

A Distributed Framework for the Control

and Cooperation of Heterogeneous Mobile

Robots in Smart Factories

Nicol Naidoo

Supervisors: Prof. Glen Bright and Prof. Riaan Stopforth

Submitted in fulfilment of the degree of Doctor of Philosophy in Engineering in the

Mechatronics and Robotics Research Group

School of Engineering

September 2017

Dedicated to my wife and daughter

Declaration: Submission

Supervisor

As the Candidate’s Supervisor, I agree to the submission of this thesis.

Signed: …………………………… Date:…………………………

Prof. Glen Bright

Student

I declare this thesis has not previously been submitted for any degree in this university, or

any other university and it is my (Nicol Naidoo) original work.

Signed: …………………………… Date: …………………………

Mr. Nicol Naidoo

Declaration: Plagiarism

I, Nicol Naidoo (203503153), declare that

1. The research reported in this thesis, except where otherwise indicated, is my

original research.

2. This thesis has not been submitted for any degree or examination at any other

university.

3. This thesis does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other

persons.

4. This thesis does not contain other persons' writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a. Their words have been re-written but the general information attributed to

them has been referenced

b. Where their exact words have been used, then their writing has been placed in

italics and inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the

thesis and in the References sections.

Signed: …………………………… Date: …………………………

Mr. Nicol Naidoo

Declaration: Publications

Details of contribution to publications that form part and/or include research presented in this

thesis (include publications in preparation, submitted, in press and published and give details

of the contributions of each author to the experimental work and writing of each publication)

Publications

In the publications listed, Mr. Nicol Naidoo was the developer and lead author of the work:

1. N Naidoo, G Bright, " Support Vector Machine Learning in Multi-Robot Teams," in

Proceedings of the 11th International Conference on Autonomic and Autonomous

Systems, Rome, 2015, pp. 1-6.

2. N Naidoo, G Bright, R Stopforth, ZF Zelasco, J Donayo, "Optimizing Search and

Rescue Missions through a Cooperative Mobile Robot Network," in Proceedings of

the 8th IEEE International Conference on Robotics and Mechatronics (RobMech),

Port Elizabeth, 2015, pp. 7-11.

3. N Naidoo, G Bright, R Stopforth, "A cooperative mobile robot network in ROS for

advanced manufacturing applications," in Proceedings of the 6th International

Conference on Competitive Manufacturing (COMA), Stellenbosch, 2016, pp.

281-286.

4. N Naidoo, G Bright, R Stopforth, "Navigation and Control of Cooperative Mobile

Robots using a Robotic Middleware Platform," in Proceedings of the 12th IEEE

International Conference on Control & Automation (ICCA), Kathmandu, 2016, pp.

927-932.

5. N Naidoo, G Bright, R Stopforth, " The Cooperation of Heterogeneous Mobile Robots

in Manufacturing Environments using a Robotic Middleware Platform," in

Proceedings of the 8th IFAC Conference on Manufacturing, Modelling, Management

and Control, Troyes, 2016, pp. 1032-1037.

6. N Naidoo, G Bright, R Stopforth, "Towards a Decentralised Mobile Robot Learning

System for Indoor Environments," in Proceedings of the 24th IEEE International

Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland,

2017.

7. N Naidoo, G Bright, R Stopforth, M Bergamini, J Kamlofsky, J Zelasco, F Ansaldo,

"Semi-Autonomous Robot Control System with 3D Vision Scheme for Search and

Rescue Missions," in Proceedings of the 24th IEEE International Conference on

Mechatronics and Machine Vision in Practice (M2VIP), Auckland, 2017.

Submissions

In the submission listed, Mr. Nicol Naidoo was the developer and lead author of the work:

1. N Naidoo, G Bright, R Stopforth, "A Framework for Establishing Cooperation in

Multiple Heterogeneous Mobile Robot Systems Configured for Manufacturing

Applications," paper submitted to the R & D Journal of the South African Institution

of Mechanical Engineering, 2017.

Signed: …………………………… Date: …………………………

Mr. Nicol Naidoo

Acknowledgements

I firstly thank the Lord Jesus Christ for blessing me with the opportunity to pursue this degree

and for making all of this possible.

I am grateful to my supervisors, Professor Glen Bright and Professor Riaan Stopforth, for

guiding me through this journey and for the provision of resources for this research.

I would like to thank the senior staff at Clifford Machines and Technology, for their

continuous support throughout the duration of this degree.

Lastly, I thank and appreciate my wife, Aurelle Naidoo, for her love and support during every

step of the way. She truly sacrificed as much as I had during the past few years.

Abstract

The present consumer market is driven by the mass customisation of products. Manufacturers

are now challenged with the problem of not being able to capture market share and gain

higher profits by producing large volumes of the same product to a mass market. Some

businesses have implemented mass customisation manufacturing (MCM) techniques as a

solution to this problem, where customised products are produced rapidly while keeping the

costs at a mass production level. In addition to this, the arrival of the fourth industrial

revolution (Industry 4.0) enables the possibility of establishing the decentralised intelligence

of embedded devices to detect and respond to real-time variations in the MCM factory.

One of the key pillars in the Industry 4.0, smart factory concept is Advanced Robotics. This

includes cooperation and control within multiple heterogeneous robot networks, which

increases flexibility in the smart factory and enables the ability to rapidly reconfigure systems

to adapt to variations in consumer product demand. Another benefit in these systems is the

reduction of production bottleneck conditions where robot services must be coordinated

efficiently so that high levels of productivity are maintained.

This study focuses on the research, design and development of a distributed framework that

would aid researchers in implementing algorithms for controlling the task goals of

heterogeneous mobile robots, to achieve robot cooperation and reduce bottlenecks in a

production environment. The framework can be used as a toolkit by the end-user for

developing advanced algorithms that can be simulated before being deployed in an actual

system, thereby fast prototyping the system integration process.

Keywords: Cooperation, heterogeneity, multiple mobile robots, Industry 4.0, smart factory,

manufacturing, middleware, ROS, OPC, framework.

Contents

Contents .. xiv

List of Figures ... xix

List of Tables .. xxi

Abbreviations ... xxiii

Chapter 1 Introduction .. 1

1.1 Mass customisation manufacturing and Industry 4.0 .. 1

1.2 Robotics in manufacturing .. 2

1.3 Motivation ... 4

1.4 Aim and objectives .. 5

1.5 Research methodology .. 5

1.6 Research contributions .. 6

1.7 Thesis outline .. 6

1.8 Chapter summary .. 7

Chapter 2 Literature survey .. 9

2.1 Mobile robot systems .. 9

2.1.1 Single robot systems .. 10

2.1.2 Multi-robot systems ... 11

2.1.3 Heterogeneity ... 12

2.1.4 Cooperative vs. competitive systems ... 13

2.1.5 Communication .. 14

2.1.6 Control architectures .. 15

2.2 Robotic middleware .. 16

2.2.1 Middleware roles ... 17

2.2.2 Middleware platforms .. 18

2.3 Smart factories... 25

2.3.1 An introduction to the Industry 4.0 concept .. 26

2.3.2 M2M communication and Advanced Robotics ... 28

2.4 Chapter summary .. 30

Chapter 3 Design of the framework ... 31

3.1 Design requirements .. 31

3.2 ROS middleware ... 33

3.3 Industrial data communication .. 35

3.3.1 Communication model ... 36

3.3.2 Data communication standards .. 37

3.3.3 OPC-UA ... 39

3.4 IDE and GUI ... 41

3.5 SCADA ... 42

3.6 Final design overview ... 43

3.7 Functional design specifications ... 44

3.8 Chapter summary .. 46

Chapter 4 Framework development ... 47

4.1 Development and verification strategies ... 47

4.2 Development overview ... 48

4.3 OPC-UA communication .. 49

4.4 GUI development in Python Tkinter ... 52

4.4.1 Main screen and remote robot connection ... 53

4.4.2 Robot configuration ... 55

4.4.3 Task management .. 56

4.4.4 OPC-UA tag assignment .. 57

4.4.5 Robot location .. 59

4.4.6 Python OPC-UA Client.. 59

4.5 Mobile robot system integration ... 61

4.5.1 ROS implementation .. 61

4.5.2 Robot OPC-UA Client ... 62

4.5.3 Decentralised robot control .. 63

4.5.4 Stage simulation ... 64

4.6 SCADA development .. 65

4.7 Python programming features ... 68

4.7.1 Local variables and OPC tags .. 68

4.7.2 Heterogeneous mobile robots and cooperation .. 69

4.7.3 Machine learning support .. 71

4.8 Framework review... 72

4.9 Chapter summary .. 73

Chapter 5 Case studies .. 75

5.1 Study I: Single mobile robot control ... 75

5.1.1 Description of the study ... 75

5.1.2 Application development ... 76

5.1.3 Simulation results... 80

5.2 Study II: Cooperation in heterogeneous mobile robot teams 84

5.2.1 Description of the study ... 84

5.2.2 Application development ... 85

5.2.3 Simulation results... 86

5.3 Study III: Machine learning robots ... 89

5.3.1 Description of the study ... 89

5.3.2 Application development ... 90

5.3.3 Simulation results... 91

5.4 Study IV: Integration with a third party system .. 93

5.4.1 Description of the study ... 94

5.4.2 Application development ... 94

5.4.3 Simulation results... 96

5.5 Chapter summary .. 99

Chapter 6 Discussion .. 101

6.1 Benefits of the framework ... 101

6.1.1 Popular software platforms .. 101

6.1.2 Mobile robot control .. 102

6.1.3 Distribution features... 102

6.1.4 Robot heterogeneity and cooperation .. 103

6.1.5 Machine learning ... 103

6.1.6 Interoperability benefits ... 104

6.2 Further scope of the framework .. 104

6.2.1 Business management systems .. 105

6.2.2 Resource sharing .. 105

6.2.3 Robotic manipulators ... 105

6.3 Related research .. 106

6.4 Limitations and advanced development .. 108

6.5 Chapter summary .. 110

Chapter 7 Conclusion ... 113

7.1 Aim and objectives .. 113

7.2 Research summary .. 114

7.3 Research contributions .. 117

7.4 Recommendations for further research ... 118

References .. 119

Appendix A: Python Tkinter GUI code ... 133

Appendix B: Remote robot control code ... 167

Appendix C: Robot OPC-UA Client code ... 171

Appendix D: Stage development programs ... 173

D1. Launch file .. 173

D2. Yaml file ... 179

D3. World file .. 180

D4. Map and turtlebot files .. 181

Appendix E: Functions for heterogeneous robot programs ... 183

Appendix F: SVM function code ... 189

Appendix G: Python application code for Study I ... 191

G1. Algorithm and mobile robot navigation program ... 191

G2. Simulation program ... 196

List of Figures

Figure 1.1: IFR report on global install base of industrial robots .. 3

Figure 2.1. Some AGV solutions by JBT: (a) AGV Forklift, (b) AGV unit load carrier 10

Figure 2.2. Robotnik's JR2 mobile manipulator. ... 11

Figure 2.3. Categorisation of cooperative behaviours in MMRS. ... 14

Figure 2.4. The middleware layer. ... 16

Figure 2.5. OROCOS libraries. .. 22

Figure 2.6. The cyber-physical production system. ... 26

Figure 2.7. Industry 4.0 environment... 27

Figure 2.8. M2M communication in smart factories. .. 29

Figure 2.9. Robotics and Industry 4.0. ... 30

Figure 3.1. Preliminary design overview. .. 32

Figure 3.2. Topic-based communication in ROS. .. 34

Figure 3.3. Hierarchical communication and control model in manufacturing plants. 36

Figure 3.4. The 7 layers of the OSI model. .. 38

Figure 3.5. Ethernet frame with EtherCAT data. ... 39

Figure 3.6. Hierarchical communication and control model with OPC-UA. 40

Figure 3.7. Final design overview of the framework. .. 43

Figure 4.1. Overview of the framework development discussed in this chapter. 48

Figure 4.2. Communication between Matrikon OPC-UA Server and Clients. 50

Figure 4.3. Matrikon OPC Server alias (tag) creation. .. 51

Figure 4.4. Matrikon OPC Server and Explorer with tag value monitoring. 51

Figure 4.5. Flowchart of the GUI functionality. .. 52

Figure 4.6. The GUI main screen with offline and online connections. 53

Figure 4.7. The robot list pop-up window. .. 54

Figure 4.8. A simplified setup flow of a SSH connection. .. 55

Figure 4.9. The robot configuration GUI screen.. 56

Figure 4.10. The task management GUI screen. .. 57

Figure 4.11. Algorithm and robot tag assignment screen. ... 58

Figure 4.12. Tag assignment screen with OPC tag list pop-up window. 58

Figure 4.13. The task location configuration screen. ... 59

Figure 4.14. Python OPC Client communication with the Server. .. 60

file:///C:/Users/nicoln/Documents/PhD/Thesis/PhD%20Thesis%20Rev-05.docx%23_Toc493881923
file:///C:/Users/nicoln/Documents/PhD/Thesis/PhD%20Thesis%20Rev-05.docx%23_Toc493881929
file:///C:/Users/nicoln/Documents/PhD/Thesis/PhD%20Thesis%20Rev-05.docx%23_Toc493881931

Figure 4.15. Overview of the mobile robot system integration. .. 61

Figure 4.16. A basic format of the ROS core implementation. ... 62

Figure 4.17. State diagram of the local navigation algorithm.. 63

Figure 4.18. Stage file associations with Appendix references in brackets. 64

Figure 4.19. Stage simulation window with map and robots. .. 65

Figure 4.20. Ecava SCADA Project Editor showing the OPC client tag configuration. 66

Figure 4.21. SCADA screen development using Inkscape. ... 67

Figure 4.22. A SCADA project execution in the Internet Explorer web browser. 67

Figure 4.23. Functions that map and update local variables. ... 69

Figure 4.24. Functions developed for heterogeneous robot applications. 70

Figure 4.25. SVM train application created in Python Tkinter.. 71

Figure 4.26. A review of the framework development. ... 72

Figure 5.1. Control algorithm to determine the robot task priority. .. 78

Figure 5.2. Flow diagram for the application program of Case Study I. 79

Figure 5.3. SCADA mimic for the material handling application of Case Study I. 80

Figure 5.4. Buffer levels and task weight outputs of Case Study I, simulation-1. 81

Figure 5.5. x-y robot coordinates during simulation-1 of Case Study I. 82

Figure 5.6. Buffer levels and task weight outputs of Case Study I, simulation-2. 83

Figure 5.7. x-y robot coordinates during simulation-2 of Case Study I. 83

Figure 5.8. Buffer levels and task weight outputs of Case Study II, simulation-1. 86

Figure 5.9. x-y robot coordinates during simulation-1 of Case Study II. 87

Figure 5.10. Buffer levels and task weight outputs of Case Study II, simulation-2. 88

Figure 5.11. x-y robot coordinates during simulation-2 of Case Study II. 88

Figure 5.12. Flow diagram for the application program of Case Study III. 90

Figure 5.13. Buffer levels and SVM outputs of Case Study III, simulation-1. 92

Figure 5.14. Buffer, demand levels and SVM outputs of Case Study III, simulation-2. 93

Figure 5.15. PLC and Python algorithms for Case Study IV... 95

Figure 5.16. TwinCAT 3 PLC programming environment. .. 96

Figure 5.17. Time delay analysis for slow communication intervals. 97

Figure 5.18. Time delay analysis for average communication intervals. 97

Figure 5.19. Time delay analysis for fast communication intervals. 97

file:///C:/Users/nicoln/Documents/PhD/Thesis/PhD%20Thesis%20Rev-05.docx%23_Toc493881948
file:///C:/Users/nicoln/Documents/PhD/Thesis/PhD%20Thesis%20Rev-05.docx%23_Toc493881949

List of Tables

Table 1. Summary of the four industrial revolutions. .. 2

Table 2. Middleware comparisons (part 1) .. 24

Table 3. Middleware comparisons (part 2) .. 25

Table 4. Starting line reference to the Python code in Appendix A. 53

Table 5. OPC tag definitions for Case Study I... 77

Table 6. Robot and task compatibility table for the first simulation of Case Study II. 85

Table 7. Robot and task compatibility table for the second simulation of Case Study II. 85

Table 8. Time delay analysis for the three simulations in Case Study IV. 98

Table 9. Reference summary of the framework features. .. 116

Abbreviations

AI Artificial Intelligence

AIMM Autonomous Industrial Mobile Manipulator

AMCL Adaptive Monte Carlo Localization

ARCADE Architecture for Real-time Control and Autonomous Distributed Execution

CAD Computer Aided Design

CARMEN Carnegie Mellon Navigation

CBSE Component-Based Software Engineering

CIP Common Industrial Protocol

CLARAty Coupled Layer Architecture for Robotic Autonomy

CORBA Common Object Request Broker Architecture

CPPS Cyber-Physical Production System

CPU Central Processing Unit

DARPA Defence Advanced Research Projects Agency

DCS Distributed Control System

DOF Degrees of Freedom

EKF Enhanced Kalman Filter

ERP Enterprise Resource Planning

FMS Flexible Manufacturing Systems

GUI Graphical User Interface

HMI Human Machine Interface

HTTP Hyper-Text Transfer Protocol

IEC International Electro-technical Commission

IFR International Federation of Robotics

IIoT Industrial Internet of Things

ICE Internet Communications Engine

ICT Information and Communications Technology

IDE Integrated Development Environment

IRT Isochronous and Real-Time

ISO International Standards Organisation

IT Information Technology

LRF Laser Range Finder

LQI Link Quality Indicator

M2M Machine-to-Machine

MARIE Mobile and Autonomous Robotics Integration Environment

MCM Mass Customisation Manufacturing

MES Manufacturing Execution System

MMRS Multiple Mobile Robot Systems

MRP Manufacturing Resource Planning

MSRDS Microsoft Robotics Developer Studio

MRS Multi-Robot Systems

MRTM Multi-Robot Task Module

OPC-UA OPC Unified Architecture

OROCOS Open Robot Control Software

OS Operating System

OSI Open System Interconnection

P2P Peer-to-Peer

PDM Product Data Management

PLC Programmable Logic Controller

Pyro Python Robotics

ROS Robot Operating System

RSSI Received Signal Strength Indicator

RTDB Real Time Data Base

RTP Real-time Transport Protocol

RTT Real Time Toolkit

SCADA Supervisory Control and Data Acquisition

SOA Service-Orientated Architecture

SNRP Simple Network Robot Protocol

SVM Support Vector Machine

TCP Transmission Control Protocol

TWR Two Way Ranging

UDP User Datagram Protocol

UPnP Universal Plug and Play

VPN Virtual Private Network

WS Web Services

XML eXtended Markup Language

Chapter 1 Introduction

This introductory chapter discusses the problem of mass customisation and the role of mobile

robotics in these types of manufacturing environments. The motivation of the research study,

along with the objectives, methodology, and contributions are also addressed.

1.1 Mass customisation manufacturing and Industry 4.0

The advancement of electronics and technology in the past few decades has led to its

adoption in the manufacturing industry and businesses have seen tremendous growth in

productivity due to the use of advanced technology in its processes [1]. The increase in

productivity margins has catapulted competition on a global scale since consumers require

fast deliveries and have access to a wide range of courier service options [2]. Another factor

that has changed the present consumer market is the mass customisation of products.

Manufacturers are now challenged with the problem of not being able to capture market share

and gain higher profits by producing large volumes of the same product to a mass market [3].

Some businesses have implemented mass customisation manufacturing (MCM) techniques as

a solution to this problem, where customised products are produced rapidly while keeping the

costs at a mass production level.

The “mass customisation” concept was first formally introduced in the book Future Perfect

by Stanley M. Davis in 1983 and thereafter defined as a strategy for product variety and

individualisation by Joseph Pine in 1993 [4]. The concept has now become a reality through

the use of robotics in manufacturing, advances in computer-aided design (CAD) packages,

product data management (PDM), and industrial networking technologies [5]. In order to

continuously achieve profitability and maintain the competitive advantage over others,

leading manufacturers spend a great deal of time optimising their MCM processes to manage

2 Introduction

predicted changes with precision, and to respond to unexpected changes with speed and

flexibility [6]. The management of such variations can be achieved through real-time data

processing, analysis, and control in the current fourth industrial revolution (Industry 4.0).

Industry 4.0, or the industrial internet of things (IIoT), has been the popular topic of

discussion among researchers and manufacturers during the past three years. Table 1 [7] is a

summary of the four industrial revolutions in history.

Table 1. Summary of the four industrial revolutions.

 Time periods Technologies and capabilities

First 1784 – mid 19th century Water and steam powered mechanical engineering

Second Late 19th century – 1970’s
Electric powered mass production based on the

division of labour

Third 1970’s – Today
Electronics and information technology drives

new levels of automation of complex tasks

Fourth Today–
Sensor technology, interconnectivity and data

analysis allow mass customisation, integration of

value chains and greater efficiency

The vision of Industry 4.0 is the use of sensor and network technology in ‘smart products’

that define how machines should undertake processes. In this environment, the decentralised

intelligence of embedded devices has the ability to detect and respond to real-time variations

in the MCM factory; this can be contrasted to the slower response times and single point of

failure in traditional centralised factory control systems.

1.2 Robotics in manufacturing

Over the past few decades, extensive research in robotics has resulted in a continuous growth

in industrial application sectors such as automotive, electronics, metal, and food amongst

others. Figure 1.1 [8] is a report by the International Federation of Robotics (IFR), showing

the growth since 1985. According to the data, it took almost 50 years for the install base to

1.2 Robotics in manufacturing 3

reach the first one million units, contrasted to just eight more years to reach the projected

second million units.

Figure 1.1: IFR report on global install base of industrial robots

From the install base and according to an Industrial Robotics Marketing Report, materials

handling is currently the leading application of industrial robots, accounting for more than

33% of the global industrial robotics market in 2013 [9]. A contributing factor to this statistic

is the technological advancement (and lower cost) of robotic vision systems, navigation and

mobility, where companies are beginning to offer sophisticated material handling methods for

factories and warehouses [10]. Hence, the use of mobile robots in industry has become

popular, particularly in MCM factories where reconfiguration and flexibility are key

requirements in the competitive climate with complex consumer demands [11].

The cooperation of multiple mobile robot systems (MMRS) is recently becoming a popular

area of interest to both researchers and manufacturers, since a network of mobile robots has

the ability to perform tasks much quicker and more efficiently than single robot systems. The

management of mobile robot resources, however, is non-trivial due to the existence of

heterogeneity in the network of robots [12]. Heterogeneities may exist due to the variety of

actuators, sensors, and communication protocols developed by different manufacturers. The

next chapter explores literature in the areas of mobile robots and cooperative robotic research,

4 Introduction

and investigates the impact of MMRS in an Industry 4.0 environment, together with the

associated challenges.

1.3 Motivation

Globally, a great measure of resources have been allocated to the research and development

of robotics, autonomous mobile robots, and cooperation among robots [13][14], and forecasts

reveal a significant adoption of mobile robots in industry and homes in the near future [15].

Advanced robotics and machine-to-machine (M2M) communication, alongside others, are

considered key pillars in the Industry 4.0 concept, hence the globalised interest in these areas

of research.

The issue of heterogeneity in multiple mobile robot systems was investigated and the use of

robotic middleware is discussed in the literature survey (chapter 2) as a solution to mask the

heterogeneities in the network. Various middleware platforms were studied in the survey,

revealing that the choice of robotic middleware for a particular application requires careful

consideration, since some platforms contain attributes which others lack. In the context of an

industrial application, the Robot Operating System (ROS) stands out from the rest, primarily

due to its commercial use [16] and its application in industry through the ROS Industrial

Consortium [17]. ROS, however, does have its limitation in regard to functionality for

cooperation in multiple mobile robot networks.

The motivation behind the research stems from the need of a robotic framework that can be

used as a tool for the development of cooperation systems in industrial MMRS. The need

exists due to the modern popularity of MMRS and cooperation in these systems to facilitate

flexibility in smart factories, thereby managing the problem of mass customisation. To

summarise, the following problems and challenges have been identified in the literature

survey, thereby driving the need for the design and development of the framework:

 Mass customisation and global competition [3].

 Increase in the use of advanced technology [1] and robotics [8] in manufacturing

processes.

1.4 Aim and objectives 5

 The existence of heterogeneity in multiple mobile robot systems [12].

 The need for robotic middleware to mask heterogeneities and facilitate multi-robot

cooperation in industrial environments.

 The introduction of the fourth industrial revolution (Industry 4.0) and the key role

of robotics in this setting [18].

 The need for the operation of intelligent mobile robots in smart factory

environments [7].

1.4 Aim and objectives

The aim of this study was to research, design, and develop a distributed framework for

managing multiple, heterogeneous mobile robots in smart factories.

The objectives of this research study were to:

 Investigate the impact of mobile robot systems in industry.

 Investigate the problem of mass customisation together with the introduction of the

fourth industrial revolution (Industry 4.0).

 Research the need for robotic middleware and the various platforms available for

mobile robot systems.

 Research the design requirements of a distributed framework for use in an industrial

MMRS setting.

 Design and develop the framework that facilitates cooperation in heterogeneous

multiple mobile robot teams.

 Test and validate the performance of the framework by the use of algorithms and

simulation tools.

1.5 Research methodology

The verification of the framework developed in this study was achieved through a case study

approach. A series of case studies were performed that involved different scenarios pertaining

6 Introduction

to mobile robot material handling, and simulated robot task applications. Since the

framework is a tool that will be used by the end-user, the studies demonstrate the application

of example user algorithms that can be used in the high-level robot decision making process.

Simulation results are also documented for each case study, verifying the functionality of the

framework and user algorithms, and the navigation of the mobile robots in a simulated

environment.

1.6 Research contributions

The design and development of the framework in this research study was an original effort

and has made the following five contributions:

1. The framework has made the remote control of robots more accessible by industrial

engineers since the framework adheres to an international industrial communication

protocol standard.

2. The framework has made it easier for students or researchers to advance the field of

multi-robot cooperation since solutions can be developed and tested in these

scenarios. This is achieved through the use of the simple graphical user interface and

the development of algorithms in Python.

3. The advanced robotics pillar in Industry 4.0 has been strengthened due to the

common interface provided by the framework to achieve intelligent robotic systems.

4. The capability of the popular ROS middleware has been enhanced, since ROS has

lacked the functionality for cooperative multi-robot systems.

5. The machine learning field of research can broaden its application to mobile robot

networks, via the use of Python’s powerful machine learning library.

1.7 Thesis outline

Chapter 2 is a literature survey that investigates the role of mobile robot systems in industry,

the associated challenges, and its impact in smart factories. Chapter 3 presents the

methodological approach taken during the design of the framework. The design requirements

1.8 Chapter summary 7

are defined, outlining the key components of the framework that enables its functionality in a

smart factory environment. Chapter 4 describes the development and verification strategies

adopted, and thereafter discusses the development of the main components of the framework.

Chapter 5 presents four case studies, each verifying various aspects of the framework in

simulation results. Chapter 6 discusses the benefits of the framework, research related to the

functionality of the framework, and the limitations as well as advanced development features

that should be implemented as improvements to the system. Chapter 7 concludes the research

study by summarising the work, revisits the contributions discussed here, and discusses some

recommendations for further research.

1.8 Chapter summary

This chapter introduced the mass customisation and Industry 4.0 concepts, and thereafter

discussed the growth of robotics in industry. The motivation of the study was discussed and

the objectives, methodology, and contributions of the research were defined to establish the

scope of work involved in this study. The chapter concluded with an outline of the thesis.

Chapter 2 Literature survey

The purpose of the survey was to investigate the role of mobile robot systems in industry.

Associated with this are factors such as heterogeneity, cooperation, communication, and

control architectures, all of which are discussed in the survey. The various types of robotic

middleware platforms are reviewed as they are essential to the establishment of common

interfaces in networks that contain robotic heterogeneity. The final topic of discussion is

“smart factories” (another term for Industry 4.0); here the purpose of the concept is

introduced, along with the influence of advanced robotic systems and the related challenges.

2.1 Mobile robot systems

Apart from manufacturing, mobile robots can be used in a variety of other applications where

it may be dangerous for humans to work in such as mining, search and rescue [19], planetary

exploration [20], and toxic waste clean-up [21]. In the manufacturing environment, mobile

robots are required to operate autonomously, which involves the use of mobile robot sensors

for the robots to: 1) build or update maps of the environment, 2) localise its position on the

map, 3) navigate the environment, and 4) avoid obstacles. Some manufacturing applications

call for the use of other auxiliary equipment to be installed on mobile robots such as vision

sensors for object recognition and grippers for pick and place operations. The following sub-

sections discuss some of the applications with single and multiple mobile robot systems and

the pertinent aspects related to these systems, viz. heterogeneity, cooperation,

communication, and robot control architectures.

10 Literature survey

2.1.1 Single robot systems

Automated Guided Vehicles (AGVs) were invented in 1953 and have been used as material

transporters in manufacturing facilities or warehouses ever since [22]. Various types of

AGVs exist, Figure 2.1 depicts two examples by JBT AGVs [23]. Figure 2.1 (a) is an

example of an AGV forklift which automatically moves the load to its programmed

destination after being loaded by an operator. Figure 2.1 (b) is an AGV unit load carrier, used

to move loads from one station to another; these AGVs can interface with conveyors and are

usually equipped with either or combinations of belts, powered rollers, and mechanised lifts

to automatically load and unload batches.

Figure 2.1. Some AGV solutions by JBT: (a) AGV Forklift, (b) AGV unit load carrier

The challenges of navigation with AGVs can be simplified by restricting their path to

predetermined routes via demarcated floors or underground cables; however, this can be a

disadvantage in Flexible Manufacturing Systems (FMS) where some of the flexibility of the

system is sacrificed due to fixed structures designed to accommodate the AGV’s path. In

their research paper [24], Sabattini et al. describe the process of installing and configuring

AGVs in a factory, and thereafter discuss some of the barriers associated with further

adoption of the technology:

 expensive cost

 difficulty in achieving the desired efficiency to absorb the cost

 changeovers can be time consuming and expensive due to the lack of flexibility

 safety concerns

2.1 Mobile robot systems 11

Another type of mobile robot that is becoming very popular in FMS environments due to its

flexibility features is the Autonomous Industrial Mobile Manipulator (AIMM). An AIMM is

an industrial robot that is capable of performing tasks such as part feeding, assembly, and

transportation. In general, AIMMs are designed with four elements: the mobile platform,

sensors (e.g. vision, laser range finders), a manipulator, and a tool (e.g. grippers, welding

gun). Figure 2.2 [25] is the JR2, an AIMM manufactured by Robotnik, designed for logistics

and industrial mobile applications. The JR2 arm (manipulator) has six degrees of freedom

(DOF) and the mobile platform uses four high powered motor wheels, capable of supporting

loads of up to 100kg. The sensors mounted on the robot include two rangefinders for

navigation and safety, as well as two RGB-D sensors to detect obstacles located at different

heights.

Figure 2.2. Robotnik's JR2 mobile manipulator.

The AIMM category of robots are well suited for FMS environments, although product

changeovers can be time consuming on single robot systems if they are not easily

reconfigurable.

2.1.2 Multi-robot systems

Multi-robot systems (MRS) potentially have several advantages over single robot systems;

Yan et al [26] discuss the following benefits in their research paper:

12 Literature survey

 A MRS has a better spatial distribution.

 A MRS can achieve a superior system performance, such as the time to complete a

task, or energy consumption of the robots.

 Robustness and fault-tolerance can be realised in MRS due to data fusion and

information sharing in the network of robots.

 A MRS can potentially cost less since a large number of simpler robots will be

cheaper to build and program, contrasted to a single, powerful robot.

 System reliability, flexibility and scalability features exist in MRS.

Some preliminary work in MRS began in the late 1980’s with a few projects such as

ACTRESS [27], CEBOT [28], ALLIANCE [21], M+ [29], and MURDOCH [30], each

yielding successful results. Today, multiple mobile robot systems are being implemented in

industry and have proven to be very efficient. One such case is the KIVA Systems automated

warehouse, where mobile robots optimise the execution of customer orders by placing

frequently required material in locations that are closer to the delivery area, rather than

storing them in fixed locations. Kiva, now known as Amazon Robotics [31], was acquired by

Amazon.com in 2012 due to its significant success rate in efficiently fulfilling customers’

orders.

The implementation of a MMRS in a factory can be a challenging task with many factors to

consider, these may include: factory infrastructure, robot heterogeneity, robot path planning

and frequent obstacle avoidance actions due to the volume of robots in the environment,

safety and interaction with humans, and coordination and cooperation between the robots to

achieve specific goals. The following sections discuss some of these challenges inherent in

MMRS.

2.1.3 Heterogeneity

A MMRS can be homogeneous or heterogeneous. In homogeneous networks, each robot in

the team has an identical capability, whilst in heterogeneous robot teams capabilities differ

since robots can be specialised for specific tasks, making task allocation in these networks

more difficult to manage [32]. Robot task allocations in heterogeneous systems are

2.1 Mobile robot systems 13

determined by the individual capabilities, whereas there exists a greater flexibility in

homogeneous systems and tasks can be assigned dynamically. The advantage of

heterogeneous over homogeneous systems becomes clear when task-flexibility is required in

a FMS environment. In a FMS factory, task variety is common and having a team of robots

with ‘mixed’ resources could execute tasks more quickly if the robots are managed in an

efficient manner. Another benefit of having a heterogeneous mobile robot team is redundancy

and fault-tolerances: if a particular robot in the team has failed due to a malfunction or

requires maintenance, another ‘helper’ robot that is suited to the task can assist and take over

the job; in this way, robots can help each other and eliminate potential bottlenecks in a

production environment, thereby ensuring a material flow optimisation [33].

Apart from the benefits associated with task-flexibility, Parker [34] explains some reasons

why heterogeneity exists in multi-robot systems:

 Heterogeneity can present engineering benefits as it can be challenging and

impractical to design single, powerful robots with numerous capabilities.

 Following the point above, it makes economic sense to distribute the specialised

abilities across a team of simple robots, rather than commissioning a smaller group of

expensive robots.

 The reality of diversity in a homogeneous system can exist over time due to robot

wear and tear, differences in robot construction as a result of maintenance, as well as

differences in sensor calibration.

The next two sections introduce two types of collective behaviours inherent in multi-robot

systems and investigate ways in which heterogeneous robots can communicate to influence

team goals.

2.1.4 Cooperative vs. competitive systems

MRS environments can either be cooperative or competitive [35]. In competitive systems,

robots try to accomplish their own self-interests and compete with other robots in the

network. Examples of such systems are strategy games such as RoboCup [36] and chess [37].

Conversely, cooperative systems are more applicable to manufacturing environments as they

14 Literature survey

involve robots that interact with each other, either directly or indirectly, to achieve common

goals. In these systems the robots are not ‘selfish’, but will act in ways that would benefit the

global goal of the system; for example, in a production environment, robots can cooperative

to alleviate the problem of bottlenecks in the system [33] and hence, prevent significant

decrease in efficiency.

In MMRS networks, cooperative systems can be further categorised into collective swarm

systems and intentionally cooperative systems, as depicted in Figure 2.3 [34]. Collective

swarm systems are pertinent to homogeneous mobile robot networks where robots can

resemble the characteristics of birds, bees, or ants – an area of research commonly known as

swarm robotics [38]. On the other hand, heterogeneous robot teams are intentional

cooperative systems since robots are aware of each other and act based upon the abilities of

the members in the team. These systems can be further categorised into strongly cooperative

or weakly cooperative solutions, based upon the level of communication between the robots.

Solutions can form high levels of communication and synchronisation (strongly cooperative),

or allow for periods of operational independence among robots (weakly cooperative) [34].

Figure 2.3. Categorisation of cooperative behaviours in MMRS.

2.1.5 Communication

Literature [26] identifies two forms of communication inherent in MMRS networks: implicit

and explicit. Explicit communication involves a direct form of data exchange (either unicast

or broadcast) between robots in the network, and will make use of: 1) an on-board

communication module, 2) a physical communication medium, and 3) a data communication

protocol. Implicit communication is an indirect form of data retrieval, where robots

2.1 Mobile robot systems 15

communicate by either using the changes in the environment through sensors, or collecting

information left by other robots.

The advantage that explicit communication systems has over implicit types is the accuracy of

the data exchanged between robots, however, the communication bandwidth of the system

can increase in proportion to the number of robots in the network, which can lead to a

decrease in system performance. Implicit networks are more stable and fault tolerant, but is

not an ideal option in a manufacturing system due to the dependency on data integrity to

ensure predictable outcomes in these environments.

2.1.6 Control architectures

The control architecture of a MMRS is critical to the design of the network [39] since it

influences other decisions that are made later in the design stage, such as cooperation and

communication methods [40]. Parker [34] identifies four types of control architectures:

 Centralised architectures control the team of robots from a single point. The

advantage of this architecture is the global view point of the environment and the

robots, thus optimal plans can be produced [26]. Nevertheless, centralised systems

are vulnerable due to the single point of failure, and can be practically unrealistic for

real-time control scenarios, for example, when mobile robots are required to perform

dynamic obstacle avoidance techniques.

 Decentralised architectures comprise of individually controlled robots, each having

complete control of their actions based upon local knowledge. This system is robust

to failure and flexible; however, it may be difficult to ensure the execution of high

level goals due to the local, independent behaviour of each robot in the team.

 Hierarchical control architectures combine centralised and decentralised schemes.

Similar to military operations, there are ‘leader’ robots in the team that assume

control over other ‘follower’ robots. Hierarchical architectures are still prone to

failure due to the dependency of the ‘follower’ robots on the ‘leaders’.

 Hybrid architectures have become a popular control scheme [34]. It is also a

combination of the centralised and decentralised architectures, but unlike

16 Literature survey

hierarchical systems, no particular robot has control over another in the team. Hybrid

systems ensure localised robot control for actions that require real-time processing,

and support control for higher-level team goals [41].

2.2 Robotic middleware

The robotic middleware is an abstraction layer established between the application layer and

operating system in computing systems, as shown in Figure 2.4 [42]. The purpose of the

middleware in robotic systems is to mask the heterogeneity of hardware devices in the

network, created by differences in sensors and actuators. Another reason is software related,

and includes the simplification of software design and project development costs [42]. This is

achieved by the provision of standard interfaces to robot sensors and actuators, ensuring

software modularity and the deployment of re-usable, high-level code on different hardware

architectures [43].

Figure 2.4. The middleware layer.

The middleware layer plays a key role in the cooperation of multiple mobile robots,

especially heterogeneous configurations. The abstraction allows engineers to focus on the

development and integration of: 1) robot localisation, navigation and obstacle avoidance [44],

and 2) high-level cooperation algorithms [45]. Hence the intricacy of the underlying control

of hardware devices is avoided since it is managed by the middleware.

2.2 Robotic middleware 17

2.2.1 Middleware roles

The choice of robotic middleware can be a challenging task at the start of a design process as

there is a myriad of platforms available. Investigating the possible use of each platform

requires an understanding of the various roles provided by a middleware service; the

following middleware roles are discussed in literature:

 Support communication and interoperability [46]: Since robots and devices are

designed by different manufacturers, communication and simple interoperability

mechanisms are required.

 Automatic discovery and self-configuration [46]: The mobility of robots makes them

dynamic systems and given that they operate in flexible environments (e.g. FMS),

automatic discovery and configuration of external devices may be required to enhance

efficient operations.

 Hardware abstraction [42]: The heterogeneity of low-level robot devices such as

sensors and actuators must be masked through the use of software drivers and

standardised interfaces.

 Software modularity [42]: A library of device drivers and interfaces provided by the

middleware platform will make software development more convenient, portable and

scalable.

 Cooperation operations [46]: The functionality to integrate high-level robot decision

making applications is necessary for the development and use of cooperation

mechanisms.

 Self-operable [44]: The middleware layer is required to operate with the low-level

software tiers without the direct interference from the user.

 Simulation component [47]: In order for the fast prototyping of solutions, the

middleware must provide a simulation component or the functionality to plug-in a

simulation service.

The following section investigates the application of these roles in some of the common

middleware platforms that are adopted in MRS networks.

18 Literature survey

2.2.2 Middleware platforms

The Internet Communications Engine (ICE) [48] is a robotic middleware built for distributed

systems, using an object-orientated approach. The communication protocol involves the use

of ICE objects that reside in local or remote robots, an interface, and clients. Objects respond

to client commands by adhering to the interface’s definition of behaviours. ICE is

characterised for multi-platform and multi-language support, and its application was seen in

the development of the Multi-Robot Task Module (MRTM): a module created with the task

of robots helping each other by transparently including the behaviours performed by others

into its own set of behaviours [49]. In the MRTM system, each robot runs an instance of

MRTM which allows for the access of behaviours of other robots in the network, but does not

necessarily implement them.

The Physically Embedded Intelligent Systems (PEIS) Kernel [50] provides self-configuration

of PEIS devices in the network. Devices are permitted to dynamically join and leave the

Kernel since they are all connected to a uniform communication model. The motivation

behind the PEIS middleware was to use smart robot technology in simple components,

functioning in smart environments, and establish cooperation through these components

rather than employing expensive, monolithic robots. A wide range of PEIS experiments were

conducted to prove the utilisation of different robotic components in various tasks [51], [52].

Another middleware that allows for automatic discovery and configuration is the Universal

Plug and Play (UPnP) Robot Middleware [53], developed by the Korea Institute of Science

and Technology. The UPnP middleware enables robots in the network to discover and

interact with devices such as cameras and sensors.

The Miro [54] middleware, like ICE, was developed using an object-orientated approach but

adhering to the Common Object Request Broker Architecture (CORBA) standard, a

framework for developing and maintaining distributed software systems. An application of

Miro was seen in the research of heterogeneous mobile robot cooperation in search and

rescue missions [43]. The research used the capabilities of different robots in the network to

divide the search space by sharing local maps and sensor data, and also involved the

development of pyMiro, a Python binding for Miro.

2.2 Robotic middleware 19

The Cooperative Intelligent Network Management Architecture (CINeMA) middleware was

developed to also function in robotic search and rescue disaster missions [55]. CINeMA

ensures network connectivity and localisation through robot cooperation in disaster areas of

collapsed buildings or underground, where the 1) radio signal strength is low due to the

absorption and reflection of signals, and 2) GPS signal is affected. The approach used by

CINeMA is to monitor the RSSI (Received Signal Strength Indicator) and LQI (Link Quality

Indicator), and cooperatively move robots within a safe region of communication through the

application of Enhanced Kalman Filters (EKF) and k-NN algorithms, based on the signal

strength. The middleware also supports the re-establishment of a ‘lost’ robot’s localised

position by using a two-way ranging (TWR) technique.

ARCADE (Architecture for Real-time Control and Autonomous Distributed Execution) [56]

is a platform that can be integrated with ICE to transfer data between real-time databases

(RTDB) so that information can be exchanged between robots in the team. The RTDB used

in ARCADE is KogMo-RTDB, which was originally developed for autonomous cars [57].

The purpose of the RTDB is to ensure the real-time management and exchange of data

objects during communication, and it was shown to handle large, complex datasets while

maintaining reliable real-time performance [58].

CoHoN [59] was developed to work with heterogeneous communication hardware using a

small-sized data packet in the communication, which benefits communication bandwidth and

efficiency. The communication protocol involves a topic based publish/subscribe method,

and the message selection process is constructed through a multicast tree. The subscriber

broadcasts message requests and will receive responses from nodes with the relevant data; the

subscriber then selects the best node to receive data streams from. The advantage of this type

of communication is the distributed characteristic to discover all of the available data routes,

and the avoidance of a centralised routing option.

A middleware that supports the flexible inter-operability of components to simplify the

software development and integration process is the Mobile and Autonomous Robotics

Integration Environment (MARIE) [60]. MARIE was developed for integrating both new and

20 Literature survey

existing software components in robotic networks, and provides flexibility by allowing for

the adaptation of different applications and communication protocols.

The Player Project [61] is an open source robotic network server that provides a client with

interfaces to communicate with the sensors and actuators of a robot through Transmission

Control Protocol (TCP) sockets. The server contains a large software library for device driver

implementations and can interface with Stage – a two dimensional simulation package that

can be used to prototype the software development process. Player can be installed on a

computer that is directly connected to the robot hardware, and since it is a server operating

with TCP socket communication, multiple clients (residing on local or remote computers) can

connect to Player via different sockets and thus have access to the robot hardware on a

particular node. The client application programs can be written in any programming language

that supports TCP socket communication; these include C, C++, Java, and Python. Player

was used by Naidoo et al. [12] to establish MMRS cooperation in an application that involves

the reduction of bottlenecks in manufacturing systems.

In support of its technology programs (Mars and Intelligent Systems), NASA implemented

the Coupled Layer Architecture for Robotic Autonomy (CLARAty) [62]. The middleware

was developed through collaboration between NASA, the California Institute of

Technology’s Jet Propulsion Laboratory, Carnegie Mellon University, the Ames Research

Centre, and the University of Minnesota. CLARAty’s architecture comprises of a functional

layer and a decision layer. The functional layer includes components such as digital and

analogue I/O, motion control, mapping, navigation, vision, planning, terrain evaluation and

simulation [62]. The decision layer is responsible for robot reasoning, it thus plans,

schedules, executes activity plans, and dynamically modifies sequences if required [63]. The

communication between the functional and decision layers is achieved through a client-server

and publisher/subscriber method.

ASEBA is an event-based architecture that was developed to improve the efficiency and

scalability of low-level robot control [64]. The middleware is implemented in a robot system

that contains many microcontrollers, each being connected through a shared communication

bus. Software tasks are distributed to all microcontrollers, and only the relevant data is

2.2 Robotic middleware 21

communicated to the main processor; in this way, modularity and efficiency is

maintained [64]. Each microcontroller can communicate with sensors and actuators, and even

process data with some low-level control, due to the powerful capabilities of modern

microcontrollers. ASEBA hence improves real-time robot performance but also increases

software complexity; although the developers have tried to reduce this drawback by

providing data abstraction mechanisms and an Integrated Development Environment (IDE) to

develop and debug the robot control software [64].

The Carnegie Mellon Navigation (CARMEN) platform is an open-source toolkit for robot

control software [65], that comprises of three layers: 1) the base layer, which masks the low-

level details of the hardware, 2) the navigation layer provides localisation, motion planning,

and dynamic object tracking functionality, and 3) the user-level layer, reserved for tasks that

can be developed by users to implement the functionality from the navigation layer.

CARMEN also provides a simulation environment and the programs that were developed in

this middleware have proven to be robust to a diversity of failures, as investigated by

Montemerlo et al. [65].

Another middleware platform that was created as a toolkit, to be used by students, is Pyro

(Python Robotics) [66] – an open-source software that uses a Python-based robotics

programming environment. Pyro comprises of multiple modules such as finite state

machines, direct control, behaviour-based control, reactive control, and fuzzy logic. It can

also be integrated with several robot simulators, viz. Stage, Gazebo, Robocup soccer, and

Khepera [67]. The communication protocol in Pyro is structured on a client-server approach,

and the software modularity allows for inter-changeability of user programs between small

and large robotic systems [67].

Orca [68] is an open-source platform which applies the principles of Component-Based

Software Engineering (CBSE) [69] to develop component-based robotic systems. CBSE

provides software developers with opportunities to use existing plug-in components, rather

than develop modules from first principles. This approach offers tremendous software

engineering advantages since it enforces modular systems and thus reduces maintenance

costs, and increases flexibility and robustness of the complete system. Orca uses the ICE

22 Literature survey

middleware as its core for communication between components; this enables the platform to

function as a distributed system, for example, two Orca components can communicate

between each other, each written in different programming languages, running on two

separate operating systems [68]. An application of Orca was seen in the DARPA Grand

Challenge III [70], an autonomous ground vehicle competition, where the platform was

implemented on one of the teams system.

OROCOS (Open Robot Control Software) [71] is an open-source middleware that adheres to

the CORBA standard. The aim of OROCOS is the development of a modular platform for

robot and machine control. OROCOS supports four C++ libraries, as shown in

Figure 2.5 [72]: 1) the OROCOS Real-Time Toolkit (RTT), provides the infrastructure and

functionality to build applications in the C++ programming language, 2) the components

library, containing components for management and control, 3) the kinematics and dynamics

C++ library, which allows for the calculation of kinematic chains in real-time, and 4) the

Bayesian filtering library provides algorithms for the application of Kalman and Particle

Filters. An OROCOS application can be built using pre-defined components that are

contributed by the robotics community, or developed from the beginning by using the RTT.

Figure 2.5. OROCOS libraries.

The Microsoft Robotics Developer Studio (MSRDS) was developed by Microsoft to enable

users to program robots in the Windows-environment [73]. The motivation behind the

development was to implement Service-Orientated Architectures (SOA) into the area of

robotics. The SOA programming approach allows users to directly interchange services so

2.2 Robotic middleware 23

that a desired behaviour can be achieved [74]. The MSRDS consists of four components in its

architecture [73]:

 The concurrency and coordination runtime library provides classes and methods for

assistance with concurrency, coordination and failure handling, and provides the

functionality to write code segments that operate independently.

 The decentralised software services library allows applications to run multiple

independent services in parallel.

 The visual simulation component is a 3D simulation environment and includes the

functionality to perform physics simulations. The environment supports both indoor

and outdoor scenes, and has a variety of simulated robots such as LEGO NXT, iRobot

Create, a KUKA robotic arm, and a Mobile Robots Pioneer 3DX, amongst others.

 The visual programming language allows users to graphical define the way in which

data should be transferred in the application.

In addition to the components mentioned above, MSRDS includes a variety of services and

packages that are configured to work on specific robots [73].

A recently popular middleware used in the robotics community is the Robot Operating

System (ROS) [75], which uses a client-server method for control flow and

publisher/subscriber approach for data flow. ROS nodes communicate with each other in a

synchronous form or an asynchronous peer-to-peer (P2P) manner by publishing messages

and subscribing to published messages. It has been developed in a modular architecture so

that software packages can be easily integrated into the ROS framework. A wide variety of

ROS modules are available for various robotic operations such as robot path planning,

navigation, obstacle avoidance, and simulation tools, amongst others [76]. ROS has become a

popular choice of middleware for the following reasons:

 ROS is an open source software package.

 A large software library exists for device driver implementations.

 Commercial robots are now being powered by ROS [16].

 The ROS industrial consortium has propagated its use in industry [17].

 ROS is actively developed and updated.

24 Literature survey

 Fault tolerance solutions exist in ROS due to the isolation of individual nodes [42].

 Client applications can be programmed in various programming languages.

 Due to its popularity, a great measure of help is available through community forums

and wiki-tutorials.

The comparison between each middleware platform discussed in this section is summarised

by Table 2 and Table 3 [42].

Table 2. Middleware comparisons (part 1)

Middleware
attributes

ICE PEIS Miro CINeMA ARCADE CoHoN MARIE Player

Control
model

Central-
ised

Decen-
tralised

Event
driven Hybrid Central-

ised

Message
orient-

ated

Central-
ised

Not
applicable

Fault
tolerance

No
explicit

fault
handling

No
explicit

fault
handling

No
explicit

fault
handling

Yes Yes Yes No

No
explicit

fault
handling

Standards/
Technology

CORBA P2P CORBA OPRoS ICE Publish/
subscribe

Interop-
erability

Tech-
nology

3-tier
architect-

ture

Open-
source

Yes Yes Yes No Yes Yes Yes Yes

Real-time Yes Yes No Yes Yes Yes No No

Windows Yes No Yes No No No No Yes

Linux Yes Yes Yes Yes Yes Yes Yes Yes

Simulator No No Yes No Yes No Yes Stage,
Gazebo

Distributed Yes Yes Yes Yes Yes Yes Yes Yes

Security Yes No No Yes
Indirectly
support-

ed
No No Yes

2.3 Smart factories 25

Table 3. Middleware comparisons (part 2)

Middleware
attributes

CLARAty ASEBA CARMEN Pyro Orca OROCOS MSRDS ROS

Control
model

Centralis-
ed, decen-

tralised,
event
driven

Event
driven Hybrid Indep-

endent

Not
applic-

able

Event
driven

Distrib-
uted

messag-
ing

Message
orientated

Fault
tolerance

Yes No Yes No

No
explicit

fault
handling

No
explicit

fault
handling

Yes

No
explicit

fault
handling

Standards/
Technology

Object
Orientated

Event-
based TCP, IPC

TCP,
XML,
HTTP,

OpenGL

ICE CORBA .NET/SOA
Message,

RPC
services

Open-
source

Partially Yes Yes Yes Yes Yes Comm-
ercial Yes

Real-time Most
modules Yes No No No Yes No Yes

Windows Only
cygwin No No Yes Yes Yes Yes Partial

functions

Linux Yes Yes Yes Yes Yes Yes No Yes

Simulator Yes Yes Yes Yes Yes No Yes Yes

Distributed Yes Yes Yes No Yes No Yes Yes

Security Yes No Yes Yes No No Yes No

2.3 Smart factories

This section begins by introducing the Industry 4.0 concept, and discusses the characteristics

and requirements of the model in an industrial setting. Machine-to-Machine (M2M)

communication and Advanced Robotics are also discussed, since they are considered as key

pillars of Industry 4.0.

26 Literature survey

2.3.1 An introduction to the Industry 4.0 concept

In the recent past, industrial processes began to implement information technology (IT), but

the current global trend goes beyond this due to the technological advancement of electronics

and the internet. The term ‘Industry 4.0’ originated in Germany, although its concept is

largely adopted in other countries, also known as the Industrial Internet of Things, Smart

factories, or Advanced manufacturing [7]. The notion that these terms have in common is that

the traditional manufacturing and production methodology is at the cusp of a digital

transformation. The present increase in the use of information and communications

technology (ICT) in manufacturing, together with the implementation of ‘intelligent’

embedded sensors and devices has realised an integration between the real-world and virtual-

world, known as the cyber-physical production system (CPPS), depicted in Figure 2.6 [77].

Figure 2.6. The cyber-physical production system.

2.3.1.1 Cyber-physical production systems

CPPS’s are machine networks that are organised in a similar fashion to social networks. They

link IT with the mechanical and electronic components of a factory, which enables

communication between the components through the network. In this way, machines can

share information about faults, stock or demand levels, and changes in customer orders,

2.3 Smart factories 27

which can essentially lead to the coordination of processes and production targets to meet

deadlines. Apart from the utilisation of ‘smart’ machines, CPPS’s allow for the networking of

these machines and smart products to the entire supply chain, thus building smart factories

that are able to produce products based on consumer demand. An illustration of this concept

is given by Figure 2.7 [78].

Figure 2.7. Industry 4.0 environment.

2.3.1.2 Characteristics and requirements

In their report [79], Schlaepfer et al. discuss four main characteristics of Industry 4.0, and

how these reveal the capacity for change in traditional manufacturing environments:

 Vertical networking of smart production systems involves the use of CPPS’s to enable

factories to dynamically react to changes in customer demand or stock levels, and

establish production systems that are customer-specific and individualised. Another

contribution of CPPS’s in vertical networking is maintenance management and waste

reduction; since resources and products are networked, variations in quality and

28 Literature survey

machine breakdowns can be attended to more rapidly, thus optimising the use of

resources.

 Horizontal integration is the networking of inbound logistics, warehousing,

production, marketing, sales, and outbound logistics, all of which is possible through

the CPPS, ensuring global optimisation. The continuous traceability of a product (also

known as ‘product memory’) can be achieved, allowing for the dynamic mass

customisation of products at various points in the production process.

 Through-engineering occurs seamlessly during the design, development and

manufacturing of new products due to the availability of engineering data at all stages

in a product’s life cycle.

 Exponential technologies such as sensor technology and nanotechnology accelerate

individualised solutions, flexibility, and cost savings in manufacturing processes. An

example of this can be seen in the field of mobile robotics, where artificial

intelligence (AI) and advanced sensor technology can increase autonomy, leading to

more flexibility in manufacturing processes.

 The requirements of a smart factory environment involve a variety of technological

developments, these include [7]: 1) ICT to digitise information; 2) CPPS’s that use ICT for

monitoring and control of physical processes, an example can be intelligent robots that are

able to reconfigure due to dynamic product specification changes; 3) distributed network

communications to link resources, machines (or robots), products, people, and systems;

4) simulation and modelling tools for product design; 5) data collection, big data analysis and

cloud computing.

2.3.2 M2M communication and Advanced Robotics

Research identifies, amongst others, Machine-to-Machine (M2M) communication and

Advanced Robotics as key technology enablers, or pillars in the Industry 4.0 concept [18].

Figure 2.8 [80] illustrates the concept of M2M communication in smart factories. The

networking between machines and decentralised control at the machine allows for the

possibility of dynamic product changes to be made at the source. Figure 2.8 also gives a

2.3 Smart factories 29

holistic view of the discussion in the previous section, relating to the networking of smart

materials, machines, products and cloud networks for vertical and horizontal benefits.

Figure 2.8. M2M communication in smart factories.

The British Prime Minister, Theresa May, announced in January 2017 that Industry 4.0 was

one of the five areas of focus in a plan by the British government to boost the economy [13].

Previous to this, in November 2016, the British government announced a £4.7 billion budget

for research and development into four areas, two of which are robotics and artificial

intelligence [13]. Figure 2.9 [15] is a good representation of the impact of robotics on the

industrial revolutions. Robotic mobility (3rd robotic revolution) and intelligent robot systems

(4th robotic revolution) allow for decentralised control, which fits in directly with the Industry

4.0 concept. Decentralised control, configurable robots, and robot cooperation will increase

flexibility in the smart factory and enable the ability to rapidly reconfigure systems to adapt

to variations in consumer product demand [7].

Future trends in mobile robots reveal that in 2020, 26 million mobile robots will facilitate

autonomy in smart factories, unmanned transportation, and connected homes [15]. Mobile

30 Literature survey

robotics and cooperative robotics are also considered as ‘topics of the future’ in industry and

institutions of higher learning [14].

Figure 2.9. Robotics and Industry 4.0.

In order for robots to be easily integrated into manufacturing processes the issue of robot

communication protocol standards must be considered [7]. If the standards are proprietary or

only adapted nationally, manufacturers will be forced to use equipment supplied by a few

companies, which can increase costs and limit the adoption of Industry 4.0 due to the lack of

flexibility in the system [7]. Hence, international standard communication protocols and

interoperability across robotic interfaces are essential to the implementation of robotic

systems in smart factories.

2.4 Chapter summary

The literature survey investigated the role of mobile robot systems in industry; associated

topics such as heterogeneity, robot communication, and middleware platforms were also

discussed. The survey concluded by discussing the characteristics and requirements of a

smart factory environment as well as the influence of advanced robotics in these

environments.

Chapter 3 Design of the framework

The aim of this chapter is to present the methodological approach taken during the design of

the framework. The first section outlines the requirements of the framework and discusses

some components of the preliminary design. The subsequent sections explain the design

choices made over other possible solutions and, in some cases, background knowledge about

specific topics are given to enhance the reasons for the corresponding design decisions. The

chapter concludes by discussing the presentation of a detailed design overview, together with

design specifications and assumptions.

3.1 Design requirements

The preliminary design overview is represented by Figure 3.1. The components in the figure

are discussed in the following list, which outlines the important requirements of the

framework to function in a smart factory environment:

 The robot middleware is one of the essential components of the framework since it

masks the differences of the heterogeneous robots in the network, thereby establishing

common interfaces to seamlessly communicate with each robot.

 The local control program is necessary for indirectly communicating with the robot

hardware through the interfaces provided by the middleware layer. Local control is

required for fast, real-time robot functions such as obstacle avoidance and local

navigation.

 The application of an international standard data communication protocol will

promote flexibility of the framework for integration into a smart factory environment.

Interoperability across robot interfaces, as well as the other components, is also

required for successful system integration.

32 Design of the framework

Figure 3.1. Preliminary design overview.

 A graphical user interface (GUI) assists the user in configuring robots or tasks in the

network. The GUI communication interface will allow for a connection to any remote

robot in the network.

 The engineering artificial intelligence (AI) component allows for the programming of

intelligent user algorithms that will create a network of smart mobile robots,

responding to specific states in the manufacturing process.

 The communication architecture is a distributed system, thus enabling flexible and

fault-tolerant solutions: the GUI and AI components are not limited to fixed locations

in the network.

 A hybrid control architecture is required for the control of mobile robots in the team.

Decentralised control is necessary for the local, real-time robot response to obstacle

avoidance and navigation, particularly in a dynamic manufacturing environment that

comprises of moving machinery, people, and other mobile robots. The centralised

control part of the hybrid scheme involves the high-level, decision making process

which does not require real-time responses from the robot. The single point of failure

3.2 ROS middleware 33

in the high-level control can be eliminated by the use of a redundant system, located

at another point in the distributed network.

 Plant simulated data is required for the testing and simulation of the framework’s

functionality.

 A human-machine interface (HMI) is necessary for the display of plant essential data

as well as the current status of each robot in the team.

3.2 ROS middleware

Section 2.2 discussed a comprehensive survey on the various robotic middleware platforms.

The Robot Operating System (ROS) was chosen to be implemented among them due to the

following reasons:

 ROS is a free, open source installation.

 ROS installs on the popular Linux Ubuntu distribution, and is actively developed and

updated.

 There is an availability of a large software library for device driver implementations.

 ROS is a distributed system, thus software nodes and user applications can run on

different machines and they can communicate with each other.

 The modular design of ROS allows for easy integration of additional

functionality [81].

 Commercial robots are powered by ROS [16].

 ROS has been introduced into industry through the ROS industrial consortium [17],

and is backed by well known industrial players such as Yaskawa, ABB, BMW, and

Siemens, amongst others.

 Applications can be programmed in various programming languages, viz. Python,

C++, Lisp, and Java.

 Due to its popularity, a great deal of help is available through wiki-tutorials,

community forums and research papers.

34 Design of the framework

The ROS middleware consists of nodes, messages, topics and services. Nodes communicate

with each other by passing messages, which are made up of data types, including nested

structures and arrays. The ROS nodes can communicate in two ways: through a synchronous

service, or asynchronous topic. Services behave like function calls in conventional

programming languages, and they are defined by specific names, provided by a node. A

request to a service will result in a response with data of a specific data type (e.g. boolean,

string, integer, etc.). Topics involve the streaming of data by a particular node. In this

scheme, the communication between nodes occurs in a peer-to-peer (P2P) manner by

publishing messages and subscribing to published messages. An initial event called the

‘naming service’ is centralised and relies on a master node, as shown in Figure 3.2 [47].

Figure 3.2. Topic-based communication in ROS.

The communication sequence between a publisher and subscriber involves the following

steps [82]:

1) The publisher node registers (publishes) the topic (e.g. a laser scan) to the master node,

also referred to as the naming server, and informs the master about the entry point of topic

data.

2) The subscriber node queries the master on access to the particular topic.

3) The master sends a response to the subscriber with entry point data, such as the host

address and port number.

3.3 Industrial data communication 35

4) The subscriber now directly communicates with the publisher (host) via Transmission

Control Protocol (TCP) or User Datagram Protocol (UDP) connections, requesting for topic

data.

5) The publisher responds to the subscriber by sending the topic data stream (e.g. laser scan

data).

In relation to the design of the framework in this research, each remote robot in the network

was powered by the ROS middleware and consists of master and subscriber/publisher nodes.

The reason for the use of multiple masters in the multi-robot system was to enhance the

reliability of the system and eliminate the single point of failure. Also, individual masters

mean that each robot has direct, real-time control over its sensors and actuators, which is a

necessity in both single and multiple robot systems.

The ROS robot simulation package implemented in the design and development of the

framework was Stage – the two dimensional simulator. Stage provides interfaces for the

simulation of robot sensors and actuators, without the actual physical hardware. Robot

attributes like size, colour, and shape can be created in model files, and a map of the

environment can also be loaded as an image into the Stage ‘world’. This functionality allows

for the fast prototype testing of robot behaviours in various scenarios without using the actual

robot hardware.

3.3 Industrial data communication

The data communication standard applied in an industrial setting is crucial to the

interoperability of devices in the network. Common communication interfaces across all

devices are necessary in order to maintain flexibility and robustness in the system, and as

discussed, it is a requirement for the adoption of a smart factory concept. Before discussing

the data communication standards applied in industry and the option chosen in the design of

the framework, a review of the basic industrial communication model is required.

36 Design of the framework

3.3.1 Communication model

The traditional hierarchical model of the communication and control system approach

adopted by most manufacturing operations is given by Figure 3.3 [83].

Figure 3.3. Hierarchical communication and control model in manufacturing plants.

The hierarchical structure in Figure 3.3 begins from the low-level, real-time control response

and monitoring of Input/ Output (I/O) field devices (e.g. sensors, actuators, digital I/O), to the

slow response, higher-level control of the manufacturing processes. The Distributed Control

System (DCS) and Programmable Logic Controller (PLC) units have the function of

controlling a variety of electrical, mechanical or process equipment through data signal

processing and the execution of industrial computer programs. PLC’s contain Central

Processing Units (CPUs) that operate at fast program cycle times. In high-speed

manufacturing plants, there is a greater demand for extremely fast program cycle times, to

monitor and control real-time operations. Robots also form part of “Level 1” (in Figure 3.3)

due to the control of its own hardware through the use of its on-board microprocessor.

The Supervisory Control and Data Acquisition (SCADA) system retrieves data from level 1

and presents it in the form of status messages, graphics, and trends for the plant operator or

engineer to analyze and control equipment on the factory floor. A level higher sees the

Manufacturing Execution System (MES), or in some applications the Manufacturing

Resource Planning (MRP) system, whose function is the management and scheduling of

engineering resources and processes to optimise productivity on the factory floor. The MES

also bridges the gap between the manufacturing process and the business management level

of the company.

3.3 Industrial data communication 37

The highest level in the hierarchy in Figure 3.3 is the Enterprise Resource Planning (ERP)

tool, which is a business management software package that specialises in: 1) the planning of

production, product demand and supply chains, and 2) the management of material,

warehouse logistics, maintenance activities, and human resources. ERP systems are value

added services to the business as they assist senior managers with meaningful data and tools

to efficiently manage areas of the business.

3.3.2 Data communication standards

Data communication technology in industry was originally developed on serial-based

interfaces by different companies, which later became standards. Some of these standards

include PROFIBUS [84], CANbus [85], Modbus [86], and CC-Link [87], among many

others. PROFIBUS has been the most successful serial bus technology [88], and is still

widely adopted in industry today. In the modern era, Ethernet-based communication

protocols are becoming very popular due to the increased speed offered by the network

architecture and the cost effective solutions that exist [88]. These networks integrate well

with the Industry 4.0, smart factory concept, primarily attributed to the real-time

communication ability and ease of installation of the Ethernet infrastructure. Many Ethernet-

based communication protocols exist, the most popular ones are Ethernet/IP [89],

PROFINET [84], and EtherCAT [90].

Ethernet/IP is an industrial Ethernet protocol, which uses the first four layers of the Open

System Interconnection (OSI) model, as shown in Figure 3.4. The generic OSI model was

created by the International Standards Organisation (ISO) in 1984 and defines seven layers

that describe guidelines for interoperability between various devices in the network.

Ethernet/IP uses the Common Industrial Protocol (CIP) over TCP/IP, which resides in the

fourth (Transport) layer of the OSI model. CIP provides a common set of services and

messages for industrial control systems, and multiple CIP connections can be made over one

TCP connection. An unlimited number of nodes can be connected in an Ethernet/IP system

due to the use of the standard Ethernet infrastructure and switches. The protocol has proven

to provide very efficient slave peer-to-peer (P2P) communications [88], although one of the

drawbacks of Ethernet/IP is its limited real-time capability.

38 Design of the framework

Figure 3.4. The 7 layers of the OSI model.

PROFINET is a popular industrial Ethernet protocol and is widely used by system integrators

and manufacturers such as Siemens. It consists of three classes [88]:

 Class A provides a link to the PROFIBUS network through proxies and remote

procedure calls on the TCP/IP layer. It is mainly used for parameter data and cyclic

I/O since the cycle time is around 100ms.

 Class B is also known as PROFINET Real-Time (RT), with cycle times around 10ms,

providing a more real-time communication interface. Typical applications using

Class B include factory automation and process automation.

 Class C is also known as PROFINET IRT (Isochronous and Real-Time) and requires

specific hardware to produce cycle times of 1ms, particularly used in high-speed and

motion control applications.

EtherCAT is standardised to operate on the second layer of the OSI model, thus since

processes are handled in hardware, each node in the network introduces a minimum

processing latency, enabling fast Ethernet speeds of up to 100Mbits/sec. The EtherCAT

protocol uses standard Ethernet frames, as shown in Figure 3.5 [91], where the protocol data

consists of the EtherCAT header (red) and 1 to 15 datagrams (green). The protocol can

connect up to 65535 slave nodes in a system. Messages are issued by the EtherCAT Master

with data for all nodes; as the message is transmitted from and back to the Master, each slave

3.3 Industrial data communication 39

node processes its datagram and inserts new data into the frame as it passes through (also

termed ‘pass-through reading’). This form of communication allows the EtherCAT network

to achieve maximum bandwidth utilisation.

Figure 3.5. Ethernet frame with EtherCAT data.

The following list is a summary of the key benefits of the EtherCAT protocol [92]:

 EtherCAT is a free and open protocol.

 Fast, deterministic, with very short cycle times.

 International Electro-technical Commission (IEC) standard.

 Supports master-slave and P2P communication.

 Operates on standard Ethernet.

 Slave devices use inexpensive components.

 High precision time synchronisation for high-speed and motion control applications.

Another advantage of the EtherCAT system is that together with OPC-UA (discussed in the

next section), it supports Industry 4.0 convergence of information and automation

technologies [92].

3.3.3 OPC-UA

One of the key requirements of an Industry 4.0 factory is the interoperability of devices and

systems in the network. This can be a challenging task, particularly in networks that contain

heterogeneous devices and various communication protocols, like the few mentioned in the

previous section. A data communication standard that specialises in device and system

40 Design of the framework

interoperability is the OPC Unified Architecture (OPC-UA), developed and maintained by

the OPC Foundation [93]. OPC-UA offers a secure method of server-client communication,

having the ability to securely connect through firewalls and VPN (Virtual Private Network)

connections. Multiple servers (each connected to their own set of homogeneous devices) can

be configured in the network and clients can instruct the server(s) to send data at real-time

intervals. The power of OPC-UA is realised when data is shared in networks that contain

mixed Ethernet protocols such as Ethernet/IP, PROFINET, and EtherCAT, since these

architectures provide OPC-UA servers in order to integrate data into larger systems.

OPC-UA has also made it possible to share data from the factory floor through to the higher-

level business systems such as the ERP, illustrated in Figure 3.6. This communication model

can be compared with the traditional model (Figure 3.3) discussed earlier, where the

scalability of OPC-UA is identified and the integration of devices and systems in a smart

factory becomes a reality.

Figure 3.6. Hierarchical communication and control model with OPC-UA.

Tom Burke, the president and executive director of the OPC Foundation, made the following

statement about OPC-UA and the Industrial Internet of Things (also known as Industry

4.0) [94]:

“OPC-UA is clearly positioned to be the Industrial Internet of Things infrastructure for

moving data from sensors to the cloud. OPC-UA security has been validated and endorsed by

many organizations inclusive of BSI in Germany. We are actively working with all of the IoT

protocols, adding full support of the IoT protocols directly into the OPC-UA base

3.4 IDE and GUI 41

architecture... We have an extensible model that will allow us to plug in any IoT protocol of

the past and present directly into OPC-UA.”

The interoperability among the layers in the architecture shown in Figure 3.6, and the ease at

which the low-level data is made available to the higher level systems in the network, are the

reasons why OPC-UA was chosen as the data communication standard in this research.

The OPC-UA Server implemented in the framework for data tag configuration and real-time

data exchange was Matrikon OPC [95]. The software product was chosen due to its longevity

and stability in the industry, as well as its ability to interface with automation and control

devices of leading manufacturers [95].

3.4 IDE and GUI

As per the discussion on Figure 3.1, the AI component of the framework is required for the

programming of intelligent user algorithms that will create a network of smart mobile robots,

responding to specific states in the manufacturing process. This function is made possible

through the use of an Integrated Development Environment (IDE), which contains various

libraries to assist with the programming of algorithms, interfaces to enable communication

with other devices in the network, and a GUI development environment for the design of

simple interfaces to assist the user with robot and task configuration. Various IDE platforms

were researched; among them were Qt [96], the R-project [97], and Python [98].

Qt is a complete C++ application development environment that provides a rich library of

components used for rapid, and aesthetically pleasing, graphic development. It is available as

open source or commercial installations on Windows, MacOS, and Linux Operating Systems

(OS). Qt can be integrated into an industrial setting through the “QtOpcUa” module, which

enables support of the OPC-UA industrial communication standard. The drawback of Qt is

the use of the C++ programming language, which can be difficult for the end-user to grasp

and seamlessly program algorithms.

The R-project is an excellent tool for statistical computation. The programming environment

contains an integrated suite of software functions for data manipulation and storage, and data

42 Design of the framework

analysis. Programs are written in the R-programming language, however, C, C++, and

Fortran code can be linked and called at run-time for computationally heavy tasks [97]. The

R-project would have been the design choice in this research if it also had the ability to

develop GUI’s together with industrial communication interfaces (such as OPC-UA) for

integration into an industrial robot network.

Python was chosen as the end-user programming language due to:

 its simple object-orientated structure;

 the built-in GUI development platform, named Tkinter, which has a cross-platform

ability and contains a stabile core (being first released almost three decades ago);

 its powerful mathematical libraries such as Numpy, Scipy, and Scikit-learn [99] each

contributing to the depth of the framework in developing advanced algorithms for

robot control and cooperation applications;

 the support of the OPC-UA communication protocol through the use of its OPC-UA

client library;

 its popularity in the computer programming and data engineering fields, making it a

familiar platform for the end-user to work in.

The Python IDE used for the development of the framework was PyCharm (Community

Edition), since it is a free, user friendly IDE, and was sufficient for satisfying the objectives

of the research study.

3.5 SCADA

The purpose of the HMI, or Supervisory Control and Data Acquisition (SCADA) block in

Figure 3.1 is to merely visualize the actual status and values of the plant variables of the

application. Several SCADA packages were researched and many proved too costly to be

implemented in this research study. From the free-version SCADA packages researched,

Ecava IGX [100] was chosen due to it being a web server application, thus there was no need

for an additional client program or software plug-in. The only additional requirement was an

offline or online internet browser (which is a default installation on most computers) to view

3.6 Final design overview 43

the mimic screen. The free, unregistered version gives the user a two hour period to access

the mimic, after which the application shuts down. This limitation was acceptable for the

study since in practice, the SCADA was used for research and simulation purposes and can

always be restarted after the time period has expired.

Ecava IGX also supports the OPC-UA communication protocol and contains an OPC-UA

client; hence it adheres to the data communication design standard of the framework.

3.6 Final design overview

Figure 3.7 gives an overview of the components in the software framework that was designed

for the programming of remote mobile robots in a manufacturing environment.

Figure 3.7. Final design overview of the framework.

44 Design of the framework

The green blocks and lines in the figure represent real-time OPC-UA data communications,

whilst the red structures represent offline, configuration related communication. The control

architecture of the framework is a hybrid one, where the centralised part of the scheme is

seen in the high-level, decision making process involving the Python algorithms and the

OPC-UA data communication.

The goal tasks of each mobile robot are achieved through the OPC-UA tag variables, which

are configured in the Matrikon OPC-UA Server. The robot motion commands and the

mapped environment x and y coordinate points are OPC tag outputs from the Python

algorithm – located anywhere in the network. This distributed feature of the framework

accommodates for the possibility of having multiple programming stations, each able to do

the same task of processing algorithms. The user’s Python algorithm requires plant data,

either actual data from a live plant or simulated data, the latter of which was used in the

framework development and system tests.

Each robot in the network is powered by the ROS middleware. The decentralised part of the

hybrid control architecture is identified by the robot’s local control program, which works in

conjunction with the ROS core to perceive data from proximity sensors (such as a laser range

finder) and to plot paths to goal locations while avoiding obstacles. The Adaptive Monte

Carlo Localization (AMCL) algorithm [101] was used for the path planning and obstacle

avoidance routines, since it is one of the ROS packages and produced a good performance in

simulation tests.

3.7 Functional design specifications

The following list outlines the functional design specifications, defined in order to fulfil the

contributions of the research study:

 Mobile robots operate at linear velocities ≤ 0.2 m/s.

 Mobile robots operate at angular velocities ≤ 0.4 rad/s.

 Range finder sensors are used for distance measurements and are positioned at the

front of each robot.

3.7 Functional design specifications 45

 Robots are required to plan and navigate the environment while avoiding obstacles.

 Required scan cycle time of the robots’ local control program is ≤ 100 ms, so that

real-time response to navigation and obstacle avoidance routines can be performed.

 Required scan cycle time for the higher-level decision making algorithms is ≤ 1 sec.

 OPC-UA tag scan rates are ≤ 500 ms.

 The complete list of OPC-UA Server tags is accessible by the GUI.

 The GUI provides an interface for the mapping of OPC-UA tags to local variables in

the Python high-level control program.

 The GUI provides an interface for the configuration of robot parameters (dimensions,

hardware, technical limitations), and the configuration of task parameters (robot

physical and technical requirements).

 Remote downloading of robot configuration data is enabled through the GUI.

 Robots are assigned static IP addresses since they are located on an Ethernet network,

and are accessed by the GUI through use of these addresses.

 No direct inter-robot communication is permitted.

 The SCADA shows the status of the manufacturing process and the locations of the

mobile robots.

 The use of Python coded machine learning algorithms for high-level robot control is

required.

The following design assumptions are made:

 The Stage simulation environment produces neither noise nor dynamic obstacles,

except in cases where multiple mobile robots are simulated.

 The static map used for the Stage simulation is a direct representation of the

environment.

 Free navigation paths between robot goal locations exist, as per the design of the

static map employed.

 Individual robots ignore the existence of other, multiple robots executing the same

task.

46 Design of the framework

3.8 Chapter summary

This chapter presented the methodological approach taken during the design of the

framework. The design requirements were defined, outlining the key components of the

framework that will enable its functionality in a smart factory environment.

The reasons for choosing the ROS middleware as the core platform for each robot were

discussed, and a description of the communication mechanism employed by the ROS

architecture was described. The section on industrial data communication examined the

communication and control models in manufacturing plants, together with the common

communication standards employed in industry. The OPC-UA data communication standard

that specialises in device and system interoperability was selected as the communication

protocol for the framework due to the ‘interoperability’ requirement of Industry 4.0.

The basis for selecting Python as the programming language for creating the GUI and

developing user algorithms were discussed, as well as the use of the Ecava IGX SCADA

software in the system design. The chapter concluded with a discussion on the final design

overview, and the functional design specifications and assumptions.

Chapter 4 Framework development

Following the discussion on the final design overview in the previous chapter, this chapter

examines the software development of the framework components. The subsequent two

sections are preliminary ones that describe the structure of the approach taken to present the

details of the software development.

4.1 Development and verification strategies

The presentation of the software development for the framework involves a structured

approach, where the main components of the system are discussed in separate sections. Some

discussions will involve the use of flow diagrams to give an overview of the subsequent

work, or to describe the sequence of functionality in the development. In the penultimate

section, a review of the framework is covered with the purpose of conveying a depiction of

the system integration and a summary of the developmental work.

The software development correlates with the verification of the framework, which was done

through a case study approach. A series of case studies are performed in the next chapter, and

involve different scenarios pertaining to mobile robot material handling applications. Hence,

some of the developmental work in this chapter relates to these applications; for example, the

SCADA development section will show the creation of screens that contain material storage

graphics. Likewise, another section such as Python programming features, discuss the

development of user functionalities that are applied in the case studies as part of the

verification of the framework.

48 Framework development

4.2 Development overview

The structural diagram in Figure 4.1 gives an overview of the framework development

discussed in this chapter.

Figure 4.1. Overview of the framework development discussed in this chapter.

The key sections depicted in the figure are summarised below:

4.3 OPC-UA communication 49

 OPC-UA communication involves the configuration of the Matrikon OPC-UA Server

and communication between OPC-UA Clients, viz. Python, SCADA and the mobile

robot system.

 Tkinter GUI discusses the development of the graphical screens for user interaction.

The OPC-UA client configuration and tag assignments are also discussed here.

 The mobile robot system section details the ROS software implementation,

decentralised-local robot control, the Stage simulator integration, and the OPC-UA

client configuration.

 SCADA development covers the creation of the mimic screens for the viewing of plant

data and locations of the mobile robots. The OPC-UA client configuration for the

SCADA node is also discussed.

 Python programming features involves a discussion on the development of three

features which all strongly contribute to the contributions of this research study:

1) local variable mapping to OPC Server tags, 2) heterogeneous mobile robot

cooperation, and 3) support for machine learning applications in robot control

systems.

4.3 OPC-UA communication

The communication arrangement between the Matrikon OPC-UA Server and each Client in

the framework is given by Figure 4.2. The alias (or tag) configuration that represent the

system variables are executed through the Server, which also holds a real-time database of all

tags in the system.

The Matrikon OPC Explorer package is a general purpose OPC Client, provided by

Matrikon, for testing the functionality of the system. The value, quality (good or bad), and

timestamp data of the Server configured tags can be viewed. This functionality was used to

verify the status of the tags before they were actually scanned by the OPC-UA Clients in the

framework.

50 Framework development

The other remote OPC-UA Clients in the framework, viz. Ecava IGX SCADA, Python

Program, and ROS Robot, are each configured to read and/or write values of the OPC tags.

The manner in which each client connects to the server to retrieve data is discussed in the

following respective sections.

Figure 4.2. Communication between Matrikon OPC-UA Server and Clients.

Figure 4.3 shows a brief process of the way in which OPC tags are created through the

Matrikon OPC Server interface. The name of the server was created in the “Alias

Configuration” node and thereafter, each tag in the system was configured as a new alias. Tag

properties such as name and data type are mandatory fields. The update rate was used in

conjunction with the poll when inactive property, which if selected, will continue to update

the value of the tag even if no OPC clients are accessing the tag at that specific time.

If the read only checkbox is selected, OPC clients are restricted from writing values to that

specific tag. Tag values can also be scaled through the use of text expressions, calculation,

linear, square root, and gain/offset functions, all of which were not used in the development

of the framework.

4.3 OPC-UA communication 51

Figure 4.3. Matrikon OPC Server alias (tag) creation.

Figure 4.4 shows two windows positioned side-by-side. The window on the left is the

Matrikon OPC Server with tags configured for the material handling application (discussed in

the next chapter). The Explorer window on the right was used to monitor and verify the

value, quality and timestamp data of the tags in the system.

Figure 4.4. Matrikon OPC Server and Explorer with tag value monitoring.

52 Framework development

4.4 GUI development in Python Tkinter

A concise visual of the GUI functionality is given by the flowchart layout in Figure 4.5. The

main screen contains a menu of buttons, and was used to connect to a remote mobile robot

through the use of an IP address. Each mobile robot operates on a Linux OS, integrated with

the ROS middleware layer. The user is able to ‘ping’ an IP address to check if it exists in the

network. Other buttons such as robot configuration and task management will direct the user

to screens where robots and tasks can be configured respectively for specific applications.

The assign tags button will navigate the user to a screen where OPC-UA tags can be assigned

to local Python algorithm variables.

Figure 4.5. Flowchart of the GUI functionality.

The complete Python code for the Tkinter GUI development is included in Appendix A. It

contains object orientated code for the graphic development of each screen and

accommodates for user interactions that can possibly occur on the screens. The list

represented by Table 4 gives a quick reference to starting places in the Python code where the

development for the major screens (as outlined by Figure 4.5) occurs. The robot and task

related data are stored in text files, located in the directory where the GUI application is

4.4 GUI development in Python Tkinter 53

executed. The distributed feature of the application allows for its execution at any location in

the same Ethernet network of the mobile robots.

Table 4. Starting line reference to the Python code in Appendix A.

GUI screen/function Line reference

Main 100

Connect 173

Robot configuration 228

Robot list 433

Task management 479

Assign tags 687

Robot location 954

4.4.1 Main screen and remote robot connection

The main screen, with offline and online connections, is shown in Figure 4.6.

Figure 4.6. The GUI main screen with offline and online connections.

54 Framework development

In the offline mode, the task locations and download buttons are disabled, whereas they are

enabled in the online mode since the user would be connected to the remote robot via its IP

address. Status messages at the bottom of the screen indicate whether the user “could not

connect to host”, or is “connected to host”, and red or green icons at the top of the screen

signify whether the user is offline or online to the robot respectively. During an online

connection, the ID and name of the robot is displayed (001 (robot001) as shown in

Figure 4.6), this was coded to ensure that the user is connected to the correct robot in the

network.

There is also functionality to view the list of robots in the network by clicking on the Robot

List button, which populates a list in a pop-up window as shown in Figure 4.7. The list is

itemised with the robot ID’s, names, and IP addresses. Static IP addresses are used for each

robot which was sufficient for this research study; however, this can be a cumbersome

method of configuration in a large network of robots. Hence, future development will see the

use of dynamic IP addresses and smarter, automated ways in which the user can connect to

remote robots.

Figure 4.7. The robot list pop-up window.

4.4 GUI development in Python Tkinter 55

The connection between the GUI and the remote robot was made through the SSH (Secure

Shell) protocol [102]. SSH allows for a secure remote login from one computer to another by

using strong encryption methods. The connection works on a client-server model, and was

established through a sequence of steps illustrated by Figure 4.8 [102], where in this

application, the SSH Server is the remote robot’s Linux OS and the SSH Client is the Python

GUI code.

The Python SSH client implementation was achieved through the Paramiko package, a

Python execution of the SSH protocol. The code segment that performs the SSH connection

is found in Appendix A, lines 175–186. During the connection, the remote robot ID was

retrieved from the robot’s Linux OS and was downloaded to the local machine that executes

the GUI.

4.4.2 Robot configuration

The robot configuration GUI pop-up window is shown in Figure 4.9. Each robot was

configured and identified by a robot ID, name, and IP address. The user can also record the

length (L), width (W), and height (H) dimensions of the robot, as well as the technical

limitations such as the maximum load capacity, and linear/angular speed. Other robot

hardware features can be recorded by selecting the appropriate check boxes, this is necessary

for specific tasks that require robots installed with these features.

Figure 4.8. A simplified setup flow of a SSH connection.

56 Framework development

Figure 4.9. The robot configuration GUI screen.

Users are able to add new robots to the current list, and update existing records. The delete

button enables the removal of records from the robot list, while the load function populates

the screen with robot data from the selected field in the list box. Data records for each robot

are stored in text files, located in the same directory as the executable file of the GUI

application.

The compatible tasks list box show the tasks that are able to use the current loaded robot, a

feature that is useful for the programmer when working with robot task algorithms. The

development involved in determining the compatible tasks is discussed in section 4.7.2, since

the feature was used in the cooperation between heterogeneous mobile robots.

4.4.3 Task management

The task management GUI pop-up window is shown in Figure 4.10, which has a similar

layout to the robot configuration screen. Every task is configured with an ID and name, and

the robot requirements for the task are entered in the appropriate fields, which include:

1) maximum robot dimensions, 2) technical characteristics such as minimum robot load

4.4 GUI development in Python Tkinter 57

capacity and speed, 3) the maximum number of robots that are allowed in a team for the

particular task, and 4) the hardware requirements of the robot.

Figure 4.10. The task management GUI screen.

Similar to the robot configuration screen, the task management screen displays a list of

compatible robots for the loaded task, based on the robot requirement fields entered by the

user. As discussed in the previous section, the development involved in determining the

compatible tasks to robots, and vice versa, is discussed further in the chapter.

4.4.4 OPC-UA tag assignment

The variable file selection tool in Figure 4.11 allows the user to choose a variable list from

possible algorithm files for a specific application. The tag assignment GUI function is a

valuable feature of the framework since the user can define any local variable name in the

algorithm and then simply map the variables to the OPC-UA tags, which are automatically

scanned in the “OPC Tags” pop-up window, shown in Figure 4.12. The mapping is necessary

for the loading of OPC-UA tag values to local variables without the user directly searching

and coding tags in the algorithm (or program). This gives the system flexibility and ease of

58 Framework development

use. The process by which OPC-UA tags are read from the Matrikon OPC Server is discussed

in section 4.4.6.

Figure 4.11. Algorithm and robot tag assignment screen.

Figure 4.12. Tag assignment screen with OPC tag list pop-up window.

4.4 GUI development in Python Tkinter 59

4.4.5 Robot location

The task location configuration screen, shown in Figure 4.13, is only accessed when an

online connection to the remote robot is made. The purpose of this utility is for the calibration

of x-y coordinate points in an environment where the robot’s localised coordinates do not

correlate with its actual location on a map. Through this screen, the user is able to move the

robot in the environment by clicking on the motion command buttons, and assign x-y data to

specific task locations. This data can then be used by the robot to move to an actual task

location, and not one that is incorrect due to robot calibration errors.

Figure 4.13. The task location configuration screen.

4.4.6 Python OPC-UA Client

The Python OPC-UA Client was established through the OpenOPC library, which provides

methods for connections to OPC Servers and methods for reading and writing values from/to

OPC tags respectively. The flowchart in Figure 4.14 outlines the communication sequence

60 Framework development

required to 1) connect to an OPC Server, 2) write or read tags, and 3) disconnect from the

Server. The creation of an OPC Client object (opc in Figure 4.14) is required to initiate the

communication, and the IP address of the Server is specified. In the figure, the localhost

address is used which implies that the Client and Server reside on the same local machine.

Connection to the Server requires the use of a Server name; in this case it is

Matrikon.OPC.Simulation.

Figure 4.14. Python OPC Client communication with the Server.

The writing of OPC tags involves the specification of the Server alias (Server01), followed

by the tag name. The tagname is then assigned the value retained in the locvar variable, as

per Figure 4.14. The tag read process is similar, yet requires the specification of the tag

index, where “[0]” calls for the value. Other indices can call for the tag quality (good or bad)

or timestamp.

4.5 Mobile robot system integration 61

4.5 Mobile robot system integration

The development overview section in this chapter introduced four topics of discussion in the

mobile robot system integration, each of which is covered in the subsequent sections. An

overview of the remote mobile robot system is given by Figure 4.15, which shows the

communication between each module in the scheme.

Figure 4.15. Overview of the mobile robot system integration.

4.5.1 ROS implementation

The remote mobile robot code was also implemented using the Python programming

language, and the program for each robot’s ROS implementation and localised control is

documented in Appendix B. The Python client library for ROS is rospy, which enables the

ability to interface between ROS topics and services. The flow diagram in Figure 4.16

represents a basic implementation of the ROS core, using topics that were subscribed to

during the initialisation.

Topic names are also defined by the programmer at initialisation, and it is imperative that the

topic name be used in a call-back function where the attributes of the topic are accessed. For

example, the rosAI.py program in Appendix B subscribes to the amcl_pose topic in line 115.

The topic name is defined as amclCb, which is the name of the call-back function in line 107,

62 Framework development

and it is here where the AMCL attributes of the robot’s position are retrieved for use in the

main loop of the code.

Figure 4.16. A basic format of the ROS core implementation.

4.5.2 Robot OPC-UA Client

The OPC-UA Client code implementation for each mobile robot is documented in

Appendix C, under the OPCdata.py filename. Since the program was written in Python, the

OpenOPC library was used here as well, hence the connection to the Matrikon OPC Server

and the methods used for accessing OPC tags are direct implementations of the procedure

outlined in section 4.4.6. One apparent difference is the change in IP address configuration

due to the remote residence of the Client.

The OPCdata.py file was imported as a library in the remote robot control code (Appendix

B), and the functions used from the file were: 1) getxyGoal which reads the robot’s x and y

4.5 Mobile robot system integration 63

coordinate goal location from the OPC-UA Server, 2) setStatus writes the current boolean

status of the robot, whether it is busy or available, and 3) xyPos writes the current x and y

coordinate position of the robot to the OPC-UA Server.

4.5.3 Decentralised robot control

The ROS move_base action client was used to move the robot to a specific location in the

environment by accepting goal coordinate locations. The state diagram in Figure 4.17 shows

the sequence involved in the local navigation algorithm. The sequence begins by waiting for

a goal location command from the higher-level control system, via the OPC Server, and

executes the move_base service after the “busy” status of the mobile robot is set. The status

variable was used to reserve the robot resource to a particular task so that there are no goal

location conflicts.

Figure 4.17. State diagram of the local navigation algorithm.

The goal was reached when the robot was within a distance of 0.5m from the actual location,

which was calculated by using the standard distance formula between two points, as shown in

Equation 4.1.

 𝑑 = √(𝑥𝑔 − 𝑥𝑐)
2

+ (𝑦𝑔 − 𝑦𝑐)
2
 (4.1)

64 Framework development

4.5.4 Stage simulation

The ROS/Stage simulation of the mobile robots involves the use of specific files, each

containing parameters or definitions of the robots and the simulation environment. The

diagram in Figure 4.18 represents the association between the different file types configured

to achieve the simulation in Stage. References to the code in the Appendix are shown in

brackets for each file.

Figure 4.18. Stage file associations with Appendix references in brackets.

The function of each file illustrated in Figure 4.18 is discussed in the list below:

 The world file is a programmable description of the simulation environment, which

includes the robots and the map. The simulation window size and floor size can be

defined here, as well as the attributes of the robots, such as the names, colours, and

start-up positions in the simulation.

 The map file is included in the world file and allows for modular programming

through the use of models.

4.6 SCADA development 65

 The turtlebot file is similar to the map file in that it allows for the definition of models

related to the robots. These include robot size and hardware attached to the robot,

such as laser range finders (LRF).

 The yaml file is required for the specification of the map data, which include the map

image name and the resolution of the image.

 The launch file is essential since it was used to define the links between the various

ROS nodes in the simulation. ROS and Stage topics were configured in this file for

each robot in the system, and the parameters for the localisation algorithm, in this case

AMCL, were also set. In addition, an optional definition for the ROS 3D robot

visualisation tool, rviz, can be configured here.

An execution of the launch file produces a Stage simulation window with the map, robots,

and LRF scanners as shown in Figure 4.19. The map illustrates the locations of two tasks,

each containing source and destination points for the robots to transport material between

goal locations.

Figure 4.19. Stage simulation window with map and robots.

4.6 SCADA development

The SCADA development was performed using the free, unregistered version of the Ecava

IGX software package. The version gives a two hour period to access the mimic, which was

66 Framework development

found acceptable during simulation studies. As mentioned at the outset of this chapter, the

following chapter involves the application of case studies with mobile robot material

handlers, thus the SCADA mimic development caters for this approach. Figure 4.20 shows

the Ecava Project Editor and the configuration page of the mapping between local variables

and OPC Server tags. The OPC setup between Client and Server was a simple process and

once completed, local SCADA variables were used directly as fields in the mimic.

Figure 4.20. Ecava SCADA Project Editor showing the OPC client tag configuration.

The material handling system consists of two tasks, each containing an input material buffer

and an output storage buffer. Mobile robots were tasked with transporting material from the

input buffer to the output storage area for specific tasks, either task #1 or task #2. The task

goal output for the robot was determined by the end user’s Python algorithm and the task

status together with the robot goal locations are shown on the SCADA mimic. The

development of the mimic was done in Inkscape (Figure 4.21), and an example of the

SCADA project execution is shown in Figure 4.22.

4.6 SCADA development 67

Figure 4.21. SCADA screen development using Inkscape.

Figure 4.22. A SCADA project execution in the Internet Explorer web browser.

68 Framework development

4.7 Python programming features

The use of the Tkinter GUI is the first part of the process required by the end-user to program

the high-level intelligence of a mobile robot control system. The second part involves the

user development of Python algorithms that access the data created through the GUI. The

purpose of this section is to present the development involved in providing support for user

programming features that satisfy the contributions of this research study. These features will

also be used in the case studies to verify the performance of the framework.

4.7.1 Local variables and OPC tags

Section 4.4.4 discussed the process of using the GUI to map local variables in the user’s

Python program to OPC Server tags. The reason for the mapping was to enable the user to

define any local variable name in the program (or algorithm) and then simply use the

variables in place of the OPC Server tags, thus saving the programming time of searching for

tags and configuring each of them for value retrieval.

Figure 4.23 is a flowchart representation of the two Python functions that were developed to:

1) obtain the local variables and OPC tags from the mapped file (avarmap.txt, created

through the GUI), and 2) update the local variables with the actual values of the OPC tags, as

per their mapping schedule. The text structure of the mapped file is shown on the left of

Figure 4.23.

The mapVars function goes through each line in the avarmap.txt text file and stores the local

variable names and OPC tag names to arrays locArr and opcArr respectively. Thereafter, the

updateVars function steps through the indices of locArr and reads the corresponding indexed

OPC tag value. Each value is assigned to the mapped local variable defined in the gvar.py

file, which is achieved by using the name attribute of the elements in locArr.

4.7 Python programming features 69

Figure 4.23. Functions that map and update local variables.

4.7.2 Heterogeneous mobile robots and cooperation

The functions that were developed for heterogeneous and cooperative mobile robot

applications involve compatibility checks between robots and tasks. Figure 4.24 gives an

overview of the development of these functions in Python, and the source code can be found

in Appendix E. The getCompatTasks and getCompatRobots functions return compatibility

matrices which are used in the display of compatible tasks or robots respectively in the GUI,

as discussed in sections 4.4.2 and 4.4.3.

70 Framework development

The configuration data required for the execution of these functions is obtained from the

taskconfig.txt and robconfig.txt files, the string structure of which are shown in the figure.

The lines in the files are structured to contain configuration information for the tasks and

robots.

Figure 4.24. Functions developed for heterogeneous robot applications.

The checkRobTaskCompat function is a useful tool for the end-user since it requires just the

task and robot ID’s and returns a Boolean result defining whether a robot is compatible to a

particular task. It can be used to create algorithms which automatically determine the robots

in the network that are suited for specific tasks. An application of this function is seen in the

next chapter.

4.7 Python programming features 71

4.7.3 Machine learning support

One of the contributions of this research study is the application of the field of machine

learning in multiple mobile robot networks through the use of Python’s powerful machine

learning library, scikit-learn. An effort was made to implement one of the machine learning

algorithms namely, the Support Vector Machine (SVM) algorithm, to the robot material

handling scenario. The case study application of the SVM algorithm is discussed in the next

chapter, but prior to its use some development work in Python was prepared.

SVM learning is related to statistical theory and is commonly used in the field of

bioinformatics due to its ability to accommodate for high dimensional space data. There are

various types of SVM classifiers; the basic linear classifier (also known as linear SVM), was

implemented in this research. Linear SVM predicts whether an input belongs to one of two

classes, and is achieved by building a model from a database of training examples that

contains the mapping of input data to class labels. With this in mind, an SVM training

application was developed in Python Tkinter. The source code for the application is

documented in Appendix F, and its execution is shown in Figure 4.25.

Figure 4.25. SVM train application created in Python Tkinter.

72 Framework development

The SVM Train Application was used in one of the case studies (section 5.3) to create a

database of training examples required in the generation of the SVM model. The y-axis levels

for each task (1 or 2) shown in the figure are randomly generated every time the “Assign to

Tx” button is pressed. This action will assign a binary class label to the values of the SVM

features shown on the x-axis and the results are stored in a text file.

4.8 Framework review

The structured flow diagram in Figure 4.26 is a brief representation of the software

components in the framework, each of which was discussed in this chapter. The end-user

development involves the use of a choice between various programming features as well as

the access to standard Python libraries and packages. The use of Ethernet communication

backbone and the OPC-UA data communication standard makes the framework a distributive

one; hence the end-user development can take place at any point in the same network.

Figure 4.26. A review of the framework development.

4.9 Chapter summary 73

4.9 Chapter summary

This chapter began by describing the development and verification strategies adopted, and

thereafter produced an overview of the topics of discussion. The development of the main

components of the framework were discussed, these include: 1) the Python Tkinter GUI

screens where robot, task, and OPC tag configurations are done, 2) the mobile robot system,

which detailed the ROS software implementation, decentralised-local robot control, the Stage

simulator integration, and the OPC-UA client configuration, 3) the Ecava SCADA

development, and 4) the development of Python programming features to provide support for

end-user applications that satisfy the contributions of this research study. The chapter

concluded by discussing the brief representation of the software components in the

framework.

Chapter 5 Case studies

This chapter presents a series of case studies with the purpose of verifying the development

work of the framework. The various functionalities discussed in the previous chapter are

tested here through the application of different mobile robot scenarios. Since the framework

is a tool that will be used by the end-user, the studies also demonstrate the application of

example user algorithms that can be used in the high-level robot decision making process.

Four case studies are discussed in this chapter. The first involves a material handling

application with a single mobile robot; the following two also pertain to material handling

applications, but focus on cooperation in heterogeneous multi-robot teams and robot machine

learning. The final study proves the flexibility and robustness of the framework through

communication with a commercial third party system. Each case study begins with a

description, followed by an application development section, and thereafter discusses the

simulation results of the scenarios presented.

5.1 Study I: Single mobile robot control

The purpose of this study was to demonstrate the functionality of the framework in

performing the high-level control of single mobile robot tasks. The study is also seen as a

building block for the following studies.

5.1.1 Description of the study

The application of the framework in this case study pertains to a robot material handling

scenario between two tasks, each containing an input buffer and an output storage location.

An assumption made at the outset was that the robot was compatible to both tasks, and it

76 Case studies

transported material from the input to output locations. Another assumption was the

automated loading and offloading of material.

The robot prioritised work for a particular task based on the state of variables in a user

defined algorithm. Some of the variables included the supply chain profit per product index

and the supply chain current product demand which influenced the importance of a task, and

hence controlled the current task priority of the robot.

Section 5.1.3 presents the simulation results of the application in two types of scenarios, each

biased so that the robot prioritised one task over the other. The details of the simulation

scenarios are discussed in the next section, along with the development work for this

application.

5.1.2 Application development

The OPC tag definitions for the material handling application and the algorithm development

are listed in Table 5. Since a single mobile robot was used in the system, the tags associated

with the robot are prefixed by “r01_”, whilst the tags associated with task 1 and 2 are

prefixed by “t01_” and “t02_” respectively. The x-y coordinate related tags pertain to 1) the

robot’s current position and 2) the goal position of the task, either its source (input buffer) or

destination (material storage) location. The r01_status tag was used to determine whether the

robot is available for operation on a particular task, and the r01_tcurr tag informs the user

program and SCADA application on the current task that the robot is working on.

The task related tags are split into three categories: input, output, and supply chain. The

buffer levels are calculated as a percentage, defined by Equation 5.1, where x is the task

number and the definitions of the variables being listed in Table 5.

 𝑡𝑥𝑖𝐵𝐿 =
𝑡𝑥𝑖𝐵𝑀

𝑡𝑥𝑖𝐵𝐶
∗ 100 (5.1)

The reason for including tags that pertain to the supply chain was to make the application

more relevant to an actual scenario, where these variables do play a vital role in determining

the type of product (or task) that is more crucial to a manufacturer at any particular time.

5.1 Study I: Single mobile robot control 77

Table 5. OPC tag definitions for Case Study I.

OPC tag name Tag description Data type Unit

r01_xpos robot-01 x position decimal m

r01_ypos robot-01 y position decimal m

r01_status robot-01 idle, busy signal binary

r01_tcurr robot-01 current task number unsigned

integer

r01_currloc robot-01 current location unsigned

integer

r01_prevloc robot-01 previous location unsigned

integer

r01_xgoal robot-01 x goal position decimal m

r01_ygoal robot-01 y goal position decimal m

r01_loadcap robot-01 load capacity unsigned

integer

r01_load robot-01 current load unsigned

integer

r01_loadstat robot-01 loading/offloading status

t01_iBM task-01 input buffer number of material unsigned

integer

mat

t01_iBL task-01 input buffer level unsigned

integer

%

t01_iFr task-01 input fill rate decimal pr/hr

t01_iBC task-01 input buffer capacity unsigned

integer

mat

t01_qSM task-01 output buffer number of material unsigned

integer

mat

t01_qSL task-01 output storage level unsigned

integer

pr

t01_qFr task-01 output fill rate decimal pr/hr

t01_qSC task-01 output storage capacity unsigned

integer

mat

t01_sCDr task-01 supply chain consumer demand rate decimal pr/hr

t01_sPPi task-01 supply chain profit per product index decimal

t01_sPD task-01 supply chain current product demand unsigned

integer

pr

t02_iBM task-01 input buffer number of material unsigned

integer

mat

t02_iBL task-02 input buffer level unsigned

integer

pr

t02_iFr task-02 input fill rate decimal pr/hr

t02_iBC task-02 input buffer capacity unsigned

integer

pr

t02_qSM task-02 output buffer number of material unsigned

integer

mat

t02_qSL task-02 output storage level unsigned

integer

pr

t02_qFr task-02 output fill rate decimal pr/hr

t02_qSC task-02 output storage capacity unsigned

integer

mat

t02_sCDr task-02 supply chain consumer demand rate decimal pr/hr

t02_sPPi task-02 supply chain profit per product index decimal

t02_sPD task-02 supply chain current product demand unsigned

integer

pr

78 Case studies

The Python application algorithm is represented by the block diagram shown in Figure 5.1,

and the source code is documented in Appendix G1. The variables presented in the diagram

are the OPC tags defined in Table 5, with the exception of the prefix text. The algorithm was

executed at regular intervals for task 1 and task 2, hence the TWi output shown in the figure is

the weighted value for each task. A task becomes a higher priority when its result becomes

more negative than the other task(s). For example, if Tw1< Tw2 then task 1 will eventually be

prioritised by the robot as soon as it has completed its current task. The algorithm was

developed to consider the level of the input buffer and its capacity, the level of the output

storage, the output fill rate and consumer demand rates, and the profit per product index.

Figure 5.1. Control algorithm to determine the robot task priority.

The control algorithm was executed within the matHand_algo.py program (Appendix G1),

which also contains function calls for the robot motion commands for each task, the

initialising and updating of local variables and tags, and the execution of a simulation

program named matHand_sim.py (Appendix G2). The structure and interaction of the

programs is explained through the flow diagram in Figure 5.2.

The purpose of the simulation program was to establish a plant replica system where the

generated data can be used to test the algorithm and essentially, the functionality of the

framework. The code functions in the simulation program were used to fill the input buffers

at pre-defined fill rates, and empty them whenever the robot was at the source location to

5.1 Study I: Single mobile robot control 79

load material. The output storage filled when the robot was at the destination location and

material was being offloaded. This data is visualised by the SCADA mimic for the

application, shown in Figure 5.3.

Figure 5.2. Flow diagram for the application program of Case Study I.

80 Case studies

Figure 5.3. SCADA mimic for the material handling application of Case Study I.

The development of the application program involved the use of the mapping of local

variables to OPC tags, a Python programming feature of the framework that was discussed in

section 4.7.1. The program also includes the development of the recordData function, as

shown in Figure 5.2, which stores the buffer levels and the robot’s x-y coordinate data for use

in the presentation of the simulation results.

Finally, the robMotion function code sets the robot goal location coordinates, depending on

the task number determined by the algorithm. The low-level motion commands are actually

handled by ROS, so the end-user’s high-level Python program is modular, with the focus

being on simulating artificial intelligent algorithms.

5.1.3 Simulation results

As previously mentioned, two simulation scenarios for this application were carried out, each

biased so that the robot prioritises one task over the other. During both simulations, the load

5.1 Study I: Single mobile robot control 81

carrying capacity, r01_loadcap, of the robot was set to 20 materials, while the input and

output buffer capacities (t0x_iBC, t0x_qSC) were assigned 100 materials. The input buffers

were simulated to fill at a pre-defined fill rate (t0x_iFr) from the beginning to the end of the

simulation, which was terminated when either output storage t01_qSL or t02_qSL reached its

full capacity.

5.1.3.1 First simulation

The first simulation was developed to influence a greater input fill rate at task 1. The t01_iFr

tag was assigned the value 30 pr/hr, whilst t02_iFr was set at 10 pr/hr. The results of the

simulation are shown by the plotted graphs in Figure 5.4. The graph on the left of the figure

displays the input and output levels for task 1 and 2, and the impact of the load carrying

mobile robot can be seen by the rise in output levels, a few seconds after the decline in input

levels.

Figure 5.4. Buffer levels and task weight outputs of Case Study I, simulation-1.

The graph on the right of Figure 5.4 is much more interesting as it verifies the influence of

the task-weighted algorithm on the results of the simulation. The task 1 robot goal was

generated 6 times, against the task 2 goal of 3 times during the simulation. This result is

expected since the input fill rate of task 1 was much higher than task 2, causing a lower

weight contribution to the final Twi output of the algorithm as per Figure 5.1. Also shown in

Figure 5.4 is the rise in the corresponding output level soon after the task goal decisions were

made for the mobile robot. For example, at 500 seconds into the simulation, the robot’s goal

82 Case studies

was task 1, and at 550 seconds it can be seen that there was a significant rise in the output

level of task 1.

Figure 5.5 is an x-y coordinate map position plot of the robot during the simulation, which

can be viewed in conjunction with the Stage map in Figure 4.19 to visualise the path required

by the robot to travel from one location to another. The figure illustrates the distribution of

time spent by the robot between the source (input buffer) and destination (output storage)

locations for task 1 and 2, where it is clear that more time was spent on task 1. Once again,

this is an expected result since the algorithm computed twice the number of robot goals for

task 1 than task 2.

Figure 5.5. x-y robot coordinates during simulation-1 of Case Study I.

5.1.3.2 Second simulation

The results of the second simulation are given by Figure 5.6 and Figure 5.7, arranged in a

similar manner to the first simulation. The idea behind the tests performed here was to make

the robot more biased towards the execution of task 2. This was achieved by assigning a

difference in supply chain profit per product index, t0x_sPPi. The t01_sPPi tag was assigned

the value 0.5, whilst t02_sPPi was set at 1.5, and the input fill rates for both tasks were made

5.1 Study I: Single mobile robot control 83

equal at 30 pr/hr. The results in Figure 5.6 reveal a minor bias towards the task 2 goal, being

generated 5 times against the task 1 goal of 4 times during the simulation. Figure 5.7 also

shows a greater concentration of time spent by the robot at the task 2 locations.

Figure 5.6. Buffer levels and task weight outputs of Case Study I, simulation-2.

Figure 5.7. x-y robot coordinates during simulation-2 of Case Study I.

Comparing Figure 5.4 to Figure 5.6, one can notice a similar occurrence of data ‘spikes’ in

the task weight outputs of T1-weight and T2-weight. These results are contributed to the

computation of the input buffer level product in the algorithm described by Figure 5.1. A low

iBL (input buffer level) value will result in a high Twi output. This result can also be verified

84 Case studies

by the times at which the ‘spike’ occurs versus the time in the simulation where a low iBL is

seen. For example, in Figure 5.6 at approximately 150 seconds into the simulation, T2-weight

has a value of almost 5 and at that particular time, T2-in (shown in the left of Figure 5.6) has

a value of almost 0%.

5.2 Study II: Cooperation in heterogeneous mobile robot teams

The purpose of this study was to demonstrate the ability of the framework to control

heterogeneous mobile robot teams in manufacturing bottleneck scenarios and cooperation

tasks.

5.2.1 Description of the study

The application of the framework in this case study also pertained to the robot material

handling scenario between two tasks, discussed in the previous study. The difference with the

application discussed here was the introduction of additional mobile robots to create

situations where robot cooperation can occur to produce common goal outcomes.

This study also applied the Python programming feature discussed in section 4.7.2, which

was developed for heterogeneous mobile robot systems. Two types of multi-robot simulations

are introduced in section 5.2.3 to show the ability of the framework to adapt to different

scenarios:

 The first simulation involved a manufacturing bottleneck scenario with two robots and

allowed robot #1 (R-01) to work on task 1 or task 2, depending on the output from the

Python algorithm. Robot #2 (R-02) focused on task 2 only.

 The second simulation demonstrated cooperation among three robots. R-01 worked on

task 1 only and R-02 worked on task 2 only. Robot #3 (R-03) did work on task 1 or

task 2, depending on the output from the algorithm.

5.2 Study II: Cooperation in heterogeneous mobile robot teams 85

5.2.2 Application development

The OPC tag definitions used in this application were similar to the list defined in Table 5,

with the addition of tags for the second and third robots. Hence, the prefixes to the robot

related tags are R02 and R03 for robot #2 and robot #3 respectively. The development of the

SCADA mimic is illustrated in Figure 4.22, which shows the current task and location of

each robot in the system.

The Python code development for this application is similar in structure to the documentation

in Appendix G, with the addition of the modular motion code for the additional robots, and

the application of the checkRobTaskCompat function discussed in section 4.7.2. Table 6 and

Table 7 outline the robot and task configuration parameters used for the first and second

simulations respectively.

Table 6. Robot and task compatibility table for the first simulation of Case Study II.

 L W H Load
Cap.

Lin.
speed

Ang.
speed LRF Cam Two

wheel Sonar Grip.
Compat.
Robot/

Task

Robot 1 400 500 600 10 2 2 Yes Yes Yes Yes Yes Task 1 &
Task 2

Robot 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes Task 2

Task 1 400 500 600 0.5 0.5 1 Yes N/A N/A N/A Yes R-01

Task 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes R-01 &
R-02

Table 7. Robot and task compatibility table for the second simulation of Case Study II.

 L W H Load
Cap.

Lin.
speed

Ang.
speed LRF Cam Two

wheel Sonar Grip.
Compat.
Robot/

Task

Robot 1 400 500 600 0.5 0.5 1 Yes No Yes No Yes Task 1

Robot 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes Task 2

Robot 3 400 500 600 10 2 2 Yes Yes Yes Yes Yes Task 1 &
Task 2

Task 1 400 500 600 0.5 0.5 1 Yes N/A N/A N/A Yes R-01 &
R-03

Task 2 500 600 700 10 2 2 Yes Yes Yes Yes Yes R-02 &
R-03

86 Case studies

5.2.3 Simulation results

For the first and second simulation, the load carrying capacity (r0x_loadcap) of each robot

were either set to 10 or 20 materials, while the input and output buffer capacities (t0x_iBC,

t0x_qSC) were 100 materials. The input buffers were simulated to fill at a pre-defined fill rate

(t0x_iFr) from the beginning to the end of the simulation, which was terminated when either

output storage t01_qSL or t02_qSL reached its full capacity.

5.2.3.1 First simulation

The first simulation was created to influence a bottleneck at the task 2 input buffer by: 1)

making r01_loadcap set to 20 materials and r02_loadcap set to 10 materials, and 2) keeping

the input fill rates of both tasks constant at 30 pr/hr. Since R-02 was only dedicated to task 2,

R-01 assisted R-02 whenever the cooperation algorithm outputted the corresponding result.

The results of the simulation are shown by the plotted graphs in Figure 5.8.

Figure 5.8. Buffer levels and task weight outputs of Case Study II, simulation-1.

As per the results in the previous case study, the graph on the left of the figure displays the

input and output levels for task 1 and 2, whilst the graph on the right of shows the influence

of the task-weighted algorithm on the results of the simulation. The times at which R-01

assisted R-02 can be seen by the ‘jump’ in the T2-out buffer level at approximately 200 and

700 seconds into the simulation. This is verified by the result of the task-weighted algorithm

5.2 Study II: Cooperation in heterogeneous mobile robot teams 87

shortly before the ‘jump’ since the T2-wt values are slightly lower than the T1-wt values,

causing R-01 to choose task 2 over task 1 at those particular points in the timeline.

Another verification of R-01 cooperating with R-02 in this simulation can be seen by the x-y

coordinate map position plot of the two robots during the simulation, given by Figure 5.9.

These plots can be viewed in conjunction with the Stage map in Figure 4.19 to visualise the

path required by the robots to travel from one location to another. The figure shows the

concentration of time spent by each robot between the source (input buffer) and destination

(output storage) locations for task 1 and task 2. It is expected that R-02 only travels between

the source and destination of task 2, however, R-01 shares its interests between task 1 and

task 2, and it can also be seen that it executes the work for task 2 twice in the simulation,

thereby verifying the results shown in Figure 5.8.

Figure 5.9. x-y robot coordinates during simulation-1 of Case Study II.

5.2.3.2 Second simulation

The second simulation was created to influence an equal output fill rate for both tasks by:

1) making r01_loadcap and r02_loadcap set to 10 materials, and 2) keeping the input fill

rates of both tasks constant at 30 pr/hr. Since R-01 was only dedicated to task 1 and R-02

only dedicated to task 2, R-03 was made the cooperating robot agent by assisting at task 1

or 2 whenever the cooperation algorithm outputted the corresponding result. The results of

the second simulation are shown by the plotted graphs in Figure 5.10 and Figure 5.11.

88 Case studies

Figure 5.10. Buffer levels and task weight outputs of Case Study II, simulation-2.

Figure 5.11. x-y robot coordinates during simulation-2 of Case Study II.

5.3 Study III: Machine learning robots 89

The goal of the simulation was achieved as it can be seen from the results of T1-out and T2-

out that each line graph ‘follows’ the other. It is also expected from the x-y position plot of

the three robots during the simulation (given by Figure 5.11), that R-03 evenly splits its work

during the simulation due to the constant input fill rates of each task as well as the same load

capacities of each robot; i.e. the consistency of the input variables in the simulation resulted

in a similar output fill rate of each task.

In a similar analysis to the previous case study, the presence of data ‘spikes’ in the task

weight outputs of T2-wt and T1-wt can be seen in Figure 5.8 and Figure 5.10 respectively.

Once again, these results are contributed to the computation of the input buffer level product

in the algorithm described by Figure 5.1, where a low input buffer level value will result in a

high Twi output.

5.3 Study III: Machine learning robots

One of the contributions of this research is to broaden the scope of the machine learning field

to mobile robotics. This case study aimed to demonstrate the contribution via the application

of a Python machine learning library (scikit-learn) in the framework. The vision of this

application of the framework is for future use by researchers in applying machine learning

strategies in robotic applications.

5.3.1 Description of the study

This application is an adaptation of the first case study which involved a single mobile robot,

two tasks, and the transportation of material between a source and destination location. The

algorithm discussed in section 5.1.2 was not used here, rather, a Support Vector Machine

(SVM) algorithm was applied through the use of the scikit-learn Python library. The first part

of the process involved a data training exercise which was discussed in section 4.7.3,

thereafter, the training data was used to generate a SVM model. The model was then applied

in the user algorithm with simulation inputs to determine the task goal of the mobile robot.

90 Case studies

This study demonstrates two simulations of the SVM application. The first simulation

involves the monitoring of the task input and output buffer levels to determine the goal

output, whilst the second simulation includes a supply chain task demand parameter as an

additional SVM data feature to influence the outcome of the simulation.

5.3.2 Application development

The flow diagram in Figure 5.12 describes the application program for this case study. Most

of the functions and procedures in the figure were omitted to avoid duplication of the process

already discussed in Figure 5.2. The main highlight in the figure, however, is the inclusion of

the runSVMAlgo function.

Figure 5.12. Flow diagram for the application program of Case Study III.

The developed SVM GUI application (Figure 4.25) was used to create “train.txt” files by

randomly generating percentage levels every instant the data was assigned to a task. The file

contains data for input and output buffers, and task demand levels for particular outcomes,

i.e. whether the robot should perform task 1 or task 2 (“0” or “1” respectively in Figure 5.12).

5.3 Study III: Machine learning robots 91

The developed algorithm extracted the training features and outputs from the text file to

create a SVM model. The data inputted to the model was the real-time simulation data of the

input and output buffer levels, as well as (in the case of the second simulation) the supply

chain task-demand data. The output from the algorithm was the task number, which was then

used to prioritise the robot’s work.

5.3.3 Simulation results

As stated in the description of this study, two simulations were performed in the application

of the SVM algorithm:

 The first simulation trained the SVM model to produce an unbiased outcome. Task

numbers were assigned to data training sets to influence the filling of both output

buffers. For example, if t01_qSL was 40% and t02_qSL was 20%, then the trained

output would have been task 2, since the robot will be required to fill that buffer. Of

course, this also depends on the state of the input buffer as it would not make sense to

assign the robot to an empty input buffer. The training process involved the creation

of a “train.txt” that contained 312 data samples (lines in the file).

 The second simulation trained the SVM model to produce a biased outcome towards

task 2 for the first half of the simulation by using the supply chain demand data (as a

percentage). The bias was created by randomly generating task 1 demand levels

between 0 and 50, and task 2 demand levels between 50 and 100. The “train.txt” file

for this simulation contained 1414 data samples.

5.3.3.1 First simulation

The results of the first simulation are given by the plotted graph in Figure 5.13. The SVM-out

line graph in the figure shows the trend of the output from the SVM algorithm for the

duration of the simulation. The output is read as a “1” for task 1 and “2” for task 2.

Noticeable in the figure is the rise in the output levels shortly after the decision of the

algorithm. For example, at approximately 200 seconds into the simulation, the value of SVM-

out was 1, and thereafter at 250 seconds, a rise in the T1-out level is seen.

92 Case studies

Figure 5.13. Buffer levels and SVM outputs of Case Study III, simulation-1.

The output buffer results illustrated in the figure reveal the ‘follow’ trend in the line graphs.

This verifies the application of the unbiased SVM training model, since the robot was

commanded to share its work load between the tasks. Another way in which the model can

be verified is through an analysis of the SVM-out line graph. The periods in the waveform

show a near equal distribution of outputs for the tasks. A total number of 11 trips were made

by the robot during the simulation, 6 of which were made for task 1 while the remaining 5

were for task 2. The additional trip for task 1 can be explained by the initial one (at the start),

where the load carried by the robot was not its capacity of 20 material.

5.3.3.2 Second simulation

The results of the second simulation are given by the plotted graph in Figure 5.14. The task 1

and task 2 demand level trends (T1-D and T2-D respectively) are shown in the figure, where

the randomised levels between 0 and 50 is visualised for T1-D, and 50 to 100 for T2-D.

discussed earlier is seen in the levels. As mentioned in the description of this simulation, the

training process involved a bias towards task 2 for the initial phase of the simulation. This

bias is clearly noticed in the result of T2-out and T1-out, since T2-out ramps up to 60% long

before T1-out. The result also verifies the execution of the SVM model, since the model was

trained to prioritise the filling of T2-out early in the simulation due to the high demand.

5.4 Study IV: Integration with a third party system 93

Figure 5.14. Buffer, demand levels and SVM outputs of Case Study III, simulation-2.

The total number of trips made by the robot during the simulation was 12; 7 of which were

made for task 2 while the remaining 5 were for task 1, and thus confirms the bias towards

task 2. In comparison with the first simulation, this simulation was 84 seconds longer,

contributed to the additional trip by the robot. The additional trip is noted during the first 100

seconds into the simulation, where the focus on one task caused the emptying of material

quicker than the input buffer fill rate, thus resulting in the non-utilised loading capacity of the

robot.

5.4 Study IV: Integration with a third party system

The aim of this case study was two-fold: 1) to prove the integration of the framework with an

advanced technological third party system, thereby enhancing its ability to form part of an

Industry 4.0 network, and 2) to test the robustness of the data communication link between

the framework and the third party system.

94 Case studies

5.4.1 Description of the study

Section 3.3.2 explored various industrial data communication standards, among them being

EtherCAT, which together with OPC-UA, supports Industry 4.0 convergence of information

and automation technologies [92]. The work in this study demonstrates the integration of the

framework with a Beckhoff control system, which uses EtherCAT as its data communication

standard [91].

The system comprised of the Beckhoff soft-PLC, Beckhoff OPC Server, and the user’s

Python OPC Client and algorithm. The ROS middleware for robot control was non-existent

in this application since it was assumed that the communication will be executed via the

EtherCAT network, or the PLC digital I/O hardware. Another reason for excluding the ROS

component was to satisfy the aim of the study, which was to test the reliability of

communication between the framework and another system (other than ROS).

The application involved the switching between three tasks, each having a fixed execution

time, simulated by a PLC timer. A handshake signal (“robot ready”) indicated when a task

was complete and determined when the next task was to be switched by the Python

application. The robustness of the OPC data communication link was tested through the

monitoring of delay times between the switching of tasks. The next section discusses the

algorithm development of the sub-systems in this study.

5.4.2 Application development

Figure 5.15 is a flow chart description of the PLC and Python algorithms developed for this

application. The PLC program was developed in the Beckhoff TwinCAT 3 programming

environment (Figure 5.16), where the R01_Ready and TaskID variables were defined, and

thereafter implemented as OPC tags by the Python Client and TwinCAT OPC Server. The

Python algorithm checks whether the simulated R01_Ready tag is set to begin the assignment

of tasks (through the TaskID), and clears the tag when a new task has been assigned. On the

other end, the PLC program sets R01_Ready when a task is complete, which is determined by

the elapsed time for the particular task.

5.4 Study IV: Integration with a third party system 95

Figure 5.15. PLC and Python algorithms for Case Study IV.

The TaskID is incremented by 1 in the Python program after every task is complete. Three

tasks were configured, each containing ID’s 1, 2, and 3, and the program was developed such

that the value of the TaskID cycles between the three ID’s (as shown at the bottom of the

Python algorithm in the figure).

PLC timers were used to simulate the time a robot would take to complete a particular task.

Each task was assigned a timer variable, and only a single timer was started at any point in

time through the control of the TaskID variable. A fourth timer was also used to record the

time delay between the switching of tasks. The time delay measurement was utilised to

evaluate the quality of the OPC communication exchange between the two sub-systems.

96 Case studies

Figure 5.16. TwinCAT 3 PLC programming environment.

5.4.3 Simulation results

The simulation of the system involved the application three scenarios, each differing from the

other by the task time configuration. Each PLC task timer simulated the robot task durations

in accordance with these configurations:

 The slow communication scenario simulated task 1, 2, and 3 time periods to 10, 20,

and 30 seconds respectively. The results of this simulation are given by Figure 5.17.

 The average communication scenario simulated task 1, 2, and 3 time periods to 1, 2,

and 5 seconds respectively. The results of this simulation are given by Figure 5.18.

 The fast communication scenario simulated task 1, 2, and 3 time periods to 100, 200,

and 500 milliseconds respectively. The results of this simulation are given by

Figure 5.19.

5.4 Study IV: Integration with a third party system 97

Figure 5.17. Time delay analysis for slow communication intervals.

Figure 5.18. Time delay analysis for average communication intervals.

Figure 5.19. Time delay analysis for fast communication intervals.

98 Case studies

The three figures show the results of the OPC communication time delay for the duration of

the simulations, as well as the mean and standard deviation statistical indicators, given by

Equation 5.2 and Equation 5.3 respectively:

 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 (5.2)

 𝑠 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 (5.3)

Where: 𝑥𝑖 is the individual time delay sample in the data set.

 n is the total number of samples in the data set.

Another statistical feedback illustrated in the figures is frequency distribution of the time

delays, arranged in millisecond time categories. The categories are multiples of 10ms due to

this being the PLC scan cycle time, thus determining the resolution of the time delay samples.

The distribution gives a direct indication of the percentage contribution of each category to

the total number of samples in the simulation.

Table 8 lists a comparative breakdown of the time delay analysis for the three simulations.

The total number of samples differs across the simulations due to the variations in the task

times as well as the total simulation time. The simulation time for the slow communication

scenario was generated in 50 minutes to increase the number of samples due to the long

duration of the tasks.

Table 8. Time delay analysis for the three simulations in Case Study IV.

 Slow rate Average rate Fast rate

Mean (ms) 21.5 15.6 15.8

Std. Deviation (ms) 10.6 14.0 10.8

Mean + Std. Dev. (ms) 32.1 29.6 26.6

Total no. of samples 150 294 1117

Worst delay (ms) 60 220 120

Freq. distrib: ≤20 ms (%) 70 95 92

Freq. distrib: >20 ms & ≤40 ms (%) 28 3 5

Freq. distrib. >40 ms (%) 2 2 3

5.5 Chapter summary 99

A fundamental field listed in the table is the worst delay feedback, which reveals the worse

case value of 220ms across all three simulations. This result is well within the required scan

cycle time for the higher-level decision making algorithms, which is ≤ 1 second as defined in

the functional design specifications in section 3.7. The result also satisfies the specification of

the OPC tag scan rate, being ≤ 500 ms.

The mean and standard deviation statistics are located in the lower end of the spectrum for all

three simulations, which shows that the time delays are generally short, even in the fast rate

simulation. This conclusion is also verified by the frequency distribution analysis, revealing

that time delays of ≤ 20 ms contributed to the majority of the distribution. The time delays

greater than 40 ms only allot to between 2% and 3% of the total sample set, and even in those

cases, the worst delays are well within the specification.

A noticeable difference in the slow rate result (Figure 5.17), compared to the other two, was

the increase in time delays 30 minutes into the simulation, which determined the 70% (versus

95% and 92%) frequency distribution value listed in Table 8. A possible reason for this result

was the loading of the CPU by the OPC Server and the PLC tasks over time, and/or the effect

of temperature associated with these factors. The result did not compromise the aim of the

study due to the outcome of the worst case time delay, and a definitive conclusion would

require further analysis which is beyond the scope of this research.

5.5 Chapter summary

This chapter presented four case studies, each verifying various aspects of the framework.

The first study involved the control of a single mobile robot in a material handling scenario

between two tasks. The application of the framework was tested through the development of

user algorithms, the mapping of local variables and OPC tags, the communication with a

ROS simulated robot, and the integration with a SCADA package.

The second study was built from the first and included an application which demonstrated the

cooperation of heterogeneous mobile robots. The Python programming features for

heterogeneous robots discussed in the previous chapter were implemented here. The

100 Case studies

simulation results verified the cooperation of mobile robots in reducing bottleneck scenarios,

and working towards common goals.

The third study explored the ability of the framework to support the implementation of

machine learning algorithms in mobile robot applications. This was achieved through the use

of Python’s scikit-learn machine learning library, as well as an implementation of the

developmental tool for SVM learning discussed in the previous chapter. The simulation

results proved the performance of the SVM models, which were created during the SVM

training phase of the application.

The final study verified the flexibility of the framework in its integration with a commercial

third party system, whose control system uses EtherCAT as its data communication standard.

This verification enhances the capability of the framework to be included in an Industry 4.0

system. The reliability of the data communication exchange was also tested here, and the

results showed that the time delays are well within the specification for high-level robot

decision making algorithms.

Chapter 6 Discussion

The objectives of this chapter are: 1) to discuss the benefits of the framework in relation to its

functionality and application as examined in the case studies, 2) to discuss the application of

the framework in other areas that are beyond the scope of this research study, 3) to discuss

the related research in literature related to the functionality of the framework, and 4) to

address the limitations of the framework and introduce a list of advanced features.

6.1 Benefits of the framework

This section discusses the benefits of the framework by examining its structure, functionality,

and application in the various areas of robotics.

6.1.1 Popular software platforms

The framework has been developed by employing popular software platforms such as Python

and ROS, thereby making it easier for end-users to grasp and utilise.

Python’s popularity has grown due to its simple object-orientated structure, cross-platform

support, and the existence of powerful mathematical and statistical libraries such as Numpy,

Scipy, and Scikit-learn, the last of which was applied in the machine learning case study.

Through the Python programming platform, it is envisioned that the end-user will be able to

develop advanced, intelligent algorithms for higher-level robot control.

ROS has also grown in popularity as a robot middleware platform, and it was discussed in

section 3.2 how commercial robots are now being powered by ROS [16] and its scope in

industry through the ROS Industrial Consortium [17]. Through ROS, the end-user will be

102 Discussion

able to mask robot heterogeneity by using standard interfaces and thus simplify the low level

robot control process.

6.1.2 Mobile robot control

The first case study discussed in the previous chapter introduced mobile robot control in a

material handling application, but the framework can be applied in other mobile robot

applications, such as mobile manipulators in FMS and reconfigurable environments [103],

toxic waste clean-up [21], detection of hazardous gas [104], and operations that involve

confined spaces [105].

The framework is merely a tool that leaves the programming and control of advanced robots

in the hands of the end-user. The GUI development allows the end-user to configure the

parameters of mobile robots and tasks, which as a result, can be used during the development

of robot programs. The functionality of mapping local Python variables to OPC tags further

eases the development process for the end-user by eliminating the need for directly searching

and coding tags in the program.

Another feature provided by the GUI that benefits the user is the task location screen,

discussed in section 4.4.5, which can be used to move the robot in the environment and

assign x-y data to specific task locations. This allows the robot to move to actual task

locations, without the concern of robot calibration errors.

6.1.3 Distribution features

The use of the Ethernet communication infrastructure and the OPC-UA data communication

standard gives the framework a distributive feature, thus the end-user development can take

place at any point in the same network. The benefit of this feature is appreciated in large

networks where it is more convenient and practical to be closer to the sub-system that is

being commissioned.

Another benefit of the distributed framework is realised in the addition of OPC, Ethernet

components, such as the SCADA system, which can be used to visualise the status of the

6.1 Benefits of the framework 103

manufacturing processes. The verification of this feature was seen in the mobile robot

material handling application, discussed in section 4.6 and section 5.1.2.

6.1.4 Robot heterogeneity and cooperation

The introductory chapter discussed the existence of heterogeneity in multiple mobile robot

systems (MMRS), together with the benefit of employing a team of robots to execute tasks.

The second case study demonstrated an example of such a system, where a ‘multi-skilled’

robot was able to assist other robots in the material handling application, thereby reducing the

effect of a production bottleneck. This was made possible by applying the framework

functions that were developed for scenarios which involve heterogeneous robots and

cooperation applications. The simulation results in the case study verified the performance of

the framework functions and the algorithm, since the cooperating agent was able to offer its

assistance due to the induced bottleneck scenarios.

The case study also proved the support for the end-user development of algorithms pertaining

to robot cooperation applications. A myriad of cooperation algorithms can now be developed

and tested in heterogeneous or homogeneous robot teams. This is an attractive feature of the

framework, particularly in smart factory environments where robot intelligence and

flexibility are key factors in the establishment of advanced, efficient systems.

6.1.5 Machine learning

The machine learning field of research is popular in the areas of bioinformatics, and text and

image recognition. The demonstration of an application of the SVM learning algorithm in the

third case study proves that machine learning can also be adopted in robotic systems. This

was made possible through the use of Python’s scikit-learn library, which contains a

multitude of other learning algorithms that are easily available to the end-user. To name a few

of just the popular algorithm groups include: neural networks, decision trees, clustering,

classification, nearest neighbour, and Gaussian models. Researchers will find this benefit of

Python and the framework very useful, since a wide range of algorithms are now made

available within a framework developed for robotic applications.

104 Discussion

The field of machine learning applications in robotics is also applicable to an Industry 4.0

environment, since Advanced Robotics is one of the key pillars in the Industry 4.0

concept [18]. Machine learning algorithms can be developed and optimised to create smart,

intelligent robots and systems.

6.1.6 Interoperability benefits

The fourth case study verified the integration of the framework with a control system that

uses EtherCAT as its data communication standard, thus showing the flexibility of the system

in a real-world scenario. One could argue that the high-level control could have been

programmed in the PLC. This holds true for singular systems, but becomes complex in large,

heterogeneous systems with different types of PLC’s, data communication protocols, and/or

robotic middleware employed in the network. Hence in these systems, the Python framework

would be required to establish interoperability and ‘speak the common language’ through the

OPC protocol.

Interoperability across robotic interfaces was established in the literature survey chapter as a

key requirement to the implementation of robotic systems in smart factories. The integration

(discussed in section 5.4) was achieved through the OPC protocol, described as an industrial

standard that specialises in device and system interoperability. Due to this feature of the OPC

standard, the scope of the framework goes beyond the EtherCAT system integration and

includes other Ethernet protocols such as Ethernet/IP and PROFINET, since these

architectures provide OPC servers in order to integrate data into larger systems. Hence, the

framework is characterised with the benefit of being included in a network with mixed

Ethernet protocols, satisfying the interoperability requirement of Industry 4.0.

6.2 Further scope of the framework

The three sub-sections outlined here discuss the application of the framework in other areas

(beyond the scope of this research study), such as business management systems, multi-robot

resource sharing, and applications that involve fixed robotic manipulators.

6.2 Further scope of the framework 105

6.2.1 Business management systems

The implementation of the OPC-UA data communication standard in the framework has

opened its scope to the integration of business management systems such as the Enterprise

Resource Planning (ERP) tool. ERP was described in chapter 3 of this thesis as a business

management software package that specialises in: 1) the planning of production, product

demand and supply chains, and 2) the management of material, warehouse logistics,

maintenance activities, and human resources.

The integration of OPC and ERP has become a modern mechanism in linking the shop (plant)

floor data to the high-level enterprise [106]. SAP, a market leader in enterprise application

software, has proven this integration with the Beckhoff TwinCAT OPC-UA platform [107].

This is the same platform that was used to integrate the framework in the fourth case study.

Hence, the vision of this research study sees the application of the framework in a business

management setting where supply chain data, and data from other process that are connected

to the ERP, can be modelled to control the low level robot resources.

The continuous data exchange and feedback between the enterprise level and robot resources

on the shop floor can aid in the improvement of consumer delivery schedules, particularly in

a mass customisation manufacturing environment.

6.2.2 Resource sharing

The networking feature of the framework allows for the possibility of resource sharing in a

team of multiple mobile robots. Robots can use the sensory data from other robots in the

network before decisions can be made, thereby optimising processes. For example, a mobile

robot can choose to perform an alternative task if it discovered congestion at the primary task

location through the laser data from a robot at that location.

6.2.3 Robotic manipulators

The scope of this research study covers the application of mobile robot systems, however, the

results from the fourth case study shows that the use of the framework can be adapted to suit

106 Discussion

high-speed robotic manipulator applications. This is made possible through the short time

delay verification in the case study, where the worst case delay was measured at 220

milliseconds. A variety of robotic manipulator applications exist in industry, which include

the following:

 Welding

 Injection moulding

 Pick and place

 Packaging

 Dispensing

 Cutting, milling and drilling

 Assembly

 Painting

An adaptation of the framework in these applications can possibly be the management of

multiple tasks in locations that surround the fixed, multi-axis robot, through the use of

developed algorithms by the end-user.

6.3 Related research

This section discusses research in literature related to the functionality of the framework. Due

to the originality of the framework development, there is no direct comparison; however, the

related aspects in literature are discussed, such as systems that support remote robot

programming in single and multi-robot systems, networked robots, control of heterogeneous

robots, and robot cooperation.

The remote programming of networked robots within a robotics tele-laboratory has been a

research effort by Marin et al. [108] to enable students to remotely program experiments via

the Internet. The Simple Network Robot Protocol (SNRP), which is a web-based protocol,

was used to permit the integration of robots and sensor devices in the system. Through the

research project, students have access to the following equipment:

6.3 Related research 107

 A conveyor belt with sensors at each end, allowing objects to be moved in any

direction, controlled at various speeds.

 A Motoman manipulator to move objects from the conveyor belt and classify them

on an auxiliary table.

 A camera mounted on the manipulator, which implements visual servo controls and

object tracking algorithms.

 A network camera mounted on top of the conveyor belt, which video streams objects

on the belt in real-time.

Each piece of equipment was connected to a robot server, responsible for the remote control

access and programming through the SNRP servers. Devices are accessed through the

Internet by accepting TCP and UDP connections, made possible by SNRP. SNRP also

provides the possibility of using other transport protocols, such as the Real-time Transport

Protocol (RTP), to improve the robustness of the network connection. The research study

presented by Marin et al. [108] provided two experiments that demonstrated the successful

implementation of the remote programming system.

The programming of autonomous mobile robots in a MRS system was researched by Tucat

and Garcia [109]. The study involved a decision-making process undertaken by each robot in

the network to achieve cooperation. The process includes: 1) each robot decides on the best

action to execute based on its perception; 2) robots interact with each other and can

reconsider their decision by taking into account the decisions that are being processed by

other robots. The second part of the process involved communication through the use of a set

of primitives that were implemented in the Logic Programming language. The framework

was applied in a cleaning task application, where each robot in the team can find a box and

interact with others to determine which one should pick up the box.

Another research study [110] discussed the development of “Protoswarm”, a language for

programming multi-robot systems in a high level. The application pertained to a swarm of

robots, where programmers were allowed to develop code without actually considering the

details of individual robots. This was made possible through the control of a single virtual

spatial computer, and the computations in the computer are executed by local interacting

108 Discussion

robots. The computational models that are created are based on manifolds of space that

process the code, called the “Amorphous Medium”. Some of the assumptions made in the

research are the population of a finite number of robot agents in the medium, and the

communication between neighbours within a fixed distance. Experiments were performed on

a group of 40 autonomous mobile robots, each equipped with bump and light sensors, infra-

red communication sensors, and localisation systems. The results proved to be robust and

scalable, and verified the objectives of the Protoswarm programs.

Trifa et al. discussed the control of heterogeneous robotic swarms over the Internet using an

SOA, Web Services (WS) architecture [111]. The idea behind this research was to use the

benefit of modular software components exchanging data over HTTP, and the distributed

characteristic of the system eliminates the need of a centralised controller. The research

discussed the creation of a central server, built to act as a gateway between the group of

robots and the end-user. The server implemented a WS which allowed for the real-time data

retrieval of individual robot status as well as the system as a whole. An experiment with a

team of e-puck robots showed the performance of various robot actions such as setting motor

speeds, illuminating LEDs, and reading proximity sensors.

The advantage that the framework has over the related research discussed in this section is its

support for integration and interoperability in an industrial, smart factory environment. This

is made possible through an implementation of the international, industrial standard, OPC

data communication protocol. Another benefit is its integration with the ROS middleware,

which in itself, supports control for a wide range of industrial robots and is a popular choice

for researchers as well.

6.4 Limitations and advanced development

The purpose of this section is to address the limitations of the framework and to introduce a

list of advanced features that should be implemented as improvements to the system.

As discussed in chapter 3, a hybrid control architecture was adopted for the control of the

mobile robots. The centralised part of the scheme is attributed to the OPC Server and this

6.4 Limitations and advanced development 109

makes it a single point of failure in the network. In order to reduce this risk, a redundant OPC

Server can be implemented to ensure the availability and robustness of the system. This can

be achieved in one of three ways; either cold, warm, or hot standby modes, depending on the

time requirement of having the secondary system online. A hot standby would require the

simultaneous operation of both primary and secondary OPC Servers, each using separate

hardware so that there is no single point of failure. In the event of a primary failure, the

switchover is instantaneous with no data loss, contrasted to the cold or warm cases where the

recovery process is slower. The two OPC Servers would typically connect to a redundancy

management system that is responsible for the switch over, data integrity, and maintenance of

the single point of connections between OPC Clients.

In an Industry 4.0 factory, where the ease of access to data is essential, the establishment of

security measures is critical to ensure that valuable data is protected against theft or loss. The

OPC component of the framework does contain security protocols that ensure: 1) the

authentication of clients and servers, 2) the authorisation of users, and 3) the integrity and

auditing of communication between clients and servers [112]. In addition to this, OPC

security is based on industry standard security algorithms and can be scalable to meet the

environment and application requirements [112].

The ROS component of the framework is however, insecure in its communication protocol.

The developers of ROS are currently implementing SROS, a set of security enhancements to

ROS [113]. The motivation behind this development is the increase trend in cyber threats

which poses great risks in industrial and home environments where robots are beginning to be

integrated in Industry 4.0 and IIoT systems respectively.

The advanced development features of the framework include the following:

 Organisation of the framework code in a Python package, making it easier for the

end-user to utilise, since it would require a simple installation process in a Windows

or Linux OS.

 The creation of user access levels in the GUI that permits some users to read or write

parameters and others to read only.

110 Discussion

 The use of dynamic IP addresses (as opposed to the current system of static addresses)

or MAC addresses of the robots in the network. The implementation of this feature

will make the framework more easy to use, especially in fast paced FMS

environments.

 Support for the development of end-user algorithms in other programming languages,

since the present limitation is Python. The design factors to consider are: 1) the ability

of integration with the OPC protocol, and 2) the support for machine learning

algorithm development through other programming languages. The inclusion of this

advanced feature will increase the scope of the framework to a wider audience who

may not be familiar with Python.

 Functionality for the application of robotic swarm systems. This will require the

performance test of the framework in these scenarios, where design factors to

consider are communication bandwidth limitations and the local robot control

methodology with regard to localisation and navigation in the large network of robots.

6.5 Chapter summary

The discussion in this chapter began by describing the benefits of the framework, which

included the use of popular software platforms of Python and ROS, and features that enable

the control and cooperation of heterogeneous mobile robots in smart factory environments. A

further scope of the framework was also discussed, pertaining to areas such as business

management systems, multi-robot resource sharing, and applications that involve fixed

robotic manipulators.

Section 6.3 surveyed research related to the functionality of the framework. Some of the

related aspects that were discussed included systems that support remote robot programming

in single and multi-robot systems, networked robots, control of heterogeneous robots, and

robot cooperation. The main conclusion from the survey was the industrial interoperability

advantage that the framework in this study has over the related research.

The final section in this chapter discussed the two design sources of the framework that

contribute to its limitations. The first one is the centralised OPC Server which creates a single

6.5 Chapter summary 111

point of failure in the system. The solution to this drawback was discussed as an

implementation of a redundant OPC Server that would use separate hardware to eliminate the

single point of failure and increase the robustness of the system. The second limitation that

was addressed is the issue of security, particularly in smart factory environments where data

integrity and data protection are key requirements. The insecure communication protocol in

the ROS component of the framework was identified, and it was also mentioned that the

developers of ROS are currently implementing SROS, a set of security enhancements to

ROS, which should provide a better, secure form of communication. Also discussed in the

final section was a list of advanced features that should be implemented as improvements to

the system.

Chapter 7 Conclusion

This final chapter restates the aim and objectives of the thesis, and draws a summary of the

research study. The research contributions that were defined in the introduction are

expounded to include the conclusions established in previous chapters. The last section

identifies some recommendations for further research related to this study.

7.1 Aim and objectives

The aim of this study was to research, design, and develop a distributed framework for

managing multiple, heterogeneous mobile robots in smart factories.

The objectives of this research study were to:

 Investigate the impact of mobile robot systems in industry.

 Investigate the problem of mass customisation together with the introduction of the

fourth industrial revolution (Industry 4.0).

 Research the need for robotic middleware and the various platforms available for

mobile robot systems.

 Research the design requirements of a distributed framework for use in an industrial

MMRS setting.

 Design and develop the framework that facilitates cooperation in heterogeneous

multiple mobile robot teams.

 Test and validate the performance of the framework by the use of algorithms and

simulation tools.

114 Conclusion

7.2 Research summary

The first chapter in this thesis introduced the concepts of mass customisation and Industry

4.0, and thereafter discussed the growth of robotics in industry. The motivation and necessity

behind the development of the framework was also addressed in this chapter. The existence

of the need of this research study was discussed as being due to the modern popularity of

MMRS and cooperation to facilitate flexibility in smart factories, thereby managing the

problem of mass customisation.

The literature survey investigated the role of mobile robot systems in industry and the

associated topics such as heterogeneity, robot communication, cooperation, and middleware

platforms were also discussed. The survey concluded by discussing the characteristics and

requirements of a smart factory (or Industry 4.0) environment as well as the influence of

advanced robotics in these environments.

Chapter three presented the methodological approach taken during the design of the

framework. The design requirements were defined, outlining the key components of the

framework that enabled its functionality in a smart factory environment. The reasons for

choosing the ROS middleware as the core platform for each robot were discussed, and a

description of the communication mechanism employed by the ROS architecture was

described. The basis for selecting Python as the programming language for creating the GUI

and developing end-user algorithms was also discussed. A key examination on industrial data

communication standards revealed the adoption of the OPC-UA protocol in the framework.

This was chosen due to its specialisation in device and system interoperability, which are

essential requirements in an Industry 4.0 system.

The development of the main components of the framework was discussed in chapter four,

which included:

1. The Python Tkinter GUI screens where robot, task, and OPC tag configurations are

done.

7.2 Research summary 115

2. The mobile robot system, which detailed the ROS software implementation,

decentralised-local robot control, the Stage simulator integration, and the OPC-UA

client configuration,

3. The SCADA development.

4. The development of Python programming features to provide support for end-user

applications that satisfy the contributions of this research study.

The fifth chapter presented four case studies, where each verified various aspects of the

framework. The first study involved the control of a single mobile robot in a material

handling scenario between two tasks. The application of the framework was tested through

the development of user algorithms, the mapping of local variables and OPC tags, the

communication with a ROS simulated robot, and the integration with a SCADA package.

The second study was built from the first and included an application which demonstrated the

cooperation of heterogeneous mobile robots. The Python programming features for

heterogeneous robots were implemented in this study. The simulation results verified the

cooperation of mobile robots in reducing bottleneck scenarios, and working towards common

goals. The third study explored the ability of the framework to support the implementation of

machine learning algorithms in mobile robot applications. This was achieved through the use

of Python’s scikit-learn machine learning library, as well as an implementation of the

developmental tool for SVM learning. The simulation results proved the performance of the

SVM models, which were created during the SVM training phase of the application. The final

study verified the flexibility of the framework in its integration with a commercial third party

system (Beckhoff, TwinCAT), whose control system uses EtherCAT as its data

communication standard. This verification showed the capability of the framework to be

included in an Industry 4.0 system. The reliability of the data communication exchange was

also tested in this study, and the results showed that the communication time delays are well

within the specification for high-level robot decision making algorithms. The application

section references for each feature of the framework is summarised in Table 9.

116 Conclusion

Table 9. Reference summary of the framework features.

 Application reference

Single mobile robot control Section 5.1

Framework distribution Section 5.1.2

Multiple mobile robot control Section 5.2

Heterogeneous robot support Section 5.2

Robot cooperation Section 5.2

Machine learning robot control Section 5.3

Framework interoperability Section 5.4

The previous chapter described the benefits of the framework, which included the use of

popular software platforms of Python and ROS, and features that enable the control and

cooperation of heterogeneous mobile robots in smart factory environments. A further scope

of the framework was also discussed, pertaining to areas such as business management

systems, multi-robot resource sharing, and applications that involve fixed robotic

manipulators. Research related to the functionality of the framework was also discussed in

this chapter. Some of the related aspects that were discussed included systems that support

remote robot programming in single and multi-robot systems, networked robots, control of

heterogeneous robots, and robot cooperation. The limitations of the framework was

addressed, one of them being the centralised OPC Server which creates a single point of

failure in the system. The solution to this drawback was discussed as an implementation of a

redundant OPC Server that would use separate hardware to eliminate the single point of

failure and increase the robustness of the system. The second limitation that was addressed is

the issue of security, particularly in smart factory environments where data integrity and data

protection are key requirements. The insecure communication protocol in the ROS

component of the framework was identified, and it was also mentioned that the developers of

ROS are currently implementing SROS, a set of security enhancements to ROS, which

should provide a better, secure form of communication. Also discussed in the sixth chapter

was a list of advanced features that should be implemented as improvements to the system.

7.3 Research contributions 117

7.3 Research contributions

The design and development of the framework in this research study was an original effort

and has made the following five contributions:

1. The framework can be utilised by industrial engineers to remotely control robots

since the framework adheres to the international, industrial OPC-UA communication

protocol standard. The integration of the framework with the industrial Beckhoff

TwinCAT control system in the fourth case study (section 5.4) verifies this

contribution.

2. The framework can be utilised by students to develop solutions in the field of multi-

robot cooperation. This was achieved through the use of the simple graphical user

interface and the development of algorithms in Python. Application examples of this

utilisation were discussed in the first two case studies in chapter 5.

3. The advanced robotics pillar in Industry 4.0 has been strengthened due to the OPC

interface provided by the framework to achieve intelligent robotic systems. Advanced

algorithms can be developed and simulated before being deployed in an actual

system, thereby fast prototyping the system integration process.

4. The capability of the popular ROS middleware has been enhanced, since ROS has

lacked the functionality for cooperative multi-robot systems. The functionality of this

contribution has been verified in the second case study (section 5.2).

5. The machine learning field of research can broaden its application to mobile robot

networks, via the use of Python’s powerful machine learning library. An application

example utilising the SVM learning algorithm from the scikit-learn library was

demonstrated in the third case study (section 5.3), where the results proved the

performance of the SVM models that were created during the SVM training phase of

the application.

118 Conclusion

7.4 Recommendations for further research

The first recommendation involves the topic of decentralised robot control. An algorithm

selection tool can be included in the framework GUI that will allow the end-user to remotely

program the decentralised intelligence of robots in the industrial network. Thus, each robot

would be able to scan data within the factory and make smart, real-time decisions based on

the local, decentralised algorithms. A paramount factor that must be considered for this type

of control to be a success is the issue of safety to humans and the factory environment, since

a ‘loosely’ controlled robot can lead to catastrophic circumstances.

The map of the environment in this research study was static and predefined. Further research

will see the application of Simultaneous Localisation and Mapping (SLAM) techniques,

where maps of the environment are dynamically built as robots navigate. In addition to this,

map data could be shared among robots in the network due to the distributive characteristic of

the system.

SLAM algorithms can also be applied to the research area of Search and Rescue (SAR)

robotics, and the framework could be adapted to suit this application. The redesign of the data

communication part of the framework must be considered, since OPC-UA would not be

applicable to non-industrial type environments. In a SAR application, the implementation of

ROS together with OpenCV has the potential to yield interesting results. OpenCV is a free,

open source, computer vision library that can be used for object, facial recognition, and

classification of human actions, all of which are key elements in SAR scenarios.

References

[1] C Dahlman, Technology, globalization and international competitiveness: Challenges

for developing Countries.: Department of economic and social affairs of United

Nations, 2007.

[2] M Joerss, F Neuhaus, J Schröder, C Klink, and F Mann, "Parcel delivery: The future of

last mile," McKinsey & Company, Travel, Transport and Logistics 2016.

[3] G Qiao, R Lu, and C McLean, "Flexible Manufacturing System for Mass

Customization Manufacturing," International Journal of Mass Customisation, vol. 1,

pp. 374-393, 2006.

[4] J Pine, Mass Customization-the New Frontier in Business Competition.: McGraw-Hill,

1993.

[5] J Heikkila, "From Supply to Demand Chain Management: Efficiency and Customer

Satisfaction," Journal of Operations Management, vol. 20, pp. 747-767, 2002.

[6] Y Koren and M Shpitalni, "Design of Reconfigurable Manufacturing Systems,"

Journal of Manufacturing Systems, vol. 29, pp. 130-141, 2010.

[7] R Davies, "Industry 4.0: Digitalisation for productivity and growth," European

Parliamentary Research Service, 2015.

[8] IFR, Macquarie Research, "Robots: Global Growth," Macquarie Research, 2016.

[9] Global Industry Analysis, "Industrial Robotics Market - Global Industry Analysis, Size,

Share, Growth, Trends and Forecast, 2014 - 2020," 2014.

120 References

[10] F Tobe. (2017, July) The Robot Report. [Online].

https://www.therobotreport.com/news/whats-happening-in-robotics-five-trends-to-

watch

[11] C Stillstrom and M Jackson, "The concept of mobile manufacturing," Journal of

Manufacturing Systems, vol. 26, pp. 188-193, 2007.

[12] N Naidoo, G Bright, and R Stopforth, "Cooperative Autonomous Robot Agents in

Flexible Manufacturing Systems," in Proceedings of the 8th International Conference

on Intelligent Systems and Agents, Lisbon, 2014, pp. 190-194.

[13] C Andrews. (2017, July) Engineering and Technology. [Online].

https://eandt.theiet.org/content/articles/2017/07/industry-4-challenges-and-

opportunities/

[14] Grenzebach. (2016, November) Industry 4.0 – Challenges in Automation Technology.

[Online]. https://www.grenzebach.com/press/industry-40-challenges-in-automation-

technology/

[15] Frost & Sullivan, "The future of mobile robots," Frost & Sullivan, A Study 2015.

[16] Wikipedia. (2017, July) Robots using ROS. [Online]. http://wiki.ros.org/Robots

[17] ROS-industrial. (2017, July) ROS-industrial. [Online].

http://rosindustrial.org/ricamericas/current-members/

[18] J Bechtold, A Kern, C Lauenstein, and L Bernhofer, "Industry 4.0 - The Capgemini

Consulting View," Capgemini Consulting, 2014.

[19] R R Murphy, "Alliance: Marsupial robots for urban search and rescue," IEEE

Intelligent Systems, vol. 20, pp. 14-19, 2000.

https://www.therobotreport.com/news/whats-happening-in-robotics-five-trends-to-watch
https://www.therobotreport.com/news/whats-happening-in-robotics-five-trends-to-watch
https://eandt.theiet.org/content/articles/2017/07/industry-4-challenges-and-opportunities/
https://eandt.theiet.org/content/articles/2017/07/industry-4-challenges-and-opportunities/
https://www.grenzebach.com/press/industry-40-challenges-in-automation-technology/
https://www.grenzebach.com/press/industry-40-challenges-in-automation-technology/
http://wiki.ros.org/Robots
http://rosindustrial.org/ricamericas/current-members/

References 121

[20] A Stroupe, A Okon, and M Robinson, "Sustainable cooperative robotic technologies for

human and robotic outpost infrastructure construction and maintenance," Autonomous

Robots, vol. 20, pp. 113-123, 2006.

[21] L E Parker, "ALLIANCE: An architecture for fault-tolerant multi-robot cooperation,"

IEEE Transactions on Robotics and Automation, vol. 14, pp. 220-240, 1998.

[22] P R Wurman, R D'Andrea, and M Mountz, "Coordinating hundreds of cooperative,

autonomous vehicles in warehouses," in Proceedings of AI Magazine, 2008, pp. 9-20.

[23] JBT. (2017, July) JBT AGVs. [Online]. http://www.jbtc-

agv.com/en/Solutions/Products/Unit-Load-Automatic-Guided-Vehicles-AGVs

[24] L. Sabattini et al., "Technological roadmap to boost the introduction of AGVs in

industrial applications," in IEEE International Conference on Intelligent Computer

Communication and Processing, 2013.

[25] Robotnik. (2017, July) Robotnik. [Online]. http://www.robotnik.eu/manipulators/jr2/

[26] Z Yan, N Jouandeau, and A A Cherif, "A Survey and Analysis of Multi-Robot

Coordination," International Journal of Advanced Robotic Systems, vol. 10, pp. 1-18,

2013.

[27] H Asama, A Matsumoto, and Y Ishida, "Design of an autonomous and distributed robot

system: ACTRESS," in Proceedings of IROS'89, Tsukuba, 1989, pp. 283-290.

[28] T Fukuda, T Ueyama, and Y Kawauchi, "Concept of cellular robotic system (CEBOT)

and basic strategies for its realisation," Computers and Electrical Engineering, vol. 18,

no. 1, pp. 11-39, 1992.

[29] S C Botelho and R Alami, "M+: A scheme for multi-robot cooperation through

http://www.jbtc-agv.com/en/Solutions/Products/Unit-Load-Automatic-Guided-Vehicles-AGVs
http://www.jbtc-agv.com/en/Solutions/Products/Unit-Load-Automatic-Guided-Vehicles-AGVs
http://www.robotnik.eu/manipulators/jr2/

122 References

negotiated task allocation and achievement," in Proceedings of ICRA'99, Detroit, 1999,

pp. 1234-1239.

[30] B P Gerkey and M J Matarić, "Murdoch: Publish/subscribe task allocation for

heterogeneous agents," in Proceedings of Agents'00, Barcelona, 2000, pp. 203-204.

[31] Amazon. (2017, July) Amazon Robotics. [Online]. https://www.amazonrobotics.com

[32] Y Cao, A Fukunaga, and A Kahng, "Cooperative mobile robotics: Antecedents and

directions," Autonomous Robots, vol. 4, no. 1, pp. 7-27, 1997.

[33] N Naidoo, G Bright, and R Stopforth, "Material Flow Optimisation in Flexible

Manufacturing Systems," in Proceedings of the 6th IEEE International Conference on

Robotics and Mechatronics (RobMech), Durban, 2013, pp. 1-5.

[34] L E Parker, "Multiple Mobile Robot Systems," in Handbook of Robotics. Berlin

Heidelburg: Springer-Verlag, 2008, ch. 40.

[35] S J Russell and P Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.: Prentice

Hall, 2002.

[36] RoboCup. (2017, July) RoboCup 2017. [Online].

https://www.robocup2017.org/eng/index.html

[37] ICGA. (2017, July) ICGA Tournaments. [Online]. https://www.game-ai-

forum.org/icga-tournaments/

[38] E Sahin and W Spears, "Swarm robotics, a state of the art survey," Lecture notes in

Computer Science 2005.

[39] P Inigo-Blasco, F Diaz-del-Rio, C Romero-Ternero, and D Cagigas-Muniz, "Robotics

software frameworks for multi-agent robotic systems development," Elsevier Robotics

https://www.amazonrobotics.com/
https://www.robocup2017.org/eng/index.html
https://www.game-ai-forum.org/icga-tournaments/
https://www.game-ai-forum.org/icga-tournaments/

References 123

and Autonomous Systems, vol. 60, pp. 803-821, 2012.

[40] D Drenjanac and S D Tomic, "Middleware Challenges in Robotic Fleets for Precision

Agriculture," Journal of Mechanics Engineering and Automation, vol. 3, pp. 702-714,

2013.

[41] R Simmons, S Singh, D Hershberger, J Ramos, and T Smith, "First results in the

coordination of heterogeneous robots for large-scale assembly," in Proceedings of the

ISER Seventh International Symposium on Experimental Robotics, Honolulu, 2000.

[42] A Elkady and T Sobh, "Robotics Middleware: A Comprehensive Literature Survey and

Attribute-Based Bibliography," Journal of Robotics, vol. 2012, pp. 1-15, 2012.

[43] D Kruger, I Van Lil, N Sunderhauf, R Baumgartl, and P Protzel, "Using and extending

the Miro middleware for autonomous mobile robots," in Proceedings of the

international conference on Towards Autonomous Robotic Systems (TAROS 06),

Survey, 2006.

[44] N Naidoo, G Bright, and R Stopforth, "Navigation and Control of Cooperative Mobile

Robots using a Robotic Middleware Platform," in Proceedings of the 12th IEEE

International Conference on Control & Automation (ICCA), Kathmandu, 2016, pp.

927-932.

[45] N Naidoo, G Bright, and R Stopforth, "A Distributed Framework for Programming the

Artificial Intelligence of Mobile Robots in Smart Manufacturing Systems,"

International Journal of Advanced Robotic Systems, 2017.

[46] M Filippi, A Saffiotti, and F Cavallo, "Report on the interoperability aspects of Robot-

Era services," Large-scale integrating project (IP) , 2012.

[47] N Naidoo, G Bright, and R Stopforth, "A cooperative mobile robot network in ROS for

124 References

advanced manufacturing applications," in Proceedings of the 6th International

Conference on Competitive Manufacturing (COMA), Stellenbosch, 2016, pp. 281-286.

[48] M Henning, "A New Approach to Object-Oriented Middleware," IEEE Internet

Computing, vol. 8, pp. 66-75, 2004.

[49] C Aguero and M Veloso, "Transparent Multi-Robot Communication Exchange for

Executing Robot Behaviors," in Proceedings of the 10th International Conference on

Practical Applications of Agents and Multi-Agent Systems (PAAMS), 2012.

[50] M Broxvall, B S Seo, and W Y Kwon, "The PEIS Kernel: A Middleware for

Ubiquitous Robotics," in Proceedings of IROS-07, Workshop on Ubiquitous Robotic

Space Design and Applications, 2007.

[51] M Broxvall, A Loutfi, S Coradeschi, and A Saffiotti, "An ecological approach to odour

recognition in intelligent environments," in Proceedings of the IEEE International

Conference on Robotics and Automation, Orlando, 2006.

[52] M Broxvall, M Gritti, A Saffiotti, B Seo, and Y Cho, "PEIS ecology: Integrating robots

into smart environments," in Proceedings of the IEEE International Conference on

Robotics and Automation, Orlando, 2006.

[53] S Ahn et al., "UPnP Robot Middleware for Ubiquitous Robot Control," in Proceedings

of the 3rd Internation Conference on Ubiquitous Robots and Ambient Intelligence

(URAI2006), 2006.

[54] S Enderle et al., "Miro: middleware for autonomous mobile robots," in Proceedings of

IFAC Conference on Telematics Applications in Automation and Robotics, 2001.

[55] S Chouhan, D Pandey, and Y Chul Ho, "CINeMA: Cooperative Intelligent Network

Management Architecture for Multi-Robot Rescue System in Disaster Areas," in

References 125

Proceedings of the International Conference on Electrical, Electronics, Computer

Science, and Mathematics Physical Education and Management (ICEECMPE), New

Delhi, 2014, pp. 51-61.

[56] D Althoff, O Kourakos, and M Lawitzky, "An Architecture for Real-Time Control in

Multi-Robot Systems," Human Centered Robot Systems, vol. 6, pp. 43-52, 2009.

[57] M Goebl and G Farber, "A real-time-capable hardware and software architecture for

joint image and knowledge processing in cognitive automobiles," in Proceedings of the

2007 IEEE Intelligent Vehicles Symposium, 2007, pp. 734-740.

[58] M Goebl, "A real-time architecture for the integration of cognitive functions,"

Technische Universitat Munchen, PhD thesis 2009.

[59] S Planthaber, J Vogelgesang, and E NieBen, "CoHoN: A Fault-Tolerant

Publish/Subscribe Tree-Based Middleware for Robots with Heterogeneous

Communication Hardware," in Proceedings of the 6th International Conference on

Systems and Networks Communications (ICSNC), 2011.

[60] C Cote, Y Brosseau, D Letourneau, C Raievsky, and F Michaud, "Robotic Software

Integration Using MARIE," The International Journal of Advanced Robotic Systems,

vol. 3, no. 1, pp. 55-60, 2006.

[61] B Gerkey, R Vaughan, and A Howard, "The Player/Stage Project: tools for multi-robot

and distributed sensor systems," in Proceedings of the International Conference on

Advanced Robotics (ICAR 2003), Coimbra, 2003, pp. 317-323.

[62] I A Nesnas, R Simmons, and D Gaines, "Claraty: challenges and steps toward reusable

robotic software," International Journal of Advanced Robotic Systems, vol. 3, no. 1, pp.

23-30, 2006.

126 References

[63] I A Nesnas et al., "Claraty: an architecture for reusable robotic software," Space

Robots, vol. 5083, pp. 253-264, 2003.

[64] S Magnenat, V Longchamp, and F Mondada, "ASEBA, an event-based middleware for

distributed robot control," in IEEE/RSJ 2007 Internation Conference on Intelligent

Robots and Systems, San Diego, 2007.

[65] M Montemerlo, N Roy, and S Thrun, "Perspectives on standardization in mobile robot

programming: the carnegie mellon navigation (carmen) toolkit," in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’03),

2003, pp. 2436-2441.

[66] D S Blank, D Kumar, L Meeden, and H A Yanco, "The pyro toolkit for AI and

robotics," AI Magazine, vol. 27, no. 1, pp. 39-50, 2006.

[67] D S Blank, D Kumar, L Meeden, and H A Yanco, "Pyro: an integrated environment for

Robotics education," in Proceedings of the 20th National Conference on Artificial

Intelligence (AAAI '05), 2005, pp. 1718-1719.

[68] A Makarenko and A Brooks, "Orca: components for robotics," in Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems Workshop on

Robotic Standardization (IROS ’06), Beijing, 2006.

[69] C Szyperski, Component software : beyond object-oriented programming, 2nd ed.

Boston: Addison-Wesley Longman Publishing Co., 2002.

[70] Wikipedia. (2017, July) DARPA Grand Challenge. [Online].

https://en.wikipedia.org/wiki/DARPA_Grand_Challenge

[71] OROCOS. (2017, July) The OROCOS Project. [Online]. http://www.orocos.org/

https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
http://www.orocos.org/

References 127

[72] OROCOS. (2017, July) The OROCOS Project. [Online].

https://people.mech.kuleuven.be/~orocos/pub/documentation/rtt/v2.4.x/doc-

xml/orocos-overview.pdf

[73] K Johns and T Taylor, Microsoft Robotics Developer Studio, 1st ed. Indianapolis:

Wiley Publishing, Inc., 2008.

[74] J S Cepeda, L Chaimowicz, and R Soto, "Exploring Microsoft Robotics Studio as a

Mechanism for Service-Oriented Robotics," in Latin American Robotics Symposium

and Intelligent Robotics Meeting, São Bernardo do Campo, 2010.

[75] B Gerkey et al., "ROS: an open-source robot operating system ," in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2009.

[76] ROS. (2017, July) List of ROS packages for Indigo. [Online].

http://www.ros.org/browse/list.php

[77] A Jäger and F Ranz, "Implications for Learning Factories from Industry 4.0.,"

Fraunhofer Austria Research and ESB Business School, 2014.

[78] V Mahidhar and D Schatsky, "The Internet of Things," Deloitte University Press, 2013.

[79] R C Schlaepfer, M Koch, and P Merkofer, "Industry 4.0: Challenges and solutions for

the digital transformation and use of exponential technologies," Deloitte, A Study 2015.

[80] W MacDougall, "Industrie 4.0: Smart manufacturing for the future," Germany Trade

and Invest, Berlin, 2014.

[81] V A Hax, N L Duarte Filho, S S Da Costa Botelho, and O M Mendizabal, "ROS as a

middleware to Internet of Things," Journal of Applied Computing Research, vol. 2, no.

2, pp. 91-97, 2012.

https://people.mech.kuleuven.be/~orocos/pub/documentation/rtt/v2.4.x/doc-xml/orocos-overview.pdf
https://people.mech.kuleuven.be/~orocos/pub/documentation/rtt/v2.4.x/doc-xml/orocos-overview.pdf
http://www.ros.org/browse/list.php

128 References

[82] N Naidoo, G Bright, R Stopforth, J F Zelasco, and J Donayo, "Optimizing Search and

Rescue Missions through a Cooperative Mobile Robot Network," in Proceedings of the

8th IEEE International Conference on Robotics and Mechatronics (RobMech), Port

Elizabeth, 2015, pp. 7-11.

[83] W Herroelen and R Leus, "On the merits and pitfalls of critical chain scheduling,"

Journal of Operations Management, vol. 19, pp. 559-577, 2001.

[84] PROFIBUS and PROFINET International (PI). (2017, August) PROFIBUS. [Online].

http://www.profibus.com/pi-organization/about-pi/

[85] CANbus. (2017, August) CANbus. [Online]. https://www.canbus.us/

[86] The Modbus Organisation. (2017, August) Modbus. [Online]. http://www.modbus.org/

[87] CC-Link Partner Association. (2017, August) CC-Link. [Online]. http://am.cc-

link.org/en/index.html

[88] Z Lin and S Pearson, "An inside look at industrial Ethernet communication protocols,"

Texas Instruments Incorporated, White paper 2013.

[89] P Brooks, "EtherNet/IP: Industrial Protocol White Paper," Institute of Electrical and

Electronic Engineers, White paper 2001.

[90] EtherCAT Technology Group. (2017, August) EtherCAT. [Online].

https://www.ethercat.org/default.htm

[91] Beckhoff, "EtherCAT System Documentation," Beckhoff, Manual Version 5.2, 2017.

[92] Advantech, "Using EtherCAT for Industrial Control Communications," Advantech,

Technical white paper 2015.

http://www.profibus.com/pi-organization/about-pi/
https://www.canbus.us/
http://www.modbus.org/
http://am.cc-link.org/en/index.html
http://am.cc-link.org/en/index.html
https://www.ethercat.org/default.htm

References 129

[93] OPC Foundation. (2017, August) OPC Foundation. [Online]. https://opcfoundation.org/

[94] T Burke, "President’s Welcome," OPC Foundation, OPC Connect Newsletter 2017.

[95] Matrikon. (2017, August) Matrikon OPC. [Online].

http://www.matrikonopc.com/index.aspx

[96] Qt. (2017, August) Qt. [Online]. https://www.qt.io/

[97] R-project. (2017, August) What is R? [Online]. https://www.r-project.org/about.html

[98] Python. (2017, August) Python. [Online]. https://www.python.org/

[99] scikit-learn. (2017, August) scikit-learn: Machine learning in Python. [Online].

http://scikit-learn.org/stable/

[100] Ecava IGX. (2017, August) Ecava Integraxor Web SCADA. [Online].

https://www.integraxor.com/

[101] ROS. (2017, August) AMCL ROS package. [Online]. http://wiki.ros.org/amcl

[102] SSH communications security. (2017, August) SSH Protocol. [Online].

https://www.ssh.com/ssh/protocol/

[103] M Hvilshøj, S Bøgh, O Madsen, and M Kristiansen, "The mobile robot "Little Helper":

Concepts, ideas and working principles," in IEEE Conference on Emerging

Technologies & Factory Automation, 2009.

[104] M Faisal, M Alsulaiman, K Al-Muteb, and M Emaduddin, "Gas Detection and

Mapping Using an Autonomous Mobile Robot," in 28th International Conference on

Computer Applications in Industry and Engineering, 2015.

https://opcfoundation.org/
http://www.matrikonopc.com/index.aspx
https://www.qt.io/
https://www.r-project.org/about.html
https://www.python.org/
http://scikit-learn.org/stable/
https://www.integraxor.com/
http://wiki.ros.org/amcl
https://www.ssh.com/ssh/protocol/

130 References

[105] S Opfer, H Skubch, and K Geihs, "Cooperative Path Planning for Multi-Robot Systems

in Dynamic Domains," in Mobile Robots - Control Architectures, Bio-Interfacing,

Navigation, Multi Robot Motion Planning and Operator Training, J Będkowski, Ed.:

Intech, 2011, ch. 11, pp. 237-258.

[106] B Lydon. (2012, February) Automation.com. [Online].

https://www.automation.com/automation-news/article/digital-factory-superstructure-

emerging-with-opc-ua

[107] S Hill. (2015, January) Automation World. [Online].

https://www.automationworld.com/article/technologies/erp/how-plant-floor-data-

drives-enterprise

[108] R Marin et al., "Remote Programming of Network Robots Within the UJI Industrial

Robotics Telelaboratory: FPGA Vision and SNRP Network Protocol," IEEE

Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4806-4816, December 2009.

[109] M Tucat and A J Garcia, "High Level Programming Tools for Robotic Interaction

Protocols: a Logic Programming Approach," in 4th International Symposium of

Autonomous Minirobots for Research and Edutainment (AMiRE 07), Buenos Aires,

2007.

[110] J Bachrach, J McLurkin, and A Grue, "Protoswarm: A Language for Programming

Multi-Robot Systems Using the Amorphous Medium Abstraction," in Proceedings of

the 7th International Joint Conference on Autonomous Agents and Multiagent Systems,

Estoril, 2008, pp. 1175-1178.

[111] V M Trifa, C M Cianci, and D Guinard, "Dynamic Control of a Robotic Swarm using a

Service-Oriented Architecture," in 13th International Symposium on Artificial Life and

Robotics, Beppu, 2008.

https://www.automation.com/automation-news/article/digital-factory-superstructure-emerging-with-opc-ua
https://www.automation.com/automation-news/article/digital-factory-superstructure-emerging-with-opc-ua
https://www.automationworld.com/article/technologies/erp/how-plant-floor-data-drives-enterprise
https://www.automationworld.com/article/technologies/erp/how-plant-floor-data-drives-enterprise

References 131

[112] OPC Foundation. (2017, September) Security. [Online].

http://wiki.opcfoundation.org//index.php?title=Security&printable=yes

[113] ROS. (2017, September) SROS. [Online]. http://wiki.ros.org/SROS

http://wiki.opcfoundation.org/index.php?title=Security&printable=yes
http://wiki.ros.org/SROS

Appendix A: Python Tkinter GUI code

1> # Filename: main.py

2> from Tkinter import *

3> import ttk

4> import tkFileDialog

5> import inspect

6> import OpenOPC # the OPC client library for Python

7> import paramiko # for file transfers

8> import gvar

9> import os

10> import time

11> import platform

12> import subprocess

13> import LibHetRobots

14>

15>

16> # Global variables:

17> treestore = ""

18> connFlag = False

19>

20>

21> def checkIP(hostname):

22> pingFlag = False

23> try:

24> if platform.system() == "Windows":

25> response = subprocess.check_output("ping %s -n 1 -w 1000"

% hostname, shell=True) # limits the response to 1000ms

26> else:

27> response = subprocess.check_output("ping -c 1 -W 1000" +

hostname, shell=True)

28>

29> if response.find('TTL=') != -1: # check if we get a valid

TTL response from host

30> pingFlag = True

31> except:

32> pingFlag = False

33> return pingFlag

34>

35>

134 Appendix A: Python Tkinter GUI code

36> def getRoblist():

37> rlist = []

38> f = open('robconfig.txt', 'r')

39> for line in f:

40> startpos = 0 # char start position in string

41> rrec = []

42> charpos = line.find(',')

43> while charpos != -1:

44> rrec.append(line[startpos:charpos])

45> startpos = charpos + 1

46> charpos = line.find(',', startpos, len(line))

47> rlist.append(str(rrec[0] + ", " + rrec[1]))

48> f.close()

49> rlist.sort()

50> return rlist

51>

52>

53> def getTasklist():

54> tlist = []

55> f = open('taskconfig.txt', 'r')

56> for line in f:

57> startpos = 0 # char start position in string

58> trec = []

59> charpos = line.find(',')

60> while charpos != -1:

61> trec.append(line[startpos:charpos])

62> startpos = charpos + 1

63> charpos = line.find(',', startpos, len(line))

64> tlist.append(str(trec[0] + ", " + trec[1]))

65> f.close()

66> tlist.sort()

67> return tlist

68>

69>

70> def find_idx(mainstr, substr, n):

71> start = mainstr.find(substr)

72> while start >= 0 and n > 1:

73> start = mainstr.find(substr, start+len(substr))

74> n -= 1

75> return start

76>

77>

78> def getLoclist(t_id, n_id):

79> loclist = []

Appendix A: Python Tkinter GUI code 135

80> f = open('robots/%slocations.txt' % ron_id, 'r')

81> for line in f:

82> charpos = line.find('%s,%s' % (t_id, n_id))

83> if charpos != -1:

84> loclist.append(line[find_idx(line, ',', 2) +

1:find_idx(line, ',', 3)])

85> loclist.append(line[find_idx(line, ',', 3) +

1:find_idx(line, ',', 4)])

86> loclist.append(line[find_idx(line, ',', 4) +

1:find_idx(line, ',', 5)])

87> return loclist

88> f.close()

89>

90>

91> def getRobname(r_id):

92> f = open('robconfig.txt', 'r')

93> for line in f:

94> charpos = line.find(r_id)

95> if charpos != -1:

96> return line[find_idx(line, ',', 1) + 1:find_idx(line,

',', 2)]

97> f.close()

98>

99>

100> class App(Frame):

101> def __init__(self):

102> # self.MyFont=font.Font(weight='bold')

103> self.root = Tk()

104> Frame.__init__(self)

105> self.root.title("Robot Programming Interface")

106> self.root.rowconfigure(5, weight=1)

107> self.master.columnconfigure(5, weight=1)

108> self.grid(sticky=W+E+N+S)

109> self.conn_stat = StringVar()

110> self.conn_stat.set("OFFLINE")

111> self.conn_led = StringVar()

112> self.conn_led.set("red")

113>

114> connFrame = Frame(self.root, width=500, height=50,

borderwidth=2, relief=GROOVE)

115> connFrame.grid(row=0, column=0, padx=0, pady=1,

columnspan=4, sticky=NSEW)

116> self.w = Canvas(connFrame, width=19, height=19)

136 Appendix A: Python Tkinter GUI code

117> self.w.grid(row=0, column=0, padx=0, pady=0,

sticky=NSEW)

118> self.conn_circ = self.w.create_oval(2,2,16,16,

fill="red")

119> self.w.itemconfig(self.conn_circ,

fill=self.conn_led.get())

120> self.connlab = ttk.Label(connFrame,

textvariable=self.conn_stat).grid(row=0, column=1, padx=0, pady=0)

121>

122> labFrame = Frame(self.root, width=200, height=200)

123> labFrame.grid(row=1, column=0, padx=0, pady=10)

124> self.IPlab = ttk.Label(labFrame, text="IP

address").grid(row=0, column=0, padx=5, pady=5)

125> self.IPinput = StringVar()

126> self.IPadd = ttk.Entry(labFrame, background='white',

width=20, textvariable=self.IPinput)

127> self.IPadd.grid(row=0, column=1, padx=0, pady=5)

128>

129> butFrame = Frame(self.root, width=500, height=500)

130> butFrame.grid(row=1, column=1, padx=0, pady=10,

sticky=NSEW)

131> butFrame2 = Frame(self.root, width=500, height=500)

132> butFrame2.grid(row=2, column=0, padx=50, pady=10,

columnspan=3, sticky=NSEW)

133> butFrame2.rowconfigure(0, minsize=60)

134> butFrame2.rowconfigure(1, minsize=60)

135> butFrame2.rowconfigure(2, minsize=60)

136>

137> statFrame = Frame(self.root, width=100, height=5,

borderwidth=2, relief=GROOVE)

138> statFrame.grid(row=3, column=0, padx=0, pady=0,

columnspan=3, sticky=NSEW)

139> self.status = StringVar()

140> self.statlab = ttk.Label(statFrame,

textvariable=self.status).grid(row=0, column=0, padx=5, pady=0)

141>

142> self.test_butn = ttk.Button(butFrame, text="Ping",

command=self.PingTest)

143> self.test_butn.grid(row=0, column=1, padx=5, pady=0,

sticky=NSEW)

144> self.connect_butn = ttk.Button(butFrame,

text="Connect", command=self.RobConnect)

145> self.connect_butn.grid(row=2, column=1, padx=5, pady=0,

sticky=NSEW)

Appendix A: Python Tkinter GUI code 137

146> self.roblist_butn = ttk.Button(butFrame, text="Robot

List", command=self.Win_RobList)

147> self.roblist_butn.grid(row=0, column=2, padx=5, pady=5,

rowspan=3, sticky=NSEW)

148>

149> self.configrob_butn = ttk.Button(butFrame2, text="

Configure Robots ", command=self.Win_ConfigRob)

150> self.configrob_butn.grid(row=0, column=0, padx=5,

pady=5, sticky=NSEW)

151> self.taskman_butn = ttk.Button(butFrame2, text=" Task

Management ", command=self.Win_ConfigTask)

152> self.taskman_butn.grid(row=0, column=1, padx=5, pady=5,

sticky=NSEW)

153> self.asgntags_butn = ttk.Button(butFrame2, text="Assign

Tags", command=self.Win_AssignTags)

154> self.asgntags_butn.grid(row=1, column=0, padx=5,

pady=5, sticky=NSEW)

155> self.selalgo_butn = ttk.Button(butFrame2, text="Select

Algorithm", command=self.Win_SelectAlgo)

156> self.selalgo_butn.grid(row=1, column=1, padx=5, pady=5,

sticky=NSEW)

157> self.locations_butn = ttk.Button(butFrame2, text="Task

Locations", command=self.Win_LocationConfig)

158> self.locations_butn.state(["disabled"])

159> self.locations_butn.grid(row=2, column=0, padx=5,

pady=5, sticky=NSEW)

160> self.download_butn = ttk.Button(butFrame2,

text="Download", command=self.RobDownload)

161> self.download_butn.state(["disabled"])

162> self.download_butn.grid(row=2, column=1, padx=5,

pady=5, sticky=NSEW)

163> #self.download_butn.state(["!disabled"])

164> self.root.mainloop()

165>

166> def PingTest(self):

167> pingResult = checkIP(self.IPinput.get())

168> if pingResult == True:

169> self.status.set("Ping success!")

170> else:

171> self.status.set("Destination host unreachable")

172>

173> def RobConnect(self):

174> self.status.set("Establishing connection...")

175> try:

176> ssh_client = paramiko.SSHClient()

138 Appendix A: Python Tkinter GUI code

177>

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #

prevent security key auth

178> ssh_client.connect(hostname=self.IPinput.get(),

username='nicol', password='nicol')

179> ftp = ssh_client.open_sftp()

180> ftp.get("/home/nicol/robconfigfiles/rid.txt",

"robots/rid.txt") # transfer file

181> f = open('robots/rid.txt', 'r')

182> for line in f:

183> ron_id = line.rstrip()

184> f.close()

185> ftp.close()

186> ssh_client.close()

187> self.status.set("Connected to host")

188> self.conn_led.set("green")

189> self.w.itemconfig(self.conn_circ,

fill=self.conn_led.get())

190> self.conn_stat.set("ONLINE [%s (%s)]" % (ron_id,

getRobname(ron_id)))

191> self.locations_butn.state(["!disabled"])

192> self.download_butn.state(["!disabled"])

193> except:

194> self.status.set("Could not connect to host")

195>

196> def RobDownload(self):

197> try:

198> self.status.set("Downloading file...")

199> ssh_client = paramiko.SSHClient()

200>

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #

prevent security key auth

201> ssh_client.connect(hostname=self.IPinput.get(),

username='nicol', password='nicol')

202> ftp = ssh_client.open_sftp()

203> ftp.put("robots/001locations.txt",

"/home/nicol/robconfigfiles/001locations.txt") # transfer file

204> ftp.close()

205> ssh_client.close()

206> self.status.set("Download complete")

207> except:

208> self.status.set("Could not connect to host")

209>

210> def Win_ConfigRob(self):

Appendix A: Python Tkinter GUI code 139

211> ClassRobconf()

212>

213> def Win_RobList(self):

214> ClassRoblist()

215>

216> def Win_ConfigTask(self):

217> ClassTaskman()

218>

219> def Win_AssignTags(self):

220> ClassAssigntags()

221>

222> def Win_SelectAlgo(self):

223> ClassSelectAlgo()

224>

225> def Win_LocationConfig(self):

226> ClassLocationConfig()

227>

228> class ClassRobconf(Frame):

229> def __init__(self):

230> Frame.__init__(self)

231> self.Robconf = Toplevel()

232> self.Robconf.title("Robot Configuration")

233> global idVar, nameVar, ipVar, r_lenVar, r_wtVar,

r_htVar, r_ldVar, r_linspdVar, r_angspdVar

234> global r_lrfVar, r_sonVar, r_camVar, r_gripVar,

r_2whlVar

235> global select, select2, roblist, robsublist, robrec

236>

237> frame1 = Frame(self.Robconf, width=100, height=100)

238> frame1.grid(row=0, column=0, columnspan=3)

239> Label(frame1, text="Robot ID").grid(row=0, column=0,

sticky=W)

240> idVar = StringVar()

241> ttk.Entry(frame1, width=10,

textvariable=idVar).grid(row=0, column=1, padx=(5,30), pady=20,

sticky=W)

242> Label(frame1, text="Name").grid(row=0, column=2,

sticky=W)

243> nameVar = StringVar()

244> ttk.Entry(frame1, textvariable=nameVar).grid(row=0,

column=3, padx=(5,30), pady=20, sticky=W)

245> Label(frame1, text="IP address").grid(row=0, column=4,

sticky=W)

246> ipVar = StringVar()

140 Appendix A: Python Tkinter GUI code

247> ttk.Entry(frame1, textvariable=ipVar).grid(row=0,

column=5, padx=(5,30), pady=20, sticky=W)

248>

249> frame2 = Frame(self.Robconf, width=5, height=10,

borderwidth=2, relief=GROOVE)

250> frame2.grid(row=1, column=0, padx=10, pady=0,

sticky=NSEW)

251> Label(frame2, text="Robot dimensions (mm)").grid(row=0,

column=0, columnspan=3)

252> ent_width=5

253> Label(frame2, text="L").grid(row=1, column=0, padx=15,

pady=0, sticky=W)

254> r_lenVar = StringVar()

255> ttk.Entry(frame2, width=ent_width,

textvariable=r_lenVar).grid(row=2, column=0, padx=5, pady=0,

sticky=W)

256> Label(frame2, text="W").grid(row=1, column=1, padx=15,

pady=0, sticky=W)

257> r_wtVar = StringVar()

258> ttk.Entry(frame2, width=ent_width,

textvariable=r_wtVar).grid(row=2, column=1, padx=5, pady=0, sticky=W)

259> Label(frame2, text="H").grid(row=1, column=2, padx=15,

pady=0, sticky=W)

260> r_htVar = StringVar()

261> ttk.Entry(frame2, width=ent_width,

textvariable=r_htVar).grid(row=2, column=2, padx=5, pady=0, sticky=W)

262>

263> frame3 = Frame(self.Robconf, width=10, height=10,

borderwidth=2, relief=GROOVE)

264> frame3.grid(row=1, column=1, padx=10, pady=0,

sticky=NSEW)

265> Label(frame3, text="Max. load capacity").grid(row=0,

column=0, padx=0, pady=0, sticky=W)

266> r_ldVar = StringVar()

267> ttk.Entry(frame3, width=ent_width,

textvariable=r_ldVar).grid(row=0, column=1, padx=0, pady=0,

sticky=NSEW)

268> Label(frame3, text="kg").grid(row=0, column=2, padx=0,

pady=0, sticky=W)

269> Label(frame3, text="Max. linear speed").grid(row=1,

column=0, padx=0, pady=2, sticky=W)

270> r_linspdVar = StringVar()

271> ttk.Entry(frame3, width=ent_width,

textvariable=r_linspdVar).grid(row=1, column=1, padx=0, pady=2,

sticky=NSEW)

Appendix A: Python Tkinter GUI code 141

272> Label(frame3, text="m/s").grid(row=1, column=2, padx=0,

pady=0, sticky=W)

273> Label(frame3, text="Max. angular speed").grid(row=2,

column=0, padx=0, pady=2, sticky=W)

274> r_angspdVar = StringVar()

275> ttk.Entry(frame3, width=ent_width,

textvariable=r_angspdVar).grid(row=2, column=1, padx=0, pady=2,

sticky=NSEW)

276> Label(frame3, text="rad/s").grid(row=2, column=2,

padx=0, pady=0, sticky=W)

277>

278> frame4 = Frame(self.Robconf, width=5, height=10,

borderwidth=2, relief=GROOVE)

279> frame4.grid(row=1, column=2, padx=10, pady=0,

sticky=NSEW)

280> Label(frame4, text="Hardware installed").grid(row=0,

column=0, columnspan=8)

281> r_lrfVar = IntVar()

282> ttk.Checkbutton(frame4, width=0,

variable=r_lrfVar).grid(row=1, column=0, padx=0, pady=0, sticky=E)

283> Label(frame4, text="LRF").grid(row=1, column=1,

padx=(0,30), pady=0, sticky=W)

284> r_sonVar = IntVar()

285> ttk.Checkbutton(frame4, width=0,

variable=r_sonVar).grid(row=1, column=2, padx=0, pady=0, sticky=E)

286> Label(frame4, text="Sonars").grid(row=1, column=3,

padx=(0,10), pady=0, sticky=W)

287> r_camVar = IntVar()

288> ttk.Checkbutton(frame4, width=0,

variable=r_camVar).grid(row=2, column=0, padx=0, pady=0, sticky=E)

289> Label(frame4, text="Camera").grid(row=2, column=1,

padx=(0, 30), pady=0, sticky=W)

290> r_gripVar = IntVar()

291> ttk.Checkbutton(frame4, width=0,

variable=r_gripVar).grid(row=2, column=2, padx=0, pady=0, sticky=E)

292> Label(frame4, text="Grippers").grid(row=2, column=3,

padx=(0, 10), pady=0, sticky=W)

293> r_2whlVar = IntVar()

294> ttk.Checkbutton(frame4, width=0,

variable=r_2whlVar).grid(row=3, column=0, padx=0, pady=0, sticky=E)

295> Label(frame4, text="Two-wheel").grid(row=3, column=1,

padx=(0, 30), pady=0, sticky=W)

296>

297> frame5 = Frame(self.Robconf)

142 Appendix A: Python Tkinter GUI code

298> frame5.grid(row=2, column=0, padx=10, pady=(15,0),

columnspan=4, sticky=NSEW)

299> ttk.Button(frame5, text=" Add ",

command=self.addEntry).grid(row=0, column=0, padx=(0, 0), pady=0,

sticky=W)

300> ttk.Button(frame5, text="Update",

command=self.updateEntry).grid(row=0, column=1, padx=(0, 0), pady=0,

sticky=W)

301> ttk.Button(frame5, text="Delete",

command=self.deleteEntry).grid(row=0, column=2, padx=(0, 0), pady=0,

sticky=W)

302> ttk.Button(frame5, text=" Load ",

command=self.loadEntry).grid(row=0, column=3, padx=(0, 0), pady=0,

sticky=W)

303>

304> frame6 = Frame(self.Robconf)

305> frame6.grid(row=3, column=2, padx=7, pady=(0, 0),

columnspan=1, sticky=NSEW)

306> Label(frame6, text="Compatible Tasks").grid(row=0,

column=0, padx=0, pady=0, sticky=NSEW)

307>

308> frame7 = Frame(self.Robconf)

309> frame7.grid(row=4, column=0, padx=10, pady=(0,5),

columnspan=5, sticky=NSEW)

310> scroll = ttk.Scrollbar(frame7, orient=VERTICAL)

311> select = Listbox(frame7, yscrollcommand=scroll.set,

height=6, width=50)

312> scroll.config(command=select.yview)

313> scroll.grid(row=0, column=5, padx=(0, 0), pady=0,

sticky=NS)

314> select.grid(row=0, column=0, padx=(0, 0), pady=0,

columnspan=4, sticky=NSEW)

315>

316> frame8 = Frame(self.Robconf)

317> frame8.grid(row=4, column=2, padx=10, pady=(0,5),

columnspan=5, sticky=NSEW)

318> scroll2 = ttk.Scrollbar(frame8, orient=VERTICAL)

319> select2 = Listbox(frame8, yscrollcommand=scroll2.set,

height=6, width=34)

320> scroll2.config(command=select2.yview)

321> scroll2.grid(row=0, column=7, padx=(0, 0), pady=0,

sticky=NS)

322> select2.grid(row=0, column=0, padx=(0, 0), pady=0,

columnspan=4, sticky=NSEW)

323>

Appendix A: Python Tkinter GUI code 143

324> self.setSelect() # configure roblist and select

listbox

325> self.Robconf.focus_force()

326>

327> def setSelect(self):

328> totrec = 0 # total number of records

329> global roblist, robsublist, robrec

330> roblist=[]

331> f = open('robconfig.txt', 'r')

332> for line in f:

333> startpos = 0 # char start position in string

334> robrec=[]

335> charpos = line.find(',')

336> while charpos != -1:

337> robrec.append(line[startpos:charpos])

338> startpos = charpos + 1

339> charpos = line.find(',', startpos, len(line))

340> roblist.append(str(robrec[0] + ", " + robrec[1] +

", " + robrec[2]))

341> totrec = totrec + 1

342> f.close()

343> roblist.sort()

344> select.delete(0, END)

345> for i in range(totrec):

346> select.insert(END, roblist[i])

347>

348> # Compatible tasks list:

349> def setSelect2(self, rid):

350> totrec = 0 # total number of records

351> CompatTaskMat = LibHetRobots.getCompatTasks(rid)

352> select2.delete(0, END)

353> for i in range(len(CompatTaskMat)):

354> select2.insert(END, str(CompatTaskMat[i][0] + ', '

+ CompatTaskMat[i][1]))

355>

356> def whichSelected(self):

357> return int(select.curselection()[0])

358>

359> def addEntry(self):

360> f = open('robconfig.txt', 'a')

361> f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n'

% (idVar.get(), nameVar.get(), ipVar.get(),

362>

r_lenVar.get(), r_wtVar.get(), r_htVar.get(),

144 Appendix A: Python Tkinter GUI code

363>

r_ldVar.get(), r_linspdVar.get(), r_angspdVar.get(),

364>

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(),

365>

r_gripVar.get(), r_2whlVar.get()))

366> f.close()

367> self.setSelect()

368>

369> def updateEntry(self):

370> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

371> str2 = str1[0:str1.find(',')]

372> lines = open('robconfig.txt', 'r').readlines()

373> for i in range(len(lines)):

374> if lines[i].find(str2) != -1:

375> lines[i] =

'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' % (idVar.get(),

nameVar.get(), ipVar.get(),

376>

r_lenVar.get(), r_wtVar.get(), r_htVar.get(),

377>

r_ldVar.get(), r_linspdVar.get(), r_angspdVar.get(),

378>

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(),

379>

r_gripVar.get(), r_2whlVar.get())

380> break

381> f = open('robconfig.txt', 'w')

382> f.writelines(lines)

383> f.close()

384> self.setSelect()

385>

386> def deleteEntry(self):

387> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

388> str2 = str1[0:str1.find(',')]

389> lines = open('robconfig.txt', 'r').readlines()

390>

391> for i in range(len(lines)):

392> if lines[i].find(str2) != -1:

393> lines.remove(lines[i])

394> break

395> f = open('robconfig.txt', 'w')

Appendix A: Python Tkinter GUI code 145

396> f.writelines(lines)

397> f.close()

398> self.setSelect()

399>

400> def loadEntry(self):

401> global robrec

402> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

403> str2 = str1[0:str1.find(',')]

404> f = open('robconfig.txt', 'r')

405> for line in f:

406> if line.find(str2) != -1:

407> startpos = 0 # char start position in string

408> robrec = []

409> charpos = line.find(',')

410> while charpos != -1:

411> robrec.append(line[startpos:charpos])

412> startpos = charpos + 1

413> charpos = line.find(',', startpos,

len(line))

414> break # breaks the for-loop

415> f.close()

416> # set the fields on the form:

417> idVar.set(robrec[0])

418> nameVar.set(robrec[1])

419> ipVar.set(robrec[2])

420> r_lenVar.set(robrec[3])

421> r_wtVar.set(robrec[4])

422> r_htVar.set(robrec[5])

423> r_ldVar.set(robrec[6])

424> r_linspdVar.set(robrec[7])

425> r_angspdVar.set(robrec[8])

426> r_lrfVar.set(robrec[9])

427> r_sonVar.set(robrec[10])

428> r_camVar.set(robrec[11])

429> r_gripVar.set(robrec[12])

430> r_2whlVar.set(robrec[13])

431> self.setSelect2(int(robrec[0]))

432>

433> class ClassRoblist(Frame):

434> def __init__(self):

435> Frame.__init__(self)

436> self.Roblistwin = Toplevel()

437> self.Roblistwin.title("Robot List")

146 Appendix A: Python Tkinter GUI code

438> self.tree = ttk.Treeview(self.Roblistwin, height=20) #

height param modifies the window height - adjust if lots of entries!

439> self.tree["columns"] = ("rob_id", "rob_name", "rob_ip")

440> self.tree.column("#0", width=40, anchor=N)

441> self.tree.heading("#0", text="No.")

442> self.tree.column("rob_id", width=80, anchor=N)

443> self.tree.heading("rob_id", text="Robot ID")

444> self.tree.column("rob_name", width=120, anchor=N)

445> self.tree.heading("rob_name", text="Robot name")

446> self.tree.column("rob_ip", width=120, anchor=N)

447> self.tree.heading("rob_ip", text="IP address")

448> self.tree.pack()

449>

450> totrec = 0 # total number of records

451> roblist=[]

452> f = open('robconfig.txt', 'r')

453> for line in f:

454> startpos = 0 # char start position in string

455> robrec=[]

456> charpos = line.find(',')

457> while charpos != -1:

458> robrec.append(line[startpos:charpos])

459> startpos = charpos + 1

460> charpos = line.find(',', startpos, len(line))

461> roblist.append(str(robrec[0] + ", " + robrec[1] +

", " + robrec[2]))

462> totrec = totrec + 1

463> f.close()

464> roblist.sort()

465> for i in range(len(roblist)):

466> s = str(i+1)

467> startpos = 0

468> charpos = roblist[i].find(',')

469> str1 = roblist[i][startpos:charpos]

470> startpos = charpos + 1

471> charpos = roblist[i].find(',', startpos,

len(roblist[i]))

472> str2 = roblist[i][startpos:charpos]

473> startpos = charpos + 1

474> str3 = roblist[i][startpos:len(roblist[i])]

475> self.tree.insert("", "end", text=s,

values=(str1,str2,str3))

476>

477> self.Roblistwin.focus_force()

Appendix A: Python Tkinter GUI code 147

478>

479> class ClassTaskman(Frame):

480> def __init__(self):

481> Frame.__init__(self)

482> self.Taskman = Toplevel()

483> self.Taskman.title("Task Management")

484> global idVar, nameVar, r_maxlenVar, r_maxwtVar,

r_maxhtVar, \

485> r_minldVar, r_minlinspdVar, r_minangspdVar,

r_maxrobVar

486> global r_lrfVar, r_sonVar, r_camVar, r_gripVar,

r_2whlVar

487> global select, tasklist, taskrec, select2

488>

489> frame1 = Frame(self.Taskman, width=100, height=100)

490> frame1.grid(row=0, column=0, columnspan=3)

491> Label(frame1, text="Task ID").grid(row=0, column=0,

sticky=W)

492> idVar = StringVar()

493> ttk.Entry(frame1, width=10,

textvariable=idVar).grid(row=0, column=1, padx=(5,30), pady=20,

sticky=W)

494> Label(frame1, text="Task name").grid(row=0, column=2,

sticky=W)

495> nameVar = StringVar()

496> ttk.Entry(frame1, textvariable=nameVar).grid(row=0,

column=3, padx=(5,30), pady=20, sticky=W)

497>

498> frame2 = Frame(self.Taskman, width=5, height=10,

borderwidth=2, relief=GROOVE)

499> frame2.grid(row=1, column=0, padx=10, pady=0,

sticky=NSEW)

500> Label(frame2, text="Max. robot dimensions

(mm)").grid(row=0, column=0, columnspan=3)

501> ent_width=5

502> Label(frame2, text="L").grid(row=1, column=0, padx=15,

pady=0, sticky=W)

503> r_maxlenVar = StringVar()

504> ttk.Entry(frame2, width=ent_width,

textvariable=r_maxlenVar).grid(row=2, column=0, padx=5, pady=0,

sticky=W)

505> Label(frame2, text="W").grid(row=1, column=1, padx=15,

pady=0, sticky=W)

506> r_maxwtVar = StringVar()

148 Appendix A: Python Tkinter GUI code

507> ttk.Entry(frame2, width=ent_width,

textvariable=r_maxwtVar).grid(row=2, column=1, padx=5, pady=0,

sticky=W)

508> Label(frame2, text="H").grid(row=1, column=2, padx=15,

pady=0, sticky=W)

509> r_maxhtVar = StringVar()

510> ttk.Entry(frame2, width=ent_width,

textvariable=r_maxhtVar).grid(row=2, column=2, padx=5, pady=0,

sticky=W)

511>

512> frame3 = Frame(self.Taskman, width=10, height=10,

borderwidth=2, relief=GROOVE)

513> frame3.grid(row=1, column=1, padx=10, pady=0,

sticky=NSEW)

514> Label(frame3, text="Min. load capacity").grid(row=0,

column=0, padx=0, pady=0, sticky=W)

515> r_minldVar = StringVar()

516> ttk.Entry(frame3, width=ent_width,

textvariable=r_minldVar).grid(row=0, column=1, padx=0, pady=0,

sticky=NSEW)

517> Label(frame3, text="kg").grid(row=0, column=2, padx=0,

pady=0, sticky=W)

518> Label(frame3, text="Min. linear speed").grid(row=1,

column=0, padx=0, pady=2, sticky=W)

519> r_minlinspdVar = StringVar()

520> ttk.Entry(frame3, width=ent_width,

textvariable=r_minlinspdVar).grid(row=1, column=1, padx=0, pady=2,

sticky=NSEW)

521> Label(frame3, text="m/s").grid(row=1, column=2, padx=0,

pady=0, sticky=W)

522> Label(frame3, text="Min. angular speed").grid(row=2,

column=0, padx=0, pady=2, sticky=W)

523> r_minangspdVar = StringVar()

524> ttk.Entry(frame3, width=ent_width,

textvariable=r_minangspdVar).grid(row=2, column=1, padx=0, pady=2,

sticky=NSEW)

525> Label(frame3, text="rad/s").grid(row=2, column=2,

padx=0, pady=0, sticky=W)

526> Label(frame3, text="Max. no. of robots").grid(row=3,

column=0, padx=0, pady=2, sticky=W)

527> r_maxrobVar = StringVar()

528> ttk.Entry(frame3, width=ent_width,

textvariable=r_maxrobVar).grid(row=3, column=1, padx=0, pady=2,

sticky=NSEW)

529>

Appendix A: Python Tkinter GUI code 149

530> frame4 = Frame(self.Taskman, width=5, height=10,

borderwidth=2, relief=GROOVE)

531> frame4.grid(row=1, column=2, padx=10, pady=0,

sticky=NSEW)

532> Label(frame4, text="Hardware requirements").grid(row=0,

column=0, columnspan=8)

533> r_lrfVar = IntVar()

534> ttk.Checkbutton(frame4, width=0,

variable=r_lrfVar).grid(row=1, column=0, padx=0, pady=0, sticky=E)

535> Label(frame4, text="LRF").grid(row=1, column=1,

padx=(0,30), pady=0, sticky=W)

536> r_sonVar = IntVar()

537> ttk.Checkbutton(frame4, width=0,

variable=r_sonVar).grid(row=1, column=2, padx=0, pady=0, sticky=E)

538> Label(frame4, text="Sonars").grid(row=1, column=3,

padx=(0,10), pady=0, sticky=W)

539> r_camVar = IntVar()

540> ttk.Checkbutton(frame4, width=0,

variable=r_camVar).grid(row=2, column=0, padx=0, pady=0, sticky=E)

541> Label(frame4, text="Camera").grid(row=2, column=1,

padx=(0, 30), pady=0, sticky=W)

542> r_gripVar = IntVar()

543> ttk.Checkbutton(frame4, width=0,

variable=r_gripVar).grid(row=2, column=2, padx=0, pady=0, sticky=E)

544> Label(frame4, text="Grippers").grid(row=2, column=3,

padx=(0, 10), pady=0, sticky=W)

545> r_2whlVar = IntVar()

546> ttk.Checkbutton(frame4, width=0,

variable=r_2whlVar).grid(row=3, column=0, padx=0, pady=0, sticky=E)

547> Label(frame4, text="Two-wheel").grid(row=3, column=1,

padx=(0, 30), pady=0, sticky=W)

548>

549> frame5 = Frame(self.Taskman)

550> frame5.grid(row=2, column=0, padx=10, pady=(15,0),

columnspan=4, sticky=NSEW)

551> ttk.Button(frame5, text=" Add ",

command=self.addEntry).grid(row=0, column=0, padx=(0, 0), pady=0,

sticky=W)

552> ttk.Button(frame5, text="Update",

command=self.updateEntry).grid(row=0, column=1, padx=(0, 0), pady=0,

sticky=W)

553> ttk.Button(frame5, text="Delete",

command=self.deleteEntry).grid(row=0, column=2, padx=(0, 0), pady=0,

sticky=W)

150 Appendix A: Python Tkinter GUI code

554> ttk.Button(frame5, text=" Load ",

command=self.loadEntry).grid(row=0, column=3, padx=(0, 0), pady=0,

sticky=W)

555>

556> frame6 = Frame(self.Taskman)

557> frame6.grid(row=3, column=2, padx=7, pady=(0, 0),

columnspan=1, sticky=NSEW)

558> Label(frame6, text="Compatible Robots").grid(row=0,

column=0, padx=0, pady=0, sticky=NSEW)

559>

560> frame7 = Frame(self.Taskman)

561> frame7.grid(row=4, column=0, padx=10, pady=(0,5),

columnspan=5, sticky=NSEW)

562> scroll = ttk.Scrollbar(frame7, orient=VERTICAL)

563> select = Listbox(frame7, yscrollcommand=scroll.set,

height=6, width=30)

564> scroll.config(command=select.yview)

565> scroll.grid(row=0, column=5, padx=(0, 0), pady=0,

sticky=NS)

566> select.grid(row=0, column=0, padx=(0, 0), pady=0,

columnspan=4, sticky=NSEW)

567>

568> frame8 = Frame(self.Taskman)

569> frame8.grid(row=4, column=2, padx=10, pady=(0,5),

columnspan=5, sticky=NSEW)

570> scroll2 = ttk.Scrollbar(frame8, orient=VERTICAL)

571> select2 = Listbox(frame8, yscrollcommand=scroll2.set,

height=6, width=34)

572> scroll2.config(command=select2.yview)

573> scroll2.grid(row=0, column=7, padx=(0, 0), pady=0,

sticky=NS)

574> select2.grid(row=0, column=0, padx=(0, 0), pady=0,

columnspan=4, sticky=NSEW)

575>

576> self.setSelect() # configure roblist and select

listbox

577> self.Taskman.focus_force()

578>

579> def setSelect(self):

580> totrec = 0 # total number of records

581> global tasklist, taskrec

582> tasklist=[]

583> f = open('taskconfig.txt', 'r')

584> for line in f:

585> startpos = 1 # char start position in string

Appendix A: Python Tkinter GUI code 151

586> taskrec=[]

587> charpos = line.find(',')

588> while charpos != -1:

589> taskrec.append(line[startpos:charpos])

590> startpos = charpos + 1

591> charpos = line.find(',', startpos, len(line))

592> tasklist.append(str(taskrec[0] + ", " +

taskrec[1]))

593> totrec = totrec + 1

594> f.close()

595> tasklist.sort()

596> select.delete(0, END)

597> for i in range(totrec):

598> select.insert(END, tasklist[i])

599>

600> def setSelect2(self, tid):

601> CompatRobMat = LibHetRobots.getCompatRobots(tid)

602> select2.delete(0, END)

603> for i in range(len(CompatRobMat)):

604> select2.insert(END, str(CompatRobMat[i][0] + ', ' +

CompatRobMat[i][1]))

605>

606> def whichSelected(self):

607> return int(select.curselection()[0])

608>

609> def addEntry(self):

610> f = open('taskconfig.txt', 'a')

611> f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n'

% (idVar.get(), nameVar.get(),

612>

r_maxlenVar.get(), r_maxwtVar.get(),

613>

r_maxhtVar.get(), r_minldVar.get(),

614>

r_minlinspdVar.get(), r_minangspdVar.get(),

615>

r_maxrobVar.get(),

616>

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(),

617>

r_gripVar.get(), r_2whlVar.get()))

618> f.close()

619> self.setSelect()

620>

152 Appendix A: Python Tkinter GUI code

621> def updateEntry(self):

622> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

623> str2 = str1[0:str1.find(',')]

624> lines = open('taskconfig.txt', 'r').readlines()

625> for i in range(len(lines)):

626> if lines[i].find(str2) != -1:

627> lines[i] =

'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,E\n' % (idVar.get(),

nameVar.get(),

628>

r_maxlenVar.get(), r_maxwtVar.get(),

629>

r_maxhtVar.get(), r_minldVar.get(),

630>

r_minlinspdVar.get(), r_minangspdVar.get(),

631>

r_maxrobVar.get(),

632>

r_lrfVar.get(), r_sonVar.get(), r_camVar.get(),

633>

r_gripVar.get(), r_2whlVar.get())

634> break

635> f = open('taskconfig.txt', 'w')

636> f.writelines(lines)

637> f.close()

638> self.setSelect()

639>

640> def deleteEntry(self):

641> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

642> str2 = str1[0:str1.find(',')]

643> lines = open('taskconfig.txt', 'r').readlines()

644>

645> for i in range(len(lines)):

646> if lines[i].find(str2) != -1:

647> lines.remove(lines[i])

648> break

649> f = open('taskconfig.txt', 'w')

650> f.writelines(lines)

651> f.close()

652> self.setSelect()

653>

654> def loadEntry(self):

Appendix A: Python Tkinter GUI code 153

655> global taskrec

656> str1 = select.get(ACTIVE) # get the text of the

currently selected item in the listbox

657> str2 = str1[0:str1.find(',')]

658> f = open('taskconfig.txt', 'r')

659> for line in f:

660> if line.find(str2) != -1:

661> startpos = 1 # char start position in string

662> taskrec = []

663> charpos = line.find(',')

664> while charpos != -1:

665> taskrec.append(line[startpos:charpos])

666> startpos = charpos + 1

667> charpos = line.find(',', startpos,

len(line))

668> break # breaks the for-loop

669> f.close()

670> # set the fields on the form:

671> idVar.set(taskrec[0])

672> nameVar.set(taskrec[1])

673> r_maxlenVar.set(taskrec[2])

674> r_maxwtVar.set(taskrec[3])

675> r_maxhtVar.set(taskrec[4])

676> r_minldVar.set(taskrec[5])

677> r_minlinspdVar.set(taskrec[6])

678> r_minangspdVar.set(taskrec[7])

679> r_maxrobVar.set(taskrec[8])

680> r_lrfVar.set(taskrec[9])

681> r_sonVar.set(taskrec[10])

682> r_camVar.set(taskrec[11])

683> r_gripVar.set(taskrec[12])

684> r_2whlVar.set(taskrec[13])

685> self.setSelect2(int(taskrec[0]))

686>

687> class ClassAssigntags(Frame):

688> def __init__(self):

689> Frame.__init__(self)

690> self.Win_tags = Toplevel()

691> self.Win_tags.title("Algorithm and robot tag

assignment")

692> self.grid(sticky=W + E + N + S)

693> self.Win_tags.focus_force()

694>

695> # Algorithm labels and fields:

154 Appendix A: Python Tkinter GUI code

696> self.FileTextVar = StringVar()

697> algoFrame = ttk.Frame(self.Win_tags, borderwidth=2,

relief=GROOVE)

698> algoFrame.grid(row=0, column=0, padx=5, pady=10,

sticky=N)

699> label_a = ttk.Label(algoFrame, text="Algorithm Tags")

700> label_a.grid(row=0, column=0, padx=5, pady=10,

columnspan=5, sticky=N)

701> label1 = ttk.Label(algoFrame, text="Variable File")

702> label1.grid(row=1, column=0, padx=5, pady=10,

sticky=NSEW)

703> label2 = ttk.Entry(algoFrame, background='white',

width=30, textvariable=self.FileTextVar)

704> label2.grid(row=1, column=1, padx=(0,5), pady=10,

sticky=NSEW)

705> browse_butn = ttk.Button(algoFrame, text="Browse...",

command=self.load_file, width=10)

706> browse_butn.grid(row=1, column=2, padx=5, pady=10,

sticky=NSEW)

707> self.algotree = ttk.Treeview(algoFrame)

708> self.algotree.grid(row=2, column=0, padx=(10,0) ,

pady=0, columnspan=5, sticky=NSEW)

709>

710> # Robot labels and fields:

711> robFrame = ttk.Frame(self.Win_tags, borderwidth=2,

relief=GROOVE)

712> robFrame.grid(row=0, column=1, padx=(5,10), pady=10,

sticky=N)

713> label_r = ttk.Label(robFrame, text="Robot Tags")

714> label_r.grid(row=0, column=0, padx=(50,0), pady=10,

columnspan=3, sticky=N)

715> label_sel = ttk.Label(robFrame, text="Select robot")

716> label_sel.grid(row=1, column=0, padx=(5,0), pady=10,

sticky=W)

717> self.rbox_value = StringVar()

718> self.rbox = ttk.Combobox(robFrame,

textvariable=self.rbox_value)

719> self.rbox.grid(row=1 , column=1, padx=5, pady=12,

sticky=W)

720> self.rbox['values'] = getRoblist() # get the list of

robot id's and names from text file

721> self.rbox.bind("<<ComboboxSelected>>",

self.NewSelection)

722> self.robtree = ttk.Treeview(robFrame)

Appendix A: Python Tkinter GUI code 155

723> self.robtree.grid(row=2, column=0, padx=(10, 0),

pady=0, columnspan=5, sticky=NSEW)

724>

725> # Algorithm tree:

726> self.algotree.bind("<Double-1>", self.OnDoubleClick)

727> self.algotree["columns"] = ("opc_col")

728> self.algotree.column("opc_col", width=150)

729> self.algotree.column("#0", width=150)

730> self.algotree.heading('#0', text='Algorithm variables',

anchor=N)

731> self.algotree.heading("opc_col", text="OPC Tag",

anchor=N)

732> ysb = ttk.Scrollbar(algoFrame,orient=VERTICAL,

command=self.algotree.yview)

733> xsb = ttk.Scrollbar(algoFrame,orient=HORIZONTAL,

command=self.algotree.xview)

734> # add tree and scrollbars to frame

735> self.algotree.grid(in_=algoFrame, row=2, column=0,

sticky=NSEW)

736> ysb.grid(in_=algoFrame, row=2, column=5, padx=(0,10),

pady=(15,0), sticky=NS)

737> xsb.grid(in_=algoFrame, row=3, column=0, padx=(10,0),

pady=(0,10), columnspan=5, sticky=EW)

738> self.algotree['yscroll'] = ysb.set

739> self.algotree['xscroll'] = xsb.set

740>

741> # Robot tree:

742> self.robtree.bind("<Double-1>", self.OnDoubleClick2)

743> self.robtree["columns"] = ("opc_col")

744> self.robtree.column("opc_col", width=150)

745> self.robtree.column("#0", width=150)

746> self.robtree.heading('#0', text='Robot variables',

anchor=N)

747> self.robtree.heading("opc_col", text="OPC Tag",

anchor=N)

748> ysbr = ttk.Scrollbar(robFrame, orient=VERTICAL,

command=self.robtree.yview)

749> xsbr = ttk.Scrollbar(robFrame, orient=HORIZONTAL,

command=self.robtree.xview)

750> # add tree and scrollbars to frame

751> self.robtree.grid(in_=robFrame, row=2, column=0,

sticky=NSEW)

752> ysbr.grid(in_=robFrame, row=2, column=5, padx=(0, 10),

pady=(15, 0), sticky=NS)

156 Appendix A: Python Tkinter GUI code

753> xsbr.grid(in_=robFrame, row=3, column=0, padx=(10, 0),

pady=(0, 10), columnspan=5, sticky=EW)

754> self.robtree['yscroll'] = ysbr.set

755> self.robtree['xscroll'] = xsbr.set

756>

757> global tagstr

758> tagstr = ''

759> self.Win_tags.after(0, self.update_clock)

760>

761> def update_clock(self):

762> global tagstr

763> if tagstr != '':

764> try:

765> if treestore == "algotree":

766> itemi = self.algotree.selection()[0]

767> self.algotree.item(itemi, values=tagstr)

768> tagstr = ''

769> x = self.algotree.get_children()

770> taglist=[]

771> for i in range(len(x)):

772> str1 = str(self.algotree.item(x[i],

"value"))

773> startpos=str1.find('(',0,len(str1))

774>

endpos=str1.find(')',startpos+1,len(str1))

775> taglist.append(str1[startpos+2:endpos-

2])

776> f = open('taglist.txt', 'w')

777> for i in range(len(x)):

778> f.write('%s\n' % str(taglist[i]))

779> f.close()

780> # create the variable-tag map in a text

file:

781> f = open('avarmap.txt', 'w')

782> for i in range(len(x)):

783> f.write('%s:%s\n' %

(str(self.algotree.item(x[i], "text")), taglist[i]))

784> f.close()

785> else:

786> itemi = self.robtree.selection()[0]

787> self.robtree.item(itemi, values=tagstr)

788> tagstr = ''

789> x = self.robtree.get_children()

790> taglist=[]

Appendix A: Python Tkinter GUI code 157

791> for i in range(len(x)):

792> str1 = str(self.robtree.item(x[i],

"value"))

793> startpos=str1.find('(',0,len(str1))

794>

endpos=str1.find(')',startpos+1,len(str1))

795> taglist.append(str1[startpos+2:endpos-

2])

796> # get the current selected robot ID:

797> cr_id =

self.rbox_value.get()[0:self.rbox_value.get().find(',')]

798> f = open('robots/%staglist.txt' % cr_id,

'w')

799> for i in range(len(x)):

800> f.write('%s\n' % str(taglist[i]))

801> f.close()

802> # create the variable-tag map in a text

file:

803> f = open('robots/%svarmap.txt' % cr_id,

'w')

804> for i in range(len(x)):

805> f.write('%s:%s\n' %

(str(self.robtree.item(x[i], "text")), taglist[i]))

806> f.close()

807> except:

808> print "no variable selected"

809> self.Win_tags.after(500, self.update_clock)

810>

811> def load_file(self):

812> fname =

tkFileDialog.askopenfilename(filetypes=(("Python files", "*.py"),

813>

("HTML files", "*.html;*.htm"),

814>

("All files", "*.*")))

815> if fname:

816> try:

817> #print "Filename: ", fname

818> self.FileTextVar.set(fname) # set the label2

textvariable

819> algopath = open('algopath.txt', 'r').readline()

get the previous algo file path

820> avars = []

821> for name, data in inspect.getmembers(gvar,

inspect.isclass):

158 Appendix A: Python Tkinter GUI code

822> avars.append(name)

823> lines = open('taglist.txt', 'r').readlines()

824> for i in range(len(avars)):

825> s = avars[i]

826> #print s

827> if (len(lines[i]) > 5) and

(algopath==fname): # check if missing assignments and if there is a

new file

828> self.algotree.insert("", "end", text=s,

values=lines[i])

829> else:

830> self.algotree.insert("", "end", text=s,

values="not_assigned")

831> f = open('algopath.txt', 'w')

832> f.write(fname) # store the algo file path

833> f.close()

834> self.Win_tags.focus_force()

835> except:

836> print "Open Source File", "Failed to read

file\n'%s'" % fname

837> return

838>

839> def OnDoubleClick(self, event):

840> global treestore

841> treestore = "algotree"

842> d = ClassOpctags()

843> d.opcTags() # call opctag pop-up window

844>

845> def OnDoubleClick2(self, event):

846> global treestore

847> treestore = "robtree"

848> d = ClassOpctags()

849> d.opcTags() # call opctag pop-up window

850>

851> def NewSelection(self, event):

852> cr_id =

self.rbox_value.get()[0:self.rbox_value.get().find(',')]

853> rvars = []

854> rvars.append("x_location")

855> rvars.append("y_location")

856> rvars.append("yaw")

857> rvars.append("busy")

858> rvars.append("current_task")

859> rvars.append("task_complete")

Appendix A: Python Tkinter GUI code 159

860> self.robtree.delete(*self.robtree.get_children())

861> try:

862> lines = open('robots/%staglist.txt' % cr_id,

'r').readlines()

863> except:

864> f=open('robots/%staglist.txt' % cr_id, 'w')

865> lines=[]

866> for i in range(len(rvars)):

867> f.write('\n')

868> lines.append('\n')

869> f.close()

870> for i in range(len(rvars)):

871> s = rvars[i]

872> if len(lines[i]) > 5: # check if missing

assignments

873> self.robtree.insert("", "end", text=s,

values=lines[i])

874> else:

875> self.robtree.insert("", "end", text=s,

values="not_assigned")

876>

877> class ClassOpctags(Frame):

878> def __init__(self):

879> Frame.__init__(self)

880> self.Win_opc = Toplevel()

881> self.Win_opc.title("OPC Tags")

882> self.opctree = ttk.Treeview(self.Win_opc)

883> self.opctree.bind("<Double-1>", self.TagDoubleClick)

884> self.opc = OpenOPC.open_client('localhost')

885> self.opc.connect('Matrikon.OPC.Simulation')

886>

887> def opcTags(self):

888> label1 = Label(self.Win_opc, text="Select a tag:",

height=0, width=10)

889> label1.grid(row=0, column=0, padx=5, pady=5, sticky=W)

890>

891> self.opctree.heading('#0', text='List of available

tags', anchor=N)

892> self.opctree.grid(row=1, column=0, padx=5, pady=5)

893> taglist = self.opc.list('Configured Aliases.Server02')

894> for i in range(len(taglist)):

895> self.opctree.insert("", "end", text=taglist[i])

896>

897> butFrame = Frame(self.Win_opc, width=200, height=100)

160 Appendix A: Python Tkinter GUI code

898> butFrame.grid(row=2, column=0, padx=5, pady=5)

899> assignButn = ttk.Button(butFrame, text="Assign tag",

command=self.GetTag)

900> assignButn.grid(row=0, column=0, padx=5, pady=5,

sticky=W)

901> cancelButn = ttk.Button(butFrame, text="Cancel",

command=self.Win_opc.destroy)

902> cancelButn.grid(row=0, column=1, padx=5, pady=5,

sticky=W)

903>

904> self.Win_opc.focus_force()

905>

906> def TagDoubleClick(self, event):

907> itemt = self.opctree.selection()[0]

908> s = self.opctree.item(itemt, "text")

909> global tagstr

910> tagstr = s

911> self.opc.close()

912> self.Win_opc.destroy()

913>

914> def GetTag(self):

915> itemt = self.opctree.selection()[0]

916> s = self.opctree.item(itemt, "text")

917> global tagstr

918> tagstr = s

919> self.opc.close()

920> self.Win_opc.destroy()

921>

922> class ClassSelectAlgo(Frame):

923> def __init__(self):

924> Frame.__init__(self)

925> self.Win_algo = Toplevel()

926> self.Win_algo.title("Algorithm selection")

927> self.grid(sticky=W + E + N + S)

928> self.Win_algo.focus_force()

929>

930> # Algorithm labels and fields:

931> self.FileTextVar = StringVar()

932> label1 = ttk.Label(self.Win_algo, text="Algorithm

File")

933> label1.grid(row=1, column=0, padx=5, pady=10,

sticky=NSEW)

934> label2 = ttk.Entry(self.Win_algo, background='white',

width=30, textvariable=self.FileTextVar)

Appendix A: Python Tkinter GUI code 161

935> label2.grid(row=1, column=1, padx=(0,5), pady=10,

sticky=NSEW)

936> browse_butn = ttk.Button(self.Win_algo,

text="Browse...", command=self.load_file, width=10)

937> browse_butn.grid(row=1, column=2, padx=5, pady=10,

sticky=NSEW)

938> accept_butn = ttk.Button(self.Win_algo, text="Accept",

command=self.Win_algo.destroy, width=10)

939> accept_butn.grid(row=2, column=2, padx=5, pady=10,

sticky=NSEW)

940>

941> def load_file(self):

942> fname =

tkFileDialog.askopenfilename(filetypes=(("Python files", "*.py"),

943>

("HTML files", "*.html;*.htm"),

944>

("All files", "*.*")))

945> if fname:

946> try:

947> #print "Filename: ", fname

948> self.FileTextVar.set(fname) # set the label2

textvariable

949> self.Win_algo.focus_force()

950> except:

951> print "Open Source File", "Failed to read

file\n'%s'" % fname

952> return

953>

954> class ClassLocationConfig(Frame):

955> def __init__(self):

956> Frame.__init__(self)

957> self.Win_location = Toplevel()

958> self.Win_location.title("Task location configuration")

959> self.grid(sticky=W + E + N + S)

960> self.opc = OpenOPC.open_client('localhost')

961> self.opc.connect('Matrikon.OPC.Simulation')

962> self.Win_location.focus_force()

963>

964> # Frames:

965> locFrame = ttk.Frame(self.Win_location, width=200,

height=200, borderwidth=2, relief=GROOVE)

966> locFrame.grid(row=0, column=0, padx=2, pady=2,

sticky=NS)

162 Appendix A: Python Tkinter GUI code

967> moveFrame = ttk.Frame(self.Win_location, width=200,

height=200, borderwidth=2, relief=GROOVE)

968> moveFrame.grid(row=0, column=1, padx=2, pady=2,

sticky=NS)

969> taskFrame = ttk.Frame(self.Win_location, width=200,

height=200, borderwidth=2, relief=GROOVE)

970> taskFrame.grid(row=1, column=0, padx=2, pady=(2,50),

columnspan=6, sticky=NSEW)

971> connFrame = ttk.Frame(self.Win_location, width=200,

height=20, borderwidth=2, relief=GROOVE)

972> connFrame.grid(row=2, column=0, padx=2, pady=2,

columnspan=6, sticky=NSEW)

973>

974> # Current robot location widgets:

975> label1 = ttk.Label(locFrame, text="Current robot

location")

976> label1.grid(row=1, column=0, padx=5, pady=5,

columnspan=5, sticky=NSEW)

977> label2 = ttk.Label(locFrame, text="x")

978> label2.grid(row=2, column=0, padx=(0,0), pady=5,

sticky=E)

979> ttk.Label(locFrame, text="m").grid(row=2, column=2,

padx=(0, 20), pady=5, sticky=W)

980> self.r_curr_xlocVar = StringVar()

981> label2b = ttk.Label(locFrame, background='light grey',

width=6, textvariable=self.r_curr_xlocVar)

982> label2b.grid(row=2, column=1, padx=(5,0), pady=5,

sticky=W)

983> label3 = ttk.Label(locFrame, text="y")

984> label3.grid(row=3, column=0, padx=(0,0), pady=5,

sticky=E)

985> ttk.Label(locFrame, text="m").grid(row=3, column=2,

padx=(0, 20), pady=5, sticky=W)

986> self.r_curr_ylocVar = StringVar()

987> label3b = ttk.Label(locFrame, background='light grey',

width=6, textvariable=self.r_curr_ylocVar)

988> label3b.grid(row=3, column=1, padx=(5,0), pady=5,

sticky=W)

989> label4 = ttk.Label(locFrame, text="yaw")

990> label4.grid(row=4, column=0, padx=(0,0), pady=5,

sticky=E)

991> ttk.Label(locFrame, text="rad").grid(row=4, column=2,

padx=(0, 20), pady=5, sticky=W)

992> self.r_curr_yawlocVar = StringVar()

Appendix A: Python Tkinter GUI code 163

993> label4b = ttk.Label(locFrame, background='light grey',

width=6 , textvariable=self.r_curr_yawlocVar)

994> label4b.grid(row=4, column=1, padx=(5,0) , pady=5,

sticky=W)

995> labelconn = ttk.Label(connFrame, text="Connected to

robot %s (%s)" % (ron_id, getRobname(ron_id)))

996> labelconn.grid(row=0, column=0, padx=(0, 0), pady=5,

sticky=W)

997> self.r_curr_xlocVar.set('0.55')

998> self.r_curr_ylocVar.set('10.55')

999> self.r_curr_yawlocVar.set('150.55')

1000>

1001> # Robot move widgets:

1002> ttk.Label(moveFrame, text="Robot motion

commands").grid(row=0, column=0, padx=5, pady=5, columnspan=3,

sticky=N)

1003> fwd_butn = ttk.Button(moveFrame, text="Forward",

command=self.move_fwd).grid(row=1, column=1, padx=5, pady=5)

1004> stop_butn = ttk.Button(moveFrame, text="Stop",

command=self.stop).grid(row=2, column=1, padx=5, pady=5)

1005> left_butn = ttk.Button(moveFrame, text="Left",

command=self.move_left).grid(row=2, column=0, padx=10, pady=5)

1006> right_butn = ttk.Button(moveFrame, text="Right",

command=self.move_right).grid(row=2, column=2, padx=5, pady=5)

1007> rev_butn = ttk.Button(moveFrame, text="Reverse",

command=self.move_reverse).grid(row=3, column=1, padx=5, pady=5)

1008>

1009> # Task widgets:

1010> label_heading = ttk.Label(taskFrame, text="Task

locations")

1011> label_heading.grid(row=0, column=0 , padx=5,

pady=(5,10), columnspan=8, sticky=N)

1012> ttk.Label(taskFrame, text="Select Task").grid(row=1,

column=0, padx=5, pady=5, sticky=NSEW)

1013> self.tbox_value = StringVar()

1014> self.tbox = ttk.Combobox(taskFrame, width=10,

textvariable=self.tbox_value)

1015> self.tbox.grid(row=1, column=1, padx=(0,5),

pady=(10,20), columnspan=2 , sticky=NSEW)

1016> self.tbox['values'] = getTasklist() # get the list of

task id's and names from text file

1017> self.tbox.bind("<<ComboboxSelected>>",

self.TaskSelection)

1018> ttk.Label(taskFrame, text="x").grid(row=2, column=2,

padx=5, pady=(0,0), sticky=S)

164 Appendix A: Python Tkinter GUI code

1019> ttk.Label(taskFrame, text="y").grid(row=2, column=3,

padx=5, pady=(0,0), sticky=S)

1020> ttk.Label(taskFrame, text="yaw").grid(row=2, column=4,

padx=5, pady=(0,0), sticky=S)

1021> ttk.Label(taskFrame, text="Select Node").grid(row=3,

column=0, padx=5, pady=5, sticky=W)

1022> self.nbox_value = StringVar()

1023> self.nbox = ttk.Combobox(taskFrame, width=10,

textvariable=self.nbox_value)

1024> self.nbox.grid(row=3, column=1, padx=(0,5), pady=5,

sticky=W)

1025> self.nbox['values'] = ('Source', 'Destination')

1026> self.nbox.bind("<<ComboboxSelected>>",

self.NodeSelection)

1027> self.r_node_xlocVar = StringVar()

1028> label_node_x = ttk.Label(taskFrame, background='light

grey', width=6 , textvariable=self.r_node_xlocVar)

1029> label_node_x.grid(row=3, column=2, padx=5, pady=2,

sticky=W)

1030> self.r_node_ylocVar = StringVar()

1031> label_node_y = ttk.Label(taskFrame, background='light

grey', width=6, textvariable=self.r_node_ylocVar)

1032> label_node_y.grid(row=3, column=3, padx=5, pady=2,

sticky=W)

1033> self.r_node_yawlocVar = StringVar()

1034> label_node_yaw = ttk.Label(taskFrame, background='light

grey', width=6, textvariable=self.r_node_yawlocVar)

1035> label_node_yaw.grid(row=3, column=4, padx=5, pady=2,

sticky=W)

1036> ttk.Button(taskFrame, text=" Save node ",

command=self.save_location).grid(row=3, column=5, padx=(5,5), pady=5,

sticky=E)

1037>

1038> def move_fwd(self):

1039> wkey = 'i'

1040> self.butn_event(wkey)

1041>

1042> def move_left(self):

1043> wkey = 'u'

1044> self.butn_event(wkey)

1045>

1046> def move_right(self):

1047> wkey = 'o'

1048> self.butn_event(wkey)

1049>

Appendix A: Python Tkinter GUI code 165

1050> def move_reverse(self):

1051> wkey = ','

1052> self.butn_event(wkey)

1053>

1054> def stop(self):

1055> wkey = 'k'

1056> self.butn_event(wkey)

1057>

1058> def butn_event(self, keysend):

1059> self.opc.write(('Server01.keystroke', keysend))

1060>

1061> def save_location(self):

1062> self.r_node_xlocVar.set(self.r_curr_xlocVar.get())

1063> self.r_node_ylocVar.set(self.r_curr_ylocVar.get())

1064> self.r_node_yawlocVar.set(self.r_curr_yawlocVar.get())

1065> t_id =

self.tbox_value.get()[0:self.tbox_value.get().find(',')] # get task

ID

1066> n_id = self.nbox_value.get()

1067> f = open('robots/%slocations.txt' % ron_id, 'a')

1068> f.write('%s,%s,%s,%s,%s,E\n' % (t_id, n_id,

self.r_curr_xlocVar.get(), self.r_curr_ylocVar.get(),

1069>

self.r_curr_yawlocVar.get()))

1070> f.close()

1071>

1072> def TaskSelection(self, event):

1073> if self.nbox_value.get() != "":

1074> lclist =

getLoclist(self.tbox_value.get()[0:self.tbox_value.get().find(',')],

self.nbox_value.get())

1075> try:

1076> if len(lclist) != 0:

1077> self.r_node_xlocVar.set(lclist[0])

1078> self.r_node_ylocVar.set(lclist[1])

1079> self.r_node_yawlocVar.set(lclist[2])

1080> except:

1081> self.r_node_xlocVar.set('')

1082> self.r_node_ylocVar.set('')

1083> self.r_node_yawlocVar.set('')

1084>

1085> def NodeSelection(self, event):

1086> if self.tbox_value.get() != "":

166 Appendix A: Python Tkinter GUI code

1087> lclist =

getLoclist(self.tbox_value.get()[0:self.tbox_value.get().find(',')],

self.nbox_value.get())

1088> try:

1089> if len(lclist) != 0:

1090> self.r_node_xlocVar.set(lclist[0])

1091> self.r_node_ylocVar.set(lclist[1])

1092> self.r_node_yawlocVar.set(lclist[2])

1093> except:

1094> self.r_node_xlocVar.set('')

1095> self.r_node_ylocVar.set('')

1096> self.r_node_yawlocVar.set('')

1097>

1098> if __name__ == "__main__":

1099> app = App()

Appendix B: Remote robot control code

1> # Filename: rosAI.py

2> import sys

3> import rospy

4> import actionlib

5> import OPCdata

6> import math

7> from multiprocessing import Process, Value, Array

8> from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal

9> from math import radians, degrees

10> from actionlib_msgs.msg import *

11> from geometry_msgs.msg import Point, PoseWithCovarianceStamped,

Pose2D

12> from nav_msgs.msg import Odometry

13>

14>

15> class map_navigation():

16>

17> def __init__(self):

18> # declare the coordinates of interest

19> global xg, yg

20> global xgprev, ygprev, statenum

21> xg=0.0

22> yg=0.0

23> xgprev=0.0

24> ygprev=0.0

25> self.goalReached = False

26> # initialise

27> rospy.init_node('map_navigation', anonymous=False)

28> statenum = 0

29> tripcount = 0

30>

31> while (1):

32> global rstatus

33>

34> if (statenum==0):

35> try:

36> xgprev=xg

37> ygprev=yg

168 Appendix B: Remote robot control code

38> xg, yg = OPCdata.getxyGoal(xg,yg)

39> print (xg, yg)

40> statenum=1

41> except OPCdata.OpenOPC.TimeoutError:

42> print "TimeoutError occured"

43>

44> if (statenum==1):

45> try:

46> xg, yg = OPCdata.getxyGoal(xg,yg)

47> self.goalReached = self.moveToGoal(xg,

yg)

48> except OPCdata.OpenOPC.TimeoutError:

49> print "TimeoutError occured"

50>

51> if ((statenum==1) & (self.goalReached)):

52> try:

53> rstatus=0

54> OPCdata.setStatus(rstatus)

55> statenum=2

56> except OPCdata.OpenOPC.TimeoutError:

57> print "TimeoutError occured"

58>

59> if (statenum==2):

60> statenum=0

61> rospy.sleep(5)

62>

63> def shutdown(self):

64> # stop the robot

65> rospy.loginfo("Quit program")

66> rospy.sleep()

67>

68> def moveToGoal(self,xGoal,yGoal):

69> global xc, yc

70> #define a client for to send goal requests to the

move_base server through a SimpleActionClient

71> ac = actionlib.SimpleActionClient("/robot_0/move_base",

MoveBaseAction)

72>

73> #wait for the action server to come up

74> while(not

ac.wait_for_server(rospy.Duration.from_sec(1000.0))):

75> self.shutdown()

76> goal = MoveBaseGoal()

77> pose_xy = PoseWithCovarianceStamped()

Appendix B: Remote robot control code 169

78> print "xc, yc:", xc, yc

79> print "xg, yg:", xGoal, yGoal

80>

81> #set up the frame parameters

82> goal.target_pose.header.frame_id = "map"

83> goal.target_pose.header.stamp = rospy.Time.now()

84>

85> # moving towards the goal*/

86> goal.target_pose.pose.position = Point(xGoal,yGoal,0)

87> goal.target_pose.pose.orientation.x = 0.0

88> goal.target_pose.pose.orientation.y = 0.0

89> goal.target_pose.pose.orientation.z = 0.0

90> goal.target_pose.pose.orientation.w = 1.0

91> rospy.loginfo("Sending goal location...")

92> ac.send_goal(goal)

93> ac.wait_for_result(rospy.Duration(60))

94> dx = xGoal-xc

95> dy = yGoal-yc

96> dist = math.sqrt(math.pow(dx,2) + math.pow(dy,2))

97> print "DISTANCE: ", dist

98>

99> #if(ac.get_state() == GoalStatus.SUCCEEDED):

100> if dist<=0.5:

101> rospy.loginfo("The robot has reached the

destination")

102> return True

103> else:

104> rospy.loginfo("The robot failed to reach the

destination")

105> return False

106>

107> def amclCb(msg):

108> global xc, yc

109> xc = msg.pose.pose.position.x

110> yc = msg.pose.pose.position.y

111> OPCdata.xyPos(xc,yc)

112>

113> if __name__ == '__main__':

114> try:

115>

rospy.Subscriber('/robot_0/amcl_pose',PoseWithCovarianceStamped,amclC

b)

116> rstatus = Value('i', 0)

117> wait_time = Value('i', 0)

170 Appendix B: Remote robot control code

118> OPCwait = Process(target=OPCdata.getwtime,

args=(wait_time,))

119> OPCwait.start()

120> Navproc = Process(target = map_navigation())

121> Navproc.start()

122> rospy.spin()

123>

124> except rospy.ROSInterruptException:

125> rospy.loginfo("map_navigation node terminated.")

Appendix C: Robot OPC-UA Client code

1> # Filename: OPCdata.py

2> import sys

3> import rospy

4> import gvar

5> import OpenOPC # the OPC client library for Python

6>

7> def getxyGoal(x,y):

8> opc = OpenOPC.open_client('192.168.201.1')

9> opc.connect('Matrikon.OPC.Simulation')

10> x=opc.read('Server02.r01_xgoal')[0]

11> y=opc.read('Server02.r01_ygoal')[0]

12> opc.close()

13> return x, y

14>

15> def setStatus(status):

16> opc = OpenOPC.open_client('192.168.201.1')

17> opc.connect('Matrikon.OPC.Simulation')

18> opc.write(('Server02.r01_status', status))

19> opc.close()

20>

21> def xyPos(x,y):

22> opc = OpenOPC.open_client('192.168.201.1')

23> opc.connect('Matrikon.OPC.Simulation')

24> opc.write(('Server02.r01_xpos', x))

25> opc.write(('Server02.r01_ypos', y))

26> opc.close()

27>

28> def getwtime(w):

29> w.value=5

Appendix D: Stage development programs

D1. Launch file

1> <!--Filename: turtlebot_stage_psu.launch-->

2> <launch>

3> <arg name="base" default="$(optenv TURTLEBOT_BASE kobuki)"/>

<!-- create, rhoomba -->

4> <arg name="stacks" default="$(optenv TURTLEBOT_STACKS

hexagons)"/> <!-- circles, hexagons -->

5> <arg name="3d_sensor" default="$(optenv TURTLEBOT_3D_SENSOR

kinect)"/> <!-- kinect, asus_xtion_pro -->

6> <!-- Name of the map to use (without path nor extension) and

initial position -->

7> <arg name="map_file" default="/home/nicol/catkin-

ws/src/robsim05/worlds/psu.yaml"/> <!-- psu -->

8> <arg name="world_file" default="/home/nicol/catkin-

ws/src/robsim05/worlds/psu.world"/>

9> <arg name="initial_pose_x" default="7.925"/>

10> <arg name="initial_pose_y" default="5.925"/>

11> <arg name="initial_pose_a" default="0.0"/>

12> <param name="/use_sim_time" value="true"/>

13> <!-- ******************** Stage ******************** -->

14> <!--

15> Publishes transforms:

16> /base_link -> /base_laser

17> /base_footprint -> /base_link (identity)

18> /odom -> base_footprint

19> Publishes topics:

20> /odom : odometry data from the simulated odometry

21> /base_scan : laser data from the simulated laser

22> /base_pose_ground_truth : the ground truth pose

23> Parameters:

24> base_watchdog_timeout : time (s) after receiving the last

command on cmd_vel before stopping the robot

25> Args:

26> -g : run in headless mode.

27> -->

28> <node pkg="stage_ros" type="stageros" name="stageros" args="$(arg

world_file)">

174 Appendix D: Stage development programs

29> <param name="base_watchdog_timeout" value="0.5"/>

30> <remap from="odom" to="odom"/>

31> <remap from="base_pose_ground_truth"

to="base_pose_ground_truth"/>

32> <remap from="cmd_vel" to="mobile_base/commands/velocity"/>

33> <remap from="robot_0/base_scan" to="robot_0/scan_filtered"/>

34> <remap from="robot_1/base_scan" to="robot_1/scan_filtered"/>

35> <remap from="robot_2/base_scan" to="robot_2/scan_filtered"/>

36> </node>

37> <!-- ***************** Robot Model ***************** -->

38> <!-- BEGIN ROBOT 1-->

39> <group ns="robot_0">

40> <node pkg="nodelet" type="nodelet"

name="mobile_base_nodelet_manager" args="manager"/>

41> <node pkg="nodelet" type="nodelet" name="cmd_vel_mux" args="load

yocs_cmd_vel_mux/CmdVelMuxNodelet mobile_base_nodelet_manager">

42> <param name="yaml_cfg_file" value="$(find

turtlebot_bringup)/param/mux.yaml"/>

43> <remap from="cmd_vel_mux/output"

to="mobile_base/commands/velocity"/>

44> </node>

45> <!-- 4: Localization algorithm: AMCL (http://wiki.ros.org/amcl) -

->

46> <node pkg="amcl" type="amcl" name="amcl" output="screen">>

47> <param name="transform_tolerance" value="0.2" />

48> <param name="max_particles" value="1000"/>

49> <param name="initial_pose_x" value="7.925"/>

50> <param name="initial_pose_y" value="5.925"/>

51> <param name="initial_pose_a" value="0.0"/>

52> <param name="odom_frame_id" value="/robot_0/odom"/>

53> <param name="base_frame_id" value="/robot_0/base_link"/>

54>

55> <remap from="map" to="/map"/>

56> <remap from="scan" to="scan_filtered"/>

57> <remap from="static_map" to="/static_map"/>

58> </node>

59> <node pkg="move_base" type="move_base" respawn="false"

name="move_base" output="screen">

60> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="global_costmap" />

61> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="local_costmap" />

Appendix D: Stage development programs 175

62> <rosparam file="$(find

turtlebot_navigation)/param/local_costmap_params.yaml" command="load"

/>

63> <rosparam file="$(find

turtlebot_navigation)/param/global_costmap_params.yaml"

command="load" />

64> <rosparam file="$(find

turtlebot_navigation)/param/dwa_local_planner_params.yaml"

command="load" />

65> <rosparam file="$(find

turtlebot_navigation)/param/move_base_params.yaml" command="load" />

66> <rosparam file="$(find

turtlebot_navigation)/param/global_planner_params.yaml"

command="load" />

67> <rosparam file="$(find

turtlebot_navigation)/param/navfn_global_planner_params.yaml"

command="load" />

68> <!-- external params file that could be loaded into the

move_base namespace -->

69> <rosparam file="$(find turtlebot_navigation)/param/dummy.yaml"

command="load" />

70> <remap from="map" to="/map"/>

71> <!-- Override MOVE_BASE Frame Params to include "robot_X"

prefix -->

72> <param name="global_costmap/laser_scan_sensor/sensor_frame"

value="/robot_0/base_laser_link"/>

73> <param name="global_costmap/laser_scan_sensor/topic"

value="/robot_0/scan_filtered"/>

74> <param name="global_costmap/robot_base_frame"

value="/robot_0/base_link"/>

75>

76> <param name="local_costmap/global_frame"

value="/robot_0/odom"/>

77> <param name="local_costmap/laser_scan_sensor/sensor_frame"

value="/robot_0/base_laser_link"/>

78> <param name="local_costmap/laser_scan_sensor/topic"

value="/robot_0/scan_filtered"/>

79> <param name="local_costmap/robot_base_frame"

value="/robot_0/base_link"/>

80> </node>

81> </group>

82> <!-- BEGIN ROBOT 2 -->

83> <group ns="robot_1">

84> <node pkg="nodelet" type="nodelet"

name="mobile_base_nodelet_manager" args="manager"/>

176 Appendix D: Stage development programs

85> <node pkg="nodelet" type="nodelet" name="cmd_vel_mux" args="load

yocs_cmd_vel_mux/CmdVelMuxNodelet mobile_base_nodelet_manager">

86> <param name="yaml_cfg_file" value="$(find

turtlebot_bringup)/param/mux.yaml"/>

87> <remap from="cmd_vel_mux/output"

to="mobile_base/commands/velocity"/>

88> </node>

89> <!-- 4: Localization algorithm: AMCL (http://wiki.ros.org/amcl) -

->

90> <node pkg="amcl" type="amcl" name="amcl" output="screen">>

91> <param name="transform_tolerance" value="0.2" />

92> <param name="max_particles" value="1000"/>

93> <param name="initial_pose_x" value="7.925"/>

94> <param name="initial_pose_y" value="2.925"/>

95> <param name="initial_pose_a" value="0.0"/>

96> <param name="odom_frame_id" value="/robot_1/odom"/>

97> <param name="base_frame_id" value="/robot_1/base_link"/>

98>

99> <remap from="map" to="/map"/>

100> <remap from="scan" to="scan_filtered"/>

101> <remap from="static_map" to="/static_map"/>

102> </node>

103> <node pkg="move_base" type="move_base" respawn="false"

name="move_base" output="screen">

104> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="global_costmap" />

105> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="local_costmap" />

106> <rosparam file="$(find

turtlebot_navigation)/param/local_costmap_params.yaml" command="load"

/>

107> <rosparam file="$(find

turtlebot_navigation)/param/global_costmap_params.yaml"

command="load" />

108> <rosparam file="$(find

turtlebot_navigation)/param/dwa_local_planner_params.yaml"

command="load" />

109> <rosparam file="$(find

turtlebot_navigation)/param/move_base_params.yaml" command="load" />

110> <rosparam file="$(find

turtlebot_navigation)/param/global_planner_params.yaml"

command="load" />

Appendix D: Stage development programs 177

111> <rosparam file="$(find

turtlebot_navigation)/param/navfn_global_planner_params.yaml"

command="load" />

112> <!-- external params file that could be loaded into the

move_base namespace -->

113> <rosparam file="$(find

turtlebot_navigation)/param/dummy.yaml" command="load" />

114> <remap from="map" to="/map"/>

115> <!-- Override MOVE_BASE Frame Params to include

"robot_X" prefix -->

116> <param

name="global_costmap/laser_scan_sensor/sensor_frame"

value="/robot_1/base_laser_link"/>

117> <param name="global_costmap/laser_scan_sensor/topic"

value="/robot_1/scan_filtered"/>

118> <param name="global_costmap/robot_base_frame"

value="/robot_1/base_link"/>

119>

120> <param name="local_costmap/global_frame"

value="/robot_1/odom"/>

121> <param

name="local_costmap/laser_scan_sensor/sensor_frame"

value="/robot_1/base_laser_link"/>

122> <param name="local_costmap/laser_scan_sensor/topic"

value="/robot_1/scan_filtered"/>

123> <param name="local_costmap/robot_base_frame"

value="/robot_1/base_link"/>

124> </node>

125> </group>

126> <!-- BEGIN ROBOT 3 -->

127> <group ns="robot_2">

128> <node pkg="nodelet" type="nodelet"

name="mobile_base_nodelet_manager" args="manager"/>

129> <node pkg="nodelet" type="nodelet" name="cmd_vel_mux"

args="load yocs_cmd_vel_mux/CmdVelMuxNodelet

mobile_base_nodelet_manager">

130> <param name="yaml_cfg_file" value="$(find

turtlebot_bringup)/param/mux.yaml"/>

131> <remap from="cmd_vel_mux/output"

to="mobile_base/commands/velocity"/>

132> </node>

133> <!-- 4: Localization algorithm: AMCL

(http://wiki.ros.org/amcl) -->

134> <node pkg="amcl" type="amcl" name="amcl" output="screen">>

135> <param name="transform_tolerance" value="0.2" />

178 Appendix D: Stage development programs

136> <param name="max_particles" value="1000"/>

137> <param name="initial_pose_x" value="7.925"/>

138> <param name="initial_pose_y" value="4.525"/>

139> <param name="initial_pose_a" value="0.0"/>

140> <param name="odom_frame_id" value="/robot_2/odom"/>

141> <param name="base_frame_id"

value="/robot_2/base_link"/>

142>

143> <remap from="map" to="/map"/>

144> <remap from="scan" to="scan_filtered"/>

145> <remap from="static_map" to="/static_map"/>

146> </node>

147> <node pkg="move_base" type="move_base" respawn="false"

name="move_base" output="screen">

148> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="global_costmap" />

149> <rosparam file="$(find

turtlebot_navigation)/param/costmap_common_params.yaml"

command="load" ns="local_costmap" />

150> <rosparam file="$(find

turtlebot_navigation)/param/local_costmap_params.yaml" command="load"

/>

151> <rosparam file="$(find

turtlebot_navigation)/param/global_costmap_params.yaml"

command="load" />

152> <rosparam file="$(find

turtlebot_navigation)/param/dwa_local_planner_params.yaml"

command="load" />

153> <rosparam file="$(find

turtlebot_navigation)/param/move_base_params.yaml" command="load" />

154> <rosparam file="$(find

turtlebot_navigation)/param/global_planner_params.yaml"

command="load" />

155> <rosparam file="$(find

turtlebot_navigation)/param/navfn_global_planner_params.yaml"

command="load" />

156> <!-- external params file that could be loaded into the

move_base namespace -->

157> <rosparam file="$(find

turtlebot_navigation)/param/dummy.yaml" command="load" />

158> <remap from="map" to="/map"/>

159> <!-- Override MOVE_BASE Frame Params to include

"robot_X" prefix -->

Appendix D: Stage development programs 179

160> <param

name="global_costmap/laser_scan_sensor/sensor_frame"

value="/robot_2/base_laser_link"/>

161> <param name="global_costmap/laser_scan_sensor/topic"

value="/robot_2/scan_filtered"/>

162> <param name="global_costmap/robot_base_frame"

value="/robot_2/base_link"/>

163>

164> <param name="local_costmap/global_frame"

value="/robot_2/odom"/>

165> <param

name="local_costmap/laser_scan_sensor/sensor_frame"

value="/robot_2/base_laser_link"/>

166> <param name="local_costmap/laser_scan_sensor/topic"

value="/robot_2/scan_filtered"/>

167> <param name="local_costmap/robot_base_frame"

value="/robot_2/base_link"/>

168> </node>

169> </group>

170> <!-- ****** Maps ***** -->

171> <node name="map_server" pkg="map_server" type="map_server"

args="$(arg map_file)">

172> <!-- <param name="frame_id" value="/robot_0/odom"/> -->

173> </node>

174> <!-- **************** Visualisation **************** -->

175> <!--<node name="rviz" pkg="rviz" type="rviz" args="-d $(find

turtlebot_stage)/rviz/robot_navigation.rviz"/> -->

176> </launch>

D2. Yaml file

1> # Filename: psu.yaml

2> image: map02.png

3> resolution: 0.025000

4> origin: [0.0000 ,0.0000, 0.000000]

5> negate: 0

6> occupied_thresh: 0.3

7> free_thresh: 0.2

8> obstacle_range: 2.5

9> raytrace_range: 3.0

180 Appendix D: Stage development programs

D3. World file

1> # Filename: psu.world

2> include "map.inc"

3> include "turtlebot.inc"

4>

5> resolution 0.02

6>

7> window

8> (

9> size [600 700] # in pixels

10> scale 50 # pixels per meter

11> center [0.0 0.0]

12> rotate [0 0]

13>

14> show_data 1 # 1=on 0=off

15>)

16>

17> floorplan

18> (

19> name "psu"

20> size [21.95 8.6 0.8] #the real size in meters (from yaml,

resolution*pixels)

21> pose [10.975 4.3 0.0 0.0]

22> bitmap "map02.png"

23>)

24>

25> # throw in a robot

26> turtlebot

27> (

28> pose [7.925 5.925 0.0 0.0]

29> #pose [21.95 8.6 0.0 0.0]

30> name "robot0"

31> color "red"

32>)

33>

34> turtlebot

35> (

36> pose [7.925 2.925 0.0 0.0]

37> name "robot1"

38> color "blue"

39>)

40>

Appendix D: Stage development programs 181

41> turtlebot

42> (

43> pose [7.925 4.525 0.0 0.0]

44> name "robot2"

45> color "green"

46>)

D4. Map and turtlebot files

1> # Filename: map.inc

2>

3> define floorplan model

4> (

5> color "gray30"

6>

7> boundary 1

8>

9> gui_nose 0

10> gui_grid 1

11> gui_move 0

12> gui_outline 0

13> gripper_return 0

14> fiducial_return 0

15> ranger_return 0.5

16>

17> obstacle_return 0

18>)

19>

20> define zone model

21> (

22> color "orange"

23> size [4 4 0.02]

24>

25> gui_nose 0

26> gui_grid 0

27> gui_move 1

28> gui_outline 0

29>

30> obstacle_return 0

31> ranger_return -1 # transparent to range sensors

32>)

182 Appendix D: Stage development programs

1> # Filename: turtlebot.inc

2>

3> define kinect ranger

4> (

5> sensor

6> (

7> range_max 6.5

8> fov 58.0

9> samples 640

10>)

11> # generic model properties

12> color "black"

13> size [0.06 0.15 0.03]

14>)

15>

16> define turtlebot position

17> (

18> pose [0.0 0.0 0.0 0.0]

19> size [0.2552 0.2552 0.40]

20> origin [0.0 0.0 0.0 0.0]

21> gui_nose 1

22> drive "diff"

23> color "gray"

24>

25> kinect(pose [-0.1 0.0 -0.11 0.0])

26>)

Appendix E: Functions for heterogeneous robot

programs

1> # Filename: LibHetRobots.py

2> import math

3>

4> def getRobMatrix():

5> # get no. of columns (robots) first:

6> c = 0 # set no. of columns to 0

7> f = open('robconfig.txt', 'r')

8> for line in f:

9> c += 1 # inc no. of columns

10> f.close()

11> # now get the contents:

12> i = -1

13> r = 11 # no. of rows

14> RobMatrix = [[0 for x in range(r)] for y in range(c)]

15> r = 2

16> RobNames = [[0 for x in range(r)] for y in range(c)]

17> f = open('robconfig.txt', 'r')

18> for line in f:

19> i += 1

20> startpos = 0 # char start position in string

21> rrec = []

22> charpos = line.find(',')

23> while charpos != -1:

24> rrec.append(line[startpos:charpos])

25> startpos = charpos + 1

26> charpos = line.find(',', startpos, len(line))

27> RobMatrix[i] = [int(rrec[0]), int(rrec[3]), int(rrec[4]),

int(rrec[5]), float(rrec[6]),

28> float(rrec[7]), float(rrec[8]), int(rrec[9]),

int(rrec[10]), int(rrec[11]),

29> int(rrec[12]), int(rrec[13])]

30> RobNames[i] = [rrec[0], rrec[1], rrec[2]]

31> f.close()

32> return RobMatrix, RobNames

33>

184 Appendix E: Functions for heterogeneous robot programs

34>

35> def getTaskMatrix():

36> # get no. of columns (tasks) first:

37> c = 0 # set no. of columns to 0

38> f = open('taskconfig.txt', 'r')

39> for line in f:

40> c += 1 # inc no. of columns

41> f.close()

42> # now get the contents:

43> i = -1

44> r = 12 # no. of rows

45> TaskMatrix = [[0 for x in range(r)] for y in range(c)]

46> r = 1

47> TaskNames = [[0 for x in range(r)] for y in range(c)]

48> f = open('taskconfig.txt', 'r')

49> for line in f:

50> i += 1

51> startpos = 1 # char start position in string

52> rrec = []

53> charpos = line.find(',')

54> while charpos != -1:

55> rrec.append(line[startpos:charpos])

56> startpos = charpos + 1

57> charpos = line.find(',', startpos, len(line))

58> TaskMatrix[i] = [int(rrec[0]), int(rrec[2]), int(rrec[3]),

int(rrec[4]), float(rrec[5]),

59> float(rrec[6]), float(rrec[7]),

int(rrec[8]), int(rrec[9]), int(rrec[10]),

60> int(rrec[11]), int(rrec[12]), int(rrec[13])]

61> TaskNames[i] = [rrec[0], rrec[1]]

62> f.close()

63> return TaskMatrix, TaskNames

64>

65>

66> # check if the robot (rid) is compatible with a particular task (tid)

67> def checkRobTaskCompat(rid, tid):

68> RobMatrix, RobNames = getRobMatrix()

69> TaskMatrix, TaskNames = getTaskMatrix()

70> isCompat = False

71> for i in range(len(RobMatrix)):

72> if rid == RobMatrix[i][0]:

73> for j in range(len(TaskMatrix)):

74> if tid == TaskMatrix[j][0]:

75> if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and

Appendix E: Functions for heterogeneous robot programs 185

76> (RobMatrix[i][2] <= TaskMatrix[j][2]) and

77> (RobMatrix[i][3] <= TaskMatrix[j][3]) and

78> (RobMatrix[i][4] >= TaskMatrix[j][4]) and

79> (RobMatrix[i][5] >= TaskMatrix[j][5]) and

80> (RobMatrix[i][6] >= TaskMatrix[j][6]) and

81> ((RobMatrix[i][7]==1 and

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and

82> ((RobMatrix[i][8]==1 and

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and

83> ((RobMatrix[i][9]==1 and

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and

84> ((RobMatrix[i][10]==1 and

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and

85> ((RobMatrix[i][11]==1 and

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))):

86> isCompat = True

87>

88> print RobMatrix[0]

89> print TaskMatrix[0]

90> print isCompat

91>

92> # get the compatible tasks for a particular robot

93> def getCompatTasks(rid):

94> RobMatrix, RobNames = getRobMatrix()

95> TaskMatrix, TaskNames = getTaskMatrix()

96> c = 0

97> # get range of the CompatTaskMat:

98> for i in range(len(RobMatrix)):

99> if rid == RobMatrix[i][0]:

100> for j in range(len(TaskMatrix)):

101> if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and

102> (RobMatrix[i][2] <= TaskMatrix[j][2])

and

103> (RobMatrix[i][3] <= TaskMatrix[j][3])

and

104> (RobMatrix[i][4] >= TaskMatrix[j][4])

and

105> (RobMatrix[i][5] >= TaskMatrix[j][5])

and

106> (RobMatrix[i][6] >= TaskMatrix[j][6])

and

107> ((RobMatrix[i][7]==1 and

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and

186 Appendix E: Functions for heterogeneous robot programs

108> ((RobMatrix[i][8]==1 and

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and

109> ((RobMatrix[i][9]==1 and

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and

110> ((RobMatrix[i][10]==1 and

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and

111> ((RobMatrix[i][11]==1 and

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))):

112> c += 1

113>

114> # Now get data for the CompatTaskMat:

115> r = 2

116> CompatTaskMat = [[0 for x in range(r)] for y in range(c)]

117> idx = 0

118> for i in range(len(RobMatrix)):

119> if rid == RobMatrix[i][0]:

120> for j in range(len(TaskMatrix)):

121> if ((RobMatrix[i][1] <= TaskMatrix[j][1]) and

122> (RobMatrix[i][2] <= TaskMatrix[j][2])

and

123> (RobMatrix[i][3] <= TaskMatrix[j][3])

and

124> (RobMatrix[i][4] >= TaskMatrix[j][4])

and

125> (RobMatrix[i][5] >= TaskMatrix[j][5])

and

126> (RobMatrix[i][6] >= TaskMatrix[j][6])

and

127> ((RobMatrix[i][7]==1 and

TaskMatrix[j][8]==1) or (TaskMatrix[j][8]==0)) and

128> ((RobMatrix[i][8]==1 and

TaskMatrix[j][9]==1) or (TaskMatrix[j][9]==0)) and

129> ((RobMatrix[i][9]==1 and

TaskMatrix[j][10]==1) or (TaskMatrix[j][10]==0)) and

130> ((RobMatrix[i][10]==1 and

TaskMatrix[j][11]==1) or (TaskMatrix[j][11]==0)) and

131> ((RobMatrix[i][11]==1 and

TaskMatrix[j][12])==1 or (TaskMatrix[j][12]==0))):

132>

133> CompatTaskMat[idx][0] = TaskNames[j][0]

134> CompatTaskMat[idx][1] = TaskNames[j][1]

135> idx += 1

136>

137> #print RobMatrix[0]

138> #print TaskMatrix[0]

Appendix E: Functions for heterogeneous robot programs 187

139> return CompatTaskMat

140>

141> # get the compatible robots for a particular task

142> def getCompatRobots(tid):

143> RobMatrix, RobNames = getRobMatrix()

144> TaskMatrix, TaskNames = getTaskMatrix()

145> c = 0

146> # get range of the CompatTaskMat:

147> for i in range(len(RobMatrix)):

148> if tid == TaskMatrix[i][0]:

149> for j in range(len(RobMatrix)):

150> if ((RobMatrix[j][1] <= TaskMatrix[i][1]) and

151> (RobMatrix[j][2] <= TaskMatrix[i][2])

and

152> (RobMatrix[j][3] <= TaskMatrix[i][3])

and

153> (RobMatrix[j][4] >= TaskMatrix[i][4])

and

154> (RobMatrix[j][5] >= TaskMatrix[i][5])

and

155> (RobMatrix[j][6] >= TaskMatrix[i][6])

and

156> ((RobMatrix[j][7]==1 and

TaskMatrix[i][8]==1) or (TaskMatrix[i][8]==0)) and

157> ((RobMatrix[j][8]==1 and

TaskMatrix[i][9]==1) or (TaskMatrix[i][9]==0)) and

158> ((RobMatrix[j][9]==1 and

TaskMatrix[i][10]==1) or (TaskMatrix[i][10]==0)) and

159> ((RobMatrix[j][10]==1 and

TaskMatrix[i][11]==1) or (TaskMatrix[i][11]==0)) and

160> ((RobMatrix[j][11]==1 and

TaskMatrix[i][12])==1 or (TaskMatrix[i][12]==0))):

161> c += 1

162>

163> # Now get data for the CompatTaskMat:

164> r = 3

165> CompatRobMat = [[0 for x in range(r)] for y in range(c)]

166> idx = 0

167> for i in range(len(RobMatrix)):

168> if tid == TaskMatrix[i][0]:

169> for j in range(len(RobMatrix)):

170> if ((RobMatrix[j][1] <= TaskMatrix[i][1]) and

171> (RobMatrix[j][2] <= TaskMatrix[i][2])

and

188 Appendix E: Functions for heterogeneous robot programs

172> (RobMatrix[j][3] <= TaskMatrix[i][3])

and

173> (RobMatrix[j][4] >= TaskMatrix[i][4])

and

174> (RobMatrix[j][5] >= TaskMatrix[i][5])

and

175> (RobMatrix[j][6] >= TaskMatrix[i][6])

and

176> ((RobMatrix[j][7]==1 and

TaskMatrix[i][8]==1) or (TaskMatrix[i][8]==0)) and

177> ((RobMatrix[j][8]==1 and

TaskMatrix[i][9]==1) or (TaskMatrix[i][9]==0)) and

178> ((RobMatrix[j][9]==1 and

TaskMatrix[i][10]==1) or (TaskMatrix[i][10]==0)) and

179> ((RobMatrix[j][10]==1 and

TaskMatrix[i][11]==1) or (TaskMatrix[i][11]==0)) and

180> ((RobMatrix[j][11]==1 and

TaskMatrix[i][12])==1 or (TaskMatrix[i][12]==0))):

181>

182> CompatRobMat[idx][0] = RobNames[j][0]

183> CompatRobMat[idx][1] = RobNames[j][1]

184> CompatRobMat[idx][2] = RobNames[j][2]

185> idx += 1

186>

187> #print RobMatrix[0]

188> #print TaskMatrix[0]

189> return CompatRobMat

Appendix F: SVM function code

1> # Filename: SVM_MatHand.py

2> import numpy as np

3> import random

4> import matplotlib.pyplot as plt

5> from sklearn import svm

6> import tkinter as tk

7> import tkinter.ttk as ttk

8> from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

9> from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg

10> from matplotlib.figure import Figure

11>

12> # get data

13> f = open('train.txt', 'r')

14> Y=[]

15> X1=[]

16> for line in f:

17> fnum = 0 # no. of features

18> startpos = 0 # char start position in string

19> charpos = 1

20> print line

21> Y.append(int(line[startpos:charpos]))

22> startpos = 2

23> charpos = line.find(',')

24> while charpos != -1:

25> fnum += 1

26> X1.append(int(line[startpos:charpos]))

27> startpos = charpos + 1

28> charpos = line.find(',', startpos, len(line))

29> f.close()

30> X=np.array(X1).reshape(len(Y),fnum)

31>

32> # SVM computation

33> clf = svm.SVC(kernel='linear', C=1)

34> clf.fit(X, Y)

35> print(clf.predict([[20,10,30,5,5,0]]))

36> #print(X)

37>

38> class Application(tk.Frame):

190 Appendix F: SVM function code

39> def __init__(self, master=None):

40> tk.Frame.__init__(self,master)

41> self.createWidgets()

42> def createWidgets(self):

43> fig=plt.figure(figsize=(4,4))

44> ax=fig.add_axes([0.1,0.1,0.8,0.8])

45> canvas=FigureCanvasTkAgg(fig,master=root)

46> canvas.get_tk_widget().grid(row=0,column=0, columnspan=20)

47> canvas.show()

48>

49> self.plotbutton=ttk.Button(master=root, text="Assign to T1",

command=lambda: self.plot(canvas,ax,0))

50> self.plotbutton.grid(row=1,column=0)

51> self.plotbutton2=ttk.Button(master=root, text="Assign to T2",

command=lambda: self.plot(canvas,ax,1))

52> self.plotbutton2.grid(row=1,column=1)

53>

54> def plot(self,canvas,ax,y):

55> data = (random.randint(0, 100), random.randint(0, 100),

random.randint(0, 100), random.randint(0, 100), random.randint(0,

100), random.randint(0, 100))

56> print(data)

57> ind = np.arange(6) # the x locations for the groups

58> width = .3

59> rects1 = ax.bar(ind, data, width)

60> x = range(0, 6)

61> ax.set_xticks(x)

62> ax.set_yticks([0,50,100])

63> labels = ['T1-IN','T1-OUT','T1-D','T2-IN','T2-OUT','T2-D']

64> ax.set_xticklabels(labels, fontsize='small')

65> canvas.draw()

66> ax.clear()

67> # write data to svm train file:

68> f = open('train.txt', 'a')

69> line = '%s:%s,%s,%s,%s,%s,%s,\n' %

(y,data[0],data[1],data[2],data[3],data[4],data[5])

70> f.writelines(line)

71> f.close()

72> print line

73>

74> root=tk.Tk()

75> root.title("SVM Train Application")

76> app=Application(master=root)

77> app.mainloop()

Appendix G: Python application code for Study I

G1. Algorithm and mobile robot navigation program

1> # Filename: matHand_algo.py

2> import OpenOPC # the OPC client library for Python

3> import gvar

4> import matHand_sim

5> import math

6> import time

7>

8>

9> def mapVars():

10> f = open('avarmap.txt', 'r')

11> global locArr, opcArr

12> locArr = []

13> opcArr = []

14> for line in f:

15> startpos = 0 # char start position in string

16> charpos = line.find(':')

17> locArr += [line[startpos:charpos]]

18> opcArr += [line[charpos+1:len(line)-1]]

19> f.close()

20> return 0

21>

22>

23> # Update the local variables with values from OPC mapped tags (wrt

avarmap.txt)

24> # Call this function regularly!

25> def updateVars():

26> global locArr, opcArr

27> global opc

28> opc = OpenOPC.open_client('localhost')

29> opc.connect('Matrikon.OPC.Simulation')

30> try:

31> for i in range(len(locArr)):

32> opcval = opc.read(tags=opcArr[i], timeout=500) # read

OPC tag values

33> setattr(gvar, locArr[i], opcval[0]) # assign OPC tag

values to mapped local variables

192 Appendix G: Python application code for Study I

34> runTaskAlgo()

35> robMotion()

36> except OpenOPC.TimeoutError:

37> print "ALGO TimeoutError occured"

38> opc.close()

39> return 0

40>

41>

42> def initVars():

43> global T1count, T2count

44> T1count = 0

45> T2count = 0

46>

47> gvar.l_taskID = 0

48> gvar.l_t01_weight = 0.0

49> gvar.l_t02_weight = 0.0

50> gvar.l_t01_x1 = 0.0

51> gvar.l_t01_x2 = 0.0

52> gvar.l_t01_x3 = 0.0

53> gvar.l_t02_x1 = 0.0

54> gvar.l_t02_x2 = 0.0

55> gvar.l_t02_x3 = 0.0

56>

57> gvar.l_t01_iBL = 0

58> gvar.l_t01_iFr = 0.0

59> gvar.l_t01_iBC = 100

60> gvar.l_t01_qSL = 0

61> gvar.l_t01_qFr = 0.0

62> gvar.l_t01_sCDr = 0.0

63> gvar.l_t01_sPPi = 0.0

64> gvar.l_t01_sPD = 0

65>

66> gvar.l_t02_iBL = 0

67> gvar.l_t02_iFr = 0.0

68> gvar.l_t02_iBC = 100

69> gvar.l_t02_qSL = 0

70> gvar.l_t02_qFr = 0.0

71> gvar.l_t02_sCDr = 0.0

72> gvar.l_t02_sPPi = 0.0

73> gvar.l_t02_sPD = 0

74>

75> gvar.l_t01_src_x = 0.0

76> gvar.l_t01_dest_x = 0.0

77> gvar.l_t01_src_y = 0.0

Appendix G: Python application code for Study I 193

78> gvar.l_t01_dest_y = 0.0

79> gvar.l_t02_src_x = 0.0

80> gvar.l_t02_dest_x = 0.0

81> gvar.l_t02_src_y = 0.0

82> gvar.l_t02_dest_y = 0.0

83>

84>

85> def runTaskAlgo():

86> global opc

87> try:

88> gvar.l_t01_x1 = 1/(gvar.l_t01_iFr * (float(gvar.l_t01_iBL) /

float(gvar.l_t01_iBC)))

89> except:

90> gvar.l_t01_x1 = 0

91> gvar.l_t01_x2 = 1/gvar.l_t01_sPPi

92> gvar.l_t01_x3 = (gvar.l_t01_qFr - gvar.l_t01_sCDr) +

((gvar.l_t01_qSL - gvar.l_t01_sPD) * 0.2) + 0.1

93> gvar.l_t01_weight = gvar.l_t01_x1 * gvar.l_t01_x2 * gvar.l_t01_x3

94> print(gvar.l_t01_x1, gvar.l_t01_x2, gvar.l_t01_x3,

gvar.l_t01_weight)

95>

96> try:

97> gvar.l_t02_x1 = 1/(gvar.l_t02_iFr * (float(gvar.l_t02_iBL) /

float(gvar.l_t02_iBC)))

98> except:

99> gvar.l_t02_x1 = 0

100> gvar.l_t02_x2 = 1/gvar.l_t02_sPPi

101> gvar.l_t02_x3 = (gvar.l_t02_qFr - gvar.l_t02_sCDr) +

((gvar.l_t02_qSL - gvar.l_t02_sPD) * 0.2) + 0.1

102> gvar.l_t02_weight = gvar.l_t02_x1 * gvar.l_t02_x2 *

gvar.l_t02_x3

103> print(gvar.l_t02_x1, gvar.l_t02_x2, gvar.l_t02_x3,

gvar.l_t02_weight)

104>

105> if gvar.l_t01_weight <= gvar.l_t02_weight:

106> gvar.l_taskID = 1

107> else:

108> gvar.l_taskID = 2

109> return gvar.l_taskID

110>

111>

112> # Function that handles the robot motion commands

113> def robMotion():

114> global opc, T1count, T2count

194 Appendix G: Python application code for Study I

115> # compute distance from goal:

116> dx = gvar.l_r01_xgoal - gvar.l_r01_xpos

117> dy = gvar.l_r01_ygoal - gvar.l_r01_ypos

118> dist = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2))

119> # move robot:

120> if (dist <= 0.3) and (gvar.l_r01_status == 0): # robot-01

is available. Note: robot must clear its own status!

121> # TASK-1 code:

122> if (gvar.l_taskID == 1) and (gvar.l_r01_currloc == 0):

robot is waiting for command

123> resp = opc.write(('Server02.r01_xgoal',

gvar.l_t01_src_x))

124> resp2 = opc.write(('Server02.r01_ygoal',

gvar.l_t01_src_y))

125> if (resp == "Success") and (resp2 == "Success"):

126> opc.write(('Server02.r01_currloc', 1)) #

robot-01 is on its way to the source

127> opc.write(('Server02.r01_tcurr', 1)) # robot-

01 current task goal is #1

128> opc.write(('Server02.r01_status', 1)) # robot-

01 set to busy

129> gvar.l_r01_status = 1

130> T1count += 1

131> print "T1count: ", T1count

132>

133> if (gvar.l_r01_tcurr == 1) and ((gvar.l_r01_currloc ==

1) or (gvar.l_r01_currloc == 2)): # robot is waiting at T#1 source

134> opc.write(('Server02.r01_currloc', 2)) # robot-01

is at the source

135> if (gvar.l_r01_loadstat == 1):

136> resp = opc.write(('Server02.r01_xgoal',

gvar.l_t01_dest_x))

137> resp2 = opc.write(('Server02.r01_ygoal',

gvar.l_t01_dest_y))

138> if (resp == "Success") and (resp2 ==

"Success"):

139> opc.write(('Server02.r01_currloc', 3)) #

robot-01 is on its way to the destination

140> opc.write(('Server02.r01_status', 1)) #

robot-01 set to busy

141> gvar.l_r01_status = 1

142> opc.write(('Server02.r01_loadstat', 0)) #

clear load status

143>

Appendix G: Python application code for Study I 195

144> if (gvar.l_r01_tcurr == 1) and ((gvar.l_r01_currloc ==

3) or (gvar.l_r01_currloc == 4)): # robot is waiting at T#1

destination

145> opc.write(('Server02.r01_currloc', 4)) # robot-01

is at the destination

146> if (gvar.l_r01_loadstat == 1):

147> opc.write(('Server02.r01_currloc', 0)) # robot

has no goal location

148> # opc.write(('Server02.r01_tcurr', 0)) # robot

is released from task

149> opc.write(('Server02.r01_loadstat', 0)) #

clear load status

150>

151> # TASK-2 code:

152> if (gvar.l_taskID == 2) and (gvar.l_r01_currloc == 0):

robot is waiting for command

153> resp = opc.write(('Server02.r01_xgoal',

gvar.l_t02_src_x))

154> resp2 = opc.write(('Server02.r01_ygoal',

gvar.l_t02_src_y))

155> if (resp == "Success") and (resp2 == "Success"):

156> opc.write(('Server02.r01_currloc', 1)) #

robot-01 is on its way to the source

157> opc.write(('Server02.r01_tcurr', 2)) # robot-

01 current task goal is #2

158> opc.write(('Server02.r01_status', 1)) # robot-

01 set to busy

159> gvar.l_r01_status = 1

160> T2count += 1

161> print "T2count: ", T2count

162>

163> if (gvar.l_r01_tcurr == 2) and ((gvar.l_r01_currloc ==

1) or (gvar.l_r01_currloc == 2)): # robot is waiting at T#2 source

164> opc.write(('Server02.r01_currloc', 2)) # robot-01

is at the source

165> if (gvar.l_r01_loadstat == 1):

166> resp = opc.write(('Server02.r01_xgoal',

gvar.l_t02_dest_x))

167> resp2 = opc.write(('Server02.r01_ygoal',

gvar.l_t02_dest_y))

168> if (resp == "Success") and (resp2 ==

"Success"):

169> opc.write(('Server02.r01_currloc', 3)) #

robot-01 is on its way to the destination

196 Appendix G: Python application code for Study I

170> opc.write(('Server02.r01_status', 1)) #

robot-01 set to busy

171> gvar.l_r01_status = 1

172> opc.write(('Server02.r01_loadstat', 0)) #

clear load status

173>

174> if (gvar.l_r01_tcurr == 2) and ((gvar.l_r01_currloc ==

3) or (gvar.l_r01_currloc == 4)): # robot is waiting at T#2

destination

175> opc.write(('Server02.r01_currloc', 4)) # robot-01

is at the destination

176> if (gvar.l_r01_loadstat == 1):

177> opc.write(('Server02.r01_currloc', 0)) # robot

has no goal location

178> # opc.write(('Server02.r01_tcurr', 0)) # robot

is released from task

179> opc.write(('Server02.r01_loadstat', 0)) #

clear load status

180>

181> return 0

182>

183>

184> if __name__ == "__main__":

185> matHand_sim.initVars()

186> matHand_sim.initTags()

187> initVars()

188> mapVars()

189> while 1:

190> matHand_sim.updateTims()

191> matHand_sim.readTags()

192> updateVars()

193> matHand_sim.recordData(T1count, T2count,

gvar.l_t01_weight, gvar.l_t02_weight)

G2. Simulation program

1> # Filename: matHand_sim.py

2> # simulate the buffer levels, consumer demand rates etc.

3> import OpenOPC # the OPC client library for Python

4> import time

5> from datetime import datetime

6>

7>

Appendix G: Python application code for Study I 197

8> def initVars():

9> global start

10> global t01_iB_time_count, t02_iB_time_count, t01_qB_time_count,

t02_qB_time_count, sim_time_count

11> global start_t01_iB_time, start_t02_iB_time, start_t01_qB_time,

start_t02_qB_time, start_sim_time

12> global XYdatestr, LEVdatestr, TSKdatestr

13> start = time.time()

14> t01_iB_time_count = 0

15> t02_iB_time_count = 0

16> t01_qB_time_count = 0

17> t02_qB_time_count = 0

18> sim_time_count = 0

19> start_t01_iB_time = time.time()

20> start_t02_iB_time = time.time()

21> start_t01_qB_time = time.time()

22> start_t02_qB_time = time.time()

23> start_sim_time = time.time()

24>

25> XYdatestr = "XY_"+datetime.now().strftime('%Y-%m-%d_%H-%M-%S')

26> LEVdatestr = "LEV_"+datetime.now().strftime('%Y-%m-%d_%H-%M-%S')

27> TSKdatestr = "TSK_" + datetime.now().strftime('%Y-%m-%d_%H-%M-

%S')

28>

29>

30> def initTags():

31> global opc

32> opc = OpenOPC.open_client('localhost')

33> opc.connect('Matrikon.OPC.Simulation')

34> opc.write(('Server02.t01_iBM', 0))

35> opc.write(('Server02.t01_iBL', 0))

36> opc.write(('Server02.t01_iBC', 100))

37> opc.write(('Server02.t02_iBM', 0))

38> opc.write(('Server02.t02_iBL', 0))

39> opc.write(('Server02.t02_iBC', 100))

40> opc.write(('Server02.t01_iFr', 30))

41> opc.write(('Server02.t02_iFr', 30))

42> opc.write(('Server02.t01_qFr', 0))

43> opc.write(('Server02.t02_qFr', 0))

44> opc.write(('Server02.t01_sPPi', 0.5))

45> opc.write(('Server02.t02_sPPi', 0.5))

46> opc.write(('Server02.t01_qSC', 100))

47> opc.write(('Server02.t02_qSC', 100))

48> opc.write(('Server02.t01_qSM', 0))

198 Appendix G: Python application code for Study I

49> opc.write(('Server02.t01_qSL', 0))

50> opc.write(('Server02.t02_qSM', 0))

51> opc.write(('Server02.t02_qSL', 0))

52> opc.write(('Server02.t01_sCDr', 0))

53> opc.write(('Server02.t02_sCDr', 5))

54> # x-y source and destination locations:

55> opc.write(('Server02.t01_src_x', 3.5))

56> opc.write(('Server02.t01_src_y', 7.5))

57> opc.write(('Server02.t01_dest_x', 1.8))

58> opc.write(('Server02.t01_dest_y', 2.5))

59> opc.write(('Server02.t02_src_x', 18.5))

60> opc.write(('Server02.t02_src_y', 7.5))

61> opc.write(('Server02.t02_dest_x', 20.1))

62> opc.write(('Server02.t02_dest_y', 2.4))

63> # robot tags:

64> opc.write(('Server02.r01_loadcap', 20))

65> opc.write(('Server02.r01_currloc', 0))

66> opc.write(('Server02.r01_tcurr', 0))

67> opc.write(('Server02.r01_loadstat', 0))

68> opc.write(('Server02.r01_status', 0))

69> opc.close()

70>

71>

72> def updateTims():

73> global t01_iB_time_count, t02_iB_time_count, t01_qB_time_count,

t02_qB_time_count, sim_time_count

74> global start_t01_iB_time, start_t02_iB_time, start_t01_qB_time,

start_t02_qB_time, start_sim_time

75> t01_iB_time_count = int((time.time() - start_t01_iB_time) * 1000)

76> t02_iB_time_count = int((time.time() - start_t02_iB_time) * 1000)

77> t01_qB_time_count = int((time.time() - start_t01_qB_time) * 1000)

78> t02_qB_time_count = int((time.time() - start_t01_qB_time) * 1000)

79> sim_time_count = int((time.time() - start_sim_time) * 1000)

80>

81>

82> def readTags():

83> global opc

84> global l_t01_iBM, l_t01_iBL, l_t01_iBC, l_t01_iFr

85> global l_t02_iBM, l_t02_iBL, l_t02_iBC, l_t02_iFr

86> global l_t01_qSM, l_t01_qSL, l_t01_qSC, l_t01_qFr

87> global l_t02_qSM, l_t02_qSL, l_t02_qSC, l_t02_qFr

88> global l_r01_tcurr, l_r01_currloc, l_r01_prevloc, l_r01_load,

l_r01_loadcap

89> tout = 500

Appendix G: Python application code for Study I 199

90> opc = OpenOPC.open_client('localhost')

91> opc.connect('Matrikon.OPC.Simulation')

92> try:

93> l_t01_iBM = opc.read('Server02.t01_iBM', timeout=tout)[0]

94> l_t01_iBL = opc.read('Server02.t01_iBL', timeout=tout)[0]

95> l_t01_iBC = opc.read('Server02.t01_iBC', timeout=tout)[0]

96> l_t01_iFr = opc.read('Server02.t01_iFr', timeout=tout)[0]

97>

98> l_t02_iBM = opc.read('Server02.t02_iBM', timeout=tout)[0]

99> l_t02_iBL = opc.read('Server02.t02_iBL', timeout=tout)[0]

100> l_t02_iBC = opc.read('Server02.t02_iBC',

timeout=tout)[0]

101> l_t02_iFr = opc.read('Server02.t02_iFr',

timeout=tout)[0]

102>

103> l_t01_qSM = opc.read('Server02.t01_qSM',

timeout=tout)[0]

104> l_t01_qSL = opc.read('Server02.t01_qSL',

timeout=tout)[0]

105> l_t01_qSC = opc.read('Server02.t01_qSC',

timeout=tout)[0]

106> l_t01_qFr = opc.read('Server02.t01_qFr',

timeout=tout)[0]

107>

108> l_t02_qSM = opc.read('Server02.t02_qSM',

timeout=tout)[0]

109> l_t02_qSL = opc.read('Server02.t02_qSL',

timeout=tout)[0]

110> l_t02_qSC = opc.read('Server02.t02_qSC',

timeout=tout)[0]

111> l_t02_qFr = opc.read('Server02.t02_qFr',

timeout=tout)[0]

112>

113> l_r01_tcurr = opc.read('Server02.r01_tcurr',

timeout=tout)[0]

114> l_r01_currloc = opc.read('Server02.r01_currloc',

timeout=tout)[0]

115> l_r01_prevloc = opc.read('Server02.r01_prevloc',

timeout=tout)[0]

116> l_r01_load = opc.read('Server02.r01_load',

timeout=tout)[0]

117> l_r01_loadcap = opc.read('Server02.r01_loadcap',

timeout=tout)[0]

118>

119> inTask1()

200 Appendix G: Python application code for Study I

120> inTask2()

121> outTask1()

122> outTask2()

123>

124> except OpenOPC.TimeoutError:

125> print "SIM TimeoutError occured"

126>

127> opc.close()

128>

129>

130> def inTask1():

131> global opc

132> global start_t01_iB_time

133> global l_t01_iBM, l_t01_iBL, l_t01_iBC, l_t01_iFr

134> global l_r01_tcurr, l_r01_currloc, l_r01_prevloc,

l_r01_load, l_r01_loadcap

135> # input buffer:

136> if l_t01_iBL < 100:

137> if t01_iB_time_count >=

int(60.0/float(l_t01_iFr))*1000:

138> start_t01_iB_time = time.time()

139> opc.write(('Server02.t01_iBM', l_t01_iBM + 1)) #

increment input buffer

140> l_t01_iBL = int((float(l_t01_iBM) /

float(l_t01_iBC)) * 100)

141> opc.write(('Server02.t01_iBL', l_t01_iBL))

142> if (l_r01_tcurr == 1) and (l_r01_currloc == 2): # robot at

source

143> if l_t01_iBM > l_r01_loadcap:

144> opc.write(('Server02.r01_load', l_r01_loadcap))

145> opc.write(('Server02.t01_iBM', l_t01_iBM -

l_r01_loadcap))

146> else:

147> opc.write(('Server02.r01_load', l_t01_iBM))

148> opc.write(('Server02.t01_iBM', 0))

149> opc.write(('Server02.r01_loadstat', 1)) # done loading

150> # compute percentage:

151> l_t01_iBL = int((float(l_t01_iBM) / float(l_t01_iBC)) *

100)

152> opc.write(('Server02.t01_iBL', l_t01_iBL))

153>

154>

155> def inTask2():

156> global opc

Appendix G: Python application code for Study I 201

157> global start_t02_iB_time

158> global l_t02_iBM, l_t02_iBL, l_t02_iBC, l_t02_iFr

159> global l_r01_tcurr, l_r01_currloc, l_r01_prevloc,

l_r01_load, l_r01_loadcap

160>

161> # input buffer:

162> if l_t02_iBL < 100:

163> if t02_iB_time_count >=

int(60.0/float(l_t02_iFr))*1000:

164> start_t02_iB_time = time.time()

165> opc.write(('Server02.t02_iBM', l_t02_iBM + 1)) #

increment input buffer

166> l_t02_iBL = int((float(l_t02_iBM) /

float(l_t02_iBC)) * 100)

167> opc.write(('Server02.t02_iBL', l_t02_iBL))

168> if (l_r01_tcurr == 2) and (l_r01_currloc == 2): # robot at

source

169> if l_t02_iBM > l_r01_loadcap:

170> opc.write(('Server02.r01_load', l_r01_loadcap))

171> opc.write(('Server02.t02_iBM', l_t02_iBM -

l_r01_loadcap))

172> else:

173> opc.write(('Server02.r01_load', l_t02_iBM))

174> opc.write(('Server02.t02_iBM', 0))

175> opc.write(('Server02.r01_loadstat', 1)) # done loading

176> # compute percentage:

177> l_t02_iBL = int((float(l_t02_iBM) / float(l_t02_iBC)) *

100)

178> opc.write(('Server02.t02_iBL', l_t02_iBL))

179>

180>

181> def outTask1():

182> global opc

183> global sim_time_count

184> global l_t01_qSM, l_t01_qSL, l_t01_qSC, l_t01_qFr

185> global l_r01_tcurr, l_r01_currloc, l_r01_prevloc,

l_r01_load, l_r01_loadcap

186>

187> # output buffer:

188> l_t01_qSL = int((float(l_t01_qSM) / float(l_t01_qSC)) *

100)

189> opc.write(('Server02.t01_qSL', l_t01_qSL))

190> l_t01_qFr = (60000.0 / sim_time_count) * float(l_t01_qSL)

191> opc.write(('Server02.t01_qFr', l_t01_qFr))

202 Appendix G: Python application code for Study I

192> if l_t01_qSL < 100:

193> if (l_r01_tcurr == 1) and (l_r01_currloc == 4): #

robot at destination

194> opc.write(('Server02.t01_qSM', l_t01_qSM +

l_r01_load))

195> opc.write(('Server02.r01_load', 0))

196> opc.write(('Server02.r01_loadstat', 1)) # done

offloading

197> # compute percentage and fill rate:

198> l_t01_qSL = int((float(l_t01_qSM) /

float(l_t01_qSC)) * 100)

199> opc.write(('Server02.t01_qSL', l_t01_qSL))

200> l_t01_qFr =

(60000.0/sim_time_count)*float(l_t01_qSL)

201> opc.write(('Server02.t01_qFr', l_t01_qFr))

202>

203>

204> def outTask2():

205> global opc

206> global sim_time_count

207> global l_t02_qSM, l_t02_qSL, l_t02_qSC, l_t02_qFr

208> global l_r01_tcurr, l_r01_currloc, l_r01_prevloc,

l_r01_load, l_r01_loadcap

209>

210> # output buffer:

211> l_t02_qSL = int((float(l_t02_qSM) / float(l_t02_qSC)) *

100)

212> opc.write(('Server02.t02_qSL', l_t02_qSL))

213> l_t02_qFr = (60000.0 / sim_time_count) * float(l_t02_qSL)

214> opc.write(('Server02.t02_qFr', l_t02_qFr))

215> if l_t02_qSL < 100:

216> if (l_r01_tcurr == 2) and (l_r01_currloc == 4): #

robot at destination

217> opc.write(('Server02.t02_qSM', l_t02_qSM +

l_r01_load))

218> opc.write(('Server02.r01_load', 0))

219> opc.write(('Server02.r01_loadstat', 1)) # done

offloading

220> # compute percentage and fill rate:

221> l_t02_qSL = int((float(l_t02_qSM) /

float(l_t02_qSC)) * 100)

222> opc.write(('Server02.t02_qSL', l_t02_qSL))

223> l_t02_qFr = (60000.0 / sim_time_count) *

float(l_t02_qSL)

Appendix G: Python application code for Study I 203

224> opc.write(('Server02.t02_qFr', l_t02_qFr))

225>

226>

227> # Store the XY robot motion data and the input/output levels

228> def recordData(T1cnt, T2cnt, T1wt, T2wt):

229> global XYdatestr, LEVdatestr, TSKdatestr

230> global l_t01_iBL, l_t02_iBL, l_t01_qSL, l_t02_qSL

231> global opc

232> global sim_time_count

233>

234> opc = OpenOPC.open_client('localhost')

235> opc.connect('Matrikon.OPC.Simulation')

236>

237> try:

238> xloc = opc.read('Server02.r01_xpos', timeout=500)[0]

239> yloc = opc.read('Server02.r01_ypos', timeout=500)[0]

240> f = open('%s.csv' % XYdatestr, 'a')

241> f.write('%f;%s;%s\n' % (sim_time_count/1000, xloc,

yloc))

242> f.close()

243> f = open('%s.csv' % LEVdatestr, 'a')

244> f.write('%f;%s;%s;%s;%s;%f;%f\n' %

(sim_time_count/1000,l_t01_iBL, l_t02_iBL, l_t01_qSL, l_t02_qSL,

T1wt, T2wt))

245> f.close()

246> f = open('%s.csv' % TSKdatestr, 'a')

247> f.write('%f;%i;%i;%i\n' % (sim_time_count/1000, T1cnt,

T2cnt, T1cnt+T2cnt))

248> f.close()

249> except OpenOPC.TimeoutError:

250> print "recData TimeoutError occured"

251> opc.close()

252>

253>

254> if __name__ == "__main__":

255> initVars()

256> initTags()

257> while 1:

258> updateTims()

259> readTags()

260> time.sleep(1)

