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Abstract 

 

Wadley’s problem frequently emerges in dosage-mortality data and is one in which 

the number of surviving organisms is observed but the number initially treated is 

unknown.  Data in this setting are also often overdispersed, that is the variability 

within the data exceeds that described by the distribution modelling it.  The aim of 

this thesis is to explore distributions that can accommodate overdispersion in a 

Wadley’s problem setting.  Two methods are essentially considered.  The first 

considers adapting the beta-binomial and multiplicative binomial models that are 

frequently used for overdispersed binomial-type data to a Wadley’s problem setting.  

The second strategy entails modelling Wadley’s problem with a distribution that is 

suitable for modelling overdispersed count data.  Some of the distributions introduced 

can be used for modelling overdispersed count data as well as overdispersed dose-

response data from a Wadley context.  These models are compared using goodness of 

fit tests, deviance and Akaike’s Information Criterion and their properties are 

explored. 
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Chapter 1

Introduction

Wadley’s problem is one that frequently emerges in dosage-mortality studies where

the number of organisms that survive treatment with a particular dose of a drug

is recorded, but the number initially exposed to the drug is unknown and must be

estimated from the data. The counts cannot, therefore, be considered to follow a

binomial distribution but are often modelled by a Poisson distribution (Wadley,

1949). Particular data sets in Wadley’s problem setting, including the data set for

antimalarial drugs which is reported in the thesis by Gouws (1995, p.98) and used

extensively in this study, exhibit overdispersion (Gouws, 1995, p.90). That is, the

variability in the data set exceeds the variability in the distribution which models

it. The aim of this thesis is to explore and derive models that are suitable for

modelling overdispersed dose-response data that arise from a Wadley’s problem

setting. The thesis is comprised of three main themes, each of which is divided

into two chapters. The first two of these themes explore models that have been

used for overdispersed binomial-type data and which are adapted to a Wadley’s

problem setting. In the last of these themes, distributions that are suitable for

overdispersed count data are considered for modelling the unknown number of

organisms initially treated.

Chapter 2 includes a description of the primary data sets considered in this

thesis as well as a preliminary investigation of the data. The beta-binomial dis-
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tribution is presented in Chapter 3 and in Chapter 4 this model is adapted to

a Wadley’s problem setting. The multiplicative binomial distribution is investi-

gated in Chapter 5 and its adaptation to a Wadley’s problem setting, resulting in

the Altham-Poisson distribution, is explored in Chapter 6. The negative binomial

model in the Wadley context is presented in Chapter 7 and the two parameter

exponentially weighted Poisson distribution is considered in the same context in

Chapter 8. Conclusions are drawn and pointers for future research are presented

in Chapter 9.
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Chapter 2

General Background

2.1 Introduction

Wadley (1949) first considered modelling dose-mortality data in which N, the num-

ber of organisms initially exposed to the drug, is unknown and must therefore be

estimated from a control sample. This phenomenon frequently emerges and has

aptly been termed Wadley’s problem. Wadley (1949) showed that if the number

of organisms treated follows a Poisson distribution with parameter τ , then the

number of survivors will follow a Poisson distribution with parameter τ(1 − p),

where p is the probability that an organism dies. He also obtained maximum like-

lihood estimates of the parameters in this model. Anscombe (1949) introduced

the idea of using the negative binomial distribution as a means of accommodating

overdispersion in Wadley-type data.

More recently, Baker, Pierce and Pierce (1980) developed a method for analyz-

ing Wadley-type dose-response data when control observations are present. The

approach they employed was to introduce separate link functions for control obser-

vations and those that arise from the administration of a non-zero dose of the drug.

This idea is used by Smith and Morgan (1989), who presented a GLIM macro for

modelling data in a Wadley’s problem setting. Incorporated into the macro is the

use of a Taylor series expansion as a method of overcoming nonlinearity in the link

3



function.

The primary data sets included in this study are described in Section 2.2. In

Section 2.3 the classical Wadley-Poisson model which entails modelling N, the

unknown number of organisms initially exposed to the drug, with a Poisson distri-

bution (Wadley, 1949) is examined. A consideration of this model serves to provide

a preliminary investigation of the data and to lay a platform for the remainder of

this thesis. Concluding remarks are recorded in Section 2.4.

2.2 Data Sets

2.2.1 Algae Data

In order to gauge the effect of chemicals in water on the environment, the growth

of unicellular bacteria under exposure to differing concentrations of chemicals was

noted. These data were taken from a paper by Baker, Pierce and Pierce (1980).

A number of Selenastrum Capricoruntum organisms was exposed to a variety of

concentrations of a toxicant for seven days, after which the number of survivors

was recorded. Each concentration was administered five times. The method of ob-

taining the counts was based on an optical density technique and the observations

are presented in Table 2.1.

Table 2.1: Data for Selenastrum Capricoruntum exposed to a toxicant.

Drug conc. Number Surviving Mean Variance

(µg/ml)

0 219 228 202 237 228 223 176

1 167 158 158 175 167 165 52

5 105 123 105 105 105 109 65

10 88 88 61 61 88 77 219

50 61 44 35 35 44 44 89

4



2.2.2 Malaria Data

This data set was extracted from the Masters thesis of Eleanor Gouws (1995,

p.98) and was collected by researchers from the Medical Research Council (MRC)

in Durban who were involved in its Malaria National Program.

Malaria researchers collected blood samples from suspected malaria sufferers

who reported to clinics in the Ubombo district of KwaZulu-Natal during April

1989 and March 1990. The samples were treated with varying concentrations of

the antimalarial drug, Halofantrine, and the number of surviving malaria parasites

was recorded. Three batches were exposed to each dose of Halofantrine. Due to

the technique used to measure the number of parasites (Gouws, 1995, p.51-53), the

observations were not integer-valued. They have been rounded off to the nearest

whole number in this thesis because they record counts of parasites. The data are

presented in Table 2.2.

Table 2.2: Data for malaria parasites exposed to the antimalarial drug Halo-

fantrine.

Drug conc. Parasitaemia Mean Variance

(µ/l)

0 4957 5065 5010 5011 2916

1 5193 4897 4816 4969 39384

2 4590 4516 4223 4443 37669

4 3615 3356 3102 3357 65794

8 914 816 657 796 16822

16 49 12 12 24 456

32 23 30 19 24 31

64 33 88 62 61 757

The World Health Organization (WHO) kits used in drug sensitivity include

plates that are predosed with a particular drug. The preparation of the plates
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is quality controlled and takes place in pharmaceutical laboratories in order to

eliminate variation between wells within plates and variation between plates as

much as possible (Gouws, 1995, p.48-50). As a consequence of these precautions,

a replication effect is not considered for the malaria data of Table 2.2. This decision

is in accord with Gouws (1995) who also did not include a replication effect in her

analysis of the data.

It is common in the analysis of bioassay data to model the natural mortality

of the population, λ. However, in a Wadley’s problem setting, the estimate of N

incorporates natural mortality since it represents the number of organisms that

would have survived treatment with a zero dose of the drug. Thus the estimation

of λ is omitted in this study when considering the algae and malaria data.

2.3 The Poisson Model

The aim of this section is to introduce the classical approach to modelling Wadley’s

problem, which entails modelling N , the unknown number of organisms initially

exposed to a drug, with a Poisson distribution (Wadley, 1949).

2.3.1 Setup and Notation

Following Baker, Pierce and Pierce (1980), the control observations and the counts

corresponding to non-zero doses of the drug are considered separately. Specifically,

let ycj, j = 1, . . . , nc, denote an observation from the control group, and let yij

refer to the number of survivors observed for a non-zero concentration di of the

drug, with j = 1, . . . , ni and i = 1, . . . , D. Associated with a dose di of the drug is

the probability of death of a parasite pi and the log-dose log di = xi. The intention

is to describe a function of the probability of death as a linear expression in log-

dose, i.e. g(pi) = α+ βxi, where g is a function of the unknown parameters α and

β.
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2.3.2 Poisson Distribution for N

Consider a random variable Y which denotes the number of organisms that survive

exposure to a drug, where the probability of death for an organism is p and the

probability of survival is 1 − p. The survival of one organism is assumed to be

independent of the survival of another. As a result, if N , the number of organisms

initially treated with the drug, was known, then Y given that N = n would

be expected to follow a binomial distribution with parameters n and (1 − p), i.e.

Y | N = n ∼Binomial(n, 1−p). Wadley (1949) considered modelling the unknown

N using a Poisson distribution with parameter τ . Under these circumstances, the

marginal probability mass function (p.m.f.) of Y is

Pr(Y = y) =

∞
∑

n=y

Pr(Y = y|N = n)Pr(N = n)

=

∞
∑

n=y





n

y



 (1 − p)ypn−y e
−ττn

n!

=
[τ(1 − p)]ye−τ

y!

∞
∑

n=y

(τp)n−y

(n− y)!

=
[τ(1 − p)]ye−τ

y!

∞
∑

x=0

(τp)x

x!

=
[τ(1 − p)]ye−τ(1−p)

y!
,

which indicates that Y follows a Poisson distribution with parameter τ(1− p), i.e.

Y ∼Poisson[τ(1−p)]. This result was obtained by Wadley (1949) and is intuitively

satisfying.

An alternative derivation of this result can be obtained using probability gen-

erating functions (p.g.f.’s). The random variable Y can be thought of as the sum of

N Bernoulli trials, X1, X2, . . . , XN where Xi ∼ Binomial(1, 1− p), i.e. Y =
N

∑

i=1

Xi.

Suppose that N∼ Poisson(τ). Then, since the p.g.f. of Xi is PX(s) = p+ (1 − p)s

and that of N is PN(s) = eτ(1−s), the p.g.f. of Y can be found by invoking a

well-known result on compound distributions (Grimmett and Welsh, 1986, p.51)
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as

PY (s) = PN [PX(s)]

= eτ [1−p−(1−p)s]

= eτ(1−p)(1−s) .

Thus Y is Poisson distributed with parameter τ(1 − p).

2.3.3 Likelihood Function

The likelihood function for the data ycj, j = 1, . . . , nc, and yij, j = 1, . . . , ni, i =

1, . . . , D, is algebraically identical to the joint p.m.f. of the random variables Ycj

and Yij. Since the probability of non-natural death of a parasite in the control

group is zero, the variable Ycj follows a Poisson distribution with parameter τ and

the likelihood and log-likelihood functions are given by

Lc =
nc
∏

j=1

τ ycje−τ

ycj!

and

ℓc =
nc

∑

j=1

ycj ln τ −
nc

∑

j=1

τ −
nc

∑

j=1

ln(ycj!)

= ln τ

nc
∑

j=1

ycj − ncτ −
nc

∑

j=1

ln(ycj!)

respectively. Observations corresponding to non-zero doses di of the drug are a

random sample from a Poisson distribution with parameter τ(1−pi), i = 1, . . . , D.

The likelihood and log-likelihood functions for these observations can therefore be

written as

Ld =
D

∏

i=1

ni
∏

j=1

[τ(1 − pi)]
yije−τ(1−pi)

yij!

and

ℓd =

D
∑

i=1

ni
∑

j=1

yij ln[τ(1 − pi)] −
D

∑

i=1

niτ(1 − pi) −
D

∑

i=1

ni
∑

j=1

ln(yij!)

8



= ln τ
D

∑

i=1

ni
∑

j=1

yij +
D

∑

i=1

ni
∑

j=1

yij ln(1 − pi) − τ
D

∑

i=1

ni(1 − pi) −
D

∑

i=1

ni
∑

j=1

ln(yij!)

respectively. The log-likelihood for the data, which is denoted by ℓ(τ, p; y), is

then obtained by summing the log-likelihoods for all control observations and all

observations arising from treatments with non-zero doses of the drug as

ℓ(τ, p; y) = ℓc + ℓd

= ln τ
nc

∑

j=1

ycj − ncτ −
nc

∑

j=1

ln(ycj!) + ln τ
D

∑

i=1

ni
∑

j=1

yij +
D

∑

i=1

ni
∑

j=1

yij ln(1 − pi)

−τ
D

∑

i=1

ni(1 − pi) −
D

∑

i=1

ni
∑

j=1

ln(yij!) .

2.3.4 Modelling the Probabilities

Two drug tolerance distributions were investigated for modelling the binomial

probability of death pi at log-dose xi, i = 1, . . . , D, namely those based on the

logit model and the complementary log-log model. When the logit model is used

ln

(

pi

1 − pi

)

= α + βxi ,

which is typically interpreted as the logarithm of the odds ratio. As a result

pi =
eα+βxi

1 + eα+βxi
, for i = 1, . . . , D .

The complementary log-log model can be expressed as

ln[− ln(1 − pi)] = α + βxi

and therefore

pi = 1 − e−eα+βxi , for i = 1, . . . , D.

The logit function is symmetric in that

ln

(

pi

1 − pi

)

= − ln

(

1 − pi

pi

)

9



(McCullagh and Nelder, 1989, p.108) and it also gives similar results to the pro-

bit function (Dobson, 2002, p.118). The complementary log-log function is an

asymmetric function. These two tolerance distributions therefore take various

properties of the probability of death into account. The two functions relate the

probability of the death of an organism to the linear parameters α and β and are

therefore types of link functions. They are not, however, link functions as related

to generalized linear models (GLM’s) because they do not link pi linearly with all

the parameters in the model, specifically with τ .

It has been shown that the responses Yij, j = 1, . . . , ni and i = 1, . . . , D, follow

a Poisson distribution, which is a member of the exponential family of distribu-

tions. To determine whether or not the model Yij ∼Poisson[τ(1 − pi)], together

with the probabilities, pi, which are modelled either by a logit or a complementary

log-log function is a GLM, consider the expected number of survivors for the ith

dose, where j = 1, . . . , ni and i = 1, . . . , D. This parameter is given as

E(Yij) = µi

=
τ

1 + eα+βxi

when a logit model is adopted for pi and as

E(Yij) = τe−eα+βxi

when pi is modelled with a complementary log-log function. In order for either

model to be a GLM a monotone function of the mean, denoted g(µi), which is

linear in all the parameters τ, α and β is required. It would seem that such a

function cannot be found. This absence is implied by Smith and Morgan (1989)

who linearize the link function by means of a Taylor series expansion in order to

overcome the nonlinearity. Therefore there seems to be no way of casting Wadley’s

problem with the number of parasites surviving modelled by a Poisson[τ(1 − p)]

model and with the probability of death of a parasite modelled by a logit or

complementary log-log function, as a GLM. Hence the model is classified as a

generalized nonlinear model.
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For the remainder of this thesis the Poisson model with parameter τ(1 − p)

which models the number of parasites surviving, together with the logit or com-

plementary log-log function adopted for the probability p, will be referred to as

the Poisson[τ(1 − p)] model.

2.3.5 Score Function and Information Matrix

Score Function

The score function, denoted by U, is defined as the first derivative of the log-

likelihood ℓ with respect to the parameters in the model. Denote the log-likelihood

for a single control observation by ℓcj, j = 1, . . . , nc, and for a single observation

corresponding to a non-zero dose of the drug di by ℓij where j = 1, . . . , ni and

i = 1, . . . , D. Then the scores for a single observation from the control group

when the probability of death is modelled with either a logit or complementary

log-log function are identical and are given by

∂ℓcj
∂τ

=
ycj

τ
− 1 ,

∂ℓcj
∂α

= 0 ,

∂ℓcj
∂β

= 0 .

When the logit function is adopted to model the probability of the death of an

exposed organism, the first derivatives of ℓij , j = 1, . . . , ni and i = 1, . . . , D, with

respect to τ, α and β are

∂ℓij
∂τ

=
yij

τ
− (1 − pi) ,

∂ℓij
∂α

= −yijpi + τpi(1 − pi) ,

∂ℓij
∂β

= −yijxipi + τxipi(1 − pi) .

The score functions for the data are then found by summing the scores for the

individual observations over all observations. Therefore when a logit model is
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used to model pi the score functions for the data are

∂ℓ(τ, p; y)

∂τ
=

nc
∑

j=1

ycj

τ
+

D
∑

i=1

ni
∑

j=1

yij

τ
− nc −

D
∑

i=1

ni(1 − pi) ,

∂ℓ(τ, p; y)

∂α
= −

D
∑

i=1

ni
∑

j=1

yijpi + τ

D
∑

i=1

nipi(1 − pi) ,

∂ℓ(τ, p; y)

∂β
= −

D
∑

i=1

ni
∑

j=1

yijxipi + τ

D
∑

i=1

nixipi(1 − pi) .

For the complementary log-log distribution with pi = 1 − e−eα+βxi the first

derivatives of ℓij, j = 1, . . . , ni and i = 1, . . . , D, with respect to τ, α and β are

given by

∂ℓij
∂τ

=
yij

τ
− (1 − pi) ,

∂ℓij
∂α

= yij ln(1 − pi) − τ(1 − pi) ln(1 − pi) ,

∂ℓij
∂β

= yijxi ln(1 − pi) + τxi(1 − pi) ln(1 − pi) .

The scores for the data are therefore

∂ℓ(τ, p; y)

∂τ
=

nc
∑

j=1

ycj

τ
+

D
∑

i=1

ni
∑

j=1

yij

τ
− nc −

D
∑

i=1

ni(1 − pi) ,

∂ℓ(τ, p; y)

∂α
=

D
∑

i=1

ni
∑

j=1

yij ln(1 − pi) − τ

D
∑

i=1

ni(1 − pi) ln(1 − pi) ,

∂ℓ(τ, p; y)

∂β
=

D
∑

i=1

ni
∑

j=1

yijxi ln(1 − pi) + τ

D
∑

i=1

nixi(1 − pi) ln(1 − pi) .

Note that for both the logit and complementary log-log link functions, the

maximum likelihood estimates for the parameters τ, α and β are solutions to the

above equations. In order to verify that the solutions found are maxima, the matrix

of second derivatives of the log-likelihood function with respect to the parameters

can be computed. If the matrix is negative definite then the solutions are indeed

the maximum likelihood estimates of the parameters (Dobson, 2008, p.12).
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Information Matrix

The information matrix is defined to be minus the matrix of expected values of

the second-order derivatives of the log-likelihood function, ℓ, with respect to the

parameters in the model. The inverse of the information matrix corresponds to

the asymptotic covariance matrix of parameter estimates (Dobson, 2002, p.73).

In particular the square roots of the diagonal elements of this inverse are the

approximate standard errors of the maximum likelihood estimates.

For the parameters τ, α and β in the present example, the information matrix

is found by invoking the expression

I = −E

















∂2ℓ(τ, p;Y )

∂τ 2

∂2ℓ(τ, p;Y )

∂τ∂α

∂2ℓ(τ, p;Y )

∂τ∂β
∂2ℓ(τ, p;Y )

∂τ∂α

∂2ℓ(τ, p;Y )

∂α2

∂2ℓ(τ, p;Y )

∂α∂β
∂2ℓ(τ, p;Y )

∂τ∂β

∂2ℓ(τ, p;Y )

∂α∂β

∂2ℓ(τ, p;Y )

∂β2

















.

Denote the information for a single observation from the control category by

Icj, j = 1, . . . , nc, and for a single observed count for dose di by Iij , where

j = 1, . . . , ni and i = 1, . . . , D. Then the information matrix for a single ob-

servation from the control group is given by

Icj =











1

τ
0 0

0 0 0

0 0 0











.

For an observation yij, j = 1, . . . , ni and i = 1, . . . , D, arising from the adminis-

tration of dose di of the drug and when a logit function is used to model pi, the

information matrix is

Iij =











1 − pi

τ
−pi(1 − pi) −xipi(1 − pi)

−pi(1 − pi) τp2
i (1 − pi) τxip

2
i (1 − pi)

−xipi(1 − pi) τxip
2
i (1 − pi) τx2

i p
2
i (1 − pi)











.
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Due to the independence of the observations the information matrix for the param-

eters τ, α and β is found by summing the information matrix for each observation

over all of the observations. The information matrix for τ, α and β where pi is

modelled with a logit function is therefore

I =























1

τ

[

nc +
D

∑

i=1

ni(1 − pi)

]

−
D

∑

i=1

nipi(1 − pi) −
D

∑

i=1

nixipi(1 − pi)

−
D

∑

i=1

nipi(1 − pi) τ
D

∑

i=1

nip
2
i (1 − pi) τ

D
∑

i=1

nixip
2
i (1 − pi)

−
D

∑

i=1

nixipi(1 − pi) τ

D
∑

i=1

nixip
2
i (1 − pi) τ

D
∑

i=1

nix
2
i p

2
i (1 − pi)























,

(2.1)

which is in accord with that given by Haines, Clarke, Gouws and Rosenberger

(2001).

Consider an observation yij, j = 1, . . . , ni and i = 1, . . . , D, resulting from

treatment with a dose di of the drug on a group of parasites and where pi is mod-

elled by a complementary log-log function. The information for this observation

is

Iij =











1 − pi

τ
(1 − pi) ln(1 − pi) xi(1 − pi) ln(1 − pi)

(1 − pi) ln(1 − pi) τ(1 − pi) ln2(1 − pi) τxi(1 − pi) ln2(1 − pi)

xi(1 − pi) ln(1 − pi) τxi(1 − pi) ln2(1 − pi) τx2
i (1 − pi) ln2(1 − pi)











.

The information matrix for the parameters of the model in this instance is therefore

I =























1

τ

[

nc +

D
∑

i=1

ni(1 − pi)

]

D
∑

i=1

ni(1 − pi) ln(1 − pi)

D
∑

i=1

nixi(1 − pi) ln(1 − pi)

D
∑

i=1

ni(1 − pi) ln(1 − pi) τ

D
∑

i=1

ni(1 − pi) ln2(1 − pi) τ

D
∑

i=1

nixi(1 − pi) ln2(1 − pi)

D
∑

i=1

nixi(1 − pi) ln(1 − pi) τ

D
∑

i=1

nixi(1 − pi) ln2(1 − pi) τ

D
∑

i=1

nix
2
i (1 − pi) ln2(1 − pi)






















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.

(2.2)

Models for Separate Doses

A model that fits a separate Poisson distribution to each dose is also consid-

ered in the present study and is conveniently referred to as the separate dose

model. Specifically the model assumes that observations for the control Ycj are

Poisson(µc), j = 1, . . . , nc, and those for dose di, namely Yij , are Poisson(µi),

j = 1, . . . , ni and i = 1, . . . , D. Note immediately that the maximum likelihood

estimates for the means µc and µi are the sample means yc and yi respectively,

where

yc =

nc
∑

j=1

ycj

nc

and

yi =

ni
∑

j=1

yij

ni
.

Although this model is not sophisticated, it is a useful base model against which

comparisons can be made.

2.3.6 Estimation

Since the likelihood function captures how likely the parameters are for the given

data, a meaningful and commonly used approach to estimation is through the max-

imization of the likelihood function. Note that the logarithm function is monotone

increasing and thus maximizing the log-likelihood is equivalent to maximizing the

likelihood with respect to the parameters τ, α and β. Three methods of obtaining

the maximum likelihood estimates of the parameters are introduced here.
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Wadley’s Method

Wadley (1949) considered a probit tolerance distribution and estimated τ, α and

β for the Poisson dose-response model with parameter τ(1 − p) by equating the

score functions to zero and solving them simultaneously, i.e. by finding solutions

to

∂ℓ(τ, p; y)

∂τ
= 0 ,

∂ℓ(τ, p; y)

∂α
= 0 ,

∂ℓ(τ, p; y)

∂β
= 0 .

Explicit solutions to these equations cannot be obtained but iterative tech-

niques can be employed to approximate the solutions, as recommended by Finney

(1971, p.53). In particular, Wadley (1949) obtained initial estimates from rough

graphical or arithmetic estimation and then adopted the Taylor-Maclaurin expan-

sion to improve them until adjustments to estimates on consecutive iterations be-

came appropriately small. This method of estimation was designed for calculation

by hand and is old-fashioned. It is therefore not considered in this thesis.

Linearizing the Model and Composite Link Functions

A procedure, WADLEY, which makes use of methods given in a GLIM macro by

Smith and Morgan (1989), is available in Genstat. The procedure incorporates

composite link functions, one for control observations and the other for observa-

tions corresponding to the non-zero doses of the drug, and involves linearizing the

link function with respect to the parameters using a Taylor series expansion.

The WADLEY procedure in Genstat was used in the present study but was

found to be problematic in a number of ways. For example if Genstat is required to

find the log of zero, as is the case for zero doses, it simply excludes the associated

observation from the model without warning, thereby decreasing the degrees of

freedom for the model. As a result a small positive number needs to be added to
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the zero doses in order to retain them in the model. The procedure also requires

the user to differentiate between the controls and non-zero doses in order for it

to make use of composite link functions, and, as indicated already, the algorithm

used involves linearizing the link function with respect to the parameters rather

than maximizing the likelihood directly. Further, this procedure acts rather like

a “black box” and it is therefore difficult to identify and isolate problems without

understanding and modifying the extensive Genstat code.

Constrained Nonlinear Optimization

The log-likelihood function ℓ(τ, p; y) is a nonlinear function of the parameters τ, α

and β. Thus a nonlinear optimization routine can be used to maximize ℓ(τ, p; y).

Such procedures are iterative and require the input of starting values. The max-

imum observed count provides a reasonable starting value for the parameter τ

in the Poisson[τ(1 − p)] model and starting values for α and β can be obtained

from fitting an appropriate GLM based on the binomial distribution to the data,

with the total number of organisms fixed at the maximum observed count. The

constraints τ > 0 and β > 0 are implicit in the model and must be introduced

into the optimization routine. Note that the parameter β is constrained in this

manner because the probability of death of a parasite is expected to increase with

increasing doses of the drug.

Due to the problems encountered in using the WADLEY procedure in Gen-

stat, the above method of direct optimization was used almost exclusively in this

thesis. Specifically the routines were programmed using the language Gauss and

incorporate the Gauss procedure OPTMUM.

Inference

The general approach to obtaining the standard errors of the maximum likelihood

estimates of the parameters is to substitute these estimates into the inverse of the

information matrix and then to take the square roots of the resulting diagonal
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elements (Azzalini, 1996, p.91). The approximate standard errors for the param-

eter estimates τ̂ , α̂ and β̂ can be calculated in Gauss, using the inverse of the

information matrix specified in (2.1) when the probabilities pi are modelled with a

logit function, and the inverse of the information matrix in expression (2.2) when

the complementary log-log function is adopted for pi, i = 1, . . . , D.

Goodness of Fit

For the maximal model used in the calculation of the deviance, consider Yij ∼Poisson(λij),

j = 1, . . . , ni and i = 1, . . . , D. Then the maximum likelihood estimate for λij is

yij, i.e. λ̂ij = yij , and therefore the associated value of the log-likelihood is

ℓ(λ̂, y) =
nc

∑

j=1

{−ycj + ycj ln ycj − ln ycj!} +

+

D
∑

i=1

ni
∑

j=1

{−yij + yij ln yij − ln yij!}

where λ̂ and y are the vectors of parameter estimates and observed responses

respectively. Then the deviance for the Poisson model with means τ(1 − pi) is

D = 2[ℓ(λ̂; y) − ℓ(τ̂ , p̂; y)]

= 2

{

nc
∑

j=1

(−ycj + ycj ln ycj − ln ycj!) +
D

∑

i=1

ni
∑

j=1

(−yij + yij ln yij − ln yij !)

−
[

nc
∑

j=1

(ycj ln τ − ln ycj! − τ) +

D
∑

i=1

ni
∑

j=1

(yij ln τ(1 − pi) − τ(1 − pi) − ln yij !)

]}

.

The aim of introducing the deviance is to determine the adequacy of the

Poisson[τ(1 − p)] model for the data. Since the deviance is approximately chi-

squared distributed with degrees of freedom equal to the number of observations

minus the number of parameters in the model (Dobson, 2002, p.76), the fit of a

model can be assessed by comparing the deviance with its expected value under

the associated χ2 distribution. In general, a large value of the deviance D indicates

that a model does not describe the data well. Since the mean of the χ2 distribution
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is its degrees of freedom, it is often convenient to assess the adequacy of a model

by comparing the deviance with the degrees of freedom. If the deviance is much

greater than the degrees of freedom, the model does not fit the data adequately.

Alternatively the mean deviance, which is the ratio of the deviance to its degrees of

freedom, can be computed and if a model is satisfactory its mean deviance would

be close to one (Collett, 2003, p.70). However, situations arise where the mean

deviance for a model is large but plots of the residuals suggest that the model

provides a reasonable fit for the data. In these instances the data are said to be

overdispersed (Collett, 2003, p.198). Thus the deviance provides a measure of this

overdispersion.

The fit of two nested models which have q1 and q2 degrees of freedom with

q1 > q2 can be compared by considering the difference in their deviances (Dobson,

2002, p.80-81). If both of the models are suitable for the data the difference in their

deviance follows an approximate χ2
q1−q2

distribution. A non-significant difference

in the deviances is interpreted as indicating that the model with q2 degrees of

freedom should be selected for the data for the sake of parsimony.

Morgan (1992, p.236) gives details regarding a Monte Carlo approach for model

checking which was described by Pack (1986) in his unpublished Ph.D. thesis. The

method is based on the assumption that the fitted model is the true model for the

data. The parameter estimates obtained from this fitted model are used to simulate

a number of data sets. The model under consideration is then fitted to each data

set and the log-likelihood from the fit is recorded in order to obtain a range of log-

likelihoods for the simulated data. A p-value is obtained from this range, as with

a randomization test, and a model with a small p-value is considered to provide a

poor fit to the data.

2.3.7 Examples

The Poisson[τ(1 − p)] model was fitted to the algae and malaria data sets that

were described earlier in Section 2.2. The parameters were estimated using both
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the nonlinear optimization routine from Gauss and the Genstat WADLEY proce-

dure, as explained in Section 2.3.6. The results from the Genstat procedure were

included for comparison purposes.

Algae Data

The results from fitting the Poisson[τ(1 − p)] models to the algae data in Gauss

and Genstat are presented in Table 2.3. The two programs yielded very similar

results but Gauss was deemed preferable because it allows for more user control

than the Genstat procedure. Details regarding the goodness of fit of the saturated

model, denoted {λij}, the base model with separate means for each dose, denoted

{µi}, and the Poisson[τ(1 − p)] model with the logit and complementary log-log

tolerance distributions used for the probability of death are reported in Tables 2.4

and 2.5.

Under the assumption that the null hypothesis is true, the p-value is the proba-

bility of a test statistic being at least as extreme as that calculated for the observed

data (Hogg, McKean and Craig, 2005, p.276). The p-values based on the χ2 dis-

tribution for deviances indicate that the Poisson model with a logit link function

provides a better fit to the algae data than the model with a complementary log-

log link function. Indeed the p-value of 0.006 indicates that the Poisson[τ(1 − p)]

model with a complementary log-log tolerance distribution is not suitable for mod-

elling the algae data. These p-values are expected to be similar to the probabilities

derived from the Monte Carlo output. For example for the model {µi} the Monte

Carlo probability for the model for separate doses is
1000 − 881

1000
=

119

1000
= 0.119

which can be compared with a p-value of 0.104 associated with the χ2 value of

28.236, with 20 degrees of freedom.

Plots of observed and expected responses versus log-dose for the Poisson

[τ(1 − p)] model with logit and complementary log-log tolerance distributions are

shown in Figures 2.1(a) and 2.1(b) respectively. For this data set, the curve of

expected responses reaches a maximum asymptotically at -5 and therefore the
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Table 2.3: Results from fitting the Poisson[τ(1− p)] model to the algae data, where Cll

refers to the complementary log-log function.

Function Parameter Gauss Genstat

for p Parameter Standard Parameter Standard

Estimate Error Estimate Error

τ̂ 224.852 6.593 224.820 6.450

Logit α̂ -0.902 0.126 -0.907 0.123

β̂ 1.415 0.089 1.419 0.088

τ̂ 226.519 6.647 226.440 6.530

Cll α̂ -0.932 0.090 -0.936 0.089

β̂ 0.872 0.058 0.875 0.057

Table 2.4: Details of the deviance of the four models fitted to the algae data, where

τ, α, β (logit) and τ, α, β (cll) refer to the Poisson[τ(1 − p)] model with logit and com-

plementary log-log tolerance distributions respectively.

Model Maximum Number of Deviance p-value

log-likelihood parameters

{λij} -81.208 25 0 -

{µi} -95.326 5 28.236 0.104

τ, α, β (logit) -97.776 3 33.136 0.060

τ, α, β (cll) -102.394 3 42.303 0.006

Table 2.5: Details of the Monte Carlo results of the four models fitted to the algae data,

where τ, α, β (logit) and τ, α, β (cll) refer to the Poisson[τ(1 − p)] model with logit and

complementary log-log tolerance distributions respectively.

Model Maximum Monte Carlo Rank of Probability

log-likelihood range max log-

lik. in range

{λij} -81.208 - - -

{µi} -95.326 (-84.104; -102.292) 881 0.119

τ, α, β (logit) -97.776 (-103.201; -85.165) 954 0.046

τ, α, β (cll) -102.394 (-107.412; -84.638) 985 0.015
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x-coordinate at -5 can be taken as the asymptote. The graphs highlight the suit-

ability of the Poisson [τ(1 − p)] model with a logit function for this data set. In

particular, this model seems to provide a better fit to the observations correspond-

ing to a log-dose of approximately zero. The two models seem to provide similar

fits to the other observed responses. These findings are confirmed by the residual

plots which are presented in Figures 2.2(a) and 2.2(b).

As an aside, the LD50, which is the dose required to kill 50% of the organisms,

is estimated as 10−α̂/β̂ for the model with a logit tolerance distribution and with

log-dose as a predictor variable. A 95% Wald confidence interval for the LD50 can

be calculated as

L̂D50 ± 1.96 se(L̂D50)

where se(L̂D50) is the standard error of this estimate (Kutner, Nachtsheim, Neter

and Li, 2005, p.579). If dose is used as a predictor variable instead of log-dose,

the LD50 is estimated as −α̂/β̂ and its standard error is approximately

√

√

√

√

Var(α̂) − 2 α̂
β̂
Cov(α̂, β̂) +

(

α̂
β̂

)2

Var(β̂)

β̂2

(Collett, 2003, p.108). A 95% Wald interval, denoted (LD1;LD2), can be com-

puted for −α/β. The transformation (10LD1; 10LD2) then yields a 95% Wald in-

terval for the LD50 when a logit tolerance distribution is used with log-dose as a

predictor variable. The algae data has an estimated LD50 of 4.335 µg/ml when a

logit model is used for the probability of death of an organism and the associated

95% Wald confidence interval is (3.327;5.649). When a complementary log-log

function models the probability of death of an organism, the LD50 is estimated

as 10
ln(ln 2)−α̂

β̂ . In this instance, it is estimated as 4.449 µg/ml, which is close to

the estimate obtained when a logit tolerance distribution is used. The 95% Wald

interval for the LD50 with a complementary log-log link function can be obtained

in a similar manner as that for the model with a logit link function. For the algae

data this interval is (0;9.906).
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Figure 2.1: (a)

Figure 2.1: (b)

Figure 2.1: Plot of observed counts (
⊙

) and fitted responses (-) against log-dose

for (a) the logit model and (b) the complementary log-log model, fitted to the

algae data.
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Figure 2.2: (a)

Figure 2.2: (b)

Figure 2.2: Graph of residuals versus fitted values of the Poisson[τ(1 − p)] model

for the algae data with (a) the logit function and (b) the complementary log-log

function.
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Malaria Data

Details regarding the parameter estimates obtained from fitting the Poisson

[τ(1 − p)] model to the malaria data are given in Table 2.6. Both of the estima-

Table 2.6: Results from fitting the Poisson[τ(1 − p)] model to the malaria data,

where Cll refers to the complementary log-log function.

Function Parameter Gauss Genstat

for p Parameter Standard Parameter Standard

Estimate Error Estimate Error

τ̂ 5011.220 26.919 5012.300 26.700

Logit α̂ -4.523 0.070 -4.535 0.071

β̂ 6.748 0.079 6.757 0.079

τ̂ 5860.941 39.950 5721.6001 41.000

Cll α̂ -1.534 0.026 -1.654 0.024

β̂ 2.173 0.023 2.280 0.021

1The Genstat output contained the message: convergence failure.

Table 2.7: Details of the four models fitted to the malaria data, where τ, α, β (logit)

and τ, α, β (cll) refer to the Poisson[τ(1−p)] model with logit and complementary

log-log tolerance distributions respectively.

Model Maximum Number of Monte Carlo Deviance from

log-likelihood parameters range saturated model

{λij} -97.631 24 - 0

{µi} -187.338 8 (-115.364; -99.658) 179.414

τ, α, β (logit) -870.023 3 (-120.860; -98.810) 1544.780

τ, α, β (cll) -2733.149 3 (-429.792; 299.006) 5721.037

tion procedures gave similar parameter estimates and the Genstat output therefore

confirms the results obtained from the Gauss program.

Details of the fits of the saturated model, the separate dose model and the
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Poisson[τ(1 − p)] model with both the logit and complementary log-log functions

adopted for the probabilities of death are presented in Table 2.7.

The large values of the deviances indicate that the models either provide poor

fits compared with the saturated model or that there is significant overdispersion.

Specifically, the model for separate doses has a deviance of 179.414, which is highly

significant when based on a χ2 distribution with 16 degrees of freedom. The

Poisson models with logit and complementary log-log tolerance distributions have

respective deviances of 1544.780 and 5721.037, which are significantly higher than

the mean of the χ2 distribution with 21 degrees of freedom. Furthermore, the

deviances indicate that, of the Poisson[τ(1 − p)] models, a better fit is obtained

when a logit function is used to model the probability of the death of a parasite.

These findings are confirmed by the Monte Carlo results.

Plots of observed and fitted responses against log-dose for the

Poisson[τ(1 − p)] model with logit and complementary log-log functions for the

probability p are shown in Figures 2.3(a) and 2.3(b) respectively. Since the curve

reaches a maximum asymptotically at a log-dose of -2, the y-coordinate at -2

in these diagrams is taken as the asymptote. The graphs indicate that the

Poisson[τ(1 − p)] model, with a logit distribution adopted for modelling the prob-

ability p, provides a reasonable fit to the data and that the complementary log-log

tolerance distribution does not model the probability of death well. The respective

residual plots for the logit and the complementary log-log models are shown in Fig-

ures 2.4(a) and 2.4(b) and confirm these observations. Thus it can be concluded

that the Poisson[τ(1 − p)] model with a logit tolerance distribution fits the data

reasonably well, but that the data are significantly overdispersed.

The estimate of the LD50 for the malaria data, with a logit model used for the

probability of death of a parasite, is 4.681 µmol/l and the 95% Wald interval is

(4.594; 4.763). When a complementary log-log tolerance distribution is used, the

LD50 is estimated as 3.446 µmol/l and the 95% Wald interval is (0;6.233). In this

case the estimate of the LD50 using a logit tolerance distribution is very different
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Figure 2.3: (a)

Figure 2.3: (b)

Figure 2.3: Plot of observed counts (
⊙

) and fitted responses (-) against log-dose

for (a) the logit model and (b) the complementary log-log model, fitted to the

malaria data.
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Figure 2.4: (a)

Figure 2.4: (b)

Figure 2.4: Graph of residuals versus fitted values of the Poisson[τ(1 − p)] model

for the malaria data with (a) the logit function and (b) the complementary log-log

function.
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from the estimate obtained when a complementary log-log tolerance distribution

is used.

2.4 Conclusions

The Poisson[τ(1 − p)] model is useful for modelling data in a Wadley’s problem

setting and the residual plots shown in Figures 2.2(a) and 2.4(a) for the algae and

malaria data respectively indicate that the distribution provides a reasonable fit

to the data when a logit function models the probability of death of an organism.

However, values of the deviance of this model compared with the maximal model

suggest that it provides a poor fit for the data sets. It can thus be concluded that

the apparent lack of fit of this model is due to the presence of overdispersion in

the data. As discussed in the examples, the Monte Carlo method of assessing the

fit of a model does not give any more information than the other model checking

techniques and as a result it is not used in subsequent chapters.

The remainder of this thesis was inspired by the algae and malaria data sets.

In particular, the study focuses on developing a theoretical framework that can

accommodate overdispersion in a Wadley’s problem setting. The subsequent chap-

ters include the logit rather than the complementary log-log tolerance distribution

because the logit function is more convenient to work with and because it was

found to be more suitable for the data sets included in this study.

29



Chapter 3

The Beta-Binomial Model

3.1 Introduction

Overdispersion in binomial-type data can be caused by variation in the response

probabilities. Skellam (1948) first suggested modelling the variability in the bi-

nomial parameter p with a beta distribution, thereby deriving the beta-binomial

model.

The beta-binomial distribution has been widely used to model overdispersion.

Although Morgan (1992, p.237-254) provides an excellent guide to model fitting

and analysis, there do not seem to be many good accounts of the properties of the

beta-binomial model. The purpose of this chapter, therefore, is to provide such

an account and to adapt the model crudely for a Wadley’s problem scenario. This

model serves as a prelude to the beta-Poisson model, which is more immediately

relevant to Wadley’s problem and follows in Chapter 4.

The beta-binomial model is described and its likelihood recorded in Section

3.2. Section 3.3 contains details regarding the score functions and the observed

Fisher information matrix, while estimation of the parameters and goodness of

fit are discussed in Section 3.4. The results from fitting the model to the algae

and malaria data sets are presented in Section 3.5. Section 3.6 contains some

concluding remarks.
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3.2 The Model

3.2.1 The Binomial Model

In the context of Wadley’s problem, the number of organisms initially exposed

to a drug, n, is unknown. Therefore the observed number of surviving parasites

follows a binomial distribution with unknown n and probability of survival 1 − p,

i.e. Y∼Binomial(n, 1 − p), where n is unknown. A crude estimate of n can be

obtained by using the mean of an untreated (control) sample, yc, where

yc =

nc
∑

j=1

ycj

nc

, j = 1, . . . , nc .

This estimate proves to be problematic if there is at least one observation corre-

sponding to a non-zero dose of the drug that exceeds it. In such cases the max-

imum observation, denoted by ymax, is used as an estimate for n (Olkin, Petkau

and Zidek, 1981). Once the number n has been estimated in this ad hoc manner,

it can be regarded as known and the binomial model can then be fitted to the data

in the usual way. This method of obtaining an estimate for n will lead to further

approximations in estimation and particularly in inference.

3.2.2 The Beta-Binomial Model

Consider now a random variable, Y , that corresponds to the number of parasites

surviving exposure to a particular dose of a drug and that follows a Binomial

(n, 1 − p) distribution, where n has been estimated using the methods described

in Section 3.2.1. In order to accommodate possible overdispersion in the data,

suppose that the probability of death of a parasite, p, follows a beta distribution

with parameters a and b. Then the marginal p.m.f. for Y is

Pr(Y = y) =

∫ 1

0

Pr(Y = y|P = p)Pr(P = p)dp
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=

∫ 1

0





n

y



 (1 − p)ypn−y Γ(a+ b)

Γ(a)Γ(b)
pa−1(1 − p)b−1dp

=

∫ 1

0





n

y





Γ(a+ b)

Γ(a)Γ(b)
pn−y+a−1(1 − p)b+y−1dp

=





n

y





Γ(b+ y)Γ(n+ a− y)

Γ(a+ b+ n)

Γ(a + b)

Γ(a)Γ(b)

=





n

y





B(b+ y, n+ a− y)

B(a, b)
, y = 0, 1, . . . , n ,

where B(a, b) refers to the beta function. Thus Y follows a beta-binomial distribu-

tion (Williams, 1975) which is unimodal when a, b > 1 (Collett, 2003, p.211). Note

that a beta distribution which has parameters a and b both equal to 1 corresponds

to the uniform distribution on the interval (0,1). Thus when this distribution is

used to model the probability of death of a parasite, the resulting distribution for

Y is uniform on the set {0, 1, . . . , n}, i.e. all values 0, 1, . . . , n are equally likely.

The mean and variance of Y can be obtained using well-known conditioning

arguments mentioned in texts such as Ross (2002, p.152) as

E(Y ) = Ep[E(Y |P )]

= Ep(nP )

= n
a

a + b

and

Var(Y ) = Ep[Var(Y |P )] + Varp[E(Y |P )]

= Ep[nP (1 − P )] + Varp(nP )

= nEp(P ) − nEp(P
2) + n2Varp(P )

=
nab

(a + b)2

{

1 +
(n− 1)

(a+ b+ 1)

}

,

where Ep represents the expectation with respect to p and Varp the variance with

respect to p (Griffiths, 1973).
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A frequently used reparametrization of this model is in terms of the parameters

π and θ where

π =
a

a + b

and

θ =
1

a+ b
.

The new parametrization is meaningful because π is the expected value of p

and the parameter θ determines the shape of the distribution when π is known

(Williams, 1975). It is also advantageous in terms of the stability and interpretabil-

ity of the parameters for dose-response models (Morgan, 1992, p.240). Under the

parametrization based on π and θ, the p.m.f. of Y is given by

Pr(Y = y) =





n

y





y−1
∏

r=0

(1 − π + rθ)

n−y−1
∏

r=0

(π + rθ)

n−1
∏

r=0

(1 + rθ)

.

This follows from the fact that for example

Γ(b+ y)

Γ(b)
= (b+ y − 1) . . . (b+ 1)b

=

y−1
∏

r=0

(b+ r) .

The mean and variance of Y are then written respectively as

E(Y ) = nπ

Var(Y ) = nπ(1 − π)

{

1 +
θ

1 + θ
(n− 1)

}

.

The variance of Y is therefore the usual binomial variance multiplied by the dis-

persion parameter, {1 +
θ(n− 1)

1 + θ
}, which accommodates over- or underdispersion

in the data. Note that Var(Y ) approaches the binomial variance, nπ(1 − π) as θ

approaches 0. The beta-binomial distribution with parameters π and θ is referred

to as BetaBin(n, π, θ) for the remainder of this thesis.
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3.2.3 Likelihood Function

Since the control observations are used to give a single estimate of the number of

parasites, n, initially exposed to the drug and in any case provide no information

regarding drug sensitivity, they are excluded from the data set for model fitting.

As a result, the likelihood function is only constructed for the observations yij

corresponding to non-zero doses of the drug, j = 1, . . . , ni and di, i = 1, . . . , D.

Associated with each dose of the drug is the log-dose xi and the probability of

death of a parasite, pi, which follows a beta distribution with parameters defined

by πi and θi. Since n has been estimated, it can be taken as a fixed value and the

likelihood and log-likelihood functions for the data can thus be written as

L(n, π, θ; y) =

D
∏

i=1

ni
∏

j=1



































n

yij





yij−1
∏

r=0

(1 − πi + rθi)

n−yij−1
∏

r=0

(πi + rθi)

n−1
∏

r=0

(1 + rθi)































and

ℓ(n, π, θ; y) =

D
∑

i=1

ni
∑

j=1

{

lnn! − ln(n− yi)! − ln yi! +

yij−1
∑

r=0

ln(1 − πi + rθi)

+

n−yij−1
∑

r=0

ln(πi + rθi) −
n−1
∑

r=0

ln(1 + rθi)

}

respectively.

3.2.4 Modelling the Probability

Results presented in Chapter 2 suggest that the logit function is a suitable distribu-

tion for modelling the probability of death of an organism for the algae and malaria

data sets. As mentioned in Chapter 2, this function is considered in the present

study for modelling the expected value of this probability, πi, and corresponding

to a log-dose xi,

πi =
eα+βxi

1 + eα+βxi
, i = 1, . . . , D .
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Furthermore, a common parameter θ is considered for all the doses of the drug

when this model is fitted. Note that the beta-binomial distribution is not a member

of the exponential family of distributions (Lindsey and Altham, 1998), and thus

the model which incorporates a logit function for π into this distribution is not a

GLM.

3.3 Score Functions and Observed Fisher Infor-

mation Matrix

Denote the log-likelihood function for a single observation yij by ℓij, j = 1, . . . , ni

and i = 1, . . . , D. Then the score functions for a single observation, yij , are simply

the first-order derivatives of ℓij with respect to the parameters θ, α and β and are

given by

∂ℓij
∂θ

=

yij−1
∑

r=0

r

1 − πi + rθ
+

n−yij−1
∑

r=0

r

πi + rθ
−

n−1
∑

r=0

r

1 + rθ

∂ℓij
∂α

= −
yij−1
∑

r=0

πi(1 − πi)

1 − πi + rθ
+

n−yij−1
∑

r=0

πi(1 − πi)

πi + rθ

∂ℓij
∂β

=

yij−1
∑

r=0

xiπi(1 − πi)

1 − πi + rθ
+

n−yij−1
∑

r=0

xiπi(1 − πi)

πi + rθ
.

The score functions for the data are then found by summing the score functions

for each observation over all observations.

3.3.1 Observed Fisher Information

In order to derive the information matrix of the beta-binomial distribution, the

second-order derivatives of the log-likelihood function with respect to the param-

eters θ, α and β are required. The nature of these second-order derivatives for

a beta-binomial model with a logistic tolerance distribution leads to difficulties
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in computing the information matrix. Consider, for example, the expected value

with respect to Yij of the second-order derivative of ℓij with respect to θ for the

observation yij. This is written

−E

{

∂2ℓij
∂θ2

}

= E







Yij−1
∑

r=0

r2

(1 − µi + rθ)2
+

ni−Yij−1
∑

r=0

r2

(µi + rθ)2
+

ni−1
∑

r=0

r2

(1 + rθ)2







=
∞

∑

y=0

Pr(Y = y)

{

yij−1
∑

r=0

r2

(1 − µi + rθ)2

+

ni−yij−1
∑

r=0

r2

(µi + rθ)2
+

ni−1
∑

r=0

r2

(1 + rθ)2

}

.

(3.1)

The computation of this expectation involves summing the appropriate function of

yij over all values of yij from 0 to ∞. The information −E

(

∂2ℓ(n, π, θ;Y )

∂θ2

)

can

then be obtained by summing the terms for each observation over all observations.

This is clearly a laborious task and can be problematic.

In cases where the information matrix is difficult to calculate, the standard

errors of the maximum likelihood estimates of the parameters can be estimated

using the inverse of the observed Fisher information matrix. This matrix is simply

minus the matrix of the second-order derivatives of the log-likelihood with respect

to the parameters in the model. For the beta-binomial model with a logit function

modelling π, the observed Fisher information matrix, which is denoted by Î is

Î = −

















∂2ℓ(n, π, θ; y)

∂θ2

∂2ℓ(n, π, θ; y)

∂θ∂α

∂2ℓ(n, π, θ; y)

∂θ∂β
∂2ℓ(n, π, θ; y)

∂θ∂α

∂2ℓ(n, π, θ; y)

∂α2

∂2ℓ(n, π, θ; y)

∂α∂β
∂2ℓ(n, π, θ; y)

∂θ∂β

∂2ℓ(n, π, θ; y)

∂α∂β

∂2ℓ(n, π, θ; y)

∂β2

















.

The diagonal elements of Î
−1 are the approximate variances of the parameter

estimates. The formulae for these elements were obtained using Mathematica but

they are very tedious and are therefore not presented explicitly here.
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3.3.2 Models for Separate Doses

Following Morgan (1992, p.254), two base models with large numbers of parameters

are considered for comparative purposes. The first model fits a separate beta-

binomial distribution to each dose of the drug, i.e. for observations corresponding

to dose di of the drug, i = 1, . . . , D, it assumes that Yij ∼BetaBin(n, πi, θi) for

j = 1, . . . , ni and is referred to as the {πi, θi} model. The second base model is

denoted by {πi, θ} and is a nested version of the {πi, θi} model in that it adopts a

common value of θ for all of the doses of the drug.

3.4 Estimation

The log-likelihood of the data for the beta-binomial model, with a logit function

modelling π, is a nonlinear function in the parameters θ, α and β and can be

maximized using a nonlinear optimization routine such as the iterative OPTMUM

routine in Gauss. This procedure requires the input of starting values for the

parameters that are to be estimated. The estimates of the parameters obtained

from fitting the binomial model to the data provide starting values for α and β,

while small starting values for θ seem to be most suitable. The constraints θ > 0

and β > 0 need to be incorporated into the routine.

The square roots of the diagonal elements of the inverse of the observed Fisher

information matrix, evaluated at the parameter estimates, provide the asymptotic

standard errors of these estimates (Azzalini, 1996, p.91) and for the present exam-

ple they were obtained from a Gauss program.

3.4.1 Inference

The fit of the beta-binomial model with a logit tolerance distribution can be com-

pared with those of the {πi, θi} and {πi, θ} models which were introduced in Sec-

tion 3.3.2 using the deviance. Morgan (1992, p.254) used the deviance approach to

good effect for the beta-binomial model with natural mortality and it is therefore
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adopted here as a means of model checking. Akaike’s Information Criterion (AIC)

which is calculated as -2ℓ+2q, where ℓ is the log-likelihood and q is the number of

parameters in the model, is also included here as a method of comparing the fits of

different models. The AIC provides a balance between the number of parameters

in a model of interest and the value of its maximum log-likelihood. The model with

the smallest AIC is thought to provide the best fit for the data. The AIC for the

beta-binomial model is calculated as AIC = −2ℓ(n̂, π̂, θ̂; y)+6, where .ℓ(n̂, π̂, θ̂; y)

is the maximized log-likelihood and q = 3.

95% Wald confidence intervals can be obtained for the parameters. For exam-

ple, the 95% Wald interval for the parameter θ is given by θ̂ ± 1.96 se(θ̂), where

se(θ̂) is the standard error of the estimate of θ (Kutner, Nachtsheim, Neter and

Li, 2005, p.579). Profile likelihood plots can also be produced for each of the pa-

rameters θ, α and β. A range of values of the parameter under consideration is

specified and for each value within this range the likelihood function is maximized

with respect to the remaining parameters in the model. The profile likelihood plots

can be used to construct approximate 95% confidence intervals for the parameters.

In particular, the 95% confidence interval for the parameter θ is given by [θ1, θ2],

where θ1 and θ2 satisfy

ℓP (θ1) = ℓP (θ2) = ℓ(n̂, π̂, θ̂; y) − 1

2
χ2

1,0.05

and where ℓP (θ) is the profile log-likelihood for θ evaluated at θ (Azzalini, 1996,

p.146). It is possible, however, to obtain one-sided confidence intervals when using

profile likelihoods. In these instances the Wald intervals are used to estimate the

95% confidence intervals of the parameters.
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3.5 Examples

3.5.1 Algae Data

The mean of the control observations for the algae data was 223 and was used as

an estimate of the number of organisms initially treated with the drug. A binomial

model was fitted to this data and the deviance obtained was 47.97 with 18 degrees

of freedom, indicating that the data may well be overdispersed. The beta-binomial

model with π specified by a logistic function was thus fitted to the algae data by

maximizing the likelihood function directly. 95% Wald confidence intervals, which

assume that the distributions of the parameters are approximately normal, were

computed for θ, α and β. Profile likelihood plots were also produced for θ, α and

β and were used to obtain 95% confidence intervals for these parameters. These

plots are presented in Figures 3.1 (a),(b) and (c) respectively. The estimates of

the parameters, along with their standard errors, 95% Wald intervals and 95%

profile likelihood intervals are recorded in Table 3.1. Although the 95% Wald

Table 3.1: Results from fitting the beta-binomial model to the algae data, where

π is modelled with a logit function.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

θ 0.006 0.002 (0.002;0.010) (0.002;0.017)

α -0.977 0.094 (-1.161;-0.793) (-1.160;-0.800)

β 1.477 0.107 (1.268;1.687) (1.290;1.670)

intervals are very similar to the 95% profile likelihood intervals, it is clear that the

distribution of θ is skew.

The fit of the beta-binomial model with a logit tolerance distribution was com-

pared with that of beta-binomial models which considered each dose separately

and the results are presented in Table 3.2. It is usual to perform a residual analy-

sis to verify the goodness of fit of a model and in the examples considered in this
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Figure 3.1: (a)

Figure 3.1: (b)

Figure 3.1: (c)

Figure 3.1: Profile likelihood plots for the parameters (a) θ, (b) α and (c) β of the

beta-binomial model with a logit tolerance distribution fitted to the algae data.
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thesis, the overdispersion has been identified in a residual analysis. A compari-

Table 3.2: A comparison of the beta-binomial models fitted to the algae data.

Model Maximum Number of AIC Deviance

log-likelihood parameters

{πi, θi} -2678.183 8 5372.366 -

{πi, θ} -2679.871 5 5369.742 3.376

θ, α, β -2682.123 3 5370.246 7.880

son of the models indicates that a common value for θ can be adopted, since the

deviance of the {πi, θ} model from the {πi, θi} base model is 3.376 which is close

to the mean 3 of a χ2
3 distribution. In fact, the AIC for the {πi, θ} model was

lower than that of the {πi, θi} model. The beta-binomial distribution, which has a

logit function modelling the parameter π, also seems to be a reasonably adequate

model for the algae data since it has a deviance of 7.880 from the {πi, θi} model.

This can be compared with a χ2 distribution with 5 degrees of freedom. The AIC

value of 5370.246 for this model was only slightly higher than 5369.742, the AIC

of the {πi, θ} model. This indicates that the {πi, θ} model provides the best fit

but that the beta-binomial model with a logistic tolerance distribution, which is

more parsimonious and captures dose dependence, is adequate for the algae data.

3.5.2 Malaria Data

The maximum observed count of 5193 parasites surviving for this data set corre-

sponded to the dose of 1 nmol/l of the drug and exceeded the control observations

and thus their mean of 5011. This estimate of n was increased slightly to allow for

the death of some of the parasites due to exposure to a non-zero dose of the drug

and also to assess the sensitivity of this change. It was found that incrementing

the estimate of n in this manner did not have a large impact on the estimation of

the remaining parameters. Therefore the highest observation of 5193 was used as

the estimate for n.

41



A binomial distribution, using the estimate of 5193 for the number of parasites

treated with the drug, was fitted to the malaria data. The deviance obtained from

fitting this model was 3022 with 19 degrees of freedom, indicating that the data

could be severely overdispersed. The beta-binomial model with parameters θ, α

and β was therefore fitted to the data by directly optimizing the log-likelihood

function. 95% Wald intervals were obtained for each of the parameters in this

model. Profile likelihood plots were also produced for the parameters and are

presented in Figures 3.2 (a), (b) and (c). These plots were used to obtain 95%

profile likelihood intervals for the parameters. The estimates of the parameters,

together with their standard errors, 95% Wald confidence intervals and 95% profile

likelihood intervals are presented in Table 3.3.

Table 3.3: Results from fitting the beta-binomial model to the malaria data, where

the expected probability, π, is modelled with a logit function.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

θ 0.037 0.014 (0.008;0.064) (0.018;0.092)

α -3.539 0.356 (-4.237;-2.841) (-4.200;-2.750)

β 5.479 0.486 (4.527;6.431) (4.350;6.400)

Observe that the distribution of θ is very skew and that the distribution of α

is symmetric, while the distribution of β is slightly skew. As a result of the shapes

of these distributions, the 95% Wald interval for θ is very different from the 95%

profile likelihood interval. The 95% Wald and 95% profile likelihood intervals for

the remaining parameters are reasonably similar.

The fit of this model was compared with those of the base models which are

described in Section 3.3.2 and which consider each dose of the drug separately.

Table 3.4 contains a summary of the comparisons of the different models that

were considered. The change in deviance of the {πi, θ} model, with a common

θ parameter for all doses, from the {πi, θi} model was 33.942 which is very high
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Figure 3.2: (a)

Figure 3.2: (b)

Figure 3.2: (c)

Figure 3.2: Profile likelihood plots for the parameters (a) θ, (b) α and (c) β of the

beta-binomial model with a logit tolerance distribution fitted to the malaria data.
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compared with that expected for a χ2
6 distribution. This suggests that a single θ for

all doses of the drug is not suitable. The beta-binomial model with a logit tolerance

distribution for π had a deviance of 111.144 from the {πi, θi} model. A comparison

of this deviance with the expected value of the χ2
11 distribution indicated that the

model did not provide a satisfactory fit for the malaria data. These findings are

confirmed by the AIC values. Therefore the beta-binomial model, with a fixed

value selected for n, provides a disappointing fit to the malaria data.

Table 3.4: A comparison of the beta-binomial models fitted to the malaria data.

Model Maximum Number of AIC Deviance

log-likelihood parameters

{πi, θi} -27494.940 14 55017.880 -

{πi, θ} -27511.911 8 55039.822 33.942

θ, α, β -27550.512 3 55107.024 111.144

3.6 Conclusions

The beta-binomial distribution was considered in this chapter as a crude model for

overdispersed data that arise from a Wadley’s problem setting. The overdispersion

in the algae data seems to have been well modelled by this distribution with a

logistic function used for the parameter π. In contrast, however, the beta-binomial

distribution did not adequately account for the overdispersion in the malaria data.

These findings support the notion that the beta-binomial model can provide a

valuable, but somewhat limited, tool for modelling overdispersion.

Overall it is clear that the estimates for the number of organisms initially ex-

posed to the treatments used in this chapter were crude but nevertheless provided

a simple solution to Wadley’s problem. These results lead to an investigation of

more holistic models for overdispersed data and in particular, more elegant distri-

butions that incorporate the estimation of n into the model.
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Chapter 4

The Beta-Poisson Model

4.1 Introduction

The beta-binomial distribution described in Chapter 3 is now extended to a Wadley’s

problem setting by modelling the unknown number of trials as a random variable,

N , with a Poisson distribution. The resulting distribution is termed the beta-

Poisson distribution. Properties of this model are explored and the distribution

is examined as a means of accommodating overdispersion in count data. The

model is then extended to a dose-response setting and its suitability for mod-

elling overdispersed dose-response data that arise from a Wadley problem setting

is investigated.

Section 4.2 comprises an introduction to the beta-Poisson distribution and a

literature review. The confluent hypergeometric function and methods of approx-

imating the p.m.f. of the beta-Poisson distribution are discussed in Section 4.3.

Properties of the distribution, together with some examples, are presented in Sec-

tion 4.4. The likelihood, score function and information matrix are discussed in

Section 4.5 and estimation in Section 4.6. Section 4.7 contains an example of

overdispersed count data and the adaptation of the beta-Poisson distribution for

dose-response data, together with examples, is discussed in Section 4.8. Section

4.9 reports some concluding remarks.
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4.2 Distribution

4.2.1 Derivation of the p.m.f.

Consider a random variable Y which follows a Poisson[τ(1 − p)] distribution as

discussed in Chapter 2. Suppose that the parameter p varies according to a beta

distribution with parameters a and b where a > 0 and b > 0, i.e. p ∼Beta(a, b).

Then the p.m.f. of Y can be derived from first principles as follows:

Pr(Y = y) =

∫ 1

0

Pr(Y = y|P = p)Pr(P = p) dp

=

∫ 1

0

[τ(1 − p)]ye−τ(1−p)

y!

Γ(a+ b)

Γ(a)Γ(b)
pa−1(1 − p)b−1 dp

=
τ ye−τΓ(a+ b)

y! Γ(a)Γ(b)

∫ 1

0

eτppa−1(1 − p)b+y−1 dp . (4.1)

Consider expanding eτp using a Taylor series expansion as

∞
∑

s=0

(τp)s

s!
and inter-

changing the summation and the integral. The infinite sum and the integral can

be interchanged because this sum converges (Grattan-Guinness, 1970, p.65). Then

expression (4.1) can be written

Pr(Y = y) =
τ ye−τ

y!

Γ(a+ b)

Γ(a)Γ(b)

∞
∑

s=0

τ s

s!

∫ 1

0

pa+s−1(1 − p)b+y−1dp

=
τ ye−τ

y!

Γ(a + b)Γ(b+ y)

Γ(a)Γ(b)

∞
∑

s=0

Γ(a+ s)

Γ(a+ s+ b+ y)

τ s

s!
. (4.2)

The confluent hypergeometric function, which is often referred to as the Kummer

function and is denoted by 1F1, is defined in the present context as

1F1(a, a+ b+ y; τ) =

∞
∑

s=0

(a)s

(a + b+ y)s

τ s

s!
, (4.3)

where (a)n is the Pochhammer symbol and is given by (a)n =
Γ(a+ n)

Γ(a)
(Arfken

and Weber, 1995, p.797). The p.m.f. of Y can therefore be rewritten as

Pr(Y = y) =
τ ye−τ

y!

Γ(a + b)Γ(b+ y)

Γ(b)Γ(a + b+ y)

∞
∑

s=0

Γ(a+ s)/Γ(a)

Γ(a+ b+ y + s)/Γ(a+ b+ y)

τ s

s!
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=
τ ye−τ

y!

Γ(a + b)Γ(b+ y)

Γ(a + b+ y)Γ(b)
1F1(a, a+ b+ y; τ) (4.4)

which is the p.m.f. of a weighted Poisson distribution with weight

wy =
Γ(a+ b)Γ(b+ y)

Γ(a+ b+ y)Γ(b)
1F1(a, a+ b+ y; τ) .

An integral form of the Kummer function exists whereby

1F1(a, a+ b+ y; τ) =
Γ(a + b+ y)

Γ(a)Γ(b+ y)

∫ 1

0

eτxxa−1(1 − x)b+y−1 dx

(Arfken and Weber, 1995, p.801). This integral could have been introduced when
∫ 1

0
eτppa−1(1 − p)b+y−1dp was written down in equation (4.1) but it was instruc-

tive to develop the derivation of the p.m.f. from first principles. The distribution

defined by (4.4) for the random variable Y is referred to as the beta-Poisson dis-

tribution and is denoted by Y ∼BetaPoisson(τ, a, b) throughout this thesis.

In terms of the (π, θ)-parametrization which was introduced for the beta-

binomial model with π =
a

a+ b
and θ =

1

a+ b
, the p.m.f. of Y can be expressed

as

Pr(Y = y) =
τ ye−τ

y!

y−1
∏

r=0

(1 − π + rθ)

(1 + rθ)

∞
∑

s=0



























s−1
∏

r=0

(π + rθ)

y+s−1
∏

r=y

(1 + rθ)

τ s

s!



























.

The calculation of the p.m.f. for a single observation written in this form is com-

putationally awkward since it involves working with a product within an infinite

sum. As a result, preference is given to the (a, b)-parametrization invoked in ex-

pressions (4.2) and (4.4) when fitting the beta-Poisson distribution in the present

study.

The beta-Poisson p.m.f. can also be obtained by considering a random variable

Y which follows a beta-binomial distribution as described in Chapter 3 and mod-

elling the parameter N with a Poisson(τ) distribution. In this instance the p.m.f.
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of Y can be derived as

Pr(Y = y) =

∞
∑

n=y

Pr(Y = y|N = n)Pr(N = n)

=

∞
∑

n=y





n

y





Γ(a+ b)

Γ(a)Γ(b)

Γ(b+ y)Γ(n− y + a)

Γ(a + b+ n)

τne−τ

n!

=
e−τ

y!

Γ(a + b)

Γ(a)Γ(b)
Γ(b+ y)

∞
∑

n=y

τn

(n− y)!

Γ(n− y + a)

Γ(a+ b+ n)

=
e−τ

y!

Γ(a + b)

Γ(a)Γ(b)
Γ(b+ y)

∞
∑

s=0

τ y+s

s!

Γ(a+ s)

Γ(a + b+ y + s)

where s = n− y, and therefore

Pr(Y = y) =
e−ττ yΓ(a+ b)Γ(b+ y)

y! Γ(b)Γ(a+ b+ y)
1F1(a, a + b+ y; τ) .

Thus Y follows a beta-Poisson distribution with parameters τ, a and b.

The diagram below provides a summary of how the BetaPoisson(τ, a, b) distri-

bution for a random variable Y can be derived.

Y |N = n, P = p ∼Binomial(n, 1 − p)

S
S

S
S

S
S

S
S

SSw

P ∼Beta(a, b)

�
�

�
�

�
�

�
�

��/

N ∼Poisson(τ)

Y |P = p ∼Poisson[τ(1 − p)]

S
S

S
S

S
S

S
S

SSw

P ∼Beta(a, b)

Y ∼Beta-Poisson(τ, a, b)

Y |N = n ∼BetaBin[n, a, b]

�
�

�
�

�
�

�
�

��/

N ∼Poisson(τ)

The special case where p follows a beta distribution with parameters a and
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b both equal to 1 is of interest. This case is equivalent to p following a uniform

distribution on the interval (0,1). In this instance the p.m.f. of Y is

Pr(Y = y) =

∫ 1

0

Pr(Y = y|P = p)Pr(P = p) dp

=

∫ 1

0

e−τ(1−p)[τ(1 − p)]y

y!
dp

=
Γ(y + 1) − Γ(1 + y, τ)

τy!

=
1

τ

{

1 − Γ(y + 1, τ)

y!

}

,

where Γ(1 + y, τ) is the incomplete gamma function and satisfies the equation

Γ(1 + y, τ)

y!
=

1

y!

∫ ∞

τ

xye−xdx

= e−τ

y
∑

k=0

τk

k!

(Hogg, McKean and Craig, 2005, p.150). The p.m.f. of Y can therefore be ex-

pressed in terms of a finite sum as

Pr(Y = y) =
1

τ

{

1 − e−τ

y
∑

k=0

τk

k!

}

.

4.2.2 Literature Review

The beta-Poisson distribution introduced in Section 4.2.1 is a variant of the Poisson-

beta distribution which was formulated by Holla and Bhattacharya (1965) in the

context of examples such as multiple accidents or repeated incidents of a disease.

In their study, the number of accidents experienced by an individual in time pe-

riod t is modelled by Y∼Poisson(λt), where λ measures the susceptibility of an

individual to accidents per unit time and 0 ≤ λ ≤ 1. Holla and Bhattacharya

(1965) place particular emphasis on the distribution of accidents in a second time

period given the number sustained in a first time period, i.e. the primary focus

is accident proneness. They argue that accident proneness varies from individ-

ual to individual and consider modelling the variability in the Poisson parameter
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λ using a beta distribution. As a result, the p.m.f. of the Poisson-beta model,

which is the same as the p.m.f. described in Section 4.2.1, is obtained. Holla

and Bhattacharya (1965) obtained the moment generating function (m.g.f.) of

this distribution, as well as its mean and variance, and their results are drawn

upon in Section 4.4.1. Bhattacharya and Holla (1965) also considered modelling

the parameter λ using a uniform distribution and derived the p.m.f. of what they

termed the Poisson-rectangular distribution. They do not, however, give any de-

tails regarding parameter estimation for the Poisson-beta distribution. In fact the

Poisson-beta distribution does not seem to have arisen in any other practical ap-

plications and as a result little work has been reported on it. The model appears

in the Encyclopedia of Statistical Sciences (Kotz and Johnson, 1986, p.19) and in

the text by Johnson, Kotz and Kemp (1992) but no other references to the papers

by Holla and Bhattacharya (1965) or indeed by Bhattacharya and Holla (1965)

have been located.

It is clear that the context of the beta-Poisson distribution introduced in the

present study is very different from the problem considered by Holla and Bhat-

tacharya (1965). The distribution is introduced here as a means of accommodating

overdispersion in the Poisson[τ(1 − p)] model from Chapter 2, which is frequently

used for data in a Wadley’s problem setting. This distribution will be referred to

as the beta-Poisson distribution for the present study, in line with the term beta-

binomial distribution but deviating from the terminology Poisson-beta introduced

by Holla and Bhattacharya (1965).

4.3 Confluent Hypergeometric Function

The p.m.f. of the beta-Poisson distribution from expression (4.4) includes the con-

fluent hypergeometric function except when p is modelled by a uniform distribu-

tion. This confluent hypergeometric function is, by definition, an infinite sum. As

a result this p.m.f. cannot be calculated explicitly. For a sufficiently large cutoff
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value for s, namely scut, the infinite sum in the confluent hypergeometric function

can be approximated by

scut
∑

s=0

(a)s

(a+ b+ y)s

τ s

s!

and the probabilities associated with the p.m.f. of the beta-Poisson distribution

can then be estimated accordingly. It is necessary to consider the choice of scut

carefully, in order to ensure that the error resulting from the approximation is

negligible. In this section the modality of the confluent hypergeometric function

is considered because this will give an indication of an appropriate choice for scut.

4.3.1 Modality of the Confluent Hypergeometric Function

Consider the mode of the generic confluent hypergeometric function, expressed as

1F1(a, b; z) =

∞
∑

s=0

Γ(a+ s)/Γ(a)

Γ(b+ s)/Γ(b)

zs

s!
, (4.5)

where a, b and z > 0 as in the p.m.f. of the beta-Poisson distribution.

Let ts denote the sth term in the summation in expression (4.5), which can be

written as

ts =
Γ(a+ s)/Γ(a)

Γ(b+ s)/Γ(b)

zs

s!
.

The confluent hypergeometric function is decreasing if and only if ts ≥ ts+1 and

thus if and only if

Γ(a+ s)

Γ(b+ s)

zs

s!
≥ Γ(a+ s+ 1)

Γ(b+ s+ 1)

zs+1

(s+ 1)!

which is true if and only if

s2 + (1 + b− z)s+ (b− az) ≥ 0 . (4.6)

An investigation of the roots of the quadratic equation in expression (4.6)

will indicate the modal form of the confluent hypergeometric function and hence

an appropriate choice of scut. Although s is a non-negative integer, it is treated
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as a non-negative real number for simplicity. As a result, if the mode of the

function under consideration occurs at a non-integer value of s, the confluent

hypergeometric function will have at most two modes, which will occur at ⌊s⌋ and

⌊s+ 1⌋, where ⌊s⌋ denotes the integer part of the value of s. Let the two roots of

the quadratic function in (4.6) be denoted by s− and s+ where s− < s+. Then

s− =
(z − 1 − b) −

√

(z − 1 − b)2 − 4(b− az)

2

and

s+ =
(z − 1 − b) +

√

(z − 1 − b)2 − 4(b− az)

2
. (4.7)

and the nature of the change in ts as s changes can be inferred from these roots.

Specifically, suppose that z is fixed and consider the relationship between a and b

and the nature of the roots of the quadratic function in expression (4.6). Figures

4.1 (a), (b), (c) and (d) include an illustration of the relationship between the form

of the terms of the confluent hypergeometric function and the nature of the roots

s− and s+.

Case I: Complex Roots:

The confluent hypergeometric function is decreasing if the roots s− and s+ are

complex. This is depicted in Figure 4.1 (a) and occurs if and only if

(z − 1 − b)2 − 4(b− az) < 0

and thus if and only if

b2 − 2b(1 + z) + (z2 + 2z(2a− 1) + 1) < 0 . (4.8)

The quadratic function in expression (4.6) therefore has complex roots if and only

if b lies between the roots b− and b+ of expression (4.8), where b− < b+,

b− = (1 + z) − 2
√

z(1 − a)

and

b+ = (1 + z) + 2
√

z(1 − a) .
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Figure 4.1: (a)

Figure 4.1: (b)

Figure 4.1: (c)

Figure 4.1: (d)

Figure 4.1: Form of the terms of the confluent hypergeometric function for (a)

complex roots, (b) two negative roots, (c) one positive and one negative root and

(d) two positive roots of expression (4.6), taking t(s) and s as continuous.
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Observe that a must be less than or equal to one in order for b− and b+ to exist.

Consider the (a, b)-space represented in Figure 4.2. Since the parameters a and

b of the beta-Poisson distribution are both positive, only the first quadrant of the

(a, b)-space is considered. The area labelled as I represents the range of values of

a and b for which the quadratic function in expression (4.6) has complex roots.

Observe that the curve defining the roots b− and b+ intersects with the b-axis, i.e.

a = 0, at the points z + 1 + 2
√
z and z + 1 − 2

√
z. Note that these points of

intersection are both non-negative when z + 1 − 2
√
z ≥ 0 and thus when z ≥ 1.

Suppose that b = az and consider the intersection between the line az and the

Figure 4.2: Diagram showing the (a, b) parameter space.

curve describing b− and b+:

1 + z − 2
√

z(1 − a) = az ,

which implies that

z(1 − a) − 2
√

z(1 − a) + 1 = 0

and therefore that a = 1 − 1

z
. Now consider the partial derivative of b− with

respect to a

∂b−
∂a

=
z

√

z(1 − a)
,
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which is equal to z when a = 1 − 1

z
. It can therefore be deduced that b = az is

a tangent to the function defining b− and b+ which meets this curve at the point

(a = 1 − 1

z
, b = z − 1).

Case II: Two Negative Roots:

When the roots of the quadratic function in expression (4.6) are negative, the

confluent hypergeometric function is decreasing for all positive values of s. This is

illustrated in Figure 4.1 (b). The roots of the quadratic equation (4.6) are negative

when s+ < 0. This occurs if and only if z − 1 − b < 0 and thus if and only if

(z − 1 − b)2 > (z − 1 − b)2 − 4(b− az) which implies that 4(b− az) > 0.

Therefore the quadratic function in expression (4.6) has two negative roots if

and only if b > z− 1 and b > az, i.e. b >max{z − 1, az}. The range of values of a

and b for which the quadratic function in expression (4.6) has two negative roots

is represented by area II in Figure 4.2.

Case III: One Positive and One Negative Root:

Figure 4.1 (c) illustrates that the confluent hypergeometric function is unimodal

when the quadratic function in expression (4.6) has one positive and one negative

root. Observe that the root s+ > 0 when z−b−1 > 0 and therefore when b < z−1.

Recall that

s− =
(z − 1 − b) −

√

(z − 1 − b)2 − 4(b− az)

2
.

Thus s− is negative when z−b−1 < 0 or when 4(b−az) < 0, which can be simplified

as b > z− 1 or b < az. The region labelled III in Figure 4.2 represents the portion

of the (a, b)-parameter space for which the quadratic function in expression (4.6)

has one positive and one negative root.

Case IV: Two Positive Roots:

When s− and s+ are both positive the confluent hypergeometric function is bi-

modal. This is presented graphically in Figure 4.1 (d). The quadratic function

in equation (4.6) has two positive roots when s− is positive. This occurs when

b < z − 1 and b > az, i.e. when az < b < z − 1. Recall that the root s− is only
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non-negative when z is greater than or equal to one. Thus the area labelled IV in

Figure 4.2 represents the values of a and b for which the quadratic in expression

(4.6) has two positive roots.

From the investigation of the modality of the confluent hypergeometric function

a method for approximating this infinite sum can be devised. The first step entails

evaluating the root s+ from expression (4.7). If s+ is negative or complex, the

confluent hypergeometric function is decreasing for all positive values of s. Thus,

beginning with s = 0 the terms ts of the confluent hypergeometric function can be

evaluated and every 50th term can be considered to determine whether that term

is less than a suitably small value, say 10−6. If tk < 10−6 then k is considered a

suitable choice for scut.

If, however, s+ is positive and ⌊s+⌋ denotes the integer part of s+, then

⌊s+⌋
∑

s=0

ts

can be evaluated and incremented by adding terms in the sum for s > ⌊s+⌋. Every

50th term for s > ⌊s+⌋ can be considered individually and when tk < 10−6 for

k > ⌊s+⌋ an appropriate choice for scut is k.

4.4 Properties of the Distribution

4.4.1 Moment Generating Function

In order to derive the m.g.f. of the beta-Poisson distribution, two properties of the

confluent hypergeometric function, namely

1F1(a, c; z) = ez
1F1(c− a, c;−z) (4.9)

and

1F1(a, b;λz) =

∞
∑

n=0

(a)n

(b)n
.
1

n!
(λ− 1)nzn

1F1(a+ n, b+ n; z) . (4.10)

are required. Expression (4.9) is known as the Kummer transformation (Erdélyi,

Magnus, Oberhettinger and Tricomi, 1953, p.253) and the relationship introduced
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in equation (4.10) is a multiplication formula of the confluent hypergeometric func-

tion (Erdélyi, Magnus, Oberhettinger and Tricomi, 1953, p.283).

The m.g.f. of the beta-Poisson distribution can be obtained using conditioning

arguments. Since the m.g.f. of a Beta(a, b) distributed random variable is 1F1(a, a+

b; t) (Johnson, Kotz and Balakrishnan, 1995, p.218), the m.g.f. of Y is

M(t) = E(etY ) = Ep[E(etY |P = p)]

= Ep{exp[τ(1 − p)(et − 1)]}

= exp[τ(et − 1)]Ep{exp[−τp(et − 1)]}

= exp[τ(et − 1)]Ep{exp[p (−τ(et − 1))]}

= exp[τ(et − 1)] 1F1[a, a+ b;−τ(et − 1)].

By invoking the Kummer transformation in expression (4.9), it then follows that

M(t) = 1F1[b, a + b; τ(et − 1)] .

Using the method outlined by Holla and Bhattacharya (1965), the m.g.f. of

the beta-Poisson distribution can also be calculated as the expected value of etY

directly. Specifically

M(t) = E(etY ) =

∞
∑

y=0

etye−ττ y

y!

Γ(a+ b)Γ(b+ y)

Γ(a+ b+ y)Γ(b)
1F1(a, a+ b+ y; τ) .

Using the Kummer transformation from (4.9), this becomes

M(t) = E(etY ) =

∞
∑

y=0

(b)y

(a + b)y y!
(et)y(−τ)y

1F1(b+ y, a+ b+ y;−τ)

=

∞
∑

y=0

(b)y

(a + b)y

1

y!
[1 − (et − 1)]y(−τ)y

1F1(b+ y, a+ b+ y;−τ)

and by the multiplication formula (4.10) it then follows that

M(t) = 1F1(b, a + b; τ(et − 1)) .
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Moments of the Distribution

Mean and Variance

The mean and variance of the beta-Poisson distributed random variable Y can be

obtained by using well-known conditioning arguments presented for example by

Ross (2002, p.152). These expectations are written as

E(Y ) = Ep[E(Y |P )]

= Ep[τ(1 − p)]

=
τb

a+ b

and

Var(Y ) = Ep[Var(Y |P )] + Varp[E(Y |P )]

= Ep[τ(1 − p)] + Varp[τ(1 − p)]

=
τb

a + b
+

τ 2ab

(a+ b)2(a + b+ 1)

=
τb

a + b

{

1 +
τa

(a+ b)(a + b+ 1)

}

respectively. The mean and variance of Y can also be obtained from the m.g.f. by

noting that M (n)(0) = E(Y n), where M (n)(0) is the nth derivative of the m.g.f.

evaluated at t = 0. In terms of the (π, θ)-parametrization of the beta distribution

(Morgan, 1992, p.240), the mean of Y is given by

E(Y ) = τ(1 − π)

and the variance by

Var(Y ) = τ(1 − π)

{

1 +
τπθ

1 + θ

}

,

which is comprised of the usual Poisson variance of τ(1 − π) and a dispersion

parameter {1 +
τπθ

1 + θ
}. Since τ, π and θ are non-negative, the variance of the

beta-Poisson distribution exceeds the mean when θ > 0 and reduces to the Pois-

son variance when θ = 0. This model is not suitable for underdispersed data
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because the variance can never be less than the mean.

Skewness and Kurtosis

The measure of the skewness of a distribution, denoted by γ, is calculated as

E[(Y − µ)3]/σ3, where µ and σ refer to the mean and standard deviation of the

distribution respectively. A zero skewness indicates that the distribution is sym-

metric. The skewness for the beta-Poisson distribution can be obtained by evalu-

ating E(Y 2) = M (2)(0) and E(Y 3) = M (3)(0) and is calculated as

γ =
E(Y 3) − 3µE(Y 2) + 2µ3

σ3

= {(a+ b)3(1 + a + b)2[a4 + b2(2 + 3b+ b2) + a3(3 + 4b+ 3τ) +

a2(2 + 9b+ 6b2 + 6τ + 6bτ + 2τ 2) + ab(4 + 4b2 + 6τ − 2τ 2 + 3b(3 + τ))]}/

{2b2τ 2(2 + a+ b)(a + a2 + b+ 2ab+ b2 + aτ)3} .

Kurtosis, which is denoted κ, means peakedness and is measured as E[(Y −µ)4]/σ4.

A large value of this measure is associated with a distribution with a high central

peak. For the beta-Poisson distribution, the measure of kurtosis is given by

κ =
E(Y 4) + 6µ2E(Y 2) − 4µE(Y 3) − 3µ4

σ4

=

{

b

[

(a+ b)3 − 3b3τ 3 +
(7τ + 7τb)(a + b)3

1 + a+ b

+
6b2τ 2(a+ b)(1 + a+ b+ τ + bτ)

1 + a + b
+

6τ 2(1 + b)(2 + b)(a + b)3

(1 + a+ b)(2 + a + b)

−4bτ(a + b)2[a2 + a(3 + 2b+ 3τ + 3bτ) + (2 + 3b+ b2)(1 + 3τ + τ 2)]

(1 + a + b)(2 + a+ b)

+
τ 3(1 + b)(2 + b)(3 + b)(a + b)3

(1 + a + b)(2 + a+ b)(3 + a+ b)

]}/

{

(a + b)4τ 2

[

1 − a

a + b
+

abτ

(a+ b)2(1 + a+ b)

]}

.
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The expressions for the skewness and kurtosis of the beta-Poisson distribution are

somewhat intractable and not very informative but can be readily used to calculate

values of γ and κ for given values of a, b and τ .

4.4.2 Modality of the beta-Poisson Distribution

Holgate (1970) investigated the conditions under which a compound Poisson dis-

tribution is unimodal. Specifically, he proved a theorem which states:

“Let f(λ) be the probability density function of a positive, unimodal

absolutely continuous random variable. Then the non-negative integer-

valued random variable with probability function

pn = (n!)−1

∫ ∞

0

e−λλnf(λ)dλ , (n ≥ 0)

is a unimodal lattice variable”.

Since the Beta(a, b) distribution is unimodal for a > 1 and b > 1 (Johnson, Kotz

and Balakrishnan, 1995, p.217), the proof of Holgate’s theorem can be used to

provide a proof for the beta-Poisson distribution.

Let f(p) denote the p.d.f. of the beta distribution which was adopted for the

parameter p in deriving the Poisson(τp) distribution. The Poisson(τp) distribution

is considered here in place of the Poisson[τ(1 − p)] distribution which was derived

in Chapter 2. This is for simplicity and is acceptable because 0 < p < 1 implies

that 0 < 1 − p < 1 and if p follows a Beta(a, b) distribution then (1 − p) follows

a Beta(b, a) distribution. Since f(p) is differentiable on the interval (0,1) and by

integration by parts for n ≥ 1 it is seen that

pn =

∫ 1

0

e−τp(τp)n

n!
f(p)dp

=

[−e−τp

τ

(τp)n

n!
f(p)

]1

0

+

∫ 1

0

e−τp

τ

{

nτ(τp)n−1f(p)

n!
+

(τp)nf ′(p)

n!

}

dp

(4.11)

= 0 + (n− 1)!−1

∫ 1

0

e−τp(τp)n−1f(p)dp+

∫ 1

0

e−τp(τp)n

τn!
f ′(p)dp
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= pn−1 +

∫ 1

0

e−τp(τp)n

τn!
f ′(p)dp . (4.12)

Let p0 denote the mode of the beta distribution and let ∆pn = pn+1 − pn. Then

expression (4.12) can be written as

pn = pn−1 +

∫ p0

0

e−τp

τ

(τp)n

n!
f ′(p)dp +

∫ 1

p0

e−τp

τ

(τp)n

n!
f ′(p)dp

and therefore

∆pn−1 =

∫ p0

0

e−τp

τ

(τp)n

n!
f ′(p)dp +

∫ 1

p0

e−τp

τ

(τp)n

n!
f ′(p)dp . (4.13)

Since f ′(p) > 0 when p < p0 and f ′(p) < 0 when p > p0, the first term on the right

hand side of expression (4.13) is non-negative and the second term is non-positive.

Observe that

∆pn =

∫ p0

0

e−τp

τ

(τp)n+1

(n + 1)!
f ′(p)dp +

∫ 1

p0

e−τp

τ

(τp)n+1

(n + 1)!
f ′(p)dp .

and hence

(n+ 1)∆pn

(τp0)n+1
=

1

n!

∫ p0

0

e−τp

τ

(τp)n+1

(τp0)n+1
f ′(p)dp +

1

n!

∫ 1

p0

e−τp

τ

(τp)n+1

(τp0)n+1
f ′(p)dp

≤ 1

n!

∫ p0

0

e−τp

τ

(

τp

τp0

)n

f ′(p)dp +
1

n!

∫ 1

p0

e−τp

τ

(

τp

τp0

)n

f ′(p)dp

(4.14)

=
1

n!

∫ 1

0

e−τp

τ

(

τp

τp0

)n

f ′(p)dp

=
∆pn−1

(τp0)n

(4.15)

This implies that

(n+ 1)

(τp0)
∆pn ≤ ∆pn−1 . (4.16)

The inequality in expression (4.14) follows because when p < p0,
p

p0

< 1 and

as a result

(

τp

τp0

)n+1

≤
(

τp

τp0

)n

. Similarly, when p > p0 the magnitude of the

negative component of the integral is not increased by dividing by
τp

τp0

.
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From the inequality in expression (4.16), ∆pn−1 ≤ 0 implies that ∆pn ≤ 0

i.e. pn ≤ pn−1 suggests that pn+1 ≤ pn and ∆pn ≥ 0 implies that ∆pn−1 ≥ 0

i.e. pn+1 ≥ pn indicates that pn ≥ pn−1. Since the distribution defined by pn is a

probability function, p cannot increase indefinitely when n approaches infinity and

therefore {pn} is the probability function of a discrete, unimodal random variable.

Recall that a and b are the parameters of the beta distribution and that

p ∼Beta(a, b). The theorem cannot be used when a = 1 and b 6= 1 or when

a 6= 1 and b = 1. This is because in these instances the first term in (4.11) does

not equate to zero and the arguments for positive and negative gradients cannot

be used when the distribution is always increasing (a = 1, b 6= 1) or always de-

creasing (a 6= 1, b = 1). Since p denotes the probability of death of an organism, it

can be represented by an S-shaped curve and thus not by a function that is always

increasing or always decreasing.

Consider the scenario a < 1 and b < 1. When these conditions are satisfied,

the beta distribution is U-shaped (Johnson, Kotz and Balakrishnan, 1995, p.217)

and when p = 0 or 1, f(p) approaches infinity. Holgate’s (1970) theorem therefore

cannot be applied to this instance of the beta-Poisson distribution because the

first term in expression (4.11) does not disappear. Since p in the present context

refers to the probability of death of an organism, it is unlikely that this probability

will be high for both low and high doses of the drug. Therefore in this context the

distribution of p will not be U-shaped and thus both a and b will not be less than

one.

4.4.3 Examples

Figure 4.3 presents graphic representations, together with the mean, variance,

skewness (γ) and kurtosis (κ), of the p.m.f. of Y when the parameters a and b are

equal, that is when p was taken from a symmetric beta distribution. Examples of

the p.m.f. when p is from skew beta distributions are presented in Figures 4.4 and

4.5. The infinite sum included in the p.m.f. of the beta-Poisson distribution was
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estimated by a finite sum with a cutoff value selected using the methods outlined

in Section 4.3. It was observed that when the terms in the sum for the confluent

hypergeometric function were less than 10−6, and provided they were beyond the

mode, a suitable cutoff for the infinite sum was obtained. The results for a cutoff

value of 10−6 were compared with smaller values and the estimate of the confluent

hypergeometric function remained unchanged.

Figure 4.3: (a)τ = 20, a = 1, b = 1, E(Y )=10, Var(Y )=43.333, γ=0.001, κ=-3.384 .

Figure 4.3: (b)τ = 20, a = 10, b = 10, E(Y )=10, Var(Y )=14.762, γ=0.004, κ=-9.703 .

Figure 4.3: Plots showing the shapes of various beta-Poisson distributions, with

τ = 20 and a = b.
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Figure 4.4: (a)τ = 20, a = 2, b = 1, E(Y )=6.667, Var(Y )=28.889, γ=0.003, κ=-1.318 .

Figure 4.4: (b)τ = 20, a = 25, b = 10, E(Y )=5.714, Var(Y )=7.982, γ=0.013, κ=-2.362 .

Figure 4.4: Plots showing the shapes of various beta-Poisson distributions, with

τ = 20 and a > b.
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Figure 4.5: (a)τ = 20, a = 1, b = 2, E(Y )=13.333, Var(Y )=35.556, γ=0.0002, κ=-11.886 .

Figure 4.5: (b)τ = 20, a = 10, b = 25, E(Y )=14.286, Var(Y )=16.553, γ=0.002, κ=-31.169 .

Figure 4.5: Plots showing the shapes of various beta-Poisson distributions, with

τ = 20 and a < b.

65



4.5 Likelihood, Score Functions and the Infor-

mation Matrix

4.5.1 Likelihood Function

The likelihood function of the beta-Poisson distribution is given by

L(τ, a, b; y) =
τ ye−τΓ(a + b)Γ(b+ y)

y!Γ(a+ b+ y)Γ(b)
1F1(a, a+ b+ y; τ)

and the log-likelihood function can therefore be written as

ℓ(τ, a, b; y) = y ln τ − τ + ln[Γ(a+ b)] + ln[Γ(b+ y)] + ln[1F1(a, a + b+ y; τ)]

− ln(y!) − ln[Γ(a + b+ y)] − ln[Γ(b)] .

4.5.2 Score Functions and Information Matrix

The score functions for τ, a and b are obtained by differentiating the log-likelihood

function with respect to these parameters and the information matrix is the expec-

tation of the matrix of second derivatives of the log-likelihood function with respect

to the parameters. However, the confluent hypergeometric function 1F1(a, a+ b+

y; τ) is only differentiable explicitly with respect to τ (Erdélyi, Magnus, Oberhet-

tinger and Tricomi, 1953, p.254). Therefore, since the confluent hypergeometric

function is included in the log-likelihood, only the score function for the parameter

τ can be derived explicitly and is given by

∂ℓ(τ, a, b; y)

∂τ
=

a1F1(a + 1, a+ b+ y + 1, τ)

(a+ b+ y)1F1(a, a+ b+ y, τ)
+
y

τ
− 1 .

The derivatives of the confluent hypergeometric function with respect to the

parameters a and b cannot be written down explicitly. As a result, the score

functions for these parameters as well as the information matrix of the beta-Poisson

distribution cannot be obtained explicitly. However, the information matrix can

be estimated as minus the Hessian matrix which can be obtained numerically using

commands such as hessp in the programming language Gauss.
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4.6 Estimation

Consider a random sample of observations from the beta-Poisson distribution

where the count yi is observed ki times for i = 1, . . . , d. The log-likelihood function

is then written as

ℓ(τ, a, b; y) =
d

∑

i=1

ki{yi ln τ − τ + ln[Γ(a + b)] + ln[Γ(b+ yi)] + ln[1F1(a, a+ b+ yi; τ)]

− ln(yi!) − ln[Γ(a+ b+ yi)] − ln[Γ(b)]} ,

where y denotes the vector of observed counts. Since the score functions for the

parameters a and b cannot be derived explicitly, the maximum likelihood estimates

of the parameters cannot be obtained directly. The constraints τ, a and b > 0

need to be imposed on the parameter space and thus a constrained nonlinear

optimization routine, such as the OPTMUM routine in Gauss, can be used to

maximize the log-likelihood function numerically. The infinite sum included in

the likelihood function can be approximated by a finite sum with a cutoff value

selected using the techniques described in Section 4.3. The cutoff value scut is

selected as the value of k for which the term tk in the confluent hypergeometric

function is less than 10−6 and where tk has surpassed the mode of the confluent

hypergeometric function.

It was observed, during preliminary investigations of the beta-Poisson distribu-

tion, that there were instances in which the optimization routine used to maximize

the log-likelihood function had difficulty converging and where the estimates of the

parameters were unstable. In order to explore this observation, data were simu-

lated from the beta-Poisson distribution. Specifically, if the random variable Y

follows a beta-Poisson distribution then Y given P = p is Poisson distributed.

Thus observations from the beta-Poisson distribution were simulated by first sim-

ulating a value for p from the beta distribution with parameters a and b and then

simulating an observation, given this value of p, from a Poisson distribution with

mean τ(1 − p). The beta-Poisson distribution was then fitted to the simulated

data and the estimates of the parameters were considered.
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In order to investigate the cause of the convergence problems and apparent

instabilities in the parameter estimates the situation was simplified by setting a

equal to b. Furthermore, since the method of moments estimates for τ and a can

be obtained explicitly when a = b, these estimates from the simulated data sets

were explored. The method of moments estimates of τ and a are τ̃ = 2ȳ and

ã =
ȳ2 + ȳ − s2

2(s2 − ȳ)
respectively, so that the respective sample mean and variance in

terms of τ̃ and ã are ȳ =
τ̃

2
and s2 =

τ̃ (τ̃ − 2 + 4ã)

4(2ã+ 1)
.

In some of the simulated data sets the method of moments estimate of the

parameter a was more than thirteen times the original value from which the data

were simulated. The data sets that yielded unusual estimates of a were considered

individually and it was observed that in each case the sample variance was very

close to the sample mean. These data are therefore Poisson-like and thus it would

seem that fitting the beta-Poisson distribution to such data is equivalent to at-

tempting to model non-existent overdispersion. As a consequence of this numerical

problems seem to arise.

4.6.1 Inference

The information matrix of the beta-Poisson distribution cannot be derived explic-

itly but, as noted earlier, it can be estimated by minus the Hessian matrix which

can be obtained numerically using the Gauss command, hessp. The inverse of

this matrix is the approximate covariance matrix of the parameter estimates. The

square roots of the diagonal elements of the covariance matrix provide the approx-

imate marginal standard errors of the maximum likelihood estimates, τ̂ , â and

b̂. 95% Wald intervals can be computed for the parameters where, for example,

the 95% Wald interval for the parameter τ is τ̂ ± 1.96 se(τ̂) and where se(τ̂) is

the standard error of the estimate of τ (Kutner, Nachtsheim, Neter and Li, 2005,

p.579).

Profile likelihood plots can also be constructed for each of the parameters
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τ, a and b of the beta-Poisson distribution and 95% confidence intervals for the

parameters can be obtained from these plots. Specifically, the 95% confidence

interval for the parameter τ is given by [τ1; τ2], where the limits τ1 and τ2 satisfy

the condition

ℓP (τ1) = ℓP (τ2) = ℓ(τ̂ , â, b̂; y) − 1

2
χ2

1,0.05 ,

with ℓP (τ) the profile likelihood for the parameter τ , χ2
1,0.05 the critical χ2 value

at a 5% level of significance with 1 degree of freedom, where χ2
1,0.05 is such that

Pr(χ2
1 > χ2

1,0.05)=0.05, and ℓ(τ̂ , â, b̂; y) is the maximum log-likelihood of the beta-

Poisson distribution (Azzalini, 1996, p.146). Confidence intervals for a and b can

be obtained from the profile likelihood plots in a similar manner.

4.6.2 Goodness of Fit

The adequacy of the fit of the beta-Poisson distribution to overdispersed count

data can be assessed by a chi-squared goodness of fit test. This test compares the

observed frequencies of counts with those expected if the data constitute a random

sample of observations from the model of interest. The test statistic is calculated

as

χ2 =

d
∑

i=1

(ki − ei)
2

ei
,

where ki is the ith observed frequency and ei the ith expected frequency of counts.

A significant test statistic leads to a rejection of the hypothesis that the data arise

from the beta-Poisson distribution.

The goodness of fit of the beta-Poisson distribution can also be compared

with that of the Poisson model and other distributions suitable for overdispersed

count data using AIC, with the AIC of the beta-Poisson distribution calculated

as AIC = −2ℓ(τ̂ , â, b̂; y) + 6. Note that the best fitting model is the one with the

lowest AIC value.
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4.7 An Example

Shmueli, Minka, Kadane, Borle and Boatwright (2005) introduced an overdispersed

data set based on the quarterly sales of a particular item of clothing. The data

consist of the number of articles sold per quarter and are summarized in a fre-

quency distribution in Table 4.1. Shmueli, Minka, Kadane, Borle and Boatwright

(2005) concluded that the sales data are overdispersed and fitted the Conway-

Maxwell Poisson (CMP) distribution to the data as a means of accommodating

the overdispersion.

Table 4.1: Frequency distribution of the sales data.

No. of Sales Frequency No. of Sales Frequency No. of Sales Frequency

0 514 11 40 22 0

1 503 12 37 23 0

2 457 13 22 24 0

3 423 14 9 25 0

4 326 15 7 26 0

5 233 16 10 27 0

6 195 17 9 28 0

7 139 18 3 29 0

8 101 19 2 30 1

9 77 20 2

10 56 21 2

The CMP distribution was introduced by Conway and Maxwell in 1962 in the

context of queueing systems and later revisited by Shmueli, Minka, Kadane, Borle

and Boatwright in 2005 who showed that the distribution is suitable for modelling

over- and underdispersed count data. The p.m.f. of the CMP model is

Pr(Y = y) =
λy

(y!)ν Z(λ, ν)
,
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where Z(λ, ν) is the normalizing constant written as

Z(λ, ν) =
∞

∑

j=0

λj

(j!)ν
.

The beta-Poisson distribution was fitted to the sales data by directly optimizing

the appropriate log-likelihood function. The information matrix was estimated by

minus the Hessian matrix and the resulting matrix was used to obtain the standard

errors of the parameter estimates. Profile likelihood plots were produced for each

of the parameters τ, a and b and 95% confidence intervals of the parameters

were obtained from these plots. The respective profile likelihood plots for the

parameters τ, a and b are presented in Figures 4.6 (a), (b) and (c), where the points

of intersection between the curve and the dashed line yield the 95% confidence

intervals for the parameters.

The parameter estimates, together with standard errors, 95% Wald intervals

and 95% profile likelihood intervals are presented in Table 4.2. Observe that only

Table 4.2: Results from fitting the beta-Poisson model to the sales data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 55.230 24.005 (8.180;102.280) (25.500;*)

a 21.225 10.719 (0.216;42.234) (8.250;*)

b 1.462 0.080 (1.305;1.619) (1.291;1.668)

*These limits of the confidence intervals cannot be computed

one-sided 95% profile likelihood intervals could be computed for τ and a and that

the standard errors of these estimates are very large, resulting in wide 95% Wald

intervals for these parameters.

The adequacy of the fit of the beta-Poisson distribution to this data was as-

sessed and compared with that of the Poisson and CMP models using chi-squared

goodness of fit tests as well as the AIC values. The p-values from the goodness of fit

tests for the Poisson, CMP and beta-Poisson distributions, together with the AIC

71



Figure 4.6: (a)

Figure 4.6: (b)

Figure 4.6: (c)

Figure 4.6: Profile likelihood plots for the parameters (a) τ , (b) a and (c) b of the

beta-Poisson model fitted to the sales data.

72



Table 4.3: A comparison of the various models fitted to the sales data.

Model χ2 p-value AIC

Poisson 0.000 17 921.622

CMP 0.242 15 056.712

Beta-Poisson 0.002 15 057.934

values are presented in Table 4.3. The p-values for the Poisson and beta-Poisson

distributions suggest that these models are not suitable for the data. However, the

beta-Poisson distribution does provide a better fit than the Poisson distribution.

The AIC of the beta-Poisson distribution is extremely close to that of the CMP

distribution and is much lower than that of the Poisson model, indicating that the

beta-Poisson distribution seems to accommodate some of the overdispersion in the

sales data.

4.8 Modelling Dose-Response Data

4.8.1 Likelihood Function

In the context of dose-response studies, consider the random variable Y which

measures the number of parasites that survive exposure to particular doses of

a drug. As introduced earlier, denote an observation from the control group by

ycj, j = 1, . . . , nc, and let yij refer to the observed number of parasites that survive

exposure to a dose di of the drug where j = 1, . . . , ni and i = 1, . . . , D. Associated

with the ith dose of the drug is the log-dose xi and the probability of the death of

a parasite, which is denoted by pi and which is considered to follow a Beta(ai, bi)

distribution for i = 1, . . . , D.

Since the probability of non-natural death for untreated parasites is assumed

to be zero, the number of survivors in the control group follows a Poisson(τ)

73



distribution with likelihood and log-likelihood functions given respectively by

Lc =

nc
∏

j=1

e−ττ ycj

ycj!

and

ℓc =
nc

∑

j=1

ycj ln τ − ncτ −
nc

∑

j=1

ln ycj! .

The likelihood and log-likelihood functions for observations corresponding to non-

zero doses of the drug based on the appropriate beta-Poisson distribution are

written as

Ld =
D

∏

i=1

ni
∏

j=1

{

e−ττ yijΓ(ai + bi)Γ(bi + yij)

yij! Γ(bi)Γ(ai + bi + yij)
1F1(ai, ai + bi + yij; τ)

}

and

ℓd =

D
∑

i=1

ni
∑

j=1

ln

{

∞
∑

s=0

τ yije−τ

yij!

Γ(ai + bi)Γ(bi + yij)Γ(ai + s)

Γ(ai + s+ bi + yij)Γ(ai)Γ(bi)

τ s

s!

}

(4.17)

=

D
∑

i=1

ni
∑

j=1

{yij ln τ − τ + ln Γ(ai + bi) + ln Γ(bi + yij) + ln[1F1(ai, ai + bi + yij; τ)]

− ln yij! − ln Γ(bi) − ln Γ(ai + bi + yij)} ,

respectively. The log-likelihood for the data is then found by summing the log-

likelihood functions for the individual observations over all of the observations and

is therefore given by ℓc + ℓd.

4.8.2 Models for Separate Doses

Two models that consider each dose di, i = 1, . . . , D, of the drug separately are

introduced in order to facilitate the assessment of the adequacy of the beta-Poisson

model. The first model is referred to as the {τ, πi, θi} model and fits a separate

beta-Poisson distribution to each non-zero dose of the drug, where πi =
ai

ai + bi
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and θi =
1

ai + bi
but where a common value of τ is used for all doses. The second

model, a nested version of the first, adopts common parameters τ and θ and is

denoted as the {τ, πi, θ} model.

4.8.3 Modelling the Probabilities

Following the beta-binomial distribution as applied to dose-response data in Chap-

ter 3, a logit function is used to model the expected probability of death of a

parasite πi for dose di, i = 1, . . . , D, and a common parameter θ is adopted for all

doses of the drug. When the logistic tolerance distribution is used,

ln

(

πi

1 − πi

)

= α + βxi

and therefore

πi =
eα+βxi

1 + eα+βxi
, i = 1, . . . , D .

Note that although the (π, θ)-parametrization is more meaningful, it is convenient

to work with the p.m.f. in terms of a and b when doing computations by using the

simple conversions ai =
πi

θ
and bi =

1 − πi

θ
.

4.8.4 Estimation

Since the log-likelihood function is nonlinear in the parameters a nonlinear opti-

mization routine must be used to maximize it. Consider the component

∞
∑

s=0

{

τ yije−τ

yij!

Γ(ai + bi)Γ(bi + yij)Γ(ai + s)

Γ(ai + s+ bi + yij)Γ(ai)Γ(bi)

τ s

s!

}

(4.18)

within the summation (4.17) corresponding to a single observation treated with a

non-zero dose of the drug. The calculation of this expression can be problematic

because it entails computing a generic gamma function Γ(r), which can be awkward

for large values of r. A method of overcoming this difficulty is to first calculate

the logarithm of the summand in expression (4.18) and then to exponentiate it,
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thereby making use of the lnfact command in Gauss. The command lnfact(r)

uses Stirling’s formula to approximate ln Γ(r) and avoids the overflow that can

arise from computing the gamma function of large numbers. Specifically expression

(4.18) can be approximated by a finite sum

scut
∑

s=0

exp{yij ln τ − τ + ln Γ(ai + bi) + ln Γ(bi + yij) + ln Γ(ai + s) + s ln τ

− ln yij! − ln Γ(ai + s+ bi + yij) − ln Γ(ai) − ln Γ(bi) − ln s!}

where scut is chosen empirically for each example using the methods outlined in

Section 4.3. The parameter estimates obtained from fitting the beta-binomial

model in Chapter 3 can be used as starting values for the optimization routine.

This method for maximizing the log-likelihood function can be adapted for the

{τ, πi, θ}, {τ, πi, θi} and {τ, α, β, θ} models using the following equations where

necessary:

πi =
ai

ai + bi
=

eα+βxi

1 + eα+βxi

and

θi =
1

ai + bi
.

4.8.5 Inference

Since the information matrix of the beta-Poisson distribution cannot be derived

explicitly it can be estimated by minus the Hessian matrix which can be obtained

numerically using the hessp Gauss command, as noted in Section 4.6.1. The

inverse of this matrix can then be used to approximate the standard errors of

the parameter estimates. 95% Wald confidence intervals can be computed for

the parameters. Wald intervals, however, have limited usefulness because they

make a symmetric approximation to the sampling distributions of the estimators

and they do not respect the boundaries of the parameter space. For the beta-

Poisson distribution the restrictions on the parameter space are θ > 0 and β > 0.
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Furthermore, profile likelihood plots can be obtained for each of the parameters

τ, α, β and θ and these plots can be used to construct 95% confidence intervals

for the parameters using the method described in Section 4.6.1.

4.8.6 Goodness of Fit

The methods of model checking described for the beta-binomial setting were used

to assess the fit of the beta-Poisson model. In particular, the fit of the {τ, α, β, θ}
model can be compared with that of the separate dose models {τ, πi, θi} and

{τ, πi, θ} by considering the appropriate deviance. The AIC can also be used

as a means of goodness of fit assessment.

4.8.7 Examples

Algae Data

The beta-Poisson model with a logistic tolerance distribution was fitted to the algae

data described in Section 2.2.1. The profile likelihood plots for the parameters of

the beta-Poisson distribution fitted to the algae data are presented in Figures 4.7

(a), (b), (c) and (d). Table 4.4 contains the parameter estimates, together with

their standard errors and 95% Wald and profile likelihood intervals.

Table 4.4: Results from fitting the beta-Poisson model to the algae data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 223.966 6.560 (211.110;236.823) (233.050;237.100)

θ 0.005 0.004 (-0.003;0.0119) (0.000;0.017)

α -0.936 0.141 (-1.213;-0.660) (-1.240;-0.670)

β 1.443 0.110 (1.227;1.659) (1.230;1.680)

The adequacy of the beta-Poisson model for the algae data was assessed by

comparing its fit with the fits of the separate dose models described in Section 4.8.2.
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Figure 4.7: (a)

Figure 4.7: (b)

Figure 4.7: (c)

Figure 4.7: (d)

Figure 4.7: Profile likelihood plots for the parameters (a) τ , (b) α, (c) β and (d)

θ of the beta-Poisson model with a logit tolerance distribution fitted to the algae

data.
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Details of these fits are presented in Table 4.5. The deviance of the {τ, πi, θ} model

Table 4.5: A comparison of the beta-Poisson models fitted to the algae data.

Model Maximum Number of AIC Deviance

log-likelihood parameters

{τ, πi, θi} -93.348 9 204.696 0

{τ, πi, θ} -94.529 6 201.058 2.362

τ, θ, α, β -96.251 4 200.501 5.806

from the {τ, πi, θi} model is 2.362, which can be compared with a χ2
3 distribution

to indicate that a common value of θ can be used for the different doses of the drug.

Further for this data, the beta-Poisson model with a logistic tolerance distribution

yields a deviance of 5.806 from the {τ, πi, θi} model, which is close to the mean

of the χ2
5 distribution. This comparison indicates that the beta-Poisson model,

with a logit function modelling π, provides a good fit for the algae data. These

findings are reinforced by the AIC values for the different models. The beta-

Poisson distribution, with a logit function modelling the probability of death of a

parasite, has the smallest AIC, indicating that this parsimonious model provided

the best fit for the algae data.

Malaria Data

The {τ, α, β, θ} beta-Poisson model, with a logit function modelling the probability

of death of a parasite, was fitted to the malaria data summarized in Section 2.2.2.

95% Wald intervals were computed for each of the parameters τ, α, β and θ.

Profile likelihood plots were also obtained for the parameters and are presented in

Figures 4.8 (a), (b), (c) and (d). These plots were used to obtain 95% confidence

intervals for the parameters. The estimates of the parameters, along with the

standard errors, 95% Wald confidence intervals and 95% profile likelihood intervals

are presented in Table 4.6.

The beta-Poisson model fitted to the malaria data was compared with the
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Figure 4.8: (a)

Figure 4.8: (b)

Figure 4.8: (c)

Figure 4.8: (d)

Figure 4.8: Profile likelihood plots for the parameters (a) τ , (b) α, (c) β and (d) θ

of the beta-Poisson model with a logit tolerance distribution fitted to the malaria

data.
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Table 4.6: Results from fitting the beta-Poisson model to the malaria data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 5033.448 35.375 (4966.391;5105.061) (4933.000;5141.000)

θ 0.023 0.003 (0.006;0.018) (0.009;*)

α -4.027 0.290 (-4.615;-3.479) (-5.152;-2.750)

β 6.072 0.367 (6.060;7.550) (4.205;7.412)

*This limit of the confidence interval cannot be computed

{τ, πi, θi} and {τ, πi, θ} models which consider each dose of the drug separately

and details regarding the fits are presented in Table 4.7. The deviance of the

Table 4.7: A comparison of the beta-Poisson models fitted to the malaria data.

Model Maximum Number of AIC Deviance

log-likelihood parameters

{τ, πi, θi} -130.276 15 290.551 0

{τ, πi, θ} -143.820 9 299.640 27.088

τ, θ, α, β -174.670 4 357.340 88.842

{τ, πi, θ} model from the {τ, πi, θi} model was 27.088 which, when compared with

the mean of a χ2
6 distribution, suggests that a common parameter θ is not suitable

for the data. The beta-Poisson model with a logit tolerance function has a deviance

of 49.089 from the {τ, πi, θi} model, which can be compared with the mean of the

χ2
11 distribution to indicate that it also provides a disappointingly poor fit for the

malaria data. This outcome is confirmed by the AIC values.

4.9 Conclusions

The beta-Poisson distribution was introduced and the p.m.f. of the model was

investigated by considering approximating the confluent hypergeometric function.
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Some properties of the distribution were explored such as the moments and modal-

ity. The suitability of the beta-Poisson distribution for modelling overdispersed

count data was investigated and the model seemed to accommodate some of the

overdispersion in this type of data but for the example chosen it seemed quite poor.

The model was then adapted to a dose-response setting and was considered for

modelling overdispersed dose-response data from a Wadley’s problem setting. The

results presented in Section 4.8.7 indicate that the beta-Poisson model adequately

accounted for the overdispersion in the algae data. When fitted to the malaria

data set, however, it failed to provide a good fit.

Overall, the beta-Poisson distribution was algebraically tractable. In addition

to modelling overdispersed count data, the model can be considered a useful tool

for accommodating overdispersion in dose-response data arising from a Wadley’s

problem setting.
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Chapter 5

The Multiplicative Binomial

Model

5.1 Introduction

A common cause of over- and underdispersion in a binomial experiment is corre-

lation among the responses (Collett, 2003, p.196). Altham (1978) introduced a

generalization of the binomial distribution in the context of toxicology studies on

litters of rabbits for which the binary outcomes for rabbits in the same litter are

correlated. The resulting distribution is the multiplicative binomial model, also

termed the Altham distribution by authors such as Zelterman (2004, p.212).

This chapter provides a critique of the multiplicative binomial distribution

and builds on the knowledge base of the model as it has not been explored in

great detail in the literature. The model has been cited by authors such as Engel

and te Brake (1993) and Madden and Hughes (1995), who merely stated that

the distribution can be used for modelling overdispersed binary data. Lovison

(1997) and Zelterman (2004, Chapter 8) investigated some of the properties of

the distribution but generally the model has not been used very much practically.

This chapter also provides a preamble for the Altham-Poisson distribution which

follows in Chapter 6 and which is an adaptation of the multiplicative binomial
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distribution to a Wadley’s problem scenario.

A derivation of the p.m.f. and some properties and examples of the multiplica-

tive binomial distribution are presented in Section 5.2. The likelihood function,

score functions and information matrix are included in Section 5.3, while methods

of estimation are outlined in Section 5.4. Results from fitting the multiplicative

binomial distribution to overdispersed binomial-type data are presented in Section

5.5. In Section 5.6 the model is adapted for a dose-response setting and fitted to

dose-mortality data. Concluding remarks are contained in Section 5.7.

5.2 Distribution

5.2.1 Derivation

The derivation presented here is that given by Altham (1978) but it has been

expanded and clarified to provide insight. Consider a toxicology experiment where

the outcomes recorded are the numbers of rabbits in litters of various sizes that

are alive at the end of the experiment. For a litter of size n let the binary outcome

for the ith rabbit in the litter, i = 1, . . . , n, be

Xi =







0 if the rabbit lives

1 if the rabbit dies.

Then the random variable Y =

n
∑

i=1

Xi represents the number of survivors in that

litter and would typically be modelled by a binomial distribution. However, the

situation frequently emerges in which the variation in the responses exceeds that

of the binomial distribution. Altham (1978) derived the multiplicative binomial

distribution for modelling over- and underdispersion by considering a binomial-

type experiment in which the binary outcomes X1, . . . , Xn for rabbits in a litter

of size n have a symmetric joint distribution and are correlated. Altham (1978)

regarded the binary responses as generating a 2n contingency table where the

ith margin label is 0 or 1 corresponding to the outcome Xi, i = 1, . . . , n. The
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probabilities associated with Xi, i = 1, . . . , n, are therefore the probabilities of

membership of the 2n cells of the contingency table and can be modelled using a

log-linear model with all third and higher order interactions ignored.

For example, consider a litter of size 3. The 23 contingency table can be

represented as

Level 0 of X3

X2

X1 000 010

100 110

Level 1 of X3

X2

X1 001 011

101 111

and the following probability statement can be written down:

Pr(X1 = a, X2 = b, X3 = c) = pabc for a, b, c = 0, 1

6= Pr(X1 = a)Pr(X2 = b)Pr(X3 = c)

where

1
∑

a=0

1
∑

b=0

1
∑

c=0

pabc = 1.

Altham (1978) followed Darroch (1974) and used the log-linear multiplicative

definition of no three-variable interactions to obtain

ln pabc = ψbc + ψac + ψab

where for example ψbc represents the first-order interaction of X2 and X3. In gen-

eralizing this statement to a litter of size n Altham (1978) obtained the following

expression

Pr(X1 = i1, . . . , Xn = in) = K
∏

1≤r<s≤n

φiris , (5.1)

where K is a normalizing constant ensuring that all of the probabilities sum to 1,

φiris are multiplicative interaction terms and i1, . . . , in = 0 or 1.

In order to derive the p.m.f. of the multiplicative binomial distribution consider

the random variable Y = X1 +X2 + . . .+Xn and suppose that a realization of Y

yields y ones and hence n − y zeros. Since the 1-1 interactions must be selected
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from the y ones and the 0-0 interactions from the n− y zeros and it follows from

(5.1) that

Pr(Y = y) = K





n

y



φ





n − y

2





00 φ
y(n−y)
01 φ





y

2





11

= K





n

y



φ
(n−y)(n−y−1)

2
00 φ

y(n−y)
01 φ

y(y−1)
2

11 .

Altham (1978) introduced a reparametrization of this distribution in terms of θ

and p where

θ =
φ01√
φ00φ11

(5.2)

and

p =
φ

(n−1)/2
11

φ
(n−1)/2
00 + φ

(n−1)/2
11

,

which implies that

q = 1 − p

=
φ

(n−1)/2
00

φ
(n−1)/2
00 + φ

(n−1)/2
11

.

This parametrization is useful because p measures the prevalence of a char-

acteristic and θ the strength of the correlation among the responses (Zelterman,

2004, p.219). From the definition of θ in (5.2),

φ
y(n−y)
01 = θy(n−y)φ

y(n−y)
2

00 φ
y(n−y)

2
11 .

Hence

Pr(Y = y) = K





n

y



φ
(n−y)(n−y−1)

2
00 θy(n−y)φ

y(n−y)
2

00 φ
y(n−y)

2
11 φ

y(y−1)
2

11

= K





n

y



φ
(n−1)(n−y)

2
00 θy(n−y)φ

y(n−1)
2

11 . (5.3)
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Substituting for p and q = 1 − p in (5.3) gives

Pr(Y = y) =





n

y



 pyqn−yθy(n−y)

f(p, θ, n)
, (5.4)

where f(p, θ, n) is a normalizing constant given by

f(p, θ, n) =

n
∑

y=0





n

y



 pyqn−yθy(n−y) (5.5)

with 0 ≤ p ≤ 1 and θ > 0. The p.m.f. of Y is of a similar form to that of a

binomial random variable but with an attenuating parameter θ which captures the

correlation among the responses and therefore allows for under- and overdispersion.

Note that the distribution reduces to the binomial distribution when θ = 1. Since

the p.m.f. of the multiplicative binomial distribution can be written in the form

Pr(Y = y) = exp

{

y ln

(

p

1 − p

)

+ y(n− y) ln θ − A(p, θ, n)

}

(5.6)

where A(p, θ, n) = ln f(p, θ, n)−n ln(1−p)− ln





n

y



, it is a member of the mul-

tivariate exponential family of distributions (McCullagh and Nelder, 1989, p.28).

Molenberghs and Ryan (1999) derived a distribution to model clustered binary

data in developmental toxicity studies by conditioning on the value of ni, i =

1, . . . , N , where ni represents the number of individuals in the ith cluster and

can vary from cluster to cluster. The model they obtained was written in the

form (5.6) and is identical to the multiplicative binomial distribution but they did

not comment on this fact. Lovison (1997) described an alternative derivation of

the multiplicative binomial distribution which is similar to the technique used by

Molenberghs and Ryan (1999) and which was based on methods introduced by

Cox (1972).
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5.2.2 Properties of the Distribution

Factorial Moments

Altham (1978) derived the following expressions for the first and second factorial

moments of the multiplicative binomial distribution:

E(Y ) =
np(p+ qθ)n−1

f(p, θ, n)
f

(

p

p+ qθ
, θ, n− 1

)

(5.7)

= npτ1 ,

where τ1 =
(p+ qθ)n−1

f(p, θ, n)
f

(

p

p+ qθ
, θ, n− 1

)

and

E[Y (Y − 1)] =
n(n− 1)p2(p+ qθ2)n−2

f(p, θ, n)
f

(

p

p+ qθ2
, θ, n− 2

)

. (5.8)

A simple manipulation of these moments yields the variance of the distribution as

Var(Y ) = E(Y 2) − [E(Y )]2

= E[Y (Y − 1)] + E(Y ) − [E(Y )]2

= npτ1

[

1 + p

(−τ2
τ1

)]

, (5.9)

where

τ2 =
n(p+ qθ)2n−2

f 2(p, θ, n)
f 2

(

p

p + qθ
, θ, n− 1

)

− (n− 1)(p+ qθ2)n−2

f(p, θ, n)
f

(

p

p+ qθ2
, θ, n− 2

)

.

Similar expressions were also obtained by Lovison (1997) and are not very tractable

since they are expressed in terms of the normalizing constant.

More general formulae for the factorial moments of the multiplicative binomial

distribution are now considered here for completeness. Concise expressions for the

skewness and kurtosis of the distribution are also sought in order to determine

how these statistics depend on the parameters. A general expression for the fac-

torial moments of the multiplicative binomial distribution has not been derived in

previous studies.

Consider the expectation

E[Y (r)(n− Y )(s)] = E[Y (Y − 1) . . . (Y − r + 1)(n− Y )(n− Y − 1) . . . (n− Y − s+ 1)]
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for the three scenarios r = s, s > r and r > s.

When r = s

E[Y (r)(n− Y )(r)] = E[Y (Y − 1) . . . (Y − r + 1)(n− Y )(n− Y − 1) . . . (n− Y − r + 1)]

=
n

∑

y=0

y(y − 1) . . . (y − r + 1)(n− y)(n− y − 1) . . . (n− y − r + 1)n!

y!(n− y)!

pyq(n−y)θy(n−y)

f(p, θ, n)

=
1

f(p, θ, n)

n−r
∑

y=r

n!

(y − r)!(n− r − y)!
pyqn−yθy(n−y)

=
1

f(p, θ, n)

n−2r
∑

y∗=0

n!

y∗!(n− 2r − y∗)!
pr+y∗

qn−y∗−rθ(y∗+r)(n−y∗−r) ,where y∗ = y − r

=
n(n− 1) . . . (n− 2r + 1)prqrθr(n−r)

f(p, θ, n)

n−2r
∑

y∗=0

(n− 2r)!

y∗!(n− 2r − y∗)!
py∗

qn−2r−y∗

θy∗(n−2r−y∗)

= n(n− 1) . . . (n− 2r + 1)prqrθr(n−r)f(p, θ, n− 2r)

f(p, θ, n)
.

If s > r the expectation becomes

E[Y (r)(n− Y )(s)] = E[Y (Y − 1) . . . (Y − r + 1)(n− Y )(n− Y − 1) . . . (n− Y − s+ 1)]

=

n
∑

y=0

y(y − 1) . . . (n− r + 1)(n− y)(n− y − 1) . . . (n− y − s + 1)n!

y!(n− y)!

pyqn−yθy(n−y)

f(p, θ, n)

=
1

f(p, θ, n)

n−s
∑

y=r

n!

(y − r)!(n− y − s)!
pyqn−yθy(n−y)

=
1

f(p, θ, n)

n−r−s
∑

y∗=0

n!

y∗!(n− r − s− y∗)!
pr+y∗

qn−y∗−rθ(y∗+r)(n−y∗−r) , where y∗ = y − r

=
n(n− 1) . . . (n− s− r + 1)prqsθr(n−r)

f(p, θ, n)

n−r−s
∑

y∗=0

(n− r − s)!(pθ(s−r))y∗

qn−r−s−y∗

θy∗(n−r−s−y∗)

y∗!(n− r − s− y∗)!

=
n(n− 1) . . . (n− r − s+ 1)prqsθr(n−r)(pθs−r + q)n−s−r

f(p, θ, n)

n−s−r
∑

y∗=0





n− s− r

y∗





(

pθs−r

pθs−r + q

)y∗ (

q

pθs−r + q

)n−s−r−y∗

θy∗(n−s−r−y∗)

=
n(n− 1) . . . (n− s− r + 1)prqsθr(n−r)(pθs−r + q)n−s−r

f(p, θ, n)
f

(

pθs−r

pθs−r + q
, θ, n− s− r

)

.

Finally, when r > s

E[Y (r)(n− Y )(s)] = E[Y (Y − 1) . . . (Y − r + 1)(n− Y )(n− Y − 1) . . . (n− Y − s+ 1)]
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=

n
∑

y=0

y(y − 1) . . . (n− r + 1)(n− y)(n− y − 1) . . . (n− y − s + 1)n!

y!(n− y)!

pyqn−yθy(n−y)

f(p, θ, n)

=
1

f(p, θ, n)

n−s
∑

y=r

n!

(y − r)!(n− y − s)!
pyqn−yθy(n−y)

=
1

f(p, θ, n)

n−r−s
∑

y∗=0

n!

y∗!(n− r − s− y∗)!
pr+y∗

qn−y∗−rθ(y∗+r)(n−y∗−r) , where y∗ = y − r

=
n(n− 1) . . . (n− r − s+ 1)prqsθs(n−s)(p+ qθr−s)n−s−r

f(p, θ, n)
n−r−s
∑

y∗=0

(n− r − s)!

y∗!(n− r − s− y∗)!

(

p

p+ qθr−s

)y∗ (

qθr−s

p+ qθr−s

)n−r−s−y∗

θy∗(n−r−s−y∗)

=
n(n− 1) . . . (n− r − s+ 1)prqsθs(n−y)(p+ qθr−s)n−s−r

f(p, θ, n)
f

(

p

p+ qθr−s
, θ, n− r − s

)

The factorial moments can be used to calculate the skewness and kurtosis of the

multiplicative binomial distribution. The skewness of the multiplicative binomial

distribution is calculated as

E[(Y − µ)]3

σ3
=

E(Y 3) − 3µE(Y 2) + 2µ3

σ3

=







2n3p2(p+ qθ)3(n−1)f 3
(

p
p+qθ

, θ, n− 1
)

f 3(p, θ, n)
−

2n2p2(p+ qθ)2(n−1)f 2
(

p
p+qθ

, θ, n− 1
)

f 2(p, θ, n)

−
np2(n− 1)(n− 2)qθn−1(p+ qθ)n−3f

(

p
p+qθ

, θ, n− 3
)

f(p, θ, n)

n2p2(n− 1)(p+ qθ2)n−2f
(

p
p+qθ2 , θ, n− 2

)

f(p, θ, n)







/







f 2(p, θ, n)





np(p+ qθ)n−1f
(

p
p+qθ

, θ, n− 1
)

f(p, θ, n)
+
n2p2(p+ qθ)2(n−1)f 2

(

p
p+qθ

, θ, n− 1
)

f 2(p, θ, n)

+
n(n− 1)p2(p+ qθ2)n−2f

(

p
p+qθ2 , θ, n− 2

)

f(p, θ, n)





3/2










.

Similarly the kurtosis of the distribution is

E[(Y − µ)]4

σ4
=

E(Y 4) + 6µE(Y 2) − 4µE(Y 3) − 3µ4

σ4
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= −f(p, θ, n)

{

(n3 − 6n2 + 11n− 6)p2qθn(p+ qθ)4(p+ qθ2)nf

(

p

p+ qθ2
, θ, n− 4

)

f 4(p, θ, n) + (n− 1)pθ(p+ qθ)3(p+ qθ2)n+2f

(

p

p+ qθ2
, θ, n− 2

)

f 3(p, θ, n)

[

2n(2n− 3)p(p+ qθ)nf

(

p

p + qθ
, θ, n− 1

)

− (n2 − 2)(p+ qθ)f(p, θ, n)

]

+(p+ qθ)n(p+ qθ2)4

[

3n3p3θ(p+ qθ)3nf 4

(

p

p+ qθ
, θ, n− 1

)

+ 4n2p2θ(p + qθ)2n+1

f 3

(

p

p+ qθ
, θ, n− 1

)

f(p, θ, n) − n(n + 9)pθ(p+ qθ)n+2f 2

(

p

p+ qθ
, θ, n− 1

)

f 2(p, θ, y) + (n3 − 7n+ 6)pqθn(p+ qθ)f

(

p

p+ qθ
, θ, n− 3

)

f 3(p, θ, n)

f

(

p

p+ qθ
, θ, n− 1

)

f 2(p, θ, n)

[

−4n(n2 − 3n + 2)p2qθn(p+ qθ)nf

(

p

p+ qθ
, θ, n− 3

)

+2(n+ 2)θ(p+ qθ)3f(p, θ, n)
]]

f(p, θ, n)
}

/
{

npθ

[

(n− 1)p(p+ qθ)2(p+ qθ2)nf

(

p

p+ qθ2
, θ, n− 2

)

f 2(p, θ, n)

(p+ qθ)n(p + qθ2)2f

(

p

p+ qθ
, θ, n− 1

)[

np(p+ qθ)nf

(

p

p+ qθ
, θ, n− 1

)

−(p + qθ)f(p, θ, n)] f(p, θ, n)]2
}

.

It is disappointing that the expressions for the skewness and kurtosis of the

multiplicative binomial distribution are not algebraically tractable. They can,

however, be easily programmed and computed via the factorial moments.

Generating Functions

The probability generating function of a distribution is defined as the expectation

E(sY ) where s is an indeterminant and for the multiplicative binomial distribution

it is derived as

E(sY ) =

n
∑

y=0





n

y



 sypyqn−yθy(n−y)/f(p, θ, n)

= (ps+ q)−n
n

∑

y=0





n

y





(

ps

ps+ q

)y (

q

ps+ q

)n−y

θy(n−y)/f(p, θ, n)

= (ps+ q)−nf

(

ps

ps+ q
, θ, n

)

/f(p, θ, n) .
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The moment generating function E(etY ), where t is an indeterminant, follows by

setting s = et. These generating functions can be used to obtain the moments

of the multiplicative binomial distribution but, since they contain the normalizing

constant, it is easier to obtain the moments directly from the expressions for the

factorial moments.

Modality

The modality of the multiplicative binomial distribution is investigated in this

study for the purpose of completeness. Although this modality was observed by

Zelterman (2004, p.213), it has not been explored in detail in any of the previous

studies. Consider a random variable Y which follows a multiplicative binomial

distribution with parameters p and θ and let y and y + 1 denote two consecutive

realizations of Y . Then the ratio of the probabilities of y and y + 1 is written as

Pr(Y = y)

Pr(Y = y + 1)
=

(y + 1)(1 − p)

(n− y)pθn−2y−1
,

which exceeds unity if and only if

p(n− y)

(1 − p)(y + 1)
θn−2y−1 < 1 .

Taking the logarithm of the above expression results in the following inequality:

(2y + 1 − n) ln θ > ln

(

n− y

y + 1

)

+ ln

(

p

1 − p

)

. (5.10)

For the purpose of establishing the modality of the multiplicative binomial

distribution the functions on each side of the inequality in expression (5.10) are

treated as continuous functions of y. Observe that if a continuous distribution

is unimodal its discrete version will have at most two consecutive modes, which

effectively equates to unimodality. Consider the inequality in equation (5.10) for

values of θ greater than one and values of θ less than one. When θ exceeds unity

ln θ is positive, indicating that (2y + 1− n) ln θ is a linearly increasing function of

y. Since (n− y) decreases and (y+ 1) increases as y increases, the function on the
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right hand side of the inequality in expression (5.10) is a decreasing function of y.

As a result the functions on the left and right hand sides of equation (5.10) have at

most one point of intersection. Figure 5.1(a) includes a graphical representation

of these two functions for n = 20, p = 0.48 and θ = 1.1. The solid line depicts

(2y + 1 − n) ln θ while the dashed line illustrates the function on the right hand

side of the inequality in (5.10). Since the two functions intersect at most once it

can be deduced that the multiplicative binomial distribution is unimodal when θ

is greater than one.

When θ is less than one, (2y+1−n) ln θ is a decreasing function of y. The two

functions on either side of the inequality in expression (5.10) are therefore both

decreasing and as a result they can intersect more than once. This is illustrated

in Figure 5.1(b) for n = 20, p = 0.48 and θ = 0.85. Since it is possible for

the two functions on either side of the inequality to have more than one point

of intersection, the multiplicative binomial distribution can have more than one

mode when θ is less than one.

5.2.3 Examples

Graphical representations of the p.m.f., together with the mean, variance, skewness

(γ) and kurtosis (κ) of Y are considered for various values of p and θ. Figure 5.2

includes an illustrative example of the unimodal p.m.f. of Y when θ > 1. Various

forms of the p.m.f. of Y when θ < 1 are presented in Figure 5.3.

Preliminary investigations of the p.m.f. of the multiplicative binomial distribu-

tion were carried out and the examples presented in Figures 5.2 and 5.3 are typical

representations of the p.m.f. for various values of p and θ. It was observed that for

large values of n the p.m.f. of the multiplicative binomial distribution seems to be

distinctly U-shaped when θ is much less than one. This is illustrated in Figures

5.3 (a) and 5.3 (b). Zelterman (2004, p.213) plotted the p.m.f. of the multiplica-

tive binomial distribution on a log scale for various values of θ when n = 10 and
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Figure 5.1: (a) n = 20, p = 0.48 and θ = 1.1

Figure 5.1: (b) n = 20, p = 0.48 and θ = 0.85

Figure 5.1: Illustration of the modality of the multiplicative binomial distribution

(a) when θ is greater than 1 and (b) when θ is less than 1.

p = 0.3. The examples considered by Zelterman (2004, p.213) seem to support

this tendency of the p.m.f. to be U-shaped when θ is much less than one. It was

noted that the probability of observing values between 0 and n seemed to increase

when θ was closer to one.

Altham (1978) stated that the multiplicative binomial distribution exhibits
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Figure 5.2: n = 20, p = 0.48, θ = 1.1, E(Y )=9.792, Var(Y )=2.592, γ=-0.618, κ=-7563.59 .

underdispersion when θ is greater than one and overdispersion when θ is less than

one. This relationship between the value of θ and the dispersion of the data seems

intuitively attractive since the multiplicative binomial distribution is reduced to

the binomial distribution when θ = 1. Lovison (1997) investigated this claim and

remarked that it is unsubstantiated. Figure 5.4 contains a plot of the variance of

Y over a range of values of θ for n = 5 and p = 0.01. The dashed line represents

the binomial variance for these values of n and p. The graph demonstrates that

for values of θ exceeding 1 the variance of the multiplicative binomial distribution

can exceed that of the binomial distribution, thereby supporting the claim made

by Lovison (1997).

5.3 Likelihood, Score Functions and Information

Matrix

The likelihood and score functions are presented since they are required for es-

timating the parameters of the multiplicative binomial distribution and also for

completeness. The information matrix of the multiplicative binomial distribu-
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Figure 5.3: (a) n = 20, p = 0.48, θ = 0.75, E(Y )=3.450, Var(Y )=55.486, γ=1.620, κ=2.812.

Figure 5.3: (b) n = 20, p = 0.48, θ = 0.85, E(Y )=4.777, Var(Y )=49.159, γ=1.244, κ=-0.158.

Figure 5.3: (c) n = 20, p = 0.48, θ = 0.9, E(Y )=7.808, Var(Y )=25.581, γ=0.292, kappa=-39.669.

Figure 5.3: (d) n = 20, p = 0.55, θ = 0.9, E(Y )=14.733, Var(Y )=16.357, γ=-1.367, κ=-1052.96.
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Figure 5.4: Plot indicating the changes of the variance of the multiplicative bino-

mial random variable, Y , over different values of θ, with n = 5 and p = 0.01.

tion has not been derived in previous studies and is considered here to determine

whether it has an attractive form and because it can be used to obtain the standard

errors of the parameter estimates.

5.3.1 Likelihood and Score Functions

The likelihood function of the multiplicative binomial distribution is

L(p, θ; y) =





n

y



 py(1 − p)n−yθy(n−y)

f(p, θ, n)
,

where f(p, θ, n) is the normalizing constant previously defined in expression (5.5).

The log-likelihood function is therefore written as

ℓ(p, θ; y) = ln





n

y



 + y ln p+ (n− y) ln(1 − p) + y(n− y) ln θ − ln f(p, θ, n) .

(5.11)

The first derivatives of the log-likelihood function with respect to the param-

eters p and θ give the score functions for the multiplicative binomial distribution.
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For a single observation from this distribution the score functions for p and θ are

derived below. Thus

∂ℓ(p, θ; y)

∂p
=

∂

∂p







ln





n

y



 + y ln p+ (n− y) ln(1 − p) + y(n− y) ln θ − ln f(p, θ, n)







=
y

p
− n− y

1 − p
− ∂f(p, θ, n)

∂p
.

However, since E(U)=0,

E

(

∂ℓ(p, θ;Y )

∂p

)

=
E(Y ) − np

p(1 − p)
− ∂ ln f(p, θ, n)

∂p
= 0

and therefore

∂ℓ(p, θ; y)

∂p
=

y − E(Y )

p(1 − p)
. (5.12)

Similarly

∂ℓ(p, θ; y)

∂θ
=

y(n− y)

θ
− ∂f(p, θ, n)

∂θ

and since E(U) = 0 it follows that

∂ℓ(p, θ; y)

∂θ
=

y(n− y)

θ
− E[Y (n− Y )]

θ
. (5.13)

These score functions were derived by Altham (1978) for the purpose of estimating

the parameters of the multiplicative binomial distribution.

5.3.2 Information Matrix

The information matrix can be written as the expectation of the pairwise products

of the score functions. For the parameters p and θ in the present model the

information matrix can be obtained by using

I = E















(

∂ℓ(p, θ;Y )

∂p

)2
∂ℓ(p, θ;Y )

∂p

∂ℓ(p, θ;Y )

∂θ

∂ℓ(p, θ;Y )

∂p

∂ℓ(p, θ;Y )

∂θ

(

∂ℓ(p, θ;Y )

∂θ

)2















.
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Consider the individual entries of the above matrix for a single observation. Then

E

[

(

∂ℓ(p, θ;Y )

∂p

)2
]

= E

[

[Y − E(Y )]2

p2(1 − p)2

]

=
Var(Y )

p2(1 − p)2

E

(

∂ℓ(p, θ;Y )

∂p

∂ℓ(p, θ;Y )

∂θ

)

=
−n[E(Y )]2 + E(Y 2)E(Y ) + nE(Y 2) − E(Y 3)

θp(1 − p)

=
E[Y 2(n− Y )] − E[Y (n− Y )]E(Y )

θp(1 − p)

=
Cov[Y (n− Y ), Y ]

θp(1 − p)

and

E

[

(

∂ℓ(p, θ;Y )

∂θ

)2
]

= E

{{[Y (n− Y )] − E[Y (n− Y )]}2

θ2

}

=
Var[Y (n− Y )]

θ2
.

Thus the information matrix for the multiplicative binomial distribution can be

written as

I =















Var(Y )

p2(1 − p)2

Cov[Y (n− Y ), Y ]

θp(1 − p)

Cov[Y (n− Y ), Y ]

θp(1 − p)

Var[Y (n− Y )]

θ2















. (5.14)

This matrix has a simple and elegant form and it is preferable to use the informa-

tion matrix rather than the observed Fisher information matrix for computing the

standard errors of the parameter estimates.

5.4 Estimation

5.4.1 Maximum Likelihood Estimation

Methods for estimating the parameters of the multiplicative binomial distribution

are explored for completeness and in order to advise practitioners on which method

99



is most suitable. Consider a random sample of observations from the multiplicative

binomial distribution and assume that the response yi is observed ki times, where
d

∑

i=1

ki = k and i = 1, . . . , d. Then the log-likelihood function for this random

sample is written as

ℓ(p, θ; y) =
d

∑

i=1

ki



ln





n

yi



 + yi ln p+ (n− yi) ln(1 − p) + yi(n− yi) ln θ − ln f(p, θ, n)



 .

The maximum likelihood estimates of the parameters p and θ cannot be written

down explicitly due to the intractability of the normalizing constant in the log-

likelihood function. As a result three methods for estimating the parameters of

the distribution are introduced and investigated. These methods include Altham’s

(1978) method, a method proposed by Lindsey and Mersch (1992) for estimating

the normalizing constant and direct optimization of the likelihood function.

Altham’s Method

Consider the score functions from expressions (5.12) and (5.13) for a random sam-

ple of observations and let ℓi denote the log-likelihood for response yi, i = 1, . . . , d.

Altham (1978) derived the maximum likelihood equations for the parameters p and

θ by equating the score functions to zero. Consider the score function for parameter

p. Then

d
∑

i=1

ki
∂ℓi
∂p

= 0 ,

which implies that

d
∑

i=1

ki[yi − E(Y )] = 0

and thus

E(Y ) =

d
∑

i=1

yiki

k

=
np(p+ qθ)n−1

f(p, θ, n)
f

(

p

p+ qθ
, θ, n− 1

)

. (5.15)
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Equating the score function for θ to zero gives

d
∑

i=1

ki
∂ℓi
∂θ

= 0 ,

which yields

E[Y (n− Y )] =
d

∑

i=1

yi(n− yi)ki

k

=
n2p(p+ qθ)n−1

f(p, θ, n)
f

(

p

p+ qθ
, θ, n− 1

)

− np(p+ qθ)n−1

f(p, θ, n)
f

(

p

p + qθ
, θ, n− 1

)

−np(n− 1)(p+ qθ)n−2

f(p, θ, n)
f

(

p

p+ qθ2
, θ, n− 2

)

. (5.16)

Altham (1978) thus demonstrated that maximum likelihood estimation of p and

θ for the multiplicative binomial distribution is equivalent to the method of mo-

ments. The parameters p and θ are estimated by equating the moments E(Y ) and

E[Y (n−Y )] of the multiplicative binomial distribution to the equivalent observed

moments. She suggested an iterative procedure for estimating the parameters with

a starting value of 1 for θ and the estimated binomial probability of success as a

starting value for p. The initial value for θ is substituted into (5.15) to yield

an updated estimate of p, which is in turn substituted into (5.16) to find an up-

dated estimate of θ. The algorithm oscillates between estimates of p and θ until

it converges.

Method of Lindsey and Mersch

Lindsey and Mersch (1992) discussed a method for fitting discrete probability

distributions which are members of the exponential family of distributions. Their

discrete distribution version of estimation is drawn upon in the present study.

The general method proceeds as follows: Suppose that yi is a realization of

the discrete variable Y and that it is observed ki times, where
d

∑

i=1

ki = k and

i = 1, . . . , d. Then according to Lindsey and Mersch (1992) the likelihood function
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is proportional to

L(ψ; y) ∝
∏

pyi

i , (5.17)

where pi = Pr(Y = yi) and ψ is the m-dimensional vector of parameters in the

distribution of Y . The likelihood function in expression (5.17) is simply the p.m.f.

of a general multinomial distribution. For a member of the exponential family the

probability pi can be written as

pi = exp{
p

∑

j=1

tj(yi)ψj + c(ψ) + d(yi)} ,

where c(ψ) is the normalizing constant, tj(.) are the sufficient statistics for the

parameters and d(yi) is an arbitrary function of the observations. Since the multi-

nomial distribution can be maximized as a log-linear model provided that an in-

tercept term is included in the model (Dobson, 2002, p.136), Lindsey and Mersch

(1992) propose maximizing the likelihood in expression (5.17) as a Poisson likeli-

hood with parameter

λi = exp{
p

∑

j=1

tj(yi)ψj + ψ0 + d(yi)} ,

where ψ0 replaces c(ψ). They then draw on the fact that Y is a member of the

exponential family of distributions to fit the sufficient statistics as explanatory

variables in the Poisson regression.

The method proposed by Lindsey and Mersch (1992) can be used to estimate

the parameters of the multiplicative binomial distribution by writing the parameter

λi in the Poisson likelihood in terms of p and θ as

lnλi = ln





n

yi



 + yi logit(p) + yi(n− yi) ln θ + θ0 ,

where θ0 is the intercept term which corresponds to n ln(1 − p) − f(p, θ, n). The

multiplicative binomial distribution can therefore be fitted using a Poisson regres-

sion with explanatory variables yi and yi(n−yi), i = 1, . . . , d and parameters logit

p, ln θ and θ0.

102



Lindsey and Altham (1998) used the method for estimating the normalizing

constant presented by Lindsey and Mersch (1992) to fit the multiplicative binomial

distribution as a log-linear model, with the parameters p and θ both modelled as

functions of n.

Direct Maximization of the Likelihood Function

The log of the likelihood function can be maximized directly using numerical meth-

ods such as those employed by the optimization routine OPTMUM in the program-

ming language Gauss. Since this routine requires starting values for the parameter

estimates the starting values proposed by Altham (1978) can be utilized.

The three methods introduced in this study will be compared and evaluated

using an example in Section 5.5.

5.4.2 Inference

The standard errors of the estimates of p and θ can be found by substituting these

estimates into the inverse of the information matrix and then taking the square

roots of the resulting diagonal elements.

Confidence intervals for the parameters can be computed using Wald intervals.

The 95% Wald interval for the parameter θ is θ̂ ± 1.96 se(θ̂), where se(θ̂) is the

standard error of the estimate of θ (Kutner, Nachtsheim, Neter and Li, 2005,

p.579). Similarly the 95% Wald interval can be constructed for the parameter

p. Note that for the multiplicative binomial distribution the restrictions on the

parameter space are 0 ≤ p ≤ 1 and θ > 0.

An alternative method for obtaining 95% confidence intervals for the parameter

estimates is to use the profile likelihood functions. Profile likelihoods for the

parameters of the multiplicative binomial distribution have not been considered in

any of the earlier literature. Suppose that ℓ(p̂, θ̂; y) is the maximum log-likelihood

of the multiplicative binomial distribution and let ℓP (θ) denote the profile log-

likelihood for the parameter θ. The 95% confidence interval for the parameter θ is
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then given by [θ1, θ2] where θ1 and θ2 satisfy the condition

ℓP (θ1) = ℓP (θ2) = ℓ(p̂, θ̂; y) − 1

2
χ2

1,0.05

(Azzalini, 1996, p.146). Similarly the 95% confidence interval for p can be obtained

by plotting the profile likelihood ℓP (p) for p.

5.4.3 Goodness of Fit

The adequacy of the fit of the multiplicative binomial distribution to count data

can be assessed in a number of ways. Firstly, a chi-squared goodness of fit statistic

can be used to determine whether the data constitute a random sample from

the multiplicative binomial distribution. A significant statistic indicates that the

multiplicative binomial distribution is not appropriate for the data.

In order to determine if the binomial would be a more suitable model for a

given data set, the following hypothesis test can be performed

H0 : θ = 1

H1 : θ 6= 1 .

The appropriate test statistic is

W = −2[ℓ(p̃, θ̃; y) − ℓ(p̂, θ̂; y)] ,

where ℓ(p̃, θ̃; y) is the maximum log-likelihood under H0 and ℓ(p̂, θ̂; y) is the max-

imum log-likelihood for the model of interest. This test statistic can then be

compared with the χ2
1 distribution (Azzalini, 1996, p.116). Tarone (1979) intro-

duced an alternative test for determining whether θ is one, which is somewhat

involved and thus the test statistic, W , described here is preferred because of its

simple form.

Finally, to compare the fit of the multiplicative binomial distribution with

that of the binomial distribution, AIC can also be used. The AIC value for the

multiplicative binomial distribution is calculated as AIC = −2ℓ(p̂, θ̂; y) + 4, with
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q = 2, and the model with the smallest AIC value is deemed most suitable for the

data.

5.5 An Example

An example is considered to illustrate the above ideas. In 1889 Geissler published

data on the distribution of the sexes of children in families up to size 13. Parents

of children born in Saxony from 1876 to 1885 recorded the size of their family as

well as the numbers of male and female children upon registering the birth of their

“last child”.

It is thought that the ratio of boys to girls in a family, as well as the size of

the family, would impact on a couple’s decision to have more children. As a result

of this it has been argued that the last recorded birth is unreliable and should not

be used to estimate the human sex ratio. Lindsey and Altham (1998) therefore

extracted the frequency distribution of male children in families with the most

recently recorded birth omitted. A portion of this data corresponding to families

of size 13 was investigated in the present study and is given in Table 5.1. Note

that the maximum number of boys in a family is twelve because the last recorded

birth was omitted.

Table 5.1: Human sex ratio data for families of size 13.

Number of boys 0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Lindsey (1995, p.132) considered modelling the data recorded in Table 5.1 with

Efron’s (1986) double binomial model and concluded that the data are overdis-

persed. The multiplicative binomial model was therefore fitted to this data in the

present study in an attempt to account for the overdispersion. The parameters

were estimated using Altham’s (1978) method, the method proposed by Lindsey

and Mersch (1992) and direct optimization of the log-likelihood function. The
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estimates obtained from the three methods were identical and therefore direct op-

timization was selected for the examples in the remainder of this chapter because

of its ease of implementation.

Profile likelihood plots of the parameters are presented in Figures 5.5 (a) and

(b). The estimates of p and θ are presented with their standard errors, 95% Wald

Figure 5.5: (a)

Figure 5.5: (b)

Figure 5.5: Profile likelihood plots for the parameters (a) p and (b) θ of the

multiplicative binomial model fitted to the human sex ratio data.
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and 95% profile likelihood confidence intervals in Table 5.2.

Table 5.2: Results from fitting the multiplicative binomial model to the human

sex ratio data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

p 0.517 0.002 (0.513;0.520) (0.513;0.520)

θ 0.974 0.003 (0.969;0.980) (0.969;0.980)

Observe that the 95% Wald intervals for the parameters p and θ were identi-

cal to those obtained from the profile likelihoods in this instance, indicating the

symmetry of the distributions of these parameters.

A chi-squared goodness of fit statistic was used to assess the fits of the binomial

and multiplicative binomial models to the human sex ratio data. The p-values from

these goodness of fit tests, as well as the AIC statistics, are presented in Table

5.3. The p-values from the χ2 tests indicate that the binomial model is inadequate

Table 5.3: A comparison of the various models fitted to the human sex ratio data.

Model χ2 p-value AIC

Binomial 0.000 25070.340

Multiplicative Binomial 0.150 24989.900

for the human sex ratio data and that the multiplicative binomial distribution

provides a suitable fit to this data. The superiority of the fit of the multiplicative

binomial to the human sex ratio data is reinforced by the AIC values.

Finally, in order to test whether the fit of the multiplicative binomial distribu-

tion was superior to that of the binomial distribution the test to determine whether

θ is one described in Section 5.4.3 was performed. The value of the test statistic

for this hypothesis was 82.538 which is highly significant when compared with a

χ2 value with 1 degree of freedom. Therefore the null hypothesis is rejected and
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it is concluded that θ 6= 1, indicating that the binomial model is not suitable for

these data.

5.6 Modelling Dose-Response Data

5.6.1 Model Setting

In this section the results for the basic multiplicative binomial distribution are

extended to a dose-response setting. In accordance with the previous chapters

in this thesis, the logit model is considered as a drug tolerance distribution and,

following Morgan (1992, p.253), the parameter λ is introduced as the proportion

of natural mortality, where 0 ≤ λ ≤ 1. This parameter is introduced here because

of the example that is considered later in this chapter. Thus for a log-dose x the

parameter p can be written in terms of α, β and λ as

p = λ+
1 − λ

1 + e−(α+βx)
, (5.18)

where α, β and λ are unknown parameters. Lindsey and Altham (1998) used a

logit link function to model the parameter p as a function of n and modelled θ as a

function of n using a log link function. Molenberghs and Ryan (1999) considered

modelling data arising from developmental toxicity studies and in effect modelled

the parameter p of the multiplicative binomial distribution as a function of the

dose administered using a linear link function. Natural mortality has not been

incorporated into the tolerance distribution of the multiplicative binomial model

in previous studies.

5.6.2 Likelihood, Score Functions and Information Matrix

The score functions for the multiplicative binomial model with the link function

specified by (5.18) are the first derivatives of the log-likelihood function with re-
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spect to the parameters λ, α, β and θ and are written as

∂ℓ(λ, α, β, θ; y)

∂λ
=

∂ℓ(p, θ; y)

∂p

∂p

∂λ

=
y − E(Y )

p(1 − p)

1 − p

1 − λ

=
y − E(Y )

p(1 − λ)
,

∂ℓ(λ, α, β, θ; y)

∂α
=

∂ℓ(α, β, θ; y)

∂p

∂p

∂α

=

{

(1 − p)(p− λ)

1 − λ

}{

y − E(Y )

p(1 − p)

}

=
(p− λ)[y − E(Y )]

p(1 − λ)
,

∂ℓ(λ, α, β, θ; y)

∂β
=

∂ℓ(α, β, θ; y)

∂p

∂p

∂β

=

{

x(1 − p)(p− λ)

1 − λ

} {

y − E(Y )

p(1 − p)

}

=
x(p− λ)[y − E(Y )]

p(1 − λ)

and

∂ℓ(λ, α, β, θ; y)

∂θ
=

y(n− y) − E[Y (n− Y )]

θ
.

The information matrix derived in Section 5.3.2 can be adapted for a dose-response

setting by considering the relationship between p and the parameters α, β and λ

from equation (5.18) where x is the log of the dose of the drug administered to

a subject. To avoid computing second-order partial derivatives, the information

matrix can be calculated from the expected values of the pairwise products of the

score functions. Thus the information matrix for the parameters λ, α, β and θ of

the multiplicative binomial distribution with a logit link function modelling p and

incorporating natural mortality is written as

J = E



















(

∂ℓ(λ,α,β,θ;Y )
∂λ

)2
∂ℓ(λ,α,β,θ;Y )

∂λ
∂ℓ(λ,α,β,θ;Y )

∂α
∂ℓ(λ,α,β,θ;Y )

∂λ
∂ℓ(λ,α,β,θ;Y )

∂β
∂ℓ(λ,α,β,θ;Y )

∂λ
∂ℓ(λ,α,β,θ;Y )

∂θ

∂ℓ(λ,α,β,θ;Y )
∂λ

∂ℓ(λ,α,β,θ;Y )
∂α

(

∂ℓ(λ,α,β,θ;Y )
∂α

)2
∂ℓ(λ,α,β,θ;Y )

∂α
∂ℓ(λ,α,β,θ;Y )

∂β
∂ℓ(λ,α,β,θ;Y )

∂α
∂ℓ(λ,α,β,θ;Y )

∂θ

∂ℓ(λ,α,β,θ;Y )
∂λ

∂ℓ(λ,α,β,θ;Y )
∂β

∂ℓ(λ,α,β,θ;Y )
∂α

∂ℓ(λ,α,β,θ;Y )
∂β

(

∂ℓ(λ,α,β,θ;Y )
∂β

)2
∂ℓ(λ,α,β,θ;Y )

∂β
∂ℓ(λ,α,β,θ;Y )

∂θ

∂ℓ(λ,α,β,θ;Y )
∂λ

∂ℓ(λ,α,β,θ;Y )
∂θ

∂ℓ(λ,α,β,θ;Y )
∂α

∂ℓ(λ,α,β,θ;Y )
∂θ

∂ℓ(λ,α,β,θ;Y )
∂β

∂ℓ(λ,α,β,θ;Y )
∂θ

(

∂ℓ(λ,α,β,θ;Y )
∂θ

)2



















.
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The entries of this information matrix are calculated as

E

[

(

∂ℓ(λ, α, β, θ;Y )

∂λ

)2
]

= E

[

Y − E(Y )

p(1 − λ)

]2

=
Var(Y )

p2(1 − λ)2
,

E

[

∂ℓ(λ, α, β, θ;Y )

∂λ

∂ℓ(λ, α, β, θ;Y )

∂α

]

= E

[

Y − E(Y )

p(1 − λ)

(p− λ)[Y − E(Y )]

p(1 − λ)

]

=
(p− λ)Var(Y )

p2(1 − λ)2
,

E

[

∂ℓ(λ, α, β, θ;Y )

∂λ

∂ℓ(λ, α, β, θ;Y )

∂β

]

= E

[

Y − E(Y )

p(1 − λ)

x(p− λ)(Y − E(Y ))

p(1 − λ)

]

=
x(p− λ)Var(Y )

p2(1 − λ)2
,

E

[

∂ℓ(λ, α, β, θ;Y )

∂λ

∂ℓ(λ, α, β, θ;Y )

∂θ

]

= E

{

Y − E(Y )

p(1 − λ)

Y (n− Y ) − E[Y (n− Y )]

θ

}

=
E[Y 2(n− Y )] − E(Y )E[Y (n− Y )]

θp(1 − λ)

=
Cov[Y (n− Y ), Y ]

θp(1 − λ)
,

E

[

(

∂ℓ(λ, α, β, θ;Y )

∂α

)2
]

= E

[

(p− λ)(Y − E(Y ))

p(1 − λ)

]2

=
(p− λ)2Var(Y )

p2(1 − λ)2
,

E

[

∂ℓ(λ, α, β, θ;Y )

∂α

∂ℓ(λ, α, β, θ;Y )

∂β

]

= E

[

(p− λ)(Y − E(Y ))

p(1 − λ)

x(p− λ)(Y − E(Y ))

p(1 − λ)

]

=
x(p− λ)2Var(Y )

p2(1 − λ)2
,

E

[

∂ℓ(λ, α, β, θ;Y )

∂α

∂ℓ(λ, α, β, θ;Y )

∂θ

]

= E

[

(p− λ)(Y − E(Y ))

p(1 − λ)

Y (n− Y ) − E[Y (n− Y )]

θ

]

=
(p− λ)E{[E[Y (Y + n)] + Y (Y + n)][E(Y ) − Y ]}

θp(1 − λ)
,

E

[

(

∂ℓ(λ, α, β, θ;Y )

∂β

)2
]

= E

[

x(p− λ)(Y − E(Y ))

p(1 − λ)

]2

=
x2(p− λ)2Var(Y )

p2(1 − λ)2
,
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E

[

∂ℓ(λ, α, β, θ;Y )

∂β

∂ℓ(λ, α, β, θ;Y )

∂θ

]

= E

[

x(p− λ)(Y − E(Y ))

p(1 − λ)

Y (n− Y ) − E[Y (n− Y )]

θ

]

=
x(p− λ)E{[E[Y (Y + n)] + Y (Y + n)][E(Y ) − Y ]}

θp(1 − λ)

and

E

[

(

∂ℓ(λ, α, β, θ;Y )

∂θ

)2
]

=
Var[Y (n− Y )]

θ2
.

5.6.3 Model Fitting and Checking

Consider a random variable Y that refers to the number of organisms that survive

treatment with various doses of a particular drug. Suppose that yij refers to the

number of individuals surviving a dose di and log-dose xi of the drug, j = 1, . . . , ni

and i = 1, . . . , D. Furthermore, let pi denote the probability of an organism

surviving exposure to the ith dose of the drug and consider writing this probability

in terms of the log-dose using expression (5.18). Then the likelihood and log-

likelihood functions for the multiplicative binomial model with p modelled with a

logit link function can be written as

L(λ, α, β, θ; y) =

D
∏

i=1

ni
∏

j=1



































n

yij



 p
yij

i (1 − pi)
n−yijθyij(n−yij)

f(pi, θ, n)































and

ℓ(λ, α, β, θ; y) =
D

∑

i=1

ni
∑

j=1







ln





n

yij



 + yij ln(pi) + (n− yij) ln(1 − pi)

+yij(n− yij) ln(θ) − lnf(pi, θ, n)}

respectively. The parameters λ, α, β and θ can then be estimated by optimizing

the log of the likelihood function directly using an optimization routine such as

OPTMUM in Gauss. A starting value of 1 can be used for θ and starting values
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for the parameters λ, α and β can be obtained from fitting a binomial distribution

with p modelled with a logit link function that includes natural mortality as in

expression (5.18).

The information matrix for the data can be obtained by summing the infor-

mation for a single observation over all of the observed responses. The standard

errors of the parameter estimates are then the square roots of the diagonal entries

of the inverted information matrix. 95% Wald intervals can be obtained for each

parameter using the standard errors obtained from the information matrix. Profile

likelihood plots can also be obtained for each parameter and these plots can be

used to compute 95% confidence interval estimates for the parameters using the

method outlined in Section 5.4.2.

The superiority of the fit of the multiplicative binomial distribution to that of

the binomial model can be determined by testing H0 : θ = 1 using the χ2 test

previously described in Section 5.4.3. A comparison can also be made between

the multiplicative binomial distribution, the binomial distribution and the beta-

binomial distribution using AIC statistics. The AIC for the multiplicative binomial

distribution with the parameter p modelled with a logit tolerance distribution and

incorporating natural mortality is AIC = −2ℓ(λ̂, α̂, β̂, θ̂; y)+8, where ℓ(λ̂, α̂, β̂, θ̂; y)

is the maximum log-likelihood and q = 4. The model with the smallest AIC value

provides the best fit.

5.6.4 An Example

Morgan (1992, p.252) presented a data set in which varying doses of trichloromethane

were administered to litters of mice seven days after birth and the number that

died within 14 days of exposure to the drug was recorded. The data are presented

in Table 5.4.

There was a common litter size of 8 for which Morgan (1992, p252) commented

that there was no explanation. Morgan (1992, p.253) observed that the variation

in the responses exceeds the variation that would be explained by a binomial
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Table 5.4: Data for mice exposed to trichloromethane.

Dosage Number dead Total

(mg/kg) per litter of 8 dead

Control 0 0 0 2 2 4

250 0 0 1 3 6 10

300 0 0 0 1 8 9

350 0 2 2 5 8 17

400 1 2 4 6 7 20

450 1 4 5 6 8 24

500 1 7 8 8 8 32

model and concluded that the data are overdispersed. Therefore the multiplicative

binomial distribution with the probability p modelled by a logit link function

including natural mortality was fitted to Morgan’s (1992) mice data using a direct

and straightforward optimization routine. The maximum likelihood estimates of

the parameters, together with their standard errors and 95% confidence intervals

are presented in Table 5.5.

Table 5.5: Results from fitting the multiplicative binomial model to the mice data,

where p is modelled with a logit function and λ is the rate of natural mortality.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

λ̂ 0.3572 0.0800 (0.200;0.514) (0;0.410)

α̂ -14.8232 9.7414 (-33.915;4.269) (*;-4.251)

β̂ 5.2287 3.5624 (-1.753;12.211) (1.301;*)

θ̂ 0.7231 0.0234 (0.678;0.768) (0.679;0.771)

*These limits of the confidence intervals cannot be computed

The profile likelihood plots for each of the parameters λ, α, β and θ are pre-

sented in Figures 5.6 (a), (b), (c) and (d) respectively. The profile likelihood plots
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for the parameters α and β exhibited erratic behaviour at some of the extremes

and as a result profile likelihood intervals could not be obtained for these parame-

ters. Since confidence intervals for the parameters α and β could not be obtained

from the profile likelihoods, 95% Wald intervals for each of the parameters have

also been included.

The fit of the multiplicative binomial model was compared with that of the

binomial model by testing the two-sided hypothesis H0 : θ = 1 against H1 : θ 6= 1.

The value of the test statistic W for this hypothesis was 349.954 which, when

compared with a χ2
1 distribution, yielded a p-value less than 0.0001. This suggests

that the multiplicative binomial model provides a better fit to this data set than

the binomial distribution.

Finally the fit of the multiplicative binomial distribution was compared with

that of the beta-binomial and binomial models using the AIC statistic. The AIC

values for these models are presented in Table 5.6. The AIC values indicate that

the multiplicative binomial distribution provides the best fit to the data and hence

accounts for the overdispersion more adequately than the beta-binomial model.

Table 5.6: A comparison of the models fitted to the mice data.

Model Maximum Number of AIC

log-likelihood parameters

Multiplicative Binomial -64.90 4 137.80

Beta-Binomial -126.43 4 260.86

Binomial -157.24 3 320.48

5.7 Conclusions

In this chapter some new properties of the multiplicative binomial distribution

have been introduced. General expressions for the factorial moments of the dis-

tribution were derived and are useful for obtaining statistics such as the skewness

114



Figure 5.6: (a)

Figure 5.6: (b)

Figure 5.6: (c)

Figure 5.6: (d)

Figure 5.6: Profile likelihood plots for the parameters (a) λ, (b) α, (c) β and (d)

θ of the multiplicative binomial model with a logit tolerance distribution fitted to

the mice data.
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and kurtosis. The information matrix of the multiplicative binomial distribution

proved to have an elegant form and was adapted for a dose-response setting incor-

porating natural mortality. The matrix was also used to obtain the standard errors

of the parameter estimates. Various methods of estimation were discussed and di-

rect optimization of the likelihood function was considered preferable because it

is simple and easy to implement. Profile likelihoods for the parameters of the

multiplicative binomial model were plotted and used to obtain interval estimates

associated with the parameters of the distribution.

The model initially introduced by Altham (1978) has been shown to be useful

for modelling overdispersed binomial-type data as well as overdispersed binary data

arising from dose-mortality studies. The multiplicative binomial model provided

a better fit to the mice data than the beta-binomial model. An adaptation of this

distribution to a Wadley’s problem scenario is investigated in the next chapter.
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Chapter 6

The Altham-Poisson Model

6.1 Introduction

The investigation of the multiplicative binomial distribution in Chapter 5 indicated

that the distribution effectively models overdispersion in binomial-type data. An

extension of the multiplicative binomial distribution to a Wadley’s problem set-

ting is explored in the present chapter by modelling the number of trials from

the multiplicative binomial distribution with a Poisson distribution. The result-

ing distribution is termed the Altham-Poisson distribution. It is examined as a

means of modelling overdispersed Poisson data in its own right and its suitabil-

ity for overdispersed dose-response data from a Wadley’s problem setting is also

investigated.

The p.m.f. of the Altham-Poisson distribution is derived and an approximation

suitable for calculating the resultant probabilities is explored and presented in

Section 6.2. Section 6.3 includes an investigation of the moments of the distribution

together with some examples. The likelihood and log-likelihood functions as well

as the score functions and the information matrix are discussed in Section 6.4.

Methods for estimating the parameters of the Altham-Poisson distribution are

outlined in Section 6.5 and some results from fitting the model to overdispersed

Poisson data are presented in Section 6.6. In Section 6.7 the distribution is adapted
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to a dose-response setting and concluding remarks are recorded in Section 6.8.

6.2 Distribution

6.2.1 Derivation of the p.m.f.

Consider a random variable Y which follows a multiplicative binomial distribution

with number of trials n and parameters p and θ, where p is the probability of a

success. Suppose that the number of trials is unobserved and consider modelling

this unknown number as a random variable N with a Poisson(τ) distribution.

Using the notation introduced in Chapter 5, let f(p, θ, n) denote the normalizing

constant from the multiplicative binomial distribution where

f(p, θ, n) =

n
∑

y=0





n

y



 py(1 − p)n−yθy(n−y) .

Then the marginal p.m.f. of Y can be obtained from first principles as follows:

Pr(Y = y) =

∞
∑

n=y

Pr(Y = y|N = n)Pr(N = n)

=

∞
∑

n=y





n

y



 py(1 − p)n−yθy(n−y)

f(p, θ, n)

τne−τ

n!

=
e−ττ ypy

y!

∞
∑

n=y

τn−y(1 − p)n−yθy(n−y)

f(p, θ, n)(n− y!)

=
τ ye−τpy

y!

∞
∑

s=0

τ s(1 − p)sθys

s!f(p, θ, s+ y)

=
(τp)ye−τp

y!
× e−τ(1−p)

∞
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
. (6.1)

Thus Y follows a weighted Poisson distribution with weight

wy = e−τ(1−p)

∞
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
,
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which includes an infinite sum that cannot be expressed explicitly. The p.m.f. in

expression (6.1) is a probability and since

∞
∑

y=0

Pr(Y = y) = 1, the infinite sum

included in the expression must converge. When θ = 1 the distribution of Y

reduces to a Poisson distribution with mean τp, which is the classic distribution

for modelling Wadley’s problem (Wadley, 1949). The distribution of Y will be

referred to as the Altham-Poisson distribution with parameters τ, p and θ and

will be denoted Y ∼ AlthamPoisson(τ, p, θ) for the remainder of this thesis.

6.2.2 Infinite Sum

The p.m.f. in expression (6.1) indicates that evaluating a probability for the

Altham-Poisson distribution entails the approximation of an infinite sum. It is

desirable to approximate the infinite sum to a specified degree of accuracy. In

particular, a cutoff value for the index s, denoted scut, is sought so that the infinite

sum in expression (6.1) can be approximated by the finite series

scut
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
.

to a desired degree of accuracy.

Shmueli, Minka, Kadane, Borle and Boatwright (2005) considered the Conway-

Maxwell Poisson distribution which is a weighted Poisson distribution and includes

an infinite sum. In accordance with their work, an upper bound is sought on the

error that results from approximating the infinite sum with a finite sum. If an

upper bound on the error term can be determined, the accuracy of the approxi-

mation can be controlled. Since the model reduces to a Poisson distribution when

θ = 1, consider the component f(p, θ, s + y) in expression (6.1) for the two cases

θ > 1 and θ < 1.

When θ > 1 it follows that

θk(s+y−k) ≥ 1,
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where k is a positive integer and as a result

f(p, θ, s+ y) =

s+y
∑

k=0





s+ y

k



 pk(1 − p)s+y−kθk(s+y−k)

≥
s+y
∑

k=0





s+ y

k



 pk(1 − p)s+y−k

= 1 .

Thus

[τθy(1 − p)]s

s!f(p, θ, s+ y)
≤ [τθy(1 − p)]s

s!
. (6.2)

Now consider again writing the infinite sum from expression (6.1) as

∞
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
=

k
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
+Rk ,

where Rk is the error or remainder term given by

Rk =

∞
∑

s=k+1

[τθy(1 − p)]s

s!f(p, θ, s+ y)
.

From (6.2) it follows that

Rk ≤
∞

∑

s=k+1

[τθy(1 − p)]s

s!

= e[τθy(1−p)] −
k

∑

s=0

[τθy(1 − p)]s

s!
.

The remainder term Rk therefore has an upper bound that is computable when

θ > 1.

The inequality θk(s+y−k) ≥ θk(s+y) holds for values of θ that are less than one.

Therefore

f(p, θ, s+ y) ≥
s+y
∑

k=0





s+ y

k



 pk(1 − p)s+y−kθk(s+y)

= (1 − p+ pθs+y)s+y ,
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and hence

[τ(1 − p)θy]s

s!f(p, θ, s+ y)
≤ [τ(1 − p)θy]s

s!(1 − p+ pθs+y)s+y

=
[τθy]s

s!(1 + p
1−p

θs+y)s+y(1 − p)y

≤ [τθy]s

s!(1 − p)y
since

p

1 − p
θs+y > 0

≤
[τ

(

θ
1−p

)y

]s

s!
.

Consider partitioning the infinite sum in the following way

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)
=

k
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)
+Rk ,

where the remainder, Rk, is written as

Rk =

∞
∑

s=k+1

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

≤
∞

∑

s=k+1

[τ
(

θ
1−p

)y

]s

s!

= eτ( θ
1−p)

y

−
k

∑

s=0

[τ
(

θ
1−p

)y

]s

s!
.

Thus when θ < 1, Rk is bounded above and the bound is computable.

Therefore the remainder term Rk has an upper bound for all values of θ and

as a result the infinite sum in (6.1) can be approximated by a finite sum with

cutoff scut. For a predetermined upper bound on the remainder term an associated

value for scut can be obtained thereby ensuring that the finite sum approximates

the infinite sum with a desired degree of accuracy.

6.2.3 Simulation

An alternative method for estimating the probability in expression (6.1) is by

simulation. A ‘very large’ number of observations can be simulated from the
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Altham-Poisson distribution by first simulating a value of N from the Poisson(τ)

distribution and then a value of Y given N = n from the multiplicative binomial

model with parameters p and θ. The probability that the Altham-Poisson dis-

tributed random variable Y assumes a particular value y is then estimated by the

proportion of simulated observations in the random sample that are equal to y.

A disadvantage of this method is that its accuracy cannot be readily controlled

or readily assessed. In other words the number of simulated observations required

to estimate the probabilities adequately is unknown. However, an indication of

a suitable number of simulated observations can be obtained by computing and

comparing the probabilities described above for a range of sample sizes. When

the number of simulated observations is sufficiently large, the estimates of the

probabilities will begin to stabilize.

The preferred method for approximating the probabilities comprising the p.m.f.

of the Altham-Poisson distribution is thus to select a suitable cutoff value according

to a desired degree of accuracy and to then estimate the infinite sum with a finite

sum, as described in Section 6.2.2.

6.3 Moments of the Distribution

Since the p.m.f. of the random variable Y includes an infinite sum, the moments

of the Altham-Poisson distribution cannot be written down explicitly. The first

two moments are considered in this thesis.

If Y follows an Altham-Poisson distribution with parameters τ, p and θ the

expected values of Y and Y 2 are written respectively as

E(Y ) =
∞

∑

y=0

yPr(Y = y)

=

∞
∑

y=0

y

∞
∑

s=0

(τp)ye−τ

y!

[τθy(1 − p)]s

s!f(p, θ, s+ y)

=

∞
∑

y=0

y
(τp)ye−τ

y!

∞
∑

s=0

[τθy(1 − p)]s

s!f(p, θ, s+ y)
(6.3)
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and

E(Y 2) =
∞

∑

y=0

y2Pr(Y = y)

=
∞

∑

y=0

y2
∞

∑

s=0

(τp)ye−τ

y!

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

=

∞
∑

y=0

y2 (τp)ye−τ

y!

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)
. (6.4)

Expressions (6.3) and (6.4) demonstrate the emergence of an outer infinite sum.

As y increases Pr(Y = y) decreases since
∞

∑

y=0

Pr(Y = y) = 1. However, since y

may increase faster than Pr(Y = y) decreases, the infinite sums in expressions (6.3)

and (6.4) will not converge and as a result the moments of the Altham-Poisson

distribution may not exist.

Three techniques for estimating the moments of the Altham-Poisson distribu-

tion are assessed. The methods include the selection of a cutoff for the infinite

sum, simulation and conditioning.

6.3.1 Selection of a Cutoff

If the moments exist their approximation by the finite expressions

E(Y ) =

ycut
∑

y=0

y(τp)ye−τ

y!

scut
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

and

E(Y 2) =

ycut
∑

y=0

y2(τp)ye−τ

y!

scut
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

entails the selection of a cutoff value, ycut, for y and nested within that a cutoff

value for s, namely scut. Determining these cutoff values for y and s is not trivial

and as a result other methods of estimating the moments of the Altham-Poisson

distribution are considered.
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6.3.2 Simulation

A large number of observations can be simulated from the Altham-Poisson distri-

bution using the simulation technique described in Section 6.2.3. The mean and

variance of the simulated observations provide estimates of the mean and variance

of the Altham-Poisson distribution with parameters τ, p and θ.

If the moments exist and the number of simulated observations is sufficiently

large the estimates of the moments will be stable. The existence of the moments

can therefore be assessed by observing whether their estimates stabilize and an

appropriate number of simulated observations can be determined by considering

the number of observations required for these estimates to be stable.

6.3.3 Conditioning

The first two factorial moments, and hence the mean and variance, of the Altham-

Poisson distribution can be approximated by conditioning on the distribution of

N in the following way:

E(Y ) = EN [E(Y |N = n)]

= EN

[

np(p+ qθ)n−1f

(

p

p+ qθ
, θ, n− 1

)

/f(p, θ, n)

]

(6.5)

and

E[Y (Y − 1)] = EN{E[Y (Y − 1)|N = n]}

= EN

[

n(n− 1)p2(p+ qθ2)n−2f

(

p

p+ qθ2
, θ, n− 2

)

/f(p, θ, n)

]

,

(6.6)

(Ross, 2002, p.152) where E[(Y |N = n)] and E[(Y (Y − 1)|N = n)] are the ex-

pectations associated with a random variable following a multiplicative binomial

distribution as described in Chapter 5. The moments can then be estimated by

simulating a large number of values of N from a Poisson distribution with param-

eter τ and computing the expected values of Y and Y (Y − 1) for each value of N
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using the relevant moments from the multiplicative binomial distribution. The av-

erages of these expectations then provide estimates of the required moments. The

variance of the Altham-Poisson distribution can be calculated from the moments

in equations (6.5) and (6.6) in the usual way from

Var(Y ) = E[Y (Y − 1)] + E(Y ) − [E(Y )]2 .

The number of simulated values ofN can once again be selected by determining the

number of observations that are required to stabilize the estimates of the moments.

This method of conditioning is a more elegant way of simulating the moments of

the Altham-Poisson distribution.

The least preferred method of estimating the moments of the Altham-Poisson

distribution is the method that involves selecting a cutoff for the infinite sums in

expressions (6.3) and (6.4). This is because there is no indication of appropriate

values for ycut and scut. The method of conditioning is better than the method

of selecting a cutoff because a suitable number of simulated observations can eas-

ily be determined. A limitation of this method, however, is that evaluating the

expectations E(Y |N = n) and E[(Y (Y − 1)|N = n)] can be time consuming.

Direct simulation was therefore selected as the most preferred method of estimat-

ing the moments of the Altham-Poisson distribution because it is straightforward

and quick to implement. The moments of the examples of the distribution in the

present study were estimated by simulating observations from the Altham-Poisson

distribution and computing the moments of the sample data. Each case was con-

sidered separately and the moments seemed to exist. It was further observed that

when one million observations were simulated, the estimates of the moments were

stable.

6.3.4 Examples

Illustrations of the p.m.f. of the random variable Y ∼Altham-Poisson(τ, p, θ)

are presented in Figures 6.1 and 6.2. Figure 6.1 includes examples in which the
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parameter θ is allowed to vary and the examples in Figure 6.2 have different values

of p. The values used for τ, p and θ correspond to the values of n, p and θ for

the examples in Section 2 of Chapter 5. The probabilities related to the p.m.f.

were estimated by selecting a cutoff for the infinite sum in the p.m.f. according to

a specified degree of accuracy, as described in Section 6.2.2.

The mean and variance of these examples were estimated by simulating obser-

vations according to the procedure outlined in Section 6.3.2. Since E(N) = τ , the

moments of the Altham-Poisson distribution were compared with those of the mul-

tiplicative binomial distribution with the same values of p and θ and with the value

of the parameter τ of the Altham-Poisson distribution corresponding to the value

of n of the multiplicative binomial distribution. The moments were compared to

determine whether the mean-variance relationship of the multiplicative binomial

model is carried through to the Altham-Poisson distribution. Table 6.1 contains

a comparison of the moments of the multiplicative binomial and Altham-Poisson

distributions.

Table 6.1: Moments of the multiplicative binomial and Altham-Poisson distribu-

tions.

Multiplicative Binomial Altham-Poisson

E(N) = τ p θ Mean Variance Mean Variance

20 0.48 1.1 9.792 2.592 9.795 7.458

20 0.48 0.85 4.777 49.159 4.640 45.632

20 0.48 0.75 3.450 55.486 3.399 52.631

20 0.48 0.9 7.808 25.581 7.099 30.063

20 0.55 0.9 14.733 16.357 15.321 41.847

Although it is reasonable to expect the variances of the examples of the Altham-

Poisson model to be greater than those of the multiplicative binomial examples

because extra variability has been introduced, this does not seem to always be the

case. There are two instances in Table 6.1 in which the variance of the multiplica-
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Figure 6.1: (a) τ = 20, p = 0.48, θ = 1.1

Figure 6.1: (b) τ = 20, p = 0.48, θ = 0.85

Figure 6.1: (c) τ = 20, p = 0.48, θ = 0.75

Figure 6.1: Plots showing the shapes of various Altham-Poisson distributions, with

changing values of θ. 127



Figure 6.2: (a) τ = 20, p = 0.48, θ = 0.9

Figure 6.2: (b) τ = 20, p = 0.55, θ = 0.9

Figure 6.2: Plots showing the shapes of various Altham-Poisson distributions, with

changing values of p.
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tive binomial distribution exceeds that of the Altham-Poisson distribution. Recall

from Figure 5.3 of Chapter 5 that these two multiplicative binomial models were

bimodal. The two Altham-Poisson models, however, are unimodal as depicted in

Figure 6.1. Therefore it can be deduced that modelling the parameter n with a

Poisson distribution reduced the variability in the model and hence the variance

of the Altham-Poisson distribution is indeed less than that of the multiplicative

binomial distribution in these instances. However, it was observed that when the

variance of the examples of the multiplicative binomial distribution exceeds the

mean, the same pattern exists for the examples of the Altham-Poisson distribution.

6.4 Likelihood, Score Functions and Information

Matrix

6.4.1 Likelihood Function

The likelihood function for the Altham-Poisson distribution is written as

L(τ, p, θ; y) =
(τp)ye−τ

y!

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

where f(p, θ, s + y) is the normalizing constant of the multiplicative binomial

distribution given by

f(p, θ, s+ y) =

s+y
∑

k=0





s+ y

k



 pk(1 − p)s+y−kθk(s+y−k) .

The log-likelihood function is therefore

ℓ(τ, p, θ; y) = y ln(τp) − τ − ln(y!) + ln

{

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

}

.

6.4.2 Score Functions

The score functions for the Altham-Poisson distribution are obtained by differen-

tiating the log-likelihood function with respect to the parameters τ, p and θ. For
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convenience let the function h(p, θ, τ, y) denote the infinite sum in the log-likelihood

function, i.e.

h(p, θ, τ, y) =
∞

∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)
.

Then the score functions for τ, p and θ can be expressed as follows:

∂ℓ(τ, p, θ; y)

∂τ
=

y

τ
− 1 +

1

h(p, θ, τ, y)

∂h(p, θ, τ, y)

∂τ

=
y

τ
− 1 +

1

h(p, θ, τ, y)

∞
∑

s=0

s[τ(1 − p)θy]s

τs!f(p, θ, s+ y)

and

∂ℓ(τ, p, θ; y)

∂p
=

y

p
+

1

h(p, θ, τ, y)

∂h(p, θ, τ, y)

∂p

=
y

p
+

1

h(p, θ, τ, y)

{

−
∞

∑

s=0

s[τ(1 − p)θy]s

(1 − p)s!f(p, θ, s+ y)

−
∞

∑

s=0

[τ(1 − p)θy]s

s!

1

[f(p, θ, s+ y)]2
∂f(p, θ, s+ y)

∂p

}

=
y

p
− 1

h(p, θ, τ, y)

{

∞
∑

s=0

s[τ(1 − p)θy]s

(1 − p)s!f(p, θ, s+ y)

+
∞

∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

∂ ln f(p, θ, s+ y)

∂p

}

. (6.7)

Suppose that K is a random variable that follows a multiplicative binomial distri-

bution with parameters p and θ and number of trials s+ y. Then expression (6.7)

can be written more succinctly as

∂ℓ(τ, p, θ; y)

∂p
=

y

p
− 1

h(p, θ, τ, y)

{

∞
∑

s=0

s[τ(1 − p)θy]s

(1 − p)s!f(p, θ, s+ y)

+

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

[

E(K)

p
− s+ y − E(K)

1 − p

]

}

.

(6.8)
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Finally,

∂ℓ(τ, p, θ; y)

∂θ
=

1

h(p, θ, τ, y)

∂h(p, θ, τ, y)

∂θ

=
1

h(p, θ, τ, y)

{

∞
∑

s=0

ys[τ(1 − p)θy]s

θs!f(p, θ, s+ y)
−

∞
∑

s=0

[τ(1 − p)θy]s

s![f(p, θ, s+ y)]2
∂f(p, θ, s+ y)

∂θ

}

=
1

h(p, θ, τ, y)

{

∞
∑

s=0

ys[τ(1 − p)θy]s

θs!f(p, θ, s+ y)
−

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

∂ ln f(p, θ, s+ y)

∂θ

}

=
1

h(p, θ, τ, y)

{

∞
∑

s=0

ys[τ(1 − p)θy]s

θs!f(p, θ, s+ y)
−

∞
∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

E[K(s + y −K)]

θ

}

,

(6.9)

where K again follows a multiplicative binomial distribution with parameters p

and θ and number of trials given by s+ y.

6.4.3 Information Matrix

The information matrix for the Altham-Poisson distribution is minus the expected

value of the second derivative of the log-likelihood function with respect to the

parameters τ, p and θ and is written as

I = −E

















∂2ℓ(τ, p, θ;Y )

∂τ 2

∂2ℓ(τ, p, θ;Y )

∂τ∂p

∂2ℓ(τ, p, θ;Y )

∂τ∂θ
∂2ℓ(τ, p, θ;Y )

∂τ∂p

∂2ℓ(τ, p, θ;Y )

∂p2

∂2ℓ(τ, p, θ;Y )

∂p∂θ
∂2ℓ(τ, p, θ;Y )

∂τ∂θ

∂2ℓ(τ, p, θ;Y )

∂p∂θ

∂2ℓ(τ, p, θ;Y )

∂θ2

















.

Consider the second derivative of the log-likelihood function with respect to τ

given by

∂2ℓ(τ, p, θ; y)

∂τ 2

= − y

τ 2
− 1

[h(p, θ, τ, y)]2

(

∂h(p, θ, τ, y)

∂τ

)2

+
1

h(p, θ, τ, y)

∂2h(p, θ, τ, y)

∂τ 2

= − y

τ 2
− 1

τ 2[h(p, θ, τ)]2

{

∞
∑

s=0

s[τ(1 − p)θy]s

s!f(p, θ, s+ y)

}2

+
1

h(p, θ, τ)

∞
∑

s=0

s(s− 1)[τ(1 − p)θy]s

τ 2s!f(p, θ, s+ y)
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The expression for this second derivative includes a number of infinite sums, and

indeed the square of an infinite sum. These sums would need to be approximated

by finite sums. The expected value of this second derivative is then required and

cannot be obtained explicitly. The second derivatives of the log-likelihood function

with respect to the parameters p and θ are more awkward computationally than

that for τ and, as with the second derivative of ℓ(τ, p, θ; y) with respect to τ , can

only be estimated numerically.

An alternative method for obtaining the information matrix is to compute

the expected value of the matrix of the pairwise products of the score functions.

Consider, for example, the score functions of the parameters τ and p from Section

6.4.2:

∂ℓ(τ, p, θ; y)

∂τ
=

y

τ
− 1 +

1

h(p, θ, τ, y)

∞
∑

s=0

s[τ(1 − p)θy]s

τs!f(p, θ, s+ y)

and

∂ℓ(τ, p, θ; y)

∂p
=

y

p
− 1

h(p, θ, τ, y)

{

∞
∑

s=0

s[τ(1 − p)θy]s

(1 − p)s!f(p, θ, s+ y)

+
∞

∑

s=0

[τ(1 − p)θy]s

s!f(p, θ, s+ y)

[

E(K)

p
− s+ y − E(K)

1 − p

]

}

.

The product of these score functions introduces a product of infinite sums which

cannot be readily approximated. The expectation of this product is then required

and cannot be computed. Thus the information matrix of the Altham-Poisson

distribution cannot be derived explicitly.

The observed Fisher information matrix can be used to estimate the infor-

mation matrix but that too is difficult to compute and presents the problem of

convergence of the infinite sums. Since numerical procedures such as hessp in the

Gauss programming language are available for estimating the observed information

matrix, this seems to be the most suitable way of approximating the Hessian ma-

trix of the Altham-Poisson distribution. The information matrix is then estimated

as minus the Hessian matrix.
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6.5 Estimation

6.5.1 EM algorithm

The expectation-maximization (EM) algorithm is frequently utilized when esti-

mates of parameters are sought for models that depend on incomplete data. Under

ideal circumstances the complete likelihood function which depends on complete

data would be maximized but since some data is unavailable the expectation of

the log-likelihood function, E[ℓ(τ, p, θ; y)] is considered instead of the complete log-

likelihood function. The EM algorithm is iterative and each iteration is comprised

of an expectation (E) step and a maximization (M) step. In iteration (m + 1) of

the algorithm the E step entails computing the expected value of the log-likelihood

function for the complete data set, conditional on the observed data and the pa-

rameter estimates obtained in iteration (m). The initial E step of the algorithm

can be implemented by using the largest observation as a starting value for τ and

fitting the multiplicative binomial distribution to the data using this value of τ in

place of n to obtain starting values for p and θ. The E step is then followed by the

M step in which the expected log-likelihood from the E step is maximized with

respect to the parameters to yield updated parameter estimates. A new expected

log-likelihood function is then computed based on the parameters from iteration

(m + 1) and the observed data. The algorithm continues to alternate between

these two steps until the parameter estimates obtained from successive iterations

are satisfactorily close or the change in the log-likelihood in successive iterations is

negligible. A detailed discussion of this algorithm is presented by Dempster, Laird

and Rubin (1977).

Consider utilizing the EM algorithm to estimate the parameters of the Altham-

Poisson distribution. In the present study the random variable Y is observed and

the number of trials initially in the system, N , constitutes the missing component

of the data. The joint p.m.f. of Y and N is written as

133



Pr(Y = y,N = n) = Pr(Y = y|N = n)Pr(N = n)

=





n

y



 py(1 − p)n−yθy(n−y)

f(p, θ, n)

τne−τ

n!
,

so that the complete log-likelihood, which is denoted ℓcp, is

ℓcp(τ, p, θ; y, n) =

k
∑

i=1







ln





ni

yi



 + yi ln p+ (ni − yi) ln(1 − p) + yi(ni − yi) ln θ

+ni ln τ − τ − ln(ni)! − ln f(p, θ, ni)} ,

where k is the number of observed responses. Since the terms that exclude the

parameters p, θ and τ will not affect their estimates they can be excluded from

the log-likelihood to give

ℓ∗cp(τ, p, θ; y, n) =
k

∑

i=1

{yi ln p+ (ni − yi) ln(1 − p) + yi(ni − yi) ln θ + ni ln τ − τ − ln f(p, θ, ni)} .

(6.10)

E Step

Let τ (m), p(m) and θ(m) denote the estimates of the parameters obtained from

iteration (m) of the EM algorithm. In order to compute the expected log-likelihood

function with respect toN for iteration (m+1) the conditional log-likelihood which

is written as

ℓ∗cp(Y |N)(τ, p, θ; y|N) =
k

∑

i=1

{yi ln p+ [E(Ni) − yi] ln(1 − p) + yi[E(Ni) − yi] ln θ

+ E(Ni) ln τ − τ − E[ln f(p, θ, Ni)]} .

is sought. For convenience N and Y are considered corresponding to a single dose

and the subscript i, i = 1, . . . , k is removed. The conditional distribution of N

given the observed data, Y , and the parameter estimates τ (m), p(m) and θ(m) is
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proportional to the following expression:

Pr(N |Y ) ∝ (1 − p(m))n−y τ (m)n−y
θ(m)y(n−y)

(n− y)!

1

f(p(m), θ(m), n)

=
[(1 − p(m))τ (m)θ(m)y]n−y

(n− y)!

1

f(p(m), θ(m), n)

and therefore

Pr(N − y = n∗) ∝ [(1 − p(m))τ (m)θ(m)y]n
∗

n∗!

1

f(p(m), θ(m), n∗ + y)
. (6.11)

Thus the conditional distribution of N given Y, τ (m), p(m) and θ(m) is a weighted

Poisson distribution with weight e−[(1−p(m))τ (m)θ(m)y
]n 1

f(p(m), θ(m), n+ y)
. In the

E step of the EM algorithm for the Altham-Poisson distribution, expressions for

E[N |y, τ (m), p(m), θ(m)] and E[ln f(p, θ, N)|y, τ (m), p(m), θ(m)] are sought. The ex-

pected value of N conditional on the data and the current parameter estimates

can be obtained from expression (6.11) as

E[N |y, τ (m), p(m), θ(m)] =

∞
∑

n=y

n[τ (m)(1 − p(m))θ(m)y ]n

n!f(p(m), θ(m), n+ y)

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)y]n

n!f(p(m), θ(m), n+ y)

, (6.12)

where the denominator in (6.12) is a normalizing constant for the conditional

distribution of N given Y = y ensuring that the probabilities sum to 1. The

conditional expectation in (6.12) is therefore a ratio of infinite sums which can be

approximated by selecting a large value ncut and evaluating a ratio of finite sums.

Suppose that E[N |y, τ (m), p(m), θ(m)] is denoted by N̂ (m+1), then

N̂ (m+1) ≈

ncut
∑

n=y

n[τ (m)(1 − p(m))θ(m)y

]n

n!f(p(m), θ(m), n+ y)

ncut
∑

n=y

[τ (m)(1 − p(m))θ(m)y]n

n!f(p(m), θ(m), n+ y)

.

Note that for the examples considered in this study, an exceedingly large value of

ncut that was sufficient for both expressions in the numerator and denominator was
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selected. The conditional expectation of ln[f(p, θ, N)], however, which is written

as

E[ln f(p, θ, N)|y, τ (m), p(m), θ(m)] =

∞
∑

n=y

ln f(p, θ, n)[τ (m)(1 − p(m))θ(m)y

]n

n!f(p(m), θ(m), n+ y)

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)y

]n

n!f(p(m), θ(m), n+ y)

(6.13)

is a function of the parameters that require estimating and cannot be evaluated.

As a result the E step cannot be completed and the conditional expectation of

ln[f(p, θ, N)] is addressed in the M step of the algorithm. A similar problem was

encountered by Zhu, Eickhoff and Kaiser (2003) who used the EM algorithm in a

similar context but for a continuous distribution. In personal correspondence with

Eickhoff it was determined that implementing the EM algorithm entailed differ-

entiating within an integral when using the Newton-Raphson routine in the M-step.

M Step

Consider maximizing the expected log-likelihood

E∗
cp =

k
∑

i=1

{yi ln p + (N̂
(m+1)
i − yi) ln(1 − p) + yi(N̂

(m+1)
i − yi) ln θ −E(ln f(p, θ, Ni))

+N̂
(m+1)
i ln τ − τ} (6.14)

with respect to τ , where E(Ni) is replaced by N̂
(m+1)
i from the E step. Then

∂E∗
cp

∂τ
=

k
∑

i=1

N̂
(m+1)
i

τ
− k = 0

which yields

τ̂ (m+1) =

∑k
i=1 N̂

(m+1)
i

k
,

where N̂
(m+1)
i is the most recent expected value of Ni, i = 1, . . . , k and depends

on the parameters estimated in iteration (m) of the algorithm.
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Since the expected value of ln[f(p, θ, N)] cannot be evaluated in the E step it

is incorporated now into the M step and two methods for estimating p and θ are

considered.

Method 1

An optimization routine can be used to maximize the expected log-likelihood func-

tion E∗
c with respect to p and θ. If this method is adopted the expected value of

ln[f(p, θ, N)] in expression (6.13) must itself be maximized with respect to p and

θ for that particular iteration of the algorithm and using the parameter estimates

τ (m), p(m) and θ(m) from the previous iteration to yield updated parameter esti-

mates. A particularly large cut-off value ncut is once again required so that the

ratio of infinite sums in expression (6.13) can be approximated by a ratio of finite

sums

E[ln f(p, θ, N)|y, τ (m), p(m), θ(m)] =

ncut
∑

n=y

ln f(p, θ, n)[τ (m)(1 − p(m))θ(m)y

]n

n!f(p(m), θ(m), n+ y)

ncut
∑

n=y

[τ (m)(1 − p(m))θ(m)y

]n

n!f(p(m), θ(m), n+ y)

and then maximized accordingly.

Method 2

Alternatively consider differentiating the expected log-likelihood with respect to

p and θ and solving the two maximum likelihood equations simultaneously. The

maximum likelihood equations from (6.14) for p and θ are

∂E∗
cp

∂p
=

k
∑

i=1























yi

p
− E(Ni − yi)

1 − p
−

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)yi ]ni

ni!f(p(m), θ(m), ni + yi)

∂ ln f(p, θ, ni)

∂p

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)yi ]ni

ni!f(p(m), θ(m), ni + yi)























= 0

and
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∂E∗
cp

∂θ
=

k
∑

i=1























yi(E(Ni) − yi)

θ
−

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)yi ]ni

ni!f(p(m), θ(m), ni + yi)

∂ ln f(p, θ, ni)

∂θ

∞
∑

n=y

[τ (m)(1 − p(m))θ(m)yi ]ni

ni!f(p(m), θ(m), ni + yi)























= 0

respectively. Solutions to these simultaneous equations cannot be written down

explicitly. Therefore, since numerical methods are required to estimate p and θ, it

is sensible to utilize the optimization procedure described as Method 1.

The algorithm can be initialized using the starting values of the parameters

described at the beginning of this section. Once updated parameter estimates

have been obtained in the E step, these estimates can be used to approximate

the conditional expectation of N which will then in turn be used to update the

estimates of the parameters. The algorithm oscillates between the E and M steps

until the selected stopping criterion is satisfied.

6.5.2 Direct Maximization of the Likelihood

The parameters τ, p and θ of the Altham-Poisson distribution can be estimated by

maximizing the log-likelihood function directly. Consider a random sample from

the Altham-Poisson distribution with parameters τ, p and θ and suppose that the

response yi is observed ki times, i = 1, . . . , d. Then the log-likelihood function,

which was previously derived in Section 6.4.1, can be written as

ℓ(τ, p, θ; y) =

d
∑

i=1

ki

{

yi ln(τp) − τ − ln(yi!) + ln

{

∞
∑

s=0

[τ(1 − p)θyi ]s

s!f(p, θ, s+ yi)

}}

.

Due to the infinite sum in the above expression maximum likelihood estimates for

τ, p and θ cannot be obtained explicitly. Furthermore the log-likelihood function

cannot be computed because it includes an infinite sum. The infinite sum can,

however, be approximated for a given set of parameter values by a finite sum,
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where a cutoff value is selected to meet a specified degree of accuracy using the

method outlined in Section 6.2.2.

Once the log-likelihood function has been approximated it can be optimized

numerically with respect to τ, p and θ using procedures such as OPTMUM which

is available in the programming language Gauss. The optimization routine requires

the constraints 0 ≤ p ≤ 1 and τ, θ > 0 to be imposed on the parameters.

6.5.3 Inference

The information matrix of the Altham-Poisson distribution cannot be determined

explicitly as noted in Section 6.4.3. However, the Hessian matrix can be approxi-

mated numerically and can be used to estimate the standard errors of the param-

eter estimates. 95% Wald intervals can then be obtained for the parameters. For

example, the 95% Wald interval for τ is given by τ̂ ± 1.96se(τ̂), where se(τ̂) is

the standard error of the estimate of τ (Kutner, Nachtsheim, Neter and Li, 2005,

p.579).

For each of the parameters τ, p and θ of the Altham-Poisson distribution,

the profile likelihood function can be plotted and used to construct approximate

confidence intervals. The 95% confidence interval for the parameter τ is given by

[τ1,τ2] which satisfy

ℓP (τ1) = ℓP (τ2) = ℓ(τ̂ , p̂, θ̂; y) − 1

2
χ2

1,0.05

where ℓP (τ1) is the profile likelihood for τ evaluated at τ1 and ℓ(τ̂ , p̂, θ̂; y) is

the maximum log-likelihood of the Altham-Poisson distribution (Azzalini, 1996,

p.146). Similarly, 95% confidence intervals can be obtained for p and θ.

6.5.4 Goodness of Fit

Two methods can be used to assess the adequacy of the fit of the Altham-Poisson

distribution to overdispersed count data. A chi-squared goodness of fit test can be
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performed, where a significantly large χ2 value indicates that the Altham-Poisson

distribution provides a poor fit to the data.

The AIC statistic is also available for comparing the fit of the Altham-Poisson

distribution with those of the Poisson and Poisson-like distributions. For the

Altham-Poisson distribution it is calculated as AIC = −2ℓ(τ̂ , p̂, θ̂; y) + 6, where

q = 3. The model with the lowest AIC value is the one that provides the best fit

to the data under consideration.

6.6 An Example

The Altham-Poisson distribution was fitted to the sales data described in Section

4.7 using both the EM algorithm and direct optimization of the log-likelihood

function. The EM algorithm was found to be disappointing for a number of rea-

sons. Firstly, the algorithm is slow to converge (Nelder, 1977) and in this context

it is particularly slow to implement because it requires repeated optimization of

a complicated log-likelihood function. Furthermore, the EM algorithm does not

immediately give the Hessian matrix (Little, 1977). Therefore, since the parame-

ter estimates obtained by directly optimizing the likelihood function were similar

to those obtained by the EM algorithm, direct optimization was selected as the

desired method for estimating the parameters of the Altham-Poisson distribution

for the remainder of this thesis.

The Hessian matrix was obtained numerically using the hessp command in

Gauss and minus the Hessian was used to estimate the information matrix. The

estimated information matrix was inverted and the square roots of the diagonal

elements of the resulting matrix were used to estimate the standard errors of the

parameter estimates. 95% Wald intervals were constructed for the parameters

using these standard errors. Profile likelihood plots were obtained for each of

the parameters τ, p and θ and these plots were used to construct 95% profile

likelihood intervals for the parameters. Figures 6.2 (a), (b) and (c) contain the
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respective profile likelihood plots for τ, p and θ. The dashed line in the plots

represents the value of ℓ(τ̂ , p̂, θ̂; y) − 1
2
χ2

1,0.05 which was used to obtain the 95%

profile likelihood intervals for the parameters. The estimates of the parameters,

as well as their standard errors, 95% Wald confidence intervals and 95% profile

likelihood intervals are presented in Table 6.2.

Table 6.2: Results from fitting the Altham-Poisson model to the sales data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 12.618 1.181 (10.303;14.933) (10.815;14.250)

p 0.458 0.005 (0.448;0.468) (0.450;0.467)

θ 0.843 0.012 (0.819;0.867) (0.823;0.862)

The fit of the Altham-Poisson distribution to the sales data was compared

with those of the ordinary Poisson distribution, the CMP and the beta-Poisson

distributions using the chi-squared goodness of fit test as well as AIC values. The

p-values resulting from the χ2 test and the AIC statistics are presented in Table

6.3.

Table 6.3: A comparison of the various models fitted to the sales data.

Model χ2 p-value AIC

Poisson 0.000 17 921.622

CMP 0.242 15 056.712

beta-Poisson 0.002 15 057.934

Altham-Poisson 0.005 15 083.308

The p-values from the chi-squared goodness of fit tests indicate that the CMP

distribution provides a good fit to the sales data and that none of the other models

seem suitable for these data. The AIC values suggest that the CMP, beta-Poisson

and Altham-Poisson distributions provide superior fits to the sales data than the

Poisson distribution. The CMP provides the best fit to the data but its AIC
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Figure 6.2: (a)

Figure 6.2: (b)

Figure 6.2: (c)

Figure 6.2: Profile likelihood plots for the parameters (a) τ , (b) p and (c) θ of the

Altham-Poisson model fitted to the sales data.
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value is only marginally lower than those of the beta-Poisson and Altham-Poisson

distributions.

6.7 Modelling Dose-Response Data

6.7.1 Modelling the Probabilities

In the context of a dose-response setting, suppose that the parameter p refers to

the probability of the death of an organism. The definition of p in this setting

is therefore equivalent to the probability of a failure, 1 − p, of the multiplicative

binomial distribution. Consider modelling the probability of death as a function

of the log of the dose administered to a subject using a logit link function. The

parameter p can be written in terms of log-dose x and the parameters α and β as

p =
eα+βx

1 + eα+βx
. (6.15)

6.7.2 Likelihood, Score Functions and Information Matrix

Likelihood

Consider a dose-response study in which the random variable Y denotes the num-

ber of organisms that survive treatment with a particular dose of a drug. Following

the notation introduced in Chapter 2, let ycj, j = 1, . . . , nc denote an observation

from the control group and let yij refer to the number of organisms that survive

exposure to a non-zero dose di of the drug, with log-dose xi and where j = 1, . . . , ni

and i = 1, . . . , D. Furthermore suppose that pi represents the probability that an

organism does not survive exposure to the ith dose of the drug. Since the increase

in probability of death of an organism exposed to a zero dose of the drug is zero,

the number of survivors in the control group will simply follow a Poisson distri-

bution with parameter τ . Thus the likelihood and log-likelihood functions for the
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control group are given by

Lc =

nc
∏

j=1

e−ττ ycj

ycj!

and

ℓc =

nc
∑

j=1

ycj ln τ − ncτ −
nc

∑

j=1

ln ycj!

respectively.

Consider the number of organisms that survive treatment with non-zero doses

of the drug and suppose that these responses follow an Altham-Poisson distribu-

tion. The likelihood and log-likelihood functions are written respectively as

Ld =
D

∏

i=1

ni
∏

j=1

[τ(1 − p)]yije−τ

yij!

∞
∑

s=0

(τpθyij )s

s!f(1 − p, θ, s+ yij)

and

ℓd =

D
∑

i=1

ni
∑

j=1

yij ln[τ(1 − p)] − τ − ln(yij!) + ln

{

∞
∑

s=0

(τpθyij )s

s!f(1 − p, θ, s+ yij)

}

,

where p is expressed in terms of α and β using a logit link function from equation

(6.15). The log-likelihood for the data is then found by summing the log-likelihood

function for each observation over all of the observed responses and is given by

ℓ(τ, α, β, θ; y) = ℓc(τ, y) + ℓd(τ, α, β, θ; y)

=

nc
∑

j=1

ycj ln τ − ncτ −
nc

∑

j=1

ln ycj!

+
D

∑

i=1

ni
∑

j=1

yij ln[τ(1 − p)] − τ − ln(yij!) + ln

{

∞
∑

s=0

(τpθyij )s

s!f(1 − p, θ, s+ yij)

}

.

(6.16)

Score Functions and Information Matrix

Since the score functions and information matrix for the observations from the

control group have been derived in Chapter 2, consider the score functions for the
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observed number of organisms surviving exposure to a non-zero dose of the drug.

The score functions for τ and θ of the Altham-Poisson distribution are not affected

by the adaptation of the model to a dose-response setting and are therefore given

by

∂ℓ(τ, α, β, θ; y)

∂τ
=

y

τ
− 1 +

1

h(1 − p, θ, τ, y)

∞
∑

s=0

s(τpθy)s

τs!f(1 − p, θ, s+ y)

and

∂ℓ(τ, α, β, θ; y)

∂θ
=

1

h(1 − p, θ, τ, y)

{

∞
∑

s=0

ys(τpθy)s

θs!f(1 − p, θ, s+ y)

−
∞

∑

s=0

(τpθy)s

s!f(1 − p, θ, s+ y)

E[K(s + y −K)]

θ

}

respectively, where K is a random variable following a multiplicative binomial

distribution with parameters p and θ and number of trials s+ y. These functions

were derived in Section 6.4.2.

Consider, therefore, the score functions for the parameters α and β which are

written respectively as

∂ℓ(τ, α, β, θ; y)

∂α
=

∂ℓ(τ, α, β, θ; y)

∂p

∂p

∂α

= −py +
p(1 − p)

h(1 − p, θ, τ, y)

{

∞
∑

s=0

s(τpθy)s

ps!f(1 − p, θ, s+ y)

+

∞
∑

s=0

(τpθy)s

s!f(1 − p, θ, s+ y)

[

s+ y − E(K)

p
− E(K)

1 − p

]

}

and

∂ℓ(τ, α, β, θ; y)

∂β
=

∂ℓ(τ, α, β, θ; y)

∂p

∂p

∂β

= −xpy +
xp(1 − p)

h(1 − p, θ, τ, y)

{

∞
∑

s=0

s(τpθy)s

ps!f(1 − p, θ, s+ y)

+

∞
∑

s=0

(τpθy)s

s!f(1 − p, θ, s+ y)

[

s+ y − E(K)

p
− E(K)

1 − p

]

}

.

Following Section 6.4.3 the information matrix of the Altham-Poisson distri-

bution cannot be derived explicitly. The Gauss command hessp, however, yields
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a numerical approximation of the Hessian matrix and minus this matrix can be

used to estimate the information matrix of the Altham-Poisson distribution.

6.7.3 Model Fitting and Checking

The parameters of the Altham-Poisson distribution used to model dose-response

data can be estimated by maximizing the log of the likelihood function numerically

using the OPTMUM routine in Gauss. Suppose that ycj denotes the number of

survivors in the control group, j = 1, . . . , nc and that yij refers to the number of

individuals surviving exposure to a non-zero dose di of the drug, where j = 1, . . . , ni

and i = 1, . . . , D. Then the log-likelihood function from expression (6.16) is written

as

ℓ(τ, α, β, θ; y) = ℓc + ℓd

=

nc
∑

j=1

ycj ln τ − ncτ −
nc

∑

j=1

ln ycj!

+

D
∑

i=1

ni
∑

j=1

yij ln[τ(1 − p)] − τ − ln(yij!) + ln

{

∞
∑

s=0

(τpθyij )s

s!f(1 − p, θ, s+ yij)

}

,

where the probability of survival pi is written in terms of log-dose xi using the

logit link function from expression (6.15). The infinite sum included in the log-

likelihood function can be approximated by a finite sum where the cutoff is chosen

to achieve a desired level of accuracy.

The information matrix can be estimated by minus the Hessian matrix which

can be obtained numerically using methods described in Section 6.7.2. This ma-

trix can be used to approximate the standard errors of the parameter estimates.

95% Wald intervals can be obtained for the parameters τ, α, β and θ of the

Altham-Poisson distribution. Profile likelihoods can also be plotted for each of

the parameters. The profile likelihood plots can be used to obtain 95% confidence

intervals for the parameters using the method outlined in Section 6.5.3.

The fit of the Altham-Poisson model can compared with that of the Poisson

and the beta-Poisson distributions using AIC. The AIC of the Altham-Poisson
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model, where p is modelled with a logit tolerance distribution, is calculated as

AIC = −2ℓ(τ̂ , α̂, β̂, θ̂; y) + 8, where the number of parameters in the model is 4.

The best fitting model has the smallest AIC value.

6.7.4 Results

Algae Data

The Altham-Poisson distribution with a logit function modelling the probability of

death was fitted to the algae data introduced in Section 2.2.1. The approximation

of the likelihood function was complicated by the large values of y and hence of τ .

This is due to the fact that the values of τn as well as the terms in f(p, θ, n + y)

contained in the infinite sum become too large to be evaluated by programs such

as Gauss. A method of overcoming this computational difficulty is to take the

logarithm of each term in the sum and in the function f(p, θ, n + y) and then

exponentiate that log-term before adding it to the next term.

The standard errors of the parameter estimates were used to compute 95%

Wald intervals for each of the parameters τ, α, β and θ. The profile likelihood

plots for the parameters are presented in Figures 6.3 (a), (b), (c) and (d). The

parameter estimates, together with their standard errors, 95% Wald confidence

intervals and 95% profile likelihood intervals are recorded in Table 6.4.

Table 6.4: Results from fitting the Altham-Poisson model to the algae data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 224.272 6.504 (211.524;237.020) (211.600;237.512)

α -0.428 0.159 (-0.740;-0.116) (*;-0.200)

β 0.660 0.241 (0.188;1.132) (0.347;1.502)

θ 0.995 0.002 (0.991;0.999) (0.992;*)

*These limits of the confidence intervals cannot be computed
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Figure 6.3: (a)

Figure 6.3: (b)

Figure 6.3: (c)

Figure 6.3: (d)

Figure 6.3: Profile likelihood plots for the parameters (a) τ , (b) α, (c) β and (d) θ

of the Altham-Poisson model with a logit tolerance distribution fitted to the algae

data.
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The fit of the Altham-Poisson distribution to the algae data was compared

with those of the Poisson and the beta-Poisson distributions. The comparison was

made using the AIC values for each of the models and these values are presented

in Table 6.5.

Table 6.5: A comparison of the various models fitted to the algae data.

Model Maximum Number of AIC

log-likelihood parameters

Poisson -97.776 3 201.552

Beta-Poisson -96.2507 4 200.501

Altham-Poisson -96.314 4 200.628

A comparison of the AIC values shows that the worst fit is provided by the

Poisson distribution. The AIC values for the beta-Poisson and Altham-Poisson

distributions are very similar and are smaller than that of the Poisson distribu-

tion. Therefore the beta-Poisson and Altham-Poisson distributions seem to ac-

commodate the overdispersion in the algae data more effectively than the Poisson

distribution, with the beta-Poisson distribution providing arguably the best fit to

the algae data.

Malaria Data

The discussion of the examples of the multiplicative binomial distribution seems to

indicate that for large values of n the parameter θ must be close to one in order to

increase the probability of observing responses between 0 and n, thereby making

the distribution less U-shaped. A similar property has been observed for large

values of the parameter τ of the Altham-Poisson distribution, as is indicated by

the estimate of θ for the algae data. Thus an obvious limitation of the Altham-

Poisson distribution is that it cannot easily model large values of y. Attempts to

fit the Altham-Poisson distribution to the malaria data were not successful since

the values of y, and hence of τ , were extremely large. An alternative example
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of fitting the Altham-Poisson distribution to overdispersed dose-response data is

therefore considered.

Bovine Data

Trajstman (1989) presented data obtained from a study on bovine tuberculosis in

Australia. Samples of bovine tissue were placed on culture plates and the growth

of Mycobacterium bovis observed. Mycobacterium bovis grows slowly and is often

overtaken by contaminants. Thus culture plates need to be decontaminated prior

to a study and a suitable dose of a decontaminant that kills as few Mycobacterium

bovis organisms as possible is sought. Table 6.6 contains the colony counts of

Mycobacterium bovis exposed to varying doses of the decontaminant oxalic acid

for 12 weeks.

Table 6.6: Data for Mycobacterium bovis exposed to the decontaminant oxalic

acid.

% weight/ volume Colony Count

of oxalic acid

0 52 80 55 50 58 50 43 50 53 54

0 44 51 34 37 46 56 64 51 67 40

5 14 15 6 13 4 1 9 6 12 13

0.5 27 33 31 30 26 41 33 40 31 20

0.05 33 26 32 24 30 52 28 28 26 22

0.005 36 54 31 37 50 73 44 50 37

Morgan (1992, p.265) considered the bovine data and mentioned that it was

overdispersed. As a result the Altham-Poisson distribution was fitted to this data

in an attempt to accommodate the overdispersion. A logit tolerance distribution

was used to model the probability of death as a function of the log of the dose

of the decontaminant. Profile likelihoods were plotted for each of the parameters

τ, α, β and θ and the respective plots are presented Figures 6.4 (a) and (b). The
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estimates of the parameters, their approximate standard errors and 95% Wald and

profile likelihood intervals are presented in Table 6.7.

Table 6.7: Results from fitting the Altham-Poisson model to the bovine data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 53.928 2.822 (48.397;59.459) (49.400;60.805)

α 0.090 0.042 (0.008;0.172) (0.015;0.190)

β 0.211 0.088 (0.039;0.383) (0.090;0.440)

θ 0.967 0.003 (0.961;0.973) (0.961;0.971)

For purposes of comparison the beta-Poisson distribution was fitted to the

bovine data and the fit of the Altham-Poisson distribution was compared with that

of the Poisson and beta-Poisson distributions. Table 6.8 contains a comparison of

the AIC values for the three models.

Table 6.8: A comparison of the various models fitted to the bovine data.

Model Maximum Number of AIC

log-likelihood parameters

Poisson -236.415 3 478.830

Beta-Poisson -219.447 4 446.894

Altham-Poisson -221.427 4 450.854

The AIC values indicate that the beta-Poisson distribution provided the best fit

to the bovine data and that the Altham-Poisson distribution provided a reasonable

fit. The AIC value for the Altham-Poisson distribution was only slightly higher

than that for the beta-Poisson distribution. Thus the Altham-Poisson distribution

seemed to account reasonably well for some of the overdispersion in the bovine

data.
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Figure 6.4: (a)

Figure 6.4: (b)

Figure 6.4: (c)

Figure 6.4: (d)

Figure 6.4: Profile likelihood plots for the parameters (a) τ , (b) α, (c) β and (d)

θ of the Altham-Poisson model with a logit tolerance distribution to the bovine

data.
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6.8 Conclusions

The Altham-Poisson distribution was introduced in this chapter and it was ob-

served that the p.m.f. of this distribution is that of a weighted Poisson model.

Properties of the Altham-Poisson distribution were investigated. In particular,

the p.m.f. includes an intractable infinite sum and methods for approximating the

probabilities associated with the distribution were explored.

An EM algorithm was developed for estimating the parameters of the Altham-

Poisson distribution but it was disappointingly slow in comparison to direct op-

timization of the likelihood function. The information matrix of the distribution

cannot be readily calculated since expressions for the entries of this matrix include

infinite sums. Thus minus the Hessian matrix, which can be obtained numeri-

cally, was used to estimate the information matrix and the standard errors of the

parameter estimates were derived from its inverse.

The suitability of the Altham-Poisson distribution for modelling overdispersed

count data was investigated by considering the sales data. Although the CMP

model provided a better fit to the data, the Altham-Poisson distribution seemed

to account reasonably well for the overdispersion.

The Altham-Poisson model was then extended in a straightforward way to a

dose-response setting. It was observed that when the observations, and hence the

value of τ , are very large the estimate of θ is very close to one and the distribu-

tion cannot easily model large observations. However, when the observations are

not exceptionally large the Altham-Poisson distribution adequately accounts for

overdispersion in a Wadley’s problem setting.
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Chapter 7

The Negative Binomial Model

7.1 Introduction

In the present chapter, the negative binomial distribution, which is suitable for

modelling overdispersed count data (Young, Campbell and Capuano, 1999), is

used to model dose-response data in a Wadley’s problem setting. Anscombe (1949)

first considered using this distribution to model the unknown number of organisms

initially exposed to a drug. This chapter serves as a prelude to the binomial-EWP

distribution which follows in Chapter 8 and which focuses on using an alternative

distribution for overdispersed count data to model Wadley’s problem.

Section 7.2 contains a description of the model and an adaptation of the model

to a dose-response setting is considered in Section 7.3. The likelihood, score func-

tions and information matrix are discussed in Section 7.4 and models for separate

doses are described in Section 7.5. Details regarding parameter estimation are

included in Section 7.6. A discussion of the fit of the model to the algae and the

malaria data sets is presented in Section 7.7 and conclusions are drawn in Section

7.8.
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7.2 The Model

7.2.1 The Negative Binomial Distribution

Consider a sequence of independent Bernoulli trials with a constant probability of

success denoted by p∗ and let Y denote the number of failures until the occurrence

of the rth success. Then Y is said to follow a negative binomial distribution (Hogg,

McKean and Craig, 2005, p.136) and its p.m.f. is given by

Pr(Y = y) =





y + r − 1

r − 1



 (1 − p∗)y(p∗)r, y = 0, 1, 2, . . . (7.1)

The mean and variance of Y are

E(Y ) = µ =
r(1 − p∗)

p∗

and

Var(Y ) =
r(1 − p∗)

(p∗)2

respectively. In the present context, it is convenient to consider a reparametrization

of the negative binomial distribution in terms of the mean µ and the parameter r.

Substituting p∗ =
r

r + µ
into (7.1) gives

Pr(Y = y) =





y + r − 1

r − 1





(

µ

r + µ

)y (

r

r + µ

)r

, y = 0, 1, 2, . . .

and the distribution is written as Y∼NegBin(r, µ), with E(Y ) = µ and Var(Y ) =

µ+
µ2

r
(McCullagh and Nelder, 1989, p.373). In the limit as r approaches infinity,

the Poisson model for Y is recovered (Anscombe, 1949).

Due to the origin of the model, the parameter r is usually restricted to be a

positive integer. However, a general form of the negative binomial distribution

exists in which this restriction is relaxed and r is simply taken to be a positive real

number. This is the distribution of interest in the present study and under these
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conditions, the p.m.f. of Y can be rewritten

Pr(Y = y) =
Γ(y + r)

y! Γ(r)

(

µ

r + µ

)y (

r

r + µ

)r

, y = 0, 1, 2, . . .

with µ > 0 and r > 0.

7.2.2 Negative Binomial distribution for N

Consider a dosage-mortality study carried out in a Wadley’s problem setting and

suppose that a negative binomial distribution with parameters r and µ is used to

model the unknown number of organisms initially exposed to a drug, N . Recall

that if N were known, Y |N = n would be expected to follow a Binomial(n, 1 − p)

distribution. The marginal p.m.f. of Y when N ∼NegBin(r, µ) is then given by

Pr(Y = y) =
∞

∑

n=y

Pr(Y = y|N = n)Pr(N = n)

=
∞

∑

n=y





n

y



 (1 − p)ypn−y Γ(n+ r)

n! Γ(r)

(

r

r + µ

)r (

µ

r + µ

)n

=
Γ(r + y)

y! Γ(r)

[

r

r + µ(1 − p)

]r [

µ(1 − p)

r + µ(1 − p)

]y

.

Thus Y ∼NegBin [r, µ(1 − p)], where the mean of Y is µ(1 − p) and the variance

of Y can be written as

Var(Y ) = µ(1 − p)

{

1 +
µ(1 − p)

r

}

,

(Anscombe, 1949). This variance function is comprised of the usual Poisson vari-

ance component, µ(1 − p), and the multiplying factor

{

1 +
µ(1 − p)

r

}

, which

accommodates overdispersion in the model.

The above result for the distribution of Y can also be obtained using the p.g.f.

technique. Consider the p.g.f. of the random variable Y when Y is considered

as a sum of N independent Bernoulli random variables, X1, X2, . . . , XN . Then

Y =
∑N

i=1Xi, where Xi ∼Binomial(1, p) with p.g.f. PX(s) = p + (1 − p)s, i =

1, . . . , N . If the total number of organisms follows a NegBin(r, µ) distribution, then
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PN(s) =

(

r

µ+ r − µs

)r

and from results pertaining to the p.g.f.’s of compound

distributions (Grimmett and Welsh, 1986, p.51) it follows that

PY (s) = PN(PX(s))

=

[

r

µ+ r − µ(p+ qs)

]r

=

[

r

µ(1 − p) + r − µ(1 − p)s

]r

.

Thus Y ∼NegBin[r, µ(1 − p)] in accordance with the earlier result.

7.2.3 Gamma Distribution for the Poisson Parameter

McCullagh and Nelder (1989, p.374) note that the negative binomial distribution

can be obtained by modelling the mean of a Poisson distribution as a gamma

variable. In the present context, suppose that the parameter τ in the Poisson

[τ(1 − p)] model of Chapter 2 is Gamma(a, b). Then the marginal p.m.f. of Y is

given by

Pr(Y = y) =

∫ ∞

0

Pr(Y = y|τ)f(τ) dτ

=

∫ ∞

0

[τ(1 − p)]ye−τ(1−p)

y!

τa−1e−τ/b

Γ(a)ba
dτ

=
Γ(y + a)

y! Γ(a)
b−a(1 − p)y

(

b+ 1 − pb

b

)−a−y

=
Γ(y + a)

y! Γ(a)

[

1

b+ 1 − pb

]a [

b(1 − p)

b+ 1 − pb

]y

.

Thus Y follows a negative binomial distribution with mean ab(1 − p) and expo-

nent parameter a, i.e. Y ∼NegBin[a, ab(1 − p)]. Relating this notation to the

previous section, it follows that a = r and b =
µ

r
and thus that τ is taken to be

Gamma
(

r,
µ

r

)

.

The following diagram illustrates ways in which a negative binomial distribu-

tion for the random variable describing the number of surviving parasites can be

derived.

157



Y |N = n ∼Binomial(n, 1 − p)
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N ∼NegBin(r, µ)
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N ∼Poisson(τ)

Y |τ ∼Poisson[τ(1 − p)] -

τ ∼Gamma(r,
µ

r
)

Y ∼NegBin[r, µ(1 − p)]

7.3 Modelling the Probability

Recall that the probability of a parasite dying, pi, is associated with dose di (and

log dose xi) of the drug and thus with observations yij, j = 1, . . . , ni and i =

1, . . . , D. When a logit tolerance distribution is used to model this probability,

ln

(

pi

1 − pi

)

= α + βxi

and hence

pi =
eα+βxi

1 + eα+βxi
, i = 1, . . . , D.

The negative binomial model is a member of the exponential family of distri-

butions when the exponent parameter r is known (Dobson, 2002, p.53). For the

negative binomial distribution considered here, with the probability of the death

of a parasite modelled by a logit function, consider the expected value of Yij,

E(Yij) = µ(1 − pi)

=
µ

1 + eα+βxi
.

In order for this model to be a GLM, r must be known and a monotone function of

the mean that is linear in the parameters r, µ, α and β is required. Such a function
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does not appear to exist and since r is not fixed, the model under consideration is

treated as a generalized nonlinear model.

7.4 Likelihood, Score Functions and Information

Matrix

7.4.1 Likelihood Function

Suppose again that the random variable, Ycj, j = 1, . . . , nc, denotes the responses

in the control group and that Yij, j = 1, . . . , ni and i = 1, . . . , D, refers to the

number of surviving organisms that are treated with a non-zero dose di and log-

dose xi of the drug. Suppose further that these variables follow a negative binomial

distribution of the form NegBin[r, µ(1 − p)].

Since the probability of death for subjects in the control group is zero, the

likelihood and log-likelihood functions for the observed counts can be written as

Lc =

nc
∏

j=1

Γ(ycj + r)

ycj! Γ(r)

(

r

r + µ

)r (

µ

r + µ

)ycj

and

ℓc =

nc
∑

j=1

{

ln Γ(ycj + r) − ln ycj! − ln Γ(r) + r ln

(

r

r + µ

)

+ ycj ln

(

µ

r + µ

)}

respectively. For observations corresponding to the administration of non-zero

doses of the drug, the likelihood and log-likelihood functions are given respectively

as

Ld =

D
∏

i=1

ni
∏

j=1

Γ(yij + r)

yij! Γ(r)

[

r

r + µ(1 − pi)

]r [

µ(1 − pi)

r + µ(1 − pi)

]yij

and

ℓd =

D
∑

i=1

ni
∑

j=1

{

ln Γ(yij + r) − ln yij! − ln Γ(r) + r ln

[

r

r + µ(1 − pi)

]

+ yij ln

[

µ(1 − pi)

r + µ(1 − pi)

]}

.
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The log-likelihood for the data is then found by summing the log-likelihoods for

single observations over all the observations and can be written as

ℓ(r, µ, p; y) = ℓc + ℓd

=

nc
∑

j=1

{

ln Γ(ycj + r) − ln ycj! − ln Γ(r) + r ln

(

r

r + µ

)

+ ycj ln

(

µ

r + µ

)}

+

D
∑

i=1

ni
∑

j=1

{

ln Γ(yij + r) − ln yij! − ln Γ(r) + r ln

[

r

r + µ(1 − pi)

]

+ yij ln

[

µ(1 − pi)

r + µ(1 − pi)

]}

.

7.4.2 Score Functions

The derivation of the score functions for the negative binomial model with parame-

ters r and µ(1 − p) involves differentiating expressions of the form

ln Γ(y + r) − ln Γ(r) with respect to r, which introduces the digamma function

into the problem. In order to simplify this task, Lawless (1987) considered ex-

panding the ratio
Γ(y + r)

Γ(r)
in the following manner

Γ(y + r)

Γ(r)
= r(r + 1) . . . (r + y − 1) , (7.2)

an expansion which holds for any r > 0 and y ≥ 1. Therefore the log-likelihood

for the jth observation from the control group can be rewritten as

ℓcj =

ycj−1
∑

s=0

ln(r + s) − ln ycj! + ycj lnµ− (ycj + r) ln(r + µ) + r ln r

and does not depend on the parameters α and β. The score functions for a single

observation from this treatment group are therefore

∂ℓcj
∂r

=

ycj−1
∑

s=0

1

r + s
+ ln

(

r

r + µ

)

+
µ− ycj

r + µ

∂ℓcj
∂µ

=
r(ycj − µ)

µ(µ+ r)

∂ℓcj
∂α

= 0

∂ℓcj
∂β

= 0
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Lawless(1987).

Using the expansion given by equation (7.2), the log-likelihood for a single

observation corresponding to the administration of a non-zero dose of the drug,

di, i = 1, . . . , D, is given by

ℓij =

yij−1
∑

s=0

ln(r + s) − ln yij! + yij lnµ+ yij ln(1 − pi)

−(yij + r) ln[r + µ(1 − pi)] + r ln r .

Therefore the scores for a single observation treated with a non-zero dose of the

drug are

∂ℓij
∂r

=

yij−1
∑

s=0

1

r + s
+ ln

[

r

r + µ(1 − pi)

]

+
µ(1 − pi) − yij

r + µ(1 − pi)

∂ℓij
∂µ

=
r[yij − µ(1 − pi)]

µ[µ(1 − pi) + r]

∂ℓij
∂α

=
−pir(yij − µ(1 − pi))

r + µ(1 − pi)

∂ℓij
∂β

=
−pirxi[yij − µ(1 − pi)]

r + µ(1 − pi)
.

The score functions for the data can then be found by summing the score functions

for each observation over all observations. Note that setting these score functions

to zero and solving them simultaneously for the parameters in the model gives

the maximum likelihood estimates. However, the solutions cannot be obtained

explicitly and numerical methods are required for parameter estimation.

7.4.3 Information Matrix

The information matrix of the negative binomial distribution is minus the matrix

of expected values of the second-order derivatives of the log-likelihood with respect

to the parameters r, µ, α and β.

Consider the joint information for the parameter r and the remaining param-

eters in the model by first observing that the associated second-order derivatives
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of the log-likelihood are

∂2ℓij
∂r∂µ

=
(1 − pi)[yij − µ(1 − pi)]

[µ(1 − pi) + r]2

∂2ℓij
∂r∂α

=
−µpi(1 − pi)[µ(1 − pi) − yij]

[µ(1 − pi) + r]2

∂2ℓij
∂r∂β

=
−µxipi(1 − pi)[µ(1 − pi) − yij]

[µ(1 − pi) + r]2
.

The expected values of these derivatives are all clearly zero, indicating that the

information between the parameter r and the remaining parameters in the model

is zero. Therefore consider partitioning the information matrix as

I =





I11 0T

0 I22





where I11 contains the information on r and I22 is the information for the param-

eters µ, α and β. Thus

I = −E























∂2ℓ(r, µ, p;Y )
∂r2 0 0 0

0
∂2ℓ(r, µ, p;Y )

∂µ2

∂2ℓ(r, µ, p;Y )

∂µ∂α

∂2ℓ(r, µ, p;Y )

∂µ∂β

0
∂2ℓ(r, µ, p;Y )

∂µ∂α

∂2ℓ(r, µ, p;Y )

∂α2

∂2ℓ(r, µ, p;Y )

∂α∂β

0
∂2ℓ(r, µ, p;Y )

∂µ∂β

∂2ℓ(r, µ, p;Y )

∂α∂β

∂2ℓ(r, µ, p;Y )

∂β2























.

For a single response from the control treatment group, the diagonal sub-matrices

of the information matrix are

I
(c)
11 = E







Ycj−1
∑

s=0

1

(r + s)2







+
µ

r(µ+ r)

and

I
(c)
22 =













r

µ(µ+ r)
0 0

0 0 0

0 0 0













.
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An observation arising from the administration of a non-zero dose of the drug has

an information matrix with the following sub-matrices

I
(d)
11 = E







Yij−1
∑

s=0

1

(r + s)2







+
µ(1 − pi)

r[µ(1 − pi) + r]

and

I
(d)
22 =

(1 − pi)r

µ(1 − pi) + r













1

µ
−pi −pixi

−pi µp2
i µp2

ixi

−pixi µp2
ixi µp2

ix
2
i













.

Due to the independence of the observations, the information matrix for the data

is obtained by summing the information matrices for individual observations over

all of the observations.

7.5 Models for Separate Doses

For comparative purposes, two models that consider each dose of the drug sepa-

rately are introduced here. In particular, the first model, which is referred to as

the {ri, µi} model, fits a separate negative binomial distribution to each dose of

the drug, i.e. Yij ∼NegBin(ri, µi), and the second model, which is denoted the

{r, µi} model, is a nested version of the first which fits a common parameter r to

each dose, i.e. Yij ∼NegBin(r, µi), j = 1, . . . , ni, i = 1, . . . , D. Although these

are not maximal models, they can be used as base models for comparison because

they have large numbers of parameters.

7.6 Estimation

7.6.1 Parameter Estimates

Three methods of obtaining the maximum likelihood estimates of the parameters

r, µ, α and β for the negative binomial model with a logit tolerance distribution

are considered.

163



Anscombe’s Method

Anscombe (1949) suggested methods of approximating the maximum likelihood

estimates of the parameters that were appropriate for computation by hand and

avoided the complicated calculations required for maximum likelihood estimation.

Since direct calculation of maximum likelihood estimates is simplified by the soft-

ware that is currently available, these methods of approximation are not considered

in this study.

Genstat Procedure

The WADLEY procedure in Genstat has already been described in Chapter 2

and contains an option for specifying the distribution of the unknown number of

parasites, including the negative binomial. However, attempts to use this proce-

dure for the latter distribution proved troublesome. In particular certain results

appeared spurious and the output did not include an estimate of r, making the

identification of inherent problems difficult. Further, the WADLEY procedure re-

quires more than one observation per dose in order to fit the model to a data set.

As a result of these complications, the WADLEY procedure was not used and no

Genstat output is therefore included here.

Constrained Nonlinear Optimization

The nonlinear log-likelihood function specified in Section 7.4.1 can be maximized

using a nonlinear optimization routine. In the present study, a Gauss program

incorporating the procedure OPTMUM was written for this purpose. The starting

values were chosen in the same manner as that used for the Poisson model of

Chapter 2 and, since the negative binomial distribution becomes more Poisson-

like as r tends to infinity, large starting values of r were used in order to avoid

convergence problems.

A complication in the computations was caused by the presence of the gamma

function in the likelihood equation. Specifically, functions of the form ln Γ(y + r)
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must necessarily be evaluated. In certain cases, such as the malaria data, values of

y are very large, causing overflow problems in the direct calculation of Γ(y+r). In

the present study, when y was sufficiently small, ln Γ(y+r) was calculated directly

and for large values of y, the command lnfact in Gauss was used. The constraints

implicit in the model are r > 0 and β > 0 and these were incorporated into the

optimization procedure.

7.6.2 Standard Errors of Parameter Estimates

The standard errors of the parameter estimates r̂, µ̂, α̂ and β̂ are approximated

by substituting these estimates into the information matrix and taking the square

root of the diagonal elements of the inverse of that matrix.

Computation of the standard error for r̂ involves calculating the expected value

of the sum
Y −1
∑

s=0

1

(r + s)2
(7.3)

with respect to the random variable Y . Terms of this form are contained in I11,

which was defined in Section 7.4.3. The calculation of the expectation of (7.3) is

equivalent to evaluating the infinite sum
∞

∑

k=0

1

(r + k)2
{1 − Pr(Y ≤ k)} , (7.4)

(Lawless, 1987). Now 1 − Pr(Y ≤ k) is a monotone decreasing function in k and

thus, for the purposes of calculation, the infinite sum (7.4) can be approximated

by the finite sum

kcut
∑

k=0

1

(r + k)2
{1 − Pr(Y ≤ k)}

where kcut is chosen so that 1 − Pr(Y ≤ kcut) is suitably close to 0. In the present

case the value

kcut =
⌊

E(Y ) + 10
√

Var(Y )
⌋

=

⌊

µ(1 − p) + 10

√

µ(1 − p) +
[µ(1 − p)]2

r

⌋
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was used and was found to give a satisfactory approximation due to the fact that

1 − Pr(Y ≤ kcut) was less than 10−6. The first component of the information for

r is then found by evaluating (7.4) for each observation and summing over all

observations.

95% Wald intervals can be computed for the parameters, r, µ, α and β of the

negative binomial distribution. For example, the 95% Wald interval for r is given

by r̂ ± 1.96 se(r̂) where se(r̂) is the standard error of the estimate of r (Kutner,

Nachtsheim, Neter and Li, 2005, p.579). Profile likelihood plots can also be pro-

duced for r, µ, α and β and these plots can be used to obtain approximate 95%

confidence intervals for the parameters. Specifically, the 95% profile likelihood

confidence interval for the parameter r is given by [r1, r2], with r1 and r2 satisfying

ℓP (r1) = ℓP (r2) = ℓ(r̂, µ̂, p̂; y) − 1

2
χ2

1,0.05,

where ℓP (r) is the profile likelihood for r evaluated at r and ℓ(r̂, µ̂, p̂; y) is the value

of the maximum log-likelihood of the NegBin[r, µ(1 − p)] distribution (Azzalini,

1996, p.146).

7.6.3 Parameter Estimates for the Separate Dose Models

The base models, {ri, µi} and {r, µi}, from Section 7.5 were fitted using maximum

likelihood estimation. It can easily be seen that the maximum likelihood estimate

of µi is the mean of the observations corresponding to that treatment group, i.e.

µ̂i = yi where

yi =

ni
∑

j=1

yij

ni
i = 1, . . . , D, j = 1, . . . , ni .

A concentrated log-likelihood, which is a function of ri only, can then be obtained

by substituting yi for µi (Jones, 1993, p.16) and for the ijth observation is given

as

ℓij = ln Γ(yij + ri) − ln yij ! − ln Γ(ri) + ri ln

(

ri

ri + yi

)

+ yij ln

(

yi

ri + yi

)

.
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This single-variable function can then be maximized in order to estimate ri by

using a nonlinear optimization routine such as the OPTMUM procedure in Gauss.

The same idea can be used when a common parameter r is adopted for all doses

of the drug.

7.6.4 Goodness of Fit

The calculation of the deviance involves the specification of a maximal model,

which has one parameter for each observation. This is problematic when the pa-

rameter, r, in the negative binomial model is not regarded as a nuisance parameter.

As a result AIC can be used to compare the fit of the NegBin[r, µ(1 − p)] model

with those of the {ri, µi} and {r, µi} models. The model yielding the smallest AIC

should be selected as the best fitting model. The AIC for the NegBin[r, µ(1 − p)]

model is computed as AIC=-2ℓ(r̂, µ̂, p̂; y) + 8, where q = 4.

7.7 Examples

The negative binomial model, with a logit function modelling the probability of

the death of an organism, was fitted to the algae and malaria data sets using a

Gauss program which incorporates the OPTMUM routine.

7.7.1 Algae Data

The NegBin[r, µ(1−p)] model was fitted to the algae data using the Gauss program

developed in this study. The parameter estimates, standard errors and 95% Wald

intervals are summarized in Table 7.1. The estimate of the parameter r is extremely

large and thus the model being fitted to this data is essentially the Poisson model

of Chapter 2. Therefore the negative binomial model does not improve in any way

on the fit of the Poisson model to this data and as a result profile likelihood plots

were not obtained and no further analyses were performed.
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Table 7.1: Results from fitting the NegBin[r, µ(1 − p)] model to the algae data.

Parameter Estimate Standard 95% Wald

Error Interval

r̂ 293728.802 58770.450 (178538.720;408918.884)

µ̂ 224.833 6.595 (211.907;237.759)

α̂ -0.902 0.126 (-1.149;-0.655)

β̂ 1.415 0.090 (1.239;1.591)

7.7.2 Malaria Data

The NegBin[r, µ(1 − p)] model was then fitted to the malaria data and since the

estimate of r was not very large, profile likelihood plots were produced for each of

the parameters. The profile likelihood plots are presented in Figures 7.1 (a), (b),

(c) and (d). The parameter estimates together with their standard errors, 95%

Wald intervals and 95% profile likelihood intervals are summarized in Table 7.2.

Table 7.2: Results from fitting the NegBin[r, µ(1 − p)] model to the malaria data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

r̂ 1.505 0.401 (0.719;2.291) ∗

µ̂ 6581.768 2496.454 (1688.718;11474.818) (3500;16500)

α̂ -1.388 0.997 (-3.342;0.566) (-3.200;0.250)

β̂ 3.752 0.558 (2.658;4.846) (3.050;4.800)

∗ A profile likelihood interval for r could not be computed due to convergence

problems.

Note in particular that the standard error of the mean is very large.

The fit of this model was compared with those of the {ri, µi} and {r, µi} models

that consider each dose separately and the results of the fits are presented in

Table 7.3. The AIC values for the {ri, µi} and {r, µi} models differ substantially,
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Figure 7.1: (a)

Figure 7.1: (b)

Figure 7.1: (c)

Figure 7.1: (d)

Figure 7.1: Profile likelihood plots for the parameters (a) r, (b) µ, (c) α and (d)

β of the negative binomial model with a logit tolerance distribution fitted to the

malaria data.
169



Table 7.3: A comparison of the various models fitted to the malaria data.

Model Maximum Number of AIC

log-likelihood parameters

{ri, µi} -128.753 16 289.506

{r, µi} -151.253 9 320.506

µ, r, α, β -183.152 4 374.304

indicating that a common value for r cannot be adopted for all doses of the drug.

The NegBin[r, µ(1 − p)] model of interest in this study has an AIC value which is

much higher than the AIC values of the base models and can thus be regarded as

a very poor model for this data. In fact the base model {ri, µi} provides the best

fit for the malaria data.

7.8 Conclusions

The results from fitting the negative binomial distribution to the algae data in-

dicated that the model simply reduced to the Poisson model, which was seen in

Chapter 2, to provide a poor fit to the data. When fitted to the malaria data, the

NegBin[r, µ(1−p)] distribution did not adequately account for the overdispersion.

Therefore the negative binomial distribution was not an effective tool for mod-

elling overdispersion in the data considered in this thesis. These results inspired

Chapter 8 which considers an alternative distribution for the unknown number of

organisms initially treated.

170



Chapter 8

The Binomial-EWP Model

8.1 Introduction

This chapter follows the rationale behind modelling Wadley’s problem with the

negative binomial distribution by using a weighted Poisson distribution to model

the binomial parameter n. Ridout and Besbeas (2004) investigated a number

of weighted Poisson distributions that can be used to model over- and under-

dispersed count data. In particular, they introduced the exponentially weighted

Poisson distribution for underdispersed count data, of which there are two types:

the three-parameter exponentially weighted Poisson distribution, denoted EWP3,

and the two-parameter exponentially weighted Poisson distribution, which is de-

noted EWP2. These exponentially weighted Poisson distributions are also suitable

for modelling overdispersed count data (Kokonendji, Mizère and Balakrishnan,

2008). In the present study, each of the weighted Poisson distributions described

by Ridout and Besbeas (2004) was considered for modelling the unknown number

of organisms initially treated with a drug and the EWP2 seemed to be the most

attractive and most algebraically tractable. Furthermore, Ridout and Besbeas

(2004) did not report much work on this distribution and there are very few ref-

erences to it in the literature. For these reasons the two-parameter exponentially

weighted Poisson distribution was selected for further study and for convenience
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it is referred to here as the EWP distribution. Various properties of the EWP

distribution are explored and it is considered for modelling the binomial number

of trials, thereby giving rise to a distribution aptly termed the binomial-EWP

distribution.

In Section 8.2 the EWP distribution itself is explored in further detail. The

p.m.f. of the binomial-EWP distribution is derived in Section 8.3 and Section

8.4 includes the moments of the binomial-EWP distribution. Some examples of

the binomial-EWP distribution are presented in Section 8.5. The model is then

considered for dose-response data in the Wadley problem setting in Section 8.6

and estimation and inference in this context are outlined in Section 8.7. Examples

are discussed in Section 8.8 and Section 8.9 contains some concluding comments.

8.2 The EWP Distribution

8.2.1 Distribution

Suppose that the random variable Y follows an EWP distribution. Then the p.m.f.

of Y is that of a weighted Poisson distribution and is given by

Pr(Y = y) =
e−ττ y

y!

e−θ|y−τ |

W
,n = 0, 1, 2, . . . , (8.1)

where τ is the Poisson parameter, θ is a parameter that incorporates over- or

underdispersion and W is a normalizing constant which is written as

W =

∞
∑

y=0

e−ττ ye−θ|y−τ |

y!

and which ensures that the probabilities sum to one. This distribution is denoted

as Y ∼EWP(τ, θ) for the remainder of this thesis. The distribution of Y reduces

to a Poisson distribution when θ = 0 and is suitable for modelling over- and

underdispersed count data when θ < 0 and θ > 0 respectively (Ridout and Besbeas,

2004).
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Ridout and Besbeas (2004) stated that the normalizing constant W can be

approximated by a finite sum with the “upper summation limit replaced by a

suitably large value”. However, suppose that ⌊τ⌋ denotes the integer part of the

value of τ . Then the normalizing constant W can be calculated as

W =
∞

∑

y=0

e−ττ ye−θ|y−τ |

y!

=

⌊τ⌋
∑

y=0

e−ττ yeθ(y−τ)

y!
+

∞
∑

y=⌊τ⌋+1

e−ττ ye−θ(y−τ)

y!

=

⌊τ⌋
∑

y=0

e−ττ yeθ(y−τ)

y!
+ eτ(θ−1)

∞
∑

y=⌊τ⌋+1

(τe−θ)y

y!

=

⌊τ⌋
∑

y=0

e−ττ yeθ(y−τ)

y!
+ eτ(θ−1)



eτe−θ −
⌊τ⌋
∑

y=0

(τe−θ)y

y!





=

⌊τ⌋
∑

y=0

e−ττ yeθ(y−τ)

y!
−

⌊τ⌋
∑

y=0

e−ττ ye−θ(y−τ)

y!
+ eτ(θ−1+e−θ)

= e−τ

⌊τ⌋
∑

y=0

τ y

y!

[

eθ(y−τ) − e−θ(y−τ)
]

+ eτ(θ−1+e−θ)

= 2e−τ

⌊τ⌋
∑

y=0

τ y

y!
sinh[θ(y − τ)] + eτ(θ−1+e−θ) . (8.2)

Since the sum in expression (8.2) is finite, the normalizing constant of the EWP

distribution can be calculated explicitly, which negates the statement made by

Ridout and Besbeas (2004).

8.2.2 Moments of the EWP Distribution

According to Ridout and Besbeas (2004), “explicit formulae for the moments of the

EWP distributions are not available” and they suggest approximating the moments

of these EWP distributions by using “a finite upper limit to the summation”.

Consider, however, the first two factorial moments of the EWP distribution,

which are defined as the expectations of Y and Y (Y − 1) respectively. The first
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factorial moment can be obtained in the following way:

E(Y ) =
∞

∑

y=0

yPr(Y = y)

=

⌊τ⌋
∑

y=0

ye−ττ y

y!

eθ(y−τ)

W
+

∞
∑

y=⌊τ⌋+1

ye−ττ y

y!

e−θ(y−τ)

W

=
τe−τ(1+θ)+θ

W

⌊τ⌋
∑

y=1

(τeθ)y−1

(y − 1)!
+
τeτ(θ−1)−θ

W

∞
∑

y=⌊τ⌋+1

(τe−θ)y−1

(y − 1)!

=
τe−τ(1+θ)+θ

W

⌊τ⌋−1
∑

y=0

(τeθ)y

y!
+
τeτ(θ−1)−θ

W

∞
∑

y=⌊τ⌋

(τe−θ)y

y!

=
τe−τ(1+θ)+θ

W

⌊τ⌋−1
∑

y=0

(τeθ)y

y!
+
τeτ(θ−1)−θ

W



eτe−θ −
⌊τ⌋−1
∑

y=0

(τe−θ)y

y!



 . (8.3)

The second factorial moment of the EWP distribution can be calculated as

E[Y (Y − 1)] =

∞
∑

y=0

y(y − 1)Pr(Y = y)

=

⌊τ⌋
∑

y=0

y(y − 1)e−ττ y

y!

eθ(y−τ)

W
+

∞
∑

y=⌊τ⌋+1

y(y − 1)e−ττ y

y!

e−θ(y−τ)

W

=
e−τ(1+θ)(τeθ)2

W

⌊τ⌋
∑

y=2

(τeθ)y−2

(y − 2)!
+
eτ(θ−1)(τe−θ)2

W

∞
∑

y=⌊τ⌋+1

(τe−θ)y−2

(y − 2)!

=
e−τ(1+θ)(τeθ)2

W

⌊τ⌋−2
∑

y=0

(τeθ)y

y!
+
eτ(θ−1)(τe−θ)2

W

∞
∑

y=⌊τ⌋−1

(τe−θ)y

(y)!

=
e−τ(1+θ)(τeθ)2

W

⌊τ⌋−2
∑

y=0

(τeθ)y

y!
+
eτ(θ−1)(τe−θ)2

W



eτe−θ −
⌊τ⌋−2
∑

y=0

(τe−θ)y

y!



 .

(8.4)

Since the summations in expressions (8.3) and (8.4) are finite the first two facto-

rial moments of the EWP distribution can be calculated explicitly, which again

negates the claim made by Ridout and Besbeas (2004). The variance of the EWP

distribution can then be obtained from these two moments in the usual way as

Var(Y ) = E[Y (Y − 1)] + E(Y ) − [E(Y )]2 .
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8.2.3 Examples

Some illustrative examples of the p.m.f. of the EWP distribution are presented,

together with their mean and variance, in Figure 8.1. The graphs indicate that

the EWP distribution can have more than one mode. Ridout and Besbeas (2004)

stated that the variance of the EWP distribution decreases as θ increases, which

appears to be the case in the examples presented here.

8.2.4 Likelihood, Score Functions and Information Matrix

Consider a random sample of n observations y1, . . . , yn from an EWP distribution

with parameters τ and θ. The likelihood function is the joint p.m.f. of these

observations and is thus written as

L(τ, θ; y) =

n
∏

i=1

[

e−ττ yi

yi!

e−θ|yi−τ |

W

]

.

As a result the log-likelihood function is given by

ℓ(τ, θ; y) =

n
∑

i=1

yi ln τ − nτ −
n

∑

i=1

ln yi! −
n

∑

i=1

θ|yi − τ | − n lnW . (8.5)

Consider the score functions of τ and θ. The absolute value |y−τ | in expression

(8.5) leads to discontinuities in the log-likelihood function with respect to τ . As a

result this function is not differentiable with respect to τ and the score function for

τ cannot be derived. The score function for θ can be obtained but its expression is

long and complicated and is therefore not included here. Since the log-likelihood

function cannot be differentiated with respect to τ , the information matrix of the

EWP distribution cannot be derived.

8.2.5 Estimation and Inference

Recall that when W, the normalizing constant of the EWP distribution, was ex-

pressed as a finite sum, the integer part of the value of τ , ⌊τ⌋, was introduced in

the limits of the summations. This can be seen in expression (8.2) and is as a
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Figure 8.1: (a) τ = 10, θ = −0.6, E(Y )=14.202, Var(Y )=50.423

Figure 8.1: (b) τ = 10, θ = −0.05, E(Y )=10.050, Var(Y )=11.398

Figure 8.1: (c) τ = 10, θ = 0.1, E(Y )=9.940, Var(Y )=7.768

Figure 8.1: Plots showing the shapes of various EWP distributions.
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result of the absolute value of y − τ in the log-likelihood function. These limits of

the summations in the expression for W cause discontinuities in the log-likelihood

function to occur at integer values of τ .

In order to illustrate these discontinuities in the log-likelihood function, data

were simulated from an EWP distribution with τ = 6 and θ = −0.5 and a profile

likelihood plot for the parameter τ was constructed. This plot is presented in

Figure 8.2 and indicates that the discontinuities in the log-likelihood function are

indeed at integer values of τ .

Figure 8.2: Profile likelihood for the parameter τ for the simulated data.

It is usual to estimate the parameters of a model by maximizing the log-

likelihood function with respect to these parameters. The Gauss optimization

routine, OPTMUM, uses derivative-based algorithms to numerically optimize a

function and since the log-likelihood function is not differentiable with respect to

τ this procedure cannot be used to estimate the parameters of the EWP distribu-

tion. Ridout and Besbeas (2004) used the Nelder-Mead method of optimization,

which is a derivative-free algorithm, to estimate the parameters τ and θ but an

alternative routine is proposed in the present study.

The parameters of the EWP distribution can be estimated by selecting a range

of possible values for τ . Since the log-likelihood function is discontinuous at integer

values of τ , it is necessary to fix τ at an integer value and to select a grid of integer

177



values for τ . In effect a profile likelihood is developed for τ by fixing τ at each

value within the selected range and then estimating θ for that particular value of τ .

Since the log-likelihood function is differentiable with respect to θ, the OPTMUM

procedure in Gauss can then be used to estimate this parameter for a specified

value of τ .

The information matrix of the EWP distribution cannot be estimated by the

observed Fisher information matrix since the latter cannot be calculated. The

standard errors of the parameter estimates can however be estimated by a para-

metric bootstrap (Efron and Tibshirani, 1993, Chapter 6). It is assumed that the

data under consideration form a random sample from a probability distribution

and that the parameter estimates τ̂ and θ̂ obtained from the data are the true

parameter values of the probability distribution from which the data are sampled.

A number of samples, say B, of size n can then be drawn from this probability

distribution using the table look-up method (Ross, 1998, p.462) and the expres-

sion for the probability that Y is equal to y from expression (8.1). The parameters

τ and θ are then estimated for each of the simulated samples and the standard

deviations of the B parameter estimates can be used to provide the approximate

standard errors of the parameter estimates. A value between 25 and 200 is an

appropriate choice for B (Efron and Tibshirani, 1993, Chapter 6). These standard

errors can be used to construct 95% Wald intervals for the parameters. In particu-

lar, the 95% Wald interval for θ is given by θ̂±1.96se(θ̂), where θ̂ is the maximum

likelihood estimate of θ and se(θ̂) is the standard error of θ̂ (Kutner, Nachtsheim,

Neter and Li, 2005, p.579).

The profile likelihood plot for τ is created when the parameters of the EWP

distribution are estimated. However, in order to estimate the standard error of

τ , a range of non-integer values can be specified for this parameter. A profile

likelihood for θ can also be constructed by specifying a range of values for θ and

for each value of θ a range of integer values for τ can be considered and the log-

likelihood function computed. The maximum values of the log-likelihood for each
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value of θ are then used to construct the profile likelihood plot for this parameter.

These profile likelihood plots can be used to obtain approximate 95% confidence

intervals for τ and θ. Specifically, the 95% confidence interval for τ from the profile

likelihood plot is given by [τ1; τ2], where τ1 and τ2 satisfy the condition

ℓP (τ1) = ℓP (τ2) = ℓ(τ̂ , θ̂; y) − 1

2
χ2

1,0.05 ,

and where ℓP (τ) is the profile likelihood for τ evaluated at τ and ℓ(τ̂ , θ̂; y) is the

value of the maximum log-likelihood of the EWP distribution (Azzalini, 1996,

p.146).

8.2.6 Goodness of Fit

A chi-squared goodness of fit test can be performed to determine whether the EWP

distribution is suitable for modelling a particular count data set. A significant χ2

statistic indicates that the model of interest is not suitable for the data.

The fit of the EWP distribution to count data can also be compared with

that of the Poisson, CMP, beta-Poisson, Altham-Poisson and negative binomial

distributions using AIC. In particular, the model with the smallest AIC value is

the best fitting model for the data and the AIC of the EWP distribution, which

has two parameters, is given by AIC = −2ℓ(τ̂ , θ̂; y) + 4.

8.2.7 An Example

The EWP distribution was fitted to the sales data presented in Section 4.7 using

the approach described in Section 8.2.5. The standard errors of the parameter

estimates were approximated using a parametric bootstrap. Since the sales data

set includes 3168 observations, 150 samples of size 3168 were drawn from the EWP

distribution and the standard deviations of the parameter estimates obtained were

used to approximate the standard errors of τ̂ and θ̂. 95% Wald intervals were then

computed for the parameters τ and θ. Profile likelihood plots were produced for

the parameters τ and θ of the EWP distribution and are presented in Figures 8.3
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(a) and (b) respectively. These plots were used to obtain 95% confidence intervals

for τ and θ. The parameter estimates, together with their standard errors and

95% Wald and profile likelihood intervals are recorded in Table 8.1.

Table 8.1: Results from fitting the EWP model to the sales data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 3 0.082 (2.839;3.161) (2.370;3.260)

θ -0.597 0.023 (-0.642;-0.552) (-0.608;-0.558)

The adequacy of the EWP distribution for modelling the sales data was assessed

using a chi-squared goodness of fit test as discussed in Section 8.2.6. AIC values

were used to compare the fits of the Poisson, CMP, beta-Poisson, Altham-Poisson

and negative binomial models with that of the EWP distribution. The chi-squared

test results and AIC values are presented in Table 8.2. The p-values from the

Table 8.2: A comparison of the various models fitted to the sales data.

Model χ2 p-value AIC

Poisson 0.000 17 921.622

CMP 0.242 15 056.712

Beta-Poisson 0.002 15 057.934

Altham-Poisson 0.005 15 083.308

Negative Binomial 0.636 15 059.220

EWP 0.000 15 806.331

chi-squared goodness of fit test indicate that the CMP and negative binomial

distributions are suitable for the sales data. A comparison of the AIC values

suggests that the fit of the EWP model is a great improvement on that of the

Poisson model but that the EWP model does not model the overdispersion in

the sales data as well as the CMP, beta-Poisson, Altham-Poisson and negative

binomial models.
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Figure 8.3: (a)

Figure 8.3: (b)

Figure 8.3: Profile likelihood plots for the parameters (a) τ and (b) θ of the EWP

model fitted to the sales data.
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8.3 Derivation of the Binomial-EWP p.m.f.

In the context of a dose-response study, suppose that Y , the number of organisms

that survive exposure to varying doses of a drug, is observed and that the number

initially treated, N , is unknown. Then Y given that N = n follows a binomial

distribution and the binomial parameter p can be modelled with an appropriate

tolerance distribution. If an EWP distribution is used to model the random vari-

able N the marginal p.m.f. of Y can be derived from first principles. Consider

Pr(Y = y) =

∞
∑

n=y

Pr(Y = y|N = n)Pr(N = n)

=

∞
∑

n=y





n

y



 py(1 − p)n−y e
−ττne−θ|n−τ |

n!W

and the two scenarios y > τ and y ≤ τ . When y > τ

Pr(Y = y) =
eτ(θ−1)(τpe−θ)y

y!W

∞
∑

n=y

[τ(1 − p)e−θ]n−y

(n− y)!

=
eτ(θ−1)(τpe−θ)y

y!W

∞
∑

n=0

[τ(1 − p)e−θ]n

n!

=
(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W

and when y ≤ τ

Pr(Y = y) =

(

p
1−p

)y

e−τ

y!W







⌊τ⌋
∑

n=y

[τ(1 − p)]ne−θ(τ−n)

(n− y)!
+

∞
∑

n=⌊τ⌋+1

[τ(1 − p)]ne−θ(n−τ)

(n− y)!







=

(

p
1−p

)y

e−τ

y!W







⌊τ⌋
∑

n=y

[τ(1 − p)]ne−θ(τ−n)

(n− y)!
+

∞
∑

n=y

[τ(1 − p)]ne−θ(n−τ)

(n− y)!

−
⌊τ⌋
∑

n=y

[τ(1 − p)]ne−θ(n−τ)

(n− y)!







=

(

p
1−p

)y

e−τ

y!W







⌊τ⌋
∑

n=y

[τ(1 − p)]n

(n− y)!

[

e−θ(τ−n) − eθ(τ−n)
]

+
∞

∑

n=y

[τ(1 − p)]ne−θ(n−τ)

(n− y)!






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=

(

p
1−p

)y

e−τ

y!W







⌊τ⌋−y
∑

k=0

[τ(1 − p)]k+y

k!

[

eθ(k+y−τ) − e−θ(k+y−τ)
]

+
∞

∑

k=0

[τ(1 − p)]k+ye−θ(k+y−τ)

k!

}

=
(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!

[

eθ(k+y−τ) − e−θ(k+y−τ)
]

+
(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W

=
2(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)] +

(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
.

Thus the p.m.f. of Y can be written concisely as

Pr(Y = y) =































2(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)] +

(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
, y ≤ τ

(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
, y > τ

(8.6)

which is the p.m.f. of the binomial-EWP distribution with parameters τ, p and θ

and is denoted as Y ∼ BinEWP(τ, p, θ) throughout this thesis. Observe that the

p.m.f. of the binomial-EWP distribution includes finite sums and can therefore be

calculated explicitly.

8.4 Moments of the Binomial-EWP Distribution

The mean of the binomial-EWP distribution can be written as

E(Y ) =
∞

∑

y=0

yPr(Y = y)

=

⌊τ⌋
∑

y=0







2y(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)] +

y(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W







+

∞
∑

y=⌊τ⌋+1

y(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
.
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Consider simplifying the infinite sum in this expression in the following way:

∞
∑

y=⌊τ⌋+1

y(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
=
τpe−θeτ(θ−1+(1−p)e−θ)

W

∞
∑

y=⌊τ⌋+1

(τpe−θ)y−1

(y − 1)!

=
τpe−θeτ(θ−1+(1−p)e−θ)

W

∞
∑

y=⌊τ⌋

(τpe−θ)y

y!

=
τpe−θeτ(θ−1+(1−p)e−θ)

W



eτpe−θ −
⌊τ⌋−1
∑

y=0

(τpe−θ)y

y!



 .

Thus the mean of the binomial-EWP distribution can be written as

E(Y ) =

⌊τ⌋
∑

y=0







2y(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)] +

y(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W







+
τpe−θeτ(θ−1+(1−p)e−θ)

W



eτpe−θ −
⌊τ⌋−1
∑

y=0

(τpe−θ)y

y!



 . (8.7)

Consider the second factorial moment of the binomial-EWP distribution, which is

given by

E(Y (Y − 1)) =

∞
∑

y=0

y(y − 1)Pr(Y = y)

=

⌊τ⌋
∑

y=0







2y(y − 1)(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)]

+
y(y − 1)(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W

}

+

∞
∑

y=⌊τ⌋+1

y(y − 1)(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
.

The infinite sum in this expression can be simplified as

∞
∑

y=⌊τ⌋+1

y(y − 1)(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W
=

(τpe−θ)2eτ(θ−1+(1−p)e−θ)

W

∞
∑
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(τpe−θ)y−2

(y − 2)!
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(τpe−θ)2eτ(θ−1+(1−p)e−θ)

W

∞
∑
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(τpe−θ)y

y!

=
(τpe−θ)2eτ(θ−1+(1−p)e−θ)

W



eτpe−θ −
⌊τ⌋−2
∑
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(τpe−θ)y

y!



 .
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Therefore the expected value of Y (Y − 1), where Y ∼BinEWP(τ, p, θ) can be

written as

E[Y (Y − 1)] =

⌊τ⌋
∑

y=0







2y(y − 1)(τp)ye−τ

y!W

⌊τ⌋−y
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + y − τ)]

+
y(y − 1)(τpe−θ)yeτ(θ−1+(1−p)e−θ)

y!W

}

+
(τpe−θ)2eτ(θ−1+(1−p)e−θ)

W



eτpe−θ −
⌊τ⌋−2
∑

y=0

(τpe−θ)y

y!



 .

(8.8)

The expectations in expressions (8.7) and (8.8) can then be used to compute the

variance of the binomial-EWP distribution in the usual way. The expressions for

the moments of the binomial-EWP distribution are complicated and cumbersome.

However, since the sums included in these expressions are finite, the moments can

be readily computed for given τ, p and θ. The moments in equations (8.7) and (8.8)

include the term y! which can be computationally awkward when y is large. In

order to accommodate large values of y, the logarithm of y! can be approximated

using commands such as lnfact in the programming language Gauss and the

logarithm of the terms in the sum can be computed. By doing this, the impact of

the large value of y! is accommodated and the moment under consideration can

then be estimated by exponentiating the resulting terms and calculating their sum.

An alternative method for estimating the mean and variance of the binomial-

EWP distribution is to simulate observations from the distribution and then to

compute the sample mean and variance of the simulated observations. Two meth-

ods of simulation can be used. The observations can be simulated using the table

look-up method (Ross, 1998, p.462) and the expressions for the probability that Y

is equal to y from (8.6). Alternatively, observations from the binomial-EWP distri-

bution can be simulated by first obtaining a value forN from the EWP distribution

using the table look-up method described in Section 8.2.5 and then simulating a

value for y given N = n from the binomial distribution. Either method can be used

with the number of simulated observations selected by observing the moments for

a range of sample sizes. When the simulated sample size is sufficiently large the
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estimates of the moments become stable.

8.5 Examples

Illustrative examples of the p.m.f. of the binomial-EWP distribution, together with

the mean and variance, are presented in Figure 8.4. Observe that the distribution

can have more than one mode. The mean and variance were estimated by simulat-

ing observations from the distribution according to the second method described

in Section 8.4. In each case a sample size of 106 observations was sufficient for

calculating the moments. The examples illustrate that the p.m.f. of the binomial-

EWP distribution can take different forms and is therefore flexible in terms of

modelling.

8.6 Modelling Dose-Response Data

Consider a dose-response setting and let pi denote the probability of the death of

an organism exposed to a dose di of a drug, with xi = log di and i = 1, . . . , D.

When a logit tolerance distribution is used, pi can be written in terms of xi and

the parameters α and β as

pi =
eα+βxi

1 + eα+βxi
, i = 1, . . . , D . (8.9)

8.6.1 Likelihood Function

In accordance with the notation introduced in Chapter 2, let the random variable

Ycj refer to the number of survivors in the control group, where j = 1, . . . , nc. De-

note the random variable representing the number of organisms surviving exposure

to a non-zero dose di of the drug by Yij, where j = 1, . . . , ni and i = 1, . . . , D.

Since the increase in probability of death for organisms in the control group

is zero, these observations simply constitute count data. Thus consider modelling

the observations in the control group with an EWP distribution. Following Ridout
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Figure 8.4: (a) τ = 20, p = 0.5, θ = −0.5, E(Y )=13.3870, Var(Y )=36.4910

Figure 8.4: (b) τ = 20, p = 0.2, θ = −0.5, E(Y )=5.3570, Var(Y )=9.0502

Figure 8.4: (c) τ = 20, p = 0.7, θ = 0.32, E(Y )=13.9359, Var(Y )=9.1410

Figure 8.4: Plots showing the shapes of various binomial-EWP distributions.
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and Besbeas (2004), the likelihood function for an observation from the control

group can therefore be written as

Lcj =
e−ττ ycj

ycj!

e−θ|ycj−τ |

W

and the log-likelihood function as

ℓcj = ycj ln τ − τ − ln ycj! − θ|ycj − τ | − lnW ,

where W is the normalizing constant of the distribution derived previously and is

given by

W = 2e−τ

⌊τ⌋
∑

ycj=0

τ ycj

ycj!
sinh[θ(ycj − τ)] + eτ(θ−1+e−θ) .

The observed number of organisms yij surviving exposure to a non-zero dose di

of the drug can be modelled with a binomial-EWP distribution, where j = 1, . . . , ni

and i = 1, . . . , D. Then the likelihood function for an observation less than or equal

to τ is given by

L
(1)
d(ij) =

2(τp)yije−τ

yij!W

⌊τ⌋−yij
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + yij − τ)] +

(τpe−θ)yijeτ(θ−1+(1−p)e−θ)

yij!W

and for an observation exceeding τ the likelihood function is

L
(2)
d(ij) =

(τpe−θ)yijeτ(θ−1+(1−p)e−θ)

yij!W
.

The log-likelihood functions for an observed response less than or equal to τ is

therefore given by

ℓ
(1)
d(ij) = ln





2(τp)yije−τ

yij!W

⌊τ⌋−yij
∑

k=0

[τ(1 − p)]k

k!
sinh[θ(k + yij − τ)] +

(τpe−θ)yijeτ(θ−1+(1−p)e−θ)

yij!W





and the log-likelihood function for an observation greater than τ is therefore

ℓ
(2)
d(ij) = yij ln(τpe−θ) + τ [θ − 1 + (1 − p)e−θ] − ln(yij !) − lnW .

The log-likelihood function for the data, denoted ℓ(τ, p, θ; y), is then found by

summing the log-likelihood for each observation over all of the observed responses.
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8.6.2 Score Functions and the Information Matrix

The log-likelihood function of the binomial-EWP distribution is discontinuous at

integer values of τ and is therefore not differentiable with respect to τ . The score

functions for α, β and θ can be derived but these expressions are awkward and

cumbersome and as a result they are not included here.

Since the derivation of the information matrix entails differentiating the log-

likelihood function with respect to the parameters, the information matrix for the

binomial EWP distribution cannot be derived.

8.7 Model Fitting and Checking

8.7.1 Estimation

The log-likelihood function of the binomial-EWP distribution is discontinuous in

τ and thus it cannot be optimized numerically using the Gauss OPTMUM proce-

dure. However, the parameters τ, α, β and θ can be estimated using the method

of estimation of the parameters for the EWP model outlined in Section 8.2.5. In

particular, a range of integer values of τ can be specified and a profile likelihood

plot can be produced for this range of values by estimating the remaining pa-

rameters in the model using the OPTMUM routine in Gauss. This method of

estimation requires starting values for the parameters τ, α, β and θ. Ridout and

Besbeas (2004) recommended using a starting value of zero for θ and then obtain-

ing starting values for the remaining parameters by fitting a Poisson distribution

to the data. Following their recommendation, the classic Poisson[τ(1 − p)] model

can be fitted to the data under investigation and the estimates of α and β can

then be used as starting values for these parameters. The estimate of τ from the

Poisson[τ(1− p)] model can be used to give an indication of the range of values to

be selected for this parameter.
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8.7.2 Inference

Since the information matrix of the binomial-EWP distribution cannot be derived,

the standard errors of the estimates of τ, α, β and θ can be approximated using

the parametric bootstrap described in Section 8.2.5. Data can be simulated from

the binomial-EWP distribution by first simulating a value for N from the EWP

distribution using the table look-up method. A y value, given thatN = n, can then

be simulated from the binomial distribution with p depending on dose through α

and β. This method of simulation was described in Section 8.4 but without the

dependence of the probability on the dose of the drug. 95% Wald intervals can

then be computed for each of the parameters. For the parameter τ , this interval

is calculated as τ̂ ± 1.96 se(τ̂), where τ̂ is the maximum likelihood estimate of τ

and se(τ̂ ) is the standard error of the estimate of τ (Kutner, Nachtsheim, Neter

and Li, 2005, p.579).

A profile likelihood plot for the parameter τ is generated by the method used

for estimating the parameters of the binomial-EWP distribution. Once again, non-

integer values of τ can be included in the range of τ values when approximating

the standard error of this parameter estimate. Profile likelihood plots can also be

produced for the remaining parameters α, β and θ. Consider the profile likelihood

plot for θ. This can be obtained by specifying a range of values for θ and for

each value of θ a grid of integer values for τ can be considered. The log-likelihood

function can then be maximized with respect to α and β for each combination of θ

and τ and the profile likelihood plot constructed accordingly. The profile likelihood

plots for α and β can be constructed in a similar way. The method proposed here

will give an approximate profile likelihood and will capture any asymmetry in the

distribution of the parameters. The profile likelihood plots can then be used to

obtain approximate 95% confidence intervals for the parameters. For example, the

95% confidence interval for the parameter τ is given by [τ1,τ2] where

ℓP (τ1) = ℓP (τ2) = ℓ(τ̂ , α̂, β̂, θ̂; y) − 1

2
χ2

1,0.05 ,
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and where ℓP (τ) is the profile likelihood for the parameter τ evaluated at τ and

ℓ(τ̂ , α̂, β̂, θ̂; y) is the maximum log-likelihood of the binomial-EWP distribution

(Azzalini, 1996, p.146).

8.7.3 Goodness of Fit

The fit of the binomial-EWP distribution to dose-response data can be compared

with that of the Poisson, beta-Poisson, Altham-Poisson and negative binomial

distributions using AIC. For the binomial-EWP distribution with a logit tolerance

distribution this statistic is calculated as −2ℓ(τ̂ , α̂, β̂, θ̂; y) + 8, where q = 4. The

model with the lowest AIC value provides the best fit to the data.

8.8 Examples

8.8.1 Algae Data

The binomial-EWP distribution for dose-response data was fitted to the algae

data using the method of estimation described in Section 8.7.1. The standard

errors of the parameter estimates were obtained by generating 150 parametric

bootstrap samples of size 25, 5 observations for each dose, and then calculating

the standard errors of the parameter estimates obtained from these samples. The

resulting standard errors were used to construct 95% confidence intervals for the

parameters. Profile likelihood plots were also obtained for the parameters τ, α, β

and θ and used to compute 95% confidence intervals for the parameter estimates.

The profile likelihood plots are time consuming to construct and are presented in

Figures 8.5 (a), (b), (c) and (d).

The estimates of τ, α, β and θ, together with their standard errors, 95% Wald

intervals and 95% profile likelihood intervals are recorded in Table 8.3. Recall

that when θ is zero the EWP distribution reduces to a Poisson distribution. The

estimate of θ for the algae data is very close to zero and in fact zero lies within the
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Figure 8.5: (a)

Figure 8.5: (b)

Figure 8.5: (c)

Figure 8.5: (d)

Figure 8.5: Profile likelihood plots for the parameters (a) τ , (b) α, (c) β and (d) θ

of the binomial-EWP model with a logit tolerance distribution fitted to the algae

data.
192



Table 8.3: Results from fitting the binomial-EWP model to the algae data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 226 1.325 (223.403;228.597) (*;238)

α -0.898 0.104 (-1.102;-0.694) (-1.110;-0.690)

β 1.419 0.089 (1.245;1.593) (1.261;1.583)

θ 0.022 0.042 (-0.060;0.104) (-0.055;0.155)

*This limit of the confidence interval cannot be computed

confidence intervals for θ. As a result the initial Poisson distribution in a Wadley

context is essentially being fitted to the algae data here.

A comparison of the AIC values for the different models fitted to the algae data

is presented in Table 8.4. The AIC values indicate that the negative binomial and

Table 8.4: A comparison of the various models fitted to the algae data.

Model Maximum Number of AIC

log-likelihood parameters

Poisson -97.776 3 201.552

Beta-Poisson -96.251 4 200.501

Altham-Poisson -96.314 4 200.628

Negative Binomial -97.778 4 203.556

Binomial-EWP -97.661 4 203.322

binomial-EWP distributions did not accommodate the overdispersion in the algae

data at all. This is because the models were essentially reduced to Poisson models.

The beta-Poisson and Altham-Poisson distributions are better at accommodating

the overdispersion in the algae data. The AIC values of these two models were

very similar, with the AIC of the beta-Poisson distribution being slightly lower

than that of the Altham-Poisson distribution. It can therefore be deduced that

the source of extra variability in the algae data is implicit in the probability of
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death rather than the unobserved number of organisms initially treated.

8.8.2 Malaria Data

The binomial-EWP distribution was fitted to the malaria data described in Section

2.2.2 by considering a range of values of τ and optimizing the likelihood function

with respect to α, β and θ. 150 parametric bootstrap samples of size 24 were

generated and used to approximate the standard errors of the parameter estimates.

A profile likelihood plot was obtained for the parameter τ when the parameters

were estimated but profile likelihood plots could not be produced for the remaining

parameters in the model due to convergence problems. The profile likelihood plot

for the parameter τ is included in Figure 8.6. This plot was used to construct

Figure 8.6: Profile likelihood plot for the parameter τ of the binomial-EWP model

with a logit tolerance distribution fitted to the malaria data.

a 95% confidence interval for τ but the upper limit of the interval could not be

obtained because of problems with convergence. The estimates of τ, α, β and

θ, together with their standard errors, 95% Wald intervals and the 95% profile

likelihood interval for τ are presented in Table 8.5.

The fit of the binomial-EWP distribution was compared with that of the Pois-

son, beta-Poisson and negative binomial distributions using AIC. Recall that the

Altham-Poisson distribution could not be fitted to the malaria data. Table 8.6

contains a comparison of the AIC values for the various models and from these

values it can be deduced that by providing a better fit than the Poisson distribu-
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Table 8.5: Results from fitting the binomial-EWP model to the malaria data.

Parameter Estimate Standard 95% Wald 95% Profile

Error Interval Interval

τ 4560 1.560 (4556.942;4563.058) (4465;*)

α -2.805 0.745 (-4.265;-1.345) -

β 2.246 0.959 (0.366;4.126) -

θ -0.105 0.038 (-0.179;-0.031) -

*This limit of the confidence interval cannot be computed

tion, the binomial-EWP distribution accounts for some of the overdispersion in the

malaria data. However, the AIC values of the beta-Poisson and negative binomial

Table 8.6: A comparison of the various models fitted to the malaria data.

Model Maximum Number of AIC

log-likelihood parameters

Poisson -870.023 3 1746.046

Beta-Poisson -174.670 4 357.340

Negative Binomial -183.152 4 374.304

Binomial-EWP -396.581 4 747.162

distributions are much lower than the AIC value of the binomial-EWP distribution

and thus these models seem better able to accommodate the overdispersion in the

malaria data.

8.9 Conclusions

Properties of the EWP distribution are explored in this chapter and its moments

are derived. Ridout and Besbeas (2004) did not explore the algebraic tractability

of the EWP distribution but it is demonstrated in the present study. In fact, the

algebraic tractability of the EWP distribution carries through to the binomial-
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EWP distribution. The p.m.f. is discontinuous in τ and hence problems arise with

parameter estimation and inference. These problems were addressed here by using

profile likelihood and simulation techniques.

The binomial-EWP distribution is introduced when the EWP distribution is

considered for modelling data arising from a Wadley’s problem setting. The mo-

ments of the binomial-EWP distribution are derived and while the expressions for

the moments are explicit, they are somewhat cumbersome. As a result, simula-

tion can be used as a means of estimating these moments. As with the EWP

distribution, the p.m.f. of the binomial-EWP distribution is discontinuous in the

parameter τ . The problems of estimation and inference were addressed in the same

way as for the EWP distribution.

The binomial-EWP model was fitted to the algae data and the fit was extremely

poor. This model was also fitted to the malaria data and, while it was observed

that the distribution accounted for some of the overdispersion in the data, it was

not the best fitting model. Profile likelihood plots could not be obtained for all of

the parameters when fitting the binomial-EWP distribution to the malaria data.

It can therefore be concluded that the binomial-EWP model can accommodate

overdispersion in some cases but that the beta-Poisson and Altham-Poisson distri-

butions seem better able to model the overdispersed data from a Wadley’s problem

setting considered here. It can be surmised that the overdispersion in these data

sets is implicit in the probability of death rather than the unknown number of

organisms initially treated, N .
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Chapter 9

Conclusions

Various models for overdispersion have been used for Wadley-type data in this

study. The well-known beta-binomial model was considered and crudely adapted

to a Wadley’s problem setting. This distribution was then extended in a more

elegant way to a Wadley problem setting, resulting in the beta-Poisson model.

Although some work has been done on the beta-Poisson distribution, properties of

the distribution and parameter estimation were explored in detail and the model

was used in a dose-response context. Very little work has been done on the mul-

tiplicative binomial distribution which was introduced by Altham in 1978. This

model was considered in the present study and some of its properties, such as

modality and the information matrix, were explored and derived. An extension of

the multiplicative binomial distribution to a Wadley’s problem setting yielded the

Altham-Poisson model. This model has not been derived or studied before and

was not particularly tractable algebraically. Numerical techniques were therefore

employed to accommodate the algebraic intractability of this model.

The negative binomial is frequently used in a Wadley’s problem setting and

was therefore considered in the present study. Finally, the EWP distribution was

investigated. This model has not been examined in detail in the literature and thus

its knowledge base was developed in this thesis. The EWP model was then used

for Wadley’s problem and the resulting binomial-EWP distribution, which has not
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been considered in previous studies, was derived. Properties of the binomial-EWP

distribution were investigated.

The beta-Poisson model, which is suitable for overdispersion in Wadley’s prob-

lem setting, proved to be effective for modelling the overdispersion in the algae

data. The Altham-Poisson distribution adequately models overdispersed count

data and overdispersed dose-response data from a Wadley’s problem setting. It

has limited usefulness, however, in that it cannot easily model large observations.

Finally, distributions for overdispersed count data were considered for modelling

Wadley’s problem and the negative binomial distribution fitted the algae and

malaria data sets poorly. The binomial-EWP distribution provided a very poor fit

to the algae data and accounted for only some of the overdispersion in the malaria

data. The apparent cause of overdispersion in the two primary data sets consid-

ered in this thesis was clearly the probability of death rather than the unknown

number of organisms initially treated.

There is scope for future research in overdispersion within the Wadley context.

In particular, random effects models and the double binomial model (Efron, 1986),

which are suitable for modelling overdispersion in the binomial probability, can

be adapted to a Wadley’s problem setting. The CMP distribution, which was

mentioned in this thesis, has recently been reparametrized and used in a logistic

regression setting by Guikema and Goffelt (2008). The reparametrized model can

be explored for modelling Wadley’s problem, thereby modelling overdispersion in

the unknown number of organisms initially treated. Methods proposed by Faddy

and Smith (2005), which consider a bivariate generalization of the Poisson process

for the binomial parameter n, can also be considered.

The Wadley-type distributions considered in this study can be investigated

in a broader context. In particular, mixtures of these distributions and their

applications to zero-inflated data can be explored.
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Software

Gauss. Aptech Systems Inc., 23804 SE Kent-Kangley Road, Maple Valley, WA

98038, United States of America. http://www.aptech.com.

Genstat. VSN International Ltd, 5 The Waterhouse, Waterhouse Street, Hemel

Hempstead, HP1 1ES, United Kingdom. http://www.vsni.co.uk.

Mathematica. Wolfram Research Inc., 100 Trade Center Drive, Champaign, IL

61820-7237, United States of America. http://www.wolfram.com.
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