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Abstract

Exact Solutions for Perfect Fluids Conformal to a Petrov Type D

Spacetime

We find new exact solutions of the Einstein field equations for a perfect fluid metric con-
formal to a spacetime of type D in the Petrov classification scheme. The initial work of Coley
et al (1992) was extended to a wider class of solutions by Hansraj ef al (2006) using the method
of Lie group analysis. We take up a claim in the latter work that even wider classes of solutions
exist. Whereas Hansraj et al confined their attention to the case where the conformal factor
was of the form U = U(t, x), our work investigates the complete situation U = U(t, z,y, z) as
well as an auxiliary integrability condition. New classes of solutions are generated for certain
symmetry generators. Finally, we analyse our solutions for physical plausibility. Since the so-
lutions are four dimensional we investigate slices of the solution space graphically. In particular

we obtain expressions for the energy density and pressure and check these for positivity.
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Chapter 1

Introduction

Albert Einstein’s greatest achievement, his general theory of relativity has, since it was pro-
pounded in 1916, impacted hugely on our notion of space. time and their interaction with
matter. Whilst the initial view of most physicists was that general relativity had very little
practical significance, this attitude began to change towards the late 1950’s. The theory slowly

began to gain recognition as an improvement on Newtonian physics.

In general relativity, spacetime is represented by a four-dimensional manifold M endowed with
a metric g,,. The coupling of the geometry with the matter distribution generates the Einstein
field equations. The field equations are a set of ten nonlinear partial differential equations
which are very difficult to solve in general. Exact solutions of the Einstein field equations play
an important role in the development of models of realistic celestial phenomena {Hawking and
Israel 1979). Of course, numerical solutions may also be found when exact solutions cannot be
achieved, however these solutions suffer the drawback that they can only convev a reasonable
understanding of the evolution of the matter under stringent conditions. Exact solutions. in

contrast, allow for a more holistic study of the distribution.

In generating solutions to the Einstein field equations, different approaches have been em-

ployed. Omne approach involves the imposition of symmetry conditions on the metric tensor.



resulting in the reduction of the ten field equations to a system of fewer equations. The caveat
with this method is that the resulting system is not necessarily easier to solve. For example.
in static spherically symmetric fluid spheres,; the ten field equations reduce to four and new
solutions are still being sought for such spheres. The earliest reported useful exact solution is
due to Schwarzschild (1916a) who found the unique solution for the exterior gravitational field
of a spherical object. Promptly thereafter Schwarzschild (1916b) found an interior solution
by assuming that that the sphere had a constant energy density and is consequently an in-
compressible fluid. Since then, many interior solutions have been obtained. A comprehensive
collection may be found in Finch and Skea (1998) and Stephani et al (2003). The effects of the
clectromagnetic field were then considered and the Reissner-Ngrdstrom (1916, 1918) solution
which describes the exterior gravitational field of a charged star, was found. Subsequently.
a variety of solutions have appeared in the literature describing a charged relativistic sphere

(Ivanov 2002).

Another approach in finding exact solutions involves imposing algebraic conditions on the Wevl
tensor. These restrictions give rise to the Petrov (Petrov 1954) classification of the possible
symmetries of the Weyl tensor. For a nonzero Weyl tensor Cy.q. there are four roots of the
associated eigenvalue equation. According to the multiplicity of these roots. the Petrov classi-
fication may be described as follows (MacCullum 2006, Stephani 1990): type 1 (four distinct
roots), type 11 (one pair of roots coincide), type D (two pairs of roots coincide), type III
(three roots coincide), type N (all four roots coincide) and type O (the Weyl tensor vanishes).
It should be noted that some types may degenerate into other types under certain conditions.
Classes of exact solutions, most of which are of type D found in this wayv are detailed in

Stephani et al (2003) . Such Type D solutions include the well-studied spherical geometry.

Additionally, solution generating theorems have made an appearance of late by observations of

the field equations written in certain coordinate systems. For example. see the work of Martin



and Visser (2004) and Boonserm et al (2005) where the Einstein field equations for a static
fluid sphere are written in Schwarzschild coordinates. The resulting master field equation is
first order and of the Ricatti type. Ostensibly all solutions for a static fluid sphere are found.
however, only up to integration of the Ricatti equation. In practice, the prescriptions pro-
vided are difficult to employ and fortuitous choices for one of the variables have to be made
(Lake 2003). An attack using computer software systems is likely to vield new exact solu-
tions from these algorithms. Closely allied to this approach, is the method of utilising purely
mathematical techniques to solve the field equations and then undertaking an analysis of the
resulting solution for physical plausibility. Conformal transformations on metric spaces offer
such a route. One can take, for example, a vacuum solution and conformally map it onto a
perfect fluid solution. In addition, it is possible to commence with a perfect fluid solution with
unphysical behaviour and, by using a conformal transformation, generate a new perfect fluid

with desirable properties. This is precisely the direction we pursue.

In our work we use the method of Lie group analysis of ordinary differential equations to obtain
new group invariant solutions to a conformally related perfect fluid spacetime of Petrov type
D. The analysis is greatly simplified by applying a theorem due to Defrise-Carter (1975) which
asserts the following: Suppose that a manifold (M, g) is neither conformally flat nor confor-
mally related to a generalised plane wave. Then a Lie algebra of conformal Killing vectors on
M with respect to g can be regarded as a Lie algebra of Killing vectors with regard to some
metric on M conformally related to g (Hall and Steele 1991). We exploit this theorem with
the selected Type D spacetime. The problem that arises on performing a conformal transfor-
mation, is that the field equations governing the conformal factor are extremely difficult to

integrate. This is where the Lie group analysis approach is nuseful.

Lie groups, named after Sophus Lie who laid the foundation for the theorv of continuous
transformation groups, are indispensable tools for many aspects of mathematics and physics.

Since a Lie group is a smooth manifold, it can be studied using differential calculus. Sophus



Lie demonstrated that an nth order ordinary differential equation which is invariant under a
one-parameter group of point transformations may be constructively reduced to an ordinary
differential equation of order (n — 1). So an important use of svmmetries is the reduction of
order of an equation. When Lie’s method is applied to a system of partial differential equa-
tions which are invariant under a Lie group of point transformations, one may constructively
obtain solutions that are invariant under some subgroup or the entire group admitted by the
system. A few basic examples of Lie groups, some of which we encounter in this thesis. include
translations, rotations and scalings. Lie group analysis has its applications in a wide variety
of fields such as algebraic topology, differential geometry, relativity and numerical analysis. to

mention but a few (Bluman and Kumei 1989), Ibragimov (1995) and Anderson and Ibragimov

(1979).

The main objectives of this thesis are:

e to implement the technique of Lie group analysis in seeking new exact solutions of the

Einstein field equations for a perfect fluid metric conformal to a Petrov type D spacetime

e to genecrate a new class of complete solutions for the conformal factor U = U(t, z,y, 2)
using the solutions found in this work together with previouslv determined results from

the work of Hansraj et al (2006)
e to conduct an analysis of our solutions for physical plausibility.
The outline of the work is as follows:
e Chapter 1: Introduction

e Chapter 2: Mathematical Preliminaries
We discuss the mathematical concepts, notations and definitions relevant to our work.
These include, amongst others, spacetime geometry, kinematical and dynamical quan-

tities, Lie algebras, conformal transformations and Lie group analysis. We present the



methodology that underpins Lie group analysis and illustrate this with the example of

the Robinson-Trautman equation.

e Chapter 3: Group Invariant Solutions
A perfect fluid metric conformally related to a Petrov type D spacetime is studied. We
make reference to the initial work of Castejon and Coley (1992) and the subsequent work
of Hansraj et al (2006) in which the initial solutions were extended to a wider class of
solutions. We make a claim that it is possible to obtain new solutions with even wider
latitude in behaviour. We honour this claim by generating new invariant solutions via
two of our four generators. We employ the method of Lie group analysis to achieve this

end.

e Chapter 4: Physical Analysis
We present full solutions for the conformally related metric, the energy density. and
pressure using our results and previously obtained results of Hansraj et al (2006) and
Msomi (2003). Where necessary, numerical methods are emploved when the reduced
equations prove intractable. We examine our solutions for physical admissability by

investigating graphical representations of slices of the solution space.

e Chapter 5: Conclusion



Chapter 2
Mathematical Preliminaries

2.1 Notations and Definitions

We consider a spacetime (M, g) where M is a 4-dimensional differentiable manifold with respect
to a symmetric, nonsingular metric field g. Points in M are labelled by real coordinates. three

. - . . . r " ] A
of which are spacclike and one timelike. The points are represented as (2%) = (29, 21, 22, 23)

3

where 2 is timelike and z!, 22, 22 are spacelike.

The invariant distance between neighbouring points of a curve in M is defined by the funda-
mental metric form

ds® = ggdzdx’

. : 1
where g, is referred to as the metric tensor. It is symmetric and possesses an inverse g% = —.

YGab

The Christoffel symbol T is a metric connection that preserves inner products under parallel

transport. The coefficients of T" are calculated by

(L

be — % .qmi(.q(:(i.b + Gdb,e — .‘(;"br:._.(},) (2] )

where commas denote partial differentiation.



The Riemann curvature tensor (also known as Riemann-Christoffel tensor) is a (1,3) tensor
field whose coordinate components are given in terms of the coordinate components of the

connection as follows:

1{8(:(1 - ng,r - ch,cl + Fgcrzd — I, rg{‘ (22)

ed

The Ricci tensor Ry, obtained by contraction of the Riemann curvature tensor, is given by

ad

Rap = ng,d — Laap + Lo les — Toal (2.3)
Upon contraction of the Ricci tensor, we obtain the Ricci scalar R, given by
R=g"Ry . (2.4)

The Einstein tensor GG, is obtained from the Ricci tensor and the Ricei scalar in the following
way:

’ym‘) - R{.«.b - % Rg(_r.b- (2.5)
For matter in its neutral state, the energy-momentum tensor 7}, is given by
Top = (1 + p)uatty + P Gab + Gallp + QoUla + Tap (2.6a)

where p is the energy density, p is the isotropic pressure, g, is the heat flow vector, m,, is the

stress tensor and u, is the velocity field vector.

For a perfect fluid, the energy-momentum tensor reduces to
Top = (1t + plugty + pgap. (2.6b)

The energy-momentum tensor (2.6b) and the Einstein tensor (2.5) are related via the Einstein
field equations in the following way:

Ga.b - .Tab- (27\

This is a system of 10 partial differential equations which are highly nonlinear and hence dif-

ficult to integrate in general.



It is also of importance to our work to mention the Weyl conformal tensor which has phyvsical
relevance in expressing the tidal force a body experiences when moving along a geodesic. In
fact the Weyl Tensor is the traceless component of the Riemann tensor, and is given by

1

“abed Ra.c.
Cated bd+(n—1)(n—‘2)

R(ga.cgbd - gadgbc)

1

- m(gacRbd — GocRad + Goallac — GaaRue) - (2.8)

The commutator or Lie bracket for two first order linear differential operators X and Y is

defined as

[X,Y] = XY - YX. (2.9)

A Lie algebra is a finite dimensional vector space V having the bilinear product [X, Y] as

defined in (2.9) above. The operation has the following properties: (Olver 1993)

(i) it is skew-symmetric. i.c.

(X, Y] = —[Y.X]
(ii) it satisfies the Jacobi identity
X, [Y,Z]| + [Y,[Z,X]| + |Z,[X, Y]l =0
forall X, Y, Z€V.

The Lie bracket is related to the Lie derivative by the identities

LxY = XY
Lxy) = [Lx,Ly.

for any vector fields X and Y. There exists a close relationship between Lie algebras and Lie

groups: every Lie algebra defines a unique simply connected Lie group. The properties of a



Lie group are largely determined by those of its associated Lie algebra.

If g is a Lie algebra and X € g, the adjoint operator, ad X that maps Y to [X,Y] is a

linear transformation of ¢ into itself (Sattinger and Weaver 1986).

We may develop the adjoint representation by summing up the Lie series as follows:

Ad(exp(eX)Y = 3 %(Ad(}())”(}”) (2.10)
n=0 :

= Y — X, Y]+ 1€X, [X, Y]

LS X X, Y]+

6

where we have employed an analogue of the Taylor series expansion.

A variety of symmetries may be defined on the manifold by the action of £x on the met-
ric tensor and associated quantities (Katzin and Levine 1972, Katzin et al 1969). Of the
various symmetries that are possible we are primarily concerned with conformal motions. A

conformal Killing vector X is defined by the action of £x on the metric tensor field g so that
LxGab = 2V ga (2.11)

where 1(z%) is the conformal factor. There are four special cases associated with (2.11). viz



X is a Killing vector

X is a homothetic Killing vector

The spanning set {X 4} = {Xy, Xy, ......X,.} of all the conformal Killing vectors of a spacetime

generates a Lie algebra. The elements of this basis are related by

(X4, Xpl = XuXp—XpX,

= P, pXp

where the quantities C'” 45 are the structure constants of the group. The structure constants
have the property of being independent of the coordinate system but do depend on the choice

of the basis. The structure constants are skew—symmetric so that
CPap=—-C"pa
and satisfy the identity
CPapCP e+ CFppCPes + CPepCP ap = 0.
The integrability condition for the existence of a conformal symmetry is given by

LxC%q = 0. (2.12)

10



Suppose that we are given a spacetime (M, g) with line element
ds® = gudz®dr®
and a related spacetime (M, g) with the line element
d5* = Gupdx’da” . (2.13)
Then the above two line elements are said to be conformally related if
Gop = ¢V gap and g® = eV g (2.14)

where U(x°) is a nonzero. real-valued function of the coordinates on M. This transformation
between g and g is called a conformal transformation and is a special type of mapping between
metric spaces given by dilatation (or contraction) of all lengths by a common factor which varies
from point to point. If X is a conformal Killing vector in the (M, g) spacetime so that (2.11)
holds, i.e.

LXGab = 20 Gap -

then X is also a conformal Killing vector in the related spacetime (M, g). and we have
‘C'Xgab = ngab. (215\

With the help of (2.11), (2.14) and (2.15), we can show that the factors o and ¥ are related

by

+ (2.16)

2¢ 2U

. [ﬁx G

From this we can conclude that conformal transformations map conformal Killing vectors to

conformal Killing vectors, the conformal factors being different. However. conformal transfor-

mations do not map Killing vectors or homothetic Killing vectors to their respective counter-
20/

parts in the conformally related spacetime. Note that in the trivial case where e*" is constant.

we have ¢ = 1. However, it is important to note that the converse does not hold. If o = v..

11



then (2.16) implies that Lx (GQU) = 0. This means that U is constant along the integral curves

of the vector X, but it may vary elsewhere on the manifold.

2.2 Conformal Transformations

It should be noted that the connection coefficients, Riemann curvature tensor. Ricci tensor and
Ricci scalar for the metric g, are related to those of the metric g, = €2V g, by the following

formulae which are given in de Felice and Clarke (1990):

_ ) . (2.17a)
Fa'h(: = Fgg + % [OI?@{ + 52 @b - .gb(_:‘fpa_
R”'g,{-_.(] = R”'h(:d + 6ﬁiv(_:)¢h + !]b{ch} d){’ o
(2.17b)
+30%Pa Py — 39bePa)d* — 50%Gapd° O
~ (2.17¢)
Rug = Roa— % [204a — Ga® + Jar®°Oe] — 59540"
R = £ R— 3‘;“'56:,1: - éﬁf}f@eq :
d 2 (2.17d)

where we have defined ¢, = 9,(InQ) and Q = ¢?V. Additionally the conformal Einstein tensor

G is given by

1. . . _ .
Gu.b = Gm‘; + 2 (LIIJ.U!; - éU(..Uc:g(lh) + Z(U(‘;(.‘- + ULU(.‘-)Q(J.?) - ZU(L;b ) (2]8\

where the covariant derivatives and contractions are calculated on the original metric g,;,. Note

that we may also write the conformal Einstein tensor (2.18) as

Gab = Gab - QE’IaU—b - Qi[a;b + (2[«]6;(: - UTCLTG) Gab

12



where the geometric quantities are now evaluated using the conformally related metric g,

(Tupper 1990).

An important characteristic of conformal mappings is that the Wevl tensor C' is invariant
under the transformation, i.e.

Oable = Cab::cl

and consequently a conformal transformation is sometimes referred to as a Weyl rescaling in
the literature. A necessary and sufficient condition that a spacetime is conformally flat is that

the Weyl tensor C vanishes.

The covariant derivative of the timelike fluid 4—vector field u, can be decomposed as follows
1 .
u‘u;b = Ougb + §®hu]) — UyUp + Wap

where h,, = gap + ugty is the projection tensor. In the above we have defined

Uy = Ut (2.19a)
Wab = Ulgp] + ULally) (2.19b)
Oab = Ufap) + Ualit) — 5Oha (2.19¢)
0 = u, (2.19d)

where 1, is the acceleration vector (4%u, = 0), wg is the skew-symmetric vorticity tensor

(wapu®™ = 0), 04 is the symmetric shear tensor ( o’ = 0 = 0%) and O is the rate of expansion.

Under a conformal transformation g,;, = €? g5, the world lines are the same and the velocity
field transforms as

Uy = f_ZU'u,a

13



and we obtain

u, = ev (ua + uqupU? + U,a) (2.20a)
© = eV -3u° (t‘:_U)’a (2.20b)
O = €eYwy (2.20¢)
T = €'ou (2.20d)

for the transformed kinematical quantities listed in (2.19). The quantities (2.20) will be useful
in studying the physical behaviour of the models generated by a conformal transformation

(Hansraj et al 2006).

2.3 Lie Group Analysis

2.3.1 Methodology

We consider a kth order partial differential equation given by (Bluman and Kumei, 1989)

F(z,u, uD @ 'u.("’}} =0 (2.21)
where
= (x,xy,...,7,) denotes n independent variables
u denotes the coordinate corresponding to the dependent

variable, and

u'9)  denotes the set of coordinates corresponding to all jth

order partial derivatives of u with respect to z.

14



_— & u
The coordinate of uU) corresponding to : is denoted by

6):6,;, 6371;2 s d’L,

Wiyigeij » lJ = 12, LN for ] = 1,2 Lk

We seek the one-parameter Lie group of transformations

(2.22a)
(2.22b)

i = Ui(x,ue)

ut = oz u€)

that leaves (2.21) invariant.

In general, it is difficult to calculate (2.22a)-(2.22b) directly-

To proceed in a meaningful way, we take Taylor expansions of these transformations about

e = (0 to obtain

da); )
rr o= 1 ! O(e?)
i Tr; + Cde E:0+ (€
d nro2
yo o=y + Cd_f + O(€*) .
e=0

where we have used the group properties of (2.22a)-(2.22b).

We now define (Bluman and Kumei 1989)

0 7] d
G m(x, “)c‘)ac; + a(z, u)ﬁmg + + nn(?,u,i_)mﬂ
0
+((, U')%
d . 13
= nilr.u (z,u)— 23)
ni(, ?J)(?.flli + ((x, H)c')'u (2.23)

15



where

. d’l/).é |
ni(z,u) = de |,
do |
((z,u) = = L

as the infinitesimal generator of (2.22a) and (2.22b).

The kth extension of G needed to transform derivatives in (2.21) is (Bluman and Kumei

1989)
. ) J
GH = n.z-.(ﬂ?;u)ami +¢ (:1?,71)57
S o (1) 9
+¢ e, v ) — + e —
G )5
(k) 1) ,® w9 9 ¢
B R TR TR TR N T B , (2.24)
¢ ' JUijy gy,
where
'i(]) = D?C — (DZT,’])'HJ s 7 = 1, 2, ... N
and
{7 {k—1) .
l(;},)zzk = Di;ﬁfﬂz..fik_l - (Dz';,.?;'j)?-"il'iz"-ik—lj d
i = 1,2,....,n for 7=1,2,.... k.

Then the partial differential equation (2.21) admits (2.22a) and (2.22b) if and only if

GHp| =0 (2.25)

F=0

Equation (2.25) is an identity in powers of the partial derivatives of the dependent variables.

However, the n; and ¢ only depend on x and u, not derivatives. As a result, by the principle

16



of undetermined coefficients, a system of partial differential equations is generated in 1 and
(. Solving this system explicitly yields the symmetry . Then a characteristic system of
equations is solved to vield new variables. When these new variables are substituted into the
original system of partial differential equations in n variables, these equations are reduced to a
system of partial differential equations in n — 1 variables. This process may be repeated until a
system of ordinary differential equations is obtained. This new system may then be solved to
yield solutions which can be transformed into solutions of the original partial differential equa-
tions. It should be noted, however, that there is no guarantee of solving the resulting svstem
of ordinary differential equations. A more detailed stepwise construction of group-invariant

solutions may be found in Olver (1993).

It should be pointed out that since the process of implementing the Lie analysis is algorith-
mic, the calculation of the symmetries are invariably completed via some computer software

package e.g. PROGRAM LIE (Head 1993).

We illustrate these ideas with an example in the next section.

2.3.2 Robinson-Trautman Equation

In a vacuum, the Einstein tensor vanishes in view of the absence of matter and the Einstein
field equations reduce to a system of ten second order differential equations. For the Robinson-

Trautman solutions of Petrov Type III the pivotal equation is given by (Stephani 1989)

This is a nonlinear partial differential equation in one dependent variable, P. and two inde-

pendent variables, r and y.

17



We operate on (2.26) with

G2

Invoking (2.25) vields

) 0
mo-+tm-+055
" D 7(3@; Y oP

w9 w9
+G &Pm“"CQ op,

@ 9 .2 6 2 0
+Ci o + iz ap_nyFC'z‘z P,

18
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r;l(S\/_) +C { (P? + P2 3:{:\/5_) — Py, + Pyy}
¢ a¢ I 2 one Om 3 O
— 2{ =P, — |\ Py - ——P.P, - =P —=p2? P
{aa: ot (é?P ('9:1:) gr v T gp's T gp'e

¢ o¢ O 2 O one 5 Im
— 2¢{—P, =~ | B 5 PPy — 50 — w5 P
{(‘):r vt ((‘JP c‘}y) dy Y opP oP

0%*C 9%*C 9 01
* {@PJr (Qag;ap ~ a2 | P g Pl

¢ Om 5 9 ol d?;)g
+ (ﬁ—zg) (P2+P2- 5.7.\/5—1713,?,)— o PPo

?n Py
-2 PP?
i (am rop) "

0 2

d* U3 3 9* Tj2
81, dP P,

apz T gp2?

PP,P, — PP2P,

- Wy O 5 (Pi+ P.P} = 32\/2P, — PP,P,)

on: R
- d;(PZP + P} — 32\/2P, — PP,P,,) — ﬁppmpmy}

9% ¢ P 0m ¢ o
—P Q- - |\PP,——PP.+|—=—-2——|PP,
+ {c‘)yQ + ( oyoP  Oy? Yo Oy2 OP dy w

:‘2; (2,‘
~ 9%pp (dg —2d"Z)PP;

oy oP? oyoP
d m 0?1, Pm Ona
- 22 Mppp, - 2pp "l ppp_3°2ppp
2 oyop ap? ap2 Uty T3 gp Pl
o O p P,P,, b = 0. (2.28)
)P Sl /
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Separating by coefficients of powers of derivatives of P yields the svstem

p3

peid

3!

BBy

RIT P2

Py By

PP,

<%

o Py _Om (1 B
295~ ap3” 3 gp (p) =
/1 oc 0y 01, B
()~ ap* ap T~ 25map P ="
Ay Py,
op “op2t ="
NS 9%¢ P, P 5
Ox 2 dxdP dz? oy? S8 SEVES
: 92 o2,
g g0 o O 5 O p_
Ox Jy dxdP dyoP
om P,
oP  oP?
Iy
3— =10
oP
5 O .
—2 P P=0
dm  o¢ ‘ S
3v2 2— — —= — Ty 2 - —_— ={
m3v2) + ( or 0P ) B2+ ((‘):L"2 * oy? :

a¢ 0%

0?19

():T.’

U
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‘)'n 0 C
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P dy dr 0P
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Ay s

oP  ap?

om0
P, D2l ) P=A
by ( ()."I_.T ()?j ‘)

N,
P, :—2(%+%)P:0

dr Oy
0
PP, : —2 0—717; p=
0 ‘
PP, : —2 d—?j P=0 (2.20)

The system (2.29) is solved step by step to obtain

m = axr+bry (2.30a)
= ay+5b(y* — ) +c (2.30b)
¢ = %aP + %by P. (2.30¢)

These functions give the three parameter symmetry
X = (ax+bay)o, + [ay + %b(gl — %)+ cj} 0y
+ (% aP+3by P) Op . (2.31)
If we take a = 1, b = ¢ = 0. we obtain

X=a0x+ydy+3PoP (2.32)

The symmetry (2.32) defines the reduction variables via

dr dy dP
x y 3P
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to be

The partial differential equation (2.26) now reduces to the ordinary differential equation
—3v2u — Sug® — 2u'qq, + (0 + u?)qgu, — (¥ —u®)gl = 0. (2.33)

Solutions to (2.33) will now provide group invariant (in this case, scaling) solutions to (2.26).

2.3.3 Optimal Group Invariant Reductions

For the three parameter symmetry (2.31) of the Robinson-Trautman equation (2.26). we set

(i)a=1b=c=0

(iii) e=1,a=b=0.

in turn to obtain the following three symmetries:

Gy, = zdx+ydy+32POP (2.34a)
Gy = wzyde+i(y?—a?)oy+2yPoP (2.34b)
Gs = 0Oy. (2.34c)

In Section 2.3.2 we reduced the partial differential equation (2.26) to the ordinary differential
equation (2.33) using only G,. However, as there are three symmetries of the Robinson-
Trautman equation, we have other options. We can establish the optimal combination of these
symmetries necessary for the reduction of the partial differential equation to an ordinarv dif-

ferential equation. We achieve this by the method of optimal subgroups which requires the
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concepts of a commutation table and an adjoint table. The commutation table is constructed

by invoking (2.9) for all the svmmetries.

Instead of reducing the equation via all possible linear combinations of the svmmetries we
can proceed in a more systematic manner. The complete commutation table is represented in

Table 2.1.

G Ga| G
Gi| 0 |Go|—G3
Go| =Gy 0 | =Gy
Gs| Gz |G| O

Table 2.1: Commutation Table for Vector Fields G; — G5

To construct the adjoint table, we need to utilize (2.10)

In the case of GGy and G5. we have

Ad(exp(eGh))Gy = Gy —€]lGy, Gy] + é62[(—;1, Gy, G|

_ée3{G1’ [G'h [G1vG'2H] Tttt

= E_EGQ.

Continuing in this manner, we have the adjoint table given in Table 2.2.
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Ad Gl GQ GI}

G G e ‘G G3€f
Gy | G1 + €Go G G3 +eGy + % €2Gly
Gs3 |G1 — €G3 | Gy — Gy + %6203 G3

Table 2.2: Table of Adjoint Operators for G| — G5

We consider the most general linear combination of the symmetries given by

G = QlGl + ClgGg + (L3G3. (235\

We attempt to simplify as many as possible of the coefficients a; of G through the application

of adjoint maps to G.

We begin by assuming that az # 0, and we set a3 = 1 in general.

Thus we have

G = QlGl -+ CLQGE + Gd . (236\
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Acting on G in (2.36) by Ad(exp(eGs)) we have
Ad(exp(eG2))(a,Gy + asGsy + G3) = a1G + a1€Gy + axGy + G + €Gy + %EEGQ.
Setting € = —a;. we obtain
G = a16Gy+ aGy+ G3+ %EQGQ

- (ale + as + éeg) Go+ G
which we write as

where

2
cx=(zlf+a.g+%e .

We cannot simplify (2.37) any further by adjoint maps and so it is one element of our optimal
system.

Next we set a3 = 0 and as = 1.

Then (2.36) becomes

Acting on G in (2.38) by Ad(exp(eGs)) we have
Ad(exp(eGy))(a1Gy + Gy) = a1G1 + a1eGy + Gy .
Setting € = —(3—1, ay; # 0. we obtain

and so

G =G, (2.39)

is an element of our optimal system.
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Lastly, we set a; = as = 0 and a; = 1 which leaves us with

which is just (2.39) again.

Ultimately we have the following linear combinations:

¢ - G (2.408)
G aGy+ Gy , o =0,+1 (2.40b)

I

We also observe that (2.26) is invariant under the following involutions:

P - —P (2.41a)
y — —y. (2.41D)

These involutions may reduce our optimal system further. Using (2.41) we obtain the optimal

combination of the symmetries (2.34) to be

Gy = zdx+ydy+3iPap (2.42a)

Gy = Oy (2.42b)
Go+Gs = aydx+ (é(y" — %)+ 1) dy + 3y P dp (2.42¢)
G3— Gy = —xydr+ (1 — 2y — ;1:2_)) oy — 3y P op. (2.42d) .

These symmetries can be used separately to reduce (2.26) to ordinary differential equations

which hopefully can be solved.

We have now set the framework necessary to find group invariant solutions of some inter-

esting partial differential equations in relativity.
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Chapter 3

Group Invariant Solutions

3.1 Introduction

Exact solutions of Einstein’s field equations may serve as models of realistic matter configura-
tions such as fluid planets or neutron stars. Therefore it is important to seek exact solutions
for the conformally related spacetime under investigation in this thesis. The seed metric under
review possesses undesirable physical properties and our intentfion is to utilise its geometry and
construct a new metric, using conformal transformations, which indeed do exhibit properties
associated with realistic matter distributions. It is noteworthy that conformal structures play
an important role in understanding the deep underlying mathematics of general relativity. For
instance conformal transformations map null rays to null rays and light cones to light cones.
that is, the structure of the null cone is preserved in four dimensions. Additionally. the ex-
istence of conformal symmetries has the effect of simplifying the resulting system of partial
differential equations and thus possibly making the integration process simpler. Only a rela-
tively small number of attempts have been made in this direction. For example the conformal
symmetries of locally rotationally symmetric metrics were investigated by Moodley (1992) and
spherically symmetric spacetimes were intensively studied by Moopanar (2010) and Maharaj
et al (1995). Additionally, the presence of conformal svmmetries have allowed researchers to

classify known solutions according to their conformal structure (Coley and Tupper 1994).
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3.2 Spacetime Geometry

We consider the metric
ds® = —dt* + dz* + e*W3) (dy* + d2?) (3.1)

which is of Petrov type D and Szekeres form.

The spacetime (3.1) admits three Killing vectors, namely

X, = 0, (3.2b)

Xy = 20 +10, (3.2¢)
with the Lie bracket relations

[Xg, X&] = Xl- (33(,\

The conformally related analogue is given by
ds* = VPV [—dt? + da® + ) (dy? + d2?)]. (34)

By the Defrise-Carter (1975) theorem, the Killing vectors (3.2) are now conformal Killing

vectors of (3.4), given by

Y, = U, (3.5b)
Ys = a2U +tU,. (3.5¢)

Note that v, + v., is not zero. To simplify calculations we follow the treatment of Castejon-

Amendo and Coley (1992), and invoke the prescription

y + Ve = —2ke® (3.6)

,
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where £ is a nonzero constant. This allows us to solve the system of partial differential equa-
tions and constitutes and integrability condition for this method. We undertake a complete

analysis of this condition later in this thesis.

For the line element (3.1) the nonvanishing coefficients of the metric connection T are given

by

2 T2, T8 T3,
%9 = T5_5~F52~T,32-—Vy

[y = TPy =T% =D =uv..

It is now possible to evaluate the Ricei tensor (2.3), for the line element (3.1), by using the

above connection coefficients. The nonvanishing components are

R"Z - _(V-yy + sz) (37{1)

3

Ryy = —(vyy + 122) (3.7b)
and therefore the Ricci scalar (2.4) is given by
R = —EE_QU(MW + V). (3.8)

The Einstein tensor (2.5) is given by

Goo = —e 2 (v +1s) (3.9a)
Gy = e (uyy+sz)- (39b)

Then on using (3.7)-(3.9), as well as the formulac (2.17), we may evaluate the geometric

quantities for the conformally related metric (3.4). The conformal Ricci tensor (2.17¢) has the
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form

1'_?'00

ROI

—8Up + 2U2 + e (2U2 + 2U2 + Uy + U.:)
2U,U, — 2Us

20,U, — 2U,,

2U,U., — 2U,.

Up — 3Upy + 2U2 — e (szg 42U+ U, + U)
2,0, — 20U,

U, U, — 2Us.

—(Vyy + Vsz) — 3Uyy — U, + 20U, — 20, U, — 2U
e (Uy — Uy + 2UE — 2U2)

2U,U, —2U,. + 2v,U, + 2v,L.

~(vyy + v22) = 3U.. — Uy — 20, Uy, + 20, U, — 2072

% (Uy — Usg + 2U2 — 2U2).
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(3.10a)

(3.10Db)

(3.10c¢)

(3.10d)

(3.10e)

(3.10f)

(3.10g)

(3.10h)

(3.10i)

(3.10j)



The conformal Ricei scalar (2.17d) is given by

R = 8_2U [6 (Uti — U-m- + {’? — {}f)
(3.11)

—667 (Uyy + Uss + U2+ U?) = 267 (v, + v22).. .

The conformal Einstein tensor may be evaluated by using the relationship (2.17d), (3.10) and

(3.11). It has the form

Goo = —2Wpe — U2 +3U2 — e (2Uyy +2U.e + U2 + U2 + vy +v22)  (3.120)
Go = 20U, —2Uy, (3.12b)
Goe = 2U,U, —2U,, (3.12¢)
Gos = 20U, —2U,, (3.12d)
Gy = —2Uy—U2+30%+e¥ (zbfyy +2U,. + U2+ U2+ vy + u) (3.12¢)
G = 2U,U, —2U,, (3.12f)
Gz = 20U, —2U,, (3.12g)

Gay = 2U,, + U2 +3U2 + 20U, — 20,0,
(3.12h)
62 (U — 2Uy + U2 — U?)

Goy = 20U, —2U,. + 20U, + 21, U, (3.12i).
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Gszs = 2Uy, + U +3U7 —2v,U, + 2v.L.

(3.12j)
¥ (Wyy — Wy + U2 — UP)
for the line element (3.4). The Weyl conformal tensor is given by
3¢*Coior = —6Co202 = —6Co303 = 6C1212
= 6Ci313 = 2 Cagas = 2e " Caso
= Vyy + Vi

Clearly this form for the conformal tensor indicates that the metric (3.4) is not conformally

flat and motivates the choice (3.6).

To determine the perfect fluid energy—momentum tensor, we select a fluid 4-velocity vector u

that is noncomoving with the form
u® = ¢~V (cosh w9l + sinh vO?) (3.13)

where v = w(t,z). Note that a trivial calculation reveals that when v is a constant. the
perfect fluid Einstein field equations would imply conformal flatness and this case is not of
immense interest. All conformally flat solutions have been found. They are either generalised
Schwarzschild metrics or, in the case of expansion, Stephani spacetimes (Stephani 1967). Ad-
ditionally, Lake (1989) demonstrated a necessary and sufficient condition for a spherically

symmetric spacetime to be conformally flat. The energy-momentum tensor (2.6b) has the
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nonzero components

Too = (u+p)e® cosh®v — pe?V (3.14a)
Too = —(u+p)e?Y coshvsinhv (3.14b)
T = (p+p)e?sinh®v + pe?V (3.14c)
Thy = pe¥t2V (3.14d)
Tss = Tho. (3.14¢)

We are now in a position to generate the Einstein field equations using (3.12) and (3.14). These

are given by

UU,—Uy, = 0 (3.15a)

UU,—U, = 0 (3.15b)

U Uy~ Uy = 0 (3.15¢)

U U, -U,. = 0 (3.15d)
U, — U, = —}l( i+ p)e?! sinh 2v (3.15¢)
U U, — Uy, +v.U, + U, =0 (3.15f)

2U:r:r - U:;% -+ 3U[2 - B_ZV (2Uyy + QUzz + Lr;f + U_? -+ Vyy + lt’zz)

= (p+ p)e?V cosh? v — pe? (3.15g)
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— 2y — U +3U2 + e (2Uy, + 2U. + U2 + U + vy + 1. )
= (p + p)eV sinh? v + pe?V (3.15h)
2U.. + U2 + 3U; + 2v,U, — 20, U, 4 €* (U, — 2Uy + U2 — U7)
= pe? 20 (3.151)
2Uyy + U2 +3U2 — 20U, + 20,U, + €% (2Uy — 2Uy + U2 — UR)

— pe2vt2U (3.15§)

for the line element (3.4).

3.3 Reduction of the Field Equations

The field equations (3.15) may be transformed to a variety of forms to achieve their integration.

An immediate consequence of equations (3.15a) - (3.15d) is the functional form
eV = f(t,x) + h(y, 2) (3.16)

where f and h are arbitrary functions and U = U(t, z,y, z).

The reduction to a simpler form of the remaining field equations (3.15¢)-(3.15j) has been

fully dealt with in the paper by Hansraj et al (2006)
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The resulting system is given by
po= 3(f2 = f3)+ (f + h)(4kf — 2kh + 30) — 3¢™* (h2 + h?) (3.17a)

p = =3(ff = 1)+ (f+h) 2fu — 2fec +2kh — a)
+3¢72 (h2 + h2) (3.17h)

tanh’v = - . 3.17¢)
2fu +2kf + a ( '

B = Y(2fe —2kf — ) (2fu + 2kf + @) (3.17d)
hy. = vh, +v,h, (3.17¢)
hyy —h.. = 2v,h,+2v.h,. (3.17f)
The system (3.17), subject to condition (3.6), viz. vy, + v,, = —2ke® . must be solved in order

to generate a conformally related perfect fluid model.

It should be observed that Castejon and Coley (1992) incorrectly inferred that equations
(3.17¢) and (3.17f) necessitate h to be a constant. Hansraj et al (2006) demonstrated by way
of a counter-example that this is not necessarily the case. Additionally, they extended the
results of Castejon and Coley (1992) to more general classes of solutions and in addition ob-

tained new solutions for the case h = constant by using the methods of Lie group analysis.

Consequently we elect NOT to consider the case h = constant only. but instead to allow
for the variation in all spatial directions. This represents the major point of departure from
the work of Hansraj et al (2006). We seck solutions to the conformal Einstein equations with

a wider latitude in behaviour.
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3.4 Group Invariant Solutions

The field equations (3.17a)-(3.17¢) may be taken as definitions for the energy density p. the
pressure p and the velocity vector angle v. Equation (3.17d) depends only on f. A full anal-
ysis thereof can be found in Hansraj et al (2006). We therefore now focus our attention on
equations (3.17e)-(3.17f) which constitute a master system of equations which are free of f.

Solutions of this system may be substituted into (3.17a)-(3.17¢) to yield the quantities pu, p. v.

We implement the method of Lie group analysis in our attempt to obtain these solutions.
With the aid of the computer package PROGRAM LIE (Head 1993) we find that the symme-

try algebra for (3.17¢) - (3.17f) is spanned by the following vector ficlds:

Gi = O (3.184)
Gy = 0. (3.18)
Gy = 0, (3.18c)
Gy = yo,+20, (3.18d)
Gs = 0, (3.18¢)
Gs = h oy (3.18f)

We now attempt to find group invariant solutions of (3.17¢)- (3.17f) using these symmetries.
Instead of proceeding in an ad hoc manner, we first classify (3.18a) — (3.18f) into an optimal

system using the method described in section (2.3.3). We note that the equations (3.17¢)
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(3.17f) are also invariant under the following involutions

h — —h (3.19a)

y — —y (3.19b)

z — —z (3.19¢)
Under these transformations we have

Using this method and taking into account (3.20) we only need to consider the following linear

combinations when reducing (3.17¢)-(3.17f):

Z} = Gr{+6,6 :yﬁer: C):—i—h t)h

(3.21a)
Zy = Gy=yd,+20.
’ 4 ’ (3.21b)
Zy = Gy—Geg=y0,+20.—ho
(3.21¢)
Z4 = (L]G4 —+ G5 -+ GQG(;
(3.21d)

= ayy Oy + a1z 0, + 0, + axh Oy

where aq, as are constants, a; # 0, as # 0.

We now consider, in turn, the reduced form of the ordinary differential equation for each

of Z1 - 24,

3.4.1 Invariance under 7,
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The associated Lagrange’s system for
is

B dh B dv
- h 0

dy dz
i z

From the above system, we obtain the reduction variables

p(u) = v

q(u) =

< | >

@

In terms of these variables equations (3.17¢) - (3.17f) become

—Uyw = GPu — 2?-1'}}2:.(1”11

(W = 1)quu = 2upuq + 20°pugu + 2putu
with solutions

2

plu) = % + log {za%(za“’ - l)%:{ + ¢o

q(u) = exp (2—%’,'((-‘“’ + 1 logu+ cl)

where ¢y, ¢, are arbitrary constants of integration.

Using the solutions (3.25) together with the system (3.23) we obtain

2 N\ E /.2 i
v = — lo = =1 -
16y2+ o8 (?;) (?ﬁ ) e
.2
h = 3}1y%ccl+ﬂ_ﬁ
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(3.22)

(3.23b)

(3.23¢)

(3.24a)

(3.24b)

(3.25b)

(3.26a)

(3.26b)



3.4.2 Invariance under 7,
For the generator

Zy =1y Oy + 20,

the associated characteristic system is

dy _dz _dv _ dh (3.27)
Y z 0 0
from which we have the following reduction variables:
plu) = v (3.28a)
qu) = h (3.28b)
U = E. 3.28¢
Y ( °)
In terms of the variable u, in the field equations (3.17¢) - (3.17f) assume the form
UQuu = (2up, — 1)qy (3.29a)
(v — Duu = 2(u’py + pu — 1) qu. (3.29b)
On solving (3.29a) and (3.29b) simultancously we obtain
plu) = %-uz + %log u+cy (3.30a)
( ) \/EFH,—%—:}—?‘CQ
qlu) = — + ¢
V2(—u?)t ’ (3.30b)
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where ¢y, ¢ are arbitrary constants of integration and T is defined by

[[s, 6] = /m e~ tdt,
0

. . . z
Since v = p(u) and h = g(u) with u = —. we thus have

"2 Y\ Z
8y° + log (y) + ¢y
ET |-
h = i [4 _df‘ + ¢
22 \14
v2(-3)

as solutions to (3.17¢)-(3.17f).

3.4.3 Invariance under 73
Zy =y 0y + 20, —h 0
has associated characteristic system of the form

dy dz dh  dv

y z —h 0

with invariants given by

& |
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(3.31a)

(3.31b)

(3.32)

(3.33a)

(3.33h)

(3.33¢)



in terms of which the field equations (3.17¢) - (3.17f) reduce to
UG = Pu+ 2q,(py — 1) (3.34a)
(U2 = 1D)guu = 2q(upy — 1) + 2qu(upy + pu — 2u). (3.34b)

We solve the system (3.34) simultancously to obtain

~ (2uq + 2(v? 4 1)q)? — (dug, + 2q)(4ug, + (u* 4 1)q)

. 3.35)
b (dug, + (u? + 1)q)(u? — 1) (
which is an ordinary differential equation that is difficult to integrarte.
We reduce the order of (3.35) in an attempt to facilitate integration.
Equation (3.35) has just one symmetry. viz
G =q0, (3.36)
The first extension of G in (3.36) is given by
Gl =g Oy + qu 0qu,. (3.37)
The associated characteristic system for (3.37) is
dg dq, du
7 qu 0
from which we obtain the reduction variables
ro=u (3.38a)
Gu : _
s = j (3.38b)
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Figure 3.1: Graphical Solution for for Z

On substituting (3.38) into (3.35). we obtain

. - (2r +2(r* +1)s)* — (drs +2)(drs + (r* + 1)) &2
" (r2—1)(drs+ (r2+1)) '

(3.39)

Unfortunately we find that this first order equation is also difficult to integrate. Hence we are
unable to find an analytic solution via Z3 and must therefore resort to a numerical solution.

A graphical representation of Zs, generated by MATHEMATICA 7.0 (Wolfram Inc. 2009). is

given in Figure 3.1.

3.4.4 Invariance under 7,

The associated characteristic system for

Zy=ay Oy + a1z 0z + v + ash Oh
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where a1, as are constants. is of the form

ﬁ B dz dv dh

ay 1 ash

for which we obtain the following reduction variables:

plu) = hy~e/o

q(u) = av—logy

u =

Under the transformation (3.41) the field equations (3.17¢) - (3.17f) reduce to

g — a4y — 1 2]
UPyy = (7) Pu— —5 Plu
ay ay
2
+— upuqy

R Sfas—a; —1 2a;:
(v — Dpy = 2 (2) Upy — U—;UP%

2
+—(u? + 1)puqu + (
ay aj

Solving (3.42a) — (3.42b) simultancously yields the equation

((12—(11—1

¢ asy . .
a; ) (uz + I)Pu - a_%y_(“'z + l)p(!u

2

20y — a3 + aiaz
‘ up =0
a3

4
+ l”'p U Q'u +
ay
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2a9 — a% + aias
— p.

(3.40)

(3.41a)

(3.41h)

(3.41c)

(3.42a)

(3.42b)

(3.43)



from which we obtain

as —a; — 1\ . . a0 — a2 + a;a
(5701 i (),
[25] aj

= — - (340
—(u? + 1)p — —up,
a as

Substituting (3.44) into (3.42a) vields
o — dy — 1
UPyu = — | Pu
a4y
ag — ayp — 1 20‘,2 —a%+ala2

2
—_—(u*+1 -+ U;
2 as ( a ) ( P ( a? ) p )
+ P . (3.45)

—up, — —

a a as, . : 4

A % (w2 + p— —up,
aj 5]

Once again we find that we have in (3.45) an ordinary differential equation that is highly non-

linear and hence difficult to integrate. In addition, an attempt at reducing (3.45) leads nowhere.

Having explored all our options, we again finally resort to a numerical solution. With the
aid of MATHEMATICA 7.0 (Wolfram Inc. 2009), we generate the plot for Z,. illustrated in

Figure 3.2.

3.5 Summary

We have managed, for the first time, to systematically find solutions to the equations (3.17¢)
~ (3.17f). Where possible exact solutions were obtained. In two cases we had to resort to nu-
merical solutions. These results, taken together with those of Hansraj et al (2006) constitute

a complete group analysis of the Einstein field equations (3.17).
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Figure 3.2: Graphical Solution for Z; with a; = —1 and a, = 1

45



In the next chapter we present the complete solutions and embark on a physical analvsis

of some of the solutions.
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Chapter 4

Complete Solutions and Physical
Analysis

4.1 Introduction

Arising out of the success of the Lie group analysis method of Chapter 3 we are able to provide
the complete solution for the Einstein field equations for a conformally related perfect fluid.
We reiterate that, as a result of the complicated nature of the system of partial differential
equations, very limited success has been achieved by other researchers in this area. The work
of Castejon and Coley (1992) was based on the assumption that the conformal factor was
firstly of the form U(t, ) and secondly that the solutions were then separable. Our approach.
in contrast, utilising the Lie group analysis method, has vielded a rich class of new solutions.
These solutions continue to be of Petrov type D as the Petrov type is preserved under confor-

mal mappings.

Our work has considered the full blown possibility that the conformal factor has the form
¢V = f(t,z) + h(y, z). The functional forms h(y, z) which we have established, and f(t, )
which were obtained by Hansraj et al (2006) must be substituted into expressions (3.17a) and

(3.17b) to establish the dynamical quantities, energy density (;) and pressure (p). Thereafter
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it needs to be verified that the pressure and density profiles satisfy certain conditions for phys-
ical acceptability which we enumerate in section 4.3. Finally we study a particular solution
against the conditions referred to in section 4.3. A rigorous analytical treatment is prohibitive
in general, in view of the complexity of the resultant expressions. Furthermore, for graphical
purposes, it is necessary to consider a simplified situation such as foliations of the distribution

in terms of the temporal and one space variable.

4.2 Complete Solutions

4.2.1 Solutions for 7;

It was established in Chapter 3 that the function A had the form

3 ¢ -5
ie ]+8;_."

h(y,z) = =y

while the function v can be written as

2 3
9 z A
e = | 2
Y

where ¢;, ¢, are arbitrary constants of integration in (3.25).

S
P
< ] [
bo| b

|

[
—
(MO

In accordance with these solutions, the metric (3.1) is expressed as

N: /.2 3
) (N—Z - 1) (dy* + dz*)
Y Y

and the conformally related metric (3.4) for a perfect fluid is given by

| &2

Z‘Z
ds® = —dt® + dz® + ce™” (

2 1
: 1 . ENSACN S 2 .
ds® = ~ 5 (—di:z + da® + cre®? (;) (7/2 - }.) (dy* + dz.z))

23 1 |
(f—‘—em_f_ﬁ‘v“e‘yzza) : b

where the function f may be chosen from the analysis of Hansraj et al (2006), since f and h

are governed by independent equations.
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The energy density for this solution is given by

3 1 z : H 5 =2 >
_2 2\ [ 2 % e 1+myg e l+t€y2 -7 3(:.‘-(:]_'_&9_223 M-l-sy
no= =3 |ces’ | — — — 1 : + : - 5
Y Y 4z 4y 4y 4y
(e digtat) (ah- 2 Shytat +30) +3 (2 - 12
and the pressure has the form
3 1 —1 2 22 = =2 =
22 [ 1 =2 2 B‘H'@y% G{!_‘_@ZT’ 3 (1+8y-2 ‘7‘+gy
P = 3| ess (_) <_«> - ) 3 + 5 + 1
Y y- 4z4 4y4 454 4y

4.2.2 Solutions for 7

For this generator we obtained the solution for A as follows

h.('-y, :.:) =y — ii’ H ;%_
(5

and the solution for v can be written as

22 2
e” = ¥ en? <—>
Y

As before ¢; and ¢, are arbitrary constants of integration.

Kol

The metric (3.1) is accordingly given by

z2 ' P
ds® = —dt* + dz® + cze™? ( ) (dy* + dz*)

[S]

| 2

1

<
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while the conformally related metric (3.4) for a perfect fluid is of the form

‘ 1 . 2z g .
ds® = — (—dz‘,‘2 + da? + czet? (;) (dy”® + dzz)) .
(f + o — : T ) |

The energy density, expressed in terms of the solutions obtained via Z,. is written as

(er(‘z Virls _ﬂ) (4Af+3a2;b (cg Vil _’F}))
va(-2)
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M
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. 22\/§I‘ [%: _%] N 2 H’ _%] _ ZQ\FF(O,” [1 ' i} ‘ +3(f2—f2)
vy (%) v A (-3%) 2v2y (-%)"

while the pressure is given by

S O p—— I
p = (f+(:2\/; [4'2 ?]) (u+2k(cg\f { 1 ]_._th“)fu))
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1
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2
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where, again,

again, we may elect to use the function f from the treatment of Hansraj et al (2006)
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4.3 Conditions for Physical Admissability

Generally for physically acceptable relativistic models of perfect fluids. it is demanded that

the following conditions are satisfied:

4.3.1 the pressure and energy density must be positive and finite evervwhere in the interior of

the star, including the origin and boundary. i.e.

0 < p<x

0 < p<oc.

4.3.2 the pressure and energy density are usually decreasing monotonic functions of the coor-
dinate r. A pressure-free hypersurface should exist to define the boundary of the matter
distribution for applications to stellar objects. The absence of a vanishing pressure hyv-

persurface is taken to be indicative of a cosmological scenario.

4.3.3 continuity of gravitational potential across the boundary hypersurface: the metric has to

be matched with an appropriate exterior vacuum solution.

4.3.4 the speed of sound should be less than the speed of light everywhere in the interior. that

is the principle of causality must be satisfied

d
0<—p<1.

dp
4.3.5 The metric potentials must be everywhere positive.

A detailed motivation of these requirements is found in Lake (1998) and Knutsen (1992). It
must be observed that the most elementary requirement is the positivity of pressure and en-
ergy density. The remaining conditions are subject to dispute by researchers. For example.
the well established causality principle (4.3.4) has been discussed by Macorra and Vucetich

(2004) in the context of scalar ficlds as candidates for dark energy models. It is argued here
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that the speed of sound remains less than the speed of light irrespective of the ratios E or gﬁ

In addition, condition (4.3.2) requiring monotonic decrease of p and p is also viewed as unduly
restrictive since the thermodynamical process within a physical distribution is practically im-

possible to determine (Rhodes and Ruffini 1974).

4.4 Physical Properties of a Particular Solution

In 4.2.1 we expressed the conformally related metric (3.4), energy density (;) and pressure (p)
in terms of f as well as h and v obtained via Z;. We now present a complete solution of the
metric (3.4) and the dynamical quantities using our results of Z; and the following solution

for f from the work of Hansraj et al (2006)

f(x,t) = Asinh \/k(#? — 22) + B cosh \/k(t? — 22).

The conformally related metric (3.4) may now be given by

;2
ds® = 5

(ecﬁ@ygzl + B cosh [ k(1% — 13)} + Asinh [ k(t? — ;z:?-)D
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and the energy density takes the form

22 1
+ (ecﬁﬂ_vzy%zi + B cosh [ k(1% — 13)] + Asinh [ k(1% — J:Z)D

(—Qefcﬁék:y%z% — 3+ 4k (B cosh [ k(t? — ﬂ’)} + Asinh { k(t? — Lz)D)

2
Bkt sinh [ k(t? — 2?) )

Akt cosh (1 x?
+3 +
Rt — 2?) k(t? — x2)
2
( Akzx cosh [ ) )

53



while the pressure is given by
AZ 3 2-2 2 22 1 2-2 9 2
AT SRR 3TRIL TR LT
+ 5 I B 2
4ys dys dys

_ k@2 4a?) (A cosh [\/ﬁr—ﬂ)] + Bsinh { k(12 — 332)})2

2—22)
+(e”+_22 yiz1 + Bcosh [\/k(tzi)} +Asmh{ k(12 —rZ)D ( a+2( “L"fyzlu 122
k cosh {\/!,(fz — } 2sinh { [k(t2 — Q;‘z)}

t2 — x?

k2t
+A
k(2 — 22)
E2a? cosh | /(12 — 22 A cosh [/ k(12 — 22 k:z:z sinh |\/k(t2 — 22 1
Al cos { ( : ) 0 { ( ) ‘[ (‘ )
(k(t2 — 22))2 JE(E2 — 22) 1 — x?

kz? cosh {\/k,(tQ - 7‘2)} k%z? sinh {‘/k(fz - :rz)} k sinh { E(t? — x?)
b (12 — x%)

(k12— a?))

[ [

—B t? — x?
isth{ k(t? — 2?)

E2t? sinh { k(t? — 2?)
- _ +
(k(t? — 1172))% k(2 — 2?)

kt? cosh [ _
i i t? — a2

To investigate the plausibility of our solutions analytically is quite intricate given the com-
Moreover, we are dealing with a

plicated forms for the metric and the dynamical variables

four-dimensional solution and so even graphical plots are impossible

In order to obtain an indication of the model’s feasibility to represent a realistic distribu-

tion, we elect to make a graphical study of a particular solution. We consider (¢, z) slices from

the result obtained in the analysis of Hansraj et al (2006) where

f(t,z) = Asinh m + Bcosh \/m



and h = 0. Tt should be observed that the aforementioned authors neglected to analvse the

physical properties of their solutions.

The energy density and pressure are given by

w = 4k (B cosh {\/m + Asinh [\/ k(t* — 332)1)2
. ((Akt cosh [‘/k([z — :1:2)] . Bkt sinh [ k:({;'z. — :1:'3)] ) i

k(t? — x?)

B _Ak:z:cosh( k(% — 22?) B Bkx sinh [\/k’(f;‘z —:zzz)i i
VE(E? — 2?) b(12 — o

and

p = 2 (B cosh [\/k:(t‘z — :L"‘Z)’ + Asinh [ k(2 — J:Q)D

k%t? cosh |\/k(t2 — 22)|  kcosh |\/k(t2 — 22 kt?sinh |/k(2 — x
a Koo [JHE ] ook [ ] ke [k
(k(t2 — 22))3/ VR(?2 — 2?) m T

p k2x? cosh [ k(12 — 2 (12 — 2
B R IE W22 £

ey
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]
[
(3]
R
—

kx? cosh |/ k(12 — 22 E2x? sinh |/ k(12 — 22 ksinh | /k(t2 — 22
B( [V —a2)] [k —22)]  ksinh [y/k )})

kt? cosh |/ k(12 — x2 E2t? sinh |/ k(12 — 22 k sinh
s ( (V@ -] [k =)

222 &E 227

Bl ) (A cosh { E(t? — z%)| + Bsinh [ k(1?2 — 22?) )2 :

12—z}

We need to select appropriate values for the parameters A, B.k to finalise the model. Tt
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should be observed at this stage that, in many situations, it is possible to obtain bounds
for the constants by examining the central conditions p(¢,0,0,0) and p(t,0,0,0). We then
require that all the physical conditions are satisfied at the centre. This is not fruitful in the
present context. Furthermore, the approach in fixing integration constants in most problems
in general relativity involves matching of the perfect fluid solution with its corresponding
acuum solution. For example, if we were devising a model of a static neutral sphere. then
integration constants can be fixed by demanding continuity of the potentials at the boundary
hypersurface. In addition, for such solutions, the pressure vanishes at the boundary and this
determines the size of the sphere. In the case of radiating spheres, this pressure—free interface
does not exist and this condition is modified to include the effects of radiation and the junction
conditions must be established via other means. The difficulty in our analysis is that we have
no known vacuum solution. Consequently our selection of the constants is completely random.
We are fortunate that available computing technology is able to quickly check the efficacy of
our choices for the integration constants (See Fig. 4.1 and Fig. 4.2).

These plots, generated via Mathematica (Wolfram Inc 2009), demonstrate many pleasing fea-
tures. For example, it is evident that in the region chosen, the pressure and energy density
are both positive. These are the most basic requirements for models to serve as candidates for

realistic celestial phenomena.
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Figure 4.1: Plot of Pressure versus ¢ and x with A =1, B=10. k =0.1
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Figure 4.2: Plot of Energy Density versus ¢ and x with A =1, B=10. £k =0.1
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Chapter 5

Conclusion

Our main objective in this thesis was to obtain new exact solutions of the Einstein Field equa-
tions for a perfect fluid metric conformal to a spacetime of Petrov type D, and to generate a
new class of complete solutions for U(t, z,y, z). To this end, we emploved the method of Lie

group analysis.

In chapter 2 we discussed the mathematical concepts that were necessary for later chapters
of the thesis. In particular, the technique of Lie group analysis was outlined. Using the
example of the Robinson-Trautman equation, we illustrated Lie’s method of reducing a second
order nonlinear partial differential equation to an ordinary differential equation. the solutions
of which would provide group invariant solutions to the Robinson-Trautman equation. In
addition, we also discussed and illustrated the systematic method of optimal subgroups.

In chapter 3 we considered a perfect fluid metric conformally related to a Petrov type D
spacetime. Using the relevant aspects of differential geometry discussed in chapter 2. we derived
the appropriate Einstein field equations. We then considered the reduction to a simpler form

of these field equations. In giving particular attention to the equations

hy. = v.h, +v,h.
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and

h‘yy - hzz = foyh-y + Ei‘fzh;

we claimed that new exact solutions for these equations could be found with no restrictions
having to be placed on h. Our claim was in contradiction to Castejon and Coley (1992) who
proposed that the system of field equations could be solved only on condition that A is a
constant. Using Lie’s method we obtained four generators 7, — Z;. We successfully found

exact solutions for two of these generators. For Z;, our solution was

.2
1 3 il
h=ziyie 87

and

=

) N\ /.2
== log || = | :
TR (?;) (y'2 ) e

and for Zs we obtained the solution

and

2
24 1 z
= — 4+ -l - Cy .
YT Ry T (y) o

The remaining generators, Z3 and Z,, gave rise to ordinary differential equations that were
difficult to integrate. We resorted to numerical solutions for these cases.

In chapter 4 we presented complete solutions and analysed our solutions for physical plausi-
bility. We listed the metric (3.1), its conformally related counterpart (3.4), the energy density
(1) and the pressure (p) in terms of our solutions for Z; as well as for Z,. Graphical plots in
the remaining cases were exhibifed using numerical methods. We then presented a particular

exact solution for (3.4), p and p in terms of ¢, z, y and z using a solution for f from the work
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of Hansraj et al (2006) and our solution for Z;. In addition we generated plots of (¢, x) slices
of the solution.

This work adds to the growing body of applications of group theory to equations arising in
general relativity. As a result, complicated problems now have a realistic chance of being
resolved. We intend utilising group analysis to investigate extensions of this model as well as

to other Petrov type seed solutions.
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