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Abstract

Generalized CR (GCR)-lightlike submanifolds of indefinite almost contact manifolds were
introduced by K. L. Duggal and B. Sahin, with the assumption that they are tangent to
the structure vector field ξ of the almost contact structure (φ ,η ,ξ ). Contrary to the above
assumption, we have introduced and studied a new class of CR-lightlike submanifold of
an indefinite nearly α-Sasakian manifold, called quasi generalized CR (QGCR)-lightlike
submanifold. We have showed that QGCR-lightlike submanifold include; ascreen QGCR,
co-screen QGCR and the well known GCR-lightlike submanifolds. We have proved some
existence (or non-existence) theorems and provided a thorough study of geometry of their
distributions. Also, we have constructed many examples, where necessary, to illustrate the
main ideas.





Table of contents

0 Introduction and statement of main results 1
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Preliminaries 5
1.1 Semi-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Lightlike submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Nearly α-Sasakian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 CR and GCR-lightlike submanifolds . . . . . . . . . . . . . . . . . . . . . 16

2 QGCR-lightlike submanifolds of nearly α-Sasakian manifod 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 QGCR-lightlike submanifolds . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Characterization theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Integrability of distributions . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Ascreen QGCR-lightlike submanifolds of nearly α-Sasakian manifod 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Totally umbilical and totally geodesic ascreen QGCR-lightlike submanifolds 39
3.3 Mixed geodesic ascreen QGCR-lightlike submanifolds . . . . . . . . . . . 44
3.4 Minimal ascreen QGCR-lightlike submanifolds . . . . . . . . . . . . . . . 48

4 Co-screen QGCR-lightlike submanifolds of nearly α-Sasakian manifod 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Integrability of distributions . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Nearly parallel and nearly auto-parallel distributions . . . . . . . . . . . . . 59

5 Conclusions and future work 63





Chapter 0

Introduction and statement of main
results

0.1 Introduction

Cauchy-Riemannian (CR)-submanifolds of Riemannian manifolds were introduced by A.
Bejancu [2] as submanifolds of complex manifolds. CR-submanifolds is an important class
of submanifolds and many researchers investigated their properties, especially embedding
properties. Later on, the study was extended to CR-submanifolds of almost contact manifolds,
for example see [25], [27] and [28]. In [7] and [9], the authors introduced the notions of
contact CR-lightlike submanifolds of semi-Riemannian manifolds, and later studied by other
researchers, for instance, see [19] and [21] and other references therein.

Null or lightlike subspaces exist naturally in semi-Riemannian manifolds and they are
of great concern to modern differential geometry. In fact, lightlike geometry is widely
applied in mathematical physics, particularly, in general relativity and electromagnetism
[7]. A thorough study of geometry of lightlike submanifolds was first presented in 1996 by
Duggal and Bejancu [7] and later by Duggal and Sahin [9]. Since the tangent bundle of a
lightlike subspace intersects its normal space, they considered a splitting of the ambient space
into four non intersecting subspaces in which two of them are null and the other two are
non-degenerate. Their approach was later adopted my many researchers, including among
others; [8], [9], [10], [11], [19], [20] and [21].

In the two books [7] and [9], the authors initiated the study of generalized Cauchy-
Riemann (GCR)-lightlike submanifolds of an indefinite Hermitian and Sasakian manifolds
respectively. Later on, many papers appeared on these submanifolds in other spaces, like
for example [13] and [14] on GCR-lightlike submanifolds of indefinite Kenmotsu and
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cosymplectic manifolds respectively. In all the above mentioned work, the structure vector
field, ξ , of the almost contact structure carried by the ambient space was assumed to be
tangent to the submanifold. Moreover, when ξ is tangent to the submanifold, Calin [6] proved
that it belongs to the screen distribution. This assumption is widely accepted and it has been
applied in many papers on contact lightlike geometry [9, 10, 19–21]. In a different view, D. H.
Jin [16] introduced a new class of hypersurface, called, ascreen lightlike hypersurfaces which
are not necessarily tangent to ξ and later extended the ideas to half-lightlike submanifolds of
codimention 2 [15]. It is worthy mentioning that the position of ξ affects the geometry of the
submanifold at hand and therefore, its restriction to the tangent bundle of the submanifold,
especially, in its screen distribution is an over simplification which reduces computational
work but narrowing the research to only those submanifolds which are tangent to ξ . Choosing
ξ to be tangent to a CR-submanifold of Sasakian manifolds was first presented by Yano-Kon
in their book [27], in which they showed that if ξ is normal then the resulting submanifold is
not a CR-submanifold. In fact, one gets an anti-invariant submanifold. Their argument is
based on the symmetry of the shape operator with respect to the induced Riemannian metric.
It is important to notice that the shape operators of a lightlike submanifold are generally
non-symmetric with respect to the induced lightlike metric and thus, we may not carry on
with the assumption ξ is tangeent to the submanifold in case of a lightlike submanifold.

Contrary to the above mentioned assumption, we introduced a new class of CR-lightlike
submanifold of a nearly Sasakian and nearly cosymplectic manifolds, known as quasi
generalized Cauchy-Riemann (QGCR)-lightlike submanifold [22, 23] in which ξ was not
necessarily tangent to the submanifold. We showed that QGCR-lightlike submanifolds
includes GCR-lightlike submanifolds and two other spacial CR-lightlike submanifolds,
called ascreen and co-screen QGCR-lightlike submanifolds. In this dissertation, we bring
together all our results by generalizing the ambient space to an indefinite nearly α-Sasakian
manifold, which includes nearly Sasakian and cosymplectic manifolds.

0.2 Main Results

In the recent work by Duggal and Sahin [10], they introduced the notions of generalized
Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Sasakian manifolds which are
tangent to the structure vector field ξ . They proved that the above class of submanifold is
an umbrella of a number of CR-submanifolds, for instance contact CR-lightlike and contact
SCR-lightlike submanifolds. All these submanifolds can be found in their book [9].

This dissertation stands in contrast to Duggal and Sahin’s original assumption that
the structure vector field, ξ , is tangent to the submanifold and particularly, in the screen
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distribution. Thus, we have introduced a new class of CR-lightlike submanifold, called quasi
generalized CR (QGCR)-lightlike submanifold of an indefinite nearly α-Sasakian manifolds,
for which GCR-lightlike submanifold form part. In a QGCR-lightlike submanifold, the
structure vector field, ξ , is defined generally on the ambient space, such that its restriction
to the screen distribution reduces that QGCR-lightlike submanifold to the classical GCR-
lightlike submanifold [9]. We have studied a number of special cases of QGCR-lightlike
submanifold, like ascreen and co-screen QGCR-lightlike submanifolds.

In this dissertation, we establish some existence theorems for totally umbilical or totally
geodesic QGCR-lightlike submanifolds of indefinite nearly α-Sasakian manifolds in accor-
dance to the position of the structure vector field ξ . Some of the results are noted in the next
theorems;

Theorem 0.2.1 ([22]). Let (M,g,S(T M), S(T M⊥)) be a totally umbilical or totally geodesic
proper QGCR-lightlike submanifold of an indefinite nearly α-Sasakian manifold (M,φ

,η ,ξ ,g), with the structure vector field ξ tangent, normal or transversal to M. Then α = 0
i.e., M is an indefinite nearly cosymplectic manifold. Also, any QGCR-lightlike submanifold
carrying the structure vector field ξ in its screen distribution is a GCR-lightlike submanifold.

The above theorem offers a characterization of totally umbilical and totally geodesic
QGCR-lightlike submanifolds of indefinite nearly α-Sasakian manifolds. Moreover, it is
easy to see that the following corollary holds;

Corollary 0.2.2 ([22]). There exist no totally umbilical or totally geodesic proper QGCR-
lightlike submanifolds (M,g,S(T M), S(T M⊥)) of an indefinite nearly Sasakian manifold
(M,φ ,η ,ξ ,g) with the structure vector field ξ tangent, normal or transversal to M.

Also, we prove that the restriction of the φ -constant sectional curvature c to non-
degenerate subbundles of a QGCR-lightlike submanifolds in an indefinite nearly cosymplectic
manifold is actually a generalization of the results one gets if the indefinite nearly cosym-
plectic manifold is replaced with an indefinite cosymplectic manifold. Some of the findings
are Theorems 0.2.3 and 0.2.4 below;

Theorem 0.2.3 ([23]). Let (M,g,S(T M), S(T M⊥)) be a totally umbilical or totally geodesic
ascreen QGCR-lightlike submanifold of an indefinite nearly cosymplectic space form M(c),
of pointwise constant φ -sectional curvature c, such that D0 and φS are spacelike and
parallel distributions with respect to ∇. Then, c ≥ 0. Equality occurs when M(c) is an
indefinite cosymplectic space form.

When (M,g,S(T M), S(T M⊥)) is irrotational, we have the following;
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Theorem 0.2.4 ([23]). Let (M,g,S(T M), S(T M⊥)) be an irrotational ascreen QGCR-
lightlike submanifold of an indefinite nearly cosymplectic space form M(c) of pointwise
constant φ -sectional curvature c. Then, c ≤ 0 or c ≥ 0. Equality holds when M(c) is an
indefinite cosymplectic space form.

The rest of the dissertation is arranged as follows; In Chapter 1, we introduce the basic
preliminaries which we will refer to in the other parts of the work. Chapter 2 introduces the
idea of QGCR-lightlike submanifolds, discusses some existence or non existance theorems
and also the integrability of distributions. In Chapter 3, we discuss the geometry of ascreen
QGCR-lightlike submanifolds. Totally umbilical and totally geodesic submanifolds are
discussed as well as minimal submanifolds. In Chapter 4, we discuss co-screen QGCR-
lightlike submanifolds and lastly, Chapter 5 winds up the dissertation by summarizing the
study and giving insights into future work.



Chapter 1

Preliminaries

1.1 Semi-Riemannian manifolds

In this brief section, we present the basic notions on semi-Riemannian manifolds from [7]
and [9], necessary for this dissertation.

Let V be an m-dimensional vector space endowed with a symmetric bilinear map g :
V ×V −→ R. One says that g is degenerate [7] on V if there exist a vector E ̸= 0, of V ,
such that

g(E,v) = 0, ∀v ∈ V ,

else g is said to be non-degenerate.

Definition 1.1.1 ([7]). The radical (or null) space of V with respect to g, is a subspace of V

denoted by RadV and defined by

RadV = {E ∈ V : g(E,v) = 0, v ∈ V }

The dimension of RadV is known as the nullity degree, denoted by null V . It is easy to
see that g is degenerate or non-degerate if and only if null V > 0 and null V = 0 respectively.
Further, the pair (V ,g) is called a semi-Euclidean space [7] if g is of index q, where
0 < q ≤ m, and defines a scalar product on V .

Suppose that W is a subspace of (V ,g), then the restriction g|W is either degenerate or
non-degenerate and in the first case, W is called a lightlike subspace of V ; otherwise, W is
called a non-degenerate subspace of V .

Let M be a real m-dimensional smooth manifold and g be a symmetric tensor of type
(0,2) on M. If g is non-degenerate on M, then one can say that g is semi-Riemannian metric
[7].
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Definition 1.1.2 ([7]). A semi-Riemannian manifold is a smooth manifold M endowed with
a semi-Riemannian metric g.

The tangent space TpM of M, where p ∈ M, is a semi-Euclidean space and any vector
u ∈ TpM can fall in one of the following classes;

• spacelike if g(u,u)> 0 or u = 0,

• timelike if g(u,u)< 0, and

• lightlike (or null) if g(u,u) = 0 and u ̸= 0.

The above classification of vector u is known as its casual character [7].

Definition 1.1.3 ([7]). A linear connection ∇ on a semi-Riemannian manifold (M,g) is
called a metric connection if the metric tensor g is parallel with respect to ∇, that is to say,
∇g = 0.

From now on, we denote by Γ(Ξ) the set of all smooth sections of a vector bundle Ξ over
M and X (M) to be a set of smooth functions on M. The metric connection above is also
known as the Levi-Civita connection and it satisfies the well known Koszul’s formula

2g(∇XY ,Z) = X(g(Y ,Z))+Y (g(X ,Z))−Z(g(X ,Y ))

−g([X ,Y ],Z)+g([Z,X ],Y )−g([Y ,Z],X), (1.1.1)

for all X ,Y ,Z ∈ Γ(T M), where [ , ] denotes the Lie bracket (see [7] and [9] for details).

Definition 1.1.4 ([7]). The Riemannian curvature tensor R is a type (0,4) tensor defined as

R(X ,Y ,Z,U) = g(R(X ,Y )Z,U), ∀X ,Y ,Z,U ∈ Γ(T M), (1.1.2)

where the curvature tensor field R of type (1,3) on the right hand side of (1.1.2) is given
by

R(X ,Y )Z = ∇X(∇Y Z)−∇Y (∇X Z)−∇[X ,Y ]Z, ∀X ,Y ,Z ∈ Γ(T M). (1.1.3)

The following properties of the Riemannian curvature tensor R in (1.1.2) are also well known

R(X ,Y ,Z,U)+R(Y ,X ,Z,U) = 0, R(X ,Y ,Z,U)+R(X ,Y ,U ,Z) = 0, (1.1.4)

R(X ,Y ,Z,U)−R(Z,U ,X ,Y ) = 0, ∀X ,Y ,Z,U ∈ Γ(T M). (1.1.5)

Definition 1.1.5 ([7]). A distribution D of rank r on a smooth manifold M is a mapping
defined on M, which assigns to each point p ∈ M an r dimensional linear subspace Dp of
TpM.
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We shall assume that all distributions considered in this dissertation are smooth. Its
obvious that any vector subbundle of T M defines a smooth distribution on M.

Definition 1.1.6 ([9]). A distribution D is said to be integrable (or involutive) if for all
X ,Y ∈ Γ(D), then [X ,Y ] ∈ Γ(D).

1.2 Lightlike submanifolds

In this section, we quote a few aspects of lightlike submanifolds from [7] and [9] necessary
for this dissertation. Extented details can be found in the above two books.

Let (M,g) be an (m+n)-dimensional semi-Riemannian manifold of constant index ν ,
1 ≤ ν ≤ m+n and M be a submanifold of M of codimension n. This means that M is never a
Riemannian manifold. We assume that m > 1 and n ≥ 1, which implies that M is not a curve
of M. For a point p ∈ M, we define the orthogonal complement TpM⊥ of the tangent space
TpM by

TpM⊥ = {X ∈ TpM : g(X ,Y ) = 0, ∀Y ∈ TpM}.

We put RadTpM = RadTpM⊥ = TpM ∩ TpM⊥. The submanifold M of M is said to be
r-lightlike submanifold (one supposes that the index of M is ν ≥ r), if the mapping

RadT M : p ∈ M −→ RadTpM

defines a smooth distribution on M of rank r > 0. We call RadT M the radical distribution
on M. In this case M is said to be r-lightlike submanifold of M. In this dissertation, an
r-lightlike submanifold will simply be called a lightlike submanifold and g = g|M is lightlike
metric, unless we need to specify r.

We say that a lightlike submanifold M of M is

1. r-lightlike if 1 ≤ r < min{m,n};

2. co-isotropic if 1 ≤ r = n < m, S(T M⊥) = {0};

3. isotropic if 1 ≤ r = m < n, S(T M) = {0};

4. totally lightlike if r = n = m, S(T M) = {0}= S(T M⊥).

Let S(T M) be a screen distribution which is a semi-Riemannian complementary distribution
of RadT M in T M, that is,

T M = RadT M ⊥ S(T M). (1.2.1)
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Since M is assumed to be paracompact, then the screen distribution always exist on M.
Clearly, the distribution S(T M) is not unique, however, it is canonically isomorphic to the
factor vector bundle T M/RadT M [10].

On a lightlike submanifold M, the vector bundle T M⊥ is not complementary to T M
in T M|M, due to the fact that RadT M = T M ∩ T M⊥ is a distribution on M of rank r >
0. This poses a challenge since a vector in T M can not be uniquely decomposed into a
component in T M and a component in T M⊥. Thus, the standard book definition of the
second fundamental forms and Gauss-Weingarten formulas do not generally apply in case
of lightlike submanifolds. One possible way of dealing with the above problem is to split
the ambient tangent bundle T M in four non-intersecting subbundles for which the screen
distribution S(T M) forms part. Now, the remaining three subbundles to make up T M are
constructed as follows;

Choose a screen transversal bundle S(T M⊥), which is semi-Riemannian and comple-
mentary to RadT M in T M⊥ such that T M⊥ can be decomposed as follows;

T M⊥ = RadT M ⊥ S(T M⊥). (1.2.2)

Since S(T M) is non-degerate then there is a complementary vector subbundle S(T M)⊥ to
S(T M) in T M such that

T M⊥ = S(T M)⊥ S(T M)⊥. (1.2.3)

It is clearly visible that S(T M)⊥ is a submanifold of ST M)⊥ and the fact that both of them
are non degenerate, one has the following orthogonal decomposition of S(T M)⊥,

S(T M)⊥ = S(T M⊥)⊥ S(T M⊥)⊥. (1.2.4)

Let tr(T M) and ltr(T M) be complementary (but not orthogonal) vector bundles to T M in
T M|M and to RadT M in tr(T M) respectively. Then,

tr(T M) = ltr(T M)⊥ S(T M⊥), (1.2.5)

T M =S(T M)⊥ S(T M⊥)⊥ {RadT M⊕ ltr(T M)}. (1.2.6)

Theory of lightlike submanifolds depends on S(T M) and S(T M⊥), therefore we shall also
adopt the notation (M,g,S(T M),S(T M⊥) for a lightlike submanifold. The following result
is well known [7].

Theorem 1.2.1. Let (M,g,S(T M)),S(T M⊥) be an r-lightlike submanifold of (M,g) with
r > 1. Suppose that U is a coordinate neighborhood of M and {Ei}, for i ∈ {1, · · · ,r}, be a
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basis of Γ(RadT M|U ). Then, there exist smooth sections {Ni} of S(T M⊥)⊥|U such that

g(Ei,N j) = δi j, and g(Ni,N j) = 0, ∀ i, j ∈ {1, · · · ,r}. (1.2.7)

Proof. The proof can be found in [7] or [9].

Next, consider a local quasi-orthonormal field of frames of M along M, on U as

{E1, · · · ,Er,N1, · · · ,Nr,Xr+1, · · · ,Xm,W1+r, · · · ,Wn},

where {Xr+1, · · · ,Xm} and {W1+r, . . . ,Wn} are respectively orthonormal bases of Γ(S(T M)|U )

and Γ(S(T M⊥)|U ) and that εβ = g(Wβ ,Wβ ) be the signatures of Wβ .

The induced geometrical objects

Let (M,g) be a semi-Riemannian and denote by ∇ the Levi-Civita connection on M. Suppose
that (M,g) is a lightlike submanifold of M. Let S(T M) and ltr(T M) be the screen distribution
and the corresponding lightlike transversal bundle of M respectively. Then, the Gauss and
Weingarten formulas for an r-lightlike submanifold are given by

∇XY = ∇XY +h(X ,Y ), ∀X ,Y ∈ Γ(T M), (1.2.8)

∇XV =−AV X +∇
t
XV, ∀X ∈ Γ(T M), V ∈ Γ(trT M), (1.2.9)

where {∇XY,AV X} and {h(X ,Y ),∇t
XV} belongs to Γ(T M) and Γ(tr(T M)) respectively. Fur-

ther, ∇ and ∇t are linear connections on M and trT M, respectively. The second fundamental
form h is a symmetric F(M)-bilinear form on Γ(T M) with values in Γ(tr(T M)) and the
shape operator AV is a linear endomorphism of Γ(T M).

Let P be the projection morphism of T M onto S(T M). Then, by straightforward calcula-
tions (see [7] for details), the above two equations gives

∇XY = ∇XY +hl(X ,Y )+hs(X ,Y ) (1.2.10)

∇X N =−ANX +∇
l
X N +Ds(X ,N) (1.2.11)

∇XW =−AW X +Dl(X ,W )+∇
s
XW, (1.2.12)

∇X PY = ∇
∗
X PY +h∗(X ,PY ) (1.2.13)

∇X E =−A∗
EX +∇

∗t
X E, (1.2.14)

for any E ∈ Γ(RadT M), X ,Y ∈ Γ(T M), N ∈ Γ(tr(T M)) and W ∈ Γ(S(T M⊥)). It is obvious
that hl and hs are respectively Γ(tr(T M)) and Γ(S(T M⊥)) valued and they are called the
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lightlike second fundamental form and screen second fundamental form of M respectively.
Notice that Dl and Ds are not metric connection. In fact, they are Otsuki connections [7].
Further, ∇∗ and ∇∗t are liner connections on S(T M) and RadT M) respectively and they are
in fact metric connections [9]. AN and AW are called the shape operators of M. Also, h∗

and A∗ are respectively Γ(RadT M) and Γ(S(T M)) valued bilinear forms, called the second
fundamental form and shape operator of RadT M and S(T M) respectively.

Next, we shall use the following set of indices

i, j,k ∈ {1, · · · ,r}, a,b,c ∈ {1+ r, · · · ,m} and β ,γ, ι ∈ {1+ r, · · · ,n}.

Consider a coordinate neighborhood U of M and let {Ni,Wβ} be the basis of tr(T M)|M,
where Ni ∈ Γ(ltr(T M)|M), i ∈ {1, · · · ,r} and Wβ ∈ Γ(S(T M⊥)|U ), β ∈ {1+ r, · · · ,n}. Then,
the set of equations (1.2.10)-(1.2.14) reduces to

∇XY = ∇XY +
r

∑
i=1

hl
i(X ,Y )Ni +

n

∑
β=r+1

hs
β
(X ,Y )Wβ , (1.2.15)

∇X Ni =−ANiX +
r

∑
j=1

τi j(X)N j +
n

∑
β=r+1

ρiβ (X)Wβ , (1.2.16)

∇XWβ =−AWβ
X +

r

∑
i=1

ϕβ i(X)Ni +
n

∑
β=r+1

σβγ(X)Wγ , (1.2.17)

∇X PY = ∇
∗
X PY +

r

∑
i=1

h∗i (X ,PY )Ei, (1.2.18)

∇X Ei =−A∗
Ei

X −
r

∑
j=1

τ ji(X)E j, ∀X ,Y ∈ Γ(T M), (1.2.19)

where hl
i and hs

β
are symmetric bilinear forms known as local lightlike and screen fundamental

forms of T M respectively. Also, ANi , A∗
Ei

and AWβ
are linear operators on T M while τi j, ρiβ ,

ϕβ i and σβγ are differential 1-forms on T M given by

τi j(X) = g(∇X Ni,E j), εβ ρiβ (X) = g(∇X Ni,Wβ ),

ϕβ i(X) = g(∇XWβ ,Ei) and εγσβγ(X) = g(∇XWβ ,Wγ), ∀X ∈ Γ(T M). (1.2.20)

It is well known [7] that

hl
i(X ,Y ) = g(∇XY,Ei), ∀X ,Y ∈ Γ(T M), (1.2.21)

from which we deduce the independence of hl
i on the choice of S(T M).
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Next, it is easy to see that the second fundamental tensor h is given by

h(X ,Y ) =
r

∑
i=1

hl
i(X ,Y )Ni +

n

∑
β=r+1

hs
β
(X ,Y )Wβ , X ,Y ∈ Γ(T M). (1.2.22)

Further, we stress that ∇ is generally not a metric connection and is given by

(∇X g)(Y,Z) =
r

∑
i=1

{hl
i(X ,Y )λi(Z)+hl

i(X ,Z)λi(Y )}, (1.2.23)

for any X ,Y ∈ Γ(T M) and λi are differential 1-forms given by

λi(X) = g(X ,Ni), ∀X ∈ Γ(T M). (1.2.24)

The above three local second fundamental forms are related to their shape operators by the
following set of equations

g(A∗
Ei

X ,Y ) = hl
i(X ,Y )+

r

∑
j=1

hl
j(X ,Ei)λ j(Y ), g(A∗

Ei
X ,N j) = 0, (1.2.25)

g(AWβ
X ,Y ) = εβ hs

β
(X ,Y )+

r

∑
i=1

ϕβ i(X)λi(Y ), (1.2.26)

g(AWβ
X ,Ni) = εβ ρiβ (X), λ j(ANiX)+λi(AN jX) = 0, (1.2.27)

g(ANiX ,Y ) = h∗i (X ,PY ), ∀X ,Y ∈ Γ(T M). (1.2.28)

Replacing Y by E j in the first equation of (1.2.25) we get

hl
i(X ,E j)+hl

j(X ,Ei) = 0, hl
i(X ,Ei) = 0 and hl

i(E j,Ek) = 0, (1.2.29)

for all X ∈ Γ(T M). Further, replacing X with E j in the first equation of (1.2.25) and then
applying (1.2.29) one gets

hl
i(X ,E j) = g(X ,A∗

Ei
E j), A∗

Ei
E j+A∗

E j
Ei = 0 and A∗

Ei
Ei = 0, ∀X ∈Γ(T M). (1.2.30)

For any r-lightlike submanifold, replacing Y by Ei in (1.2.26), we get

hs
β
(X ,Ei) =−εβ ϕβ i(X), ∀X ∈ Γ(T M). (1.2.31)

Definition 1.2.2 ([9]). A lightlike submanifold (M,g,S(T M),S(T M⊥), of a semi-Riemannian
manifold (M,g) is said to be totally umbilical in M if there is a smooth transversal vector
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field H ∈ Γ(tr(T M)), called the transversal curvature vector of M such that

h(X ,Y ) = H g(X ,Y ), (1.2.32)

for all X ,Y ∈ Γ(T M). Moreover, it is easy to see that M is totally umbilical in M, if and only
if on each coordinate neighborhood U there exist smooth vector fields Hl ∈ Γ(ltr(T M)) and
Hs ∈ Γ(S(T M⊥)) and smooth functions Hl

i ∈ F(ltr(T M)) and Hs
β
∈ F(S(T M⊥)) such that

hl(X ,Y ) =Hlg(X ,Y ), hs(X ,Y ) =Hsg(X ,Y ),

hl
i(X ,Y ) =Hl

ig(X ,Y ), hs
β
(X ,Y ) =Hs

β
g(X ,Y ), (1.2.33)

for all X ,Y ∈ Γ(T M).

The above definition is independent of the choice of the screen distribution [9].

Definition 1.2.3 ([7]). A lightlike submanifold (M,g,S(T M),S(T M⊥), of a semi-Riemannian
manifold (M,g) is said to be totally geodesic if h = 0.

Next, by direct calculations using (1.2.10), (1.2.11) and (1.2.12) we obtain the following
Gauss equation for the curvature tensors R, R of M and M respectively.

R(X ,W,Z,Y ) = g(R(X ,W )Z,Y )+g(Ahl(X ,Z)W,Y )

−g(Ahl(W,Z)X ,Y )+g(Ahs(X ,Z)W,Y )

−g(Ahs(W,Z)X ,Y )+g((∇X hl)(W,Z),Y )

−g((∇W hl)(X ,Z),Y )+g(Dl(X ,hs(W,Z)),Y ) (1.2.34)

−g(Dl(W,hs(X ,Z)),Y )+g((∇X hs)(W,Z),Y )

−g((∇W hs)(X ,Z),Y )+g(Ds(X ,hl(W,Z)),Y )

−g(Ds(W,hl(X ,Z)),Y ),

for any X ,Y,Z,W ∈ Γ(T M).

1.3 Nearly α-Sasakian manifolds

Let M be a (2n+1)-dimensional manifold endowed with an almost contact structure (φ ,ξ ,η),
i.e. φ is a tensor field of type (1,1), ξ is a vector field, and η is a 1-form satisfying

φ
2
=−I+η ⊗ξ , η(ξ ) = 1, η ◦φ = 0 and φ(ξ ) = 0. (1.3.1)



1.3 Nearly α-Sasakian manifolds 13

Then (φ ,ξ ,η , g) is called an indefinite almost contact metric structure [4] on M if (φ ,ξ ,η)

is an almost contact structure on M and g is a semi-Riemannian metric on M such that, for
any vector field X , Y on M,

g(φ X ,φ Y ) = g(X ,Y )−η(X)η(Y ). (1.3.2)

It follows that, for any vector X on M,

η(X) = g(ξ ,X). (1.3.3)

If, moreover,

(∇X φ)Y +(∇Y φ)X = α(2g(X ,Y )ξ −η(Y )X −η(X)Y ), (1.3.4)

for any vector fields X , Y on M, where ∇ is the Levi-Civita connection for the semi-
Riemannian metric g, we call M an indefinite nearly α-Sasakian manifold [17]. Notice
that when α = 0 (resp. α = 1) then M reduces to the known nearly cosymplectic (resp.
nearly Sasakian) manifold. Further, if α = 0 and H = 0, then M is the well known cosym-
plectic manifold with the following cosymplectic structure [14];

η = dz, ξ = ∂ z,

g = η ⊗η −
q
2

∑
i=1

(dxi ⊗dxi +dyi ⊗dyi)+
m

∑
i=q+1

(dxi ⊗dxi +dyi ⊗dyi), (1.3.5)

φ0(
m

∑
i=1

(Xi∂xi +Yi∂yi)+Z∂ z) =
m

∑
i=1

(Yi∂xi −Xi∂yi),

where (xi,yi,z) are Cartesian coordinates and ∂ tk = ∂

∂ tk , for t ∈ M. On the other hand, when
α = 1 and H = 0, then M is the well known Sasakian manifold with the following Sasakian
structure [10];

2η = dz−
m

∑
i=1

yidxi, ξ = 2∂ z,

4ḡ = 4η ⊗η −
q
2

∑
i=1

(dxi ⊗dxi +dyi ⊗dyi)+
m

∑
i=q+1

(dxi ⊗dxi +dyi ⊗dyi), (1.3.6)

φ0(
m

∑
i=1

(Xi∂xi +Yi∂yi)+Z∂ z) =
m

∑
i=1

(Yi∂xi −Xi∂yi)+
m

∑
i=1

Yiyi
∂ z,
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where (xi,yi,z) are Cartesian coordinates and ∂ tk = ∂

∂ tk , for t ∈ M.
Let Ω be the fundamental 2-form of M defined by

Ω(X ,Y ) = g(X ,φ Y ), X , Y ∈ Γ(T M). (1.3.7)

Replacing Y by ξ in (1.3.4) we obtain

∇X ξ −φ(∇ξ φ)X =−αφ X , ∀ X ∈ Γ(T M). (1.3.8)

Introduce a (1,1)-tensor H on M taking

H X =−φ(∇ξ φ)X , (1.3.9)

for any X ∈ Γ(T M), such that (1.3.8) reduces to

∇X ξ =−αφ X −H X , ∀ X ∈ Γ(T M). (1.3.10)

Lemma 1.3.1. The linear operator H has the properties

H φ +φ H = 0, Hξ = 0, η ◦H = 0,

and g(H X ,Y ) =−g(X ,H Y ) (i.e. H is skew-symmetric). (1.3.11)

Proof. The proof follows from a straightforward calculation.

The fundamental 2-form Ω and the 1-form η are related as follows.

Lemma 1.3.2. Let (M,φ ,ξ ,η , g) be an indefinite nearly α-Sasakian manifold. Then,

αΩ(X ,Y ) = dη(X ,Y )+g(H X ,Y ), (1.3.12)

for any X, Y ∈ Γ(T M).
Moreover, M is α-Sasakian if and only if H vanishes identically on M.

Proof. The relation (1.3.12) follows from a straightforward calculation. The second assertion
follows from Theorem 3.2 in [3].

An almost contact metric manifold M is said to be normal [4] if the torsion tensor N(1)

vanishes, that is
N(1) = [φ ,φ ]+2dη ⊗ξ , (1.3.13)
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where [φ ,φ ] is the Nijenhuis tensor of φ . In [17] the authors showed that for any nearly
α-Sasakian manifold, the relation below holds

η(N(1)(X ,Y )) = 4dη(X ,Y )−4αg(X ,φ Y ), (1.3.14)

for any X , Y ∈ Γ(T M). From relation (1.3.14) and Lemma 4.3.2 we deduce that

4g(X ,H Y ) = η(N(1)(X ,Y )), ∀ X ,Y ∈ Γ(T M). (1.3.15)

Note that, for any X , Y , Z ∈ Γ(T M),

g((∇Zφ)X ,Y ) =−g(X ,(∇Zφ)Y ). (1.3.16)

This means that the tensor ∇φ is skew-symmetric.

Lemma 1.3.3. Let (M,φ ,ξ ,η , g) be a nearly α-Sasakian manifold, then

(∇X φ)φ Y =−φ(∇X φ)Y −g(Y ,H X)ξ −η(Y )H X −αg(Y ,φ X)ξ −αη(Y )φ X ,

(∇
φ X φ)φ Y =−(∇Y φ)X −η(X)φ H Y +η(Y )φ H X −αη(X)φ

2Y +2αη(Y )φ 2X ,

for all X ,Y ∈ Γ(T M).

Proof. By direct calculations we have

(∇X φ)φ Y = ∇X φ
2Y −φ ∇X φ Y

= ∇X(η(Y )ξ )−φ(∇X φ)Y −η(∇XY )ξ

=−φ(∇X φ)Y +g(Y ,∇X ξ )ξ +η(Y )∇X ξ . (1.3.17)

Then, the first relation follows immediately from (1.3.17) by applying (1.3.10). The second
relation follows from the first by replacing X with φ X and using the fact that M is nearly
α-Sasakian manifold.

By setting Y = X in (1.3.4) and the second relation of Lemma 1.3.3 we respectively
deduce

(∇X φ)X = α{g(X ,X)ξ −η(X)X}, (1.3.18)

and (∇
φ X φ)φ X =−α{g(X ,X)ξ −η(X)φ

2X}, (1.3.19)

for any X ∈ Γ(T M).
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A plane section Π in TpM is called a φ -section if it is spanned by X and φ X , where X
is a unit tangent vector field orthogonal to ξ . The sectional curvature of a φ -section Π is
called a φ -sectional curvature [19]. A nearly cosymplectic manifold M (i.e, α = 0) with
constant pointwise φ -sectional curvature c is said to be a nearly cosymplectic space form
and is denoted by M(c). The curvature tensor R of a nearly cosymplectic space form M(c) is
given by [12] as

4R(X ,W ,Z,Y ) = g((∇W φ)Z,(∇X φ)Y )−g((∇W φ)Y ,(∇X φ)Z)

−2g((∇W φ)X ,(∇Y φ)Z)+g(H W ,Z)g(H X ,Y )

−g(H W ,Y )g(H X ,Z)−2g(H W ,X)g(H Y ,Z)

−η(W )η(Y )g(H X ,H Z)+η(W )η(Z)g(H X ,H Y )

+η(X)η(Y )g(H W ,H Z)−η(X)η(Z)g(H W ,H Y )

+ c{g(X ,Y )g(Z,W )−g(Z,X)g(Y ,W )

+η(Z)η(X)g(Y ,W )−η(Y )η(X)g(Z,W )

+η(Y )η(W )g(Z,X)−η(Z)η(W )g(Y ,X)

+g(φ Y ,X)g(φ Z,W )−g(φ Z,X)g(φ Y ,W )

−2g(φ Z,Y )g(φ X ,W )}, (1.3.20)

for all X ,Y ,Z,W ∈ Γ(T M). For extended reading and details on nearly α-Sasakian manifolds
we refer the reader to [1], [3], [4], [5], [12], [18], [25] and [17].

1.4 CR and GCR-lightlike submanifolds

Here, we introduce the concepts of CR-submanifolds and GCR-lightlike submanifolds of
indefinite almost contact manifolds. The discussion is mainly based on the three books [7],
[9] and [27].

Definition 1.4.1 ([27]). Let (M,g) be a (2n+ 1)-dimensional manifold endowed with an
almost contact structure (φ ,ξ ,η). A real submanifold M of M is called a CR-submanifold if
there exist a differentiable distribution D on M such that

• D is invariant, that is, φDp = Dp, for each p ∈ M,

• the complimentary orthogonal distribution D⊥ to D in T M is anti-invariant, that is,
φD⊥

p ⊂ TpM⊥, for any p ∈ M.

Next, we introduce GCR-lightlike submanifolds of indefinite almost contact manifold
(M,g). Calin [6] proposed that if the structure vector field ξ of the almost contact structure
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(φ ,ξ ,η) is tangent to a lightlike submanifold, then, it belongs to its screen distribution
S(T M). Using the above assumption, Dugal and Sahin [9] (also see [10]) introduced a class
of contact CR-lightlike submanifold, called generalized CR (GCR)-lightlike submanifold as
follows;

Definition 1.4.2 ([9]). Let (M,g,S(T M)) be a real lightlike submanifold of an indefinite
Sasakian manifold (M,g) such that ξ is tangent to M. Then, M is called generalized CR
(GCR)-lightlike submanifold if the following conditions are satisfied;

1. There exist two subbundles D1 and D2 of RadT M such that

RadT M = D1 ⊕D2, φD1 = D1, φD2 ⊂ S(T M). (1.4.1)

2. There exist two subbundle D0 and D of S(T M) such that

S(T M) = {φD2 ⊕D} ⊥ D0 ⊥ {ξ}, φ D = L ⊥ S , (1.4.2)

where D0 is an invariant non-degenerate distribution on M, {ξ} is a line bundle spanned by
ξ , L and S are respectively vector subbundles of ltr(T M) and S(T M⊥).

Then, from the definition above, the tangent bundle T M of M decomposes as follows

T M = D⊕D ⊥ {ξ}, D = RadT M⊕D0 ⊕φD2. (1.4.3)

A GCR-lightlike submanifold (M,g,S(T M)) is said to be proper if D2 ̸= {0}, D1 ̸= {0},
D0 ̸= {0} and S ̸= {0}.

The following two results are well known.

Proposition 1.4.3 ([9]). A GCR-lightlike submanifold of an indefinite Sasakian manifold
(M,g), is a contact CR (respectively, contact SCR-lightlike submanifold) if and only if
D1 = {0} (respectively, D2 = {0}).

Details on the two submanifolds in the above proposition can be found in [9].

Proposition 1.4.4 ([9]). There exist no coisotropic, isotropic or totally lightlike proper
GCR-lightlike submanifolds of an indefinite Sasakian manifold.

We also note that any proper 9-dimensional contact GCR-lightlike submanifold is 3-
lightlike. Further, the authors [7], [9] and [10] emphasizes that GCR-lightlike submanifolds
are umbrella of real hypersurfaces, invariant, screen real and contact CR-lightlike submani-
folds.
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The books [7] and [9] have extended details of the above class of submanifold and its
subcases.



Chapter 2

QGCR-lightlike submanifolds of nearly
α-Sasakian manifod

2.1 Introduction

In this chapter, we introduce the notions of quasi generalised CR (QGCR)-lightlike sub-
manifolds of indefinite nearly α-Sasakian manifolds. We establish some existence (or
non-existence) theorems and also discuss the integrability of distributions.

Generalised CR (GCR)-lightlike submanifolds of indefinite Sasakian manifolds were
introduced by [9, p. 334], in which the structure vector field ξ was assumed to be tangent to
the submanifold. Later, their ideas were adopted by [13] and [14] for indefinite Kenmotsu
and cosymplectic manifolds respectively.

Let (M,φ ,ξ ,η , g) be a (2n+1)-dimensional manifold. Generally, the structure vector
field ξ belongs to T M. Therefore, the case ξ ∈ Γ(S(T M)) considered by [9], [13] and
[14] for GCR-lightlike submanifolds of indefinite Sasakian, Kenmotsu and cosymplectic
manifolds, respectively, is only a particular case of ξ ∈ Γ(T M). It is important to note that
restricting ξ to the screen distribution S(T M), minimizes algebraic computations and at the
same time narrowing the research by only looking at those CR-lightlike submanifolds which
are tangent to ξ , and yet there are other classes of CR-lightlike submanifolds which are not
necessarily carrying ξ in their screen distributions.

Contrary to the well-known assumption that ξ ∈ Γ(S(T M)) used in GCR-lightlike sub-
manifolds of almost contact manifolds, we introduce a new class of CR-lightlike submanifold,
called quasi generalised CR (QGCR) lightlike submanifold, in which ξ ∈ Γ(T M) and we
also show that it contains the known GCR-lightlike submanifolds.
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We define ξ according to decomposition (1.2.6) as follows;

ξ = ξS +ξS⊥ +ξR +ξl, (2.1.1)

where ξS is a smooth vector field of S(T M) and ξS⊥ , ξR, ξl are defined as follows

ξR =
r

∑
i=1

aiEi, ξl =
r

∑
i=1

biNi, ξS⊥ =
n

∑
β=r+1

cβWβ (2.1.2)

with ai = η(Ni), bi = η(Ei) and cβ = εβ η(Wβ ) all smooth functions in X (M). In this
dissertation, we shall assume, without loss of generality, that ξ is a unit spacelike vector field
(see [26, p. 272] for details on this choice).

2.2 QGCR-lightlike submanifolds

In this section, we introduce a new class of CR-lightlike submanifold in which ξ belongs to
T M, called quasi generalized CR (QGCR) lightlike submanifold as follows;

Definition 2.2.1. Let (M,g,S(T M),S(T M⊥)) be a lightlike submanifold of an indefinite
nearly α-Sasakian manifold (M,g,φ ,ξ ,η). We say that M is quasi generalized CR (QGCR)-
lightlike submanifold of M if the following conditions are satisfied:

(i) there exist two distributions D1 and D2 of RadT M such that

RadT M = D1 ⊕D2, φD1 = D1, φD2 ⊂ S(T M), (2.2.1)

(ii) there exist vector bundles D0 and D of S(T M) such that

S(T M) = {φD2 ⊕D} ⊥ D0, (2.2.2)

with φD0 ⊆ D0, D = φ S ⊕φ L , (2.2.3)

where D0 is a non-degenerate and invariant distribution on M, L and S are respectively
vector subbundles of ltr(T M) and S(T M⊥).

If D1 ̸= {0}, D0 ̸= {0}, D2 ̸= {0} and S ̸= {0}, then M is called a proper QGCR lightlike
submanifold.

Let M be a proper QGCR-lightlike submanifold of an indefinite nearly α-Sasakian
manifold M. If the structure vector field ξ is tangent to M, then, ξ ∈ Γ(S(T M)). The proof
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of this is similar to one given by Calin in Sasakian case [6]. In this case, if X ∈ Γ(S ) and
Y ∈ Γ(L ), then η(X) = η(Y ) = 0 and

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ) = 0,

which reduces the direct sum D in (2.2.3) to the orthogonal direct sum D = φ S ⊥ φ L , and
thus φ D = S ⊥ L . Since ξ ∈ Γ(S(T M)) and ξ is neither a vector field in φD2 nor in D, ξ

is in D0. By φD0 ⊆ D0, there exist a distribution D′
0 of rank (rank(D0)−1) and satisfying

φD′
0 = D′

0 such that D0 = D′
0 ⊥ ⟨ξ ⟩, where ⟨ξ ⟩ is the 1-dimensional distribution spanned

by ξ . Therefore, the QGCR-lightlike submanifold tangent to ξ reverts to a GCR-lightlike
submanifold [10].

Proposition 2.2.2. A QGCR-lightlike submanifold M of an indefinite nearly α-Sasakian
manifold M tangent to the structure vector field ξ is a GCR-lightlike submanifold.

Next, we follow Yano-Kon [28, p. 353] definition of contact CR-submanifolds and state
the following definition for a quasi contact CR-lightlike submanifold.

Definition 2.2.3. Let (M,g,S(T M),S(T M⊥)) be a lightlike submanifold of an indefinite
nearly α-Sasakian manifold (M,φ ,ξ ,η , g). We say that M is quasi contact CR-lightlike
submanifold of M if the following conditions are satisfied;

(i) RadT M is a distribution on M such that RadT M∩φ(RadT M) = {0};

(ii) there exist vector bundles D0 and D′ over S(T M) such that

S(T M) = {φ(RadT M)⊕D′} ⊥ D0, (2.2.4)

with φD0 ⊆ D0, D′ = φL1 ⊕φ ltr(T M), (2.2.5)

where D0 is a non-degenerate, L1 is vector subbundle of S(T M⊥).

It is easy to see that when the structure vector field ξ is tangent to the quasi contact
CR-lightlike submanifold M, then M is a contact CR-lighlike submanifold.

Proposition 2.2.4. A QGCR lightlike submanifold of an indefinite nearly α-Sasakian mani-
fold M, is a quasi contact CR (resp. quasi SCR)if and only if D1 = {0} (resp. D2 = {0}).

Proof. Let M be a quasi contact CR-lightlike submanifold. Then φ(RadT M) is a distribution
on M such that φ(RadT M)∩RadT M = {0}. Therefore, D2 =RadT M and D1 = {0}. Hence,
φ(ltr(T M))∩ ltr(T M) = {0}. Then it follows that φ(ltr(T M)) ⊂ S(T M). The converse is
obvious. The second assertation also follows in the same way.
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From (1.2.1), the tangent bundle, T M, of any QGCR-lightlike submanifold can be
rewritten as

T M = D⊕ D̂, where D = D0 ⊥ D1 and D̂ = {D2 ⊥ φD2}⊕D.

Notice that D is invariant with respect to φ while D̂ is not generally anti-invariant with
respect to φ .

Note the following for a proper QGCR-lightlike submanifold (M,g,S(T M), S(T M⊥)) of
an indefinite almost contact metric manifolds M according to Definition 2.2.1:

1. Condition (i) implies that dim(RadT M) = s ≥ 3.

2. Condition (ii) implies that dim(D)≥ 4l ≥ 4 and dim(D2) = dim(L ).

2.3 Characterization theorems

In this section, we discuss some existence (or non-existence) theorems for proper QGCR-
lightlike submanifolds of an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g).

Theorem 2.3.1. Let (M,g,S(T M), S(T M⊥)) be a totally umbilical proper QGCR-lighlike
submanifold of an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with the structure
vector field ξ tangent to M. Then, α = 0.

Proof. Since ξ ∈ Γ(T M) then ξ = ξR +ξS and bi = cβ = 0. Using (1.3.10) and (1.2.15), we
get

−αφX = HX +∇X ξ +
r

∑
i=1

hl
i(X ,ξ )Ni +

n

∑
β=r+1

hs
β
(X ,ξ )Wβ , (2.3.1)

for all X ∈ Γ(T M). Taking the g-product of (2.3.1) with respect to Wβ ∈ Γ(S ) we get

αg(X ,φWβ ) = g(HX ,Wβ )+ εβ hs
β
(X ,ξ ), ∀X ∈ Γ(T M). (2.3.2)

Now, letting X = φWβ in (2.3.2) we obtain

αg(φWβ ,φWβ ) = g(H φWβ ,Wβ )+ εβ hs
β
(φWβ ,ξ ). (2.3.3)
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Since cβ = εβ η(Wβ ) = 0, then −H φWβ = (∇Wβ
φ)ξ +αWβ and the first term on the right

hand side of (2.3.3) therefore simplifies as follows using (1.3.4)

−g(H φWβ ,Wβ ) = g((∇Wβ
φ)ξ ,Wβ )+αg(Wβ ,Wβ )

=−g(ξ ,(∇Wβ
φ)Wβ )+αg(Wβ ,Wβ )

=−αg(ξ , ḡ(Wβ ,Wβ )ξ )+αg(Wβ ,Wβ )

=−αg(Wβ ,Wβ )+αg(Wβ ,Wβ ) = 0. (2.3.4)

Then substituting g(H φWβ ,Wβ ) = 0 in (2.3.3) we obtain

αg(φWβ ,φWβ ) = εβ hs
β
(φWβ ,ξ ). (2.3.5)

By virtue of the fact that M is totally umbilical in M, (2.3.5) yields

αg(φWβ ,φWβ ) = εβH
s
β

g(φWβ ,ξ ) = 0. (2.3.6)

Then, simplifying (2.3.6) while considering η(Wβ ) = 0, we get

αg(φWβ ,φWβ ) = αg(Wβ ,Wβ ) = αεβ = 0,

from which we can see that α = 0.

Corollary 2.3.2. There exist no totally umbilical proper QGCR-lightlike submanifolds
(M,g,S(T M), S(T M⊥)) of an indefinite nearly Sasakian manifold (M,φ ,η ,ξ ,g) with the
structure vector field ξ tangent to M.

Theorem 2.3.3. Let (M,g,S(T M), S(T M⊥)) be a totally geodesic QGCR-lighlike subman-
ifold of an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with the structure vector
field ξ tangent to M. Then, α = 0.

Proof. The proof is similar to that in Theorem 2.3.1. Hence, we omit it here.

Using Theorem 2.3.1 and Corollary 2.3.3 above we get the following theorem;

Theorem 2.3.4. Let (M,g,S(T M), S(T M⊥)) be a totally umbilical or totally geodesic
geodesic proper QGCR-lighlike submanifold of an indefinite nearly α-Sasakian manifold
(M,φ ,η ,ξ ,g) with the structure vector field ξ tangent to M. Then, α = 0.

When the structure vector field ξ is normal, we have the following.
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Theorem 2.3.5. Let (M,g,S(T M), S(T M⊥)) be a proper QGCR-lighlike submanifold of an
indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with the structure vector field ξ normal
to M. Then, α = 0.

Proof. Suppose by contradiction that α ̸= 0 and ξ ∈ Γ(T M⊥), then

ξ = ξR +ξS⊥, ξl = ξS = 0, bi = 0, ai ̸= 0 and cβ ̸= 0. (2.3.7)

Differentiating the first equation of (2.3.7) with respect to X and using (1.3.8), (1.2.15) and
(1.2.17), we get

−αφX =
r

∑
i=1

X(ai)Ei +
n

∑
β=r+1

X(cβ )Wβ

+
r

∑
i=1

ai

{
∇X Ei +

r

∑
j=1

hl
j(X ,Ei)N j +

n

∑
γ=r+1

hs
γ(X ,Ei)Wγ

}

+
n

∑
β=r+1

cβ

{
−AWβ

X +
r

∑
i=1

ϕβ i(X)Ni +
n

∑
γ=r+1

σβγ(X)Wγ

}
+HX , (2.3.8)

for all X ∈ Γ(T M). Taking the g-product of (2.3.8) with respect to Ek and φNk ∈ Γ(S(T M))

in turn, where Nk ∈ Γ(L ), we get

αg(X ,φEk) =−
r

∑
i=1

aihl
i(X ,Ek)−

n

∑
β=r+1

cβ hs
β
(X ,Ek)+g(HX ,Ek). (2.3.9)

Replacing X with φNk in (2.3.9) we obtain

αg(Nk,Ek) =−
r

∑
i=1

aihl
i(φNk,Ek)−

n

∑
β=r+1

cβ hs
β
(φNk,Ek)+g(H φNk,Ek). (2.3.10)

The g-product with φNk yields

−αg(φX ,φNk) =−
r

∑
i=1

aig(A∗
Ei

X ,φNk)+
r

∑
i=1

ai

r

∑
j=1

hl
j(X ,Ei)λ j(φNk)

−
n

∑
β=r+1

cβ g(AWβ
X ,φNk)+

n

∑
β=r+1

cβ

r

∑
j=1

ϕβ j(X)λ j(φNk)

+g(HX ,φNk). (2.3.11)
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Now, using (1.2.24), (1.2.25) and (1.2.26) in (2.3.11), we obtain

αg(φX ,φNk) =
r

∑
i=1

aig(A∗
Ei

X ,φNk)+
n

∑
β=r+1

cβ g(AWβ
X ,φNk)−g(HX ,φNk),

which on replacing X with Ek and simplifying gives

αg(Ek,Nk) = αbkak +
r

∑
i=1

aihl
i(Ek,φNk)+

n

∑
β=r+1

cβ hs
β
(Ek,φNk)−g(HEk,φNk). (2.3.12)

Adding (2.3.10) to (2.3.12) yields

2αg(Ek,Nk) = g(H φNk,Ek)−g(HEk,φNk). (2.3.13)

But H is skew-symmetric and thus (2.3.13) becomes

g(H φNk,Ek) = α. (2.3.14)

By virtue of (2.3.14) and the fact that α ̸= 0, it easy to see that 1
α

H φNk ∈ Γ(ltr(T M)) when
α > 0 or 1

α
φ HNk ∈ Γ(ltr(T M)) when α < 0. Hence, there exist non vanishing smooth

functions ek such that H φNk = αekNk or φ HNk = αekNk . Taking the g-product of the first
equation with respect to ξ , we get 0 = g(H φNk,ξ ) = g(αekNk,ξ ) = αekg(Nk,ξ ) = αekak,
from which ak = 0, a contradiction. Thus, α = 0. The second also yields similar results since
η ◦φ = 0.

From the above theorem, we have the following corollaries;

Corollary 2.3.6. There is no proper QGCR-lightlike submanifolds (M,g,S(T M), S(T M⊥))

of an indefinite nearly Sasakian manifold (M,φ ,η ,ξ ,g) with the structure vector field ξ

normal to M.

Corollary 2.3.7. There is no totally umbilical or totally geodesic proper QGCR-lightlike sub-
manifolds (M,g,S(T M),S(T M⊥)) of an indefinite nearly Sasakian manifold (M,φ ,η ,ξ ,g)
with the structure vector field ξ normal to M.

Note from Theorem 2.3.5 and its corollaries that the normality of ξ considered is the
special case when ai ̸= 0 and cβ ̸= 0, such that a contradiction of any of the two makes the
assertion invalid.

Theorem 2.3.8. Let (M,g,S(T M),S(T M⊥)) be a totally umbilical proper QGCR-lightlike
submanifold of an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with the structure
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vector field ξ transversal to M. If the screen distribution S(T M) is totally umbilical, then
α = 0.

Proof. Suppose by contradiction that α ̸= 0 and ξ ∈ Γ(tr(T M)), then,

ξ = ξl +ξS⊥, ξR = ξS = 0, ai = 0, bi ̸= 0 and cβ ̸= 0. (2.3.15)

Differentiating the first equation of (2.3.15) with respect to X and using (1.3.8), (1.2.16) and
(1.2.17), we get

−αφX =
r

∑
i=1

X(bi)Ni +
n

∑
β=r+1

X(cβ )Wβ

+
r

∑
i=1

bi

{
−ANiX +

r

∑
j=1

τi j(X)N j +
n

∑
β=r+1

ρiβ (X)Wβ

}

+
n

∑
β=r+1

cβ

{
−AWβ

X +
r

∑
i=1

ϕβ i(X)Ni +
n

∑
γ=r+1

σβγ(X)Wγ

}
+HX ,

for all X ∈ Γ(T M). Now, taking the g-product of the above equation with respect to φNk ∈
Γ(S(T M)) where Nk ∈ Γ(L ), we get

−αg(φX ,φNk) =−
r

∑
i=1

big(ANiX ,φNk)−
n

∑
β=r+1

cβ g(AWβ
X ,φNk)+g(HX ,φNk). (2.3.16)

Replacing X with Ek ∈ Γ(D2) in (2.3.16), we obtain

−αg(φEk,φNk) =−
r

∑
i=1

big(ANiEk,φNk)−
n

∑
β=r+1

cβ g(AWβ
Ek,φNk)

+g(HEk,φNk). (2.3.17)

Substituting (1.2.25) and the first equation of (1.2.27) in (2.3.17) gives

−αg(φEk,φNk) =−
r

∑
i=1

bih∗i (Ek,φNk)−
n

∑
β=r+1

cβ hs
β
(Ek,φNk)+g(HEk,φNk). (2.3.18)

Since M is totally umbilical in M, with a totally umbilical screen, then (2.3.18) yields

−αg(φEk,φNk) = g(HEk,φNk), (2.3.19)
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which reduces to g(φ HEk,Nk) = α . It is easy to see from this equation that 1
α

φ HEk ∈
Γ(RadT M) when α > 0 or 1

α
H φEk ∈ Γ(RadT M) when α < 0. Hence, there exist non

vanishing smooth functions wk such that φ HEk = αwkEk or H φEk = αwkEk. Taking the
g-product of the first equation with respect to ξ , we obtain 0= g(φ HEk,ξ ) =αwkg(Ek,ξ ) =

αwkbk. Hence, bk = 0 which is contradiction. Thus, α = 0. The second gives similar results
since η ◦H = 0.

Corollary 2.3.9. There exist no totally umbilical proper QGCR-lightlike submanifolds
(M,g,S(T M),S(T M⊥)), with totally geodesic screen distributions, of an indefinite nearly
Sasakian manifold (M,φ ,η ,ξ ,g) with the structure vector field ξ transversal to M.

Theorem 2.3.10. Let (M,g,S(T M),S(T M⊥)) be a totally geodesic proper QGCR-lightlike
submanifold of an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with the structure
vector field ξ transversal to M. If the screen distribution S(T M) is totally geodesic, then
α = 0.

Proof. The proof is similar to that in Theorem 2.3.8. Hence, we ommit it.

Note from Theorem 2.3.8 and its corollaries that the transversality of ξ considered is the
special case when bi ̸= 0 and cβ ̸= 0, such that a contradiction of any of the two makes the
assertion invalid.

Next, we consider the special case of nearly α-Sasakian manifold with H = 0. More
precisely, the indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g) with H = 0 becomes
α-Sasakian manifold. We define the concept of generalised α-Sasakian space form as
follows;

Definition 2.3.11. An indefinite α-Sasakian manifold M will be called a generalised α-
Sasakian space form, denoted by M( f1, f2), if its curvature tensor R is given by

R(X ,Y )Z = f1{g(Y ,Z)X −g(X ,Z)Y}+ f2{η(X)η(Z)Y

−η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y ,Z)η(X)ξ

+g(φ Y ,Z)φ X +g(φ Z,X)φ Y −2g(φ X ,Y )φ Z}, (2.3.20)

for any X ,Y ,Z ∈ Γ(T M) and f1, f2 ∈ X (M).

If f1 =
c+3

4 and f2 =
c−1

4 , then M( f1, f2) becomes a 1-Sasakian space form or simply
Sasakian space form [19]. If f1 = f2 =

c
2 , then M( f1, f2) becomes a cosymplectic space form

[12]. Now, using (2.3.20) we have the following existence theorem.
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Theorem 2.3.12. Let (M,g,S(T M),S(T M⊥)) be a lightlike submanifold of an indefinite
generalised α-Sasakian space form M( f1, f2) with f2 ̸= 0. Then, M is a QGCR-lightlike
submanifold of M( f1, f2) if and only if

(a) The maximal invariant subspaces of TpM, p ∈ M define a distribution

D = D0 ⊥ D1,

where RadT M = D1 ⊕D2 and D0 is a non-degenerate invariant distribution.

(b) There exists a lightlike transversal vector bundle ltr(T M) such that

g(R(X ,Y )E,N) = 0, ∀X ,Y ∈ Γ(D0), E ∈ Γ(RadT M), N ∈ Γ(ltr(T M)).

(c) There exists a vector subbundle M2 on M such that

g(R(X ,Y )W,W ′) = 0, ∀W,W ′ ∈ Γ(M2),

where M2 is orthogonal to D and R is the curvature tensor of M(c).

Proof. Suppose M is a QGCR-lightlike submanifold of M( f1, f2) with f2 ̸= 0. Then, D =

D0 ⊥ D1 is a maximal invariant subspace. Next, from (2.3.20), for X ,Y ∈ Γ(D0), E ∈ Γ(D2)

and N ∈ Γ(ltr(T M)) we have

g(R(X ,Y )E,N) = f2{η(X)η(E)g(Y,N)−η(Y )η(E)g(X ,N)−2g(φX ,Y )g(φE,N)}
= 2 f2g(φX ,Y )g(φE,N).

Since g(φX ,Y ) ̸= 0 and g(φE,N) = 0, we have g(R(X ,Y )E,N) = 0. Similarly, from (2.3.20),
one obtains

g(R(X ,Y )W,W ′) = 2 f2g(φX ,Y )g(φW,W ′),

∀X ,Y ∈ Γ(D0) and W,W ′ ∈ Γ(φS ). Let W = φW1 and W ′ = φW2 with W1,W2 ∈ Γ(S ).
Since g(φX ,Y ) ̸= 0 and g(φW,W ′) = g(φ 2W1,φW2) = g(φW1,W2) = 0. Therefore, we have
g(R(X ,Y )W,W ′) = 0.

Conversely, assume that (a), (b) and (c) are satisfied. Then (a) implies that D = D0 ⊥ D1

is invariant. From (b) and (2.3.20) we get

g(φE,N) = 0, (2.3.21)
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which implies φE ∈Γ(S(T M)). Thus, some part of RadT M, say D2, belongs to S(T M) under
the action of φ . Further, (2.3.21) implies g(φE,N) = g(φ 2E,φN) = g(−E +η(E)ξ ,φN) =

−g(E,φN) = 0. Therefore, a part of ltr(T M), say L , also belongs to S(T M) under the
action of φ . On the other hand, (c) and (2.3.20) imply g(φW,W ′) = 0. Hence we obtain
φM2 ⊥M2. Also, g(φE,W )=−g(E,φW )=−cβ η(E) implies that generally φM2⊕RadT M
or equivalently, M2 ⊕φRadT M. Now, from M2 ⊕φRadT M and the fact that φD1 = D1, then
M2 ⊥ D1 and M2 ⊕ φD2. This also tells us that φM2 has a component along ltr(T M),
essentially coming from ξ . On the other hand, invariant and non-degenerate D0 implies
g(φW,X) = 0, for X ∈ Γ(D0). Thus, M2 ⊥ D0 and φM2 ⊥ D0. Since ξ ∈ Γ(T M), we sum
up the above results and conclude that

S(T M) = {φD2 ⊕M1 ⊕M2} ⊥ D0,

where M1 = φL . Hence M is QGCR-lightlike submanifold of M( f1, f2) and the proof is
completed.

Note that conditions (b) and (c) are independent of the position of ξ and hence valid for
GCR-lightlike submanifolds [10] and QGCR-lightlike submanifolds of indefinite Sasakian
space form M

(c+3
4 , c−1

4

)
and indefinite cosymplectic space form M

( c
2 ,

c
2

)
. When ξ is

tangent to M, it is well known that ξ ∈ Γ(S(T M)) [6]. In this case, one has a GCR-
lightlike submanifold, in which D2 ⊥ φD2 is an invariant subbundle of T M, leading to
D = D1 ⊥ D2 ⊥ φD2 ⊥ D0 as the maximal invariant subspace of T M. On the other hand,
when M is QGCR-lightlike submanifold then ξ ∈ Γ(T M) and thus D2 ⊥ φD2 is generally
not an invariant subbundle of T M since the action of φ on it gives a component along
ξ . In particular, let E ∈ Γ(D2) then E + φE ∈ Γ(D2 ⊥ φD2). But on applying φ to this
subbundle and considering the fact that η(E) ̸= 0 we get −E +φE +η(E)ξ /∈ Γ(D2 ⊥ φD2).
Hence, D = D0 ⊥ D1 is the maximal invariant subbundle of T M. Further, in the case of
QGCR-lightlike submanifold, φD2 ⊕M2. In fact, let φE ∈ Γ(φD2) and W = φW1 ∈ Γ(M2),
where W1 ∈ Γ(S ). Then, g(φE,W ) = g(φE,φW1) =−η(E)η(W1) ̸= 0. This explains the
second direct sum in decomposition S(T M) = {φD2 ⊕M1 ⊕M2} ⊥ D0. For the case of
GCR-lightlike submanifold, η(E) = η(W1) = 0, hence g(φE,W ) = g(φE,φW1) = 0. This
implies that φD2 ⊥ M2 and hence the first direct orthogonal sum in the decomposition
S(T M) = {φD2 ⊕M1} ⊥ M2 ⊥ D0 ⊥ ⟨ξ ⟩.
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2.4 Integrability of distributions

Let M be a proper QGCR-lightlike submanifold of an indefinite nearly α-Sasakian manifold
(M,φ ,ξ ,η , g). From (1.2.1), the tangent bundle of any QGCR-lightlike submanifold, T M,
can be rewritten as

T M = D⊕ D̂, (2.4.1)

where D = D0 ⊥ D1 and D̂ = {D2 ⊥ φD2}⊕D.
Notice that D is invariant with respect to φ while D̂ is not generally anti-invariant with

respect to φ .
Let π and π̂ be the projections of T M onto D and D̂ respectively. Then, using the first

equation of (2.4.1) we can decompose X as

X = πX + π̂X , ∀X ∈ Γ(T M). (2.4.2)

It is easy to see that φπX ∈ Γ(D). However, the action of φ on π̂X gives a tangential and
transversal component due to a generalized ξ , i.e.,

φX = P1X +P2X +QX , ∀X ∈ Γ(T M), (2.4.3)

where P1X = φπX while P2X is the tangential component of φπ̂X and QX is the transversal
component of φX , essentially coming from φπ̂X since φD = D.

By grouping the tangential and transversal parts in (2.4.3), it is easy to see that

φX = PX +QX , ∀X ∈ Γ(T M), (2.4.4)

where PX = P1X +P2X .
Note that if X ∈ Γ(D), then P2X = QX = 0, and φX = P1X .
The equation (2.4.4) can be properly understood through the following specific case of

vector field in D ⊂ D̂. Let ξM and ξtrM be the tangential and transversal components of ξ . If
X ∈ Γ(D) and since D = φ S ⊕φ L , then

φX = SX +LX −{η(SX)+η(LY )}ξM −{η(SX)+η(LY )}ξtrM.
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Consequently, for X ∈ Γ(D),

P1X = 0,

P2X =−{η(SX)+η(LY )}ξM,

and QX = SX +LX −{η(SX)+η(LY )}ξtrM.

Similarly, for any V ∈ Γ(tr(T M)), V = SV +LV , and

φV = tV + fV, (2.4.5)

where tV and fV are the tangential and transversal components of φV , respectively.
Differentiating (2.4.4) with respect to Y we get

∇Y PX +∇Y QX = ∇Y φX . (2.4.6)

Then using (1.2.15), (1.2.16), (1.2.17) and (1.3.4) we have

∇Y PX +∇Y QX = ∇Y PX +h(PX ,Y )−AQXY +∇
t
Y QX , (2.4.7)

and from (1.3.4), we have;

∇Y φX = φ(∇Y X)+φ(∇XY )+2φh(X ,Y )−∇X φY

+2αg(X ,Y )ξM +2αg(X ,Y )ξtrM −αη(Y )X −αη(X)Y

= P(∇Y X)+Q(∇Y X)+P(∇XY )+Q(∇XY )

+2th(X ,Y )+2 f h(X ,Y )−∇X PY −∇
t
X QY

−h(X ,PY )+AQY X +2αg(X ,Y )ξM +2αg(X ,Y )ξtrM

−αη(Y )X −αη(X)Y. (2.4.8)

Finally putting (2.4.7) and (2.4.8) in (2.4.6) and then comparing the tangential and transversal
components of the resulting equation, we obtain

(∇Y P)X +(∇X P)Y = AQXY +AQY X +2th(X ,Y )

+2αg(X ,Y )ξM −αη(X)Y −αη(Y )X , (2.4.9)
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and

(∇T
Y Q)X +(∇T

X Q)Y =−h(PX ,Y )−h(X ,PY )

+2 f h(X ,Y )+2αg(X ,Y )ξtrM, (2.4.10)

for all X ,Y ∈ Γ(T M), where

(∇Y P)X = ∇Y PX −P(∇Y X) and (∇T
Y Q)X = ∇

t
Y QX −Q(∇Y X). (2.4.11)

Proposition 2.4.1. Let (M,g,S(T M),S(T M⊥)) be a proper QGCR-lightlike submanifold of
an indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g). Then,

P[X ,Y ] =−∇Y PX −∇X PY +2P∇XY +AQXY +AQY X

+2th(X ,Y )+2αg(X ,Y )ξM −αη(X)Y −αη(Y )X , (2.4.12)

and

Q[X ,Y ] =−∇
t
Y QX −∇

t
X QY +2Q∇XY −h(PX ,Y )−h(X ,PY )

+2 f h(X ,Y )+2αg(X ,Y )ξtrM, (2.4.13)

for all X ,Y ∈ Γ(T M).

Proof. The proof follows from (2.4.9) and (2.4.10).

Theorem 2.4.2. Let (M,g,S(T M),S(T M⊥)) be a proper QGCR-lightlike submanifold of an
indefinite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g). Then, the distribution D is integrable
if and only if

h(P1X ,Y )+h(X ,P1Y ) = 2(Q∇XY + f h(X ,Y )+αg(X ,Y )ξtrM),

and P2[X ,Y ] = 0.

for all X ,Y ∈ Γ(D).

Proof. The proof is a straightforward calculation.

The integrability of D̂ is discussed as follows. Note that the distribution D̂ is integrable if
and only if, for any X , Y ∈ Γ(D̂), [X ,Y ] ∈ Γ(D̂). The latter is equivalent to P1[X ,Y ] = 0.

Theorem 2.4.3. Let (M,g,S(T M),S(T M⊥)) be a QGCR-lightlike submanifold of an indefi-
nite nearly α-Sasakian manifold (M,φ ,η ,ξ ,g). Then, the distribution D̂ is integrable if and
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only if

AQXY +AQY X −∇Y P2X −∇X P2Y

+2(P1(∇XY )+αg(X ,Y )ξM + th(X ,Y )) ∈ Γ(D̂),

for all X ,Y ∈ Γ(D̂).

Proof. Let X ,Y ∈ Γ(D̂), then it is easy to see that P1X = P1Y = 0. Hence, PX = P2X and
PY = P2Y . Now using (2.4.12), we derive

φ [X ,Y ] = P[X ,Y ]+Q[X ,Y ]

=−∇Y PX −∇X PY +2P∇XY +AQXY

+AQY X +2th(X ,Y )+2αg(X ,Y )ξM −αη(X)Y

−αη(Y )X +Q[X ,Y ]

=−∇Y P2X −∇X P2Y +2P1∇XY +AQXY

+AQY X +2th(X ,Y )+2αg(X ,Y )ξM +2P2∇XY

−αη(X)Y −αη(Y )X +Q[X ,Y ]. (2.4.14)

It is obvious from (2.4.14) that the last four terms belongs to D̂. Hence, the assertation
follows from the remaining terms.





Chapter 3

Ascreen QGCR-lightlike submanifolds of
nearly α-Sasakian manifod

3.1 Introduction

In this chapter, we study a special QGCR-lightlike submanifold of indefinite nearly α-
Sasakian manifolds, called, ascreen QGCR-lighlike submanifold. We discuss totally umblical,
totally geodesic, mixed geodesic and minimal ascreen QGCR-lightlike submanifolds.

Definition 3.1.1 ([15]). A lightlike submanifold M of a semi-Riemannian manifold (M,g) is
said to be ascreen if the structural vector field, ξ , belongs to RadT M⊕ ltr(T M).

Note that, since L defined in Definition 2.2.1 is a subbundle of ltr(T M), there is a
complementary subbundle ν of ltr(T M) such that

ltr(T M) = L ⊥ ν .

It is easy to check that the complementary subbundle ν is invariant under φ , i.e. φν = ν .
Let M be an ascreen QGCR-lightlike submanifold of an indefinite nearly α-Sasakian

manifold M. Then by Definition 3.4.1, the structure vector field ξ ∈ RadT M ⊕ltr(T M). This
means that ξ can possibly be in RadT M or ltr(T M). If ξ ∈Γ(RadT M), then ξ ∈Γ(D2) since
φD1 = D1 and φξ = 0. On the other hand, if ξ ∈ Γ(ltr(T M)), then ξ ∈ Γ(L ) because of the
fact that φν = ν and φξ = 0. Since, ξ is a unit spacelike vector field, that is g(ξ ,ξ ) = 1, then
it can easily be seen that ξ /∈ Γ(D2) or ξ /∈ Γ(L ), since D2 and L are both null subbundles.
Therefore, we have the following definition for an ascreen QGCR-lightlike submanifold.
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Definition 3.1.2. Let (M,g,S(T M),S(T M⊥)) be a lightlike submanifold of an indefinite
nearly α-Sasakian manifold (M,g,φ ,ξ ,η). We say that M is ascreen QGCR-lightlike
submanifold of M if the following conditions are satisfied:

(i) there exist two distributions D1 and D2 of RadT M such that

RadT M = D1 ⊕D2, φD1 = D1, φD2 ⊂ S(T M), (3.1.1)

(ii) there exist vector bundles D0 and D over S(T M) such that

S(T M) = {φD2 ⊕D} ⊥ D0, (3.1.2)

with φD0 ⊆ D0, D = φ S ⊥ φ L , (3.1.3)

where D0 is a non-degenerate and invariant distribution on M, L and S are respectively
vector subbundles of ltr(T M) and S(T M⊥).

If D1 ̸= {0}, D0 ̸= {0}, D2 ̸= {0} and S ̸= {0}, then M is called a proper ascreen QGCR
lightlike submanifold.

Lemma 3.1.3. If (M,g,S(T M),S(T M⊥)) is an ascreen QGCR-lightlike submanifold of an
indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g), then ξ ∈ Γ(D2 ⊕L ).

Theorem 3.1.4. Let (M,g,S(T M),S(T M⊥)) be a 3-lightlike QGCR-submanifold of an in-
definite almost contact manifold (M,φ ,ξ ,η , g). Then M is ascreen lightlike submanifold if
and only if φL = φD2.

Proof. Suppose that M is ascreen. Then, by Lemma 3.1.3, ξ ∈ Γ(D2 ⊕L ). Since M is a 3-
lightlike QGCR submanifold, and RadT M = D1⊕D2 with φD1 = D1 and ltr(T M) =L ⊥ ν

with φν = ν , the distributions D2 and L are of rank 1. Consequently,

ξ = aE +bN, (3.1.4)

where E ∈Γ(D2) and N ∈Γ(L ), and a=η(N) and b=η(E) are non-zero smooth functions.
Applying φ to (3.1.4) and using the fact that φξ = 0, we get

aφE +bφN = 0. (3.1.5)

From (3.1.5), one gets φE = ωφN, where ω =−b
a ̸= 0, a non vanishing smooth function.

This implies that φL ∩ φD2 ̸= {0}. Since rank(φD2) = rank(φL ) = 1, it follows that
φL = φD2.
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Conversely, suppose that φL = φD2. Then, there exist a non-vanishing smooth function
ω such that

φE = ωφN. (3.1.6)

Taking the g-product of (3.1.6) with respect to φE and φN in turn, we get

b2 = ω(ab−1) and ωa2 = ab−1. (3.1.7)

Since ω ̸= 0, by (3.1.7), we have a ̸= 0, b ̸= 0 and b2 = (ωa)2. The latter gives b=±ωa. The
case b = ωa implies that ab = ωa2 = ab−1, which is a contradiction. Thus b =−ωa, from
which 2ab = 1. Since ω =−b

a , a ̸= 0 and φE = ωφN, it is easy to see that aφE +bφN = 0.
Applying φ to this equation, and using the first relation in (1.3.1), together with 2ab = 1, we
get ξ = aE +bN. Therefore, M is ascreen lightlike submanifold of M.

In the ascreen QGCR-lightlike submanifold case, the item (ii) of Definition 2.2.1 implies
that dim(D) ≥ 4l ≥ 4 and dim(D2) = dim(L ). Thus dim(M) ≥ 7 and dim(M) ≥ 11, and
any 7-dimensional ascreen QGCR-lightlike submanifold is 3-lightlike.

Next, we construct two examples of ascreen QGCR-lightlike submanifolds. First, when
the ambient manifold is Sasakian (i.e., α = 1 and H = 0) and then when the ambient manifold
is cosymplectic (i.e., α = 0 and H = 0).

Using structure 1.3.6 (i.e., M is Sasakian manifold), we have the following example;

Example 3.1.5. Let M = (R11
4 ,g) be a semi-Euclidean space, where g is of signature

(−,−,+,+,+,−,−,+,+,+,+) with respect to the canonical basis

(∂x1,∂x2,∂x3,∂x4,∂x5,∂y1,∂y2,∂y3,∂y4,∂y5,∂ z).

Let (M,g) be a submanifold of M given by

x1 = y4, y1 =−x4, z = x2 sinθ + y2 cosθ and y5 = (x5)
1
2 ,

where θ ∈ (0, π

2 ). By direct calculations, we can easily check that the vector fields

E1 = ∂x4 +∂y1 + y4
∂ z, E2 = ∂x1 −∂y4 + y1

∂ z,

E3 = sinθ∂x2 + cosθ∂y2 +∂ z, X1 = 2y5
∂x5 +∂y5 +2(y5)2

∂ z,

X2 =−cosθ∂x2 + sinθ∂y2 − y2 cosθ∂ z, X3 = 2∂y3, X4 = 2(∂x3 + y3
∂ z),

form a local frame of T M. From this, we can see that RadT M is spanned by {E1,E2,E3},
and therefore, M is 3-lightlike. Further, φ 0E1 = E2, therefore we set D1 = Span{E1,E2}.
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Also φ 0E3 = −X2 and thus D2 = Span{E3}. It is easy to see that φ 0X3 = X4, so we set
D0 = Span{X3,X4}. On the other hand, following direct calculations, we have

N1 =
1
2
(∂x4 −∂y1 + y4

∂ z), N2 =
1
2
(−∂x1 −∂y4 + y1

∂ z),

N3 =
1
2
(−sinθ∂x2 − cosθ∂y2 +∂ z), W = ∂x5 −2y5

∂y5 + y5
∂ z,

from which ltr(T M) = Span{N1,N2,N3} and S(T M⊥) = Span{W}. Clearly, φ 0N2 =−N1.
Further, φ 0N3 =

1
2X2 and thus L = Span{N3}. Notice that φ 0N3 =−1

2φ 0E3 and therefore
φ 0L = φ 0D2. Also, φ 0W =−X1 and therefore S = Span{W}. Finally, we calculate ξ as
follows; From Theorem 3.4.2 we have ξ = aE3 + bN3. Applying φ 0 to this equation we
obtain aφ 0E3 + bφ 0N3 = 0. Now, substituting for φ 0E3 and φ 0N3 in this equation we get
2a = b, from which we get ξ = 1

2(E3 +2N3). Since φ 0ξ = 0 and g(ξ ,ξ ) = 1, we conclude
that (M,g) is an ascreen QGCR-lightlike submanifold of M.

Next, considering structure 1.3.5 (i.e., M is cosymplectic manifold), we have the following
example;

Example 3.1.6. Let M = (R11
4 ,g) be a semi-Euclidean space, where g is of signature

(−,−,+,+,+,−,−,+,+,+,+) with respect to the canonical basis

(∂x1,∂x2,∂x3,∂x4,∂x5,∂y1,∂y2,∂y3,∂y4,∂y5,∂ z).

Let (M,g) be a submanifold of M given by

x1 = y4, y1 =−x4, z =
1√
2

x2 +
1√
2

y2 and y5 = (x5)
1
2 .

By direct calculations, we can easily check that the vector fields

E1 = ∂x4 +∂y1, E2 = ∂x1 −∂y4,

E3 =
1√
2

∂x2 +
1√
2

∂y2 +∂ z, X1 = 2y5
∂x5 +∂y5,

X2 =− 1√
2

∂x2 +
1√
2

∂y2, X3 = ∂y3, X4 = ∂x3,

form a local frame of T M. From this, we can see that RadT M is spanned by {E1,E2,E3},
and therefore, M is 3-lightlike. Further, φ 0E1 = E2, therefore we set D1 = Span{E1,E2}.
Also φ 0E3 = −X2 and thus D2 = Span{E3}. It is easy to see that φ 0X3 = X4, so we set
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D0 = Span{X3,X4}. On the other hand, following direct calculations, we have

N1 =
1
2
(∂x4 −∂y1), N2 =

1
2
(−∂x1 −∂y4),

N3 =
1
2
(− 1√

2
∂x2 −

1√
2

∂y2 +∂ z), W = ∂x5 −2y5
∂y5,

from which ltr(T M) = Span{N1,N2,N3} and S(T M⊥) = Span{W}. Clearly, φ 0N2 =−N1.
Further, φ 0N3 =

1
2X2 and thus L = Span{N3}. Notice that φ 0N3 =−1

2φ 0E3 and therefore
φ 0L = φ 0D2. Also, φ 0W =−X1 and thereforeS = Span{W}. Finally, we calculate ξ as
follows; Using Theorem 3.4.2 we have ξ = aE3 + bN3. Applying φ 0 to this equation we
obtain aφ 0E3 + bφ 0N3 = 0. Now,substituting for φ 0E3 and φ 0N3 in this equation we get
2a = b, from which we get ξ = 1

2(E3 +2N3). Since φ 0ξ = 0 and g(ξ ,ξ ) = 1, we conclude
that (M,g) is an ascreen QGCR-lightlike submanifold of M.

3.2 Totally umbilical and totally geodesic ascreen QGCR-
lightlike submanifolds

In this section, we prove two main theorems concerning totally umbilical, totally geodesic
and irrotational ascreen QGCR-lightlike submanifolds of M. Notice that D0 and φS are
orthogonal and non-degenerate subbundles of T M and that when M is ascreen QGCR-
lightlike submanifold, we observe that

η(X) = η(Z) = 0, ∀X ∈ Γ(D0), Z ∈ Γ(φS ). (3.2.1)

Theorem 3.2.1. Let (M,g,S(T M), S(T M⊥)) be a totally umbilical or totally geodesic proper
ascreen QGCR-lightlike submanifold of an indefinite nearly cosymplectic space form M(c),
of pointwise constant φ -sectional curvature c, such that D0 and φS are spacelike and
parallel distributions with respect to ∇. Then, c ≥ 0. Equality occurs when M(c) is an
indefinite cosymplectic space form.
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Proof. Let X and Z be vector fields in D0 and φS , respectively. Replacing W with φX and
Y with φZ in (1.3.20), we get

4R(X ,φX ,Z,φZ) = g((∇
φX φ)Z,(∇X φ)φZ)

−g((∇
φX φ)φZ,(∇X φ)Z)−2g((∇

φX φ)X ,(∇
φZφ)Z)

+g(H φX ,Z)g(HX ,φZ)−g(H φX ,φZ)g(HX ,Z)

−2g(H φX ,X)g(H φZ,Z)−2cg(φZ,φZ)g(φX ,φX). (3.2.2)

Considering the first three terms on the right hand side of (3.2.2), we have

g((∇
φX φ)Z,(∇X φ)φZ) =−g((∇Zφ)φX ,(∇X φ)φZ). (3.2.3)

Applying the first equation of Lemma 1.3.3 on (3.2.3) we derive

g((∇
φX φ)Z,(∇X φ)φZ) =−g((∇Zφ)φX ,(∇X φ)φZ)

=−g(φ(∇Zφ)X ,φ(∇X φ)Z)−g(X ,∇Zξ )g(Z,∇X ξ )

=−g((∇Zφ)X ,(∇X φ)Z)+η((∇Zφ)X))η((∇X φ)Z)+g(Z,HX)2

= g((∇X φ)Z,(∇X φ)Z)+g(Z,(∇X φ)ξ )g(X ,(∇Zφ)ξ )+g(Z,HX)2

= g((∇X φ)Z,(∇X φ)Z)+g(Z,φ HX)g(X ,φ HZ)+g(Z,HX)2

= g((∇X φ)Z,(∇X φ)Z)−g(φZ,HX)2 +g(Z,HX)2. (3.2.4)

In a similar way, using the second equation of Lemma 1.3.3, we get

−g((∇
φX φ)φZ,(∇X φ)Z) = g((∇X φ)Z,(∇X φ)Z), (3.2.5)

and
−2g((∇

φX φ)X ,(∇
φZφ)Z) = 0. (3.2.6)

Now substituting (3.2.4), (3.2.5) and (3.2.6) in (3.2.2), we get

4R(X ,φX ,Z,φZ) = 2g((∇X φ)Z,(∇X φ)Z)−g(φZ,HX)2 +g(Z,HX)2

+g(H φX ,Z)g(HX ,φZ)−g(H φX ,φZ)g(HX ,Z)

−2g(H φX ,X)g(H φZ,Z)−2cg(φZ,φZ)g(φX ,φX), (3.2.7)
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from which we obtain

2R(X ,φX ,Z,φZ) = g((∇X φ)Z,(∇X φ)Z)+g(Z,HX)2 − cg(Z,Z)g(X ,X). (3.2.8)

Then using the facts D0 and φS are spacelike and parallel with respect to ∇, we have

(∇Zφ)X = (∇Zφ)X ∈ Γ(D0),

and (3.2.8) reduces to

2R(X ,φX ,Z,φZ) = ||(∇Zφ)X ||2 +g(Z,HX)2 − c||X ||2||Z||2, (3.2.9)

where ||.|| denotes the norm on D0 ⊥ φS with respect to g.
On the other hand, when we replace W with φX and Y with φZ in (1.2.34), we have

R(X ,φX ,Z,φZ) = g((∇X hs)(φX ,Z),φZ)−g((∇
φX hs)(X ,Z),φZ), (3.2.10)

where,

(∇X hs)(φX ,Z) = ∇
s
X hs(φX ,Z)−hs(∇X φX ,Z)−hs(φX ,∇X Z). (3.2.11)

By the fact that M is totally umbilical in M, we have hs(φX ,Z) = 0. Thus, using Definition
1.2.2, equation (3.2.11) becomes

(∇X hs)(φX ,Z) =−hs(∇X φX ,Z)−hs(φX ,∇X Z)

=−g(∇X φX ,Z)Hs −g(φX ,∇X Z)Hs. (3.2.12)

Differentiating g(φX ,Z) = 0 covariantly with respect to X and then applying (1.2.15), we
obtain

g(∇X φX ,Z)+g(φX ,∇X Z) = 0. (3.2.13)

Substituting (3.2.13) in (3.2.12), gives

(∇X hs)(φX ,Z) = 0. (3.2.14)

Similarly,
(∇

φX hs)(X ,Z) = 0. (3.2.15)
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Then, substituting (3.2.14) and (3.2.15) in (3.2.10), we get

R(X ,φX ,Z,φZ) = 0. (3.2.16)

Substituting (3.2.16) in (3.2.9), gives

c||X ||2||Z||2 = ||(∇Zφ)X ||2 +g(Z,HX)2 ≥ 0, (3.2.17)

which implies that c ≥ 0. When the ambient manifold is cosymplectic, then ∇φ = 0 and also
N(1) = 0 and hence dη = 0 from (1.3.14). In this case c = 0.

Example 3.2.2. Let (M,g,S(T M), S(T M⊥)) be an ascreen QGCR-lighlike submanifold in
Example 4.1.2. Applying (1.2.15) and Koszul’s formula (1.1.1) to Example 4.1.2 we obtain

hl
i(X ,Y ) = 0 ∀X ,Y ∈ Γ(T M), where i = 1,2,3,

ε4hs
4(X1,X1) = 2 and hs

4(X ,Y ) = 0, ∀X ̸= X1,Y ̸= X1. (3.2.18)

Using (1.2.22), (3.2.18) and ε4 = g(W,W ) = 1+4(y5)2, we also derive

h(X1,X1) =
2

1+4(y5)2W. (3.2.19)

We remark that M is not totally geodesic. From (3.2.19) and (1.2.32) we note that M is totally
umbilical with

H =
2

(1+4(y5)2)2W.

By straightforward calculations we also have

∇X1X1 = 4y5X1 and ∇XiX j = 0 ∀ i, j ̸= 1.

Thus, D0 and φS are parallel distributions with respect to ∇. Hence, M satisfies Theorem
3.2.1 and c = 0.

Corollary 3.2.3. Let (M,g,S(T M), S(T M⊥)) be a totally umbilical or totally geodesic
ascreen QGCR-lightlike submanifold of an indefinite cosymplectic space form M(c) of
pointwise constant φ -sectional curvature c. Then, c = 0.

Definition 3.2.4 ([9]). A lightlike submanifold M of a semi-Riemannian manifold (M,g) is
called irrotational if ∇X E ∈ Γ(T M), for any E ∈ Γ(RadT M)) and X ∈ Γ(T M). Equivalently,
M is irrotational if

hl(X ,E) = hs(X ,E) = 0, (3.2.20)



3.2 Totally umbilical and totally geodesic ascreen QGCR-lightlike submanifolds 43

for all X ∈ Γ(T M) and E ∈ Γ(RadT M).

Theorem 3.2.5. Let (M,g,S(T M), S(T M⊥)) be an irrotational proper ascreen QGCR-
lightlike submanifold of an indefinite nearly cosymplectic space form M(c) of pointwise
constant φ -sectional curvature c. Then, c ≤ 0 or c ≥ 0. Equality holds when M(c) is an
indefinite cosymplectic space form.

Proof. By setting Y = E, Z = φE, X = X and W = E in (1.2.34), we get

R(X ,φE,E,E) = g((∇X hl)(E,φE),E)−g((∇Ehl)(X ,φE),E)

+g((∇X hs)(E,φE),E)−g((∇Ehs)(X ,φE),E), (3.2.21)

for any X ∈ Γ(T M) and E ∈ Γ(RadT M). Then, using the fact that M is irrotational, (3.2.21)
reduces to

R(X ,φE,E,E) = 0, ∀ X ∈ Γ(T M). (3.2.22)

On the other hand, setting Y =W = E, X = X and Z = φE in (1.3.20), we get

R(X ,E,φE,E) = g((∇Eφ)φE,(∇X φ)E)−g((∇Eφ)E,(∇X φ)φE)

−2g((∇Eφ)X ,(∇Eφ)φE)+g(HE,φE)g(HX ,E)

−g(HE,E)g(HX ,φE)−2g(HE,X)g(HE,φE)

−η(E)η(E)g(HX ,H φE)+η(W )η(φE)g(HX ,HE)

+η(E)η(X)g(HE,H φE)−η(X)η(φE)g(HE,HE)

+ c{−η(E)η(X)g(φE,E)+η(E)η(E)g(X ,φE)

+g(φE,X)g(φ 2E,E)+g(φ 2E,X)g(φE,E)

−2g(φE,φE)g(X ,φE)},

for all X ∈ Γ(T M), which on simplifying leads to

R(X ,E,φE,E) =−3g((∇Eφ)φE,(∇Eφ)X)

−η(E)2g(HX ,H φE)+4cη(E)2g(X ,φE). (3.2.23)

Now, using (3.2.22) and (3.2.23), we get

4cη(E)2g(X ,φE) = 3g((∇Eφ)φE,(∇Eφ)X)+η(E)2g(HX ,H φE). (3.2.24)



44 Ascreen QGCR-lightlike submanifolds of nearly α-Sasakian manifod

Replacing X with φE in (3.2.24) and the using (1.3.17) of Lemma 1.3.3 to the resulting
equation gives

cη(E)2g(φE,φE) = η(E)2g(H φE,H φE). (3.2.25)

Since M is ascreen QGCR-lightlike submanifold, there exist E ∈ Γ(D2) such that η(E) =
b ̸= 0, and thus (3.2.25) simplifies to

c =− 1
b2 g(HE,HE) =

1
b2 dη(E,HE). (3.2.26)

We observe that c = 0 if either dη = 0 (i.e., M(c) is cosymplectic space form [4]) or HE
is a null vector field. The second case implies that HE belongs to RadT M or ltr(T M). If
HE ∈ Γ(RadT M), then there exists a non zero smooth function κ ′ such that HE = κ ′E,
for some arbitrary E ∈ Γ(RadT M). Taking the g-product of HE = κ ′E with ξ leads to
0 = κ ′η(E), from which η(E) = 0. Since M is ascreen QGCR-lightlike submanifold, then,
there is E ∈ Γ(D2) such that η(E) ̸= 0, hence a contradiction. Similar reasoning can be
applied if HE ∈ Γ(ltr(T M)). Therefore, c = 0 only if HE = 0 (i.e., dη = 0) which occurs
when M(c) is cosymplectic space form [4]. It turns out that c ≤ 0 or c ≥ 0 depending on
whether HE is space-like or time-like vector field respectively.

Corollary 3.2.6. Let (M,g,S(T M), S(T M⊥)) be an irrotational proper ascreen QGCR-
lightlike submanifold of an indefinite cosymplectic space form M(c) of pointwise constant
φ -sectional curvature c. Then, c = 0.

It is easy to see from (3.2.19) that hl(X ,E) = hs(X ,E) = 0 and hence M given in Example
3.2.2 is an irrotational ascreen QGCR-lighlike submanifold of an indefinite cosymplectic
space form M(c). As is proved in that example c = 0.

3.3 Mixed geodesic ascreen QGCR-lightlike submanifolds

Definition 3.3.1. A QGCR-lightlike submanifold of an indefinite nearly α-Sasakian man-
ifold (M,φ ,ξ ,η , g) is called mixed geodesic QGCR-lightlike submanifold if its second
fundamental form, h, satisfies h(X ,Y ) = 0, for any X ∈ Γ(D) and Y ∈ Γ(D̂).

We will need the following lemma in the next theorem.

Lemma 3.3.2. Let (M,g,S(T M),S(T M⊥)) be any 3-lightlike proper ascreen QGCR-lightlike
submanifold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then,

2η(E)η(N) = 1,
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for any E ∈ Γ(D2) and N ∈ Γ(L ).

Proof. The proof follows from straightforward calculations using g(ξ ,ξ ) = 1 and ξ =

η(N)E +η(E)N.

Theorem 3.3.3. Let (M,g,S(T M),S(T M⊥)) be a 3-lightlike proper ascreen QGCR-lightlike
submanifold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then, M is mixed
geodesic if and only if hs

β
(X ,Y ) = 0 and ′′on′′A∗

Ei
X = 0, for all X ∈ Γ(D), Y ∈ Γ(D̂), Wβ ∈

Γ(S(T M⊥)) and Ei ∈ Γ(RadT M).

Proof. By the defintion of ascreen QGCR-lightlike submanifold, M is mixed geodesic if

g(h(X ,Y ),Wβ ) = g(h(X ,Y ),Ei) = 0, (3.3.1)

for all X ∈ Γ(D), Y ∈ Γ(D̂), Wβ ∈ Γ(S(T M⊥)) and Ei ∈ Γ(RadT M). Now, by virtue of
(1.2.22) and the first equation of (3.3.1), we have

0 = g(h(X ,Y ),Wβ ) = εβ hs
β
(X ,Y ),

from which hs
β
(X ,Y ) = 0, since εβ ̸= 0. On the other hand, using the second equation of

(3.3.1), (1.2.15) and (1.2.19) we derive

g(h(X ,Y ),Ei) = g(∇XY,Ei) =−g(Y,∇X Ei) = g(Y,A∗
Ei

X) = 0. (3.3.2)

Since D = D0 ⊥ D1 and D̂ = {D2 ⊥ φD2}⊕D, we observe that A∗
Ei

X /∈ Γ(φD2) or φL . In
fact, let suppose that A∗

Ei
X /∈ Γ(φD2), then there exist a non-vanishing smooth function ℓ

such that A∗
Ei

X = ℓφE, for E ∈ Γ(D2). Thus,

0 = g(Y,A∗
Ei

X) = ℓg(Y,φE), ∀ Y ∈ Γ(D̂). (3.3.3)

Taking Y = φN in (3.3.3), where N ∈ Γ(L ) and using Lemma 3.3.2, we have

0 = g(Y,A∗
Ei

X) = ℓg(φN,φE) = ℓ(1−η(E)η(N)) =
1
2
ℓ,

which is a contradiction, since ℓ ̸= 0. Hence A∗
Ei

X /∈ Γ(φD2 ⊕φL ). Moreover, A∗
Ei

X /∈
Γ(φS ) since if A∗

Ei
X ∈ Γ(φS ), then there is a non-vanishing smooth function ω such that

A∗
Ei

X = ωφWβ . Taking the g-product of this equation with respect to Y = φWβ and using the
fact that η(Wβ ) = 0, we get

0 = g(Y,A∗
Ei

X) = ωg(φWβ ,φWβ ) = ωg(Wβ ,Wβ ) = ωεβ ,
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which is a contradiction, since εβ ̸= 0 and ω ̸= 0. Hence, A∗
Ei

X /∈ Γ({φD2 ⊕φL } ⊥ φS ),
which implies that A∗

Ei
X ∈ Γ(D0). Since A∗

Ei
X ∈ Γ(D0), then the non-degeneracy of D0

implies that there exist some Z ∈ Γ(D0) such that g(A∗
Ei

X ,Z) ̸= 0. But using (1.2.19) and
(1.2.15), together with the fact that M is mixed geodesic we derive

g(A∗
Ei

X ,Z) =−g(∇X Ei,Z) = g(Ei,∇X Z) = g(Ei,∇X Z) = 0, (3.3.4)

which is a contradiction. Thus A∗
Ei

X /∈ Γ({φD2 ⊕φL } ⊥ φS ⊥ D0), i.e., A∗
Ei

X = 0. The
converse is obvious.

Corollary 3.3.4. Let (M,g,S(T M),S(T M⊥)) be a proper ascreen QGCR-lightlike submani-
fold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then, if M is mixed geodesic
then hl

i(X ,Ei) = 0 and ϕβ i(X) = 0, for all X ∈ Γ(D) and Ei ∈ Γ(D2).

Definition 3.3.5. A QGCR-lightlike submanifold of an indefinite nearly α-Sasakian manifold
(M,φ ,ξ ,η , g) is called D-geodesic QGCR-lightlike submanifold if its second fundamental
form h satisfies

h(X ,Y ) = 0,

for any X ,Y ∈ Γ(D).

Since M is ascreen QGCR-lightlike submanifold, we have g(X ,ξ ) = 0 for all X ∈ Γ(D).
Applying ∇Y to g(X ,ξ ) = 0 we get

η(∇Y X) =−g(X ,∇Y ξ ). (3.3.5)

Interchanging X and Y in (3.3.5), and then adding the resulting equation to (3.3.5), gives

η(∇XY )+η(∇Y X) = α{g(Y,φX)+g(X ,φY )}+g(Y,HX)+g(X ,HY ) = 0. (3.3.6)

Theorem 3.3.6. Let (M,g,S(T M),S(T M⊥)) be a proper ascreen QGCR-lightlike subman-
ifold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then, M is D-geodesic
if and only if φhl(X ,φE) and φhs(X ,φW ) respectively have no components along ltr(T M)

and S(T M⊥), while both ∇X φE and ∇X φW /∈ Γ(D0) for all X ∈ Γ(D), E ∈ Γ(RadT M) and
W ∈ Γ(S ).

Proof. By the defintion of an ascreen QGCR-lightlike submanifold, M is D geodesic if
and only if g(h(X ,Y ),E) = g(h(X ,Y ),W ) = 0, for all X ,Y ∈ Γ(D), Wβ ∈ Γ(S(T M⊥)) and
E ∈ Γ(RadT M).
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Using (1.2.15) and (1.3.2), we derive

g(h(X ,Y ),E) = g(∇XY,E)

= g(φ ∇XY,φE)−g(Y,∇X ξ )g(E,ξ ),

from which when we apply (1.3.10) we get

g(h(X ,Y ),E) = g(φ ∇XY,φE)+αg(Y,φX)g(E,ξ )+g(Y,HX)g(E,ξ ). (3.3.7)

Interchanging X and Y in (3.3.7) and considering the fact that h is symmetric we get

g(h(X ,Y ),E) = g(φ ∇Y X ,φE)+αg(X ,φY )g(E,ξ )+g(X ,HY )g(E,ξ ). (3.3.8)

Summing (3.3.7) and (3.3.8) and then applying (3.3.6), we have

2g(h(X ,Y ),E) = g(φ ∇XY,φE)+g(φ ∇Y X ,φE). (3.3.9)

Now, applying condition in (1.3.4) to (3.3.9), leads to

2g(h(X ,Y ),E) = g(∇X φY,φE)+g(∇Y φX ,φE). (3.3.10)

From (3.3.10) and (1.2.15) we derive

2g(h(X ,Y ),E) = g(∇X φY,φE)+g(∇Y φX ,φE)

=−g(φY,∇X φE)−g(φX ,∇Y φE)

−g(φY,h(X ,φE))−g(φX ,h(Y,φE)). (3.3.11)

If we let X ,Y ∈ Γ(D1) in (3.3.11), we obtain

2g(h(X ,Y ),E) = g(Y,φh(X ,φE))+g(X ,φh(Y,φE)). (3.3.12)

On the other hand, when X ,Y ∈ Γ(D0), we get

2g(h(X ,Y ),E) =−g(φY,∇X φE)−g(φX ,∇Y φE). (3.3.13)

It is easy to see from (3.3.12) and (3.3.13) that if φh(X ,φE) /∈ Γ(ltr(T M)) and ∇X φE /∈
Γ(D0), then g(h(X ,Y ),E) = 0. The other assertions follow in the same way. The converse is
obvious.
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Corollary 3.3.7. Let (M,g,S(T M),S(T M⊥)) be a proper ascreen QGCR-lightlike subman-
ifold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If M is D-geodesic then
∇∗

X φE, ∇∗
X φW /∈ Γ(D0), for all X ∈ Γ(D), E ∈ Γ(D2) and W ∈ Γ(S ).

Corollary 3.3.8. Let (M,g,S(T M),S(T M⊥)) be a proper ascreen QGCR-lightlike submani-
fold of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If M is D-geodesic then D
defines a totally geodesic folliation in M.

3.4 Minimal ascreen QGCR-lightlike submanifolds

Consider a quasi-orthonormal frame a long T M given by

{E1, · · · ,Er,X1, · · · ,Xm,W1, · · · ,Wn,N1, · · · ,Nr}, (3.4.1)

such that {E1, · · · ,Eq,X1, · · · ,Xm} ∈ T M. Let suppose that {E1, · · · ,E2p}, {E2p+1, · · · ,Er}
and {X1, · · · ,X2l} are the bases of D1, D2 and D0 respectively. Further, let {Wr+1, · · · ,Wk}
and {N2p+1, · · · ,Nr}, respectively be the bases of S and L .

Definition 3.4.1 ([16]). A lightlike submanifold M of a semi-Riemannian manifold M is said
to be ascreen if the structure vector field, ξ , belongs to RadT M⊕ ltr(T M).

The following result for ascreen QGCR-lightlike submanifolds is well-known (see Lemma
3.6 and Theorem 3.7 of [22]).

Theorem 3.4.2. Let (M,g,S(T M),S(T M⊥)) be an ascreen QGCR-lightlike submanifold
of an indefinite nearly α-Sasakian manifold M, then ξ ∈ Γ(D2 ⊕L ). Further, if M is
a 3-lightlike QGCR submanifold, then M is ascreen lightlike submanifold if and only if
φL = φD2.

From (3.4.1) and (2.1.1), we can write the generalized structure vector field of an ascreen
QGCR-lightlike submanifold as

ξ =
r

∑
i=2p+1

aiEi +
r

∑
i=2p+1

biNi, (3.4.2)

where ai = g(Ni,ξ ) and bi = g(Ei,ξ ).

Now, using (3.4.1) and Theorem 3.4.2 above, we deduce the following for an r-lightlike
ascreen QGCR-submanifold (M,g).
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Proposition 3.4.3. Let M be a proper r-lightlike ascreen QGCR submanifold, where r ≥ 3,
of an indefinite almost contact manifold M. Then, there exist at least one pair {Eu,Nu} ⊂
L ⊕D2 and a corresponding non-vanishing real valued smooth function σu, where u ∈
{2p+1, · · · ,r}, such that φNu = σuφEu and dim(φL ⊕φD2) ≥ 1. Equality occurs when
r = 3.

Proof. The proof follows from Theorem 3.4.2 above.

As an example, we construct a 4-lightlike ascreen QGCR submanifold. Let us consider
the case α = 0 and H = 0. That is, M = (R2m+1

q ,φ 0,ξ ,η ,g) is an indefinite cosymplectic
manifold with the usual cosympletic structure given in (1.3.5).

Example 3.4.4. Let M = (R15
6 ,g) be a semi-Euclidean space, where g is of signature (−,−,

−,+,+,+,+,−,−,−,+,+,+,+,+) with respect to the canonical basis

(∂x1,∂x2,∂x3,∂x4,∂x5,∂x6,∂x7, ∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂y7,∂ z).

Let (M,g) be a submanifold of M given by

y1 =−x4, y2 = x5, y3 =
√

z2 − (x3)2, y4 = x1, y6 = x6, x3,y3 > 0.

By direct calculations, one can easily check that the vector fields

E1 = ∂x4 +∂y1, E2 = ∂x1 −∂y4, E3 = ∂x5 +∂y2,

E4 = x3
∂x3 + y3

∂y3 + z∂ z, X1 = ∂x6 +∂y6, X2 = ∂x2 −∂y5,

X3 = y3
∂x3 − x3

∂y3, X4 =−∂x2 −∂y5, X5 = ∂y7, X6 = ∂x7,

form a local frame of T M. With reference to the above frame, we see that RadT M is
spanned by {E1,E2,E3,E4}, and therefore M is a 4-lightlike submanifold. Further more,
φ 0E1 = E2, therefore we set D1 = span{E1,E2}. Notice that φ 0E3 = X2 and φ 0E4 = X3 thus,
D2 = span{E3,E4}. Also, φ 0X5 = X6, so we set D0 = span{X5,X6}. Further, by following
direct calculations, we have

N1 =
1
2
(∂x4 −∂y1), N2 =

1
2
(−∂x1 −∂y4), N3 =

1
2
(∂x5 −∂y2)

N4 =
1

2z2 (−x3
∂x3 − y3

∂y3 + z∂ z), W = ∂x6 −∂y6.

Note that ltr(T M) = span{N1,N2,N3,N4} and S = span{W}. It is easy to see that φ 0N2 =

−N1 and φ 0N3 = X4. Notice φ 0N4 = − 1
2z2 X3 = − 1

2z2 φ 0E4 and, hence, σ4 = − 1
2z2 (see
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Proposition 3.4.3). Therefore, L = span{N3,N4}. Also, φ 0W = −X1 and hence S =

span{W}. Observe that φ 0L ⊕φ 0D2 = span{X2,X3,X4} and therefore dim(φ 0L ⊕φ 0D2)=

3. Applying φ 0 to (3.4.2) and substituting the corresponding φ 0Eis and φ 0Nis for i = 3,4
we obtain a3 +b3 = 0, a3 −b3 = 0 and 2z2a4 = b4. Finally, we get ξ = 1

2zE4 + zN4. Since
φ 0ξ = 0 and g(ξ ,ξ ) = 1, we see that (M,g) is a 4-lightlike ascreen QGCR submanifold of
M satisfying the hypothesis of Proposition 3.4.3.

Next, we adapt the definition of minimal lightlike submanifolds given by [10].

Definition 3.4.5. A lightlike submanifold (M,g,S(T M)) of a semi-Riemannian (M,g) is
called minimal if;

1. hs = 0 on RadT M and,

2. trace(h) = 0, where trace is writen with respect to g restricted to S(T M).

It is well-known that the Definition 3.4.5 is independent of the choice of the screen
distribution S(T M) [10].

Now, we construct a minimal ascreen QGCR-lightlike submanifold, which is note totally
geodesic, of a nearly α-Sasakian manifold with α = 0 and H = 0 (i.e., the ambient space is
a cosymplectic manifold).

Example 3.4.6. Let M = (R13
4 ,g) be a semi-Euclidean space, where g is of signature (−,−,

+,+,+,+,−,−,+,+,+,+,+) with respect to the canonical basis

(∂x1,∂x2,∂x3,∂x4,∂x5,∂x6,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂ z).

Let (M,g) be a submanifold of M given by

x1 = ω
1, x2 = ω

2, x3 = ω
3, x4 = ω

4, x5 = cosω
5 coshω

6,

x6 = sinω
5 coshω

6, y1 =−ω
4, y2 =

√
2ω

8 −ω
2, y3 = ω

7,

y4 = ω
1, y5 = cosω

5 sinhω
6, y6 = sinω

5 sinhω
6, z = ω

8.

By direct calculations, we can easily check that the vector fields

E1 = ∂x4 +∂y1, E2 = ∂x1 −∂y4,

E3 = ∂x2 +∂y2 +
√

2∂ z, X1 =−x6
∂x5 + x5

∂x6 − y6
∂y5 + y5

∂y6

X2 =−∂x2 +∂y2, X3 = y5
∂x5 + y6

∂x6 + x5
∂y5 + x6

∂y6,

X4 = ∂y3, X5 = ∂x3,
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form a local frame of T M. From the above frame, we can see that RadT M is spanned by
{E1,E2,E3}, and therefore, M is a 3-lightlike submanifold. Further, φ 0E1 = E2, therefore
we set D1 = span{E1,E2}. Also φ 0E3 =−X2 and thus D2 = span{E3}. It is easy to see that
φ 0X4 = X5, so we set D0 = span{X4,X5}. On the other hand, following direct calculations,
we have

N1 =
1
2
(∂x4 −∂y1), N2 =

1
2
(−∂x1 −∂y4),

N3 =
1
4
(−∂x2 −∂y2 +

√
2∂ z), W1 =−y6

∂x5 + y5
∂x6 + x6

∂y5 − x5
∂y6,

W2 = x5
∂x5 + x6

∂x6 − y5
∂y5 − y6

∂y6,

from which ltr(T M) = span{N1,N2,N3} and S(T M⊥) = span{W1,W2}. Clearly, φ 0N2 =

−N1. Further, φ 0N3 =
1
4X2 and thus L = span{N3}. Notice that φ 0N3 = −1

4φ 0E3, which
implies that σ3 = −1

4 and therefore, φ 0L = φ 0D2. Also, φ 0W1 = −X1 and φ 0W2 = −X3.
Therefore S = span{W1,W2}. Now, we calculate ξ as follows: Using (3.4.2) we have
ξ = a3E3 + b3N3. Applying φ 0 to this equation we obtain a3φ 0E3 + b3φ 0N3 = 0. Now,
substituting for φ 0E3 and φ 0N3 in this equation we get 4a3 = b3, from which we get ξ =

1
2
√

2
E3 +

√
2N3. Since φ 0ξ = 0 and g(ξ ,ξ ) = 1, we see that (M,g) is a proper ascreen

QGCR-lightlike submanifold of M. Finally, we verify the minimality of (M,g). By simple
calculations one can verify easily that the following vectors;

X̂1 =
1
√

ρ
X1, X̂2 =

1√
2

X2, X̂3 =
1
√

ρ
X3, X̂4 = X4, X̂5 = X5,

Ŵ1 =
1
√

ρ
W1, Ŵ2 =

1
√

ρ
W2, where ρ := cosh2ω

6,

are unit vector fields. Moreover, ε2 = g(X̂2, X̂2) = −1, εi = g(X̂i, X̂i) = 1, for i = 1,3,4,5
and εβ = g(Ŵβ ,Ŵβ ) = 1, for β = 1,2. Now, applying (1.2.15) and Koszul’s formula (see
[7]) one gets h(E1,E1) = h(E2,E2) = h(E3,E3) = h(X̂2, X̂2) = 0, h(X̂4, X̂4) = h(X̂5, X̂5) = 0,
hl(X̂1, X̂1) = hl(X̂3, X̂3) = 0, hs(X̂1, X̂1) = − 1

ρ
√

ρ
Ŵ2 and hs(X̂3, X̂3) =

1
ρ
√

ρ
Ŵ2. Hence, M is

not a totally geodesic ascreen QGCR-lightlike submanifold. Also, we have trace(h)|S(T M) =

ε1hs(X̂1, X̂1)+ ε2hs(X̂3, X̂3) = 0. Therefore, M is a minimal proper ascreen QGCR-lightlike
submanifold of M.

Definition 3.4.7 ([9]). A lightlike submanifold M of a semi-Riemannian manifold (M,g) is
called irrotational if ∇X E ∈ Γ(T M), for any E ∈ Γ(RadT M)) and X ∈ Γ(T M). Equivalently,



52 Ascreen QGCR-lightlike submanifolds of nearly α-Sasakian manifod

M is irrotational if

hl(X ,E) = hs(X ,E) = 0, ∀ X ∈ Γ(T M), E ∈ Γ(RadT M). (3.4.3)

Theorem 3.4.8. Let (M,g) be an irrotational ascreen QGCR-lightlike submanifold of an
indefinite nearly α-Sasakian manifold (M,g). If ∇ is a metric connection, then M is minimal
if trace(AWβ

)|S(T M) = 0.

Proof. First, we notice that when M is irrotational then (3.4.3) implies that hs = 0 on RadT M.
Thus, condition (i) of Definition 3.4.5 is satisfied. Now using Definition 2.2.1 we can see
that the screen distribution S(T M) is generally spanned by

{X1, · · · ,X2l,φE2p+1, · · · ,φEr,φN2p+1, · · · ,φNr,φWr+1, · · · ,φWk}. (3.4.4)

Since M is ascreen QGCR-lightlike submanifold, the dimension of the frame in (3.4.4) is
lower than that of a comparable GCR-lightlike subamanifold due to existence of some
u ∈ {2p + 1, · · · ,r} and non-vanishing smooth function(s) σu such that φNu = σuφEu

(see Proposition 3.4.3 above). Furthermore, the vectors φEu and φNu are non-null, since
g(φEu,φEu) = −aubu ̸= 0 and g(φNu,φNu) = −aubu ̸= 0. Thus, by setting Zu = φNu =

σuφEu we have

trace(h)|S(T M) =
2l

∑
t=1

εth(Xt ,Xt)+
κ

∑
j=2p+1

h(φE j,φE j)

κ

∑
j=2p+1

h(φN j,φN j)+
r

∑
u=κ+1

εuh(Zu,Zu)+
k

∑
d=r+1

εdh(φWd,φWd). (3.4.5)

Replacing Z with Ei in (1.2.23) we derive

(∇X g)(Y,Ei) =
r

∑
i=1

hl
i(X ,Y )λi(Ei) = g(hl(X ,Y ),Ei), (3.4.6)
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for any X ,Y ∈ Γ(S(T M)). Then using (3.4.6) and the assumption ∇ is a metric connection
we get

trace(h)|S(T M) =
2l

∑
t=1

εt

n

n

∑
β=r+1

εβ g(hs(Xt ,Xt),Wβ )Wβ

+
κ

∑
j=2p+1

1
n

n

∑
β=r+1

εβ g(hs(φE j,φE j),Wβ )Wβ

+
κ

∑
j=2p+1

1
n

n

∑
β=r+1

εβ g(hs(φN j,φN j),Wβ )Wβ

+
k

∑
d=r+1

εd

n

n

∑
β=r+1

εβ g(hs(φWd,φWd),Wβ )Wβ

+
r

∑
u=κ+1

εu

n

n

∑
β=r+1

εβ g(hs(Zu,Zu),Wβ )Wβ . (3.4.7)

Then using (1.2.22) we derive

g(hs(X ,Y ),Wβ ) = εβ hs
β
(X ,Y ) = g(AWβ

X ,Y ), (3.4.8)

for any X ,Y ∈ Γ(S(T M)). Finally, replacing (3.4.8) in (3.4.7) we get

trace(h)|S(T M) =
2l

∑
t=1

εt

n

n

∑
β=r+1

εβ g(AWβ
Xt ,Xt)Wβ

+
κ

∑
j=2p+1

1
n

n

∑
β=r+1

εβ g(AWβ
φE j,φE j)Wβ

+
κ

∑
j=2p+1

1
n

n

∑
β=r+1

εβ g(AWβ
φN j,φN j)Wβ

+
k

∑
d=r+1

εd

n

n

∑
β=r+1

εβ g(AWβ
φWd,φWd)Wβ

+
r

∑
u=κ+1

εu

n

n

∑
β=r+1

εβ g(AWβ
Zu,Zu)Wβ , (3.4.9)

from which our assertion follows. Hence the proof.

Example 3.4.9. Let (M,g) be a submanifold of R2m+1
4 given in Example 4.1.2. We have

shown that hl(X ,Y ) = 0 for any X ,Y ∈ Γ(T M). Hence, from (1.2.23) we can see that the
induced connection ∇ is a metric connection. Further, we have also seen that h(X ,Y ) = 0
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for all X ,Y ∈ Γ(RadT M) and thus, hs(X ,Y ) = 0 on RadT M and also hs(X ,E) = 0 for all
X ∈ Γ(T M). Therefore, M is an irrotational minimal ascreen QGCR-lightlike submanifold
of R2m+1

4 with trace(AWβ
)|S(T M) = 0 and thus satisfying the above theorem.

Corollary 3.4.10. Let (M,g) be a totally umbilical irrotational ascreen QGCR-lightlike
submanifold of an indefinite nearly α-Sasakian manifold (M,g). If ∇ is a metric connection,
then M is minimal if the mean curvature vectors H s = 0.



Chapter 4

Co-screen QGCR-lightlike submanifolds
of nearly α-Sasakian manifod

4.1 Introduction

In this chapter, we study a special class of QGCR-lightlike submanifolds of indefinite
nearly α-Sasakian manifolds, called co-screen QGCR-lightlike submanifold. We discuss the
integrability of distributions and also establish the necessary conditions for such distributions
to be nearly parallel and nearly auto-parallel.

From the proof of Theorem 2.3.5 we can see that when α ̸= 0 and one assumes that ξ is
normal, then ak = η(Nk) = 0. This makes ξ to be in the co-screen distribution. Thus, we
will say that a QGCR-lightlike submanifold of an indefinite nearly α-Sasakian manifold,
with α ̸= 0, is co-screen QGCR-lightlike submanifold if ξ ∈ Γ(S(T M⊥)).

From Definition 2.2.1 of QGCR-lightlike submanifold we notice that if M is a co-screen
QGCR-lightlike submanifold then the direct sum in (2.2.3) reduces to the orthogonal sum
φ D = S ⊥ L . Note that this condition is also satisfied by GCR-lightlike submanifols
though ξ ∈ Γ(S(T M)). In the case of co-screen QGCR-lightlike submanifolds we have
ξ ∈ Γ(S(T M⊥)) and therefore, we have the following definition.

Definition 4.1.1. Let (M,g,S(T M),S(T M⊥)) be a lightlike submanifold of an indefinite
nearly α-Sasakian manifold (M,φ ,ξ ,η , g). We say that M is co-screen QGCR-lightlike
submanifold of M if the following conditions are satisfied:

(i) there exist two distributions D1 and D2 of RadT M such that

RadT M = D1 ⊕D2, φD1 = D1, φD2 ⊂ S(T M), (4.1.1)
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(ii) there exist vector bundles D0 and D over S(T M) such that

S(T M) = {φD2 ⊕D} ⊥ D0, (4.1.2)

with φD0 ⊆ D0, φ D = S ⊥ L , (4.1.3)

where D0 is a non-degenerate and invariant distribution on M, L and S are respectively
vector subbundles of ltr(T M) and S(T M⊥).

If D1 ̸= {0}, D0 ̸= {0}, D2 ̸= {0} and S ̸= {0}, then M is called a proper co-screen
QGCR lightlike submanifold. The tangent bundle of M is decomposed as follows;

T M = D⊕D, with D = RadT M ⊥ D0 ⊥ φD2. (4.1.4)

The transversal bundle can also be decomposed as

tr(T M) = φ D ⊥ G ⊥ ⟨ξ ⟩, (4.1.5)

where φG = G .
It is well known from [9] that GCR-lightlike submanifolds, tangent to the structure vector

field ξ , include real hypersurfaces. However, its easy to see that co-screen QGCR-lightlike
submanifolds exclude real lightlike hypersurfaces, since in a real lightlike hypersurface
tr(T M) = ltr(T M), implying that S(T M⊥) = {0}.

Next, we construct an example of a co-screen QGCR-lightlike submanifold of a special
nearly α-Sasakian manifold M in which H = 0 and α = 1. More precisely, we take M to be
a Sasakian manifold.

Example 4.1.2. Let M = (R13
4 ,g) be a semi-Euclidean space, where g is of signature

(−,−,+,+,+,+,−,−,+,+,+,+,+) with respect to the canonical basis

(∂x1,∂x2,∂x3,∂x4,∂x5,∂x6,∂y1,∂y2,∂y3,∂y4,∂y5,∂y6,∂ z).

Let (M,g) be a submanifold of M given by

x1 = y4, y1 =−x4, x2 = y3 and y5 = (x5)
1
2 .
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By direct calculations, we can easily check that the vector fields

E1 = ∂x4 +∂y1 + y4
∂ z, E2 = ∂x1 −∂y4 + y1

∂ z,

E3 = ∂x2 +∂y3 + y2
∂ z, X1 = 2y5

∂x5 +∂y5 +2(y5)2
∂ z,

X2 = ∂x3 −∂y2 + y3
∂ z, X3 = 2(∂x3 +∂y2 + y3

∂ z),

X4 = 2∂y6 and X5 = 2(∂x6 + y6
∂ z),

form a local frame of T M. From this, we can see that RadT M is spanned by {E1,E2,E3},
and therefore, M is 3-lightlike. Further, φ 0E1 = E2, therefore we set D1 = span{E1,E2}.
Also φ 0E3 = X2 and thus D2 = span{E3}. It is easy to see that φ 0X4 = X5, so we set
D0 = span{X4,X5}. On the other hand, following direct calculations, we have

N1 = 2(∂x4 −∂y1 + y4
∂ z), N2 = 2(−∂x1 −∂y4 + y1

∂ z),

N3 = 2(−∂x2 +∂y3 + y2
∂ z), W1 = ∂x5 −2y5

∂y5 + y5
∂ z,

and W2 = 2∂ z,

from which ltr(T M) = span{N1,N2,N3} and S(T M⊥) = span{W1,W2}. Clearly, φ 0N2 =

−N1. Further, φ 0N3 = X3 and thus L = Span{N3}. Also, φ 0W1 = −X1 and therefore
S = span{W1}. Clearly, M is a co-screen QGCR-lightlike submanifold of M.

4.2 Integrability of distributions

Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold of an indefinite
nearly α-Sasakian manifold, (M,φ ,ξ ,η , g), and let S and R be the projections of T M on to
D and D respectively, while F and Q are projections of tr(T M) on to φ D and G respectively.
Then,

X = SX +RX and V = FV +QV +η(V )ξ , (4.2.1)

for any X ∈ Γ(T M) and V ∈ Γ(tr(T M)).
Applying φ to the two equations of (4.2.1), we respectively derive

φX = φ1X +ϕ1X and φV = φ2V +ϕ2V, (4.2.2)

where {φ1X ,φ2V} and {ϕ1X ,ϕ2V} respectively belongs to T M and tr(T M).
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Using the nearly α-Sasakian condition (1.3.4) and equations (4.2.2) and (1.2.15)-(1.2.17),
we derive

−Aϕ1XY −Aϕ1Y X +∇X φ1Y +∇Y φ1X

+∇
t
X ϕ1Y +∇

t
Y ϕ1X +h(X ,φ1Y )+h(Y,φ1X)

−φ1∇XY −φ1∇XY −ϕ1∇XY −ϕ1∇XY (4.2.3)

−2φ2h(X ,Y )−2ϕ2h(X ,Y )−2αg(X ,Y )ξ ,

for all X ,Y ∈ Γ(T M). Then, comparing the tangential and transversal components in (4.2.3),
we get;

Tangential components;

∇X φ1Y +∇Y φ1X −Aϕ1XY −Aϕ1Y X

−φ1∇XY −φ1∇XY −2φ2h(X ,Y ) = 0. (4.2.4)

Transversal components;

∇
t
X ϕ1Y +∇

t
Y ϕ1X +h(X ,φ1Y )+h(Y,φ1X)

−ϕ1∇XY −ϕ1∇XY −2ϕ2h(X ,Y )−2αg(X ,Y )ξ = 0. (4.2.5)

Theorem 4.2.1. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold of
an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then,

1. D is integrable if and only if

h(X ,φ1Y )+h(Y,φ1X) = 2ϕ1∇Y X +2ϕ2h(X ,Y )+2αg(X ,Y )ξ ,

for all X ,Y ∈ Γ(D).

2. D is integrable if and only if

Aϕ1XY +Aϕ1Y X =−2φ1∇Y X −2φ2h(X ,Y ),

for all X ,Y ∈ Γ(D).

Proof. Using (4.2.4) and (4.2.5), we derive

h(X ,φ1Y )+h(Y,φ1X) = ϕ1[X ,Y ]+2ϕ1∇Y X +2ϕ2h(X ,Y )

+2αg(X ,Y )ξ , (4.2.6)
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for all X ,Y ∈ Γ(D) and

Aϕ1XY +Aϕ1Y X =−φ1[X ,Y ]−2φ1∇Y X −2φ2h(X ,Y ), (4.2.7)

for all X ,Y ∈ Γ(D). Then, the assertations follows from (4.2.6) and (4.2.7), which completes
the proof.

4.3 Nearly parallel and nearly auto-parallel distributions

Definition 4.3.1. Let (M,g,S(T M),S(T M⊥)) be a submanifold of a semi-Riemannian mani-
fold (M,g) and let ∇ be the connection induced on its tangent bundle. Then a distribution D
on M will be called nearly parallel if

∇XY +∇Y X ∈ Γ(D), ∀X ∈ Γ(T M) and Y ∈ Γ(D).

Lemma 4.3.2. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold of
an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). Then

η(∇XY )+η(∇Y X) = 0,

for all X ,Y ∈ Γ(T M).

Proof. By direct calculations using 1.3.10 and the anti-symmetry of φ and H we have

η(∇XY )+η(∇Y X) =−g(X ,∇Y ξ )−g(Y,∇X ξ )

= α{g(φX ,Y )+g(X ,φY )}+g(HX ,Y )+g(X ,HY ),

from which our assertion follows.

Now, using Definition 4.3.1 and Lemma 4.3.2, we have the following;

Theorem 4.3.3. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold
of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If D is nearly parallel, then
h(X ,φY )+h(Y,φ1X)+∇t

Y ϕ1X has no component in (L ⊥ S ) for all Y ∈ Γ(D) and X ∈
Γ(T M).
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Proof. Using (1.3.4), equations (4.2.2) and Lemma 4.3.2, we derive

−φ1Aϕ1XY −ϕ1Aϕ1XY +φ1∇X φY +ϕ1∇X φY

+φ1∇Y φ1X +ϕ1∇Y φ1X +∇Y X +∇XY +φ2∇
t
Y ϕ1X

+ϕ2∇
t
Y ϕ1X +2h(X ,Y )+φ2h(X ,φY )+ϕ2h(X ,φY )

+φ2h(φ1X ,Y )+ϕ2h(φ1X ,Y ) = 0, (4.3.1)

for all Y ∈ Γ(D) and X ∈ Γ(T M). Then, taking the tangential components of (4.3.1), we get

−φ1Aϕ1XY +φ1∇X φY +φ1∇Y φ1X +φ2∇
t
Y ϕ1X

+∇Y X +∇XY +φ2h(X ,φY )+φ2h(φ1X ,Y ) = 0, (4.3.2)

for all Y ∈ Γ(D) and X ∈ Γ(T M). The result follows from (4.3.2), using the fact that D is
nearly parallel.

Corollary 4.3.4. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold
of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If D is nearly parallel, then
−Aϕ1XY −A

φY X +∇Y φ1X has no component in D for all Y ∈ Γ(D) and X ∈ Γ(T M).

Usung the idea of [25], we define nearly auto-parallel distributons on submanifolds of
semi-Riemannian manifolds.

Definition 4.3.5. Let (M,g) be a submanifold of a semi-Riemannian manifold (M,g) and let
∇ be the connection induced in its tangent bundle. Then a distribution D on M will be called
nearly auto-parallel if

∇XY +∇Y X ∈ Γ(D), ∀X , Y ∈ Γ(D).

Theorem 4.3.6. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold of
an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If D is nearly auto-parallel, then
h(X ,φY )+h(Y,φ1X) has no component in (L ⊥ S ) for all X ,Y ∈ Γ(D).

Proof. Using (1.3.4), equations (4.2.2) and Lemma 4.3.2, we derive

φ1∇X φY +ϕ1∇X φY +φ1∇Y φX +ϕ1∇Y φX

+φ2h(X ,φY )+ϕ2h(X ,φY )+φ2h(Y,φX)+ϕ2h(Y,φX)

+∇XY +∇Y X +2h(X ,Y ) = 0, ∀X ,Y ∈ Γ(D). (4.3.3)
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Considering the tangential components of (4.3.3) we get

φ1∇X φY +φ1∇Y φX +φ2h(X ,φY )+φ2h(Y,φX)

+∇XY +∇Y X = 0, ∀X ,Y ∈ Γ(D). (4.3.4)

Since D is nearly auto-parallel, (4.3.4) leads to

φ2h(X ,φY )+φ2h(Y,φX) = 0,

from which our assertation follows. Hence, the proof is complete.

Corollary 4.3.7. Let (M,g,S(T M),S(T M⊥)) be a co-screen QGCR-lightlike submanifold
of an indefinite nearly α-Sasakian manifold (M,φ ,ξ ,η , g). If D is nearly auto-parallel, then
Aϕ1XY +A

φY X has no component in D for all X ,Y ∈ Γ(D).





Chapter 5

Conclusions and future work

This dissertation has provided a new view and approach to contact CR-lightlike submanifolds
by introducing a special class of CR-lightlike submanifold of indefinite nearly α-Sasakian
manifolds, called, quasi generalized CR (QGCR)-lightlike submanifold which is not nec-
essarily tangent to the structure vector field. Generalizing the structure vector field offers
additional computational work but at the same time opening way to new and interesting
classes of submanifolds. For instance, we have showed that QGCR-lightlike submanifolds
include ascreen QGCR, co-screen QGCR and the classical GCR-lightlike submanifolds.
Some of the results of our findings have already appeared in our two papers [22] and [23].

Chapter 2 is entirely dedicated to QGCR-lightlike submanifolds of indefinite nearly α-
Sasakian manifolds. Section 2.2 introduced the main idea of QGCR-lightlike submanifolds,
clearly giving conditions under which a QGCR-lightlike submanifold is a GCR-lightlike
submanifold. In Section 2.3, we proposed numerous characterization theorems concerning
totally umbilical and totally geodesic QGCR-lightlike submanifolds. In Section 2.4, we
prove the necessary and sufficient conditions for the integrability of distributions on any
QGCR-lightlike submanifold.

Chapter 3 studied ascreen QGCR-lightlike submanifolds. In Section 3.1, we discussed
ascreen QGCR-lightlike submanifolds of an indefinite nearly cosymplectic space form. In
Section 3.2, we focussed on totally umbilical and totally geodesic ascreen QGCR-lightlike
submanifolds of an indefinite nearly cosymplectic space form. In Section 3.3, we focussed
on the mixed geodesity and auto-parallelism of distributions on an ascreen QGCR-lightlike
submanifold. In Section 3.4, we focussed on minimal ascreen QGCR-lightlike submanifolds.

Chapter 4 studied co-screen QGCR-lightlike submanifolds. In Section 4.2 we discuss
the integrability of distributions on such submanifolds. In Section 4.3, we introduced the
concept of nearly parallel and nearly auto-parallel distributions.
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While this dissertation has opened a way to a new class of CR-lightlike submanifolds, we
stress that their applications have not been investigated yet. Our future work will focus on
finding specific applications of this class of submanifold in other closely related fields such
as mathematical physics.
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