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Abstract

Estimation of current levels of human immunodeficiency virus (HIV) incidence is es-

sential for monitoring the impact of an epidemic, determining public health priorities,

assessing the impact of interventions and for planning purposes. However, there is

often insufficient data on incidence as compared to prevalence. A direct approach

is to estimate incidence from longitudinal cohort studies. Although this approach

can provide direct and unbiased measure of incidence for settings where the study is

conducted, it is often too expensive and time consuming. An alternative approach is

to estimate incidence from cross sectional survey using biomarkers that distinguish

between recent and non-recent/longstanding infections. The original biomarker based

approach proposes the detection of HIV-1 p24 antigen in the pre-seroconversion pe-

riod to identify persons with acute infection for estimating HIV incidence. However,

this approach requires large sample sizes in order to obtain reliable estimates of HIV

incidence because the duration of antigenemia before antibody detection is short,

about 22.5 days. Subsequently, another method that involves dual antibody testing

system was developed. In stage one, a sensitive test is used to diagnose HIV infection

and a less sensitive test such is used in the second stage to distinguish between long

standing infections and recent infections among those who tested positive for HIV

in stage one. The question is: how do we combine this data with other relevant in-

formation, such as the period an individual takes from being undetectable by a less

sensitive test to being detectable, to estimate incidence?

The main objective of this thesis is therefore to develop likelihood based methods

x
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that can be used to estimate HIV incidence when data is derived from cross sectional

surveys and the disease classification is achieved by combining two biomarker or

assay tests. The thesis builds on the dual antibody testing approach and extends the

statistical framework that uses the multinomial distribution to derive the maximum

likelihood estimators of HIV incidence for different settings.

In order to improve incidence estimation, we develop a model for estimating HIV

incidence that incorporate information on the previous or past prevalence and derive

maximum likelihood estimators of incidence assuming incidence density is constant

over a specified period. Later, we extend the method to settings where a proportion

of subjects remain non-reactive to a less sensitive test long after seroconversion.

Diagnostic tests used to determine recent infections are prone to errors. To address

this problem, we considered a method that simultaneously makes adjustment for

sensitivity and specificity. In addition, we also showed that sensitivity is similar to

the proportion of subjects who eventually transit the “recent infection” state.

We also relax the assumption of constant incidence density by proposing linear in-

cidence density to accommodate settings where incidence might be declining or in-

creasing.

We extend the standard adjusted model for estimating incidence to settings where

some subjects who tested positive for HIV antibodies were not tested by a less sensi-

tive test resulting in missing outcome data. Models for the risk factors (covariates)

of HIV incidence are considered in the last but one chapter. We used data from

Botswana AIDS Impact (BAIS) III of 2008 to illustrate the proposed methods. The

general conclusion and recommendations for future work are provided in the final

chapter.

KEY WORDS: HIV incidence; Cohort studies; Cross sectional surveys; Maximum

likelihood; previous prevalence; incidence density; sensitivity and specificity; risk fac-

tors.
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Chapter 1

General Introduction

1.1 Introduction

Knowledge of current levels of human immunodeficiency virus (HIV) prevalence and

incidence is essential for monitoring the impact of HIV, determining public health

priorities, assessing the impact of interventions, identifying high-risk populations for

vaccine and other HIV preventions trials and for planning purposes (UNAIDS, 2006;

Brookmeyer et al., 1995; Brookmeyer and Quinn, 1995; Janssen et al., 1998; Bala-

subramanian and Lagakos, 2010; Wang and Lagakos, 2009, 2010; Kaplan and Brook-

meyer, 1999). Prevalence, a proportion of the population with a condition at a point

in time, can be estimated from cross sectional surveys such as Antenatal Sentinel

and Demographic and Health Surveys. Most Antenatal Sentinel Prevalence Surveys

focus on the estimation of HIV prevalence among pregnant women of age 15-49 years

which are not representative of the target population. Hence the results cannot be

generalized to the entire population. Demographic and Health Surveys, which are

based on a representative sample, are commonly used to estimate HIV prevalence.

1
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These surveys therefore provide a better estimate of prevalence compared to that

from Antenatal Sentinel Prevalence Surveys.

Unlike HIV incidence rate (or HIV incidence), the number of new cases of HIV dis-

ease condition divided by the total time experienced by all subjects followed over an

interval of time, prevalence alone is not a good measure that can be used to assess the

impact of interventions and track the growth of new infections since it only measure

the relative burden of HIV disease. In particular, one of the major public health

objectives is to reduce incidence of HIV (Guy et al., 2009). This is because reduction

in HIV incidence will lead to a decline in HIV prevalence since incidence is part of

prevalence. Therefore monitoring the current levels of incidence will be essential for

establishing the need for prevention programmes and their effectiveness. However,

there is often insufficient data on the current levels of HIV incidence as compared

to HIV prevalence. This is so because there are challenges in determining the best

strategy for measuring HIV incidence. A good strategy will help us to obtain reliable

estimates of HIV incidence.

Several approaches have been used to estimate HIV incidence which include: cohort

studies, mathematical models, back-calculation methods, serial prevalence surveys

and cross-sectional surveys of biomarkers.

Regarded as a gold standard, longitudinal cohort studies have been used to estimate

HIV incidence. The idea is to follow a representative sample of HIV free individuals

for a specified period and record new cases of HIV infection. HIV incidence is then

computed as a ratio of the new cases of HIV detected over a given period to the

number of person years (or any other units of time used) of exposure (Kaplan and
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Brookmeyer, 1999). Although this approach provides the ideal method of estimating

HIV incidence, there are a number of drawbacks associated with it. First, estimation

of incidence rate from cohort studies is hampered by cost and low follow up rates. This

is a major problem in poor resource settings. Low follow-up rates could lead to follow

up bias which arises if the incidence rates among the subgroups of individuals who

return for follow-up are different from incidence rates among those who do not return

for follow-up (Brookmeyer and Quinn, 1995; Brookmeyer et al., 1995). The difference

could be a result of repeated exposure to counseling, better treatment adherence, and

other health education programs and prevention messages amongst those who return

for follow-up visits (Brookmeyer, 2010a; Brookmeyer et al., 1995). More generally,

the enrollment of persons into a cohort study often leads to behaviour changes that

result in a lower observed HIV incidence than in the broader population of interest.

Second, we have the selection bias. This type of bias arises when individual who

agree to participate and return for follow-up visits are not representative of the target

population (Brookmeyer, 2010a). Hence, generalizing the estimates of incidence rate

from the cohort to the broader population could be misleading. Lastly, the utility

of the cohort approach relies on the assumption that the sample in the longitudinal

cohort study is an unbiased subset of the population of interest. If this assumption

does not hold then the HIV incidence estimated from the sample may not be a

true reflection of the underlying rate. Consequently, generalizability will be not be

achievable.

HIV incidence have also been estimated from serial prevalence data because of the

availability of such data from surveys such as Demographic and Health Surveys which

are often carried out every 4-5 years in some countries (Brookmeyer, 2010a). As noted
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by Brookmeyer (2010a), the basic idea is to infer absolute HIV incidence from changes

in absolute HIV prevalence rather from changes in their respective proportions using

a balancing equation. However, this approach is affected by both migration changes

and mortality.

Mathematical models of serial cross sectional data on HIV prevalence have also been

used to estimate HIV incidence (Lagakos and Gable, 2008). These models have

been used particulary by UNAIDS and World Health Organization to provide esti-

mates of population level trends in HIV epidemic (Lagakos and Gable, 2008; Walker

et al., 2003). Like any other models for estimating HIV incidence, these models have

strengths and weaknesses. The strength of this method is that beside being cheap

and quick, it can be useful in tracking changes in HIV epidemic at a population

level (Lagakos and Gable, 2008). However, its major drawback is that there is often

insufficient information on the input parameters required to estimate HIV incidence.

Back-calculation methods provides an indirect approach to estimating incidence.

Back-calculation methods have been applied to reconstruct historical infection rates

using AIDS incidence data and the probability distribution of the incubation period

from HIV infection to AIDS diagnosis (Brookmeyer, 1991; Bacchetti et al., 1993).

Although these methods are less costly, they could not provide timely data on cur-

rent transmission rates. Furthermore, changes in the AIDS case definition and the

introduction of effective treatment that slow disease progression to AIDS rendered

back-calculation methods invalid (Hall et al., 2009).

Other methods for estimating HIV incidence utilizes age-specific prevalence data in

stable endemic conditions (Gregson et al., 1998). For example, one of the methods
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is to model HIV prevalence as the cumulative incidence of new infections at each

proceeding age. Another method, models incidence as the difference between the ob-

served prevalence levels at two successive age intervals. Although these are likelihood

based methods, they do not use biomarker assays to identify new infections but rather

they rely on the assumed survival distribution after HIV infection which could be a

problem since survival is affected by the use of anti-retroviral therapy.

An alternative approach is to estimate HIV incidence from a cross sectional sur-

vey using biomarkers to identify persons acutely or recently infected (Brookmeyer

and Quinn, 1995; Janssen et al., 1998). Both Brookmeyer and Quinn (1995) and

Brookmeyer et al. (1995) proposed the detection of HIV-1 p24 antigen in the pre-

seroconversion period for identifying persons with acute infection for estimating in-

cidence. The idea is to determine the prevalence of p24 antigenemia among persons

who have not seroconverted (Brookmeyer and Quinn, 1995). Incidence is then es-

timated using standard epidemiological relationships between incidence, prevalence

and mean duration in which prevalence is a product of incidence rate and mean du-

ration (Freeman and Hutchison, 1980). That is, prevalence is a product of incidence

rate and mean duration. In this setting, prevalence refers to the proportion of re-

cently infected persons among those at risk, and the mean duration refers to the mean

duration of the “window” period (Brookmeyer and Quinn, 1995; Karon et al., 2008).

Mean duration is often referred to as the mean window period and it is the average

time it takes newly infected individuals to pass from “recent” infection to “non re-

cent” infection according to the biomarkers (Lagakos and Gable, 2008). However, this

approach requires large sample sizes in order to obtain reliable estimates of incidence

because the duration of antigenemia before antibody detection is short, about 22.5
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days (Brookmeyer and Quinn, 1995; Janssen et al., 1998). Subsequently, another as-

say that is associated with a longer period from being undetectable to detectable was

developed (Janssen et al., 1998). That is, the indirect immunoassay (EIA) is modified

or “detuned” or made “less sensitive” by increasing the specimen dilution (Janssen

et al., 1998; Parekh et al., 2002). The detuned assay is then used to identify recent

infection by detection of differential HIV-1 antibody titer. The assay have been used

to estimate incidence in many US populations due to its availability in those settings

(Janssen et al., 1998; Parekh et al., 2002). In general, identification of new infections

is done in two stages. In the first stage, one takes a cross-sectional random sample

of size n from an asymptomatic population, and tests each person using a sensitive

test (typically ELISA). Individuals testing negative are assumed to be uninfected at

that time. In the second stage, individuals testing positive on a more sensitive test

are tested again using a less-sensitive test. Subjects that are found to be positive on

a sensitive test but negative on the less sensitive test for HIV infection are consid-

ered to be recent infections. This method is known as the serologic testing algorithm

for recent HIV seroconversion (STARHS), (Janssen et al., 1998). However, limited

availability in other parts of the world and some other limitations of the assay (that

include requirements of special equipments, subtype dependent performance and sig-

nificant variability of the window periods) hampered its wide usage and subsequently

led to the evolution of IgG-capture BED-EIA (commonly referred to as BED assay)

for detecting recent HIV-1 infections (Parekh et al., 2002; Parekh and McDougal,

2005; WHO, 2009). The BED assay has been used worldwide in five continents, both

in the general population and in high risk groups (Barnighausen et al., 2010).

Generally conditions such as HIV have a natural history that initially someone is born
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free from HIV and the stage is called the “disease free” stage. Then comes a stage

where he/she is infected with HIV during which the virus cannot be detected by the

standard antibody tests. This stage is often referred to as the “pre-seroconversion

period”. Later the virus is then detected by a standard antibody tests and this stage

is called the “sero-conversion period”. Finally there is a stage where the virus is

“established” and the stage is called the “non-recent” stage.

Using this natural history of HIV, Balasubramanian and Lagakos (2010) developed a

theoretical framework using the likelihood approach through a multinomial distribu-

tion and derived corresponding likelihood estimators of HIV incidence under different

settings, including settings where more than two diagnostic tests are used and set-

tings where subjects are tested at different ages. The method allows incorporation

of covariates. The idea is very simple, when we select a random sample of subjects

of size n from a population and test each person using a sensitive antibody test such

as ELISA, n+ subject will test positive for HIV antibody, while n− will test negative

such that n = n+ + n−. The n+ are tested again using a less sensitive test. n++

will test positive again while n+− will test negative. The n+− are regarded as the

recent infection since they have not transferred to the non-recent infection state while

the other n++ are regarded as the established infections (Janssen et al., 1998). n−

subjects are tested again to detect the HIV-1 p24 antigens in the pre-seroconversion

stage. The n−+ individuals who test positive for HIV-1 p24 antigens are regarded

as acute infections while n−− subjects testing negative for HIV-1 p24 antigens are

assumed to be negative for HIV at the time of testing. Balasubramanian and La-

gakos (2010) assumes that the distribution of (n−−, n−+, n+−) follows a multinomial

distribution with probabilities (π0, π1, π2) respectively. That is,
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P (n−−, n−+, n+−, n++|π0, π1, π2, π3) ∼ trinomial(n;π0, π1, π2).

where π3 = 1− π0 − π1 − π2 and n = n−− + n−+ + n+− + n++.

1.2 Data Description

1.2.1 Introduction

The thesis utilizes data from the Botswana AIDS Impact (BAIS) III of 2008 to il-

lustrate the proposed methods. The first AIDS impact survey in Botswana was

conducted in 2001 and it was called the BAIS I. This was Botswana’s first national

population based household sexual behavioral survey. However, the study was limited

to collecting the baseline information on some topics related to HIV/AIDS including

behavioural changes. There was no HIV testing undertaken during BAIS I. In 2004,

the second AIDS impact survey called BAIS II was conducted. It focused on identi-

fying and measuring factors that are associated with HIV in Botswana. These factors

include information on behaviour, knowledge, attitudes and cultural influences. More

importantly, BAIS II also focused on the estimation of HIV prevalence amongst the

population aged 18 months and above. BAIS III was conducted in 2008. The aim of

BAIS III was to update existing information on the behavioral patterns of the popu-

lations aged 10-64 years and to estimate HIV prevalence and incidence rates among

individuals aged 18 months and above. Estimation of HIV incidence is important for

assessing the impact of prevention efforts and to track and monitor the growth of new

infections. BAIS III was a cross sectional study. The unique feature of BAIS III is
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that it has biomarkers data on HIV incidence. It is this unique feature of BAIS III

data that was exploited in the current work to show the application of the proposed

methods.

1.2.2 Laboratory Testing

In stage I, a parallel testing algorithm using commercial ELISA test kits - Vironostika-

HIV Uni-Form II plus O (Organon Teknika, Boxtel, The Netherlands) and Murex

(Abbott, Wiesbaden, Germany) was used to screen blood samples. A specimen was

considered HIV antibody positive if it was reactive on parallel ELISA testing other-

wise it was considered HIV antibody negative. In stage II, in order to detect recent

HIV-1 seroconversion, all the HIV positive specimens were tested again using a less

sensitive test, Aware BED enzyme immunoassay (EIA) HIV-1 incidence Test (Ca-

lypte Biomedical Corporation, Portland, Oregon, USA). Specimens were considered

recent HIV-1 seroconversion if they were not reactive to Aware BED EIA test (tested

negative) for ODn < 0.8 otherwise the specimens were classified as long standing

infections. More details of these Laboratory Testing procedures are provided in CSO

(2008) report.

1.2.3 The Data

All persons aged 18 months and above were eligible for HIV testing using a sample of

size n=21,414 during the survey period. But only 67% (sample size=14,351) provided

blood specimen for HIV Testing. Of the 14,351 subjects who tested, 2521 tested HIV

positive, n0 = 11, 823 tested HIV negative while 7 results were indeterminate. Out of
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the 2521 subjects who tested positive for HIV, there were nr = 149 recent infections

and n1 = 2319 long standing infections. For the remaining subjects, nothers = 53

the specimens were reported missing (for 27 specimens the box was not found and

for other 26 the blood samples were finished). Initially we assumed that the missing

specimens are missing completely at random (MCAR) because the reasons for samples

to be missing may be assumed to unrelated to outcome of interest whether observed

or unobserved (Little and Rubin, 2002). However, to be on the safer side and the fact

the MCAR assumption is too strong an assumption we later relaxed this assumption

by considering and applying the missing at random assumption (MAR). This is a

better assumption than the MCAR because it allows the missingness to depend on

at least the observed data and can easily be dealt with using likelihood approaches.

1.2.4 Preliminary analysis

Data was collected on a number of variables including: age, sex, marital status,

educational level, status on alcohol intake (whether or not one have ever taken an

alcoholic drink), drug intake (whether or not one have ever taken drugs), and the

number of partners during the survey period. Table 1.1 shows some preliminary data

analysis excluding 53 subjects with specimen reported. So this analysis is based on

n = n0 + nr + n1 = 11, 823 + 149 + 2319 = 14, 291. We performed a chi-square test

for association between outcome status and each of the above variables. The p-values

are presented in the Table 1.1. Also Table 1.1 shows the percentage of missing data.

We note that where we have missing data, the p-values may not be valid.
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Table 1.1: Distribution of the sampled individuals into the 3-states disease model
stratified according to some key demographic characteristics

Sample % of data
Demographics n (n0, nr, n1) p-value missing

Sex Male 6516 (5603, 55, 858) < 0.01 0%
Female 7775 (6220, 94, 1461)

Age (y) ≤ 4 872 (854, 5, 13) < 0.01 0%
5-14 3382 (3242, 18, 122)
15-19 1449 (1395, 5, 49)
20-29 2967 (2401, 43, 523)
30-39 2142 (1287, 33, 822)
40-49 1429 (928, 27, 474)
50+ 2050 (1716, 18, 316)

Education Non-formal 203 (146, 3, 54) < 0.01 35%
Primary 3247 (2586, 34, 627)
Secondary 4625 (3620, 56, 949)
Higher 1200 (1006, 12, 182)

Marital status Never married 6195 (5206, 74, 915) < 0.01 27%
Married 1465 (1162, 20, 283)

Living together 2307 (1523, 29, 755)
Separated 70 (45, 0, 25)
Divorced 100 (74, 0, 26)
Widowed 252 (152, 4, 96)

Ever taken alcohol Yes 3814 (2814, 42, 958) < 0.01 27%
No 6582 (5354, 85, 1143)

Ever taken drugs Yes 305 (231, 4, 70) 0.47 27%
No 10086 (7934, 123, 2029)

No. of sexual partners 0 1108 (776, 24, 308) 0.04 47%
1 5573 (3985, 80, 1508)
2 642 (486, 10, 146)

> 2 182 (141, 1, 40)
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1.2.5 Limitations of the Data

One of the major limitations of this data set was that, except for age and sex, all other

variables had a lot of missing information. All other variables have more than 25% of

the data missing. For this reason, we only used age and sex to illustrate the proposed

methods and for addressing the question of incidence dependence on covariates.

1.3 Thesis Objective

The objective of this thesis is to develop likelihood based methods that can be used

to estimate HIV incidence when data is derived from cross sectional surveys and

the disease classification is achieved by combining two biomarker or assay tests. The

thesis builds on the work of Janssen et al. (1998) and extends the statistical framework

developed by Balasubramanian and Lagakos (2010) to derive the maximum likelihood

estimators of HIV incidence under different settings.

1.4 Thesis Outline

Chapter 2 reviews the four state model of Balasubramanian and Lagakos (2010) and

introduces the reader to the three state disease progression model. We also propose

a method of estimating incidence when we have information on the immediate past

prevalence is present. The method is compared to that of Wang and Lagakos (2009).

The method performs slightly better than the one of Wang and Lagakos (2009) in

terms of efficiency gain. The chapter concludes by a discussion that also includes
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some limitations of this method.

In Chapter 3, we describe methods for simultaneously incorporating the sensitivity

and specificity of the diagnostic tests for new infections. In particular, we derive the

maximum likelihood estimator for incidence when the less sensitive test has sensitivity

and specificity less than 100% assuming the sensitive test has 100% sensitivity and

specificity.

In Chapter 4, we relax the assumption of constant incidence density and introduce the

linear incidence density. This approach is applicable to situations where the incidence

density is changing over time. However, the idea of linear incidence density is limited

by the issues of identifiability hence we make an additional assumption that the past

prevalence is known.

In Chapter 5, we present the method for adjusting the estimates of incidence when a

proportion of subjects tested using an antibody sensitive test were not tested using

a less sensitive test resulting in missing data. In particular, we considered how ad-

justments can be made in the log-likelihood when the missing data is assumed to be

missing at random.

Chapter 6 describes the method for incorporating the important risk factors and

extend the method of Magder and Hughes (1997) to incorporate the uncertainty of

determining the outcome of interest which is HIV incidence.

In Chapter 7, we present the overall conclusion of our research which includes the

limitations as well suggestions for future research.



Chapter 2

A likelihood estimation of HIV
incidence incorporating
information on past prevalence

SUMMARY. The prevalence and incidence of an epidemic are basic characteristics

that are essential for study planning, assessing the effect of interventions and for de-

termining public health priorities. A direct approach for estimating incidence is to

undertake a longitudinal cohort study where a representative sample of disease free

individuals are followed for a specified period of time and new cases of infection are

observed and recorded. This approach is expensive, time consuming and prone to

bias due to loss-to-follow-up. An alternative approach is to estimate incidence from

cross sectional surveys using biomarkers to identify persons recently infected as in

(Brookmeyer and Quinn, 1995; Janssen et al., 1998). This paper builds on the work

of Janssen et al. (1998) and extends the theoretical framework proposed by Bala-

subramanian and Lagakos (2010) by incorporating information on past prevalence

and deriving maximum likelihood estimators of incidence. The performance of the

proposed method is evaluated through a simulation study, and its use is illustrated

14
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using data from the Botswana AIDS Impact (BAIS) III survey of 2008.

KEY WORDS: HIV incidence; Cohort studies; Cross sectional surveys; Maximum

likelihood; previous prevalence

2.1 Introduction

In this chapter, we consider estimating HIV incidence when we have information on

previous prevalence. In many settings, at the time of the cross sectional survey, the

information on previous prevalences (existing/non-recent infections) from previous

studies is often available. If the period between the immediate past survey and the

current cross sectional survey is not too long, then one can use the prevalence from

the past survey to improve incidence estimation in the current survey. Incorporating

additional information of known past prevalence can lead to an efficiency gain in

estimating incidence. This paper builds on the work of Janssen et al. (1998) and

extends the theoretical framework proposed by Balasubramanian and Lagakos (2010)

by incorporating information on past prevalence in order to improve the efficiency of

incidence estimation.

It is known (McDougal et al., 2006; Barin et al., 2005; Chawla et al., 2007) that a

varying proportion of individuals tested with BED assay produce the “false-recent”

results long after seroconversion (assay non-progressors). That is, some long standing

infection are misclassified as recent long after they have seroconverted (Karita et al.,

2007; McDougal et al., 2006; Hargrove et al., 2008). Estimators that take into account

false recent rate have been proposed (McWalter and Welte, 2010; Wang and Lagakos,
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2009). Since our method is likelihood based, we extend the approach in Wang and

Lagakos (2009) to make adjustments for false recent rate in the proposed model.

The rest of the chapter is structured as follows. In Section 2.2, we review models

for HIV progression and the likelihood estimators for incidence. The proposed model

that incorporates the information on previous prevalence is introduced in Section 2.3.

A simulation study to investigate the performance of this model is presented in Sec-

tion 2.4. We use the data from Botswana AIDS Impact (BAIS) III survey of 2008 in

Section 2.5 to illustrate the use of the proposed method. Lastly, we end the chapter

with a discussion in Section 2.6.

2.2 Models and the likelihood function

2.2.1 Review of the Four-State Balasubramanian-Lagakos (BL)

Model

Balasubramanian and Lagakos (2010) generalized the HIV history of an individual

through a four state model with the four states denoted by S0, S1, S2 and S3 . Where

S0 represents the uninfected state which extend from the time an individual is born

to the time he/she develops the HIV antigens which are often detected by an antigen

test (denoted by A). S1 represents the “acute infection state” which extend from the

initial infection to seroconversion. By seroconversion we refer to the development of

HIV antibodies that are often detectable by a sensitive test such as standard ELISA

denoted by E. S1 is the state that Brookmeyer and Quinn (1995) used to determine the

recent infections. In this setting, which is similar to Janssen et al. (1998) approach,
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Table 2.1: Summary of the 4-States
State Test Results Implication

S0 (A−, E−) uninfected
S1 (A+, E−) acute infection
S2 (E+, D−) recent infection
S3 (E+, D+) nonrecent infection

S2 represents the “recent infection” state where HIV antibodies are detectable by a

sensitive diagnostic test but not yet through a less sensitive test such as BED assay or

detuned ELISA denoted by D. Finally S3 represents the “non-recent infection” state

in which HIV antibodies are detectable by a less sensitive test (and sensitive test).

Table 2.1 summarizes the four states in relation to the test result of a sample and

what the implication is.

The above BL 4-state model can be considered as a hierarchical or longitudinal pro-

gression process where subjects are initially in state S0 then they move sequentially

to S1 then S2 and finally to S3. Note that cross sectional sampling of subjects is done

using diagnostic tests and this provides useful information about the state prevalence

functions denoted by:

πj(t) = P (subject is in state Sj at calender time t)

for j = 1, 2, 3, 4. The idea is to link the cross-sectional samples to longitudinal quan-

tities so as to learn more about the underlying disease process.

2.2.2 The 3-state model, state probabilities and incidence

In some settings, S0 and S1 have been combined to form a single state such that the

HIV history of an individual is conceptualized in three states. This is basically how
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the Janssen et al. (1998) estimator was formulated. In this paper, we follow the 3-

state model approach and throughout this paper S1 shall refer to combined S0 and S1

as they are in Section 2.2.1. That is, we consider a 3-state disease progression model

for the natural history of HIV/AIDS noted by S1, S2 and S3. Here S1 represents the

“pre-seroconversion” state which corresponds to the period in which an individual

is either infected but have not yet seroconverted or is uninfected. S2 represents the

“recent infection” state where HIV antibodies are detectable by a sensitive diagnostic

test but not yet through a less sensitive test. Finally S3 represents the “non-recent

infection” state in which HIV antibodies are detectable by a less sensitive test and

sensitive test. We later consider the 4-state model of Wang and Lagakos (2009) to

make adjustments for assay non-progressors.

We use similar notation as in (Wang and Lagakos, 2009; Claggett et al., 2012). As-

sume the random variable T denotes the calendar time of HIV seroconversion for

someone born at time 0. Let t denote the calendar time of the cross sectional sample.

Furthermore, let f(t), F (t) and λ(t) denote the incidence density function (incidence

density) for becoming infected, cumulative distribution function and the incidence

rate/hazard rate of T at time u ≥ 0 respectively. Let L2 denote the sojourn or res-

idence time in S2 with the corresponding cumulative distribution denoted by G2(·).

We assume that L2 has support in [0, L∗
2], where L∗

2 < t and is independent of T. It

follows that G2(0) = 0 and G2(L
∗
2) = 1.
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The prevalence probabilities for the 3-states at time t are given by:

π1(t)
def
= P (in S1 at calender time t)

= 1− F (t) (2.2.1)

π2(t)
def
= P (in S2 at calender time t)

=

∫ t

t−L∗
2

f(u) [1−G2(t− u)] du (2.2.2)

π3(t) = 1− π1(t)− π2(t) (2.2.3)

Our interest is on the estimation of the HIV incidence rate at time t given by

λ(t) =
f(t)

1− F (t)
. (2.2.4)

Since t is the fixed calender time at which the cross sectional sample is obtained, we

shall hereafter denote λ(t) by λ.

The Likelihood Function and HIV incidence estimation without previous

prevalence

Suppose we select a random sample of size n from the population at some calendar

time t. Let n0 denote the number of subjects who test negative on a more sensitive

test, nr denote the number of subjects who test positive on a sensitive test and

negative on a less sensitive test and n1 denote the number of subjects who test

positive on a less sensitive test such that n = n0 + nr + n1. The nr individuals are

also referred to as “recent infections” while the n1 individuals are referred to as “long

standing infections” or “non-recent infections”. Note that if one tests negative on

a sensitive test then a less sensitive test is generally not done but assumed to be

negative. Note that if one tests negative on a sensitive test then a less sensitive test
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is generally not given but assumed to be negative. In practice, a less sensitive test is

administered among individuals who test positive on the sensitive test. If the results of

the less sensitive test is negative then the individual is classified as a recent infection.

Otherwise if the individual test positive on both tests then he/she is classified as a

long standing infection. The commonly used less sensitive test for different HIV sub-

types (B, E, D, C) is BED capture enzyme immunoassay, often referred to as BED

assay, developed by the Centers for Disease Control and Prevention (CDC). For this

reason we shall denote the less sensitive test by B instead of D as in the 4-state BL

model.

The general likelihood function, L, corresponding to the 3-state model is given by

L = [π1(t)]
n0 [π2(t)]

nr [π3(t)]
n1 (2.2.5)

subject to π1(t)+π2(t)+π3(t) = 1. Under the constant incidence function assumption,

the likelihood function for the 3-states model can be written as:

L(f, θ) = [1− θt]
n0 [fµ]nr [θt − fµ]n1 (2.2.6)

assuming µ = E(L2) is known.

The corresponding log likelihood function, ℓ(f, θ) will be:

ℓ(f, θ) = n0log(1− θ) + nrlog(fµ) + n1log(θ − fµ) (2.2.7)

The MLEs for θ and f can be obtained by joint maximization of Eq (2.2.7) with

respect to f and θ and the closed form solutions can be found. The partial derivatives

with respect to θ and f , respectively, are:

∂ℓ(f, θ)

∂θ
=

−n0

1− θ
+

n1

θ − fµ
(2.2.8)
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∂ℓ(f, θ)

∂f
=

nr

f
− n1µ

θ − fµ
(2.2.9)

Equating Eq (2.2.8) and Eq (2.2.9) to zero and solving for θ̂ and f̂ we obtain:

θ̂ =
nr + n1

n

f̂ =
nr

nµ

where n = n0 + nr + n1.

Since

λ̂ =
f̂

1− θ̂

then

λ̂ =
nr

n0µ
(2.2.10)

Eq (2.2.10) is the estimator of incidence rate proposed by Kaplan and Brookmeyer

(1999) and it is arises as a special case of the 4-state model proposed by Balasubra-

manian and Lagakos (2010) when the standard ELISA and detuned ELISA were used

as the sensitive and less sensitive tests respectively assuming the number of subjects

who tested positive on HIV antigen test is negligible. Basically, the Balasubramanian

and Lagakos (2010) model under this assumption is what we refer to as the 3-state

model approach.

The other estimator of HIV incidence proposed by Janssen et al. (1998) uses the

standard epidemiological relationship between prevalence and incidence rate and is

given by:

λ̂ =
nr

(n0 + nr)µ
(2.2.11)
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As noted by Balasubramanian and Lagakos (2010), the two estimators are closer

to each other since the number of new infections defined as the number of subjects

testing positive on the sensitive test and negative on the less sensitive test is usually

much smaller than the number testing negative on both tests and hence if we neglect

nr in the denominator of Eq (2.2.11) then the two estimators are the same.

Variance estimation and confidence intervals

Let ξ = (f, θ) and ξ̂ = (f̂ , θ̂) denote the MLEs for ξ respectively. To construct the

confidence intervals for ξ or functions of its components, the standard errors and the

covariances can be obtained from the Hessian matrix of the log-likelihood function

(Cox and Hinkley, 1974). The variance of ξ̂ is given by,

Var(ξ̂) = −E[H]−1 = −E

[
hf̂ ,f̂ hf̂ ,θ̂

hθ̂,f̂ hθ̂,θ̂

]−1

where

hf̂ ,f̂ =
∂2ℓ(f, θ)

∂f 2
= −nr

f 2
− n1µ

2

(θ − fµ)2

hf̂ ,θ̂ =
∂2ℓ(f, θ)

∂θ∂f
=

n1µ

(θ − fµ)2

hθ̂,θ̂ =
∂2ℓ(f, θ)

∂θ2
= − n0

(1− θ)2
− n1

(θ − fµ)2

When f and θ are replaced by their MLEs, the estimated variance of λ̂,

var(λ̂) =
nr(n0 + nr)

n3
0µ

2
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Wang and Lagakos (2009) approximate estimate of the variance of λ̂,

var(λ̂) ≈ nr

n2
0µ

2
(2.2.12)

This is because nr ≪ n0 hence n0 + nr ≈ n0.

2.3 The extended model allowing for past preva-

lence

Suppose HIV prevalence at time t1 < t, F (t1), is known. Thereafter we denote F (t1)

by θ0. Let τ = t − t1 denote the time between the current study at time t and the

immediate past study at time t1. Let the prevalence at time t be F (t) = θ. Assuming

constant density for HIV seroconversion in a short period of time right before the

cross sectional survey, that is,

f(u) = f for u ∈ [t− L∗
2, t]

then θ is given by

θ = θ0 +

∫ t

t1

f(u)du

= θ0 + f(t− t1) (for t1 < L∗
2)

= θ0 + fτ (2.3.1)

Since

λ =
f

1− θ
=

f

1− θ0 − fτ

then
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f =
λ(1− θ0)

1 + λτ
(2.3.2)

The likelihood function, in terms of λ, is then given by:

L(λ) =

[
1− θ0 −

λ(1− θ0)τ

1 + λτ

]n0
[
λ(1− θ0)µ

1 + λτ

]nr
[
θ0 +

λ(1− θ0)(τ − µ)

1 + λτ

]n1

Hence the maximum likelihood estimator of λ, λ̂, when previous prevalence is known

is given by

λ̂ =
−b+

√
b2 − 4ac

2a
(2.3.3)

where

a = n0τ [τ − (1− θ0)µ]

b = (n0 + n1)τθ0 − (nr + n1) [τ − (1− θ0)µ]

c = −nrθ0

for b2 − 4ac > 0. Note that to ensure that the estimated incidence rate is a positive

quantity we use the positive root of the quadratic equation arising from the maxi-

mization of the log-likelihood equation with respect to with λ. See the Appendix for

a derivation of the quadratic equation.

We note that the proposed estimator, λ̂, reduces to the simple estimator when we

have no information on previous prevalence when τ equal µ, the mean window period.

That is, for τ = µ

λ̂ =
nr

n0µ
.
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This is the estimator of HIV incidence, given in Eq (2.2.10), when we have no previous

prevalence.

To construct confidence intervals, we need the variance of λ̂. Given ∂2ℓ
∂λ2 , the approxi-

mate variance of λ̂,

var(λ̂) = −E

[
∂2ℓ

∂λ2

]−1

where

∂2ℓ

∂λ2
=

nτ 2

(1 + λτ)2
− nr

λ2
− n1 [τ − (1− θ0)µ]

2

[θ0 + λ {τ − (1− θ0)µ}]2
(2.3.4)

We obtain the estimate of the variance of λ̂ by replacing λ in Eq (2.3.4) with λ̂, its

MLE given in Eq (2.3.3).

Also we note that for τ = µ

var(λ̂) =
nr(n0 + nr)

n3
0µ

2
≈ nr

n2
0µ

2

as in Wang and Lagakos (2009).

2.3.1 Incorporating false recent rate into the extended model

The model we have introduced in Section 2.3 does not take into account individuals

who remain negative on the less-sensitive assay indefinitely. It is recognized that a

fraction of HIV infected subjects, referred to as assay non-reactors/non-progressors or

elite suppressors, repeatedly test negative on a less sensitive test, such as BED assay,

long after they have seroconverted leading in what has been termed “false recent

rate” (Wang and Lagakos, 2009; McWalter and Welte, 2010; Brookmeyer, 2010b;

Hargrove et al., 2008; Novitsky et al., 2009; Karita et al., 2007). Failure to account
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for this false recent rate results in estimates of incidence that are biased because they

overestimate the number of subjects who are recently infected (Wang and Lagakos,

2009; Hargrove et al., 2008; Karita et al., 2007). Estimators to address this problem

have been proposed (McWalter and Welte, 2010; Wang and Lagakos, 2009). Since the

estimator we have introduced in Section 2.3 is also a maximum likelihood estimator,

to incorporate the false recent rate we extend the approach of Wang and Lagakos

(2009).

We consider the four-state progressive-disease model as in Wang and Lagakos (2009).

Under this model, State 1 represents the “pre-seroconversion” state which corresponds

to the period in which an individual is either infected but have not yet seroconverted

or is uninfected. State 2 represents the “recent infection” state where HIV antibodies

are detectable by a sensitive diagnostic test but not yet through a less sensitive test

(though the test will eventually become reactive to the less-sensitive assay). State

3 represents the “non-recent infection” state in which HIV antibodies are detectable

by a less sensitive test and sensitive test. Finally state 4 represents subjects who are

detectable by the sensitive test, but who will permanently remain nonreactive to the

less-sensitive test.

2.3.2 The likelihood function and parameter estimation

Let p denote the proportion of subjects who will become reactive at some point after

seroconversion. Hence the false recent rate, 1− p, denotes the proportion of subjects

who remain negative on the less sensitive assay indefinitely.
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To incorporate the false recent rate, the general likelihood function, L, that we intro-

duced in Eq (2.2.5) can be extended as follows:

L = [π1(t)]
n0 [π2(t)p+ (1− π1(t))(1− p)]nr [π3(t)p]

n1 (2.3.5)

subject to π1(t) + [π2(t)p+ (1− π1(t))(1− p)] + π3(t)p = 1.

Specifically, likelihood we presented in Section 2.3 can be extended to incorporate the

false recent rate as follows:

ℓ(λ) =

[
1− θ0 −

λ(1− θ0)τ

1 + λτ

]n0

×
[
λ(1− θ0)µp

1 + λτ
+

{
θ0 +

λ(1− θ0)τ

(1 + λτ)

}
(1− p)

]nr

×
[
p

{
θ0 +

λ(1− θ0)(τ − µ)

1 + λτ

}]n1

The corresponding log likelihood is

ℓ(λ) = n0ln

[
1− θ0 −

λ(1− θ0)τ

1 + λτ

]
+nrln

[
λ(1− θ0)µp

1 + λτ
+

{
θ0 +

λ(1− θ0)τ

(1 + λτ)

}
(1− p)

]
+n1ln

[
p

{
θ0 +

λ(1− θ0)(τ − µ)

1 + λτ

}]
∝ −nln(1 + λτ) + nrln [λµp− λµpθ0 + θ0 − θ0p+ λτ − λτp]

+n1ln [−λµ+ λµθ0 + θ0 + λτ ]

The partial derivative with respect to λ is

∂ℓ

∂λ
= − nτ

1 + λτ
+

nrmr

ur + λmr

+
n1m1

u1 + λm1

(2.3.6)
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where

n = n0 + nr + n1

mr = µp(1− θ0) + τ(1− p)

ur = θ0(1− p)

m1 = −µ(1− θ0) + τ

u1 = θ0

The MLE of λ̂ is obtained by setting Eq (2.3.6) to 0 and is given by:

λ̂ =
−b+

√
b2 − 4ac

2a
(2.3.7)

where

a = m1mrτn0

b = mrτu1(n0 + n1) +m1τur(n0 + nr)−m1mr(nr + n1)

c = nτuru1 − nrmru1 − n1m1ur

We consider the positive root given by Eq (2.3.7) to ensure that the values of incidence

rate are within acceptable range. Note that for this setting, values of incidence rate

can be negative when 1− p is unusually large say greater than 0.05.

The approximate variance of λ̂, obtained by replacing λ by its maximum likelihood

estimates given in Eq (2.3.7), is

var[λ̂] = −E

[
∂2ℓ

∂λ2

]−1
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where

∂2ℓ

∂λ2
=

nτ 2

(1 + λτ)2
− nrm

2
r

(ur + λmr)2
− n1m

2
1

(u1 + λm1)2
(2.3.8)

and mr, ur, m1 and u1 are as defined before.

2.4 Simulation Study

We performed a simulation study to evaluate the performance of the proposed estima-

tor of HIV incidence using 1000 simulations. We generated a sample of size n = 3000.

The data was simulated from a multinomial distribution with state probabilities for

the unadjusted model given by:

π1(t) = 1− θ0 −
λ(1− θ0)τ

1 + λτ

π2(t) =
λ(1− θ0)µ

1 + λτ

π3(t) = 1− π1(t)− π2(t)

For the adjusted model that takes into account the false recent rate the probabilities

are:

π1(t) = 1− θ0 −
λ(1− θ0)τ

1 + λτ

π2(t) =
λ(1− θ0)µp

1 + λτ
+

{
θ0 +

λ(1− θ0)τ

(1 + λτ)

}
(1− p)

π3(t) = 1− π1(t)− π2(t)

Wang and Lagakos (2009) conducted an extensive simulation to evaluate the method

that adjusts for false recent rate described in Section 2.3.1 in the absence of previous

prevalence. We consider the proposed (unadjusted) model when we have previous
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prevalence (Model 2 denoted as M2) and compare it with the standard (unadjusted)

model with no data on previous prevalence (Model 1 denoted as M1). We also consider

the proposed (adjusted) model when we have previous prevalence (Model 4 denoted

by M4) and compare it with the standard (adjusted) model (Model 3 denoted by

M3) in order to determine in which settings does previous prevalence improve the

precision of incidence estimation.

For each simulation, we calculate the average point estimate of incidence based on the

proposed model. The true value of the incidence rate, λ(t) denoted by (Itrue) is taken

to be 3%. The average variance (standard errors) of these estimates are obtained

from the observed Fisher information. We also obtain the empirical estimates of the

variance from the 1000 simulated point estimate of incidence. The results of the

simulation study are presented in Table 2.2 for θ0 = 0.10, 0.171, 0.2. For each fixed

values of θ0 we assess how efficiency gain is affected for τ = 0.1, 0.3, 0.5, 0.6, 1.0 years.

Also presented are the values of the coverage probabilities. That is, the proportion

of times out of 1000 simulations the 95% confidence interval covers the true value of

HIV incidence. The results are presented for both unadjusted and adjusted models

(with and without previous prevalence).

We note that in all cases the simulated values of λ are closer to the true value of the

incidence rate, Itrue = 0.03. In general, ŜE(λ̂) and ˆESE(λ̂), the estimated standard

errors and the corresponding empirical estimates, respectively, are very close to each

other for all the different time points for both models. In most cases, the coverage

probabilities are close to the nominal 95% confidence interval. As depicted in Fig-

ure 2.1, suitable values of τ are those between the mean window period (where the

two curves overlap) and one year. In particular, for the unadjusted model, there is
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Table 2.2: Results of a simulation study comparing M2 and M1 with N = 3000
and Itrue = 0.03. λ̂, ŜE(λ̂) and ˆESE(λ̂) represents the average estimates, estimated
standard errors and the corresponding empirical estimates respectively from 1000 sim-
ulations. 95%CV denotes the proportion of experiments in which Itrue is contained in
the nominal 95% confidence interval.

Simulation Results with Itrue = 0.03
Previous HIV Prevalence

θ0 = 0.10 θ0 = 0.171 θ0 = 0.20
τ(in years) Estimates M2 M1 M2 M1 M2 M1

0.1 λ̂ 0.0298 0.0299 0.0298 0.0298 0.0300 0.0300

ŜE(λ̂) 0.0049 0.0051 0.0052 0.0053 0.0054 0.0054
ˆESE(λ̂) 0.0051 0.0054 0.0053 0.0054 0.0053 0.0055

95%CV 93.1 93.3 94.6 93.8 95.4 95.2

0.3 λ̂ 0.0299 0.0299 0.0298 0.0298 0.0302 0.0302

ŜE(λ̂) 0.0051 0.0051 0.0054 0.0053 0.0055 0.0055
ˆESE(λ̂) 0.0053 0.0054 0.0055 0.0055 0.0057 0.0057

95%CV 92.8 92.7 93.7 93.8 94.0 94.1

0.5 λ̂ 0.0300 0.0300 0.0297 0.0297 0.0300 0.0300

ŜE(λ̂) 0.0052 0.0052 0.0054 0.0053 0.0055 0.0055
ˆESE(λ̂) 0.0053 0.0053 0.0056 0.0056 0.0055 0.0055

95%CV 93.5 92.8 93.5 93.3 94.7 94.3

0.6 λ̂ 0.0296 0.0299 0.0297 0.0297 0.0300 0.0300

ŜE(λ̂) 0.0051 0.0051 0.0053 0.0053 0.0055 0.0055
ˆESE(λ̂) 0.0054 0.0054 0.0057 0.0058 0.0056 0.0057

95%CV 92.7 92.4 92.7 92.9 93.9 93.8

1 λ̂ 0.0300 0.0300 0.0299 0.0300 0.0302 0.0302

ŜE(λ̂) 0.0048 0.0052 0.0051 0.0054 0.0053 0.0055
ˆESE(λ̂) 0.0050 0.0056 0.0052 0.0056 0.0054 0.0057

95%CV 93.7 94.0 94.9 94.2 94.5 94.5



32

an efficiency gain for values of τ between the mean window period and one year. In

these settings we examined incorporating past prevalence leads to modest efficiency

gain when τ is close to one year.
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Figure 2.1: Graph of standard errors against time (years) between surveys using the
data in Table 2.2

We also compared the adjusted models (with previous prevalence, M4 and without

previous prevalence, M3). When we incorporate the false recent rate, we see that the

estimates of λ are close to the true values in all cases and that the standard error

increases for a higher proportion of false recent rate increases (see Table 2.3). Wang

and Lagakos (2009) observed similar results. The estimated standard errors are closer

to the corresponding empirical estimates in both cases of false recent proportions

namely 5% and 2%. The relative efficiency in the proposed adjusted model compared
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to the standard adjusted model of Wang and Lagakos (2009) is around one.

Table 2.3: Results of a simulation study with the incorporation of the False Recent
Rate (FRR) denoted by p for N = 3000 and Itrue = 0.03. λ̂, ŜE(λ̂) and ˆESE(λ̂) rep-
resents the average estimates, estimated standard errors and the corresponding em-
pirical estimates respectively from 1000 simulations. 95%CV denotes the proportion
of experiments in which Itrue is contained in the nominal 95% confidence interval.

Simulation Results with Itrue = 0.03 incorporating FRR
θ0 = 0.10 θ0 = 0.20

p = 0.95 p = 0.98 p = 0.95 p = 0.98
τ(y) Est M4 M3 M4 M3 M4 M3 M4 M3

0.3 λ̂ 0.0306 0.0306 0.0304 0.0304 0.0304 0.0303 0.0304 0.0304

ŜE(λ̂) 0.0063 0.0063 0.0056 0.0057 0.0078 0.0079 0.0065 0.0065
ˆESE(λ̂) 0.0064 0.0064 0.0058 0.0058 0.0080 0.0080 0.0068 0.0068

95%CV 94.5 94.8 94.5 94.2 94.8 94.2 93.1 93.2

0.5 λ̂ 0.0304 0.0304 0.0304 0.0304 0.0304 0.0303 0.0303 0.0302

ŜE(λ̂) 0.0061 0.0064 0.0056 0.0057 0.0076 0.0079 0.0065 0.0066
ˆESE(λ̂) 0.0064 0.0066 0.0059 0.0060 0.0080 0.0082 0.0068 0.0069

95%CV 94.3 93.9 93.6 93.9 93.8 94.1 93.7 93.2

0.6 λ̂ 0.0305 0.0305 0.0303 0.0303 0.0305 0.0305 0.303 0.0304

ŜE(λ̂) 0.0061 0.0064 0.0056 0.0057 0.0076 0.0080 0.0064 0.0066
ˆESE(λ̂) 0.0063 0.0067 0.0059 0.0060 0.0079 0.0083 0.0068 0.0069

95%CV 94.7 94.6 93.9 93.7 94.2 93.6 93.6 93.5

1 λ̂ 0.0306 0.0307 0.0303 0.0303 0.0305 0.0307 0.0305 0.0305

ŜE(λ̂) 0.0054 0.0066 0.0051 0.0058 0.0068 0.0082 0.0060 0.0067
ˆESE(λ̂) 0.0054 0.0057 0.0053 0.0060 0.0071 0.0084 0.0063 0.0069

95%CV 94.5 95.6 94.0 94.0 93.7 93.3 93.7 94.0
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2.5 Illustration of the proposed model using BAIS

III data set

We applied the proposed model to the Botswana AIDS impact survey (BAIS III)

data of 2008. BAIS III was the third sexual behaviour national population level

survey. More importantly, BAIS III has gone beyond the traditional aims of assessing

knowledge, attitude and behavior regarding HIV and AIDS to estimating the levels

of HIV prevalence and incidence in the general population aged 18 months and above

(CSO, 2008). This was an important exercise particularly with regard to assessment

of the impact of national programs and it also provided the basis of future research

including this current paper. BAIS III was a cross sectional study of which includes

the use of biomarkers to estimate incidence.

Estimated HIV incidence rate per 100 person-years (I) was calculated using the four

estimators:

a) Model 1 (M1): The standard unadjusted estimator (Kaplan and Brookmeyer,

1999; Balasubramanian and Lagakos, 2010)

b) Model 2 (M2): The proposed unadjusted estimator incorporating past prevalence

c) Model 3 (M3): The standard adjusted estimator (Wang and Lagakos, 2009)

d) Model 4 (M4): The proposed adjusted estimator incorporating past prevalence

As cautioned by (Hargrove et al., 2008; McWalter and Welte, 2010; Wang and La-

gakos, 2009), the use of locally available estimated parameters cannot be overempha-

sized. Because the locally estimated parameters are not available the values used in
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this paper are for illustration purposes only. However, the comparison and conclusions

still remain valid with these assumed parameter values. In both scenarios of Model 1

versus Model 2 and Model 3 versus Model 4 we assume a mean window period of 155

days (CSO, 2008). We use a value of τ = 1 year. For models 3 and 4, we assume a

false recent rate, 1−p = 1.5%. In Botswana, between 2004 and 2008, overall national

HIV prevalence increased from 17.1% to 17.6% (CSO, 2008) for individuals aged 1.5

years and above. For purposes of illustration we used simple extrapolation method to

estimate the previous prevalence for 2007. The values of θ0 are provided in Table 2.4.

Table 2.4: Values of θ0
Sample

Demographics n (n0, nr, n1) θ0 ≈ n1+nr

n
− 0.00125

Sex Male 6516 (5603, 55, 858) 0.139
Female 7775 (6220, 94, 1461) 0.199

Age (y) ≤ 4 872 (854, 5, 13) 0.019
5-14 3382 (3242, 18, 122) 0.040
15-19 1449 (1395, 5, 49) 0.036
20-29 2967 (2401, 43, 523) 0.190
30-39 2142 (1287, 33, 822) 0.398
40-49 1429 (928, 27, 474) 0.349
50+ 2050 (1716, 18, 316) 0.162

Overall All groups 14291 (11823, 149, 2319) 0.171

The 95% confidence intervals (95% CI) are provided for all the 4 models. We also

use all the four models to estimate group specific HIV incidence by sex and age. The

results for all the four models are presented in Table 2.5.

In both cases, Model 2 (compared to Model 1) and Model 4 (compared to Model 3)

produce better estimates of precision as shown by the narrow confidence intervals.

These are settings where we have assumed the previous prevalence is known. We can
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see that, in all the four models, incidence is higher for females compared to males as

it was reported in the BAIS III report. Also, incidence is higher for age groups 20-49

years compared to other age groups. There is a substantial decrease in the estimated

incidence when the assumed false recent rate is 1.5%. It is therefore important to

make necessary adjustments where there is need because failure to do that will result

in overestimation of incidence while making unnecessary adjustments will lead to

underestimation of incidence.

Table 2.5: Estimated HIV incidence by gender and age using all the four Models
Estimated HIV incidence in Botswana

Demographics IM1(95% CI) IM2(95% CI) IM3(95% CI) IM4(95% CI)
Sex Male 2.31 (1.70, 2.92) 1.97 (1.46, 2.48) 1.76 (1.14, 2.38) 1.45 (0.94, 1.96)

Female 3.56 (2.84, 4.28) 3.00 (2.41, 3.59) 2.72 (2.00, 3.44) 2.19 (1.59, 2.79)

Age (y) 1-4 1.38 (0.17, 2.59) 0.89 (0.14, 1.64) 1.32 (0.10, 2.54) 0.83 (0.08, 1.58)
5-14 1.31 (0.71, 1.91) 1.02 (0.57, 1.47) 1.17 (0.56, 1.78) 0.89 (0.44, 1.34)
15-19 0.84 (0.10, 1.58) 0.70 (0.11, 1.29) 0.72 (0.00, 1.47) 0.58 (0.00, 1.18)
20-29 4.22 (2.96, 5.48) 3.43 (2.43, 4.43) 3.44 (2.17, 4.71) 2.68 (1.67, 3.69)
30-39 6.04 (3.98, 8.10) 5.20 (3.46, 6.94) 3.75 (1.67, 5.83) 3.06 (1.20, 4.82)
40-49 6.85 (4.27, 9.43) 5.69 (3.59, 7.79) 5.02 (2.42, 7.62) 3.94 (1.82, 6.06)
50+ 2.47 (1.33, 3.61) 2.12 (1.17, 3.07) 1.81 (0.66, 2.96) 1.50 (0.53, 2.47)

Overall All groups 2.97 (2.49, 3.45) 2.51 (2.12, 2.90) 2.26 (1.78, 2.74) 1.84 (1.44, 2.24)

2.6 Discussion

We propose a method for estimating incidence of a disease, such as HIV, from a cross-

sectional study when previous prevalence is known. We find that in some settings

such a modification can modestly improve the precision of the estimator of incidence.

In order to compare our model, which assumes known previous prevalence, with the

standard model which assumes no previous prevalence we assume a known value of the

mean window period of 155 days, the same as the one that was used in BAIS III data
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analysis (CSO, 2008). In practice, the assumed false recent rate and the mean window

need to be estimated externally and therefore there is a need to account for their

uncertainty. However, the proposed method do not take into account the uncertainty

in the false recent rate and the mean window period. Although uncertainty in the

false recent rate and the mean window period affects estimators of incidence, we note

that for comparison between the two methods, the uncertainties of the two estimators

will not affect the conclusions. This is because the two models (with and without

previous prevalence) were compared under the same conditions of not accounting

for uncertainties. Methods of handling these uncertainties have been proposed by

Wang and Lagakos (2010) through the idea of augmented designs where all or some

individuals who are tested as recently infected are followed until they exit the recent

infection state. The design allows for internal estimation of both the false recent rate

and the mean window period and subsequently take into account the uncertainties

associated with these estimators. To ensure that our model did not overestimate

incidence as a result of assay non-progression, we extend the idea of (McWalter and

Welte, 2010; Wang and Lagakos, 2009) through a likelihood approach to account for

false recent rate.

It is important to note that in the era of improved standard of care where most

people living with HIV receive antiretroviral therapy (ARV) which may suppress the

viral load below detection limit, it is possible that some individuals on ARV may

potentially ‘return’ or ‘revert’ back to the recent infection state (Wang and Lagakos,

2009; Brookmeyer, 2010b; McWalter and Welte, 2010). However it has been noted

that where ARV usage is documented, all subjects on treatment can be assumed to

be in non-recent state because treatment initiation is often long after sero-conversion;
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usually after 1 to 2 years depending on the genetic structure of the individual (Wang

and Lagakos, 2009) which can slow or enhance disease progression. Another point

worth noting is that previous prevalence estimates may not always be informative

about current prevalence estimates, especially when there are innovations in diag-

nostics and/or treatments. To address this, we shall consider alternative methods to

improve our estimates of incidence. Examples of such methods is where we relax the

assumption of constant incidence density function by considering the linear incidence

density function.

Alternatively, to overcome this problem, a novel though expensive approach is to

design an assay, with high sensitivity and specificity, for identifying new infections

based on the characteristics of HIV gene diversification within an infected individual

(Park et al., 2011).

One of the findings of the current research is that incidence estimates differ between

males and females and between age groups hence future research should aim to in-

corporate covariates dependence on incidence rate estimation. An additional future

enhancement to the proposed method will also be to incorporate uncertainty in past

prevalence.
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APPENDIX: Estimating Quadratic Equation

The log likelihood function, ℓ(λ), where now only λ is unknown, for the unadjusted

model where the previous prevalence is known, can be simplified to:

ℓ(λ) = −n0log(1 + λτ) + k + nrlog(λ)− nrlog(1 + λτ)

+n1log [θ0 + λ(τ − µ+ θ0µ)]− n1log(1 + λτ)

Hence we can write,

ℓ(λ) = −nlog(1 + λτ) + k + nrlog(λ) + n1log [θ0 + λ {τ − (1− θ0)µ}]

Where

k = n0log(1− θ0) + nrlog [(1− θ0)µ]

and

n = n0 + nr + n1.

Thus

∂ℓ

∂λ
= − nτ

1 + λτ
+

nr

λ
+

n1 [τ − (1− θ0)µ]

θ0 + λ [τ − (1− θ0)µ]

and by setting ∂ℓ
∂λ

= 0 leads to

nτ

1 + λτ
=

nr

λ
+

n1 [τ − (1− θ0)µ]

θ0 + λ [τ − (1− θ0)µ]

Simplifying the above equation, we obtain a quadratic equation in λ:

λ2n0τ [τ − (1− θ0)µ] + λ [nτθ0 − nrθ0τ − (nr + n1) {τ − (1− θ0)µ}]− nrθ0 = 0



Chapter 3

Estimating HIV Incidence with
adjustment for Sensitivity and
Specificity

SUMMARY. Diagnostic tests used to determine recent infections are prone to er-

rors. The common error being the one where long standing or prevalent infections

are misclassified as recent. As a result, estimates of HIV incidence derived from cross

sectional surveys using biomarkers such as the detuned ELISA or the BED capture

enzyme immunoassay have been reported to be significantly higher than from prospec-

tive cohort studies (Karita et al., 2007; McDougal et al., 2006; Hargrove et al., 2008).

This then led to proposals for adjustments of these assay based estimates to correct

for this misclassification. Adjustment procedures for handling these misclassifications

were first proposed by Parekh et al. (2002) then later by (McDougal et al., 2006; Har-

grove et al., 2008). Another adjusted estimator of HIV incidence was developed by

McWalter and Welte (2010). The same estimator was developed by Wang and La-

gakos (2009) using the method of maximum likelihood estimation. However, this

estimator does not take into account individuals who are misclassified as non-recent

40
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while in fact they are recent. In this paper, we propose a new estimator of incidence

rate that account for both of these misclassifications.. The method is applied to data

from Botswana HIV/AIDS impact study of 2008.

KEYWORDS: HIV incidence, Sensitivity, Specificity, BED assay, Maximum likeli-

hood

3.1 Introduction

Cross-sectional approach for estimating HIV incidence, through a novel two-stage

serologic sensitive/less sensitive testing algorithm for detecting recent HIV serocon-

version (STARHS), has offered advantages to traditional longitudinal cohort studies

in terms of cost, follow up bias and time (Brookmeyer et al., 1995; Janssen et al.,

1998; Wang and Lagakos, 2009). In stage one, a sensitive test, such as standard

the ELISA, is used to diagnose HIV infection then a less sensitive test such as the

standard BED capture enzyme immunoassay (BED assay) is used in the second stage

to distinguish between long standing infections and recent infections among those

who tested positive for HIV in stage one. However, there has been concerns that

BED assays do not properly take into account individuals with long window periods

(non-progressors/non-reactors), individuals on anti-retroviral treatments (ARTs) and

those with AIDS defining conditions and often classify such cases as recent infections

while they are not (Karita et al., 2007; McDougal et al., 2006; Hargrove et al., 2008).

Misclassification could arise because the proportion of IgG that is HIV antibody could

fall below the threshold in response to either ARTs or onset of some opportunistic

infections (Hallett et al., 2009; Hayashida et al., 2008). As a consequence of this,
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estimates of HIV incidence derived from cross-sectional surveys of biomarkers has

been reported to be higher than the cohort estimates (Karita et al., 2007; McDougal

et al., 2006; Hargrove et al., 2008). This then led to proposals for adjustments of these

assay based estimates to correct for this misclassification. Adjustment procedures for

handling these misclassifications were first proposed by Parekh et al. (2002) then later

by (McDougal et al., 2006; Hargrove et al., 2008; McWalter and Welte, 2010; Wang

and Lagakos, 2009; Welte et al., 2009).

The McDougal et al. (2006) method of adjustment uses the sensitivity (the proportion

of recent specimens that test positive, that is, below the normalized optical density

threshold) within the mean window period (µ) and both the short term and long

term specificities (the proportion of longstanding specimens that test negative, that

is, above normalized optical density threshold). In this case, the short term specificity

refers to the specificity of BED in the period between µ and 2µ while long term

specificity refers to the specificity of BED for the period more than 2µ.

Upon realizing that the McDougal et al. (2006) adjustments were over-parameterized,

Hargrove et al. (2008) developed an alternative adjustment procedure with few pa-

rameters. Generally the Hargrove et al. (2008) adjustment is a simplified version of

the McDougal et al. (2006) with sensitivity and short term specificity assumed to be

equal. In particular, the Hargrove et al. (2008) estimator depends mainly on the the

false recent rate and the mean window period.

A different strategy for adjustment for the 4-state disease progression model that takes

into account specificity and sensitivity of diagnostic test was proposed by Balasub-

ramanian and Lagakos (2010) using the method of maximum likelihood estimation.
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The 4-state model of Balasubramanian and Lagakos (2010) requires that all subjects

who test negative on a sensitive test be tested again using another test to determine

the number of newly infected but have not seroconverted. This could be an expensive

exercise as reported by Janssen et al. (1998) who subsequently proposed a simple

3-state model.

Another adjusted estimator of HIV incidence was developed by McWalter and Welte

(2010) using mathematical models that take into account subjects who repeatedly

test negative on the less sensitive test and positive on the sensitive test long after

they have seroconverted. The same estimator was developed by Wang and Lagakos

(2009) using the method of maximum likelihood estimation. However, this estimator

does not take into account individuals who are misclassified as non-recent while in

fact they are recent. We argue that as long as BED is used as a diagnostic test then

it is subject to this misclassification error which will have an effect on the estimated

incidence rate.

We propose an estimator of incidence that takes into account subjects who are mis-

classified as non-recent while in fact they are recent. The paper builds on the work of

Balasubramanian and Lagakos (2010) by considering different strategies for adjust-

ing estimated HIV incidence for the 3-state disease progression model when the BED

assay is used as the diagnostic test assuming the sensitivity and specificity of the anti-

body test is 100%. We also show that if specificity is equal to one then the proposed

estimator reduces to the one proposed by (McWalter and Welte, 2010; Wang and

Lagakos, 2009). We note that what we define as sensitivity is what (McWalter and

Welte, 2010; Wang and Lagakos, 2009) define as the proportion of assay progressors

(p). This is because assay progressors are subjects who will be correctly classified
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to be in state 3 as we shall see in Section 3.2 when we look at the preliminary con-

cepts. In the remaining sections we shall proceed as follows: the proposed method is

introduced in Section 3.3. In Section 3.4 we conduct a simulation study to evaluate

the performance of the proposed estimator. We illustrate its use in Section 3.5 and

finally the discussion is presented in Section 3.6.

3.2 Preliminary Concepts

We consider the 3-state longitudinal disease progression model for the natural history

of HIV/AIDS and classification of subjects is by a diagnostic test such that state

1 represents the pre-seroconversion period. We denote state 1 by S1 because it is

corresponding to the period in which an individual is either infected but have have

not yet seroconverted or is uninfected. State 2, denoted by S2, represents the “recent

infection” state where HIV antibodies are detectable by a sensitive diagnostic test

but not yet through a less sensitive test such as BED assay. Finally state 3, denoted

by S3, represents the “non-recent infection” state in which HIV antibodies are de-

tectable by a less sensitive test (and sensitive test). We assume the incidence density

is constant.

Definition 3.2.1. We define sensitivity (sB) for the BED assay as the probability

that the BED assay is positive given that the subject is in state S3. That is,

sB = P (B + |S3).
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Definition 3.2.2. We define specificity (pB) for the BED assay as the probability

that the BED assay is negative given that the subject is in state S1 or S2. So

pB = P (B − |S1, S2)

Since sB and pB are probabilities, then they must be greater than zero.

3.3 Incorporating Imperfect Sensitivity and Speci-

ficity

Consider a random sample of size n from the population at some calendar time t. Let

n0 be the number of subjects in S1, nr be the number of subjects in S2 and finally n1

be the number of subjects in S3 such that n = n0 + nr + n1.

Using similar arguments as in Balasubramanian and Lagakos (2010), it can be shown

that the prevalence probabilities for the 3-states at time t are

π1(t) = 1− θ

π2(t) = fµ

π3(t) = θ − fµ

The objective is to estimate HIV incidence rate,

λ =
f

1− θ

where f is the incidence density function and for the purpose of the current analysis,

is assumed to be constant as in Balasubramanian and Lagakos (2010), and θ is the

HIV prevalence at time t.
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It follows that the trinomial log-likelihood function for this setting is

ℓ(f, θ) = n0log[1− θ] + nrlog[fµ] + n1log[θ − fµ] (3.3.1)

assuming µ is known.

Since

f = λ(1− θ)

then Eq (3.3.1) can be rewritten as

ℓ(λ, θ) = n0log[1− θ] + nrlog[λ(1− θ)µ] + n1log[θ − λ(1− θ)µ] (3.3.2)

Finally Eq (3.3.2) can be modified to incorporate sensitivity and specificity of the

BED assay and the corresponding log-likelihood function, with sB + pB ̸= 1, is

ℓ(λ, θ) = n0log[(1− θ)pB]

+nrlog[λ(1− θ)µpB + {θ − λ(1− θ)µ} (1− sB)]

+n1log[λ(1− θ)µ(1− pB) + {θ − λ(1− θ)µ} sB] (3.3.3)

The maximum likelihood estimators for λ and θ are respectively:

λ̂ =
nrsB − (1− sB)n1

n0µ(sB + pB − 1)
(3.3.4)

θ̂ =
n1 + nr

n
(3.3.5)

where n = n0 + nr + n1

The corresponding estimates of variances of λ̂ and θ̂ can be obtained as the diagonals

of the inverse of the matrix of negative second derivatives of ℓ(λ, θ) with λ and θ

replaced by their maximum likelihood estimates. These can be shown to be
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var(λ̂) =
(nr + n1)(nsB − 2n1)sB + n0n1(1− 2sB) + n2

1

n3
0µ

2(pB + sB − 1)2
(3.3.6)

var(θ̂) =
n0(nr + n1)

n3

=
n0(n− n0)

n3
(3.3.7)

The approximate covariance between λ̂ and θ̂ is given by:

cov(λ̂, θ̂) =
(nr + n1)sB − n1

n0nµ(pB + sB − 1)
(3.3.8)

where n = n0 + nr + n1.

When the BED assay is assumed to have perfect sensitivity and specificity then the

MLEs for λ and θ respectively simplifies to:

λ̂ =
nr

n0µ
(3.3.9)

θ̂ =
n1 + nr

n
(3.3.10)

Eq (3.3.9) is the estimator of incidence under the standard 3-state model (Kaplan

and Brookmeyer, 1999; Balasubramanian and Lagakos, 2010). Likewise, the corre-

sponding estimates of the variances, of λ̂ and θ̂ , covariance between λ̂ and θ̂ assuming

perfect sensitivity and specificity of the BED respectively simplifies to:

var(λ̂) =
nr(n0 + nr)

n3
0µ

2
(3.3.11)

var(θ̂) =
n0(n− n0)

n3
(3.3.12)
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and

cov(λ̂, θ̂) =
nr

n0nµ
(3.3.13)

3.3.1 The case of pB = 1 and SB < 1

Note that our main interest is in the estimation of the rate of new infection or incidence

rate, λ. Consider the estimator in Eq (3.3.4). When pB = 1 it reduces to

λ̂ =
nrsB − (1− sB)n1

n0µsB
(3.3.14)

where now sB = p, the proportion of assay progressors as defined by Wang and

Lagakos (2009).

The variance of λ̂ reduces to

var(λ̂) =
(nr + n1)(nsB − 2n1)sB + n0n1(1− 2sB) + n2

1

n3
0µ

2s2B
(3.3.15)

where n = n0 + nr + n1.

3.3.2 The case when sB = 1 and pB < 1

When sB = 1 the estimator in Eq (3.3.4) reduces to

λ̂ =
nr

n0µpB
(3.3.16)

and the variance reduces to

var(λ̂) =
nr(n0 + nr)

n3
0µ

2p2B
(3.3.17)
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3.4 Simulation

In this section, we conduct a simulation study to evaluate the performance of the

proposed estimator of HIV incidence when sensitivity and specificity are incorporated.

In this study 1000 simulations and a sample of size n = 3000 have been used. The

data was simulated from a trinomial distribution with the following parameters

π1(t) = (1− θ)pB

π2(t) = λ(1− θ)µpB + {θ − λ(1− θ)µ} (1− sB)

π3(t) = 1− π1(t)− π2(t)

See Eq (3.3.3) for more details.

The results of the simulation study are given in Table 3.1.

From Table 3.1, we can see that in almost all the cases, except when (sB = 0.97, pB =

0.97), the coverage probabilities are close to the nominal 95% level. When (sB, pB)

gets smaller then the coverage probabilities gets smaller than the nominal level and

the standard errors also gets large. The coverage probability is more sensitive to the

case when (sB < 1, pB = 1) than when (sB = 1, pB < 1). The (sB < 1, pB = 1) setting

corresponds to the McWalter and Welte (2010); Wang and Lagakos (2009) estimator.

The standard errors are smaller for (sB = 1, pB < 1) than for (sB < 1, pB = 1).

When sB = 1 and pB gets much smaller, say pB < 0.97 then the proposed estimator

overestimates the true incidence rate even though the coverage probabilities are closer

to the nominal level. Consistent with the theory and reality, precision improves

for larger values of (sB, pB), say (sB ≥ 0.99, pB ≥ 0.99). It worth noting that if

(sB < 0.95, pB < 0.95) then the method will underestimate incidence unless either
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Table 3.1: Results of a simulation study are provided for the proposed model for dif-
ferent values of sensitivity (sB) and specificity (pB). The true value of incidence rate,
Itrue = 0.03 and the true value of theta is θ = 0.20. λ̂, ŜE(λ̂) and ˆESE(λ̂) repre-
sents the average estimates, estimated standard errors and the corresponding empir-
ical estimates respectively from 1000 simulations. 95%CV denotes the proportion of
experiments in which Itrue is contained in the nominal 95% confidence interval.

Simulation Results with Itrue = 0.03 and θ = 0.20
(sB, pB) Estimates (sB, pB) Estimates

(1, 1) λ̂ 0.0301 (0.98, 0.98) λ̂ 0.0300

ŜE(λ̂) 0.0055 ŜE(λ̂) 0.0067
ˆESE(λ̂) 0.0056 ˆESE(λ̂) 0.0069

95%CV 94.1 95%CV 94.1

(0.99, 0.99) λ̂ 0.0302 (0.97, 0.97) λ̂ 0.0290

ŜE(λ̂) 0.0061 ŜE(λ̂) 0.0072
ˆESE(λ̂) 0.0065 ˆESE(λ̂) 0.0076

95%CV 93.3 95%CV 92.3

(0.99,1) λ̂ 0.0302 (0.97, 1) λ̂ 0.0305

ŜE(λ̂) 0.0060 ŜE(λ̂) 0.0069
ˆESE(λ̂) 0.0062 ˆESE(λ̂) 0.0072

95%CV 93.4 95%CV 93.3

(1, 0.99) λ̂ 0.0305 (1, 0.97) λ̂ 0.0312

ŜE(λ̂) 0.0056 ŜE(λ̂) 0.0057
ˆESE(λ̂) 0.0057 ˆESE(λ̂) 0.0059

95%CV 94.1 95%CV 94.4

(1,0.90) λ̂ 0.0338 (0.90, 1) λ̂ 0.0301

ŜE(λ̂) 0.0064 ŜE(λ̂) 0.0095
ˆESE(λ̂) 0.0064 ˆESE(λ̂) 0.0095

95%CV 93.4 95%CV 94.3

(0.90, 0.90) λ̂ 0.0008 (0.95, 0.95) λ̂ 0.0252

ŜE(λ̂) 0.0119 ŜE(λ̂) 0.0085
ˆESE(λ̂) 0.0120 ˆESE(λ̂) 0.0087

95%CV 32.0 95%CV 87.5
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sensitivity and/or specificity is 100%.

3.5 Application to BAIS III data set

3.5.1 Introduction

BAIS III of 2008 from Botswana is used to illustrate the use of the proposed estimator.

For purposes of illustration, we assume a mean window period of µ = E(L2) = 155

days which is the same mean window period that was used in BAIS III report (CSO,

2008). Table 3.2 presents a summary of the data necessary for this analysis. The data

shows the distribution of the sampled individuals into the 3-states disease model but

stratified according to sex and age respectively

Table 3.2: Summary of BAIS III data stratified by age and sex
Sample

Demographics n (n0, nr, n1)
Sex Male 6516 (5603, 55, 858)

Female 7775 (6220, 94, 1461)

Age (y) ≤ 4 872 (854, 5, 13)
5-14 3382 (3242, 18, 122)
15-19 1449 (1395, 5, 49)
20-29 2967 (2401, 43, 523)
30-39 2142 (1287, 33, 822)
40-49 1429 (928, 27, 474)
50+ 2050 (1716, 18, 316)

Overall All groups 14291 (11823, 149, 2319)
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3.5.2 Results

We compared the adjusted and unadjusted estimates of HIV incidence rate (I) ex-

pressed as per 100 person year using two models;

• The proposed adjusted estimator, M1

• The unadjusted estimator, when (sB = 1, pB = 1), M2

Table 3.3 presents the estimated HIV incidence rate (in 100 person years) for both

models together with the corresponding 95% confidence intervals. We estimated HIV

incidence rate stratified by sex and age.

Table 3.3: Adjusted (adj) and unadjusted (unadj) estimates of HIV incidence (I) in
Botswana by sex and age using M1 and M2

Estimates of HIV incidence in Botswana adjusted for (pB, sB)
(0.99, 0.99) (1, 1)

Demographics IM1(95% CI) IM2(95% CI)
Sex Male 1.97 (1.35, 2.59) 2.31 (1.70, 2.93)

Female 3.03 (2.30, 3.76) 3.56 (2.83, 4.28)

Age (y) 1-4 1.36 (0.13, 2.58) 1.38 (0.17, 2.59)
5-14 1.23 (0.62, 1.84) 1.31 (0.70, 1.91)
15-19 0.77 (0.02, 1.51) 0.84 (0.10, 1.59)
20-29 3.74 (2.45, 5.02) 4.22(2.95, 5.49)
30-39 4.56 (2.47, 6.66) 6.04 (3.95, 8.12)
40-49 5.69 (3.06, 8.33) 6.85 (4.22, 9.47)
50+ 2.05 (0.89, 3.21) 2.47 (1.32, 3.62)

Overall 2.53 (2.04, 3.01) 2.97 (2.49, 3.45)

We can see from Table 3.3 that the estimated HIV incidence rate is smaller (as

expected) for the adjusted estimator as compared to the unadjusted estimator. How-

ever, the confidence intervals are wider for the adjusted estimates. For example, for

females, the unadjusted (Model 2) estimate (and 95% CI) of HIV incidence rate is
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3.56 (2.83, 4.28) and the width of the confidence interval is 1.45 while for the adjusted

(Model 1) the estimates are 3.03 (2.30, 3.76) and the width of the confidence interval

is 1.46. The HIV incidence rate is higher for the middle age groups (20-49 years) in

agreement with what is reported in the literature, for example, in CSO (2008). The

results also show that incidence rate is higher in females than males.

3.6 Discussion

Accurate estimation of HIV incidence require diagnostic tests with very high sensitiv-

ity and specificity. We have proposed an estimator of incidence rate that incorporates

the sensitivity and specificity of the BED as a diagnostic test. We have seen that if

the BED is assumed to have 100% sensitivity, then failure to adjust for specificity (if

indeed there are subjects who have been misclassified to be in state 3 while they are

supposed to be state 2) will underestimate incidence rate. If BED is assumed to have

100% specificity, it follows that failure to account for sensitivity (if indeed there are

subjects who have been misclassified to be in state 2 while they are supposed to be

state 3) will lead to incidence rate estimates that are too high. The estimator that

we have proposed makes the two adjustments simultaneously.

We advice that adjustments of estimates of HIV incidence in this setting should be

incorporated with appropriate values of sensitivity and specificity. However, as noted

by Wang and Lagakos (2009), these values are often not available and therefore need

to be estimated from follow up studies where the time of seroconversion will be known

(although not exactly) with some accuracy. Other estimates can be obtained from

the literature provided the characteristics of the study population are similar. In
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the current analysis we considered the fact that BAIS III covered the whole country

and hence given the diversity of the groups, then it is possible to have individuals

who might be wrongly diagnosed as recent infections and those who might have

been wrongly diagnosed as non-recent infections and therefore adjustments for both

sensitivity and specificity are very important for accurate estimation of HIV incidence

rate. However, we did not have estimates of sensitivity and specificity therefore we

assumed some values for illustration purposes.

All subjects on ARTs were included in the analysis and classified as long standing

infections because treatment initiation usually starts several years after seroconversion

as proposed by Wang and Lagakos (2009). Luckily, in the BAIS III data set, all

subjects on ARTs were classified as non-recent by the BED test. We also noted that

about 18 subjects refused to disclose whether or not they are on ARTs. All these

subjects were later classified by the BED test as non-recent. It is highly likely that

refusal to disclose ARTs usage was associated with ARTs usage. More research is

needed to address the effect of ART usage on the estimation of HIV incidence rate.

We assumed a known mean widow period of 155 days. But if a biased estimate

of the mean window period is used then all estimates of HIV incidence will also be

biased. Methods for improving the accuracy of the estimates of HIV incidence derived

from cross sectional surveys of biomarkers include augmented studies such as the one

proposed by (Wang and Lagakos, 2010; Claggett et al., 2012) are needed so as to get

better estimates of the sensitivity and mean window period though it may be of little

use to the estimation of specificity. The current analysis did not take into account the

uncertainties in the mean window period, sensitivity and specificity. Other techniques

for handling the uncertainty in the mean window period were discussed by Cole et al.
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(2006) who proposed the Monte Carlo-based confidence intervals to account for the

random error of the mean widow period. Chu and Cole (2006) proposed the Bayesian

method for incorporating the uncertainty in the mean widow period while Janssen

et al. (1998) used the Bonferroni-box procedure with exact Poisson assumption on

nr, the number of subjects testing positive on the sensitive test and negative on the

less sensitive test. Thus an additional future enhancement to the proposed method

will also be to incorporate uncertainties in the mean window period, sensitivity and

specificity.

APPENDIX: The log-likelihood equations for esti-

mating HIV incidence rate and prevalence

The likelihood function is

L(λ, θ) = [(1− θ)pB]
n0

×[λ(1− θ)µpB + {θ − λ(1− θ)µ} (1− sB)]
nr

×[λ(1− θ)µ(1− pB) + {θ − λ(1− θ)µ} sB]n1

And the corresponding log-likelihood function is

ℓ(λ, θ) = n0log[(1− θ)pB]

+nrlog[λ(1− θ)µpB + {θ − λ(1− θ)µ} (1− sB)]

+n1log[λ(1− θ)µ(1− pB) + {θ − λ(1− θ)µ} sB]
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The partial derivatives with respect to λ and θ respectively are:

∂ℓ(λ, θ)

∂λ
=

nr[(1− θ)µpB − (1− θ)µ(1− sB)]

λ(1− θ)µpB + (θ − λ(1− θ)µ)(1− sB)

+
n1[(1− θ)µ(1− pB)− (1− θ)µsB]

λ(1− θ)µ(1− sB) + {θ − λ(1− θ)µ} sB

∂ℓ(λ, θ)

∂θ
= − n0

(1− θ)

+
nr[−λµpB + (1 + λµ)(1− sB)]

λ(1− θ)µpB + {θ − λ(1− θ)µ} (1− sB)

+
n1[−λµ(1− pB) + (1 + λµ)sB]

λ(1− θ)µ(1− pB) + {θ − λ(1− θ)µ} sB



Chapter 4

Estimation of HIV incidence under
linear incidence density function

SUMMARY. The method for estimating HIV incidence proposed by Balasubrama-

nian and Lagakos (2010) and also used in Gabaitiri et al. (2013) assumes that the

incidence density function is constant over time. This could be a reasonable assump-

tion in settings where changes in HIV incidence overtime are very small and the time

between the two surveys as proposed by Gabaitiri et al. (2013) is small. However, if

HIV incidence is dropping due to the effect of preventive measures such as frequent

condoms use, the impact of other risk reduction programmes, and also if the period

between two successive surveys is large then the constant incidence density assump-

tion may not be reasonable. In this paper, we relax this assumption and derive the

maximum likelihood estimator (MLE) of HIV incidence. In particular, we derive the

MLE of HIV incidence when the incidence density is assumed to be linear. We assume

that the main mode of transmission in the target population is via heterosexual. The

proposed method is illustrated using data from the Botswana AIDS Impact (BAIS)

III survey of 2008.

57
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prevalence

4.1 Introduction

In this chapter, we relax the assumption of constant incidence density. We note that

although the method proposed by Balasubramanian and Lagakos (2010) provides a

general mathematical framework for the estimation of HIV incidence, it also assumes

that the incidence density is constant over time. This could be a reasonable assump-

tion in settings where changes in HIV incidence are very small overtime. However, if

HIV incidence is dropping due to the effect of preventive measures such as frequent

use of condoms during sex, the impact of other risk reduction programmes, and also

if the period between two successive surveys is large then the constant incidence den-

sity assumption may not be reasonable. In this paper, we relax this assumption and

derive the maximum likelihood estimator (MLE) of HIV incidence. In particular, we

derive the MLE of HIV incidence when the incidence density is assumed to be linear.

We shall proceed as follows, in Section 4.2 we shall review the constant incidence

density model. Section 4.3 we introduce the linear incidence density function and

develop the likelihood function and then derive the maximum likelihood estimator

(MLE) of HIV incidence under this assumption. Inference measures including esti-

mates of standard errors of the MLE of incidence will be considered in Section 4.3.1.

In Section 4.4 we shall perform a simulation study to investigate some properties of

the developed estimator and in Section 4.5 we shall apply our method to the Botswana

HIV/AIDS Impact Survey (BAIS III) data of 2008. A final discussion of the chapter
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Table 4.1: Summary of the 3-States
State Elisa BED Implication

S1 E− B− pre-seroconversion
S2 E+ B− recent infection
S3 E+ B+ non-recent infection

will be provided in Section 4.6.

4.2 A review of the constant incidence density model

Consider the 3-state longitudinal disease progression model for the natural history

of HIV/AIDS and classification of subjects is by a diagnostic test such that state 1

represents the pre-seroconversion period denoted by S1 because it corresponds to the

period in which an individual is either infected but have have not yet seroconverted

(acute infection period) or is uninfected. State 2, denoted by S2, represents the

“recent infection” state where HIV antibodies are detectable by a sensitive diagnostic

test but not yet through a less sensitive test such as the BED assay. Finally state 3,

denoted by S3, represents the “non-recent infection” state in which HIV antibodies

are detectable by a less sensitive test (and sensitive test). We assume two diagnostic

tests for HIV are administered on an individual (typically standard ELISA denoted

by E and BED assay denoted by B). Table 4.1 summarizes the three states assuming

perfect sensitivity and specificity of the diagnostic tests.

Note that the three states model is a special case of the four state model described by

Balasubramanian and Lagakos (2010), where individuals in S1 are further sub-divided

into uninfected and infected but not yet sero-converted.
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Suppose T ≥ 0 denotes the calendar time of HIV infection for someone born at time 0.

Furthermore, let f(t), F (t) and λ(t) denote the density function (incidence density),

cumulative distribution function and hazard function for becoming infected at time t

respectively. Let L2 denote the sojourn or residence time in S2 with the corresponding

cumulative distribution denoted by G2(·) as in Balasubramanian and Lagakos (2010)

and the corresponding probability density function given by g2(·). We assume that

L2 has support in [0, L∗
2], where L∗

2 < t and is independent of T.

The prevalence probabilities for the 3-states model at time t are given by:

π1(t)
def
= P (in S1 at calender time t)

= 1− F (t) (4.2.1)

π2(t)
def
= P (in S2 at calender time t)

=

∫ t

t−L∗
2

f(u) [1−G2(t− u)] du (4.2.2)

π3(t) = 1− π1(t)− π2(t) (4.2.3)

Eq (4.2.2) has been used as a basis for estimating HIV incidence from snapshots or

cross sectional samples. See Kaplan and Brookmeyer (1999) for more details. The

underlying idea is that there exist a maximum window period such that 1−G2(L
∗
2) = 0

and under the constant the incidence density function f(u) = f is constant over

[t− L∗
2, t]. Hence prevalence of new infections at time t, π2(t) = P is given by

P = f

∫ t

t−L∗
2

[1−G2(t− u)] du

= f

∫ L∗
2

0

[1−G2(y)] dy

= fE(L2) (4.2.4)
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where E(L2), commonly referred to as the mean window period by Brookmeyer

(2009), is the mean residence time is S2.

However, Balasubramanian and Lagakos (2010) proposed a more general framework

that combines the information from all the three states through a likelihood approach

using a multinomial distribution and subsequently derived the maximum likelihood

estimator of HIV incidence together with the corresponding estimates of their stan-

dard errors. Generally the hazard or incidence rate is given by

λ(t) =
f(t)

1− F (t)
=

f(t)

1− θ
(4.2.5)

where θ is the cross-sectional prevalence of the disease at time t. Once the form f(t)

have been assumed, then f(·) becomes an additional function to be estimated. The

constant incidence density assumption simplifies Eq (4.2.2) although in this paper we

claim that such an assumption may not hold in some settings. In this paper, the idea

advanced is to relax this assumption and consider other forms of f(t) over [t−L∗
2, t].

In particular, we consider a linear form of f(t) over [t− L∗
2, t].

4.3 Linear Incidence Density Form

Consider a random sample of size n from the population at some calendar time t. Let

n0 be the number of subjects in S1, nr be the number of subjects in S2 and finally

n1 be the number of subjects in S3 such that n = n0 + nr + n1. Then given the

derivations of π1(t), π2(t) and π3(t) in Eqs (4.2.1), (4.2.2) and (4.2.3) respectively,

P (n0, nr, n1|π1(t), π2(t), π3(t)) ∼ trinomial(n; π1(t), π2(t))
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where π3(t) = 1− π1(t)− π2(t).

We shall assume that the density function, f(u) = a+ bu for u ∈ [t−L∗
2, t], where the

parameters a and b are unknown. The idea is to estimate a, b and θ and subsequently

estimate HIV incidence from the equation

λ(t) =
f(t)

1− θ
=

a+ bt

1− θ
(4.3.1)

Incorporating the linear density function in the expression for π2(t) in Eq (4.2.2) we

get

π2(t) =

∫ t

t−L∗
2

f(u) [1−G2(t− u)] du

=

∫ t

t−L∗
2

(a+ bu) [1−G2(t− u)] du

=

∫ t

t−L∗
2

a [1−G2(t− u)] du+ b

∫ t

t−L∗
2

u [1−G2(t− u)] du

= a

∫ L∗
2

0

[1−G2(y)] dy + b

∫ L∗
2

0

(t− y) [1−G2(y)] dy

= aE(L2) + b

∫ L∗
2

0

t [1−G2(y)] dy − b

∫ L∗
2

0

y [1−G2(y)] dy

= aE(L2) + btE(L2)− bA

where

A =

∫ L∗
2

0

y [1−G2(y)] dy

=

[
y2

2
{1−G2(y)}

]L∗
2

0

+

∫ L∗
2

0

y2

2
g2(y)dy

= 0 +
E(L2

2)

2
, since 1−G2(L

∗
2) = 0

=
E(L2

2)

2
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Finally then,

π2(t) = aE(L2)−
1

2
b
[
E(L2

2)− 2btE(L2)
]

Let E(L2) = µ and E(L2
2) = γ. Then the prevalence probabilities for the 3-states

model at time t under the linear density function assumption are:

π1(t) = 1− θ

π2(t) = aµ− 1

2
b(γ − 2tµ)

π3(t) = 1− π1(t)− π2(t)

= θ − aµ+
1

2
b(γ − 2tµ)

Assuming the mean and variance of L2, E(L2) and V ar(L2) respectively, are known,

the corresponding trinomial log-likelihood function, ℓ(a, b, θ), will be:

ℓ(a, b, θ) = n0log(1−θ)+nrlog[aµ−
1

2
b(γ−2tµ)]+n1log[θ−aµ+

1

2
b(γ−2tµ)] (4.3.2)

The above log-likelihood function is over-parameterized. To ensure identifiability we

need to make additional assumptions about the past prevalence.

In most practical situations, past HIV prevalence is often known from previous stud-

ies. Hence the standard 3-state model can be extended to incorporate this informa-

tion. The idea of incorporating past prevalence to improve the estimation of HIV

incidence based laboratory assay data was first proposed by Gabaitiri et al. (2013).

In particular, we focus on the immediate past HIV prevalence.

Suppose HIV prevalence at time t1, for t1 < t, is known, that is, F (t1) = θ0 is known.

In general let τ = t − t1 denote the time between the current study at time t and
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the immediate past study at time t1. We refer to HIV prevalence at time t1 as past

prevalence. Generally the prevalence at time t, F (t) = θ. Assuming linear incidence

density, that is,

f(u) = a+ bu for u ∈ [t− L∗
2, t]

θ is given by

θ = θ0 +

∫ t

t1

f(u)du

= θ0 +

∫ t

t1

(a+ bu)du

= θ0 + a(t− t1) +
b

2
(t2 − t21) (4.3.3)

Note that if t1 = 0 then τ = t. Therefore we can write θ = θ0 + aτ + b
2
τ 2 which

depends on the time between two successive studies, τ = t. For brevity, we shall let

t1 = 0. To avoid confusion, we shall use τ to denote the period between successive

studies and t to denote the time of the current cross sectional study. If we substitute

θ0 + aτ + b
2
τ 2 for θ in Eq (4.3.2) then the new log likelihood function will be:

ℓ(a, b) = n0log(1− θ0 − aτ − bτ 2

2
) + nrlog[aµ− 1

2
b(γ − 2τµ)]

+n1log[θ0 + a(τ − µ) +
1

2
b(τ 2 + γ − 2τµ)] (4.3.4)

There are only two unknowns (‘a’ and ‘b’) in Eq (4.3.4) under the assumption that

µ and γ are known. The resulting two partial derivatives with respect to ‘a’ and ‘b’

are, respectively:
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∂ℓ(a, b)

∂a
= − n0τ

1− θ0 − aτ − bτ2

2

+
nrµ

aµ− 1
2
b(γ − 2τµ)

+
n1(τ − µ)

θ0 + a(τ − µ) + 1
2
b(τ 2 + γ − 2τµ)

∂ℓ(a, b)

∂b
= −

1
2
n0τ

2

1− θ0 − aτ − bτ2

2

−
1
2
nr(γ − 2τµ)

aµ− 1
2
b(γ − 2τµ)

+
1
2
n1(τ

2 + γ − 2τµ)

θ0 + a(τ − µ) + 1
2
b(τ 2 + γ − 2τµ)

Thus the MLEs of ‘a’ and ‘b’ denoted by â and b̂ can be obtained by equating the

above two partial derivatives to zero and solving for ‘a’ and ‘b’ simultaneously. Thus

â and b̂ are respectively given by

â = − (2µτ − γ)(n1 + nr − nθ0)− nrτ
2

nτ(γ − τµ)
(4.3.5)

b̂ = − 2[nrτ − (n1 + nr)µ+ nµθ0]

nτ(γ − τµ)
(4.3.6)

It follows that the MLE of HIV incidence at the time t, λ(t), will be

ˆλ(t) =
â+ b̂τ

1− θ̂
(4.3.7)

where θ̂ = θ0 + âτ + 1
2
b̂τ 2 by the invariance property of MLEs and â and b̂ are as in

Eq (4.3.5) and Eq (4.3.6) respectively. Note that the key aim here is the ability to

estimate incidence density function, which is assumed linear in our case. A further

advantage of using information on immediate past prevalence is that we can measure

time from that study.
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4.3.1 Inference

To construct the approximate confidence intervals for (a, b, θ or λ) standard errors

for their MLEs or functions of their components can be obtained from the Hessian

matrix, H, of the log-likelihood function. See Cox and Hinkley (1974) for more details.

In the proposed model, we assume that all subjects are tested using two diagnostic

tests consisting of the standard ELISA assay and the BED assay. Let β = (a, b).

Then β̂ = (â, b̂) denotes of the MLEs for the parameter vector β. Thus the variance

of β̂ is given by,

Var(β̂) = H = −E

[
hâ,â hâ,b̂

hb̂,â hb̂,b̂

]−1

(4.3.8)

where

hâ,â = − n0τ
2[

1− θ0 − aτ − bτ2

2

]2 − nrµ
2[

aµ− 1
2
b(γ − 2τµ)

]2
− n1(τ − µ)2[

θ0 + a(τ − µ) + 1
2
b(τ 2 + γ − 2τµ)

]2
hâ,b̂ = −

1
2
n0τ

3[
1− θ0 − aτ − bτ2

2

]2 +
1
2
nr(γ − 2τµ)µ[

aµ− 1
2
b(γ − 2τµ)

]2
−

1
2
n1(τ − µ)(τ 2 + γ − 2τµ)[

θ0 + a(τ − µ) + 1
2
b(τ 2 + γ − 2τµ)

]2
hb̂,b̂ = −

1
4
n0τ

4[
1− θ0 − aτ − bτ2

2

]2 −
1
4
nr(γ − 2τµ)2[

aµ− 1
2
b(γ − 2τµ)

]2
−

1
4
n1(τ

2 + γ − 2τµ)2[
θ0 + a(τ − µ) + 1

2
b(τ 2 + γ − 2τµ)

]2

where of course hâ,b̂ = hb̂,â.
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If we replace ‘a’ and ‘b’ by their respective MLEs given in Eq (4.3.5) and Eq (4.3.6)

respectively in Eq (4.3.8), it follows that the approximate variance of â, variance of b̂

and covariance between â and b̂ are respectively:

var(â) =
n1nrτ

4 + n0n1(γ − 2τµ)2 + n0nr(τ
2 + γ − 2τµ)2

τ 2n3(γ − τµ)2

(4.3.9)

var(b̂) =
4[n1(nrτ

2 + n0µ
2) + n0nr(τ − µ)2]

τ 2n3(γ − τµ)2
(4.3.10)

cov(â, b̂) =
2[n0n1µ(γ − 2τµ)− nrn1τ

3 + n0nr(µ− τ)(τ 2 + γ − 2τµ)]

τ 2n3(γ − τµ)2
(4.3.11)

Finally, the estimated variance of HIV incidence,λ(t), using the Delta Method, at

time t will be

var( ˆλ(t)) =
1

(1− θ̂)2
var(f̂) +

f̂ 2

(1− θ̂)4
var(θ̂) +

2f̂

(1− θ̂)3
cov(f̂ , θ̂) (4.3.12)

where

var(f̂) = var(â) + τ 2var(b̂) + 2τcov(â, b̂)

cov(f̂ , θ̂) = τvar(â) +
τ 3

2
var(b̂) + 1.5τ 2cov(â, b̂)

var(θ̂) = τ 2var(â) +
τ 4var(b̂)

4
+ τ 3cov(â, b̂)

4.3.2 Incorporation of the false recent rate

The model we have proposed assumes that all persons who were non-reactive to the

less sensitive assay eventually react to the sensitive assay. However, a proportion of
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HIV infected subjects may remain non-reactive to the less sensitive assay indefinitely

long after the sero-conversion period leading to overestimation of the estimated HIV

incidence rate as discussed by (Wang and Lagakos, 2009; McWalter and Welte, 2010;

Brookmeyer, 2010b; Hargrove et al., 2008; Novitsky et al., 2009; Karita et al., 2007).

This proportion is called the “false recent rate”. To incorporate the false recent rate,

we extend the approach of Wang and Lagakos (2009).

The revised likelihood function and parameter estimation

Let p denote the proportion of subjects who will become reactive at some point after

seroconversion as in Wang and Lagakos (2009). Then the false recent rate will be

q = 1 − p which denotes the proportion of subjects who remain negative on the less

sensitive assay indefinitely. Then the log-likelihood incorporating the false recent rate

will be:

ℓ(a, b) = n0log(1− θ0 − aτ − bτ 2

2
)

+nrlog[(aµ− 1

2
b(γ − 2τµ))p+ (θ0 + aτ +

bτ 2

2
)(1− p)]

+n1log[θ0 + a(τ − µ) +
1

2
b(τ 2 + γ − 2τµ)] (4.3.13)

The MLEs of ‘a’ and ‘b’, given by â and b̂, when the false recent rate has been

incorporated, can be obtained by joint maximization of Eq (4.3.13) with respect to

‘a’ and ‘b’. Thus the corresponding MLEs, â and b̂ are respectively:
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â = −−2npµτθ0 + 2(n1 + nr)pµτ

npτ(γ − τµ)

−npγθ0 − (n1 + nr)pγ − (n1 + nr)τ
2p+ n1τ

2

npτ(γ − τµ)
(4.3.14)

b̂ = −2[npµθ0 + (n1 + nr)pτ − pµ(n1 + nr)− n1τ ]

npτ(γ − τµ)
(4.3.15)

Hence the MLE of HIV incidence at the time t, λ̂(t), which is now a function of p or

equivalently q = 1− p will be

ˆλ(t) =
â+ b̂τ

1− θ̂
(4.3.16)

where θ̂ = θ0 + âτ + 1
2
b̂τ 2 by the invariance property of MLEs and â and b̂ are as

provided in Eq (4.3.14) and Eq (4.3.15) respectively.

The corresponding variances and covariance are:

var(â) =
n0n1(−2pµτ + pγ + pτ 2 − τ 2)2

n3τ 2p2(γ − τµ)2

+
p2n0nr(τ

2 + γ − 2τµ)2 + n1nrτ
4

n3τ 2p2(γ − τµ)2
(4.3.17)

var(b̂) =
4[n0n1(pµ+ τ − pτ)2 + n0nrp

2(τ − µ)2 + n1nrτ
2]

n3τ 2p2(γ − τµ)2
(4.3.18)

cov(â, b̂) =
2[n0n1(pµ+ τ − pτ)(−2pµτ + pγ + pτ 2 − τ 2)]

n3τ 2p2(γ − τµ)2

+
[n0nrp

2(µ− τ)(τ 2 + γ − 2τµ)− n1nrτ
3]

n3τ 2p2(γ − τµ)2
(4.3.19)

Finally, the expression for the estimated variance of HIV incidence,λ̂(t), is the same

as the one provided in in Eq 4.3.12.
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4.3.3 Testing For b=0

When b = 0 the log likelihood function in Eq 4.3.4 reduces to

ℓ(a) = n0log(1− θ0 − aτ) + nrlog(aµ) + n1log(θ0 + aτ − aµ) (4.3.20)

Then,

ˆλ(t) =
−d+

√
d2 − 4ac

2a
(4.3.21)

where

a = n0τ [τ − (1− θ0)µ]

d = (n0 + n1)τθ0 − (nr + n1) [τ − (1− θ0)µ]

c = −nrθ0

Eq (4.3.21) is the estimator of HIV incidence rate proposed by Gabaitiri et al. (2013).

So the constant incidence estimator including information on previous prevalence

proposed by Gabaitiri et al. (2013) is a special case of the proposed linear density

estimator in the current paper.

In practice, one may want to carry out a statistical test of the goodness-of-fit between

two models. Basically a relatively more complex model is compared to a simpler model

to see if it fits a particular dataset significantly better. If so, then the additional pa-

rameters of the more complex model are often used in subsequent analyses otherwise

a simple model is used. The standard procedure is to use the likelihood ratio test for

nested models. In this setting, the objective is to test if ‘b’ is significantly different

from zero. The Wald test can also be used. The two tests are asymptotically equiva-

lent. Under the reduced model (or the null hypothesis that b = 0), the test statistic
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is given by

Z2 =

 b̂√
var(b̂)

2

app∼ χ2
1 for large samples.

Where b̂ and var(b̂), under the reduced model, are respectively:

b̂ = −2[nrτ − (n1 + nr)µ+ nµθ0]

nτ(γ − τµ)

var(b̂) =
4[n1(nrτ

2 + n0µ
2) + n0nr(τ − µ)2]

τ 2n3(γ − τµ)2

That is, for large samples, the distribution of the test statistic is approximately chi-

square with one degree of freedom.

As with all hypothesis tests (or significance tests), we can easily use the p-value (the

probability of getting a result as extreme as that observed for the test statistic when

the null hypothesis is true) to make decisions at common significance cut-points. For

instance, if the p-value is below 0.05 we reject the null hypothesis that b = 0 at the

5% level of significance. The significance level represents the chance that the reduced

model (when b = 0) is rejected when it is actually the correct model for the data.

4.4 Simulation Study

We performed a simulation study to evaluate the performance of the proposed estima-

tor of HIV incidence using 1000 simulations. We generated a sample of size n = 4000.

The data was simulated from a multinomial distribution with parameters (for the
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unadjusted model):

π1(t) = 1− θ0 − aτ − bτ 2

2

π2(t) = aµ− 1

2
b(γ − 2τµ)

π3(t) = θ0 + a(τ − µ) +
1

2
b(τ 2 + γ − 2τµ)

For the adjusted model, we have

π1(t) = 1− θ0 − aτ − bτ 2

2

π2(t) = aµ− 1

2
b(γ − 2τµ)p+ (θ0 + aτ +

1

2
bτ 2)(1− p)

π3(t) = θ0 + a(τ − µ) +
1

2
b(τ 2 + γ − 2τµ)

For each simulation, we calculate the average point estimates of atrue, btrue and Itrue,

the true values for a, b and λ (HIV incidence rate), respectively based on the pro-

posed model. The average variance (standard errors) of these estimates are obtained

from the observed Fisher information. We also obtain the empirical estimates of the

variance from the 1000 simulated point estimates of incidence.

The results of the simulation study are presented in Table 4.2 for θ0 = 0.10, 0.171, 0.20.

For each fixed values of θ0 we assess how the point estimates and their standard

errors will change when τ = 0.5 and 1.0 years. Also presented are the values of the

coverage probabilities. That is, the proportion of times out of 1000 simulations the

95% confidence interval covers the true values of a, b and λ. We assumed µ = E(L2) =

155 days and V ar(L2) = 1552 (days)2 as under an exponential model. Table 4.2 shows

the results for the unadjusted model.
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Table 4.2: Results of a simulation study with N = 4000 and atrue = 0.01, btrue =
0.04 and (Itrue). Note that Itrue is given in parenthesis. â, b̂, and λ̂ represents the
average estimates of the parameters. ŜE(â), ŜE(b̂) and ŜE(λ̂) represents the estimated
standard errors of the parameter estimates. ˆESE(â), ˆESE(â) and ˆESE(λ̂) represents
the estimated empirical standard errors. All are based on 1000 simulations. 95%CV
denotes the proportion of experiments in which atrue, btrue and Itrue is contained in
the nominal 95% confidence interval.

Simulation Results with atrue = 0.01, btrue = 0.04 and (Itrue)
Previous HIV Prevalence

τ(in years) Estimates θ0 = 0.10 θ0 = 0.171 θ0 = 0.20

0.5 â 0.0099 0.0099 0.0100

ŜE(â) 0.0052 0.0060 0.0063
ˆESE(â) 0.0052 0.0061 0.0062

95%CV 94.1 94.7 95.7

b̂ 0.0402 0.0389 0.0393

ŜE(b̂) 0.0555 0.0690 0.0731
ˆESE(b̂) 0.0553 0.0694 0.0722

95%CV 95.6 96.0 95.8

λ̂ 0.0338 (0.0337) 0.0361 (0.0366) 0.0378 (0.0380)

ŜE(λ̂) 0.0266 0.0360 0.0395
ˆESE(λ̂) 0.0266 0.0362 0.0392

95%CV 95.7 95.7 95.3

1 â 0.0117 0.0128 0.0118

ŜE(â) 0.0420 0.0502 0.0528
ˆESE(â) 0.0427 0.0506 0.0531

95%CV 93.8 94.2 93.9

b̂ 0.0371 0.0351 0.0369

ŜE(b̂) 0.0764 0.0902 0.0946
ˆESE(b̂) 0.0779 0.0912 0.0955

95%CV 93.5 94.3 94.1

λ̂ 0.0560 (0.0575) 0.0598 (0.0626) 0.0630 (0.0649)

ŜE(λ̂) 0.0398 0.0502 0.0528
ˆESE(λ̂) 0.0407 0.0510 0.0551

95%CV 93.6 93.3 93.6
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Table 4.3 and Table 4.4 shows the results for the adjusted model. The results pre-

sented are for p = 0.95 and p = 0.98 respectively.

Under these settings, for both the unadjusted and adjusted estimator, the average

estimates of all the parameters namely a, b and λ = Itrue are close to the true

values reflecting their validity. The standard errors of the unadjusted estimators are

consistently lower than those of the adjusted estimators. It is also assuring to note

that the estimated standard errors and the empirical estimates are closer to each

other for all the estimates.

Also noticeable is that when the previous HIV prevalence increases, then the estimated

standard errors increases but the parameter estimates are least affected. The coverage

probabilities are closer to the nominal value. The estimated standard errors decreases

as the proportion of non-progressors (false recent rate) decreases.

4.5 Application to BAIS III data set

We use the data from BAIS III of 2008 to illustrate the use of the proposed estimator.

We assumed the mean window period, µ = E(L2) = 155 days and V ar(L2) = 1552

(days)2. We assume τ = 4 years as it would be the case in most cross sectional

surveys. The results are presented in Table 4.6 and Table 4.7.

In Botswana, between 2004 and 2008, overall the national HIV prevalence increased

from 17.1% to 17.6% CSO (2008) for individuals aged 1.5 years and above. For

purposes of illustration we used simple extrapolation method to estimate the previous

prevalence for 2004. The values of θ0 are provided in Table 4.5.
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Table 4.3: Results of a simulation study with the incorporation of the False Recent
Rate (FRR) given by q = 1 − p with N = 3000 and atrue = 0.01, btrue = 0.04 and
(Itrue). Note that Itrue is given in parenthesis. â, b̂, and λ̂ represents the average es-
timates of the parameters. ŜE(â), ŜE(b̂) and ŜE(λ̂) represents the estimated standard
errors of the parameter estimates. ˆESE(â), ˆESE(â) and ˆESE(λ̂) represents the em-
pirical parameter estimates. All are based on 1000 simulations. 95%CV denotes the
proportion of experiments in which atrue, btrue and Itrue is contained in the nominal
95% confidence interval. Here P=0.95.

Simulation Results incorporating FRR with atrue = 0.01, btrue = 0.04 and (Itrue)
p = 0.95

Previous HIV Prevalence
τ(in years) Estimates θ0 = 0.10 θ0 = 0.171 θ0 = 0.20

0.5 â 0.0109 0.0105 0.0101

ŜE(â) 0.0065 0.0079 0.0084
ˆESE(â) 0.0067 0.0082 0.0085

95%CV 93.7 93.6 94.1

b̂ 0.0387 0.0398 0.0427

ŜE(b̂) 0.0577 0.0720 0.0765
ˆESE(b̂) 0.0592 0.0717 0.0764

95%CV 94.4 94.9 94.3

λ̂ 0.0341 (0.0337) 0.0374 (0.0366) 0.0401 (0.0380)

ŜE(λ̂) 0.0270 0.0365 0.0402
ˆESE(λ̂) 0.0276 0.0362 0.0400

95%CV 94.3 95.2 94.9

1 â 0.0096 0.0110 0.0084

ŜE(â) 0.0463 0.0559 0.0590
ˆESE(â) 0.0458 0.0542 0.0589

95%CV 94.6 94.7 94.5

b̂ 0.0416 0.0389 0.0436

ŜE(b̂) 0.0857 0.1028 0.1083
ˆESE(b̂) 0.0848 0.0999 0.1083

95%CV 94.8 94.2 94.0

λ̂ 0.0588 (0.0575) 0.0623 (0.0625) 0.0673 (0.0649)

ŜE(λ̂) 0.0456 0.0589 0.0643
ˆESE(λ̂) 0.0452 0.0575 0.0644

95%CV 94.3 94.1 94.2
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Table 4.4: Results of a simulation study with the incorporation of the False Recent
Rate (FRR) given by q = 1 − p with N = 3000 and atrue = 0.01, btrue = 0.04 and
(Itrue). Note that Itrue is given in parenthesis. â, b̂, and λ̂ represents the average es-
timates of the parameters. ŜE(â), ŜE(b̂) and ŜE(λ̂) represents the estimated standard
errors of the parameter estimates. ˆESE(â), ˆESE(â) and ˆESE(λ̂) represents the em-
pirical parameter estimates. All are based on 1000 simulations. 95%CV denotes the
proportion of experiments in which atrue, btrue and Itrue is contained in the nominal
95% confidence interval. Here P=0.98.

Simulation Results incorporating FRR with atrue = 0.01, btrue = 0.04 and (Itrue)
p = 0.98

Previous HIV Prevalence
τ(in years) Estimates θ0 = 0.10 θ0 = 0.171 θ0 = 0.20

0.5 â 0.0102 0.0102 0.0103

ŜE(â) 0.0057 0.0069 0.0072
ˆESE(â) 0.0058 0.0068 0.0074

95%CV 94.6 94.7 94.3

b̂ 0.0395 0.0434 0.0409

ŜE(b̂) 0.0563 0.0702 0.0744
ˆESE(b̂) 0.0583 0.0694 0.0759

95%CV 94.9 95.0 94.5

λ̂ 0.0338 (0.0337) 0.0392 (0.0366) 0.0393 (0.0380)

ŜE(λ̂) 0.0268 0.0363 0.0398
ˆESE(λ̂) 0.0278 0.0359 0.0406

95%CV 94.8 94.8 94.3

1 â 0.0126 0.0130 0.0119

ŜE(â) 0.0438 0.0525 0.0552
ˆESE(â) 0.0445 0.0520 0.0553

95%CV 93.3 94.1 93.6

b̂ 0.0357 0.0347 0.0367

ŜE(b̂) 0.0801 0.0952 0.1001
ˆESE(b̂) 0.0817 0.0944 0.1006

95%CV 93.0 94.5 93.7

λ̂ 0.0554 (0.0575) 0.0596 (0.0625) 0.0628 (0.0575)

ŜE(λ̂) 0.0421 0.0537 0.0584
ˆESE(λ̂) 0.0431 0.0532 0.0589

95%CV 93.7 94.6 93.8



77

Table 4.5: Values of θ0
Sample

Demographics n (n0, nr, n1) θ0 ≈ n1+nr

n
− 0.005

Sex Male 6516 (5603, 55, 858) 0.135
Female 7775 (6220, 94, 1461) 0.195

Age (y) ≤ 4 872 (854, 5, 13) 0.016
5-14 3382 (3242, 18, 122) 0.036
15-19 1449 (1395, 5, 49) 0.032
20-29 2967 (2401, 43, 523) 0.186
30-39 2142 (1287, 33, 822) 0.394
40-49 1429 (928, 27, 474) 0.346
50+ 2050 (1716, 18, 316) 0.158

Overall All groups 14291 (11823, 149, 2319) 0.168

Table 4.6: Estimated HIV incidence rate by gender and age under the linear incidence
density model with p = 1.

p = 1

Demographics â (95% CI) b̂ (95% CI) λ̂ (95% CI)

Sex Male -0.022 (-0.030, -0.015) 0.012 (0.009, 0.015) 2.89 (2.13, 3.66)
Female -0.033 (-0.041, -0.025) 0.017 (0.014,0.021) 4.48 (3.57, 5.38)

Age ≤ 4 -0.014 (-0.027, -0.000) 0.007 (0.000, 0.014) 1.63 (0.12, 3.13)
5-14 -0.013 (-0.020, -0.006) 0.007 (0.004, 0.011) 1.62 (0.87, 2.37)
15-19 -0.007 (-0.016, 0.002) 0.004 (0.000, 0.009) 1.03 (0.11, 1.96)
20-29 -0.041 (-0.054, -0.027) 0.021 (0.015, 0.027) 5.31 ( 3.73, 6.90)
30-39 -0.043 (-0.061, -0.025) 0.022 (0.014, 0.030) 7.61 (5.01, 10.21)
40-49 -0.054 (-0.077, -0.031) 0.028 (0.017, 0.038) 8.65 (5.39, 11.91)
50+ -0.023 (-0.037, -0.010) 0.012 (0.006, 0.018) 3.10 (1.67, 4.53)

Overall All groups -0.029 (-0.034, -0.023) 0.015 (0.012, 0.017) 3.73 (3.13, 4.33)
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Table 4.7: Estimated HIV incidence rate by gender and age under the linear incidence
density model with p = 0.98.

p = 0.98

Demographics â (95% CI) b̂ (95% CI) λ̂ (95% CI)

Sex Male -0.014 (-0.022,-0.007) 0.008 (0.004, 0.011) 1.96 (1.19, 2.73)
Female -0.022 (-0.030, -0.014) 0.012 (0.008, 0.015) 3.04 (2.13, 3.95)

Age ≤ 4 -0.014 (-0.027, -0.001) 0.008 (0.001, 0.014) 1.63 (0.13, 3.14)
5-14 -0.011 (-0.018, -0.003) 0.006 (0.002, 0.010) 1.39 (0.64, 2.15)
15-19 -0.005 (-0.015, 0.004) 0.003 (-0.001, 0.008) 0.82 (0.00, 1.75)
20-29 -0.030 (-0.044, -0.016) 0.016 (0.009, 0.022) 3.99 (2.40, 5.58)
30-39 -0.020 (-0.039, -0.001) 0.011 (0.002, 0.019) 3.71 (1.09, 6.33)
40-49 -0.034 (-0.058, -0.010) 0.017 (0.006, 0.028) 5.53 (2.26, 8.81)
50+ -0.014 (-0.028, 0.000) 0.008 (0.001, 0.014) 1.97 (0.53, 3.41)

Overall All groups -0.019 (-0.024, -0.013) 0.010 (0.007, 0.012) 2.53 (1.93, 3.13)

Table 4.8: Estimated HIV incidence rate by gender and age under the linear incidence
density model with p = 0.95.

p = 0.95

Demographics â (95% CI) b̂ (95% CI) λ̂ (95% CI)

Sex Male -0.002 (-0.010,0.007) 0.001 (-0.002, 0.005) 0.49 (-0.31, 1.28)
Female -0.004 (-0.013, 0.005) 0.002 (-0.001, 0.006) 0.78 (-0.15, 1.71)

Age ≤ 4 -0.012 (-0.026, 0.001) 0.007 (0.000, 0.014) 1.48 (-0.04, 2.29)
5-14 -0.007 (-0.015, 0.000) 0.004 (0.001, 0.008) 1.03 (0.26, 1.80)
15-19 -0.002 (-0.012, 0.008) 0.002 (-0.003, 0.006) 0.48 (-0.46, 1.43)
20-29 -0.013 (-0.028, 0.002) 0.007 (0.000, 0.014) 1.89 (0.27, 3.51)
30-39 0.017 (-0.003, 0.038) -0.008 (-0.017, 0.001) -2.44 (-5.18, 0.29)
40-49 -0.002 (-0.027, 0.024) 0.001 (-0.010, 0.013) 0.61 (-2.75, 3.98)
50+ 0.001 (-0.014, 0.016) 0.000 (-0.006, 0.007) 0.20 (-1.29, 1.69)

Overall All groups -0.003 (-0.009, 0.003) 0.002 (-0.001, 0.005) 0.64 (0.03, 1.26)
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Table 4.6, Table 4.7 and Table 4.8 show the parameter estimates â, b̂ and λ̂ (the

incidence rate), together with their 95% confidence limits under three scenarios when

p = 1, p = 0.98 and p = 0.95 respectively. The estimates are also structured according

to sex (male and female) and age groups. An overall estimate for each parameter

estimates is also given in the last row of the table. Noticeably, as expected, the

incidence estimate for p = 0.95 and p = 0.98 are smaller than those for p = 1 for both

sexes, all ages and overall while the estimates for p = 0.95 are smaller than those for

p = 0.98.

We also tested the null hypothesis that b = 0 using the Wald test. That is, we

tested whether or not the linear incidence density assumption was reasonable for this

data under these settings as opposed to the constant incidence density assumption

(the previous prevalence is assumed known). The results shows that, for p = 1 and

p = 0.98, we reject the constant incidence density assumption and conclude that the

linear incidence assumption is reasonable under these settings (p − values < 0.01).

But when p = 0.95 the constant density assumption seems to be reasonable for

this data (p − value = 0.131). Tables 4.6 and 4.7 also provide a very interesting

information about the linear incidence density function. That is, the slopes in the

two cases increase and reach a maximum at age class 40 - 49 and then drops. This

is an indication that the force of infection or the intensity of the disease is more

pronounced in the younger age groups then reaches a maximum at age group 40 -49

and less pronounced in the older age groups beyond age 50 and above. Further, in

terms of gender, the slopes indicate that the force of infection is higher in females

than males. But 4.8 does not show any of these patterns possibly because the linear

incidence density assumption is not reasonable for the setting where p = 0.95.
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4.6 Discussion

We proposed a method for estimating HIV incidence rate when the incidence density

is assumed to be linear. The proposed model works well under the current setting

and we were also able to compare this model with one under constant incidence

assumption. The methods can be used to estimate incidence of any other disease

provided similar data as the one used here is available.

The most important limitation of the cross sectional approach is that µ = E(L2) and

V ar(L2) (in the case of the proposed estimator) are not known reliably and this will

have an impact on the accuracy of the estimated incidence. Methods for accurate

estimation of the two have been proposed Wang and Lagakos (2010); Claggett et al.

(2012) though they have not been used in practical settings. We also note that the

assumed three state model does not take mortality into account and thus the state

prevalence probabilities that we developed may not be estimated correctly. This is

because, as noted by Balasubramanian and Lagakos (2010), the risk of death is higher

for subjects in the late stage of HIV. However, the introduction of anti-retroviral

therapy (ART) has improved survival amongst individuals with late stage of HIV

and thus lowering HIV related mortality. Further research is needed for on this

area particulary on the effect of non-HIV (and HIV) related mortality on incidence

estimation.

Although ART improves survival amongst individuals with late stage of HIV, it may

also complicate the estimation of incidence since it tends to increase 1 − p, the pro-

portion of non-progressors. Two approaches have been proposed in the literature for
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handling individuals on ART. One is to identify and completely remove all individu-

als on ART from the cross sectional samples as suggested in McDougal et al. (2006).

The danger of removing all subjects on ARTs is that the sample is now modified

and this could lead to bias in the estimated incidence. As noted by Claggett et al.

(2012), this can also have an impact on the resulting prevalence estimate if ART use

is common in the study sites. Another approach is that all subjects on treatment can

be assumed to be in the non-recent state because treatment initiation is often long

after sero-conversion as suggested by Wang and Lagakos (2009). Further research is

needed in this area.



Chapter 5

Estimation of HIV Incidence from
a Cross-Sectional Sample with
Missing Data

SUMMARY. The use of novel biomarkers to identify recent infections in cross sec-

tional samples offers a lot of promise in the estimation of HIV incidence. Identification

of new infections is done through a dual antibody testing system in which specimens

are tested with a sensitive HIV antibody assay and those that are positive are then

tested with a less sensitive assay. However, for some reasons, known or unknown,

a proportion of specimens that tested positive on the standard antibody assay may

not be tested by the less sensitive assay resulting in missing data. This means the

standard method used to estimate incidence may lead to biased estimates and their

standard errors. In this paper, maximum likelihood method for estimating incidence

when some specimens that tested positive on the standard antibody test are missing

is described. The proposed method is illustrated using data from the Botswana AIDS

Impact (BAIS) III of 2008.

82



83

KEYWORDS: HIV incidence, BED assay, missing data, Maximum likelihood

5.1 Introduction

Estimation of human immunodeficiency virus (HIV) incidence is necessary for assess-

ing the impact of programs and for monitoring the spread of HIV infection. A direct,

though expensive approach way to estimate incidence, is through longitudinal cohort

studies which may also need a long time to carry out. The use of novel biomarkers

to identify recent infections in cross sectional samples offers a lot of promise in the

estimation of HIV incidence and circumvent some of the problems associated with

the cohort approach. Identification of new infections is done through a dual antibody

testing system in which specimens are tested with a sensitive HIV antibody assay

(typically ELISA) and then by a less sensitive assay Janssen et al. (1998). Specimens

testing negative on the sensitive HIV antibody assay are considered negative or not

yet seroconverted while specimens testing positive on the sensitive antibody assay are

tested again using a less sensitive assay, typically BED-EIA (commonly referred to

as BED assay). Specimens testing negative on the less sensitive assay are considered

to be recent infections, while those testing positive are considered long standing or

established infections (Janssen et al., 1998; Parekh et al., 2002; Parekh and McDou-

gal, 2005). However, for some reasons, known or unknown, a proportion of specimens

that tested positive on the sensitive antibody assay are not tested by the less sensi-

tive assay resulting in missing data. This is particularly common in population based

cross-sectional surveys. This means that the already developed standard dual testing

methods used to estimate incidence will lead to biased incidence estimates and their
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standard errors. Ad hoc methods for incorporating missing data assumes that the

missing data is missing completely at random (MCAR). That is, the events that lead

to any particular data-item being missing are independent of both the observable

variables and of unobservable parameters of interest (Little and Rubin, 2002). How-

ever MCAR is a too restrictive assumption and difficult to justify in reality. WHO

(2011) describes how one can adjust for missing data under this assumption. Another

way of handling missing data was introduced by Chu and Cole (2006) through the

method of maximum likelihood under the missing at random (MAR) assumption as

described by Little and Rubin (2002).

In this paper, we extend the idea of Chu and Cole (2006) to describe how one can

incorporate missing data in the incidence estimation formula proposed by (McWalter

and Welte, 2010; Wang and Lagakos, 2009) under MAR assumption. In Section 5.2

we describe the maximum likelihood method for incorporating the missing data under

MAR. In Section 5.3, we illustrate the use of the method using data from the Botswana

AIDS Impact (BAIS) III of 2008. We conclude with discussion in Section 5.4.

5.2 The extended model incorporating missing data

We consider the 3-state longitudinal disease progression model for the natural history

of HIV/AIDS and classification of subjects is by a diagnostic test such that state

1 represents the pre-seroconversion period. We denote state 1 by S1 because it is

corresponding to the period in which an individual is either uninfected or is infected

but has not yet seroconverted. Thus strictly speaking state 1 can be subdivided into

two finer sub-states as in Balasubramanian and Lagakos (2010). State 2, denoted
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by S2, represents the “recent infection” state where HIV antibodies are detectable

by a sensitive diagnostic test but not yet through a less sensitive test such as BED

assay. Finally state 3, denoted by S3, represents the “non-recent infection” state

in which HIV antibodies are detectable by a less sensitive test (and sensitive test).

For simplicity and tractability, we assume the incidence density is constant as in

Balasubramanian and Lagakos (2010). We note that Gabaitiri et al. (2012) did relax

the assumption of a constant incidence density but the focus of the current paper is

first to deal with the problem of missing outcomes.

Suppose n subjects are randomly selected from the population at some calendar time

t. Let n0 be the number of subjects in S1, nr be the number of subjects in S2 and

finally n1 be the number of subjects in S3 such that n = n0 + nr + n1.

Using similar arguments as in Balasubramanian and Lagakos (2010), it can be shown

that the prevalence probabilities for the 3-states at time t are

π1(t) = 1− θ

π2(t) = fµ

π3(t) = θ − fµ

The objective is to estimate HIV incidence rate,

λ =
f

1− θ

where f is the incidence density function and for the purpose of the current analysis,

is assumed to be constant as in Balasubramanian and Lagakos (2010), and θ is the

HIV prevalence at time t.

It follows that the trinomial log-likelihood function for this setting (ignoring the
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constant term) is

ℓ(f, θ) = n0log[1− θ] + nrlog[fµ] + n1log[θ − fµ] (5.2.1)

where µ, commonly known as the mean window period, is assumed known. To be

precise, the parameter µ is the mean residence time in S2. That is, if we let T2 be a

random variable denoting the time of stay in S2 then µ = E(T2).

Since

f = λ(1− θ)

then Eq (5.2.1) can be rewritten as

ℓ(λ, θ) = n0log[1− θ] + nrlog[λ(1− θ)µ] + n1log[θ − λ(1− θ)µ] (5.2.2)

If data is missing because a proportion of specimens (nm out of n − n0) that tested

positive on the sensitive antibody assay are not tested by the less sensitive assay, then

the log-likelihood under the MAR assumption is

ℓ(λ, θ) = n0log[1− θ] + nmlogθ + nrlog[λ(1− θ)µ] + n1log[θ − λ(1− θ)µ] (5.2.3)

where nm is number of specimens with missing BED assay results. Note that nm is

the number of missing specimens that tested positive on the sensitive test and they

are part of prevalent cases (new and long-standing cases) hence the term nmlogθ,

where θ is the HIV prevalence at time t. The MLEs of λ and θ denoted by λ̂ and θ̂

are, respectively
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λ̂ =
(n1 + nr + nm)nr

(nr + n1)n0µ

=
nr[

n1+nr

n1+nr+nm

]
n0µ

=
nr

n∗
0µ

(5.2.4)

θ̂ =
n1 + nr + nm

n
(5.2.5)

where n = n0+nr+n1+nm, n
∗
0 = n0

[
n1+nr

n1+nr+nm

]
. The log-likelihood in Eq (5.2.3) can

be modified to take into account proportion of individuals (p) who remain negative

on the less-sensitive assay indefinitely as proposed by (McWalter and Welte, 2010;

Wang and Lagakos, 2009) to give

ℓ(λp, θ) = n0log[1− θ] + nmlogθ + nrlog[λp(1− θ)pµ

+(1− p)θ] + n1log[p(θ − λp(1− θ)µ)] (5.2.6)

The MLEs of λp and θ, λ̂p and θ̂ are, respectively

λ̂p =
(n1 + nr + nm)(nrp− (1− p)n1)

(nr + n1)n0pµ

=
nrp− (1− p)n1

n∗
0pµ

(5.2.7)

θ̂ =
n1 + nr + nm

n
(5.2.8)

where n = n0 + nr + n1 + nm, n
∗
0 = n0

[
n1+nr

n1+nr+nm

]
.

Hence standard formulae for estimating standard errors such as the ones proposed by

(McWalter and Welte, 2010; Wang and Lagakos, 2009) can be used to calculate the

confidence interval for λ̂p with n0 replaced by n∗
0. The variance estimation formula

for the estimated incidence rate (λ̂p) proposed by Wang and Lagakos (2009) when p

and the mean window period, µ, are assumed to be known is
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var(λ̂p) ≈
nr

n2
0pµ

2
(5.2.9)

Hence for the proposed estimator with missing data, we replace n0 by n∗
0. The

estimated variance of θ̂, obtained from the inverse of the matrix of negative second

derivatives, with θ replaced by its MLE, θ̂, is

var(θ̂) =
n0(nr + n1 + nm)

n3
(5.2.10)

where n = n0 + nr + n1 + nm.

5.3 Application to BAIS III data set

Briefly, all persons aged 18 months and above were eligible for HIV testing and the

target sample size was n = 21, 414. But only 67% (sample size=14,351) provided

blood specimen for HIV Testing. Of the 14,351 subjects who tested, 2521 tested HIV

positive, n0 = 11, 823 tested HIV negative while 7 results were indeterminate. Out of

the 2521 subjects who tested positive for HIV, there were nr = 149 recent infections

and n1 = 2319 long standing infections. For the remaining subjects, nothers = nm = 53

the specimens were reported missing (for 27 specimens the box was not found and for

other 26 the blood samples were finished). The question is, what is the contribution

of the 53 missing sample in the estimation of the HIV incidence? In fact there are

two extremes; either they are all recent infections making the number in S2 equal to

202 or they are all long standing infections making the number in S3 equal to 2372.

Obviously the most convincing and a flexible scenario is that of intermediate numbers,

say y∗, is assumed to be in S2 and nm − y∗ is assumed to be in S3. A summary of
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the data is presented in Table 5.1. In addition, Table 5.1 also presents the estimated

HIV prevalence together with the corresponding 95% confidence intervals (95% CI).

Table 5.1: Summary of BAIS III data stratified by age and sex with missing outcome
data

Sample

Demographics n (n0, nr, n1, nm) θ̂ (95% CI)
Sex Male 6536 (5603, 55, 858, 20) 14.3 (13.4, 15.1)

Female 7808 (6220, 94, 1461, 33) 20.3 (19.4, 21.2)

Age (y) ≤ 19 5707 (5491, 28, 184, 4) 3.8 (3.3, 4.3)
20-29 2985 (2401, 43, 523, 18) 19.6 (18.1, 21.0)
30-39 2154 (1287, 33, 822, 12) 40.3 (38.2, 42.3)
40+ 3498 (2644, 45, 790, 19) 24.4 (23, 25.8)

Overall All groups 14344 (11823, 149, 2319, 53) 17.6 (17.0 18.2)

Table 5.2 shows that estimated incidence using Eq (5.2.7) which we refer to as Model

1 (under MAR assumption). We note that when nm = 0, that is, the number of

missing specimens is zero, then Eq (5.2.7) reduces to the incidence estimation formula

proposed by (McWalter and Welte, 2010; Wang and Lagakos, 2009) which we refer

to as Model 2 (under MCAR assumption). We also present the estimated incidence

using the formula proposed by (Wang and Lagakos, 2009). We assume 1− p = 1.5%

and a mean window period of 155 days as in the BAIS III report (CSO, 2008).

We note that Model 1 produces values of the estimated incidence which are larger

than those of Model 2. This is consistent with the theory. The estimated prevalence

of HIV as well as the incidence are high for females and for the age groups 20-39.

The difference in the estimated incidences in the two models is not large since the

number of missing specimens is not too large. However, if we consider the fact that

only 67% of the targeted individuals provided the blood specimen for HIV testing

then the impact of missing information on the estimated incidence may be severe.
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Table 5.2: Estimated HIV incidence by gender and age when is proportion of speci-
mens that tested positive on the sensitive test are missing

Model 1 Model 2
Demographics IModel1(95% CI) IModel2(95% CI)
Sex Male 1.80 (1.18, 2.43) 1.76 (1.14, 2.38)

Female 2.77 (2.05, 3.51) 2.72 (2.00, 3.44)

Age (y) ≤ 19 1.10 (0.65, 1.56) 1.08 (0.63, 1.53)
20-29 3.55 (2.28, 4.86) 3.44 (2.17, 4.71)
30-39 3.80 (1.72, 5.90) 3.75 (1.67, 5.83)
40+ 3.00 (1.82, 4.21) 2.94 (1.76, 4.12)

Overall All groups 2.31 (1.83, 2.80) 2.26 (1.78, 2.74)

This is because it is not unreasonable to assume that those who refused to provide

the blood specimen might have refused on the basis of their past risk exposure.

5.4 Discussion

We described a method for estimating incidence when a proportion of blood specimens

that tested positive on the sensitive tested were not tested again using the less sensitive

test and thus assumed to be MAR. Consistent with the theory, the methods produces

values of the estimated incidence which are larger than those under MCAR. The

method was extended to the method for estimating incidence proposed by (McWalter

and Welte, 2010; Wang and Lagakos, 2009). However, the idea can be extended to

other likelihood based estimators of incidence like the ones proposed by (Gabaitiri

et al., 2013, 2012; Gabaitiri and Mwambi, 2012) in a similar way. Imputation methods

for missing binary data with auxiliary variables can also be explored to actually

predict the state of the missing individual as either in S2 or S3 given the sample is

already positive under the sensitive test. Basically this would mean building a model
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for the conditional probability of being in state S2 or S3 given the sample was positive

under the sensitive test. Finally, the formula for estimating incidence that account for

the uncertainty of the mean window period and p (proportion of assay progressors)

can be used for this setting with n0 replaced by n∗
0.



Chapter 6

Incorporating the effect of
covariates in the estimation of HIV
incidence

SUMMARY. Understanding the risk factors for HIV incidence is crucial for alloca-

tion of resources and proper implementation of risk reduction programs and other

intervention strategies. When data is collected longitudinally and the outcome of

interest is time to event, methods such as the Cox proportional hazard method and

related methods can be used to determine risk factors for HIV incidence. However,

for settings where incidence is estimated from cross sectional surveys and biomarker

based methods, this may not be possible unless one makes additional assumptions

on event times. In this paper, we follow the procedure similar to that developed by

Balasubramanian and Lagakos (2010) to investigate the risk factors associated with

HIV incidence through a multiple logistic regression model. We extend the idea of

Magder and Hughes (1997) to incorporate the uncertainty of the outcome of interest

which in this case is HIV incidence. We use these methods to analyse data from the

Botswana HIV/AIDS impact study of 2008.

92
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6.1 Introduction

Understanding the risk factors for HIV incidence is crucial for allocation of resources

and proper implementation of risk reduction programs and other intervention mea-

sures. Longitudinal cohort studies allow investigations aimed at identifying the risk

factors of HIV incidence through survival analysis techniques such as the Cox pro-

portional hazard model due to Cox (1972). In the absence of cohort data, prevalence

data have been used to study risk factors associated with acquiring human immun-

odeficiency virus (HIV) (Mermin et al., 2008). However, as noted by Mermin et al.

(2008), such data may not reflect risk factors for recent infections.

However, availability of assays such as the BED capture enzyme immunoassay (BED

assay) together with other standard antibody tests such as the ELISA has made it

possible to measure incidence from cross-sectional surveys. This approach has offered

advantages to traditional longitudinal cohort studies in terms of cost, follow-up bias

and time (Brookmeyer et al., 1995; Janssen et al., 1998; Wang and Lagakos, 2009).

But there have been challenges on how to assess risk factors for HIV incidence since

survival techniques cannot be used for these settings unless one makes additional

assumptions on the event times.

A flexible statistical framework which allows incorporation of the covariates informa-

tion was developed by Balasubramanian and Lagakos (2010). The procedure uses the
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standard multiple logistic regression model.

This paper follows the procedure developed by Balasubramanian and Lagakos (2010)

to investigate the risk factors associated with HIV incidence through a multiple lo-

gistic regression model. Since the outcome of interest which in this case is HIV

incidence is measured with imperfect sensitivity and specificity, we extend the idea

of Magder and Hughes (1997) to incorporate the sensitivity and specificity of the

outcome. Gabaitiri and Mwambi (2012) have shown that if specificity equals to one

then sensitivity is similar to the proportion of assay progressors (p) as defined by

McWalter and Welte (2010); Wang and Lagakos (2009). That is, p is the proportion

of subjects who will become reactive at some point after seroconversion and hence

will be correctly classified to be in state 3. Therefore this model can be further ex-

tended to investigate the risk factors associated with HIV incidence for the estimator

of incidence proposed by McWalter and Welte (2010); Wang and Lagakos (2009). We

use these methods to analyse data from the Botswana HIV/AIDS impact study of

2008.

This paper is organized as follows, in Section 6.2 we consider the incidence rate ratio

as a comparative measure. In Section 6.3, we look at the method for incorporating

the covariates and extend it to incorporate imperfect sensitivity and specificity. We

use these methods to analyse data from the Botswana HIV/AIDS impact study of

2008 in Section 6.4 and the discussion is presented in Section 6.5.
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6.2 The incidence rate ratio

For settings where we are interested in the comparing the incidence rate between two

groups, say, for example, between between females and males, we can can use the

incidence rate ratio as the parameter of interest.

Let λ1 and λ2 be incidence rates for group 1 and group 2 respectively. Furthermore, let

λ̂1 and λ̂2 be the estimators for λ1 and λ2 respectively. Then the estimated incidence

rate ratio, R̂R, is

R̂R =
λ̂1

λ̂2

(6.2.1)

To illustrate the use of incidence rate ratio as a comparative measure, we use the

estimator of incidence proposed by (McWalter and Welte, 2010; Wang and Lagakos,

2009) given by

λ̂ =
pnr − (1− p)n1

n0pµ
(6.2.2)

where n0 denotes the number of subjects who test negative on a more sensitive test,

nr denote the number of subjects who test positive on a sensitive test and negative

on a less sensitive test and n1 denote the number of subjects who test positive on a

less sensitive test such that n = n0 + nr + n1. The nr individuals are also referred

to as “recent infections” while the n1 individuals are referred to as “long standing

infections” or “non-recent infections”. The parameter µ denotes the mean window

period and p is the proportion of assay progressors as defined by Wang and Lagakos

(2009). The estimator in Eq 6.2.2 can be stratified according to risk factors such as

sex which yields tow independent groups.
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For group 1, the estimator of incidence is

λ̂1 =
pnr,1 − (1− p)n1,1

n0,1pµ
(6.2.3)

and for group 2, the estimator of incidence is

λ̂2 =
pnr,2 − (1− p)n1,2

n0,2pµ
(6.2.4)

where nr,1 and nr,2 are the number of subjects who are “recent infections” in group 1

and 2 respectively. Similar arguments applies to other variables.

Assuming p and µ are the same in the two groups, it follows that

R̂R =
λ̂1

λ̂2

=
[pnr,1 − (1− p)n1,1]n0,2

[pnr,2 − (1− p)n1,2]n0,1

(6.2.5)

Next we derive the standard errors of the estimated incidence rate ratio using the

delta method. Consider

ˆlogRR = logλ̂1 − logλ̂2

Then

var[logR̂R] ≈ var[logλ̂1] + var[logλ̂2]

≈
(

1

λ̂1

)2

var(λ̂1) +

(
1

λ̂2

)2

var(λ̂2)

Therefore the 100(1−α)% confidence interval for incidence risk ratio is [exp(L), exp(U)],

where L = ˆlogRR− Zα
2

√
var[logR̂R] and U = ˆlogRR + Zα

2

√
var[logR̂R]
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6.3 Incorporating Covariate Dependence

6.3.1 Logistic Regression Method

In this section we consider the model for incorporating the covariates that was pro-

posed by Balasubramanian and Lagakos (2010). Some of the standard notations and

expressions are similar to those used by Balasubramanian and Lagakos (2010).

We note that estimation of HIV incidence involves a two stage algorithm such that

in stage one, one takes a cross-sectional sample of size n from a population, and

test each person using an initial testing algorithm usually based on a sensitive test

(typically ELISA denoted by E). Individuals testing negative (E−) are assumed to

be uninfected at that time. In the second stage, individuals testing positive on the

sensitive test (E+) are tested again using a less-sensitive test (usually BED capture

enzyme immunoassay often referred to as BED assay, B). Subjects that are found

to be positive on a sensitive test but negative on the less sensitive test (E+B−) for

HIV infection are considered to be recent HIV infections otherwise (E+B+) they are

categorized as non-recent or long standing infections as also described in Janssen et al.

(1998).

Now suppose T ≥ 0 denotes the calendar time of HIV infection for someone born at

time t0. Furthermore, let f(t|t0), F (t|t0) and λ(t|t0) denote the density function (in-

cidence density), cumulative distribution function and hazard function for becoming

infected at time t for someone born at time t0 respectively. Let L2 denote the sojourn

or residence time in the recent infection state with the corresponding cumulative dis-

tribution denoted by G(·). We assume that L2 has support in [0, L∗
2], where L∗

2 < t
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and is independent of T. For simplicity and for purposes of conveying the idea, we

assume the incidence density function, f(u) is constant overtime. That is

f(u) = f for u ∈ [t− L∗
2, t].

Generally the hazard or incidence rate is given by

λ(t|t0) =
f(t|t0)

1− F (t|t0)
.

The prevalence probabilities for the 3-state model at time t are

π1(t) = 1− θ

π2(t) = fµ

π3(t) = θ − fµ

where θ = F (t|t0). We are interested in the model that will associate X, a vector

of covariates, to HIV incidence rate. To investigate this association, one can use the

proportional hazards model

λ(t|X) = λ(t0)e
βX (6.3.1)

Note that when X = 0 (implying there is no covariate structure on incidence)

λ(t|X) = λ(t0). (6.3.2)

Standard techniques can be used to estimate the unknown parameter vector β in

Eq (6.3.1). However, due to the unavailability of the event times, Balasubramanian

and Lagakos (2010) proposed an alternative approach where the regression coeffi-

cients, β, in Eq (6.3.1) are estimated by fitting the logistic regression model. The

logistic regression model assumes that the logarithm of the odds of the outcome is a

linear function of the predictors.
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The odds of the outcome E+B−, given that the outcome is E+B− or E−B− and

vector of risk factor X, is

P [E+B−|E+B− or E−B−, X]

1− P [E+B−|E+B− or E−B−, X]
=

π2(t|t0, X)

1− π2(t|t0, X)

=
π2(t|t0, X)

π1(t|t0, X)

=
feβXµ

1− θ

= λ(t0)e
βXµ

where λ(t0) =
f

1−θ

Taking logarithm of the odds, we get

log

[
π2(t|t0, X)

π1(t|t0, X)

]
= log

[
λ(t0)e

βXµ
]

= log [λ(t0)µ] + βX

= α∗ + βX

where α∗ = logλ(t0)µ. Hence one can estimate the regression coefficients in Eq (6.3.1)

by fitting a standard logistic regression model as proposed by Balasubramanian and

Lagakos (2010). Furthermore, to fit a logistic regression model we must have a binary

outcome. As proposed by Balasubramanian and Lagakos (2010) we can discard n1

individuals who are “non-recent” and hence classified to be in state 3 and regard nr

subjects in state 2 who are classified as “recent” as successes and n0 subjects in state 1

as failures. This is motivated by the way in which we defined the odds function (that

is, we used information from state 1 and state 2). In a way this is a conditional logistic

regression model where the inclusion criteria in the model estimation set is either a

sample is recent or not yet sero-converted or uninfected and non-recent samples are

excluded.
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6.3.2 Incorporating Sensitivity and Specificity in the logistic

regression

Assuming ELISA has perfect sensitivity and specificity, BED assay misclassification

can arise when either recent infections are categorized as non-recent or the non-recent

being categorized as recent. Such misclassification will lead to biased estimates of the

odds ratios and their standard errors when standard logistic regression is used to

model the relationship between HIV incidence rate and its risk factors as noted by

Magder and Hughes (1997).

In the current paper, we define sensitivity as the probability that the BED assay is

positive (test is positive) given that the subject is in state 3 (in this case we regard

being diseased as being a long standing infection) while specificity is defined as the

probability that the BED assay is negative (test is negative) given that the subject is

in state 1 or 2 (in this case we regard being disease free as being recent infection or

uninfected). In addition, Gabaitiri and Mwambi (2012) have shown that if specificity

is equal to one then sensitivity is similar to the proportion of assay progressors as in

McWalter and Welte (2010) and Wang and Lagakos (2009). Thus the model proposed

by Magder and Hughes (1997) for adjustment for sensitivity and specificity for logistic

regression with uncertain outcomes can be used to estimate unbiased odds ratio and

their standard errors for these settings.

Suppose Yi denotes the outcome of interest for the ith subject such that

Yi =

{
1 if the ith subject is truly diseased

0 if the ith subject is truly nondiseased
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Let ωi be the classification indicator such that

ωi =

{
1 if the ith subject is classified as having the outcome

0 otherwise

Suppose that Ŷi is the probability that the ith subject truly has the disease condition

given ωi and a vector of covariates Xi. It follows that if the i
th subject is classified as

having the outcome (ωi = 1),

Ŷi =
P(Yi = 1|Xi, β) ∗ sensitivity

P(Yi = 1|Xi, β) ∗ sensitivity + P(Yi = 0|Xi, β) ∗ (1− specificity)
(6.3.3)

and if ωi = 0,

Ŷi =
P(Yi = 1|Xi, β) ∗ (1− sensitivity)

P(Yi = 1|Xi, β) ∗ (1− sensitivity) + P(Yi = 0|Xi, β) ∗ specificity
(6.3.4)

where β is a k×1 vector of regression coefficients to be estimated and once the linear

predictor is specified then by inverting logit link function,

P(Yi = 1|Xi, β) =
exp(

∑n
i=1 βjXij)

1 + exp(
∑n

i=1 βjXij)
(6.3.5)

The regression coefficients, β, are estimated using the EM algorithm when sensitivity

and specificity of the outcome measurement is incorporated. In the E step, the process

starts by first settings β to an arbitrary value and computing the probability of Yi

for each subject.

For the maximization step, the data are then duplicated and each observation in-

cluded twice, one with the outcome variable set to one (for the diseased) and another

with the outcome set to zero (for the non-diseased). A weighted logistic regression
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model is fitted with weights equal to Yi if the subject is diseased and (1 − Yi) if

the subject is non-diseased. The new parameter estimates obtained from the fitted

weighted logistic model are used to re-calculate new Yi and the process is repeated

until parameter estimates stop changing, that is, until convergence. The model was

fitted using Statistical Analysis System (SAS) and the SAS macros were provided

by Prof Laurence S. Magder, University of Maryland, United States of America. We

modified them where necessary.

6.4 Data Analysis

6.4.1 Introduction

Botswana AIDS impact survey (BAIS) III of 2008 is the third sexual behavioral

national population level survey. It included estimation of prevalence and incidence

beyond traditional aims of assessing knowledge, attitude and behavior regarding HIV

and AIDS. BAIS III was a cross sectional study. The objective is to analyse BAIS III

data set in order to identify risk factors for HIV incidence in Botswana. However, due

to a large proportion of missing data we only investigated two risk factors, namely

sex and age because there was enough information on them.

In the analysis, we first consider the incidence rate ratio as a comparative measure.

We also use the logistic regression model as proposed by Balasubramanian and La-

gakos (2010) and extend the idea of Magder and Hughes (1997) to incorporate the

uncertainty of the outcome of interest.

See (Gabaitiri et al., 2013) for a more detailed description of the data.
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6.4.2 The Results

Table 6.1 shows the distribution of the sampled individuals into the 3-state disease

model and the estimated incidence risk ratio (RR) and their corresponding 95% con-

fidence intervals.

Table 6.1: Summary of BAIS III data stratified by age and sex and the estimated
incidence risk ratio, RR and the corresponding 95% confidence intervals

Sample Estimates
Demographics n (n0, nr, n1) RR (95% CI)
Sex Male 6516 (5603, 55, 858) 1

Female 7775 (6220, 94, 1461) 1.54 (0.99, 2.39)

Age (y) ≤ 19 5703 (5491, 28, 184) 1
20-29 2967 (2401, 43, 523) 3.18 (1.82, 5.54)
30-39 2142 (1287, 33, 822) 3.47 (1.74, 6.93)
40+ 3479 (2644, 45, 790) 2.72 (1.53, 4.84)

Table 6.2 shows the results for unadjusted logistic regression estimates of associa-

tion between HIV incidence and demographic variables (age and sex) and the 95%

confidence intervals for estimated odds ratios.

Table 6.2: Unadjusted logistic regression estimates of association between HIV inci-
dence and demographic variables (age and sex) and the estimated odds ratio (OR) and
their corresponding 95% confidence intervals at different combinations of (sensitivity
denoted by sens and specificity denoted by spec)

OR (95% CI)
Demographics (sen=0.99, spec=0.999) (sen=0.985, spec=1) (sen=1, spec=1)
Sex Male 1 1 1

Female 1.60 (1.11, 2.31) 1.54 (1.10, 2.15) 1.54 (1.10, 2.15)

Age (y) ≤ 19 1 1 1
20-29 4.13 (2.35, 7.24) 3.51 (2.18, 5.67) 3.51 (2.18, 5.67)
30-39 6.01 (3.35, 10.80) 5.03 (3.03, 8.35) 5.03 (3.03, 8.35)
40+ 3.91 (2.24, 6.83) 3.34 (2.08, 5.36) 3.34 (2.08, 5.36)
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Table 6.3 presents the results for adjusted logistic regression estimates of associa-

tion between HIV incidence and demographic variables (age and sex) and the 95%

confidence intervals for estimated odds ratios.

Table 6.3: Adjusted logistic regression estimates of association between HIV incidence
and demographic variables (age and sex) and the estimated odds ratio (OR) and their
corresponding 95% confidence intervals

OR (95% CI)
Demographics (sen=0.99, spec=0.999) (sen=0.99, spec=1) (sen=1, spec=1)
Sex Male 1 1 1

Female 1.57 (1.08, 2.28) 1.49 (1.06, 2.08) 1.49 (1.06, 2.08)

Age (y) ≤ 19 1 1 1
20-29 4.16 (2.36, 7.34) 3.49 (2.16, 5.63) 3.49 (2.16, 5.63)
30-39 6.09 (3.37, 11.00) 5.02 (3.02, 8.34) 5.02 (3.02, 8.34)
40+ 3.81 (2.17, 6.69) 3.22 (2.00, 5.18) 3.22 (2.00, 5.18)

Overall the results show that females compared to males have higher risk of HIV

infection (RR=1.54 95% CI;0.99, 2.39) as we can see from Table 6.1. Also the risk of

infection is higher for those aged 20 years and above compared to those aged ≤ 19

years. For example, when we compare those aged 30-39 years to those aged ≤ 19

years we have RR=3.18 (95% CI;1.82, 5.54). These finding are supported by the

results from logistic regression model as we can see from Table 6.2. We also observe

similar findings in the adjusted logistic regression model (Table 6.3). Furthermore,

when we take into account the uncertainty of the outcome of interest, as determined

by the diagnostic test, we see that there is an increase in the estimated odds ratios

and their corresponding standard errors (as revealed by wider confidence intervals)

for settings where we made adjustments for imperfect sensitivity and specificity si-

multaneously. But when we make adjustments for sensitivity only assuming perfect

specificity, consistent with the model proposed by (McWalter and Welte, 2010; Wang
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and Lagakos, 2009) there is almost no change in the parameter estimates estimates

and their standard errors compared to perfect sensitivity and specificity.

6.5 Discussion

We looked at methods for incorporating the effect of covariates. In particular, we

focussed on the logistic regression method proposed by Balasubramanian and Lagakos

(2010). We extended the method of Magder and Hughes (1997) to incorporate the

uncertainty of determining the outcome of interest which in this case is HIV incidence.

We also considered the comparative measure, namely, the incidence rate ratio for

settings where we are interested in comparing the incidence rate between two groups.

However this methods requires stratification by covariates which can be inefficient

due to reduction in cell frequencies when there many covariates with many levels of

stratification. In general, our analysis reveals that risk reduction programs and other

intervention measures should be structured according to predictive risk factors, for

example, according to sex and age.

We note that although data on other variables was available for the BAIS III data

set, we only used sex and age as the risk factors in our analysis simple because

other variables alone had more than 25% of the information missing thus making it

impossible to include them in the analysis. The situation was worse when we try to

investigate them in combination with others. Methods such as multiple imputation

are usually recommended for settings where we have less than 20% of the data missing

Little and Rubin (2002). Furthermore, missing data was not the focus of this research.

More research is needed on this area particularly when we incorporate information
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on imperfect sensitivity and specificity of the diagnostic test used to measure the

outcome of interest in the presence of missing data.



Chapter 7

General Conclusion

Accurate estimates of HIV incidence are crucial for planning and assessing the impact

of interventions. The use of biomarkers offers a lot of promise and it circumvents some

of the problems associated with estimating HIV incidence from longitudinal cohort

studies. However, there are often methodological challenges on how reliable is the

estimated incidence. Most of the existing and newly developed statistical methods

have their advantages and disadvantages.

The major objective of this thesis is to develop statistical methods that can be used

to estimate HIV incidence rate. However, most of the methods developed in this

thesis can be used to estimate incidence of other diseases provided similar data as the

one used here is available. The methods developed take advantage of the statistical

framework developed by Balasubramanian and Lagakos (2010) to derive likelihood

estimators for the incidence rate. We proposed a method to improve incidence estima-

tion as well as precision of the estimated incidence rate by incorporating information

on the immediate past prevalence. The advantage of this method is that it uses

107
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the available data on prevalence, in particular the immediate past prevalence, to im-

prove on incidence estimate and its precision. However, the main disadvantage of the

method is that there is a need to account for the uncertainty in the past prevalence

in addition to the uncertainties in mean window period and the proportion of assay

progressors. We further proposed a method for estimating incidence by relaxing the

assumption of constant incidence density. In particular we assumed a linear incidence

density. The advantage of this method is that it can be used in settings where changes

in HIV incidence are over a long period of time and the period between two successive

surveys, as proposed by Gabaitiri et al. (2013), is large. But, the disadvantage of the

method is that the assumed linear incidence density function may not be suitable for

the data hence further research that includes investigating other forms of incidence

density is needed. The problem though will be identifiability of parameters. Further

research can explore this. We also proposed a method for adjusting the estimates

of incidence when a proportion of subjects tested using an antibody sensitive test

were not tested using a less sensitive test resulting in missing data. In particular, we

considered how adjustments can be made in the log-likelihood when the missing data

is assumed to be missing at random. This is a flexible approach to missing address

the problem of missing data, however, the problem often arises when this assump-

tion do not hold but rather a more complicated assumption of missing not random

is the one that is appropriate. A method that simultaneously makes adjustment for

sensitivity and specificity was also considered in this thesis. The advantage of this

method, compared to the one described by (Wang and Lagakos, 2009; McWalter and

Welte, 2010), is that we are able to simultaneously make adjustments for false recent

rate (1-sensitivity) and false non-recent rate (1-specificity). But unlike the method of
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(Wang and Lagakos, 2009; McWalter and Welte, 2010) where one have to account for

uncertainties in the mean window and proportion of assay progressors, this method

adds in an additional parameter thus bringing in additional uncertainty which will

results in large estimates of the standard errors and hence wide confidence intervals.

We also showed how sensitivity is similar to the proportion of subjects who eventually

transit the “recent infection” state to the “non-recent” infection state as described

by Wang and Lagakos (2009). We also described a method for incorporating risk

factors for HIV incidence and extended the method of Magder and Hughes (1997) to

incorporate the uncertainty of determining the outcome of interest which in this case

is HIV incidence. Logistic regression, which assumes that the logarithm of the odds

of the outcome is a linear function of the predictors, was used to estimate the effect of

various risk factors on HIV incidence. This is a standard method that is widely used

in many areas including medical research because it is simple fit using most statistical

softwares and also the estimated parameters are easy to interpret as odds ratios. The

logistic regression was extended using the method of Magder and Hughes (1997).

Another point worth noting is that Wang and Lagakos (2009) have shown that the

adjusted and unadjusted estimators of incidence they proposed can be biased when

the wrong underlying model is assumed. The estimators of incidence proposed in

this thesis are not resistant to this bias especially that the accuracy of our estimators

depends largely on the accuracy of the mean window period, sensitivity, specificity

and the past prevalence which are always unknown. However, more research is needed

to assess the robustness of the assumptions to model mis-specification.

We however, as noted earlier in most of the chapters, that there are still challenges

on the estimation of HIV incidence rate. One is how to get a reliable estimator of
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mean window period, sensitivity and specificity. In addition, for the proposed esti-

mators, research is necessary to investigate how we can account for the uncertainties

of the estimates of the unknown parameters. We have highlighted in most chapters

that the proposed methods do not take mortality into account and thus the state

prevalence probabilities that we developed may be biased. This is because, as noted

by Balasubramanian and Lagakos (2010), the risk of death is higher for subjects in

the late stage of HIV. However, the introduction of anti-retroviral therapy (ART) has

improved survival amongst individuals with late stage of HIV and thus lowering HIV

related mortality. Further research is needed on this area particulary on the effect of

non-HIV (and HIV) related mortality on incidence estimation.

We used data from the Botswana AIDS Impact (BAIS) III of 2008 to illustrate the

proposed methodology and only age and sex were used to illustrate the methods.

Other variables alone had more than 25% of the information missing thus making it

impossible to include them in the analysis. As we highlighted, the situation was worse

when we try to investigate them in combination with others. Therefore methods for

handling missing data such as multiple imputation could not be used since usually it is

recommended for settings where we have less than 20% of the data missing (Little and

Rubin, 2002). The situation is further exacerbated by the fact that only 67% of the

sampled individuals refused to provided blood specimen for HIV Testing. Although

the focus of this thesis was not on missing data, more research is still needed on this

area.



Appendix A

A simulation study to compare the

unadjusted incidence estimators

with known and unknown previous

prevalence under constant

incidence density function

### This R function called "simulationkno1" is a

## simulation study that evaluates the performance of the

## proposed estimators of incidence rate

## for the model when the previous prevalence is known.

111



112

## In this simulation, we compare undjusted

## estimators for of incidence rate

## for the standard model and the proposed model

## when past prevalence is known

## The input variables are "timet"=time between

## two prevalence studies,

## "muL"=mean window period,

## "ftau.hat"=the previous prevalence,

## We define "f.true"=true value of the

## incidence density function

## "nsim"=number of simulations

## "phi.one", "phi.two", "phi.three" are

## the prevalence probabilities

## "n"=overall sample size

## Then we generate "n00, n10, n11" about 1000, times.

## Estimate "theta.hat"="ftau.hat"+f2*timet

## Finally it estimates the incidence rate and its

## corresponding standard errors.

## and coverage probabilities

simulationkno1<-function(timet, muL, lam.true, fhat.tau,

nsim){f.true<-lam.true*(1-fhat.tau)/(1+lam.true*timet);

theta.true<-fhat.tau+f.true*timet;

fhat.tau<-fhat.tau;
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lam.true<-lam.true;

phi.one<-(1-fhat.tau-lam.true*(1-fhat.tau)*timet

/(1+lam.true*timet));

phi.two<-lam.true*(1-fhat.tau)*muL/(1+lam.true*timet);

phi.three<-1-phi.one-phi.two;

nsim<-nsim;

N<-3000;

set.seed(3000)

rcount<-rmultinom(nsim, size=N,

prob=c(phi.one, phi.two, phi.three));

n00<-matrix(rcount[1,]);

n10<-matrix(rcount[2,]);

n11<-matrix(rcount[3,]);

mat<-as.matrix(cbind(n00, n10, n11));

colnames(mat)<-c("n00","n10","n11");

lam.hat<-rep(0,nsim);

var.lam<-rep(0, nsim);

B<-rep(0,nsim);

var.lam.hat<-rep(0,nsim);

var.theta.hat<-rep(0, nsim);

lam.m3<-rep(0, nsim);

var.lam.m3<-rep(0, nsim);

i<-1

while(i<=nsim){
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B[i]<-(mat[i,"n00"]+mat[i,"n11"])*timet*fhat.tau

-(mat[i,"n10"] +mat[i,"n11"])*(timet-(1-fhat.tau)*muL);

lam.hat[i]<-(-B[i]+sqrt(B[i]^2+4*mat[i,"n00"]*timet

*(timet-(1-fhat.tau)*muL)*(mat[i,"n10"]*fhat.tau)))

/(2*mat[i,"n00"]*timet*(timet-(1-fhat.tau)*muL));

####Variance+MLE matrix under constant model -begin

var.lam.hat[i]<--((((N*timet^2)/((1+lam.hat[i]*timet)^2))

-(mat[i,"n10"]/(lam.hat[i]^2))

-(mat[i,"n11"]*(timet-(1-fhat.tau)*muL)^2)/

((fhat.tau+lam.hat[i]*(timet-(1-fhat.tau)*muL))^2)))^(-1);

####Variance+MLE matrix under constant model -end

lam.m3[i]<-mat[i,"n10"]/(mat[i,"n00"]*muL);

var.lam.m3[i]<-mat[i,"n10"]/(mat[i,"n00"]*muL)^2;

i<-i+1

}

#Coverage probability - new (uadjusted) model starts here

lower<-rep(0, nsim);

upper<-rep(0, nsim);

cv<-rep(0, nsim);

for(i in 1:nsim){

lower[i]<-lam.hat[i]-1.96*sqrt(var.lam.hat[i]);

upper[i]<-lam.hat[i]+1.96*sqrt(var.lam.hat[i]);

if(lam.true>lower[i] && lam.true<upper[i]) cv[i]<-1

else cv[i]<-0;
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}

#Coverage probability-new (uadjusted) model ends here

#Coverage probability-standard (unadjusted) model starts- M3

lower3<-rep(0, nsim);

upper3<-rep(0, nsim);

cv3<-rep(0, nsim);

for(i in 1:nsim){

lower3[i]<-lam.m3[i]-1.96*sqrt(var.lam.m3[i]);

upper3[i]<-lam.m3[i]+1.96*sqrt(var.lam.m3[i]);

if(lam.true>lower[i] && lam.true<upper3[i])

cv3[i]<-1 else cv3[i]<-0;

}

#Coverage probability -standard (unadjusted)

# model ends - M3

cvtable<-cbind(lower,upper,lam.true, cv)

cv<-table(cv)

cvtable3<-cbind(lower3,upper3,lam.true, cv3)

cv3<-table(cv3)

#Incidence estimation and its SE-begins

# -New (unadjusted) model

mean.lam.hat<-mean(lam.hat);
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v.lam.hat.emp<-var(lam.hat);

se.lam.hat.emp<-sqrt(v.lam.hat.emp);

var.lam.hat.ave<-mean(var.lam.hat);

se.lam.hat.ave<-sqrt(var.lam.hat.ave);

#Incidence estimation and its SE-end

# -New(unadjusted) model

#Incidence estimation and its SE-begins

# -Std (unadjusted) model-M3

mean.lam.m3<-mean(lam.m3);

v.lam.m3.emp<-var(lam.m3);

se.lam.m3.emp<-sqrt(v.lam.m3.emp);

var.lam.m3.ave<-mean(var.lam.m3);

se.lam.m3.ave<-sqrt(var.lam.m3.ave);

#Incidence estimation and its SE-ends

# -std (unadjusted) model-M3

incidence.par<-cbind(lam.true,mean.lam.hat

,se.lam.hat.ave,se.lam.hat.emp,cv,cv3,

mean.lam.m3,se.lam.m3.ave,se.lam.m3.emp);

return(incidence.par);

}



Appendix B

A simulation study to evaluate the

performance of adjusted new

incidence estimator when previous

prevalence is known under

constant incidence density function

### This R function called "simulation-kno2" is a

# simulation study that evaluates the estimator for

# incidence rate for the model when past

# prevalence is known.

## The input variables are "timet"=time
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# between two prevalence studies,

## "muL"=mean windon period,

# "ftau.hat"=the previous prevalence,

## and "p"=proportion of assay progressors

## We define "f.true"=true value

# of the incidence density

## function and "nsim"=number of simulations

## "phi.one", "phi.two", "phi.three" are the prevalence

## probabilities and "n"=overall sample size

## Then we generate "n00, n10, n11" about 1000, times.

## Estimate "theta.hat"="ftau.hat"+f2*timet

## Finally it estimates the incidence rate and its

## corresponding standard error.

simulationkno2<-function(timet, muL,

lam.true, fhat.tau,p,nsim){

f.true<-lam.true*(1-fhat.tau)/(1+lam.true*timet);

theta.true<-fhat.tau+f.true*timet;

fhat.tau<-fhat.tau;

p<-p;

lam.true<-lam.true;

phi.one<-(1-fhat.tau-lam.true*(1-fhat.tau)*timet/

(1+lam.true*timet));

phi.three<-p*(fhat.tau+lam.true*(1-fhat.tau)
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*(timet-muL)/(1+lam.true*timet));

phi.two<-1-phi.one-phi.three;

nsim<-nsim;

N<-3000;

set.seed(3000)

rcount<-rmultinom(nsim, size=N,

prob=c(phi.one, phi.two, phi.three));

n00<-matrix(rcount[1,]);

n10<-matrix(rcount[2,]);

n11<-matrix(rcount[3,]);

mat<-as.matrix(cbind(n00, n10, n11));

colnames(mat)<-c("n00","n10","n11");

lam.hat<-rep(0,nsim);

A<-rep(0,nsim);

B<-rep(0,nsim);

C<-rep(0,nsim);

var.lam.hat<-rep(0,nsim);

#####Adjusted estimator

mr<-muL*p*(1-fhat.tau)+timet*(1-p);

ur<-fhat.tau*(1-p);

m1<--muL*(1-fhat.tau)+timet;
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u1<-fhat.tau;

i<-1

while(i<=nsim){

A[i]<-m1*mr*timet*mat[i,"n00"];

B[i]<-mr*timet*u1*(mat[i,"n00"]+mat[i,"n11"])+m1*timet*ur*

(mat[i,"n00"]+mat[i,"n10"])-m1*mr*(mat[i,"n10"]+mat[i,"n11"]);

C[i]<-N*timet*ur*u1-mr*u1*mat[i,"n10"]-mat[i,"n11"]*m1*ur;

lam.hat[i]<-(-B[i]+sqrt(B[i]^2-4*A[i]*C[i]))/(2*A[i]);

#Variance+MLE matrix under constant model

var.lam.hat[i]<--((((N*timet^2)/((1+lam.hat[i]*timet)^2))

-(mat[i,"n10"]*mr^2/(ur+mr*lam.hat[i])^2)

-(mat[i,"n11"]*m1^2)/((u1+lam.hat[i]*m1)^2)))^(-1);

i<-i+1

}

#Coverage probability for true lambda-

# for the proposed model begins here

lower<-rep(0, nsim);

upper<-rep(0, nsim);

cv<-rep(0, nsim);

for(i in 1:nsim){

lower[i]<-lam.hat[i]-1.96*sqrt(var.lam.hat[i]);

upper[i]<-lam.hat[i]+1.96*sqrt(var.lam.hat[i]);
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if(lam.true>lower[i] && lam.true<upper[i])

cv[i]<-1 else cv[i]<-0;

}

#Coverage probability for true lambda for

#the proposed model ends here

cvtable<-cbind(lower,upper,lam.true, cv)

cv<-table(cv)

#Incidence est-begin - Proposed model

mean.lam.hat<-mean(lam.hat);

v.lam.hat.emp<-var(lam.hat);

se.lam.hat.emp<-sqrt(v.lam.hat.emp);

var.lam.hat.ave<-mean(var.lam.hat);

se.lam.hat.ave<-sqrt(var.lam.hat.ave);

#cov1<-se.lam.hat.ave/muL;

#Incidence est-end - Proposed model

incidence.par<-cbind(lam.true,mean.lam.hat,

se.lam.hat.ave,se.lam.hat.emp,cv);

return(incidence.par);

}



Appendix C

A simulation study to compare the

adjusted incidence estimators with

known and unknown previous

prevalence under constant

incidence density function

### This R function called "simulation-kno3" is a

## simulation study that evaluates the estimator for

## incidence rate for the model

## of Wang-Lagakos (adjusted) and compare the

## estimator to the one proposed (adjusted))
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## both adjusted for p where "p"=proportion of

## assay progressors. We use

## the prevalence probabilities same as under

## the proposed (adjusted) model.

## Therefore the input variables are "timet"=time

## between two prevalence studies,

## "muL"=mean windon period, "ftau.hat"=the previous

## prevalence,

## We define "f.true"=true value of the

## incidence density function

## "nsim"=number of simulations, and "p"

## "phi.one", "phi.two", "phi.three" are

## the prevalence probabilities

## "n"=overall sample size

## Then we generate "n00, n10, n11".

## Finally it estimates the incidence rate

## and its corresponding standard error.

simulationkno3<-function(timet, muL, lam.true,

fhat.tau, p, nsim) {

f.true<-lam.true*(1-fhat.tau)/(1+lam.true*timet);

theta.true<-fhat.tau+f.true*timet;

fhat.tau<-fhat.tau;

p<-p;
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lam.true<-lam.true;

#phi.one3<-1-fhat.tau;

#phi.two3<-lam.true*(1-fhat.tau);

#phi.three3<-1-phi.one3-phi.two3;

phi.one<-(1-fhat.tau-lam.true*(1-fhat.tau)

*timet/(1+lam.true*timet));

phi.three<-p*(fhat.tau+lam.true*(1-fhat.tau)

*(timet-muL)/(1+lam.true*timet));

phi.two<-1-phi.one-phi.three;

nsim<-nsim;

#alpha<-0.1;

N<-3000;

set.seed(3000)

rcount<-rmultinom(nsim, size=N,

prob=c(phi.one, phi.two, phi.three));

n00<-matrix(rcount[1,]);

n10<-matrix(rcount[2,]);

n11<-matrix(rcount[3,]);

mat<-as.matrix(cbind(n00, n10, n11));

colnames(mat)<-c("n00","n10","n11");

lam.hat<-rep(0,nsim);

var.lam.hat<-rep(0,nsim);

i<-1
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while(i<=nsim){

#Adjusted estimator

lam.hat[i]<-(p*mat[i,"n10"]-(1-p)

*mat[i,"n11"])/(p*mat[i,"n00"]*muL);

#Variance+MLE matrix under constant model

var.lam.hat[i]<-mat[i,"n10"]/(p*mat[i,"n00"]^2*muL^2);

i<-i+1

}

#Coverage probability - Wang-Lagakos model-begin

lower<-rep(0, nsim);

upper<-rep(0, nsim);

cv<-rep(0, nsim);

for(i in 1:nsim){

lower[i]<-lam.hat[i]-1.96*sqrt(var.lam.hat[i]);

upper[i]<-lam.hat[i]+1.96*sqrt(var.lam.hat[i]);

if(lam.true>lower[i] && lam.true<upper[i])

cv[i]<-1 else cv[i]<-0;

}

#Coverage probability - Wang-Lagakos model-end

cvtable<-cbind(lower,upper,lam.true, cv)

cv<-table(cv)

#Incidence est-begin - New model

mean.lam.hat<-mean(lam.hat);

v.lam.hat.emp<-var(lam.hat);
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se.lam.hat.emp<-sqrt(v.lam.hat.emp);

var.lam.hat.ave<-mean(var.lam.hat);

se.lam.hat.ave<-sqrt(var.lam.hat.ave);

incidence.par<-cbind(lam.true,mean.lam.hat,

se.lam.hat.ave,se.lam.hat.emp,cv);

return(incidence.par);

}



Appendix D

A simulation study to evaluate the

performance of the new incidence

estimator that makes adjustments

for sensitivity and specificity

simultaneously under constant

incidence density function

### This R function called "simulationsp" is a

## simple simulation study that estimates the

## incidence rate for the new model that
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## makes adjustments for sensitivity (s)

## and specificity (p) simultaneously.

## "number of simulation=nsim"

## "phi.one", "phi.two" & "phi.three" are states

## prevalence probabilities. Let overall n=3000.

## Then we generate "n00, n10, n11" 1000 times.

## Finally it estimates the incidence rate,

## its corresponding standard error,

## empirical standard errors.

## and coverage probabilities

simulationsp<-function(muL, lam.true, theta.true,

s, p, nsim) {

theta.true<-theta.true;

s<-s;

p<-p;

lam.true<-lam.true;

phi.one<-(1-theta.true)*p;

phi.two<-lam.true*(1-theta.true)*muL*p

+(theta.true-lam.true

*(1-theta.true)*muL)*(1-s) ;

phi.three<-1- phi.one-phi.two;

nsim<-nsim;

N<-3000;
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set.seed(3000)

rcount<-rmultinom(nsim, size=N,

prob=c(phi.one, phi.two, phi.three));

n00<-matrix(rcount[1,]);

n10<-matrix(rcount[2,]);

n11<-matrix(rcount[3,]);

mat<-as.matrix(cbind(n00, n10, n11));

colnames(mat)<-c("n00","n10","n11");

lam.hat<-rep(0,nsim);

var.lam.hat<-rep(0,nsim);

i<-1

while(i<=nsim){

#####Adjusted estimator for Sensitivity and specificity

lam.hat[i]<-(s*mat[i,"n10"]-(1-s)*mat[i,"n11"])/

((s+p-1)*mat[i,"n00"]*muL);

####Variance for the estimator adjusted for

Sensitivity and specificity

var.lam.hat[i]<-((mat[i,"n10"]+mat[i,"n11"])

*(N*s-2*mat[i,"n11"])*s+mat[i,"n00"]*mat[i,"n11"]

*(1-2*s)+mat[i,"n11"]^2)/((s+p-1)^2*mat[i,"n00"]^3*muL^2);

i<-i+1

}
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#Coverage probability - The proposed model with

sensitivity and specificity

lower<-rep(0, nsim);

upper<-rep(0, nsim);

cv<-rep(0, nsim);

for(i in 1:nsim){

lower[i]<-lam.hat[i]-1.96*sqrt(var.lam.hat[i]);

upper[i]<-lam.hat[i]+1.96*sqrt(var.lam.hat[i]);

if(lam.true>lower[i] && lam.true<upper[i])

cv[i]<-1 else cv[i]<-0;

}

###Coverage interval for true lambda ends here

cvtable<-cbind(lower,upper,lam.true, cv)

cv<-table(cv)

#Incidence est-begin - New model adjusted

for Sensitivity and specificity

mean.lam.hat<-mean(lam.hat);

v.lam.hat.emp<-var(lam.hat);

se.lam.hat.emp<-sqrt(v.lam.hat.emp);

var.lam.hat.ave<-mean(var.lam.hat);
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se.lam.hat.ave<-sqrt(var.lam.hat.ave);

#Incidence est-end - new model

incidence.par<-cbind(lam.true,mean.lam.hat

,se.lam.hat.ave,se.lam.hat.emp,cv);

return(incidence.par);

}



Appendix E

A simulation study to evaluate the

performance of the new incidence

estimator under linear incidence

density function

### This R function called "simulationlm" is a

# simulation study that evaluates the

## incidence rate for the proposed model.

# when the incidence density is assumed to be linear

## It calculates the "a.hat", "b.hat", and "theta.hat".

## The input variables are "a.true", "b.true",

## "muL", "varL", "ftau.hat",

## "number of simulation=nsim"
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## It first gives "theta.true"

## The "phi.one", "phi.two", "phi.three"

## are the states prevalence probabilities

## "n"=sample size, "nsim"= the number of simulations

## Then we generate "n00, n10, n11".

simulationlm<-function(a.true, b.true, tau, mu,

varL, theta0, p, nsim) {

gamma<-varL+mu^2;

p<-p;

theta.true<-theta0+a.true*tau+0.5*b.true*tau^2;

f.true<-a.true+b.true*tau;

lam.true<-f.true/(1-theta.true);

phi.one<-1-theta.true;

phi.two<-a.true*mu-0.5*b.true*(gamma-2*tau*mu)

*p+(1-p)*(theta0+a.true*tau+0.5*b.true*tau^2);

phi.three<-1-phi.one-phi.two;

nsim<-nsim;

n<-4000;

set.seed(30000)

rcount<-rmultinom(nsim, size=n,

prob=c(phi.one, phi.two, phi.three));

n0<-matrix(rcount[1,]);

nr<-matrix(rcount[2,]);



134

n1<-matrix(rcount[3,]);

mat<-as.matrix(cbind(n0, nr, n1));

colnames(mat)<-c("n0","nr","n1");

a<-rep(0,nsim);

b<-rep(0,nsim);

var.a.hat<-rep(0,nsim);

var.b.hat<-rep(0, nsim);

var.theta.hat<-rep(0,nsim);

var.lam.hat<-rep(0, nsim);

cov.ab.hat<-rep(0, nsim);

theta.hat<-rep(0, nsim);

lam.hat<-rep(0, nsim);

var.f<-rep(0, nsim);

cov.ftheta<-rep(0, nsim);

var.theta<-rep(0, nsim);

var.lam.hat<-rep(0, nsim);

f<-rep(0, nsim);

i<-1

while(i<=nsim){

a[i]<--(-2*n*mu*tau*p*theta0+2*mu*p*tau*(mat[i,"n1"]

+mat[i,"nr"])+n*gamma*p*theta0-p*gamma*(mat[i,"n1"]

+mat[i,"nr"])-(tau^2)*p*(mat[i,"n1"]+mat[i,"nr"])

+mat[i,"n1"]*tau^2)/(n*tau*p*(gamma-tau*mu));
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b[i]<--2*(n*mu*p*theta0+tau*p*(mat[i,"n1"]

+mat[i,"nr"])-mu*p*(mat[i,"n1"]+mat[i,"nr"])

-mat[i,"n1"]*tau)/(n*tau*p*(gamma-tau*mu));

var.a.hat[i]<-(mat[i,"n0"]*mat[i,"n1"]*(-2*mu*p*tau

+p*gamma+tau^2*p-tau^2)^2+p^2*mat[i,"n0"]*mat[i,"nr"]

*(tau^2+gamma-2*tau*mu)^2+mat[i,"n1"]*mat[i,"nr"]

*tau^4)/(n^3*tau^2*p^2*(gamma-tau*mu)^2);

var.b.hat[i]<-4*(mat[i,"n0"]*mat[i,"n1"]*(mu*p

+tau-p*tau)^2+mat[i,"n0"]*mat[i,"nr"]*p^2*(mu-tau)^2

+mat[i,"n1"]*mat[i,"nr"]*tau^2)/(n^3*tau^2*p^2

*(gamma-tau*mu)^2);

cov.ab.hat[i]<-2*(mat[i,"n0"]*mat[i,"n1"]

*(mu*p+tau-p*tau)*(-2*mu*p*tau+p*gamma+tau^2*p-tau^2)

+mat[i,"n0"]*mat[i,"nr"]*p^2*(mu-tau)*(tau^2

+gamma-2*tau*mu)-mat[i,"n1"]*mat[i,"nr"]*tau^3)

/(n^3*tau^2*p^2*(gamma-tau*mu)^2);

theta.hat[i]<-theta0+a[i]*tau+0.5*b[i]*tau^2;

f[i]<-a[i]+b[i]*tau;

lam.hat[i]<-f[i]/(1-theta.hat[i]);
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var.f[i]<-var.a.hat[i]+tau^2*var.b.hat[i]

+2*tau*cov.ab.hat[i];

cov.ftheta[i]<-tau*var.a.hat[i]+0.5*tau^3*var.b.hat[i]

+1.5*tau^2*cov.ab.hat[i];

var.theta[i]<-tau^2*var.a.hat[i]

+tau^4/4*var.b.hat[i]+tau^3*cov.ab.hat[i];

var.lam.hat[i]<-(1/(1-theta.hat[i])^2)*var.f[i]

+(f[i]^2/(1-theta.hat[i])^4)*var.theta[i]+(2*f[i]

/(1-theta.hat[i])^3)*cov.ftheta[i];

i<-i+1

}

#Coverage probability for a;

lowera<-rep(0, nsim);

uppera<-rep(0, nsim);

cva<-rep(0, nsim);

for(i in 1:nsim){

lowera[i]<-a[i]-1.96*sqrt(var.a.hat[i]);

uppera[i]<-a[i]+1.96*sqrt(var.a.hat[i]);

if(a.true>lowera[i] && a.true<uppera[i])

cva[i]<-1 else cva[i]<-0;

}
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cvtablea<-cbind(lowera,uppera,cva);

cva<-table(cva);

#Coverage probability for b;

lowerb<-rep(0, nsim);

upperb<-rep(0, nsim);

cvb<-rep(0, nsim);

for(i in 1:nsim){

lowerb[i]<-b[i]-1.96*sqrt(var.b.hat[i]);

upperb[i]<-b[i]+1.96*sqrt(var.b.hat[i]);

if(b.true>lowerb[i] && b.true<upperb[i])

cvb[i]<-1 else cvb[i]<-0;

}

cvtableb<-cbind(lowerb,upperb,cvb);

cvb<-table(cvb);

#Coverage probability for lam;

lowerl<-rep(0, nsim);

upperl<-rep(0, nsim);

cvl<-rep(0, nsim);

for(i in 1:nsim){

lowerl[i]<-lam.hat[i]-1.96*sqrt(var.lam.hat[i]);

upperl[i]<-lam.hat[i]+1.96*sqrt(var.lam.hat[i]);

if(lam.true>lowerl[i] && lam.true<upperl[i])
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cvl[i]<-1 else cvl[i]<-0;

}

cvtablel<-cbind(lowerl,upperl,cvl);

cvl<-table(cvl);

#Incidence estimation under linear density-begin

mean.a<-mean(a);

mean.b<-mean(b);

mean.lam<-mean(lam.hat);

v.a.emp<-var(a);

se.a.emp<-sqrt(v.a.emp);

v.b.emp<-var(b);

se.b.emp<-sqrt(v.b.emp);

v.l.emp<-var(lam.hat);

se.l.emp<-sqrt(v.l.emp);

var.a.ave<-mean(var.a.hat);

se.a.ave<-sqrt(var.a.ave);

var.b.ave<-mean(var.b.hat);

se.b.ave<-sqrt(var.b.ave);

var.l.ave<-mean(var.lam.hat);

se.l.ave<-sqrt(var.l.ave);

t<-phi.one+phi.two+phi.three;

#Incidence estimation under linear density-end

incidence.par<-cbind(a.true,mean.a,se.a.ave,

se.a.emp,b.true,mean.b,se.b.ave,
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se.b.emp,lam.true,mean.lam,se.l.ave,

se.l.emp,cva,cvb,cvl,t);

return(incidence.par);

}
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