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CHAPTER 1 

INTRODUCTION 

The work described in this thesis was carried out in a laboratory where 

a study was being made on the effect of 4- dimethylamino- 3 "-methylazobenzene, 

a rat liver carcinogen, on the biosynthesis of proteins of the liver. This work 

was started by Dr . A. O. Hawtrey who, with his collabbrators, found that 

in vitro protein synthesis with microsomes was considerably stimulated 40 

hours after an intraperitoneal injection of the dye . This stimulation was shown 

to correlate with the binding of the dye to the cytoplasmic proteins (Hawtrey , 

Shirren & Dijkstra , 1963) . A similar stimulation of synthesis by the carcinogen 

was then found to take place at the level of polysomes which suggested that 

there was control of protein synthesis even at the level of polysomes (Hawtrey 

& Nourse , 1966) . It was because of this finding that it was decided to study 

the role of polysomes and the factors associated with them in the synthesis of 

protein . The results described here are part of this study, and include only 

those which were obtained solely by the author . The work done in collaboration 

with Hawtrey has been published and will be referred to in the text . 

The work is described in three parts . The first part (Chapter 3) deals 

with the characterization of polysomes and the study of their breakdown by 

various treatments and chemicals . This work was begun in 1963, shortly after 

polysomes were discovered and when little was known about them . The primary 

objective was to use the polysomes to prepare single ribosomes free of transfer 

enzymes so that the part played by these enzymes in protein biosynthesis could 

be studied . An interesting aspect of this work was the close parallel between 

the actual breakdown of polysomes and that which could be predicted from the 

most recent concepts of protein biosynthesis . 

The second part (Chapter 4) embraces the investigation of various methods 

of preparing single ribosomes from polysomes and the study of their properties . 

Three different methods were used, namely, one developed by the author and 

the other two adapted from methods described in the literature. When these 

ribosomes were tested for their activity in polypeptide synthesis they were 

found to differ and it was shown that the differences were not because of their 

content of associated transfer enzymes . The reason for these differences was 

therefore sought . The original idea of studying the role of the transfer en-

zymes was abandoned because it was clear that work on the transfer enzymes was 
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It seemed most probable that the differences in activity of the three 

preparations of ribosomes were a result of the removal of different structural 

parts of the ribosomes, either RNA or protein, during their preparation. 

8ince it had been shown by many research workers that 5S ribonucleic acid 

(58 RNA) is a component of ribosomes, it was decided to investigate the 

content of this RNA in the different preparations. The third and major part 

(Chapter 5) of this thesis deals with the above aspect. In chapter 5 methods 

are described whereby 58 RNA was removed from the ribosomes and the 

influence of this removal on the activity of ribosomes in protein synthesis 

was studied . Results are also given on the effect produced by adding 5S RNA 

to these deficient ribosomes. Since it has been reported that a protein is 

required for the attachment of 5S RNA to the ribosome, the effect of these 

treatments on the ribosomal proteins was also studied. 

The study of the steps involved in protein synthesis has attracted a 

large number of workers throughout the world and numerous papers on the 

subject are published every month. Consequently there are parts of the 

present study which were done independently by other research groups and 

published while this study was in progress or subsequent to its completion. 

An attempt has been made in each section to show what was actually known 

at the time work was started and to indicate how the results obtained correlate 

with findings published elsewhere. 
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CHAPTER 2 

A REVIEW OF THE LITERATURE ON PROTEIN BIOSYNTHESIS 

2.1 INTRODUCTION 

In the early 1950's it was shown that the cellular site of protein 

synthesis was the microsome, a lipoprotein membrane containing sperical 

nucleoprotein particles (Borsook, Deasy, Haagen-Smit, Keighley &Lowy, 

1950; Hultin, 1950). In about the mid-1950's it was shown that of the whole 

microsome structure only the spherical nucleoprotein particles, now known 

as ribosomes, were active participants in this synthesis (Allfrey, Daly & 

Mirsky, 1953; Littlefield, Keller, Gross & Zamecnik, 1955). An in vitro 

system for the measurement of protein synthesis was developed at about the 

same time by Zamecnik and his collabor ators (Zamecnik & Keller, 1954 ; 

Littlefield, Keller, Gross & Zamecnik , 1955; Keller & Zamecnik , 1956; 

Littlefield & Keller, 1957) . There was some elapse of time before it became 

evident that the active form of the ribosome was the polysome consisting of . 

a number of ribosomes joined by a strand of RNA, called mRNA (see Chapter 

3). Development in this field has been rapid and now an almost complete un­

derstanding of the different steps has been achieved. 

Polysomes for the study of protein synthesis have been obtained from 

two distinctly different types of cells, namely those with a nucleus, such as 

yeast (haploid) and rat liver (diploid) and those without a nucleus of which 

Escherichia coli is an example . Most of the polysomes of the nucleated 

species are situated on the endoplasmic reticulum in the cytoplasm of the 

cell. Some occur in the free state or are found in the mitochondrion. In the 

anucleate species, the polysomes exist either in the free state or are asso­

ciated with the membrane of the cell wall . The historical background and ge­

neral features of protein synthesis are well covered in different reviews and 

will not be discussed in this chapter unless they have a definite bearing on 

later developments or are not comprehensively covered elsewhere (Watson, 

1963 & 1964; Moldave , 1965; Elson, 1965; Singer & Leder, 1966; Schweet 

& Heintz, 1966; Novelli, 1967) . 

Those steps in the biosynthesis of proteins which proceed after ac­

t ivation of amino acids up to the completion of the polypeptide chain are out­

lined here. It should be mentioned that this is not the complete story as such 
.e .... _ L. __ _ _ _ 0 
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proteins, the attainment of the correct three dimensional configuration of the 

different proteins and the dispersion of the proteins within cells, are all part 

of this biological phenomenon. This thesis, however, deals only with the steps 

involved in actual peptide bond formation on the ribosome. Most of the ad­

vances were made during in vitro studies of the different systems and recently, 

especially with E. coli systems . Although much has been contributed by in­

vestigations using rat liver and reticulocyte systems, the stages in the process 

revealed in the studies on E. coli are used, though not exclusively, as a basis 

for the outline given here. 

The steps in the biosynthesis of proteins can be summarized as 

follows: . 

i) aa 
n 

ATP 
+E~ 

n Mg). , 

PPi 

amino 
acid 

aminoacyl 
synthetase 

tRNA 

[tan - AMP] - En-_\~~) aan- tRNAn +En +AMP 

aminoac y ladeny la te­
enzyme 

GTP GDP + Pi 

aminoacyl­
tRNA 

ii) n aa-tRNA + mRNA + ribosomes ~ ) 
Mg, K (- SH) 
+ enzymes 

protein + ribosome + tRNA's + mRNA 

In the first phase amino acids are activated by reactions with ATP 

followed by their transfer to transfer ribonucleic acid (tRNA) . The tRNA for 

each amino acid is specific, there being one, two and sometimes more of these 

for each individual amino acid . Both steps of the reaction require magnes ium 

ions and the aminoacyl synthetases, enzymes which are specific for each amino 

acid. As this reaction is well documented in most text books, it will not be 

dealt with further . A lot of work has still to be done on the mechanism of the 

r ecognition of the amino acids by their specific aminoacyl synthetases and of 

these complexes by the different tRNA's . 

The second phase is the transfer of amino acids from tRNA to the 

growing peptide chain. This involves (1) messenger ribonucleic acid (mRNA), 

which carries the code to be translated, (2) ribosomes, which contain the 

catalytic sites at which all reactions involved in peptide synthesis take place , 

(3) monovalent and divalent cations, and (4) enzymes. During this reaction 

guanosine triphosphate (GTP) is split into guanosine diphosphate (GDP) and 
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phosphate with the liberation of energy. The processes in reaction (ii) above 

can be subdivided into the following steps: 

(a) initiation of protein synthesis, 

(b) chain elongation, and 

(c) chain termination and release. 

These steps are discussed in more detail below. 

2.2 INITIATION OF PROTEIN SYNTHESIS 

IniUation of protein synthesis invol ves the attachment of mRNA to 

the ribosome, followed by the binding of a modified aminoacyl-tRNA, placement 

of this tRNA on its correct site and finally the binding of the next aminoacyl­

tRNA, as coded by the mRNA, on an adjacent ribosomal site. The reactions 

representing this initiation and the factors participating in the reaction are 

shown in Fig. 2 . 1. The structure of the ribosome plays a very important part 

here. This is discussed in detail later (section 2.3.4.1). It is sufficient 

at this stage to mention that it consists of two subunits, a smaller (30S) unit 

." and a larger (50S) unit which associate to give the active (70S) ribosome. 

~+ Q _F_3_+_+_~> 5 
Ions r 7 

mRNA 

++ 
Mg 

large 
ribosomal 
subunit 

small 
ribosomal 
subunit 

I' 

Filg . 2.1 

F-met 

F-met-tRNA 

( = aa
1 

- tRNA) 

aa
2 

- tRNA 

70S ribosome 

Transfer 
Enzyme 

Initiation -of protein synthesis 

) 

F l ' F 2 and F 3 = initiation factors. 

F-met-tRNA = formylmethionyl-tRNA 

F-met 

aa 
F-met 2 
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, 2.2. 1 The Attachment of mRNA to Ribosomes 

The interaction between mRNA and ribosomes was studied using the fol­

lowing three systems : (i) in vitro with synthetic polyribonucleotides, (ii) in vitro 

with natural mRNA 's, both homologous and heterologous to the system, and (iii) 

in vivo or in conditions closely simulating those of an in vivo situation. 

Using polyuridylic acid (poly U) in the E. coli system, Okamoto and 

Takanami (1963) reported the association of the synthetic polyribonucleotide with 

both 70S ribosomes and with 30S ribosomal subunits. No binding to the 50S subunit 

was obtained. Takanami & Zubay (1964) showed that poly U readily binds at 

random to a number of ribosomes, yielding complexes with sedimentation constants 

larger than 70S ribosomes. Other synthetic polyribonucleotides also have been 

shown to bind to ribosomes (Takanami & Okamoto, 1963a & 1963b; Moore, 1966a). 

Similar binding was subsequently shown between natural mRNA's and 

ribosomes. Joklik & Becker (1965) using HeLa cell homogenates showed an 

association between the RNA of vaccinia virus and ribosomes. A similar asso­

ciation between coliphage RNA and 70S ribosomes of E . coli was shown by Takanami, 

Yan & Jukes (1965). More extensive studies on this interaction by Godson & 

Sinsheimer (1967) revealed that the association was first between that of the phage 

RNA and the 30S subunit. Similar results were obtained by Eisenstadt & Brawer­

man (1967) using' a different phage RNA. In these homologous systems of E. coli, 

no association between the phage RNA and 70S ribosomes or the 50S ribosomal 

subunits was found . In heterologous systems using ribosomes from E . coli and 

RNA's from unrelated systems as message , binding occurred between both 70S 

ribosomes and 30S ribosomal subunits (Van Duin , Pley, Bonnet-Smits & Bosch, 

1968) . 

Thus the attachment of mRNA's to ribosomes was found possible , and 

in homologous systems the binding was specific . It was also found that magnesium 

ions were necessary for the binding of mRNA . Furthermore , Moore (1966a) 

and Gordon (1966) showed that, besides magnesium, other divalent cations like 

manganese , calcium and spermidine could be used . Moore (1966b), on proposing 

that the binding of mRNA to ribosomes depended on hydrogen bond form~tion 

between the amino groups of ribosomal RNA (rRNA) and the phosphates of inRNA 

(poly U in his experiments),suggested that the role of magnesium ions was that of 

neutralizing negative phosphate ions. Less magnesium was required in homo­

logous systems because of the positive attraction between the mRNA and 
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"been selectively modified by various chemical means. These results suggested 

a mode of attachment between mRNA's and ribosomes. 

A more selective initial association between mRNA and ribosomes 

however, must exist for the synthesis of physiologically functional proteins. 

It has been shown that translation of mRNA occurs from the 5"'- to the 3""­

terminus (Salas, Smith, Stanley, Wahba & Ochoa , 1965). The observations, 

which have shown that the 51"'-terminus of many natural and synthesized mRNA's 

is a nucleoside- 5·~- triphosphate, have suggested the general occurence of a 

triphosphate at the commencement of the genetic message (Takanami, 1966; 

Roblin, 1968; Watanabe & August, 1968; Maitra & Hurwitz, 1965). 

Finally, in E. coli the binding of homologous mRNA to ribosomes was 

also shown to be dependent on a protein factor located on the 30S subunit 

(Eisenstadt & Brawerman, 1966; Brawerman & Eisenstadt, 1966 ; Revel & Gros, 

1966; Revel, Herzberg, Becarevic & Gros, 1968; Iwasaki, Sabol, Wahba & 

Ochoa, 1968) . This enzymic binding of the mRNA to the 30S subunit appears to 

be linked to the transcription of RNA by RNA-polymerase (Shin & Moldave, 1966; 

Revel & Gros, 1967; Brown & Doty, 1968; Revel, Herzberg, Becarevic & Gros, 

1968) . 

Similar binding of synthetic mRNA's (Williamson, Hausmann, Heintz & 

Schweet , 1967; Hawtrey & NOl,lrse, 1968) and of natural mRNA's (Joklik &, Becker , 

1965 ; Shelly Beard & Armentrout, 1967) to the ribosomes of mammalian cells 

has also been shown . Beyond this not much is known because less research has 

been conducted in this sphere and the presence of a nucleus in these cells intro­

duces further complications. As it is believed that all of the cytoplasmic mRNA's 

are transcribed from the DNA of the chromatin situated in the nucleus" the 

transcribed RNA must first be transported from this site to the cytoplasm before 

is is attached to the ribosomes of the cytoplasm where mRNA is translated. It 

now seems that particles called informofers and not ribosomes or their subunits 

are involved in this transport, although it is not yet clear how these operate 

(Henshaw, Revel & Hiatt, 1965; McConkey & Hopkins, 1965) . From these obser­

vations it is obvious that the whole sequence of events for the attachment of mRNA 

to ribosomes is different in mammalian cells . 

2.2 . 2 The Binding of Initiator Aminoacyl-tRNA to Ribosomes 

An understanding of chain initiation and the binding of initiator-tRNA by 



8 

of formylmethionyl-tRNA (F-met'-'tRNA) in E. coli. Using countercurrent dis­

tribution it was shown that two methionyl-tRNA species exist, one which can be 

enzymically formylated (methionyl-tRNA:P and the othermot (methionyl-tRNAM)· 

Noll (1966) suggested that the formylation of the amino group might facilitate 

peptide bond formation and then Adams & Capecchi (1966) and Webster, 

Engelhardt & Zindler (1966) showed that it functioned in peptide chain initiation. 

It was established that the initiation codons for the binding of methionyl-tRNA
F 

were AUG, UUG and GUG (Clark & Marcker, 1966b; Kolakofsky & Nakamoto, 

1966) whilst only the codon AUG stimulated the binding of methionyl-tRNA
M 

(Clark & Marcker, 1966a). It also seemed that the presence of these initiation 

codons fixed the reading frame of the message and prevented out-of-phase 

translation ("out-of-phase" meaning where triplets are read as overlapping 

those coded for by DNA) because it was found that the codon AUG suppressed 

the reading of codons which partially overlapped its sequence. It also stimu­

lated the reading of the adjacent 3 /-codon (Sundararajan & Thach, 1966). 

Once it was established that a modified aminoacyl- tRNA and specific 

codons were involved in the binding of aminoacyl-tRNA the sequence of reactions 

resulting in, and the factors required for the binding, were determined. 

Nomura & Lowry (1967) and Nomura, Lowry & Guthrie (1967) showed that 

formylmethionyl-tRNA directed by the AUG codon of polyribonucleotides bound 

first to the 30S ribosomal subunit in the absence of the 50S subunit. This, binding 

was followed by the attachment of the 50S subunit to the complex in the presence 

of magnesium ions. The binding was also dependent on ribosomal factors, 

deSignated F1 and F2, as shown by Salas, Hille, Last, Wahba & Ochoa (1967), 

and Was most pronounced at low magnesium concentrations. The binding of 

phage RNA's to ribosomes was similar to that described above (Nomura & ' 

Lowry, 1967; Clark, 1967). It may be noted that non- formylated aminoacyl-tRNA 

bound only to 70S ribosomes, while the process did not require factors F1 and 

F2, but higher concentrations of magnesium (Nomura & Lowry, 1967; Salas, 

Hille, Last, Wahba & Ochoa, 1967). GTP was also found to be necessary for 

the binding of formylm,ethionyl :-tRNA (Anderson, Bretscher, Clark & Marcker, 

1967; Anderson, Dahlberg, Bretscher, Revel & Clark, 196~). The dependence 

on GTP was also influenced by the concentration of magnesium, because at 

high cQncentrations (10-20 mM) there was no requirement (Bretscher ' & Marker, 

1966; Zamir, ~eder & Elson, 1966) while at low concentrations (5 mM) the 
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requirement was absolute (Anderson, Dahlberg, Bretscher, Revel & Clark, 

1967; Ohta, Sarkar & Thach, 1967). GTP was not hydrolysed during the binding 

which occurred at high concentrations of magnesium. 

Very little is known about chain initiation in mammalian systems. No 

formylated-aminocyl-tRNA has yet been shown to be present and with reticulocytes 

it seems that this form is not required (Rich, Eikenberry & Malkin, 1966). 

Baliga, Pronczuk & Munro (1968) concluded from their studies on the regulation 

of the aggregation of polysomes by the supply of amino acids that an enzyme 

factor is necessary for chain initiation. Also Shaeffer, Arlinghaus & Schweet 

(1968) have shown a requirement for GTP and enzyme factors during chain 

initiation with reticulocyte ribosomes. These studies were carried out using 

the poly U system at low concentrations of magnesium ions. In the homologous 

reticulocyte system, where the de novo synthesis of haemoglobin was studied, a 

factor for chain initiation was isolated by Miller & Schweet (1968). . From this 

scanty evidence it seems that, while some aspects of chain initiation in mam­

malian systems differ from those in E . coli, many of the requirements are 

similar. 

2.2. 3 The Binding of Arninoacyl-tRNA to the Initiation Oomplex 

Before peptide bond formation can take place, an additional aminoacyl-tRNA 

must become attached to the ribosome at a site adjacent to the one at which 

formylmethionyl-tRNA is attached. Two main ideas for this reaction have been 

suggested, with variations within each . Bretscher & Marker (1966) proposed that 

formylmethionyl-tRNA enters the condensing site directly leaving the decoding 

site open for the attachment of the incoming aminoacyl-tRNA (approximately as 

drawing (iv) of Fig. 2.2). Ohta, Sarkar & Thach (1967) proposed that formyl­

methionyl-tRNA initially binds to the second decoding site in the presence of GTP 

but without its hydrolysis (site 2 in Fig. 2.2 (ii)~. This was followed by the shift 

of the formylmethionyl - tRNA to the condensing site with the concomitant hydrolysis 

of GTP (this is the transition in Fig. 2. 2 from (ii) to (i v) ). This model is sup­

ported by evidence which showed that, at low (5 mM) concentrations of magnesium, 

hydrolysiS of GTP occurred when the complex (F-met-tRNA-rnRNA-ribosome) 

reacted with puromycin to form formylmethionylpuromycin (Anderson, Dahlberg, 

Bretscher, Revel & Clark, 1967 ; Ohta, Sarkar & Thach, 1967; Leder & Nau, 

1967). This reaction is a little different when formylmethionyl-tRNA or peptidyl-
t.RNA iQ nlonorl ~~ 4-\.~ ~ __ ..l __ _ ' _ - - .. 
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(See section 3.3. 3 where the release of labelled peptide chains in the presence of 

puromycin is discussed). 

Bretscher (1968) put forward another model which, he claimed, explains 

the reactions which occur when high concentrations of magnesium (10 mM or 

more) are used. In this he suggested that there were at least two sites which 

recognized aminoacyl-tRNA's on the 30S subunit. Non-formylated aminoacyl-tRNA 

first entered one site requiring the presence of GTP (site 1 of Fig. 2.2 (i) ,) and 

then was shifted to the second site (site 2 of Fig. 2 . 2 (ii))with the concomitant 

hydrolysis of GTP. On the other hand formylmethionyl-tRNA entered the second 

site directly, requiring the presence but not the hydrolysis of GTP. The second 

site was the one on which peptide bond formation took place and this site was able 
...... , 

to recognize a tRNA carrying a blocked amino group (either a peptide or the 

formylated amino acid) . The formylmethionyl-tRNA was moved to the condensing 

s it e on the 50S subunit (site 3 of Fig . 2 . 2 (iv) ) by the translocase enzyme. This 

model fits all the requirements for GTP and does not differ from the proposed 

sequence of reactions occurring during normal peptide bond formation (see 

section 2.3). This is well depicted by the model given by Bretscher (1968). 

The above model postulated that it was the presence of the initiation codon(s) 

which brought about the onset of chain initiation, but more recent evidence by 

Guthrie & Nomura (1968) has shown that it is the specificity of the interaction be­

tween the small ribosomal subunit and formylmethionyl-tRNA which determines 

this initiation. 

Given above are the most recent concepts of in-phase chain initiation (the 

reading of the triplets of the genetic message as coded for by DNA starting at the 

initiation codon). These are the requirements necessary for peptide bond for­

mation to proceed at physiological ion concentrations . Peptide bond formation 

however, can take place in the absence of many of these initiation requirements, 

but then higher concentrations of magnesium are necessary, especially during 

initiation. For peptide bond formation to proceed at higher concentrations of 

magnesium, only GTP and the transfer enzymes are necessary (see section 2.3) . 

There is no requirement for an initiation codon or initiation factors. This type of 

chain initiation would be able to proceed out-of-phase, and is of significance here 

because it is that which has been used for the studies to be presented in later 

chapters. Binding at high concentrations of Mg ++ cannot be simulated in vivo 

but was used with in vitro studies because it eliminated the need for initiation 

factors while it was not expected to affect oentiop. h()nn fr.l"l'YI'.lH,,,,, 
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2.3 CHAIN ELONGATION 
," -,"" 

Chain elongation is a series of r eactions which are repeated during the 

extension of the polypeptide chain, one amino acid at a time. The reactions, 

which take place on the ribosome, can be divided into three distinct, though 

not necessarily independent steps. They are, (i) the binding of aminoacyl­

tRNA to ribosomes, (ii) the formation of the peptide bond, and (iii) the trans­

location of the peptidyl-tRNA from the site on the 30S subunit to the condensing 

site on the 50S subunit. The reactions require soluble protein fractions, the 

transfer enzymes, GTP and sulphydryl groups. These steps are described 

below. 

2 .3. 1 The Binding of Aminoacyl-tRNA to Ribosomes 

This reaction is analogous to that described in section 2.2. 3, except 

that in this instance the condensing site is occupied by a tRNA to which the 

growing peptide chain is attached. Much work has been done to determine the 

factors necessary for the binding of aminoacyl-tRNA to ribosomes. In the 

earlier work evidence was presented both for (Arlinghaus, Schaeffer & Schweet, 

1;)64) and against (Kaji & Kaji, 1964; Spyrides, 1964; Heredia & Halvorson, 

1966) the participation of an enzyme factor and GTP in addition to divalent 

(magnesium) and monovalent (potassium or ammonium) cations. Differences 

in the types of binding were observed. Non-enzymic binding, which was opti­

mum at higher concentrations of magnesium, was inhibited by deacylated tRNA 

(Kaji & Kaji, 1964; Seeds & Conway, 1966; Kurland, 1966). On the other hand 
. 

enzymic binding which was usually measured at physiological ion concentrations, 

was not inhibited by deacylated tRNA (Arlinghaus, Favelukes & Schweet, 1963). 

All the recent evidence is in favour of the requirement of both an enzyme . 

factor and GTP for the binding at physiological ion concentrations (Ravel, 

MObteller & Hardesty, 1966; Ravel, 1967; Mosteller, Culp & Hardesty, 1967 ; 

Ibuki & Moldave, 1968; Felicetti & Lipmann, 1968). 

Much evidence has now accumulated as to the role of the transfer 

enzyme(s) and GTP in the binding of aminoacyl-tRNA to ribosomes. An asso­

ciation between one of the transfer enzymes and aminoacyl-tRNA has been 

s hown to take place in the presence of GTP but without its hydrolysis (Ibuki, 

Gasior & Moldave, 1966; Hardesty, Lin & Culp, 1967; Gordon, 1967; Ravel, 

Thorey, Froehner & Shive, 1968). Ravel. Th()rp-v H'1"AOh"' O'" p_ C'\..: _ __ '"''''' ' 
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and Gordon (1968) showed that the association is first between the transfer en­

zyme and GTP, which then associate with aminoacyl-tRNA. This complex then 

binds to the ribosome. For binding to take place it is also necessary that the 

correct codon of the mRNA is aligned adjacent to the initial binding site on the 

ribosome (1st decoding site == site 1 of Fig . 2 . 2). 

Jost , Shoemaker & Noll (1968) were then able to show that only the 30S 

subunit of the ribosome was necessary for the initial binding. They were able 

to form a complex between the 30S subunit of ribosomes, mRNA and aminoacyl­

tRNA in the presence of one of the transfer enzymes and GTP, the latter two 

being necessary for complex formation at low concentrations of magnesium. 

Thi s is the structure shown by drawing (i) of Fig. 2. 2 without the 50S subunit. 

The resulting complex was able to participate in peptide bond formation in the 

r esence of the 50S subunit which was shown to stabilize it. 

It was subsequently found that the GTP analogue, 5"- guanyl methylene­

diphosphate , was able to replace GTP in the en~yme-dependent binding of 

alninoacyl-tRNA to ribosomes (Ibuki & Moldave, 1968) . Peptide bond formation 

was not possible, however, when the enzyme-dependent binding was carried out 

with the analogue instead of GTP (Hershey & Monro, 1966; Skogerson & 

Mvldave, 1968). This evidence led Moldave to infer that binding of aminoacyl­

t .... NA was a two-step reaction . Both of the steps require GTP, the first without 

its hydrolysis and the second probably with its hydrolysis (see role of GTP 

under section 2.3.4). The positions are on sites 1 and 2 depicted by (i) and (ii) 

respectively in Fig. 2.2 . A two-step reaction was also implied by the findings 

of Jost, Shoemaker & Noll (1968) which have already been discussed. These 

results suggest that the two binding sites for aminoacyl-tRNA's are either both 

on the 30S subunit or one on the 30S subunit with the other requiring both the 

subunits . 

Complex formation between aminoacyl-tRNA and 70S ribosomes was also 

shown to take place at high concentrations of magnesium in the absence of a 

transfer enzyme and GTP. The reaction nevertheless required the placing of 

the cor rect codon of the mRNA (Nirenberg & Leder, 1964; Suzuka, Kaji & Kaji, 

10 66). Again binding occurred on the 30S subunit alone which was stimulated 

two-fold on addition of the 50S subunit. Therefore there are also two sites 

a Is-Hable for the non-enzymic binding of aminoacyl-tRNA to ribos omes which a re 
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probably analogous to those for enzymic binding. Heintz, Salas & Schweet (1968) 

have sh~wn that the aminoacyl - tRNA bound non-enzymically is able to participate 

in peptide bond formation without the addition of the binding enzyme. This sug­

gested that polypeptide synthesis, measured at high concentrations of magnesium 

and without the requirement of transfer enzymes, was hardly different from 

that occurring under physiological conditions (see formation of peptide bond 

under section 2.3.2). 

Ravel, Thorey, Froehner & Shive (1968) have shown that enzymic 

binding of aminoacyl-tRNA to ribosomes is stimulated by sulphydryl compounds. 

It is uncertain , however, whether the sulphydryl group is necessary for this or 

a later step, the translocase reaction , where its participation is also required 

(s ee s ection 2.3 . 3) . 

To sum up ; the binding of aminoacyl-tRNA to ribosomes at physiological 

ivil concentr ations has been shown to require a transfer enzyme, GTP, as well 

as the placing of the correct codon on the ribosomes . Furthermore, this reaction 

appears to proceed in two distinct steps. Similar results have been obtained 

with both E. coli and mammalian systems. 

2. L 2 The Formation of the Peptide Bond 

With aminoacyl-tRNA now bound to the decoding site, and the peptidyl­

tRNA already on the condensing site, the 70S ribosome-complex is primed for 

peptide bond formation(drawing (ii) of Fig. 2.2), which has been found to occur 

spontaneously without the addition of supernantant or other factors (Allen & 

Zamecnik, 1962; Traut & Monro, 1964; Leder & Bursztyn, 1966 ; Bretscher & 

Marcker, 1966 j Hultin, 1966 j Hawtrey, Nourse & King, 1966 j Skogerson & 

Moldave , 1968). The above result indicated that the enzyme catalyzing peptide 

bond formation was associated with ribosomes. The non-requirement of GTP 

in peptide bond formation is not surprising as the energy available in the ester 

linkag;e of aminoacyl-tRNA is approximately- 9 kcal/mole and that in peptidyl­

tR NA - 7 kcal/mole. Formation of the peptide bond requires about -3 kcal/mole 

(Jencks , Cordes & Carriuolo, 1960) and it is seen that this requirement is 

easily met by that present in the two acyl ester bonds. The various requirements 

of GTP will be discussed in section 2 . 3.4. 

Once peptide bond formation has taken place, the peptide chain becomes 

a ttached to the tRNA located on the decoding site, and the tRNA on the condensing 
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site which contains the growing peptide is released (Noll, personal communication; 

Jost, Shoemaker & Noll, 1968; Skogerson & Moldave, 1968). 

Skogerson & Moldave proved the existence of the complex, by which the 

peptide was initially bound to the decoding site (site 2 in drawing (iii) of Fig. 2.2), 

by showing that the amino acid of the aminoacyl-tRNA bound to ribosomes became 

incorporated into a peptide bond (polypeptide) in the absence of the second trans­

fer enzyme. Jost, Shoemaker & Noll proved this by showing that peptidyl-tRNA 

was able to bind to the 30S subunit in the presence of an enzyme, but in the ab­

sence of the 50S subunit (possibly as site 2 of drawing (iii) of Fig. 2.2 without 

the 50S subunit). This complex is stabilized on addition of the 50S subunit (site 

2 of drawing (iii) of Fig. 2.2) and after addition of the second transfer enzyme 

the peptidyl-tRNA was moved to the condensing site (site 3 of drawing (iv) of 

F ig. 2.2). Only after translocation (see section 2.3.3) could peptidyl-tRNA be 

located on the 50S subunit when the 70S ribosome was dissociated into its sub­

units. When the author visited North Western University in Evanston, U.S.A. 

(1967) , Noll told of how he had succeeded in separating peptidyl-tRNA bound to 

the 30S subunit on a gradient (unexplained) from a system active in peptide 

synthesis, thus showing the existence of this complex during polypeptide 

synthesis . At this position the ribosome complex is primed for the next step . . 

2. 3. 3 Translocation of Peptidyl- tRNA to the ~~ndensing Site 

This is the reaction whereby the peptidyl-tRNA on the decoding site on 

the 30S subunit is moved to the condensing site on the 50S subunit (from site 2 

of drawing (iii) to site 3 of drawing (iv) of Fig. 2.2). It is analogous to the 

reaction whereby formyl-methionyl-tRNA is transferred to the condensing site 

during chain initiation. This reaction is probably coupled with peptide bond 

formation because peptidyl-tRNA is normally associated with the 50S subunit 

which is isolated after incubation of the complete system. 

Both GTP and one of the transfer enzymes are needed for the translocation 

r eaction (Leder & Nau, 1967; Ohta, Sarkar & Thach, 1967 ; Hille, Miller, 

Iwasaki & Wahba, 1967; Jost, Shoemaker & Noll, 1968 ; Skogerson & Moldave, 

1968). Sulphydryl compounds have also been shown to stimUlate the reaction 

(Skogerson & Moldave, 1967). It is probable that the transfer enzyme and 

sulphydryl compounds are connected with the movement of the mRNA/ peptidyl­

tRNA complex, the energy for this reaction being supplied by that which is 
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the three perpendicular lines on the mRNA indicates only that the message has 

moved on one codon . Probably the positions of the codons depicted by Bretscher 

(1968) are near to the truth . 

2 . 3.4 The Role of the Different Factors Required in Chain Elongation 

It has been shown that monovalent (K + or NH4 +) and divalent (mainly 

Mg++) cations, GTP , sulphydryl groups and the transfer enzymes are needed 

in this reaction. The reaction takes place on the surface of the ribosome and 

therefore the ribosome is of the utmost importance. 

2.3.4. 1 The Structure and Role of the Ribosome. - The structure of the ribo­

some will be only briefly reviewed here because this has been well covered in 

the literature (Petermann, 1964 ; Watson, 1964; Chedd, 1968) . The synthesis 

of the ribosome is described in a paper by Vaughan, Warner and Darnell (1967) 

and will therefore be excluded from this account . 

Ribosomes from different species differ in size and are generally clas­

sitied into two principal groups according to their sedimentation coefficients , 

namely those of the 70S class which are found in some bacteria, chloroplasts 

and mitochondria, and 80S class which are found in yeast, higher plants and 

mammalian cells (those from E . coli are 70S while those from rat liver are 

76S) . Loening (1967) more recently classified ribosomes by the size of their 

RNA. The different species cover a whole range of sizes, with those of E. coli, 

the smallest, at one end of the scale and those from mammalian cells at the other. 

Watson (1964) says, "Two important facts must always be considered when 

thinking about ribosomes . The first is that they are chemically very complex. 

The second is that they are always constructed from two dissociable subunits, one 

approximately twice the size of the other . " These two subunits are 30S and 50S 

from the 708 class of ribosomes, and 408 and 60S from the 80S class of ribosomes , 

It is conventional to refer to the smaller and larger subunits as 30S and 50S, re­

spectively, irrespective of their actual size, as has been done in the present work. Each 

subunit co~si~ts of protein and RNA . According to the most recent findings , it appears 

that the large subunit contains 40 or more proteins (R. R. Traut, personal communi­

cation) and two sizes of RNA, namely 23-288 (see Loening, 1967) and 5S RNA (see 

Chapter 5). The small subunit consists of about 20 different proteins (Traut. 
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Moore, Delius, Noller & Tissieres , 1967) and 16- 18S RNA (see Loening, 1967) . 

Most studies on the number of proteins in ribosomes have been carried out 

using ribosomes from E . coli, but it is not expected that this number will differ 

much in the ribosomes from mammalian cells . 

The ribosome is genetically unspecific because it can be used as the site 

of synthesis of any cellular protein, and the genetic information to order pro­

teins is not present in its RNA component. Its functions in the biosynthetic 

process for the synthesis of proteins are numerous as is shown in other sec­

tions of this chapter . The principal roles of the ribosome and its constituent 

molecules are as follows : (i) the ribosome, provides the structure and contains 

the catalytic sites upon which all the reactions relating to peptide bond formation 

and possibly the folding of the different proteins r takes place; (ii) the consti­

tuent molecules act as catalysts to many of the reactions taking place and contain 

PI ;ptide synthetase which is responsible for peptide bond formation; (iii) the 

ribosome affords protection to the various active sites of the molecules parti­

cipating in peptide bond formation . 

2 . 3.4.2 The Bole of eations . - Although it is known that the different cations 

function in the different reactions taking place during peptide bond formation, 

the exact manner in which they function is not known. It is possible that mag­

nesium plays some role in the neutralization of the negative phosphate groups 

of the ribose phosphate backbone of RNA, as is suggested by Moore (1966b), in 

the binding of mRNA to ribosomes (see section 2 . 2). Skogerson & Moldave (1968) 

have shown that the requirement for monovalent cations differs during the dif­

ferent steps of peptide bond formation . Since the different monovalent cations, 

as well as the different divalent cations , are interchangeable and each sort can 

often be replaced by suitable organic ions (for example, spermidine can be used 

in the place of magnesium ions), it does seem that their main role seems to be 

of an ionic nature. How they function in this capacity is not known but their role 

is most probably connected with the maintenance of the configuration of enzymes 

or ribosomal sites, neutralization of negative charges, and the formation of 

complexes. 

2 . 3.4 . 3 The Role of the Transfer Enzymes. - The isolation and role of the trans-

fer enzymes has been the subject of more conflicting reports in the literature 

than perhaps any of the other facets of protein biosynthesis . Only some measure 
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of agreement about the number , properties and function of these enzymes is 

beginning to emerge . Their isolation from the different cells has been tho­

roughly reviewed in recent papers and will not be discussed here, although the 

best method for their isolation still leaves much to be desired. The most re­

levant references in this field , feature in a special issue of Archives of Bio­

chemistry and Biophysics dedicated to the memory of Richard S . Schweet 

(Hardesty, 1968) . 

At least two protein fractions , which are present in the particle-free 

supernatant of the homogenates of the different cells, have been shown to be 

necessary for chain elongation in polypeptide synthesis (Allende , Monro & 

Lipmann, 1964, and Nishizuka & Lipmann , 1966, from E . coli , ; Richter 

& Klink, 1967, from yeast; Arlinghaus, Shaeffer & Schweet, 1964 , from 

reticulocytes; Gasior & Moldave, 1965a & 1965b; Klink , Nour & Aepinus , 

1963; Klink , Kramer , Nour & Petersen , 1967 , fr om different livers). A 

third factor is present on the ribosomes . It has been shown that in E . coli 

more than two supernatant enzymes may be involved in this reaction (Lucas­

Lenard & Lipmann, 1966) . A possible interpretation of the last mentioned 

result is that the transfer system is a large complex , consisting of different 

reactive sites which may be separated from each other during the different 

is olation and fractionation proc edures. 

Much of the controversy as to the roles of the two supernatant transfer 

enzymes has now been resolved , and according to the most recent evidence, 

the functions of these are in the binding of aminoacyl-tRNA and in the move­

ment of peptidyl-tRNA . The binding enzyme has numerous functions fo r which 

it requires GTP and monovalent as well as divalent cations . The enzyme which 

participates in the transfer of peptidyl-tRNA from the docoding site (site 2 of 

drawing (iii) of Fig . 2 . 2) to the condensing site (site 3 of drawing (iv) of Fig. 

2 . 2) has been called the translocase enzyme and for action it requir es GTP and 

sulphydryl groups . The manner in which these two transfer enzymes partici­

pate in the different reactions is covered in the previous sections and in the 

two following sections on the action of sulphydryl groups and GTP . 

2 . 3. 4.4 The Role of Sulphydryl Groups. - The manner in which sulphydryl 

groups function in polypeptide synthesis in unknown, although it has been shown 

that they are necessary. The longer the duration of incubation in an in vitro 

system, the greater was the requirement for these sulphydryl lrr OUOR 
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(Arlinghaus, Shaeffer & Schweet, 1964; Fessenden & Moldave, 1963; 

Conway, 1964; Nishizuka < & Lipmann, 1966; Mosteller, Ravel & Hardesty, 

1966) . The function of sulphydryl groups seems to be related to the role of 

the enzyme participating in the translocase reaction and their action is closely 

tied up with that of GTP. This was realized from the results of Sutter & 

Moldave (1966) who showed that polypeptide synthesis was markedly stimulated 

when their transferase II was incubated with a sulphydryl compound, ribosomes, 

ammonium ions and GTP. Finally, Skogerson .& Moldave (1968) showed that 

these compounds had a stimulatory action in the translocation of peptidyl-tRNA 

from the decoding to the condensing site. Stimulation of the binding of 

aminoacyl-tRNA to ribosomes was also caused by the presence of sulphydryl 

compounds (Ravel, Thorey , Froehner & Shive , 1968). It is likely that this 

effect was connected with that associated with the translocase reaction because it 

was shown that different fractions of the transfer enzymes separate differentially 

according to the method of preparation (Klink, Kloppstech, Kramer & ' 

Dimigen, 1967; Richter & Klink, 1967; Lucas-Lenard & Lipmann, 1966). 

2.3.4.5 The Role of GTP. - GTP, it seems, participates in numerous steps 

uring polypeptide synthesis . The first reaction in which GTP participates is 

the binding of aminoacyl-tRNA to the ribosome (Gordon, 1968; Skogerson & 

Moldave, 1967& 1968; Ravel, Thorey, Froehner .,& Shive, 1968). This 

reaction is precipitated initially by an association between GTP and the binding 

enzyme, followed by the association of the complex with tRNA, after which it 

becomes bound to the ribosome. No hydrolysis of GTP occurs during, thi~ 

binding. The binding seems to be primarily to a site on the 30S subunit (as 

depicted by the binding of aminoacyl-tRNA to site 1 in drawing (i) of Fig. 2.2). 

This is followed by a reaction in which GTP is hydrolysed and the aminoacyl-tRNA 

becomes more tightly bound to the ribosome in the presence of the 50S subunit 

(site 2 as in drawing (ii) of Fig. 2 . 2). The next reaction which requires GTP 

is the translocase reaction, in which peptidyl-tRNA is transferred by the 

translocase enzyme from the decoding site to the condensing site with con­

comitant hydrolYSis of GTP and release of inorganic phosphate (site 2 of drawing 

(iii) to site 3 of drawing (iv) of Fig. 2.2) (Skogerson & Moldave, 1968; Jost, 

Shoemaker .. & Noll , 1968) . These findings suggest that two molecules of 

GTP are hydrolysed during peptide bond formation, but, according to Nishizuka 

& Lipmann (1966), only one molecule of GTP is hydrolysed in the overall 
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reaction of the formation of each peptide bond during which the molecule is 

broken down to GDP and inorganic phosphate . This discrepancy may be due to 

an in vitro artefact caused by the separation of the different steps. It is pos­

sible, however, that two molecules of GTP are in fact hydrolysed, the one being 

resynthesized on the ribosome from the excess of energy (-13 kcal/mole) re­

leased during the f ormation of the peptide bond, which is well in excess of that 

required for the formation of the phosphate bond between GDP and inorganic 

phosphate . 

2 . 4 PEPTIDE CHAIN TERMINATION AND RELEASE 

This process is not yet well understood , except that in E. coli an 

enzyme factor is necessary for release and the codons which gIve the signal 

for chain termination have been determined. The overall reaction is illustrated 

in the following equation : 

enzyme mRNA + 30S + 50S + 
mRNA/ribosome/peptidyl-tRNA complex ---------7 . peptIde + tRNA 

The information for chain termination in E. coli was obtained by use 

of mutant strains of bacteriophage RNA's . The RNA's from the "amber" and 

"ochre" mutants showed that there are two chain terminating codons, UAG and 

bAA respectively (Sarabhai, Stretton, Brenner & Bolle , 1964; Brenner, 

Stretton & Kaplan, 1965) . There is evidence that no specific tRNA recognizes 

these chain terminating codons (Bretscher, 1968) . Ganoza (1966) showed that 

a soluble enzyme fraction (R-factor) was necessary for chain release , when -· 

she found that a cqncurrent decrease in the release of polypeptides from ribo­

somes .occurred with each step in the purification of the transfer factors, without 

a concomitant decrease in amino acid polymerization. The so-called R-factor -

was not of ribosomal origin . It was later isolated by Cappechi (1967) who used 

DEAE-Sephadex to separate this protein from the fractions containing transfer 

activity. With the aid of an amber mutant , which synthesizes a short hepta- . 

peptide, he was able to show the participation of this protein in chain termination . 

The means of scission of the ester bond between the po(ypeptide and the 

tRNA has not yet been determined . Cuzin, Kretchmer, Greenberg, Hurwitz & 

ChapeviUe (1967) showed that hydrolysis of the ester bond could be obtained 

using an enzyme (hydrolase) . They achieved this using isolated N-substituted 

aminoacyl-tRNA's and peptidyl-tRNA . It is not known whether the hydrolase is 
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seems to exclude this. It is also not known whether the enzyme, hydrolase, 

functions at the level of ribosomes. 

Termination and release of the peptide chain can be made to occur 

by the addition of puromycin to a system active in peptide synthesis. Release 

occurs because of the similarity of puromycin to aminoacyl-tRNA' s, where 

a reaction between its amino group and the ester bond of the peptidyl-tRNA, 

bound to the condensing site, occurs (Smith, Traut, Blackburn & Monro, 

1965; Wettstein & Noll, 1965; Hawtrey, Nourse & King, 1966). Release of 

the peptide chain . attached to puromycin occurs because puromycin has no site 

for attachment to the ribosomes. Hawtrey & Biedron (1966) have suggested the 

novel idea that a tertiary amino acid (possibly attached to a tRNA) is involved 

in chain release. This idea is presented in the equations below: 

o 
II .. 

tRNA- Q-C - CHR. NR2 
w 

+ tRNA -O-C - CHR. NH-peptide- NH
2 ) 

~tRNA'-O-

ff t W H20, 
tRNA-O-C - CHR.NR

2
-C.CHR. NH-peptide-NH

2 
____ -=-~ __ ~) 

o 0 
. fI n + 

tRNA-O-:C - CHR. NR2 + HO. ¢-CHR. NH-peptide-NH
2 

+ H 

Peptide bond formation occurs between the tertiary amino acid and the ester 

linkage of peptidyl-tRNA to give a quaternary linkage . Under aqueous con­

ditions this linkage would be unstable and would readily hydrolyse to the free 

peptide and tertiary aminoacyl-tRNA. Hawtrey & Biedron showed that this 

happens when the tertiary analogue of puromycin is used. 

Since no tRNA has yet been shown to participate in chain release, 

it could be that some unknown compound containing a tertiary amino group 

is able to participate in a reaction similar to that proposed by Hawtrey & 

Biedron (1966) . This compound may be Capecchi's enzyme, but, in the case 

of an enzyme, it would have to be assumed that the enzyme can recognise the 

releasing codons. 

It has been shown that the 70S ribosome of E. Coli dissociates into . 

its subunits after chain release . Mangiarotti & Schlessinger (1966) & (1967) 

found that rapidly lysed cells yield extracts containing almost exclusively 

polysomes and ribosomal subunit.I': wHh fa", ~ ... ~~ ,.,rlC' __ _ _ _ 
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Mangiarotti & Apirion (1967) obtained a similar result on studying the release 

of nascent polypeptides in the presence of puromycin. These results suggested 

that ribosomal particles cycle through a free pool of 50S and 30S ribosomal 

subunits. The subunits reassociate to form 70S particles only during chain 

initiation. A similar suggestion for reticulocyte ribosomes was proposed by 

Bishop (1966). Conclusive evidence for this was obtained by Kempfer, Mesel­

son & Raskas (1968). They differentially labelled ribosomes during the growth 

period and analysed the distribution ~f isotopic label between the ribosomes and 

subunits . The subunits formed during chain release differ from those formed 

by subjection of ribosomes to low concentrations of magnesium in that they 

are unable to reassociate into 70S monomers. Nomura, Lowry & Guthrie (1967) 

have shown an effect of initiation factors on the dissociation of 70S ribosomes. 

These results all suggest the participation of a protein in the dissociation and 

reformation of 70S ribosomes. 

2 . 5 DISCUSSION 

In concluding the review on the biosynthesis of proteins it is relevant 

to give a brief outline of the problems still to be solved in respect of the reactions 

which have been discussed . Even though the main sequence of events' is known, 

much work has stpl to be carried out before the sequence in all the different spe­

cies of cells is known. The main problems which remain unsolved are the fol­

lowing : (i) how chain initiation functions in nucleated cells . (It is not even known 

whether chain initiation in all anucleate cells is similar to that occurring in 

E . coli); (ii) how chain termination in the different cells occurs (There is some 

understanding of how chain termination occurs in E. coli. Although it is probable 

that the terminating codons of all cell types are the same, this step may differ 

widely in anucleate and nucleate cells, as appears to be the case with chain 

: initiation); (iii) how the ribosomes carry out their various functions, and (iv) how 

the different reactions are controlled . Since the problems connected with chain 

initiation and chain termination have been briefly dealt with in the review they will 

not be considered further . The participation of the ribosom'e in protein synthesis 

will be considered in its relation to the control of the rate of protein synthesis. 

With respect to the control of the rate of protein synthesis it is most 

likely that it occurs at the level of the reactions connected with mRNA and the 

ribosome . With mRNA , those reactions concerned with its transcription, transport 
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Control at the level of the reactions connected with the ribosome would: be the 

most easy to effect because of the vast number of molecules that make up this 

structure; therefore much of the current research on protein synthesis is aimed 

at attempting to unravel the structure of the ribosome . In contrast to the earlier 

belief that the ribosome merely provided a surface on which the differe,nt reactions 

of protein synthesis took place, it is now believed that the translation of . :m.RNA 

and the reactions associated with translation are to a large extent controlled by 

the ribosome. Much of the present research therefore, is aimed at elucidating 

the controlling influence of the different molecules comprising the ribosome. 

The work described in the following chapters deals with just this aspect of the 

research . 
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CHAPTER 3 

STUDIES ON POLYSOMES OF RAT LIVER 

3. 1 INTRODUCTION 

The work reported in this chapter was carried out during the period 

from 1963 to 1965 . A review of what was known at that time on ribosomes 

and their participation in protein synthesis is given by Watson (1963). 

It was shown as early as 1950 that the cellular site of protein synthesis 

was the microsomal component (Borsook, Deasy, Haagen-Smit, Keighley & 

Lowy, 1950; Hultin, 1950). Relatively soon thereafter it was established that 

the ribosome, a component of the microsome, was the actual site on which 

this synthesis took place (Allfrey, Daly & Mirsky, 1953; Littlefield, Keller, 

Gross & Zamecnik, 1955) . It was some time before it was shown that the 

active form of the ribosome was the polysome because of the confusion resulting 

from the assumption that genetic information was carried from the DNA 

template by ribosomal-RNA . 

Polysomes were first discovered by Warner, Rich & Hall (1962), 

working with the reticulocyte system, and by Wettstein, Staehelin & Noll (1963) 

in the rat liver system. The involvement of polysomes was demonstrated by 

incubating reticulocytes in vitro with a mixture of 14C-labelled-amino acids, 

then lysing the cells, and centrifuging the lysate through sucrose density 

gradients. The different fractions of the gradient were collected and then 

analysed by different methods including electron microscopy. Analysis revealed 

that labelled polypeptides were associated only with the clusters of ribosomes 

which became known as polysomes. In the rat liver preparations, polysomes 

were demonstrated by showing that , of the isolated fractions on sucrose 

gradients, only those ribosomes consisting of clusters were capable of poly­

peptide synthesis and that, if these clusters were degraded to single units they 

lost their capacity for synthesis. It was shown that the ribosomes in the clusters 

were joined together by a strand of RNA, now known to be mRNA, when it was 

observed that their treatment with RNases caused their rapid fragmentation 

into single ribosomes . Similarly during the incorporation of labelled amino 

acids into polypeptides , the aggregates diminished in size wi th an increase in 

single ribosomes . The integrity of the polysome also depends on the presence 

of monovalent ~nn nimllont ~nt; __ _ , ... ,....n •• 
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to which they are linked by ester bonds and various protein fractions (Gilbert, 

1963 a and b; Warner, Rich & Hall, 1962; Warner, Knopf & Rich, 1963; 

Goodman & Rich, 1963; Wettstein, Staehelin & Noll, 1963; Staehelin, Wettstein 

& Noll, 1963; Noll, Staehelin & Wettstein, 1963). A review on the organization 

of polysomes has been given by Noll (1965). A brief outline of the finer struc­

ture of ribosomes is given in Chapter 2 in section 2.3.4.1. .. • 

Methods used for the isolation of rat liver polysomes were described 

by Wettstein, Staehelin & Noll (1963). They showed that a much higher 

pr<>portion 1 of polysomes was present if during the isolation of ribosomes by 

the method of Korner (1961), the temperature was maintained at about 0
0 

C. 

Furthermore polysomes free of monomer particles could be prepared 

by centrifuging the mitochondrial supernatant treated with deoxycholate layered 

over dense sucrose layers, the most suitable being a 2M layer overlaid with a 

O. 5 M layer. This method remains the one most widely used for the preparation 

of polysomes from rat liver. 

The initial object of this thesis was to study the function of the factors 

participating in protein synthesis, especially the transfer enzymes, for which 

polysomes or single ribosomes free of the transfer enzymes were required. 

It was considered advantageous to work with single ribosomes, and, since 

polysomes could serve as a useful source of active ribosomes, it was decided 

that the preparation of single ribosomes would be best from this source. The 

properties of polysomes were therefore studied, special attention being focussed 

on the means by which they could be broken down into single ribosomes. Two 

approaches were used, namely; (i) the hydrolysis of the mRNA strand connecting 

the different ribosomes, either by the RNases associated with ribosomes, or an 

exogenous source of this enzyme, and (ii) the release of single ribosomes from .. 

the end of the mRNA during protein synthesis . Both these methods were inves­

tigated. 

Elucidation of the function of the factors participating in protein syn­

thesis was attempted by studying the breakdown of polysomes in the presence 

of the factors participating in and affecting protein synthesis. The factors 

which were of interest here were ATP, GTP, a thiol group, different ions, 

the transfer enzymes, and puromycin which is the antibiotic that causes the 

premature release of peptides from the ribosome. These studies led to the 

development of a very good method for the preparation of single ribosomes, 
bl'llOlpn nn tho ",,~ ~~ -.- - - --- - -- . 
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relevant studies discussed in relation to the type of breakdown caused by each 

of the factors investigated and the agreement between this breakdown and some 

of the most recent concepts of the steps involved in chain elongation during 

protein synthesis. 

3.2 METHODS AND MATERIAlS 

For clarity and ease of reference a complete list of reagents and 
I ' 

solutions used for the work described in different chapters is given iil the. J.\ppen-

dix. 

3.2.1 Preparation of Homogenate and Fractions from Rat Liver 

Female albino rats of the Wistar strain, weighing between 140-200 

grams, were used throughout this study. The rats were obtained from the 

National Nutrition Research Institute of the C.S.LR., Pretoria. The animitls 

were housed in wire cages at 20
0

C and fed ad lib. on the Institute's stock diet 

(protein 20%, ash 7.4%; main component: maize meal 56%) and tap water. 

3.2. 1. 1 Homogenates. - 'Homogenates were prepared by the method of 

Hawtrey, Schirren & Dijkstra (1963). Rats were killed by decapitation and 

drained of the bulk of their blood. The livers were then quickly removed, 

freed from adhering lipid and fibrous material, placed in ice-cold beakers and 

weighed. All further manipulations were carried out at OOC. The livers were 

rinsed 4 or 5 times in Medium A (0.25 M-sucrose, 50 mM-tris-HC1, pH 7.6, 

25 mM-KCl and 5 mM-MgCl
2

), dried on Whatman No.1 filter paper and 

transferred to a mortar. The tissue was cut up with scissors and pulped to 

a fine paste which was then homogenised in an all-glass DOlmce homogenizer 

(supplied by Blaessig Glass Specialities, Rochester, N. Y., U. S. A.) with two 

volumes of Medium A using 8-10 strokes of the loose plunger (clearance 

about 0.0015 inch). This was immediately used in the further treatment. 

Some of the rats used were starved 20-24 hours prior to decapitation 

depending on the purpose for which the homogenate was to be used. The purpose 

of starvation was to avoid the presence of glycogen. Livers from unstarved 

rats usually weighed from 5-6 grams, whilst the weight of the starved rats was 

decreased by about 1 gram. 

3.2. 1.2 Polysomes~- Polysomes were prepared from rat liver homogenates 
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Noll (1963) following the procedure described by Hawtrey & Nourse (1966). 
o 

All manipulations were carried out at 0 C. Liver homogenate (90 ml) pre-

pared as in section 3.2.1. 1 from rats which had been starved for 24 hours, 

was centrifuged at 1, 400g: for 10 minutes to remove cell debris and nuclei. 

The resulting supernatant was centrifuged at 14, 370g, in the 30 rotor of a 

Spinco Model L ultracentrifuge for 20 minutes to remove mitochondria. To 

every 13 ml of the resulting supernatant was added 1. 5 ml of 13% (w Iv) 

sodium deoxycholate (freshly prepared in distilled water, final concentration 

between 1. 3-1.4 %) . This was allowed to stand for 5-10 minutes before being 

carefully layered over a preformed double layer made up of 9 ml of 2 M-sucrose 

(lower) and 12 ml of 0.5 M-sucrose (upper). Both sucrose layers contained 

50 mM- tris-HCl buffer , pH 7.6, 25 mM-KCl and 5 mM- MgCl
2

. This was 

centr ifuged at 99 , OOO~ (30 r otor) for 240 minutes . . After centrifugation, the 

solution above the pelleted polysomes was carefully removed by suction and 

the s ides of the tubes carefully wiped with filter paper. The pellets were 

suspended in 1. 5 ml of Medium A and allowed to stand for at least one hour 

before use (they were usually left overnight at OOC to become suspended). 

The final suspension of ribosomes was centrifuged at 1, 400g for 10 minutes 

to remove aggregated and denatured material. The suspension of polysomes 

was kept at OOC and usually used within 5 days. 

By determining the dry weight and extinction of a suspension of 

polysomes , it was found that 1 mg of polysomes in a volume of 1 ml gave 

an El cm 260 m.j.l of 13.5 (E260 = 13.5). 

3. 2 . 1. 3 Microsomes.- Starved rats were used for this preparation and all 

manipulations were carried out at 0
0 

C . 60 ml of homogenate prepared 

rcts· in· section 3.2 . 1. L was centrifuged at 1, 400g for 10 minutes and the 

resulting supernatant at 14 , 370.& for 20 minutes. The 14 , 370.& supernatant 

was then centrifuged at 105 , OOO[ for 60 minutes (Spinco, 40 rotor) to pellet 

the microsome fraction . The supernatant (cell sap) was discarded or reserved 

for the preparation of pH 5 precipitate and supernatant if required, the sides 

of the tubes cleaned with tissue paper and the pellets suspended in 1 ml each 

of Medium A. Denatured material was re.moved by low speed centrifugation. 

If a cleaner prepar ation of microsomes was required, they were 

washed by diluting the suspension 10-fold and then recentrifuging and suspending 

the pellets as before . 
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3. 2.1. 4 pH5 Precipitate.- For this preparation it was not necessary that 

the rats be starved but both starved and unstarved rats were used. All 

manipulations were carried out at OOC . To the cell sap, obtained from the 

centrifugation of the 14, 370~ supernatant at 105, OOOK for 60 minutes to remove 

the microsomes, was added cold acetic acid (1- N) until the pH was 5. 2. This 

was allowed to stand for 30 minutes to allow complete precipitation. The 

precipitate which contained tRNA and the aminoacyl-tRNA synthetases was 

recovered by centrifug~tion at 2, OOO[ for 15 minutes. It was washed by sus­

pension in 50 volumes of q.istilled water, using gentle homogenization, and 

again centrifuged as before '. The final pellet was dissolved in Medium A 

(20 ml per 60 g rat' liver used) . When the precipitate had dissolved, it was 

centrifuged at 10 , OOO~ for 5 minutes to remove denatured material. The pre­

paration was stored in the frozen state: 

3. 2 . 1.5 pH5 Supernatant. - This is the supernatant which remained after 

the removal of the pH5 precipitate. After neutralization with ' KOB. the super­

natant was kept frozen and in this state . it remained active for as long as six 

months . It lost activity, however, on standing at OOC, and each time it was 

frozen and thawed . In the experiments described below the supernatant was 

therefore frozen immediately after preparation , thawed just before use, and 

thereafter discarded . 

3 . 2.2 Preparation of 14c-aminoacyl-tRNA' s 

The following were incubated together at 37
0 

C for 15 minutes in a 

total volume of 60 ml made up by the addition of distilled water . 

40 ml pH5 precipitate in Medium A (from 120 gram rat liver). 

12 ml solution containing 330 mg ATP in distilled water which had been 

adjusted to pH 7.6 with KOH, and to which was then added 2.0 ml 

of O. 3 M- MgCI2 after which it was again adjusted to pH 7. 6 . 

0 . 5 ml 0. 3 M-MgCI . 
14 2 

4 ml C- phenylalanine (40 : ~c, specific activity 335 UJ.llC/ ~ mole) or 
14 

5 ml C-yeast protein hydrolysate (YPH) (50 }l c, specific activity 850-

1 , 500 ~c/mg). 

After incubation the mixture was cooled in ice and adjusted to pH 4 . 5 

with 1 N-acetic acid . This was left to stand for 1 fi -minl1t£>o n~ ,,0,.., L ~ " 
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flocculation before being centrifuged at 2, OOOg for 15 minutes. The resulting 

precipitate was washed by suspending it in 30 ml iced water and centrifuged 

as before. The washed precipitate was dissolved in 25 ml of Medium A and 

25 ml of cold distilled water was added, after which it was shaken with 50 ml 

of phenol for 60 minutes at room temperature to remove the protein. After 

shaking, the mixture was centrifuged at 2, OOOg for 25 minutes so as to 

break the emulsion and separate the layers. The clear aqueous phase was 

recovered and the RNA was precipitated by addition of 0.1 volume of 20% 

(w Iv) potassium acetate and 2.5 volumes of cold ethyl alcohol. (An increase 

of 50% in yield was obtained if the phenol layer was reshaken with water~ ) This 

mixture was left to stand at -150 C overnight. The RNA precipitate was collected 

by low speed centrifugation and redissolved in 10 ml iced water. The RNA was 

then re-precipitated as before and the final precipitate dissolved in iced dis­

tilled water and dialysed against the same water for 24 hours (5 changes). 

The r esultant solution of aminoacyl-tRNA was stored frozen as 1 ml aliquots. 
14 

For C-phenylalanine-tRNA from E. coli see appendix. 

3.2.3 Preparation of Linear Sucrose Gradients 

Linear sucrose gradients were prepared as described by Stead, 

Nourse & Hawtrey (1964). 

3.2 . 4 Ul tracen trifuga tion 

Preparative ultracentrifugation was carried out in either a Beckman 

Model L or Model L4 ultracentrifuge. The g values which are given are average . 

Analytical ultracentrifugation was carried out in a Beckman Model E 

ultracentrifuge, using Schlieren optics and was performed by Mr. N. van der 

Walt of the department of Physical Chemistry at the N. C. R. L. 

3.2.5 Preparation and Study of Electronmicrographs 

The different preparations were examined using both the shadowing 

technique and a method for negative staining. The grids containing the ribosomes 

were prepared as follows: a drop of ribosomes at a concentration 4-10 J Ilg 

ribonucleoprotein/ml, was placed on the grid which was carefully blotted and 

washed in a series of similar solutions of decreaSing concentration, starting 

with that in which the preparation of ribosomes was suspended. The solutions 
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were diluted lx, 2x, 4x, 8x, and 16x. The grids were finally washed in dis­

tilled water for the shadowing technique and in a. solution of 1 % phosphotungstic 

acid (contact time 15 seconds) followed by distilled water when negatively stained. 

The grids were dried in air. Palladium was used for shadowing. In another 

preparation the ribosomes were suspended in gelatin at a concentration of 

50 ]Jg per ml, the gelatin allowed to gel, and thin sections made of the gel 

which were placed on grids. The different grids were then examined under 

the electron microscope (Hitachi Model Hu llB), studied and photographed at 

various magnifications. 

Some of the preparations described here were suitable for the purpose 

of the experiment but others were not. However, no further attempts were 

made to improve the technique because time on the electron microscope was 

limited . 

3.2.6 Methods for the Assay of Polypeptide Synthesis 

This was done using either labelled free amino acids and a cell fraction 

containing tRNA's and aminoacyl-tRNA synthet1.ses, or labelled aminoacyl-tRNA's 

and a source of the transfer factors. The methods used are given below. 

14 
3.2.6.1 Method 1: Using the cell sap or the pH5 precipitate and free C-amino 

acids. - The reaction medium contained tris- HCI buffer, pH 7. 6 (50 mM); 

KCI (25 mM); MgCl
2 

(8.5 mM) ; sucrose (0.25 M); ATP (0.62 II moles), GTP 

(0.25 ." moles), PEP-K (5 II moles), GSH (0 . 3 ]J moles), all adjusted to pH 7.6 

with KOH; phosphoenolpyruvate kinase (30 ]Jg); 14C-labelled yeast protein hydro-
14 

lysate of specific activity 850-1,500 jlc/mg (0 . 7 jlc); or C-phenylalanine of 

specific activity 325 ]Jc / II mole (0.30 ]Jc) and poly U (50 llg); polysomes (0.2-0.3 ' 

mg of ribonucleoprotein); cell sap (2-3 mg) or pH5 precipitate (1-2 mg). The 

final reaction volume was o. 6 ml. Incubations were carried out in test tubes 

at 37
0

C for various times. 

3.2.6.2 Method 2 : Using 14C-Iabelled aminoacyl-tRNA's and a source of 

transfer enzymes. - The reaction medium contained in a volume of 400 ).1 1; 

tris-HCl buffer, pH 7.6 (50 mM), KCI (25 mM), MgC1
2 

(8.5 or 13 mM), sucrose 

(0.25 M) (all final concentrations); GTP (0.16 11 mole), PEP-K (4 Il moles), GSH 

(2 ~ moles) (all neutralized); phosphoenolpyruvate kinase (30 )Jg); 14C-YPH-tRNA 's 

from rat liver (6,000-12,000 cpm) or 14C-phe-tRNkfrom rat liver (2,000-6,000 

cpm) or from E. coli (15,000 cpm) added with poly U (50 u ll) (40-80 lilT f\f 
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aminoacyl-tRNA was used); ribonucleoprotein (0 . 2-0 . 3 mg); pH5 supernatant 

(2- 3 mg) or partially purified transfer factor (TF , for preparation see under 
o 

4 . 2.4) (0 . 2-0 . 4 mg) . Incubations were carried out in test tubes at 37 C for 

various times. 

3. 2.7 Isolation and Counting of 14C- labelled Proteins 

After incubation the reaction was stopped by immersing the tubes 

in ice and adding 8 ml of ice-cold 5 % trichloracetic acid (tCA). The tubes wer-eleft 

overnight at 20 C to allow proper precipitation and were then washed by one of 

the two methods below . 

3.2 . 7 . 1 Centrifugation method . - The TCA-precipitates were centrifuged 

down and washed twice mbre with cold 5% TCA using the same procedure . 

The precipitatesin5%TCA were thenheatedat900 C for 15, minutes. (This treat­

ment causes the hydrolysis of aminoacyl-tRNA with solublization of amino 

acids and short peptides ~ ) The tubes were then cooled and centrifuged as 

before. Using the same procedure, the precipitates were washed twice more 

in cold 5% TCA and then treated in either of the following ways: ' 

(a) using the centrifugation method, washed twice in ethanol (96%), 

once in ethanol/ether (50/50) and once in ether, after which they were passed 

onto planchettes, dried, weighed, and counted in a Phillips electronic counter 

(tube PW 41491, counting efficiency 8-10% ). 

(b) passed on to Millipore filters (HA 0.45), washed once on the 

filter with cold 5 % TCA, the filter dried, and counted in the Packard Scintil­

lation Spectrometer as described in the method below . 

3.2.7 . 2 Millipore method .- The precipitates in 5% TCA were heated at 900 C 

for 15 minutes, after which the tubes were cooled in ice. When cold, the con­

ten,ts of the tubes were passed through Millipore filters (HA 0.45) and washed 

thrice on the filter with €old 5% TCA and thrice with 50 mM-tris-HCI buffer , 
pH 7. 6~ containing 1 m'M-MgCI2 (Medium X) . The filters were then dried and 

counted in a Packard Scintillation Spectrometer using 0.03%dimethyl-POPOP 

and 0.5% PPO (Packard Scintillation grades) in 15 ml toluene . Counting ef­

ficiency was 80%. 

The Millipore method was the method of choice and was used for all the 

experiments described unless otherwise stated . 
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3:3 RESULTS 

3.3.1 Characterization of Polysomes 

3.3.1.1 Analyses of Polysomes on Sucrose Gradients. - The analysis of 

polysomes in Medium A on linear sucrose gradients containing various amounts 

of MgCl is shown in Fig. 3.1. The recovery of polysomes placed on the three 
' 2 

gradients was usually between 25-30% when the concentration of magnesium 

in the gradient was 10 mM (a), 35-40% when 5 mM (b) and 50-60% when 1 

mM (c) . Slightly higher recoveries were usually obtained if the polysomes 

were aged because of an increase in the ligher fractions due to breakdown 

(see section 3 . 3. 2.1) . The size distribution of polysomes varied over a wide 

range, from monomers to complexes containing up to 20 or more ribosomes 

per strand of mRNA (calculated from position on gradients and observed in 

lectron micrographs, see f! of Plate 3. 2), with a maximum in complexes 

consisting of 5-7 ribosomes . The distribution patterns were similar when 

using either 5 mM-MgC1
2 

or 10 mM-MgC1
2 

(ill, except that with the latter 

more material moved through the gradient. Possibly this was due to the ag­

gregation of polysomes in the presence of the higher concentration of mag­

nesium ions. Although the distribution pattern of polysomes with the gradient 

in.Q, containing 1 mM - MgC1
2

, did not appear to differ much from those 

obtained with the gradients containing higher concentrations of MgCI
2

, the 

increase in the two lighter peaks (monomer and dimer) did indicate that 

breakdown of polysomes had occurred. It would seem that the monomers 

(seen with the gradient used in £. ) resulted from the breakdown of the poly­

somes during their centrifugation in the low concentration of magnesium. The 

results of Wettstein, Staehelin & Noll (1963) which showed that no single ribo­

somes passed through the layer of 2 M-sucrose used in the isolation proce­

dure . support this supposition . It was found that when polysomes were sus­

pended in a buffer which contained only 1 mM-MgCl
2 

and then centrifuged 

over gradients like those used in ~ and 12., patterns similar to those obtained 

with £. resulted. This was a further indication that breakdown of polysomes 

occurred at this concentration (1 mM) of magnesium ions. 

The small amount of monomeric ribosomes that was obtained in 

these preparations probably resulted from handling. With more stringent 

handling, less of this lighter material was obtained on the gradients (see 

effect of temperature in section ~ ? ')\ " "'J...~ --- -,. 
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PLATE 3.1 SEDIMENTATION VELOCITY PATTERNS OF RIBOSOMES 

IN THE ANALYTICAL ULTRACENTRIFUGE 

Schl ieren optics were used and the runs were done at 20° C. 

a Polysomes in Med A. Speed 31,410 r.p.m. Pictures taken at 4 minute intervals. 

b M-ribosomes in Solution M. Speed 31,410 r.p.m. Pictures at 4 minute intervals. 

c R-ribosomes in Solution R. Speed 31,410 r.p.m. Pi ctures at 8 minute intervals. 

d S-ribosomes in 0.25 M sucrose . Speed 39,460 r.p.m. Pictures at 4 minute intervals. 



which contained 10 mM- and 5 mM-MgCl
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respectively, were considered 

satisfactory and were used for the studies on the breakdown of polysomes. 
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There were no apparent differences in the profiles obtained when 

the concentration of tris- HCI in the gradient was varied between 10-50 mM 

or if KCI was excluded (results not shown). 

3.3.1. 2 Analyses of Polysomes in the Analytical Utracentrifuge. - Plate 3.1a 

shows the differential pattern of polysomes in Medium A, centrifuged in the 

·analytical ultracentrifuge using Schlieren optics. Sedimentation was from left 

to right in the photographs . The aim of the experiment was not to determine 

the S values but to obtain another picture of the different sized particles. It 

can be seen that a typical polysome profile was obtained except that in this info" 

stance there was a higher proportion of smaller particles than was observed 

with sucrose gradients . This was most likely due to the breakdown caused 

by the higher temperature (20°C) at which this run was made (see effect of 

temperature in section 3. 3. 2~. v. 

3.3.1.3 Polysomes Under the Electron Microscope. - Electron micrographs 

of positively and negatively stained polysomes are shown in Plate 3.2. In 

Plate 3. 2a, an electron microcraph of low magnification (7, 500x), it is seen 

that the polysomes were free of other cytoplasmic particles. Other pictures 

taken at random were Similarly free of other cytoplasmic particles. If the 

preparation had been contaminated with mitochondria or lysosomes, particles 

100-200 times as large as those shown would have been present. The size of 

the mitochondrion is about 2]..1 , while that of single ribosomes is from 10-15 

m]..l • 

The majority of the particles existed as polysomal clusters of two or 

more, and a typical picture of a polysome consisting of about 20 ribosomes 

is seen in Plate 3. 2d, an electron micrograph at a magnification of 270,000. 

This shows the space pattern common to all specimens, in which ribosomes 

are regularly aligned in staggered positions of parallel double rows (Behnke, 

1963; Waddington & Perry, 1963; Rifkind, Danon & Marks, 1964; Perl, 1964; 

Weiss & Grover, 1968). The polysomes in the pictures of Plate 3.2 are 

classified according to the requirements given by Weiss and Grover (1968), 

which were: (i) groups of four, said to be located at the Qorners of "tetrads". 

(In Plate 3. 2 the tetrads are indic::lip.n hv thp no ... na ... rl; ~ •• 1 _______ • 
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PLATE 3.2 ELECTRON MICROGRAPHS OF RIBOSOMES 

POLYSOMES NEGATIVE STAIN: a = 7,500, b = 135,000, d = 270 ,000; 
POSITIVE STAIN: c = 135,000; 

NEGATIVE STAIN IMBEDDED IN GELATINE: e 300,000; 
SHADOWED: f = 30,000. 

R- RI BOSOMES: NEGATIVE STAIN: 9 = 30,000; SHADOWED: h 30,000. 
S-RI BOSOMES: SHADOWED: 30,000. 
M- RI BOSOM ES: SHAnnw~n. ,)" nr-.n 



37 

down in b, c and especially e.) ; (ii) zigzag strands of various lengths. (These 

are shown by the horizontal arrows in b , c and d of Plate 3.2n It was difficult 

to show the presence of mRNA strands in the electron micrographs where ne­

gative staining of polysomes occurred, but these strands were sometimes seen 

when positive staining was present which is demonstrated by the angled arrow 

pointing up in c of Plate 3.2. This description of the assumed space pattern 

of polysomes and the presence of a stained mRNA strand in the positively 

stained electron micrographs have been used as a means to differentiate be­

tween polysomes and clusters of ribosomes due to aggregation caused by mag­

nesium. N early all the electron micrographs of preparations of polysomes, 

where the aggregates consisted of four or more single ribosomes, have con­

firmed this interpretation. 

3. 3.1. 4 Activity of Polysomes inDifferent "in vitro" Systems. - Activity 

here is defined as the in vitro incorporation of labelled amino acids into 

polypeptides. This was measur ed as the amount of label which was stable 

in 5% hot TCA , a method which gives values slightly lower than those expected 

because short polypeptides would be lost during the method used for washing 

b e ribosomes . 

The time course of polypeptide synthesis by polysomes with different 

systems is shown in Fig. 3. 2 . Assay systems , in which the cell sap or the 

pH5 precipitate were used (enzyme fractions which contained tRNA, aminoacyl­

tRNA synthetases and the transfer enzymes) , were capable of synthesizing 

polypeptides from free amino acids (curves 1 and 2 respectively) . The sys­

tems which contained only the transfer enzymes and which were devoid of tRNA 

required activated aminoacyl-tRNA . The polysomes were active in all the 

assay systems that were tried. The rate of the reaction was most rapid during 

the early stages (first 5 minutes) with a gradual tailing off until a plateau was 

reached. The more purified the system used,the sooner was the tailing off of 

the rate of the reaction to a plateau. The purity of the assay systems which 

were used increased in the following order : Curve 1 (cell sap), curve 2 

(pH5 supernatant), and curves 4 and 5 (a partially purified transfer fraction, 

TF). As expected, the reaction stopped even sooner if the polysomes were 

first pre-incubated. If a lower concentration of the enzyme fraction was used 

the initial rate of the reaction was less, as was the total incorporation, but 

the time required to reach a plateau was onlv sli!!htlv in,.. .... "oQ a rl 
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Figure 3.2 
Kinetics of polypeptide synthesis 
In curves 1 and 2 assays were done according to Method 1 as dewcribed 
under 3.2.6, using the cell sap and pH5 precipitate respectively. In 
), 4 and 5 assays were done according to Method 2. For) the pH5 super­
natant wa~ used while with curves ~ and 5 a purified fraction containing 
transfer enzymes (TF Bee Cbapter 4) was used. With 5 the polYBomes were 
pre-incubated fOi42 minutes in the complete assay system for protein 
synthesis minus C-label. 14C_yeast protein hydrolysate was used in 
&11 experiments. 
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The reason for the tailing off of the rate of the reaction is not 

known (see Noll, 1965, page 85, for a discussion on this). Under op"Hmum 

conditions of protein synthesis, as pertains in vivo. the rate of release of 

ribosomes from the message should equal the rate of attachment at the 

initiation site. This would keep the rate of the raction constant and the poly­

somes intact . During the measurement of in vitro protein synthesis, however, 

this would not be expected and it was actually shown in section 3.3.3 that 

the release of ribosomes from the message was more rapid than reattachment 

when the breakdown of polysomes during protein biosynthesis was studied 

(see Figs. 3. 5 and 3. 6). However, this should not have caused complete 

cessation of the reaction. This cessation of the reaction was not caused by 

a lack of labelled 14C_ YPH amino acids, especially in curves 1 and 2, because 

the amount of label added to the systems was 10-fold and upward of that 

amount incorporated. Nevertheless, a lack of labelled aminoacyl-tRNA was 

probably a contributary cause for the decrease in the rate of the reaction in 

the systems where preformed aminoacyl-tRNA was used, because of their 

hydrolysis during the course of the incubation. The two most likely reasons 

for this decrease would be the hydrolysis ofth£ 'mRNA by "::Nases and a loss in some 

factor(s) necessary for chain initiation. The result shown in Fig. 3.2 is in 

accordance with both these explanations as is discussed in the next paragraph. 

It has been shown that RNase inhibitors are present in the cell sap 

of rat liver (Sugano, Watanabe & Ogata, 1967; Lawford, Sadowski & Schachter, 

1967), and that microsomes contain RNases (Lawford, Langford & Schachter, 

1966) which are activated by deoxycholate. It is therefore likely that these 

RNases are located on the ribosomes of rat liver as was shown with those of 

E. coli. If this is so, it would be expected that the less purified systems 

should continue synthesizing polypeptides for longer periods than the more 

purified systems. The results shown in Fig. 3.2 were in agreement with this 

suggestion. These results, however, also favour the suggestion proposed by 

Baliga, Pronczuk & Munro (1968) who suggested that the system ceased to 

incorporate amino acids because of the lack of or destruction of some chain 

initiation-factor required for the interaction of free ribosomes with mRNA. 

Again, with the more purified systems the reaction would cease earlier because 

of the lower concentration of initiation factor in the enzyme fraction used. Ex­

periments with the purified ribosomes, described in Chapter 4 of this thesis ., 
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favour the suggestion that the decrease in the ratedf protein synthesis was 

due to the loss of the initiation factor. This was shown when these ribosomes 

were used to measure the rate of reaction at increased concentrations of 

magnesium ions which avoided the requirement of initiation factors in poly­

peptide synthesis . In this case the rate of the reaction continued in a linear 

fashion for nearly 60 minutes . 

The above results show that the polysomes used in this study were 

active in the two main systems used to assay protein synthesis in vitro, 

namely (i) that with the cell sap or pH5 enzymes usinl
4

c-labelled amino 

acids, and (ii) that with transfer enzymes, supplied either as the unpurified 
14 

pH5 supernatant or as the partially purified fraction, using C-aminoacyl-

tRNA . The kinetics of the systems used are similar to those that have been 

described for mammalian systems by others since the completion of this 

work . 

3. 3. 2 Factors ,Effecting the Breakdown of Polysomes as Studied on 

Sucrose Gradients 

The effects of a number of treatments on the breakdown of polysomes 

were investigated and the results of the experiments are presented in Figs . 

3.3 to 3.8. In order to obtain information on the most effective centrifugation 

times for the analysis of the polysome preparations , the centrifugation times 

used in conjunction with different experiments varied from 120 to 150 to 200 

minutes ; It was found that centr ifugation for longer times gave a better 

separation of the individuiu peaks , but with more material passing through 

the gradients . 

The distribution patterns obtained proved adequate for the purpose 

of the experiments, irrespective of the centrifugation period employed . No 

attempt was made to repeat the series of experiments using a common centri­

fugation time . 

3. 3. 2 . 1 Time and Thmperature of Incubation in Mediu~ A. - The effect of 

incubating polysomes , suspended in 'Medium A, at 37 0 C !o~ various times is 

shown in Fig . 3. 3, while Fig . 3. 4 shows the effect of incubation for 10 

minutes at different temperatures. These treatments ooused the breakdown 

of polysomes . A similar breakdown of DO]Vf=:fHYlPc> thA,,""h 1 ~- - -- - . , 
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during their ageing for 5 days at OoC, as is shown in curve (ii) of Fig. 3.3a. 

The polysomes fragmented into smaller particles which depended on both the 

length and temperature of incubation, the size of the fragments decreasing with 

an increase in both the time of incubation at a fixed temperature and the tem­

perature (up to 45
0

C) at which the incubation was carried out. The breakdown 

caused at temperatures higher than 45
0

C was not studied. If the incubation 

was allowed to continue for longer, practically all the material moved in the 

area of the smaller particles which indicated a breakdown of ,Polysomes to 

single ribosomes or aggregates of these, aggregation being caused by the 

association of monomeric ribosomes in the presence of magnesium. The pat­

tern of breakdown of polysomes observed here was similar to that obtained 

when spleen RNase was added (Q of Fig. 3. 3), except that the latter reaction 

was much faster. This suggested that the bre~kdown in Medium A was due to 

RN ases, associated with the ribosomes which cause the scission of the mRNA 

connecting the individual ribosomes. 

Breakdown of polysomes in this way would be expected to yield 

single ribosomes containing fragments of mRNA that were undegraded because 

of the protection afforded by the width of the ribosome to which it was bOUJ.ld. 

Such fragments have been shown to be protected by polysomes which were 

treated with RNases (Brentani, Brentani & Raw, 1966; Brentani, Brentani, 

Raw, Cunha & Wrotschincky, 1968). Al though the presence of this fragment 

of mRNA attached to ribosomes had not been shown when these experiments 

were carried out, its possible presence was discussed in this laboratory 

while this work was being done. Therefore, single ribosomes prepared in 

this way were expected to be unsuitable for studies with an exogenous source 

of h1RNA because the attached fragment would inhibit the binding of the added 

mRNA. The presence of this fragment on ribosomes in the above experiments 

was not determined, but it was found that polysomes which were incubated in 

Medium A for 45 minutes, or in the presence of spleen RNase for 10 minutes, 

were not as active in the synthesis of polyphenylalanine, dependent on the pre-
., 

sence of poly U, as a preparation which was incubated in an actiVe protein 

synthesizing s'ystem (see Section 3.3.2.2). These results are shown in 

Table 3.1. 
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Table 3.1 Activity of Single Ribosomes 

Single ribosomes were prepared by the incubation of polysomes in 

the system shown in the Table below. After incubation, the mixtures were 

diluted 20-fold with cold Medium A and the ribosomes re-isolated by centri­

fugation. The ribosome pellets were dissolved and assayed for their activity 

in the synthesis of polyphenylalanine as described under Method 1 of section 

3. 2.6.1, using 14C-phenylalanine and poly U. The centrifugation method of 

section 3.2.7.1 and the Phillips counter were used for the isolation and 

counting of the labelled polypeptides. 

a 

b 

c 

Method of preparation 
of single ribosomes 

Incorporation of 
14C- phenylalanine. 
(cts/mg nucleoprotein) 

Polysomes incubated in Medium A 

Polysome incubated with spleen RNase 

Polysomes incubated in the system for 
protein synthesis (Method 1 of Section 
3.2 . 6.1) 

86 

70 

152 

3. 3.2 . 2 Incubation in Complete System for Amino Acid Incorporation. - The 

effect of the incubation of polysomes in the complete amino acid incorporation 

system is shown in Figs. 3.5 and 3.6. This incubation resulted in their rapid 

breakdown to monomers. The large increase in the dimer and trimer peaks, 

which also accumulated as the result of this type of incubation, was attributed 

to the aggregation of monomers caused by the presence of magnesium. The 

increase in the number of monomers was best illustrated in Fig. 3.6c in which 

the gradient containing 1 mM-MgC1
2 

was used. 

It is noteworthy that the profile of polysomes on gradients showing 

breakdown during protein synthesis contained only monomers (and small 

aggregates of these) together with the normal pattern of polysomes. There 

was no increase in the numbers of polysomes of intermediate size (as for 

example tetramers and larger) as seen in the previqus section. This is because 

the ribosomes were run off one at a time as they reached the end of the mes­

sage during protein synthesis, in contrast to the arbitary scission of the con­

necting mRNA in the previous method leaving variable numbers of ribosomes 

joined together. 
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The results of the experiments discussed in section 3. 3.1. 4 clearly 

showed that the release of ribosomes in these experiments was associated with 

protein synthesis because of the incorporation of 14C-amino acids into poly­

peptides stable in hot TCA with the same system. For this reason the effect 

of adding an inhibitor of protein synthesis, namely puromycin, was examined. 

The results in Fig. 3. 5 (c) and (d) show that inclusion of puromycin in the 

medium did not inhibit the release of ribosomes, but in fact accelerated it 

slightly. The first of these findings was not unexpected because, although 

it was known that puromycin prevented the synthesis of long peptide chains, 

it does not prevent the formation of peptide bonds . The amino group of puro­

mycin intervenes by reacting with the ester bond of peptidyl-tRNA attached 

to the condensing site on the ribosome instead of the amino group of the 

aminoacyl-tRNA attached to the decoding site (Nathans & Lipmann, 1961; 

Hultin , 1961 ; Allen & Zamecnik, 1962; Morris , Favelukes, Arlinghaus & 

Schweet , 1962; Morris, Arlinghaus, Favelukes & Schweet, 1963) . This re­

action does not however stop the readout of the genetic message, but actually 

seems to increase its rate, as was confirmed by the increase in the rate 

of breakdown of polysomes (see Q and Q of Fig. 3.5) . In experiments de­

scribed later in this chapter it was shown that the incubation of polysomes 

with puromycin alone did not increase the rate of breakdown over .those in­

cubated in its absence (see section 3.3.2.3). The experiments of Noll (1965), 

which were published soon after the completion of this work , confirmed these 

results. The effect of puromycin was examined further and is discussed 

below . 

3. 3. 2. 3 Incubation with the Factors which Participate in Protein Synthesis 

but without Peptide Synthesis. - The reasons for doing this work 

have been discussed in 'section: '3.1 ,. • The breakdown in the presence of the 

factors which participate in protein synthesis was studied in the absence of 

added amino acids and tRNA, which are required for continued polypeptide 

bond formation, but in the presence of those factors necessary for chain 

elongation and of puromycin which causes chain release . The factors which 

were of interest here are ATP, GTP, a sulphydryl compound (GSH in these 

experiments) and a source of the transfer enzymes (the pH5 supernatant: was 

used here). These results are shown in Figs.3. 7 and 3. 8, and include those 

in which polysome!=: WAl'P;nf'l1h"t"rl ... H-1.. -- ----
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described in this section the breakdown which occurred is compared to that 

where polysomes were incubated wi th Medium A only . 

The results in Fig . 3.7 show the incubation with each factor alone . 

Incubation of polysomes with the pH5 supernatant had a somewhat protective 

effect {Q}. Their incubation with ATP and GSH had no effect (ill, while that 

with GTP and puromycin caused only a slight breakdown (f); that with GTP 

being slightly more than that with puromycin. However, the effect of the 

incubation of polysomes with any of these factors alone was not very pronounced 

so the effect of these in combination was determined and the results are shown 

in Fig. 3. 8. 

The addition of puromycin together with any of GSH (Q) and par­

ticularly GTP (f) or both @, with or without the pH5 supernatant, caused 

a far greater release of monomers than puromycin alone (ill . The breakdown 

effected when GTP was included with puromycin , with or without GSH and the 

pH5 supernatant, was much more rapid and complete than that which occurred 

in the presence of the complete protein synthesizing system. Not much 

breakdown , above that which took place in the presence of the factors alone, 

occurred in any of the combinations which did not contain puromycin . 

As will be shown below (section 3. 4), these findings can be fully 

explained in terms of current knowledge of protein synthesis"although, at the 

time they were obtained, it was possible to form only an incomplete hypothesis 

as to the reasons for the results. 

3 . 3. 3 Release of Pre-labelled Peptide Chains from Polysomes 

When the results reported in the previous section were obtained, 

it was surmised that they were related to the release of peptide chains during 
. 14 incubation. To study this further, polysomes were labelled wIth C-yeast 

protein hydrolysate as described in Fig. 3. 9. During the subsequent isolation 

of the polysomes, radioactivity associated with free amino acids and short 

peptides should have been removed so that any label attached to the polysomes 

would have been in the form of peptides of about 10 or more amino acids . 

The breakdown of the labelled polysomes was then studied. The 

results in Fig . 3. 9 show that more than 95% of the counts remained with the 

polysomes when they were incubated alone,. there being very little of the label 

released (see ill . Similar results were obtained when the labelled polysomes 
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GTP was included, especially in a system containing the pH5 supernatant and 

GSH, some release (about 20%) of the label was obtained. When pre-labelled 

polysomes were incubated with puromycin alone, about 30-35% of the label 

remained with the polysomes indicating a release of between 65-70% of 

labelled peptide chains (see Q). This is in agreement with the findings of 

Traut & Monro (1964) who used ribosomes from E. coli . Considerably more 

of the label was removed when the factors necessary for the translocase 

reaction (enzymes, GTP and GSH) were included with puromycin, in which 

case only about 10-15% of the label remained with the polysomes ~). These 

results on the release of prelabelled peptide chains can be related to those on 

the observed breakdown of polysomes which was shown to take place using the 

same systems. Heintz, Salas & Schweet (1968) have recently described similar 

results with reticulocyte ribosomes. 

The interpretation of these results in the light of the most recent 

ideas on protein biosynthesis is given in section 3. 4. 

3. 3.4 Choice of Method of Breaking Down Polysomes to Single Ribosomes 

It was shown that polysomes could be broken down by three distinctly 

different methods, namely those resulting from 

(i) the hydrolysis of the mRNA connecting different ribosomes, 

as seen when polysomes were incubated either in Medium A or with RNase, ... 

(ii) the release of single ribosomes from the end of the mRNA 

strand during protein synthesis, and 

(iii) the collapse of the structure of the polysomes when incubated 

in the presence of both the factors causing chain release (due to puromycin) 

and those allowing for translocation to take place (GTP, GSH and pH5 super­

natant). 

The type of single ribosomes obtained as a result of their release 

from the end of the message during protein synthesis (ii) was considered to 

be more suitable for the purpose of this work than those obtained as the 

result of hydrolysis of mRNA (i) because of the presence of the suspected 

fragment of mRNA with the latter. The type of single ribosome obtained 

as a result of both protein synthesis (ii) and translocation with chain release 

(iii) seemed to be similar . Although ribosomal release by method (iii) did 

appear to be better, it was not considered as a practical method when this work 
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was done because puromycin was difficult to obtain at the time , and because the 

reaction with puromycin was still not completely understood. In the light of; 

present day knowledge it is realized that the production of single ribosomes by 

the incubation of polysomes with puromycin and the factors necessary for 

translocation would be most suitable for preparing ribosomes with which to 

study the transfer factors. Also, in the light of the results presented above, 

the most convenient method would be to incubate polysomes only with puro­

mycin, GTP and GSH, in the absence of an added source of the transfer en­

zymes, since breakdown was unaffected by their absence or presence (see Q. 

of Fig. 3.8) . It is not known to what extent the single ribosomes thus obtained 

need be washed further to remove adhering transfer enzymes, but it is expected 

that this washing need be less vigorous if the pH5 supernatant is-not included 

during the preparation of single ribosomes. At the stage that it was possible 

to come to this conclusion, suitable methods for the preparation of single 

ribosomes free of the transfer enzymes had already been worked out , as is 

discussed in Chapter 4 , and no further time was spent on this . 

3. 4 INTERPRETATION OF RESULTS 

As shown in Chapter 2, aminoacyl-tRNA' s play an important role 

in the attachment of mRNA to ribosomes (once chain initiation has commenced) . 

and in keeping the subunits of ribosomes together . They must therefore be 

present on ribosomes in order to keep the structure of the polysome intact. 

The binding of aminoacyl- tRNA's to the first decoding site in the presence of 

mRNA is influenced by GTP and one of the transfer enzymes . Binding at this 

site has little influence in holding the two subunits together because it can 

take place in the absence of the large subunit . It influences the structure of 

the polysome only in that it aids in the attachment of ~RNA which links the 

different ribosomes together. Binding of aminoacyl-tRNA's to the second 

decoding site, besides requiring mRNA , is influenced by the presence of GTP, 

one of the transfer enzymes , the large ribosomal sub~it and possibly a 

sulphydryl group . Since binding of aminoacyl-tRNA to this site requires the 

linking up of the larger subunit, it is expected to influence the integrity of the 

polysomes in the holding of the subunits together, besides its role in the 

linking of the different ribosomes as a result of its influence on the binding of 

mRNA. The binding of peptidyl-tRNA , briefly , to the second decoding site just 
aftp1" npntiN o h~~-J l' _____ •• 



because of its recognition of the codon of mRNA and its attachment to both 

subunits of ribosomes. The influence here is . even stronger because of the 

influence of the growing peptide chain in holding the subunits together. The 

binding of the peptidyl-tRNA to the condensing site influences the integrity 

of the polysome only because of the effect of the attached growing peptide in 

the binding of the subunits. No effect of the attachment of mRNA is noticed 

because its binding is solely to the large subunit and independent of mRNA 
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It is thus evident that removal of aminoacyl-tRNA from the first 

decoding site and from the condensing site undermines the stability of the 

polysome only slightly, whereas its removal from the second decoding site leads 

to almost complete breakdown. The observation that treatment with puromycin 

alone causes very little breakdown of polysomes is thus explained, since only 

the peptidyl-tRNA attached to the condensing site is removed. Clearing of the 

vital second decoding site by translocation can take place only if the condensing 

site is first emptied . In the absence of peptide bond formation this cannot 

occur , except as the result of the action of puromycin. Hence, the addition 

of factors inducing translocation can have no effect on the stability of the poly­

somes in the absence of puromycin, except to the very limited extent allowed 

by the few condensing sites which happened to be open at the time the polysome 

was isolated, as was indeed found here (Fig. 3. 7c). Only where chain release 

by puromycin and the translocase reaction occur simultaneously can it be 

expected that breakdown of polysomes will result. The translocase reaction can 

take place in systems containing the pH5 supernatant, GTP & GSH (see Chapter 

2) . In the experiment, where polysomes were incubated with all of these factors 

and puromycin, extensive breakdown occurred (see Q of Fig. 3.8). The results 

on the release of polypeptide chains from polysomes, in Fig. 3.9, confirmed 

this, since , in the experiment where the factors necessary for translocation 

were added with puromycin there was both an increase in the amount of label ' 

released (showing translocation) and breakdown of polysomes. Furthermore, 

this breakdown was more extensive than that occurring as a result of protein 

synthesis (compare the result in Fig . 3. 8d with that of Fig. 3.6a). 

Since the polysomes used here have been shown to contain a small 

complem~l1t of the transfer enzymes (see Chapter 4), their incubation with 

. only puromycin, GSH and GTP should also result in their extensive breakdown 

as only one translocase reaction would be needed for this. This was found to 
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breakdown as that which occurred in its presence (also Q. of Fig. 3. 8) . If 

GSH and GTP were omitted from the system it would be expected that this 

breakdown would be much less . Indeed this was found to be so (.Q. and Q. re­

spectively of Fig. 3 . 8) . Even in the absence of GSH or GTP it is seen that 

fairly extensive breakdown occurred. This breakdown in the absence of GSH 

would be expected when using unwashed polysomes, as the requirement for 

sulphydryl groups during protein synthesis by polysomes was only measured 

after some time had elapsed (see references by Moldave and collaborators). 

This probably indicates that the reducing role of sulphydryl compounds is 

related to some priming function associated with the translocase enzyme 

(Moldave's transferase II) which has been shown to be stabilized by GSH 

(Sutter, Gasior & Moldave, 1965; Sutter & Moldave, 1966). This role of GSH 

is discussed further below in an attempt to explain the breakdown which 

occurred in the abs enc e of GTP. 

It is generally believed that both GTP and sulphydryl groups are 

concerned with the movement of peptidyl-tRNA's from the decoding to the 

condensing site on ribosomes . It is the view of the writer that GSH functions 

by reducing some compound connected with the polysome and translocase 

enzyme, which subsequently reacts with a high energy compound, possibly 

associated with a transfer enzyme which was formed during the hydrolysis of 

GTP. This would then be the reaction which,arags the peptidyl-tRNA on the 

second decoding site to the condenSing site, at the same time moving the 

mRNA one codon forward . (This is the reaction depicted by (iii) to (iv) of 

Fig. 2.2 in Chapter 2). The exact nature of these compounds and the reactions 

taking place are not known, but for the purpose of explaining the breakdown gf 

polysomes which occurred in the experiments described above (Q and.Q. of 

Fig. 3.8), it is further suggested that the two compounds which form in the 

presence of GSH and GTP, the reduced and high energy compounds respectively, 

do so independently of one another . To explain this in terms of polysome 

structure, there would thus be individual ribosomes in the isolated polysome 

which contained eHher the reduced or high energy compounds (or both) which 

were formed on the ribosomes just prior to their isolation . On this basis " the 

breakdown obtained when polysomes were incubated with puromycin and GSH 

(Q of Fig . 3.81 would be the result of the presence of the high energy compound 

at the time of isolation of the polysomes . The breakdown obtained with puro­

mycin and GTP (.Q. of .this figure) was becmll:::p of the> l'n"D"~~~ ~ _.l' L' __ 
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compound. The type of breakdown in both these instances was the same as that 

which took place in the presence of all the factors, as in Q. of Fig . 3.8 . The 

results obtained in these experiments agree with this explanation, and, if 

correct, would pin-point the actions of sulphydryl groups in protein synthesis. 

The greater amount of breakdown obtained when puromycin was incubated with 

GTP (£. of Fig. 3. 8) than when incubated with GSH (Q of the same figure) may 

be due to the greater stability of the reduced compound which was formed by 

the action of sulphydryl groups, rather than that of the activated compound 

formed by the action of GTP . 

The results of the release of prelabelled peptides during the break­

down of polysomes, obtained in section 5.3.3, support this explanation. 

If all the peptidyl-tRNA occupied the condensing site, treatment with puromycin 

alone should remove all the labelled peptides. That it did not do so, as shown 

in Fig . 3.9Q, was probably because the peptidyl-tRNA's which had just parti­

cipated in peptide bond formation were located on the decoding site, the site 

where they do not react with puromycin. Thus, at any time, part of the 

labelled peptide would not be expected to be available for reaction with puro­

mycin. In the presence of the factors necessary for the translocase reaction, 

namely GTP, GSH and the translocase enzyme, this would subsequently move 

across to the condensing site and be removed by puromycin as seen in Fig . 

3. 9 Q. . These results have been interpreted in accordance with the very 

recent findings of Jost, Shoemaker & Noll (1968) and Skogerson & Moldave 

(1968), who, by different methods, showed a similar release of labelled pep­

tides from polysomes and that peptidyl-tRNA bound to some site on the ribo­

somes was not released by puromycin. 
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CHAPTER 4 

PREPARATION OF WASHED RIBOSOMES FREE OF THE TRANSFER ENZYMES 

4.1 INTRODUCTION 

To study the role of the factors present in the cell sap in the 

biosynthesis of proteins, it was necessary that ribosomes be prepared which 

were free of transfer enzymes. It was important to distinguish between those 

proteins which were of ribosomal origin and those that originated in the super­

natant. In the light of the knowledge on protein synthesis in 1963, when this 

work was started, it seemed that the ideal ribosomes for the study of de novo 

synthesis of polypeptides were those which contained all their constituent parts 

. and to which could be added mRNA, aminoacyl-tRNA's, the ions and co-factor 

requirements and the transfer enzymes . At the time nothing was known about 

the enzymes required for chain initiation, but by using high concentrations of 

magnesium (8-10 mM or more) the need for initiation enzymes, unknowingly, 

had been eliminated. It has been shown that at these high concentrations of 

magnesium there is no need for the initiation enzymes (see Chapter 2). 

By mid-1963 a number of ways had been worked out for freeing 

ribosomes of contaminating transfer enzymes. The general practice of the 

groups working in this field was to make use of solutions containing mono­

valent or divalent I!.ations. Lipmanrt and co-workers, working with E. coli. 

washed the ribosomes with solutions containing either magnesium or ammonium 

ions (Nathans & Lipmann, 1961; Allende, Monro, Nathans & Lipmann, 1962; 

Spyrides & Lipmann, 1962; Nakamoto, Conway , Allende, Spyrides & Lipmann, 

1963) while Schweet and co-workers washed the ribosomes from reticulocytes 

with solutions of KCl (Arlinghaus & Schweet, 1962). Various buffers, deoxy­

cholate and other subsmn-ces were also used to wash ribosomes (Fessenden & 

Moldave, 1962 & 1963, using rat liver). A more comprehensive review on the 

removal of extraneous protein from ribosomes is given by Petermann (1964, 

p43). 

A method of preparing ribosomes free of mRNA was developed by the 

author based on the results of the work reported in Chapter 3. In addition the 

released ribosomes were washed with solutions of KCl because this salt is 

known to remove bound proteins and was used by Arlinghaus & Schweet (1962) 

to wash the transfer enzymes from reticulocyte ribosomes. It was also decided 
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to buffer the solutions of KCl at a slightly alkaline pH in the hope that this 

would aid in releasing the non-ribosomal proteins, including the transfer en­

zymes . This was done because ribosomal proteins were known to be basic 

(Crampton & Petermann, 1959) and it was believed by the author that an alkaline 

wash would preferentially release the non basic, therefore non-ribosomal, 

proteins . The idea of using an alkaline buffer to wash ribosomes was also 

based on the findings of Kuff & Zeigel (1960) who showed that at more. alkaline 

pli'" haemoglobin did not readily attach to ribosomes, whereas, around . pH 7 

or less attachment readily occurred with the precipitation of the 

complex. Only the method finally decided on is described under "methods" 

(Section 4.2.1.1) while the various modifications tried during the course of 

this work are discussed in the results . While this work was in progress other 

methods were described for the preparation of washed ribosomes which were 

said to be ideal for studying the transfer enzymes . Two of these methods were 

then also studied and are described here, namely an adaption of the method 

used by Arlinghaus, Shaeffer & Schweet (1964) with reticulocytes, and that 

of Gasior & Moldave (1965~) from rat liver. The characteristics of these 

various ribosomes were compared, particularly with respect to (i) their phy­

sical properties, such as their size when studied on sucrose gradients, in the 

analytical ultracentrifuge and under the electron microscope, and (ii) their 

activity and requirements for the transfer enzymes and the optimal conditions 

needed to measure this activity. These ribosomes were free of the transfer 

enzymes and therefore satisfactory for the work for which they .were intended. 

However, the work showed in addition that the treatments also removed some 

other factor(s) needed for protein synthesis since the different ribosomes dif­

fered in their activity , and this difference could not be alleviated by the addi­

tion of transfer enzymes, a finding which had not been reported previously . 

4 . 2 METHODS 

A list of the reagents and solutions used are given in the appendix. 

4.2 . 1. Preparation of Washed Ribosomes , 

Three methods for the preparation of washed ribosomes are de­

scribed here . Polysomes', prepared as described in Chapter 3, were used as 

starting material for all three of these . 
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Unless otherwise stated all procedures were carried out in the cold 

o 
(about 0-4 C) . 

4 . 2 . 1.1 R-ribosomes . - This method was developed by the author . 

Polysomes were incubated in the optimal protein synthesizing system 

for 45 minutes (see Section 3.2 .5!.I)Method 1; the pH5 precipitate and free non­

radioactive amino acids were used) . After incubation, the reaction mixture 

was cooled in ice and three volumes of an ice-cold solution, containing 50 

mM- tris-HCl, pH 8. 3, 50 mM- KCl and 1 mM-MgC1
2 

(solution-Rl) added. 

This mixture was then left for 30 minutes after which it was centrifuged at 

105,000g for 90 minutes (Spinco 40 rotor) to pellet the ribosomes. Each ribo­

some pellet . was then suspended in 1 ml distilled water, and when the ribosome 

pellets were completely in suspension, an equal volume of double strength 

solution-Rl was added so that the final concentration was that of solution-Rl . 

After standing for 30 minutes , 2 ml amounts were layered over 10 ml of a 

1 M-sucrose solution, containing the same buffer and ions as solution-Rl, in 

a 40 rotor centrifuge tube. These were centrifuged at 105, OOOg for 3 hours . 

The ribosomes were again first dispersed in distilled water (0.5 ml per 

pellet) and an equal volume of double strength solution-R added so that the 

final concentration was that of solution- R (50 mM -tris-HCl, pH 7. 6, 25 mM - KCl , 

1 mM - MgC1
2

). This suspension of ribosomes was left overnight before the 

undispersed material was removed by low speed centrifugation . This ribosome 

suspension was stored at OOC and used within one week. 

4.2 . 1. 2 S-ribosomes . - These were prepared essentially by the method of 

Arlinghaus , Shaeffer & Schweet~ (1964), who used "KCl-shock" treatment to 

remove the transfer factors from the ribosomes of reticulocytes . The method 

was as follows : 

To 3 ml polysomes (rat liver) in Medium A was added 0.56 ml of 

0.6 M- KCl (final concentration 0. 15 M) and 1 ml of a solution containing 70 mg 

GSH which had been adjusted to pH 7.6 with KOH. This mixture was incubated 

at 37
0

C for 25 minutes , after which was added the rest of the system which 

allows for optimum protein synthesis (as with R-ribosomes, see section 4.2 . 1.1) . 

This was then incubated for an additional 40 minutes at 370 C. After incubation . 

the mixture was cooled in ice and diluted 8- fold with a solution containing 0.25 

M- sucrose, 2 mM- MgC12, 17. 5 mM-KHCO~ and 100 mM-KCl. This mixture. 
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pellet was rinsed with a solution of 0. 25 M-sucrose and then suspended in 2 ml 

of the same sucrose solution. The suspension was made 1 % (final concentration) 

with respect to deoxycholate and incubated for 3 minutes at 37
o

C. After incu­

bation the mixture was cooled in ice and diluted with 10 volumes of a solution 

containing 0.25 M-sucrose, 17.5 mM-KHC0
3 

and 2 mM-MgCI2, and centri­

fuged at 105, OOOg for 3 hours (40 rotor). The resulting pellets of ribosomes 

were rinsed with a solution of 0.25 M-sucrose and finally suspended in a total 

volume of 1.5 ml of the same sucrose solution. This was left overnight and 

the undispersed material removed by low speed centrifugation. The suspension 

of ribosomes was s tored at OOC and used within one week. 

4.2 . 1. 3 M-ribosomes. - These were prepared essentially according to the 

method of Gasior & Moldave (1965rt). 

To 10 ml polysomes (80-90 mg) in Medium A was added 12. 5 ml 

Medium X and 2.5 ml 3% sodium deoxych.olate (final concentration 0.3%). The 

mixture was stirred gently for 15 minutes after which it was centrifuged at 

105,000g for 60 minutes (40 rotor). The pellets were suspended in 2 ml 

1 mM-MgCI
2 

by gentle homogenisation and then made 50 mM with respect to 

MgCl
2 

in a total volume of 12 mI. This suspension was again stirred and 

centrifuged as before. The ribosome pellet was then washed three times with 

a solution of 10 mM-MgCI
2 

by the same procedure. The final pellet was 

rinsed and suspended in 5 ml of solution-M (0.35 M-sucrose, 50 mM-tris-HCI, 

pH 7.6, and 4 mM-MgCI
2

) and dialysed against the same solution for 12 hours. 

After dialysis the suspension of ribosomes was centrifuged at 1, 500g for 

10 minutes to remove undispersed material. This suspension of ribosomes 

was stored at oOC and used within one week. 

All three of these preparations, R-, S- and M-ribosomes, can be 
o stored at -20 C as the pellet obtained after the final centrifugation for as long 

as 3 months and perhaps longer . 

4.2.2 The Preparation of Partially Purified Transfer Enzyme Fractions 

Here the total transfer enzyme fraction in the pH5 supernatant was 

either partially purified and concentrated as a whole, or separated into frac­

tions containing the different transfer enzymes . 

4 . 2.2.1 The Fractionation and Concentration of the Total Transfer Fraction ~ . -
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pH 6.8 , by stirring the mixture (3 mg gel per 3 mg protein in solution) for 

15 minutes. (This gel was prepared by the method of Keilin & Hartree , 

1938.) The gel was then centrifuged at 10, OOOg for 10 minutes, the super­

natant discarded and the precipitate successively extracted with 0.03 M-pot­

assium phosphate buffer, pH 6.8, and 0.2 M-potassium phosphate buffer, 

pH 6.8, containing 15% (w/v) ammonium sUlphate. These extractions were 

carried out by adding the buffer to the gel and then homogeni sing this with a 

Dounce homogeniser, after which the mixture was centrifuged at 10, OOO~ 

for 10 minutes to separate the extract from the gel. The second extract, 

that extracted with 0 . 2 M-potassium phosphate containing 15% ammonium 

sulphate, was then treated in one of two ways. It was either 

(a) dialysed against Medium X for 12 hours, after which it was centrifuged 

at low speed to remove the undissolved material, the dialysed solution being 

used as a source of partially purified transfer factor (TF in text); or 

(b) precipitated with ammonium sulphate at 70% saturation and the preci-

pitate dissolved in a minimal volume of Medium X. This was then dialysed 

against 500 volumes of Medium X for 24 hours with three changes of buffer. 

After removing the denatured material this solution was used as a source of 

partially purified transfer factor (TF-AS in text) . 

These two partially purified transfer fractions were stored in the frozen 

state and could be kept as such for as long as six months . They rapidly lost 

activity on continual freezing and thawing and were therefore used only once 

after freezing. 

4 . 2 . 2.2 Separation on Sephadex Columns of Fractions Containing the 

Transfer Enzymes . - Sephadex G-200, prepared in 20 mM-potassium 

phosphate buffer, pH 7.2 , containing 50 mM-KCl , was packed under the pres­

sure exerted by 200-300 ml of the same buffer at a height of 600-900 cm 

during continuous flow of the buffer in a glass column 10 x 2. 5 cm. The par­

tially purified transfer fraction, TF-AS (6 mg), was placed on the column and 

eluted with 20 mM-potassium phosphate buffer, pH 7.2, containing 0.2 M-KCl. 

2 ml fractions were collected, their E and E measured and then assayed 
260 280 

for their transfer activity. Two main protein peaks were obtained as shown 

in Fig. 4.1. The fractions under these peaks were pooled separately and 

precipitated with ammonium SUlphate at 70% saturation. The resulting preci­

pitates were dissolved in Medium X and dialysed against thp. ~!:IlYIt:> n~l .. ... _ _ .C-
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The following were incubated in glass tubes in a total volume of 

300 lll: assay buffer (50 mM-tris-HCI, pH 7. 6, containing 0.25 M-sucrose, 

25 mM-KCI and 20 mM-MgCI
2

; all final concentrations); 0.2 mg ribosomes; 

0.06-0.08 mg 14C-phe-tRNA (3,000-7,000 cpm rat liver preRaration or 

15, 000 cpm E. coli preparation); 50 ~ g poly U (Miles Laboratories). The 

mixture was incubated for 15 minutes at 37
0

C and the reaction stopped by 

the addition Of 5 ml ic€-cold assay buffer. The contents of each tube were 

then passed onto millipore filters (HA 0.45, Millipore Filter Corp . , 

Bedford, Mass.) and washed on the filter according to the method of Niren­

berg & Leder (1964) , with three aliquots of 20 ml of a solution containing 

10 mM-tris-HCI, pH 7.6, 25 mM-KCI & 20 mM- MgCI
2

. The filters were 

then dried and counted in a Packard Scintillation Counter using PPO & POPOP 

dissolved in toluene ' as described under section 3.2.6.2. 

4.3 RESULTS AND DISCUSSION 

Since this work was started with the intention of preparing ribo­

somes free of the transfer enzymes, the results of this chapter ar.e presented, 

with tbat purpose in mind , in the following order : 

(i) recovery of ribonucleoprotein (It was necessary to known this in 

order to ensure that enough material with which to work was 

obtained to facilitate planning of experiments) , 

(ii) activity (It was, necessary to determine whether these ribosomes 

were active in ~olypeptide synthesis and to determine whether they 

contained any transfer enzymes), 

(iii) content of mRNA and stimulation of polypeptide synthesis on addition 

of poly U, 

(iv) stability of preparations, 

(v) ability to bind aminoacyl-tRNA (This was necessary because peptide 

synthesis depended on the binding of aminoacyl-tRNA by ribosomes 

and also because this binding may have been dependent on a transfer 

enzyme), and finally, 

(vi) the physical characteristics of the different ribosomes were de-

termined to charaterize their conform~ti(m Qnrl +~ ,.1~ ... _ •••• _ , -



Table 4.1 The recovery of ribonucleoprotein with different preparations 

of ribosomes 

Preparation 

S-ribosomes 

M -ribosomes 

R -ribosomes prepared as described in methods 

11 

11 

11 

without prior suspension in water 

washed at pH 7.6 instead of 8.3 

washing included deoxycholate treatment 

% recovery 

33-40 

35-50 

55-60 

20-40 

60 

45- 55 

these were in agreement with the conclusions drawn from measurement of 

their activity . 

It must be pointed out that the sequence in which the experiments 
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were done did not necessarily follow the sequence presented here and much back 

tracking was done to check certain points once new parameters were established. 

4.3.1 Yield of Ribosomes 

The recovery of the total nucleoprotein of ribosomes was deter­

mined from their absorption at 260 m ).l (E
260

) and expressed as a percentage 

of the absorption of the original sample of polysomes from which they were 

prepared. The results are shown in Table 4.1. 

It was generally found that the recovery of nucleoprotein with R­

ribosomes was higher than that with either M- or S-ribosomes, which were 

of the same order. If R-ribosomes were prepared without the prior dissolution 

of the pellets from each centrifugation in distilled water, the amount of nucleo­

protein recovered was noticeably reduced, although this did not affect the 

activity of the preparation. If R- ribosomes were washed in a buffer of pH 7.6 

instead of pH 8.3 the recovery of nucleoprotein was not much affected, 

despite the increase in activity which was obtained (see section 4. 3.2). However 

these ribosomes had a higher residual activity (activity in the absence of added transfer 

enzymes, see section 4 . 3.2). If the method used for the washing of R-ribosomes 
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included treatment with deoxycholate , as was done with M- ribosomes, then 

the recovery of nucleoprotein and activity was decreased . An increase in the 

yield of S-ribosomes could be obtained if the pellet resulting from the first 

washing procedure was dissolved in a sucrose solution containing the buffer 

at pH 8.3 as was used with R-ribosomes. However, in this instance the 

activity of the ribosomes was greatly reduced. The possible reasons for 

these differences will be discussed in Chapter 5. From the above results 

and those presented in section 4 . 3. 2 it was concluded that the three most 

suitable methods for the preparation of ribosomes for the study of the transfer 

enzymes were those described under the methods of this , chapter. 

4 . 3 . 2 Activity of Ribosomes 

The activities of R- , S- and M- ribosomes are shown. in Table 4 . 2. 

In these experiments the ability of the ribosomes to incorporate labelled 

amino acids into polypeptides was measured only with the system starting 

with aminoacyl-tRNA's because only the reactions subsequent to acylation of 

tRNA were of interest here . 

The results in Table 4 . 2 show that in comparison to polysomes, 

R- , S- and M-ribosomes had little residual activity, and that they were all 

active in the presence of an added source of the transfer enzymes . The 

three preparations were active in the absence of added mRNA, but the 

activity of all three was much stimulated on addition of poly U. These results 

suggest that the ribosomes were not free of mRNA, especially M-ribosomes 

of which a large proportion have the characteristics of polysomes when 

analysed by physical means (see section 4 . 3. 6) . The preparations of 

R- and S-ribosomes did not contain many particles which moved as polysomes 

when analysed on sucrose gradients or in the analytical ultra-centrifuge 

(see section 4 .3 .6). The activity found with R- and especially S-ribosomes 

in the absence of poly U may be due to the presence ~: RNA in the pH5 super­

natant which was used in the assay , since, when a partially purified transfer 

frac tion (TF) was used as the source of transfer enzymes, the activity in the 

absence of poly U was less and the stimulation by the polynucleotide was more 

(see F ig . 4 . 2). Whether the residual activity of these ribosomes in the ab­

sence of poly U was due to the presence of mRNA in the supernatant was not 

determined. 
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Table 4 . 2 Polypeptide synthesis by different ribosomes 

This synthesis was measured by incubating ribosomes in the complete 

amino acid incorporating system , described in Method 2 in section 3. 2.6 . 

The pH5 supernatant was used as the source of transfer factors . The concen­

tration of magnesium ions in the assay system used for polysomes , R- and 

M-ribosomes was 8. 5 mM and for S-ribosomes , 13 mM . Incubation was for 

15 min . at 37
o

C. 

Activity (cpm/ O. 2 mg ribosome) 

Preparation alone + pH5 supernatant 

14
C

_
YPH

_ 14 
C-phe- tRNA 

14 . 
C- YPH-

14 
C- phe-tR NA 

tRNA + Poly U tRNA + Poly U 

;!'olysomes 500 216 2 , 150 2,387 

R-ribosomes 35 80 626 2,610 

M-ribosomes 40 60 1 , 748 2 , 540 

S -ribosomes 18 40 480 3, 600 

Although the results in Table 4 . 2 showed that the ribosomes had 

little activity in the absence of an added source of transfer enzymes , this did 

not prove that they were devoid of all transfer enzymes, since at least two 

of these enzymes are necessary for peptide bond formation in rat liver 

(see Chapter 2) and the absence of just one would render the ribosome 

inactive. Rigorous proof thus required the separation of the two transfer 

factors and the study of the activity of the ribosomes in the presence of each 

singly and the two in combination . Separation of two transfer enzymes was 

obtained my molecu,lar exclusion of TF-;AS, the partially purified transfer 

fraction which had been treated with ammonium sulphate, on Sephadex G-200 

(Fig. 4 . 1) . The measurement of peptide synthesis in the presence or absence 

of these factors is shown in Table 4.3 . These results show that the ribosomes 

were relatively inactive with either of the two enzymes alone and required 

the addition of both fractions to synthesize polyphenylalanine . This proved 

that all three ribosomal preparations were free of the two transfer 

enzymes necessary for peptide bond formation and showed that the differences 

in activity were not due to different amounts of transfer enzymes associated 

with them . 
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Table 4.3 Activity of ribosomes in the presence of different transfer 

enzymes 

polyphenylalanine synthesis was m easured for 15 minutes as de-
14 

scribed in Method 2 of section 3. 2 . 6 . C- phe-tRNA, prepared from rat 
14 

liver as described in section 3 . 2 . 2, was used and the C-Iabelled pep-

tides counted in the Phillips electronic counter as described for the centri­

fugation method of section 3. 2 . 7 . The partially purified transfer fraction, 

TF- AS , was prepared as described in section 4 . 2.2 . The fractions, A 

and B , were prepared from TF- AS passed through Sephadex G-200 columns 

as described under Fig. 4 . 1. Approximately 20 ~g each of fractions A and B 

were used. (These amounts were not sufficient to saturate the systems but 

because of the low concentration of protein in these fractions no more could be 

added to the assay systems because of the dilution factor . ).. 

Added transfer Polyphenylalanine synthesis 

fraction ( cpm / O. 2 mg ribosome) 

R- ribosomes S-ribosomes M-ribosomes 

None 6 5 7 

TF-AS 255 357 190 

A alone 30 42 32 

B alone 12 9 10 

A + B together 115 129 114 

4.3.3. Optimum Requirements for the Synthesis of Polyphenylalanine 

Starting from 14C-phe-tRNA in the Presence of Poly U 

For most of this work R-ribosomes and the partially purified transfer 

fraction, TF, were used. The following factors were tested for their effect on 

this synthesis : concentration of GTP and GSH, concentration and type of phospho­

enol pyruvate , concentration of poly U and concentration of magnesium ions . 

The concentrations used by Staehelin, Wettstein & Noll (1963) with polysomes 

were used as a guide for these studies . These were 8 mM-MgCI
2

, O. 4 ~ moles 

GTP, 5 ~ moles GSH and 5-10 ~ moles PEP with 10 ~ g phosphoenol pyruvate 

kinase in a total volume of 1. 0 ml. In the experiments described below 0 . 2 

mg ribosomes in a total volume of 0 . 5 ml was used and the concent.r~t.inn "f tho"" 
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4.3.3.1 Concentration of GTP and GSH. - There was no difference in poly­

phenylalanine synthesis if the concentration of GTP was varied between 0. 1 

to 0.4 II moles per total volume of 0 . 5 mi. Higher concentrations of GTP than 

this were not tested. With concentrations of GTP of less than O. III moles/O. 5 

ml there was a decrease in synthesis. A concentration of 0.2 II moles in 

a total volume of 0.5 ml was therefore used. 

No difference in polyphenylalanine synthesis was observed when the 

concentration of GSH was varied between 2-5 II moles per total volume of 0.5 

ml. When GSH was omitted from the assay system polyphenylalanine synthesis 

was very much decreased. A concentration of 2 . 5 ~J moles of GSH per total 

volume of 0 . 5 ml was therefore used . 

4.3.3.2 Concentration and Type of PEP. - Two types of PEP were tried , 

namely the trihexylammonium salt, which was neutral when dissolved in 

water , and the monovalent potassium salt which was strongly acidic when 

dissolved in water. 

When using the potassium salt a concentration of 5ll moles per total 

volume of 0.5 ml was found not to be limiting under any conditions for incu­

bation times of up to 1 hour . Sometimes a concentration of half this amount 

would become limiting after an incubation time of 1 hour. 

The first experiments, using the trihexylammonium salt, showed 

that a concentration of 2)J moles per total volume of 0.5 ml was slightly superior 

to that of 5 )J moles. However , this was found to be so only for incubations of 

15-20 minutes or 'less, as this synthesis over longer periods of incubation was 

higher with the higher concentration of the salt used . 

In the experiments where the ratio of poly U/ribosomes was low 

(about 1- 2) neither type of PEP seemed superior to the other . On the other 

hand , as the concentration of poly U was raised to optimum, a higher rat of 

polyphenylalanine synthesis was obtained with the potassium saIL A concen­

tration of 5 II moles of the potassium salt per total volume of 0.5 ml was 

therefore used . 

4.3 . 3.3 , Optimum Concentration of Poly U. - The optimum requirements of 

poly U in the various systems used for assaying polyphenylalanine synthesis 

is shown in Fig. 4 . 2. The assay systems tested were thos e using the pH5 

. 't t 'h f 14 precipi a e WIt ree C-phenylalanine and also those using the pH5 super-



69 

14 
natant or the partially purified transfer fraction, TF , with C-phe-tRNA. 

Optimal incorporation was obtained when the concentration of poly U was 

between 25-50 lJg for every 0 . 2 mg ribosomes used in the assay . By taking 
-6 

the molecular weight of the ribosomes as 6 x 10 and that of the poly U as 

about 1-2 x 10-4 this gave a ratio of poly U /ribosomes as 50 to 100 . The 

optimal concentration of poly U which was required for this reaction did 

however vary since more was needed for longer incubations, but, as the total 

label incorporated did not differ much in this instance, a concentration of 

50 ~ g per 0 . 2 mg ribosomes in the assay was decided on. 

4 . 3. 3.4 Optimum Concentration of Magnesium Ions. - The system by which 

the synthesis of polyphenylalanine was measured can be considered as the 

de novo synthesis of polypeptides in a heterlogous system (see Chapter 2). 

As the reports in the literature have shown, the concentration of magnesium 

ions required for the assay of polypeptides in the various systems depended 

on the mRNA and ribosomes used. It was therefore necessary to determine 

the optimum concentration of magnesium ions required in the assay for the 

synthesis of polyphenylalanine by the three preparations of ribosomes used 

here, namely R-, S- and M- ribosomes. These results are shown in Fig . 4.3. 
14 

When a sample of C-phe-tRNA made from rat liver was used, the 

optimum for R- and M-ribosomes was about 7- 10 mM while that for 
14 

S-ribosomes was from 15-20 mM. However, when C-phe-tRNA from 

E. coli (obtained from Schwarz Biochemicals) was used the optimum with 

S-ribosomes was not so high, being between 7-12 mM. For these studies 

therefore the concentration of MgCl
2 

which was used in the assay systems 

with R- and M-ribosomes was 8.5 mM while that for S-ribosomes was gene­

rally 13 mM. 

4 . 3.4 Stability of Ribosomes 

All three of the suspensions, R-, M- and S-ribosomes, could be 
o 

stored at 0 C for 10-12 days with very little decrease in activity. After that 

they started to precipitate, probably because of denaturation, and lost activity. 

The effect of freezing suspensions of ribosomes differed between the three 

preparations . Only M-ribosomes were stable to any extent. R-ribosomes 

1.vere the least stable in this case. However, if the ribosomes were stored 
o 

as a pellet at -15 to -20 C they could be kept for much lonQ'Por npri n"Jo 



".000 

2.000 -

cpm 

c 

• • 500 

OL-______ ~------~--7~/--~I~--------------------~~I~ o 5 10 r 25 50 

Figure ,*.2 

)1g poly U 

Optimum "concentration of poly U required for 
polyphenylalanine synthesis 

Assay8 were carried out as described in section 3.2.6 using 
R-ribosomes, 0.2 mg The a8say system8 tested were 
those u8ing the pH5 precipitate with 14C-~henylalanine 
(a) (Method 1) and the pH5 8Qpernatant (b) or the par­
tially purified transfer fraction, TF (c), with 14C-phe­
tRNA from rat liver (Method 2) . Incubation was for 
15 "minutes . 



2,000 

cpm 

1,000 

Figure 4.3 

---x 

S-ribosollles 

\ 

x 

5 10 

\ 
\ 
\ 

\ 
\ 

\ 

\ R-ribosomes 
\ 

\ 
\\ 

" , 
" 

15 

" " , 
" " .. 

20 

Optimum requirement of magnesium for 
polyphenylalanine synthesis 

x 

,.0 

Assays were carried out as in Yethod 2 of section 
3.2.6, using the pH5 supernatant and 14C-phe-tRNA 

of rat liver. Incubation was for 15 minutes. 



72 

4.3.5 The Binding of 14c-phe-tRNA by Different Ribosomes 

Soon after these studies were started it was shown by Arlinghaus, 

Shaeffer & Schweet (1964) that one of the transfer enzymes of the reticulocyte 

system was involved in the binding of aminoacyl-tRNA to ribosomes. It was 

therefore necessary to measure this binding during the study of the transfer 

enzymes and so the conditions for this were worked out here . 

The method tried here was similar to that used by Nirenberg & 

Leder (1964) and also Kaji & Kaji (1964) with the ribosomes of E. coli. 

This binding was measured in the absence of enzymes, at high concentrations 

of magnesium ions and in the presence of poly U. The ability of R-, M- and 

S- ribosomes to bind 14c-phe-tRNA under these conditions, and also their 

optimum requirement for magnesium ions in this reaction is shown in Fig. 

4.4 . 

The optimum concentration of magnesium ions required for this 

binding by the three ribosomes was the same, namely, 15-20 mM . As in the 

synthesis of polyphenylalanine, it was found that S-ribosomes were the most 

active while R- and M-ribosomes were about equally active. No enzyme 

fraction was able to stimulate this binding when measured at the optimum 

concentration of magnesium ions . 

Unknown at the time that this work was done, was the fact that the 

dependence of the binding of aminoacyl-tRNA on an enzyme factor was masked 

by the use of high concentrations of magnesium in this assay. However, 

the conditions worked out here were nevertheless suitable for the purpose of 

the experiments described in Chapter 5, and were therefore used throughout that 

work. 

4.3.6 Physical Characteristics of Ribosomes 

For the purpose of obtaining more knowledge about the preparations 

of ribosomes used here, and especially since it was found that they differed 

in activity in both the synthesis of. polyphenylalanine and binding of phe-tRNA, 

some of their physical characteristics were measured. To do this they were 

analysed on sucrose gradients and in the analytical ultracentrifuge, and also 

studied under the electron microscope. 

4. 3.6.1 Analysis of Ribosomes on Sucrose Gradients. - The profiles of 

R-, M- and S-ribosomes, when centrifuged over sucrose gradients . ar~ 
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shown in Fig. 4.5(i}. It is seen that the size distribution of these ribosomes 

differ. The majority of S-ribosomes moved in a single peak as particles 

which were smaller than the 76S monomer . R-ribosomes moved mainly as 

three peaks, one; small er than, one equal to, and one larger than the 76S 

monomer. M-ribosomes moved as a broad peak covering the monomer, 

dimer and much of the polysome area of the gradient. 

This result showed that S-ribosomes and a large proporation of R-

ribosomes consisted of particles which were smaller than the mohomer. Ex­

periments were then done to determine whether these smaller particles were 

the subunits of ribosomes although no division of the slower moving peak into 

two peaks was noticeable, as was expected . R- and S-ribosomes were there­

fore centrifuged over 5-25% linear sucrose gradients, similar to those used 

by Pestka & Nirenberg (1966), for the identification of the subunits of E. coli. 

These results are shown in Fig.4.5(ii} . Nei~her R-ribosomes (curve a) nor 

S-ribosomes (curve d) were found to move as the subunits of ribosomes. They 

both moved as particles which were equal to or slightly larger than the 50S 

subunit, which was in agreement with the result shown in Fig. 4. 5(i}. When 

these ribosomes were dialysed against N-buffer for 10 hours, still no sepa­

ration into their respective subunits was obtained (curves b and e respectively) 

although less material moving in the 70S area of the gradients was obtained. 

This was the buffer used by Pestka & Nirenberg (1966) to obtain the subunits 

from the ribosomes of E. coli. Both R- and S- ribosomes were, however, 

shown to consits of the two subunits, and in equal proportions, when they were 

treated with EDTA. This showed that these preparations were no different 

in this respect to polysomes treated in the same way (Tashiro & Morimoto, 

1966; Hawtrey & Nourse , 1968, and others). 

A similar inability to separate the subunits of ribosomes of rat liver 

by dialysis against low concentrations of magnesium ions has been shown by 

Tashiro & Morimoto (1966). These workers explained that this was because of 

the polymerization of the individual subunits, especially of the 30S subunits, in 

the presence of even low ooncentrations of magnesium. 

4.3 . 6 . 2 Analysis of Ribosomes in the Analytical Ultracentrifuge. - The results 

. with sucrose gradients were partly confirmed when these ribosomes were ana­

lysed in the analytical ultracentrifuge, as shown in Plate 3.1 / c-d, although 

a different picture was obtained for S-ribosomes . 
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I n {i } 10-30~ (wjv) linear sucr08e gradients were used. 
The different gradients contained for polysomea, Medium A; 
for M-ribosomes, solution M; for R-ribosomes and 8-rib080me8, 
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In (ii) 5-25~ (w/v) linear sucrose gradients containing 
N-buffer were used. R-ribosomes and S-ribosomes respectively 
in gradients a and d were used as described in methods; in 
band e after dialysis against 100 volume8 of N-buffer for 10 
hours with 3 change8 of buffer; and in d and f after making 
5 mM with re8pect to EDTA. Centrifugation was at 60,OOOg 
for 10 hours. 



76 

M-ribosomes consisted of particles of 73S and larger, except for a 

fairly large proporation which moved as a badly defined band at 22S which may 

represent mRNA which had separated from the r ibosomes. The pictures ob­

tained with both R- and S-ribosomes was the same, since, R-ribosomes moved 

as four bands, 100S, 70S, 48S and 34S, as did S-ribosomes, 100S, 72S, 52S 

and 40S. Although these S values were not worked out to infinite dilution 

these four bands would seem to represent the dimer of the 76S monomer, the 

76S monomer and the 60S and 40S subunits of ribosomes. Very little of the 

smaller 40S subunit was present, showing that dimerization of this particle 

had occurred and that it was moving with particles in the heavier region. This 

was borne out by the Schlieren patterns obtained, especially of 60S particles, 

which were not as sharp as was expected for single pure particles . 

4. 3.6.3 Studies of Ribosomes Under the Electron Microscope. - Electron 

micrographs of R-, M- and S-ribosomes are shown in Plate 3.2, g to k, of 

Chapter 3. The purpose of this work was to determine whether the preparations 

consisted of single particles or of polys om aI-like clusters. 

The electron micrograph in which R-ribosomes were negatively 

stained (g), shows that the majority of these particles existed as the monomers 

of ribosomes, smaller particles and clusters of two, three and even four 

ribosomes . Usually the space pattern exhibited by polysomes was absent with 

these preparations and it is possible that the clusters which were present were 

the result of aggregation of monomers caused by magnesium ions. When R­

ribosomes were studied using the shadow technique (h) no polysomal like 

clusters were present, as was found with polysomes:(!).. However, the method 

used to prepare electronmicrographs by this shadow technique was found to give 

a high proportion of monomer ribosomes . in the preparation with polysomes (f). 

It was therefore possible that this dissociation of the polysomes occurred to such 

an extent with the preparation of R-ribosomes that all the clusters of polysomes 

which were present were dissociated. 

No electronmicrographs of S-ribosomes could be prepared by the 

method of negative staining used here. However, a good picture of these ribo­

somes was prepared by the shadowing technique (i). In this picture only 3 

different sized single particles were clearly visible, which probably repres ent the 

76S monomer or the dimer of the 40S subunit, the 60S subunit and the 40S subunit. 
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No good electronmicrographs of M-ribosomes were obtained by any 

of the methods used, although, those obtained by means of the shadow 

technique, seemed to show the presence of clusters of ribosomes and monomers 

(j) . 

In conclusion it is seen that the picture obtained with electron micro;:" 

scopy was similar to that obtained by analysis on density gradients and in the 

analytical ultracentrifuge . This is, that the samples of R- and S-ribosomes 

contain no polysomes and that M-ribosomes do contain a small proportion of 

these polysomes . Both R-: and S-ribosomes are made up of monomers and 

subunits, with S-ribosomes containing a larger proportion of the subunits 

although different pictures were obtained by the different methods of analysis . 

4 . 4 DISCUSSION 

As mentioned previously it was planned to isolate and prepare ribo­

somes with which to study the transfer enzymes . The experiments reported 

above showed that three different preparations were suitable for this purpose 

in that they were inactive in the absence of either of the separated transfer 

enzymes alone but were active when both were added, either as a mixture 

of the separated factors or an unfractionated source of enzymes . However, 

it was decided not to proceed with the study of the transfer enzymes~ since, by 

the time the work had reached this stage a number of publications had appeared 

which showed that other workers in at least two laboratories were well ahead 

with work on the problem in liver (Moldave and co-workers, Gasior & Moldave, 

1965 a & b ; Ibuki, Gasior & Moldave, 1966; Gasior, Ibuki & Moldave , 1966; 

Sutter & Moldave, 1966 ; and Klink and co-workers, Klink, Nour & Aepinus, 1963; 

Klink, KloppstHch & Netter, 1966; Klink, Kramer, Nour . & Petersen, 1967; 

Klink, Kloppstc:ch, Kramer & Dimigen, 1967). Instead, attention was focussed 

on the differences between the activities of the S-, M- and R-ribosomes, which 

could not be explained on the basis of any of the then known factors in vol ved in 

protein synthesis. This work is described in the next chapter. 



CHAPTER 5 

THE RELATIONSHIP BETWEEN THE FACTORS, ESPECIALLY 

5S RNA, REMOVED DURING WASHING OF RIBOSOMES AND 

PEPTIDE BOND FORMATION 

5. 1 INTRODUCTION 
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As shown in Chapter 4, ribosomes prepared by dif~erent procedures 

revealed differences in respect of their ability to bind .phe:-tRNA and 

synthesize polyphenylalanine. It was shown further that these differences 

could not be explained in terms of the presence of different amounts of transfer 

enzymes in the various preparations. The present chapter presents the results 

of a further investigation aimed at finding an explanation for these observed 

differences. These studies revealed a relationship between the content of 5S 

RNA of the preparations and their activity; this work representing, at the 

time it was initiated, the first attempt to relate 5S RNA to protein synthesis. 

It has since become known that Monier and co-workers in Marseilles and also 

Comb and co-workers at Harvard Medical School are also working in this di- . 

rection. A further finding was that ribosomes deficient in 5S RNA could not be 

reactivated with a purified form of this RNA, but only with that which contained 

protein. While this work was in progress Aubert, Monier, Reynier & Scott 

(1968) showed that' ribosomal protein was necessary for the reassociation 

of 5S RNA with ribosomes. 

As this chapter deals mainly with 5S RNA and the proteins stripped 

from the ribosomes during the washing procedures, it is relevant to review the 

literature dealing with these two topics before proceeding to a presentation of 

the experiments conducted by the author . 

The 5S species of ribosomal RNA was first reported by Rosset & Monier 

(1963) to be present in E. coli. Its existence was soon confirmed and shown to 

be present in other types of cells (Comb & Katz, 1964; Galibert, Larsen, 

Lelong & Boiron, 1965; Marcot-Queiroz, Julien, Rosset & Monier, 1965; 

Bachvaroff & Tongur, 1966; Virmaux, Mandel & Urban, 1964; Comb, Sarkar, 

De Vallet & Pinzino, 1965; Schleich & Goldstein, 1966; Reich, Forget, Weiss­

man & Rose, 1966) . Rosset, Monier & Julien (1964) showed that this RNA was 

of ribosomal origin and associated with the 50S subunit . They 'also showed that 

it contained no methylated bases and only minor amounts of pseudo-uridylic acid, 
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this being determined as 0.5 residues per molecule by Comb & Zehavi-Willner 

(1967). Comb & Katz (1964) at first suggested that this RNA may be a pre­

cursor of tRNA but this was shown to be false when most of the properties of 

5S RNA were foUnd to be different from tRNA . Recently Brownlee & Sanger 

(1967) have applied a two dimensional technique of electrophoresis to frac-

' tionate the nucleotides and determine their sequence in 5S RNA from E . coli. 

In a later paper they arranged this sequence in a specific manner forming a 

three leafed clover (Brownlee, Sanger & Barrel, 1967). Forget & Weissmann 

(1967) independently confirmed this and also determined the sequence of 

5S RNA in KB cells. Forget & Weissmann (1968) and also Comb & Zehavi­

Willner (1967) showed that 5S RNA can assume two forms which are inter­

convertible and can be separated on methylated albumin columns . Forget & 

Weissmann (1968) report that Hindly, of the Medical Research Council Labo­

ratories of Molecular Biology, Cambridge , England, obtained similar results 

after separating the two forms by means of acrylamide gel electrophoresis . 

The significance of this work is not yet known but it indicates that 5S RNA is a 

fairly homogeneous type of RNA and that in E. coli and KB cells only two 

, slightly different species exist and that these only differ in one base residue . 

According to Dr . Marshall Nirenberg (personal communication), the synthesis 

of two or more almost identical species of RNA does not indicate that the two 

RNA's have different funCtions bu t thatthere may be different sites on the 

,gene(s) for the synthesis of one species of RNA . The multiplicity of genetic 

sites for the synthesis of any molecule is an indication of the essential role 

which the molecule has for the survival of an organism . This would suggest 

that 5S RNA is essential for the functioning of ribosomes . 

The function of 5S RNA on ribosomes is not known . Comb & Sarkar 

(1967) conducted numerous studies whereby 5S RNA in solution was shown to 

exchange with 5S RNA on ribosomes. Aubert , Monier, Reynier & Scott (1968) 

showed that this association between 5S RNA and ribosomes , or 50S subunits , 

was specific and required the presence of proteins on the ribosomes which were 

of ribosomal origin . They did this by treating ribosomes with 2 M-LiCl which 

removed 5S RNA and some ribosomal proteins from them . They then showed 

that the 5S RNA obtained in this way did not reassociate with the ribosomes 

which had been washed with LiCI unless it was added with the protein whL h 

had been removed at the same time . They'did not test these different particles 
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for activity in the synthesis of polypeptides and therefore it was not shown 

whether 58 RNA was necessary for the activity of these particles. The only 

work in which there has been some suggestion as to the function of 58 RNA 

on ribosomes was that by Comb & 8arkar (1967) who showed that 58 RNA pos­

sibly played some role in the association of the subunits. In this work they 

dissociated the ribosomal subunits and removed 58 RNA from the ribosomes 

with EDTA, and then, in agreement with the findings of Tashiro & ~orimoto 

(1966), found that these subunits failed to re-associate. This suggested that 

58 RNA played a role in the association of subunits but, as they themselves 

pointed out, this interpretation should be viewed with caution because of the 

damage caused to the 308 subunit on treatment with EDTA. 

In view of the fact that a ribosomal protein is necessary for the re­

association of 58 RNA with ribosomes it is pertinent to give a review of those 

ribosomal proteins which are related to the activity of ribosomes . Most of 

these studi"es on the ribosomal proteins have been carried out with bacterial 

ribosomes and an ever increasing number of proteins are constantly being 

shown to be present. The function of ribosomal proteins has been studied from 

two different angles . One has been to analyse the number and properties of 

the different proteins on the ribosome and the other has been to remove pro­

teins (split-proteins) from ribosomes using different chemical compounds 

and then return these singly to see if they are connected with the functioning 

of the ribosome . Only the work carried out using: the latter metho<;l will be 

reviewed here. Numerous chemicals have been used to split proteins from 

ribosomes. Those most frequently used have been LiCI and CsCI . The pro­

cesses by which these chemicals remove proteins have been shown to be re­

versible (Meselson, Nomura, Brenner, Davern & Schlessinger, 1964; 

Gesteland & Staehelin, 1967; Traub, Nomura & Tu, 1966; Staehelin & Meselson, 

1966; Hosokawa, Fujimura & Nomura, 1966; Spirin & Belitsina, 1966). 

Lerman, Spirin, Gavilova & Golov (1966) removed fractions from ribosomes 

in discreet steps, although in more recent work the different groups of proteins 

removed depended on the concentration and salt .used . It was then shown that 

distinct proteins responsible for the binding of tRNA, the binding of mRNA 

and for amino acid polymerization could be removed with CsCI (Traub, 

Nomura & Tu, 1966) while those responsible for the binding of 58 RNA to 

ribosomes could be removed with LiCI (Aubert, Monier, Reynier & Sc~tt, 1968) . 

In more recent work Traub and Nomura (19681 a) have been able to separate the 
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split-proteins into four groups, acidic and basic proteins from both the 30S 

and 50S subunits. They demonstrated that basic proteins from 30S subunits 

and acidic proteins from 50S subunits were those responsible for the activity 

of split fractions . This work has been followed up with numerous papers 

showing how these different fractions are connected with the activity of ribo­

somes and their reassociation (Traub, Soll & Nomura, 1968; Nomura & Traub, 
. . 
1968; Traub & Nomura , 1968b). In none of the work in which the split-proteins 

have been studied by Traub and co-workers has any conside~ation been taken 

of the possible removal of 5S RNA, and it is difficult to see how this species 

of RNA fits in with this work . This is being considered in the work to be 

carried out in the author's laboratory but will not be included in this thesis. 

5.2 METHODS 

5.2 . 1 -:->reparation of Ribosomes Washed with Magnesium Chlo!ide 

M-, R- and S-ribosomes were prepared as des.cribed in Chapter 4, 

section 4 . 2 . 1. 

R- and S-ribosomes were washed with solutions of MgCl
2 

as follows : 

A suspension of ribosomes was diluted with three volumes of MgCl
2 

s? that 

the final concentration of MgCl
2 

was either 10 mM or 100 mM. This suspension 

was left for 30 minutes before centrifUging at 100, OOOg for 30 minutes. If 

necessary, the ribosome pellet was washed in the desired concentration of 

MgCl2 following the same procedure; the number and type of wash used is 

indicated in the tables of the text . After the last wash with MgCl
2 

the peJ.lets 

were rinsed and suspended in an excess of the solution in which they were 

originally suspended, centrifuged at 100, OOOg for 60 minutes and the final 

pellet rinsed and dissolved in the same solution as before. 

To wash M-ribosomes with different solutions of MgC1
2 

the ribosomes 

were prepared as described in section 4 . 2 . 1. except that the solution of 

MgC12 , with which the ribosomes were washed after treatment with deoxy­

cholate , was changed as desired. Usually the solution of 10 mM-MgCl was 
2 

replaced with one of 100 mM . 

5.2.2 Preparation of Ribosomes Washed with Alkaline Buffers 

Details of the procedures used are given in conjunction with the relevant 

tables (5.4 and 5. 6) which summarize the results . 
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'ti. 2. 3 Preparation of Transfer Enzyme Fractions 

The pH5 supernatant was prepared, as previbuslydescribed (section 

3.2.1). ' The partially I?urified fractions, TF and TF-AS, as described in 

section 4.2 . 2. and the preparation of fraction C' from the Sephadex columns 

is outlined in the , caption of ,Figure 4. L 

5.2.4 PreparaUonof 58 RNA 

Two methods were used. 

5.2 . 4. 1 Sodium Lauryl Sulphate/phenol Method . - A suspension of rat liver , , 

microsomes in Medium A (section ~ . 2.1) was dialysed against distilled water 

in the cold for 16 hours. It was then made 1 % with r~spect to sodium lauryl . 

sulphate (w /v) and incubated at 300 C for 5 minutes. The total' RNA was ex-
, , 

tracted from this by using phenol, as was described for the preparation of 

tRNA (Section 3.2 . 2) and precipitated from the resulting water phase with 

ethyl alcohol. The .3NA, freed of phenol by dialYSis, was dissolved in 50 

mM- NaCl at a concentration of L 5 mg/ml solution . RNA of higher molecular 

weight was removed by precipitation ,at 1 M-NaCI at OoC for 16 hours. The 

RNA remaining in the supernatant, after centrifugation at low speed, was 

precipitated with 3 volumes -of ethyl alcohol at -2qOC and dialysed against' 

distilled water for 12 hours. Undissolved matter was removed from th~ dia­

lysed preparation by low speed centrifugation. The RNA in solution was shown 

by gel electrophoresis to consist of 50% 5S RNA with lesser amounts of tRNA 

and other RNA. 5S RNA was purified from the mixture of RNA in solution as 

follows : aliquots containing 50 1Jg of RNA were placed over 5 x 1 cm 7% poly­

acrylamide gels made in buffer A of Method of assay of 5S RNA (see 5. 2 . 7 . 2). 

One aliquot of the sample of RNA was lightly stained with acridin,..; o'range: A 

current of 5 m amp was applied to each gel. When a clear separation of the 

different RNA bands was evident in the sample which had been stained (after 

,about 40-50 minutes), the gels were removed and the sections of the unstained 

gels which coincided with the area of the 5S RNA band of the stained gel w'ere 

cut out and extracted twice with 5 volumes of a solution of 0. 1 M-KCI, using 

a Dounce hOlnogeniser to break up the sections of gel. The. extracts were 

treated with ethyl alcohol to preCipitate the RNA which was then dissolved in 

distilled water and shown 'to consist mostly of 5S RNA with a small trace of 

tRNA when analysed by the method described in 5.2 . 7.2 (see e of Figure 5.3) . 
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5.2.4.2 EDT A Method. - A fraction containing 58 RNA was released from 

R-ribosomes by a modification of the method of Parish, Kirby & Klucis 

(1966), as follows: 10 mg of ribosomes were mixed with 20 mg sodium 

bentonite, 200 mg N~2EDTA and 100 mg ethylurea in a total volume of 

2.5 ml solution. This was then immediately layered over 10 mILO M-sucrose 

in solution R in a 65 rotor ' tube and centrifuged at 230, OOOg for 30 minutes . 

After centrifugation the top 3 ml in the tube was . carefully sucked off and dia­

lysed against 2 changes of 100 volumes of solution R for 120 minutes. The 

resulting solution' which was used in the expe~iments described below was shown 

to consist predominately of 58 RNA with traces of larger species of RNA when 

analysed on acryla~ide geis (see gel f of F-igure 5-.3). 

The purpose of using the 10 ml sucrose layer here wa..s to separate the 

released 58 RNA from the ribosomes which contained the RNases (it was 

hoped that these enzymes were not themselves released) and which moved into 

the sucrose layer. The bentonite should also pass into this layer. This 

method worked equally well in the absence of bentonite and ethyl urea. 

5.2.5 Methods for the Assay of Activity of Ribosomes 

The synthesis of polyphenylalanine (Synthesis reaction) was ,ass'ayed ·for 
i 

by Method 2 of section 3 .. 2 . 6.2 using 4C-phe-tRNA and different tr:;l.ll.sfer 

fractions. Assays for the binding of phe-tRNA (Binding' reaction) was "1arried 

ou~ as described in section 4.2.3. In the majority of the experiments 
14 . . 

C-phe-tRNA of rat liver was used (see section 3. 2 . 2) which was found to 

contain no 58 (see Figure 5.3.j). IIi contrast 14C-phe-tRNA of E. coli did 

contain 58 RNA (see Figq.re 5. 3i), but it is not expected that' the presence of 

58 RNA in this sample of-tRNA, should have interfered with the resuIts because 

it is unlikely that 58 RNA from different species 1s interchangeabl~, as has 

been found with other rRNA (Traub & Nomura, 1968b). 

5; 2.6 Measurement of Binding of 3H-poly U by Ribosome.s 

To 7 mg ribosomes and 0.125 ~c 3H-poly U in a glass tube in ice was 

added an incubation solution to give the following final concentrations in a 

total volume of 0. 7 ml, 0.25 M"7sucrose, 10 ~M-tris-HCI, pH 7.6, '60 mM-KCI 

and 2 mM - MgCI2 . The reaction mixture was incubated for 15 minutes at 240 C. 

The reaction was stopped in ice and after 10 minutes the contents layered above 

linear 5-20% (w/v) sucrose gradients containing 10 mM-tris-:-:HCI, pH 7 . 6, 
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86 mM - KCl and 17. 5 mM - MgCl
2

, They were centrifuged at25, 000 rpm in 

a Beckman SW 25.1 rotor for 1 hour, 0. 5 ml fr·actions were drop-collected, 

the even numbers of tubes used for E260 measurements and the odd tubes 

passed straight on to Millipore filters (HA 0.45), and washed twice with 

10 mM-tris-HCl buffer, pH 7. 6, ·· containing 15 mM-MgCl
2

, themillipores 

dried and counted as described for the Millipore method under section 3. 2 . 7 

using a counting efficiency of 50%. 

5.2.7 Determination of 5S RNA in Ribosomes 

5. 2.7.1 Extraction of RNA from Ribosomes for Analysis on Acrylamide 

Gels. - RNA was extracted from ribosomes by the method of Sporn & Dingman 

(1963) as follows : 1 volume of ribosomes was incubated at 25
0

C for 5 minutes 

with 1 volume of a solution ofO . 2% sodium lauryl sulphate in 2 mM-potassium 

phosphate buffer , pH 7 . O. The mixture was then shaken with 2 volumes of 

water-saturated redistilled phenol at room temper'ature for 1 hour . It was 

then centrifuged at 2, OOOg to break the emulsion, .the water phase kept, and 

the phenol phase again shaken with 1 volume of distilled water , The resulting 

water phase was added to the original water phase and the combined water 

phases reshaken twice ~ith equal volumes of phenpl . To the final water phase 

was' added 2. 5 volumes of ethanol to precipitate the RNA . This was left at 

-15
0 

C overnight and the precipitate which formed was . collected by low speed 

centrifugation. The precipitate was dissolved ir,t 0 . 1 M-potassium acetate 

buffer, pH 6. 0, and then dialysed for 48 hours against four changes each of . 

500 volumes of the same buffer . The exact volume of the final solution was 

measured , its content of RNA determined by its E
260

, the RNA again precipi ':': 

tated .with 2.5 volumes of ethanol and the final precipitate dissolved in tris 

(3. 3 .. mM)-DEBA (diethylbarbituric acid) (30 mM) buffer, pH 7. 0, containing 

O. 35 M -sucrose at a final concentration of "RNA of 1 mg/ml. 

5.2 . 7 . 2 Method of Assay of 5S RNA . - 5S RNA was assayed by acrylamide 

disc gel electrophoresis according to the method of Richards, Coll & Gratzer 

(1965) as adapted for rat liver preparations by King (1967). A 5 cm cylin-

drical column of a 10% gel , overlaid with 3 mm of a 5% spacer gel, was prepared 

in a clean dry 6 cm glass tube, diameter 5 mm , using the following solutions:-



A. Tris-HCl buffer, pH 8. 5: 5.88 g tris + 10 ml1N -HCl in a total 

volume of 25 ml, 

B. Temed (N, N, N', N' -tetramethylenediamine), .0 . 28 % (w/v) , 
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C. 40 % gel : 9 . 5 g acrylamide + 0.5 g N, N'-methylenebisacrylamide 

in a total volume of 25 ml. 

D. 140 mg ammonium persulphate in a total volume of 100 mI . 

E. Tris-HCl buffer, pH 7.6 : 1.22 g tris + 1.0 mIl N-HCl in a total 

volume of 25 ml. 

F. Reservoir solution, tris (3.3 mM)-DEBA (30 mM) buffer, pH 7.0 : 

808 mg tris + 11.052 g DEBA in a total volume of 2 litres. 

The 10% gel was prepared by mixing 1 part A + 1 part B + 2 parts C + 4 parts D. 

This was placed under vacuum for 30 seconds to remove air bubbles . 

The 5% spacer gel was prepared by mixing 1 part distilled water + 1 part E + 

1 part B + 1 part C + 4 parts D. Air bubbles were removed as with the 10% 

gel. 

The gels were prepared in glass tubes, placed vertically with bottoms 

stoppered, by filling ·up to the 5 cm mark with the 10% gel, while preventing 

the formation of air bubbles . The upper miniscus of the gel was straightened 

by overlaying it with about 0.05 ml of distilled water after which it was left 

in the light until set (10-20 minutes) . The overlay of water was then removed , 

the gel blotted dry and a 3 mm layer of the 5% ·spacer gel formed above the 

10% gel in the same way . The glass tubes containing the gels wer:e then placed 

in the electrophoretic apparatus (Canalco) which contained the Reservoir 

solution from which all air bubbles were removed. The sample of RNA (50 or 

100 ~l) was then placed over the gel, the current swtiched on (5 m amp per 

tube), and electrophoresis allowed to continue for 20 minutes with the positive 

electrode in the lower reservoir. After this the gels were extracted from the 

tubes using glycerol and a thin metal rod. The gels were stained for 12 hours 

in a solution containing 2% acridine orange, 1% lanthanum acetate and 15% 

acetic acid . The gels were destained in .the same Canalco apparatus in 7% 

acetic acid under an electric current (10 m amp per tube) . The gels were 

scanned in a Model F Canalco high-resolution electrophoresis microdensito- . 

meter and the concentration of the different 5S RNA bands compared by cutting 

out the densitometer tracings of these bands and weighing them . 

The 5S RNA band was identified by the distance it travelled during elec­

trophoresis. This was originally established for the ann::lr::ltllQ onrl ,,~~,J:L: ---
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used in this laboratory by King (1967) . Experience showed that the buffer in 

which the RNA was suspended had little eff 3Ct on this distance, which was con­

stant, provided the current and time applied were constant. 

5. 2. 8 Examination of Proteins in Ribosomes. 

After preliminary studies to find the best method for extracting the 

proteins from the ribosomes and the optimum cQnditions ·for disc gel electro­

phoresis (see section 5. 2.8.3) the following procedures were adopted. 

5.2 . 8.1 Extraction of Proteins from Ribosomes. - This was based on the 

method of Spitnik-Elson (1965). To 9 ml ribonucleoprotein particles in Medium 

A (any of poly somes , ribosomes and ribosomal subunits at a concentration of 

between 3-6 mg per ml solution) was added 9 ml of a solution containing 

6 M-LiCI and 8 M- urea. This was well mixed and left at 4
0

C for.24 hours. 

The precipitate which formed was centrifuged down at 6, OOOg for 10 minutes 

and the resulting supernatant retained . The precipitate was washed twice 

with a solution of 3 M-LiCI and 4 M-urea (10 ml per wash) and the washings 

added to the original supernatant . To this ·total supernatant fraction was 

added an equal volume of cold 20% TCA which was then left for 16 hours at 

4
0 

C . The precipitate which formed was collected by centrifugation and 

washed twice with ether . Hereafter all solutions were made up with deionised 

water. The final precipitate was dissolved in a solution of 0.1 M-HCI and 8 

M-urea. (3 ml was used per 9 ml of the original suspension of ribonucleo­

protein of which the concentration was 6 mg per ml. For other concentrations 

the volume was adjusted accordingly: . .) This solution of protein was then 

dialysed against 100 volumes of a solution of 0 . 1 M-HCl and 8 M-urea for 

16 hours. After dialysis any undissolved material was removed by low speed 

centrifugation, and the clear solution was used for the examination of the 

proteins present. 

5. 2 . 8. 2 Disc Gel Electrophoresis of Proteins . - Using the identical conditions 

and apparatus described in section 5. 2.7.2, 15% gels 4 cm long were made and 

run using the follOWing solutions which were all prepared using deionised water. 

G. 5. 6 g KOH + 4 ml Temed + acetic acid to pH 4 . 3 and H
2

0 to 100 ml. , 

H. 60 g acrylamide + 0.4 g N, N .... -methylenebisacrylamide + H ° . 2 
to 100 mI . , 

1: 4 mg ammonium persulphate in 6 mIlO M-urea (made freshly just 
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.r: Reservoir solution: 12.48 g 6 -alanine + 3.34 g glycine + water 

and acetic acid to pH 4.4 and 1, 000 mI. 

The gels were prepared by mixing 1 part G with 2 parts H and 5 parts I using 

the procedure as described in section 5.2. 7 .2. 

For analysis, 20]11 of ribosomal proteins were placed on the gels and 

electrophoresis continued for 2 hours applying a current of 4 m amp per 

tube with the negative electrode in the lower reservoir. The gels were stained 

in a . solution of 0 . 02% amido black in 7.5% acetic acid overnight (4 hours was 

sufficient). The gels were destained in an apparatus designed by the author 

and his colleague, Mr . Albrecht, and shown in Figure 5. 1. The method of 

destaining was found to be superior to any other tried in this laboratory. The 

length of the apparatus and its different compartments is immaterial and can 

be made according to need. The division of the apparatus into compartments 

was done so that the full use of the applied current could be made when only 

2 to 3 gels were being destained. A current of 100 m amp was capable of 

destaining 3 gels 4 cm long in a 15 cm compartment in 30 minutes without 

causing any damage to the gels . 

Gels prepared as described above were generally not scanned but photo­

graphed and compared visually. This was found sufficient for the purpose of 

these experiments which was to determine whether any of the proteins had been 

completely removed, or greatly reduced in concentration, from the ribosomes. 

5.2 . 8. 3 Discussion of the Methods Used to Prepare and Separate Ribosomal 

Proteins. - Since the methods by which the ribosomal proteins can be extracted ., 

and analysed on acrylamide gels are of primary importance here, a brief 

review of these is given below . A brief discussion of the different methods 

tried is also included here because although it is realized that they fall under­

results their inclusion in that section would detract , from the main results. 

When this tMrork was started the methods available for the extraction 

of ribosomal proteins were the following: extraction with 66% acetic acid (Wall~r 

& Harris, 1961), dialysis against 6 M -urea (Spahr, 1962), treatment of ribosomes 

with 2 .M-LiCI (Chao, 1961), dialysis against 1 M-NaCI (Spitnik-Elson, 1962) 

and treatment with 3 M - LiCI containing 4 M -urea (Spitnik-Elson, 1965). The 

extractants used reacted with the ribosomes from different cells in different 

ways, and some of the heterogeneity of the isolated proteins could be attributed 

to the effect of the chemicals used. The method in which 3 M- LiCI plus 
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4 M-urea was used gave the most consistent results and has been most widely 

used in recent work, and was therefore adopted in the present study. It 

causes virtually complete precipitation of ribosomal RNA and complete solu­

bilization of the proteins . A second solution tried here for the extraction 

of ribosomal proteins, was 0. 1 M-HCI plus 8 M-urea . This was used by 

Mackay, Hilgartner and Dounce (1968) for the extraction of proteins from 

nuclei . According to them this was superior to either O. 1 M - HCI or 

8 M-urea alone, and since urea had also "Jeen used to extract the proteins 

from ribosomes, it was thought likely that 8 M-urea containing 0. 1 M-HCl 

would be superior for this than urea alone . 

In the method of Spitnik-Elson (1965) the final protein precipitate ob­

tained was dissolved in 0 . 01 M-HCl. However such a solution was not suitable 

for direct analysis on acrylamide gels because of its low density. Therefore 

various modifications of this step were tried as described below : 

Modification 1. The proteins were dissolved in 0 . 01 M-HCI and 

dialysed against 0 . 1 M-HCI containing 8 M-urea . 

Modification 2 . The proteins were dissolved in 0 . 1 :, -HCI con-

taining 8 M-urea instead of 0 . 01 M-HCl. This so­

lution was then either not treated further or it was 

dialysed against 4 changes of 100 volumes of 0 . 1 M-HCI 

plus 8 M- urea for 24 hours . The dialysed solution 

was centrifuged at 5, OOOg to remove undissolved 

material. 

Modification 3. The proteins in 0 . 01 M-HCI were dialysed against 4 

changes of 100 volumes of 0 . 125 M-H SO for 24 
2 4 

hours and then precipitated with 10 volumes of acetone . 

(It was not possible to precipitate the ribosomal 

proteins dissolved in 0 . 01 M-HCI). This precipitate 

was then dried in air and weighed out amounts then 

dissolved in 0.1 M-HCI containing 8 M-urea . The 

purpose of drying the protein was to determine the 

exact amounts of ribosomal proteins added to the gels . 

The analysis of the above solutions on different acrylamide gels is discussed 

later in this section. 

Basic proteins, as the ribosomal proteins predominantly are, are 

usually analvseci on 0'",1", ,...""' .. ~;- ;-- - .,. • --
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the cathode. Nearly all the work has been done using the method of Reisfeld, 

Lewis & Williams (1966) or a modification of this in which 6-8 M-urea was 

included in the gel and slightly different reservoir solutions were used. In 

the present work 3 variations of this procedure were tried as outlined below 

(Methods a-c). In addition the proteins were also run on a basic gel (Method 

d). All gels were 4.8 mm diameter, length 6-12 cm. 

Method a: 7.5% gel, pH 4.3, overlaid with a 5 mm 3% spacer, pH 6.2. 

Reservoir solution contained 3 .12%. ~-alanine, 8 M-urea 

and was adjusted to pH 4.5 with glacial acetic acid. 

(0.4% bisacrylamide) (Traut 1966). 

Method b: 15% gel, pH 4.3, overlaid with a 3 mm 3% spacer, pH 6.3. 

Reservoir solution contained 0.56% glycine and was adjusted 

to pH 4.3 with glacial acetic acid. (0.4% bisacrylamide). 

(Comings, 1967). 

Method c: 15% gel, pH 4.3, no spacer. Reservoir solution contained 

1. 25% ~-alanine and 0.334 % glycine adjusted to pH 4.4 with 

glacial acetic acid. (0.4 % bisacrylamide). 

Method d : 15 % gel, pH 8.6, no spacer, reservoir solution as for 

Method C. (2. 0% bisacrylamide) . This gel was. similar to 

the small pore gel used for the analysis of RNA as described 

in section 5.2.7.2, except that it was double the con centra-

tion. 

The values in the square brackets represent the concentration of N, N'­

methylenebis-acrylamide used in the crosslinking of the .. gels. The concentrations 

of urea, temed, and other chemicals and preparation of the .gels were as de­

scribed in section 5.2.8.2. 

To eliminate the possible loss of proteins during the preparation of 

washed ribosomes, these methods were tested out on polysomes. The results ob­

tained by the different procedures are shown in Figure 5.2. Extraction with 

3 M-LiCl plus 4 M-urea was superior to 0.1 M-HCl plus 8 M-urea (compare 

gels f and g) since the latter method extracted variable amounts and numbers of 

proteins. Thus in gel g a number of proteins, especially those which move faster 

than band 14, were missing. This was not always the case when this ex­

tractant was used, however, as can be seen in gel a where a full complement 

of bands was present. These inconsistencies were probably due to the buffering 
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effect of the ribosomal pellet, which, in turn, depended on how well the pellet 

was drained of the buffer used during the isolation, before the start of the 

extraction. This defect could p<;>ssibly be overcome by dialysing the ribosome 

suspension against 0.1 M-HCI plus 8 M-urea. 

There was nothing to choose between the 3 methods of dissolVing the 

extracted proteins prior to placing them on the gel for electrophoresis. There­

fore Modification 2, which was most convenient was used. The solutioq. was 

usually dialysed against 0.1 M-HCI plus 8 M-urea and centrifuged before use 

to ensure that the pH was constant and not affected by any residual TCA tn the 

pellet. 

The gels prepared in acidic buffer (see c and d) were better than those 

in alkaline buffers (see h). There was no advantage in using long gels, like 

those used by Traut (1966), especially if the gels were to be photographed, 

because of the decrease in the definition and sharpness of the different bands 

in these cases . With all the gels tried however, even when using solutions from 

which undissolved material had been removed, there was a fairly high propor­

tion of protein which did not move into the gels . 

A spacer gel did not seem to offer any advantage so it was not used 

in routine work. In those instances where a spacer was tried it was apparent . 

that not all the protein,. which failed to move into those gels run without a spacer, 

was denatured, since a high proportion of this moved into the spacer (see gels 

a and b). The fraction therefore that did not move into the small pore gels 

needs investigation. Since polysomes were used in these preliminary tests, 

it may be that some of the protein was not of true ribosomal origin, e. g. the 

protein could have· been nascent protein still sttached to the ribos6mes; this 

would not be of interest in the present work . 

Of t1).e three reservoir solutions tried, that with glycine alone (Method b) 

resulted in a better spread of the proteins in the gels (see gel a) . The·main 

disadvantage with this buffer, however, was that the sharpness of the bands was 

poor, especially.those moving further down the gels. Another dLadvantage was 

that this method wa,s dependent on the pH of the added solution of proteins, and 

in the instances when this was above pH 5, many of the proteins moved with the 

buffer front. This latter disadvantage could be overcome by dialysing the so­

lution of proteins against 0. 1 :L-HCI plus 8 M-urea. The reservoir. solution 

which was found to be best, was the one containing both glycine and (3-alanine 
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FIGURE 5.2 

b c d e f g 

EXTRACTION OF POLYSOMAL PROTEINS BY DIFFERENT 
PROCEDURES AND ANALYSIS ON DIFFERENT ACRYLAMIDE GELS 

h 

The Modification and Methods referred to here are those described 

under 5.2.B.3. The different letters represent: 

a 

b '" 

Proteins extracted with O.lM Hel + BM urea analysed on a 
gel (6 cm) prepared by Method b. 

Proteins extracted with 3M LiCl + 4M urea using Modif i cation 3 
with O.35M sucrose, and analysed on a gel (B cm) prepared by 
Method a. 

c Proteins extracted as b using Modification 2, ana l ysed on a 
gel (5 cm) of Method c . 

d • Proteins extracted as b using Modification 1, analysed as c. ' 

e Proteins extracted as b using Modificat i on 1, analysed on 

f 

g 

h 

gel (4 cm) of Method c but with reservoir so lu tion of Method a. 

Proteins extracted as b us i ng Modification 3 and analysed as e 
(gel 5 cm). 

Proteins extracted as a and analysed as e (gel 5 cm) . 

Proteins extracted as b using Hodification 2 and analysed on 
gel (4 cm) of Hethod d . 

All gels. except band h, were run us i ng a curren t 4 m amp for 

2 hour s . l.' i th' b th i s was 6 m am p for 45 minutes and h 4 m amp for 

2.5 hours. Enlargement of ' photographs = 2. 



(Method c) as judged by the good definition and sharpness of the different 

bands that was obtained (see gels c and d) . 
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These observations led to the decision to routinely extract the proteins 

with 3 M- LiCl and 8 M- urea using Modification 2, and to analyse these pro­

teins on gels without spacers in acidic buffer using the mixed reservoir 

solution of Method c above . The details of the methods used are described 

in section 5 . 2 . 8 above . 

5 . 3 RESULTS AND DISCUSSION 

5 . 3 . 1 A Fraction Separated by Molecular Exclusion with E260 Higher than 

E Found to Stimulate the Activity of Ribosomes 
-280 

As has been mentioned, the purpose of this work was to determine the 

reasons for the differences in activity between R-, M- and S- ribosomes . A 

lead was taken from some odd results obtained during the fractionation of the 

partially purified transfer fractions, TF and TF- AS, on Sephadex columns . 

During this work it was sometimes found that a peak, with E
260 

higher than 

E
280

, was eluted just after the main protein peaks . This peak is illustrated 

by the large dashed line under area C of Figure 4 . 1 of Chapter 4. With the 

initial idea that this fraction may have had something to do with the separation 

of a transfer factor it was tested for its effect on the activity of different 

ribosomes and the results of the experiment are shown in Table 5. 1. When 

TF was a source of transfer enzymes, this fraction was able to stimulate 

the activity of R- ribosomes (17%) and especially of M-ribosomes which had 

been twice washed with 0.1 M- MgC1
2 

(80%), while it had little or no effect on 

S- ribosomes (3%) . The fraction was inactive by itself. 

Shortly after this finding more care was taken to standardise the con­

ditions used for fractionation of the partially purified transfer enzymes. 

When this was done the peak with high E
260 

(peak C of Figure 4 . 1) disappeared 

altogether and it was concluded that it was not a transfer enzyme. Once it was 

known that the differences in activity of the various ribosomes were not related 

to their content of transfer enzymes (see chapter 4) it was decided to look for 

the factor in the fraction from peak C of the original chromatogram which was 

responsible for the stimulation in activity of some ribosomes and not others. 

At first it was not possible to obtain this fraction except by chance . The reason 

for its spasmodic appearance was not then known . It was however then found 
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Table 5. 1 Stimulatory Effect of a Fraction from Sephadex columns 

with a high E on the Activity of Different Ribosomes 
260 

Polyphenylalanine synthesis was assayed using TF as the source of 

transfer enzymes and 14C-phe- tRNA (6,310 cpm added) prepared from rat 

liver . The fraction with high E260 was dialysed against 500 volumes of 

Medium X for 6 hours before 0.2 ml aliquots were used in the assay. Aliquots 

of 0.2 ml of Medium X were added to the controls. Incubation was for 15 

minutes . 

Polyphenylalanine synthesis % increase 
(cnm/0 . 2 me: ribosome) 

TF TF + fraction 

alone with high E260 

S-ribosomes 2 , 115 2 , 180 3 

R-ribosomes 1 , 465 1 , 709 17 . 

M-ribosomes washed 515 925 80 

twice with 0. 1 M- MgCI
2 

that the fraction could be obtained by using a more alkaline buffer to prepare 

the liver homogenate from which the cell fractions were obtained. Because 

of the higher E260 , which suggested an increased amount of nucleic acid in 

the fraction, it was thought that fraction C might contain more RNA, and th~.t 

.this RNA might be responsible for the stimulation in the activity of ribosomes. 

For this reason an attempt was made to extract the RNA in this fraction by a 

method similar to that used for the extraction of tRNA as described in section 

3.2 . 2, with a view to characterizing it on acrylamide gels . 

No RNA however, could be extracted from fraction C, or for that 

matter from either of the partially purified transfer fractions, TF or TF-AS . 

When an excess of the p:- ~ 5 supernatant, prepared from liver homogenised in 

a buffer similar to Medium A except .that the pH was adjusted to 9.6, ' was 

passed over a similar Sephadex column to that used in Figure 4 . 1 it was pos­

sible to extract a small amount of RNA from the area coinCiding with area C 

of this figure , When this RNA was analysed on acrylamide gels several bands 

of RNA were obtained (a of Figure 5. 3) and one of thl'>QO ",,;~~~...J _ ..J __ _ " , " 
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band of ribosomal-RNA (b of Figure 5.3) . Although the identity of the 

fraction with 5S RNA was not definitely established, it seemed possible that 

5S RNA might be present in the particle-free supernatant of rat liver which 

was homogenised in an alkaline buffer . 

5 . 3. 2 Amount of 5S RNA Associated with Ribosomes 

In view of the above results it was decided to investigate whether 

there was any relationship between the content of 5S RNA in ribosomes and 

their activity . The amount of 5S RNA in R- , M- and S-ribosomes was mea­

sured and compared with the activity of these ribosomes in both the synthesis 

of polyphenylalanine and the binding of phe-tRNA . These results are shown in 

Table 5. 2 . It was found that the three ribosomes differed considerably in 

their content of 5S RNA; R- and M-ribosomes normally contained less 5S RNA 

than did S-ribosomes, the relative amounts being nearly the same as the 

ratio of their activities . This relationship was therefore investigated further 

using methods which were fortuitously found to reduce the activity of ribo­

somes . This was done by the washing of ribosomes with solutions of mag­

nesium chloride or with alkaline buffers. 

5 . 3 . 2 . 1 The Effect of Washing Ribosomes with Solutions of Magnesium 

Chloride . - It was found that the use of 0 . 1 M instead of 0 . 01 M-MgC1
2 

during the washing procedure in the preparation of M-ribosomes, resulted in 

a reduction of their activity in both~ the synthesis and binding reactions (Table 5 . 3) . 

It also resulted in a decrease in the amount of 5S RNA associated with the 

ribosomes. The effect of washing R- and S-ribosomes with solutions of 

MgC1
2 

was then tested. These results are also shown in Table 5.3 . Again 

it was found that this treatment resulted in a decrease in the activity of ribo­

somes in both reactions and in their content of 5S RNA . The effect however 

differed somewhat with these two preparations . With , -ribosomes the corre­

lation between the loss of activity and the loss of 5S RNA was fairly good 

while that with S-ribosomes was bad . With the latter, the decrease in activity 

in both reactions was far in excess of the amount of 5S RNA removed . The 

reasons for this are not known and are discussed later . 

By contrast, it was found that when using the same preparations of R-ribo­

somes as in Table 5. 3, this washing with high concentrations of MgCl had no 
2 

effect on the capacity of the ribosomes to bind 3H-poly U (Figure 5.4). Thus, 

the decrease in the binding of phe-tRNA and polyphenylalanine synthesis did not 
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FIGURE 5.3 THE 5S RNA IN DIFFERENT FRACTIONS 

Samples containing RNA were assayed for 5S RNA by acrylamide 

(disc) gel electrophoresis as under 5.2.7.2. 

a RNA from pH 5 supernatant, extracted with phenol as under 3.2.2. 

b RNA from S-ribosomes, extracted as under 5.2.7.1. 

c Extract from S-ribosomes treated with tris-acetate buffer at 
pH 10.5 as under Table 5.7. 

d RNA from R-ribosomes, extracted as under 5.2.7.1 but suspended 
in the tris-acetate buffer, pH 10.5 used in Table 5.7. 

e Purified 5S RNA prepared by the sodium lauryl sulphate/phenol 
method under 5.2.4.1. 

f Fraction released from 2 mg S-ribosomes with EDTA as under 5.2.4.2. 

g Fraction released from 2 mg S-ribosomes with EDTA in the absence of 
bentonite and left at room temperature for 1 hour before cont:inuing 
as under 5.2.4.2. 

h RNA from R-ribosomes, extracted as under 5.2.7.1. 

i 14C-phe-tRNA from E. co l i purchased from NEN. 

j 14C-phe-tRNA prepared from rat liver as under 3.2.2. 

Gels h and j were run at 6 m amp for 25 minutes. In e, f and h 

the spacer gels are missing. These photos have been placed so that the 

5S ~~A bands coincide. Enlargements of photographs • 2. 



TABLE 5. 2 
_ ~inding of 14C-phe-tRNA and synthesis of 

14C-polyphenylalanine by different preparations 

of ribosomes 

Ribosomes were prepared as described in section 4. 2 . 1. The length 
14 ' 

of incubation for the synthesis reactions was 30 minutes using . C-phe-tRNA 
++ . . 

from rat liver. · The concentrations of Mg used in the synthesis reactlOns 

with the three ribos01ne types were 13 mM for S-ribosomes, and 8. 5 mM for· 

both R- and M-ribosomes . The size of the 5S RNA peak was determined by 

cuttingoutthedensitometertracingof the peak under question and expressing 

the weight in mg. 

Activity 

Size of Binding of Incorporation of 
14 

C-phe- tRNA 14C- phenylalanine 5S RNA 
Ribosome peak (cpm/0 . 4 mg (cpm/0 . 2 mg ribd-

type ribosome) somes) 

(Weight of Source of transfer 
factor 

tracing-mg) 

TF 
pH 5 

supernatant 

S- 10 . 3 745 3,320 3,600 

R- 6. 2 310 1,905 2,610 

M- 6. 1 278 1,868 2,540 

5. 3. 2 . 2 The Effect of Washing Ribosomes with Alkaline Buffers.- !twas 

at this stage of the work that it was observed that the pH of Medium A became 

more alkaline on standing, and often increased from pH 7. 6 to pH 8. 6 or more 

on standing for more than 20 days . Therefore, experiments were carried out 

in which the partially purified transfer fraction, TF, was made from homo­

genates prepared in more alkaline buffers and passed over Sephadex columns . 

In these cases the band with high E
260 

was obtained (C of Figure 4 . 1). This 

explained why this peak was not always obtained . The reason why the RNA 

in fraction C was not degraded by RNases was probably because of the pro­

tection afforded by the RNase inhibitor known to be present in the cell sap. 
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(Compare the action of RNase in the fractions washed from ribosomes by 

alkaline treatment, see se~tion 5. 3.4:.) For this reason, and because a 

more alkaline buffer was used during the washing of R-ribosomes, which 

contained less 5S RNA than S-ribosomes, it was thought likely that treat­

ment of ribosomes with alkaline buffers might remove 5S RNA from them. 

R- and S-ribosomes were therefore treated with buffers of different pH 

values and a comparison ;,nade of their activity and content of 5S RNA. ' These 

results are shown in Table 5. 4. Dialysis of both R- and S-ribosomes against 

a buffer at pH 10 . 8, a fairly prolonged treatment, drastically reduced both 

the amount of 5S RNA associated with them and their activity. The results 

of experiments in which the ribosomes were treated in the same way except 

that a neutral buffer was used are included for comparison to show that the 

effect measured was caused by the alkaline solution and not just by the length 

of dialysis . (The role of RNases here is discussed in the next section). 

When S- ribosomes were exposed for shorter p ;,riods to pH values ranging 

from 8. 0 to 10 . 0 when using weaker buffers, a graded reduction in the amount 

of 5S RNA retained on the ribosomes was obtained which nearly paralleled 

the decrease in their activity in the binding reaction . A lesser effect, above 

pH 8. 6, was found to occur with the synthesis reaction. 

All the above results, showing a correlation between the amount of 

5S RNA on ribosomes and their activity gave the impression that 5S RNA may 

in some way be associated with this activity . If this were true, the experiments 

in which a decrease in both the activity and the content of 5S RNA of ribosomes 

was shown, but in which the correlation was bad, would also suggest that other 

factors connected with the activity of ribosomes were removed by the methods 

used to wash them . On the other hand, these experiments might be an indication 

that the noted correlation was only circumstantial and unrelated . Further ex­

periments were carried out to test this and are described in the following sections. 

5.3 . 3 Reversibility of the effect of loss of activity caused by the different 

washing procedures . 

It was the purpose here to determine whether the decrease in the activity 

of ribosomes caused by their washing with solutions of MgCI or alkaline buffers 
2 

could be reversed . The results in Tables 5. 5 and 5. 6 show that the decrease 

in the activity of ribosomes caused by washing them with solutions of MgC1
2 

or alkaline buffers could be partially reversed by removing these soluti~ns by 
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TABLE 5. 3 - Effect of washing with MgCl 2 on Composition and 

Activity of Ribosomes 

Ribosomes were treated with MgCl
2 

as indicated . The final conc . 

of Mg ++ during assay of the synthesis reaction was 8. 5 mM in all cases : 

incubation was for 20 minutes (S- and R- ribosomes) or 30 minutes 
14 

(M- ribosomes) in the presence of C-phe-tRNA and pH 5 supernatant, 

both prepared from rat liver . Results for the different ribosomes cannot 

be compared because they were done on different occasions . The size of the 

5S RNA peak was determined as in Table 5. 2 . 

No . of washes Size of 5S Binding of Incorporation 
Ribosome 

with MgCl
2 RNA peak 

14 14 
C-phe-tRNA of C-phe 

type 
(Weight of (cpm/0 . 4 mg (cpm/0 . 2 mg 

O. OlM O. lM 
Tracing- mg) ribosome) ribosome) 

M- 3 0 6 . 1 278 2110 

1 2 2 . 6 49 600 

R- 0 0 8. 8 506 1555 

1 0 6 . 3 444 128'0 
2 0 3. 3 278 .764 
0 2 1.9 203 225 

S - O 0 8.4 680 1429 
2 0 6 . 2 160 340 
0 1 6 . 8 168 366 
0 2 2 . 6 132 198 
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Figure 5.4 Binding of 3H_poly U by R-ribosomes differentially washed in WgC1
2 

Tbis was done a. described in 8ection 5.2.6. 
as those of Table 5.3. 

The R-ribo8oae8 used were the same 

-1 2000 

cpm ---

I 1000 



101 

TABLE 5. 4 - Effect of 'I1rmtment with Alkaline Buffers on 

Composition and Activity of Ribosomes 

In (a) ribosomes were dialysed for 3 hours against 200 vols. 10 mM­

tris - acetate buffer, adjusted to the pH stated,which contained 100 mM­

potassium acetate and 1 M-magnesium acetate. Ribosomes were then 

centrifuged down and resuspended in the buffers in which they were originally 

suspended . 

In (b) ribosomes were prepared as usual, except that the' solution 

containing 0 . 25 M-sucrose, 0 . 0175 M-KHC0
3 

and 2 mM-MgCl
2 

used for 

washing after treatment with deoxycholate was adjusted to the pH stated . 

14C- phe- tRNA from rat liver was used in (a) and from E . coli in 

(b) . Incubation in the synthesis reaction was for 15 minutes in the presence 

of pH 5 supernatant and a final concentration of Mg ++ of 10 mM . The amounts 

of 5S RNA were determined as in tabl e 5. 2 . 

System 
Amounts of Activity 

5S RNA in (cpm/0 . 2 mg ribosome 

ribosomes 
Binding Synthesis 

(weight of reaction reaction 

tracings-mg) 

(a) S- ribosomes untreated 8. 4 389 1116 

dialysed at pH 7. 4 8.0 234 1172 

dialysed at pH 10 . 8 0 . 3 40 134 

R-ribosomes untreated 6 . 2 274 892 

dialysed at pH 7. 4 5. 8 215 441 

dialysed at pH 10 . 8 0 . 2 66 60 

(b) S- ribosomes normal, pH 8. 0 6. 6 1788 4855 

washed at pH 8. 6 6 . 2 1423 5094 

washed at pH 9 . 2 4 . 9 1152 4336 

washed at pH 10 . 0 4 . 3 651 4128 
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TABLE 5.5 - Reversibility of effect of high concentration of 

magnesium on the activity of ribosomes in the 

synthesiS of polyphenylalanine 

R-ribosomes in solution R were made O. 25M with respect to MgC1
2 

and left to stand for 15 min. In (ii) ribosomes were then pelleted, suspended 

in an excess of solution R (1 mM-MgC1
2

) for 14 hours, repelleted and re­

suspended in solution R. In (iii) ribosomes were dialysed for 14 hours 

against 500 volumes solution R before pelleting and resuspending in solution 
14 · . 

R. Activity of ribosomes was measured after 15 minutes using C-phe-tRNA 
. ++ 

from rat liver, pH!:, supernatant and 8.5 mM-Mg 

Treatment of ribosomes Polyphenylalanine synthesis 
(cpm/0.2 mg ribosomes) 

(i) Untreated ribosomes 956 

(ii) Ribosomes pelleted at high 126 
++ 

Mg conc . 

(iii) Ribos.omes dialysed against low 246 
++ Mg conc. before peUeting 

TABLE 5. 6 - Reversibility of effect of alkaline pH on the activity 

o.~ ribosomes in the synthesis of polyphenylalanine 

R-ribosomes in solution R were dialysed for 3 hours against 500 vo­

lumes of the same buffer adjusted to pH 10.8 with KOH. 

In (ii) ribosomes were then peUeted and resuspended in solutfon R. In 

(iii) ribosomes were first redialysed against 500 volumes of solution R before 

being pelletted and resuspended in solution R. Peptide synthesis w~s measured 

after 20 minutes incubation with 14C-phe-tRNA from rat liver, pH 5 s~pernatant . 
++ and 8.5 mM-Mg . 

Treatment of ribosomes 

(i) Untreated ribosomes 

(ii) Ribosomes pelleted at pH 10. 8 

(iii) Ribosomes redialysed against 
pH 7. 6 buffer before pelleting 

14 Incorporation of 
C-phe into peptide 

(comiO.2 mg ribosome) 

1020 

46 

250 
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by dialysis prior to pelleting of the ribosomes . The effect was most striking 

in the case of the alkaline treatment, but in both cases the activity was 

restored to only abo~t 25% of that of the original ribosomes . Probably these 

effects were not completely reversible because of damage to the ribosomes, 

as may happen if the ribonucleases, known to be associated with ribosomes, 

were to hydrolyse the ribosomal RNA during the unfolding of the ribosomal 

structure, which probably occurred. 

5. 3. 4 Effect of Addition of 5S RNA and Other Fractions to depleted Ribosomes 

When it was found that there was a correlation between the activity 

of some ·ribosomes and their content of 5S RNA, and that the loss of activity 

caused by some treatments could be reversed, the effect of addition of purified 

5S RNA and of other fractions to ribosomes, known to be depleted of 5S RNA, 

was tested . 

In the first experiments the effect of adding back the fractions obtained 

from ribosomes on treatment with MgC1
2 

and alkaline buffers was measured . 

Rather conflicting results were obtained in this case, as in most instances it 
/ 

was found that the addition of these washings to depleted ribosomes either 

had no effect or actually caused a decrease in the activity of the ribosomes 

(see experiment c of Table 5. 8) . Only in a few instances did the added 

fractions have a stimulatory effect, and this was only when they were isolated 

rapidly and used without delay . Even under these conditions active fractions 

were obtained only on some occasions , and particularly seldom when the al­

kaline treatment was used . The results of an experiment where stimulation 

was found is given in Table 5. 7. Here the fractions were prepared from 

S-ribosomes by treatment with 0.5 M-MgC1
2 

and 0.4 M-tris-HCl, pH 10.5 

(final concentrations) respectively . When these active fractions were analysed 

on acrylamide gels, faint ~ands wer.e obtaLed which coincided with that of 

the 5S RNA band of ribosomal RNA (see c of Figure 5.3). Unluckily the gel 

in which the fraction obtained from treatment of S-ribosomes with 0.5 M-MgCl 
2 

was measured had dried up before it could be photographed, but it was similar 

to that of c in this figure. The fractions which had no stimulatory effect also 

showed no bands on electrophoresis . It is possible that the 5S RNA released 

from the ribosomes was destroyed by RNases which became active during the 

unfolding of the ribosome, especially that at high pH values. In the case where 

the fraction containing 5S RNA was prepared from the cell sap (see section 5.3.1) 
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it was protected by the presence of RNase inhibitors known to be present. 

These results are by no means conclusive but present Lrther circumstantial 

evidence for a connection between the presence of 58 RNA on the ribosome 

and its activity in protein synthesis. 

To try and get more proof of this, purified 58 RNA was added alone 

or with one of these fractions. The 58 RNA used here was considered to 

be pure because it moved as a single band when analysed by gel electrophoresis 

(e of Figure 5. 3). Addition of 58 RNA to ribosomes depleted of this RNA 

did not give clear-cut stimulation in either of the binding or synthesis reactions. 

Instead, results typified by those in Table 5. 8 were obtained. In these ex­

periments binding was measured at both OOC and 370 C. This was done because 

Nomura, Lowry & Guthrie (1967) claimed that much of the binding measured 

at 37
0

C in 20 mM-MgCI2 was non-specific. This was shown in th~ experiments 

carried out here since it was calculated that as many as 4-6 of rat liver, 

or 8-12 of E. coli, 14C-phe-tRNA's were bound per ribosome at 20 mM-MgCI
2

. 

It was thought that measurement of binding at OOC would enable a correction 

to be applied. An alternative approach wo~ld have been to measure binding at 

5 mM-MgCI2 · This was tried, but in all cases the binding was found to be 

lower when a source of transfer enzymes was added than without it; hence 

this approach was abandoned. As shown in Table 5.8 (a) and (c), addition 

of purified 58 RNA decreased the binding measured at OOC while the binding 

a i; 37
0

C was unchanged, so that the net binding was more than 50% higher 

with 58 RNA. On the assumption that at OOC 58 RNA and phe-tRNA competed 

for tRNA-bindin~ sites and therefore binding of 14C-phe-tRNA was decreased 

in the presence of added 58 RNA, there could be two explanations for these 

results: 

(i) the increase measured at 37
0

C was due to the binding of 58 RNA 

to its available binding sites, this temperature being necessary 

for binding. As a result more sites were available for the 

b· d' f 14 rn rng 0 C-phe-tRNA than were present in the absence of 

bound 58 RNA, 

(ii) th . 0 . e Increase at 37 C was due to the replacement of the 58 RNA 

on the tRNA binding sites by 14C-phe-tRNA because the latter 

had a higher affinity for this site at 370 C. 



Table 5. 7 - Effect of fractions washed from ribosomes able to 

partially stimulate the activity of ribosomes 
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Two fractions were prepared by making S-ribosomes respectively 

0. 5 M with respect to MgC1
2 

or 0. 4 M with respect to tris-H;l, pH 10 . ,5, 

and immediately spinning these at 100, OOOg for 30 minutes and dialysing 

the resultant supernatants against 500 volumes of Medium X for 60 minutes 

to lower the concentrations of MgCl
2 

or tris-HCl and also the pH of the 

latter . These fractions showed faint bands which coincided with those of 

5S RNA when analysed by 'disc gel electrophoresis (see c of Figure 5.3). 

In the assays R-ribosomes washed twice with 10 mM-MgC1
2 

were used and 
o 14 

synthesis was measured after 15 minutes incubation at 37 C using C-phe-

tRNA from rat liver, pH5 supernatant and 8. 5 mM-Mg 
++ 

Additions to Polyphenylalanine synthesis 

assay system (cpm/0 . 2 mg ribosomes) 

No additions 842 
-

+ Mg-wash 1,035 

+ pH 10-wash 931 

To choose between these two explanations another experiment measuring 

the effect of 5S RNA was carried out and the results are shown in (b) of 

Table 5.8. Here ribosomes were pre- incubated at 370 C with 5S RNA and 

then re- isolated . When these ribosomes were assayed for activity a 25% 

increase in the total activity of the binding reaction at 370 C was obtained and 

nearly all this increase could be accounted for by the increase which took place 

at OOC (an increase of 62%). This result was in agreement with the proposal 

given under (i) above, and shows that the incubation at 370 C was necessary 

for the binding of 5S RNA to its site on the ribosome and not for the binding of 

phe-tRNA, which was dependent on this attachment of 5S RNA. This pre­

incubation of 5S RNA with ribosomes had little or no effect on the synthesis 

reaction . The inclusion of the pH5 supernatant, GTP or GSH in any of these 

reactions had no stimulatory effect. This ind\. cated th: t other factors, re-

sponsible for the synthesis of peptides by ribosomes, were removed from 

ribosomes during their washing. 



106 

TABLE 5 . 8 - Effect of Purified 5S RNA on the Activity of 

R- ribosomes 

5S RNA was prepared by the sodium lauryl sulphate/phenol method 

as described in section 5. 2.4. The amount added was equivalent to that 

expected to be associated with 1-2 equivalents of ribosomes . Mg-washings 

were prepared by making S-ribosomes O. 5 M with respect to MgCl2 , 

allowing this to stand at OOC for 20 minutes before centrifuging at 100, OOOg 

for 60 minutes, and dialysing the resultant supernatant against 500 volumes 

of Medium X for 90 minutes to lower its concentration of magnesium. This 

fraction was shown to contain no 5S RNA by gel electrophoresis. In (a) and 

(c) the 5S RNA was added at the beginning of the assay. In (b) and (d) 

ribosomes were first pre-incubated with 58 RNA in solution R for 15 minutes 

at 370 C, after which they were cooled in ice, the mixture diluted with 24 

volumes of ice-cold solution R, pelleted and resuspended in solution R. · 

Assays were carried out in the presence of the pH5 supernatant and Poly U. 
14 

In (a) and : (b), using one batch of ribosomes , C-phe-tRNA from rat liver 

was used, while in (c) and (d), using different batches of ribo~omes, that 

from E . coli was used . The final concentration of MgCl
2 

in the synthesis 

reaction was 8mM . The synthesis is reaction at OOC was negligible . 

. Activity (cpm/0 . 2 mg ribosomes) 

Binding reaction Synthesis re-
.' action 

0
0 

37
0 

DifferencE 15'/37
0 

(a) Not Qreincubated 
R-ribosomes 90 170 80 1,002 
R-ribosomes + 58 RNA 44 176 132 820 

(b) Preincubated 
R-ribosomes 84 232 148 846 
R-ribosomes + 5S RNA 136 290 154 822 

(c) Not Qreincubated 
R-ribosomes alone 1,228 2,361 1,133 5,583 
R-ribosomes + 5S RNA 743 2,302 1,559 5,324 
R-ribosomes + Mg-

washings 1,286 2,381 1,095 3,556 
R-ribosomes + Mg-

washings + 
5S RNA 730 2,065 1,335 5,778 

(d) Preincubated 
R-ribosomes + 5S RNA 1,602 3,122 1,520 4,933 
R-ribosomes + 58 RNA 
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In a discussion with Reynier during a visit to Marseille, France, in 

1967, the author learned that a protein was removed with 5S RNA when the 

ribosomes of E . coli were treated with 2 M-LiCI (see also Aubert, Monier, 

Reynier & Scott, 1968) . The presence of this protein was necessary for 

the reattachment of 5S RNA, removed by this method, to ribosomes . To 

determine whether this was the reason for the inability of the author to 

reactivate ribosomes with 5S RNA, the effect ·of adding 5S RNA together with 

the fraction removed from ribosomes by washing with MgCI was tried. 
2 

These results are shown in (c) of Table 5. 8. The MgCl
2 

-washings used in 

this experiment did not cause any stimulation of protein synthesis on its own, 

but instead inhibited both binding and synthesis by about one third (compare 

with result in Table 5. 7) . MgCl
2

- washings prepared in this manner always 

caused an inhibition . Addition of 5S RNA together with these washings in­

creased the activity, but only to the level of that found without any additions . 

These MgCl
2 

- washings have been found to contain small fragments of RNA . 

If these fragments include those from 5S RNA, as would be expected, then 

they and the 5S RNA which was added would most likely compete for the binding 

sites of 5S RNA on ribosomes . Since the binding of fragments of 5S RNA 

would most probably render those ribosomes inactive in peptide synthesis, it 

would only leave a fraction of the original ribosomes free to participate in 

polypeptide synthesis . If this was true, then the results obtained showed that 

5S RNA can stimulate these reactions in the presence of a ribosomal fraction . 

The inhibition which was obtained , was probably caused by the addition of riboso­

mal protein to ribosomes already containing that complement of protein (see 

Nomura & Traub, 1968) . However , until it can be shown that this was in fact 

what happened these results must be considered as inconclusive . 

Since Forget & Weissmann (1968) and Sarkar & Comb (1969) had suggested 

that 5S RNA may exist as two or three complementary forms, there was a 

possibility that the 'active form might differ from that used above, and therefore 

other methods of preparing 5S RNA were necessary . As it had been shown 

that 5S . RNA could be isolated from ribosomes using EDTA (Parish, Kirby 

& Klucis, 1966 ; Comb & Sarkar, 1967) this RNA was prepared by using a 

modification of the procedure used by Parish, Kirby & Klucis (1966), and its 

effect on the reactioL under study tested . When the RNA in the fraction, ob­

tained from S- ribosomes treated with EDTA , was analysed on acrylamide gels 

it was found to move as a broad band or two closely associated bands of 5S RN A 
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with traces of slower moving species of RNA (see Figure 5. 3f) . The fraction 

was capable of stimulating both binding of phe-tRNA and polyphenylalanine 

synthesis by R-ribosomes and R-ribosomes washed thrice with MgC12 by 

23-37% (Table 5. 9a) . 

As the fraction prepared using EDT A contained protein (see next 

section, 5.3 . 5, Figure 5. 5b ) as well as 58 RNA, the question arises as to 

which of these components is responsible for the observed stimulation. The 

presence of protein in a similar preparation has been shown by Keller, Cohen 

& Hollinshead- Beeley (1967). The best indication that it was the RNA in this 

fraction which was responsible for the stimulation came from the results 
, 

obtained when it was prepared in the absence of bentonite and the mixture 

allowed to stand at room temperature for 1 hour before dialysing free of EDTA. 

The RNA in this preparation was degraded and moved as a smt:dge over the 

whole of the gel from the origin to the buffer front (Figure 5. 3g) . This 

fraction had no stimulatory action (Table 5. 9b) . In fact it inhibited peptide 

synthesis by 26 %. In this respect it resembled the MgC12- washings in which 

58 RNA degradation had occurred (Table 5. 8c) . The possibility that the 

proteins in the extract were also degraded could not be excluded. The results 

presented in the next section however, show that a ribosomal protein connected 

with the loss of activity in R-ribosomes and 8- ribosomes was not degraded in 

fractions free of 58 RNA when prepared from ribosomes treated both with EDT A 

or an alkaline buffer ,: 

5. 3. 5 Ribosomal Proteins Removed during the Washing of Ribosomes 

In view of the possible significance of the stripping off of protein during 

the washing of ribosomes (see previous section) this aspect was investigated 

further. ' The results of a preliminary analysis of the proteins remaining on 

the variously treated ribosomes is shown in Figure 5. 5. There were slight 

differences in the intensities of the protein bands from ribosomes washed with 

the same solution on different occasions . This was presumably due to differen­

ces in the time the ribosomes were left in contact with the wash solution, 

which was not rigorously standardized since its importance was not realized 

initially. For this reason the results are only semi-quantitive, and only a 

vis tal comparison of the gels has been carried out here . 

It is seen that treatment of the ribosome with alkaline buffer at pH 10. 3 

removed a large number of proteins almost completely (gels c . f and iL '1'h", 



109 

TABLE . 9 - Effect of fractions washed from Ribosomes with 
; 

EDT A ,on the activity of depleted Ribosomes 

S- and R-ribosomes were prepared as described in section 4 . 2 . 1 

and Mg- washed R- ribosomes were obtained from the latter by washing 

thrice with 10 mM-MgC1
2 

in (a) and once with 100 mM- and twice. with 

10 mM-MgC1
2 

in (b) . In (a) the EDTA fraction was prepared from S-ribosomes 

as under . 2.4 . 2; and was shown to contain 5S RNA (see Figure 5. 3f), while 

in (b) sodium bentonite was omitted and the S-ribosome/EDT A mixture left 

at room temperature for 1 hour before continuing as under 5. 2.4 . 2 , and 

was shown to contain no 5S RNA . No 5S RNA remained on the ribosomes 

after this treatment with EDT A. Peptide synthesis was assayed by Method 

1 of section 3. 2 . 6 in the presence of the pH5 supernatant, 14C-phe-tRNA 

from rat liver and 8. 5 mM-MgC1
2

. Incubation was for 15 minutes . The 

EDTA fraction was inactive in the absence of ribosomes . 

Assay fractions Activity (cpm /0.2 mg 
ribosome) 

Binding Synthesis 

(a) Included bentonite! spun immediately 

R-ribosomes 301 2,531 

R-ribosomes + EDT A fraction 407 3,480 

% increase (33) (37) 

Mg-washed R-ribosomes 184 1,833 

Mg-washed R-ribosomes + EDT A 
fraction 225 2,403 

% increase (23) (31) 

(b) No bentonite! s pun after 1 hour 

Mg-washed R-ribosomes 128 302 

Mg-washed R-ribosomes + EDT A 
fraction 131 224 

% increase (2) (-26) 
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supernatant from the alkali treatment showed faint bands of the proteins 

which had been removed; these could be seen by direct examination of the 

gels but are not readily visible in the photographs (gels c
1 

and f
1

). 

The small amount of protein detectable in the supernatant may have been 

due to failure to precipitate them completely with TCA or to redissolve 

them in 0. 1 M-HClplus 8 M- urea afterwards . Alternatively, it may in­

dicate a rapid degradation of the proteins in the supernatant similar to 

that found with 5S RNA . In view of the extensive removal of proteins by 

this treatment, which must have had a considerable effect on the structure of 

the ribosome , it is not possible to pin- point any specific cause for the 

loss of activity in polypeptide synthesis . 

By contrast , washing with MgC1
2 

brought about only small changes 

in the proteins of the ribosome. The only differences between untreated 

S- and R-ribosomes (gel d and g respectively) was that in the latter, 

which were less active in polypeptide synthesis (see Table 5. 2), band 13 

was often reduced and band 7 occasionally . The only proteins on both 

S- and R- ribosomes which were reduced by washing with solutions of MgC1
2 

were those of bands 4 and 13 (see gels e and h) . Thus, if the removal 

of a specific fraction is indeed relat-ed to the loss of activity of the ribosomes, 

the protein of band 13 appears to be most clearly implicated . This conclusion 

is supported by the results obtained with EDT A treatment. The concentration 

used here removed several proteins from polysomes and not just one as 

found by Keller, Cohen & Hollinshead- Beeley (1967) (gel b). Amongst those 

removed was band 13 but not band 4 . Gel b
1 

shows the proteins in the EDTA­

extract. This particular extract was prepared by dialysing polysomes 

against 10 mM- EDTA for 20 hours in the absence of bentonite . It would be 

expected that, under these conditions , the fraction would not have any 

stimulatory effect . Nevertheless it showed a fairly strong band 13. Therefore 

it would seem that it was not degradation of the protein in the EDTA-fraction 

which was responsible for its loss in activity but that this was due to the de­

struction of the 5S RNA . Further evidence for this was presented when it 

was found that band 13 was present in the gels of the extracts from ribosomes 

treated with tris - acetate buffer , pH 10 . 3 (see c
1 

and particularly f
1

). Yet it 

was found that this extract prepared from S- ribosomes had no stimulatory 

effect on the activity of ribosomes . Also this extract contained no 5S RNA . 

It may be that the protein in h~nrl 1 ~ i" t'h o ~~ ~ _ __ .. . ! .. .. , • 
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FIGURE 5.5 ANALYSIS OF RIBOSOMAL PROTEINS ON ACRYLAMIDE GELS 

Extraction of proteins from ribosomes and their analysis on acrylamide gels was done as 
described under 5.2.8. The different letters represent: a = polysomes; b = polysomes dialysed 
against 100 volumes of 10 mM EDTA in 50 mM tris-HCl buffer, pH 7.6, for 20 hours; b l = the 
supernatant from b; c = polysomes dialysed against 100 volumes of a solution containing 50 mM 
tris-acetate, pH 10.3 + 50 mM potassium acetate, for 3 hours; cl = supernatant from C; 
d = S-ribosomes; e = S-ribosomes washed once with 10 mM and twice with 100 mM MgC1 2 as described 
under 5.2.1; f = S-ribosomes treated as c; fl = supernatant from f; g = R-ribosomes; 
h = R-ribosomes washed twice with 10 mM MgC1 2 as under 5.2.1; i = R-ribosomes treated as c 
except that dialysis was only for 1.5 hours. After treatment with EDTA or alkaline buffer the 
ribosomes were re-isolated by centrifugation a t 100,000g for 3 hours and the resultant supernatants 
precipitated with trichloracetic acid and the p roteins extracted as under 5.2.8.1. Enlargements 
of photographs = 2. 
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of 5S RNA to the ribosome, since this is the only protein for which it could 

be shown that its loss from the ribosome paralleled the loss of 5S RNA 

and the decrease in activity. Much more work on this however, is needed 

before any final conclusions can be made . 

5. 3 . 6 Interpretations and Discussion of Besul ts of the Removal of 5S RNA 

from Ribosomes 

In much of the work reported in the literature to date it has tacitly 

been assumed that intact ribosomes prepared by various methods have the 

same compl:e:nent of structural components and the same ability to carry 

out the various steps of protein synthesis . The present work has shown that 

this is not the case. Variable amounts of 5S RNA and ribosomal proteins 

are removed during the preparation of ribosomes by mild methods and this 

has an influence on their activity in protein synthesis . 

It was not previously thought that 5S RNA was a labile component 

of the ribosome, although it was known that it could be removed by treatment 

with EDTA . Since the experimental work described here was completed, 

Sarkar & Comb (1969) have reported that ribosomal 5S RNA can exchange 

with external 5S RNA in vitro. but only at very low concentrations of mag­

nesium (0 . 1 mM) . No exchange was found in 10 mM-magnesium, whereas 

the present work has shown that repeated washings of the ribosomes with this 

concentration of MgC12 can decrease its content of 5S RNA . This decrease 

was even more pronounced when 100 mM- MgC1
2 

was used . Sarkar and Comb 

assayed for exchange of 5S RNA by measuring the amount which came off 

labelled ribosomes. This was passed through millipore filters and the filters 

washed with the same concentration of MgC1
2 

as used in the exchange reaction, 

namely 0 . 1 mM or 10 mM . In the author 's opinion, the comparisons made 

when using these two concentrations of MgC1
2 

are not valid, since it was 

his experience that when ribosomes and labelled tRNA were mixed with 

1 mM or 15 mM-MgC12 , at least 10 times more of the label remained on 

the filter when the higher concentration of MgC1
2 

was used. It would seem 

therefore that much of the labelled 5S RNA was trapped on the filter when 

exchange at 10 mM- MgC12 was measured by Sarkar & Comb . The adsorption 

of any labelled 5S RNA released by 10 mM-MgC1
2 

in the absence of externally 

added 5S RNA would be proportionally greater and would be virtually 100%. 

In the work presented here 5S RNA was also released from ribosomes treated 
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with tris buffers at various alkaline pH values . Generally the amount of 

release depended on the alkalinity of the buffer and the duration of contact 

with the buffer , more being released at the more alkaline pH values and 

the longer contact times . 

In a number of the experiments presented here, but not all, the loss 

in activity of the ribosomes paralleled the removal of 5S RNA . Addition of 

isolated 5S RNA failed to restore the activity of such ribosomes, especially 

in the synthesis reaction, although it did restore that of the binding reaction 

to some extent. This however, does not mean that 5S RNA is not necessary 

for the activity of the r ibosomes, since, 

(i) the form of 5S RNA added may have been unsuit.able . When 

Sarkar & Comb (1969) found that ribosomes in which exchange 

of 5S RNA had taken place were inactive they suggested that this 

may have been due to an inactive form of this RNA being placed 

on the ribosome , since they had shown that at least three different 

configurations of this RNA existed. This seems somewhat 

unlikely, since Nomura & Traub (1968) showed that 16S rRNA 

isolated with phenol , and solubilized ribosomal proteins from 

30S subunits, when mixed, were able spontaneously to adopt the 

right configuration to produce active 30S subunits . This is in 

line with current work , which has demonstrated that the primary 

structure of proteins carries all the information required for the 

production of the active tertiary structure, 

(ii) a protein was found to be necessary for the reattachment of the 

5S RNA to the ribosome, possibly by making it assume the right 

configuration (Aubert , Monier, Reynier & Scott, 1968) . This 

may be the protein which Sarkar & Comb (1969) showed was 

nec essary for 5S RNA exchange, or possibly the protein which 

was removed with 5S RNA by treatment with EDTA , 

(iii) a protein may be r equired in addition to 5S RNA and independently 

of it . This will be considered further below ... 

A strong pointer that 5S RNA does playa role , i~ addition to 'protein , 

is the fact that activity could be restored to depleted ribosomes ~nly when the 

added extracts, obtained from r ibosomes that were treated with MgCl 
2 ' 

alkaline buffers and EDT A, contained 5S RNA . In particular, the fact that 
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bentonite, which is a RNase inhibitor, stabilizes the EDTA-extract argues 

that the 5S RNA in this was necessary for activity. It is also worthwhile 

noting that Traub, Nomura and co-workers in their experiments on the 

reconstruction of ribosomal subunits (see below), used a mutant of E. coli 

which was RNase negative, and so avoided the problems encountered here 

with the desctruction of 5S RNA once it was removed from the ribosome. 

There is no doubt that the ribosomal proteins play an important 

role in protein synthesis . This was convincingly demonstrated by Traub, 

Nomura and co-workers in a recent series of papers. They fractionated the 

30S ribosomal unit into its constituent proteins and 16S r ". NA and showed 

that an active unit could be reassembled from these isolated molecules only 

if certain proteins together with the RNA were present, namely the core 

proteins and the basic split proteins (Traub & Nomura, 1968b, see also 

Traub & Nomura, 1968a; Traub, Soll & Nomura, 1968). The two acidic split 

proteins were not essential but did stimulate this activity. To date the 50S 

subunit has only been reconstructed from the core (rRNA plus core proteins) 

plus the acidic and basic split proteins. With these units the acidic split 

proteins were essential for activity and the basic ones only stimulatory when 

added to the core plus acidic proteins . It is not possible to make a precise 

comparison of the proteins removed from rat liver in the work done here 

and those of the split proteins of the above workers, since ribosomal proteins 

have been shown to differ from different genera of bacteria and can therefore 

be expected to differ considerably in nucleated and non-nucleated species. 

When the patterns of ribosomal protein in Figure 5. 5 is compared with those 

shown by Traub & Nomura (1968a), it is seen that there are many similarities. 

In particular, band 13 of Figure 5.5 seems to correspond to one of the basic 

proteins of the 50S subunit which is only partially split off with CsCI. In their 

work Traub and co-workers make no mention of the fate of 5S RNA in their 

reconstruction of particles. The moot point here is, would the addition of 

basic split proteins, particularly the one corresponding to band 13, be essential 

if they were added with 5S RNA and acidic proteins added to cores from 50S 

particles lacking 5S RNA? From the evidence presented here this could be 

the case . It is possible that 5S RNA was removed during the preparation of 

cores from 50S particles , and this was proportional to the amount of protein, 

corresponding to band 13, which was removed . The loss of 5S RNA is probaQly 

one of the main reasons why , during the reconstruction of 50S particles froTYI 
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their cores and split proteins, only about 50 % recovery of activity was ob­

tained. In the reconstruction of the 308 particles as much as 100% recovery 

has been obtained (see Traub & Nomura, 1968b) . 

The answer to the question of the role of 58 RNA in proteins synthesis 

will undoubtedly be obtained when the 50S subunit is reconstituted from its con­

stituent RNA r s and proteins , in the same way as the 308 particles. As far as the 

author is aware this has not yet been done . The results presented here 

however, are interpreted as showing that with t:le washing methods used a 

protein was removed with 58 RNA . Both of these were responsible for the 

decrease in the activity of the ribosomes . It is possible that 58 RNA is con­

cerned with keeping the ribosome in its correct configuration so that the 

ribosome can participate in protein synthesis. When added alone to depleted 

ribosomes 58 RNA can attach itself to the ribosomes , and thereby increase 

the sites available for the binding of tRNA . The further addition of a ribosomal 

protein(s) is necessary for the ribosome to assume its correct configuration 

.in order that it may function in peptide bond formation. 
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SUMMARY 

The work reported in this thesis was concerned with the relation be­

tween those factors, particularly 5S RNA, removed from ribosomes during 

their washing with different solutions; and the a.ctivityof these ribosomes 

was studied . Rat liver was used for this investigation and outlined below 

is a summary of ~ow this work was set out and the results thereof. 

1. Polysomes, the active protein synthesizing units, were prepared 

by a standard method from rat liver and used as starting material 

for all these studies. Polysomes were used to ensure uniformity 

and because the individual ribosomes in this organelle would 

most likely contain all the factors necessary for protein synthesis. 

2 . The best means of breaking down polysomes to single ribosomes · 

3. 

was then studied. Three methods were investigated and the nature 

of the ribosomes produced by each was judged from the profile 

obtained by centrifugation on sucrose gradients. In the first method 

polysomes were incubated in tris-HCl buffer, pH 7.6, containing 

0.25 M-sucrose, 25 mM-KCl and 5 mM-MgCl
2

. This breakdown 

was . considered to be similar to that occurring in the presence of 

ribonucleases, and y~elded single ribosomes with fragments of 

mRNA still attached. In the second method polysomes were incubated 

in an active protein synthesizing system to yield predominantly 

single ribosomes free of mRNA while in the third, incuqation was 

carried out in a system which allowed translocation and chain release · 

to occur . The minimum requirements for this were GTP, GSH and 

puromycin. The addition of a source of transfer enzymes was not ' 

necessary because there were sufficient of these on the polysome 

for one translocase reaction, which, under the conditions used, was 

all that was needed for the complete disruption of the polysome. This 

method also yielded single ribosomes free of mRNA. 

The breakdown of polysomes in the presence of the faCtors necessary 

for peptide bond formation . was shown to occur in exact accordance 

with the most modern concepts of protein synthesis. Complete break­

down of polysomes into single ribosomes under conditions of peptide 



117 

synthesis occurs when all the macromolecules (mRNA and acylated­

tRNA's) which keep their structure intact are removed. This break­

down is effected by translocation of all the aminoacyl-tRNA's, from 

the decoding sites to the condensing site, as peptides where they 

can be released. Translocation is effected in the presence of the 

transfer enzymes, GTP and GSH, and release is effected by puro-

mycin. 

4. Ribosomes free of the transfer enzymes were prepared by three 

different procedures . For two of these, single ribosomes produced 

by Method 2 above were used . In the first, which was developed 

by the author, the ribosomes were washed with a solution containing 

50 mM KCI, 1 mM MgCl
2 

and 50 mM tris-HCI, pH 8. 3 after which 

they were passed through a layer of 1 M sucrose in the same solution. 

In the second, which was based on a method published while this work 

was in progress , single ribosomes, prepared from polysomes treated 

with GSH and KCI, were subjected to KCI-shcck, a method whereby 

they were subjected to successive washes with solutions containing 

high concentrations of KCl. In the third, another method adapted 

from one published while this work was in progress, polysomes them­

selves were treated with deoxycholate and washed with solutions of 

The washed ribosomes prepared by each method were cha-

racterized in respect of both their physical and chemical properties. 

The most striking difference observed was in respect of their capacity 

to synthesize polypeptides which could not be related to their content 

of transfer enzymes or other extrinsic factors. 

5. The reasons for the differences in activity between the three prepa­

rations were then sought. The main findings of this phase of the in­

vestigation were as follows : 

(a) There was a correlation between the content of 58 RNA of 

the ribosomes and their activity both in the synthesis of 

polyphenylalanine and in the binding of phe-tRNA. 

(b) 58 RNA attached to ribosomes could be partially or completely 

removed by washing with solutions of MgCI (10 mM or 100 mM) 
2 . 



or alkaline buffers with a concomitant loss of activity of 

the ribosome . The effect of both treatments could be 

partially reversed . 

(c) A brief investigation of the ribosomal proteins removed 
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by these treatments was made using the technique of disc 

gel electrophoresis. The regular disappearance of one of 

the bands obtained by this technique could be correlated with 

both the decreased activity and decreased content of 58 RNA 

of treated ribosomes . 

(d) 58 RNA alone was not capable of restoring the ability of 

ribosomes to synthesize pol yph enyl alanine , although it was 

to some extent able to restore their ability to bind phe-tRNA 

which reaction was measured in the presence of 20 mM-MgCl2· 

(e) Fractions containing 58 RNA, prepared from ribosomes, 

were capable of restoring the ability of treated ribosomes both 

to synthesize polyphenylalanine and to bind phe-tRNA. These 

fractions also contained protein . It is not certain whether the 

s timulation obtained could in any way be attributed to the 

presence of 58 RNA or just to the content of protein in these 

fractions . When 58 RNA was absent in these fractions no 

stimulation occurred and this was taken as circumstantial 

proof that 58 RNA was at least one factor responsible for the 

stimulation that was obtained. 

These results are interpreted as showing that with the washing methods 

used, a protein fraction was removed with 58 RNA . Both these were neces­

sary for the activity of the ribosome . The 58 RNA functions at or before the 

binding of tRNA to ribosomes . It is suggested that 58 RNA in the presence 

of ribosomal protein acts in keeping the structure of the ribosome intact for 

activity. Although, when added alone to depleted ribosomes 58 RNA can to 

some extent attach itself to the ribosome, and thereby" increase the sites 

available for the binding of tRNA, the further addition of a ribosomal protein(s) 

is necessary for the ribosome to assume the configuration required for peptide 

bond formation . 
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APPENDIX 

ChemL als and enzymes 

ATP (disodium salt) , phosphoenolpyruvate (potassium, PEP-K, and 

.tri-Cyclohexylammonium, PEP-(CHA)3' salts), GSH and pyruvate kinase 

(crystalline suspension) were obtained from C. F. Boehringer und Soehne, 

Mannheim, Germany. GTP was obtained from Nutritional Biochemicals 

Corp., Cleveland, Ohio, U.S.A. ATP, GTP, GSH and PEP-K were neu­

tralized with KOH before use . 14C- phenylalanine (225-360 mc/m mole) and 

14C- Yeast Protein Hydrolysate (14C- YPH) (850 and 1,500 llc/mg) was 

purchased from Schwarz Bio- Research Inc . , Orangeburg, N. Y., U.S.A., 

3H-polyuridylic acid (3H- poly U and unlabelled poly U) from Miles Labora­

tories, and 14C- phe- tRNA of E . coli (1 llC/5.7 mg) from New England 

Nuclear Corp (NEN) ,575 Albany Street, Boston, Mass . 02118, U. S. A. 

Scintillation Grades of 2,5- Diphenyloxazole (PPO) and 1, 4-bis-2- (4-Methyl-

5- Phenyloxazolyl) - Benzene (Dimethyl POPOP) were obtained from Packard 

Instrument Company, INC., 2200 Warrenville RD, Downers Grove, Illinois, 

U. S. A. All other chemicals used were of analytical grades . 

Solutions of frequent use 

Medium A: 0. 25 M- sucrose , 50 mM-tris-HCI, pH 7.6, 25 mM-KCI and 

5 mM-MgCI
2

. 

Medium X : 50 mM-tris - HCI , pH 7. 6 and 1 mM- MgCI
2

. 

Solution R : 50 mM-tris-HCI , pH 7. 6,25 mM-KCI and 1 mM-MgCI 
2 

Solution R-l : 50 mM- tris- HCI, pH 8. 3, 50 mM-KCl and 1 mM-MgCI 
2 

N-buffer : 10 mM- tris - acetate, pH 7. 4 , 50 mM-potassium acetate and 

O. 1 mM-magnesium acetate . 
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