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ABSTRACT 

 

Background: The cachectic syndrome is primarily associated with malignancy. Cachexia leads to 

abnormal weight loss through adipose tissue and skeletal muscle depletion. Previously, antioxidant 

mechanisms and inflammatory cytokines have been associated with cancer cachexia. In cancer 

cells, increased antioxidant levels assist cancer cells to evade reactive oxygen species (ROS) 

induced cell death whereas increased pro-inflammatory cytokine levels initiate metabolic events 

such as increased cancer cell proliferation, lipolysis, and proteolysis. Thus decreasing pro-

inflammatory cytokine levels and antioxidant mechanisms within cancer cells may be an effective 

treatment to decrease the progression of cancer and cachexia. The scientific exploration into the 

usage of traditional medicinal plants in the prevention and treatment of cancer cachexia is 

increasing. Withania somnifera (Linnaeus) Dunal (W. somnifera) and Centella asiatica (Linnaeus) 

Urban (C. asiatica) are commonly used in traditional medicine due to their many therapeutic 

properties (antioxidant, anti-inflammatory and anti-tumour potential).  

 

Aims: We investigated the modulation of cytokines, antioxidants and apoptosis in leukaemic (THP-

1) cells and healthy peripheral blood mononuclear cells (PBMC’s) by W. somnifera aqueous root 

extract (WRE) and C. asiatica ethanolic leaf extract (CLE). We also investigated the anti-

inflammatory, antioxidant and anti-proliferative effects of C. asiatica ethanolic leaf extract (C) and 

purified fraction-3 (C3) in THP-1 cells. Additionally, we investigated the antioxidant and anti-

proliferative/ cytotoxic effects of C3 in cancerous lung (A549) cells and embryonic kidney 

(HEK293) cells. 

 

Methods: Cytotoxcity of plant extracts/ fractions were determined (cell viability assay 24 and 72 

hours). C3 was obtained by silica column fractionation and identified using thin layer 

chromatography. Gas chromatography mass spectrometry determined the bioactive compounds 

present in C and C3. Oxidant scavenging activity was evaluated using the 2, 2-diphenyl-1 

picrylhydrazyl assay and cytokine levels were evaluated using the enzyme-linked immunosorbant 

assay. Reduced glutathione, oxidized glutathione, adenosine triphosphate levels and caspase 
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activities were measured by luminometry. The level of nitrites (griess assay), intracellular ROS, 

mitochondrial membrane potential (flow cytometry), malondialdehyde, lactate dehydrogenase 

(spectrophotometry), and DNA damage (comet assay) were assessed. Protein expression and gene 

expression were quantified by western blotting and quantitative polymerase chain reaction (qPCR), 

respectively.  

 

Results: In PBMC’s and THP-1 cells, WRE and CLE proved to effectively modulate antioxidants, 

inflammatory cytokines and cell death. Notably, in THP-1 cells, WRE and CLE decreased pro-

inflammatory cytokine levels which may alleviate cancer cachexia and excessive leukaemic cell 

growth. In THP-1 cells, C and C3 have been shown to decrease nuclear factor kappa beta (NF-κB: 

p50 p65) protein expression, decrease pro-inflammatory cytokine (tumour necrosis factor alpha 

(TNF-α), interleukin (IL)-6 and IL-1β) levels and modulate THP-1 apoptosis. Notably, C3 more 

effectively decreased pro-inflammatory cytokines levels, suggesting that C3 may be effective in 

combating cancer cachexia. In THP-1 cells, the Nrf-2 antioxidant response was increased by C 

whilst decreased by C3. Both C and C3 exerted anti-proliferative effects in THP-1 cells by 

increasing apoptosis. Notably, C3 more effectively induced THP-1 apoptosis which may be 

associated with the decreased antioxidant responses. In A549 and HEK293 cells, C3 diminished the 

antioxidant gene expression and induced anti-proliferative/ cytotoxic effects. 

 

Conclusion: WRE and CLE demonstrated antioxidant, anti-inflammatory and anti-proliferative 

activities. Interestingly, C3 elicited higher anti-inflammatory and anti-proliferative activities than C.  
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INTRODUCTION 

 

Worldwide, cancer is a leading cause of morbidity and mortality. It is a hyper-proliferative disorder 

involving cellular transformation, mutations, evasion of apoptosis, invasion, angiogenesis and 

metastasis [1]. Annually there are approximately ten million newly diagnosed cancer cases and 

greater than six million cancer related deaths [2]. Therefore, research into the discovery/ 

development of new and more effective anti-cancer therapies is imperative to combat the rapid 

progression of cancer and the increasing related mortality.  

 

Homeostatic inflammatory responses may be beneficial due to its anti-tumour activity [3]. 

However, chronic inflammation has been implicated in carcinogenesis [1,4,5,6], with increased 

levels of reactive oxygen species (ROS), inflammatory cytokines, and nuclear factor-kappa beta 

(NF-κB) expression contributing to inflammation-induced carcinogenesis [7]. 

  

The cachectic syndrome is primarily associated with malignant conditions and is known as ‘a multi-

factorial syndrome defined by an ongoing loss of skeletal muscle mass (with/ without loss of fat 

mass) that cannot be fully reversed by conventional nutritional support and leads to progressive 

functional impairment’ [8]. ‘The pathophysiology is characterized by a negative protein and energy 

balance driven by a variable combination of reduced food intake and abnormal metabolism’ [8]. 

The occurrence of cachexia varies with tumour types with the highest frequency present in 

pancreatic or gastric cancer patients (83–87%), followed by the unfavourable non-Hodgkin 

lymphoma, colon, prostate and lung cancer patients (48–61%), the lowest frequency is in patients 

with favourable subtypes of non-Hodgkin lymphoma, breast cancer, acute non-lymphocytic 

leukaemia and sarcomas (31–40%) [9]. Weight loss (>10%), systemic inflammation (C-reactive 

protein >10 mg/l) and reduced food intake (<1,500 kilo calories per day) are key features of 

cachexia [10]. The syndrome can be divided into three stages, namely precachexia, cachexia, and 

refractory cachexia [11]. Precachexia patients present with anorexia, impaired glucose tolerance and 

involuntary weight loss (≤5%) [11]. A number of factors determine the progression of cachexia 

including cancer type and stage, systemic inflammation, decreased food intake and poor 

responsiveness to anti-cancer therapy [11]. Patients with cachexia experience greater than 5% 

weight loss over 6 months and the body mass index is less than 20 kg/m2 [11]. In refractory 

cachexia there is active catabolism and the management of weight loss becomes improbable due to 
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advanced/ rapidly progressive cancers which are unresponsive to anti-cancer therapy [11]. The 

inability to ingest/ use nutrients [12] and the negative energy balance present in cachectic patients 

leads to catalysis of muscle and fat stores for energy production [13]. Cachectic cancer patients lose 

up to 85% of adipose tissue and 75% of skeletal muscle [14]. Neuropeptides, hormones, pro-

inflammatory cytokines and tumour-related factors contribute to the development and progression 

of cancer cachexia. Increased pro-inflammatory cytokine levels associated with cancer progression 

initiate metabolic events such as decreased lipogenesis, increased lipolysis and proteolysis which 

lead to tissue wasting [14]. Additionally, NF-κB plays an important role in the inflammatory 

process by regulating the expression of many inflammatory molecules [15,16] as well as in protein 

degradation by inducing the ubiquitin–proteasome pathway [17]. Cancer cachexia decreases the 

quality of life of patients, the responsiveness to chemotherapy [18] and is responsible for 20–25% 

of cancer deaths [19,20] (or approximately 2 million deaths annually) [21] with the degree of 

cachexia being inversely proportional to survival time [19]. Therefore, it is essential to discover an 

effective cancer cachectic treatment to alleviate the development and progression of cachexia, 

ultimately prolonging the survival rate of cancer patients. 

 

Depending on the level of ROS, ROS can be tumourigenic by increasing DNA damage, cell 

proliferation, survival, and migration [22] as well as anti-tumourigenic by inducing cellular damage 

and cell death [22]. Oxidative stress is a result of ROS accumulation due to an imbalance between 

ROS generation and antioxidant defence mechanisms [23]. Antioxidants such as glutathione (GSH), 

superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) protect cells against 

oxidative damage and cell death [24]. In mammalian cells, GSH is the most abundant thiol that 

functions as a major antioxidant by detoxifying ROS and maintaining the redox status [25]. GSH 

also aids in tumour cell survival [23]. In numerous cell types, GSH depletion is an early hallmark of 

cell death progression [26,27]. Within the cell, the transcription factor nuclear factor erythroid 

2-related factor 2 (Nrf-2) is an important regulator of antioxidant gene expression [23]. Previous 

studies have indicated that Nrf-2 protects tumours and cancerous cell lines from chemotherapeutic 

drugs [28,29,30]. Additionally, Nrf-2 has been directly associated with resistance to apoptosis [31]. 

In normal cells an effective antioxidant defence system is essential for the detoxification of elevated 

ROS levels [32]. However, cancer cells exploit antioxidant mechanisms to infer survival properties, 

increased malignancy and resistance to anti-cancer drugs [33]. Therefore targeting antioxidant 

mechanisms in cancer cells may be a promising therapeutic strategy [23]. 
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For centuries, medicinal plants have been employed for chemotherapy and chemoprevention due to 

their vast number of naturally occurring chemicals [34]. In Asian and African countries, the 

population is dependent on complementary and traditional medicine for the prevention and 

treatment of diseases [34]. Additionally, many phytochemicals found in medicinal plants have been 

shown to possess anti-cancer and chemo-preventive properties [34]. 

  

The medicinal plant, Withania somnifera (Linnaeus) Dunal (W. somnifera) has been shown to have 

pharmacological value as an anti-inflammatory, anti-tumour and antioxidant agent [35]. W. 

somnifera contains many active compounds such as alkaloids, steroidal lactones, saponins, 

withaferins and withanoloides [35]. Previously, withaferin A and 3-β-hydroxy-2, 3 dihydro 

withanolide F were shown to possess anti-inflammatory properties [36]. W. somnifera root powder 

possesses immune modulating properties [36] and inhibits immune functions [36]. In vitro, a W. 

somnifera formulation (WSF) significantly increased the Th-1 cytokine response in concanavalin A 

(Con A) sensitized splenocytes and induced a significant production of interferon-gamma (IFN-γ) 

whilst having no effect on interleukin (IL)-4 levels [37]. Additionally, W. somnifera proved 

effective in rheumatologic conditions that may be related to its anti-inflammatory properties [35]. In 

Ayurvedic and Unani systems, W. somnifera leaves have been used in the treatment of tumours, 

with withanolide steroidal lactones exhibiting anti-tumour properties [35]. The leaves and roots of 

W. somnifera contain antioxidant components [38]. W. somnifera leaves contain withaferin-A, a 

compound that delays tumour progression, induces apoptosis, inhibits NF-κB activation, tumour 

cell angiogenesis, and macrophage cytokine production (IL-6 and tumour necrosis factor-alpha 

(TNF-α)), increases GSH, glutathione S transferase, SOD, and CAT [39]. In Swiss albino mice 

exposed to a skin cancer-causing agent, W. somnifera root extract decreased the incidence and 

average number of skin lesions [40]. The antioxidant activity of W. somnifera root extract may be 

responsible for its chemopreventive activity [40]. Additionally, withanolides were shown to inhibit 

proliferation of human cancer (breast, lung, and colon) cell lines comparable to doxorubicin (a 

known cancer drug), in vitro [41]. Interestingly, withaferin A inhibited breast and colon cancer cell 

growth more effectively than doxorubicin [41]. Withaferin A and withanolide (D and E) also 

demonstrated anti-tumour activity in vitro (cells derived from human epidermoid carcinoma of 

nasopharynx) and in vivo (Ehrlich ascites carcinoma, Sarcoma (180 and Black) and E 0771 

mammary adenocarcinoma in mice) [42].  
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Centella asiatica (Linnaeus) Urban (C. asiatica) is a medicinal plant commonly consumed as a 

vegetable [43]. Previous studies have indicated the safe consumption, minimal toxicity and 

effectiveness of C. asiatica [44]. The compounds isolated from C. asiatica include triterpenes 

saponins (asiatic acid, asiaticoside, madecassic acid, madecassoside) as well as flavonoids 

(quercetin and kaempferol) [45]. The chemical constituents of C. asiatica possess medicinal 

properties [46] and have been used in the treatment of inflammation, immune system deficiencies 

[47] and certain cancers [48]. Previously, C. asiatica water extracts and asiaticoside showed anti-

inflammatory properties by inhibiting nitric oxide (NO) synthesis [49]. In lipopolysaccharide (LPS) 

stimulated RAW 264.7 murine macrophage cells, asiatic acid and madecassic acid inhibited the 

expression of enzymes (inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and 

inflammatory cytokines (IL-6, IL-1β, TNF-α) by down-regulating NF-κB [50,51]. Asiaticoside also 

inhibited LPS stimulated TNF-α, IL-6, COX-2 protein expression and prostaglandin E2 (PGE2) 

production [52]. C. asiatica elicited significantly high antioxidant potential with the leaves showing 

the highest antioxidant activity [53]. Additionally, C. asiatica ethanol extract demonstrated higher 

antioxidant activity than the water extract [54]. C. asiatica leaves were found to have very high 

superoxide (O2−) free radical scavenging activity (86.4%), 2, 2-diphenyl-1 picrylhydrazyl (DPPH) 

radical scavenging activity (92.7%) and inhibition of linoleic acid peroxidation (98.2%)  [55,56]. In 

rats, C. asiatica extract and powder decreased oxidative stress [57]. Cell proliferation of human 

gastric adenocarcinoma (MK-1), human uterine carcinoma (HeLa), and murine melanoma 

(B16F10) were inhibited by C. asiatica constituents [58]. Asiatic acid prevents skin tumours, 

inhibits tumour development, induces apoptosis of cancer cells [59] and has anti-inflammatory 

effects [50]. In breast cancer (MCF-7) cells, asiaticoside stimulates apoptosis, disrupts 

mitochondrial function and increases caspase-3 activity [60].  

 

There is growing interest in the use of traditional medicinal plants in the treatment of cancer and 

cachexia owing to their antioxidant, anti-inflammatory and anti-tumour potential. The discovery of 

a medicinal plant that down-regulates pro-inflammatory cytokine concentrations, decreases 

antioxidant mechanisms and promotes cell death in cancer cells will be beneficial in the treatment 

of cancer and cachexia. 
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RATIONALE, AIMS AND OBJECTIVES 

 

The cancer cachectic syndrome is responsible for 20–25% of cancer deaths due to cardiac and 

respiratory conditions. Previously cancer and cachexia were associated with increased pro-

inflammatory cytokine levels. Anti-cancer and anti-cachectic treatments are very expensive 

requiring specialized drugs, facilities and health personnel. Most South Africans are unable to 

afford these treatments; hence there is a need for the development of an alternate and affordable 

treatment for cancer and cachexia. This study screened two South African medicinal plants for anti-

cachectic activity by investigating the modulation of inflammatory cytokines associated with 

cachexia. A decrease in pro-inflammatory cytokines levels may decrease development and 

progression of cancer cachexia. Additionally, the anti-cancer activity of plant extracts/ fractions 

were assessed for antioxidant potential and induction of apoptosis. 

 

Aims 

1. This study investigated the anti-inflammatory, antioxidant and apoptosis inducing potential 

of W. somnifera aqueous root extract and C. asiatica ethanolic leaf extract in various cell 

lines. 

 

Objectives 

1. To determine the oxidant scavenging potential, modulation of inflammatory cytokines and 

cell death induction by W. somnifera aqueous root extract in healthy peripheral blood 

mononuclear cells (PBMC’s) and leukaemic (THP-1) cells. 

2. To determine the oxidant scavenging potential, modulation of inflammatory cytokines and 

cell death induction by C. asiatica ethanolic leaf extract in healthy PBMC’s and THP-1 

cells. 

3. To determine the oxidant scavenging potential, modulation of inflammatory cytokines and 

apoptosis induction by C. asiatica (crude extract (C) and purified fraction-3 (C3)) in 

leukaemic (THP-1) cells. 



8 
 

4. To determine the antioxidant and anti-proliferative effects of C and C3 in leukaemic (THP-

1) cells. 

5. To determine the antioxidant and anti-proliferative/ cytotoxic effects of C3 in lung cancer 

(A549) cells. 

6. To determine the antioxidant and anti-proliferative/ cytotoxic effects of C3 in embryonic 

kidney (HEK293) cells. 
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CHAPTER ONE 

Literature Review 

 

1.1 Cancer 

Human tumourigenesis is a multi-step process in which normal cells progressively become 

neoplastic cells [61]. There are six hallmarks of cancer namely ‘sustaining proliferative signal, 

evading growth suppressors, resisting cell death, inducing angiogenesis, activating invasion as well 

as metastasis and enabling replicative immortality’ [61]. These distinctive and complementary 

hallmark capabilities enable developing cancer cells to become tumourigenic, metastatic and 

malignant [61]. 

 

1.1.1 The Hallmarks of cancer  

 

 

Figure 1.1: The hallmarks of cancer [61]. 

 

Notably, sustained chronic proliferation is a fundamental trait of cancerous cells [61,62]. In normal 

tissues, the production and release of growth-promoting signals are tightly regulated thereby 
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maintaining homeostatic cell number and function [61]. However in cancer cells, the growth-

promoting signals are deregulated and favours sustained proliferation (Figure 1.1) [61,62]. The 

potential of cancer cells to sustain proliferative signalling is acquired [61] by cancerous cells 

producing growth factor ligands and stimulating normal cells to produce growth factors [63]. 

Additionally, deregulation of receptor signalling may render cancerous cells hyper-responsive and 

facilitates ligand-independent firing [61]. 

 

In order to sustain proliferative signalling, cancer cells need to evade signals which suppress cell 

proliferation (Figure 1.1) [61,62]. Tumour suppressor genes function in the negative regulation of 

cell proliferation [61]. Two tumour suppressors encode for the retinoblastoma-associated (RB) and 

TP53 proteins [61]. These proteins play important roles in determining whether cells undergo 

proliferation or apoptotic cell death [61]. However, cancer cells have defects in RB pathway which 

allows for persistent cell proliferation [61]. In the event of extensive genome damage and/ or low 

growth-promoting signals, TP53 can stop cell-cycle progression or induce apoptosis [61]. In cancer 

cells, the TP53 function is lost which eliminates TP53 apoptosis-inducing function [61]. 

Additionally, cancer cells corrupt the TGF-β pathway and abolish its anti-proliferative effects [61]. 

 

Cell death processes are essential barriers to cancer pathogenesis [61,62]. Cancer cells attenuate 

apoptosis by increasing anti-apoptotic protein expression and survival signals while decreasing pro-

apoptotic protein expression (Figure 1.1) [61,62]. By successfully resisting apoptosis, cancer cells 

may achieve malignancy and resistance to anti-cancer therapy (Figure 1.1) [62,64]. Necrosis may be 

beneficial in counteracting cancer cell hyper-proliferation; however necrosis also has tumour 

promoting potential [61]. Necrosis releases pro-inflammatory signals and recruits inflammatory 

cells which are capable of promoting angiogenesis, cell proliferation and invasiveness [61].  

 

Proliferation has two barriers namely senescence (a non-proliferative but viable state) and crisis 

(cell death) [61]. In normal cells, these barriers limit the number of consecutive cell growth and 

division cycles [61]. However, cancer cells need the ability to replicate uncontrollably (Figure 1.1) 

[61,62]. Previous studies indicate that telomeres play a role in unlimited proliferation [65]. 

Telomeric DNA length determines the number of consecutive cell growth and division cycles a cell 

may undergo before cell death is signalled [61]. The DNA polymerase, telomerase increases 

telomeric DNA length by adding telomere repeat segments [61]. Telomerase is almost absent in 

normal cells but highly expressed in cancer cells and allows for unlimited cell growth and division 
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cycles [61]. Telomerase activity has also been correlated with a resistance to induce senescence and 

apoptosis [61]. 

 

Angiogenesis is the formation of new blood vessels which allows for the delivery of nutrients and 

oxygen to cells as well as to evacuate metabolic waste from cells [61]. In order to proliferate and 

metastasize, cancerous cells require a wide vascular network (Figure 1.1) [66]. Thus, cancer cells 

activate an ‘‘angiogenic switch’’ that facilitates the continuous development of new blood vessels 

which aids in tumourigenesis and tumour progression (Figure 1.1) [67]. Notably, an inadequate 

vascular network may lead to tumour cell necrosis and/ or apoptosis [66,68,69].    

 

In order to increase cancer progression, primary malignant cells need to invade and metastasize 

(Figure 1.1) [61,62]. E-cadherin (a cell-to cell adhesion molecule) functions in forming adheren 

junctions between cells subsequently assembling cell sheets and maintaining the order of the cells 

[61]. In carcinoma cells, the E-cadherin functions are lost [61].  

  

1.1.2  Emerging Hallmarks and Enabling characteristics  

 

 

Figure 1.2: The ermerging hallmarks and the enabling characteristics [61]. 

 

The emerging hallmarks facilitate human cancer development and progression [61]. The first 

emerging hallmark is the deregulation of cellular energetics (Figure 1.2) which involves 
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reprogramming of cellular energy metabolism, ultimately encouraging the continuous growth and 

proliferation of tumour cells [61]. The second emerging hallmark is avoiding immune destruction 

(Figure 1.2), which entails the ability of cancer cells to evade attack and elimination by immune 

cells [61].  

 

The acquisition of the hallmarks of cancer is facilitated by two enabling characteristics [61]. The 

first and most prominent enabling characteristic is genome instability and mutation (Figure 1.2) 

[61]. Within cancer cells, an increase in genomic instability will induce mutations and genetic 

changes which may orchestrate the hallmark capabilities, ultimately enhancing tumour progression 

[61]. The second enabling characteristic is tumour-promoting inflammation (Figure 1.2), which 

takes into account the inflammatory state of malignant lesions [61]. Within the tumour 

microenvironment, inflammation supplies several bioactive molecules (growth, survival and pro-

angiogenic factors) which allows tumour cells to sustain proliferation, evade cell death and facilitate 

angiogenesis, invasion, and metastasis [70,71,72,73]. In addition, inflammatory cells release ROS, 

which are mutagenic and increases genetic evolution of cancer cells, ultimately enhancing 

malignancy [70].  

 

1.2 Inflammation 

The role of inflammation in carcinogenesis has been extensively researched [74] and confirmed by 

anti-inflammatory therapies which demonstrated its effectiveness in cancer prevention and 

treatment [22]. There are two stages of inflammation namely the acute and chronic. Acute 

inflammation occurs for short time periods and is usually beneficial (in tissue repair, pathogen 

elimination, tumour suppression and anti-tumour activity) to the host [3,22,70,74]. Inflammation 

that persists for extended time periods is referred to as chronic inflammation which may predispose 

the host to oncogenic transformation by inducing genomic instability, increasing angiogenesis and 

cell proliferation [1,7]. Chronic inflammation has been associated with a higher risk of cancer as 

well as implicated in many steps involved in carcinogenesis [1,4,5,6]. Previous studies suggest that 

25% of all cancers are due to chronic inflammation [75] which may be seen as the seventh hallmark 

of cancer [76]. In addition, increased ROS, inflammatory cytokines, and NF-κB expression 

contribute to inflammation-induced carcinogenesis [7]. Taken together, modulation of inflammatory 

responses may be beneficial in reducing inflammation-induced carcinogenesis [7]. 
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1.3 The Cachectic syndrome 

Cachexia is a condition involving the abnormal loss of body weight (greater than 5% of total body 

mass per month) [14] and is mainly found in malignancy [20]. It is a complex metabolic status 

resulting in adipose tissue and skeletal muscle depletion [20]. The cachectic syndrome is associated 

with hormones, neuropeptides, increased pro-inflammatory cytokine production; increased energy 

expenditure and the release of the tumour factors, lipid mobilizing factor (LMF) and proteolysis 

inducing factor (PIF) [12].   

 

1.3.1 Hormones and neuropeptides 

The loss of body weight is related to the regulation of hormones and neuropeptides. Neuropeptide Y 

(NPY) is a potent feeding stimulant and is down-regulated by the hypothalamic orexigenic network 

[77]. Disruption in NPY signalling inhibits food and energy intake [77] thus leading to anorexia. 

Corticotrophin-releasing factor (CRF) is a part of the anorexigenic neuropeptide network and 

functions to inhibit NPY [77]. Cytokines including IL-1, IL-6, TNF-α and IFN-γ stimulate CRF 

which in turn inhibits NPY leading to decreased food intake and increased energy expenditure (EE) 

[77] (Figure 1.3).  

 

Leptin is secreted from adipocytes [20] and plays an important role in weight regulation [12]. It acts 

on the central nervous system as a suppresser of food intake and stimulator of energy consumption 

[14]. Decreased leptin levels in the brain increases hypothalamic orexigenic signals which lead to 

stimulation of feeding and decreased EE [78,79]. Previously, leptin levels were shown to be 

inversely correlated with cytokine levels [80,81,82]. Pro-inflammatory cytokines have been shown 

to inhibit feeding by mimicking the hypothalamic negative-feedback signalling effect of leptin [80] 

(Figure 1.3). In cachexia, the leptin feedback loop is disrupted, increased levels of leptin block the 

release of NPY [20] and stimulate CRF, thus decreasing food intake and increasing EE [77].  
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Figure 1.3: Role of leptin and NPY in the cachectic syndrome with possible therapeutic effects of 

medicinal plants through cytokine modulation (Prepared by author).  

Key: AA – Asiatic acid, WS – Withania somnifera, CC – Cinnamomum camphora, THC – ∆9 

tetrahydrocannabinol, HP – Harpagophytum procumbens 

 

Ghrelin is produced by stomach endocrine cells [83] and has been associated with a number of 

cachectic states such as anorexia nervosa [84]. It plays a role in weight gain by increasing food 

intake, decreasing food utilisation and inhibiting leptin-induced feeding reduction [85]. Serum 

levels of adipocyte derived adiponectin are inversely correlated with body weight [86,87] and 

elevated adiponectin levels have been observed during weight loss and anorexia nervosa [88,89]. 

Kemik et al (2010) have shown C reactive protein (CRP) and leptin concentrations were 

significantly higher while adiponectin and grehlin serum concentrations were significantly lower in 

cachectic colon cancer patients compared to the controls [90]. Insulin is a hormone produced in the 

pancreas and plays a pivotal role in weight regulation. It is responsible for allowing glucose to enter 

skeletal muscle and adipose tissue for substrate anabolism [14]. In mononuclear cells, glucose 

intake initiates acute pro-inflammatory changes and increased NF-κB binding, suggesting that 

elevated plasma glucose levels may lead to muscle atrophy in the presence of insulin resistance/ low 

insulin levels due to the induction of the ubiquitin–proteasome pathway by NF-κB [17]. 
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1.3.2 Adipose tissue and lipolysis  

In cancer cachexia, fat loss is more rapid than muscle loss [91]. Adipose tissue depletion may result 

from decreased food intake, tumour factors and inflammatory cytokines which inhibit lipogenesis or 

promote lipolysis [91]. Fatty acids (FA’s) are stored in adipose tissue in the form of triacylglycerols 

(TAG) which accounts for 90% of energy stores [14]. Lipoprotein lipase (LPL) hydrolyses FA’s 

from plasma lipoproteins and transports FA’s into adipose tissue for TAG production (Figure 1.4) 

[14]. Previously, cachexia has been associated with increased serum triglycerides [92] and 

decreased serum LPL activity [93]. Lipolysis is induced by catabolic hormones stimulating cAMP, 

which binds and activates protein kinase A (PKA), which in turn phosphorylates and activates 

hormone sensitive lipase (HSL) [91]. HSL functions in the breakdown of TAG’s into FA’s and 

glycerol (Figure 1.4) [14]. In adipocytes from cachectic patients, the expression of HSL mRNA and 

protein were increased by 50% and 100% respectively [14]. Thus, decreased LPL and increased 

HSL activity contributes to cachexia by decreasing lipogenesis and increasing lipolysis. 

 

1.3.3  Skeletal muscle and proteolysis  

The ATP-ubiquitin-dependent proteolytic pathway has shown to be responsible for the accelerated 

proteolysis seen in a variety of wasting conditions including cancer cachexia [94]. Ubiquitin is 

activated by ubiquitin-activating enzyme (E1) and proteins are marked for degradation by the 

attachment of activated ubiquitin [94]. Thereafter ubiquitin is transferred to a carrier protein (E2) 

which leads to the ligation of ubiquitin to the target protein directly or by ubiquitin protein ligase 

activity [94]. Proteolysis occurs within a multi-subunit complex known as the proteasome [94,95] 

(Figure 1.4). The proteasome consists of a central catalytic chamber (20S proteasome) and two 

terminal regulatory subunits (19S complex/ PA700 and 11S regulator/or PA28) [94,95]. The 26S 

active proteasome is formed by the attachment of the regulatory subunits at both ends of the central 

chamber in opposite orientations [94]. The process requires adenosine triphosphate (ATP) with at 

least six ATPases associated with the 26S proteasome to provide energy for proteolysis [95]. An 

increased expression of ubiquitin, E2, and proteasome subunits were found in cachexia rat models 

with Yoshida ascites hepatoma transplants [96], Yoshida sarcoma transplants [97] and in mice with 

colon carcinoma (MAC16) transplants [98]. In the muscle of gastric cancer patients, proteasome 

activity and muscle ubiquitin mRNA expression were increased, indicative of ATP-ubiquitin-

dependent proteolysis [21]. This provides evidence that the ATP-ubiquitin-dependent pathway 
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plays a role in muscle wasting in cancer [94]. The pathway is independent of protein consumption 

thus nutritional supplementation is unable to prevent or reverse muscle catabolism [94]. Inhibiting 

the ubiquitin pathway may contribute to decreasing muscle wasting. 

 

1.3.4 The Nuclear Factor kappa beta pathway  

NF-κB is a transcription factor which regulates immune responses, inflammation, cell survival, cell 

proliferation, invasion, angiogenesis and apoptosis by the induction of numerous genes 

[74,99,100,101,102,103]. There are five homologous subunits namely RelA/p65, c-Rel, RelB, NF-

κB1/p50, and NF-κB2/p52. Processing of precursors NF-κB1/p105 and NF-κB2/p100 leads to the 

production of p50 and p52 respectively [104]. The Rel homology domain (RHD) which is present in 

all NF-κB members is essential for DNA binding, dimerization (homo and hetero), nuclear 

localization and inhibitory kappa B (IκB) binding [104]. The IκB family regulates NF-κB signalling 

by binding to NF-κB dimers and blocking their nuclear localization [105,106]. In non-stimulated 

cells, NF-κB is located in the cytoplasm by interaction with IκB proteins [107]. NF-κB is activated 

by various stimuli such as cytokines (TNF-α, IL-1β, IFN-γ, IL-6) [108,109], PIF [110] and 

oxidative stress [111]. In response to these various stimuli, IκB’s are rapidly phosphorylated and 

degraded via IκB kinase (IKK) signalosome complex which results in the release of NF-κB dimers 

[112]. The dimers translocate to the nucleus and function in the transcription of target genes 

(inflammatory genes, cell cycle genes, anti-apoptotic genes) [7,105,106,112] (Figure 1.4). The 

classical or canonical pathway (p50: RelA/p65 and p50: c-Rel dimmers) is essential for innate 

immunity and the inhibition of apoptosis [102,113].  

 

NF-κB activation has been observed in many human cancers (eg. colon, pancreatic, ovarian, 

hepatocellular, breast, lymphomas, leukaemia’s etc) [114,115]. The association between elevated 

NF-κB activation and malignancy development is due to the potential of NF-κB to induce many 

cancer hallmarks [7,116,117]. NF-κB contributes to tumour development by increasing the 

expression of anti-apoptotic genes, growth factor genes, proto-oncogene c-Myc, and cell cycle 

regulator cyclin D1 which ultimately suppresses apoptosis and stimulates cell proliferation 

[76,114,118,119]. Previously, NF-κB expression has been shown to promote cell proliferation while 

NF-κB inhibition blocked cell proliferation [120]. In lymphoma and myelogenous leukaemia cells, 

TNF and IL-1 suppression has been shown to decrease NF-κB expression and inhibit proliferation 
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[121]. In certain cancers, increased basal NF-κB activity has been associated with tumour resistance 

to chemotherapy and radiation [122]. In breast cancer cells, the over expression of NF-κB led to 

increased cell survival and resistance to ionizing radiation [123]. Interestingly, NF-κB inhibition 

blocks adaptive radio-resistance [124] and shows promise as a therapeutic approach that stimulates 

apoptosis and inhibits DNA repair [22].  

 

In immune cells, NF-κB activation increases the expression of cytokines, COX-2 [125], iNOS [126] 

and growth factors [18] that leads to the induction of the ubiquitin–proteasome pathway [17]. In 

mice, muscle specific transgenic expression of activated IκB kinase β leads to NF-κB activation 

which induces extensive muscle wasting through increased gene expression of the 20S proteasome 

and 19S regulatory subunits of the proteasome [17]. Activated NF-κB further contributes to 

proteolysis by suppressing MyoD expression which plays an important role in replenishing wasted 

muscle [108]. However, cachexia seems to be reversed by NF-κB antisense therapy without altering 

tumour growth [127]. Suppressing NF-κB activation may decrease tissue wasting and preserve 

muscle mass.  
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Figure 1.4: The effect of increased levels of tumour factors and cytokines in the depletion of 

adipose tissue and skeletal muscle via the HSL, NF-κB and Ubiquitin pathways, as well as the 

therapeutic effects of medicinal plants (Prepared by author). 

Key: AA – Asiatic acid, WS – Withania somnifera, CC – Cinnamomum camphora, THC – ∆9 

tetrahydrocannabinol, HP – Harpagophytum procumbens, CA – Centella asiatica, SF – 

Sutherlandia frutescens, H – Harpagoside 

 

1.3.5 Tumour effects   

1.3.5.1 Energy inefficiency 

Tumours produce increased lactate levels resulting in gluconeogenesis via the Cori Cycle 

(conversion of lactate to glucose) [14] which is energy inefficient (Figure 1.5). Tumours use up to 

40 times more glucose than healthy cells due to energy inefficient processes [14] with a significant 

increase in hepatic glucose production and recycling seen in patients experiencing weight loss [14]. 

Mitochondrial DNA mutation results in a dysfunctional mitochondrion which prevents the use of 



19 
 

the tricarboxyic acid cycle, preventing complete combustion of pyruvic acid [14] thus leading to 

increased dependence on glycolysis [128]. Previous studies have found a correlation between 

increased Cori Cycle activity and weight loss [129]. The tumour is energy inefficient, therefore 

increases EE [130] and decreases food intake hence contributing to the progression of cancer 

cachexia [131] (Figure 1.5). 

 

 

Figure 1.5: Effect of tumour lactate production in the development and progression of cancer 

cachexia (Prepared by author). 

 

1.3.5.2  Tumour factors: proteolysis inducing factor and lipid mobilizing factor 

Tumours release substances such as PIF and LMF which affect pathways leading to cachexia. The 

proteoglycan, PIF inhibits proteogenesis and induces proteolysis by increasing NF-κB expression 

and the ubiquitin-proteosome pathway [132] (Figure 1.4). A study involving gastrocnemius muscles 

of weight-losing mice revealed that PIF induces the accumulation of ubiquitin-protein conjugates 

[94] and in murine studies (in vitro and in vivo) PIF induced skeletal muscle breakdown through 

NF-κB dependent activation of the ubiquitin-proteasome pathway [133]. Indicating the important 

role played by the ubiquitin proteolytic pathway in PIF-induced protein catabolism [98]. 

Additionally, PIF triggers the release of cytokines (TNF-α, IL-6 and IL-8) from isolated Kupffer 
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cells, subsequently activating NF-κB leading to additional pro-inflammatory cytokine production by 

hepatocytes [134]. LMF is highly abundant in cachexigenic tumours and has been associated with 

induction of lipolysis [135]. Serum levels of LMF are proportional to the extent of weight loss [136] 

and LMF has been shown to induce lipolysis in murine adipocytes [137]. This factor may induce 

lipolysis via HSL activation [14] (Figure 2). LMF possibly increases lipid mobilization and 

substrate utilization by increasing the mitochondrial oxidative pathway in brown adipose tissue [14] 

and increasing oxidation of released FA’s possibly via the induction of uncoupling protein 

expression [138].   

 

1.4 Pro-inflammatory cytokines in cancer and cachexia 

Inflammatory cytokines enhance carcinogenesis in various ways [139]. Cytokines activate pathways 

which lead to cell proliferation, angiogenesis, and apoptosis [7]. Continuous exposure to elevated 

pro-inflammatory cytokine levels is considered to be pro-tumourigenic [7]. Pro-inflammatory 

cytokines are also important in the induction, promotion and development of experimental cancer 

cachexia [18]. Concepts of cachexia have proposed that the ongoing stimulus for lipolysis and 

proteolysis is due to deregulation of TNF-α, IL-1, and IL-6 [140]. Previously, increased pro-

inflammatory cytokine levels (tumour-derived, or tumour induced but host-derived) have been 

correlated with cancer and the prevalence of cachexia [91]. The inflammatory mediators associated 

with cachexia include IL-1, IL-6, TNF-α, INF-γ [14], IL-8, IL-10, IL-15, leukaemia inhibitory 

factor and oncostatin-M ciliary neurotrophic factor [141]. In human subjects, pro-inflammatory 

cytokine (TNF-α, IL-1, IL-6) plasma concentrations have been investigated in relation to the 

development of cancer cachexia [10]. In cachectic colon cancer patients, significantly higher 

concentrations of IL-1α, IL-1β, IL-6, IL-8, IL-10, and TNF-α were observed compared to the 

controls [90]. Cytokines injected into animals leads to decreased skeletal muscle protein mass, 

increased rates of proteolysis and decreased proteogenesis [142]. In addition, pro-inflammatory 

cytokines have been associated with decreased appetite and defective host energy metabolism 

contributing to tissue wasting [143]. In mice, studies have shown an improvement in anorexia, 

cachexia and decreased tumour growth by monospecific neutralizing antibodies targeted to certain 

cytokines implicated in the cachectic syndrome [144] thus decreasing these cytokine levels are 

beneficial in treating cachexia.   
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Figure 1.6: Pro-inflammatory cytokines in the development and progression of cancer cachexia 

(Prepared by author). 

 

1.4.1 Tumour necrosis factor alpha 

TNF functions in stimulating cellular change, initiating an inflammatory cascade, tissue 

remodelling, tissue damage as well as tissue damage recovery [145]. It has both anti-cancer and 

pro-cancer actions [145]. In tumours, administration of a high TNF dose may have necrotic effects 

however; TNF also induces NF-κB activation, which has anti-apoptotic activity [145]. Additionally, 

in tumours TNF can induce DNA damage, inhibit DNA repair [146], act as a growth factor [147], 

promote angiogenesis, promote tumour growth [145,148,149], and enhance invasion and metastatic 

potential [7,150]. Notably, TNF-α inhibition reduces tumour burden and metastasis [7]. 

 

TNF-α is considered a cachectin due to its catabolic action [151] and has the capability to induce 

IL-1 production which in turn can induce IL-6 production [152] ultimately resulting in anorexia and 

muscle wasting [153]. In experimental animals, episodic TNF administration was unsuccessful at 

inducing cachexia while other studies showed that increased TNF doses are needed to maintain 

cachectic effects [154]. TNF-α inhibits LPL production and reduces the rate of LPL gene 
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transcription [155,156,157] thus preventing the formation of new lipid stores while stimulating HSL 

and increasing lipolysis [158]. In vivo, TNF-α administration lead to decreased LPL activity in 

adipose tissue of rat, mouse, and guinea pig; however TNF-α was unable to decrease LPL in human 

primary cultures of isolated adipocytes [130]. In human adipose tissue maintained in organ culture, 

TNF-α dose-dependently suppressed LPL activity and in 3T3-L1 (pre-adipocyte cell line) cells, 

TNF-α decreased LPL activity as well as mRNA expression [130]. Decreased LPL activity results 

in decreased uptake of exogenous lipids by adipose tissue and increased circulating TAG’s in rats 

[130]. In addition, TNF-α has been shown to increase skeletal muscle breakdown associated with 

increased gene expression of free and conjugated ubiquitin and may directly induce ubiquitin-

dependant proteolysis [159]. In limb muscles of intact rats, acute intravenous injection of TNF-α 

results in time-dependent increases in free and conjugated ubiquitin [160] and ubiquitin mRNA 

[161]. In isolated rat soleus muscle, TNF-α also increased ubiquitin gene expression however no 

change in proteasome subunit expression was observed [162]. Although an up-regulation of the 

ubiquitin-dependent proteolytic pathway is suggested, the up-regulation may not be interpreted as 

increased muscle proteolysis [94]. Increased ubiquitin mRNA may be related to increased signalling 

for cell death through apoptosis [94].  

 

The early mediators of TNF-α action are ROS and NF-κB which are sensitive to IL-1 and IL-6 

[151]. In skeletal muscle cells, TNF-α stimulates the rapid, dose-dependent NF-κB activation, 

nuclear translocation [111,163] and binding activity [127]. Activated NF-κB may increase the 

activity of the ubiquitin-proteasome pathway, accelerating proteolysis and promoting muscle 

weakness [151]. Additionally, in differentiated C2C12 myotubes and in mice gastrocnemius muscle 

in vivo, TNF-α down-regulated MyoD expression thus decreasing muscle replenishment [21].  

 

1.4.2  Interleukin-1 

In cancer, IL-1β increases immune suppression, tumour adhesiveness, invasion and angiogenesis 

[164]. IL-1 also was shown to enhance metastasis through the induction of adhesion molecules 

[165]. IL-1 plays a role in anorexia and cachexia that develops during inflammation and cancer 

[166]. The initiation of anorexia by IL-1 is associated with blocking NPY activities [167]. Studies 

have indicated that IL-1α was able to induce profound cachexia [168] whereas IL-1β regulates 

immune responses by inducing cytokine expression (IL-6 and IL-12) [169]. Previous studies 

suggest that IL-1 directly modulates lipid metabolism by suppressing LPL activity [170]. IL-1 also 
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enhances protein turnover and leads to muscle proteolysis [171]. In animals with IL-1α-over-

expressing cell-derived tumours, cachexia correlated with increased serum levels of leptin and 

reduced triglyceride levels [168]. In breast cancer cell lines, increased IL-1α expression correlated 

with NF-κB DNA binding, IL-6 expression, and anti-apoptotic gene expression [168] suggesting 

protein degradation. In mice bearing the colon 26 adenocarcinoma, intra-tumoural injections of IL-1 

receptor antagonist significantly reduced cachexia; however rats bearing the Yoshida ascites 

hepatoma, the injections did not prevent protein catabolism, suggesting the IL-1 receptor antagonist 

activity may be carcinoma specific [94]. 

 

1.4.3  Interleukin-6  

The pro-tumourigenic activity of IL-6 has been indicated in many cancers due to its growth-

promoting and anti-apoptotic properties [172,173]. Increased IL-6 levels are associated with 

elevated tumour size, weight loss and poor prognosis [174]. IL-6 produced by macrophage-like 

Kupffer cells was shown to promote liver injury, inflammation, cell proliferation, and 

carcinogenesis [175]. Additionally, in breast cancer, elevated IL-6 is regarded as a predisposing 

genetic factor that contributes to poor prognosis [176]. Increased IL-6 in murine colon 26 

adenocarcinoma correlated with the cachexia development [14]. Previously, a pancreatic cancer 

study showed that IL-6 levels and mRNA expression were significantly elevated in tumours of 

cancer patients with cachexia compared with tumours of cancer patients without cachexia [140]. In 

addition, IL-6 protein concentration was increased by 18-fold in clinically localized prostate cancer 

compared with normal prostatic tissue [177] and IL-6 concentrations were significantly up-

regulated in patients with cachexia compared to patients without cachexia [178]. Interestingly, it 

was demonstrated that the tumour was the main source of IL-6 and it triggers IL-6 expression in 

PBMC’s hence further up-regulating IL-6 levels [178]. In pancreatic cancer, the tumour is a source 

of cytokines associated with cachexia and PBMC’s of cachectic pancreatic cancer patients are 

sensitized and stimulated by pancreatic cancer cells (T3M4-IL-6-positive) to produce large 

quantities of IL-6 [140]. In vivo, IL-6 injected into mice decreases LPL activity in adipose tissue, 

suggesting that IL-6 may have an important role in adipose tissue depletion [179]. IL-6 may also 

play a role in muscle depletion possibly through cathepsin and proteasome pathways [94]. An in 

vitro study using C2C12 myotubes found IL-6 increased the activity of the 26S proteasome and 

cathepsins B and L suggesting the activation of both the non-lysosomal (proteasomes) and 

lysosomal (cathepsin) proteolytic pathways [94]. Studies have shown that administration of an IL-6 
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antibody reverses cachexia parameters [180] and despite high plasma IL-6 concentrations, increased 

IL-10 levels in colon 26 adenocarcinoma-bearing mice reversed the cachectic syndrome [181]. 

 

1.4.4 Interluekin-10 

Anti-inflammatory cytokine IL-10 plays an anti-tumourigenic role by suppressing NF-κB activity, 

subsequently decreasing pro-inflammatory TNF-α, and IL6 levels [182]. IL-10 also has an 

inhibitory effect on inflammation-associated cancer [7]. 

 

1.5 Treatment targets in cachexia  

In the search for cachexia treatments, studies have investigated whether nutritional supplementation 

may increase body weight and reverse cachexia. However, nutritional supplementation was found to 

be unsuccessful in reversing cachexia [14]. A possible treatment for cancer cachexia is 

medroxyprogesterone (MPA), a synthetic derivative of progesterone. Progestagens stimulate 

appetite by increasing NPY release and may down-regulate cytokine synthesis and release [183]. 

MPA has the ability to increase appetite by NPY secretion [184] and in patients with advanced 

malignant disease, MPA improved appetite but not body weight [94]. MPA also decreased PBMC 

cytokine production in advanced stage cancer patients [183]. In cachectic cancer patients, 

cyproheptadine, a serotonin antagonist, also increased appetite but not body weight [14]. Hydrazine 

sulphate was initially proposed to improve appetite and reduce weight loss, but subsequent trials 

showed no improvements in quality of life and survival of patients [21]. Prednisolone/ 

dexamethsone increases appetite and well-being however weight and muscle wasting were not 

improved [10]. This suggests that in cachectic cancer patients, anorexia is not a major contributor to 

loss of lean body mass [94]. Thalidomide has been used for treatment of cachexia possibly due to its 

anti-inflammatory potential and in advanced cachectic pancreatic cancer patients; thalidomide was 

shown to attenuate weight loss [183]. In an experimental cancer cachexia model, low doses of 

indomethacin decreased TNF-α and IL-6 levels, NF-κB activities, delayed body weight loss and 

muscle atrophy [18]. In cachectic individuals, NF-κB suppression by indomethacin could be used to 

improve the catabolic status [18]. Decreased body weight and muscle wasting can also be prevented 

by treatment with antioxidants (D-α-tocopherol/ BW755c) or a nitric oxide synthase inhibitor 

(nitro-L-arginine) [94]. Additionally, omega-3 polyunsaturated FA’s such as eicosapentaenoic acid 

(EPA) are able to modulate the levels of pro-inflammatory cytokines and tumour-derived factors, 

potentially reversing the effects of cachexia [184]. The anti-tumour and anti-cachectic potential of 
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EPA have been confirmed by laboratory and clinical studies [185]. Tumour-induced lipolysis in 

mice with the MACI6 tumour and increased proteolysis in skeletal muscle of cachectic animals 

were inhibited by EPA [186]. In experimental conditions, EPA has been shown to down-regulate 

increased ubiquitnation [94], interfere with proteasome activity [21] and prevent NF-κB 

accumulation in the nucleus which may decrease proteolysis [185]. 

 

1.6 Oxidative stress and antioxidant defence mechanisms 

1.6.1 Oxidative stress 

ROS include free radicals such as O2−, hydroxyl, peroxyl, and alkoxyl radicals, as well as non-

radical species such as hydrogen peroxide (H2O2) [187]. Superoxide is a relatively unreactive free 

radical, produced by the mitochondrial electron transport chain [188]. H2O2 may be produced 

spontaneously from molecular oxygen in peroxisomes and from O2− by SOD activity [189]. It is 

less reactive; however it induces many cellular injuries thus contributing to carcinogenesis [189]. In 

mammalian cells, the hydroxyl radical is responsible for the main injurious effects of ROS [190]. 

Additionally, both enzymatic and non-enzymatic reactions produce ROS [23]. The concentration of 

ROS determines its pro-tumourigenic or anti-tumourigenic potential [191]. Acute low ROS levels 

are involved in cell proliferation, differentiation, and activation of survival pathways [23,192]. 

Therefore regulating redox homeostasis is essential to maintain normal cellular functions [23]. 

Elevated ROS levels causes increased genomic instability, lipid peroxidation, angiogenesis and 

metastatic potential of tumours [7,191]. However, acute high ROS levels can also inhibit tumour 

formation [7] by causing damage to cellular components (DNA, proteins and lipids) and inducing 

cell death [23,192,193]. ROS may also function as signal transduction molecules which induce pro-

inflammatory cytokine production and the activation of the NF-κB pathway [194,195].  

 

An imbalance between ROS production and detoxification leads to oxidative stress [193]. Oxidative 

stress interacts with all three stages (initiation, promotion, and progression) of carcinogenesis [22]. 

During cancer initiation, ROS may cause gene mutations [22]. In cancer promotion, ROS can 

increase cell proliferation and/ or decrease apoptosis [22]. In cancer progression, ROS may cause 

further DNA alterations [22]. In addition, ROS plays a role in normal stem cell renewal and 

differentiation [196]. Cancer stem cells (tumour-initiating cells (TICs)) have similar phenotypes to 

normal stem cells, however there is minimal knowledge regarding the redox status of TICs [23]. If 

TICs growth is essential during the initial stages of tumourigenesis, then the maintenance of low 
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ROS levels in TICs may be vital for pre-neoplastic foci survival [23]. Chemo and radio therapy 

treatments induce ROS production which is useful in eliminating majority of cancer cells; however 

these treatments may fail to cure the patient due to the TICs ability to survive in high ROS 

conditions by increasing antioxidant levels [23]. The oxidative stress causes by chemo and radio 

therapy treatments may also increase DNA damage and mutations which may result in the 

development of drug-resistant tumour cells [23]. High ROS levels induce cell death thus cancer 

cells elicit a high antioxidant capacity to combat/ regulate high ROS levels which allows for tumour 

cell proliferation [23]. Targeting antioxidant mechanisms in cancerous cells may be a promising 

therapeutic strategy to specifically kill cancer cells (as well as TICs) without damaging normal cells 

[23]. 

 

1.6.2 Antioxidants 

Antioxidants such as GSH, GPx, SOD and CAT protect against oxidative cellular damage [24,32]. 

The tripeptide, GSH (L-γ-glutamyl-L-cysteinyl-Lglycine) is formed enzymatically by glycine, 

cysteine, and glutamate [25]. GSH is a highly soluble, abundant antioxidant found in all cell 

compartments and plays a central role in maintaining cellular homeostasis [187,197].  

 

 

 

Figure 1.7: GSH stereochemical and ball and stick figure [198]. 
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SOD detoxifies O2− into H2O2 and molecular oxygen, thereafter H2O2 is further detoxified by GPx 

and CAT into oxygen and water [24] (Figure 1.8). During GSH detoxification of H2O2 and lipid 

peroxides, GSH is oxidized to GSSG, a reaction is catalyzed by GPx [197]. 

 

 

Figure 1.8: Anti-oxidant detoxification of ROS [199]. 

 

The GSH/ GSSG ratio is an important, simple and convenient indicator of cellular oxidative stress 

[197]. Usually, there is a high cellular reduced GSH/ GSSG ratio which is decreased during 

oxidative stress and apoptosis [187,200]. Due to the potentially toxic nature of GSSG, GSSG is 

actively reduced to GSH by glutathione reductase [198].  

 

GSH regulates apoptosis by preventing ROS accumulation [25]. Previous studies have 

demonstrated that elevated GSH levels have been associated with resistance to apoptosis [201,202]. 

GSH supplementation prevents apoptosis [25,203] while GSH replenishment protects against 

apoptosis [202]. Decreased GSH levels are associated with an imbalanced cellular redox status and 

ROS-mediated apoptosis [187,204]. The correlation between GSH depletion and the progression of 

apoptosis has also been demonstrated [25]. GSH depletion can predispose cells to apoptosis or 

directly trigger cell death by modulating the permeability transition pore formation triggering 

cytochrome c release, activating Bax and executioner caspases [205,206,207]. In vitro studies have 

demonstrated that decreased GSH levels are required for apoptosome formation [208]. On the other 
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hand, Bcl-2 over-expression increases GSH levels and inhibits intrinsic cell death [209]. During 

apoptosis, an increase in intracellular GSSG has been shown to occur before cytochrome c release 

and caspase-3 activation [25]. Under physiological conditions, GSSG is maintained at low levels, 

however during stressful conditions GSSG levels are increased [25]. Previous studies have shown 

that after oxidant exposure, an initial increase in GSSG production preceded the activation of 

intrinsic apoptotic cell death hours later [210,211,212,213]. Notably, thiol antioxidant 

administration and cellular GSH/ GSSG redox status stabilisation after oxidant-induced GSH 

oxidation did not prevent apoptosis [211].  

 

1.6.3 Nuclear factor erythroid 2-related factor 2 pathway 

Nrf-2 is a functionally active transcription factor and is expressed to control gene expression [214]. 

During resting conditions, Nrf-2 is bound and constitutively degraded by Kelch-like ECH-

associated protein 1 (KEAP1) in the cytosol [215] (Figure 1.9). Under conditions of increased 

oxidative stress, KEAP1 is oxidised and modified thereby allowing for Nrf-2 release and 

translocation to the nucleus where it increases gene transcription [215] (Figure 1.9). Nrf-2 

stimulates the transcriptional activation of various cytoprotective and detoxification genes (SOD, 

CAT and GPx) rapidly changing the sensitivity of cells to ROS [216]. In addition, Nrf-2 is the 

master regulator of enzymes responsible for GSH production and utilization through the expression 

of glutathione S-transferases and GPx [23,217]. Glutathione reductase is also Nrf-2 dependent 

[218]. Nrf-2 increases the expression of the subunits [the modifier subunit and the catalytic subunit] 

that forms glutamate–cysteine ligase (GCL). GCL catalyses the rate limiting step in GSH synthesis 

[23]. Also, Nrf-2 controls the abundance of cysteine which is the rate limiting substrate of GSH 

synthesis [23].   

 

Nrf-2 may protect against tumourigenesis by decreasing ROS, DNA damage and inhibiting cell 

migration [218,219,220]. However, Nrf-2 may promote tumourigenesis by increasing antioxidant 

gene expression which combats increased ROS, ultimately maintaining the redox balance and 

decreasing ROS induced cell death [218]. The sensitivity of cells to ROS induced cell death is 

partly determined by the Nrf-2 pathway [221]. Therefore cancer cells take advantage of the Nrf-2 

pathway to increase their malignant growth [33]. Elevated Nrf-2 levels also increase cancer cell 

resistance to radio/ chemo therapy due to Nrf-2 activation and regulation of expression of 
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detoxification enzymes, antioxidant genes/ proteins and xenobiotic transporters [222]. Thus Nrf-2 is 

a crucial role player in tumour cell survival and the development of radio/ chemo resistance [221].  

 

 

Figure 1.9: Nrf-2 degradation under homeostatic conditions and Nrf-2 activation by ROS (Prepared 

by author). 

 

Antioxidants aid in cancer cell survival and progression by providing growth signals and combating 

increased ROS levels, thus antioxidant inhibitors are regarded as promising anti-cancer agents [23]. 

Antioxidant inhibitors in combination with radio/ chemo therapeutic drugs may be beneficial in 

killing cancer cells by ROS induced cell death [23]. 

 

1.6.4 Oxidative stress and cachexia   

Oxidative stress and apoptosis play an important role in the imbalance of catabolic/ anabolic 

processes, initiation of tissue wasting and cachexia development [223]. In skeletal muscle, an 

efficient antioxidant system is essential to combat the elevated oxidative capacity and maintain 

redox homeostasis [224]. Studies indicate that in cancer patients there are increased serum ROS 

levels and decreased antioxidant levels resulting in a pro-oxidative shift [224]. In cachectic skeletal 

muscle there are increased O2− levels and a defective antioxidant system to dismutate O2− 

indicating that O2− is implicated in cancer cachexia [224]. In wasted muscles of mice with 

hepatoma, lipid peroxidation, and protein oxidation levels were increased [225]. Increased levels of 

aldehyde products of lipid peroxidation and increased iNOS were associated with muscle wasting 
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and decreased body weight [94]. However, muscle wasting was prevented by treatment with 

antioxidants and a nitric oxide synthase inhibitor [94]. Oxidative stress causes gene expression of 

NF-κB and caspases leading to inflammation and apoptosis [226]. An important initial step in 

muscle proteolysis is caspase-3 activation resulting in cleavage of certain proteins, which are 

eventually degraded by the ubiquitin proteasome system [17]. A study has indicated that caspase (-3 

and -8) inhibitors reduced the auto-phosphorylation of RNA-dependent protein kinase (PKR). This 

indicates that activation of caspases (-3 and -8), activates PKR leading to ROS production, which is 

essential for proteolysis [17]. Additionally, PKR is cleaved by caspases (-3, -7, -8), releasing the 

kinase domain and leading to eukaryotic initiation factor 2 (eIF2α) phosphorylation [17]. This 

suggests that caspases increases proteolysis owing to PKR-induced increase in the expression of the 

ubiquitin–proteasome pathway [227] and decreases proteogenesis through eIF2 phosphorylation 

[17]. The increased proteolytic rate in cachexia has also been shown to be associated with apoptosis 

and DNA fragmentation [228]. In skeletal muscle of tumour-bearing animals and rats with Yoshida 

AH-130 ascites hepatoma there was increased DNA laddering [229]. The laddering of DNA 

increased with tumour burden whereas non-tumour-bearing controls showed no DNA laddering 

[229]. In addition, weight losing upper gastro intestinal tract cancer patients showed a 3-fold 

increase in DNA fragmentation, associated with increased poly(ADP-ribose)polymerase-1 (PARP-

1) cleavage and decreased MyoD protein [14] suggesting increased apoptosis and decreased muscle 

replenishment. 

 

1.7 Cell Death Pathways 

1.7.1 An overview 

There are different types of cell death namely necrosis, autophagy and apoptosis. Intracellular ATP 

levels play an important role in determining the mode of cell death [230]. High ATP levels facilitate 

apoptosis while low ATP levels encourage necrosis [230]. Thus, ATP depletion leads to a change 

from apoptotic to necrotic cell death [231]. Apoptosis is a tightly regulated process involving a 

number of check points before an irreversible point is reached [232]. Apoptosis affects individual or 

clusters of cells whereas necrosis is generally an uncontrolled process usually affecting large fields 

of cells [233]. Morphological features of apoptosis include cell shrinkage, intact cell membrane and 

no inflammation whereas necrosis leads to cell swelling, disruption of the cell membrane and 

inflammation [233]. During apoptosis, activated caspases cleave cellular proteins and activate 
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DNAase which degrades nuclear DNA [234]. The intrinsic (or mitochondrial) and extrinsic (or 

death receptor) are the two main apoptotic pathways [234] (Figure 1.10). 

 

 

 

Figure 1.10: Extrinsic and intrinsic apoptotic cell death pathways [234]. 

 

1.7.2 The extrinsic apoptotic pathway 

During extrinsic apoptosis, the death ligands (TNF and Fas) binds to corresponding death receptors 

(TNF receptor (TNFR1) and Fas (CD95)) leading to the binding of adapter proteins (FADD and 

TRADD) [235,236]. Thereafter FADD associates with procaspase-8 which forms a death-inducing 

signalling complex (DISC) resulting in the auto-catalytic activation of procaspase-8 [237]. 

 



32 
 

 

1.7.3 The intrinsic apoptotic pathway 

The intrinsic apoptotic pathway is activated by various stimuli such as ROS and mitochondrial 

DNA damage which promote outer membrane permeabilization and the release of apoptotic 

mediators from the mitochondrial intermembrane space [187,238]. Thereafter caspase-dependent or 

caspase-independent apoptosis occurs [239]. During caspase-dependent apoptosis, the apoptosome 

is formed by cytochrome c forming a complex with apoptotic protease-activating factor-1 (Apaf-1) 

and recruiting procaspase-9 [187]. Caspase-independent apoptosis is mediated by apoptosis 

inducing factor (AIF) and the induction of nuclear chromatin condensation and DNA fragmentation 

[240].  

 

1.7.4 BcL-2 family of proteins  

Mitochondrial integrity is regulated by the Bcl-2 family of proteins, including anti-apoptotic 

members (Bcl-2) and pro-apoptotic members (Bax) [241]. During stressful conditions such as 

increased ROS, Bax is activated, undergoes conformational changes, translocates to mitochondria 

and integrates into the outer mitochondrial membrane resulting in membrane permeabilization and 

subsequent release of pro-apoptotic proteins [242]. Anti-apoptotic protein, Bcl-2 is localized in the 

mitochondria, where it is responsible for transmembrane potential stabilization, reduces membrane 

permeability and inhibits pro-apoptotic protein release [241]. The relative ratio of Bcl-2: Bax is 

important in determining the cell sensitivity or resistance to apoptosis [238].  

 

1.7.5 p53 

In human cancer, the p53 gene is commonly mutated [243]. In about one half of all human cancers, 

the loss of p53 function has been demonstrated [244]. The p53 network can initiate pathways that 

lead to cell cycle arrest (blockage of G-1 or G-2), cellular senescence or apoptosis [245]. In cells, 

p53 protein activation results from the mutational inactivation of some tumor suppressor genes 

(retinoblastoma (Rb), and adenomatous polyposis coli (APC)) or the mutational activation of some 

oncogenes (ras and myc) [245]. In response to stress, the p53 protein is activated, mediated and 

regulated by protein kinases, histone acetyl-transferases, methylases, ubiquitin and sumo ligases 

[245]. The p53 protein can also be inactivated by phosphatases, histone deacetylases, ubiquitinases 

or even inhibitors of ubiquitin ligases [245]. In cells, the Rb protein forms a complex with MDM-2 
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and p53 which results in increased p53 activity and apoptotic activity [246]. The p53 response is 

changed from G-1 arrest to apoptosis in the presence of elevated levels of active E2F-1 (not bound 

to Rb) [245]. Cyclin ECDK2 phosphorylates and inhibits Rb and MDM-2 [245]. Activated p53 

stimulates p21 protein synthesis which inhibits cyclin ECDK2 activity, ultimately promoting p53 

activity and apoptosis [245]. Additionally, p53 regulates genes that initiate the intrinsic (bax, noxa, 

puma) and the extrinsic (Fas ligand) apoptotic pathway [245]. Under stressful conditions, the p53 

protein is stabilized by phosphorylation [247] and stabilized p53 accumulates in the nucleus. In the 

nucleus, p53 binds to DNA sequences and transactivates a number of pro-apoptotic genes (Bax, and 

Apaf-1) [248,249,250,251]. Cytoplasmic p53 can also induce cell death by activating cytosolic Bax 

[252].  

 

There are three subfamilies in the MAP kinase signaling pathways namely SAPK/c-Jun N-terminal 

protein kinase (JNK), the p38 mitogen-activated protein kinase and the extracellular signal related 

kinase (ERK) [253,254]. Activation of the MAP kinases can phosphorylate p53 which will affect 

the cell growth and apoptosis pathways [255]. p38 is activated by stressful conditions and apoptosis 

[243]. Studies have demonstrated the important role of p38 in p53 activation [243]. Stress induced 

p38 activation phosphorylates p53 at various serine residuals which activate p53 ultimately 

resulting in apoptosis [243]. Nitric oxide induced p38 activation phosphorylates p53 at serine 15 

resulting in p53 protein accumulation and apoptosis induction [256]. Upon osmotic shock, activated 

p38 phosphorylates p53 at serine 33 and causes G1 arrest [257]. Upon UVB radiation, JNK 

phosphorylates p53 at serine 20 ultimately increasing p53 transcriptional activity [258]. During 

oxidative stress, JNK also phosphorylates p53 at serine 15 which leads to protein accumulation and 

apoptosis [259]. In response to DNA damage, JNK phosphorylates p53 at threonine 81 and the 

substitution of this site attenuates JNK mediated p53 stabilization and impairs p53 mediated G1 

arrest [260]. ERK is generally activated by growth factors [243]. Previously in ovarian cells, ERK 

was needed for p53 phosphorylation at serine 15 and cisplatin induced apoptosis [261]. Also, 

resveratrol induced p53 activation and apoptosis is mediated by ERK phosphorylating p53 at serine 

15 [262].  

 

Cell cycle progression is tightly regulated by a variety of proteins [263]. Cyclin-dependent kinases 

(CDKs) ensure cell proliferation control [264]. CDK activation is dependent on phosphorylation 

and cyclin association [264]. CDKs are negatively controlled by cyclin-dependent kinase inhibitors 
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(CDKIs) [244,265]. There are two families of CDKIs namely INK4 and CIP/KIP [266,267,268]. 

The CIP/KIP family (p21Waf1, p27Kip1, and p57Kip2) are potent inhibitors of cyclin–CDK 

compexes implicated in the G1 and S phase [268,269]. CDKs and cyclins form heterodimeric 

protein complexes [270] and facilitate the orderly progression of the cell cycle [271]. The 

transcription factor p53 regulates downstream genes involved in cell-cycle arrest, DNA repair, and 

programmed cell death [272]. Loss of p53 function results in genomic instability, impaired 

apoptosis, and diminished cell-cycle restraint [264].  

 

The p21 protein is a product of the WAF1/CIP1 gene [264]. p21 plays an vital role in regulating the 

G1–S transition of the cell cycle [268]. In response to DNA damage, wild-type p53 binds to the 

promoter region of the p21WAF1/CIP1 gene which induces p21WAF1/CIP1 expression [264]. The 

expression of p21WAF1/CIP1 inhibits cyclin/CDK complex activity ultimately blocking cell-cycle 

progression [264]. In cells arrested at G0 and G1 phases, p27 is highly expressed [264]. At the G1/S 

phase checkpoint, p27 blocks the cell cycle [264].  

 

1.7.6 Heat shock proteins 

In cancer, heat shock protein (HSP)-70 is over expressed and correlates with elevated tumour grade, 

drug resistance, poor prognosis and survival [273]. HSPs function as inhibitors of apoptosis [242]. 

Previously, HSP-70 was shown to inhibit cytochrome c release, interacts with Apaf-1 and prevents 

apoptosome formation and caspase activation [242]. HSP-70 also inhibits apoptosis by decreasing 

Bax mitochondrial translocation and consequently decreasing mitochondrial pro-apoptotic protein 

release [242]. In BCR-ABL-expressing cells, HSP-70 binds to the death receptors, inhibiting DISC 

assembly thus inhibiting the extrinsic apoptotic pathway [273]. In addition, HSPs have been 

reported to contribute to chemo resistance [242].  

 

1.7.7 Caspases 

Caspases belong to a family of cysteine proteases that cleave aspartate residues and execute 

apoptosis [274]. Under normal conditions, caspases are expressed as inactive zymogen monomers 

in the cytosol [275]. During stressful conditions, apoptotic signals activate caspases [275]. There are 

initiator and executioner caspases [274]. Initiator caspases activate apoptosis at a death receptor 

(caspase-8) or in the cytosol (caspase-9) [274]. Initiator caspases cleave executioner caspases (-3/7) 

which results in a conformational change and caspase activation [276]. Notably, one activated 
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executioner caspase can cleave and activate other executioner caspases resulting in positive 

feedback loop of caspase activation [276]. Apoptotic cell death is executed by caspase-3/7 [274]. 

Caspase activation is prevented by inhibitors of apoptosis proteins (IAPs) which bind and suppress 

caspase activity [277]. During apoptosis, Smac/Diablo and Omi/HtrA2 proteins inhibit IAPs which 

allows for caspase dependant apoptosis [278,279].  

 

1.7.8 DNA fragmentation 

Caspase-3/7 activation leads to the activation of cytoplasmic endonucleases which degrade nuclear 

material [233]. Endonuleases G, ICAD and AIF are release from the mitochondria [233]. Cleavage 

of ICAD by caspase-3 releases CAD [280] and CAD is responsible for oligonucleosomal DNA 

degradation and advanced chromatin condensation [281]. Endonuleases G cleave nuclear 

chromation to produce oligonuclease DNA fragments [282] whereas AIF leads to DNA 

fragmentation into 50-300kb pieces and condenses peripheral nuclear chromatin [283]. The DNA 

fragmentation caused by endonuleases G and AIF are caspase independent [233].  

 

1.7.9 DNA repair mechanisms 

1.7.9.1 Poly (ADP-ribose) polymerase-1 

The nuclear enzyme, PARP-1 functions in DNA repair, DNA stability, and transcriptional 

regulation [284]. Depending on the amount of DNA strand breaks, PARP-1 may activate repair and 

cell cycle control machineries (limited DNA damage) or activate cell death process (extensive DNA 

damage) [284]. PARP-1 cleavage was shown to be a universal phenomenon occurring during 

apoptosis [284]. ATP is essential for apoptotic cell death therefore PARP-1 is cleaved and 

inactivated to preserve cellular ATP for apoptosis [284]. Increased PARP-1 activation leads to 

energy depletion and necrotic cell death [284]. Caspases cleave PARP-1 at the DNA binding 

domain leading to the formation of the 24 and 89 kDa polypeptides which abolishes PARP-1 

catalytic activity [284]. The PARP-1 89 and 24 kD fragments play a role in apoptotic cell death 

[284]. The 89 kD fragment binds to intact PARP-1 and prevents the homodimerization essential for 

PARP-1 activity [284]. The 24 kD fragment binds to DNA strand breaks and RNA transcripts 

however cannot be poly(ADPribosyl)ated and released [284]. As a result, DNA repair, transcription 

and poly(ADP-ribose) synthesis is inhibited [284].  

 



36 
 

1.7.9.2 8-oxo-7,8-dihydroguanine and OGG-1 

Oxidative DNA damage causes single/ double-strand breaks, base modifications, deoxyribose 

modification and DNA cross-linking which may lead to DNA mutations [285]. DNA mutations, 

replication errors, cell death and genomic instability occur due to the absence of DNA repair before 

DNA replication. In mammalian cells, 8-oxo-7,8-dihydroguanine (8-oxoGua) is most abundant 

oxidative DNA lesion produced and is highly mutagenic [286]. In addition, previous studies have 

shown increased 8-oxoGua levels in various human cancers [287,288,289]. Thus, 8-oxoGua is used 

as a biomarker of oxidative DNA damage as well as a measure of oxidative stress [290]. In various 

cancer types (e.g., leukaemia, renal, lung etc), 8-oxoGua levels were shown to be increased in 

tumour tissue as compared to healthy tissue [287,291,292,293,294,295]. In cells, these DNA lesions 

are not lethal however they are highly mutagenic [296]. The base excision repair pathway is one of 

the main DNA lesion repair pathways [296]. A glycosylase, OGG-1 is an important DNA repair 

enzyme which recognises and removes 8-oxoG lesions [297]. 

 

1.8 Medicinal plants in the modulation of inflammatory cytokines and apoptotic cell death 

In developing countries, the population depend on traditional medicines for the treatment of various 

diseases [298]. On the other hand, developed countries are searching for new ecofriendly treatments 

[298]. 

 

1.8.1 Withania somnifera (Linnaeus) Dunal 

 

 

Figure 1.11: W. somnifera leaves (A) and roots (B) [299]. 
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Withania somnifera (Linnaeus) Dunal belongs to the Solanaceae family and is commonly referred 

to as Ashwagandha [35]. It is cultivated in India, East Asia and Africa [35]. W. somnifera has 

shown various properties such as an anti-stress, immunomodulator, antioxidant activities and 

anabolic effects [300] with potent rejuvenative and life prolonging properties [41]. W. somnifera is 

traditionally used to increase energy, endurance, strength, vital fluids, muscle, and fat [41].  

 

For centuries, Ayurvedic practitioners have used W. somnifera roots to increase vitality, longevity 

and treat health conditions [35]. W. somnifera roots were found to contain greater than 35 chemical 

constituents [35]. Biologically active chemical constituents include alkaloids (withanine, 

isopellertierine, anferine), steroidal lactones (withanolides, withaferins), saponins (sitoindoside VII 

and VIII), and withanoloides (sitonidoside XI and X) [35]. W. somnifera roots mainly contain 

compounds known as withanolides [35]. Two main withanolides (withaferin A and withanolide D) 

are mostly responsible for the pharmacological activity of W. somnifera [35].  

 

1.8.1.1 Antioxidant activity 

In experimental animals and clinical studies, the antioxidant properties of W. somnifera root may be 

responsible for the anti-stress, anti-inflammatory and anti-aging effects [301]. W. somnifera 

contains various antioxidants (caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, 

catechin, tannic acid, kaempferol, quercetin and rutin) [35,40]. The leaves and roots of W. 

somnifera is a good source of nonenzymatic (ascorbic acid, tocopherol and GSH) and enzymatic 

(SOD, ascorbate peroxidase, CAT, peroxidase) antioxidant components [38]. In the skin and liver, 

W. somnifera significantly increased antioxidant enzymes (GSH, GPx and CAT) as well as 

inhibited lipid peroxide levels [302]. Additionally, W. somnifera active constituents (sitoindosides 

VII-X and Withaferin A) were shown to increase antioxidant (SOD, CAT and GPx) activity in rat 

brain frontal cortex and striatum [42].  

 

1.8.1.2 Immunomodulatory and anti-inflammatory activity 

W. somnifera was found to be an immune-stimulant in immune-suppressed animal models [303] 

whereas an immune regulator in immune inflammation animal models [304]. The 

immunosuppressive action may be due to the presence of withanolides, steroidal lactones and 
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flavanoids [305]. Previous studies investigated the capacity of W. somnifera to relieve inflammatory 

conditions and have proven the effectiveness of W. somnifera as an anti-inflammatory agent [35]. In 

rats, W. somnifera root powder and withaferin A demonstrated anti-inflammatory activity 

comparable to that of hydrocortisone (a commonly prescribed anti-inflammatory drug) [42,306]. 

However, hydrocortisone-treated animals lost weight whereas withaferin A treated animals gained 

weight [42]. In cancerous cell lines, W. somnifera decreased NF-κB levels, suppressed TNF, 

potentiated apoptotic signalling [307] and reduced tumour size [308]. Withaferin A also inhibits 

NF-κB and AP-1 levels [309]. W. somnifera extract suppressed LPS stimulated cytokine (TNF-α 

and IL-1β) production in rheumatoid arthritis patients and decreased LPS stimulated NO production 

in RAW 264.7 cells [310]. The extract also inhibited IkappaB-alpha phosphorylation as well as NF-

κB and AP-1 nuclear translocation in normal individuals and rheumatoid arthritis patients [310]. 

 

1.8.1.3 Cytotoxic and anti-proliferative activity 

W. somnifera and its constituents are effective in cancer (eg. lung, blood, breast, renal etc) 

prevention and treatment [300]. Clinical studies have suggested the use of W. somnifera as an anti-

tumour (eg. sarcoma, brain cancer, uterine tumour) and immunomodulatory agent [300]. W. 

somnifera ethanolic extracts demonstrated cytotoxic activity against breast (MCF7, MDA MB 231) 

and cervical (HeLa) cancer cells with no induction of apoptosis in non-cancerous HaCaT cells 

[299]. On the other hand, W. somnifera aqueous extracts did not show any cytotoxic effect [299]. 

Interestingly, W. somnifera ethanolic extracts induced apoptosis, but not necrosis in breast cancer 

cells [299]. Previous studies have shown that W. somnifera root extracts prevented DMBA-induced 

squamous cell carcinoma in Swiss albino mice, [40], inhibited tumour growth and increased 

survival rate in Ehrlich ascites carcinoma mouse model [311], inhibited skin carcinogenesis in mice 

[312], and elicited anti-angiogenic effects against human laryngeal carcinoma [313]. WSF has been 

shown to induce the loss of mitochondrial membrane potential, translocation of Bax, release of 

cytochrome c and Smac/DIABLO suggesting the activation of the intrinsic apoptotic pathway [37]. 

Cells treated with WSF also showed an over expression of TNF-R1 and DR-4 with associated 

activation of caspase-8 indicating the involvement of the extrinsic apoptotic pathway [37].  

 

In human promyelocytic leukaemia (HL-60) cells amongst other cancer cells, withaferin A induces 

ROS generation and mitochondrial dysfunction which trigger events leading to apoptosis [314]. 

Withaferin A also demonstrated anti-metastatic activity in breast cancer as well as inhibiting the 
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growth of human breast cancer cells (MCF-7 and MDA-MB-231, in vitro) and xenografts (MDA-

MB-231, in vivo) by inducing apoptosis [315,316]. In experimental tumours (in vivo), both W. 

somnifera alcoholic root extract and withaferin A demonstrated anti-tumour and radio-sensitizing 

effects, without inducing any visible systemic toxicity [317]. In vitro, withanolides were shown to 

inhibit the growth of human cancer (breast, lung, and colon) cell lines comparable to doxorubicin, a 

cancer chemotherapy drug [41]. Interestingly, withaferin A inhibited cancer (breast and colon) cell 

line growth to a greater extent than doxorubicin [41]. Taken together, W. somnifera extracts may 

prevent/ inhibit cancerous cell growth and induce apoptosis, suggesting its potential as a 

chemotherapeutic agent [40]. 

 

Agents capable of selectively inducing apoptosis in cancer cells, while minimally effecting normal 

cells, are of interest in developing cancer chemotherapeutic drugs [318]. W. somnifera alone can be 

used as alternative cancer medicine or as a complimentary cancer medicine in combination with 

chemo/ radio therapy [300]. During radio/ chemo therapy normal cells are also killed and body 

immunity is weakened. W. somnifera may aid in preventing the adverse effects of conventional 

cancer therapies and improve patient life styles [300]. 

 

1.8.2 Centella asiatica (Linnaeus) Urban 

 

 

Figure 1.12: C. asiatica leaves (Photographed by Dr. Kathleen Immelman and colleagues, 

Department of Botany at the Walter Sisulu University, SA).   

 

Centella asiatica (Linnaeus) Urban belongs to the Apiaceae family (previously known as 

Umbelliferae) [46]. It is indigenous to South- East Asia, India, Sri Lanka, parts of China, the 
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Western South Sea Islands, Madagascar, South Africa, South East USA, Mexico, Venezuela, 

Columbia and Eastern South America [319]. In various counties, C. asiatica is referred to as pegaga 

(Malaysia), Indian pennywort, gotu Kola (Europe and America), mandookaparni (India), pegagan/ 

kaki kuda (Indonesia) and Luei Gong Gen/ Tung Chain (China) [320]. Over the years C. asiatica 

has become a plant of interest due to its potential as an alternative natural antioxidant [46]. In the 

international market of medicinal plant trade, C. asiatica has been reported to be an important 

medicinal plant [46]. However, C. asiatica wild stocks are markedly depleted due to its large scale 

usage and limited cultivation [46]. Thus, C. asiatica is listed as threatened and endangered plant 

species by the International Union for Conservation of Nature and Natural Resources [46,321]. C. 

asiatica is commonly used in food and beverages due to its vast range of health benefits including 

antioxidant [54,322], anti-inflammatory, wound healing and memory enhancing properties [46,323]. 

Additionally, C. asiatica consumption within the recommended dosage elicits no known side effects 

[323]. 

 

The main biologically active components found in C. asiatica are triterpenes saponins [46] such as 

asiatic acid, madecassic acid, asiaticosside, madecassoside [324]. C. asiatica also contains a vast 

range of flavonoids (quercetin, kaempherol, catechin, rutin, apigenin and naringin), volatile oils 

(caryophyllene, farnesol and elemene) [325,326], vitamins and minerals (A, C, B1, B2, niacin, 

carotene, chloride, sulphate, phosphate, iron, calcium, magnesium, sodium and potassium) [46]. 

Previously, C. asiatica leaves were reported to contain the highest phytochemicals concentration 

compared to the petioles and the roots [327].  

 

1.8.2.1 Antioxidant activity 

Compared to other plant parts C. asiatica leaves showed the highest antioxidant activity and 

contained the highest phenolic compounds suggesting that C. asiatica phenolic compounds are 

mainly responsible for the antioxidant potential [53]. Among 20 traditional leafy vegetables 

cultivated in South Africa and 11 edible Indian leafy vegetables, C. asiatica showed highest 

antioxidant activity [56,328]. Additionally, C. asiatica had the highest total phenol and flavonoid 

content compared to other leafy vegetables [56]. The plant has been shown to decrease lipid 

peroxidation by decreasing malondialdehyde (MDA) levels and increasing CAT activity ultimately 

preventing H2O2 accumulation [329]. The antioxidant activity of C. asiatica was higher in the 

ethanolic leaf extract than the aqueous leaf extract [330]. C. asiatica phenolic content was also the 
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highest in the ethanolic extract [331]. Previously, the antioxidant activity of C. asiatica (84%) has 

been shown to be comparable to the activity of rosemary, sage, vitamin C (88%) and grape seed 

extract (83%) [332,333]. In Sprague Dawley rats, C. asiatica (extract and powder) was shown to 

decreased H2O2-induced oxidative stress by adjusting antioxidant defence mechanisms and 

decreasing lipid peroxidation [334]. In lymphoma-bearing mice, oral treatment of C. asiatica 

methanol extract significantly increased antioxidant enzymes such as SOD, CAT and GPx [335]. 

Additionally, in rats, exogenous SOD from C. asiatica is capable of increasing endogenous SOD 

activities, which decreases formaldehyde induced oxidative damage [193]. 

  

The antioxidant potential of C. asiatica offers an effective and safe way of increasing the body 

defence against ROS [323], therefore C. asiatica should be explored to as a source of natural 

antioxidants [46].  

 

1.8.2.2 Immunomodulatory and anti-inflammatory activity 

C. asiatica has been used in the treatment of inflammation and immune system deficiencies [47]. In 

a mouse macrophage cell line, C. asiatica aqueous extract increased NO and TNF-α production and 

lead to TNF-α expression (C .asiatica alone and in conjunction with LPS) [336]. In contrast, C 

.asiatica ethanolic extract suppressed iNOS and TNF-α expression which correlated with decreased 

NO and TNF-α protein levels [336]. In PBMC’s, cell proliferation and TNF-α production were 

increased by C. asiatica water extract however inhibited by the ethanol extract [337]. Asiatic acid 

dose-dependently inhibits LPS induced NO and PGE2 production [50] while asiaticoside mildly 

inhibited NO and PGE2 production [50]. In a study by Yun et al (2008), pre-treatment of 

RAW264.7 cells with asiatic acid significantly reduced IL-6 production and mRNA expression, 

whereas TNF-α and IL-1β production and mRNA expressions were only slightly inhibited [50]. 

Additionally, in RAW 264.7 cells transfected with an NF-κB-dependent luciferase reporter plasmid, 

LPS induced a 4-fold increase in NF-κB transcription activity which decreased dose-dependently 

with asiatic acid treatment [50]. This indicates that asiatic acid inhibits the LPS-induced DNA 

binding activity of NF-κB and the nuclear translocations of p65 and p50 proteins [50]. 
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1.8.2.3 Cytotoxic and anti-proliferative activity 

In vitro, C. asiatica methanolic extract showed anti-proliferative activity in a number of cancer cells 

including mouse fibrosarcoma, hepatocarcinoma, gastric adenocarcinoma, murine melanoma, and 

keratinocytes [338]. In male F344 rats, C. asiatica aqueous extract exerted chemo-preventive 

effects on colon tumourigenesis [339]. In MCF-7 breast cancer cells, C. asiatica dose dependently 

inhibited cell proliferation and induced apoptosis by nuclear condensation, externalization of 

phosphitidyl serine, loss of mitochondrial membrane potential and DNA damage [338]. In primary 

human respiratory epithelial cells, C. asiatica aqueous extract dose dependently decrease cell 

proliferation and at high concentrations may cause cytotoxicity [340]. C. asiatica juice inhibited 

HepG2 human hepatoma proliferation through apoptosis and DNA damage [341]. In addition, C. 

asiatica aqueous extract showed cytotoxic activity against human breast cancer (MDA-MB 231) 

and mouse melanoma (B16F1) whereas C. asiatica was not cytotoxic in human lung carcinoma 

(A549) and normal hamster kidney (BHK-21) cell lines [322].  

 

Human gastric adenocarcinoma (MK-1), human uterine carcinoma (HeLa), and murine melanoma 

(B16F10) cell proliferation was inhibited by C. asiatica constituents [58]. A partially purified 

fraction of C. asiatica methanol extract inhibited tumour cell growth whereas induced no toxic 

effects on lymphocytes [46]. In HepG2, HT-29 human colon adenocarcinoma, and MCF7 cells, 

asiatic acid has been shown to inhibit cell growth and induce apoptosis [342,343,344]. In A549 

cells, asiatic acid induced growth inhibition and cell death [345]. Asiatic acid has also shown to 

decrease cell viability, induce apoptosis, and increase basal ROS levels and caspase-3 activity [59]. 

However, the antioxidant Trolox has been shown to efficiently suppress the induction of cell death 

and caspase-3 activation by asiatic acid [59]. In HepG2 cells, asiatic acid induces apoptosis through 

increased intracellular Ca2+ and consequently increased p53 expression [342]. However, in SK-

MEL-2 cells, it is suggested that p53 has no role in asiatic acid induced apoptosis, since no change 

in the nuclear accumulation of mutant p53 was noted [59].  

 

1.9 Conclusion 

Cachexia is the most debilitating and life threatening aspect of cancer [18] resulting in 20–25% of 

cancer deaths. It is essential to establish an effective cancer and cachexia treatment to prolong the 

survival rate of cancer patients and improve patient quality of life. Understanding and targeting the 

factors and processes that contribute to cancer and cachexia progression will aid in the invention of 
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new treatments. Cancer as well as the cachectic syndrome is associated with increased pro-

inflammatory cytokine production [14], oxidative stress and cell death. Therefore, the discovery of 

a medicinal plant/ active fraction capable of down regulating pro-inflammatory cytokine levels, 

decreasing cancer cell antioxidant mechanisms, and increasing cancerous cell death may lead to the 

development of a natural inexpensive treatment for cancer cachexia.  
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Abstract  

 

Background: Cancer and inflammation are associated with cachexia. Withania somnifera (W. 

somnifera) possesses antioxidant and anti-inflammatory potential. We investigated the potential of 

an aqueous root extract of W. somnifera  (WRE) to modulate cytokines, antioxidants and apoptosis in 

leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s).  

Methods: Cytotoxcity of WRE was determined at 24 and 72 hours (h). Oxidant scavenging activity 

of WRE was evaluated (2, 2-diphenyl-1 picrylhydrazyl assay). Glutathione (GSH) levels, caspase (-

8, -9, -3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were then assayed. 

Tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 levels were also assessed 

using enzyme-linked immunosorbant assay.  

Results: At 24 h, WRE (0.2–0.4 mg/ml) decreased PBMC viability between 20–25%, whereas it 

increased THP-1 viability between 15–23% (p < 0.001). At 72 h, WRE increased PBMC viability by 

27–39% (0.05, 0.4 mg/ml WRE) whereas decreased THP-1 viability between 9–16% (0.05–0.4 

mg/ml WRE) (p < 0.001). Oxidant scavenging activity was increased by WRE (0.05–0.4 mg/ml, p < 

0.0001). PBMC TNF-α and IL-10 levels were decreased by 0.2–0.4 mg/ml WRE, whereas IL-1β 

levels were increased by 0.05–0.4 mg/ml WRE (p < 0.0001). In THP-1 cells, WRE (0.05–0.4 mg/ml) 

decreased TNF-α, IL-1β and IL-6 levels (p < 0.0001). At 24 h, GSH levels were decreased in 

PBMC’s, whilst increased in THP-1 cells by 0.2–0.4 mg/ml WRE (p < 0.0001). At 72 h, WRE (0.1–

0.4 mg/ml) decreased GSH levels in both cell lines (p < 0.0001). At 24 h, WRE (0.2–0.4 mg/ml) 

increased PBMC caspase (-8, -3/7) activities whereas WRE (0.05, 0.1, 0.4 mg/ml) increased THP-1 

caspase (-9, -3/7) activities (p < 0.0001). At 72 h, PBMC caspase (-8, -9, 3/7) activities were 

increased at 0.05–0.1 mg/ml WRE (p < 0.0001). In THP-1 cells, caspase (-8, -9, -3/7) activities and 

ATP levels were increased by 0.1–0.2 mg/ml WRE, whereas decreased by 0.05 and 0.4 mg/ml WRE 

(72 h, p < 0.0001).  

Conclusion: In PBMC’s and THP-1 cells, WRE proved to effectively modulate antioxidant activity, 

inflammatory cytokines and cell death. In THP-1 cells, WRE decreased pro-inflammatory cytokine 

levels, which may alleviate cancer cachexia and excessive leukaemic cell growth.  

 

Key words: Cancer, Cachexia, Cytokines, Apoptosis, Withania somnifera 
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2.1 Introduction  

Chronic inflammation plays an essential role in malignancies [1] through the initiation, promotion 

and progression of tumours [2]. Usually, the host-mediated anti-tumour activity overcomes the 

tumour-mediated immunosuppressive activity leading to the elimination of cancerous cells [2]. 

However, in the presence of an inadequate host anti-tumour defence, the pro-inflammatory tumour 

microenvironment is enhanced and promotes tumour development, invasion, angiogenesis and 

metastasis [2]. 

 

The cachectic syndrome is prominent in malignancies occurring in up to 50% of all cancer patients 

[3]. It is a progressive, debilitating condition leading to abnormal weight loss, as a result of adipose 

tissue (85%) and skeletal muscle (75%) depletion [3-5]. Modulation of lipogenesis and lipolysis is 

essential in maintaining adipose tissue mass. Lipoprotein lipase (LPL) hydrolyses fatty acids (FA’s) 

from plasma lipoproteins, thereafter FA’s are transported to adipose tissue for triacylglycerol 

(TAG) production, whereas hormone sensitive lipase (HSL) hydrolyses TAG’s into FA’s and 

glycerol [3]. Literature shows that decreased serum LPL levels/activity and increased HSL 

levels/activity are associated with cachexia [6-8]. Additionally, increased proteolysis [9] and 

decreased proteogenesis have been established in cachectic patients [10]. The ATP-ubiquitin-

dependent proteolytic pathway has been shown to be responsible for the accelerated proteolysis 

seen in a variety of wasting conditions, including cancer cachexia [11]. 

 

Inflammatory cytokines, oxidative stress and apoptosis have been implicated in the initiation and 

progression of cancer, imbalance of catabolic/anabolic processes [12] and development of cachexia 

[13]. Production of inflammatory cytokines [tumour necrosis factor-α (TNF-α), interleukin (IL) – 6, 

and IL-1β] is activated by lipopolysaccharide (LPS) that potently stimulates macrophages [14, 15]. 

The LPS signal is transduced by LPS binding to LPS binding protein, delivered to CD14 and 

transferred to Toll like receptor-4 [16]. Nuclear factor kappa B (NF-κB) is subsequently activated 

and regulates the transcription of genes associated with inflammation, proliferation, invasion, 

angiogenesis and apoptosis [1, 17-19]. Pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) have 

been shown to decrease LPL activity [20-23], which reduces the uptake of exogenous lipids by 

adipose tissue [21], ultimately decreasing lipogenesis.  Additionally, previous studies have indicated 

that TNF-α increased ubiquitin (concentrations and mRNA), while IL-6 increased the 26S 

proteasome and cathepsins activities, which may activate proteolytic pathways [4, 24-26], 
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ultimately increasing proteolysis. In combination, excessive levels of pro-inflammatory cytokines 

increase tumour suppressive activity [2] and tissue wasting [3].  

 

Reactive oxygen species (ROS) have been associated with tumour initiation, inflammation [2, 27] 

and muscle wasting [28]. However, antioxidants have been shown to decrease muscle wasting by 

neutralizing ROS [1, 28]. Elevated ROS levels activate apoptotic pathways, ultimately activating 

caspase-3 [29]. Caspase-3 activation plays an essential role in the execution of apoptosis, as well as 

muscle proteolysis [30]. In addition, in weight losing upper gastro-intestinal tract cancer patients, 

deoxyribonucleic acid (DNA) fragmentation and poly (ADP-ribose) polymerase (PARP) cleavage 

were increased, whereas MyoD protein was decreased, indicating increased apoptosis and decreased 

muscle replenishment [3].  

 

Cancer patients suffer from a wide range of side-effects caused by current cancer chemotherapeutic 

and radiotherapeutic agents. Patients are constantly seeking alternative traditional remedies to 

alleviate their discomfort. Withania somnifera (L.) Dunal (W. somnifera) is a well known medicinal 

plant cultivated in India, parts of East Asia and Africa [31]. It is commonly referred to as 

Ashwagandha and belongs to the Solanaceae family [31]. Compounds isolated from W. somnifera 

include withaferin A and 3-β-hydroxy-2, 3 dihydro withanolide F [32]. The major constituent of W. 

somnifera root extract is withanolide-A [33]. W. somnifera is frequently used in Ayurvedic 

medicine due to its various medicinal properties [31]. These properties include anti-inflammatory 

[34], antioxidant and immune-modulatory activity [35]. W. somnifera was found to be an immune 

regulator in inflammation animal models [36]. The immunosuppressive action of W. somnifera may 

be due to the presence of withanolides, steroidal lactones and a few flavanoids [37]. In addition, W. 

somnifera formulation (WSF) has shown anti-proliferative potential in human promyelocytic 

leukemia (HL-60) cells, by activating the intrinsic and extrinsic apoptotic pathways [38]. When 

used together, W. somnifera formulations aid the host to effectively fight cancer and reduce the 

harmful effects of chemotherapy and radiotherapy [39].  

 

There is a need for the discovery of an inexpensive cancer cachectic treatment to improve the 

prognosis of cancer patients and to establish a mechanism of regulation of the immune system, 

inflammasome and apoptosis in order to prevent/decelerate the rapid depletion of skeletal muscle 

and adipose tissue. We investigated the effect of an aqueous root extract of W. somnifera (WRE) on 
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antioxidant capacity, inflammatory cytokine levels and cell death induction in leukaemic THP-1 

cells and peripheral blood mononuclear cells (PBMC’s).   

 

2.2 Materials and Methods 

2.2.1 Materials 

W. somnifera roots were collected on the 11th of March 2011 (collectors number: Immelman 427) 

from the Eastern Cape [the Ntubeni Location near Dwesa Reserve], South Africa (SA) and 

identified by Dr. Kathleen Immelman from the Department of Botany at the Walter Sisulu 

University, SA. Voucher specimens were deposited at the KEI herbarium (13995). THP-1 cells 

were obtained from from American Type Culture Collection (ATCC, University Boulevard 

Manassas, Virginia, USA). RPMI-1640 and BD OptEIA enzyme-linked immunosorbant assay 

(ELISA) cytokine kits were purchased from The Scientific Group (Johannesburg, SA). Foetal calf 

serum (FCS) and Pen/Strep Amphotericin B (PSF) were acquired from Whitehead Scientific (Cape 

Town, SA). Dimethyl sulphoxide (DMSO) was purchased from Merck (Johannesburg, SA). 

Histopaque-1077, LPS and 2, 2-diphenyl-1 picrylhydrazyl (DPPH) were purchased from Sigma 

(Aston Manor, SA). The 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene 

disulphonate (WST-1) cell proliferation reagent was purchased from Roche (Johannesburg, SA). 

Promega (Madison, USA) supplied the caspase (-3/7, -8, -9), adenosine triphosphate (ATP) and 

glutathione (GSH) kits.  

 

2.2.2 Plant Description and Extraction 

The plants official name is Withania somnifera (L.) Dunal and has been confirmed by using the 

plant list [40]. The common name is Ashwagandha.  

W. somnifera roots were dried and milled. Dried plant material was sequentially extracted in ethanol 

and distilled water. For the ethanol extraction, ethanol (200–350 ml) was added to the milled plant 

(10–30 g) and extracted overnight by shaking (4 × g, 37 ˚C). Ethanol extracts were filtered, rotor 

evaporated, dried (37 ˚C) and stored (4 ˚C). For the sequential water extraction, the remaining plant 

material from the ethanol extraction was used, distilled water was added (200–350 ml) and 

extracted for 6 hours (h) by shaking (4 × g, 75 ˚C). Water extracts were filtered, dried and stored (4 

˚C).  
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2.2.3 The 2, 2-diphenyl-1 picrylhydrazyl assay 

WRE (0.05–0.4 mg/ml) and butylated hydroxytoluene (BHT) (60–300 μM) dilutions were prepared 

in methanol (99.5% and grade AR). A 50 µM DPPH solution was prepared from a stock solution of 

0.135 mM DPPH in methanol. WRE, BHT dilutions and methanol (1 ml) were aliquoted into 15 ml 

polypropylene tubes, followed by the 50 µM DPPH solution (1 ml). Reaction mixtures were 

vortexed and incubated [room temperature (RT), 30 minutes (min)] in the dark. Absorbance of 

samples was read at 517 nm using a Varine Cary 50 UV-visible spectrophotometer (McKinley 

Scientific, New Jersey, US). 

 

2.2.4 Isolation of Peripheral blood mononuclear cells  

Buffy coats containing PBMC’s were obtained from the South African National Blood Service 

(2011/09). PBMC’s were extracted by differential centrifugation. Buffy coats (5 ml) were layered 

onto equivolume histopaque-1077 (5 ml) in 15ml polypropylene tubes and centrifuged (400 × g, 21 

˚C for 30 min). After centrifugation, the PBMC’s were transferred to sterile 15 ml polypropylene 

tubes, phosphate buffered saline (PBS) was added (0.1 M, 10 ml) and tubes were centrifuged (400 × 

g, 21 ˚C, 15 min). Cell density of isolated PBMC’s was adjusted (1 x 106 cells/ml) using the trypan 

blue exclusion test and cryo-preserved (10 % FCS, 10 % DMSO) using a NELGENE cryo freezing 

container and stored at -80˚C. 

 

2.2.5 Tissue Culture 

THP-1 cells were grown in the appropriate tissue culture conditions in a 75 cm3 tissue culture flask 

(37 ˚C, 5% CO2). The growth media comprised of RPMI-1640, FCS (10%) and PSF (2%). Cells 

were thawed, seeded into a 75 cm3 tissue culture flask at a concentration of 3 x 105 cells/ml and 

incubated (37 ˚C, 5% CO2). THP-1 cells were allowed to grow for 2 – 3 days before the cells were 

centrifuged (162 × g, 10 min) and re-suspended in fresh growth media. The number of cells should 

not exceed 8 x 105 cells/ml, therefore the cells/ml was quantified daily by trypan blue staining. 

Once the cell count reached 8 x 105 cells/ml the THP-1 cells were split/ diluted to 3 x 105 cells/ml 
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with media and incubated. Subsequent experiments were conducted once the cell numbers were 

sufficient.  

 

2.2.6 Cell Viability Assay  

Cytotoxicity of WRE in PBMC’s and THP-1 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). PBMC and THP-1 cells (10,000 cells/well, 96-well plate, in triplicate wells) 

were stimulated with LPS (20 µg/ml, 37 ˚C, 5% CO2, 4 h) before exposure to WRE (0.05–0.4 

mg/ml) for 24 and 72 h (37 ˚C, 5 % CO2). Similarly, controls received media. Thereafter, plates 

were centrifuged (162 × g, 10 min), supernatant removed, cell pellets re-suspended in growth media 

(100 µl/well), WST-1 reagent (10 µl/well) added and plates incubated (37 ˚C, 5 %, CO2, 3h). 

Optical density was measured at 450 nm (620 nm reference wavelength) with a BIO-TEK µQuant 

spectrophotometer (Analytical and Diagnostic Products, SA). This experiment was conducted 

independently on three occasions. 

 

2.2.7 Stimulation and treatment of cells  

PBMC’s and THP-1 cells (1 x 105 cells/ml) were transferred into 24-well plates and stimulated with 

LPS (20 µg/ml, 37 ˚C, 5% CO2, 4 h) before exposure to WRE (0.05–0.4 mg/ml) for 24 h (TNF-α) 

and 72 h (IL-1β, IL-6, IL-10) (37 ˚C, 5% CO2). After incubation, plates were centrifuged (162 × g, 

10 min) and supernatant was collected and stored (-80 ˚C) for cytokine analysis. Cell pellets were 

used to conduct the caspase (-8, -9, -3/7) activity, as well as ATP and GSH assays. The experiments 

were conducted independently (twice) for all subsequent assays.  

 

2.2.8 Quantification of Cytokines 

Cytokine levels were estimated using the BD OptEIA ELISA kits (The Scientific Group, SA) and 

the procedure was followed as per the instruction manual. ELISA plates were coated with capture 

antibody overnight (100 µl/well, 4 ˚C). Thereafter, plates were washed (3x) with wash buffer and 

blocked with assay diluent (200 µl/well, 1 h, RT). Standard solutions were prepared by diluting a 

stock solution [TNF-α, IL-10 (500 pg/ml), IL-6 (300 pg/ml), IL-1β (250 pg/ml)] serially [TNF-α, 
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IL-10 (500–7.8 pg/ml), IL-6 (300–4.7 pg/ml), IL-1β (250–3.9 pg/ml)]. Plates were washed (3x), 

standards and samples (100 µl/well) were aliquoted into appropriate wells and plates were 

incubated (2 h, RT). Plates were washed (5x), working detector (100 µl/well) added and plates 

incubated (1 h, RT). The plates were washed (7x), substrate solution (100 µl/well) added and plates 

were incubated (30 min, RT) in the dark. Finally, stop solution (50 µl/well) was added and the 

absorbance was read at 450 nm (570 nm reference wavelength) with a Multiskan FC micro-plate 

reader (Thermo Scientific). Cytokine concentrations were calculated by extrapolation from a 

standard curve. 

 

2.2.9 The Glutathione assay 

The GSH-GloTM assay (Promega, Madison, USA) was performed to measure GSH levels. Standard 

GSH solutions were prepared by diluting a 5 mM stock solution serially (1.56–50 µM) and PBS 

(0.1 M) was the standard blank. Cells (50 μl/well, 2 x 105 cells/ml) and standards were added into 

an opaque 96-well plate, followed by GSH-Glo™ reagent (25 µl/well) and allowed to incubate (30 

min, RT) in the dark. Luciferin detection reagent (50 µl/well) was subsequently added and plates 

incubated (15 min, RT) in the dark. The absorbance was read on a ModulusTM microplate 

luminometer (Turner Biosystems, Sunnyvale, USA) and GSH concentrations were calculated by 

extrapolation from a standard curve.  

 

2.2.10   Caspase and ATP assays 

Caspase activity and ATP levels were determined using the Caspase-Glo®-3/7, -8, -9 and ATP assay 

kits (Promega, Madison, USA). Caspase-Glo®-3/7, -8, -9 and ATP Reagents were reconstituted 

according to the manufacturer’s instructions. Cells (100 µl, 2 x 105 cells/ml) were added into 

duplicate wells of a microtitre plate for each assay, thereafter caspase -3/7, -8, -9 and ATP reagents 

(100 µl/well) were added into appropriate wells. The plate was incubated (30 min, RT) in the dark. 

Luminescence was measured on a ModulusTM microplate luminometer (Turner BioSystems) and 

expressed as relative light units (RLU).   
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2.2.11   Statistical Analysis  

Statistical analysis was performed using the STATA and GraphPad Prism statistical analysis 

software. The one-way analysis of variance (ANOVA) was used to compare between groups, 

followed by the Tukey multiple comparisons test, with p < 0.05 defining statistical significance. 

 

2.3 Results 

2.3.1 The oxidant scavenging potential of WRE 

The oxidant scavenging activity of WRE using the DPPH assay is shown in Figure 2.1. WRE (0.05–

0.4 mg/ml) significantly increased DPPH scavenging activity by 13.33–46.38% (Figure 2.1, p < 

0.0001).  

 

 

Figure 2.1: Percentage DPPH scavenging activity of WRE (Values expressed as mean ± SD, * p < 

0.05, *** p < 0.0001, compared to control). 

 

2.3.2 The in vitro cytotoxicity of WRE  

The WST-1 assay was used to determine cell viability of THP-1 cells and PBMC’s after treatment 

with WRE (Figure 2.2). At 24 h, WRE (0.05–0.4 mg/ml) decreased PBMC viability by 20.69–25.15% 

while WRE (0.2–0.4 mg/ml) increased THP-1 viability by 15.99–22.54% as compared to the controls 

(Figure 2.2A and 2.2C, p < 0.001). This result suggests that PBMC’s are more sensitive to WRE 

treatment than THP-1 cells.  



81 
 

At 72 h, PBMC viability was increased (27.16–38.58%) by WRE (0.05, 0.4 mg/ml), as compared to 

the control (Figure 2.2B, p < 0.0001). In the same time period, WRE (0.05–0.4 mg/ml) decreased 

THP-1 viability by 9.07–16.09% relative to the control (Figure 2.2D, p=0.0002). 

 

 

Figure 2.2: Cell viability of PBMC’s (A – 24 h, B – 72 h) and THP-1 (C – 24 h, D – 72 h) cells 

treated with WRE for 24 and 72 h (Values expressed as mean ± SD, * p < 0.05,** p < 0.005, *** p < 

0.0001 compared to the control). 

 

2.3.3 The immune suppressive properties of WRE  

WRE altered cytokine levels in PBMC’s and THP-1 cells (Figure 2.3 and 2.4). The levels of TNF-α, 

IL-1β, IL-6 and IL-10 produced by LPS stimulated PBMC’s was 336.218, 168.100, 657.878 and 
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46.990 pg/ml respectively. WRE (0.2–0.4 mg/ml) decreased PBMC TNF-α and IL-10 levels as 

compared to the control (Figure 2.3A and 2.3D, p < 0.0001). In PBMC’s, IL-6 levels were 

decreased by 0.4 mg/ml WRE, whereas IL-1β levels were increased by 0.05–0.4 mg/ml WRE relative 

to the control (Figure 2.3B and 2.3C, p < 0.0001).   

 

 

Figure 2.3: Concentration of TNF-α (A), IL-1β (B), IL-6 (C) and IL-10 (D) in LPS stimulated and 

WRE treated PBMC’s (Values expressed as mean ± SD,  *p < 0.05, *** p < 0.0001, compared to the 

control). 

 

The levels of TNF-α, IL-1β, IL-6 and IL-10 produced by LPS stimulated THP-1 cells were 13.285, 

21.947, 78.622 and 2.705 pg/ml respectively. In THP-1 cells, TNF-α, IL-1β and IL-6 levels were 
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decreased by 0.05–0.4 mg/ml WRE, whilst IL-10 levels were decreased by 0.4 mg/ml WRE as 

compared to the control (Figure 2.4, p < 0.003). 

 

 

Figure 2.4: Concentration of TNF-α (A), IL-1β (B), IL-6 (C) and IL-10 (D) in LPS stimulated and 

WRE treated THP-1 cells (Values expressed as mean ± SD, * p < 0.05, *** p < 0.0001 compared to the 

control). 

 

2.3.4 The antioxidant potential of WRE 

The endogenous antioxidant activity of WRE was determined by measuring GSH levels in both cell 

lines (Table 2.1). At 24 h, GSH levels in PBMC’s were decreased by WRE (0.05, 0.2, 0.4 mg/ml) 

relative to the control (Table 2.1, p < 0.0001). In THP-1 cells, GSH levels were decreased at 0.05 
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mg/ml WRE whereas increased (0.41–1.62 µM) at 0.1–0.4 mg/ml WRE compared to the control 

(Table 2.1, 24 h, p < 0.0001).  

 

At 72h, PBMC GSH levels were increased at 0.05 mg/ml whereas decreased 0.1–0.4 mg/ml WRE 

compared to the control (Table 2.1, p < 0.0001). WRE (0.05–0.4 mg/ml) decreased GSH levels in 

THP-1 cells relative to the control (Table 2.1, 72 h p < 0.0001).  

 

Table 2.1: Glutathione levels in LPS stimulated and WRE treated PBMC’s and THP-1 cells. 

                               Glutathione (µM)  

WRE 

(mg/ml)  

        24 h Treatment             72 h Treatment 

 PBMC THP-1 PBMC THP-1 

Control 1.613 ± 0.017 1.632 ± 0.004 4.799 ± 0.008 1.608 ± 0.004 

0.05 1.442 ± 0.024 *** 1.267 ± 0.004 *** 5.232 ± 0.011 *** 1.548 ± 0.002 *** 

0.1 1.617 ± 0.002 2.045 ± 0.002 *** 4.015 ± 0.001 *** 1.589 ± 0.004 *** 

0.2 1.390 ± 0.001 *** 3.253 ± 0.017 *** 2.323 ± 0.005 *** 1.401 ± 0.006 *** 

0.4 1.321 ± 0.006 *** 2.785 ± 0.005 *** 4.697 ± 0.003 *** 1.411 ± 0.005 *** 

(Values expressed as mean ± SD,
 ***

 p < 0.0001, compared to the control). 

 

2.3.5 WRE modulates caspase (-8, -9, -3/7) activities and ATP levels  

Luminometry assays were used to determine caspase activity and ATP levels in THP-1 cells and 

PBMC’s after treatment with WRE. The pro-apoptotic effect of WRE in PBMC’s treated for 24 h is 

shown in Table 2.2. At 24 h, PBMC caspase-8 activity was decreased by 0.05 mg/ml WRE whereas 

increased by 0.2–0.4 mg/ml WRE compared to the control (Table 2.2, p < 0.0001). PBMC caspase-9 

activity was increased by 0.05 and 0.2 mg/ml WRE but decreased by 0.1 and 0.4 mg/ml WRE relative 

to the control (Table 2.2, p < 0.0001). In PBMC’s, the increased caspase activity may be related to 

the decreased GSH levels at 24 h. A decrease in GSH levels may allow for an increase in ROS 

levels which can activate apoptotic pathways. Caspase-3/7 activity was increased in PBMC’s by 
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0.05–0.4 mg/ml WRE compared to the control (Table 2.2, p < 0.0001), suggesting an increased 

execution of apoptotic cell death. In azoxymethane-induced colon cancer in mice, W. somnifera has 

been shown to modulate TCA cycle enzymes and the electron transport chain [41]. The PBMC ATP 

levels were increased by 0.1, 0.4 mg/ml WRE but decreased by 0.05, 0.2 mg/ml WRE compared to 

the control (Table 2.2, p < 0.0001), which may be related to the modulation of the electron transport 

chain by W. somnifera.  

 

Table 2.2: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in LPS stimulated and 24 h 

WRE treated PBMC’s.  

WRE 

(mg/ml) 

Caspase-8       

(RLU x 10
5
) 

Caspase-9      

(RLU x 10
5
) 

Caspase-3/7   

(RLU x 10
5
) 

ATP                 

(RLU x 10
5
) 

     

Control 0.185 ± 0.006 0.366 ± 0.0003 7.756 ±  0.006 4.714 ±  0.004 

0.05 0.155 ± 0.0002 *** 0.376 ± 0.001 *** 8.109 ± 0.094 ** 2.783 ± 0.017 *** 

0.1 0.192 ± 0.0002 0.253 ± 0.0002 ***
 11.504 ± 0.253 ***

 5.208 ±  0.005 ***
 

0.2 0.246 ± 0.0003 ***
 0.397 ± 0.0005 ***

 8.961 ±  0.015 ***
 3.741 ±  0.033 ***

 

0.4 4.814 ± 0.006 ***
 0.351 ± 0.001 ***

 17.095 ± 0.089 ***
 6.965 ±  0.039 ***

 

(Values expressed as mean ± SD,
 ** 

p < 0.005, 
***

 p < 0.0001 compared to the control). 

 

WRE pro-apoptotic effects in THP-1 cells treated for 24 h are shown in Table 2.3. At 24 h, THP-1 

caspase-9 activity was decreased by 0.2 mg/ml WRE but increased by 0.05, 0.1, 0.4 mg/ml WRE 

compared to the control (Table 2.3, p < 0.0001). At 0.2 mg/ml WRE, the decreased caspase-9 

activity may be related to the increased GSH levels. An increase in GSH levels may decrease ROS 

levels thus minimising mitochondrial depolarisation and the activation of the intrinsic apoptotic 

pathway. In THP-1 cells, WRE (0.05–0.4 mg/ml) decreased caspase-8 activity, whereas increased 

caspase-3/7 activity and ATP levels relative to the control (Table 2.3, p < 0.0001). Elevated caspase 

(-9, -3/7) activities suggests the initiation of the mitochondrial apoptotic pathway. 
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Table 2.3: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in LPS stimulated and 24 h 

WRE treated THP-1 cells. 

WRE 

(mg/ml) 

Caspase-8        

(RLU x 10
5
) 

Caspase-9      

(RLU x 10
5
) 

Caspase-3/7  

(RLU x 10
5
) 

ATP               

(RLU x 10
5
) 

      

Control 10.207 ± 0.0114 1.040 ± 0.007 1.251 ±  0.016 2.636 ± 0.011 

0.05 8.440 ± 0.039 *** 2.365 ± 0.005 *** 1.315 ± 0.005 *** 3.726 ± 0.005 *** 

0.1 2.413 ± 0.005 ***
 2.459 ± 0.002 ***

 2.294 ±  0.006 ***
 5.132 ± 0.014 ***

 

0.2 7.149 ± 0.027 *** 0.775 ± 0.002 *** 3.406 ±  0.006 *** 29.838 ± 0.186 ***
 

0.4 2.456 ± 0.033 ***
 3.197 ± 0.0001 ***

 9.428 ±  0.004 ***
 10.282 ± 0.195 ***

 

(Values expressed as mean ± SD,
 ***

 p < 0.0001 compared to the control). 

 

The pro-apoptotic effect of WRE in PBMC’s treated for 72 h is shown in Table 2.4. At 72 h, PBMC 

caspase-8 activity was increased by 0.05–0.2 mg/ml WRE but decreased by 0.4 mg/ml WRE 

compared to the control (Table 2.4, p < 0.0001). PBMC caspase-9 activity was increased by 0.05–

0.1 mg/ml WRE but decreased by 0.2–0.4 mg/ml WRE relative to the control (Table 2.4, p < 0.0001). 

In PBMC’s, caspase-3/7 activity was increased by 0.05, 0.1, 0.4 mg/ml WRE whereas it decreased 

by 0.2 mg/ml WRE compared to the control (Table 2.4, p < 0.0001). At 0.05–0.1 mg/ml WRE, the 

increased caspase-3/7 activity is consistent with the significantly increased caspase -8 and -9 

activity. At 0.2 mg/ml WRE, caspase-8 activity was minimally increased and caspase-9 activity 

significantly decreased which lead to the decreased caspase-3/7 activity. At 0.4 mg/ml WRE, 

although both caspase -8 and -9 activities were decreased, caspase-3/7 activity was increased.  A 

previous study has demonstrated that one activated executioner caspase can cleave and activate 

other executioner caspases resulting in positive feedback loop of caspase activation [42] which may 

account for the increased caspase-3/7 activity at 0.4 mg/ml WRE. WRE (0.05–0.4 mg/ml) decreased 

PBMC ATP levels relative to the control (Table 2.4, p < 0.0001). 
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Table 2.4: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in LPS stimulated and 72 h 

WRE treated PBMC’s.  

WRE 

(mg/ml) 

Caspase-8      

(RLU x 10
5
) 

Caspase-9        

(RLU x 10
5
) 

Caspase-3/7     

(RLU x 10
5
) 

ATP               

(RLU x 10
5
) 

     

Control 42.651 ± 0.039 115.041 ± 3.848 155.556 ± 0.387 20.574 ± 0.316 

0.05 53.840 ± 0.026 *** 143.861 ± 3.929 ***  196.471 ± 0.338 *** 10.223 ± 0.046 *** 

0.1 52.109 ± 0.009 ***
 129.033 ± 0.289 ***

 192.695 ± 0.233 ***
 12.506 ± 0.373 ***

 

0.2 42.751 ± 0.039 ***
 105.494 ± 4.247 ***

 154.203 ± 0.224 ***
 13.210 ± 0.043 ***

 

0.4 29.656 ± 0.007 ***
 92.718 ± 0.021 ***

 165.139 ± 0.096 ***
 13.361 ± 0.279 ***

 

(Values expressed as mean ± SD,
**

 p < 0.005,
 ***

 p < 0.0001 compared to the control). 

 

 

WRE pro-apoptotic effects in THP-1 cells treated for 72 h are shown in Table 2.5. At 72 h, THP-1 

caspase (-8, -9, -3/7) activity and ATP levels were increased by 0.1–0.2 mg/ml WRE as compared to 

the control (Table 2.5, p < 0.0001), suggesting an increase in THP-1 apoptotic cell death. THP-1 

caspase (-8, -9, -3/7) activity and ATP levels were decreased by 0.05, 0.4 mg/ml WRE relative to the 

control (Table 2.5, 72 h, p < 0.0001), suggesting a decrease in THP-1 apoptosis. 
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Table 2.5: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in LPS stimulated and 72 h 

WRE treated THP-1 cells.  

WRE 

(mg/ml) 

Caspase-8        

(RLU x 10
5
) 

Caspase-9      

(RLU x 10
5
) 

Caspase-3/7  

(RLU x 10
5
) 

ATP               

(RLU x 10
5
) 

     

Control 0.991 ± 0.001 5.738 ± 0.002 7.463 ±  0.012 4.332 ±  0.002 

0.05 0.978 ± 0.0001 *** 5.562 ± 0.009  *** 6.919 ± 0.003  *** 4.133 ± 0.005  *** 

0.1 1.216 ± 0.001 ***
 7.045 ± 0.005 ***

 8.211 ±  0.002 ***
 4.889 ±  0.005 ***

 

0.2 1.095 ± 0.001 ***
 6.091 ± 0.001 ***

 7.532 ±  0.006 **
 4.576 ±  0.004 ***

 

0.4 0.952 ± 0.0003 ***
 5.639 ± 0.003 ***

 6.626 ±  0.007 ***
 4.039 ± 0.0003 ***

 

(Values expressed as mean ± SD,
 ***

 p < 0.0001 compared to the control). 

 

2.4 Discussion 

Cachexia patients experience excessive weight loss due to increased lipolysis and proteolysis which 

have been linked to elevated levels of pro-inflammatory cytokines, oxidative stress and apoptosis 

[3, 5, 30]. Previously, W. somnifera root powder has shown immune modulatory properties [43] and 

WSF has been shown to increase caspase-3 activity, subsequently inducing apoptosis [38]. The 

objective of this study was thus to investigate the modulation of cytokines, antioxidants and cell 

death by WRE in PBMC’s and THP-1 cells.  

 

Dhanani et al (2017) showed that 50 percent inhibition of DPPH was seen at 0.4 mg/ml W. 

somnifera root extract [44]. Our results indicated that WRE has oxidant scavenging potential ranging 

between 13–46% at 0.05–0.4 mg/ml. ROS plays an essential role in tumour initiation, inflammation, 

protein degradation and apoptosis. The antioxidant potential of WRE may decrease inflammatory 

cytokine levels as well as ROS induced apoptosis. 

 

At 24 h, the WST-1 results indicated that WRE decreased PBMC viability whereas it increased THP-

1 viability. However at 72 h, WRE increased PBMC viability whereas it decreased THP-1 viability. 
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In contrast, the growth of various cell lines (HT-29, HCT-15, SW620, 502713, Colo-205, A549, 

HOP-62 and Hep-G2) were dose dependently inhibited by WSF and 50% cell growth inhibition was 

seen at 30 µg/ml WSF [38].  

 

The pivotal role of inflammatory cytokines in malignancies and cachexia has been extensively 

documented [3]. Dhuley (1997) previously reported that W. somnifera inhibits macrophage 

production of inflammatory cytokines (IL-1, TNF-α) [45]. Our results showed that WRE decreased 

PBMC TNF-α, IL-10 and IL-6 levels, although it increased IL-1β levels. In THP-1 cells, pro-

inflammatory cytokine (TNF-α, IL-1β, IL-6) levels were significantly decreased by WRE.  

 

Pro-inflammatory cytokines, over a longstanding time period, stimulate the production of genotoxic 

molecules [nitric oxide (NO), ROS] and tumour progression by promoting angiogenesis and 

metastasis [1, 2]. In addition, pro-inflammatory cytokines activate NF-κB which regulates the 

expression of genes involved in the suppression of tumour apoptosis, stimulation of tumour cell 

cycle progression and enhancement of inflammatory mediators [1, 2]. NF-κB promotes tumour 

progression, invasion, angiogenesis and metastasis [1, 2].  

 

Previous literature has shown that IL-1 stimulates growth and invasion of malignant cells [2]. 

Additionally, IL-6 has been shown to target cell cycle progression and anti-apoptotic genes leading 

to tumour proliferation and anti-apoptotic potential [2]. The ability of WRE to increase pro-

inflammatory cytokines such as IL-1β in PBMC’s may aid in cancerous cell elimination through 

increased host anti-tumour activity. Conversely, in THP-1 cells, the decrease in TNF-α, IL-6 and 

IL-1β levels by WRE may prevent excessive activation of NF-κB, diminish cytokine induced tumour 

immunosuppressive activity and cancer progression. 

 

With regard to cancer cachexia, IL-6 decreased LPL activity in adipose tissue of mice [22] and IL-1 

directly modulates lipid metabolism by suppressing LPL activity [23]. TNF-α decreased LPL 

activity in adipose tissue of human (maintained in organ culture), rat, mouse, and guinea pigs [21]. 

Additionally, TNF-α inhibits the production of LPL and reduces the rate of LPL gene transcription 

in mouse 3T3-L1 adipocytes, hence preventing the formation of new lipid stores while stimulating 

HSL and increasing lipolysis [3, 20, 46]. The potential of WRE to decrease pro-inflammatory 

cytokine levels in PBMC’s and THP-1 cells suggests a decrease in LPL inhibition and HSL 
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stimulation, thus maintaining lipogenesis and minimizing lipolysis. IL-6 and TNF-α further 

contribute to cachexia by stimulating muscle catabolism via the activation of proteasome pathways 

[24, 25, 47]. In cachexia, NF-κB activation induces ubiquitin–proteasome pathway activity and 

suppresses MyoD expression [48], thereby increasing proteolysis and reducing muscle 

replenishment [49]. By decreasing TNF-α and IL-6 levels in PBMC’s and THP-1 cells, WRE may 

prevent excessive activation of NF-κB and proteasome pathways, ultimately decreasing proteolysis 

associated with the cachectic syndrome. Taken together, WRE may be able to decrease tissue 

wasting through the down regulation of pro-inflammatory cytokine levels. 

 

The immunosuppressive and anti-inflammatory cytokine, IL-10, inhibits tumour development, 

tumour progression, modulates apoptosis and suppresses angiogenesis during tumour regression [1, 

2]. Additionally, IL-10 inhibits NF-κB activation and subsequently inhibits pro-inflammatory 

cytokine production (TNF-α, and IL-6) [2]. In PBMC’s and THP-1 cells, the decreased IL-10 levels 

may be due to IL-10 combating increased pro-inflammatory cytokines levels (TNF-α, IL-6, IL-1β). 

 

Antioxidants protect cells from increased oxidative stress [50]. GSH is a potent antioxidant that 

effectively scavenges ROS both directly and indirectly [50]. W. somnifera has previously been 

shown to possess chemo-preventive activity which may be a consequence of its antioxidant capacity 

[39]. The 24 h results showed that WRE decreased GSH levels in PBMC’s, whereas it increased 

GSH levels in THP-1 cells. However, at 72 h, WRE decreased GSH levels in both cell lines. 

Notably, GSH levels (72 h) were higher in control PBMC’s (4.79μM) compared to control THP-1 

cells (1.61μM), suggesting a higher oxidant defence in PBMC’s.  

 

The extrinsic (death receptors) and intrinsic (mitochondria) pathways are the two main apoptotic 

pathways [29]. Activation of initiator caspases (-8, -9) leads to the activation of executioner 

caspases (-3/7) resulting in activation of cytoplasmic endonucleases [29]. In HL-60 cells, WSF 

treatment led to a loss of mitochondrial membrane potential, translocation of Bax to mitochondria, 

release of cytochrome c, Smac/DIABLO and apoptosis inducing factor, suggesting the activation of 

the intrinsic apoptotic pathway [38]. Additionally, WSF treated HL-60 cells showed an over-

expression of TNF receptor-1 and death receptor-4 with associated caspase-8 activation, suggesting 

the activation of the extrinsic apoptotic pathway [38]. Our 24 h results showed that WRE increased 

PBMC caspase -8, -9 and -3/7 activities at different concentrations, suggesting the activation of 
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extrinsic and intrinsic apoptotic pathways. In the same time period, WRE increased THP-1 caspase -

9 and -3/7 activities, suggesting initiation of apoptosis through the intrinsic pathway. At 72h, WRE 

(0.05–0.1 mg/ml) increased caspase (-8, -9, -3/7) activities, suggesting an increased initiation of 

PBMC apoptotic cell death. However, 0.4 mg/ml WRE decreased initiator caspase (-8, -9) activities, 

suggesting a decreased initiation of PBMC apoptotic cell death. In THP-1 cells, 0.1–0.2 mg/ml WRE 

(72 h) increased caspase (-8, -9, -3/7) activities, suggesting initiation of apoptosis through the 

intrinsic and extrinsic pathways. However, at 0.05 and 0.4 mg/ml WRE (72 h), THP-1 caspase (-8, -

9, -3/7) activities were decreased, suggesting a decrease in THP-1 apoptosis. Previous studies have 

indicated that W. somnifera may activate the extrinsic and intrinsic apoptotic pathways [38], 

therefore our results prove to be consistent with other studies.  

 

Increased caspase-3 activity, proteasome activity and E3 ubiquitin-conjugating enzyme expression 

is associated with increased proteolysis [51]. Therefore the ability of WRE (0.4 mg/ml, 72 h) to 

down regulate caspase activity in PBMC’s and THP-1 cells may decrease proteolysis and the 

progression of cancer cachexia.  

 

A successful anti-cancer drug should kill or incapacitate cancer cells without causing excessive 

damage to normal cells [39]. The potential of WRE to regulate PBMC apoptosis while increasing 

cancerous THP-1 cell apoptosis may be beneficial to cancer patients by preventing excessive 

cancerous cell growth while minimally effecting healthy PBMC’s. 

 

2.5 Conclusion 

The cachectic syndrome decreases the quality of life of patients, the responsiveness to 

chemotherapy and leads to 20-25% of cancer deaths [3]. Our results show that WRE increased 

oxidant scavenging activity, modulated GSH and pro-inflammatory cytokine levels and regulated 

caspase activity in normal PBMC’s and THP-1 cells. The discovery of a medicinal plant capable of 

decreasing the levels of pro-inflammatory cytokines may decrease tissue wasting. In this study, W. 

somnifera root extract has shown promising results in modulating the production of cytokines 

associated with cancer cachexia. The ability of WRE to decrease pro-inflammatory cytokine levels 
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and increase cancerous cell death may decrease the development and progression of cancer and 

cachexia. WRE may therefore be effective in cancer cachexia. 

 

 

2.6 Abbreviations  

LPL: lipoprotein lipase; HSL: hormone sensitive lipase; FA’s: fatty acids; TAG: triacylglycerol; 

TNF-α: tumour necrosis factor-α; IL: interleukin; LPS: lipopolysaccharide; NF-κB: Nuclear factor 

kappa B; DNA: Deoxyribonucleic acid; PARP: poly (ADP-ribose) polymerase; W. somnifera: 

Withania somnifera; WSF: W. somnifera formulation; HL-60: Human promyelocytic leukemia; 

WRE: W. somnifera aqueous root extract; PBMC’s: peripheral blood mononuclear cells; THP-1: 

leukemic cell line; SA: South Africa; ELISA: enzyme-linked immunosorbant assay; FCS: Foetal 

calf serum; PSF: Pen/Strep Amphotericin B; DPPH: 2, 2-diphenyl-1 picrylhydrazyl; WST-1, 4-[3-

(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate; ATP: Adenosine 

triphosphate; GSH: Gluthatione; h: Hours; BHT:  butylated hydroxytoluene; RT: room temperature; 

min: Minute; PBS: phosphate buffered saline; RLU: Relative light units; NO: nitric oxide; ROS: 

reactive oxygen species. 
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Bridging paragraph:  

 

In the search to identify a medicinal plant capable of decreasing the development and progression of 

cancer cachexia. An initial screening experiment was conducted to determine the potential of South 

African medicinal plants to modulate inflammatory cytokines associated with cancer cachexia. This 

in-vitro study investigated the oxidant scavenging activity and the modulation of inflammatory 

cytokine levels (TNF-α, IL-6, IL-1β, and IL-10) by Aloe ferox (A. ferox), C. asiatica, Elytropappus 

rhinocerotis (E. rhinocerotis), Tulbaghia violacea (T. violacea) (leaf and root) and W. somnifera 

(leaf and root) extracts (ethanolic and aqueous) in LPS stimulated THP-1 cells (Appendix 2). The 

results indicated that W. somnifera root (aqueous) and C. asiatica leaf (ethanolic) extracts possessed 

significant antioxidant and anti-inflammatory potential. Therefore, further experimentation was 

conducted on a range of concentrations of W. somnifera root (aqueous) and C. asiatica leaf 

(ethanolic) extracts. 

 

The following manuscript is entitled Centella asiatica modulation of cancer cachexia associated 

inflammatory cytokines and cell death in THP-1 cells and PBMC’s (Supplementary information: 

Appendix 3). There is no direct link to the previous manuscript except that both medicinal plants 

were shown to decrease pro-inflammatory cytokines in THP-1 cells. However, the experimental 

techniques conducted are the same as the previous manuscript.   

 

Publication statuses: The manuscript has been accepted for publication in BMC Complementary 

and Alternative Medicine.  

Manuscript number: BCAM – D – 17 – 00071  

 

Please note: The manuscript was formatted for BMC Complementary and Alternative Medicine, 

however, the margins, font, line spacing, numbering of sections and figures were adjusted for thesis 

consistency. 
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Abstract  

 

Background: Cancer cachexia is associated with increased pro-inflammatory cytokine levels. 

Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. 

We investigated the modulation of antioxidants, cytokines and cell death by C. asiatica ethanolic 

leaf extract (CLE) in leukaemic THP-1 cells and normal peripheral blood mononuclear cells 

(PBMC’s).  

Methods: Cytotoxcity of CLE was determined at 24 and 72 hours (h). Oxidant scavenging activity 

of CLE was evaluated using the 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay. Glutathione (GSH) 

levels, caspase (-8, -9, -3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were 

then assayed. The levels of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 

were also assessed using enzyme-linked immunosorbant assay.  

Results: CLE decreased PBMC viability between 33.25–74.55 % (24 h: 0.2–0.8 mg/ml CLE and 72 

h: 0.4–0.8 mg/ml CLE) and THP-1 viability by 28.404 % (72 h: 0.8 mg/ml CLE) (p < 0.0001). 

Oxidant scavenging activity was increased by CLE (0.05–0.8 mg/ml) (p < 0.0001). PBMC TNF-α 

and IL-10 levels were decreased by CLE (0.05–0.8 mg/ml) (p < 0.0001). However, PBMC IL-6 and 

IL-1β concentrations were increased at 0.05–0.2 mg/ml CLE but decreased at 0.4 mg/ml CLE (p < 

0.0001). In THP-1 cells, CLE (0.2–0.8 mg/ml) decreased IL-1β and IL-6 whereas increased IL-10 

levels (p < 0.0001). In both cell lines, CLE (0.05–0.2 mg/ml, 24 and 72 h) increased GSH 

concentrations (p < 0.0001). At 24 h, caspase (-9, -3/7) activities was increased by CLE (0.05–0.8 

mg/ml) in PBMC’s whereas decreased by CLE (0.2–0.4 mg/ml) in THP-1 cells (p < 0.0001). At 72 

h, CLE (0.05–0.8 mg/ml) decreased caspase (-9, -3/7) activities and ATP levels in both cell lines (p < 

0.0001).  

Conclusion: In PBMC’s and THP-1 cells, CLE proved to effectively modulate antioxidant activity, 

inflammatory cytokines and cell death. In THP-1 cells, CLE decreased pro-inflammatory cytokine 

levels whereas it increased anti-inflammatory cytokine levels which may alleviate cancer cachexia.  

 

Key words: Cancer, Cachexia, Cytokines, Apoptosis, Centella asiatica 
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3.1 Introduction  

The role of inflammation in carcinogenesis has been extensively documented [1]. Although 

inflammatory responses have shown beneficial effects in tissue repair and pathogen elimination [1, 

2], chronic inflammation has been implicated in tumour initiation, promotion and progression [3]. 

During ideal conditions, the host-mediated anti-tumour activity combats the tumour-mediated 

immunosuppressive activity and cancerous cells are sentenced to cell death [3]. In the event that the 

host anti-tumour activity is weakened/ inadequate, the persistent and enhanced pro-inflammatory 

tumour microenvironment will facilitate tumour development, invasion, angiogenesis and 

metastasis [3]. 

 

Many malignancies are associated with the cachectic syndrome [4], a disorder characterised by 

abnormal weight loss [5] due to adipose tissue (85%) and skeletal muscle (75%) depletion [6]. The 

enzyme lipoprotein lipase (LPL) hydrolyses fatty acids (FA’s) and transports FA’s into adipose 

tissue for triacylglycerol (TAG) production, whereas hormone sensitive lipase (HSL) breaks down 

TAG’s into FA’s and glycerol [6]. Studies have revealed that decreased serum LPL levels/activity 

[7, 8] and increased HSL levels/activity are associated with cachexia [9]. Additionally, increased 

proteolysis and decreased proteogenesis have been reported in cachectic patients [10]. The ATP-

ubiquitin-dependent proteolytic pathway has been shown to be responsible for the excessive 

proteolysis seen in cancer cachexia [11].  

 

Oxidative stress, inflammatory cytokines and apoptosis play a pivotal role in the initiation and 

development of cancer cachexia [12]. Inflammatory cytokine production is increased by 

lipopolysaccharide (LPS) potently stimulating macrophages [13]. The LPS signal is transduced by 

LPS binding to LPS binding protein, delivered to CD14 and transferred to Toll like receptor-4 [14]. 

This subsequently activates nuclear factor kappa B (NF-κB), which regulates the transcription of 

genes associated with inflammation, proliferation, invasion, angiogenesis and apoptosis [1, 15-17]. 

Previously, IL-1 [18], IL-6 (mice) [19] and TNF-α (rat, mouse and guinea pigs) [20] were shown to 

decrease LPL activity in adipose tissue. Decreased LPL activity reduces the uptake of exogenous 

lipids by adipose tissue [20], which decreases lipogenesis. Additionally, previous literature showed 

that TNF-α increased ubiquitin (concentrations and mRNA), while IL-6 increased the 26S 

proteasome and cathepsin activities, suggesting the activation of proteolytic pathways [21-24]. The 

activation of proteolytic pathways causes extensive muscle wasting through proteolysis. Taken 
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together, an excessive increase in pro-inflammatory cytokine levels may increase tumour 

immunosuppressive activity [3], as well as tissue wasting [6]  

 

Oxidative stress has been associated with tumour initiation, inflammation [2, 3] and muscle wasting 

[25]. However, antioxidants have been shown to decrease muscle wasting by neutralizing reactive 

oxygen species (ROS) [1, 25]. Elevated ROS levels activate apoptotic pathways, ultimately 

activating caspase-3 [26]. The activation of caspase-3 plays an important role in the execution of 

apoptosis as well as muscle proteolysis [27]. Additionally, in weight-losing upper gastrointestinal 

tract cancer patients, deoxyribonucleic acid (DNA) fragmentation and poly (ADP-ribose) 

polymerase (PARP) cleavage were increased, whereas MyoD protein was decreased [6], suggesting 

increased apoptosis and decreased muscle replenishment.  

 

There is a constant need for alternative traditional medicines to improve the prognosis of cancer 

patients and prevent chemotherapy and radiotherapy induced discomfort. The tropical medicinal 

plant Centella asiatica (C. asiatica) is native to India, China, and South Africa [28]. It belongs to 

the Apiaceae family and is commonly referred to as Gotu kola, Asiatic pennywort and Tiger herb 

[28]. C. asiatica is widely used in Ayurvedic and Chinese traditional medicines due to its various 

medicinal properties. These properties include its hepato-protective, cardio-protective, anti-diabetic, 

antioxidant, anti-inflammatory and anti-tumour potential [28]. The major active compounds in C. 

asiatica are triterpene saponosides such as asiatic acid, madecassic acid and asiaticoside [28]. C. 

asiatica also contains flavonoid derivatives, vitamins, minerals, polysaccharides, sterols and 

phenolic acids [28]. C. asiatica has previously been used in treatment of inflammation due to its 

promising anti-inflammatory effects [29, 30]. Additionally, C. asiatica extracts have demonstrated 

high antioxidant [31, 32] and anti-proliferative activity in many cancerous cell lines [33].  

 

There is a need for the discovery of an inexpensive cancer cachectic treatment. The ability of a plant 

extract to regulate inflammatory cytokines and cell death may elevate cancerous cell death and 

diminish tissue wasting. We investigated the potential of a C. asiatica ethanolic leaf extract (CLE) to 

modulate inflammatory cytokines, antioxidants and cell death in leukaemic THP-1 cells and normal 

peripheral blood mononuclear cells (PBMC’s). 
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3.2 Materials and Methods 

3.2.1 Materials 

C. asiatica leaves were collected on the 7th of March 2011 (collectors number: Immelman 411) 

from the Eastern Cape [Langeni forest, roadside (S31°28.135’, E28°32.681’)], South Africa (SA) 

and identified by Dr. Kathleen Immelman from the Department of Botany at the Walter Sisulu 

University, SA. Voucher specimens were deposited at the KEI herbarium (13979). The THP-1 cells 

were obtained from American Type Culture Collection (ATCC, University Boulevard Manassas, 

Virginia, USA). RPMI-1640 and BD OptEIA enzyme-linked immunosorbant assay (ELISA) 

cytokine kits were purchased from The Scientific Group (Johannesburg, SA). Foetal calf serum 

(FCS) and Pen/Strep Amphotericin B (PSF) were acquired from Whitehead Scientific (Cape Town, 

SA). Dimethyl sulphoxide (DMSO) was purchased from Merck (Johannesburg, SA). Histopaque-

1077, LPS and 2, 2-diphenyl-1 picrylhydrazyl (DPPH) were purchased from Sigma (Aston Manor, 

SA). The 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate (WST-

1) cell proliferation reagent was purchased from Roche (Johannesburg, SA). Promega (Madison, 

USA) supplied the caspase (-3/7, -8, -9), adenosine triphosphate (ATP) and glutathione (GSH) kits.  

 

3.2.2 Plant Description and Extraction 

The plants official name is Centella asiatica (L.) Urb and has been confirmed by using the plant list 

[34]. The English name is Tiger herb. C. asiatica leaves were dried and milled. Ethanol (200–350 

ml) was added to milled plant material (10–30 g) and extracted overnight by shaking (4 × g, 37 ˚C). 

Ethanol extracts were filtered, rotor evaporated, dried (37 ˚C) and stored (4 ˚C).   

 

3.2.3 The 2, 2-diphenyl-1 picrylhydrazyl assay 

CLE (0.05–0.8 mg/ml) and butylated hydroxytoluene (BHT) (60–300 μM) dilutions were prepared in 

methanol (99.5 % and grade AR). A 50 µM DPPH solution was prepared from a stock solution of 

0.135 mM DPPH in methanol. CLE, BHT dilutions and methanol (1 ml, triplicate tubes) were 

aliquoted into 15ml polypropylene tubes, followed by the 50 µM DPPH solution (1 ml). Reaction 

mixtures were vortexed and incubated (room temperature (RT) for 30 minutes (min)) in the dark. 
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Absorbance of samples was read at 517 nm using a Varine Cary 50 UV-visible spectrophotometer 

(McKinley Scientific, New Jersey, US). 

 

3.2.4 Isolation of Peripheral blood mononuclear cells 

Buffy coats containing PBMC’s were obtained from the South African National Blood Service 

(2011/09). PBMC’s were extracted by differential centrifugation. Buffy coats (5 ml) were layered 

onto equivolume histopaque-1077 (5 ml) in 15ml polypropylene tubes and centrifuged (400 × g, 21 

˚C for 30 min). After centrifugation, the PBMC’s were transferred to sterile 15 ml polypropylene 

tubes, phosphate buffered saline (PBS) was added (0.1 M, 10 ml) and tubes were centrifuged (400 × 

g, 21 ˚C, 15 min). Cell density of isolated PBMC’s was adjusted (1 x 106 cells/ml) using the trypan 

blue exclusion test and cryo-preserved (10 % FCS, 10 % DMSO) using a NELGENE cryo freezing 

container and stored at -80˚C. 

 

3.2.5 Tissue Culture 

THP-1 cells were grown in the appropriate tissue culture conditions in a 75 cm3 tissue culture flask 

(37 ˚C, 5% CO2). The growth media comprised of RPMI-1640, FCS (10 %) and PS (2 %). Cells 

were thawed, seeded into a 75 cm3 tissue culture flask at a concentration of 3 x 105 cells/ml and 

incubated (37 ˚C, 5% CO2). THP-1 cells were allowed to grow for 2 – 3 days before the cells were 

centrifuged (162 × g, 10 min) and re-suspended in fresh growth media. The number of cells should 

not exceed 8 x 105 cells/ml, therefore the cells/ml was quantified daily by trypan blue staining. 

Once the cell count reached 8 x 105 cells/ml the THP-1 cells were split/ diluted to 3 x 105 cells/ml 

with media and incubated. Subsequent experiments were conducted once the cell numbers were 

sufficient. 

 

3.2.6 Cell Viability Assay  

Cytotoxicity of CLE in PBMC’s and THP-1 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). PBMC and THP-1 cells (10,000 cells/well, 96-well plate, in triplicate wells) 

were stimulated with LPS (20 µg/ml, 37 ˚C, 5 % CO2, 4 hours (h)) before exposure to CLE (0.05–0.8 
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mg/ml) for 24 and 72 h (37 ˚C, 5 % CO2). Similarly, controls received media containing DMSO 

(0.2 %). Thereafter, plates were centrifuged (162 × g, 10 min), supernatant removed, cell pellets re-

suspended in growth media (100 µl/well), WST-1 reagent (10 µl/well) added and plates incubated 

(37 ˚C, 5 %, CO2, 3 h). Optical density was measured at 450 nm (620 nm reference wavelength) 

with a BIO-TEK µQuant spectrophotometer (Analytical and Diagnostic Products, SA). This 

experiment was conducted independently on three occasions. 

 

3.2.7 Stimulation and treatment of cells  

PBMC’s and THP-1 cells (1 x 105 cells/ml) were transferred into 24-well plates, stimulated with 

LPS (20 µg/ml, 37 ˚C, 5 % CO2, 4 h) before exposure to CLE (0.05–0.8 mg/ml) for 24 h (TNF-α) 

and 72 h (IL-1β, IL-6, IL-10) (37 ˚C, 5 % CO2). After incubation, plates were centrifuged (162 × g, 

10 min) and supernatant was collected and stored (-80˚C) for cytokine analysis. Cell pellets were 

used to conduct the caspase (-8, -9, -3/7) activity, ATP and GSH assays. The experiments were 

conducted independently (twice for all subsequent assays).  

 

3.2.8 Quantification of Cytokines 

Cytokine levels were estimated using the BD OptEIA ELISA kits (The Scientific Group, SA) and 

the procedure was followed as per the instruction manual. ELISA plates were coated with capture 

antibody overnight (100 µl/well, 4 ˚C). Thereafter, plates were washed (3x) with wash buffer and 

blocked with assay diluent (200 µl/well, 1 h, RT). Standard solutions were prepared by diluting a 

stock solution [TNF-α, IL-10 (500 pg/ml), IL-6 (300 pg/ml), IL-1β (250 pg/ml)] serially [TNF-α, 

IL-10 (500–7.8 pg/ml), IL-6 (300–4.7 pg/ml), IL-1β (250–3.9 pg/ml)]. Plates were washed (3x), 

standards and samples (100 µl/well, triplicate wells) were aliquoted into appropriate wells and 

plates were incubated (2 h, RT). Plates were washed (5x), working detector (100 µl/well) added and 

plates incubated (1 h, RT). The plates were washed (7x), substrate solution (100 µl/well) added and 

plates were incubated (30 min, RT) in the dark. Finally, stop solution (50 µl/well) was added and 

the absorbance was read at 450 nm (570 nm reference wavelength) with a Multiskan FC micro-plate 

reader (Thermo Scientific). Cytokine concentrations were calculated by extrapolation from a 

standard curve. 
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3.2.9 Glutathione assay 

The GSH-GloTM assay (Promega, Madison, WI, USA) was used to measure GSH levels. Standard 

GSH solutions were prepared by diluting a 5 mM stock solution serially (1.56–50 µM) and PBS 

(0.1 M) was the standard blank. Cells (50 μl/well, 2 x 105 cells/ml) and standards were added into 

an opaque 96-well plate (duplicate wells), followed by GSH-Glo™ reagent (25 µl/well) and 

allowed to incubate (30 min, RT) in the dark. Subsequently, luciferin detection reagent (50 µl/well) 

was added and plates incubated (15 min, RT) in the dark. The absorbance was read on a ModulusTM 

microplate luminometer (Turner Biosystems, Sunnyvale, USA) and GSH concentrations were 

calculated by extrapolation from a standard curve.  

 

3.2.10    Caspase and ATP assays 

Caspase activity and ATP levels were determined using the Caspase-Glo®-3/7, -8, -9 and ATP assay 

kits (Promega, Madison, WI, USA). Caspase-Glo®-3/7, -8, -9 and ATP Reagents were reconstituted 

according to the manufacturer’s instructions. Cells (100 µl, 2 x 105 cells/ml) were added into 

duplicate wells of a microtitre plate for each assay, thereafter caspase -3/7, -8, -9 and ATP reagents 

(100 µl/well) were added into appropriate wells. The plate was incubated (30 min, RT) in the dark. 

Luminescence was measured on a ModulusTM microplate luminometer (Turner BioSystems) and 

expressed as relative light units (RLU). 

 

3.2.11    Statistical Analysis  

Statistical analysis was performed using the STATA and GraphPad Prism (v5) statistical analysis 

software. The one-way analysis of variance (ANOVA) was used to make comparisons between 

groups, followed by the Tukey multiple comparisons test, with p < 0.05 indicating significant 

results.  
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3.3 Results  

3.3.1 The oxidant scavenging potential of CLE 

The oxidant scavenging activity of CLE using the DPPH assay is shown in Figure 3.1. CLE (0.05–0.8 

mg/ml) significantly increased DPPH scavenging activity by approximately 45–84 % (Figure 3.1, p 

< 0.0001). 

 

 

Figure 3.1: Percentage DPPH scavenging activity of CLE (Values expressed as mean ± SD, ***p < 

0.0001 compared to control). 

 

3.3.2 The in vitro cytotoxicity of CLE 

The WST-1 assay was used to determine cell viability of THP-1 cells and PBMC’s after treatment 

with CLE (Figure 3.2). At 24 h, CLE (0.2–0.8 mg/ml) dose dependently decreased PBMC viability by 

33.25–61.85 % (Figure 3.2A, p < 0.0001), whereas THP-1 viability was not significantly altered as 

compared to the control (Figure 3.2C, p = 0.0003). At 72 h, CLE decreased both PBMC (Figure 

3.2B, 34.268–74.547 %) and THP-1 (Figure 3.2D, 28.404 %) viability at 0.4–0.8 mg/ml and 0.8 

mg/ml respectively as compared to the control (p < 0.0001), suggesting that PBMC’s are more 

sensitive to CLE treatment than THP-1 cells. 
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Figure 3.2: Cell viability of PBMC (A – 24 h, B – 72 h) and THP-1 (C – 24 h, D – 72 h) cells 

treated with CLE for 24 and 72 h (Values expressed as mean ± SD, ** p < 0.005, *** p < 0.0001 

compared to the control). 

 

3.3.3 The immune suppressive properties of CLE 

CLE altered cytokine levels in PBMC’s and THP-1 cells which are shown in Figure 3.3 and Figure 

3.4 respectively. The levels of TNF-α, IL-1β, IL-6 and IL-10 produced in LPS stimulated PBMC’s 

was 309.60, 152.83, 626.33 and 23.55 pg/ml respectively. CLE (0.05–0.2 mg/ml) increased PBMC 

IL-1β and IL-6 concentrations relative to the control (Figure 3.3B and 3.3C, p < 0.0001). In 

PBMC’s, TNF-α, IL-1β and IL-6 concentrations were decreased at 0.05–0.8 mg/ml CLE, 0.4–0.8 

mg/ml CLE and 0.4 mg/ml CLE respectively as compared to the control (Figure 3.3A, 3.3B and 3.3C, 

p < 0.0001).  
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The levels of TNF-α, IL-1β, IL-6 and IL-10 produced in LPS stimulated THP-1 cells was 5.96, 

25.92, 98.63, and 2.46 pg/ml respectively. TNF-α concentration in THP-1 cells was increased by 

CLE (0.05, 0.8 mg/ml, Figure 3.4A, p < 0.0001) relative to the control. In THP-1 cells, IL-1β and IL-

6 concentrations were increased by 0.05 mg/ml CLE whereas decreased by 0.2–0.8 mg/ml CLE as 

compared to the control (Figure 3.4B and 3.4C, p < 0.0001). Concentration of the anti-inflammatory 

cytokine, IL-10 was decreased in PBMC’s while increased in THP-1 cells by CLE (0.05–0.8 mg/ml) 

relative to the control (Figure 3.3D and Fig. 3.4D, p < 0.0001). 

 

 

Figure 3.3: Concentration of TNF-α (A), IL-1β (B), IL-6 (C) and IL-10 (D) in CLE treated PBMC’s 

(Values expressed as mean ± SD,  *p < 0.05, *** p < 0.0001, compared to the control). 
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Figure 3.4: Concentration of TNF-α (A), IL-1β (B), IL-6 (C) and IL-10 (D) in CLE treated THP-1 

cells (Values expressed as mean ± SD, ** p < 0.005, *** p < 0.0001 compared to the control).  

 

3.3.4 The antioxidant potential of CLE 

The endogenous antioxidant activity of CLE was determined by measuring GSH levels in both cell 

lines (Table 3.1). At 24 h, GSH levels in PBMC’s were increased by 0.05–0.2 mg/ml CLE but 

decreased by 0.4–0.8 mg/ml CLE relative to the control (Table 3.1, p < 0.0001). In THP-1 cells, CLE 

(0.05–0.8 mg/ml) increased GSH levels as compared to the control (Table 3.1, 24 h, p < 0.0001). At 

24 h, GSH concentrations were increased to a greater extent in THP-1 cells (0.068–3.890 μM) than 

PBMC’s (0.191–1.746 μM). At 72 h, CLE (0.05–0.8 mg/ml) increased GSH concentrations in 

PBMC’s and THP-1 cells by 1.13–5.91 μM and 0.12–0.19 μM respectively as compared to the 

control (Table 3.1, p < 0.0001). Notably, CLE increased GSH levels to a greater extent in PBMC’s as 

compared to THP-1 cells at 72 h.  
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Table 3.1:  Glutathione levels in CLE treated PBMC’s and THP-1 cells. 

                                   Glutathione (μM)  

CLE 

(mg/ml)          

24 h treatment    72 h treatment  

 PBMC THP-1 PBMC THP-1 

     

Control 1.238 ± 0.007 1.713 ± 0.002 3.842 ± 0.009 1.449 ± 0.002 

0.05 1.429 ± 0.007 *** 4.125 ± 0.004 *** 9.138 ± 0.082 *** 1.576 ± 0.007 *** 

0.2 2.984 ± 0.004 *** 5.603 ± 0.004 *** 4.972 ± 0.003 *** 1.568 ± 0.007 *** 

0.4 0.959 ± 0.002 *** 1.781 ± 0.002 *** 5.534 ±0.011 *** 1.610 ± 0.009 *** 

0.8 1.073 ± 0.015 *** 2.495 ± 0.005 *** 9.749 ± 0.015 *** 1.634 0.004 *** 

(Values expressed as mean ± SD,
 ***

 p < 0.0001, compared to the control). 

 

 

3.3.5 CLE modulates caspase (-8, -9, -3/7) activities and ATP levels 

Luminometry assays were used to determine caspase activity and ATP levels in THP-1 cells and 

PBMC’s after treatment with CLE. The pro-apoptotic effect of CLE in PBMC’s treated for 24 h is 

shown in Table 3.2. At 24 h, PBMC caspase-8 activity was increased by 0.05–0.2 mg/ml CLE, 

whereas decreased by 0.4–0.8 mg/ml CLE as compared to the control (Table 3.2, p < 0.0001). CLE 

(0.05–0.8 mg/ml, 24 h) increased PBMC caspase -9 and -3/7 activities relative to the control (Table 

3.2, p < 0.0001). Increased caspase activity led to the initiation and execution of PBMC apoptosis at 

24 h. The PBMC ATP levels were increased by 0.4mg/ml CLE, whereas decreased by 0.05, 0.2 and 

0.8 mg/ml CLE (Table 3.2, p < 0.0001). 
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Table 3.2: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in 24 h CLE treated 

PBMC’s.  

CLE  

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9        

(RLU x10
5
) 

Caspase-3/7   

(RLU x10
5
) 

ATP               

(RLU x10
5
) 

     

Control 0.146 ± 0.001 0.265 ± 0.002 5.861 ± 0.028 3.486 ± 0.011 

0.05 0.176 ± 0.001 *** 0.293 ± 0.001 *** 6.066 ± 0.032  3.168 ± 0.006 *** 

0.2 0.256 ± 0.003 ***
 0.364 ± 0.002 ***

 6.264 ± 0.031 **
 3.074 ± 0.002  ***

 

0.4 0.135 ± 0.001 ***  0.397 ± 0.0003 ***
 16.407 ± 0.263 ***

 4.180 ± 0.013  ***
 

0.8 0.101 ± 0.001 *** 0.307 ± 0.0004 *** 6.331 ± 0.007 *** 0.796 ± 0.002 *** 

(Values expressed as mean ± SD,
 **

 p < 0.005, 
***

 p < 0.0001 compared to the control). 

 

 

CLE pro-apoptotic effects in THP-1 cells treated for 24 h is shown in Table 3.3. At 24 h, CLE (0.05–

0.8 mg/ml) increased THP-1 caspase-8 activity as compared to the control (Table 3.3, p < 0.0001). 

In THP-1 cells, caspase-9 activity and ATP levels were decreased by 0.05–0.4 mg/ml CLE, whereas 

increased by 0.8 mg/ml CLE relative to the control (Table 3.3, 24 h, p < 0.0001). The THP-1 

caspase-3/7 activity was decreased by 0.2–0.4 mg/ml CLE, whereas increased by 0.05 and 0.8 mg/ml 

CLE as compared to the control (Table 3.3, 24 h, p < 0.0001). THP-1 caspase (-8, -9, -3/7) activities 

was increased by 0.8 mg/ml CLE, suggesting an increased initiation and execution of THP-1 

apoptosis.  
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Table 3.3: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in 24 h CLE treated THP-1 

cells.  

CLE      

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9 

(RLUx10
5
) 

Caspase-3/7 

(RLUx10
5
) 

ATP      

(RLUx10
5
) 

     

Control 8.517 ± 0.001   1.933 ± 0.012 9.980 ± 0.008 17.551 ± 0.088 

0.05 11.494 ± 0.006 *** 0.415 ± 0.002 *** 10.348 ± 0.218 ** 12.507 ± 0.398 *** 

0.2 18.909 ± 0.085 ***
 0.675 ± 0.001 ***

 3.974 ± 0.001  ***
 15.586 ± 0.215 ***

 

0.4 12.276 ± 0.028 ***
 1.119 ± 0.003 ***

 4.046 ± 0.033 ***
 3.948 ± 0.042 ***

 

0.8 16.191 ± 0.013 *** 2.261 ± 0.002 *** 18.189 ± 0.104 *** 19.496 ± 0.267 *** 

(Values expressed as mean ± SD,
 **

 p < 0.005, 
***

 p < 0.0001 compared to the control). 

 

 

The pro-apoptotic effect of CLE in PBMC’s treated for 72 h is shown in Table 3.4. At 72 h, PBMC 

caspase-8 activity was increased by 0.4 mg/ml CLE, whereas decreased by 0.05, 0.2, 0.8 mg/ml CLE 

relative to the control (Table 3.4, p < 0.0001). CLE (0.05–0.8 mg/ml) decreased PBMC caspase (-9, -

3/7) activities and ATP levels as compared to the control (Table 3.4, 72 h, p < 0.0001). Decreased 

PBMC caspase activity suggests a decrease in PBMC apoptotic cell death.  

 

 

 

 

 

 

 



116 
 

Table 3.4: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in 72 h CLE treated 

PBMC’s.  

CLE      

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9 

(RLUx10
5
) 

Caspase-3/7 

(RLUx10
5
) 

ATP    

(RLUx10
5
) 

     

Control 30.688 ± 0.006   83.054 ± 0.009  132.624 ± 0.118 14.567 ± 0.184   

0.05 21.726 ± 0.015 *** 56.070 ± 0.003 *** 128.471 ± 0.253 *** 4.061 ± 0.014 *** 

0.2 10.436 ± 0.021 ***
 25.014 ± 0.007***

 57.946 ± 0.024 ***
 2.343 ± 0.029 ***

 

0.4 42.625 ± 0.003 ***
 11.887 ± 0.005 ***

 35.842 ± 0.036 ***
 0.855 ± 0.002 ***

 

0.8 14.157 ± 0.045 *** 32.499 ± 0.288 *** 43.376 ± 0.028 *** 3.117 ± 0.007 *** 

(Values expressed as mean ± SD,
 ***

 p < 0.0001 compared to the control). 

 

 

CLE pro-apoptotic effects in THP-1 cells treated for 72 h is shown in Table 3.5. At 72 h, THP-1 

caspase-8 activity was increased by 0.4 mg/ml CLE whereas decreased by 0.05, 0.2, 0.8 mg/ml CLE 

relative to the control (Table 3.5, p < 0.0001). CLE (0.05–0.8 mg/ml) decreased THP-1 caspase (-9, -

3/7) activities and ATP levels as compared to the control (Table 3.5, 72 h, p < 0.0001). Decreased 

THP-1 caspase activity suggests a decrease in THP-1 apoptotic cell death. 
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Table 3.5: Modulation of caspase (-8, -9, -3/7) activities and ATP levels in 72 h CLE treated THP-1 

cells.  

CLE    

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9 

(RLUx10
5
) 

Caspase-3/7 

(RLUx10
5
) 

ATP           

(RLUx10
5
) 

     

Control 1.068 ± 0.002   6.694 ± 0.002 8.218 ± 0.002 4.552 ± 0.029 

0.05 1.021 ± 0.001 ** 6.343 ± 0.009 *** 6.293 ± 0.001 *** 4.252 ± 0.039 *** 

0.2 0.972 ± 0.0003 ***
 5.442 ± 0.034 ***

 4.954 ± 0.002 ***
 3.852 ± 0.039 ***

 

0.4 11.246 ± 0.034 ***
 4.271 ± 0.001 ***

 3.596 ± 0.005 ***
 3.013 ± 0.005 ***

 

0.8 0.286 ± 0.0001 *** 1.720 ± 0.001 *** 0.497 ± 0.001 *** 1.65 0.011 *** 

(Values expressed as mean ± SD,
 **

 p < 0.005, 
***

 p < 0.0001 compared to the control). 

 

3.4 Discussion 

Cancer and cachexia have been associated with increased levels of oxidative stress, pro-

inflammatory cytokines and apoptosis [6, 27]. The medicinal plant, C. asiatica possesses anti-

inflammatory [29] and anti-tumor activity [35], which can be beneficial in the treatment of cancer 

cachexia.  

 

Previously, Zainol et al (2003) reported that C. asiatica possessed antioxidant potential, possibly 

associated with phenolic compounds [36]. The DPPH assay revealed that CLE has oxidant 

scavenging potential ranging between 45–84 % at 0.05–0.8 mg/ml CLE. ROS plays a pivotal role in 

tumour initiation, inflammation, protein degradation and apoptosis. The significant oxidant 

scavenging potential of CLE may decrease inflammatory cytokine levels and ROS induced 

apoptosis. 

 

At 24 h, CLE dose dependently decreased PBMC viability, whereas THP-1 viability remained 

unchanged. However, at 72 h, CLE significantly decreased both PBMC and THP-1 viability. C. 

asiatica derived compounds, asiatic acid and asiticoside, were shown to reduce RAW 264.7 cell 
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viability (120 µM, 24 h) by 82 % and 71 % respectively [37].  Additionally, C. asiatica extracts 

inhibited breast (MCF-7) and liver (HepG2) cancer cell proliferation [33, 38], indicating our data on 

CLE cytotoxicity is in agreement with previous studies.  

 

Inflammatory cytokines play an essential role in tumourgenesis and the cachectic syndrome [6]. 

Previously, Punturee et al (2004) reported that C. asiatica ethanolic extract modulated/ suppressed 

TNF-α production in mouse macrophages [39]. Our results also show that CLE decreased TNF-α 

concentration in PBMC’s. Yun et al (2008) reported that the pre-treatment of RAW264.7 cells with 

asiatic acid significantly reduced IL-6 production with minimal effects on TNF-α and IL-1β levels 

[37]. Our findings, however, suggest that CLE modulates pro-inflammatory cytokine levels. In both 

PBMC’s and THP-1 cells, IL-1β and IL-6 levels were increased by the lower 0.05 mg/ml CLE 

concentration but decreased at the higher 0.4 mg/ml CLE concentration. Pro-inflammatory cytokines, 

over a chronic time period, stimulate the production of genotoxic molecules [nitric oxide (NO), 

ROS] and tumour progression by promoting angiogenesis and metastasis [1, 3]. Previous literature 

has shown that IL-1 stimulates malignant cell growth and invasiveness [3]. In addition, IL-6 exerts 

its tumour proliferative and anti-apoptotic potential by targeting genes involved in cell cycle 

progression and the suppression of apoptosis [3]. The ability of CLE to increase pro-inflammatory 

cytokines such as IL-1β in PBMC’s may aid in cancerous cell elimination through increased host 

anti-tumour activity. Conversely, in THP-1 cells, the decrease in IL-6 and IL-1β concentrations by 

CLE may diminish cytokine induced tumour immunosuppressive activity and cancer progression.  

 

With regard to the cachectic syndrome, TNF-α inhibits the production of LPL and reduces the rate 

of LPL gene transcription [40-42], thereby preventing the formation of new lipid stores while 

stimulating HSL and increasing lipolysis [43]. In adipose tissue (in vivo), IL-6 decreased LPL 

activity leading to tissue wasting in cachectic individuals [19]. The potential of CLE (0.4 mg/ml) to 

decrease IL-6 and IL-1β concentrations in PBMC’s and THP-1 cells suggests a decrease in LPL 

inhibition and HSL stimulation, thus contributing to lipogenesis maintenance and minimal lipolysis. 

IL-6 and TNF-α further contribute to cachexia by stimulating muscle catabolism through the 

activation of the ubiquitin-proteasome pathway [21, 22, 44]. Furthermore, pro-inflammatory 

cytokines activate NF-κB which regulates the expression of genes involved in the suppression of 

tumour apoptosis, stimulation of tumour cell cycle progression and enhancement of inflammatory 

mediators [1, 3]. Taken together, NF-κB promotes tumour progression, invasion, angiogenesis and 

metastasis [1, 3]. In cachexia, NF-κB activation induces ubiquitin–proteasome pathway activity and 
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suppresses MyoD expression [45], thereby increasing proteolysis and decreasing muscle 

replenishment [46]. By decreasing IL-6 and IL-1β concentrations in PBMC’s and THP-1 cells, CLE 

(0.4 mg/ml) may prevent excessive activation of NF-κB and proteasome pathways, ultimately 

decreasing proteolysis. Thus, CLE may be able to decrease tissue wasting through the down 

regulation of pro-inflammatory cytokine levels. 

 

The immunosuppressive and anti-inflammatory cytokine IL-10, inhibits tumour development, 

tumour progression, modulates apoptosis and suppresses angiogenesis during tumour regression [1, 

3]. Additionally, IL-10 inhibits NF-κB activation and subsequently inhibits pro-inflammatory 

cytokine production (TNF-α, and IL-6) [3]. With regard to tissue wasting, increased IL-10 levels in 

colon 26- bearing mice was reported to reverse the cachectic syndrome [47]. The decreased PBMC 

IL-10 concentration may be due to IL-10 combating increased pro-inflammatory cytokine levels 

(IL-6 and IL-1β). In THP-1 cells, the potential of CLE to increase IL-10 levels will facilitate a 

decrease in pro-inflammatory cytokine levels, a decrease in malignant cell progression and possibly 

alleviate the cancer cachectic syndrome. 

 

GSH, a potent antioxidant [48], effectively scavenges ROS both directly and indirectly [49]. In 

PBMC’s and THP-1 cells, CLE increased GSH concentrations. At 72 h, CLE (0.4 mg/ml) increased 

GSH levels more significantly in PBMC’s (1.45-fold) than THP-1 cells (1.11-fold). This suggests 

that CLE induces a higher antioxidant defense in normal PBMC’s than cancerous THP-1 cells at 72 

h.  

 

Apoptosis is a tightly regulated process involving a number of check points before an irreversible 

point is reached [50]. The extrinsic (death receptors) and intrinsic (mitochondria) pathways are the 

two main apoptotic pathways [26]. Activation of initiator caspases (-8, -9) leads to the activation of 

execution caspases (-3/7) resulting in activation of cytoplasmic endonucleases [26].  

Previous studies reported that asiatic acid decreased cell viability, induced apoptosis and DNA 

fragmentation [51, 52]. In PBMC’s, CLE (0.4–0.8 mg/ml, 24 h) decreased caspase-8 activity. An 

increase in TNF-α levels initiates the extrinsic apoptotic pathway subsequently activating caspase-8. 

However, CLE decreased PBMC TNF-α levels which may have contributed to the decreased 

caspase-8 activity.  At 24 h, CLE increased PBMC caspase (-8 (0.05–0.2 mg/ml), -9, -3/7 (0.05–0.8 

mg/ml)) activities, suggesting the activation of the extrinsic and intrinsic apoptotic pathways. GSH 
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regulates apoptosis by preventing ROS accumulation [53]. Previous studies have demonstrated that 

elevated GSH levels have been associated with resistance to apoptosis [54, 55]. In PBMC’s, the 

decrease in GSH levels and the increase in caspase (-9, -3/7) activities by CLE (0.4–0.8 mg/ml, 24 h) 

may have increased apoptosis ultimately decreasing PBMC cell viability. In THP-1 cells, CLE 

(0.05–0.4 mg/ml) increased caspase-8 activity and decreased caspase-9 activity, suggesting 

initiation of apoptosis through the extrinsic pathway (24 h). In CLE treated THP-1 cells, the 

decreased caspase-9 activity may have been a consequence of the increased GSH levels. Although 

extrinsic apoptosis was activated in THP-1 cells, CLE (0.2–0.4 mg/ml) decreased caspase-3/7 

activity, indicating that apoptosis was not fully executed (24 h). Interestingly, CLE increased THP-1 

caspase (-8, -9, -3/7) activities at 0.8 mg/ml (24 h), suggesting an increased initiation and execution 

of THP-1 apoptosis.   

At 72 h, caspase activities were decreased in both cell lines, suggesting a decreased activation of 

apoptosis. In PBMC’s and THP-1 cells, the increase in GSH levels and the decrease in caspase (-9, -

3/7) activities by CLE (0.05–0.8 mg/ml, 72h) may have decreased apoptotic cell death. However, 

PBMC and THP-1 cell viability was deceased at 0.4–0.8 mg/ml CLE and 0.8 mg/ml CLE 

respectively, suggesting an alternative form of cell death occurred.  

 

Increased caspase-3 and proteasome activity, as well as E3 ubiquitin-conjugating enzyme 

expression are associated with increased proteolysis [56]. Thus the ability of CLE to down regulate 

caspase activities in PBMC’s and THP-1 cells may decrease proteolysis and the progression of 

cancer cachexia.  

 

The cachectic syndrome is characterized by a negative energy balance due to reduced food intake 

and abnormal metabolism [57]. The inability to ingest/ use nutrients [5] and the negative energy 

balance present in cachectic patients leads to catalysis of muscle and fat stores for energy 

production [58]. In PBMC’s, CLE decreased ATP levels, a possible consequence of the decreased 

cell viability. Cancer cells require high levels of ATP for cellular proliferation [59]. In THP-1 cells, 

CLE decreased ATP levels which may decrease THP-1 cell proliferation. However in cachexia, a 

decrease in ATP levels may contribute to tissue wasting.     
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The potent feeding stimulant neuropeptide Y (NPY) promotes food and energy intake [60]. 

Increased cytokine (IL-1, IL-6, TNF-α) levels may inhibit NPY signalling leading to decreased food 

intake and increased energy expenditure [60]. Leptin functions as a suppresser of food intake and 

stimulator of energy consumption [6]. Pro-inflammatory cytokines may inhibit feeding by 

mimicking the hypothalamic negative-feedback signalling effect of leptin [61]. Thus, the ability of 

CLE to decrease pro-inflammatory cytokine levels may increase food intake, decrease energy 

expenditure and possibly combat the negative energy balance associated with cancer cachexia.  

 

3.5 Conclusion  

Our results show that CLE increased oxidant scavenging activity and GSH levels, modulated pro-

inflammatory cytokine levels and regulated apoptosis and caspase activity in normal PBMC’s and 

THP-1 cells.  CLE may thus be effective in cancer cachexia. 

 

 

3.6 Abbreviations 

LPL: lipoprotein lipase; FA’s: fatty acids; TAG, triacylglycerol; HSL: hormone sensitive lipase; 

LPS: lipopolysaccharide; NF-κB: Nuclear factor kappa B; IL: interleukin; TNF-α: tumour necrosis 

factor-α; ROS: reactive oxygen species; DNA: Deoxyribonucleic acid; PARP: poly (ADP-ribose) 

polymerase; C. asiatica Centella asiatica; CLE, C: asiatica ethanolic leaf extract; PBMC’s: 

peripheral blood mononuclear cells; THP-1: a leukaemic cell line; SA: South Africa; ELISA: 

enzyme-linked immunosorbant assay; FCS: Foetal calf serum; PSF: Pen/Strep Amphotericin B; 

DMSO: Dimethyl sulphoxide; DPPH: 2, 2-diphenyl-1 picrylhydrazyl; WST-1, 4-[3-(4-iodophenyl)-

2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate; ATP: Adenosine triphosphate; GSH: 

Gluthatione; BHT: butylated hydroxytoluene; RT: room temperature; Min: Minute; PBS: phosphate 

buffered saline; h: Hours; RLU: Relative light units; ANOVA: one way analysis of variance; NO: 

nitric oxide; NPY: neuropeptide Y. 
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Bridging paragraph:  

 

There was limited W. somnifera aqueous root extract available therefore experimentation ceased. 

The previous manuscript demonstrated that C. asiatica ethanolic leaf extract (C) decreased IL-6 and 

IL-1β whereas increased IL-10 concentration in THP-1 cells. Additionally, C modulated cell death 

in PBMC’s and THP-1 cells.  

 

To identify active fractions/ compounds responsible for the modulation of inflammatory cytokines 

and cell death by C. Silica column fractionation was conducted to separate C. asiatica compounds 

based on their polarity. Thereafter, thin layer chromatography analysis revealed fractions with 

similar spot patterns which were combined and pooled into one fraction (Appendix 4). There were a 

total of 13 pooled fractions. Preliminary experimentation revealed that fraction-3 (C3) significantly 

increased oxidant scavenging activity, decreased pro-inflammatory cytokine levels and increased an 

anti-inflammatory cytokine level (Appendix 5). Thereafter, gas chromatography mass spectrometry 

determined the compounds present in C and C3 (Appendix 6).  

 

The following manuscript is entitled Centella asiatica decreases nuclear factor kappa-beta (p50, 

p65) protein expression; decreases pro-inflammatory cytokine levels and modulates cell death in 

leukaemic (THP-1) cells (Supplementary information: Appendix 7). This manuscript compared the 

potential of C and C3 [0.1 mg/ml] to modulate nitrite levels, inflammatory cytokine levels, NF-κB 

(p50, p65) protein expression and cell death in THP-1 cells.   

 

Publication statuses: The manuscript has been submitted to Herbal medicine.  

Manuscript number: HERMED – D – 16 – 01189 

Please note: The manuscript was formatted for Herbal medicine, however, the margins, font, line 

spacing, numbering of sections and figures were adjusted for thesis consistency. 
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Abstract 

 

Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. 

We investigated the anti-inflammatory and anti-proliferative effects of C. asiatica ethanolic leaf 

extract (C) and purified fraction-3 (C3) in leukaemic (THP-1) cells. 

 

C3 was obtained by silica column fractionation and identified using thin layer chromatography. Gas 

chromatography mass spectrometry determined the bioactive compounds present in C and C3. 

Cytotoxicity of C and C3 in healthy PBMC’s and THP-1 cells were evaluated (cell viability assay; 

24 and 72 hours (h); [0.1 mg/ml]). Oxidant scavenging activity (spectrophotometry), cytokine 

(tumour necrosis factor alpha (TNF-α), interluekin (IL)-6, IL-1β and IL-10) concentrations 

(enzyme-linked immunosorbant assay), nitrite levels (griess assay), caspase (-8, -9, -3/7) activities 

(luminometry) and nuclear factor kappa beta (NF-κB: p50, p65) protein expressions (western 

blotting) were assessed.  

 

THP-1 viability was decreased at 24 h whereas increased at 72 h by C and C3 (p < 0.003). At 72 h, 

C3 decreased PBMC viability (p < 0.0001). Both C and C3 increased oxidant scavenging activity (p 

< 0.0001). In THP-1 cells, C and C3 decreased nitrite, TNF-α, IL-1β, IL-6 levels and NF-κB (p50, 

p65) protein expressions whereas increased IL-10 levels (p < 0.0001). At 24 h, THP-1 caspase (-8, -

9, -3/7) activities were increased by C and C3 (p < 0.0001). At 72 h, C increased THP-1 caspase -8 

and -9 whereas decreased caspase-3/7 activity (p < 0.009). C3 (72 h) decreased THP-1 caspase-8 

whereas did not alter caspase -9 and -3/7 activities (p < 0.009).  

 

Thus C. asiatica elicited anti-inflammatory and anti-proliferative effects on THP-1 cells. 

 

Key words: Cancer cachexia, cytokines, apoptosis, Centella asiatica 
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Abbreviations:  

LPL, lipoprotein lipase; FA’s, fatty acids; TAG, triacylglycerol; HSL, hormone sensitive lipase; 

NF-κB, Nuclear factor kappa-beta; TNF-α, tumour necrosis factor-alpha; IL, interleukin; IκB, NF-

κB inhibitor; Centella asiatica, C. asiatica; C, C. asiatica crude extract; C3, C. asiatica pooled 

fraction-3; PBMC’s, peripheral blood mononuclear cells; THP-1, a leukaemic cell line; SA, South 

Africa; DCM, dichloromethane; HEX, hexane; EA, ethyl acetate; DMSO, dimethyl sulphoxide; 

TLC, thin layer chromatograph; GC-MS, gas chromatography mass spectrometry; ELISA, enzyme-

linked immunosorbant assay; FCS, foetal calf serum; PS, penstrepfungizone; L-GLUT, L-

glutamine; LPS, lipopolysaccharide; DPPH, 2, 2-diphenyl-1 picrylhydrazyl; WST-1, 4-[3-(4-

iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate; BHT, butylated 

hydroxytoluene; Min, minute; PBS, phosphate buffered saline; h, hours;  RT, room temperature; 

RLU, relative light units; ROS, reactive oxygen species; TTBS, tween-20 wash buffer; RBD, 

relative band density; iNOS, inducible nitric oxide synthase. 

 

4.1 Introduction 

Cancer cachexia is a multi-factorial syndrome that decreases patient quality of life and 

responsiveness to chemotherapy (Zhou et al., 2003). It is responsible for 20–25% of cancer deaths 

with the degree of cachexia being inversely proportional to survival time (Lelbach et al., 2007; 

Martignoni et al., 2003). Key features of cachexia include abnormal loss of body weight (up to 85% 

adipose tissue and 75% skeletal muscle) (Tisdale, 2009), systemic inflammation and reduced food 

intake (Fearon, 2008). Lipogenesis occurs through lipoprotein lipase (LPL) hydrolysing fatty acids 

(FA’s) from plasma lipoproteins and transporting FA’s into adipose tissue for triacylglycerols 

(TAG) production whereas lipolysis is due to hormone sensitive lipase (HSL) breaking down 

TAG’s into FA’s and glycerol (Tisdale, 2009). Previously, decreased serum LPL levels/ activity 

(Lanza-Jacoby et al., 1984; Vlassara et al., 1986) and increased HSL levels/ activity have been 

associated with the cachectic syndrome (Thompson et al., 1993). Additionally, the ubiquitin-

dependent proteolytic pathway and the nuclear factor kappa-beta (NF-κB) pathway have been 

shown to be responsible for the excessive proteolysis seen in cancer cachexia (Tisdale, 2009). 

Cancer and the prevalence of cachexia are commonly correlation with elevated pro-inflammatory 

cytokine levels (Fearon et al., 2012). Increased pro-inflammatory cytokine levels have been shown 
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to initiate metabolic events such as decreasing appetite and lipogenesis while increasing lipolysis 

and proteolysis which contributes to tissue wasting (Fearon et al., 1999; Tisdale, 2009).  

 

The transcription factor, NF-κB regulates the transcription of genes associated with inflammation, 

proliferation, invasion, angiogenesis and apoptosis (Asehnoune et al., 2004; Janssen-Heininger et 

al., 2000; Landskron et al., 2014; Park et al., 2004). Under basal conditions, NF-κB inhibitor (IκB) 

proteins regulate NF-κB signalling by binding to NF-κB dimers and blocking their nuclear 

localization (Baldwin, 1996; Ghosh et al., 1998). Proteasomal degradation of IκB proteins allows 

for the release and nuclear translocation of NF-κB dimers (Baldwin, 1996; Ghosh et al., 1998). 

Activation of the classical/ canonical NF-κB pathway (p50:p65 dimers) is essential for innate 

immunity and the inhibition of apoptosis (Bonizzi and Karin, 2004; Ghosh and Karin, 2002). In 

many human cancers, NF-κB is frequently activated (Karin et al., 2002; Staudt, 2010). NF-κB 

activation is associated with malignancy development due to its role in tumour promotion and anti-

apoptotic gene expression (Garg and Aggarwal, 2002). In cancer cachexia, NF-κB activation leads 

to the induction of the ubiquitin–proteasome pathway which induces extensive muscle wasting in 

mice (Russell et al., 2009). In addition, elevated NF-κB activity leads to increased pro-

inflammatory cytokine production [tumour necrosis factor-α (TNF-α), interleukin (IL) – 6, and IL-

1β] further contributing to lipid and protein degradation (Martignoni et al., 2005). Thus, NF-κB 

inhibition is regarded a potential therapeutic target for cancer and the cachectic syndrome. 

  

In the search for cancer therapies, medicinal plants are of great interest due to their antioxidant and 

anti-inflammatory potential. The tropical medicinal plant Centella asiatica (C. asiatica, Apiaceae 

family) is native to India, China, and South Africa (Orhan, 2012). It is a commonly referred to as 

Gotu kola, Asiatic/ Indian pennywort and Tiger herb (Orhan, 2012). Major active compounds in C. 

asiatica are triterpene saponosides (asiatic acid, madecassic acid, asiaticoside and madecassoside) 

(Orhan, 2012). Additionally, C. asiatica contains potent antioxidants (flavonoids, quercetin, 

catechin and rutin), vitamins, minerals, polysaccharides, sterols, and phenolic acids (Hussin et al., 

2007; Orhan, 2012). C. asiatica possesses antioxidant, anti-inflammatory and anti-tumour potential 

(Orhan, 2012). Previously, in J774.2 mouse macrophages, C. asiatica ethanolic extract suppressed 

TNF-α expression and decreased TNF-α protein levels (Punturee et al., 2004). In addition, C. 

asiatica methanolic extract has demonstrated anti-proliferative activity in many cancer cell lines 

(Babykutty et al., 2008).  
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The cancer cachectic syndrome is a progressive and debilitating condition responsible for 

approximately two million deaths annually (Muscaritoli et al., 2006). The discovery of a medicinal 

plant/ active compound capable of decreasing pro-inflammatory cytokines and increasing cancerous 

cell death may alleviate cancer cachexia and pro-long the life span of patients. Thus, this study 

investigated the potential of an ethanolic leaf extract of C. asiatica (C) and C. asiatica pooled 

fraction-3 (C3) to modulate inflammatory responses and cell death in leukaemic (THP-1) cells.  

 

4.2 Materials and methods 

4.2.1 Materials 

C. asiatica leaves were collected in March 2011 (collectors number: Immelman 411) from the 

Eastern Cape [Langeni forest, roadside (S31°28.135’, E28°32.681’)], South Africa (SA) and 

identified by Dr. Kathleen Immelman (Department of Botany, Walter Sisulu University, SA). 

Voucher specimens were deposited at the KEI herbarium (13979). THP-1 cells were obtained from 

ATCC (University Boulevard Manassas, USA) and whole blood (EC09-018) was obtained from a 

healthy donor (Durban, SA). Solvents [dichloromethane (DCM), hexane (HEX), ethyl acetate (EA), 

methanol, dimethyl sulphoxide (DMSO)], sulphuric acid, silica gel 60, thin layer chromatography 

(TLC) silica gel 60 sheets and 4-methoxybenzaldehyde were purchased from Merck (Johannesburg, 

SA). The RPMI-1640 and BD OptEIA enzyme-linked immunosorbant assay (ELISA) cytokine kits 

were purchased from The Scientific group (Johannesburg, SA). Foetal calf serum (FCS), 

penstrepfungizone (PS) and L-glutamine (L-Glut) were acquired from Whitehead scientific (Cape 

Town, SA). Histopaque-1077, lipopolysaccharide (LPS) and 2, 2-diphenyl-1 picrylhydrazyl 

(DPPH) were purchased from Sigma (Aston Manor, SA). The 4-[3-(4-iodophenyl)-2-(4-

nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate (WST-1) cell proliferation reagent was 

purchased from Roche (Johannesburg, SA). Caspase (-8, -9, -3/7) activity kits were acquired from 

Promega (Madison, USA). Western blot reagents were purchased from Bio-Rad (Johannesburg, 

SA) and the NF-κB family member antibody sampler kit was purchased from Cell Signalling 

Technology (Johannesburg, SA). ECL-LumiGlo® chemiluminescent substrate kit was purchased 

from Gaithersburg (USA). 
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4.2.2 Plant extraction and fractionation  

The plants official name is Centella asiatica (L.) Urb and has been confirmed by using the plant list 

(www.theplantlist.org). The local names are icudwane (Zulu) and varkoortjies (Afrikaans). The 

English names are tiger herb and pennywort. C. asiatica leaves were dried and milled. Ethanol 

(200–350 ml) was added to milled plant material (10–30 g) and extracted overnight by shaking (4 x 

g, 37 ˚C). Ethanol extracts were filtered, rotor evaporated, dried (37 ˚C) and stored (4 ˚C). Silica 

column fractionation was used to separate C. asiatica compounds based on their polarity. A column 

(height: 85 cm, diameter: 17 cm) was assembled by adding a tap (25 mm), a cotton wool stop, a thin 

layer of sand, carefully pouring silica mixed with DCM: HEX (50: 50) into a column and allowing 

the silica to set overnight. C. asiatica crude extract (17 g) was dissolved in DCM: HEX (70: 30) and 

a portion of the extract was further dissolved in methanol. Thereafter, C. asiatica crude extract was 

layered onto the silica and 50 ml fractions were collected using a series of solvent systems [DCM: 

HEX (70: 30), DCM: EA (70: 30), DCM: EA (50: 50), DCM: EA: methanol (50: 40: 10), DCM: 

EA: methanol (30: 50: 20), EA: methanol (70: 30), EA: methanol (40: 60), EA: methanol (20: 80), 

methanol (100)]. The 50 ml fractions were boiled (100 ˚C) to allow evaporation of excess solvent 

and TLC was used to determine spot patterns and solvent changes. A total of 766 fractions were 

collected and TLC analysis revealed fractions with similar spot patterns which were combined and 

pooled into one fraction. Fractionation of C. asiatica yielded 13 pooled fractions. For all subsequent 

experiments, C. asiatica crude and fraction-3 extracts were used. 

 

4.2.3  Gas chromatography mass spectrometry (GC-MS) 

C. asiatica (C and C3) chemical composition has been subjected to GC-MS (Hewlett-Packard, 

USA) and the GCD-HP1800A system was used. Ionization energy (70 eV) was used for the GC-MS 

detection and the detection was passed under high vacuum (10-4 to10-8 torr). Helium gas was used 

for analysis at a constant flow rate (1 mL/min). The mass transfer line and injector temperature 

were fixed at 280 and 250 ˚C. The bioactive compounds which are present in C. asiatica (C and C3) 

were matched with the NIST computer library and reported.  

 

 

http://www.theplantlist.org/
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4.2.4 The 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay 

C (0.1 mg/ml), C3 (0.1 mg/ml) and butylated hydroxytoluene (BHT) (60–300 μM) dilutions were 

prepared in methanol (99.5% and grade AR). A 50 µM DPPH solution was prepared from a stock 

solution of 0.135 mM DPPH in methanol. C, C3, BHT dilutions and methanol (100 μl/well, 

triplicate wells) were aliquoted into a 96-well plate, followed by the 50 µM DPPH solution (100 

μl/well). Reaction mixtures were incubated (room temperature (RT), 30 minutes (min)) in the dark 

and the optical density (OD) was measured at 517 nm with a BIO-TEK µQuant spectrophotometer 

(Analytical and Diagnostic Products, SA). This experiment was conducted independently two times. 

 

4.2.5 Isolation of peripheral blood mononuclear cells 

Buffy coats containing PBMC’s (EC09-018) were extracted from whole blood by differential 

centrifugation. Whole blood (5 ml) from a healthy donor was layered onto equivolume histopaque-

1077 (5 ml) in 15 ml polypropylene tubes and centrifuged (400 × g, 21˚C, 30 min). After 

centrifugation, buffy coats were transferred to sterile 15 ml polypropylene tubes, phosphate 

buffered saline (PBS) was added (0.1 M, 10 ml) and tubes were centrifuged (400 × g, 21˚C, 15 

min). Cell density of isolated PBMC’s was adjusted (1x106 cells/ml) using the trypan blue exclusion 

test, cryo-preserved (10% FCS, 10% DMSO) using a NALGENE cooler and stored at -80˚C. 

 

4.2.6 Tissue culture 

THP-1 cells were grown in the appropriate tissue culture conditions in a 75 cm3 culture flask (37 ˚C, 

5% CO2). The growth media comprised of RPMI-1640, FCS (10%), L-Glut (1%), PS (1%) and 2-

mercaptoethanol (0.05 mM). Cells were seeded at a concentration of 3x105 cells/ml, quantified daily 

by trypan blue staining and were used for subsequent experiments once the cell density reached 

8x105 cells/ml. 
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4.2.7 Cell viability assay  

Cytotoxicity of C and C3 to PBMC’s and THP-1 cells was measured using the WST-1 assay 

(Roche, Johannesburg, SA). PBMC and THP-1 cells (10,000 cells/well, 96 well plate, triplicate 

wells) were stimulated with LPS (20 µg/ml, 37 ˚C, 5% CO2, 4 hours (h)) before exposure to C (0.1 

mg/ml) and C3 (0.1 mg/ml) for 24 and 72 h (37 ˚C, 5% CO2). Similarly controls received media 

containing DMSO (0.025%). Thereafter plates were centrifuged (162 × g, 10 min), supernatant 

removed, cell pellets re-suspended in growth media (100 µl/well), WST-1 reagent (10 µl/well) 

added and plates incubated (37 ˚C, 5%, CO2, 3 h). OD was measured at 450 nm (620 nm reference 

wavelength) with a BIO-TEK µQuant spectrophotometer (Analytical and Diagnostic Products, SA). 

This experiment was conducted independently two times. 

 

4.2.8 Stimulation and treatment of cells 

THP-1 cells (1x105 cells/ml) were transferred into 24 well plates in triplicate, stimulated with LPS 

(20 µg/ml, 37 ˚C, 5% CO2, 4 h) before exposure to C. asiatica (C and C3 [0.1mg/ml]) for 24 h 

(TNF-α) and 72 h (IL-1β, IL-6, IL-10) (37 ˚C, 5% CO2). After incubation, plates were centrifuged 

(162 × g, 10 min), supernatant was collected and stored (-80˚C) for nitrite and cytokine analysis. 

Cell pellets were used to conduct the caspase (-8, -9, -3/7) activity assays and protein isolation. The 

following experiments were conducted independently two times for all subsequent assays.  

  

4.2.9 The Griess assay  

The griess assay was used to measure nitric oxide (NO) production. The level of nitrites (end 

product of NO generation) was determined as per Miranda et al., (2001) (Miranda et al., 2001). A 

positive control of nitrate solution (25 μM in 0.1 M PBS) and a blank (0.1 M PBS) was prepared.  

Samples (100 μl/well) were dispensed into triplicate wells of a 96-well microtitre plate. Thereafter 

vanadium (III) chloride (100 μl/well, 8 mg/ml) was added followed rapidly by sulphanilamide (50 

μl/well, 2%) and N-1 (naphthyl)ethylenediamine (50 μl/well, 0.1% in 5% HCl). The plate was 

incubated (37 ˚C, 45 min) in the dark. OD was measured at 540 nm (690 nm reference wavelength) 

with a BIO-TEK µQuant spectrophotometer (Analytical and Diagnostic Products, SA). The net 
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absorbance was calculated by subtracting the absorbance of the blank from the treated samples. The 

data is represented as mean OD values.  

 

4.2.10   Quantification of cytokines 

Cytokine levels were estimated using the BD OptEIA ELISA kits (The Scientific group, SA) and 

the procedure was followed as per instruction manual. ELISA plates were coated with capture 

antibody overnight (100 µl/well, 4 ˚C). Thereafter, plates were washed (3x) with wash buffer and 

blocked with assay diluent (200 µl/well, 1 h, RT). Standard solutions were prepared by diluting a 

stock solution [TNF-α, IL-10 (500 pg/ml), IL-6 (300 pg/ml), IL-1β (250 pg/ml)] serially [TNF-α, 

IL-10 (500–7.8 pg/ml), IL-6 (300–4.7 pg/ml), IL-1β (250–3.9 pg/ml)]. Plates were washed (3x), 

standards and samples (100 µl/well) were aliquoted into appropriate wells and plates were 

incubated (2 h, RT). Plates were washed (5x), working detector (100 µl/well) added and plates 

incubated (1 h, RT). The plates were washed (7x), substrate solution (100 µl/well) added and plates 

were incubated (30 min, RT) in the dark. Finally, stop solution (50 µl/well) was added and the 

absorbance was read at 450 nm (570 nm reference wavelength) with a BIO-TEK µQuant 

spectrophotometer (Analytical and Diagnostic Products, SA). Cytokine concentrations were 

calculated by extrapolation from a standard curve. 

 

4.2.11   Caspase assays 

Caspase (-8, -9, -3/7) activities were determined using the Caspase-Glo® -3/7, -8 and -9 assay kits 

(Promega, Madison, USA). Caspase-Glo® -3/7, -8 and -9 reagents were reconstituted according to 

the manufacturer’s instructions. Cells (50 µl/well, 2x105 cells/ml) were added into triplicate wells of 

a microtitre plate for each assay; thereafter caspase -3/7, -8 and -9 reagents (25 µl/well) were added 

into appropriate wells. Plates were incubated (30 min, RT) in the dark. Luminescence was measured 

on a ModulusTM microplate luminometer (Turner BioSystems) and expressed as relative light units 

(RLU).   
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4.2.12   Protein Isolation and Western Blotting 

Western Blots were performed to determine the relative expression of NF-κB proteins (p50, p65). 

Protein was isolated using Cytobuster™ reagent (Novagen, Pretoria, SA), supplemented with 

protease and phosphatase inhibitors (Roche, 05892791001 and 04906837001, respectively). 

Cytobuster (200 µl) was added to the cells (10 min, 4 ˚C) and centrifuged (180 x g,  4 ˚C, 10 min). 

Protein was quantified using the bicinchoninic acid assay (Sigma, Germany) and standardised to 0.2 

mg/ml. Laemmli buffer (30 μl) was added to protein samples (120 μl) and boiled (100 ˚C, 5 min). 

Protein samples (30 µl) were electrophoresed (150 V, 1 h) in 10% SDS gels (Bio-Rad compact 

power supply). Separated proteins were transferred to nitrocellulose membrane using the Trans-

Blot® Turbo Transfer system (Bio-Rad) (20 V, 45 min). Membranes were blocked (1 h) using 

bovine serum albumin (5%) in Tris-buffered saline containing Tween20 (0.05%) [TTBS: NaCl, 

KCL, Tris, Tween 20, dH2O, pH 7.4]. Thereafter, membranes were immune-probed with primary 

antibody [NF-κB1 p105/p50 (3035), NF-κB p65 (8242), 1: 1000 (Cell Signalling, Danvers, USA)] 

overnight (4 ˚C). Membranes were then washed 5 × with TTBS (10 min each) and incubated (1 h, 

RT) with the secondary antibody [anti-rabbit IgG (7074), 1: 2000 (Cell Signalling, Danvers, USA)]. 

Membranes were washed 5 × with TTBS (10 min each). Horse radish peroxidase 

chemiluminescence detector (Bio-Rad) and enhancer solution were used for the antigen-antibody 

complex and the signal was detected with the Alliance 2.7 image documentation system (UViTech). 

To correct for loading error and to normalise relative protein expression, β-actin was assessed 

(A3854; 1: 5000). Protein expressions were analyzed with UViBand Advanced Image Analysis 

software v12.14 (UViTech) and data was expressed as relative band density (RBD) and fold 

change. 

 

4.2.13   Statistics 

Statistical analysis was performed using GraphPad Prism (v5) statistical analysis software. The one 

way analysis of variance (ANOVA) was used to compare between groups, followed by the Tukey 

multiple comparisons test, with p < 0.05 chosen as the significant level. 
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4.3 Results  

4.3.1 Chemical composition of C. asiatica (C and C3) 

The GC-MS chromatograms of C and C3 were recorded and presented in Supplementary Figures 4 

and 5. Chemical composition of C and C3 constituents were identified after comparison with those 

available in the NIST computer library. The organic compounds that were identified in C. asiatica 

leaf extract namely caranol, oxymetholone methanol adduct, vitamin E, tocopherol and terpenes 

(phytosterol and stigmasterol) (Supplementary information: Table 1 and 2).  

 

4.3.2 Oxidant scavenging activity of C. asiatica (C and C3) 

The DPPH assay was used to assess oxidant scavenging activity. DPPH oxidant scavenging activity 

was significantly increased by C (78.205%) as compared to C3 (13.051%) relative to the control 

(Figure 4.1, p < 0.0001).  

 

 

Figure 4.1: Percentage DPPH scavenging activity of C. asiatica (C and C3) (Values expressed as 

mean ± SD, ***p < 0.0001) 

 

4.3.3 Cytotoxicity of C. asiatica (C and C3) in PBMC’s and THP-1 cells 

At 24 h, C. asiatica (C and C3) did not significantly alter PBMC viability (Figure 4.2A, p = 0.0215) 

whereas significantly deceased THP-1 viability by 3.783–7.164% (Figure 4.2C, p = 0.0025) relative 

to their respective controls. At 72 h, C3 decreased PBMC viability by 16.703% (Figure 4.2B) 
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whereas C and C3 increased THP-1 viability by ± 11% (Figure 4.2D) as compared to their 

respective controls (p < 0.0001).  

 

 

Figure 4.2:  Cell viability of PBMC (A – 24 h, B – 72 h) and THP-1 (C – 24 h, D – 72 h) cells 

treated with C. asiatica (C and C3) for 24 and 72 h (Values expressed as mean ± SD, * p < 0.05 ** p 

< 0.005 *** p < 0.0001 compared to the control).  

 

4.3.4  Nitrite levels in C. asiatica (C and C3) treated THP-1 cells 

In THP-1 cells, C. asiatica (C and C3) decreased nitrite levels at 24 (Figure 4.3A) and 72 h (Figure 

4.3B) (p < 0.0001). Notably, C3 (1.464–1.767 fold) decreased nitrite levels to a greater extent than 

C (1.030–1.136 fold).  
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Figure 4.3: Nitrite levels in THP-1 (A – 24 h, B – 72 h) cells treated with C. asiatica (C and C3) 

for 24 and 72 h (Values expressed as mean ± SD, * p < 0.05, *** p < 0.0001 compared to the control).  

 

4.3.5 Modulation of inflammatory cytokine levels in C. asiatica (C and C3) treated THP-1 

cells 

Concentration of TNF-α, IL-1β, IL-6 and IL-10 in LPS stimulated control THP-1 cells was 65.884, 

117.059, 614.697 and 37.778 pg/ml respectively. THP-1 TNF-α concentration was decreased by C 

(4.603-fold) and C3 (> 65.883-fold) relative to the control (Figure 4.4A, p < 0.0001). In THP-1 

cells, IL-1β concentration was decreased by C (2.309-fold) and C3 (10.855-fold) as compared to the 

control (Figure 4.4B, p < 0.0001). THP-1 IL-6 concentration was decreased by both C (3.397-fold) 

and C3 (37.565-fold) relative to the control (Figure 4.4C, p < 0.0001). Notably, C3 decreased TNF-

α, IL-1β and IL-6 concentrations to greater extent than C. In THP-1 cells, the concentration of the 

anti-inflammatory cytokine IL-10 was increased by C (1.732-fold) and C3 (2.611-fold) compared to 

the control (Figure 4.4D, p < 0.0001). Interestingly, C3 increased IL-10 concentration to a greater 

extent than C. 
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Figure 4.4: Concentration of TNF-α (A), IL-1β (B), IL-6 (C) and IL-10 (D) in LPS stimulated and 

C. asiatica (C and C3) treated THP-1 cells (Values expressed as mean ± SD, *** p < 0.0001 

compared to the control). 

 

4.3.6 Modulation of caspase (-8, -9, -3/7) activity in C. asiatica (C and C3) treated THP-1 cells 

At 24 h, THP-1 caspase-8 (±2.200-fold), caspase-9 (±2.300-fold) and caspase-3/7 (±2.200-fold) 

activities were increased by C and C3 relative to the control (Table 4.1, p < 0.0001). The 

substantially increased executioner caspase-3/7 activity suggests an increase in apoptotic cell death.  
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Table 4.1: Modulation of caspase (-8, -9, -3/7) activities in LPS stimulated and 24 h C. asiatica (C 

and C3) treated THP-1 cells (Values expressed as mean ± SD, *** p < 0.0001 compared to the 

control).  

Extracts       

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9 

(RLUx10
5
) 

Caspase-3/7 

(RLUx10
5
) 

Control 0.242 ± 0.019 2.989 ± 0.053  3.338 ±    0.124  

C  0.485 ± 0.018 *** 6.649 ± 0.075 *** 7.966 ±    0.073 *** 

C3 0.578 ± 0.104 ***
 7.501 ± 0.498 ***

 6.825 ±  0.048 ***
 

 

At 72 h, C increased THP-1 caspase-8 (1.528-fold, p < 0.0001) and caspase-9 (1.667-fold p < 

0.0001) whereas decreased caspase-3/7 activity (1.260-fold, p = 0.0089) compare to the controls 

(Table 4.2). Although initiator caspase (-8 and -9) activity was increased, the decreased executioner 

caspase-3/7 activity suggests a decrease in apoptotic cell death. In C3 treated THP-1 cells, caspase-

8 (1.259-fold, p < 0.0001) was decreased while caspase -9 and -3/7 activities remained unchanged 

relative to the controls (Table 4.2, p < 0.009).  

 

Table 4.2: Modulation of caspase (-8, -9, -3/7) activities in LPS stimulated and 72 h C. asiatica (C 

and C3) treated THP-1 cells (Values expressed as mean ± SD, ** p < 0.005, *** p < 0.0001 compared 

to the control).  

Extracts       

(mg/ml) 

Caspase-8 

(RLUx10
5
) 

Caspase-9 

(RLUx10
5
) 

Caspase-3/7 

(RLUx10
5
) 

Control 0.316 ± 0.017  4.425 ± 0.019  4.641 ±  0.213  

C  0.483 ± 0.013 *** 7.378 ± 0.914 *** 3.683 ±  0.275 ** 

C3 0.251 ± 0.010 ***
 4.152 ± 0.029  4.027 ±  0.466  
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4.3.7 NF-κB (p50, p65) protein expression in C. asiatica (C and C3) treated THP-1 cells 

At 24 h, THP-1 p50 protein expression was decreased by C (1.715-fold) and C3 (1.688-fold) as 

compared to the control (Figure 4.5A, p < 0.0001). Also, THP-1 p65 protein expression was 

decreased by C (1.559-fold) and C3 (1.674-fold) relative to the control (Figure 4.5B, p < 0.0001).  

 

 

Figure 4.5: Protein expression of p50 (A) and p65 (B) in LPS stimulated and 24 h C. asiatica (C 

and C3) treated THP-1 cells (Values expressed as mean ± SD, *** p < 0.0001 compared to the 

control).  

 

Similarly at 72 h, THP-1 p50 protein expression was decreased by C (1.501-fold) and C3 (1.918-

fold) compared to the control (Figure 4.6A, p < 0.0001). Also, THP-1 p65 protein expression was 

decreased by C (1.146-fold) and C3 (1.533-fold) relative to the control (Figure 4.6B, p < 0.0001). 

Notably, C3 decreased THP-1 p50 and p65 protein expressions to a greater extent than C.  
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Figure 4.6: Protein expression of p50 (A) and p65 (B) in LPS stimulated and 72 h C. asiatica (C 

and C3) treated THP-1 cells (Values expressed as mean ± SD, ** p < 0.005, *** p < 0.0001 compared 

to the control). 

 

4.4 Discussion  

The cancer cachectic syndrome leads to the abnormal loss of body weight as a result of adipose 

tissue and skeletal muscle degradation (Tisdale, 2009). Oxidative stress, pro-inflammatory 

cytokines and apoptosis play an important role in the initiation of tissue wasting, the imbalance of 

catabolic/ anabolic processes and the development of cancer cachexia (Sharma and Anker, 2002). 

Thus, this study investigated the anti-cancer and anti-cachectic potential of C. asiatica (C and C3) 

in THP-1 cells. 

 

At 24 h, C. asiatica (C and C3) did not significantly alter PBMC viability whereas at 72 h C3 

decreased PBMC viability. C. asiatica (C and C3) decreased THP-1 viability at 24 h whereas 

increased THP-1 viability at 72 h. Previous studies showed that C. asiatica extracts inhibited breast 

(MCF-7) and liver (HepG2) cancer cell proliferation (Babykutty et al., 2008; Hussin et al., 2014). 

Thus the results of the present study prove to be similar to previous studies.  
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C. asiatica has been reported to possess antioxidant potential possibly associated with phenolic 

compounds (Zainol et al., 2003). DPPH oxidant scavenging activity was significantly increased by 

C (78.20%) as compared to C3 (13.05%), indicating their antioxidant potential.  

 

NO is produced by inducible nitric oxide synthase (iNOS) (Chung et al., 2001) and regulates many 

physiological processes such as immune responses and apoptosis (Muntané and De la Mata, 2010). 

During carcinogenesis, NO may cause genotoxic lesions, promote angiogenesis, tumour cell growth 

and invasion (Muntané and De la Mata, 2010). Our results indicated that C. asiatica (C and C3) 

decreased THP-1 nitrite levels which may decrease the carcinogenic process. Interestingly, C3 

decreased nitrite levels to a greater extent than C.  

 

Cancer-related inflammation has been considered the seventh hallmark of cancer (Colotta et al., 

2009) due to the role of inflammation in tumour initiation, promotion, invasion, and metastasis 

(Grivennikov et al., 2009). During cancer and inflammation, IL-1 suppresses LPL activity (Beutler 

and Cerami, 1985), increases protein turnover, leads to muscle proteolysis and plays a role in the 

development of cachexia (Tocci and Schmidt, 1997; Tocco-Bradley et al., 1987). TNF-α has been 

shown to inhibit LPL production and reduce LPL gene transcription (Cornelius et al., 1988; Fried 

and Zechner, 1989; Zechner et al., 1988) thus preventing the formation of new lipid stores while 

stimulating HSL and increasing lipolysis (Elborn et al., 1993). An increase in IL-6 levels are 

associated with elevated tumour size, weight loss (Kuroda et al., 2007), decreased LPL activity 

(Greenberg et al., 1992) and the development of cachexia (Tisdale, 2009). Additionally, IL-6 and 

TNF-α stimulates muscle catabolism by activating proteasome pathways (Garcia-Martinez et al., 

1993; Garcia-Martinez et al., 1995; Llovera et al., 1997; Tisdale, 2001).  

In THP-1 cells, both C and C3 significantly decreased TNF-α, IL-6 and IL-1β concentrations. The 

increased oxidant scavenging activity of C and C3 may have contributed to decreasing pro-

inflammatory cytokine levels. Notably, TNF-α, IL-1β and IL-6 concentrations were decreased to 

greater extent by C3 than C. The potential of C and C3 to down regulate pro-inflammatory cytokine 

production in THP-1 cells may decrease pro-inflammatory cytokine mediated LPL inhibition and 

proteasome pathway activation thus preventing excessive lipolysis and proteolysis. 
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In cancer patients, pro-inflammatory cytokines are elevated which increases the probability of 

successful cancer cell metastasis (Nguyen et al., 2009). Previous studies have shown that TNF-α 

and IL-6 can promote metastasis and survival of metastatic seeds (Nguyen et al., 2009). 

Additionally, IL-1β contributes to increased tumour invasiveness and angiogenesis in chemical 

carcinogen-induced tumours (Krelin et al., 2007). Thus, the ability of C and C3 to decrease pro-

inflammatory cytokine levels may decrease tumour cell growth and metastasis, ultimately 

preventing rapid tumour progression.  

 

In adenocarcinoma colon 26-bearing mice, elevated concentrations of the anti-inflammatory 

cytokine, IL-10 has been reported to reverse the cachectic syndrome (Fujiki et al., 1997). 

Additionally, IL-10 inhibits NF-κB activation and subsequently inhibits pro-inflammatory cytokine 

production (TNF-α and IL-6) (Lin and Karin, 2007). Both C and C3 increased IL-10 concentration 

in THP-1 cells. The ability of C and C3 to increase IL-10 concentration may decrease pro-

inflammatory cytokine levels, malignant cell progression and alleviate cancer cachectic syndrome. 

 

 There are two main apoptotic pathways namely the extrinsic and intrinsic pathway. The intrinsic 

apoptotic pathway is mediated through the mitochondria, stimulus such as free radicals leads to the 

opening of mitochondrial permeability transition pores, loss of transmembrane potential and release 

of pro-apoptotic proteins (Saelens et al., 2004). The apoptosome is formed by cytochrome c binding 

Apaf-1 and pro-caspase-9 (Chinnaiyan, 1999; Hill et al., 2004). The extrinsic pathway is mediated 

through death receptors resulting in the auto-catalytic activation of procaspase-8 (Elmore, 2007). 

Activation of initiator caspases (-8, -9) leads to the activation of executioner caspases (-3/7) 

resulting in activation of cytoplasmic endonucleases which degrade nuclear material (Elmore, 

2007). Previously in breast cancer cells, C. asiatica induced apoptosis through loss of mitochondrial 

membrane potential, increased annexin staining and DNA fragmentation (Babykutty et al., 2008). 

At 24 h, THP-1 caspase (-8, -9, -3/7) activity was increased by C and C3, indicating an increased 

execution of THP-1 apoptosis. The 24 h result demonstrates the anti-proliferative potential of C. 

asiatica (C and C3) in THP-1 cells. At 72 h, THP-1 caspase-8 and caspase-9 activity was increased 

however caspase-3/7 activity was decreased by C, suggesting a decreased in the execution of 

apoptosis. In C3 treated THP-1 cells (72 h), caspase-8 activity was decreased while caspase -9 and -

3/7 activities were not altered, suggesting a decreased activation of apoptosis.  
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Depending on NO levels, NO may promote or inhibit apoptotic pathways (Chung et al., 2001; 

Muntané and De la Mata, 2010). Usually, low NO levels have protective effects while high NO 

levels led to apoptosis (Taylor et al., 2003). Caspases are essential in the initiation and execution of 

apoptosis (Chung et al., 2001). The cysteine (a thiol) at the caspase catalytic site is susceptible to 

redox modification (Chung et al., 2001). NO effectively modifies caspases by S-nitrosylation which 

decreases caspase activity, ultimately decreasing apoptosis (Chung et al., 2001). However, the level 

of other thiol containing compounds (such as glutathione) influences the capacity of NO to S-

nitrosylate caspases (Chung et al., 2001; Taylor et al., 2003). In cells with normal thiol levels, NO 

induces apoptosis (Taylor et al., 2003). On the hand, in cells with low thiol levels, NO protects 

against apoptosis by S-nitrosylation of caspases (Taylor et al., 2003). Taken together, C. asiatica (C 

and C3) showed increased oxidant scavenging activity and decreased THP-1 nitrite levels which 

may have decreased NO capacity to S-nitrosylate caspases. This may have contributed to the 

increased caspase activity at 24 h. During the 72 h C. asiatica (C and C3) treatment, the level of 

thiol containing compounds may have decreased, allowing for NO to S-nitrosylate caspases, 

ultimately decreasing caspase activation. 

 

Many stimuli activate NF-κB pathways, such as TNF-α, IL-1β, LPS and reactive oxygen species 

(ROS) (Fan et al., 2013). Production of cytokines and chemokines leads to a localized inflammatory 

response which also enhances premalignant cell survival through NF-κB activation (Lin and Karin, 

2007). In various cancer types, activation of the NF-κB pathway is an essential survival mechanism 

(Wang et al., 2009). Elevated NF-κB activity may increase certain tumourigenic adhesion proteins, 

chemokines and inhibitors of apoptosis which promote cell survival (Wang et al., 2009). 

Continuous NF-κB activation up-regulates inflammatory cytokines (TNFα, IL-6, IL-1, IL-8) which 

are potent activators of NF-κB thus creating a positive feedback loop (Fan et al., 2013). 

Additionally, in the tumour microenvironment, cytokines and NF-κB induces iNOS expression 

which leads to NO production (Rajput and Wilber, 2010 ). At 24 and 72 h, THP-1 p50 and p65 

protein expression were decreased by both C and C3. Notably, in C and C3 treated THP-1 cells, the 

decreased p50 and p65 protein expressions are consistent with the decreased nitrite levels and pro-

inflammatory cytokine concentrations.  

 

As mentioned earlier, elevated levels of pro-inflammatory cytokines increase catabolic pathways 

leading to tissue wasting (Martignoni et al., 2005). Additionally, NF-κB directly stimulates the 

ubiqutin pathway which increases skeletal muscle breakdown (Russell et al., 2009). Thus, the 
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potential of C and C3 to diminish NF-κB protein expressions and pro-inflammatory cytokine levels 

may decrease lipolysis, proteolysis and the progression of cancer cachexia.  

 

Anti-apoptotic proteins work together to block or regulate apoptosis by targeting the various steps 

in the apoptotic cascade (Lin and Karin, 2003). Activation of the NF-κB pathway inhibits apoptosis 

by inducing the expression of anti-apoptotic genes (Lin and Karin, 2003). Thus, inhibiting the NF-

κB pathway may decrease anti-apoptotic protein expression and allow for a pro-apoptotic shift. As 

seen earlier, the execution of THP-1 apoptosis was increased by C and C3 at 24 h, a possible 

consequence of the decreased THP-1 p50 and p65 protein expressions. However, at 72 h the 

decreased THP-1 p50 and p65 protein expressions did not influence THP-1 caspase activity.  

 

In tumour cells, LPS induction of the metastatic growth response has been shown to be dependent 

on NF-κB activation (Yoshimura, 2006). Previously, in tumour-associated inflammatory cells, NF-

κB activation enhanced pro-inflammatory cytokine synthesis which promotes tumour growth 

(Viatour et al., 2005). Additionally, NF-κB inhibition has been shown to sensitize prostate cancer 

cells to apoptosis (Shukla and Gupta, 2004), decrease invasion, inhibit tumour growth, inhibit 

angiogenesis in metastatic cells (Huang et al., 2001) and promote tumour regression in carcinoma 

cells (Yoshimura, 2006). Thus, the ability of C and C3 to decrease the NF-κB (p50, p65) protein 

expressions may greatly attenuate the carcinogenic process (Viatour et al., 2005). 

 

4.5 Conclusion 

Cachexia is a progressive and devastating syndrome that greatly diminishes the survival rate of 

cancer patients. In the present study, C and C3 have been shown to decreased NF-κB (p50, p65) 

protein expressions, decrease pro-inflammatory cytokine (TNF-α, IL-6 and IL-1β) levels and 

modulate THP-1 cell death. These results suggest that C and C3 may prove to be effective in 

combating the cancer cachectic syndrome, improving the quality of life and prolonging the survival 

time of cancer patients. 
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Bridging paragraph:  

 

In the previous manuscript, C3 proved to be more effective than C in decreasing THP-1 pro-

inflammatory (TNF-α, IL-6, IL-1β) cytokine levels while increasing the THP-1 anti-inflammatory 

(IL-10) cytokine levels, suggesting that C3 may be more effective in decreasing the development 

and progression of cancer cachexia. Additionally, C and C3 (24 h) were shown to increase caspase 

activity in THP-1 cells, suggesting an increased initiation and execution of apoptotic cell death. 

Therefore we investigated the antioxidant and anti-proliferative effects of C and C3 in THP-1 cells.  

 

The following manuscript is entitled Centella asiatica modulates Nrf-2 antioxidant mechanisms and 

enhances ROS mediated apoptosis in leukaemic THP-1 cells (Supplementary information: 

Appendix 8). In this manuscript, an IC50 for C and C3 (24 h) in THP-1 cells was determined then 

the antioxidant response signalling and apoptosis induction were evaluated.  

 

Publication statuses: Submitted to Phytomedicine however the journal didn’t provide a manuscript 

number in 4 weeks 

 

The manuscript has been published in proceedings of the 2nd International Conference on Herbal 

and Traditional Medicine 2017 (HTM 2017), “Value-Added of Herbs and Phytotherapy: Challenges 

for the 21st Century”. (T5 – O – ST – 014) 

 

Please note: The manuscript was formatted for Phytomedicine, however, the margins, font, line 

spacing, numbering of sections and figures were adjusted for thesis consistency. 
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Abstract 

 

Background: Centella asiatica (C. asiatica) is commonly used in traditional medicine due to its 

many therapeutic properties. The effects of C. asiatica on leukaemic THP-1 cells have yet to be 

examined.  

Hypothesis/ Purpose: We investigated the antioxidant and anti-proliferative effects of an ethanolic 

C. asiatica leaf extract (C) and purified fraction-3 (C3) in THP-1 cells.  

Methods: C3 was obtained by silica column fractionation and identified using thin layer 

chromatography. Gas chromatography mass spectrometry determined the bioactive compounds 

present in C and C3. Cytotoxicity of C and C3 in THP-1 cells was evaluated (cell viability assay; 24 

hours; [0.2–3 mg/ml]) to determine a half maximal inhibitory concentration (IC50). Intracellular 

reactive oxygen species (IROS), mitochondrial membrane potential (flow cytometry), 

malondialdehyde (MDA) (spectrophotometry), reduced glutathione (GSH), oxidized GSH (GSSG), 

adenosine triphosphate (ATP) levels, caspase (-8, -9, -3/7) activity (luminometry) and DNA damage 

(comet assay) were evaluated. Protein expression [nuclear factor erythroid 2-related factor 2 (Nrf-

2), glutathione peroxidase (GPx), B cell lymphoma-2 (Bcl-2) and cleaved poly(ADP-ribose) 

polymerase-1 (c-PARP)] and gene expression [Nrf-2, GPx, superoxide dismutase (SOD), catalase 

(CAT), c-myc and 8-oxoguanine glycosylase (OGG-1)] were quantified by western blotting and 

quantitative polymerase chain reaction, respectively.  

Results: C. asiatica (C and C3) dose dependently decreased THP-1 cell viability and the IC50 of C 

and C3 increased MDA, IROS and mitochondrial depolarisation (p < 0.01). Expression of anti-

oxidant response genes (p < 0.0001), Nrf-2 protein expression and GSSG levels (p < 0.01) were 

increased by C but decreased by C3. Caspase activity and DNA damage were elevated by both C (-

9, -3/7) and C3 (-8, -9, -3/7) (p < 0.0001). C. asiatica (C and C3) decreased GPx and Bcl-2 protein 

expressions (p < 0.003). Levels of c-PARP and c-myc were decreased by C whilst increased by C3 

(p < 0.002). Only C3 reduced OGG-1 gene expression (p < 0.0003) 

Conclusion: Antioxidant responses were increased by C whilst decreased by C3. Both C and C3 

exerted anti-proliferative effects in THP-1 cells by enhancing apoptosis. Notably, C3 more 

effectively induced apoptosis.  

 

Key words: Centella asiatica, oxidative stress, antioxidants, apoptosis 
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1 Abbreviations: (ROS), Reactive oxygen species; (Nrf-2), Nuclear factor erythroid 2-related factor 

2; (KEAP1), Kelch-like ECH-associated protein 1; (GSH), Glutathione; (GSSG), oxidised 

glutathione; (GPx), Glutathione peroxidise; (SOD), Superoxide dismutase; (CAT), Catalase; 

(PARP-1), Poly(ADP-ribose)polymerase-1; (SA), South Africa; (DCM), Dichloromethane; (HEX), 

Hexane; (EA), Ethyl acetate; (DMSO), Dimethyl sulfoxide; (TLC), Thin layer chromatography; 

(FCS), Foetal calf serum; (PS), Penstrepfungizone; (L-GLUT), L-glutamine; (LPS), 

Lipopolysaccharide; (WST-1), 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene 

disulfonate;  (JC-1), 5,5’,6,6’–tetrachloro-1,1’,3,3’ tetraethylbenzimidazolcarbocyanine iodide; 

(H2DCF-DA), 2ˊ, 7ˊ-dichlorodihydrofluorescein diacetate; (ATP), Adenosine triphosphate; (GC-

MS), Gas chromatography mass spectrometry; (C), Centella asiatica crude leaf extract; (C3), 

Centella asiatica purified fraction-3; (h), Hours; (IC50), Half maximal inhibitory concentration; 

(Cct), Control for Centella asiatica crude leaf extract; (Cct3), Control for Centella asiatica purified 

fraction-3; (DCF), 20, 70-dichlorofluorescein; (TBARS), Thiobarbituric acid assay; (MDA), 

Malondialdehyde; (IROS), Intracellular reactive oxygen species; (min), Minutes; (PBS), Phosphate 

buffer saline; (RT), Room temperature; (Δψm), Mitochondrial depolarisation; (RLU), Relative light 

units; (SCGE), Single cell gel electrophoresis; (CTL’s), Comet tail lengths, (RBD), Relative band 

density; (OGG-1), 8-oxoguanine DNA glycosylase; (AML), Acute myeloid leukaemia; (MCF-7), 

Breast cancer cells; (ETC), Electron transport chain, (8-oxoG), 8-Oxo-7,8-dihydroguanine.  

 

5.1 Introduction  

Cancer is a leading cause of morbidity and mortality worldwide. Annually there are about 10 

million newly diagnosed cancer cases and greater than 6 million cancer deaths (Tariq et al., 2015). 

Characteristically, cancer is a hyper-proliferative disorder involving elevated anaerobic glycolysis, 

oxidative stress, mutations, evasion of apoptosis, invasion, angiogenesis and metastasis (Gorrini et 

al., 2013; Lin and Karin, 2007). Ongoing anti-cancer research is essential to combat the rapid 

progression of cancer and the increasing number of cancer deaths.   

 

                                                           
1
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Reactive oxygen species (ROS) is involved in many biological processes and the modulation of 

ROS levels is important in maintaining cellular homeostasis (Gorrini et al., 2013). Acute low ROS 

levels is involved in cell proliferation, differentiation, and activation of survival pathways whereas 

acute high ROS levels cause damage to cellular components and induces apoptosis (Gorrini et al., 

2013; Lau et al., 2008). In healthy cells, an efficient antioxidant defence system is essential for the 

detoxification of elevated ROS levels (Perricone et al., 2009). However, cancer cells exploit 

antioxidant mechanisms such as the nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway to 

increase tumour cell survival, proliferation, and resistance to anti-cancer therapies (Bauer et al., 

2013). 

  

During normal conditions, Nrf-2 is bound to Kelch-like ECH-associated protein 1 (KEAP1) in the 

cytosol and marked for degradation (Kansanen et al., 2013). Elevated ROS levels lead to KEAP1 

oxidation and modification which allows for Nrf-2 release and translocation to the nucleus where it 

increases antioxidant gene transcription (Kansanen et al., 2013). Nrf-2 stimulates the transcriptional 

activation of various cytoprotective and detoxification genes rapidly changing the sensitivity of the 

cells to ROS (Rushworth et al., 2012). Antioxidants such as glutathione (GSH), glutathione 

peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) protects against oxidative 

cellular damage (Perricone et al., 2009; Weydert and Cullen, 2010). SOD detoxifies superoxide 

radicals into hydrogen peroxide and molecular oxygen, thereafter hydrogen peroxide is further 

detoxified by GPx and CAT into oxygen and water (Weydert and Cullen, 2010). The imbalance 

between ROS generation and elimination may lead to ROS accumulation which results in oxidative 

stress and apoptosis (Gorrini et al., 2013). 

 

Apoptosis occurs through two main apoptotic pathways namely the intrinsic (or mitochondrial) and 

extrinsic (or death receptor) (Wong, 2011). The extrinsic pathway leads to caspase-8 activation 

(Wong, 2011) whilst the intrinsic pathway leads to apoptosome formation (cytochrome c, Apaf-1 

and procaspase-9) and caspase-9 activation (Wong, 2011). Activation of initiator caspases (-8, -9) 

lead to activation of executioner caspases (-3/7) ultimately activating cytoplasmic endonucleases 

which degrade nuclear material (Wong, 2011). Nuclear enzyme, poly (ADP-ribose) polymerase-1 

(PARP-1) functions in DNA repair, DNA stability, and transcriptional regulation (Bouchard et al., 

2003). Depending on the amount of DNA damage, PARP-1 may activate DNA repair or apoptosis 

(Bouchard et al., 2003). During apoptosis, caspases cleave PARP-1 leading to the formation of the 
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89 and 24 kDa polypeptides which abolishes PARP-1 DNA repair activity and promotes apoptosis 

(Bouchard et al., 2003).  

 

Anti-cancer research on medicinal plants is increasing. Centella asiatica is a tropical medicinal 

plant native to India, China, and South Africa (Orhan, 2012). It belongs to the Apiaceae family and 

is commonly referred to as Gotu kola, Asiatic/ Indian pennywort and Tiger herb (Orhan, 2012). C. 

asiatica is widely used in Ayurvedic and Chinese traditional medicines due to its vast health 

benefits such as antioxidant, anti-inflammatory and anti-tumour potential (Orhan, 2012). Major 

active compounds in C. asiatica are triterpene saponosides such as asiatic acid, madecassic acid, 

asiaticoside and madecassoside (Orhan, 2012). In addition, C. asiatica contains flavonoid 

derivatives, vitamins, minerals, polysaccharides, sterols, and phenolic acids (Orhan, 2012). C. 

asiatica possess high antioxidant activity, phenol and flavonoid content (Dasgupta and De, 2007; 

Odhav et al., 2007). Also a methanolic extract of C. asiatica showed anti-proliferative activity in 

many cancer cell lines (Babykutty et al., 2008).  

 

There is limited scientific information on the effects of C. asiatica in leukaemic cells. We 

investigated the antioxidant response and ROS manipulation associated with leukaemic cells. This 

study investigated the effects of an ethanolic C. asiatica (crude (C) and fraction-3 (C3)) leaf extract 

in THP-1 cells and its associated antioxidant response signalling and apoptosis induction in these 

leukaemic cells. 

 

5.2 Materials and Methods 

5.2.1 Materials 

C. asiatica leaves were collected in March 2011 (collectors number: Immelman 411) from the 

Eastern Cape [Langeni forest, roadside (S31°28.135’, E28°32.681’)], South Africa (SA) and 

identified by Dr. Kathleen Immelman (Department of Botany at the Walter Sisulu University, SA). 

Voucher specimens were deposited at the KEI herbarium (13979). THP-1 cells were obtained from 

ATCC (University Boulevard Manassas, USA). Solvents [Dichloromethane (DCM), Hexane 

(HEX), ethyl acetate (EA), methanol, Dimethyl sulphoxide (DMSO)] sulphuric acid, silica gel 60, 

thin layer chromatography (TLC) silica gel 60 sheets and 4-methoxybenzaldehyde were purchased 

from Merck (Johannesburg, SA). The RPMI-1640 was purchased from The Scientific group 
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(Johannesburg, SA). Foetal calf serum (FCS), penstrepfungizone (PS) and L-glutamine (L-Glut) 

were acquired from Whitehead scientific (Cape Town, SA). Lipopolysaccharide (LPS) was 

purchased from Sigma (Aston Manor, SA). The 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-

tetrazolio]-1,3-benzene disulphonate (WST-1) cell proliferation reagent was purchased from Roche 

(Mannheim, Germany or Johannesburg, SA). The 5,5’,6,6’–tetrachloro-1,1’,3,3’ 

tetraethylbenzimidazolcarbocyanine iodide (JC-1) kit and the 2ˊ, 7ˊ-dichlorodihydrofluorescein 

diacetate (H2DCF-DA) reagent were purchased from BD Biosciences (Johannesburg, SA). Caspase 

(-8, -9, -3/7), adenosine triphosphate (ATP) and GSH kits were acquired from Promega (Madison, 

USA). Western blot reagents were purchased from Bio-Rad (Johannesburg, SA) and qPCR primers 

were obtained from Inqaba Biotechnologies (Johannesburg, SA).  

 

5.2.2 Plant Extraction and Fractionation 

The plants official name is Centella asiatica (L.) Urb and has been confirmed by using the plant list 

(www.theplantlist.org). The local names are icudwane (Zulu) and varkoortjies (Afrikaans). The 

English names are tiger herb and pennywort. C. asiatica leaves were dried and milled. Ethanol 

(200–350 ml) was added to milled plant material (10–30 g) and extracted overnight by shaking (4 x 

g, 37 ˚C). Ethanol extracts were filtered, rotor evaporated, dried (37 ˚C) and stored (4 ˚C). Silica 

column fractionation was used to separate C. asiatica compounds based on their polarity. A column 

(height: 85 cm, diameter: 17 cm) was assembled by adding a tap (25 mm), a cotton wool stop, a thin 

layer of sand, carefully pouring silica mixed with DCM: HEX (50: 50) into a column and allowing 

the silica to set overnight. C. asiatica crude extract (17 g) was dissolved in DCM: HEX (70: 30) and 

a portion of the extract was further dissolved in methanol. Thereafter, C. asiatica crude extract was 

layered onto the silica and 50 ml fractions were collected using a series of solvent systems [DCM: 

HEX (70: 30), DCM: EA (70: 30), DCM: EA (50: 50), DCM: EA: methanol (50: 40: 10), DCM: 

EA: methanol (30: 50: 20), EA: methanol (70: 30), EA: methanol (40: 60), EA: methanol (20: 80), 

methanol (100)]. The 50 ml fractions were boiled (100 ˚C) to allow evaporation of excess solvent 

and TLC was used to determine spot patterns and solvent changes. A total of 766 fractions were 

collected and TLC analysis revealed fractions with similar spot patterns which were combined and 

pooled into one fraction. Fractionation of C. asiatica yielded 13 pooled fractions. For all subsequent 

experiments, C. asiatica (C and C3) was used. 

 

 

http://www.theplantlist.org/
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5.2.3 Gas chromatography mass spectrometry (GC-MS) 

C. asiatica (C and C3) chemical composition has been subjected to GC-MS (Hewlett-Packard, 

USA) and the GCD-HP1800A system was used. Ionization energy (70 eV) was used for the 

detection of GC-MS and the detection was passed under high vacuum (10-4 to10-8 torr). Helium 

gas was used for the analysis at a constant flow rate (1 mL/min). The mass transfer line and injector 

temperature were fixed at 280 and 250 ˚C. The bioactive compounds present in C. asiatica (C and 

C3) were matched with the NIST computer library and reported.  

 

5.2.4 Tissue Culture 

THP-1 cells were grown in the appropriate tissue culture conditions in a 75 cm3 culture flask (37 ˚C, 

5 % CO2). The growth media comprised of RPMI-1640, FCS (10 %), L-Glut (1 %), PS (1 %) and 2-

mercaptoethanol (0.05 mM). Cells were seeded at a concentration of 3 x 105 cells/ml, quantified 

daily by trypan blue staining and were used for subsequent experiments once the cell density 

reached 8 x 105 cells/ml. 

                                                                                                             

5.2.5 Cell Viability Assay  

Cytotoxicity of C and C3 to THP-1 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). THP-1 cells (20,000 cells/well, 96 well plate, triplicate wells) were stimulated 

with LPS (20 µg/ml, 37 ˚C, 5 % CO2, 4 hours (h)) before exposure to C and C3 (0.2–3 mg/ml) for 

24 h (37 ˚C, 5 % CO2). Controls received media containing DMSO (0.75 %). Thereafter plates were 

centrifuged (162 x g, 10 minutes (min)), supernatant removed, cell pellets re-suspended in growth 

media (100 µl/well), WST-1 reagent (10 µl/well) added and plates incubated (37 ˚C, 5 %, CO2, 3 h). 

Optical density was measured at 450 nm (620 nm reference wavelength) with a BIO-TEK µQuant 

spectrophotometer (Analytical and Diagnostic Products, SA). This experiment was conducted on 

two separate occasions before using GraphPad Prism to calculate the half maximal inhibitory 

concentration (IC50) [percentage cell viability vs. log concentration of C. asiatica (C and C3)]. Cells 

were treated with the IC50 (C = 1.4 mg/ml and C3 = 0.618 mg/ml) in all subsequent experiments. 

Control (Cct = control for C, Cct3 = control for C3) treatments were represented by an equal amount 

of DMSO (Cct = 0.745 %, Cct3 = 0.309 %) in growth media without C. asiatica (C and C3).  
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5.2.6 Stimulation and treatment of cells  

THP-1 cells (2 x 105 cells/ml) were transferred into 75 cm3 culture flasks, stimulated with LPS (20 

µg/ml, 37 ˚C, 5 % CO2, 4 h) before exposure to C (1.4 mg/ml) and C3 (0.618 mg/ml) for 24 h 

(37˚C, 5% CO2). Thereafter, media containing cells were transferred into 50 ml tubes and 

centrifuged (162 x g, 10 min). Cell pellets were used to conduct the JC-1, 20, 70-

dichlorofluorescein (DCF), GSH, GSSG, caspase (-8, -9, -3/7) activity, ATP and comet assays; as 

well as protein and RNA isolation. The experiments were conducted independently two times for all 

subsequent assays. 

 

5.2.7 Thiobarbituric acid assay 

The thiobarbituric acid assay (TBARS) measures malondialdehyde (MDA), the end product of lipid 

peroxidation and was conducted as per the method previously described by Phulukdaree et al 

(2010) (Phulukdaree et al., 2010). Optical density was measured at 532 nm (600 nm reference 

wavelength) with a BIO-TEK µQuant spectrophotometer (Analytical and Diagnostic Products, SA). 

Malondialdehyde concentration was calculated by dividing the optical density for each sample by 

the absorption coefficient (156 mM-1).  

 

5.2.8 DCF assay 

The DCF assay measures intracellular ROS (IROS) and was conducted as per the method 

previously described by Nagiah et al (2015) (Nagiah et al., 2015). Events were gated and the 

fluorescence measured on FL-1 channel (525 nm) of the Accuri™C6 flow cytometer (BD 

Biosciences, Franklin Lakes, NJ, USA). A total of 50,000 events were acquired and analyzed using 

the CFlow Plus Software (BD Biosciences, San Jose, CA, USA).  

 

5.2.9 GSH assay 

The GSH-GloTM assay (Promega, Madison, WI, USA) was used to measure GSH and GSSG levels. 

The assay was conducted as per the method previously described by Nagiah et al (2015) (Nagiah et 

al., 2015). Luminescence was measured on a ModulusTM microplate luminometer (Turner 

BioSystems, Sunnyvale, CA, USA).  
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5.2.10   JC-1 assay 

The JC-1 assay measures percentage mitochondrial depolarisation (Δψm) and was conducted as per 

the method previously described by Nagiah et al (2015) (Nagiah et al., 2015). Scatter plots of 

50,000 events per sample were acquired using the Accuri™C6 flow cytometer (BD Biosciences, 

Franklin Lakes, NJ, USA) and analyzed using the CFlow Plus Software (BD Biosciences, San Jose, 

CA, USA). 

 

5.2.11   Caspase and ATP assays 

Caspase activities and ATP levels were determined using the Caspase-Glo®3/7, -8, -9 and ATP 

assay kits (Promega, Madison, WI, USA). Reagents were reconstituted according to the 

manufacturer’s instructions. Cells (50 µl/well, 2 x 105 cells/ml) were added into triplicate wells of a 

microtitre plate for each assay, thereafter caspase -3/7, -8, -9 and ATP reagents (25 µl/well) were 

added into appropriate wells. Plates were incubated (30 min, RT) in the dark. Luminescence was 

measured on a ModulusTM microplate luminometer (Turner BioSystems, Sunnyvale, CA, USA) and 

expressed as relative light units (RLU).   

 

5.2.12   Single cell gel electrophoresis (SCGE) or Comet assay 

The SCGE assay was performed to assess DNA fragmentation and was conducted as per the 

method previously described by Singh et al (1988) (Singh et al., 1988). Cells were stained with GR 

red (1µl, 1000x) instead of ethidium bromide. Slides were viewed using an Olympus IX7I 

microscope with 510–560 nm excitation and 590 nm emission filters (Wirsam Scientific, 

Johannesburg, SA). Images from triplicate slides per treatment were captured. Comet tail lengths 

(CTL’s) of 50 comets per treatment were measured using the Soft imaging system (Life Science - 

©Olympus Soft Imaging Solutions v5) and average CTL’s were calculated (μm). 

 

5.2.13   Western Blotting 

Western Blotting was performed to determine relative protein expressions. Cytobuster (200 µl, 

Novagen, San Diego, CA, USA) supplemented with protease and phosphotase inhibitors (Roche, 

Mannheim, Germany) was added to the cells (10 min, 4 ˚C) and centrifuged (13000 x g, 4 ˚C, 10 

min). Protein was quantified using the bicinchoninic acid assay (Sigma, Germany) and standardised 

to 1 mg/ml. Western blotting was conducted as per the method previously described by Nagiah et al 
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(2015) (Nagiah et al., 2015). Membranes were immune-probed with Nrf-2 (ab89443), GPx 

(ab129911), Bcl-2 (CS2827), and c-PARP (CS9541) primary antibodies (1:1000). Anti-rabbit (sc-

2054) or anti-mouse (ab97046) were the secondary antibodies used (1:5,000). Horse radish 

peroxidase chemiluminescence detector (Bio-Rad) and enhancer solution were used for the antigen-

antibody complex and the signal was detected with the Alliance 2.7 image documentation system 

(UViTech). To correct for loading error and to normalise relative protein expression, β-actin was 

assessed (A3854; 1:5000, Sigma, St Louis, MO, USA). The expression of the proteins were 

analysed with UViBand Advanced Image Analysis software v12.14 (UViTech) and data was 

expressed as relative band density (RBD) and fold change. 

 

5.2.14   Quantitative PCR  

Total RNA was isolated using an in-house protocol (Chuturgoon et al., 2014). RNA was quantified 

(Nanodrop 2000, ThermoScientific, South Africa) and standardised (200 ng/ml). A reaction volume 

(10 µl) containing RNA template (2 µl), 5X iScript™ reaction mix (2 µl), iScript reverse 

transcriptase (0.5 µl) and nuclease free water (5.5 µl) was used to synthesize cDNA (iScript™ 

cDNA Synthesis kit, BioRad, 107e8890). Thermocycler conditions were 25 ˚C for 5 min, 42 ˚C for 

30 min, 85 ˚C for 5 min and a final hold at 4 ˚C. 

Gene expression of SOD2 [Sense 5ˊ-GAGATGTTACACGCCCAGA TAGC-3ˊ; Antisense 5-

AATCCCCAGCAGTGGAATAAGG-3ˊ(57 ˚C)], CAT [Sense 5ˊ-TAAGACTGACCAGGGCATC-

3ˊ; Antisense 5ˊ-CAACCTTGGTGAGATCGAA- 3ˊ(58 ˚C)], GPx [Sense 5ˊ-

GACTACACCCAGATGAACGAGC- 3ˊ; Antisense 5ˊ-CCCACCAGGAA CTTCTCAAAG- 3ˊ(58 

˚C)], Nrf-2 (forward 5ˊ-AGTGGATCTGCCAACTACTC-3 ;́ reverse 5ˊ-

CATCTACAAACGGGAATGTCTG-3ˊ (58 ˚C)), oxoguanine DNA glycosylase (OGG-1) (forward 

5ˊ-GCATCGTACTCTAGCCTCCAC-3ˊ; reverse 5ˊ-AGGACTTTGCTCCCTCCAC-3ˊ (60 ˚C)) 

and c-myc (forward 5’-AGCGACTCTGAGGAGGAACAAG-3’; reverse 5’-

GTGGCACCTCTTGAGGACCA-3’ (56 ˚C)) were evaluated using the iQ™ SYBR® Green PCR 

kit (Bio-Rad; 170e880). The final reaction volume was 10.5 µl [6.25 µl 5 X iScript reaction mix, 

0.5 µl sense primer, 0.5 µl anti-sense primer, 3.25 µl nuclease-free water, and 2 µl cDNA sample 

(triplicate wells per sample)] and all assays were carried out using CFX Touch™Real Time PCR 

Detection System (Bio-Rad). The reaction included an initial denaturation (95 ˚C, 4 min), followed 

by 37 denaturation cycles (95 ˚C, 15 sec), annealing (primer specific temperature, 40 sec), extension 

(72 ˚C, 30 sec) and a plate read for 37 cycles. Under the same conditions, the β-actin [Sense 5ˊ-
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TGACGGGTCACCCACACTGTGCCCAT-3ˊ; Antisense 5ˊ-

CTAGAAGCATTTGCGGTGGACGATGGAGGG-3ˊ] and 18S: (Sense: 5’-

ACAGGGACAGGATTGACAGA-3’; Antisense: 5’-CAAATCGCTCCACCAACCTAA-3’) 

housekeeping genes were run. Using the method described by Livak and Schmittgen (2001), qPCR 

results were analyzed, represented as fold change (2-ΔΔCT) relative to the house keeping genes (β-

actin and 18S) and control (Livak and Schmittgen, 2001). 

 

5.2.15   Statistical Analysis  

Statistical analysis was performed using the GraphPad Prism (v5) statistical analysis software. 

Statistical significance was set at 0.05 and comparisons were made using unpaired t tests with 

Welch correction.  

 

5.3 Results  

5.3.1 Chemical composition of C. asiatica (C and C3) 

The GC-MS performance of C and C3 was recorded (Supplementary information: Figure 4 and 5). 

Chemical composition of C and C3 constituents were identified after comparison with those 

available in the NIST computer library. The supplementary information illustrates the organic 

compounds that were identified in C. asiatica leaf extract namely caranol, oxymetholone methanol 

adduct, vitamin E, tocopherol and terpenes (phytosterol and stigmasterol) (Supplementary 

information: Table 1 and 2).  

 

5.3.2 Cytotoxicity of C and C3 in THP-1 cells 

The WST-1 assay showed that both C and C3 decreased THP-1 viability with IC50 values of 1.4 

mg/ml and 0.618 mg/ml respectively (Figure 5.1). These IC50 concentrations were used in all 

subsequent experiments. 
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Figure 5.1: C. asiatica crude extract [0.2 – 3 mg/ml (A)] and C3 [0.2 – 3 mg/ml (B)] induced a 

dose dependent decrease in THP-1 cell viability (n = 6); IC50 values of 1.4 mg/ml (C) and 0.618 

mg/ml (C3). 

 

5.3.3 The effect of C and C3 on oxidative stress and antioxidant mechanisms in THP-1 cells 

The effect of C and C3 on lipid peroxidation and IROS production were assessed by the TBARS 

and DCF assays. MDA was significantly increased by C (2.621-fold, p < 0.0001) as compared to C3 

(1.108-fold, p = 0.0045) relative to their respective controls (Figure 5.2A). Interestingly, IROS was 

increased to a greater extent by C3 (3.482-fold, p = 0.0003) than C (1.415-fold, p = 0.0175) 

compared to their controls (Figure 5.2B). Further the overall antioxidant effects of C and C3 were 

determined by measuring GSH and GSSG concentrations, Nrf-2 and GPx protein expressions as 

well as Nrf-2, GPx, SOD and CAT gene expressions. Intracellular GSH was slightly increased by C 

(p = 0.0049) and C3 (Figure 5.2C, p < 0.0001), however GSSG concentration was increased by C 

(1.561-fold p = 0.0095) whereas decreased by C3 (2.883-fold, p = 0.001) compared to their controls 

(Figure 5.2D).  
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Figure 5.2: Levels of MDA (A), IROS (B), GSH (C) and GSSG (D) in LPS stimulated and C. 

asiatica (C and C3) treated THP-1 cells (n = 3), (Values expressed as mean ± SD, * p < 0.05, ** p < 

0.005, *** p < 0.0001, compared to controls). 

 

Interestingly, Nrf-2 protein expression was increased by C (1.503-fold, Figure 5.3A) whereas 

decreased by C3 (1.639-fold, Figure 5.3B) relative to the controls (p < 0.0005). Both C and C3 

significantly decreased GPx protein expression. Notably, C3 (2.118-fold, Figure 5.3B, p < 0.0001) 

decreased GPx to a greater extent than C (1.281-fold, Figure 5.3A, p = 0.0005) compared to the 

controls.   
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Figure 5.3: Protein expression of Nrf-2 and GPx in LPS stimulated C (A) and C3 (B) treated THP-

1 cells (n = 3), (Values expressed as mean ± SD, *** p < 0.0001, compared to controls). 

 

The C extract significantly increased the antioxidant gene expression of Nrf-2 (1.632-fold), GPx 

(6.249-fold) and CAT (4.853-fold) (p < 0.0001) while SOD (1.096-fold, p = 0.1294) remained 

unchanged relative to the control (Figure 5.4A). Interestingly, C3 on the other hand elicited the 

opposite effect by significantly suppressing Nrf-2 (1.149-fold), GPx (21.98-fold), SOD (5.579-fold) 

and CAT (2.876-fold) gene expression compared to control (Figure 5.4B, p < 0.0001). 
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Figure 5.4: Gene expression of Nrf-2, GPx, SOD and CAT in LPS stimulated C (A) and C3 (B) 

treated THP-1 cells (n = 3), (Values expressed as mean ± SD, *** p < 0.0001, compared to controls). 

 

5.3.4 C and C3 induced apoptotic cell death in THP-1 cells 

The JC-1 and ATP assays were used to determine Δψm and ATP levels respectively. Percentage 

Δψm was increased to a greater extent by C3 (2.896-fold) than C (1.891-fold) relative to the controls 

(Figure 5.5A, p < 0.0001). ATP levels were decreased by C and C3 compared to the control (Figure 

5.5B, p < 0.0001).  

 

 

Figure 5.5: Mitochondrial depolarisation (A) and ATP levels (B) in LPS stimulated and C. asiatica 

(C and C3) treated THP-1 cells (n = 3), (Values expressed as mean ± SD, *** p < 0.0001, compared 

to controls).  
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The initiation and execution of apoptosis was evaluated by measuring caspase activity. The C 

extract decreased caspase-8 (1.108-fold, p = 0.0168) whilst significantly increasing caspase -9 

(1.311-fold) and -3/7 (1.816-fold) activity compared to the control (Table 5.1, p < 0.0001). 

Interestingly, C3 significantly elevated caspase activity [-8 (1.449-fold), -9 (2.142-fold) and -3/7 

(2.763-fold)] to a greater extent than C, relative to the control (p < 0.0001, Table 5.1).  

 

Table 5.1: Caspase (-8, -9, -3/7) activities in LPS stimulated C and C3 treated THP-1 cells (n = 3), 

(Values expressed as mean ± SD, * p < 0.05, *** p < 0.0001, compared to controls). 

 Caspase-8      

(RLU x 10
 5 

) 

Caspase-9      

(RLU x 10
 5 

) 

Caspase-3/7   

(RLU x 10
 5 

) 

Cct 0.349 ± 0.002 3.460 ± 0.035 0.265 ± 0.001 

C 0.315 ± 0.014 * 4.535 ± 0.040 *** 0.481 ± 0.001 *** 

Cct3 0.331 ± 0.003  4.640 ± 0.139  0.260 ± 0.012 

C3 0.479 ± 0.007 *** 9.940 ± 0.300 *** 0.717 ± 0.006 *** 

RLU – Relative light units 

 

 

Cell death was further investigated by assessing Bcl-2 and c-PARP (24 kD) protein expression. Bcl-

2 protein expression was decreased by both C (1.279-fold, p = 0.0001) and C3 (1.295-fold, p = 

0.0006) relative to their respective controls (Figure 5.6A-B). Interestingly, C slightly decreased c-

PARP (1.073-fold, p = 0.0003) whilst C3 significantly increased c-PARP (1.619-fold, p < 0.0001) 

compared to their respective controls (Figure 5.6A-B). 
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Figure 5.6: Protein expression of Bcl-2 and c-PARP (24 kD) in LPS stimulated C (A) and C3 (B) 

treated THP-1 cells (n = 3), (Values expressed as mean ± SD, *** p < 0.0001, compared to controls). 

 

 

The effect of C and C3 on DNA damage was evaluated by the SCGE assay. CTL’s were 

significantly increased by both C (1.596-fold) and C3 (1.730-fold) relative to their respective 

controls (p < 0.0001, Figure 5.7). 

 

 



176 
 

 

Figure 5.7: CTL’s in LPS stimulated C and C3 treated THP-1 cells (n = 3), (Magnification: x 10, 

Values expressed as mean ± SD, *** p < 0.0001, compared to controls). 

 

Interestingly, c-myc gene expression was decreased by C (4.149-fold, p < 0.0001) whilst increased 

by C3 (1.579- fold, p = 0.0019) relative to the controls (Figure 5.8A-B). The OGG-1 gene 

expression was not significantly altered by C (p = 0.0508) whereas significantly decreased by C3 

(13.69-fold, p = 0.0002) compared to the controls (Figure 5.8A-B).  

 

 

Figure 5.8: Gene expression of c-myc (A) and OGG-1 (B) in LPS stimulated C and C3 treated 

THP-1 cells (n = 3), (Values expressed as mean ± SD, ** p < 0.005, *** p < 0.0001, compared to 

controls). 

 



177 
 

5.4 Discussion 

C. asiatica leaves possess high free radical scavenging activity [superoxide radical (86.4%), DPPH 

radical (92.7%)] and inhibits linoleic acid peroxidation (98.2%) (Vimala et al., 2003). Our findings, 

however, showed that C. asiatica (C and C3) increased lipid peroxidation and IROS in THP-1 cells. 

Interestingly, IROS was increased to a greater extent by C3 than C.  

 

GSH protects against cellular damage by detoxifying ROS (Perricone et al., 2009). During ROS 

detoxification, GSH is oxidised to GSSG and the intracellular ratio of GSH/ GSSG is used as a 

predictor of the antioxidant capacity (Perricone et al., 2009). In THP-1 cells, both C and C3 

minimally increased GSH levels, however C increased GSSG whilst C3 decreased it. The crude 

extract increased the antioxidant capacity as evidenced by the increased GSSG levels whilst C3 

elicited the opposite effect by decreasing it. 

 

Nrf-2 is the master regulator of enzymes responsible for GSH production and utilization through the 

expression of glutathione S-transferases and GPx (Gorrini et al., 2013; Harvey et al., 2009). During 

GSH detoxification of ROS, GPx catalyses the conversion of GSH to GSSG (Gorrini et al., 2013). 

In C treated THP-1 cells, protein expression of Nrf-2 was increased whilst GPx was decreased 

indicating the utilization of GSH to combat ROS. However in C3 treated THP-1 cells, protein 

expression of Nrf-2 and GPx were decreased. Diminished Nrf-2 expression decreases GSH 

utilization and GPx expression ultimately dampening the antioxidant response.  In C3 treated THP-

1 cells, the diminished antioxidant capacity corresponds with the substantially elevated IROS levels. 

A decrease antioxidant capacity combined with radiotherapy/ chemotherapeutic drugs may enhance 

tumour cell elimination by ROS induced cell death (Gorrini et al., 2013). 

 

Under normal cellular conditions Nrf-2 is anti-cancerous due to its activation of cytoprotective and 

detoxification genes which protect cells against oxidative damage and cancer initiation (Rushworth 

et al., 2012). However, the Nrf-2 pathway plays an essential role in cancer cell survival by 

increasing antioxidant defences, decreasing apoptosis and enhancing cancer cell resistance to 

chemotherapeutic drugs (Rushworth et al., 2012). In THP-1 cells, C increased Nrf-2, GPx and CAT 

gene expression whereas C3 decreased Nrf-2, GPx, SOD and CAT gene expression, indicating that 

the antioxidant response was elevated by C and diminished by C3. The increased antioxidant gene 

expression by C is consistent with a previous study by Jayashree et al (2003) that showed C. 
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asiatica crude methanol extract substantially increased antioxidant enzymes (SOD, CAT and GPx) 

in lymphoma bearing mice (Jayashree et al., 2003). 

 

Cancer cells possess a high antioxidant capacity to counteract excessive ROS and allow for tumour 

survival and proliferation (Gorrini et al., 2013). In most acute myeloid leukaemia (AML) patients, 

Nrf-2 stimulates the up-regulation of cytoprotective and detoxification genes which function in 

reducing apoptosis (Rushworth et al., 2012). The growth advantage and chemoresistance of AML 

cells may be a consequence of Nrf-2 activated genes (Rushworth et al., 2012). Targeting antioxidant 

mechanisms may be a promising therapeutic strategy to specifically kill cancer cells without 

damaging normal cells (Gorrini et al., 2013). We demonstrated that C3 did in fact diminish 

antioxidant responses in THP-1 cells.  

 

Cancer cells require high levels of ATP for cellular proliferation (Gorrini et al., 2013). However, 

uncontrolled energy production leads to increased ROS which can then induce cellular damage and 

cell death (Gorrini et al., 2013). Previous studies showed that C. asiatica extracts inhibited breast 

(MCF-7) and liver (HepG2) cancer cell proliferation by inducing apoptosis (Babykutty et al., 2008; 

Hussin et al., 2014). Cell death may occur through various pathways including apoptosis, necrosis 

and autophagy. ROS leads to the loss of transmembrane potential and release of pro-apoptotic 

proteins (Wong, 2011) ultimately activating the mitochondrial apoptotic pathway. In THP-1 cells, 

increased ROS led to increased Δψm by both C and C3 ultimately inducing caspase activation. C3 as 

compared to C significantly increased Δψm, a possible consequence of a decreased antioxidant 

response. The C extract activated the intrinsic apoptotic pathway with an increase in caspase -9 and 

-3/7 activities. C3 was more effective in inducing apoptosis as evidenced by increased caspase -8, -

9 and -3/7 activities, strongly suggesting that both the intrinsic and extrinsic apoptotic pathways 

were activated. The mitochondrial protein gradient couples the electron transport chain (ETC) to 

produce ATP (Marchi et al., 2012). However, an increase in Δψm leads to the cessation of the ETC 

and uncoupling of ATP production (Marchi et al., 2012). Both C and C3 significantly decreased 

ATP levels consistent with the increased Δψm. In addition, the activation of ATP dependent 

caspases may have contributed to the decreased ATP levels.  

 

Mitochondrial integrity is regulated by the Bcl-2 family proteins, including anti-apoptotic members 

(Bcl-2, Bcl-xL, and Mcl-1) and pro-apoptotic members (Bax and Bak) (Jiang et al., 2011). Bax 
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activation results in membrane permeabilization and subsequent release of pro-apoptotic proteins 

(Yang et al., 2012). Transcription factor p53 positively regulates Bax expression; however in THP-1 

cells the p53 gene is deleted therefore diminishing the pro-apoptotic activates of Bax. Taken 

together, both C and C3 activate THP-1 apoptosis independent of p53 and Bax. Anti-apoptotic 

protein, Bcl-2 is responsible for transmembrane potential stabilization, reduces membrane 

permeability, and inhibits pro-apoptotic protein release (Jiang et al., 2011). Both C and C3 

decreased the relative protein expressions of Bcl-2. The decrease in Bcl-2 protein expression 

diminishes Bcl-2 anti-apoptotic functions ultimately promoting apoptosis through increased Δψm 

and release of pro-apoptotic proteins. 

 

Caspase-3/7 activates cytoplasmic endonucleases which are responsible for degrading nuclear 

material (Elmore, 2007). In THP-1 cells, both C and C3 increased DNA fragmentation. Cellular 

ATP is essential for apoptotic cell death therefore PARP-1 is cleaved and inactivated by caspases 

(Bouchard et al., 2003). Our results indicated that both C and C3 increased caspase-3/7 activity 

which led to PARP-1 cleavage. PARP-1 fragments (89 and 24 kD) play essential roles in apoptotic 

cell death (Bouchard et al., 2003). The 24 kD fragment binds to DNA strand breaks and RNA 

transcripts however cannot be poly(ADPribosyl)ated and released (Bouchard et al., 2003). As a 

result, DNA repair, transcription and poly(ADP-ribose) synthesis is inhibited (Bouchard et al., 

2003). C3 increased 24 kD PARP protein expression, suggesting that C3 decreases DNA repair 

ultimately promoting THP-1 apoptosis. 

 

Increased ROS causes oxidative DNA damage leading to the formation of DNA base lesions such 

as 8-Oxo-7,8-dihydroguanine (8-oxoG) (Hooten et al., 2011). A glycosylase, OGG-1 is an 

important DNA repair enzyme which recognises and removes 8-oxoG lesions (Hooten et al., 2011). 

Our findings demonstrated that C3 significantly decreased OGG-1 gene expression in THP-1 cells 

thus decreasing DNA repair.  

 

The proto-oncogene c-myc is a master regulator of cellular metabolism and proliferation (Miller et 

al., 2012). Majority of human cancers have shown elevated c-myc gene expression which increases 

cell growth and differentiation (Miller et al., 2012; Sagun et al., 2006). In tumours, c-myc 

inactivation has been shown to induce apoptotic cell death and tumour regression (Lu et al., 2010). 

In mice, suppression of c-myc has been shown to prevent leukaemia initiation by eliminating 

leukaemia initiation cell activity (Roderick et al., 2014). Additionally, inhibition of c-myc may 
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disrupt cell survival and extensive proliferation associated with leukaemia initiation cell activity 

(Roderick et al., 2014). We demonstrated that the C extract did in fact significantly decrease c-myc 

gene expression. These results are consistent with a study by Hussin et al (2014) indicating C. 

asiatica extract reduced c-myc gene expression in HepG2 cells (Hussin et al., 2014).  

 

c-myc negatively regulates the Nrf-2 antioxidant response by interacting with Nrf-2, decreasing Nrf-

2 stability and increasing Nrf-2 degradation (Levy and Forman, 2010). Additionally, c-myc replaces 

Nrf-2 at the electrophile response element complex and decreases antioxidant gene transcription 

(Levy and Forman, 2010). As a result, c-myc over expression leads to decreased intracellular thiol 

antioxidants, increased intracellular superoxide levels and causes oxidative DNA damage (Sagun et 

al., 2006). In C treated THP-1 cells, increased Nrf-2 protein expression and antioxidant gene 

expression may be a consequence of the decreased c-myc gene expression. C3 on the other hand 

elicited the opposite effect by increasing c-myc gene expression which may have contributed to the 

decreased Nrf-2 protein expression and antioxidant gene expression ultimately increasing ROS-

induced cell death.  

 

5.5 Conclusions  

In THP-1 cells, the antioxidant response was elevated by C whilst diminished by C3. Both C and 

C3 increased IROS, Δψm, caspase activity and DNA fragmentation indicating THP-1 apoptosis. 

Notably, C3 activated apoptosis more effectively than C, which may be related to the decreased 

antioxidant and DNA repair mechanisms.  
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Bridging paragraph:  

 

In the previous manuscript, C increased antioxidant responses while C3 elicited the opposite effect 

by decreasing it. Additionally, both C and C3 elicited anti-proliferative effects in THP-1 cells. 

Notably, C3 more effectively induced THP-1 apoptosis than C, which may have been a 

consequence of the decreased antioxidant response.  

 

Worldwide, lung cancer is the leading cause of cancer-related mortality. Although lung cancer has 

been extensively researched, survival rate of patients have not improved. Since C and C3 

demonstrated anti-proliferative effects in cancerous THP-1 cells. We investigated the antioxidant 

and anti-proliferative/ cytotoxic effects of C and C3 in lung carcinoma (A549) cells.  

 

The following manuscript is entitled Centella asiatica fraction-3 suppresses the Nrf-2 antioxidant 

pathway and enhances ROS mediated cell death in cancerous lung (A549) cells (Supplementary 

information: Appendix 9). In this manuscript, only an IC50 for C3 in A549 cells was determined 

then the antioxidant response signalling and cell death induction were evaluated. The experimental 

techniques conducted are similar to the previous manuscript.   

 

Publication statuses: The manuscript has been accepted for publication in the Journal of Medicinal 

Food.  

Manuscript number: JMF – 2017 – 0005  

 

Please note: The manuscript was formatted for Journal of Medicinal Food, however, the margins, 

font, line spacing, numbering of sections and figures were adjusted for thesis consistency. 
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Abstract 

 

Centella asiatica (C. asiatica) is a tropical medicinal plant commonly used in traditional medicine. 

Medicinal properties of C. asiatica include antioxidant, anti-inflammatory and anti-cancer activity.  

Aim: We investigated the antioxidant and anti-proliferative/ cytotoxic effects of a semi-purified 

fraction-3 of C. asiatica ethanolic leaf extract (C3) in cancerous lung A549 cells.  

 

Methods: C3 was obtained by silica column fractionation and components were identified using 

thin layer chromatography and gas chromatography mass spectrometry. Cytotoxicity of C3 in A549 

cells was evaluated (cell viability assay-WST-1; 24 hours; [0.2–3 mg/ml]) to determine an IC50 

concentration. Intracellular reactive oxygen species (IROS), mitochondrial membrane potential 

(flow cytometry), malondialdehyde (MDA), lactate dehydrogenase (LDH) (spectrophotometry), 

GSH, GSSG, ATP levels, caspase activity (luminometry) and DNA damage (comet assay) were 

evaluated. Protein expression (Nrf-2, p53, Bax, Bcl-2 and HSP-70) and gene expression (Nrf-2, 

GPx, SOD, CAT, c-myc and OGG-1) were quantified by western blotting and qPCR, respectively.                                                          

Results: C3 dose dependently decreased A549 cell viability. The IC50 of C3 increased MDA, IROS, 

mitochondrial depolarisation, LDH, caspase (-8, -9, -3/7) activity, DNA damage, GSH levels, Nrf-2 

protein expression, HSP-70 protein expression and OGG-1 gene expression (p < 0.05). GSSG 

levels, antioxidant (Nrf-2, GPx, SOD) gene expression, p53, Bax and Bcl-2 protein expression were 

decreased by C3 (p < 0.02).                                                                    

Conclusion: C3 diminished the antioxidant gene expression and induced anti-proliferative/ 

cytotoxic effects in A549 cells.  

 

Key words: Centella asiatica, ROS, antioxidants, Nrf-2, caspases, cell death 
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6.1 Introduction  

Worldwide, lung cancer is the leading cause of cancer-related mortality with a 5 year survival rate 

less than 15%. 1 Cancer is characterized by uncontrolled cell growth, dysregulation of apoptosis, 

invasion, angiogenesis and metastasis. 2 Cancerous cells require vast amounts of energy for rapid 

cell proliferation therefore mitochondrial function is accelerated leading to increased reactive 

oxygen species (ROS) production. 3 Under homeostatic conditions, acute low ROS levels are 

involved in many biological processes such as cellular proliferation, differentiation and activation 

of survival pathways.  4, 5 On the other hand, stressful conditions led to acute high ROS levels that 

cause oxidative damage to DNA, lipids and proteins ultimately activating apoptosis. 4, 5 An efficient 

antioxidant defence system is required to combat ROS and maintain cellular homeostasis. 4 

However, tumour cells utilize antioxidant mechanisms such as the nuclear factor erythroid 2-related 

factor 2 (Nrf-2) pathway to enhance malignant cell growth, survival and resistance to 

chemotherapeutic agents. 3  

 

Transcription factor Nrf-2 regulates the expression of antioxidant and cytoprotective genes via the 

antioxidant response element (ARE). 3 Under basal conditions, inhibitory protein, KEAP1 (Kelch-

like ECH-associated protein 1) sequesters Nrf-2 in the cytosol and promotes its degradation. 6 

During stressful conditions such as elevated ROS levels, the oxidation and modification of KEAP1 

allows Nrf-2 to escape degradation and translocate to the nucleus where it binds to ARE, 

subsequently increasing antioxidant gene transcription. 6 Antioxidants prevent oxidative damage to 

cellular components by counteracting increased ROS levels. 7 Nrf-2 activated antioxidants include 

superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). 7 SOD detoxifies 

superoxide radicals into hydrogen peroxide and molecular oxygen. 8 Hydrogen peroxide is further 

detoxified into oxygen and water by GPx and CAT. 8 Maintaining homeostatic ROS levels is 

essential to prevent ROS accumulation, subsequent oxidative stress and cell death. 

 

Cell death may occur through various pathways such as apoptosis, necrosis and autophagy. 

Apoptosis affects individual or clusters of cells whereas necrosis usually affects large fields of cells. 

9 The intrinsic apoptotic pathway leads to pro-apoptotic protein release, apoptosome formation 

(cytochrome c binding Apaf-1 and pro-caspase-9) and caspase-9 activation whereas the extrinsic 

apoptotic pathway is initiated by the interaction between death ligands and death receptors resulting 
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in caspase-8 activation. 10 Initiator caspases (-8, -9) activate executioner caspases (-3/7) 

subsequently activating cytoplasmic endonucleases which degrade nuclear material. 9 

 

For centuries, medicinal plants have been employed for chemo-prevention/ therapy due to their vast 

number of naturally occurring chemicals. 11 In Asian and African countries, about 80% of the 

population depend on complementary and traditional medicine for the treatment and prevention of 

diseases. 11 Medicinal plants contain many phytochemicals that possess anti-cancer and chemo-

preventive properties. 11 The tropical medicinal plant Centella asiatica (C. asiatica) belongs to the 

Apiaceae family and is native to India, China, and South Africa. 12 The common names of C. 

asiatica include Gotu kola, Asiatic/ Indian pennywort and Tiger herb. 12 In Ayurvedic and Chinese 

traditional medicines, C. asiatica is frequently used due to its many medicinal properties including 

antioxidant, anti-inflammatory, anti-tumour and cytotoxic activity. 12 C. asiatica contains a vast 

range of compounds such as triterpene saponosides (eg. asiatic acid, madecassic acid, asiaticoside 

etc), flavonoid derivatives (quercetin, kaempferol, patuletin and rutin), vitamins, minerals, 

polysaccharides, sterols and phenolic acids. 12 The antioxidant activity of C. asiatica may be 

attributed to its high phenolic and flavonoid content. 13-15 C. asiatica extracts (aqueous and 

methanolic) have also exhibited anti-proliferative/ cytotoxic activity against a number of cancerous 

cell lines. 16, 17 However, C. asiatica aqueous extract was not cytotoxic in human lung carcinoma 

(A549). 16  

 

Even though lung cancer has been extensively researched, our understanding and therapies 

enhanced, the survival rate of lung cancer patients hasn’t improved over the past twenty years. 18 

Therefore, there is an urgent requirement for combination therapies that inhibit cancer cell 

antioxidant mechanisms and enhance the toxicity of radio/ chemo therapy, ultimately increasing 

tumour cell elimination. 18 We hypothesized that the inhibition of the Nrf-2 antioxidant pathway 

may enhance ROS induced cell death. This study aimed to investigate the effect of C. asiatica semi-

purified fraction-3 (C3) on antioxidant response signalling and cell death induction in A549 cells.  
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6.2 Materials and Methods 

6.2.1 Materials 

C. asiatica leaves were collected in March 2011 (collectors number: Immelman 411) from the 

Eastern Cape [Langeni forest, roadside (S31°28.135’, E28°32.681’)], South Africa (SA) and 

identified by Dr. Kathleen Immelman (Department of Botany at the Walter Sisulu University, SA). 

Voucher specimens were deposited at the KEI herbarium (13979). A549 cells were obtained from 

Highveld Biologicals (Johannesburg, SA). Solvents [Dichloromethane (DCM), Hexane (HEX), 

ethyl acetate (EA), methanol, Dimethyl sulphoxide (DMSO)] sulphuric acid, silica gel 60, thin layer 

chromatography (TLC) silica gel 60 sheets and 4-methoxybenzaldehyde were purchased from 

Merck (Johannesburg, SA). Eagle’s minimum essential medium (EMEM), foetal calf serum (FCS), 

penstrepfungizone (PS) and L-glutamine (L-GLUT) were acquired from Whitehead scientific (Cape 

Town, SA). The 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate 

(WST-1) cell proliferation reagent and lactate dehydrogenase (LDH) cytotoxicity detection reagent 

were purchased from Roche (Mannheim, Germany or Johannesburg, SA). The 5,5’,6,6’–

tetrachloro-1,1’,3,3’ tetraethylbenzimidazolcarbocyanine iodide (JC-1) kit and the 2ˊ, 7ˊ-

dichlorodihydrofluorescein diacetate (H2DCF-DA) reagent were purchased from BD Biosciences 

(Johannesburg, SA). Caspase (-8, -9, -3/7), adenosine triphosphate (ATP) and glutathione (GSH) 

kits were acquired from Promega (Madison, USA). Western blot reagents were purchased from 

Bio-Rad (Johannesburg, SA) and qPCR primers were obtained from Inqaba Biotech.  

 

 

6.2.2 Plant Extraction and Fractionation 

The plants official name is Centella asiatica (L.) Urb and has been confirmed by using the plant list 

(www.theplantlist.org). The local names are icudwane (Zulu) and varkoortjies (Afrikaans). The 

English names are tiger herb and pennywort. C. asiatica leaves were dried and milled. Ethanol 

(200–350 ml) was added to milled plant material (10–30 g) and extracted overnight by shaking (4 x 

g, 37˚C). Ethanol extracts (± 20 g) were filtered, rotor evaporated, dried (37˚C) and stored (4˚C). 

The yield of dried extract as a percentage weight of dried plant was approximately 65%. Silica 

column fractionation was used to separate C. asiatica compounds based on their polarity. A manual 

column (height: 85 cm, diameter: 17 cm) was assembled by inserting a tap (25 mm), a cotton wool 

stop, a thin layer of sand, carefully pouring silica mixed with DCM: HEX (50: 50) into a column 

and allowing the silica to set overnight. C. asiatica crude extract (17 g) was dissolved in DCM: 

http://www.theplantlist.org/
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HEX (70: 30), however a portion of the crude extract did not dissolve in DCM: HEX (70: 30). This 

portion of the crude extract was further dissolved in methanol and added to the crude extract that 

dissolved in DCM: HEX (70: 30). Thereafter, the total C. asiatica crude extract was roto 

evaporated, layered onto the silica and 50 ml fractions were collected using a series of solvent 

systems [DCM: HEX (70: 30), DCM: EA (70: 30), DCM: EA (50: 50), DCM: EA: methanol (50: 

40: 10), DCM: EA: methanol (30: 50: 20), EA: methanol (70: 30), EA: methanol (40: 60), EA: 

methanol (20: 80), methanol (100)]. The 50 ml fractions were boiled to allow evaporation of excess 

solvent and TLC was used to determine spot patterns and solvent changes. A total of 766 fractions 

were collected and TLC analysis revealed fractions with similar spot patterns which were combined 

and pooled into one fraction. Fractionation of C. asiatica yielded 13 pooled fractions. For all 

subsequent experiments, C. asiatica crude leaf extract (C) and C3 were used. 

 

6.2.3 Gas chromatography mass spectrometry (GC-MS) 

C. asiatica (C and C3) chemical composition was analysed by GC-MS (Hewlett-Packard, USA) and 

the GCD-HP1800A system was used. Ionization energy (70 eV) was used for the detection of GC-

MS and the detection was passed under high vacuum (10-4 to10-8 torr). Helium gas was used for 

the analysis at a constant flow rate (1 mL/min). The mass transfer line and injector temperature 

were fixed at 280 and 250 ˚C. The bioactive compounds which are present in C. asiatica (C and C3) 

were matched with the NIST computer library and reported.  

 

6.2.4 Tissue Culture 

A549 cells were grown in the appropriate tissue culture conditions in a 25 or 75 cm3 tissue culture 

flasks (37˚C, 5% CO2). The A549 cells were cultured in EMEM supplemented with 10% FCS, 1% 

PS and 1% L-GLUT. Cells were seeded, allowed to attach overnight and for all subsequent assays 

the cells were treated at 80% confluency. 

 

6.2.5 Cell Viability Assay  

Cytotoxicity of C and C3 to A549 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). A549 cells (20,000 cells/well, 96 well plate, in triplicate wells) were allowed to 

attach overnight (37˚C, 5% CO2). At 80% confluency, cells were washed twice with 0.1 M 

phosphate buffer saline (PBS) before exposure to C and C3 (0.2–3 mg/ml) for 24 hours (h) (37˚C, 
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5% CO2). Controls received media containing DMSO (0.750%). Following 24 h treatment, cells 

were washed twice with 0.1 M PBS, growth media (100 µl/well), WST-1 reagent (10 µl/well) was 

added and plates incubated (37˚C, 5% CO2, 3 h). The optical density was measured at 450 nm (620 

nm reference wavelength) with a BIO-TEK µQuant spectrophotometer (Analytical and Diagnostic 

Products, SA). This experiment was conducted on two separate occasions before using GraphPad 

Prism to calculate the half maximal inhibitory concentration (IC50) [percentage cell viability vs log 

concentration of C. asiatica (C and C3)]. C. asiatica crude extract did not influence A549 cell 

viability. However, an IC50 of 1.437 mg/ml was obtained in C3 treated A549 cells and was used in 

all subsequent experiments. Control treatments were represented by an equal amount of DMSO 

(0.359%) in growth media without C3. 

 

6.2.6 Treatment of cells  

A549 cells (2 x 105 cells/ml) were aliquoted into 75 cm3 tissue culture flask and allowed to attach 

overnight (37˚C, 5% CO2). At 80% confluency, cells were washed twice with 0.1 M PBS before 

exposure to C3 (1.437 mg/ml) for 24 h (37˚C, 5% CO2). Thereafter, cells were washed twice with 

0.1 M PBS and were used to conduct the JC-1, 20, 70-dichlorofluorescein (DCF), GSH, GSSG, 

caspase (-8, -9, -3/7) activity, ATP, comet assays; as well as protein and RNA isolation. The 

experiments were conducted independently two times for all subsequent assays.  

 

6.2.7 Thiobarbituric acid assay 

The thiobarbituric acid assay (TBARS) measures malondialdehyde (MDA), the end product of lipid 

peroxidation and was conducted as per the method previously described by Phulukdaree et al 

(2010). 19 Optical density was measured at 532 nm (600 nm reference wavelength) with a BIO-TEK 

µQuant spectrophotometer. Malondialdehyde concentration was calculated by dividing the optical 

density (OD) for each sample by the absorption coefficient (156 mM-1).  

  

6.2.8 The DCF assay 

The DCF assay measures intracellular ROS (IROS) and was conducted as per the method 

previously described by Nagiah et al (2015). 20 Events were gated and the fluorescence measured on 

FL-1 channel (525 nm) of the Accuri™C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ, 
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USA). A total of 50,000 events were acquired and analyzed using the CFlow Plus Software (BD 

Biosciences, San Jose, CA, USA). 

  

6.2.9 The GSH assay 

The GSH-GloTM GSH-GloTM assay (Promega, Madison, WI, USA) was used to measure GSH and 

GSSG levels. The assay was conducted as per the method previously described by Nagiah et al 

(2015). 20 Luminescence was measured on a ModulusTM microplate luminometer (Turner 

BioSystems, Sunnyvale, CA, USA). GSH and GSSG concentrations (µM) were determined by 

extrapolation from a standard curve. 

 

6.2.10  The JC-1 Mitoscreen assay 

The JC-1 assay measures percentage mitochondrial depolarisation (Δψm) and was conducted as per 

the method previously described by Nagiah et al (2015). 20 Scatter plots of 50,000 events per 

sample were acquired using the Accuri™C6 flow cytometer and analyzed using the CFlow Plus 

Software. 

 

6.2.11  The LDH assay 

The LDH cytotoxicity detection kit (Roche) was used to measure cell damage by C3. Stress 

compromises cell membrane integrity and leads to the leakage of LDH from cells. LDH activity in 

the supernatant (100 μl/ well; triplicate wells) was quantified by addition of LDH reagent (100 μl/ 

well) and incubation (25 min, RT). OD was measured at 500 nm with a BIO-TEK µQuant 

spectrophotometer. Results are represented as mean OD. 

 

6.2.12  Caspase and ATP assays 

Caspase activities and ATP levels were determined using the Caspase-Glo®3/7, -8, -9 and ATP 

assay kits (Promega, Madison, WI, USA). Reagents were reconstituted according to the 

manufacturer’s instructions. Cells (50 µl/well, 2 x 105 cells/ml) were added into triplicate wells of a 

microtitre plate for each assay, thereafter caspase -3/7, -8, -9 and ATP reagents (25 µl/well) were 
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added into appropriate wells. Plates were incubated (30 min, RT) in the dark. Luminescence was 

measured on a ModulusTM microplate luminometer and expressed as relative light units (RLU).   

  

6.2.13   Single cell gel electrophoresis (SCGE) or COMET assay 

The SCGE assay was performed to assess DNA fragmentation and was conducted as per the 

method previously described by Singh et al (1988). 21 Cells were stained with GR red (1µl, 1000x) 

instead of ethidium bromide. Slides were viewed using an Olympus IX7I microscope with 510–560 

nm excitation and 590 nm emission filters (Wirsam Scientific, Johannesburg, SA). Images from 

triplicate slides per treatment were captured. Comet tail lengths (CTL’s) of 50 comets per treatment 

were measured using the Soft imaging system (Life Science - ©Olympus Soft Imaging Solutions 

v5) and average CTL’s were calculated (μm). 

 

6.2.14   Western Blotting 

Western Blotting was performed to determine relative protein expressions. Cytobuster (200 µl, 

Novagen, San Diego, CA, USA) supplemented with protease and phosphotase inhibitors (Roche, 

Mannheim, Germany) was added to the cells (10 min, 4˚C) and centrifuged (13000 x g, 4˚C, 10 

min). Protein was quantified using the bicinchoninic acid assay (Sigma, Germany) and standardised 

to 1 mg/ml. Western blotting was conducted as per the method previously described by Nagiah et al 

(2015). 20 Membranes were immune-probed with Nrf-2 (ab89443), p53 (CS9289), Bax (CS5023), 

Bcl-2 (CS2827), heat shock protein (HSP)-70 (CS4872) primary antibodies (1:1000, Cell 

Signalling, Danvers, USA). Anti-rabbit (sc-2054) or anti-mouse (ab97046) were the secondary 

antibodies used (1:5,000). Horse radish peroxidase chemiluminescence detector (Bio-Rad) and 

enhancer solution were used for the antigen-antibody complex and the signal was detected with the 

Alliance 2.7 image documentation system (UViTech). To correct for loading error and to normalise 

relative protein expression, β-actin was assessed (A3854; 1:5000, Sigma, St Louis, MO, USA). The 

expression of the proteins were analysed with UViBand Advanced Image Analysis software v12.14 

(UViTech) and data was expressed as relative band density (RBD) and fold change. 
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6.2.15   Quantitative PCR  

Total RNA was isolated using an in-house protocol. 22 RNA was quantified (Nanodrop2000, 

ThermoScientific, South Africa) and standardised (800 ng/ml). A reaction volume (10 µl) 

containing RNA template (2 µl), 5X iScript™ reaction mix (2 µl), iScript reverse transcriptase (0.5 

µl) and nuclease free water (5.5 µl) was used to synthesize cDNA (iScript™ cDNA Synthesis kit, 

BioRad, 107e8890). Thermocycler conditions were 25˚C for 5 min, 42˚C for 30 min, 85˚C for 5 

min and a final hold at 4˚C. 

Gene expression of SOD2 [Sense 5ˊ-GAGATGTTACACGCCCAGA TAGC-3ˊ; Antisense 5-

AATCCCCAGCAGTGGAATAAGG-3ˊ(57˚C)], CAT [Sense 5ˊ-TAAGACTGACCAGGGCATC-

3ˊ; Antisense 5ˊ-CAACCTTGGTGAGATCGAA- 3ˊ(58˚C)], GPx [Sense 5ˊ-

GACTACACCCAGATGAACGAGC- 3ˊ; Antisense 5ˊ-CCCACCAGGAA CTTCTCAAAG- 

3ˊ(58˚C)], Nrf-2 (forward 5ˊ-AGTGGATCTGCCAACTACTC-3ˊ; reverse 5ˊ-

CATCTACAAACGGGAATGTCTG-3ˊ (58˚C)), oxoguanine DNA glycosylase (OGG-1) (forward 

5ˊ-GCATCGTACTCTAGCCTCCAC-3ˊ; reverse 5ˊ-AGGACTTTGCTCCCTCCAC-3ˊ (60˚C)) and 

c-myc (forward 5’-AGCGACTCTGAGGAGGAACAAG-3’; reverse 5’-

GTGGCACCTCTTGAGGACCA-3’ (56˚C)) were evaluated using the iQ™ SYBR® Green PCR 

kit (Bio-Rad; 170e880). The final reaction volume was 10.5 µl [6.25 µl 5X iScript reaction mix, 0.5 

µl sense primer, 0.5 µl anti-sense primer, 3.25 µl nuclease-free water, and 2 µl cDNA sample 

(triplicate wells per sample)] and all assays were carried out using CFX Touch™Real Time PCR 

Detection System (Bio-Rad). The reaction included an  initial denaturation (95˚C, 4 min), followed 

by 37 denaturation cycles (95˚C, 15sec), annealing (primer specific temperature, 40sec), extension 

(72˚C, 30sec) and a plate read for 37 cycles. Under the same conditions, the β-actin [Sense 5ˊ-

TGACGGGTCACCCACACTGTGCCCAT-3ˊ; Antisense 5ˊ-

CTAGAAGCATTTGCGGTGGACGATGGAGGG-3ˊ] and 18S: (Sense: 5’-

ACAGGGACAGGATTGACAGA-3’; Antisense: 5’-CAAATCGCTCCACCAACCTAA-3’) 

housekeeping genes were run. Using the method described by Livak and Schmittgen, qPCR results 

were analyzed, represented as fold change (2-ΔΔCT) relative to the house keeping genes (β-actin and 

18S) and control. 23 
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6.2.16   Statistical Analysis  

Statistical analysis was performed using the GraphPad Prism (v5) statistical analysis software. 

Statistical significance was set at 0.05 and comparisons were made using unpaired t tests with 

Welch correction. 

 

6.3 Results  

6.3.1 Chemical composition of C. asiatica (C and C3) 

The GC-MS chromatograms of C and C3 were recorded and presented in Supplementary Figures 4 

and 5. Chemical composition of C and C3 constituents were identified after comparison with those 

available in the NIST computer library. The organic compounds that were identified in C. asiatica 

leaf extract namely caranol, oxymetholone methanol adduct, vitamin E, tocopherol and terpenes 

(phytosterol and stigmasterol) (Supplementary information: Table 1 and 2). 

 

6.3.2 Cytotoxicity of C3 against A549 cells 

The WST-1 assay showed that A549 cell viability was not significantly altered by C however dose 

dependently decreased by C3 with an IC50 value of 1.437 mg/ml (Figure 6.1). The IC50 

concentration was used in all subsequent experiments. 

 

 

Figure 6.1: C. asiatica crude extract [0.2 – 3 mg/ml (A)] did not influence A549 cell viability 

whereas purified fraction-3 [0.2 – 3 mg/ml (B)] induced a dose dependent decrease in A549 cell 

viability; IC50 values of 1.437 mg/ml. 
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6.3.3 The effect of C3 on oxidative stress and antioxidant mechanisms in A549 cells 

The effect of C3 on lipid peroxidation and IROS production were assessed by the TBARS and DCF 

assays. C3 significantly increased MDA (1.615-fold) and IROS (2.492-fold) levels (p < 0.0001, 

Figure 6.2A and 6.2B). Further the overall antioxidant effects of C3 were determined by measuring 

the concentration of GSH and GSSG, Nrf-2 protein expression as well as Nrf-2, GPx, SOD and CAT 

gene expression. The level of GSH was increased 1.420-fold (p = 0.0009, Figure 6.2C) whilst 

GSSG was decreased 1.759-fold (p = 0.0102, Figure 6.2D) by C3.  

 

 

Figure 6.2: Levels of MDA (A), IROS (B), GSH (C) and GSSG (D) in C3 treated A549 cells 

(Values expressed as mean ± SD, * p < 0.05, *** p < 0.0001, compared to controls). 
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C3 increased Nrf-2 protein expression 1.359-fold relative to the control (p = 0.0002, Figure 6.3).  

 

 

Figure 6.3: Protein expression of Nrf-2 in C3 treated A549 cells (Values expressed as mean ± SD, 

*** p < 0.0001, compared to the control). 

 

Interestingly, C3 significantly decreased Nrf-2 (1.737-fold), GPx (3.431-fold) and SOD (1.959-fold) 

(p < 0.0001) whilst CAT (1.021-fold, p = 0.0820) gene expression was unchanged compared to the 

control (Figure 6.4). 
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Figure 6.4: Gene expression of Nrf-2, GPx, SOD and CAT in C3 treated A549 cells (Values 

expressed as mean ± SD, *** p < 0.0001, compared to the control). 

 

6.3.4 C3 induced cell death pathways in A549 cells 

The JC-1 and LDH assays were used to determine Δψm and cell membrane permeability 

respectively. C3 significantly increased Δψm 2.279-fold relative to the control (p < 0.0001, Figure 

6.5A). LDH levels were also increased 1.711-fold by C3 compared to the control (p < 0.0001, 

Figure 6.5B). 

 

 

Figure 6.5: Mitochondrial depolarisation (A) and LDH (B) levels in C3 treated A549 cells (Values 

expressed as mean ± SD, *** p < 0.0001, compared to the control). 
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Caspase activity was measured to evaluate the initiation and execution of apoptosis. Semi-purified 

fraction-3 increased caspase [-8, -9, -3/7, p < 0.003] activity approximately 1.2-fold and depleted 

ATP levels (p < 0.0001) compared to the control (Table 6.1). 

 

Table 6.1: Caspase activity (-8, -9, -3/7) and ATP levels in C3 treated A549 cells (Values 

expressed as mean ± SD, ** p < 0.005, *** p < 0.0001, compared to the control). 

 Caspase-8     

(RLU x 10
 5 

) 

Caspase-9     

(RLU x 10
 5 

) 

Caspase-3/7  

(RLU x 10
 5 

) 

ATP              

(RLU x 10
 5 

) 

Control  3.615 ± 0.123 4.300 ± 0.006 0.050 ± 0.0005 14.300 ± 0.468 

C3 4.396 ± 0.204 ** 5.214 ± 0.113  *** 0.063 ± 0.001 *** 0.671 ± 0.003 *** 

 

 

Cell death was further investigated by assessing anti-apoptotic and pro-apoptotic protein expression. 

Protein expression of p53 (2.958-fold), Bax (1.623-fold) and Bcl-2 (1.206-fold) were significantly 

decreased by C3 relative to their respective controls (p < 0.0005, Figure 6.6). On the other hand, C3 

increased HSP-70 protein expression relative to the control (1.157-fold, p = 0.0007, Figure 6.6). 
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Figure 6.6: Protein expression of p53, Bax, Bcl-2 and HSP-70 in C3 treated A549 cells (Values 

expressed as mean ± SD, ** p < 0.005, *** p < 0.0001, compared to the control). 

 

The SCGE assay was used determine the amount of DNA damage caused by C3. CTL’s were 

increased 1.664-fold compared to the control (p < 0.0001, Figure 6.7). 

 

               

 

Figure 6.7: DNA fragmentation in C3 treated A549 cells (Values expressed as mean ± SD, *** p < 

0.0001, compared to the control). 
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C3 did not significantly influence c-myc gene expression (1.033-fold, p = 0.276, Figure 6.8A) but 

increased OGG-1 gene expression (1.346-fold, p = 0.0424, Figure 6.8B) relative to the control (1.00 

fold). 

 

Figure 6.8: Gene expression of c-myc (A) and OGG-1 (B) in C3 treated A549 cells (Values 

expressed as mean ± SD, * p < 0.05, compared to the control). 

 

6.4 Discussion 

C. asiatica leaf extracts have shown excellent free radical scavenging capabilities [hydroxyl, 

superoxide (86.4%) and DPPH (92.7%)] and lipid peroxidation preventive properties. 14, 24 

Additionally, the antioxidant activity of C. asiatica (84%) is comparable to vitamin C (88%) and 

grape seed extract (83%). 25 Our results, however, showed that C3 increased lipid peroxidation and 

IROS compared to the controls.  

 

Within the cell, GSH is the most abundant antioxidant that detoxify’s hydrogen peroxide and free 

radicals, ultimately protecting cellular components from oxidative damage. 26 GSH production and 

utilization is controlled by Nrf-2 mediated expression of glutathione S-transferases and GPx. 4, 27 

During ROS detoxification, GPx oxidises GSH to GSSG and the intracellular GSH/ GSSG ratio is a 

predictor of the antioxidant capacity. 26 In C3 treated A549 cells, the increased Nrf-2 protein 

expression corresponds with the increased GSH levels; however GSSG levels were decreased 

compared to the control. Our findings indicate that C3 decreased the antioxidant capacity in A549 
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cells as evidenced by the decreased GSSG levels. Also, MDA and IROS levels were substantially 

elevated by C3, a possible consequence of the diminished antioxidant capacity. Cancerous cells 

utilize antioxidants to combat elevated ROS levels and encourage cell survival. 4 Therefore, 

diminishing the antioxidant capacity is essential to enhance tumour cell elimination by ROS 

induced cell death. 4  

 

Through ROS generation, radio/ chemo therapeutic agents effectively induce apoptotic cell death. 

However, cancer cells prevent ROS mediated apoptosis by increasing antioxidant enzyme 

expression. 18 Previously, elevated Nrf-2 expression has been shown to promote cancer cell growth 

and survival through increased antioxidant capacity, decreased apoptosis and increased drug 

resistance. 7 In A549 cells, Nrf-2 expression has been shown to protect cells against ionizing 

radiation toxicity indicating that Nrf-2 may contribute to A549 cell survival and resistance to 

ionizing radiation. 3 Our findings demonstrated that C3 decreased A549 antioxidant gene expression 

(Nrf-2, GPx and SOD). As a result, A549 cells are more susceptible to ROS mediated cell death. 

The Nrf-2 gene expression was decreased; however the Nrf-2 protein expression was increased by 

C3. This may be a result of alterations in posttranslational modifications. Malignant cells possess a 

superior antioxidant defence system for survival and proliferation, 18 therefore suppressing 

antioxidant mechanisms is a promising therapeutic strategy to facilitate cancer cell elimination. 4 

We demonstrated that the semi-purified fraction-3 (C3) of C. asiatica did in fact diminish 

antioxidant responses in A549 cells. 

 

In chronic myeloid leukemia (CML), a chromosomal translocation t(9; 22) produces the 

Philadelphia chromosome which leads to the production of a fusion protein between Bcr and Abl. 28, 

29 BCR-ABL confers anti-apoptotic and  proliferative properties. 28 In addition, BCR-ABL is 

associated with increased ROS, DNA damage and altered repair which may contribute to genomic 

instability and cancer progression. 28 Imatinib mesylate, (a tyrosine kinase inhibitor (TKI)) binds to 

and inhibits BCR-ABL tyrosine kinase. 29 In BCR-ABL positive CML patients, imatinib mesylate 

induces a positive clinical response. 28 In A549 cells, cell growth and proliferation was inhibited by 

imatinib mesylate. 29 Additionally, in A549 cells imatinib mesylate in combination with cisplatin 

induced cell death synergistically. 29 However, BCR-ABL mutations or BCR-ABL independent 

mechanisms lead to TKIs resistance and a poor clinical response. 28  
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In imatinib-resistant P210Mo7eIR cells, the down-regulation of Nrf-2 re-sensitizes cells to imatinib 

and significantly increases cell death. 28 On the other hand, in imatinib sensitive P210Mo7e cells, 

over-expression of Nrf-2 cDNA constructs results in imatinib resistance. 28 Thus, an up-regulation 

of the Nrf-2 pathway may be seen as another mechanism for TKI resistance. 28 Taken together, 

inhibition of Nrf-2 and its downstream targets (such as antioxidant genes) may be a good 

therapeutic strategy to minimize TKI resistance. 28 As stated earlier, C3 decreased Nrf-2, GPx and 

SOD gene expression in A549 cells, suggesting that C3 may decrease TKI resistance by down 

regulating the Nrf-2 antioxidant pathway. Thus, C3 in combination with conventional cancer 

therapies may further enhance cancer cell death by minimizing TKI resistance.  

 

In vitro, C. asiatica methanolic extract showed anti-proliferative activity in a number of cancerous 

cell lines. 17 In breast cancer (MCF-7) and liver cancer (HepG2) cells, C. asiatica extract inhibited 

cell proliferation through apoptosis and DNA damage. 17, 30 Decreased antioxidant mechanisms and 

increased ROS levels lead to oxidative damage and cell death. 4 Semi-purified fraction-3 

significantly increased Δψm, a possible consequence of a decreased antioxidant response and 

increased IROS levels. The increased Δψm led to increased caspase [-8, -9, -3/7] activation, 

suggesting the initiation and execution of apoptosis. However, C3 also significantly elevated LDH 

levels, indicating that the cellular membrane integrity was compromised and necrosis may be 

occurring. The mitochondrial protein gradient couples the electron transport chain (ETC) to produce 

ATP. 31 However, increased Δψm leads to the cessation of the ETC and uncoupling of ATP 

production. 31 In A549 cells, C3 decreased ATP levels, consistent with the increased Δψm. In 

addition, the activation of ATP dependent caspases (-8, -9, -3/7) may have contributed to the 

decreased ATP levels. Taken together, C3 induced anti-proliferative and cytotoxic effects in A549 

cells. 

 

The Bcl-2 family of proteins are responsible for maintaining mitochondrial membrane potential. 32 

An anti-apoptotic member such as Bcl-2 stabilizes transmembrane potential, reduces membrane 

permeability and inhibits pro-apoptotic protein release. 32 Elevated ROS levels activate pro-

apoptotic members such as Bax which translocates to the mitochondria, integrates into the outer 

mitochondrial membrane leading to membrane permeabilization and pro-apoptotic protein release. 

33 In A549 cells, Bax and Bcl-2 protein expressions were decreased by C3. Decreased Bcl-2 protein 

expression diminishes Bcl-2 anti-apoptotic functions, ultimately promoting apoptosis.  



204 
 

Tumour suppressor p53 has many biological functions including the maintenance of genetic 

integrity, cell cycle arrest, DNA repair and apoptosis. 34 With regard to cell death, p53 activates Bax 

and promotes apoptosis. 34 On the other hand, HSP-70 over expression provides a survival 

advantage to cancer cells by inhibiting apoptosis. 35 HSP-70 inhibits apoptosis by preventing Bax 

mitochondrial translocation, Bax mediated membrane permeability and subsequent pro-apoptotic 

protein release. 33, 35 Our results showed that C3 decreased p53 and increased HSP-70 protein 

expression which may have contributed to the decreased Bax protein expression and limited caspase 

activation.    

 

Cell death pathways lead to the activation of cytoplasmic endonucleases. 9 Endonuleases G, ICAD 

and AIF are release from the mitochondria and are responsible for degrading nuclear material. 9 Our 

results indicated that CTL’s were increased by C3, a consequence of increased cell death.  

 

Elevated ROS levels causes oxidative DNA damage leading to the formation of DNA adducts such 

as 8-oxo-7,8-dihydroxyguanine (8-oxoG). 36 Previously, 8-oxoG has been associated with several 

cancers due to its ability to induce mutations. 36 The base excision repair enzyme, OGG-1 excises 

and repairs 8-oxoG adducts. 36 Previously, in A549 cells, mutant OGG-1 over expression has been 

shown to block oxidant-induced mitochondrial dysfunction, caspase-9 activation, and DNA 

fragmentation by preserving mitochondrial aconitase. 36 Our results showed that C3 increased 

OGG-1 gene expression in A549 cells thus increasing DNA repair. Also, the increased OGG-1 gene 

expression may have suppressed oxidant induced caspase activation. 

 

The c-myc transcription factor regulates the expression of genes involved in cell proliferation, 

growth and transformation. 37 In many human cancers, the c-myc gene is over expression and 

cellular proliferation is not linked to growth-factor stimulation which results in uncontrolled cell 

growth. 38, 39 In A549 cells, C3 did not influence c-myc gene expression, indicating that C3 does not 

increase c-myc-mediated cell proliferation. 

 

6.5 Conclusion  

The antioxidant capacity of cancerous A549 cells was decreased by C3 thus facilitating ROS 

induced cell death. Semi-purified fraction-3 exerts anti-proliferative and cytotoxic activity in A549 

cells. 
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6.8 Abbreviations  

(ROS), Reactive oxygen species; (Nrf-2), Nuclear factor erythroid 2-related factor 2; (ARE), 

Antioxidant response element; (KEAP1), Kelch-like ECH-associated protein 1; (SOD), Superoxide 

dismutase; (CAT), Catalase; (GPx), Glutathione peroxidise; (C. asiatica), Centella asiatica; 

(A549), Lung carcinoma; (SA), South Africa; (DCM), Dichloromethane; (HEX), Hexane; (EA), 

Ethyl acetate; (DMSO), Dimethyl sulfoxide; (EMEM), Eagle’s minimum essential medium; (FCS), 

Foetal calf serum; (PS), Penstrepfungizone; (L-GLUT), L-glutamine; (WST-1), 4-[3-(4-

iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate; (LDH), Lactate 

dehydrogenase; (JC-1), 5,5’,6,6’–tetrachloro-1,1’,3,3’ tetraethylbenzimidazolcarbocyanine iodide; 

(H2DCF-DA), 2 ,́ 7ˊ-dichlorodihydrofluorescein diacetate; (ATP), Adenosine triphosphate; (GSH), 

Glutathione; (TLC), Thin layer chromatography; (GC-MS), Gas chromatography mass 

spectrometry; (C), C. asiatica leaf extract; (C3), C. asiatica Purified fraction-3; (PBS), Phosphate 

buffer saline; (IC50), Half maximal inhibitory concentration; (h), Hours; (DCF), 20, 70-

dichlorofluorescein; (TBARS), Thiobarbituric acid assay; (MDA), Malondialdehyde; (IROS), 

Intracellular reactive oxygen species; (min), Minutes; (RT), Room temperature; (Δψm), 

Mitochondrial depolarisation; (OD), Optical density; (RLU), Relative light units; (SCGE), Single 

cell gel electrophoresis; (CTL’s), Comet tail lengths; (HSP), Heat shock protein; (RBD), Relative 
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band density; (OGG-1), oxoguanine DNA glycosylase; (MCF-7), Breast cancer cells; (HepG2), 

Liver cancer; (ETC), Electron transport chain; (8-oxoG), 8-Oxo-7,8-dihydroguanine. 
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Bridging paragraph:  

 

In the previous manuscript, C3 elicited anti-proliferative and cytotoxic effects in A549 cells which 

may have been a consequence of the decreased antioxidant response.  Notably, in both cancerous 

cell lines (THP-1 and A459) C3 decreased the Nrf-2 antioxidant response and elicited anti-

proliferative/ cytotoxic effects.  

 

The kidney is a vital organ that functions in many biological processes including the excretion of 

waste products. Although, medicinal plants/ fractions posses many beneficial effects, excessive 

consumption of medicinal plants/ fractions may induce renal toxicity. Research into the toxic effects 

of medicinal plants/ fractions is essential to determine the appropriate dosage of medicinal plants/ 

fractions being administered. Therefore we investigated the antioxidant and anti-proliferative/ 

cytotoxic effects of C3 in a kidney cell line (HEK293).  

 

The following manuscript is entitled Centella asiatica fraction-3 suppresses the Nrf-2 antioxidant 

pathway and enhances apoptotic cell death in human embryonic kidney (HEK293) cells 

(Supplementary information: Appendix 10). In this manuscript, only an IC50 for C3 in HEK293 cells 

was determined then the antioxidant response signalling and cell death induction were evaluated. 

The experimental techniques conducted are similar to the previous manuscript.   

 

Publication statuses: The manuscript has been submitted to Free Radical Research  

Manuscript number: GFRR – OM – 2017 – 0035   

 

Please note: The manuscript was formatted for Free Radical Research, however, the margins, font, 

line spacing, numbering of sections and figures were adjusted for thesis consistency.  
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Abstract 

 

Centella asiatica (C. asiatica), a medicinal plant, is used in Chinese and Ayuvedic medicine due to 

its vast range of medicinal properties. We investigated the antioxidant and anti-proliferative effects 

of a chemically semi-purified fraction of C. asiatica ethanolic leaf extract (C3) in embryonic kidney 

(HEK293) cells.  

 

C3 was obtained by silica column fractionation and identified using thin layer chromatography; gas 

and mass spectrometry determined the bioactive compounds present in crude leaf extract (C) and 

C3. Cytotoxicity of C3 in HEK293 cells was evaluated (cell viability assay; 24 hours; [0.2–3 

mg/ml]) to determine an IC50. Intracellular reactive oxygen species, mitochondrial membrane 

potential (flow cytometry), malondialdehyde, lactate dehydrogenase (spectrophotometry), reduced 

glutathione, oxidized GSH, ATP levels, caspases (-8, -9, -3/7) activity (luminometry) and DNA 

damage (comet assay) were evaluated. Protein expression of Nrf-2, p53, Bcl-2, Bax HSP-70 and 

gene expression of Nrf-2, GPx, SOD, CAT, c-myc and OGG-1 were quantified by western blotting 

and qPCR, respectively.  

 

C3 dose dependently decreased HEK293 cell viability. The IC50 of C3 significantly increased 

MDA, mitochondrial depolarisation, LDH, caspase (-8, -9, -3/7) activity and DNA damage (p < 

0.0004). Nrf-2 protein expression, GSH and GSSG levels were increased whereas antioxidant (Nrf-

2, GPx, SOD and CAT) gene expression was significantly decreased by C3 (p < 0.001). C3 

decreased both Bax and Bcl-2 protein expression (p < 0.03). Gene expression of c-myc was 

significantly increased whereas OGG-1 was significantly decreased by C3 (p < 0.05).  

 

C3 diminished the antioxidant gene expression and exerted anti-proliferative effects in HEK293.   

 

Key words: Centella asiatica, Nrf-2, GSH, SOD, c-myc, caspases  

 

 



214 
 

Abbreviations: AKI, Acute kidney failure; ROS, Reactive oxygen species; Nrf-2, Nuclear factor 

erythroid 2-related factor 2; ARE, Antioxidant response element; KEAP1, Kelch-like ECH-

associated protein 1; SOD, Superoxide dismutase; CAT, Catalase; GPx, Glutathione peroxidise; C. 

asiatica, Centella asiatica; HEK293, human embryonic kidney cells; C3, Purified fraction-3; SA, 

South Africa; DCM, Dichloromethane; HEX, Hexane; EA, Ethyl acetate; DMSO, Dimethyl 

sulfoxide; DMEM, Dulbucco's minimum essential; FCS, Foetal calf serum; PS, Penstrepfungizone; 

L-GLUT, L-glutamine; WST-1, 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulfonate; LDH, Lactate dehydrogenase; JC-1, 5,5’,6,6’–tetrachloro-1,1’,3,3’ 

tetraethylbenzimidazolcarbocyanine iodide; H2DCF-DA, 2ˊ, 7ˊ-dichlorodihydrofluorescein 

diacetate; ATP, Adenosine triphosphate; GSH, glutathione; TLC, Thin layer chromatography; C, C. 

asiatica crude leaf extract; PBS, Phosphate buffer saline; h, Hours; IC50, Half maximal inhibitory 

concentration; DCF, 20, 70-dichlorofluorescein; TBARS, Thiobarbituric acid assay; MDA, 

Malondialdehyde; IROS, Intracellular reactive oxygen species; Min, Minutes; RT, Room 

temperature; TCEP, Tris (2-carboxyethyl) phosphine; Δψm, Mitochondrial depolarisation; OD, 

Optical density; RLU, Relative light units; SCGE, Single cell gel electrophoresis; CTL, Comet tail 

lengths; HSP, Heat shock protein; RBD, Relative band density; OGG-1, oxoguanine DNA 

glycosylase; ETC, Electron transport chain.  

 

7.1 Introduction  

The kidney is a vital organ that functions to excrete waste products and toxins, preserve bodily 

fluids and electrolytes as well as regulate blood pressure and hormone secretions [1]. Excretion of 

harmful substances may cause acute kidney injury (AKI) through the interaction of toxins with the 

glomeruli and tubules of kidneys [1]. Clinically, AKI has been associated with increased morbidity 

and mortality [1]. In the event of AKI, kidney function is compromised; as a result the maintenance 

of fluid, electrolyte and acid-base homeostasis are impaired [1]. Additionally, AKI has been related 

to oxidative stress, a consequence of increased reactive oxygen species (ROS) levels and decreased 

antioxidant capacity [1]. The modulation of ROS levels is essential in maintaining cellular 

homeostasis [2,3]. Acute low ROS levels is involved in many biological processes (cellular 

proliferation and activation of survival pathways) whilst acute high ROS levels cause oxidative 

damage to cellular components (DNA, lipids, proteins) and induces apoptosis [2,3]. Therefore, an 

efficient antioxidant defense system is required to combat excessive ROS levels and maintain 

cellular homeostasis, ultimately reducing tissue injury [2,4].  
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Nuclear factor erythroid 2-related factor 2 (Nrf-2) is an essential transcription factor in the 

antioxidant response element (ARE) mediated induction of antioxidant and cytoprotective genes 

[4]. Under homeostatic conditions, Nrf-2 is bound to its repressor protein, KEAP1 (Kelch-like 

ECH-associated protein 1) in the cytoplasm, facilitating its ubiquitination [5]. Elevated ROS levels 

cause oxidative modification of KEAP1, allowing Nrf-2 to dissociate from KEAP1 and translocate 

to the nucleus where it binds to ARE and increases antioxidant gene transcription [5]. Antioxidants 

such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) provide a 

protective mechanism against oxidative damage [6]. SOD detoxifies superoxide radicals into 

hydrogen peroxide and molecular oxygen [7]. Subsequently, GPx and CAT detoxifies hydrogen 

peroxide into oxygen and water [7]. In the event of increased ROS production and decreased 

antioxidant capacity, ROS accumulation leads to oxidative stress and apoptosis.  

 

Caspase activity regulates apoptosis through two representative pathways namely the intrinsic (or 

mitochondrial) and extrinsic (or death receptor) [8]. The mitochondrial pathway leads to 

apoptosome formation (cytochrome c binding Apaf-1 and pro-caspase-9) and caspase 9 activation 

[8] whilst the death receptor pathway lead to caspase-8 activation [8]. Caspases -8 and -9 activate 

executioner caspase-3/7, ultimately activating cytoplasmic endonucleases which degrade nuclear 

material [9]. 

 

In Asian and African countries, about 80% of the population depends on traditional medicine for the 

treatment and prevention of diseases [10]. Medicinal plants have been shown to be a safe, healthy, 

effective and inexpensive treatment option for various oxidative stress related diseases [1]. Through 

reduced ROS levels and enhanced antioxidant capacity, medicinal plants can protected against 

oxidative renal damage [1]. The tropical medicinal plant Centella asiatica (C. asiatica) is a part of 

the Apiaceae family and is native to India, China and South Africa. Common names of C. asiatica 

include Gotu kola, Asiatic/ Indian pennywort, and Tiger herb [11]. C. asiatica is frequently used in 

Ayurvedic and Chinese traditional medicines due to its many pharmacological properties such as 

hepato-protective, cardio-protective, anti-diabetic, antioxidant, anti-inflammatory and anti-tumour 

potential [11]. The most prominent group of active compounds isolated from C. asiatica is 

triterpene saponosides (asiatic acid, madecassic acid, asiaticoside, madecassoside and madasiatic 
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acid). Additionally, C. asiatica contains flavonoid derivatives (quercetin, kaempferol, patuletin and 

rutin), vitamins, minerals, polysaccharides, sterols, and phenolic acids [11]. Previously, toxicity 

testing has proven that C. asiatica dried plant is safe for consumption [12]. In addition, C. asiatica 

standardized extract [ECa 233, (10 g/kg)] showed no sign of toxicity and no lethality [12]. The non 

toxic nature of C. asiatica may be attributed to its high antioxidant activity (84 %) which is 

comparable to vitamin C (88 %) and grape seed extract (83 %) [13-16]. Although, C. asiatica 

extracts (aqueous and methanolic) have shown anti-proliferative/ cytotoxic activity against a 

number of cancerous cell lines [17,18]. C. asiatica aqueous extract was not cytotoxic in the normal 

hamster kidney cell line [17].  

 

We hypothesized that an increase in the Nrf-2 antioxidant pathway may protect against oxidant 

induced cell death. The present study aimed to investigate the effect of C. asiatica semi-purified 

fraction-3 (C3) on antioxidant response signalling and apoptosis induction in human embryonic 

kidney cells (HEK293).  

 

7.2 Materials and Methods 

7.2.1  Materials 

C. asiatica leaves were collected in March 2011 (collectors number: Immelman 411) from the 

Eastern Cape [Langeni forest, roadside (S31°28.135’, E28°32.681’)], South Africa (SA) and 

identified by Dr. Kathleen Immelman (Department of Botany at the Walter Sisulu University, SA). 

Voucher specimens were deposited at the KEI herbarium (13979). HEK293 cells were obtained 

from Highveld Biologicals (Johannesburg, SA). Solvents [Dichloromethane (DCM), Hexane 

(HEX), ethyl acetate (EA), methanol, Dimethyl sulphoxide (DMSO)] sulphuric acid, silica gel 60, 

thin layer chromatography (TLC) silica gel 60 sheets and 4-methoxybenzaldehyde were purchased 

from Merck (Johannesburg, SA). Dulbucco's minimum essential medium (DMEM), foetal calf 

serum (FCS), penstrepfungizone (PS) and L-glutamine (L-GLUT) were acquired from Whitehead 

scientific (Cape Town, SA). The 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulphonate (WST-1) cell proliferation reagent and lactate dehydrogenase (LDH) 

cytotoxicity detection reagent were purchased from Roche (Mannheim, Germany or Johannesburg, 

SA). The 5,5’,6,6’–tetrachloro-1,1’,3,3’ tetraethylbenzimidazolcarbocyanine iodide (JC-1) kit and 

the 2ˊ, 7ˊ-dichlorodihydrofluorescein diacetate (H2DCF-DA) reagent were purchased from BD 

Biosciences (Johannesburg, SA). Caspase (-8, -9, -3/7), adenosine triphosphate (ATP) and 



217 
 

glutathione (GSH) kits were acquired from Promega (Madison, USA). Western blot reagents were 

purchased from Bio-Rad (Johannesburg, SA) and qPCR primers were obtained from Inqaba 

Biotech.   

 

7.2.2 Plant Extraction and Fractionation 

The plants official name is Centella asiatica (L.) Urb and has been confirmed by using the plant list 

(www.theplantlist.org). The local names are icudwane (Zulu) and varkoortjies (Afrikaans). The 

English names are tiger herb and pennywort. C. asiatica leaves were dried and milled. Ethanol 

(200–350 ml) was added to milled plant material (10–30 g) and extracted overnight by shaking (4 x 

g, 37 ˚C). Ethanol extracts were filtered, rotor evaporated, dried (37 ˚C) and stored (4˚C). Silica 

column fractionation was used to separate C. asiatica compounds based on their polarity. A column 

(height: 85 cm, diameter: 17 cm) was assembled by adding a tap (25 mm), a cotton wool stop, a thin 

layer of sand, carefully pouring silica dissolved in DCM: HEX (50: 50) into a column and allowing 

the silica to set overnight. C. asiatica crude extract (17 g) was dissolved in DCM: HEX (70: 30) and 

a portion of the extract was further dissolved in methanol. Thereafter, C. asiatica crude extract was 

layered onto the silica and 50 ml fractions were collected using a series of solvent systems [DCM: 

HEX (70: 30), DCM: EA (70: 30), DCM: EA (50: 50), DCM: EA: methanol (50: 40: 10), DCM: 

EA: methanol (30: 50: 20), EA: methanol (70: 30), EA: methanol (40: 60), EA: methanol (20: 80), 

methanol (100)]. The 50 ml fractions were boiled (100 ˚C) to allow evaporation of excess solvent 

and TLC was used to determine spot patterns and solvent changes. A total of 766 fractions were 

collected and TLC analysis revealed fractions with similar spot patterns which were combined and 

pooled into one fraction. Fractionation of C. asiatica yielded 13 pooled fractions. For all subsequent 

experiments, C. asiatica crude extract (C) and pooled fraction-3 (C3) were used. 

 

7.2.3 Gas chromatography mass spectrometry (GC-MS) 

C. asiatica (C and C3) chemical composition has been subjected to GC-MS (Hewlett-Packard, 

USA) and the GCD-HP1800A system was used. Ionization energy (70 eV) was used for the 

detection of GC-MS and the detection was passed under high vacuum (10-4 to10-8 torr). Helium 

gas was used for the analysis at a constant flow rate (1 mL/min). The mass transfer line and injector 

http://www.theplantlist.org/
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temperature were fixed at 280 and 250 ˚C. The bioactive compounds which are present in C. 

asiatica (C and C3) were matched with the NIST computer library and reported.   

 

7.2.4 Tissue Culture 

HEK293 cells were grown in the appropriate tissue culture conditions in a 25 or 75 cm3 tissue 

culture flasks (37 ˚C, 5% CO2). The HEK293 cells were cultured in DMEM supplemented with 

10% FCS, 1% PS and 1% L-GLUT. Cells were seeded, allowed to attach overnight and for all 

subsequent assays the cells were treated at 80% confluency. 

 

7.2.5  Cell Viability Assay  

Cytotoxicity of C. asiatica (C and C3) leaf extract to HEK293 cells was measured using the WST-1 

assay (Roche, Johannesburg, SA). HEK293 (20,000 cells/well, 96 well plate, in triplicate wells) 

were allowed to attach overnight (37 ˚C, 5% CO2). At 80% confluency, cells were washed twice 

with 0.1 M phosphate buffer saline (PBS) before exposure to C. asiatica [C and C3 (0.2–3 mg/ml)] 

for 24 hours (h) (37 ˚C, 5% CO2). Controls received media containing DMSO (0.750%). Following 

24 h treatment, cells were washed twice with 0.1 M PBS, growth media (100 µl/well), WST-1 

reagent (10 µl/well) was added and plates incubated (37 ˚C, 5% CO2, 3 h). The optical density was 

measured at 450 nm (620 nm reference wavelength) with a BIO-TEK µQuant spectrophotometer 

(Analytical and Diagnostic Products, SA). This experiment was conducted on two separate 

occasions before using GraphPad Prism to calculate the half maximal inhibitory concentration 

(IC50) [percentage cell viability vs log concentration of C. asiatica (C and C3)]. C. asiatica crude 

extract did not yield an IC50 in HEK293 cells. However, an IC50 of 0.984 mg/ml was obtained in C3 

treated HEK293 cells and was used in all subsequent experiments. Control treatments were 

represented by an equal amount of DMSO (0.246%) in growth media without C3.   

 

7.2.6  Treatment of cells  

HEK293 cells (2 x 105 cells/ml) were aliquoted into 25 cm3 tissue culture flask and allowed to 

attach overnight (37 ˚C, 5% CO2). At 80% confluency, cells were washed twice with 0.1 M PBS 

before exposure to C3 (0.984 mg/ml) for 24 h (37 ˚C, 5% CO2). Controls received media containing 

DMSO (0.246%). After 24 h treatment, cells were washed twice with 0.1 M PBS and were used to 

conduct the JC-1, 20, 70-dichlorofluorescein (DCF), GSH, GSSG, caspase (-8, -9, -3/7) activity, 
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ATP, comet assays; as well as protein and RNA isolation. The experiments were conducted 

independently two times for all subsequent assays.  

 

7.2.7 Thiobarbituric acid assay 

The thiobarbituric acid assay (TBARS) measures malondialdehyde (MDA), the end product of lipid 

peroxidation and was conducted as per the method previously described by Phulukdaree et al 

(2010) [19]. Optical density was measured at 532 nm (600 nm reference wavelength) with a BIO-

TEK µQuant spectrophotometer (Analytical and Diagnostic Products, SA). Malondialdehyde 

concentration was calculated by dividing the optical density (OD) for each sample by the absorption 

coefficient (156 mM-1). 

  

7.2.8 The DCF assay 

The DCF assay measures intracellular ROS (IROS) and was conducted as per the method 

previously described by Nagiah et al (2015) [20]. Events were gated and the fluorescence measured 

on FL-1 channel (525 nm) of the Accuri™C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ, 

USA). A total of 50,000 events were acquired and analyzed using the CFlow Plus Software (BD 

Biosciences, San Jose, CA, USA).  

 

7.2.9  The GSH assay 

The GSH-GloTM assay (Promega, Madison, WI, USA) was used to measure GSH and GSSG levels. 

The assay was conducted as per the method previously described by Nagiah et al (2015) [20]. 

Luminescence was measured on a ModulusTM microplate luminometer (Turner BioSystems, 

Sunnyvale, CA, USA). GSH and GSSG concentrations (µM) were determined by extrapolation 

from a standard curve. 

 

7.2.10   The JC-1 Mitoscreen assay 

The JC-1 assay measures percentage mitochondrial depolarization (Δψm) and was conducted as per 

the method previously described by Nagiah et al (2015) [20]. Scatter plots of 50,000 events per 
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sample were acquired using the Accuri™C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ, 

USA) and analyzed using the CFlow Plus Software (BD Biosciences, San Jose, CA, USA). 

 

7.2.11   The LDH assay 

The LDH cytotoxicity detection kit (Roche) was used to measure cell damage by C3. Stress 

compromises cell membrane integrity and leads to the leakage of LDH from cells. LDH activity in 

the supernatant (100 μl/well; triplicate wells) was quantified by addition of LDH reagent (100 

μl/well) and incubation (25 min, RT). Optical density was measured at 500 nm with a BIO-TEK 

µQuant spectrophotometer (Analytical and Diagnostic Products, SA). Results are represented as 

mean OD. 

 

7.2.12   Caspase and ATP assays 

Caspase (-8, -9, -3/7) activities and ATP levels were determined using the Caspase-Glo®3/7, -8, -9 

and ATP assay kits (Promega, Madison, USA). Caspase-Glo®3/7, -8, -9 and ATP reagents were 

reconstituted according to the manufacturer’s instructions. Cells (50 µl/well, 2 x 105 cells/ml) were 

added into triplicate wells of a microtitre plate for each assay, thereafter caspase -3/7, -8, -9 and 

ATP reagent (25 µl/well) was added into appropriate wells. Plates were incubated (30 min, RT) in 

the dark. Luminescence was measured on a ModulusTM microplate luminometer (Turner 

BioSystems) and expressed as relative light units (RLU).   

 

7.2.13   Single cell gel electrophoresis (SCGE) or COMET assay 

The SCGE assay was performed to assess DNA fragmentation and was conducted as per the 

method previously described by Singh et al (1988) [21]. Cells were stained with GR red (1µl, 

1000x) instead of ethidium bromide. Slides were viewed using an Olympus IX7I microscope with 

510–560 nm excitation and 590 nm emission filters (Wirsam Scientific, Johannesburg, SA). Images 

from triplicate slides per treatment were captured. Comet tail lengths (CTL’s) of 50 comets per 

treatment were measured using the Soft imaging system (Life Science - ©Olympus Soft Imaging 

Solutions v5) and average CTL’s were calculated (μm). 
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7.2.14  Western Blotting 

Western Blotting was performed to determine relative protein expressions. Cytobuster (200 µl, 

Novagen, San Diego, CA, USA) supplemented with protease and phosphotase inhibitors (Roche, 

Mannheim, Germany) was added to the cells (10 min, 4˚C) and centrifuged (13000 x g, 4 ˚C, 10 

min). Protein was quantified using the bicinchoninic acid assay (Sigma, Germany) and standardized 

to 1 mg/ml. Western blotting was conducted as per the method previously described by Nagiah et al 

(2015) [20]. Membranes were immune-probed with Nrf-2 (ab89443), p53 (CS9289), Bax (CS5023), 

Bcl-2 (CS2827), heat shock protein (HSP)-70 (CS4872) primary antibodies (1:1000, Cell Signaling, 

Danvers, USA). Anti-rabbit (sc-2054) or anti-mouse (ab97046) were the secondary antibodies used 

(1:5,000). Horse radish peroxidase chemiluminescence detector (Bio-Rad) and enhancer solution 

were used for the antigen-antibody complex and the signal was detected with the Alliance 2.7 image 

documentation system (UViTech). To correct for loading error and to normalise relative protein 

expression, β-actin was assessed (A3854; 1:5000). The expression of the proteins were analyzed 

with UViBand Advanced Image Analysis software v12.14 (UViTech) and data was expressed as 

relative band density (RBD) and fold change. 

 

 

7.2.15   Quantitative PCR  

Total RNA was isolated using an in-house protocol [22]. RNA was quantified (Nanodrop2000, 

ThermoScientific, South Africa) and standardized (800 ng/ml). A reaction volume (10 µl) 

containing RNA template (2 µl), 5X iScript™ reaction mix (2 µl), iScript reverse transcriptase (0.5 

µl) and nuclease free water (5.5 µl) was used to synthesize cDNA (iScript™ cDNA Synthesis kit, 

Bio-Rad, 107e8890). Thermocycler conditions were 25 ˚C for 5 min, 42 ˚C for 30 min, 85 ˚C for 5 

min and a final hold at 4 ˚C. 

Gene expression of SOD2 [Sense 5ˊ-GAGATGTTACACGCCCAGA TAGC-3ˊ; Antisense 5-

AATCCCCAGCAGTGGAATAAGG-3ˊ(57 ˚C)], CAT [Sense 5ˊ-TAAGACTGACCAGGGCATC-

3ˊ; Antisense 5ˊ-CAACCTTGGTGAGATCGAA- 3ˊ(58 ˚C)], GPx [Sense 5ˊ-

GACTACACCCAGATGAACGAGC- 3ˊ; Antisense 5ˊ-CCCACCAGGAA CTTCTCAAAG- 3ˊ(58 

˚C)], Nrf-2 (forward 5ˊ-AGTGGATCTGCCAACTACTC-3 ;́ reverse 5ˊ-

CATCTACAAACGGGAATGTCTG-3ˊ (58 ˚C)), 8-oxoguanine DNA glycosylase (OGG-1) 

(forward 5ˊ-GCATCGTACTCTAGCCTCCAC-3 ;́ reverse 5ˊ-AGGACTTTGCTCCCTCCAC-3  ́

(60 ˚C)) and c-myc (forward 5’-AGCGACTCTGAGGAGGAACAAG-3’; reverse 5’-
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GTGGCACCTCTTGAGGACCA-3’ (56 ˚C)) were evaluated using the iQ™ SYBR® Green PCR 

kit (Bio-Rad; 170e880). The final reaction volume was 10.5 µl [6.25 µl 5X iScript reaction mix, 0.5 

µl sense primer, 0.5 µl anti-sense primer, 3.25 µl nuclease-free water, and 2 µl cDNA sample 

(triplicate wells per sample)] and all assays were carried out using CFX Touch™Real Time PCR 

Detection System (Bio-Rad). The reaction included an initial denaturation (95 ˚C, 4 min), followed 

by 37 denaturation cycles (95 ˚C, 15sec), annealing (primer specific temperature, 40sec), extension 

(72 ˚C, 30sec) and a plate read for 37 cycles. Under the same conditions, the β-actin [Sense 5ˊ-

TGACGGGTCACCCACACTGTGCCCAT-3ˊ; Antisense 5ˊ-

CTAGAAGCATTTGCGGTGGACGATGGAGGG-3ˊ] and 18S: (Sense: 5’-

ACAGGGACAGGATTGACAGA-3’; Antisense: 5’-CAAATCGCTCCACCAACCTAA-3’) 

housekeeping genes were run. Using the method described by Livak and Schmittgen, qPCR results 

were analyzed, represented as fold change (2-ΔΔCT) relative to the house keeping genes (β-actin and 

18S) and control [23]. 

 

 

7.2.16   Statistical Analysis  

Statistical analysis was performed using the GraphPad Prism (v5) statistical analysis software. 

Statistical significance was set at 0.05 and comparisons were made using unpaired t tests with 

Welch correction. 

 

7.3 Results  

7.3.1  Chemical composition of C and C3 

The GC-MS chromatograms of C and C3 were recorded and presented in Supplementary Figures 4 

and 5. Chemical composition of C and C3 constituents were identified after comparison with those 

available in the NIST computer library. The organic compounds that were identified in C. asiatica 

leaf extract namely caranol, oxymetholone methanol adduct, vitamin E, tocopherol and terpenes 

(phytosterol and stigmasterol) (Supplementary information: Table 1 and 2).  
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7.3.2 Cytotoxicity of C3 against HEK293 cells 

The WST-1 assay showed that HEK293 cell viability was not significantly altered by C however 

dose dependently decreased by C3 with an IC50 value of 0.984 mg/ml (Figure 7.1). The IC50 

concentration was used in all subsequent experiments. 

 

 

Figure 7.1: C. asiatica crude extract [0.2–3 mg/ml] did not influence HEK293 cell viability 

whereas purified fraction-3 [0.2–3 mg/ml] induced a dose dependent decrease in HEK293 cell 

viability; IC50 value of 0.984 mg/ml.     

 

7.3.3 The effect of C3 on oxidative stress and antioxidant mechanisms in HEK293 cells 

The effect of C3 on lipid peroxidation and IROS production was assessed by the TBARS and DCF 

assays. C3 increased MDA levels 1.319-fold as compared to the control (p = 0.0003, Figure 7.2A). 

Interestingly, IROS levels were not influenced by C3 relative to the control (p = 0.7423, Figure 

7.2B). Further the overall antioxidant effects of C3 were determined by measuring the concentration 

of GSH and GSSG, protein expression of Nrf-2 as well as gene expression of Nrf-2, GPx, SOD and 

CAT. Semi-purified fraction-3 significantly increased both GSH (1.885-fold, p = 0.0002, Figure 

7.2C) and GSSG (3.544-fold, p < 0.0001 Figure 7.2D) concentration compared to the control.  

 



224 
 

 

Figure 7.2: Levels of MDA (A), IROS (B), GSH (C) and GSSG (D) in C3 treated HEK293 cells 

(Values expressed as mean ± SD, *** p < 0.0001, compared to the control). 

 

Nrf-2 protein expression was slightly increased by C3 relative to the control (1.056-fold, p = 0.0009 

Figure 7.3).  
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Figure 7.3: Protein expression of Nrf-2 in C3 treated HEK293 cells (Values expressed as mean ± 

SD, *** p < 0.0001, compared to the control). 

 

Gene expression of Nrf-2 (2.076-fold, p < 0.0001), GPx (2.629-fold, p = 0.0002), SOD (3.621-fold, 

p < 0.0001) and CAT (6.425-fold, p < 0.0001) were significantly decreased by C3 relative to the 

control (1.00 fold) (Figure 7.4).  
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Figure 7.4: Gene expression of Nrf-2, GPx, SOD and CAT in C3 treated HEK293 cells (Values 

expressed as mean ± SD, *** p < 0.0001, compared to the control). 

 

7.3.4  C3 induced cell death pathways in HEK293 cells 

The JC-1 and LDH assay were used to determine Δψm and cell membrane permeability 

respectively. C3 significantly increased Δψm 3.812-fold compared to the control (p < 0.0001, 

Figure 7.5A). LDH levels were also increased by C3 relative to the control (1.180-fold, p < 0.0001, 

Figure 7.5B). 

 

 

Figure 7.5: Mitochondrial depolarisation (A) and LDH (B) levels in C3 treated HEK293 cells 

(Values expressed as mean ± SD, *** p < 0.0001, compared to the control). 
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Caspase activity was measured to evaluate the initiation and execution of apoptosis by C3.  Semi-

purified fraction-3 significantly increased caspase [-8 (1.576-fold), -9 (2.014-fold) -3/7 (1.391-

fold)] activity whilst ATP levels were significantly decreased compared to their respective controls 

(p < 0.0001, Table 7.1). 

 

Table 7.1: Caspase activity (-8, -9, -3/7) and ATP levels in C3 treated HEK293 cells (Values 

expressed as mean ± SD, *** p < 0.0001, compared to the control). 

 Caspase-8     

(RLU x 10
 5 

) 

Caspase-9     

(RLU x 10
 5 

) 

Caspase-3/7  

(RLU x 10
 5 

) 

ATP              

(RLU x 10
 5 

) 

Control 0.759 ± 0.020 9.610 ± 0.300 0.274 ± 0.001 3.075 ± 0.052 

C3 1.195 ± 0.029 *** 19.35 ± 0.216 *** 0.381 ± 0.001 *** 0.467 ± 0.027 *** 

 

 

Cell death was further investigated by assessing anti-apoptotic and pro-apoptotic protein expression. 

Protein expression of p53 (p = 0.0775) and HSP-70 (p = 0.4693) were not influenced by C3 relative 

to their respective controls (Figure 7.6). Bax (1.397-fold, p = 0.0202) and Bcl-2 (1.668-fold, p = 

0.0004) protein expressions were decreased by C3 compared to their respective controls (Figure 

7.6).   
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Figure 7.6: Protein expression of p53, Bax, Bcl-2 and HSP-70 in C3 treated HEK293 cells (Values 

expressed as mean ± SD, * p < 0.05, *** p < 0.0001, compared to the control). 

 

The SCGE assay was used determine the amount of DNA damage caused by C3. CTL’s were 

significantly increased by C3 relative to the control (1.303-fold, p < 0.0001, Figure 7.7).        

 

 

Figure 7.7: DNA fragmentation in C3 treated HEK293 cells (Values expressed as mean ± SD, *** p 

< 0.0001, compared to the control). 
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C3 significantly increased c-myc gene expression (25.27-fold, p < 0.0001, Figure 7.8A) whereas 

significantly decreased OGG-1 gene expression (7.650-fold, p = 0.0004, Figure 7.8B) compared to 

their respective controls (1.00 fold).  

 

 

Figure 7.8: Gene expression of c-myc (A) and OGG-1 (B) in C3 treated HEK293 cells (Values 

expressed as mean ± SD, *** p < 0.0001, compared to the control). 

 

7.4 Discussion 

There is an increasing use of medicinal plants in the treatment of various diseases [24]. However, 

medicinal plant extracts also have the potential to cause renal toxicity [24]. Therefore the toxicity of 

medicinal plants should be evaluated so that the benefits can be weighed against the risks to 

determine the safe usage and availability of medicinal plants [24].  

 

Previous studies have indicated that the consumption of C. asiatica induced no sign of acute 

toxicity [12].  Additionally, C. asiatica aqueous extract induced no cytotoxic activity in the normal 

hamster kidney cell line [17]. Our results are consistent with previous studies, demonstrating that C 

did not significantly influence HEK293 cell viability. C3 on the other hand caused a dose dependant 

decrease in HEK293 cell viability. 
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C. asiatica leaf extracts have shown excellent free radical scavenger capabilities [hydroxyl, 

superoxide (86.4 %) and DPPH (92.7 %)] [14,25] and lipid peroxidation preventive properties. Our 

findings, however, showed that C3 increased lipid peroxidation but did not influence IROS levels.  

In eukaryotic cells, GSH is the most abundant antioxidant and is a major player in cellular redox 

regulation [26]. GSH is oxidized to GSSG during ROS detoxification and the intracellular GSH/ 

GSSG ratio is a vital predictor of the antioxidant capacity [26]. In HEK293 cells, C3 increased GSH 

and GSSG levels. Our findings indicate that C3 increased the antioxidant capacity in HEK293 cells 

as evidenced by the increased GSSG levels. The unchanged IROS levels may have been a 

consequence of the increased antioxidant capacity.  

 

GSH production and utilization is controlled by Nrf-2 mediated expression of glutathione 

S-transferases and GPx [2,27]. Our results demonstrated that C3 slightly increased Nrf-2 protein 

expression in HEK293, corresponding with the increased GSH and GSSG levels. 

 

Anti-cancerous Nrf-2 activated antioxidant and cytoprotective genes protects normal cells from 

oxidative damage and cancer initiation [6]. Our results demonstrated that C3 decreased Nrf-2, GPx, 

SOD and CAT gene expression indicating a decrease in the Nrf-2 antioxidant pathway. 

Interestingly, GSH and GSSG concentrations were increased by C3, suggesting that C3 provides an 

increased antioxidant capacity independent of the Nrf-2 pathway in HEK293 cells. 

 

A decrease in antioxidant mechanisms such as the Nrf-2 pathway leads to oxidative damage and 

cell death [2]. C3 significantly increased Δψm, a possible consequence of a decreased antioxidant 

gene expression. Increased Δψm significantly induced caspase (-8, -9, -3/7) activation, strongly 

suggesting that both the intrinsic and extrinsic apoptotic pathways were initiated and executed. The 

mitochondrial protein gradient couples the electron transport chain (ETC) to produce ATP [28]. 

However, increased Δψm disrupts the ETC and uncouples ATP production [28]. Additionally, the 

activation of ATP dependent caspases (-8, -9, -3/7) may decrease ATP levels. Our findings 

demonstrated that C3 decreased ATP levels, consistent with the increased Δψm and caspase 

activation. The decrease in ATP levels shifts cell death from apoptosis to necrosis [29]. In HEK293 



231 
 

cells, LDH levels were increased, indicating that the cellular membrane integrity was compromised. 

Taken together, C3 induced significant apoptosis and possible necrosis in HEK293 cells.  

 

The Bcl-2 family of proteins is responsible for maintaining mitochondrial membrane potential [30]. 

Anti-apoptotic members such as Bcl-2 stabilizes transmembrane potential, and inhibits pro-

apoptotic protein release [30] whereas pro-apoptotic members such as Bax integrates into the outer 

mitochondrial membrane resulting in membrane permeabilization and pro-apoptotic protein release 

[31]. In HEK293 cells, protein expression of Bax and Bcl-2 were decreased by C3. Notably, C3 

decreased the protein expression of Bcl-2 to a greater extent than Bax, suggesting that Bcl-2 anti-

apoptotic activity is decreased which corresponds with the elevated Δψm and caspase activation.  

Tumor suppressor p53 has many biological functions including the maintenance of genetic 

integrity, cell cycle arrest and apoptosis [32]. In normal cells, p53 expression is maintained at low 

levels. Our results indicated that C3 did not influence p53 protein expression in HEK293 cells. In 

healthy cells, HSP’s provide a protective mechanism against apoptotic cell death by inhibiting 

apoptosome formation and caspase activation [31]. Our findings, however demonstrated that HSP-

70 protein expression was not influenced by C3. 

 

Cell death pathways activate cytoplasmic endonucleases [9] which degrade nuclear material [9]. C3 

increased DNA fragmentation in HEK293 cells, consistent with the increased cell death.  

Oxidative DNA damage leads to DNA adduct formation [33]. The base excision repair enzyme, 

OGG-1 excises and repairs DNA adducts [33]. Our results indicated that C3 significantly decreased 

OGG-1 gene expression thus decreasing DNA repair.  

 

The c-myc transcription factor regulates the expression of genes, involved in cell proliferation, 

growth and transformation [34]. In normal cells, c-myc plays an essential role in proliferation which 

is linked to growth factor stimulation [35]. Upon growth stimulation, c-myc is activated and remains 

elevated encouraging continuous growth of normal cells [35]. On the other hand, c-myc may 

activate apoptosis via two pathways [36]. The first pathway involves the up-regulation of p53 and 

Bax promoting pro-apoptotic protein release [36]. The second pathway is p53-independent, 

involving the disruption of mitochondrial membrane integrity and the release of pro-apoptotic 

proteins [36]. Both apoptotic pathways converge at the mitochondria resulting in apoptosome 

formation and caspase-9 activation [36]. Our results demonstrated that C3 significantly increased c-
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myc gene expression which corresponds with the elevated Δψm and caspase activation, suggesting 

an increase in apoptosis.  

 

Additionally, c-myc replaces Nrf-2 at the ARE and decreases antioxidant gene transcription [37]. As 

a result, c-myc over expression decreases intracellular antioxidant expression and induces oxidative 

DNA damage [38]. In C3 treated HEK293 cells, the decreased antioxidant gene expression may 

have been a consequence of the substantially elevated c-myc gene expression.  

  

7.5 Conclusion  

Medicinal plants may exert renal toxicity therefore it is essential to compile scientific information 

regarding their potential toxicity [1,24]. In HEK293 cells, C3 decreased the antioxidant gene 

expression however C3 also functions as a natural antioxidant. Purified fraction-3 exerts anti-

proliferative activity in HEK293 cells through increased apoptotic cell death which suggests that C3 

is potentially toxic to kidney cells. 
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CHAPTER EIGHT 

 

Discussion and Conclusion 

 

Globally, cancer is a leading cause of morbidity and mortality. Cancerous cells facilitate 

uncontrolled cell proliferation, evasion of apoptosis, invasion, angiogenesis and metastasis [1,2]. 

Cancer cachexia is a complex condition that occurs in up to one half of all cancer patients [3]. It is 

characterized by the abnormal loss of body weight [4] through adipose tissue and skeletal muscle 

depletion [5]. The role of inflammation in carcinogenesis has been extensively documented [6]. 

Increased pro-inflammatory cytokine levels initiate metabolic events such as increased lipid and 

protein degradation which contributes to tissue wasting [7,8]. Additionally, increased NF-κB 

expression contributes to inflammation-induced carcinogenesis as well as the cachectic syndrome 

[8,9]. 

  

W. somnifera has demonstrated pharmacological value as an antioxidant, anti-inflammatory and 

anti-tumour agent [10]. The leaves and roots of W. somnifera is a good source of antioxidants [11]. 

Previously in the skin and liver, W. somnifera was shown to significantly increase antioxidant 

enzymes as well as inhibit lipid peroxide levels [12]. Additionally, W. somnifera extract suppressed 

LPS stimulated cytokine (TNF-α and IL-1β) production in rheumatoid arthritis patients [13].  

 

This study demonstrated that WRE increased DPPH oxidant scavenging activity, but decreased GSH 

levels in PBMC’s and THP-1 cells (72 h). The PBMC TNF-α and IL-10 levels were decreased 

whereas IL-1β levels was increased by varying concentrations of WRE. In cancerous THP-1 cells, 

WRE decreased TNF-α, IL-1β and IL-6 levels. The potential of WRE to decrease pro-inflammatory 

cytokine levels in PBMC’s and THP-1 cells suggests that it has potential to decrease lipolysis and 

proteolysis, ultimately decreasing the development and progression of cancer cachexia (Figure 8.1). 
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Figure 8.1: W. somnifera decreases cancer cachexia associated pro-inflammatory cytokine levels in 

PBMC’s and THP-1 cells (Prepared by author). 

 

 

W. somnifera root extracts were shown to inhibit tumour growth [14], inhibit skin carcinogenesis in 

mice [15] and elicit anti-angiogenic effects against human laryngeal carcinoma [16]. Additionally, 

Malik et al (2009) demonstrated that WSF activates both the intrinsic and extrinsic apoptotic 

pathways in HL-60 cells [17]. Our results showed that at 24 h WRE (0.4–0.8 mg/ml) treatment 

increased PBMC caspase (-8, -3/7) activities as well as THP-1 caspase (-9, -3/7) activities, 

suggesting that WRE induced extrinsic apoptosis in normal PBMC’s whereas intrinsic apoptosis in 

THP-1 cells (Figure 8.2).  At 72 h, WRE (0.4–0.8 mg/ml) decreased PBMC caspase (-8, -9) activities 

and THP-1 caspase (-8, -9, -3/7) activities, indicating a dampened initiation and execution of 

apoptosis (Figure 8.2).  
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Figure 8.2: W. somnifera modulates apoptotic cell death in PBMC’s and THP-1 cells (Prepared by 

author). 

 

The medicinal plant, C. asiatica elicits many health benefits including antioxidant [18,19], anti-

inflammatory and anti-tumour activity [20,21]. Previous studies have indicated the safe usage, 

minimal toxicity and effectiveness of C. asiatica [22]. Over the years, the usage of C. asiatica in 

food and beverages has increased due to its various health benefits [20]. C. asiatica has been used 

in the treatment of inflammation [23] as well as cancer [24]. The ethanolic C .asiatica extract was 

shown to suppress iNOS and TNF-α expression which correlated with the decrease in NO and TNF-

α protein levels [25]. Additionally, TNF-α production was increased by C. asiatica aqueous extract 

but decreased by the ethanolic extract in PBMC’s [26].  

 

In this study, CLE increased DPPH oxidant scavenging activity with a concomitant increase in GSH 

concentrations in PBMC’s and THP-1 cells (0.05–0.2 mg/ml, 24 and 72 h). Varying CLE 

concentrations decreased PBMC TNF-α and IL-10 levels whereas increased and decreased PBMC 

IL-6 and IL-1β levels respectively. In THP-1 cells, CLE decreased IL-1β and IL-6 whereas increased 
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IL-10 levels. The potential of CLE to decrease pro-inflammatory cytokines levels while increasing 

anti-inflammatory cytokine levels in THP-1 cells may lead to a decrease in NF-κB expression, 

lipolysis and proteolysis, ultimately alleviating the cancer cachectic syndrome (Figure 8.3). 

 

 

Figure 8.3: C. asiatica decreases cancer cachexia associated pro-inflammatory cytokine levels in 

PBMC’s and THP-1 cells (Prepared by author).  

 

In vitro, C. asiatica methanolic extract showed anti-proliferative activity in a number of cancer cells 

[21], with dose dependent inhibition of cell proliferation, DNA damage and induction of apoptosis 

[21,27,28]. Our findings indicated that at 24 h, varying CLE concentrations increased PBMC caspase 

(-9, -3/7) activities whereas decreased THP-1 caspase (-9, -3/7) activities, indicating that intrinsic 

apoptosis was increased in PBMC’s whereas decreased in THP-1 cells (Figure 8.4). At 72 h, CLE 

decreased caspase (-9, -3/7) activities in both PBMC’s and THP-1 cells, suggesting a decrease in 

the intrinsic apoptotic pathway (Figure 8.4). 
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Figure 8.4: C. asiatica modulates apoptotic cell death in PBMC’s and THP-1 cells (Prepared by 

author). 

 

In THP-1 cells, C and C3 decreased nitrite, TNF-α, IL-1β, IL-6 levels and NF-κB (p50, p65) protein 

expressions whereas increased IL-10 levels (Figure 8.5). Notably, C3 decrease pro-inflammatory 

cytokine levels whereas increased anti-inflammatory cytokine levels to a greater extent than C. The 

potential of C and C3 to down regulate THP-1 nitrite levels, pro-inflammatory cytokine levels and 

NF-κB protein expression may decrease pro-inflammatory cytokine mediated LPL inhibition and 

proteasome pathway activation, ultimately preventing the excessive lipolysis and proteolysis seen in 

cancer cachexia (Figure 8.5). Additionally, at 24 h, THP-1 caspase (-8, -9, -3/7) activities were 

increased by both C and C3, suggesting an increase in both the extrinsic and intrinsic apoptotic 

pathways (Figure 8.5).  
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Figure 8.5: C and C3 effectively decreases cancer cachexia associated pro-inflammatory cytokine 

levels, decreases NF-κB (p50, p65) protein expressions and increases apoptosis in THP-1 cells 

(Prepared by author). 

 

C. asiatica leaves possess the highest antioxidant activity as compared to other plant parts [29]. 

Additionally, the antioxidant activity of C. asiatica was shown to be higher in the ethanolic leaf 

extract than the aqueous leaf extract [30]. Previously, C. asiatica leaves demonstrated elevated O2− 

free radical scavenging activity, DPPH radical scavenging activity and inhibition of linoleic acid 

peroxidation [31] indicating its free radical scavenging ability and lipid peroxidation preventative 

property [32]. C. asiatica has also been shown to decrease MDA levels and increase CAT activity 

thereby preventing H2O2 accumulation [33]. Oral C. asiatica methanol extract treatment 

significantly increased antioxidant enzymes (SOD, CAT and GPx) in lymphoma-bearing mice [34]. 

Additionally in rats, exogenous SOD from C. asiatica was shown to increase endogenous SOD 

activities [35]. C. asiatica inhibited HepG2 and MCF-7 cell proliferation through apoptosis and 

DNA damage [21,28]. Interestingly, in human breast cancer (MDA-MB 231) and mouse melanoma 

(B16F1), C. asiatica aqueous extract elicited cytotoxic activity [19]. However, C. asiatica was not 

cytotoxic in A549 and BHK-21 cell lines [19]. In addition, a C. asiatica purified fraction inhibited 

tumour cell growth whereas induced no toxic effects on lymphocytes [36]. 
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In this study, THP-1 antioxidant gene expression, Nrf-2 protein expression and GSSG levels were 

increased by C but decreased by C3, indicating that the antioxidant responses were increased by C 

whilst decreased by C3 (Figure 8.6). The IC50 of C and C3 increased THP-1 MDA, IROS and Δψm 

whereas decreased both GPx and Bcl-2 protein expressions (Figure 8.6). Caspase activity and DNA 

damage were also elevated by both C (-9, -3/7) and C3 (-8, -9, -3/7), indicating that C activated the 

intrinsic pathway whereas C3 activated both apoptotic pathways (Figure 8.6). Levels of c-PARP 

and c-myc were decreased by C whilst increased by C3. Only C3 reduced OGG-1 gene expression, 

suggesting a decrease in DNA repair. Both C and C3 exerted anti-proliferative effects in THP-1 

cells by enhancing apoptosis. Notably, C3 more effectively induced apoptosis.  

 

 

 

Figure 8.6: The IC50 of C and C3 induces ROS mediated apoptosis in THP-1 cells (Prepared by 

author). 

 

 

In this study only C3 dose dependently decreased A549 and HEK293 cell viability. The A549 GSH 

levels and Nrf-2 protein expression were increase whereas A549 GSSG levels, antioxidant gene 

expression were decreased by C3 suggesting a decreased antioxidant response (Figure 8.7).  In 

A549 cells, C3 increased MDA, IROS, Δψm, LDH, caspase (-8, -9, -3/7) activity and  DNA damage 

while decreasing p53, Bax and Bcl-2 protein expression, suggesting C3 induced anti-proliferative 

and cytotoxic effects in A549 cells (Figure 8.7). 
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In C3 treated HEK293 cells, Nrf-2 protein expression, GSH and GSSG levels were increased 

whereas antioxidant gene expression was significantly decreased, suggesting that C3 may act as a 

natural antioxidant but also decreases the Nrf-2 antioxidant response (Figure 8.7). In HEK293 cells, 

C3 increased MDA, Δψm, LDH, caspase (-8, -9, -3/7) activity and DNA damage whereas decreased 

Bax, Bcl-2 protein expression and OGG-1 gene expression, suggesting that C3 increased cell death 

whereas decreased DNA repair (Figure 8.7). 

 

 

 

Figure 8.7: C3 decreases anti-oxidant mechanisms and increases ROS mediated apoptosis in A549 

and HEK293 cells (Prepared by author).   

 

 

Future work:  

C. asiatica purified fraction-3 should be further fractionated and compounds isolated. These 

specific compounds should be evaluated to determine which group of compounds are responsible 

for the anti-cachectic and anti-cancer properties (in vitro). Thereafter these compounds should be 

tested in an in vivo model before a clinical study can be conducted.  
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APPENDICES  

 

APPENDIX 1 

Optimisation for cell viability and inflammatory cytokine production  

Aim: To investigate the optimum conditions for the WST-1 cell viability assay and the mitogen 

most effective at stimulating inflammatory cytokine production (TNF-α, IL-6, IL-1β and IL-10) in 

THP-1 cells.  

1.1 Methods 

1.1.1  Tissue Culture 

THP-1 cells were grown in the appropriate tissue culture conditions (75 cm3 flasks, 37˚C, 5%). The 

growth media used was RPMI-1640, FCS (10%), and PSF (2%). The cells were seeded at a 

concentration of 3 x 105 cells/ml and the growth monitored daily by cell counting. The cells were 

ready to be split/ diluted once the cell concentration reached 8 x 105 cells/ml.  

1.1.2  Plant Extraction 

W. somnifera leaves were cut into smaller manageable pieces and milled into a fine powder. 

Ethanol (200–350 ml) was added to W. somnifera leaf powder (10–30 g) and extracted overnight by 

shaking (4 x g, 37˚C). The ethanol extract was filtered, rotor evaporated, dried (37˚C) and stored 

(4˚C).  

1.1.3 Cell Viability Assay 

Cytotoxicity of plant extracts in THP-1 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). The assay was conducted for the number of cells per well (5000 or 10000 or 

20000 cells/well of a 96 well plate), WST-1 incubation time (1 or 2 or 3 or 4 h incubation) and 

whether or not to centrifuge of plates before the WST-1 assay is conducted. Results indicated the 

following optimum conditions.  

Cell density was adjusted (1 x 105 cells/ml) and aliquoted (100 µl/well) into 96 well plates (U-

bottom). Thereafter, prepared W. somnifera leaf extract treatments (12–400 μg/ml) was added (100 

µl/well) into designated wells. Similarly controls received media. Plates were mixed on a micro-

plate reader at medium setting for 30s and incubated for 24 h. Thereafter, plates were centrifuged 
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(162 x g, 10 min). Supernatant was removed, cell pellets were re-suspended in growth media (100 

µl/well), WST-1 reagent (10 µl/well) was added and incubated (37˚C, 5% CO2, 3 h). The 

absorbance was read at 450 nm (620 nm reference wavelength) with a Multiskan FC micro-plate 

reader (Thermo Scientific). 

1.1.4 Quantification of Cytokines 

Cell density of THP-1 cells were adjusted (2 x 105 cells/ml) and aliquoted (3 ml/well) into 6 well 

plates. Thereafter PHA (15 µl/well, 1 mg/ml), Con A (3 µl/well, 5 mg/ml) and LPS (15 µl/well, 1 

mg/ml) reconstituted in PBS were added and plates were incubated (37˚C, 5% CO2, 4 h) for 

mitogen stimulation (6, 12, 24, 48 and 72 h). Upon completion of incubation times, plates were 

centrifuged (162 x g, 10 minutes) and supernatant was stored (-20 ˚C) for ELISA experimentation. 

Cytokines levels were estimated using the BD OptEIA ELISA kits (The Scientific group, SA) and 

the procedure was followed as per the instruction manual. Plates were read at 450nm (570 nm 

reference wavelength) with a Multiskan FC micro-plate reader (Thermo Scientific). Cytokine 

concentrations were calculated by extrapolation from a standard curve. 

1.1.5  Statistical Analysis  

The statistical analysis was performed using the Graph Pad Prism v5 statistical software. Analysis 

of variance (ANOVA) was used, followed by the Tukey multiple compassion test and linear 

regressions with p < 0.05 chosen as the significant level.  

1.2 Results 

1.2.1 Cell viability  

Results indicated that the ideal conditions were 10000 cells/ well or 1 x 105 cells/ml, centrifugation 

of plates to pellet THP-1 cells, remove supernatant, re-suspend cells in media, add WST-1 reagent 

and incubate plates for 3 h. The ethanolic leaf extract of W.somnifera decreased THP-1 viability at 

25–400 μg/ml (p < 0.0001).  
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Figure 1.1: Percentage cell growth in W. somnifera ethanolic leaf extract treated THP-1 cells, p < 

0.0001. 

 

1.2.2  Cytokine production by PHA, Con A and LPS stimulation of THP-1 cells 

In THP-1 cells, PHA and ConA were unable to adequately stimulate IL-6, IL-1β, and IL-10 

production.  

 

Table 1.1: Production of inflammatory cytokines (IL-6, IL-1β and IL-10) in PHA stimulated THP-1 

cells. 

Time 

(h) 

IL-6 (pg/ml) 

(p = 0.9152, r2 = 0.0044) 

IL-1β (pg/ml) 

(p = 0.9990, r2 < 0.0001) 

IL-10 (pg/ml) 

(p = 0.1546, r2 = 0.5445) 

6               

12            

24            

48           

72 

-0.5569 ± 0.3025 

0.0295 ± 0.0697 

-0.3839 ± 0.3758 

0.2658 ± 0.2828 

-0.4768 ± 0.2301 

1.9781 ± 0.1382 

2.2263 ± 0.1358 

1.4769 ± 0.0994 

1.6667 ± 0.0553 

2.1216 ± 0.1352 

1.3846 ± 0.1163 

1.5085 ± 0.3899 

1.8376 ± 0.2181 

1.5641 ± 0.2972 

1.9658 ± 0.4427 
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Table 1.2: Production of inflammatory cytokines (IL-6, IL-1β and IL-10) in Con A stimulated 

THP-1 cells. 

Time 

(h) 

IL-6 (pg/ml) 

(p = 0.5715, r2 = 0.1179) 

IL-1β (pg/ml) 

(p = 0.8502, r2 = 0.0139) 

IL-10 (pg/ml) 

(p = 0.4615, r2 = 0.1912) 

6             

12           

24           

48            

72 

-0.9114 ± 0.3948 

-0.3412 ± 0.2532 

-0.9241 ± 0.2643 

-0.2321 ± 0.3397 

-0.5865 ± 0.5324 

0.7080 ± 0.6292 

0.8199 ± 0.6183 

0.5426 ± 0.6044 

0.5402 ± 0.5107 

0.8443 ± 0.5861 

1.0940 ± 0.2635 

1.0812 ± 0.3752 

1.9658 ± 0.9663 

3.9957 ± 2.6158 

1.5855 ± 0.5372 

 

In THP-1 cells, LPS stimulation significantly increased cytokine concentrations at various time 

points. Concentration of TNF-α was increased between 6 – 24 h while the IL-6, IL-1β and IL-10 

concentrations were highest at 72 h.  
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Figure 1.2: Production of inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) in LPS 

stimulated THP-1 cells (Linear treads).  
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Figure 1.3: Production of inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) in LPS 

stimulated THP-1 cells (Regressions). 

 

1.3 Discussion  

The optimum WST-1 assay conditions were 1 x 105 cells/ ml cells, centrifugation of plates, removal 

of supernatant, re-suspension of cells in complete media, addition of the WST-1 reagent and 

incubation for 3 h. These conditions lead to the most stable cell viability results. The THP-1 cells 

were successfully stimulated by LPS to produce inflammatory cytokines (TNF-α IL-6, IL-1β, and 

IL-10) thus LPS was chosen as the preferred stimulant. Maximum production of cytokines was seen 

at 24 h for TNF-α and 72 h for IL-6, IL-1β and IL-10. The concentration of LPS will be doubled for 

further experiments to increase cytokine levels. Cells will be stimulated for an initial 4 h thereafter 

plant treatments will be added and plates incubated for 24 h (for TNF-α detection) and 72 h (for IL-

6, IL-1β and IL-10 detection). The plates will then be centrifuged, the supernatant collected and 

stored (-20˚C) for ELISA experimentation. These experimental conditions results in an ongoing 

stimulus of inflammatory cytokines thus creating an environment similarly seen in cancer cachexia.  
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APPENDIX 2 

The potential of South African medicinal plants to modulate inflammatory cytokines 

associated with cancer cachexia.  

The ability of plant extracts to down regulate the expression of pro-inflammatory cytokines and up 

regulate the expression of anti-inflammatory cytokines may decrease tissue wasting.  

Aim: This in-vitro study investigates oxidant scavenging activity and the modulation of 

inflammatory cytokine levels (TNF-α, IL-6, IL-1β, and IL-10) by Aloe ferox (A. ferox), C. asiatica, 

Elytropappus rhinocerotis (E. rhinocerotis), Tulbaghia violacea (T. violacea) (leaf and root), and 

W. somnifera (leaf and root) extracts (ethanol and water) in LPS stimulated THP-1 cells.  

 

2.1 Material and Methods 

2.1.1 Tissue Culture 

Please refer to Appendix 1 – Method 1.1.1 

2.1.2  Plant Extraction 

Plants were sorted into separate parts (root, stem, and leaves), cut into smaller manageable pieces 

and milled into a fine powder for plant extractions (ethanolic and aqueous). Dried plant material 

was sequentially extracted in ethanol and distilled water. For the ethanolic extraction, milled plant 

(10–30 g) was added to ethanol (200–350 ml) and extracted overnight by shaking (4 x g, 37˚C). 

Ethanol extracts were filtered, rotor evaporated, dried (37˚C) and stored (4˚C). For the sequential 

aqueous extraction, the remaining plant material from the ethanol extraction was used, distilled 

water was added (200–350 ml) and extracted for 6 h by shaking (4 x g, 75˚C). Water extracts were 

filtered, dried and stored (4˚C).  

2.1.3 Cell Viability Assay 

Cytotoxicity of plant extracts in THP-1 cells was measured using the WST-1 assay (Roche, 

Johannesburg, SA). Cell density was adjusted (1 x 105 cells/ml) and aliquoted (100 µl/ well) into 96 

well plates (U-bottom). Thereafter LPS reconstituted in PBS (2 µl/well, 1 mg/ml) was added and 

plates were incubated (37˚C, 5% CO2, 4 h) for LPS stimulation. Thereafter, prepared plant extract 
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treatments (25–1600 μg/ml, W. somnifera leaf 0.78–50 µg/ml) was added (100 µl/ well) into 

designated wells. Similarly controls received media. The plates were mixed on a micro-plate reader 

at medium setting for 30s and incubated (37˚C, 5% CO2) for 24 h (for TNF-α detection) and 72 h 

(for IL-1β, IL-6, IL-10 detection). The plates were subsequently centrifuged (162 x g, 10 minutes). 

The cytokine containing media was collected and transferred to individual wells of a new 96 well 

plate and stored at -20˚C until ELISA experimentation. Cell pellets were re-suspended in growth 

media (100 µl/well), WST-1 reagent (10 µl/well) was added and plates were incubated (37˚C, 5% 

CO2, 3 h). The absorbance was read at 450 nm (620 nm reference wavelength) with a Multiskan FC 

micro-plate reader (Thermo Scientific). 

2.1.4  The  2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay  

Plant extracts (25–1600 μg/ml, W. somnifera leaf 0.78–50 µg/ml) and butylated hydroxytoluene 

(BHT) (60–300 μM) dilutions were prepared in methanol (99.5% and grade AR). A 50 µM DPPH 

solution was prepared from a stock solution of 0.135 mM DPPH in methanol. The plant extracts, 

BHT dilutions and methanol (100 μl) were aliquoted into a 96 well plate, followed by the 50µM 

DPPH solution (100 μl). Plates were incubated (RT, 30 minutes) in the dark. Absorbance of 

samples was read at 517nm using a BIO-TEK µQuant spectrophotometer (Analytical and 

Diagnostic Products, SA). 

2.1.5  Quantification of Cytokines 

Please refer to Appendix 1 – Method 1.1.4 

2.1.6  Statistical Analysis  

The statistical analysis was performed using the Graph Pad Prism v5 statistical software. Analysis 

of variance (ANOVA) was used, followed by the Tukey multiple compassion test, with p < 0.05 

chosen as the significant level.  

 

2.2 Results 

Due to the excessive amount of results and the length of the appendices, the actual results have been 

excluded. 
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2.3 Discussion 

Antioxidant and anti-inflammatory properties of A.ferox [1], C. asiatica [2], rhinocerotinoic acid 

[3], T. violacea [4] and W. somnifera [5] have been documented. The immunomodulatory 

capabilities of medicinal plants may prove to be useful in the treatment of cancer cachexia. Majority 

of the plant extracts increased DPPH oxidant scavenging activity. Plant extracts providing an 

increased oxidant defense system will be beneficial in preventing excessive oxidative stress, 

apoptosis and catabolic events. The aqueous T. violaeca (leaf and root) and A. ferox (ethanolic and 

aqueous) extracts resulted in some increases in pro-inflammatory cytokines and decreased IL-10 

levels. Elevated pro-inflammatory cytokines may lead to increased lipid and muscle breakdown 

thus these plants extracts are not suitable for cachexia treatment. Certain concentrations of C. 

asiatica (aqueous), E. rhinocerotis (ethanolic and aqueous), T. violaeca root (ethanolic), W. 

somnifera leaf (ethanolic and aqueous), and W. somnifera root (ethanolic) extracts have decreased 

pro-inflammatory cytokines however most of these concentrations also substantially decrease cell 

viability. Excessive decreases in cell viability indicate decreased number of viable cells producing 

pro-inflammatory cytokines which may contribute to decreased cytokine levels. Ideally, a plant 

extract should be able to maximally decrease the levels of more than one pro-inflammatory cytokine 

with minimum variation in cell viability across the concentration range. In THP-1 cells, these plants 

extracts did not prove to be successful in modulating inflammatory cytokine levels therefore they 

may not be beneficial in combating the cachectic syndrome. The C. asiatica (ethanolic), T. violaeca 

(ethanolic) and W. somnifera root (aqueous) extracts have shown promising results with regard to 

anti-oxidant and anti-inflammatory potential which is comparable to previous literature. The 

experiment was repeated for C. asiatica (ethanolic), T. violacea leaf (ethanolic) and W. somnifera 

root (aqueous) extracts to verify results. The results proved to be reproducible and experimentation 

continued on C. asiatica (ethanolic) and W. somnifera root (aqueous) extracts. The T. violacea 

ethanolic leaf extract was depleted thus experimentation ceased. 

 

APPENDIX 3 

Manuscript: Withania somnifera modulates cancer cachexia associated inflammatory 

cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells 

(PBMC’s).  
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Manuscript: Centella asiatica modulates cancer cachexia associated inflammatory cytokines 

and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s).  
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Figure 3.1: TNF-α (A), IL-6 (B), IL-1β (C) and IL-10 (D) standard curves. 

 

 

Figure 3.2: GSH standard curves at 24 h (A) and 72 h (B). 
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APPENDIX 4 

Thin layer chromatography.  

Silica column fractionation was used to separate C. asiatica compounds based on their polarity. A 

total of 766 fractions were collected and TLC’s were performed. TLC analysis revealed fractions 

with similar spot patterns which were combined into one fraction. However, due to the excessive 

number of TLC’s, only TLC’s of fractions combined into pooled fraction-3 were included.  

 

 

Figure 4.1: TLC analysis of fractions 1 – 20. 

 

Figure 4.2: TLC analysis of fractions 20 – 39. 
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Figure 4.3: TLC analysis of fractions 30 – 49. 

 

Figure 4.4: TLC analysis of fractions 49 – 68. 

 

Figure 4.5: TLC analysis of fractions 68 – 87. 
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Figure 4.6: TLC analysis of fractions 87 – 107. 

 

Figure 4.7: TLC analysis of fractions 107 – 121. 
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Table 4.1: Pooling of fractions based on TLC analysis.   

Pooled fraction Fractions included Solvent system 

   

1 1 – 14 70 DCM: 30 HEX 

2 15 – 21 70 DCM: 30 HEX 

3 22 – 116 70 DCM: 30 EA 

4 117 – 213 50 DCM: 50 EA 

5 214 – 342 50 DCM: 50 EA 

6 343 – 361 50 DCM: 40 EA: 10 M 

7 362 – 483 50 DCM: 40 EA: 10 M 

8 484 – 493 30 DCM: 50 EA: 20 M 

9 494 – 503 30 DCM: 50 EA: 20 M 

10 504 – 543 70 EA: 30 M 

11 544 – 576 70 EA: 30 M 

12 577 – 675 40 EA: 60 M 

13 676 – 766 20 EA: 80 M 

 

The solvent system is the solvents in the silica column when those fractions were collected. 
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APPENDIX 5 

The potential of C. asiatica pooled fractions to modulate inflammatory cytokines associated 

with cancer cachexia.  

Fractionation of C. asiatica yielded 13 pooled fractions. The DPPH assay and ELISA were 

conducted to assess anti-oxidant scavenging activity and the modulation of cytokines by these 13 

pooled fractions. Please note there were minimal amounts of pool fraction 6 hence experimentation 

ceased.  

 

 

Figure 5.1: TNF-α (A), IL-6 (B), IL-1β (C) and IL-10 (D) standard curve.
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Figure 5.2: Percentage DPPH scavenging activity of C. asiatica whole extract (CA) and pooled fractions (C 1 – 13). 

 

-20 

-10 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

CA C1 C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 

P
e
rc

e
n

ta
g

e
 D

P
P

H
 s

c
a
v

e
n

g
in

g
 a

c
ti

v
it

y
 (

%
) 

C. asiatica - whole extract (CA) and pooled fractions (C 1 - 13)  

Methanol 

100 µg/ml 

200 µg/ml 

400 µg/ml 



264 
 

 

Figure 5.3: Concentration of TNF-α in C. asiatica whole extract (CA) and pooled fractions (C 1 – 13) treated THP-1 cells. 

-10 

0 

10 

20 

30 

40 

50 

60 

CA C1 C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 

C
o

n
c
e
n

tr
a
ti

o
n

 o
f 

T
N

F
-α

 (
p

g
/m

l)
  

C. asiatica - whole extract (CA) and pooled fractions (C 1 - 13)  

DMSO + 

LPS 

100 µg/ml 

200 µg/ml 



265 
 

 

Figure 5.4: Concentration of IL-1β in C. asiatica whole extract (CA) and pooled fractions (C 1 – 13) treated THP-1 cells. 

0 

10 

20 

30 

40 

50 

60 

70 

CA C1 C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 

C
o

n
c
e
n

tr
a
ti

o
n

 o
f 

IL
-1

β
 (

p
g

/m
l)

  

C. asiatica - whole extract (CA) and pooled fractions (C 1 - 13)  

DMSO + 

LPS 
100 µg/ml 

200 µg/ml 



266 
 

 

Figure 5.5: Concentration of IL-6 in C. asiatica whole extract (CA) and pooled fractions (C 1 – 13) treated THP-1 cells. 
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Figure 5.6: Concentration of IL-10 in C. asiatica whole extract (CA) and pooled fractions (C 1 – 13) treated THP-1 cells.  
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The results indicated that pooled fractions 1, 2, and 3 were the most effective in decreasing more 

than one pro-inflammatory cytokine while increasing the anti-inflammatory cytokine IL-10. Due to 

the minimal amounts of pooled fraction 1 and 2, experimentation continued on fration-3. 

 

APPENDIX 6 

Gas chromatography mass spectrometry (GC-MS). 

 

6.1 GC-MS Analysis of Bioactive Compounds present in C. asiatica crude extract 
 

The GC-MS performance of the crude extract of Centella asiatica was recorded. The major 

chemical constituents which are present in the extract were identified as isoprenoids 1,6,10-

Dodecatriene-7,11-dimethyl-3-methylene; 10,10-Dimethyl-2,6-dimethylene bicycle [7.2.0]undecan; 

Alpha.-ylangene; Spathulenol. Centella asiatica is a rich source for number of non-isoprenoids 

various classes of non-isoprenoids include steroids stigmasta-4,7, 22-trien-3.alpha.-ol; 3,26-

Dihydroxycholest-5-en-22-one;  2-(Cholest-5-en-3-yloxy)ethyl acetate; Ergost-25-ene-3,6-dione, 

5,12-dihydroxy; 6.beta.,6.beta.-Dibromo-6,7-methylenetestosterone; Nitrogen based derivatives like 

Cycloundecanone-oxime;  5-[3-(4-Methoxyphenyl)oxaziridin-2-yl]pentan-1-ol; 1-(2-

Dimethylamino-ethyl)-3,6-dimethyl-1H-pyrimidine-2,4-dione; 1-Propanone, 1-(1-adamantyl)-3-

dimethylamino; 3,7-Dihydropurine-2,6-dione, 7-(2-dimethylaminoethyl)-3-methyl [1]. Structures of 

few selected compounds are shown in Figure 6.2 and 6.3. 
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Figure 6.1: GC-MS chromatogram for C. asiatica crude extract. 
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Figure 6.2: Structures of isoprenoid constituents in C. asiatica crude extract. 
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Figure 6.3: Structures of steroids and non-isoprenoid constituents in C. asiatica crude extract. 
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6.2 GC-MS Analysis of Bioactive Compounds present in C. asiatica pooled fraction-3 

 
The GC-MS performance of C. asiatica pooled fraction-3 was recorded. The major chemical 

constituents which are present in the extract were identified as isoprenoids (3E)-2,6-Dimethyl-1,3,7-

octatriene; Nerolidol; 2E)-2-(4,7-Dimethyl-3,4,4a,5,6,8a-hexahydro- (2H)-naphthalenylidene)-1-

propanol; Nerolidyl acetate; 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene; 

Azulene, 1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethenyl)-[1S-

(1.alpha.,4.alpha.,7.alpha.)]-Alpha; Farnesene epoxide; 4,8-Decadienal, 5,9-dimethyl; 1,2-Bis(6,6-

dimethylbicyclo[3.1.1] hept-2-en-2-yl)-1,2-ethanediol; Tricyclo[5.2.2.0(1,6)]undecan-3-ol, 2-

methylene-6,8,8-trimethyl; 7-(1,3-Dimethylbuta-1,3-dienyl)-1,6,6-trimethyl-3,8-

dioxatricyclo[5.1.0.0(2,4)]octane; C. asiatica pooled fraction-3  is a rich source for number of non-

isoprenoids various classes of non-isoprenoids include steroids 2,2-Dimethylcholest-7-en-3-ol; 

Cholest-8-en-3-yl acetate;  Stigmast-5-en-3.beta.-ol, (24S); 4,4-Dimethylcholest-8(14)-en-3-ol, 

Cholest-8-en-3-yl acetate; 22,23-Dibromostigmast-5-en-3-yl acetate; Nitrogen based derivatives 

like 4-Hydroxy-1,3-dimethyl-piperidine-4-carbonitrile; N-[-(3,4-Methylenedioxy)phenylmethyl]-

3,4-(methylenedioxy)benzaldimine; Carbohydrates, fatty acid and vitamins 1-O-(10-Undecenoyl)-

d-xylitol; 15,17,19-Nonacosatriynoic acid; alpha.-Tocopherol-.beta.-D-mannoside; dl-.alpha.-

Tocopherol [1]. Structures of few selected compounds are shown in Figure 6.5 and 6.6. 
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Figure 6.4: GC-MS chromatogram for C. asiatica pooled fraction-3. 
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Figure 6.5: Structures of isoprenoid constituents in C. asiatica pooled fraction-3. 
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Figure 6.6: Structures of steroids and non-isoprenoid constituents in C. asiatica pooled fraction-3. 
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6.3 Identification of secondary metabolites 

 

The chemical composition of the leaf ethanolic extract of C. asiatica constituents were identified 

after comparison with those available in the computer library (NIST) attached to the GC-MS 

instrument and reported in Table 7.1 and 7.2. No hit compounds were obtained for C. asiatica leaf 

extract but, were further elucidated in the GC-MS assay. The organic compounds that were 

identified in C. asiatica leaf extract namely: caranol, oxymetholone methanol adduct, vitamin E 

tocopherol and terpenes such as phytosterol and stigmasterol. Some of the compounds detected in 

this study were consistent with those of previously published studies in which chemical components 

were isolated by using various organic solvent extractions (Kashmira et al. 2010).  

In two phytochemical investigations of the plant examination, the presence of tannins, steroids, 

terpenoids, flavonoids and glycosides were identified. However, it is interesting to observe that the 

chemical compounds from C. asiatica leaf extracts vary, in earlier International work in places such 

as India, phytochemical studies reveal the presence of spathulenol, oleic acid,  isomyocorene and 

phthalic acid, hex-3-yl isobutyl ester, sitosterol, geranyl-.alpha.-terpinene as the main constituents 

(Kashmira et al. 2010). On the contrary, in other parts of the world, southest asia  the plants grown 

there showed a higher consistency of  3,4-dihydrocoumarin, nerolidol, Fumaric acid and xylitol. In 

accordance with previous studies C. asiatica variability in chemical composition in the current 

study are dependent on the selection of extractant, extraction techniques, climatic and geographical 

conditions (Jayashree et al. 2003). 

 

 GC-MS results indicating the chemical constituents present in C. asiatica crude leaf extract (Table 

6.1) and (Table 6.2) C. asiatica pooled fraction-3 leaf extract. 
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 Table 6.1: C. asiatica crude extract. 

Peak 

no. 

Compound MF MW 

(g/mol) 

RT Area  

(%) 

1 4-Hexen-3-one, 4,5-dimethyl- 4,5-

Dimethyl-4-hexen-3-one  

C8H14O 126 17.825 7.53 

2 cis-.beta.-Farnesene  1,6,10-

Dodecatriene, 7,11-dimethyl-3-

methylene-, (Z)-  (Z)-.beta.-

Farnesene (6Z)-7,11-Dimethyl-3-

methyle 

C15H24 204 24.105 0.24 

3 Cyclohexene, 3-(1,5-dimethyl-4-

hexenyl)-6-methylene-, [S-

(R*,S*)]-  .beta.-

Sesquiphellandrene 3-((1S)-1,5-

Dimethyl-4-hexenyl)-6 

C15H24 204 24.105 0.24 

4 1-Cyclohexene-1-methanol, 

.alpha.,2,6,6-tetramethyl- 1-(2,6,6-

Trimethyl-1-cyclohexen-1-

yl)ethanol  

C11H20O 168 31.551 0.64 

6 5-Caranol, trans,trans-(+)- 4,7,7-

Trimethylbicyclo[4.1.0]heptan-2-ol  

C10H18O 154 31.551 0.64 

8 2-Isopropyl-5-methyl-1-heptanol C11H24O 172 33.045 0.87 

9 6.beta.,6.beta.-Dibromo-6,7-

methylenetestosterone 1,1-

Dibromo-8-hydroxy-5a,7a-

dimethyl-

1a,4,5,5a,5b,6,7,7a,8,9,10,10a,10b,

10c-tetr 

C20H26Br2

O2 

456 36.180 1.14 

14 Cyclohexanol, 5-methyl-2-(1-

methylethyl)-, [1S-(1.alpha. 

2.beta.,5.beta.)]- (1S,2R,5R)-(+)-

Isomenthol  2-Isopropyl-5-

methylcycloh 

C10H20O 156 38.226 4.23 
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15 Cyclohexanol, 5-methyl-2-(1-

methylethyl)-, 

(1.alpha.,2.alpha.,5.beta.)- Menthol, 

trans-1,3,trans-1,4- Neo-Menthol 

Neomenthol 

C10H20O 156 38.226 4.23 

17 2H-Benzo[f]oxireno[2,3-

E]benzofuran-8(9H)-one, 9-[[[2-

(dimethylamino)ethyl]amino]methy

l]octahydro-2,5a-dimethyl- 

C19H32N2

O3 

336 44.009 0.30 

19 Oxymetholone Methanol Adduct C22H34O3 346 44.340 0.27 

20 9-(2',2'-

Dimethylpropanoilhydrazono)-3,6-

dichloro-2,7-bis-[2-(diethylamino)-

ethoxy]fluorene N'-(3,6-Dichloro-

2,7-bis[2-(diethylamin 

C30H42Cl2

N4O3 

576 45.256 0.51 

21 gamma.-Tocopherol 2H-1-

Benzopyran-6-ol, 3,4-dihydro-

2,7,8-trimethyl-2-(4,8,12-

trimethyltridecyl)- 6-Chromanol, 

2,7,8-trimethy 

C28H48O2 416 52.536 0.24 

22 Stigmastan-3,5,22-trien (22E)-

Stigmasta-3,5,22-triene  

C29H46 394 52.910 0.48 

23 alpha.-ylangene C15H24 204 24.785 0.28 

 

24 beta.-Bisabolene Cyclohexene, 1-

methyl-4-(5-methyl-1-methylene-4-

hexenyl)-, (S)- 1,5-Heptadiene, 6-

methyl-2-(4-methyl-3-cyclo 

C15H24 204 25.563 1.18 

25 cis-.alpha.-Bisabolene 4-[(1Z)-1,5-

Dimethyl-1,4-hexadienyl]-1-

methyl-1-cyclohexene .alpha.-

Bisabolene (Z) (Z)-.alpha.-Bisabo 

C15H24 204 25.563 1.18 
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Table 6.2: C. asiatica Pooled fraction-3. 

Peak 

no. 

Compound MF MW 

(g/mol) 

RT Area  

(%) 

1 Isomyocorene  (3E)-2,6-Dimethyl-

1,3,7-octatriene  2,6-Dimethyl 

1,3,7-octatriene (alpha menthrene) 

C10H16 136 20.520 0.29 

2 Oleic Acid  9-Octadecenoic acid 

(Z)-  .DELTA.9-cis-Oleic acid  cis-

Oleic Acid  cis-9-Octadecenoic 

Acid  Emersol 211  

C18H34O2 282 24.668 0.29 

3 2(4H)-Benzofuranone, 5,6,7,7a-

tetrahydro-4,4,7a-trimethyl-  (2,6,6-

Trimethyl-2-

hydroxycyclohexylidene)acetic acid 

lactone 4,5,7, 

C11H16O2 180 26.096 1.07 

4 2-Methoxy-4-methyl-

bicyclo[3.2.1]oct-2-ene 

C10H16O 152 26.096 1.07 

5 Nerolidol 2  (6E)-3,7,11-Trimethyl-

1,6,10-dodecatrien-3 

C15H26O 222 26.791 0.20 

6 Fumaric acid, ethyl 2-methylallyl 

ester 

C10H14O4 198 26.905 0.74 

7 (-)-Spathulenol 1H-

Cycloprop[e]azulen-7-ol, 

decahydro-1,1,7-trimethyl-4-

methylene-, [1aS-

(1a.alpha.,4a.alpha.,7.beta.)]  Ent-

Spath 

C15H24O 220 27.333 1.65 

8 11,11-Dimethyl-spiro[2,9]dodeca-

3,7-dien 

C14H22 190 27.467 0.22 

9 cis  (2E)-2-(4,7-Dimethyl-

3,4,4a,5,6,8a-hexahydro-1(2H)-

naphthalenylidene)-1-propanol  100 

C15H24O 220 27.927 0.21 

10 geranyl-.alpha.-terpinene C20H32 272 28.508 0.93 
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11 2-Cyclohexen-1-one, 2,4,4-

trimethyl-3-(3-oxo-1-butenyl)-  3-

Keto-.beta.-ionone  2,4,4-

Trimethyl-3-(3-oxo-1-butenyl)-2-

cyclohexen 

C13H18O2 206 29.120 0.19 

12 Gonane-12,17-dione, 3-(acetyloxy)-

5,14-dimethyl-, 

(3.beta.,5.beta.,8.alpha.,9.beta.,10.al

pha.,13.xi.,14.beta.)-  5,14-

Dimethyl-12,17-dio 

C21H30O4 346 29.710 0.17 

13 (p-Hydroxyphenyl)glyoxal  

Benzeneacetaldehyde, 4-hydroxy-

.alpha.-oxo-  Glyoxal, (p-

hydroxyphenyl)- Glyoxal, p-

hydroxyphen 

C8H6O3 150 29.920 0.18 

14 1H-Benzocyclohepten-7-ol, 

2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-

tetramethyl-, cis- 1H-

Benzocyclohepten-7-ol, 

2,3,4,4a,5,6,7,8-octahyd 

C15H26O 222 30.400 0.28 

15 Dehydroxy-isocalamendiol 5-

Isopropyl-8-methyl-3-methylene-

1,3,4,7,8,8a-hexahydro-4a(2H)-

naphthalenol  

C15H24O 220 31.640 0.33 

16 Phthalic acid, hex-3-yl isobutyl 

ester 

C18H26O4 306 33.346 0.43 

17 Phthalic acid, 5-methylhex-2-yl 

isobutyl ester 

C19H28O4 320 33.346 0.43 

18 3,4-Dihydrocoumarin, 4,4-

dimethyl-6-hydroxy- Coumarin-6-

ol, 3,4-dihydro-4,4-dimethyl- 6-

Hydroxy-4,4-dimethyl-2-

chromanone  

C11H12O3 192 35.326 0.65 

19 Cyclohexanol, 5-methyl-2-(1-

methylethyl)-, [1S-

(1.alpha.,2.beta.,5.beta.)]-  

(1S,2R,5R)-(+)-Isomenthol  2-

C10H20O 156 38.277 6.08 
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Isopropyl-5-methylcycloh 

20 1,1,3,6-tetramethyl-2-(3,6,10,13,14-

pentamethyl-3-ethyl-

pentadecyl)cyclohexane 

C32H64 448 50.062 0.46 

21 Cholesta-4,6-dien-3-ol, (3.beta.)-  

4,6-Cholestadien-3.beta.-ol 

Cholesta-4,6-dien-3-ol 

C27H44O 384 52.905 0.52 

22 (+)-.gamma.-Tocopherol, O-

methyl- 

C29H50O2 430 53.576 0.52 

23 beta.-Sitosterol Stigmast-5-en-3-ol, 

(3.beta.)- Stigmast-5-en-3.beta.-ol  

.alpha.-Dihydrofucosterol .beta.-

Sitosterin  Angelic 

C29H50O 414 56.688 5.90 

24 Propiolic acid, 3-(1-hydroxy-2-

isopropyl-5-methylcyclohexyl)-, 

ethyl ester  Ethyl 3-(1-hydroxy-2-

isopropyl-5-methylcyclohexyl)-2-

pro 

C15H24O3 252 58.820 0.22 

25 Dihydroartemisinin, 6-deshydro-5-

deshydroxy-3-desoxy- 

Dihydroartemisinin, 6-dehydro-5-

dehydroxy-3-deoxy 

C15H22O3 250 58.820 0.22 

26 d,l-Xylitol, 1-O-undec-10-enoyl-1-

O-(10-Undecenoyl)-d-xylitol 

C16H30O6 318 58.820 0.22 

 

Key: MF = Molecular Formula; MW = Molecular Weight; RT = Retention time 
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APPENDIX 7 

Manuscript: Centella asiatica decreases nuclear factor kappa-beta (p50, p65) protein 

expression, decreases pro-inflammatory cytokine levels and modulates cell death in leukaemic 

(THP-1) cells. 

 

 

Figure 7.1: TNF-α (A), IL-6 (B), IL-1β (C) and IL-10 (D) standard curves. 

 

 

Figure 7.2: BSA standard curve for C and C3 treated THP-1 cells. 
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Table 7.1: Concentration of inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) in LPS 

stimulated and C and C3 treated PBMC’s. 

Extracts (0.1 

mg/ml) 

TNF-α 

(pg/ml) 

IL-6 (pg/ml) IL-1β(pg/ml) IL-10 (pg/ml) 

DMSO+LPS  6.96 ± 0.45 575.45 ± 10.46 165.07 ± 0.79 13.33 ± 0.64 

C 9.80 ± 0.85 * 520.61 ± 22.28 ** 153.07 ± 2.08 *** 8.02 ± 0.77 *** 

C3 5.88 ± 0.59 501.89 ± 11.96 *** 168.59 ± 1.01 * 6.42 ± 0.57 *** 

P value   p < 0.0001  p < 0.0001  p < 0.0001  p < 0.0001 

Key - *p < 0.01, ** p < 0.001, *** p < 0.0001, compared to the control 

 

Table 7.2: Modulation of caspase (-8, -9, -3/7) in LPS stimulated and C and C3 treated PBMC’s for 

24 h. 

Extracts (100 

mg/ml) 

Caspase-8 (RLU) Caspase-9 (RLU) Caspase-3/7 (RLU) 

DMSO+LPS 5.58 x 103 ±            
1.85 x 103 

8.07 x 104 ±            
1.50 x 103 

1.07 x 105 ±            
4.17 x 103 

C_100  5.50 x 103 ±           
1.71 x 102 

8.47 x 104 ±            
2.24 x 103 

9.70 x 104 ±             
3.69 x 103 

C3_100 5.24 x 103 ±           
1.13 x 104 

9.43 x 104 ±           
2.87 x 103 ** 

1.06 x 105 ±                 
1.63 x 103 

P value  p = 0.4930  p = 0.0003  p = 0.0005 

Key - *p < 0.01, ** p < 0.001, *** p < 0.0001, compared to the control 

 

Table 7.3: Modulation of caspase (-8, -9, -3/7) in LPS stimulated and C and C3 treated PBMC’s for 

72 h. 

Extracts (100 

mg/ml) 

Caspase-8 (RLU) Caspase-9 (RLU) Caspas-3/7 (RLU) 

DMSO+LPS 7.24 x 103 ±        
6.55 x 103 

5.65 x 104 ±                
4.09 x 103 

4.77 x 104 ±               
9.97 x 100 

C_100  2.49 x 103 ±             
1.85 x 103 

3.91 x 104 ±                
4.61 x 102 * 

3.07 x 104 ±                
2.36 x 103 * 

C3_100 2.43 x 103 ±             
3.93 x 102 

5.53 x 104 ±                 
3.99 x 103  

4.87 x 104 ±                 
5.09 x 103 

P value  p = 0.4205  p = 0.0010  p = 0.0051 
Key - *p < 0.01, ** p < 0.001, *** p < 0.0001, compared to the control 
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Due to the minimal decrease in pro-inflammatory cytokines, experimentation only continued on 

THP-1 cells. 

 

APPENDIX 8 

Manuscript: Centella asiatica modulates Nrf-2 antioxidant mechanisms and enhances ROS 

mediated apoptosis in leukaemic THP-1 cells.  

 

 

Figure 8.1: GSH standard curves for C (A) and C3 (B) treated THP-1 cells. 

 

Figure 8.2: BSA standard curve for C and C3 treated THP-1 cells. 
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Figure 8.3: JC-1 assay scatter plots for C treated THP-1 cells.  
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Figure 8.4: JC-1 assay scatter plots for C3 treated THP-1 cells.  
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APPENDIX 9 

Manuscript: Centella asiatica purified fraction-3 suppresses the Nrf-2 antioxidant pathway 

and enhances ROS mediated cell death in cancerous lung (A549) cells.  

 

 

Figure 9.1: GSH standard curve for C3 treated A549 cells.  

 

 

Figure 9.2: BSA standard curve for C3 treated A549 cells.  
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Figure 9.3: JC-1 assay scatter plots for C3 treated A549 cells.  
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APPENDIX 10 

Manuscript: Centella asiatica purified fraction-3 suppresses the Nrf-2 antioxidant pathway 

and enhances apoptotic cell death in human embryonic kidney (HEK293) cells.  

 

 

Figure 10.1: GSH standard curve for C3 treated HEK293 cells.  

 

 

Figure 10.2: BSA standard curve for C3 treated HEK293 cells.  
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Figure 10.3: JC-1 assay scatter plots for C3 treated HEK293 cells.  
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