differences in replication capacity, 

since we identified certain breakpoints that occurred more frequently than others.  However, we 

found no significant differences in Gag-protease mediated replication capacity in the presence or 

absence of the common breakpoints in the inter-subtype recombinants and there was no 

significant difference in replication capacity between recombinants with a single breakpoint and 

those with multiple breakpoints.  This could imply that the recombination patterns observed in 

nature generally represent an advantage for the virus. It has been speculated that distribution of 

recombinant breakpoints across the HIV-1 genome is dependent on sequence identity and 

mechanism of recombination, and the relative functionality of the recombinant genes [380, 383]. 

  

4.8.2. HLA-associated polymorphisms 

Studies have previously identified negative relationships between HLA-associated 

polymorphisms and Gag-protease or Gag driven replication capacity in HIV subtype B and C 

[316, 319, 325].  Therefore, we hypothesized that the number of HLA-associated polymorphisms 

would affect replication capacity.  However, we found no evidence that HLA-associated 

mutations in Gag-protease attenuate HIV for any of the subtypes. One potential explanation may 

be the chronic infection status of the patients.  In chronic infections, viral escape mutations from 

CTL are usually accompanied by compensatory mutations that restore viral fitness [273, 319, 321, 

401].  A study of patients chronically infected with HIV-1 subtype B similarly found no 

relationship between the number of HLA-associated polymorphisms and Gag-protease driven 

replication capacity, while this relationship was evident in acute infection [339], suggesting that 

fitness costs of escape mutations were largely compensated in late infection.  Another study of 
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patients chronically infected with HIV-1 subtype C detected a significant relationship between 

the number of HLA-associated polymorphisms and Gag-protease driven replication capacity; 

however the correlation was relatively weak [325].  It should be appreciated that our sample size 

may have limited our ability to detect this relationship.  It is worth noting that a recent study in 

Uganda showed that HLA-associated Gag mutations associated with protection, namely A163X 

in KF11 epitope and I147X in the ISW9 epitope, were more frequent in subtype A than subtype 

D [402].  These mutations have previously been demonstrated to carry a fitness cost [321, 346].  

Thus these data are consistent with our finding that subtype A has a lower Gag-protease mediated 

fitness than subtype D.  

 

4.8.3 TW10 epitope mutations in subtype A 

Since it was previously found that there are unique TW10 epitope escape variants that are 

associated with the protective allele HLA-B*57 for subtype A as compared to the other subtypes 

[344] and the fitness consequences of these are currently unknown, we explored the relationship 

between these variants and replication capacity in our data set.  The 242N mutation is selected by 

the majority of individuals expressing B*57 or B*58:01 in subtypes B, C and D; however it is 

rare in subtype A-infected HLA-B*57/B*58:01 positive individuals [344].  Instead, escape 

variants at codons 243 and 247 are observed in subtype A-infected individuals who possess HLA-

B*57 but not HLA-B*58:01, and interestingly HLA-B*57 but not HLA-B*58:01 is associated 

with a protective effect in subtype A infection, suggesting that these unique escape variants may 

be responsible for the protective effect of B*57 in subtype A infection [344].  Since the same 

authors observed that mutations at codon 247 are associated with a longer time for CD4 counts to 

drop below 500 cells/µl (L McKinnon 2014, personal communication, 13 August 2014), we 

hypothesized that these mutations would be associated with a fitness cost.  Accordingly, we found 

viruses encoding 247X had a lower replication capacity than those expressing the consensus 

residue at codon 247.  Furthermore, we did not find a fitness cost associated with mutations at 
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243 which is consistent with the observation that mutations at this codon were stable (i.e. did not 

revert) in the absence of HLA-B*57 (L McKinnon 2014, personal communication, 13 August 

2014). Thus our data suggests that a fitness cost associated with 247X may partly explain the 

protective effect of HLA-B*57 in subtype A infected individuals. 

 

4.8.4 Codon-by-codon analysis 

Previous studies have shown an impact of specific amino acids in subtype B and C Gag–protease 

on viral fitness [319, 348, 415]. Although limited by sample size, we performed an exploratory 

codon-by-codon analysis on our subtype A sequences (the subtype for which we had the largest 

sample size) to identify associations between single amino acid variants and Gag-protease driven 

replication capacity. We identified six amino acids, namely 75I, 107L, 125S, 126S, 315N and 

499S (of which amino acids at codons 125, 126, 315 and 499 were the consensus amino acids), 

that were significantly associated with altered replication capacity in subtype A.  The amino acids 

identified as associated with differences in replication capacity for subtype A in this study do not 

overlap with those previously identified for subtype C [325].  The residue 75I is located on an 

alpha helix in the folded MA protein. It is hypothesized that mutations occurring in the alpha helix 

permit greater flexibility in the secondary structure of Gag, which in turn enhances the MA/CA 

cleavage site availability to the protease protein [416]; however 75I was associated with reduced 

replication. A previous study provides an indirect insight that 75I could be an escape variant: it 

was positively associated with HLA-A*02, and prevented both peptide processing and 

recognition in the flanking regions of SL9 [417, 418]. The residues 107L, 125S and 126S are 

located in the p17 region, while residues 315N and 499S are located in p24 and p6 regions, 

respectively, and none of these residues have been reported as escape variants to the best of our 

knowledge.  Interestingly, the polymorphism 107L and consensus amino acid 315N were 

significantly more frequent in subtype A than subtype D and were associated with reduced 

replication capacity. This could possibly mean that the occurrence of these mutations confers a 
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fitness cost and hence may contribute to the lower replication capacity of subtype A compared to 

subtype D.  

 

4.9 Future directions and recommendations 

A significant limitation of our study is that Gag-protease-driven viral fitness was measured in the 

subtype B backbone.  Although this approach allows for only the influence of Gag-protease on 

viral fitness to be measured, it may bias the data on Gag-protease-driven viral fitness if particular 

Gag-protease variants preferentially interact with NL4-3 proteins outside of Gag.  To address this 

potential NL4-3 backbone bias, the Gag-protease variants analysed in our study may have to be 

tested in other subtype backbones- such as the HIV-1 subtype C MJ4 to comprehensively 

investigate the influence of backbone subtype on subtype-specific differences we observed in our 

study. It should be noted that the current study was restricted to the HIV-1 subtypes and 

intersubtype recombinants that are circulating in East Africa.  However, the HIV-1 pandemic is 

composed of numerous other subtypes that are also unevenly distributed globally.  Further studies 

will be needed to better understand subtype-specific Gag-driven fitness differences more 

comprehensively.    

Although we found subtype-specific differences in this study based on Gag-protease-driven viral 

fitness, it remains unclear whether there is correlation between Gag-protease-driven viral 

replication capacity and whole virus isolate fitness.  Future studies will be needed to address this 

question.  For such future studies, whole virus isolates will need to be generated from study 

participants, with subsequent measurement of the fitness of the viruses by assays such as the one 

utilized in our study or by ex-vivo competition assays as has been previously attempted with a 

limited number of isolates [419].   Another approach would be to generate infectious molecular 

clones that represent different subtypes.  Although technically challenging, this approach has the 

advantage that specific differences between subtypes can further be interrogated by molecular 

approaches such as site-directed mutagenesis studies that are not possible with virus isolates.  
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Furthermore, in this study, we found that a significant percentage of Gag-protease sequences 

analysed were intersubtype recombinants.  It is unclear what subtype these viruses are in other 

genetic loci.  Full-length sequencing will be needed to address this question and to provide 

additional data that may be informative for better understanding of HIV pathogenesis and vaccine 

design.  

It should be noted that although we found subtype-specific differences in Gag-protease-driven 

virus replication capacity, the underlying biological mechanisms remain poorly understood.  

Recent studies have shown that Gag-driven replication capacity is associated with viral load set 

point and with markers of disease progression in recently infected individual [316, 363, 420].  

Additionally, in recently infected persons, high replicative fitness virus was associated with 

higher levels of immune activation and proviral load [420].  Future studies will therefore need to 

investigate the specific host pathways impacted by highly fit virus to cause detrimental clinical 

effects and how this can be reversed through vaccine or therapeutic interventions.    

Our data also suggests that future studies are required to define protective HLA alleles in different 

geographic locations for different subtypes. In this study, we analysed for differences in viral 

replicative fitness according to HLA class I alleles for HIV-1 subtype A.   However, considering 

the enormous genetic heterogeneity in the HLA class I alleles, this question was not fully resolved 

and a larger cohort with diverse subtype is needed to fully interrogate whether there are 

differences in viral fitness according to HLA class I alleles for different subtypes.  It is also 

possible that other genetic loci may influence viral fitness and future studies should address this 

issue. Furthermore, we recommend that site-directed mutagenesis studies are undertaken to 

confirm the fitness consequences of the amino acid variants that we found to be statistically 

associated with altered replication capacity and to further elucidate the fitness effect of subtype 

A-specific escape variants in the TW10 epitope.  We propose that mutations should be introduced 

into a patient-derived subtype A gag-protease sequence that is similar to the consensus A 

sequence.  In addition to testing the most common escape variants at codons 243 (243T) and 247 
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(247L), we recommend that mutagenesis is performed to test for the ability of 248Q and 248A to 

compensate for the hypothesised fitness cost of 247L, since it was observed that the 247L 

mutation was stable in the presence of the 248Q/248A mutations and that when both mutations 

were present the time for CD4 count to drop below 500 was less than when 247X was present 

alone (L McKinnon 2014, personal communication, 13 August 2014). 

4.10 Conclusions/summary 

In summary, we provide evidence that Gag-protease is an important determinant of viral fitness 

and show that it differs substantially in functionality between HIV-1 subtypes.  We demonstrate 

a hierarchy of Gag-protease driven replicative fitness in East African populations where subtypes 

A/C are less fit than D, which is also less fit than inter-subtype recombinants.  Since this hierarchy 

is consistent with reported subtype differences in disease progression in East Africa, our data 

supports the finding that Gag-protease-driven replication capacity is a determinant of differences 

in disease progression between subtypes.  It is likely that the lower functionality of subtype A and 

C Gag-proteases slows disease progression in individuals infected with these subtypes, leading to 

greater opportunity for transmission and consequently, increased prevalence of these subtypes.  

Our study thus sheds light on mechanisms underlying the differential spread and expansion of 

HIV-1 subtypes in the global epidemic. It is therefore evident that an interplay of viral factors as 

well as host genetics factors, correlates of immune protection should all be incorporated in future 

vaccine strategies. 
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APPENDIX 

Table A1. HLA-associated amino acids in HIV-1 subtype A Gag-protease 

 

 

 

 

 

 

Protein Association 
 

HLA 
allele 

Codon  Target 
amino 
acid 
 

Consensus p-value q-value 

Gag Adapted A*7401 20 Q R 1.99E-04 0.1555131 

Gag Adapted C*0602 26 R K 1.34E-04 0.1518822 

Gag Adapted A*0301 28 Q K 2.33E-08 1.40E-04 

Gag Adapted A*3001 28 Q K 1.77E-09 1.55E-05 

Gag Adapted C*0802 49 G G 1.60E-05 0.0295338 

Gag Adapted A*0202 75 I L 5.64E-05 7.08E-02 

Gag Adapted B*5101 75 I L 8.94E-05 0.1207346 

Gag Adapted A*7401 91 K R 1.81E-05 0.0303098 

Gag Adapted A*0301 93 A D 1.54E-04 0.1575459 

Gag Adapted B*5703 93 E D 1.56E-04 0.1575459 

Gag Adapted C*0304 114 Q K 1.66E-04 0.161668 

Gag Adapted C*0602 146 N A 1.11E-04 0.134405 

Gag Adapted A*6802 223 I I 9.41E-05 0.1224212 

Gag Adapted B*5702 242 N T 1.93E-06 0.0061577 

Gag Adapted B*3501 260 E D 9.22E-06 0.0193479 

Gag Adapted B*4415 310 S S 5.34E-10 6.25E-06 

Gag Adapted B*4901 310 S S 4.71E-06 0.0110699 

Gag Adapted B*4415 312 D D 2.09E-05 2.93E-02 

Gag Adapted B*4901 312 D D 3.28E-07 0.001048 

Gag Adapted C*0210 312 E D 1.95E-04 0.1555131 

Gag Adapted C*0401 322 M L 1.59E-04 0.1434228 

Gag Adapted B*0702 357 G S 4.36E-05 5.67E-02 

Gag Adapted C*0702 357 G S 1.62E-06 0.0061577 

Gag Adapted C*0407 403 K R 2.68E-04 0.1918226 

Gag Adapted A*3001 484 G Y 1.50E-04 0.1575459 
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Table A2. HLA-associated amino acids in HIV-1 subtype C Gag-protease 

Protein Association 
 

HLA 
allele 

Codon Target 
amino 
acid 

p-value q-value 

Gag Adapted B*1503 7 V 0.000452 0.105734 
Gag Adapted B*1503 11 G 0.000954 0.176149 
Gag Adapted A*74 12 N 3.04E-10 4.32E-07 
Gag Adapted B*5802 14 E 0.000942 0.175546 
Gag Adapted C*06 20 K 0.000796 0.165084 
Gag Adapted A*6801 20 R 0.000462 0.105894 
Gag Adapted A*74 20 K 0.000352 0.094699 
Gag Adapted B*13 28 K 7.37E-05 0.025748 
Gag Adapted B*42 28 Q 7.02E-08 6.82E-05 
Gag Adapted C*17 28 S 0.000195 0.0564 
Gag Adapted B*42 30 K 5.92E-05 0.021819 
Gag Adapted A*3001 54 A 0.000972 0.186114 
Gag Adapted A*6802 54 T 0.000517 0.115996 
Gag Adapted B*1402 62 N 0.000456 0.105734 
Gag Adapted C*16 67 S 0.000747 0.159962 
Gag Adapted C*1601 67 S 0.000304 0.082405 
Gag Adapted A*2902 79 Y 6.58E-06 0.003275 
Gag Adapted A*74 93 G 0.000526 0.116515 
Gag Adapted B*08 93 K 0.000446 0.109795 
Gag Adapted A*3001 103 R 0.000785 0.164502 
Gag Adapted B*5801 106 K 0.000108 0.035523 
Gag Adapted C*04 128 A 0.000486 0.115298 
Gag Adapted B*57 146 P 3.81E-10 5.05E-07 
Gag Adapted A*2911 147 L 8.94E-06 0.003967 
Gag Adapted B*57 147 L 4.62E-06 0.00236 
Gag Adapted C*15 147 L 0.000683 0.147808 
Gag Adapted B*1503 147 I 8.96E-06 0.003967 
Gag Adapted B*5703 163 G 2.29E-05 0.009293 
Gag Adapted B*5703 163 N 0.00039 0.101329 
Gag Adapted A*0202 165 N 0.000884 0.1743 
Gag Adapted B*81 182 S 6.08E-05 0.022027 
Gag Adapted B*81 186 S 2.04E-09 2.54E-06 
Gag Adapted C*18 190 A 7.6E-06 0.003603 
Gag Adapted A*43 215 M 0.000935 0.175546 
Gag Adapted C*07 215 I 0.000204 0.058118 
Gag Adapted B*5801 219 P 0.000306 0.082405 
Gag Adapted A*2911 223 I 0.00055 0.119207 
Gag Adapted B*57 242 N 3.2E-20 2.12E-16 
Gag Adapted B*5801 242 N 3.76E-24 7.48E-20 
Gag Adapted B*4201 252 A 0.000646 0.135608 
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Gag Adapted B*35 260 E 1.36E-05 0.005754 
Gag Adapted B*14 302 R 1.27E-07 0.000105 
Gag Adapted C*0304 303 A 6.99E-06 0.003397 
Gag Adapted B*44 312 E 1.83E-11 3.64E-08 
Gag Adapted B*15 339 A 7.63E-05 0.028181 
Gag Adapted C*0304 340 A 2.26E-06 0.00125 
Gag Adapted B*07 357 G 2.91E-13 8.27E-10 
Gag Adapted B*1401 370 A 0.00024 0.067542 
Gag Adapted A*3002 371 N 0.00018 0.054374 
Gag Adapted B*5802 377 M 0.000317 0.083085 
Gag Adapted A*01 382 K 3.3E-06 0.001731 
Gag Adapted B*4201 386 S 1.23E-06 0.000718 
Gag Adapted A*74 403 K 7.47E-11 1.24E-07 
Gag Adapted A*03 403 R 0.001058 0.197033 
Gag Adapted A*3001 403 R 2.2E-07 0.000169 
Gag Adapted A*0301 411 R 0.000908 0.175546 
Gag Adapted B*13 437 L 0.000823 0.16829 
Gag Adapted A*74 441 N 4.94E-07 0.000352 
Gag Adapted C*0304 467 G 0.000836 0.16829 
Gag Adapted C*18 474 P 0.000835 0.16829 
Gag Adapted A*6802 477 D 0.000668 0.138729 
Gag Adapted C*04 478 M 0.001036 0.187919 
Gag Adapted C*17 487 I 4.92E-05 0.019227 
Gag Adapted B*4201 488 A 0.000392 0.101329 
Protease Adapted B*44 35 D 3.52E-06 0.004092 
Protease Adapted B*45 63 H 6.3E-05 0.048816 
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Table A3. HLA-associated amino acids in HIV-1 subtype D Gag-protease 

Protein Association 
HLA 

allele 
Codon 

Target 

amino 
acid 

Consensus p-value q--value 

Gag Adapted B*4101 9 R S 3.47E-05 0.036354 

Gag Adapted A*7401 20 Q R 8.45E-08 0.000354 

Gag Adapted B*4415 74 G E 0.00028 0.177824 

Gag Adapted C*0802 119 A A 0.000294 0.180753 

Gag Adapted B*5703 146 P A 2.71E-05 0.031549 

Gag Adapted B*1402 147 I L 0.000187 0.126287 

Gag Adapted B*5703 161 D E 1.07E-06 0.00258 

Gag Adapted B*8101 186 S M 1.36E-05 0.020358 

Gag Adapted A*0101 219 p H 0.000139 0.100053 

Gag Adapted B*5703 242 N T 1.77E-10 1.24E-06 

Gag Adapted B*5101 326 S A 1.02E-04 0.076158 

Gag Adapted B*5703 342 S T 1.11E-05 0.017874 

Gag Adapted B*0702 357 G S 3.44E-12 7.02E-08 

Gag Adapted A*0201 389 T I 7.77E-06 0.013545 

Gag Adapted A*3402 490 R K 2.92E-06 0.005549 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

Table A4. Best-defined (A-list) optimal Gag epitopes from the Los Alamos HIV 
molecular immunology database 

Epitope Protein HXB2 codon Subtype HLA restriction 
GELDRWEKI Gag 19-27  B*4002 

KIRLRPGGK Gag 18-26  A*0301 

IRLRPGGKK Gag 19-27 B B*2705 

RLRPGGKKK Gag 20-28  A*0301 

RLRPGGKKKY Gag 20-29 B A*0301 

RPGGKKKYKL Gag 22-31 B B*5101 

GGKKKYKLK Gag 24-32 B B*0801 

KYKLKHIVW Gag 28-36 B A*2402 

HLVWASREL Gag 33-41  Cw*0804 

LVWASRELERF Gag 34-44  A30 

WASRELERF Gag 36-44 B B*3501 

ELRSLYNTV Gag 74-82  B*0801 

RSLYNTVATLY Gag 76-86 B A*3002, B58, 
B63 

SLYNTVATL Gag 77-85 B A*0201, 
A*0202, 
A*0205 

SLYNTVATLY Gag 77-86 B A*0201 

LYNTVATL Gag 78-85  Cw14 

LYNTVATLY Gag 78-86  A*2902, 
B*4403 

TLYCVHQK Gag 84-91  A*1101 

IEIKDTKEAL Gag 92-101  B*4001 

NSSKVSQNY Gag 124-132 B B*3501 

VQNLQGQMV Gag 135-143  B13 

HQAISPRTL Gag 144-152  B*1510 

QAISPRTLNAW Gag 145-155 B A*2501 

ISPRTLNAW Gag 147-155  B*5701, B63 

SPRTLNAWV Gag 148-156  B*0702 

VKVIEEKAF Gag 156-164  B*1503 

EEKAFSPEV Gag 160-168  B*4415 

KAFSPEVI Gag 162-169 B B*5703 

KAFSPEVIPMF Gag 162-172 B B*5701, 
B*5703, B63 

FSPEVIPMF Gag 164-172  B57 

EVIPMFSAL Gag 167-175 B A*2601, 
A*2602, 
A*2603 

VIPMFSAL Gag 168-175 B Cw*0102 

SEGATPQDL Gag 176-184  B*4001 

TPQDLNTML Gag 180-188 B B*0702, 
B*3910, 
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B*4201, 
B*8101, 
Cw*0802 

TPQDLNMML Gag 180-188 A B53 

TPYDINQML Gag 180-188 HIV-2 B*5301 

GHQAAMQML Gag 193-201 B B*1510, B*3901 

KETINEEAA Gag 202-210  B*4002 

ETINEEAAEW Gag 203-212  A*2501 

AEWDRVHPV Gag 210-218  B*4002 

HPVHAGPIA Gag 216-224  B*3501, B7 

GQMREPRGSDI Gag 226-236  B13 

TSTLQEQIGW Gag 240-249 B B*5701, B*5801 

NPPIPVGDIY Gag 253-262  B*3501 

PPIPVGDIY Gag 254-262 B B*3501 

EIYKRWII Gag 260-267 B B*0801 

RRWIQLGLQK Gag 263-272  B*2703 

KRWIILGLNK Gag 263-272 B B*2705 

GLNKIVRMY Gag 269-277 B B*1501, B62 

VRMYSPVSI Gag 274-282  Cw18 

RMYSPTSI Gag 275-282  B*5201 

YSPVSILDI Gag 277-285 CRF01_AE Cw*0102 

FRDYVDRFF Gag 293-301  Cw18 

FRDYVDRFYK Gag 293-302 B, D B*1801 

RDYVDRFFKTL Gag 294-304 A A*2402 

RDYVDRFYKTL Gag 294-304 B B*4402 

YVDRFYKTL Gag 296-304  A*0207 

YVDRFFKTL Gag 296-304  B*1503, 
Cw*0303, 
Cw*0304 

DRFYKTLRA Gag 298-306 B B*1402 

AEQASQDVKN
W 

Gag 306-316 B B*4402 

AEQASQEVKNW
M 

Gag 306-317  Cw5 

QASQEVKNW Gag 308-316 B B*5301, 
B*5701, B*5801 

VKNWMTETL Gag 313-321 B B*4801 

DCKTILKAL Gag 329-337 B B*0801 

ACQGVGGPGHK Gag 349-359  A*1101 

GPGHKARVL Gag 355-363 B B*0702 

AEAMSQVTNS Gag 364-373  B*4501 
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Figure A1: This bootscan graph shows the patient ML 1211 sequence as a representative 

simplot figure of the recombinants. The exact position of recombination breakpoints are 

illustrated by the red dotted lines. 
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