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Abstract

The elicitation of broadly neutralizing antibodies (bNAbs) is likely to be essential for a 

preventative HIV-1 vaccine, but this has not yet been achieved by immunization. In contrast some 

HIV-1-infected individuals naturally mount bNAb responses during chronic infection, suggesting 

that years of maturation are required for breadth1-6. Recent studies have shown that viral 

diversification precedes the emergence of bNAbs but the significance of this observation is 

unknown7,8. Here, we delineate the key viral events that drove neutralization breadth within the 
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CAP256-VRC26 family of 33 monoclonal antibodies (mAbs) isolated from a superinfected 

individual. First, we identified minority viral variants that were distinct from both transmitted/

founder (T/F) viruses and efficiently engaged the bNAb precursor, termed bNAb-initiating 

envelopes. Second, deep sequencing revealed a pool of diverse epitope variants (immunotypes) 

that were preferentially neutralized by broader members of the antibody lineage. In contrast, a 

“dead-end” antibody sublineage unable to neutralize these immunotypes showed limited evolution 

and failed to develop breadth. Thus, early viral escape at key antibody-virus contact sites selects 

for sublineages that can tolerate these changes, providing a new mechanism for the generation of 

neutralization breadth within a developing antibody lineage.

The identification of bNAbs against genetically diverse viruses such as HIV-19, together 

with in-depth longitudinal evolutionary studies are providing key insights for vaccine 

design7,8,10-12. BNAbs to the variable regions 1 and 2 (V1V2) of the HIV-1 envelope (Env) 

are among the most prevalent and potent cross-reactive antibodies, but the virological events 

that allow for their elicitation and maturation remain unclear. We have previously described 

the CAP256-VRC26 mAb lineage, isolated from an HIV-1 subtype C superinfected 

individual, which targets the V1V2 C-strand at the apex of the viral envelope glycoprotein 

(Fig. 1a)7. This lineage developed from a bNAb precursor or unmutated common ancestor 

(UCA) with a 35-amino acid heavy chain complementarity determining region three 

(CDRH3), and acquired breadth through moderate levels of somatic hypermutation (SHM)7. 

To better define the complex viral populations responsible for eliciting these antibodies and 

driving their maturation, we performed next-generation sequencing (NGS) at 28 different 

time-points over four years (with an average of 85,000 reads and 788 consensus sequences 

per time-point). From 6–13 weeks, all sequences were closely related to the primary 

infecting virus (PI) (Fig. 1b and Supplementary Fig. 1) but at 15 weeks, when superinfection 

(SU) occurred, there was a dramatic shift in viral populations, with SU-like viruses 

accounting for 99.8 % of 3,228 consensus sequences (Supplementary Fig. 2). From 17 

weeks, V1V2 sequences from the PI and SU viruses persisted, rapidly forming a PI-SU 

recombinant population, although PI-like viruses dominated briefly at 23 weeks, perhaps a 

result of immune escape from earlier non-V1V2 directed neutralizing antibodies that 

preferentially neutralized SU-like viruses13. Notably, diversification in all three viral 

populations (PI, SU and recombinants) increased after the CAP256-VRC26 lineage was first 

detected in blood by NGS at 34 weeks (Fig. 1b, gray shading and Supplementary Fig. 3).

As residues 169 and 166 in the V1V2 C-strand form a crucial part of the CAP256-VRC26 

bNAb epitope and would likely be important in virus-mAb co-evolution, we focused on 

defining escape mutations at these positions. Residue 169 differed between the PI (169Q) 

and SU (169K), with the majority of viral variants circulating after 23 weeks possessing a 

PI-derived 169Q (Fig. 1c and Supplementary Fig. 2). From 27 weeks onwards, the virus 

sampled 11 different amino acids at position 169, with variation most pronounced at 42 

weeks (Fig. 1c inset), shortly before the development of breadth. The major escape pathway 

from 42–119 weeks was a 169I mutation, and thereafter 169E dominated. Toggling was also 

observed at position 166 (Fig. 1d), though this occurred later, with the wildtype 166R 

immunotype (present in both the PI and SU) found in more than 98% of sequences until 53 

weeks. At 59 weeks, the virus sampled four amino acids (166R, T, K or S) and thereafter 
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166K, followed by 166S, became prevalent. By 159 weeks, all viral sequences contained the 

mutually exclusive K169E or R166S mutations. As both K169E and R166S abrogate 

neutralization by the CAP256-VRC26 mAbs7,13 it is unclear why it took two years for these 

escape pathways to dominate despite their low-level presence early in the development of 

the CAP256-VRC26 family (Supplementary Fig. 2).

The CAP256-VRC26 UCA was unable to neutralize any of 196 HIV-1 isolates 

(Supplementary Fig. 4) suggesting that Env variants able to engage this UCA may be rare. 

Since CAP256-VRC26 NGS transcripts were first detected in blood 19 weeks after 

superinfection (Supplementary Fig. 3), we analyzed contemporaneous (34 week) viral 

sequences to identify a bNAb-initiating Env. Neutralization of the SU, but not the PI virus, 

by the CAP256-VRC26 UCA indicated that an SU-like variant elicited this lineage7. 

Although 8% (75/937) of V1V2 next-generation sequences at the 34 week time-point were 

SU-like, none were identical to the SU (Fig. 2a and Supplementary Fig. 5). Single genome 

amplification was therefore used to isolate six functional 34-week Env clones, which 

differed from the SU by two to eight amino acids in V1V2 and by up to 26 changes across 

the entire Env (Fig. 2b). There was evidence of early immune pressure, with three of six 

clones containing K169I or E mutations, and four of six clones deleting or shifting the 

glycan at residue 139 (Fig. 2c). As expected, the clones with 169I or E mutations were 

resistant to neutralization by the UCA, however the three clones containing a wild-type 

169K were 5–17 fold better neutralized than the SU virus (Fig. 2d). Thus, the 34-week viral 

variants that evolved from the CAP256 SU T/F virus (but differed from the T/F by at least 

12 amino acids) provided a stronger stimulus for the CAP256-VRC26 lineage.

We next sought to define how this lineage matured to acquire neutralization breadth in the 

context of CAP256 viral diversification. A heavy chain phylogenetic tree of 33 isolated 

CAP256-VRC26 mAbs (12 previously described7 and 21 recently isolated mAbs, N.D-R. 

and J.R.M. unpublished data) and CAP256-VRC26 NGS transcripts from 34 to 206 weeks 

showed an early bifurcation7 (Fig. 3a). A small sublineage of 34–59 week sequences 

including the CAP256-VRC26.01 and .24 mAbs exhibited restricted evolution. A second 

larger sublineage, containing transcripts from all time-points as well as most of the mAbs 

(Fig. 3a), displayed extensive evolution suggesting adaption in response to emerging viral 

escape mutations, such as K169T/I/Q/R and R166K (Fig 1c, d). In order to test this 

hypothesis, we introduced these immunotypes into the SU virus and tested them against 32 

mAbs (CAP256-VRC26.20 does not neutralize SU and was excluded). MAbs CAP256-

VRC26.01 and .24, from the smaller sublineage with limited breadth, both neutralized the 

SU at 0.04 μg/ml (Fig. 3b). However SU viruses containing the 166 or 169 immunotypes 

were either neutralization resistant or showed a >670-fold reduction in neutralization 

sensitivity (Fig. 3b). Thus, the inability of mAbs in this “dead-end” sublineage to tolerate 

viral escape mutations appeared to be responsible for limiting their evolution and capacity to 

become broadly neutralizing.

Among the 30 CAP256-VRC26 mAbs from the evolving sublineage that showed a range of 

neutralization breadth (2–63%), the 169T, I or Q mutations abolished or reduced the activity 

of mAbs with limited breadth (Fig. 3c). In contrast, the neutralizing activity of broader 

family members was largely unaffected. This observation was more pronounced for the 
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R166K mutant, which was resistant to 16/30 mAbs (Fig. 3c), consistent with the selection of 

this immunotype during later stages of bNAb development (Fig. 1d). However, six of the 

nine broadest mAbs were still able to neutralize this mutant at titers <1 μg/ml. With the 

exception of the K169R mutation, breadth was correlated with the ability to neutralize the 

169 or 166 mutants (Fig. 3c and Supplementary Fig. 6). Overall mAbs with limited 

neutralization breadth were most severely affected by variation at positions 169 and 166, 

while the broadest mAbs were able to tolerate these early viral escape mutations, providing a 

mechanism for the evolution of neutralization breadth within this lineage.

Since high levels of SHM are often required for HIV-1 broad neutralization14,15, we 

investigated the relationship between SHM and neutralization breadth in the CAP256-

VRC26 family (Fig. 4a). As expected, the nine mAbs with >40% breadth were 17–22% 

mutated from the UCA, however three “off-track” mAbs with a similar level of SHM (17–

21%) had only 2–6% breadth (Fig. 4a). Therefore, as observed in several families of anti-

HIV antibodies16-19 and anti-influenza antibodies20, high levels of SHM in the CAP256-

VRC26 lineage were not sufficient to confer breadth. To determine if different viral variants 

drove the evolution of broad versus off-track mAbs, we tested both groups of mAbs against 

longitudinal CAP256 viruses (Fig. 4b). Hierarchical clustering analysis of mAbs and viruses 

based on their neutralization profiles showed a clear phenotypic separation between broad 

and off-track mAbs with the latter neutralizing substantially fewer autologous viruses, but 

we could not attribute this to any genetic features of the mAbs. Both groups neutralized 

viruses with an SU-like C-strand, including the bNAb-initiating 34-week clones. All viruses 

neutralized by off-track antibodies were also sensitive to at least one broad mAb, suggesting 

that viral variants associated with the development of neutralization breadth also selected 

off-track mAbs. Indeed, clustering of broad and off-track mAbs within a single phylogenetic 

branch highlights the stochastic nature of mAb maturation towards breadth (Fig. 4c).

In conclusion, we identified 34-week viral variants that effectively engaged the UCA of the 

CAP256-VRC26 V1V2 lineage, which we have termed bNAb-initiating Envs. While low 

frequency viral escape mutations at 27–30 weeks may suggest that CAP256-VRC26 

antibodies were present earlier, the 34-week Envs nonetheless represent optimal priming 

immunogens for this lineage. Identification of rare bNAb-initiating Envs is likely to be of 

particular significance for V1V2 bNAb precursors which are derived from a pool of rare B 

cells with long CDRH3s7,17,21-25. Secondly, we have defined a new mechanism for how 

accumulating viral variants contribute to bNAb development. Thus, viral escape creates 

multiple immunotypes, and in parallel SHM generates antibodies with differential ability to 

engage these epitope variants. Those antibody sublineages able to tolerate variability at key 

epitope contacts will develop breadth (Fig. 4d). We note however that viral diversity may 

also limit the evolution of less tolerant mAbs (dead-end sublineages), or may divert 

maturation of mAbs towards strain-specificity (off-track mAbs) (Fig. 4d). This process, 

which provides a framework for vaccine design (Supplementary Fig. 7), is distinct from the 

multi-lineage cooperative pathway described for a CD4 binding site bNAb lineage10, 

highlighting the complex and varied pathways to breadth. Future immunization strategies 

should therefore aim to include bNAb-initiating Envs to prime bNAb precursor B-cells, as 

well as rationally verified Env variants as sequential boosts to mature the response towards 

neutralization breadth.
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ONLINE METHODS

Study participant

CAP256 was part of the CAPRISA 002 Acute Infection study, a cohort of 245 high-risk, 

HIV-negative women that was established in 2004 in Durban, South Africa, for follow-up 

and subsequent identification of HIV seroconversion26. This HIV-infected individual was 

among the seven women in this cohort who developed neutralization breadth1. The 

CAPRISA 002 Acute Infection study was reviewed and approved by the research ethics 

committees of the University of KwaZulu-Natal (E013/04), the University of Cape Town 

(025/2004) and the University of the Witwatersrand (MM040202). CAP256 provided written 

informed consent. Randomization and blinding were not performed in this study.

V1V2 next-generation sequence library preparation

RNA extraction, cDNA synthesis and subsequent amplification were carried out as described 

previously27, with the following modifications: A minimum of 5,000 HIV-1 RNA copies 

were isolated from longitudinal plasma, spanning four years of infection, using the QIAamp 

Viral RNA kit (Qiagen, Germany). The cDNA synthesis primer was designed to bind to the 

C3 region of the envelope (HXB2 position 7,342–7,318) and included a randomly assigned 

9-mer tag (Primer ID method) to uniquely label each cDNA molecule, followed by a 

universal primer binding site to allow out-nested PCR amplification of cDNA templates 

(primers listed in Supplementary Table 1). First round amplification primers were designed 

to amplify the V1 to V3 region of the envelope (HXB2 positions 6,556 to 7,342) and 

contained a template specific binding region, followed by a variable length spacer of zero to 

three randomly assigned bases to increase sample complexity. In addition, PCR primers 

contained 5’ overhangs, introducing binding sites for the Nextera XT indexing primers 

(Illumina, CA) (Supplementary Table 1). The nested PCR reactions were carried out using 

the Nextera XT indexing kit. Following indexing, samples were purified using the MinElute 

PCR Purification Kit (Qiagen, Germany), quantified using the Quant-iT PicoGreen dsDNA 

assay (Life Technologies, NY) and pooled in equimolar concentrations. The pooled 

amplicons were gel extracted using the QIAquick gel purification kit (Qiagen, Germany) to 

ensure primer removal and the final library submitted for sequencing on an Illumina MiSeq 

(San Diego, CA), using 2×300 paired-end chemistry.

V1V2 next-generation sequence analysis

Raw reads were processed using a local instance of Galaxy28-30, housed within the 

University of Cape Town High Performance Computing core. Read quality was assessed 

using fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Short reads (<150 

bp) and low quality data were filtered out using the Filter FASTQ (version 1.0.0) tool31 with 

a minimum quality of Q35 for 3’ base trimming. Forward and reverse reads were joined 

using FASTQ joiner (version 2.0.0) 31. A custom python script was used to bin all reads 

containing an identical Primer ID tag, align the reads within each bin using MAFFT32 and 

produce a consensus sequence based on a majority rule. Sequences with just one Primer ID 

representative, as well as consensus sequences derived from less than three reads and those 

containing degenerate bases, were excluded and the remaining sequences from each time 

point aligned with MAFFT, Muscle33 or RAMICS34. The calculation of amino acid 

Bhiman et al. Page 5

Nat Med. Author manuscript; available in PMC 2016 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


frequencies and hamming distances (for each sequence relative to the consensus sequence 

from the first time point –inferred PI virus), were performed using custom python scripts. 

Amino acid frequency distributions were plotted using Prism 6 (GraphPad), while hamming 

distances were plotted using the python library Matplotlib35. All custom scripts used in these 

analyses, including the Primer ID binning script, are available upon request.

Single-genome amplification and sequencing

HIV-1 RNA was isolated from plasma using the Qiagen QIAamp Viral RNA kit and reverse 

transcribed to cDNA using SuperScript III Reverse Transcriptase (Invitrogen, CA). The 

envelope genes were amplified from single-genome templates36, and amplicons were 

directly sequenced using the ABI PRISM BigDye Terminator Cycle Sequencing Ready 

Reaction kit (Applied Biosystems, Foster City, CA) and resolved on an ABI 3100 automated 

genetic analyzer. The full-length env sequences were assembled and edited using 

Sequencher version 4.5 software (Genecodes, Ann Arbor, MI). Multiple sequence 

alignments were performed using Clustal X (version 1.83) and edited with BioEdit (version 

7.0.9.0) Sequence alignments were visualized using Highlighter for Amino Acid Sequences 

version 1.1.0 (beta). Selected amplicons were cloned into the expression vector pcDNA 3.1 

(directional) (Life Technologies) by reamplification of SGA first-round products using 

Fusion enzyme (Stratagene) with the EnvM primer37 and the directional primer EnvAStop38. 

Cloned env genes were sequenced to confirm that they exactly matched the sequenced 

amplicon, and assayed for function by transfection in 293T cells, as described below.

Site-directed mutagenesis

CAP256 15-wk SU was mutated at positions 169 and 166 by site-directed mutagenesis using 

the Stratagene QuikChange II kit (Stratagene) as described by the manufacturer. Mutations 

were confirmed by sequencing.

Antibody next-generation sequence analysis

NGS reads from each time point were processed with an antibodyomics described 

previously7. Reads with successfully assigned V and J genes, an in-frame junction and no 

stop codons were clustered at 97.25 % nucleotide sequence identity with CD-HIT to account 

for possible sequencing error and singletons were discarded. For those remaining reads 

assigned to VH3-30, divergence from VH and identity to the previously determined UCA7 

were calculated with Clustalw2. Density plots for these sequences were generated using the 

kde2d function in R. A maximum likelihood tree was built using FastML as described7. The 

tree was collapsed for display by clustering CDRH3 sequences as described7 using a 90% 

identity threshold and a minimum of three sequences to define a major branch.

Antibody expression

Equal quantities of antibody heavy and light chain plasmids were co-transfected into 

FreeStyle™ 293F cells (Life Technologies) using the PEIMAX transfection reagent 

(polysciences). Monoclonal antibodies were purified from cell-free supernatants after six 

days using protein A affinity chromatography.
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Neutralization assays

The JC53bl-13 (TZM-bl) and 293T cell lines were obtained through the NIH AIDS Reagent 

Program, Division of AIDS, NIAID, NIH from Dr John C. Kappes, Dr Xiaoyun Wu and 

Tranzyme Inc. and Dr Andrew Rice respectively. Both cell lines, confirmed to be free of 

Mycoplamsa, were cultured in DMEM (Gibco BRL Life Technologies) containing 10% 

heat-inactivated FBS and 50 μg/ml gentamicin (Sigma). Cell monolayers were disrupted at 

confluency by treatment with 0.25% trypsin in 1mM EDTA (Gibco BRL Life Technologies). 

Env-pseudotyped viruses were obtained by co-transfecting the Env plasmid with 

pSG3ΔEnv39 using FuGENE transfection reagent (Roche) as previously described1. 

Neutralization was measured as described by a reduction in luciferase gene expression after 

single-round infection of JC53bl-13 cells with Env-pseudotyped viruses1. Titers were 

calculated as the reciprocal plasma dilution (ID50) causing 50% reduction of relative light 

units (RLU). Viral and antibody hierarchical clustering based on neutralization profiles was 

performed using the Heatmap Hierachical Clustering tool on the LANL HIV sequence 

database http://www.hiv.lanl.gov/content/sequence/HEATMAP/heatmap.html.

Images

Electron microscopy and protein structure representations were created with Chimera 

1.5.3rc and PyMOL 1.340. Neutralization images were created in GraphPad Prism6, 

sequence alignments were made with BioEdit41 and phylogenetic trees were edited in 

FigTree 1.4.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Viral diversification over time in CAP256 HIV-1 Env V1V2. (a) BG505 SOSIP.664 trimer 

structure (PDB:4TVP) fitted into a 3D reconstruction of the CAP256-VRC26.09 Fab-trimer 

complex (EMD-5856, left panel). BG505 V1V2 cap with residues 166 and 169 shown as 

spheres (right panel) and the C-strand highlighted in green. (b) Hamming distance from the 

PI sequence (y-axis) versus weeks after infection (x-axis) for all next-generation V1V2 

consensus sequences. Criteria of <0.03 and >0.23 were used to distinguish PI-like (blue) and 

SU-like (black) viruses respectively, while those sequences with an intermediate distance 
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(0.05–0.21) were classified as PI-SU recombinant viruses (purple, REC). Hamming 

distances were normalized for sequence length, and the relative frequency of sequences with 

a given distance are indicated by the size of the circle (normalized for depth of sequencing, 

but not for viral load, see Supplementary Figure 1). CAP256-VRC26 next generation 

transcript detection in the blood is shown by gray shading. (c and d) The frequency of amino 

acids (y-axis) at positions 169 (c) and 166 (d) are shown as stacked bars, with each bar 

representing a single time-point from 6 to 206 weeks after infection (x-axis). Amino acids 

are colored as indicated in the key, with Del representing a deletion. The inset (*) in the 169 

graph expands the 42 week time-point (when nine immunotypes are present), to highlight 

the seven minority immunotypes present at frequencies of <5%. The time of superinfection 

(SU), the emergence of CAP256-VRC26 NGS transcripts and onset of plasma breadth are 

shown.
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Figure 2. 
Characterization of the CAP256 34-week Envs. (a) Frequency of 34-week next-generation 

V1V2 consensus sequences possessing a C-strand derived from the PI (blue, n = 862) or SU 

(black, n = 75) viruses. (b) Amino acid highlighter plot of single genome amplification 

(SGA)-derived Env, comparing six SU-like 34-week clones to the SU virus (designated as 

the master). Mismatches from the SU are shown as coloured ticks and the V1V2 region is 

boxed. (c) Amino acid sequence alignment of the V1V2 region (HXB2 residues 126–196) 

comparing the SU and the six SGA-derived SU-like 34-week sequences. Red font denotes 

clones with a wildtype K169, while gray font indicates sequences with 169I or E mutations. 

Amino acid identity to the SU virus is represented by dots, deletions are shown as dashes 

and glycosylation sequons are shaded in gray. (d) CAP256-VRC26 UCA neutralization (y-

axis) of the SU virus (black) and the 34-week clones with 169K (red) and 169I or E (gray). 
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UCA mAb concentration is shown on the x-axis. Bars indicate standard error of the mean 

(triplicate).
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Figure 3. 
Relationship between bNAb phylogeny, neutralization breadth and tolerance of multiple 

immunotypes at positions 169 and 166. (a) A condensed heavy chain phylogenetic tree, 

rooted on the VH3-30*18 germline gene and displaying the positions of the 33 CAP256-

VRC26 mAbs. Antibody transcripts and each mAb is colored according to whether it was 

isolated from 34–59 weeks (gray) or 119–206 weeks (black). The tree bifurcates into two 

sublineages (separated by a dashed line); one showing restricted evolution (left) contains 

only antibody transcripts from early time-points, while a continually evolving sublineage 

(right) contains transcripts from all time-points. Scale shows the rate of nucleotide change 

between nodes. (b) Dead-end mAbs in the sublineage with restricted evolution are ranked 

according to percentage neutralization breadth in the histogram. Neutralization of the SU 

virus, 169 and 166 mutant viruses by CAP256-VRC26.01 and .24 are shown as a heatmap, 

with shading showing neutralization potency, as indicated in the key. (c) Thirty mAbs in the 

continually evolving sublineage are ranked according to neutralization breadth in the 

histogram. Neutralization of the SU virus, 169 and 166 mutant viruses by CAP256-VRC26 

mAbs are shown as a heatmap, with shading showing neutralization potency, as indicated in 

the key. Correlations (r values) between neutralization breadth and the IC50 titres of each 

mutant virus are indicated on the right of the heatmap with P values shown as stars (*P < 
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0.05; **P < 0.005; ***P < 0.0001 calculated using a two-tailed non-parametric Spearman 

correlation).
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Figure 4. 
Viral variants that shaped the maturation of broad and off-track antibodies. (a) Relationship 

between neutralization breadth of CAP256-VRC26 mAbs (%, y-axis) and mutations away 

from the UCA (%, x-axis). Broad mAbs with >40% neutralization breadth, off-track mAbs 

with limited neutralization breadth (<6%) and dead-end mAbs are shown in red, turquoise 

and gray respectively. (b) CAP256-VRC26 mAbs and longitudinal CAP256 viruses isolated 

between 6–59 weeks are hierarchically clustered by their neutralization profiles. 

Neutralization sensitivity is shown as a heatmap with potency indicated in the key. The 

sequence alignment shows viral C-strand amino acid residues between positions 160–172 

(HXB2 numbering), shaded to designate sequences that are PI-derived (blue shading), PI-SU 

recombinants (purple shading) or SU-derived (no shading). Off-track (turquoise) and broad 

(red) mAbs are clustered separately, while longitudinal viral variants are clustered by 

neutralization sensitivity, largely segregated on the basis of an SU-derived V1V2 C-strand. 

(c) A condensed heavy chain phylogenetic tree (Figure 3) with a single clade expanded to 

illustrate the phylogenetic relatedness of an off-track mAb (turquoise) to seven broad mAbs 

(red). (d) CAP256 viral evolution results in the engagement of the CAP256-VRC26 UCA 

(light gray) and the subsequent development of two distinct mAb sublineages. The 

sublineage with restricted evolution contains dead-end mAbs (dark gray) which cannot 

tolerate viral escape mutations. The continually evolving sublineage contains bNAbs (red) 
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and off-track mAbs (turquoise). While both bNAbs and off-track mAbs have high levels of 

SHM, only the former mature to recognise multiple immunotypes, and therefore acquire 

breadth.
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