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Abstract

In the theory of fixed points, there are numerous articles dealing with generalization of

the basic Banach contraction mapping principle. There has been two lines of approach.

The first one is concerned with generalizations of the contractive conditions on the

mapping space. The other line of investigation deals with various generalizations of

the metric spaces and the results that can be obtained in these new frameworks, referred

to as metric-type spaces. In this thesis, we elected for the latter approach by providing

a more general framework for a b-metric space , G-metric space and S-metric space.

In this thesis, we proved that these new metric-type spaces equipped with various

contractions type mappings have unique fixed points and provide numerous examples

of each metric-type spaced mentioned.
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Notations

C Set of complex numbers

R Set of real numbers

N Set of natural number

(X, d) Metric space

X None empty set

∅ Empty set

{.} Sequence

x∗ Fixed point

∥ · ∥X Norm on X

⊂ Subset

τ Metric topology

T : X → X Contraction mapping on X
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Thesis outline

Chapter 1

In this chapter we introduce the important concepts of metric spaces, their definitions

and properties, as well as examine some fixed point theorems.
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the triangle inequality. We investigate the effect that this generalization has on fixed
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relaxing the triangle inequality and determine whether the fixed point theorems are

applicable in these spaces.
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Chapter 1

Metric spaces and fixed point

theorems.

1.1 Metric spaces.

Metric spaces can be thought of as very basic spaces, with only a few axioms, where the

ideas of convergence and continuity exist. The distance or a metric is the fundamental

property that defines the space and measures how close elements are to each other [22].

Definition 1.1.1. A distance d or a metric on a metric space (X, d) is a function

d : X ×X → R+

such that the following axioms hold for all x, y, z ∈ X.

(i) d(x, y) ≥ 0

(ii) d(x, y) = 0 ⇐⇒ x = y

(iii) d(x, y) = d(y, x) (symmetry)
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(iv) d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

Proposition 1.0.1. The vector space Rn with the standard Euclidean distance defined

by dp(x, y) = (
∑n

i=1 |xi − yi|p)
1
p where p ≥ 1 with x = (x1, · · · , xn) and y = (y1, · · · , yn)

in Rn is a metric space.

Proof. We shall prove only the triangular inequality d(x, y) ≤ d(x, z) + d(z, y) which

is non trivial. dp(x, y) ≤ dp(x, z) + dp(z, y) where z = (z1, z2, · · · , zn) in Rn.

dp(x, y) =

(
n∑

k=1

|xk − yk|p
) 1

p

=

(
n∑

k=1

|(xk + zk) + (zk − yk)|p
) 1

p

≤

(
n∑

k=1

|xk − zk|p
) 1

p

+

(
n∑

k=1

|zk − yk|p
) 1

p

. (1.1)

Equation (1.1) follows from Minkowski’s inequality[22]

For the special case when p = 2 we have a standard euclidean metric on Rn,

d(x, y) =

√√√√ n∑
k=1

|xk − yk|2.

It can be easily proved directly that d(x, y) is a metric. Once again it only suffices to

prove the triangle inequality.

d(x, y) =

(
n∑

k=1

|(xk − zk) + (zk − yk)|2
) 1

2

=

(
n∑

k=1

|ak + bk|2
) 1

2
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Where ak = xk − zk and bk = zk − yk.

Hence

d(x, y) =

(
n∑

k=1

a2k + 2
n∑

k=1

akbk +
n∑

k=1

b2k

)
(1.2)

Define a function

f(t) =
n∑

k=1

(ak − tbk)
2 (1.3)

Now f(t) is minimum when

f ′(t) = −2
n∑

k=1

(ak − tbk)(bk) = 0

which yields

tm =

∑n
k=1 akbk∑n
k=1 b

2
k

With t = tm in (1.3) we get,

f(tm) =
n∑

k=1

[
ak −

(∑n
k=1 akbk∑n
k=1 b

2
k

)
bk

]2
=

n∑
k=1

[
a2k − 2

(∑n
k=1 akbk∑n
k=1 b

2
k

)
akbk +

(
∑n

k=1 akbk)
2

(
∑n

k=1 b
2
k)

2
b2k

]

=
n∑

k=1

a2k − 2
(
∑n

k=1 akbk)
2∑n

k=1 b
2
k

+
(
∑n

k=1 akbk)
2

(
∑n

k=1 b
2
k)

2

n∑
k=1

b2k

=
n∑

k=1

a2k −
(
∑n

k=1 akbk)
2∑n

k=1 b
2
k

Since f(tm) is positive we have(
n∑

k=1

akbk

)2

≤

(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)
n∑

k=1

akbk ≤

(
n∑

k=1

a2k

) 1
2
(

n∑
k=1

b2k

) 1
2
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Hence d(x, y) in (1.2) becomes

d(x, y) ≤

 n∑
k=1

a2k + 2

(
n∑

k=1

a2k

) 1
2
(

n∑
k=1

b2k

) 1
2

+
n∑

k=1

b2k


1
2

=

( n∑
k=1

a2k

) 1
2

+

(
n∑

k=1

b2k

) 1
2

2
1
2

=

(
n∑

k=1

a2k

) 1
2

+

(
n∑

k=1

b2k

) 1
2

=

(
n∑

k=1

(xk − zk)
2

) 1
2

+

(
n∑

k=1

(zk − yk)
2

) 1
2

= d(x, z) + d(z, y)

1.2 Topology of a metric space.

1.2.1 Open spheres

Let d be a metric on set X. For any point a ∈ X a real number r > 0, we denote the

set of points within a distance r from a by

Br(a) = {x ∈ X : d(x, a) < r}.

It is called the open sphere or ball with centre a and radius r.

One important property of open sphere in a metric space is that if Br(x) is an open

ball with the centre x and radius r then for every y ∈ Br(x) there exist an open ball

Bϵ(y) such that Bϵ(y) ⊂ Br(x)

Definition 1.2.1. Let (X, d) be a metric space. The metric topology τd on X is a

collection of subsets U ⊂ X satisfying the property that for each x ∈ U there exists

4



r > 0 such that Br(x) ⊂ U .

The collection τd is a topology in X if,

(i) ∅, X ∈ τd

(ii) Let {Uα}α∈A be a collection of τd and A an index set. Let V = ∪α∈AUα and

x ∈ V . Then by definition there exist α ∈ A with x ∈ Uα. By the property

satisfied by Uα in τd there exist r > 0 such that

Br(x) ∈ Uα

since Uα ⊂ V it follows that Br(x) ⊂ V hence V ∈ τd

(iii) Let {Ui}i=1,··· ,n be a subcollection of τd. Let V = ∩n
i=1Ui and x ∈ V for 1 ≤ i ≤ n

we get V ⊂ Ui so x ∈ Ui. By the defining property of τd there exist ri > 0 such

that

Bri(x) ⊂ Ui

Let r = mini=1,··· ,n ri then

Br(x) ⊂ Bri(x) ⊂ Ui

for each 1 ≤ i ≤ n which implies that Br(x) ⊂ V hence V ∈ τd.

In general, the intersection of two open spheres need not to be an open sphere. However

for every point in the intersection of the open sphere does belong to an open sphere

contained in the intersection.

1.2.2 Properties of metric topologies

Theorem 1.1. The closure Ā of a subset A of a metric space (X, d) is the set of points

whose distance from A is zero, i.e Ā = {x : d(x,A) = 0}.
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Theorem 1.2 (Separation axiom ). Let U, V be closed disjoint susbset of a metric

space X. Then there exist disjoint open set U ′ and V ′ such that

V ⊂ V ′ and U ⊂ U ′

Definition 1.2.2.

(i) A sequence {xn}n∈N converges to x ∈ X if for ϵ > 0 there exists N ∈ N such that

d(xn, x) < ϵ for all n > N

(ii) A sequence {xn}n∈N in X is a Cauchy sequence if and only if for every ϵ > 0

there exists N ∈ N such that d(xn, xm) < ϵ for every n,m > N .

Every convergent sequence in a metric space is a Cauchy sequence. The converse is

not true.

1.2.3 Complete metric space

Definition 1.2.3. A metric space (X, d) is complete if every Cauchy sequence {xn}n∈N

in X converges to a point x ∈ X.

Theorem 1.3. The class of open sphere is a set X with metric d is a base for a topology

on X.

Two metrics d and d′ on a set X are equivalent if and only if they induce the same

topology in X that is if and only if the d-open spheres and the d′-open spheres in X

are bases for the same topology on X.

Definition 1.2.4. A metric space (X, d) is isometric to a space (Y, d′) if and only if

there exists a one - one, onto function f : X → Y which preserves distances, that is

6



for x, y ∈ X

d(x, y) = d′(f(x), f(y))

Definition 1.2.5. A metric space (X ′, d′) is a completion of a metric space (X, d) if

(X ′, d′) is complete and X is isometric to a dense subset of X ′.

Theorem 1.4. Every metric space (X, d) has a completion and all completions of X

are isometric.

1.3 Fixed Point Theorems

Fixed point theorems concern maps f of a set X into itself that, under certain condi-

tions, admit a fixed point, that is, a point x ∈ X such that f(x) = x. The knowledge

of the existence of fixed points has relevant applications in many branches of analysis

and topology [26].

Definition 1.3.1. [26]Let (X, d) be a metric space. A mapping f : X → X is said to

be Lipschitz continuous if there exist λ ≥ 0 such that

d(f(x1), f(x2)) ≤ λd(x1, x2)

for all x1, x2 ∈ X. The smallest λ for which the above inequality holds is the Lipschitz

constant of f . If λ ≤ 1 f is said to be non-expansive, if λ < 1 f is said to be a

contraction.

Theorem 1.5. [26] Let (X, d) be a complete metric space and let f : X → X be a

contraction with Lipschitz constant λ. Then f has a unique fixed point x∗ ∈ X.

7



Proof. Take any point x0 ∈ X and define the iterative sequence xn = f(xn−1). We

shall first show that {xn} is a Cauchy sequence. It follows that

d(f(xn), f(xn−1)) ≤ λd(xn, xn−1)

= λd(f(xn−1), f(xn−2))

≤ λ2d(xn−1, xn−2)

≤ λnd(x1, x0)

= λnd(f(x0), x0)

For n ∈ N and m ≥ 1

d(xn+m, xn) ≤ d(xn+m, xn+m−1) + d(xn+m−1, xn+m−2) + · · ·+ d(xn+1, xn)

= d(f(xn+m−1), f(xn+m−2)) + d(f(xn+m−2), f(xn+m−3)) + · · ·+ d(f(xn), f(xn−1))

≤ (λn+m−1 + λn+m−2 + · · ·+ λn)d(f(x0), x0)

= λn

m−1∑
j=0

λjd(f(x0), x0)

< λn

(
∞∑
j=0

λj

)
d(f(x0), x0)

=
λn

1− λ
d(f(x0), x0)

Since the lim
n→∞

λn = 0, hence {xn} is a Cauchy sequence, and admits a limit x∗ ∈ X,

for X is complete. Furthermore if we use the triangular inequality, we get

d(x∗, f(x∗)) ≤ d(x∗, xn) + d(xn, f(x
∗))

= d(x∗, xn) + d(f(xn−1), f(x
∗))

≤ d(x∗, xn) + λd(xn−1, x
∗)

→ 0 as n → ∞

8



Thus we have shown that d(x∗, f(x∗)) = 0, hence f(x∗) = x∗.

9



Chapter 2

Generalized b-metric and fixed

point theorems.

2.1 Introduction

The concept of a b-metric was initiated from the contributions of Bourbaki [7] and

Bakhtin [5]. Czerwik [10] gave an axiom which was weaker than the triangular in-

equality and formally defined a b-metric space with a view of generalizing the Banach

contraction mapping theorem. Later on, Fagin et al. [14] discussed some kind of re-

laxation in the triangular inequality and called this new distance measure a non-linear

elastic pattern matching. These applications led us to introduce the concept of a gen-

eralized b-metric type and that the results obtained for such spaces become viable in

different fields.

Definition 2.1.1. Let X be a non-empty set. A function d : X×X → R+ is a b-metric

on X if there exists a real number α ≥ 1 such that the following conditions hold for

10



all x, y, z ∈ X :

(i) d(x, y) = 0 ⇐⇒ x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, y) ≤ α [d(x, z) + d(z, y)]

The pair (X, d) is a called a b-metric space [41]. A b-metric with α = 1 is exactly the

usual metric.

Definition 2.1.2. Let X be a non-empty set. A function ρ : X × X → R+ is a

generalized α, β b-metric on X if there exists a real numbers α, β ≥ 1 such that the

following conditions hold for all x, y, z ∈ X :

(i) ρ(x, y) = 0 ⇐⇒ x = y

(ii) ρ(x, y) = ρ(y, x)

(iii) ρ(x, y) ≤ αρ(x, z) + βρ(z, y)

We shall refer to (iii) as the α, β relaxed triangle inequality. The pair (X, ρ) is a called

a generalized b-metric space. A generalized b-metric with α = β is exactly a b-metric.

In the special case α = 1 we obtain the a strong b-metric, [19, 41]. The following

examples justify this generalization found in definition 2.1.2.

Example 1. Let X = {1, 2, 3} be a discrete set and let ρ : X×X → R+ be a function

11



defined by

ρ(1, 1) = ρ(2, 2) = ρ(3, 3) = 0

ρ(1, 2) = ρ(2, 1) =
1

3

ρ(1, 3) = ρ(3, 1) = 3

ρ(2, 3) = ρ(3, 2) = 4

From the definition of the b-metric properties (i), (ii) are apparent. For all x, y, z ∈ X

it follows that

ρ(x, y) ≤ 2ρ(x, z) + 3ρ(z, y).

Example 2. Let X = (1, 3) and let ρ : X ×X → R+ be a function defined by

ρ(x, y) =


e|x−y|, if x ̸= y

0, iff x = y.

The first two properties of a generalized b-metric are inherent in the definition. We

verify the α, β triangle inequality as follows:

For x ̸= y, z ∈ X and θ ∈ (0, 1)

ρ(x, y) ≤ e|x−z|+|z−y|

= eθ|x−z|+(1−θ)|z−y|e(1−θ)|x−z|+θ|z−y| (2.1)

≤ sup
x,y,z∈X

eθ|x−z|+(1−θ)|z−y| ((1− θ)e|x−z| + θe|z−y|) (2.2)

≤ (1− θ)e2e|x−z| + θe2e|z−y|

= (1− θ)e2ρ(x, z) + θe2ρ(z, y).

Where from (2.1) to (2.2) we used Jensens inequality [11] on the convex function et.

For θ = 1
3
we have constants α = 2

3
e2 and β = 1

3
e2.
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2.2 Topological properties of the generalized b-metric

type.

One introduces a topology on a generalized b-metric space (X, ρ) in the usual way. The

open ball B(x, r) with centre x ∈ X and radius r > 0 is given by

B(x, r) = {y ∈ X : ρ(x, y) < r}

A subset A of X is open if for every x ∈ A there is a number r > 0 such that

B(x, r) ⊆ A. Denoting by τρ the family of all open subsets of X it follows that τρ

satisfies the axioms of a topology.

Let (X, ρ) be a generalized b-metric space. Then the b-metric is continuous if

ρ(xn, x) → 0, ρ(yn, y) → 0 as n → ∞ implies ρ(xn, yn) → 0.

Furthermore, the b-metric is separately continuous if for every x ∈ X,

ρ(yn, y) → 0 as n → ∞ implies ρ(x, yn) → ρ(x, y).

The topology τρ generated by a generalized b-metric ρ has a peculiar property in that

a ball B(x, r) need not be τρ- open as illustrated by the following example, [25].

13



Example 3. Let X = Z+ ∪ {0}, ϵ > 0 and define ρ : X ×X → R+ by

ρ(0, 1) = 1

ρ(1,m) =
1

m

ρ(0,m) = 1 + ϵ for m ≥ 2

ρ(n,m) =
1

n
+

1

m
for n ≥ 2

ρ(n, n) = 0.

Then

ρ(m,n) ≤ αρ(m, k) + βρ(k, n)

for all m,n, k ∈ X. The ball B(0, 1 + ϵ
2
) = {0, 1} and the ball B(1, r) contains an

infinite number of terms for every r > 0. Now since 1 ∈ B(0, 1 + ϵ
2
) it follows that

B(1, r) ̸⊂ B(0, 1 + ϵ
2
) for every r > 0 illustrating that the ball B(0, 1 + ϵ

2
) is not τρ

open.

Let X be a non-empty set and B : X × (0,∞) → P(X) satisfying

(i)
⋂

r>0B(x, r) = {x}

(ii)
⋃

r>0B(x, r) = X

(iii) 0 < r1 ≤ r2 =⇒ B(x, r1) ⊂ B(x, r2)

(iv) there exists c ≥ 1 such that y ∈ B(x, r) =⇒ B(x, r) ⊂ B(y, cr) and

B(y, r) ⊂ B(x, cr) for all x ∈ X and r > 0.

A family of subsets satisfying properties (i)-(iv) generates a b-metric on X, [2].

14



Condition (i)-(iii) are verified easily for an α, β b-metric. We shall show property (iv).

If y ∈ B(x, r) and z ∈ B(x, r) then ρ(y, z) ≤ αρ(y, x) + βρ(x, z) < (α + β)r where

α+β ≥ 2 thus z ∈ B(y, (α+β)r) and in a similar manner, if y ∈ B(x, r) and z ∈ B(y, r)

then ρ(x, z) ≤ αρ(x, y)+βρ(y, z) < (α+β)r thus z ∈ B(x, (α+β)r). Thus this family

of subsets also generates an α, β b-metric.

2.3 Completeness

Definition 2.3.1. Let (X, ρ) be a generalized b-metric space, and let {xn} be a se-

quence in X and x ∈ X. Then:

(i) The sequence {xn} converges to x, if limn→∞ ρ(xn, x) = 0.

(ii) The sequence {xn} is a Cauchy in (X, ρ) if limn,m→∞ ρ(xn, xm) = 0.

(iii) The space (X, ρ) is complete if every Cauchy sequence {xn} in X converges to a

point x ∈ X such that limn,m→∞ ρ(xn, xm) = limn→∞ ρ(xn, x) = 0.

Definition 2.3.2.

(i) If (X1, ρ1) and (X2, ρ2) are generalized b-metric spaces then a mapping i : X1 →

X2 is an isometric embedding if

ρ2(i(x), i(y)) = ρ1(x, y)

for all x, y ∈ X1.

(ii) A completion of a generalized b-metric space (X, ρ) is a complete b-metric space

(Y, ρ) such that there exists an isometric embedding i : X → Y with i(X) ⊂ Y

dense in Y.
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2.4 Fixed point theorem for generalized b-metric

spaces

As a consequence of (iii) of Definition 1.2, the α, β triangle inequality, we get for

n,m ∈ N with m > n

ρ(xn, xm)

≤ αρ(xn, xn+1) + βρ(xn+1, xm)

≤ αρ(xn, xn+1) + β[αρ(xn+1, xn+2) + βρ(xn+2, xm)] (2.3)

Successively applying the α, β triangle inequality, we obtain

ρ(xn, xm) ≤ α
m−n−2∑

i=0

βiρ(xn+i, xn+i+1) + βm−n−1ρ(xm−1, xm). (2.4)

In line with the α, β triangle inequality, one may consider the α, β relaxed polygonal

inequality given by

ρ(xn, xm) ≤
(α + β)

2

m−n−1∑
i=0

ρ(xn+i, xn+i+1) (2.5)

where xi ∈ X for all i.

Definition 2.4.1. Let (X, ρ) be a generalized b-metric space then a mapping T : X →

X is a contraction on X if there is a real number 0 < λ < 1 such that for all x, y ∈ X

ρ(Tx, Ty) ≤ λρ(x, y). (2.6)

The Banach fixed point theorem gives a constructive procedure for obtaining approxi-

mations to the fixed point called iterations. By the definition, in this method we choose

an arbitrary x0 and calculate recursively a sequence from the relation

xn = T (xn−1) = T n(x0). (2.7)
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By a repeated use of (2.6) and (2.7) we get

ρ(xn+i, xn+i+1) = ρ(T n+i(x0), T
n+i(x1))

≤ λρ(T n+i−1(x0), T
n+i−1(x1))

...

≤ λn+iρ(x0, x1). (2.8)

Theorem 2.1. Let (X, ρ) be a complete generalized b-metric space, where ρ satisfies

the α, β triangle inequality and T : X → X a contraction mapping such that 0 < λ < 1
β
.

Then T has a unique fixed point x∗ ∈ X.

Proof. We begin by proving that {xn} is a Cauchy sequence. Using (2.4) and (2.8) we

get

ρ(xn, xn+k+1) ≤ α
k−1∑
i=0

βiρ(xn+i, xn+i+1) + βkρ(xn+k, xn+k+1)

≤ α
k−1∑
i=0

βiλn+iρ(x0, x1) + βkλn+kρ(x0, x1)

= λn

[
α

k−1∑
i=0

βiλi + βkλk

]
ρ(x0, x1)

= λn

[
α
1− βkλk

1− βλ
+ βkλk

]
ρ(x0, x1)

=
λn

(1− βλ)

[
α− βkλk(α + βλ− 1)

]
ρ(x0, x1)

< λn α

(1− βλ)
ρ(x0, x1). (2.9)

Since limn→∞ λn = 0, it follows that {xn} is a Cauchy sequence. By the completeness of

(X, ρ) it follows that there exists x∗ ∈ X such that limn→∞ ρ(xn, x
∗) = 0. Furthermore,
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using the α, β triangle inequality, we have

ρ(x∗, Tx∗) ≤ αρ(x∗, xn+1) + βρ(xn+1, Tx
∗)

≤ αρ(x∗, xn+1) + βρ(xn+1, x
∗)

→ 0 as n → ∞. (2.10)

Hence ρ(x∗, Tx∗) = 0 and so Tx∗ = x∗. Suppose there exists x∗∗, x∗ ∈ X such that

Tx∗ = x∗ and Tx∗∗ = x∗∗. Then

ρ(x∗∗, x∗) = ρ(Tx∗∗, Tx∗) ≤ λρ(x∗∗, x∗), (2.11)

which implies that ρ(x∗∗, x∗) = 0, i.e., x∗∗ = x∗.

Remark 1. Using (2.9) we get

ρ(xn, x
∗) ≤ αρ(xn, xn+k+1) + βρ(xn+k+1, x

∗)

≤ λn α2

(1− βλ)
ρ(x0, x1) + βρ(xn+k+1, x

∗). (2.12)

Letting k → ∞ we get the order of convergence:

ρ(xn, x
∗) ≤ λn α2

(1− βλ)
ρ(x0, x1) (2.13)

which implies at least linear convergence.

Theorem 2.2. Let (X, ρ) be a complete generalized b-metric space, where ρ satisfies

the α, β relaxed polygonal inequality and T : X → X a contraction mapping such that

0 < λ < 1. Then T has a unique fixed point x∗ ∈ X.

Proof. The proof follows in line with the Theorem 2.1
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Remark 2. Using (2.5) and (2.8) results in

ρ(xn, xn+k) ≤
(α + β)

2

k−1∑
i=0

ρ(xn+i, xn+i+1)

≤ (α + β)

2

(
λn + λn+1 + · · ·+ λn+k

)
ρ(x0, x1)

=
(α + β)

2
λn1− λk+1

1− λ
ρ(x0, x1). (2.14)

Hence we obtain the priori estimate

ρ(xn, x
∗) ≤ (α + β)

2(1− λ)
λnρ(x0, x1). (2.15)

Definition 2.4.2. Let (X, ρ) be a complete b-metric space such that a mapping

T : X → X is a Kannan contraction [17] if there exists λ ∈ [0, 1
2
) such that

ρ(Tx, Ty) ≤ λ [ρ(x, Tx) + ρ(y, Ty)] (2.16)

for all x, y ∈ X.

Let x0 ∈ X be fixed, then for n ∈ N

ρ(T nx0, T
n+1x0) = ρ(TT n−1x0, TT

nx0)

≤ λ
[
ρ(T nx0, T

n−1x0) + ρ(T n+1x0, T
nx0)

]
, (2.17)

then it follows that

ρ(T nx0, T
n+1x0)− λρ(T n+1x0, T

nx0) ≤ λρ(T nx0, T
n−1x0) (2.18)

which implies that

ρ(T nx0, T
n+1x0) ≤

λ

1− λ
ρ(T nx0, T

n−1x0). (2.19)

Successively using (2.19) we obtain that

ρ(T nx0, T
n+1x0) ≤

(
λ

1− λ

)n

ρ(x0, Tx0). (2.20)
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Theorem 2.3. Let (X, ρ) be a complete generalized b-metric space and let T : X → X

be a mapping for which there exists λ ∈
[
0, 1

β+1

)
such that

ρ(Tx, Ty) ≤ λ [ρ(x, Tx) + ρ(y, Ty)] (2.21)

for all x, y ∈ X. Then T has a unique fixed point.

Proof. We begin by showing that for x0 ∈ X fixed, and for n ∈ N

{T nx0} is a Cauchy sequence in (X, ρ): for m,n ∈ X with m > n, and using inequality

(2.4) and (2.20), we get

ρ(T nx0, T
mx0)

≤ α
m−n−2∑

i=0

βiρ(T n+ix0, T
n+i+1x0) + βm−n−1ρ(Tm−1x0, T

mx0)

≤ α
m−n−2∑

i=0

βi

(
λ

1− λ

)n+i

ρ(x0, Tx0) + βm−n−1

(
λ

1− λ

)m−1

ρ(x0, Tx0)

=

[
α

m−n−2∑
i=0

βi

(
λ

1− λ

)n+i

+ βm−n−1

(
λ

1− λ

)m−1
]
ρ(x0, Tx0)

=

(
λ

1− λ

)n
[
α

m−n−2∑
i=0

βi

(
λ

1− λ

)i

+ βm−n−1

(
λ

1− λ

)m−n−1
]
ρ(x0, Tx0)

=

(
λ

1− λ

)n
[
α
1−

(
βλ
1−λ

)m−n−1

1−
(

βλ
1−λ

) +

(
βλ

1− λ

)m−n−1
]
ρ(x0, Tx0). (2.22)

It follows that as n → ∞ that the sequence {T nx0} is a Cauchy sequence in (X, ρ).

Since (X, ρ) is complete there exists a z0 ∈ X such that

lim
n→∞

ρ(T nx0, z0) = 0.

By the contraction (2.21), we obtain that

ρ(T n+1x0, T z0) ≤ λρ(T n+1x0, T
nx0) + λρ(z0, T z0) (2.23)
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In the limit as n → ∞, we get

ρ(z0, T z0) ≤ λρ(z0, T z0). (2.24)

Since λ < 1 we deduce that ρ(z0, T z0) = 0. If we assume that z′ ∈ X is any fixed point

then we obtain

ρ(z0, z
′) = ρ(Tz0, T z

′)

≤ λ [ρ(z0, T z0) + ρ(z′, T z′)]

= λ [ρ(z0, z0) + ρ(z′, z′)]

= 0 (2.25)

which implies that z′ = z0.

Remark 3. From (2.22) we obtain the priori estimate

ρ(T n(x0), z0) ≤
(

λ

1− λ

)n
(

α

1− βλ
1−λ

)
ρ(x0, Tx0). (2.26)
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Chapter 3

Generalized convex metric and

fixed point theorems.

3.1 Introduction

In 1922 Banach [39] proved his famous fixed point theorem that every contraction

mapping on a complete metric space has a unique fixed point. Since then there has

been numerous extensions to his work, especially in changing the underlying structure

of the metric space or introducing new contraction types. Czerwik [10] relaxed the

triangular inequality and formally defined a b-metric space. In 1970, Takahasi [40]

introduced the concept of convexity in metric spaces and proved fixed point theorems

for contraction mappings in such spaces. Chen et. al. [8] discussed fixed point theorems

in convex b-metric spaces. Here we discuss such concepts in a convex αβ b-metric space.

Fixed point theory is important in non linear analysis and functional analysis. It finds

application in systems of non linear differential, integral and algebraic equations.

22



3.2 Preliminaries

Definition 3.2.1. [13] Let I = [0, 1). Define ρ : X × X → [0,∞) and a continuous

function ω : X × X × I → X. Then ω is said to be a convex structure on X if the

following holds.

ρ(z, ω(x, y;µ)) ≤ µρ(z, x) + (1− µ)ρ(z, y) (3.1)

for each z ∈ X and (x, y;µ) ∈ X ×X × I

Example 4. Let X = [1, 3] and define ρ by

ρ(x, y) =


3|x−y| x ̸= y

0 x = y

(3.2)

(X, ρ) is a αβ b-metric space as

ρ(x, y) ≤ 3|x−z|+|z−y|

= 3
1
3
|x−z|+ 2

3
|(z−y)|3

2
3
|x−z|+ 1

3
|z−y|

≤
(
1

3
3|x−z| +

2

3
3|z−y|

)
sup
X

3
2
3
|x−z|+ 1

3
|z−y|

= 3ρ(x, z) + 6ρ(z, y)

Since

ρ(1, 3) > ρ(1, 2)+ρ(2, 3) (3.3)
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(X, ρ) is not a metric space. Define ω(x, y;µ) = µx+ (1− µ)y for µ ∈ I, then

ρ(z, ω(x, y;µ)) = ρ(z, µx+ (1− µ)y)

= 3|z−µx−(1−µ)y|

= 3|µ(z−x)+(1−µ)(z−y)|

≤ 3µ|(z−x)|+(1−µ)|(z−y)|

≤ µ3|z−x| + (1− µ)3|z−y|

= µρ(z, x) + (1− µ)ρ(z, y)

3.3 Main Results

Theorem 3.1. Let (X, ρ, ω) be a compete convex α, β b-metric space and

T : X → X be a contraction mapping, that is there exists λ ∈ [0, 1) such that

ρ(Tx, Ty) ≤ λρ(x, y), ∀x, y ∈ X. Choose x0 ∈ X such that ρ(x0, Tx0) < ∞ and

define xn = ω(xn−1, Txn−1;µn−1), where

0 < µn−1 <

1
β3 − λ
α
β
− λ

, λ <
1

β3

for each n ∈ N, then T has a unique fixed point in X.

Proof.

ρ(xn, xn+1) = ρ(xn, ω(xn, Txn;µn)) ≤ (1− µn)ρ(xn, Txn) (3.4)
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ρ(xn, Txn) ≤ αρ(xn, Txn−1) + βρ(Txn−1, Txn) (3.5)

≤ αρ(ω(xn−1, Txn−1;µn−1), Txn−1) + βλρ(xn−1, xn) (3.6)

≤ αµn−1ρ(xn−1, Txn−1) + βλ(1− µn−1)ρ(xn−1, Txn−1) (3.7)

= [αµn−1 + βλ(1− µn−1)] ρ(xn−1, Txn−1) (3.8)

<
1

β2
ρ(xn−1, Txn−1) (3.9)

< ρ(xn−1, Txn−1) (3.10)

Hence {ρ(xn, Txn)} is a decreasing sequence of non-negative reals. Hence there exists

γ ≥ 0 such that limn→∞ ρ(xn, Txn) = γ. If γ > 0 then letting n → ∞ in (3.10) we have

γ < γ, a contraction. Hence γ = 0 and from (3.4) it follows that limn→∞ ρ(xn, Txn) = 0.

We now show that {xn} is a Cauchy sequence. Let m > n then

ρ(xm, xn) ≤ αρ(xn, xn+1) + βρ(xn+1, xm) (3.11)

≤ αρ(xn, xn+1) + β [αρ(xn+1, xn+2) + βρ(xn+2, xm)] (3.12)

≤ αρ(xn, xn+1) + βαρ(xn+1, xn+2) + β2ρ(xn+2, xm) (3.13)

≤ αρ(xn, xn+1) + βαρ(xn+1, xn+2) + β2ρ(xn+2, xm) (3.14)

+ · · · βm−n−1ρ(xm−1, xm) (3.15)

< α
m−n−1∑
k=0

βkρ(xn+k, xn+k+1) (3.16)

25



Now from (3.4),(3.9) and (3.10) it follows that

ρ(xn, xn+1) = ρ(xn, ω(xn, Txn;µn)) ≤ (1− µn)ρ(xn, Txn) (3.17)

< ρ(xn, Txn) (3.18)

<
1

β2
ρ(xn−1, Txn−1) (3.19)

<
1

β4
ρ(xn−2, Txn−2) (3.20)

<
1

β2k
ρ(xn−k, Txn−k) (3.21)

(3.22)

Hence

ρ(xn+k, xn+k+1) <
1

β2k
ρ(xn, Txn) (3.23)

Substituting (3.23) in (3.16) we obtain

ρ(xm, xn) < α
m−n−1∑
k=0

1

βk
ρ(xn, Txn) (3.24)

< αρ(xn, Txn)
∞∑
k=0

(
1

β

)k

(3.25)

=
αβ

β − 1
ρ(xn, Txn). (3.26)

Hence limm,n→∞ ρ(xm, xn) = 0, which implies that {xn} is Cauchy. By the completeness

of X there exists x⋆ ∈ X such that limn→∞ ρ(xn, x
⋆) = 0. We now verify that x⋆ is a

fixed point of T .

ρ(x⋆, Tx⋆) ≤ αρ(x⋆, xn) + βρ(xn, Tx
⋆) (3.27)

≤ αρ(x⋆, xn) + β [αρ(xn, Txn) + βρ(Txn, Tx
⋆)] (3.28)

≤ αρ(x⋆, xn) + βαρ(xn, Txn) + β2λρ(xn, x
⋆) (3.29)

=
(
α + β2λ

)
ρ(x⋆, xn) + βαρ(xn, Txn) (3.30)
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Let n → ∞ in (3.30) to conclude that ρ(x⋆, Tx⋆) → 0, hence Tx⋆ = x⋆. If x⋆⋆ is

another fixed point of T then

ρ(x⋆, x⋆⋆) ≤ ρ(Tx⋆, Tx⋆⋆) ≤ λρ(x⋆, x⋆⋆). (3.31)

Hence ρ(x⋆, x⋆⋆) = 0 otherwise λ ≥ 1 is a contradiction and the fixed point is unique.

Theorem 3.2. Let (X, ρ, ω) be a complete convex α, β b-metric space and T : X → X

be defined by ρ(Tx, Ty) ≤ λ [ρ(x, Tx) + ρ(y, Ty)] ,∀x, y ∈ X and for 0 < λ < 1
β4 .

Choose x0 ∈ X such that ρ(x0, Tx0) < ∞ and define xn = ω(xn−1, Txn−1;µn−1), where

0 < µn−1 <
1

α

(
1

β2
− 1

β3
− 1

β5

)
, 1 + β2 < β3

for each n ∈ N, then T has a unique fixed point in X.

Proof.

ρ(xn, xn+1) = ρ(xn, ω(xn, Txn;µn)) ≤ (1− µn)ρ(xn, Txn) (3.32)

ρ(xn, Txn) ≤ αρ(xn, Txn−1) + βρ(Txn−1, Txn) (3.33)

≤ αρ(xn, Txn−1) + βλ [ρ(xn−1, Txn−1) + ρ(xn, Txn)] (3.34)

= αρ(ω(xn−1, Txn−1;µn−1), Txn−1) + βλρ(xn−1, Txn−1) (3.35)

+ βλρ(xn, Txn) (3.36)

= αµn−1ρ(xn−1, Txn−1) + βλρ(xn−1, Txn−1) + βλρ(xn, Txn) (3.37)

We observe that 0 < 1− βλ, hence

ρ(xn, Txn) ≤
αµn−1 + βλ

1− βλ
ρ(xn−1, Txn−1) (3.38)

≤ ρ(xn−1, Txn−1)

β2
(3.39)
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as proved in Theorem 3.1. Hence ρ(xn, Txn) is a decreasing sequence that converges

to zero and is also Cauchy. If limn→∞ ρ(xn, x
⋆) = 0 then

ρ(x⋆, Tx⋆) ≤ αρ(x⋆, xn) + βρ(xn, Tx
⋆) (3.40)

≤ αρ(x⋆, xn) + β[αρ(xn, Txn) + βρ(Txn, Tx
⋆)] (3.41)

≤ αρ(x⋆, xn) + αβρ(xn, Txn) + β2λ[ρ(xn, Txn) + ρ(x⋆, Tx⋆)] (3.42)

Then

(
1− β2λ

)
ρ(x⋆, Tx⋆) ≤ αρ(x⋆, xn) +

(
αβ2λ

)
ρ(xn, Txn) (3.43)

≤ αρ(x⋆, xn) +
(
αβ2λ

) ρ(x0, Tx0)

β2n
(3.44)

Letting n → ∞ we obtain ρ(x⋆, Tx⋆) = 0, so x⋆ is a fixed point of T . If x⋆⋆ is another

fixed point of T then

ρ(x⋆, x⋆⋆) = ρ(Tx⋆, Tx⋆⋆) ≤ λ[ρ(x⋆, Tx⋆) + ρ(x⋆⋆, Tx⋆⋆)] = 0 (3.45)

proving that the fixed point is unique.

Lemma 3.3[39] Let {yn}, {zn} be non-negative sequences satisfying yn+1 ≤ zn + hyn

for all n ∈ N, 0 ≤ h < 1, limn→∞ zn = 0, then limn→∞ yn = 0

Definition 3.3.1. Let T be a self map on a compete α, β b-metric space (X, ρ). The

iterative procedure xn+1 = f(T, xn) is weakly T -stable if {xn} converges to a fixed

point x⋆ of T and if {yn} is a sequence in X such that limn→∞ ρ(yn+1, f(T, yn)) = 0

and {ρ(yn, T yn)} is bounded then limn→∞ yn = x⋆.

Theorem 3.3. Under the assumptions of Theorem 3.1, if in addition limn→∞ µn = 0,

then Mann’s iteration is weakly T -stable.
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Proof. From Theorem 3.1 x⋆ is a fixed point of T in X. If {yn} is a sequence such that

limn→∞ ρ(yn+1, ω(yn, T yn;µn)) = 0 and {ρ(yn, T yn)} is bounded then

ρ(yn+1, x
⋆) ≤ αρ(yn+1, ω(yn, T yn;µn)) + βρ(ω(yn, T yn;µn), x

⋆) (3.46)

≤ αρ(yn+1, ω(yn, T yn;µn)) + β[αρ(ω(yn, T yn;µn), T yn)

+ βρ(Tyn, Tx
⋆)] (3.47)

≤ αρ(yn+1, ω(yn, T yn;µn)) + βαµnρ(yn, T yn) + β2λρ(yn, x
⋆)] (3.48)

= zn + β2λρ(yn, x
⋆)]. (3.49)

Since β2λ < 1 and {ρ(yn, T yn)} is bounded, limn→∞ zn = 0 and hence by Lemma 3.3

limn→∞ ρ(yn, x
⋆) = 0.

Theorem 3.4. Under the assumptions of Theorem 3.2, if in addition limn→∞ µn = 0,

and if α, β, λ satisfy additionally αβ2

1−λβ
< 1 then Mann’s iteration is weakly T -stable.

Proof. From Theorem 3.2 x⋆ is a fixed point of T in X. If {yn} is a sequence such that

limn→∞ ρ(yn+1, ω(yn, T yn;µn)) = 0 and {ρ(yn, T yn)} is bounded then

ρ(yn+1, x
⋆) ≤ αρ(yn+1, ω(yn, T yn;µn)) + βρ(ω(yn, T yn;µn), x

⋆) (3.50)

≤ αρ(yn+1, ω(yn, T yn;µn)) + βαρ(ω(yn, T yn;µn), T yn) + β2ρ(Tyn, x
⋆)

(3.51)

Now

ρ(Tyn, x
⋆) = ρ(Tyn, Tx

⋆) ≤ λρ(yn, T yn) (3.52)

≤ λαρ(yn, x
⋆) + λβρ(x⋆, T yn). (3.53)

From which we get

ρ(Tyn, x
⋆) ≤ λα

1− λβ
ρ(yn, x

⋆). (3.54)
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ρ(yn+1, x
⋆) ≤ αρ(yn+1, ω(yn, T yn;µn)) + βαµnρ(yn, T yn) +

λαβ2

1− λβ
ρ(yn, x

⋆) (3.55)

= zn +
λαβ2

1− λβ
ρ(yn, x

⋆) (3.56)

Since λαβ2

1−λβ
< 1 and {ρ(yn, T yn)} is bounded, limn→∞ zn = 0 and hence by Lemma 3.3

limn→∞ ρ(yn, x
⋆) = 0.
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Chapter 4

Complex valued b-metric space

with fixed point theorems.

4.1 Introduction

The concept of a b-metric was initiated from the contributions of Bourbaki [7] and

Bakhtin [5]. Czerwik [10] gave an axiom which was weaker than the triangular in-

equality and formally defined a b-metric space with a view of generalizing the Banach

contraction mapping theorem. Later on, Fagin et al. [14] discussed some kind of re-

laxation in the triangular inequality and called this new distance measure a non-linear

elastic pattern matching. In 2011, A. Azzam, B. Fisher and M. Khan introduced the

notion of a complex valued metric space and called the complex-valued metric space

as an extension of the classical metric space and proved some common fixed point

theorems, [3]. In a similar way various authors have studied and proved the fixed

point results for mappings satisfying different types of contractive conditions in the
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framework of complex-valued metric spaces,[6]. In 2013, Rao, et al. introduced the

concept of a complex-valued b-metric space which is a generalization of the concept of

a complex-valued metric space, [27] and subsequent to that A.A Mukheimer obtained

common fixed point results, [21]. In this thesis, we generalize the concept of a complex-

valued b-metric and prove the common fixed results satisfying certain expressions in

this new space.

4.2 Preliminaries

Let C be the set of complex numbers and if z1, z2 ∈ C then define a partial ordering ≼

on C as follows:

z1 ≼ z2 ⇐⇒ Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2)

Futhermore, if z3 ∈ C, we obtain that following:

(i) If 0 ≼ z1 ≼ z2 then |z1| < |z2|

(ii)If z1 ≼ z2 and z2 ≼ z3 then z1 ≼ z3

(iii) If a, b ∈ R and a ≤ b then az ≼ bz for all z ∈ C

Definition 4.2.1. Let X be a non-empty set. A function d : X×X → C is a complex-

valued b-metric on X, [27], if there exists a real number α ≥ 1 such that the following

conditions hold for all x, y, z ∈ X :

(i) 0 ≼ d(x, y) and d(x, y) = 0 ⇐⇒ x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, y) ≼ α [d(x, z) + d(z, y)]
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The pair (X, d) is a called a complex-valued b-metric space.

Definition 4.2.2. Let X be a non-empty set. A function ρ : X × X → C is a

generalized α, β complex-valued b-metric on X if there exists real numbers α, β ≥ 1

such that the following conditions hold for all x, y, z ∈ X :

(i) 0 ≼ ρ(x, y) and ρ(x, y) = 0 ⇐⇒ x = y

(ii) ρ(x, y) = ρ(y, x)

(iii) ρ(x, y) ≼ αρ(x, z) + βρ(z, y)

The pair (X, ρ) is a called a α, β complex-valued b-metric space.

The following example justifies the generalization found in the definition.

Example 5. Let X = (1, 3) and let ρ : X ×X → C be a function defined by

ρ(x, y) =


e|x−y| + ie|x−y|, if x ̸= y

0, iff x = y.

To show that the example is a generalized α, β complex-valued b-metric, we only need

to verify the α, β triangle inequality:

For x ̸= y, z ∈ X and θ ∈ (0, 1)

ρ(x, y) ≼ (1 + i)e|x−z|+|z−y|

= (1 + i)eθ|x−z|+(1−θ)|z−y|e(1−θ)|x−z|+θ|z−y|

≼ sup
x,y,z∈X

eθ|x−z|+(1−θ)|z−y| ((1− θ)(1 + i)e|x−z| + θ(1 + i)e|z−y|)
≼ (1− θ)e2(1 + i)e|x−z| + θ(1 + i)e2e|z−y|

= (1− θ)e2ρ(x, z) + θe2ρ(z, y).

For θ = 1
3
we have constants α = 2

3
e2 and β = 1

3
e2.
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One introduces a topology on a generalized α, β b-metric space (X, ρ) in the usual way.

The open ball B(x, ϵ) with centre x ∈ X and radius 0 ≺ ϵ ∈ C is given by

B(x, ϵ) = {y ∈ X : ρ(x, y) ≺ ϵ}

A subset A of X is open if for every x ∈ A there is a number 0 ≺ ϵ ∈ C such that

B(x, ϵ) ⊆ A.

Definition 4.2.3. Let (X, ρ) be a generalized α, β complex-valued b-metric space, and

let {xn} be a sequence in X and x ∈ X. Then:

(i) The sequence {xn} converges to x ∈ X, if for every 0 ≺ ϵ ∈ C then there is

N ∈ N such that ρ(xn, x) ≺ ϵ. The sequence {xn} converges to x ∈ X ⇐⇒

|ρ(xn, x)| → 0 as n → ∞, [27].

(ii) The sequence {xn} is a Cauchy in (X, ρ) if for every ϵ ∈ C there is N ∈ N such

that ρ(xn, xn+m) ≺ ϵ, where m ∈ N. The sequence {xn} is a Cauchy sequence in

(X, ρ) ⇐⇒ |ρ(xn, xn+m)| → 0 as n → ∞ , where m ∈ N, [27].

(iii) The space (X, ρ) is complete if every Cauchy sequence {xn} in X converges to a

point x ∈ X.
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4.3 Fixed point theorem for generalized α, β complex-

valued b-metric spaces

As a consequence of (iii) of Definition 4.2.2 , the α, β triangle inequality, we get for

n,m ∈ N with m > n

ρ(xn, xm)

≼ αρ(xn, xn+1) + βρ(xn+1, xm)

≼ αρ(xn, xn+1) + β[αρ(xn+1, xn+2) + βρ(xn+2, xm)] (4.1)

Successively applying the α, β triangle inequality, we obtain

ρ(xn, xm) ≼ α
m−n−2∑

i=0

βiρ(xn+i, xn+i+1) + βm−n−1ρ(xm−1, xm). (4.2)

This theorem is a generalization of the fixed point theorem studied by Mishra, et al.,

in [20].

Theorem 4.1. Let (X, ρ) be a complete generalized α, β complex-valued b-metric space

and T : X → X a mapping such that

ρ(Tx, Ty) ≼ aρ(x, Tx) + bρ(y, Ty) + cρ(x, y)

for all x, y ∈ X, where a, b, and c are non-negative real numbers satisfying a+β(b+c) <

1, then T has a unique fixed point.

Proof. We begin by proving that for x0 ∈ X, the sequence {xn} generated by the re-

cussive formula xn = Txn−1 = T nx0 is a Cauchy sequence in X. For n ∈ N we obtain
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ρ(xn+2, xn+1) = ρ(Txn+1, Txn) (4.3)

≼ aρ(xn+1, Txn+1) + bρ(xn, Txn) + cρ(xn+1, xn)

= aρ(xn+2, xn+1) + bρ(xn+1, xn) + cρ(xn+1, xn)

= aρ(xn+2, xn+1) + (b+ c)ρ(xn+1, xn) (4.4)

(1− a)ρ(xn+2, xn+1) ≼ (b+ c)ρ(xn+1, xn)

ρ(xn+2, xn+1) ≼

(
b+ c

1− a

)
ρ(xn+1, xn) (4.5)

If we let γ =
(
b+c
1−a

)
then by repeated use of (4.5) we get

ρ(xn+2, xn+1) ≼ γn+1ρ(x1, x0). (4.6)

Using (4.2) and (4.6) for k ∈ N, we get

ρ(xn, xn+k+1) ≼ α
k−1∑
i=0

βiρ(xn+i, xn+i+1) + βkρ(xn+k, xn+k+1)

≼ α
k−1∑
i=0

βiγn+iρ(x0, x1) + βkγn+kρ(x0, x1)

= γn

[
α

k−1∑
i=0

βiγi + βkγk

]
ρ(x0, x1)

= γn

[
α
1− βkγk

1− βγ
+ βkγk

]
ρ(x0, x1)

=
γn

(1− βγ)

[
α− βkγk(α + βγ − 1)

]
ρ(x0, x1)

≺ γn α

(1− βγ)
ρ(x0, x1). (4.7)

Now,
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|ρ(xn, xn+k+1)| ≤ γn α

(1− βγ)
|ρ(x0, x1)| (4.8)

Since a+ β(b+ c) < 1 for β ≥ 1 then βγ < 1 and γ < 1. Taking the limit n → ∞ we

get γn → 0, which implies that |ρ(xn, xn+k+1)| → 0 as n → ∞ thus the sequence {xn}

is a Cauchy sequence. Since X is a complete α, β complex-valued b-metric space the

sequence converges to x∗ ∈ X. We show that x∗ is a fixed point of T . Using the α, β

triangle inequality, we have

ρ(x∗, Tx∗) ≼ αρ(x∗, xn+1) + βρ(xn+1, Tx
∗)

≼ αρ(x∗, xn+1) + βρ(Txn, Tx
∗)

≼ αρ(x∗, xn+1) + β[aρ(xn, Txn) + bρ(x∗, Tx∗) + cρ(xn, x
∗)] (4.9)

(1− bβ)ρ(x∗, Tx∗) ≼ αρ(x∗, xn+1) + aβρ(xn, Txn) + cβρ(xn, x
∗)

ρ(x∗, Tx∗) ≼
1

(1− bβ)
[αρ(x∗, xn+1) + aβρ(xn, xn+1) + cβρ(xn, x

∗)] (4.10)

Taking the absolute value of both sides, we get

|ρ(x∗, Tx∗)| ≤ 1

(1− bβ)
|[αρ(x∗, xn+1) + aβρ(xn, xn+1) + cβρ(xn, x

∗)]|

≤ 1

(1− bβ)
|αρ(x∗, xn+1)|+ aβγn |ρ(x0, x1)|+ cβ |ρ(xn, x

∗)| (4.11)

Since xn converges to x∗ , taking limit n → ∞ implies that |ρ(x∗, Tx∗)| → 0 which

yields x∗ = Tx∗. To show uniqueness of the fixed point. Assume that there exists

x∗∗ ∈ X such that Tx∗∗ = x∗∗. Then

ρ(x∗∗, x∗) = ρ(Tx∗∗, Tx∗) ≼ aρ(x∗∗, Tx∗∗) + bρ(x∗, Tx∗) + cρ(x∗, x∗∗) (4.12)
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which implies that ρ(x∗∗, x∗) ≼ cρ(x∗, x∗∗). Taking the absolute value of both sides, we

get |ρ(x∗∗, x∗)| ≤ c |ρ(x∗, x∗∗)|. This implies that ρ(x∗, x∗∗) = 0. Thus x∗ = x∗∗.

Theorem 4.2. Let (X, ρ) be a complete generalized complex-valued α, β b-metric space

and let T : X → X be a mapping such that,

ρ(Tx, Ty) ≼ aρ(x, Ty) + bρ(y, Tx) (4.13)

Which implies that for every x, y ∈ X, where a, b are non-negative constants with

βb < 1
1+α

. Then T has a fixed point in X and has a unique fixed point if a+ b < 1.

Proof. Let x0 ∈ X be fixed then consider the sequence generated by the formula

xn = Txn−1 = T nx0. Let n ∈ N then we get

ρ(xn+2, xn+1) = ρ(Txn+1, Txn)

≼ aρ(xn+1, Txn) + bρ(xn, Txn+1)

= aρ(xn+1, xn+1) + bρ(xn, xn+2)

= bρ(xn, xn+2)

≼ bαρ(xn, xn+1) + bβρ(xn+1, xn+2)

(1− bβ)ρ(xn+2, xn+1) ≼ bαρ(xn, xn+1)

ρ(xn+2, xn+1) ≼ bα
1−bβ

ρ(xn, xn+1) (4.14)
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Letting γ = bα
1−bβ

and repeated use of (4.14) yields

ρ(xn+1, xn+2) ≼ γρ(xn, xn+1)

≼ γ2ρ(xn−1, xn)

...

≼ γn+1ρ(x0, x1) (4.15)

Let m ∈ N then

ρ(xn, xn+m)

≼ αρ(xn, xn+1) + βρ(xn+1, xn+m)

≼ αρ(xn, xn+1) + β [αρ(xn+1, xn+2) + βρ(xn+2, xn+m)]

≼ αρ(xn, xn+1) + αβρ(xn+1, xn+2) + · · ·+ αβm−2ρ(xn+m−2, xn+m−1) + βm−1ρ(xn+m−1, xn+m)

≼ αγnρ(x0, x1) + αβγn+1ρ(x0, x1) + · · ·+ αγn+m−2βm−2ρ(x0, x1) + βm−1γn+m−1ρ(x0, x1)

≼ αγnρ(x0, x1)
[
1 + βγ + · · ·+ γm−2βm−2

]
+ βm−1γn+m−1ρ(x0, x1)

≼ αγnρ(x0, x1)
[
1−(βγ)m−1

1−βγ

]
+ βm−1γn+m−1ρ(x0, x1)

≼ α γn

1−βγ
ρ(x0, x1)[α− (βγ)m−1(α− 1 + βγ)]

≺ α γn

1−βγ
ρ(x0, x1)

Since βb < 1
1+α

then 0 < γ < 1
β
and βγ < 1. Taking the limit n → ∞, we get

γn → 0. This implies that |ρ(xn, xn+m)| → 0 as n → ∞. The sequence {xn} is a

Cauchy sequence in X. Since (X, ρ) is a complete complex-valued b-metric space then

{xn} converges to x∗ ∈ X.
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We show that x∗ is a fixed point of T .

ρ(x∗, Tx∗) ≼ αρ(x∗, xn) + βρ(xn, Tx
∗)

= αρ(x∗, xn) + βρ(Txn−1, Tx
∗)

≼ αρ(x∗, xn) + β [aρ(xn−1, Tx
∗) + bρ(Txn−1, Tx

∗)]

= αρ(x∗, xn) + βaρ(xn−1, Tx
∗) + βbρ(xn, x

∗)

≼ (α + βb)ρ(xn, x
∗) + βaαρ(xn−1, x

∗) + aβ2ρ(x∗, Tx∗)

[1− aβ2]ρ(x∗, Tx∗) ≼ (α + βb)ρ(xn, x
∗) + aβαρ(xn−1, x

∗). (4.16)

Since {xn} converges to x∗ we get |ρ(x∗, xn)| → 0 as n → ∞, and taking the absolute

value of both sides of (4.16) we obtain |ρ(x∗, Tx∗)| ≤ 0 thus ρ(x∗, Tx∗) = 0, which

implies that Tx∗ = x∗. To prove the uniqueness of the fixed point we assume that

there x∗, x∗∗ ∈ X such that Tx∗ = x∗ and Tx∗∗ = x∗∗. Now

ρ(x∗, x∗∗) = ρ(Tx∗, Tx∗∗) (4.17)

≼ aρ(x∗, Tx∗∗) + bρ(x∗∗, Tx∗) (4.18)

= aρ(x∗, x∗∗) + bρ(x∗∗, x∗) (4.19)

= (a+ b)ρ(x∗, x∗∗) (4.20)

Thus we get |ρ(x∗, x∗∗)| ≤ |(a+ b)| |ρ(x∗, x∗∗)|. Since a + b < 1 we get |ρ(x∗, x∗∗)| = 0

thus x∗ = x∗∗.

Kir et al. studied the following fixed point theorem in b-metric spaces and we general-

ized the result into a α, β complex-valued b-metric spaces, [19].

Theorem 4.3. Let (X, ρ) be a α, β complex-valued b-metric space and let T : X → X
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be a mapping such that

ρ(Tx, Ty) ≼ λ[ρ(x, Tx) + ρ(y, Ty)],

where λ ∈ [0, 1
2
), for all x, y ∈ X. Then T has a unique fixed point.

Proof. We begin by showing that for x0 ∈ X fixed, the sequence {xn} where xn =

Txn−1 = T nx0 is a Cauchy sequence in (X, ρ).

For n ∈ N, we have

ρ(xn+2, xn+1) = ρ(Txn+1, Txn)

≼ λ[ρ(xn+1, Txn+1) + ρ(xn, Txn)]

= λ[ρ(xn+1, xn+2) + ρ(xn, Txn)]

(1− λ)ρ(xn+2, xn+1) ≼ λρ(xn+1, xn)

ρ(xn+2, xn+1) ≼ λ
(1−λ)

ρ(xn+1, xn) (4.21)

Repeated use of (4.21), for n ∈ N, we get

ρ(xn+2, xn+1) ≼
(

λ
1−λ

)n+1
ρ(x1, x0).
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For m,n ∈ X

ρ(xn, xn+m)

≼ αρ(xn, xn+1) + βρ(xn+1, xn+m)

≼ αρ(xn, xn+1) + βαρ(xn+1, xn+2) + β2ρ(xn+2, xn+m)

≼ αρ(xn, xn+1) + αβρ(xn+1, xn+2) + · · ·+ αβm−2ρ(xn+m−2, xn+m−1)

+ βm−1ρ(xn+m−1, xn+m)

≼ α
(

λ
1−λ

)n
ρ(x0, x1) + αβ

(
λ

1−λ

)n+1
ρ(x0, x1) + · · ·+ αβm−2

(
λ

1−λ

)n+m−2
ρ(x0, x1)

+ βm−1
(

λ
1−λ

)n+m−1
ρ(x0, x1)

= α
(

λ
1−λ

)n
ρ(x0, x1)

[
1 + β

(
λ

1−λ

)
+ · · ·+ βm−2

(
λ

1−λ

)m−2
]
+ βm−1

(
λ

1−λ

)n+m−1
ρ(x0, x1)

Since λ ∈ [0, 1
2
) implies that 0 ≤ λ

1−λ
< 1. Taking the absolute value of both sides we

get |ρ(xn, xn+m)| → 0 as n → ∞. It follows that that the sequence {xn} is a Cauchy

sequence in (X, ρ). Since (X, ρ) is complete there exists a x∗ ∈ X such that

lim
n→∞

ρ(xn, x
∗) = 0.

We now show that x∗ is a fixed point of the mapping T .

ρ(x∗, Tx∗) ≼ αρ(x∗, xn) + βρ(xn, Tx
∗)

= αρ(x∗, xn) + βρ(Txn−1, Tx
∗)

≼ αρ(x∗, xn) + βλρ(xn−1, Txn−1) + βλρ(x∗, Tx∗)

[1− βλ] ρ(x∗, Tx∗) ≼ αρ(x∗, xn) + βλρ(xn−1, xn) (4.22)

Taking the absolute value of both sides of (4.22) and taking n → ∞, we obtain

ρ(x∗, Tx∗) = 0. This implies that x∗ is a fixed point of T .
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To prove the uniqueness of the fixed point, we assume that there are x∗, x∗∗ ∈ X such

that Tx∗ = x∗ and Tx∗∗ = x∗∗. Now

ρ(x∗, x∗∗) = ρ(Tx∗, Tx∗∗)

≼ λ [ρ(x∗, Tx∗) + ρ(x∗∗, Tx∗∗)]

= 0

Thus we get |ρ(x∗, x∗∗)| ≤ 0, which implies that x∗ = x∗∗. Hence x∗ is a unique fixed

point.

43



Chapter 5

Generalized Gb metric

5.1 Introduction

Mustafa et al.[24] introduced a new structure of generalized metric spaces which they

called G-metric spaces as a generalization of metric spaces, to develop and introduce a

new fixed point theory for various mappings in this new structure,[23]. Various authors

have proved some fixed point theorems in these spaces,[9, 24, 35].

Recently, Sedghi et al.[30] have introduced D∗-metric spaces which is a modification

of the definition of D-metric spaces introduced by Dhage, [12] and proved some basic

properties in D∗-metric spaces, [31]. Furthmore, they introduced the concept of S-

metric spaces and presented some properties for common fixed point theorem for a

self-mapping on complete S-metric spaces, [33].

Using the concepts of G-metric and b-metric, Ahhajani et al.[1] define a new type of

metric which they called a Gb-metric. They studied some basic properties of such a

metric and proved common fixed point theorem for mappings satisfying weakly compat-
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ible condition in complete partially ordered Gb-metric spaces and presented a nontrivial

example to verify their effectiveness and applicability, [1].

Definition 5.1.1. Let X be a nonempty set. A generalization of a metric or G-metric

is a function G : X ×X ×X → [0,∞) satisfying the following properties,[23]:

(i) for all x, y, z ∈ X G(x, y, z) = 0 ⇐⇒ x = y = z

(ii) for all x, y ∈ X, x ̸= y, 0 < G(x, x, y)

(iii) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, z ̸= y

(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = · · · symmetry in all variables

(v) for all x, y, z, w ∈ X, G(x, y, z) ≤ G(x,w,w) +G(w, y, z)

The pair (X,G) is a G-metric space.

Definition 5.1.2. Let X be a nonempty set and s ≥ 1 be a real number. A general-

ization of a G-metric is a function Gb : X ×X ×X → [0,∞) satisfying the following

properties,[1]:

(i) for all x, y, z ∈ X Gb(x, y, z) = 0 ⇐⇒ x = y = z

(ii) for all x, y ∈ X, x ̸= y, 0 < Gb(x, x, y)

(iii) for all x, y, z ∈ X, z ̸= y Gb(x, x, y) ≤ Gb(x, y, z)

(iv) Gb(x, y, z) = Gb(x, z, y) = Gb(y, x, z) = · · · symmetry in all variables

(v) for all x, y, z, w ∈ X, Gb(x, y, z) ≤ s [Gb(x,w,w) +Gb(w, y, z)]

The pair (X,Gb) is a generalized b-metric space or Gb-metric space.
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Example 6. Let X = R then define a mapping Gb : X × X × X → [0,∞) by

Gb(x, y, z) =
1
9
(|x− y|+ |y − z|+ |x− z|)2. Then (X,Gb) is a Gb-metric space[1].

Definition 5.1.3. Let X be a nonempty set and α, β ≥ 1 are real numbers. A

generalization of a Gb-metric is a function Gαβ
b : X × X × X → [0,∞) satisfying the

following properties:

(i) for all x, y, z ∈ X Gαβ
b (x, y, z) = 0 ⇐⇒ x = y = z

(ii) for all x, y ∈ X, x ̸= y, 0 < Gαβ
b (x, x, y)

(iii) for all x, y, z ∈ X, z ̸= y, Gαβ
b (x, x, y) ≤ Gαβ

b (x, y, z)

(iv) Gαβ
b (x, y, z) = Gαβ

b (x, z, y) = Gαβ
b (y, x, z) = · · · symmetry in all variables

(v) for all x, y, z, w ∈ X, Gαβ
b (x, y, z) ≤ αGαβ

b (x,w,w) + βGαβ
b (w, y, z)

The pair (X,Gαβ
b ) is an α, β generalized b-metric space or Gαβ

b -metric space. If α =

β = 1 then Gαβ = G. If α = β = s then Gαβ
b = Gb. For every generalized b-metric

Gb it is not always possible to find an α, β ≥ 1 such that 1 ≤ α, β < s satisfying the

property (v) of definition 5.1.3.

Example 7. Let X = (1, 3) then define Gαβ
b : X ×X ×X → [0,∞) by

Gαβ
b (x, y, z) =


e|x−y|+|y−z|+|z−x|, x ̸= y ̸= z

0 x = y = z,

To show that Gαβ
b (x, y, z) is a Gαβ

b -metric we verify properties (i)-(v) of definition 5.1.3.

Properties (i)-(iv) are easily verified. We only verify property (v) of definition 5.1.3.
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Let x, y, z ∈ X such that x ̸= y ̸= z then

Gαβ
b (x, y, z)

≤ e|x−w|+|y−w|+|y−z|+|z−w|+|x−w|

≤ e2|x−w|+|y−w|+|y−z|+|z−w|

≤ sup
x,y,z∈X

e
2
3
|2(x−w)|+ 1

3
[|y−w|+|y−z|+|z−w|]e

1
3
|2(x−w)|+ 2

3
[|y−w|+|y−z|+|z−w|]

≤ e
14
3

3
e|2(x−w)| +

2e
14
3

3
e[|y−w|+|y−z|+|z−w|]

=
e

14
3

3
Gαβ

b (x,w,w) +
2e

14
3

3
Gαβ

b (w, y, z)

with α = e
14
3

3
≥ 1 and β = 2e

14
3

3
≥ 1, α ̸= β and α < β.

5.2 Properties

The following properties can be deduced from the Definition 5.1.3.

Proposition 5.0.1. Let (X,Gαβ
b ) be a Gαβ

b -metric space. For all x, y, z ∈ X

(i) Gαβ
b (x, y, z) ≤ αGαβ

b (y, x, x) + βGαβ
b (x, x, z);

(ii) Gαβ
b (x, y, y) ≤ (α + β)Gαβ

b (y, x, x).

Definition 5.2.1. A Gαβ
b -metric is symmetric if Gαβ

b (x, x, y) = Gαβ
b (x, y, y) for all

x, y ∈ X.

Definition 5.2.2. Let (X,Gαβ
b ) be a Gαβ

b -metric space then for x0 ∈ X, ϵ > 0, a Gαβ
b

ball with center x0 and radius ϵ is

BGαβ
b
(x0, ϵ) =

{
y ∈ X;Gαβ

b (x0, y, y) < ϵ
}
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Proposition 5.0.2. Let x0 ∈ X, ϵ > 0 and if y ∈ BGαβ
b
(x0, ϵ) then there exists δ > 0

and c ≥ 1 such that BGαβ
b
(y, δ) ⊂ BGαβ

b
(x0, cϵ).

Proof. Let y ∈ BGαβ
b
(x0, ϵ) then Gαβ

b (x0, y, y) < ϵ and taking δ = ϵ−Gαβ
b (x0, y, y) > 0.

Now, let w ∈ BGαβ
b
(y, δ) then Gαβ

b (y, w, w) < δ. Then it follows that

Gαβ
b (x0, w, w) ≤ αGαβ

b (x0, y, y) + βGαβ
b (y, w, w)

≤ αGαβ
b (x0, y, y) + β(ϵ−Gαβ

b (x0, y, y))

≤ αGαβ
b (x0, y, y) + βϵ

≤ (α + β)ϵ

Thus w ∈ BGαβ
b
(x0, (α+β)ϵ). Since α, β ≥ 1 and taking c = α+β ≥ 2 we conclude.

Definition 5.2.3. Let (X,Gαβ
b ) be a Gαβ

b -space and {xn} a sequence in X :

(i) The sequence {xn} is a Gαβ
b -Cauchy sequence if for every ϵ > 0 there exists N ∈ N

such that Gαβ
b (xn, xm, xk) < ϵ for all n,m, k ≥ N .

(ii) The sequence {xn} is a Gαβ
b -convergent sequence if for every ϵ > 0 there exists

N ∈ N and x ∈ X such that Gαβ
b (xn, xm, x) < ϵ for all n,m ≥ N .

Proposition 5.0.3. Let (X,Gαβ
b ) be a Gαβ

b -metric space.

The sequence {xn} is Gαβ
b -Cauchy ⇐⇒ for any ϵ > 0 there exists N ∈ N such that

Gαβ
b (xn, xm, xm) < ϵ for all n,m ≥ N .

Proof. =⇒ : From Definition 5.2.3 it follows easily if we take k = m.

⇐= : If ϵαβ = ϵ
2max{α,β} then ϵαβ > 0 for any ϵ > 0 then there exists N ∈ N such that

Gαβ
b (xn, xm, xm) < ϵαβ for all n,m ≥ N . From definition 5.1.3, property (iv) and (v),
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we get

Gαβ
b (xn, xm, xk) ≤ αGαβ

b (xn, xm, xm) + βGαβ
b (xm, xm, xk)

< α

(
ϵ

2max {α, β}

)
+ β

(
ϵ

2max {α, β}

)
= ϵ

for all n,m, k ≥ N .

Proposition 5.0.4. [1] Let (X,Gαβ
b ) be a Gαβ

b -metric space. The following statements

are equivalent:

(a) If {xn} is a Gαβ
b -convergent sequence.

(b) for every ϵ > 0 there exists N ∈ N such that Gαβ
b (xn, xn, x) < ϵ for all n ≥ N .

(c) for every ϵ > 0 there exists N ∈ N such that Gαβ
b (xn, x, x) < ϵ for all n ≥ N .

Proposition 5.0.5. [1] Let (X,Gαβ
b ) be a Gαβ

b -metric space. Then the following state-

ments are equivalent:

(i) {xn} is Gαβ
b -convergent to x ∈ X;

(ii) Gαβ
b (xn, xn, x) → 0 as n → ∞;

(iii) Gαβ
b (xn, x, x) → 0 as n → ∞.

Definition 5.2.4. A Gαβ-metric space (X,Gαβ
b ) is Gαβ

b complete if every Gαβ
b - Cauchy

sequence is Gαβ-convergent.
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5.3 Fixed Point Theorems

Theorem 5.1. Let (X,Gαβ
b ) be a Gαβ

b -complete metric space. If a mapping T : X → X

satisfies the following

Gαβ
b (Tx, Ty, Tz) ≤ λGαβ

b (x, y, z) (5.1)

for all x, y, z ∈ X, where 0 ≤ λ < 1
β
. Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn} by xn+1 = Txn for n ∈ N.

Then it follows from inequality (5.1), for the sequence {xn} we get

Gαβ
b (xn, xn+1, xn+1) = Gαβ

b (Txn−1, Txn, Txn) ≤ λGαβ
b (xn−1, xn, xn) (5.2)

Repeatedly applying inequality (5.2), we get

Gαβ
b (xn, xn+1, xn+1) ≤ λnGαβ(x0, x1, x1) (5.3)

For n,m ∈ N and proposition 5.0.3, we get

Gαβ
b (xn, xn+m, xn+m)

≤ αGαβ
b (xn, xn+1, xn+1) + αβGαβ

b (xn+1, xn+2, xn+2)

+ αβ2Gαβ
b (xn+2, xn+3, xn+3) + · · ·+ βm−1Gαβ

b (xn+m−1, xn+m, xn+m)

≤ αGαβ
b (xn, xn+1, xn+1) + αβGαβ

b (xn+1, xn+2, xn+2)

+ αβ2Gαβ
b (xn+2, xn+3, xn+3) + · · ·+ αβm−1Gαβ

b (xn+m−1, xn+m, xn+m)

≤ α
(
λn + λn+1β + · · ·+ λn+m−1βm−1

)
Gαβ

b (x0, x1, x1)

≤ αλn 1

1− βλ
Gαβ

b (x0, x1, x1)

Since λ < 1
β
we conclude that for every ϵ > 0 there exsits N ∈ N such that

Gαβ
b (xn, xn+m, xn+m) < ϵ for n ≥ N , thus {xn} is a Gαβ

b -Cauchy sequence in (X,Gαβ
b ).
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Since (X,Gαβ
b ) is a complete-Gαβ

b metric space there exists x∗ and N1 ∈ N such that

Gαβ
b (xn, xn, x

∗) < ϵ for n ≥ N1.

To show that x∗ is a fixed point of T . Using the contraction condition we get

Gαβ
b (xn+1, Tx

∗, Tx∗) = Gαβ
b (Txn, Tx

∗, Tx∗)

≤ λGαβ
b (xn, x

∗, x∗)

Taking the limit as n → ∞, we get Gαβ
b (x∗, Tx∗, Tx∗) = 0. Thus Tx∗ = x∗.

To prove uniqueness we assume that T has fixed points x∗ and x∗∗. Then it follows

that

Gαβ
b (x∗∗, x∗, x∗) = Gαβ

b (Tx∗∗, Tx∗, Tx∗) ≤ λGαβ
b (x∗∗, x∗, x∗)

Since 0 ≤ λ < 1, we get x∗∗ = x∗.

Theorem 5.2. Let X,Gαβ
b be a Gαβ

b -complete metric space and a mapping T : X → X

such that

Gαβ
b (Tx, Ty, Tz)

≤ λmax
{
Gαβ(x, y, z), Gαβ(x, Tx, Tx), Gαβ(y, Ty, Ty),

Gαβ(z, Tz, Tz), Gαβ(x, Ty, Ty), Gαβ(y, Tz, Tz), Gαβ(z, Tx, Tx)
}

(5.4)

for all x, y, z ∈ X with 0 ≤ λ < 1
α+β

. Then T has a unique fixed point.

Proof. Let x0 ∈ X define a sequence xn+1 = Txn then for sequence {xn}, we get from
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inequality (5.4),

Gαβ
b (xn, xn+1, xn+1)

≤ λmax
{
Gαβ

b (xn−1, xn, xn), G
αβ
b (xn, xn+1, xn+1), G

αβ
b (xn−1, xn+1, xn+1),

Gαβ
b (xn, xn, xn)

}
≤ λmax

{
Gαβ

b (xn−1, xn, xn), G
αβ
b (xn, xn+1, xn+1), αG

αβ
b (xn−1, xn, xn)

+βGαβ
b (xn, xn+1, xn+1)

}
= λαGαβ

b (xn−1, xn, xn) + λβGαβ
b (xn, xn+1, xn+1) (5.5)

From inequality (5.5), and that λ < 1
α+β

, we get

Gαβ
b (xn, xn+1, xn+1) ≤

λα

1− λβ
Gαβ(xn−1, xn, xn). (5.6)

For n,m ∈ N , recursively applying inequality (5.6), we get

Gαβ
b (xn, xn+m, xn+m)

≤ αGαβ
b (xn, xn+1, xn+1) + αβGαβ

b (xn+1, xn+2, xn+2)

+ αβ2Gαβ
b (xn+2, xn+3, xn+3) + · · ·+ βm−1Gαβ

b (xn+m−1, xn+m, xn+m)

≤ αGαβ
b (xn, xn+1, xn+1) + αβGαβ

b (xn+1, xn+2, xn+2)

+ αβ2Gαβ
b (xn+2, xn+3, xn+3) + · · ·+ αβm−1Gαβ

b (xn+m−1, xn+m, xn+m)

≤ α

((
λα

1− λβ

)n

+

(
λα

1− λβ

)n+1

β + · · ·+
(

λα

1− λβ

)n+m−1

βm−1

)

Gαβ
b (x0, x1, x1)

≤ α

(
λα

1− λβ

)n
1− βλ

1− βλ(1 + α)
Gαβ

b (x0, x1, x1)

Since λ < 1
α+β

we conclude that for every ϵ > 0 there exsits N ∈ N such that

Gαβ
b (xn, xn+m, xn+m) < ϵ for n ≥ N , thus {xn} is a Gαβ

b -Cauchy sequence in (X,Gαβ
b ).
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Since (X,Gαβ
b ) is a complete-Gαβ

b metric space there exists x∗ and N1 ∈ N such that

Gαβ
b (xn, xn, x

∗) < ϵ for n ≥ N1.

To show that x∗ is a fixed point of T . For the Gαβ
b -convergent sequence {xn} , we get

Gαβ
b (xn, Tx

∗, Tx∗)

≤ λmax
{
Gαβ

b (xn−1, x
∗, x∗), Gαβ

b (xn−1, Tx
∗, Tx∗),

Gαβ
b (x∗, Tx∗, Tx∗), Gαβ

b (xn−1, xn, xn), G
αβ
b (x∗, xn, xn)

}
(5.7)

Letting n → ∞ in inequality (5.7), we get Gαβ
b (x∗, Tx∗, Tx∗) ≤ λGαβ

b (x∗, Tx∗, Tx∗).

Since λ < 1
α+β

< 1
2
the inequality is only valid if Gαβ

b (x∗, Tx∗, Tx∗) = 0 which implies

Tx∗ = x∗. For the uniqueness of the fixed point we assume that x∗∗ ∈ X is a fixed

point of T . Then from inequality (5.4), we get

Gαβ
b (Tx∗, Tx∗, Tx∗∗)

≤ λmax
{
Gαβ(x∗, x∗, x∗∗), Gαβ(x∗, Tx∗, Tx∗), Gαβ(x∗∗, Tx∗∗, Tx∗∗),

Gαβ(x∗∗, Tx∗∗, Tx∗∗), Gαβ(x∗, Tx∗∗, Tx∗∗), Gαβ(x∗, Tx∗∗, Tx∗∗),

Gαβ(x∗∗, Tx∗, Tx∗)
}

(5.8)

Thus, we obtain from Proposition 5.0.1,

Gαβ
b (x∗, x∗, x∗∗) ≤ λmax

{
Gαβ

b (x∗, x∗, x∗∗), Gαβ
b (x∗, x∗∗, x∗∗)

}
≤ λ(α + β)Gαβ(x∗, x∗, x∗∗).

It follows that

[1− λ(α + β)]Gαβ
b (x∗, x∗, x∗∗) ≤ 0

Since 1− λ(α + β) > 0, we conclude that Gαβ
b (x∗, x∗, x∗∗) = 0 thus x∗ = x∗∗.
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Theorem 5.3. Let X,Gαβ
b be a Gαβ

b -complete metric space and a mapping T : X → X

such that

Gαβ
b (Tx, Ty, Tz) ≤ λ1G

αβ(x, y, z) + λ2G
αβ(x, Tx, Tx) + λ3G

αβ(y, Ty, Ty)

+ λ4G
αβ(z, Tz, Tz) + λ5G

αβ(x, Ty, Ty) + λ6G
αβ(y, Tz, Tz)

+ λ7G
αβ(z, Tx, Tx) (5.9)

for all x, y, z ∈ X with λ1 + λ2 + λ3 + λ4 + (α + β)λ5 + λ6 + λ7 < 1. Then T has a

unique fixed point.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn}, where xn+1 = Txn. For

the sequence {xn} and from inequality (5.9), we get

Gαβ
b (xn, xn+1, xn+1)

≤ λ1G
αβ(xn−1, xn, xn) + λ2G

αβ(xn−1, xn, xn) + λ3G
αβ(xn, xn+1, xn+1)

+ λ4G
αβ(xn, xn+1, xn+1) + λ5G

αβ(xn−1, xn+1, xn+1) + λ6G
αβ(xn, xn+1, xn+1)

+ λ7G
αβ(xn, xn, xn)

≤ (λ1 + λ2)G
αβ
b (xn−1, xn, xn) + (λ3 + λ4 + λ6)G

αβ
b (xn, xn+1, xn+1)

+ λ5

(
αGαβ

b (xn−1, xn, xn) + βGαβ
b (xn, xn+1, xn+1

)
(5.10)

From inequality (5.10), we get

[1− (λ3 + λ4 + λ6)− λ5β]G
αβ
b (xn, xn+1, xn+1)

≤ (λ1 + λ2 + λ5α)G
αβ
b (xn−1, xn, xn)

Since λ1 + λ2 + λ3 + λ4 + (α + β)λ5 + λ6 < 1, we get

Gαβ
b (xn, xn+1, xn+1) ≤

(
λ1 + λ2 + λ5α

1− (λ3 + λ4 + λ6)− λ5β

)
Gαβ

b (xn−1, xn, xn)
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Following an argument as in theorem 5.1, we can conclude that the sequence {xn} is

a Gαβ
b -Cauchy sequence in X. Since (X,Gαβ) is complete it follows that the sequence

{xn} is Gαβ-convergent to x∗ ∈ X. To show that x∗ is a fixed point for T . From

inequality (5.9), we have

Gαβ
b (xn, Tx

∗, Tx∗)

≤ λ1G
αβ(xn−1, x

∗, x∗) + λ2G
αβ(xn−1, xn, xn) + λ3G

αβ(x∗, Tx∗, Tx∗)

+ λ4G
αβ(x∗, Tx∗, Tx∗) + λ5G

αβ(xn−1, Tx
∗, Tx∗) + λ6G

αβ(x∗, Tx∗, Tx∗)

+ λ7G
αβ(x∗, xn, xn)

Taking the limit n → ∞ in the above inequality, we get

(1− λ3 − λ4 − λ5 − λ6)G
αβ
b (x∗, Tx∗, Tx∗) ≤ 0

It follows that Tx∗ = x∗. To prove uniqueness we assume that x∗∗ is a fixed point for

T . Then from inequality (5.9), we get

Gαβ
b (x∗, x∗∗, x∗)

≤ λ1G
αβ(x∗, x∗∗, x∗) + λ2G

αβ(x∗, Tx∗, Tx∗) + λ3G
αβ(x∗∗, Tx∗∗, Tx∗∗)

+ λ4G
αβ(x∗, Tx∗, Tx∗) + λ5G

αβ(x∗, Tx∗∗, Tx∗∗) + λ6G
αβ(x∗∗, Tx∗, Tx∗)

+ λ7G
αβ(x∗, Tx∗, Tx∗)

It follows that

Gαβ
b (x∗, x∗∗, x∗) ≤ λ1G

αβ
b (x∗, x∗∗, x∗) + λ5G

αβ
b (x∗, x∗∗, x∗∗)

+ λ6G
αβ
b (x∗∗, x∗, x∗)

Using Proposition 5.0.1, we get

(1− λ1 − λ6 − λ5(α + β))Gαβ
b (x∗, x∗∗, x∗) ≤ 0. (5.11)
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Thus, we get Gαβ
b (x∗, x∗∗, x∗) = 0 which implies x∗∗ = x∗.
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Chapter 6

Generalized S-metric

6.1 Introduction

The concept of metric spaces is a very important in Mathematics with a wide range

of applicability in many fields in applied sciences. Many authors have given general-

izations of metric spaces in several ways. Gähler, introduced the concept of 2-metric

spaces,[16] and Dhage, [12] introduced the concepts of D-metric spaces. Mustafa al

et.[24] introduced a new structure of a generalized metric space which they called G-

metric spaces as a generalization of metric spaces, [23]. They developed and introduced

new fixed point theory for various mappings in this new space.

Sam al et.[29] established some useful propositions to show that many fixed point

theorems on (non-symmetric) G-metric spaces follow directly from results on metric

spaces.

Sedghi et al. introduced D∗-metric spaces,[32] which are modifications of the definition

of D-metric spaces introduced by Dhage, [12]. These authors, further introduced the
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concept of S-metric space and gave some properties with applications as common fixed

point theorems for self mappings on complete S-metric spaces [30].

Definition 6.1.1. Let X be a nonempty set. A function S : X ×X ×X → [0,∞) is

a S-metric on X if for all x, y, z, w ∈ X:

(i) S(x, y, z) = 0 ⇐⇒ x = y = z

(ii) S(x, y, z) ≤ S(x, x, w) + S(y, y, w) + S(z, z, w)

The pair (X,S) is called an S-metric space, [30].

Example 8. Let X = Rn and ∥ · ∥X be a norm on X, then the function S defined by

S(x, y, z) = ∥y + z − 2x∥X + ∥y − z∥X

is an S- metric on X.

Definition 6.1.2. LetX be a nonempty set and assume that there exists a real number

α ≥ 1. A function Sb : X×X×X → [0,∞) is an Sb-metric onX if for all x, y, z, w ∈ X:

(i) Sb(x, y, z) = 0 ⇐⇒ x = y = z;

(ii) Sb(x, x, y) = Sb(y, y, x) for all x, y ∈ X;

(iii) Sb(x, y, z) ≤ α [Sb(x, x, w) + Sb(y, y, w) + Sb(z, z, w)].

The pair (X,Sb) is called an Sb-metric space [38],[34]. If α = 1, we have that the Sb-

metric is equivalent to the S-metric. It should be noted that the symmetry property

follows from the triangle property with α = 1.

Definition 6.1.3. Let X be a nonempty set and assume that there exists real numbers

α, β, γ ≥ 1. A function Sαβγ : X ×X ×X → [0,∞) is an Sαβγ-metric on X if for all

x, y, z, w ∈ X:
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(i) Sαβγ(x, y, z) = 0 ⇐⇒ x = y = z;

(ii) Sαβγ(x, y, z) ≤ αSαβγ(x, x, w) + βSαβγ(y, y, w) + γSαβγ(z, z, w).

The pair (X,Sαβγ) is called an Sαβγ-metric space. If α = β = γ = 1, we obtain that

S = Sαβγ. If α = β = γ then we obtain that Sαβγ = Sb. Furthermore, if α, β ≥ 1

and γ = 1 then we have the symmetry property, Sαβγ(x, x, y) = Sαβγ(y, y, x) for all

x, y ∈ X. The following example justifies the weakening in the triangle inequality

found in Definition 6.1.3.

Example 9. Let X = (1, 2) and define Sαβγ(x, y, z) by

Sαβγ(x, y, z) =


2|x−y|+|y−z|+|z−x| x ̸= y ̸= z

0 ⇐⇒ x = y = z.

(6.1)

It suffices to verify property (iii) of definition 6.1.3. For x ̸= y ̸= z we have

Sαβγ(x, y, z) (6.2)

= 2|x−y|+|y−z|+|z−x|

≤ 2|x−w|+|w−y|+|y−w|+|w−z|+|z−w|+|w−x|

= 22|x−w|+2|y−w|+2|z−w|

= 2
1
2
(2|x−w|)+ 3

8
(2|y−w|)+ 1

8
(2|z−w|)2|x−w|+ 5

4
|y−w|+ 7

4
|z−w| (6.3)

≤
[
1

2

(
22|x−w|)+ 3

8

(
22|y−w|)+ 1

8

(
22|z−w|)] sup

(1,2)

2|x−w|+ 5
4
|y−w|+ 7

4
|z−w| (6.4)

= 8Sαβγ(x, x, w) + 6Sαβγ(y, y, w) + 2Sαβγ(z, z, w), (6.5)

where we have obtained (6.4) from (6.3) by using Jensen’s inequality, [28].

Definition 6.1.4. Let (X,Sαβγ) a Sαβγ-metric space. For ϵ > 0 and x ∈ X, we define

the open ball BSαβγ
(x, ϵ) = {y ∈ X;Sαβγ(y, y, x) < ϵ}.
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Definition 6.1.5. Let (X,Sαβγ) be a Sαβγ-metric space and A ⊂ X:

(i) If for every x ∈ A there exists ϵ > 0 such that BSαβγ
(x, ϵ) ⊂ A, then the subset

A is open.

(ii) Subset A is bounded if there exists ϵ > 0 such that Sαβγ(x, x, y) < ϵ for all

x, y ∈ A.

(iii) A sequence {xn} in X converges to x ∈ X ⇐⇒ for every ϵ > 0 there exists

N ∈ N such that Sαβγ(xn, xn, x) < ϵ for all n ≥ N .

(iv) A sequence {xn} is a Cauchy sequence if for every ϵ > 0 there exists N ∈ N such

that Sαβγ(xn, xn, xm) < ϵ for all n,m ≥ N .

(v) The Sαβγ-metric space (X,Sαβγ) is complete if every Cauchy sequence in X is

convergent.

Lemma 6.1. Let (X,Sαβγ) be an Sαβγ-metric space. If a sequence in X is convergent

then the limit point is unique.

Proof. Let {xn} be a convergent sequence in X. Then for every ϵ > 0 there exists

x ∈ X and N1 ∈ N such that Sαβγ(xn, xn, x) <
ϵ

2(α+β)γ
for all n ≥ N1. Assume that

there exist y ∈ X and N2 ∈ N such that Sαβγ(xn, xn, y) <
ϵ

2γ2 for all n ≥ N2. From

definition 6.1.3, property (ii) it follows that

Sαβγ(x, x, y) ≤ αSαβγ(x, x, xn) + βSαβγ(x, x, xn) + γSαβγ(y, y, xn)

= (α + β)Sαβγ(x, x, xn) + γSαβγ(y, y, xn)

≤ (α + β)γSαβγ(xn, xn, x) + γ2Sαβγ(xn, xn, y)

< ϵ
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for all n ≥ max{N1, N2}. It follows that Sαβγ(x, x, y) = 0 thus we get x = y.

6.2 Some fixed point results

Definition 6.2.1. Let (X,Sαβγ) be a Sαβγ-metric space. A mapping T : X → X is a

contraction if there exists a constant 0 ≤ λ < 1 such that

Sαβγ(Tx, Tx, Ty) ≤ λSαβγ(x, x, y)

for all x, y ∈ X.

Theorem 6.2. Let (X,Sαβγ) be a complete Sαβγ-metric space and T : X → X be a

contraction with 0 ≤ λ < 1
γ2 . Then T has a unique fixed point x ∈ X.

Proof. To show uniqueness, we assume that there exists x, y ∈ X with Tx = x and

Ty = y. Then

Sαβγ(x, x, y) = Sαβγ(Tx, Tx, Ty) (6.6)

≤ λSαβγ(x, x, y) (6.7)

since λ < 1, we conclude Sαβγ(x, x, y) = 0 thus we get x = y. To show existence we

show that for x ∈ X that {T nx} is a Cauchy sequence in X. For n ∈ N, we recursively

obtain that

Sαβγ(T
nx, T nx, T n+1x) ≤ λSαβγ(T

n−1x, T n−1x, T nx)

...

≤ λnSαβγ(x, x, Tx) (6.8)
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For n,m ∈ N, and from inequality (6.8), we get

Sαβγ(T
nx, T nx, T n+mx)

≤ (α + β)Sαβγ(T
nx, T n, T n+1x) + (α + β)γ2Sαβγ(T

n+1x, T n+1, T n+2x)

+ · · ·+ (α + β)γ2(m−2)Sαβγ(T
n+m−2x, T n+m−2, T n+m−1x)

+ (γ)2(m−1)Sαβγ(T
n+m−1x, T n+m−1, T n+mx)

≤ (α + β)
m−1∑
i=0

γ2iSαβγ(T
n+ix, T n+ix, T n+i+1x)

≤ (α + β)
m−1∑
i=0

γ2iλn+iSαβγ(x, x, Tx)

≤ (α + β)λnSαβγ(x, x, Tx)
1

1− (λγ2)
.

It follows that {T nx} is a Cauchy sequence and since X is complete there exists x0 ∈ X

such that limn→∞ T nx = x0. Since T is continuous it follows that

x0 = limn→∞ T n+1x = limn→∞ TT nx = T (limn→∞ T nx) = Tx0. Therefore x0 is a fixed

point of T . Taking m → ∞, we get

S(T nx, T nx, x0) ≤ (α + β)λnSαβγ(x, x, Tx)
1

1− (λγ2)
.

Example 10. Let X = [0, 1] and define Sαβγ(x, y, z) by

Sαβγ(x, y, z) =

(
1

4
|x− y|+ 1

4
|y − z|+ 1

2
|z − x|

)2

. (6.9)

Then, we have that

Sαβγ(x, x, w) =
9

16
|x− w|2 (6.10)

Sαβγ(y, y, w) =
9

16
|y − w|2 (6.11)

Sαβγ(z, z, w) =
9

16
|z − w|2 (6.12)
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and by Jensen’s inequality [28], it follows that

Sαβγ(x, y, z) ≤
1

4
|x− y|2 + 1

4
|y − z|2 + 1

2
|z − x|2. (6.13)

As

|x− y|2 ≤ (|x− w|+ |w − y|)2

= |x− w|2 + |w − y|2 + 2|x− w||y − w|

≤ 2|x− w|2 + 2|w − y|2 (6.14)

and similar relations hold for |y − z|2 and |z − x|2 we can simplify (6.13) as follows

Sαβγ(x, y, z) ≤
3

2
|x− w|2 + |y − w|2 + 3

2
|z − w|2. (6.15)

Finally using (6.10)-(6.12) we conclude that

Sαβγ(x, y, z) ≤
24

9
Sαβγ(x, x, w) +

16

9
Sαβγ(y, y, w) +

24

9
Sαβγ(z, z, w) (6.16)

It follows that (X,Sαβγ) is a complete Sαβγ-metric space. Let T : X → X defined by

Tx =
1

x+ 2
,

then T is a contraction on X as shown below.

Sαβγ(Tx, Tx, Ty) =
9

16
|Tx− Ty|2

=
9

16

∣∣∣∣ 1

x+ 2
− 1

y + 2

∣∣∣∣2
=

9

16

|x− y|2

|x+ 2|2|y + 2|2

≤ 1

16
Sαβγ(x, x, y) (6.17)

where 1
16

= λ ≤ 1
γ2 =

(
9
24

)2
. Thus by theorem 6.2, T has a fixed point x⋆ =

√
2−1 ∈ X.
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6.3 Some common fixed points results of mappings

Lemma 6.3. Let (X,Sαβγ) be an Sαβγ-metric space and assume that there exists a

sequence {xn} and {yn} such that limn→∞ Sαβγ(xn, xn, yn) = 0 whenever {xn} is a

sequence such that limn→∞ Sαβγ(x, x, xn) = 0 for some x ∈ X then limn→∞ yn = x.

Proof. From Definition 6.1.3, property (ii) we get

Sαβγ(yn, yn, x) ≤ (α + β)Sαβγ(yn, yn, xn) + γSαβγ(x, x, xn)

≤ (α + β)γSαβγ(xn, xn, yn) + γSαβγ(x, x, xn)

It follows that limn→∞ sup {(α + β)Sαβγ(xn, xn, yn) + γSαβγ(x, x, xn)} = 0. Since Sαβγ(·, ·, ·) ≥

0, we get

0 ≤ lim
n→∞

inf {(α + β)Sαβγ(xn, xn, yn) + γSαβγ(x, x, xn)} (6.18)

≤ lim
n→∞

sup {(α + β)Sαβγ(xn, xn, yn) + γSαβγ(x, x, xn)} = 0. (6.19)

Hence, we get limn→∞ Sαβγ(yn, yn, x) = 0. Thus we obtain limn→∞ yn = x.

Definition 6.3.1. Let (X,Sαβγ) be a Sαβγ-metric space. A pair of mappings {f, g}

are compatible iff limn→∞ Sαβγ(fgxn, fgxn, gfxn) = 0 whenever {xn} is a sequence in

X such that limn→∞ fxn = limn→∞ gxn = x for some x ∈ X.

Theorem 6.4. Assume that f, g, F,G are self maps of a complete Sαβγ-metric space

(X,Sαβγ) with f(X) ⊂ F (X) , g(X) ⊂ G(X) and the pairs {f,G}, {g, F} are compat-

ible. If

Sαβγ(fx, fy, gz)

≤ λmax {Sαβγ(Gx,Gy, Fz), Sαβγ(fx, fx,Gx),

Sαβγ(gz, gz, Fz), Sαβγ(fy, fy, gz)} (6.20)
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for x, y, z ∈ X with 0 < λ < 1
γ4 . Then mappings f, g, F,G have a unique common fixed

point in X provided that F,G are continuous.

Proof. Let x0 ∈ X then fx0 = Fx1 for some x1 ∈ X since f(X) ⊂ F (X) and gx1 = Gx2

for some x2 ∈ X since g(X) ⊂ G(X). In general, we get y2n = fx2n = Fx2n+1 for some

x2n+1 ∈ X and y2n+1 = gx2n+1 = Gx2n+2 for some x2n+2 ∈ X. We shall show that the

sequence {yn} is a Cauchy sequence in X. For the sequence {yn} using the inequality

(6.20), we get

Sαβγ(y2n, y2n, y2n+1)

= Sαβγ(fx2n, fx2n, gx2n+1)

≤ λmax {Sαβγ(Gx2n, Gx2n, Fx2n+1), Sαβγ(fx2n, fx2n, Gx2n),

Sαβγ(gx2n+1, gx2n+1, Fx2n+1), Sαβγ(fx2n, fx2n, gx2n+1)}

≤ λmax {Sαβγ(y2n−1, y2n−1, y2n), Sαβγ(y2n, y2n, y2n−1),

Sαβγ(y2n+1, y2n+1, y2n), Sαβγ(y2n, y2n, y2n+1)}

≤ λγmax {Sαβγ(y2n−1, y2n−1, y2n), Sαβγ(y2n, y2n, y2n+1)} (6.21)

If Sαβγ(y2n, y2n, y2n+1) > Sαβγ(y2n−1, y2n−1, y2n) then from inequality (6.21) we get

Sαβγ(y2n, y2n, y2n+1) ≤ λγmax {Sαβγ(y2n, y2n, y2n+1)}

< Sαβγ(y2n, y2n, y2n+1)

is a contradiction. Hence, Sαβγ(y2n, y2n, y2n+1) ≤ Sαβγ(y2n−1, y2n−1, y2n) therefore

Sαβγ(y2n, y2n, y2n+1) ≤ λγSαβγ(y2n−1, y2n−1, y2n)

≤ λγ2Sαβγ(y2n, y2n, y2n−1) (6.22)
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In a similar manner, have that

Sαβγ(y2n−1, y2n−1, y2n)

≤ γSαβγ(y2n, y2n, y2n−1)

= γSαβγ(fx2n, fx2n, gx2n−1)

≤ λγmax {Sαβγ(Gx2n, G2n, Fx2n−1), Sαβγ(fx2n, f2n, Gx2n) ,

Sαβγ(gx2n−1, gx2n−1, Fx2n−1), Sαβγ(fx2n, f2n, gx2n−1)}

= γλmax {Sαβγ(y2n−1, y2n−1, y2n−2), Sαβγ(y2n, y2n, y2n−1) ,

Sαβγ(y2n−1, y2n−1, y2n−2), Sαβγ(y2n, y2n, y2n−1)}

= γλmax {Sαβγ(y2n, y2n, y2n−1), Sαβγ(y2n−1, y2n−1, y2n−2)}

If Sαβγ(y2n, y2n, y2n−1) > Sαβγ(y2n−1, y2n−1, y2n−2) then it follows that

Sαβγ(y2n−1, y2n−1, y2n) ≤ λγSαβγ(y2n, y2n, y2n−1)

≤ λγ2Sαβγ(y2n−1, y2n−1, y2n) (6.23)

which is a contradiction. Hence

Sαβγ(y2n−1, y2n−1, y2n) ≤ λγSαβγ(y2n−1, y2n−1, y2n−2)

≤ λγ2Sαβγ(y2n−2, y2n−2, y2n−1) (6.24)

Thus, from inequality (6.22) and (6.24) we obtain

Sαβγ(yn, yn, yn−1) ≤ λγ2Sαβγ(yn−1, yn−1, yn−2) (6.25)
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where λγ2 < 1 and n ≥ 2. It follows by repeated application of inequality (6.25) that,

Sαβγ(yn, yn, yn−1) ≤ λγ2Sαβγ(yn−1, yn−1, yn−2)

...

≤ (λγ2)n−1Sαβγ(y1, y1, y0) (6.26)

It follows from (6.26) that

Sαβγ(yn, yn, yn+1) ≤ γSαβγ(yn+1, yn+1, yn) ≤ γ(λγ2)nSαβγ(y1, y1, y0) (6.27)

For n,m ∈ N we get

Sαβγ(yn, yn, yn+m)

≤ (α + β)Sαβγ(yn, yn, yn+1) + (α + β)γ2Sαβγ(yn+1, yn+1, yn+2) + · · ·

+ (α + β)(γ2)m−2Sαβγ(yn+m−2, yn+m−2, yn+m−1)

+ (γ2)m−1Sαβγ(yn+m−1, yn+m−1, yn+m)

≤ (α + β)
m−1∑
i=0

(γ)2iSαβγ(yn+i, yn+i, yn+i+1)

≤ (α + β)γ(λγ2)n
m−1∑
i=0

(
(γ)4λ

)i
Sαβγ(y1, y1, y0)

< (α + β)γ(λγ2)n
1

1− γ4λ
Sαβγ(y1, y1, y0)

since λγ2 < 1, it follows that {yn} is a Cauchy sequence in a complete Sαβγ-metric

space, thus there exists y ∈ X such that limn→∞ y2n = limn→∞ fx2n = limn→∞ Fx2n+1 =

y = limn→∞ y2n+1 = limn→∞ gx2n+1 = limn→∞Gx2n+2 We shall now show that y is a

common fixed point for mappings f, g, F,G. SinceG is continuous, we get limn→∞ G(Gx2n+2) =

Gy and limn→∞ Gfx2n = Gy since f,G are compatible limn→∞ Sαβγ(fGx2n, fGx2n, Gfx2n) =
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0 so by lemma 6.3 it follows that limn→∞ fGx2n = Gy. It follows from inequality (6.20),

Sαβγ(fGx2n, fGx2n, gx2n+1)

≤ λmax {Sαβγ(GGx2n, GGx2n, Fx2n+1), Sαβγ(fGx2n, fGx2n, GGx2n),

Sαβγ(gx2n+1, gx2n+1, Fx2n+1), Sαβγ(fGx2n, fGx2n, gx2n+1)}

Taking the limit n → ∞, we get

Sαβγ(Gy,Gy, y)

≤ λmax {Sαβγ(Gy,Gy, y), Sαβγ(Gy,Gy,Gy), Sαβγ(y, y, y), Sαβγ(Gy,Gy, y)}

= λSαβγ(Gy,Gy, y)

since λ < 1, we get Sαβγ(Gy,Gy, y) = 0 thus Gy = y. In a similar manner, since

F is continuous we get, limn→∞ FFx2n+1 = Fy, limn→∞ Fgx2n+1 = Fy since g and

F are compatible, limn→∞ Sαβγ(gFx2n+1, gFx2n+1, Fgx2n+1) = 0 and it follows that

limn→∞ gFx2n+1 = Fy. From inequality (6.20),

Sαβγ(fx2n, fx2n, gFx2n+1)

≤ λmax {Sαβγ(Gx2n, Gx2n, FFx2n+1), Sαβγ(fx2n, fx2n, Gx2n),

Sαβγ(gFx2n+1, gFx2n+1, FFx2n+1), Sαβγ(fx2n, fx2n, gFx2n+1)}

Taking the limit n → ∞, we get

Sαβγ(y, y, Fy)

≤ λmax {Sαβγ(y, y, Fy), Sαβγ(y, y, y),

Sαβγ(Fy, Fy, Fy), Sαβγ(y, y, Fy)}

≤ λSαβγ(y, y, Fy)
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since λ < 1, it follows that Fy = y. Furthermore, we obtain that

Sαβγ(fy, fy, gx2n+1)

≤ λ {Sαβγ(Gy,Gy, Fx2n+1), Sαβγ(fy, fy,Gy), Sαβγ(gx2n+1, gx2n+1, Fx2n+1),

Sαβγ(fy, fy, gx2n+1)}

Taking the limit n → ∞, and Gy = Fy = y we have

Sαβγ(fy, fy, y)

≤ λmax {Sαβγ(Gy,Gy, y), Sαβγ(fy, fy, y),

Sαβγ(y, y, y), Sαβγ(fy, fy, y)}

= λSαβγ(fy, fy, y)

since λ < 1, fy = y. Finally, we have Gy = Fy = fy = y and

Sαβγ(y, y, gy) = Sαβγ(fy, fy, gy)

≤ λmax {Sαβγ(Gy,Gy, Fy), Sαβγ(fy, fy,Gy), Sαβγ(gy, gy, Fy), Sαβγ(fy, fy, gy)}

= λSαβγ(y, y, gy)

It follows that gy = y. Thus we get Fy = Gy = gy = fy = y. It remains to show

that the common fixed point is unique. Assume that there exists x ∈ X such that

Fx = Gx = gx = fx = x then

Sαβγ(x, x, y) = Sαβγ(fx, fx, gy)

≤ λmax {Sαβγ(Gx,Gx, Fy), Sαβγ(fx, fx,Gy), Sαβγ(gy, gy, Fy), Sαβγ(fx, fx, gy)}

= λmax {Sαβγ(x, x, y), Sαβγ(x, x, x), Sαβγ(x, x, y)}

= λSαβγ(x, x, y)

which implies that Sαβγ(x, x, y) = 0 thus x = y.
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Corollary 6.4.1. Let (X,Sαβγ) be a complete Sαβγ- metric space and let f, g : X → X

be mappings such that

Sαβγ(fx, fy, gz)

≤ λmax {Sαβγ(x, y, z), Sαβγ(fx, fx, x),

Sαβγ(gz, gz, z), Sαβγ(fy, fy, gz)}

for all x, y, z ∈ X with 0 ≤ λ < 1 then there exists a unique fixed point for mappings f

and g.

Proof. The proof follows in a similar manner as in Theorem 6.4, by taking mappings

F and G as identity mappings.
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Chapter 7

Conclusion

In Chapter 1, we presented the concept of a metric space and showed that a contraction

mapping on a complete metric space has a unique fixed point which set the tone and

style for sections to follow. We further presented definitions of concepts that were used

in the thesis.

In Chapter 2, we presented the concept of a b-metric and showed by relaxing the

s-triangle inequality, we can formulate the concept of a generalized b-metric type. We

proved that a contraction type mapping on a complete generalized b-metric space has

a unique fixed point. We proved that if one replaces the s-inequality of a b-metric by

a relaxed polygonal inequality, one can formulate the concept of generalized b- met-

ric space type and can prove that a contraction mapping on a complete generalized

b-metric space type has a unique fixed point. We further proved that a Kannan con-

traction on a complete generalized b-metric space type has a unique fixed point.
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In Chapter 3, we imposed a convex structure on a generalized b-metric space type

to formulated the concept of a generalized convex metric type space. We proved that a

contraction mapping in a complete generalized convex metric type space has a unique

fixed point.

In Chapter 4, we imposed a partial ordering on the set of complex numbers and ex-

tended the concept of a generalized b-metric type space to a generalized complex valued

b-metric type space. We proved that a Reich contraction type mapping on a complete

generalized complex valued b-metric space type has a fixed point.

In Chapter 5, we relaxed the rectangle inequality and formulated the concept of a

generalized Gb- metric space. We further presented some properties of the generalized

Gb metric type. We proved that in a complete generalized Gb metric space type with

a contraction mapping a fixed point exists.

In Chapter 6, we formulated the concept of a generalized Sb-metric space and proved

that a pair of compatible mappings satisfying a contraction condition on a complete

generalized Sb-metric space type has common fixed points.
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