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Abstract 

The Human Immunodeficiency Virus is a global public health concern. The Joint United 

Nations Programme on HIV/AIDS estimated that 36.9 million people were infected with 

HIV globally at the end of 2017. Almost 20% of these resided in South Africa, making this 

the highest global HIV burden held by any one country. It is thus important that HIV 

infection be detected early as this may have important implications in the control of the 

pandemic. The early recognition of acute HIV infection could present early treatment 

options that could alter the natural history of the disease, or even eliminate infection. 

Detecting acute infection early could also provide a unique opportunity to understand HIV 

transmission and pathogenesis, including early host-virus interactions. In the present study, 

blood samples were collected from 18-23 year old HIV-1 subtype C acutely infected women 

from Umlazi Township in KwaZulu-Natal, South Africa, that had participated in a study 

called Females Rising through Education, Support and Health (FRESH). Eleven blood 

samples from this cohort, collected within 24 hours of onset of plasma viremia, were used 

for this study. The aim of the present research was to identify sites within pol that were 

experiencing positive selective pressure and the likely implications of these mutations on 

viral functional domains and host cytotoxic T-lymphocyte (CTL) epitopes. The study also 

sort to observe the loss of drug resistant mutations (DRM) in the viral sequences of 

participants who had multiple timepoints and to correlate mutation loss to structural changes. 

Datamonkey and Phylogenetic Analysis by Maximum Likelihood (PAML) were used to 

detect positively selected sites. Putative functional domains were detected using Prosite and 

CTL epitopes were identified using the Los Alamos Molecular Immunology Database. 

Ancestral reconstruction was performed using PAML and Bayesian Evolutionary Analysis 

by Sampling Trees (BEAST) was used to calculate the time to the most recent common 

ancestor. Altogether 16 unique positively selected sites were identified in this cohort. 

Putative functional domains were highly conserved in protease, while positive mutations in 

reverse transcriptase resulted in either a loss of functional domains in conserved regions or 

in the gain of functional sites in non-conserved regions. Owing to the important role that 

protease plays in viral maturation and infectivity, mutations within these conserved regions 

could possibly lead to defective viral particles with reduced viral infectivity. The K103N in 

reverse transcriptase, observed in one participant, was the only DRM inherited from its 

common ancestor. The major limitation of this study was the small sample size. 

Carries
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CHAPTER 1: 

Literature Review 

1.1 Introduction 

The Human Immunodeficiency Virus (HIV) is a global public health concern. The Joint 

United Nations Programme on HIV/AIDS (UNAIDS) estimated that 36.9 million people 

were infected with HIV at the end of 2017 globally (UNAIDS, 2018a)(UNAIDS, 2018a). 

UNAIDS also estimated that since the start of the pandemic, 35.4 million people had died 

from AIDS-related illnesses. Regionally, Eastern and Southern Africa (ESA) (as per 

UNAIDS regional divisions) had the highest number of people living with HIV 

(approximately 19.6 million HIV positive people). Of the 1.8 million new HIV infections 

reported globally in 2017, the ESA region had the highest new infection rate (UNAIDS, 

2018a). South Africa was estimated to have 7.2 million people living with HIV at the end of 

2017 (UNAIDS, 2018b)(UNAIDS, 2018b). On the global arena, this ranks South Africa as 

having the highest number of people infected with HIV.   

 

The HIV infection rate in South Africa decreased by 49% and AIDS-related deaths decreased 

by 29% since 2010 (UNAIDS, 2018b). The decrease in the South African HIV mortality rate 

can be attributed to several initiatives introduced by its government. These include 

prevention programmes such as prevention of mother to child transmission (PMTCT), 

condom use and distribution, voluntary medical male circumcision (VMMC), HIV education 

and HIV awareness. In addition to the preventative measures, the South African government 

has also introduced what is reputed to be the largest antiretroviral therapy (ART) rollout 

programme globally (AVERT, 2016; Steegen et al., 2016). However, regardless of the 

government’s investment of R14.2 million over the three years spanning 2015 to 2018 

(Mapumulo, 2016), only 48% of the HIV infected population were receiving ART (AVERT, 

2016). 

 

1.2 Origins of HIV/AIDS  

Acquired Immunodeficiency Syndrome (AIDS) was a term first used in 1981 by the Atlanta 

based Centre for Disease Control (CDC) to describe a group of disease entities observed in 

patients who presented with severely compromised cell-mediated immunity, rare 

malignancies and opportunistic infections (Center for Disease Control, 1981; Friedman-

Kien, 1981; Gottlieb MS et al., 1981; Marx, 1982). At the time, disease prevalence was 
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mainly observed among the male homosexual community, which presented with increasing 

levels of Kaposi’s Sarcoma1 (KS), and Pneumocystis carinii pneumonia2 (PCP). Shortly 

afterward, prevalence was also detected among intravenous drug users, blood transfusion 

recipients, sexual partners, and children. This suggested that the aetiological agent for the 

condition was likely transmitted by body fluids (Freed, 2007). In 1983, Dr. Luc Montagnier 

and Dr. Francois Barre-Sinoussi from the Pasteur Institute in France were able to isolate a 

retrovirus believed to be the cause of AIDS, which at that time was called the 

Lymphadenopathy-Associated Virus (LAV) (Barre-Sinoussi et al., 1983). The following 

year, Dr. Robert Gallo isolated a virus called the Human–T–Lymphotrophic Virus Type III 

(HTLV-III) (Gallo et al., 1984). Unbeknown to both sets of researchers, the LAV, and 

HTLV-III were, in fact, the same virus and was later named the Human Immunodeficiency 

Virus (HIV). In 1986, HIV was then established as the causative agent of AIDS and was 

renamed HIV type 1 (HIV-1) to distinguish it from HIV-2, a related and less prevalent AIDS-

causing virus (Clavel et al., 1986).  

 

Although HIV was characterised in the 1980s, its presence in the human population dates 

back to the period between 1900 and the early 1920s (Korber et al., 2000; Worobey et al., 

2008; Santos and Soares, 2010). The devastating effect that AIDS has had on humanity 

makes it one of worst pandemics in history, only paralleled to the Spanish influenza 

pandemic of 1918 estimated to have killed between 20 to 40 million people (Taubenberger 

et al., 2001). 

 

HIV belongs to the Lentivirus genus of the Retroviridae family. This genus includes both 

HIV-1 and HIV-2, as well as a significant number of simian immunodeficiency viruses (SIV) 

that infect different non-human primate species in the African continent (Locatelli et al., 

2008; Liégeois et al., 2009; Santos and Soares, 2010). In their natural host, the SIV rarely 

causes the immune system to collapse. However, this is not the case extra-host. The origin 

of HIV in humans, for example, is traceable to multiple zoonotic infections, thought to be 

caused by the exposure that hunters and butchers had to the corporal fluids of non-human 

primates infected with SIV (Wolfe et al., 2004; Kalish et al., 2005). In terms of ancestry, the 

HIV-1 strains are closer “related” to the SIV that naturally infect chimpanzees (SIVcpz) 

                                                            
1 Karposi’s Sarcoma is a rare form of cancer that presents as purple lesions on the skin. It is normally rare in 
young individuals and makes them look older. 
2 PCP is a rare, but treatable lung infection that a healthy person can normally fend off easily. 



3 
 

(Gao et al., 1999), while HIV-2 strains are closely related to the SIV from sooty mangabeys 

(SIVsm) monkeys (Gao et al., 1992; Santos and Soares, 2010; Lihana et al., 2012).  

 

Santos and Soares (2010) state that it is uncertain how many times the SIVs crossed the 

species barrier and infected humans with success. This, they argue, is due to several factors 

that may influence the success of establishing infection, including “the efficiency of 

transmissibility, the capacity of avoiding the immunologic system; a successful replication 

in the new host and a pathogenic potential to guarantee human to human passage.” (Santos 

and Soares, 2010, p504). It has, however, been postulated that three such cross-species 

infection events have occurred in the past shaping HIV to its “present” state (Kandathil et 

al., 2005; Lihana et al., 2012). 

 

1.3 HIV-1 Classification 

HIV-1 is broadly grouped into four different phylogenetic lineages. These are groups M 

(Major group), N (New), O (Outlier) and P (Santos and Soares, 2010). The classification of 

groups M, N and O are based on phylogenetic sequences from the HIV-1 genome (pol, gag, 

env) (Wainberg, 2004; Jülg and Goebel, 2005; Paraschiv et al., 2007). Group P is the most 

recent of the four groups to be discovered. It was first described in Cameroon in 2009 and 

to date has not shown any evidence of recombination with other HIV-1 subtypes (San Mauro 

and Agorreta, 2010; Lihana et al., 2012). The types and groups of HIV are summarised in 

Table 1.1. 

 

Table 1.1: Summary of HIV types and groups   

Source: Adapted from Santos and Soares (2010, p505) 

 

HIV-1 group O is the most divergent group (Table 1.1) and has been implicated in having 

its origin from the SIV that infected wild gorillas (SIVgor)(Van Heuverswyn et al., 2006). 

The epidemic pattern of HIV-1 group O has been restricted to West and Central Africa 

Type Group Origin Epidemiology Comments

M SIVcpz All continents with exception of Antarctica Major group responsible for the AIDS pandemic; more 
fit than HIV-1 group O and HIV-2.

O SIVgor or SIVcpz Majorly found in Central and West Africa Naturally resistant to NNRTI; less fit than group HIV-1 

N Recombinant group M 
ancestor / SIVcpz

Only found in Cameroon Very rare epidemically; few studies on drug resistance 
published.

P SIVgor Cameroon First described in 2009 in a Cameroonian woman. The 
actual number of infections is unknown.

HIV-2 - SIVsm
Mainly found in Western and Central Africa; 
some cases in Western Europe, India, United 
States, Brazil and Japan

Apparently slower progression to AIDS; less susceptible 
to some anti-HIV-1 drugs; naturally resistant to NNRTI.

HIV-1 
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(Santos and Soares, 2010). Group N was only identified in 1998 with its origin traced back 

to a recombination event between the ancestor of group M and the SIV that infected 

chimpanzees (SIVcpz) (Takehisa et al., 2009). Group N is very rare epidemiologically. HIV-

1 group M is responsible for more than 95% of the AIDS pandemic and contains the majority 

of HIV subtypes responsible for the disease (Lihana et al., 2009; Santos and Soares, 2010). 

 

1.4 Diversity and Geographical Spread of HIV-1 Group M 

Although authors have contended that HIV-1 group M has 11 “pure” subtypes, namely 

subtypes A-K (Peeters and Sharp, 2000; Thomson, Perez Alvarez and Najera, 2002; Lihana 

et al., 2009), the current classification, however, holds that there are nine such subtypes (i.e. 

excluding subtypes E and I) as proposed by earlier authors such as Robertson et al. (2000). 

Support for the latter classification was because no evidence was found to support the 

existence of a “pure” subtype E. Additionally, it was discovered that subtype I was actually 

a complex recombinant of subtypes A, G and I (Gao et al., 1998; Nasioulas et al., 1999; 

Santos and Soares, 2010). Subsequently, the “pure” subtypes E and I were reclassified as 

CRF01_AE and CRF06_cpx, respectively (Santos and Soares, 2010). 

 

HIV-1 group M thus consists of nine different “pure” subtypes or non-recombinant forms 

(i.e. A-D, F-H, J, and K) as well as circulating recombinant forms. At the time of writing, 

group M had approximately 96 circulating recombinant forms (CRFs) (Los Alamos National 

Laboratory, 2018a; Recordon-Pinson et al., 2018). The growth of the CRFs has more than 

doubled from 43 in 2009 (Lihana et al., 2009). Subtype A is further subdivided into seven 

sub-subtypes, namely A1-A5, F1 and F2 (Lihana et al., 2009, Santos and Soares, 2010). 

There also exists intersubtype forms, which are divided into two categories, namely CRF 

and URF (unique recombinant form). When found in a population that has at least three 

individuals without any epidemiological link and with the same intersubtype breakpoints, 

this form is called a CRF. However, if it is found in only a single patient, it is classified as a 

URF (Santos and Soares, 2010). 

 

The global prevalence of group M subtypes and CRFs, can only reliably be traced to reports 

dating back to 2007 given by Hemelaar et al. (2011). As recently as 2017, authors such as 

Daw et al. (2017) still quoted Hemelaar et al.’s (2011) work. Literature also shows little or 

no evidence of attempts to update Hemelaar et al.’s work despite the plethora of isolated 

country / continent-specific epidemiological research that is in circulation. Notwithstanding,  
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subtype C is reported as the most virulent of the group M subtypes with 48% of the global 

HIV infections over the 2004 to 2007 period being accredited to it (Hemelaar et al., 2006; 

Hemelaar et al., 2011). This subtype is predominantly found in Southern and Eastern Africa, 

India and in the southern region of Brazil (see Figure 1.1).  

 

 
Figure 1.1: Worldwide prevalence of HIV-1 group M subtypes and CRF 

Source: Santos and Soares (2010, p507) 

 

The second most infectious “pure” strain is subtype A with approximately 12% of infections 

attributed to it (Hemelaar et al., 2006; Hemelaar et al., 2011; Lihana et al., 2012). Subtype 

A is prevalent in Central Africa, Iran, Eastern Europe, and Central Asia. Within this group, 

however, subtypes A2 and A3 are primarily found in Africa and hardly ever in Europe. 

Subtype B is the most disseminated group M variant claiming 11% of global HIV infections 

(Hemelaar et al., 2006; Hemelaar et al., 2011). This group predominates in the developed 

world, in countries like the United States of America, countries of Western Europe, Japan 

and Australia (Soares et al., 2007; Santos and Soares, 2010; Lihana et al., 2012). The 

remaining six groups (i.e. D, F, G, H, J, and K) jointly represent around 8% of infections 

(Hemelaar et al., 2006; Santos and Soares, 2010; Hemelaar et al., 2011; Lihana et al., 2012). 

Subtype D is also found in East Africa, while subtype F (i.e. F1 and F2) occurs in Central 

Africa, South America and Eastern Europe (Wainberg, 2004; Jülg and Goebel, 2005). 

Subtype G and A/G recombinants also occur in Eastern Africa and in Central Europe, 
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subtypes H and K only occur in Central Europe, and subtype J has been found in Central 

America (Wainberg, 2004).  

 

Apart from the influence that “pure” group M variants have on HIV infection, some CRFs 

have a more substantial impact on local AIDS epidemics, accounting for almost 17% of HIV 

infections (Santos and Soares, 2010; Lihana et al., 2012). For instance, CRF01_AE in 

Southeast Asia and CRF02_AG in Western Africa contributed 8% and 5% to the global 

infection rate respectively (Hemelaar et al., 2006; Hemelaar et al., 2011). CRF06_cpx is 

considered the second most prevalent recombinant form in West Africa (Santos and Soares, 

2010). Other CRFs and URFs are each responsible for 4% of global infections. This brings 

the total percentage of CRFs to 17% and the overall percentage of all recombinants (i.e. 

CRFs plus URFs) to 21% (Hemelaar et al., 2006; Hemelaar et al., 2011). 

 

1.5 HIV-1 Structure and Genome 

Morphologically, HIV-1 virions are spheroid shaped and measure between 100-120nm in 

diameter. The structural proteins that form the viral core are Matrix (MA/p17), capsid 

(CA/p24), Nucleocapsid (NC/p7) and p6. The HIV-1 genome consists of two copies of non-

covalently linked, positive sense single-stranded Ribonucleic Acids (ssRNA), which are 

tightly bound to p7 and enclosed within p24. The p24 capsid also contains the late assembly 

protein (p6); viral enzymes protease (Pr), reverse transcriptase (RT) and integrase (IN); as 

well as viral proteins Vpu, Vif, Vpr and Nef. The MA surrounds the cone-shaped capsid 

giving the virion integrity and forming a shell that connects directly to the inner side of the 

membrane. The NC is involved in the formation and stabilization of the genomic RNA 

dimers and in the nucleocapsid assembly. The p6 serves as the domain of p55 and is essential 

for the last stage of viral assembly as well as the release of the Vpr protein into the assembled 

virion. As the capsid buds off the host cell, it retains part of the host cell membrane. This 

forms an envelope that surrounds the capsid. Anchored within the envelope are proteins from 

the host cell as well as exterior and transmembrane glycoprotein (gp120 and gp41 

respectively). The glycoproteins allow the virus to fuse and attach to target cells initiating 

the infectious replication cycle (Sierra, Kupfer and Kaiser, 2005; Fanales-Belasio et al., 

2010; Marsden and Zack, 2013). The structural features of HIV-1 are shown in Figure 1.2. 
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 Source: Adapted from Slonczewski and Foster (2017) 

 

The 9.2kb ssRNA molecules are comprised of four main regions, namely the Long Terminal 

Repeat (LTR) region, gag-pol, env and accessory genes (see Figure 1.2, HIV-1 genome) 

(Sierra et al., 2005). The last three regions jointly contain nine Open Reading Frames (ORFs) 

that produce 15 proteins (Coffin, Hughes and Varmus, 1997; Frankel and Young, 1998; 

Watts et al., 2009). The precursor to the gag polyprotein is proteolytically processed to 

produce the M, NC, CA and p6 proteins. The Gag-Pol polyprotein adds Pr, RT and IN. The 

env gene encodes a 30 AA signal peptide (SP), gp120 and gp41. Auxiliary proteins are coded 

by the additional sequences tat, rev, rev, nef, vif, vpr and vpu (coloured in orange in Figure 

1.2, HIV-1 genome). These proteins control HIV infection of cells and viral replication. The 

LTR region, flanking both edges of the coding regions, is regulatory and contains the U3, R 

and U5 regions. The U3 region is a unique non-coding region, approximately 200-1200nt, 

Figure 1.2: HIV-1 structure and genome 
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which forms the 5´ end of the provirus following reverse transcription. It also contains 

binding sites for cellular transcription factors. The much shorter (18-250nt) R region forms 

direct repeats at both sides of the genome and contains the Transactivation Response 

Element (TAR), which is essential for tat-mediated transactivation. The first part of the viral 

genome to be reverse transcribed is found in the U5 non-coding region (approx. 75-250nt), 

thus forming the 3´ end of the provirus genome (Coffin et al., 1997; Frankel and Young, 

1998; Lodish et al., 2000; Watts et al., 2009). 

 

1.6 HIV-1 Lifecycle 

The first step in the HIV-1 life cycle is the viral attachment to the host cell, which is 

facilitated by the binding of HIV-1 gp120 to host CD4 cell receptor. Upon binding to the 

target cell receptor, the gp120 undergoes a conformational change that causes it to bind to 

either Chemokine receptor type 5 (CCR5) or Chemokine receptor type 4 (CXCR4) found on 

the membrane of the target cell (see Figure 1.3). In addition, the receptor binding also causes 

a conformational change in gp120 exposing a hydrophobic domain on the gp41. This 

conformational change facilitates fusion with the cell membrane allowing the uncoating of 

viral core into the host cell cytoplasm. The RT enzyme then converts the ssRNA into dsDNA 

(i.e. complimentary DNA) (Singh et al., 2010; Arts and Hazuda, 2012). The complementary 

DNA (cDNA) is then transported to the nucleus where the viral DNA is integrated with the 

host cell DNA by viral enzyme IN (Melikyan et al., 2000; Sierra et al., 2005; Singh et al., 

2010; Arts and Hazuda, 2012; Craigie and Bushman, 2012). 
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Figure 1.3: HIV transmission and the establishment of HIV reservoirs 

(A) Interactions of HIV envelope glycoproteins, CD4, and CCR5 or CXCR4 co-receptors trigger fusion and 

entry of HIV. (B) Outline of the sequence and time course of events involved in viral dissemination. Source: 

Pilcher et al (2004, p940) 

 

After integration, the RNA polymerase II transcribes the provirus into mRNAs. The mRNAs 

are translated into structural components, enzymes, and genomic RNA, which are 

subsequently transported to the cellular membrane and assembled into immature virions and 

released (Sierra et al 2005). The viral Pr cleaves the Gag and Gag-pol polyprotein into mature 

Gag and Pol proteins (Sierra et al., 2005). 
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1.7 Acute HIV Infection  

Acute infection refers to the initial stage of HIV infection up to the point where HIV is 

considered to be chronic (Fiebig et al., 2003). It occurs approximately 1.5 weeks after HIV-

1 exposure and ends when antibodies to HIV-1 are produced (Bassett et al., 2011; Cohen et 

al., 2011; Maartens, Celum and Lewin, 2014; McMichael et al., 2010). It lasts on average 

12 weeks and consists of an eclipse phase and five Fiebig stages, which are characterised by 

the progressive appearance of viral markers and antibodies in the blood (Figure 1.4) (Fiebig 

et al., 2003; Cohen et al., 2011; McMichael et al., 2010).  

 

The first 10 days after HIV-1 transmission, referred to as the eclipse phase, is the period 

during which the virus starts to establish itself in local tissue at the site of exposure. During 

this time HIV-1 RNA is undetectable and reservoirs of virions are established within latently 

infected CD4+ memory T-lymphocytes cells and macrophages (Cohen et al., 2011; Chun 

and Fauci, 2012; Riou et al., 2012; McMichael et al., 2010). Latently infected cells are able 

to carry HIV-1 without expressing surface antigens thus escaping host immune recognition 

and resistance to virus-induced cytopathic effects (Chun and Fauci, 2012).  

 

By the end of the eclipse phase, cell-free viruses and infected cells reach the draining lymph 

node where they encounter additional CD4+ cells to infect. Some of the viral particles are 

internalised by dendritic cells and presented to activated CD4+ T-lymphocytes, further 

increasing infection (McMichael et al., 2010). The subsequent increased interaction between 

HIV-1 and cells expressing CD4+ receptors results in increased cellular infection and viral 

spread into the blood and lymphoid tissues, particularly the gut-associated lymphoid tissue 

(GALT) where a significant portion of CD4+ T-lymphocytes reside (Brenchley et al., 2004; 

Pilcher et al., 2004; Brenchley et al., 2008). During this early phase of acute infection, viral 

concentrations in the blood and genital fluids peak, owing to increased HIV replication that 

is unrestrained by immune responses (Pilcher et al., 2004; Bassett et al., 2011; Ndhlovu et 

al., 2015). HIV-1 in the GALT and other lymphoid tissues exponentially increases plasma 

viremia, which peaks at approximately 1 million copies of virus per ml, between 21-28 days 

after infection (Figure 1.4) (Pilcher et al., 2004; McMichael et al., 2010).  

 

In response to peak viremia, acutely infected host’s immune system mounts an intense 

inflammatory response that is characterized by high cytokine and chemokine levels (i.e. 

“cytokine storm”) (Stacey et al., 2009). Both the adaptive and innate immune responses are 
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activated, jointly contributing towards decreasing the viral load. CD8+ T-lymphocytes (CTL) 

start to kill productively infected CD4+ cells as part of the adaptive immune response shortly 

after infection. However, some viruses develop mutations in various epitopes and 

successfully escape immune selection (Llano, Frahm and Brander, 2009; Llano et al., 2013; 

Pereyra et al., 2014). 

 

Upon CD4+ T-lymphocyte decline, infected individuals may become symptomatic (e.g. 

experience flu-like symptoms), which occurs around 26-35 days after initial infection 

(Pilcher et al., 2004; Bassett et al., 2011). The viral load continues declining until the viral 

set-point (i.e. point of stabilization) is reached, which usually marks the starting point of 

chronic HIV-1 infection (McMichael et al., 2010). Viral set-point is individual-specific and 

dependent on viral replication and host immune responses. Consequently, higher viral set-

points are associated with faster disease progression, while lower viral set-points are 

associated with slower disease progression, with immune escape mutations thought a major 

contributor towards maintaining higher viral set-points (McMichael et al., 2010). 

 

Fiebig et al. (2003) developed a six-stage model for stratifying the different stages of acute 

infection based on routine laboratory detection assays (see figure 1.4). They described these 

stages as: 

Stage I : HIV present in blood samples, only RNA assay positive 

Stage II : RNA and HIV-1 p24 antigen tests positive, antibody EIA non-reactive 

Stage III : RNA, HIV-1 antigen and HIV IgM-sensitive EIA reactive, but Western blot 

without HIV-1-specific bands 

Stage IV : Stage III plus indeterminate Western blot pattern, i.e. the presence of HIV-1-

specific Western blot bands that fail to meet interpretative criteria for reactive 

Western blot defined by the USA Food and Drug Administration as reactivity to 

two of the following three bands: p24, gp 41, gp 120 / 160 

Stage V : Stage IV, but reactive Western blot pattern, except lacking p31 (pol) reactivity 

Stage VI : Stage V, but full Western blot reactivity including a p31 band 
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Figure 1.4: Progression of HIV-1 after infection 

 

According to Fiebig et al. (2003), each of the stages from I-IV are relatively brief, lasting 3-

5 days on average. Stage V is estimated to last an average of 69.5 days. Stage VI, on the 

other hand, has no set duration, except that its end point marks what can be thought of as 

either the recent or early phase of chronic infection (Fiebig et al., 2003).  

 

1.8 Acute Infection and the FRESH cohort 

Pilcher et al. (2004) state that recognizing acute HIV infection is important for at least three 

reasons. Firstly, prevention strategies directed at individuals with acute HIV infection could 

potentially have a great impact. Secondly, very early recognition could present early 

treatment options that could alter the natural history of the disease, or even eliminate 

infection. Thirdly, it provides a unique opportunity to understand HIV transmission and 

pathogenesis, including early host-virus interactions, which lay the foundations for further 

study. 

 

Early host-virus interactions are known to shape HIV variant populations in systemic and 

tissue compartments (Pilcher et al., 2004). The number of replication events occurring 

during acute HIV infection is vast, and opportunities for host factors to exert pressure on 

existing or newly mutated viral variants is enormous. The host factors that exert early 
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selective pressure may include the cells that were initially infected, or microenvironments in 

the mucosa, submucosa, and lymph nodes, which present a wide spectrum of innate host 

defences, including IFNs and/or other molecules [(Shugars and Wahl, 1998; Shugars et al., 

1999) as cited by Pope and Haase (2003) and Pilcher et al. (2004)]. Host selective pressures, 

therefore, may either increase or decrease the diversity of the infecting-virus population 

(Pilcher et al., 2004).  

 

According to Pilcher et al. (2004), less than 0,002% of HIV positive individuals were 

diagnosed within the first month of infection globally. One of the main reasons for this is 

that early acute infection does not have a specific and recognisable acute retroviral syndrome 

(Pilcher et al., 2004). Instead, early acute infection symptoms are non-specific and overlap 

many common febrile syndromes, such as influenza, malaria and rickettsial diseases (Pilcher 

et al., 2004; Bassett et al., 2011). Consequently, the true diagnosis of acute HIV is rarely 

considered at an initial patient encounter (Pilcher et al., 2004; Ndhlovu et al., 2015). 

 

A second reason for failure to diagnose HIV infections is because routine antibody tests 

normally remain negative 1 to 2 weeks after acute retroviral symptoms appear (i.e. symptoms 

normally appear 26-35 days after initial infection) (Pilcher et al., 2004). Diagnosis at this 

stage is through the presence of HIV p24 antigen (detected by ELISA) or HIV RNA 

(detectable by more sensitive nucleic acid amplification) (Pilcher et al., 2004). Another 

challenge is that shortly before seroconversion, the p24 antigen tends to become undetectable 

due to the formation of early antibody-antigen complexes. A secondary antibody-negative, 

p24 antigen–negative period is sometimes observed (Pilcher et al., 2004). 

 

In the present study, blood samples were serially collected from 18-23 year old HIV 

uninfected sexually active women from Umlazi Township in KwaZulu-Natal, South Africa, 

that participated in a study called Females Rising through Education, Support and Health 

(FRESH) programme from November 2012 (Ndhlovu et al., 2015). Baseline blood from 

these participants were cryopreserved and each participant screened bi-weekly by finger-

prick plasma HIV RNA testing for evidence of acute HIV infection. Therefore, the acute 

blood samples used for this study were collected from participants with evidence of plasma 

viremia, usually within 24 hours of onset of plasma viremia (OPV) and continued being 

collected at regular intervals thereafter (Ndhlovu et al., 2015). The FRESH acute cohort is 

unique because participants were followed prior to acquiring HIV and thus HIV infection 
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was identified at its earliest detectable point, making this cohort an excellent reflection of 

early acute infection. This cohort thus presents an ideal opportunity to observe host-virus 

dynamics at one of the earliest points of HIV infection. 

 

1.9 Development of HIV Drug Resistance 

HIV has a very high mutation rate owing to its error-prone RT enzyme that lacks a 

proofreading mechanism. It is estimated that one nucleotide mutation occurs with each 

replication cycle (Tang and Shafer, 2012). Although people are normally infected by one or 

a few original variants of the virus, it is estimated that 1010 virions are produced daily in 

untreated individuals giving rise to numerous variants or quasispecies (Tang and Shafer, 

2012; Smith et al., 2016). Quasispecies commonly refers to a complex distribution of 

variants that are genetically distinct but closely related (Ramirez et al., 2013). This enables 

the virus to evade the immune system and lays the foundation for the development of ART 

resistance (Tang and Shafer, 2012). According to Tang and Shafer (2012), drug resistance 

can be attained by three different ways. Drug resistance can either be acquired (i.e. through 

the selection of drug resistance mutations (DRMs)), transmitted (i.e. from person to person), 

or occur naturally (in drug naïve viruses). Naturally occurring mutations, however, are 

considered rare (Tang and Shafer, 2012). 

 

According to AIDS info (2015), the main reason for virological treatment failure (defined 

by the WHO (2015) as a viral load ≥ 1000 cpm) was due to incomplete patient adherence to 

their treatment regimens. The WHO defines adherence as “…the extent to which a person’s 

behaviour (i.e. taking medication, following a diet and/or changing lifestyle) corresponds 

with agreed recommendations from a health worker.” (WHO, 2016, pxiv). Adherence to 

therapy, in particular, is critical for full viral suppression and for optimal immune 

reconstitution (Conradie et al., 2012; Tang and Shafer, 2012). The most notable repercussion 

of non-adherence is the development of DRMs in patients on ART. This does not only have 

negative implications for the non-adhering individuals but may potentially have a negative 

cascade effect on the people that they might transfer the drug-resistant virus to (Conradie et 

al., 2012). As stated by Imaz, Falco and Ribera (2011), the emergence of drug resistance 

does not only have an impact on the ART, but reduces the treatment opportunities for both 

ART-experienced and ART-naïve patients due to the cross-resistance to available drugs 

(Imaz et al., 2011; Tang and Shafer, 2012). Primary resistance (i.e. the transmission of 

resistant variants to uninfected individuals) thus raises serious clinical and public health 



15 
 

consequences and could potentially impact the ability to treat HIV in the near future (Alencar 

et al., 2013). The emergence of HIV drug resistance, therefore, poses a major threat to 

sustaining the benefits of ART (Imaz et al., 2011). 

 

Several empirical studies have investigated the presence of transmitted drug resistance 

(TDR) mutations among treatment naïve patients. Afonso et al. (2012), for example, 

concluded after testing for TDR mutations among 86 Angolan patients who were diagnosed 

HIV positive not longer than a year ago, and who were confirmed ART-naïve, that an 

unexpectedly high frequency of DRMs towards RT inhibitors was found among these 

patients. Specifically, they found that of these recently infected treatment naïve patients, 14 

(16.3%) displayed at least one DRM, 12 (14%) patients had DRM to NNRTIs, 9 (10.5%) 

had DRM related to NRTIs and seven (8%) showed DRM to both classes of RT inhibitors. 

However, they did not observe DRMs to PIs among any of the Angolan patients. Similarly, 

a study performed by Alencar et al. (2013) on 303 Brazilian blood donors that were recently 

identified HIV infected and were drug naïve, detected primary drug resistance in 36 (11.8%) 

HIV strains. The majority of these samples (31) were resistant to one drug class (17 to 

NNRTIs, eight to PIs, and 6 to NRTIs), four samples to two drug classes (NNRTIs and 

NRTIs) and one to all three drug classes. 

 

Studies from other countries, despite finding TDR mutations among recently infected 

treatment naïve patients, found the prevalence to be moderate to low. Avila-Rios et al. 

(2011), for example, enrolled 145 treatment naïve patients in Guatemala over a 6 month 

period and found that the prevalence of TDR mutations was 8.3% (i.e. detected TDR 

mutations in 12 patients). Ten (83.3%) of these patients had TDR mutations against NNRTIs. 

Transmitted drug resistance mutations towards NRTIs and PIs were found to be less than 

one percent for both drug classes. Similarly, Chen et al. (2012) genotyped 299 pol sequences 

from blood samples collected over a two year period from newly HIV diagnosed Chinese 

patients who were all ART naïve. They found TDR mutations in 13 (4.3%) of these patients. 

Approximately 1.3% of TDR mutations were related to PIs, 0.3% to NRTIs, and 2.7% to 

NNRTIs.  

 

To assist in standardising, guiding and facilitating the screening of TDR mutations globally, 

Bennett et al. (2009) compiled a list of 93 mutations that could be referred to in testing for 

TDR. These surveillance drug resistance mutations (SDRMs) were a consensus of reported 
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major DRMs that featured on the lists of three or more of five expert lists. The five expert 

lists used by Bennett et al. (2009) were the ANRS Drug Resistance Interpretation Algorithm  

(2008.07), HIVdb Drug Resistance Interpretation Algorithm (4.3.7), IAS-USA Mutations 

Associated With Drug Resistance (March / April 2008), Los Alamos National Laboratories 

HIV Sequence database (2007) and the Rega Institute Drug Resistance Interpretation 

Algorithm (7.1.1). The 93 mutations on the compiled SDRM list included 34 NRTI-

resistance mutations at 15 RT positions, 19 NNRTI-resistance mutations at 10 RT positions 

and 40 PI-resistance mutations at 18 Pr positions (see Table 1.2). This list, however, is not a 

comprehensive list of DRMs but is a consensus list of the more frequently reported TDR 

mutations. It also continues to be used and referred to in other updated DRMs lists, such as 

Stanford University HIVdb (2015, 2017). 

 

Table 1.2: HIV RT and Protease Mutations for Drug-Resistance Surveillance 

Source: Bennett et al. (2009) as summarised by Stanford HIV Drug Resistance Database. 2015. Major HIV-1 
Drug Resistance Mutations [Online]. Available: http://hivdb.stanford.edu 
 

1.10 Types of HIV Drug Resistance Mutations 

Drug resistance mutations are normally classified based on their resistance to three broad 

categories of drugs that act on either the virus’ RT enzyme, its Pr enzyme and its IN enzyme. 

Of these, it is resistance to RT inhibitors (RTIs) and Pr inhibitors (PIs) that are considered 

the most important (Khalid and Sezerman, 2016). This is partly due to these treatments 

playing a vital role in first-line and second-line therapeutic defenses against HIV. 

 

http://hivdb.stanford.edu/
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Mutations that cause resistance to RTIs and PIs are classified as either primary or secondary 

mutations. Primary mutations are single mutations that are first to appear. They give rise to 

low sensitivity to one or more inhibitors. Secondary mutations, on the other hand, develop 

later on and increase viral resistance and viral fitness, especially when in combination with 

other mutations. In other words, they do not cause resistance on their own (Nyombi et al., 

2008; Clavel and Mammano, 2010). Two distinct groups of drugs typically target the RT 

enzyme. These are either NRTIs or NNRTIs (Smith et al., 2016). The next section briefly 

discusses the mechanisms involved in the development of RT and Pr inhibitor resistance. It 

will also briefly discuss IN inhibitor resistance. 

 

1.10.1 HIV drug resistance in Reverse Transcriptase  

The RT enzyme is involved in both RNA-dependent DNA polymerization and DNA-

dependent DNA polymerization (Shafer, 2002; Shafer et al., 2007; Amiel et al., 2011; Smith 

et al., 2016). Reverse transcriptase inhibitors take the form of both nucleoside and nucleotide 

analogues that get incorporated into the growing chain of the viral DNA by the RT enzyme 

causing premature chain termination (Shafer, 2002). Smith et al. (2016) expand on this 

stating that the DNA polymerase activity of the RT enzyme is the most frequent target for 

RT inhibitors. They explain that this is achieved by either interfering with the DNA 

polymerase’s ability to complete the growing viral DNA strand or by preventing DNA 

polymerase from binding onto its binding site.  

 

1.10.1.1 Resistance to NRTIs 

Nucleoside Reverse Transcriptase Inhibitors lack the 3´-OH that is present on the 

deoxyribose of normal nucleosides. The incorporation of the NRTIs into the growing viral 

DNA strand causes premature chain termination (Smith et al., 2016). There are two 

mechanisms by which drug resistance to NRTIs arise. The first mechanism is caused by 

mutations that prevent the NRTIs from being incorporated into the growing DNA chain 

during synthesis (Smith et al., 2016). This method of mutagenesis gives rise to what is 

referred to as discriminatory mutations. They are so named because these particular 

mutations enable RT to differentiate between dideoxy-NRTI chain terminators and the cell’s 

natural deoxynucleotide triphosphates (dNTPs) and in doing so, prevent NRTIs from being 

incorporated into the growing viral DNA chain (Tang and Shafer, 2012). The most common 
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discriminatory mutations include M184V/I, K65R, K70E/G, L74V, Y115F and the Q151M 

complex of mutations (Tang and Shafer, 2012). 

 

The second mechanism of NRTI resistance is caused by the nucleotide excision mutations 

(NEMs) that remove NRTIs, consequently allowing DNA synthesis to continue (Shafer, 

2002). These mutations are sometimes referred to as primer unblocking mutations (PUMs) 

and operate by the phosphorylytic excision of NRTI-triphosphates that were added to the 

growing viral DNA chain. In addition to being referred to as PUMs, NEMs are also known 

as thymidine analogue mutations (TAMs) because they are selected by the thymidine 

analogues Zidovudine and Stavudine (Tang and Shafer, 2012). The most common excising 

mutations are M41L, D67N, K70R, L210W, K219Q/E and T251N/F (Singh et al., 2010; 

Tang and Shafer, 2012). TAMs are classified into two pathways namely type 1 or type 2 

(Tang and Shafer, 2012). Type 1 includes mutations M41L, L20I, and T215Y, while Type 

II includes the D67N, K70R, T215F and K219Q/I/E (Tang and Shafer, 2012). In addition, 

the presence of M184V together with the TAMs has been reported to be the most common 

pattern that causes resistance to all NRTIs (Tang and Shafer, 2012).  

 

1.10.1.2 Resistance to NNRTIs 

The NNRTIs prevent HIV replication by binding in a small hydrophobic pocket that is 

approximately 10 Å from the polymerase active site. The binding pocket is located 

underneath the bound double-stranded nucleic acid substrate. The subsequent binding of an 

NNRTI distorts RT and in so doing affects the alignment of the primer terminus and the 

polymerase active site, blocking the chemical step of viral DNA synthesis (Shafer, 2002; 

Wright et al., 2013; Smith et al., 2016). Inhibitor binding, therefore, affects the flexibility of 

RT and in the process prevents the synthesis of DNA (Shafer, 2002; Wright et al., 2013; 

Smith et al., 2016).  

 

The mutations that give rise to NNRTI resistance are located in the hydrophobic pocket that 

binds the inhibitors. These mutations typically alter the dimensions of the NNRTI binding 

pocket to an extent that NNRTIs can no longer bind (Smith et al., 2016). These mutations 

often result in high levels of resistance to one or more NNRTIs (Shafer, 2002; Wright et al., 

2013; Smith et al., 2016). NNRTI resistance usually develops when the NNRTIs are used in 

the presence of incomplete suppression of viral replication (Shafer 2002). 
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1.10.2 HIV drug resistance in Protease 

The Pr enzyme is responsible for the formation of viral structural proteins and enzymes by 

the mechanism of post-translational processing of the viral Gag and Gag-pol encoded 

polyproteins (Shafer, 2002; Shafer et al., 2007; Clavel and Mammano, 2010). Protease 

inhibitors are similar in structure to the Pr substrate and thus compete with it for binding to 

the Pr enzyme’s active site (Shafer 2002). Resistance to PIs is caused by mutations in the 

substrate cleft, which decreases the binding between the mutant Pr and the PI (Shafer, 2002; 

Toor et al., 2011; Su et al., 2016). 

 

There are two types of AA mutations that are associated with the substrate cavity, termed 

primary and secondary mutations. Primary mutations affect the AAs found inside the 

substrate cavity and cause resistance by decreasing the binding affinity between the PI and 

the mutant Pr enzyme (Su et al., 2016). Secondary mutations, on the other hand, impact on 

the AAs located outside the substrate cavity and are able to either compensate for the 

mutations found at the active site or decrease the activity of the mutant Pr (Shafer, 2002; 

Clavel and Mammano, 2010; Amiel et al., 2011). Drug resistance to PIs does not only 

develop at the Pr gene but also occurs in Pr cleavage sites consisting of Gag and Gag-pol 

polyproteins (Clavel and Mammano, 2010). 

 

1.10.2.1 Gag mutations related to Protease resistance 

Cleavage of the Gag and Gag-pol polyproteins is a critical step in the replication and 

infectivity of HIV (Clavel and Mammano, 2010; Kozisek et al., 2012). The Gag polyprotein 

is the main substrate for Pr binding and it has been discovered that mutations located in the 

NC/SP2/p6 gag region play a role in the development of PI resistance (Dam et al., 2009; 

Clavel and Mammano, 2010; Kozisek et al., 2012; Su et al., 2016). In addition, some gag 

mutations occur despite the absence of detectable or observable Pr mutations and may be 

indicative that HIV can cause resistance to PIs by altering the Pr substrate instead of Pr itself 

(Nijhuis et al., 2007; Ghosn et al., 2011). 

 

1.11 Detection of Drug Resistance Mutations and Testing for Minority Variants 

There are two different methods used to detect DRMs. These are broadly classified as either 

genotypic or phenotypic methods. Genotypic methods involve sequencing HIV pol gene 

from the HIV RNA population present in plasma to detect DRMs (Gianella and Richman, 
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2010). Specifically, genotypic resistance methods test for the presence of DRMs in the viral 

enzymes targeted by ARV drugs. These include Pr, RT and IN enzymes. Standard genotypic 

methods are, however, incapable of detecting minority variants and are thus limited to 

detecting mutations in major (dominant) viral populations (Gianella and Richman, 2010). 

Phenotypic methods, on the other hand, directly measure drug susceptibility based on viral 

replication and assess the effects of mutations contained in the tested sample(s) (Gianella 

and Richman, 2010). Similar to genotypic techniques, this method also detects mutations in 

major viral populations and is limited in detecting minority variants (Metzner et al., 2005; 

Gianella and Richman, 2010; Halvas et al., 2010). 

 

Minority variants arise due to HIV’s high replication rate and the high RT error rate (Abram 

et al., 2010; Halvas et al., 2010). They form a small portion of quasispecies that evolve as a 

consequence of high error-prone viral replication. Minority variants are important because 

they impact on ART and have been found to later emerge as the major viral population 

(Metzner et al., 2005). This can either be attributed to these variants developing more 

resistance mutations or could be the result of partially suppressive ART, which allows the 

minority population to have a higher growth advantage over the majority population 

(Charpentier et al., 2004). 

 

To compensate for the shortcomings of standard genotypic techniques, more sensitive 

methods have been developed to detect minority variants. These include standard cloning 

(SC), single genome sequencing (SGS), allele-specific polymerase chain reaction (ASPCR) 

and ultradeep pyrosequencing (UDPS) (Paredes i Deiros, 2009; Halvas et al., 2010). The 

allele-specific polymerase chain reaction is a very sensitive and/or specific technique that 

can detect specific minority variants. This technique, however, does not provide information 

on other DRMs that might be present in an individual (Gianella and Richman, 2010). In 

contrast, SGS and UDPS allow for the analysis of the entire gene with the sequencing of 

single virus particles obtained from the original HIV particle (Palmer et al., 2005). This 

allows for the analysis of genetic linkages of each detected mutation. Cloning and 

sequencing of multiple clones also allows for genetic linkages of each detected mutation and 

can determine whether mutations are present on different variants in the HIV population 

(Gianella and Richman, 2010; Ramirez et al., 2013). 
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1.11.1 Ultradeep PyroSequencing (UDPS)  

This method utilizes a combination of emulsion polymerase chain reaction (PCR) with 

massive parallel pyrosequencing techniques where many sequences of individual molecules 

generated from RT PCR products are sequenced in a single run (Simen et al., 2009). This 

technology produces a massive number of sequences which makes possible the detection of 

multiple DRMs. The technology’s detection sensitivity for minority variants is dependent on 

the coverage and depth attained (i.e. the average number of times a gene has been sequenced 

during a run). In addition, its sensitivity to detect minority variants can be as low as 0.5 - 1% 

in viral populations (Paredes i Deiros, 2009). Ultradeep pyrosequencing can also sequence 

individual templates and determine genetic linkages within the same viral genome in the 

same way as cloning and SGS (Gianella and Richman, 2010). When compared to Sanger 

sequencing, research has found UDPS to be more accurate and more reproducible (Stelzl et 

al., 2011), more sensitive, more efficient and more reliable (Liang et al., 2011; Samuel et 

al., 2016). Although UDPS remains one of the most sensitive techniques, it is very 

expensive, is more time consuming and laborious (especially setting up), and it generates a 

significant amount of data that require extensive bioinformatics expertise to fully analyze 

(Paredes i Deiros, 2009; Ramirez et al., 2013; Garcia-Diaz et al., 2014; Mohamed et al., 

2014). 

 

1.12 Aim and Objectives of the Study 

The research question that the study aimed to address was “What mutation patterns can be 

observed in the HIV sequences of acutely infected individuals?” 

 

1.12.1 Aim 

The aim of the study was to identify sites experiencing positive selective pressure in the HIV 

of acutely infected individuals and the likely implications of these mutations to viral 

functional domains and host epitopes. 

 

1.12.2 Objectives 

• To evaluate the consistency of HyPhy methods in Datamonkey for identifying 

positively selected sites 

• To identify likely sites for positive selection 

• To scan for positively selected mutations within putative functional domains 
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• To locate positively selected mutations within epitopes  

• To identify most recent common ancestors by ancestral reconstruction 

• To compare drug resistance mutations between the founder virus and virus 

quasispecies 

• To determine the evolution of the loss of mutations 

• To correlate loss of mutations to structural changes 
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CHAPTER 2: 

Bioinformatics Analysis Toolkit 

2.1 Introduction 

The sequences in this study were firstly analysed for sites experiencing positive selective 

pressure. Sequences that had multiple timepoints were tracked to observe the structural 

changes accompanying the loss of DRMs and to detect if any DRMs spontaneously arose. 

For the first set of analyses, the HyPhy package in Datamonkey and the codeml package in 

the Phylogenetic Analysis by Maximum Likelihood (PAML) software was used to test for 

sites under positive selection pressure. Nucleotide models of substitution that best fitted the 

datasets were determined using j-Modeltest and maximum likelihood (ML) trees were drawn 

in PAUP* and PhyML for codeml analysis. To trace the acquisition or loss of DRMs over 

time, ancestral sequence reconstruction was performed using codonml of the PAML 

package, with timescaled phylogenies constructed using Bayesian Evolutionary Analysis by 

Sampling Trees (BEAST). Descriptions of the bioinformatics tools that were used for 

analyses in this study are given in the following sections. 

 

2.2 HyPhy package in Datamonkey for Detecting Sites under Positive Selective 

Pressure 

Hypothesis testing using phylogenies (HyPhy) is a software package in Datamonkey (a web-

based suite of phylogenetic analysis tools for use in evolutionary biology) that performs 

likelihood-based analyses to study patterns of sequence evolution (Kosakovsky Pond and 

Frost, 2005; Delport et al., 2010). Positive selection analysis is one of the standard analyses 

methods contained within the HyPhy package. The classical version of Datamonkey has 

three traditional methods available to test for diversifying and purifying selection acting at a 

single codon site, namely Single Likelihood Ancestor Counting (SLAC), Fixed Effects 

Likelihood (FEL) and Random Effect Likelihood (REL). Two additional methods that are 

an extension of FEL are also used to detect positive selection. These are the Internal Branch 

FEL (iFEL) and the Mixed Effects Model of Evolution (MEME) methods (Delport et al., 

2010). These methods are summarised in Table 2.1. 
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Table 2.1: Site by site selection models 

Method  Description 

SLAC 

- the fastest and most conservative method 
- used for large datasets (≥50 sequences) and to obtain substitution maps at each site 

(a useful feature for visualizing the evolutionary process) 
- uses a combination of maximum-likelihood (ML) and counting approaches to infer 

nonsynonymous (dN) and synonymous (dS) substitution rates on a per-site basis for 
a given coding alignment and corresponding phylogeny 

- like FEL (see below), this method assumes that the selection pressure for each site 
is constant along the entire phylogeny 

FEL 

- the best overall method in terms of the trade-off between statistical performance and 
computational expense 

- used for intermediate to large datasets (≥50 sequences) and to obtain good site-by-
site substitution rate estimates to infer dN and synonymous dS substitution rates on 
a per-site basis for a given coding alignment and corresponding phylogeny 

- assumes that the selection pressure for each site is constant along the entire 
phylogeny 

iFEL - can detect sites that are positively selected at the level of a population 
- iFEL can be used to test for sitewise selection on internal branches of the tree. 

REL 

- is an extension of familiar codon-based selection analyses pioneered by Nielsen and 
Yang and implemented in PAML 

- allows synonymous rate variation 
- is often the only method that can infer selection from small (5-15 sequence) or low 

divergence alignments 
- makes the most assumptions compared to the other methods and is therefore 

susceptible to high rates of false positives in extreme cases 

MEME 

- MEME combines fixed effects at the level of a site with random effects at the level 
of branches 

- is an extension of FEL, where the ω (dN/dS) > 1) values are allowed to vary along 
branches according to a 2-bin distribution (i.e. some branches may be under positive 
selection while others under negative selection) 

- employs a mixed-effects ML approach to test the hypothesis that individual sites 
have been subject to episodic positive or diversifying selection (i.e. MEME aims to 
detect sites evolving under positive selection under a proportion of branches) 

- is most appropriate to detect episodic diversifying selection affecting individual 
codon sites 

Source: Adapted from Datamonkey (www.datamonkey.org) and Poon, Frost and Kosakovsky Pond (2009) 

 

The methods used to detect diversifying and purifying selection at the site level estimate the 

rate of nonsynonymous (dN) and synonymous (dS) changes occurring at each site in the 

sequence alignment (Kosakovsky Pond, Frost and Muse, 2005; Poon et al., 2009; Delport et 

al., 2010). Of the methods in Datamonkey, the SLAC method is considered the most 

conservative counting method that involves reconstruction of the ancestral sequences using 

a single most likely ancestral reconstruction that considers all possible ancestral 

reconstructions or sampling from ancestral reconstructions (Kosakovsky Pond and Frost, 

http://www.datamonkey.org/
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2005; Poon et al., 2009; Delport et al., 2010). The FEL method estimates the substitution 

rate of dN and dS at each site of a sequence alignment. The iFEL method, on the other hand, 

determines the selection pressure that occurs on the internal branches of a tree (Kosakovsky 

Pond and Frost, 2005). This method tests for population-level selective pressures that are 

restricted to the interior branches of the tree (Poon et al., 2009, Delport et al., 2010). 

Generally, the FEL and iFEL are the best methods in terms of statistical performance and 

computational expense (Poon et al., 2009; Datamonkey, www.datamonkey.org). 

 

The REL method is an extensive codon-based selection analysis technique that allows for 

the dN and dS rate variation with the selection pressure at individual sites (Kosakovsky Pond 

and Frost, 2005). This method is similar to the popular likelihood methods used in the PAML 

package, with some important additions (e.g. synonymous rate variation). Rather than 

directly estimating dN and dS at each site, REL estimates the parameters for discretized 

distributions of dN and dS (with three rate categories for a total of nine possible rate 

combinations) from the whole alignment and then infers which of these sites is most likely 

to be under positive selection. REL tends to be the most powerful of the three tests (i.e. 

SLAC, FEL and REL) because it uses the entire alignment to make inferences about rates at 

each site. However, it tends to have the highest rate of false positives. This is because the 

distribution of rates to be fitted have to be defined a priori, and it may not satisfactorily 

model the unobserved distribution of rates. The MEME method uses a mixed-effects ML 

approach (i.e. ω values are allowed to vary along branches according to a 2-bin distribution 

in that some branches may be under positive selection while others under negative selection) 

to test for episodic positive or diversifying selection at the individual site level (Datamonkey, 

www.datamonkey.org). 

 

Each of the methods implemented by Datamonkey uses a nucleotide substitution model to 

estimate branch lengths and nucleotide substitution biases (e.g. transition/transversion 

biases) of the tree from sequence alignments. In general, Datamonkey can use one of 203 

time-reversible nucleotide substitution models. The most supported time reversible model 

(denoted as REV) is comprised of eight free parameters (3 nucleotide frequencies + 5 

substitution rates). Four of the most frequently used models are F81, HKY85, TrN93, and 

REV, which are predefined as “named” options within Datamonkey (Poon et al., 2009; 

Datamonkey, www.datamonkey.org). 
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2.3 Phylogenetic Analysis 

Phylogeny is an illustration of the evolutionary relationship between genes and organisms. 

Similar to a genealogy, it depicts which genes or organisms are closely related (Vandamme, 

2009). To represent this relationship, a phylogenetic tree is constructed. A phylogenetic tree 

presents an intuitive approach to inferring relationships among copies of a gene or among 

loci of a multigene family (Bos and Posada, 2005). Historically, the principal interest in 

constructing phylogenetic trees was to observe the pattern of the evolutionary relationships 

(i.e. topology) of the tree. Recent applications have extended the use of phylogenetic trees 

to serve as a source from which emanates information regarding the processes for observed 

patterns of evolutionary relationships. In addition, the tree topology becomes the framework 

from which further inferences are drawn. Phylogenetics, therefore, makes it possible to 

analyse evolutionary rates, gene duplications, recombinations, polymorphisms, lineage 

divergence, and population demographics. Consequently, phylogenetic analysis provides 

useful tools to calculate the time to the most recent common ancestor (tMRCA) for all the 

extant alleles/genes (Vandamme, 2009). In addition, divergence time calculations are often 

used when investigating the origin of species. As the basis for inference, accurate estimates 

of evolutionary parameters often centre on the validity of a single phylogenetic 

reconstruction. Typically, “inaccurate estimation of trees may lead to biased results and 

erroneous inference of processes or mechanism of evolution” (Bos and Posada, 2005, 212). 
 

2.3.1 Overview of Phylogenetic Trees 

Phylogenetic trees are diagrams used to illustrate evolutionary relationships among genes 

and organisms and help to indicate which genes or organisms are most closely related. 

Phylogenetic trees are so termed because they resemble the structure of a tree (Figure 2.1), 

and the terms used to refer to the various parts of the diagram (i.e. root, branch, node, and 

leaf) are also reminiscent of trees (Vandamme, 2009).  
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Figure 2.1: Basic tree structure and nomenclature  

Structure of (a) a rooted and (b) an unrooted phylogenetic tree. Both trees have the same topology. A rooted   
tree is usually drawn with the root to the left. A, B, C, D, E, and F are external nodes or operational taxonomic 
units. G, H, J, K, and I are internal nodes or hypothetical taxonomic units, with K as root node. The unrooted 
tree does not have a root node. The lines between the nodes are branches. The arrow indicates the direction of 
evolution in the rooted tree (e.g. from root K to external node D). The direction of evolution is not known in 
an unrooted tree. Source: Adapted from Vandamme (2009), descriptions are taken verbatim. 
 
A phylogenetic tree is typically composed of branches (edges) and nodes (Figure 2.1). 

Branches connect nodes, which are the points at which two or more branches diverge (e.g 

A-G and G-B are branches that connect at node G in Figure 2.1). Both the branches and the 

nodes can either be internal or external. External (terminal) nodes or leaves (see A to F) 

represent extant (existing) taxa and are frequently called operational taxonomic units 

(OTUs), which is a generic term that can represent many types of comparable taxa (e.g. a 

family of organisms, individuals, or virus strains from a single species or from different 

species). Similarly, internal nodes are often referred to as hypothetical taxonomic units 

(HTUs) to highlight that they are the hypothetical ancestors of OTUs (Baldauf, 2003; 

Vandamme, 2009). A group of taxa that share a common branch have a monophyletic origin 

and are called a cluster or clade (e.g. in Figure 2.1 taxa A, B, and C form a cluster, with H 

as a common ancestor) (Freed, 2001; Vandamme, 2009). In contrast, C, D, and E do not 

form a cluster without including additional strains. They are, therefore, not of monophyletic 

origin and are called paraphyletic instead. 

 

The topology of a tree refers to its branching pattern (i.e. the order of the nodes). 

Phylogenetic trees can either be rooted or unrooted (Figure 2.1). Rooted trees have a root 

that indicates the common ancestor of all the OTUs, thus illustrating the direction of the 

evolutionary process while the unrooted tree only positions the taxa relative to each other 

without showing the direction of the evolutionary process (Baldauf, 2003; Rizzo and 

Rouchka, 2007; Vandamme, 2009). In addition, phylogenetic trees are drawn with 
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proportional branch lengths corresponding to the amount of evolution. Thus the longer the 

branch length the more diversity in the sequence relative to the other branches (Baldauf, 

2003). 

 

2.3.2 Methods for Estimating Phylogenetic Trees 

Methods for constructing phylogenetic trees from molecular data can be broadly classified 

according to either the kind of data that they use or to an underlying algorithm (Vandamme, 

2009). The former approach (i.e. kind of data) refers to discrete character states or to distance 

matrices of pairwise dissimilarities. Character-state methods utilise any set of discrete 

characters, such as physiological properties, morphological characters, restriction maps, or 

sequence data. When applied to sequences, a ‘character’ refers to each sequence position in 

an alignment, while the nucleotides or AAs at that position are the ‘states’. Character-state 

methods preserve the original taxa character status and can thus be used to reconstruct the 

character state of ancestral nodes (Vandamme, 2009). Distance matrix methods, on the other 

hand, infer phylogenetic relationships from a pairwise distance matrix that is derived from 

calculating dissimilarities between each pair of taxa. These methods, however, cannot 

reconstruct character states of ancestral nodes because they discard the original character 

state of the taxa. The major advantage of distance methods is that they are generally 

computationally inexpensive, which is important when many taxa have to be analysed 

(Vandamme, 2009). 

 
The algorithmic approach, in contrast, uses either a clustering algorithm (which usually 

produces one tree estimate) or an optimality criterion to evaluate different tree topologies 

(Vandamme, 2009). The optimality (or goodness-of-fit) criterion is used to evaluate different 

tree topologies for a given number of taxa in search of a tree that optimizes the predefined 

criteria. Maximum likelihood methods, for example, are a form of optimality approach that 

uses statistical criteria by considering the probability that a specific tree gave rise to the 

observed data (i.e. the aligned sequences) given a specific evolutionary model. This allows 

for comparison and relative support of different phylogenetic trees within a statistical 

framework. Clustering methods, on the other hand, avoid evaluating different trees by 

gradually clustering taxa into one tree (Vandamme, 2009). Generally, most distance-matrix 

methods use clustering algorithms to compute the best tree, while most character-state 

methods employ an optimality criterion. The classification of these methods is summarised 

in Table 2.2. 
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Table 2.2: Classification of phylogenetic analysis methods and their strategies 

 
Source: Adapted from Vandamme (2009, p25) 
 

Three popular methods used to estimate phylogenetic trees will be discussed briefly in the 

coming paragraphs. These are Neighbour-Joining (NJ), Maximum Likelihood (ML) and 

Bayesian methods. Each of these relies on explicit statistical models of evolution to 

reconstruct evolutionary trees.  

 

2.3.2.1 Neighbour-Joining 

The NJ method is a distance method that uses the genetic distance between sequences to 

construct a phylogenetic tree (Bos and Posada, 2005). Neighbour-joining tree construction 

typically involves sequentially finding pairs of OTU’s that are connected by a single interior 

node. The algorithm sequentially connects every possible OTU pair and finally joins the 

OTU pair that yields the shortest tree (Vandamme, 2009).  

 

Genetic distance in an NJ tree is based on the hypothesis that the difference between two 

sequences is directly related to their phylogenetic relationship (San Mauro and Agorreta, 

2010). The difference between the sequences is due to a number of changes that have 

occurred along the branches (i.e. the evolutionary distance) (San Mauro and Agorreta, 2010). 

The genetic distance can also be the differences between a pair of sequences based on their 

transition (ti) or transversion (tv) substitution rates (Posada, 2009; San Mauro and Agorreta, 

2010). Transitions are substitutions between nucleotides that are structurally similar (e.g. 

A↔G, which are both purines, or C↔T, which are both pyrimidines). Transversions, on the 

other hand, occur between nucleotides that are structurally dissimilar (e.g. A↔C or G↔T or 

A↔T or G↔C, which are substitutions between pyrimidines and purines and vice versa) 

(see Figure 2.2) (Bos and Posada, 2005).  

 

Optimality search criterion Clustering

Character state Maximum parsimony (MP)

Maximum likelihood (ML)

Bayesian inference

Distance matrix Fitch-Margoliash UPGMA

Neighbour-joining
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Figure 2.2: Transition and transversion substitution matrix 

The substitution matrix illustrates the different rates of evolution of two possible transitions (A↔G, C↔T) and 
four possible transversions (A↔T, A↔C, G↔C, and G↔T). In this substitution matrix, substitution 
parameters are reversible, so that the rate of change from nucleotide i to nucleotide j is the same as the rate of 
change from j to i. Source: Bos and Posada (2005, p212).  
 

Transitions are often observed at more than twice the rate of transversions (ti: tv >2) despite 

there being twice as many possible transversions for any given nucleotide site. This trend 

towards more transitions occurs because a mutation to a similar nucleotide is more likely to 

be tolerated than a dissimilar one along a DNA sequence (Bos and Posada, 2005). The 

redundant nature of the genetic code is one of the main factors that dictate nucleotide 

substitution tolerance at various positions in a codon. Typically, similar substitutions at the 

third nucleotide position of an AA often does not alter the AA. As such, mutations at this 

position are more tolerated and restrictions on tv or ti are a little more flexible. This contrasts 

with mutations in the second and third codon positions of an AA in that changes in these are 

more likely to change or alter the underlying AA. These positions, therefore, tend to be more 

conservative and intolerant to mutations or substitutions.  

 

In addition, protein structure is critical to its function. It is therefore important that structural 

integrity is preserved. As such, certain regions or domains within the protein are highly 

intolerant to mutations that will disrupt protein structural integrity and hence function. 

Substitution rates will, therefore, differ in different regions of the DNA sequence correlating 

to different domains in the protein (i.e. among codons rather than within codons) and can 

cause different parts of a gene to support different trees. The variation in substitution rates 

among different nucleotides in a sequence (as opposed to codon) is referred to as substitution 

rate heterogeneity or among-site rate variation (Li, 1997; Bos and Posada, 2005). 

 

Overall, distance methods are relatively quicker compared to the other methods. However, 

they do not give information about the sequences as they are distance based (San Mauro and 
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Agorreta, 2010). In addition, the clustering algorithm used by NJ does not attempt to find 

clusters of OTUs that are most closely related. Rather, it shortens the length of the internal 

branches, and hence the length of the entire tree (Vandamme, 2009). 

 

2.3.2.2 Maximum Likelihood 

In maximum likelihood (ML) a tree that best explains the data, based on the specific 

substitution model, is derived directly from sequence data (Bos and Posada, 2005). A tree’s 

likelihood is the probability of observing the data provided, with the tree and a model of 

evolution (San Mauro and Agorreta, 2010). Likelihood can, therefore, be estimated for 

different substitution models and the ML found. The ML has more statistical power in 

comparison to genetic distance methods, consequently providing a robust way of estimating 

phylogenies and understanding sequence evolution (Bos and Posada, 2005; San Mauro and 

Agorreta, 2010). Maximum likelihood methods are, however, more computationally 

intensive, especially when large numbers of sequences are being analysed (Bos and Posada, 

2005). 

 

2.3.2.3 Bayesian Inference 

Bayesian methods are character-state methods that use an optimality criterion. They differ 

from ML in that they do not try to search only for the single best tree. However, Bayesian 

methods also use likelihood by searching for a set of plausible trees or hypotheses for the 

data by targeting a probability distribution of trees (i.e. posterior distribution), which 

inherently holds a confidence estimate of any evolutionary relationship (Vandamme, 2009). 

However, Bayesian methods require prior estimation of model parameters. These are often 

based on a prior belief, which is formalized as a prior distribution on the model parameters, 

for example, substitution model parameters, branch lengths, and tree topology (Huelsenbeck 

and Ronquist, 2001; Drummond and Rambaut, 2007; Vandamme, 2009). The comparative 

evidence present in the data then serves as a reference point for evaluating how one should 

update prior beliefs. Bayesian inference uses the Markov Chain Monte Carlo (MCMC) 

sampling technique to explore trees and estimate posterior probabilities based on them 

(Drummond and Rambaut, 2007; Vandamme, 2009). The posterior probability of a tree is 

the probability that the tree is correct, assuming that the model is correct (Huelsenbeck and 

Rannala, 2004). The advantage of Markov chains is their tendency to converge towards an 

equilibrium state regardless of the starting point (Ronquist, van der Mark and Huelsenbeck, 
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2009). In each step of the Bayesian inference, the likelihood ratio and prior ratio is calculated 

for the new state relative to the current state (Vandamme, 2009). After an initial convergence 

to a set of probable model/tree solutions, it is hoped that this stochastic algorithm samples 

from the posterior probability distribution. The frequency by which a particular tree topology 

is sampled is then proportional to its posterior probability. The result is a consensus tree or 

maximum a posteriori tree. 

 

2.3.2.4 Summary of Estimation Methods  

The NJ algorithm differs from ML and Bayesian methods because it calculates pairwise 

genetic distances between sequences and reconstructs a topology based on those distances. 

Bayesian and ML methods reconstruct a tree directly from sequence data. They thus use 

information in specific nucleotide differences instead of summarizing changes with a genetic 

distance. Due to these differences, ML methods offer better statistical properties in 

comparison to genetic distance-based methods. However, ML methods tend to be much 

more computationally intensive. The Bayesian method, like the ML method, utilizes the 

likelihood function. Using Bayesian statistics to reconstruct a phylogeny, however, results 

in the preferred outcome being one that maximizes the posterior probability, which is 

determined by the prior distribution and the likelihood of that tree. While NJ and ML produce 

a single best estimate of evolutionary relationship ignoring any uncertainty of the final tree, 

Bayesian methods, in contrast, produce a set of trees from which the one with the highest 

posterior probability is selected as the preferred / best tree (Bos and Posada, 2005; Schmidt 

and von Haeseler, 2009). Bayesian methods are generally considered to be faster than ML 

methods, and also offer the advantage of automatically incorporating an estimate of 

phylogenetic uncertainty (Bos and Posada, 2005). There is some contention, however, on 

the relative speed of ML versus Bayesian methods. Drummond and Rambaut (2007), for 

example, believe that the speed of Bayesian methods has erroneously been considered to be 

faster than heuristic searches that are based on ML. 

 

2.3.3 Models of Nucleotide Substitution 

Nucleotide substitution models provide an outline for phylogenetic reconstruction estimates 

for parameters used to find the best-fit tree. Models, however, differ from each other based 

on the number of parameters used (e.g. nucleotide frequencies, among-site variation, inter 

alia, see Figure 2.2) to represent evolutionary change. Furthermore, other models have been 
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derived from existing models by, for example, combining parameters (Bos and Posada, 

2005). Consequently, models often share common or overlapping features. Among the most 

commonly known and used nucleotide substitution models are the Jukes and Cantor (JC69) 

model, Felsenstein (F81) model, the Kimura 2-parameter (K2P), K80 and K81 models; the 

Hasegawa, Kishino and Yano (HKY85) model, the symmetrical model (SYM), the transition 

model (TIM), the transversion model (TVM), and the General Time Reversible (GTR) 

model (Posada and Crandall, 1998; Bos and Posada, 2005). 

 

Briefly, the JC69 model is the simplest of these models as it considers all possible nucleotide 

substitutions to have equal probability (Bos and Posada, 2005). Felsenstein’s F81 model 

bases the probability of nucleotide change on the nucleotides’ equilibrium frequencies. The 

K2P model uses a substitution matrix that permits ti and tv rates (Figure 2.3). The HKY85 

model, on the other hand, allows for different substitution rates in nucleotide pairs. The GTR 

model has other models nested within it. This model allows for up to six different 

substitution rates and also permits different nucleotide substitutions (Lio and Goldman, 

1998; Gatto, Catanzaro and Milinkovitch, 2006). A summary of some of the most commonly 

used nucleotide substitutions with their parameters is shown in Table 2.3. 

 

Table 2.3: Some commonly used nucleotide models of substitution and summary of 
parameters 

 
Parameters of these models can include four different base frequencies and up to six substitution rates. The 
flexibility of models is such that invariable sites and/or a gamma distribution can simply be added to 
incorporate rate variation. It should be noted that the number of parameters or free parameters sometimes differ 
from author to author [cf. Figure 2.3 by Strimmer and von Haeseler (2009). Source: Bos and Posada (2005, 
p215) 
 

As mentioned earlier, models of evolution are sets of assumptions about the process of 

nucleotide or AA substitution. They thus “describe different probabilities of change from 

one nucleotide or AA to another along a phylogenetic tree, allowing us to choose among 
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different phylogenetic hypotheses to explain the data at hand” (Posada, 2009, 345). This 

makes them indispensable when estimating phylogenetic relationships among taxa in DNA 

and protein sequences. 

 

Generally, more complex models are preferred over simpler ones because they fit the data 

better by virtue of having more parameters (Posada, 2009). The ideal use of models is to 

include as much model complexity as needed and no more in order to avoid over- or 

underfitting a model (Bos and Posada, 2005; Posada, 2009). Using complex models, 

however, requires that a large number of parameters be estimated. This has a number of 

disadvantages. Firstly, it makes the analysis of data computationally difficult and requires a 

significant amount of time. Secondly, more errors are introduced with the addition of more 

parameters due to the increase in the number of estimation that is required per parameter 

(Posada, 2009) (see Figure 2.3 for illustration of model complexity of some of the most 

frequently used models). 

 

Figure 2.3: Hierarchy of nucleotide substitution models 

Model complexity decreases from GTR down to JC69. Model complexity is dependent on the number of 
parameters that the model has i.e. the more parameter-rich, the more complex. Source: Strimmer and von 
Haeseler (2009, p124) 
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The best-fit model of evolution for a particular data set can be selected using trusted 

statistical techniques such as hierarchical likelihood ratio tests (hLRTs), information criteria 

and Bayesian or performance-based approaches. Regardless of the model selection strategy 

chosen, the fit of a model can be measured through the likelihood function, which is 

proportional to the probability of the data (D) given a model of evolution (M), a vector of K 

model parameters (θ), a tree topology (τ), and a vector of branch lengths (ν): 

 

          …Equation 1 

 

When the goal is to compute the likelihood of a model, the parameter values and the tree 

affect the calculations and become somewhat of nuisance parameters (so referred to by 

Posada (2009)) especially since they are not necessarily what is desired to be inferred. A 

standard strategy to “remove” unwanted parameters that might influence calculations, such 

as trees and parameter values, is often to use maximum likelihood estimates (Posada, 2009). 

These are values that make the likelihood function as large as possible: 

 

          …Equation 2 

 

To facilitate the computation, it is standard practice to work with the maximized log 

likelihood: 

 

          …Equation 3 

 

Within a Bayesian setting, it is possible to integrate the undesired parameters out and obtain 

the marginal probability of the data given only the model P(D|M) using computationally 

intensive techniques like the MCMC. Integrating out the tree, branch lengths, and model 

parameters to obtain P(D|M) is represented by: 

 

          …Equation 4 

 

A standard way to compare how two models fit is to contrast their log likelihoods using the 

likelihood ratio test (LRT) statistic (Posada and Crandall, 1998; Bos and Posada, 2005; 

Posada, 2009): 

          …Equation 5 
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Where:  

l1 is the maximum log likelihood under the more parameter-rich, complex 

model (alternative hypothesis) and  

l0 is the maximum log likelihood under the less parameter-rich simple model 

(null hypothesis)  

 

A different approach for model selection is to simultaneously compare all competing models. 

To do that, a penalty is charged to the likelihood of each model based on the number of free 

parameters in the model (K). Therefore, more parameters result in a bigger penalty.  

 

Yet another method to compare models is the Akaike Information Criterion or AIC (Akaike, 

1974). It is an asymptotically unbiased estimator of the Kullback–Leibler information 

quantity (Kullback and Leibler, 1951), which measures the expected distance between the 

true model and the estimated model (Posada, 2009): 

 

          …Equation 6 

 

The AIC could be thought of as the amount of information lost when we use a substitution 

model to approximate the real process of molecular evolution. It is the model with the 

smallest AIC that is preferred. The AIC has the advantage of comparing both nested and 

non-nested models. When sample size (n) is small compared with the number of parameters 

(n/K < 40) a corrected version of the AIC is recommended (Posada, 2009): 

 

          …Equation 7 

 

2.3.3.1 Selecting a Best Model of Substitution using Modeltest 

A model test is performed to test for the best model of DNA substitution. This is a software 

programme that compares the different DNA substitution models using a hierarchical 

hypothesis testing framework (Posada and Crandall, 1998). The programme calculates the 

LTR statistic, associated p-values as well as AIC values (Posada and Crandall, 1998). The 

contemporary version of Modeltest used to test for DNA substitution models is j-Modeltest 

(v2.1.10). This program is based on PhyML (Posada, 2008). Its advantages over the 
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traditional Modeltest (it should be noted that some researchers still prefer the old Modeltest) 

are that it is a simpler, faster and more accurate algorithm to estimate large phylogenies by 

maximum likelihood. The programme uses five different selection strategies, including 

hierarchical and dynamical likelihood ratio tests (hLRT), the Akaike information criterion 

(AIC), the Bayesian information criterion (BIC), and a decision theoretic performance-

based approach. It also calculates the relative importance and model-averaged estimates of 

substitution parameters, including a model-averaged estimate of the phylogeny. The 

program implements three different information criteria, namely the AIC, the BIC, and a 

performance-based approach based on decision theory (DT). Under the AIC framework, 

there is also the possibility of using a corrected version for small samples (AICc) instead of 

the standard AIC (Posada, 2008). j-Modeltest implements all 203 types of GTR substitution 

matrices, which when combined with unequal / equal base frequencies, gamma-distributed 

among-site rate variation and a proportion of invariable sites makes a total of 1624 (i.e. 203 

x 8) possible models (Guindon and Gascuel, 2003; Darriba et al., 2012; Darriba and Posada, 

2016). 

 

Although j-Modeltest is able to draw the best trees based on PhyML, it tends to lack 

flexibility in regards to tree topology (e.g. specifying clustering). To compensate for this, 

other models that allow for specifying outroots and outgroups are used, e.g. PAUP*. Often 

the PAUP* block that is generated by j-Modeltest for the best substitution models serves as 

a starting point for best tree reconstruction using the Phylogenetic Analysis Using Parsimony 

(PAUP*) package (version 4.0a). The PAUP block generated by j-Modeltest is then added 

to the end of the appropriate sequence alignment file. The block contains information on the 

best model that was selected by j-Modeltest, given the data, and has accompanying 

substitution rates and other model estimates which PAUP* can use as a starting point to 

generate phylogenetic trees (Posada, 2008). PAUP* then tests the sequence alignment 

against 56 models of evolution and gives an output called model scores. It also draws the 

best tree based on, e.g. ML, which can be viewed in programmes such as Figtree. 

 

2.3.4 Phylogenetic Analysis by Maximum Likelihood (PAML) 

Phylogenetic Analysis by Maximum Likelihood (PAML) software is a package of programs 

for the phylogenetic analyses of DNA and protein sequences using ML. The programs 

contained in the PAML package include BASEML, BASEMLG, CODEML, EVOLVER, 
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PAMP, YN00, MCMCTREE, and CHI2 software programmes. PAML can be used to 

compare and test phylogenetic trees. The main strengths of the package lays in its rich 

repertoire of evolutionary models, which can be used to estimate parameters in models of 

sequence evolution and to test biological hypotheses. Common uses of the programs include: 

i. the estimation of dN and dS rates and the detection of positive selection in protein-

coding DNA sequences (YN00 and CODEML) 

ii. comparing and testing phylogenetic trees (BASEML and CODEML), inferring 

positive selection through phylogenetic comparison of protein-coding genes 

(CODEML) 

iii. likelihood ratio tests (LRTs) of hypotheses through comparison of nested statistical 

models (BASEML, CODEML, CHI2) 

iv. estimation of species divergence times under global and local clock models using 

likelihood (BASEML and CODEML) and Bayesian (MCMCTREE) methods, and 

v. reconstruction of ancestral sequences using nucleotide, AA, and codon models 

(BASEML and CODEML) (Yang, 2007b). 

 

2.3.5 Bayesian Evolutionary Analysis by Sampling Trees (BEAST) 

Bayesian evolutionary analysis by sampling trees (BEAST) is a cross-platform program for 

Bayesian MCMC analysis of molecular sequences. It is orientated towards rooted, time-

measured phylogenies inferred using strict or relaxed molecular clock models (Drummond 

et al., 2007). Among the main goals of BEAST is to provide a method for reconstructing 

phylogenies and to serve as a framework for testing evolutionary hypotheses without 

conditioning on a single tree topology (Drummond et al., 2007). Using MCMC, BEAST 

averages over tree space weighting trees proportionally to their posterior probabilities. Being 

based on a Bayesian statistical framework, BEAST requires prior knowledge in combination 

with the information provided by the data (Drummond and Rambaut, 2007). Input into 

BEAST is by means of an XML file. To setup and generate this file, BEAST uses a program 

called Bayesian Evolutionary Analysis Utility (BEAUti). This program allows for specifying 

priors for BEAST. A brief description of BEAST accompanying programs is described in 

Table 2.4. These include LogCombiner, TreeAnnotator, Tracer, and Figtree. 
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Table 2.4: Associated programs used by BEAST 

 
Source: Adapted from Heath (2015, p9-10) 

 

2.3.5.1 BEAUti 

The BEAUti – BEAST duo package is particularly useful for three main research focus areas. 

These areas are species phylogenies for molecular dating, coalescent-based population 

genetics and measuring evolving populations (ancient DNA or time-stamped viral sequence 

data sets) (Drummond et al., 2007). There are typically five components of an evolutionary 

model for a set of aligned nucleotides in BEAST (Drummond and Rambaut, 2009). These 

are described briefly in Table 2.5. 

 

Table 2.5: General components of evolutionary models in BEAST 

 
Source: Adapted from Drummond and Rambaut (2009, p569)  

 

Associated programmes required / used by
BEAST Description

BEAUti - Bayesian Evolutionary Analysis 
Utility

BEAUti is a utility program with a graphical user interface for creating BEAST and *BEAST input files
which must be written in the eXtensible Markup Language (XML). This application provides a clear way
to specify priors, partition data, calibrate internal nodes, etc.

LogCombiner 

When multiple (identical) analyses are run using BEAST (or MrBayes), LogCombiner can be used to
combine the parameter log files or tree files into a single file that can then be summarized using Tracer
(log files) or TreeAnnotator (tree files). However, it is important to ensure that all analyses reached
convergence and sampled the same stationary distribution before combining the parameter files.

TreeAnnotator 

TreeAnnotator is used to summarize the posterior sample of trees to produce a maximum clade
credibility tree and summarize the posterior estimates of other parameters that can be easily visualized
on the tree (e.g. node height). This program is also useful for comparing a specific tree topology and
branching times to the set of trees sampled in the MCMC analysis.

Tracer

Tracer is used for assessing and summarizing the posterior estimates of the various parameters sampled
by the Markov Chain. This program can be used for visual inspection and assessment of convergence and
it also calculates 95% credible intervals (which approximate the 95% highest posterior density intervals)
and effective sample sizes (ESS) of parameters (http://tree.bio.ed.ac.uk/software/tracer).

FigTree

FigTree is an excellent program for viewing trees and producing publication-quality figures. It can
interpret the node-annotations created on the summary trees by TreeAnnotator, allowing the user to
display node-based statistics (e.g. posterior probabilities) in a visually appealing way
(http://tree.bio.ed.ac.uk/software/figtree).

Evolutionary model component Description

Substitution model The substitution model is a homogeneous Markov process that defines the
relative rates at which different substitutions occur along a branch in the tree.

Rate model among sites The rate model among sites defines the distribution of relative rates of
evolutionary change among sites.

Rate model among branches

The rate model among branches defines the distribution of rates among
branches and is used to convert the tree, which is in units of time, to units of
substitutions. These models are important for divergence time estimation
procedures and producing timescales on demographic reconstructions.

Tree A model of the phylogenetic or genealogical relationships of the sequences. 

Tree prior The tree prior provides a parameterized prior distribution for the node heights 
(in units of time) and tree topology.
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Before initialising BEAST, an XML file containing a priori estimates and parameters for 

the analysis is specified in the BEAUti programme. BEAUti relies strongly on prior 

knowledge about the behaviour of the data to be analysed. It is thus important that as much 

information about the sequences is known before creating an XML file for BEAST in 

BEAUti. 

 

Sequences to be analysed by BEAST are uploaded into the BEAUti package. This can be 

done by either uploading a single alignment (which may contain several related/unrelated 

sequences) or multiple alignments. In the latter instance, sequences can be partitioned and 

parameters linked for similar partitions. For example, if sequence alignments from five 

different species are uploaded, three of which share similar characteristics, it is possible to 

link the site models and/or clock models of these three alignments. In some instances, it is 

also possible to link tree models. When partitions are linked, a similar set of parameters will 

apply to each of the linked partitions for the BEAST analyses. This also simplifies specifying 

priors for linked models in that priors set for one of the partitions will apply equally to the 

others (e.g. in the example above, one set of priors needs be specified and will apply to all 

three linked species). 

 

BEAUti also provides the option of using time-stamped data from sequences to infer dates 

for the sequences through its “tip dating” option. In tip dating, time stamps on sequences are 

guessed by BEAUti or can be manually entered. Guessing the tip dates is only possible if 

some form of a date (either in years, months or days) is specified somewhere in the sequence 

name. BEAUti then extracts the dates based on the specifications given by the user. These 

dates serve to assist BEAST to analyse sequences within the right timeframe(s). 

 

After tip dating, site models are selected for the sequences. The number of models specified 

depends on the number of partitions and on how many of them have their models linked. 

Linked models will share the same site model. Site model in BEAUti specifically refers to 

the substitution model selected by programmes such as jModeltest. The inherent site models 

in BEAUti are JC69, HKY, TN93, and GTR substitution models. Parameters for these 

models can either be estimated by BEAST or specified from prior knowledge (e.g. from 

PAML, PAUP*, jModeltest, inter alia). 
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Once site models have been specified, the next step in BEAUti is to specify the clock 

model(s) for analyses. This is done to estimate divergence times. An advantage of assuming 

a molecular clock is that it can simplify phylogenetic reconstruction and increase 

reconstruction accuracy (Posada, 2009). The available clock model options available in 

BEAUti include the strict clock, relaxed clock exponential, relaxed clock lognormal, and 

random local clock. The strict molecular clock model essentially refers to the molecular 

clock hypothesis holding true. The molecular clock hypothesis assumes that sequence 

divergence accumulates at a roughly constant rate over time (Vandamme, 2009). This 

assumes that the evolutionary rate among lineages in a phylogeny remains uniform or 

constant over the entire tree (i.e. global clock rate) (Drummond et al., 2007; Drummond and 

Rambaut, 2007). Evolutionary rates, however, are dependent on many factors, including the 

underlying mutation rate, generation times, metabolic rates in a species, population sizes, 

and selective pressure (Vandamme, 2009). As such, real molecular data frequently violates 

a strict molecular clock assumption. 

 

Relaxed molecular clock models, on the other hand, assume independent rates of substitution 

on different branches, with one or two parameters that define the distribution of rates across 

branches (Drummond et al., 2007). For the reason that there does not exist any a priori 

correlation between a lineage’s rate and that of its ancestor, BEAST’s relaxed molecular 

clock models are called “uncorrelated” clock models (Drummond et al., 2007). When using 

the relaxed molecular clock models, the rate for each branch is drawn from an underlying 

exponential or lognormal distribution (Drummond et al., 2007). The local clock model 

assumes that each branch within a phylogeny has its own rate of substitution.  

 

All the parameters and hyperparameters specific to the models defined in the site model(s) 

and clock model(s) are listed in a priors window. It is possible to set up the prior distributions 

on these parameters, to define calibration nodes and calibration densities, and to specify a 

tree model. According to Heath (2015), an important, yet often overlooked, prior is the tree 

prior. This model describes how speciation events are spread over time. When combined 

with a model for branch rate, this model allows relative divergence time estimation (Heath, 

2015). Some of the models contained in this prior include the Calibrated Yule Model, Birth 

Death Model, Coalescent Constant Population Model, Coalescent Bayesian Skyline, 

Fossilized Birth Death Model, Sampled Ancestor Fossilized Birth Death Skyline Model, to 

mention a few (Stadler et al., 2013; Bouckaert et al., 2014; Heath, 2015). Based on the 



42 
 

selected method, the option to set the estimated time of origin to the last sample becomes 

available or the root height. This gives BEAST a realistic period from which to extrapolate 

divergence over time. 

 

Once priors have been set, the last steps in BEAUti are to specify the length of the Markov 

chain, sample frequency and file names for logging tree files and trace logs for each MCMC 

iteration. Thereafter the BEAUti file is saved as an XML file to serve as input into BEAST. 

 

2.3.5.2 Tracer 

After the XML file from BEAUti is loaded onto BEAST and BEAST commences with the 

MCMC runs, two main output files are produced, namely, the trace log file and tree log files. 

These files contain records of each iteration of the MCMC run and thus have very large 

amounts of data. It is thus unfeasible to review the data contained in these files by simply 

opening them in a spreadsheet program or a tree viewing program (Heath, 2015). 

Fortunately, BEAST has a general utility program for summarising and visualising posterior 

samples from Bayesian inference using MCMC. Tracer is a cross-platform, java program for 

summarizing posterior samples of scaler parameters. This program is necessary for assessing 

convergence, mixing and determining an adequate burn-in.  

 

The effective sample sizes (ESS) of parameters are important measures in an MCMC 

analysis. The ESS is a measure used to evaluate mixing behavior (Lemey, Salemi and 

Vandamme, 2009). It is an indication of the number of independent samples that the trace is 

equivalent to or the number of effectively independent draws from the posterior in the 

sample (Lemey et al., 2009; Heath, 2015). This is calculated as the chain length (excluding 

the burn-in) divided by the auto-correlation time (ACT), which is the average number of 

states in the MCMC chain that two samples have to be separated by for them to be 

uncorrelated). A Low ESSs reflects a high degree of (auto)correlation among samples that 

may be caused by poor mixing. Ideally, Markov chains should be run long enough and 

sufficiently sample the stationary distribution so that the ESS values of parameters of interest 

are all high (i.e. ≥ 200) (Drummond and Rambaut, 2009; Heath, 2015). 

 

When Tracer is first opened, the “posterior” trace is selected and various statistics of this 

trace are shown under the “estimates” tab. The right-hand side of the estimates tab contains 
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a table of calculated statistics for each selected trace. These statistics include (Drummond 

and Rambaut, 2009):  

i. Mean 

The mean value of the samples (excluding the burn-in). 

ii. Stdev 

The standard error of the mean. This takes into account the effective sample size so 

a small ESS will give a large standard error. 

iii. Median 

The median value of the samples (excluding the burn-in). 

iv. The highest posterior density (HPD) 

Is the shortest interval that contains 95% of the sampled values. 

95% HPD Lower – The lower bound of the HPD interval. 

95% HPD Upper – The upper bound of the HPD interval. 

v. Auto-Correlation Time (ACT) 

The average number of states in the MCMC chain that two samples have to be 

separated by for them to be uncorrelated (i.e. independent samples from the 

posterior). The ACT is estimated from the samples in the trace (excluding the burn-

in). 

vi. Effective Sample Size (ESS) 

The effective sample size (ESS) is the number of independent samples that the trace 

is equivalent to. This is calculated as the chain length (excluding the burn-in) divided 

by the ACT. 
 
When satisfied with the BEAST output in Tracer, trace logs and tree logs can be combined 

into a single trace log file and a single tree log file respectively, using a programme called 

Logcombiner. Tree topologies, branch rates, and node heights can then be summarised using 

the program TreeAnnotator, which produces a single summary tree from the BEAST run 

that can be visualized in FigTree (Heath, 2015). 

 

2.4 HIV Analysis Online Tools 

2.4.1 Stanford University HIV Drug Resistance Database 

The Stanford University HIV Drug Resistance Database (HIVdb), also known as the HIV 

RT and Pr sequence database, is an online database used for the interpretation of drug 

resistance in HIV. It consists of Pr and RT sequences from published data on genotype-
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treatment correlation, genotype-phenotype correlation and genotype-outcome correlations 

(Shafer, 2006). The Stanford University HIVdb (https://hivdb.stanford.edu/) aligns and 

compares submitted RT and Pr sequences to the HIV-1 subtype B reference strain (HXB2) 

(Tang and Shafer, 2012). The programme generates a report of SDRMs in Pr and RT and 

estimates the proportion of sequences that contain SDRMs in submitted sequence 

alignments. Additional features of the HIVdb is that it allows you to test for a specific DRM 

and it gives feedback about that DRM. Moreover, researchers are able to download 

resources, such as spreadsheets containing lists of all submitted DRMs with predicted 

resistance scores, for offline analysis. 

 

2.4.2 Los Alamos HIV Database 

The HIV databases at Los Alamos (https://www.hiv.lanl.gov/) contain comprehensive data 

on HIV genetic sequences and immunological epitopes. The website also grants access to a 

variety of analysis and visual tools for data analysis. These tools include the sequence 

database, vaccine database, immunology database, and other viruses. The HIV database 

consists of an updated reservoir of HIV sequence data from GenBank entries (Kuiken, 

Korber and Shafer, 2003). Briefly, GenBank® is part of the International Nucleotide 

Sequence Database Collaboration, which comprises the DNA DataBank of Japan (DDBJ), 

the European Nucleotide Archive (ENA), and GenBank (https://www.ncbi.nlm.nih.gov/) at 

NCBI. It is a comprehensive database that contains the nucleotide sequences of 

approximately 260 000 formally described species (Benson et al., 2013). Sequences are 

obtained mainly “through submissions from individual laboratories and batch submissions 

from large-scale sequencing projects, including whole-genome shotgun and environmental 

sampling projects” (Benson et al., 2013, p36). Submissions are predominantly made using 

the web-based BankIt or standalone Sequin programs, whereupon GenBank staff assign 

accession numbers to each dataset received. Information is shared or transferred daily 

between DDBJ, ENA and GeneBank (Benson et al., 2013). 

 

2.4.3 Prosite 

Prosite (www.prosite.expasy.org) is a database that chiefly consists of protein families and 

domains. The database operates by grouping together different proteins based on sequence 

similarities into smaller families. By analysing the constant and variable properties of such 

groups of similar sequences, Prosite attempts to derive signatures for protein families or 

domains, which distinguishes family members from all other unrelated proteins. Currently, 

https://www.hiv.lanl.gov/
https://www.ncbi.nlm.nih.gov/genbank/collab
https://www.ncbi.nlm.nih.gov/genbank/collab
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Prosite contains patterns and profiles specific for over 1000 protein families or domains. 

Each of these signatures is accompanied by documentation that provides background 

information on their structure and function.  
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CHAPTER 3: 

Detection of Positive Selection Pressure in Acute Phase HIV Positive Treatment 

Naïve Sequence Alignments 

3.1 Introduction 

Natural selection is accepted as one of the main principles used to organize biology. It is 

broadly considered as consisting of two main types, namely purifying selection and positive 

selection. Purifying selection acts to eliminate deleterious mutations. Positive (or Darwinian) 

selection, on the other hand, favours advantageous mutations which tend towards being fixed 

(directional selection) or towards maintaining a polymorphism (balancing neutral selection) 

(Hughes, 2007; Shen et al., 2010). Kimura’s neutral theory of 1968 hypothesised that most 

molecular level evolutionary changes were chance fixations of selectively neutral mutations 

(Kimura, 1968; Kimura, 1983; Hughes, 2007). The neutral theory thus predicts, “that most 

polymorphisms are selectively neutral and are maintained by genetic drift; and that most 

changes at the molecular level that are fixed over evolutionary time are selectively neutral 

and are fixed by drift.” (Hughes, 2007, p365). Furthermore, Hughes (2007) argues that one 

of the most important predictions of neutral theory is that purifying selection will 

predominate in coding and functionally important regions. Consequently, functionally 

important sequences are conserved and evolve slowly.  

 

The purpose of this chapter was to analyse the HIV-1 sequences from 11 acutely infected, 

treatment naïve participants from a cohort in Durban, South Africa. Specifically, the analyses 

focused on identifying the sites in Pr and parts of RT that were experiencing positive 

selection pressure across the viral sequences from this cohort, as it has previously been 

shown that positive selection is a driving force in the generation of mutations in the pol 

region of the HIV genome (Banke et al., 2009).  

 

3.2 Sample Description  

The sequences analysed were obtained from a study called “Acquired and Transmitted Drug 

Resistance in HIV-1 Subtype-C: Implications of Novel Mutations on Replication Capacity, 

Cleavage and Drug Susceptibility” (Ethical approval was granted by the Biochemical 

Research Ethics Committee of the University of Kwa-Zulu Natal (ref. no. BE347/13)). 

Briefly, in the aforementioned study, fifteen samples were acquired from stored plasma 
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samples collected from acutely infected patients enrolled in a study entitled “Females Rising 

through Education, Support and Health (FRESH)”. These samples were sequenced using 

both Sanger and UDP techniques. A detailed description of methods used to extract both SS 

and UDP viral RNA and preparation of sequences for analysis can be found in Singh (2015) 

(https://researchspace.ukzn.ac.za/xmlui/handle/10413/14651).  

3.2.1 Sequence Quality Control 

AVA software was used to obtain mutation prevalence and unique consensus sequences, 

which were further processed. Short consensus sequences (less than 90% of the expected 

length) were filtered out. Amino acid variant calling was realized using in-house perl code 

on pairwise alignments over HXB2R reference sequence, discarding those sequences with 

in-frame STOP codons. In order to discard strand-dependent sequencing errors, only variants 

which were present both in the forward and reverse strand and presented a forward / reverse 

prevalence frequency ratio within 1 log were accepted. GSS scores were calculated using 

Stanford HIVdb guidelines (Noguera-Julian et al., 2013). Verification of mutations was 

conducted by manually inspecting flowgrams at positions of interest. Additionally, the 

frequencies of mutations in both the forward and reverse strands were compared using a two-

tailed Fischer’s exact test. If variants were detected disproportionately (i.e. p < 0.001) in one 

direction they were not considered as low-frequency DRMs (Wang et al., 2007; Singh, 

2015). Only mutations present at frequency ≥ 1% were considered. 

3.2.2 Sequence Alignment 

The fifteen samples acquired from the FRESH study were sequenced using Sanger and UDP 

sequencing techniques. Three of the 15 FRESH samples did not work for Sanger sequencing. 

These were for participants 268, 272 and 312. Fourteen of the 15 samples sequenced using 

UDP produced sufficient reads for data analysis. Sample 271 was the only sample that did 

not produce sufficient reads for data analysis. This resulted in 12 consensus sequence 

alignments for the Sanger technique (SS) and 14 for UDP. Consensus sequences were 

exported in “Fasta” format into ClustalX (v2.1) (http://www.clustal.org/) (Thompson et al., 

1997; Larkin et al., 2007) where sequences were automatically aligned against each other 

and the South African subtype C reference sequence Ref.C.ZA.04.04ZASK146.AY772699 

(henceforth will be referred to as RefC.ZA). Aligned sequences were manually edited using 

BioEdit Sequence Alignment Editor (v7.2.0) (Ibis Biosciences, An Abbott Company, CA. 

https://researchspace.ukzn.ac.za/xmlui/handle/10413/14651
http://www.clustal.org/
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USA). To standardize analyses, the sequence alignments from both Sanger and UDP were 

each trimmed to 350 codons in length. This region encompassed to the whole of Pr and the 

first 251 codons of RT. In addition, only consensus sequences that were common to both the 

SS and UDP alignments were used in this study. This resulted in 11SS and 11UDP sequences 

being used for data analyses (unless stated otherwise). Pairwise alignments for sequence 

similarities were performed on each pair of sequences (e.g. 036SS and 036UDP) using the 

Blossum62 similarity matrix. Eight sequence pairs were identical in both SS and UDP 

alignments. Three sequence pairs, namely 079, 093 and 271 were 99.6% identical, differing 

by only one AA between each pair. For the purposes of this study, both sets of corresponding 

alignments are assumed identical. 

 

3.3 Methods  

Positive selection was performed on both the SS and UDP datasets using two different 

methods. In the first method, the PAML package was used. This method used a multi-step 

process to generate phylogenetic trees needed to accompany the sequences to perform the 

analyses. The appropriate models of substitution were selected using j-Modeltest. 

Thereafter, maximum likelihood trees were constructed in PAUP* to serve as input trees for 

PAML analyses. The second method used the HyPhy package in Datamonkey. The 

specifications for these methods are discussed in the next sections. 

 

3.3.1 Best-fit Model of Substitution Selection using j-Modeltest 

Sanger and UDP sequence alignments were subjected to model testing using the j-Modeltest 

(v2.1.10) package in Linux. The starting tree for each model was based on ML with four 

categories in the likelihood settings (nCat=4). These categories were the number of 

substitution schemes; the inclusion of models with equal/unequal base frequencies (+F), 

models with/without a proportion of invariable sites (+I), and models with/without rate 

variation among sites (+G). This resulted in 11 substitution schemes and 88 candidate 

models of substitution. The “best” base tree search topology was used. This search operation 

selected the best tree topology by computing both nearest neighbor interchange (NNI) and 

subtree pruning and regrafting (SPR) algorithms and picked the better of the two. Once 

likelihood scores were calculated, corrected Akaike Information Criterion (AICc) analyses 

were performed. The best models of substitution using AICc were then selected by j-

Modeltest together with parameter estimates for both SS and UDP alignments (see Table 3.1 
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for estimates). Unrooted phylogenetic trees for both the SS and UDP alignments were then 

drawn by the PhyML package in j-Modeltest. Since PhyML lacked flexibility in tree 

construction, the PAUP* blocks containing tree construction parameters from j-Modeltest 

were used for better tree construction in PAUP*. 

 

3.3.2 Tree Construction using PAUP* 

The PAUP* blocks specifying the best models of substitution for SS and UDP alignments, 

as well as the ML criterion specifications produced by j-Modeltest for these alignments, were 

appended to the end of the nexus formatted sequences of each alignment cluster as per their 

specific best AICc models of substitution. Sequence alignments with PAUP* blocks attached 

to them were imported into PAUP*(v4). These served as starting points for PAUP* 

phylogenetic tree construction. Based on the criterion obtained from the PAUP block, 

PAUP* found models of substitution that corresponded to the TIM1+I+G model for SS and 

to the TIM3+I+G model of UDP. Once successfully imported, best tree construction was 

commenced within PAUP*. Initially, the distance criterion was selected and rates set to 

gamma. Using these settings, a NJ phylogenetic search was commenced. Two sets of PAUP* 

runs were performed for each of SS and UDP alignments. The first was based on the 11 SS 

of each alignment, while the second had RefC.ZA sequence included among both sequences. 

In the second set of runs, the outroot was set to monophyletic with RefC.ZA used as the root 

outgroup. Likelihood scores were then estimated and distance was set to ML and PAUP* 

executed. The output from this run was then fixed and served as entry parameters for the 

next PAUP* iteration. Estimating and fixing parameters was executed several times in 

succession until –lnL no longer improved (see Table 3.1 for final scores) The NJ tree that 

yielded the best fit tree, together with its branch lengths, was then saved.  

 

Optimality criterion was then set to likelihood and the same estimation and fixing procedure 

repeated. Thereafter, a heuristic search was performed with the fixed parameters using NNI 

swapping and the best tree kept in the PAUP* repository. The same procedure was repeated, 

but this time changing the swapping from NNI to tree bisection and reconnection (TBR). 

The best ML trees for SS and UDP alignments were saved with their branch lengths. One 

thousand bootstrapping repetitions were then performed on the best ML tree for each 

alignment. This process was done for both sequence alignments. The trees were then viewed 
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in FigTree (v1.4.3) and visually analysed for peculiar clustering. The unrooted trees were 

saved in Newick format for input into PAML for positive selection analysis. 

 

3.3.3 Phylogenetic Analysis by Maximum Likelihood (PAML) for detection of 

positively selected sites 

The trees saved from PAUP*, together with their corresponding sequence alignments (in 

Fasta format), were analysed using PAML (v4.9d) in Linux. The codeml.ctl file was adjusted 

to incorporate the SS and UDP sequence data files and their respective tree structure files 

(see Appendix 1 for compressed codeml.ctl file). This was done for each of the two sequence 

alignments.  

 

After specifying the sequence data files and the tree structure files in the codeml.ctl file, 

codon sequence type (seqtype) was selected, with the equilibrium codon frequencies in the 

codon substitution model (codonFreq) set to F3x4. Under this model codon frequencies are 

used as free parameters, comprising 9 codon parameters (Yang, 2007b). No clock was 

specified, thus allowing for rates to vary freely between branches. This suggests that for each 

of SS and UDP alignments 19 (2n-3) parameters (i.e. branch lengths) were estimated. This 

model was also thought appropriate as it has been found elsewhere that HIV-1 has a weak 

molecular clock (Suzuki, Yamaguchi-Kabata and Gojobori, 2000). Consequently, unrooted 

SS or UDP trees were included in the tree files (treefile) as per Yang (2007b)’s 

recommendation (i.e. unrooted trees from PAUP* were used for this analysis). Equal AA 

distances were assumed (aaDist). The run mode was set to perform ML estimation of dS and 

dN in pairwise comparisons of the codon sequences using the trees generated in PAUP* for 

both SS and UDP alignments (i.e. runmode=0). The one ω ratio model for all branches was 

selected (M=0) with site models 0, 1, 2, 7 and 8 specified (NSsites = 0 1 2 7 8). This option 

tested five models of ω variations among sites. Briefly, M0 is the standard one ω for all sites 

model; M1 and M7 have a fraction of sites with ω < 1 and a fraction with ω = 1; and M2 and 

M8 account for positive selection (in both models an extra class of sites with ω > 1 is 

allowed). M1-M2 and M7-M8 form two pairs of models that can be used to test for the 

presence of positive selection using the likelihood ratio test (LRT). The two sets of models 

are complementary, differing only in how sites with ω < 1 are treated. 
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The universal genetic code (icode=0) was specified. The partitioning model for codon 

substitution (Mgene) was set to zero. Under this model κ, ω and π are the same across genes, 

but proportional branch lengths (cs) differ. Alpha was fixed with a constant rate 

(fix_alpha=1, alpha=0) as recommended by Yang (2007b). These settings gave preference 

to the NSsites models specified in the previous paragraph (Yang, 2007b). The number of 

categories in dG (i.e. ω-distribution) of NSsites models was set to 10 (Yang et al., 2000). 

The ancestral rate was set to option 1. This value forces codeml to calculate rates for 

individual sites along the sequence using the empirical Bayes procedure (Yang, Kumar and 

Nei, 1995; Yang, Wong and Nielsen, 2005)  and to perform the empirical Bayesian 

reconstruction of ancestral sequences (Yang et al., 1995; Yang, 2007b). Once all the 

codeml.ctl specifications were set, the codeml control file was executed in Linux. Codeml 

was executed three times for each of the alignments to test for output reproducibility. At 

each run, codeml was able to detect the same positively selected sites. 

 

3.3.4 Datamonkey specifications for positive selection  

Each of SS and UDP sequence alignments was analysed using the HyPhy package in 

Datamonkey. The specific methods used for detecting positive selection were SLAC, FEL, 

iFEL, REL, and MEME. Each of these methods was run three times in succession at the 95% 

confidence interval (CI) across four models of substitution, namely F81, HKY85, TrN93, 

and REV. 

 

3.3.5 Online Analyses of positively selected sites 

Sequences were also blasted on the Stanford University HIVdb to test for SDRMs in the 

sequence alignments. The HIV Molecular Immunology Database from Los Alamos was used 

to investigate whether any of the mutated positively selected sites fell within putative epitope 

domains and to identify the associated human leukocyte antigens (HLAs) specific to those 

epitopes. Furthermore, Prosite was used to identify functional motifs possibly impacted by 

mutations in the FRESH cohort sequences. The output from Prosite was visualised using the 

Genedoc (v2.6.001) software package. 
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3.4 Results 

 

3.4.1 Best-fit Models of Substitution Selected by j-Modeltest and PAUP* Tree 

Construction 

The TIM1+I+G model was selected as the best fit for the SS alignments with a –lnL score of 

3279,294. The best AICc model selected for UDP alignments was TIM3+I+G, with a –lnL of 

3250,714. Each of SS and UPD had 28 optimized free parameters (K) (i.e. substitution 

parameters + 19 branch lengths + topology). Similar nucleotide frequencies were detected 

in both SS and UDP by their respective best model estimates. However, the nucleotide 

substitution rates (Rx [YZ]) for the SS and UDP alignments differ considerably. For 

instance, R(e)[CT] is 9,750 for SS, while it is 17,727 for UDP alignments. These differences 

suggest that the SS and UDP alignments differ to some extent, and are therefore not identical. 

 

Overall, the highest rates of nucleotide substitution were between A↔G and C↔T for both 

SS and UDP alignments. These were 6,961 and 11,635 A↔G substitutions, and 9,750 and 

17,727 C↔T substitutions for SS and UDP alignments respectively. This indicates that the 

rates of transition substitutions were more favoured in these sequences over any of the 

transversion rates. This is in keeping with other findings that indicate that transition rates are 

generally more than twice that of transversion rates (Bos and Posada, 2005). 

 

  Table 3.1: j-Modeltest and PAUP* output for SS and UDP alignments 

Parameter 
Sanger UDP 

j-Modeltest PAUP j-Modeltest PAUP 
Model selected TIM1+I+G GTR+I+G TIM3+I+G GTR+I+G 

-lnL 3279,294 3276,802 3250,714 3249,402 
K 28   28   
freq A 0,394 0,390 0,393 0,390 
freq C 0,169 0,166 0,164 0,165 
freq G 0,208 0,213 0,212 0,214 
freq T 0,229 0,232 0,231 0,231 
R(a) [AC]  1,000 2,392 1,999 2,225 
R(b) [AG]  6,961 12,264 11,635 10,709 
R(c) [AT]  0,568 1,072 1,000 0,863 
R(d) [CG]  0,568 0,822 1,999 0,904 
R(e) [CT]  9,750 17,545 17,727 15,443 
R(f) [GT]  1,000 1,000 1,000 1,000 
p-inv  0,512 0,498 0,512 0,501 
gamma shape  0,719 0,678 0,687 0,646ichel 
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PAUP* identified the GTR+I+G model of substitution as the best fit models corresponding 

to the j-Modeltest proposed models for both SS and UDP. The –lnL scores for using PAUP 

increased slightly for both SS and UDP. Performing a likelihood ratio test (LRT) to compare 

whether the proposed model by PAUP* (Ha) was a better fit than the model proposed by j-

Modeltest (Ho) was not supported using the chi-squared distribution (see Table 3.2). This is 

evident in the LRT scores falling within the acceptable range of the chi-squared distribution 

(i.e. LRT scores smaller than the critical value of 9,210 for two degrees of freedom at the 

0.01 significance level). This indicates that statistically 99% confidence can be placed on the 

similarity of the ‘best fit’ models selected by j-Modeltest and PAUP*. 

 

Table 3.2: Likelihood Ratio Test for Comparison of ‘best fit’ models of substitution 
for SS and UDP using standard Chi-squared distribution 

Component 
Sanger UDP 

Modeltest PAUP Modeltest PAUP 
Hypothesis Ho Ha Ho Ha 
Model TIM1+I+G GTR+I+G TIM3+I+G GTR+I+G 
lnL -3279,294 -3276,802 -3250,714 -3249,402 
∆ lnL 2,492 1,312 
2∆ lnL (i.e. LRT) 4,984 2,624 
p-value 0,083 0,269 

Critical value: χ2,1%=9.210
2  

 

Similar to j-Modeltest, the overall highest rates of nucleotide substitution were between 

A↔G and C↔T for both SS and UDP alignments. However, using PAUP* the differences 

between SS and UDP estimates were not that dissimilar. These were 12,264 and 10,709 

A↔G substitutions, and 17,545 and 15,443 C↔T substitutions for SS and UDP respectively.  
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3.4.2 Sites under Positive Selection Pressure detected by PAML 

 

Table 3.3: LRT for evidence of positive selection in SS and UDP alignments using 
standard Chi-squared distribution 

Critical value: χ2,1%=9.210
2  

 

Testing the models for positive selection (M2 and M8) against those that did not allow for 

positive selection (M1 and M7) provided strong support for a fraction of the sites evolving 

under positive selection (see Table 3.3 and 3.4). This was achieved by comparing the LRT’s 

between M1 and M2, and between M7 and M8. Both LRT’s were greater than the critical 

value of 9,210 (2df, 1%) allowed by the chi-squared distribution (Yang et al., 2005; Yang, 

2007b). Furthermore, the p-values provided strong statistical evidence in favour of positive 

selection (i.e. p-values ≤ 0.000001, which are highly significant) (Bielawski and Yang, 2003; 

Yang, 2007b). 

 

Table 3.4: Likelihood values and parameter estimates under models of variable ω 
ratios among sites for Sanger and UDP alignments 

Model 
code 

Sanger UDP 

-Lnl Kappa 
(ts/tv) Parameter estimates -Lnl Kappa 

(ts/tv) Parameter estimates 

M0(1) 3242,6108 5,6913 ω 0,1236     3212,5121 5,3695 ω 0,1237     

M1(2) 3172,1992 5,8036 
p 0,9150 0,0850   

3134,7764 5,5245 
p 0,9115 0,0885   

ω 0,0439 1,0000   ω 0,0382 1,0000   

M2(4) 3158,4569 6,2366 
p 0,9147 0,0789 0,0064 3122,3736 5,9251 

p 0,9113 0,0818 0,0069 
ω 0,0465 1,0000 9,3378 ω 0,0405 1,0000 8,7355 

M7(2) 3176,3859 5,8001 
p 0,1013     

3140,3231 5,4944 
p 0,0876     

q 0,6462     q 0,5733     

M8(4) 3158,7350 6,2024 
p 0,9922 0,1448 0,0078 

3124,4839 5,8857 
p 0,9916 0,1225 0,0084 

ω     8,0546 ω     7,6481 
q   1,1123   q   0,9501   

M0 = 1 ω ratio; M1 = nearly neutral; M2 = positive selection; M7 = β; M8 = β and ω. Numbers in brackets 
next to the model codes indicate the number of free parameters in the ω distribution 
 

Component
Model M1 M2 M7 M8 M1 M2 M7 M8
Hypothesis Ho Ha Ho Ha Ho Ha Ho Ha

lnL -3172,2 -3158,46 -3176,39 -3158,74 -3134,78 -3122,37 -3140,32 -3124,48
∆ lnL
2∆ lnL (i.e. LRT)
p-value

Sanger UDP

13,742 17,651 12,403 15,839
27,485
2E-06

35,302 24,806 31,678
1E-06 5E-06 1E-06
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The one-ratio model (M0), which assumes one ω ratio for all sites, gave an average ω ratio 

of 0,1236 for SS and 0,1237 for UDP. This indicates that on average, purifying selection 

was the dominating force during the evolution of the sequence alignments. Model 2 indicates 

that less than 1% of sites in both SS and UDP were under positive selection with ω = 9,3378 

and 8,7355 for SS and UDP alignments respectively. Similarly, estimates under model 8 (β 

and ω) also suggested that less than 1% of the sites in the alignments were under positive 

selection with ω = 8,0546 for SS and ω = 7,6481 for UDP. 

 

Since the LRTs mentioned earlier were significant, the Bayes Empirical Bayes (BEB) (Yang 

et al. 2005) procedure for identifying positively selected sites based on posterior 

probabilities for site classes was used (Yang, 2007a). The BEB was implemented under M2 

and M8. The sites identified for SS and UDP are shown in Table 3.5. 

 

Table 3.5: Positive selection using PAML 

Model 2: Positive Selection (3 categories) 

Codon site SS UDP Mutation(s) [wt∆mut*] Nearest DRM site [wt∆mut**] 

Pr63 √† √†  L63HPSVT Q58E 

RT123 √† √† G123SND V118I 

Model 8: beta & ω >1 (11 categories) 
Pr19  √ T19VIL K20TV 

Pr63 √† √† L63HPSVT Q58E 

Pr67  √ C67Y G73ACDSTV 

Pr82  √ V82I V82ACFLMST 

RT39  √ E39DKT E40F 

RT123 √† √† G123SND V118I 

RT169  √ E169DA V179DEFL 

RT174  √ K174QR V179DEFL 

RT211  √ R211KQ L210W 

RT214  √ F214L T215YFISCDVE 

RT245  √ Q245KE K238T 

RT251  √ S251ID K238T 
* wt AAs based on Ref.C.ZA.04.04ZASK146.AY772699 consensus sequence; **DRMs taken from Stanford 
University HIV Drug Resistance Database (2017); † Pr > 99%, otherwise Pr > 95% for the rest 
 

Codeml M2 detected two sites for positive selection in both sets of alignments using BEB. 

It detected Pr63 and RT123 in both sequence alignments with p-values < 0.01. These two 
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sites were also detected using M8 for both SS and UDP. In addition, M8 also detected 10 

more sites for positive selection in the UDP sequences than in the SS sequences when 

compared to M2. These ten additional sites in the UDP alignments were at Pr19, Pr67, Pr82, 

RT39, RT169, RT174, RT211, RT214, RT245, and RT251 (all at p < 0.05). Protease V82I 

was the only identified site for positive selection that was a known DRM based on the 

Stanford SDRMs list. In an earlier study, Pr63 was also identified as a DRM (Chen, Perlina 

and Lee, 2004). 

 

3.4.3 Sites under Positive Selection using Datamonkey  

 

 
Figure 3.1: Positive selection detection for Sanger and UDP Sequences 

numbers in the circles indicate the number of positive sites 
 

Figure 3.1 shows that the REL method detected the most sites for positive selection of the 

conventional methods used by the HyPhy package in Datamonkey. It consistently did so for 

the SS and UDP sequence alignments and across all four models of substitution used to 

analyse the alignments at the 5% level of significance. In the SS alignments, REL identified 

five possible sites for positive selection using the F81 model, four sites for each of HKY85, 

TrN and REV models. For UDP alignments, REL identified five sites using F81 and REV; 

and four sites for each of HKY85 and TrN93, and an additional site in REV (i.e. five sites). 

Internal branch FEL (iFEL), on the other hand, only detected one site for positive selection 

in UDP alignments using MEME, but did not detect any sites in the SS alignments. The 

SLAC and FEL methods did not detect any sites for positive selection. A summary of the 
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positively selected sites identified in pol using REL, MEME and iFEL, together with the 

total frequencies detected by REL and MEME across the models of substitution, is illustrated 

in Figure 3.2. 

 

 
Figure 3.2: REL, MEME and iFEL positively selected sites in pol across F81, HKY85, 
TrN93 and REV models of substitution 

i) The table on the left has three broad categories of comparison (REL, MEME and iFEL in the top row). 
Each of these has the substitution models that detected positive sites for them as subcategories (F81, 
HKY, TRN and REV). These comparison categories were used for both SS and UDP sequence alignments 
(highlighted rows). The first column of the table indicates the codon sites that were identified by the entire 
HyPhy analysis at the 95% CI. 

ii) The figure on the left is a summary of all the positive sites detected by either the REL method or the 
MEME method across all four methods of substitution (i.e. combines both SS and UDP sites across the 
two methods).  

 

Using the REL method, overall F81 detected six unique sites (i.e. a site that was common to 

both SS and UDP counted as one unique site) for positive selection (see Figure 3.2). Four of 

these, namely Pr19, Pr63, RT123 and RT169, were common to both SS and UDP alignments. 

Similar to F81, TrN also identified six unique sites for positive selection. However, it only 

detected RT positions 36 and 169 as common sites to both SS and UDP alignments. REV 

detected five unique sites for positive selection, with four common to both SS and UPD 

alignments, specifically Pr19, RT36, RT169 and RT196. HKY also identified five sites, three 

of which were common to both SS and UDP, namely Pr63, RT36 and RT169.  

 

The MEME model had the same number of positively selected sites across all models of 

substitution (i.e. adding both SS and UDP sites). All of the identified sites were in RT with 
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positions 36 and 207 common to both SS and UDP alignments. Internal branch FEL, on the 

other hand, detected Pr19 in UDP alignments as the only site for diversifying selection. 

 

Reverse transcriptase codon 169 was the only site selected by all substitution models using 

the REL method for both SS and UDP alignments (refer to the diagram on the right in Figure 

4.2). This was followed by RT36, which was selected seven times (four times in SS and 

three times in UDP). Protease codon 19 was selected three times by both SS and UDP, while 

RT196 was selected 3 times in SS and twice in UDP. Protease 63 and RT123 were each 

identified four times.  

 

In MEME, both RT36 and RT207 were identified as positive sites across all four models of 

substitution in both SS and UDP alignments. Reverse transcriptase codon 195 was also 

identified as a positive site, but only in the SS alignments. 

 

Shown in Table 3.6 are the collective AA mutations in either Pr or RT corresponding to the 

AA sites identified in the preceding figure. It should be noted that although Table 3.6 may 

appear to depict similar data as Figure 3.2, it differs in that its purpose is to relate the 

observed positively selected sites to their closest known SDRM. 
 

Table 3.6: Positive selection sites in Pr and RT for REL, MEME and iFEL for SS and 
UDP sequences and nearest known Drug Resistance Site 

Codon Site REL MEME iFEL Mutation(s) Nearest DRM site 
SS UDP SS UDP UDP wt∆mut* wt∆mut** 

Pr19 √ √     √ T19VIL K20TV 
Pr63 √ √       L63HPSVT Q58E 
RT36 √ √ √ √   A36E E40F 
RT39   √       E39DKT E40F 
RT123 √ √       G123SND V118I 
RT169 √ √       E169DA V179DEFL 
RT195     √     I195N G190ASEQ 
RT196 √ √       G196ER G190ASEQ 
RT207     √ √   E207ATK L210W 

* wt AAs based on Ref.C.ZA.04.04ZASK146.AY772699 consensus sequence; **DRMs taken from Stanford 
University HIV Drug Resistance Database (2017) 
 

Observed mutations in Pr were T19VIL and L63HPSVT. Protease position 63 was the most 

highly variable locus of all the positively selected sites, toggling between six codons (i.e. 

wild-type plus the five mutations). Several mutations were observed in RT. These were at 
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A36E, E39DKT, G123SND, E169DA, I195N, G196ER and E207ATK. The more conserved 

sites were at position 36 and 195. Reverse transcriptase position 36 kept toggling between 

A and E, whereas there was only a single mutation in one of the SS alignments at position 

195. The more volatile sites for positive selection in RT were E39DKT, G123SND and 

E207ATK. 

 

3.4.4 Positive selection at functional sites in Pr and RT 

 

 

Figure 3.3: Conserved putative functional sites in Pr and RT from the FRESH study 
cohort 

 

Figure 3.3 reflects the FRESH cohort’s putative functional sites and motifs in Pr and RT 

taken from the Prosite database and viewed in Genedoc. The putative functional regions are 

indicated by highlights. Conserved regions in the cohort can be seen by highlighted regions 

forming a band down the aligned sequences (i.e. are common across all or the majority of 

sequences). For example, the eukaryotic and viral aspartyl protease active site (highlighted 

in dark blue) was present in Pr of all the sequences, indicating that this site was a conserved 

region.  
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Table 3.7: Putative functional sites in FRESH cohort sequences 

 
 

Table 3.7 shows the functional sites in Pr and RT that experienced either positive or negative 

selection. Positive selection was based on the 16 positively selected sites identified using 

HyPhy and PAML, while negatively selected sites were taken from the REL method of the 

HyPhy package (see Appendix 2). There were no sites under positive selective pressure in 

Pr. However, purifying selection sites were detected in the aspartyl Pr active sites at codon 

positions 23, 25 and 30. One positively selected site was observed in a casein kinase II 

phosphorylation (CKII-P) site at RT39 (sequence 093). Most often, CKII-P sites were under 

purifying selection, with all the sequences having negatively selected sites at RT positions 

3, 109 and 218. The only other negatively selected site in a CKII-P was at RT42 in the 093 

sequence. 

 

No positively selected sites were found in cAMP and cGMP-dependent protein kinase 

phosphorylation (PK-P) sites. These functional sites were conserved in all the sequences 

with purifying selective pressure acting only at RT66. 

 

Sequences 039 and 318 both gained a protein kinase C phosphorylation (PKC-P) site, a 

consequence of their positively selected mutations at RT123. However, purifying selection 

was acting at the next codon position (RT124) within this “gained” PKC-P functional site. 

Another PKC-P functional site that had purifying selection acting on it was at RT171 in the 

079 sequence. This sequence had also gained an N-myristoylation site with its DRM at 

RT103 (NB: this site was not a positively selected site). Moreover, positively selected sites 

were observed in the N-myristoylation functional sites at RT196 in 73% of the sequences 

RT Sequence Pr RT Sequence
Eukaryotic and viral aspartyl proteases active site - - 23, 25, 30 - All

3 All

39 093 42 093

109 All
218 All

cAMP- and cGMP-dependent protein kinase 
phosphorylation site - - 66 All

123 039 & 318 124 039 & 318
171 079

Tyrosine kinase phosphorylation site 174 All except 093, 267, 271 & 
318 - -

N-myristoylation site 196 All except 036, 186 & 271 198 All except 036, 186 & 
271

Protein kinase C phosphorylation site

Negatively Selected sitesFunctional Site Positively selected sites

Casein kinase II phosphorylation site
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(i.e. was not detected in PID 036,186 and 271 sequences), although purifying selection was 

acting on the same functional sites two codons away (RT198) in the same sequences. 

 

Positive selection was observed in 64% of the sequences in the tyrosine kinase 

phosphorylation (TK-P) site at RT174. Although no purifying pressure was acting on any of 

the TK-P functional sites, sequences 093, 267, 271 and 318 lost their TK-P functional sites 

due to their mutations in this region. 

 

While neither positive nor negative selective pressure was observed at some of the functional 

sites, it is interesting to note that sequence 079 was the only sequence to have lost a PKC-P 

site in Pr (region 12-14) caused by a K14T mutation. However, this sequence was the only 

one to gain a PKC-P site (region RT170-172) with a P170S mutation, although negative 

pressure was detected at the next codon position (RT171). A CKII-P functional site was also 

gained by sequence 309 at the RT135-138 region by a I135T mutation in this sequence. 

 

3.4.5 Positively selected sites in HIV subtype C epitopes 

  

Table 3.8: Putative CTL epitopes and HLA's in Pr and RT from the FRESH cohort 

 

Epitopes were identified based on the HXB2 reference sequence in the Los Alamos Molecular Immunology 
Database. Only epitopes with positively selected sites that had mutations referenced against the HXB2 
consensus sequence in the Los Alamos Database are shown. The AA where mutations occurred are indicated 
in bold within the epitope sequence with the corresponding positive mutation in the column next to it. V82I* 
indicates that this mutation is a DRM.  Source: Los Alamos National Laboratory (2018b) 

 

Table 3.8 presents a summary of the positively selected sites that fell within putative epitope 

domains in Pr and RT and the HLAs that identify them as per the Los Alamos HIV Molecular 

Immunology Database. Only one epitope in Pr, TL11, contained a positively selected 

mutation (V82I). This epitope was recognised by the B81 HLA family. Four additional 

positively selected mutations were found in RT epitopes at RT116-124 (FF9), RT118-127 

Pr 80-90 TPVNIIGRNML V82I* B*8101, B81
RT 116-124 FSVPLDEGF G123SND B*5702, B*5703
RT 118-127 VPLDEGFRKY G123SND B*3501
RT 244-252 IQLPEKDSW Q245KE B*5801
RT 246-254 LPEKDSWTV S251ID B7

Protein Epitope Epitope site with 
mutation(s)

AA positions  
within Protein

HLA
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(VY10), RT244-252 (IW9), and RT246-254 (LV9). The HLAs specific for these epitopes 

are B*5702 and B*5703, B*3501, B*5801, and B7 respectively. 

 

3.5 Discussion 

This chapter presented an analysis of the intersequence divergence of 11 HIV-1 viral 

“strains” isolated from drug naïve participants in the FRESH study at their first blood draw 

following viral detection. The aim was to identify regions within pol (esp. Pr and RT) that 

were experiencing positive selective pressure. Testing for positive selection on the 22 

sequences (11 SS and 11 UDP) was performed using PAML and HyPhy. A comparison of 

the methods and models contained in the HyPhy package for detecting sites under positive 

selective pressure was also performed. In addition, testing whether positively selected sites 

were within in functional domains and epitopes was also performed. 

 

The HyPhy methods in Datamonkey compared were the SLAC, FEL, iFEL, REL and 

MEME. In each of these methods four sets of analyses were performed, each time using one 

of F81, HKY, TrN and REV models of substitution. Comparing the conventional methods 

for detecting site level positive selection (i.e. the first four methods), REL appeared to be the 

most sensitive to detecting diversifying selection. REL consistently detected the most sites 

(six) for diversifying selection across all the models of substitution used to analyse both the 

SS and UDP sequence alignments at the 5% level of significance. Consistency, in this 

instance, refers to detecting the same sites under positive selection in both the SS and UDP 

alignments. These alignments were at least 99.6% identical (see section 3.2.2). Consistency 

should be distinguished from reproducibility, which pertains to detecting the same sites with 

each run of analyses. The REL method is known to be the best method to infer selection 

from small (5-15 sequences) or low divergence alignments of the four methods because it 

uses the entire alignment to infer rates at each site (Poon et al., 2009; Datamonkey, 

www.datamonkey.org). However, it is the most susceptible to selecting false positives 

because the distribution of rates to be fitted has to be defined a priori, and it may not 

satisfactorily model the undetected distribution of rates (Poon et al., 2009; Datamonkey, 

www.datamonkey.org). 

 

Using the REL method, the study found that F81 and TrN models of substitution were 

equally sensitive to detecting sites for positive selection. However, the F81 model was more 

consistent having 66.7% of its sites common to both sets of sequence alignments, compared 



63 
 

to the 33% of TrN. The REV method, although slightly less sensitive to detecting positive 

sites compared to F81 and TrN models of substitution, was the most consistent in that 80% 

of the sites that it detected were found in both UDP and SS sequence alignments. The HKY 

model had 60% consistency. The SLAC and FEL methods did not detect any sites for 

positive selection. This is in keeping with expectations, as these methods are known to best 

work with datasets ≥50 sequences. They also tend to be more conservative relative to the 

other methods (Poon et al., 2009; Delport et al., 2010). 

 

In PAML, testing models for positive selection (M2 and M8) against those that did not allow 

for positive selection (M1 and M7) provided strong support for a fraction of the sites 

evolving under positive selection for both the SS and UDP alignments. This was 

accomplished by comparing the LRT’s between M1 and M2, and between M7 and M8 as 

per Bielawski and Yang (2003); Yang et al. (2005) and Yang (2007b). Specifically, M2 and 

M8 both found that less than 1% of the sites in the alignments were under positive selection 

(M2: ωSS = 9.3378 and ωUDP = 8.7355; M8: ωSS = 8.0546 and ωUDP = 7.6481). This also 

suggests that both the SS and UDP alignments were under strong purifying selection. This 

is in keeping with a study by Gordon et al. (2003), in which it was found that 95% of the 

sites in Pr and RT, in a cohort of 72 treatment naïve patients in KwaZulu-Natal, were under 

strong purifying selection. 

 

The Bayes Empirical Bayes procedure for identifying positively selected sites based on 

posterior probabilities for site classes (Yang et al., 2005; Yang, 2007b), implemented under 

M2 and M8 in PAML, identified 12 sites for diversification in the sequence alignments. Four 

of these were in Pr at positions 19, 63, 67 and 82; and the remaining eight were in RT at 

positions 39, 169, 123, 174, 211, 214, 245 and 251. Protease 63 and RT123 were detected 

by both M2 and M8 at a p < 0.01. These two codons were the only sites under positive 

selection pressure identified by M2. The remaining 10 sites were detected by M8 at a p < 

0.05. The Hyphy package in Datamonkey detected nine sites for positive selection in pol. 

These were at Pr19, Pr63, RT36, RT39, RT123, RT169, RT195, RT196 and RT207 at p < 

0.05.  

 

Altogether 16 unique codons were identified as sites experiencing positive selective pressure 

using PAML and HyPhy. Approximately 69% of these sites were also identified in an earlier 

study by Gordon et al. (2003) to be under strong positive selection. These were at Pr sites 
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19 and 63, and RT sites 36, 39, 123, 174, 196, 207, 211, 214 and 245. In addition, Chen et 

al. (2004) also identified 50% of the 16 sites as experiencing positive selection in their study. 

These were at Pr19, Pr63, Pr82, RT39, RT123, RT211, RT214 and RT245. Despite the 

unique sequences in each alignment, purifying selection was the dominant force in the in 

this cohort as confirmed by PAML findings mentioned earlier. This is likely due to a large 

number of nucleotide substitutions being silent or synonymous, thus not altering the 

underlying AA sequences (Kimura, 1983; Gordon et al., 2003; Hughes, 2007; Shen et al., 

2010). 

 

Physical inspection of the sequences identified Pr63 as the most variable site of all the sites 

under positive selective pressure. This site toggled between six AAs (wt plus the five AAs 

viz, L63HPSVT). This lends strong support to the PAML and HyPhy packages selecting this 

site as one under strong Darwinian selective pressure. The second most variable site in Pr 

was T19VIL. This site was identified by iFEL as a site for diversifying evolution. The most 

conserved codon sites were in RT at positions 36 and 195 (viz, A36E and I195N). These 

sites were only detected in HyPhy and not by PAML as sites for positive selection. Reverse 

transcriptase position 36 kept toggling between A and E, whereas there was only a single 

mutation in one of the SS sequences at position RT195. The more volatile sites for positive 

selection in RT had mutations E39DKT, G123SND and E207ATK.  

 

The only site under positive selective pressure that was a known DRM, as per Stanford 

University HIV Drug Resistance Database (2017), was in Pr (V82I). This site was detected 

using PAML. According to the Stanford University HIV Drug Resistance Database (2017), 

the V82I mutation is a highly polymorphic mutation that is the consensus AA in subtype G 

viruses and is not selected by PIs. Chen et al. (2004) also identified Pr63 (L63P) as a DRM 

site in their study of 40 000 HIV-1 sequences. 

 

The extraordinary adaptability of HIV-1 to readily escape virus-specific CTL responses by 

selecting mutations that can hinder proper viral epitope processing, epitope binding to HLA 

molecules or detection by specific T cell receptors (Llano et al., 2009; Llano et al., 2013) 

has complicated effective vaccine development against the virus (Blanco-Heredia et al., 

2016). This has been typically understood to be caused by viral mutations in epitopes and 

the associated loss of targeting of immunodominant epitopes by protective HLAs, for 

example, B81 and B57 (Pereyra et al., 2014). In a study by Acevedo-Sáenz et al. (2015), 
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which explored immune escape mutations in Pr and RT among 614 Columbian patients, four 

of the sites selected above were identified as mutations within CD8+/cytotoxic T-cell (CTL) 

epitopes. These positively selected sites were at Pr19 and Pr82 as well as RT39 and RT211. 

Protease codon 19, RT39 and RT211 were associated with inducing CTL responses, while 

Pr82 was implicated as an escape mutation. 

 

Five epitopes containing positively selected mutations were detected in the present study, 

four of these were in RT and one in Pr. These epitopes were specific to HLAs B81, B*8101, 

B*5702, B*5703, B*3501, B*5801 and B7 (Los Alamos National Laboratory, 2018b). 

HLA-B57, B*5801 and B*8101 have been previously associated with low viremia (Kiepiela 

et al., 2006; Ntale et al., 2012) through the protective role that they played against HIV-1 

replication (Kaslow et al., 1996; Altfeld et al., 2003; Kiepiela et al., 2006; Altfeld and 

Goulder, 2011; Illing et al., 2018). The HLA-B7 supertype, on the otherhand, has been 

associated with high viral loads and the rapid progression of the disease (De Groot et al., 

2008). Similarly, HLA-B35 has been associated with the rapid progression of the disease, 

however, HLA-B*3501 did not have any notable impact in this regard, except to prolong 

disease duration (Huang et al., 2009). 

 

According to Kaslow et al. (1996); Altfeld et al. (2003) and Altfed and Goulder (2011),  

HLA-B57 family members are known for their association with the elite controller 

phenotype of HIV-infected individuals. It has been hypothesised that the protective effect of 

HLA-B57 is because of its more efficient presentation of immunogenic HIV peptides to 

antiviral CTLs than by non-protective HLA variants (Illing et al., 2018). However, a study 

by Kloverpris et al. (2012) on a cohort of >2 000 HIV subtype C infected participants from 

southern Africa, found that small differences in HLA-B57 had significant impact on the 

immune control of HIV. They found that HLA-B*5703 was associated with a lower viral-

load set point than HLA-B*5702 and HLA-B*5801. Moreover, HLA-B*5703 was 

associated with the lowest viral-load set point of the three, but also had the highest number 

of Gag epitopes targeted and the highest number of Gag escape mutations selected 

(Kloverpris et al., 2012). Illing et al. (2018) confirmed this latter finding in their study 

exploring the impact of small changes in the peptide antigen presentation of HLA-B*5701, 

HLAB*5703 and HLA-B*5801. Their findings indicated that HLA-B*5703 more readily 

escaped the benefits of peptide editing within peptide-loading complexes. This may suggest 

that mutations in HLA-B*5703 epitopes restricted the potential benefits that positively 
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selected mutations might otherwise have passed on to the virus. Consequently, acquired 

mutations within HLA-B*5703 did not necessarily translate to viral replication advantage.  

 

HLA-B35 has been shown to correlate with predisposition to faster HIV-1 progression 

towards AIDS (Al-Jabri, 2007). Although HLA-B*3501 is thought not to have any 

detectable impact on HIV-1 disease progression, it did, however, have some form of impact 

on the duration of HIV-1 (Huang et al., 2009). A study by Huang et al. (2009), for example, 

found that HIV-1 infection was prolonged in the dendritic cells isolated from HIV-1 

treatment-naïve participants who possessed HLA-B*3501 when compared to those that had 

HLA-B*3503. 

 

There were no positively selected sites in any of the putative functional domains in Pr. 

However, three purifying mutations in the aspartyl Pr active site were observed. The 

functional domains in Pr were consistently conserved among sequences. Only participant 

079 lost a PKC-P site (Pr12-14) through a K14T mutation. Overall, this suggests that in the 

absence of drug pressure, these domains might play an important role in acute viral survival 

against initial host immune responses known to occur at the early stage of viral infection in 

this cohort (Ndhlovu et al., 2015). In addition, the conserved phosphorylation sites are likely 

regions where the virus modulates replication, as phosphorylation / dephosphorylation is 

known to be an important regulatory mechanism that activates / deactivates several enzymes 

(Ardito et al., 2017). Phosphorylation thus plays an important role in regulating proteins that 

interact with nucleic acids, including RNA and DNA polymerase (Gordon et al., 2003). 

 

Although RT had several conserved functional domains, some sequences had either lost or 

gained functional sites. Sequence 093, for example, had a Thr mutation at a positively 

selected site (RT39), which gained it a CKII-P site at RT39-42. The gain in a CKII-P site 

may indicate that positive pressure acting on this viral strain pressured it to gain 

conformational dexterity when interacting with other molecules (e.g. change from 

hydrophobic apolar to hydrophilic polar due to phosphorylation) (Ardito et al., 2017). This 

sequence, however, lost a TK-P site at RT174-181 at another positively selected site 

(RT174). Two other sequences also lost this functional site. Interestingly, this site was the 

only functional domain that did not have any codons that were under purifying selection. 

Given that cancer studies have shown that signaling pathways regulated by protein kinases 

contributed to the onset and progression of most cancers, one would expect that conserving 
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TK-P functional sites would be advantageous to the virus because of host-factor failure to 

modulate cell replication at these sites (Ardito et al., 2017). It is, however, unclear what the 

consequences are to the virus losing these functional sites.  

 

Three sequences also lost their N-myristoylation functional sites at RT196-201. It has been 

shown that N-myristoylation is an important evolutionarily conserved modification of 

proteins implicated in different physiological processes like cell cellular signalling, protein–

protein interactions, targeting of proteins to endomembrane and plasma membrane systems, 

proliferation, differentiation, survival, and apoptosis (Wright et al., 2010; Udenwobele et 

al., 2017). Mutations in Gag that caused it to lose myristoylation functionality resulted in 

Gag mutants failing to bind tightly to the plasma membrane and subsequently unable to 

assemble into active viral particles [Li et al. (2007) as cited by Udenwobele et al. (2017)]. 

Loss of N-myristoylation functional sites, therefore, appear to come at a high cost for viral 

replication and survival. 

 

PID 079 was the only sequence to eliminate a conserved functional site and replace it with 

parts of other functional sites. Although this site was not a positively selected site, this 

sequence replaced its cAMP and cGMP-dependent PK-P site (RT102-105) with parts of an 

N-myristoylation functional site and a partial N-glycolsylation site. This sequence also 

inherited a K103N DRM, which may have been an advantageous mutation with which it 

both evaded drug pressure and found a way to replace a conserved site to maintain its 

survival. Assuming that 079 was infected by a person that was exposed to ARTs, it could 

also imply that this site was critical for viral functioning because the virus evolved a way to 

maintain its use despite the drug pressure within that host.  
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CHAPTER 4: 

Ancestral Sequence Reconstruction using PAML and tMRCA estimation using 

BEAST 

4.1 Introduction 

The five participants that had multiple timepoints (TPs) and on which UDP was performed 

served as datasets for ancestral reconstruction and for estimating tMRCA. The number of 

sequences in each alignment were: Participant ID (PID) 036 (4 TPs), 079 (3 TPs); 267 (3 

TPs), 268 (2 TPs) and 271 (4 TPs). BEAST software was used to estimate the tMRCA for 

each PID using the MCMC method and ancestral sequence reconstruction was performed 

using codeml in the PAML package. 
 

4.2 Method 

4.2.1 tMRCA tree construction using BEAST  

A best-fit model of substitution was selected for four of these alignments in j-Modeltest. A 

substitution model could not be found for PID 268 as it only had two available timepoints. 

(Attempts at bypassing this in BEAST using the JC model of substitution did not work either 

because of the limited number of sequences in this alignment). The Bayesian Markov Chain 

Monte Carlo (MCMC) method, implemented in BEASTv2.4.8, was used to estimate 

phylogeny and the time to the most recent common ancestor (tMRCA).  

 

The XML file for the BEAST analysis was created in the BEAUti programme. Each of the 

alignments had individual XML files prepared for use in BEAST and were uploaded as 

single alignments containing two or more sequences. Each sequence within the four datasets 

was tip labeled in “days since some time in the past”. This restricted the time scale to days 

rather than months or years. This was important because it made it possible to express the 

tMRCA estimate in days (esp. since the time between the first and last TPs for each 

participant did not exceed a year). The HKY85 model of nucleotide substitution was used as 

site model (as per jModeltest). All other site model parameters were estimated. An 

uncorrelated relaxed lognormal (URLN) clock was used for each dataset as recommended 

by Drummond et al. (2007). The URLN clock gives an indication of how clock-like the data 

is (as measured by the ucldstdev parameter).  
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The sampled ancestor fossilised Birth Death Skyline Model was used as tree prior with the 

origin set approximately 10 days longer than the last visit for each participant (i.e. 

approximately 10 days before the first sequence in each alignment partly to cater for the 

eclipse phase of acute infection illustrated in Figure 1.4, section 1.7). All other priors were 

estimated. The MCMC length was set to 60 million, with 10% burn-in. This discarded the 

first 6 million iterations of the MCMC run making it easier for convergence. Logging of 

parameter estimates and trees were set to be collected every 1 000 steps to build a posterior 

distribution of parameters.  

 

The XML file was then uploaded into BEAST and two independent runs (except for PID 

271, which was run three times) of 60 million steps each in the Markov chain were performed 

using BEAST. In addition, the second run for PID 036 was 456 million steps because ESS’s 

were relatively low for some variables of interest (Convergence seemed unaffected by the 

increase in the MCMC chain from the 60m to 456m). Random samples of rooted 

phylogenetic trees from the posterior distribution from each dataset were generated by 

BEAST. Parameter estimates from each BEAST run were checked for convergence using 

Tracer (v1.7). Log files for identical runs of the Markov chain were combined with the 

program LogCombiner (v2.4.8) available in the BEAST package. A final maximum clade 

credibility tree, the tree in the posterior sample with the maximum sum of posterior clade 

probabilities, was determined for each dataset using TreeAnnotator (v2.4.7). 

 

4.2.2 Ancestral reconstruction using PAML 

The codeml programme from the PAML software package was used to reconstruct common 

ancestral sequences for each of the BEAST summary trees. Specifically, ancestral 

reconstruction was performed on PIDs 036, 079, 267 & 271 by codon maximum likelihood 

(codonml). A similar codeml control file setup was used as described in 3.3.3, except that in 

this instance, the BEAST-generated trees were used as input trees. Reconstructed ancestral 

sequences together with participant sequences were then aligned and inspected using 

BioEdit. 
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4.3 Results 

 

4.3.1 Analysis of BEAST results in Tracer 

Output log files from BEAST were viewed in the Tracer (v1.7) package. Each file produced 

statistics for parameters specified in the XML file created in BEAUti. As the output of these 

files was quite extensive, a brief explanation of some of the output is described using 

alignment 271. After the brief presentation, a summary table containing the main variables 

of interest (e.g. tMRCA) is presented and explained. 

 

4.3.1.1 Tracelog for Alignment 271 

 
Figure 4.1: Comparison of Marginal Densities of three runs of alignment 271 with 
associated summary estimates and trace plots for the posterior statistic 

The above figure is a compression of three main data analysis viewing pains in Tracer that accompany each 
parameter output generated by a BEAST MCMC run. The main graphic in the centre contains the Kernel 
Density Estimate (KDE) plots for the three independent MCMC runs of 60 000 000 each. The graphic that 
looks like a “hairy caterpillar” on the left-hand side of the main graph represents the raw trace logs for the three 
runs. The table on the top left-hand corner are the estimates for the parameter of interest (i.e. posterior statistic) 
 

The first statistic for PID 271 alignments were the estimates for the posterior. As seen in the 

table insert in Figure 4.1, the effective sample sizes (ESS) for each BEAST run was above 

200 for the posterior. The ESS value indicates the number of effectively independent draws 
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from the posterior in the sample and should ideally be > 200 (Drummond and Rambaut, 

2009; Heath, 2015). This suggests that the MCMC runs produced adequate posterior 

estimates of divergence times and substitution model parameters for PID 271 sequence 

alignments for the posterior distribution (Heath, 2015). The raw trace plot for the posterior 

statistic corroborates this (see graphic immediately under the posterior estimates table). The 

raw trace is principally a diagnostic tool for inspecting convergence to the posterior, 

assessing the length of the burn-in and whether or not the chain is mixing well (Heath, 2015; 

Rambaut et al., 2017; Rambaut et al., 2018). The trace plot in the figure looks something 

like a hairy caterpillar (i.e. there are no obvious trends in the plot to suggest that the MCMC 

was still converging and there are also no large-scale fluctuations in the trace to suggest poor 

mixing) indicating that there was sufficient mixing in the MCMC runs. In addition, the 

density plots (i.e. graphic to the left of the raw trace plot) show that the marginal densities 

of the posterior parameter from the three independent runs [271.1.log (green), 271.2.log (red) 

and 271.3.log (blue)] are almost identical. This indicates that the three independent runs 

converged on the same stationary distribution. The highest posterior density region (HPD), 

for example the 271.1. logposterior, indicates that there is a 0.95 probability that the true 

value for the posterior lies in the range -1516.1482 to -1497.4785.  
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Figure 4.2: Comparison of Marginal Densities of three runs of alignment 271 with 
associated summary estimates and trace plots for the treeheight  statistic 

 

As seen from the tracelogs, marginal densities and the ESS, there was sufficient mixing in 

the MCMC runs for the treeheight (tMRCA) statistic given the data. The HPD interval 

indicates a 95% likelihood that the true tMRCA was somewhere in the range of 248 to 310 

days (ref. to 271.1.logTreeHeight). The average tMRCA was 268±24 days.  

 

Each of the other alignments (i.e. PIDs 036, 079 and 267) showed strong evidence of 

sufficient mixing of their MCMC runs. This means that for runs in each group of alignments, 

the ESSs were greater than 200, marginal densities converged at the same stationary 

distribution and tracelogs resembled a “hairy caterpillar” (see appendices 3-8). The logs for 

each run in an alignment were combined into single logs per PID and viewed again in Tracer. 

Table 4.1 tabulates the summary estimates of the combined logs for each of the four 

alignments (i.e.PIDs 036, 079, 267 and 271). 
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Table 4.1: Summary statistics of interest from BEAST output 

 
 

Table 4.1 shows that the ESSs for posterior, treelikelihood, treeheight, origin and ucldstddev 

are all above 200 for the four alignments (Drummond and Rambaut, 2009; Heath, 2015). 

The ucldStdev gives an indication of how clock-like the data is, with estimates closer to zero 

indicating that the data is quite clock-like. The evolutionary rates of the sequences of 

alignments 036, 079 and 267 were approximately uniform over their respective phylogenies 

(Drummond et al., 2007; Drummond and Rambaut, 2007; Vandamme, 2009). Sequences in 

alignment 271, however, displayed substantial rate heterogeneity among lineages (i.e. 

ucldstdev value was much greater than 1.0) (Drummond et al., 2007).  

 

The treeheight statistic represents the tMRCA for the taxa subsets. This statistic denotes the 

estimated divergence time of the node representing the MRCA of the given taxa (i.e. it gives 

the marginal posterior distribution of the age of the root of the entire tree) (Drummond et 

al., 2007). The table thus shows that the estimated tMRCA for 036 was 367 days, 079 was 

346 days, 267 was 347 days and 271 was 268 days. 

 

4.3.2 Trees reflecting tMRCA and evolutionary rates from reconstructed ancestral 

sequences 

Aligned sequences and ancestors for each of the four UDP alignments are shown in the next 

four figures. Deviations from common ancestry were depicted on the time-scaled ML 

summary trees obtained from BEAST. This suggests that the length of the tree branches are 

in relation to time from a common ancestor and not based on evolutionary rates. The branch 

lengths in the inserts, however, are reflective of the evolutionary rate measured in nucleotide 

substitutions per codon. 

 

Mean ESS Mean ESS Mean ESS Mean ESS
posterior -1 444,13 4 706,00 -1 488,45 1 544,00 -1 433,32 5 145,00 -1 506,50 676,00
treeLikelihood -1 408,55 8 609,00 -1 461,41 342,00 -1 406,53 6 632,00 -1 457,53 2 234,00
TreeHeight 366,37 45 435,00 345,21 33 959,00 346,29 33 274,00 267,71 6 294,00
Origin 455,40 140 730,00 459,03 36 425,00 459,64 42 545,00 332,24 19 492,00
ucldStdev 0,22 754,00 0,21 26 903,00 0,23 418,00 3,91 1 402,00

Statistic
Sequence Alignments

036 079 267 271
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Figure 4.3: Time to the most recent common ancestor (tMRCA) for 036 

The figure indicates the evolution of HIV in PID 036 over four timepoints (TPs). The scale is reverse ordered 
to illustrate time to the most recent common ancestor of the sequence alignments. The figure also gives a 
topological view of the relatedness of sequences. Nodes of the same colour indicate identical nucleotide 
sequences. Diversification events are indicated by a change of colour along the sequence (e.g.  ) with 
corresponding nucleotide change(s) indicated at that point.  

 

Figure 4.3 shows that the estimated median tMRCA for the 036 phylogeny was 

approximately 360 days. Ancestral nodes 5 through to 7 are circled in black to indicate that 

they have identical sequences. After node 7, a diversification event occurs in the Day 339 

sequence at Pr35, where a mutation at the third codon position in Pr35 (GAA to GAC) 

resulted in an AA change from Glu (E) to Asp (D). To indicate that divergence from a 

common ancestor has occurred, a red circle is used instead of a black circle. It should be 

noted that branch lengths are an indication of passage through time and not evolutionary 

rates. Evolutionary rates are, however, captured in the branch lengths of the inset (framed in 

red) in nucleotide substitutions per codon (as per codeml). The sequence alignments at Days 

3, 10 and 17, as well as the ancestral sequences (nodes 5, 6 and 7) did not evolve over the 

two week period in which the samples were collected. The evolutionary rate from the 

ancestral node 5 to the most recent alignment (day 339) was 2.82e-3 nucleotide substitutions 

per codon in codeml (see inset Figure 4.3). 

 

Physical examination of the sequence alignments against known major and minor DRMs 

from the Stanford University HIVdb (2015; 2017) did not detect any inherited or derived 
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DRMs. To verify, sequence alignments were blasted against the SDRMs on the Stanford 

University HIVdb and no surveillance DRMs detected. 

 

 
Figure 4.4: Time to the most recent common ancestor (tMRCA) for 079 

 

BEAST estimated the tMRCA for all the 079 alignments to be 342 days (see Figure 4.4). 

The closest related taxon to the common ancestor of the phylogeny was at Day 3. A 

diversification event occurred at Pr27 with an A to G transition mutation (CGA to CGG) 

causing Day 161 and 329 sequences to break away from Day 3 and the common ancestor 

(node 4). Two additional mutations occurred along the Day 161 and Day 329 before the 

diversification event at the node 5 common ancestor. The first of these was a transition 

mutation at Pr40 (GGA to GGG) and the second a transversion mutation at Pr52 (GGG to 

GGT). 

 

A third transition mutation at Pr87 (AGA to AGG) resulted in the Day 329 sequence deviated 

from its shared ancestry with the Day 161 sequence at node 5. The sequence at Day 161 

derived three additional transition mutations in RT. These were at RT83 (AGG to AGA), 
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RT170 (CCC to TCC) and RT187 (TCG to TGA). The mutation at RT170 occurred at the 

1st nucleotide position of the codon and resulted in an AA change from a Pro (P) to a Ser 

(S). 

 

The evolutionary rate from the origin (node 4) to the common ancestor of Day 161 and Day 

329 (node 5) was estimated to be 1.131e-2 nucleotide substitutions per codon. The 

evolutionary rate along Day 267 from the ancestor at node 5 was 1.376e-2 substitutions per 

codon and from node 5 to Day 329, 4.614e-3 nucleotide substitutions per codon. This 

indicates that the sequence that evolved the most from ancestry was at Day 161. However, 

the derived mutations at this TP were lost at Day 329 (168 days later). 

 

Physical examination of the sequence alignments against surveillance DRMs from the 

Stanford University HIVdb (2015; 2017) detected one DRM in RT position 103 where a Lys 

(K) mutated to an Asn (N). This mutation was also detected when sequence alignments were 

blasted against the SDRMs on the Stanford HIV Drug Resistance Database (2017). The 

K103N mutation is a known NNRTI antagonist (Chen et al., 2004; Halvas et al., 2010; Chen 

et al., 2012; Chen et al., 2014). Tracing the mutation along the phylogenetic tree revealed 

that it was present in the original ancestor and remained conserved throughout the evolution 

of the 079 viral strain (i.e. was present at sequences at each timepoint). As such, this mutation 

was an inherited one and not spontaneously derived. 
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Figure 4.5: Time to the most recent common ancestor (tMRCA) for 267 

 

The estimated tMRCA for 267’s phylogeny was 342 days. Sequences at Day 5 and Day 22 

were identical to the common ancestor at node 4, despite the 17 days that elapsed between 

them (see Figure 4.5). The only diversification event occurred at RT66 with an A to G 

transition mutation (AAA to AAG) causing the Day 326 sequence to break away from the 

Day 22 sequence at the common ancestor (node 5). The evolutionary rate along Day 326 

from the ancestor at node 5 was 2.996e-3 nucleotide substitutions per codon. Physical 

examination and blasting of the sequence alignments against SDRMs from the Stanford 

University HIVdb (2015; 2017) did not detect any DRMs. 
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Figure 4.6: Time to the most recent common ancestor (tMRCA) for 271 

 

The estimated tMRCA for 271 was 264 days. The closest sequence to the original ancestor 

(node 5) was Day 249. This TP shared identical sequences to the common ancestor at node 

5. The first timepoint (Day 1) deviated from the original ancestor very early in the evolution 

of 271 with a transition mutation at Pr24 (TCT to CCT). Although this mutation occurred at 

the 1st nucleotide position of the codon it did not alter the wt AA. Two additional transition 

mutations were derived at Day 1. The first was at Pr43 (AAG to AAA) and the second at 

Pr63 (TCT to CCT). The latter mutation altered the AA from a Ser (S) to a Pro (P). 

 

Day 8 and Day 15 sequences shared a common ancestor at node 7. This clade shared 

common ancestry with Day 249 at node 6. Sequences at Day 8 and Day 15 deviated from 

ancestral node 6 at Pr63 (TCT to CCT). These sequences were identical and derived five 

additional transition mutations in RT along their co-evolution. These were at RT167 (ATC 

to ATT), RT177 (GAA to GAG), RT194 (GAA GAG), RT196 (GGG to GGA) and RT216 

(ACT to ACC). The Pr63 mutation observed at Day 1 was still present up to Day 15. The 

sequence at the last timepoint (Day 249) did not evolve relative to the common ancestor.  
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The evolutionary rate along Day 1 from the ancestral node 5 was 2.096e-2 nucleotide 

substitutions per codon and the evolutionary rate from node 5 through to Day 8 and Day 15 

was 5.163 e-2 nucleotide substitutions per codon. Physical examination and blasting of the 

sequence alignments against SDRMs from the Stanford HIV Drug Resistance Database did 

not detect any DRMs. 

 

4.4 Discussion 

The aim of this section was to “reverse” trace any observed DRMs to the MRCA to 

investigate whether these DRMs were present in the MRCA or whether these DRMs were 

spontaneously acquired. In the event that DRMs were inherited from the MRCA, to observe 

the structural changes occurring at those sites as the DRMs were being lost over time. The 

samples used in this study were collected less than a week after participants were diagnosed. 

This created a unique window through which to observe how inherited DRMs were lost as 

minority variants competed for replicative dominance in newly infected treatment naïve 

patients. To achieve this aim, ancestral sequences were reconstructed from “extant” viral 

sequences, mapped onto time-scaled trees and evaluated. 

 

Ancestral reconstruction was performed for each of the four UDP alignments that had more 

than two timepoints. The codonml programme in the PAML package was used to reconstruct 

ancestral sequences. Time-scaled trees for mapping divergence rates were constructed using 

BEAST. Participant 036’s sequences indicated that the wt strain remained dominant for the 

first 17 days post diagnosis. The only diversification event was detected 322 days later. This 

suggests that at some point between Day 17 and Day 339 a variant strain with a mutation at 

the third codon position in Pr35 became more dominant. This mutation altered the AA at 

this position from a Glu to Asp. The estimated evolutionary rate from the 036 phylogeny’s 

common ancestor to the most recent sequence (Day 339) was 2.82e-3 nucleotide substitutions 

per codon. 

 

The sequences in alignment 079 showed a bit of variability. A diversification event occurred 

at some time along the pol gene in the 158 days between the first blood draw and the second. 

At Day 161 four mutations were observed, one of which altered the “resident” AA. These 

were at Pr27 (CGA to CGG), RT83 (AGG to AGA), RT170 (CCC to TCC) and RT187 

(TCG to TGA), with the mutation in RT170 altering the AA from a Pro to a Ser. Three of 
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the mutations detected at Day 161 in RT positions 83, 170 and 187 were undetectable 168 

days later at Day 329. The strain detected at this TP deviated from Day 3 and the common 

ancestor at mutations in Pr27 and Pr87. The evolutionary rates from common ancestors 

indicate that Day 161 had evolved the most at a rate of 1.376e-2, approximately 158 days 

from the 1st timepoint.  

 

Similar to 036, the first two timepoints of 267 had identical sequences within the first 22 

days of HIV+ diagnosis. A diversification event was detected at the last timepoint 

approximately 304 days after the second TP with an A to G transition mutation (AAA to 

AAG) at RT66. The evolutionary rate along TP3 from the ancestor at node 5 was 2.996e-3 

nucleotide substitutions per codon. 

 

Of the four alignments, the sequences in 271 displayed substantial rate heterogeneity among 

lineages as per BEAST (Drummond et al., 2007). This could possibly be a consequence of 

the tMRCA being shorter between 1st and last timepoints. It may also indicate that minority 

variants were still competing to establish dominance. The other alignments were more clock-

like, indicating that a global molecular clock could describe their rates of evolution over 

their respective phylogenies (Drummond et al., 2007; Drummond and Rambaut, 2007; 

Vandamme, 2009). 

 

Sequences in the 271 alignment were quite variable within the first 15 days post diagnosis 

(i.e. Day 1, Day 8 and Day 15). One day after diagnosis, two mutations were detected at 

Pr43 and Pr63. The mutation at Pr63 altered the AA from a Ser to a Pro. The Pr63 mutation 

remained conserved at the second and third timepoints, which were seven days apart. The 

Pr43 mutation, however, was undetectable from the second timepoint seven days after Day 

1. The sequences at Day 8 and Day 15 were identical and acquired five more transition 

mutations in RT sites 167, 177, 194, 196 and 216. The sequence at the last timepoint (Day 

249) shared identical sequences with the common ancestor. This suggests that this variant 

either remained in the background while the variants at Day 1 and Day 8 vied for dominance 

in the first few days of infection or, it could suggest that during the first few days of infection 

initial host immune responses were heightened, thereby forcing the virus to mutate to survive 

under this pressure. With the increase in viral load and diminished immune attack, the virus 

no longer required the earlier acquired mutations and reverted back to its original wt strain. 
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Thus, after approximately 249 days post-HIV+ diagnoses, the wt strain re-emerged with the 

mutations detected in the first 15 days being undetectable.  

 

The Pr63 mutation was conserved and still present up to 2 weeks post diagnosis (Day 8 and 

Day 15). This could indicate that this site may play a significant role in conferring fitness 

advantage against the initial host immune response typical of this early stage of viral 

infection (Ndhlovu et al., 2015). During the week between Day 8 and Day 15, five additional 

mutations arose in RT. These mutations were subsequently lost 234 days later at Day 249. 

This could suggest that despite the observed mutations, none of them were fixed over the 

248 days between the 1st TP and the last TP as the dominant species eventually reverted back 

to wt. It may also suggest that due to the bottleneck effect, mutations earlier on in the 

evolution of the 271 quasispecies were dominant, but with the passage of time, these 

mutations did not confer enough competitive advantage to get fixed in the population. 

Consequently, reversion to the ancestral or wt sequence occurred. In addition, the rapid CD8+ 

T cell apoptosis and the inability of these cells to leave phenotypic markers for CD8+ T 

memory cells may have provided a window for viral replication in the absence of intense 

immune attack (Ndhlovu et al., 2015). As such, some of the advantageous mutations were 

either no longer critical to viral fitness, or the other quasispecies (such as wt in this instance) 

were able to establish dominance in the absence of host immune response pressure. 

 

Physical examination of the sequence alignments against surveillance DRMs from the 

Stanford University HIV Drug Resistance Database (2015) for all four alignments only 

detected a DRM in 079. This was mutation K103N in RT. This mutation was also the only 

one detected when sequences were blasted against the SDRMs on the Stanford HIV Drug 

Resistance Database for all four alignments. The K103N mutation is known to be an NNRTI 

antagonist. Tracing the mutation along the phylogenetic tree revealed that it was present in 

the original ancestor and remained conserved throughout the evolution of the 079 viral strain 

(i.e. was present at sequences at each timepoint). As such, this mutation was an inherited one 

and not spontaneously derived. Consequently, it was not possible to observe DRM loss, nor 

was it possible to investigate the structural changes that accompanied the loss. 

 

Since no structural observations could be made due to the absence of DRMs, each 

alignment’s sequences were also tested for inherited/acquired mutations in functional sites 

using Prosite and Genedoc. The findings indicated that functional domains remained 
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conserved from the MRCA to the last TP in each sequence per alignment (results not shown). 

This suggests that each sequence inherited and maintained functional sites from their 

common ancestor and did not spontaneously acquire any mutations that altered their 

functional states in both Pr and RT. 
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CHAPTER 5: 

General Discussion  

 

Both the HyPhy package in Datamonkey and the codeml package in PAML, despite 

performing analyses on essentially duplicate sequences, were inconsistent in detecting sites 

for positive selection common to both sets of alignments. Apart from sites that overlapped 

across methods, it was difficult to place confidence in any one method as the better method 

for detecting sites that were “truly” under positive evolutionary pressure (at p < 0.05). A 

more reliable approach perhaps would be to use several different methods for the analysis 

and create a pool of positively selected sites, with sites that appeared more frequently 

considered as having stronger support for Darwinian evolution. 

 

Nonetheless, in Datamonkey, the REL method appeared to be the most appropriate for the 

small datasets used in this study. This is in keeping with Poon et al.’s (2009) 

recommendation of this method for alignments containing 5 -15 sequences. The F81 model 

of substitution was on average the more reliable model for detecting positive sites with a fair 

amount of consistency (66.7%). The REV model of substitution, although not that sensitive 

to detecting sites that were under positive selective pressure, was the more consistent model 

in that it detected 80% of sites common to both sets of alignments.  

 

Overall, the sequences were under strong purifying selection with less than 1% of the sites 

in each alignment being under positive selection as per PAML. This is in keeping with a 

study by Gordon et al. (2003) on a treatment naïve cohort in KwaZulu-Natal. Altogether 16 

sites for positive selection were identified by the HyPhy and PAML packages. Sixty-nine 

percent of these sites were also detected by Gordon et al. (2003) and 50% by Chen et al. in 

their studies. It is highly probable that the viruses in these participants were forced to evolve 

to evade host HIV-specific CTL responses shown to occur at Fiebig stage 1 in this cohort by 

Ndhlovu et al. (2015). In addition, it is also possible that early pressure to evolve could be 

due to other host factors. These include the types of cells infected, microenvironments in the 

mucosa and lymph nodes, which present a wide spectrum of innate host defenses, including 

IFNs and/or other molecules (Shugars and Wahl, 1998; Shugars et al., 1999). Host-selective 
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pressures, therefore, may either increase or decrease the diversity of the virus population 

(Pilcher et al., 2004).  

 

In Pr, L63HPSVT was the most variable site under positive selection. However, this site was 

not found in any HLA epitope nor did it fall within any Pr functional domain. [Although no 

longer on the Stanford University’s HIV Database of SDRMs, the L63P mutation was once 

considered a DRM (Chen et al., 2004)]. The only positively selected site in Pr that was a 

DRM was V82I. This site had a mutation in the epitope of HLA-B*810. This HLA has been 

associated with low viremia and suppressing viral replication (Kaslow et al., 1996; Altfeld 

et al., 2003; Kiepiela et al., 2006; Altfeld and Goulder, 2011; Illing et al., 2018). This 

suggests that mutations in this epitope may be advantageous to viral replication and 

proliferation. 

 

The most volatile sites for positive selection in RT were at E39DKT, G123SND and 

E207ATK. The E39T and G123S mutations enabled sequences that possessed them to gain 

a putative CKII-P functional site in an unconserved region in RT. The G123 site was also in 

the B*5702, B*5703 and B*3501 HLA epitopes. Mutations in B*5703 epitopes, however, 

did not benefit the virus because HLA-B*5703 was inherently error-prone in proofreading 

its isotopes (Illing et al., 2018), thus negating mutations. Nonetheless, HLA-B*5703 and 

HLA-B*5702 have been associated with suppressing viral replication (Kloverpris et al., 

2012). Mutations in B*5702 may thus be advantageous to viral replication. Mutations in the 

HLA-B*3501 epitope may, however, present a fitness cost to the virus as this HLA has been 

found to serve no real function apart from naturally prolonging the duration of HIV (Huang 

et al., 2009).  

 

Ancestral reconstruction of sequences that had MTPs detected a DRM in only PID 079’s 

alignments. This participant’s sequences had the RT K103N mutation, which was traced 

back to its MRCA. This mutation remained fixed over time and was detected at each 

subsequent TP. Therefore, it was not possible to observe functional changes between TPs 

where DRMs were either lost or gained.  

 

Apart from an AA mutation in one sequence each of PID 079 (RT170) and PID 271 (Pr63), 

there was no intrahost sequence diversity in any of the MTP alignments at the AA level. In 

addition, tracing changes in functional domains within each alignment found that functional 
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domains were conserved from the MRCA up to the last TP. This could suggest that the 

viruses underwent a tremendous amount of host factor pressure during the eclipse phase of 

acute infection. Although the sequences used in this analysis were collected less than a week 

post infection, early CTL responses were mounted at Fiebig Stage 1 (Nghlovu et al., 2015). 

This could imply that by the earliest point of viral detection, the virus had already undergone 

minute general non-specific host immune attack, sufficient for the virus to adapt and 

establish a dominant or wt strain. This wt strain then remained conserved in the absence of 

drug pressure.  
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CHAPTER 6: 

Conclusion  

 

It emerges from this study that pooling results from different techniques is important in 

identifying sites under positive selective pressure. This adds a holistic element to identifying 

sites because the underlying algorithms of the different packages at times omitted sites that 

were detected by other algorithms.  

 

The putative functional domains within this cohort remained relatively conserved. The gains 

and losses of functional domains, however, may suggest that the selective pressures acting 

on viruses were host-specific. Losses of conserved putative functional sites, however, 

seemed counterintuitive at times because these sites conferred viral resilience and fitness. 

Similarly, mutations in some identified epitopes did not confer meaningful viral advantage, 

mostly because the HLAs that were specific to them either naturally prolonged HIV 

progression or were inherently error-prone.  

 

Observing the mutations of intrahost viral sequences over time found that viral sequences 

remained conserved from the common ancestor up to the last TP in each participant. 

Intrahost sequences also conserved all their putative functional sites inherited from their 

recent common ancestors. This could suggest that, in the absence of drug pressure, the viral 

quasispecies that survived early host immune attack during the eclipse phase of acute 

infection, became the dominant (or wt) strain that was preserved throughout. This may be 

the case because the earliest studied immune response in this cohort was at Fiebig Stage I.  

 

A major limitation of this study was the relatively small sample size used for the analyses. 

However, the FRESH acute cohort is unique since HIV negative participants were enrolled 

and screened bi-weekly until HIV-1 infection was detected. HIV infection was thus detected 

as early as Fiebig Stage 1. As such, the sequences used in this study are truly reflective of 

acute infection. In addition, it is generally very difficult to obtain sequences so early in HIV 

infection. 
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Appendix  2: Purifying selection sites identified by the REL method in Datamonkey 

 

 

 

  

Codon E[dS] E[dN] Normalized E[dN-dS] Posterior Probability Bayes Factor

7 2.46326 0.0288509 -2.43441 0.999361 117.858
18 4.51679 0.0287941 -4.48799 0.999971 2561.66
23 2.02875 0.0302932 -1.99845 0.999507 152.77
25 3.06369 0.0268972 -3.03679 0.999469 141.754
30 3.88802 0.0269068 -3.86111 0.999673 230.464
58 5.19986 0.0287919 -5.17107 0.999993 10839.5
75 2.87167 0.0306235 -2.84105 0.999282 104.81
88 5.11828 0.027185 -5.09109 0.999974 2944.74
95 4.54557 0.0274564 -4.51812 0.999941 1268.66
102 5.15827 0.0264304 -5.13184 0.999984 4774.75
111 5.10913 0.0328469 -5.07628 0.999992 9539.1
116 3.78384 0.0269007 -3.75694 0.99965 215.495
141 5.10767 0.029579 -5.07809 0.999964 2072.68
156 5.08579 0.0271984 -5.05859 0.999991 8237.15
165 3.25441 0.0302154 -3.22419 0.999624 200.361
188 4.19314 0.0295737 -4.16357 0.999557 169.927
208 2.44206 0.0314669 -2.41059 0.999885 657.823
223 2.55281 0.0262277 -2.52658 0.999426 131.303
244 4.7313 0.0288041 -4.7025 0.999918 917.865
248 4.83184 0.0299949 -4.80185 0.999999 130027
259 2.55785 0.0262281 -2.53162 0.999428 131.592
270 3.84606 0.0262107 -3.81985 0.99975 300.833
285 2.54257 0.0269335 -2.51563 0.999209 95.1662
297 3.82937 0.026536 -3.80283 0.9997 251.028
302 2.48577 0.0296386 -2.45614 0.999262 102.024
304 5.05199 0.0328673 -5.01912 0.999991 8376.37
309 3.24018 0.0321804 -3.208 0.9998 376.851
317 4.64792 0.0268754 -4.62105 0.999949 1473.87

Found 28 negatively selected sites (95 significance level)
REL analysis results using F81
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Appendix 3: Tracer of posterior statistic for 036 

 

 

 

Appendix 4: Tracer of tree height statistic for 036 
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Appendix 5: Tracer of posterior statistic for 079 

 

 

Appendix 6: Tracer of tree height statistic for 079 
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Appendix 7: Tracer of posterior statistic for 267 

 

 

Appendix 8: Tracer of tree height statistic for 267 
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Appendix  9: Turnitin Report 
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