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ABSTRACT 

It has been reported that global climate change has impacted on the frequency as well as 

severity of flood events. Reliable flood estimates are required for managing and designing 

hydraulic structures, which is essential under extreme weather regimes in the future. Design 

flood estimation methods in South Africa are based on statistical analysis of past streamflow 

data, and rainfall based methods. Rainfall-based methods often have preference over 

streamflow-based methods for design flood estimation due to longer records of rainfall data 

that also have a greater spatial and temporal coverage than streamflow records. A key 

assumption in rainfall based methods for design flood estimation is the assumption regarding 

the exceedance probability of the estimated flood. It is generally assumed that the return period 

of the estimated flood will be the same return period as the input rainfall. This equality of 

rainfall and flood return periods is generally not true given the use of model parameters 

representing average conditions and the impact of antecedent moisture conditions on 

hydrological response.  Hence, a Joint Probability Approach (JPA) where the key input model 

parameters, and not only the input design rainfall, are treated probabilistically will overcome 

the limitations associated with rainfall based design flood estimation. The underlying approach 

to the JPA is that instead of the use of a single combination of input variables to determine the 

flood characteristics, the method uses multiple combinations of flood producing parameters to 

determine the flood characteristics. In this study, a JPA was applied using the SCS-SA model, 

and the modelling framework used to determine the derived flood frequency curve is based on 

three principal elements. These include: (i) defining the key model inputs with their respective 

probability distributions and correlations, (ii) a stochastic model to synthesise sequences of the 

selected variables, and (iii) selecting an appropriate deterministic hydrological model to 

simulate the flood generation process, and use of the simulated outputs to derive the flood 

distribution. To evaluate the performance of the model, the results were compared to observed 

streamflow data. A statistical analysis was conducted in conjunction with graphs to verify the 

performance of the model. The Nash-Sutcliff Efficiency (NSE), absolute relative difference 

and Mean Absolute Relative Error (MARE) were used to evaluate the performance of the 

model. The results produced from applying the Ensemble SCS-SA model with rainfall that was 

fitted to the probability distribution of the 1 day design rainfall and sampling from the 90 % 

prediction intervals for each return period indicates that the model was performing relatively 

poorly in terms of estimating both the observed design runoff volume and design peak 

discharge for all the selected test catchments. The incorporation of the correlation between the 
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rainfall depth and rainfall duration using a conditional probability distribution and in 

conjunction with the  probability distributions of the other key input variables in the Ensemble 

SCS-SA model, resulted in significantly improved estimated runoff volume and peak 

discharges for all the catchments used. The Ensemble SCS-SA model has also shown potential 

and flexibility to deal with uncertainty by accounting for the distributed nature of the input 

variables and taking on values across the full range of their distribution in the modelling 

process, thus avoiding the potential of bias that can occur when adopting a single set of pre-

determined input values. This study has shown the potential and flexibility of the Ensemble 

SCS-SA model to deal with uncertainty, providing opportunity for the expanded application of 

the model.              
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1. INTRODUCTION 

Global climate change has resulted in an increase in the frequency as well as severity of flood 

events (Charalambous et al., 2013). According to Zaman et al. (2012),  reliable flood estimates 

can provide means for managing the impacts of floods, which is essential under future extreme 

weather regimes. Numerous water resources infrastructure designs  require design flood 

estimation, and these include the design of hydraulic structures such as culverts, bridges, 

spillways and detention basins (Reis and Stedinger, 2005). 

According to Smithers and Schulze (2001), design flood estimation methods in South Africa 

are either based on statistical analysis of past streamflow data or rainfall based methods. 

Analysis of streamflow data includes the transposition and ordering of past flood experiences 

(HRU, 1972), and rainfall based-methods use a deterministic approach to translate rainfall into 

a runoff. Rauf and Rahman (2004) noted that rainfall-based methods often have preference 

over streamflow-based methods for design flood estimation due to longer records of rainfall 

data that also have a greater spatial and temporal coverage then streamflow records.  In South 

Africa, analysis of streamflow data as well as rainfall-based methods are recommended by 

SANRAL (2013), but these methods require modernisation and updating (Smithers, 2012).  

According to Caballero and Rahman (2014), rainfall-based methods for design flood estimation 

consider the probability distribution of rainfall when modelling, but ignore the distributions of 

other inputs such as rainfall temporal patterns, as well as storm losses, which also have 

probability distributions (Hill et al., 1996). It has also been identified by Weinmann et al. 

(2002) that when selecting the representative input variables that are likely to simulate a 

significant flood, there are no guidelines that guide the selection. Thus, the choice of a single 

set of flood producing model variables, which each have a probability distribution, can lead to 

inconsistencies as well as significant bias in design flood estimates for a given return period, 

and has been widely criticised (Kuczera et al., 2006; Gioia et al., 2008; Kjeldsen et al., 2010). 

According to Charalambous et al. (2013), the thorough treatment of the probabilistic aspects 

of the key input variables can be used to significantly improve the limitations associated with 

rainfall-based methods. This includes the application of a Joint Probability Approach (JPA), 

which involves sampling from marginal distributions of key input variables, and then the use 

of a deterministic model to obtain the probability-distributed flood hydrograph (Rahman et al., 

2001). Further studies have indicated the significance of using a JPA in design flood estimation 



  

 2 

(Caballero et al., 2011; Loveridge et al., 2013). The National Committee in Water Engineering 

of Engineers Australia is also promoting the adoption of a JPA in preference to their Design 

Event Approach (Nathan, 2013). 

The aim of this study is to apply and assess the performance an Ensemble Joint Probability 

Approach to an event based rainfall-runoff model used for design flood estimation in South 

Africa. Specific objectives include undertaking a comprehensive review of event-based design 

flood estimation models and the use of joint probability approaches to design flood estimation 

, model selection, development of probability distributions for key input variables using readily 

available data, and the development, application and assessment of an ensemble model 

configuration.  

Chapter 2 contains a review of the current event based rainfall-runoff methods for design flood 

estimation used in South Africa. Chapter 3 contains a review and synthesis of the literature on 

Ensemble JPA and the general methodology is discussed in Chapter 4. The results from the use 

of the ensemble and single event models using one-day duration design rainfall input are 

presented in Chapter 5 and Chapter 6 summarises an investigation into improving the 

simulations obtained in Chapter 5. Chapter 7 contains the results from the use of the ensemble 

and single event models using design rainfall duration equal to catchment response time. 

Discussion, conclusions and recommendations from the study are presented in Chapter 8. 
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2. REVIEW OF RAINFALL BASED METHODS FOR DESIGN FLOOD 

ESTIMATION IN SOUTH AFRICA  

According to Schulze (1989) and Rahman et al. (1998), rainfall based methods have an 

advantage of generally having longer rainfall records at more sites, with better quality, and are 

more available for analysis compared to streamflow records. Smithers (2012) also pointed out 

that design engineers and hydrologists are most frequently faced with situations where there is 

no, or inadequate, streamflow data at the site of interest. Rainfall based methods used for design 

flood estimation in South Africa, including  their limitations, have been extensively reviewed 

by Smithers (2012). The following sections include a brief overview of different rainfall based 

methods commonly used in South Africa, and provides some limitations associated with 

applying the methods.  

2.1 SCS-SA Method 

The SCS-SA method adapted for design flood estimation in South Africa by Schmidt et al. 

(1987), utilises adaptations that were computerised by Schulze et al. (1992) which stems from 

the developments and verifications from multiple studies (Schulze, 1979; Schulze, 1982; 

Schmidt and Schulze, 1984; Dunsmore et al., 1986). Alexander (2002) recommends the SCS-

SA method to be applicable to agricultural catchments with areas less than 10 km2. According 

to Smithers (2012), the SCS-SA method is now extensively applied to estimate design floods 

for small urban and rural catchments less than 30 km2 in South Africa. One advantage of using 

the method is that instead of estimating peak discharges only, it can also generate full 

hydrographs (SANRAL, 2013). The equations that govern how the stormflow and peak 

discharge are estimated are shown in  Equations 2.1 and 2.2 (Schulze et al., 2004): 

  Q  =    
(P- Ia)

2

P + Ia+ S
 

                                                                 (2.1) 

where: Q = stormflow depth (mm), 

 P = daily rainfall depth (mm), 

 Ia = initial losses (mm), and 

 S = potential maximum soil water retention (mm). 
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 ∆Q
p
    =         

0.2083 × A × ∆Q 
∆D

2
 + L

 
                                                                  (2.2) 

where: ∆Qp = peak discharge of incremental unit hydrograph (m3.s-1), 

 A = catchment area (km2), 

 ∆Q    = incremental stormflow depth (mm), 

 ∆D = unit duration of time (h), and 

 L = catchment lag (h). 

A number of options to estimate catchment lag are available in the SCS-SA model and the 

widely used Schmidt-Schulze equation (Schmidt and Schulze, 1984) is shown in Equation 2.3: 

L           =           
A

0.35
 × MAP

1.1

41.67× y0.3 × I30
0.87 

 
                                                                        (2.3) 

where: L = catchment lag (h), 

 A = catchment area (km2), 

 MAP = mean annual precipitation (mm), 

 y = average catchment slope (%), and 

 I30 = 2-year return period 30-minute rainfall intensity (mm/h). 

2.2 Unit Hydrograph Method 

The use of the Unit Hydrograph (UH) to estimate design floods began during the 1960s and is 

well documented in Chow et al. (1988). Maidment et al. (1996) describes a UH as means of 

representing a linear system response at the catchment outlet after a rainfall event has occurred 

in the catchment. The UH does not account for spatial variation within a catchment, resulting 

in lumping of the whole catchment (Maidment et al., 1996). Chow et al. (1988) points out that 

the unit hydrograph is based on multiple assumptions, the first assumption is based on the 
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catchment response, which is assumed to be linear, indicating a direct proportion between the 

effective rainfall and surface runoff.  

Design flood estimation using a UH approach has been developed for South Africa, and is  

suitable for application in catchments between the sizes of 15 – 5000 km2 (HRU, 1972), but it 

can also be extended to catchments larger than 5 000 km2 (SANRAL, 2013).  According to 

HRU (1972), the study catchments used in the development of the Synthetic Unit Hydrograph  

method in South Africa were regionally grouped according to surface features such as relief, 

soils, rainfall, and vegetation cover. These regional groupings resulted in nine veld type zones, 

each of which have an associated representative physiographic index such as the runoff lag 

coefficient (Ct) and the generalised catchment coefficient (Ku), and for each zone the 

appropriate dimensionless one-hour unit hydrographs were generalized (HRU, 1972). 

Equations 2.4 and 2.5 are used to dimensionalize the dimensionless UHs (HRU, 1972): 

          Q
p
         =           Ku (

A

Tl

) 
                                                                 (2.4) 

where: Qp = unit hydrograph peak discharge (m3. s-1), 

 Ku = generalised catchment coefficient (dimensionless), 

 A = catchment area (km2), and 

Tl = lag time (hours). 

 Tl          =           Ct (
LLc

√S
) 

                                                                 (2.5) 

where: L = hydraulic length of catchment (m), 

            Lc = distance between outlet and centroid of catchment (m), 

 S = average slope of stream as for Rational Method (m/m), and 

 Ct = generalized lag coefficient (dimensionless). 
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2.3 Rational Method 

The Rational Method is the most extensively applied method to estimate design flood peak 

discharges in small rural and urban catchments in South Africa (Alexander, 2002). The method 

is extensively applied worldwide, as it is easy and simple to use and understand (Parak and 

Pegram, 2006). The HRU (1972) outlines the Rational Method in South Africa as applicable 

to catchments with areas less than 15 km2. The peak discharge can be obtained by the use of 

the Rational formula, as shown in Equation 2.6 (HRU, 1972): 

Q          =           
C × I ×A

3.6
 

                                                                  (2.6) 

where: Q = peak discharge (m3.s-1),  

 C = dimensionless runoff coefficient, 

 I  = point rainfall intensity (mm.h-1),  

 A = catchment area (km2), 

3.6 = conversion factor 

According to SANRAL (2013), the Rational Method produces good results when compared to 

other rainfall-based methods. Parak and Pegram (2006) pointed out that the probabilistic 

approach to applying the Rational Method is essential to overcome the limitations associated 

with the deterministic application of the method. 

2.4 Standard Design Flood (SDF) Method 

The SDF method is a probabilistic-based approach to the application of the Rational Method  

developed for application in South Africa (Alexander, 2002). The runoff coefficient (C factor) 

in the Rational Method was calibrated to convert design rainfall into design peak discharge,  

and the calibrated runoff coefficients were also subjectively adjusted to produce a more 

conservative estimate (Parak and Pegram, 2006) 

Görgens (2002) pointed out that over-design of some hydraulic structures may result from the 

adoption of the SDF method, thus having economic implications. Van Bladeren (2005) 

recommended that the SDF method requires further investigation and refinement, due to the 
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method performing inconsistently. Some of the recommendations by Van Bladeren (2005) 

include improving the regionalisation and re-estimating the catchment characteristics. (Gericke 

and Du Plessis, 2012) evaluated the performance of the SDF methods in 19 of the 29 SDF 

basins and developed adjustment factors for the SDF method which improved the design flood 

estimates compared to the original probabilistic-based SDF approach. 

2.5 Limitations of the Current Rainfall Event Based Methods 

According to Weinmann et al. (2002), floods of a given magnitude are possibly the result of 

different rainfall events that are combined with a range of other flood producing variables. 

Event based rainfall based methods consider the probability distribution of rainfall depth, but 

ignore the probability distribution of other model inputs such as rainfall temporal patterns and 

storm losses (Dunsmore et al., 1986). Charalambous et al. (2013) states that there are no 

definite guidelines on selecting representative values for the input variables, and it is difficult 

to estimate the a priori representative value for the input variable. Another key assumption 

involving event based rainfall based methods is the assumption regarding the exceedance 

probability of the computed output flood, and it is generally assumed that a design rainfall 

depth for a given return period will produce a design flood of the same given return period 

(Chow et al., 1988; Rahman et al., 2002b; SANRAL, 2007). Weinmann et al. (2002) also 

pointed out that the arbitrary selection of the critical storm duration as the basis for estimating 

the design flood is the same as assuming that the marginal distribution of flood magnitude is 

equivalent to the conditional distribution of flooding for the critical rainfall duration. This 

results in a systematic bias in flood frequency estimates and a tendency to over-estimate the 

magnitude of design floods (Weinmann et al., 2002). According to Suresh Babu and Mishra 

(2012) the effect of rainfall intensity and rainfall duration, which have great impact on the 

quantity of runoff, is not taken into account in the method such as SCS-CN. 

The random choice of these probabilistic aspects of various flood-producing variables in event 

based rainfall-runoff methods, could lead to inconsistency as well as bias in the estimated  

design floods (Chow et al., 1988; Rahman et al., 2002b; SANRAL, 2007) and has been widely 

criticised (Kuczera et al., 2006; Gioia et al., 2008; Kjeldsen et al., 2010; Svensson et al., 2011). 

This arbitrary treatment could lead to either the over- or under-design of flood structures, which 

has economic, environmental and social implications (Rauf and Rahman, 2004). According to 

Charalambous et al. (2013), the probabilistic aspects of key input variables that can produce 
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significant floods needs to be adopted in order to improve the limitations associated with event 

rainfall based methods, and this can be achieved through applying a JPA. 
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3. JOINT PROBABILITY APPROACH TO DESIGN FLOOD 

ESTIMATION 

Joint probability has been described by Hawkes (2008) as the chance of two or more conditions 

occurring simultaneously. There are two methods that can be used under a JPA, namely an 

ensemble event simulation and continuous simulation (Svensson et al., 2013).  

The continuous simulation approach explicitly simulates the correlations between the 

significant flood generation variables over different time scales, is the most comprehensive tool 

to account for joint probabilities in flood frequency estimation (Kjeldsen et al., 2014). 

However, the approach often requires a significant modelling effort and data collation for input 

to the model, as well as long periods of observed or stochastic rainfall and climate data (Ling 

et al., 2015). The continuous simulation approach is not widely used in practice due to the cost 

of using the approach, and the difficulty in simultaneously calibrating a model to simulated 

flood volumes, peaks and hydrograph shape (Ling et al., 2015). 

The ensemble event simulation approach is simpler than the continuous simulation approach, 

as it evaluates all joint probability interactions during a storm event only (Svensson et al., 

2013). It uses deterministic event-based rainfall-runoff models in a Monte Carlo framework, 

together with stochastically generated design rainfall events for varying durations, to simulate 

runoff with sensitive model parameters randomly sampled from a defined distribution 

(Svensson et al., 2013). Conditional probabilities are also used to account for the correlation 

between input variables where necessary (Charalambous et al., 2013). For the purpose of this 

study, only the ensemble event approach is reviewed further in detail. 

3.1 Description and Application of the Joint Probability Approach 

The underlying approach to the JPA is that instead of the use of a single combination of input 

variables to determine the flood characteristics, the method rather uses multiple combinations 

of flood producing variables to determine the flood characteristics (Nathan, 2013). According 

to Rahman et al. (2001) the JPA accounts for the probability distributed nature and behaviour 

of the main flood producing variables, each of which has an associated degree of uncertainty 

that affects the shape and magnitude of the estimated design flood hydrograph (Loveridge et 

al., 2013). Rahman et al. (2001) considers four inputs (rainfall duration, rainfall intensity, 

temporal pattern and storm loss) as random variables while other model parameters are fixed. 
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Kjeldsen et al. (2010) showed that the foundation of this method was provided by Eagleson 

(1972) who estimated the flood frequency analysis without streamflow records by deriving it 

from density functions for climatic catchment variables. Svensson et al. (2013) points out that 

numerous researchers have since advanced the performance of the approach (Russell et al., 

1979; Sivapalan et al., 1990; Rahman et al., 2001). Rahman et al. (1998) found from the 

previous summarised studies on the JPA, that the most previous applications were limited to 

theoretical studies and not practical applications due to limited flexibility, resulting in 

mathematical complexity and difficulty in parameter estimation, thus preventing how the 

method was applied. 

Svensson et al. (2013) pointed out that with the advent of improved computing power, the 

generating samples of the input variables within a Monte Carlo simulation framework has 

become a useful tool. The Monte Carlo-type methods generally involve the stochastic 

simulation (multiple realizations) of input variables (such as rainfall, antecedent soil moisture, 

initial flow), followed by the use of these as inputs into a rainfall–runoff model that may be 

fully deterministic or have stochastic components (Russell et al., 1979; Sivapalan et al., 1990; 

Rahman et al., 2002b; Aronica and Candela, 2007). Since then, the Ensemble JPA has been 

explored in numerous studies (Rahman et al., 2001; Rahman et al., 2002b; Weinmann et al., 

2002; Aronica and Candela, 2007). 

According to Rahman et al. (2001), the modelling framework used to apply the Ensemble JPA 

and determine the desired design flood hydrograph includes three steps (Rahman et al., 1998; 

Weinmann et al., 1998) and these include: 

i) Selecting an appropriate deterministic hydrological model to simulate the flood 

hydrograph. 

ii) Defining the key inputs and their respective probability distributions as well as 

correlations. 

iii) A stochastic model to synthesise the distributions of key input variables. 

Rahman et al. (2001) stated that there are two stochastic modelling frameworks that can be 

used, and this includes a deterministic approach and a Monte Carlo simulation (MCS) 

approach. According to Rahman et al. (2001) the deterministic approach uses a discrete 

representation of continuous probability distributions, whereas the MCS approach selects 

specific sets of input and model parameter by sampling values from their respective 
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distributions, and allowing any correlation between the variables by using conditional 

probability distributions (Rahman et al., 1998; Weinmann et al., 1998).  

Goodness-of-fit tests such as the Chi-Squared (C-S), Kolmogorov-Smimov (K-S), and 

Anderson-Darling (A-D) tests were used to check if the hypothesis of the distributions is 

accepted and fits the data well (Rahman et al., 2001; Caballero and Rahman, 2014). Figure 3.1 

illustrates how the JPA is applied within a Monte Carlo framework, which is widely reported   

in the literature. 

 

 

 

 

 

 

 

 

 

 

 

3.2 Distribution of Key Input Variables 

According to Rahman et al. (2006), sources of uncertainty in rainfall-based methods include 

the storm losses, temporal pattern, rainfall duration, and rainfall intensity. Rahman et al. (2001) 

pointed out that rainfall events need to be defined, from which the associated rainfall intensity, 

duration, temporal distribution and soil moisture deficit (SMD) can be subsequently extracted.  

Figure 3.1 Schematic diagram of the Monte Carlo simulation process (Nathan and Ball, 

2016) 
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Kjeldsen et al. (2010) recommends that, in order to determine the probability distribution of 

key input variables, observed events need to be selected based on rainfall data, and a trial and 

error approach applied.  

According to Hoang et al. (1999)  a “complete storm” and “storm-core” are defined in order to 

select all the events having the potential to produce a flood and include parts that also have the 

potential to affect the flood response. A complete storm is defined by Hoang (2001) as the 

storm starting and ending with a non-dry hour, followed by a minimum of six dry hours 

(Rahman et al., 1998). A storm-core on the other hand is defined as an intense rainfall burst 

occurring within a complete storm (Rahman et al., 1998).  

Once observed events are available and have been checked for inconsistencies and errors, the 

events likely to produce floods are selected using the average rainfall intensity during the 

complete storm duration, or storm-core duration, and selected events are further analysed to 

determine the respective distributions of the key input variables. The average rainfall intensity 

must satisfy conditions where the average rainfall intensity exceeds a certain threshold, as 

illustrated by Equation 3.1 (Hoang et al., 1999): 

 ID             ≥         f1 ×  I2,D                       (3.1) 

where: ID = rainfall intensity (units) for complete storm duration = D hours, 

 f1 = reduction factor, and 

          I2, D = 2-year, D hour design rainfall intensity (mm/hour). 

3.2.1 Storm losses 

According to Hill et al. (1996), initial losses can be defined as the rainfall that occurs before 

the commencement of surface runoff. Rahman et al. (2002a) pointed out that initial losses show 

temporal and spatial variability. According to Hill et al. (1996) it is essential to consider the 

interaction of design losses with temporal patterns, as initial losses have a larger effect on an 

early peak temporal pattern than for a temporal pattern which has a peak in the middle portion.  

According to Rahman et al. (Rahman et al.) the average catchment rainfall is used to compute 

initial losses given there are multiple rain gauges available in the catchment for analysis. 

Rahman et al. (2002a) also points out that the important statistics of the initial loss distributions 
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are the mean, median, standard deviation and coefficient of skewness. In South Africa, the 

Curve Number (CN) is used as in index to express the catchments stormflow response in the 

SCS-SA method, and is characterised by hydrological soil properties, land cover properties and 

catchment antecedent soil moisture conditions (Schulze et al., 2004). 

Figure 3.2 illustrates an example of the distribution exhibited by storm-core initial losses, 

where Rahman et al. (2002a) found that the four-parameter Beta distribution is appropriate to 

approximate the storm-core initial losses distribution. 

 

 

 

 

 

 

 

3.2.2 Temporal distribution 

Rainfall temporal distribution is a dimensional representation of the variation of rainfall 

intensity over the duration of the rainfall event (Rahman et al., 2001). According to Knoesen 

(2005) the distribution of the rainfall intensity during a storm affects the timing as well as the 

magnitude of the peak discharge of a catchment. The temporal distribution is also characterised 

by a dimensionless mass curve, which includes the cumulative rainfall depth versus the 

dimensionless storm duration divided into 10 equal time increments (Hoang, 2001). The design 

temporal distribution can be obtained using two methods, where the first method includes the 

development of distributions with the use of Intensity-Duration-Frequency (IDF) curves, and 

the second method includes hyetographs derived from observed rainfall data, which include a 

triangular rainfall distribution, Huff curves, the average variability method, and sampling of 

historical records (Knoesen, 2005).  

Figure 3.2 An example of initial loss distribution for the storm-core duration (ILc) with 

the relative statistics (Rahman et al., 2001) 
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In South Africa, the SCS-SA method initially adopted four temporal distribution types 

(Smithers and Schulze, 2003), and was later revised by Knoesen (2005) to 480 synthetic 

distributions which represented different storm types for South Africa. Figure 3.3 illustrates an 

example of the typical variability in the observed dimensionless temporal distribution using 

historical records. 

 

 

 

 

 

 

3.2.3 Rainfall duration 

The distribution of the storm duration is obtained from hourly rainfall data (Rahman et al., 

2002b). To determine the storm duration distribution, the duration is split into a number of 

class intervals up to 100 hours and then the frequency of the storm durations occurring within 

each of the class intervals is determined (Rahman et al., 2002b). The results are then plotted 

and the considered statistics include the mean, standard deviation and skewness.  

Many studies have found the exponential distribution to fit the storm duration data relatively 

well (Rahman et al., 2001; Rahman et al., 2002b; Charalambous et al., 2013; Caballero and 

Rahman, 2014). Figure 3.4 illustrates an example of a histogram showing the probability of 

different storm-core durations (Dc). Figure 3.4 also shows that the probability distribution of 

the storm-core duration is approximately exponentially distributed.  

Figure 3.3 Typical temporal distributions using storm-core durations (Rahman et al., 

2002) 

 



  

 15 

 

Figure 3.4 Example of rainfall duration distribution (Rahman et al., 2001) 

3.2.4 Rainfall intensity  

Several studies have indicated that there is a strong relationship between the storm duration 

and the storm intensity (Sivapalan et al., 1996; Bloschl and Sivapalan, 1997; Rahman et al., 

2001). Thus, the storm intensity needs to be conditioned to the storm duration in the form of 

Intensity-Frequency-Duration (IFD) curves, where the rainfall intensity is plotted as a function 

of rainfall duration and frequency (Rahman et al., 2001). According to Rahman et al. (2002b), 

developing IFD curves require the following steps: 

(i) The first step is to divide the range of storm durations into a number of intervals with a 

representative midpoint for each class. This is illustrated in Table 3.1. 

(ii) A linear regression line is then fitted between the log (rainfall duration) and log (rainfall 

intensity) for the data in each class interval, except the one-hour class. The slope of the 

fitted regression line is then applied to adjusting the intensities for all durations within the 

interval to the representative midpoint duration. A partial series is formed in each class 

interval of the adjusted intensity values. 
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(iii) The following step would be to fit an exponential distribution to the partial duration series 

and the design intensity values are computed for the different return periods. For a selected 

return period, the computed intensity values for each duration range were used to fit a 

second-degree polynomial between the log transformed rainfall duration and the log 

transformed rainfall intensity, the R2 values are used to indicate the confidence that can be 

represented by the fitted polynomials. These polynomials are then used for each selected 

return period to obtain the rainfall intensity value for any given rainfall duration value. 

Table 3.1 An example of representative points for the duration class intervals (after 

Rahman et al., 2001) 

Class interval (h) Representative point (h) 

1 1 

2 - 3 2 

4 - 12 6 

13 - 36 24 

37 - 96 48 

 

The adopted MCS begins by generating a duration value from the probability distribution, then 

the return period is randomly generated, and the rainfall intensity value is selected from the 

conditional distribution of the rainfall intensity which is expressed in the form of IFD curves, 

as illustrated in Figure 3.5. The preparation of an IFD table is used in conjunction with an 

interpolation procedure to generate rainfall intensity estimates, for any given combination of 

duration and return period values. Table 3.2 illustrates the output of this procedure. 
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Table 3.2 An example of an IFD table used to generate intensity values in mm.h-1 

(after Rahman et al., 2001) 

 

 

 Figure 3.5 illustrates IFD curves that were obtained using the above outlined method for the 

different return periods. 

 

 

D 

(h) 

Annual Recurrence Interval (years) 

0.1 1 1.11 1.25 2 5 10 20 50 100 

1 10.1 13.6 14.4 15.3 19.0 26.1 31.5 36.5 44.0 49.4 

2 6.7 8.5 9.0 9.4 11.3 14.9 17.6 20.3 23.9 26.7 

6 3.4 4.2 4.4 4.6 5.4 7.0 8.2 9.4 11.0 12.2 

24 1.3 1.8 1.9 2.0 2.5 3.4 4.1 4.8 5.7 6.4 

48 0.8 1.2 1.3 1.4 1.8 2.6 3.3 3.9 4.7 5.4 

72 0.6 0.9 1.0 1.1 1.5 2.3 3.0 3.6 4.4 5.0 

100 0.5 0.8 0.9 1.0 1.3 2.1 2.8 3.4 4.3 4.9 

Figure 3.5 IFD curves (Rahman et al., 2001) 
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3.3 Recent Research on the JPA 

This sub-section provides a review of current studies with a particular focus on how the JPA 

method was practically applied, including the data requirements and challenges, the results of 

the studies in terms of the impact it has on the estimation of design floods, and the 

recommendations on improving the efficiency of the method. 

Rahman et al. (2002a) examined the application of probability-distributed initial losses using 

the JPA in the Victorian catchments of Australia. To determine the distribution of the initial 

losses, hourly rainfall, streamflow and potential evaporation data was used to determine initial 

loss for each event. Statistics such as the mean, median, standard deviation, skewness, lower 

and upper limits were determined from a set of extracted events. The distribution that was 

found to fit the derived initial losses data was the four-parameter Beta distribution, and the four 

parameters included statistics such as the mean, lower and upper limits, and standard deviation. 

The stochastic losses were applied in a MCS to determine the desired design flood hydrograph. 

It was found that initial storm losses values for observed floods showed wide variability, thus 

indicating that the catchment moisture conditions vary at the start of storms. The application 

of the JPA produced design flood estimates that closely matched observed floods estimates. It 

was also found that applying a mean value instead of a probability distributed initial loss 

significantly reduces the magnitudes of floods. 

Aronica and Candela (2007) applied the JPA using a MCS approach to derive design flood 

estimates in poorly gauged Mediterranean catchments in Sicily, Italy. The catchment response 

i.e. initial losses or excess rainfall was modelled using the Soil Conservation Service-Curve 

Number (SCS-CN), and the method was implemented in a probabilistic form with respect to 

prior-to-storm conditions (curve number). Many authors (Sivapalan et al., 1990; De Michele 

and Salvadori, 2002; Muzik, 2002) highlighted that antecedent moisture conditions (AMC) 

which is used to estimate the curve number (CN) is the most important factor influencing 

design flood estimates, thus AMC should be treated as a random variable. 

According to Aronica and Candela (2007) the AMC probability distributions was derived by 

calculating the antecedent precipitation index (API) which is an index of the sum of 

precipitation over the preceding five days before the event, the number of flood events for each 

of the three classes (representing dry, average and wet catchment conditions prior to an event), 

and the probability of occurrence in each class as a ratio of the number of events in the single 
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class relative to the total number of events. It was found that the JPA can reproduce observed 

design flood estimates with reasonable accuracy over a range of return periods. Sufficient data, 

and reliable data was found to be also lacking in the study area. 

Kjeldsen et al. (2010) applied the JPA in the UK where the revitalised FSR/FEH rainfall-runoff 

method is used as the UK standard for event-based flood modelling. The key inputs that were 

used based on their probability distribution, was the rainfall duration and intensity, Soil 

Moisture Deficit (SMD), initial flow at the gauging station and the inter-event arrival time. The 

marginal distributions of observed data for rainfall intensity and duration, were modelled using 

an exponential distribution and a gamma distribution, respectively. The Probability 

Distribution Model (PDM) model developed by Moore (2007) was used to generate appropriate 

SMD values at the start of the event. The initial flow was modelled as a function of the SMD 

at the onset of the event. It was found that the JPA simulated the flood frequency curve 

reasonably well when compared to the observed flood frequency curve and tended to be less 

biased. 

Loveridge et al. (2013) applied probabilistic flood hydrographs in New South Wales, Australia, 

using the MCS framework to determine the potential impacts flood inundation could have on 

the flood frequency curve. This was also accounted for by considering how hydraulic analysis 

can be affected by uncertainties in design losses. The relative distributions of the initial losses, 

as well as the continuing losses which are the losses that continue to occur after surface runoff 

has commenced, were approximated by a 2-parameter Gamma distribution and 3-paramter 

Weibull distribution, respectively. The MCS framework was applied to determine the 

uncertainties in the design losses, a string of simulations were run to determine the confidence 

limits for the peak flow, flood volume and time to peak flow characteristics. It was found that 

the uncertainties in design losses when using the RORB rainfall-runoff model, can result in 

differences of up to approximately 55 % for peak flows, 105 % for flood volumes and 9 % for 

time to peak flows. 

Svensson et al. (2013) applied the JPA to incorporate the input variables that are seasonally 

varying to two catchments in the UK. Hourly river flow data, average hourly rainfall and 

catchment average potential evaporation was used to extract the input marginal distributions. 

The key input variables included the inter-event arrival time, rainfall duration, rainfall intensity 

and the rainfall temporal distribution. The marginal distributions of the rainfall intensity and 

rainfall duration were modelled using a one-parameter exponential distribution and a two-
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parameter gamma distribution, respectively. The temporal distribution was modelled using a 

double triangle profile to reflect two bursts of rainfall. A continuous hourly series of SMD was 

derived for each catchment through continuous simulation using the PDM rainfall-runoff 

model, and the initial flow was modelled as function of the SMD at the start of the event. It 

was found from the study that the flood frequency curves derived using the JPA do not fit the 

upper bound of the General Extreme Value (GEV) distribution fitted to the observed annual 

maximum series. Furthermore, it was also found that some of the input variables are more 

sensitive to sampling variability than others. 

3.4 Uncertainty in Flood Estimates from the JPA Approach 

According to Svensson et al. (2013) the uncertainty in design flood estimates produced by the 

JPA can be described by the 95% confidence intervals which are estimated using a 

bootstrapping method. Uncertainty analysis using the described method can be applied to both 

predicted flood peak magnitudes, as well as the predicted flood volumes (Svensson et al., 

2013). 

Kjeldsen et al. (2014) showed that the major cause of uncertainty is a result of estimating flood 

frequency from observed flow records which have limited record lengths, sampling errors 

which are often associated with flow measurements and the selection of correct distributions 

(Muzik, 2002). Another uncertainty includes the purely deterministic processes that are 

adopted by traditional streamflow models, which do not account for the non-stationary time 

series (Muzik, 2002). According to Muzik (2002) implementing these deterministic models 

within a stochastic framework and using stochastic model parameters to generate ensembles of 

simulated streamflow series, are proposed as useful to assessing risk and uncertainty in design 

flood estimation and accommodate non-stationary hydrological processes, and time series 

(Muzik, 2002). However, Loveridge and Rahman (2018) has also highlighted that the method 

is prone to errors for infrequent events due to the rarity of such events occurring in the observed 

records. 

3.5 Discussion and Conclusions 

It is evident from the literature reviewed that rainfall based methods for design flood estimation 

tend to produce significantly uncertain design estimates and leads to inconsistencies in the 

design flood estimates. This is a result of the assumptions involved in the methods, as well as 

the arbitrary treatment of the probabilistic nature of model inputs such as the rainfall temporal 
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patterns, rainfall intensity and storm losses. The JPA is becoming a very comprehensive tool 

to account for joint probabilities in flood frequency estimation, as the method evaluates all the 

joint probability interactions during a storm, and also accounts for correlation between input 

variables where necessary. The only disadvantages found with using the JPA is due to the 

method requiring long periods of observed or stochastic rainfall and climate data when 

adopting the continuous simulation approach, which also calls for a data and modelling effort. 

There are also uncertainties that can arise from sampling methods and the record length 

available. 

When applying the JPA method, it is essential to adopt a modelling framework which is based 

on three principle elements: (i) estimation of the respective probability distributions from their 

marginal distributions, (ii) generation of  design values by sampling from the respective input 

distributions using a Monte Carlo simulation approach, and (iii) selecting an appropriate 

deterministic model to simulate ensemble flood events, and derive a flood frequency curve or 

design flood for a specific recurrence interval from the ensemble flood events.  

It is also evident from literature that, when considering the distribution of the initial loss, the 

four-parameter Beta distribution is appropriate to approximate the storm initial losses. Studies 

also show that the probability distribution of the rainfall duration is best approximated by an 

exponential distribution, however, there are cases where the distribution has been approximated 

by a two-parameter gamma distribution in UK catchments (Kjeldsen et al., 2014). It has also 

been found from literature that the probability distribution that best approximates the 

distribution of the rainfall intensity is an exponential distribution, and the rainfall intensity is 

correlated to the rainfall duration as studies have shown there is a strong relationship between 

the rainfall intensity and duration. Studies have also shown that the temporal distribution is 

commonly represented by a dimensionless mass curve, through the sampling of historical 

records, and adopting a triangular distribution. Numerous studies have shown that the JPA has 

performed consistently better compared to using a single set of input variables which frequently 

results in poor estimation, whereas the JPA approach tend to be more accurate. 

In conclusion, the JPA approach to design flood estimation has been shown to reduce bias for 

a given return period, as well as reduce inconsistencies associated with using one set of input 

variables, and this improvement in design flood estimation has positive economic implications. 

The JPA method also shows potential to be applied in South Africa using an event-based 

model. 
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4. METHODOLOGY 

This section includes a brief description of the catchments used in the study as well as their 

locations. This is followed by model selection, the framework developed to apply the Ensemble 

SCS-SA model, data collation and processing, the fitting of distributions to the processed data, 

goodness-of-fit tests used, model set up and assessment criteria used to determine the 

performance of the model. 

4.1 Study Area 

Sixteen catchments were selected for use in the study and are located in different climatic 

regions of the country. Given the need to estimate the distribution of catchment response times 

using readily available data, as detailed in Section 4.4, most of the stations were selected in 

regions used by Gericke (2016) and these include the winter coastal region, summer coastal 

region and the northern interior (Gericke, 2016). This catchment selection was done to 

determine how well the model performs in these different climatic regions. Nine of the sixteen 

catchments were selected from the study done by Gericke (2016), and the rest of the catchments 

were obtained from the study undertaken by Rowe (2019). The locations of these catchments 

are illustrated in Figure 4.1. 
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Figure 4.1 Location of catchments used in the study 

4.2 Hydrological model Selection 

The criteria used for selecting a suitable model was based on the number of key input variables, 

the models’ accessibility and operational support, as well as the ability of the model to estimate 

peak discharges. Table 4.1 provides a summary of the criteria used to select the model.  

Table 4.1 Summary of hydrological model selection 

Model Key Input Variables Accessibility 

SCS-SA Rainfall (P) Free from Prof 

Smithers and Prof 

Schulze 
Time to Peak (lag time) 

Temporal Distribution (Dimensionless) 

Antecedent Moisture Conditions (S) 

 Unit Hydrograph Regionalised catchment coefficient (Ku) Utilities Programs for 

Drainage or manual 

application 
Lag time 

Regionalised lag coefficient (Ct) 

Rational Method Rainfall (P) 

Intensity (I) 
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Model Key Input Variables Accessibility 

Dimensionless runoff coefficient (c) Utilities Programs for 

Drainage or manual 

application 

Standard Design Flood Basin number  

 

Calibrated runoff coefficients (C2-C100) 

Utilities Programs for 

Drainage or manual 

application 

 

From the above, the SCS-SA model was selected for use in this study as the model is readily 

available, there is readily available data for the key input variables and there is sufficient 

operational support available.  

4.3 Development of an Ensemble Framework for the SCS-SA Model  

The modelling framework used to apply the Ensemble SCS-SA and determine the derived flood 

frequency curve is based on three principal elements (after Rahman et al., 1998; Weinmann et 

al., 1998) and these include: 

(i) Defining the key model inputs with their respective probability distributions and 

correlation. 

(ii) A stochastic model to synthesise sequences of selected variables. 

(iii) Selecting an appropriate deterministic hydrological model to simulate the flood formation 

process, and use the outputs to derive the flood distribution. 

The Ensemble SCS-SA uses the SCS-SA stormflow and peak discharge equations to estimate 

the runoff volume and peak discharge, as presented in Equations 2.1 and 2.2. The sampling 

procedure adopted includes generating 100 samples from the respective probability 

distributions for each key input variable and using each randomly selected sample as input to 

the Ensemble SCS-SA model in order to generate 100 sets of results for analysis. 

4.4 Data Collation and Distribution Fitting 

This sub-section contains a summary of the data collation and derivation of information used 

in the study.  
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4.4.1 Catchment information 

The catchment information required to run SCS-SA for the catchments used in the study 

include the catchment area, the Mean Annual Precipitation (MAP), the mean catchment slope, 

mean catchment elevation, the land cover and treatment class, the soil group, and the 

geographical coordinates of the centroid of the catchment. The mean catchment slope and 

altitude of the catchments were derived using the ArcGIS software, and the 90 m resolution 

raster Digital Elevation Model (DEM) for South Africa (Van der Spuy and Raddemeyer, 2014).  

The national land cover database for South Africa which was published in 2005 by the ARC 

and CSIR (2005) was used to determine the SCS-SA land cover class of the catchments. Soils 

information for catchments obtained from Gericke (2016) was obtained using ARCMAP, and 

for the research catchments from literature (Smithers and Schulze, 1994a;  Smithers and 

Schulze, 1994b;  Scott et al., 2000;  Gush et al., 2002;  Royappen, 2002;  Royappen et al., 

2002;  Lorentz and van Zyl, 2003). The MAP for the centroid for each catchment was obtained 

from the design rainfall estimation software developed by Smithers and Schulze (2003), which 

used information published by Lynch (2004).   

The SCS-SA soil group was obtained by using the soil group map published by Schulze et al. 

(2004) and clipping it to the relative catchment. Other catchment soils information required by 

the model such as the soil depth and soil texture were obtained from the South African Atlas 

of Climatology and Agrohydrology published by Schulze (2007), converted to a raster format 

using ArcGIS, then clipped to the relative catchments, and the mean soil depth and soil texture 

were estimated for each of the catchments. The Schmidt-Schulze lag equation was estimated 

using Equation 2.3, and the observed mean lag was estimated from the observed time to peak 

data, as detailed in Section 4.4.2. Table 4.2 contains a summary of the catchment information 

and variables which were used as input into the SCS-SA model for the each of the catchments.  
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Table 4.2 Catchment information and parameters for the catchments used in the study 

Catchment 
Area  

(km2) 

MAP 

(mm) 

Mean 

Altitude 

(m) 

Mean 

Slope 

(%) 

SCS-SA 

Land Cover 

Class 

Treatment/Class 

Type 

SCS-SA 

Soil 

Group 

Schmidt-

Schulze 

Lag 

(hours) 

Observed 

Mean Lag 

(hours) 

U2H020 (Cedara) 0.26 873 1106 11 
Veld (range) 

and Pasture 
In fair condition A/B 0.38 0.43 

V7H003 

(Ntabamhlophe) 
0.52 1103 1497 14.6 

Veld (range) 

and Pasture 
In fair condition B/C 0.5 0.67 

G2H010 

(Jonkershoek-

Lambrechtsbos B) 

0.73 1677 517 36.9 
Forests and 

Plantations 

Humus Depth > 

100 mm 
A/B 0.62 5.6 

V1H005 (Cathedral 

Peak IV)  
0.98 1262 2011 32.7 

Veld (range) 

and Pasture 

In Good 

Condition 
A/B 0.54 1.4 

V1H015 

(Ntabamhlophe)  
1.04 871 1512 17 

Veld (range) 

and Pasture 

In Good 

Condition 
B 0.84 0.56 

U2H018 (Cedara)  1.31 957 1269 23.3 
Forests and 

Plantations 

Humus Depth > 

100 mm 
B 0.75 1.25 

G5H006 3 1285 350 2.3 
Veld (range) 

and Pasture 

In Poor 

Condition 
B 9.7 3.9 

W1H016 (Zululand)  3.3 1238 260 13.2 
Veld (range) 

and Pasture 

In Good 

Condition 
B 1.35 7.23 

X2H026 13.82 999 1450 30.8 

Forests and 

Plantations 

(24%) 

Humus Depth 

50-100 mm 

A/B 0.98 2.3 
Veld (range) 

and Pasture 

(76%) 

In Good 

Condition 
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Catchment 
Area  

(km2) 

MAP 

(mm) 

Mean 

Altitude 

(m) 

Mean 

Slope 

(%) 

SCS-SA 

Land Cover 

Class 

Treatment/Class 

Type 

SCS-SA 

Soil 

Group 

Schmidt-

Schulze 

Lag 

(hours) 

Observed 

Mean Lag 

(hours) 

A9H006 16 1404 1055 32.3 
Forests and 

Plantations 

Humus Depth > 

100 mm 
B/C 1.5 2.4 

H4H005 29 502 680 5.2 
Veld (range) 

and Pasture 
In fair condition C 3.4 10.9 

C5H022 39 610 1638 1.2 
Veld (range) 

and Pasture 

In Poor 

Condition 
B/C 10.5 4.8 

V1H032 67.8 1321 1571 26.5 
Veld (range) 

and Pasture 

In Poor 

Condition 
C 2.2 1.3 

A9H002 103 1157 850 2.1 
Forests and 

Plantations 

Humus Depth > 

100 mm 
B/C 23.1 7.6 

G4H005 146 1156 380 25.9 
Veld (range) 

and Pasture 

In Good 

Condition 
B/C 5.9 5.1 

C5H023  

 
185 586 1540 2.45 

Veld (range) 

and Pasture 

In Good 

Condition 
C 35.8 29 
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The catchments range in size from 0.26 km2 to 185 km2. Although the SCS-SA model is 

applicable to catchments with an area less than 30 km2, catchments with an area greater than 

the maximum prescribed area which is 30 km2 were selected due to insufficient smaller 

catchments with reasonable observed data record lengths.  

4.4.2 Catchment data and information 

Historical streamflow data was obtained from various sources, including from the Department 

of Water and Sanitation (DWS), from archives housed by the Centre for Water Resources 

Research (CWRR) at UKZN, and the Council for Scientific and Industrial Research (CSIR). 

The observed record lengths ranged from 11 to 70 years. A distribution fitting tool using L-

moments developed by Smithers and Schulze (2000) was then used to fit the GEV distribution 

to the annual maximum series of observed streamflow data for each streamflow gauging 

station. Table 4.3 contains a summary of the streamflow gauging stations, record lengths and 

the source of the data. 

Table 4.3 Source of streamflow data and record length 

Catchment Record Length 

(years) 

Period of 

Record 

Data 

Source 

U2H020 (Cedara)  17 1978 - 1994 CWRR 

V7H003 (Ntabamhlophe) 23 1970 - 1992 CWRR 

G2H010 B (Jonkershoek-

Lambrechtsbos ) 

52 1947 - 2006 CSIR 

V1H005 (Cathedral Peak IV ) 31 1950 - 1981 CSIR 

V1H015 (Ntabamhlophe ) 15 1965 - 1994 CWRR 

U2H018 (Cedara ) 19 1976 - 1994 CWRR 

G5H006 31 1956 - 1994 DWS 

W1H016(Zululand) 11 1976 -1986 CWRR 

X2H026 27 1966 - 1992 DWS 

A9H006 15 1965 - 1979 DWS 

H4H005 33 1950 - 1981 DWS 
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Catchment Record Length 

(years) 

Period of 

Record 

Data 

Source 

C5H022 28 1980 - 2008 DWS 

V1H032 20 1974 - 1993 DWS 

A9H002 70 1931 - 2000 DWS 

G4H005 55 1957 - 2018 DWS 

C5H023 30 1983 - 2007 DWS 

*CSIR – Council for Scientific and Industrial Research    

*CWRR - Centre for Water Resources Research  

*DWS - Department of Water and Sanitation 

 

4.4.2.1 Distribution of design rainfall 

To estimate design rainfall, the Regional L-Moment Algorithm and Scale Invariance Approach 

was adopted, which estimates rainfall depths for return periods of 2 to 200 years with durations 

ranging from 5 minutes to 7 days (Smithers and Schulze, 2003). 

4.4.2.2 Distribution of time to peak 

The catchments used by  Gericke (2016) had readily available time to peak data calculated for 

observed events. For catchments without readily available time to peak data, the time to peak 

was extracted from the observed data using the Hydro-Extract software (Cullis et al., 2007), 

which enables the user to extract flood hydrographs from a flow data record. Once the 

hydrographs were extracted, a flood hydrograph analysis spreadsheet developed by Gericke 

(2016) was utilised to estimate the time to peak for the individual storm events. This was only 

done for stations obtained from Rowe (2019) and included in Table 4.3, which is observed data 

obtained from the CWRR and CSIR. 

4.4.2.3 Distribution of antecedent moisture conditions 

The Initial curve number was determined from the predominant soil and land cover condition, 

then adjusted using the Median Condition Method to account for changes in antecedent soil 

moisture condition (AMC), as described in Equation 4.1 (Schulze et al., 2004): 
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CNf     =           
1100

1100
Cn-II

 - 
∆S

25.4

 
                                                                 (4.1) 

where: CNf = final curve number (dimensionless),  

 CN-II = initial curve number (dimensionless), and 

 ∆S = change in AMC (mm). 

The data used to determine the probability distribution for the AMC was obtained from the 

study by Schmidt et al. (1987), who extracted the five largest rainfall events each year for the 

entire record length, for 712 homogeneous zones in South Africa. The change in soil moisture 

(∆S) from average conditions was then simulated using the ACRU model (Schmidt et al., 1987) 

for a 30-day period prior to the five largest events per year in each homogenous zone and for 

three soil textures (sand, loam and clay), three soil depths (shallow, intermediate and deep)  

and three land covers (sparse, intermediate and dense). A frequency analysis was then 

performed on the results, and the 20th, 50th and 80th percentiles of the change in soil moisture 

(∆S) status was estimated for each soil texture, soil depth and land cover combination in each 

of the 712 zones (Schmidt et al., 1987). In this study, a trend line was fitted to the three 

percentiles and used to extrapolate to the 10th and 90th percentiles. A probability distribution 

was then fitted to the five percentile values of ∆S. 

4.4.2.4 Distribution of the temporal pattern 

Knoesen (2005) developed a semi-stochastic daily rainfall disaggregation model for South 

Africa that is based on the distribution of the fraction of the daily total rainfall (R), which occurs 

in the hour of maximum rainfall. Knoesen (2005) extracted the distribution of R at multiple 

sites across the country and then collated the computed R values into 20 range bins, which can 

also be referred to as groupings or clusters of the fraction of daily rainfall. For each range bin, 

all 24 hourly fractions were determined and these 24 hourly fractions are arranged to recreate 

multiple realisations of the temporal distribution of daily rainfall to account for all permutations 

when the hour of maximum can occur (Knoesen, 2005). The combination of the 24 

arrangements and the 20 range bins resulted in a total of 480 different temporal patterns ranging 

from uniform to non-uniform (Knoesen, 2005).  
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4.5 Assessment of Distribution Fitting 

Once the data to determine the probability distribution for the variable had been collected and 

processed as described above, a distribution fitting software (EASY-FIT, 2013a) was used to 

determine which probability distribution best fits the data. Goodness-of-fit tests were then 

applied by the software to the probability distribution to determine how well the distributions 

fit the observed data. These tests include the Kolmogorov-Smirnov (K-S) test, Anderson-

Darling test (A-D), and the Chi Squared test (C-S) (Stephens, 1974; Kottegoda and Rosso, 

1997). 

The K-S test is a nonparametric test of continuous probability distributions which tends to be 

more sensitive towards the center of the distribution than at the tails (Stephens, 1974). The test 

is based on the absolute maximum difference between the observed cumulative distribution 

function (cdf) and the expected cumulative distribution function (Kottegoda and Rosso, 1997).  

The A-D test is used to test if the generated sample of data came from the population that has 

a specific distribution (Stephens, 1974), and the test also gives heavier weightings to the tails 

of a distribution compared to the K-S test (Kottegoda and Rosso, 1997).  

The C-S test can be applied to both continuous and discrete probability distributions, but 

depends on an adequate sample size in order for the approximations to be valid (Stephens, 

1974). The C-S is a test of significance based on the weighted sum of squared differences 

between the observed and theoretical frequencies (Kottegoda and Rosso, 1997). 

4.6 Ensemble SCS-SA Model Set Up 

Once the distributions for design rainfall, time to peak and ∆S were determined as described 

above, the Ensemble SCS-SA JPA model was set up. The normal procedures and functioning 

of the SCS-SA model were kept the same and transferred to an excel spreadsheet. Two sheets 

in the spreadsheet were used to: (i) input the relative sampled distributions, and (ii) store the 

results of the ensemble events. Since SCS-SA is an event-based model, it had to be refined to 

enable it to run an ensemble of events. This was achieved by developing Visual Basic for 

Application (VBA) code to the model structure to include a loop function. The loop function 

performs the function of transferring the sampled parameters for every loop into the model 

individually, then transferring the ensemble results to the storage sheet. Once the model 
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completed simulating all the events, VBA code was applied to sort, organize and perform 

statistical analyses on the results.  

Three test catchments were initially used to rigorously validate and assess the performance of 

the Ensemble SCS-SA and the standard event based SCS-SA models. These include 

catchments U2H020 (0.26 km2), X2H026 (13.82 km2), and A9H006 (16 km2). The models 

were then assessed on more catchments that are located in different climatic regions of the 

country after the initial validation of the models and verification of their performance. 

4.7 Model Evaluation Criteria 

To evaluate the performance of the model, simulated design values were compared to design 

values computed from the observed streamflow data. Graphs and a statistical analysis was used 

for visual evaluation and analysis. The Nash-Sutcliff Efficiency (NSE), absolute relative 

difference, and Mean Absolute Relative Error (MARE) were also be used to evaluate the 

performance of the model. 

4.7.1 Nash-Sutcliff Efficiency 

The NSE is a commonly applied method to assess the agreement between observed streamflow 

and modelled streamflow (Vaze et al., 2011). The NSE ranges between the values of -∞ and 

one, where an NSE value that is less than zero indicates that the model is performing poorly, 

and an NSE value greater than 0.5 indicates the model is performing reasonably well (Vaze et 

al., 2011). The NSE is determined using Equation 4.2 (Nash and Sutcliffe, 1970): 

             NSE     =            1- [
∑ (Si-Qi)

2n
i=1

∑ (Qi-Q̅)
2n

i=1

]                   (4.2) 

where: NSE = Nash-Sutcliff Efficiency (dimensionless), 

Qi = observed peak discharge (m3.s-1), 

n = number of values 

 Si = simulated peak discharge (m3.s-1), and 

Ǭ = mean peak discharge (m3.s-1). 
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4.7.2 Absolute relative difference 

The absolute relative difference is a measure of the uncertainty or accuracy of a measurement 

relative to the true value, with the assumption the true value is correct. The absolute relative 

difference is determined using Equation 4.3: 

REM     =           
|Qo- Qi|

Qi

  ×100                                                                         (4.3) 

where: REM = relative difference of model (%), 

 Qi = estimate value from the model, and. 

 Qo  = estimate value from observed data. 

4.7.3 Mean absolute relative error 

The mean absolute relative error is a measure of difference between two continuous variables 

and is an average of the absolute errors. The mean absolute relative error is determined using 

Equation 4.4 (Smithers et al., 2015): 

           MARE  =          
100

n 
∑

| Qi- Qo |

Qo

n

i =1

                                                                                        (4.4) 

where:  

Qi = simulated peak discharge for SCS-SA / mean simulated peak discharge  

   for Ensemble SCS-SA (m3.s-1), 

 Qo = observed peak discharge (m3.s-1), and 

 n   = number of observations. 
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5. RESULTS: ENSEMBLE AND SINGLE EVENT SCS-SA MODELS 

USING ONE-DAY DURATION DESIGN RAINFALL INPUT  

This chapter expands on the assessment of the fitted probability distributions for the selected 

variables, which were than sampled from and used as input into the Ensemble SCS-SA model. 

The chapter contains the verification of design storm volumes and peak discharges simulated 

using both the Ensemble SCS-SA and single event SCS-SA (Standard) models against design 

values computed from the observed data. As described in Chapter 4, the Ensemble SCS-SA 

initially includes fitting a probability distribution to the mean 1-day design rainfall and the 90 

% confidence intervals for each return period. The single event SCS-SA (Standard) also entails 

using the model with 1-day design rainfall. Probability distributions were also derived from 

readily available data for the other key input variables (Antecedent Moisture Condition, Time 

to Peak, and Temporal Distribution) and random samples generated from the fitted 

distributions. Three test catchments with a range of areas were used to validate and to initially 

assess the performance of the model, and these includes Catchments U2H020 (0.26 km2), 

X2H026 (13.82 km2), and A9H006 (16 km2).  

5.1 Assessment of Fitted Distributions 

Once the observed data was obtained, Easy-Fit software (EASY-FIT, 2013b) was utilised to fit 

the best distribution and to assess the fit using goodness-of-fit tests.  

5.1.1 Time to peak 

Figure 5.1 is an example of the 3-parameter Lognormal probability distribution fitted to the 

observed time to peak data from Catchment X2H026. The histogram in blue represents the 

frequency of the time to peak for given intervals of duration. The orange line represents the 

probability density function fitted to the frequencies. The three parameter Log-Normal 

probability distribution fitted the observed time to peak relatively well for Catchment X2H026.  



  

 35 

 

Figure 5.1 Probability distribution of time to peak (h) data from Catchment X2H026 

5.1.2 Antecedent soil moisture  

The available data for ∆S was limited as only the 20th, 50th, and 80th percentile values were 

reported by Schmidt and Schulze (1987), and these values were then extrapolated to 10th and 

90th percentile values, as indicated in Figure 5.2. This was done in order to increase the data 

available for distribution fitting. A regression was then fitted to the values, and the resulting 

equation used to extrapolate to the 10th and 90th percentile values, respectively. A probability 

distribution was then fitted to the five values of ∆S. Figure 5.3 illustrates a uniform probability 

distribution fitted to the observed data of the change in soil moisture (∆S). The distribution 

indicates that samples will be selected uniformly across the range of the distribution of the 

change in soil moisture, and this distribution is a result of the limitation in the data record. 
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Figure 5.2 Regression analysis for ∆S (mm) data for Catchment X2H026 

   

 

Figure 5.3 Probability distribution of change in soil moisture (mm) data for Catchment 
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5.1.3 Temporal Distribution 

The data for the temporal distribution was readily available and obtained from Knoesen and 

Smithers (2008). The temporal distributions were then incorporated into the Ensemble SCS-

SA model. Figure 5.4 illustrates a sample of the different 480 different temporal distributions 

that were incorporated into the Ensemble SCS-SA model.  

 

Figure 5.4 Samples of the 480 different temporal distributions (Knoesen, 2005) 

5.1.4 One-day design rainfall 

The rainfall distribution was determined by interpolating  the 30th and 70th percentiles from the 

10th, 50th and 90th 1-day design rainfall percentiles (Smithers and Schulze, 2003). This process 

is illustrated in Figure 5, where a trend line and the resulting equations were used to determine 

the 30th and 70th percentile for three return periods shown as an example. The estimation of the 

30th and 70th percentiles was done to have sufficient data points to fit a probability distribution 

for each return period to sample from the fitted distribution. 
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Figure 5.5 One-day design rainfall confidence intervals for different return periods 

for Catchment X2H026 

5.2 Verification of Runoff Volumes 

The observed design runoff volumes were estimated by fitting a GEV distribution to the annual 

maximum series (AMS) extracted from the observed data, using a FORTRAN distribution 

fitting tool (Smithers and Schulze, 2000).  The design runoff volumes simulated by the models 

were verified against design values computed from the observed runoff data. From the design 

runoff volume simulations for the Ensemble SCS-SA, a frequency analysis was performed 

where the minimum, maximum, 10th, 50th (median) and 90th percentiles were calculated with 

the 10th and 90th percentiles used as 90% confidence limits. The 50th (median) represents the 

runoff volume estimates from the Ensemble SCS-SA. 

Figure 5.6 to Figure 5.8 are plots of the design volumes estimated using the Ensemble SCS-SA 

and the single event SCS-SA (Standard) models and includes design volumes computed from 

the observed data, for the three test catchments. Figure 5.6 illustrates the design runoff volume 

from Catchment U2H020 which has a catchment area of 0.26 km2. It can be seen that the single 

event SCS-SA (Standard) is generally estimating the runoff volumes relatively well compared 

to the Ensemble SCS-SA approach which is represented by the median estimate for all 100 

values simulated. When compared to the observed design runoff estimates, it is evident that 
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both methods are performing relatively poorly, especially for return periods ≥ 20-year return 

period.  

 

Figure 5.6 Simulated and observed design runoff volumes for Catchment U2H020 

Figure 5.7 illustrates the runoff volume from Catchment X2H026 with a catchment area of 

13.82 km2. The Ensemble SCS-SA and the single event SCS-SA (Standard) are performing 

similarly for all the return periods, and both models simulate the design runoff volume poorly 

for all return periods.  

 

Figure 5.7 Simulted and oberved design runofff volumes for Catchment X2H026 

Figure 5.8 illustrates the runoff volume from Catchment A9H006 with a catchment area 

of 16 km2. It is evident that both the Ensemble SCS-SA and single event SCS-SA 
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(Standard) approach are performing similarly, where both methods are performing 

relatively well for the 2-year and 5-year return periods, and then perform poorly 

compared to the observed design runoff volume estimates for all other return periods. It 

is also evident that the performance for both models declines as the return periods 

increase. 

 

Figure 5.8 Simulted and oberved design runofff volumes for Catchment A9H006 

The MARE values computed using Equation 4.6 for all return periods as the difference between 

the simulated and observed values of the runoff volumes for the test catchments is shown in 

Figure 5.9. For the ensemble SCS-SA model, the simulated value used in the MARE 

calculation is the median value. It is evident from Figure 5.9 that the Ensemble SCS-SA model 

generally has a higher error in estimating the runoff volume compared to the estimates of the 

single event SCS-SA (Standard), particularly for the smallest Catchment (U2H020).  

Figure 5.10 illustrates the Nash Sutcliff Efficiency for the test catchments and it is evident that 

Catchment X2H026 has the poorest Nash-Sutcliff Efficiency, and both models performed 

relatively poorly with values less than zero on the other catchments.  

It is evident from the above assessments used to indicate the performance of the models, that 

both the Ensemble SCS-SA and the SCS-SA (Standard) approach are generally simulating the 

observed design runoff volume relatively poorly. 
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Figure 5.9 Mean absolute relative error of the estimated design runoff volume for the 

relative test catchments 

 

 

Figure 5.10 Nash-Sutcliff efficiency of the estimated design runoff volume for the 

relative test cathments 
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5.3 Verification of Peak Discharges 

The observed design peak discharge was estimated by fitting a GEV distribution to the AMS 

of the observed peak discharge using a FORTRAN distribution fitting tool (Smithers and 

Schulze, 2000). Figure 5.11 to Figure 5.13 are plots for both the Ensemble SCS-SA and single 

event SCS-SA (Standard) models, while Figure 5.14 illustrates the MARE for the three test 

catchments, and Figure 5.15 illustrates the Nash-Sutcliff Efficiency of the three test 

catchments. 

It is evident from Figure 5.11 that both the Ensemble SCS-SA and the single event SCS-SA 

models are performing relatively poorly at Catchment U2H020, as they consistently over-

simulate the observed design peak discharge for all return periods. It can be seen that the 

models are simulating similarly for the shorter return periods, and for the longer return periods.  

 

 

Figure 5.11 Simulated and observed design peak discharges for Catchment U2H020 

It can be seen from Figure 5.12 that the Ensemble SCS-SA is performing relatively better than 

the single event SCS-SA (Standard) model for all return periods at Catchment X2H026. It is 

also evident that both models are estimating the shorter return periods relatively well, however, 

as the return periods increase, the performance for both models decreases. 
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Figure 5.12 Simulated and observed design peak discharges for Catchment X2H026 

Similar trends are also noted in Figure 5.13 where the Ensemble SCS-SA model is performing 

better than the single event SCS-SA (Standard) model compared to the observed design flood 

estimates. In this study site both models are simulating the shorter return periods relatively 

well, and the higher return periods relatively poorly. It can also be seen that, as the return 

periods increases, the performance of the Ensemble SCS-SA model is estimating the observed 

design peak discharges is increasingly better than the single event SCS-SA (Standard). 

 

Figure 5.13 Simulated and observed design peak discharges for Catchment A9H006 

Figure 5.14 illustrates the MARE for the three test catchments. It is evident that the smallest 

Catchment (U2H020) has the largest errors in simulating the design peak discharge. However, 

it can also be seen that the Ensemble SCS-SA has consistently lower MARE values than the 
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single event SCS-SA model, indicating better performance of the Ensemble SCS-SA in 

estimating observed design peak discharge compared to the single event SCS-SA (Standard). 

Overall both methods are still performing relatively poorly, as they still have relatively high 

MARE values. This is probably a consequence of the poor estimates of the design volumes, 

although this is not consistent across the catchments. 

 

Figure 5.14 Mean absolute relative error of the estimated design peak discharge for the 

relative test catchments 

The Nash-Sutcliff Efficiency illustrated by Figure 5.15 also shows that the Ensemble SCS-SA 

model is still performing better for all catchments compared to the single event SCS-SA 

(Standard) model for design peak discharge estimation. However, both models are still 

performing relatively poorly compared to the observed design peak discharge as the Nash-

Sutcliff Efficiency for both models and across all three test catchments is below zero, indicating 

a poor performance of the models when estimating design peak discharge. 

 

0

50

100

150

200

250

300

350

400

450

U2H020 X2H026 A9H006

M
e

an
 A

b
so

lu
te

 R
e

la
ti

ve
 E

rr
o

r 
(%

)

Ensemble SCS-SA SCS-SA (Standard)



  

 45 

 

Figure 5.15 Nash-Sutcliff efficiency of the estimated design peak discharge for the 

relative test cathments 

5.4 Summary 

In conclusion it is evident that the both the single event SCS-SA (standard) and Ensemble SCS-

SA models are performing relatively poorly in terms of simulating both the observed design 

runoff volume and the observed design peak discharge. The overestimation of the observed 

design peak discharges for both models is a consequence of the estimated daily runoff depth. 

The peak discharge equation is influenced by the change in stormflow depth, thus higher 

stormflows would result in overestimated design peak discharges. 

 The results obtained show that Ensemble SCS-SA model framework does work and provides 

an estimate of the confidence limits for all return periods. Given the poor performance of both 

models at all three test sites, further investigation is necessary to determine reasons for the poor 

performance and to assess options to improve the performance of the models.  
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6. SENSITIVITY OF PEAK DISCHARGE TO DISTRIBUTIONS OF 

KEY INPUT VARIABLES 

This chapter expands on the further investigation and assessment of the SCS-SA model, and 

includes the sensitivity of the design peak discharge to the input variables, i.e. time to peak, 

antecedent moisture conditions, the temporal distribution, and the rainfall depth. This is used 

to focus the investigation to improve the model’s performance.   

This was achieved by simulating selected percentile values of the observed data (10th, 20th, 80th, 

and 90th percentiles) for the time to peak and the antecedent moisture conditions, and 

comparing the differences to when the simulation is run using the 50th percentile for both the 

time to peak and antecedent moisture conditions. For the temporal distribution, a distribution 

was selected between range Bin 10 and Bin 11 as the median for all 20 range bins, then the bin 

selected was decreased. Similarly, the distributions were selected from the median bin to the 

upper end of the bin range. The sensitivity to input rainfall was performed by decreasing and 

increasing the rainfall from the selected 1-day design rainfall estimates by 10%, 20%, and 50%.  

6.1 Time to peak and antecedent moisture conditions (∆S) 

The sensitivity of the estimated design peak discharge to the Time to Peak (TP) converted to a 

lag time and antecedent moisture conditions, are illustrated jointly due to both variables having 

observed data with percentile ranges. The results are illustrated by the absolute relative 

difference shown in Figure 6.1 for Catchment X2H026, which shows the relative difference of 

each percentile change from the median (50th percentile). It can be seen from Figure 6.1 that 

the time to peak variable has the largest absolute relative difference for each change in the 

percentile value from the median value, and the antecedent moisture condition (∆S) has small 

relative differences with each change in the input percentile value. This indicates that the 

estimates of the observed peak discharge from the single event SCS-SA (Standard) are more 

sensitive to the time to peak variable than the ∆S values. The antecedent moisture condition 

(∆S) has a relatively low relative difference regardless of whether the antecedent moisture 

condition is increased or decreased, showing that the model is least sensitive to this variable. 
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Figure 6.1 Absolute relative difference of the sensitivity analysis for the time to peak 

variable and antecedent moisture conditiond (∆S) for Catchment X2H026 

6.2 Temporal distribution 

The sensitivity of the design peak discharge to the temporal pattern is illustrated by Figure 6.2 

for Catchment X2H026, where the median temporal pattern was selected as Bin range 10/11 

then varied around the median while keeping the other input variables constant at their 

representative median values. 

It can be seen that the temporal pattern has a significant impact on the estimated design peak 

discharge. The impact is evident as the bin range increases, i.e. more non-uniform and intense 

rainfall intense distributions, or decreases, i.e. more uniform rainfall distributions. This also 

shows larger absolute relative difference values observed for the lowest and largest bin ranges, 

and that both the uniform and non-uniform temporal patterns can have a significant impact on 

the estimated peak discharge for the same simulated event.  
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Figure 6.2 Mean absolute relative difference of the sensitivtiy of the peak discharge 

to the temporal distribution range bins for Catchment X2H026 

6.3 Rainfall 

The sensitivity of the design peak discharge to design rainfall depth is illustrated by Figure 6.3 

for Catchment X2H026, where the 1-day design rainfall was used as the median estimate. It is 

evident from Figure 6.3 that when the rainfall is increased it has a significant impact, increasing 

the design peak discharge as the percent of rainfall increases. Similarly, when the percent of 

rainfall is decreased there is a significant decrease in the estimated design peak discharge.  
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Figure 6.3 Sensitivity analysis of the percent change in precipitation for Catchment 

X2H026 

The absolute relative difference for each return period per percent change in the design rainfall 

depth at catchment X2H026 is illustrated by Figure 6.4. It can be seen from Figure 6.4 that as 

the percent rainfall increases from the 1-day design rainfall the relative difference significantly 

increases for all the return periods, indicating larger errors in estimating the observed design 

peak discharge. When the percent rainfall decreases from the 1-day design rainfall, the relative 

difference significantly decreases to a point where it is closer to a relative difference of zero 

indicating an improvement in the estimated design peak discharge. 
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Figure 6.4 Relative difference of the percent change in rainfall from the 1-day design 

rainfall for Catchment X2H026 

An investigation was done at the study sites where autographic rainfall data is available, to 

determine the rainfall characteristics of the catchment. This is illustrated in Table 6.1 and Table 

6.2, for Catchment U2H020 and X2H026, respectively. The events are ranked from highest to 

lowest. It is evident from both catchments that the rainfall duration and the time for the storm 

to reach the peak is generally less than one day for both catchments. 

Table 6.1 Rainfall analysis for Catchment U2H020 

Event Event 

Rainfall 

depth 

[Autographic 

station] 

(mm) 

Daily 

Rainfall 

Depth 

[Daily 

station] 

(mm) 

Rainfall 

Duration  

(h) 

Time to 

Peak (h) 

Peak 

Discharge 

(m3.s-1) 

 1 68.2 56.6 4 0.4 0.60 

2 77.8 64.6 3 0.7 0.20 

3 33.3 35.5 3 1.2 0.10 

4 41.7 26.0 2 1.9 0.08 
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Event Event 

Rainfall 

depth 

[Autographic 

station] 

(mm) 

Daily 

Rainfall 

Depth 

[Daily 

station] 

(mm) 

Rainfall 

Duration  

(h) 

Time to 

Peak (h) 

Peak 

Discharge 

(m3.s-1) 

5 44.9 71.6 4 2.1 0.05 

 

Table 6.2 Rainfall analysis for Catchment X2H026 

Event Event 

Rainfall 

Depth 

(Autographic 

station) 

Daily  

Rainfall 

Depth 

(Daily 

station) 

Rainfall 

duration (h) 

Time to 

Peak (h) 

Peak 

Discharge 

(m3.s-1) 

1 81.8 89 8 1.2 20.1 

2 23.5 27.1 5 1.4 10.1 

3 46 21 8 4.5 7.8 

4 41.5 56 6 7.2 6.2 

5 45 12.5 5 4.2 5.8 

6 37.5 56 9 6.1 4.6 

 

6.4 Summary  

The above sensitivity analysis has shown, based on the method used, that the impact changing 

the time to peak variable and antecedent moisture condition from the 10th to the 90th percentile 

of the range of observed input values resulted in absolute relative difference values of less than 

100%. However, the impact of changing the input by rainfall only 20% resulted in MARE 

values > 200%. Furthermore, it is evident from the test catchments that rainfall duration as well 

as the time to peak is less than day. Hence, it is concluded from these results that the estimation 

of peak discharge is most sensitive to the input design rainfall. 
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7. RESULTS: ENSEMBLE AND SINGLE EVENT SCS-SA MODELS 

USING DESIGN RAINFALL DURATION EQUAL TO CATCHMENT 

RESPONSE TIME 

It is widely accepted that when estimating peak discharge from a catchment, the duration of 

design rainfall input to event rainfall based design flood estimation models is the time of 

concentration, i.e. the peak discharge at the catchment outlet occurs when the runoff from the 

furthest point in the catchment reaches the outlet, and it is still raining (Gericke, 2016; Gericke, 

2018).  As shown above, the estimation of peak discharge is most sensitive to the input design 

rainfall depth. Hence, the duration of rainfall input to the Ensemble SCS-SA model was 

conditioned to the catchment response time using a derived relationship between the rainfall 

depth and rainfall durations. The design rainfall estimated by Smithers and Schulze (2003) was 

used to derive a depth-duration- frequency curve and an example of this procedure is illustrated 

in Figure 7.1 for design rainfall at Catchment X2H026. 

 

Figure 7.1 Rainfall depth-duration-frequency curve for Catchment X2H026  

 A trend line was fitted to the relationship between the time to peak and the rainfall depth , the 

resulting equation used to sample rainfall depth using the time of concentration, estimated as 

the time to peak (Gericke, 2016) as the input. The input to the single event SCS-SA (Standard) 

method was also altered with the input 1-day design rainfall depth replaced with the design 
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rainfall depth for a duration equal to the time of concentration computed from the lag time 

estimated using the Schmidt-Schulze equation (Schulze et al., 2004). Therefore, in this section 

the model is referred to as the single event SCS-SA (Short duration) model. Equation 7.1 by 

Schulze et al. (2004) was used to convert the time of concentration to a lag time.  

 L          =            0.6 Tc                                                                 (7.1) 

 where: L = lag time (h), and 

  Tc = time of concentration (h). 

7.1 Verification of Runoff Volumes   

Figure 7.2 to Figure 7.4 illustrates plots of the Ensemble SCS-SA and the single event SCS-

SA (Short duration) runoff volume estimates compared to the observed runoff volume. The 

same three test catchments were used to assess if there was any improvement in the 

performance of the models. In Figure 7.2 at Catchment U2H020, it is evident that there was a 

significant improvement in the performance of the Ensemble SCS-SA model in terms of 

estimating the observed runoff volume. The Ensemble SCS-SA model is simulating the shorter 

return periods such as the 2-year and 5-year return periods relatively well, and the other return 

periods reasonably well. However, it is evident that the Ensemble SCS-SA is consistently under 

simulating the observed runoff volume for all the return periods, but the performance is much 

better compared to when the 1-day design rainfall was used (Figure 5.6). The single event SCS-

SA (Short duration) performed poorly in estimating the observed runoff volume, as it was 

biased and consistently underestimating the observed runoff volume, but compared to the 1-

day design rainfall, the performance did not improve. 
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Figure 7.2 Simulated and observed design runoff volumes for Catchment U2H020  

It can be seen from Figure 7.3 at Catchment X26026 that the Ensemble SCS-SA is performing 

relatively well in terms of estimating the observed runoff volume. This is evident in the lower 

return periods such as the 2-year to 20-year return periods where the model is simulating the 

observed runoff volumes relatively well, and as the return periods increase the model starts to 

overestimate the observed runoff estimate. Overall the model seemed to have performed 

relatively well in simulating the observed runoff estimate for all the return periods, as all 

observed estimates lie within the 10th and 90th percentiles. Compared to the 1-day design 

rainfall results (Figure 5.6) the Ensemble SCS-SA and single event SCS-SA (Short duration) 

design runoff estimates significantly improved. 

 

Figure 7.3 Simulated and observed design runoff volumes for Catchment X2H026 
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Figure 7.4 illustrates that the Ensemble SCS-SA is performing poorly in terms of estimating 

the observed runoff volume at Catchment A9H006, as it is biased and consistently under 

estimating the observed runoff volume for the lower return periods such as 2-year return to the 

10-year return period, and as the return periods increase the simulations are estimated relatively 

well. The single event SCS-SA (Short duration) estimates the design runoff volume for the 

shorter return periods poorly. Overall both models significantly improved in estimating the 

design runoff volume compared to the 1-day design rainfall results (Figure 5.7).  

 

Figure 7.4 Simulated and observed design runoff volumes for Catchment A9H006 

The MARE for the runoff volume simulated using the ensemble SCS-SA model for the three 

test catchments is illustrated by Figure 7.5 for both the 1-day and shorter design rainfall 

durations used as input. It is evident from the MARE values that the estimation of the observed 

runoff volumes has generally improved for all the catchments using rainfall duration equal to 

the catchment response time. For Catchment A9H006 there was a significant decrease in the 

MARE for design runoff volume. Similarly, there is notable improvement for catchment 

X2H026.  

There was also an improvement in the performance of the single event SCS-SA (Short 

duration) model as the MARE values also decreased for Catchments X2H026 and A9H006. 

However, the Ensemble SCS-SA model is still performing better compared to the single event 

SCS-SA (Short duration) as the Ensemble SCS-SA model generally has lower MARE values 

in terms of estimating the runoff volume. 
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Figure 7.5 Mean absolute relative error of the estimated runoff volume for the three 

test catchments 

The Nash-Sutcliff Efficiency for the relative test catchments is illustrated by Figure 7.6. It can 

be seen that the Ensemble SCS-SA generally has a higher Nash-Sutcliff Efficiency compared 

to the event SCS-SA (Short duration) for all the relative test catchments, and the Nash-Sutcliff 

Efficiency for the Ensemble SCS-SA is also closer to one for Catchments U2H020 and 

X2H026, indicating that the Ensemble SCS-SA estimated the observed runoff volume for these 

catchments relatively well and better than the single event SCS-SA (Short duration) model. It 

is also noticeable that the Nash-Sutcliff Efficiency has significantly improved after initial runs 

and modifications were done to the models.   
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Figure 7.6 Nash-Sutcliff efficiency of the estimated runoff volume for the relative 

test cathments 

7.2 Verification of Peak Discharges 

7.2.1 Test catchments 

Figure 7.7 to Figure 7.9 contains plots of the estimated design peak discharge for the three test 

catchments compared to the observed design peak discharge. It was assumed that Equation 2.2 

was still applicable to estimating the design peak discharge when short duration rainfall is used 

and that daily temporal distribution (Knoesen, 2005) could be used to disaggregate the short 

duration rainfall data. In Figure 7.7 at Catchment U2H020, it is evident that the Ensemble SCS-

SA is simulating the observed peak discharges relatively well for all the return periods. The 

single event SCS-SA (short duration) model simulates the observed peak discharges for the 

lower return periods also relatively well. 
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Figure 7.7 Simulated and observed design peak discharges for Catchment U2H020 

In Figure 7.8 it is evident that the Ensemble SCS-SA model performed well in terms of 

estimating the observed peak discharges for all the return periods at Catchment X2H026. All 

the observed peak discharge estimates were within the 10th and 90th percentile which can give 

confidence in the simulated peak discharges by the Ensemble SCS-SA model, the median 

design peak discharges are also relatively close to observed design peak discharge. Thus, the 

median peak discharge estimates can be the recommended value for use. It is evident that the 

model has a general trend of slightly under simulating the observed peak discharge for all the 

return periods. The single event SCS-SA (Short duration) model performed poorly in 

estimating the observed peak discharge as it consistently under simulated the observed peak 

discharge for all return periods. 

 

Figure 7.8 Simulated and observed design peak discharges for Catchment X2H026 
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It is evident from Figure 7.9 that at Catchment A9H006 the Ensemble SCS-SA is performing 

relatively well for return periods ≥ 20-year and this is supported by the observed peak discharge 

estimates which are within the 10th and 90th percentile, thus giving confidence in these peak 

discharge estimates. It can also be seen for the lower return periods such as the 2-year to the 

10-year return period, the Ensemble SCS-SA is performing relatively poorly and under 

simulating the observed peak discharge. The observed peak discharge estimates for the lower 

return periods are outside the 10th and 90th percentile estimates, decreasing the confidence in 

the Ensemble SCS-SA estimates for the lower return periods. The single event SCS (Short 

duration) performs similarly but is generally under simulating the observed peak discharge for 

all return periods. 

 

Figure 7.9 Simulated and observed design peak discharges for Catchment A9H006 

Figure 7.10 illustrates the MARE for the peak discharge for the three test catchments. It can be 

seen that for all the catchments, the MARE has significantly decreased for the Ensemble SCS-

SA model, showing an improvement in the estimates of the observed peak discharge due to the 

reduced MARE values. It is also evident that Catchment A9H006 has the lowest MARE value, 

indicating that Ensemble SCS-SA performed relatively well for this catchment compared to 

the other test catchments, as the catchment has a lower MARE value indicating less error in 

estimating the observed design peak discharge. 
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Figure 7.10 Mean absolute relative error of the estimated design peak discharge for the 

test catchments 

The Nash-Sutcliff Efficiency is illustrated by Figure 7.11 for the three test catchments, and it 

can be seen that the Ensemble SCS-SA has a generally higher Nash-Sutcliff Efficiency which 

is closer to one for all the test catchments, which provides an overall image that the Ensemble 

SCS-SA is performing relatively better when estimating the observed peak discharge compared 

to the single event SCS-SA (Short duration) model. It is also evident that the peak discharge 

estimates from the Ensemble SCS-SA and single event SCS-SA (short duration) are similar as 

there is no significant difference in the Nash-Sutcliff Efficiency. 
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Figure 7.11 Nash-Sutcliff efficiency of the estimated design peak discharge for the test 

catchments 

7.2.2 All catchments 

It is evident that use of the design rainfall duration equal to the catchment response time has, 

in both the Ensemble SCS-SA and single event SCS-SA (Short duration) models, significantly 

improved the model’s performance for both runoff volume and peak discharge estimation. With 

the improvements and satisfactory model performance, the models were applied to more 

catchments in order to assess their performance over a wider range of catchments in different 

climate regions in South Africa. Details of the performance at the various catchments are 

contained in Appendix A. The MARE as well as Nash Sutcliff Efficiency values for design 

peak discharges are shown in Figures 7.12 and 7.13, respectively.  

Figure 7.12 illustrates the MARE of the peak discharge for all the catchments in the order of 

the catchment size (0.26 – 185 km2), similar to the order listed in Appendix A. It can be seen 

that the Ensemble SCS-SA model generally has lower MARE values than the event SCS-SA 

(Short duration), and the MARE of the Ensemble SCS-SA model are generally less than 20 % 

for the majority of the catchments. This indicates that the model generally has lower errors in 

estimating the observed design peak discharge except for Catchment C5H022 and Catchment 

VH1032 where the Ensemble SCS-SA model has a larger MARE values compared to the event 

SCS-SA (Short duration) estimates. The single event SCS-SA (Short duration) generally has 

an error higher than 30 % for the majority of the catchments, and also performs relatively well 

on larger catchments.  
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Figure 7.12 Mean absolute relative error of the estimated peak discharge for all the 

catchments used in the study 

The Nash Sutcliff Efficiency is illustrated by Figure 7.13 for all the catchments used in the 

study, and it is evident that the Ensemble SCS-SA model has a Nash Sutcliff Efficiency very 

close to one for the majority of the catchments, indicating that the Ensemble SCS-SA is 

performing relatively well in estimating the observed peak discharge. It is also evident that the 

single event SCS-SA (Short duration) is also performing relatively well with the majority of 

the catchments generally having a Nash-Sutcliff Efficiency greater than 0.7. It is also evident 

from Figure 7.12 and 7.13 that the performance of the models do not appear to decrease with 

increasing catchment area and this is investigated further in the next section. 

 

0

10

20

30

40

50

60

70
M

e
an

 A
b

so
lu

te
 R

e
la

ti
ve

 E
rr

o
r 

(%
)

Ensemble SCS-SA SCS-SA (Short duration)



  

 63 

 

Figure 7.13 Nash-Sutcliff efficiency of the estimated peak discharge for all the 

catchments used in the study 

7.3  Performance of Ensemble and Standard SCS-SA Models on Larger Catchments 

The MARE relative to the catchment area was assessed to see if there was any deterioration in 

the performance of the models with increasing catchment area size. This was done for the same 

catchments presented above. Figure 7.14 illustrates the relationship between MARE and 

catchment area, where it is evident that both models seem to be performing relatively well as 

the catchment area increases and the performance of the models does not deteriorate as 

recommended maximum catchment area (30 km2) for the models is exceeded. 
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Figure 7.14 MARE of peak discharge estimation vs catchment area  

Figure 7.15 illustrates the scatter plot for the NSE relative to the catchment area and indicates 

that the models are still performing relatively well as the catchment area increases. Both models 

have a high Nash Sutcliff Efficiency that is close to one, indicating a relatively good 

performance for both models in estimating the observed design peak discharge. 

 

Figure 7.15 Scatter plot of Nash Sutciff Efficiency with increasing catchment area size 
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8. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

The aim of this study was to apply and assess the performance an Ensemble Joint Probability 

Approach to an event based rainfall-runoff model used for design flood estimation in South 

Africa and the specific objectives included the following: 

(i) undertaking a comprehensive review of the literature,  

(ii) model selection,  

(iii)development of probability distributions for key input variables using readily available 

data, and  

(iv) the development, application and assessment of an ensemble model configuration. 

It is evident from literature reviewed that the event based models for design flood estimation 

have limitations in their application, as their assumptions lead to systematic bias and 

inconsistencies in design flood estimates. Application of an Ensemble Joint Probability 

Approach to event based models has the potential to improve event based models, as the 

method accounts for the probability distributed nature and behaviour of the main flood 

producing variables, each of which has an associated degree of uncertainty that can affect the 

shape and magnitude of the estimated design flood hydrograph and design peak discharge.  

From the event-based models used for design flood estimation in South Africa, the SCS-SA 

model was selected because it was easily accessible and there was sufficient operational 

support for the model. The key input variables of the SCS-SA includes the rainfall, the time to 

peak, the temporal distribution, and the change in soil moisture. Probability distributions were 

fitted to readily available observed data of the relative key input variables, using a distribution 

fitting software as a tool to develop the probability distributions. The software performed 

relatively well in fitting the probability distributions and generating random samples for 

variables which had a sufficient record length. The Ensemble SCS-SA model was developed 

and configured with VBA coding in Microsoft Excel to run an ensemble of events from the 

generated samples. 

The following sections includes the discussion of the initial performance of the single event 

SCS-SA (Standard) and Ensemble SCS-SA model, how the model was further investigated 

through a sensitivity analysis of the estimated peak discharge to key input variables, the overall 

performance of the single and Ensemble SCS-SA models, as well as a summary of the main 
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findings. Lastly, conclusions are drawn from the study and recommendations for future 

research are presented. 

8.1 Performance of Models using One-day Design Rainfall Input 

The results produced from applying the both Ensemble SCS-SA and single event SCS-SA 

models using the 1-day duration design rainfall as input, as is the norm when using the SCS-

SA model, indicated that the models were performing relatively poorly in terms of estimating 

both the observed design runoff volume and design peak discharge for all the test catchments. 

Even though the probability distributions for the other key input variables were considered for 

the Ensemble SCS-SA model, the model still significantly over estimated the observed design 

runoff volume and design peak discharge for all the return periods. The observed design runoff 

volume and design peak discharge estimates consistently fell outside of the 10th and 90th 

percentiles simulated with the Ensemble model, indicating very low confidence in both the 

estimated design runoff volumes and design peak discharges. The single event SCS-SA 

(Standard) model also performed similarly to the Ensemble SCS-SA, where the model also 

performed poorly and over estimated both the observed design runoff volume and design peak 

discharge. These results are also supported by the MARE values for the test catchments, where 

the MARE values are generally above 100 % for both the estimated design runoff volume and 

design peak discharge, indicating that both the Ensemble SCS-SA and single event SCS-SA 

(Standard) models estimates are relatively poor compared to the observed estimates. The Nash-

Sutcliff Efficiency of both the estimated design runoff volume and design peak discharge for 

the Ensemble SCS-SA and single event SCS-SA (Standard) models was less than zero, 

indicating a poor performance in the model estimates of the observed design runoff volume 

and design peak discharge. Given the poor performance of both models at all three test sites, 

further investigation was undertaken to investigate reasons for the poor performance and to 

assess options to improve the performance. 

8.2 Sensitivity Analysis  

The sensitivity analysis performed showed that the SCS-SA model is the most sensitive to the 

input design rainfall variable as it had the highest relative errors of 300 % when increasing or 

decreasing the rainfall amount. An analysis of rainfall and runoff data at two test catchments 

showed that, for the largest observed rainfall events, the rainfall duration and runoff time to 

peak are generally less than 24 hours at a catchment scale. Thus, a rainfall depth-duration-
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frequency relationship was adopted in the model to account for this. The time to peak variable 

was the second most sensitive variable. The model was least sensitive to the antecedent 

moisture condition variable as it had the lowest relative difference for the percentile ranges 

used, indicating that the antecedent moisture conditions do not have a significant impact on the 

estimated design peak discharges. The model was also reasonably sensitive to the temporal 

rainfall distribution as it had high relative differences as the temporal pattern became more 

uniform for the lower bin ranges, and also for the non-uniform temporal pattern for the higher 

bin ranges. This indicates that the model estimates are impacted by uniform and non-uniform 

temporal patterns.  

8.3 Overall Performance of the Ensemble SCS-SA and Single Event SCS-SA 

When the Ensemble SCS-SA model used short duration rainfall, in conjunction with the 

probability distributions of the other key input variables, the results of the estimated design 

runoff volume and design peak discharges produced by the Ensemble SCS-SA model and 

single event SCS-SA (Short duration) improved significantly. In terms of estimating the 

observed design runoff volume for the test catchments, the Ensemble SCS-SA performed 

relatively well, where 80 % of the observed runoff volume estimates for the various return 

periods fitted within the 10th and 90th percentiles, indicating a relatively good confidence in the 

estimates of the observed design runoff volumes. The single event SCS-SA (Short duration) 

model performance in estimating the observed design runoff volumes and design peak 

discharges is generally poorer compared to the Ensemble SCS-SA estimates. However, the 

single event SCS-SA (Short duration) model estimates of the design runoff volumes and design 

peak discharges did improve considerably compared to when sampling from the 1-day duration 

rainfall probability distribution.  

When short duration rainfall was adopted, the Ensemble SCS-SA and single event SCS-SA 

(short duration) models generally simulated the observed design peak discharges relatively well 

for all the return periods for all catchments. The single event SCS-SA (Short duration) 

estimates of the observed design peak discharge also considerably improved, however, the 

model still seems to be performing poorly compared to the Ensemble SCS-SA model estimates. 

These results are also supported by the MARE values of the estimated design runoff volume 

and design peak discharges for the relative test catchments. It is evident that the Ensemble 

SCS-SA and single event SCS-SA (Short duration) has MARE values generally less than 30 

% and 50 %, respectively for the estimated design peak discharge. This shows a significant 
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decrease in the relative error which was generally greater than 100 %, thus indicating that the 

Ensemble SCS-SA model generally has lower errors in estimating the observed design peak 

discharges.  The single event SCS-SA (Short duration) model estimates generally have a higher 

error compared to the Ensemble SCS–SA model estimates. The Nash-Sutcliff Efficiency of the 

estimated design peak discharge was closer to one for all the catchments, indicating a relatively 

good performance in estimating the design peak discharge from the Ensemble SCS-SA model 

and single event SCS-SA (Short duration).  

8.4 Performance of the Ensemble SCS-SA on Larger Catchments 

When the Ensemble SCS-SA and single event SCS-SA models were tested on larger 

catchments than the recommended range, the model showed promising results as it estimated 

the observed design peak discharge reasonably well for all the catchments. The MARE of the 

simulated design peak discharge for the three larger catchments also indicates that the 

Ensemble SCS-SA and single event SCS-SA generally have a lower error in estimating the 

observed design peak discharge estimates except for Catchment A9H002, and this can be 

attributed to the single event SCS-SA (Standard) generally over estimating the lower return 

periods which results in higher errors. The Nash-Sutcliff Efficiency of the estimated design 

peak discharge is generally higher for the Ensemble SCS-SA model estimates compared to the 

single event SCS-SA (Standard) model estimates. The results indicate that both the Ensemble 

SCS-SA and the single event SCS-SA performed reasonably well on larger catchments, even 

when the standard 1-day duration design rainfall is used as input. However, assessment at more 

study sites are required in order to adequately assess the performance of both models on larger 

catchments. 

8.5 Conclusions  

This study has demonstrated how a JPA can be applied using ensemble event simulation by 

adapting the single event SCS-SA model in South Africa. The application of the Ensemble 

SCS-SA model showed how it can reproduce the observed design flood estimates with 

reasonable accuracy over a wide range of return periods and for catchments larger than the 

recommended sizes. The Ensemble SCS-SA model has also shown potential and flexibility to 

dealing with uncertainty by accounting for the distributed nature of the input variables and 

taking on values across the full range of their distribution in the modelling process, thus 
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avoiding the potential bias that can occur when adopting a single set of pre-determined input 

values.  

An unexpected result from this study is the much improved performances of both the single 

event and ensemble SCS-SA models when the duration of the input design rainfall was changed 

from 1-day to the catchment response time. This could have potential consequences to the 

application of the SCS-SA model in practice. 

8.6 Recommendations 

The following recommendations are made from the results generated in this study: 

• Further investigations at more sites are required to confirm that the standard application 

of the SCS-SA model using 1-day duration design rainfall input should be changed to 

using input design rainfall with a duration equal to the catchment response time. 

• To further assess the performance of the Ensemble SCS-SA on additional catchments 

representing a broader range of hydrological conditions around different climatic 

regions of the country.  

• Detailed studies to improve the probability distributions for the antecedent moisture 

conditions and time to peak when used for sampling. 

• Thoroughly investigate how to deal with sampling variability in order to prevent the 

occurrence of unusual, and possibly unrealistic, combinations of randomly sampled 

input variables.  

• Further assess the application and performance of the model on catchments larger than 

the currently recommended area range of 30 km2. 
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APPENDIX A: PERFORMANCE OF MODELS TO ESTIMATE PEAK 

DISCHARGE AT ADDITIONAL SITES 

Figures A1 to A10 contains plots of the simulated (using short duration design rainfall = Tc) 

and observed peak discharge for the rest of the catchments used in the study in the order of 

increasing catchment size. The catchments area and catchment parameters adopted for each 

catchments are listed in Table 4.2. 

 

 

Figure A1 Simulated and observed design peak discharges for Catchment V7H003 

 

 

Figure A2 Simulated and observed design peak discharges for Catchment G2H010 
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Figure A3 Simulated and observed design peak discharges for Catchment V1H005 

 

 

Figure A4 Simulated and observed design peak discharges for Catchment V1H015 
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Figure A5 Simulated and observed design peak discharges for Catchment U2H018 

 

 

Figure A6 Simulated and observed design peak discharges for Catchment G5H006 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

2-year 5-year 10-year 20-year 50-year 100-year

P
e

ak
 D

is
ch

ar
ge

 (m
3 .

s-1
)

Return Period

Minumum 10th Percentile Ensemble SCS-SA SCS-SA (Short duration) Observed 90th Percentile Maximum

0

1

2

3

4

5

6

7

8

2-year 5-year 10-year 20-year 50-year 100-year

Q
p

ea
k 

(m
3
.s

-1
)

Return Period

10th Percentile 90th Percentile Median Series5 Series6 Series4 SCS-SA (Short duration)



  

 78 

 

 

Figure A7 Simulated and observed design peak discharges for Catchment W1H016 

 

 

Figure A8 Simulated and observed design peak discharges for Catchment H4H005 
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Figure A9 Simulated and observed design peak discharges for Catchment C5H022 

 

 

 

Figure A10 Simulated and observed design peak discharges for Catchment V1H032 
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 Figure A11 Simulated and observed design peak discharges for Catchment A9H002 

 

 

 

Figure A12 Simulated and observed design peak discharges for Catchment C5H023 
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Figure A13 Simulated and observed design peak discharges for Catchment G4H005 

0

50

100

150

200

250

300

2-year 5-year 10-year 20-year 50-year 100-year

P
e

ak
 D

is
ch

ar
ge

 (m
3 .

s-1
)

Return Period

Minumum 10th Percentile Ensemble SCS-SA SCS-SA (Short duration) Observed 90th Percentile Maximum




