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Abstract 

Every central bank of the country should hold enough reserves such as foreign exchange currency, gold, 

or any form of reserves to be able to help its country in times of difficulties or financial crises. This 

involves the process of ensuring that adequate official public sector foreign assets are readily available 

to meet any defined range of objectives by a country. Reserves can also play a pivotal role in supporting 

and maintaining confidence in the policies for monetary and exchange rate management, including the 

ability to intervene in the foreign market to influence the value of the local currency. It can also be used 

to provide proof to the market that a country can meet its current and future external obligations, limit 

external exposure by maintaining foreign currency liquidity to absorb shock during times of crisis, show 

the support of domestic currency by external assets, assist the government in meeting its foreign 

exchange needs and external debt obligations, and maintain sufficient reserves for national disasters or 

emergencies. 

 

All this cannot be done without the understanding of all factors that affect reserves of the country, hence 

careful analysis of reserves in a country plays a crucial role on how the central bank should manage the 

reserves of such a country. This includes a wide range of social, economic, and statistical analyses. 

However, this study focuses more on the statistical analysis part, which is, building models to predict 

or forecast the trajectory of reserves positions in future. These models should be able to consider all the 

factors that influence the reserves, such as trend, seasonality and the variability (random variability). 

The Seasonal ARIMA models were used as initial models to forecast the future reserves positions. 

Seasonal ARIMA Generalized Autoregressive Conditional Heteroskedasticity models with Skewed 

Student-t Distribution (SARIMA – GARCH – SSTD) were also used to forecast volatility from the 

foreign exchange reserves data after statistical test were carried out and the data was found to have 

ARCH Effects. The best volatility model that was found to produces best forecast for foreign exchange 

reserves data was the SARIMA (0,1,0) (2,1,0)12 – GARCH (1,1) – SSTD model. 

 

The SARIMA model developed earlier for gold reserves data was then benchmarked with the Holt-

Winters' Seasonal method. The results from the analysis showed that SARIMA model outperformed 

Holt-Winters' Seasonal method in forecasting gold reserves positions. We found that future gold 

reserves positions can be better predicted using the SARIMA (1,1,0) (0,1,2)12 model. The best model 

was selected from many other models using model diagnostics process such as comparisons of the AIC, 

RMSE, number of significant parameters and the evaluation of residuals to identify their flexibility. 

Using the forecasting methods developed in this study, the central bank can better understand what to 

expect in the future and decide on what measures to implement for national economic stability.  

 

Keywords: Reserves, S/ARIMA, G/ARCH, Volatility, forecasting, Seasonality, Damping Parameter.  
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Chapter 1: 

1. Introduction 

The South African Reserve Bank (SARB) is the central bank of the Republic of South Africa (RSA). It 

plays a pivotal role in the South African economic system in the sense that it maintains price stability. 

The SARB is also involved in a supervisory of all domestic commercial banks and stock exchanges. It 

helps local banks that are temporarily illiquid and holds and manages reserves of the country (e.g., 

official gold and foreign exchange reserves). This study focuses on the management of South African 

official gold and foreign exchange reserves.  

1.1 Gold and Foreign Reserves and their Importance 

The reserves of the country are similar to the working capital of a company or the current balance 

account of an individual (Weisweiller, 1972). In most countries, the reserves are made of the foreign 

currency and official gold detained by the central bank. However, the reserves detained by such central 

bank do not indicate the total assets owned by its country. Some well-developed countries with strong 

economic growth in the world have small reserves, whereas some with very large reserves have also 

very few other assets abroad. Those assets might be in the form of stock exchange investment held by 

individuals, or subsidiaries owned by domestic companies abroad (Weisweiller, 1972). 

In practice, “there is no unique definition of foreign exchange assets or reserves, however, for policies 

and operational purposes many countries use the definition suggested by International Monetary Fund 

which states that “ foreign exchange reserves are the external assets that are readily available and 

controlled by monetary policy for directly financing external payments imbalances, and for directly 

regulating the magnitudes of such imbalances through intervention in the exchange market to affect the 

currency exchange rate and/or other commitments”  (Reddy, 2002). South African Reserve Bank also 

defines foreign exchange reserves in their document titled “Management of gold and foreign exchange 

reserves, 2010" as “the currency or any other financial instruments that allow one country to settle 

amounts owed to other foreign countries”. For instance, the amount owed by South Africa to the United 

Kingdom is settled in foreign exchange (i.e., in Pound/GBP). Furthermore, foreign exchange reserves 

are instruments used to control and manage the exchange rate, while allowing organized absorption of 

international money and capital flows (Reddy, 2002) . The deal made between two countries or two 

individuals from two different countries to purchase or sell a product from each other is known as a 

foreign exchange deal. A foreign exchange deal occurs in the foreign exchange market and is simply 

an exchanging of one currency or national money for another. The exchange rate is the price of one 

currency expressed in terms of the other. It simply expresses the correlation between two currencies;, 

whenever an exchange rate moves, this is due to a change in the value of one or the other currency 

(Weisweiller, 1972). Therefore, the rate of a currency is then determined by the supply of and/or demand 
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of that currency. For instance, the rand can be described as depreciated against the US dollar if each US 

dollar cost more rands to buy. If it has appreciated, then fewer rands are paid for a single US dollar.  

Reserves can be considered as a self-insurance during financial crises in the country (Steiner, 2013). 

The International Monetary Fund (IMF, 2014) discussed the importance of reserves management in the 

"Revised Guidelines for Foreign Exchange Reserves" as a process of ensuring that “sufficient official 

public sector foreign assets are readily accessible to and controlled by the authorities for meeting a 

defined variety objectives for a country”. Therefore, the process of reserves management involves many 

aspects, that is, the management information system that deals with the measurement of various risks 

exposure like liquidity, exchange rate and interest rate, and ensures that such risks are accurately 

managed [https://www.resbank.co.za]. According to the (IMF, 2014), central banks should have enough 

foreign exchange reserves in support of  numerous objectives, including, but not limited to, the ones 

that may be specified by the country itself based on its financial state; backing and sustain confidence 

its country’s monetary policies, including the ability to intervene in supporting the national or union 

currency; provide proof to the market that a country can meet its current and future external obligations; 

help the government in meeting its foreign exchange needs and external debt obligations; and maintain 

reserves for national disasters or emergencies.  

Traditionally, the appropriate level of foreign exchange reserves to be held by the central banks was 

equal to three or four months of the country’s imports (Rodrik, 2006). However, due to the unusual rise 

of financial crises in many emerging countries such an idea has been reviewed. It has been discovered 

that countries need enough reserves to cover their short-term debt (Fischer, 2001). The idea for countries 

to hold enough reserves to cover their short-term debt played a critical role in the Asian crisis, as it was 

discovered that “countries that held very large reserves were better able to avoid the devastating effects 

of the crisis than those which had smaller reserves” (Fischer, 2001). Therefore, the IMF imposed the 

rule known as Guidotti-Greenspan-IMF (see Greenspan, 1999) which emphasizes the point of reserves 

accumulation in emerging countries. The Guidotti-Greenspan-IMF rule states that “countries should 

hold liquid reserves equal to their foreign liabilities coming due within a year” (Rodrik, 2006). The rule 

simply uses ‘the ratio of short-term external debt to reserves’ as the adequacy measure of reserves for 

a country.  

1.2 Literature Review 

Box et al. (1970) in their book entitled “Times Series Analysis: Forecasting and Control”, developed 

Autoregressive Integrated Moving Average (ARIMA) time series forecasting models, hence, these 

models are often referred to as the Box–Jenkins models. Although many other authors, such as Wold 

(1954) and Quenouille et al., (1957), have studied and discussed time series models, Box and Jenkins 

promoted their use and revealed their methodical approach to seasonal data. Their approach, which is 

well-known as the Box–Jenkins approach, possesses many appealing features (Chatfield, 2000). 
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Vandaele (1983) pointed out that it can allow the manager who only has data on the past years' sales to 

forecast future sales without having to search for other time-series data such as customer's income, 

prices, etc.  

Guha et al. (2011) in the paper “Gold Price Forecasting Using ARIMA Models", applied an ARIMA 

time series model to forecast the future gold price in India based on past data to mitigate the risk in the 

purchase of gold, hence giving a guideline for investors as to when to buy or sell the yellow metal. Guha 

further revealed that in India gold was, in earlier times, only purchased at the time of marriage or other 

rituals but then it later gained importance in the eyes of investors also, thus it became necessary to 

predict the price of gold with suitable methods. His study was based on secondary monthly data for the 

gold price which was collected from the Multi Commodity Exchange of India Ltd (MCX), ranging from 

November 2003 to January 2014. The Multi Commodity Exchange is a commodity future exchange 

based in India which started its operations from November 2003. The author performed all the relevant 

statistical analysis and comparing the fit statistics such Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Ljungs Box Q statistics). 

Guha et al., (2011) then decided to choose the ARIMA (1,1,1) as the best model for the collected data 

which could be used to forecast the future gold price. ARIMA (1,1,1) was chosen from six different 

model parameters as it provided the best model which satisfied all the criteria of fit statistics while the 

other five failed the fit statistics. 

Khan (2013), in the paper “Forecasting the gold price: Box –Jenkins Approach”, applied ARIMA 

models to develop the best model to predict future gold price or positions. Khan (2013) used sample 

data of gold prices (in USD per ounce) from 02 January 2003 to 01 March 2012. The data up until 02 

January 2012 were used to build the model while the remaining data were used to check for the accuracy 

of the model. A unit root test was used to test for stationarity from the long-term daily gold positions 

data and the data was found to be non-stationary. The author applied the first differencing to the series 

and then repeated the stationarity test which led him to conclude that the data was therefore stationary 

at the first differencing. The E–views software was used to fit the ARIMA models that were identified 

using graphs, fit statistics, ACFs and PACFs of the residuals. After several iterations, the model selected 

for the data was an ARIMA (0,1,1). The author also used the following ways to measure accuracy from 

the model forecasts: Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). The author finally concluded that the ARIMA (0,1,1) model could 

be used for forecasting gold prices in the future.  

Davis et al. (2014), in the paper "Modelling and Forecasting of Gold Prices on Financial Markets", used 

a monthly adjusted close price of gold from January 2003 to April 2012 (112 observed prices). The 

authors fitted an ARIMA model with the first 106 observed prices and the model was used for 6–step–

ahead of forecasts. The forecast values were then compared to the original corresponding prices. The 
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actual values fell within the forecast limits which widened with increasing lead time (Deshmukh et al., 

2014). 

Mombeini et al. (2015), argue that “developing a precise and accurate model of the gold price is critical 

as gold is a difficult asset to manage because of its unique features”. In this study, the authors used an 

Artificial Neural Network (ANN) model for modelling the gold price and compared it with traditional 

statistical models of the Autoregressive Integrated Moving Average (ARIMA) type. The gold price data 

(220 monthly observations) from April 1990 to July 2008 from the study. The data comprised of 220 

input vectors and their corresponding output vectors from the historical data of the gold price, which 

was divided into training and validation sets. 

 The authors first applied 200 observations (from April 1990 to November 2006) to formulate the model 

and the last 20 observations (from December 2006 to July 2008) were used to reflect the performance 

of the different constructed models. Based on the ARIMA model, the past observations of the gold price 

were used to formulate the model and obtain parameter estimates. The same was done for the ANN 

model. The authors have adopted three performance evaluation measures, namely, MAE, R–Square, 

and RMSE, to analyse the performances of various developed models. Their results showed that the 

ANN method was a powerful tool to model the gold price and could give better forecasting performance 

than the ARIMA method.  

Petrica et al. (2016), investigated the limitations of using ARIMA models in financial and monetary 

economics using the behaviour of BET index and EUR/RON exchange rates. Many empirical studies 

have discovered two important features in the analysis of financial time series, that is, "fat–tails" where 

large losses or gains income has a higher probability than the normal distribution would suggest 

(Mandelbro et al., 1963), and "volatility clustering", where the occurrence of large (negative & positive) 

returns is not explainable by the arrival of new information, particularly on the market (Cont, 2005). 

The authors further revealed that these empirical properties cannot be captured ARIMA models, hence 

the limitation of these models. The basic version of the least-squares model (e.g., ARIMA) assumes 

that the expected value of all error terms when squared, is the same at any given point, that is, the 

variance of the error terms does not change over time. This phenomenon is known as homoscedasticity. 

This phenomenon needs advanced and sophisticated models to handle it accordingly. 

1.2.1 Reserves Economic Aspects 

Financial crises are not new to less developed countries (emerging markets) but they have grown more 

gradually in the past centuries (Kannan et al., 2014). “The quick spread of the 1997 crisis in East Asia 

and of the 1982 crisis in Latin America has shown how changes in market perceptions can unexpectedly 

bring trouble to countries even when there has been no change in objective conditions” (Feldstein, 

1999). Other countries that were also affected by devastating financial crises in the past centuries 

include Turkey in 1994 and 2001, Mexico in 1994/1995, Brazil in 1998 and Argentina in 2002 (Rodrik, 
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2006). The latest world global financial crises of the emerging countries, which occurred in 2008/2009, 

has left the whole world in a very painful and severe economic condition. Therefore, emerging countries 

which want to prevent the shocking effect of such crises must be prepared to save themselves rather 

than expecting to be helped by international countries. 

Feldstein (1999), in the paper “Self-Protection For Emerging Market Economies”, has explained that 

emerging countries shuold protect themselves from the special effects of financial crises by not 

depending on the International Monetary Fund (IMF) or other international organisations nor expect 

that a “new global financial architecture” will create the world economy less dangerous. Furthermore, 

the country that has significant enough international liquidity, that is sufficient foreign exchange 

reserves, and a ready source of foreign currency loans is less likely to be the victim of a currency attack. 

Substantial liquidity also allows a country that is affected from within or without to protect or defend 

itself better and to make a more orderly adjustment. But the major challenge is to come up with a way 

to maximise liquidity at a reasonable cost.   

Feldstein (1999) has also discussed three different main types of financial crises predominantly 

encountered in emerging markets: Balance Sheet Crisis; Bank-Run Currency Crisis; and Contagion 

Crisis and Irrational Speculation. The authors mentioned that a typically country may face a Balance 

Sheet Crisis when it has a market-determined “floating” exchange rate and a current account surplus, 

but still get attached because its short-term private and government liabilities denominated in foreign 

currencies exceed its foreign exchange reserves. Such a country is solvent because it can settle its future 

export earnings given enough time to do so; however it is illiquid in the sense that it is unable to meet 

its obligations immediately. Balance Sheet Crisis is also known as the balance of payments or exchange 

rate crisis, as described by Mudd et al., (2002) in the paper “Dealing with Financial Crises in Emerging 

Markets” as a crisis which mostly occurs when overall funds inflows to a country are more than offset 

by overall outflows. This crisis somehow leads the country to a situation where it has to borrow more 

abroad and/or to devalue its currency. The typical major effect of this kind of crisis is the exchange rate 

depreciation or a large amount of outflow of foreign exchange reserves from the central bank, which 

results in a major currency devaluation (Mudd et al., 2002). According to Feldstein (1999), the Balance 

Sheet Crisis risk exposure is based on the probability that most foreign creditors may worry that the 

country will not be able to meet its obligations because other foreign creditors will not continue to lend, 

so the country will be compelled to default or postpone its loans and devalue its currency in order to 

increase export earnings to pay back its debts rapidly. Otherwise, foreign creditors’ confidence in the 

country will be strengthened and they will stay to roll over the short-term debts or lengthen their 

maturity. 

Feldstein (1999) discovered that the common feature of Bank-Run Currency Crisis is the widespread 

failure of domestic banks to meet their obligations. Most of these failures are the result of a currency 
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decline which raises the value of the bank’s dollar liabilities relative to its domestic currency assets. 

The phenomenon of the currency decline also affects banks with dollar-denominated loans because the 

corporate borrowers have dollar liabilities and local-currency income. The main cause of the domestic 

banks’ failure is that they accumulate too many bad loans and other investments so that their liabilities 

to depositors exceed the true value of their loan and other assets. For instance, the bank can only be safe 

when the depositors remain confident that they can withdraw their funds on demand. However, once 

depositors become worried that the bank might default (bank-run) from meeting its withdrawal demand 

requirements, they will abandon the bank which lacks the ability to meet further withdrawal obligations. 

The serious run on the currency which devalued it arises when enough depositors fear the bank’s 

insolvency and start to withdraw their funds from all domestic banks and deposit them abroad where 

they feel they are safe. And if the government tries to resist, this may cause a run out of its foreign 

reserves and increase the risk of an exchange rate collapse (Feldstein, 1999). On the other hand, Mudd 

et al., (2002) defined Bank-Run Currency Crisis as a banking or financial system which has affected 

many emerging markets over the past centuries. The authors described this type of crisis as the crisis 

that occurs due to the internal issues in a country, such as when the commercial bank lenders within the 

country go bankrupt due to a dramatic drop in real estate prices which may cause a great loss to bank 

clients who no longer have a valuable asset in their possession, and hence default from their obligations 

with the bank. The Balance Sheet (balance of payment or exchange rate), and Bank-Run Currency 

(banking or financial system) crises are the two main varieties of financial crises that have been 

identified frequently in the history (Mudd et al., 2002). Finally, Feldstein (1999) described the contagion 

crisis and Irrational Speculation as the crisis which occurs because of the currency decline but is not 

due to current account imbalances, balance sheet mismatches or banking system failures. Despite the 

currency being able or allowed to float freely, it can sometimes be subjected to a sharp drop, just as an 

individual stock on the Stock Exchange can swing substantially in response to newly published 

information or due to market movements. 

Mohanty et al. (2006), in the paper “Foreign exchange reserve accumulation in emerging markets: what 

are the domestic implications?”, discussed some of the implications of the large-scale use of foreign 

exchange intervention or over-accumulation of foreign exchange reserves by emerging market 

economies to resist currency appreciation. The accumulation of foreign exchange reserves by emerging 

market economies has continued on an unusual scale for several years and many countries have adopted 

an accommodating monetary policy while intervening. The authors discovered that such intervention is 

good in that it resulted in a prolonged period of low-interest rates, kept the inflation rate under control 

and then eased one policy dilemma for central banks. Nevertheless, despite all the above advantages, 

large and prolonged foreign exchange reserves accumulation comes with some potential risks exposures 

other than near-term inflation. These potential risks involve the bank paying a huge amount for 

intervention (which led many Latin American countries to abandon such intervention in the early 
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1990s); unsustainable increases in credit and asset prices; and very liquid and perhaps manipulative 

banking systems. Another potential problem of the prolonged, and substantial accumulation of foreign 

exchange reserves is the monetary imbalances, that is, the implications for the balance sheets of the 

central bank. Greater shifts in the balance sheet variables can sometimes have serious macroeconomic 

effects which depend on how the related risk exposures are managed and on how the intervention is 

financed. Again, the balance sheet effects might reduce the effectiveness of sterilisation, with possible 

inflationary implications.   

Mminele (2013) in the paper “Note on the foreign exchange market operations of the South African 

Reserve Bank (SARB)”, expounds the South African experiences regarding foreign exchange market 

intervention. The author clearly explained a historical perspective on the bank’s foreign currency 

intervention in the foreign exchange market, and the bank’s strategies in foreign exchange operations – 

also during the global financial crisis in the year 2008/2009. The institutional arrangement concerning 

the foreign exchange reserves accumulation was also discussed. Mminele (2013) classified the history 

of the bank’s operations in the foreign exchange market in three phases, that is, extensive use of the 

forward market to provide forward cover; intervention to support the depreciating currency and support 

market functioning; and lastly, reserves accumulation. 

Mminele (2013) stated that the bank intervened in the forward market in September 1985 after the 

announcement of the foreign debt standstill, and legal action was taken against the South African 

economic and financial state. The country was no longer allowed to participate in the international 

capital markets and was also prohibited from borrowing from the International Monetary Fund (IMF) 

or any other official agencies. The bank then considered using the forward market to encourage and 

facilitate the use of foreign trade credits by domestic corporates as a process for it to, among other 

things, accumulate foreign exchange reserves.  

The bank also used forward markets in the 1990s, predominantly to State-Owned Enterprises (SOEs). 

At this time, the country’s foreign debt amounted to US$24 billion and the bank had US$12 billion Net 

Open Foreign-currency Position (NOFP) and eventually increased it to over US$25 billion in 1995. The 

bank provided forward cover to SOEs since the hedging of the foreign requirements of the SOEs was 

mainly via completely forward contracts. Fortunately, the bank managed to reduce its NOFP 

significantly from US$25.8 billion in March 1995 to US$8.5 billion in March 1996. This was done 

mostly by buying foreign exchange from the market and purchasing the proceeds of government bond 

issues abroad (Mminele, 2013).  

The bank intervened in the foreign exchange market by increasing the forward book to US$22 billion 

when the exchange rate of the rand devalued sharply in 1996. The bank successfully managed to reduce 

the NOFP by almost US$10 billion in 1997. The bank intervened again in 1998 with the NOFP returning 

to the levels recorded ten years before, when the emerging markets crisis occurred. In 1998 the bank 
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officially declared the suspension of the trade of foreign exchange to the market and it started allowing 

the rand exchange rate to be determined by the factor of its demand and supply. The bank took the 

opportunity to increase the level of its country’s official foreign exchange reserves and in 2003, after 

the NOFP was excluded, the bank started accumulating reserves by purchasing foreign exchange 

reserves on a spot basis. The foreign exchange reserves accumulation strategy has been successful over 

the past decade. Since it was launched in March 2003, the official reserves improved from a negative 

NOFP of US$1.4 billion to an international liquidity position of US$47.9 billion as at the end of 

December 2012 ( Mmminele, 2013). 

1.3 Volatility  

Volatility is a quantity used to measure the degree of price movement in the stock, futures, options or 

any other financial instruments (Hull, 2003). It can also be defined as the variation of an asset’s returns 

from their average (Avellen, 2005). In practice, it is quite complex to analyse volatility; that is, it is not 

directly observable and it cannot be predicted over a long period. However, statistical models may be 

used to forecast it over a short period (Avellen, 2005). Volatility complexity has led most researchers 

to ask themselves whether it is possible to estimate this seeming complex quantity. 

1.4 Problem Statement 

A series that changes a lot and swings widely, such as price series or an economic indicator, is said to 

be “volatile”, that is, it has volatility (Kotze, 2005). The official gold and foreign exchange reserves 

positions series are not different from such series. It is important for the central bank to understand the 

risk that lies on the volatile data, especially for the analysis and management of reserves. This thesis 

will focus on the South African official gold and foreign exchange reserves positions, and it will 

carefully study the effect of the presence of volatility in the data and the implications caused by this 

presence when creating the model to predict future values on the reserves’ position. The data that will 

be used here comprises of two variables, that is, South African official gold and foreign exchange 

reserves positions. The question of interest here is to find out how to deal with the volatility of the data 

to develop a model that is efficient to be used in the prediction process. 

1.5 Aim and Objectives 

This thesis is focused on the analysis of the reserves and the importance of the reserve’s management 

by the central bank in South Africa. The main aim of this thesis is to develop SARIMA or ARIMA and 

ARCH/GARCH models to forecast the expected future reserves positions and deal with the volatility, 

respectively from reserves positions data and forecast reserves volatility among all two variables, viz., 

official gold reserves position and foreign exchange reserves position. The discussion based on the 

model output with recommendations will be also provided at the end of the thesis. 
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1.6 Significance of the Study 

The reserves are the most important assets of the country, especial in times of financial crises or 

disasters. Therefore, understanding their trajectory is very important, hence the significance of this 

study. This study will play a pivotal role in the analysis of reserves and help the central bank of the 

country to make fact-based decisions that are being driven by data concerning the accumulation or 

decumulation of reserves.  

1.7 Thesis Structure 

This thesis is structured as follows: Chapter 2 has the theory of exploratory data analysis in time-series, 

different statistical methods used to explore time-series data are described and these methods are 

normally used to give insights from the dataset being used. Chapter 3 comprises of homoscedastic 

models’ theory (i.e., SARIMA); these models were then later used in Chapter 5 to forecast the expected 

future reserves positions. Such models simply assume that the mean and variance are constant over 

time, while in real-life data it has been discovered that the variance usually changes with time, hence 

the limitations of these models. Then Chapter 4 introduces the so-called conditional heteroscedastic 

models; these models allow the conditional variance to change with time, hence their flexibility. In this 

chapter different volatility models are discussed, such as Autoregressive Conditional Heteroscedasticity 

(ARCH) models (Engle, 1982), and their generalization; the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) models (Bollerslev, 1986); Exponential Weighted Moving Average 

(EWMA), and their extension, that is, the Exponential GARCH models (Nelson, 1991); Integrated 

GARCH (IGARCH) models and Threshold GARCH (TARCH) models by Zakoian (1994) and Glosten 

et al., (1993). The Multivariate ARCH and GARCH models are discussed in the last section of this 

chapter, however, the application of these models is beyond the scope of this thesis. 

In Chapters 5 and 6 we apply the homoscedastic and volatility (heteroscedastic) models respectively, 

from a time series dataset that has two variables, viz., South African gold reserves positions and foreign 

exchange reserves positions. The dataset used in this study and the source where it was obtained or 

extracted is also described in these Chapters. Chapter 5 further explores the data by breaking it down 

and plotting graphs to understand the different components (trends, seasonality, and random) of the 

data. The different formal statistical tests were conducted to check for stationarity in the data.  Chapters 

7 and 8 describe the Holt-Winters’ method and their application respectively, which were then 

benchmarked with the ARIMA models developed earlier in Chapter 5. Lastly, Chapter 9 has the thesis 

conclusion and recommendations. 
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Chapter 2: 

2. Theory of Exploratory Data Analysis in Time Series 

2.1 Introduction 

This chapter covers the theory of time series exploratory data analysis and different components of 

exploring time series data to make more sense of the data and the entire story behind it. This involves 

the methodology on how to break down time series data and different data transformation techniques 

used in time series data exploration. 

2.2 Exploratory Data Analysis and Data Transformations Theory  

This section describes different techniques of exploring and transforming time series data from non-

stationary series to a stationary one. Data transformation techniques used to get the data that can be 

modelled as a stationary time series without any complications are discussed. These transformation 

techniques are commonly used to eliminate trend, seasonal and cyclic components, and to accomplish 

approximate constancy of level and variability with time (Brockwell et al., 2002).   

2.2.1 Stationary and Non-Stationary Series 

This sub-section reviews the basic methods of dealing with stationary and non-stationary time series. 

The series can be deterministic if future values can be exactly predicted from its past values (Chatfield, 

2000). However, in most cases, the future values are not completely determined from the past values 

and such series are stochastic, or random. In time series analysis the model for a stochastic time series 

is usually called a stochastic process. 

Stationarity is an essential property to define a time series process (Pfaff et al., 2008). A stationary time 

series assumes that the mean is constant with probabilistic properties that are constant over time (Box 

et al., 2008). More formally, suppose {Xt} is a time series process, then {Xt} is said to be covariance-

stationary, or weakly stationary, if the following are independent of time: 

 𝐸(𝑋𝑡) = 𝐸[𝑋𝑡−𝑘] = 𝜇                     ∀𝑡, 𝑘 (2. 1) 

Otherwise, the series is non-stationary, that is, it exhibits some trends, cyclic, or any type of seasonality. 

The stationary time series allows most modelling methods including the popular Box-Jenkins 

methodology (Nash et al., 1970). Thus, stationarity of the data needs to be firstly achieved before 

modelling time series. The stationarity of the data is assessed by carefully examining its Auto-

 𝑉𝑎𝑟(𝑋𝑡) = 𝛾0 < ∞                            ∀𝑡, (2. 2) 

 

 

 

       𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑘) = 𝛾𝑘                                ∀𝑡, 𝑘. (2. 3) 
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Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots (Enders, 2010). If the 

ACF of the time series starts high and gradually dies down, then such a series may be non-stationary. 

However, if the ACF of the time series either cuts off or dies rapidly, then such series may be stationary 

(Hassan, 2014). The autocorrelation is the correlation between observations that are time 𝑘 apart 

(Walton, 1997). If the ACF of the series at any given lag 𝑘 is significantly different from zero, then the 

serial dependence among the observations must be included in the final model. The autocorrelation at 

lag k is usually denoted by 𝜌𝑘 and its mathematical expression is 

 
𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡+𝑘) =

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡+𝑘)

√[𝑉𝑎𝑟(𝑋𝑡). 𝑉𝑎𝑟(𝑋𝑡+𝑘)]
, for 𝑘 = 0,±1,±2,… 

(2. 4) 

and the ACF can be displayed in a graph (correlogram) of 𝜌𝑘 against the given lag 𝑘. From the equation 

above it can be shown that for 𝑘 = 0 the expression for  𝜌𝑘 is 

 
𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡+𝑘) =

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡)

√[𝑉𝑎𝑟(𝑋𝑡). 𝑉𝑎𝑟(𝑋𝑡)]
=

𝑉𝑎𝑟(𝑋𝑡)

√[𝑉𝑎𝑟(𝑋𝑡)]
2
= 1, for 𝑘 = 0 

(2. 5) 

since for a stationary time series 𝑉𝑎𝑟(𝑋𝑡) = 𝑉𝑎𝑟(𝑋𝑡+𝑘)   ∀𝑡, 𝑘. 

Similarly, the partial autocorrelation at lag k measures the correlation among observations that are k 

lags apart. However, the PACF at lag k removes, or “partials out”, all intervening lags (Hassan, 2014). 

2.2.2 Variance Transformation 

Typically, there are many methods developed to stabilize the variability in the data. When the variability 

of the data increases or decreases with the level, the Box-Cox or Log Transformation is one of the most 

popular technique used to stabilize the variability of the data (Brockwell et al., 2002). Suppose 

𝑋1, 𝑋2, … , 𝑋𝑛−1, 𝑋𝑛 are the original observations of the time series {𝑋𝑡}. The Box-Cox transformation 

𝑔𝛼 converts them to 𝑔𝛼(𝑋1), 𝑔𝛼(𝑋2),… , 𝑔𝛼(𝑋𝑛−1), 𝑔𝛼(𝑋𝑛), where 

 

𝑔𝛼(𝑥) =
𝑥𝛼 − 1

𝛼
, 𝛼 ≠ 0, 

             = log(𝑥) , 𝛼 = 0. (2. 6) 

The choice of the quantity 𝛼 can be made visually by looking at the pattern of the time series plot, and 

the suitable choice of this quantity can often transform the variability of the data to nearly constant. For 

example, if the data is positive and its standard deviation increases linearly with level, the variability 

can be stabilized by selecting 𝛼 = 0.  

2.2.3 Moving Average 

A time series constructed by taking averages of several sequential values of another time series is called 

a moving average (Hyndman, 2009). More compactly, a two-sided moving average (MA) of order m = 

2k + 1 can be constructed by taking an average of series original {𝑋𝑡}, k periods around each point and 

inclusive of the point. The mathematical expression is given by: 



 
 

 
23 

 

𝑌𝑡 =
1

𝑚
∑ 𝑥𝑡+𝑗

𝑘

𝑗=−𝑘

 

     =
1

2𝑘 + 1
∑ 𝑥𝑡+𝑗

𝑘

𝑗=−𝑘

, 𝑡 = 𝑘 + 1, 𝑘 + 2,… , 𝑛 − 𝑘, 

 (2. 7) 

where {𝑌𝑡} = {𝑦𝑘+1, 𝑦𝑘+2, … , 𝑦𝑛−𝑘} make up a new smoothed time series generated from averages of 

the original time series {𝑋𝑡}. Similarly, a one-sided moving average of the time series {𝑋𝑡} is given by 

𝑌𝑡 =
1

𝑚
∑ 𝑥𝑡+𝑗

𝑘

𝑗=−𝑘

 

     =
1

𝑘 + 1
∑ 𝑥𝑡+𝑗

𝑘

𝑗=−𝑘

, 𝑡 = 𝑘 + 1, 𝑘 + 2,… , 𝑛 − 𝑘, 

 (2. 8) 

 (Hyndman, 2009). 

It is important to explicitly note that in this context the moving average is different from the MA(q) 

component in the ARIMA description that will be explained in detail when we get to Chapter 3. The 

moving average here can be simply defined as a data smoothing technique, whereas the later definition 

of moving average MA(q) as part of the ARIMA context will be referring to error lags combinations. 

2.2.4 Data Decomposition 

There are many methods for the elimination of the trend and seasonality from the data. Most common 

are the differencing and classical decomposition of the series into a trend component, a seasonal 

component and a random residual component.  

Differencing means taking the difference between consecutive observations or between observations a 

year apart (Hyndman, 2001). The differencing method is preferable if the data or series has a 

deterministic linear trend (Vandaele, 1983). For instance, suppose {𝑋𝑡} is the time series with seasonal 

components of period 12 and a deterministic linear trend, then the differenced series of {𝑋𝑡} at lag 1, 

say {𝑌𝑡} can be used to remove the trend and is given by 

 

 𝑌𝑡 = ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1, (2. 9) 
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where ∇ is called the backward difference operator. All the seasonal components in the series {𝑋𝑡} can 

be eliminated by this transformation, but now using the differencing at lag 12, that is 

Another compact way of writing the differencing equation is by using the so-called backshift operator 

B. Again, suppose {𝑋𝑡} and {𝑌𝑡} are the original non-stationary time series and the first difference time 

series of {𝑋𝑡}, respectively. Then using the backshift operator, we have 𝐵𝑋𝑡 = 𝑋𝑡−1 such that 

where ∇= (1 − 𝐵). Making use of the backshift operator, equation (2.10) can be written as 

 𝑌𝑡 = ∇12𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−12 = (1 − 𝐵12)𝑋𝑡. (2. 12) 

Differencing can be performed repeatedly until the trend has totally disappeared, thus the second 

differencing of the time series {𝑋𝑡} which is used to eliminate the quadratic trend can be expressed as  

 

In general, the powers of the backshift operator and backward difference operator for trend elimination 

are defined as 𝐵𝑑𝑋𝑡 = 𝑋𝑡−𝑑 and  ∇𝑑= (1 − 𝐵)𝑑, respectively. Therefore, the general expression of the 

d-differencing for {𝑋𝑡} can be written as 

 𝑌𝑡 = ∇𝑑𝑋𝑡 = (1 − 𝐵)𝑑𝑋𝑡 . (2. 14) 

The backshift operator for seasonal models is denoted as 𝐵𝑠such that 𝐵𝑠𝑋𝑡 = 𝑋𝑡−𝑠, where “s” indicates 

the seasonal period per year. Thus, the general equation for seasonal differencing may be written as 

 𝑌𝑡 = ∇𝑠𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠 = (1 − 𝐵𝑠)𝑋𝑡 , (2.15) 

(Chatfield, 2000). 

2.2.5 Components of Time Series 

Generally, the time series has two different types of variations which can be observed from the data and 

hence eliminated where necessary. These are systematic variations (trends, seasonal, and cyclical) and 

random variations (irregular component, and inherent background noise in the series). 

Classical decomposition of the time series {𝑋𝑡} is based on the two models formed by the combination 

of the time series variations or components: 

 𝑌𝑡 = ∇12𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−12, (2. 10) 

 𝑌𝑡 = ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = 𝑋𝑡 − 𝐵𝑋𝑡 = (1 − 𝐵)𝑋𝑡 , (2. 11) 

 

𝑌𝑡 = ∇(∇𝑋𝑡) = ∇2𝑋𝑡 = (1 − 𝐵)2𝑋𝑡 

= (1 − 2𝐵 + 𝐵2)𝑋𝑡 

= 𝑋𝑡 − 2𝑋𝑡−1 + 𝑋𝑡−2.   (2. 13) 
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 Additive Model: 𝑋𝑡 = 𝑚𝑡 + 𝑐𝑡 + 𝑠𝑡 + 𝜀𝑡, (2.16) 

 

where {𝑋𝑡} is the observation at time t, 𝑚𝑡 is a trend component, 𝑐𝑡 is a cyclical component, 𝑠𝑡 is a 

seasonal component and 𝜀𝑡 is a random noise component, which is stationary with mean zero 

(Brockwell et al., 2002). 

The aim is to estimate the component 𝑚𝑡, 𝑐𝑡 and 𝑠𝑡 and deduct them from the data to produce a 

sequence of errors or residuals (estimated noise) that can then be modelled as a stationary time series. 

1. Trend Component 

This component is the long-term pattern of a time series. When a time series exhibits an increasing 

long-term pattern, then it has a positive trend. However, when a time series exhibits a gradual decreasing 

pattern then it has a negative trend. A time series that shows neither an increasing nor a decreasing long-

term pattern is stationary in the mean (Chatfield, 2000). 

2. Cyclical Component 

The cyclical component can be identified in a series as an upwards and downwards movement pattern 

around a given trend. Its period normally depends on the type of business or industry being examined. 

3. Seasonal Component 

This type of variation occurs when a time series displays regular fluctuations at a fixed time interval 

every year, for example, weekly, monthly, quarterly or half-yearly. Similar patterns of behaviour can 

be detected throughout these intervals (Chatfield, 2000). 

4. Random Component 

The random or irregular component is unpredictable and can be described as the random changes in a 

time series caused by non-recurring factors such as natural disasters (earthquakes, volcanos, or 

tsunamis, etc.). All-time series has this type of component which makes it a random variable. During 

the forecasting processes, the main purpose is to model all the systematic components to the point that 

the only component left unexplained is the random component.  

 Multiplicative Model: 𝑋𝑡 = 𝑚𝑡 × 𝑐𝑡 × 𝑠𝑡 × 𝜀𝑡, (2.17) 
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Chapter 3 

3. Theory of Homoscedastic Models: S/ARIMA Models  

3.1 Introduction 

In 1926, Yule introduced the class of models known as Autoregressive (AR) models and eleven years 

later, Slutsky (1937) can up with the Moving Average (MA) models. Wold (1938) joined both AR and 

MA schemes to form composite time series models known as ARMA models. Box et al. (1970) 

popularized the use of the ARMA models and described them as an important forecasting tool in time 

series data analysis (Chatfield, 2000). Although many other authors and/or researchers, such as Wold 

(1954) and Quenouille (1957) studied and discussed these types of time series models, Box and Jenkins 

spread their use, established how to extend their application to seasonal data, and made the methodology 

operational. Hence, these models are often referred to as Box-Jenkins Models. These models are flexible 

and able to determine simulated values by combining measures from historical data with associated 

temporal variations (Kao et al., 2000). This class of models comprises of two polynomials, that is, an 

Autoregressive scheme and Moving Average scheme, hence the acronym ARMA stands for 

‘AutoRegressive Moving Average’.  

An autoregressive moving-average (ARMA) model simply joins the concepts of AR and MA models 

with the purpose of keeping the minimum number of parameters (Matei, 2009). Before considering how 

the AR and MA schemes are combined to form an ARMA model, it is necessary to briefly discuss each 

of them separately. 

3.2 Autoregressive Models 

The Autoregressive (AR) process is a stochastic process generally used in statistical calculations in 

which future values are estimated based on a weighted sum of the past values (Chatfield, 2000). An 

autoregressive model operates under the premise that the past observations influence the current ones. 

The most commonly used type of autoregressive model is the first-order autoregressive AR (1) model, 

meaning that the current value depends heavily on the immediately preceding value. Suppose that {𝑋𝑡} 

is the time series with the sets of observations {𝑋𝑡−1, 𝑋𝑡−2, …+ 𝑋𝑇−1, 𝑋𝑇} collected over 𝑡 ∈ [1, T] time 

interval. The AR (1) model can be express as 

 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜀𝑡 , 
(3.1) 

where 𝑋𝑡−1 is the past observation of 𝑋𝑡 associated with parameter 𝜙, and 𝜀𝑡 is the error term of the 

model. 

An AR (2) model says that the present value depends on the previous two values and it can be expressed 

as 
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 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝜀𝑡 . 
(3.2) 

In general, an AR(p) is the 𝑝𝑡ℎ − order   model in which the current value simply depends on the past 

𝑝𝑡ℎ- observations of the series and its mathematical expression is 

 𝑋𝑡 = 𝜙1𝑋𝑡−1 +𝜙2𝑋𝑡−2 +⋯+𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 , 
(3.3) 

where 𝜙
1
, 𝜙

2
, … , 𝜙

𝑝
 are the AutoRegressive parameters to be estimated and which describe the effect 

of the past values on 𝑋𝑡, subscript 𝑝 is the order of the process, 𝜀𝑡 is the error term which is assumed to 

be a white noise with mean 0 and variance 𝜎𝜀
2 and {𝑋𝑡−1,  𝑋𝑡−2, … , 𝑋𝑡−𝑝} are the past values of the 

process (Chatfield, 2000). 

3.3 Moving Average Models 

The moving average can be described as a stochastic process used in statistical calculations in which 

future values are estimated using the weighted sum of the past errors. Suppose {𝑋𝑡} is an MA (1) process 

and then it can be expressed as 

 𝑋𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1. 
(3.4) 

An MA (2) which is a second-order process is given by 

 𝑋𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2  
(3.5) 

Generally, an MA (q) process is of the 𝑞𝑡ℎ − order   and its mathematical expression is 

 𝑋𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 
(3.6) 

where {𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑞} are the error terms at the time periods  𝑡 − 1, 𝑡 − 2,… , 𝑡 − 𝑞, respectively 

and 𝜃1, 𝜃2, … , 𝜃𝑞 are the Moving Average parameters, which describe the effect of the past errors on 𝑋𝑡 

(Chatfield, 2000). 

3.4 Building an ARMA Model  

An Autoregressive Moving Average (ARMA) model is the flexible type of time series models which 

can be used in modelling a large class of stationary time series as given the order of p, the number of 

AR terms, and/or q, the number of MA terms, are correctly identified (Makridakis et al., 1997). Since 

the ARMA model comprises of the p-AR and q-MA schemes or terms, the general time series process 

{𝑋𝑡} can be modelled as a combination of past {𝑋𝑡} observations and/or past {𝜀𝑡} error terms (Wold, 

1938). The simplest form of ARMA models is the one which combines AR (1) and MA (1) to form a 

univariate ARMA (1,1) model given by 
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𝑋𝑡 − 𝜙1𝑋𝑡−1 = 𝛼0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1  

𝑋𝑡 = 𝛼0 + 𝜙1𝑋𝑡−1 + 𝜀𝑡 − 𝜃1𝜀𝑡−1, 
(3.7) 

where 𝛼0 is constant. Thus, the general mathematical ARMA (p, q) model expression which combines 

both schemes can be written as  

 

𝑋𝑡 = 𝛼0 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 , 

𝑋𝑡 = 𝛼0 +∑𝜙𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 −∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

, (3.8) 

where 𝜙𝑖, 𝑖 = 1,2, … , 𝑝 and 𝜃𝑗, 𝑗 = 1,2,… , 𝑞 are the autoregressive and moving average parameters, 

respectively, and {𝜀𝑡}, 𝑡 = 1,2,… , 𝑇 is a sequence of independent, identically normally distributed 

random variables, i.e., white noise. Using a backward shift operator B, (𝐵𝑋𝑡 = 𝑋𝑡−1), the ARMA model 

can be expressed more compactly as 

 𝜙(𝐵)𝑋𝑡 = 𝛼0 + 𝜃(𝐵)𝜀𝑡 , 
(3.9) 

where the root of the polynomials 𝜙(𝐵) and 𝜃(𝐵) are restricted to lie outside the unit circle to ensure 

stationarity and invertibility, respectively (Walton, 1997). Generally, there are four main steps required 

to use the ARMA (p, q) model above (Wold, 1938): 

1. The original series {𝑋𝑡} must be stationary about its mean and variance. 

2. The suitable order of p and/or q need to be clearly specified. 

3. The values of the parameters, 𝜙𝑖, 𝑖 = 1,2, … , 𝑝 and/or 𝜃𝑗, 𝑗 = 1,2,… , 𝑞 must be estimated using 

some non-linear optimization procedure that minimizes the sum of square errors or any other 

appropriate loss function. 

4. The perfect way of modelling seasonal series must be anticipated, and the suitable order of such 

models should be identified. 

Based on the first step above, in reality most time series are non-stationary and ARMA models cannot 

be useful when are applied directly to those series. One convenient way of dealing with non-stationary 

series is to apply ‘differencing’ to the original series and transform it to be stationary. The differencing 

is applied repeatedly until the series is stationary. Then the 𝑑𝑡ℎ − differences may be denoted as (1 −

𝐵)𝑑𝑋𝑡 using the backward shift operator, where d is the order of differencing used to convert the non-

stationary series. If the series is differenced 𝑑 times before an ARMA (p, q) model is fitted, then the 

model for the original undifferenced series is denoted as ARIMA (p, d, q), where the “I” in the acronym 

stands for “Integrated” and “d” denotes the number of differences taken to transform non-stationary 

series to stationary (Chatfield, 2000). Thus, the generalized mathematical equation of (3.9) gives the 

ARIMA model which can be written as 
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 𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝜀𝑡 , 
(3.10) 

If the series {𝑋𝑡} has a seasonality effect, then the ARIMA model in equation (3.10) can be generalized 

to the class of time series models known as SARIMA, where the “S” in the acronym stands for 

“Seasonal”. The backward shift operator for seasonal models is denoted as 𝐵𝑠such that 𝐵𝑠𝑋𝑡 = 𝑋𝑡−𝑠, 

where “s” indicates the seasonal period per year. Thus, the seasonal differencing may be written as 

∇𝑠𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠 = (1 − 𝐵𝑠)𝑋𝑡. Therefore, SARIMA model with non-seasonal and seasonal terms of 

the order (p, d, q) and (P, D, Q) respectively, is written as 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑆 which can 

generally be expressed as 

 𝜙(𝐵)𝛷(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑋𝑡 = 𝜃(𝐵)𝛩(𝐵𝑠)𝜀𝑡 , 
(3.11) 

where 𝛷 and 𝛩 are the polynomials in 𝐵𝑠of order P and Q, respectively. 

3.4.1Box-Jenkins Methodology  

Box and Jenkins proposed the approach to ARIMA models which is known as a “Box-Jenkins 

Methodology”. This approach became extremely popular in the 1970s among academics when it was 

shown through many practical studies that it could outperform many other econometric models that 

were well-known by that time (Makridakis et al., 1997). Box-Jenkins methodology includes 

identification of a suitable ARIMA model, fitting it to the relevant data and using it to predict future 

trends from the data (Hyndman, 2001). In general, these are the three stages of building a Box-Jenkins 

time series model. However, later studies and explanation of the Box-Jenkins procedure (e.g., 

Wheelwright, Makridakis and Hyndman) often added a preliminary stage of “data preparation” and can 

be listed more methodically as follow: 

1. Data preparation 

2. Model identification 

3. Model parameter coefficients estimation 

4. Diagnostic checking and model validation. 

5. Forecasting using a fitted model. 

If the selected model fails after checking the diagnostics, the entire procedure is repeated from stage 2 

to till stage 5. 

3.4.1.1 Data Preparation 

This is the first stage in the Box-Jenkins Methodology, and it includes data transformation processes. 

Usually, financial and/or economic data exhibits unusual behaviour or variation, therefore, application 

of data transformations can help to stabilize the variance in such data (Hyndman, 2001). Differencing 

is applied to data until there are no obvious patterns such as trends or seasonality left in the data. 
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Furthermore, working with a stationary series is more convenient in the Box-Jenkins Methodology than 

an original non-stationary series.   

Box-Jenkins models are applicable to stationary series only, which has all properties listed in equation 

(2.1) – (2.3). 

Stationarity in a time series can be assessed through its plots. If a series does exhibit some form of trend 

or any type of time series components (seasonality, cyclical, or random effect), then such series is non-

stationary. It can also be detected through an autocorrelation plot (ACF) of a series, where a slow 

decaying in the ACF suggests non-stationarity in a series. If the autocorrelations of a series start high 

and decline gradually but never cut off, then such series is non-stationary, and the differencing or any 

relevant transformation should be then applied (Hassan, 2014). The Dickey-Fuller (DF) statistical test 

or Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test can be then used for stationarity checks.  

1. Dickey-Fuller Formal Statistical Test: 

The null hypothesis for the Dickey-Fuller statistical test assumes that the series is non-stationary.  The 

idea behind the DF test is to test whether the change in series {𝑋𝑡} can be explained by lagged value 

and linear trend. This test was developed by Dickey et al., (1979) to test whether a unit root is present 

in an autoregressive model. The stationarity condition is that for an AR (1) model |𝜙| < 1. When 𝜙 =

1, this corresponds to a non-stationary random walk. The general idea is to find an AR model for the 

observations {𝑋𝑡} as defined in section 2.2 and test whether 𝜙 ≥ 1 or |𝜙| ≤ 1. 

Consider the AR (1) model defined in equation (3.1), the unit root hypothesis of non-stationarity against 

the alternative hypothesis of stationarity can be given as: 

𝐻0: 𝜙 ≥ 1 vs. 𝐻0: 𝜙 < 1. 

Dickey-Fuller derived the alternative hypotheses by subtracting 𝑋𝑡−1 from both sides of equation (3.1) 

(Nielsen, 2006): 

 

𝑋𝑡 − 𝑋𝑡−1 = 𝜙𝑋𝑡−1 − 𝑋𝑡−1 + 𝜀𝑡 

∆𝑋𝑡 = (𝜙 − 1)𝑋𝑡−1 + 𝜀𝑡 

∆𝑋𝑡 = 𝛿𝑋𝑡−1 + 𝜀𝑡 . 

 (3.12) 

where 𝛿 = 𝜙 − 1. Therefore, the unit root hypotheses become: 

𝐻0: 𝛿 = 0 vs. 𝐻0: 𝛿 < 0. 

The null hypothesis is tested using the t-statistics which is given by this formula: 
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𝑡̂𝑛 =
1−𝜙̂

√𝜎̂2(∑ 𝑋𝑡−1
2𝑛

𝑡−2 )−1
, 𝑑𝑓 = 𝑛 − 1 , 

 (3.13) 

where 𝜙̂ and 𝜎̂2 are estimators of 𝜙 and 𝜎2 (variance of 𝜀𝑡), respectively. The null hypothesis is 

accepted when 𝑡̂𝑛 is greater than the critical value and we can conclude that the series under 

consideration is non-stationary. On the other hand, the null hypothesis is rejected if 𝑡̂𝑛 is less than the 

critical value and we can conclude that the series is stationary. The p-value of the test can also be used 

to draw a conclusion about the null hypothesis; if the p-value is less 0.05 the null hypothesis is rejected, 

otherwise it is accepted (Mushtaq, 2011). 

Dickey and Fuller extended the original DF test because this test is a normal test (usually at 5% 

significance level) and is not reliable when the error terms 𝜀𝑡 in equation (3.12) are autocorrelated. 

When the autocorrelations of 𝜀𝑡 are large, the significance of the test becomes more inaccurate (Jurgen 

et al., 2011). The ignoring of these autocorrelations will basically mean that the null hypothesis can be 

rejected at a low significance level (e.g., 5%), while the significance level lies at, for example, 20%. 

This is the reason Dickey and Fuller extended the original DF to Augmented Dickey-Fuller (ADF) test 

to overcome this issue. The ADF test is normally used to test larger and more complex sets of time 

series models by removing all autocorrelations in the time series and it uses the same procedure as the 

DF test (Dwyer et al., 2012).  

2. Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Formal Statistical Test: 

The null hypothesis for the KPSS statistical test assumes that the series is stationary around a 

deterministic trend. This formal statistical test was proposed by Kwiatkowski among others in 1992. 

The null hypothesis is rejected at 5% level of significance if the p-value is less than 0.05, which means 

that further differencing is required. In the case where KPSS test p-value is greater than 0.05, the null 

hypothesis is accepted, and this implies that the series is stationary. 

3.4.1.2 Model Identification 

This is where the adequate model is identified from the ARIMA model’s family. The autocorrection 

and partial autocorrelation functions are the most useful tools for the model identification step. 

Box-Jenkins models can be extended to comprise the seasonal autoregressive and seasonal moving 

average terms. The autocorrelation function can also be used to detect the seasonality order(s), which 

can be revealed by the spikes at lag 1s, 2s, 3s, etc. To transform a series with seasonality to be stationary, 

the 𝑠𝑡ℎ differences may need to be applied from the original series or raw data. 

Once the issue of stationarity and seasonality has been resolved, then the order of the AR(p) and MA(q), 

and/or AR(P) and MA(Q) may be identified. These can be identified using the series autocorrelation 

and partial autocorrelation functions. Specifically, the ACF plot is used to determine the order of the 



 
 

 
32 

 

Moving Average MA(q) component, whereas PACF plot can help in determining the order of the 

Autoregressive AR(p) component. In general, for an AR (1) process, the sample autocorrelation plot 

should show an exponentially declining appearance. However, for higher-order processes, that is AR(p), 

to identify such order, the sample partial autocorrelation plot should be analysed with the sample 

autocorrelation plot. If an AR(p) process is appropriate, the typical behaviour of the sample 

autocorrelation function should decay gradually, and the sample partial autocorrelation function should 

cut off quickly after p lags. For the MA(q) process, the sample autocorrelation and partial 

autocorrelation functions should cut off quickly after q lags and decay gradually, respectively (Dobre 

et al., 2008). 

For ARIMA models without any seasonal component, ACF and PACF can be interpreted as follows: 

1. If ARIMA (p, d, 0) model is appropriate then the ACF plot of transformed/differenced data 

shows an exponential decaying, and PACF plot shows a significant spike at only lag p and none 

beyond that. 

2. If ARIMA (0, d, q) model is appropriate then the PACF plot of transformed/differenced data 

shows an exponential decaying, and ACF plot shows a significant spike at only lag q and 

nothing beyond q (Hyndman et al., 2014, p.76). 

For SARIMA models the seasonal part of an AR or MA model will be seen in the seasonal lags of the 

PACF and ACF (Hyndman et al., 2014, p.85): 

1. For ARIMA (0,0,0) (0,0,1)12, the ACF plot will have a spike at only lag 12 and no other 

significant spike from other lags, and PACF will show exponential decaying in the seasonal 

lags, such as 12;24;36; … 

2. For ARIMA (0,0,0) (1,0,0)12 model, there will be exponential decaying in the seasonal lags of 

the ACF and a single significant spike at lag 12 only in the PACF (Hyndman et al., 2014, p.85). 

3.4.1.3 Model Selection and Parameter Estimation 

The model which best fits the data is usually selected using diverse model selection criteria, such as 

Information Criterion (Akaike, 1973). The following statistical model selection criteria are normally 

used to select the orders of (p, q) for an ARMA or ARIMA process identified in stage 2 above: 

• Fit all ARMA (p, q) or ARIMA (p, d, q) models with 0 < 𝑝 < 𝑝𝑚𝑎𝑥 and 0 < 𝑞 < 𝑞𝑚𝑎𝑥, for chosen 

values of maximal orders. 

• Let 𝜎̂2(𝑝, 𝑞) be the Maximum Likelihood Estimation (MLE) of 𝑐 = 𝑉𝑎𝑟(𝜀𝑡), the variance of 

ARMA or ARIMA innovations under Gaussian or Normal assumptions. 

• Select (p, q) to minimize 𝜎2 and the following: 

➢ Akaike Information Criterion  
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𝐴𝐼𝐶(𝑝, 𝑞) = log[𝜎̂2(𝑝, 𝑞)] + 2
𝑝+𝑞

𝑛
, 

➢ Bayes Information Criterion 

𝐵𝐼𝐶(𝑝, 𝑞) = log[𝜎̂2(𝑝, 𝑞)] + log (𝑛)
𝑝+𝑞

𝑛
, 

➢ Hannan-Quinn Criterion 

𝐻𝑄𝐶(𝑝, 𝑞) = log[𝜎̂2(𝑝, 𝑞)] + 2log (log(𝑛))
𝑝+𝑞

𝑛
. 

The smaller magnitude of these criteria above indicates the best model fitted. 

Model estimation is simply the efficient use of the data to draw the conclusion about the parameters 

conditional on the adequacy of the fitted model (Box et al., 2008). The maximum likelihood estimation 

is usually the ideal method used to estimates the model parameters (Dobre et al., 2008). In this stage 

the numerous graphs based on the transformed and differenced data are used to try to find the possible 

ARMA or ARIMA model which might provide a good fit to the data, and the values of the model 

coefficients which provide the best fit to the data are estimated using sophisticated computational 

algorithms (Hyndman, 2001). 

3.4.1.4 Diagnostic Checking and Model Validation 

Once the model has been identified, then model diagnostic checking step follows, where the fitted model 

is checked in relation to the data to verify its accuracy and/or inadequacies and therefore carry out model 

improvement where necessary. The autocorrelation function of the residuals and the cumulative 

periodogram of the residuals are the main two model diagnostics techniques usually used in time series 

analysis (Box et al., 2008). For a good model with errors always show a consistent behaviour for that 

model (Brockwell et al., 2002). The residuals are given as 

 𝑒𝑡 = 𝑋𝑡 − 𝑋̂𝑡 ,      𝑡 = 1,2, … , 𝑇, 
(3.14) 

where {𝑋̂𝑡} is the linear mean-square predictor of {𝑋𝑡}. The rescaled one-step residuals prediction errors 

can be given as 

 
𝑍̂𝑡 =

𝑒𝑡

√𝑎𝑡−1
, (3.15) 

where 𝑎𝑡−1 =
𝐸(𝑒𝑡)

2

𝜎2
 and 𝜎2 is the white noise variance of the fitted model. If the data is accurately 

predicted by the fitted ARMA (p, q) or ARIMA (p, d, q) model with the white noise sequence {𝜀𝑡}, then 

for large samples, the properties of {𝑍̂𝑡} should imitate those of {𝜀𝑡}. To check the goodness of fit 

for the fitted model we therefore examine the rescaled residual series {𝑍̂𝑡} and check whether it 

resembles a realization of the white noise sequence {𝜀𝑡}. Sometimes the histogram for the rescaled 

residuals is used for model appropriateness check, and in such instances the mean of the residuals is 

expected to be closer to zero if the fitted model is appropriate. Furthermore, if we assume that the 
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rescaled residuals data are Gaussian, then the shape of its histogram should be like that of a normal 

density with a mean zero and variance of one (Brockwell et al., 2002).  The histogram plot of the 

residuals versus time t should resemble the realization of a white noise sequence {𝜀𝑡} if the fitted model 

is appropriate. However, if the fitted model is inappropriate it should show some trends, cycles and/or 

non-constant variance (Walton, 1997). If at least 95% of the rescaled residuals lie inside the bound 

±1.96 or if there are rescaled residuals closer to this bound, then the fitted model can be regarded as 

Gaussian. The inspection of the corresponding qq-plots can be done to check for the distribution of the 

residuals with either the normal distribution or t-distribution. The Jarque-Bera and Box-Ljung statistic 

tests for normality and correlation in the residuals are also computed respectively. Furthermore, for the 

appropriate fitted model, the sample ACF and PACF of the observed residuals should lie inside the 

bound ±
1.96

√𝑛
, that is, roughly 95% of the time and these bounds are shown in the ACF and/or PACF 

graphs. 

3.4.1.5 Forecasting Using the Fitted Model 

This is the final stage of the Box-Jenkins Methodology and it entails what the whole procedure is 

intended to accomplish. Usually, it is straightforward to compute forecasts once the model is identified, 

selected, estimated and checked. Suppose we have the observations 𝑋1,  𝑋2, … ,  𝑋𝑛−1,  𝑋𝑛 of a series 𝑋𝑡 

that is assumed to be appropriately modelled as an ARMA(p, q) or ARIMA(p, d, q) process, then we 

can forecast future values of 𝑋𝑛+ℎ by calculating the linear combination 𝑃𝑛(𝑋𝑛+ℎ) of 

𝑋1,  𝑋2, … ,  𝑋𝑛−1,  𝑋𝑛 that reduces the mean squared error 𝐸[𝑋𝑛+ℎ - 𝑃𝑛(𝑋𝑛+ℎ)]
2. Of course, this can be 

easily done by a computer. 

The underlying strategy of Box-Jenkins Methodology has now grown to a point that is applicable to a 

wide range of statistical modelling situations (Hyndman, 2001). It entails a good framework which 

makes it easy for many data analysts to visualize their dataset and come up with a good model which 

can be helpful in answering their question(s) of interest about the data. 

3.5 ARMA and/or ARIMA Models Limitations 

Despite the advantages of using ARMA and/or ARIMA models, they are not without their limitations. 

Most studies in financial time series data analysis reported that this type of data has the three following 

stylized facts: fat-tail, that is, large losses or gains are coming at a higher probability than the normal 

distribution would suggest; volatility clustering, that is, large changes tend to be followed by large 

changes of either sign, and small changes tend to be followed by small changes (Mandelbro et al., 1963); 

and leverage effect, that is, the tendency for changes in stock prices to be negatively correlated with 

changes in stock volatility (Black, 1976). Therefore, these empirical properties cannot be captured by 

ordinal ARMA and/or ARIMA models, since these models simply assume that the expected value of 

all error terms when squared, is the same at any given point; that is, the variance of the error terms does 

not change over time (Petrica et al., 2016). Then more advanced and sophisticated models to deal with 
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the data that have these stylized facts are needed. Some of these facts can be captured by making use of 

volatility models such as ARCH and GARCH models for volatility clustering and use of heavy-tailed 

distributions governing the innovations for fat-tail. In the next chapter, we discuss volatility models. 
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Chapter 4 

4. Volatility Models 

4.1 Introduction 

ln Chapter 3, the time series modelling considered assumed time-independent or constant variance of 

the errors {𝜖𝑡} (a phenomenon known as homoscedasticity). However, statistically speaking, in real-life 

data, such as financial data, this assumption does not hold since variance usually changes with time (a 

phenomenon known as heteroscedasticity). This is because the financial market may react differently 

to political disorders, economic crises, natural disasters or wars. Furthermore, most empirical studies 

have proven that financial data suffers from the following main three effects: 

•    serial dependence is present in the data (leverage effect), 

•    volatility changes over time (volatility clustering), 

•    distribution of the data is heavy-tailed, asymmetric, hence not Gaussian (fat-tail) (Posedel, 2018, 

p.244). 

In 1982, Robert Engle introduced the so-called Autoregressive Conditional Heteroscedasticity (ARCH) 

models to model the time-varying volatility often observed in economical or financial time series data. 

His doctoral student Tim Bollerslev then introduced a useful generalization of these models in 1986, 

known as Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. These models 

can easily accommodate the dynamics of conditional heteroscedasticity by treating it as a variance to 

be modelled. The ARCH models simply cater for variation in the variance by relating the error variance 

to the past errors, and GARCH models cater for it by including the previous conditional variances as 

well. The goal of these models in financial applications is to provide a volatility measure, like standard 

deviation, that can be used in financial decisions concerning risk analysis, portfolio selection, and 

derivative pricing. They also play a significant role when the objective of the study is to analyse and 

forecast volatility.  

4.2 An ARCH(s) Model Overview  

Let 𝑐𝑡 be a random variable that has a mean and a variance conditional on the information Ʈ𝑡−1 (𝜎-field 

generated by 𝑐𝑡−𝑖, 𝑖 ≥ 1). Then the random variable 𝑐𝑡 is an ARCH(s) process if it is stationary and if 

it satisfies for all t and some strictly positive-valued process 𝜎𝑡, the two equations which follow: 

 
𝑐𝑡 = 𝜎𝑡𝜖𝑡 = √𝜎𝑡

2𝜖𝑡, 
(4.1) 
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where {𝜖𝑡} is a sequence of independent, identically distributed random variables with a mean zero and 

unit variance. However, {𝜖𝑡} can be other white noise with no need to be Gaussian as in the ordinally 

least squares regression. This implies that 𝑐𝑡|Ʈ𝑡−1~𝐺(0, 𝜎𝑡
2), where 𝐺 is the distribution 

(characteristically assumed to be a normal or leptokurtic one). The second equation is the ARCH model 

of order p defined by the conditional variance: 

 

 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2 +⋯+ 𝛼𝑠𝑐𝑡−𝑠
2 , 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖

𝑠

𝑖=1

𝑐𝑡−𝑖
2 , (4.2) 

  

where 𝛼0 > 0 and 𝛼𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑠 − 1, 𝑠, to ensure that the conditional variance is positive. 

The ARCH(s) model of 𝑐𝑡 has the following useful properties: 

1. The conditional mean and unconditional mean of 𝑐𝑡 are both equal to zero, i.e., 𝐸(𝑐𝑡|Ʈ𝑡−1) =

𝐸(𝑐𝑡) = 0. 

2. The conditional variance of 𝑐𝑡 has a nontrivial positive-valued parametric function of Ʈ𝑡−1 and 

it is given by 𝜎𝑡
2 = 𝐸(𝑐𝑡

2|Ʈ𝑡−1) = 𝛼0 + ∑ 𝛼𝑖
𝑝
𝑖=0 𝑐𝑡−𝑖

2   

3. The unconditional variance of 𝑐𝑡 is given by 𝜎𝑡
2 = 𝑉𝑎𝑟(𝑐𝑡| 𝑐𝑡−1, 𝑐𝑡−2, … ) =

𝛼0

1−∑ 𝛼𝑖
𝑝
𝑖=1

. 

4. The unconditional distribution of 𝑐𝑡 is leptokurtic. 

The proofs for the above ARCH model properties will be shown later, and for simplicity to show or 

prove these properties, we will use an ARCH (1) which will be introduced shortly; the special case of 

the general ARCH(s) model where s=1.  

If the condition 𝛼𝑖 ≥ 0 in equation (4.2), to ensure that the conditional variance 𝜎𝑡
2 is positive for all t 

is relaxed, then the ARCH(s) model can be rewritten in the following natural way to achieve positivity 

of the conditional variance: 

 𝑐𝑡
2 = 𝜎𝑡

2𝜖𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2 +⋯+ 𝛼𝑠𝑐𝑡−𝑠
2 + 𝑃𝑡 , 

(4.3) 

 

where 𝑃𝑡 = 𝜎𝑡
2(𝜖𝑡

2 − 1) = 𝑐𝑡
2 − 𝜎𝑡

2 (Talke, 2003). 

4.2.1 Building an ARCH(s) Model 

Developing an ARCH model is relatively easy; once the statistical test has been conducted for ARCH 

Effect and found to be significant, one can use the PACF of 𝑐𝑡
2 to determine the ARCH order. Before 

we go to a procedure on how to use the PACF of 𝑐𝑡
2, we first recall the ARCH model given by equation 

(4.2) above and note that for any given sample, 𝑐𝑡
2 is an unbiased estimate of 𝜎𝑡

2 (Tsay, 2005). Therefore, 
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from equation (4.3) it can be shown that 𝑃𝑡 is an uncorrelated series with mean 0. One can easily notice 

that the ARCH(s) model in equation (4.3) is in the form of an AR(s) for 𝑐𝑡
2 (see equation (3.3) in Chapter 

3 for an AR(s) model format), except that {𝑃𝑡} is not an independent and identically distributed series. 

Since {𝑃𝑡} are not identically distributed, the least-squares estimates of the prior model are consistent, 

but not efficient. The PACF of 𝑐𝑡
2 may not be effective with a significantly small sample size.   

4.2.1.1 Fat – Tailed Distributions 

This thesis considers three different probability distributions, or we simply assume that the error term 

𝜖𝑡 follows these distributions. These are the standard normal distribution, the student-t (STD), the 

standardized student-t distribution (SSTD), and the generalized error distribution (GED). The log-

likelihood functions of these distributions are used for parameters estimation. The reason for using the 

log-likelihood functions, instead of the original likelihood function, is because maximizing the 

conditional likelihood function is equivalent to maximizing its logarithm. The main purpose for using 

different distributions (other than the normal distribution) is because the third and fourth moment of the 

normal distribution could be too restrictive (Nasstrom, 2003, p.25). The student-t distribution has one 

parameter for modelling the fourth moment and this parameter is also estimated using the maximum 

likelihood estimation (Nasstrom, 2003, p.25). Again, these distributions (i.e., heavy-tailed distributions) 

helps us to cater for fat – tail, which cannot be captured by the normal distribution, hence their 

significance in modelling financial data. 

4.2.1.2 Parameter Estimation for an ARCH(s) Model 

The parameters for an ARCH(s) model are usually estimated using the maximum likelihood function. 

Typically, there are three common likelihood functions used for ARCH model estimation. Under the 

assumption of normality, the likelihood function of an ARCH(s) model is given by 

𝑓(𝑐1,𝑐2, … , 𝑐𝑇|𝜶) = 𝑓(𝑐𝑇|Ʈ𝑇−1)𝑓(𝑐𝑇−1|Ʈ𝑡−2)… 𝑓(𝑐𝑠+1|Ʈ𝑠)𝑓(𝑐1, … , 𝑐𝑠|𝜶) 

 
= ∏

1

√2𝜋𝜎𝑡
2

𝑇

𝑡=𝑠+1

exp (−
𝑐𝑡
2

2𝜎𝑡
2) × 𝑓(𝑐1, … , 𝑐𝑠|𝜶), (4.4) 

 

where 𝜶 = (𝛼0, 𝛼1, … , 𝛼𝑠)
′ and 𝑓(𝑐1, … , 𝑐𝑠|𝜶) is the joint probability density function (pdf) of 

𝑐1,𝑐2, … , 𝑐𝑠. The function 𝑓(𝑐1, … , 𝑐𝑠|𝜶) is usually deleted from the above likelihood function when the 

sample size is large enough. This is done simply because this causes the likelihood function to be more 

complicated to evaluate. Therefore, this results in using the conditional likelihood function 

 
𝑓(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶, 𝑐1,𝑐2, … , 𝑐𝑠) = ∏

1

√2𝜋𝜎𝑡
2

𝑇

𝑡=𝑠+1

exp (−
𝑐𝑡
2

2𝜎𝑡
2), (4.5) 
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where 𝜎𝑡
2 can be evaluated recursively. Since maximizing the conditional likelihood function is 

equivalent to maximizing its logarithm, for simplicity we will then use the logarithm of the conditional 

likelihood to find the maximum likelihood estimates (MLEs) of an ARCH(s) under normality and it is 

given by 

 
𝑙(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶, 𝑐1,𝑐2, … , 𝑐𝑠) = ∑ (−

1

2

𝑇

𝑡=𝑠+1

ln(2𝜋) −
1

2
ln (𝜎𝑡

2) −
1

2

𝑐𝑡
2

𝜎𝑡
2)  (4.6) 

 

By eliminating the term (ln(2𝜋)) that does not involve any parameters, the log likelihood can be 

simplified to 

 
𝑙(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶, 𝑐1,𝑐2, … , 𝑐𝑠) = −

1

2
∑ (

𝑇

𝑡=𝑠+1

ln (𝜎𝑡
2) +

𝑐𝑡
2

𝜎𝑡
2) , (4.7) 

 

where 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2 +⋯+ 𝛼𝑠𝑐𝑡−𝑠
2  can be evaluated recursively. 

Under the Standardized Student-𝑡 distribution assumption, it is assumed that 𝜖𝑡 follows a heavy tailed 

distribution. Suppose 𝑦𝑚 has a Student-𝑡 distribution with 𝑚 degrees of freedom. Then 𝑉𝑎𝑟(𝑦𝑚) =

𝑚

(𝑚−2)
 for 𝑚 > 2, and therefore 𝜖𝑡 =

𝑦𝑚

√
𝑚

(𝑚−2)

. Thus, the pdf of 𝜖𝑡 is given by 

 

𝑓(𝜖𝑡|𝑚) =
𝛤 [
(𝑚 + 1)

2 ]

𝛤 [
𝑚
2 ]

(√(𝑚 − 2)𝜋)

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2

, 𝑚 > 2. (4.8) 

 

The conditional likelihood function of 𝑚 and 𝛼 is obtained using the equation 𝑐𝑡 = 𝜎𝑡𝜖𝑡 and can be 

written as 

 

𝑓(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,𝑐2, … , 𝑐𝑠)

= ∏
𝛤 [
(𝑚 + 1)

2 ]

𝛤 [
𝑚
2 ] (

√(𝑚 − 2)𝜋)

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2

, 𝑚 > 2.

𝑇

𝑡=𝑠+1

 (4.9) 

 

Now, again we use the log-likelihood function to find the maximum likelihood estimates (MLEs) as we 

did under the normality assumption. Then the likelihood function from equation (4.9) becomes 
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𝑙(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,𝑐2, … , 𝑐𝑠) = − ∑ [

𝑚 + 1

2
ln(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln(𝜎𝑡

2)]

𝑇

𝑡=𝑠+1

. (4.10) 

 

The log-likelihood function to estimate 𝑚 jointly with other parameters is given by 

 

𝑙 (𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, (𝑐1,𝑐2, … , 𝑐𝑠))

= (𝑇 − 𝑠) {ln𝛤 [
(𝑚 + 1)

2
] − ln [𝛤 (

𝑚

2
)] −

1

2
ln[(𝑚 − 2)𝜋]}

− ∑ [
𝑚 + 1

2
ln (1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln (𝜎𝑡

2)]

𝑇

𝑡=𝑠+1

 

= (𝑇 − 𝑠) {ln𝛤 [
(𝑚 + 1)

2
] − ln [𝛤 (

𝑚

2
)] −

1

2
ln[(𝑚 − 2)𝜋]}

+ 𝑙(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,𝑐2, … , 𝑐𝑠). 
(4.11) 

 

Lastly, we may assume that 𝜖𝑡 has a generalized error distribution (GED) and its pdf can be given by 

 

𝑓(𝜖𝑡) =
 𝑚. exp (−

1
2 |

𝜖𝑡
𝜔|𝑚

)

𝜔2
(1−

1
𝑚
)
𝛤 (

1
𝑚)

,−∞ < 𝜖𝑡 < ∞ 𝑎𝑛𝑑 0 < 𝑚 ≤ ∞, 
(4.12) 

where 𝜔 = [2
(−

2

𝑚
) 𝛤(

1

𝑚
)

𝛤(
3

𝑚
)
]

1

2

 and 𝛤(.) is the usual gamma function (𝛤(𝑦) = ∫ (𝑥𝑦−1𝑒−𝑥)𝑑𝑥
∞

0
). 

Then the likelihood function 𝑓(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,𝑐2, … , 𝑐𝑠) and log-likelihood function 

𝑙(𝑐𝑠+1,𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,𝑐2, … , 𝑐𝑠) can be easily obtained by following the same procedure as under the 

assumption of normality and Student-𝑡 distribution. For the tail-thickness parameter 𝑚 = 2 and the pdf 

equals to the one for a standard normal distribution and it has heavy tails when 𝑚 < 2 (Bollerslev et 

al., 1994). 

4.2.1.3 An ARCH(s) Model Diagnostic 

The standardized residuals for an ARCH model are given by 

 
𝑐̂𝑡 =

𝑐𝑡
𝜎𝑡
, (4.13) 

 

which forms a sequence of independent and identical distributed random variables. Therefore, the 

adequacy and accuracy of the fitted ARCH model can be checked by investigating the series {𝑐̂𝑡}. 

Certainly, the Ljung-Box statistical tests of 𝑐̂𝑡 and 𝑐̂𝑡
2
 are usually used to check for the mean equation 
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adequacy and the volatility equation validation, respectively. The model distribution validation can be 

checked using the skewness, kurtosis, and quantile-to-quantile plot (qq-plot) of {𝑐̂𝑡} (Tsay, 2005). 

4.2.1.4 Forecasting with an ARCH(s) Model 

Consider the series 𝑐1,𝑐2, … , 𝑐𝑇0 and let 𝑐𝑇0(ℎ) for ℎ = 𝑇0 + 1, 𝑇0 + 2,…. ,denote the ℎ-steps ahead 

forecast from the origin 𝑇0. If we let 𝑓(𝑐) be a function of the observed series, then 𝑐𝑇0(ℎ) can be 

considered as a minimum mean square error predictor that minimizes 𝐸[𝑐𝑇0+1 − 𝑓(𝑐)]2. Since 

𝐸[𝑐𝑇0(ℎ)] = 0 is not necessary the forecast a series 𝑐𝑡, we use 𝑐𝑡
2 instead of the standard series 𝑐𝑡 

(Talke, 2003). 

Now for an ARCH(s) model, the 1-step ahead forecast of 𝜎𝑇0+1
2  from the origin 𝑇0 is 

 𝜎𝑇0
2 (1) = 𝛼0 + 𝛼1𝑐𝑇0

2 +⋯+ 𝛼𝑠𝑐𝑇0+1−𝑠
2 . 

(4.14) 

 

The 2-step ahead forecast is 

 𝜎𝑇0
2 (2) = 𝛼0 + 𝛼1𝑐𝑇0

2 + 𝛼2𝑐𝑇0
2 +⋯+ 𝛼𝑠𝑐𝑇0+2−𝑠

2 . 
(4.15) 

 

In general, the ℎ-step ahead forecast for 𝜎𝑇0+ℎ
2  is 

 

𝜎𝑇0
2 (ℎ) = 𝛼0 + 𝛼1𝑐𝑇0

2 + 𝛼2𝑐𝑇0
2 +⋯+ 𝛼𝑠𝑐𝑇0+ℎ−𝑠

2 , 

= 𝛼0 +∑𝛼2𝑐𝑇0
2

𝑠

𝑖=1

(ℎ − 𝑖), (4.16) 

 

where 𝑐𝑇0
2 (ℎ − 𝑖) = 𝑐𝑇0+ℎ−𝑠

2  if (ℎ − 𝑖) ≤ 0 (Tsay, 2005). 

4.2.2 An ARCH (1) Model Overview 

An ARCH (1) model is the special case of the general ARCH(s) model introduced in section 4.2 where 

s=1. Without the loss of generality, suppose 𝑐𝑡 is a random variable that has a mean and a variance 

conditionally on the information Ʈ𝑡−1 (𝜎-field generated by 𝑐𝑡−1). As in ARCH(s) except that s=1, 𝑐𝑡 

is an ARCH (1) process if it is stationary and if it satisfies for all t and some strictly positive-valued 

process 𝜎, the following two equations: 

 
𝑐𝑡 = 𝜎𝑡𝜖𝑡 = √𝜎𝑡

2𝜖𝑡, 
(4.17) 

 

where 𝜖𝑡~N(1,0) and,  
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 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2 , 
(4.18) 

 

where 𝛼0 > 0 and 0 ≤ 𝛼1 < 1,  to ensure that the conditional variance is positive. 

All the properties presented in section 4.2 for the general ARCH(s) models also hold for the ARCH (1) 

models; however, formulae become more complex for higher-order ARCH models. So below we use 

an ARCH (1) model to prove them. 

From equation (4.18), an ARCH (1) model can also be presented by, 

 
𝑐𝑡 = 𝜖𝑡√𝛼0 + 𝛼1𝑐𝑡−1

2 , (4.19) 

 

then to show the 

1. Conditional mean: 

𝐸(𝑐𝑡|Ʈ𝑡−1) = 𝐸 (𝜖𝑡√𝛼0 + 𝛼1𝑐𝑡−1
2  |Ʈ𝑡−1) = 𝐸(𝜖𝑡|Ʈ𝑡−1)√𝛼0 + 𝛼1𝑐𝑡−1

2 = 0. 

Unconditional mean: 

𝐸(𝑐𝑡) = 𝐸 (𝜖𝑡√𝛼0 + 𝛼1𝑐𝑡−1
2 ) = 𝐸(𝜖𝑡)𝐸 (√𝛼0 + 𝛼1𝑐𝑡−1

2 ) = 0. 

2. Conditional Variance: 

𝑉𝑎𝑟(𝑐𝑡|Ʈ𝑡−1) = 𝐸(𝑐𝑡
2|Ʈ𝑡−1) − [𝐸(𝑐𝑡|Ʈ𝑡−1)]

2 

                                                              = 𝐸(𝜖𝑡
2|Ʈ𝑡−1)( 𝛼0 + 𝛼1𝑐𝑡−1

2 ) − 0 

             = 𝛼0 + 𝛼1𝑐𝑡−1
2  

Unconditional Variance (proof using the law of total variance): 

𝑉𝑎𝑟(𝑐𝑡) = 𝐸[𝑉𝑎𝑟(𝑐𝑡|Ʈ𝑡−1)] + 𝑉𝑎𝑟[𝐸(𝑐𝑡|Ʈ𝑡−1)] 

= 𝐸(𝛼0 + 𝛼1𝑐𝑡−1
2 ) + 𝑉𝑎𝑟(0) 

= 𝛼0 + 𝛼1𝐸(𝑐𝑡−1
2 ) 

= 𝛼0 + 𝛼1𝑉𝑎𝑟(𝑐𝑡−1) 

             Since 𝑐𝑡 is stationary, 𝑉𝑎𝑟(𝑐𝑡) = 𝑉𝑎𝑟(𝑐𝑡−1). 

Therefore, 𝑉𝑎𝑟(𝑐𝑡) =
𝛼0

1−𝛼1
. 

3. Leptokurtic unconditional distribution: 

𝐾𝑢𝑟𝑡(𝑐𝑡) =
𝐸(𝑐𝑡

4)

[𝐸(𝑐𝑡
2)]2

= 3
1−𝛼1

2

1−3𝛼1
2 > 3, such that 

𝐸(𝑐𝑡
4) = 𝐸[𝐸(𝑐𝑡

4|Ʈ𝑡−1)] = 𝐸[𝛼𝑡
4𝐸(𝜖𝑡

4|Ʈ𝑡−1)] 
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= 𝐸(𝜖𝑡
4)𝐸( 𝛼0 + 𝛼1𝑐𝑡−1

2 )2 

                       = 3[𝛼0 + 2𝛼0𝛼1𝐸(𝑐𝑡−1
2 ) + 𝛼1

2𝐸(𝑐𝑡−1
4 )] 

            So 𝐸(𝑐𝑡
4) = 3

𝛼0
2(1+𝛼1)

(1+𝛼1)(1−3𝛼1
2)
 and 𝐸(𝑐𝑡

2) =
𝛼0

1−𝛼1
 

            Hence 𝐾𝑢𝑟𝑡(𝑐𝑡) =
𝐸(𝑐𝑡

4)

[𝑉𝑎𝑟(𝑐𝑡)]
2 =

𝐸(𝑐𝑡
4)

[𝐸(𝑐𝑡
2)]2

= 3
1−𝛼1

2

1−3𝛼1
2 > 3. 

Therefore, for an ARCH (1) process, we must ensure 0 ≤ 𝛼1 <
1

3
  for the 𝐸(𝑐𝑡

4) to exist and the kurtosis 

of 𝑐𝑡 will be always greater than 3. This shows that the excess kurtosis of 𝑐𝑡 is positive, that is, its 

curvature is high in the middle of the distribution and the tails of 𝑐𝑡 are fatter or heavier than those of a 

normal distribution. This means that the shock 𝑐𝑡 of a conditional Gaussian ARCH (1) model is more 

likely than a Gaussian white noise series to yield “outliers” (Tsay, 2005).  

4.2.2.1 Parameter Estimation for an ARCH (1) Model 

Now, we use ARCH (1) model to derive parameters since derivation using ARCH (1) is easy because 

there are few parameters to be estimated than in the generalized ARCH (s) model discussed in sub-

section 4.2.1.2.  Under the assumption of normality, the maximum likelihood estimation method can be 

used to estimate the parameters 𝛼0 and 𝛼1 for an ARCH (1) model and its likelihood function is given 

by 

 

𝑓(𝑐1,𝑐2, … , 𝑐𝑇|𝜶) = 𝑓(𝑐𝑇|Ʈ𝑇−1)𝑓(𝑐𝑇−1|Ʈ𝑡−2)…𝑓(𝑐2|Ʈ1)𝑓(𝑐1|𝜶) 

=∏
1

√2𝜋𝜎𝑡
2

𝑇

𝑡=2

exp(−
𝑐𝑡
2

2𝜎𝑡
2) × 𝑓((𝑐1|𝜶), (4.20) 

 

where 𝜶 = (𝛼0, 𝛼1)
′ and 𝑓(𝑐1|𝜶) is the joint probability density function (pdf) of 𝑐1,𝑐2. The function 

𝑓(𝑐1|𝜶) is usually deleted from the above likelihood function when the sample size is large enough. 

This is done simply because it causes the likelihood function to be more complicated to evaluate. 

Therefore, this results in using the conditional likelihood function 

 
𝑓(𝑐2, … , 𝑐𝑇|𝜶; 𝑐1,) =∏

1

√2𝜋𝜎𝑡
2

𝑇

𝑡=2

exp(−
𝑐𝑡
2

2𝜎𝑡
2), (4.21) 

 

where 𝜎𝑡
2 can be evaluated recursively. Since maximizing the conditional function is equivalent to 

maximizing its logarithm, for simplicity we will then use the logarithm of the conditional likelihood to 

find the maximum likelihood estimates (MLEs) of an ARCH (1) under normality assumption and it is 

given by 
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𝑙(𝜶|𝑐1) = 𝑙𝑛𝑓(𝑐2, … , 𝑐𝑇|𝜶; 𝑐1,) =∑(−

1

2

𝑇

𝑡=2

ln(2𝜋) −
1

2
ln (𝜎𝑡

2) −
1

2

𝑐𝑡
2

𝜎𝑡
2)  (4.22) 

 

By eliminating the term (ln(2𝜋)) that does not involve any parameters, the log-likelihood can be 

simplified to 

 
𝑙(𝜶|𝑐1) = 𝑙𝑛𝑓(𝑐2, … , 𝑐𝑇|𝜶; 𝑐1,) = −

1

2
∑(

𝑇

𝑡=2

ln 𝜎𝑡
2 +

𝑐𝑡
2

𝜎𝑡
2),  (4.23) 

where 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2  can be evaluated recursively.  

Under the standardized Student-𝑡 distribution assumption, it is normal to assume that 𝜖𝑡 follows a 

heavy-tailed distribution. Suppose 𝑦𝑚 has a Student-𝑡 distribution with 𝑚 degrees of freedom. Then 

𝑉𝑎𝑟(𝑦𝑚) =
𝑚

(𝑚−2)
 for 𝑚 > 2, and therefore 𝜖𝑡 =

𝑦𝑚

√
𝑚

(𝑚−2)

. Thus, the pdf of 𝜖𝑡 is given by 

 

𝑓(𝜖𝑡|𝑚) =
𝛤 [
(𝑚 + 1)

2 ]

𝛤(
𝑚
2
)(√(𝑚 − 2)𝜋

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2 , 𝑚 > 2. (4.24) 

The conditional likelihood of 𝑐𝑡
2 is obtained using the equation 𝑐𝑡 = 𝜎𝑡𝜖𝑡 and can be written as 

 

𝑓(𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,) =∏
𝛤 [
(𝑚 + 1)

2 ]

𝛤(
𝑚
2 )(

√(𝑚 − 2)𝜋

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2 ,𝑚 > 2.

𝑇

𝑡=2

 (4.25) 

Now, again we use the log-likelihood function to find the maximum likelihood estimates (MLEs) as we 

did under the normality assumption. Then the likelihood function becomes 

 
𝑙(𝜶|𝑐1) = 𝑙𝑛𝑓(𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,) = −∑[

𝑚 + 1

2

𝑇

𝑡=2

ln (1 +
𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln (𝜎𝑡

2)]. (4.26) 

The log-likelihood function to estimate 𝑚 jointly with other parameters is given by 

 

𝑙𝑛𝑓(𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,)

= (𝑇 − 1) {ln𝛤 [
(𝑚 + 1)

2
] − ln [𝛤 (

𝑚

2
)] −

1

2
ln[(𝑚 − 2)𝜋]}

−∑[
𝑚 + 1

2

𝑇

𝑡=2

ln (1 +
𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln (𝜎𝑡

2)] 

= (𝑇 − 1) {ln𝛤 [
(𝑚 + 1)

2
] − ln [𝛤 (

𝑚

2
)] −

1

2
ln[(𝑚 − 2)𝜋]}

+ 𝑙𝑛𝑓(𝑐2, … , 𝑐𝑇|𝜶; 𝑐1,). 
(4.27) 
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Lastly, we may assume that 𝜖𝑡 has a generalized error distribution (GED) and its pdf can be given by 

 

𝑓(𝑦) =
 𝑚. exp (−

1
2 |

𝑦
𝜔|𝑚

)

𝜔2
(1−

1
𝑚
)
𝛤 (

1
𝑚
)

,−∞ < 𝑦 < ∞ 𝑎𝑛𝑑 0 < 𝑚 ≤ ∞, 
(4.28) 

where 𝜔 = [2
(−

2

𝑚
) 𝛤(

1

𝑚
)

𝛤(
3

𝑚
)
]

1

2

 and 𝛤(.) is the usual gamma function ( 𝛤(𝑦) = ∫ (𝑥𝑦−1𝑒−𝑥)𝑑𝑥
∞

0
). 

Then the likelihood function 𝑓(𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1,) and log-likelihood function 𝑙(𝑐2, … , 𝑐𝑇|𝜶;𝑚, 𝑐1) 

can be easily obtained by following the same procedure as we did under normality and Student-𝑡 

distribution assumptions. For the tail-thickness parameter 𝑚 = 2 then the pdf equals the one for the 

standard normal distribution and it has heavy tails when 𝑚 < 2 (Bollerslev et al., 1994).  

4.2.2.2 Forecasting with the ARCH (1) Model 

Consider the series 𝑐1,𝑐2, … , 𝑐𝑇0 and let 𝑐𝑇0(ℎ) for ℎ = 𝑇0 + 1, 𝑇0 + 2,…. , denote the ℎ-steps ahead 

forecast from the origin 𝑇0. If we let 𝑓(𝑐) be a function of the observed series, then 𝑐𝑇0(ℎ) can be 

considered as a minimum mean square error predictor that minimizes 𝐸[𝑐𝑇0+1 − 𝑓(𝑐)]2. Now for an 

ARCH(s) model, the 1-step ahead forecast 𝜎𝑇0+1
2  from the origin 𝑇0 is 

 𝜎𝑇0
2 (1) = 𝛼0 + 𝛼1𝑐𝑇0

2  
(4.29) 

 

The 2-step ahead forecast 𝜎𝑇0+2
2  is 

𝜎𝑇0
2 (2) = 𝛼0 + 𝛼1𝜎𝑇0

2 (1). 

                                                                         = 𝛼0 + 𝛼1(𝛼0 + 𝛼1𝑐𝑇0
2 ) 

 = 𝛼0 + 𝛼1𝛼0 + 𝛼1
2𝑐𝑇0

2  
(4.30) 

In general, the ℎ-step ahead forecast 𝜎𝑇0+ℎ
2  is 

 

𝜎𝑇0
2 (ℎ) = 𝛼0 + 𝛼1𝑐𝑇0

2 (𝜎𝑇0
2 (ℎ − 1)) 

= 𝛼0 (∑𝛼1
𝑖

ℎ−1

𝑖=0

)+ 𝛼1
ℎ𝑐𝑇0

2  
(4.31) 

(Tsay, 2005). 

4.2.3 ARCH Models Limitations 

Apart from the flexibility and properties of the ARCH models discussed in the previous subsection, the 

model has some weaknesses too. 
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• The model assumes that positive and negative shocks have the same effects on volatility since 

it depends on the square of the previous shocks. However, it is known that the price of a 

financial asset reacts differently to positive and negative shocks. 

• The ARCH model is rather restrictive. For example, 𝛼1
2 of an ARCH (1) model must be in the 

interval [0,
1

3
] if the series has a finite fourth moment. The constraint tends to be more complex 

for higher-order ARCH models. In fact, it limits the ability of an ARCH model with normally 

distributed innovations to capture excess kurtosis. 

• The ARCH models only provide a mechanical way to describe the behaviour of the conditional 

variance. They do not describe or introduce any new source demonstrating variations of a 

financial time series. 

• ARCH models are likely to over-estimate the volatility because they react slowly to largely 

isolated shocks to the stock returns series. (Tsay, 2005, p.106). 

 

4.3 Exponentially Weighted Moving Average (EWMA) 

Before introducing the Generalized ARCH model, we first discuss one of the volatility models, the 

EWMA. The EWMA forecasts are used to model the variances (Guo, 2012). This class of models can 

be written as  

 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑐𝑡−1
2 , 

(4.32) 

where 𝜆 is a constant (0 < 𝜆 < 1), 𝜎𝑡
2 is the squared volatility (the variance rate) on day t and the 

volatility of a market variable on day t, estimated at the end of day t-1 is given by 𝜎𝑡 (Guo, 2012). The 

equation (4.32) is known as a volatility formula and it has the flexibility to adapt to market changes 

because of its functionality form (Nasstrom, 2003). The estimate, 𝜎𝑡, of the volatility for day t is 

calculated from 𝜎𝑡−1 and 𝑐𝑡−1, and large values of 𝑐𝑡−1
2  will directly affect the volatility estimate (Hull, 

2003). The EWMA approach to estimate the volatility works by substituting for 𝜎𝑡−1
2  in equation (4.32) 

and keep doing so for n-steps. Thus, 

substituting for 𝜎𝑡−1
2  to get 

 

𝜎𝑡
2 = 𝜆[𝜆𝜎𝑡−2

2 + (1 − 𝜆)𝑐𝑡−2
2 ] + (1 − 𝜆)𝑐𝑡−1

2 , 

𝜎𝑡
2 = (1 − 𝜆)[𝑐𝑡−1

2 + 𝜆𝑐𝑡−2
2 ] + 𝜆2𝜎𝑡−2

2 , 
(4.33) 

substituting for 𝜎𝑡−2
2  gives 

 𝜎𝑡
2 = (1 − 𝜆)[𝑐𝑡−1

2 + 𝜆2𝑐𝑡−2
2 + 𝜆3𝑐𝑡−3

2 ] + 𝜆3𝜎𝑡−3
2 , 

(4.34) 

continuing in the same manner, the general equation is 
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𝜎𝑡
2 = (1 − 𝜆)∑𝜆𝑖−1

𝑛

𝑖=1

𝑐𝑡−𝑖
2 + 𝜆𝑛𝜎𝑡−𝑛

2 . (4.35) 

For large n, the term 𝜆𝑛𝜎𝑡−𝑛
2  is significantly small and if is ignored, equation (4.35) can be simplified 

to 

 
𝜎𝑡
2 =∑𝛼𝑖𝑐𝑡−𝑖

2

𝑛

𝑖=1

 (4.36) 

where 𝛼𝑖 = (1 − 𝜆)𝜆𝑖−1 are the weights for 𝑐𝑖
2′𝑠 and decrease exponentially at rate 𝜆 as they move back 

through time and each weight is 𝜆 times the previous weight (Guo, 2012). 

4.4 The Generalized ARCH (GARCH) Model 

In the GARCH models, the squared volatility 𝜎𝑡
2 depends on the previous squared volatilities as well as 

previous squared values of the model, therefore in that sense they are generalized ARCH models. Thus, 

the ARCH model has been replaced by GARCH models which were developed by Bollerslev (1986) 

and Taylor (1986) independently of each other (Terasvirta, 2006, p.4).  

4.4.1 A GARCH (r, s) Model  

Let 𝑐𝑡 be a random variable that has a mean and a variance conditionally on the information Ʈ𝑡−1 (𝜎-

field generated by 𝑐𝑡−𝑖, 𝑖 ≥ 1). Then the random variable 𝑐𝑡 is a GARCH (r, s) process if it is stationary 

and if it satisfies for all t and some strictly positive-valued process 𝜎, the following two equations: 

 
𝑐𝑡 = 𝜎𝑡𝜖𝑡 = √𝜎𝑡

2𝜖𝑡, 
(4.37) 

where 𝜖𝑡~IIDN(1,0) and,  

 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑐𝑡−𝑖

2

𝑟

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑠

𝑗=1

, (4.38) 

   

with 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑟 − 1, 𝑟, 𝛽𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑠 − 1, 𝑠 to ensure that the conditional 

variance is positive. Note that the condition for {𝜖𝑡} to be stationary is: ∑ (𝛼𝑖
max (𝑟,𝑠)
𝑖=1 + 𝛽𝑗) < 1, where 

𝛼𝑖 = 0 for , 𝑖 > 𝑟 and   𝛽𝑗 = 0 for , 𝑗 > 𝑠. If 𝑠 = 0 then the GARCH (r, s) model equals to ARCH(s) 

model. The constraint on ∑ (𝛼𝑖
max (𝑟,𝑠)
𝑖=1 + 𝛽𝑗) also ensures that the unconditional variance of 𝑐𝑡 is finite, 

while its conditional variance 𝜎𝑡
2 changes over time (Matei, 2009, p. 52). The series {𝜖𝑡} can have other 

white noise distributions. There is no need for it to be Gaussian as in the ordinally least squares 

regression.     
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4.4.1.1 Basic Properties of an GARCH Model 

Similarly, GARCH models have their properties as do ARCH models. Below we show and/or prove 

some of the most important GARCH model properties. 

• Uniqueness and Stationarity: 

The GARCH (r, s) model in equation (4.38) has a unique and stationary solution if  

 

∑𝛼𝑖 +∑𝛽𝑗

𝑠

𝑗=1

𝑟

𝑖=1

< 1, (4.39) 

(Straumann, 2005). 

• Zero Mean 

Let the set of information at time 𝑡 − 1 be 

Ʈ𝑡−1 = 𝜎{𝑐𝑡, −∞ < 𝑖 ≤ 𝑡 − 1}. 

The mean of 𝑐𝑡 is zero in any model where 𝜎𝑡 is quantifiable concerning Ʈ𝑡−1 (which is the 

case in the GARCH (1,1) model). 

 

𝐸(𝑐𝑡) = 𝐸(𝜎𝑡𝜖𝑡) 

= 𝐸[𝐸(𝜎𝑡𝜖𝑡|Ʈ𝑡−1)] 

= 𝐸[𝜎𝑡𝐸(𝜖𝑡|Ʈ𝑡−1)] 

                   = 𝐸[𝜎𝑡𝐸(𝜖𝑡)] 

              = 𝐸[𝜎𝑡 . 0] 

    = 0. 
(4.40) 

 

• Lack of Serial Correlation 

In the same manner as the zero-mean above, we can simply show that 𝑐𝑡 is uncorrelated to 𝑐𝑡+ℎ 

for ℎ > 0:   

 

𝐸(𝑐𝑡𝑐𝑡+ℎ) = 𝐸(𝑐𝑡𝜎𝑡+ℎ𝜖𝑡+ℎ) 

= 𝐸[𝐸(𝑐𝑡𝜎𝑡+ℎ𝜖𝑡+ℎ|Ʈ𝑡+ℎ−1)] 

= 𝐸[𝑐𝑡𝜎𝑡+ℎ𝐸(𝜖𝑡+ℎ|Ʈ𝑡+ℎ−1)] 

= 0. 
(4.41) 

 

• Unconditional Variance 

We need an alternative representation of 𝑐𝑡
2 which will enable us to compute 𝐸(𝑐𝑡

2). Now we 

define the sequence 

 𝜀𝑡 = 𝑐𝑡
2 − 𝜎𝑡

2 
(4.42) 
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= 𝜎𝑡
2(𝜖𝑡

2 − 1). 

We can further show that 𝜀𝑡 has a mean zero, hence it can be treated as a “white noise”. Now 

𝑐𝑡
2 = 𝜎𝑡

2 + 𝜀𝑡 

= 𝛼0 +∑𝛼𝑖𝑐𝑡−𝑖
2

𝑟

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑠

𝑗=1

+ 𝜀𝑡 

 

  = 𝛼0 +∑𝛼𝑖𝑐𝑡−𝑖
2

𝑟

𝑖=1

+∑𝛽𝑗𝑐𝑡−𝑗
2

𝑠

𝑗=1

−∑𝛽𝑗𝜀𝑡−𝑗

𝑠

𝑗=1

+ 𝜀𝑡 . (4.43) 

If we let 𝑁 = max (𝑟, 𝑠), 𝛼𝑖 and 𝛽𝑗 for 𝑖 > 𝑟 and 𝑗 > 𝑠 respectively, then equation above can 

be written as 

 

𝑐𝑡
2 = 𝛼0 +∑(𝛼𝑖 + 𝛽𝑖)𝑐𝑡−𝑖

2

𝑁

𝑖=1

−∑𝛽𝑗𝜀𝑡−𝑗

𝑠

𝑗=1

+ 𝜀𝑡 . (4.44) 

Equation (4.44) above shows that 𝑐𝑡
2 is an ARMA model or process with martingale difference 

innovations. 

By stationarity assumption (i.e., 𝐸(𝑐𝑡
2) = 𝐸(𝑐𝑡+ℎ

2 )), the unconditional variance can be obtained 

as 

𝐸(𝑐𝑡
2) = 𝛼0 +∑(𝛼𝑖 + 𝛽𝑖)𝐸(𝑐𝑡−𝑖

2 )

𝑁

𝑖=1

−∑𝛽𝑗𝐸(𝜀𝑡−𝑗)

𝑠

𝑗=1

+ 𝐸(𝜀𝑡) 

= 𝛼0 +∑(𝛼𝑖 + 𝛽𝑖)𝐸(𝑐𝑡−𝑖
2 )

𝑁

𝑖=1

 

= 𝛼0 +∑(𝛼𝑖 + 𝛽𝑖)𝐸(𝑐𝑡
2)

𝑁

𝑖=1

 

 

[1 −∑(𝛼𝑖 + 𝛽𝑖)]

𝑁

𝑖=1

𝐸(𝑐𝑡
2) = 𝛼0 

 which gives  

 
𝐸(𝑐𝑡

2) =
𝛼0

[1 − ∑ (𝛼𝑖 + 𝛽𝑖)]
𝑁
𝑖=1

. (4.45) 

 

This result also shows the importance of property number one above. 

• Heavy-tails of 𝑐𝑡
2 
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GARCH (1,1) model is the special case of the GARCH (r, s) model where r=s=1 and this model can 

easily be heavy-tailed. Therefore, for simplicity, we use a GARCH (1,1) model to show or prove the 

property for 𝑐𝑡
2 being heavy-tailed. The proof is shown under GARCH (1,1) model in sub-section 4.4.2 

(Fryzlewicz, 2007, p.5-7). 

4.4.1.2 Parameter Estimation for the GARCH (r, s) Model 

Maximum likelihood estimation has become a very popular method for GARCH model parameter 

estimation (Princ et al., 2012, p.82). This method involves maximizing the likelihood function that is 

formulated under normality assumption of error and suitable regularity conditions; maximum likelihood 

estimates are consistent and asymptotically normal distributed (Princ et al., 2012, p.82). Thus, the 

maximum likelihood estimations (MLEs) method can be used to estimate the parameters of the GARCH 

(r, s) model, where those parameters are 𝛼0 > 0, 𝛼𝑖, 𝑖 = 1,2,… , 𝑟 − 1, 𝑟, 𝛽𝑗, 𝑗 = 1,2, … , 𝑠 − 1, 𝑠. Under 

the assumption of normality, the likelihood function can be written as 

𝑓(𝑐1, 𝑐2, … , 𝑐𝑇 , 𝜎1
2, 𝜎2

2, … , 𝜎𝑇
2|𝝋) = 𝑓(𝑐𝑇|Ʈ𝑇−1)𝑓(𝑐𝑇−1, 𝜎𝑇−1

2 |Ʈ𝑇−2)…𝑓(𝑐2, 𝜎1
2|Ʈ1)𝑓(𝑐1, 𝜎1

2|𝝋) 

 
=∏

1

√2𝜋𝜎𝑡
2

𝑇

𝑡=2

exp (−
𝑐𝑡
2

2𝜎𝑡
2) × 𝑓(𝑐1, 𝜎1

2|𝝋), (4.46) 

where 𝝋 = (𝛼0, 𝛼1, … , 𝛼𝑟; 𝛽1, 𝛽2, … , 𝛽𝑠)
′ and the set of information at time 𝑡 − 1 Ʈ𝑡−1 =

{𝑐1, 𝑐2, … , 𝑐𝑡−1; 𝜎1
2, 𝜎2

2, … , 𝜎𝑡−1
2 }. It is too complicated to evaluate the exact pdf 𝑓(𝑐1, 𝜎1

2|𝝋) and 

therefore to estimate 𝝋, it is usually convenient to drop it from the likelihood function and then use the 

conditional likelihood of the form 

 

𝑓(𝑐𝑠+1, … , 𝑐𝑇 , 𝜎𝑟+1
2 , … , 𝜎𝑇

2|𝝋; 𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2)

= 𝑓(𝑐𝑇 , 𝜎𝑇
2|Ʈ𝑇−1)…𝑓(𝑐𝑠+1, 𝜎𝑟+1

2 |𝝋; 𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) 

= ∏
1

√2𝜋𝜎𝑡
2

𝑇

𝑡=max (𝑟,𝑠)

exp (−
𝑐𝑡
2

2𝜎𝑡
2). (4.47) 

 

As in the ARCH(s) model, the maximum likelihood is equivalent to maximizing its logarithm. Thus, 

the following conditional log-likelihood can be used for parameter estimation 

 

𝑙(𝝋|𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) = ln 𝑓(𝑐𝑠+1, … , 𝑐𝑇 , 𝜎𝑟+1
2 , … , 𝜎𝑇

2|𝝋; 𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2)

= ln 𝑓(𝑐𝑇 , 𝜎𝑇
2|Ʈ𝑇−1)… 𝑓(𝑐𝑠+1, 𝜎𝑝+1

2 |𝝋; 𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) 

= −
1

2
∑ (

𝑇

𝑡=max(𝑟,𝑠)

ln 𝜎𝑡
2 + ln2𝜋 +

𝑐𝑡
2

𝜎𝑡
2). (4.48) 

Then removing the term ln 2𝜋 since it does not involve any parameter, the conditional log-likelihood 

becomes 
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𝑙(𝝋|𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) = −
1

2
∑ (

𝑇

𝑡=max(𝑟,𝑠)

ln 𝜎𝑡
2 +

𝑐𝑡
2

𝜎𝑡
2), (4.49) 

 (Talke, 2003, p.30).  

The parameter 𝝋 is solved recursively using either the Newton-Raphson and/or Fisher Scoring method. 

Under the standardized Student-𝑡 distribution assumption, we assume that 𝜖𝑡 follows a heavy-tailed 

distribution. Suppose 𝑦𝑚 has a Student-𝑡 distribution with 𝑚 degrees of freedom. Then 𝑉𝑎𝑟(𝑦𝑚) =

𝑚

(𝑚−2)
 for 𝑚 > 2, and therefore 𝜖𝑡 =

𝑦𝑚

√
𝑚

(𝑚−2)

. Thus, the pdf of 𝜖𝑡 is given by 

 

𝑓(𝜖𝑡|𝝋,𝑚) =
𝛤 [
(𝑚 + 1)

2 ]

𝛤 [
𝑚
2 ]

(√(𝑚 − 2)𝜋)

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2

, 𝑚 > 2. (4.50) 

 

The conditional likelihood of 𝑐𝑡
2 is obtained using the equation 𝑐𝑡 = 𝜎𝑡𝜖𝑡 and can be written as 

 

𝑓(𝑐1, 𝑐2, … , 𝑐𝑇 , 𝜎1
2, 𝜎2

2, … , 𝜎𝑇
2|𝝋,𝑚)

=∏
𝛤 [
(𝑚 + 1)

2 ]

𝛤 [
𝑚
2 ] (

√(𝑚 − 2)𝜋)

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2

, 𝑚 > 2.

𝑇

𝑡=2

 (4.51) 

 

Now, again we use the log-likelihood function to find the maximum likelihood estimates (MLEs) as we 

did under the normality assumption. Then the likelihood function becomes 

 

𝑙(𝝋,𝑚|𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) = 𝑙(𝜑,𝑚) = ln 𝑓(𝑐𝑡| Ʈ𝑇−1) 

𝑙(𝝋,𝑚|𝑐1, … , 𝑐𝑠, 𝜎1
2, … , 𝜎𝑟

2) = 𝑙(𝝋,𝑚)

= − ∑ [
𝑚 + 1

2
ln (1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln (𝜎𝑡

2)]

𝑇

𝑡=max (𝑟,𝑠)

 (4.52) 

Lastly, we may assume that 𝜖𝑡 has a generalized error distribution (GED) and its pdf can be given by 

 

𝑓(𝑐1|𝝋,𝑚) =
 𝑚. exp (−

1
2 |

𝑐𝑡
𝜔. 𝜎𝑡

|𝑚)

𝜔. 𝜎𝑡2
(1−

1
𝑚
)
𝛤 (

1
𝑚)

, 0 < 𝑚 ≤ ∞, 
(4.53) 

where 𝜔 = [2
(−

2

𝑚
) 𝛤(

1

𝑚
)

𝛤(
3

𝑚
)
]
1

2 and 𝛤(.) is the usual gamma function ( 𝛤(𝑦) = ∫ (𝑥𝑦−1𝑒−𝑥)𝑑𝑥
∞

0
. 

Then log-likelihood function  
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𝑙(𝝋|𝑚) = ln(𝑚) − (−

1
2 |

𝑐𝑡
𝜔. 𝜎𝑡

|𝑚) − ln [𝜔2
(1−

1
𝑚
)
] − ln𝛤 (

1

𝑚
) (4.54) 

For the tail-thickness parameter 𝑚 = 2 and the pdf equals to the one for a standard normal distribution 

and it has heavy tail distribution when 𝑚 < 2 (Bollerslev et al., 1994). 

4.4.1.3 Forecasting with the GARCH (r, s) Model 

The capacity of forecasting with GARCH models has been broadly discussed by Poon et al., (2003). 

The forecast is conducted by taking a conditional expectation. For GARCH (r, s) model, the forecast 

one-step ahead from the origin 𝑇0 is given by 

 

𝑐𝑇0+1
2 = 𝛼0 + ∑ (𝛼𝑖 + 𝛽𝑗)𝐸[𝑐𝑇0+1−𝑖

2 |Ʈ𝑇0] −∑𝛽𝑗𝐸[𝑣𝑇0+1−𝑗|Ʈ𝑡]

𝑠

𝑗=1

 

max(𝑟,𝑠)

𝑖=1,   𝑗=1

, (4.55) 

where 𝑐𝑇0
2 , … , 𝑐𝑇0+1−max(𝑟,𝑠) 

2 and 𝜎𝑇0
2 , … , 𝜎𝑇0+1−𝑟

2  are assumed to be known as origin time 𝑇0 (Talke, 

2003).  

In general, the ℎ-step ahead forecast from the time origin 𝑇0 can be written as 

 

𝑐𝑇0+ℎ
2 = 𝛼0 + ∑ (𝛼𝑖 + 𝛽𝑗)𝐸[𝑐𝑇0+ℎ−𝑖

2 |Ʈ𝑇0] −∑𝛽𝑗𝐸[𝑣𝑇0+ℎ−𝑗|Ʈ𝑡]

𝑠

𝑗=1

,

max(𝑟,𝑠)

𝑖=1,   𝑗=1

 (4.56) 

 

where 𝐸[𝑐𝑇0+ℎ−𝑖
2 |Ʈ𝑇0] is specified recursively by equation (4.56) for 𝑖 < ℎ. If 𝑖 ≥ ℎ 

then 𝐸[𝑐𝑇0+ℎ−𝑖
2 |Ʈ𝑇0] = 𝑐𝑇+ℎ−𝑖

2  and 𝐸[𝑣𝑇0−ℎ−𝑖|Ʈ𝑇0] = 𝑣𝑇0−ℎ−𝑖,  and 𝐸[𝑐𝑇0+ℎ−𝑖
2 |Ʈ𝑇0] = 0 for 𝑖 < ℎ 

(Talke, 2003, p.30 & 31). 

4.4.2 A GARCH (1,1) Model 

It is easy to describe the general GARCH model and its properties in detail using the reduced model 

where the orders of r and s are specified. Suppose r=s=1 from the GARCH (r, s) in equation (4.38) 

then a random variable 𝑐𝑡 has a GARCH (1,1) model if 

 

𝜖𝑡|Ʈ𝑡−1~𝑁(0, 𝜎𝑡
2), 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑐𝑡−1

2 + 𝛽1𝜎𝑡−1
2 , 

(4.57) 

where  𝛼0 > 0, 𝛼1, 𝛽1 ≥ 0 and 𝛼1 + 𝛽1 < 1 are imposed to ensure that the conditional variance 𝜎𝑡
2 is 

positive (Nasstrom, 2003, p.23).  The structure of equation (4.57) shows that a huge value of 𝑐𝑡−1
2  or 

𝜎𝑡−1
2  leads to a huge value for a squared volatility 𝜎𝑡

2. Thus, the huge value of  𝑐𝑡−1
2  tends to be followed 

by another huge value of 𝑐𝑡
2. This is known as volatility clustering (Tsay, 2005, p.114).  
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4.4.2.1 Properties of a GARCH (1,1) Model 

• The moments of  𝑐𝑡 are one of its interesting properties. To show them, consider the GARCH 

(1,1) model in equation (4.57), then a necessary and sufficient condition for existence of the 

2𝑘𝑡ℎ moment is  

 

𝜇(𝛼1, 𝛽1, 𝑘) =∑(
𝑘

𝑗
)

𝑘

𝑗=0

𝑑𝑗𝛼1
𝑘−𝑗

< 1 (4.58) 

where 𝛼0 = 1,  𝑑𝑗 = ∏ (2𝑖 − 1).
𝑗
𝑖=1     

Therefore the 2𝑘𝑡ℎ moment can be described by the recursive formula 

 
𝐸(𝑐𝑡

2𝑘) = 𝑑𝑘 . [∑𝑑𝑙
−1𝐸(𝑐𝑡

2𝑙)𝛼0
𝑘−𝑙 (

𝑘

𝑘 − 𝑙
) 𝜇(𝛼1, 𝛽1, 𝑙)

𝑘−1

𝑙=0

] . [1 − 𝜇(𝛼1, 𝛽1, 𝑘)]
−1, (4.59) 

Because of the symmetry properties of the Gaussian distribution, it follows that if the 2𝑘𝑡ℎ 

moment does exist, then 2(𝑘 − 1)𝑡ℎ moment is equals to zero (Nasstrom, 2003, p.23).   

• It can also be proved that if 1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2 > 0, then 

 

𝐸(𝑐𝑡
4)

[𝐸(𝑐𝑡
2)]2

=
3[1 − (𝛼1 + 𝛽1)

2]

1 − (𝛼1 + 𝛽1)
2 − 2𝛼1

2 > 3. (4.60) 

Thus, like ARCH models, a GARCH (1,1) model has a heavy-tail distribution (i.e., its tail is 

heavier than that of a normal distribution) (Tsay, 2005, p.115). 

To show that we begin by assuming the condition below 

 𝐸(𝛼1𝑐𝑡
2 + 𝛽1)

𝑑
2 > 1 

(4.61) 

 

for some 𝑑 > 0. This condition is satisfied if 𝜖𝑡~𝑁(0,1) (but of course not only in this case). 

Then we have 

 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝑐𝑡

2 + 𝛽1𝑐𝑡
2 

= 𝛼0 + (𝛼1 + 𝛽1)𝑐𝑡
2, 

(4.62) 

 

and using the independence of 𝜖𝑡 and Ʈ𝑡−1 we get 

 

𝐸(𝜎𝑡+1
𝑑 ) = 𝐸[𝛼0 + (𝛼1𝜖𝑡

2 + 𝛽1)𝜎𝑡
2]
𝑑
2 

≥ 𝐸[(𝛼1𝜖𝑡
2 + 𝛽1)𝜎𝑡

2]
𝑑
2 

= 𝐸(𝛼1𝜖𝑡
2 + 𝛽1)

𝑑
2𝐸(𝜎𝑡

𝑑). 
(4.63) 
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If 𝐸(𝜎𝑡
𝑑) were finite, then by stationarity, it would be equivalent to 𝐸(𝜎𝑡+1

𝑑 ). Then we would 

simplify it to 

 1 ≥ 𝐸(𝛼1𝜖𝑡
2 + 𝛽1)

𝑑
2 , 

(4.64) 

 

which would contradict with the assumption in equation (4.46). Therefore, 𝐸(𝜎𝑡
𝑑) is infinite, which 

implies that 𝐸(𝑐𝑡
2) is infinite. Thus, 𝑐𝑡 does not have all finite moments, hence it is heavy-tailed 

(Fryzlewicz, 2007, p.5-7).   

 

• The GARCH (1,1) model offers a simple parametric function that can be used to define the 

volatility evolution (Tsay, 2005, p.115). 

4.4.2.2 The Kurtosis of GARCH (1,1) Model 

The kurtosis of volatility is one of the important features when assessing the variability of the estimated 

volatility. This section simply shows the derivation for the excess kurtosis of a GARCH (1,1) model. 

Even though the derivation is done in GARCH (1,1) the same idea applies to all other GARCH models; 

this was done only for simplicity. Consider the GARCH (1,1) model given in equation (4.57) where 

{𝜖𝑡} is an independent and identical distributed sequence satisfying the following 

 𝐸(𝜖𝑡) = 0, 
(4.65) 

 𝑉𝑎𝑟(𝜖𝑡) = 1, 
(4.66) 

 𝐸(𝜖𝑡
4) = 𝐾𝜖 + 3, 

(4.67) 

 

where 𝐾𝜖 is the excess kurtosis of the innovation 𝜖𝑡. Based on the model assumption, we know the 

following properties: 

• 𝑉𝑎𝑟(𝑐𝑡) = 𝐸(𝑐𝑡
2) = 𝐸(𝜎𝑡

2) =
𝛼0

[1−(𝛼1+𝛽1)]
, (see equation 4.45 for a general proof of this 

property). 

• 𝐸(𝑐𝑡
4) = (𝐾𝜖 + 3)𝐸(𝜎𝑡

4) given that 𝐸(𝜎𝑡
4) does exist. 

Now by taking the square of the GARCH (1,1) volatility model in equation (4.57), we get 

 

[𝜎𝑡
2]2 = [𝛼0 + 𝛼1𝑐𝑡−1

2 + 𝛽1𝜎𝑡−1
2 ]2 

𝜎𝑡
4 = 𝛼0

2 + 𝛼1
2𝑐𝑡−1

4 + 𝛽1
2𝜎𝑡−1

4 + 2𝛼0𝛼1𝑐𝑡−1
2 + 2𝛼0𝛽1𝜎𝑡−1

2 + 2𝛼1𝛽1𝜎𝑡−1
2 𝑐𝑡−1

2 . 
(4.68) 
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The expectation of the equation (4.68) using the above two properties we obtain 

 
𝜎𝑡
4 =

𝛼0
2(1 + 𝛼1 + 𝛽1)

[1 − (𝛼1 + 𝛽1)][1 − 𝛼1
2(𝐾𝜖 + 2) − (𝛼1 + 𝛽1)

2]
, (4.69) 

where 0 ≤ (𝛼1 + 𝛽1) < 1 and [1 − 𝛼1
2(𝐾𝜖 + 2) − (𝛼1 + 𝛽1)

2] > 0. Therefore, if the excess kurtosis 

of 𝑐𝑡 exists, it is then  

 

𝐾𝑐 =
𝐸(𝑐𝑡

4)

[𝐸(𝑐𝑡
2)]2

− 3 

=
(𝐾𝜖 + 3)[1 − (𝛼1 + 𝛽1)

2]

1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2 − 𝐾𝜖𝛼1
2 − 3. (4.70) 

We can write this equation in a more compact way by considering the following two cases:  

1. When 𝜖𝑡 is normally distributed. In this case 𝐾𝜖 = 0, with some algebra, it can be shown that 

the excess kurtosis of 𝑐𝑡 is written as 

 
𝐾𝐶
(𝑔)

=
6𝛼1

2

1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2
, (4.71) 

 

where the superscript (𝑔) denotes Gaussian distribution for 𝜖𝑡. This equation has two 

significant consequences:  

i. the kurtosis of 𝑐𝑡 exists only if [1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2] > 0, 

ii. the corresponding GARCH (1,1) model does not have heavy tails if 𝛼1 =

0 which implies that 𝐾𝐶
(𝑔)

= 0. 

2. When 𝜖𝑡 is not normally distributed. Using the previous result, we have 

 

𝐾𝑐 =
𝐾𝜖 − 𝐾𝜖(𝛼1 + 𝛽1) + 6𝛼1

2 + 3𝐾𝜖𝛼1
2

1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2 −𝐾𝜖𝛼1
2  

=
𝐾𝜖[1 − 2𝛼1

2 − (𝛼1 + 𝛽1)
2] + 6𝛼1

2 + 5𝐾𝜖𝛼1
2

1 − 2𝛼1
2 − (𝛼1 + 𝛽1)

2 − 𝐾𝜖𝛼1
2  

=
𝐾𝜖 + 𝐾𝐶

(𝑔)
+
5
6𝐾𝜖𝐾𝐶

(𝑔)

1 −
1
6𝐾𝜖𝐾𝐶

(𝑔)
. 

(4.72) 
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This result holds for all GARCH models provided that their respective kurtosis does exist, and it was 

originally obtained by George C. Tiao; refer to Bai et al., (2003)  (Tsay, 2005, p. 145-146). 

Remarks: 

i. One can notice that if 𝛽1 = 0 from GARCH (1,1) model in equation (4.57), then the model reduces 

to an ARCH (1) model. In this case, if 𝜖𝑡 is normally distributed, the kurtosis of 𝑐𝑡 is given by 

 
𝐾𝐶
(𝑔)

=
6𝛼1

2

(1 − 3𝛼1
2)
, (4.73) 

and when 𝜖𝑡 is not Gaussian distribution then 

 

𝐾𝐶 =
(𝐾𝜖 + 3)(1 − 𝛼1

2)

1 − (𝐾𝜖 + 3)𝛼1
2 − 3 

=
𝐾𝜖 + 2𝐾𝜖𝛼1

2 + 6𝛼1
2

1 − 3𝛼1
2 −𝐾𝜖𝛼1

2  

=
𝐾𝜖(1 − 3𝛼1

2) + 6𝛼1
2 + 5𝐾𝜖𝛼1

2

1 − 3𝛼1
2 −𝐾𝜖𝛼1

2  

=
𝐾𝜖 + 𝐾𝐶

(𝑔)
+
5
6
𝐾𝜖𝐾𝐶

(𝑔)

1 −
1
6𝐾𝜖𝐾𝐶

(𝑔)
. 

(4.74) 

 

ii. From the results for the GARCH (1,1) model, the coefficient 𝛼1 plays a pivotal role in determining 

the tail behaviour of 𝑐𝑡. Now it can be seen that if 𝛼1 = 0, then 𝐾𝐶
(𝑔)

= 0 and 𝐾𝐶 = 𝐾𝜖. In this 

regard, the tail behaviour of 𝑐𝑡 imitates that of the standardized noise 𝜖𝑡. However, if  𝛼1 > 0, 

then 𝐾𝐶
(𝑔)

> 0 and it implies that 𝑐𝑡 has heavy tails. 

iii. When 𝜖𝑡 has a standardized student-t distribution with m degrees of freedom, then we get 

 
𝐸(𝜖𝑡

4) =
6

(𝑚 − 4)
+ 3, 𝑖𝑓 𝑚 > 4. (4.75) 

Thus, the excess kurtosis of 𝜖𝑡 is given by 

 
𝐾𝜖 =

6

(𝑚 − 4)
, 𝑓𝑜𝑟 𝑚 > 4. (4.76) 

and the excess kurtosis of 𝑐𝑡 becomes 
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𝐾𝑐 =
[6 + (𝑚 + 1)𝐾𝐶

(𝑔)
]

[𝑚 − 4 − 𝐾𝐶
(𝑔)
]
, (4.77) 

given that 
1−2𝛼1

2(𝑚−1)

(𝑚−4)−(𝛼1+𝛽1)
2 > 0. 

(Tsay, 2005, p.146-147). 

4.4.2.3 Parameter Estimation with GARCH (1,1) Model 

The maximum likelihood estimations (MLEs) method can be used to estimate the parameters for 

GARCH (1, 1) model, where those parameters are 𝛼0, 𝛼1, and 𝛽1. The log-likelihood function for 

normally distributed standardized errors {𝜖𝑡} is 

𝑓(𝑐1, 𝑐2, … , 𝑐𝑇 , 𝜎1
2, 𝜎2

2, … , 𝜎𝑇
2|𝝋) = 𝑓(𝑐𝑇|Ʈ𝑇−1)𝑓(𝑐𝑇−1, 𝜎𝑇−1

2 |Ʈ𝑇−2)…𝑓(𝑐2, 𝜎1
2|Ʈ1)𝑓(𝑐1, 𝜎1

2|𝝋) 

 
=∏

1

√2𝜋𝜎𝑡
2

𝑇

𝑡=2

exp (−
𝑐𝑡
2

2𝜎𝑡
2) × 𝑓(𝑐1, 𝜎1

2|𝝋), (4.78) 

 

where 𝝋 = (𝛼0, 𝛼1; 𝛽1, )
′ . It is too complicated to evaluate the exact pdf 𝑓(𝑐1, 𝜎1

2|𝝋) and therefore to 

estimate 𝝋, it is usually convenient to drop it from the likelihood function and then use the conditional 

likelihood of the form 

 

𝑓(𝑐2, … , 𝑐𝑇 , 𝜎2
2, … , 𝜎𝑇

2|𝝋; 𝑐1, 𝜎1
2) = 𝑓(𝑐𝑇 , 𝜎𝑇

2|Ʈ𝑇−1)…𝑓(𝑐2, 𝜎2
2|𝝋; 𝑐1, 𝜎1

2) 

=∏
1

√2𝜋𝜎𝑡
2

𝑇

𝑡=2

exp(−
𝑐𝑡
2

2𝜎𝑡
2). (4.79) 

Since the maximum likelihood is equivalent to maximizing its logarithm, then conditional log-

likelihood can be used for parameter estimation 

 

𝑙(𝝋|𝑐1, 𝜎1
2) = ln 𝑓(𝑐2, … , 𝑐𝑇 , 𝜎2

2, … , 𝜎𝑇
2|𝝋; 𝑐1, 𝜎1

2)

= ln 𝑓(𝑐𝑇 , 𝜎𝑇
2|Ʈ𝑇−1)…𝑓(𝑐2, 𝜎2

2|𝝋; 𝑐1, 𝜎1
2) 

= −
1

2
∑(

𝑇

𝑡=2

ln 𝜎𝑡
2 + ln 2𝜋 +

𝑐𝑡
2

𝜎𝑡
2). (4.80) 

Then removing the term ln 2𝜋 since it does not involve any parameter, the conditional log-likelihood 

becomes 

 
𝑙(𝝋|𝑐1, 𝜎1

2) = −
1

2
∑(

𝑇

𝑡=2

ln 𝜎𝑡
2 +

𝑐𝑡
2

𝜎𝑡
2), (4.81) 
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(Talke, 2003, p.23; Princ et al., 2012, p.82). The parameter 𝝋 is solved recursively using either the 

Newton-Raphson and/or Fisher Scoring method. 

Under the standardized Student-𝑡 distribution assumption, we assume that 𝜖𝑡 follows a heavy-tailed 

distribution. Suppose 𝑦𝑚 has a Student-𝑡 distribution with 𝑚 degrees of freedom. Then 𝑉𝑎𝑟(𝑦𝑚) =

𝑚

(𝑚−2)
 for 𝑚 > 2, and therefore 𝜖𝑡 =

𝑦𝑚

√
𝑚

(𝑚−2)

. Thus, the pdf of 𝜖𝑡 is given by 

 

𝑓(𝜖𝑡|𝝋,𝑚) =
𝛤 [
(𝑚 + 1)

2 ]

𝛤(
𝑚
2
)(√(𝑚 − 2)𝜋

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2 ,𝑚 > 2. (4.82) 

The conditional likelihood of 𝑐𝑡
2 is obtained using the equation 𝑐𝑡 = 𝜎𝑡𝜖𝑡 and can be written as 

 

𝑓(𝑐1, 𝑐2, … , 𝑐𝑇 , 𝜎1
2, 𝜎2

2, … , 𝜎𝑇
2|𝝋,𝑚)

=∏
𝛤 [
(𝑚 + 1)

2 ]

𝛤(
𝑚
2
)(√(𝑚 − 2)𝜋

1

𝜎𝑡
(1 +

𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2)

−
(𝑚+2)

2 , 𝑚 > 2.

𝑇

𝑡=2

 (4.83) 

Now, again we use the log-likelihood function to find the maximum likelihood estimates (MLEs) as we 

did under the normality assumption. Then the likelihood function becomes 

 

𝑙(𝝋,𝑚|𝑐1, 𝜎1
2) = 𝑙(𝝋,𝑚) = ln 𝑓(𝑐𝑡| Ʈ𝑇−1) 

𝑙(𝝋,𝑚|𝑐1, 𝜎1
2) = 𝑙(𝝋,𝑚) = −∑[

𝑚 + 1

2

𝑇

𝑡=2

ln (1 +
𝑐𝑡
2

(𝑚 − 2)𝜎𝑡
2) +

1

2
ln (𝜎𝑡

2)]. (4.84) 

Lastly, we may assume that 𝜖𝑡 has a generalized error distribution (GED) and its pdf can be given by 

 

𝑓(𝑐1|𝝋,𝑚) =
 𝑚. exp (−

1
2 |

𝑐𝑡
𝜔. 𝜎𝑡

|𝑚)

𝜔. 𝜎𝑡2
(1−

1
𝑚
)
𝛤 (

1
𝑚)

, 0 < 𝑚 ≤ ∞, 
(4.85) 

where 𝜔 = [2
(−

2

𝑚
) 𝛤(

1

𝑚
)

𝛤(
3

𝑚
)
]
1

2 and 𝛤(.) is the usual gamma function ( 𝛤(𝑦) = ∫ (𝑥𝑦−1𝑒−𝑥)𝑑𝑥
∞

0
. 

Then log likelihood function  

 
𝑙(𝝋|𝑚) = ln(𝑚) − (−

1
2 |

𝑐𝑡
𝜔. 𝜎𝑡

|𝑚) − ln [𝜔2
(1−

1
𝑚
)
] − ln𝛤 (

1

𝑚
) (4.86) 

As in general GARCH (r, s), for the tail-thickness parameter 𝑚 = 2 and the pdf equals to the one for a 

standard normal distribution and it has heavy tails when 𝑚 < 2 (Bollerslev et al., 1994). 

4.4.2.4 Forecasting with GARCH (1,1) Model 

Since the GARCH models can be represented as ARMA models (see equation 4.44), the forecast of a 

GARCH model can just as well be obtained using the same procedure as in the ARMA model. Now we 
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can use the GARCH (1,1) model in equation (4.57) and the 1-step ahead forecast from the origin 𝑇0 can 

be 

 𝜎𝑇0+1
2 = 𝛼0 + 𝛼1𝑐𝑇0

2 + 𝛽1𝜎𝑇0
2 , 

(4.87) 

where 𝑐𝑇0
2  and 𝜎𝑇0

2  are known at the time origin 𝑇0. 

for several steps ahead, we can use 𝑐𝑡
2 = 𝜎𝑡

2𝜖𝑡
2 and GARCH (1,1) equation can be rewritten as 

 𝜎𝑡+1
2 = 𝛼0 + (𝛼1 + 𝛽1)𝜎𝑡

2 + 𝛼1𝜎𝑡
2(𝜖𝑇0+1

2 − 1). 
(4.88) 

When 𝑡 = 𝑇0 + 1, the equation (4.88) becomes 

 𝜎𝑇0+2
2 = 𝛼0 + (𝛼1 + 𝛽1)𝜎𝑇0+1

2 + 𝛼1𝜎𝑇0+1
2 (𝜖𝑇0+1

2 − 1). 
(4.89) 

Therefore, the 2-step ahead from the origin 𝑇0 is given by 

 𝜎𝑇0+2
2 = 𝛼0 + (𝛼1 + 𝛽1)𝜎𝑇0+1

2 , 
(4.90) 

because 𝐸(𝜖𝑇0+1
2 − 1|Ʈ𝑇0) = 0. 

Thus, the general equation for h-steps ahead from the origin 𝑇0 is 

 𝜎𝑇0+ℎ
2 = 𝛼0 + (𝛼1 + 𝛽1)𝜎𝑇0

2 (ℎ − 1), 
(4.91) 

where ℎ > 1 (Tsay, 2005, p.115). 

4.4.3 GARCH Models Limitations 

The GARCH model successfully captures volatility clustering and thick-tailed returns, however, it is 

unable to accommodate several other stylized facts such as to explain the leverage effects which are 

usually observed in the financial time series (Bollerslev et al., 1994, p.2 969). The leverage effects were 

first discovered by Black (1976) and they represent the tendency of variation in the price of stocks to 

be negatively correlated with changes in the stock volatility. Briefly, the effect of a shock upon the 

volatility is asymmetric, which means that the impacts of good news (positive lagged residual) and of 

bad news (negative residual) are different. Therefore, like everything else, the GARCH model is not 

perfect, hence it needs improvement as well. So, researchers have developed different alternative 

models as extensions of the GARCH model, including TARCH, IGARCH, EGARCH, OGARCH, M-

GARCH, APARCH and PC-GARCH, to name a few (Matei, 2009, p.52). 

4.5 Extensions of the GARCH Models 

The main objectives of volatility analysis are to explain its cause, while the structure of the time series 

is valuable for forecasting (Engle, 2001, p.16). Therefore, a variety of asymmetric GARCH models 

have been developed, such as the ones mentioned above in sub-section 4.4.2, that is, Exponential 

GARCH of Nelson (1991), Threshold ARCH model attributed to Rabemananjara et al., (1993), and 
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Jaganathan and Runkle (1993), Integrated GARCH modes, TARCH, OGARCH, M-GARCH, 

APARCH, PC-GARCH and GJ-GARCH, etc. (Engle, 2001, p.16). 

  4.5.1 The Exponential GARCH (EGARCH) Model 

The Exponential GARCH (EGARCH) model was first introduced by Nelson (1991). The model can 

account for an asymmetric response to a shock. The main advantage of the EGARCH model is that the 

squared volatility is being modelled as a logarithm log(𝜎𝑡
2) which allows it to be positive even if the 

parameters are negative, hence there is no need to impose the constraints on the parameters to avoid 

them being non-negative (Matei, 2009, p.52). In GARCH model, the conditional variance is a function 

for only the magnitudes of the lagged residuals and not their signs, whereas in the EGARCH model the 

conditional variance depends on both the size and the sign of lagged residuals (Bollerslev et al., 1994, 

p.2969). The EGARCH (r, s) models may be defined as 

 

ln(𝜎𝑡
2) = 𝛼0 +∑ℎ𝑖(𝜖𝑡−𝑖)

𝑟

𝑖=1

+∑𝛽𝑗 ln 𝜎𝑡−𝑗
2

𝑠

𝑗=1

, (4.92) 

where ℎ𝑖(𝜖𝑡−𝑖) = 𝛼𝑖𝜖𝑡−𝑖 + 𝜓 𝑖(|𝜖𝑡−𝑖| − 𝐸|𝜖𝑡−𝑖|), 𝑖 = 1,… , 𝑟. It can be seen from equation (4.92) that 

there is no need for a parameter restriction to ensure positivity of the conditional variance 𝜎𝑡
2. The 

parameters 𝛼𝑖, 𝑖 = 1,… , 𝑟, make an asymmetric response to shocks possible. (Terasvirta, 2006, p.20). 

4.5.2 The Integrated GARCH Model 

The Integrated GARCH (IGARCH) model was created specifically to model data that has persistent 

changes in volatility. It is a special case of a GARCH model when the sum of estimated parameters 

(except 𝛼0 ) equals to one, that is 

 

∑𝛼𝑖

𝑟

𝑖=1

+∑𝛽𝑗

𝑠

𝑗=1

= 1. (4.93) 

The IGARCH (1,1) model can be written as 

 𝑐𝑡 = 𝜎𝑡𝜖𝑡, 
(4.94) 

where 0 < 𝛽1 < 1 and {𝜖𝑡} is defined as for the GARCH models. When 𝛼0 = 0 this model is similar 

to the Exponential Weighted Moving Average (EWMA)-procedure presented in equation (4.32). 

(Nasstrom, 2003, p.24). 

4.5.3 The Threshold GARCH Model  

The Threshold GARCH (TARCH) model is one of the asymmetric models which was developed by 

Zakoian (1994) and Glosten et al., (1993). Threshold GARCH model works as the Exponential GARCH 

 𝜎𝑡
2 = 𝛼0 + 𝛽1𝜎𝑡−1

2 + (1 − 𝛽1)𝑐𝑡−1
2 , 

(4.95) 
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model, in the sense that it also accounts for the asymmetric effects of the news. However, in the TARCH 

model, the leverage effect is expressed in a quadratic form whereas in the EGARCH model it is 

expressed in the exponential form. Thus, a TARCH (s, p) model for modelling a conditional variance 

is 

 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝛿𝑡−𝑖

2𝑟
𝑖=1 + ∑ 𝛽𝑗

𝑠
𝑗=1 𝜎𝑡−𝑗

2 + ∑ 𝛾𝑘𝛿𝑡−𝑘
2 𝐼𝑡−𝑘

−𝑞
𝑘=1   

(4.96) 

The leverage effects exist only if 𝛾𝑘 ≠ 0, and the news response is asymmetric. When 𝛾𝑘 = 0 for all 

values of k, then the TARCH model takes the form of a standard GARCH model. (Matei, 2009, p.53). 

 

The TARCH (1,1) model can be written as 

 

𝜎𝑡
2 = 𝛼0 + 𝛽1𝜎𝑡−1

2 + 𝛼1𝛿𝑡−1
2 + 𝛾1𝛿𝑡−1

2 𝐼𝑡−1
− , 

= 𝛼0 + 𝛽1𝜎𝑡−1
2 + (𝛼1 + 𝛾1𝐼𝑡−1

− )𝛿𝑡−1
2 , 

(4.97) 

where 𝐼𝑡−1
− = 1 if 𝛿𝑡−1 < 0, and 𝐼𝑡−1

− = 0 if 𝛿𝑡−1 > 0 . The good news is represented by 𝛿𝑡−1 > 0 and 

bad news by 𝛿𝑡−1 < 0. It is obvious that good and bad news have different outcomes on the conditional 

variance 𝜎𝑡
2. (Výrost, 2003, p.18). 

4.5.4 The Asymmetric Power ARCH  

An APARCH model is one of the more general GARCH models which was implemented by Laurent 

and Peters (2002) in the GARCH toolbox. The structure of a model is written as 

 

𝜎𝑡
𝑘 = 𝛼0 +∑𝛼𝑖(|𝑐𝑡−𝑖

2 | − 𝛾𝑐𝑡−1)
𝑘

𝑟

𝑖=1

+∑𝛽𝑗

𝑠

𝑗=1

𝜎𝑡
2 (4.98) 

which usually involves many other GARCH models as special cases. (Nasstrom, 2003, p.25). 

4.6 Testing for an ARCH Effect 

The ARCH effect is known as the conditional heteroscedasticity and its test is equivalent to check for 

serial correlations of squared series; such correlation is referred to as the volatility clustering (Chen et 

al., 2002, p.1). To get an understanding of the dependence structure of time series data, it is useful to 

calculate sample autocorrelations and check the significance of the relevant statistics such as the Ljung-

Box test (𝑄𝐿𝐵) of Ljung and Box (1970) or (𝑄𝐵𝑃) test of Box and Pierce (1978). Thus, for demonstration 

purpose, let 𝑐𝑡 be a series of errors or residuals. Then the Ljung-Box statistic is used to test if {𝑐𝑡} series 

is a white noise sequence, where the hypotheses to be tested are 

Ho ∶ 𝑇ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙 − 𝑙𝑎𝑔𝑠 𝑜𝑓  𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 {𝑐𝑡}  𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 𝑧𝑒𝑟𝑜, 

H1: 𝑇ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙 − 𝑙𝑎𝑔𝑠 𝑜𝑓  𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 {𝑐𝑡}  𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜. 

The Ljung-Box statistic is represented by 
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𝑄𝐿𝐵(𝑙) = 𝑇(𝑇 + 2)∑(

𝜌̂𝑘
2(𝑐𝑡)

𝑇 − 𝑘
)

𝑙

𝑘=1

, (4.99) 

where T is the sample size, l is the total number of lags, and 𝜌̂𝑘
2(𝑐𝑡) is the squared sample autocorrelation 

of residuals series 𝑐𝑡 at lag k. The sample autocorrelation 𝜌̂𝑘(𝑐𝑡) is given by 

 
𝜌̂𝑘(𝑐𝑡) =

∑ (𝑐𝑡 − 𝜇̂𝑇)
𝑇
𝑡=𝑘+1 (𝑐𝑡−𝑘 − 𝜇̂𝑇)

∑ (𝑐𝑡 − 𝜇̂𝑇)
2𝑇

𝑡=1

 (4.100) 

where 𝜇̂𝑇 =
1

𝑇
∑ 𝑐𝑡
𝑇
𝑡−1 . 

If {𝑐𝑡} is an i.i.d sequence and 𝑐𝑡 has a finite fourth moment, the 𝑄𝐿𝐵(𝑙) statistic has the asymptotic null 

distribution 𝜒2(𝑙). (Tsay, 2005, p.106; Chen et al., 2002, p.2). 

Now to test for an ARCH Effect or conditional heteroscedasticity, the Lagrange Multiplier LM test of 

Engle (1982) is used. This test is like the Ljung-Box (𝑄𝐿𝐵) test, except that it is based on sample 

autocorrelations of the squared series {𝑐𝑡
2}. The Lagrange Multiplier (LM) test statistic is given by 

 
𝑄𝐿𝑀(𝑙) = 𝑇(𝑇 + 2)∑(

𝜌̂𝑘
2(𝑐𝑡

2)

𝑇 − 𝑘
)

𝑙

𝑘=1

, (4.101) 

where T is the sample size, l is the total number of lags, and 𝜌̂𝑘
2(𝑐𝑡

2) is the squared sample autocorrelation 

of residuals series 𝑐𝑡 at lag k. The sample autocorrelation 𝜌̂𝑘(𝑐𝑡
2) is given by 

 
𝜌̂𝑘(𝑐𝑡

2) =
∑ (𝑐𝑡

2 − 𝜎̂𝑇)
𝑇
𝑡=𝑘+1 (𝑐𝑡−𝑘

2 − 𝜎̂𝑇)

∑ (𝑐𝑡
2 − 𝜇̂𝑇)

2𝑇
𝑡=1

 (4.102) 

where 𝜎̂𝑇 =
1

𝑇
∑ 𝑐𝑡

2𝑇
𝑡−1 . 

Under the null hypothesis, the Lagrange Multiplier test statistic is asymptotically distributed as a chi-

square distribution 𝜒2(𝑙) with l degrees of freedom. Thus, the null hypothesis is rejected if 𝑄𝐿𝑀(𝑙) >

𝜒2(𝛼), where 𝜒2(𝛼) is a 100(1 − 𝛼) percentile of a chi-square distribution with l degrees of freedom.   

(Chen et al., 2002, p.2; Tsay, 2005, p.106; Wang, et. al., 2005, p.58-59). 

4.7 An ARCH Model Selection Criteria 

Model section criteria are one of the important processes in data analysis, because all the inference, 

evaluation of data and good forecasting results depend heavily on the true model specification. 

Typically, there are four most common methods used for model selection, however, in this thesis we 

will focus mainly on two of them. The first one is Akaike’s information criterion. The Akaike 

Information Criterion, in the case of a least-squares estimation under normal distribution, can be given 

as 
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 𝐴𝐼𝐶 = −2 log(𝜎̂2) + 2𝑘, 
(4.103) 

where 𝜎̂2 is the estimated model error variance and k is the number of free parameters in the model. 

If the model includes ARCH type errors, the following modification was recommended by Bieren 

(2006) 

 𝐴𝐼𝐶 = −2 log(𝜎̂2) + 2(𝑘) − 1 − log(2𝜋). 
(4.104) 

or 

 𝐴𝐼𝐶 = −2 log(ℒ(𝜑̂|𝑐)) + 2𝑘, 
(4.105) 

  
 

 𝐴𝐼𝐶 = −2 log(ℒ(𝜑̂|𝑐)) + 2𝑘, (4.106) 

where ℒ(𝜑̂|𝑐) is the value of the likelihood function in 𝜑̂, the vector of the estimated parameters, given 

the observed data c and k is the number of parameters. (Chuffart, 2015, p.295). 

The AIC is suitable for a small sample, and with a large sample can be important in selecting the right 

model, hence it is not consistent. Therefore, many improvements have been made to overcome this 

inconsistency in this criterion. Then, the second criterion is Bayesian Information Criteria (BIC) which 

was developed to accommodate model selection in large samples and it has the form: 

where N is the sample size. In contrast to AIC, BIC has weak performance in selecting a model from a 

small sample. (Chuffart, 2015, p.295). 

These model selection criteria need several different models to be fitted, then the values of AIC or BIC 

are compared among the fitted models. The model with the least value of these information criteria is 

the best (Box et al., 2008, p.211-212). 

4.8 Chapter Summary 

In this chapter different volatility models were discussed as well as their parameter estimation 

procedures. The derivation of Maximum Likelihood Estimation for ARCH and/ GARCH models is 

provided with different distributions of the innovations. Forecasting methodologies for these models 

were also explained.  

 𝐵𝐼𝐶 = −2 log(ℒ(𝜑̂|𝑐)) +𝑘 log(𝑇), 
(4.107) 
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Chapter 5 

5. Application of SARIMA Models to Reserves Time Series Data  

A time series is a gathering of observations made sequentially over a certain period. The typical 

examples in which time series are developed are economics and finance, environmental data, 

meteorology and hydrology, medicine, demographics, quality control and engineering (Reinert, 2010). 

The main objective of time series analysis is to build models for relating the behaviour of an individual 

or multiple time series and come up with a methodology for specifying, estimating and validating or 

assessing an appropriate model for specific data (DuFour, 2008).  

S/ARIMA models are the most used flexible class of forecasting models used in time series analysis 

that utilize historical data to make predictions as described in Chapter 3. In this chapter, we apply these 

types of models to analyse and forecast the time series for South African official gold reserves, and 

foreign exchange reserves positions. From Chapter 3, fitting S/ARIMA models involves five steps: data 

preparation, model identification, model parameter coefficients estimation, fitted model diagnostics, 

and forecasting using the fitted model. We will follow these steps in fitting S/ARIMA models to gold 

and foreign exchange reserves positions series.  

5.1 Data Description 

The time-series datasets used in this study comprises of the South African Official Gold Reserves 

Positions, and Foreign Exchange (FX) Reserves Positions. The unit measurement of these reserves 

positions is ZAR million (R000). These reserves positions (observations) were collected every month-

end from 31 January 1994 to 31 May 2017. This is secondary monthly data obtained from South African 

Reserve Bank (SARB) website: (https: www.resbank.co.za), accessed on 12 April 2017.  

In every time series data analysis, a good starting point is to plot the series to have an insight of the data 

trends and visually examine it for any outliers, volatility, or irregularities, and thereby identify whether 

the series is stationary or not. A series can be considered as stationary when its mean, variance, and 

autocovariance are time-invariant, that is independent of time. Fitting some models like ARIMA model 

requires this assumption to hold for a series. This makes sense in a statistical context since ARIMA 

uses previous lags of series to model its behaviour and modelling stable series with consistent properties 

reduces the uncertainty. In this study, we will use both KPSS and ADF formal statistical tests in R-

studio to test for stationarity of the data after taking differences into account, where applicable.  

Autocorrelation plots or autocorrelation function (ACF) can also play a pivotal role in visualizing 

whether the series is stationary since it displays the correlation between observations at different lags. 

Usually, if the ACF plots suggest that the series is correlated, then generally, there are some trend or 

seasonal components, hence statistical properties are not constant over time and therefore the series is 
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non-stationary. In addition, ACF plots can also be used in suggesting the order of differencing if the 

series is non-stationary. 

The plots for these reserves’ positions are displayed in Figure 5.1. It can be seen from these plots that 

positions for both reserves are generally rising in the long-run. 

         

(a) Gold Reserves Positions                     (b) Foreign Exchange Reserves Positions 

Figure 5.1 : Gold and foreign exchange reserves positions time series plots. 

  

5.2 Gold Reserves Data Analysis 

Table 5.1 below has descriptive statistics. The table shows that the standard deviation is R21.84 million; 

this indicates a high level of volatility in the gold reserves positions. The average monthly gold reserves 

positions is R26.02 million. The minimum is R4.38 million and the maximum is R79.66 million. This 

huge gap between minimum and maximum supports the high variability of positions in the gold 

reserves. To check the normality assumption, kurtosis and skewness can be used. Under the normality 

distribution, the kurtosis and skewness should be equal to 3 and 0, respectively. When the data is 

asymmetric it normally yields a positive or negative skew, otherwise the data is symmetrically 

distributed. The coefficient of kurtosis that is less than or greater than 3, indicates the flatness and 

peakedness, respectively. Table 5.1 shows a positive skew of 0.79, which implies that the distribution 

of the gold reserves position has a long right tail and a deviation from normality. The coefficient of 

kurtosis is -0.80, showing that the distribution is not normal but flattened.  
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Table 5.1: Descriptive statistics for gold reserves positions. 

Descriptive StatisticsValues

No. of Obs. 281,00    

Min. 4,38       

Max. 79,66      

Mean 26,02      

Median 16,44      

Range 75,28      

Std. Dev. 21,84      

Std. Error 1,30       

Kurtosis 0,80-       

Skewness 0,79       

Sum 7 311,65  

5.2.1 Data Preparation 

In this sub-section we explore gold reserves positions data to identify if there is a presence of some time 

series components such as trend, seasonality, and some random variation which caused variability of 

the data. We will use two formal statistical tests to check for stationarity and if the results from both 

tests come out showing that the data is non-stationary, we will, therefore, use the appropriate 

transformation techniques to transform the data to be stationary. 

Figure 5.2 below shows the gold reserves positions plot; the data is clearly non-stationary, with an 

upward trend and some variation (which looks like seasonality with period 12) across, so variance 

stabilization and detrending might be required to transform the data. The ACF plot also shows 

significant autocorrelations with many lags, and its values start high and gradually die down slowly but 

never cuts off, which usually symbolizes non-stationarity in the series. 

However, there is a necessity for a formal statistical test for stationarity to verify our visual inspection. 

We used two statistical tests defined in sub-section 3.4.1.1 to check for stationarity into the data, namely, 

Augmented Dickey-Fuller and KPSS tests. Table 5.2 shows the results from two statistical tests for 

stationarity. 
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Figure 5.2: Gold reserves time series, ACF and PACF plots. 

 

Table 5.2: Results of the ADF and KPSS tests for the stationarity of the original series of gold 

reserves positions. 

Augmented Dickey-Fuller Test 

Data Gold Reserves Positions 

Dickey-Fuller -2.180 

Lag Order 6.000 

P-value 0.500 

KPSS Test 

Data Gold Reserves Positions 

KPSS Level 4.242 

Lag Parameter 5.000 

P-value 0.010 
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The results from two statistical tests in Table 5.2 show that the p-value of Augmented Dickey-Fuller 

test is greater than 0.05 (p-value = 0.500>0.05). Therefore, we fail to reject the null hypothesis of non-

stationarity of the series. The p-value of KPSS test is less than 0.05 (p-value = 0.01<0.05) which implies 

that we have enough evidence to reject the null hypothesis of stationarity of the series.  Now based on 

the above results we can conclude that gold reserves data is non-stationary at 5% level of significance, 

hence we need to apply data transformation.  

The original series was log transformed by applying Box-Cox technique with lambda=0 which is 

equivalent to log transformation. The log transformed series was differenced to remove the linear trend 

(d=1) and seasonality period 12 (D=1). Figure 5.3 displays the time series plot, ACF and PACF plots 

of the resultant series. The series is now looking stationary since the plot of the data shows an oscillating 

pattern around 0 with no visible trend, which may suggest stationarity in the series. This is also being 

supported by the sample ACF and PACF that lie within the bounds ±1.96/√n roughly 95% of the time, 

which suggests that this series has no serial correlation. However, it is always necessary to conduct a 

formal statistical test to check for stationarity to verify visual inspection before jumping to a conclusion. 

We use two statistical tests to test for stationarity into the data, namely Augmented Dickey-Fuller and 

KPSS tests. Table 5.3 shows the results from two statistical tests for stationarity.  
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Figure 5.3: The time series, ACF and PACF plots of detrended (d=1) and period 12 de-seasonalized 

(D=1) log transformed gold reserves positions. 

The results from the statistical tests in Table 5.3 show that the p-value of the Augmented Dickey-Fuller 

test is less than 0.05 (p-value = 0.01<0.05). Therefore, the null hypothesis of non-stationarity of the 

series is rejected. The p-value of KPSS test is greater than 0.05 (p-value = 0.1>0.05) which implies that 

we do not have enough evidence to reject the null hypothesis of stationarity of the series.  Now based 

on these results we can conclude that differenced log gold reserves data is stationary at 5% level of 

significance. 
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Table 5.3: Results of the ADF and KPSS tests for the stationarity of the non- and seasonally 

differenced log gold reserves positions. 

Augmented Dickey-Fuller Test 

Data Gold Reserves Positions 

Dickey-Fuller -6.668 

Lag Order 6.000 

P-value 0.010 

KPSS Test 

Data Gold Reserves Positions 

KPSS Level 0.077 

Lag Parameter 5.000 

P-value 0.100 

 

5.2.2 Model Identification 

Our aim is to find an appropriate SARIMA model to predict future positions of the gold reserves based 

on the ACF and PACF plots shown in Figure 5.3. The significant spike at lag 1 in the ACF suggests a 

non-seasonal MA (1) component, and the significant spike at lag 12 and 24 in the ACF suggests a 

seasonal MA (2) component. Consequently, we begin by fitting an SARIMA (0,1,1)(0,1,2)12 model [or 

ARIMA (0,1,1)(0,1,2)12 model], with non-seasonal MA(1),  seasonal MA(2) components and first non-

seasonal and seasonal differences (d=1 and D=1) and then vary both values of (p, q) by adding or 

subtracting 1 (±1) from this model to identify the exact possible values of AR and MA components. 

Looking at the sample PACF plot from Figure 5.3, we could have chosen the SARIMA (1,1.0) (2,1,0)12 

model as our initial model. To verify our initial guessed model, we can use AUTO.ARIMA() function 

(Hyndman and Khandakar: JSS, 2008) from forecast r package to generate an appropriate model. The 

AUTO.ARIMA() function selects a number of differences d and D via unit root test and (p, q) by 

minimizing AIC (Hyndman et al., 2014, pp.78). This function gives SARIMA (0,1,1) (0,1,2)12, which 

is aligned to our initial identified model.  

5.2.3 Model Diagnostics and Parameter Coefficients Estimation 

Table 5.4 shows a set of different possible models fitted to the data. To select an appropriate model 

from the set we need to start by examining ACF plots from their residuals to identify if there is no 

correlation present among the model residuals. If the order of parameters for a specific model and 

structure are correctly specified, then we expect to have no significant autocorrelations among the 

residuals. However, the examination of residuals alone is not enough to conclude that the fitted model 

is appropriate or not. Hence, we must use other criteria to ensure the selection of the right model. 
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Normally, the criteria used in selecting the appropriate model fitted include but are not limited to AIC, 

RMSE, log-likelihood, and sometimes significance of parameters. The smaller the magnitude of AIC 

and RMSE and the larger log-likelihood the better the model fitted. 

Table 5.4: Goodness of fit statistics of the different models fitted to the series of gold reserves 

positions. 

Model 

Significant of 

Parameter, 

SARIMA 

AIC RMSE 
Log-

Likelihood 

Ljung-Box Test 

p-values  

1. SARIMA (0,1,1) (0,1,2)12 Only Θ̂1 sig. -669 1.840 339 0.324 

2. SARIMA (0,1,2) (0,1,2)12 Only Θ̂1 sig. -669 1.837 340 0.459 

3. SARIMA (1,1,2) (0,1,2)12 Only Θ̂1 sig. -668 1.841 340 0.446 

4. SARIMA (1,1,1) (0,1,2)12 Only Θ̂1 sig. -669 1.834 339 0.385 

5. SARIMA (1,1,0) (0,1,2)12 All sig.  -670 1.838 339 0.353 

6. SARIMA (0,1,0) (0,1,2)12 All sig. -670 1.852 338 0.239 

 

From Table 5.4 above all models are quite close which makes it hard to select the appropriate one, 

though the 5th and 6th models are looking better in terms of AIC and significant of parameters. Since 

residuals autocorrelation is okay for all models (all uncorrelated), it is hard to infer from them. 

Therefore, the choice is between only the 5th and 6th models in the table. However, looking at the two 

models’ RMSE and log-likelihood it is quite clear that the best model is SARMA (1,1,0) (0,1,2)12, since 

it has the smallest RMSE (1.838) and largest log-likelihood (339) compared to SARIMA (0,1,0) 

(0,1,2)12 model with RMSE of 1.852 and 338 log-likelihood. 

We tried other models with non-seasonal AR terms as well, but none that gave a smaller AIC value. 

Consequently, we chose the SARIMA (1,1,0) (0,1,2)12 model. Its residuals are plotted in Figure 5.4. All 

the spikes are now within the significance limits except one spike at lag 11, so by being generous, we 

can infer that residuals appear to be white noise. The Ljung-Box test in Table 5.5 also shows that the 

residuals for this model have no remaining autocorrelations (Q*(df = 24) = 22.838, & p-value 

=0.353>0.05). The summary of the fitted model with its parameter coefficients estimates is shown in 

Table 5.6 with all coefficient parameters being significant. 
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Figure 5.4: Residuals from SARIMA (1,1,0) (0,1,2)12 model. 

 

Table 5.5: Ljung-Box test results for residuals from selected fitted SARIMA (1,1,0) (0,1,2)12 model. 

Ljung-Box Test 

Q* Df p-value 

22.838 24 0,3523 
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Table 5.6: Parameter estimates of the selected SARIMA (1,1,0) (0,1,2)12 model for the gold reserves 

series. 

      
Confidence Interval 

Parameter 

Estimates 
Coefficient 

Std 

Error 
2.50% 97.50% 

∅̂1  -0.091 0.062 -0.212 -0.021 

𝛩̂1 -0.964 0.089 -1.139 -0.789 

𝛩̂2 -0.036 0.062 -0.157 -0.085 

 

Then the selected model to forecast gold reserves positions can be mathematically expressed as: 

 

𝑋̂𝑡 = −0.091𝑋̂𝑡−1 + 0.964𝜀𝑡−12 + 0.036𝜀𝑡−24. 

 (5.1) 

 

5.2.4 Forecasting Gold Reserves Positions Using SARIMA Models 

The forecasting process using the selected model is simple in R-studio. First, the forecast horizon (h 

periods ahead) is specified and forecasts can then be run. The 24 months forecasts using the fitted model 

are shown in Figure 5.5. The large and rapidly increasing prediction intervals show that the gold 

reserves positions forecasts have increasing prediction error over time. There seems to be a slight 

upward trend, hence the gold reserves positions are expected to increase in the next 24 months. 
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Figure 5.5: Gold reserves positions forecasts from SARIMA (1,1,0) (0,1,2)12 model. 

The gold reserves positions forecasts obtained using the SARIMA (1,1,0) (0,12)12 model are shown in 

Appendix A. 

5.3 Foreign Exchange Reserves Data Analysis 

In this section, we identify estimates and fit the SARIMA model to the foreign exchange reserves 

positions. 

The result in Table 5.7 shows that the standard deviation is R190.27 million, this implies a high level 

of volatility in the foreign exchange reserves positions. The average monthly foreign exchange reserves 

positions is R193.70 million. The minimum is R1.62 million, and the maximum is R654.98 million; 

this wider gap between minimum and maximum supports the high variability of positions in the foreign 

exchange reserves. The result from Table 5.7 shows a positive skew of 0.81, which implies that the 

distribution of the foreign exchange reserves positions has a long right tail and a deviation from 

normality. The coefficient of kurtosis is -0.62, implies that the distribution is not normal but flattened. 
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Table 5.7: Descriptive statistics for foreign exchange reserves positions 

Descriptive StatisticsValues

No. of Obs. 281,000       

Min. 1,618          

Max. 654,981       

Mean 193,704       

Median 113,575       

Range 653,363       

Std. Dev. 190,274       

Std. Error 11,351        

Kurtosis 0,623-          

Skewness 0,806          

Sum 54 430,763   

 

5.3.1 Data Preparation 

Here we explore foreign exchange reserves positions data, to identify the presence of some time series 

components, such as trend, seasonality, and some random variation caused variability of the data. Two 

formal statistical tests are used to test for stationarity and if the results from both tests show that the 

data is non-stationary, the data transformation techniques will be performed to convert the data. 

Figure 5.6 below shows the foreign exchange reserves positions plot; the data is clearly non-stationary, 

with an upward trend and some variation or fluctuation which might suggest seasonality of period 12 

since it is a monthly data, so variance stabilization and detrending or differencing might be required to 

transform the data. The ACF plot also shows significant autocorrelations with many lags, and its values 

start high and gradually die down slowly but never cut off. Therefore, we conduct a formal statistical 

test for stationarity to verify our visual inspection. Table 5.8 shows the results from Augmented Dickey-

Fuller and KPSS statistical tests for stationarity. 
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Figure 5.6: Foreign exchange reserves time series, ACF and PACF plots. 

 

Table 5.8: Results of the ADF and KPSS tests for the stationarity of the foreign exchange reserves 

positions. 

Augmented Dickey-Fuller Test 

Data FX Reserves Positions 

Dickey-Fuller -1.792 

Lag Order 6.000 

P-value 0.664 

KPSS Test 

Data FX Reserves Positions 

KPSS Level 4.339 

Lag Parameter 5.000 

P-value 0.010 
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The results from two statistical tests in Table 5.8 above show that the p-value of Augmented Dickey-

Fuller test is greater than 0.05 (p-value = 0.664>0.05), therefore we fail to reject the null hypothesis of 

non-stationarity of the series. The p-value from KPSS test is less than 0.05 (p-value = 0.01<0.05) which 

implies that we have enough evidence to reject the null hypothesis of stationarity of the series.  Now 

based on the above results we can conclude that foreign exchange reserves data is non-stationary at 5% 

level of significance. 

Figure 5.7 shows transformed data with the Box-Cox variance transformation technique and non-

seasonal and seasonal differencing. We have removed variability from the series by applying the Box-

Cox technique using Box-Cox.lambda() R function to automate the value of lambda (lambda= 

0.4216916). The log transformation (where lambda=0) technique was firstly applied to the series, 

however, it has failed to completely remove the variability from the series. The presence of the trend 

and seasonal components from the data were removed by non-seasonal and seasonal differencing of 

order 1 (d=1 and D=1), respectively. The data is now looking stationary since the plot of the data shows 

an oscillating pattern around 0 with no visible trend, which may suggest stationarity in this series. This 

is also being supported by the sample ACF and PACF that lie within the bounds ±1.96/√n roughly 95% 

of the time, which suggests that this series has no serial correlation. Now we conduct a formal statistical 

test to check for stationarity to verify the visual inspection. Table 5.9 shows the results from Augmented 

Dickey-Fuller and KPSS statistical tests for stationarity. 
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Figure 5.7: The time series, ACF and PACF plots of detrended (d=1) and period 12 de-seasonalized 

(D=1) log transformed foreign exchange reserves positions. 

The results from two statistical tests in Table 5.9 below show that a p-value of Augmented Dickey-

Fuller test is less than 0.05 (p-value = 0.01<0.05), therefore we reject the null hypothesis of non-

stationarity of the series. The p-value from KPSS test is greater than 0.05 (p-value = 0.10>0.05) which 

implies that we do not have enough evidence to reject the null hypothesis of stationarity of the series.  

Now based on these results we can conclude that differenced log foreign exchange reserves series is 

stationary at 5% level of significance. 
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Table 5.9: Results of the ADF and KPSS tests for the stationarity of the non- and seasonally 

differenced log foreign exchange reserves positions. 

Augmented Dickey-Fuller Test 

Data FX Reserves Positions 

Dickey-Fuller -5.682 

Lag Order 6.000 

P-value 0.010 

KPSS Test 

Data FX Reserves Positions 

KPSS Level 0.068 

Lag Parameter 5.000 

P-value 0.100 

 

5.3.2 Model Identification 

Our aim is now to find an appropriate SARIMA model based on the ACF and PACF shown in Figure 

5.7. The significant spike at lags 12 and 24 from the PACF suggests a seasonal AR (2) component(s). 

Therefore, our initial model is SARIMA (0,1,0) (2,1,0)12 model, indicating non-seasonal and seasonal 

differencing of order 1 (d=1 & D=1), and seasonal AR (2) components. Similarly, based on the ACF 

interpretation, we could have started with an SARIMA (0,1,0) (0,1,1)12 model. Now we can vary both 

values of (p, q) by adding or subtracting 1 (±1) from this model to identify the exact possible values of 

AR and MA components. The AUTO.ARIMA () function has suggested the model SARIMA (0,1,0) 

(0,0,2)12, which is completely different from our initial guessed model, hence we will fit this model as 

well. 

5.3.3 Model Diagnostics and Parameter Coefficients Estimation 

Table 5.10 shows a set of different possible models fitted into the data and to select an appropriate 

model from the set we need to look at all the selection criteria; that is, the model with a smallest AIC 

and RMSE, largest log-likelihood, significant parameter coefficients estimates, and uncorrelated 

residuals.  
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Table 5.10: Goodness of fit statistics of the different models fitted to the series of foreign exchange 

reserves positions. 

Model 
Significant Parameters, 

SARIMA 
AIC RMSE 

Log-

Likelihood 

Ljung-Box Test 

p-values for 

Residuals 

SARIMA (0,1,0) (2,1,0)12 All sig. 361 11.394 -165 0.087 

SARIMA (1,1,0) (2,1,0)12 Only ∅̂1 not sig.  362 11.852 -177 0.083 

SARIMA (0,1,1) (2,1,0)12 Only 𝜃1 not sig. 363 11.843 -177 0.083 

SARIMA (1,1,1) (2,1,0)12 Only 𝜃1 not sig.  363 11.872 -177 0.072 

SARIMA (0,1,0) (0,0,2)12 Only 𝛩̂2 not sig.  337 11.349 -175 0.137 

 

From Table 5.10 above the 1st and 5th models look more appropriate in terms of AIC and RMSE. 

However, looking at the two models’ significance of parameter coefficients and their log-likelihood it 

is quite clear that the best model is SARIMA (0,1,0) (2,1,0)12 since all its parameter coefficients are 

significant at 5% level of significance and it has the largest log-likelihood. Therefore, we select this 

model as our best model to be fitted to foreign exchange reserves positions data.  

The selected model residuals are plotted in Figure 5.8. All the spikes are now within the significance 

limits; therefore, residuals appear to be white noise. The Ljung-Box test in Table 5.11 also shows that 

the residuals for this model are not autocorrelated (Q*(df = 22) = 31.483, & p-value = 0.087>0.05). The 

summary of the fitted model with its parameter coefficients estimates is shown in Table 5.12.  
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Figure 5.8: Residuals from SARIMA (0,1,0) (2,1,0)12 model. 

Table 5.11: Ljung-Box test results for residuals from selected fitted SARIMA (0,1,0) (2,1,0)12 model. 

Ljung-Box Test 

Q* Df p-value 

31,483 22 0,087 

 

Table 5.12: Parameter estimates of the selected SARIMA (0,1,0) (2,1,0)12 model for the foreign 

exchange reserves series. 

   

Confidence Interval 

Parameter 

Estimates 
Coefficient 

Std 

Error 
2.50% 97.50% 

𝛷̂1 -0.760 0.051 -0.878 -0.643 

𝛷̂2 -0.355 0.061 -0.474 -0.235 
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The selected model to forecast foreign exchange reserves positions can be mathematically expressed 

as: 

 𝑋̂𝑡 = −0.760𝑋̂𝑡−12 − 0.355𝑋̂𝑡−24 (5.2) 

 

5.3.4 Forecasting Foreign Exchange Reserves Positions using SARIMA models 

Since the fitted Seasonal ARIMA model has satisfied all required conditions it can now be used for 

forecasting. Forecasts for foreign exchange reserves positions for the next 24 months are shown in 

Figure 5.9. The large and rapidly increasing prediction intervals show that the foreign exchange reserves 

positions have increasing forecast error margins in time, thus forecast accuracy decreases with an 

increasing forecasting horizon.  

 

Figure 5.9: Forecasts from SARIMA (0,1,0) (2,1,0) 12 model. 

The foreign exchange reserves positions forecasts obtained using the SARIMA (0,1,0) (2,1,0)12 model 

are shown in Appendix A.   

5.4 Chapter Summary 

In this chapter, two datasets were analysed, that is, data for gold reserves positions, and foreign 

exchange (FX) reserves positions. The method of Box-Jenkins was applied to these datasets to forecast 

the future reserves positions up to end of May 2019.  Now, since we have seen that our data has some 
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variation, we test whether there is a necessity to apply volatility models to cater for variability from the 

series or the fitted SARIMA models have dealt with these variations completely.  

Table 5.13 shows serial correlation test results of the residuals from both models, SARIMA (1,1,0) 

(0,1,2)12 and SARIMA (0,1,0) (2,1,0)12 for gold reserves series and foreign exchange reserves series, 

respectively. The result (𝜒2(23) = 22.838, p-value=0.470) from Table 5.13 shows that there is no 

serial correlation from the residuals of the SARIMA (1,1,0) (0,1,2)12 model (gold reserves series model). 

Hence the mean model fitted for gold reserves series has removed the correlation completely from this 

series.  On the other hand, the result (𝜒2(24) = 31.483, p-value=0.140) from Table 5.13 also shows 

that there is no serial correlation from the residuals of the SARIMA (0,1,0) (2,1,0)12 model (foreign 

exchange reserves series model). Again, this implies that the fitted model has removed the correlation 

completely from the foreign exchange series. 

 

Table 5.13: The gold and foreign exchange reserves serial correlation test. 

Data X-Squared df p-value

Gold Reserves Series (Mean Model Residuals) 22,838 23 0,470

Foreign Exchange Reserves Series (Mean Model Residuals) 31,483 24 0,140  

Table 5.14 shows the results from the statistical test for serial correlation in a variance (heteroscedastic 

or ARCH Effect test). The test shows that squared residuals for SARIMA (1,1,0) (0,1,2)12 model are 

uncorrelated (𝜒2(23) = 22.455, p-value=0.493), hence the gold reserves series does not have ARCH 

Effect. However, the squared residuals for SARIMA (0,1,0) (2,1,0)12 model seem to be correlated 

(𝜒2(24) = 36.787, p-value=0.046), therefore the foreign exchange reserves series has an ARCH 

Effect. 

Table 5.14: The gold and foreign exchange reserves ARCH Effect (heteroscedasticity) 

test from the SARIMA model residuals. 

Data X-Squared df p-value

Gold Reserves Series (Mean Model Squared Residuals) 22,455 23 0,493

Foreign Exchange Reserves Series (Mean Model Squared Residuals) 36,787 24 0,046  

Since we found that there is no ARCH Effect from the gold reserves series, there is no need to fit the 

volatility (ARCH and/or GARCH) models. Therefore, the initial fitted SARIMA (1,1,0) (0,1,2)12 model 

is the best model for making predictions up to 24 months for the monthly gold reserves positions in 

South Africa. Hence the Central Reserve Bank of South Africa can use this model to make predictions. 

We believe that this model will help the central bank to make fact-based decisions and stabilize the 

whole economy for the country. 
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The foreign exchange reserves series has been found to have an ARCH Effect, which means the initial 

fitted SARIMA (0,1,0) (2,1,0)12 model has failed to dealt with the volatility from this series. Therefore, 

there is a necessity to fit the volatility (ARCH and/or GARCH) models for this series to cater for 

variability. 

In conclusion the gold reserves series or data can be modelled adequately by SARIMA model whilst 

the SARIMA model is not adequate for the foreign exchange reserves series or data thus this is carried 

over to chapter 6. 
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Chapter 6 

6. Volatility Models Application to Foreign Exchange Data 

6.1 Introduction 

This chapter focuses on the application of ARCH and GARCH models to the data sets introduced in 

Chapter 5. The chapter demonstrates how the heteroscedasticity models’ theory in Chapter 4 is applied 

to real data. These models were fitted using the R-Studio statistical software. 

6.2 Model Selection Criteria 

The choice for the best model can be based on the information criteria such as AIC and BIC as 

mentioned in Chapter 4, the smaller the AIC and/or BIC values, the better the model fitted. The 𝑅2 and 

RMSE can also be used as the best model selection criteria, the larger and smaller the values of 𝑅2 and 

RMSE, respectively, the better the model. In this study, we will base our best model selection on the 

AIC and BIC. However, the AIC and BIC only are not enough to infer that the fitted model is the best; 

hence, below are some other conditions the model must satisfy: 

1. All the parameters estimates should be significant, 

2. The model fitting iterative procedures should converge, and 

3. The sum of the parameters 𝛼𝑖 and 𝛽𝑗, for 𝑖 = 1, 2, … , 𝑝 and 𝑗 = 1, 2, … , 𝑞  in the model should 

be less or equal to one, 

4. The model selected should be parsimonious, that is, it must have as few parameters as possible. 

6.3 Analysis of Foreign Exchange Reserves 

From Chapter 5, the selected mean model for foreign exchange reserves series was SARIMA (0,1,0) 

(2,1,0)12 with p = 0 and q = 0. Hence, we shall attempt to fit the SARIMA (0,1,0) (2,1,0)12 – GARCH 

(s, r) model or the standard GARCH (s, r) model, since both parameters from the mean model are equals 

to zero (i.e., p = q = 0). Hence, in this chapter you will notice that we often use GARCH (s, r) than 

SARIMA (p, q) – GARCH (s, r). To get the most robust GARCH model we may need to fit different 

GARCH models to the data with the different distributions described in Chapter 4. Usually, the standard 

order of s and r is less than or equal to 2, which implies that the values of s and r can vary between 0, 

1, and 2. However, this is not always the case as sometimes the values of s and/ or r can be greater than 

2 since this is informed by the number of lags which remove the ARCH Effect and autocorrelation in 

the residuals after fitting the GARCH model.  
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Table 6.1: GARCH – type models fitted with normal distribution. 

Model AIC BIC Log-

Likelihood 

Sig. Parameters at 

5% L.o.S 

GARCH (1,0) 1.219 1.271 -167.251 All sig. 

GARCH (2,0) 1.220 1.284 -166.371 𝛼̂2 not sig. 

GARCH (1,1) 1.187 1.252 -161.820 All sig.  

GARCH (1,2) 1.184 1.262 -160.410 𝛽̂1 not sig. 

GARCH (2,1) 1.198 1.276 -162.317 𝛼̂2 not sig. 

GARCH (2,2) 1.189 1.279 -159.994 𝛼̂2 and 𝛽̂1 not sig. 

 

Table 6.1 shows the results from different models fitted with the normal ϵt distribution; the ARCH (1) 

or GARCH (1,0) model seems to be more suitable than the ARCH (2) or GARCH (2,0) model since all 

parameters for ARCH (1) are significant and it has the smallest AIC and BIC values when compared to 

the other models. However, we cannot infer that this is the best model to modelled the data when we 

compare it with the general GARCH (s, r) model where s, r≥1. Therefore, we have to discard the ARCH 

(1) model and consider other GARCH (s, r) models. As described in Chapter 4, GARCH models are 

better than ARCH models. From Table 6.1, it is clearly seen that the GARCH (1,1) model is the model 

of best fit to the data, since it is the only model with all significant parameters, and it is the only one 

that has the smallest AIC and BIC values, and highest log-likelihood. 

Table 6.2 : MLE parameter estimates for fitted GARCH (1,1) model, conditional on the normal 

distribution. 

Parameter 

Estimates 

Coefficients' 

Estimates 

Std. 

Error 

t-value p-value  

ꙍ̂ 0.024 0.016 2.053 0.040 

𝛼̂1 0.229 0.074 3.094 0.002 

𝛽̂1 0.684 0.084 8.192 < 0.001 

Skew 1.307 0.133 9.847 < 0.001 

 

Table 6.2 shows the results of the fitted model with all parameter estimates being significant at the 5% 

level of significance. There is now a need to perform the diagnostic tests of the fitted model to check if 

the standardized residuals are stationary and normally distributed.  
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Table 6.3: Normality test statistics with p – values for standardized residuals tests from GARCH 

(1,1) model under the standard normal distribution. 

Statistical Test Standardised 

Residuals 

Test 

Statistic 

Test Statistic 

Value 

p-value 

Jarque-Bera Test R Chi2 54.306 < 0.001 

Shapiro-Wilk Test R W 0.965 < 0.001 

Ljung-Box Test R Q (10) 7.580 0.670 

Ljung-Box Test R Q (15) 12.071 0.674 

Ljung-Box Test R Q (20) 18.012 0.587 

Ljung-Box Test R2 Q (10) 7.606 0.667 

Ljung-Box Test R2 Q (15) 14.772 0.468 

Ljung-Box Test R2 Q (20) 16.088 0.711 

LM Arch Test R TR2 10.836 0.543 

 

 

Figure 6.1: Standardized and squared standardized residuals ACF for GARCH (1,1) model fitted with 

standard normal distribution. 
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Figure 6.2: Standardized residuals frequency distribution vs. standard normal distribution density. 

The results in Table 6.3 show that there is no evidence of autocorrelated residuals, and no ARCH Effect 

present in the series. This is supported by the Ljung-Box and LM Arch tests, where all the test statistics 

of standardized (R) and squared standardized residuals (R2) are not significant at the 5% level of 

significance. Figure 6.1 shows the autocorrelation function (ACF) of residuals and squared residuals 

used to assess if there is neglected dependence in the conditional mean and variance, respectively. 

Overall, there is weak evidence of auto-correlation in the standardized residuals and their squared 

values, so that, from this standpoint, the GARCH (1,1) model with a normal distribution seems to be 

well specified to model the foreign exchange reserves positions series. 

However, the Shapiro – Wilk test (W=0.965, p – value< 0.001) and Jarque – Bera test (Chi2= 54.306, 

p – value< 0.001) are both significant, thus their null hypotheses of normally distributed residuals are 

rejected. This means that the standardized residuals do not come from the normal (Gaussian) 

distribution, hence the indication of significant departure from normality. This is supported by 

Figure 6.2, which compares the frequency distribution of the standardized residuals with the standard 

normal distribution. The histogram of the standardized residuals has a large peak at the centre of the 

distribution and a fatter right tail relative to the normal, although this is difficult to see in the graph. 

Since normality assumption is rejected, we must consider models with different distributions such as 

the student-t (std), skewed student-t (sstd), and the generalized error (ged) governing the innovations. 
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Table 6.4: GARCH (1,1) models fitted with student – t (std), skewed student – t (sstd) and generalized 

error (ged) distribution.  

Model Distribution AIC BIC Log-

Likelihood 

Sig. Parameters at 

5% L.o.S 

1. GARCH (1,1) std 1.178 1.243 -160.490 ꙍ̂ and 𝛽̂1 not sig. 

2. GARCH (1,1) ged 1.740 1.252 -158.953 ꙍ̂ and 𝛼̂2 not sig. 

3. GARCH (1,1) sstd 1.159 1.224 -157.861 All sig. 

 

Tables 6.4 shows maximum likelihood estimation parameter of GARCH (1,1) model fitted with all the 

three distribution, viz., student-t distribution (std), skewed student-t distribution (sstd), and generalized 

error distribution (ged). since it has the smallest AIC and BIC, respectively. When we compared the 

three GARCH (1,1) models fitted with different distributions, it is clearly that the best model is GARCH 

(1,1) fitted with skewed student – t distribution (sstd). This model has smallest AIC, BIC, and largest 

log – likelihood, respectively. Even its parameters are all significant at 5% level of significance. 

Furthermore, the QQ – plots in figure 6.3, shows that the GARCH (1,1) model fitted with skewed 

student-t distribution is the only model with points that fall approximately along the 45-degree reference 

line of the QQ – plot (i.e., data points are scattered around the straight line) when compared to the 

others. 
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Figure 6.3: QQ-Plots for GARCH (1,1) model fitted with different distributions governing the 

innovations. 

The parameter estimates of the GARCH (1,1) model fitted with the skewed student – t distribution is 

shown in Table 6.5 and all the parameters are significant at the 5% level of significance. 

Table 6.5: MLE parameter estimates of GARCH (1,1) model fitted with skewed student – t 

distribution (sstd).  

Parameter 

Estimates 

Coefficients' 

Estimates 

Std. 

Error 

t-value p-value  

 ꙍ̂   0.019 0.012 1.596 0.0110 

𝛼̂1 0.280 0.105 2.666 0.008 

𝛽̂1 0.677 0.087 7.824 0.000 

Skew 1.170 0.114 10.234 0.000 

Shape 7.043 3.543 1.988 0.047 
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The residuals diagnostics under the skewed student-t distribution are presented in Table 6.6. The Ljung-

Box test for standardized residuals and squared standardized residuals for all lags reveals that there is 

no evidence that residuals are autocorrelated and conditionally heteroscedastic (ARCH Effect), 

respectively at the 5% level of significance. The Shapiro-Wilk and Jarque-Bera tests are not significant 

at the 5% level of significance, which confirms that the standardized residuals are not from the normal 

distribution as oppose to the results from Table 6.3. 

Table 6.6: Standardized residuals tests for GARCH (1,1) model under skewed student-t distribution. 

Statistical Test Standardized 

Residuals 

Test 

Statistic 

Test Statistic 

Value 

p-value 

Jarque-Bera Test R Chi2 62.484 0.634 

Shapiro-Wilk Test R W 0.962 0.596 

Ljung-Box Test R Q (10) 7.409 0.686 

Ljung-Box Test R Q (15) 11.458 0.720 

Ljung-Box Test R Q (20) 17.282 0.635 

Ljung-Box Test R2 Q (10) 7.573 0.670 

Ljung-Box Test R2 Q (15) 14.346 0.499 

Ljung-Box Test R2 Q (20) 15.649 0.738 

LM Arch Test R TR2 11.182 0.513 

 

 The ACF plots for standardized residuals and squared standardized residuals are shown in Figure 6.4. 

The plots show that the ACF of standardized residuals are not autocorrelated since the sample ACF lies 

within the bounds ±1.96/√n roughly 95% of the time, which indicates the good fit of the model. The 

squared standardized residuals also show no autocorrelation present, and this means that the conditional 

heteroscedasticity (ARCH Effect) has been completely removed from the series. 
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Figure 6.4: Standardized residuals ACF for GARCH (1,1) model with skewed student-t 

distribution. 

 The equation of the fitted model can be written as: 

 

𝜎̂𝑡
2 = ꙍ̂ + 𝛼̂1𝜖𝑡−1

2 + 𝛽̂1𝜎𝑡−1
2 , 

𝜎̂𝑡
2 = 0.019 + 0.280𝜖𝑡−1

2 + 0.677𝜎𝑡−1
2 . 

 (6.1) 

Figure 6.5 shows the forecasts obtained using the GARCH (1,1) model fitted with the skewed student-

t distribution governing the innovations. The plots show that the mean for foreign exchange reserves is 

expected to remain constant over the 24 months while the variance is expected to increase exponentially. 

Appendix B shows the 24 months’ forecasts using the fitted model. 
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Figure 6.5: The forecasts from GARCH (1,1) model fitted with skewed student-t distribution 

governing the innovations. 

 

6.4 Chapter Summary 

In this chapter, volatility models were fitted to foreign exchange (FX) reserves series or data. The 

necessity to fit volatility models to this type of series was found in chapter 5 where we developed the 

mean model SARIMA (0,1,0) (2,1,0)12. Therefore, used its standardized residuals and squared 

standardized residuals to test for serial correlation and ARCH Effect from the series. The test results 

showed that foreign exchange reserves data was uncorrelated but exhibited an ARCH Effect, thus 

SARIMA models could not adequately modelled this type of data. Hence the reason we proceed to fit 

the volatility models to modelled the data, so that the variability is being captured. The best volatility 

model for foreign exchange reserves data was found to be a GARCH (1,1) model fitted with skewed 

student-t distribution governing the innovations (SARIMA (0,1,0) (2,1,0)12 – GARCH (1,1) – SSTD). 
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Chapter 7 

7. Holt-Winters' Method in Time Series Analysis 

7.1 Introduction 

It is always a brilliant idea when forecasting to compare the developed models with simple benchmark 

models to see which model outperforms other models. In this chapter, we discuss Holt-Winters method 

as compared to S/ARIMA forecasting models discussed and developed in Chapter 3 and Chapter 5, 

respectively. This method is used extensively in most time series analysis for forecasting purposes and 

was developed by both Holt (1957) and Winters (1960). They have extended Holt's original Exponential 

Smoothing method so as to capture both trend and seasonality from the data (Hyndman et al., 2018). 

7.2 Holt-Winters’ Linear Trend Method 

This method extends simple exponential smoothing to allow for the forecasting of data with a trend. 

This method involves a forecast equation and two smoothing equations, that is, the level and the trend 

equations: 

Forecast Equation:   

 𝑋̂𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡, (7.1) 

Level Equation:  

 𝑙𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), (7.2) 

Trend Equation:   

 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1, (7.3) 

where   𝑙𝑡 and 𝑏𝑡 are the estimates of the level and the trend of the series at time t, respectively. The 𝛼 

and 𝛽∗ are the smoothing parameters for the level (0≤ 𝛼 ≤ 1), and trend (0≤ 𝛽∗ ≤ 1), respectively 

(Hyndman et al., 2014).     

Since the level equation shows that 𝑙𝑡 is a weighted average of observation 𝑋𝑡 and 1-step forecast ahead 

for time t, and trend equation shows that 𝑏𝑡 is the weighted average of the estimated trend at time t 

based on 𝑙𝑡 − 𝑙𝑡−1 and 𝑏𝑡−1, it implies that the forecast function is no longer flat but trending (Hyndman 

et al., 2017). 

Therefore, the forecasts generated by Holt-Winters' linear trend method display a constant trend (i.e., 

whether going down or up continually) forever into the future. Now this method tends to overestimate, 

or underestimate forecast values particularly when forecasting for longer forecast time horizons. This 
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phenomenon led Gardner and McKenzie (1985) to introduce an additional parameter from the above 

equations that "dampens" the trend to a flat line sometime in the future. 

7.3 Holt-Winters’ Damped Trend Method 

In combination with the Holt-Winters’ linear trend method’s parameters (𝛼 & 𝛽∗), this method involves 

a damping parameter φ (0 <φ< 1): 

Forecast Equation:   

 𝑋̂𝑡+ℎ|𝑡 = 𝑙𝑡 + (𝜑1 + 𝜑2 +⋯+ 𝜑ℎ)𝑏𝑡, (7.4) 

Level Equation:   

 𝑙𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝜑𝑏𝑡−1), (7.5) 

Trend Equation:   

 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝜑𝑏𝑡−1. (7.6) 

This method is equivalent to the Holt-Winters' linear method if the damped parameter is equal to one 

(φ= 1). Usually, the value of the damped parameter is restricted to a minimum of 0.8 and a maximum 

of 0.98, because damping has a very strong effect especial for values that are less than 0.8, and values 

close to 1 will eventually mean that a damped model is not able to be distinguished from a non-damped 

model (Gardner et al., 1985). 

7.4 Holt-Winters’ Seasonal Method 

The Holt-Winters’ Seasonal method is also made up of the forecast equation and three smoothing 

equations; the first two are the same as in the previous methods (i.e., for level and trend components) 

with the additional third one being a seasonal component. These components again have their respective 

smoothing parameters, that is, 𝛼 for the level, 𝛽∗ for the trend, and 𝛾 for the seasonal (Holt, 1957). In 

this study, k is used to denote the period of the seasonality, for example, 4 for quarterly data, 12 for 

monthly data, and 52 for weekly data.  

This method has two variations that vary in nature of the seasonal component: 

1. Additive Seasonality Method:  

This method is only suitable when the seasonal variations are roughly constant through the 

series. Here the seasonal component is expressed in absolute terms in the scale of the observed 

series, and in the level equation, the series is seasonally adjusted by subtracting the seasonal 

component. Within each year, the seasonal component will add up to approximately zero. The 

equations form of this method can be expressed as: 

             Forecast Equation:   
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 𝑋̂𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑘(𝑚+1), (7.7) 

Level Equation:   

 𝑙𝑡 = 𝛼(𝑋𝑡 − 𝑠𝑡−𝑘) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), (7.8) 

Trend Equation:   

 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1, (7.9) 

Seasonal Equation:   

 𝑠𝑡 = 𝛾(𝑋𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑘, (7.10) 

where 𝛾 is the smoothing parameter for the seasonal (0 < 𝛾 < 1) and m is the integer part of (h−1)/k, 

which ensures that the estimates of the seasonal indices used for forecasting come from the final year 

of the sample (Holt,1957; Winters,1960). 

 

2. Multiplicative Seasonality Method: 

This method is preferred when the seasonal variations are changing proportionally to the level 

of the series. Here the seasonal component is expressed in relative terms (percentages), and the 

series is seasonally adjusted by dividing through by the seasonal component. Within each year, 

the seasonal component will sum up to approximately k (Holt,1957; Winters,1960). The 

equations form of this method can be expressed as: 

 Forecast Equation:   

 𝑋̂𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑘(𝑚+1), (7.11) 

Level Equation:   

 
𝑙𝑡 = 𝛼

 𝑋𝑡
𝑠𝑡−𝑘

+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), 
(7.12) 

Trend Equation:   

 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1, (7.13) 

Seasonal Equation:   

 
𝑠𝑡 = 𝛾

𝑋𝑡
(𝑙𝑡−1 − 𝑏𝑡−1)

+ (1 − 𝛾)𝑠𝑡−𝑘 . 
(7.14) 
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7.5 Holt-Winters’ Damped Seasonal Method 

Damping can be also included in both additive and multiplicative seasonal Holt-Winters methods. The 

Holt-Winters method with a damped trend and multiplicative seasonality often produces robust and 

accurate forecasts for seasonal data (Gardner et al., 1985). The Holt-Winters Seasonal equations with a 

damping parameter can be given as: 

Forecast Equation:   

 𝑋̂𝑡+ℎ|𝑡 = [𝑙𝑡 + (𝜑1 + 𝜑2 +⋯+𝜑ℎ)𝑏𝑡]𝑠𝑡+ℎ−𝑘(𝑚+1), (7.15) 

Level Equation:   

 
𝑙𝑡 = 𝛼

 𝑋𝑡
𝑠𝑡−𝑘

+ (1 − 𝛼)(𝑙𝑡−1 + 𝜑𝑏𝑡−1), 
(7.16) 

Trend Equation: 

 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝜑𝑏𝑡−1, (7.17) 

Seasonal Equation:   

 
𝑠𝑡 = 𝛾

𝑋𝑡
(𝑙𝑡−1 − 𝜑𝑏𝑡−1)

+ (1 − 𝛾)𝑠𝑡−𝑘 . 
(7.18) 

 

7.6 Chapter Summary 

In this chapter we briefly described the theory of Holt-Winters’ methods in time series analysis. The 

four types of Holt-Winters’ methods were defined, viz., linear trend method, damped trend method, 

seasonal method, and damped seasonal method, with their respective representative equations.    
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Chapter 8 

8. Application of Holt-Winters Method in Time Series Data 

Analysis 

8.1 Introduction 

Holt-Winters’ exponential smoothing estimates the level, slope and seasonal component at the current 

time point, using their respective smoothing parameters. The parameters α, 𝛽∗, 𝛾, and φ all have values 

between 0 and 1. The values close to 0 means that relatively little weight is placed on the most recent 

observations when making forecasts of future values. In this chapter we fit Holt – Winters’ method to 

gold reserves series or data as compared to SARIMA models previously developed in Chapter 5. Since 

SARIMA models were not found to be the most robust models for foreign exchange reserves data, we 

cannot fit Holt – Winters method to this type of data, as the best model has been already found to be 

SARIMA (0,1,0) (2,1,0)12 – GARCH (1,1) – SSTD in Chapter 6. 

8.2 Gold Reserves Data Analysis 

We have seen from the SARIMA model that gold reserves monthly positions data has an upward trend 

and seasonality of period 12, therefore Holt-Winters seasonal method can be used to forecast its future 

positions. We apply Holt-Winters method with both additive and multiplicative seasonality to forecast 

monthly positions of the South African gold reserves. Figure 8.1 shows the data from 1994 and the 

forecasts for 30 June 2017–31 May 2019. The monthly forecasts positions for South African gold 

reserves obtained using Holt-Winters method with additive and multiplicative seasonality are also 

shown in Figure 8.1 and both shows an upward trend: 



 
 

 
99 

 

 

Figure 8.1: Forecasting official gold reserves positions in South Africa using the Holt-Winters’ 

method with both additive and multiplicative seasonality. 

Table 8.1: Applying Holt-Winters method with additive seasonality for forecasting official gold 

reserves positions in South Africa, notice that the additive seasonal component sums to approximately 

zero. The smoothing parameters and initial estimates for the components were estimated by minimizing 

RMSE (α̂ = 0.8619, 𝛽̂∗ = 0.0001, γ̂ = 0.0002, and AIC=1967.574 and RMSE=1.861433). 
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Table 8.2: Applying Holt-Winters method with multiplicative seasonality for forecasting official gold 

reserves positions in South Africa, notice that the multiplicative seasonal component sums to 

approximately k=12. The smoothing parameters and initial estimates for the components have been 

estimated by minimizing RMSE (α̂ = 0.9131, 𝛽̂∗ = 0.0047, γ̂ = 0.0001, and AIC=1753.022 and 

RMSE=1.846398).  

Table 8.1: HW additive seasonal smoothing 

components (Gold Reserves Data). 

 

 

5,1332 0,2012 -0,2945

-0,0205

-0,1712

0,1615

-0,0191

-0,7478

-0,6275

0,0032

-0,3919

0,2199

0,9106

0,9774

Sum 0,000

Smoothing Components
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Because both methods presented in Tables 8.1 and 8.2 above consist of the same number of parameters 

to estimate, we can compare the RMSE from both models. In this case, the method with multiplicative 

seasonality fits the data better, since it has the smallest RMSE (1.846398) compared to the additive 

seasonality method (RMSE=1.861433). This was to be expected, as it reflected from the two sets of 

forecasts (Figure 8.1); the forecasts generated by the method with the multiplicative seasonality display 

larger and increasing seasonal variation as the level of the forecasts increases compared to the forecasts 

generated by the method with additive seasonality. 

Now we can try to incorporate the damping parameter and observe if the model from the Holt-Winters 

method with a multiplicative seasonality does improve the forecasts by including the damping 

parameter, since empirical studies have shown that Holt-Winters’ method with a damped trend and 

multiplicative seasonality often produces robust and accurate forecasts for seasonal data (Gardner et al., 

1985). 

Table 8.2: HW multiplicative seasonal smoothing components (Gold Reserves Data). 

4,1133 0,4747 0,9756

0,9941

0,9908

1,0048

1,0083

0,9662

0,9786

1,0046

0,984

1,0128

1,0465

1,0336

Sum 12,000
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Figure 8.2: Forecasts of monthly gold reserves positions from Holt-Winters’ Damped method with 

multiplicative seasonality. 

Clearly, the model has improved and identified the monthly seasonal pattern and the slightly decreasing 

trend at the end of the data. 

Table 8.3: Applying Holt-Winters damped method with multiplicative seasonality for forecasting 

official gold reserves positions in South Africa, again, we notice that the multiplicative seasonal 

component sums to approximately k=12 since the data has a seasonality of period 12. The smoothing 

parameters and initial estimates for the components have been estimated by minimizing RMSE (α̂ =

0.8277, 𝛽̂∗ = 0.0406, γ̂ = 0.0001, and AIC=1692.634 and RMSE=1.83982). 
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The RMSE (1.83982) from Holt-Winters damped method with multiplicative seasonality shows that 

the model has improved compared to the previous Holt-Winters method without a damping parameter 

(RMSE =1.846398).  

8.3 Chapter Summary 

In this chapter, we have used the Holt-Winters seasonal method to find forecasts for gold reserves 

positions. The Holt-Winters damped method with multiplicative seasonality yielded good forecasts for 

this data compared to Holt-Winters damped method with additive seasonality. This was to be expected, 

as the time plot from data shows that the seasonal variation in the series increases with time. 

Table 8.3: HW damped multiplicative seasonal smoothing components (Gold Reserves Data). 

4,4702 0,4817 0,9694

0,9926

0,9917

1,0086

1,0149

0,9715

0,9803

1,0061

0,9849

1,0103

1,0399

1,0297

Sum 12,000

Smoothing Components
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Chapter 9 

9. Conclusion and Recommendations 

In this study, reserves positions for gold and foreign exchange were studied and their 24 months (from 

May 2017– May 2019) predictions were obtained with the use of Seasonal ARIMA models. The Holt-

Winters seasonal method was also used to forecast future gold reserves positions as the benchmarking 

method to early developed SARIMA model. The study also used SARIMA – GARCH models to 

forecast volatility for foreign exchange reserves positions since this data exhibited variation in the 

variance (ARCH Effect). The best SARIMA model to forecast gold reserves positions was found to be 

SARIMA (1,1,0) (0,1,2)12. The SARIMA (0,1,0) (2,1,0)12 – GARCH (1,1) – SSTD model was found to 

be the best model to forecast volatility from the foreign exchange reserves data. 

The best Holt-Winters method to forecast gold reserves positions was found to be the Holt-Winters 

damped method with multiplicative seasonality. Looking at the model accuracy, it is quite clear that in 

this case the SARIMA (1,1,0) (0,1,2)12 model (RMSE=1.838338) outperformed the Holt-Winters 

damped method with multiplicative seasonality (RMSE=1.83982) in forecasting gold reserves 

positions. 

Tables 9.1 represents the observed values (for previous 5 months) versus forecasts for gold reserves 

positions from the SARIMA model and Holt-Winters damped method with multiplicative seasonality. 

The forecasts from SARIMA model seem to be closer to the observed values. This confirms that 

SARIMA model have produced better forecasts than the Holt-Winters seasonal models.  

Table 9.1: Observed versus forecasts for gold reserves positions. 

Months

Jan-17 65,303R  67,448R                         67,332R                    

Feb-17 65,769R  68,200R                         66,548R                    

Mar-17 66,338R  67,800R                         62,946R                    

Apr-17 67,457R  66,990R                         59,872R                    

May-17 66,958R  68,928R                         60,918R                    

Observed 

(Million)

HW Method With 

Multi Seasonality 

Forecasts

      ( ,  ,  )( ,  ,  )  

 

More studies need to be conducted in the analysis of reserves to ensure that the central reserve bank is 

given advices or guidance on how to manage reserves of the country and when to accumulate reserves 

and/or reduce the level of reserves accumulation. The focus of this study was on creating forecasts for 

reserves, hence, to inform South African Reserve Bank of the reserves trajectory to be expected in future 

and be able to make fact-based decisions concerning reserves management. In the future studies, it 
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might be of the interest to look closely at the models for multivariate analysis in the same context of 

reserves positions analysis as an extension of the current univariate models.   
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11. Appendices 

 

Appendix A: Official gold and foreign exchange reserves positions forecasts from Seasonal ARIMA 

models and Holt-Winters’ method. 

FX Reserves Positions Forecasts

Forecast Forecast Forecast

Jun-17 65,807R                            65,407R                           545,068R                                   

Jul-17 66,084R                            64,764R                           550,289R                                   

Aug-17 67,755R                            67,600R                           563,270R                                   

Sep-17 68,980R                            67,142R                           582,218R                                   

Oct-17 68,499R                            65,969R                           570,899R                                   

Nov-17 69,425R                            65,989R                           582,624R                                   

Dec-17 69,185R                            64,419R                           615,014R                                   

Jan-18 72,546R                            68,382R                           604,029R                                   

Feb-18 73,084R                            69,031R                           599,485R                                   

Mar-18 72,978R                            67,046R                           592,505R                                   

Apr-18 72,260R                            65,335R                           578,127R                                   

May-18 74,050R                            66,717R                           605,897R                                   

Jun-18 72,452R                            64,988R                           589,183R                                   

Jul-18 72,859R                            64,386R                           583,041R                                   

Aug-18 74,756R                            67,240R                           601,765R                                   

Sep-18 76,269R                            66,818R                           612,565R                                   

Oct-18 75,891R                            65,678R                           606,545R                                   

Nov-18 77,065R                            65,723R                           621,673R                                   

Dec-18 76,927R                            64,183R                           646,880R                                   

Jan-19 80,740R                            68,154R                           636,776R                                   

Feb-19 81,351R                            68,821R                           627,750R                                   

Mar-19 81,194R                            66,861R                           616,343R                                   

Apr-19 80,315R                            65,170R                           602,593R                                   

May-19 82,406R                            66,564R                           631,844R                                   

HW Method With Multi 

Seasonality 

Official Gold Reserves Positions Forecasts

Month       ( ,  ,  )( ,  ,  )        ( ,  ,  )( ,  ,  )  
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Appendix B: Mean and standard deviation forecasts using GARCH(1,1) model with skewed 

student-t distribution. 

Month Mean 

Forecast 

Mean 

Error 

Std. 

Deviation 

Jun-17 0,0172 0,4747 0,4747 

Jul-17 0,0172 0,4851 0,4851 

Aug-17 0,0172 0,4948 0,4948 

Sep-17 0,0172 0,5039 0,5039 

Oct-17 0,0172 0,5126 0,5126 

Nov-17 0,0172 0,5207 0,5207 

Dec-17 0,0172 0,5283 0,5283 

Jan-18 0,0172 0,5356 0,5356 

Feb-18 0,0172 0,5424 0,5424 

Mar-18 0,0172 0,5489 0,5489 

Apr-18 0,0172 0,555 0,555 

May-18 0,0172 0,5608 0,5608 

Jun-18 0,0172 0,5663 0,5663 

Jul-18 0,0172 0,5715 0,5715 

Aug-18 0,0172 0,5765 0,5765 

Sep-18 0,0172 0,5812 0,5812 

Oct-18 0,0172 0,5857 0,5857 

Nov-18 0,0172 0,5899 0,5899 

Dec-18 0,0172 0,5940 0,5940 

Jan-19 0,0172 0,5978 0,5978 

Feb-19 0,0172 0,6015 0,6015 

Mar-19 0,0172 0,6050 0,6050 

Apr-19 0,0172 0,6083 0,6083 

May-19 0,0172 0,6115 0,6115 
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11.1 Rstudio Code Used: 

install.packages('zoo') 

install.packages('forecast') 

install.packages('tseries') 

install.packages('ggplot2') 

install.packages("rugarch") 

install.packages("fGarch") 

install.packages('expsmooth') 

install.packages("quantmod") 

install.packages("DescTools") 

 

library("TTR") 

library('zoo') 

library('forecast') 

require('rugarch') 

library('ggplot2') 

library('tseries') 

library('rugarch') 

library('fGarch') 

library('expsmooth') 

library(quantmod) 

library(DescTools) 

 

install.packages("data.table") 

library(data.table) #used to install the package setnames 
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setnames(Dataset, old=c("Time", "Gold Reserves Position", "Foreign Exchange Reserves 

Positions" ,"Gross Reserves Position"),new=c("Time", "Gold Reserves", "FX Reserves", "Gross 

Reserves")) 

 

attach(Dataset) 

X<-ts(Dataset$`Gold Reserves Position`*1000/1000000, frequency = 12,start = c(1994,1)) 

Y<-ts(Dataset$`Foreign Exchange Reserves Positions`*1000/1000000, frequency = 12,start = 

c(1994,1)) 

Z<-ts(Dataset$`Gross Reserves Position`*1000/1000000, frequency = 12,start = c(1994,1)) 

 

############################################################################## 

# GARCH MODELS APPLICATION: 

############################################################################## 

#$$$$$$$GOLDRESERVESDATA$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

# Serial Correlation & Arch Effect Test: 

X.d12.cox=BoxCox(X, lambda =0) 

autoplot(X.d12.cox) 

X.d12 = diff(X.d12.cox, lag=1) 

X.d112=diff(X.d12, lag=12) 

hist(X.d112, main="", breaks=20, freq=FALSE, col="grey") 

fit.X = Arima(X, order = c(1,1,0), seasonal=list(order=c(0,1,2),period=12), lambda =0, 

include.mean=FALSE, include.constant=FALSE, method = "CSS-ML") 

Box.test(fit.X$residuals, lag = 24, type = "Ljung-Box") 

Box.test(fit.X$residuals^2, lag = 24, type = "Ljung-Box") 
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# Fitting ARMA+GARCH Models: 

goldgarch=garchFit(formula = ~arma(1,1)+garch(1,0),data =fit.X$residuals, include.mean = 

TRUE, trace=F, include.skew = NULL, include.shape = NULL, cond.dist = "norm") 

MeanAD(residuals(fxgarch), FUN = mean, na.rm = FALSE) 

summary(goldgarch) 

plot(goldgarch) 

predgold = predict(goldgarch, n.ahead = 24) 

Gold_Spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,0)), 

mean.model = list(armaOrder = c(1,1)), distribution.model = "norm") 

Gold_fit <- ugarchfit(spec = Gold_Spec, data = X ) 

Predgold<- ugarchboot(Gold_fit, n.ahead =10, method= c("partial", "full")[1] ) 

#$$$$$$$$$$$$$$$$$$$$$$$$$$FOREIGNRESERVESDATA$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

# Serial Correlation & Arch Effect Test: 

Y.d12.cox=BoxCox(Y, lambda = "auto") 

autoplot(Y.d12.cox) 

Y.d12 = diff(Y.d12.cox, lag=1) 

Y.d112=diff(Y.d12, lag=12) 

fit.Y = Arima(Y, order = c(0,1,0), seasonal=list(order=c(2,1,0),period=12), lambda ="auto", 

include.mean=FALSE, include.constant=FALSE, method = "CSS-ML") 

Box.test(fit.Y$residuals, lag = 24, type = "Ljung-Box") 

Box.test(fit.Y$residuals^2, lag = 24, type = "Ljung-Box") 

fxgarch=garchFit(formula = ~garch(1,1),data =fit.Y$residuals, include.mean = TRUE, trace=F, 

include.skew = NULL, include.shape = NULL, cond.dist = "sstd") 

MAD(residuals(fxgarch), na.rm = FALSE) 

MeanAD(residuals(fxgarch), FUN = mean, na.rm = FALSE) 

summary(fxgarch) 

round(fxgarch@fit$matcoef, 3) 
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plot(fxgarch) 

predfx = predict(fxgarch, n.ahead = 24) 

predfx1= round(predfx, 4) 

plot(predfx1$meanForecast, main="Mean Forecast Plot", ylab="MeanForecast", col="blue", 

lwd=2) 

plot(predfx1$meanError, main="Mean Error Plot", ylab="MeanError",col="blue", lwd=2) 

plot(predfx1$standardDeviation, main="Standard Deviation Plot", 

ylab="StandardDeviation",col="blue", lwd=2) 




