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Abstract

Hyperspectral images (HSIs) are remote-sensed images that are characterized

by very high spatial and spectral dimensions and find applications, for example,

in land cover classification, urban planning and management, security and food

processing. Unlike conventional three bands RGB images, their high

dimensional data space creates a challenge for traditional image processing

techniques which are usually based on the assumption that there exists

sufficient training samples in order to increase the likelihood of high

classification accuracy. However, the high cost and difficulty of obtaining

ground truth of hyperspectral data sets makes this assumption unrealistic and

necessitates the introduction of alternative methods for their processing.

Several techniques have been developed in the exploration of the rich spectral

and spatial information in HSIs. Specifically, feature extraction (FE)

techniques are introduced in the processing of HSIs as a necessary step before

classification. They are aimed at transforming the high dimensional data of the

HSI into one of a lower dimension while retaining as much spatial and/or

spectral information as possible. In this research, we develop semi-supervised

FE techniques which combine features of supervised and unsupervised

techniques into a single framework for the processing of HSIs. Firstly, we

developed a feature extraction algorithm known as Semi-Supervised Linear

Embedding (SSLE) for the extraction of features in HSI. The algorithm

combines supervised Linear Discriminant Analysis (LDA) and unsupervised

Local Linear Embedding (LLE) to enhance class discrimination while also

preserving the properties of classes of interest. The technique was developed

based on the fact that LDA extracts features from HSIs by discriminating

between classes of interest and it can only extract C − 1 features provided there

are C classes in the image by extracting features that are equivalent to the

number of classes in the HSI. Experiments show that the SSLE algorithm

overcomes the limitation of LDA and extracts features that are equivalent to
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the number of classes in HSIs. Secondly, a graphical manifold dimension

reduction (DR) algorithm known as Graph Clustered Discriminant Analysis

(GCDA) is developed. The algorithm is developed to dynamically select labeled

samples from the pool of available unlabeled samples in order to complement

the few available label samples in HSIs. The selection is achieved by entwining

K-means clustering with a semi-supervised manifold discriminant analysis.

Using two HSI data sets, experimental results show that GCDA extracts

features that are equivalent to the number of classes with high classification

accuracy when compared with other state-of-the-art techniques. Furthermore,

we develop a window-based partitioning approach to preserve the spatial

properties of HSIs when their features are being extracted. In this approach,

the HSI is partitioned along its spatial dimension into n windows and the

covariance matrices of each window are computed. The covariance matrices of

the windows are then merged into a single matrix through using the Kalman

filtering approach so that the resulting covariance matrix may be used for

dimension reduction. Experiments show that the windowing approach achieves

high classification accuracy and preserves the spatial properties of HSIs. For

the proposed feature extraction techniques, Support Vector Machine (SVM)

and Neural Networks (NN) classification techniques are employed and their

performances are compared for these two classifiers. The performances of all

proposed FE techniques have also been shown to outperform other

state-of-the-art approaches.
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Chapter 1

General Introduction

1.1 Introduction

In recent times, advances in remote sensing technology have led to an increased

availability of hyperspectral images (HSI). Hyperspectral imaging, otherwise

known as imaging spectroscopy, provides image cubes which are generally

characterized by high spectral dimension and wide spatial resolution. The

spectral dimension of HSI has made it possible to extract useful information

from objects using their reflective properties obtained through sensors.

Examples of Hyperspectral Airborne Sensors are Airborne Visible Infrared

Imaging Spectrometer (AVIRIS), Hyperspectral Digital Imagery Collection

(HYDICE) and Compact Airborne Spectrographic Imager (CASI). These

sensors acquire each pixel of an object or scene in the form of a spectral vector

which helps in differentiating between spectrally similar objects or materials. In

Hyperspectral imagery, each pixel of an image is measured in a wide spectrum

of narrow and contiguous bands providing a more detailed image for analysis.

Figure 1.1 shows the spectral curves of the AVIRIS Indian Pine Image. In the

processing of hyperspectral images, two main properties of the images are

crucial in its feature extraction process. The first is the spectral property and
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Chapter 1. General Introduction 2

the other the spatial property. Hyperspectral images are comprised of hundreds

of spectral bands in contrast to the conventional three-band images and

multispectral images [1]. In the following section, a distinction between

multispectral and hyperspectral images is presented.

Figure 1.1: Spectral Curves of the AVIRIS Indian Pine Image

1.1.1 Categorization of Images Based on their

Dimensionality

Remote sensed images can be classified based on the number of bands as either

multispectral or hyperspectral. Multispectral images are images with few and

separated bands. A typical example is the Landsat images. On the other hand,

hyperspectral images contain hundreds of bands, and in addition, these bands

are contiguous and narrow. Although, this distinction between multispectral and

hyperspectral images is based on the number of spectral bands, they may also

be differentiated based on their spectral properties depending on whether the

spectral bands in the image are separated or contiguous [2].

1.1.2 Application Areas for Hyperspectral Images

HSIs have found many useful applications in different fields due mainly to the

massive amount of information they embed. The enormity of their spatial and



Chapter 1. General Introduction 3

spectral constituents are major attractions which have facilitated their

application in agriculture, atmospheric studies, public safety and defence, land

management, coastal and forest monitoring, geology and urban planning policy

development. Specific applications in the highlighted areas are given in

Table 1.1 below.

Table 1.1: Application of Hyperspectral Images

General Application Areas Specific Application

Agriculture • Estimation of soil parameters [3–5]
• Pest and disease monitoring
• Characterization of weeds and residues
• Monitoring of crop yields

Coastal Monitoring • Oil spillage monitoring [6–8]
• Water quality monitoring [9]
• Tidal monitoring [10]

Defence • Target detection [11, 12]
• Landmine detection [13]

Forestry • Drought impact assessment [14]
• Precision forestry [15]
• Urban forestry monitoring [16]

Geology • Mineral Mapping and exploration [17–19]
• Characterization of rocks [20, 21]

Public Safety • Wildfire monitoring [5, 22]
• Flood management [23]

Urban Planning and Development • Urban growth and monitoring [16]
• Settlement population
• Identification of surfaces and materials [24, 25]
• Characterization of urban structures [26]

1.2 Problems in Hyperspectral Image

Processing

As highlighted in the previous subsection, HSIs have found applications in

many aspects of life. However, their intrinsic characteristics pose fundamental

challenges to their analysis and processing. By addressing these challenges,

HSIs will find more areas in which they may be applied in solving problems.
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The most fundamental challenge in the processing of HSIs is related to their

spectral dimensionality. They embed significantly large amounts of information

on different land-based objects. These information are very useful in identifying

objects or scenes, however there may be redundant information in these spectral

bands.

Another challenge posed to the analysis and processing of HSIs is related to

their classification. Their large spectral dimension and the availability of

usually few labelled samples makes classification very difficult and render

traditional classification algorithms incompetent or inapplicable. This challenge

is also referred to as the Hughes phenomenon [27]. The result of the limited

number of labelled samples and high dimensionality of HSI data has an indirect

relationship on the accuracy of the classification process, i.e. the classification

accuracy decreases with increase in the dimension of hyperspectral images.

Furthermore, hyperspectral images are unlike the conventional three-band

images. Their spectral dimension which spans hundreds of bands also poses

great difficulty and complexity in their processing and analysis. This challenge,

also referred to as ’the curse of dimensionality’ has attracted research efforts

towards developing highly efficient and low-complexity feature extraction and

classification algorithms for the processing of hyperspectral images of urban

areas. Also, the problem of mixed samples in hyperspectral images makes it

difficult to classify some images.

1.3 Overview and Motivation

As highlighted in the previous section, the high dimensionality of HSI

necessitates the implementation of feature extraction before classification is

done. Several methods for feature extraction in hyperspectral image processing

have been developed. They may be classified into two categories as either

supervised or unsupervised methods. Those methods that do not require the
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use of class labels for the transformation of the high-dimensional HSI data

space into one of a lower dimension are categorized as unsupervised. These

methods are not affected by the limited availability of labelled samples.

Common unsupervised feature extraction methods that have been widely used

in hyperspectral image processing include Principal Component Analysis

(PCA) [28], Minimum Noise Fraction (MNF) [29] and Independent Component

Analysis (ICA) [30]. However, it has been observed that the use of these

techniques results in the loss of discriminative information which would

otherwise, have improved the accuracy of the classification algorithms.

Therefore, supervised methods that use class labels or class information during

computation are introduced.

Supervised feature extraction algorithms employ class labels for transforming

the high-dimensional HSI data space into one of a lower dimension. Commonly

implemented supervised algorithms include Non-parametric Weighted Feature

Extraction (NPWFE) [31] and Linear Discriminant Analysis (LDA) [32, 33].

Other variants which are improvements on these popular methods have also been

developed and implemented for the processing of HSIs [34]. The main advantage

of these algorithms lies in their ability to discriminate between classes of interest.

But they tend to perform poorly in the presence of few class labels. A new class

of feature extraction methods known as semi-supervised method has also been

conceived for the processing of HSIs.

A hybrid class of methods for feature extraction known as semi-supervised has

also been developed from the consideration of the merits and demerits of

supervised and unsupervised feature extraction methods. This class of

algorithms thrives with impressive accuracy when the number of labelled

samples are few and there is an abundance of unlabelled samples. In fact, they

use information available from the few labelled samples as well as the many

unlabelled samples to extract features from the HSI and thus, are able to

discriminate between classes of interest. Several algorithms for feature

extraction have been developed based on the semi-supervised approach. These
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are Semi-supervised Local Fisher Discriminant Analysis (SELF) [35] and

Semi-supervised Discriminant Analysis (SDA) [36]. However, there still exists

the need for novel algorithms that are capable of improving the classification

accuracy while taking full advantage of the available unlabeled samples. For

instance, in [36], a semi-supervised feature extraction technique was proposed.

This algorithm takes on the form of a modified LDA algorithm so that the

manifold structure in the unlabeled samples can be preserved. Experiments

show that SDA is able to exploit unlabelled samples for highly accurate feature

extraction but because it employs tunable variables in the computation of its

projection matrix, its complexity is greatly increased. SELF [35] is known for

its ability to preserve neighbourhood structure in HSIs. It overcomes the

demerit of supervised LDA by being able to extract C features from

hyperspectral images unlike LDA, which extracts C − 1 features. However,

when there is a limited number of training samples, SELF performs poorly.

Thus, there is still the need to develop novel semi-supervised algorithms that

will address the highlighted shortcomings of existing semi-supervised

algorithms while also ensuring that the neighbourhood information of the

image is preserved in its low-dimension feature spaces.

1.4 Thesis Objectives

In this thesis, we present an investigation into various feature extraction

methods for hyperspectral images with the aim of developing and introducing

novel methods. An examination of state-of-the-art algorithms for feature

extraction in hyperspectral image processing underscores the necessity for

feature extraction before classification. This is crucial in achieving improved

classification accuracy, reduced computational complexity and processing time.

Although feature extraction has a lot of merits, it is often difficult because of

the limited number of training samples available and the large dimension of

hyperspectral images. In this work, algorithms that are developed to overcome
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the aforementioned limitations of feature extraction methods in hyperspectral

image processing are presented. These algorithms are able to :

• fully utilize the abundant unlabelled samples during the feature extraction

process,

• preserve the manifold structure of the hyperspectral image while still

achieving high class discrimination,

• preserve the locality of the different classes in the reduced space using

graph-based clustering, and

• stand in good performance in comparison with existing and related methods

in terms of classification accuracy.

1.5 Thesis Contributions

Contributions of this thesis are as follows:

1. A semi-supervised feature extraction method for HSI feature

extraction [37] has been developed. In this technique, the supervised

Linear Discriminant Analysis (LDA) and the unsupervised Local Linear

Embedding were integrated into a new semi-supervised algorithm namely

the Semi-supervised Local Linear Embedding (SSLE). This approach

enhances the class discriminating property while preserving the

neighbourhood information of different classes of interest during the

feature extraction process. This is to overcome the problem of few

labelled samples in HSI and the curse of dimensionality.

2. Furthermore, a graph-based method for reducing the dimensionality of HSI

has been introduced to fully utilize unlabeled samples. Two objectives were

highlighted which are firstly to ensure that class separability is maximized
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using the unlabelled samples and secondly to ensure that the manifold

structure of the image is preserved. LDA which is able to discriminate

between classes, makes use of labelled samples. In order to utilize the

unlabeled samples in the proposed algorithm, we developed a framework

that uses the unsupervised k-means in the semi-supevised approach. The

idea was to first group the unlabelled samples into clusters so that labels

from the clusters are used to extract the features in a semi-supervised

approach.

3. The developed graph-based method was optimized in a way that

enhanced the maximum discrimination between classes of interest in the

feature extraction process, thereby increasing the expected accuracy when

compared to fully supervised approaches.

4. A partitioned approach before the use of feature extraction methods has

been introduced. This method uses the approach of dividing images into

windows of varying sizes and uses a novel covariance addition method before

the computation of projection matrices.

1.6 Thesis Outline

This dissertation is presented in six chapters. In Chapter Two, related works are

reviewed and categorized based on their use of labelled samples for computation.

The works reviewed therefore qualify as either supervised, unsupervised and semi-

supervised methods.

Chapter Three presents the description of a novel semi-supervised method,

known as Semi-supervised Local Linear Embedding (SSLE). This SSLE

approach is based on the amalgamation of a supervised algorithm, Linear

Discriminant Analysis (LDA) and an unsupervised method, Local Linear

Embedding (LLE). The algorithm was developed to exploit the merits of LDA
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and LLE. The LDA algorithm is capable of maximizing the between-class

similarity and also minimize the within-class similarity while LLE, on the other

hand, is efficient in preserving the HSI’s data local neighbourhood pattern in

the low-dimensional feature space. Finally, the experimental results of an

investigation into the performance of the SSLE method on real hyperspectral

data are presented and a discussion of the results follows.

In Chapter Four, a graph-based approach to dimensionality reduction which

dynamically selects unlabelled samples using the k-means method is developed.

The method, christened as Graph Clustered Discriminant Analysis (GCDA)

has two objectives: the first is to maximize class separability through the use of

unlabelled samples and secondly, to ensure that the manifold structure of the

hyperspectral image is preserved. In the GCDA approach, the unlabelled

samples of the hyperspectral image data are firstly clustered, thereafter, the

resultant labels from all clusters are used to obtain the reduced data space in a

semi-supervised manner. The classification is done using Neural Networks (NN)

and Support Vector Machine (SVM). The results obtained from experiments

performed to evaluate the performance of the GCDA algorithm on

hyperspectral image of an urban area show that the spatial and spectral

properties of the HSI are preserved in the reduced dimension obtained.

GCDA’s performance is also shown to outperform those of some existing

dimensionality reduction methods.

A partitioning approach to dimensionality reduction which highlights the

importance of employing varied window sizes is discussed in Chapter Five. The

approach considers the partitioning of HSIs into smaller sizes (windows) before

the computation of covariance matrices for each window. Experimental results

show that the proposed approach is suitable for preserving the spatial property

of hyperspectral images in the dimension reduction process.

The thesis concludes with a general discussion of the contributions made in the

research in Chapter Six. It presents specific concluding remarks on the research
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topics and perspectives on possible future developments of the work are

presented.





Chapter 2

Research Background and

Review

2.1 Introduction

In this chapter, a detailed review and background of methods and algorithms

employed to process and analyze remote-sensed hyperspectral images (HSI) are

expounded. The description of related feature extraction techniques that are

used in transforming a hyperspectral image data from a high dimensional space

into a lower dimensional one, is also presented. The general framework for FE

in HSI processing is presented and we further categorize HSI into three main

classes based on the usage of training samples in the computation of the FE

process. Moreover, a review of various contributions from different works on

feature extraction is also done.

12
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2.2 Feature Extraction in Hyperspectral

Imaging

As discussed in the previous chapter, hyperspectral images are unique because

of their characteristic high spatial and spectral features. Thus, the

hyperspectral image data is usually rich in spectrum. In order to analyze them,

efficient dimensionality reduction techniques are used to transform the HSI

data space from a high-dimensional one to one of a lower dimension. This

transformation is achieved by feature reduction techniques. Feature reduction

techniques are of two types: these are feature selection [38, 39] and feature

extraction [37, 40]. The feature Selection (FS) process involves the search for

and selection of an appropriate subset of features of an HSI. On the other hand,

the feature extraction (FE) process concerns the utilization of the selected

features subspace in transforming the highly-dimensional HSI data space into

one with reduced dimensions. Therefore, FE methods reduce the computational

complexity involved in the processing of HSI. It also aims to increase the

classification accuracy that will be achieved as opposed to a classification

process without prior FE.

The General FE transformation process may be reckoned as follows: Given a

high-dimensional data {p}Ni=1, pi ∈ Rd, FE techniques aim to transform the high-

dimensional data, into {q}Ni=1 and qi ∈ Rp a low dimensional data : p ≤ d. The

variables d and p are the dimensions of the original data and transformed data

respectively. Therefore, the objective of FE is to find a d× p projection matrix

W , which can be mapped one-to-one from its high dimensional data space to the

low-dimensional data space.

Several FE algorithms have been developed in the literature; they may be

classified into any of three categories as supervised, unsupervised and

semi–supervised. These classifications are considered in the following

subsections.
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Figure 2.1: Feature Extraction in HSI

2.2.1 Supervised Feature Extraction

A feature extraction method is said to be supervised if it uses a-priori

knowledge of the structure of data by means of training samples. Examples of

supervised feature extraction algorithms are Non-parametric Weighted Feature

Extraction (NWFE) [31] and Linear Discriminant Analysis (LDA) [41, 42].

Linear Discriminant Analysis (LDA) is a very popular supervised feature

extraction technique and is efficient in discriminating between classes by

maximizing the between-class scatter matrix while also minimizing the

within-class scatter matrix [42]. However, due to the singularity of the

within-class scatter matrix, LDA would fail when the sample size is small. In

[43], a non-linear version of LDA known as Generalized Discriminant Analysis

(GDA) is proposed. Both versions are capable of extracting maximum C − 1

features, when the total number of classes is C. On the other hand, NWFE in

its calculation of non-parametric scatter matrices, uses the weighted means and

is also capable of extracting more than C − 1 features [31, 44].

The authors in [33] developed and proposed the Regularized Discriminant

Analysis (RLDA) in order to address the challenge of limited training samples

during the classification of HSIs. By tuning a regularization parameter, the

algorithm achieves high classification accuracy in the presence of few labelled

samples but is impacted by high computational complexity. In [45], Cui et al.
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proposed the Angular Discriminant Analysis (ADA) technique whose goal is to

find the best subspace that separates classes in an angular manner that

minimizes the ratio of the inner products of the between-class to that of the

within-class. Furthermore, the authors introduced the Local Angular

Discriminant Analysis (LADA), a technique that uses an affinity matrix for the

preservation of data locality in the projected space. Like ADA, the different

class samples are separated in an angular manner. However, the ADA and

LADA algorithms give best performance when the method employed for

classification of the image is one that is based on angular distance. These

algorithms are used to improve the performance of classifiers using the cosine

angle distance and sparse representation-based classification (SRC). Although

these methods were reported to perform better when used with Nearest

Neighbour classifier (NN), it was not compared against SVM. Moreover, LADA

was intended to address scenarios where class-specific samples are situated

across multiple clusters.

2.2.2 Unsupervised Feature Extraction

Unsupervised feature extraction methods on the other hand are mainly

considered when the structure of the data is not fully known and there are few

or no labelled samples to be used. Examples of unsupervised feature extraction

algorithms are Principal Component Analysis (PCA), Independent Component

Analysis (ICA), Singular Value Decomposition (SVD) and Projection Pursuit.

PCA [46] seem to be the most popular linear unsupervised feature reduction

technique and it uses an orthogonal transformation for its eigen value

decomposition; it rearranges the bands in order of their variance, with the first

band having the largest variance. Since PCA is unsupervised, it does not use

class discrimination in its covariance matrix estimation. This is one major

limitation in its application to HSI processing. The impact of this is the loss of

important spatial information in its lower eigen vectors. Many variants and
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extensions of PCA have been developed and applied to hyperspectral imagery

to enable PCA preserve class discriminatory properties even in its unsupervised

mode. A two-dimensional PCA was introduced in [47] for facial recognition. It

computes covariance matrices on a two-dimensional image and has an increased

recognition rate over the conventional PCA. Also, Segmented PCA which

outperforms two-dimensional PCA when applied to hyperspectral images in [48]

was originally introduced by Du et al. [49]. Segmented PCA aims at preserving

the spatial properties of a hyperspectral image. It computes covariance matrices

on grouped bands instead of on the whole lot of bands in conventional HSI.

2.2.3 Semi-Supervised Feature Extraction

The ability to discriminate between classes of interest is important and a major

goal in the feature extraction of hyperspectral images while reducing the

dimension. Most often, algorithms for discriminating between classes are

majorly supervised. The presence of few or no labeled samples reduces the

classification accuracy of these algorithms. This led to the evolution of

semi-supervised algorithms.

The basic idea behind the development of semi-supervised algorithms is the

calculation of the projection matrix by the use of labelled and unlabelled

samples. Deng Cai [36] also introduced the Semi-supervised Discriminant

Analysis (SDA) which finds projection with respect to the discriminant

structure deduced from the labelled samples as well as the inherent geometrical

structures deduced from both labelled and unlabelled samples. SDA uses the

labelled samples achieve maximum separability among the different classes. On

the other hand, it uses the unlabelled samples to derive the inherent geometric

structure of the hyperspectral image data.

Semi-supervised methods which were used in [50] employ preserving the spatial

and spectral properties of the data. Morphological profiles were used in [50] for
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pre-processing. This approach makes use of manifold algorithms in preserving

the spatial structures through the use of graph-based approaches [51]. Zhang et

al. also used morphological filtering as preprocessing for watershed segmentation

in order to preserve the contextual boundaries of HSI and further formed super-

pixels for the objects from watershed segmentation.

A texture-based feature extraction was developed based on 3-D wavelet transform

in [52]. The approcah used in the developed algorithm considers each patch of

image as a cube which enhance the representation of the image both spectrally

and spatially. However, the classification accuracy is dependent on the effective

selection of window sizes.

In [53], another spectral and spatial method of the feature extraction of

hyperspectral images is introduced, namely the Semi-supervised Discriminative

Locally Enhanced Alignment (SDLEA). This method is an hybrid of the

Discriminative Locality Alignment (DLA) [54] and is developed so that the

spatial and spectral properties of the hyperspectral image are preserved in the

reduced space.

2.3 Related Works

As earlier mentioned, algorithms developed for the feature extraction of HSIs

have different properties but the overall aim is to preserve the utmost amount

of information in the reduced dimensional space. In this section we review

works done in the feature extraction of HSIs. Finding a connection between

samples of labelled and unlabelled HSI data is crucial towards overcoming the

problem of a small training sample size. In [50], a semi-supervised graph was

developed which maximizes class discrimination and preserves the local

neighbourhood information by combining labelled and unlabelled samples. It

connects labelled samples according to their label information and unlabelled

samples by their nearest neighbourhood information. Neighbourhood
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information preservation has been a major backbone in the development of

semi-supervised algorithms. Cai et al. [36] also introduced Semi-supervised

Discriminant Analysis (SDA) to mitigate the availability of few training

samples in LDA. In SDA, the discrimination is achieved using labelled data

points while the locality of points within the classes is preserved by the

unlabelled samples. However, like LDA, SDA can extract only C − 1 features

from the image. The authors in [35] attempted to improve the number of

extracted features in the processing of HSIs and proposed the Semi-supervised

Local Fisher Discriminant Analysis (SELF), a method that combines LDA and

LPP. The SELF method shows that the number of features that are extracted

from the image is synonymous with the number of classes of interest. However,

both SDA and SELF have tunable parameters in the computation of their

projection matrices and this may affect the classification accuracy of the

extracted features. Liao et al. [55] also proposed a semi-supervised

improvement of the LDA method of feature extraction by combining LDA with

a number of unsupervised local linear feature extraction methods such as

locality preserving projection (LPP), neighbourhood preserving embedding

(NPE) and linear local tangent space alignment (LLTSA). In the proposed

framework, the data set is initially separated into labelled and unlabelled sets;

then, LDA is applied to the labelled sampled while the unsupervised methods

are applied to the unlabelled sampled. The proposed method further exploits

the benefits of supervised and unsupervised methods through a non-linear

combination of both and overcomes the need for the optimization of tuning

parameters.

Patch alignment techniques have also been used in major algorithms used in

discriminating features in HSI. In [56], a semi-supervised discriminative locally

enhance alignment (SDLEA) was used in hyperspectral image processing.

SDLEA was built upon the limitation of Discriminative Locality Alignment

(DLA) [54] which assumes that a fixed number of neighbouring points are in

each patch. It overcomes this by using multi-segmentation in selecting
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unlabelled samples. Tensor discriminative locality Alignment (TDLA) [57] also

used the patch alignment framework. TDLA uses multilinear algebra with

supervised manifold learning algorithms. Although, TDLA preserves the spatial

property of the data, its supervised nature makes it difficult for it to be used in

the presence of few or no labelled samples. In [58], it was discussed that the

spectral and spatial information at each pixel is integrated in which an explicit

and nonlinear mapping is done between the unlabelled data and the feature

space. All these algorithms aim at preserving the spectral and spatial

properties of each pixel in hyperspectral images while their features are being

extracted.

In [59], another method known as Neighbourhood Preserving Orthogonal

PNMF (NPOPNMF) for feature extraction in the classification of hyperspectral

images is proposed. In NPOPNMF, it is assumed that all pixels (data points)

of an HSI can be individually represented as a linear association of its

neighbouring pixels towards overcoming the Euclidean limitation of PNMF. A

unique feature of the NPOPNMF method is its capability of being operated in

dual modes either as a supervised or unsupervised method. The modes are

determined based on how the adjacency graphs are constructed. The limitation

of the traditional Negative Matrix Factorization (NMF) of ignoring the labels

of data points was overcome in NPOPNMF. A novel supervised NMF

algorithm to improve the discriminative ability of the new representation by

using the class labels. Using the class labels, data sample pairs are separated

into within-class pairs and between-class pairs. The discriminative ability was

further improved by minimizing the maximum distance of the within-class pairs

in the new NMF space, and meanwhile maximizing the minimum distance of

the between-class pairs.

In [60], the authors propose another method of dimensionality reduction known

as Nearest Feature Line Embedding (NFLE) transformation. With focus on the

discriminant analysis phase, the NFL measurement is integrated with the

transformation phase instead of the matching phase. Furthermore, by giving
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simultaneous consideration to the separability of classes, preservation of the

neighbourhood structure and NFL measurements, NFLE achieves efficient and

discriminating transformation in the eigenspaces for land cover classification.

Tan et al. [61] also proposed a semi—supervised feature extraction method

based on a block-sparse graph for discriminant analysis in hyperspectral image

processing. While it is aimed at overcoming the intrinsic challenge of few label

samples in HSIs, the proposed method devises the inclusion of unlabelled

samples with labelled samples when graphs are being constructed. But the

selection of unlabelled samples is done using sparse and collaborative graph

representations. The results show that this semi-supervised block-sparse graph

dimensionality reduction method is capable of significantly outperforming a

supervised method, given the limited availability of training samples.

As indicated earlier, both the spectral and spatial features of hyperspectral

images are important in effectively discriminating classes of interest. An

example of such spatial algorithm is morphological profiles [62, 63] which have

gained wide usage in the extraction of features for HSIs.

Also, another method being used to discriminate between the spectral and

spatial features of HSI is the graph methods. In [64], the graph discrimination

method was used which takes into consideration the number of pixels in the

neighbourhood. In [65], the authors propose a supervised graphical method

based on determinantal point process which uses a fully probabilistic model to

select the representative bands and to preserve the relevant information in the

original spectral bands. After the band selection process, multiple Laplacian

Eigenmaps are performed on the selected bands. These multiple Laplacian

Eigenmaps are defined by encoding the spatial-spectral proximity on each band

and then collectively on the selected bands. Furthermore, an unsupervised

manifold feature extraction was proposed by Gan et al. [66]. This method uses

multi-structure based feature learning approach. The feature learning method

was constructed using the sparse graph and hypergraph as well as the local

linear structure for the dimensionality reduction process. This method was
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tested using the Salina and Pavia University hyperspectral images and shows

improved accuracies. However, this multi-structure feature learning method

uses more running time with increased computational cost when compared with

other feature extraction methods. There is always a trade-off between accuracy

and computational complexity. To reduce the computational complexity feature

extraction is often performed on a PCA transformed space. In [67], PCA was

first computed on HSI thereafter Gabor filters was performed on the PCA

transformed feature space. Moreover a PCA-Edge Preserving Feature

(PCA-EPF) was introduced in [68] to overcome the limitation of EPF based

methods which has been found to decrease the spectral differences of similar

objects of variable ratios. Also, Matrix Discriminant Analysis (MDA) [69] is

posed with the difficulty of optimal choice of scale which led to the

development of robust-MDA to overcome the shortcomings of MDA.

2.4 Conclusion

This chapter presents a background to the subject of feature extraction in

hyperspectral image (HSI) processing. It highlights the essence of the feature

extraction process in the processing of hyperspectral images. The feature

extraction process, which precedes classification, is essential in the processing of

HSIs and is aimed at achieving a reduction in the dimension of HSI data for

easier processing. The chapter begins with a discussion on the two stages

involved in the transformation of HSI data from a high-dimensional feature

space to one of lower dimension. These include feature selection and feature

extraction. However, more emphasis is laid on feature extraction because this

research is based on it. Secondly, the chapter also discusses the three classes of

feature extraction algorithms namely supervised, unsupervised and

semi-supervised algorithms and a review of existing works related to each class.

The supervised algorithms use available training samples obtained from the

HSI data set for the selection of features. The unsupervised algorithms for
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feature extraction are developed to select features when none or very few

labeled samples are available. However, the lack or limited number of training

samples makes it difficult to discriminate between classes of interest during the

feature extraction process. Therefore, semi-supervised algorithms have been

developed to exploit the merits of supervised and unsupervised algorithms and

to ameliorate challenges related to the implementation of these two classes of

algorithms. Finally, other approaches to feature extraction that are developed

in the literature were reviewed noting their merits and challenges.





Chapter 3

Semi-Supervised Local Linear

Embedding

3.1 Introduction

This chapter presents a semi-supervised method of feature extraction in the

processing of hyperspectral images. It introduces a hybrid feature extraction

method using the semi-supervised approach. The proposed technique combines

the supervised Linear Discriminant Analysis (LDA) with unsupervised Local

Linear Embedding (LLE) techniques, and exploits the merits of both

techniques to achieve comparatively higher classification accuracy.

LDA and LLE have been widely used for feature extraction in the processing

of HSI. While LDA is popular for its class-wise discriminatory capability, the

LLE technique is known for its ability to preserve manifold properties during the

feature extraction process. However, both techniques have some drawbacks. In

LDA, if there are C number of features, then the number of classes that may be

extracted is limited to C − 1. In addition, it is unable to discover the spatial

property of the image when there are only a few labelled samples. Besides, the

LLE technique is computationally expensive because it is a nonlinear method.

24
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Therefore, the algorithm proposed in this chapter is developed to exploit the

merits of LDA and LLE.

We discuss LDA and LLE and the detailed analysis of the developed

semi-supervised local linear embedding is presented in section 3.2. In section

3.3, the algorithm of the proposed feature extraction method is presented.

Section 3.4 presents a discussion on the experimental results of the performance

of the proposed method on real hyperspectral images. The chapter concludes in

section 3.5 with a summary of the highlights of the proposed method.

3.2 Background of Related Feature Extraction

Methods

3.2.1 Linear Discriminant Analysis

The Fisher Local Discriminant Analysis proposed in [70] is an algorithm that

has found extensive application for feature extraction in hyperspectral image

processing. Being a supervised method, this algorithm projects all data points

in a hyperspectral image data space into a new space of lower dimension so

that the separability between-class is maximized and the variability within-class

minimized. The Fisher LDA algorithm may be set up as the minimization of an

objective function as follows:

WLDA = argmax
w

W TSbW

W TSwW
(3.1)

where Sb and Sw respectively denote the scatter matrices of between-classes and

the within-classes.

In reducing the dimensionality of the image from a high dimensional space to a

lower dimensional one, we denote <d as the d- dimensional vector spaces and <p
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the p- dimensional vector spaces such that p ≤ d. Let {Ck}ck=1 denote C classes

of interest where Ck = {xk1, xk2, ..., xkNk
} and {xkj}

Nk
j=1 is the kth class and contains

Nk patterns and the jth pattern in class Ck denoted by

xkj = {xk1j, xk2j, ...xkdj}T is a d- dimensional vector in the space <d Let N = N1 +

N2 + · · ·+Nc be the total number of training patterns.

From Fisher Local Discriminant Analysis [70], we can form the total, between

and within scatter matrix. Let µ = (1/N)
∑N

k=1

∑Nk

j=1 x
k
j be the global mean and

µk = (1/Nk)
∑Nk

j=1 x
k
j be the mean of class Ck Then

ST =
C∑

k=1

Nk∑
j=1

(xkj − µ)(xkj − µ)
T

(3.2)

Sw =
C∑

k=1

Nk∑
j=1

(xkj − µk)(xkj − µk)
T

(3.3)

Sb =
C∑

k=1

Nk(µk − µ)(µk − µ)T (3.4)

we can say

ST = Sb + Sw (3.5)

Assume that Ξ = {x1, x2...xN} = {xkj}
Nk,C
j=1,k=1 are all data training samples. The

Fisher’s Discriminant Analysis algorithm finds a weight matrix

W = [w1, w2...wc−1] of d × (C − 1) dimension, which projects all data samples

x ∈ Ξ in an <d space into y in a low dimensional feature space <p; y ∈ <p such

that all projected data samples y’s yield the best possible class separability by

y = wtX (3.6)

with

yk = wt
kX : 1 ≤ k ≤ C − 1 (3.7)

where wk is the kth column vector with dimensionality d × 1 in w and y =

(y1, y2...yN)t. Similarly, using equations 3.3 and 3.4, we can define within-class
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and between-class scatter matrices for the projected samples y given by y = wtx

as follows:

S̄w =
C∑

k=1

Nk∑
j=1

(xkj − µ̄k)(xkj − µ̄k)
T

(3.8)

S̄b =
C∑

k=1

Nk(µ̄k − µ̄)(µ̄k − µ̄)T (3.9)

where µ̄ = (1/N)
∑N

k=1

∑Nk

j=1 y
k
j and µ̄k =

∑Nk

j=1 y
k
j substituting

equations 3.3, 3.4, 3.6, 3.7 into 3.8 and 3.9 results in

S̄w = W TSwW (3.10)

S̄b = W TSbW (3.11)

In terms of class separability, an optimal linear transformation matrix, W, may

be found using the Fisher’s Discriminant Function Ratio, otherwise known as

Raleigh’s Quotient. The Raleigh’s Quotient is found as the ratio of the between-

class scatter matrix to the within-class scatter matrix as follows:

J(W ) =
| S̄B |
| S̄W |

=
| W TSBW |
| W TSWW |

(3.12)

where the | . | operator denotes a matrix’ determinant. An optimal solution to

J(W ) given by

W ∗
d×(C−1) = [W ∗

1 ,W
∗
2 ...W

∗
C−1]d×(C−1) (3.13)

may be obtained through the solution of a generalized eigen value problem defined

as follows:

SBW
∗
K = λKSWW

∗
K (3.14)

where W ∗
K corresponds to the eigen value λk. The C-1 eigen vectors, {Wk}C−1k=1 ,

form a set of Fisher’s Linear Discriminant functions which may be applied in

equation 3.7 as

yk = (W ∗
k )tx : 1 ≤ k ≤ C − 1 (3.15)
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It is worthy of note that although there are C classes, only C-1 eigen values

denoted by{λi}C−1i=1 are non-zeros. Each eigen value λi generates its own eigen

vectors W ∗
j . Using these eigen vectors, {W ∗

i }C−1i=1 and equations 3.6, 3.13

and 3.15, an optimal linear transformation T ∗ that is based on Fisher’s

Discriminant Analysis is derived as

y = T ∗(x) = (W ∗
d×(C−1)) (3.16)

3.2.2 Local Linear Embedding

The Local Linear Embedding (LLE) [71] algorithm is an unsupervised

dimensional reduction algorithm that seeks to compute a low-dimensional

embedding by assuming that nearby points in the high-dimensional space will

remain nearby and co-located to each other in the low-dimensional space. The

algorithm is described as local because only neighbours can contribute to each

reconstruction. On the other hand, it is described as linear because

reconstructions are confined to linear sub-spaces in a non-linear dimension.

Assuming that X = [x1, x2..., xn]∈Rp×n, consists of n data points

xi, {i = 1, 2, 3, ....n}, each with dimensionality p. Then, each data point xi, lies

with its neighbours, in close proximity to a locally-linear manifold, which

dictates the manner in which the weight coefficients Wij are constructed. The

LLE algorithm has been employed in the processing of hyperspectral image

[72] and its implementation may be summarized in the following three stages:

1. An adjacency graph of i nodes is constructed such that each data point xi

corresponds to the ith node of the graph. The graph is constructed using

the method of K-nearest neighbour in that an edge is constructed

between any two nodes i and j, if a data point

xj is one of K-nearest neighbours of xi.
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2. Calculate the weight Wij with which each data point may be reconstructed

from its neighbour while the cost is minimized by constrained linear fits.

The reconstruction weights are computed as follows:

ξ(W ) =
N∑
i=1

∥∥∥∥∥xi −
k∑

j=1

Wijxj

∥∥∥∥∥
2

(3.17)

under two constraints;
k∑

j=1

Wij = 1, if xi and xjare neighbours while Wij =

0 if xi and xj are not neighbours. Where ‖ . ‖2 denotes L2 norm of a

vector and W is the weight matrix which describes the local neighbourhood

relationship between the data points.

3. Compute the vectors best reconstructed by [Wij] minimizing the quadratic

form by its bottom non-zero eigen vectors. Embedded coordinates yi i =

1,2,...,N are computed by minimizing the following embedding cost function

for the fixed weights:

Φ(Y ) =
N∑
i=1

∥∥∥∥∥yi −
n∑

j=1

Wijyj

∥∥∥∥∥
2

(3.18)

= tr(YMY T )

subject to (1/N).
∑N

i=1 yiy
T
i = Id×d and

∑N
i=1 yi = 0 where yi is the

coordinate of the data point i.e the output matrix. xi in the low

dimensional embedding. M = (I −W )T (I −W ) is a sparse, symmetric,

and semi-positive definite matrix. The tr denotes the operation of trace

and I = diag(1,1,...1).

LLE has a computational complexity of O(dn2), O(dnK3) and O(rn2) for the

three steps respectively where d is the input dimensionality, K is the number of

nearest neighbours, n is the number of data points and r the output

dimensionality.
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After a careful survey, it has been established that LDA maximizes the between-

class similarity while minimizing the within-class similarity. LLE on the other

hand preserves the local neighborhood of the data in the low dimension feature

space.

3.3 Semi-supervised Local Embedding

In this section we explain the development of the proposed algorithm which

exploits the advantages of the LDA and LLE to yield a new approach known

as Semi-supervised Local Embedding (SSLE). It magnifies the advantages of

LDA and LLE while compensating for their disadvantages. With LDA being

supervised and LLE unsupervised and non-linear, the hybrid algorithm produces

a semi-supervised non-linear algorithm.

Let {pi}Ni=1, pi ∈ Rd denote high-dimensional data, {qi}Ni=1 and qi ∈ Rr the low

dimensional data r ≤ d. In the proposed method, d is the dimensionality of the

original data and r is the dimensionality of the extracted features. The goal of

this feature extraction method is to find a d× r projection matrix W, which can

be mapped one -to-one to its high dimensional data space. From equation 3.9,

by centering the data i.e we assume that µ = 0, we have

SB =
C∑

k=1

Nk(µk)(µk)T (3.19)

=
C∑

k=1

Nk(
1

Nk

nk∑
i=1

xkj )(
1

Nk

Nk∑
i=1

xkj )T
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Figure 3.1: 3 band Display of the AVIRIS Indian Pines Image

where P k is a Nk × Nk matrix with all the elements equal to 1
Nk

. We define a

N ×N matrix PN×N as:

PN×N =



P (1) 0 . . . 0

0 P (2) . . . 0

...
...

. . .
...

0 0 . . . P (n)


(3.20)

we have
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Figure 3.2: Ground Truth of the AVIRIS Image showing the Sixteen Classes

SB =
C∑

k=1

X(k)P (k)(X(k))T (3.21)

= XlabeledPn×n(Xlabeled)
T

By subtracting the between-class scatter Sb, Sw can be obtained

Sw = Xlabeled(Xlabeled)T −XlabeledPn×n(Xlabeled)T (3.22)

= Xlabeled(In×n − Pn×n)(Xlabeled)T

A non-linear dimensionality reduction method, LLE is used in the within-class

scatter matrix of LDA. This was in order that class discrimination may be inferred

from labelled samples while the local embedding from the labelled and unlabelled

samples is preserved. Also, the symmetries of locally linear reconstructions which

may be reduced to a sparse eigenvalue problem are used to compute the LLE
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mappings. The embedding can be computed from equations 3.18 and 3.21, using

the within-class scatter matrix. This gives

W r
SSLE = argmax

w

W TXlabeledPn×n(Xlabeled)
TW

WSwW T
(3.23)

Where

Sw = Xtotal(In×n − Pn×n)(Xtotal)
T + (I −W )(I −W )T (3.24)

Noting that hyperspectral images are characterized by few training samples and

that LDA, a supervised method uses labelled training samples, over-fitting may

occur during the embedding. This is avoided by using the unlabelled training

samples in LLE.

Furthermore, the computational complexity of LLE is reduced by introducing a

pre-processing step in which PCA is applied to the data in order to reduce its

overall dimension. Thereafter, the principal components (PCs) obtained are

substituted for the overall 200 data dimensions after the removal of the 20

water absorption bands. The various stages of the proposed feature extraction

method are summarized in Algorithm 1

Algorithm 1: Computation of the SSLE matrix

Input : {p}ni=1, pi ∈ Rd
Labeled samples

{y}ni=1, yi ∈ C Corresponding labels

{p}Ni=n+1, pi ∈ Rd
unlabeled samples

Output: {p}ni=1, pi ∈ Rd
Lower dimension projected matrix

1 Extract wPCA ∈ <q from {p}Ni=1 using PCA. Divide the samples into training
and test samples.

2 Extract features (W r
SSLE) using equation 3.23.

3 Derive from W r
SSLE the matrix W s

SSLE where s < r.
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Table 3.1: Information classes of selected samples of AVIRIS data

Class Identifier Number of Samples

C1 1434
C2 834
C3 497
C4 747
C5 489
C6 968
C7 2468
C8 614
C9 1294

Table 3.2: Classification results when projection matrix is trained using 20%
labelled samples per class

Class Name PCA(%) LDA(%) LLE(%) SSLE (%)

C1 66.38 72.42 65.48 78.02
C2 68.97 71.37 69.42 72.54
C3 82.81 90.18 85.86 84.91
C4 93.91 99.11 76.89 95.48
C5 98.41 99.55 82.40 97.01
C6 70.76 67.43 69.99 86.34
C7 78.04 79.78 85.40 91.58
C8 53.71 87.16 78.61 96.01
C9 90.73 94.16 79.99 98.67

ACA 78.19 84.57 77.11 88.95

3.4 Experimental Results and Discussion

The performance of the proposed algorithm was investigated using the AVIRIS

Indian Pines data set that was collected over an agricultural area of northern

Indiana in 1992 [73]. The image is characterized by 145× 145 pixels, 220 spectral

bands ranging from 400 to 2500 nm and 16 ground-truth classes. This data set

is unique in that it portrays a scenario that is quite challenging for land-cover

classification. Also, the land area is mainly cultivated with corn and soybeans

which are in the early stages of growth, and has about 5% canopy cover.

A three band display of the image is shown in Figure 3.1 and Figure 3.2 shows

the ground truth of the image. Nine classes are considered in evaluating the
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Figure 3.3: Spatial Display of the First Extracted Principal Component

percentage accuracies for our proposed method. The classes are Corn-notil,

Corn-min, Grass/Pasture, Grass/Tree, Hay-windrowed, Soybeans-min,

Soybeans-clean, Soybeans-notil and Woods labelled C1, C2, . . . , C9 respectively.

The water absorption bands (104–108,150–163,220) were discarded following

Tadjudin and Landgrebe’s work [74]. Table 3.1 shows the information classes of

selected samples of interest of the AVIRIS Indian pine dataset

We first computed the Principal Component Analysis to extract and represent

99% of the total variance of the image which can be represented in few

extracted bands by PCA. Landgrebe in his work shows that the majority of the

hyperspectral image bands contain null spaces [75]. Hence, the need for the

computation of principal components before the semi-supervised approach to

reduce the computational complexity that would be incurred using the whole

200 bands. Figures 3.3 - 3.5 show the first three extracted principal

components.

The samples of different ground cover types according to the known ground

cover information were collected and then the samples were divided into training

samples and test samples. Each of these was done for the three selected principal

components. From the training samples, the transform matrices were computed
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Figure 3.4: Spatial Display of the Second Extracted Principal Component

Figure 3.5: Spatial Display of the Third Extracted Principal Component
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for different feature extraction methods separately, including PCA, LDA, LLE

and SSLE. The features were then extracted.

Thereafter, we trained the classifier with the features extracted from the training

samples and evaluated the classification result on the test samples. Table 3.2

shows the classification results and the overall accuracies, OA, obtained in the

classification. X = (xi)
n
i=1, X ∈ <d×n represents n labelled samples in a d-

dimensional feature space and the associated labels y = (yi)
n
i=1, yi = {+1,−1}

Let the unlabelled dataset X∗ = (xi)
n+m
i=n+1, X∗ ∈ <d×m consist of m unlabelled

samples. SVM with RBF kernel was used through the MATLAB interface of

LIBSVM [76]. The RBF kernel has two parameters: C and γ. We applied a

grid search on C and γ using a 10-fold cross validation. 20% of the labelled

samples per class of groundtruth was selected for training. The trained classifier

was applied to the remaining 80% of the known groundtruth pixel in the scene.

The proposed method performs well with the availability of few labelled samples,

which is always the case in hyperspectral images over urban areas.

Figure 3.6 shows the relation between the Average classification accuracy under

different number of labeled samples per class. The comparison is done using

different FE methods. LDA, PCA, LLE were compared with SSLE. PCA

performed poorly as it does not take the class property into consideration

during the FE process. LDA and LLE performed comparatively closer to each

other although LLE had higher accuracies than LDA as a result of the

singularity problem in LDA.

3.5 Conclusion

This chapter presents a semi-supervised non-linear method for feature

extraction in known as Semi-supervised Local Embedding (SSLE), for the

classification of remote-sensed hyperspectral images. The proposed technique

aims at extracting features of hyperspectral images in a non-linear manner
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Figure 3.6: Average Accuracy with varied number of labelled samples

while ensuring that the extracted features are embedded in the low-dimensional

space. It has been developed by the combination of supervised Linear

Discriminant Analysis (LDA) and unsupervised Local Linear Embedding (LLE)

techniques. Experimental results show that the proposed technique preserves

the class property of images in the low-dimensional feature space.





Chapter 4

Graph Discriminative Feature

Extraction

4.1 Introduction

In this chapter, a feature extraction method which dynamically selects labelled

samples from a pool of unlabelled samples is proposed. Discriminative feature

extraction methods perform dimensionality reduction through the

decomposition of the eigenvalue of the covariance matrix of the image data. In

this process, the eigenvalues and eigenvectors are calculated before the most

significant ones are extracted [48]. Local Discriminant Analysis (LDA) [32] and

Non-parametric Weight Feature Extraction (NWFE) [44] are common

discriminative feature extraction methods that find wide application in

hyperspectral image processing due to their class discriminatory properties.

LDA discriminates between classes by minimizing the within- and maximizing

the between-scatter matrices in order to efficiently classify HSIs. However, it is

limited by the fact that the features extracted are dependent on the number of

classes in the image. This limitation is addressed in [44] by the development of

NWFE which assigns weight to samples and computes the means of their

40
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weight. The distance between weighted means and the samples is used for

computing the scatter matrices. Although NWFE overcomes the singularity

problem of LDA, it takes longer to complete the feature extraction process,

especially when there are only a few labelled samples available. In order to

overcome their limitations, several variants and extensions of LDA and NWFE

have been developed [33, 34]. In [77], the computation of Principal Component

Analysis (PCA) was introduced before LDA by the authors to solve the

problem of few labelled samples. The proposed method assumes there is a prior

knowledge of the number of classes in the image but this assumption poses

difficulty in the implementation of the algorithm. In spite of the development of

several variants of LDA, the need to preserve the spatial locality of HSI still

needs to be addressed. Recently, the manifold-based learning feature extraction

methods [78] in which neighbourhood algorithms are entwined with LDA have

been developed for HSI processing. Local Linear Embedding (LLE) [71],

Laplacian Eigenmaps (LE) [79], ISOMAP [80] and Local Tangent Space

Alignment (LTSA) [81] are typical manifold learning-based techniques that

have been successfully implemented in different image processing problems. In

addition, nonlinear methods also show great success when implemented in the

processing of HSIs because of the nonlinear manifold nature of hyperspectral

images [78]. However, their computational complexity and large memory

requirement are their major limitations. Hybrid algorithms that combine linear

and nonlinear algorithms to obtain new algorithms that eliminate the

limitations of linear and nonlinear techniques have been proposed. Hybrid

manifold learning-based algorithms seek to preserve the class properties while

making the classes as separable as possible. Other hybrid techniques such as

Local Fisher Discriminant Analysis (LFDA) [35] combine Linear Discriminant

Analysis (LDA) and Local Preserving Projections (LPP) for the reduction of

multimodal labelled data. In LFDA, LDA discriminates between the classes of

interest while LPP calculates neighbourhood distance by constructing an

n-nearest neighbour graph matrix.
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Furthermore, manifold learning-based algorithms are sometimes implemented in

conjunction with LDA in the processing of HSIs. For instance, the LFDA

algorithm which was originally validated with various data sets in [82–84] has

been implemented for HSI feature extraction in [51] and classified using the

Gaussian-mixture model and support vector machines. In addition, the Nearest

Feature Line Embedding (NFLE) algorithm proposed in [60] uses the nearest

feature line approach for neighbourhood preservation and shows very

interesting performance in dimensionality reduction for HSI classification. The

performance of this algorithm can be controlled based on two parameters K1

and K2. In [85], another graph-based supervised feature extraction algorithm is

proposed. The algorithm is built on graph-embedded learning with a

supervised discriminating method for facial recognition. It uses labelled data

points in constructing its within-class graph. However, because labelled data

points are always very expensive, processing large-scale unlabelled data would

be preferable. Thus, semi-supervised manifold algorithms are been developed.

These algorithms utilize labelled and unlabelled data points in the processing of

HSIs. One such algorithm is the Semi-supervised Discriminant Analysis (SDA)

proposed in [36]. Unlike fully-supervised algorithms such as MMDA, the SDA

algorithm has parameters that can be tuned. This is a major advantage of

semi-supervised algorithms over fully-supervised ones. Fully-supervised

algorithms such as MMDA also suffer a major limitation as a result of an

assumption that each class of interest in the image has the same number of

samples. But this assumption is not consistent with the processing of HSIs.

This major limitation may be addressed by dynamically selecting labelled

samples using graph-based clustering techniques.

A detailed review of manifold-learning techniques may be found in [78]. The

different manifold-learning methods proposed in the literature may be classified

into two categories, namely supervised and non-supervised methods. A method

may be classified as supervised if labelled samples are used during computation,

and as unsupervised if otherwise. The LDA algorithm [86] is a supervised linear
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method; however, it performs poorly when there are limited training samples.

Semi-supervised methods such as co-training [87] and graph-based techniques

[88–91] are usually preferred and are very popular mainly due to the ease with

which unlabelled data may be obtained. In fact, utilizing abundant unlabelled

data in conjunction with limited number of labelled data usually presents

better classification results. Recently some algorithms have been developed

based on discriminant analysis. In [92], the authors propose an algorithm that

discriminates the feature space in order to reduce the dimension of

hyperspectral image data sets. The proposed algorithm is based on a two–fold

mechanism. The first is aimed at increasing the dissimilarities among extracted

features by maximizing the between-spectral scatter matrix. The second

mechanism aims at minimizing the within–class scatter matrix while

concurrently maximizing the between-class scatter matrix. Also in [93], a

Sparse Discriminant Manifold Embedding (SDME) algorithm is developed to

discriminate features in HSI by boosting the compactness of intra-manifold

embedding. Looking closely at these proposed algorithms, it can be deduced

that LDA plays a major role in their development. The work presented in this

chapter also follows this trend. Therefore, in this chapter we propose the use of

graph-based technique for dimensionality reduction in HSI processing which

preserves the spectral-spatial property of the image. The proposed algorithm is

a semi-supervised manifold transformation algorithm which aims to overcome

the limitations of LDA by the use of weighted graphs for computing the within-

and between-class scatter matrices. The proposed algorithm, which is referred

to as Graph Clustering Discriminant Analysis (GCDA), prevents the merging of

classes when their discriminative information is graphically close to one

another, a scenario common in HSI processing. GCDA embeds LDA with

clustering techniques for dynamic selection of unlabelled samples.

The main contributions of this work are highlighted in the following:

• In order to extract features of the hyperspectral image, GCDA selects
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unlabelled samples using graph clustering techniques with manifold

learning. The essence is to overcome the problem of few available labelled

samples in HSIs and to keep the cluster-derived labels after graph

embedding, thereby ensuring that points from the same classes are still

close to one another.

• The labelled samples obtained from the clustered segmentation which helps

to overcome the problem of few labelled samples, are compared with the

labelled samples from the image groundtruth to examine the coherence

between both sets of samples.

• We focus on preserving the underlying features of the image after

dimensionality reduction by correlating the spatial information from

clustered segmentation with spectral information.

The remaining part of the chapter is organized as follows: Related works on

graph-based dimensionality reduction are reviewed in section 4.2. The proposed

Graph Clustering Discriminant Analysis (GCDA) algorithm is introduced in

section 4.3, and the results of experiments conducted to show the effectiveness

of the proposed method are discussed in section 5.4. The chapter concludes in

section 4.5.

4.2 Related Work

This section introduces three dimensionality reduction methods that are crucial

to the formulation of the algorithm developed in this work. These are Linear

Discriminant Analysis (LDA), the K–means Clustering method and Laplacian

Eigenmaps (LE).
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4.2.1 Linear Discriminant Analysis

As earlier mentioned, LDA is a supervised subspace learning method that has

found application in many aspects of remote sensing due to its ability to

discriminate between classes of interest [33]. Originally introduced in [32], the

supervised linear feature extraction method maximizes the ratio of the

between-class covariance matrix to the within-class covariance matrix. Let

{x}ni=1 : xi ∈ Rd which denotes a high-dimension image data. The labelled

samples of each class k where k = 1 . . . C and C represents the number of

classes used in the computation of the scatter matrices. The projection matrix

WLDA is derived from the following:

Sw =
C∑

k=1

Nk∑
j=1

(xkj − µk)(xkj − µk)
T

(4.1)

Sb =
C∑

k=1

(µk − µ)(µk − µ)T (4.2)

where xkj is the jth sample in the kth class, µ is the mean of the total samples,

µk is the mean vector of class k and Nk is the total number of samples in the

given class k. Sw represents the within–class scatter matrix and Sb represents

the between–class scatter matrix.

The transformation matrix of LDA, WLDA, is computed by

WLDA = argmax
w

W TSbW

W TSwW
(4.3)

where WLDA = (w1, w2, w3, . . . , wr).
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4.2.2 K-means Clustering

K-means [94] is an unsupervised clustering method which produces clusters

with high intra-class and low inter-class similarities. It has been widely applied

to remote-sensed image processing especially in data visualization and image

segmentation [95, 96], mainly due to its simplicity, efficiency, ease of

implementation and ability to partition data into clusters [97]. Such

partitioning algorithms are usually preferred for the processing of

remote-sensed images because of the multidimensional characteristics of image

data. As an unsupervised method, K–means partitions the image data set into

k clusters. The partitioning begins by a random initialization of k centroids,

one for each cluster, and then an assignment of input samples to a cluster

whose centroid is closest to it. Thus, samples are grouped based on class

similarities. The data set is said to have been fully partitioned when the

location of the centroids remains unchanged.

In other words, the K-means algorithm partitions a collection of N vectors xi :

i = 1, . . . , N into K groups Gk : k = 1, . . . , K, and then selects a cluster center

ck for each group. The cost function, J , of the Euclidean distance is a measure

of the difference between a vector xi in the kth group and is defined as follows:

J =
k∑

j=1

n∑
i=1

∥∥∥x(j)i − cj
∥∥∥2 (4.4)

4.2.3 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) computes a low-dimensional representation of the

data in which the distance between a datapoint and its k-nearest neighbour is

minimized. This is done by computing the weights using a cost function. An

extension of LE introduced in [98] provides a computationally efficient

approach to LE and spectral clustering. This provides a background for
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preserving neighbourhood properties of each datapoint while clustering, hence

reducing the dimensionality. To represent a low-dimensional data from a high

dimensional one, we put an edge between nodes i and j if two datapoints xi

and xj are close. They are connected if i is among the N nearest neighbour of j

or j is among N nearest neighbour of i. For any two datapoints xi and xj

connected by an edge, we place a weight Wij = 1 and the eigenvalues and

eigenvectors are computed from

Ly = λDy (4.5)

where L = D−W is the laplacian matrix. D is the diagonal weight matrix whose

entries are the column sum of W , Dii =
∑

j Wji.

Laplacian can be thought of as an operator of functions defined on vertices of

G. A reasonable criterion for choosing a good map is to minimize the objective

function
∑

ij(yi − yj)2Wij under appropriate constraints.

1

2

∑
ij

(yi − yj) = yTLy (4.6)

where L = D −W and Wij being symmetric, Dii =
∑

j Wij. It follows that

∑
ij

(yi − yj)2Wij =
∑
ij

(y2i + y2j − 2yiyj)Wij

=
∑
i

y2iDii +
∑
j

y2jDjj − 2
∑
ij

yiyjWij

= 2yTLy

(4.7)

Therefore, the minimization problem reduces to

argmin
yTDy=1

yTLy (4.8)
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It is said that the constraint yTDy = 1 removes an arbitrary scaling factor in the

Laplacian Embedding. A natural measure on the vertices of the graph is provided

by Matrix D. Laplacian Eigenmaps has been previously used in hyperspectral

image processing [99].

Figure 4.1: Illustration of the within-class and between-class weight

4.3 Graph Clustered Discriminant Analysis

(GCDA)

The general hyperspectral image feature extraction problem can be described as

taking high dimensional data and transforming it into a lower dimensional data

set. Let {x}Ni=1, xi ∈ Rd denote the high-dimensional image data and {y}Ni=1,

yi ∈ Rp the low dimensional image data; where d is the dimension of the original

data, p is the dimension of the features that are extracted from it and p ≤ d. The

objective is about finding a projection matrix W of dimension d× p, that can be

matched to its high-dimensional data space and allow for better discrimination

between classes of interest. The idea is to construct a graph G = (V,E) where V

is the set of pixels in the image and E denotes the set of edges that connect them.

The edges of the graph are assigned weights based on their spectral similarity,

thus weighted graph A is obtained in the process. A is an n×n matrix which has

the weight between any two pixels as entries and n indicates the number of nodes

(pixels). In an hyperspectral image, each pixel n is a vector of d dimension –
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the number of bands in the hyperspectral image. We assign weight to the graph

using the Laplacian Eigenmaps (LE) [100].

In other words, in the extracted low dimensional subspace, points from the same

class are meant to be kept as spatially close as possible, and points from different

classes are kept as far from each other as possible. Each vertex of the graph is

represented in the low-dimensional vector by preserving similarities between the

vertex pairs, where the similarity is measured by the LE functions. As shown in

Figure 4.1, two types of graphs will be defined; the first graph has a nodes and

is referred to as the within-class graph Gwn while the second which has b nodes

is the between-class graph Gbn. For the within-class graph, points from the same

class are considered, i.e. points with similar labels. For any two nodes xi and

xj that have similar labels, an edge is constructed between them. Clusters with

lower between-class weight are merged based on similarity. Gwn only considers

points with the same class labels as shown in Figure 4.2.

Figure 4.2: Flow chart of the proposed approach

In the construction of the GCDA algorithm, we firstly merge the LDA

algorithm with K-means algorithms in order to have a single framework, since

both algorithms are similar in terms of their classwise discrimination. The main

objective behind this merging is to obtain the most discriminative subspace of

the image in an unsupervised way while also ensuring that the intrinsic nature

of the image is preserved. Unlabelled samples are used in constructing the

graphs and in reconstructing the supervised subspace into a semi-supervised
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one, using labelled and unlabelled data points. This is achieved by using the

hybrid of K-means and LDA and preserves the neighbourhood using LE.

LDA, which is a supervised method, requires the use of class labels. We seek a

way to combine LDA and K-means algorithm [101] to provide an unsupervised

framework. Recall from equation 4.3:

WLDA = argmax
w

W TSbW

W TSwW
(4.9)

It is given that

St = Sb + Sw (4.10)

and

St =
N∑
i=1

(xi − µ)(xi − µ)T (4.11)

From equation 4.10, Sb = St − Sw

m
w
ax

TrW TSbW

TrW TSwW
=
TrW T (St − Sw)W

TrW TSwW
(4.12)

Therefore, we obtain

TrW TStW

TrW TSwW
− 1 (4.13)

In order to normalize the data,

x = (xi)i=1,...,n is transformed to

x̄ = (x̄i)i=1,...,n

(4.14)
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where

x̄i = xi − µ and

µ =
1

n

n∑
i=1

xi
(4.15)

m
w
inTrW TSwW = Tr

∑
k

∑
i∈Ck

UT (xi −mk)(xi −mk)TU

=
∑
k

∑
i∈Ck

‖ UTxi − UTmk ‖2
(4.16)

This is similar to the K-means clustering in the transformed subspace W TX. We

can then construct the within-class graph Gwn by constructing, from the same

class, an edge between nodes xi and xj. The Laplacian Eigenmaps function

defines the similarity between these two nodes.

The within-class graph-manifold structure is formulated by incorporating the

eigenmaps into unsupervised LDA as

argmin
p

P TXLwnX
TP (4.17)

where Lwn is a Laplacian matrix given by Dwn −A and Dwn denotes a diagonal

matrix with Dwii =
∑

j Wij indicating the sum of column (or row) in A.

The matrix A of affinity weight and the diagonal matrix Dwn can be respectively

expressed as:

A =


A1, A2, · · · 0

...
. . . 0

0 · · · Ac

 (4.18)
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Dwnk =


Dwn1, Dwn2 · · · 0

...
. . . 0

0 · · · Dwnc

 (4.19)

where the affinity weight in individual classes is represented by A1...Ac, and

Dwn1...Dwnc denoting its point importance. According to the matrix Dwnk, the

weighted center for class k can be computed:

mn =
1∑
iDkii

(∑
Dkiixki

)
(4.20)

The class weighted centers M = (mn1,mn2...mnc) which can be more

representative than the original mean of each class are then computed. Any two

nodes mi and mj are connected with an edge which is assigned the weight

Bij = exp−
‖mi−mj‖

2

t (4.21)

In equation 4.21, the weight directly enhances the contribution of each class that

has small distances. The condition for between-class graph-penalizing is given as

follows:

argmax
p

P TXLbnX
TP (4.22)

A unique manifold structure exists for each class, and there also exists the

possibility to find non-similar classes residing on different manifolds.

Considering the weight centres of each class in the between-class graph Gbn, only

points that are linked to each other are used.

According to graph embedding, two optimization criteria should be satisfied:
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
argmin

p
P TXLwnX

TP

argmax
p

P TXLbnX
TP

(4.23)

which could be further represented as follows:

P = argmax
P

P TXLbnX
TP

P TXLwnXTP
(4.24)

Algorithm 2: Procedure to develop GCDA transformation

Input : {p}ni=1, pi ∈ Rd
Labelled samples

{y}ni=1, yi ∈ C Corresponding labels

{p}Ni=n+1, pi ∈ Rd
Unlabelled samples

1 Extract wPCA ∈ <q from {p}Ni=1 using PCA.
2 Compute clusters on Wpca.
3 Obtain the labels using equations 4.12 - 4.16.
4 Merge similar clusters using LE distance metric in equation 18 to calculate the

shortest distance.
5 Recompute the cluster until consistency is reached.
6 Use equations 4.17- 4.23 to compute transformation matrix

Output: The transformation matrix W

4.4 Experiments

We validated the proposed algorithm using two HSI data sets and have

presented experimental results showing the merits of GCDA. The objective is

to compare the performance of GCDA method with other existing feature

extraction methods such as LDA, LPP, SDA and FLDA. The first data set is

the popular AVIRIS Indian Pines [102] which we also used to validate and

benchmark our proposed feature extraction method. The Indian Pines scene

contains two-thirds agriculture, and one-third forest or other natural perennial

vegetation. The ground truth available is designated into sixteen classes in

which ten out of the sixteen available classes are considered from the image
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ground truth due to the number of samples available in the ground truth for

training the classifiers. These are Corn-notil, Corn-mintil, Grass-pasture,

Grass-trees, Hay-windrowed, Soybean-notil, Soybean-mintil, Soybean-clean,

Woods, and Buildings-Grass-Trees-Drives. More information about the AVIRIS

Indian Pines HSI is available in [102]. The second data set was obtained by the

Reflective Optics System Imaging Spectrometer (ROSIS) sensor in northern

Italy. The number of bands generated by this sensor is 115 with a spectral

coverage ranging from 0.43 - 0.86µm. The Pavia university data set was

reduced to 610 × 340 and 103 spectral bands. The geometric resolution of the

image is 1.3 meters and the image’s ground truths differentiate 9 classes.

Table 4.1 shows the class information of the two data sets used in this work.

All data used in the experiment is normalized to a range [0, 1].

Table 4.1: Training and Test Samples of Sample Set Used in the Experiment

Indian Pine Pavia University Area
Class Name Samples Class Name Samples
Corn-notil (C1) 1434 Asphalt 6631
Corn-min (C2) 834 Meadows 18649
Grass-Pasture (C3) 497 Gravel 2099
Grass-Trees (C4) 747 Trees 3064
Hay-windrowed (C5) 489 Metal Sheets 1345
Soybeans-notil (C6) 968 Soil 5029
Soybeans-min (C7) 1294 Bitumen 1330
Soybeans-clean (C8) 2468 Bricks 3682
Woods (C9) 614 Shadows 947
Bldg-grass-tree (C10) 380

We evaluated the performance of our algorithm using the overall accuracy

(OA), average accuracy (AA) and Kappa coefficient (K) as described in [103].

OA is the ratio of the total correctly classified pixels to the number of pixels in

the ground truth. Average accuracy (AA) is defined as the average value of

class-specific accuracy obtained for each class. K is a statistical measurement

which is the percentage agreement corrected by the level of agreement that

could be expected due to chance. These were used to evaluate the performance

of our proposed method in comparison with state-of-the-art feature extraction



Chapter 4. Graph Discriminative Feature Extraction 55

Table 4.2: Class-specific Rates in Percentages for AVIRIS Indian Pine Data
Set

DR + Classifier C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 OA K

Original SVM 68.50 68.23 82.77 88.05 97.39 77.23 79.68 75.44 91.12 65.18 79.06 0.7674
NN 64.18 68.05 89.78 83.68 99.18 72.60 81.07 74.60 94.29 62.25 78.52 0.7503

LDA SVM 78.42 49.92 78.07 90.61 100 75.41 84.83 35.41 97.20 59.06 78.33 0.7451
NN 63.73 51.52 87.72 97.67 100 42.16 73.44 62.30 96.13 53.97 75.68 0.7203

LPP SVM 74.22 69.68 96.34 97.39 100 68.63 78.34 49.88 99.42 61.13 80.16 0.7675
NN 69.07 70.55 92.60 91.79 99.80 80.07 78.31 75.29 93.75 73.24 81.04 0.7805

SDA SVM 81.61 73.76 97.91 99.30 100 67.45 82.51 64.45 98.55 65.63 83.12 0.8121
NN 73.40 71.08 88.32 91.48 99.19 74.57 74.48 85.71 94.60 75.94 79.88 0.7732

FLDA SVM 86.72 79.94 98.69 99.13 99.95 79.09 85.16 91.15 99.52 64.53 88.47 0.8656
NN 77.17 75.63 93.93 92.63 99.14 83.86 86.30 76.86 94.59 71.02 85.19 0.8286

GCDA SVM 89.03 81.25 100 100 100 80.25 91.82 93.88 100 70.19 92.10 0.9113
NN 79.97 75.17 91.50 92.45 100 85.55 86.19 84.68 94.52 79.46 87.22 0.8654

methods. Image classification was done using two classifiers, namely the

Support Vector Machine (SVM) and the Nearest Neighbour (NN) classifiers

because they achieve high efficiency with high dimensional data. The Library of

Support Vector Machine’s (LIBSVM) radial basis function (RBF) was used

based on a one-against-one classification approach. The two parameters, slack

variable C and γ of the RBF kernel, were tested on different range of values;

the values of C are bounded in the range [10-1000] with step-size increments of

20 while values for γ are bounded in the range [0.1-2.0] with step-size increment

of 0.1. Their optimal values which were obtained using a five-fold

cross-validation approach were reported. We compared the proposed algorithm

with other state-of-the-art manifold learning algorithms. Our evaluation of the

different feature representations was done by average classification rates that

were obtained from ten independent experiments. The results obtained for the

two data sets are presented in Table 4.2 and Table 4.3. The classification rates

are reported using SVM and NN classifiers. The training samples used in each

independent experiment were selected from the referenced data randomly and

the remaining samples were used as test samples.

The classification rates obtained for the two data sets are shown in Table 4.2

and Table 4.3. Table 4.2 shows the class-specific rates for the ten classes in the

AVIRIS Indian Pine data set. The overall accuracy using SVM and NN are

reported for each algorithm.
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In Table 4.2, class-specific accuracies of the AVIRIS data set were obtained for

the proposed DR method as well as four other DR methods, namely LDA, LPP,

SDA and FLDA. Similar metrics were also obtained for the image processed

without the implementation of DR. For each of the DR methods, the accuracies

were obtained for the NN and SVM classifiers. We compared the class accuracies,

overall accuracy and Kappa coefficients for the original image without DR as well

as for the four DR methods (LDA, LPP, SDA and FLDA) with the proposed

GCDA algorithm. In C1, the least accuracy was recorded when LDA is classified

with SVM, while the highest accuracy was recorded for GCDA when it is classified

with SVM. A similar performance was recorded with C2, albeit with a lower

accuracy. The least accuracy of 49.92% was recorded for the LDA+SVM while

the highest accuracy recorded was for GCDA+SVM with a value of 81.25%. For

C3, GCDA+SVM achieves 100% accuracy; while LPP, SDA and FLDA with

SVM and NN classifiers also recorded class accuracies greater than 90.00%; the

LDA+SVM recorded the least accuracy of 78.07%. Also, for classes C4, C5 and

C9, 100% accuracies were recorded for the GCDA with SVM classifier. The

GCDA with NN classifier also achieved 100% accuracy in C5. For all classes

(C1–C10), the highest accuracy was recorded for the proposed GCDA algorithm.

Furthermore, the efficiency of DR is significantly highlighted by the difference in

class accuracy values recorded for the GCDA and original image without DR.

The GCDA algorithm achieved significantly higher accuracy than the processing

without DR. Considering the overall accuracy (OA), all DR methods achieve OA

values greater than 70%. However, the GCDA with SVM classifier achieved the

highest OA of 92.10%, while the least accuracy is recorded for the LDA with NN

classifier with a value of 75.68%. As for the Kappa coefficient, a value as close

to unity is desirable for all DR methods. The GCDA with SVM achieved the

highest Kappa value of 0.9113; this is followed by the FLDA with SVM classifier,

while the LDA with NN classifier achieved the least Kappa value of 0.7203. This

is because SVM is a more robust classifier than NN when dealing with high

dimensional data. Generally, the GCDA DR algorithm performed comparatively
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Table 4.3: Class-specific Rates in Percentage for Pavia University Data Set

DR + Classifier Asphalt Meadows Gravel Trees Metal Sheets Bare Soil Bitumen Bricks Shadows OA K

Original SVM 79.85 84.62 83.80 87.59 99.02 76.07 75.76 66.28 100 81.74 0.7515
NN 82.12 86.20 64.67 89.23 98.14 58.08 70.08 59.76 94.73 79.87 0.7467

LDA SVM 84.27 86.26 72.40 89.38 98.95 76.99 83.02 71.90 100 84.18 0.7859
NN 74.01 79.86 61.32 92.01 99.55 49.48 46.29 52.25 81.45 72.55 0.6256

LPP SVM 86.54 88.07 65.10 91.31 99.71 78.30 74.55 71.02 100 83.06 0.7981
NN 85.01 87.84 62.06 86.65 98.97 64.11 69.02 66.08 98.14 80.26 0.7734

SDA SVM 87.50 89.06 66.74 91.97 99.68 78.56 86.19 73.55 99.98 85.17 0.8347
NN 73.59 82.47 63.57 93.37 99.61 60.35 49.92 60.65 86.78 79.38 0.7567

FLDA SVM 88.55 90.01 73.85 92.12 99.45 81.15 85.60 76.58 100 87.35 0.8413
NN 81.37 85.27 64.49 91.45 97.31 72.76 70.74 65.93 97.94 82.34 0.7931

GCDA SVM 88.94 90.40 80.67 93.66 99.75 81.14 87.57 80.28 100 89.10 0.8615
NN 86.75 88.26 68.16 94.95 99.85 74.96 71.56 68.18 99.89 84.12 0.8226

better than all other four DR methods considered.

In Table 4.3, classes are considered in the order Asphalt, Meadows, Gravel, Trees,

Metal Sheets, Bare Soil, Bitumen, Bricks and Shadows. For the first and second

class, GCDA performed best overall when classified with SVM closely followed by

FLDA and SDA both with SVM classification. GCDA performed comparatively

well in most of the classes, with SVM classifier showing superior performance

over the NN classifier. An exception is found in the fourth class where GCDA

with NN classifier outperformed SVM with a difference of 1.29%.

It can be observed that SDA and GCDA performed comparatively well in the

presence of few labelled samples. For some classes, using the Pavia University

Data in Table 4.3, SDA and FLDA performed comparatively well. Considering

the Bare Soil class, using SVM classifier, GCDA and FLDA had similar

class-specific accuracy, but considering the overall accuracy, GCDA

outperformed both FLDA and SDA. The results show that for each class of

interest, GCDA maintained the highest classification rates, OA and Kappa

coefficient values with the two classifiers used in our experiment.

A graphical comparison of the average accuracy of the GCDA algorithm and

existing methods, namely LDA, LPP, SDA and FLDA is presented in Figures 4.3–

4.6 as a function of the number of extracted features. The accuracy is obtained

for different numbers of extracted features for the AVIRIS Indian Pines data set.

We performed the experiment repeatedly using 16 and 32 training samples and

employed NN and SVM as classifiers. In Figure 4.5, the average accuracy of the
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Figure 4.3: Indian Pine Image Using NN Classifier with 16 Training Samples

algorithms is compared using 16 training samples with the NN classifier. From

the graph, the LDA algorithm had the lowest performance with its accuracy

almost constant as the number of extracted features increased. However, the

accuracy of other algorithms increased with the number of extracted features;

SDA slightly outperformed GCDA with the first two extracted features, but

GCDA showed greater accuracy with an increasing number of extracted features.

In Figure 4.6, the accuracy of the GCDA algorithm still exceeded those of other

algorithms. However, with more training samples, the LDA algorithm showed

improved accuracy in its performance. The least accuracy was recorded for the

FLDA algorithm.

In Figures 4.7 and 4.8, the average accuracy is presented as a function of the

number of extracted features when classified with SVM using 16 and 32 training

samples respectively. The graph in Figure 4.7 shows that LDA recorded the least

accuracy as in Figure 4.5. However, it performed with higher accuracy when the

number of training samples was increased to 32 (see Figure 4.8). Figures 4.7 and

4.8 also show that GCDA achieved the highest accuracy, with the best result

recorded with 32 training samples.
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Figure 4.4: Indian Pine Image Using NN Classifier with 32 Training Samples
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Figure 4.5: Indian Pine Image Using SVM Classifier with 16 Training
Samples
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Figure 4.6: Indian Pine Image Using SVM Classifier with 32 Training
Samples

Furthermore, we investigated the differences in the classification accuracies of the

two classifiers (NN and SVM) to determine if such differences were statistically

significant. The McNemar’s Test [104] for statistical significance was used. The

statistical significance of the difference in accuracy of the two classifiers was

inferred from the —Z— parameter which may be evaluated as follows:

Zc1c2 =
f12 − f21√
f12 + f21

(4.25)

where fij denotes the number of samples lying in the confusion matrix at row

i and column j. The parameter |Zc1c2| indicates that classifier one c1 performs

better than classifier two c2 if |Zc1c2| > 0 or the other way round. If |Zc1c2| is

greater than 1.96 then the difference between the accuracy values of the two

classifiers is said to be statistically significant.

The results of the z-score significance test for the Indian Pines AVIRIS data

sets using SVM and NN are presented. The results in Tables 4.4 and 4.5 show

the z–score significance for the feature extraction algorithms discussed. In

Table 4.4, using SVM the difference between GCDA and the other feature
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Table 4.4: McNemar’s Test for Indian Pine Image Using SVM

GCDA LDA LPP SDA FLDA

GCDA 0 59.3 52.8 41.6 18.7
LDA -59.3 0 -6.9 -18.6 -41.6
LPP -52.8 6.9 0 -11.7 -34.9
SDA -41.6 18.6 11.7 0 -23.4

FLDA -18.7 41.6 34.9 23.4 0

Table 4.5: McNemar’s Test for Indian Pine Image Using NN

GCDA LDA LPP SDA FLDA

GCDA 0 45.4 25.8 30.3 9
LDA -45.4 0 -19.9 -15.4 -36.6
LPP -25.8 19.9 0 4.5 -16.9
SDA -30.3 15.4 -4.5 0 -21.4

FLDA -9 36.6 16.9 21.4 0

extraction methods are statistically significant, that is |Z| > 1.96. Also the

statistical difference of accuracy Z = −41.6 and Z = −18.7 shows the benefit of

GCDA over SDA and FLDA respectively. Similarly, in Table 4.5 GCDA shows

superiority over the other feature extraction algorithm using NN. However, the

statistical significance of GCDA over FLDA was greater when using SVM with

a z-score value of 18.7, than when using NN with a z-score value of 9.

All experiments were implemented with MATLAB R2014b software installed

on an AMD Dual core processor PC with 3GB of RAM. A comparison of the

computation times of the implemented algorithms showed that LDA records the

least duration of 0.67s. This was due to the presence of few labelled samples in

the ground truth. This was closely followed by LPP which ran for 0.71s, then

SDA with 0.81s and FLDA with a time of 0.82s. The proposed GCDA algorithm

records the highest computation time of 1.07s. However, in spite of its high

computation time, its performance in terms of accuracy as well as its ability to

preserve the classwise property of images makes GCDA a preferable algorithm

for feature extraction in hyperspectral image processing.
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4.5 Conclusion

A novel graph-based discriminant analysis for feature extraction in hyperspectral

image processing known as Graph Clustered Discriminant Analysis (GCDA) has

been developed in this work. GCDA uses a clustered manifold technique for the

feature extraction process and has the major advantage of discriminating between

classes of interest in the HSI using class labels that are obtained from segmented

clusters. In addition, it preserves the neighbourhood regions of the segmented

clusters in an HSI. The performance of the proposed method was compared with

other state-of-the-art feature extraction methods using two hyperspectral image

data sets. The extracted features were classified using SVM and NN classification

algorithms. The results from the experiment show that GCDA achieves higher

accuracy than the existing methods. However, its computational complexity and

running time is slightly higher in comparison to the existing methods. A parallel

computing approach to its implementation may be pursued in future work with

the goal to reduce the computation time.





Chapter 5

Window Partitioned and

Covariance Estimation Feature

Extraction

5.1 Introduction

Hyperspectral images (HSIs) are highly dimensional remote-sensed images which

are characterized by hundreds of spectral bands and wide spatial dimension.

Their rich spectral information is useful in discriminating between classes of

interest in the image. However, HSIs are characterized by a limited number of

training samples in relation to their spectral dimension, hence, feature extraction

is usually introduced as a necessary step before classification [105]. Feature

Extraction (FE) methods are developed and implemented in order to transform

the high dimension of the image into a low-dimension feature space using the

projection matrix. Their implementation also reduces the computational and

processing complexities involved in HSI processing. Several feature extraction

methods have been proposed for HSI processing in the literature. The proposed

methods may be classified as either supervised or unsupervised [70, 72, 76, 106].

64
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Supervised feature extraction methods use class labels for the computation of

their projection matrix while the unsupervised ones do not. Recently, Semi-

supervised Feature Extraction algorithms which use both labelled and unlabelled

samples for computation have been proposed [36].

Algorithms could also be classified as spectral, spatial or spectral-spatial. Related

spectral-spatial [107] methods are PCA with morphological profiles [50], and

partitional clustering methods [108].

In spectral feature extraction methods pixels are analyzed individually while

in spatial methods pixels are grouped based on predefined similarities. Spatial

methods are also important in HSI processing as it helps to distinguish the size

of an object being classified which sometimes is not detected by spectral methods

alone. The composite of both spectral and spatial feature extraction methods

yield promising results.

In spite of the existence of other feature extraction techniques, PCA [76] is an

unsupervised feature extraction technique that has been widely applied in HSI

processing because of its simplicity and ability to represent the total variance of

the image in few eigen-vectors (components). It is sometimes used before

supervised feature extraction, morphological processing [109] and the

application of non-linear methods [37]. However, a common challenge

associated with unsupervised linear feature extraction algorithms is the loss of

spatial information of certain classes of interest during computation [110]. PCA

seeks orthogonal directions that are efficient for representing the data using

orthogonal projections. It finds application in data visualization,

compression [70] and dimensionality reduction. However, it discards useful

discriminating information in its lower eigen vectors, leading to a loss of

important spatial information.

In this work, we address this limitation of PCA by introducing a partitioning

approach in the covariance computation of PCA. We propose an unsupervised

feature extraction method based on Window Partitioning of HSI feature space



Chapter 5. Window Partitioned and Covariance Estimation Fea . . . 66

Figure 5.1: WinPCA Method

using a static windowing approach named windowed PCA (WinPCA). The idea is

to dimension the HSI cube into a specified number of windows and then estimate

the covariances for each window in the HSI in order to reduce the loss in spatial

information when computing the principal components. The overall covariance

of the HSI is then obtained through an iterative merger of the covariance of each

window in the HSI based on Kalmer filtering. Experiments with the AVIRIS

Indian Pine data set shows that the proposed method preserves more spatial

information when compared with the conventional PCA and related approaches.

The remainder of this chapter is structured as follows. Related works are

discussed in section 5.2 The proposed method is introduced in section 5.3. The

results of experiments are discussed in section 5.4. Section 5.5 concludes the

chapter.

5.2 Related Works

In order to address the curse of the dimensionality of hyperspectral images,

several feature extraction techniques [111] have been proposed in the literature.

The most prominent and widely used method for feature selection
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preprocessing of hyperspectral images is the principal component analysis

(PCA) which selects the prime bands in the image for classification. A

formulation of PCA to extract features of hyperspectral images is done in [46].

To overcome the limitation of PCA the principle of band partitioning before

the computation of covariance matrices in HSI has gained prominence. To

enhance the display and classification of HSI, Jia and Richards [112] introduced

Segmented Principal Component Transformation (PCT). This algorithm was

later combined with JPEG2000 in [113]. In recent times, several methods have

been proposed to reduce the loss of spatial information in unsupervised linear

methods. One of such is the Segmented PCA (Seg-PCA) technique [106] which

organizes the whole spectral vectors into a number of sub-vectors and then

compute the PCA for each sub-vector. However, this approach is limited by its

high computational cost. Another method is the Folded PCA which is proposed

in [114]. In its implementation, the spectral vectors are folded into a matrix

before the covariance matrix is computed. In terms of computation, Seg-PCA

and Folded PCA methods are similar; but they differ in their selection of pixels

for the computation of covariance matrix. In Seg-PCA, bands are grouped

based on the correlation matrix between each pair of bands as opposed to the

folded-PCA method which selects bands based on the common or averaged

dimensions of the clusters that can be observed in the main diagonal of the

correlation matrix. Partitioning methods based on a training sample selection

was introduced in Modified-PCA [115] for covariance matrix computation.

Covariance matrices which are also referred to as second moments play an

important role in the formulation of PCA Algorithm. Personen et al. [116]

showed that the first- and second-order moments play a major role in the

feature extraction of HSI. Manjunath et al. [117] proposed the fusion of

covariance matrices of PCA and Fisher Linear Discriminant (FLD) using a

product rule to preserve the natures of both covariance matrices and improve

performance.
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5.3 Windowed Linear Feature Extraction

An hyperspectral image which is represented by a matrix X, of spectral size m×n

in l bands. For a pixel xij in any location in the m× n spatial dimension, xij is

a vector with dimension l.

xij = {xij1 , x
ij
2 , x

ij
3 . . . , x

ij
l } (5.1)

The mean vector of the image for each band b is defined by

x̄b =
1

m× n

m∑
i=1

n∑
j=1

(xijb ) (5.2)

where x̄b represent the mean vector of band b. For any given p and q bands of

the HSI, the term of the covariance matrix is expressed as

cov(xp, xq) =
1

m× n

m∑
i=1

n∑
j=1

(xijp − x̄p)(xijq − x̄q) (5.3)

The covariance matrix then is of the form:

cov =


cov(x1, x1) . . . cov(x1, xl)

...
. . .

...

cov(xl, x1) . . . cov(xl, xl)

 (5.4)

Figure 5.2 shows the covariance image of the AVIRIS Indian Pine using 200

bands. The eigenvalue decomposition of the covariance matrix gives the

eigenvalue U and eigenvectors V . The eigenvalue decomposition form of the

covariance matrix can be expressed as:

cov = V UV T (5.5)
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Figure 5.2: Covariance for the AVIRIS Indian Pine Data.

U is expressed as a diagonal matrix consisting of the eigenvalue given as:

U =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

... . . . . . .
. . .

...

0 . . . . . . . . . λl


(5.6)

and V is the orthogonal matrix which contains the corresponding eigenvectors

{v1, v2, v3 . . . vl} corresponding to the eigenvalues U. The eigenvalues are arranged

in decreasing order [76] and the corresponding eigenvectors are selected for a given

number of reduced dimension.

In general, given a data with d-dimensional space, PCA tries to project a data

into a low dimensional space r while preserving as much variance as possible
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Figure 5.3: Windowed-PCA Approach

where r � d. There are other methods for computing the PCA but the mean-

covariance approach described above is the most common.

The proposed approach uses a windowed partitioning technique for feature

extraction in hyperspectral image processing. Recalling that the goal of

dimension reduction methods is to represent a high dimension data by one of a

lower dimension where r � d while still retaining as much information as

possible in the lower dimension space, the proposed windowed feature

extraction technique seeks to achieve this goal. In addition, our approach seeks

to preserve the spatial characteristics of the hyperspectral image being

processed. The algorithm is described as follows.

Each pixel xij forms a spectral curve over the spectral bands of the HSI. In Win-

PCA, the image X is spatially dimensioned into N windows with each window of

size u× v, where u and v indicate the number of pixels on each row and column

respectively. The pixel representation for each window is given as

ci =



x111 x121 . . . x1u1

x211 x221 . . . x2u1
...

...
. . .

...

xv11 xv21 . . . xvu1


,



x112 x122 . . . x1u2

x212 x222 . . . x2u2
...

...
. . .

...

xv12 xv22 . . . xvu2


...



x11l x12l . . . x1ul

x21l x22l . . . x2ul
...

...
. . .

...

xv1l xv2l . . . xvul


(5.7)
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The covariance matrix of this small image cuboids is computed independently

using equation 5.3. Since covariance matrices are square matrices, the

dimension of the covariance matrix gotten from the windowed image is l × l. It

then features into groups for covariance matrix estimation. The goal is to

preserve local structures while extracting the most significant components.

Then the eigen decomposition method can be performed on the total covariance

gotten from the covariance of individual windows.

Given that the dimension of the windows is u× v× l, the mean vector of the jth

window is obtained from

C̄ijb =
1

u× v

u∑
s=1

v∑
t=1

Xst
ijb (5.8)

where Xst
ijb is the element on the tth column of the sth row in the (ij)th window

of the bth band. Cijb is the mean of the (ij)th window on the bth band. The

covariance matrix covij for each window ij of the hyperspectral image is expressed

as

covij(xp, xq) =
1

u× v

u∑
s=1

v∑
t=1

(xstijp − C̄ijp)(x
st
ijq − C̄ijq)

T (5.9)

The process for the merger of the covariance matrices of the i × j windows of

the HSI is described based on a pairwise merger of covariance matrices that was

formulated in [118]. Covariance matrix union process has been used in various

applications which includes but not limited to information fusion or robotics for

example.

In order to compute the combined mean and covariance of any two windows whose

mean vectors and covariance matrices are respectively denoted by (Mj, Cj) and

(Mk, Ck), Kalman gain, K, is first obtained as follows:

K = Cj(Cj + Ck)−1 (5.10)
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Then the combined mean, M , and combined covariance C are respectively

estimated as

M = Mj +K(Mk −Mj) (5.11)

and

C = Cj −KCj (5.12)

Let an image be divided into n windows; after the calculation of means and

covariances (M1, C1), (M2, C2), . . . , (Mn, Cn)) of all n windows, the computation

of the total mean vector and total covariance matrix (M,C) of the image in done

as indicated by algorithm 3.

The eigenvalues and eigen vectors for the whole image are computed from the

combined covariance matrices.

Algorithm 3: Combined Mean and Covariance of multiples windows in an
images

input : (M1, C1), (M2, C2), . . . , (Mn, Cn)) // Means and Covariances of n
windows

output: (M,C) // Combined Mean and covariance

1 K← C1(C1 + C2)−1 : Kalman gain calculation;
2 C← C1 + KC1;
3 M←M1 + K(M2 −M1);
4 for i← 3 to n do

5 K← C(C + Ci)
−1 ;

6 C← C + KC;
7 M←M + K(Mi −M);

Since the HSI is dimensioned into J windows with Cj denoting the estimated

covariance of its jth window where (j = 1,2, . . . , J). It is required to obtain the

total covariance of the HSI by combining the covariances of all the windows of the
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HSI. The process for the combination of the covariance matrices begins with the

combination of the covariances of any two windows, then the obtained covariance

is combined iteratively with that of other windows.

The eigenvalues and eigen vectors for the whole image are computed from the

combined covariance matrices.

The total covariance can be expressed as

C = V UV T (5.13)

U is expressed as a diagonal matrix consisting of the eigen-value given as:

U =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

... . . . . . .
. . .

...

0 . . . . . . . . . λl


(5.14)

and V is the orthogonal matrix which contains the corresponding eigen-vectors

{v1, v2, v3 . . . vl} corresponding to the matrix of eigenvalues U. Thereafter, the

first l eigen vectors from the total covariance are selected with the highest

corresponding eigen-values from the projection vectors where V is the

eigen-vector and U is the matrix of eigen-values.

Wpca = [v1, v2, . . . , vm] (5.15)

Algorithm 4 shows the description of our proposed WinPCA method for

extracting features in hyperspectral images.
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Algorithm 4: WPCA

Input : Hyperspectral image X
Output: The projection matrix YW−PCA which is made up of k eigenvectors

associated with the largest n eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk

1 For n×m spatial domain of image X, we divide X into windows of n
q
× m

p
and

bands of each window into H groups along its spectral dimension to give
smaller hyperspectral cuboids ci

2 Compute the covariance matrix of each ci using equation 5.3.
3 Combine the covariance matrix of each group using Algorithm 3.
4 Find the eigen vectors and values of the covariance matrix.
5 Sort eigenvectors in decreasing order of eigenvalues.
6 Projecting the original dataset on the eigen vectors which gives the feature

vector (Principal Components).

5.4 Experiments

The proposed approach was validated using the AVIRIS Indian Pines [119] data

set and results from experiments to demonstrate the benefits of WinPCA for

feature extraction are presented in this section. Classification was done using

Support Vector Machine (SVM). The AVIRIS Indian Pine data consist of 220

spectral bands. Table 5.1 gives the information on the data set. Following the

work from Tadjudin and Landgrebe [120], bands 104-108,150-163 and 220 are

discarded because they were water absorption bands. In this study, all sixteen

classes of the AVIRIS HSI image were used for evaluation.Pixels were

represented in vectors which correspond to the spectral wavelength of the

reflected object. Figure 5.4 shows the spectral curve for AVIRIS Indian

Pine [102] hyperspectral image. The performance of the proposed method was

measured by three metrics, namely, overall accuracy (OA), average accuracy

(AA) and Kappa Coefficient. Also, the Radial Basis Function (RBF) kernel of

LibSVM[74] was used for Support Vector Machine (SVM) classification. Using

the segmented approach in [75], the results of PCA and Seg-PCA were

compared with the proposed WinPCA method.

In the experiment, the training samples were constituted by a random selection

of 10, 20 and 30 labelled samples per class and the remaining samples left for
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Figure 5.4: Spectral Curves for the AVIRIS Indian Pine Data.

Table 5.1: Number of Samples in the Data Set Used in the Experiment

Class Name Samples Class Name Samples
Corn-notil(C1) 1434 Soybeans-notil(C6) 968
Corn-min(C2) 834 Soybeans-min(C7) 1294
Grass/Pasture(C3) 497 Soybeans-clean(C8) 2468
Grass/Trees(C4) 747 Woods(C9) 614
Hay-windrowed(C5) 489 Blg-grass-tree(C10) 380

validation. The penalty (C) was tested in the range 10 to 1000 in step-wise

increments of 20 and the value of gamma(γ) was selected in the range 0.1 to

2.0 in step-wise increments of 0.1. A five-fold cross-validation approach [121]

was employed to obtain the best values. In order to guarantee the accuracy and

consistency of the results, each experiment was run 10 times and the average

reported. The spatial display of the first twelve principal components for both

PCA and WinPCA are shown in Figure 5.6 and 5.7 respectively. The first twelve

principal component were chosen for display as it contained over 98.00% of the
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total variance after the feature extraction process. The spatial display shows

that WinPCA preserved more spatial features. WinPCA was able to preserve

more information in its extracted principal components.

Three conventional ways were used for the evaluation of the overall performance

of the algorithms, the overall accuracy, average accuracy and kappa coefficient.

Details of the metrics used for evaluating the accuracies can be found in Appendix

A. For WinPCA, a window size of 29 × 29 divided it into 25 windows and each

of these windows was further divided along the bands grouping. Throughout this

experiment for Seg-PCA, we set H = 10 and W = 20. The experimental results

are summarized in Table 5.2.

In addition, the performances of WinPCA for a different number of windows were

compared. Results were obtained for WinPCA for 4, 9, 25, 36, 49 and 64 window

sizes. Considering their overall accuracies, best results were seen at 25 windows

and the performance decreased slowly as the number of partition increases. This

result is presented in Figure 5.5.

Figure 5.5: Classification Accuracy for Extracted Principal Components

Table 5.2 displays the performance of PCA, WinPCA and Seg-PCA when

classified with SVM using 10, 20 and 30 training samples per class. The data

was scaled between 0 and 1.The training samples were selected randomly while

the remaining samples were used for testing. From Table 5.2, it was shown that

with the increase in training samples the accuracies of PCA, Seg-PCA and
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WinPCA increased but at a varying number of training samples WinPCA

outperforms Seg-PCA and PCA feature extraction methods.

With 10 training samples,WinPCA outperformed both PCA and Seg-PCA. The

overall accuracy of WinPCA was 66.58% and average accuracy 73.45%. PCA

and Seg-PCA performed in the same way with 10 training samples. However,

when 20 training samples were used, Seg-PCA showed improved performance

over PCA. Also the performance of WinPCA with 30 training samples was better

than that of PCA and Seg-PCA. This showed the effectiveness of WinPCA over

the conventional PCA and related partitioning approaches.

Table 5.2: Overall and Average Accuracy with Kappa Coefficient for the
various extraction methods using the first ten principal components

10 Training Samples 20 Training Samples 30 Training Samples
Accuracies (%) Accuracies (%) Accuracies (%)

DR OA AA K OA AA K OA AA K

PCA 56.16 67.06 0.51 64.46 72.91 0.60 67.71 73.21 0.65
Seg-PCA 56.55 66.83 0.52 65.03 73.20 0.60 68.36 72.96 0.64
WinPCA 66.58 73.45 0.72 69.50 74.82 0.79 72.45 78.57 0.81

Figure 5.8 shows the overall accuracy for different principal components. For

each class, 20 training samples were selected for PCA, Seg-PCA and Win-PCA.

With the first few extracted features, Seg-PCA and WinPCA were comparatively

close in terms of their overall accuracies but as the number of features increased,

the accuracy of Seg-PCA declined and that of WinPCA increased.

In comparing the computational cost, for the covariance matrix estimation, for

PCA the computational cost is O(R × C × S)2 and for WinPCA, the

computational cost is O((R/p)(C/q)S2). Where R, C and S denote the number

of rows, number of columns and the spectral length of the HSI respectively.

The computational complexity of WinPCA could only be reflected in the

covariance combination. The experiments were run on MATLAB R2014b

software installed on an AMD Dual core processor PC with 3GB of RAM. The

computation time for PCA was 2.98s and that of Seg-PCA, 3.01s while that of

WinPCA was 3.09s. Moreover, the least computation time was recorded for the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.6: The First 12 Components Extracted by PCA

PCA algorithm. This is closely followed by Seg-PCA, then WinPCA in

increasing order. The proposed WinPCA algorithm records the highest

computation time of 3.09s. In spite of its high computation time, its

performance in terms of accuracy as well as its ability to preserve spatial

properties of the HSI after feature extraction makes WinPCA a preferable

algorithm for feature extraction in hyperspectral image processing.

Table 5.3: Overall accuracy and average accuracy with varied number of
training samples

DR C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 OA AA K

Original 0.77 0.65 0.48 0.75 0.68 0.69 0.58 0.79 0.65 0.71 0.67 0.69 0.58
PCA 0.64 0.75 0.74 0.78 0.85 0.80 0.72 0.87 0.81 0.85 0.71 0.65 0.61

Seg-PCA 0.63 0.82 0.77 0.88 0.81 0.87 0.89 0.90 0.87 0.85 0.87 0.71 0.69
Win-PCA 0.81 0.89 0.85 0.93 0.97 0.87 0.85 0.87 0.96 0.96 0.89 0.91 0.88
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.7: The First 12 Components Extracted by WinPCA

Figure 5.8: Classification Accuracy for Extracted Principal Components
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5.5 Conclusion

We have presented a windowed approach to PCA for the extraction of features

from hyperspectral images. The algorithm, christened Windowed PCA

(WinPCA), divides the spatial dimension of an HSI into smaller windows in

order to preserve its spatial properties. Then, the overall covariance matrix of

the HSI is estimated by merger of the individual covariance matrix of each

window. The merger is done by the method of Kalman filtering. The results

from the experiments show that the proposed method improves the accuracy of

classification. Furthermore, a comparison of the future work will include using

Seg-PCA and WinPCA in semi-supervised manifold method for hyperspectral

image processing. Comparison between windows of different sizes will also be

taken into consideration.





Chapter 6

Summary, Conclusions and

Recommendations

This research has investigated the performance of a number of feature

extraction techniques that were developed for the processing of hyperspectral

images. The proposed techniques adopt the unsupervised and semi-supervised

feature extraction methods for their development. In particular, three feature

extraction methods are developed, namely, Semi-Supervised Local Linear

Embedding (SSLE), Graph Clustered Discriminant Analysis (GCDA) and the

Windowed Principal Component Analysis (Win-PCA).

Chapter 2 presents a detailed background of feature extraction for

Hyperspectral image processing as well as a review of related works in the

literature. Existing feature extraction techniques are classified into three

categories namely unsupervised, supervised and semi-supervised, depending on

the usage of labelled samples in the computation of their projection matrix.

Each of these classes of feature extraction methods have distinct merits and

demerits that makes them suitable for different applications. However, as done

in this research, the strengths of two or more categories may be exploited in

82
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developing feature extraction techniques that are more efficient and have

increased accuracy.

In Chapter 3, Semi-supervised Local linear Embedding (SSLE) feature

extraction was developed. The development of the SSLE technique was aimed

at exploiting the strengths of Linear Discriminant Analysis (LDA), a supervised

method and Local Linear Embedding (LLE) which is an unsupervised feature

extraction method. With an understanding that LDA fails to discover the

spatial patterns when only a limited number of training samples are available

and that LLE is computationally expensive despite its capability to preserve an

image’s local structure, the SSLE technique merges the strengths of these two

techniques to maximize between-class separabilities, minimize within-class

similarities and preserve the local neighbourhood of the HSI data. An

investigation into the performance of the SSLE technique was done using data

sets of the AVIRIS Indian Pines. The results obtained by employing Support

Vector Machines (SVM) classifier show that SSLE achieves better performance

than PCA, LDA and LLE in terms of overall accuracy when few labelled

samples are available.

While still considering that HSIs are characterized by a limited number of

training samples in comparison to their dimensions, a graph-based feature

extraction technique known as Graph Clustered Discriminant Analysis (GCDA)

was developed in Chapter 4. The GCDA technique is built from the local

discriminant analysis (LDA), K-means clustering and Laplacian Eigenmap (LE)

methods and makes full use of the unlabelled samples in a semi-supervised

framework. After careful consideration that LDA and K-means are similar

class-wise discriminations, both algorithms were unified in an unsupervised

manner before incorporating the graph-preserving property of LE to form a

semi-supervised algorithm. The uniqueness of GCDA is in its method of

selecting unlabelled samples, which is based on graph clustering and manifold

learning. It selects unlabelled samples using the graph clustering technique

with manifold learning. This helps in overcoming the problem of few labelled
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samples by keeping the cluster-derived labels after graph-embedding and

ensures that points in the image that originate from the same class remain close

to each other after the feature extraction process is concluded.

Chapter 5 introduces the partitioned method. This method is able to preserve

the spatial property of hyperspectral images using the Windowed Principal

Component (Win-PCA) method. This was done by dividing the images into

subgroups before performing the covariance estimation method. The covariance

matrices were then merged using the Kalman filter method. The eigen

decomposition was then performed on the merged covariance matrices.

In summary, three FE methods are proposed to explore the rich spectral and

spatial complexities of HSI. This methods have been discussed in details in the

previous chapters. Two of these, namely Semi-supervised Local Linear

Embedding (SSLE)and Graph Clustered Discriminant Analysis (GCDA) are

semi-supervised methods while the third, Windowed Principal Component

Analysis (WIN-PCA) is an unsupervised method. The importance of these

methods are highlighted in the following:

• The semi-supervised approaches are capable of preserving the

neighbourhood information while discriminating between classes of

interest in the reduced dimension of the feature space.

• The utilization of unlabelled samples in the GCDA approach is another

added novelty. This approach makes the developed semi-supervised

approach to benefit from the rich abundance unlabelled samples while

still making use of the limited labelled samples

• The discriminative feature of both semi-supervised algorithms increases the

class accuracy in both algorithms.

• Moreover, with the McNemar test the GCDA approach shows better

statistical significance over related methods.



Chapter 6. Conclusion 85

• The Spatial property of the hyperspectral images are preserved using the

Graph-based GCDA and the Win-PCA partitioning method.

Based on the research carried out, we are able to propose the following future

works and directions:

• Morphological profiles could be investigated and compared with the

partitioning approach.

• The partitioning approach in this work was used in an unsupervised

manner. With the success shown from this approach, it could be extended

to supervised methods.

• Co-training methods could be compared with the use of unlabelled samples.

• Nonlinear PCA could be used instead of PCA in the Win-PCA method

and the result used for morphological approaches.
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The following provides a brief description of the various metrics used in

computing the accuracy and expressing the efficiency of the methods described

in this research.

A.1 Confusion Matrix

The confusion matrix is a square matrix used for the computation of other

accuracies. It is from the confusion matrix that all other accuracies can be

computed

Classified Samples
Labelled Samples C1 C2 C3 C4 Total

C1 C11 C12 C13 C14

∑c
1C1j

C2 C21 C22 C23 C24

∑c
1C2j

C3 C31 C32 C33 C34

∑c
1C3j

C4 C41 C42 C43 C44

∑c
1C4j

Total
∑c

1Ci1

∑c
1Ci2

∑c
1Ci3

∑c
1Ci4

Table A.1: Sample of a Confusion Matrix

A.2 Class Accuracy

Class Accuracy (CA) is computed as the ratio in percentage of pixels of a given

class that have been correctly classified.

CAi =
Cii∑c
j=1Cij

× 100 (A.1)

Where Cii denotes correctly classified samples for Class i and Cij denotes the

misclassified samples when i 6= j
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A.3 Overall Accuracy

Overall Accuracy (OA) is computed as the percentage of correctly classified pixels

for all the classes that are considered in the image expressed as a percentage.

OA =

∑c
i Cii∑c
ij Cij

× 100 (A.2)

A.4 Average Accuracy

Average Accuracy (AA) denotes the mean of all class accuracy calculated from

the confusion matrix

AA =

∑c
i=1CAi

c
(A.3)

A.5 Kappa Coefficient

Kappa coefficient is measured as a level of agreement between different classes.

A value of 1 denotes full agreement and a value of 0 denotes no agreement.

A.6 McNemar Test

The statistical significance of the difference between two classifiers is inferred

from the —Z— parameter which is estimated as follows:

Zc1c2 =
f12 − f21√
f12 + f21

(A.4)

where fij denotes the frequency of points lying in the confusion matrix of element

i and element j. The parameter |Zc1c2| indicates that classifier one c1 performs

better than classifier two c2 if |Zc1c2| > 0 or the other way round. Furthermore,
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if |Zc1c2 | is greater than 1.96, then it can be said that the difference obtained in

the classification accuracy of the two classifiers is statistically significant.
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