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Abstract 

 

The present consumer market is driven by the mass customisation of products. Manufacturers 

are now challenged with the problem of not being able to capture market share and gain 

higher profits by producing large volumes of the same product to a mass market. Some 

businesses have implemented mass customisation manufacturing (MCM) techniques as a 

solution to this problem, where customised products are produced rapidly while keeping the 

costs at a mass production level. In addition to this, the arrival of the fourth industrial 

revolution (Industry 4.0) enables the possibility of establishing the decentralised intelligence 

of embedded devices to detect and respond to real-time variations in the MCM factory. 

One of the key pillars in the Industry 4.0, smart factory concept is Advanced Robotics. This 

includes cooperation and control within multiple heterogeneous robot networks, which 

increases flexibility in the smart factory and enables the ability to rapidly reconfigure systems 

to adapt to variations in consumer product demand. Another benefit in these systems is the 

reduction of production bottleneck conditions where robot services must be coordinated 

efficiently so that high levels of productivity are maintained. 

This study focuses on the research, design and development of a distributed framework that 

would aid researchers in implementing algorithms for controlling the task goals of 

heterogeneous mobile robots, to achieve robot cooperation and reduce bottlenecks in a 

production environment. The framework can be used as a toolkit by the end-user for 

developing advanced algorithms that can be simulated before being deployed in an actual 

system, thereby fast prototyping the system integration process.  

 

Keywords: Cooperation, heterogeneity, multiple mobile robots, Industry 4.0, smart factory, 

manufacturing, middleware, ROS, OPC, framework. 
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Chapter 1 Introduction 

This introductory chapter discusses the problem of mass customisation and the role of mobile 

robotics in these types of manufacturing environments. The motivation of the research study, 

along with the objectives, methodology, and contributions are also addressed.   

1.1 Mass customisation manufacturing and Industry 4.0 

The advancement of electronics and technology in the past few decades has led to its 

adoption in the manufacturing industry and businesses have seen tremendous growth in 

productivity due to the use of advanced technology in its processes [1]. The increase in 

productivity margins has catapulted competition on a global scale since consumers require 

fast deliveries and have access to a wide range of courier service options [2]. Another factor 

that has changed the present consumer market is the mass customisation of products. 

Manufacturers are now challenged with the problem of not being able to capture market share 

and gain higher profits by producing large volumes of the same product to a mass market [3]. 

Some businesses have implemented mass customisation manufacturing (MCM) techniques as 

a solution to this problem, where customised products are produced rapidly while keeping the 

costs at a mass production level.    

The “mass customisation” concept was first formally introduced in the book Future Perfect 

by Stanley M. Davis in 1983 and thereafter defined as a strategy for product variety and 

individualisation by Joseph Pine in 1993 [4]. The concept has now become a reality through 

the use of robotics in manufacturing, advances in computer-aided design (CAD) packages, 

product data management (PDM), and industrial networking technologies [5]. In order to 

continuously achieve profitability and maintain the competitive advantage over others, 

leading manufacturers spend a great deal of time optimising their MCM processes to manage 
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predicted changes with precision, and to respond to unexpected changes with speed and 

flexibility [6]. The management of such variations can be achieved through real-time data 

processing, analysis, and control in the current fourth industrial revolution (Industry 4.0). 

Industry 4.0, or the industrial internet of things (IIoT), has been the popular topic of 

discussion among researchers and manufacturers during the past three years. Table 1 [7] is a 

summary of the four industrial revolutions in history. 

Table 1. Summary of the four industrial revolutions. 

 Time periods Technologies and capabilities 

First 1784 – mid 19th century Water and steam powered mechanical engineering 

Second Late 19th century – 1970’s 
Electric powered mass production based on the 

division of labour 

Third 1970’s – Today 
Electronics and information technology drives 

new levels of automation of complex tasks 

Fourth Today– 
Sensor technology, interconnectivity and data 

analysis allow mass customisation, integration of 

value chains and greater efficiency 

   

The vision of Industry 4.0 is the use of sensor and network technology in ‘smart products’ 

that define how machines should undertake processes. In this environment, the decentralised 

intelligence of embedded devices has the ability to detect and respond to real-time variations 

in the MCM factory; this can be contrasted to the slower response times and single point of 

failure in traditional centralised factory control systems.   

1.2 Robotics in manufacturing 

Over the past few decades, extensive research in robotics has resulted in a continuous growth 

in industrial application sectors such as automotive, electronics, metal, and food amongst 

others. Figure 1.1 [8] is a report by the International Federation of Robotics (IFR), showing 

the growth since 1985. According to the data, it took almost 50 years for the install base to 
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reach the first one million units, contrasted to just eight more years to reach the projected 

second million units.  

 

Figure 1.1: IFR report on global install base of industrial robots 

 

From the install base and according to an Industrial Robotics Marketing Report, materials 

handling is currently the leading application of industrial robots, accounting for more than 

33% of the global industrial robotics market in 2013 [9]. A contributing factor to this statistic 

is the technological advancement (and lower cost) of robotic vision systems, navigation and 

mobility, where companies are beginning to offer sophisticated material handling methods for 

factories and warehouses [10]. Hence, the use of mobile robots in industry has become 

popular, particularly in MCM factories where reconfiguration and flexibility are key 

requirements in the competitive climate with complex consumer demands [11].  

The cooperation of multiple mobile robot systems (MMRS) is recently becoming a popular 

area of interest to both researchers and manufacturers, since a network of mobile robots has 

the ability to perform tasks much quicker and more efficiently than single robot systems. The 

management of mobile robot resources, however, is non-trivial due to the existence of 

heterogeneity in the network of robots [12]. Heterogeneities may exist due to the variety of 

actuators, sensors, and communication protocols developed by different manufacturers. The 

next chapter explores literature in the areas of mobile robots and cooperative robotic research, 
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and investigates the impact of MMRS in an Industry 4.0 environment, together with the 

associated challenges.  

1.3 Motivation 

Globally, a great measure of resources have been allocated to the research and development 

of robotics, autonomous mobile robots, and cooperation among robots [13][14], and forecasts 

reveal a significant adoption of mobile robots in industry and homes in the near future [15]. 

Advanced robotics and machine-to-machine (M2M) communication, alongside others, are 

considered key pillars in the Industry 4.0 concept, hence the globalised interest in these areas 

of research. 

The issue of heterogeneity in multiple mobile robot systems was investigated and the use of 

robotic middleware is discussed in the literature survey (chapter 2) as a solution to mask the 

heterogeneities in the network. Various middleware platforms were studied in the survey, 

revealing that the choice of robotic middleware for a particular application requires careful 

consideration, since some platforms contain attributes which others lack. In the context of an 

industrial application, the Robot Operating System (ROS) stands out from the rest, primarily 

due to its commercial use [16] and its application in industry through the ROS Industrial 

Consortium [17]. ROS, however, does have its limitation in regard to functionality for 

cooperation in multiple mobile robot networks.  

The motivation behind the research stems from the need of a robotic framework that can be 

used as a tool for the development of cooperation systems in industrial MMRS. The need 

exists due to the modern popularity of MMRS and cooperation in these systems to facilitate 

flexibility in smart factories, thereby managing the problem of mass customisation. To 

summarise, the following problems and challenges have been identified in the literature 

survey, thereby driving the need for the design and development of the framework:  

 Mass customisation and global competition [3]. 

 Increase in the use of advanced technology [1] and robotics [8] in manufacturing 

processes. 
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 The existence of heterogeneity in multiple mobile robot systems [12]. 

 The need for robotic middleware to mask heterogeneities and facilitate multi-robot 

cooperation in industrial environments. 

 The introduction of the fourth industrial revolution (Industry 4.0) and the key role 

of robotics in this setting [18]. 

 The need for the operation of intelligent mobile robots in smart factory 

environments [7]. 

1.4 Aim and objectives 

The aim of this study was to research, design, and develop a distributed framework for 

managing multiple, heterogeneous mobile robots in smart factories.  

The objectives of this research study were to: 

 Investigate the impact of mobile robot systems in industry. 

 Investigate the problem of mass customisation together with the introduction of the 

fourth industrial revolution (Industry 4.0). 

 Research the need for robotic middleware and the various platforms available for 

mobile robot systems. 

 Research the design requirements of a distributed framework for use in an industrial 

MMRS setting. 

 Design and develop the framework that facilitates cooperation in heterogeneous 

multiple mobile robot teams. 

 Test and validate the performance of the framework by the use of algorithms and 

simulation tools.   

1.5 Research methodology 

The verification of the framework developed in this study was achieved through a case study 

approach. A series of case studies were performed that involved different scenarios pertaining 
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to mobile robot material handling, and simulated robot task applications. Since the 

framework is a tool that will be used by the end-user, the studies demonstrate the application 

of example user algorithms that can be used in the high-level robot decision making process. 

Simulation results are also documented for each case study, verifying the functionality of the 

framework and user algorithms, and the navigation of the mobile robots in a simulated 

environment.  

1.6 Research contributions 

The design and development of the framework in this research study was an original effort 

and has made the following five contributions: 

1. The framework has made the remote control of robots more accessible by industrial 

engineers since the framework adheres to an international industrial communication 

protocol standard.  

2. The framework has made it easier for students or researchers to advance the field of 

multi-robot cooperation since solutions can be developed and tested in these 

scenarios. This is achieved through the use of the simple graphical user interface and 

the development of algorithms in Python. 

3. The advanced robotics pillar in Industry 4.0 has been strengthened due to the 

common interface provided by the framework to achieve intelligent robotic systems.  

4. The capability of the popular ROS middleware has been enhanced, since ROS has 

lacked the functionality for cooperative multi-robot systems.  

5. The machine learning field of research can broaden its application to mobile robot 

networks, via the use of Python’s powerful machine learning library.    

1.7 Thesis outline 

Chapter 2 is a literature survey that investigates the role of mobile robot systems in industry, 

the associated challenges, and its impact in smart factories. Chapter 3 presents the 

methodological approach taken during the design of the framework. The design requirements 
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are defined, outlining the key components of the framework that enables its functionality in a 

smart factory environment. Chapter 4 describes the development and verification strategies 

adopted, and thereafter discusses the development of the main components of the framework. 

Chapter 5 presents four case studies, each verifying various aspects of the framework in 

simulation results. Chapter 6 discusses the benefits of the framework, research related to the 

functionality of the framework, and the limitations as well as advanced development features 

that should be implemented as improvements to the system. Chapter 7 concludes the research 

study by summarising the work, revisits the contributions discussed here, and discusses some 

recommendations for further research.    

1.8 Chapter summary 

This chapter introduced the mass customisation and Industry 4.0 concepts, and thereafter 

discussed the growth of robotics in industry. The motivation of the study was discussed and 

the objectives, methodology, and contributions of the research were defined to establish the 

scope of work involved in this study. The chapter concluded with an outline of the thesis.     

 

 





 

Chapter 2 Literature survey 

The purpose of the survey was to investigate the role of mobile robot systems in industry. 

Associated with this are factors such as heterogeneity, cooperation, communication, and 

control architectures, all of which are discussed in the survey. The various types of robotic 

middleware platforms are reviewed as they are essential to the establishment of common 

interfaces in networks that contain robotic heterogeneity. The final topic of discussion is 

“smart factories” (another term for Industry 4.0); here the purpose of the concept is 

introduced, along with the influence of advanced robotic systems and the related challenges.  

2.1 Mobile robot systems 

Apart from manufacturing, mobile robots can be used in a variety of other applications where 

it may be dangerous for humans to work in such as mining, search and rescue [19], planetary 

exploration [20], and toxic waste clean-up [21]. In the manufacturing environment, mobile 

robots are required to operate autonomously, which involves the use of mobile robot sensors 

for the robots to: 1) build or update maps of the environment, 2) localise its position on the 

map, 3) navigate the environment, and 4) avoid obstacles. Some manufacturing applications 

call for the use of other auxiliary equipment to be installed on mobile robots such as vision 

sensors for object recognition and grippers for pick and place operations. The following sub-

sections discuss some of the applications with single and multiple mobile robot systems and 

the pertinent aspects related to these systems, viz. heterogeneity, cooperation, 

communication, and robot control architectures.      
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2.1.1 Single robot systems 

Automated Guided Vehicles (AGVs) were invented in 1953 and have been used as material 

transporters in manufacturing facilities or warehouses ever since [22]. Various types of 

AGVs exist, Figure 2.1 depicts two examples by JBT AGVs [23]. Figure 2.1 (a) is an 

example of an AGV forklift which automatically moves the load to its programmed 

destination after being loaded by an operator. Figure 2.1 (b) is an AGV unit load carrier, used 

to move loads from one station to another; these AGVs can interface with conveyors and are 

usually equipped with either or combinations of belts, powered rollers, and mechanised lifts 

to automatically load and unload batches.  

 

Figure 2.1. Some AGV solutions by JBT: (a) AGV Forklift, (b) AGV unit load carrier 

The challenges of navigation with AGVs can be simplified by restricting their path to 

predetermined routes via demarcated floors or underground cables; however, this can be a 

disadvantage in Flexible Manufacturing Systems (FMS) where some of the flexibility of the 

system is sacrificed due to fixed structures designed to accommodate the AGV’s path. In 

their research paper [24], Sabattini et al. describe the process of installing and configuring 

AGVs in a factory, and thereafter discuss some of the barriers associated with further 

adoption of the technology: 

 expensive cost 

 difficulty in achieving the desired efficiency to absorb the cost 

 changeovers can be time consuming and expensive due to the lack of flexibility 

 safety concerns 
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Another type of mobile robot that is becoming very popular in FMS environments due to its 

flexibility features is the Autonomous Industrial Mobile Manipulator (AIMM). An AIMM is 

an industrial robot that is capable of performing tasks such as part feeding, assembly, and 

transportation. In general, AIMMs are designed with four elements: the mobile platform, 

sensors (e.g. vision, laser range finders), a manipulator, and a tool (e.g. grippers, welding 

gun). Figure 2.2 [25] is the JR2, an AIMM manufactured by Robotnik, designed for logistics 

and industrial mobile applications. The JR2 arm (manipulator) has six degrees of freedom 

(DOF) and the mobile platform uses four high powered motor wheels, capable of supporting 

loads of up to 100kg. The sensors mounted on the robot include two rangefinders for 

navigation and safety, as well as two RGB-D sensors to detect obstacles located at different 

heights.    

 

Figure 2.2. Robotnik's JR2 mobile manipulator. 

 

The AIMM category of robots are well suited for FMS environments, although product 

changeovers can be time consuming on single robot systems if they are not easily 

reconfigurable.  

2.1.2 Multi-robot systems 

Multi-robot systems (MRS) potentially have several advantages over single robot systems; 

Yan et al [26] discuss the following benefits in their research paper: 
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 A MRS has a better spatial distribution. 

 A MRS can achieve a superior system performance, such as the time to complete a 

task, or energy consumption of the robots. 

 Robustness and fault-tolerance can be realised in MRS due to data fusion and 

information sharing in the network of robots. 

 A MRS can potentially cost less since a large number of simpler robots will be 

cheaper to build and program, contrasted to a single, powerful robot.  

 System reliability, flexibility and scalability features exist in MRS.  

Some preliminary work in MRS began in the late 1980’s with a few projects such as 

ACTRESS [27], CEBOT [28], ALLIANCE [21], M+ [29], and MURDOCH [30], each 

yielding successful results. Today, multiple mobile robot systems are being implemented in 

industry and have proven to be very efficient. One such case is the KIVA Systems automated 

warehouse, where mobile robots optimise the execution of customer orders by placing 

frequently required material in locations that are closer to the delivery area, rather than 

storing them in fixed locations. Kiva, now known as Amazon Robotics [31], was acquired by 

Amazon.com in 2012 due to its significant success rate in efficiently fulfilling customers’ 

orders.    

The implementation of a MMRS in a factory can be a challenging task with many factors to 

consider, these may include: factory infrastructure, robot heterogeneity, robot path planning 

and frequent obstacle avoidance actions due to the volume of robots in the environment, 

safety and interaction with humans, and coordination and cooperation between the robots to 

achieve specific goals. The following sections discuss some of these challenges inherent in 

MMRS.   

2.1.3 Heterogeneity 

A MMRS can be homogeneous or heterogeneous. In homogeneous networks, each robot in 

the team has an identical capability, whilst in heterogeneous robot teams capabilities differ 

since robots can be specialised for specific tasks, making task allocation in these networks 

more difficult to manage [32]. Robot task allocations in heterogeneous systems are 



2.1   Mobile robot systems 13 

 

determined by the individual capabilities, whereas there exists a greater flexibility in 

homogeneous systems and tasks can be assigned dynamically. The advantage of 

heterogeneous over homogeneous systems becomes clear when task-flexibility is required in 

a FMS environment. In a FMS factory, task variety is common and having a team of robots 

with ‘mixed’ resources could execute tasks more quickly if the robots are managed in an 

efficient manner. Another benefit of having a heterogeneous mobile robot team is redundancy 

and fault-tolerances: if a particular robot in the team has failed due to a malfunction or 

requires maintenance, another ‘helper’ robot that is suited to the task can assist and take over 

the job; in this way, robots can help each other and eliminate potential bottlenecks in a 

production environment, thereby ensuring a material flow optimisation [33]. 

Apart from the benefits associated with task-flexibility, Parker [34] explains some reasons 

why heterogeneity exists in multi-robot systems: 

 Heterogeneity can present engineering benefits as it can be challenging and 

impractical to design single, powerful robots with numerous capabilities.  

 Following the point above, it makes economic sense to distribute the specialised 

abilities across a team of simple robots, rather than commissioning a smaller group of 

expensive robots. 

 The reality of diversity in a homogeneous system can exist over time due to robot 

wear and tear, differences in robot construction as a result of maintenance, as well as 

differences in sensor calibration.  

The next two sections introduce two types of collective behaviours inherent in multi-robot 

systems and investigate ways in which heterogeneous robots can communicate to influence 

team goals.      

2.1.4 Cooperative vs. competitive systems 

MRS environments can either be cooperative or competitive [35]. In competitive systems, 

robots try to accomplish their own self-interests and compete with other robots in the 

network. Examples of such systems are strategy games such as RoboCup [36] and chess [37]. 

Conversely, cooperative systems are more applicable to manufacturing environments as they 
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involve robots that interact with each other, either directly or indirectly, to achieve common 

goals. In these systems the robots are not ‘selfish’, but will act in ways that would benefit the 

global goal of the system; for example, in a production environment, robots can cooperative 

to alleviate the problem of bottlenecks in the system [33] and hence, prevent significant 

decrease in efficiency. 

In MMRS networks, cooperative systems can be further categorised into collective swarm 

systems and intentionally cooperative systems, as depicted in Figure 2.3 [34]. Collective 

swarm systems are pertinent to homogeneous mobile robot networks where robots can 

resemble the characteristics of birds, bees, or ants – an area of research commonly known as 

swarm robotics [38]. On the other hand, heterogeneous robot teams are intentional 

cooperative systems since robots are aware of each other and act based upon the abilities of 

the members in the team. These systems can be further categorised into strongly cooperative 

or weakly cooperative solutions, based upon the level of communication between the robots. 

Solutions can form high levels of communication and synchronisation (strongly cooperative), 

or allow for periods of operational independence among robots (weakly cooperative) [34].    

 

Figure 2.3. Categorisation of cooperative behaviours in MMRS. 

2.1.5 Communication 

Literature [26] identifies two forms of communication inherent in MMRS networks: implicit 

and explicit. Explicit communication involves a direct form of data exchange (either unicast 

or broadcast) between robots in the network, and will make use of: 1) an on-board 

communication module, 2) a physical communication medium, and 3) a data communication 

protocol. Implicit communication is an indirect form of data retrieval, where robots 
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communicate by either using the changes in the environment through sensors, or collecting 

information left by other robots.  

The advantage that explicit communication systems has over implicit types is the accuracy of 

the data exchanged between robots, however, the communication bandwidth of the system 

can increase in proportion to the number of robots in the network, which can lead to a 

decrease in system performance. Implicit networks are more stable and fault tolerant, but is 

not an ideal option in a manufacturing system due to the dependency on data integrity to 

ensure predictable outcomes in these environments.              

2.1.6 Control architectures 

The control architecture of a MMRS is critical to the design of the network [39] since it 

influences other decisions that are made later in the design stage, such as cooperation and 

communication methods [40]. Parker [34] identifies four types of control architectures: 

 Centralised architectures control the team of robots from a single point. The 

advantage of this architecture is the global view point of the environment and the 

robots, thus optimal plans can be produced [26]. Nevertheless, centralised systems 

are vulnerable due to the single point of failure, and can be practically unrealistic for 

real-time control scenarios, for example, when mobile robots are required to perform 

dynamic obstacle avoidance techniques. 

 Decentralised architectures comprise of individually controlled robots, each having 

complete control of their actions based upon local knowledge. This system is robust 

to failure and flexible; however, it may be difficult to ensure the execution of high 

level goals due to the local, independent behaviour of each robot in the team.  

 Hierarchical control architectures combine centralised and decentralised schemes. 

Similar to military operations, there are ‘leader’ robots in the team that assume 

control over other ‘follower’ robots. Hierarchical architectures are still prone to 

failure due to the dependency of the ‘follower’ robots on the ‘leaders’. 

 Hybrid architectures have become a popular control scheme [34]. It is also a 

combination of the centralised and decentralised architectures, but unlike 
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hierarchical systems, no particular robot has control over another in the team. Hybrid 

systems ensure localised robot control for actions that require real-time processing, 

and support control for higher-level team goals [41].   

2.2 Robotic middleware 

The robotic middleware is an abstraction layer established between the application layer and 

operating system in computing systems, as shown in Figure 2.4 [42]. The purpose of the 

middleware in robotic systems is to mask the heterogeneity of hardware devices in the 

network, created by differences in sensors and actuators. Another reason is software related, 

and includes the simplification of software design and project development costs [42]. This is 

achieved by the provision of standard interfaces to robot sensors and actuators, ensuring 

software modularity and the deployment of re-usable, high-level code on different hardware 

architectures [43].  

 

Figure 2.4. The middleware layer. 

The middleware layer plays a key role in the cooperation of multiple mobile robots, 

especially heterogeneous configurations. The abstraction allows engineers to focus on the 

development and integration of: 1) robot localisation, navigation and obstacle avoidance [44], 

and 2) high-level cooperation algorithms [45]. Hence the intricacy of the underlying control 

of hardware devices is avoided since it is managed by the middleware.  
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2.2.1 Middleware roles 

The choice of robotic middleware can be a challenging task at the start of a design process as 

there is a myriad of platforms available. Investigating the possible use of each platform 

requires an understanding of the various roles provided by a middleware service; the 

following middleware roles are discussed in literature: 

 Support communication and interoperability [46]: Since robots and devices are 

designed by different manufacturers, communication and simple interoperability 

mechanisms are required.  

 Automatic discovery and self-configuration [46]: The mobility of robots makes them 

dynamic systems and given that they operate in flexible environments (e.g. FMS), 

automatic discovery and configuration of external devices may be required to enhance 

efficient operations. 

 Hardware abstraction [42]: The heterogeneity of low-level robot devices such as 

sensors and actuators must be masked through the use of software drivers and 

standardised interfaces.  

 Software modularity [42]: A library of device drivers and interfaces provided by the 

middleware platform will make software development more convenient, portable and 

scalable.  

 Cooperation operations [46]: The functionality to integrate high-level robot decision 

making applications is necessary for the development and use of cooperation 

mechanisms.  

 Self-operable [44]: The middleware layer is required to operate with the low-level 

software tiers without the direct interference from the user.   

 Simulation component [47]: In order for the fast prototyping of solutions, the 

middleware must provide a simulation component or the functionality to plug-in a 

simulation service.    

The following section investigates the application of these roles in some of the common 

middleware platforms that are adopted in MRS networks.  
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2.2.2 Middleware platforms 

The Internet Communications Engine (ICE) [48] is a robotic middleware built for distributed 

systems, using an object-orientated approach. The communication protocol involves the use 

of ICE objects that reside in local or remote robots, an interface, and clients. Objects respond 

to client commands by adhering to the interface’s definition of behaviours. ICE is 

characterised for multi-platform and multi-language support, and its application was seen in 

the development of the Multi-Robot Task Module (MRTM): a module created with the task 

of robots helping each other by transparently including the behaviours performed by others 

into its own set of behaviours [49]. In the MRTM system, each robot runs an instance of 

MRTM which allows for the access of behaviours of other robots in the network, but does not 

necessarily implement them.  

The Physically Embedded Intelligent Systems (PEIS) Kernel [50] provides self-configuration 

of PEIS devices in the network. Devices are permitted to dynamically join and leave the 

Kernel since they are all connected to a uniform communication model. The motivation 

behind the PEIS middleware was to use smart robot technology in simple components, 

functioning in smart environments, and establish cooperation through these components 

rather than employing expensive, monolithic robots. A wide range of PEIS experiments were 

conducted to prove the utilisation of different robotic components in various tasks [51], [52]. 

Another middleware that allows for automatic discovery and configuration is the Universal 

Plug and Play (UPnP) Robot Middleware [53], developed by the Korea Institute of Science 

and Technology. The UPnP middleware enables robots in the network to discover and 

interact with devices such as cameras and sensors. 

The Miro [54] middleware, like ICE, was developed using an object-orientated approach but 

adhering to the Common Object Request Broker Architecture (CORBA) standard, a 

framework for developing and maintaining distributed software systems. An application of 

Miro was seen in the research of heterogeneous mobile robot cooperation in search and 

rescue missions [43]. The research used the capabilities of different robots in the network to 

divide the search space by sharing local maps and sensor data, and also involved the 

development of pyMiro, a Python binding for Miro.  
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The Cooperative Intelligent Network Management Architecture (CINeMA) middleware was 

developed to also function in robotic search and rescue disaster missions [55]. CINeMA 

ensures network connectivity and localisation through robot cooperation in disaster areas of 

collapsed buildings or underground, where the 1) radio signal strength is low due to the 

absorption and reflection of signals, and 2) GPS signal is affected. The approach used by 

CINeMA is to monitor the RSSI (Received Signal Strength Indicator) and LQI (Link Quality 

Indicator), and cooperatively move robots within a safe region of communication through the 

application of Enhanced Kalman Filters (EKF) and k-NN algorithms, based on the signal 

strength. The middleware also supports the re-establishment of a ‘lost’ robot’s localised 

position by using a two-way ranging (TWR) technique.   

ARCADE (Architecture for Real-time Control and Autonomous Distributed Execution) [56] 

is a platform that can be integrated with ICE to transfer data between real-time databases 

(RTDB) so that information can be exchanged between robots in the team. The RTDB used 

in ARCADE is KogMo-RTDB, which was originally developed for autonomous cars [57]. 

The purpose of the RTDB is to ensure the real-time management and exchange of data 

objects during communication, and it was shown to handle large, complex datasets while 

maintaining reliable real-time performance [58]. 

CoHoN [59] was developed to work with heterogeneous communication hardware using a 

small-sized data packet in the communication, which benefits communication bandwidth and 

efficiency. The communication protocol involves a topic based publish/subscribe method, 

and the message selection process is constructed through a multicast tree. The subscriber 

broadcasts message requests and will receive responses from nodes with the relevant data; the 

subscriber then selects the best node to receive data streams from. The advantage of this type 

of communication is the distributed characteristic to discover all of the available data routes, 

and the avoidance of a centralised routing option.     

A middleware that supports the flexible inter-operability of components to simplify the 

software development and integration process is the Mobile and Autonomous Robotics 

Integration Environment (MARIE) [60]. MARIE was developed for integrating both new and 
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existing software components in robotic networks, and provides flexibility by allowing for 

the adaptation of different applications and communication protocols.  

The Player Project [61] is an open source robotic network server that provides a client with 

interfaces to communicate with the sensors and actuators of a robot through Transmission 

Control Protocol (TCP) sockets. The server contains a large software library for device driver 

implementations and can interface with Stage – a two dimensional simulation package that 

can be used to prototype the software development process. Player can be installed on a 

computer that is directly connected to the robot hardware, and since it is a server operating 

with TCP socket communication, multiple clients (residing on local or remote computers) can 

connect to Player via different sockets and thus have access to the robot hardware on a 

particular node. The client application programs can be written in any programming language 

that supports TCP socket communication; these include C, C++, Java, and Python. Player 

was used by Naidoo et al. [12] to establish MMRS cooperation in an application that involves 

the reduction of bottlenecks in manufacturing systems.     

In support of its technology programs (Mars and Intelligent Systems), NASA implemented 

the Coupled Layer Architecture for Robotic Autonomy (CLARAty) [62]. The middleware 

was developed through collaboration between NASA, the California Institute of 

Technology’s Jet Propulsion Laboratory, Carnegie Mellon University, the Ames Research 

Centre, and the University of Minnesota. CLARAty’s architecture comprises of a functional 

layer and a decision layer. The functional layer includes components such as digital and 

analogue I/O, motion control, mapping, navigation, vision, planning, terrain evaluation and 

simulation [62]. The decision layer is responsible for robot reasoning, it thus plans, 

schedules, executes activity plans, and dynamically modifies sequences if required [63]. The 

communication between the functional and decision layers is achieved through a client-server 

and publisher/subscriber method.       

ASEBA is an event-based architecture that was developed to improve the efficiency and 

scalability of low-level robot control [64]. The middleware is implemented in a robot system 

that contains many microcontrollers, each being connected through a shared communication 

bus. Software tasks are distributed to all microcontrollers, and only the relevant data is 
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communicated to the main processor; in this way, modularity and efficiency is 

maintained [64]. Each microcontroller can communicate with sensors and actuators, and even 

process data with some low-level control, due to the powerful capabilities of modern 

microcontrollers. ASEBA hence improves real-time robot performance but also increases 

software complexity; although the developers have tried to reduce this drawback by 

providing data abstraction mechanisms and an Integrated Development Environment (IDE) to 

develop and debug the robot control software [64].   

The Carnegie Mellon Navigation (CARMEN) platform is an open-source toolkit for robot 

control software [65], that comprises of three layers: 1) the base layer, which masks the low-

level details of the hardware, 2) the navigation layer provides localisation, motion planning, 

and dynamic object tracking functionality, and 3) the user-level layer, reserved for tasks that 

can be developed by users to implement the functionality from the navigation layer. 

CARMEN also provides a simulation environment and the programs that were developed in 

this middleware have proven to be robust to a diversity of failures, as investigated by 

Montemerlo et al. [65].          

Another middleware platform that was created as a toolkit, to be used by students, is Pyro 

(Python Robotics) [66] – an open-source software that uses a Python-based robotics 

programming environment. Pyro comprises of multiple modules such as finite state 

machines, direct control, behaviour-based control, reactive control, and fuzzy logic. It can 

also be integrated with several robot simulators, viz. Stage, Gazebo, Robocup soccer, and 

Khepera [67]. The communication protocol in Pyro is structured on a client-server approach, 

and the software modularity allows for inter-changeability of user programs between small 

and large robotic systems [67].  

Orca [68] is an open-source platform which applies the principles of Component-Based 

Software Engineering (CBSE) [69] to develop component-based robotic systems. CBSE 

provides software developers with opportunities to use existing plug-in components, rather 

than develop modules from first principles. This approach offers tremendous software 

engineering advantages since it enforces modular systems and thus reduces maintenance 

costs, and increases flexibility and robustness of the complete system. Orca uses the ICE 
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middleware as its core for communication between components; this enables the platform to 

function as a distributed system, for example, two Orca components can communicate 

between each other, each written in different programming languages, running on two 

separate operating systems [68]. An application of Orca was seen in the DARPA Grand 

Challenge III [70], an autonomous ground vehicle competition, where the platform was 

implemented on one of the teams system.       

OROCOS (Open Robot Control Software) [71] is an open-source middleware that adheres to 

the CORBA standard. The aim of OROCOS is the development of a modular platform for 

robot and machine control. OROCOS supports four C++ libraries, as shown in 

Figure 2.5 [72]: 1) the OROCOS Real-Time Toolkit (RTT), provides the infrastructure and 

functionality to build applications in the C++ programming language, 2) the components 

library, containing components for management and control, 3) the kinematics and dynamics 

C++ library, which allows for the calculation of kinematic chains in real-time, and 4) the 

Bayesian filtering library provides algorithms for the application of Kalman and Particle 

Filters. An OROCOS application can be built using pre-defined components that are 

contributed by the robotics community, or developed from the beginning by using the RTT.  

 

Figure 2.5. OROCOS libraries. 

 

The Microsoft Robotics Developer Studio (MSRDS) was developed by Microsoft to enable 

users to program robots in the Windows-environment [73]. The motivation behind the 

development was to implement Service-Orientated Architectures (SOA) into the area of 

robotics. The SOA programming approach allows users to directly interchange services so 



2.2   Robotic middleware 23 

 

that a desired behaviour can be achieved [74]. The MSRDS consists of four components in its 

architecture [73]:  

 The concurrency and coordination runtime library provides classes and methods for 

assistance with concurrency, coordination and failure handling, and provides the 

functionality to write code segments that operate independently.  

 The decentralised software services library allows applications to run multiple 

independent services in parallel.  

 The visual simulation component is a 3D simulation environment and includes the 

functionality to perform physics simulations. The environment supports both indoor 

and outdoor scenes, and has a variety of simulated robots such as LEGO NXT, iRobot 

Create, a KUKA robotic arm, and a Mobile Robots Pioneer 3DX, amongst others.  

 The visual programming language allows users to graphical define the way in which 

data should be transferred in the application.  

In addition to the components mentioned above, MSRDS includes a variety of services and 

packages that are configured to work on specific robots [73].    

A recently popular middleware used in the robotics community is the Robot Operating 

System (ROS) [75], which uses a client-server method for control flow and 

publisher/subscriber approach for data flow. ROS nodes communicate with each other in a 

synchronous form or an asynchronous peer-to-peer (P2P) manner by publishing messages 

and subscribing to published messages. It has been developed in a modular architecture so 

that software packages can be easily integrated into the ROS framework. A wide variety of 

ROS modules are available for various robotic operations such as robot path planning, 

navigation, obstacle avoidance, and simulation tools, amongst others [76]. ROS has become a 

popular choice of middleware for the following reasons: 

 ROS is an open source software package. 

 A large software library exists for device driver implementations. 

 Commercial robots are now being powered by ROS [16].  

 The ROS industrial consortium has propagated its use in industry [17]. 

 ROS is actively developed and updated. 
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 Fault tolerance solutions exist in ROS due to the isolation of individual nodes [42].  

 Client applications can be programmed in various programming languages. 

 Due to its popularity, a great measure of help is available through community forums 

and wiki-tutorials.   

The comparison between each middleware platform discussed in this section is summarised 

by Table 2 and Table 3 [42].   

Table 2. Middleware comparisons (part 1) 

Middleware 
attributes 

ICE PEIS Miro CINeMA ARCADE CoHoN MARIE Player 

Control 
model 

Central-
ised 

Decen-
tralised 

Event 
driven Hybrid Central-

ised 

Message 
orient-

ated 

Central-
ised 

Not 
applicable 

Fault 
tolerance 

No 
explicit 

fault 
handling 

No 
explicit 

fault 
handling 

No 
explicit 

fault 
handling 

Yes Yes Yes No 

No  
explicit 

fault 
handling 

Standards/ 
Technology 

CORBA P2P CORBA OPRoS ICE Publish/ 
subscribe 

Interop-
erability 

Tech-
nology 

3-tier 
architect-

ture 

Open-
source 

Yes Yes Yes No Yes Yes Yes Yes 

Real-time Yes Yes No Yes Yes Yes No No 

Windows Yes No Yes No No No No Yes 

Linux Yes Yes Yes Yes Yes Yes Yes Yes 

Simulator No No Yes No Yes No Yes Stage, 
Gazebo 

Distributed Yes Yes Yes Yes Yes Yes Yes Yes 

Security Yes No No Yes 
Indirectly 
support-

ed 
No No Yes 
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Table 3. Middleware comparisons (part 2) 

Middleware 
attributes 

CLARAty ASEBA CARMEN Pyro Orca OROCOS MSRDS ROS 

Control 
model 

Centralis-
ed, decen-

tralised, 
event 
driven 

Event 
driven Hybrid Indep-

endent 

Not 
applic-

able 

Event 
driven 

Distrib-
uted 

messag-
ing 

Message 
orientated 

Fault 
tolerance 

Yes No Yes No 

No 
explicit 

fault 
handling 

No 
explicit 

fault 
handling 

Yes 

No  
explicit 

fault 
handling 

Standards/ 
Technology 

Object 
Orientated 

Event-
based TCP, IPC 

TCP, 
XML, 
HTTP, 

OpenGL 

ICE CORBA .NET/SOA 
Message, 

RPC 
services 

Open-
source 

Partially Yes Yes Yes Yes Yes Comm-
ercial Yes 

Real-time Most 
modules Yes No No No Yes No Yes 

Windows Only 
cygwin No No Yes Yes Yes Yes Partial 

functions 

Linux Yes Yes Yes Yes Yes Yes No Yes 

Simulator Yes Yes Yes Yes Yes No Yes Yes 

Distributed Yes Yes Yes No Yes No Yes Yes 

Security Yes No Yes Yes No No Yes No 

 

2.3 Smart factories 

This section begins by introducing the Industry 4.0 concept, and discusses the characteristics 

and requirements of the model in an industrial setting. Machine-to-Machine (M2M) 

communication and Advanced Robotics are also discussed, since they are considered as key 

pillars of Industry 4.0.   
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2.3.1 An introduction to the Industry 4.0 concept 

In the recent past, industrial processes began to implement information technology (IT), but 

the current global trend goes beyond this due to the technological advancement of electronics 

and the internet. The term ‘Industry 4.0’ originated in Germany, although its concept is 

largely adopted in other countries, also known as the Industrial Internet of Things, Smart 

factories, or Advanced manufacturing [7]. The notion that these terms have in common is that 

the traditional manufacturing and production methodology is at the cusp of a digital 

transformation. The present increase in the use of information and communications 

technology (ICT) in manufacturing, together with the implementation of ‘intelligent’ 

embedded sensors and devices has realised an integration between the real-world and virtual-

world, known as the cyber-physical production system (CPPS), depicted in Figure 2.6 [77].  

 

Figure 2.6. The cyber-physical production system. 

 

2.3.1.1 Cyber-physical production systems 

CPPS’s are machine networks that are organised in a similar fashion to social networks. They 

link IT with the mechanical and electronic components of a factory, which enables 

communication between the components through the network. In this way, machines can 

share information about faults, stock or demand levels, and changes in customer orders, 
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which can essentially lead to the coordination of processes and production targets to meet 

deadlines. Apart from the utilisation of ‘smart’ machines, CPPS’s allow for the networking of 

these machines and smart products to the entire supply chain, thus building smart factories 

that are able to produce products based on consumer demand. An illustration of this concept 

is given by Figure 2.7 [78].  

 

Figure 2.7. Industry 4.0 environment. 

 

2.3.1.2 Characteristics and requirements 

In their report [79], Schlaepfer et al. discuss four main characteristics of Industry 4.0, and 

how these reveal the capacity for change in traditional manufacturing environments: 

 Vertical networking of smart production systems involves the use of CPPS’s to enable 

factories to dynamically react to changes in customer demand or stock levels, and 

establish production systems that are customer-specific and individualised. Another 

contribution of CPPS’s in vertical networking is maintenance management and waste 

reduction; since resources and products are networked, variations in quality and 
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machine breakdowns can be attended to more rapidly, thus optimising the use of 

resources.  

 Horizontal integration is the networking of inbound logistics, warehousing, 

production, marketing, sales, and outbound logistics, all of which is possible through 

the CPPS, ensuring global optimisation. The continuous traceability of a product (also 

known as ‘product memory’) can be achieved, allowing for the dynamic mass 

customisation of products at various points in the production process.   

 Through-engineering occurs seamlessly during the design, development and 

manufacturing of new products due to the availability of engineering data at all stages 

in a product’s life cycle.  

 Exponential technologies such as sensor technology and nanotechnology accelerate 

individualised solutions, flexibility, and cost savings in manufacturing processes. An 

example of this can be seen in the field of mobile robotics, where artificial 

intelligence (AI) and advanced sensor technology can increase autonomy, leading to 

more flexibility in manufacturing processes.     

 The requirements of a smart factory environment involve a variety of technological 

developments, these include [7]: 1) ICT to digitise information; 2) CPPS’s that use ICT for 

monitoring and control of physical processes, an example can be intelligent robots that are 

able to reconfigure due to dynamic product specification changes; 3) distributed network 

communications to link resources, machines (or robots), products, people, and systems; 

4) simulation and modelling tools for product design; 5) data collection, big data analysis and 

cloud computing.       

2.3.2 M2M communication and Advanced Robotics 

Research identifies, amongst others, Machine-to-Machine (M2M) communication and 

Advanced Robotics as key technology enablers, or pillars in the Industry 4.0 concept [18]. 

Figure 2.8 [80] illustrates the concept of M2M communication in smart factories. The 

networking between machines and decentralised control at the machine allows for the 

possibility of dynamic product changes to be made at the source. Figure 2.8 also gives a 
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holistic view of the discussion in the previous section, relating to the networking of smart 

materials, machines, products and cloud networks for vertical and horizontal benefits.  

 

Figure 2.8. M2M communication in smart factories. 

 

The British Prime Minister, Theresa May, announced in January 2017 that Industry 4.0 was 

one of the five areas of focus in a plan by the British government to boost the economy [13]. 

Previous to this, in November 2016, the British government announced a £4.7 billion budget 

for research and development into four areas, two of which are robotics and artificial 

intelligence [13]. Figure 2.9 [15] is a good representation of the impact of robotics on the 

industrial revolutions. Robotic mobility (3rd robotic revolution) and intelligent robot systems 

(4th robotic revolution) allow for decentralised control, which fits in directly with the Industry 

4.0 concept. Decentralised control, configurable robots, and robot cooperation will increase 

flexibility in the smart factory and enable the ability to rapidly reconfigure systems to adapt 

to variations in consumer product demand [7].  

Future trends in mobile robots reveal that in 2020, 26 million mobile robots will facilitate 

autonomy in smart factories, unmanned transportation, and connected homes [15]. Mobile 
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robotics and cooperative robotics are also considered as ‘topics of the future’ in industry and 

institutions of higher learning [14].     

 

Figure 2.9. Robotics and Industry 4.0. 

In order for robots to be easily integrated into manufacturing processes the issue of robot 

communication protocol standards must be considered [7]. If the standards are proprietary or 

only adapted nationally, manufacturers will be forced to use equipment supplied by a few 

companies, which can increase costs and limit the adoption of Industry 4.0 due to the lack of 

flexibility in the system [7]. Hence, international standard communication protocols and 

interoperability across robotic interfaces are essential to the implementation of robotic 

systems in smart factories. 

2.4 Chapter summary 

The literature survey investigated the role of mobile robot systems in industry; associated 

topics such as heterogeneity, robot communication, and middleware platforms were also 

discussed. The survey concluded by discussing the characteristics and requirements of a 

smart factory environment as well as the influence of advanced robotics in these 

environments. 

 



 

Chapter 3 Design of the framework 

The aim of this chapter is to present the methodological approach taken during the design of 

the framework. The first section outlines the requirements of the framework and discusses 

some components of the preliminary design. The subsequent sections explain the design 

choices made over other possible solutions and, in some cases, background knowledge about 

specific topics are given to enhance the reasons for the corresponding design decisions. The 

chapter concludes by discussing the presentation of a detailed design overview, together with 

design specifications and assumptions.       

3.1 Design requirements 

The preliminary design overview is represented by Figure 3.1. The components in the figure 

are discussed in the following list, which outlines the important requirements of the 

framework to function in a smart factory environment: 

 The robot middleware is one of the essential components of the framework since it 

masks the differences of the heterogeneous robots in the network, thereby establishing 

common interfaces to seamlessly communicate with each robot.  

 The local control program is necessary for indirectly communicating with the robot 

hardware through the interfaces provided by the middleware layer. Local control is 

required for fast, real-time robot functions such as obstacle avoidance and local 

navigation.    

 The application of an international standard data communication protocol will 

promote flexibility of the framework for integration into a smart factory environment. 

Interoperability across robot interfaces, as well as the other components, is also 

required for successful system integration. 
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Figure 3.1. Preliminary design overview. 

 

 A graphical user interface (GUI) assists the user in configuring robots or tasks in the 

network. The GUI communication interface will allow for a connection to any remote 

robot in the network.   

 The engineering artificial intelligence (AI) component allows for the programming of 

intelligent user algorithms that will create a network of smart mobile robots, 

responding to specific states in the manufacturing process.  

 The communication architecture is a distributed system, thus enabling flexible and 

fault-tolerant solutions: the GUI and AI components are not limited to fixed locations 

in the network.     

 A hybrid control architecture is required for the control of mobile robots in the team. 

Decentralised control is necessary for the local, real-time robot response to obstacle 

avoidance and navigation, particularly in a dynamic manufacturing environment that 

comprises of moving machinery, people, and other mobile robots. The centralised 

control part of the hybrid scheme involves the high-level, decision making process 

which does not require real-time responses from the robot. The single point of failure 
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in the high-level control can be eliminated by the use of a redundant system, located 

at another point in the distributed network.       

 Plant simulated data is required for the testing and simulation of the framework’s 

functionality.  

 A human-machine interface (HMI) is necessary for the display of plant essential data 

as well as the current status of each robot in the team.   

3.2 ROS middleware 

Section 2.2 discussed a comprehensive survey on the various robotic middleware platforms. 

The Robot Operating System (ROS) was chosen to be implemented among them due to the 

following reasons: 

 ROS is a free, open source installation. 

 ROS installs on the popular Linux Ubuntu distribution, and is actively developed and 

updated.  

 There is an availability of a large software library for device driver implementations.  

 ROS is a distributed system, thus software nodes and user applications can run on 

different machines and they can communicate with each other. 

 The modular design of ROS allows for easy integration of additional 

functionality [81]. 

 Commercial robots are powered by ROS [16].  

 ROS has been introduced into industry through the ROS industrial consortium [17], 

and is backed by well known industrial players such as Yaskawa, ABB, BMW, and 

Siemens, amongst others.  

 Applications can be programmed in various programming languages, viz. Python, 

C++, Lisp, and Java. 

 Due to its popularity, a great deal of help is available through wiki-tutorials, 

community forums and research papers.  
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The ROS middleware consists of nodes, messages, topics and services. Nodes communicate 

with each other by passing messages, which are made up of data types, including nested 

structures and arrays. The ROS nodes can communicate in two ways: through a synchronous 

service, or asynchronous topic. Services behave like function calls in conventional 

programming languages, and they are defined by specific names, provided by a node. A 

request to a service will result in a response with data of a specific data type (e.g. boolean, 

string, integer, etc.). Topics involve the streaming of data by a particular node. In this 

scheme, the communication between nodes occurs in a peer-to-peer (P2P) manner by 

publishing messages and subscribing to published messages. An initial event called the 

‘naming service’ is centralised and relies on a master node, as shown in Figure 3.2 [47].  

 

Figure 3.2. Topic-based communication in ROS. 

 

The communication sequence between a publisher and subscriber involves the following 

steps [82]:  

1) The publisher node registers (publishes) the topic (e.g. a laser scan) to the master node, 

also referred to as the naming server, and informs the master about the entry point of topic 

data.  

2) The subscriber node queries the master on access to the particular topic.  

3) The master sends a response to the subscriber with entry point data, such as the host 

address and port number.  
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4) The subscriber now directly communicates with the publisher (host) via Transmission 

Control Protocol (TCP) or User Datagram Protocol (UDP) connections, requesting for topic 

data.  

5) The publisher responds to the subscriber by sending the topic data stream (e.g. laser scan 

data). 

In relation to the design of the framework in this research, each remote robot in the network 

was powered by the ROS middleware and consists of master and subscriber/publisher nodes. 

The reason for the use of multiple masters in the multi-robot system was to enhance the 

reliability of the system and eliminate the single point of failure. Also, individual masters 

mean that each robot has direct, real-time control over its sensors and actuators, which is a 

necessity in both single and multiple robot systems.  

The ROS robot simulation package implemented in the design and development of the 

framework was Stage – the two dimensional simulator. Stage provides interfaces for the 

simulation of robot sensors and actuators, without the actual physical hardware. Robot 

attributes like size, colour, and shape can be created in model files, and a map of the 

environment can also be loaded as an image into the Stage ‘world’. This functionality allows 

for the fast prototype testing of robot behaviours in various scenarios without using the actual 

robot hardware.   

3.3 Industrial data communication 

The data communication standard applied in an industrial setting is crucial to the 

interoperability of devices in the network. Common communication interfaces across all 

devices are necessary in order to maintain flexibility and robustness in the system, and as 

discussed, it is a requirement for the adoption of a smart factory concept. Before discussing 

the data communication standards applied in industry and the option chosen in the design of 

the framework, a review of the basic industrial communication model is required.     
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3.3.1 Communication model 

The traditional hierarchical model of the communication and control system approach 

adopted by most manufacturing operations is given by Figure 3.3 [83]. 

 

Figure 3.3. Hierarchical communication and control model in manufacturing plants. 

The hierarchical structure in Figure 3.3 begins from the low-level, real-time control response 

and monitoring of Input/ Output (I/O) field devices (e.g. sensors, actuators, digital I/O), to the 

slow response, higher-level control of the manufacturing processes. The Distributed Control 

System (DCS) and Programmable Logic Controller (PLC) units have the function of 

controlling a variety of electrical, mechanical or process equipment through data signal 

processing and the execution of industrial computer programs. PLC’s contain Central 

Processing Units (CPUs) that operate at fast program cycle times. In high-speed 

manufacturing plants, there is a greater demand for extremely fast program cycle times, to 

monitor and control real-time operations. Robots also form part of “Level 1” (in Figure 3.3) 

due to the control of its own hardware through the use of its on-board microprocessor. 

The Supervisory Control and Data Acquisition (SCADA) system retrieves data from level 1 

and presents it in the form of status messages, graphics, and trends for the plant operator or 

engineer to analyze and control equipment on the factory floor.  A level higher sees the 

Manufacturing Execution System (MES), or in some applications the Manufacturing 

Resource Planning (MRP) system, whose function is the management and scheduling of 

engineering resources and processes to optimise productivity on the factory floor. The MES 

also bridges the gap between the manufacturing process and the business management level 

of the company.  



3.3   Industrial data communication 37 

 

The highest level in the hierarchy in Figure 3.3 is the Enterprise Resource Planning (ERP) 

tool, which is a business management software package that specialises in: 1) the planning of 

production, product demand and supply chains, and 2) the management of material, 

warehouse logistics, maintenance activities, and human resources. ERP systems are value 

added services to the business as they assist senior managers with meaningful data and tools 

to efficiently manage areas of the business. 

3.3.2 Data communication standards 

Data communication technology in industry was originally developed on serial-based 

interfaces by different companies, which later became standards. Some of these standards 

include PROFIBUS [84], CANbus [85], Modbus [86], and CC-Link [87], among many 

others. PROFIBUS has been the most successful serial bus technology [88], and is still 

widely adopted in industry today. In the modern era, Ethernet-based communication 

protocols are becoming very popular due to the increased speed offered by the network 

architecture and the cost effective solutions that exist [88]. These networks integrate well 

with the Industry 4.0, smart factory concept, primarily attributed to the real-time 

communication ability and ease of installation of the Ethernet infrastructure. Many Ethernet-

based communication protocols exist, the most popular ones are Ethernet/IP [89], 

PROFINET [84], and EtherCAT [90].  

Ethernet/IP is an industrial Ethernet protocol, which uses the first four layers of the Open 

System Interconnection (OSI) model, as shown in Figure 3.4. The generic OSI model was 

created by the International Standards Organisation (ISO) in 1984 and defines seven layers 

that describe guidelines for interoperability between various devices in the network. 

Ethernet/IP uses the Common Industrial Protocol (CIP) over TCP/IP, which resides in the 

fourth (Transport) layer of the OSI model. CIP provides a common set of services and 

messages for industrial control systems, and multiple CIP connections can be made over one 

TCP connection. An unlimited number of nodes can be connected in an Ethernet/IP system 

due to the use of the standard Ethernet infrastructure and switches. The protocol has proven 

to provide very efficient slave peer-to-peer (P2P) communications [88], although one of the 

drawbacks of Ethernet/IP is its limited real-time capability.          
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Figure 3.4. The 7 layers of the OSI model. 

 

PROFINET is a popular industrial Ethernet protocol and is widely used by system integrators 

and manufacturers such as Siemens. It consists of three classes [88]:  

 Class A provides a link to the PROFIBUS network through proxies and remote 

procedure calls on the TCP/IP layer. It is mainly used for parameter data and cyclic 

I/O since the cycle time is around 100ms. 

 Class B is also known as PROFINET Real-Time (RT), with cycle times around 10ms, 

providing a more real-time communication interface. Typical applications using 

Class B include factory automation and process automation. 

 Class C is also known as PROFINET IRT (Isochronous and Real-Time) and requires 

specific hardware to produce cycle times of 1ms, particularly used in high-speed and 

motion control applications.  

EtherCAT is standardised to operate on the second layer of the OSI model, thus since 

processes are handled in hardware, each node in the network introduces a minimum 

processing latency, enabling fast Ethernet speeds of up to 100Mbits/sec. The EtherCAT 

protocol uses standard Ethernet frames, as shown in Figure 3.5 [91], where the protocol data 

consists of the EtherCAT header (red) and 1 to 15 datagrams (green). The protocol can 

connect up to 65535 slave nodes in a system. Messages are issued by the EtherCAT Master 

with data for all nodes; as the message is transmitted from and back to the Master, each slave 
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node processes its datagram and inserts new data into the frame as it passes through (also 

termed ‘pass-through reading’). This form of communication allows the EtherCAT network 

to achieve maximum bandwidth utilisation.  

 

Figure 3.5. Ethernet frame with EtherCAT data. 

 

The following list is a summary of the key benefits of the EtherCAT protocol [92]: 

 EtherCAT is a free and open protocol. 

 Fast, deterministic, with very short cycle times. 

 International Electro-technical Commission (IEC) standard. 

 Supports master-slave and P2P communication. 

 Operates on standard Ethernet. 

 Slave devices use inexpensive components. 

 High precision time synchronisation for high-speed and motion control applications. 

Another advantage of the EtherCAT system is that together with OPC-UA (discussed in the 

next section), it supports Industry 4.0 convergence of information and automation 

technologies [92].  

3.3.3 OPC-UA 

One of the key requirements of an Industry 4.0 factory is the interoperability of devices and 

systems in the network. This can be a challenging task, particularly in networks that contain 

heterogeneous devices and various communication protocols, like the few mentioned in the 

previous section.  A data communication standard that specialises in device and system 
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interoperability is the OPC Unified Architecture (OPC-UA), developed and maintained by 

the OPC Foundation [93]. OPC-UA offers a secure method of server-client communication, 

having the ability to securely connect through firewalls and VPN (Virtual Private Network) 

connections. Multiple servers (each connected to their own set of homogeneous devices) can 

be configured in the network and clients can instruct the server(s) to send data at real-time 

intervals. The power of OPC-UA is realised when data is shared in networks that contain 

mixed Ethernet protocols such as Ethernet/IP, PROFINET, and EtherCAT, since these 

architectures provide OPC-UA servers in order to integrate data into larger systems.  

OPC-UA has also made it possible to share data from the factory floor through to the higher-

level business systems such as the ERP, illustrated in Figure 3.6. This communication model 

can be compared with the traditional model (Figure 3.3) discussed earlier, where the 

scalability of OPC-UA is identified and the integration of devices and systems in a smart 

factory becomes a reality.   

 

Figure 3.6. Hierarchical communication and control model with OPC-UA. 

 

Tom Burke, the president and executive director of the OPC Foundation, made the following 

statement about OPC-UA and the Industrial Internet of Things (also known as Industry 

4.0) [94]: 

“OPC-UA is clearly positioned to be the Industrial Internet of Things infrastructure for 

moving data from sensors to the cloud. OPC-UA security has been validated and endorsed by 

many organizations inclusive of BSI in Germany. We are actively working with all of the IoT 

protocols, adding full support of the IoT protocols directly into the OPC-UA base 
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architecture... We have an extensible model that will allow us to plug in any IoT protocol of 

the past and present directly into OPC-UA.” 

The interoperability among the layers in the architecture shown in Figure 3.6, and the ease at 

which the low-level data is made available to the higher level systems in the network, are the 

reasons why OPC-UA was chosen as the data communication standard in this research.       

The OPC-UA Server implemented in the framework for data tag configuration and real-time 

data exchange was Matrikon OPC [95]. The software product was chosen due to its longevity 

and stability in the industry, as well as its ability to interface with automation and control 

devices of leading manufacturers [95]. 

3.4 IDE and GUI 

As per the discussion on Figure 3.1, the AI component of the framework is required for the 

programming of intelligent user algorithms that will create a network of smart mobile robots, 

responding to specific states in the manufacturing process. This function is made possible 

through the use of an Integrated Development Environment (IDE), which contains various 

libraries to assist with the programming of algorithms, interfaces to enable communication 

with other devices in the network, and a GUI development environment for the design of 

simple interfaces to assist the user with robot and task configuration. Various IDE platforms 

were researched; among them were Qt [96], the R-project [97], and Python [98].  

Qt is a complete C++ application development environment that provides a rich library of 

components used for rapid, and aesthetically pleasing, graphic development. It is available as 

open source or commercial installations on Windows, MacOS, and Linux Operating Systems 

(OS). Qt can be integrated into an industrial setting through the “QtOpcUa” module, which 

enables support of the OPC-UA industrial communication standard. The drawback of Qt is 

the use of the C++ programming language, which can be difficult for the end-user to grasp 

and seamlessly program algorithms.  

The R-project is an excellent tool for statistical computation. The programming environment 

contains an integrated suite of software functions for data manipulation and storage, and data 



42 Design of the framework 

 

analysis. Programs are written in the R-programming language, however, C, C++, and 

Fortran code can be linked and called at run-time for computationally heavy tasks [97]. The 

R-project would have been the design choice in this research if it also had the ability to 

develop GUI’s together with industrial communication interfaces (such as OPC-UA) for 

integration into an industrial robot network.  

Python was chosen as the end-user programming language due to:  

 its simple object-orientated structure;  

 the built-in GUI development platform, named Tkinter, which has a cross-platform 

ability and contains a stabile core (being first released almost three decades ago);  

 its powerful mathematical libraries such as Numpy, Scipy, and Scikit-learn [99] each 

contributing to the depth of the framework in developing advanced algorithms for 

robot control and cooperation applications; 

 the support of the OPC-UA communication protocol through the use of its OPC-UA 

client library; 

 its popularity in the computer programming and data engineering fields, making it a 

familiar platform for the end-user to work in.  

The Python IDE used for the development of the framework was PyCharm (Community 

Edition), since it is a free, user friendly IDE, and was sufficient for satisfying the objectives 

of the research study.  

3.5 SCADA 

The purpose of the HMI, or Supervisory Control and Data Acquisition (SCADA) block in 

Figure 3.1 is to merely visualize the actual status and values of the plant variables of the 

application. Several SCADA packages were researched and many proved too costly to be 

implemented in this research study. From the free-version SCADA packages researched, 

Ecava IGX [100] was chosen due to it being a web server application, thus there was no need 

for an additional client program or software plug-in. The only additional requirement was an 

offline or online internet browser (which is a default installation on most computers) to view 
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the mimic screen. The free, unregistered version gives the user a two hour period to access 

the mimic, after which the application shuts down. This limitation was acceptable for the 

study since in practice, the SCADA was used for research and simulation purposes and can 

always be restarted after the time period has expired. 

Ecava IGX also supports the OPC-UA communication protocol and contains an OPC-UA 

client; hence it adheres to the data communication design standard of the framework.  

3.6 Final design overview 

Figure 3.7 gives an overview of the components in the software framework that was designed 

for the programming of remote mobile robots in a manufacturing environment.  

 

Figure 3.7. Final design overview of the framework. 

 



44 Design of the framework 

 

The green blocks and lines in the figure represent real-time OPC-UA data communications, 

whilst the red structures represent offline, configuration related communication. The control 

architecture of the framework is a hybrid one, where the centralised part of the scheme is 

seen in the high-level, decision making process involving the Python algorithms and the 

OPC-UA data communication.  

The goal tasks of each mobile robot are achieved through the OPC-UA tag variables, which 

are configured in the Matrikon OPC-UA Server. The robot motion commands and the 

mapped environment x and y coordinate points are OPC tag outputs from the Python 

algorithm – located anywhere in the network. This distributed feature of the framework 

accommodates for the possibility of having multiple programming stations, each able to do 

the same task of processing algorithms. The user’s Python algorithm requires plant data, 

either actual data from a live plant or simulated data, the latter of which was used in the 

framework development and system tests. 

Each robot in the network is powered by the ROS middleware. The decentralised part of the 

hybrid control architecture is identified by the robot’s local control program, which works in 

conjunction with the ROS core to perceive data from proximity sensors (such as a laser range 

finder) and to plot paths to goal locations while avoiding obstacles. The Adaptive Monte 

Carlo Localization (AMCL) algorithm [101] was used for the path planning and obstacle 

avoidance routines, since it is one of the ROS packages and produced a good performance in 

simulation tests. 

3.7 Functional design specifications 

The following list outlines the functional design specifications, defined in order to fulfil the 

contributions of the research study: 

 Mobile robots operate at linear velocities ≤ 0.2 m/s. 

 Mobile robots operate at angular velocities ≤ 0.4 rad/s. 

 Range finder sensors are used for distance measurements and are positioned at the 

front of each robot. 
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 Robots are required to plan and navigate the environment while avoiding obstacles.  

 Required scan cycle time of the robots’ local control program is ≤ 100 ms, so that 

real-time response to navigation and obstacle avoidance routines can be performed. 

 Required scan cycle time for the higher-level decision making algorithms is ≤ 1 sec.  

 OPC-UA tag scan rates are ≤ 500 ms.  

 The complete list of OPC-UA Server tags is accessible by the GUI. 

 The GUI provides an interface for the mapping of OPC-UA tags to local variables in 

the Python high-level control program. 

 The GUI provides an interface for the configuration of robot parameters (dimensions, 

hardware, technical limitations), and the configuration of task parameters (robot 

physical and technical requirements).  

 Remote downloading of robot configuration data is enabled through the GUI. 

 Robots are assigned static IP addresses since they are located on an Ethernet network, 

and are accessed by the GUI through use of these addresses. 

 No direct inter-robot communication is permitted. 

 The SCADA shows the status of the manufacturing process and the locations of the 

mobile robots. 

 The use of Python coded machine learning algorithms for high-level robot control is 

required.  

      

The following design assumptions are made: 

 The Stage simulation environment produces neither noise nor dynamic obstacles, 

except in cases where multiple mobile robots are simulated.  

 The static map used for the Stage simulation is a direct representation of the 

environment. 

 Free navigation paths between robot goal locations exist, as per the design of the 

static map employed.  

 Individual robots ignore the existence of other, multiple robots executing the same 

task. 



46 Design of the framework 

 

3.8 Chapter summary 

This chapter presented the methodological approach taken during the design of the 

framework. The design requirements were defined, outlining the key components of the 

framework that will enable its functionality in a smart factory environment.  

The reasons for choosing the ROS middleware as the core platform for each robot were 

discussed, and a description of the communication mechanism employed by the ROS 

architecture was described. The section on industrial data communication examined the 

communication and control models in manufacturing plants, together with the common 

communication standards employed in industry. The OPC-UA data communication standard 

that specialises in device and system interoperability was selected as the communication 

protocol for the framework due to the ‘interoperability’ requirement of Industry 4.0.  

The basis for selecting Python as the programming language for creating the GUI and 

developing user algorithms were discussed, as well as the use of the Ecava IGX SCADA 

software in the system design. The chapter concluded with a discussion on the final design 

overview, and the functional design specifications and assumptions.         

 

 



 

Chapter 4 Framework development 

Following the discussion on the final design overview in the previous chapter, this chapter 

examines the software development of the framework components. The subsequent two 

sections are preliminary ones that describe the structure of the approach taken to present the 

details of the software development.   

4.1 Development and verification strategies 

The presentation of the software development for the framework involves a structured 

approach, where the main components of the system are discussed in separate sections. Some 

discussions will involve the use of flow diagrams to give an overview of the subsequent 

work, or to describe the sequence of functionality in the development. In the penultimate 

section, a review of the framework is covered with the purpose of conveying a depiction of 

the system integration and a summary of the developmental work.  

The software development correlates with the verification of the framework, which was done 

through a case study approach. A series of case studies are performed in the next chapter, and 

involve different scenarios pertaining to mobile robot material handling applications. Hence, 

some of the developmental work in this chapter relates to these applications; for example, the 

SCADA development section will show the creation of screens that contain material storage 

graphics. Likewise, another section such as Python programming features, discuss the 

development of user functionalities that are applied in the case studies as part of the 

verification of the framework.     
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4.2 Development overview 

The structural diagram in Figure 4.1 gives an overview of the framework development 

discussed in this chapter.  

 

Figure 4.1. Overview of the framework development discussed in this chapter. 

 

The key sections depicted in the figure are summarised below: 
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 OPC-UA communication involves the configuration of the Matrikon OPC-UA Server 

and communication between OPC-UA Clients, viz. Python, SCADA and the mobile 

robot system.  

 Tkinter GUI discusses the development of the graphical screens for user interaction. 

The OPC-UA client configuration and tag assignments are also discussed here.  

 The mobile robot system section details the ROS software implementation, 

decentralised-local robot control, the Stage simulator integration, and the OPC-UA 

client configuration. 

 SCADA development covers the creation of the mimic screens for the viewing of plant 

data and locations of the mobile robots. The OPC-UA client configuration for the 

SCADA node is also discussed.  

 Python programming features involves a discussion on the development of three 

features which all strongly contribute to the contributions of this research study: 

1) local variable mapping to OPC Server tags, 2) heterogeneous mobile robot 

cooperation, and 3) support for machine learning applications in robot control 

systems.      

4.3 OPC-UA communication 

The communication arrangement between the Matrikon OPC-UA Server and each Client in 

the framework is given by Figure 4.2. The alias (or tag) configuration that represent the 

system variables are executed through the Server, which also holds a real-time database of all 

tags in the system.   

The Matrikon OPC Explorer package is a general purpose OPC Client, provided by 

Matrikon, for testing the functionality of the system. The value, quality (good or bad), and 

timestamp data of the Server configured tags can be viewed. This functionality was used to 

verify the status of the tags before they were actually scanned by the OPC-UA Clients in the 

framework.  
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The other remote OPC-UA Clients in the framework, viz. Ecava IGX SCADA, Python 

Program, and ROS Robot, are each configured to read and/or write values of the OPC tags. 

The manner in which each client connects to the server to retrieve data is discussed in the 

following respective sections.  

 

Figure 4.2. Communication between Matrikon OPC-UA Server and Clients. 

 

Figure 4.3 shows a brief process of the way in which OPC tags are created through the 

Matrikon OPC Server interface. The name of the server was created in the “Alias 

Configuration” node and thereafter, each tag in the system was configured as a new alias. Tag 

properties such as name and data type are mandatory fields. The update rate was used in 

conjunction with the poll when inactive property, which if selected, will continue to update 

the value of the tag even if no OPC clients are accessing the tag at that specific time.  

If the read only checkbox is selected, OPC clients are restricted from writing values to that 

specific tag. Tag values can also be scaled through the use of text expressions, calculation, 

linear, square root, and gain/offset functions, all of which were not used in the development 

of the framework.       
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Figure 4.3. Matrikon OPC Server alias (tag) creation. 

Figure 4.4 shows two windows positioned side-by-side. The window on the left is the 

Matrikon OPC Server with tags configured for the material handling application (discussed in 

the next chapter). The Explorer window on the right was used to monitor and verify the 

value, quality and timestamp data of the tags in the system.  

 

Figure 4.4. Matrikon OPC Server and Explorer with tag value monitoring. 
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4.4 GUI development in Python Tkinter 

A concise visual of the GUI functionality is given by the flowchart layout in Figure 4.5. The 

main screen contains a menu of buttons, and was used to connect to a remote mobile robot 

through the use of an IP address. Each mobile robot operates on a Linux OS, integrated with 

the ROS middleware layer. The user is able to ‘ping’ an IP address to check if it exists in the 

network. Other buttons such as robot configuration and task management will direct the user 

to screens where robots and tasks can be configured respectively for specific applications. 

The assign tags button will navigate the user to a screen where OPC-UA tags can be assigned 

to local Python algorithm variables.   

 

Figure 4.5. Flowchart of the GUI functionality. 

The complete Python code for the Tkinter GUI development is included in Appendix A. It 

contains object orientated code for the graphic development of each screen and 

accommodates for user interactions that can possibly occur on the screens. The list 

represented by Table 4 gives a quick reference to starting places in the Python code where the 

development for the major screens (as outlined by Figure 4.5) occurs. The robot and task 

related data are stored in text files, located in the directory where the GUI application is 
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executed. The distributed feature of the application allows for its execution at any location in 

the same Ethernet network of the mobile robots. 

Table 4. Starting line reference to the Python code in Appendix A. 

GUI screen/function Line reference 

Main 100 

Connect 173 

Robot configuration 228 

Robot list 433 

Task management 479 

Assign tags 687 

Robot location 954 

 

4.4.1 Main screen and remote robot connection 

The main screen, with offline and online connections, is shown in Figure 4.6.  

 

Figure 4.6. The GUI main screen with offline and online connections. 
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In the offline mode, the task locations and download buttons are disabled, whereas they are 

enabled in the online mode since the user would be connected to the remote robot via its IP 

address. Status messages at the bottom of the screen indicate whether the user “could not 

connect to host”, or is “connected to host”, and red or green icons at the top of the screen 

signify whether the user is offline or online to the robot respectively. During an online 

connection, the ID and name of the robot is displayed (001 (robot001) as shown in 

Figure 4.6), this was coded to ensure that the user is connected to the correct robot in the 

network.   

There is also functionality to view the list of robots in the network by clicking on the Robot 

List button, which populates a list in a pop-up window as shown in Figure 4.7. The list is 

itemised with the robot ID’s, names, and IP addresses. Static IP addresses are used for each 

robot which was sufficient for this research study; however, this can be a cumbersome 

method of configuration in a large network of robots. Hence, future development will see the 

use of dynamic IP addresses and smarter, automated ways in which the user can connect to 

remote robots.    

 

Figure 4.7. The robot list pop-up window. 
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The connection between the GUI and the remote robot was made through the SSH (Secure 

Shell) protocol [102]. SSH allows for a secure remote login from one computer to another by 

using strong encryption methods. The connection works on a client-server model, and was 

established through a sequence of steps illustrated by Figure 4.8 [102], where in this 

application, the SSH Server is the remote robot’s Linux OS and the SSH Client is the Python 

GUI code.  

The Python SSH client implementation was achieved through the Paramiko package, a 

Python execution of the SSH protocol. The code segment that performs the SSH connection 

is found in Appendix A, lines 175–186. During the connection, the remote robot ID was 

retrieved from the robot’s Linux OS and was downloaded to the local machine that executes 

the GUI.   

4.4.2 Robot configuration 

The robot configuration GUI pop-up window is shown in Figure 4.9. Each robot was 

configured and identified by a robot ID, name, and IP address. The user can also record the 

length (L), width (W), and height (H) dimensions of the robot, as well as the technical 

limitations such as the maximum load capacity, and linear/angular speed. Other robot 

hardware features can be recorded by selecting the appropriate check boxes, this is necessary 

for specific tasks that require robots installed with these features.   

 

Figure 4.8. A simplified setup flow of a SSH connection. 
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Figure 4.9. The robot configuration GUI screen. 

Users are able to add new robots to the current list, and update existing records. The delete 

button enables the removal of records from the robot list, while the load function populates 

the screen with robot data from the selected field in the list box. Data records for each robot 

are stored in text files, located in the same directory as the executable file of the GUI 

application.  

The compatible tasks  list box show the tasks that are able to use the current loaded robot, a 

feature that is useful for the programmer when working with robot task algorithms. The 

development involved in determining the compatible tasks is discussed in section 4.7.2, since 

the feature was used in the cooperation between heterogeneous mobile robots.    

4.4.3 Task management 

The task management GUI pop-up window is shown in Figure 4.10, which has a similar 

layout to the robot configuration screen. Every task is configured with an ID and name, and 

the robot requirements for the task are entered in the appropriate fields, which include: 

1) maximum robot dimensions, 2) technical characteristics such as minimum robot load 
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capacity and speed, 3) the maximum number of robots that are allowed in a team for the 

particular task, and 4) the hardware requirements of the robot. 

 

Figure 4.10. The task management GUI screen. 

Similar to the robot configuration screen, the task management screen displays a list of 

compatible robots for the loaded task, based on the robot requirement fields entered by the 

user. As discussed in the previous section, the development involved in determining the 

compatible tasks to robots, and vice versa, is discussed further in the chapter. 

4.4.4 OPC-UA tag assignment 

The variable file selection tool in Figure 4.11 allows the user to choose a variable list from 

possible algorithm files for a specific application. The tag assignment GUI function is a 

valuable feature of the framework since the user can define any local variable name in the 

algorithm and then simply map the variables to the OPC-UA tags, which are automatically 

scanned in the “OPC Tags” pop-up window, shown in Figure 4.12. The mapping is necessary 

for the loading of OPC-UA tag values to local variables without the user directly searching 

and coding tags in the algorithm (or program). This gives the system flexibility and ease of 
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use. The process by which OPC-UA tags are read from the Matrikon OPC Server is discussed 

in section 4.4.6.    

 

Figure 4.11. Algorithm and robot tag assignment screen. 

 

Figure 4.12. Tag assignment screen with OPC tag list pop-up window. 
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4.4.5 Robot location 

The task location configuration screen, shown in Figure 4.13, is only accessed when an 

online connection to the remote robot is made. The purpose of this utility is for the calibration 

of x-y coordinate points in an environment where the robot’s localised coordinates do not 

correlate with its actual location on a map. Through this screen, the user is able to move the 

robot in the environment by clicking on the motion command buttons, and assign x-y data to 

specific task locations. This data can then be used by the robot to move to an actual task 

location, and not one that is incorrect due to robot calibration errors.    

 

Figure 4.13. The task location configuration screen. 

4.4.6 Python OPC-UA Client 

The Python OPC-UA Client was established through the OpenOPC library, which provides 

methods for connections to OPC Servers and methods for reading and writing values from/to 

OPC tags respectively. The flowchart in Figure 4.14 outlines the communication sequence 
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required to 1) connect to an OPC Server, 2) write or read tags, and 3) disconnect from the 

Server. The creation of an OPC Client object (opc in Figure 4.14) is required to initiate the 

communication, and the IP address of the Server is specified. In the figure, the localhost 

address is used which implies that the Client and Server reside on the same local machine. 

Connection to the Server requires the use of a Server name; in this case it is 

Matrikon.OPC.Simulation.    

 

Figure 4.14. Python OPC Client communication with the Server. 

The writing of OPC tags involves the specification of the Server alias (Server01), followed 

by the tag name. The tagname is then assigned the value retained in the locvar variable, as 

per Figure 4.14.  The tag read process is similar, yet requires the specification of the tag 

index, where “[0]” calls for the value. Other indices can call for the tag quality (good or bad) 

or timestamp.  
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4.5 Mobile robot system integration 

The development overview section in this chapter introduced four topics of discussion in the 

mobile robot system integration, each of which is covered in the subsequent sections. An 

overview of the remote mobile robot system is given by Figure 4.15, which shows the 

communication between each module in the scheme. 

 

Figure 4.15. Overview of the mobile robot system integration. 

4.5.1 ROS implementation 

The remote mobile robot code was also implemented using the Python programming 

language, and the program for each robot’s ROS implementation and localised control is 

documented in Appendix B. The Python client library for ROS is rospy, which enables the 

ability to interface between ROS topics and services. The flow diagram in Figure 4.16 

represents a basic implementation of the ROS core, using topics that were subscribed to 

during the initialisation.  

Topic names are also defined by the programmer at initialisation, and it is imperative that the 

topic name be used in a call-back function where the attributes of the topic are accessed. For 

example, the rosAI.py program in Appendix B subscribes to the amcl_pose topic in line 115. 

The topic name is defined as amclCb, which is the name of the call-back function in line 107, 
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and it is here where the AMCL attributes of the robot’s position are retrieved for use in the 

main loop of the code.  

 

Figure 4.16. A basic format of the ROS core implementation. 

4.5.2 Robot OPC-UA Client 

The OPC-UA Client code implementation for each mobile robot is documented in 

Appendix C, under the OPCdata.py filename. Since the program was written in Python, the 

OpenOPC library was used here as well, hence the connection to the Matrikon OPC Server 

and the methods used for accessing OPC tags are direct implementations of the procedure 

outlined in section 4.4.6. One apparent difference is the change in IP address configuration 

due to the remote residence of the Client.   

The OPCdata.py file was imported as a library in the remote robot control code (Appendix 

B), and the functions used from the file were: 1) getxyGoal which reads the robot’s x and y 
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coordinate goal location from the OPC-UA Server, 2) setStatus writes the current boolean 

status of the robot, whether it is busy or available, and 3) xyPos writes the current x and y 

coordinate position of the robot to the OPC-UA Server. 

4.5.3 Decentralised robot control 

The ROS move_base action client was used to move the robot to a specific location in the 

environment by accepting goal coordinate locations. The state diagram in Figure 4.17 shows 

the sequence involved in the local navigation algorithm. The sequence begins by waiting for 

a goal location command from the higher-level control system, via the OPC Server, and 

executes the move_base service after the “busy” status of the mobile robot is set. The status 

variable was used to reserve the robot resource to a particular task so that there are no goal 

location conflicts.  

 

Figure 4.17. State diagram of the local navigation algorithm. 

The goal was reached when the robot was within a distance of 0.5m from the actual location, 

which was calculated by using the standard distance formula between two points, as shown in 

Equation 4.1.  

    𝑑 =  √(𝑥𝑔 − 𝑥𝑐)
2

+ (𝑦𝑔 − 𝑦𝑐)
2
            (4.1) 



64 Framework development 

 

4.5.4 Stage simulation 

The ROS/Stage simulation of the mobile robots involves the use of specific files, each 

containing parameters or definitions of the robots and the simulation environment. The 

diagram in Figure 4.18 represents the association between the different file types configured 

to achieve the simulation in Stage. References to the code in the Appendix are shown in 

brackets for each file. 

 

Figure 4.18. Stage file associations with Appendix references in brackets. 

The function of each file illustrated in Figure 4.18 is discussed in the list below: 

 The world file is a programmable description of the simulation environment, which 

includes the robots and the map. The simulation window size and floor size can be 

defined here, as well as the attributes of the robots, such as the names, colours, and 

start-up positions in the simulation.  

 The map file is included in the world file and allows for modular programming 

through the use of models. 
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 The turtlebot file is similar to the map file in that it allows for the definition of models 

related to the robots. These include robot size and hardware attached to the robot, 

such as laser range finders (LRF).  

 The yaml file is required for the specification of the map data, which include the map 

image name and the resolution of the image.  

 The launch file is essential since it was used to define the links between the various 

ROS nodes in the simulation. ROS and Stage topics were configured in this file for 

each robot in the system, and the parameters for the localisation algorithm, in this case 

AMCL, were also set. In addition, an optional definition for the ROS 3D robot 

visualisation tool, rviz, can be configured here. 

An execution of the launch file produces a Stage simulation window with the map, robots, 

and LRF scanners as shown in Figure 4.19. The map illustrates the locations of two tasks, 

each containing source and destination points for the robots to transport material between 

goal locations.           

 

Figure 4.19. Stage simulation window with map and robots. 

4.6 SCADA development 

The SCADA development was performed using the free, unregistered version of the Ecava 

IGX software package. The version gives a two hour period to access the mimic, which was 
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found acceptable during simulation studies. As mentioned at the outset of this chapter, the 

following chapter involves the application of case studies with mobile robot material 

handlers, thus the SCADA mimic development caters for this approach. Figure 4.20 shows 

the Ecava Project Editor and the configuration page of the mapping between local variables 

and OPC Server tags. The OPC setup between Client and Server was a simple process and 

once completed, local SCADA variables were used directly as fields in the mimic. 

 

Figure 4.20. Ecava SCADA Project Editor showing the OPC client tag configuration. 

The material handling system consists of two tasks, each containing an input material buffer 

and an output storage buffer. Mobile robots were tasked with transporting material from the 

input buffer to the output storage area for specific tasks, either task #1 or task #2. The task 

goal output for the robot was determined by the end user’s Python algorithm and the task 

status together with the robot goal locations are shown on the SCADA mimic. The 

development of the mimic was done in Inkscape (Figure 4.21), and an example of the 

SCADA project execution is shown in Figure 4.22.  
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Figure 4.21. SCADA screen development using Inkscape. 

 

 

Figure 4.22. A SCADA project execution in the Internet Explorer web browser. 
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4.7 Python programming features 

The use of the Tkinter GUI is the first part of the process required by the end-user to program 

the high-level intelligence of a mobile robot control system. The second part involves the 

user development of Python algorithms that access the data created through the GUI. The 

purpose of this section is to present the development involved in providing support for user 

programming features that satisfy the contributions of this research study. These features will 

also be used in the case studies to verify the performance of the framework. 

4.7.1 Local variables and OPC tags 

Section 4.4.4 discussed the process of using the GUI to map local variables in the user’s 

Python program to OPC Server tags. The reason for the mapping was to enable the user to 

define any local variable name in the program (or algorithm) and then simply use the 

variables in place of the OPC Server tags, thus saving the programming time of searching for 

tags and configuring each of them for value retrieval.  

Figure 4.23 is a flowchart representation of the two Python functions that were developed to: 

1) obtain the local variables and OPC tags from the mapped file (avarmap.txt, created 

through the GUI), and 2) update the local variables with the actual values of the OPC tags, as 

per their mapping schedule. The text structure of the mapped file is shown on the left of 

Figure 4.23.  

The mapVars function goes through each line in the avarmap.txt text file and stores the local 

variable names and OPC tag names to arrays locArr and opcArr respectively. Thereafter, the 

updateVars function steps through the indices of locArr and reads the corresponding indexed 

OPC tag value. Each value is assigned to the mapped local variable defined in the gvar.py 

file, which is achieved by using the name attribute of the elements in locArr.   
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Figure 4.23. Functions that map and update local variables. 

4.7.2 Heterogeneous mobile robots and cooperation 

The functions that were developed for heterogeneous and cooperative mobile robot 

applications involve compatibility checks between robots and tasks. Figure 4.24 gives an 

overview of the development of these functions in Python, and the source code can be found 

in Appendix E. The getCompatTasks and getCompatRobots functions return compatibility 

matrices which are used in the display of compatible tasks or robots respectively in the GUI, 

as discussed in sections 4.4.2 and 4.4.3.  
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The configuration data required for the execution of these functions is obtained from the 

taskconfig.txt and robconfig.txt files, the string structure of which are shown in the figure. 

The lines in the files are structured to contain configuration information for the tasks and 

robots.     

 

Figure 4.24. Functions developed for heterogeneous robot applications. 

The checkRobTaskCompat function is a useful tool for the end-user since it requires just the 

task and robot ID’s and returns a Boolean result defining whether a robot is compatible to a 

particular task. It can be used to create algorithms which automatically determine the robots 

in the network that are suited for specific tasks. An application of this function is seen in the 

next chapter. 
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4.7.3 Machine learning support 

One of the contributions of this research study is the application of the field of machine 

learning in multiple mobile robot networks through the use of Python’s powerful machine 

learning library, scikit-learn. An effort was made to implement one of the machine learning 

algorithms namely, the Support Vector Machine (SVM) algorithm, to the robot material 

handling scenario. The case study application of the SVM algorithm is discussed in the next 

chapter, but prior to its use some development work in Python was prepared.  

SVM learning is related to statistical theory and is commonly used in the field of 

bioinformatics due to its ability to accommodate for high dimensional space data. There are 

various types of SVM classifiers; the basic linear classifier (also known as linear SVM), was 

implemented in this research. Linear SVM predicts whether an input belongs to one of two 

classes, and is achieved by building a model from a database of training examples that 

contains the mapping of input data to class labels. With this in mind, an SVM training 

application was developed in Python Tkinter. The source code for the application is 

documented in Appendix F, and its execution is shown in Figure 4.25. 

 

Figure 4.25. SVM train application created in Python Tkinter. 
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The SVM Train Application was used in one of the case studies (section 5.3) to create a 

database of training examples required in the generation of the SVM model. The y-axis levels 

for each task (1 or 2) shown in the figure are randomly generated every time the “Assign to 

Tx” button is pressed. This action will assign a binary class label to the values of the SVM 

features shown on the x-axis and the results are stored in a text file.  

4.8 Framework review 

The structured flow diagram in Figure 4.26 is a brief representation of the software 

components in the framework, each of which was discussed in this chapter. The end-user 

development involves the use of a choice between various programming features as well as 

the access to standard Python libraries and packages. The use of Ethernet communication 

backbone and the OPC-UA data communication standard makes the framework a distributive 

one; hence the end-user development can take place at any point in the same network. 

 

Figure 4.26. A review of the framework development. 
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4.9 Chapter summary   

This chapter began by describing the development and verification strategies adopted, and 

thereafter produced an overview of the topics of discussion. The development of the main 

components of the framework were discussed, these include: 1) the Python Tkinter GUI 

screens where robot, task, and OPC tag configurations are done, 2) the mobile robot system, 

which detailed the ROS software implementation, decentralised-local robot control, the Stage 

simulator integration, and the OPC-UA client configuration, 3) the Ecava SCADA 

development, and 4) the development of Python programming features to provide support for 

end-user applications that satisfy the contributions of this research study. The chapter 

concluded by discussing the brief representation of the software components in the 

framework.  

 





 

Chapter 5 Case studies 

This chapter presents a series of case studies with the purpose of verifying the development 

work of the framework. The various functionalities discussed in the previous chapter are 

tested here through the application of different mobile robot scenarios. Since the framework 

is a tool that will be used by the end-user, the studies also demonstrate the application of 

example user algorithms that can be used in the high-level robot decision making process.      

Four case studies are discussed in this chapter. The first involves a material handling 

application with a single mobile robot; the following two also pertain to material handling 

applications, but focus on cooperation in heterogeneous multi-robot teams and robot machine 

learning. The final study proves the flexibility and robustness of the framework through 

communication with a commercial third party system. Each case study begins with a 

description, followed by an application development section, and thereafter discusses the 

simulation results of the scenarios presented.  

5.1 Study I: Single mobile robot control 

The purpose of this study was to demonstrate the functionality of the framework in 

performing the high-level control of single mobile robot tasks. The study is also seen as a 

building block for the following studies.   

5.1.1 Description of the study 

The application of the framework in this case study pertains to a robot material handling 

scenario between two tasks, each containing an input buffer and an output storage location. 

An assumption made at the outset was that the robot was compatible to both tasks, and it 
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transported material from the input to output locations. Another assumption was the 

automated loading and offloading of material.  

The robot prioritised work for a particular task based on the state of variables in a user 

defined algorithm. Some of the variables included the supply chain profit per product index 

and the supply chain current product demand which influenced the importance of a task, and 

hence controlled the current task priority of the robot.  

Section 5.1.3 presents the simulation results of the application in two types of scenarios, each 

biased so that the robot prioritised one task over the other. The details of the simulation 

scenarios are discussed in the next section, along with the development work for this 

application.    

5.1.2 Application development 

The OPC tag definitions for the material handling application and the algorithm development 

are listed in Table 5. Since a single mobile robot was used in the system, the tags associated 

with the robot are prefixed by “r01_”, whilst the tags associated with task 1 and 2 are 

prefixed by “t01_” and “t02_” respectively.  The x-y coordinate related tags pertain to 1) the 

robot’s current position and 2) the goal position of the task, either its source (input buffer) or 

destination (material storage) location.  The r01_status tag was used to determine whether the 

robot is available for operation on a particular task, and the r01_tcurr tag informs the user 

program and SCADA application on the current task that the robot is working on.  

The task related tags are split into three categories: input, output, and supply chain. The 

buffer levels are calculated as a percentage, defined by Equation 5.1, where x is the task 

number and the definitions of the variables being listed in Table 5. 

     𝑡𝑥𝑖𝐵𝐿 =
𝑡𝑥𝑖𝐵𝑀

𝑡𝑥𝑖𝐵𝐶
∗ 100              (5.1) 

The reason for including tags that pertain to the supply chain was to make the application 

more relevant to an actual scenario, where these variables do play a vital role in determining 

the type of product (or task) that is more crucial to a manufacturer at any particular time. 
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Table 5. OPC tag definitions for Case Study I. 

OPC tag name Tag description Data type Unit 

r01_xpos robot-01 x position decimal m 

r01_ypos robot-01 y position decimal m 

r01_status robot-01 idle, busy signal binary 
 

r01_tcurr robot-01 current task number unsigned 

integer 
 

r01_currloc robot-01 current location unsigned 

integer 
 

r01_prevloc robot-01 previous location unsigned 

integer 
 

r01_xgoal robot-01 x goal position decimal m 

r01_ygoal robot-01 y goal position decimal m 

r01_loadcap robot-01 load capacity unsigned 

integer 
 

r01_load robot-01 current load unsigned 

integer 
 

r01_loadstat robot-01 loading/offloading status 
  

  
  

t01_iBM task-01 input buffer number of material unsigned 

integer 

mat 

t01_iBL task-01 input buffer level unsigned 

integer 

% 

t01_iFr task-01 input fill rate decimal pr/hr 

t01_iBC task-01 input buffer capacity unsigned 

integer 

mat 

t01_qSM task-01 output buffer number of material unsigned 

integer 

mat 

t01_qSL task-01 output storage level unsigned 

integer 

pr 

t01_qFr task-01 output fill rate decimal pr/hr 

t01_qSC task-01 output storage capacity unsigned 

integer 

mat 

t01_sCDr task-01 supply chain consumer demand rate decimal pr/hr 

t01_sPPi task-01 supply chain profit per product index decimal 
 

t01_sPD task-01 supply chain current product demand unsigned 

integer 

pr 

t02_iBM task-01 input buffer number of material unsigned 

integer 

mat 

t02_iBL task-02 input buffer level unsigned 

integer 

pr 

t02_iFr task-02 input fill rate decimal pr/hr 

t02_iBC task-02 input buffer capacity unsigned 

integer 

pr 

t02_qSM task-02 output buffer number of material unsigned 

integer 

mat 

t02_qSL task-02 output storage level unsigned 

integer 

pr 

t02_qFr task-02 output fill rate decimal pr/hr 

t02_qSC task-02 output storage capacity unsigned 

integer 

mat 

t02_sCDr task-02 supply chain consumer demand rate decimal pr/hr 

t02_sPPi task-02 supply chain profit per product index decimal 
 

t02_sPD task-02 supply chain current product demand unsigned 

integer 

pr 
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The Python application algorithm is represented by the block diagram shown in Figure 5.1, 

and the source code is documented in Appendix G1. The variables presented in the diagram 

are the OPC tags defined in Table 5, with the exception of the prefix text. The algorithm was 

executed at regular intervals for task 1 and task 2, hence the TWi output shown in the figure is 

the weighted value for each task. A task becomes a higher priority when its result becomes 

more negative than the other task(s). For example, if Tw1< Tw2 then task 1 will eventually be 

prioritised by the robot as soon as it has completed its current task. The algorithm was 

developed to consider the level of the input buffer and its capacity, the level of the output 

storage, the output fill rate and consumer demand rates, and the profit per product index.  

 

Figure 5.1. Control algorithm to determine the robot task priority. 

The control algorithm was executed within the matHand_algo.py program (Appendix G1), 

which also contains function calls for the robot motion commands for each task, the 

initialising and updating of local variables and tags, and the execution of a simulation 

program named matHand_sim.py (Appendix G2). The structure and interaction of the 

programs is explained through the flow diagram in Figure 5.2.  

The purpose of the simulation program was to establish a plant replica system where the 

generated data can be used to test the algorithm and essentially, the functionality of the 

framework. The code functions in the simulation program were used to fill the input buffers 

at pre-defined fill rates, and empty them whenever the robot was at the source location to 
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load material. The output storage filled when the robot was at the destination location and 

material was being offloaded. This data is visualised by the SCADA mimic for the 

application, shown in Figure 5.3.   

 

 

Figure 5.2. Flow diagram for the application program of Case Study I. 
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Figure 5.3. SCADA mimic for the material handling application of Case Study I. 

The development of the application program involved the use of the mapping of local 

variables to OPC tags, a Python programming feature of the framework that was discussed in 

section 4.7.1. The program also includes the development of the recordData function, as 

shown in Figure 5.2, which stores the buffer levels and the robot’s x-y coordinate data for use 

in the presentation of the simulation results.   

Finally, the robMotion function code sets the robot goal location coordinates, depending on 

the task number determined by the algorithm. The low-level motion commands are actually 

handled by ROS, so the end-user’s high-level Python program is modular, with the focus 

being on simulating artificial intelligent algorithms.   

5.1.3 Simulation results 

As previously mentioned, two simulation scenarios for this application were carried out, each 

biased so that the robot prioritises one task over the other. During both simulations, the load 
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carrying capacity, r01_loadcap, of the robot was set to 20 materials, while the input and 

output buffer capacities (t0x_iBC, t0x_qSC) were assigned 100 materials. The input buffers 

were simulated to fill at a pre-defined fill rate (t0x_iFr) from the beginning to the end of the 

simulation, which was terminated when either output storage t01_qSL or t02_qSL reached its 

full capacity.   

5.1.3.1 First simulation 

The first simulation was developed to influence a greater input fill rate at task 1. The t01_iFr 

tag was assigned the value 30 pr/hr, whilst t02_iFr was set at 10 pr/hr. The results of the 

simulation are shown by the plotted graphs in Figure 5.4. The graph on the left of the figure 

displays the input and output levels for task 1 and 2, and the impact of the load carrying 

mobile robot can be seen by the rise in output levels, a few seconds after the decline in input 

levels.  

 

Figure 5.4. Buffer levels and task weight outputs of Case Study I, simulation-1. 

The graph on the right of Figure 5.4 is much more interesting as it verifies the influence of 

the task-weighted algorithm on the results of the simulation. The task 1 robot goal was 

generated 6 times, against the task 2 goal of 3 times during the simulation. This result is 

expected since the input fill rate of task 1 was much higher than task 2, causing a lower 

weight contribution to the final Twi output of the algorithm as per Figure 5.1. Also shown in 

Figure 5.4 is the rise in the corresponding output level soon after the task goal decisions were 

made for the mobile robot. For example, at 500 seconds into the simulation, the robot’s goal 
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was task 1, and at 550 seconds it can be seen that there was a significant rise in the output 

level of task 1. 

Figure 5.5 is an x-y coordinate map position plot of the robot during the simulation, which 

can be viewed in conjunction with the Stage map in Figure 4.19 to visualise the path required 

by the robot to travel from one location to another. The figure illustrates the distribution of 

time spent by the robot between the source (input buffer) and destination (output storage) 

locations for task 1 and 2, where it is clear that more time was spent on task 1. Once again, 

this is an expected result since the algorithm computed twice the number of robot goals for 

task 1 than task 2. 

 

Figure 5.5. x-y robot coordinates during simulation-1 of Case Study I. 

 

5.1.3.2 Second simulation 

The results of the second simulation are given by Figure 5.6 and Figure 5.7, arranged in a 

similar manner to the first simulation. The idea behind the tests performed here was to make 

the robot more biased towards the execution of task 2. This was achieved by assigning a 

difference in supply chain profit per product index, t0x_sPPi. The t01_sPPi tag was assigned 

the value 0.5, whilst t02_sPPi was set at 1.5, and the input fill rates for both tasks were made 
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equal at 30 pr/hr. The results in Figure 5.6 reveal a minor bias towards the task 2 goal, being 

generated 5 times against the task 1 goal of 4 times during the simulation. Figure 5.7 also 

shows a greater concentration of time spent by the robot at the task 2 locations. 

 

Figure 5.6. Buffer levels and task weight outputs of Case Study I, simulation-2. 

 

Figure 5.7. x-y robot coordinates during simulation-2 of Case Study I. 

Comparing Figure 5.4 to Figure 5.6, one can notice a similar occurrence of data ‘spikes’ in 

the task weight outputs of T1-weight and T2-weight. These results are contributed to the 

computation of the input buffer level product in the algorithm described by Figure 5.1. A low 

iBL (input buffer level) value will result in a high Twi output. This result can also be verified 
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by the times at which the ‘spike’ occurs versus the time in the simulation where a low iBL is 

seen. For example, in Figure 5.6 at approximately 150 seconds into the simulation, T2-weight 

has a value of almost 5 and at that particular time, T2-in (shown in the left of Figure 5.6) has 

a value of almost 0%. 

5.2 Study II: Cooperation in heterogeneous mobile robot teams 

The purpose of this study was to demonstrate the ability of the framework to control 

heterogeneous mobile robot teams in manufacturing bottleneck scenarios and cooperation 

tasks.  

5.2.1 Description of the study 

The application of the framework in this case study also pertained to the robot material 

handling scenario between two tasks, discussed in the previous study. The difference with the 

application discussed here was the introduction of additional mobile robots to create 

situations where robot cooperation can occur to produce common goal outcomes.  

This study also applied the Python programming feature discussed in section 4.7.2, which 

was developed for heterogeneous mobile robot systems. Two types of multi-robot simulations 

are introduced in section 5.2.3 to show the ability of the framework to adapt to different 

scenarios:     

 The first simulation involved a manufacturing bottleneck scenario with two robots and 

allowed robot #1 (R-01) to work on task 1 or task 2, depending on the output from the 

Python algorithm. Robot #2 (R-02) focused on task 2 only. 

 The second simulation demonstrated cooperation among three robots. R-01 worked on 

task 1 only and R-02 worked on task 2 only. Robot #3 (R-03) did work on task 1 or 

task 2, depending on the output from the algorithm. 
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5.2.2 Application development 

The OPC tag definitions used in this application were similar to the list defined in Table 5, 

with the addition of tags for the second and third robots. Hence, the prefixes to the robot 

related tags are R02 and R03 for robot #2 and robot #3 respectively. The development of the 

SCADA mimic is illustrated in Figure 4.22, which shows the current task and location of 

each robot in the system. 

The Python code development for this application is similar in structure to the documentation 

in Appendix G, with the addition of the modular motion code for the additional robots, and 

the application of the checkRobTaskCompat function discussed in section 4.7.2. Table 6 and 

Table 7 outline the robot and task configuration parameters used for the first and second 

simulations respectively.   

Table 6. Robot and task compatibility table for the first simulation of Case Study II. 

 L W H Load 
Cap. 

Lin. 
speed 

Ang. 
speed LRF Cam Two 

wheel Sonar Grip. 
Compat. 
Robot/ 

Task 

Robot 1 400 500 600 10 2 2 Yes Yes Yes Yes Yes Task 1 & 
Task 2 

Robot 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes Task 2 

Task 1 400 500 600 0.5 0.5 1 Yes N/A N/A N/A Yes R-01 

Task 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes R-01 & 
R-02 

 

Table 7. Robot and task compatibility table for the second simulation of Case Study II. 

 L W H Load 
Cap. 

Lin. 
speed 

Ang. 
speed LRF Cam Two 

wheel Sonar Grip. 
Compat. 
Robot/ 

Task 

Robot 1 400 500 600 0.5 0.5 1 Yes No Yes No Yes Task 1 

Robot 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes Task 2 

Robot 3 400 500 600 10 2 2 Yes Yes Yes Yes Yes Task 1 & 
Task 2 

Task 1 400 500 600 0.5 0.5 1 Yes N/A N/A N/A Yes R-01 & 
R-03 

Task 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes R-02 & 
R-03 
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5.2.3 Simulation results 

For the first and second simulation, the load carrying capacity (r0x_loadcap) of each robot 

were either set to 10 or 20 materials, while the input and output buffer capacities (t0x_iBC, 

t0x_qSC) were 100 materials. The input buffers were simulated to fill at a pre-defined fill rate 

(t0x_iFr) from the beginning to the end of the simulation, which was terminated when either 

output storage t01_qSL or t02_qSL reached its full capacity.   

5.2.3.1 First simulation 

The first simulation was created to influence a bottleneck at the task 2 input buffer by: 1) 

making r01_loadcap set to 20 materials and r02_loadcap set to 10 materials, and 2) keeping 

the input fill rates of both tasks constant at 30 pr/hr. Since R-02 was only dedicated to task 2, 

R-01 assisted R-02 whenever the cooperation algorithm outputted the corresponding result. 

The results of the simulation are shown by the plotted graphs in Figure 5.8.  

 

Figure 5.8. Buffer levels and task weight outputs of Case Study II, simulation-1. 

As per the results in the previous case study, the graph on the left of the figure displays the 

input and output levels for task 1 and 2, whilst the graph on the right of shows the influence 

of the task-weighted algorithm on the results of the simulation. The times at which R-01 

assisted R-02 can be seen by the ‘jump’ in the T2-out buffer level at approximately 200 and 

700 seconds into the simulation. This is verified by the result of the task-weighted algorithm 
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shortly before the ‘jump’ since the T2-wt values are slightly lower than the T1-wt values, 

causing R-01 to choose task 2 over task 1 at those particular points in the timeline. 

Another verification of R-01 cooperating with R-02 in this simulation can be seen by the x-y 

coordinate map position plot of the two robots during the simulation, given by Figure 5.9. 

These plots can be viewed in conjunction with the Stage map in Figure 4.19 to visualise the 

path required by the robots to travel from one location to another. The figure shows the 

concentration of time spent by each robot between the source (input buffer) and destination 

(output storage) locations for task 1 and task 2. It is expected that R-02 only travels between 

the source and destination of task 2, however, R-01 shares its interests between task 1 and 

task 2, and it can also be seen that it executes the work for task 2 twice in the simulation, 

thereby verifying the results shown in Figure 5.8. 

 

Figure 5.9. x-y robot coordinates during simulation-1 of Case Study II. 

5.2.3.2 Second simulation 

The second simulation was created to influence an equal output fill rate for both tasks by: 

1) making r01_loadcap and r02_loadcap set to 10 materials, and 2) keeping the input fill 

rates of both tasks constant at 30 pr/hr. Since R-01 was only dedicated to task 1 and R-02 

only dedicated to task 2, R-03 was made the cooperating robot agent by assisting at task 1 

or 2 whenever the cooperation algorithm outputted the corresponding result. The results of 

the second simulation are shown by the plotted graphs in Figure 5.10 and Figure 5.11.  
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Figure 5.10. Buffer levels and task weight outputs of Case Study II, simulation-2. 

 

 

Figure 5.11. x-y robot coordinates during simulation-2 of Case Study II. 
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The goal of the simulation was achieved as it can be seen from the results of T1-out and T2-

out that each line graph ‘follows’ the other. It is also expected from the x-y position plot of 

the three robots during the simulation (given by Figure 5.11), that R-03 evenly splits its work 

during the simulation due to the constant input fill rates of each task as well as the same load 

capacities of each robot; i.e. the consistency of the input variables in the simulation resulted 

in a similar output fill rate of each task. 

In a similar analysis to the previous case study, the presence of data ‘spikes’ in the task 

weight outputs of T2-wt and T1-wt can be seen in Figure 5.8 and Figure 5.10 respectively. 

Once again, these results are contributed to the computation of the input buffer level product 

in the algorithm described by Figure 5.1, where a low input buffer level value will result in a 

high Twi output. 

5.3 Study III: Machine learning robots 

One of the contributions of this research is to broaden the scope of the machine learning field 

to mobile robotics. This case study aimed to demonstrate the contribution via the application 

of a Python machine learning library (scikit-learn) in the framework. The vision of this 

application of the framework is for future use by researchers in applying machine learning 

strategies in robotic applications.  

5.3.1 Description of the study 

This application is an adaptation of the first case study which involved a single mobile robot, 

two tasks, and the transportation of material between a source and destination location. The 

algorithm discussed in section 5.1.2 was not used here, rather, a Support Vector Machine 

(SVM) algorithm was applied through the use of the scikit-learn Python library. The first part 

of the process involved a data training exercise which was discussed in section 4.7.3, 

thereafter, the training data was used to generate a SVM model. The model was then applied 

in the user algorithm with simulation inputs to determine the task goal of the mobile robot.  



90 Case studies 

 

This study demonstrates two simulations of the SVM application. The first simulation 

involves the monitoring of the task input and output buffer levels to determine the goal 

output, whilst the second simulation includes a supply chain task demand parameter as an 

additional SVM data feature to influence the outcome of the simulation.   

5.3.2 Application development 

The flow diagram in Figure 5.12 describes the application program for this case study. Most 

of the functions and procedures in the figure were omitted to avoid duplication of the process 

already discussed in Figure 5.2. The main highlight in the figure, however, is the inclusion of 

the runSVMAlgo function.  

 

Figure 5.12. Flow diagram for the application program of Case Study III. 

The developed SVM GUI application (Figure 4.25) was used to create “train.txt” files by 

randomly generating percentage levels every instant the data was assigned to a task. The file 

contains data for input and output buffers, and task demand levels for particular outcomes, 

i.e. whether the robot should perform task 1 or task 2 (“0” or “1” respectively in Figure 5.12). 
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The developed algorithm extracted the training features and outputs from the text file to 

create a SVM model. The data inputted to the model was the real-time simulation data of the 

input and output buffer levels, as well as (in the case of the second simulation) the supply 

chain task-demand data. The output from the algorithm was the task number, which was then 

used to prioritise the robot’s work. 

5.3.3 Simulation results 

As stated in the description of this study, two simulations were performed in the application 

of the SVM algorithm: 

 The first simulation trained the SVM model to produce an unbiased outcome. Task 

numbers were assigned to data training sets to influence the filling of both output 

buffers. For example, if t01_qSL was 40% and t02_qSL was 20%, then the trained 

output would have been task 2, since the robot will be required to fill that buffer. Of 

course, this also depends on the state of the input buffer as it would not make sense to 

assign the robot to an empty input buffer. The training process involved the creation 

of a “train.txt” that contained 312 data samples (lines in the file). 

 The second simulation trained the SVM model to produce a biased outcome towards 

task 2 for the first half of the simulation by using the supply chain demand data (as a 

percentage). The bias was created by randomly generating task 1 demand levels 

between 0 and 50, and task 2 demand levels between 50 and 100. The “train.txt” file 

for this simulation contained 1414 data samples.      

5.3.3.1 First simulation 

The results of the first simulation are given by the plotted graph in Figure 5.13. The SVM-out 

line graph in the figure shows the trend of the output from the SVM algorithm for the 

duration of the simulation. The output is read as a “1” for task 1 and “2” for task 2. 

Noticeable in the figure is the rise in the output levels shortly after the decision of the 

algorithm. For example, at approximately 200 seconds into the simulation, the value of SVM-

out was 1, and thereafter at 250 seconds, a rise in the T1-out level is seen.   
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Figure 5.13. Buffer levels and SVM outputs of Case Study III, simulation-1. 

The output buffer results illustrated in the figure reveal the ‘follow’ trend in the line graphs. 

This verifies the application of the unbiased SVM training model, since the robot was 

commanded to share its work load between the tasks.  Another way in which the model can 

be verified is through an analysis of the SVM-out line graph. The periods in the waveform 

show a near equal distribution of outputs for the tasks. A total number of 11 trips were made 

by the robot during the simulation, 6 of which were made for task 1 while the remaining 5 

were for task 2. The additional trip for task 1 can be explained by the initial one (at the start), 

where the load carried by the robot was not its capacity of 20 material.    

5.3.3.2 Second simulation 

The results of the second simulation are given by the plotted graph in Figure 5.14. The task 1 

and task 2 demand level trends (T1-D and T2-D respectively) are shown in the figure, where 

the randomised levels between 0 and 50 is visualised for T1-D, and 50 to 100 for T2-D. 

discussed earlier is seen in the levels. As mentioned in the description of this simulation, the 

training process involved a bias towards task 2 for the initial phase of the simulation. This 

bias is clearly noticed in the result of T2-out and T1-out, since T2-out ramps up to 60% long 

before T1-out. The result also verifies the execution of the SVM model, since the model was 

trained to prioritise the filling of T2-out early in the simulation due to the high demand.   
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Figure 5.14. Buffer, demand levels and SVM outputs of Case Study III, simulation-2. 

The total number of trips made by the robot during the simulation was 12; 7 of which were 

made for task 2 while the remaining 5 were for task 1, and thus confirms the bias towards 

task 2. In comparison with the first simulation, this simulation was 84 seconds longer, 

contributed to the additional trip by the robot. The additional trip is noted during the first 100 

seconds into the simulation, where the focus on one task caused the emptying of material 

quicker than the input buffer fill rate, thus resulting in the non-utilised loading capacity of the 

robot.     

5.4 Study IV: Integration with a third party system 

The aim of this case study was two-fold: 1) to prove the integration of the framework with an 

advanced technological third party system, thereby enhancing its ability to form part of an 

Industry 4.0 network, and 2) to test the robustness of the data communication link between 

the framework and the third party system.  
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5.4.1 Description of the study 

Section 3.3.2 explored various industrial data communication standards, among them being 

EtherCAT, which together with OPC-UA, supports Industry 4.0 convergence of information 

and automation technologies [92]. The work in this study demonstrates the integration of the 

framework with a Beckhoff control system, which uses EtherCAT as its data communication 

standard [91].   

The system comprised of the Beckhoff soft-PLC, Beckhoff OPC Server, and the user’s 

Python OPC Client and algorithm. The ROS middleware for robot control was non-existent 

in this application since it was assumed that the communication will be executed via the 

EtherCAT network, or the PLC digital I/O hardware. Another reason for excluding the ROS 

component was to satisfy the aim of the study, which was to test the reliability of 

communication between the framework and another system (other than ROS).   

The application involved the switching between three tasks, each having a fixed execution 

time, simulated by a PLC timer. A handshake signal (“robot ready”) indicated when a task 

was complete and determined when the next task was to be switched by the Python 

application. The robustness of the OPC data communication link was tested through the 

monitoring of delay times between the switching of tasks. The next section discusses the 

algorithm development of the sub-systems in this study.  

5.4.2 Application development 

Figure 5.15 is a flow chart description of the PLC and Python algorithms developed for this 

application. The PLC program was developed in the Beckhoff TwinCAT 3 programming 

environment (Figure 5.16), where the R01_Ready and TaskID variables were defined, and 

thereafter implemented as OPC tags by the Python Client and TwinCAT OPC Server. The 

Python algorithm checks whether the simulated R01_Ready tag is set to begin the assignment 

of tasks (through the TaskID), and clears the tag when a new task has been assigned. On the 

other end, the PLC program sets R01_Ready when a task is complete, which is determined by 

the elapsed time for the particular task.    
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Figure 5.15. PLC and Python algorithms for Case Study IV. 

The TaskID is incremented by 1 in the Python program after every task is complete. Three 

tasks were configured, each containing ID’s 1, 2, and 3, and the program was developed such 

that the value of the TaskID cycles between the three ID’s (as shown at the bottom of the 

Python algorithm in the figure).  

PLC timers were used to simulate the time a robot would take to complete a particular task. 

Each task was assigned a timer variable, and only a single timer was started at any point in 

time through the control of the TaskID variable. A fourth timer was also used to record the 

time delay between the switching of tasks. The time delay measurement was utilised to 

evaluate the quality of the OPC communication exchange between the two sub-systems. 
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Figure 5.16. TwinCAT 3 PLC programming environment. 

5.4.3 Simulation results 

The simulation of the system involved the application three scenarios, each differing from the 

other by the task time configuration. Each PLC task timer simulated the robot task durations 

in accordance with these configurations:  

 The slow communication scenario simulated task 1, 2, and 3 time periods to 10, 20, 

and 30 seconds respectively. The results of this simulation are given by Figure 5.17.  

  The average communication scenario simulated task 1, 2, and 3 time periods to 1, 2, 

and 5 seconds respectively. The results of this simulation are given by Figure 5.18. 

 The fast communication scenario simulated task 1, 2, and 3 time periods to 100, 200, 

and 500 milliseconds respectively. The results of this simulation are given by 

Figure 5.19.  
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Figure 5.17. Time delay analysis for slow communication intervals. 

 

Figure 5.18. Time delay analysis for average communication intervals. 

 

Figure 5.19. Time delay analysis for fast communication intervals. 
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The three figures show the results of the OPC communication time delay for the duration of 

the simulations, as well as the mean and standard deviation statistical indicators, given by 

Equation 5.2 and Equation 5.3 respectively:  

     𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                       (5.2) 

    𝑠 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1             (5.3) 

Where: 𝑥𝑖 is the individual time delay sample in the data set. 

 n is the total number of samples in the data set.  

Another statistical feedback illustrated in the figures is frequency distribution of the time 

delays, arranged in millisecond time categories. The categories are multiples of 10ms due to 

this being the PLC scan cycle time, thus determining the resolution of the time delay samples. 

The distribution gives a direct indication of the percentage contribution of each category to 

the total number of samples in the simulation. 

Table 8 lists a comparative breakdown of the time delay analysis for the three simulations. 

The total number of samples differs across the simulations due to the variations in the task 

times as well as the total simulation time. The simulation time for the slow communication 

scenario was generated in 50 minutes to increase the number of samples due to the long 

duration of the tasks.  

Table 8. Time delay analysis for the three simulations in Case Study IV. 

 Slow rate Average rate Fast rate 

Mean (ms) 21.5 15.6 15.8 

Std. Deviation (ms) 10.6 14.0 10.8 

Mean + Std. Dev. (ms) 32.1 29.6 26.6 

Total no. of samples 150 294 1117 

Worst delay (ms) 60 220 120 

Freq. distrib: ≤20 ms (%) 70 95 92 

Freq. distrib: >20 ms & ≤40 ms (%) 28 3 5 

Freq. distrib. >40 ms (%) 2 2 3 
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A fundamental field listed in the table is the worst delay feedback, which reveals the worse 

case value of 220ms across all three simulations. This result is well within the required scan 

cycle time for the higher-level decision making algorithms, which is ≤ 1 second as defined in 

the functional design specifications in section 3.7. The result also satisfies the specification of 

the OPC tag scan rate, being ≤ 500 ms.   

The mean and standard deviation statistics are located in the lower end of the spectrum for all 

three simulations, which shows that the time delays are generally short, even in the fast rate 

simulation. This conclusion is also verified by the frequency distribution analysis, revealing 

that time delays of ≤ 20 ms contributed to the majority of the distribution. The time delays 

greater than 40 ms only allot to between 2% and 3% of the total sample set, and even in those 

cases, the worst delays are well within the specification.   

A noticeable difference in the slow rate result (Figure 5.17), compared to the other two, was 

the increase in time delays 30 minutes into the simulation, which determined the 70% (versus 

95% and 92%) frequency distribution value listed in Table 8. A possible reason for this result 

was the loading of the CPU by the OPC Server and the PLC tasks over time, and/or the effect 

of temperature associated with these factors. The result did not compromise the aim of the 

study due to the outcome of the worst case time delay, and a definitive conclusion would 

require further analysis which is beyond the scope of this research.   

5.5 Chapter summary 

This chapter presented four case studies, each verifying various aspects of the framework. 

The first study involved the control of a single mobile robot in a material handling scenario 

between two tasks. The application of the framework was tested through the development of 

user algorithms, the mapping of local variables and OPC tags, the communication with a 

ROS simulated robot, and the integration with a SCADA package.   

The second study was built from the first and included an application which demonstrated the 

cooperation of heterogeneous mobile robots. The Python programming features for 

heterogeneous robots discussed in the previous chapter were implemented here. The 
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simulation results verified the cooperation of mobile robots in reducing bottleneck scenarios, 

and working towards common goals. 

The third study explored the ability of the framework to support the implementation of 

machine learning algorithms in mobile robot applications. This was achieved through the use 

of Python’s scikit-learn machine learning library, as well as an implementation of the 

developmental tool for SVM learning discussed in the previous chapter. The simulation 

results proved the performance of the SVM models, which were created during the SVM 

training phase of the application. 

The final study verified the flexibility of the framework in its integration with a commercial 

third party system, whose control system uses EtherCAT as its data communication standard. 

This verification enhances the capability of the framework to be included in an Industry 4.0 

system. The reliability of the data communication exchange was also tested here, and the 

results showed that the time delays are well within the specification for high-level robot 

decision making algorithms. 



 

Chapter 6 Discussion 

The objectives of this chapter are: 1) to discuss the benefits of the framework in relation to its 

functionality and application as examined in the case studies, 2) to discuss the application of 

the framework in other areas that are beyond the scope of this research study, 3) to discuss 

the related research in literature related to the functionality of the framework, and 4) to 

address the limitations of the framework and introduce a list of advanced features. 

6.1 Benefits of the framework 

This section discusses the benefits of the framework by examining its structure, functionality, 

and application in the various areas of robotics.  

6.1.1 Popular software platforms 

The framework has been developed by employing popular software platforms such as Python 

and ROS, thereby making it easier for end-users to grasp and utilise.  

Python’s popularity has grown due to its simple object-orientated structure, cross-platform 

support, and the existence of powerful mathematical and statistical libraries such as Numpy, 

Scipy, and Scikit-learn, the last of which was applied in the machine learning case study. 

Through the Python programming platform, it is envisioned that the end-user will be able to 

develop advanced, intelligent algorithms for higher-level robot control.  

ROS has also grown in popularity as a robot middleware platform, and it was discussed in 

section 3.2 how commercial robots are now being powered by ROS [16] and its scope in 

industry through the ROS Industrial Consortium [17]. Through ROS, the end-user will be 
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able to mask robot heterogeneity by using standard interfaces and thus simplify the low level 

robot control process.  

6.1.2 Mobile robot control 

The first case study discussed in the previous chapter introduced mobile robot control in a 

material handling application, but the framework can be applied in other mobile robot 

applications, such as mobile manipulators in FMS and reconfigurable environments [103], 

toxic waste clean-up [21], detection of hazardous gas [104], and operations that involve 

confined spaces [105].  

The framework is merely a tool that leaves the programming and control of advanced robots 

in the hands of the end-user. The GUI development allows the end-user to configure the 

parameters of mobile robots and tasks, which as a result, can be used during the development 

of robot programs. The functionality of mapping local Python variables to OPC tags further 

eases the development process for the end-user by eliminating the need for directly searching 

and coding tags in the program. 

Another feature provided by the GUI that benefits the user is the task location screen, 

discussed in section 4.4.5, which can be used to move the robot in the environment and 

assign x-y data to specific task locations. This allows the robot to move to actual task 

locations, without the concern of robot calibration errors.   

6.1.3 Distribution features 

The use of the Ethernet communication infrastructure and the OPC-UA data communication 

standard gives the framework a distributive feature, thus the end-user development can take 

place at any point in the same network. The benefit of this feature is appreciated in large 

networks where it is more convenient and practical to be closer to the sub-system that is 

being commissioned.   

Another benefit of the distributed framework is realised in the addition of OPC, Ethernet 

components, such as the SCADA system, which can be used to visualise the status of the 
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manufacturing processes. The verification of this feature was seen in the mobile robot 

material handling application, discussed in section 4.6 and section 5.1.2. 

6.1.4 Robot heterogeneity and cooperation 

The introductory chapter discussed the existence of heterogeneity in multiple mobile robot 

systems (MMRS), together with the benefit of employing a team of robots to execute tasks. 

The second case study demonstrated an example of such a system, where a ‘multi-skilled’ 

robot was able to assist other robots in the material handling application, thereby reducing the 

effect of a production bottleneck. This was made possible by applying the framework 

functions that were developed for scenarios which involve heterogeneous robots and 

cooperation applications. The simulation results in the case study verified the performance of 

the framework functions and the algorithm, since the cooperating agent was able to offer its 

assistance due to the induced bottleneck scenarios. 

The case study also proved the support for the end-user development of algorithms pertaining 

to robot cooperation applications. A myriad of cooperation algorithms can now be developed 

and tested in heterogeneous or homogeneous robot teams. This is an attractive feature of the 

framework, particularly in smart factory environments where robot intelligence and 

flexibility are key factors in the establishment of advanced, efficient systems.   

6.1.5 Machine learning 

The machine learning field of research is popular in the areas of bioinformatics, and text and 

image recognition. The demonstration of an application of the SVM learning algorithm in the 

third case study proves that machine learning can also be adopted in robotic systems. This 

was made possible through the use of Python’s scikit-learn library, which contains a 

multitude of other learning algorithms that are easily available to the end-user. To name a few 

of just the popular algorithm groups include: neural networks, decision trees, clustering, 

classification, nearest neighbour, and Gaussian models. Researchers will find this benefit of 

Python and the framework very useful, since a wide range of algorithms are now made 

available within a framework developed for robotic applications.  
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The field of machine learning applications in robotics is also applicable to an Industry 4.0 

environment, since Advanced Robotics is one of the key pillars in the Industry 4.0 

concept [18]. Machine learning algorithms can be developed and optimised to create smart, 

intelligent robots and systems.  

6.1.6 Interoperability benefits 

The fourth case study verified the integration of the framework with a control system that 

uses EtherCAT as its data communication standard, thus showing the flexibility of the system 

in a real-world scenario. One could argue that the high-level control could have been 

programmed in the PLC. This holds true for singular systems, but becomes complex in large, 

heterogeneous systems with different types of PLC’s, data communication protocols, and/or 

robotic middleware employed in the network. Hence in these systems, the Python framework 

would be required to establish interoperability and ‘speak the common language’ through the 

OPC protocol.  

Interoperability across robotic interfaces was established in the literature survey chapter as a 

key requirement to the implementation of robotic systems in smart factories. The integration 

(discussed in section 5.4) was achieved through the OPC protocol, described as an industrial 

standard that specialises in device and system interoperability. Due to this feature of the OPC 

standard, the scope of the framework goes beyond the EtherCAT system integration and 

includes other Ethernet protocols such as Ethernet/IP and PROFINET, since these 

architectures provide OPC servers in order to integrate data into larger systems. Hence, the 

framework is characterised with the benefit of being included in a network with mixed 

Ethernet protocols, satisfying the interoperability requirement of Industry 4.0.   

6.2 Further scope of the framework 

The three sub-sections outlined here discuss the application of the framework in other areas 

(beyond the scope of this research study), such as business management systems, multi-robot 

resource sharing, and applications that involve fixed robotic manipulators.   
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6.2.1 Business management systems 

The implementation of the OPC-UA data communication standard in the framework has 

opened its scope to the integration of business management systems such as the Enterprise 

Resource Planning (ERP) tool. ERP was described in chapter 3 of this thesis as a business 

management software package that specialises in: 1) the planning of production, product 

demand and supply chains, and 2) the management of material, warehouse logistics, 

maintenance activities, and human resources. 

The integration of OPC and ERP has become a modern mechanism in linking the shop (plant) 

floor data to the high-level enterprise [106]. SAP, a market leader in enterprise application 

software, has proven this integration with the Beckhoff TwinCAT OPC-UA platform [107]. 

This is the same platform that was used to integrate the framework in the fourth case study. 

Hence, the vision of this research study sees the application of the framework in a business 

management setting where supply chain data, and data from other process that are connected 

to the ERP, can be modelled to control the low level robot resources.  

The continuous data exchange and feedback between the enterprise level and robot resources 

on the shop floor can aid in the improvement of consumer delivery schedules, particularly in 

a mass customisation manufacturing environment.    

6.2.2 Resource sharing 

The networking feature of the framework allows for the possibility of resource sharing in a 

team of multiple mobile robots. Robots can use the sensory data from other robots in the 

network before decisions can be made, thereby optimising processes. For example, a mobile 

robot can choose to perform an alternative task if it discovered congestion at the primary task 

location through the laser data from a robot at that location.   

6.2.3 Robotic manipulators 

The scope of this research study covers the application of mobile robot systems, however, the 

results from the fourth case study shows that the use of the framework can be adapted to suit 
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high-speed robotic manipulator applications. This is made possible through the short time 

delay verification in the case study, where the worst case delay was measured at 220 

milliseconds. A variety of robotic manipulator applications exist in industry, which include 

the following: 

 Welding 

 Injection moulding 

 Pick and place 

 Packaging 

 Dispensing 

 Cutting, milling and drilling 

 Assembly 

 Painting 

An adaptation of the framework in these applications can possibly be the management of 

multiple tasks in locations that surround the fixed, multi-axis robot, through the use of 

developed algorithms by the end-user. 

6.3 Related research 

This section discusses research in literature related to the functionality of the framework. Due 

to the originality of the framework development, there is no direct comparison; however, the 

related aspects in literature are discussed, such as systems that support remote robot 

programming in single and multi-robot systems, networked robots, control of heterogeneous 

robots, and robot cooperation.    

The remote programming of networked robots within a robotics tele-laboratory has been a 

research effort by Marin et al. [108] to enable students to remotely program experiments via 

the Internet. The Simple Network Robot Protocol (SNRP), which is a web-based protocol, 

was used to permit the integration of robots and sensor devices in the system. Through the 

research project, students have access to the following equipment: 
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 A conveyor belt with sensors at each end, allowing objects to be moved in any 

direction, controlled at various speeds. 

 A Motoman manipulator to move objects from the conveyor belt and classify them 

on an auxiliary table. 

 A camera mounted on the manipulator, which implements visual servo controls and 

object tracking algorithms. 

 A network camera mounted on top of the conveyor belt, which video streams objects 

on the belt in real-time. 

Each piece of equipment was connected to a robot server, responsible for the remote control 

access and programming through the SNRP servers. Devices are accessed through the 

Internet by accepting TCP and UDP connections, made possible by SNRP. SNRP also 

provides the possibility of using other transport protocols, such as the Real-time Transport 

Protocol (RTP), to improve the robustness of the network connection. The research study 

presented by Marin et al. [108] provided two experiments that demonstrated the successful 

implementation of the remote programming system. 

The programming of autonomous mobile robots in a MRS system was researched by Tucat 

and Garcia [109]. The study involved a decision-making process undertaken by each robot in 

the network to achieve cooperation. The process includes: 1) each robot decides on the best 

action to execute based on its perception; 2) robots interact with each other and can 

reconsider their decision by taking into account the decisions that are being processed by 

other robots. The second part of the process involved communication through the use of a set 

of primitives that were implemented in the Logic Programming language. The framework 

was applied in a cleaning task application, where each robot in the team can find a box and 

interact with others to determine which one should pick up the box. 

Another research study [110] discussed the development of “Protoswarm”, a language for 

programming multi-robot systems in a high level. The application pertained to a swarm of 

robots, where programmers were allowed to develop code without actually considering the 

details of individual robots. This was made possible through the control of a single virtual 

spatial computer, and the computations in the computer are executed by local interacting 
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robots. The computational models that are created are based on manifolds of space that 

process the code, called the “Amorphous Medium”. Some of the assumptions made in the 

research are the population of a finite number of robot agents in the medium, and the 

communication between neighbours within a fixed distance. Experiments were performed on 

a group of 40 autonomous mobile robots, each equipped with bump and light sensors, infra-

red communication sensors, and localisation systems. The results proved to be robust and 

scalable, and verified the objectives of the Protoswarm programs. 

Trifa et al. discussed the control of heterogeneous robotic swarms over the Internet using an 

SOA, Web Services (WS) architecture [111]. The idea behind this research was to use the 

benefit of modular software components exchanging data over HTTP, and the distributed 

characteristic of the system eliminates the need of a centralised controller. The research 

discussed the creation of a central server, built to act as a gateway between the group of 

robots and the end-user. The server implemented a WS which allowed for the real-time data 

retrieval of individual robot status as well as the system as a whole. An experiment with a 

team of e-puck robots showed the performance of various robot actions such as setting motor 

speeds, illuminating LEDs, and reading proximity sensors.  

The advantage that the framework has over the related research discussed in this section is its 

support for integration and interoperability in an industrial, smart factory environment. This 

is made possible through an implementation of the international, industrial standard, OPC 

data communication protocol. Another benefit is its integration with the ROS middleware, 

which in itself, supports control for a wide range of industrial robots and is a popular choice 

for researchers as well.   

6.4 Limitations and advanced development 

The purpose of this section is to address the limitations of the framework and to introduce a 

list of advanced features that should be implemented as improvements to the system.   

As discussed in chapter 3, a hybrid control architecture was adopted for the control of the 

mobile robots. The centralised part of the scheme is attributed to the OPC Server and this 
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makes it a single point of failure in the network. In order to reduce this risk, a redundant OPC 

Server can be implemented to ensure the availability and robustness of the system. This can 

be achieved in one of three ways; either cold, warm, or hot standby modes, depending on the 

time requirement of having the secondary system online. A hot standby would require the 

simultaneous operation of both primary and secondary OPC Servers, each using separate 

hardware so that there is no single point of failure. In the event of a primary failure, the 

switchover is instantaneous with no data loss, contrasted to the cold or warm cases where the 

recovery process is slower. The two OPC Servers would typically connect to a redundancy 

management system that is responsible for the switch over, data integrity, and maintenance of 

the single point of connections between OPC Clients.    

In an Industry 4.0 factory, where the ease of access to data is essential, the establishment of 

security measures is critical to ensure that valuable data is protected against theft or loss. The 

OPC component of the framework does contain security protocols that ensure: 1) the 

authentication of clients and servers, 2) the authorisation of users, and 3) the integrity and 

auditing of communication between clients and servers [112]. In addition to this, OPC 

security is based on industry standard security algorithms and can be scalable to meet the 

environment and application requirements [112].  

The ROS component of the framework is however, insecure in its communication protocol. 

The developers of ROS are currently implementing SROS, a set of security enhancements to 

ROS [113]. The motivation behind this development is the increase trend in cyber threats 

which poses great risks in industrial and home environments where robots are beginning to be 

integrated in Industry 4.0 and IIoT systems respectively.  

The advanced development features of the framework include the following: 

 Organisation of the framework code in a Python package, making it easier for the 

end-user to utilise, since it would require a simple installation process in a Windows 

or Linux OS.  

 The creation of user access levels in the GUI that permits some users to read or write 

parameters and others to read only. 
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 The use of dynamic IP addresses (as opposed to the current system of static addresses) 

or MAC addresses of the robots in the network. The implementation of this feature 

will make the framework more easy to use, especially in fast paced FMS 

environments.  

 Support for the development of end-user algorithms in other programming languages, 

since the present limitation is Python. The design factors to consider are: 1) the ability 

of integration with the OPC protocol, and 2) the support for machine learning 

algorithm development through other programming languages. The inclusion of this 

advanced feature will increase the scope of the framework to a wider audience who 

may not be familiar with Python.    

 Functionality for the application of robotic swarm systems. This will require the 

performance test of the framework in these scenarios, where design factors to 

consider are communication bandwidth limitations and the local robot control 

methodology with regard to localisation and navigation in the large network of robots. 

6.5 Chapter summary 

The discussion in this chapter began by describing the benefits of the framework, which 

included the use of popular software platforms of Python and ROS, and features that enable 

the control and cooperation of heterogeneous mobile robots in smart factory environments. A 

further scope of the framework was also discussed, pertaining to areas such as business 

management systems, multi-robot resource sharing, and applications that involve fixed 

robotic manipulators. 

Section 6.3 surveyed research related to the functionality of the framework. Some of the 

related aspects that were discussed included systems that support remote robot programming 

in single and multi-robot systems, networked robots, control of heterogeneous robots, and 

robot cooperation. The main conclusion from the survey was the industrial interoperability 

advantage that the framework in this study has over the related research. 

The final section in this chapter discussed the two design sources of the framework that 

contribute to its limitations. The first one is the centralised OPC Server which creates a single 
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point of failure in the system. The solution to this drawback was discussed as an 

implementation of a redundant OPC Server that would use separate hardware to eliminate the 

single point of failure and increase the robustness of the system. The second limitation that 

was addressed is the issue of security, particularly in smart factory environments where data 

integrity and data protection are key requirements. The insecure communication protocol in 

the ROS component of the framework was identified, and it was also mentioned that the 

developers of ROS are currently implementing SROS, a set of security enhancements to 

ROS, which should provide a better, secure form of communication. Also discussed in the 

final section was a list of advanced features that should be implemented as improvements to 

the system.    

 





 

Chapter 7 Conclusion 

This final chapter restates the aim and objectives of the thesis, and draws a summary of the 

research study. The research contributions that were defined in the introduction are 

expounded to include the conclusions established in previous chapters. The last section 

identifies some recommendations for further research related to this study.  

7.1 Aim and objectives 

The aim of this study was to research, design, and develop a distributed framework for 

managing multiple, heterogeneous mobile robots in smart factories.  

The objectives of this research study were to: 

 Investigate the impact of mobile robot systems in industry. 

 Investigate the problem of mass customisation together with the introduction of the 

fourth industrial revolution (Industry 4.0). 

 Research the need for robotic middleware and the various platforms available for 

mobile robot systems. 

 Research the design requirements of a distributed framework for use in an industrial 

MMRS setting. 

 Design and develop the framework that facilitates cooperation in heterogeneous 

multiple mobile robot teams. 

 Test and validate the performance of the framework by the use of algorithms and 

simulation tools. 
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7.2 Research summary 

The first chapter in this thesis introduced the concepts of mass customisation and Industry 

4.0, and thereafter discussed the growth of robotics in industry. The motivation and necessity 

behind the development of the framework was also addressed in this chapter. The existence 

of the need of this research study was discussed as being due to the modern popularity of 

MMRS and cooperation to facilitate flexibility in smart factories, thereby managing the 

problem of mass customisation. 

The literature survey investigated the role of mobile robot systems in industry and the 

associated topics such as heterogeneity, robot communication, cooperation, and middleware 

platforms were also discussed. The survey concluded by discussing the characteristics and 

requirements of a smart factory (or Industry 4.0) environment as well as the influence of 

advanced robotics in these environments.  

Chapter three presented the methodological approach taken during the design of the 

framework. The design requirements were defined, outlining the key components of the 

framework that enabled its functionality in a smart factory environment. The reasons for 

choosing the ROS middleware as the core platform for each robot were discussed, and a 

description of the communication mechanism employed by the ROS architecture was 

described. The basis for selecting Python as the programming language for creating the GUI 

and developing end-user algorithms was also discussed. A key examination on industrial data 

communication standards revealed the adoption of the OPC-UA protocol in the framework. 

This was chosen due to its specialisation in device and system interoperability, which are 

essential requirements in an Industry 4.0 system. 

The development of the main components of the framework was discussed in chapter four, 

which included:  

1. The Python Tkinter GUI screens where robot, task, and OPC tag configurations are 

done.  
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2. The mobile robot system, which detailed the ROS software implementation, 

decentralised-local robot control, the Stage simulator integration, and the OPC-UA 

client configuration,  

3. The SCADA development. 

4. The development of Python programming features to provide support for end-user 

applications that satisfy the contributions of this research study.    

The fifth chapter presented four case studies, where each verified various aspects of the 

framework. The first study involved the control of a single mobile robot in a material 

handling scenario between two tasks. The application of the framework was tested through 

the development of user algorithms, the mapping of local variables and OPC tags, the 

communication with a ROS simulated robot, and the integration with a SCADA package.  

The second study was built from the first and included an application which demonstrated the 

cooperation of heterogeneous mobile robots. The Python programming features for 

heterogeneous robots were implemented in this study. The simulation results verified the 

cooperation of mobile robots in reducing bottleneck scenarios, and working towards common 

goals. The third study explored the ability of the framework to support the implementation of 

machine learning algorithms in mobile robot applications. This was achieved through the use 

of Python’s scikit-learn machine learning library, as well as an implementation of the 

developmental tool for SVM learning. The simulation results proved the performance of the 

SVM models, which were created during the SVM training phase of the application. The final 

study verified the flexibility of the framework in its integration with a commercial third party 

system (Beckhoff, TwinCAT), whose control system uses EtherCAT as its data 

communication standard. This verification showed the capability of the framework to be 

included in an Industry 4.0 system. The reliability of the data communication exchange was 

also tested in this study, and the results showed that the communication time delays are well 

within the specification for high-level robot decision making algorithms. The application 

section references for each feature of the framework is summarised in Table 9.  
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Table 9. Reference summary of the framework features. 

 Application reference 

Single mobile robot control Section 5.1 

Framework distribution Section 5.1.2 

Multiple mobile robot control  Section 5.2 

Heterogeneous robot support Section 5.2 

Robot cooperation Section 5.2 

Machine learning robot control Section 5.3 

Framework interoperability Section 5.4 

 

The previous chapter described the benefits of the framework, which included the use of 

popular software platforms of Python and ROS, and features that enable the control and 

cooperation of heterogeneous mobile robots in smart factory environments. A further scope 

of the framework was also discussed, pertaining to areas such as business management 

systems, multi-robot resource sharing, and applications that involve fixed robotic 

manipulators. Research related to the functionality of the framework was also discussed in 

this chapter. Some of the related aspects that were discussed included systems that support 

remote robot programming in single and multi-robot systems, networked robots, control of 

heterogeneous robots, and robot cooperation. The limitations of the framework was 

addressed, one of them being the centralised OPC Server which creates a single point of 

failure in the system. The solution to this drawback was discussed as an implementation of a 

redundant OPC Server that would use separate hardware to eliminate the single point of 

failure and increase the robustness of the system. The second limitation that was addressed is 

the issue of security, particularly in smart factory environments where data integrity and data 

protection are key requirements. The insecure communication protocol in the ROS 

component of the framework was identified, and it was also mentioned that the developers of 

ROS are currently implementing SROS, a set of security enhancements to ROS, which 

should provide a better, secure form of communication. Also discussed in the sixth chapter 

was a list of advanced features that should be implemented as improvements to the system. 
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7.3 Research contributions 

The design and development of the framework in this research study was an original effort 

and has made the following five contributions: 

1. The framework can be utilised by industrial engineers to remotely control robots 

since the framework adheres to the international, industrial OPC-UA communication 

protocol standard. The integration of the framework with the industrial Beckhoff 

TwinCAT control system in the fourth case study (section 5.4) verifies this 

contribution.  

2. The framework can be utilised by students to develop solutions in the field of multi-

robot cooperation. This was achieved through the use of the simple graphical user 

interface and the development of algorithms in Python. Application examples of this 

utilisation were discussed in the first two case studies in chapter 5.   

3. The advanced robotics pillar in Industry 4.0 has been strengthened due to the OPC 

interface provided by the framework to achieve intelligent robotic systems. Advanced 

algorithms can be developed and simulated before being deployed in an actual 

system, thereby fast prototyping the system integration process.   

4. The capability of the popular ROS middleware has been enhanced, since ROS has 

lacked the functionality for cooperative multi-robot systems. The functionality of this 

contribution has been verified in the second case study (section 5.2).    

5. The machine learning field of research can broaden its application to mobile robot 

networks, via the use of Python’s powerful machine learning library. An application 

example utilising the SVM learning algorithm from the scikit-learn library was 

demonstrated in the third case study (section 5.3), where the results proved the 

performance of the SVM models that were created during the SVM training phase of 

the application.      
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7.4 Recommendations for further research 

The first recommendation involves the topic of decentralised robot control. An algorithm 

selection tool can be included in the framework GUI that will allow the end-user to remotely 

program the decentralised intelligence of robots in the industrial network. Thus, each robot 

would be able to scan data within the factory and make smart, real-time decisions based on 

the local, decentralised algorithms. A paramount factor that must be considered for this type 

of control to be a success is the issue of safety to humans and the factory environment, since 

a ‘loosely’ controlled robot can lead to catastrophic circumstances.    

The map of the environment in this research study was static and predefined. Further research 

will see the application of Simultaneous Localisation and Mapping (SLAM) techniques, 

where maps of the environment are dynamically built as robots navigate. In addition to this, 

map data could be shared among robots in the network due to the distributive characteristic of 

the system.  

SLAM algorithms can also be applied to the research area of Search and Rescue (SAR) 

robotics, and the framework could be adapted to suit this application. The redesign of the data 

communication part of the framework must be considered, since OPC-UA would not be 

applicable to non-industrial type environments. In a SAR application, the implementation of 

ROS together with OpenCV has the potential to yield interesting results. OpenCV is a free, 

open source, computer vision library that can be used for object, facial recognition, and 

classification of human actions, all of which are key elements in SAR scenarios. 
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Appendix A: Python Tkinter GUI code 

1> # Filename: main.py 

2> from Tkinter import * 

3> import ttk 

4> import tkFileDialog 

5> import inspect 

6> import OpenOPC  # the OPC client library for Python 

7> import paramiko  # for file transfers 

8> import gvar 

9> import os 

10> import time 

11> import platform 

12> import subprocess 

13> import LibHetRobots 

14>  

15>  

16> # Global variables: 

17> treestore = "" 

18> connFlag = False 

19>  

20>  

21> def checkIP(hostname): 

22>     pingFlag = False 

23>     try: 

24>         if platform.system() == "Windows": 

25>             response = subprocess.check_output("ping %s -n 1 -w 1000" 

% hostname, shell=True) # limits the response to 1000ms 

26>         else: 

27>             response = subprocess.check_output("ping -c 1 -W 1000" + 

hostname, shell=True) 

28>  

29>         if response.find('TTL=') != -1:  # check if we get a valid 

TTL response from host 

30>             pingFlag = True 

31>     except: 

32>         pingFlag = False 

33>     return pingFlag 

34>  

35>  



134 Appendix A: Python Tkinter GUI code 

 

36> def getRoblist(): 

37>     rlist = [] 

38>     f = open('robconfig.txt', 'r') 

39>     for line in f: 

40>         startpos = 0  # char start position in string 

41>         rrec = [] 

42>         charpos = line.find(',') 

43>         while charpos != -1: 

44>             rrec.append(line[startpos:charpos]) 

45>             startpos = charpos + 1 

46>             charpos = line.find(',', startpos, len(line)) 

47>         rlist.append(str(rrec[0] + ", " + rrec[1])) 

48>     f.close() 

49>     rlist.sort() 

50>     return rlist 

51>  

52>  

53> def getTasklist(): 

54>     tlist = [] 

55>     f = open('taskconfig.txt', 'r') 

56>     for line in f: 

57>         startpos = 0  # char start position in string 

58>         trec = [] 

59>         charpos = line.find(',') 

60>         while charpos != -1: 

61>             trec.append(line[startpos:charpos]) 

62>             startpos = charpos + 1 

63>             charpos = line.find(',', startpos, len(line)) 

64>         tlist.append(str(trec[0] + ", " + trec[1])) 

65>     f.close() 

66>     tlist.sort() 

67>     return tlist 

68>  

69>  

70> def find_idx(mainstr, substr, n): 

71>     start = mainstr.find(substr) 

72>     while start >= 0 and n > 1: 

73>         start = mainstr.find(substr, start+len(substr)) 

74>         n -= 1 

75>     return start 

76>  

77>  

78> def getLoclist(t_id, n_id): 

79>     loclist = [] 
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80>     f = open('robots/%slocations.txt' % ron_id, 'r') 

81>     for line in f: 

82>         charpos = line.find('%s,%s' % (t_id, n_id)) 

83>         if charpos != -1: 

84>             loclist.append(line[find_idx(line, ',', 2) + 

1:find_idx(line, ',', 3)]) 

85>             loclist.append(line[find_idx(line, ',', 3) + 

1:find_idx(line, ',', 4)]) 

86>             loclist.append(line[find_idx(line, ',', 4) + 

1:find_idx(line, ',', 5)]) 

87>             return loclist 

88>     f.close() 

89>  

90>  

91> def getRobname(r_id): 

92>     f = open('robconfig.txt', 'r') 

93>     for line in f: 

94>         charpos = line.find(r_id) 

95>         if charpos != -1: 

96>             return line[find_idx(line, ',', 1) + 1:find_idx(line, 

',', 2)] 

97>     f.close() 

98>  

99>  

100> class App(Frame): 

101>     def __init__(self): 

102>         # self.MyFont=font.Font(weight='bold') 

103>         self.root = Tk() 

104>         Frame.__init__(self) 

105>         self.root.title("Robot Programming Interface") 

106>         self.root.rowconfigure(5, weight=1) 

107>         self.master.columnconfigure(5, weight=1) 

108>         self.grid(sticky=W+E+N+S) 

109>         self.conn_stat = StringVar() 

110>         self.conn_stat.set("OFFLINE") 

111>         self.conn_led = StringVar() 

112>         self.conn_led.set("red") 

113>  

114>         connFrame = Frame(self.root, width=500, height=50, 

borderwidth=2, relief=GROOVE) 

115>         connFrame.grid(row=0, column=0, padx=0, pady=1, 

columnspan=4, sticky=NSEW) 

116>         self.w = Canvas(connFrame, width=19, height=19) 
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117>         self.w.grid(row=0, column=0, padx=0, pady=0, 

sticky=NSEW) 

118>         self.conn_circ = self.w.create_oval(2,2,16,16, 

fill="red") 

119>         self.w.itemconfig(self.conn_circ, 

fill=self.conn_led.get()) 

120>         self.connlab = ttk.Label(connFrame, 

textvariable=self.conn_stat).grid(row=0, column=1, padx=0, pady=0) 

121>  

122>         labFrame = Frame(self.root, width=200, height=200) 

123>         labFrame.grid(row=1, column=0, padx=0, pady=10) 

124>         self.IPlab = ttk.Label(labFrame, text="IP 

address").grid(row=0, column=0, padx=5, pady=5) 

125>         self.IPinput = StringVar() 

126>         self.IPadd = ttk.Entry(labFrame, background='white', 

width=20, textvariable=self.IPinput) 

127>         self.IPadd.grid(row=0, column=1, padx=0, pady=5) 

128>  

129>         butFrame = Frame(self.root, width=500, height=500) 

130>         butFrame.grid(row=1, column=1, padx=0, pady=10, 

sticky=NSEW) 

131>         butFrame2 = Frame(self.root, width=500, height=500) 

132>         butFrame2.grid(row=2, column=0, padx=50, pady=10, 

columnspan=3, sticky=NSEW) 

133>         butFrame2.rowconfigure(0, minsize=60) 

134>         butFrame2.rowconfigure(1, minsize=60) 

135>         butFrame2.rowconfigure(2, minsize=60) 

136>  

137>         statFrame = Frame(self.root, width=100, height=5, 

borderwidth=2, relief=GROOVE) 

138>         statFrame.grid(row=3, column=0, padx=0, pady=0, 

columnspan=3, sticky=NSEW) 

139>         self.status = StringVar() 

140>         self.statlab = ttk.Label(statFrame, 

textvariable=self.status).grid(row=0, column=0, padx=5, pady=0) 

141>  

142>         self.test_butn = ttk.Button(butFrame, text="Ping", 

command=self.PingTest) 

143>         self.test_butn.grid(row=0, column=1, padx=5, pady=0, 

sticky=NSEW) 

144>         self.connect_butn = ttk.Button(butFrame, 

text="Connect", command=self.RobConnect) 

145>         self.connect_butn.grid(row=2, column=1, padx=5, pady=0, 

sticky=NSEW) 
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146>         self.roblist_butn = ttk.Button(butFrame, text="Robot 

List", command=self.Win_RobList) 

147>         self.roblist_butn.grid(row=0, column=2, padx=5, pady=5, 

rowspan=3, sticky=NSEW) 

148>  

149>         self.configrob_butn = ttk.Button(butFrame2, text="  

Configure Robots  ", command=self.Win_ConfigRob) 

150>         self.configrob_butn.grid(row=0, column=0, padx=5, 

pady=5, sticky=NSEW) 

151>         self.taskman_butn = ttk.Button(butFrame2, text="  Task 

Management  ", command=self.Win_ConfigTask) 

152>         self.taskman_butn.grid(row=0, column=1, padx=5, pady=5, 

sticky=NSEW) 

153>         self.asgntags_butn = ttk.Button(butFrame2, text="Assign 

Tags", command=self.Win_AssignTags) 

154>         self.asgntags_butn.grid(row=1, column=0, padx=5, 

pady=5, sticky=NSEW) 

155>         self.selalgo_butn = ttk.Button(butFrame2, text="Select 

Algorithm", command=self.Win_SelectAlgo) 

156>         self.selalgo_butn.grid(row=1, column=1, padx=5, pady=5, 

sticky=NSEW) 

157>         self.locations_butn = ttk.Button(butFrame2, text="Task 

Locations", command=self.Win_LocationConfig) 

158>         self.locations_butn.state(["disabled"]) 

159>         self.locations_butn.grid(row=2, column=0, padx=5, 

pady=5, sticky=NSEW) 

160>         self.download_butn = ttk.Button(butFrame2, 

text="Download", command=self.RobDownload) 

161>         self.download_butn.state(["disabled"]) 

162>         self.download_butn.grid(row=2, column=1, padx=5, 

pady=5, sticky=NSEW) 

163>         #self.download_butn.state(["!disabled"]) 

164>         self.root.mainloop() 

165>  

166>     def PingTest(self): 

167>         pingResult = checkIP(self.IPinput.get()) 

168>         if pingResult == True: 

169>             self.status.set("Ping success!") 

170>         else: 

171>             self.status.set("Destination host unreachable") 

172>  

173>     def RobConnect(self): 

174>         self.status.set("Establishing connection...") 

175>         try: 

176>             ssh_client = paramiko.SSHClient() 
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177>             

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())  # 

prevent security key auth 

178>             ssh_client.connect(hostname=self.IPinput.get(), 

username='nicol', password='nicol') 

179>             ftp = ssh_client.open_sftp() 

180>             ftp.get("/home/nicol/robconfigfiles/rid.txt", 

"robots/rid.txt")  # transfer file 

181>             f = open('robots/rid.txt', 'r') 

182>             for line in f: 

183>                ron_id = line.rstrip() 

184>             f.close() 

185>             ftp.close() 

186>             ssh_client.close() 

187>             self.status.set("Connected to host") 

188>             self.conn_led.set("green") 

189>             self.w.itemconfig(self.conn_circ, 

fill=self.conn_led.get()) 

190>             self.conn_stat.set("ONLINE [%s (%s)]" % (ron_id, 

getRobname(ron_id))) 

191>             self.locations_butn.state(["!disabled"]) 

192>             self.download_butn.state(["!disabled"]) 

193>         except: 

194>             self.status.set("Could not connect to host") 

195>  

196>     def RobDownload(self): 

197>         try: 

198>             self.status.set("Downloading file...") 

199>             ssh_client = paramiko.SSHClient() 

200>             

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())  # 

prevent security key auth 

201>             ssh_client.connect(hostname=self.IPinput.get(), 

username='nicol', password='nicol') 

202>             ftp = ssh_client.open_sftp() 

203>             ftp.put("robots/001locations.txt", 

"/home/nicol/robconfigfiles/001locations.txt")  # transfer file 

204>             ftp.close() 

205>             ssh_client.close() 

206>             self.status.set("Download complete") 

207>         except: 

208>             self.status.set("Could not connect to host") 

209>  

210>     def Win_ConfigRob(self): 
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211>         ClassRobconf() 

212>  

213>     def Win_RobList(self): 

214>         ClassRoblist() 

215>  

216>     def Win_ConfigTask(self): 

217>         ClassTaskman() 

218>  

219>     def Win_AssignTags(self): 

220>         ClassAssigntags() 

221>  

222>     def Win_SelectAlgo(self): 

223>         ClassSelectAlgo() 

224>  

225>     def Win_LocationConfig(self): 

226>         ClassLocationConfig() 

227>  

228> class ClassRobconf(Frame): 

229>     def __init__(self): 

230>         Frame.__init__(self) 

231>         self.Robconf = Toplevel() 

232>         self.Robconf.title("Robot Configuration") 

233>         global idVar, nameVar, ipVar, r_lenVar, r_wtVar, 

r_htVar, r_ldVar, r_linspdVar, r_angspdVar 

234>         global r_lrfVar, r_sonVar, r_camVar, r_gripVar, 

r_2whlVar 

235>         global select, select2, roblist, robsublist, robrec 

236>  

237>         frame1 = Frame(self.Robconf, width=100, height=100) 

238>         frame1.grid(row=0, column=0, columnspan=3) 

239>         Label(frame1, text="Robot ID").grid(row=0, column=0, 

sticky=W) 

240>         idVar = StringVar() 

241>         ttk.Entry(frame1, width=10, 

textvariable=idVar).grid(row=0, column=1, padx=(5,30), pady=20, 

sticky=W) 

242>         Label(frame1, text="Name").grid(row=0, column=2, 

sticky=W) 

243>         nameVar = StringVar() 

244>         ttk.Entry(frame1, textvariable=nameVar).grid(row=0, 

column=3, padx=(5,30), pady=20, sticky=W) 

245>         Label(frame1, text="IP address").grid(row=0, column=4, 

sticky=W) 

246>         ipVar = StringVar() 
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247>         ttk.Entry(frame1, textvariable=ipVar).grid(row=0, 

column=5, padx=(5,30), pady=20, sticky=W) 

248>  

249>         frame2 = Frame(self.Robconf, width=5, height=10, 

borderwidth=2, relief=GROOVE) 

250>         frame2.grid(row=1, column=0, padx=10, pady=0, 

sticky=NSEW) 

251>         Label(frame2, text="Robot dimensions (mm)").grid(row=0, 

column=0, columnspan=3) 

252>         ent_width=5 

253>         Label(frame2, text="L").grid(row=1, column=0, padx=15, 

pady=0, sticky=W) 

254>         r_lenVar = StringVar() 

255>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_lenVar).grid(row=2, column=0, padx=5, pady=0, 

sticky=W) 

256>         Label(frame2, text="W").grid(row=1, column=1, padx=15, 

pady=0, sticky=W) 

257>         r_wtVar = StringVar() 

258>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_wtVar).grid(row=2, column=1, padx=5, pady=0, sticky=W) 

259>         Label(frame2, text="H").grid(row=1, column=2, padx=15, 

pady=0, sticky=W) 

260>         r_htVar = StringVar() 

261>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_htVar).grid(row=2, column=2, padx=5, pady=0, sticky=W) 

262>  

263>         frame3 = Frame(self.Robconf, width=10, height=10, 

borderwidth=2, relief=GROOVE) 

264>         frame3.grid(row=1, column=1, padx=10, pady=0, 

sticky=NSEW) 

265>         Label(frame3, text="Max. load capacity").grid(row=0, 

column=0, padx=0, pady=0, sticky=W) 

266>         r_ldVar = StringVar() 

267>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_ldVar).grid(row=0, column=1, padx=0, pady=0, 

sticky=NSEW) 

268>         Label(frame3, text="kg").grid(row=0, column=2, padx=0, 

pady=0, sticky=W) 

269>         Label(frame3, text="Max. linear speed").grid(row=1, 

column=0, padx=0, pady=2, sticky=W) 

270>         r_linspdVar = StringVar() 

271>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_linspdVar).grid(row=1, column=1, padx=0, pady=2, 

sticky=NSEW) 
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272>         Label(frame3, text="m/s").grid(row=1, column=2, padx=0, 

pady=0, sticky=W) 

273>         Label(frame3, text="Max. angular speed").grid(row=2, 

column=0, padx=0, pady=2, sticky=W) 

274>         r_angspdVar = StringVar() 

275>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_angspdVar).grid(row=2, column=1, padx=0, pady=2, 

sticky=NSEW) 

276>         Label(frame3, text="rad/s").grid(row=2, column=2, 

padx=0, pady=0, sticky=W) 

277>  

278>         frame4 = Frame(self.Robconf, width=5, height=10, 

borderwidth=2, relief=GROOVE) 

279>         frame4.grid(row=1, column=2, padx=10, pady=0, 

sticky=NSEW) 

280>         Label(frame4, text="Hardware installed").grid(row=0, 

column=0, columnspan=8) 

281>         r_lrfVar = IntVar() 

282>         ttk.Checkbutton(frame4, width=0, 

variable=r_lrfVar).grid(row=1, column=0, padx=0, pady=0, sticky=E) 

283>         Label(frame4, text="LRF").grid(row=1, column=1, 

padx=(0,30), pady=0, sticky=W) 

284>         r_sonVar = IntVar() 

285>         ttk.Checkbutton(frame4, width=0, 

variable=r_sonVar).grid(row=1, column=2, padx=0, pady=0, sticky=E) 

286>         Label(frame4, text="Sonars").grid(row=1, column=3, 

padx=(0,10), pady=0, sticky=W) 

287>         r_camVar = IntVar() 

288>         ttk.Checkbutton(frame4, width=0, 

variable=r_camVar).grid(row=2, column=0, padx=0, pady=0, sticky=E) 

289>         Label(frame4, text="Camera").grid(row=2, column=1, 

padx=(0, 30), pady=0, sticky=W) 

290>         r_gripVar = IntVar() 

291>         ttk.Checkbutton(frame4, width=0, 

variable=r_gripVar).grid(row=2, column=2, padx=0, pady=0, sticky=E) 

292>         Label(frame4, text="Grippers").grid(row=2, column=3, 

padx=(0, 10), pady=0, sticky=W) 

293>         r_2whlVar = IntVar() 

294>         ttk.Checkbutton(frame4, width=0, 

variable=r_2whlVar).grid(row=3, column=0, padx=0, pady=0, sticky=E) 

295>         Label(frame4, text="Two-wheel").grid(row=3, column=1, 

padx=(0, 30), pady=0, sticky=W) 

296>  

297>         frame5 = Frame(self.Robconf) 
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298>         frame5.grid(row=2, column=0, padx=10, pady=(15,0), 

columnspan=4, sticky=NSEW) 

299>         ttk.Button(frame5, text=" Add  ", 

command=self.addEntry).grid(row=0, column=0, padx=(0, 0), pady=0, 

sticky=W) 

300>         ttk.Button(frame5, text="Update", 

command=self.updateEntry).grid(row=0, column=1, padx=(0, 0), pady=0, 

sticky=W) 

301>         ttk.Button(frame5, text="Delete", 

command=self.deleteEntry).grid(row=0, column=2, padx=(0, 0), pady=0, 

sticky=W) 

302>         ttk.Button(frame5, text=" Load ", 

command=self.loadEntry).grid(row=0, column=3, padx=(0, 0), pady=0, 

sticky=W) 

303>  

304>         frame6 = Frame(self.Robconf) 

305>         frame6.grid(row=3, column=2, padx=7, pady=(0, 0), 

columnspan=1, sticky=NSEW) 

306>         Label(frame6, text="Compatible Tasks").grid(row=0, 

column=0, padx=0, pady=0, sticky=NSEW) 

307>  

308>         frame7 = Frame(self.Robconf) 

309>         frame7.grid(row=4, column=0, padx=10, pady=(0,5), 

columnspan=5, sticky=NSEW) 

310>         scroll = ttk.Scrollbar(frame7, orient=VERTICAL) 

311>         select = Listbox(frame7, yscrollcommand=scroll.set, 

height=6, width=50) 

312>         scroll.config(command=select.yview) 

313>         scroll.grid(row=0, column=5, padx=(0, 0), pady=0, 

sticky=NS) 

314>         select.grid(row=0, column=0, padx=(0, 0), pady=0, 

columnspan=4, sticky=NSEW) 

315>  

316>         frame8 = Frame(self.Robconf) 

317>         frame8.grid(row=4, column=2, padx=10, pady=(0,5), 

columnspan=5, sticky=NSEW) 

318>         scroll2 = ttk.Scrollbar(frame8, orient=VERTICAL) 

319>         select2 = Listbox(frame8, yscrollcommand=scroll2.set, 

height=6, width=34) 

320>         scroll2.config(command=select2.yview) 

321>         scroll2.grid(row=0, column=7, padx=(0, 0), pady=0, 

sticky=NS) 

322>         select2.grid(row=0, column=0, padx=(0, 0), pady=0, 

columnspan=4, sticky=NSEW) 

323>  
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324>         self.setSelect()  # configure roblist and select 

listbox 

325>         self.Robconf.focus_force() 

326>  

327>     def setSelect(self): 

328>         totrec = 0  # total number of records 

329>         global roblist, robsublist, robrec 

330>         roblist=[] 

331>         f = open('robconfig.txt', 'r') 

332>         for line in f: 

333>             startpos = 0  # char start position in string 

334>             robrec=[] 

335>             charpos = line.find(',') 

336>             while charpos != -1: 

337>                 robrec.append(line[startpos:charpos]) 

338>                 startpos = charpos + 1 

339>                 charpos = line.find(',', startpos, len(line)) 

340>             roblist.append(str(robrec[0] + ", " + robrec[1] + 

", " + robrec[2])) 

341>             totrec = totrec + 1 

342>         f.close() 

343>         roblist.sort() 

344>         select.delete(0, END) 

345>         for i in range(totrec): 

346>             select.insert(END, roblist[i]) 

347>  

348>     # Compatible tasks list: 

349>     def setSelect2(self, rid): 

350>         totrec = 0  # total number of records 

351>         CompatTaskMat = LibHetRobots.getCompatTasks(rid) 

352>         select2.delete(0, END) 

353>         for i in range(len(CompatTaskMat)): 

354>             select2.insert(END, str(CompatTaskMat[i][0] + ', ' 

+ CompatTaskMat[i][1])) 

355>  

356>     def whichSelected(self): 

357>         return int(select.curselection()[0]) 

358>  

359>     def addEntry(self): 

360>         f = open('robconfig.txt', 'a') 

361>         f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' 

% (idVar.get(), nameVar.get(), ipVar.get(), 

362>                                                                  

r_lenVar.get(), r_wtVar.get(), r_htVar.get(), 
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363>                                                                  

r_ldVar.get(), r_linspdVar.get(), r_angspdVar.get(), 

364>                                                                  

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(), 

365>                                                                  

r_gripVar.get(), r_2whlVar.get())) 

366>         f.close() 

367>         self.setSelect() 

368>  

369>     def updateEntry(self): 

370>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

371>         str2 = str1[0:str1.find(',')] 

372>         lines = open('robconfig.txt', 'r').readlines() 

373>         for i in range(len(lines)): 

374>             if lines[i].find(str2) != -1: 

375>                 lines[i] = 

'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' % (idVar.get(), 

nameVar.get(), ipVar.get(), 

376>                                                                  

r_lenVar.get(), r_wtVar.get(), r_htVar.get(), 

377>                                                                  

r_ldVar.get(), r_linspdVar.get(), r_angspdVar.get(), 

378>                                                                  

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(), 

379>                                                                  

r_gripVar.get(), r_2whlVar.get()) 

380>                 break 

381>         f = open('robconfig.txt', 'w') 

382>         f.writelines(lines) 

383>         f.close() 

384>         self.setSelect() 

385>  

386>     def deleteEntry(self): 

387>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

388>         str2 = str1[0:str1.find(',')] 

389>         lines = open('robconfig.txt', 'r').readlines() 

390>  

391>         for i in range(len(lines)): 

392>             if lines[i].find(str2) != -1: 

393>                 lines.remove(lines[i]) 

394>                 break 

395>         f = open('robconfig.txt', 'w') 
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396>         f.writelines(lines) 

397>         f.close() 

398>         self.setSelect() 

399>  

400>     def loadEntry(self): 

401>         global robrec 

402>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

403>         str2 = str1[0:str1.find(',')] 

404>         f = open('robconfig.txt', 'r') 

405>         for line in f: 

406>             if line.find(str2) != -1: 

407>                 startpos = 0  # char start position in string 

408>                 robrec = [] 

409>                 charpos = line.find(',') 

410>                 while charpos != -1: 

411>                     robrec.append(line[startpos:charpos]) 

412>                     startpos = charpos + 1 

413>                     charpos = line.find(',', startpos, 

len(line)) 

414>                 break  # breaks the for-loop 

415>         f.close() 

416>         #  set the fields on the form: 

417>         idVar.set(robrec[0]) 

418>         nameVar.set(robrec[1]) 

419>         ipVar.set(robrec[2]) 

420>         r_lenVar.set(robrec[3]) 

421>         r_wtVar.set(robrec[4]) 

422>         r_htVar.set(robrec[5]) 

423>         r_ldVar.set(robrec[6]) 

424>         r_linspdVar.set(robrec[7]) 

425>         r_angspdVar.set(robrec[8]) 

426>         r_lrfVar.set(robrec[9]) 

427>         r_sonVar.set(robrec[10]) 

428>         r_camVar.set(robrec[11]) 

429>         r_gripVar.set(robrec[12]) 

430>         r_2whlVar.set(robrec[13]) 

431>         self.setSelect2(int(robrec[0])) 

432>  

433> class ClassRoblist(Frame): 

434>     def __init__(self): 

435>         Frame.__init__(self) 

436>         self.Roblistwin = Toplevel() 

437>         self.Roblistwin.title("Robot List") 
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438>         self.tree = ttk.Treeview(self.Roblistwin, height=20)  # 

height param modifies the window height - adjust if lots of entries! 

439>         self.tree["columns"] = ("rob_id", "rob_name", "rob_ip") 

440>         self.tree.column("#0", width=40, anchor=N) 

441>         self.tree.heading("#0", text="No.") 

442>         self.tree.column("rob_id", width=80, anchor=N) 

443>         self.tree.heading("rob_id", text="Robot ID") 

444>         self.tree.column("rob_name", width=120, anchor=N) 

445>         self.tree.heading("rob_name", text="Robot name") 

446>         self.tree.column("rob_ip", width=120, anchor=N) 

447>         self.tree.heading("rob_ip", text="IP address") 

448>         self.tree.pack() 

449>  

450>         totrec = 0  # total number of records 

451>         roblist=[] 

452>         f = open('robconfig.txt', 'r') 

453>         for line in f: 

454>             startpos = 0  # char start position in string 

455>             robrec=[] 

456>             charpos = line.find(',') 

457>             while charpos != -1: 

458>                 robrec.append(line[startpos:charpos]) 

459>                 startpos = charpos + 1 

460>                 charpos = line.find(',', startpos, len(line)) 

461>             roblist.append(str(robrec[0] + ", " + robrec[1] + 

", " + robrec[2])) 

462>             totrec = totrec + 1 

463>         f.close() 

464>         roblist.sort() 

465>         for i in range(len(roblist)): 

466>             s = str(i+1) 

467>             startpos = 0 

468>             charpos = roblist[i].find(',') 

469>             str1 = roblist[i][startpos:charpos] 

470>             startpos = charpos + 1 

471>             charpos = roblist[i].find(',', startpos, 

len(roblist[i])) 

472>             str2 = roblist[i][startpos:charpos] 

473>             startpos = charpos + 1 

474>             str3 = roblist[i][startpos:len(roblist[i])] 

475>             self.tree.insert("", "end", text=s, 

values=(str1,str2,str3)) 

476>  

477>         self.Roblistwin.focus_force() 
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478>  

479> class ClassTaskman(Frame): 

480>     def __init__(self): 

481>         Frame.__init__(self) 

482>         self.Taskman = Toplevel() 

483>         self.Taskman.title("Task Management") 

484>         global idVar, nameVar, r_maxlenVar, r_maxwtVar, 

r_maxhtVar, \ 

485>                r_minldVar, r_minlinspdVar, r_minangspdVar, 

r_maxrobVar 

486>         global r_lrfVar, r_sonVar, r_camVar, r_gripVar, 

r_2whlVar 

487>         global select, tasklist, taskrec, select2 

488>  

489>         frame1 = Frame(self.Taskman, width=100, height=100) 

490>         frame1.grid(row=0, column=0, columnspan=3) 

491>         Label(frame1, text="Task ID").grid(row=0, column=0, 

sticky=W) 

492>         idVar = StringVar() 

493>         ttk.Entry(frame1, width=10, 

textvariable=idVar).grid(row=0, column=1, padx=(5,30), pady=20, 

sticky=W) 

494>         Label(frame1, text="Task name").grid(row=0, column=2, 

sticky=W) 

495>         nameVar = StringVar() 

496>         ttk.Entry(frame1, textvariable=nameVar).grid(row=0, 

column=3, padx=(5,30), pady=20, sticky=W) 

497>  

498>         frame2 = Frame(self.Taskman, width=5, height=10, 

borderwidth=2, relief=GROOVE) 

499>         frame2.grid(row=1, column=0, padx=10, pady=0, 

sticky=NSEW) 

500>         Label(frame2, text="Max. robot dimensions 

(mm)").grid(row=0, column=0, columnspan=3) 

501>         ent_width=5 

502>         Label(frame2, text="L").grid(row=1, column=0, padx=15, 

pady=0, sticky=W) 

503>         r_maxlenVar = StringVar() 

504>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_maxlenVar).grid(row=2, column=0, padx=5, pady=0, 

sticky=W) 

505>         Label(frame2, text="W").grid(row=1, column=1, padx=15, 

pady=0, sticky=W) 

506>         r_maxwtVar = StringVar() 
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507>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_maxwtVar).grid(row=2, column=1, padx=5, pady=0, 

sticky=W) 

508>         Label(frame2, text="H").grid(row=1, column=2, padx=15, 

pady=0, sticky=W) 

509>         r_maxhtVar = StringVar() 

510>         ttk.Entry(frame2, width=ent_width, 

textvariable=r_maxhtVar).grid(row=2, column=2, padx=5, pady=0, 

sticky=W) 

511>  

512>         frame3 = Frame(self.Taskman, width=10, height=10, 

borderwidth=2, relief=GROOVE) 

513>         frame3.grid(row=1, column=1, padx=10, pady=0, 

sticky=NSEW) 

514>         Label(frame3, text="Min. load capacity").grid(row=0, 

column=0, padx=0, pady=0, sticky=W) 

515>         r_minldVar = StringVar() 

516>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_minldVar).grid(row=0, column=1, padx=0, pady=0, 

sticky=NSEW) 

517>         Label(frame3, text="kg").grid(row=0, column=2, padx=0, 

pady=0, sticky=W) 

518>         Label(frame3, text="Min. linear speed").grid(row=1, 

column=0, padx=0, pady=2, sticky=W) 

519>         r_minlinspdVar = StringVar() 

520>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_minlinspdVar).grid(row=1, column=1, padx=0, pady=2, 

sticky=NSEW) 

521>         Label(frame3, text="m/s").grid(row=1, column=2, padx=0, 

pady=0, sticky=W) 

522>         Label(frame3, text="Min. angular speed").grid(row=2, 

column=0, padx=0, pady=2, sticky=W) 

523>         r_minangspdVar = StringVar() 

524>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_minangspdVar).grid(row=2, column=1, padx=0, pady=2, 

sticky=NSEW) 

525>         Label(frame3, text="rad/s").grid(row=2, column=2, 

padx=0, pady=0, sticky=W) 

526>         Label(frame3, text="Max. no. of robots").grid(row=3, 

column=0, padx=0, pady=2, sticky=W) 

527>         r_maxrobVar = StringVar() 

528>         ttk.Entry(frame3, width=ent_width, 

textvariable=r_maxrobVar).grid(row=3, column=1, padx=0, pady=2, 

sticky=NSEW) 

529>  
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530>         frame4 = Frame(self.Taskman, width=5, height=10, 

borderwidth=2, relief=GROOVE) 

531>         frame4.grid(row=1, column=2, padx=10, pady=0, 

sticky=NSEW) 

532>         Label(frame4, text="Hardware requirements").grid(row=0, 

column=0, columnspan=8) 

533>         r_lrfVar = IntVar() 

534>         ttk.Checkbutton(frame4, width=0, 

variable=r_lrfVar).grid(row=1, column=0, padx=0, pady=0, sticky=E) 

535>         Label(frame4, text="LRF").grid(row=1, column=1, 

padx=(0,30), pady=0, sticky=W) 

536>         r_sonVar = IntVar() 

537>         ttk.Checkbutton(frame4, width=0, 

variable=r_sonVar).grid(row=1, column=2, padx=0, pady=0, sticky=E) 

538>         Label(frame4, text="Sonars").grid(row=1, column=3, 

padx=(0,10), pady=0, sticky=W) 

539>         r_camVar = IntVar() 

540>         ttk.Checkbutton(frame4, width=0, 

variable=r_camVar).grid(row=2, column=0, padx=0, pady=0, sticky=E) 

541>         Label(frame4, text="Camera").grid(row=2, column=1, 

padx=(0, 30), pady=0, sticky=W) 

542>         r_gripVar = IntVar() 

543>         ttk.Checkbutton(frame4, width=0, 

variable=r_gripVar).grid(row=2, column=2, padx=0, pady=0, sticky=E) 

544>         Label(frame4, text="Grippers").grid(row=2, column=3, 

padx=(0, 10), pady=0, sticky=W) 

545>         r_2whlVar = IntVar() 

546>         ttk.Checkbutton(frame4, width=0, 

variable=r_2whlVar).grid(row=3, column=0, padx=0, pady=0, sticky=E) 

547>         Label(frame4, text="Two-wheel").grid(row=3, column=1, 

padx=(0, 30), pady=0, sticky=W) 

548>  

549>         frame5 = Frame(self.Taskman) 

550>         frame5.grid(row=2, column=0, padx=10, pady=(15,0), 

columnspan=4, sticky=NSEW) 

551>         ttk.Button(frame5, text=" Add  ", 

command=self.addEntry).grid(row=0, column=0, padx=(0, 0), pady=0, 

sticky=W) 

552>         ttk.Button(frame5, text="Update", 

command=self.updateEntry).grid(row=0, column=1, padx=(0, 0), pady=0, 

sticky=W) 

553>         ttk.Button(frame5, text="Delete", 

command=self.deleteEntry).grid(row=0, column=2, padx=(0, 0), pady=0, 

sticky=W) 
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554>         ttk.Button(frame5, text=" Load ", 

command=self.loadEntry).grid(row=0, column=3, padx=(0, 0), pady=0, 

sticky=W) 

555>  

556>         frame6 = Frame(self.Taskman) 

557>         frame6.grid(row=3, column=2, padx=7, pady=(0, 0), 

columnspan=1, sticky=NSEW) 

558>         Label(frame6, text="Compatible Robots").grid(row=0, 

column=0, padx=0, pady=0, sticky=NSEW) 

559>  

560>         frame7 = Frame(self.Taskman) 

561>         frame7.grid(row=4, column=0, padx=10, pady=(0,5), 

columnspan=5, sticky=NSEW) 

562>         scroll = ttk.Scrollbar(frame7, orient=VERTICAL) 

563>         select = Listbox(frame7, yscrollcommand=scroll.set, 

height=6, width=30) 

564>         scroll.config(command=select.yview) 

565>         scroll.grid(row=0, column=5, padx=(0, 0), pady=0, 

sticky=NS) 

566>         select.grid(row=0, column=0, padx=(0, 0), pady=0, 

columnspan=4, sticky=NSEW) 

567>  

568>         frame8 = Frame(self.Taskman) 

569>         frame8.grid(row=4, column=2, padx=10, pady=(0,5), 

columnspan=5, sticky=NSEW) 

570>         scroll2 = ttk.Scrollbar(frame8, orient=VERTICAL) 

571>         select2 = Listbox(frame8, yscrollcommand=scroll2.set, 

height=6, width=34) 

572>         scroll2.config(command=select2.yview) 

573>         scroll2.grid(row=0, column=7, padx=(0, 0), pady=0, 

sticky=NS) 

574>         select2.grid(row=0, column=0, padx=(0, 0), pady=0, 

columnspan=4, sticky=NSEW) 

575>  

576>         self.setSelect()  # configure roblist and select 

listbox 

577>         self.Taskman.focus_force() 

578>  

579>     def setSelect(self): 

580>         totrec = 0  # total number of records 

581>         global tasklist, taskrec 

582>         tasklist=[] 

583>         f = open('taskconfig.txt', 'r') 

584>         for line in f: 

585>             startpos = 1  # char start position in string 
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586>             taskrec=[] 

587>             charpos = line.find(',') 

588>             while charpos != -1: 

589>                 taskrec.append(line[startpos:charpos]) 

590>                 startpos = charpos + 1 

591>                 charpos = line.find(',', startpos, len(line)) 

592>             tasklist.append(str(taskrec[0] + ", " + 

taskrec[1])) 

593>             totrec = totrec + 1 

594>         f.close() 

595>         tasklist.sort() 

596>         select.delete(0, END) 

597>         for i in range(totrec): 

598>             select.insert(END, tasklist[i]) 

599>  

600>     def setSelect2(self, tid): 

601>         CompatRobMat = LibHetRobots.getCompatRobots(tid) 

602>         select2.delete(0, END) 

603>         for i in range(len(CompatRobMat)): 

604>             select2.insert(END, str(CompatRobMat[i][0] + ', ' + 

CompatRobMat[i][1])) 

605>  

606>     def whichSelected(self): 

607>         return int(select.curselection()[0]) 

608>  

609>     def addEntry(self): 

610>         f = open('taskconfig.txt', 'a') 

611>         f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' 

% (idVar.get(), nameVar.get(), 

612>                                                                  

r_maxlenVar.get(), r_maxwtVar.get(), 

613>                                                                  

r_maxhtVar.get(), r_minldVar.get(), 

614>                                                                  

r_minlinspdVar.get(), r_minangspdVar.get(), 

615>                                                                  

r_maxrobVar.get(), 

616>                                                                  

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(), 

617>                                                                  

r_gripVar.get(), r_2whlVar.get())) 

618>         f.close() 

619>         self.setSelect() 

620>  
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621>     def updateEntry(self): 

622>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

623>         str2 = str1[0:str1.find(',')] 

624>         lines = open('taskconfig.txt', 'r').readlines() 

625>         for i in range(len(lines)): 

626>             if lines[i].find(str2) != -1: 

627>                 lines[i] = 

'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' % (idVar.get(), 

nameVar.get(), 

628>                                                                  

r_maxlenVar.get(), r_maxwtVar.get(), 

629>                                                                  

r_maxhtVar.get(), r_minldVar.get(), 

630>                                                                  

r_minlinspdVar.get(), r_minangspdVar.get(), 

631>                                                                  

r_maxrobVar.get(), 

632>                                                                  

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(), 

633>                                                                  

r_gripVar.get(), r_2whlVar.get()) 

634>                 break 

635>         f = open('taskconfig.txt', 'w') 

636>         f.writelines(lines) 

637>         f.close() 

638>         self.setSelect() 

639>  

640>     def deleteEntry(self): 

641>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

642>         str2 = str1[0:str1.find(',')] 

643>         lines = open('taskconfig.txt', 'r').readlines() 

644>  

645>         for i in range(len(lines)): 

646>             if lines[i].find(str2) != -1: 

647>                 lines.remove(lines[i]) 

648>                 break 

649>         f = open('taskconfig.txt', 'w') 

650>         f.writelines(lines) 

651>         f.close() 

652>         self.setSelect() 

653>  

654>     def loadEntry(self): 
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655>         global taskrec 

656>         str1 = select.get(ACTIVE)  # get the text of the 

currently selected item in the listbox 

657>         str2 = str1[0:str1.find(',')] 

658>         f = open('taskconfig.txt', 'r') 

659>         for line in f: 

660>             if line.find(str2) != -1: 

661>                 startpos = 1  # char start position in string 

662>                 taskrec = [] 

663>                 charpos = line.find(',') 

664>                 while charpos != -1: 

665>                     taskrec.append(line[startpos:charpos]) 

666>                     startpos = charpos + 1 

667>                     charpos = line.find(',', startpos, 

len(line)) 

668>                 break  # breaks the for-loop 

669>         f.close() 

670>         #  set the fields on the form: 

671>         idVar.set(taskrec[0]) 

672>         nameVar.set(taskrec[1]) 

673>         r_maxlenVar.set(taskrec[2]) 

674>         r_maxwtVar.set(taskrec[3]) 

675>         r_maxhtVar.set(taskrec[4]) 

676>         r_minldVar.set(taskrec[5]) 

677>         r_minlinspdVar.set(taskrec[6]) 

678>         r_minangspdVar.set(taskrec[7]) 

679>         r_maxrobVar.set(taskrec[8]) 

680>         r_lrfVar.set(taskrec[9]) 

681>         r_sonVar.set(taskrec[10]) 

682>         r_camVar.set(taskrec[11]) 

683>         r_gripVar.set(taskrec[12]) 

684>         r_2whlVar.set(taskrec[13]) 

685>         self.setSelect2(int(taskrec[0])) 

686>  

687> class ClassAssigntags(Frame): 

688>     def __init__(self): 

689>         Frame.__init__(self) 

690>         self.Win_tags = Toplevel() 

691>         self.Win_tags.title("Algorithm and robot tag 

assignment") 

692>         self.grid(sticky=W + E + N + S) 

693>         self.Win_tags.focus_force() 

694>  

695>         # Algorithm labels and fields: 
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696>         self.FileTextVar = StringVar() 

697>         algoFrame = ttk.Frame(self.Win_tags, borderwidth=2, 

relief=GROOVE) 

698>         algoFrame.grid(row=0, column=0, padx=5, pady=10, 

sticky=N) 

699>         label_a = ttk.Label(algoFrame, text="Algorithm Tags") 

700>         label_a.grid(row=0, column=0, padx=5, pady=10, 

columnspan=5, sticky=N) 

701>         label1 = ttk.Label(algoFrame, text="Variable File") 

702>         label1.grid(row=1, column=0, padx=5, pady=10, 

sticky=NSEW) 

703>         label2 = ttk.Entry(algoFrame, background='white', 

width=30, textvariable=self.FileTextVar) 

704>         label2.grid(row=1, column=1, padx=(0,5), pady=10, 

sticky=NSEW) 

705>         browse_butn = ttk.Button(algoFrame, text="Browse...", 

command=self.load_file, width=10) 

706>         browse_butn.grid(row=1, column=2, padx=5, pady=10, 

sticky=NSEW) 

707>         self.algotree = ttk.Treeview(algoFrame) 

708>         self.algotree.grid(row=2, column=0, padx=(10,0) , 

pady=0, columnspan=5, sticky=NSEW) 

709>  

710>         # Robot labels and fields: 

711>         robFrame = ttk.Frame(self.Win_tags, borderwidth=2, 

relief=GROOVE) 

712>         robFrame.grid(row=0, column=1, padx=(5,10), pady=10, 

sticky=N) 

713>         label_r = ttk.Label(robFrame, text="Robot Tags") 

714>         label_r.grid(row=0, column=0, padx=(50,0), pady=10, 

columnspan=3, sticky=N) 

715>         label_sel = ttk.Label(robFrame, text="Select robot") 

716>         label_sel.grid(row=1, column=0, padx=(5,0), pady=10, 

sticky=W) 

717>         self.rbox_value = StringVar() 

718>         self.rbox = ttk.Combobox(robFrame, 

textvariable=self.rbox_value) 

719>         self.rbox.grid(row=1 , column=1, padx=5, pady=12, 

sticky=W) 

720>         self.rbox['values'] = getRoblist()  # get the list of 

robot id's and names from text file 

721>         self.rbox.bind("<<ComboboxSelected>>", 

self.NewSelection) 

722>         self.robtree = ttk.Treeview(robFrame) 
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723>         self.robtree.grid(row=2, column=0, padx=(10, 0), 

pady=0, columnspan=5, sticky=NSEW) 

724>  

725>         # Algorithm tree: 

726>         self.algotree.bind("<Double-1>", self.OnDoubleClick) 

727>         self.algotree["columns"] = ("opc_col") 

728>         self.algotree.column("opc_col", width=150) 

729>         self.algotree.column("#0", width=150) 

730>         self.algotree.heading('#0', text='Algorithm variables', 

anchor=N) 

731>         self.algotree.heading("opc_col", text="OPC Tag", 

anchor=N) 

732>         ysb = ttk.Scrollbar(algoFrame,orient=VERTICAL, 

command=self.algotree.yview) 

733>         xsb = ttk.Scrollbar(algoFrame,orient=HORIZONTAL, 

command=self.algotree.xview) 

734>         # add tree and scrollbars to frame 

735>         self.algotree.grid(in_=algoFrame, row=2, column=0, 

sticky=NSEW) 

736>         ysb.grid(in_=algoFrame, row=2, column=5, padx=(0,10), 

pady=(15,0), sticky=NS) 

737>         xsb.grid(in_=algoFrame, row=3, column=0, padx=(10,0), 

pady=(0,10), columnspan=5, sticky=EW) 

738>         self.algotree['yscroll'] = ysb.set 

739>         self.algotree['xscroll'] = xsb.set 

740>  

741>         # Robot tree: 

742>         self.robtree.bind("<Double-1>", self.OnDoubleClick2) 

743>         self.robtree["columns"] = ("opc_col") 

744>         self.robtree.column("opc_col", width=150) 

745>         self.robtree.column("#0", width=150) 

746>         self.robtree.heading('#0', text='Robot variables', 

anchor=N) 

747>         self.robtree.heading("opc_col", text="OPC Tag", 

anchor=N) 

748>         ysbr = ttk.Scrollbar(robFrame, orient=VERTICAL, 

command=self.robtree.yview) 

749>         xsbr = ttk.Scrollbar(robFrame, orient=HORIZONTAL, 

command=self.robtree.xview) 

750>         # add tree and scrollbars to frame 

751>         self.robtree.grid(in_=robFrame, row=2, column=0, 

sticky=NSEW) 

752>         ysbr.grid(in_=robFrame, row=2, column=5, padx=(0, 10), 

pady=(15, 0), sticky=NS) 
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753>         xsbr.grid(in_=robFrame, row=3, column=0, padx=(10, 0), 

pady=(0, 10), columnspan=5, sticky=EW) 

754>         self.robtree['yscroll'] = ysbr.set 

755>         self.robtree['xscroll'] = xsbr.set 

756>  

757>         global tagstr 

758>         tagstr = '' 

759>         self.Win_tags.after(0, self.update_clock) 

760>  

761>     def update_clock(self): 

762>         global tagstr 

763>         if tagstr != '': 

764>             try: 

765>                 if treestore == "algotree": 

766>                     itemi = self.algotree.selection()[0] 

767>                     self.algotree.item(itemi, values=tagstr) 

768>                     tagstr = '' 

769>                     x = self.algotree.get_children() 

770>                     taglist=[] 

771>                     for i in range(len(x)): 

772>                         str1 = str(self.algotree.item(x[i], 

"value")) 

773>                         startpos=str1.find('(',0,len(str1)) 

774>                         

endpos=str1.find(')',startpos+1,len(str1)) 

775>                         taglist.append(str1[startpos+2:endpos-

2]) 

776>                     f = open('taglist.txt', 'w') 

777>                     for i in range(len(x)): 

778>                         f.write('%s\n' % str(taglist[i])) 

779>                     f.close() 

780>                     # create the variable-tag map in a text 

file: 

781>                     f = open('avarmap.txt', 'w') 

782>                     for i in range(len(x)): 

783>                         f.write('%s:%s\n' % 

(str(self.algotree.item(x[i], "text")), taglist[i])) 

784>                     f.close() 

785>                 else: 

786>                     itemi = self.robtree.selection()[0] 

787>                     self.robtree.item(itemi, values=tagstr) 

788>                     tagstr = '' 

789>                     x = self.robtree.get_children() 

790>                     taglist=[] 
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791>                     for i in range(len(x)): 

792>                         str1 = str(self.robtree.item(x[i], 

"value")) 

793>                         startpos=str1.find('(',0,len(str1)) 

794>                         

endpos=str1.find(')',startpos+1,len(str1)) 

795>                         taglist.append(str1[startpos+2:endpos-

2]) 

796>                     # get the current selected robot ID: 

797>                     cr_id = 

self.rbox_value.get()[0:self.rbox_value.get().find(',')] 

798>                     f = open('robots/%staglist.txt' % cr_id, 

'w') 

799>                     for i in range(len(x)): 

800>                         f.write('%s\n' % str(taglist[i])) 

801>                     f.close() 

802>                     # create the variable-tag map in a text 

file: 

803>                     f = open('robots/%svarmap.txt' % cr_id, 

'w') 

804>                     for i in range(len(x)): 

805>                         f.write('%s:%s\n' % 

(str(self.robtree.item(x[i], "text")), taglist[i])) 

806>                     f.close() 

807>             except: 

808>                 print "no variable selected" 

809>         self.Win_tags.after(500, self.update_clock) 

810>  

811>     def load_file(self): 

812>         fname = 

tkFileDialog.askopenfilename(filetypes=(("Python files", "*.py"), 

813>                                                             

("HTML files", "*.html;*.htm"), 

814>                                                             

("All files", "*.*"))) 

815>         if fname: 

816>             try: 

817>                 #print "Filename: ", fname 

818>                 self.FileTextVar.set(fname)  # set the label2 

textvariable 

819>                 algopath = open('algopath.txt', 'r').readline()  

# get the previous algo file path 

820>                 avars = [] 

821>                 for name, data in inspect.getmembers(gvar, 

inspect.isclass): 
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822>                     avars.append(name) 

823>                 lines = open('taglist.txt', 'r').readlines() 

824>                 for i in range(len(avars)): 

825>                     s = avars[i] 

826>                     #print s 

827>                     if (len(lines[i]) > 5) and 

(algopath==fname): # check if missing assignments and if there is a 

new file 

828>                         self.algotree.insert("", "end", text=s, 

values=lines[i]) 

829>                     else: 

830>                         self.algotree.insert("", "end", text=s, 

values="not_assigned") 

831>                 f = open('algopath.txt', 'w') 

832>                 f.write(fname)  # store the algo file path 

833>                 f.close() 

834>                 self.Win_tags.focus_force() 

835>             except: 

836>                 print "Open Source File", "Failed to read 

file\n'%s'" % fname 

837>             return 

838>  

839>     def OnDoubleClick(self, event): 

840>         global treestore 

841>         treestore = "algotree" 

842>         d = ClassOpctags() 

843>         d.opcTags()  # call opctag pop-up window 

844>  

845>     def OnDoubleClick2(self, event): 

846>         global treestore 

847>         treestore = "robtree" 

848>         d = ClassOpctags() 

849>         d.opcTags()  # call opctag pop-up window 

850>  

851>     def NewSelection(self, event): 

852>         cr_id = 

self.rbox_value.get()[0:self.rbox_value.get().find(',')] 

853>         rvars = [] 

854>         rvars.append("x_location") 

855>         rvars.append("y_location") 

856>         rvars.append("yaw") 

857>         rvars.append("busy") 

858>         rvars.append("current_task") 

859>         rvars.append("task_complete") 
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860>         self.robtree.delete(*self.robtree.get_children()) 

861>         try: 

862>             lines = open('robots/%staglist.txt' % cr_id, 

'r').readlines() 

863>         except: 

864>             f=open('robots/%staglist.txt' % cr_id, 'w') 

865>             lines=[] 

866>             for i in range(len(rvars)): 

867>                 f.write('\n') 

868>                 lines.append('\n') 

869>             f.close() 

870>         for i in range(len(rvars)): 

871>             s = rvars[i] 

872>             if len(lines[i]) > 5:  # check if missing 

assignments 

873>                 self.robtree.insert("", "end", text=s, 

values=lines[i]) 

874>             else: 

875>                 self.robtree.insert("", "end", text=s, 

values="not_assigned") 

876>  

877> class ClassOpctags(Frame): 

878>     def __init__(self): 

879>         Frame.__init__(self) 

880>         self.Win_opc = Toplevel() 

881>         self.Win_opc.title("OPC Tags") 

882>         self.opctree = ttk.Treeview(self.Win_opc) 

883>         self.opctree.bind("<Double-1>", self.TagDoubleClick) 

884>         self.opc = OpenOPC.open_client('localhost') 

885>         self.opc.connect('Matrikon.OPC.Simulation') 

886>  

887>     def opcTags(self): 

888>         label1 = Label(self.Win_opc, text="Select a tag:", 

height=0, width=10) 

889>         label1.grid(row=0, column=0, padx=5, pady=5, sticky=W) 

890>  

891>         self.opctree.heading('#0', text='List of available 

tags', anchor=N) 

892>         self.opctree.grid(row=1, column=0, padx=5, pady=5) 

893>         taglist = self.opc.list('Configured Aliases.Server02') 

894>         for i in range(len(taglist)): 

895>             self.opctree.insert("", "end", text=taglist[i]) 

896>  

897>         butFrame = Frame(self.Win_opc, width=200, height=100) 
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898>         butFrame.grid(row=2, column=0, padx=5, pady=5) 

899>         assignButn = ttk.Button(butFrame, text="Assign tag", 

command=self.GetTag) 

900>         assignButn.grid(row=0, column=0, padx=5, pady=5, 

sticky=W) 

901>         cancelButn = ttk.Button(butFrame, text="Cancel", 

command=self.Win_opc.destroy) 

902>         cancelButn.grid(row=0, column=1, padx=5, pady=5, 

sticky=W) 

903>  

904>         self.Win_opc.focus_force() 

905>  

906>     def TagDoubleClick(self, event): 

907>         itemt = self.opctree.selection()[0] 

908>         s = self.opctree.item(itemt, "text") 

909>         global tagstr 

910>         tagstr = s 

911>         self.opc.close() 

912>         self.Win_opc.destroy() 

913>  

914>     def GetTag(self): 

915>         itemt = self.opctree.selection()[0] 

916>         s = self.opctree.item(itemt, "text") 

917>         global tagstr 

918>         tagstr = s 

919>         self.opc.close() 

920>         self.Win_opc.destroy() 

921>  

922> class ClassSelectAlgo(Frame): 

923>     def __init__(self): 

924>         Frame.__init__(self) 

925>         self.Win_algo = Toplevel() 

926>         self.Win_algo.title("Algorithm selection") 

927>         self.grid(sticky=W + E + N + S) 

928>         self.Win_algo.focus_force() 

929>  

930>         # Algorithm labels and fields: 

931>         self.FileTextVar = StringVar() 

932>         label1 = ttk.Label(self.Win_algo, text="Algorithm 

File") 

933>         label1.grid(row=1, column=0, padx=5, pady=10, 

sticky=NSEW) 

934>         label2 = ttk.Entry(self.Win_algo, background='white', 

width=30, textvariable=self.FileTextVar) 
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935>         label2.grid(row=1, column=1, padx=(0,5), pady=10, 

sticky=NSEW) 

936>         browse_butn = ttk.Button(self.Win_algo, 

text="Browse...", command=self.load_file, width=10) 

937>         browse_butn.grid(row=1, column=2, padx=5, pady=10, 

sticky=NSEW) 

938>         accept_butn = ttk.Button(self.Win_algo, text="Accept", 

command=self.Win_algo.destroy, width=10) 

939>         accept_butn.grid(row=2, column=2, padx=5, pady=10, 

sticky=NSEW) 

940>  

941>     def load_file(self): 

942>         fname = 

tkFileDialog.askopenfilename(filetypes=(("Python files", "*.py"), 

943>                                                             

("HTML files", "*.html;*.htm"), 

944>                                                             

("All files", "*.*"))) 

945>         if fname: 

946>             try: 

947>                 #print "Filename: ", fname 

948>                 self.FileTextVar.set(fname)  # set the label2 

textvariable 

949>                 self.Win_algo.focus_force() 

950>             except: 

951>                 print "Open Source File", "Failed to read 

file\n'%s'" % fname 

952>             return 

953>  

954> class ClassLocationConfig(Frame): 

955>     def __init__(self): 

956>         Frame.__init__(self) 

957>         self.Win_location = Toplevel() 

958>         self.Win_location.title("Task location configuration") 

959>         self.grid(sticky=W + E + N + S) 

960>         self.opc = OpenOPC.open_client('localhost') 

961>         self.opc.connect('Matrikon.OPC.Simulation') 

962>         self.Win_location.focus_force() 

963>  

964>         # Frames: 

965>         locFrame = ttk.Frame(self.Win_location, width=200, 

height=200, borderwidth=2, relief=GROOVE) 

966>         locFrame.grid(row=0, column=0, padx=2, pady=2, 

sticky=NS) 
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967>         moveFrame = ttk.Frame(self.Win_location, width=200, 

height=200, borderwidth=2, relief=GROOVE) 

968>         moveFrame.grid(row=0, column=1, padx=2, pady=2, 

sticky=NS) 

969>         taskFrame = ttk.Frame(self.Win_location, width=200, 

height=200, borderwidth=2, relief=GROOVE) 

970>         taskFrame.grid(row=1, column=0, padx=2, pady=(2,50), 

columnspan=6, sticky=NSEW) 

971>         connFrame = ttk.Frame(self.Win_location, width=200, 

height=20, borderwidth=2, relief=GROOVE) 

972>         connFrame.grid(row=2, column=0, padx=2, pady=2, 

columnspan=6, sticky=NSEW) 

973>  

974>         # Current robot location widgets: 

975>         label1 = ttk.Label(locFrame, text="Current robot 

location") 

976>         label1.grid(row=1, column=0, padx=5, pady=5, 

columnspan=5, sticky=NSEW) 

977>         label2 = ttk.Label(locFrame, text="x") 

978>         label2.grid(row=2, column=0, padx=(0,0), pady=5, 

sticky=E) 

979>         ttk.Label(locFrame, text="m").grid(row=2, column=2, 

padx=(0, 20), pady=5, sticky=W) 

980>         self.r_curr_xlocVar = StringVar() 

981>         label2b = ttk.Label(locFrame, background='light grey', 

width=6, textvariable=self.r_curr_xlocVar) 

982>         label2b.grid(row=2, column=1, padx=(5,0), pady=5, 

sticky=W) 

983>         label3 = ttk.Label(locFrame, text="y") 

984>         label3.grid(row=3, column=0, padx=(0,0), pady=5, 

sticky=E) 

985>         ttk.Label(locFrame, text="m").grid(row=3, column=2, 

padx=(0, 20), pady=5, sticky=W) 

986>         self.r_curr_ylocVar = StringVar() 

987>         label3b = ttk.Label(locFrame, background='light grey', 

width=6, textvariable=self.r_curr_ylocVar) 

988>         label3b.grid(row=3, column=1, padx=(5,0), pady=5, 

sticky=W) 

989>         label4 = ttk.Label(locFrame, text="yaw") 

990>         label4.grid(row=4, column=0, padx=(0,0), pady=5, 

sticky=E) 

991>         ttk.Label(locFrame, text="rad").grid(row=4, column=2, 

padx=(0, 20), pady=5, sticky=W) 

992>         self.r_curr_yawlocVar = StringVar() 
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993>         label4b = ttk.Label(locFrame, background='light grey', 

width=6 , textvariable=self.r_curr_yawlocVar) 

994>         label4b.grid(row=4, column=1, padx=(5,0) , pady=5, 

sticky=W) 

995>         labelconn = ttk.Label(connFrame, text="Connected to 

robot %s (%s)" % (ron_id, getRobname(ron_id))) 

996>         labelconn.grid(row=0, column=0, padx=(0, 0), pady=5, 

sticky=W) 

997>         self.r_curr_xlocVar.set('0.55') 

998>         self.r_curr_ylocVar.set('10.55') 

999>         self.r_curr_yawlocVar.set('150.55') 

1000>  

1001>         # Robot move widgets: 

1002>         ttk.Label(moveFrame, text="Robot motion 

commands").grid(row=0, column=0, padx=5, pady=5, columnspan=3, 

sticky=N) 

1003>         fwd_butn = ttk.Button(moveFrame, text="Forward", 

command=self.move_fwd).grid(row=1, column=1, padx=5, pady=5) 

1004>         stop_butn = ttk.Button(moveFrame, text="Stop", 

command=self.stop).grid(row=2, column=1, padx=5, pady=5) 

1005>         left_butn = ttk.Button(moveFrame, text="Left", 

command=self.move_left).grid(row=2, column=0, padx=10, pady=5) 

1006>         right_butn = ttk.Button(moveFrame, text="Right", 

command=self.move_right).grid(row=2, column=2, padx=5, pady=5) 

1007>         rev_butn = ttk.Button(moveFrame, text="Reverse", 

command=self.move_reverse).grid(row=3, column=1, padx=5, pady=5) 

1008>  

1009>         # Task widgets: 

1010>         label_heading = ttk.Label(taskFrame, text="Task 

locations") 

1011>         label_heading.grid(row=0, column=0 , padx=5, 

pady=(5,10), columnspan=8, sticky=N) 

1012>         ttk.Label(taskFrame, text="Select Task").grid(row=1, 

column=0, padx=5, pady=5, sticky=NSEW) 

1013>         self.tbox_value = StringVar() 

1014>         self.tbox = ttk.Combobox(taskFrame, width=10, 

textvariable=self.tbox_value) 

1015>         self.tbox.grid(row=1, column=1, padx=(0,5), 

pady=(10,20), columnspan=2 , sticky=NSEW) 

1016>         self.tbox['values'] = getTasklist()  # get the list of 

task id's and names from text file 

1017>         self.tbox.bind("<<ComboboxSelected>>", 

self.TaskSelection) 

1018>         ttk.Label(taskFrame, text="x").grid(row=2, column=2, 

padx=5, pady=(0,0), sticky=S) 
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1019>         ttk.Label(taskFrame, text="y").grid(row=2, column=3, 

padx=5, pady=(0,0), sticky=S) 

1020>         ttk.Label(taskFrame, text="yaw").grid(row=2, column=4, 

padx=5, pady=(0,0), sticky=S) 

1021>         ttk.Label(taskFrame, text="Select Node").grid(row=3, 

column=0, padx=5, pady=5, sticky=W) 

1022>         self.nbox_value = StringVar() 

1023>         self.nbox = ttk.Combobox(taskFrame, width=10, 

textvariable=self.nbox_value) 

1024>         self.nbox.grid(row=3, column=1, padx=(0,5), pady=5, 

sticky=W) 

1025>         self.nbox['values'] = ('Source', 'Destination') 

1026>         self.nbox.bind("<<ComboboxSelected>>", 

self.NodeSelection) 

1027>         self.r_node_xlocVar = StringVar() 

1028>         label_node_x = ttk.Label(taskFrame, background='light 

grey', width=6 , textvariable=self.r_node_xlocVar) 

1029>         label_node_x.grid(row=3, column=2, padx=5, pady=2, 

sticky=W) 

1030>         self.r_node_ylocVar = StringVar() 

1031>         label_node_y = ttk.Label(taskFrame, background='light 

grey', width=6, textvariable=self.r_node_ylocVar) 

1032>         label_node_y.grid(row=3, column=3, padx=5, pady=2, 

sticky=W) 

1033>         self.r_node_yawlocVar = StringVar() 

1034>         label_node_yaw = ttk.Label(taskFrame, background='light 

grey', width=6, textvariable=self.r_node_yawlocVar) 

1035>         label_node_yaw.grid(row=3, column=4, padx=5, pady=2, 

sticky=W) 

1036>         ttk.Button(taskFrame, text="   Save node   ", 

command=self.save_location).grid(row=3, column=5, padx=(5,5), pady=5, 

sticky=E) 

1037>  

1038>     def move_fwd(self): 

1039>         wkey = 'i' 

1040>         self.butn_event(wkey) 

1041>  

1042>     def move_left(self): 

1043>         wkey = 'u' 

1044>         self.butn_event(wkey) 

1045>  

1046>     def move_right(self): 

1047>         wkey = 'o' 

1048>         self.butn_event(wkey) 

1049>  
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1050>     def move_reverse(self): 

1051>         wkey = ',' 

1052>         self.butn_event(wkey) 

1053>  

1054>     def stop(self): 

1055>         wkey = 'k' 

1056>         self.butn_event(wkey) 

1057>  

1058>     def butn_event(self, keysend): 

1059>         self.opc.write(('Server01.keystroke', keysend)) 

1060>  

1061>     def save_location(self): 

1062>         self.r_node_xlocVar.set(self.r_curr_xlocVar.get()) 

1063>         self.r_node_ylocVar.set(self.r_curr_ylocVar.get()) 

1064>         self.r_node_yawlocVar.set(self.r_curr_yawlocVar.get()) 

1065>         t_id = 

self.tbox_value.get()[0:self.tbox_value.get().find(',')]   # get task 

ID 

1066>         n_id = self.nbox_value.get() 

1067>         f = open('robots/%slocations.txt' % ron_id, 'a') 

1068>         f.write('%s,%s,%s,%s,%s,E\n' % (t_id, n_id, 

self.r_curr_xlocVar.get(), self.r_curr_ylocVar.get(), 

1069>                                         

self.r_curr_yawlocVar.get())) 

1070>         f.close() 

1071>  

1072>     def TaskSelection(self, event): 

1073>         if self.nbox_value.get() != "": 

1074>             lclist = 

getLoclist(self.tbox_value.get()[0:self.tbox_value.get().find(',')], 

self.nbox_value.get()) 

1075>             try: 

1076>                 if len(lclist) != 0: 

1077>                     self.r_node_xlocVar.set(lclist[0]) 

1078>                     self.r_node_ylocVar.set(lclist[1]) 

1079>                     self.r_node_yawlocVar.set(lclist[2]) 

1080>             except: 

1081>                 self.r_node_xlocVar.set('') 

1082>                 self.r_node_ylocVar.set('') 

1083>                 self.r_node_yawlocVar.set('') 

1084>  

1085>     def NodeSelection(self, event): 

1086>         if self.tbox_value.get() != "": 
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1087>             lclist = 

getLoclist(self.tbox_value.get()[0:self.tbox_value.get().find(',')], 

self.nbox_value.get()) 

1088>             try: 

1089>                 if len(lclist) != 0: 

1090>                     self.r_node_xlocVar.set(lclist[0]) 

1091>                     self.r_node_ylocVar.set(lclist[1]) 

1092>                     self.r_node_yawlocVar.set(lclist[2]) 

1093>             except: 

1094>                 self.r_node_xlocVar.set('') 

1095>                 self.r_node_ylocVar.set('') 

1096>                 self.r_node_yawlocVar.set('') 

1097>  

1098> if __name__ == "__main__": 

1099>     app = App() 

 

 

 



 

Appendix B: Remote robot control code 

1> # Filename: rosAI.py 

2> import sys 

3> import rospy 

4> import actionlib 

5> import OPCdata 

6> import math 

7> from multiprocessing import Process, Value, Array 

8> from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal 

9> from math import radians, degrees 

10> from actionlib_msgs.msg import * 

11> from geometry_msgs.msg import Point, PoseWithCovarianceStamped, 

Pose2D  

12> from nav_msgs.msg import Odometry 

13>  

14>  

15> class map_navigation(): 

16>  

17>  def __init__(self):  

18>   # declare the coordinates of interest  

19>         global xg, yg 

20>         global xgprev, ygprev, statenum  

21>         xg=0.0 

22>         yg=0.0 

23>         xgprev=0.0 

24>   ygprev=0.0 

25>   self.goalReached = False 

26>   # initialise 

27>         rospy.init_node('map_navigation', anonymous=False) 

28>   statenum = 0 

29>   tripcount = 0 

30>    

31>   while (1): 

32>             global rstatus 

33>     

34>    if (statenum==0): 

35>     try: 

36>      xgprev=xg 

37>      ygprev=yg 
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38>      xg, yg = OPCdata.getxyGoal(xg,yg) 

39>                     print (xg, yg) 

40>                     statenum=1 

41>        except OPCdata.OpenOPC.TimeoutError: 

42>            print "TimeoutError occured" 

43>       

44>    if (statenum==1): 

45>     try: 

46>      xg, yg = OPCdata.getxyGoal(xg,yg) 

47>      self.goalReached = self.moveToGoal(xg, 

yg) 

48>        except OPCdata.OpenOPC.TimeoutError: 

49>            print "TimeoutError occured" 

50>  

51>    if ((statenum==1) & (self.goalReached)): 

52>     try: 

53>      rstatus=0 

54>                     OPCdata.setStatus(rstatus) 

55>                     statenum=2 

56>        except OPCdata.OpenOPC.TimeoutError: 

57>            print "TimeoutError occured" 

58>       

59>    if (statenum==2): 

60>     statenum=0 

61>     rospy.sleep(5) 

62>      

63>  def shutdown(self): 

64>         # stop the robot 

65>         rospy.loginfo("Quit program") 

66>         rospy.sleep() 

67>     

68>  def moveToGoal(self,xGoal,yGoal): 

69>   global xc, yc 

70>   #define a client for to send goal requests to the 

move_base server through a SimpleActionClient 

71>   ac = actionlib.SimpleActionClient("/robot_0/move_base", 

MoveBaseAction) 

72>    

73>   #wait for the action server to come up 

74>   while(not 

ac.wait_for_server(rospy.Duration.from_sec(1000.0))): 

75>    self.shutdown() 

76>   goal = MoveBaseGoal() 

77>          pose_xy = PoseWithCovarianceStamped() 
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78>                 print "xc, yc:", xc, yc 

79>   print "xg, yg:", xGoal, yGoal 

80>    

81>   #set up the frame parameters 

82>   goal.target_pose.header.frame_id = "map" 

83>   goal.target_pose.header.stamp = rospy.Time.now() 

84>    

85>   # moving towards the goal*/ 

86>   goal.target_pose.pose.position =  Point(xGoal,yGoal,0) 

87>   goal.target_pose.pose.orientation.x = 0.0 

88>   goal.target_pose.pose.orientation.y = 0.0 

89>   goal.target_pose.pose.orientation.z = 0.0 

90>   goal.target_pose.pose.orientation.w = 1.0 

91>   rospy.loginfo("Sending goal location...") 

92>   ac.send_goal(goal) 

93>   ac.wait_for_result(rospy.Duration(60)) 

94>                 dx = xGoal-xc 

95>   dy = yGoal-yc 

96>   dist = math.sqrt(math.pow(dx,2) + math.pow(dy,2)) 

97>   print "DISTANCE: ", dist 

98>    

99>   #if(ac.get_state() ==  GoalStatus.SUCCEEDED): 

100>   if dist<=0.5: 

101>    rospy.loginfo("The robot has reached the 

destination")  

102>    return True 

103>   else: 

104>    rospy.loginfo("The robot failed to reach the 

destination") 

105>    return False 

106>     

107> def amclCb(msg): 

108>     global xc, yc 

109>     xc = msg.pose.pose.position.x 

110>     yc = msg.pose.pose.position.y 

111>     OPCdata.xyPos(xc,yc) 

112>   

113> if __name__ == '__main__': 

114>     try: 

115>         

rospy.Subscriber('/robot_0/amcl_pose',PoseWithCovarianceStamped,amclC

b) 

116>         rstatus = Value('i', 0) 

117>         wait_time = Value('i', 0) 



170 Appendix B: Remote robot control code 

 

118>   OPCwait = Process(target=OPCdata.getwtime, 

args=(wait_time,)) 

119>         OPCwait.start() 

120>       Navproc = Process(target = map_navigation()) 

121>       Navproc.start() 

122>         rospy.spin() 

123>    

124>     except rospy.ROSInterruptException: 

125>   rospy.loginfo("map_navigation node terminated.") 

 

 

 



 

Appendix C: Robot OPC-UA Client code 

1> # Filename: OPCdata.py 

2> import sys 

3> import rospy 

4> import gvar 

5> import OpenOPC  # the OPC client library for Python 

6>  

7> def getxyGoal(x,y): 

8>     opc = OpenOPC.open_client('192.168.201.1') 

9>     opc.connect('Matrikon.OPC.Simulation') 

10>     x=opc.read('Server02.r01_xgoal')[0] 

11>     y=opc.read('Server02.r01_ygoal')[0] 

12>     opc.close() 

13>     return x, y 

14>  

15> def setStatus(status): 

16>     opc = OpenOPC.open_client('192.168.201.1') 

17>     opc.connect('Matrikon.OPC.Simulation') 

18>     opc.write(('Server02.r01_status', status)) 

19>     opc.close() 

20>  

21> def xyPos(x,y): 

22>     opc = OpenOPC.open_client('192.168.201.1') 

23>     opc.connect('Matrikon.OPC.Simulation') 

24>     opc.write(('Server02.r01_xpos', x)) 

25>     opc.write(('Server02.r01_ypos', y)) 

26>     opc.close() 

27>  

28> def getwtime(w): 

29>     w.value=5 
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D1. Launch file 

1> <!--Filename: turtlebot_stage_psu.launch--> 

2> <launch> 

3>   <arg name="base"       default="$(optenv TURTLEBOT_BASE kobuki)"/>  

<!-- create, rhoomba --> 

4>   <arg name="stacks"     default="$(optenv TURTLEBOT_STACKS 

hexagons)"/>  <!-- circles, hexagons --> 

5>   <arg name="3d_sensor"  default="$(optenv TURTLEBOT_3D_SENSOR 

kinect)"/>  <!-- kinect, asus_xtion_pro --> 

6>   <!-- Name of the map to use (without path nor extension) and 

initial position --> 

7>   <arg name="map_file"       default="/home/nicol/catkin-

ws/src/robsim05/worlds/psu.yaml"/> <!-- psu --> 

8>   <arg name="world_file"     default="/home/nicol/catkin-

ws/src/robsim05/worlds/psu.world"/> 

9>   <arg name="initial_pose_x" default="7.925"/> 

10>   <arg name="initial_pose_y" default="5.925"/> 

11>   <arg name="initial_pose_a" default="0.0"/> 

12>   <param name="/use_sim_time" value="true"/> 

13>   <!--  ******************** Stage ********************  --> 

14>   <!--  

15>         Publishes transforms: 

16>           /base_link -> /base_laser 

17>           /base_footprint -> /base_link (identity) 

18>           /odom -> base_footprint 

19>         Publishes topics: 

20>           /odom : odometry data from the simulated odometry 

21>           /base_scan : laser data from the simulated laser 

22>           /base_pose_ground_truth : the ground truth pose 

23>         Parameters: 

24>           base_watchdog_timeout : time (s) after receiving the last 

command on cmd_vel before stopping the robot 

25>         Args: 

26>           -g : run in headless mode. 

27>   -->  

28>   <node pkg="stage_ros" type="stageros" name="stageros" args="$(arg 

world_file)"> 
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29>     <param name="base_watchdog_timeout" value="0.5"/> 

30>     <remap from="odom" to="odom"/> 

31>     <remap from="base_pose_ground_truth" 

to="base_pose_ground_truth"/> 

32>     <remap from="cmd_vel" to="mobile_base/commands/velocity"/> 

33>     <remap from="robot_0/base_scan" to="robot_0/scan_filtered"/> 

34>     <remap from="robot_1/base_scan" to="robot_1/scan_filtered"/> 

35>     <remap from="robot_2/base_scan" to="robot_2/scan_filtered"/> 

36>   </node> 

37>   <!--  ***************** Robot Model *****************  --> 

38>   <!-- BEGIN ROBOT 1--> 

39>   <group ns="robot_0"> 

40>     <node pkg="nodelet" type="nodelet" 

name="mobile_base_nodelet_manager" args="manager"/> 

41>     <node pkg="nodelet" type="nodelet" name="cmd_vel_mux" args="load 

yocs_cmd_vel_mux/CmdVelMuxNodelet mobile_base_nodelet_manager"> 

42>      <param name="yaml_cfg_file" value="$(find 

turtlebot_bringup)/param/mux.yaml"/> 

43>      <remap from="cmd_vel_mux/output" 

to="mobile_base/commands/velocity"/> 

44>     </node> 

45>     <!-- 4: Localization algorithm: AMCL (http://wiki.ros.org/amcl) -

-> 

46>     <node pkg="amcl" type="amcl" name="amcl" output="screen">> 

47>         <param name="transform_tolerance" value="0.2" /> 

48>         <param name="max_particles" value="1000"/> 

49>         <param name="initial_pose_x" value="7.925"/> 

50>         <param name="initial_pose_y" value="5.925"/> 

51>         <param name="initial_pose_a" value="0.0"/> 

52>         <param name="odom_frame_id" value="/robot_0/odom"/> 

53>         <param name="base_frame_id" value="/robot_0/base_link"/>   

54>                 

55>         <remap from="map" to="/map"/> 

56>         <remap from="scan" to="scan_filtered"/> 

57>         <remap from="static_map" to="/static_map"/>        

58>     </node>  

59>     <node pkg="move_base" type="move_base" respawn="false" 

name="move_base" output="screen"> 

60>         <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 

61>      <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="local_costmap" />    
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62>      <rosparam file="$(find 

turtlebot_navigation)/param/local_costmap_params.yaml" command="load" 

/>    

63>      <rosparam file="$(find 

turtlebot_navigation)/param/global_costmap_params.yaml" 

command="load" /> 

64>      <rosparam file="$(find 

turtlebot_navigation)/param/dwa_local_planner_params.yaml" 

command="load" /> 

65>      <rosparam file="$(find 

turtlebot_navigation)/param/move_base_params.yaml" command="load" /> 

66>      <rosparam file="$(find 

turtlebot_navigation)/param/global_planner_params.yaml" 

command="load" /> 

67>      <rosparam file="$(find 

turtlebot_navigation)/param/navfn_global_planner_params.yaml" 

command="load" /> 

68>      <!-- external params file that could be loaded into the 

move_base namespace --> 

69>      <rosparam file="$(find turtlebot_navigation)/param/dummy.yaml" 

command="load" /> 

70>      <remap from="map" to="/map"/> 

71>         <!-- Override MOVE_BASE Frame Params to include "robot_X" 

prefix --> 

72>         <param name="global_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_0/base_laser_link"/> 

73>         <param name="global_costmap/laser_scan_sensor/topic" 

value="/robot_0/scan_filtered"/> 

74>         <param name="global_costmap/robot_base_frame" 

value="/robot_0/base_link"/>    

75>                      

76>         <param name="local_costmap/global_frame" 

value="/robot_0/odom"/> 

77>         <param name="local_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_0/base_laser_link"/> 

78>         <param name="local_costmap/laser_scan_sensor/topic" 

value="/robot_0/scan_filtered"/> 

79>         <param name="local_costmap/robot_base_frame" 

value="/robot_0/base_link"/>  

80>     </node> 

81>   </group> 

82>   <!-- BEGIN ROBOT 2 --> 

83>   <group ns="robot_1"> 

84>     <node pkg="nodelet" type="nodelet" 

name="mobile_base_nodelet_manager" args="manager"/> 
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85>     <node pkg="nodelet" type="nodelet" name="cmd_vel_mux" args="load 

yocs_cmd_vel_mux/CmdVelMuxNodelet mobile_base_nodelet_manager"> 

86>      <param name="yaml_cfg_file" value="$(find 

turtlebot_bringup)/param/mux.yaml"/> 

87>      <remap from="cmd_vel_mux/output" 

to="mobile_base/commands/velocity"/> 

88>     </node> 

89>     <!-- 4: Localization algorithm: AMCL (http://wiki.ros.org/amcl) -

-> 

90>     <node pkg="amcl" type="amcl" name="amcl" output="screen">> 

91>         <param name="transform_tolerance" value="0.2" /> 

92>         <param name="max_particles" value="1000"/> 

93>         <param name="initial_pose_x" value="7.925"/> 

94>         <param name="initial_pose_y" value="2.925"/> 

95>         <param name="initial_pose_a" value="0.0"/> 

96>         <param name="odom_frame_id" value="/robot_1/odom"/> 

97>         <param name="base_frame_id" value="/robot_1/base_link"/>   

98>                 

99>         <remap from="map" to="/map"/> 

100>         <remap from="scan" to="scan_filtered"/> 

101>         <remap from="static_map" to="/static_map"/>        

102>     </node>  

103>     <node pkg="move_base" type="move_base" respawn="false" 

name="move_base" output="screen"> 

104>         <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 

105>      <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="local_costmap" />    

106>      <rosparam file="$(find 

turtlebot_navigation)/param/local_costmap_params.yaml" command="load" 

/>    

107>      <rosparam file="$(find 

turtlebot_navigation)/param/global_costmap_params.yaml" 

command="load" /> 

108>      <rosparam file="$(find 

turtlebot_navigation)/param/dwa_local_planner_params.yaml" 

command="load" /> 

109>      <rosparam file="$(find 

turtlebot_navigation)/param/move_base_params.yaml" command="load" /> 

110>      <rosparam file="$(find 

turtlebot_navigation)/param/global_planner_params.yaml" 

command="load" /> 
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111>      <rosparam file="$(find 

turtlebot_navigation)/param/navfn_global_planner_params.yaml" 

command="load" /> 

112>      <!-- external params file that could be loaded into the 

move_base namespace --> 

113>      <rosparam file="$(find 

turtlebot_navigation)/param/dummy.yaml" command="load" /> 

114>      <remap from="map" to="/map"/> 

115>         <!-- Override MOVE_BASE Frame Params to include 

"robot_X" prefix --> 

116>         <param 

name="global_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_1/base_laser_link"/> 

117>         <param name="global_costmap/laser_scan_sensor/topic" 

value="/robot_1/scan_filtered"/> 

118>         <param name="global_costmap/robot_base_frame" 

value="/robot_1/base_link"/>    

119>                      

120>         <param name="local_costmap/global_frame" 

value="/robot_1/odom"/> 

121>         <param 

name="local_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_1/base_laser_link"/> 

122>         <param name="local_costmap/laser_scan_sensor/topic" 

value="/robot_1/scan_filtered"/> 

123>         <param name="local_costmap/robot_base_frame" 

value="/robot_1/base_link"/>  

124>     </node> 

125>   </group> 

126>   <!-- BEGIN ROBOT 3 --> 

127>   <group ns="robot_2"> 

128>     <node pkg="nodelet" type="nodelet" 

name="mobile_base_nodelet_manager" args="manager"/> 

129>     <node pkg="nodelet" type="nodelet" name="cmd_vel_mux" 

args="load yocs_cmd_vel_mux/CmdVelMuxNodelet 

mobile_base_nodelet_manager"> 

130>      <param name="yaml_cfg_file" value="$(find 

turtlebot_bringup)/param/mux.yaml"/> 

131>      <remap from="cmd_vel_mux/output" 

to="mobile_base/commands/velocity"/> 

132>     </node> 

133>     <!-- 4: Localization algorithm: AMCL 

(http://wiki.ros.org/amcl) --> 

134>     <node pkg="amcl" type="amcl" name="amcl" output="screen">> 

135>         <param name="transform_tolerance" value="0.2" /> 
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136>         <param name="max_particles" value="1000"/> 

137>         <param name="initial_pose_x" value="7.925"/> 

138>         <param name="initial_pose_y" value="4.525"/> 

139>         <param name="initial_pose_a" value="0.0"/> 

140>         <param name="odom_frame_id" value="/robot_2/odom"/> 

141>         <param name="base_frame_id" 

value="/robot_2/base_link"/>   

142>                 

143>         <remap from="map" to="/map"/> 

144>         <remap from="scan" to="scan_filtered"/> 

145>         <remap from="static_map" to="/static_map"/>        

146>     </node>  

147>     <node pkg="move_base" type="move_base" respawn="false" 

name="move_base" output="screen"> 

148>         <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 

149>      <rosparam file="$(find 

turtlebot_navigation)/param/costmap_common_params.yaml" 

command="load" ns="local_costmap" />    

150>      <rosparam file="$(find 

turtlebot_navigation)/param/local_costmap_params.yaml" command="load" 

/>    

151>      <rosparam file="$(find 

turtlebot_navigation)/param/global_costmap_params.yaml" 

command="load" /> 

152>      <rosparam file="$(find 

turtlebot_navigation)/param/dwa_local_planner_params.yaml" 

command="load" /> 

153>      <rosparam file="$(find 

turtlebot_navigation)/param/move_base_params.yaml" command="load" /> 

154>      <rosparam file="$(find 

turtlebot_navigation)/param/global_planner_params.yaml" 

command="load" /> 

155>      <rosparam file="$(find 

turtlebot_navigation)/param/navfn_global_planner_params.yaml" 

command="load" /> 

156>      <!-- external params file that could be loaded into the 

move_base namespace --> 

157>      <rosparam file="$(find 

turtlebot_navigation)/param/dummy.yaml" command="load" /> 

158>      <remap from="map" to="/map"/> 

159>         <!-- Override MOVE_BASE Frame Params to include 

"robot_X" prefix --> 
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160>         <param 

name="global_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_2/base_laser_link"/> 

161>         <param name="global_costmap/laser_scan_sensor/topic" 

value="/robot_2/scan_filtered"/> 

162>         <param name="global_costmap/robot_base_frame" 

value="/robot_2/base_link"/>    

163>                      

164>         <param name="local_costmap/global_frame" 

value="/robot_2/odom"/> 

165>         <param 

name="local_costmap/laser_scan_sensor/sensor_frame" 

value="/robot_2/base_laser_link"/> 

166>         <param name="local_costmap/laser_scan_sensor/topic" 

value="/robot_2/scan_filtered"/> 

167>         <param name="local_costmap/robot_base_frame" 

value="/robot_2/base_link"/>  

168>     </node> 

169>   </group> 

170>   <!--  ****** Maps *****  --> 

171>   <node name="map_server" pkg="map_server" type="map_server" 

args="$(arg map_file)"> 

172>     <!-- <param name="frame_id" value="/robot_0/odom"/> --> 

173>   </node>   

174>   <!--  **************** Visualisation ****************  --> 

175>   <!--<node name="rviz" pkg="rviz" type="rviz" args="-d $(find 

turtlebot_stage)/rviz/robot_navigation.rviz"/> --> 

176> </launch> 

D2. Yaml file 

1> # Filename: psu.yaml 

2> image: map02.png 

3> resolution: 0.025000 

4> origin: [0.0000 ,0.0000, 0.000000] 

5> negate: 0 

6> occupied_thresh: 0.3 

7> free_thresh: 0.2 

8> obstacle_range: 2.5 

9> raytrace_range: 3.0 
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D3. World file 

1> # Filename: psu.world 

2> include "map.inc" 

3> include "turtlebot.inc" 

4>  

5> resolution 0.02 

6>  

7> window 

8> ( 

9>   size [ 600 700 ] # in pixels 

10>   scale 50   # pixels per meter 

11>   center [ 0.0 0.0 ] 

12>   rotate [ 0  0 ] 

13>       

14>   show_data 1              # 1=on 0=off 

15> ) 

16>  

17> floorplan 

18> (  

19>   name "psu" 

20>   size [ 21.95 8.6 0.8 ] #the real size in meters (from yaml, 

resolution*pixels) 

21>   pose [ 10.975 4.3 0.0 0.0 ] 

22>   bitmap "map02.png" 

23> ) 

24>  

25> # throw in a robot 

26> turtlebot 

27> ( 

28>   pose [7.925 5.925 0.0 0.0 ] 

29>  #pose [21.95 8.6 0.0 0.0 ] 

30>   name "robot0" 

31>   color "red" 

32> ) 

33>  

34> turtlebot 

35> ( 

36>   pose [7.925 2.925 0.0 0.0 ] 

37>   name "robot1" 

38>   color "blue" 

39> ) 

40>  
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41> turtlebot 

42> ( 

43>   pose [7.925 4.525 0.0 0.0 ] 

44>   name "robot2" 

45>   color "green" 

46> ) 

 

D4. Map and turtlebot files 

1> # Filename: map.inc 

2>  

3> define floorplan model 

4> ( 

5>   color "gray30" 

6>  

7>   boundary 1 

8>  

9>   gui_nose 0 

10>   gui_grid 1 

11>   gui_move 0 

12>   gui_outline 0 

13>   gripper_return 0 

14>   fiducial_return 0 

15>   ranger_return 0.5 

16>  

17>   obstacle_return 0 

18> ) 

19>  

20> define zone model 

21> ( 

22>   color "orange" 

23>   size [ 4 4 0.02 ] 

24>  

25>   gui_nose 0 

26>   gui_grid 0 

27>   gui_move 1 

28>   gui_outline 0 

29>  

30>   obstacle_return 0 

31>   ranger_return -1  # transparent to range sensors 

32> ) 
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1> # Filename: turtlebot.inc 

2>  

3> define kinect ranger 

4> ( 

5>   sensor 

6>   ( 

7>     range_max 6.5 

8>     fov 58.0 

9>     samples 640 

10>   ) 

11>   # generic model properties 

12>   color "black" 

13>   size [ 0.06 0.15 0.03 ] 

14> ) 

15>  

16> define turtlebot position 

17> ( 

18>   pose [ 0.0 0.0 0.0 0.0 ] 

19>   size [ 0.2552 0.2552 0.40 ] 

20>   origin [ 0.0 0.0 0.0 0.0 ] 

21>   gui_nose 1 

22>   drive "diff" 

23>   color "gray" 

24>    

25>   kinect(pose [ -0.1 0.0 -0.11 0.0 ]) 

26> ) 

 

 

 



 

Appendix E: Functions for heterogeneous robot 

programs  

1> # Filename: LibHetRobots.py 

2> import math 

3>  

4> def getRobMatrix(): 

5>     # get no. of columns (robots) first: 

6>     c = 0  # set no. of columns to 0 

7>     f = open('robconfig.txt', 'r') 

8>     for line in f: 

9>         c += 1 # inc no. of columns 

10>     f.close() 

11>     # now get the contents: 

12>     i = -1 

13>     r = 11  # no. of rows 

14>     RobMatrix = [[0 for x in range(r)] for y in range(c)] 

15>     r = 2 

16>     RobNames = [[0 for x in range(r)] for y in range(c)] 

17>     f = open('robconfig.txt', 'r') 

18>     for line in f: 

19>         i += 1 

20>         startpos = 0  # char start position in string 

21>         rrec = [] 

22>         charpos = line.find(',') 

23>         while charpos != -1: 

24>             rrec.append(line[startpos:charpos]) 

25>             startpos = charpos + 1 

26>             charpos = line.find(',', startpos, len(line)) 

27>         RobMatrix[i] = [int(rrec[0]), int(rrec[3]), int(rrec[4]), 

int(rrec[5]), float(rrec[6]), 

28>                         float(rrec[7]), float(rrec[8]), int(rrec[9]), 

int(rrec[10]), int(rrec[11]), 

29>                         int(rrec[12]), int(rrec[13])] 

30>         RobNames[i] = [rrec[0], rrec[1], rrec[2]] 

31>     f.close() 

32>     return RobMatrix, RobNames 

33>  
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34>  

35> def getTaskMatrix(): 

36>     # get no. of columns (tasks) first: 

37>     c = 0  # set no. of columns to 0 

38>     f = open('taskconfig.txt', 'r') 

39>     for line in f: 

40>         c += 1  # inc no. of columns 

41>     f.close() 

42>     # now get the contents: 

43>     i = -1 

44>     r = 12  # no. of rows 

45>     TaskMatrix = [[0 for x in range(r)] for y in range(c)] 

46>     r = 1 

47>     TaskNames = [[0 for x in range(r)] for y in range(c)] 

48>     f = open('taskconfig.txt', 'r') 

49>     for line in f: 

50>         i += 1 

51>         startpos = 1  # char start position in string 

52>         rrec = [] 

53>         charpos = line.find(',') 

54>         while charpos != -1: 

55>             rrec.append(line[startpos:charpos]) 

56>             startpos = charpos + 1 

57>             charpos = line.find(',', startpos, len(line)) 

58>         TaskMatrix[i] = [int(rrec[0]), int(rrec[2]), int(rrec[3]), 

int(rrec[4]), float(rrec[5]), 

59>                          float(rrec[6]), float(rrec[7]), 

int(rrec[8]), int(rrec[9]), int(rrec[10]), 

60>                          int(rrec[11]), int(rrec[12]), int(rrec[13])] 

61>         TaskNames[i] = [rrec[0], rrec[1]] 

62>     f.close() 

63>     return TaskMatrix, TaskNames 

64>  

65>  

66> # check if the robot (rid) is compatible with a particular task (tid) 

67> def checkRobTaskCompat(rid, tid): 

68>     RobMatrix, RobNames = getRobMatrix() 

69>     TaskMatrix, TaskNames = getTaskMatrix() 

70>     isCompat = False 

71>     for i in range(len(RobMatrix)): 

72>         if rid == RobMatrix[i][0]: 

73>             for j in range(len(TaskMatrix)): 

74>                 if tid == TaskMatrix[j][0]: 

75>                     if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and 
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76>                             (RobMatrix[i][2] <= TaskMatrix[j][2]) and 

77>                             (RobMatrix[i][3] <= TaskMatrix[j][3]) and 

78>                             (RobMatrix[i][4] >= TaskMatrix[j][4]) and 

79>                             (RobMatrix[i][5] >= TaskMatrix[j][5]) and 

80>                             (RobMatrix[i][6] >= TaskMatrix[j][6]) and 

81>                             ((RobMatrix[i][7]==1 and 

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and 

82>                             ((RobMatrix[i][8]==1 and 

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and 

83>                             ((RobMatrix[i][9]==1 and 

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and 

84>                             ((RobMatrix[i][10]==1 and 

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and 

85>                             ((RobMatrix[i][11]==1 and 

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))): 

86>                         isCompat = True 

87>  

88>     print RobMatrix[0] 

89>     print TaskMatrix[0] 

90>     print isCompat 

91>  

92> # get the compatible tasks for a particular robot 

93> def getCompatTasks(rid): 

94>     RobMatrix, RobNames = getRobMatrix() 

95>     TaskMatrix, TaskNames = getTaskMatrix() 

96>     c = 0 

97>     # get range of the CompatTaskMat: 

98>     for i in range(len(RobMatrix)): 

99>         if rid == RobMatrix[i][0]: 

100>             for j in range(len(TaskMatrix)): 

101>                 if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and 

102>                         (RobMatrix[i][2] <= TaskMatrix[j][2]) 

and 

103>                         (RobMatrix[i][3] <= TaskMatrix[j][3]) 

and 

104>                         (RobMatrix[i][4] >= TaskMatrix[j][4]) 

and 

105>                         (RobMatrix[i][5] >= TaskMatrix[j][5]) 

and 

106>                         (RobMatrix[i][6] >= TaskMatrix[j][6]) 

and 

107>                         ((RobMatrix[i][7]==1 and 

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and 
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108>                         ((RobMatrix[i][8]==1 and 

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and 

109>                         ((RobMatrix[i][9]==1 and 

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and 

110>                         ((RobMatrix[i][10]==1 and 

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and 

111>                         ((RobMatrix[i][11]==1 and 

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))): 

112>                     c += 1 

113>  

114>     # Now get data for the CompatTaskMat: 

115>     r = 2 

116>     CompatTaskMat = [[0 for x in range(r)] for y in range(c)] 

117>     idx = 0 

118>     for i in range(len(RobMatrix)): 

119>         if rid == RobMatrix[i][0]: 

120>             for j in range(len(TaskMatrix)): 

121>                 if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and 

122>                         (RobMatrix[i][2] <= TaskMatrix[j][2]) 

and 

123>                         (RobMatrix[i][3] <= TaskMatrix[j][3]) 

and 

124>                         (RobMatrix[i][4] >= TaskMatrix[j][4]) 

and 

125>                         (RobMatrix[i][5] >= TaskMatrix[j][5]) 

and 

126>                         (RobMatrix[i][6] >= TaskMatrix[j][6]) 

and 

127>                         ((RobMatrix[i][7]==1 and 

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and 

128>                         ((RobMatrix[i][8]==1 and 

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and 

129>                         ((RobMatrix[i][9]==1 and 

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and 

130>                         ((RobMatrix[i][10]==1 and 

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and 

131>                         ((RobMatrix[i][11]==1 and 

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))): 

132>  

133>                     CompatTaskMat[idx][0] = TaskNames[j][0] 

134>                     CompatTaskMat[idx][1] = TaskNames[j][1] 

135>                     idx += 1 

136>  

137>     #print RobMatrix[0] 

138>     #print TaskMatrix[0] 
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139>     return CompatTaskMat 

140>  

141> # get the compatible robots for a particular task 

142> def getCompatRobots(tid): 

143>     RobMatrix, RobNames = getRobMatrix() 

144>     TaskMatrix, TaskNames = getTaskMatrix() 

145>     c = 0 

146>     # get range of the CompatTaskMat: 

147>     for i in range(len(RobMatrix)): 

148>         if tid == TaskMatrix[i][0]: 

149>             for j in range(len(RobMatrix)): 

150>                 if ((RobMatrix[j][1] <= TaskMatrix[i][1]) and 

151>                         (RobMatrix[j][2] <= TaskMatrix[i][2]) 

and 

152>                         (RobMatrix[j][3] <= TaskMatrix[i][3]) 

and 

153>                         (RobMatrix[j][4] >= TaskMatrix[i][4]) 

and 

154>                         (RobMatrix[j][5] >= TaskMatrix[i][5]) 

and 

155>                         (RobMatrix[j][6] >= TaskMatrix[i][6]) 

and 

156>                         ((RobMatrix[j][7]==1 and 

TaskMatrix[i][8]==1) or (TaskMatrix[i][8]==0)) and 

157>                         ((RobMatrix[j][8]==1 and 

TaskMatrix[i][9]==1) or (TaskMatrix[i][9]==0)) and 

158>                         ((RobMatrix[j][9]==1 and 

TaskMatrix[i][10]==1) or (TaskMatrix[i][10]==0)) and 

159>                         ((RobMatrix[j][10]==1 and 

TaskMatrix[i][11]==1) or (TaskMatrix[i][11]==0)) and 

160>                         ((RobMatrix[j][11]==1 and 

TaskMatrix[i][12])==1 or (TaskMatrix[i][12]==0))): 

161>                     c += 1 

162>  

163>     # Now get data for the CompatTaskMat: 

164>     r = 3 

165>     CompatRobMat = [[0 for x in range(r)] for y in range(c)] 

166>     idx = 0 

167>     for i in range(len(RobMatrix)): 

168>         if tid == TaskMatrix[i][0]: 

169>             for j in range(len(RobMatrix)): 

170>                 if ((RobMatrix[j][1] <= TaskMatrix[i][1]) and 

171>                         (RobMatrix[j][2] <= TaskMatrix[i][2]) 

and 
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172>                         (RobMatrix[j][3] <= TaskMatrix[i][3]) 

and 

173>                         (RobMatrix[j][4] >= TaskMatrix[i][4]) 

and 

174>                         (RobMatrix[j][5] >= TaskMatrix[i][5]) 

and 

175>                         (RobMatrix[j][6] >= TaskMatrix[i][6]) 

and 

176>                         ((RobMatrix[j][7]==1 and 

TaskMatrix[i][8]==1) or (TaskMatrix[i][8]==0)) and 

177>                         ((RobMatrix[j][8]==1 and 

TaskMatrix[i][9]==1) or (TaskMatrix[i][9]==0)) and 

178>                         ((RobMatrix[j][9]==1 and 

TaskMatrix[i][10]==1) or (TaskMatrix[i][10]==0)) and 

179>                         ((RobMatrix[j][10]==1 and 

TaskMatrix[i][11]==1) or (TaskMatrix[i][11]==0)) and 

180>                         ((RobMatrix[j][11]==1 and 

TaskMatrix[i][12])==1 or (TaskMatrix[i][12]==0))): 

181>  

182>                     CompatRobMat[idx][0] = RobNames[j][0] 

183>                     CompatRobMat[idx][1] = RobNames[j][1] 

184>                     CompatRobMat[idx][2] = RobNames[j][2] 

185>                     idx += 1 

186>  

187>     #print RobMatrix[0] 

188>     #print TaskMatrix[0] 

189>     return CompatRobMat 

 

 

 



 

Appendix F: SVM function code 

1> # Filename: SVM_MatHand.py 

2> import numpy as np 

3> import random 

4> import matplotlib.pyplot as plt 

5> from sklearn import svm 

6> import tkinter as tk 

7> import tkinter.ttk as ttk 

8> from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 

9> from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg 

10> from matplotlib.figure import Figure 

11>  

12> # get data 

13> f = open('train.txt', 'r') 

14> Y=[] 

15> X1=[] 

16> for line in f: 

17>     fnum = 0  # no. of features 

18>     startpos = 0  # char start position in string 

19>     charpos = 1 

20>     print line 

21>     Y.append(int(line[startpos:charpos])) 

22>     startpos = 2 

23>     charpos = line.find(',') 

24>     while charpos != -1: 

25>         fnum += 1 

26>         X1.append(int(line[startpos:charpos])) 

27>         startpos = charpos + 1 

28>         charpos = line.find(',', startpos, len(line)) 

29> f.close() 

30> X=np.array(X1).reshape(len(Y),fnum) 

31>  

32> # SVM computation 

33> clf = svm.SVC(kernel='linear', C=1) 

34> clf.fit(X, Y) 

35> print(clf.predict([[20,10,30,5,5,0]])) 

36> #print(X) 

37>  

38> class Application(tk.Frame): 
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39>     def __init__(self, master=None): 

40>         tk.Frame.__init__(self,master) 

41>         self.createWidgets() 

42>     def createWidgets(self): 

43>         fig=plt.figure(figsize=(4,4)) 

44>         ax=fig.add_axes([0.1,0.1,0.8,0.8]) 

45>         canvas=FigureCanvasTkAgg(fig,master=root) 

46>         canvas.get_tk_widget().grid(row=0,column=0, columnspan=20) 

47>         canvas.show() 

48>  

49>         self.plotbutton=ttk.Button(master=root, text="Assign to T1", 

command=lambda: self.plot(canvas,ax,0)) 

50>         self.plotbutton.grid(row=1,column=0) 

51>         self.plotbutton2=ttk.Button(master=root, text="Assign to T2", 

command=lambda: self.plot(canvas,ax,1)) 

52>         self.plotbutton2.grid(row=1,column=1) 

53>  

54>     def plot(self,canvas,ax,y): 

55>         data = (random.randint(0, 100), random.randint(0, 100), 

random.randint(0, 100), random.randint(0, 100), random.randint(0, 

100), random.randint(0, 100)) 

56>         print(data) 

57>         ind = np.arange(6)  # the x locations for the groups 

58>         width = .3 

59>         rects1 = ax.bar(ind, data, width) 

60>         x = range(0, 6) 

61>         ax.set_xticks(x) 

62>         ax.set_yticks([0,50,100]) 

63>         labels = ['T1-IN','T1-OUT','T1-D','T2-IN','T2-OUT','T2-D'] 

64>         ax.set_xticklabels(labels, fontsize='small') 

65>         canvas.draw() 

66>         ax.clear() 

67>         # write data to svm train file: 

68>         f = open('train.txt', 'a') 

69>         line = '%s:%s,%s,%s,%s,%s,%s,\n' % 

(y,data[0],data[1],data[2],data[3],data[4],data[5]) 

70>         f.writelines(line) 

71>         f.close() 

72>         print line 

73>  

74> root=tk.Tk() 

75> root.title("SVM Train Application") 

76> app=Application(master=root) 

77> app.mainloop() 



 

Appendix G: Python application code for Study I 

G1. Algorithm and mobile robot navigation program 

1> # Filename: matHand_algo.py 

2> import OpenOPC  # the OPC client library for Python 

3> import gvar 

4> import matHand_sim 

5> import math 

6> import time 

7>  

8>  

9> def mapVars(): 

10>     f = open('avarmap.txt', 'r') 

11>     global locArr, opcArr 

12>     locArr = [] 

13>     opcArr = [] 

14>     for line in f: 

15>         startpos = 0  # char start position in string 

16>         charpos = line.find(':') 

17>         locArr += [line[startpos:charpos]] 

18>         opcArr += [line[charpos+1:len(line)-1]] 

19>     f.close() 

20>     return 0 

21>  

22>   

23> # Update the local variables with values from OPC mapped tags (wrt 

avarmap.txt) 

24> # Call this function regularly! 

25> def updateVars(): 

26>     global locArr, opcArr 

27>     global opc 

28>     opc = OpenOPC.open_client('localhost') 

29>     opc.connect('Matrikon.OPC.Simulation') 

30>     try: 

31>         for i in range(len(locArr)): 

32>             opcval = opc.read(tags=opcArr[i], timeout=500)  # read 

OPC tag values 

33>             setattr(gvar, locArr[i], opcval[0])  # assign OPC tag 

values to mapped local variables 
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34>         runTaskAlgo() 

35>         robMotion() 

36>     except OpenOPC.TimeoutError: 

37>         print "ALGO TimeoutError occured" 

38>     opc.close() 

39>     return 0 

40>  

41>   

42> def initVars(): 

43>     global T1count, T2count 

44>     T1count = 0 

45>     T2count = 0 

46>  

47>     gvar.l_taskID = 0 

48>     gvar.l_t01_weight = 0.0 

49>     gvar.l_t02_weight = 0.0 

50>     gvar.l_t01_x1 = 0.0 

51>     gvar.l_t01_x2 = 0.0 

52>     gvar.l_t01_x3 = 0.0 

53>     gvar.l_t02_x1 = 0.0 

54>     gvar.l_t02_x2 = 0.0 

55>     gvar.l_t02_x3 = 0.0 

56>  

57>     gvar.l_t01_iBL = 0 

58>     gvar.l_t01_iFr = 0.0 

59>     gvar.l_t01_iBC = 100 

60>     gvar.l_t01_qSL = 0 

61>     gvar.l_t01_qFr = 0.0 

62>     gvar.l_t01_sCDr = 0.0 

63>     gvar.l_t01_sPPi = 0.0 

64>     gvar.l_t01_sPD = 0 

65>  

66>     gvar.l_t02_iBL = 0 

67>     gvar.l_t02_iFr = 0.0 

68>     gvar.l_t02_iBC = 100 

69>     gvar.l_t02_qSL = 0 

70>     gvar.l_t02_qFr = 0.0 

71>     gvar.l_t02_sCDr = 0.0 

72>     gvar.l_t02_sPPi = 0.0 

73>     gvar.l_t02_sPD = 0 

74>  

75>     gvar.l_t01_src_x = 0.0 

76>     gvar.l_t01_dest_x = 0.0 

77>     gvar.l_t01_src_y = 0.0 
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78>     gvar.l_t01_dest_y = 0.0 

79>     gvar.l_t02_src_x = 0.0 

80>     gvar.l_t02_dest_x = 0.0 

81>     gvar.l_t02_src_y = 0.0 

82>     gvar.l_t02_dest_y = 0.0 

83>  

84>   

85> def runTaskAlgo(): 

86>     global opc 

87>     try: 

88>         gvar.l_t01_x1 = 1/(gvar.l_t01_iFr * (float(gvar.l_t01_iBL) / 

float(gvar.l_t01_iBC))) 

89>     except: 

90>         gvar.l_t01_x1 = 0 

91>     gvar.l_t01_x2 = 1/gvar.l_t01_sPPi 

92>     gvar.l_t01_x3 = (gvar.l_t01_qFr - gvar.l_t01_sCDr) + 

((gvar.l_t01_qSL - gvar.l_t01_sPD) * 0.2) + 0.1 

93>     gvar.l_t01_weight = gvar.l_t01_x1 * gvar.l_t01_x2 * gvar.l_t01_x3 

94>     print(gvar.l_t01_x1, gvar.l_t01_x2, gvar.l_t01_x3, 

gvar.l_t01_weight) 

95>  

96>     try: 

97>         gvar.l_t02_x1 = 1/(gvar.l_t02_iFr * (float(gvar.l_t02_iBL) / 

float(gvar.l_t02_iBC))) 

98>     except: 

99>         gvar.l_t02_x1 = 0 

100>     gvar.l_t02_x2 = 1/gvar.l_t02_sPPi 

101>     gvar.l_t02_x3 = (gvar.l_t02_qFr - gvar.l_t02_sCDr) + 

((gvar.l_t02_qSL - gvar.l_t02_sPD) * 0.2) + 0.1 

102>     gvar.l_t02_weight = gvar.l_t02_x1 * gvar.l_t02_x2 * 

gvar.l_t02_x3 

103>     print(gvar.l_t02_x1, gvar.l_t02_x2, gvar.l_t02_x3, 

gvar.l_t02_weight) 

104>  

105>     if gvar.l_t01_weight <= gvar.l_t02_weight: 

106>         gvar.l_taskID = 1 

107>     else: 

108>         gvar.l_taskID = 2 

109>     return gvar.l_taskID 

110>  

111>  

112> # Function that handles the robot motion commands 

113> def robMotion(): 

114>     global opc, T1count, T2count 
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115>     # compute distance from goal: 

116>     dx = gvar.l_r01_xgoal - gvar.l_r01_xpos 

117>     dy = gvar.l_r01_ygoal - gvar.l_r01_ypos 

118>     dist = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2)) 

119>     # move robot: 

120>     if (dist <= 0.3) and (gvar.l_r01_status == 0):  # robot-01 

is available. Note: robot must clear its own status! 

121>         # TASK-1 code: 

122>         if (gvar.l_taskID == 1) and (gvar.l_r01_currloc == 0):  

# robot is waiting for command 

123>             resp = opc.write(('Server02.r01_xgoal', 

gvar.l_t01_src_x)) 

124>             resp2 = opc.write(('Server02.r01_ygoal', 

gvar.l_t01_src_y)) 

125>             if (resp == "Success") and (resp2 == "Success"): 

126>                 opc.write(('Server02.r01_currloc', 1))  # 

robot-01 is on its way to the source 

127>                 opc.write(('Server02.r01_tcurr', 1))  # robot-

01 current task goal is #1 

128>                 opc.write(('Server02.r01_status', 1))  # robot-

01 set to busy 

129>                 gvar.l_r01_status = 1 

130>                 T1count += 1 

131>                 print "T1count: ", T1count 

132>  

133>         if (gvar.l_r01_tcurr == 1) and ((gvar.l_r01_currloc == 

1) or (gvar.l_r01_currloc == 2)):  # robot is waiting at T#1 source 

134>             opc.write(('Server02.r01_currloc', 2))  # robot-01 

is at the source 

135>             if (gvar.l_r01_loadstat == 1): 

136>                 resp = opc.write(('Server02.r01_xgoal', 

gvar.l_t01_dest_x)) 

137>                 resp2 = opc.write(('Server02.r01_ygoal', 

gvar.l_t01_dest_y)) 

138>                 if (resp == "Success") and (resp2 == 

"Success"): 

139>                     opc.write(('Server02.r01_currloc', 3))  # 

robot-01 is on its way to the destination 

140>                     opc.write(('Server02.r01_status', 1))  # 

robot-01 set to busy 

141>                     gvar.l_r01_status = 1 

142>                     opc.write(('Server02.r01_loadstat', 0))  # 

clear load status 

143>  
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144>         if (gvar.l_r01_tcurr == 1) and ((gvar.l_r01_currloc == 

3) or (gvar.l_r01_currloc == 4)):  # robot is waiting at T#1 

destination 

145>             opc.write(('Server02.r01_currloc', 4))  # robot-01 

is at the destination 

146>             if (gvar.l_r01_loadstat == 1): 

147>                 opc.write(('Server02.r01_currloc', 0))  # robot 

has no goal location 

148>                 # opc.write(('Server02.r01_tcurr', 0))  # robot 

is released from task 

149>                 opc.write(('Server02.r01_loadstat', 0))  # 

clear load status 

150>  

151>         # TASK-2 code: 

152>         if (gvar.l_taskID == 2) and (gvar.l_r01_currloc == 0):  

# robot is waiting for command 

153>             resp = opc.write(('Server02.r01_xgoal', 

gvar.l_t02_src_x)) 

154>             resp2 = opc.write(('Server02.r01_ygoal', 

gvar.l_t02_src_y)) 

155>             if (resp == "Success") and (resp2 == "Success"): 

156>                 opc.write(('Server02.r01_currloc', 1))  # 

robot-01 is on its way to the source 

157>                 opc.write(('Server02.r01_tcurr', 2))  # robot-

01 current task goal is #2 

158>                 opc.write(('Server02.r01_status', 1))  # robot-

01 set to busy 

159>                 gvar.l_r01_status = 1 

160>                 T2count += 1 

161>                 print "T2count: ", T2count 

162>  

163>         if (gvar.l_r01_tcurr == 2) and ((gvar.l_r01_currloc == 

1) or (gvar.l_r01_currloc == 2)):  # robot is waiting at T#2 source 

164>             opc.write(('Server02.r01_currloc', 2))  # robot-01 

is at the source 

165>             if (gvar.l_r01_loadstat == 1): 

166>                 resp = opc.write(('Server02.r01_xgoal', 

gvar.l_t02_dest_x)) 

167>                 resp2 = opc.write(('Server02.r01_ygoal', 

gvar.l_t02_dest_y)) 

168>                 if (resp == "Success") and (resp2 == 

"Success"): 

169>                     opc.write(('Server02.r01_currloc', 3))  # 

robot-01 is on its way to the destination 
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170>                     opc.write(('Server02.r01_status', 1))  # 

robot-01 set to busy 

171>                     gvar.l_r01_status = 1 

172>                     opc.write(('Server02.r01_loadstat', 0))  # 

clear load status 

173>  

174>         if (gvar.l_r01_tcurr == 2) and ((gvar.l_r01_currloc == 

3) or (gvar.l_r01_currloc == 4)):  # robot is waiting at T#2 

destination 

175>             opc.write(('Server02.r01_currloc', 4))  # robot-01 

is at the destination 

176>             if (gvar.l_r01_loadstat == 1): 

177>                 opc.write(('Server02.r01_currloc', 0))  # robot 

has no goal location 

178>                 # opc.write(('Server02.r01_tcurr', 0))  # robot 

is released from task 

179>                 opc.write(('Server02.r01_loadstat', 0))  # 

clear load status 

180>  

181>     return 0 

182>  

183>   

184> if __name__ == "__main__": 

185>     matHand_sim.initVars() 

186>     matHand_sim.initTags() 

187>     initVars() 

188>     mapVars() 

189>     while 1: 

190>         matHand_sim.updateTims() 

191>         matHand_sim.readTags() 

192>         updateVars() 

193>         matHand_sim.recordData(T1count, T2count, 

gvar.l_t01_weight, gvar.l_t02_weight) 

G2. Simulation program 

1> # Filename: matHand_sim.py 

2> # simulate the buffer levels, consumer demand rates etc. 

3> import OpenOPC  # the OPC client library for Python 

4> import time 

5> from datetime import datetime 

6>  

7>  
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8> def initVars(): 

9>     global start 

10>     global t01_iB_time_count,  t02_iB_time_count,  t01_qB_time_count,  

t02_qB_time_count, sim_time_count 

11>     global start_t01_iB_time, start_t02_iB_time, start_t01_qB_time, 

start_t02_qB_time, start_sim_time 

12>     global XYdatestr, LEVdatestr, TSKdatestr 

13>     start = time.time() 

14>     t01_iB_time_count = 0 

15>     t02_iB_time_count = 0 

16>     t01_qB_time_count = 0 

17>     t02_qB_time_count = 0 

18>     sim_time_count = 0 

19>     start_t01_iB_time = time.time() 

20>     start_t02_iB_time = time.time() 

21>     start_t01_qB_time = time.time() 

22>     start_t02_qB_time = time.time() 

23>     start_sim_time = time.time() 

24>  

25>     XYdatestr = "XY_"+datetime.now().strftime('%Y-%m-%d_%H-%M-%S') 

26>     LEVdatestr = "LEV_"+datetime.now().strftime('%Y-%m-%d_%H-%M-%S') 

27>     TSKdatestr = "TSK_" + datetime.now().strftime('%Y-%m-%d_%H-%M-

%S') 

28>  

29>  

30> def initTags(): 

31>     global opc 

32>     opc = OpenOPC.open_client('localhost') 

33>     opc.connect('Matrikon.OPC.Simulation') 

34>     opc.write(('Server02.t01_iBM', 0)) 

35>     opc.write(('Server02.t01_iBL', 0)) 

36>     opc.write(('Server02.t01_iBC', 100)) 

37>     opc.write(('Server02.t02_iBM', 0)) 

38>     opc.write(('Server02.t02_iBL', 0)) 

39>     opc.write(('Server02.t02_iBC', 100)) 

40>     opc.write(('Server02.t01_iFr', 30)) 

41>     opc.write(('Server02.t02_iFr', 30)) 

42>     opc.write(('Server02.t01_qFr', 0)) 

43>     opc.write(('Server02.t02_qFr', 0)) 

44>     opc.write(('Server02.t01_sPPi', 0.5)) 

45>     opc.write(('Server02.t02_sPPi', 0.5)) 

46>     opc.write(('Server02.t01_qSC', 100)) 

47>     opc.write(('Server02.t02_qSC', 100)) 

48>     opc.write(('Server02.t01_qSM', 0)) 
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49>     opc.write(('Server02.t01_qSL', 0)) 

50>     opc.write(('Server02.t02_qSM', 0)) 

51>     opc.write(('Server02.t02_qSL', 0)) 

52>     opc.write(('Server02.t01_sCDr', 0)) 

53>     opc.write(('Server02.t02_sCDr', 5)) 

54>     # x-y source and destination locations: 

55>     opc.write(('Server02.t01_src_x', 3.5)) 

56>     opc.write(('Server02.t01_src_y', 7.5)) 

57>     opc.write(('Server02.t01_dest_x', 1.8)) 

58>     opc.write(('Server02.t01_dest_y', 2.5)) 

59>     opc.write(('Server02.t02_src_x', 18.5)) 

60>     opc.write(('Server02.t02_src_y', 7.5)) 

61>     opc.write(('Server02.t02_dest_x', 20.1)) 

62>     opc.write(('Server02.t02_dest_y', 2.4)) 

63>     # robot tags: 

64>     opc.write(('Server02.r01_loadcap', 20)) 

65>     opc.write(('Server02.r01_currloc', 0)) 

66>     opc.write(('Server02.r01_tcurr', 0)) 

67>     opc.write(('Server02.r01_loadstat', 0)) 

68>     opc.write(('Server02.r01_status', 0)) 

69>     opc.close() 

70>  

71>   

72> def updateTims(): 

73>     global t01_iB_time_count,  t02_iB_time_count,  t01_qB_time_count,  

t02_qB_time_count, sim_time_count 

74>     global start_t01_iB_time, start_t02_iB_time, start_t01_qB_time, 

start_t02_qB_time, start_sim_time 

75>     t01_iB_time_count = int((time.time() - start_t01_iB_time) * 1000) 

76>     t02_iB_time_count = int((time.time() - start_t02_iB_time) * 1000) 

77>     t01_qB_time_count = int((time.time() - start_t01_qB_time) * 1000) 

78>     t02_qB_time_count = int((time.time() - start_t01_qB_time) * 1000) 

79>     sim_time_count = int((time.time() - start_sim_time) * 1000) 

80>  

81>   

82> def readTags(): 

83>     global opc 

84>     global l_t01_iBM, l_t01_iBL, l_t01_iBC, l_t01_iFr 

85>     global l_t02_iBM, l_t02_iBL, l_t02_iBC, l_t02_iFr 

86>     global l_t01_qSM, l_t01_qSL, l_t01_qSC, l_t01_qFr 

87>     global l_t02_qSM, l_t02_qSL, l_t02_qSC, l_t02_qFr 

88>     global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, l_r01_load, 

l_r01_loadcap 

89>     tout = 500 
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90>     opc = OpenOPC.open_client('localhost') 

91>     opc.connect('Matrikon.OPC.Simulation') 

92>     try: 

93>         l_t01_iBM = opc.read('Server02.t01_iBM', timeout=tout)[0] 

94>         l_t01_iBL = opc.read('Server02.t01_iBL', timeout=tout)[0] 

95>         l_t01_iBC = opc.read('Server02.t01_iBC', timeout=tout)[0] 

96>         l_t01_iFr = opc.read('Server02.t01_iFr', timeout=tout)[0] 

97>  

98>         l_t02_iBM = opc.read('Server02.t02_iBM', timeout=tout)[0] 

99>         l_t02_iBL = opc.read('Server02.t02_iBL', timeout=tout)[0] 

100>         l_t02_iBC = opc.read('Server02.t02_iBC', 

timeout=tout)[0] 

101>         l_t02_iFr = opc.read('Server02.t02_iFr', 

timeout=tout)[0] 

102>  

103>         l_t01_qSM = opc.read('Server02.t01_qSM', 

timeout=tout)[0] 

104>         l_t01_qSL = opc.read('Server02.t01_qSL', 

timeout=tout)[0] 

105>         l_t01_qSC = opc.read('Server02.t01_qSC', 

timeout=tout)[0] 

106>         l_t01_qFr = opc.read('Server02.t01_qFr', 

timeout=tout)[0] 

107>  

108>         l_t02_qSM = opc.read('Server02.t02_qSM', 

timeout=tout)[0] 

109>         l_t02_qSL = opc.read('Server02.t02_qSL', 

timeout=tout)[0] 

110>         l_t02_qSC = opc.read('Server02.t02_qSC', 

timeout=tout)[0] 

111>         l_t02_qFr = opc.read('Server02.t02_qFr', 

timeout=tout)[0] 

112>  

113>         l_r01_tcurr = opc.read('Server02.r01_tcurr', 

timeout=tout)[0] 

114>         l_r01_currloc = opc.read('Server02.r01_currloc', 

timeout=tout)[0] 

115>         l_r01_prevloc = opc.read('Server02.r01_prevloc', 

timeout=tout)[0] 

116>         l_r01_load = opc.read('Server02.r01_load', 

timeout=tout)[0] 

117>         l_r01_loadcap = opc.read('Server02.r01_loadcap', 

timeout=tout)[0] 

118>  

119>         inTask1() 
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120>         inTask2() 

121>         outTask1() 

122>         outTask2() 

123>  

124>     except OpenOPC.TimeoutError: 

125>         print "SIM TimeoutError occured" 

126>  

127>     opc.close() 

128>  

129>  

130> def inTask1(): 

131>     global opc 

132>     global start_t01_iB_time 

133>     global l_t01_iBM, l_t01_iBL, l_t01_iBC, l_t01_iFr 

134>     global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, 

l_r01_load, l_r01_loadcap 

135>     # input buffer: 

136>     if l_t01_iBL < 100: 

137>         if t01_iB_time_count >= 

int(60.0/float(l_t01_iFr))*1000: 

138>             start_t01_iB_time = time.time() 

139>             opc.write(('Server02.t01_iBM', l_t01_iBM + 1))  # 

increment input buffer 

140>             l_t01_iBL = int((float(l_t01_iBM) / 

float(l_t01_iBC)) * 100) 

141>             opc.write(('Server02.t01_iBL', l_t01_iBL)) 

142>     if (l_r01_tcurr == 1) and (l_r01_currloc == 2):  # robot at 

source 

143>         if l_t01_iBM > l_r01_loadcap: 

144>             opc.write(('Server02.r01_load', l_r01_loadcap)) 

145>             opc.write(('Server02.t01_iBM', l_t01_iBM - 

l_r01_loadcap)) 

146>         else: 

147>             opc.write(('Server02.r01_load', l_t01_iBM)) 

148>             opc.write(('Server02.t01_iBM', 0)) 

149>         opc.write(('Server02.r01_loadstat', 1))  # done loading 

150>         # compute percentage: 

151>         l_t01_iBL = int((float(l_t01_iBM) / float(l_t01_iBC)) * 

100) 

152>         opc.write(('Server02.t01_iBL', l_t01_iBL)) 

153>  

154>  

155> def inTask2(): 

156>     global opc 
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157>     global start_t02_iB_time 

158>     global l_t02_iBM, l_t02_iBL, l_t02_iBC, l_t02_iFr 

159>     global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, 

l_r01_load, l_r01_loadcap 

160>  

161>     # input buffer: 

162>     if l_t02_iBL < 100: 

163>         if t02_iB_time_count >= 

int(60.0/float(l_t02_iFr))*1000: 

164>             start_t02_iB_time = time.time() 

165>             opc.write(('Server02.t02_iBM', l_t02_iBM + 1))  # 

increment input buffer 

166>             l_t02_iBL = int((float(l_t02_iBM) / 

float(l_t02_iBC)) * 100) 

167>             opc.write(('Server02.t02_iBL', l_t02_iBL)) 

168>     if (l_r01_tcurr == 2) and (l_r01_currloc == 2):  # robot at 

source 

169>         if l_t02_iBM > l_r01_loadcap: 

170>             opc.write(('Server02.r01_load', l_r01_loadcap)) 

171>             opc.write(('Server02.t02_iBM', l_t02_iBM - 

l_r01_loadcap)) 

172>         else: 

173>             opc.write(('Server02.r01_load', l_t02_iBM)) 

174>             opc.write(('Server02.t02_iBM', 0)) 

175>         opc.write(('Server02.r01_loadstat', 1))  # done loading 

176>         # compute percentage: 

177>         l_t02_iBL = int((float(l_t02_iBM) / float(l_t02_iBC)) * 

100) 

178>         opc.write(('Server02.t02_iBL', l_t02_iBL)) 

179>  

180>  

181> def outTask1(): 

182>     global opc 

183>     global sim_time_count 

184>     global l_t01_qSM, l_t01_qSL, l_t01_qSC, l_t01_qFr 

185>     global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, 

l_r01_load, l_r01_loadcap 

186>  

187>     # output buffer: 

188>     l_t01_qSL = int((float(l_t01_qSM) / float(l_t01_qSC)) * 

100) 

189>     opc.write(('Server02.t01_qSL', l_t01_qSL)) 

190>     l_t01_qFr = (60000.0 / sim_time_count) * float(l_t01_qSL) 

191>     opc.write(('Server02.t01_qFr', l_t01_qFr)) 
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192>     if l_t01_qSL < 100: 

193>         if (l_r01_tcurr == 1) and (l_r01_currloc == 4):  # 

robot at destination 

194>             opc.write(('Server02.t01_qSM', l_t01_qSM + 

l_r01_load)) 

195>             opc.write(('Server02.r01_load', 0)) 

196>             opc.write(('Server02.r01_loadstat', 1))  # done 

offloading 

197>             # compute percentage and fill rate: 

198>             l_t01_qSL = int((float(l_t01_qSM) / 

float(l_t01_qSC)) * 100) 

199>             opc.write(('Server02.t01_qSL', l_t01_qSL)) 

200>             l_t01_qFr = 

(60000.0/sim_time_count)*float(l_t01_qSL) 

201>             opc.write(('Server02.t01_qFr', l_t01_qFr)) 

202>  

203>  

204> def outTask2(): 

205>     global opc 

206>     global sim_time_count 

207>     global l_t02_qSM, l_t02_qSL, l_t02_qSC, l_t02_qFr 

208>     global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, 

l_r01_load, l_r01_loadcap 

209>  

210>     # output buffer: 

211>     l_t02_qSL = int((float(l_t02_qSM) / float(l_t02_qSC)) * 

100) 

212>     opc.write(('Server02.t02_qSL', l_t02_qSL)) 

213>     l_t02_qFr = (60000.0 / sim_time_count) * float(l_t02_qSL) 

214>     opc.write(('Server02.t02_qFr', l_t02_qFr)) 

215>     if l_t02_qSL < 100: 

216>         if (l_r01_tcurr == 2) and (l_r01_currloc == 4):  # 

robot at destination 

217>             opc.write(('Server02.t02_qSM', l_t02_qSM + 

l_r01_load)) 

218>             opc.write(('Server02.r01_load', 0)) 

219>             opc.write(('Server02.r01_loadstat', 1))  # done 

offloading 

220>             # compute percentage and fill rate: 

221>             l_t02_qSL = int((float(l_t02_qSM) / 

float(l_t02_qSC)) * 100) 

222>             opc.write(('Server02.t02_qSL', l_t02_qSL)) 

223>             l_t02_qFr = (60000.0 / sim_time_count) * 

float(l_t02_qSL) 
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224>             opc.write(('Server02.t02_qFr', l_t02_qFr)) 

225>  

226>  

227> # Store the XY robot motion data and the input/output levels 

228> def recordData(T1cnt, T2cnt, T1wt, T2wt): 

229>     global XYdatestr, LEVdatestr, TSKdatestr 

230>     global l_t01_iBL, l_t02_iBL, l_t01_qSL, l_t02_qSL 

231>     global opc 

232>     global sim_time_count 

233>  

234>     opc = OpenOPC.open_client('localhost') 

235>     opc.connect('Matrikon.OPC.Simulation') 

236>  

237>     try: 

238>         xloc = opc.read('Server02.r01_xpos', timeout=500)[0] 

239>         yloc = opc.read('Server02.r01_ypos', timeout=500)[0] 

240>         f = open('%s.csv' % XYdatestr, 'a') 

241>         f.write('%f;%s;%s\n' % (sim_time_count/1000, xloc, 

yloc)) 

242>         f.close() 

243>         f = open('%s.csv' % LEVdatestr, 'a') 

244>         f.write('%f;%s;%s;%s;%s;%f;%f\n' % 

(sim_time_count/1000,l_t01_iBL, l_t02_iBL, l_t01_qSL, l_t02_qSL, 

T1wt, T2wt)) 

245>         f.close() 

246>         f = open('%s.csv' % TSKdatestr, 'a') 

247>         f.write('%f;%i;%i;%i\n' % (sim_time_count/1000, T1cnt, 

T2cnt, T1cnt+T2cnt)) 

248>         f.close() 

249>     except OpenOPC.TimeoutError: 

250>         print "recData TimeoutError occured" 

251>     opc.close() 

252>  

253>  

254> if __name__ == "__main__": 

255>     initVars() 

256>     initTags() 

257>     while 1: 

258>         updateTims() 

259>         readTags() 

260>         time.sleep(1) 

 


