
Using Mobile Agents to Solve the
Distributed Buying Problem.

by

Kamil Reddy

Submitted in fulfilment of the academic requirements for the degree of Master of Science

in the Department of Computer Science, School of Geological and Computer Sciences,

University of Natal, Durban.

The financial assistance of the Department of Labour (DoL) towards this research is

hereby acknowledged. Opinions expressed & conclusions arrived at, are those of the

author and are not necessarily to be attributed to the DoL

Abstract

This study deals with the Distributed Buying Problem, that is, the problem faced by

geographically distributed businesses when it comes to optimising buyer time and global

businesses resources. It adopts a software agent-based approach to the problem. A

literature survey was carried out to review the relatively new field of software agents and

mobile agents in particular. The role of agents in electronic commerce was also studied.

A mobile agent system was then designed and implemented to serve as a proof-of­

concept system for an agent-based solution to the problem. The design and

implementation are then discussed.

Preface

The research on which this thesis is based was carried out in the Department of Computer

Science, School of Geological and Computer Sciences, University of Natal, Durban,

under the supervision of Professor Wayne Goddard.

This thesis represents original work done by the author. Where use has been made of the

work of others, it has been duly acknowledged in the text.

ii

Acknowledgements

I would like to express my thanks to :

My supervisor, Professor Wayne Goddard, for his help, guidance and effort in producing

this work - especially for sponsoring my trip to the 4th European Agent System Summer

School in Bologna, Italy.

My co-supervisor, Dr Johnson Kinyua, for his assistance and guidance during my

research .

My friends and my fellow post-graduate students for their support and help - especially

Sumeshree Govender, Mark Lewis, Theo Naicker and Deshen Moodley.

Aroon Patel, Johnny du Plessis and Wayne Cronk of Hillside Aluminium for their help in

providing me with information on BHP Billiton ' s Southern African aluminium-smelting

operation.

Soren Greenwood for his tireless assistance.

The National Research Fund and the Department of Labour for the funding they have

provided.

iii

Table of Contents Table of Contents

Table of Contents

Abstract ... i

Preface ... ii

Acknowledgements .. iii

Table of Contentsiv

List of Figures ... vii

1 Introduction .. 1

1.1 Objective 1

1.2 Thesis Outline 2

2 Software Agents 4

2.1 Introduction 4

2.2 Towards a Definition 5

2.2.1 Some Example Definitions 6

2.2.2 The Stereoscopic View 7

2.2.3 A Working Definition 9

2.3 A Taxonomy of Agents 10

3 Mobile Agents ... 12

3.1 Introduction 12

3.2 The Mobile Agent Paradigm 12

3.3 Standardization and Agent Frameworks 14

3.3.1 The MASIF Standard 15

3.3.2 The FIPA Standard 19

3.4 Formal Software Models for Mobile Agents 22

3.5 Advantages of Mobile Agents 23

4 Aglets and Other Mobile Agent Systems .. 25

4.1 Introduction 25

4.2 Aglets 25

4.2.1 Fundamental Aglet Operations 26

4.2.2 Aglet Communication 28

iv

Table of Contents Table of Contents

4.2.3 Aglet Security 28

4.3 JADE 29

4.4 Hive 31

5 Agents in Electronic Commerce .. 33

5.1 Introduction 33

5.2. Non-Agent-Based Electronic Commerce 33

5.2.1 Traditional Electronic Commerce 33

5.2.2 Internet-based Electronic Commerce ... 34

5.2.3 Enterprise Resource Planning Systems 35

5.3 Agent-based Electronic Commerce 36

5.3.1 Classification Schemes for Agents in Electronic Commerce 36

5.3.2 The Delegate, Market, Business Model Scheme 37

5.3.3 The Purchasing Life Cycle Scheme 37

5.3.4 Papazoglou's Typology 39

5.3.5 Agent-based Auction Systems41

6 The Distributed Buying Problem .. 42

6.1 Introduction 42

6.2 The Role of the Buyer. 42

6.2.1 Types of Buying and Materials43

6.2.2 Traditional Buying Methods43

6.2.3 Procurement Reengineering43

6.3 The Buying Process at Billiton44

6.4 Solving the Distributed Buying Problem with Agents45

7 Design of the Mobile Agent System ... 46

7.1 Overview 46

7.2 The Agents and their Roles48

7.3 Discussion 53

8 Implementation of the Mobile Agent System ... 54

8.1 Hardware and Software Used 54

8.2 Databases and the System Dataflow 55

8.2.1 The Database Tables 55

v

Table of Contents Table of Contents

8.2.2 System Dataflow 57

8.2.3 The Order and Quote Life Cycle 58

8.3 Implementation of the Agents 60

8.3.1 Efficiency Issues 67

8.4 Configuring the Tahiti Servers 67

8.4.1 User Registration and Policy Files 67

8.4.2 The Class Loader 69

9 Conclusion ... 71

9.1 Future Work 72

References ... 73

vi

List of Figures List of Figures

List of Figures

Figure 1 - The stereoscopic view (Adapted from [Van de Velde, 1995]) 8

Figure 2 - Nwana's Classification Scheme [Nwana, 1996] ... 10

Figure 3 _ Client-Server Paradigm [Lange & Oshima, 1998] 13

Figure 4 - Code-an-Demand Paradigm [Lange & Oshima, 1998] 13

Figure 5 - Mobile Agent Paradigm [Lange & Oshima, 1998] 14

Figure 6 - The MASIF architecture (Adapted from [MASIF98, page 10]) 17

Figure 7 - The FIPA Architecture (Adapted from FIPA XC00023H, page 4) 19

Figure 8 - The Client-Agent-Server Model (Adapted from [Samaras et al., 1999]) 22

Figure 9 - The Client-Intercept-Server Model (Adapted from [Samaras et al., 1999]) 22

Figure 10 - The Mobile Agent Model (Adapted from [Samaras et al., 1999]) 23

Figure 11 - The Aglet Life Cycle [Lange & Oshima, 1998]. 26

Figure 12 - Aglet Messaging 28

Figure 13 - The JADE Agent Platform [Bellifernine et al., 2002] 30

Figure 14 - The Hive architecture [Minar et al., 1999] 31

Figure 15 - Papazoglou's Typology [Papazoglou, 2001] 39

Figure 16 - Plant View (Directory & Finder Agents not shown for clarity)46

Figure 17 - The Enterprise-wide View48

Figure 18 - The Database Schema for the User Database 57

Figure 19 - Order Creation 58

Figure 20 - The Order and Quote Lifecycle 59

Figure 21 - Screenshot of the Login Agent QU!.. 60

Figure 22 - Screenshot of the 'Plant' Pane of the User Agent.. 62

Figure 23 - Screenshot of the 'System' pane of the User Agent 62

Figure 24 - Screenshot of the 'Order Status' Pop-up Dialog Box 63

vii

List of Figures List of Figures

Figure 25 - Screenshot of the 'Order' Pane of the User Agent.. 63

Figure 26 - Screenshot of the Dispatcher Agent QU!.. 65

Figure 27 - The Dispatch Protocol Used by the Buyer Agent 65

viii

Introduction 1.1 Objective

1 Introduction

The idea of the software agent has its roots in the notion of the robot as a mechanical

device that does work on behalf of people [Bradshaw, 1997]. Software agents can be

considered the software equivalent of robots in the physical world - programs that are

capable of assisting people by allowing people to delegate work to them. They are

software objects that are reactive, autonomous, goal-driven and temporally continuous.

Delegating a job to an autonomous program is a concept that makes agent-oriented

programming intuitive for the programmer. Mobile agents are software agents that have

the additional ability to move from host to host within a network. They are also generally

written to execute independently of the host operating system. This allows them to be

used to create distributed systems in large networks such as the Internet where multiple

operating systems exist. The distributed systems created by mobile agents can have

flexible architectures when compared to those created using the client-server paradigm,

making them suitable for solving many problems in E-Commerce.

A problem that is as old as commerce itself is that of selecting the best supplier for a

purchase. In large businesses this problem is the domain of the purchasing professional

or buyer. Buyers today are faced with a multitude of potentially globally distributed

suppliers making selecting the best supplier a time consuming task. The task becomes

even more difficult in the case of the distributed business enterprise that consists of many

self-sufficient business units distributed over a large geographic area. In this case the

buyers at each unit cannot act in the interest of the enterprise as a whole unless there is a

means to communicate between individual business units. Traditional means such as

telephone calls and facsimiles take up too much of the buyer's time. We term this

problem of optirnising the buyer's time and enterprise costs the Distributed Buying

Problem.

1.1 Objective

In this thesis we examine software agents and mobile agents in particular, and their

possible use in solving problems in E-Commerce. As an example, we consider the

Distributed Buying Problem, and design and implement a prototype for its solution.

1

Introduction 1.2 Thesis Outline

We use BHP Billiton's Southern African aluminium-smelting operation as an example of

a distributed enterprise - it consists of two aluminium-smelting plants in Richards Bay,

and one in Mozambique. Our prototype system allows the buyers at a plant to delegate to

the agents the task of communicating with suppliers and plants for quotations and orders .

The automation of these processes by the mobile agent system helps optimise the buyer's

time and reduce costs to the enterprise, especially through unnecessary buying of

materials available at other plants, thus solving the problem.

1.2 Thesis Outline

The rest of this thesis is organised as follows:

Chapter 2 - Software Agents

This chapter presents the results of a survey of software agent literature. The concept of

a software agent is introduced here as well as some important definitions of a software

agent that lead to a working definition for this thesis. The chapter ends with a taxonomy

of agents that defines some of the different types of agents referred to in the literature.

Chapter 3 - Mobile Agents

Chapter three discusses the mobile agent paradigm and the standards that govern mobile

agent software. Formal models of mobile agents are also discussed. A list of the

advantages of mobile agents concludes the chapter.

Chapter 4 - Aglets and Other Mobile Agent Systems

The Aglets mobile agent system used in this research is described here along with two

other mobile agent systems, namely JADE and Hive.

Chapter 5 - Agents in Electronic Commerce

Chapter five presents an overview of traditional , or non-agent-based forms of electronic

commerce, and the results of a literature survey into agent-based electronic commerce.

Traditional electronic commerce is discussed first in order to place the role and impact of

agents in context. Agent-based electronic commerce is then handled by discussing four

classification schemes for agents in electronic commerce.

Chapter 6 - The Distributed Buying Problem

In this chapter the Distributed Buying Problem is defined. The role of the buyer in

business is discussed, as well as the types of materials buyers deal with and the traditional

methods they use. The buying procedure followed at Billiton's aluminium-smelting

2

Introduction 1.2 Thesis Outline

plants is described, followed by a definition and description of procurement

reengineering. The chapter is concluded by discussing how mobile agents can be used

for procurement reengineering at Billiton.

Chapter 7 - Design of the Mobile Agent System

The overall design of the mobile agent system, as well as the role of each agent in the

system is presented here.

Chapter 8 - Implementation of the Mobile Agent System

Chapter eight discusses the implementation details of the mobile agent system. The

hardware and software used in the implementation is listed. The system dataflow is

described here to show how data moves through the system. Each agent is then

discussed, followed by a discussion of the agent implementation.

3

Software Agents 2.1 Introduction

2 Software Agents

2.1 Introduction

Though the field of software agent research is relatively new, it has recently seen a surge

of activity. Born out of the field of artificial intelligence (AI), agent theories are now

implementable largely due to the advent of object-oriented technologies, and the focus on

network programming that the Internet has brought about.

There are many perceptions about what constitutes an agent. A survey of the literature

will yield the "cliche that there is no one, universally accepted definition of intelligent

agent technology" [Nwana & Wooldridge, 1996]. The multitude of definitions exist

since there are many authors working in various fields and to different ends, each

espousing an idea of agency that brings the definition closer to their field, and work in

particular [Franklin & Graesser, 1996]. Implicit in this is that agent research

encompasses work done in a wide range of disciplines (for example, distributed artificial

intelligence and human-computer interfaces). Researchers can easily mould the

definition because the agent metaphor is flexible enough to be applied to most contexts.

To compound this, the popular press has created the impression that software or

intelligent agents are poised to change the world of computing, as we know it today.

Software companies have latched onto this hype and have begun to label virtually

anything an 'agent'.

A few authors (Nwana, Wooldridge and Sycara amongst others) have reviewed the field

and have created taxonomies of agents in an attempt to create some uniformity. Agents

by different definitions usually find a home in some part of these classification schemes.

This in its own does not solve the problem, because one still has to agree with the

author's method, or the philosophy behind classifying agents. It does, however, allow one

to refer to a particular type of agent with the knowledge that those familiar with the

taxonomy will understand.

Another approach that does not offer a strict, single definition of agency is the two­

pronged method adopted by Bradshaw [1997]. Like van de Velde he makes a distinction

between the ascribing intelligence to an agent, and describing the behaviour of a software

agent [Van de Velde, 1995].

Other authors such as Franklin and Graesser [1996] try to avoid ' tight' definitions of

agency. They argue that the "only concepts that yield sharp edge categories are

4

Software Agents 2.2 Towards a Definition

mathematical concepts, and they succeed only because they are content free ." Instead

they offer a loose definition that includes most agents, but which, by their admission, will

fail in extreme cases.

2.2 Towards a Definition

The word 'agent' , in the context of a software agent, is not far removed from the common

meaning of the word agent as "a person who acts for or represents another" [Cambridge

Dictionaries Online]. Most, but not all researchers, will agree that in its most basic form,

the 'software' agent is a piece of software that represents a user, or another software

agent.

Wooldridge and Jennings conducted a seminal survey of the field of agent research.

Later they attempted to extract a definition of a software agent from their survey of the

literature. They put forward the concept of two separate notions of agency: the first a

weak notion, that is relatively widely accepted; and the second, a strong notion, that is

"potentially more contentious".

The weak notion states that an agent displays the following properties:

• Autonomy: agents operate without the direct intervention of humans or others, and

have some control over their actions and internal state.

• Social ability: agents interact with other agents (and possibly humans) via an

agent-communication language.

• Reactivity: agents perceive their environment (which may be the physical world, a

user, a collection of other agents, the Internet, or perhaps all of these combined),

and respond to changes in it;

• Pro-activeness: agents do not simply act in response to their environment, they

are able to exhibit goal-directed behaviour by taking the initiative.

[Wooldridge & Jennings, 1995]

From the many definitions of agents in the literature, it is clear that the weak notion of

agency comprises many of the different attributes given to agents by different authors.

Examples given later will show that few authors include all the aspects.

The strong notion of agency is more a product of the arguments of AI researchers. They

contend that agents should additionally demonstrate the more human-like, or mentalistic

qualities of knowledge, belief, intention and obligation, or even emotional states.

5

Software Agents 2.2 Towards a Definition

2.2.1 Some Example Definitions

Maes provides this definition of an agent:

"Autonomous agents are computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so realize a

set of goals or tasks for which they are designed. " [Maes, 1995]

The software agents of Maes have the condition that they must inhabit an environment

that is necessarily complex and dynamic. A dynamic environment is a feature of many

definitions from researchers with an interest in AI. This is because if an agent is to

function adequately in a dynamic environment, it will need some measure of AI. What

makes an environment dynamic or complex is debatable. Furthermore, it is worth noting

that she does not include social ability in her definition.

The definition by Russell and Norvig shows that even the fundamental criterion of an

agent being a computational system is not universally accepted.

"An agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through effectors. " [Russell & Norvig, 1995].

This definition is wide enough to include most living things, although their text goes on

to specify a software agent as having "encoded bit strings as its percepts and actions".

Unlike most other definitions that arise from an AI perspective, Russell and Norvig do

not specify that the environment must be dynamic. In fact, without restricting the

environment or further specifying what is meant by sensing and acting, there is little that

differentiates this view of a software agent from any other computer program [Franklin &

Graesser, 1996].

Genesereth and Ketchpel take a much more radical approach in their definition based

simply on social ability. Their argument here is for standard agent communication

languages that will enable multiple agent systems or MASs. A standard language would

provide a layer of abstraction between interface and implementation [Genesereth &

Ketchpel, 1994] and enable different agents to communicate with each other in order to

achieve an objective. Their definition follows :

" ... software components that communicate with their peers by expressing messages in an

expressive agent communication language." [Genesereth & Ketchpel, 1994]

By this definition one could convert almost any program that transfers information over a

network into an agent by forcing it to use an agent communication language for the

6

Software Agents 2.2 Towards a Definition

transfer. It does, however, emphasize the importance some people place on certain

aspects of agenthood to the exclusion of others, even within the context of the weak

notion.

The next definition is from a proponent of the strong notion of agency. Shoham was the

first to propose the paradigm of agent-oriented programming. He describes an agent as:

"An agent is an entity whose state is viewed as consisting of mental components such as

belief, capabilities, choices and commitments. These components are defined in a precise

fashion, and stand in rough correspondence to their common sense counterparts."

[Shoham, 1993]

He goes further to state "What makes any hardware or software component an agent is

precisely the fact that one has chosen to analyze and control it in these terms." (This

corresponds to Dennett's 'Intentional stance' on observing/predicting behaviour and

intelligence. See [Dennett, 1987].) Therefore, whether something qualifies as being an

agent or not, is ultimately up to the individual to decide. In order to avoid giving carte

blanche to people who would label anything an agent, Shoham does require conditions to

be met for giving mental qualities to entities. These are:

• A precise theory regarding the particular mental category; the theory must have

clear semantics, and should correspond to the common-sense use of the term;

• A demonstration that the component of the machine obeys the theory;

• A demonstration that the formal theory plays a non trivial role in analysing or

designing the machine; [Shoham, 1993]

Shoham realised the software agent under this definition by using a notational language

to denote the mental components, logics to dictate the behaviour of each component and

finally the creation of a programming language (AGENT-O) based on the former.

2.2.2 The Stereoscopic View

Another approach to defining agents is what we call the stereoscopic view. This states

that there are two ways to look at agents. The first is to ascribe agency to the agent as a

function of the observer, while the second is to describe an agent as a function of its own

behaviour and attributes.

7

Software Agents 2.2 Towards a Definition

The first view, or agents as an ascription as Bradshaw calls it, is also based on Dennett's

intentional stance. Shoham's definition of an agent also falls into this category. To show

the argument for this view, consider the following example: If one were to visit a

robotics competition, one would see many different looking objects that one would

intuitively recognise as robots. These robots are likely made of different components in

different configurations, yet one does not need to open them up to determine that they are

robots. Indeed, one does not care how they are made, so long as they look and act like

robots. In other words their 'robot-ness' is in the eye of the observer. Similarly when

looking at agents we see a resemblance that "cannot have to do with similarity in the

details of implementation, architecture, or theory, it must be to a degree a function of the

eye of the beholder." [Bradshaw, 1997] In other words, as an observer, one ascribes

agency to an agent.

The second view, or agents by description, is basically the same as deciding if something

is an agent by using the two notions of agency: examine the behaviour and attributes of

the entity in question, see if it matches some authoritative description of an agent, and

then proclaim it an agent or not. Using the robot analogy, this amounts to opening up

each robot, checking the type and configuration of the components to see if they meet the

criteria for a robot, and then deciding.

Environment

Behaviour ...

Agent

"obseNation"

Ascription of
agency

"rationalise" 1

D ObseNer

'deseripbon" j
Description by

behaviour

Figure 1- The stereoscopic view (Adapted from [Van de Velde, 1995])

8

Software Agents 2.2 Towards a Definition

2.2.3 A Working Definition

The working definition of a software agent for this research is derived from the

stereoscopic view. The definitions are from Lange and Oshima [1998].

Agent (End-User Perspective)

An agent is a program that assists people and acts on their behalf. Agents function by

allowing people to delegate work to them.

If, from the end-user's perspective, a program appears to assist him and act on his behalf,

and he is capable of delegating work to it, he may ascribe agency to it.

Agent (System Perspective)

An agent is a software object that

• Is situated within an execution environment

• Possesses the following mandatory properties:

- Reactive: senses changes in the environment and acts according to those

changes

Autonomous: has control over its own actions

- Goal-driven: is proactive

- Temporally continuous: is continuously executing

• And may posses any of the following orthogonal properties:

Communicative: able to communicate with other agents

Mobile: can travel from one host to another

Learning: adapts in accordance with previous experience

- Believable: appears believable to the end user

The system perspective bears close resemblance to the weak notion of agency, except

that: it adds learning and believability, found in the strong notion, as orthogonal

properties; and communication is not considered mandatory. The ability to communicate

can be considered vital to most agents, but is not necessary for a whole class of agents

called Interface Agents (discussed later). Thus, for the sake of completeness it is

9

Software Agents 2.3 A Taxonomy of Agents

preferable to have communication as an orthogonal property. On the whole, the system

perspective can then be seen to encompass both of Wooldridge and Jennings' notions.

2.3 A Taxonomy of Agents

The lack of a universal agent definition has prompted researchers to create new, more

specific definitions in the hope of providing more clarity. Hence the terms such as 'task

agent', 'interface agent', 'information agent' etc. Some researchers have propsed

schemes. Two schemes mentioned frequently are given in [Nwana, 1996] and [Franklin

& Graesser, 1996].

Figure 2 - Nwana's Classification Scheme [Nwana, 1996]

Nwana' s scheme is shown above (Figure 2). It is discussed here briefly on an agent-by­

agent basis. It was chosen over Franklin and Graesser's as it is more comprehensive.

Collaborative Agents: These are agents whose primary functionality is their ability to

cooperate with other agents . The primary reason for having collaborative agents is that

as a group, agents may accomplish tasks that they would not be able to accomplish

working independently. Most collaborative agents make use of AI techniques that

require symbolic representations of their environments. In addition, some form of plan is

generally needed to coordinate the activities of the agents in achieving the goal.

Interface Agents: These agents receive user input and deliver results [Sycara et aI.,

1996]. The trend with interface agents is to mimic a personal assistant that interacts with

the user and learns the user's behaviour. The goal is to get away from a direct­

manipulation interface and move towards a pro-active interface that does not wait for

explicit and detailed instructions from the user. For a debate on direct manipulation vs.

interface agents see Maes & Schneiderman [1997].

10

Software Agents 2.3 A Taxonomy of Agents

Mobile Agents: These are agents that are capable of moving from host to host in a

network, performing tasks specified by the user, and then returning to the original host.

Mobile agents are examined in more detail in the next chapter.

Information or Internet Agents: The primary function of information agents is to make

manageable the large amounts of information available from different sources (hence the

alternative name of Internet agents). This is achieved by "managing, manipulating or

collating" the information. Under Nwana's typology, information agents may also be

mobile, or indeed social. A grey area is created here because the distinction between

mobile and information, or collaborative and information agents is not perfectly clear.

Nwana concedes this, but points out that the distinction should be made in terms of the

fact that information agents are defined "by what they do", as opposed to the other types

that are defined "by what they are (i .e. via their attributes ...)" .

Reactive Agents: Reactive agents do not possess an internal, symbolic representation of

their environment. They act by having a specific response to a specific stimulus. In

general they are not as complex as those agents employing internal models of their

surroundings; however, their complexity lies in the patterns of interactions that are

displayed by a group of such agents.

Hybrid Agents: Hybrid agents are agents that are a combination of any two previously

mentioned types. They are effective for applications where an agent based on a single

design philosophy cannot fully address the problem.

Heterogeneous Agent Systems: These are agent systems that consist of two or more

agents from two or more previously mentioned types. For example, a system consisting

of a mobile agent, interface agent and a hybrid agent. Agent-based software engineering

is largely concerned with enabling heterogeneous agent systems. It is hoped that agents

designed to operate on their own in a particular problem domain, may add value to a

system of agents that attempt to solve a problem that spans multiple domains. Agent

communication languages are vital in this regard.

Smart Agents: Nwana argues that there are three key properties that define agents,

namely autonomy, learning and cooperation. If a program does not exhibit some measure

of all three elements, then it is not an agent. Conversely, if an agent exhibits these

properties equally well, it is a truly smart agent. According to the typology, it is an ideal

agent that does not yet exist (hence it is shaded in Figure 2).

11

Mobile Agents 3.1 Introduction

3 Mobile Agents

3.1 Introduction

It is the ability to transport themselves across nodes in heterogeneous networks that

makes mobile agents a natural tool in many applications. They are also relatively easy to

implement for developers already skilled in object-oriented programming, since there are

many similarities between object-oriented programming and agent-oriented programming

[Iglesias et aI., 1999]. They are used mostly in one of four areas:

• Remote Searching and Filtering - distributed data access, World Wide Web

searches, distributed data mining.

• E-Commerce - electronic marketplaces and auctions, business-to-business

systems.

• Networking - dynamic routing (allowing for active networks), network mapping,

load balancing.

• Mobile Computing - mobile agent execution environments for mobile or

intermittently connected devices (Personal Digital Assistants, laptops, cellular

phones), communication in wireless and ad-hoc networks, off-line searches.

Mobile agents are not an exclusive solution in any of these application areas. There are

alternatives, such as client-server architectures, that can address each area instead. A

mobile agent-based architecture, however, can address them all at once [Harrison et aI.,

1995].

3.2 The Mobile Agent Paradigm

The use of mobile agents is a move away from traditional client-server and code-on­

demand techniques in distributed computing. The mobile-agent paradigm allows for

greater flexibility in how distributed systems are designed. The three paradigms are

discussed here in terms of service, resource, know-how/code, and processor
configuration.

12

Mobile Agents 3.2 The Mobile Agent Paradigm

/ Server

Client ----+------t. §--EJ
Figure 3 - Client-Server Paradigm [Lange & Oshima, 1998]

In the client-server paradigm, the server advertises a service. The service is usually based

on a resource, such as a database, situated on the server. The know-how (code) to query

the database and the processor required to run that code are also on the server. Therefore

the server holds the resources, code and processor. The Client-Server approach is the

most common and oldest approach to network programming. It supports many

technologies; Remote Procedure Calling (RPC), Common Object Request Brokering

Architecture (CORBA) and Java remote method invocation (RMI) are the most

important.

Figure 4 - Code-on-Demand Paradigm [Lange & Oshima, 1998]

The code-on-demand paradigm gives the required resource and processing power to the

client. The client, however, does not possess the code or know-how to operate on the

resource. This means that the client does not require pre-installed code - the service

know-how is downloaded from the server and processed when needed. Java applets are

examples of code-on-demand.

13

Mobile Agents 3.3 Standardization and Agent Frameworks

., ' ~ -- - - - - - - - - -- - - - , , ~~--------------- ,
, I

,
I Agent Agent ,
(

,
(I I I I I I

I I I .-------- I I , ---------
I , , ,

I
I I I I

:>1
I I I c=> c=> I I I I I I I

I I Know- I I

I
I Know- I I

I I I I Network I I
I I how I I

I I how I I
I I I I I I

I I I
I I I I I I
I \ (I I \ (

(

\ ... _-- --_ / (\ "' --- --_/
(, , (, ,

..... _-------- ------- ~ _-------- --------

Host Host

Figure 5 - Mobile Agent Paradigm [Lange & Oshima, 1998]

In the mobile agent paradigm, the host replaces the client and server. Each host offers

services based on its resources and processing power. The agent carries the know-how to

the appropriate host or hosts and executes it there. Services in client-server and code-on­

demand architectures are usually specified at design-time. Mobile agents facilitate

flexibility by allowing services to be customized at any time since the know-how is host­

independent.

3.3 Standardization and Agent Frameworks

Many proprietary systems have been created. Agents created in one type of system

cannot easily migrate to another type of system, nor can they communicate easily with

agents of another system. Without these abilities the potential of multi-agent systems

cannot be realised. The Object Management Group (OMG) and the Foundation for

Intelligent Physical Agents (FIPA) are both involved in defining standards for agents.

The Object Management Group adopted the Mobile Agent System Interoperability

Facility (MASIF) standard for mobile agents in 1998. It has not changed since then. The

latest standard released by FIPA is FIPA2000; however, it is an evolving standard and

elements of the specification are constantly being superseded by newer versions. (See

http://www.fipa.org/specifications/identifiers.html.)

Prior to 1999, FIPA and the OMG had no formal link and consequently their views on

similar issues were divergent at times. There is now a formal link between the OMG's

Agent Platform Special Interest Group, and FIPA, to align the thinking of both

14

Mobile Agents 3.3 Standardization and Agent Frameworks

organisations in order to achieve a common standard. The OMG has released an Agent

Technology Green Paper to help identify and build consensus [Odell et aI., 2000].

Although the Green Paper is more a discussion document, there are some fundamental

differences from the MASIF standard (including the definition of an agent) . Nevertheless

we will only deal with the MASIF specification.

The OMG MASIF standard and the FIPA standard focus on different aspects of

interoperability amongst agents. The MASIF standard aims at standardizing agent

platforms, that is, the software execution environments of agents. It focuses more on

mobility and enabling the transfer of agents between different platforms. The FIPA

standard, on the other hand, focuses on facilitating interoperability through the use of

standard agent communication languages. Although there are not many agent systems

that currently conform to MASIF [Suri, 2002], the reference models of both standards

will be looked at here: MASIF because of its strong emphasis on mobility; and FIPA

because of its importance in multi-agent systems and because it is fast becoming the de

facto standard. The Aglet agent system used in this thesis conforms to the MASIF

specification.

3.3.1 The MASIF Standard

The MASIF standard defines certain key concepts that are used in the reference model.

Of those, we discus only those that are important to the general understanding of the

mobile agent model. All the definitions listed are from the 1998 MASIF Specification

[MASIF'98] .

The only two types of agents MASIF considers are stationary and mobile agents:

Stationary Agent

A stationary agent executes only on the system where it begins execution. If the agent

needs information that is not on that system, or needs to interact with an agent on a

different system, the agent typically uses a communications transport mechanism such as

Remote Procedure Calling (RP C).

The standard does not say much more about stationary agents except that: the

communications needs of a stationary agent can be met using the same technologies that

are used in distributed object systems (e.g. CORBA, DCOM, and RMI); and that

stationary agents can be part of mobile agent systems. Typically, stationary agents serve

as agent 'wrappers' for services on the systems they are resident on. That is, they serve

15

Mobile Agents 3.3 Standardization and Agent Frameworks

as a go-between for other agents that require the serVIce and make the underlying

implementation details of the particular service transparent to the other agents .

In the next definition of a mobile agent, the word 'object' is used. This is because the

specification describes agent systems in terms of objects [MASIF'98]. As such, the word

'object' may be used interchangeably with the word 'agent' and the definition will still

hold. (The definition is more comprehensive than that given earlier in Nwana's

taxonomy.)

Mobile Agent

A mobile agent is not bound to the system where it begins execution. It has the unique

ability to transport itself from one system in a network to another. The ability to travel

permits a mobile agent to move to a destination agent system that contains an object with

which the agent wants to interact. Moreover, the agent may utilize the object services of

the destination agent system.

Mobile agents are often defined by their ability to suspend their state of execution before

migrating to another system, and then resuming it there. The MASIF specification

declares that an agent migrates with both its code and its state. Agent state is considered

to be the execution state (program counter, stack etc.) as well as any other attributes that

enable an agent to resume execution at the destination agent system. This then prompts

the definition of an agent system.

Agent System

An agent system is a platform that can create, interpret, execute, transfer and terminate

agents. An agent system is uniquely identified by its name and address. A host can

contain one or more agent systems.

In order to specify all the functions a MASIF-compliant agent system must implement, an

interface is defined using the Interface Description Language. Different types of agent

systems are supported by the standard. Agent systems may use different languages, and

in turn the languages may employ multiple serialization techniques. The combination of

agent system type, language and serialization method refers to the profile of an agent.

MASIF is primarily involved in enabling interoperability with agents of the same profile.

The final building block of the model is the concept of a 'place'.

Place

When an agent transfers itself, the agent travels between execution environments called

places. A place is a context within an agent system in which an agent can execute. This

16

Mobile Agents 3.3 Standardization and Agent Frameworks

context can provide functions such as access control. The source place and the

destination place can reside on the same agent system, or on different agent systems that

support the same agent profile.

The functions a place offers extend much further than access control. A full set of

uniform services should be available to an agent in any place. A place can thus be seen

as the operating system from an agent's point of view [Lange & Oshima, 1997]. The

entire model may now be seen in the following figure.

0pl'nlting
S~'SfNn

Agent
System

Communica.tion
I nfnL"tructu re

Host A

Operutllll!
S~~st('m

Agent
System

HostB

Figure 6 - The MASIF architecture (Adapted from [MASIF98, page 10])

To summarise: An agent resides in a place, possibly with other agents. A place in turn is

contained in the agent system. The agent system may have many places (not shown in

Figure 6) with different access control policies to discriminate between authorised and

unauthorised agents. The agent system relies on the host operating system's resources

and facilities.

17

Mobile Agents 3.3 Standardization and Agent Frameworks

Access control is mentioned in the definition of a place. Access control forms part of the

broader topic of security (which is out of the scope of this work). In the MASIF

standard, access control is centred on a system of authorities and authentication. Since an

agent ultimately represents some legal entity that is responsible for its actions, an agent

authority is defined to identify that entity (see Stuurman & Wijnands [2001] for a look at

the legal issues surrounding agents). To avoid agents masquerading as other agents, the

specification allows for the authentication of agent authorities. Authorities and

authentication are based on the CORBA standard.

Only the architectural components of the MASIF model have been discussed thus far.

MASIF also specifies the process of agent transfer from one host to another. The process

consists of initiating an agent transfer (dispatch), and receiving an agent transfer. To

initiate a transfer, an agent makes an API (Application Programmer Interface) call to the

source agent system. The source agent system then notifies the destination agent system.

If the destination agent system approves the transfer, the following actions are taken at

the source agent system:

Agent Dispatch

1) Suspend the agent (halt the agent's execution thread)

2) Identify the pieces of the agent's state that will be transferred

3) Serialize the instance of the Agent class and state

4) Encode the serialized agent for the chosen transport protocol

5) Authenticate client

6) Transfer the agent

The destination agent system performs these actions to receive the agent:

Agent Reception

1) Authenticates client

2) Decodes the agent

3) Deserializes the Agent class and state

4) Instantiates the agent

5) Restores the agent state

6) Resumes agent execution

18

Mobile Agents 3.3 Standardization and Agent Frameworks

To keep track of agents that may be constantly migrating from host to host, an interface

called the MAFFinder interface is used.

3.3.2 The FIP A Standard

The FIPA standard comprises many specifications with an Abstract Architecture

Specification at the highest level, down to a specification for Bit-Efficient Encoding of

messages, at the lowest. Figure 7 represents an overview of the FIPA model featuring the

key architectural elements. For the purposes of obtaining a broad overview of the

standard, only these elements are discussed here.

Software

Il-

r Agent Platform

Agent
Directory

Agent Management
Facihtator

... Sy.~tem ...

+ .. +
Message Transport System

~~

Network I

,,.
Message Transport System

Figure 7 - The FIPA Architecture (Adapted from FIPA XC00023H, page 4)

The Agent Platform is roughly analogous to the Agent System In the MASIF

specification. It is defined by FIPA as such:

19

Mobile Agents 3.3 Standardization and Agent Frameworks

Agent Platform

An Agent Platform provides the physical infrastructure in which agents can be deployed.

The AP consists of the machine(s), operating system, agent support software, FIPA agent

management components (Directory Facilitator, Agent Management System and

Message Transport Service) and agents. [FIPA XC00023H]

The FIPA agent platform, unlike the MASIF agent system, does not necessarily have to

be on one host. A single agent platform may span multiple hosts (this is not shown in the

diagram).

FIPA does not distinguish between stationary and mobile agents. It defines an agent as:

Agent

An agent is a computational process that implements the autonomous, communicating

functionality of an application. Typically, agents communicate using an Agent

Communication Language (ACL). [FIPA XCOOOOlJ]

Agents inhabit the agent platform. They provide serVIces such as access to

communications facilities and external software. These services combine to form a

"unified and integrated execution model" [FIPA XC00023H] for agent-based systems.

Agents have an Agent Identifier (AID) to associate them with the legal entities that own

them. FIPA allows for an agent to have more than type of name. The naming

mechanism provides for nicknames or aliases to be included in the agent identifier. All

the agent management components of the AP are implemented as agents.

The component of the agent platform responsible for managing agents IS the Agent

Management System:

Agent Management System

An Agent Management System (AMS) ... exerts supervisory control over access to and

use of the AP. Only one AMS will exist in a single AP. The AMS maintains a directory of

AIDs which contain transport addresses (amongst other things) for agents registered

with the AP. The AMS offers white pages services to other agents. Each agent must

register with an AMS in order to get a valid AID. [FIPA XC00023H]

Transport addresses represent the physical addresses at which agents can be contacted.

The white pages services referred to include services to locate agents as well as naming

and access control services.

20

Mobile Agents 3.3 Standardization and Agent Frameworks

The next component of the agent platform is the Directory Facilitator:

Directory Facilitator

A Directory Facilitator (DF) ... provides yellow page services to other agents. Agents

may register their services with the DF or query the DF to find out what services are

offered by other agents. Multiple DFs may exist within an AP and may be federated.

[FIPA XC00023H]

The use of federated DFs implies that, if a DF is queried for a serVIce that is not

contained in its list of services, then it will query the other DFs for that service. The

yellow pages services offered are service location and service registration. It is important

to note the difference between white page services offered by the AMS and yellow page

services offered by the DF. White page services involve finding individual agents while

yellow page services involve finding specific services.

The Message Transport Service is one of the most important components of the AP since

FIPA bases its interoperability on communication transparency.

Message Transport Service

The Message Transport Service (MTS) provides a mechanism for the transfer of ACL

messages between agents. The agents involved may be local to a single AP or on

different APs. The MTS is also called the Agent Communication Channel. [FIPA

XC00067D]

FIPA does not restrict agents that are local to a single AP, and native to that AP, from

using proprietary communication mechanisms. There are three possible ways for agents

on different APs to communicate with one another. The first method involves the agent

on the local AP sending a message to the local MTS. The local MTS then routes this

message to the appropriate remote MTS, which delivers it to the target agent. The second

method requires the agent on the local AP to send the message directly to the remote

MTS for delivery to the target agent. The third method is a direct communication from

the local agent to the remote agent without the use of the MTS. This method of

communication is not supported by FIPA.

The final element of the AP is software.

Software

Software describes all non-agent, executable collections of instructions accessible

through an agent. [FIPA XC00023H]

21

Mobile Agents 3.4 Formal Software Models for Mobile Agents

Software provides agents with a means to update and upgrade their abilities. Agents may

acquire new communications, security or negotiation protocols through software.

3.4 Formal Software Models for Mobile Agents

Samaras et al., [1999] propose formal models for distributed systems based on mobile

agents. The models they propose are extensions of the traditional client-server model that

cater for clients that are mobile (i.e. connected to the network via wireless links). They

do however also hold true in the case where the clients are not mobile.

The first model is called the client-agent-server (Cl AlS) model. In this model, an agent is

situated in the path between the client and the server. The agent acts as a proxy for the

server and all the services it offers, or alternatively, there may be multiple agents

representing the different services offered by the server. It is also possible to have agents

only for certain services. The communication between the client, server and agent is

done by messaging and queuing.

(1v.1:obile) Host

Client J Agent l Server
l I

Figure 8 - The Client-Agent-Server Model (Adapted from [Samaras et al., 1999])

The second model is called the client-intercept-server (CIlIS) model. A pair of agents is

inserted in the path between the client and the server. The client-side and server-side

agents intercept communication emanating from the client and the server respectively .

The agents can then use messaging to communicate with each other.

(1v.1:obile) Host

Client Server
Client I"- Intercept Intercept

Server
Agent Agent

Figure 9 - The Client-Intercept-Server Model (Adapted from [Samaras et al., 1999])

22

Mobile Agents 3.5 Advantages of Mobile Agents

The Cl AfS and CII/S models utilise stationary agents that are bound to the server or both

client and server. The mobile agent (MA) model describes a system where an agent is

free to move around the network. Communication in the MA model can be either by

message passing, or by messenger agents carrying messages from host to host. It is also

permissible for transient CIAfS and CII/S models to be created under the MA model,

depending on the configuration of agents, clients, and servers at a given time.

(Mobile) Host

Client

...
L-_________ -----l

... '

.........

..............
......

I
I

I
I
I

t

Server

Server

Server

Figure 10 - The Mobile Agent Model (Adapted from [Samaras et aI., 1999])

The MA model can be used to extend the client-server, c/AfS and CII/S models if

messenger agents are used to carry information from the client-side to the server-side

(instead of message passing). The resultant models are called the 'mobile' client-server,

'mobile' client-agent-server and 'mobile' client-intercept-server models.

3.5 Advantages of Mobile Agents

Distributed object systems are currently the technology of choice in distributed systems

programming. These systems are usually based on client-server architectures. Mobile

agents hold several advantages over these systems. It should be noted though, that many

mobile agent implementations exploit distributed object technology such as CORBA and

Java RMI.

23

Mobile Agents 3.5 Advantages of Mobile Agents

Reduction of network traffic: During normal client-server communication, especially

where RPC or security protocols are used, there may be many two-way flows of

information between client and server. A mobile agent that can migrate to the server

enables this communication to take place locally.

Asynchronous and autonomous execution: Mobile agents can operate effectively in

networks where connections are frequently broken. An agent's thread of execution is

autonomous from the process that created it. Therefore, once an agent is dispatched to a

remote host, it may continue to execute there even if the network link to its originating

host is broken. When the link is restored the agent may then return to its originating host.

Encapsulation of protocols: In a distributed system environment, the client and server

(or source and destination hosts) usually both own the protocol code for receiving and

transmitting information. If the protocol changes, it is difficult to upgrade the protocol

code [Lange & Oshima, 1998]. Mobile agents avoid this problem by migrating to each

host and establishing a communications channel between themselves. This channel may

use any protocol, including a proprietary protocol, which the agents support.

Existence in heterogeneous environments: As the size of the network increases in a

distributed system, it is more likely that the hosts will differ from one another. Most

mobile agents are built with languages, such as Java, that are host-independent [Butte,

2002]. They are governed only by their agent platforms or agent systems. This allows

the distributed systems developer to view all hosts in a similar way since a uniform set of

services is available at every host.

Robustness and fault-tolerance: The mobile agent's ability to sense its environment

and react to changes allows it to be more robust and fault tolerant than traditional

systems. For example: If a host is shutting down, it may inform the agents residing on it,

which can then dispatch themselves to another host. Alternatively, before the host shuts

down agents may create clones of themselves at other hosts.

Efficient remote searching and filtering: In the case of a large remote database, a

client would normally perform an SQL query that could return potentially large result

sets. A mobile agent could perform this query efficiently by migrating to the database

server and performing the query there. Mobile agents are also able to open and search

flat text files. Since most of the world's data is in flat text files [Harrison et al., 1995],

this is a major advantage.

24

Aglets and Other Mobile Agent Systems 4.1 Introduction

4 Aglets and Other Mobile Agent Systems

4.1 Introduction

This chapter discusses three software agent packages: Aglets, JADE and Hive. Aglets is

discussed in more detail than the others since this research was implemented using

Aglets. Aglets is IBM's open-source implementation of mobile software agents,

produced under the IBM Public Licence. The JADE agent framework is developed by

Telecom Italia Lab (CSELT). It is distributed under the GNU Lesser General Public

License and is therefore open-source. Hive is a distributed agent platform created by the

MIT Media Lab and is freely available under the GNU General Public License. All the

systems are written in Java.

Researching mobile agents has shown that Aglets is one of the most popular mobile agent

systems. It is mostly used in academia as a tool for teaching the basics of mobile agents .

At the time of choosing a mobile agent system, Aglets was the most popular, freely

available system with a large user-base. Since that time the FIPA standard has become

the preferred standard and Aglets has become less popular as a research tool. JADE,

being FIPA compliant has not had this problem. It is very popular amongst academic and

commercial researchers researching mobile and intelligent agents [JADE homepageJ.

Hive differs from the others because it adopts a different analogy for the distributed

system, and it is concerned with mobile agent control of electronic devices. Hive is also

owned and written by an academic institution, while companies own Aglets and JADE.

4.2 Aglets

The Aglet Software Development Kit (ASDK) is used to create Aglets. The kit

comprises an API, a MASIF-compliant agent system, a proprietary communication

protocol , source code and documentation. The aglet model has four basic elements

implemented as objects: aglet, proxy, context and message.

Aglet: The aglet object corresponds to the MASIF mobile agent. Aglets that do not

make use of their mobility may be regarded as MASIF stationary agents. Aglets are

considered autonomous because they execute independently of the process that created

them, and run their own thread of execution at each host. They are considered reactive

because they can respond to events in the agent system and incoming messages.

25

Aglets and Other Mobile Agent Systems 4.2 Aglets

Proxy: The proxy object acts as a handle to an aglet. All operations on an aglet should

be performed using that aglet' s proxy. The purpose of a proxy object is to disallow direct

access to an aglet's public methods. Proxy objects on a local host may reference an aglet

that has migrated to a remote host. Thus, proxies also provide location transparency for

the handling of aglets.

Context: The context object implements the MASIF place. Agents execute all their

operations in a context. The context offers agents a uniform execution environment.

Message: Aglets use message passing to communicate rather than method invocation.

Message objects are passed between aglets to implement this. Message passing allows

for synchronous and asynchronous communications. Each aglet has a message manager

that handles incoming messages and replies.

The Aglets agent system is implemented through the Tahiti Server. It provides the

functionality of an agent system as detailed in the MASIF standard. Tahiti listens on a

port for incoming requests for messages and migrating aglets. Whether these messages

and migration requests are allowed or denied, depends on whether they satisfy the

security criteria specified for the server. Any aglet resident on a Tahiti server may have

any of the fundamental aglet operations (discussed later) performed on it by the user.

Aglets use a proprietary communication protocol called the Agent Transfer Protocol

(ATP). ATP is modelled on HTTP and is used for the transfer of agents and messages

between agent systems

4.2.1 Fundamental Aglet Operations.

The fundamental aglet operations are those that describe the life cycle of an aglet. They

are: creation, cloning, dispatching, retraction, deactivation, activation, and disposal .

Dispatch
Context 8

Dispose
Context A

~.---r-----------4---~
Retract

CreGte Deactiv ate Activate

Figure 11 - The Aglet Life Cycle [Lange & Oshima, 1998]

26

Aglets and Other Mobile Agent Systems 4.2 Aglets

Creation: A context object's createAglet method is used to create a new aglet. During

creation an aglet is assigned a unique identifier and inserted into the context. It is then

initialised and begins execution within the context.

Cloning: Cloning provides an alternative way to instantiate a new aglet. An aglet's

proxy object's clone method is used to create a clone of itself. The clone is given a

unique identifier at the time of instantiation and begins its own, new thread of execution.

Dispatching: Calling the dispatch method of an aglet's proxy object dispatches the aglet

from its current context to the destination context. The aglet's thread of execution is

halted before a dispatch and a new thread of execution begins when it reaches the

destination context.

Retraction: Calling the retract method of an aglet's proxy object removes the aglet from

its current context and inserts it into the context where the call was made.

Activation and deactivation: The deactivate method of an aglet's proxy object causes

the aglet to stop its thread of execution and save its state to secondary storage. The

activate method returns the aglet to its previous state in memory and re-starts the aglet's

thread of execution.

Dispose: Calling the dispose method of an aglet's proxy object results in the aglet being

removed from the context and garbage collected.

The Aglet API is a lightweight API similar to that of the Java Applet (the term Aglet was

derived from the joining of 'agent' and 'applet'). It also employs a delegation-based

event model, where events are generated for each of the fundamental operations.

Listener interfaces are specified that handle theses events. They are the ContextListener

(creation and disposal), CloneListener, MobilityListener (dispatching and retraction) and

PersistencyListener (activation and deactivation) interfaces. Abstract adapter classes

(CloneAdapter, MobilityAdapter etc.) are used to implement the listener interfaces (see

Table 1). The tasks that the programmer wishes the aglet to execute are implemented by

overriding the methods of the adapter classes. The general behaviour of the aglet, or the

tasks that can be executed without events being fired, are specified in the run method of

the aglet.

27

Aglets and Other Mobile Agent Systems 4.2 Aglets

Adapter Class Method to Override

CloneAdapter onCloning - Initialises the newly cloned aglet.

on Cloned - Called in original aglet when the cloning has taken place.

MobilityAdapter onDispatching - Called when an attempt is made to dispatch the aglet.

onArrival- Initialises the newly arrived aglet.

onReverting - Called when an attempt is made to retract the aglet from a

remote location.

PersistencyAdapter onDeactivating - Called when an attempt is made to deactivate the aglet.

onActivation - Initialises the newly activated aglet.

Table 1 - Methods that require overriding to specify aglet behaviour.

4.2.2 Aglet Communication

Aglets communicate primarily through message passing. There are three distinct types of

messaging that can be used with aglets. The first type of message, simply called

message, is used for synchronous communication. When a message of type message is

sent, the aglet's thread of execution blocks until the reply is received. The second type of

message is called afuture or an async message. Future messages allow for asynchronous

communication because they are non-blocking. A future message can also be configured

to wait a specified period of time for a reply, during which it blocks execution. The third

type of message is a called a oneway message. The oneway message does not require a

reply and is therefore also non-blocking. All messages types are sent by making calls to

an aglet's proxy. The message is then transferred via ATP.

,_n nn _n --n n nn --'j <: Mess".:> i'-nn n __ -n_ nn n_u,j
I I I

~ _____________________ , J , _____________________ , J

Figure 12 - Aglet Messaging

4.2.3 Aglet Security

This work does not concern itself with the broader issues of agent security. A basic

knowledge of the aglets security mechanism is necessary, as it governs how aglets move

between, and execute on hosts in the network.

28

AgJets and Other Mobile Agent Systems 4.3 JADE

Security is implemented by each Tahiti server In a distributed system. The security

settings are specified by a configuration file that uses the Java Development Kit 1.2

policy definition file syntax. Each aglet that executes in a context on the server is granted

permissions determining how it may use the various resources of the host computer.

Permissions are granted depending on the current context, the code base that the aglet

originated from, and who the owner and manufacturer of the aglet are. The owner

denotes the legal entity that instantiated and launched the aglet, while the manufacturer is

the legal entity that implemented the aglet. Aglet owners and manufacturers may define

protections for their aglets. Protections serve to protect an aglet's methods being invoked

by unauthorised aglets or programs.

4.3 JADE

The Java Agent Development framework, or JADE, is a software framework for

developing multi-agent systems. The JADE package includes a FIPA-compliant agent

platform, multiple communication protocols, source code and documentation.

The JADE agent platform is implemented through one or many containers. Containers

are RMI server objects that manage agents and provide them with an execution

environment. They may run on different hosts provided an RMI link can be maintained

with the other containers. This is in line with the FIPA specification that an agent

platform itself may be distributed amongst multiple hosts in a network. There is a main

container that contains the Agent Management System, Directory Facilitator, Agent

Communication Channel (or Message Transport Service) and user agents. JADE

provides a graphical user interface to the main container that allows the user to view the

entire agent platform and manipulate agents within it.

29

Aglets and Other Mobile Agent Systems

i
I
I

Host I Host 2

'l ;rile MqUJ,l C6iltailler .. Ja(fe Agent CQllilllQer
----------------- --- - ---------

I JRE l.21 IJREI .21

Network protocol stack

Ho~3

~
~
~
.9
8
~

4.3 JADE

< ···1
I

I · · i
J~ j.geatConmiger I · ------_._----'

1 IRE 1.2 1

Figure 13 - The JADE Agent Platform [Bellifemine et al., 2002]

JADE agents do not have a single run method where arbitrary tasks may be performed.

JADE has an abstract Behaviour class that must be sub-classed by the user in order to

specify the required tasks. Behaviours are added to the agent in a start-up method after

instantiation. Some sub-classes of the Behaviour class are provided ready to be used.

They are child-classes of the SimpleBehaviour and ComplexBehaviour classes. The

SimpleBehaviour class allows for single, atomic units of computation that can be

executed without interruption, while the ComplexBehaviour class allows for more

complicated behaviours that may be interrupted. There are two reasons for having these

two particular classes: JADE uses a thread-per-agent concurrency model instead of a

thread-per-behaviour model; and it employs round robin non-pre-emptive multithreading.

This means that when it is an agent's turn to perform a task, all the other agents in its

container cannot do anything.

Communication in JADE is done by passing FIPA-ACL message objects. In the case

where agents reside in the same container, the message is passed as an event. If agents

are on the same agent platform but on different hosts, the message is passed via RMI.

Where agents reside on different agent platforms, the message is sent using the Internet

Inter-ORB Protocol (HOP). The latest versions of JADE also support HTTP, Simple

Mail Transfer Protocol (SMTP) and Wireless Application Protocol (W AP).

30

AgJets and Other Mobile Agent Systems 4.4 Hive

4.4 Hive

The Hive distributed system uses the analogy of an 'ecology of agents' , where agents

interact with each other to produce the application. Hive agents are designed to facilitate

mobile computation in a living or working environment, by providing agent wrappers for

electronically controllable devices - in effect, to create distributed mobile agent-based

control systems. They are, however, not restricted to this domain and can be used for

more common mobile agent applications.

The hive architecture consists of cells, shadows and agents. Agents are located in cells,

which provide them with an execution environment, access to communication facilities

and local resources. The local resources of each cell are represented by shadows.

Shadows serve as an interface between agents and the resources (hardware or software)

that the shadows represent. The use of a shadow as an interface allows access to the

resource to be limited to the interface methods, and to be governed by a security policy.

o CIlII

tl Shadow

• Ag9nt

Figure 14 - The Hive architecture [Minar et al., 1999]

Hive utilises a semantic and syntactic lookup scheme to establish and maintain

connections between agents and shadows. The syntactic scheme lets agents and shadows

find each other based on their Java object type. The semantic scheme allows them to

locate each other based on an XML description of their capabilities. Java RMI is used to

facilitate communication.

The Hive agent lifecycle is similar to that of an aglet. Table 2 shows a mapping of Hive

agent and aglet API calls.

31

Aglets and Other Mobile Agent Systems 4.4 Hive

Hi ve method name Aglet method name

doLocalSetup OnCreation

doBehaviour Run

onDying OnDisposing

OnMoving OnDispatch

doLocalCleanup OnDisposing

Table 2 - Hive API methods and the corresponding Aglet API methods

32

Agents in Electronic Commerce 5.1 Introduction

5 Agents in Electronic Commerce

5.1 Introduction

Electronic Commerce (E-Commerce) and Electronic Business (E-Business) have many

definitions. There is a lack of consensus on the meaning of either term, or indeed, if they

are interchangeable. We adopt the view that they are the same, and define the term E­

Commerce as the process of buying, selling, or exchanging products, services, or

information via computer networks [Turban et aI., 2000]. E-Commerce can be seen to

consist of one or more of the following (life-cycle) phases: need identification, product

brokering, merchant brokering, negotiation, purchase and delivery, and product/service

evaluation [Turban et aI., 2002]. Agents may be used in E-Commerce either as individual

agents that participate in one or more life-cycle phases, or as part of multi-agent systems

or frameworks designed to facilitate E-Commerce.

E-Commerce is generally classified according to the kind of transaction, for example

business-to-consumer. We find from the literature that research applying software agents

to E-Commerce is mainly concerned with following classes of E-Commerce: business-to­

business, business-to-consumer, consumer-to-consumer and mobile commerce (E­

Commerce that makes use of wireless mobile devices such as cell-phones and PDAs).

Areas such as automated negotiation, auctioning using agents, and the development of

ontologies, which can be applied to all these classes of E-Commerce, are the focus of

much research. This chapter covers the field of agents in E-Commerce broadly; however,

since our application falls in the business-to-business category, we focus mainly on that

area of E-Commerce.

5.2. Non-Agent-Based Electronic Commerce

5.2.1 Traditional Electronic Commerce

Traditional E-Commerce, that is E-Commerce before the Internet, has been in existence

since the 1970's in the form of electronic fund transfers (EFl') and electronic data

interchange (EDI). EFl' enabled the direct payment of a sum of money from one bank to

another, while EDI allowed for the exchange of standard business documents between

businesses. EFl' and EDI employed the public telecommunications network or value­

added networks (VANs) for the transfer of data. These networks were closed systems

where only those businesses that were part of the system could join the network. Such

33

Agents in Electronic Commerce 5.2. Non-Agent-Based Electronic Commerce

systems by their nature were more suited to long-term relationships between the

participating businesses. They were also more suited to large businesses that could afford

the software and hardware required to participate (e.g. adding a partner to a V AN could

have cost more than $50000 in 1998 [Bolin, 1998]).

EFT and EDI are still widely used today, although the Internet has changed the way they

are used. Modern Internet-based EDI systems are characterized by their lower cost and

the more open nature of the systems they participate in. Relatively short-term

relationships using EDI are now possible between small and large businesses, since

Internet technology is widely available and does not incur a significant initial investment.

It should be noted though, that not all businesses have migrated from traditional EDI as it

is still more secure than Internet-based EDI.

5.2.2 Internet-based Electronic Commerce

The growth of the Internet and the World Wide Web in particular has resulted in new

forms of E-Commerce. Many more business models have now been successfully

implemented using the Internet. Some of these business models are defined by [Turban,

2002] and a selection is listed below (,The company' refers to the business entity

implementing the model):

• Name your price: The buyer declares a price that he is prepared to pay for a

product or service. The company tries to match the declaration with a supplier

who can provide the product or service at the said price. E.g. Priceline.com

• Find the best price: The buyer defines his needs and specifications, and the

company finds the supplier who can meet those needs and specifications at the

best price. E.g. Hotwire.com

• Dynamic brokering: The company Webcasts the buyer's needs and

specifications to suppliers as a tender. The suppliers then bid on the tender.

Supplier bids can be revised until a suitable bid is received. The company

automates the invitation to tender and the bidding process, and only requires the

initial input from the buyer. E.g. www.GetThere.com

• Electronic tendering systems: Large-scale buyers put out tenders and receive

bids on-line. This has recently been implemented in South Africa by the

Independent Electoral Commission on the website

www.votaquotes.elections.org.za

34

Agents in Electronic Commerce 5.2. Non-Agent-Based Electronic Commerce

• On-line auctions: These are similar to 'real ' auctions where buyers bid against

each other for products or serVIces. Bidorbuy.co.za is a local website that

implements on-line auctions.

• Electronic marketplaces and exchanges: The company provides a site where

buyers and sellers can meet and transact business. Electronic marketplaces are

not a product of the Internet since most stock markets operate electronically. The

Internet has, however, made it possible for electronic marketplaces to be open to

many more participants. E.g. ChemConnect.com

• Supply chain improvement: The supply chain is made more efficient in one or

more areas through the process of automation. This may involve electronic

ordering, payment and production monitoring. E.g. www.productbank.com.au

Most of the models are applicable across the various classes of E-Commerce; however,

certain models apply more to one class than another - for example, supply chain

improvement and electronic tendering are more suited to business-to-business commerce,

while others such as on-line auctions serve the business-to-consumer and consumer-to­

consumer classes better. The models also address different phases of the E-Commerce

life cycle - the 'Find the best price' model focuses more on the finding phase of the life

cycle whereas dynamic brokering is more suited to the negotiation phase.

5.2.3 Enterprise Resource Planning Systems

Enterprise resource planning (ERP) systems seek to tackle the problem of multiple,

isolated information systems that address the different areas of operation in large

businesses or enterprises. An ERP system is defined as an integrated system of operation

applications encompassing contract and order management, distribution, financials,

human resource management, logistics, production and sales forecasting [Moodley,

2001] .

ERP systems have developed from the material requirements planning (MRP) and MRP

11 systems that first came into use in the 1960' s and 1980' s respectively. MRP systems

are defined as legacy systems that enable businesses to predict, track, and manage all the

constituent parts or complex manufactured goods [Laudon & Guercio, 2002]. They are

production planning tools that generate things such as master production schedules for

manufactured goods, as well as bills of materials that specify the number and type of

parts required to manufacture goods. MRP 11 systems are essentially MRP systems with

management planning functionality. The MRP and MRP 11 systems, however, are not

35

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

integrated with the other information systems of a business and are geared primarily

towards manufacturing. ERP systems, in contrast, are integrated systems that include all

the features of MRP Il, and can be applied to many types of business.

MRP, MRP 11 and ERP systems have traditionally not been concerned with E-Commerce

as we have defined it - they have been more focused on improving the efficiency within

the business and not with interactions with entities outside the business [Moodley, 2001]

(this is the reason MRP systems are discussed here and not in the earlier section on

traditional E-Commerce). The manufacturers of ERP systems have only recently (since

1999) opened their systems and provided the ability to act with outside parties via the

World Wide Web, mainly through Internet-based electronic marketplaces. These

electronic marketplaces are primarily designed for business-to-business E-Commerce

with businesses that use similar ERP systems.

5.3 Agent-based Electronic Commerce

Agent-based E-Commerce uses the unique properties of agents to extend the models of

Internet-based E-Commerce. As the number of commercial entities that are on-line

increases, so the amount of information and potential trading partners available also

increases. The primary use of agents in E-Commerce is to represent the actors, generally

buyers and sellers, in a commercial environment. Agents help reduce the cognitive load

these actors face when dealing with these large amounts of information and multiple

trading partners [Griggs, 2000] [Nwana et al., 1998]. Agents are also used at the

infrastructure or system level to implement business models. These models may be

implemented entirely as agent-based systems or they may employ agents only for certain

tasks.

5.3.1 Classification Schemes for Agents in Electronic Commerce

The authors that have written overviews of agent-based E-Commerce have taken

different approaches to categorizing the field. Nwana et al., [1998], Maes et al. , [1999]

and Turban et al., [2002] classify agents according to the different phases of E­

Commerce they take part in . Ibrahim et al., [2001] believe that agents in E-Commerce

can be categorized into one of three broad areas: agents as delegates, agents in markets

and agents for business models. Papazoglou, [2001] provides a typology based on the

roles they play in E-Commerce systems. We describe [lbrahim et al. , 2001] briefly since

it is a broad classification scheme, and have a look at [Turban et al., 2002] and

[Papazoglou, 2001] in more detail. Agent-based auction systems are dealt with

36

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

separately since they are not explicitly described in the classification schemes presented

here.

5.3.2 The Delegate, Market, Business Model Scheme

Ibrahim et aI., [2001] presents a classification scheme we call the Delegate, Market,

Business Model Scheme. It defines the actors, or human participants in an E-Commerce

environment as buyers, sellers or intermediaries. Agents can then be used as delegates

for the actors in one of two ways - the first involves the agent searching for the best deal

for the actor, and the second involves the agent buying or selling on behalf of the actor.

In both cases the agent may employ AI to help the actor make decisions. In the first case

the agent is also implementing the 'Find the best price' business model.

Electronic markets employ agents as part of their infrastructure primarily for cooperation

and coordination. Cooperation here refers to the use of agents for helping actors allocate

sources, skills and products in the marketplace. Agents also help coordinate the trading

activities within the market. They enforce the trading rules of the market that govern the

behaviour of actors and their agents.

5.3.3 The Purchasing Life Cycle Scheme

Nwana et aI., [1998], Maes et aI. , [1999] and Turban et aI., [2002] base their

classification on what we call the purchasing life cycle. The purchasing life cycle is

derived from consumer buying behaviour models where six distinct phases can be

abstracted [Terpsidis et aI., 1997]. The phases are given different names by the different

authors, but they are essentially analogous. They are (in order): need identification,

product brokering, merchant brokering, negotiation, purchase and delivery, and

product/service evaluation. An explanation of each phase is given, as well as an example

of how agents are being used therein:

• Need identification: The buyer becomes, or is made aware of, the need for a

certain service or product. Agents can be used here on the buyer' s and seller's

side. On the buyer's side, an agent can selectively obtain product or service

information based on a profile of the buyer. On the seller's side, agents can also

be used to profile buyers, and then preemptively send them information to make

them aware of products or services they may find useful. An example of a seller

side agent for need identification is Amazon.com's BookMatcher agent. This

37

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

agent notifies users that make use of BookMatcher when a book that may wish to

purchase arrives at Amazon.

• Product brokering: After the buyer has determined that a product or service is

needed, the buyer enters the product brokering phase where he determines the

particular product or service required. This involves matching products to needs,

and evaluating different or competing products over certain criteria. The agents

used in this phase called recommenders, use various methods such as analyzing

using user data or recommendations to predict what products or services a user

will prefer. Examples of such agents are those by GroupLens - a company that

uses collaborative filtering for recommending movies [Good et al., 1999].

• Merchant brokering: Once a specific product or service has been chosen, the

buyer needs to choose which merchant or supplier to buy it from. The buyer will

have to evaluate merchants over multiple criteria. Merchant brokering using

agents is achieved in the business-to-consumer domain with comparative

shopping agents, also known as ShopBots. Excite's Jango ShopBot obtains

product specifications from a buyer and then searches the Internet for matching

products [Maes et al., 1999]. In the business-to-business domain, where business

models such as electronic exchanges are more appropriate, agents like

AgentWare's Syndicator can be used (it enables business-to-business electronic

exchanges) [Turban et al. , 2002].

• Negotiation: Negotiation occurs between the buyer and the merchant selected in

the merchant brokering phase. It occurs mostly in the business-to-business

domain since most business-to-consumer commerce involves fixed-price selling.

It can involve any number of criteria, but is primarily concerned with price.

Negotiation is one of the most heavily researched areas of agent-based E­

Commerce and there are many examples of negotiation agents and systems. The

Kasbah agent marketplace [Chavez & Maes, 1996] is frequently cited. It uses

agents for negotiation between buyers and sellers in the consumer-to-consumer

domain . Kasbah agents, however, only negotiate over price, and this limitation

gave rise to the Tete-a-Tete system [Maes et al., 1999]. Kasbah and Tete-a-Tete

both feature agents that only perform bilateral or two-party negotiations. Jennings

et al., [1996] have developed the ADEPT agent system that allows for mUlti-party

multi-issue negotiating agents. The ADEPT system was used by British

Telecommunications in the business-to-business domain to automatically generate

quotations for the design of networks [Faratin et al., 1998].

38

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

• Purchase and delivery: The purchase and delivery of a product or service

involves receiving the product, or the completion of the service, and the

subsequent payment. This phase does not necessarily begin after the negotiation

has finished since it may be possible to continue negotiating while a service is

being performed. An example of agents being used for purchasing is the

SafeCheck system that prevents non-allowable cheques from being issued by

performing authorization [Lee & Yoon, 2000]. Kasbah is capable of delivering

electronic products such as software to the consumer.

• Product/Service Evaluation: The evaluation of a product or service may occur

after a sale or service delivery, or it may be an ongoing process that occurs during

the lifetime of the product or service. Agents can be used here to help automate

feedback from the buyer. Firepond.com's Answer and Advice agent are used to

reply to e-mail questions from customers [Turban et al., 2002].

5.3.4 Papazoglou's Typology

Papazoglou, [2001] lists four basic types of E-Commerce agents In his typology. A

graphical representation is given below in Figure 15, followed by a brief overview of

each type of agent.

Figure 15 - Papazoglou's Typology [Papazoglou, 2001]

39

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

• Application agents: Application agents are agents that are specialized to a

single area of expertise and provide access to the available information and

knowledge sources in that domain . They may also collaborate with other

agents to solve problems in that domain.

• Personal agents: Personal agents are analogous to interface agents from

Nwana's agent taxonomy. These agents aid users in the presentation,

organization and management of information relevant to the user's role in the

business.

• General business activity agents: These agents perform a large number of

activities in support of the general running of the business. They may be

involved in searching for information, negotiating or marketing and can be

customized to suit a particular business. Within this group there are two

important types of agents, namely information brokering agents, and

negotiating agents. Information brokering or matchmaking agents provide

facilities for the location of other agents and information sources available on

the network. They employ and maintain distributed directory services that list

product and business services. Negotiating agents, also termed contracting

agents here, serve the same function as they do in the Purchasing Life Cycle

Scheme. They may take part in multi-party multi-issue negotiations with the

goal of forming a contract with the opposite party or parties.

• System-level support agents: These agents provide the agent-level

infrastructure for an agent-based E-Commerce system. They in turn are built

on distributed object infrastructures such as CORBA. There are four

important types of system-level agents - planning and scheduling agents,

interoperation agents, business transaction agents and security agents.

Planning and scheduling agents generate plans to coordinate the successful

completion of a task by other agents. This generally requires some measure of

AI. Interoperation agents allow an agent system to seamJessly interact with

legacy systems. Agent-based E-Commerce systems are often developed after

existing, or legacy systems, have been in operation. Interoperation agents

serve as 'wrappers' for these legacy systems. Business transaction agents

simplify the processing, monitoring and control of business transactions by

automating activities such as transaction-related workflow and the

enforcement of electronic contracts. Security agents maintain the security that

40

Agents in Electronic Commerce 5.3 Agent-based Electronic Commerce

IS essential in E-Commerce environment where financial information IS

transmitted along a network.

5.3.5 Agent-based Auction Systems

Traditional on-line Internet auctions involve a user accessing the auction website,

searching for a product and then placing a bid on that product. The user must revisit the

website to ascertain what the leading bid is and to place another bid. Agent-based

auction systems extend traditional on-line Internet auction systems by automating stages

of the auction process as well as by adding AI into the systems.

The most common extension is the use of an agent to represent the buyer. Buyer agents

can reside on the auction server, or any other host, and bid on the user's behalf after the

user has gone off-line. Also, buyer agents may employ user-defined bidding strategies

and learn the strategies of competing agents in order to buy at the optimum price. Agents

representing buyers do not only perform the function of a bidder - the BiddingBot agent

system allows a buyer to send agents to many auctions and gather information on the

price of an item so as to determine the fair market price of that item [Ito et. aI, 2000].

The sellers in an auction can also be represented by agents - the Nomad agent system

allows a seller's agent to begin an auction at the auction server [Sandholm & Huai,

2000]. System-level support agents may also be used in an auction system for things

such as user agent authentication and the enforcement of auction rules (e.g.

communication between colluding buyer agents would not be desirable).

41

The Distributed Buying Problem 6.1 Introduction

6 The Distributed Buying Problem

6.1 Introduction

The distributed buying problem exists In businesses that are distributed over a large

geographic area. During the merchant brokering phase of the purchasing life cycle, such

businesses may have the additional option of procuring materials from other branches.

The negotiation phase must then not only take into consideration the suppliers ' lowest

price, but also the cost of transporting the required material from other branches. An

optimal execution of these two phases will ensure that the risk of duplicating purchases

within the business, and the amount of time taken to contact multiple suppliers and

branches, is minimized. We can therefore define the distributed buying problem as the

business-wide optimization of the merchant brokering and negotiation phases of the

purchasing life cycle. The use of agents in these phases is described in the purchasing

life cycle scheme in Section 5.3.3 .

In this research we focus on the use of mobile software agents to improve the merchant

brokering and negotiation phases with respect to man-hours required and cost. BHP

Billiton ' s aluminium-smelting operation in southern Africa is used as an example of a

distributed business. It consists of three plants: the Hillside and Bayside plants in

Richards Bay, South Africa, and the Mozal plant in Mozambique. The plants do not all

produce the same end-products; however, their production processes do have common

material requirements that create a distributed buying problem for the business.

6.2 The Role of the Buyer

In businesses that are sufficiently large, the function of buying materials is the

responsibility of purchasing and supply management professionals. They have many job

titles, but, for the sake of brevity, we use the term buyers to describe them. Buyers

interact internally with individuals or departments that request materials, and externally

with the suppliers that provide them. It is the buyer' s responsibility to ensure that the

business procures materials that best meet its needs in terms of cost, quantity, quality, or

some combination of these or other criteria. The type and structure of the business

determines to what extent it is the buyer that decides these criteria, or the individual or

department that requested the material.

42

The Distributed Buying Problem 6.2 The Role of the Buyer

6.2.1 Types of Buying and Materials

Buyers may be involved in either spot buying or strategic buying. Spot buying refers to

buying materials at a market price that is determined by supply and demand in a dynamic

manner [Turban, 2002]. Strategic buying on the other hand, involves buying materials at

a price that has been arrived at through a negotiated, long-term contract [Turban, 2002].

Note that spot buying does not imply buying from suppliers that do not have contracts

with the business. Large businesses often deal only with suppliers that have registered

with them and bound themselves to terms and conditions specified by the business.

The materials that are bought can be categorized as direct or indirect. Direct materials

are used directly in production. Their use is scheduled, they are usually not shelf items,

and they are bought in large volumes using strategic buying [Turban, 2002]. Direct

materials are usually bought from suppliers with whom the business has an established

relationship [Essmeyer, 2000] . Indirect materials, also called MROs, are used for

maintenance, repairs and operations, and all other goods that are not directly used in

production [Laudon & Guercio, 2002] [Turban, 2002]. They are more easily bought using

spot buying.

6.2.2 Traditional Buying Methods

The traditional method for buyers to interact with suppliers is a manual, paper-based one

that requires the use of telephones, fax machines, face-to-face conversations and systems.

This method is also currently the predominant method [Laudon & Guercio, 2002]. It

places severe time restraints on buyers due to the slow nature of paper-based systems.

Turban [2002] states that indirect materials constitute eighty percent of the total number

of items bought by businesses, yet only twenty percent of the total value of the items

bought. This forces buyers to spend more time focusing their efforts on low-value

indirect materials, rather than on direct materials .

6.2.3 Procurement Reengineering

Procurement reengineering attempts to change the traditional method of buying to make

it more efficient. This efficiency is usually achieved through the application of

information technologies [Turban, 2002] and automation, but may also be achieved by a

change in a company's manual buying processes. Most of the attempts at procurement

reengineering have concentrated on spot buying and indirect materials - indirect

43

The Distributed Buying Problem 6.3 The Buying Process at Billiton

materials because they constitute the bulk of buying, and spot buying because strategic

buying, with its reliance on a greater deal of human-human interaction, is harder to

automate/computerize.

Turban [2002] lists a number of sub-goals that can be contribute to the overall goal of

efficient buying. The following are relevant to this work because the system developed

here is targeted at these areas:

• Increasing buyer productivity

• Authorizing those who place buy orders with buyers to buy directly from their

desktops, thereby bypassing buyers.

• Improving the flow and management of information between buyers and

suppliers.

• Reducing human error in the buying process.

Businesses that have attempted to apply information technologies to procurement

reengineering have used many different types of systems and E-Commerce models. In

general, information technologies can automate manual tasks and greatly reduce

paperwork. This saves the buyer's time and limits the introduction of human error in the

process. The flow of information between the buyer and supplier is also made faster,

since electronic documents can be transferred faster and managed more easily than their

paper equivalents (this is the basis of EDI and workflow systems).

6.3 The Buying Process at Billiton

The buying process and systems are similar at the three Southern African Billiton

aluminium-smelting plants. Each plant has a Commercial Division that is responsible for

the buying of materials. The Commercial Division has commercial specialists, who are

trained and experienced in buying materials related to specific operational areas.

Commercial specialists receive requests for the purchase of materials in the form of

electronic documents, routed via e-mail or the SAP ERP system that is used at the plants.

Requests originate from personnel working in the specialist's operational area of

expertise. If the purchase exceeds a certain value, supervisory approval is needed and the

document is routed to the supervisor, who may be a divisional superintendent, divisional

manager or the plant manager, depending on the value of the purchase. Once the

purchase has been approved, the document is routed to the specialist who then completes

the purchasing life cycle from either the product or merchant brokering phases, or the

44

The Distributed Buying Problem 6.4 Solving the Distributed Buying Problem with Agents

negotiation phase (the request itself is the result of the need identification phase having

already been undertaken).

The stage at which the specialist enters the purchasing life cycle is determined by how

specific the request for the material (product) is. For example, an engineer might request

a particular material from a particular merchant, in which case the specialist need only

negotiate with that merchant. Alternatively, the engineer might only request a certain

type of product, leaving the specific choice up to the specialist.

6.4 Solving the Distributed Buying Problem with Agents

To solve the distributed buying problem, we develop an agent-based proof-of-concept

system that attempts to reengineer the buying process at each plant. The system uses

mobile agents to circumvent the commercial specialists, and conducts the merchant

brokering and negotiation phases of the purchasing life cycle itself. It makes use of the

existing network and computing infrastructure that supports the SAP ERP systems at

each plant.

Mobile agents are chosen for the following reasons:

• They are platform independent and may execute on a variety of different plant

and supplier systems.

• Their mobility, autonomy, and asynchronous execution (See Chapter 3.5) allow

them to be dispatched to other plants and suppliers systems without a persistent

link to the dispatching agent system, and without the need for constant feedback

from the buyer.

• To prevent duplication of resources and materials, it is necessary to perform

remote queries on the materials databases of the other plants - mobile agents

address this aspect of the distributed buying problem by their ability to perform

efficient remote queries on large databases (See Chapter 3.5).

• They are capable of carrying out complex negotiation protocols In their

negotiations with supplier agents (See Chapter 5.3.3).

In the next chapter we provide more detail on the system, and explain its design.

45

Design of the Mobile Agent System 7.1 Overview

7 Design of the Mobile Agent System

7.1 Overview

A multi-agent system (based on the CINS model for mobile agents) is designed for a

single plant, with the design then being replicated at the other plants due to the analogous

organizational structure and operating procedures of all three plants. The result is an

enterprise-wide multi-agent system that serves each plant individually and the enterprise

as a whole.

The design diagram that follows represents the 'plant view', or the view of the multi­

agent system operating at a single plant. It shows the overall architecture of the system

and is not a detailed schematic of the exact functioning of the system at the plant level.

',,_ Retumfromnegotiation
'­

-~-
-" -- Inrerface Agent

Request
Buyer Agent

ispatch
Query &
Update
Meooages

Plant View

Query &
Update
Meooages

Initiate
Buyer Agent
Dispatch

, , ,
I ,

, ,

" , ,

, ,

/ Dispatch

, " "

" User Agent , ,

, , , ,

Figure 16 - Plant View (Directory & Finder Agents not shown for clarity)

The agent system at a plant is designed to be self-contained within the enterprise; that is,

it may operate in isolation from the other plant agent systems in the enterprise. In order

to function at its least effective level, it only needs to contact suppliers. The system

46

Design of the Mobile Agent System 7.1 Overview

consists of one mobile and four stationary infrastructure agents (i.e. agents that provide a

service to the other agents). These agents are:

• Database Agent - provides access to the databases for all agents that require it.

• Interface Agent - provides an interface between the plant and outside agents.

• Dispatcher Agent - dispatches Buyer and User Agents to their destinations.

• Directory Agent - provides a directory service for locating the infrastructure

agents.

• Finder Agent -locates the Directory, or any other specified agent.

The remaining agents are:

• Login Agent - a stationary agent that allows users to log in to the system.

• User Agent - a mobile agent that provides a OUI for the user to interact with the

system

• Buyer Agent - a mobile agent that performs negotiations and places orders with

suppliers.

The design can be viewed from an enterprise-wide perspective where the functioning of

the system with other plants and suppliers is shown (Figure 17).

47

Design of the Mobile Agent System

Supplier 1 Supplier n

~----- ------\ /---- - ------ \ "
_ ..: Buyer Agent ~ --------..: Buyer Agent :- -

,;' , ____________ ... J , ____________ .. J

, , ,

(BUyer: Agent)

I Dispalch
t , Hillside Plant

/------------ \ _JJ-

: Buyer Agent ,:.. - - -- -~~~-
,------ ----_ ..

Submit info

7.2 The Agents and their Roles

Bayside Plant

,

Mozambique Plant

" {Dispakher Agent)

Enterprise-wide View
User I

Figure 17 - The Enterprise-wide View

Figure 17 shows the dispatch of a Buyer Agent from the Hillside Plant and the path it

traverses, visiting each supplier and the other plants in turn until it returns. The new

elements introduced in this diagram are the Supplier Agents and the users that interact

with them. Supplier Agents are those agents that the Buyer Agents communicates with

during negotiations. They are the only agents that the design mandates on the supplier

side. The supplier's agent system, apart from Supplier Agents, functions independently

of the agent system presented here. All that is relevant to our design is that there is a

Supplier Agent that is negotiated with, and that there is a user, an employee of the

supplier, that provides feedback to this agent.

7.2 The Agents and their Roles

Login Agent

We begin our discussion of the agents with the Login Agent. The Login Agent receives

information from a user, who is a buyer, or a member of a specific group of individuals

authorised to initiate purchase requests. It has two functions in the system. The first is to

provide a means for the user to authenticate to the system by providing details such as

48

Design of the Mobile Agent System 7.2 The Agents and their Roles

user name, password, and user group. The Login Agent performs the user authentication

by checking the information against information contained in the database, via the

Database Agent (this communication is not shown in the diagram).

If the authentication is successful, the User Agent is able to perform its second function

of initiating the dispatch of the User Agent from the Dispatcher Agent, and providing the

Dispatcher Agent with the parameters required to create and dispatch a User Agent.

These parameters include the user's user-name, group and URL, as well as the URLs of

the stationary infrastructure agents.

User Agent

The User Agent provides a graphical user interface (OUI) to the system for the user and

serves as the user's main point of interaction with the system. It allows the user to:

• . Perform queries on the database from a selection of queries that are available for

his user group (the decision to provide a limited number of queries to each user

group is based on the current practise at the three plants) . Database queries are in

fact queries to the Database Agent.

• Add queries to the list of possible queries .

• See the status of orders for materials used by his user group, which have been

placed with suppliers and are awaiting delivery, and orders that are in the process

of being negotiated using the agent system.

• Manipulate the negotiation process by accepting supplier quotes and placing

orders for materials with the supplier, or initiating another round of negotiations.

• Request a quotation from a supplier by initiating the dispatch of a Buyer Agent to

that supplier, or to all suppliers of that material (Note that in both cases the Buyer

Agent is also dispatched to the other two plants to check stock levels there). In

order to dispatch a Buyer Agent, the User Agent makes a request to the Interface

Agent.

• Dispatch the User Agent to another URL. This is useful if the user is moving to

another location in the plant. It would also allow the User Agent to reside on a

mobile device that can support Java, OUls and wireless TCP/IP.

Database Agent and databases

As part of the ERP system in place, a database management system (DB MS) contains the

information describing users, materials, suppliers, quotes and orders. The agent system

49

Design of the Mobile Agent System 7.2 The Agents and their Roles

makes use of the DBMS by providing an agent wrapper - the Database Agent - for the

relevant databases within the DBMS. The Database Agent facilitates all access to the

databases by other agents.

All agents that need to retrieve, place new information into, or update the databases send

messages to the Database Agent. It then effects the change or retrieves the data, and

sends the result back. The messages are not SQL queries but are requests for a task to be

performed, and the data necessary to perform it. The use of message passing between the

'parked ' Database Agent and client agents fits the C/A/S model for mobile agents.

Wrapping the databases is preferable to providing each agent with the ability to interface

directly with the databases, since a change to the database or interface to the database

would necessitate a change to all the agents . In the case of wrapping, only the wrapper

agent needs changing.

The system is designed such that the status of an order, or a negotiation process is, at any

moment, recorded in the database . This is an important feature of the design as it:

• Maintains the state of orders and quotes in the system in the event of the system

breaking down.

• Allows orders and quotes to be traced though the system to verify that it is

operating properly.

• Provides records of the state of the database at different times so that potential

disputes with suppliers over quotes or orders can be settled.

Interface Agent

The Interface Agent serves as the interface between the plant intranet, and the plant

extranet and the Internet. All agents outside the plant' s agent system that require

interaction with the plant ' s agent system do so via the Interface Agent. A single point of

interaction ensures that changes within the system are transparent to outside agents, and

similarly, changes outside the system are transparent to agents inside the system. Only

the Interface Agent needs to be changed in response to these changes. Furthermore, it is

favourable to have one point of entry for agents entering the system, as it is easier to

secure one point rather than many.

The Interface Agent handles User Agent requests for Buyer Agents to be dispatched.

Before a Buyer Agent can be dispatched it must be recorded in the database that a request

has been made for a Buyer Agent to be dispatched for a specific order, and, once the

Buyer Agent has been successfully dispatched, this must also be recorded.

so

Design of the Mobile Agent System 7.2 The Agents and their Roles

Having the Interface Agent handle requests for Buyer Agents also allows for different

protocols relating to Buyer Agent dispatching. For example, it might be decided to

collect all the orders or quotations from various user groups destined for a single supplier,

and dispatch a single Buyer Agent with that information to the supplier. The Interface

Agent also performs the task of resolving supplier names to URLs for dispatch requests

received by User Agents. This ensures that if supplier URLs change, or a decision is

made not to deal with a certain supplier, this change only needs to be made at one point.

All returning Buyer Agents report to the Interface Agent. The fact that a Buyer Agent

related to a certain order or quotation has returned, along with the information it contains,

is placed in the database by the Interface Agent (again, via the Database Agent).

The system is designed with the assumption that all suppliers have agent systems of their

own with which to interact. It is possible to have the Interface Agent extend the system

to handle the e-mailing of suppliers without agent systems. All that is required is for the

Interface Agent to send a message to an E-mail Agent when it resolves the supplier name

to a supplier without an agent system URL. The E-mail Agent can then dispatch an e­

mail to the supplier, parse the reply and send this to the Interface Agent which will place

it in the database.

Dispatcher Agent

The Dispatcher Agent is responsible for dispatching all Buyer and User Agents to their

appropriate destinations. It acts as a single point from which other agents that request

Buyer or User Agents dispatches can place their requests . Once a request has been made

for an agent, the Dispatcher Agent creates the agent from the Agent Store with the

parameters provided in the request, and dispatches it to its destination.

The reason for having a single point for dispatching is that updates to either Buyer or

User Agents need only be made at one location . Furthermore, in the event that other

agents are added to the system that need dispatching, they need only be stored once in the

Agent Store.

Buyer Agent

The Buyer Agent performs automated negotiation and places orders with suppliers. It is

created and dispatched by the Buyer Agent to the suppliers specified in the dispatch

request. It visits each supplier in its list of URLs in turn, and then returns to the system

where it communicates the result of its interaction with supplier agents to the Interface

Agent.

51

Design of the Mobile Agent System 7.2 The Agents and their Roles

The negotiation mechanism chosen involves sending the lowest quote from the previous

request for quotes to each of the suppliers who bid. The user specifies the initial price for

the first round of negotiations, and decides after each round whether to initiate another

round. The user is left to decide how many rounds of negotiation are required in order to

stop suppliers optimising their bidding strategies for a fixed number of rounds. This

specific negotiation strategy was chosen for its simplicity; however, negotiation strategies

can be made arbitrarily complex, with the only change being to the Buyer Agent, and

possibly the Supplier Agent it interacts with .

Directory Agent

The Directory Agent plays a role similar to the Agent Management Service (AMS) in the

FIPA standard - it provides agents with the network address and necessary contact

information for the stationary infrastructure agents. These infrastructure agents, and any

other agents that may need their location and contact information known to the system,

sign in with the Directory Agent providing their name, URL and contact information.

Thus, when other agents require information for a specific agent, they specify the name

of the agent they are interested in, and the Directory Agent returns all the required

information for that agent.

Since this design represents a proof-of-concept system there is a single Directory Agent.

In an industrial setting one may have (without much additional complexity or changes to

other parts of the system) multiple Directory Agents that update each other with the latest

information, in much the same way as domain name servers and routers do.

Finder Agent

The Finder Agent's primary purpose is to find the Directory Agent for agents that require

Directory Agent services. At some point in such an agent's initialisation, it will dispatch

a Finder Agent to search for the Directory Agent. The Finder Agent traverses a sequence

of URLs of possible Directory Agent locations it obtains from the dispatching agent, and

returns as soon as it finds the Directory Agent. The list of URLs is held in a

configuration file for the dispatching agent.

The Finder Agent has a secondary purpose of finding other agents when requested to by

dispatching agents - all that is required is the name of the target agent and the list of

URLs. The Finder Agent does not destroy itself once it returns with information but

remains in case it is needed again at a later stage. This removes the overhead of creating

a new Finder Agent during the dispatching agent's initialisation.

52

Design of the Mobile Agent System 7.3 Discussion

7.3 Discussion

The design shows that it is possible to reengineer the buying process usmg mobile

software agents and hence solve the Distributed Buying Problem. As with any system

design it is based on decisions that represent trade-offs between one aspect of design and

another. An example is the significant assumption that suppliers have agent systems of

their own with persistent connections to the Internet. This assumption was made to

remove the complexity associated with handling suppliers that can be only be contacted

by one medium or another (especially only by telephone or facsimile). It represents the

general trend in procurement reengineering to move away from manual or paper-based

methods of procurement to automated ones. The design is modular specifically so that it

can be easily extended in order to deal with such complexities.

Having stationary infrastructure agents that provide functionality exclusively, such as a

Dispatcher Agent being solely responsible for dispatches, means that a malfunction at

this point disables that plant's system. The advantage, of course, is that changes to the

dispatched agents, only need to be made at one point. The decision not to spread the

functionality between agents, or have more than one of each type of infrastructure agent,

is based on two reasons: the design is for a proof-of-concept system, and not an industrial

system where reliability is paramount; a single point of failure is commonly found in

many industrial client-server systems anyway, so our design is not necessarily less

reliable.

S3

Implementation of the Mobile Agent System 8.1 Hardware and Software Used

8 Implementation of the Mobile Agent System

This chapter describes the implementation of a mobile agent system for the Hillside plant

based on the design presented in the previous chapter.

8.1 Hardware and Software Used

The following software was used for development:

• The IBM Aglet Software Development Kit version 1.1.0

• The Sun Java Development Kit version 1.1.8

• The Sun Swing Classes version 1.1

• Borland's JBuilder 4.0 and its JavaBeans Component Library (JBCL) class for

GUI development

• Microsoft SQL Server 2000

• Microsoft NT4 Server

• Red Hat Linux 7.1

IBM's Aglet SDK was chosen since it was freely available, had a large user base, and

good developer support through its active mailing list. It is Java based, and at the time

required version 1.1.x of the Sun JDK. Version 1.1.8 was selected since it was the last of

the version 1.I .x releases.

Borland JBuilder 4.0 was used for the development of GUIs because its visual

environment made the task much simpler. The Sun Swing classes for GUIs were used

since they offered more functionality than the standard A WT classes. The Borland JBCL

class was chosen to allow for the easier creation of more complex GUIs.

Microsoft's SQL Server 2000 was selected because it is both an enterprise-strength

DBMS and free to use (due to the department ' s Microsoft Developer Network

subscription). Moreover, it was easier to use and required less powerful hardware than

the other freely available enterprise-strength databases tested.

The hardware used in the development consisted of two computers, connected by a

TCP/IP network.

S4

Implementation of the Mobile Agent System 8.2 Databases and the System Dataflow

To prove that the concept of using mobile agents was indeed valid, the issue of

heterogeneous operating environments was tackled. There are potentially many different

operating systems in place within the enterprise and at suppliers, with the Microsoft

Windows family of operating systems and Unix-type environments making up a large

percentage of these. It was decided to use the Windows NT4 Server on one computer

and Linux on the other to determine how easily mobile agents could migrate from one

environment to another, and if there were any problems associated with this.

8.2 Databases and the System Dataflow

8.2.1 The Database Tables

The databases discussed here simulate the database services that would be made available

to an agent system by the ERP system at a plant. Two databases are used in the

implementation: the plant database and the user database. The plant database contains

information describing a plant, the materials at that plant, orders and quotes for the plant,

as well as the plant's supplier details. The user database contains information that is used

to map available database queries to user groups. The most important tables in the plant

database are the ORDERS and QUOTES tables. These tables are used to keep track of

the state of orders and quotes in the system.

Table 3 shows the design of the ORDERS table (the transport cost is built into the total

cost and it is therefore not included as a separate field). The DispatchCondition field

records whether the Buyer Agent has been dispatched or has returned. The round of

negotiation for which the Buyer Agent was dispatched or has returned from, is also

recorded in this field. We are able to store these two facts by using a three-digit integer

for the dispatch condition and setting the first digit to ' 1' when the Buyer Agent has been

dispatched, and to '2' when it returns. The second two digits record the current round of

negotiations and the number represented by the digits is incremented each time a new

round of negotiations begins. The use of two digits obviously limits the number of

rounds of negotiations to ninety-nine, however this is adequate for our purposes. Once a

supplier quote has been accepted and the plant is awaiting delivery a single digit is used

and set to '-1 ' .

The QUOTES table has essentially the same design as the ORDERS table. The

QuoteDateTime field replaces the OrderDateTime field - it records the date and time the

Buyer Agent received each quote. The Salesperson and Remark fields have also been

added to record the name of the salesperson at the supplier that offered the quote, and any

55

Implementation of the Mobile Agent System 8.2 Databases and the System Dataflow

remarks he has regarding the quote. The QUOTES table only stores information

regarding the last round of negotiations for an order.

Field Name Purpose

OrderNumber U sed to store the order number of an order. The order

number is a unique identifier for each order and therefore

this is the primary key for the table.

Material Code The code identifying the material ordered. Material codes

are unique identifiers for materials in the MATERIAL table.

Quantity The quantity of the material ordered.

Price The price per unit of a material.

SupplierCode The code of the supplier of the ordered material. Supplier

codes are referenced from the SUPPLIER table.

Status Shows whether an order has been confirmed and is awaiting

delivery or whether it is still under negotiation.

MRPGroup The user group that order is for.

DispatchCondition Shows whether the buying agent dispatched for the order has

returned or not, and what the current round of negotiation for

the order is.

OrderDateTime The date and time the order was placed by the user.

Controller The user who placed the order.

TotalCost The total cost of the order.

Table 3 - The ORDERS table in the user database

Reference is made in Table 3 to the SUPPLIER and MATERIAL tables in the plant

database that describe all relevant information about the plant's suppliers and materials

respectively. The MATERIAL table was populated using sample data from reports

generated by the SAP ERP system at the Hillside plant.

56

Implementation of the Mobile Agent System 8.2 Databases and the System Dataflow

The following figure shows the tables in the plant database.

PLANT ..

~. '11 CODE
f NAME

MRP _CONTROLLER ..
'11 CODE

NAME

AUTHORIZATIONS

STORAGE

____ H" •• _ ~ 8'~~f~T~:~~~ "

~
MATERIAl ..

,jl CODE
LOT _SIZE r-
STOCK_QUANTITY

I-

r- MAX_STOCK_LEVEL

r- STORAGE_LOCATION
ORDER_UNIT -- LEAD_TIME
PRICE -

'-- NAME
CURRENT _SUPPLIER -

'--
MIN_STOCK_LEVEL

MRP _CONTROLLER

ORDERS -. •....
~O;;re~N;;;;;t;;;;'

., " _'"

_ MaterialCode

_ Quantity

_ Price

f-- Supplier

f-- Order Unit

>- Status

f-- MRPGroup

'-
DispatchCondition

f-- OrderDate Time

f-- Controller
L TotalCost

r~"~~ MCODE
PHONE

FAX

URL

-.. _ _ ...

Figure 18 - The Database Schema for the User Database

8.2.2 System Dataflow

QUOTES

.= Order Number
MaterialCode - Quantity - Price - SUpplier

"- OrderUnit

MRPGroup - QuoteDate Time - Controller -
Remark - TransportCost - Salesperson - TotalCost

_ ••• H ••• ··M _

ij
11.~?UE~ _______ ,

Ik NAME
I 'll CODE

'~ CONTACTYERSON
FAX

I~ PHONE
ADDRESS

't- RELIABILITY 1:-
MATERIALS Ir-
URL

System dataflow refers to the flow of data through the system, and how this data is

changed as it moves through the system. In our system the data of interest is the order

and quote information. The structure of an order and quote does not change as it moves

through the system (though the information describing the order or quote may change)

therefore we can rely on the description of an order and quote as represented in the
database.

Figure 19 shows the creation of a new order by a user using the User Agent and the

source of each data element that makes up an order.

57

Implementation of the Mobile Agent System 8.2 Databases and the System Dataflow

Generated by stored procedure in database

User selects those available to him from MA TERlAL table in database

User selects those available to him from SUPPUER table in database --~~---~-i~~====l

Generated by user ----~~:::::::--IE!:!!~---_l

Generated by User Agent ------e;:O:::::::::::::--I~~~~ _ ___l

Defaultvalue -----=:;:::::::~-I~~---___l

Figure 19 - Order Creation

The order number for each new order is generated using a stored procedure in the

database. The procedure merely increments the current order number (stored in the

ORDER_COUNTER table in the plant database) by one. The materials and their

suppliers are chosen by the user depending on what his user group is allowed access to in

the database. The values themselves are obtained from the MATERIAL and SUPPLIER

tables respectively. The quantity, price per item, and total cost of an order are determined

by the user. The total cost may simply be the price per item multiplied by the quantity, or

it may be some lower value if the user includes a discount. The date of an order

(OrderDateTime), identity of the user (Controller) and user group (MRP Group) are

provided automatically by the User Agent, since these are initialisation parameters for the

User Agent. The order status and dispatch condition have default values in the database

at the time of creation.

8.2.3 The Order and Quote Life Cycle

The lifecycle of an order and quote is illustrated below m Figure 20 and explained

thereafter. It is used to show the system dataflow.

58

Implementation of the Mobile Agent System 8.2 Databases and the System Dataflow

The Order and Quote Lifecycle

---~---------------~-

,/!~: ~~J~ .------su-

P

p-

P

:-· &--':=--'''--'0

I I
I \
(\

I
J
I
I
I
I
I

I: Interface
. - Agent

Plant database

Interface
Agent

,

I l , , , , , , ,// 0

User Agent

Key: CV Step number x in the lifecycle

I Order or quote

Figure 20 - The Order and Quote Lifecycle

1) The creation of an order. A new order may be created by the user as described in

Figure 19, or an order may be generated from quotes stored in the database. The

only difference to the creation process in the case of the latter is that all the data

for the order is drawn from the QUOTES table rather than from the user and User

Agent

2) The Interface Agent changes the dispatch condition associated with the order to

reflect that the Buyer Agent has been dispatched with the order information.

3) The order now takes the form of a quote in the Buyer Agent and is the basis of the

request for quote (RFQ) the Buyer Agent will submit to the suppliers.

4) Quotes are obtained from suppliers and plants in response to the RFQ.

59

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

5) The dispatch condition of the order is again changed by the Interface Agent to

indicate that the Buyer Agent has returned. The quotes associated with order are

also stored in the database.

6) The acceptance of a quote. A change is made to the order status to reflect that the

quote has been accepted and an order has been placed with the supplier. Once the

material has been delivered, the record is removed from the ORDERS table.

8.3 Implementation of the Agents

Much of the complexity in developing the multi-agent system lay in the coordination of

the different agents, all running their own threads of execution. Message passing was

primarily used to coordinate the agents and for passing data between agents. Since

Aglets do not support any ACL, an ad hoc message system was used.

Login Agent

The Login Agent achieves its functionality by providing a GUI (shown in Figure 21) for

the user to log in with. The user enters his user name in the 'User Name' text field using

the format <database user name. user group number>. The information is then

parsed and, together with the password, is included in a message to the database agent

requesting the authentication of the user. The Login agent is implemented in two classes:

loginAgent and userLoginFrame.

User Namp: [soap~'i-'--==-=-----------i

cance I I [~o!i!l~ I

I <hang! Timeout

Login Results

il09ging in JSoap.l ...
iD irectory Agent found ...
!Finding Database Agent. ..
;Finding Interface Agent. ..
!Authentication successful.

ocati ng DIspatcher Agent ..
:~~ndlng Parameters to Dispatcher Agent...
,ulspatch info received ...

\-,--.

le

Figure 21 - Screenshot of the Login Agent GUI

60

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

User Agent

The User Agent is implemented in the userAgent and userAgentFrame classes. It has a

GUI consisting of three tabbed panes - 'Plant', 'System' and 'Order' - and a pop-up

dialog box named 'Order Status '. These are shown in Figures 22-25 .

The 'Plant' pane allows the user to perform and update queries as well dispatch the agent

to another location. The queries are available to the user in a drop-down list that contains

only those queries that are meant for his user group.

The 'System' pane contains two selection lists. The list entitled 'Orders Placed' lists

orders that have been placed with suppliers and are awaiting delivery, while the 'Pending

Orders' list shows orders that are in the process of being negotiated. The user can select

an order in either list and have information about the order or pending order displayed in

the text box at the bottom of the pane. The user may also double-click an order in the

pending orders list to bring up an 'Order Status ' dialog box that contains the information

about each supplier's quotation for the pending order in a selection list. From the dialog

box the user can choose to send the order for another round of negotiations, or to place an

order with the supplier selected from the selection list.

The 'Order' pane allows for the creation of orders and the dispatching of Buyer Agents

for those orders. Two drop-down lists show all the materials available for the user's user

group, and the suppliers for those materials. The user can enter the price, quantity, and

total cost in the text fields provided and submit this data by Buyer Agent to a single, or

all suppliers, for negotiation.

61

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

(pfii:iifsystam ' 0 •

select a que,'y: I suppliers Names and Co~"-"-"-""---------"-'-""""""'-"""-""'''---'--~-;-I

["~~9..J

I Dispatch Agent

r:esuits

icode. name

1
0, AllRelevant
1, GTH E ng i neeri ng
12, Qu ick Supplies
i3, FG Prod ucts
i4, Carbon Products
is, Plant2
16, Plant 3

I

I
L _ ... _ ... __ _..... .

Update Queries i

Clear

Figure 22 - Screens hot of the 'Plant' Pane of the User Agent

I~~y;~~·····~------------~
lIad le tube
i metal ladle

Il metallad le
i Had le l id
igaSket seal
i lad le tube
Iladle tube

I

Refresh

Ord.,'s Placed

joi ning cement
ladle l id
joining cement
joi ning cement
ladle lid

rending Orders

cathode, graph itized
cathode, graphi t ized
metal ladle
metal ladle
metal ladle
ladle l id

Order Infol'lnatloll
1_ Cet InfoJ

[-~l

Figure 23 - Screens hot of the 'System' pane of the User Agent

62

1.-

Implementation of the Mobile Agent System

Quotes:

Order Into tor Order Number 161. joining cement

Origjn~1 order:

Negotiatlun Round:

Quantity 21
Price 241
Total Cost 50&1
2002-11 - 1417:54:03
&

8.3 Implementation of the Agents

Supplier: GTH Eng ineering Date & Time: 2002-11-14 17:52:47 Quan ti ty: 21 Price: 197 Total Cost: 4 137
Supplier: Fe Prod ucts Date & Time: 2002-11-14 17:52:47 Quantity: 21 Price: 222 Total Cost 4662
Supplier: Plant 2 Date & Time: 2002-11-14 17:52:47 Quantity: 21 Price: 264 Total Cost: 5544
Supplier: Plant 3 Date & Time: 2002-1 1-1417:52;46 Quantity: 21 Price: 287 Total Cost 6027

I\emark

Ordor

Figure 24 - Screenshot of the 'Order Status' Pop-up Dialog Box

Prir.e: L...... :::~::::~:==::::::::::::====:1

Total Cost : [................................. ~.~.~.==.J L. ~.~~~.~~~~l Pnl;~ '

LtadT1l:nt: ::-. ______ ...J

Order Dlrectlv Now

Sta.tu,'i :

1~2fi·r234123.t· " '~~~ .. ~ ... ,." ... ~ ... ~~~--.. ~.-- .. -~¥-.. - -.. -.;

Figure 25 - Screenshot of the 'Order' Pane of the User Agent

Database Agent

The Database Agent is run on the same host as the SQL Server DBMS. It communicates

with the SQL Server via the Java Database Connectivity - Open Database Connectivity

(JDBC-ODBC) bridge driver. The JDBC-ODBC driver is provided with the JDK for Java

access to databases that support the ODBC standard. Once executing, it listens for

incoming messages, which are placed in a queue and handled one at a time. Each

message has a type, and each type is associated with a method in the Database Agent that

is executed upon receiving the message.

63

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

As a typical example of message handling, the following code snippet shows a message

of type 'authenticate' from the Login Agent and how it is dealt with (an explanation

follows) :

else if (rnsg.sarneKind("authenticate ")) {

Vector details = (Vector) rnsg.getArg();

userNarne = (String)details.firstElernent();

p wd = (String)details . lastElernent ();

if (authenticate(userNarne,pwd)) {

rnsg.sendReply("passed");

else {rnsg.sendReply ("failed") ;}//else

The message includes a single Java Vector object that contains the user' s user name and

password, which are obtained from the Vector object and passed as parameters to the

boolean 'authenticate' method. If the 'authenticate ' method evaluates to true, a reply to

the message is sent indicating that the user has successfully authenticated, otherwise a

reply is sent to indicate that the user failed the authentication process. The Database

Agent is implemented in the msSQLDBAgent class.

Interface Agent

The Interface Agent is implemented in the interfaceAgent class. It is primarily a router of

messages between the User and Dispatcher Agents, and the Buyer and Database Agents.

Incoming messages are queued and handled one at a time. The messages are not simply

forwarded when received but are dealt with by methods in the interfaceAgent class.

Some of these methods message the Database Agent to store data in, and retrieve data

from the database.

Dispatcher Agent

The Dispatcher Agent has a GUI (illustrated in Figure 26) that shows the agents that have

been dispatched, as well as errors that have occurred during the creation or dispatching of

agents. The time and date of these events, as well as the unique identifier of each agent,

and the destination of the agent is also shown. The display is saved to a daily log file for

record keeping and system debugging. The GUI allows for log files to be viewed in a

separate pane. Agents can also be manually dispatched from the GUI. It is implemented

in two classes: dispatcherAgent and dispatcherAgentFrame.

64

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

Buyer Agent

n, .. : i ______ -'

P;j](arr~~r': r........................... =::::==-:::-~~j

O~stillatitHl : ,fi tP:i/------'--j [::~~~~~i~]

I

.~_JI
L .. ~_~J j

Figure 26 - Screenshot of the Dispatcher Agent GUI

The Buyer Agent is implemented in the buyerAgent class. Once created, it remains idle

until it receives a message that marks the beginning of the dispatch protocol. The

following diagram describes the dispatch protocol:

ID of agent requesting the ilispatch
and order information sent in
"requesterAndInfo" message .

URLs ofthe suppliers sent in
"urls"message.

"go" message sent to begin the
ilispatch.

Buyer Agent ilispatches itself.

requesterAndlnfo

reply

urls

reply

go

reply

Figure 27 - The Dispatch Protocol Used by the Buyer Agent

65

Implementation of the Mobile Agent System 8.3 Implementation of the Agents

The Buyer Agent stores the order information in a priceRequest object that has attributes

for each field in the QUOTES table of the database. When it arrives at a supplier, the

priceRequest object is passed in a message to the Supplier Agent as a RFQ. The Supplier

Agent then replies with the supplier's quote that is also in the form of a priceRequest

object. The priceRequest objects are stored in a Vector object until the Buyer Agent

returns to the plant, where the Vector object is transferred to the Interface Agent by

message and stored in the QUOTES table of the database.

Directory Agent

The Directory Agent makes use of the Java Hashtable class (an implementation of a hash

table) to store information about agents. To store their information with the Directory

Agent, agents send it a "signIn" message that contains the agent' s name and proxy object.

The name and proxy object are stored in a Hashtable object as a key-value pair. Agents

that require the URL of an agent, or any other details stored in a proxy object, send a

"find" message to the Directory Agent. The "find" message contains the name of the

agent, which is the key used to find the agent ' s proxy object in the hash table. The proxy

is then returned in the reply. The Directory Agent is implemented in the directoryAgent

class.

Finder Agent

The code for the mobility in the Buyer Agent is based on the Finder Agent. As such, the

Finder Agent also uses the dispatch protocol shown in Figure 27 - the only difference

being that agents send it a "requesterAndTarget" message that contains the name of the

agent to be found (target agent) instead of a priceRequest object. It visits each URL in its

list of URLs in turn until it finds the target agent, it then returns to its original location

with the proxy of the target agent. The Finder Agent is implemented in the finderAgent

class.

Supplier Agent

Supplier Agents are implemented to simulate suppliers and their agent systems. When a

Buyer Agent sends the Supplier Agent a RFQ the Supplier Agent quotes a price that is

lower, higher, or equal to the total cost specified in the RFQ . Each Supplier Agent is

programmed to randomly select whether to quote lower, higher, or equal to the RFQ,

with a certain probability and it quotes a random price that is within a certain percentage

of the RFQ. The randomization of the quote generation was not done to accurately

simulate how suppliers would quote, but to simulate a variety of different quotes from

suppliers. The Supplier Agents are implemented in the supplier?DBAgent classes.

66

Implementation of the Mobile Agent System 8.4 Configuring the Tahiti Servers

Plant Agent

Two Plant Agents are implemented in the plantlDBAgent and plant2DBAgent classes to

simulate the other plants. They are exactly like Supplier Agents, with one Plant Agent

programmed to quote higher than the other to reflect the higher transport cost involved in

transporting materials from the Mozal plant.

8.3.1 Efficiency Issues

The User Agent relies on the Database Agent to provide it with all of its data, therefore

there is frequent message passing between the two agents. The performance of the User

Agent is thus governed by: the speed of the DBMS; the load on the Database Agent; its

efficiency in handling requests; and the network latency between the two agents. We did

not measure the performance in this work; however, it is worth noting that [Samaras et

aI., 1999] performed an analysis of the Cl AlS model for database access using Aglets and

reported an improvement of between thirty to forty percent over the traditional, client­

server applet-based approach.

Aglets allows for multi-threaded parallel message handling that would improve

performance in the Database Agent. The size of the system developed here did not

warrant the additional complexity in dealing with multi-threaded database access;

however, it would be preferable in larger systems. Further performance gains would also

have been achieved through the use of stored procedures in the database, rather than

interactive SQL methods in the Database Agent. This was not done since it would have

bound the implementation of the agent system to a specific DBMS (stored procedures are

written in procedural SQL, which can be DBMS-specific).

8.4 Configuring the Tahiti Servers

8.4.1 User Registration and Policy Files

As the Aglets agent system is implemented through the Tahiti server, the system requires

a Tahiti server on every network host that agents execute on. Each Tahiti server needs to

be correctly configured to allow agents originating from other Tahiti servers a context in

which to execute. The same is true for agents representing users from other Tahiti

servers. Tahiti manages access to itself and to the host resources through the use of a

policy file and user database. The user database contains a list of users and their

67

Implementation of the Mobile Agent System 8.4 Configuring the Tahiti Servers

passwords, while the policy file specifies what access specific users and agents from

specific code bases have to the host resources.

In our system, the registration of users was handled by usmg the ' import user' and

'export user' features in Tahiti. The 'export user' feature writes the user details to a ' .id'

file, which must be copied to the file system of the Tahiti server where it is to be

imported. This mechanism is feasible for a small number of users but poses a problem in

a large system with many users. A possible solution may be to create a tool that

generates '.id' files from a master list of users, and to adapt the Tahiti server to import

mUltiple users (the ASDK is open-source so adapting the Tahiti server is feasible).

The policy file of the Tahiti server is based on Java 1.2 policy file syntax. It consists of a

series of grant entries, each of which contains a set of permissions. The syntax can be

described by the following rule:

grant codeBase "URL", signedBy "signer_ names"

permiss i on permiss ion_class_name "target_name", "action",

signedBy "signer_names";

permission permission_class name" target_name", "action",

s i gnedBy "signer_ names";

};

The 'signedBy' field indicates support for digital signatures; however, we did not make

use of these. An abbreviated form of the policy file used for the Tahiti server running on

the Windows NT host is presented here. Some of the permissions that needed to be

added to the default permissions are shown:

grant codeBase "atp://*:*/" {

permission java. io. FilePermission "C: \ \jdk1 .1 . 8\ \lib\ \swing. properties", "read ";

permission j ava. net.SocketPermission "codebase:*", "connect";

permission java.lang.RuntimePermission "loadLibrary.JdbcOdbc " ;

permission java.lang.RuntimePermission "accessClassInpackage.com .borland.jbcl.*";

};

The grant entry shown here grants the permissions to agents from any code base using the

Agent Transfer Protocol. The first permission listed is a file permission that allows the

Java Swing properties file to be read. The second is a socket permission that allows a

68

Implementation of the Mobile Agent System 8.4 Configuring the Tahiti Servers

socket connection to the server to any agent from the code base in the grant entry. The

last two permissions are runtime permissions that allow the dynamic link library called

"JdbcOdbc.dll" to be used during runtime, and classes in the JBCL package to be

accessed.

A single policy file for all Tahiti servers in the agent system could not be used due to the

different file naming conventions used by the operating systems. As an example of a

required policy file change, consider the first file permission shown in the abbreviated

policy file - the same file permission for the Tahiti server running on the Linux host had

to be written as :

permission j ava. i o. FilePermis s ion " /home/kamil/ j dk118_v3 /lib/swing .properties ", "read ";

It might seem that a possible solution to the problem is to use relative instead of absolute

file naming; however, this did not work since Tahiti servers executing under Linux and

Windows NT search different default directories for files with relative file names.

Different policy files were therefore configured for each host. In a larger system a

solution to the problem may be to have standard policy files for each of the different

operating systems in use. The standard policy files could then be customised where

necessary.

8.4.2 The Class Loader

Every time an agent is created In the Tahiti server (either by being created in, or

migrating to the server), its class file, as well the class files for classes it uses, are

dynamically loaded by the Tahiti server. To improve performance the class loader used

in the Tahiti server maintains a cache of all previously loaded classes. When a class

needs to be loaded, the class name is checked against those in the cache. If there is a

match, the cached file is used. This presents a problem when agents or the classes they

use are updated (as was frequently the case during the development of the system), since

the new updated version is not loaded, but rather the old cached version .

In the case where we were required to create agents from within the Tahiti GUI, it was

possible to use the 'Reload Class and Create ' option to force the latest class to be loaded

into the cache. The more difficult case to solve was that of agents not manually created

by users - agents created by other agents, or agents arriving from remote destinations.

To force the loading of the latest class files in these cases, it was necessary to use the

'Clear Class Cache Now' feature. This feature only clears the class cache when the

server is shut down, so the server needed to be rebooted in anticipation of an updated

69

Implementation of the Mobile Agent System 8.4 Configuring the Tahiti Servers

class being required. The aglet API provides a method to flush the class cache; however,

testing showed that this method did not work or was not supported by the Tahiti server.

70

Conclusion 9 Conclusion

9 Conclusion

In this work we examined the topic of software agents and mobile agents specifically.

We began by surveying the literature regarding software agents, and, in doing so,

addressed the fundamental question of what constitutes a software agent. We then

narrowed our focus to mobile agents, which we introduced as a new paradigm for

building distributed systems. The standards governing mobile agent systems were then

presented to give a clear understanding of the theory behind their implementation. Some

examples of these implementations were subsequently discussed.

A look at the use of software agents to solve problems in E-Commerce was the second

thrust of this work. In particular we looked at using mobile agents to solve the

Distributed Buying Problem; choosing BHP Billiton 's Southern African aluminium­

smelting operation as an example of a distributed enterprise. We reviewed traditional E­

Commerce models and then described software agent-based E-Commerce. The

Distributed Buying Problem was then defined; as well as the buying methods at the plants

that make up Billiton's Southern African aluminium-smelting operations.

All of the work described thus far served as the theoretical basis for the mobile agent

system that was then designed and implemented. The system's purpose was to solve the

Distributed Buying Problem at the Billiton plants. The details of the design and

implementation of the system were also discussed.

In general, we are of the opinion that software agents can make a significant impact on E­

Commerce. Our literature survey suggests that most of the agents already in place in E­

Commerce are prototype systems. This has much to do with the fact that agent

technology is still in the developmental stage. We envisage that industrial strength agent

technology will see an increase in the use of agents in E-Commerce.

We believe that the prototype developed in this work shows that it is possible to use

mobile agents to solve the Distributed Buying Problem. The prototype; however, needs

to be implemented on a larger scale, and tested under conditions that are more similar to

those found in industry, before we can conclusively state that mobile agents are indeed an

good way of solving the Distributed Buying Problem.

71

Conclusion 9.1 Future Work

9.1 Future Work

To build on the results of this work, the following work can be carried out:

• A FIPA-compliant mobile agent system should be used to allow for the support of

ACLs. This will not restrict the type of agent system being used at the supplier as

the different agent systems can communicate using a standard ACL.

• Multi-threaded infrastructure agents should be designed and implemented to cater

for heavier loads on the system.

• An applet-based interface to the agent-system could be developed. This will

allow users to interact with the agent system in the more familiar web-browser

environment.

• Various negotiation protocols can be experimented with to find an optimal one.

• Quantitative performance testing should be undertaken to determine if the agent

system is fast enough for use in an enterprise environment.

• Security considerations should be dealt with to make sure that: order and quote

data is secure while in transit with the agent; the agent system is secure and does

not pose a threat to security of the enterprise computer systems.

72

References

(1998). Mobile Agent System Interoperability Facilities Specification, Object

Management Group. 22-04-2002.

A vailable at http://cgi .omg.org/docs/orbos/98-03-09.pdf

(2001). Cambridge Dictionaries Online, Cambridge University Press. 04-04-2002.

Available at http://dictionary.cambridge.org

(2002) . JADE Homepage, Telecom Italia Lab. 2002.

Available online at http://sharon.cselt.it/projects/jade/

Bellifemine F, Poggi A, Rimassa G, (1999). JADE - A FIPA-compliant agent-framework.

2002.

Available at http://sharon.cselt.it/projects/jade/papers.htm

Bellifemine F, Caire G, Trucco T, Rimassa G, (2002). JADE Programmers Guide,

Telecom Italia Lab. 2002.

Available online at http://sharon.cseltit/projects/jade/

Bolin, S. (1998). "E-Commerce: A Market Analysis and Prognostication." StandardView

6(3).

Available in the ACM Digital Library at http://www.acm.org

Bradshaw, J. (1997). An Introduction to Software Agents. Software Agents . J. Bradshaw,

AAAI Press/ The MIT Press.

A vailable at http://agents.umbc.edulintroduction

73

Butte, T. (2002). "Technologies for the Development of Agent-based Distributed

Applications." ACM Crossroads(Spring 2002).

Chavez, A. and P. Maes (1996). Kasbah: An Agent Marketplace for Buying and Selling

Goods. First International Conference on the Practical Application of Intelligent Agents

and Multi-Agent Technology, London.

Available at http://citeseer.nj.nec.comlchavez96kasbah.html

Dennett, D. (1987). The Intentional Stance, The MIT Press.

Essmeyer, H. (2000). E-Transaction Enablers Business Models, Trends and Issues.

European Business School Seminar, Oestrich-Winkel, Germany.

Available at http://citeseer.nj.nec.coml401398.html

Faratin P, Sierra C, Jennings N R, (1998). "Negotiation decision functions for

autonomous agents." International Journal of Robotics and Autonomous Systems 24(3-

4).

A vailable at http://citeseer.nj .nec.comlfaratin98negotiation.html

Franklin, S. and A. Graesser (1996). Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. ECAI'96 Workshop on Agent Theories, Architectures, and

Languages: Intelligent Agents Ill, Springer Verlag.

Available at http://www.msci.memphis.edu/-franklin/AgentProg.html

Genesereth, M. and S. Ketchpel (1994). "Software Agents." Communications of the

ACM(July).

Available in the ACM Digital Library at http://www.acm.org

74

Good N, Schafer J B, Konstan J, Borchers A, Sarwar B, Herlocker J, Riedl J, (1999).

Combining Collaborative Filtering with Personal Agents for Better Recommendations.

Proceedings of the 1999 Conference of the American Association of Artifical Intelligence

(AAAI-99).

A valaible at http://www.cs.umn.edu/ResearchlGroupLens/publications.html

Griggs, K. (2000). An agent oriented business model for e-commerce based on the NYSE

specialist system. ACM SIGCPR conference on Computer personnel research, Chicago,

Illinois.

Available in the ACM Digital Library at http://www.acm.org

Harrison C G, Chess D M, Kershenbaum A, (1995). Mobile Agents: Are they a good

idea? New York, IBM Thomas 1. Watson Research Center, Distribution Services F-11

Stormy town, Post Office Box 218, Yorktown Heights, New York 10598.

Available at http://www.research.ibm.comlmassive/mobag.ps

Ibrahim 1. K, Schwinger W, Weippl E, Altman J, Winiwarter W, (2001). Agent Solutions

for E-Business Transactions. 12th International Workshop on Database and Expert

Systems Applications (DEXA 2001), Munich, Germany, IEEE Computer Society.

Available at http://citeseer.nj.nec.coml474092.html

Iglesias C A, Garijo M, Gonzalez J C, (1998). A Survey of Agent-Oriented

Methodologies. Fifth International Conference on Agent Theories, Architectures and

Languages, Paris, Springer-Verlag.

Available at http://citeseer.nj.nec.comliglesias99survey.html

Ito T, Fukuta N, Shintani T, Sycara K, (2000). BiddingBot: A Multiagent Support System

for Cooperative Bidding in Multiple Auctions. Fourth International Conference on

MultiAgent Systems, Boston, Massachusetts.

A vailable at http://computer.orglProceedingslicmas/0625/06250399abs.htm

75

Jennings N R, Norman T J, Faratin P, (1996). "ADEPT: an agent-based approach to

business process management." ACM SIGMOD Record 27(4).

Available in the ACM Digital Library at http://www .acm.org

Lange, D. and M. Oshima (1998). Programming and Deploying Java Mobile Agents with

Aglets, Addison-Wesley.

Laudon, K. C. and C. Guercio (2002). E-Commerce: business, technology, society,

Addison Wesley.

Lee, 1. K. and H. S. Yoon (2000). "An Intelligent Agents-Based Virtually Defaultless

Check System: The SafeCheck System." International Journal of Electronic Commerce

4(3).

Maes (1995). "Artificial Life Meets Entertainment: Lifelike Autonomous Agents."

Communications Of The ACM 38(November 1995): 108.

Available in the ACM Digital Library at http://www.acm.org

Maes, P. and B. Schneiderman (1997). "Direct Manipulation vs. Interface Agents: a

Debate." Interactions 4(6).

Available in the ACM Digital Library at http://www.acm.org

Maes P, Guttman R H, Moukas A G, (1999). "Agents that Buy and Sell: Transforming

Commerce as we Know It." Communications of the ACM(March 1999).

A vailable at http://ecommerce.media.mit.edu

Minar N, Gray M, Roup 0, Krikorian R, Maes P, (1999). Hive: Distributed Agents for

Networking Things. 2002.

76

Available at http://www.hivecell.netlpublications.html

Moodley, S. (2001). E-Business And Supply Chain Management In The Automotive

Industry: Preliminary Findings From The Eastern Cape And Kwazulu-Natal

Benchmarking Club Pilot Surveys. Durban, School of Development Studies, University

of Natal Durban: 86-88.

A vailable at http://www.nu.ac.za/csds/publications.htm

Nwana, H. S. (1996). "Software Agents: An Overview." Knowledge Engineering Review

11: 1-40.

Available at http://www.labs.bLcornlprojects/agents/publish/papers/agentreview.htm

Nwana, H. and M. Wooldridge (1996). "Software Agent Technologies." BT Technology

Journal 14(4).

Available at http://citeseer.nj.nec.coml29693.html

Nwana H S, Rosenchein J, Sandholm T, Sierra C, Maes P, Guttmann R, (1998). Agent­

Mediated Electronic Commerce: Issues, Challenges and some Viewpoints. International

Conference on Autonomous Agents, Minneapolis MN USA.

Available in the ACM Digital Library at http://www.acm.org

Odell J, Kerr D, Laamanen H, Levine D, Mack G, Mattox D, McCabe F, McConnell S,

Raatikaine K, Stout K, Thompson C, (2000). Agent Technology, Green Paper, Object

Management Group Agent Platform Special Interest Group. 2002.

A vailable at http://www.objs.comlagentlagents_Green_Paper_ v 100.doc

Papazoglou, M. P. (2001). "Agent-Oriented Technology In Support of E-business."

Communications of the ACM 44(4): 71-77.

Available in the ACM Digital Library at http://www.acm.org

77

Russell, S. and P. Norvig (1995). Intelligent Agents. Artificial Intelligence: A Modern

Approach. EngJewood Cliffs, NJ, Prentice-Hall.

Samaras G, Dikaiakos M, Spyrou C, Liverdos A, (1999). Mobile Agent Platforms for

Web Databases: A Qualitative and Quantitative Assessment. Joint Symposium ASAlMA

'99. First International Symposium on Agent Systems and Applications (AS A '99). Third

International Symposium on Mobile Agents (MA '99), Palm Springs, California.

Available at http://Citeseer.nj .nec.comlarticle/samaras99mobile.html

Sandholm, T. and Q. Huai (2000). "Nomad:Mobile Agent System for an Internet-Based

Auction House." IEEE Internet Computing 4(2).

http://computer.org/Internetlic2000/w2080abs.htm

Shoham, Y. (1993). "Agent-oriented programming." Artificial Intelligence 60: 51-92.

Stuurman, K. and H. Wijnands (2001). "Software Law. Intelligent Agents: A Curse Or A

Blessing? A Survey Of The Legal Aspects Of The Application Of Intelligent Software

Systems." Computer Law & Security Report 17(2).

Suri, N. (2002) Personal communication. Institute for Human and Machine Cognition,

University of West Florida, 40 S.Alcaniz St., Pensacola, FL 32501

Sycara K, Decker K, Pannu A, Williamson M, Zeng D, (1996). "Distributed Intelligent

Agents." IEEE Expert(December): 36-46.

A vailable at http://www.cs.cmu.edu/softagents/publications.html

78

Terpsidis I S, Moukas A, Pergioudakis B, Doukidis G, Maes P, (1997) . The potential of

Electronic Commerce in re-engineering consumer-retailer relationships through

Intelligent Agents. Advances in Information Technologies: The Business Challenge. 1.-Y.

R. e. a. (eds.), IOS Press.

Available at http://citeseer.nj.nec.com/terpsidis97potential.html

Turban E, Lee J, King D, Michael Chung H, (2000). Electronic Commerce: A Managerial

Perspective. New Jersey, Prentice-Hall.

Turban E, King D, Lee J, Warkentin M, Michael Chung H, (2002). Electronic

Commerce: A Managerial Perspective. New Jersey, Prentice-Hall.

Van de Velde, W. (1995) . Cognitive Architectures - From Knowledge Level to Structural

Coupling. The Biology and Technology of Intelligent Autonomous Agents. L. Steels.

Berlin, Springer-Verlag: 197-221.

Available at http://citeseer.nj .nec .com/vandevelde95cognitive.html

Wayner, P. and A. Joch (1995). Agents of Change. Byte. March: 94-95 .

Wooldridge, M. and N. Jennings (1995). "Intelligent Agents: Theory and Practice."

Knowledge Engineering Review(July) .

Available at http://citeseer.nj .nec.com/97055.html

79

	Reddy_Kamil_2002.front.p001
	Reddy_Kamil_2002.front.p002
	Reddy_Kamil_2002.front.p003
	Reddy_Kamil_2002.front.p004
	Reddy_Kamil_2002.front.p005
	Reddy_Kamil_2002.front.p006
	Reddy_Kamil_2002.front.p007
	Reddy_Kamil_2002.front.p008
	Reddy_Kamil_2002.front.p009
	Reddy_Kamil_2002.p001
	Reddy_Kamil_2002.p002
	Reddy_Kamil_2002.p003
	Reddy_Kamil_2002.p004
	Reddy_Kamil_2002.p005
	Reddy_Kamil_2002.p006
	Reddy_Kamil_2002.p007
	Reddy_Kamil_2002.p008
	Reddy_Kamil_2002.p009
	Reddy_Kamil_2002.p010
	Reddy_Kamil_2002.p011
	Reddy_Kamil_2002.p012
	Reddy_Kamil_2002.p013
	Reddy_Kamil_2002.p014
	Reddy_Kamil_2002.p015
	Reddy_Kamil_2002.p016
	Reddy_Kamil_2002.p017
	Reddy_Kamil_2002.p018
	Reddy_Kamil_2002.p019
	Reddy_Kamil_2002.p020
	Reddy_Kamil_2002.p021
	Reddy_Kamil_2002.p022
	Reddy_Kamil_2002.p023
	Reddy_Kamil_2002.p024
	Reddy_Kamil_2002.p025
	Reddy_Kamil_2002.p026
	Reddy_Kamil_2002.p027
	Reddy_Kamil_2002.p028
	Reddy_Kamil_2002.p029
	Reddy_Kamil_2002.p030
	Reddy_Kamil_2002.p031
	Reddy_Kamil_2002.p032
	Reddy_Kamil_2002.p033
	Reddy_Kamil_2002.p034
	Reddy_Kamil_2002.p035
	Reddy_Kamil_2002.p036
	Reddy_Kamil_2002.p037
	Reddy_Kamil_2002.p038
	Reddy_Kamil_2002.p039
	Reddy_Kamil_2002.p040
	Reddy_Kamil_2002.p041
	Reddy_Kamil_2002.p042
	Reddy_Kamil_2002.p043
	Reddy_Kamil_2002.p044
	Reddy_Kamil_2002.p045
	Reddy_Kamil_2002.p046
	Reddy_Kamil_2002.p047
	Reddy_Kamil_2002.p048
	Reddy_Kamil_2002.p049
	Reddy_Kamil_2002.p050
	Reddy_Kamil_2002.p051
	Reddy_Kamil_2002.p052
	Reddy_Kamil_2002.p053
	Reddy_Kamil_2002.p054
	Reddy_Kamil_2002.p055
	Reddy_Kamil_2002.p056
	Reddy_Kamil_2002.p057
	Reddy_Kamil_2002.p058
	Reddy_Kamil_2002.p059
	Reddy_Kamil_2002.p060
	Reddy_Kamil_2002.p061
	Reddy_Kamil_2002.p062
	Reddy_Kamil_2002.p063
	Reddy_Kamil_2002.p064
	Reddy_Kamil_2002.p065
	Reddy_Kamil_2002.p066
	Reddy_Kamil_2002.p067
	Reddy_Kamil_2002.p068
	Reddy_Kamil_2002.p069
	Reddy_Kamil_2002.p070
	Reddy_Kamil_2002.p071
	Reddy_Kamil_2002.p072
	Reddy_Kamil_2002.p073
	Reddy_Kamil_2002.p074
	Reddy_Kamil_2002.p075
	Reddy_Kamil_2002.p076
	Reddy_Kamil_2002.p077
	Reddy_Kamil_2002.p078
	Reddy_Kamil_2002.p079

