
University Of Natal

A Network based Rapid Prototyping System for

Applications in Research and Engineering

Education

By

,

Magash Pillay

Submitted in partial fulfilment of the academic requirements for the degree of Master of Science in

Engineering, in the Department of Electrical Engineering, University of Natal. Durban, South Africa

February 200 I

I hereby declare that all the material incorporated into this thesis is my own original and unaided work

except where specific reference is made by name or in the fonn of a numbered reference. The work

contained herein has not been submined for a degree at any other University.

Signed ~~
M~

Date:

(i)

ABSTRACT

Engineering educators the world over are being faced with the dilenuna of combining traditional

mathematically intensive courses, like Control Systems and Robotics with advances in computational

hardware and software. This is because it is impractical to include both software engineering issues as

well as conventional course content.

A solution to the problem lies in Rapid Prototyping technology to develop and design software, for

application on PC's and embedded systems. Rapid Prototyping, based on automatic code generation,

allows users to develop advanced software on high level graphical platforms like Simulink® and

LabView®, while " hiding" the underly ing layers of complex code. This approach allows .rhe advanced

hardware, traditionally reserved for software engineers, to be accessed by a much wider audience and

is an ideal educational tool.

This thesis presents the complete development of the Rapid Application Development Environment

(RADE). The RADE system customises the Mathworks Real Time Workshop (RTW) revision I1 for

application on both standalone and networked OS? cards. The functionality of the RTW is

incorporated into the RADE system. This affords the user seamless code generation, downloading, on~

line parameter tuning and on~line data visualisation with storage capability. An added advantage of the

RADE system is its easy portability to multiple target platforms, which is demonstrated by its

implementation on two different OSP cards.

Finally the functionality of the RADE system is demonstrated as an educational tool , with the

demonstration of a OC motor speed and position controller.

(ii)

Dedication

With deep gratitude and affection to my uncle AUlhemullam Govender and my antu Visalaclree

Kuppasamy for their support and guidance.

(iii)

ACKNOWLEGMENTS

I will like to express my greatest thanks to my supervisor Mr Gregory Diana. Who has endeavoured

and succeed in establishing a stimulating and challenging environment at the Motion Control Group in

the Department of Electrical Engineering at the University of Natal. His guidance and encouragement

throughout this project has been sincerely appreciated.

The following people have also supported me during the course of this work

My family and friends for their understanding and support;

My colleagues Adam Stylo, Myles Walker and Cedric Worthmann for providing a

friendly working environment. In addition Adam Stylo requires special mention for laying the

groundwork for this project.

The academic and technical staff of the Electrical Department, who are always willing to

assist students,.

(iv)

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION 1-1

1.1. General " " 1-1

1.2. An Overvie,,' of \Vork Presented 1-1

1.3. Thesis Sructure•..................... 1-3

1.4. Publications and Contributions 1-3

CHAPTER TWO: LITERATURE SURVEy : 2-1

2.1. Introduction 2-1

2.2. Real Time Rap id Prototyping 2-1

2.2.1 The Conventional Real-Time Design 2-2

2.2.2 The Rapid Prototyping Approach 2-3

2.2.3 Thc Role of Rapid Prototypiug in Education 2-3

2.2.4 Hypers ignal 2-5

2.2.5 The Mathworks Rapid Prototyping Framework 2-6

2.3. Third Party Tools Based On The Mathworks RTW 2-7

2.3.1 dSPACE 2-7

2.3.2 Use of dSPACE in Engineering Education 2-8

2.3.3 Complete Experimental Solutions 2-\ 0

2.4. Academic Developments with RT\V 2-11

2.4.1 Control System Development Environment , 2·11

2.4.2 Work at Other Academic Inst itut ions , , 2-1 3

2.5. Context of \Vork Presented in this Thesis 2-15

2.5.1 Categories of RTW Targets 2-16

2.5.2 Summary Of Project Goals , 2· 17

2.6. Conclus ion 2-18

CHAPTER THREE: OVERVIEW OF SIMULlNK AND THE RTW 3-1

3.1. Int roduction 3-1

TABLE OF CONTENTS

3.2. Products Availab le From T he Mathworks 3-1

3.3. A Ovcrvie,v Of Sinlulink 3-3

3.3.1 An Example with Simulink .. 3-3

3.3.2 Ho\v Simulink \Vorks 3-7

3.3.3 An Overview of S-functions 3-8

3 .4. T he Real T inle \Vo r ks hop 3-11

3.4 .1 An Overview of the RT\V 3-12

3.5. Target Language Conlp iler 3-14

3.5.1 System Target Files 3-16

3.5.2 Block Target Files 3-1 7

3.6. T he Code Build Cyclc 3-20

3.6.1 Make Utilities 3-20

3.6.2 System Template Make File .. 3-2 1

3.6.3 The Build Flow Diagram 3-22

3.7. Rapid Prototyping P rogr am Archi tccturc 3-24

3.7.1 System Dependent Layer. 3-24

3.7 .2 System Independent Layer 3-25

3.7.3 Application Layer .. 3-26

3.8. T hc Mathworks TCPIIP External j\·l ode 3-26

3.8.1 Message Frames Between Simulink and Target... 3-28

3.8.2 Simulink Internals .. 3-29

3.8.3 Target Internals 3-31

3.9. Conclusion 3-32

CHAPTER FOUR: DESIGN OF THE RADE FRAMEWORK 4·1

4.1 . Introduction 4-1

4.2. Dcveloping the RADE framelvork 4-1

4.2.1 Mathworks TCPIIP External Mode Architecture 4-1

4.2.2 CSDE External Mode Architecture .. 4-2

4.2.3 RADE External Mode Architecture 4-3

(vi)

TABLE OF CONTENTS

4.3. Peripheral Issues 4-5

4.3.1 \Vindows Sockets 4-5

4.3.2 Zuma Toolset for Target Development 4-6

4.4. Modifications to the Simulink Communication Layer 4-8

4.4.1 Conversion Functions 4-8

4.4.2 Function Registration 4-11

4.5. Server Application 4-12

4.5.1 Graphic User Interface .. 4-14

4.5.2 File Transfer Process 4-15

4.6. Tar get Run T inle Interface 4-1 6

4.6.1 System Dependent Layer 4-17

4.7. RADE Communicat ions 4-1 8

4.7.1 Server to Target Protocol. ... 4-19

4.7.2 Message Port 4-20

4.7.3 Upload Data Port 4-22

4.8. Conclusion 4-23

CHAPTER FIVE: RADE PC32 IMPLEMENTATION 5-1

5.1. Introduct ion 5-1

5.2. Descript ion ofPC32 Card 5-2

5.3. T MS320C32 5-4

5.4. Description of P\Vi\'[Card 5-6

5.5. Device Drivers 5-8

5.5.1 ADC's 5-9

5.5.2 DAC's 5-10

5.5 .3 PWM 5-11

5.5.4 Asynchronous Interrupt Support 5-11

5.6. C ustomiSing RADE for the PC32 5-14

5.6.1 External Mode and the Server to Target Protocol 5-14

5.6.2 System Target File 5-17

(vii)

TABLE OF CONTENTS

5.6.3 Template Make File 5-19

5.7. Conclusion• 5-20

CHAPTER SIX: RADE ADC64 IMPLEMENTATION 6-1

6.1 . Intr-oduction• 6-1

6.2. Description of ADC64 Card 6-1

6.3. Device Drivers for the RADE ADC64 6-4

6.3. 1

6.3.2

6.3.3

ADC's 6-5

External Timers .. 6·6

DAC's, P\VM and Interrupt Blocks ... 6·7

6.4. C ustomising RADE framework for the ADC64 Card 6-8

6.4.1 External mode and Server To Target Protocol ... 6-8

6.5. Conclusion 6-12

CHAPTER SEVEN: DEMONSTRATION OF THE RADE SYSTEM 7-1

7.1. Introduction 7-1

7.2. A Case St udy: Designing a DC Servo Motor Speed controller 7-2

7.2.1

7.2.2

7.2.3

7.2.4

Motor Model 7-2

Design of Current PI Controller ... 7-3

Simulation of Current Controller 7-7

Design and Simulation of Speed PI Controller .. 7-10

7.3. Demonstration of the RADE ADC64 System 7-12

7.3.1 Real-Time Prototyping with the RADE ADC64 .. 7-13

7.3.2 DC Current Controller 7-15

7.3.3 DC Speed Controller .. 7-21

7.4. Dentonstration of RADE PC32 System 7-26

7.4. 1 DC Servo Speed Control 7-26

7.4.2 Position Controller Experiment 7-30

7.5. Conclusion 7-34

(viii)

TABLE OF CONTENTS

CHAPTER EIGHT: CONCLUSION 8-1

8.1. General 8-1

8. 1.1 Role of the RADE Frame\vork 8~ 1

8.2. Suggestions for Further \Vork 8-2

APPENDIX A: USER GUIDE 1

A. t . Installat ion I\'lanual for RADE vers ion 1 1

A.l .! Installation of the RADE Components to Matlab directory I

A. l.2 Installation of Server Application 2

A.2. Sine \Vave Exaolple 3

A.2.1 RADE PC32 3

A.2.2 RADE ADC64 6

APPENDIX B: A PROGRAMMER'S GUIDE TO THE INTERNAL WORKING OF THE RADE

Sy STEMS .•....•••............ 1

B.l. Modifications to The Mathworks Exte rnal Mode Implementation 1

B.l.l Default Mathworks External Mode Implementation 1

B. l .2 RADE External Mode 3

B.2. Server to Target Protoeol 5

APPENDIX C: EVALUATION OF MOTOR PARAMETERS 1

APPENDIX 0 : LISTING OF CODE FOR THE RADE PC32 •....... 1

D.I. Convers ion Functions ext_convert_c3x.c 1

0.2. Systcnl Target File 13

D.3. Systenl Tenlplate Make File 14

0 .4. Device Driver Files 18

0.4.1 ADC Blocks 18

0 .4.2 OAC Block 18

0.4.3 PWM Block 19

0.4.4 Asynchronous Interrupt Support 21

(ix)

TABLE OF CONTENTS

APPENDIX E: LISTING OF CODE FOR THE RADE ADC64 1

E.l . System Target File 1

E.2. System Template Make File 3

E .3. Device Driver Files 6

E.3.1 ADC Blocks 6

E.3.2 DAC Block 7

E.3.3 PWM Block ... 8

E.3.4 Asynchronous Interrupt Support 9

E.3.5 External Timers 13

APPENDIX F: DESCRIPTION OF CD 1

REFERENCES 1

e,)

TABLE OF FIGURES

Fig. J.I: Mathworks rapid prototyping process ____________________ 1-2

Fig. 2.1.- Conventional real-time design 2-2

Fig. 2.2 : The rapid prolotyping design 2-3

Fig. 2.3: Hypersignal environment 2-5

Fig. 2.4: Simplified operation ofMatlllvorks RTW 2-6

Fig. 2.5: dSPACE TDE toolset 2-8

Fig. 2.6: Rapid prolotyping laboratory 2-9

Fig. 2.7: Function diagram QUQnser system 2-1 J

Fig. 2.8: FUllctional operatioll ojCSDE 2-12

Fig. 2.9: Function diagram of ROGER the robot 2-14

Fig. 2.10: Functional diagram for TMS320C30 EVM RTW target 2-15

Fig. 3.1: Product range from The Matlnvorks 3-2

Fig. 3.2: A Simulink simulatioll 3-3

Fig. 3.3: A sample of the common Simlllink library blocks 3-4

Fig. 3.4: Simulink simulation parameters 3-5

Fig. 3.5: The scope block Olltplll afthe step response of the system in Fig. 3.2 3-5

Fig. 3.6: All example of a subsystem 3-6

Fig. 3.7: An example of a triggered subsystem 3-6

Fig. 3.8: General model ofa Simulink block [3-7

Fig. 3.9: Flow diagram of Simulink internals 3-8

Fig. 3.10: How Simulillk calls into a S-fimclioll 3-9

Fig. 3.11: Thejlow diagram of writing and compiling a S-fimction 3-9

Fig. 3.12: APJ fimction and their calling sequence 3-10

Fig. 3.13: Flow diagram of code generation process 3-12

Fig. 3.14: Objecl-oriemed view 3-14

Fig. 3.15: Operatioll of the Target Language Compiler 3-15

Fig. 3.16: List of system largetfiles 3-16

Fig. 3.17: Flow diagram of the build process 3-23

Fig. 3.18: Rapid prototypillg program framework 3-24

Fig. 3.19: Structure of mode I code 3-26

Fig. 3.20: Tep/JP implementation ofextemaf mode 3-27

Fig. 3.21: Messageframe 3-28

Fig. 3.22: Data Ilploadframe 3-28

Fig. 3.23: Simll /ink internals 3-30

Fig. 3.24: Target illternals 3-31

Fig. 3.25: Message Transactions 3-32

(xi)

TABLE OF FIGURES

Fig. 4. J.' Mathworks TCPI/P external mode ______________ _____ 4-2

Fig. 4.2: CSDE external mode architecture 4-2

Fig. 4.3: RADE external mode architecture 4-4

Fig. 4.4:Zuma toolset 4-6

Fig. 4.5: Byteformar 4-10

Fig. 4.6: Server application 4-13

Fig. 4.7: Server GU! 4-14

Fig. 4.8: Functional represenratioll o/thefile transfer process 4-15

Fig. 4.9: Flow diagram a/file transfer process 4-16

Fig. 4. ID: Flow diagram 0/ RTf entry filllCIlo" 4-18

Fig. 4.11: Server to target communications 4-19

Fig. 4.12: Overview a/Communication Challnel 4-20

Fig. 4. J 3: Graphical representation a/the Message Porls 4-21

Fig. 4.14: Packetisation o/external mode messages 4-22

Fig. 4.15: Graphical representation a/the Up/oad Ports 4-23

Fig. 5./.' OverviewofRADE PC3l implemelltarioll 5-1

Fig. 5.2: Photo ofPC32 card 5-2

Fig. 5.3: Functional diagram of the PC32 card 5-3

Fig. 5.4: ADC triggering 5-4

Fig. 5.5: TMS320C32 block diagram 5-5

Fig. 5.6: Photo of PWM card 5-6

Fig. 5.7: The DSP and PWM plllg inlO the target PC 5-7

Fig. 5.8:Block diagram 0fPWM card 5-7

Fig. 5.9: Device driver blocks for PC32 5-9

Fig. 5.10: Parameters for interrupt block 5-12

Fig. 5.11 : Flow diagramfor the modified Run-Time illleiface 5-13

Fig. 5.12: Files usedfor external mode alld STP 5-15

Fig. 5.13: RTW build option window 5-18

Fig. 6.1 Photo of the ADC64 DSP card 6-2

Fig. 6.2 Functional diagram of the ADC64 card 6-3

Fig. 6.3: ADC trigger sOllrces for the ADC64 card 6-4

Fig. 6.4:Device Drivers for the ADC64 card 6-4

Fig. 6.5:ADC trigger source selectioll 6-5

Fig. 6.6:Parametersfor externa/timer Block 6-7

Fig. 6. 7:lnrerrupt block parameters 6-8

Fig. 6.8: A comparison between DPRAM and the PC! blls 6-9

Fig. 6.9: Files usedfor external mode and STP alld the RADE ADC64 6-/0

(xii)

TABLE OF FIGURES

Fig. 7. 37:Simulink model _________________________ 7-27

Fig. 7.38: Subsystem I block 7-27

Fig. 7.39: Current response 7-28

Fig. 7.40:ADC64 Current sampling 7-28

Fig. 7.4 J,' Small signal speed response 7-29

Fig. 7.42: Small Signal current response 7-29

Fig. 7.43: Large signal speed respollse 7-30

Fig. 7.44: Large signal current response 7-30

Fig. 7.45: Simulillk model 7-31

Fig. 7.46:The controllers subsystem 7-32

Fig. 7.47:Regll/ating positioll response 7-33

Fig. 7.48: Under damped respollse 7-33

Fig. 7.49: Over damped response 7-34

(xiv)

ADC

API

ASIC

BSD

DAC

DLL

DMA

DPRAM

DSP

ITP

GUI

II

IPC

ISR

MFC

RADE

RAM

RPM

RTI

RTW

STP

TCPflP

TI

TLC

VSD

LIST OF ABBREVIATIONS

Analogue to Digital Converter

Application Program Interface

Application Specific Integrated Circuit

Berkeley Software Distribution

Digital to Analogue Converter

Dynamic Linked Library

Direct Memory Access

Dual Port RAM

Digital Signal Processor

File Transfer Protocol

Graphic User Interface

lnnovative Integration

[nter Process Communications

Interrupt Service Routine

Microsoft Foundation Class

Rapid Appl ication Development Environment

Random Access Memory

Revolution per Minute

Run-Time Interface

Real Time Workshop

Server to Target Protocol

Transmission Control ProtocoVIntemet Protocol

Texas Instruments

Target Language Compiler

variable speed drive

(xv)

Chapter One: Introduction

CHAPTER ONE:

INTRODUCTION

1.1. General

In our modem world the use of real-time systems has become commonplace in our homes, cars and

workplaces. This is due to the reducing cost of microprocessors coupled with the phenomenal increase

in processor bandwidth [AHMEDl] . The use of DSP and real-time control is set to 70ntinue and

engineering educators are therefore required to produce graduates that are equipped to tackle the

challenges and technological changes in these fields [TQ2].

Teaching courses that rely on real-time system presents a dilemma to engineering educators, as the

implementational de tails require students to be relatively well versed in software engineering concepts

[GANI]. This is further aggravated by the time constraint of presenting both theoretical course content

as well as practical implementations. A point in case is the teaching of Control Systems. This is a

challenging theoretical course that is fundamental to many engineering disciplines but is difficult to

teach from a practical standpoint, as most modem day implementations rely on complex real-time

processing hardware [FENG I] . A plausible solution to this problem is the use of Real-Time Rapid

Prototyping Tools.

Rapid protoryping tools allow educators to concentrate on core concepts without being hamstrung by

implementational details. Students can use these tools to experimentally validate theoretical assertions

without needing to be experienced in software engineering [DSPACE5]. Rapid prototyping allows

students from diverse engineering backgrounds to utilise sophisticated digital hardware to

controVanalyse real-time systems.

1.2. An Overview of Work Presented

The work presented in this thesis deals with the design, development and implementation of a rapid

prototyping tool, which is the Rap id Application Development Environment (RADE).

The RADE system consists of three components:

• Sirnulink ® [MATHWORKS2], which is a widely used graphical simulation package.

• Real Time Workshop (RTW)[MATHWORKS4], an add-on toolbox from The Mathworks,

which converts Simulink, models into real -time code

1· 1

Chapter One: Introduction

• Target hardware platform that executes the real·time code.

The RADE system, shown in Fig. 1.1 integrates the above components, and offers seamless generation

of real·time code from Simulink models. This allows students with little expertises in software

engmeermg, to utilise advanced DSP hardware. The advantage of this approach is that it allows

students, to immediately apply concepts taught in courses like control systems, communications and

robotics, to real-time systems and see first hand practical verification of theory.

~~a
u.J-l-l~l ..

10, I _ I •

. - . " ·,-'2 '" ••
Simulink M odel

real-time code

Fig. 1.1: ft-fathworks rapid prololypillg process

The RADE system features the following functionality:

I. Full network and standalone functionality

The system can operate in a standalone mode, whereby Simulink and the target DSP

hardware reside on one workstation or in a network mode, whereby multiple users can

access a single target DSP hardware. The latter scenario is ideally suited to the

educational environment since numerous students can use one DSP card.

2. Online Visualisation

The RADE system is a wo rld first to provide online data visualization usmg the

Simulink scope block, for the TMS320C3x DSP. This allows various signals within a

model , to be monitored when it is executing in real ·time on the target hardware.

3. Online Parameter Tuning

This feature allows for live changes to parameters within a model, while it is

executing on the target hardware. It IS especially useful for varying controller

parameters and observing system responses. Concepts of controller stability and

saturations are easily and quickly demonstrated by varying controller parameters.

4. Multiple Target DSP platforms

The RADE system conforms closely to The Mathworks conventions and is therefore

portable to various target platforms. The RADE has been successfully ported to, two

DSP cards; the PC32 and ADC64. These cards use the TMS320C32 DSP and are

manufactured by Innovative Integration.

\-2

Chapter One: Introduction

5. In house build PWM VD card

The RADE system was designed to serve a wide spectrum of applications, which also

include Motion Contro!. Therefore a PWM add-on card was designed, to interface

directly to the target DSP and provide PWM signal for an inverter. This reduces the

processing burden on the target processor and allows for more complex real-time

controllers to be implemented.

1.3. Thesis Sructure

Chapter 2 presents a literature survey of the current work in the Rapid Prototyping field and

concentrates on educational applications. This chapter concludes with the context and purpose of the

work presented in this thesis.

Chapter 3 presents background infonnation on Simulink and the workings of the RTW.

Chapter 4 covers the system level design of the RADE framework. It highlights the modifications

needed to The Mathworks RTW and details the components of the RADE framework.

Chapter 5 details the implementation of the RADE framework to the PC32 card.

Chapter 6 details the implementation of the RADE framework to the ADC64 card.

Chapter 7 provides a demonstration of the RADE system. An implementation of a DC motor current

and speed is presented using the ADC64 and PC32 cards. In addition a DC motor position controller is

implemented on the PC32 system.

Chapter 8 concludes this thesis and provides suggestions for further work.

1.4. Publications and Contributions

During the course of the work presented in this thesis the following publications and contributions

were made:

M. Pillay Greg Diana "A Design Tool To Facilitate a Matlab/Simulink Simulation, to Run in Real

Over a Networked OSP Card", Proceedings of the 8th Southern African

Universities Power Electronics Conference, Potchefstoom, South Africa

January 1999.

,.)

Chapter One: Introduction

'Worlds F irst Implementation of The Mathworks RT'V-3 for the TMS320C32 Target

During the development of the RADE system software bugs were found in the Simulink internals and

,with the help of The Mathworks Support Centre, were corrected. The Mathworks support engineers

also stated that this implementation was there first to use a non-PC byte compliant target within The

Mathworks TCPIIP External Mode Architecture. Chapter 4 provides more details in this regard,

1-4

Chapter Two: Literature Survey

CHAPTER TWO:

LITERATURE SURVEY

2.1. Introduction

The landscape of engineering education is being transformed by the advent of the Information Age.

The availability of high-speed communication networks, powerful computing technology and

advanced software are allowing engineering educators to provide students with a richer learning

experience [TQ2]. Real-Time Rapid Prototyping l is one such technology that is impacting on the

teaching of courses like control engineering, DSP and robotics. Engineering educators at numerous

institutions across the world are starting to use rapid prototyping tools in their research and teaching

syllabuses [KOZICK, STYLOI , GANI].

This chapter describes the use and role of rapid prototyping in the research being conducted by the

University of Natal's Motion Control Group and other researche rs across the world. It presents a

concise overview of The Mathworks rapid prototyping framework and a general review of both

commercial and academic implementations derived from this framework. The main aim of this chapter

is to review the use of The Mathworks rapid prototyping framework from an educational perspective.

Finally the author contextualises the purpose and role of his work and develops project goals for the

development of the RADE system.

2.2. Real Time Rapid Prototyping

In a description of rapid prototyping it is informative to first outline the conventional methodology for

designing real-time systems and then compare it to the rapid prolotyping approach. This is presented

in the next two sections.

I Any reference to Rapid Prototyping in this thesis will exclusively deat with Real-Time Rapid Prototyping.

2.2.1

Chapter Two: Literature Survey

The Conventional Real-Time Design

2

Algorithm Development

4

Simulation &
Analysis

3

Hardware Development

Implementation

Fig. 2. 1: COll velltiOllal real-time design

The conventional design process of a real-time system is shown in Fig. 2.1. This normally requires

multiple design teams and involves the following four stages:

1. Simulation and Analysis

At this stage the system to be designed is evaluated and different control strategies are

simulated. The results are then analysed and a feasible specification is passed on to the

next stage.

2. Algorithm development2

From the specifications the software team develops an appropriate algorithms, which

traditionally involve C and some low level programming.

3. Hardware development

The hardware team is responsible for the designing of the hardware platfonn on which

the final system will run.

4. Implementation phase

Once the hardware and software teams have produced their components the

implementation team is responsible for the integration and testing. If the system fails

during the test cycle the design processes is restarted at the stage where the problem is

anticipated to be.

In the conventional approach, different tools and expertise are utilised in the development process,

with control engineers being used in the first stage and hardware and software engineers being

involved in the remaining stages. This approach is very time and labour intensive with each design

1 This stage can run in parallel with hardware development

2·2

Chapter Two: Literature Survey

cycle being costly. A further disadvantage is that code produced by the software teams tend to be

difficult to reuse and incorporate in new systems. The advantage of the conventional approach is that

the resulting system can be both cost and performance optimised for volume production.

2.2.2 The Rapid Prototyping Approach

Simulation &
Analysis

Graphical Algorithm
Development

Implementation:
Seamless code generation

r------------------ ------- ----------- -----, , , , , . , ,
", '

'~ [Of-J-1 -o·~l"" -,-' .. ,'.-,..-,, I-~ .. , .. ,

>f. , , , , , , , ,

Step

'-- -------- -- ------- - --- ---- - - - --- --- - - - - --'

Fig. 2.2: The rapid prolofyping design

In the rapid prolotyping approach shown in Fig. 2.2, it is evident, that the hardware stage has been

removed allowing a seamless step from algorithm to implementation. Further more the algorithm stage

uses a high level graphical language [MATHWORKS61. The appeal of rapid prototyping over the

conventional approach is that:

• The user need not be skilled in software engineering.

• There is no need for multi -disciplinary design teams.

• There is a dramatic time saving.

The rapid protoryping approach eliminates the hardware development stage by using generic hardware

platforms. These platforms consists of DSP or microprocessors, with I/O devices that interface to the

sensors and actuators on the plant being controlled [DSPACE5].

From the above discussion it is apparent that rapid prototyping is not a replacement for the

conventional approach but rather an alternative that allows the designer more flexibility at the

simulation and analysis stage. Rapid prototyping applications provide the user with more functionality

and less complexity. They do not compete with the conventional approach but are rather an

augmentation to it.

2.2.3 The Role of Rapid Prototyping in Education

Rapid prototyping in an educational context is targeted towards courses that rely on real-time systems

2·3

Chapter Two: Literature Survey

[SADASIVAl]. These include control systems, robotics and DSP to name a few. There are both

teaching and research applications with research being further split between users and developers of

rapid prototyping tools3
•

The appeal of rapid prototyping is that it now frees the user from the need to be highly skilled in

software engineering and allows advanced hardware to be used by a "lay" audience. Researchers

using rapid prototyping are freed to concentrate on their applications rather than being distracted by

the peripheral hardware and coding design issues. Educators are able to present better courses, as

students are able to immediately evaluate theoretical concepts experimentally.

The teaching of control system is a good example of a theoretically intensive course that benefits from

rapid prototyping tools. Lecturers can concentrate on the core concepts that are independent of

implementation issues while at the same time allowing students to apply these concepts to a live real­

time systems. The traditional design of a motor controller, which nonnally ends with students merely

simulating it, can now be followed up with immediate implementation. Students can also investigate

the practical issues of controller stability and plant saturation, which are difficult to appreciate without

a live system.

Another aspect that needs consideration in the development of rapid prototyping educational tools is

their ab il ity to be networked. Network features provide value adding by maximising utilisation of

expensive resources4 while also minimising total system costs. Further, with Virtual LaboratoriesS
,

[HAMMANNl , HUGHI, REIDl) based on Intemet technologies gaining in popularity, it makes a

compelling argument to providing network supported rapid prototyping tools that can be easily

incorporated into such laboratories.

Within the rapid prototyping arena there are various tools and in the next two sect ions products from

Hyperception and The Mathworks are reviewed, as they are both being used by the Motion Control

Group.

1 The work in this thesis falls into the rapid protolyping development category.

4 These resources include the D$P target hardware and external plant being controlled

l Vinual Laboratories use Internet technology to allow student 24-hour access to experimental apparatus.

2-4

Chapter Two: Literature Survey

2.2.4 Hypersignal

gg Hypel31gnal RIDE 4.0 - (Filter.lstJ B"~ Ei

Fig. 1.3: Hypersigllal e" v;rollmelll

Hyperception Inc. produces the Hypersignal rapid prototyping tool, which uses a graphical

environment for algorithm development as shown in Fig. 2.3 . It however lacks a comprehensive

simulation environment but allows algorithms to be tested on the PC platform before being executed

on the intended hardware platform. This tool is targeted mainly for advanced DSP development and is

provided with drivers, which support numerous third party DSP cards [BLERKl] .

Hypersignal is being used by the Motion Control Group to implement and evaluate motion control

applications and tools. A Variable Speed Drive (VSD) test bed tool has been developed to evaluate the

performance of VSD's for diffe rent load conditions [WALKER I] . Worthmann [WORTHMANNl]

evaluated the use of an artificial intelligence algorithm for the control of a boost rectifier. Both these

researchers have stated that a considerable portion of their time was spent customising6 the

Hypersignal environment for their applications. Further, simulations of these systems were also

performed using other packages.

6 This involves the h:lnd coding of application specific blocks that can then be used with the Hypersignal environment.

2·5

Chapter Two: Literature Survey

The Hypersignal package provides a powerful algorithm development tool that concentrates on

traditional DSP development and is ideally suited to research applications. However it lacks

simulation and analysis components and requires a steep learning curve, making the system un feasible

as a teaching tooL

2.2.5 The Mathworks Rapid Prototyping Framework

Sim ulink Model
Conversion to
real-lime code

RTW External Mode

Fig. 2.4: S implified operation 0/ Mathworks R TW

DSP larget
ha rdware

The Mathworks provide the Real Time Work (RTW) [MATHWORK4, 6], which is integrated with

the widely used Simulink environment (PAIl, POUSIJ; together they form an open architecture rapid

prototyping framework. Fig. 2.4 shows a simplified representation of the operation of the RTW, which

consists of:

• Simulink, which is a graphical simulation and analysis tool.

• The RTW, which is a toolset and framework responsible for the entire rapid prototyping

process.

• Target hardware is the platform on which the generated code runs. The open architecture of

the RTW allows users to incorporate third party hardware within the RTW. This process is

referred to as RTW targeting'.

• RTW External Mode is a feature that allows Simulink to connect to the target platform,

whereby target operation may be controlled from within the Simulink environment. This

feature allows for:

•

•

Communication to remote targets .

Control of start/stop actions on the target.

, Some of the RTW largels suppon.ed by The Malhworks are: DOS real time; Windows 951981NT; VxWorks

Chapter Two: Literature Survey

• On-line parameter tuning and data logging .

Due to The Mathworks open architecture both academic and many commercial developers have

extended the RTW to incorporate thei r custom hardware platforms. From the literature [KOZICK,

STYLO t , GANt, TQI, DSPACEl, 2, 5] there are namely two approaches to use the RTW, either to

use commercial products or to develop in house implementation. Both approaches provide viable

educational tools, and the Motion Control Group has opted for in house solutions, as development of

rapid prototyping tools is one of its active research objectives.

Sections 2.3 and 2.4 respectively, provide a look at some of the commercial and academic solutions

avai lable. These sections highlight the operation and general feedback from the use of !hese tools in

both the research and teaching environments.

2.3. Third Party Tools Based On The Mathworks RTW

This section reVIews commercial solutions based on the RTW framework and concentrates on

companies that are providing viable educational tools.

2.3.1 dSPACE

dSPACE GmbHB is German company that produces the Total Development Environment (TOE)

[OSPACEl, 4, 5] rapid prototyping toolset. The TOE is based on the RTW and is targeted at both

commercial and academic environments. It consists of the five components, shown in Fig. 2.5 and is

explained below.

I. The Mathworks RTW has been explained in section 2.2.5

2. Cockpit

This utility replaces Simuli nk's external mode control, but affords user similar

functional ity to interface to the target hardware for parameter tuning and visual isation.

Using the Cockpit tools users can develop custom GUls that contain graphs, gauges,

slider gains, knobs, etc.

3. Trace

This utility is a digital oscilloscope, which allows the user to get time histories of

block outputs.

4. MLIB and MTRACE

Theses are Matlab toolboxes from dSPACE that provide similar features to the

Cockpit and Trace utilities from within the Matlab environment. The purpose of these

toolboxes is to allow the use of Matlab analysis tools for on-line, real-time data

• wv.'W.dsP!!ce.cQm and www.dspace.de

'·1

Chapter Two: Literature Survey

analysis in applications like system identification and control optimisation.

Matlab

4,--__ --L __ ---,

MUB &MTRACE
Toolbox

Simulink
l""! ,..." Iu "''';'''I>,j urdu' l!ir-l~

TCP/ IP

2 '~~l
'---__ C_O_~.~-;-I-T--~I-----'-T.:.C'-'P/-"IP------+lg: ,spH:1

'.----'------,
TRACE

Digital Oscilloscope

5. Real-Time Hardware

PLANT

Fig. 2.5: dSPACE TDE too/set

dSPACE provides a range of hardware processor cards that consist of either DSP or

microprocessors processing elements, with combinations also available. These cards

use either the Texas Instruments DSPs or DEC ALPHA microprocessors [DSPACE2,

3]. In addition 110 cards are provided that interface directly to processor cards, and

connect to plant sensors and actuators. There are also Ethemet network cards that

allow dSPACE target platfonn to operate in network environments.

2.3.2 Use of dSPACE in Engineering Educatio n

dSPACE tools are being actively used at numerous academic institutions9
• This section provides a

review of some of this work and gives researcher's and student's opinion of these rapid prototyping

tools.

9 Bucknell University [KOlICKlj, The Mechatronies Laboratory at the Royal Institute of Technology [FENGI], University

ofOirona, [POUSI], University ofTcchnology, Nanyang Singapore [OANI].

'·8

Chapter Two: Literature Survey

Bucknell University (KOZICK l} USA has incorporated dSPACE tools into several of their courses,

which included:

• Exploring Engineering, a first year introductory course.

• Control systems.

• OSP.

A functional diagram of the rapid processing laboratory is shown in Fig. 2.6. The emphasis at

Bucknell is to allow a large volume of student to experiment with a wide variety of real·time

applicalion 10. This is accomplished by using a network environment.

Mathworks Mathworks • • • Simulink. workstation Simulink. workstation

TCPIIP

dSPACE dSPACE • • • BOX#1 BOX #2

PLANT PLANT
Liquid Level System OSP Filtering

Fig. 2.6: Rapid p rototypillg laboratory

The experiences at Bucknell have shown that rapid prototyping has allowed under·graduates to access

advanced real-time applications, which give the students a greater appreciation and understanding of

theoretical courses.

At the Mechatronics Laboratory at the Royal Institute of Technology [FENG 1] in Sweden, Prof Jan

Wikander has been using dSPACE tools for a masters level control course. His reasons for using rapid

prototyping tools are that they bridge the gap between thc theory of automatic control and

implementation issues; students from a mechanical engineering background, with limited advanced

software experience are able to implement real·time control systems. Further more the Simulink

environment lends itself to an easier understanding and visualisation of control system models.

Feedback from students has shown that they have positively received the dSPACE tools and Prof.

Wikander's controls course.

LO Thcse applications include: a liquid level control systcm; servomcchanisms for position of lascr pointing devices; magnetic

levitation ora metal ball; various OSP fihering applications.

,-9

Chapter Two: Literature Survey

The work by Sadasiva etal [SADASIVA] and Virvalo etal [FENGt], presented below, shows a

different application for dSPACE tools. These researchers use rapid prototyping in their actual

research.

Sadasiva etal [SAD AS IV A I] have used dSPACE tools to evaluate various PWM control algorithmsll.

dSPACE tools have allowed them to quickly implement different control algorithms and evaluate their

performances. Sadasiva etal have stated that rapid protoryping tools have dramatically reduced their

experimental time from months to a single week.

Prof Virvalo [FENGl) and colleagues from the Institute of Hydraulics and Automatio~ in Tampere,

have used the dSPACE toolset to evaluate several controllers, which included; one degree of freedom

pneumatic servo drive; one degree of freedom hydraulic servo drive; two degree freedom hydraulic

crane. Their feedback shows that the dSPACE toolset provides a powerful platform to implement

complicated controllers with relative easy.

From the above discussion it is evident that dSPACE provides a useful rapid prototyping toolset for

both research and teaching applications. The only notable drawback with this toolset is cost and

learning curve involved with the use of the Cockpit and Trace utilities [STYLOI].

2.3.3 Complete Experimental Solutions

Quanser Consulting, Inc l2 [WINCONt] and TecQuipment Limited D [TQl) are two of several

companies that provide complete (canned) experimental apparatus used in the teaching of control

systems and aligned fields. Their solutions are based on the RTW framework and are mainly targeted

for teaching applications. Both Quanser and TecQuipment provide similar solutions and it is sufficient

for the purposes of this thesis to discuss only one: Quanser was chosen as they provide more

information on their products at their website.

Linear Experiments Rotary Experiments Specialty Experiments

Linear Position Servo Rotary Position Servo 3 Degree of freedom (DOF) heliconter
Inverted Pendulum (JP) Ball and Beam 2 DOF helicopter
Self Erect ing IP Rotary lP Magnetic levitation
Linear Gantrv Crane Double JP Planar Rotarv IP
Double IP 2 DOF lP Coupled Tanks

I1 Theses algorithms include: PI voltage controller cascaded with predictive current control; Model based voltage control

cascaded with predictive current control; PI voltage controller cascaded with Vector current control.

1: www.quanscr.com

lJ 'WW.lg.com

2-10

Chapter Two: Literature Survey

Table 2-1: List 0/ experimental apparatus / rom Quallser

\V inCon Server \Vineon Server
WIN 95, Matworks WIN 95, Matworks • • Simulink Simulink

Remote User #1 Remote Use r #2

! TCPIIP

\VinCon Client W inCon Client
PC #1 P " • • • .

~
Quanser Plant Quanser Plant

e.g. Linear Inverted e.g. Rotary Inverted
Pendulum Pendulum

Fig. 2. 7: FllIlctlOll dIagram Qllallser system

Quanser provide a wide range of experiments, which include, linear; rotary; and speciality

experiments: a list is shown in Table 2-1 . A functional diagram of the Quanser networked WinCon

system is shown in Fig. 2.7, which consists of a WinCon server that is responsible for interfacing to

Simulink and WinCon client, which is the real-time harness that runs generated model code l
". An

interesting feature of the systems from Quanser and TecQuipment is that they both use the soft

real-time functionality of the Windows platform to execute target code (pC 110 cards are used to

interface to external plants.). This technique minimises system cost and complexity by eliminating the

DSP hardware. The drawback of this approach is that:

• The soft real-time makes sampling and latency times unpredictable ls.

• The rigid interface requirements limit the use of user designed custom plants.

• The PC platform also dimi nishes the application of these systems to courses that require the

student to get DSP and embedded system experience.

2.4. Academic Developments with RTW

2.4.1 Control System Development Environment

The Control System Development E nv ironment (CSDE) was developed fo r the Motion control

I~ WinCon can also run as a standalone systcm, whereby the WinCon server and client run on one PC.

l~ While the Window platform does not provide hard real·t ime functionality, it is being increasingly used in industrial

applications that do not have striclliming specifications.

2·]]

Chapter Two: Literature Survey

Group by Stylo and represents the group's fi rst implementation of an in house rapid prototyping tool,

and is therefore used as a reference point to the development of the RADE system. This section

reviews the CSOE environment.

I PLANT I.

Siml.llink "lode!

~!ii""" *?(,j r;);of BrnD
~ ;.l- iuo ~ ',l±

1" 11 nol'" I ' i

~ .. _I.
r--

f;;i;;r GWO.
r------------ --------_._--- " , , RTW E1ttemal ,
, Mode , , ,

Dual Port RAM I , , , , , : ! ::.: ..

, ,
--.----------~---.- .. . -.. -.

N

, ,

RTW

, ,
-------------~--------------, , , Y II~ I _ _____________________ J

--DSP target hardware

Fig. 2.8: FtlllctiOlfal operatioll Of cs DE

The CSOE is a cost effective rapid prototyping environment for both research and teaching

application. The CSDE uses Simulink 2.2 and RTW 2.016 and provides the following functionality:

• Seamless code generation

• On-line parameter tuning

• External visualization utility

• Support for the Innovative lntegration PC32 OSP card

• Asynchronous interrupt support

A functional representation of the CSDE17 is shown in Fig. 2.8 and from this figure the following

observation can be made:

• The network support of the RTW is replaced by DPRAM communication technique, which

makes CS DE a solely standalone system.

The standalone impediment did not however affect the operation of CS DE and it was well received by

16 CS DE does not operate with newer versions of the RTW as The Matworks have updated the internal workings of the RTW.

11 Further details on the internals of the CSDE system are presented in chapter 4.

2·12

Chapter Two: Literature Survey

under-graduate students that used the system in their final year design course. Shawn Sturgeon

[STURGEON I] implemented Field Oriented Control drive for an induction motor and Lynden

Moodley [MOODLEYI] implemented a DC motor position controller. Both these projects would not

have been feasible if it had not been for rapid prototyping tools. Additional support for rapid

prototyping is that both students found control systems a theoretical abstract subject, with very linle

appreciation for its practical uses. This however changed during the course of their design projects as

first hand experimentation allowed them to get to grips with control theory. This new found

understanding culminated in them both wining design awards in their respective years

2.4.2 Work at Other Academic Institutions

The Mathworks RTW framework has been well received by other academic institutions, which have

also opted to develop in house RTW targets. This section presents a review of some of these

developments and how they were incorporated into course syllabuses at these institutions.

At the University of Girona, [POUS 1] Catalonia Spain, Pous etal implemented a novel approach for a

control system laboratory experiment in which they have used a robot named ROGER. A functional

diagram of ROGER is shown in Fig. 2.9. The image processing system18 is used to provide XV

coordinates of a target object. This information is fed to a Simulink designed controller that provides

the actuators signals for the left and right motors. The objective of the controller is to track a moving

target while maintaining a specified distance. The ROGER experiment uses a PC plalform t9 to

implement the real-time target code and is aimed at allowing students to test different control

algorithms easily without much emphasis placed on the underlying coding. This experiment

incorporates both the simulation and live testing, which is an advantage of the Simulink environment.

I' This image processor is done on an independent processor and only the XY coordinates are feed to Simulink.

19 Pous ctal did not specify if a DOS or Windows real-time target was used. It is the author's opinion that a DOS target was

used, as it is a standard component of the RTW and provides hard rea.l-time specifications, with a maximum sampling

frequency of 400KHz.

Chapter Two: Literature Survey

Mathworks
Simulink workstation

TCP/IP

, ..
Simulink

Controller Image Processing camera I
On Target Platform

Right Motor I

Left Motor I
Fig. 2.9: Ftwctioft diagram of ROGER the robot

At the University Mining and Metallurgy, [GREGAI] Krakow Poland, Grega etal have built a RTW

windows target. Their implementation targets Windows 95/98/NT platforms with the emphasis of their

work to evaluate the real -time performance of the windows platform. This in house windows target

achieved a maximum usable sampling time of 10mslo and a latency of around 80~s. This windows

target is feasible for soft real -time21 experiment but lacks the precision needed for hard real-time

applications. The poor performance of this system is evident by Grega etal recommending the use of a

commercial windows target, RT-CON by lnTeCo Ltd, which provides better timing specifications.

At the University of Technology, Nanyang Singapore [GANI], Gan eta/ have implemented a RTW

target for the Texas Instruments TMS320C30 EVM board. The emphasis of this work was to produce

a bare bones low cost DSP rapid prototyping teaching solution. A functional diagram of their solution

is shown in Fig. 2.10. From this figure it is evident that the RTW external mode is not supported, as a

result no on- li ne parameter tuning or visualisation will be possible. Gan's etal rationale for not

supporting external mode is that quick repetitions of the RTW build process can be performed to

change parameters. while an external oscilloscope can be used for visualisation. By using this

technique a dramatic reduction in target complexity is achieved, albeit at the sacrifice of functionality.

This system has been used in a DSP course at Nanyang University and allowed students to implement

theoretically challenging DSP applications in short laboratory sessions. This would not have been

lG Using the Windows WtN32 AP I a maximum of sampling lime of I ms can be achieved using TIMER objects (ring 3). It is

also possible \0 use PC's 8254 timer for higher sampling time but Grega elal did nol do this.

11 Soft real.time applicalions don't require strict specificalion on: sampling time; interrupt latencics; and interrupt pre­

emption and priorities.

2·14

Chapter Two: Literature Survey

possible without the use of rapid prototyping tools and student's feedback has shown a positive

response to this method of teaching.

[[] I
Step

ISignal Generator

Simulink Model

.. 1.2 .. 7'01$0,1 ~ 1"---1 Scope
T~l'Itl,.fcn

I

! I

I RTW
Real-Time I

Code Generation I

~
r-------~ · · External • · Notlmple • · Executable ·

Code . _------.
• , , , ,--------------------------, ..

TMS320C30
Oscilloscope EVM

Mode
mented 1

• ------_ .

I
Fig. 2.10: F'lllcliollai diagram for TMS120Cl0 EVM RTlYtarget

2.5. Context of Work Presented in this Thesis

From the preceding sections, it is evident that The Mathworks RTW is being actively used in

commercial and academic , educational endeavours. The work undertaken in this thesis follows in this

vain and is targeted at educational applications. This section highlights the purpose and context of this

work and finally ends with a summary of project goals.

Is Ihis work mere d uplication?

NO. Rapid prototyping and more specifically the RTW are active research topics, in which the Motion

Control Group has been involved in from 1996 with the development of the CSDE system. Rapid

prototyping is making significant inroads in engineering education and other institutions are also

investigating its uses [GANI. GREGAI. POUSI). The Motion Control Group as well as other

academic institutions are also opting to develop in house rapid prototyping solutions that nre based on

the RTW framework. This route allows the researcher the flexibility to develop solutions around their

courses and they are not hamstrung by rigid solutions similar to those produced by Quanser and

TecQuipment.

2·15

Chapter Two: Literature Survey

The RTW workshop as a rapid prototyping framework is allowing interesting developments in the

field of engineering education and therefore warrants the attention of any academic institution intent

on using modem approaches to teaching. The Motion Control Group is therefore actively contributing

to this process by the development of new RTW targets. Notwithstanding this, the RTW itself is an

ever-changing framework, which allows greater functionality with every version update and the

Motion Control Group is in an ideal position to capitalise on new developments in this field. A point

in case is The Mathworks development of rapid protoryping tools for FPGA's. These tools are being

incorporated into the RTW framework and in the not too distant future it will help to drastically reduce

development time for FPGA and hybrid FPGA and DSP systems22 [GDRDONl].

The CSDE was the Motion Control Group's first attempt to use the RTW framework as a rapid

prototyping tool, but has been outdated with the 1999 release of Si mu link 3 and the RTW 3. The

Mathworks constantly upgrades the RTW and there have been significant changes and improvements

from RTW version 2 to 3. As a result tools based on the RTW have to be constantly maintained and

upgraded. Consequently a methodology is needed to ease version upgrades and this was not provided

with the CSDE system. The design approach adopted for the CSDE system was to provide an

operational system while minimising system complexity. This resulted in Stylo [STYLDl] removing

network support and not adhering to The Mathworks conventions, as a result CSDE met the

operational criteria but lacked the framework requirements for revision changes and inclusion of other

DSP cards21
• In the development of the CS DE system no attempt was made to document the internal

workings of the RTW in respect of the TCP/ [P external mode implementation. While this did not

impede the operation of the CSDE system it did hinder revision changes, as The Mathworks

implements revi sions using the TCP/lP external mode framework. This thesis aims to redress these

issues and provide a system that adheres closely with Mathworks conventions.

2.5.1 Categories of RTW Targets

For the RADE system to be properly contextaulised it is necessary to group work in this field into

different categories of RTW targets. This allows for an appreciation of which category the RADE

system is targeting and the intended functionality. Developments with the RTW target can be

categorised into namely types:

1. High-End Systems

n The University of Nlllal's Radio Access and Transmission Centre is currently involved in COMA research and uses FPGA

to implement high-speed signal algorithms. It is therefore envisaged that the RAOE framework will be expanded to

accommodate FPGA targets.

:u CSOE only supports the PC32 DSP card

2-16

Chapter Two: Literature Survey

These systems use targets with powerful real-time OS's and have e ither a OSP or PC

processor or a combination thereof. These systems are targeted at advanced

commercial and research applications, which include avionics and military uses. In

this category issues of hard real-time specification and code perfonnance are well

analysed. The systems developed at this level have immediate end product uses and

are not solely used for evaluation purposes. Companies producing solutions at this

level include dSPACE [DSPACE2, 5] and Wind River Systems [MATHWORKS4].

I. Medium-End Systems

These systems can be broadly categorised as the PC RTW targets segment and are

primarily used in applications with soft real-time specificati on and for algorithm

evaluation purposes. The advantage of these systems is that they can be easily

networked and can draw on sophisticated PC visualisation techniques. The systems

from Quanser [WINCONl) and TecQuipment [TQI] are good examples of this

category of RTW targets

2. Low-End Systems

At this level barebones systems are incorporated into the RTW. These systems include

medium to low-end DSP cards with no real -time OS and network support. These

systems have adequate bandwidth for evaluation of simple control algorithms and are

simple, cost effective platforms for educational applications. This presents a dilemma

to commercial developers, as there is little financial benefit in producing products in

this category. This has resulted in academics institution filling this gap and producing

in house tools. Example of these develops include the work by Gan [OANI] and Stylo

[STYLOI].

The RADE system is a hybrid of the latter two categories, as it aims to incorporate the benefits of

both the PC and OSP platforms:

• The PC will provide network support and visualisation.

• The DSP target will provide real-time code execution.

2.5.2 Summary Of Project Goals

1. Incorporate maximum RTW version 3 functionality into the RADE framework with the

following support:

• Seamless code generation and downloading.

• On-line parameter tuning.

• On-line visualisation within Simulink.

• Full network support

2·17

Chapter Two: Literature Survey

2. Document The Mathworks TCPIIP external mode implementation. This will allow for

proper understanding of the Mathworks frameworks and facilitate easy version

revisions. It will also allow OSP targets to be networked and therefore maximise

utilisation of an expensive resource, which makes the RADE system more attractive to

teaching applications.

3. The development of the RADE framework must confonn to an easily maintainable and

scaleable framework.

4. Apply the RADE framework to the PC32 and ADC64 target DSP cards from Innovative

Integration (INNOY ATIVE I, 3].

2.6. Conclusion

This chapter presented an overview of rapid prototyping and its application to the educational

environment. It is clear from the literature that both commercial and academic rapid prototyping tools

are finding increasing use in courses to provide students with more interactive laboratory experiments.

Theoretical concepts, which are traditionally not easy or practical for students to implement in short

laboratory sessions are now, becoming common place in rapid prototyping laboratories. In addition

researchers who are not skilled in software engineering can use rapid prototyping tools to implement

and evaluate complex applications in real-time.

The Mathworks RTW, which was also featured in this chapter, is being used extensively in

engineering education applications. The RTW in conjunction with Simulink provides an effective

teaching and research platfonn that is both scalable and customisable. The open architecture of the

RTW allows both commercial and academic rapid prototyping tools to be incorporated and is being

well received by students and researchers alike.

While this chapter highlighted uses of the RTW, it did not provide a detailed discussion on the internal

workings of Simulink and the RTW. These details are necessary for the implementation of RTW

targets and are presented in the next chapter.

2-18

Chapter Three: Overview of Simulink and the RTW

CHAPTER THREE:

OVERVIEW OF SIMULINK AND THE RTW

3.1. Introduction

This chapter provides an overview of Simulink nnd the Rcal Time Workshop, products frum Tht:

Mathworks, which form the core elements of the RADE system. A large part of the chapter is devoted

to RTW conventions, as this information will be required in subsequent chapters. Th~ aim of this

chapter is to highlight the important aspects of Simulink and the RTW in the context of work

presented in this thesis.

Matlab and Simulink, which form the core products from The Mathworks, are becoming popular tools

for modelling and simulation in academic environments [HUGH 1]. These products are being widely

used in both undergraduate and post-graduate teaching the world over, and are also acquiring a large

research user base due to the advanced add-on toolboxes [KOZICKI, GANl, MATHWOR.Kl]. With

the Real Time Workshop add-on extension, Simulink becomes a powerful open architecture, rapid

prototyping environment with numerous applications in teaching and research. The RADE system is

one such application

3.2. Products Available From The Mathworks

Matlab is the core product from The Mathworks, which is tailored for fast and efficient numerical

computation and visualisation. Matlab, which stands for Matrix Laboratory is a high performance

technical computing and visualisation tool, which provides an easy to use environment were problems

and solutions can be expressed in mathematical notation. This product is further enhanced by the

availability of numerous advanced application specific toolboxes. The Mathworks also produces a

dynamic graphical simulation environment called Simulink, which runs above the core Matlab engine.

Simulink is also available with application specific add-on blocksets. Fig. 3.1 shows the entire

Mathworks product range and distinguishes Matlab and Simulink components. Matlab and Simulink

are well-established software packages, which are being used in both the commercial and academic

fields. Its open architecture, which allows for the easy development of customer specific solutions. is a

further reason for its wide scale use. Both these packages have become the standard instructional tool

for courses in engineering. mathematics and science [MATHWORKS I].

3-\

Chapter Three: Overview of Simulink and the RTW

M a tla b
The core proceuing cngine

SIll ulink

Simu li nk Exttnsions
' Simulink Accelerator
'K ent-Tlme Workshop
'R ent-Time Windows
Tnrgct
' Stateflow®
B loe kuU
' OSP
' Fixed-Point
' Nonlinear Control Design
' Powcr Systems

M ATLAB Extensions
-MATLAB Compiler
' MATLAB C/C ++
M ath Libraries
' MATLAB Web Server
'MATLAB Rep ort
Generator

Toolb oxu
' Control System
' Communications
· Dau.base
' Financinl
' Frequency Domain
System Identification
-Fuzzy Logic
-H igher -Order Spectral
Analysis
-Image Processing
'L M I Control
'M odel Predictive Control

IJ.-A nalysis and
Synthesis
- N A G ® Foundation
-Neural Network
-0 ptim ization
' Partial Dirrerential
E q u. tio n
-QF T Con trol D esign
- Robust Control
-Signnl Processing
-Spline
-Statistics
- Symbolic M ath
-SyStem Identification
'Wa velcl

Fig. 3.1: Prod,lct range/rom The ftfathworks

The Mathworks provides an extensive set of computing tools with a complete li st shown in Fig. 3.1.

As shown in Fig. 3.1 The Mathworks extension products, allow Matlab and Simulink functionality to

be exported to external programs, by means of the C code or web server applications. There are also

two categories of add-on products, toolboxes for Matlab and Blocksets for Simulink. As shown in Fig.

3. 1 there are numerous Blocksets and Toolboxes from The Mathworks spanning a wide variety of

topics and it is beyond the scope of this thesis to discuss all. Therefore material presented herein will

only be that directly relevant to the author'S work, of wh ich Simul ink and the RTW form a crucial

part.

J·2

Chapter Three: Overview of Simulink and the RTW

3.3. A Overview Of Simulink

"What is Simulink?
Simulink is a software package for modelling. simulating and analyzing
dynamical systems. Its supports linear and non·linear systems, modelled in
continuous time, sampled time, or a hybrid of the two. Systems can also be
muitirate, i.e. have different parts that are sampled or updated at different
rates."

Using Simlllink Version 3./999

Simulink forms an integral part of the work presented in this thesis, and it is therefore necessary to

review this package to enable the reader to gain an understanding of it. A short overvi,:w follows in

the next section, using a simple example to illustrate the operation of Simulink. It then focuses on the

internal operation of this package, which is necessary to gain a proper understanding of the real-time

code generation process.

3.3.1 An Example with Simulink

L~ slmplc_seeond_ order SmEj
-'. "

,ew RI fdi \'j ImtJ.elIon F ormol T I ~O,

Dl ~1iI alf~ IQ I;,f!:l ~I • !!-<I "

I · I.,-,:,~, ~
11 Visualisation 1

CD I
Sltp Tr,nrl.r F~n

Rs.dy 00% de.55 • .. . • y. I
Blocks l-- 1 Solver 1

Fig. 3.2: A Simlllit,k simulation

Fig. 3.2 is a Simulink simulation of a simple second order system to a step response and is used to

outline the general aspects of a Simulink model. In Fig. 3.2 it is shown that a basic model consists of

blocks. an integration solver and a visualisation method. These topics are expanded upon in the

following sections

I. Blocks

Blocks are the elementary components of a Simulink model. There are numerous types of

blocks ranging from simple mathematical operations to advanced application specific blocks.

Fig. 3.3. shows some of the more common blocks available in the Simulink library

(MATHWORKS2].

).)

Chapter Three: Overview of Simulink and the RTW

........ .,... e 0_.. .._ , " , 11" ".... ._-
1=.&1 oIi .. .,_U ... "'3.11 -C''''''''''OII'-''_ _w _

o
.....
IITID

h ... ,.,., ..
0 •••• _

, i

f:j
11, .. ,

O.n '

ffi
SI •• WO' •

lli§
,.~.

0 •• "" ••

•

0)
"'"

fMJI
11 1101 ..,.-
~

to •• I ••• • ,

~ 1Z~ ~
c.... D 'e

I • .,.;" .. · ... , ~ I IT.III , ,.. ,

~ l® INf \1._ " .. u ... ~ ••
~ " "" ... ,,, -. ~.~.

,

+-··· 1 ~
To''' ' ToW. _ . ..

ill ~..,.. ~
... · 1 '

1~ · _h ~ y_e_D. CD s,,,,·., ... T<._ " ••

..... , .. '"

j .11 f
~" ;t , •••

v
T" 0., ..

Fig. 3.3: A sample oflll e comm oll Sil1ll1lillk library blocks

1/. Libraries

Simulink uses libraries to group common blocks and they have the added advantage of

allowing models that contain library blocks, to automatically update when the source blocks

are updated. The common Simul ink libraries have already been shown in Fig. 3.3

Ill. Simulation Parameters

I . The Simulink simulation parameters are set in the parameter window, as shown in

Fig. 3.4. The import parameters are:

2. Start and stop time

These parameters are used to set the duration of a simulation.

3. The integration solver

The solver is a fundamental component of Simulink, which is responsible for the

numerical integration of the ordinary differential equations of a model. There are

various types of solvers varying from fixed to variable step algorithms

[MATHWORK2 ,3J.

3-4

Chapter Three: Overview of Simul ink and the RTW

Max step size: J auto
F=7==d.

Initial step sIze: J auto "-_...I

output

Relative tolerance:

Absolute torerance :· f::c;:===ii

Fig. 3.4: Simul;"k simulatioll parameters

Iv' Visualisation

Visualisation of simulation data is an important aspect of Simulink with which it allows the

user to graphically interpret s imulation data. There are two methods to view simulation data,

firstly to use either a scope or XY graph block and secondly to pass the data to the Matlab

workspace and then use one of the, extensive set o f, Matlab! visualisation functions. Fig. 3.5 is

an example of the typical output of a scope block.

Fig. 3.5: rile scope hlock output of tile step respotlse of til e system if! Fig. 3.2

I Simulink al so supports interfacing to the Graph ic Uscr Intcrface (GUI) toolbox, which support the use of advanced

animation routines.

3-5

Chapter Three: Overview of Simulink and the RTW

V. Subsystems and Triggered Subsystems

Subsystems are used in Simulink to build hierarchical models by grouping parts of a model

into sUbsystems2
• This technique allows models to be constructed in a top-down manner by

placing high-level aspects on the first layer and "hiding" model detail s in lower levels. This

makes for easier understanding and navigation of complex Simulink models. Fig. 3.6 details

the concept of a subsystem of a simple case.

Subsy'stem

......................
'

...•...

I~~----~~":>--~~~~----~~,=>
Output

,

Contents of subsystem

Fig. 3.6: A" e.:t.:.ample of a sllbsystem

'" - """" -,
A OCe4 I~t Support

Fig. 3.7: All example of a triggered subsystem

An event driven subsystem is an extension of this process whereby a subsystem is only

executed when triggered by an external trigger source. This technique allows a subsystem

within a model to execute in an asynchronous mode, and is used in RTW implementations3 to

synchronise different sections of a model to external signals. Fig. 3.7 shows a triggered

1 A subsyslem is a Virtual Blocks, these blocks play no aClive role in a simulation. they are merely a technique to organise a

model in a graphically efficient manner.

j The dSPACE GmbH implementation of the RTW uses this technique [DSPACE5]

3·6

Chapter Three: Overview of Simulink and the RTW

subsystem.

3 .3.2 How Simulink Works

This section briefly outlines the internal operation of Si mu link, which will help with the understanding

of how the RTW converts a model into real time code. Every block within a model has the standard

characteristic detailed in Fig. 3.8, with the mathematical relationship expressed in equations [3-1],

(3-2] and [3-3]. It is evident from these equations that Simulink uses a general state space model to

. implement dynamical blocks [MA THWORKS2, 3] .

11

input vector

x
states:

continuous and d iscrete ~--
y .

output vecto r

Fig. 3.8: Gelleral m odel o/a $ imlllillk block {

y = ! o(t,x,lI) (output) [J. } }

Xc = IAt,x,u) (derivative) / 3-2 }

XtJ +1 = I" (t,x ,u) (update for discrete states) •
\vhere x = XCOlOtiJlYOIlJ + xtJisut ,t

/3-3}

The simulat ion process is a multi stage process that is detai led in Fig. 3.9:

1. Initialisation

This step consists of:

• Evaluation of block parameters.

• Reducing model hierarchy to a single tier.

• Sorting blocks for execution order

• Verification of correct signal flow between blocks.

2. Simulation stage

The simulation stage involves the repetiti ve process of finding the state derivative of the

model" and then integrating it to find the next state value. This process is further

enhanced by, integration algorithms, which support variable stepping and zero crossing

detection (MATHWORKS2].

3. Termination

At th is the stage termination routines for the model execute and output data is sent to the

workspace.

4 A models state and state derivatives can be evaluated because e3eh block within a model conforms to equations (3-1 j, (3-2],

(3·31 ·

3-7

Chapter Three: Overview of Simulink and the RTW

START -------------------ll

I I ,

I
I

I

calculate time for

r neltt sample (only for
variable sample time

blocks)

g ...
0 calculate outputs
c >od • update discrete

" states

~ in rn:ljor time stcp

" •
integration
minor steps

•
locale zero
crossing

3 r--'---'\\
-----'---------\ 1

1

-

END) \LI __________ J
Fig. 3.9: Flow diagram ojSillwlillk illternals

3.3.3 An Overview of S-functions

S-functions are a window into Simulink [MA THWORKS3]; they allow third party developers to

develop custom blocks for Simulink. It can also be said that all library blocks within Simulink

conform to S-function semantics, and therefore understanding S-function allows for a richer

understanding of Simulink. This section details the programmatic aspects of S-functions, which has

important relevance to the RTW. since custom blocks for the RTW are developed using S-functions

and generated code is modelled around S-functions; see section 3.7.3.

Mathworks provides two techniques for writing a S-function. either using a Matlab script or a

C-Matlab Executable (C·MEX). Since only C-MEX files can be used with the RTW, they are

discussed exclusively in the following sections.

/. H ow S-fimcliolJs work

An S-function model is uniform for all Simulink blocks, the input to output relationship is

shown in Fig. 3.8 and the mathematical model is described in equations [3-1], [3-2], [3-3). All

S-functions export a standard Application Program Interface (APO that Simulink can call

into. Fig. 3. 10 shows this process. Fig. 3. 11 details the step involved in the writing and

compiling of a C-MEX S-function. The next section defines The Mathworks conventions for

the S-function API.

3-8

Chapter Three: Overview of Simulink and the RTW

S-fimction

,------- -- ---- ---
Simulink ,--1--':: initialisation :

----------------,
,-- -- -- ----- -- --, simulation

loop
~---+_t_--1~' ' r simulation ~-+---7I , ' ____________ - ___ I

,---- -- ---- -- - --, , ' '--'r-': termination , ' • ---- -- ---- --- _A'

Fig. 3.10: 110w Simulillk calls illto a S-filllCtioll

---------------------, , ,

: Template S-function: """'_" __ "_
sfuntmpl.c ,/ , ,

'-- ----- ------ -- ------,
------ ~ I sample sf.c

t
Window compliant

C compiler

~
C-MEX

sample sf.dll

J
Ready for
Simulink

S-fimction

AP[
routines

Fig. 3.11: Theflow diagram o/writillg alld compilillg a S-jlmclioll

/I. Th e S-fimctioJI AP[

Fig. 3.12 details the function calls for a S-function and their sequence of operations.

1. mldInitializeSizes

This is the first function called by Simulink when interfacing to an S-function. It is

used to setup block characteri stics like, input and output port sizes, number of

parameters, block states, working variables and other block functionality.

2. mdlInitializeSampleTimes

This function is used to setup the sample times for as-function.

3. mldStart

This optional function is called once at the initialisation stage. It can perform any

additional application specific initialisation.

S A scaled down version of the S-function API is documented, covering only the section relevant to the work presented in

this thesis.

3-9

Chapter Three: Overview of Simulink and the RTW

4, mdlOutputs

This function calculates the outputs of a block when called, It uses the output equation

shown in [3-1].

5, mdlUpdate

This optional function is used to update discrete state ofa block.

6. mdlDerivatives

This optional function is used to evaluate the continuous time derivatives of a block,

and use the state derivative equation shown in [3-2]

7. mdlTenninate

This function is called at simulation tennination and is used to free up memory or

Initialization
functions

Simulation
loop

functions

mldlnitializeSizes (.....)

mldlnitializeSampleTimes (.....)

mldDerivatives (.....)

Termination{
function mldTerminate ('" ,.)

other resources used by the S-function.

Fig, 3,12: API/twctioJI alld their calliJlg sequellce

Ill. S imStruct, the data object of a S-fimcliofl

SimStruct is a data structure used by Simulink to mange all aspects of data transactions within

a model. The various categories of data stored in SimStruct are detailed in Table 3-1. A

Simulink model contains a single parent SimStruct and a child SimStruct for each block

within the mode1. Another feature of SimStruct is data encapsulation, i.e. all data is accessed

via macro functions, thi s allows for easy data manipulation without detailed knowledge of the

complex SimStruct structure6
.

6 For reference purposes the entire SimStfuct declaration can be found in the simstruc.h file found on the accompanying CO.

3·10

Chapter Three: Overview of Simulink and the RTW

Field Data Type Stor ed

Version Used for version control.

Parent Pointer to parent SimStruct of current child

SimStruct.

Root Pointer to model main SimStruct.

Sizes Stores S·function characteristic.

Parameters Stores parameters passed to S·function

Work Vectors Stores working vectors

Timing Stores timing data

States Store the states of a S· func tion
.

Derivative Stores derivative data.

Table 3·}.' Data stored ill S imStruct

3.4. The Real Time Workshop

In this and subsequent sections the Real Time ' Vorkshop (RT' V) (see section 2.2.5) is described,

highlighting aspects relevant to the work undertaken in this project. It will concentrate on

undocumented internal workings of the RTW.

'Vhat is the role of the RT\V?

The RTW is responsible for the entire rapid prototyping process, which consists of:

1. Converting a model into real time code.

2. Building code' and downloading to a target processor.

3. Provide a communication protocol for online parameter tuning, data logging and target

signalling.

4. Program architecture of code executing on target hardware'

7 Building code refers to the two-stage process of compiling and then linking eode into an c)(ecutable module .

• The RTW indirectly controls e)(ecution on the target hard\\'3Tc by specifying the run-time interface.

3-11

Chapter Three: Overview of Simulink and the RTW

3.4.1 An Overview of the RTW

The RTW [MATHWORKS4] is provided with an open architecture, which can be broadly categorised

into two parts, code generation and program architecture. The code generation process involves all the

physical steps required for converting a Si mu link model into a standalone executable module. The

program architecture defines the structure of the code generated and deals with the issues of setting up

a standard runtime interface, under which generic model code may be executed. With the RTW being

inherently complex, a hierarchical approach is used to describe it i.e. a system level description is

initially presented in the next two sections with subsequent sections containing the , lower levels

details.

(
'I make_rtw.m I

modeJ.md1 n !
system. Imf ,

'\ I. \..
mode1.mk / model.rtw /

,
TLC

• 1
\ model code / • ,

/ Run time
MAKE interface)

file s

Fig. 3.13: Flow diagram of code generatioll process

I. Code generation

With the help of Fig. 3.13 the stages involved in the code generation process are detailed as

follows:

1. make_rtw.m

This is the entry point of the RTW build9 process, I.e. it is the first function to be

called when a Simulink model is converted to real·time code. The make_rtw.m is a

9 The entire process of converting a model into real ·time code is referred to as the bulld process by Mathworks conventions,

however the process of compiling and linking code into an executable module is also referrC'd to by the same name. For

clarity the fonner shell by referred 10 as Ihe RTW build process.

3-12

Chapter Three: Overview of Simulink and the RTW

Matlab function, or m-file, that controls the execution order of the different

components involved in the RTW bui ld process.

2. modelto.rtw

This file is generated by a RTW function that converts the m odel.mdl' into the

m odel.rtw file. The model.rtw file describes the Simulink model using a text

convention (ASCII file), specified by the RTW. The reason for converting a

model.mdl file into a model.rtw is to allow the RTW maximum flexibility, i.e. a

model.rtw file can then be converted to any language by using the Target Language

Compiler (TLC).

3. The Target Language Compiler

The TLC is a proprietary tool that fonns part of the RTW, which is solely used for the

generation of model code from the model.rtw. The model code is generated in the

target Janguage12
• Currently Mathworks supports conversion to either ADA or C, for

the purpose of this thesis only C is used and therefore any future reference to the TLC

will imply conversion to C files. See section 3.5 for more details.

4. Model Code

This represents the model in real time code. A full description of the various C files

generated from the TLC is presented in section 3.5 .

5. model.rnk

This file is generated from the template make file and is used by the make utility to

build the model code into a target executable module. The conversion of the

system.tmf into the modeJ.mk file is controlled by the makeJtw.m function. See

section 3.6 for more detail.

6. Make Utility

A make utility is a programming tool that automates the build process of projects with

numerous fil es. See section 3.6 for more details.

7. Run-Time Interface

This component of the RTW represents, the hardware specifics, timing scheduler,

solvers, and communications layers. This interface represents the point at which the

RTW is customised for various target platfonns.

/I. Program architecture

The program architecture details how the real time mode code executes. The RTW

10 Thc tcrm model refers 10 a generic Simulink modeL

IL *.mdl file is the nalive format ofa Simulink file.

U The Target Language refers to the programming language of the target system.

3-13

Chapter Three: Overview of Simulink and the RTW

supports two code styles, one suitable for Rapid prototypingll and the other for embedded

applications l4
• For the purpose of the RADE system the Rapid prototyping style was

chosen as it offers the most functionality and flexibility. The rapid prototyping

architecture specifies a run-time interface that executes the generated model code. Fig.

3.14 illustrates an object-oriented view of the run time interface interaction with the

model code. [MATHWORKS4]. Section 3.7 expands on this topic in more details.

Run T ime
Interface

• Execution driver for model V~---l~-~ /'
Model Code

• ~~:outines < 12
• Solver I'-- '--------'
• External mode

Fig. 3.14: Objecf-oriellled view

3.5. Target Language Compiler

The Target Language Compiler (TLC) is a Mathworks tool that parses the intermediate mode1.rtw

file into either ADA or C IS
• The generated code produced by the TLC is fully customisable for

hardware specifics and performance tuning. The TLC is used to:

• Generate C code from the mode1.rtw file

• Modify generated code to acconunodate for hardware or algorithm specifics

• Optimise code for size or performance

• Generate optimised code for user defined s-functions

The operation of the TLC is detailed in Fig. 3.15

1. sample. rtw file

This is the intermediate text file that represents the model described by the sample.mdl

2. System target file

This is the entry point of the TLC, which is synonymous with the mainO function of a

C program. The purpose of this file is to setup different implementations of the RTW.

Section 3.5.1 provides more detail s.

U The Rapid Pro[otyping architecture includes the simstruct data structure, which by default places a perronTIance penalty on

the real·time code.

l ~ The embedded version strips out the simstruct data structure and external mode functionality for better code performance.

I' The RADE system only uses C code, and any reference to the TLC will imply generation ofe code.

3·14

,

Chapter Three: Overview of Simulink and the RTW

3. Block target files

These files specify how to convert blocks in the model into C code. Section 3.5.2

provides more details.

4. Target language Compiler functions

The TLC uses these functions when generating code [MATHWORKS5).

sample.mdl

m4j }B ...
5:i~ Tr)/!$!ltf("

-..
I rtw_nm.ke.m I

3 +
Block Target '~ sample.rtW /

files
f- ..

f---. Target Language h 2
Compiler

Target Language System.de
-

Compiler Function

S, Sb Se Sd Se Sf
sampie.e sample.h sample.prm sample _ export.pnn sample. reg sample.dt

'------------------- -----------------~ ~
model eode

Fig. 3.15: Operatioll Of tIll! Target Language Compiler

5. Model code

The generated code consists of the following files:

a sample.c

Source file for implementing model algorithm.

b sample.h

Header file used for global variable definitions.

c sample.prm

Parameter files that defines models tuneable parameters

d sample_exp0rl.prm

3·15

Chapter Three: Overview of Simulink and the RTW

Header file that contains source code produced by the user.

e sample.reg

Registration file, used for model registration and initialisation functions.

f sample.dt

This file contains model data types and is only produced if external mode is being

used.

The TLC process discussed above shows how the model code is produced and the different files

involved. Another important file in the TLC is the System Target File, which is discussed in the next

section.

3.5.1 System Target Files

The RTW supports numerous target types and is customisable to include new targets like the RADE

system. A system target file is used to identify and implement differen t real-time targets. The RTW is

shipped standard with numerous real time targets and their corresponding system target files are listed

in Fig. 3.16.

~ S IemTlI1 etFoluBI(JWI:m <>, .. la <>U(XInd o.del El

oot;;;;>'wC;-;';;cy;;;:;-
G.n.~ic ~ •• l-Tim. T.~9.t with aynamic mamo[y
Vi.u&l c/c++ ~roject ~.k.tile only fo r the ~9rt_ •• lloo~ t.rget
(lI au) La/o (Lynx-~eddadO:!l!:K) " .. l - Ti 2' .. rIJe t.
Rapid :!I uJ..tien !'arIJet
a-function Ta rqet
Tornado (VXWorks) R.al-Tim. !'arIJee

Fig. 3.16: List a/system largelfiles

1. SlrucllIre of System larget file

The simplified structure of a System target file is listed below, which is composed of 4

sections. Section one is used to setup default parameters for the RTW build process. Section

two, defines various variables used for the TLC process . Section three is used to include the

code generation function, which generates the actual code. Section 4 is used to setup platform

defined parameters.

Section 1
%%------------ Default Values ----~----------------.----­
%"10 SYSTLC: Generic Real-Time Target for PC32 \

3-\6

3.5.2

Chapter Three: Overview of Simulink and the RTW

%% TMF: pc32.tmf MAKE: make_rtw EXTMODE: ext_comm_c3x

SectIon 2
%'%---------------------- TLC setup vari bles------------------------
%assign MatFileLogging = 1
%assign TargetType = ~RT"

Section 3
%%-------------------- Include file
%include ~codegenentry.tlc~
Section 4
%%-------------- RTW Option Parameters ------------------
1%

BEGIN_RTW_OPTIONS

rtwoptions(1).prompt = 'MAT-file variable name modifier':
rtwoptions(1).type = 'Popup';
rtwoptions(1).default = 'rt_';
rtwoptions(1).popupstrings = 'rt_Lrtlnone';
rtwoptions(1).tlcvariable = 'LogVarNameModifier';
rtwoplions(1).tooltip = rprefix rt_ to variable name.'. sprintf('\n') •...
'append _rt to variable name.', sprintf('\n'), 'or no modification1:

Block Target Files

Block target files (see Fig. 3.15) play an important role in the generation of efficient code and it is

imperative to understand their function, as these are the files that have to be modified to accommodate

for algorithmic and hardware specific changes.

These files specify how C code is generated for Simulink library blocks, as opposed to using the

respective blocks C-MEX S-function directly. This technique of replacing calls into C-MEX S­

func tions by generated code, is referred to as S-filll ctioft ill-lillillg. The purpose of S-function inlining

is to reduce the processing overhead, by removing the use of S-function API. This allows for more

efficient and flexible code to be generated l6
. S-function inlining applies both to user defined and all

library Simulink blocks. In the latter case The Mathworks provides the block target files. The process

of S-function in-lining is best demonstrated by an example that follows in the next section.

I, A ll example OfS-filllctioll ;"fill;lIgn

Below is a listing of an S-function for a simple gain block. i.e. y=u .p. The first function in

this listing is the mdUnitializeSizes(SimStruct *8) which is used to setup block

specifications, which include number of input and output parameter, number of block states

both discrete and continuous, and various other parameters. The second function, mdlOutputs

implements the intended S-function operation and is called by Simulink when the output of

this S-function needs to be evaluated. This S-function is now used by the TLC to produced

" Individual blocks no long~ r require a simstruct of their own.

17 This example is found in TLC re ference guide version 1.2 {MATHWORKSSJ

3-17

Chapter Three: Overview of Simulink and the RTW

non-inlined code, which is shown below.

S-function fo r gain block
#define S_FUNCTION_NAME foogain
#define S_FUNCTION_LEVEL 2
#include ~simstruc.hM
#define GAIN mxGetPr(ssGeISFcnParam(S,O))[O)
static void mdl1nitializeSizes(SimSlruct 'S)
{

)

/lBlock specification
ssSetNumContStales (S, D);
ssSetNumOiscStates (S, D);

static void
mdIOutputs(SimSlrucl'S, int_T l id)
(

)

real_ T 'y = ssGetOutputPortReaISignal(S, 0);
cons! InpulRealPlrsType u = ssGetlnputPortRealSignaIPtrs(S, 0);
y[OJ = ("u)lOJ " GAIN;

static \laid
mdllnitializeSampleTimes(SimStruct ·S)(}
static \laid
mdlTerminate(SimStruct 'S) ()
#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "CQ_sfun.h"
#endif

From the non in-lined, TLC generated code below, it can be noted that this code calls into the

S-function above by using function pointers and the S-function API. This technique is very

inefficient, as each block requires its own child simstruct and both the S-function and

generated code ls have to be compiled for the target. There is also a large amount of

registration 19 code added to the model.reg file, which further slows down the initialisation of

the target system20
.

Non in-lined code
r
model.c

"' real_T untitled_RGNO = 0.0; r real_ T ground ./
r Start the model ·'
void MdIStart(void)
{
r (no start code required) .,
)
r Compute block outputs '1
void MdlOutputs(int_ T lid) These arc calls into
(the S-function APL
r level2 S-Function Block: <Root>/S-Function (foogaln) "' SimStruct memory
(is allocated for the

SimStrucl °rts = ssGetSFunction(rtS, D); S-function.

I. Generated code in a non·lined function is merely a wrapper that calls into the base S-function.

19 This code is used to register parameter, state variables, functions and so fonh, in the child simstruct.

:0 This code is not reproduced in this thesis as it is ofliule significance.

3-18

Chapter Three: Overview of Simulink and the RTW

)
)

sfcnOutputs(rts, lid):

r Perform model update . ,
void MdIUpdate(int_T tid)
{
,. (no update code required) -,
)
r Terminate function .,
void MdITerminale(void)
{
,. Level2 S-Function Block: <Root>/S-Function (foogain) *1

(,--------,

)

SimStruct ·rts = ssGetSFunction(rtS, O),~" __ -­
sfcnTerminate(rts);
)

#include "model. reg M

/* {EOF] model.c *1

These are calls to
the S-function API.

The in-lined generated code that appears below dispenses with the rigours of simulation

constraints placed on S-functions and generates code that is called directly. With the in-lined

generated code there is no child simstruct and this code is independent of the source

S-function file .

In-lined generated code
r
- model.c
. /
r Start the model */
void MdIStart(void)
{
r (no start code required) -I
)
r Compute block outputs */----­
void MdIOutputs(int_ T tid)
r S-Function block: <Root>/S-Function -/
rtB.S_Function '" 0.0 · rtP.SJunction_Gain;
)
1* Perform model update . /
void MdlUpdate{int_ T tid)
{
,. (no update code required) . /
}
r Terminate function *'

There are no calls
10 the S-function
API in the inlined
version of model.c.
Also, note that
there is no child
SimStruct for the
S-function.

t id MdlTerminate(void) ~ r---------,
lnlin ing eliminates r (no terminate code required) *' any unnecessary calls

} to S-funclion API.
#include "model.regft

r [EOFjmodel.c -,

The corresponding block target file used to generate in-line code appears below. It is evident

that there is a big saving in both the size and speed of in-lined code, this saving results from a

mOre streaml ined function which only implements the required operation: no S-function and

simstruct convention are used. It is worthwhile to note that the block target files completely

replace their respective C-MEX S-functions and they are, functionally independent of each

other. This independence is used extensively in Device Driver Blocks, which is discussed in

3-19

Chapter Three: Overview of Simulink and the RTW

the next section.

Block Target file
%Implements "foogain" "C"
%funclion Outputs (block, system) Output
r %<Type> block: %<Name> -,
%%

%assign y = LibBlockOutputSignal (0, , , 0)
%assign u = LibBlocklnputSignal (0, "", "", 0)
%assign p = LibBlockParameter (Gain, "", "", 0)
%<y> = %<u> • %<p>;

%endfunction

If. Device Driver blocks

Device Driver blocks are blocks that allow Simulink models to access peripheral devices, li ke

ADC, DAC, timers and interrupt controllers, on the target hardware. However, these blocks

function differently in simulation and real-time mode; therefore block target files are used to

allow real-time code to access peripheral devices while the C-MEX S-functions represent

"dumb"H Simulink blocks, used in simulation mode. An example of a device driver block

target files appears below. The S-function is not li sted, as it is merely an "empty" template

file.

Block Target fi le for a ADC
%implemenls "pc32_ad" "C"

%function Outputs(block, system) Output

(

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName»-'
r read in the corrected values from AJD and scale to +-10·'

%< LibBlockOutputSig nal(O, ,"M ,0 »=read _ adc(BASEBOARD, 0)1(3276.7);
%<LibBlockOulputSignal(0,"","",1 »=read_adc(BASEBOARD, 1)/(3276.7) ;
%< Lib8lockOutputSig nal (0, MM ,"M ,2»= read _ adc(BASEBOARD, 2)/(3276.7);
%<LibBlockOutpuISig nal(O, , ,3 »=read _ adc(BASEBOARD, 3)1(3276.7);

)
%endfunclion %% Outputs

3.6. The Code Build Cycle

The code build cycle (see Fig. 3.13) is the point at which the RTW uses the target hardware

compilations tools to generate an executable module. It accomplishes this task by using a system

template make file and a standard make utility. Section 3.6.1 gives an overview of make utilities.

Section 3.6.2, discusses the system template make file in more detail , and finally in section 3.6.3 a

flow diagram of the code build process is discussed.

3.6.1 Make Utilities

A make utility is used to manage the building of programming projects by automating the compiling

and linking stages. A Make utility processes a user make file, which consists of rules on how to build

11 These blocks perform no work during simulation mode. See listing of device driver ex.3mple S· funetion code.

)·20

Chapter Three: Overview of Simulink and the RTW

objects, libraries and executables [GNUl]. In the case of the RTW build process the model.mk file

represents the user make file.

Various vendors provide their own make utilities, for example Microsoft use Nmake while GNU22

uses Gmake. The latter tool provides more functionality in general, and is recommended by

Mathworks, [MATHWORKS4] it is therefore used with the RADE system. A complete description of

a make utility is beyond the scope of this thesis, please refer to the Gmake manual: an electronic copy

is found on the accompanying CD.

3.6.2 System Template Make File

The template make file, as the name suggests, is a used to generate the make file that controls the

building of the real time executable module. A template make file is made up of five sections, a

simplified template make file is listed below with the different sections highlighted. A discussion of

these sections follows.

I. Comments

Section 1
#-.-.. --.---. Comments •••• - ••••••••••• -----------.-----------
Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.

File : grt_vc.tmf SRevision: 1.43 S

Section 2
... ---.--.---•• Macros read by make_rtw --------------
SYS_TARGET_FtLE ::: grt_c3x.t1c
MAKE ::: gmake
HOST = PC
BUILD ::: yes
DOWNLOAD = yes
Section 3
#--••••••••••••• --.--- Tokens expanded by make_rtw .- •• - ••••• -.-.-•••••• -.-
MODEL ::: J>MODEL_NAME<1
MODEL_MODULES ::: J>MODEL_MODULES<]

MATLAB_ROOT = J>MATLAB_ROOT<J
Section 4
#-------••• ---.--.--•••••••• Tool SpeCifications ----------•••••• -_.----_ •••••••
#--------------•. -----.... -•.. I ncl ude Path ••••••••• ------------.---------------­
#-------•• ----.--.-•••• --•• -•• C Flags ------.---.-----.-•• -.--._-----.-••
#----.-----.---.. --.. Source Files -----------------
#------.----- Rules ••• -.--•• -.--------.--------
#---.... -..... -.-.---.-- Dependencies •••••• ---------------------­
Section 5
#------... --....•.. Rule for Downloading 10 Target •••••••••• -.----.----­
download:

ftpJ'rogram mode1.exe
echo -file sent 10 target system"

This is a standard comments section.

n GNU is pan of Free Software Foundation that produces open source software and development lools. Sec

hnp:llwww.gnu.org

3-21

Chapter Three: Overview of Simulink and the RTW

Il. Macros for make_ rtw.m fim ctioll

This section is used to infonn the rtw_make function: what make utility to use; which reat

time target is being built; if make is to be executed from the rtw_make function; if built

module is to be downloaded.

Ill. Tokens

Tokens are a means of passing variables to the model make file. For example, the following

token for the Matlab root directory I>MATLAB _ ROOT<I will be replaced in the model.mk to

the location of Mat lab, which is c:\matlabrll for a default installation.

I V. Build rules

The build rules section is where the most important work gets done. In this sect ion all

compiler,linker options, source files and libraries are defined , so to are the rules for compiling

and linking.

V. Dowll loadillg

3.6.3

This sec tion is only called if the building of the executable module is successful, and the

down load macro in section two is enabled. The rules in this section call an ftp like routine to

download the executable module to the target system.

The Build Flow Diagram

Fig. 3.1 7 details the flow diagram of the build process:

1. model.mk

The mv _make function controls the generation of the model.mk. file from the system

template file.

2 . Gmake

The model.mk file is then used by Gmake to build an executable model. The model

code and run time interface are also included in the executable module .

3. Downloading

Once the executable model is built, the rtw _make function calls Gmake again, which

processes the down load section of the model.mk file. An ftp program is called which

sends the executable module to the target system.

4. Target system

Target system receives executable module and waits for a start signal from Simulink.

) ·22

Chapter Three: Overview of Simulink and the RTW

make_Ttw.m ,

......... t ~
system.tmf L. ... ~.~.~ l
model .mk ,

model code

Gmake-fmodel .mk

Tun time interface

'/-------~--------~
Gmake -fmode1.mk download

ftp model.exe

Target System

Fig. 3.1 7: Flow diagram of the build process

3-23

Chapter Three: Overview of Simulink and the RTW

3.7. Rapid Prototyping Program Architecture

Run Time
Interface

Generaled
model code

A lie at ion La er

/~_-+I Execution Schedulcr, Solver,
SimStruct

System Independent Layer

Ma in function,
Peripheral Devices,

Communications

System Dependent Layer

Fig. 3.18: Rapid prolotypillg program framework

high

low

The RTW specifies a program framework for rapid prototyping to allow third party developers to

develop real time targets for their specific hardware. This framework specifies the internal working of

the target code and how generated model code interacts with the run time interface section. The rapid

prototyping framework consists of the three layers shown in Fig. 3.18. These layers are discussed in

the next three sect ions.

3.7.1 System Dependent Layer

This level represents the hardware dependant aspect of the target system, which has to be tailored to

the hardware being used. This layer is responsible for the following tasks:

I. mainO function

This is the entry point for target execution, and is responsible for the initialisation,

model execution and program termination.

2. Peripheral devices

The functionality of hardware devices is exported by functions that are callable from

the application layer. The init ialisation of timers and interrupts are also handled in this

section.

3. Communications

The purpose of this section is to incorporate external mode functionality into the target

3-24

3.7.2

Chapter Three: Overview of Simulink and the RTW

system. The model code calls into this section to send or receive data. Section 3.8

provides more details.

System Independent Layer

At this level a standard platfonn is developed, which represents a simulation real -time harness for the

application layer above. The code used at this level is provided by The Mathworks and is hardware

independent. This level controls the following functionality:

1. Execution scheduler

This section is responsible for the execution of the model code. In real-time code an

interrupt source is used to provide accurate timing for the scheduler.

2. Integration solver

The solver is responsible for integration of continuous states in the model code. The

RTW provides source files for all the solvers available in Simulink, which are then

compiled into the executable target code. It is worthwhile to note that real time code

does not use variable step solvers, as the step sizes are nonnally regulated by

interrupts which have strict timing specifications.

3. SimStruct

This section includes the simstruc .h, which contains the API for management of

simstruct data. A model with only in-lined S-function contains only a single root

simstruct.

3-25

Chapter Three: Overview of Simulink and the RTW

3.7.3 Application Layer

Model code resides at this layer. The structure of model code is detailed in Fig. 3.19 and from

inspection of this figure and the structure of a S-function, a close correlation can be drawn. The

following observations can be made: the model code represents a single S-function13 with each of the

individual S-function sections being merged2
.J into the respective section in the model code; from a

data perspective all child SimStructs are merged into the root SimStruct.

t Model Code t Main Program Initializations .
=- : mldlnitializeSizes (.) I
_I mldlnitializeSampleTimes (.....) I

mldSt.rt (.....) I

Model execution

mldOutputs (.....) I
mldUpd.te (.....) I
mldDerivatives (.....) I

Main Program Termination

mldTerm inate (.....) I
Fig. 3.19: Structure a/model code

3.8. The Mathworks TCP/IP External Mode

This section builds on the introduction of RTW External Mode given in chapters one and two. In this

section coverage of the RTW External Mode protocol and TCPIIP implementation is provided, as it

forms an important part of the RTW and certain aspects are not adequately documented in The

Mathworks literature. The details explained in this section are the result of analysis of the code

provided with the standard (The Mathworks) external mode implementation. The target system used

21 This assumes all S-function blocks are in-lined.

:' Merging of code is done by S·function inlining. Sce section 3.5.2

3·26

Chapter Three: Overview of Simulink and the RTW

for the standard external mode implementation is a networked PC running Windows 95.

External mode is a protocol that specifies a communication channel between Simulink and the target.

It allows for the control of the target operation from within Simulink. This approach is beneficial to

the user as there is no need to move out of the Simulink environment. The external mode protocol

allows for:

• Start! Stop control of the target. After a model has been build and downloaded to the target it

can be started or stopped from Simulink.

• Online parameter changes. This feature allows for various Simulink parameters to be changed

as the target is executing i.e. parameter are changed in the Simulink environment and

downloaded to the target. Tuning PID parameters online is a good example of where thi s

feature is used.

• Online data visualisation and logging. This feature allows data from the target to be di splayed

on scope blocks within Simulink. In addition data from Scope block can be passed to the

Matlab workspace where it can be save and manipulated by other Matlab functions.

Fig. 3.20 detai ls the TCPfIP architecture of external mode where Simulink is the client and the target

is the server. A more detailed coverage of the Simulink and target internals is provided in sections

3.8.1 and 3.8.3 respectively.

Simulink Client PC Target Server PC

I ·I " , .I"""~ DJ Target code
executing s., Tran~el ftn

TCPIIP on Ethcmet

Fig. 3.20: TCPI[P implemelltatiQII 0/ externa/m ode

3-27

Chapter Three: Overview of Simulink and the RTW

3.8.1 Message Frames Between Simulink and Target

During communication between the Simulink client PC, and the target server PC, standard message

frames1S are used by the external mode convention. This section describes theses frame formats.

During the setup of the external mode channel between Simulink and the target, two stream sockets26

are open: the first is used for messaging and is called the message socket; the second is used for data

uploading and is called the uplaad socket. Fig. 3.21 and Fig. 3.22 represents the message and upload

frames respectively. It is worthwhile to note that the message socket is bi-directional while the upload

socket is unidirectional. These are not physical limitations but rather external mode conv;ntions.

Exlernal Mode Message Frame

I Header 1 Data in target byte format

/' 1\ \

/ \ \
message

code size I Do ,0 I ' D,;n.1

Header Packet Data Packet

Fig. 3.11: Message/rame

External Mode U pload Frame

I Size I Data in target byte format I
\ \

\
Do ,0 1, D ,ize.l

Fig. 3.11: Dala "p[oad /rame

The message frame (Fig. 3.2 1) consists of a header portion, which further consists of a message code

and the size of the data packet to follow. The message codes used are listed in Table 3-2 with a brief

2' These frames refer to a software abstraction within external mode conventions and must not be confused with frames and

packet from the transpon layer ofa Te PIIP stack.

26 The term Stream Socket refers to a communication end point that guarantees data transmission [WINSOCK I, 2]. Sec

section 4.3.1 for an introduction to the WinSoek APt

3-28

Chapter lbree: Overview of Simulink and the RTW

explanation of their use. Section 3.8.3 also provides more details of the purpose and operation of the

various categories of the messages.

Category Message Code Purpose

Control actiolls
EXT_CONNECT The first message sent to the target to setup

the external mode communication channel.
EXT _DISCONNECT Used to closes the external mode channel

but leaves the target running
EXT MODEL START Used to start target execution .
EXT MODEL STOP Used to stop target.

Parameter download actions
I EXT SETPARAM I Send parameters to target.

Data up/oad actions
EXT SELECT SIGNALS These messages are used to setup the data
EXT SELECT TRIGGER logging for scope block within a
EXT ARM TRIGGER simulation.
EXT CANCEL LOGGING
EXT CHECK UPLOAD DATA

Responses siRnals
EXT_ CONNECT_RESPONSE An acknowledge message from target

when Simulink tries to connect.
EXT_SETPARAM_RESPONSE An acknowledge message from target once

---'parameters are uodated.
EXT MODEL SHUTDOWN Signals target has shutdown.

Table 3-2: Lisl of exlema f mode messages

3.8.2 Simulink Internals

On Simulink's client side of the external mode protocol there are three components, which are shown

in Fig. 3.23 and discussed in the following sections.

This is an intermediate file call ed from Simulink to send and receive external mode data. It is

only responsible for passing function calls from Simulink to the under lying communications

layer. The purpose of this module is to allow various communication channels to be integrated

into the communication layer. In the TCPfIP implementation ext_main .c call s into

ext_comm.c module, which provides the communication layer.

11. Ex/_silll .h

This component is the data structure that is used to pass external mode data between Simulink

and the communication layer. It manages all aspects of data use, including storage of function

pointers for the data conversion functions.

3-29

Chapter Three: Overview of Simuhnk and the RTW

Simulink in Extern a l Mode

Simulink Model
... _ _ .. _ _ .. __ __ _ _._ _ ... _ __ ... __ _ _ _._•....•.•...•...•..................... _._ ..•.. _ _._•..• -...... _ ... _ .. _.

[Ext mam.c

..... E~.~ .. ~E.~~.~~ ... ~.~X~.:. _ _

Ext comm.C

WinSock

Communication Laver

Fig. 3.13: Simlllillk illterlluls

III. COll vert.c

L[__ E_xt_s_im_o_h _J~
.

Data Conversion
convert.c

As discussed in section 3.8.1 all communication between Simulink and the target is done

using the target data byte fonnat, while this feature is redundant if the target and Simulink

have the same byte fonnat it is indispensable when this is not the case. In the case of the

RADE system th is feature is used as the real-time targets use the TMS320C3X byte fonnat

which is not compatible with the PC byte format. See section 4.4

Ident ity code Data type

0 Real maximum precision

I Real 32 bit precision

2 8 bit signed integer

3 8 bit unsigned integer

4 16 signed integer

5 16 unsigned integer

6 32 bit signed integer

7 32 bit unsigned integer

8 Bo01ean type

Table 3-3: List of Data types and their idel/tity codes

Table 3-3 lists the standard data types, and thei r identities used by external mode. Each of the

data types listed in Table 3-3 have two corresponding data conversion functions, one to

) ·)0

Chapter Three: Overview of Simulink and the RnV

convert from PC to target byte format, and one to do the opposite. These functions are located

in the convert.c file.

I V. Ext_comm.c

3.8.3

This module provides the communication layer by using the Windows Socket (WinSock) APl.

This module consists of the external mode functions, which send or receive messages.

Target Internals

As described in section 3.7.1 the external mode functionality falls into the system dependant portion of

the target, i.e. it is dependent on the type of communication channel used. In The Matworks TCPIIP

implementation the target application uses the eXI_server.c module. This module uses the WinSock

API27 [WINSOCKl, 2] to communicate over the network. Fig. 3.24 highlights the interaction between

the exl_server.c module and the higher layers of code on the target platform.

Target in External Mode

Application Layer Model code

SimStruct.h

System Independent Layer

Ext_server.c

Communication Layer Win Sock

Fig. 3.24: Target illtem a/s

,

.

-

7
Run time
interface

Fig. 3.25 elaborates on the message transaction process that occurs between Simulink and the target

platform. The ext_server.c module is responsible for:

I. Receiving and processing messages received from Simulink.

2. Generating messages and data frames being sent to Simulink.

The four categories of messaging (Table 3-2) that are transacted between Simulink and the target are

as follows:

1. Control actions

These messages are received by the ext_server.c module and are used to control

21 Chapter four provides a overview of the WinSock API.

3-3\

Chapter Three: Overview of Simulink and the RTW

execution on the target. They perform action of setting up the communication channel,

controlling model code execution status and terminating communications.

2. Parameter changes

When a change parameter message is received it is processed by ext_server.c and the

appropriate changes are made to parameter data contained in the simstruct. The model

code then uses the changed parameters when it executes.

3. Data logging

Uata logging consists of two parts, the setup and the sending of logged data. The setup

messages (Table 3·2) select the signals to be logged, duration and trigger type. Once

this is complete signals are sampled at each execution of the model code. This data is

then used by the ext_server.c module to form data frames, which are sent to Simulink

via the upload socket..

4. Response actions

These messages are generated from within the ext_server.c module and are used to

inform Simulink of the completion of an action on the target, For example the

EXT_SETPARAM_RESPONSE message is sent to Simulink to acknowledge a

parameter change.

For more details on the ext_server.c module please refer to Appendix B.

Message Frames

be~ccntargctand

Simulink • •
TCP/IP .- Data Frame

v-
) simstruct ,

I---
~model code ext_server.c'

t'--' r---
[oSimulink

Fig. 3.25: Message TrallsactiOllS

3.9. Conclusion

The material presented in this chapter provides a foundat ion for the customisation of the RTW for the

RADE system. It highlighted the important components and processes involved with the RTW and the

role of Simulink and the target hardware. The issues relating to code generation and program

architecture were discussed. It also provided the insight required for the customisation and adaptation

of these processes to accommodate various hardware platforms. The Mathworks conventions for the

rapid prototyping process will be incorporated into the design of the RADE system and this material is

presented in chapter four.

3·32

Chapter Four: Design Of THE RADE Framework

CHAPTER FOUR:

DESIGN OF THE RADE FRAMEWORK

4.1. Introduction

Chapter 3 described The Mathworks default TCP/IP external mode implementation that is targeted at

platfonns that have direct access to a socket API. This chapter draws on this work and presents the

RADE framework, which is an adaptation of The Mathworks TCPfIP implementation. !he emphasis

of this chapter is to provide a functional understanding of the RADE framework independent of the

hardware and implementation issues. This approach allows understanding of the framework, which is

applicable to any target card l
.

The first part of this chapter reviews the CS DE and The Mathworks systems and then presents the

RADE framework within the context of aforementioned systems. Subsequent sections expands on the

components of the RADE systems, while also paying attention to aspects drawn from The Mathworks

implementation.

4.2. Developing the RADE framework

Before an overview of the RADE framework can be presented it is necessary to first recap on the

RTW TCP/IP (MATHWORKS4] and the CSDE (STYLO 1] external mode implementations. The

reason for concentrating on the external mode protocol is that it represents the area where significant

differences exist between both these systems. The RADE framework is then described in perspective

of these systems.

4 .2.1 Mathworks TCP/IP External Mode Arch itecture

The Mathworks TCPIIP implementation has already been presented in chapter 3 and this section only

highlights the pertinent aspects with regard to the RADE framework. It is worthwhile to note The

Mathworks TCP/IP network functionality is built using the WinSock API and therefore references to

either are equivalent, i.e. they are used interchangeably in this thesis. Fig. 4.1 shows a functional

representation of The Mathworks external mode architecture from, which the following observations

can be made:

I The RADE implementation issues for the PC32 and ADC64 eards are presented in chapters 5 and 6 rcspectively.

4·\

Chapter Four: Design Of THE RADE Framework

• The Target system has direct access to a Socket API, which In the case of the Windows

platfo rm is Windows Sockets.

• External mode uses the client/server distributed computing model, where the Target is the

server and Simulink is the client.

Simulin k in External Mode Ta rget in Exte rnal Mode

~ Application I Model code I
Laler ... "-'"

Simu!ink Model ._ __ ._--_. __ ._ ... _._ ... _ .. _._----_._-_. System SimStruct.h
Independent

Ext_main.c
layer i

lnlerface Layer I t Communication Ext_server.c
-------------------Layer WinSock Ext _comm.c

WinSock

Communication Layer

Fig. 4.1: Math""orks TCP/lP external mode

4.2.2 CS DE External Mode Architecture

Simu li nk in External Mode
Taroet in External Mode •

~ Application I Model code I
Layer

... r_ ...

Simulink Model
...•. _._---_. __ .-. __ .. _ •.......... _-- System SimStruct.h

Independent

Ext main.c
Layer

-

Interface Layer I t Communication
Layer

ii_dpram.c

" _comm.c

Communication Layer

DPRAM

Fig. 4.2: CSOE external mode architecture

4·2

Chapter Four: Design Of THE RADE Framework

The CSDE external mode architecture, developed by Stylo [STYLO!] is shown in Fig. 4.2, and it is

evident that the TCPIIP component has been replaced with an in house DPRAM communication

protocol. This protocol was developed by Stylo and only works in a standalone mode. On the Simulink

side the communication layer (ii_comm.c) provides the data conversion functions and the operations

of these function do not confonn to The Mathworks conventions2
• The target (ii_dpram.c) side is also

modified to Stylo's protocol and deviates considerably from The Mathworks protocol. Due to these

modifications very little of the source code can be reused with the RADE development and an

effective rewrite is needed to incorporate The Mathworks TCPIlP conventions. With this said, it

should be reiterated that CS DE was the reference point for the RADE framework, without which

development on the RADE framework would have been hampered.

4.2.3 RADE External Mode Architecture

The RADE framework bui lds on the Mathworks TCPIIP external mode architecture because:

• It allows offor maximum functionality, i.e. full network support, on-line parameter tuning and

data logging.

• By adhering to The Mathworks conventions version upgrades of the RTW can be more easily

implemented).

• The Mathworks convention allows for the incorporation of various targets.

• A significant portion of The Mathworks code can be reused.

• The TCP/IP protocol also proved a useful means of Inter Process Communication ([PC)~ and

allows the RADE system to operate in a standalone mode with no changes.

Due to the complexity of the RADE framework the remaining part of this section is explained using a

hierarchical approach i.e. it introduces the various components of the RADE framework and provides

references to the relevant sections that provide greater detail. A functional representation of the RADE

framework is shown in Fig. 4.3, which comprises of three processes and the server to target

communications protocol. These are highlighted below:

1. Simulink: exccom11ls_c3x

This module provides the communication layer to Simulink and is based on The Mathworks

ext_colII lII.c module, besides for some modifications to the data conversion functions.

Further details are provided in section 4.3.

2. Server Application

~ Stylo did not implement any of the conversion functions found in the conven.c file as describe in chapter 3.

1 The Motion Control Group's experience with CSDE has shown that straying from The Mathworks convention presents

significant challenges when faced with version upgrades in the RTW.

~ IPC refers to the exchange of data between separate processes executing on a single platform.

4-3

Chapter Four: Design Of THE RADE Framework

This process was developed by the author, to allow target to Simulink communications. The

purpose of the server is to allow messages between Simulink and the target to be exchanged

seamlessly, i.e. Simulink "believes" it is communicating directly with the target and the

server is transparent to it. The reason for using this approach is that the OSP target does not

have access to a Socket API. Therefore the server utilises the target PC's WinSock API to

receive or send messages from Simulink. The server application is described in more detail

in section 4.5

Simulink in Exte rnal Mode
, .-------- -- ------- ------""- ----------- --- -"-----""--"--, , ,

Server Application ,
2 , ,

~
, ,

TCPI1P
ext_server""pc

_ fr ' .. -----------------
WinSock ,

Simulink Model ,
-.---_ .. " _._-_._-,---,"--_._-_._ ... _--_. __ ._.- , '-.. --.-".---."~".--.. ------.-.. ~--, , 4

Server to
Ex! main.c Target -

Communications

__ I!.!!~fface Lay-er -1 t
... I 4

ext_comm_ c3x.c

1 1'------------------ Communication Channel
WinSock ,

Communication Layer
, , , ,

Target ,
J C lient PC , , ,

---- -----"--- ------------------""""----,
Application I Model code I

Layer

Execution Schedulcr,
,

System Solver,
Independent SimStruct

Layer . --1. -------_._- .

Run time
interface Main function,

Peripheral Devices,
Communications

System
4

Dependent
Layer Server to

Target
Communications

Target PC
~- -- ---- .. ----" -----"" "-- ----"----- -- -- ... -.-------.---

Fig. 4.3: RADE extema[mode architecture

3. Target Application

This process comprises of two parts, namely the run time interface and the application layer.

These processes are adapted from The Mathworks implementation and more details are

4-4

Chapter Four: Design Of THE RADE Framework

provided in section 4.6

4. Server to Target Communication

This protocol was developed by the author to allow for communication between the server

and target. It is designed to allow existing code, from The Mathworks. to be reused in the

server and target applications while also being independent of the underlying hardware

communication channel. Details of this protocol are provided in section 4.7.

4.3. Peripheral Issues

The previous section highlighted the RADE framework in perspective of The Mathworks TCP/IP

implementation and subsequent sections in this chapter expand on these topics. However before such a

discussion can be presented a review of two peripheral issues needs to be presented. These issues

concern the Windows Socket APt and the target development toolset by Innovative Integration (IT)

and their role in the RADE framework. These issues are addressed below.

4.3.1 Windows Sockets

Windows Socket (WinSock) [WINSOCKI , 2] is the API that allows for network programming on the

Windows platfonn and is used by Simulink and the Server applications. The WinSock API is designed

to allow application programs to use a standard set of functions, which are conceptually independent

of the underlying network protocol, to communicate over a network. The WinSock specification

version 1.1 was designed in conjunction with the TCPIIP communication protocol but did not preclude

use of other network protocolss. This API is the industry de facto standard of network programming

and provides an efficient interface to a TCPIIP network (WASHBURNl].

The WinSock API is based on based on the UNIX sockets implementation found in the Berkeley

Software Distribution (BSD, rel ease 4.3)[MSDN2]. The WinSock API's basic data object is a socket:

this represents a communications endpoint. which is bound to an address and port number. A socket

object allows for the bi~directional exchange of data between sockets in the same communication

domain i.e. sockets exchanging data must use the same underlying network protocol. There are namely

two types of sockets, Stream and Datagram sockets. A Stream socket provides a reliable guaranteed

data transmission while a Datagram socket6 provides an unguaranteed transmission channel suited for

, Version 2 of the WinSock specification defines a Service Provider Interface. which allows network vendors to provide

WinSock suppon 10 any network prolocol.

6 Datagram sockets arc used for application that broadcast regular record oriented messages to numerous computers. The

synchronisation of system docks on a network is an example of an application that can use Datagrams.

4·'

Chapter Four: Design Of THE RADE Framework

burst messages. The RADE framework only uses Stream sockets as they provide reliable data

transmission.

1. Socket Parameters

4.3.2

This section elaborates on a Socket Address and Port Number [MSDN3]. The socket

address is associated with the Internet Protocol (IP) address. This address is a 32-bit number

that identifies a computer' and can be quoted using the following dot notation X.xX.X, where

X represents an 8-bit number. (Eg. 146.230.192.1)

The Port Number uniquely identifies a socket with a process i.e. multiple sockets can exists

simultaneously on a single PC and the port number is used to distinguish which socket

belongs to which process. Port numbers for common services like FrP, HTTP and others are

reserved. The Port numbers used for the RADE framework are 17725 and 700. Port 17725 is

The Mathworks default pon used for Simulink to target communication whilst port 700 is

used for the automatic downloading of the target application.

Zuma Toolset for Target Development

C67 DSP Card
PCI

Zuma Toolset

Standard
AP I

PC32 DSP Card
ISA

Fig. 4.4:ZIlma toolset

ADC64 DSP Card
PCI

An import component of the RADE framework is the DSP target processor. In the work presented in

this thesis, the RADE framework is applied to DSP cards8 produced by IT, who supply their DSP cards

with the Zuma9 Toolset. This toolset comprises of an extensive set of functions for both the hostl O and

target applications [INNOV ATfVE2. 4]. The Zuma toolset, shown in Fig. 4.4 allows for efficient and

ponable applications to be developed for IT DSP cards and comprises of two components, the host API

, It is also possible to use a computer nuehine namc for example demo PC.und.ac.za, which is tnen resolved to an IP

address .

• An overview oftne DSP cards used is presented in enapters 5 and 6.

9 The Zuma Toolset is a propriety development suit provided by 11.

LO The nost is the PC where DSP card is inserted.

4·6

Chapter Four: Design Of THE RADE Framework

and target library functions. These are highlighted below.

I. Zuma Host API

The host API provides functions, which allow for easy communications between the host PC

and the target DSP. This APl also exports core functions that are portable across the IT range

of DSP cards. This portability is exploited in the RADE framework because it allows similar

code to be used on different 11 cards with only the respective DSP card DLL being used. The

PC32 card uses the PC32.DLL and the ADC64 uses the ADC64.DLL. The functions exported

by the host API allow for:

I. Downloading of target applications.

2. Starting, stopping and resetting the DSP card.

3. Communication to target via Mailboxes. Section 4.3.2·m elaborates on this topic.

4. Block transfer of data between host and target.

5. Data conversions functions.

ll. Zuma Target Library Functions

The target library functions allow for the easy and quick development of target applications by

allowing the developer to use C style functions for virtually al1 operations. TIle target library

has a core set of functions that are portable while there are also target specific functions that

interface to specialised hardware components. The target library functions afford the

developer the following functionality.

1. Functions for Standard lIO.

2. Function for the control of processor features that would normally require

assembly language routines. Examples include the setup of timers, ADC's and

DAC's.

3. Full host to target communication functions.

4. Registering, enabling and disabling interrupt service routines.

Ill. Mailbox Operation

When interfacing to a target DSP via the ISA or PCI buses, mailboxes are used to send/receive

single data words" and provide a convenient technique for the control and arbitration of host

to target communications. This section outlines the relevant 2uma host and target functions

used for mailbox transactions, as mailboxes are used extensively in the server to target

communication protocol. (Described in sec tion 4.7) The PC32 and ADC64 cards both have 4

mailboxes and use the same functions definitions, however the underlying implementations

differ considerably'2. A few of the host and target functions used to access mailboxes are list

11 The" implementation for mail boxes uses a signed 32-bit integer.

12 The PC32 card implements mailboxes in DPRAM. The ADC64 mailboxes are implemented on the 5593] PCI matchmaker

le.

4-7

Chapter Four: Design Of THE RADE Framework

in Table 4·1 and Table 4·2 respectively.

F unction Protot yp e Description

Int read_mailbox(int target_handle. int box_number); read_mailboxO returns a 32·bil value from the
specified mailbox. when available. The function
will wait for data to become available.

void write_mailbox(int target_handle , int box_number. write_mailboxO writes a 32·bit value to the
int value); specified output mailbox and target. Before

writing. the function checks to make sure the
mailbox is empty (all previous data has been read),
and will wait for the target to empty the mailbox if
current data is still pending.

Table 4· } :Host mailbox/lIl1ctiolls

F u nction Pro totype Descri p tion

Int read_mailbox(int box_number); read_mailboxO wails for data 10 appear in the
specified incoming mailbox, then reads the 32 bit
contents of the mailbox.

void write_mailbox(int value, int box_number); write_mailboxO waits for the specified outgoing
mailbox to become empty, then writes the 32 bit
contents of the mailbox with the arQument value.

Table 4.1:Target mailbox/IIIICliolls

4.4. Modifications to the Simulink Communication Layer

This section describes the modifications, which were made to the Simulink TCPIIP communication

layer (see Fig. 4.3) , which will enable Simulink to communicate with a target that does not confonn to

the PC byte format. The modification involves two parts: the conversion functions and the registration

of these functions within the ext_sim structure. The following sections expand on these topics.

It is also interesting to note that while The Mathworks built in the functionality of supporting targets

with different byte formats , this functionality was never tested. During the development orthe RADE

framework bugs were identified within Simulink internals. The Mathworks support centre were

helpful in rectifying these problems and state that our implementation was in al11ikelihood the fi rst in

t he world to use the RTW·3 TCPIIP framework, for targets with non·PC compliant byte formats.

4.4.1 Conversion Functions

Conversion functions are needed because in certain instances the target platform and the Simulink PC

have different byte formats. Table 3·3 lists the nine data types that can be used in communication

between the server and target. Each of these data types requires two·conversion functions, one to

4·8

Chapter Four: Design Of THE RADE Framework

convert data from target to PC fonnat13 and the other to convert from PC to targetH format. Data

manipulation only occurs at the Simulink communication layer and all messages sent or received on

the Simulink side are done in the target byte format. This approach allows the target to process and

generate messages in its native byte fonnat, which saves processing bandwidth.

Table 4·3 lists the TI C3x and corresponding PC byte formats for the relevant data types. The

following can be noted:

• All data types on the TI C3x DSP are 32 bits

• Floating point formats differ

• Both platforms use Little Endian IS

With the aid of the information above and Table 4·3 it can be deduced that there are namely two

categories of conversion functions: byte ordering and floating·point conversions. These categories are

explained in the next two sections.

Data Tvpe T exas Instruments TMS320C3x IBM P C
C storage types Bit Size Format E ndi:ln Bit S ize F o r ma t Eud ia u

L- Liule L - Linle

double 32 TI L 64 IEEE L
Float 32 T I L 32 IEEE L
Char 32 Binary L 8 Binary L
unsigned char 32 Binary L 8 Binary L
Short 32 2's camp L 16 2's camp L
unsigned short 32 Binary L 16 Binary L
Int 32 2's Camp L 32 2 's camp L
unsigned int 32 Binary L 32 Binary L
BOOL 32 2's camp L 32 2's comp L

Table 4-1: Bylejorl/lals

I. Byte reordering conversions

Byte reordering is used for most of the data formats list in Table 4-3 excluding the floating·

po int types. An operational representation of the byte·reordering algorithm is shown in Fig.

4.5, and the following observation can be made, when converting from the PC to target format

or vice versa the data is merely repacked into the appropriate memory format. This repacking

is achieved by using pointer type casting and is illustrated below with the conversion function

used for target to PC char conversions.

Il These functions are used to interpret messages received from the target.

I~ Thesc functions are used to format messages transmitted to the target.

I' Thc Little Endian formats data with the Icast significant bit at position zero and most significant at position n, where n is

the bit size of the data type coneem~d .

4·9

,
8 0 : , ,

o

Chapter Four: Design Of THE RADE Framework

PC Byte Format

Bo B, B Bo

0 8 16

,-

,
B, , B Bo , , ,

32 64

TI Byte Format

Fig. 4.5: BYleformat

static void Int8_TargetToHost(
ExternalSim ·ES,

}

void · dst,
const char · src,
cons! int n.
const int dType) r internal $lmulink data type id . ,

IItarget has 32 bit format; host 8 bit format

int32_ T ·p_src;
intB_T ·p_dst;
int32_T i;

p_src=(int32_P)src;" data from target in 32 bits
p_dst=(int8_ P)dst: IIdata typecast to B bits for pc
for(i=O;i<n;i++)
{

}

p_src++;
p_dst++;

, , , , ,

(S·n)

As explained in section 4.4.1, each data type requires two conversion functions and the host to

target function for the char type is listed below. As the bulk of the function remains the same

only the part which differs is listed. It is worthwhile to note that these functions are reciprocals

of each other and only repack data: there is no numerical manipulation. The functions for the

other data types are based on a similar reordering algorithm and can be found in

eXl_convert_c3x.c file listed in appendix C

stalic void IntS_HostToTarget(......)
(....... .

p_src=(inI8_P)src: data from PC in 8 bits
p_dst=(inI32_ P)dst: "data typecast to 32 bits for Target
for(i=O ;i<n;i++)
{

4·10

Chapter Four: Design Of THE RADE Framework

)
Il. Floating point conversiollS

The two floating-point data types supported within the external mode framework are listed in

Table 4-3. The target OSP however only supports a 32-bit TI formatted, floating point data

type while the PC supports both a 32-bit and 64-bit IEEE format floating point numbers. The

double data type is therefore truncated to 32-bits and conversion functions supplied with the

Zuma host API are used. These funct ions are listed in Table 4-4 and convertjIoar type data

between the IEEE and TI formats. Complete li stings of the floating-point conversion function

can be found in the ext_convert_c3x.c file listed in appendix C.

Function Prototype

converts a
representation used by the the
representation used by the target for 32 bit floating

Table 4-4: Floatillg-poillt COIlVl!r!iioll /llllcliollS

4.4.2 Function Registration

An important part of The Mathworks external mode specification is the registering of the 18-

conversion functions pointer within the ext_s im structure. This allows Simulink to directly access

these functions for the processing and generating of messages. The code segment that is responsible

for this registration is shown below, with the complete function found in the ext_convert_c3x.c file

listed in appendix C. The regi stration of each data type entails the calling of a macro to add the

required func tion pointer into the ext_sim structure.

void ProcessConnectResponse1 (ExtemalSim -ES. MsgHeader ·msgHdr)
(

r
• Set up fcn ptrs for data conversion - Simulink data types . . ,

esSetDouble T argetToHostFcn(ES. Double_ TargelToHost);
esSetDoubleHostToTargetFcn(ES. Double_HostToTarget);

esSetSingleTargetToHostFcn(ES. Single_ TargetToHost): r assume 32 bit·/
esSetSingleHostToTargetFcn(ES. Single_HostToTarget): r assume 32 bit · '

esSetlntBTargetToHostFcn(ES. InIB_ TargetToHost);
esSetlntBHosIToTargeIFcn(ES. IntB_HostToTarget);

esSetUlnt8TargetToHostFcn(ES. UintB_ TargetToHost);

Chapter Four: Design Of THE RADE Framework

esSetUlnI8HostToTargetFcn(ES. UintB_HostToTarget);

esSetlnt16TargetToHosIFcn(ES. Int16_ TargetToHost);
esSetlnt16HostToTargetFcn(ES.lnt16_HostToTarget);

esSelU I nt 16T argetT 0 HostF cn(ES. Uint 16 _ T argetT 0 Host);
esSetUlnt16HostToTargetFcn(ES. Uint16_HostToTarget):

esSetlnt32TargetToHostFcn(ES.lnt32_TargetToHost);
esSetlnt32HostToTargetFcn(ES.lnt32_HostToTarget);

esSetUlnt32TargetToHostFcn(ES. Uint32_TargetToHost);
esSetU Int32HostT 0 T a rgetF cn (ES. Uint32_ HostT 0 Target) :

esSetBoolTargetToHostFcn(ES, Bool_TargetToHost);
esSetBooIHostToTargetFcn(ES, Bool_HostToTarget);

EXIT_POINT:
return;

} rend ProcessConnectResponse1 .,

4.5. Server Application

This section describes the server applicationl 6 at a system level and is intended to provide the reader

with a general understanding of this appl ication within the context of the RADE framework. The

Server application is primarily an "invis ible" helper that links Simulink to the target DSP as discussed

in section 4.2.3. To the best of the author's knowledge and according to the information available in

the open literature the RADE framework is the world's first RTW implementation to use a hybrid

target approach. that incorporates the target PC 's WinSock API (server applicat ion), and a DSP target

within The Mathworks TCP/[P framework17
. It allows a relatively inexpensive DSP card to be

incorporated within the RTW framework with full network support by "piggy backing" on the target

PC's WinSock API.

16 There are two versions of the server applications: one for the PC32 target and the other for the ADC64 target. 80th the

Visual C++ project files are contained on the CD attached. Appendilt F lists their locations

11 See section 4.4 for substantiation.

4-12

Chapter Four: Design Of THE RADE Framework

Server Processes
, ... _---------- ------------- ---

TCPIIP :

Simu li llk
PC

, ,

)

WinSock

Server to
Target Comms

Target
DSP

2

File Transfer

Sen'er
Appliution

Fig. 4.6: Sen'er applica/ioll

Graphic Use r
Inter face

A simplified functional diagram of the server application is shown in Fig. 4.6, which comprises of

three processes that are highlighted below:

1. GU]

The GUI's primary function is to echo text messages from the target, as this is the only

reliable means to debug the target L8
• It is also used to display status messages of both the

target and server and is invaluable during development. The GUl of the server is however of

little significance to a user of the RADE system since the messages echoed are of no use to a

user. A more detailed description is presented in section 4.5.1.

2. File Transfer Utility

The file transfer utility is used for the automated downloading of target application from the

Simulink PC to the target PC. It uses the WinSock API to perfonn the file transfer and

comprises of two applications, auto_download and scrvcr. Auto_download is an

application developed by the author, which is executed on the Simulink PC when the target

application is ready for downloading. The server application in turn receives and stores the

I1 A JTAG debugger is more effective but was only available towards the end of the development, in the: latter part of 2000.

4-13

4.5.1

Chapter Four: Design Of THE RADE Framework

target application on the target Pc. A more detailed discussion is presented in section 4.5.2.

3. Communications

The communication process of the server application is made up of the WinSock part and

server to target conununication protocol. The WinSock part is used to send and receive

messages between Simulink and the target PCs while the server to target communication is

used to transact these messages between the target and server applications. The

communication aspects of the server application are a critical part of the RADE framework

and therefore warrant the detailed discussion that is presented in section 4.7.

Graphic User Interface

This section describes the graphical attributes of the server application and its purposes. A goal of the

RADE framework is to allow for easy upgrading. Therefore a simple technique to view execution

status of the target and server application during development is needed: the server QUI provides this.

The GUI is shown in Fig. 4.7 and comprises of two display windows. The Server 10 WfN32, which

displays text messages from the PC and the Target 10 c3x, which displays target text messages,

The pnmary need for the server QUI is to provide feedback from both the server and target

applications. This feedback is then used to track bugs or the execution status on either application.

Messages from the target platfonn use the ANSI C print[statement while the PC platfonn uses the

MFC Cstrillg object, which allows printf like functionality.

: Server 1iir-J13

Fig. 4. 7: Server GUI

An added feature of the server application is the logging of these text messages to files, which is

4-14

Chapter Four: Design Of THE RADE Framework

useful for message analysis if the server application19 crashes. The logging feature is intended for use

during development only. The server application is prone to crashes during development because it is

interdependent on the target system, i.e. a bug on the target system can crash both the target and the

server applications. With this said it must be noted that the current server application has been

thoroughly tested by the author and found to be extremely stable i.e. it does not crash after repeated

Simulink model RTW rebuilds and continuous execution of the target code.

4.5.2 File Transfer Process

~------------ - ---- -- ---------------~

· • · Target · · · file · · · 1 · · •

Auto_download

Simulink PC

-- - --- ----- ---~

TCPIIP

~----------------------------------~ · · · • · · · · · ·

Target PC

Server

Target
file

• · ·

-------- - --------------------------~
Fig. 4.8: FunctiOllal represemaeioll oft"efile erat.sfer process

This section describes how the target application is transferred to the target PC. The Mathworks

TCPIIP implementation does not provide a utility to automatically download the target application

from the Simulink PC to the target PC20
. Therefore the author developed an FTp21 like process. The

combination of Auto_download utility, on the Simulink PC, and the Server22 application on the target

PC are used. Fig. 4.8 shows the functional operation of these two applications, and it should be noted

that the file transfer process on the target PC is a component of the server application as shown in Fig.

4.6, while the auto_download utility is an independent MS-DOS console application. The command

line parameters for the auto_download application are shown below. This application is automatically

executed from the RTW build process.

Auto_download -f[FILE_NAME) - s[SERVER_NAME]-p[SERVER_PORTj

19 PC and target messages are logged to the scrver_data.txt and targct_data.txt fiks respectively. These files are ovcrwnllen

on each bunch ofthc servcr application.

zo It does however allow for a third party, FTP utility to be called for the code build cycle. See Chapler 3.

21 The protocol used by the routines does not conform 10 FTP, but from an operational perspective does allow for file

transfers between computers.

21 These processes are adapted from C HAlTER and C II ATSRVR sample programs by Microsoft [MSDN1]

4-15

Chapter Four: Design Of THE RADE Framework

,- -------------- -- ----------- --- ----. r- -·- ------ -- --- ---- --- ----- -- ------,

l START J

~
Load target

application into memory

~
Try to

[-
connect to server PC

~
Send Data

~
Close Socket

and free memory

~
I END I

, , , , , , , ,

, , , , , , , , , ,

r- - -"'---
, , , , , --_.I.. .. , , , ,

,

, , , , , , , , ,
r"" - - ­
I
I
I

- __ ~ ___ I
,

, , , , ,
, , ,

Wait for
connect event

Wait for
Server terminate

signal

,_~i_f!1~}!~!'_ ~_G ~ ~'::'!~ _~~~,~'!~~:.!~ _____ ~ : Target PC: Server t ____ _____ ____ __ _______________ . ___ ~

Fig. 4.9: Flow diagram offile trailS fer process

Fig. 4.9 shows a simplified flow diagram of the file transfer process. The server application opens a

socket and then wa its for a connection signal from the auto_download application. Once the

auto_download application executes it, loads the target file and then proceeds to transmit it to the

server application. Once the file is rece ived by the server application it is stored on the target PC. The

auto_down toad application then terminates while the server application returns to the "wait for

connect signal" state.

4.6. Target Run Time Interface

This section describes the RTI, which fonns apart of the target application. The RTI is composed of

two parts, the system independent and the system dependent layers, which must be designed to

provide a harness on which model code can execute. The system independent layer is hardware

independent ANSI C code provided by Mathworks that is merely compiled by the TI C compiler. It

therefore does not require discussion here as it has already been di scussed in chapter 3. The system

dependent layer however, provides the core hub for target execution and is adapted from The

Mathworks default implementation. A description is presented below,

4-16

Chapter Four: Design Of THE RADE Framework

4 .6.1 System Dependent Layer

The system dependent layer of the RTI is composed of:

1. The entry function mainO

2. Communication aspects

3. Peripheral device dri vers

The entry function is the core hub, around which the rest of the target application executes. The

Mathworks specify the general structure, which is shown in Fig. 4.10. The communication aspects are

presented in section 4.7 and the peripheral device drives, which hardware specific are described in

chapter 5 for the PC32 card and chapter 6 for the ADC64 card.

The simplified flow diagram of the maillO function is shown in Fig. 4.1 0, with the individual steps

described as follows:

1. This step is used to synchronise the target and host systems at target start-up. This ensures

that data sent to the target is correctly processed and not lost due to the target being in a

undefined state.

2. The model code initialisation rout ines are executed and the root simstTUct is declared.

3. The target then halts until a start signal is received from Simulink.

4. Once the start signal is received the target registers and enables the ISR routine. This routine

is responsible for the real-time execution of the model code. See step 8

5. This is a foreground process that can be pre-empted by the ISR. It is responsible for

processing messages being sent or received from the server application.

6. This routine sends logged data to Simulink via the server application. The data being sent is

logged during the ISR.

7. This is a standard termination routine that shutdowns the target and resets peripheral devices.

Once the target is shutdown the server application holds it in reset until the target code has to

be executed again.

8. The ISR routine is model around Simulink 's simulation loop. See chapter 3.

8.a This routine maintains the absolute time, which is used by certain Simulink blocks.

8.b These routines are all generated by the RTW and represent the Simulink model being

executed.

8.c When data logging is enabled this routine logs each time step of data to a buffe r.

When this buffer is full it signals the foreground upload process. See step 6

4-\7

,

•

..
S

•

,

Chapter Four: Design Of THE RADE Framework

START
main

Sync with

Initialisation

Go,
S taT!
Signal

'"
A tlach and start
Simulation lo op

ISR

"

While
T arget

'""
'"
Process

Messages

Process
Up load Messages

Shutdown and

S T ART

------------------------j

•
..

Simulation
lo op I SR

~ ... ---- -.-------- .. . -.--.- .---------- ---- ~ · . : . · · · (START
ISR)

I.',---_-L-.l. _--,
l T ime;; T ime+step_s;ze I

MdlOutputs
MdlUpdate

.j,.

r t_ Update Discrete TaskS am pleH its
rt_ U pdateC ontinuousS ta tas

1.0 .j,.

I Store Upload data J
.j,.

RETURN FROM
ISR

Fig. 4.10: Flow diagram of RTf elltry filll ctioll

4.7. RADE Communications

This section discusses the communication detail s between Simulink and the target DSP, with the

server application being an intermediary. The purpose of this section is to provide a conceptual

overview of the communication operations within the RADE framework. The two importan t aspects,

which will be addressed, is the adaptation of The Mathworks TCP/IP code for reuse wilhin the RADE

framework and the operation of Server to Target Protocol (STP).

The operation of target PC communication within the RADE framework is shown in Fig. 4.11. The

4-1 8

Chapter Four: Design Of THE RADE Framework

Mathworks target side TCP/IP external mode implementation21 which is intended to be executed on

one platform is dissected into two parts:

• The WinSock part which runs on the PC

• The external mode message processing and generation part which runs on the target DSP.

This code dissection while not trivial from an implementation perspective allows the bulk of The

Mathworks TCP/IP code to be reused and this approach allows for maximum functionality. The PC

component of The Mathworks TCP/IP implementation is found in the ext_s rvJJc.cpp file and the

target component is found in the ext srv c3x.c. These files run on separate platforms and

communicate via the STP.

STP is designed to link the PC WinSock component with the target message-processing component

through a protocol that abstracts the underlying communication channel to a software layer. The STP

allows for flexible communication between the server and target that can be eaSily ported to various

target platforms. The next section elaborates on the STP.

/
Ser ver Application

Server Application WinSock
Processing

WinSock c- ---- --------- --- -------

~
proc~sing I PC side STp· I

Mathworks
STP* Hardware Comms

TCP/IP Channel
External Mode

~ , ,
Message

, ,

I I
,

Target side STP* Processing & , , ,
Generation ,

'- - -----------------------

~ Message
Target DSP Processing &

Generation
Target DSP

• Server 10 Target ProtGeol

Fig. 4.1 J: Server to target commUllicatiotls

4.7.1 Server to Target Protocol

------,

-

, ,

l< ,
P-. :
E-< :
(/:J : ,

,
-----'

The STP is primarily designed to allow for the transfer of external mode messages and up load data

between the target and server. It is accomplished by using the communication data structure shown in

Fig. 4.12. This structure consists of two Message Ports and two Up load Ports, which are overlaid

2l The Mathworks TCP/IP implementation has been described in chapter 3.

4-19

Chapter Four: Design Of THE RADE Framework

onto a shared memory resource. The message ports are used for external mode messages transactions.

The reason for having two is to allow for the full·duplex transfer of data i.e. the TO·TARGET port

only receives data from the server, while the FROM·TARGET port only sends data to the server. The

communication structure also consists of two upload ports, which are used for the uploading of logged

data. Two upload ports are used because a " ping·pong"Z4 technique is used for the uploading of data.

Both the server and target application regularly' poll the message ports and upload ports to check for

new data. A polling technique was employed, as opposed to the interrupt base approach used in the

CSDE system because this method does not compromise the real·time operation of the target i.e. the

larget will not be pre~empted by lower priority messaging overhead. The messaging and data logging

function therefore have minimal effect on the targets real·time performance. A further advantage of

this method is that it does not use any interrupt resources on the target which is useful in cases where

targets do not support PC to target interrupts or have no spare interrupts26
.

The message and upload ports are import components of the STP and warrant a detailed description,

which is presented in sections 4.7.2 and 4.7.3 respectively.

Se r ver Application

~ Message Port i Message Port i Upload Port i Up load Port
To Target From Target A B

I Target DS P

Fig. 4.12: Overview 0fCo mmUllicatioll Cha,,"el

4.7.2 Message Port

This section describes the funct ional operation and purpose of the mail port data structure. Mail ports

have two purposes, which are namely to facilitate transfer of external mode messages between the

~ A "ping-pong" technique consists of the target writing data to port A and then once finished the scrver rctricves this data.

Simultaneously while the server is reading port A the targel writes pon Band Ihen again hands off 10 Ihe server. This process

continues until all the data is transferred. The advantage of this technique is that it allows the server and target simultaneous

access to different pans of a share memory resource, thereby allowing for maximum data through put. This method is

recommended by 11 to achieve maximum data through put.

2j The Server application uses a iOms timer and Ihe target runs the polling routine in the foreground.

26 This applies to the ADC64 card as all its interrupt resources are used by on card peripherals, it does however suppon PC to

target interrupts by mUltiplexing interrupts, but is clumsy to implement.

4-20

Chapter Four: Design Of THE RADE Framework

server and target and to allow local communication between the target and server.

The detai led structure of the mail ports used is shown in Fig. 4.13. The server application uses the

TO-TARGET mail port to send data to the target and the target uses the FROM-TARGET mai l port to

send data to the server. This allows both appl ications simultaneous access to the shared memory

resource. Each mai l port is associated with a mailbox and a status flag. The mailboxes are used to

signal the respective applications when data in the mail ports are ready to be rece ived, while the status

flags arbitrate port access. Acknowledge signals are used to inform the respective applications when

data has been retrieved and to clear the port's busy status for new messages.

Server Applicati on

Port Status
Bus or Read

Mailbox 3 To Target Message Port

~ I ~ He'd«1 D." I~
Ta rget DSP

From Targct Mcssage Port

jHeader

Port Status
Busy or Ready

Data

Fig. 4.13: Graphical represelllatioll Of the Afes!;age Ports

A crucial feature of STP is to allow the incoming or outgoing external mode messages to be broken

into packets. Message packeting is needed, as the shared memory between the server and target is a

limited resource, and the sizes of these messages can be larger than the space allotted. Fig. 4.14 shows

the packeting of an external mode message being sent to the target. The message is first received by

the WinSock component of The Mathworks TCPIIP code; it is then broken into packets and

sequentially sent to the target via the TO-TARGET mail port. On the target side the packets are

reassembled and the complete message is passed to the message-processing component of The

Mathworks TCP/IP code.

The mail port structure declaration is shown below, and consists of:

typedef slruct (
msgJd msg_type;
int32_T current_size, full_size:
int32_T spare(2); /lspare data for debugging
MsgHeader msg_hdr: lIexternal mode header
int32_T buf[MP _BUF _SIZE);
} Msg_Port:p_Msg_Port;

I. message type (ms/Ltype)

This data type is used to identify to the application reading the mail port what data it is being

received and what action to take. This information is nonnally used to sequence data packets

4-21

Chapter Four: Design Of THE RADE Framework

being received.

2. current_size, full_size

These variables contain size information about the data buffer section of the mail port

3. spare[2)

Two integer variables used to send additional information with the mail port header. It was

primarily used during debugging.

4. message header (msg_hdr)

This is the external mode header component.

5. buffer (but)

This is a buffer that stores the data being transferred. Its size is limited by the amount of

shared memory allotted to the mail port and varies for different targets27
•

4.7.3

External Mode
Messa e

Server Application

I

I

WinSock
Processing

PC 'd STp· " c

Target side STp·

Message
Processing &

Generation

Target DSP

PS P4 PJ P2 PI
L -

I
PI I 1'2 I P3 I P4 I PS

\
External Mode

Message Transrer To
Tar2.el

Fig. 4.14: PacketisatiOIl of extemal mode messages

Upload Data Port

11

This section describes the upload port, which is modelled along similar lines to the message port. The

differences are primarily that: data is only transferred from target to server; the amount of upload data

is considerably more than message data; and there is also an emphasis on maximising data throughput.

A functional diagram of the upload ports is shown in Fig. 4.15; there are two ports A and B, which are

H On Ihe PC32 the buffers size is 50 while on the ADC64 it is 200.

4-22

Chapter Four; Design Of THE RADE Framework

used in a ping_pong18 fashion to transfer data.

On the target application a logging buffer is filled with data. When thi s buffer is full it is sent to the

server via the upload ports. The buffer is broken into packets and transferred to the server using the

ping-pong technique. The server sequences these packets and then transmits the entire buffer to

Simulink. This operation is similar to the packeting of the message port as described above and used

because the logging buffer is much larger then the size of the upload port's buffer.

I Server Application I
Mailbox 4 Uplood Port A Upload Pon B

~ I tH~cr l BUFA

Port A Statu:5
Busy Of Ready

Port B SUlrus

Busy Of Ready

I Target DSP I
Fig. 4.15: Graphical representation o/tlle Up/oad Ports

4.8. Conclusion

This chapter presented the RADE framework within the context of T he Mathworks TCPIIP

implementation. It highlighted and described the four components of the RADE framework which are:

• The Simulink Communications layer

• The Server application

• The STP

• The RTI for the target platform.

The RADE framework presents a methodology to incorporate medium to low end targets within the

RTW, which allows full external mode functionality. The next two chapters provide details of

application of the RADE framework to the PC32 and ADC64 DSP cards

21 The ping-pong technique is rct:ommcndcd by 11 for achieving maximum data through put.

4-23

Chapter Five: RADE PC32 Implementation

CHAPTER FIVE:

RADE PC32 IMPLEMENTATION

5.1. Introduction

In chapter 4 a functional overview of the RADE framework was provided, which was mostly

independent upon hardware and implementation issues I . This chapter discusses the implementation of

the RADE framework to the PC32 OSP card. This entails the development of Simulink device dri ves,

for the peripheral card UO and the customising of the RTW files as shown in Fig. 5.1. It also provides

an overview of the PC32 OSP card, the Texas Instruments TMS320C32 OSP and PWM card, as they

are required for the implementation of the RADE framework.

RADE Framework

Hardware Issues
a nd device drivers RTW Files

PWM Card PC32

1 TMS320C321
Expansion Expansion

-STP
-RTl
-System Files

Header Header
Ilnterrupts I

1 ADC, 11 DAC, 1

Fig. 5.1 : Overview of RA DE PC32 implementation

The implementation of the RADE framework can be broadly categorised into two sections:

• Hardware issues. This entails the development of device drivers and is presented in section

5.5. Before device drivers can be developed, an overview of the hardware is needed and

sections 5.2 to 5.4 respectively provide information on the PC32 card, TMS320C32 OSP and

the PWM card.

• RTW files, which cover the development of the RTI, STP and system files is presented in

section 5.6.

I Chapter 4 provides details of data type conversions function, which arc hardware specific.

5-1

Chapter Five: RADE PC32 Implementation

5.2. Description of PC32 Card

Fig. 5.1: Photo of PC31 cord

This section provides an overview of the PC32 DSP card from Innovative Integration (II)

[lNNOVATIVEI, INNOVATIVE2], shown in Fig. 5.2. It is intended to only describe the functional

operation of the card from a rapid prototyping perspective and neglects the complex low-level details,

which are not necessary for an understanding of the PC32 RADE implementation1
.

A block diagram of the PC32 card is shown in Fig. 5.3, which highlights the following aspects:

TMS320C32 DSP processor; on-board peripherals; external memory; Dual Port RAM (DPRAM); and

an expansion header. The discussion on the TMS320C32 processor is deferred to section 5.3 while the

remaining aspects are covered in this section.

As shown in Fig. 5.3 the PC32 card has 4 channels of ADC's consisting of l6-bit Burr Brown

ADS78053 ADC's[BURRBROWNI]. The ADC's are double buffered have a maximum sampli ng

frequency of lOOK Hz and can be triggered using three techniques:

• An external trigger signal.

• Either of the internal processor timers.

• By software.

Fig. 5.4 shows the different triggering methods. It should be noted that the ADCs triggers are grouped

into two banks as shown in Fig. 5.4 and jumpers 5 and 6 are used to se lect either of the processor

timers for triggering. For the RADE system all the triggering methods are supported but it should be

2 An electronic copy of the PC32 software and hardware manuals are found on the CD attached.

J The datasheet can be found in the PC32 hardware manual.

5·'

Chapter Five: RADE PC32 Implementation

noted that the external triggering has limited use due to the strict timing conditions specified by 0 . The

ADC's end conversion signal can also be patched to the processor's external interrupt 2 pin, with the

use of a jumper. II have also included anti-aliasing filters and differential signal amplifiers on each

channel to allow for high precision sampling. The sampling voltage range is al so adjustable but the

default range of +1- lOV is adequate for RADE applications.

14 4-channels 14 Bank of 14

Signal conditioning 4 ADC's

"
~ '" M " 4-channels 4 Bank of .p.. ~ 4

'" o § Signal conditioning 40AC's
U

Processor Pen""erals

'-::-

TMS320C32

1 1 128 K Word(32 bit) I K Word(32 bit)
o wail Slate DPRAM Expansion

Header

t
PC32 16 Bit ISA

DSPCARD Connector

Fig. 5.3: Functiollal diagram of tire PC32 card

There are 4 DAC's channels on the PC32 card, wh ich use the Burr Brown ADS780S2 16-bit DAC IC

[BURRBROWN2). The DAC's are double buffered and are capable of a maximum conversion

throughput of 200K Hz. Each channel is connected to a gain stage to allow for different output voltage

ranges4
• The DAC's conversions can be triggered by software or either of the two internal DSP

processor timerss.

The PC32 card is capable of supporting 128 K Words to 2M Words of static external memory (Fig.

5.3). The cards being used with the RADE system have 128 K Words of external memory. The

external memory used, supports zero wait sate access, which allows for fast external memory access.

A DSP cards performance and ability to run large programs is closely linked to memory sizes i.e. more

memory more power. The 128K words, memory size, on the PC32 was sufficient ror motion control

applications tested on the RADE PC32 system.

4 The default range of +/_ IOV is used

S Thc RAOE system uses software triggers as this frees up the timers for other uses and reduces the setup complexity for the

user.

5-3

Chapter Five: RADE PC32 Implementation

External

Software ADC Bank 0

r Trigger

JPS

JP6

ADC Bank I
Trigger

External

Software

Fig. 5.4: ADC trigger;IIg

The PC32 card (Fig. 5.3) also contains I K Word of DPRAM that is used for target to PC

communications. Both the target and the host PC can access this memory and access is arb itrated

through the use of four semaphores. The STP over lays the message and uploads ports within this

memory.

The PC32 card supports external interrupts from the host PC, ADC's, DAC's and external sources,

these signals can be patched to the processor's external interrupt pins with the use of jumpers. The

RADE system supports the use of all board interrupts within Simulink, however the PC interrupt has

little use within Simulink and is not supported.

5.3. TMS320C32

This section describes the target DSP used on both the PC32 and ADC64 DSP cards. It provides a

review of the salient features of the processor pertinent to the RADE system. The low-level details are

omitted as all target code written for the RAOE system is done in C, which is relatively independent of

the internal processor operation.

The TMS320C32 is part of TI C3X family of OSP processors [TEXAS I]. All processors within the

C3X family are C code compatible (Le. have C compliers available) and differ only by internal

memory sizes and types of on-chip peripherals. A functional diagram of the TMS320C32 is shown in

Fig. 5.5. This processor contains:

5-4

Chapter Five: RADE PC32 Implementation

• 32 bit data bus.

• 24 bit address bus.

• 32 floating point CPU.

• Two banks of 256 Words of on-chip memory used for either program or data storage.

• 64 words of program cache.

• 2 Direct Memory Access (DMA) channels.

• One serial port.

• Two internal 32-bit timers.

• Four external interrupts.

Program RAM Block RAM Block
Cache 0 1
64 x 32 256 x 32 256 x 32

/2' ! \
ftddre«~ bu~

-->0 External
...1)2 data bus Memory

/

2 channel

4 External DMA

Interrupts 32 Floating Point Controller
Serial Port J

CPU

J Timer 0 I 32 bit

I TMS320C32 I _I Timer I I I 32 bit

Fig. 5.5: TMS120CJ2 block diagram

The C32 uses a modified Harvard architecture internally whereby the program address and data buses

are separate from data address and data buses. This allows for simu ltaneous access to internal program

and data stores. These buses are multiplexed into a single address and data bus for external memory

access. The processor al so supports instructions pipelining which allows for one cycle instruction

execution provided the p ipeline is optimally used6
. The C32 has an instruction cycle time of 33ns

(30M Hz) with a maximum instruction through put of 60 Million Floating Point Operations

(MFLOPs)',

6 The TI C compiler is dcsigncd to produce highly optimised codc and ensures min imally pipeline conflicts.

7 Thi s processor includes parallel operations in its instruction set and is therefore able to execute two instructions in one

machine cycle. This is however not a sustainable level ofpcrformance.

5·5

Chapter Five: RADE PC32 Implementation

In the design of the RADE system, emphasis is placed on rapidly evaluating real-time control

strategies and not the efficiency of the code itself. As a result there is no use of on-chip memory and

DMA channels in the RADE system. While there may be performance benefits with their use, these

are offset by the aim of the RADE system to produce generic codes. With processor technology

changing rapidly, there is little point to hand optimise code as conventional wisdom dictates that it is

easier to use a faster processor. A point in case is the Tt 1999 release of the TMS320C33, which is pin

compatible with the C32 but 3 to 4 times faster [TEXAS2].

5.4. Description of PWM Card

The RADE system was designed for motion control applications but is applicable to a much wider

spectrum of applications, which also included motion control applications. Therefore a PWM add-on

card was designed by M. Walker [WALKERl], to interface via the expansion header to the target DSP

and provide PWM signal for an external inverter. This reduces the processing burden on the target

processor and allows for more complex models to bl;: implemented. The PWM card also supports a

Tacho interface, which allows for the easy interfacing of incremental rotary encoders to the target

DSP. A photo of the PWM card appears in Fig. 5.6 and a photo of the combined host PC, target DSP

and PWM card is shown in Fig. 5.7.

Expansion

Fig. 5.6: Photo ojPWM card

Fiber Optic
Transducers

A block diagram of the PWM card is shown in Fig. 5.8. This card primarily consists of two ASIC ' s by

Hanning Elecktro-Werke GmbH, the PBM 1/87 for PWM signals [HANNING I] and the TC3005H for

• The RADE system is focused on Educational Value as opposed to efficient real-time code.

5-6

Chapter Five: RADE PC32 Implementation

the tacho interface [HANNING2]. Both these ASIC's are memory mapped into the target DSP's

external memory space and setup by writing command signals to the respective control ports.

Fig. 5. 7: Tire DSP alld PWM plug imo the target PC

~

"E • 0
~

u~
~o . -

J. 0 " '" B
0
g
0
0 Hanning Tacho Hanning P\VM ~

IC IC

!
PWl\1 Fibcr Optic

OSP CARO Transducers

.... -----~ .. "
: Incremental :
:' .. _T!'~~? ... i

r···· · " .. ".,
: Inverter
: ... -.... ~

Fig. 5.8:Block diagram Of PWM card

The PBM 1/87 PWM ASIC provides switching signa ls for a 3_phase9 frequency inverter, and is

designed to generate a sinusoidal supply at the desired voltage, frequency and phase. The target

9 J.phase signals are intended for induction machines applications. Single phase operation is also possible for DC motor

applications

5-7

Chapter Five: RADE PC32 Implementation

processor is responsible for writing the required PWM setting while the PBM 1/87 performs all the

necessary calculations. The PWM ASIC also includes an intetrupt feature. which allows for the

synchronous sampling of current and voltage waveforms i.e. sampling only occurs when, no inverter

switching10 [STYLO I] is taking place and is therefore synchronised to the inverter.

The PWM card also uses high speed optical transducers to enable the PWM signals to be transmitted

via fibre optic cable to the inverter. This approach allows for:

• Electrical isolation between the computer and inverter.

• Prevents ground loops.

• Provide better noise immunity.

The use of fibre optic transducers improves the safety of the system and goes a long way to "student

proofing" the system, which is a high priority in an educational environment.

The TC3005H tacho ASIC allows for the simultaneous interfac ing of two incremental rotary encodes

to the target DSP. The tacho ASIC monitors the incremental tacho's signals and provides both position

and speed information. An added advantage of the tacho ASIC is that it allows for both digital and

analog incremental tachos to be used. The target OSP communicates with the tacho ASIC using a

memory mapped technique, as discussed above and is able to read position data from registers on the

tacho chip.

5.5. Device Drivers

An important component of the RADE framework is the development of target specific device drivers

for the RTW, as they allow generated code to communicate with target peripherals. This section

describes the device drivers used with the PC32 target and explains their operations. The RADE PC32

has the following peripheral incorporated into Simulink:

• ADCs

• DACs

• Processor asynchronous interrupt support and internal timers.

• PWM control block forthe PWM card ll
.

Fig. 5.9 shows the device driver library for the RADE PC32 with the device driver blocks. The

individual device driver blocks are now discussed in more detail.

10 Synchronous sampling allows signals to be sampled relatively free of switching noise.

11 The author acknowledges Stylo's ISTYLO Il contrihUlion in the development of the device drivers as the device drives

from the CSDE system providecl a good framework.

5-8

Chapter Five: RADE PC32 Implementation

"". D
" .. .""""

""'" "' AD TRIGOER

""" '" o.oa .,
""'" ... PWt.I 91 0dc

''''
""'"
""'"

PC32AOC PC320AC
... ,

PC32 1nl Support

Fig. 5.9: Device driver blocks/or PC32

5.5.1 ADC's

The PC32 card conta ins 4 ADC's and the PC32 ADC (Fig. 5.9) device driver block uses the IT

read ade function to read each of these ADCs. The read_adc function is a Zuma toolset function and

is described in Table 5~1. The pc32_ad.tlc file contains the device dri ver, of which the important

segment is listed below. The va lue read from the ADCs are 2 ' s complement signed integers and are

divided by 3276.7 to convert them into the voltage being sampled i.e. +/~ JOV. It is worthwhile to note

that after the divi sion the values are stored as 32 floati.ng~point numbers, and therefore, there is

minimal degradation to the dynamic range of the data. The %<LibBlockOlllputSignal(O, "", "" ,0» is a

TLC function used to write to the output ports of a block [MATHWORKS5]. In the case of the PC32

card, there are four output ports, which correspond to the four ADC's.

%function Outputs(block, system) Output
r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» 0'
r read in the corrected values from AlO and scale to -+~1 0·'

(
O/O<LibBlockOutputSig nal(O,"" , "" ,O»=read _ adc(BASEBOARD, 0)/(3276.7); % %ADCO
O/O<libBlockOutputSignal(O,"", ~H, 1 »=read _adc(BASEBOARD, 1)/(3276.7); %%ADC1
O/O<libBlockOutputSig nal(O, - , - ,2 »=read 3dc(BASEBOARD, 2)1(3276. 7); % %ADC2
%<libBlockOutputSig nal{O. - . - .3» =read _ adc(BASEBOARD, 3)/(3276.7); % %AOC3

}
%endfunction %% Outputs

Function Prototype Description

read_adc(unsigned int site , unsigned int channel); read_sdcO reads a 16~bit sample from the ADC
indicated by site and channel. The result is sign
extended to 32 bits.

Table 5~1 .- The read_adc fUll clioll

5·9

Chapter Five: RADE PC32 Implementation

I. ADC trigger

The ADCs used on the PC32 card are double buffered i.e. the reading of an ADC value and the

triggering12 are two separate operations. The ADCs device driver discussed above did not

perform conversion triggering, which is necessary after each sample. This intended omission is

rectified with the ADC trigger device driver that provides this feature. The device driver is found

in the adtriger.tlc file and a code segment representing the important part is listed below. The

ADCs are triggered by a memory write to their respective memory-mapped address; this does not

however affect the data stored from the pervious sample. The reason for separating the ADC read

and trigger operations is to allow for independent external triggerring of the ADCs via one of the

processors interrupts. This feature is used in the implementation of a DC motor control, discussed

in chapter 7.

5.5.2

%function Outputs{block, system) Output

{

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» */
r a write to those addresses triggers a conversion on NO *'

*{ADCO)=O; %% Trigger conversion
*{ADC1)=0; %% Trigger conversion
*{ADC2)=0: %% Trigger conversion
*{ADC3)=O: %% Trigger conversion
}

%endfunction %% Outputs

DAC's

The DAC's on the PC32 card are accessed with the write_dac function, which is described in Table

5-2. The device driver is found in the pc32_da.tlc file and the main segment is listed below. As with

the ADC's, the DAC's also use a 2's complement signed integer va lue. This va lue is generated by

scal ing the OUtput L3 by 3276.7 and then converting it to an integer. The DACs are triggered

immediately after a value is written to them by the cOllvert_dac function. It should be noted that the

DAC's used are double buffered and the writing of data and the triggering of a conversion are two

separate operations.

%function Outputs(block, system) Output

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» *'
r Start an output conversion·'

{
wrile_dac(BASEBOARD, 0, %<LibBlocklnputSignal(O,"","",0» *(3276.7»:%%write to latch
convert_dac(BASEBOARO. 0); %% trip conversion
write_dac{BASEBOARD, 1, %<LibBlocklnpuISignal{O,"M, MM ,1 »·{3276.7»;
convert_dac(BASEBOARO,1);
write_dac(BASEBOARO, 2, %<LibBlocklnputSignal(O,"","",2»*(3276.7»;
convert_dac{BASEBOARD, 2);
wri te_dac{BASEBOARD, 3, %<LibBlocklnputSignal(O,MM ,"",3»-{3276.7»;

Ll ADC trigger sources are discussed in section 5.2.

I) The value being passed to Ihe DAC is conslrained to lhe range +/·10. In simulations were larger signals are wrillen to the

DAC 's a gain block must precede these signals; this will allow for scaling to the desired range.

5·10

Chapter Five: RADE PC32 Implementation

convert_dac(BASEBOARD, 3):
)

%endfunction %% Outputs

Function Prototype

write_dac(unsigned int site, unsigned int channel, int

value):

convert_dac(unsigned int site, unsigned int channel):

Description

write_dac() delivers a new sample value to the
DAC indicated by site and channel. The DAC
output will change on the next DAC conversion,
triooered bv software or hardware.
convert_daeO triggers a conversion on the DAC
indicated by site and channel. A new data sample
wilt be available on the output line as soon as the
hardware conversion time has passed.

Table 5-2: Tire write_dacfilllclioll

5.5.3 PWM

The PWM block device driver (Fig. 5.9) is used to write the required PWM sening to the PWM ASIC.

This device driver is found in the pwmblock.tlc file and the main segment is listed below. During real­

time code execution the pollpwmO function polls the PWM AS[C until it is ready to receive data.

When this is true the requ ired output values UA and UB are written to the PWM ASIC. The last

setting to be wrinen depends on the control mode (CtrIMode) parameter, which specifies either the

frequency or phase angle register of the PWM ASIC.

5.5.4

%function Outputs(block, system) Output

{

)

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» . /

·(Status_word) = 129;
pollpwmO;
·(Data_word) = (int)%<LibBlocklnputSignal(O, ~~, ~~, 0»; %%UA
pollpwmO;
·(Data_word) = (int)%<LibBlocklnputSignal(O, ~" , "", 1»;.%%UB

if ((int)%<CtrlMode> == 1) r skip three values to write frequency·'
{pollpwm{j;
·(Status_word) = 897;}

pollpwm():
-(Data_word) = (int)%<LibBlocklnputSignal(O, "", ~". 2»; %% CtrlMode

%endfunction %% Outputs

Asynchronous Interrupt Support

The interrupt support block for the PC3 2 card provides functionality that allows the user to

synchronise execution of subsystems to external events. These events include external interrupts and

timer overflows. The parameters used to setup thi s block are shown in Fig. 5.10 and consist of:

I. External lnterrupt Type

This setting con figures external interrupts for either edge or level triggering

2. External Timer Pins (TCLKx)

5-11

Chapter Five: RADE PC32 Implementation

This setting is used to disable/enable external timer signals that are used to trigger ADC's and

DAC's. The sett ings are either External to disable timer signals or Timerx to enable signals.

The purpose of this parameter is to allow use of the internal timers without affecting the

tri ggering of the ADC's or DAC'SI4.

3. T imerX

This parameter is used to setup the frequency of timer overflows.

Bill< k I)mumf'lP.r~, PC]? 1nl Suppm1 EJ

EJO· Ell T IiggeIiIg I'..,. El
TQJ(() Scuc. , ... ""
TCl..K1 Scuee IEIltema' .3
Tm. 0 Freq

I""
Tinel lF,
0

~ NlI'I'lbert I!!!I! to bottoml "ii"'2J'4 9 1 0]

8 .. ~~19 El

Fig. 5.10: Parameters/or illterrupt block

4. Interrupt Numbers

5.

This is an array of the interrupt vector addresses for the respective interrupt sources. This

parameter is hardware specific and is setup once and does not need to be modified by the user.

The numbers use correspond to the fo llowing interrupt sources:

• (I): ExtemalInterrupt O.

• (2): Extemal lnterrupt I.

• (3): Extemallnterrupt 2

• (4): External Interrupt 3.

• (9): Internal Timer O.

• (lO):lnternal Timer I

Base Rate Interrupt

This parameter is used to select which interrupt is used to execute the main simulation loop.

The occurrence of this interrupt is expected to be regular as it is used to maintain the absolute

I. It is also possible to use jumper sening on the PC32 card to manually disconnect these signals however the software

approach allows for the same functionality without the need to modified jumper senings.

5·12

Chapter Five: RADE PC32 Implementation

time, integration of continuous states and data logging operations.

The previous paragraph described the interrupt block from a users perspective and ignored the internal

workings, which are necessary for a proper understanding of this device driver as it modifies the

workings of the run-time interface.

Initialisation

is interrupt
Base Rate

attach ISR
for current

interrupt
ifpresent

move to
next interrupt

Check
foc

110 final interrupts

Continue with
rest of Initialisation

Y"

.------------------------------------, , ,

attach ISR fo r
Si mulatton Loop

--

,.
Modified Simula tion

loop ISR
Attached to Base Rate

START
ISR

+
I Time=Time+step_size I

Call
Subsystem Function

..
Execute Normal Simulation Loop

+
RETURN FROM

ISR

Fig. 5.11: Flow diagram for tire modified RIIII-Time illterface

, , , , ,
--'

The Mathworks allows Simulink the use of triggered function called subsystems IS, which produce

independent functions when real-time code is generated. These functions can be called from the

interrupt sources. These functions have to be attached to their respective interrupt sources by the run­

time interface. A flow diagram detailing these changes to the mOi1l0 16 function is shown in Fig. 5.11.

There are two parts, the initialisation and the simulation loop ISR that require modifications. The

lS The Mathworks impose a restriction Oil triggcrcd subsystcm, which prcvcnts thcm from containing continuous state

variablcs i.c. all block within triggered subsystem with dynamical behaviour must be of the discrete type.

16 The standard mainO function is discussed in chapter 4.

5-13

Chapter Five: RADE PC32 Implementation

initialisation part entails the looping through each of the possible interrupts and installing ISRs for the

interrupts that are connected to subsystems. The unused interrupts are ignored. The interrupt that is

used to generate the base rate is attached to the simulation loop and the subsystem function is called

from within the modified simulation loop. The device driver for the interrupt block is found in the

iiinterrupt.tlc fi le

5.6. Customising RADE for the PC32

During the customising of the RADE system for the PC32 card the following aspects needed to be

addressed:

1. The Simulink communication layer as discussed in chapter 4.

2. The runtime harness as discussed in chapter 4 and section 5.5.4 above.

3. The implementation of external mode and the STP.

4. The system target file

5. The template make file.

The latter three issues listed above, are discussed in this section. The system files used for the RADE

PC32 are listed in Table 5-3 with more details present in the following sections.

System File Name

System Target File grCc3x.tlc

Template Make File PC32.tmf

Simulink Communications ext_comm_C3x.dll

Layer

Run-time harness PC32~rtm.c

Table 5-3: Files used/or tile RADE PC31

5.6.1 External Mode and the Server to Target Protocol

When applying the RADE framework to the PC32 card the implementation of the external mode and

the STP represents a large portion of the work. This section documents which files are used on the PC

and the target platforms and their respective functions, as shown in Table 5-4. In addition this section

also elaborates upon the physical implementation of the STP.

File Name Purpose

ext_srv...,Pc.cpp Implements WinSock part of external mode

iLcommsJ)c.cpp PC side of STP

ii....Pc32 .c Target side of STP

5-14

Chapter Five: RADE PC32 Implementation

File Nam e Purpose

ext_sN_c3x.c External mode message processing and data

I!..~~~~~~~~~"";;;O inq routines

Table 5-4: Files used/or extemal mode and STP

Server Ap plication

WinSock
Processing

ext srv -pc.cpp I
. --- --------- -- ------- -- . .

•

r I • r commsyc.cpp 1 •
PC side STP* 11

(Hardware Comms
Channel

r Target side STP* I iiyc32.c 1
'. . ----------------------- ..

Message

I Processing & ext srv c3x.c
Generation

Target DSP

• Server to Target Protocol

Fig. 5.12: Files used/orextemal mode and STP

Fig. 5.12 shows the entire interaction between the external mode and STP components with the

respective files involved. The ext_srvyc.cpp and ii_commsyc.cpp files are used on the PC platform;

the former is the WinSock component of The Mathworks TCPIIP external mode implementation,

while the latter is the PC component of the STP. On the target platform the exl_Srv _c3x.c and

iiyc32.c files are used. They respectively provide the external mode message processing and the

target component of the STP. The STP framework, discussed in chapter 4, explained the operation of

bOlh the message and upload ports but neglected the implementational details for the PC32 card. This

section now describes theses details i.e. the physical characteristics of the message and uploads ports.

The PC32 card as stated before, uses DPRAM to transfer data between the PC and target platforms.

This resource is mapped in both the PC and PC32 memory and can be accessed as normal memory

from either platform. This allows for the message and upload ports to be directly overlaid in the

DPRAM memory segment. The access to the ports themselves is controlled by the use of status flags

and mailbox sernaphores, which prevents both platforms from accessing the same region of memory

5-15

Chapter Five: RADE PC32 Implementation

simultaneouslyl1. The layout for the DPRAM region is shown in Table 5-5. As seen from this table,

each port buffers consumes the lion's share of the DPRAM memory, which allows maximum data

throughput. The upload port's buffers are significantly larger as to accommodate for the higher

volumes of logged data relative to external messages.

Port Size of port Location offset Description
I (32 b;t words) I (dec;mal)

From Server 57 (buffer 50) 0 This port recieves data from the PC

To Server 57 (buffer 50 57 This port sends messages 10 Ihe PC

Upload Buffer A 406 (buffer 400) ". This the first of the upload port used
for sending logged data to the PC

Upload Buffer B 406 (buffer - 400) 520 This the second of the upload port
used for sending logged data to the
PC

Total 926 The total size of portsr tor the
transfer of data is 926. 82 words are
unused

Table 5-5: DPRAM layout

The code listed below, has been extracted from the ii_commsyc.cpp file, and shows the overlaying of

the message and upload ports in DPRAM on the PC platfonn. This process entails the setting up of

pointers to their respective position in DPRAM. On the PC platfonn the logical address location of

DPRAM is non-unique and is found using the ZUMA target_cardinfoO function. This address is then

copied to the RAM_START variable and used as the starting point for the first message port. The

remaining message and upload ports are then sequentially overlaid into DPRAM.

void Setup_CommsO IIPC platform
(
" used to initionalised global data
/lOver laying two msg port onto DPRAM

CARDINFO- dsp = (CARDINFO-)target_cardinfo(O): 11 (CARDINFO-)isr->cardinfo:
RAM_START = (int)dsp->SusMaster.Addr:

T 0_ Target_MP=-(p_Msg_Port)RAM_ST ART;
F rom_ T arget_ MP=(p _ Msg_Port)((U I NT)RAM _ START +sizeof(Msg_Port»:
/lover lay upload buffer onto DPRAM after the two msg ports
Sue A=(p _ upload _ buf)((UI NT)RAM _ START + 2-sizeof(Msg_ Port»;
Buf _ B=(p _ upload _buf)((UI NT)RAM_ START + 2-sizeof(Msg_ Port) +sizeof(upload _but);

llinitialise buffer parameters
Buf_A->current_size=O;
Buf_A->free=UPLOAD_BUF _SIZE:
Buf_A->full_size=O;

The code listed below, has been extracted from the iiyc32.c file, and details the overlaying of the

message and upload ports in DPRAM on the PC32 card. This function is very similar to the one listed

above with exception that the starting location of DPRAM on the target platfonn is fixed at address

Ox 1 000. Aside from this fact both these functions operate in a similar fashion.

void Setup_CommsO /ltarget platform

17 It is however possible for different regions of DPRAM to be aeeessed simultaneously by both the target and PC platforms.

5-16

Chapter Five: RADE PC32 Implementation

(
I/used 10 inilionalised global data
/lOver laying two mS9 port onlo DPRAM

From_Server_MP=(p_Ms9_Port)RAM_START;!I RAM_PORT=Ox1000
To_Server _ MP=(p _ Msg_Port)((int)RAM _ START -+sizeof(MS9_Port);

/lover lay upload buffer onto OPRAM after Ihe two msg ports
SuC A= (p _ upload _ buf)((int)RAM _ START -+ 2* sizeof(Ms9_Port);
BuC B=(p _ upload _ buf)((int)RAM _START -+ 2· sizeof(Msg_Port) -+sizeof(upload _ buf));

5.6.2

f/inilialise buffer parameters
Buf A->current size=O;
BuCA->free=UPLOAD_BUF _SIZE;
Buf_A->full_size=O;

System Target File

The system target file used for the RADE PC32 system is the grf_C3x.tlc file and is based on the

standard generic real-time system target file provided by The Mathworks (grulc) [MATHWORKS4].

The modifications to this file involve two parts; the default parameters and RTW build options

The default parameters are used to setup the:

1. System description

2. Template make file

3. The RTW build function

4. External mode Simulink communication layer

The code segment used to set these parameters is listed below.

%% SYSTLC: Generic Real-Time Target for PC32 \
%% TMF: pc32.tmf MAKE: make_rtw EXTMODE: ext_comm_c3x

The RTW build options are used to pass user defined parameters to the make file. This is

accomplished by adding in new variables into the option window and by modifying the RTW build

option section of the system target file. The segment of one of these variables is li sted below, with the

entire file being li sted in appendix C. The parameter being defined in this segment is the server name.

rtwoptions(6).prompt = 'Server name';
rtwoptions(6).type =- 'Edit':
rtwoptions(6).default = 'magash';
rtwoptions(6).tlcvariable = 'server_name';
rtwoptions(6).makevariable = 'SERVER_NAME':
rtwoplions(6) .tooltip = rEnter name of server computer'};

The complete option window is shown in Fig. 5.13 and consists of:

1. MAT File modifier

This parameter is used when data is being logged to a MAT file and is not supported by the

RADE system.

5-17

Chapter Five: RADE PC32 Implementation

2. External Mode

Used to select an external mode build.

Descrtption
The following options are used to tailor the generated
code.

Code Generation Options

MAT-file variable name modifier: rL j:"
P' Extemal mode .r..;;;... _____ ..

Functton Management: INone El
n T reShora.l.. r2""O"'oF=====~='~1

5000

Server name'
Port Numbor ~~~------======~I
r QuiCk Builcd"'Pr."..,OJ"'o"ct"' ____________ U
Heap Size: 0><17000

Stack Size 'r;:Ox-4"O"o:-;oF===~---------i1
Loop rolling threshold 6
r;: Show eliminated stat~o-m-o-nts.,...---------41
... Verbose builds

Inline invariant Signals

Local block outputs

Fig. 5.13: RTW build oplion window

3. Function Management; Function Split and File Split Threshold

These parameters are a standard feature of the RTW and are used to manage file and function

sizes. As this feature has minimal impact on the RADE system it has not been used.

4. Server and Port

These parameters specify the location of the target PC and are used for the automatic

down loading of the target application.

S. Quick Build

This flag, when set speeds up repeated model builds by preventing unnecessary compilation of

static files.

6. Heap and Stack

These parameters are passed to the linker and setup the required heap and stack sizes.

7. Loop Rolling Threshold

This parameter is a standard feature of the RTW and is used for code optimisation by

wrapping TLC algorithms that repeat more then the threshold value, into a for loop.

8. Show Eliminated Statements

Used to comment statements that are eliminated by the TLC optimising process.

Chapter Five: RADE PC32 Implementation

9. Verbose builds

Used to enable feedback during the RTW build process.

10. Inline Invariant Signals

Used to inline constant signals that are passed between blocks.

11. Local Block Outputs

Used to place block output variables into a local scope as opposed to a global scope.

5.6.3 Template Make File

The template make file used for the RADE PC32 system is the pc32.1I1if file. This file is responsible

for producing the make file that builds the target application. As template make file is well

documented, this section only highlights a few of the changes that have been made to thi s file. The

complete file listing is found in appendix C

In the previous section the RTW build parameters were discussed. These parameters are passed to the

make file by using tokens. The segment that is used for this process is listed below.

SERVER NAME
SERVER:=PORT
QUICK
HEAP
STACK

= I>SERVER_NAME<I
= I>SERVER_PORT<I
= j>QUICK_BUILD<1
= l>HEAP _SIZE<l
= l>STACK_SIZE<1

The section responsible for the downloading of code is listed below. Once the target application has

been built the make file down load section is called and the auto_down load application is executed.

From the listing below it is evident that make utility inserts the appropriate parameters for the

download process, which are passed from the RTW options window.

"_ROOT = $(MATLAB_ROOT)\rtw\c\ii
PC32_DOWNLOAD = $(II_ROOT)\bin\auto_download.exe
download:

S(PC32_DOWNLOAD) .'$(PROGRAM) ·s$(SERVER_NAME) ·p$(SERVER_PORT)
#the line above expanded typically looks like the line below:
c:\mablabr11\rtw\c\ii\bin\auto _down load -fsample _model.out -stargetyc -p700

5·1 9

Chapter Five: RADE PC32 Implementation

5.7. Conclusion

This chapter discussed the implementation of the RADE framework to PC32 card and highlighted the

development of the device drives and the STP. It also provided a hardware overview of the PC32 card,

the TMS320C32 DSP and the PWM card. This chapter exclusively concentrated on the

implementational detai ls and excluded the demonstration of the RADE system to the educational

applications, which is present in chapter 7. The next chapter applies the RADE framework to the

ADC64 card and draws on this chapter for the common elements that exists between the two systems.

These elements include the TMS320C32 DSP, PWM card and a large potion of the system files for the

RTW.

5-20

Chapter Six: RADE ADC64 Implementation

CHAPTER SIX:

RADE ADC64 IMPLEMENTATION

6.1. Introduction

The previous chapter described the application of the RADE framework to the PC32 card. This

chapter will describes its application to the ADC64 card. It draws upon the RADE PC32

implementation as both the ADC64 and PC32 cards are TMS320C32 OSP based. While this similarity

eases the RADE implementation for the ADC64 card, there are significant differences in its

implementation.

An example of a difference between the cards is their communication channel; the PC32 uses the ISA

bus while the ADC64 uses the PCI bus. This difference serves as an ACID test for the portability of

the RADE framework across different targets and illustrates the nexihility of the STP.

The struc ture of thi s chapter is similar to chapter 5. It starts with a functional description of the

ADC64 card, progresses to the development of device divers and ends with a di scussion of the RADE

ADC64 implementational detail s. A di scuss ion of the processor and PWM card for the ADC64 card is

excluded from this chapter as this has already been presented in chapter 5.

6.2. Description of ADC64 Card

This section gives a brief description of the ADC64 card shown in Fig. 6.1 . The ADC64 card uses the

TMS320C32 OSP and interfaces to the host PC via the PCI bus. It also contains 8 ADC channels, 2

OAC channels, five external timers, and 128K words of external memory. These peripheral

components along with the processor are shown in a functional diagram in Fig. 6.2

The ADC64 card supports 8 channels of simultaneous ADC's and uses the 16- bit Burr-Brown

ADS7805 1 (BURRBROWNI] ADC's; as with the PC32 card. On the ADC64 card, the triggering of

the ADC's are done in pairs i.e. there are four-trigger signal for the 4 banks of ADCs pairs. The trigger

signals themselves can be provided by one of the 5 external timers or by an external sourcel
, Fig.

I The datasheet can be found in the ADC64 hardware manual. An electronic copy is on the CD attached.

2 The external trigger signals for the ADC's arc negative edge sensitive and do not have the strict timing specification as with

the PC32 card.

6-1

Chapter Six: RADE ADC64 hnplementation

6.3.shows this. Unlike the PC32 card, which uses jumpers to select the trigger source, the ADC64 used

a software programmable trigger matrix that can patch any of the external timer signals to the desired

ADC bank. (Section 6.3.1 elaborates on this topic). The ADC64 card also provides differential inputs

with anti·aliasing filters and a gain stage on each channel. The default voltage range for sampling is

+!-IOV.

The ADC64 card supports 2 channels of DACs, which uses the Burr·Brown DAC7 12 IC

[BURRBROWN2]. These channels also contain low·passing filters for analog signal reconstruction.

The default output range for the DACs is +/·lOV.

As mentioned above the ADC64 card contains 5 external timers, which are implemented using the

82C54 timer IC. These timers are used primarily for the generation of trigger signals for the ADCs and

OACs. The use of these timers together with the trigger selection matrix provides an effective method

for the implementation of multi rate sampling on this card. See Fig. 6.3.

Fig. 6.1 Photo of the ADC64 DSP card

The ADC64 communicates with the host PC via the PCI bus and uses an AMCC 85933 PCI

[AMCC I] matchmaker ASIC for this purpose. The OSP on the card communicates to the PCI ASIC

via memory·mapped registers. There are two modes of data exchange allowed on the ADC64 card,

namely bus master3 transfers or mailbox transactions, with both being supported concurrently. Bus

master transfers are ideally suited for the transfer of large banks of data while the mailboxes provide a

J DUring bus master transfers the PCI ASIC controls the bus and allows for burst transfers of data between the PC and

ADC64 card.

6-2

Chapter Six: RADE ADC64 Implementation

convenient method for the control of communication between the two platforms. The use of the PCI

bus significantly improves data throughput on the ADC64 relative to the PC32 as the ADC64 card is

rated at 4IM-byte/sec-transfer rate while the PC32 only achieves a 400Kbyte/sec-transfer rate. Due to

this difference in bus architecture between the ADC64 and PC32 cards the STP implementation for the

ADC64 differs and warrants a discussion, which is presented in section 6.4.1.

The ADC64 card al so supports end of conversion and PC interrupts which are respectively patched to

external interrupts 2 and 3. The first two interrupts El 0 and El I, on the ADC64 card, are used by the

PCI ASIC during data transfers. It should also be noted that the PC interrupt is used during bus master

transfer. Due to 3 out of the 4 external interrupts being used for on board functionality only the end

conversion interrupt is supported for the RADE ADC64 system. Section 6.3.3 elaborates on this topic .

...
Triggering

Matrix
5 External

... Timers

J 8 8-channels J 8 Bank of J 8

Signal conditioning 8 ADC's
"

~ " M U

" '" " 12 2-channels 2 Bank of IP " " j 8 Signal conditioning 4 ADC's

Processor Peripherals

---.:: TMS320C32
-

,
~ l 128 K Word(32 bit)

o wait state PCt Matchmaker Expansion
Header

t
ADC64

32 bit PCI
DSPCARD

Connector

Fig. 6.2 FUllcliollal diagram Of tile ADC64 card

6-3

Selection Trigger Signal

Eg. Ex! timer 3 Trig 0

Eg. Ext timer 0 Trig I

Eg. Ex! timer I Trig 2

Eg. Ex! timer 0 Trig J

Trigger Matrix

Chapter Six: RAOE ADC64 Implementation

•
•
•

•
•
•

ADC Bank 0
Trigger

•
•
•

ADC Bank 3
Trigger

Fig. 6.1: ADC trigger sources/or tile ADC64 card

6.3. Device Drivers for the RADE ADC64

•
•
•

10 chapter 5 the device drivers for the RADE PC32 system were explained and much of thi s is relevant

to the RADE ADC64 system. The peripherals supported within Simulink on both cards fall into

similar categories i.e. there are both DACs, ADCs, PWM blocks, and Interrupt blocks. The DAC,

PWM and Interrupts device driver blocks are closely based on the PC32 implementation, whi le the

External Timers and ADC blocks have been specifically designed for the ADC64. For this reason the

new device driver blocks are discussed in detail while the modified device drive block are explained in

perspective of the PC32 implementation.

(9l!tJmry tHJc6"I~b
----- - ---- -

"fOlD
E.- fdll V_ forma!

Wo I <oil " at l ~ ~ IiiI jfQ).Q:: 15

0
'"

~
~ -
""" -----' ... ,

ADC84 PWW 9!0 ...
ACct.4 oAC AOa\4 !nl Support ADct.4 E>d T!m,"

[d[d[d[d ADC I ADC 3 ADC 5 JOC 1

ACCO.! ADC 2.3 ACC4.5 ADCe.7

Fig. 6.4:Device Drivers /or tile ADC64 card

6-4

Chapter Six: RADE ADC64 Implementation

6.3.1 ADC's

lJIock Pnrnmeters ADC 4.5 Cl
- Device Oliwf for AOW "'*"'J I~I
Ul:MtIoacc.uAOC't on DSP c.d
Enue 8III8II'III Wneh _ -.0
IISi'9 tht txTERNAL TIMER SIock',' u.d •• 1nggeI tou'ce

r P

Ef'llOIt"Scuee IS0ftw5eTfi9ger ~

I I ~ EXT lime! 0 0< I O<T Ti-oer 1
EXT liner 2 I--EXT Ti-nef J
EXT liner.

Fig. 6.5:ADC trigger source selectioll

On the ADC64 card there are 8 ADC channels, which are grouped in pairs for triggering and therefore

form four banks of ADCs. Each of these banks is individually implemented in Simulink, as seen in

Fig. 6.4 where there are four ADC blocks. Us ing the respective ADC block's parameter window the

appropriate trigger source can be selected as shown in Fig. 6.5. The ADC64 card also supports the use

external ADC triggers concurrently with any of the internal triggers i.e. both signals are ORed to

produce the final trigger signal. For exclusive external triggering an unused timer must be selected as

the trigger source with its frequency set to 0 Hz. (The setting·up of the external timers frequencies is

explained in the next section)

The first part of this section described the operational details of the ADC blocks and attention is also

given to the implementational details. A single device driver found in the adc64_ad.l/c file is used to

implement the four ADC blocks. Th is is done by pass ing the ADC's bank number parameter to the

device driver file , which allows for the physical ADC channel numbers to be generated. The code

listed below detail s this process. The LibBlockParameterValue (Pl,O) function extracts the ADC

bank number passed .The physical ADC channels are generated using this value and are then stored in

the ADC_numO and ADC_numl variables. For example if bank 2 of the ADC was used the physical

channel numbers would be 4 and 5 i.e. ADC 4 and 5 make up bank 2. The reading of the ADC then

follows a similar procedure to the PC32 implementation and uses the read_adc function, previously

discussed in chapter 5. The final part of the code implements the ADC software triggering and is only

included if trigger source (Trig_s) equals I, which corresponds to software trigger source selection in

the parameter window.

%function Outputs(block, system) Output
r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» -,
r read in the corrected values from AJD and scate to +·10-/

%assign TriQ_s= UbBlockParameterValue(P2,0)
%assign ADC_numO = LibBtockParamelerValue(P1 ,0,.2
%assign ADC_num1 = LibBlockParamelerValue(P1 ,0)-2+1
%assign ADC_numO =CASTrNumber",ADC_numO)
%assign ADC_num1 =CASTrNumber",ADC_num1)

6·'

Chapter Six: RADE ADC64 Implementation

{
% OC::UbBlockOutputSignal(O, "" , - ,O»=read _ adc(BASEBOARD, (%oc::ADC _ numO»)/(3276. 7) ;
%oc:: UbBlockOutputSignal(O, "~ , "" , 1 »=read _ adc(BASEBOARD, (%oc::ADC _ num 1 »)/{3276. 7);
%if (Trig_s==1)

convert_adc....pair{BASEBOARD,(int){%oc::UbBlockParameterValue(P1 ,0» »;
"Ioendif

}
%endfunction %% Outputs

Another function of the ADC device driver, is the connection of the ADC bank to the selected external

timer.This is done by the code below. This code uses the ZUMA toolset trigger function to connect

the ADC bank to the selected timer. It is worthwhile to note that the code generated from this segment

is inserted in the ADC block's initia li sat ion and only executed once i.e. trigger source cannot be

changed during program execution.

%function Start(block, system) Output
r %oc::Type> Block: %<Name> (%<ParamSettings.FunctionName»·'
%assign Trig_s= UbBlockParameterValue(P2,0)
r Connect to Trigger source·'
%swilch (Trig_s)

%case 2
trigger(PITO _ TI MER, (int)(%<UbBlockPa rameter(P 1 ,"" ,"" ,0»));
%break
%case 3
trigger(PIT1_ TJ MER, (inl)(%,<UbBlockParameter(P 1 ,"" ,"-,0» »;
%break
%case 4
trigg ere PIT2 _ TI MER,(int)(%<UbBlockParameter(P 1 ,-:" ,0»»;
%break
%case 5
trigger(PIT3 _ TI ME R,(int)(%< UbBlockParameter(P 1 ,"" ,-,0»»;
%break
"Iocase 6
trigger(P IT 4 _ TI MER, (int)(%<UbBlockParameter(P1 , "" , "" ,0»»;
%break

%endswitch

F unction Prototype Descript ion

trigger (unsigned int sauce, unsigned int bank); triggerO sets the triggering source for a pair of
ADC channels in software.

6.3.2 External Timers

The external timer device driver block is used to setup the frequency of the five external timers on the

ADC64 card. This device driver produces code that only executes during the initialisation stage of

model code and its parameters cannot be changed during execution. Fig. 6.6 shows the parameter

window used to enter the timer frequencies.

6·6

Chapter Six: RADE ADC64 Implementation

Block Parameters: AUC64 [xt Timers El
PDC Elii8moI T IITMm (1IIGiI4
E.,.Trnerva!uas inl-\z. NoIevalue can not
be dIengIdduring 8X8QIk)n. _

E>.iTlITI8rOF.eq

_I
E4 T Lm8I' 1 Frsq

10

Ex! TIfII8f 3 Frtlq

10
Elo.1 Timer ~ Freq

10

Fig. 6.6:Parallleters /or extemal timer Block

I
I

I ,

The device driver code for this block is found in the ex'_timer _adc.t/c listed in appendix 0 with a

segment detailing the main part of the device drive li sted below. This code uses ZUMA Toolset

timerQ function to setup the respective timers. The variables tmrO, to tmr4 correspond to the values

entered in the parameter window of this block.

6.3 .3

rsetup external timers . ,
timer(O ,(int)%<tmrO:>):
timer(1 ,(inl)%<tmr1:»:
timer(2 ,(int)%<tmr2:>):
timer(3 ,(int)%<tmr3:>);
timer(4.(int)%<tmr4:»;

DAC's , PWM and Interrupt Blocks

The device drives for the DAC, PWM and Interrupt blocks are closely based on the PC32

implementation but for a few minor modifications. These modifications entail the changing of the

memory location of the respective peripheral if necessary. The device driver file name~ for these

blocks are listed in Table 6-1 with complete file listing in appendix 0

Block Device Drive r File

OAC ADC64_da.tlc

PWM PWMBLOCK_ADC.tlc

Interrupt Support iiinterrupt_adc.Uc

Table 6-1:Device driver files

The lnterrupt Support block for the ADC64 card only supports 3 interrupts; the two internal timers and

one external interrupt used to signal an ADC end conversion event. Fig. 6.7 shows the parameter

6·7

Chapter Six: RADE ADC64 Implementation

window for this block. which is based along PC32 interrupt block already discussed in chapter 5.

Bluck Paramulers: ADC&1lnl Suppurl rn
ffr ADC6 .. lnterrupt Block (mosk)

AsyndVonOUllnlfiTupl.upportlor1t181rmoveb\1e Integration ADC6.c ce.rd.

Po<Gme
TlmerOF~

PIIII
Timel1 Frvg

10 I
lnl8m:;p:i Numbe~ (top to bottom)

I[3 910J

BOS8Rotelnterrupt J 3 •

I Cl< 11'- Con~1 11,- ti_lp I ' ~ I
Fig. 6. 7:1llterrupt block parameters

6.4. Customising RADE framework for the ADC64 Card

To customise the RADE framework for the ADC64 a major portion of the RADE PC32 system can be

reused with slight modifications. Table 6-2 lists the system files that are used and summari ses the

modifications needed. These file have all been renamed to show their association with ADC64 card

and prevent any confusion with PC32 system.

System File Name Modifications

System Target File Grt_ADC64.tlc Change Defualt parameters

Template Make File ADC64.tmf Change files used for STP and run-time
harness

Simulink Communications E){Ccomm_C3x.dll No modifications needed

Layer

Run-time harness adc64.J)rtm.c Change initialisation to accomodate for
ADC64 peripherials

Table 6-2: Files used/oF lite RADE ADC64 system

The files listed above deal with the RTW build process, run-time harness and Simulink

communication layer. The files used for external mode and the STP on the ADC64 have not been

discussed as thi s will be presented in the next sect ion.

6.4.1 External mode and Server To Target Protocol

The RADE fra mework was designed to encapsulate complexity". This is demonstrated by the use of

external mode components from the PC32 system on the ADC64 system. These components are

independent of the underlying communicat ion channel and can therefore be reused unchanged on both

• The principle of encapsulation is drawn from objccl oriented design methods. [BOOCH I]

6·8

Chapter Six: RADE ADC64 Implementation

systems. The principle of encapsulation4 allows the changes in communication architecture between

the PC32 and ADC64 cards to be restricted to the STP layer. The changes made to the STP layer are

discussed below. Table 6-4 summaries the files that are reused and modified.

on

used for RADE

Table 6-3: File used/or extel'llal mode a,.d STP 01. lite RAD£ ADCM

DPRAM C hannel PCI Cha nnel

I

I PC Host I

DPRAM

!
Target I
System

PCI Bus

I PC HOSI I
t

PC Buffer

• l'
•
• •

Block move data : : Block move data
• 10 target • • from target • • •

• •
• • ..

Target Memory

Fig. 6.8: A comparison between DPRAIIf and the PCI bus

Before the STP implementation for the ADC64 card can be discussed it is advantageous to review the

physical differences and similarities between the DPRAM and PCI bus architectures. Fig. 6.8 shows a

graphical representation of both these communication channels. In the case of DPRAM both the PC

and target platfonns have direct read/write assess to the DPRAM memory segment. The STP message

and upload ports are overlaid in this region and both platforms can read and write the necessary data.

In the case of the PCI bus only a PC buffer exists and the target can only block move data to and fro

between its memory and the PC buffer. This means that the target cannot directly access the PC buffer

and memory moves are needed.

6·9

Chapter Six: RADE ADC64 Implementation

,-

, ,
'-

-

-

Server Application

WinSock
Processing

~. -.- ... -.. ------------

I PC side STP'"

Hardware Comms
Channel

I Target side STP'"

---------------_ ... _.--
Message

Process ing &
Generation

Target DSP

• Server IQ Tariet PrOlocol

ext srvJlc.cpp

-

ii adc64 pC.cpp

ii adc64.c

--

ext_ ,rv c3x.c

Fig. 6.9: Files used/or extema[mode a"d STP alld the RADE ADC64

I

I

I

I

The modifications to the STP needed for the PCI bus are shown in Fig. 6.10. Unlike the PC32 card

there is no buffer that that can be accessed directly by both platforms, as shown in Fig. 6.8. There is,

however a PC side 32K word (32Bits) buffer that is used to overlay the message and upload ports. A

mirror of this buffer is then maintained on the target and transfers between these buffers allow data to

be moved across platforms. This mirroring of the PC buffer on the target allows the PCI bus

architecture to resemble DPRAM and allows the reuse of STP code from the RADE PC32 system.

The size of the PC buffer is one-fourth the size of the total memory on the target and it is un feasible to

mirror the entire PC buffer on the target. This problem is solved by only mirroring the message ports

and the header part of upload ports. The sizes of the message port and upload ports are listed in Table

6-4. From thi s table it is evident that the upload ports buffers consume the lion share of memory and

eliminating them on the target results in a significant saving of memory. The effective size of the

mirror buffer on the target platform is now reduced to around I K word of memory and does not affect

the perfonnance of the target.

The part that does not now tie in is, if the target upload port buffers are removed how is data uploaded

to the PC? By referring to Fig. 6.10 it is evident that an upload buffer is already present on the target

and data from this buffer can be directly transferred to the PC. It should be noted that this upload

buffer is not part of the STP and is declared and controlled by the data logging routines that execute on

the target. The upload port headers on the target are used to control the packetisation of this buffer.

Chapter Six: RADE ADC64 Implementation

This section shows that the STP can be easily modified to fit the pcr bus architecture and is therefore

flexible for the parting to different target platforms.

~ Message Port
To Target

Server Applicat ion

t Message Port i Upload Port i Uplo.d Port 0
From Target A • B .1

PCI Bus

•

,

, ,
~----------------

~------------------ ------- ----------, , ,
,-----------------"----------------- -'r------------------'r------------------, , " " " , , , , , , Upload Port ' , Upload Port '
: : Message Port :: t Message Port ;: t Header :: t Header '
: t To Target ::: From Target ::: A :: : B
, " " "

Target DSP

Fig. 6.10: Modified STP for PC! blls A rcllileClllrl!

Port On PC Size of port Location offset Description
Buffer I (32 bit words) (decimal)

From Server 512 (buffer = 502) 0 This port recieves data from the PC

To Server 512 (buffer = 502) 512 This port sends messages to the PC

Upload Buffer A 15872 (buffer - 15862) 1024 This the first of the upload port used
for sendinQ 10QQed data to the PC

Upload Buffer B 15872 (buffer 15862) 16896 This the second of the upload port
used for sending logged data to the
PC

Total 32768 The total size at ports for the
transfer of data is 32768 with no
unused space

Table 6-4: Size ofporlS llsed for tile RADE ADC64 system

6·11

Chapter Six: RADE ADC64 Implementation

6.S. Conclusion

This chapter presented the implementation of RADE ADC64 system. It covered a description of thi s

card, detail s of how the device drivers were developed and the modifications needed for the STP. It

highl ighted the portability of the RADE framework between different target platforms. The next

chapter demonstrates the RADE ADC64 system and illustrates the use of this system to educational

applications.

6-1 2

Chapter Seven: Demonstration of the RADE system

CHAPTER SEVEN:

DEMONSTRATION OF THE RADE SYSTEM

7.1. Introduction

The previous three chapters detailed the internal operation of the RADE system This chapter now

demonstrates the RADE system as an effective rapid prototyping and teaching tool and describes its

use with motor control experiments. Bearing in mind that the primary purpose of the RADE system is

to allow students to easily evaluate simulated system with live real -time systems, this chapter is

presented in the vein of a student practical and emphasises the contro ls problems from the student 's

perspective.

A complete design of a DC servo motor speed controller is presented that covers the entire process

from simulation to fina l implementation. The justification for using a DC servo system is that it is

currently being used in the both the third year Controls Systems and Electrical Design courses, at the

University of Natal's Electrical Engineering department. The Controls Systems course concentrates on

the theoretical design issues and uses solely simulation methods to illustrate designs, while the

Electrical Design courses emphases the implementational issues using a micro controller. This chapter

now demonstrates how the RADE system can unifies both the simulation implementation issues

within one course without requiring students to be well versed in software engineering techniques l
.

This chapter rapidly prototypes a theoretically designed speed and current controller and uses the

results to verify the perfonnance of both the RADE ADC64 and PC32 systems and demonstrates how

students can implement real-time control systems without being preoccupied by complex software

engineering issues. Further the theoretica l concepts used in the design of the controller will be

practically verified.

Topics also included are a demonstration of the concepts of plant saturation, controller stability and

integrator windup. Finally a position control experiment is presented with the RADE PC32 system.

1 It must be noted that the RADE system does not make the Electrical Design courses obsolete as these courses covers lower

level implcment3tional speci fics, which are hidden by the RADE system.

,.,

Chapter Seven: Demonstration of the RADE system

7.2. A Case Study: Designing a DC Servo Motor Speed controller

This section presents the complete design of a DC selVo motor speed controller, which entail s the

development of a plant model, design of controller parameters and the simulation of the resulting

system. Cascaded speed and current loop PI controllers are used, as this control architecture yields

good results for both regulat ion and disturbance rejection specifications [BLERKl]. The contro ller

parameters are designed using a rOOI locus technique, as this is a typical design method taught to

under-graduate students in control systems courses2
.

This section fonns the theoretical basis for the evaluation of the RADE systems as an educat ional tool.

The simulated results presented in this section aTe used to evaluate the real-time results produced by

the RADE ADC64 and PC32 systems in seclions 7.3 and 7.4.

7.2.1 Motor Model

The block diagram of a separately excited motor is shown in Fig. 7.1 [OGATA I] and is used for the

simulation stages. The input to the model is the annature voltage (Vann) and the outputs are annature

current (la) and shaft speed (W). The parameters for the molor are li sted in Table 7-1 and the

evaluation is shown in appendix C.

r---------------~

S2-y-1 T.~.::~;'" 11 • ~L"T.::c"::'.;:-:~:-;"c:'"",~To{W::;:Cd)'.
L-__________ ~~m~----~

Fig. 7. J: Motor model

! The Universitics of Natal and Durban Weslvillc teach roOllocus design methods in control systems COUr.iCS.

,.,

Chapter Seven: Demonstration of the RADE system

Parameter Value Unit
Annature inductance La) 46 mH
Annature resistance (Ra) 3.36 n
Rotor moment of inertia (J) 4.889x 10· Ke.m
Rotor viscous dampi1:!.tiB) 4.291x 10 Kgm Is
Motor Constant (Km) 0.834

Table 7-1: Motor parameters

7.2.2 Design of Current PI Controller

The regulation specificat ion for this design is loosely stated as, "good rise time with minimal over

shoot and steady state error", for a +/-8A 10 Hz reference square wave signal. Plant limitations must

also be taken into account i.e. maximum supply voltage of l 28V. The purpose of such an ambiguous

design specification is to allow students the scope to investigate different controller behaviour. The

root locus design of the controller is done by using The Mathworks Root Locus Tool (rltool)

[MATHWORKS7j.

The first requi rement for the design is the development of the plant transfer function, which is shown

in [7-1] and the corresponding bode plot is shown in Fig. 7.2. This transfer function is derived from

Fig. 7.1 with the plant input being the annature voltage (Vann) and the plant output being armature

current (la) [OGATA I]. The transfer function used for the PI controller is shown in {7-2] {OGATA I}

B
~(s+-)

pes) = J .
S 2 +(-t +{!)s+K

where K' = BRa + KeKt
La.!

G(s) = Kp(s + Ki)
s

{ 7· / {

{7·2{

' ·3

Chapter Seven: Demonstrat ion of the RADE system

Bode Oiagrams

·20 dB ctJ:-otr Cl 50Hz

Frequerq (Hz)

Fig. 7.1: Bode plot of / 7- 1/

The next part of the design process detai ls the choices of the two controller parameters. Three root

locus di agrams are presented showing the plant's response to various con troll er parameters. In all the

subsequent root loci diagrams the controller zero is positioned after (higher absolute radian frequency)

the plants complex open loop poles as this configuration allows the current controller integrator to

operate faster than the plant ' s electrical dynamics.

Fig. 7.3 shows the result ing root locus with Kp=6 and Ki= I 00 and the corresponding unit step

response. From the step response (Fig. 7.3) it seems that a steady state error exists but a closer analysis

of the root locus diagram shows a slower first order dominated pole (Fig. 7.4). This dominant pole

slows the unit step response down considerably as shown in Fig. 7.4 and makes this design un feasible

to meet specifications. This design however illustrates an over damped response with a "steady state

error" and will be verified on the real-time systems. The next step in the design is to reduce the effect

of the fist order dominant pole.

7-4

Chapter Seven: Demonstrat ion of the RADE system

Rool Loe ... Oe ollln

"
" \

10,.-_"12

• ! ,
•

4,

-.
-.
-.

--
-' 50 ,

Fig. 7.3: Root IOC Ils for over Jumped response

Root I..ocu. Delign

•
First order dom:nant pole

S.,pRespo'uJefor '0.

Slow te$pol"$e
!rem Ilrs,order pole

-2 1 \ f."n'.' ~ from real polH , o •
•

2

•
• ,
'~---7--~~--~--~--~

-o.S -0." -03 -0.2 -0.1 0 • , "
ReillAlGS Tn,e (sec l

Fig. 7.4: First order dominant pole

The effect of the first order po le can be reduced in two ways:

• By increasing controller gain. the dominated firs t order pole moves closer to the zero,

resulting in a pole zero cancellation. This is unfeasible because the required controller ga in of

around 30 will saturate the current controller. A maxim um error of 8A will demand an

annature voltage of 240V, which exceeds the annature voltage that is limited to 128V

[AHMEEDI].

• The other option is to make the controller integrator faster as th is will integrate out the effect

of the slower first order pole [OGATA I].

The controller integrator constant is increased to 1000 (Ki= IOOO) and the proponional constant is

reduced to 5 (Kp=5) 3 with result ing root locus and step response shown in Fig. 7.5. This figure shows

3 Kp was rcduct.'d to make the ovenhoot more pronounced and to demonstrate an under damped response.

7-5

Chapter Seven: Demonstration of the RADE system

an under damped current response with a 36% overshoot and a rise time of 2.7 ms. The faster

integrator (Ki= 1000) has removed the effect of the fi rst order pole and made the current step response

faster but has introduced an excessive overshoot coupled with a relatively large settling lime. The next

iteration in the design will need 10 reduce the overshoot and improve the settling time.

'000

'"
•
~
f

,

. "
-1000

Root Locus Design

CloWd ia:lp poles K,.,

,
KlootOOO

-2500 -2000 -1500 -1000 -600
Real A,..

•

,

,
- - . M , 38G7ms

- ..
•
i Rlsel,me a 27ms

<

Time (sec.)

Fig. 7_5: Root locus for under damped response

'10 0 . ,.

The excessive overshoot is reduced by decreasing the integrator constant to 200 (Ki=200) and

increasing the proporlional gain to 14.5 (Kp=14.5). The resulting design is shown in Fig. 7.6 and

meets the specified perfonnance with a rise time of 3.5 ms and a 7% overshoot. This design from this

point fonvard is referred to as the "specified response".

Root Locus Design

'co Closed loop poIe5
Kpal.S

'" •
'"
" l(, a 200

• ,
~ •
•

,
~ .,

·100

·150

.,,,
-30, ->0,

Rellll AJII$

•
• i

<

-100 ,

- - - ..
- -,

Ri .. I, 3 SmI ,

Tome (sec.)

Fig. 7.6: Root locus for !)pecified re!)ponse

•

The closed loop bode plot of both the independent plant (i.e. no controller) and the controller and plant

'·6

Chapler Seven: Demonstration of Ihe RADE system

is shown in Fig. 7.7, which demonstrates the benefit of the PI controller on the overall system

performance. The overall system bandwidth (-20 dB) improves from 48 Hz to 775 Hz with an infinite

gain margin and a 148-degree phase margin. The controlled system has a relatively flat response

(0 dB) up to 70 Hz, which helps improve the regulating perfonnance of Ihe system.

7.2.3

iD

" •
~ ~

<
Ii' ,
if
" j
~

BodeOlagrams

Closed loop respcnse _
Wl1ho1A controler

·2OdB «D 775Hz

~

Phase malgine" 148 deg

------,,-CC~, ... --~boC-P-~-.-p-,..----"---- ~
.... !hcontlOll.

Frequency (Hz)

Fig. 7. 7: Bode plot of closed loop responses

Simulation of Current Controller

000
~

,. w_
Signal ~, -. ,-

Genetal ... "_, "r-
CuT_ 0iscreIe ~.

~ '--- ,. w_
~

~'i--+ ,-,,- " :n81 Curr",,'Con~ ~~,

Generalor1

~,
Fig. 7.8: Simulink modelfor Cllrrenf controller and plunt

The controller parameters developed in the previous section are used to investigate simulated plant

responses. In this stage of the design process both cOlltinuous and discrete PI controllers are

,.,

Chapter Seven: Demonstration of the RADE system

simulated". The continuous PI controller is discretised with the Tustin transfonn as this yields a good

approximation of the continuous system [OGAT A2) providing the sampling time is 10 times greater

than the - 20dB bandwidth of the plant. This sampling constraint is easily met and exceeded with the

BK Hzs sampling time used noting that the plant's bandwidth is around 50 Hz (Fig. 7.2).

The Simulink model used for the simulation of the current controllers is shown in Fig. 7.B. This model

consists of both a continuous and a discrete controller attached to the plant models. The internal

workings of the controllers are shown in Fig. 7.9 and Fig. 7.10. Both these controllers contain

saturation blocks, which limit the output voltage applied to the motor to +/- 12BV and also support

integrator anti-windup. The discrete controller shown in Fig. 7.10 is an implementation of the

difference equation [7-4] , which is derived from the discrete controller in [7-3] [OGATA2]. Equation

[7-3] is the Tustin transfoml of the continuous PI controller shown in [7-2], where Ts is the sampling

time. It should be noted that the zero order holds are omitted from the simulation, since a fixed

integration slep of 125).1s (BK !-Iz) is used. This matches the sampling frequency used on the real·time

system. In addition, with the inverter not being simulated, the integration step of t 25).1s is small

enough 10 simulate system dynamics.

0."

o

.. ,
in salutat>on

Fig. 7.9: Continuous PI control/er

~ The discrete controllers arc simulated as the controller modds used with the RAOE system are of this type. Section 7.3.2

provides more details.

5 The 8 KHz sampling frequency is used since 4 KHz PWM signals arc used 10 control the power invcner on the real·time

system. Sce section 7.3 .1.

7-8

Chapter Seven: Demonstration of the RADE system

Fig. 7. 10: Discrete PI controller

kp(J + KiTs)z _ kp(J _ KiTs)

G(z)~ 2 2
z - I

Cunel1 ResJX>l'l5e kp~14.5 Ki=200
1O~-~-""==:":::=:;'::=:;'::--"'~-~-,

: r·-+--iru' u' r>uu\.• ~ . -.... .•. •. -.•...••. ..•...... -t .•..••.

,
8.5 •..... L •••

: <ilcrM
. ~ -.-

""

f 7-3 f

f 7-4 f

. ... ~.-
2 ! ~ , ~ _;- L

I I· I ~ 8

1:

'1i\:~. --t---+--. __ .
i·· -1- •... _--.! "1

I I
~ 0•..
, 0,

.'tJ·:··:r -4 ••••...••••..

. .. u u....I l.
.. , '-

. ,-_'.~A~~~@_'~~~~_~_~.L-~L-~L-~ ·10:-o 0.025 0.05 0.075 0.1 0.125 0.15 0.175 02
Tme(s)

; 7.$ _ ..••.
u

, ..
8.5 : ...•... ,

G '··'

0.<13

.......

0.03-5 004
Tmt(lj

Fig. 7. 11: Simulation results continuous and discrete controllers

00<5 0."

The specified current controller response (Kp=14.5, Ki=200) is shown in Fig. 7.11 together with both

the continuous and discrete results over-laid and a zoom of the response overshoot also shown. From

Fig. 7.11 it is evident that the di screte controller is a good approximation of the continuous controller.

The results for the controller over damped and under damped response are shown in Fig. 7.12. It

should be noted the under damped response is subjected to a reduced reference of +1-5A as the motor

7-9

Chapter Seven: Demonstration of the RAD E system

current should not exceed lOA on the real-time system. The simulated results presented in th is section

will be used to evaluate the real-time results produced by the RADE systems. The next part of the

design enta ils the development of a speed loop and this is presented in the next section.

• • i-----+----+. t----+----i • •
, " .. __ . .. ······t······ , ..
" ;.. ;. ~ · . .;.. .-;..

g
2 ~ •• ~ ~

g
2 · -- ~.- •• -- . -.-~.

i 0 i o · -

<3 -2 " __ . . _--,. • ___ ._;. ___ c._ •• _ •••••••• __ <3 .2 ;. ;. •.

--,~--~

..e ---- ~-..... . ..

. f----l • _., , ;. ---,--

*1.5Ar~ Gl0~

." " 0 OD25 0,05 OD7 5 0.' 0125 0.15 0175 0.'
Tm. j S)

Fig. 7. 12: Simulation results/or discrete controller over and under damped responses

7 .2 .4 Design and Simulation of Speed PI Controller

v- K/) .• • Kp. K1

-Er
,

"" , - - - k?:: ,
"" • u,-5 *RlI J .lI·e w~ .- , .. "

"""'" c. ,,_ eIedncIol ".,.,ama S/'IafI JC)M<Ilor --. Im ClIITent

"""'" - - - ..-
J,s · e

mecfl3nic:a1 ")fIamics

Fig. 7. 13: Modified motor model

In the previous section the current loop was designed and is included in the system when designing the

speed loop. Fig. 7. 13 shows the effective model of the system6 used for the speed loop design, The

input to the system is current with the output being speed. The regulat ion speci fication for the speed

loop is loose ly stated, as "good rise time with minimal overshoot and steady state error", for a +1-800

rpm 2 Hz reference square wave signal.

The root locus of this system combined with the speed PI controller is shown in Fig, 7.14. From this

figure the mechanical and electrical dynamics of the system can be seen and when designing the speed

loop only the mechanical dynamics are of interest. The zoomed mechanical dynamics of the system

' The currcrtt controller parametCfS arc set at Kp=" 14.5 and Ki=200

7-10

."
e'" .. ,

Chapter Seven: Demonstration of the RADE system

presented in Fig. 7.14 shows the speed controller zero for Ki=20 and the resulting closed loop complex

poles for Kp=O.03. The corresponding step response is shown in Fig. 7.15, where a 20% overshoot and

26ms rise time can be observed, which meet specifications. This system is now s imulated for these

parameters.

Root LoctA OeSOIiJrl

ElectncatOyl'llmCI

I
30

20

Closed loopMo ill
Kp:03

.----+---• •

· · . . , : >····r=-i " .
: , I ,f-+------·

-'" ,- _---
... ,

~,L-----~---------~ .'L-~~~~~~~~-~-~~~~ -"" .", -'" ·150
RearA:Qs

-100 ., ,
~ o 035 030 ·25 -20 .15 -10 -5 0

ReaIAx.

Fig. 7. 14:Root locus o/!))'stem and :oomed mechanical dynamic!;

- ------, Ma.·12C1173m1

- -. 1
• I I Riselrne- 26rn1 Selling Ime '" l6Om •

f
<

.- '
.,

Time (1IeC.)

Fig. 7. 15:Speed Step Response

The Simulink model used to simulate the speed loop is shown in Fig. 7.16. This model consists of a

discrete controller for both the speed loops and uses a fixed integration step of 125J..ls. The speed

controller is limited to +/-IOA and the current contro ller is limited to +/-128V. The simulated

responses are shown in Fig. 7.17. Both the small signal (+/-300 rev/min) and large s ignal (+/-800

rev/min) responses are shown. The smaller signal is used to demonstrate the system in a linear region

of operation while the large response shows the non-linear operation of the system. These results will

be used to evaluate the rea l-time results produced by the RADE systems.

7-11

Chapter Seven: Demonstration of the RADE system

Gene'lIlOr

Fig. 7. 16: Cascaded speed and cllrrent PI loops

00' r--;,.,.

---1-'-

-""
- 1---

'OO':-------~O~2~' ------~,.O-------~O,~,c-----~,
Tm.(I)

'''' -
400 ••. -

i 200

!. 0•...

1
"00

."'f--------l

Fig. 7. 17:Simulated res ults wit" discrete control/er

7.3. Demonstration of the RADE ADC64 System

. ~""P_"'l:1h!:l<X.-r.
due tono ... ~ re~'.I'IK.
ofCU'~ '" sa~IIO"

., f. •..•.... ...•....

I

This sect ion presents the rapid~prototyping of the current and speed controller, designed in the last

section, on the RADE ADC64 system. It demonstrates how the RADE system allows students to

interactively investigate the range of real~time plant behaviour simulated in the previous section. The

practical use of the on-line parameter luning and data logging features of the RADE ADC64 system

are also demonstrated.

The first part of this section deals with the experimental setup used to rapid prototype the speed and

current controllers. Thereafter the real-time resu lts for the current and speed controllers are presented

and eva luated against simulated results from the previous section. Finally this section concludes with a

demonstration of saturation and the eITect of integrator windup on the speed loop.

Chapter Seven: Demonstration of the RADE system

7.3.1 Real-Time Prototyping with the RADE ADC64

The experimental setup for demonstrating the real-time rapid prototyping of the current controller is

shown in Fig. 7. 18. It consists of:

• The Simulink PC.

• The Target PC, which contains the ADC64 OSP and PWM cards. The PWM card provides the

4K Hz switching signals to the inverter and an 8K Hz intenupt signal that is used to

synchronise the ADC sampling.

• An H-bridge power inverter, which is connected to 128V DC battery supply.

• An analog tacho and LEM module current provide motor feedback.

The Simulink PC is used for both the simulation and rapid prototyping stages of the controller

development. Once the current controller has been designed in Simulink it is converted into a target

applicat ion via the RTW and downloaded to the target PC. The target PC, which is executing the

server application, receives the target application and stores it. Simulink is then used in external mode

to control target execution.

Simutink PC

. ,
o~gal" o . " ,

....

RTW E;o;lcrnal Mode

Motor

Tugt l
PC

Server
A licalion

Fig. 7.18: Diagram o/experimental setllP

Inverter

The current cont roller example as well as the following speed controller example both used the same

7· 13

Chapter Seven: Demonstration of the RADE system

apparatus and also exploit the network functionality of the RADE ADC64 system. Fig. 7.19 shows the

independent Simulink and target PC's and for a matter of interest. both these PC's were operated in

two separate rooms.

Simulink PC

Target PC and Motor

oscilloscope

~er:t~-- \

Fig. 7. 19: Photo of turget PC

7-14

Chapter Seven: Demonst ration of the RAD E system

7.3.2 DC Current Controller

Before the current controller shown Fig. 7.B can be rapid-prototyped a few modification are needed,

these include:

1. Inclusion of ADC devices which sample plant sensor data.

2. The addit ion of the PWM block, which controls the inverter.

3. The Interrupt Block is also used to provide synchronous sampling

4. The plant from the original model is removed as the live plant is contro lled in the rapid

protolyping case.

Fig. 7.20 shows the revised Simulink model, which is ready for rapid-prototyping and shall be referred

to as the real-time model. While this model looks considerably different from the original model in

Fig. 7.B it is in essence functionally identical. The interrupt block is added to allow the controller in

subsystem 1 to be synchroni sed with the PWM signals i.e. the PWM ASIC provides a BK Hz ADC

trigger signal and the ADC in turn trips the external intenupt 2 at the end of the conversion. With each

end conversion signal, subsystem 1 is executed, which ensures the controller is executed at BK Hz.

The ADC64 Ext Timer block is used to set the externa l timers on the ADC64 board to 0 I-Iz as to

prevent them from triggering the ADC's.

Subsystem 1 is a triggered system and is restricted by The Mathworks from containing continuous

states i.e. all controller used in subsystem I have to be di screte and thi s is the reason for simulating the

discrete controller in section 7.2.3. The controller is contained in the subsystem block, shown in Fig.

7.20, consists of:

• ADC 0, 1 which is used to sample the current sensor. This value is then scaled by 13/6 MY,

which transforms the ADC voltage signal into a current value.

• The PWM block is used to write PWM setting to the PWM ASIC.

• The sine wave and relay block7 combination provide the 10 Hz square wave s ignal, as the

function generator block cannot be used in real-time models. (A 10Hz +I-BA square wave

reference signal is used for the eva luation of the Current controller)

• The PI current controller block subsystem implements the di screte controller shown in Fig.

7. \0.

1 The positive and negati ve threshold poims for the relay block are respectively set at +/..{J.lxIO·3

7-1 5

Chapter Seven: Demonstration of the RADE system

Root Layer

,--------------------------, ' , , , ,---- ---- ---- ---- ----------------,

A0C64 Ext TimetS

E.

~
, ... Tnggetl)

n.." Subsystem!

, ,

Data Store Data Store
Memory Memoryl

Data Store
Read2

Data Logging
ADC64 Int Support ,--------------------------------

Controller

Gl
Trigger

ADCO.!

Sine Wave Relay!

------,

Subsystem I

Data Store
Write

B Data Store
Write!

PI Current ContrOller

,.,

Current III A0C64 OAC

Fig. 7.20: S imulink model for the current controller

PWM for DC MOTOR

The Data Store, Read and Write blocks, shown in Fig. 7.20, are used to pass data between the

subsystem I block and the root layer. These blocks are needed to supply data to the scope blocks,

which are restricted from being placed in trigger subsystems8. The scope blocks are used to provide

on-li ne data visualisation and data logging. The scope block shown in Fig. 7.22 high lights this

I This restriction is imposed by The Mathworks.

7-16

Chapter Seven: Demonstration of the RADE system

functionality.

The proceeding section presents the results of the real-time current controller. The contro ller IS

investigated in three regions of operation that were designed and simulated in section 7.2.2:

I. Designed behaviour.

2. Under damped behaviour

3. Over damped behaviour

Students would use the on-line parameter-tuning feature of the RADE ADC64 system to change

controller parameters on the target system, which allows changes in plant behaviour to be immediately

observed. Fig. 7.21 illustrates how a controller parameter can be changed on-line. By double clicking

on the Kp block, its gain can be manually adjusted which results in the seamless change to the

equivalent parameter on the rea l-time target system. This allows parameters to be easily changed

without interrupting the execu tion of the target system.

, ..

,

HI,,, k I""'''''''h'r~ ~I' EJ

I'
r:; s-u on ;"o;"g,. ovtoIIow

~~~~----,----' 

c.nc. I ... -
Fig. 7.21: On-line purameter tuning 

""" 

The results presented in this section have been logged using the scope block as alluded to earlier in 

this section. This data is passed to the Matlab workspace and is presented in one of two ways, either 

by directly using a bit map image of the scope block (Fig. 7.22) taken during simulation execution 

(on-line visualisation) or, by using the Matlab plot conunand (Fig. 7.24) on data passed to the 

workspace (batched data visualisation). The scope block image method is used to demonstrate the 

system from a user perspective while the plot method is favoured when data analysis is needed9
. 

9 The plol function allows for morc flexibility and produces \lcctor graphic images that ha\lc better resolution for 

7-1 7 



Chapter Seven: Demonstration of the RADE system 

• ' .. ' .... I "r-JEJ 

Fig. 7.12: Scope Block Results/or Kp- f:l.5, Ki=200 

I I' , - . . 

--- -.- __ 1 __ L -.-j I 
~- - .--- --.---, -.-

. ~ .. ~,-.. "". '~ I , -. 1 _0"" • I 
r 

P'lM"kCT): r:nv .• -.... ('n~ 0:""'" 
. "i~ I co... 1"'-J ....... . ......... J: .. I -.. FIg. 7.23: DIgital SCOpl! results (current probe scaling l OOm VIA) 

The first test of the real-time current controller will use the controller values designed in section 7.2.2 

i.e. Kp= 14.5, Ki=200. The rea l-time scope block results shown in Fig. 7.22 are verified against both 

simulat ion results from Fig. 7.11 and data captured by an external digital scope, Fig. 7.23. The data 

from the external digital scope is scaled10 by lOAN and superimposed on the real-time result captured 

by the scope block and is shown in Fig. 7.24. From Fig. 7.24 it is evidenllhat that the results measured 

by the Simuli nk scope block and external digital scope agree with the exception of switching noise. 

This is an expected discrepancy as the Simul ink scope uses data samples that are synchronised to the 

inverter whi le the externa l digital scope does not. 

incorporation into printed documcnts. 

10 Thc current probe scales measured eurrent by lOOmV/A. The measure voltage signal has to be multiplied by IONV to get 

the absolute cum::m measured. 

'·18 



? 

Chapter Seven: Demonstration of the RAD E system 

:~. ~;'. --~-.~.~ .. ~ .. ~.~ ... ~. ~~ · . 
2 •.. . ..... .. ' ..... : .. 

o..lTlIIlIRapmlll wilnSco~ Oa l!! 

REOasoope 
"BtUE~~ ' 

~ENa"1f 

i ' Re()OK~ 
Blt.E~OTIe 
GMEEtoI ... eI U . 2 . ,. . .... ,. 

.:- . ·f·· ,. 
.......... ~ .... 

..s .... 

·1· .; .... . ...... .. : ........ . 
• /-8A,~ 0 l OHi!! ." Lc::.=::...:.:.:: _ _ ~ __ ~-'.,---~c_--..J 

o 0.02 0.D4 0.0& D.D8 0 I 
11,... (.) 

Fig. 7.24: Comparison o/resulls (scope dalU "as been scaled by 10 AIJI) 

J~~~===:~~~c~"'~M;'~ .. f~~ ... ~::::JS~;;~~;t~ " Kpal.S Ki-200 : .r-~-'" ::::::::::: "L( __ '--c.cJ~~ •• _L~£;:; · .. , , 
2 , 

~ I ! ' ... 
·2 •. 

• 
• 

..... ~ . 

" ................ ~.,. . , 

Jr·-,-········ ..... 
d ..... . T" 
j 

... ~ .... 

'''r .............. . -:. 
I_C"~'~A~"~G~'~~~ _ __ -ccc _ __ -c~ ____ ~ ,10 .: 
o 0,05 0,1 0_15 0.2 

r ..... (.) 

;5 ... 

• .. 
~ a ··· , 
! " u 

, 

R60a ........ _ 

.. ..... ~ ... ~~~~, 

_.,. ;... -;. --", -- ........ ; ... . 

' ...•.. ; ..•••. ~ . •••• . .•• ;.. . -.~. • .• ~ .•••. ·1· 

6.5 · .) ..... : .. ·+-· .. ·f· ... ~. .+ .... ~ ...... : ..... t· 

01 0105 011 0115 012 0.125 013 0,135 01. Ol~5 

n"..(.) 

Fig. 7. 25:Comparuwn o/real-time and simulation results 

The graphs of simulation and real-time data are superimposed in Fig. 7.25 and it is evident that there is 

good correlation between the two systems. This figure shows that Simulink simulation can be easily 

rapid prototyped to practically observe real-time control of systems. 

For the under damped case Kp=5 and Ki= 1000, the corresponding plant response compared to the 

simulation response is shown in Fig. 7.26. From thi s figure it is evident that simulated behaviour and 

real-time results agree, aside for some switching noise on the real ·time system11
. 

I' Thougtl synchronise sampling is used, switch noise cannol CTllirely be removed. 

7· 19 



Chapter Seven: Demonstration of the RADE system 

10 
Kp-5 KI"l000 

0, ~ REO~ ..... • ... ·S(UE· a~lme 
GREEN • • • , ..:. 

, J'-n \.J'c; . ~. . 

, . 

• 

g 2 ..... --~ .. 

\ • , .... , ..... • 3 
0 • 

\/V "::J (\;:.:J 
• .. ;. 

; • tj 
·/-6ArelC 1OHl: 

7 

5 - .-:. 

.. 

... ~ .. . , ... : . 

0#-54"-01 ... 3 ..........•.... , ........ ~ .......• , .•• -
.10 0.11 ' 72 013 OH , 0.05 0.' 0.15 02 Tirre (S) 

Tme(s) 

Fig. 7.26: Under damped current controller response 

~f[»l_[jp!1I' 

8lLE .... \;'mt 
GREEN~I 

,. 

,. 

'" ". 

The next pall of the investigation involves the changing of controller parameters to observe an over 

damped plant response. The parameters used are Kp=6 and Ki= IOO. The real -time and simulated 

responses are compared in Fig. 7.27, which also demonstrate good correlation between the systems. 

:;: 

• 

:F" 
2 .... t.:::::-:-'.: ... 

. ~ .•. 

i 
" . 
• 
-8 .,:e .... ·~i,.;~··· 

o 0.05 

....... 

.....•.... ~ 

h! h, ....... h 
...•... 

0.' 
Tme(.) 

. ..... ~ ...•... 

0.1 5 

..... : 

02 

• 
" . 

7 .•..•... 

:;: 
~ 6 5 .... ~ . .~ ., . 

• 
55 •• 

0 11 012 

.~, ........ . 
RE;D- • .....,. .. cj 
awE_I ..... 
(JIE£!IIoteI . 

013 0 u '" n".. (. ) '" 

Fig. 7.2 7:0w!r damped current controller response 

This section demonstrated that the implementation of a current controller with the RADE ADC64 

system produces real-time results that agree closely with simulated results. The next section introduces 

the rapid prototyping of the speed loop. 

7-20 



Chapter Seven: Demonstration of the RADE system 

7.3.3 DC Speed Controller 

In this sect ion a speed loop is added to the current controller loop implemented in the previous section. 

The Simulink model used for the current controller (Fig. 7.20) does nOI change aside for the 

subsystem 1 block with the modified block shown in Fig. 7.28 and new controller subsystem block 

shown in Fig. 7.29. The changes made include the addition of: 

• The ADC4,5 block. Used to sample the speed data from the tacho sensor. This signal is then 

scaled by 1 OOOrpm/2.6V to convert the voltage signal into a speed signal. 

• The sine wave and relay block l2 combinat ion provide the 2 Hz reference square wave signal, 

as the function generator block cannot be used in rea l-time models. 

• The data store blocks A, Band C respectively. pass current, speed and reference signal data 

back to the root layer for on-line visualisation. 

• The controllers subsystem contains the cascaded speed and current controller and is shown in 

Fig. 7.29. This block consists of two discrete PI controllers, Speed controller and Current 

controller with internal models shown in Fig. 7.10. 

The experimental setup (Fig. 7.18) does not change and the tacho sensor provides speed feedback. The 

PWM switching frequency remains at 4K Hz with an 8K Hz sampl ing time. 

~ 
D:l1lI SIor, -,-

W. _ -,- ""' .... - c- "'" &-
_ Writ,l _ Wnle2 

Triggll< 

~ 

~, 'M ,-
AOCO.l Cl.nent ScIoling 

'"" 
~. ,--

~. -100012. -,- " "., 

"" .. - f'WM 'i;;oc UOTOA 

IY\l SiIrl J;oo-.. _ .. 
~1~ -

c."", .. , .. 

Fig. 7.28: SubsJ'stem modelfor speed controller 

I~ The positive and negative threshold points for the relay block tire respectively set at +/-0.111 10-1 



Chapter Seven: Demonstration of the RADE system 

Controllers subsystem 

, 
W~ 

~eI , •• 

r s:~* -0 
_I 3200011 28 , 

'" 
• ,~ --- """~ "-"'-

L,...-PWM Sc*>g 

'" I feedback 

. FIg. 7.29: Controllers sub!>ystem block 

The controller parameters used for the speed loop are Kp=O.03 and Ki=20. The plant's small signa l 

speed response compared with simulated data is shown in Fig. 7.30. This figure shows that the real­

time results agree with simulated data, aside for speed jiuer of the shaft. This resulted from the 

inverter swi tching noise and its effect is more conspicuous at low speeds as the tacho has a low output 

voltage For example at 300rpm the tacho voltage is O.78V and with 70mV switching noise observed 

on thi s signal this translates to a 27 rpm error which can be seen in Fig. 7.30. The corresponding 

current wavefonn compared with simulated data is shown in Fig. 7.31. Here again results agree if the 

effect of noise is ignored it is also evident that the current controller is not held in saturation which 

allows the system to operate in a linear region. 

~ 

j 
1l 

J 

600 

500 

'00 

300 

200 

>od 

0 

· 100 •• 1 •. 

· 200 

·300 

Speed Re sponse: Sma1l Signal 

Kp"O 03( Ki:20 
.••• j.... .•.••• • •• .~ •••••• 

r' ..,."",,"' .......... >.... .. 

.. ; ........ , ........ , ..... . 

. , 

.RE D;;osunulated. .•. 
BL4= "' real-lme 

... ............. ~g~:'.~L .. 

..;. , . 
. .. : ....... ......... , ................ : ............. ,t ............ . 

L·_"_~_0~~_w_m~n~:~~_f~®~2~HO~-oL-______ ~o-______ ~c-______ ~ 
-400 ~. 

o 0.2 0.4 0 .6 0.8 
Time (8) 

Fig. 7.30:Small signal speed response 

7·22 



~ , 
" a 

" 

" 
, \ 
, 

. , 

-10 . 

Chapter Seven: Demonstration of the RADE system 

C U' OWfII ResponIIe : S rrel S;goal 

Kp-<lDl_ K>~20 

. / ......... . 

..........• 

REo-$lrru.ecI 
9.1£-re(ll.lm<! 
GRE~."'! 

" . 
8 .~ ........ . 

o ,,-

~ 
• , . 
a 

2 ., ...••• ; ..•••. ; .... 

O~ ' ; --

.. ;..... ;-. 

. RE O-.rru"~ 
···· a::LE· .... ~.n. 

GRE):.Nonlf 

.. -,.- ...... . 

--_._-, . 

"';300,e,f"mnIltI02H1: : . : ·2 .,. .. , ...... ,-. .., .....••... ,. .., ...... , . 

. "~---:!:----:~---:-::---::---' o 02 0 .. O~ 0.8 
0.02 0 .001 0.00 0.00 0 .1 012 0 .14 0.18 0 .18 

TI!Tl8 (a) 
r .... (1) 

Fig. 7.31: Smull signal current response 

Wit h the controller running the reference signal is changed to +1-800 rpm the resulting speed and 

current waveforms are shown in Fig. 7.32 and Fig. 7.33. Both these figures have simulated data 

overlaid, which confirm that the real-time and simulated resu lts agree. 

? 

~ 
!!. 
1 
.:! 

1000 . " 
.00 

<00 

200 

0 

-200 

Speed Response : Large Sigrel 

Kp=003i K,s20 
~" ............... . 

..... _- .... ---;.. -............. ) .............. "!' 

_ .. - - - -. ... . ... , ...... ....... .... ;.. ,........... .;.. , ......... ~.. . . .. . .. . 

..........•... ; ................ : ....... . _ ..... RJ:.Q~~.I)W~I~L 
BLUE"'rea"1ime 
GREEN .. rer 

-400 ........... ..~. . ..... -..•........ _ .. _-- ,.-. 

-600 

-800 

.'-800 rellmn ref@ 2Hz 
-1000~~~~~~~~~--~~--~~--~ o 0 .2 0.4 0 .6 0 .8 

Time(s) 

Fig. 7.32: Large signal speed response 

7-23 



., 

., 

Chapter Seven: Demonstration of the RADE system 

, 
Kp . OOO, K."20 ~D<.""'ed 

IIl.LE·~".me 0 \ " " :'-(£~'" 
• , \ o. 

01 I 
, 

~ , . 
'\i"-.... '-.. r ,. • 

V • . , a 
, ., .Co.I o.. 

,: I I 

0 ,J:.. , .' ... -. r 

, ' 

IO ' 

" . ' 
, 

-•......... 
... 'SOO 'eVmln nil 0 2H1: ' .... mn 11110 2Hr. , 

o 02 
Tm,,(.) 

0.15 

Fig. 7.1J: Lurge signal current response 

02 02> 
Tim" (SI 

J£D<.rrollled 
IIl.LE~"'m. 

. J3R£ENo.el 

-"I:t,.. . .. ~ 

This part now demonstrates how the RADE system allows students to qualitatively investigate the 

effects of plant saturation and integrator windup. While the system is running the rererence signal is 

changed from +1-800 rpm at 2 Hz to +/~2000 rpm at 1.2 Hz. The resulting speed response is shown in 

Fig. 7.34. This figure demonstrates how the motor can only rotate al a speed physica lly constrained by 

supply voltage i.e. 1500 rpm. This example while trivial, allows students to get a tangible 

understanding and visualisation of plant saturation. 

Spee d Re s ponse 

2000 

ISOO 

1000 

" E 
SOO 

~ 

" 0 -~ • 
R ·SOO ~ 

-1000 

-I SOO 

-2000 

0 02 04 06 08 
Time (s) 

Fig. 7.J4:Plunl saluralion ~peed response 

The concept or integrator windup is closely related to plant saturation and can also be demonstrated to 

students. A "manual" swi tch block, shown in Fig. 7.35, is inserted into the speed controller loop to 

switch in or out the integrator windup. 

7·24 



Chapter Seven: Demonstration of the RADE system 

It works on the principle of changing the input to the output delay term of the controller. If this input is 

taken before the saturation block, the delay tenn or integrator is able to windup. and converse ly if 

taken after the salUration block, the maximum value attainable by the integrator is constrained to the 

satu ration block limits. It is worthwhile to note that the manual switch position can be changed during 

real~time code execution. When the integrator windup has been disabled the resulting speed response 

is shown in Fig. 7.36. The controller parameters are unchanged from the ones used for the response in 

Fig. 7.32 i.e. Kp=O.03 and Ki=20. From Fig. 7.36 it can be seen how integrator windup affects the 

predicted system responses. This now concludes the demonstration of the RADE ADC64 and the next 

sect ion focuses on the RADE PC32 

I Felldbad< 

Mat'lJai S .... I01 

Fig. 7.J5:DiscTete PI controller with windup switch 

S pcedRc spollSc 
2000 

1 500 

1000 

•• SOO 

" " u 
0 " ~ u 

!!. 
~ ·500 

·1000 I 
·1 500 

·2000 
0 0.2 0.4 0.6 08 

Timc 

Fig. 7.J6:SpeeJ response with no anri-winJup 

7-25 



Chapter Seven: Demonstration of the RADE system 

7.4. Demonstration of RADE PC32 System 

This section demonstrates rapid prolotyping with the RADE PC32 system. The first pan of the section 

rapidl y prototypes the current and speed controllers designed in sections 7.2.2 and 7.2.4. These resuhs 

are compared against both simulated and RADE ADC64 results. Th is section then concludes with a 

demonstration ofa rapid prototyped position controller. 

7.4.1 DC Servo Speed Control 

The DC servo implemented in this section is based on the Simulink models used on the RADE 

ADC64 system. The tuned current and speed loop result s presented in thi s section, are used to evaluate 

the RADE PC32 system against simulated and RADE ADC64 data. 

The operation of the RADE PC32 system is functionally equivalent to RADE ADC64 and the similar 

Simulink model used on both these system. Fig. 7.38 and Fig. 7.28 respectively show the PC32 and 

ADC64 versions of the subsystem I block; only the device driver blocks are changed. This illustrates 

the flexibility of the RADE system to reuse models across different targets. The experimental setup, 

shown in Fig. 7. 18, does not change except for the target PC using the PC32 card. 

Fig. 7.37 shows the root layer of the DC servo speed controller model and consists of: 

• AD Trigger block which is used to software trigger ADCs on external interrupt O. The 

interrupt signal is generated by the PWM card and occurs at 8K I-Iz synchronised to the 4K Hz 

PWM signals. 

• The subsystem 1 block contains the controller model (Fig. 7.38) and is synchronised to the 

ADC end conversion signal which trips interrupt I . This is identical to ADC64 vers ion (Fig. 

7.28) except for the ADC and PWM device driver being changed. 

• The PC32 Int Support block used to synchronise AD Trigger block to externa l interrupt 0 and 

the subsystem 1 to external interrupt I 

• The Data Store Memory, Data Store Read and scope blocks are used for on-line visualisation. 

Data Store Read block Band C provide speed data and A provides current data. 

7-26 



Chapter Seven: Demonstration of the RADE system 

o.~ SlOre Oaw Store D.tlI Store 
Memory Memory' Mem0ry2 

• 
." ~ 
" I T....-tl I 
~ 

m. AD TRIGGER 

m, 
o.~ Slore 

PC32 to'II SuI>POll ,-, Re-.:l2 

PC32 AOC 

Sul:)$ys1em1 ~ 

01111 St."""".=] 
'"'' 

0.1* Store ,-
Fig. 7.37:Simulink model 

B 0." Store C Oat' Slam 
'MIlet _ IMile2 

'~"-----1r---------r-~ I •• ~~ 

Current 0.1* 

-B ..... 

-"....... v"""r---oj "" . 
•• N 

P'M.4 tlr OC MOTO 

Fig. 7.38: Subsystem 1 block 

The current loop response (without speed loop) is shown in Fig. 7.39 and it is evident that simulated 

and real-time resu lt s agree, aside for the switching noise. The zoomed responses in Fig. 7.39 and Fig. 

7.40 show the ADC64 and PC32 resultsu . A visual comparison of these results revea ls that the PC32 

system is more susceptible to noise and this can be explained by analysing the ADC triggering used on 

these systems. On the ADC64 system the trigger signals are supplied directly by the PWM card and 

there will only be signal propagation delay. On the PC32 system the PWM signal can not be directly 

13 These results have not been overlaid, as the switching noise makes it difficult to diff(.'fCtltiale signals. 



Chapter Seven: Demonstration of the RADE system 

used to trigger ADC conversions l
" and is instead patched to the processor external interrupt 0 pin 

which in turn trips software ADC conversions. In this case there is the interrupt latency and the 

processing delays, which skews sampling and results in more, switch ing noise being sampled. 

PC32CUTI011 Response 

... L .... + ..... T .... 1.. .. ..H -- 1 -- ••••• ~. , 
2 ·· .... ;........ . •..•.......... ~ .•••• ·,f····· .-:- ... 

~ I i 0 - -- ••. -~ -•..•.. .... . -:- ..•.••• , ...•...•.... 

a .2 ......•...•......•.••••........... ;. .•..... J ......... : ..•...• ~. 
, : I : 

82 ·· 

~ j 8 ·--

. ...... ~.... . .... ~ ...... . 
__ .L ........ ~. . .......... ~ ....... j ......... ~ ..... .. 

• ....... 1......... ......, . I .:. 
.J RE o-.. ~ 

-8 r--' -...... . ..... - . .BWJE.-JI!"' rnlll . 
~1-8ArefG10Hz : : GRE E~~I 

.,,!:----=.-:~---_;f;-----;;"~-----;!. 
o OM 0.1 0.15 02 0.12 

r..,e(l) r..,,( s) 

Fig. 7.39: Current response 

8 + ... ----'- , . 
? i 711 .i········:········~·······l········r······ ·r········~·· 
u : 

.... :.- ... -

7 ·l ·· ······ !·· ····· I···· .. ··; --- ····r·H .... \ .. ______ :H ....... : ..... . 

811 + ... H; •. . . . •• ;. H . ............. , ........ ;. ...... .:. ..•••••. :. 

8 .i!--M.~.~.tQtj .i ........ ; ........ ~ ........ ~ ... ..... : ......... : .... . 
0.1 0_105 0.11 0.115 0.12 0.125 0.13 0.135 

r.., e(l) 

Fig. 7.40:ADC64 Current sampling 

The speed loop sma ll and large signal results are presented below and also confinn that the RADE 

PC32 system produces results that closely match simulated and ADC64 data. Table 7-2 summarises 

these results. The next section demonstrates the RADE PC32 system for a position controller. 

14 The external trigger signals for the ADCs on the PC32 card have Strict timing restriction th3t arc not met by the intCffilpt 

signal generated from the PWM ASIC. 

'·28 



Chapter Seven: Demonst ration of the RADE system 

Result Type Kp Comment Figure 

Table 7-2: Summary of RADE PC32 results 

ACe6" Speed RflpoNe: SmaI Signlll 

""" 

(

N'I""' "'' .... ~ .... 

.. , 

"" .., .. 
-f 200 

! "'" • • 0 • .,,,,, 
."", 

R£O<'IIm.tllleG • 
+J.300 •• " rnl'l;refCll2 H1: alue-lNl-tme 

'-------~,------;~------~ ... ~='" .. "."'-~------~ ~ 0 02 o.~ 0.6 0.8 

""" 
."" 

Tone(,) 
0 

~·O.o3, KI .21) 

··r~ ·· 
; . .. : 

02 0 .• 
'fm.{a) 

• _QE~ ... ua1lld 
6tue·",.l--Im. 
~E~No ... ' 

\ ...... . 

'-\J 
Fig, 7.41: Small signal speed response 

10 -~ 

GREENio .. m.rllWd 
6lue"",eI-tme 

, 1\ 

g 'IL I ~ ' ..... ; ..... . 

1:- . Ir;~ir 
~ ... l L 

. /..lOO .... ""n'efG/ 2H>. 

."!:---7:--~.,---~----e:---~ o 02 ~ ~ ~ 

10 .. 

, \, - .... , ... 

~ .... ' f ... ( 
·10 .. 

oi~'''''m" .. ICII2 H1: 
."L--7:----,:.,---=----,::---~ 

o 02 0 " 0.8 OB 

Fig. 7.42: Small signal current response 

7· 29 



~ • ~ 

I .. 

Chapter Seven: Demonstration of the RADE system 

"'" .. 
.,. . 

'" 
200 

o ... 
• , 
1 • ·200 ... l 

-<00 

rme(s) 

>000 

"'" 
"'" 
'" 
"" , 

·200 .. 

.00 ... 

""'" ,I . 

""" 

ADC61 Speed Re1porse l-oe SigOlll 

., . 

.'1 

Time (I ) 

·f· ..• 

. ... 8~o-,..l(I)~~ .... 
BlLE.-IHl-U"ne 
~E~","!ef 

Fig. 7. 43: Large signal speed response 

" ..... '\ M;.. ..... . ..... 
, +. \ 1\ ' 

\ \ ;;; 
! ',r ... ·· ,-\ ··· r ··'-··· 

~ ,; •••• >. I ..... 

vi ............... . 
-6 .... 

·10 -... 
I 
. ~ ... 

':..,'\ •••.•• :=\ . 
" A. , \ ,I ' . 

I:!~ ... .... ~· T\ ·· ~ ..... . 
J ; I 

·10 ~.. . .. .••• . • .. 'F .. 
.,..eoo r .... mn lef. 2H! 

.,,!---= ----:c---= ----o"o-----' o 02 0.. 0.11 OB 
.,,'-----= ----,:,-----c:-:---"'7:0---' 

o 02 0.. OB OB 
Tme(s) 

Fig. 7. 44: Large signal current response 

7.4.2 Position Controller Experiment 

The RADE PC32 system, from an operational standpoint, functions in a similar fashion to the RADE 

AD64 system and this section illustrates its use with a posit ion control experiment. This experiment is 

presented in a qualitative manner, as it is envisaged that students would use a supplied model to 

investigated plant responses. This experiment could therefore be used in introductory courses with 

students having li ttle controls backgrounds. An added advantage of using a position control 

experiment is that changes in plant responses can be easily observed. For example in the under 

damped case the student can observe how the shaft over shoots the set poim and then converges. 

The experimental setup for this experiment is based on the system used for the RADE ADC64 system 

(Fig. 7.18) with a different motor and the tacho replaced with an incremental encoder. The Simulink 

model used is show in Fig. 7.45 and Fig. 7.46. 

7·30 



Qill 
Trigger 

• 
." 
." 
'" 'v, 

'v, 
PC32 1nl Support 

Chapter Seven: Demonstration of the RADE system 

Pos iti o n Cont ro ller 

0.'8 510<1 0818 510<1 
l.!emOty l.!emOtyI 

~ 
rrloo·rj) 

I 
1 

T''IIO·rj) I 
AD TRIGGE R 

M ode l subsystem 

~ 
Oil. 510" Scope 

Re.d 

TaChooriverh Abs SPlled r.- e-Sp .. d in F,"'<'d Sp .. d T"ho In 
S·Functiont PosItion 

Subsystem 'Running' Filte r 

ADCO - ~". 
ADCI 

Write2 

I 
POl. reed ADC2 

wreed 
AOC3 

~ 
"pw "., 

PC32 AOC3 Cu",nl feed 

PWM for DC MOTOR 
Pos. r.f. D''''':~ Controllers Wo, __ 

IV\l _rnrl --
'" • 

s~ve~t degrees Data Store 
Wri'e1 

Fig. 7. 45: Simuli"k model 

The PC32 Interrupl block is used to synchronise controller execution 10 PWM ASIC as done with 

RADE ADC64 system. On the PC32 card the PWM ASIC's interrupt s ignal cannot be used direct ly to 

trigger ADC conversion1S and is instead used to trip external interrupt I that in tum triggers a software 

ADC conversion. At the end of the conversion the ADCs trip the external interrupt 2, which runs the 

model subsystem code. 

IS The cXlcmallriggCT signals for the ADCs on the PC32 eard have SlriCt timing rcstriction that arc not mct by the interrupt 

signal generated from the PWM AS IC. 

7-3 1 



Chapter Seven: Demonstrat ion of the RADE system 

In tbe model subsystem, shown in Fig. 7 .45, the ADC block is used to sample the current sensor 

signal, the Tacho dri ver is used 10 input position data from the tacho ASIC on the PWM card. The 

posit ion data is then used to generate speed signal 16
, which used for speed feedback. The sine and 

relay combination are used to provide a reference square wave signal for the posit ion control loop. 

The controller subsystem, shown in Fig. 7.45 is expanded in Fig. 7.46. It consists of 3-cascaded 

d iscrete PI controllers. The inner most control loop regulates the annature current. This is followed by 

the speed loop and then the position loop. For the purpose of this discussion the inner two loops are 

assumed to be tuned and the student would only need to modify position loop parameters to observe 

different plant responses. 

Controllers subsystem 

• Pas ref 

ref. t pgs feed ~ -, 

POll I8ed 
POIIilion Conlroll« r 

I Iref 

~ vf---t-l 3'~2~oo~"'~"~>--~;::)'Q 
Speed Controii'er I,L'=:::-:o::::=', To PWM 
~ Current Controller 320001128 

Currenl feed 

Fig. 7.46:The controllers subsystem 

With the plant running, the student can enter different position controller parameters. Table 7-3 lists 

three examples of Ki and Kp parameters for the position control loop and their corresponding 

responses. These responses show a regulati ng, under damped and over damped plant/cont roller 

behaviour. The controller parameters for the speed and current loop are shown in Table 7-4, note these 

parameters are not modi tied. 

Kp Position Ki Position Description Figure 

2 7 Good regulation Fig. 7.47 
2 30 Under damped plant Fig, 7.48 

response 
4 1 Over damped plant Fig. 7.49 

response 

Table 7-3:Controller parameters/ or various plant responses 

Kp Speed Ki Speed Kp Current K.i Current 

45/30 20 30 300 

Table 7-4: Fixed controller parameters/or tire speed and current loops 

11. This is done by diffcrcnti3ling the posi tion signal. 

7·32 



Chapler Seven: Demonstralion of lhe RADE system 

POSltoft RC !iponsc 

'" 
100 ... 

" 
M 

" " 0 ..... 
~ 
M • < 

." .. 

·100 ... ,. 

·150 
0 DJ 06 08 

Tunc (5 ) 

Fig. 7.47:Regllluting positioll response 

P05l00n RespOnse 

'" 
200 .. _. ......................... , .. 

'" ... - . ... .:. ..... 

lOO 

" " 
- -......•. _ ... _ .. ..... ; .... ·········i··· , .. _ ....... . 

" " 0 • M • < ." t· .. _ ..... , • ·····c· ~.. -

• 100 .. 

-150 

.200 

·250 , DJ , .. '.6 08 
Tine{s) 

Fig. 7.48:Under damped response 

7-33 



Chapter Seven: Demonstration of the RADE system 

Posilon Response 
150 

, ... , IIIJil 

100 

SO .... .. ; . 

1 -u 

'" 0 ... 
~ 
~ 
c 
< 

-SO 

t 

·1 00 -- ...•.. _. . ~ ... 

-150 
0 01 0.4 0.' 

TIIllC(s) 

Fig. 7.49: Over damped response 

7.5. Conclusion 

This chapter demonstrated the use of the RADE ADC64 and PC32 systems with the implementation 

educational motion control applications and highlighted the use of rapid prototypi ng technique for the 

teaching of theoretica ll y challenging courses. The theoreticall y designed controller yie lded a real-time 

controller with predicted response. While this chapter concentrated on motion control examples the 

RADE system has immediate applications to the teaching of DSP and communications courses. 

The on-l ine parameter and data-logging feature of the RADE system illustrates how students can 

interactively investigate plant/controller responses. An added benefit of the Simul ink system is that 

students can perfonn quick qualitative experiments at the introductory stage of courses and then 

progress to the implementation of quantitati vely designed controllers. This system allows students to 

pract ica ll y explore rea l-time systems and gain an appreciation of the theoretical control topic without 

being bewi ldered by the complexities of the lower levels of DSP real -time code. 

Both the RADE ADC64 and PC32 have been demonstrated to provide an effective rapid protolyping 

platform for educational appli cations. 

7-34 



Chapter Eight:: Conclusion 

CHAPTER EIGHT: 

CONCLUSION 

8.1. General 

The practical work for this thesis produced a rapid prototyping tool that that is suited for the teaching 

of controls and allied fields. It was based on The Mathworks RTW and implemented the RADE 

framework for two n DSP cards i.e. the PC32 and ADC64 cards. 

This thesis also presented a cross section of the activity within the rapid prototyping arena, focused on 

educational application. The work of [GAN1, GREGA I, KRONSIC1] shows the positive impact rapid 

prototyping can make on engineering education. In the South Africa context of poor pass rates and 

disparaging backgrounds of undergraduate students [JAWrrZl1, rapid prototyping present a possible 

avenue to assist these students. The major advantage of rapid prototyping is that it promotes authentic 

cognitive ' learning and affords the students the opportunity to interactively be involved with 

experiments. 

While rapid prolotyping allows for new and improved teaching methods it still faces a few hurdles, 

which wi ll have to be over come, in order to become a mainstream teaching tool. These include 

equipment cost and development time. However these pale in comparison to the attitudes of the 

educators themselves. A point in case is the author's engineering department, while the Motion 

Control Group has done a sterling job of producing rapid prototyping tools very few of the other 

academics are willing to trial or contribute to the development process. It seems that the appeal of 

rapid prototyping is not clear to them and this mindset needs to be changed in-order for rapid 

prototyping to be an effective teaching aid. 

8.1 .1 Role of the RADE Framework 

The Mot ion Control Group's first rapid prototyping tool was CSDE developed by Stylo. The RADE 

framework built from this start and produced a system that: 

• Closely conforms to The Mathworks specifications. 

• Provides full network support. 

1 Authentic cognitive learning refers to the learning process whereby the individual develops knowledge by forming and and 

refining conccpls in a personal idiosyncr.uic manner {SQUIRES I] 

,., 



Chapter Eight:: Conclusion 

• Provides a scalable framework that can be parted to various target cards. 

• Supports on·line parameter tuning and data logging with capture features. 

The RADE framework while an effective rapid prototyping tool , is not the final point in the 

development cycle. It rather represents a step in the Motion Controls Groups on going development 

strategy. The RADE framework will aid this process and help future developers produce more 

effective and user·friendly rapid prototyping tools. 

8.2. Suggestions for Further Work 

As mentioned above the rapid prototyping tools being developed at the Motion Control Group is an on 

going process and the author during the course of his work has identified the following areas as 

possible research topics for further work. 

Addition of a Real· Time OS on the target 

Currently the target platfonns used in the RADE framework are at the lower to medium end of DSP 

processor available and are not suitable to run a real·time OS (RTOS) due to bandwidth constraints. It 

is envisaged that more sophisticated/powerful processor platfonns2 wil l be incorporated into the 

RADE framework and these platfonns will have the necessary bandwidth needed to run a RTOS. The 

benefits of using a real·time OS are: 

• It allows for multitasking. 

• More features can be built into the target. 

• It will be possible to directly connect to the target platfonn onto a network as most RTOSs 

include network support. 

Analysis of course impact 

An aim of the RADE system is to improve the teaching of controls systems, OSP and aligned courses. 

This aim needs to be quantitatively evaluated as feedback from lecturers and students are necessary to 

develop the RADE framework further. Currently the use of the RADE system has shown qualitative 

benefits, which needs to backed up by proper analysis of the course impact, which such tools make. 

Loca l DSP cards 

A major hurdle that rapid prototyping tools face in general is the cost factor, which is amplified, in the 

South Afri can context. A possible solution to this impediment is the development of a local OSP 

lA TMS320C67 card is scheduled for incorporation into the RADE framework in the near future. 

'-2 



Chapter Eight:: Conclusion 

platform. A collaborative effort among local universities will be an ideal way to develop a cost 

effective platform that can be utilised by all role payers. 

Revision Control issue 

The RADE framework is inherently complex due to the incorporation of numerous tools and 

packages. There are about 20 to 30 files that make up each implementation of the RADE framework 

and it is difficult and near impossible to keep track of revisions. It is therefore advisable for revision 

control software to be used for future developments. Packages like Visual Source Safe from Microsoft 

or CVS from GUN will be ideal. 

8-3 



APPENDIX A: User Guide 

APPENDIX A: 

USER GUIDE 

A.i. INSTALLATION MANUAL FOR RADE VERSION 1 

The installation for the RADE system is inherently a complex task, due to the use of three different 

packages. Namely: 

a. TI compiler 

a. Innovative Integration Zuma tool set 

b. Matlab release R I1 

It is recommended that the TJ and J] Zuma toolset are installed using the J] installation manual with 

the following additional comment 

1. TI compi ler 

a. Use default directory. c:\ t1tc for ver 4.7 and c:\c3xtools for ver 5.10 

b. Note there is a patch for the TJ compiler ver 5.10, which upgrades it to version 5.11. 

Run self-extraction file 3xwinp5x.exe found on RADE installation CD, in the 

\c3xtools directory. Then run the install.bat file. 

c. CSDE uses only compiler ver 4.7 

d. The fo llowing header files should be copied from RADE installation CD (\C3xtools\include) 

to the respective TI directory on the installation PC. This applies to version 5.10 only. For 

version 4.7 use the header file found in the \filc directory on the RADE installation CD. 

I.d.1. bus30.h 

I.d.2. bus32.h 

I.d.3. dma30.h 

I.dA. dma32.h 

l.d.5. timer30.h 

2. Zuma toolset 

a. Use the newest n installation ver 2.28, as the libraries files for older verSion are not 

compatible with TI compiler 5.11 

b. For the PC32 card Adam has modified library files , these files reside in the Matlab directory 

and are copied to the target PC in the following steps. 

A.1.1 INSTALLATION OF THE RADE COMPONENTS TO MATLAB 

DIRECTORY 

1. Use the default directory ofc:\matlabrll for Matlab installation on target PC. 

Appendix A: .1 



APPENDIX A: User Guide 

2. Copy the following directories from the RADE installation CD. 

a. CD:\matlabrll\rtw\c\ii 

b. CDo\matJabrlllrtwlclgrt_c3x 

c. Optional demo directories CD:\matlabr l l\work\adc_demo and 

D:\matlabrl l\work\PC32_demo 

3. Bug fixes for R 11. 

a. Make backup of the c:\bin\licence.dat file to the c:\matlabr 11 directory on the target 

installation Pc. 

b. Copy the d:\matlabrl1 \bin directory from the RADE installation CD to the target PCs 

c:\matlabrll \bin directory. 

c. Replace the licence.dat file backup at step 3.a above. 

4. Moving files on target installation PC 

a. copy the files in directory c:\matlabrl1 \rtw\c\ii\src_mod to c:\matlabrll \rtw\c\src 

h. copy the files in directory c:\mat labrll\rtw\c\ii\tlc_mod to c:\matlabrll\rtw\c\tlc 

S. Setup Matlab path with the following paths. 

a. c:\matlabrll\rtw\c\ii\devices 

b. c:\matlabrl1 \rtw\c\ii\ti_fpc 

c. c:\matlabrll\rtw\C\ii\ext_mode 

d. c:\matlabrl1\rtw\c\i i\adc\devices 

e. c:\matlabrll \rtw\c\ii\adc\src 

A.1.2 INSTALLATION OF SERVER APPLICATION. 

There are two versions of the server application for the respective OSP cards. In addition there are two 

different builds of each server application: (all in all four server applications) 

I. Dynamical linked. This version uses MCF DLL's dynamically and works only if visual CtC++ is 

installed. 

2. Static linked. This version uses the MFC DLL's stat ically and works on mach ines without the 

need for visual CtC++ 

3. For a standalone system, i.e. Matlab and OSP target on same PC 

a. The server applications is found in the c:\matJabrll\rtw\c\ii\bin directory 

b. Create shortcuts to the respective applications. 

4. For a DSP card at a remote workstation 

a. Make a server directory on PC 

b. Copy the server application from the RADE CD (c:\matJabr l l\rtw\c\ii\bin) to c:\server 

directory. 

Appendix A: .2 



APPENDIX A: User Guide 

You are now ready to use the RADE system 

A.2. SINE WAVE EXAMPLE 

The following examples are to be used in conjunction with RTW manual. They are intended to 

demonstrate how to setup the RADE system and are suitable to use as a control measure to ensure the 

system is working. Thereafter refer to chapters 5 and 6 for information on uses of speci fic device 

drivers 

A.2.1 RADE PC32 

, 
Sine >ill • .,. 

(hi" 

, 

'''" 
PC32 OAC 

Fig. A. 1: Simlllillk diagram 

The Simulink model shown in Fig. A. I is uses a sine wave block to output a sine wave on two DAC 

channels. The gain blocks are used to alter the signal amplitude on each of the DAC channels. It 

should be note that both the gain and sine wave blocks can be modified on-line. 

The setup of Si mu link parameters involves a five-stage process l
: 

1. Setup Simulation Parameters 

When a model is being converted into real-time code only fixed step size can be used. It 

possible to use either a continuous or discrete solver. Fig. A. 2 shows the parameters used. 

2. RTW Options 

1 The RTW manual provides detailed infonnation on the setup process and purpose of the respective parameters. This section 

is only intended 10 highlight the RADE PC32 parameters used. 

Appendix A: .3 



APPENDIX A: User Guide 

The RTW options are used to select the target type. In the case of the RADE PC32 the 

grt_c3x.tlc file is used. The options used are shown in Fig. A. 3. 

3. RTW Build Options 

The RTW build options are used to setup option used for the code build cycle. The options 

used are shown in Fig. A. 4. 

4. External Mode Parameters 

These parameters are used to setup external mode. Fig. A. 5 shows the parameters used. 

S. Data-Logging 

The two scope blocks shown in Fig. A. I can be used for data logging and are setup in the 

External Signal & Triggering window shown in Fig. A. 6. It should be noted that a maximum 

of 8000 samples are allowed, due target memory constraints. 

Once these parameters have been setup, the model can be built. The results obtained are shown in 

Fig. A. 7. Note the server program must be operating on the target Pc. 

Start ""e .0_.0 __ ....... Stop ""e .1_'0_.0 __ ..1 

Solver optiOns 

Twe.1 FIXSd-step Idlsaete (no continuous states) 

FIxed step sIZe 1.001 Mode IstngleTasl<ing ::J 

OUtput options 

Refine output 

Fig. A. 2: S;mulafiOIl paramefers 

El 

Appendix A: .4 



APP EN DIX A: User Guide 

r Inllne parameters Retain .rtw file 

Bu~d options 
Template makefile: J pc32.tmf 

Make command: ~m~ak~.~_o;rtw============~ 

r G eoerate code only 

, (",I .. """""""'" "1""'"'' ~ ,"" "' .. v" .. IiiIEJ 
Ot>5Cr'Ip1ion 

TI\eo tOllawin9 op1IOnS are USed to tailor the generated 
oodo. 

Code Generatlon Options 
MAT -tile v.IIiabIe name modifier .rt. _______ ... ~ , 

P E>d:emsI mode -

Cl 6000 

Server name: target-pc 
Port Numbet r7;ioo~;.;;;..-----------li 
r Q\J1ck BudCl Pt'o,ect 
Heap S,ze. "'Ox",C7i;o:;oo:;;--------~----'11 

Stack Size ~OX;,;O~O~O~:::::::::::~1 
Loop roIMng ttveshold 6 

r:7" Show eliminated etat"_"'""'"."....-----~--~, 
Verb06e builds 

r Inllrle lnVaI'iant $igniiills 

r Local block ovtpuo 

== OK cancet I Help I Apply 

Fig. A. 4: RTIJI build options 

I sIne WIIVP L K1ernrli I mqut Intmhu.:u .. liJEJ 

MEX-flIe options 

MEX..fiIe for extemaJ interface: 

MEX-file arguments· 

Fig. A. 5: setup 

Appendix. A: .5 



APPENDIX A: User Guide 

Seopel 

Tngger 

Source. manual '" Mode normal 
• 

Duration·J.,' 8 ...... _ oJ Delay: J.,'' '' __ J 

fl 

Fig. A. 6: Data loggb'g selup 

Fig. A. 7: Resulls f orm scope block 

A.2.2 RADE ADC64 

The use of the RADE ADC64 system is functionally very similar to the RADE PC32 and only 

requires the ADC64 device drivers to be used with a few changes to the RTW options. The Simulink 

model use, shown in Fig. A. I, is equivalent to the RAOE PC32 example demonstrated above. The 

RTW options that have changed are shown in Fig. A. 9. Once these parameters have been change the 

model is ready to be built. With the server executing on the target PC the results shown in Fig. A. 10 

should be obtained. 

Appendix A: .6 



D 

APPENDIX A: User Guide 

ADC04 DAC 

Fig. A. 8: S imu/b.k diagrllm 

rowse ... 

F.rii"o ~ gBramClI!rs ." P Retain.rtw file 

Build options 
Templatemakefile: Jadc64.tmf 

.~~=====--I Make command: make_rtw 

r Generale code only 

Appendix A:.7 



ApPENDIX A: User Guide 

Fig. A. 10: Scope block results 

Appendix A: .8 



ApPENDIX B: A Programmer 's Gu ide to the Internal working of the RADE systems 

APPENDIX B: 

A PROGRAMMER'S GUIDE TO THE INTERNAL WORKING 

OF THE RADE SYSTEMS 

B.1. MODIFICATIONS TO THE MATHWORKS EXTERNAL MODE 

IMPLEMENTATION 

This section is intended to provide programmatic detail s on the modifications made to The Mathworks 

external mode implementation. The emphasis of this section is to highlight the various functions used 

in the default implementation and then explains the changes needed for the RADE implementation. It 

is recommended that the reader have a proper understanding of the RTW and workings of the RADE 

framework before attempting to make modifications. 

B.1.1 DEFAULT MATHWORKS EXTERNAL MODE IMPLEMENTATION 

The default Mathworks external mode implementation consists of two major files and two minor files; 

Table B I lists these files. Ext_comm.c module which implements the Simulink communication layer 

has already been adequately covered in chapter 3 and 4 and further explanation is not necessary. Hard 

copies of these liIes are not li sted in this thesis, as electronic copes are available on the CD attached. 

Ii 

Table B J: Defallll extemal modeftles 

The ex ternal server module consists of three major functions: 

1. Main loop 

Used to manage the external transaction 

2. Message Processing 

Used to process Simulink messages. 

3. Upload Processing 

data between target 

on 

Appendix B: .1 



ApPENDIX B: A Programmer's Guide to the Internal worki ng of the RADE systems 

Used to processing the uploading of logged data 

These functions all reside in the ext srv.c module and pseudo code listing are presented below. These 

listing convey the general algorithms for the respective functions and need to be read in conjunction 

with the C implementation for a full understanding to be a gained. 

Function Main execution IOOI} 

' ·This is function represent the execution loop that manages external mode transactions. 
It is hypothetical function that has been extracted from MAIN function in run time 
interface i.e. it only represents details pertaining to the external mode aspects . , 
{ 

} 

Call rt_ExtModelnit(SimStruct ·S, int_T port) 
' ·This function setup a listening socket on the target PC·/ 

Execution loop ' ·runs in foreground and can be pre-empted by rt_onestep and other 
interrupts·' 

Start 
Call int_T rt_MsgServerWork(SimStruct ·S) 

' ·This function is used to receive and process messages sent from 
Simul ink·' 

Call int_T rt_UploadServerWork(SimStruct ·S) 
' *Used to send upload data if present·' 

end 

Function int_T rt_MsgServerWork(SimStruct *S) 
, . Used to receive and process messages sent from Simulink·t 
{ 

If Comms NOT CONNECTED then 
{ 
Is Simul ink try to Connect 
If YES then 

} 

{ 
Call static int_T ConnectToJ-lost(void) 
t ·used to open message and upload sockets·' 
Set Comms~CONNECTED 
} 
else 
{ 
Waits till Simulink connects to target 
Return 
} 

else , . comms CONNECTED·' 
{ 
I r first message Then 

Set message code to EXT _CONNECT 
Get data from message socket 

Case Message 
{ 

Appendix B: .2 



ApPENDIX B: A Programmer's Gu ide to the Interna l working of the RADE systems 

} 

If EXT_CONNECT 
Call ProcessConnectMsg(S); 
' ·used to connect to Simulink client·' 

IfEXT SETPARAM 
Cal1 ProcessSetParamMsg(S , msgHdr.size) ; 
' *updates parameters*' 

' * All external mode messages are processed here *' 

End Case 
} ' ·end else·' 

} ' * end function *' 

Function int_T rt_UploadScrver-\Vork(SimStruct *S) 

{ 
If data available 
{ 
For all buffers 

Next 

Call scnd(upFd , bufMem->sectionl, bufMem->nBytesl , 0); 
'·WinSock API func tion to send data·' 

}' *end if *' 
}' *end function* ' 

8 .1.2 RADE EXTERNAL MODE 

On the RADE system all the function described above are used in a mod ified fonn i. e. the WinSock 

parts resides on the PC while the rest resides on the target. The files used for RADE framework 

external mode implementation are listed in Table B. 2. The Simulink communication layer has already 

been discussed in chapter 4 and is not revisited here. 

The RADE implementation confonns closely to The Mathworks conventions and therefore also 

consists of three major functions. However these functions are split between the PC (server 

application) and target platfonns. Pseudo code is listed below for these functions. 

F ile Name & Related Fi les M athworks default fil e Description 
Platform 

Ext_comm_c3x.c Ext_comm.c Si mu li nk communication layer 
PC platform module . See chapter 4 

Ext_ConverCc3x.c ExCConvert.c Conversion module. Converts data 
between target and host types. See 
ch~pter 4 

Ext_srvyc.cpp Ext_srv.c 
PC platform 

Appendix B: .3 



APPENDIX B: A Programmer's Guide to the Internal working of the RAOE systems 

File Name & Related Files Mathworks default file Description 
Platform 

Ext_srv_c3x.c Ext_srv.c 
Target Platform 

Updown_c3x.c Updown.c No functional change only added in 
debugging printf statements. 

Tuble B. 1: Files used/or extemul mode 

Function Main Execution Loop PC Side 
' ·Found in ext_srv..J)c.cpp file and is attached to a timer running at tOms"" 
( 
Call Process_TargeC Msg_ WorkO 

' '''used to manage STP transactions "" 
Call rt_MsgServerWorkO 
Call Thread_Upload(LPVOlD pParam) 

' '''used to send upload data to Simulink. Found in the STP file, see next section"" 
) 

Function int_T rt_MsgServer\VorkO '* PC side*' 
' '''Used to receive Simulink messages. ext_srvyc.cpp "" 
( 
if comms=CONNECTEO then 
( 

Get data from message socket 
Call Send _ Oata« char"')&msgHdr ,sizeof(MsgHeader),TO _TARGET _ HDR); 

/"'This is a STP function. See next section"" 
CaU Send Oata(recv buf,size"'4,TO TARGET MSG); - - - -

' ·This is a STP function. See next section"" 
) 

Function Main Execution Loop Target Side 
' '''manages external mode execution on the target. Ext_srv_c3x.c"" 
( 
Call rt_MsgServerWork(S); 

' '''This function process messages that have been sent to the target"" 
Call Process_MslL WorkO; 

' '''This function manages STP. See next section"" 
Call rt_ UploadServerWork(S); 

' '''This function sends data to the Server application using STP functions"" 
) 

Function int_T rt_MsgServer\Vork(SimStruct *S) '* target side*' 
{ 
If message to be processed 
{ 

If first message Then 
Set message code to EXT_CONNECT 

Case Message 
( 

Call ProcessConnectMsg(S); 
' '''used to connect to Simulink client·' 

Appendix B: .4 



APPENDIX B: A Programmer's Guide to the Internal working of the RADE systems 

} 

} 

If EXT_SETPARAM 
Call ProcessSetParamMsg(S, msgHdr.size); 
' ·updates parameters·' 

'* All external mode messages are processed here . , 

End Case 

Funct ion int_T r t_UploadServer\Vork(SimStruct *S) 
( 
If data available 

} 

( 
For all buffers 

Call Send _ Upload _Data(bufMem->section 1, bufMem->nBytes I) 
' ·STP function to send data·' 

Next 
}' ·end if·, 

B.2. SERVER TO TARGET PROTOCOL 

STP as explained in chapter 4 is the channel through which the server and target application 

communicate. STP exports standard function that the RADE external mode implementation uses, as 

describe in the last section. Table B. 3 list the file used of the STP on both the PC32 and ADC64 

platforms. 

Target Type I U 

I et.;" I ii_' et.; I , PC side o.~" . based on a 

i I I , largel side STP 

I PC I I PC side SPT based on a PCI bus 

ii I I , largel Side STP 

Table B. J 

The STP is made up oftmee major functional aspects: 

1. The overall management of STP transactions. This entails the checking of mailboxes for 

incoming data. 

2. The sending of data. This part is mirrored on both the PC and target sides of the STP. When 

data is sent from the target the STP management on PC receives the data and vice versa when 

Appendix 8 : .5 



APPENDIX B: A Programmer 's Guide to the Internal working of the RADE systems 

the PC is sending data to the target. 

3. The uploading of data. The target sends upload data and the PC STP management function 

receives, sequences and sends data to Simulink. 

The functions used to implement the STP arc listed in Table B. 4. 

Function 
al a rea 

$?T 
managem 
nt 

functions 

Send 
function 

ii 

,; 

,; 

ii 

ii 

ii 
ii 

Tahle B. tI 

server 

t 

t 

Appendix B: .6 



APPENDIX C: Evaluation of motor parameters 

APPENDIXC: 

EVALUATION OF MOTOR PARAMETERS 
The motor parameters are found using a no~load test and The Mathworks Non~linear Design Control 

Blockset [MATHWORKS8]. The motor used is a permanent magnet type shown in Fig. C. I. 

----- -~ 

Fig. C. J: Photo of motor 

The motor armature is subject to a 85V DC voltage step and the captured current and speed responses 

are shown in Fig. C. 2. This data is used with the NCD block [MATHWORKS8] to perform a system 

identification analysis on the motor. 

lib Load Currerl Response(V ... moSSV) lib Load Speed Re.ponse (VarmaQSV) 

" ,. 

" 
! ...... ~ ..... -:- ..•• ~ .... 

100 .. ~W~""rr/.NMVr 
..~............. . ... 

?'0 .. ;- .. ·f· ····; - i 80 .. ~ ......... . • .. j .... . ... , .......... . 
! • .,. .. ~ 
a • • . " 

• I 
, ,I 
, I 

I , . T 
0--

......... , ... - ., .... 
., , 
; .... . -.: .---:-_ •. v"" __ . ,. 

20 ..... ~ ... 

O · .-,-1). 

.. .. , ............ ": ...... . 

"-i" 

0 OD2 O~ 0.08 o.oe 0 .1 0.12 0.1. 0.18 0 .18 
o 0.05 0 .1 0 .1$ 

n~ 

Fig. C. 2; Measured IfO~/oad motor respotlses 

Appendix D: .1 



ApPENDIX C: Evaluation of motor parameters 

~ o...lPQI'I2 

NCD Outporl1 

~ ,,:.,,1 
, r "" ~ J.s·B 0,,,,,,,,,, 

Slep Tlansfl!<' Fen """ Tl1Insf<tr F~n\ 
NCDOulport 

.. I 
TOWor1<.space 

§ 

Fig. C. 3: Simllfillk mode/Ilsed/or syStem ldelllijicatioll 

The NCO block operates within the Simulink environment and requires the theoretical model of the 

motor to be implemented, as sho'Nll in Fig. C. 3. This model uses the variables to represent the 

parameter of the system that need to be identified, which are: 

• Armature inductance La 

• Armature resistance Ra 

• Motor rotational moment J 

• Motor viscous damping constant B 

• Motor constant Km 

The current response is loaded into NCO outport 2 and the plant constraints are set using the NCO 

environment, and Fig. C. 4 shows this. A similar process is used for the speed response and Fig. C. 5 

shows this. The motor parameters to be estimated are setup using the optimisation window shown in 

Fig. C. 6. The motor parameters estimated by the NCO block are summarised in 

Fig.C.7. 

Appendix D: .2 



APPENDIX C: Evaluation of motor parameters 

Fig. C. 4: Current constraints 

Appendix D: .3 



APPENDIX C: Evaluation of motor parameters 

Fig. C. 6:Tulleableparamelers 

Parameter Value Unit 

Annature inductance (La) 46 mH 
Annature resistance (Ra) 3.36 0 
Rotor moment of inertia (1) 4.889x 10·' Kgm' 
Rotor viscous damping (B) 4.291 x 10 Kgm'/s 
Motor Constant (Km) 0.834 

Fig. C. 7: Alotor parameters eSlimated 

Appendix D: .4 



APPENDIX D: Listing of Code for the RADE PC32 

APPENDIX D: LISTING OF CODE FOR THE RADE PC32 

0.1. CONVERSION FUNCTIONS EXT_CONVERT_C3X.C 

r 
" Utility functions for ext_comm.c . . , 
#include <string.h> 
#include <windows.h> 
#include ~tmwtypes.h~ 
#include "mex.h~ 
#include "extsim.h" 
#include "extutilN 

IIMagash 13/09/1999 
//ii header 
/lnote directory 
#include ~!argel.h" 

static void Single_ TargetToHost( 
ExternalSim "ES, 
void "dst, 
cons! char "src, 
const int n, 
const int dType); 

static void Single_HostToTarget( 
ExternalSim °ES, 
void "dst, 
const char 'src, 
const int n, 
cons! int dType): 

static void Double_HostToTarget( 
ExternalSim "ES, 
void "dst, 
const char "src, 
const int n, 
const int dType); 

static void Double_ TargelToHost( 
ExternalSim "ES, 
void "dst, 
const char "src, 
const int n, 
const int dType); 

static void Int8_ TargetToHost( 
ExternalSim "ES, 
void "dSI, 
const char "src, 
const int n, 
cons! int dType); r internal Simulink data type id "I 

stalic void Int16_ TargetToHost( 
ExternalSim "ES, 
void "dst, 
const char "src, 
cons! in! n, 
cons! int dType);r internal Simulink data type Id "I 

slatic void Uin!32_HostToTarget( 
ExternalSim "ES, 
void °dst, 
const char "src, 
const int n, 
const int dType); 

static void Uint32_TargetToHosl( 
ExternalSim "ES, 

Appendix D: . \ 



APPE\'.'UIX D: Listing of Code for the RADE PC32 

void *dst. 
const char ·src. 
const int n, 
const int dType) ;r internal Simulink data type id *' 

static void [nt32_TargetToHosl( 
ExtemalSim ·ES, 
void ·dst, 
const char ·src, 
const int n, 
const int dType); r internal Simulink data type id *' 

static void UintB_TargetToHost( 
ExternalSim "ES, 
void *dst, 
const char *src. 
const int n, 
cons! lnt dType);r internal Simulink data type id ./ 

static void Uint16_TargetToHost( 
ExternalSim ·ES, 
void *dst, 
cons! char · src, 
const int n, 
const int dType); r internal Simulink data type id *' 

static void IntB_HostToTarge!( 
ExternalSim ·ES, 
void *dst, 
const char ·src, 
consl int n, 
cons! int dType); r internal Simulink data type id . / 

static void Int16_HostToTargel( 
ExternalSim ·ES, 
void ·dst, 
const char · src, 
cons! int n, 
cons! inl dType); r internal Simulink data type id *' 

static void Int32_HostToTarget( 
ExternalSim ·ES, 
void °ds!, 
cons! char ·src, 
consl int n, 
cons! int dType); r internal Simulink data type id *' 

static void Uint8_HostToTarget( 
ExternalSim *ES, 
void *ds!, 
const char ·src, 
const int n, 
const int dType); r internal Simulink data type id·/ 

static void Uint16_HostToTargel( 
ExternalSim "ES, 
void °dst, 
consl char ·src, 
const 1nl n, 
const int dType); r internal Simulink data type id·' 

,. Function: 8001_ HostT ° T arg et ::::::= === ====== === === == = ==== ===== ==== === ========== = = 
* Abstract: 
• Convert Simulink (hosts) bool value (uinIB_T) to target boolean_T value . 

Appendix 0 : .2 



APPENDIX D: Listing of Code for the RADE PC32 

• No assumptions may be made about the alignment of the dst ptr. 
• The src pointer Is aligned for type uinS_T. As implemented, this function 

supports either uintS _ T boolean values on the target or uint32_ T booleans 
• on the target (for dsps that support only 32-bit words) . . / 
static void Bool_HostToTarget( 

ExternalSim ·ES, 

{ 

char *dst, 
const void ·voidSrc, 
const int 
cons! int 

n, 
dType) r internal Simulink data type id *' 

boolean_ T swapBytes = esGetSwapBytes(ES); 
cons! uintS_ T ·src = (const uintS_ T ·)voidSrc; 

inl sizeofTargetBool = esGetSizeOfTargetOataTypeFcn(ES)(ES. dType) * 
esGetHostBytesPerTargetByte(ES); 

int i; 
char *dstPtr = dst; 

for (1:0; I<n; 1++) 
{ 

ulnt32_T tmp = (uint32_ T)src[I]; 
(void)memcPv(dstPtr. &tmp, 4): 
dstPtr += 4; 

) rend Bool_HoslToTarget */ 

r Function: Bool_TargetToHost :::==================:=======================::::==::::== 
" Abstract: 

Convert targel bool value to host bool value (ulntB_t). No assumptions may 
be made about the alignment of the src ptr. The dst pointer is aligned for 
type uinS_T. As implemented, this function supports either uintB_T boolean 

" values on the target or uint32_ T booleans on the target (for dsps that 
support only 32-bit words) . . / 

static void Bool_TargetToHost( 
ExternalSim "ES, 
void ·void Ost, 
const char 'src, 
const int n, 
const int dType) r internal Simulink data type id *' 

{ 
# define MAX_ElS (1024) 

boolean_T swapBytes = esGetSwapBytes(ES); 
uintB_T 'dst : (uintB_T ' )voidOst; 

Int sizeofTargetBool = esGetSizeOfTargetDataTypeFcn(ES)(ES, dType) " 
esGetHostBytesPerTargetByte(ES); 

int I; 
uint32_T "tmp = (ulnt32_T ·)src; 

for (1=0; I<n; 1++) 
{ 
dst[i] = (uinIB_T)("tmpH); 

) 

#undefMAX_ElS 
) rend Bool_TargeIToHost"f 

r Function: Generic _ HostT 0 Target = ==== ===== === ==::: ===::: ::::: = = = === '" :==:::: ::::=:= ===== = 
• Abstract: 
• Convert generic data type from hosl to target formal. This function 

Appendix D: .3 



APPENDIX D: Listing of Code for the RADE PC32 

* may be used with any data type where the number of bits is known to 
* be the same on both host and target (e.g., int32_T, uint16_t, etc). 

. / 
It simply copies the correct number of bits from target to host performing 
byte swapping if required. If any other conversion is required. then 
a custom HostToTarget function must be used . 

static void Generic_HostToTarget( 
ExternalSim *ES, 
char *dst. 
const void ·src, 
const int n, 
const int dType) r internal Simulink data type id *' 

lnt dTypeSize := esGetSizeOfDataTypeFcn(ES)(ES. dType); 
boolean_T swapBytes:= esGetSwapBytes(ES); 

" sICopyNBytes(dst, src, n, swapBytes, dTypeSize); 
} rend Generic_HostToTarget */ 

r Function: Generic_ TargetToHost :============================================== 
* Abstract: 

Convert generic data type from target to host format. This function 
* may be used with any data type where the number of bits is known to 
• be the same on bolh host and target (e.g. , inI32_T. uint16_t, etc). 
• It simply copies the correct number of bits from host to target performing 
• byte swapping If required . If any other conversion is required , then 

a custom TargetToHost function must be used . . / 
static void Generic_TargetToHosl( 

ExternalSim ·ES, 
void ·dst, 
const char ·src, 
const int n, 
const int dType) r internal Simulink dala type id *' 

int dTypeSize = esGetSizeOfDataTypeFcn(ES)(ES, dType); 
boolean_T swapBytes = esGetSwapBytes(ES); 

" sICopyNBytes(dst. src, n. swapBytes, dTypeSize); 
) rend Generic_TargetToHost */ 

r Function: Copy32BitsToTarget ==========================:====================== 
• Abstract: 
* Copy 32 bits to the target. It is assumed that the only conversion needed 
* is bytes swapping (if needed) (e.g., uint32, int32). Note that this fcn 
.. does not rely on the Si mu link Internal data type id . . / 

'laid Copy32BitsToTarget( 
ExternalSim *ES. 
char ·dst, 
const void ·src, 
const int n) 

I/just use uint32 

U int32 _ HostT 0 T arget( ES ,dsl,src ,n .0); 
} rend Copy32BitsToTarget *' 

r Function: Copy32BitsFromTarget =============================:=::==:========== 
• Abstract: 
.. Copy 32 bits from the target. It Is assumed that the only conversion needed 
.. Is bytes swapping (if needed) (e.g., uint32, int32). Note that this fcn 
* does not rely on the Simulink Internal data type id . . / 

Appendix D: .4 



APPENDIX D: Listing of Code for the RADE PC32 

void Copy32BitsFromTarget( 
ExtemalSim *ES, 

) 

void *dst, 
const char *src, 
const int n) 

Uint32 _ T argetT 0 Host(ES ,dst,src, n ,0); 

rend Copy32BitsFromTarget *1 

r Function 
==================================================================== 
• Process the first of two EXT_CONNECT_RESPONSE messages from the target. 
• This message consists of nothing but a message header. In this special 
* instance we interpret the size field as the number of bits in a target 
* byte (not always 8 • see Tt compiler for C30 and C40). 
• 
* This function is responsible for deducing the endian format of the target, 
• validating that the number of bits per target byte and selting up pointers 
• 10 data conversion functions. 

* NOTE: The caller must check that the error status is clear after calling 
• this function (Le., eslsErrorClear(ES)) . . / 

void ProcessConnectResponse1(ExternalSim 'ES, MsgHeader *msgHdr) 
( 

r 
* Deduce the endian·ness of the target. 
./ 

if (msgHdr·>type == EXT_CONNECT_RESPONSE) ( 
esSetSwapBytes(ES, FALSE); 

} else ( 

r 

cons! boolean_T swapBytes = TRUE; 

flcommented out by Magash 
IlsICopyFourBytes(msgHdr, msgHdr, NUM_HDR_ElS, swapBytes); 
if (msgHdr·>type!= EXT_CONNECT_RESPONSE) ( 

) 

esSetError(ES, ~Invalid EXT_CONNECT_RESPONSE message.\n~) ; 

golo EXIT_POINT; 

esSetSwapBytes(ES, swapBytes); 

• Process bits per targel byte . . / 
( 

int_T bitsPerTargetByte = msgHdr·>size; 
int_T hostBytesPerTargetByte:: bitsPerTargelByte/8; 

assert(bitsPerTargetByte%8 =::: 0); 
esSetHostBytesPerTargetByte(ES, hostBytesPerTargetByte): 

r 
* Set up fcn ptrs for data conversion · Simulink data types . . / 
esSetDoublaTargetToHostFcn(ES, Double_TargetToHost); 
esSetDoubleHostToTargetFcn(ES, Double_HostToTarget); 

esSetSingleTargetToHosIFcn(ES, Single_TargeIToHost); r assume 32 bit */ 
esSetSingleHostToTargetFcn(ES, Single_HostToTarget); r assume 32 bit */ 

esSetlnI8TargetToHostFcn(ES,lnI8_TargetToHost); 
esSellnI8HostToTargetFcn(ES,lnt8_HostToTarget); 

Appendix 0: .5 



APPENDIX D: Listing of Code for the RADE PC32 

esSetUlnI8TargetToHostFcn(ES, Uint8_ T argetToHost); 
esSetUlnI8HostToTargetFcn(ES, UinIB_HostToTargel); 

esSetl nt 16T arg etT oHostFcn(ES, 1nl 16 _ T arg elT oHoSI); 
esSetlnl16HosI ToT argelF cn(ES, 1nl 16 _ HostT 0 T a rgel); 

esSelU Inl16T argelT oHostFcn(ES, Uinl16 _ T argetT oHost); 
esSetU Int16HostT 0 T a rgelF cn(ES, U int 16 _HosIT 0 Target); 

esSetlnt32TargetToHostFcn(ES. In132_ TargeIToHost); 
esSellnt32HostToTargeIFcn(ES, InI32_HostToTarget); 

esSetU I nl32T argetT oHostFcn(ES, Uint32 _ T arg elT oHost); 
esSetUlnt32HostToTargetFcn(ES, Uint32_HostToTarget); 

esSetBoolTargetToHosIFcn(ES. Bool_TargetToHosl); 
esSetBooIHostToTargetFcn(ES. BooLHoslToTargel); 

EXIT_POINT: 
return; 

} rend ProcessConnectResponse1 ., 

r Function 
:=::=========:====================================================== 
• Process the data sizes information from the second EXT_CONNECT_RESPONSE 
"messages. The data passed into this function is of the form: · 
• nDataTypes • # of data types 
" dataTypeSizes - 1 per nDataTypes 

· 
(uint32_ T) 

(uint32_ T[]) 

• NOTE: The caller must check that the error status is clear after calling 
" this function (Le .• eslsErrorClear(ES» . . , 
void ProcessTargetDataSizes(ExternalSim "ES. uint32_T "bufPtr) 
( 

r nDataTypes .. , 
if (esGetNumDataTypes(ES) != "bufPtr++) { 

esSetError(ES. -Unexpected number of data types returned from host.\nM); 
gala EXIT POINT; 

r data type sizes 0' 
for (i:O; i<esGetNumDataTypes(ES); i++) ( 

esSetDataTypeSize(ES, i, (*bufPtr++»; 

/lcorrection by magash 
IImul by 4 
I/removed because of updated files 

EXIT_POINT; 
return; 

) rend ProcessTargetDataSizes "' 

void PC_Format(ExternaISim "ES) 
( 

I" 
• Process bits per target byte . . , 

esSetHostBytesPerTargetByte(ES. 1); 

Appendix 0: .6 



APPENDIX D: Listing of Code for the RADE PC32 

esSetDataTypeSize(ES, 0, 8);lIcorrection by magash 

EXIT_POINT: 
return; 

) rend ProcessTargetDataSizes ., 

r 
Magash 13/09/1999 
All mods for conversion routines 

0' 
stalic void Single_TargetToHost( 

ExternatSim "ES, 
void "dst, 
consl char "src, 
const int n, 
cons! int dType) r internal Simulink data type id"' 

int dTypeSize = esGetSizeOfDataTypeFcn{ES)(ES, dType); 
boolean_T swapBytes = esGetSwapBytes(ES); 

lIassume data is 32 bits in target format 

float ·p_dst: 
uint32_T ·p_src; 
in132_T i; 
p_src=(uint3~ T·lsrc: 
p_dst=(float")dst; 

for(i=O;i<n;i++) 
{ 
·p_dst=tojeee(·p_src); 
Jlprintf("call to single to target %f \n", "p_dst): 
p_dst++; 
p_src++: 
} 

static void Single_HostToTarget( 
ExtemalSim ·ES, 
void °dst, 
const char ·src, 
const int n, 
const int dType) r internal Simulink data type id 0' 
int dTypeSize = esGetSizeOfDataTypefcn(ESHES, dType); 
boolean_T swapBytes ;:; esGetSwapBytes(ES): 

lIassume data is 32 bits in target format 

float ·p_src: 
uint32_T ·p_dst; 
int32_T i; 
p_src=(float· )src; 
p_dst=(uint32_ T· )dst; 

for(i=O;i<n;i++) 
{ 
·p_dst=from_ieee(·p_src); 
p_dst++; 
p_src++; 
} 

static void Double_HostToTarget( 

Appendix D: .7 



( 

) 

APPENDIX D: Listing of Code for the RADE PC32 

ExternalSim ·ES, 
void "dst, 
cons! char ·src, 
consl inl n, 
const int dType) r internal Simulink data type id '" 

int dTypeSize = esGetSizeOfDataTypeFcn(ES)(ES, dType); 
boolean_T swapBytes = esGeISwap8ytes(ES); 

" assume data is has! 64 bits and 32 bits in target format 

double "p_src; 
IIfloat ·p_src; 
int32_T i; 
float "Imp; 
tmp=malloc(n"4); 
p_src=(double")src; 
"convert all src data to single 

for(i=O;I.::n;i++) 
{ 

tmp[i] =(f1oat)(" p _src); 
J/mexPrintWthe matlab double is %f, float is %f\n~:p_src,tmp[j]); 
p_src++; 

) 
Single_HostToTarget(ES,dst,(char")tmp,n,dType); 
trnp(O]=to jeee(" (int")dst); 
J/mexPrinttrthe target data is %1\n",tmp[O»; 

free(tmp); 

extern int Convert_Status; 

static void Double_ TargetToHost( 
ExternalSim "ES, 

( 

void ' dst, 
consl char 'src, 
const int n, 
const int dType) r internal Simulink data type id "/ 

int dTypeSize = esGetSizeOfDataTypeFcn(ES)(ES, dType); 
boolean_ T swapBytes = esGetSwapBytes(ES); 
lIassume data is host 64 bits and 32 bits in target format 

double ·p_dst: 
int32_T i; 
floal "Imp; 
tmp=malloc(n"4); 

if (Convert_Status) 
( 

I/no need 10 do conversion, just copy over data 
memcpy(dst,src,n"8): 
IImexPrintf("call to convert double target to host, number" 
11 " of conversions %d \nN 
11 ~src data is %f, dst data is %f\nN,n:(double")src:(double")dst); 

) 
else 
( 

llconvert all src data 10 single in host format 
IImexPrintf("call to convert double target to host, number of conversions %d \n~,n); 
Single _ T argetT oHost(ES,( char" )Imp ,src,n ,dT ype): 

Appendix D: .8 



APPENDIX D: Listing of Code for the RADE PC32 

for(i=O;i<n:i++) 
( 

*p_dst=(double)tmp[i]: 
IImexPrintf("number as float is %f, number as double is %f\n~,tmp[j]:p_dst); 
p_dst++; 

} 

} 
free(tmp) ; 
IImexPrintf("call to double to host passed \nM); 

static void Int8_TargetToHost( 
ExternalSim *ES, 

} 

void *dst, 
const char *src , 
const int n, 
const int dType) r internal Simulink data type id *' 
IItarget has 32 bit format host 8 bit format 

int32_T *p_src; 
inl8_T ·p_dst: 
in132_T i; 

p_src:(int32_ T*)src; 
p_dst=(int8_ P)dst: 
fo((i=O;i<n;i++) 
{ 

} 

p_src++; 
p_dst++; 

static void In116_ TargetToHost( 
ExternalSim *ES, 

} 

void *dst, 
const char *src, 
const inl n, 
const int dType) r internal Simulink data type id *' 

IItarget has 32 bit format host 8 bit format 

int32_T ·p_src; 
in116_T *p_dst; 
in132_T i; 

p_src:(int32_ T*)src; 
p_dst=(int16_ T*)dst: 
for(i=O;i<n;i++) 
{ 

p_src++; 
p_dst++; 

slatic void Int32_TargetToHost( 
ExternalSim *ES, 

{ 

void *dst, 
const char ·src, 
const int n, 
const int dType) r internal Simulink data type id *' 

lIean optermize with memeopy target and host same format 

Appendix D: .9 



APPENDIX D: Listing of Code for the RADE PC32 

Int32_T · p_src; 
in132_T ·p_dsl; 
in132_T i; 

p_src=(int32_ r)src; 
p_dst=(int32_ TO)dsl; 
for(i=O;i<n;i++) 
{ 

) 

·p_dst=·p_src; 
p_src++; 
p_dsl++; 

static void Ulnt8_ TargetToHost( 
ExternalSim *ES, 

{ 

void *dst, 
const char ·src, 
const int n, 
cons! int dType) r internal Simulink data type id·' 

IIlarget has 32 bit format host 8 bit formal 

uint32_T *p_src; 
uint8_T "p_dst; 
in132_T i; 

p_src:::(uint32_ T*)src; 
p_dst=(uint8_ r)dst: 
for(i=O;i<n;i++) 
{ 

) 

p_src++; 
p_dst++; 

static void Uint16_TargetToHosl( 
ExternalSim ·ES, 

{ 

) 

void *dsl, 
const char "src, 
const int n, 
cons! int dType) r internal Simulink data type id"' 

uint32_T *p_src; 
uint16_T ·p_dst; 
int32_T i; 

p_src=(uint32_ r)src; 
p_dsl=(uint16_ T")dst; 
for(I=0:I<n:1++) 
{ 

) 

p_src++; 
p_dst++; 

sialic void Uin132_ TargelToHosI( 
ExternalSim "ES, 
void *dst, 
const char ·src, 
const int n, 
const int dType) r internal Simulink data type id *' 

uint32_T "p_src; 
uinl32_T "p_dst; 
In132_T i; 

Appendix D: .10 



APPENDIX D: Listing of Code for the RADE PC32 

p_src=(uint32_ T")src; 
p_dst=(uint32_ T*)dst; 
for(i=O;i<n;i++) 
{ 

} 

p_src++; 
p_dst++; 

static void IntB_HostToTarge!{ 
ExternalSim "ES, 

( 

void "dst, 
const char ·src, 
const int n, 
cons! in! dType) r internal Simulink dala type id "' 

lltarget has 32 bit format host B bit format 

int32_T "p_dst; 
lntB_T 'p_src; 
Int32_T i; 

p_src={intB_ T*)src; 
p_dst={int32_ r)dsl; 
for(i=O;i<n;i++) 
( 

} 

"p_dst=(in!32_ T)("p_src); 
p_src++; 
p_dst++; 

slatic void Int16_HosIToTarget( 
ExternalSlm ·ES, 

} 

void "dst, 
cons! char "src, 
cons! int n, 
cons! int dType) r internal Simulink data type id ., 

int32_T "p_dst: 
in!16_ T ·p_src: 
In132_T i; 

p_src=(int16_ r )src; 
p_dst:::(int32_ r )dst; 
for(I=O;i<n;i++) 
{ 

p_src++; 
p_dst++; 

static void Int32_HostToTarget( 
ExternalSim ·ES, 
void *ds!, 
const char ·src, 
const int n, 
const int dType) r internal Simulink data type id ., 

Appendix D: .11 



) 

APPENDIX D: Listing of Code for the RADE PC32 

int32_ Top_src; 
int32_T i; 

p_src=(int32_ T*)src; 
p_dst=(int32_ TO)dst; 
for(i=O;i<n;i++ ) 
( 

·p_dSI=·p_src; 
11 mexPrintf("mallab data is %d, larget data is %d\n":p_src:p_dst); 

p_src++; 
p_dsl++; 

static void UintB_HostToTarget( 
ExternalSim ·ES, 

) 

void "dst, 
const char ·src, 
const int n, 
const int dType) r internal Simulink data type id ., 

" target has 32 bit format host B bit formal 

uintB_ T ·p_src: 
uinl32_T ·p_dst; 
int32_T i; 

p_src={uintB_ T*)src; 
p_dst=(uint32_ T°)dsl; 
for(i=O ;i<n;i++) 
( 

) 

p_src++; 
p_dst++: 

static void UinI16_HostToTargel( 
ExternalSim "ES, 
void "dst, 
const char °src, 
cons! inl n, 
cons! inl dType) r internal Simulink data type id 0' 

uint16_T "p_src; 
uint32_ T °p_dst; 
int32_T i; 

p_src=(uin!16_ TO)src; 
p_dst=(uint32_ TO)dst; 
for(i::O;i<n:i++) 
( 

) 

"p_dsl=(uint32_ Tlrp_src) ; 
p_src++; 
p_dst++; 

static void Uint32_HostToTargel( 
ExternalSim "ES, 
void °dst, 
const char · src, 
con s! int n, 
cons! inl dType) r internal Simulink data type id 0' 

Appendix 0 : .12 



) 

APPENDIX D: Listing of Code for the RADE PC32 

uint32_T ·p_src; 
uint32_T ·p_dst; 
int32_T i; 

p_src={uint32_ T·)src; 
p_dst=(uint32_ T·)dst; 
for(i:=O;i<n;i++ ) 
( 

·p_dst=·p_src; 
p_src++; 
p_dst++; 

r (EOF] ext_util.c ., 

0.2. SYSTEM TARGET FILE 

"10"10 $Y$TLC: Generic Real-Time Target for PC32 \ 
%% TMF: pc32.tmf MAKE: make_rtw EXTMODE: ext_comm_c3x 
%% 
%selectfile NULL_FILE 

"Ioassign MatFileLogging = 1 
%assign TargetType := "RT" 
%assign Language = "CM 
%assign DSP32=1 
%assign BlocklOSignals=O 
"Ioinclude Mcodegenentry .llcM 

%include "codegenentry.tlc" 

%% The contents between 'BEGIN_RTW_OPTIONS' and 'END_RlW_OPTIONS' are strictly 
"10% written by the standard formal. We need to use this structure in RTW 
%% options GUI function rtwoptionsdlg.m file. 
%% 
1% 

BEGIN_RTW_OPTIONS 

rtwoptions(1).prompt = 'MAT-file variable name modifier'; 
rtwoptions(1).lype = 'Popup': 
rtwoptions(1).default = 're; 
rtwoptions(1).popupstrings = 'rt_Lrtlnone'; 
rtwoptions(1).tlcvariable = 'LogVarNameModifier'; 
rtwoptions(1 ).tooltip = rprefix rt_ to variable name:, sprintf('\n'), ... 

'append _rt 10 variable name:, sprintf('\n'), 'or no modificalionl; 

rtwoptlons(2).prompt = 'External mode'; 
rtwoptions(2).type = 'Checkbox'; 
rtwoptions(2).default = 'on'; 
rtwoptions(2).tlcvariable = 'ExtMode'; 
rtwoptions(2).makevariable := 'EXT_MODE': 
rtwoptions(2).looltip '" ('Adds TCPIIP communication support for', ... 
'use with', sprintf('\n'), 'Simulink external model: 

rtwoptions(3).prompt = 'Function Management'; 
rtwoptions(3).type = 'Popup'; 
rtwoptions(3).popupstrings = (,NonelFunction SpliltinglFile " ... 

'SpliltinglFunclion and File Splitting']: 
rtwoptions(3).defautt = 'None'; 
rtwoptions(3).tlcvariable = "; 
rtwoplions(3).tooltip = 'Umit size of generated files and functions'; 
rtwoptions(3).caUback = 'callback_function_management'; 
rtwoptions(3) .opencallback = ({'userData = get(gcbf, "UserOata"):' ... 

'hModeUocal = userData.model;' ... 
'get_value_of _fields(hModeUocal,dialog Fig ,"open" );' ... 
'Imp = compute_value_from_rtwoptions(hModeUocal) ;' ... 

Appendix 0:.13 



APPENDIX D: Listing of Code for the RADE PC32 

'0 = findobj(dialogFig, "Tag" , "Function Management_PopupFieldTag");' ... 
'set (a, 'Value", Imp); callback_function_management(dialogFig);1); 

rtwoplions(3).closecallback = (fuserData = get(gcbf, "UserData");' ... 
'hModeUocal = userData.model;· ... 
'gel_value_oUields(hModeUocal,dialogFig,"close");1): 

rtwoptions(4).prompt = 'Function Split Threshold'; 
rtwoptions(4).type = 'Edit'; 
rtwoptions(4).default = '200'; 
rtwoptions(4).tlcvariable = 'FunctionSizeThreshold'; 
rtwoptions(4).tooltip = [,Split the generated functions after specified threshald.1: 
rtwoptions(4).enable = 'off; 

rtwaptions(5).prompt = 'File Split Threshald': 
rtwaptions(5).type = 'Edit·; 
rtwoptions(S).default = '5000'; 
rtwoptions(5).tlcvariable = 'FileSizeThreshold': 
rtwoptions(S).taoltip = ['Splil the generated files after specified threshold.'): 
rtwoptions(5).enable = 'off; 

rtwaptions(6).prompt = 'Server name'; 
rtwoptions(6).type = 'Edit'; 
rtwoptions(6).default = 'magash': 
rtwoptions(6).tlcvariable = 'server_name'; 
rtwoptions(6).makevariable = 'SERVER_NAME'; 
rtwoptions(6).looltip = (,Enter name of server computer]; 

rtwoptions(7).prompt = 'Port Number'; 
rtwoptions(7).type = 'Edit': 
rtwoplions(7).default :: '700': 
rtwaptions(7).tlcvariable = ·server....POrt'; 
rtv.Iaptians(7).makevariable = 'SERVER_PORT; 
rtwaptians(7).tooltip = fEnter port number of server computer']: 

rtwoptions(8).prompt = 'Quick Build Projecl': 
rtwoptions(8).type = 'Checkbax': 
rtwoplions(8).default :: 'on'; 
rtwopUons(8).tlcvariable = 'QUICK_BUILD'; 
rtwapUans(8).makevariable = 'QUICK_BUILD': 
rtwoptians(8).taaltip = ('Used ta speedup repetive builds :', ... 
", sprintf('\n'), 'Warning!! Disable if mads ta RlW internals are being made'] : 

rtwoptians(9).prampt :: 'Heap Size'; 
rtwoptions(9).type = 'Edit'; 
rtwaptions(9).default = 'Ox10000'; 
rtwaptians(9).tlcvariable :: 'heap_size'; 
rtwoptions(9).makevariable :: 'HEAP_SIZE'; 
rtwaptians(9).tooltip :: ['Enter heap size for compiler1: 

rtwaptians(10).prompt = 'Stack Size'; 
rtwoptions(10).type = 'Edit'; 
rtwoptions(10).default = 'Ox5000'; 
rtwoptions(10).tlcvariable = 'stack_size'; 
rtwaptions(10).makevariable = 'STACK_SIZE'; 
rtwoptions(10).tooltip = ['Enter stack size far compiler']: 

END_RlW_OPT10NS 
%1 

0.3. SYSTEM TEMPLATE MAKE FILE 
# . ................................................................. . 

SYS_TARGET_FILE = grt_c3x.tlc 
MAKE = I>MATLAB_ROOT<I\rtw\c\ii\bin\gmake_3_71 
HOST = PC 

Appendi", D: .\4 



APPENDIX D: Listing of Code for the RADE PC32 

BUILD = yes 
DOWNLOAD = yes 
BUILD_SUCCESS = Completed 
DOWNLOAD_SUCCESS = Downloaded 

#--•• ----.------.. --••• Customizalion Macros ••••••••••• -.-••••••••••• 
# 
# The following sel of macros are customized by the make_rt program. 
# 
MODEL = I>MODEL_NAME<1 
MODEL_MODULES = I>MODEL_MODULES<1 
MODEL_MODULES_OBJ = I>MODEL_MODULES_OBJ<1 
MAKEFILE = 1>MAKEFILE_NAME<1 
MATLAB_ROOT = 1>MATLAB_ROOT<1 
MATLAB_BIN = I>MATLAB_BIN<I 
S_FUNCTIONS = I>S] UNCTIONS<I 
S_FUNCTIONS_OBJ = I>S_FUNCTIONS_OBJ<I 
SOLVER = I>SOLVER<I 
SOLVER_OBJ = I>SOLVER_OBJ<I 
NUMST = I>NUMST <1 
TID01EQ = I>TI001EQ<1 
NCSTATES = I>NCSTATES<1 
BUILOARGS = 1>8UILDARGS<1 
COMPUTER = I>COMPUTER<I 
SERVER_NAME = I>SERVER_NAME<I 
SERVER_PORT = ]>SERVER_PORT<I 
QUICK = I>QUICK_BUILD<l 
HEAP = I>HEAP _SIZE<I 
STACK = I>STACK_SIZE<l 

QUICK:=$(str;p S(QUICK» 
#--.----.-.. -.-.. 11 PC32 Definition •• --.-••• -••••• - •• _-
# 
80ARD_ TYPE = PC32 
DSP _FAMILY = 30 
COMPILER = TI]PC 
#-•••••••• _-.-... -.-•• ----_._-. TI Tools .-.-.. -----.--.----.---•• 
# 
# You may need to modify the TI_ROOT if you have installed the 
# Texas Instrument Compiler in a different location. 
# 
#set 0Id_c=1 for compiler 4.7 or 0 for compiler 5.10 
old c =0 
ifeq- (S(old_c),1 ) 
TI_ROOT = c:\f\tc 
else 
TI_ROOT = c:\c3xtools\bin 
endif 
#TI_ROOT 
TI_FLAGS 

= c:\tievaI3x\c3x4x\cgtools 
= ·vS(DSP ] AMILY) 

cc = S(TI_ROOT)\cI30 
#CC = $(TI_ROOT)\bin\c130 

LD = S(TI_ROOT)\lnk30 

#--•• -••• -.--------••• -.-_. 11 Tools -.---.---- ---.--- -
# 
11 DIR = c:\pc32cc 
#II_OIR is the dir were 11 Zuma 1001 set is installed 
II_ROOT = S(MATLAB_ROOT)\rtw\c\ii 
II_COMPILER = $(II_ROOT)\tUpc 

= $(II_COMPILER)\jiPC32.cmd 
= S(I1_COMPILER)\vectors.obj 

ifeq ($(0Id_c),1) 

Appendix. 0: .15 



APPENDIX D: Listing of Code for the RADE PC32 

"_INCLUDES = $(II_DIR)\include\larget; 
else 
IUNCLUDES = $(II_DIR)\include\target: c:\c3xtools\include;c:\c3xtools\lib 
endif 

#-•••••••••• _ ••••••••••••••••••. DQWNLQAD Tool·········.· ..... · .. · .. ·•.•••••• 

PC32_00WNLOAD::: S(II_ROOT)\bin\auto_download.exe 

#-.••••• -._._ •••••.••.• Include Path -'-'-'---'---'---"--'--

MATLAB_INCLUDES::: \ 
S(MA TLAB_ROOT)\Simulink\include; \ 
S(MATLAB_ROOT)\extem\include; \ 
S(MATLAB_ROOT)\rtw\c\src; \ 
S(MATLAB_ROOT)\rtw\c\ii\tUpc: \ 
$(MA TLAB _ ROOT)\rtw\c\li bsrc; 

TUNCLUDES = S(TI_ROOT); 

INCLUDES =.; $(MATLAB_INCLUDES) S(TUNCLUDES) $(lUNCLUDES) 

#--•• -•• ---------.--------.----- C Flags -----_._----•••.......... ---•• 

# Required Options 
REO_OPTS =·s -ma ·mf -g S(TI_FLAGS) .pf .q ·eo .0S(DSP JAMILY) 

ifneq ($(0Id_c},1) 
REO_OPTS := $(REO_DPTS) Ami -00·x2 ·opO ·on1 
endif 

# Optimization Options 
OPT_OPTS =-x 
# Debug Options 
DBG_OPTS = 

CC_OPTS = S(REQ_OPTS) S(OPT_OPTS) S(DBG_OPTS) -dIO_S(IO) \ 
·dTMRO_S(TMRO) ·dUPLD_S(UPLD) ·dDSP32 ·dEXT_MODE ·dID_ENABLE \ 

·dTARGET_SYSTEM ·dVERBOSE 

CPP _REO_DEFINES = -dMODEL=S(MODEL) -dRT -dNUMST=S(NUMST) \ 
·dTID01 EO=S(TID01 Ea) ·dNCST ATES=S(NCSTATES) 

= $(CC_OPTS) S(CPP _REO_DEFINES) S(CPP _DEFINES) CFLAGS 

LDFLAGS ::-9 -x ·cr -heap S(HEAP) ·stack S(STACK) S(II_BOOT) ·m S(MODEL).map 

#-•.• -•••. --.----. Source Files ...... - .•.••• --... ---

REO_SRCS = ii.J}c32.c S(MDDEL).c rt_sim.c rtwI09_c3x.c pc32..9rtm.c rCmatrx.c 
updown_c3x.c ext_srv_c3x.c 
OPT_SRCS ::: 
S_FCN_SRCS = $(S_FUNCTIONS) 
INT _SRCS = S(SOLVER) 

#PC32_0BJS = S(MATLAB_ROOT)\rtw\c\ii\tUpc\pc32func.o30 
REQ_OBJS = S(REQ_SRCS;.c=.oS(DSP ]AMILY» 
OPT_OBJS = S(OPT_SRCS:.c=.oS(DSP _FAMILY) 
S FCN OBJS = $(S_FCN_SRCS:.c: .o$(OSP _FAMILY)) 
INT_OB:JS = S(INT_SRCS:.c"'.oS(DSP _FAMILY» 
OBJS = $(REQ_OBJS) $(OPT_OBJS) S(S_FCN_OBJS) $(INT_OBJS) 
OBJS1 = S(REQ_OBJS) $(OPT_OBJS) 
OBJS2 = S(S]CN_OBJS) S(INT_OBJS) 

Appendix 0: .16 



APPENDlX D: Listing of Code for the RADE PC32 

PROGRAM = S{MODEL).out 

#-._-..... _ .... Exported Environment Variables ----•• -•• ---­
# 
# Because of the 128 character command line length limitations in ~OS , we 
# use environment variables to pass additional information to the 
# Compiler and Linker 
# 
C_OPTION;= S(CFLAGS) 
C_DIR ;= S(INCLUDES); S(C_DIR) 
C_MODE = PROTECTED 

#----------------- Rules --------------••• -•• -.-

S(PROGRAM) ; S(OBJS) 
echo $(OBJS1) > S(MOOEL).lin 

ifneq ($(strip S(OBJS2».) 
echo S(OBJS2) » S(MOOEL).Iin 

endif 
echo S(II_CMO)>> S(MOOEL).Iin 
S(LD) S(LDFLAGS) -0 S@ S(MODEL).lin 
del S{MODEL).lin 
echo S(BUILO_SUCCESS) S(PROGRAM) 

# Compile existing code if it exists in current dir 
%.oS{DSP JAMIL Y) : %.c 

S(CC) S< 

# Call to PC32 rt_main.c 
# edit mags using token for matlab root 
%.oS(OSP _FAMILY) : S(MATLAB_ROOT)\rtw\c\ii\tUpc\%.c 

S(CC) S< 

# Call 10 simulink files 
%.o$(OSP _FAMILY): S(MATLAB_ROOT)\simulink\src\%.c 

S(CC) S< 

# Call compile RTW files 
%.oS(DSP JAMILY): S(MATLAB_ROOT)\rtw\c\src\%.c 

S(CC) S< 

%.o$(OSP _FAMILY): S(MATLAB_ROOT)\rtw\c\libsrc\%.c 
$(CC) $< 

#------------.. -.-... Rule for Oownloading to Target -.-.-••• ---------

download: 
# del $(MODEL).lin 
# del $(MODEL).c 
# del S(MODEL).h 
# del S(MODEL).map 
# del S(MODEL).o30 
# del S{MOOEL).prm 
# del S(MODEL).reg 

$(PC32_DOWNLOAD) -fS(PROGRAM) -sS(SERVER_NAME) -p$(SERVER_PORT) 
echo S(DOWNLOAD_SUCCESS) S(PROGRAM) 

#--••• -.----------------- Dependencies ---------.--••• -•• -----------
pc32-l)rtm.o$(DSP JAMILYI ;S(MODEL).c 

#ifneq (S(QUICK).1) 
S(OBJS) ; S(MAKEFILE) 
#endif 
#iiJ)c32.oS(DSP _FAMilY): $(MATLAB_ROOT)\rtw\c\ii\tUpc\ii_comms.h \ 
# S(MATLAB_ROOT)\rtw\c\src\ext_srv _c3x.h 

Appendix 0 : .17 



APPENDIX D: Listing of Code for the RADE PC32 

#ext_sN_c3x.o$(OSP JAMILY): $(MATLAB_ROOT)\rtw\c\ii\tUpc\ii_comms.h \ 
# $(MATLAB_ROOT)\rtw\c\src\ext_sN_c3x.h 

0.4. DEVICE DRIVER FILES 

0.4.1 ADC BLOCKS 

%% 
%% 
%% Abstract: 
%% TlC file for the PC32 AJD Block. 
%% This file is used to generate code to read 
%% values from the AID converters and scale them to +-10. 
%% Author: 
%% Adam Stylo 
%% Date: 
%% 98111/03 
%% Revised By Magash Pillay 
%% 2000/01/20 

%% 
%implements "pc32_ad~ "C" 

%include Mjilib.tlc" 

%funclion BlocklnstanceSelup(block, system) void 
%% Only allow 1 instance of the AJD block 
%if IEXISTS("Rt-pc32ad") 

%assign ::Rtyc32ad = 1 
%else 

%error Only 1 PC32adn block is allowed in the model. 
%endif 

%endfunction %% BlocklnstanceSetup 

%function Outputs(block, system) Output 

( 

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» *1 
r read in the corrected values from AID and scale to +-10 */ 

%<libBlockOutputSignal(O,"" , .... ,0»= read _ adc(BASE BOARD, 0)/(3276.7); 
%<UbBlockOutputSignal(O,"","" ,1 »=read_adc(BASEBOARD, 1 )/(3276.7); 
%<L1b BlockOutpuISignal(O:" ...... 2»= read _ adc(BASE BOARD. 2)/(3276 .7); 
%<LlbBlockOulputSignal(O. - ...... 3 »=read _ adc(BAS EBOARD, 3 V(3276. 7) ; 

) 
%endfunciion %% Outputs 

0.4.2 OAC BLOCK 

%% 
%0/0 
%% Abstract: 
%% TLC file for the PC32 DIA Block. 
%% This file Is used 10 generate code 10 write 
%% values to the D/A converters. AI termination 
%% all outputs are sella O. 
%% Author: 
%% Adam Stylo 
%% Date: 
%% 98/11/03 
%% Revised By Magash Pillay 
%% 2000/01 /20 
%% 

%lmplements "pc32_da" "C" 

%include "iilib.tlc" 

Appendix 0:.18 



APPENDIX 0: Listing of Code for the RADE PC32 

"Iofunction BlocklnstanceSetup(block, system) void 

"Io% Only allow 1 instance of the D/A block 
"Ioif !EXISTS( .. Rt...,Pc32da~) 

%assign ::Rt...,pc32da = 1 
"Ioelse 

"Ioerror Only 1 PC32dan block is allowed in the model. 
%endif 

%endfunction %% BlocklnstanceSetup 

%% Function: Outputs 
========================================================== 
%% 
%% Abstract: 
%% Generate inlined code to perform one D/A conversion. 
%% 
%function Outputs(block, system) Output 

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName»·' 
r Start an output conversion·' 

{ 

} 

write _ dac( BASEBOARD, 0, %<UbBlockl nputSignal(O, .. -•• -.0» ' (3276. 7»; 
convert_dac(BASEBOARD,O); 
wrile_dac(BASEBOARD, 1, %<UbBlocklnputSignal(O,-" ,"",1 »'(3276.7»; 
convert_dac(BASEBOARD, l ); 
write _ dac(BASEBOARD, 2, % <LibBlocklnputSig nal (0,"" ,'''' ,2»'(3276.7»; 
convert_dac(BASEBOARD,2); 
write_dac(BASEBOARD, 3, %<UbBlocklnputSignal(O.-..... ,3»'(3276.7»; 
convert_dac(BASEBOARD.3): 

%endfunction %% Outputs 

%openfile buffer 
r reset D/A outputs to 0 at termination . • , 

write_dac(BASEBOARD, 0, 0); 
convert_dac(BASEBOARD, 0); 
write_dac(BASEBOARD, 1, 0); 
convert_dac(BASEBOARD.1); 
write_dac(BASEBOARD, 2, 0): 
convert_dac(BASEBOARD, 2); 
write_dac(BASEBOARO, 3, 0); 
convert_dac(BASEBOARD, 3); 
%closefile buffer 
%<LibMdITerminateCustomCode(buffer, "trailer"» 

%% EOF: PC32dan.tlc 

D.4.3 PWM BLOCK 

%% 
%% 
%% Abstract: 
%% TLC file for the PWM Block. Generales code used 10 
%% control a PWMfTacho add on card . 
%% Author: 
%% Adam Stylo 
%% Date: 
%% 98/11/03 
%% 
%% Revised 8y Magash Pillay 
%% 2000/01 /20 

%implements "pwmblock" "C" 

%include "iilib.tlc" 

Appendix D: .19 



APPENDIX D: Listing afCade for the RADE PC32 

%assign ::Vortl = UbBlockParameter(P1 ,"","",O) 
%assign ::Ctr1Mode = UbBlockParameter(P2,-,"",O) 

%function BlocklnstanceSetup(block, system) void 
%% Only allow 1 pwm block 
%if EXISTSpIPWMBJockSeen") 

%assign errTxt = "Only 1 Interrupt block is allowed in " '" 
"model: %<CompiledModel ,Name>," 

%exit RTW Fatal: %<errTxt> 
%else 

%assign ::IIPWMBlockSeen = 1 
%endif 

%openfile buffer 
#define Status_word (volatile int") Ox81aOO1 

#define Data_word (volatile int·) Ox81aOOO 

#define TAUS (0) 
#define nOT (0) 
#define TMIN (0) 
int VORTL,TSTART; 

void pollpwm( void) 
( 

while ("(Status_word) & Ox1): 
) 

%closefile buffer 
%<UbCacheDefine(buffer» 

%openfile buffer 
#ifdef IO_ENABLE 
printWlnitializing PWM Block ... . \n"); 
#endif 

VORTL = (int)(%<VortJ»; 
TSTART = Wnt)(512-(3221(VORTL+1 »))); 

"IOBCR = Ox58; 
"(Status_word) = 128; r sel up 16 bit addressing mode"' 
' (Status_word) = 128; r sel addres to zero"/ 

pollpwm{); 
"(Data_word) = 0; r Ua"' 
pollpwrnO: 
' (Data_word) = 0; ,. Ub "/ 
pollpwmO; 
'(Data_word) = 0; r phi1 .. , 
pollpwmO; 
"(Data_word) = 0; ,. dphi1 ., 
pollpwrn(); 
'(Data_word) = 0; r phiO "' 
pollpwm(); 
"(Data_word) = 0; ,. dphiO "' 
pollpwmO; 
"(Data_word) = 0; ,. phiadd ., 
pollpwmO; 
"(Data_word) = 0; r unused "' 
pollpwm(); 
'(Data_word) = TAUS; r turn off time 0' 
pollpwmO; 
"(Data_word) ::: TIOT; ,. dead band ., 
pollpwmO; 
"(Data_word) = TMIN; ,. turn on time "' 
pollpwm(); 
' (Data_word) = VORTL; r switching frequency scale value ., 

Appendix 0: .20 



APPENDIX D: Listing arCade for the RADE PC32 

pollpwmO; 
*(Data_word) = TSTART; r start of processing cycle *' 

%closefile buffer 
%<LibMdIStartCustomCode(buffer, "trailer'» 

%openfile buffer 
r dissable the PWM board at terminate ., 
"(Status_word) = 0; 
*(Status_word) :: 0; 

%closefile buffer 
%<LibMdITerminateCustomCode(buffer, ~trailer"» 
%endfunction 

%function Outputs(block, system) Output 

{ 

} 

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName»"/ 

"(Status_word):: 129; 
pol1pwmO; 
"(Data_word)::: (int)%<LibBlocklnputSignal(O, MH, -~. 0»; 
pollpwmO; 
'(Data_word) = (int)%<LibBlocklnputSignal(O, MM, MM, 1»; 

if ((int)%<CtrlMode> == 1) r skip three values to write frequency" 
{pollpwm{); 
"(Status_word) = 89?;} 

pol1pwmO; 
"(Data_word) = (int)%<LibBlocklnputSignal(O. MM, "", 2»; 

%endfunction %% Outputs 

0 .4.4 ASYNCHRONOUS INTERRUPT SUPPORT 

mod on 17/04/2000 
problem with formated c file produced 

%'% 
%% 
%% Abstract: 
%% TLC file for the PC32 Asynchronous Interrupt Block. 
%% This file is used to generate code to support asynchronous 
%% interrupts on the PC32. 
%% Author: 
%% Adam Stylo 
%% Date: 
%% 98/11 /03 
%% Revised By Magash Pillay 
% % 2000/01120 
%% 

%implements "iiinterrupt" "CM 

%Include "illib.Uc" 

0/0 % Function: Blockl nstanceSetup == = === ==: :=:== == =::: =::: === = = = ==::::::::: =========:::::::::= = == 
%% Abstract: 
%% Find all the function-call subsystems that are attached to the 
%% interrupt block and hook-in the necessary code for each routine. 
%% This function 
%% 
%% 0 Connect each ISR in the model's start function. 
%% 
%% 0 Enable each ISR at the bottom of the model's start function. 
0/0% 

Appendix 0 : .21 



APPENDIX D: Listing of Code for the RADE PC32 

%% 0 Disable each ISR in the model's terminate function. 
%% 
%% 0 Save floating point context in the ISR's critical code section 

%assign ::EITrigg = UbBlockParameter(P1 ...... -.0) 
%assign ::TmrOfreq = UbBlockParameter(P4."","".O) 
%assign ::Tmr1freq:: UbBlockParameter(P5,"","'"O) 
%assign ::Trigg_srcO:: UbBlockParameter(P2,"","",O) 
%assign ::Trigg_src1 :::: UbBlockParameter(P3,""."",O) 

"Iofunction BlocklnstanceSelup(block. system) void 
"10"10 Only allow 1 interrupt block 

"Ioif EXISTS("lllnterruptBlockSeen") 
%assign errTxt :::: "Only 1 Interrupt block is allowed in " ... 

"model: %<CompiledModel.Name>." 
"ioexit RTW Fatal: %<errTxt> 

%else 
"Ioassign ::llInterrupt810ckSeen = 1 

%endif 

%openfile buffer 
#ifdef IO_ENABLE 

printf("Connecting Interrupts\n"); 
#endif 

r Make ints edge triggered only if required "' 
if ((int)%<EITrigg> :::::::: 1) 

{asm (" OR 4000h,ST"); 
#ifdef 10_ENABLE 
printf("EIO • EI3 Set to edge triggered\n"); 
#endif 

) 
else 

{asm (" ANON 4000h,ST"): 
#ifdef 10_ENABLE 
printf("EIO . EI3 Set to level triggered\n"); 
#endif 

) 
"Ioclosefile buffer 
%<UbMdIStartCustomCode(buffer. "header"» 

%openfile buffer 
/" define addresses for control registers 0' 

#define GC_CTRLO (volatile intO) Ox808020 
#define GC_CTRL1 (volatile intO) Ox808030 
rOefine a interrupt_block 0' 

#define INTERRUPT_BLOCK 
#include "pc32main_commsN 

%closefile buffer 
%<UbHeaderFileCustomCode(buffer,"trailer"» 

%foreach call1dx :::: NumSFcnSysOutputCalls 

%% Get downstream block if there is one 
%if " "/o<SFcnSystemOutputCall(callldxj .BlockToCall>" !:::: "unconnected" 
"Ioassign ssSysldx :::: SFcnSystemOutputCall[callldxj.BlockToCall[Oj 
%assign ssBlkldx::: SFcnSystemOutputCall(callldx).BlockToCall[1] 
%assign ssBlock = CompiledModel.System[ssSysldxj.Block[ssBlkldx] 
%% Check to see if this is a direct connection 
%if (ssBlock.ControllnputPort.Width != 1) 
%assign errTxt :::: "The 11 Interrupt block '%<block.Name>' ..... 

"outputs must be directly connected to one function·call subsystem. " .. . 
"The destination function·call subsystem block '%<ssBlock.Name>'" .. . 
"has other inputs." 

%exit RTW Fatal : %<errTxt> 
%endif 
%% Assume It is a subsystem block(Simulink checked for a foe subsys already). 

Appendix D: .22 



APPENDIX D: Listing of Code for the RADE PC32 

%assign isrSystem = System[ssBlock.ParamSettings.Systemldx) 

%<libForceOutputUpdateFcn(isrSystem» 
%% NO need to redefine since function calls are from dummy interrupt functions 
%openfile buffer 
void c_intO%<callldx+1>(void); 

%closefile buffer 
%<libCacheOefine(buffer» 

%openfile buffer 
/%notes on P7 
range 1 106 ,coresspondes to interrupl number. 
%1 
%if call1dx ==( %<libBlackParamelerValue(P7.0»-1) 

%%call system functian call nol using TI interrupt convention 
%if call1dx==4 
%apenfile temp 
#define TMRD_BASE_RATE 
%closefile temp 
%<LibCacheDefine(lemp» 
%endif 
void Base_RateJunctionO 
( 

} 
%else 

r 

%<isrSystem.OutputUpdateFcn>(rtS,l,D); 

ISR far: %<ssBlock.Name> 
"/ 
%if call1dx < 9 
void c_intO%<cal11dx+l >0 
( 
r call subsystem block 
Using TID =0 since, single tasking simulation 
"/ 
%<isrSystem.OutputUpdateFcn>(rtS,1.0); 
} 

°/oelse 

%endif 
%endif 

void cJnt%<callldx+l>O 
( 
r call subsystem block 
Using TID =0 since, single tasking simulation 
"/ 
%<isrSystem.OutputUpdateFcn>{rtS.l,O): 
} 

%closefile buffer 
%<LibSourceFileCustomCode(buffer,~trailer"» 

%openfile buffer 
%% controlPortldx will never get used when only one f-c control input 
r use base lid inside an ISR for any blocks accessing task time·' 
#define %<tTIO> 0 

%closefile buffer 
%<LibSystemOutpuICustomCode(isrSystem, buffer, "declaration"» 
%openfile buffer 
#undef %<ITIO> 
%closefile buffer 
O/O<LibSyslemOutputCustomCode(isrSystem. buffer, ~ trailer"» 

%% Connect the ISR in the model's slart function 

Appendix 0 : .23 



APPENDlX D: Listing of Code for the RADE PC32 

%openfile buffer 
r connect ISR system: %<ssBlock.Name> *' 
fli nt registration 
%if call1dx ==( %<LibBlockParameterValue(P7,0» -1 ) 

( 
r assign rt_onestep from real time kennel to interrupt "' 

installJnt_ vector( rtOneStep, (int)% <LibBlockParameter(P6, - ,'.-,callldx»); 
enable _ interrupl( (inl)% < LibBlockParameterValue(P6 ,callldx»-1 ); 
#ifdef ID_ENABLE 

%else 
{ 

printf('Veclior installed for INT #%d, Base rate Interrupt.\n~ 
,(inl)% < LibBlockParameter(P6, "" ,"" ,cal1ldx»): 

#endif 
} 

%if call1dx < 9 
instalUnt_ vector( c _ inlO% <callldx+ 1 > ,(int)%<LibBlockParamelerVa lue( P6, call1dx)> ): 

%else 
install_ i nt_ vector( c _ int%<callldx+ 1 > ,(int)%<LibBlockParamelerV alue( P6 ,caI11dx» ); 

%endif 
enable Jnlerru pl( (int)% <LibBlockParamelerVa lue(P6,callldx»-1 ); 
#ifdef ID_ENABLE 

printf("Vectior installed for lNT #%d.\nM,(int)%<LibBlockParameter(P6,"","",callldx»); 
#endif 

%endif 

%closefile buffer 
%<LibMdIStartCustomCode(buffer, "trailer"» 

%openfile buffer 
r disconnect ISR system: %<ssBlock.Name> ., 
if (%<LibBlockParameter(P6, .... ,"",cal1ldx»==9) 
( r only disconnect timerO if it was set up here . / 

} 

#ifndef TMRO_ YES 
disable Jnterrupt((int)%< LibBlockParameter(P6, MM , MM ,ca IIIdx»-1 ): 
deinstalUnt_ vector«int)%<LibBlockPara meter(P6. - , .... ,cal11dx}> ); 
#ifdef ID_ENABLE 
printf("INT #%d disabled.\n" ,(int)%<LibBlockParameter(P6, M","O ,callldx»); 
#endif 
#endif 

else 
( 
disable _ interrupt( (inl)%< LibBlockParameler(P6;M , MM ,callldx»-1 ); 
deinstalUnt_ vector( (int)% <LibBlockParameter(P6. MM ..... callldx» ): 
#ifdef ID_ENABLE 
printf(MINT #%d disabled.\n" ,(int)%<libBlockParameler(P6, "", " .. ,callldx»); 
#endif 
} 

%closefile buffer 
%<LibMdITenninateCustomCode(buffer, "trailer"» 
%else %% The element is not connected to anything 
%assign wrnTxt = ONo code will be generated for ISR %<callldx> "\ 
"since it is not connected to anything." 
%warning %<wrnTxt> 
%endif 
%endforeach 

%% Setup limers 
%openfile buffer 

Interrupt_Block= 1; 
if «int)%<Trigg_srcO> == 2) 

rGC_CTRLO = Ox6c3: 
#ifdef ID_ENABLE 
printf("TCLKO driven by Timer O.\n~); 

Appendix 0 : .24 



#endif 
) 

else 

APPENDIX D: Listing of Code for the RADE PC32 

rGC_CTRLO = OxScO; 
#ifdef 10_ENABLE 
printf("TCLKO driven externa ly.\n~); 

#endif 
) 

if «int)%<Trigg_src1 > == 2) 
(oGC_CTRL1 = Ox6c3; 
#ifdef 10_ENABLE 
printf("TCLK1 driven by Timer 1.\nft); 
#endif 

) 
else 

{oGC_CTRL 1:: Ox6cO; 
#ifdef ID_ENABLE 
printf("TCLK1 driven externaly.\nft

); 

#endif 
) 

#ifdef TMRO_BASE_RATE 
/"simulation step size take precdence over TMRO freq when set as base rate 0' 
timer(O, (int)(1.0 I ssGetStepSize(rtS»): 

#else 
r Only change Timer 0 settings if it isn't used for base sampling rate *' 
timer(O, (int)%<TmrOfreq» ; 

#endif 
timer(1, (inl)%<Tmr1freq»; 

#ifdef 10_ENABLE 
printf(Mlnterrupts Connected ,Waiting for start Signal....\n·); 
#endif 

%closefile buffer 
%<LibMdISlartCustomCode(buffer, "header"» 
%endfunction 

%% lEOF] iiinterrupt.tlc 

Appendix 0: .25 



APPENDIX E: Listing of Code for the RADE ADC64 

APPENDIX E: LISTING OF CODE FOR THE RADE ADC64 

E.l. SYSTEM TARGET FILE 

%% SYSTLC: Generic Real·Time Target ADC64 \ 
%% TMF: adc64.tmfMAKE: make_ITN IO=DISABLE EXTMODE: ext_comm_c3x 
%% 
%selectfile NULL_FILE 
%addincludepath "c:\matlabrll\rtw\cui\devices" 

%assign MatFileLogging = I 
%assign TargetType = "RT" 
%assign Language = "C" 
%assign DSP32=1 
%assign BlocklOSignals=O 
%include "codegenentry.tlc" 

%% The contents between 'BEGIN_RTW_OPTIONS' and 'END_RTW_OPTIONS' are 
strictly 
%% written by the standard format. We need to use this structure in RTW 
%% options GUI function rtwoptionsdlg.m file. 
%% 
1% 

BEGlN_RTW _OPTIONS 

rtwoptions(l).prompt = 'MAT ·file variable name modifier'; 
rtWoptions(l).type = 'Popup'; 
rtwoptions(l ).default = 'rt_'; 
rtwoptions(l).popupstrings = 'rtJ_rtlnone'; 
rtwoptions(l).t1cvariable = 'LogVarNameModifier'; 
rtWoptions(l).tooltip = ['prefix rt_ to variable name,', sprintf('\n'), ... 

'append _rt to variable name,', sprintf('\n'), 'or no modification'}; 

rtwoptions(2).prompt = 'External mode'; 
rtwoptions(2).type = 'Checkbox'; 
rtWoptions(2).default = 'on'; 
rtwoptions(2).tlcvariable = 'ExtMode'; 
rtwoptions(2).makevariable = 'EXT_MODE'; 
rtwoptions(2).tooltip = ['Adds TCP!IP communication support for', ... 

'use with', sprintf('\n'), 'Simulink external mode']; 

rtWoptions(3}.prompt = 'Function Management'; 
rtwoptions(3}.type = 'Popup'; 
rtwoptions(3}.popupstrings "'" ['NoneIFunction SplittinglFile " ... 

'SplittinglFunction and File Splitting']; 
rtwoptions(3}.default = 'None'; 
rtwoptions(3}.tlcvariable = "; 
rtwoptions(3}.tooitip = 'Limit size of generated files and functions'; 
rtwoptions(3}.callback = 'callback _function_management'; 
rtwoptions(3).opencallback = (['userData = get(gcbf, "UserData");' ... 

'hModel_local = userData.model;' ... 
'get_value _ oCfields(hModel_local,dialogFig,"open"};' ... 
'tmp = compute_value_from_rtwoptions(hModel_local);' ... 
'0 = findobj(dialogFig, ''Tag'', "Function Management_PopupFieJdTag"};' ... 

Appendix E: .1 



APPENDIX E: Listing of Code for the RADE ADC64 

'set (0, "Value", tmp); callback_function_management(dialogFig);'D; 
rtwoptions(3).closecallback = (['userData = get(gcbf, "UserData");' ... 

'hModel_local = userData.model;' ... 
, get_vat ue _of_fie I ds(hM odel_l ocal ,d ialogF i g, "close"); 'D; 

rtwoptions(4).prompt = 'Function Split Threshold'; 
rtwoptions(4).type = 'Edit'; 
rtwoptions(4).default = '200'; 
rtwoptions(4).tlcvariable = 'FunctionSizeThreshold'; 
rtwoptions(4).tooltip = ['Split the generated functions after specified threshold.']; 
rtwoptions(4).enable = 'off; 

rtwoptions(5).prompt = 'File Split Threshold'; 
rtwoptions(5).type = 'Edit'; 
rtwoptions(5).default = '5000'; 
rtwoptions(5).tlcvariable = 'FileSizeThreshold'; 
rtwoptions(5).tooltip = ['Split the generated files after specified threshold.'] ; 
rtwoptions(5).enable = 'off; 

rrwoptions(6).prompt = 'Server name'; 
rtwoptions(6).type = 'Edit'; 
rtwoptions(6).default = 'magash'; 
rtv.roptions(6).t1cvariable = 'server_name'; 
rtwoptions(6).makevariable = 'SERVER_NAME'; 
rtwoptions(6).tooltip = ['Enter name of server computer']; 

rtwoptions(7).prompt = 'Port Number'; 
rtwoptions(7).type = 'Edit'; 
rtwoptions(7).default = '700'; 
rtwoptions(7).tlcvariable = 'serveryort'; 
rtwoptions(7).makevariable = 'SERVER_PORT'; 
rtwoptions(7).tooitip = ['Enter port number of server computer']; 

rtwoptions(8).prompt = 'Quick Build Project'; 
rtwoptions(8).type = 'Checkbox'; 
rtwoptions(8).default = 'off; 
rtwoptions(8).t1cvariable = 'QUICK_BUILD'; 
rtwoptions(8).makevariable = 'QUICK_BUll...D'; 
rtwoptions(8).tooltip = ['Used to speedup repetive builds :', ... 
", sprintf(\n'), 'Warning!! Disable ifmods to RTW internals are being made'] ; 

rtwoptions(9).prompt = 'Heap Size'; 
rtwoptions(9).type = 'Edit'; 
rtwoptions(9).default = 'Ox 1 0000'; 
rtwoptions(9).tlcvariable = 'heap_size'; 
rtwoptions(9).makevariable = 'HEAP_SIZE'; 
rtwoptions(9).tooltip = ['Enter heap size for compiler']; 

rtwoptions( lO).prompt = 'Stack Size'; 
rtwoptions(10).type = 'Edit'; 
rtwoptions(lO).default = 'Ox5000'; 
rtwoptions(IO).tlcvariable = 'stack size'; 
rtwoptions( l O).makevariable = 'STACK_SlZE'; 
rtwoptions(lO).tooltip = ['Enter stack size for compiler']; 

Appendix E: .2 



APPENDIX E: Listing of Code for the RADE ADC64 

END RTW OPTIONS 
%1 

E.2. SYSTEM TEMPLATE MAKE FILE 

# .. . ....... . .... .... ......... . n ••• •••• • ••••••••••••••••••••••• • •• • • 

SYS_TARGET_FILE = grt_adc64.tlc 
MAKE = I>MATLAB_ROOT<I\rtw\c\ii\bin\gmake_3J1 
HOST = PC 
BUILD = yes 
DOWNLOAD = yes 
BUILD_SUCCESS = Completed 
DOWNLOAD_SUCCESS = Oownloaded 

#------------------------- Customization Macros ----------------------­
# 
# The following set of macros are customized by the make_rt program. 
# 
MODEL = I>MOOEL_NAME<I 
MODEL_MODULES = I>MOOEL_MODULES<I 
MODEL_MODULES_OBJ = I>MODEL_MODULES_OBJ<I 
MAKEFILE = I>MAKEFILE_NAME<I 
MATLAB_ROOT = I>MATLAB_ROOT<I 
MATLAB_BIN = I>MATLAB_BIN<I 
S_FUNCTIONS = I>SJUNCTIONS<] 
S_FUNCTIONS_OBJ = I>S_FUNCTIONS_OBJ<I 
SOLVER = I>SOL VER<I 
SOLVER_OBJ :: I>SOLVER_OBJ<I 
NUMST = I>NUMST<I 
TID01EQ = I>TID01EQ<1 
NCSTATES = I>NCSTATES<I 
BUILDARGS = I>BUILDARGS<I 
COMPUTER = I>COMPUTER<I 
SERVER_NAME = I>SERVER_NAME<] 
SERVER_PORT = I>SERVER_PORT <I 
QUICK = I>QU1CK_BUILD<1 
HEAP = I>HEAP _SIZE<I 
STACK = I>STACK_SIZE<I 

QUICK,=S(strip S(QUICK)) 
'#--- -- ----- 11 PC32 Definition -----------
# 
BOARD_TYPE = ADC64 
OSP_FAMILY =30 
COMPILER = TIJPC 
#---------- TI Tools - -- --------
# 
# You may need to modify the TI_ROOT if you have installed the 
# Texas Instrument Compiler in a different location. 
# 
#set old_c=1 for compiler 4.7 or 0 for compiler 5.11 
old_c =0 
ifeq (S(old_c),1) 
TI_ROOT = c:\fltc 
else 
TI_ROOT = c:\c3xtools\bin 
endif 
TI_FLAGS = -vS(DSP _F AMIL Y) 

CC'" S(TI_ROOT)\cl30 
LD = $(TI_ROOT)\lnk30 

#--------------------11 Tools ----------------------

Appendix E: .3 



APPENDIX E: Listing of Code for the RADE ADC64 

• 
II DIR = c:\adc64cc 
#ii DIR is the dir were 11 Zuma tool set is installed 
IIJ{OOT = $(MATLAB_ROOT)\rtw\c\ii\adc64 
"_COMPILER = S(II_ROOT)\src 

"_CMD = S(ll_COMPILER)\iiadc64.cmd 
#II_BOOT = S(II_COMPILER)\vectors.obJ 

ifeq (S(0Id_c),1) 
"_INCLUDES = S(ll_DIR)\include\target; S(ll_DIR)\lib\target 
else 
IUNCLUDES = S(II_DIR)\include\target;$(II_DIR)\Iib\target; c:\c3xtools\include;c:\c3x1ools\lib 
endif 

#-••••••••••••••••••••••••••••••• DOWNLOAD Tool .-.............. -.--.-.-... .. 

PC32_DOWNLOAD = S(II_ROOT)\bin\auto_download.exe 
#using this location during development only 
#PC32_DOWNLOAD = c:\projects\matJab_net\auto_download\debug\auto_download.exe 
#--.. ---- Include Path •••• - •••• - ••••• - .----

MATLAB_INCLUDES = \ 
S(MATLAB_ROOT}\Simulink\include; \ 
S(MATLAB_ROOT)\extem\include; , 
$(MATLAB _ROOT)\rtw\c\src; \ 
$(MATLAB_ROOT)\rtw\c\ii\adc64\src; \ 
$ (MA TLAB _ROOT)\rtw\C\1 ibsrc: 

TUNCLUDES = $(TI_ROOT); 

INCLUDES =.; $(MATLAB_'NCLUDES) S(TUNCLUDES) S(IUNCLUDES) 

#--••..••.• --.-.--- C Flags ----.-----.-.-

# Required Options 
REO_OPTS =·s ·ma ·mf --g S(TI_FLAGS) ·pt·q ·eo .oS(DSP _FAMILY) 

ifneq (S(0Id_cl,1) 
REO_OPTS := $(REQ_OPTS) ·mi ·00·x2 ·opO ·on1 
endif 

# Optimization Options 
OPT_OPTS =·x 
# Debug Options 
DBG_OPTS = 

CC_OPTS = S(REO_OPTS) S(OPT_OPTS) S(DBG_OPTS) -dIO_S(IO) \ 
·dTMRO_$(TMRO) ·dUPLD_$(UPLD) ·dDSP32 ·dEXT_MODE ·dID_ENABLE \ 

·dTARGET_SYSTEM -dVERBOSE ·dADC64 

CPP _REO_DEFINES = ·dMDDEL=$(MODEL)·dRT ·dNUMST=S(NUMST) \ 
-dTID01 EO=S(TID01 EO) -dNCSTATES=S(NCST ATES) 

CFLAGS = S(CC_OPTS) S(CPP _REO_DEFINES) S(CPP _DEFINES) 

LDFLAGS :=--g ·x ·c ·heap S(HEAP) ·stack S(STACK) $(II_BOOT) ·m S(MODEL).map 

#--.•• - •.•.• --.•• ----- Source Files .-•••••••••••• - ..... ----•• 

REQ_SRCS = ii_adc64.c rt_sim.c rtwI09_c3x.c adc64-.9rtm.c rt_matrx.c $(MODEL).c \ 
ext_sIV_c3x.c updown_c3x.c 

OPT_SRCS = 

Appendix E: .4 



APPENDIX E: Listing of Code for the RAOE ADC64 

S FCN SRCS = $(SJUNCTIONS) 
INT _SRCS = $(SOLVER) 

#PC32_0BJS = S(MA TLAB _ ROOT)\rtw\c\ii\ti_ fpc\pc32func.030 
REO_OBJS = S(REO_SRCS:.c=.oS(DSP JAMILYII 
OPT_OBJS = $(OPT_SRCS:.c=.o$(DSP JAMILYII 
SJCN_OBJS = S(SJCN_SRCS:.c=.oS(DSP JAMILY)) 
INT _OBJS = S(INT_SRCS:.c=.oS(DSP JAMILYII 
OBJS = S(REQ_OBJS) S(OPT_OBJS) S(SJCN_OBJS) S(INT_OBJS) 
OBJSl = S(REQ_OBJS) S(OPT_OBJS) 
OBJS2 = S(SJCN_OBJS) S(lNT_OBJS) 

PROGRAM = $(MODEL).out 

#-- .- Exported Environment Variables -------------
# 
# Because of the 128 character command line length limitations in DOS. we 
# use environment variables to pass additional Information to the 
# Compiler and Linker 

• C_OPTION:= S(CFLAGS) 
C_DIR := $(INCLUDES); S(C_DIR) 
C_MODE = PROTECTED 

#-------------- Rules .----------------

S(PROGRAM) : S(OBJS) 
echo S(OBJS1) > $(MODEL).lin 

ifneq ($(strip S(OBJS2».) 
echo S(OBJS2) » S(MODEL).lin 

endif 
echo S(II_CMD)>> $(MODEL).lin 
S(LD) S(LDFLAGS) -0 S@ S(MODEL).lln 
del S(MODEL).Iin 
echo S(BUILD_SUCCESS) $(PROGRAM) 

# Compile existing code if it exists in current dir 
%.oS(DSP _FAMilY) : %.c 

$(CC) $< 

# edit mags using token for matlab root 
%.oS(DSP JAMILY): S(MATLAB_ROOT)\rtw\c\ii\adc64\src\%.c 

S(CC) S< 
%.oS(DSP _FAMilY): $(MATLAB_ROOT)\rtw\c\ii\tUpc\%.c 

$(CC) $< 
# Call to simulink files 
%.oS(DSP _FAMILY) : $(MATLAB_ROOT)\Simulink\src\%.c 

S(CC) S< 

# Call compile RlW files 
%.oS(DSP _FAMILY): $(MATLAB_ROOT)\rtw\c\src\%_c 

$(CC) S< 

%.oS(DSP _FAMILY) : $(MATLAB_ROOT)\rtw\c\libsrc\% .c 
S(CC) S< 

#-----.-------.-.--. Rule for Downloadlng to Target .-------. --.-•• -.--.--

download: 
# del pc32main.o30 
# del S(MODEL).lin 
# del $(MOOEL).c 
# del $(MODEL).h 
# del S(MODEL).map 

Appendix E: .5 



APPENDlX E: Listing of Code for the RADE ADC64 

# del S{MODEL).o30 
# del S{MODEL).prm 
# del S{MODEL).reg 

S(PC32_DOWNLOAD) -fS (PROGRAM) -s$(SERVER_NAME) -pS (SERVER_PORT) 
echo S{DOWNLOAD_SUCCESS) S(PROGRAM) 

#-•••••••••••••• _ •••••• _.-. Dependencies . __ ... _ .••••••••.•.......... 
adc64..Qrtm.oS{DSP JAMILY) :S{MODEL).c 
ifneq (S(QUICK) ,1) 
S(OBJS) , S(MAKEFILE) 
end if 
#ii_pc32.oS(DSP _FAMILY) : S{MATLAB_ROOT)\rtw\c\ ii\tUpc\ii_comms.h \ 
# $(MATLAB_ROOT)\rtw\c\src\ext_slV _c3x.h 

#ext_slV_c3x.0$(DSP _FAMILY) : S{MATLAB_ROOT)\ rtw\c\ii\tUpc\ii_comms.h \ 
# S(MA TLAB_ROOT)\rtw\c\src\ext_srv _c3x.h 

E.3. DEVICE DRIVER FILES 

E.3.1 ADC BLOCKS 

%% Abstract: 
%% TLC file for the ADC64 AID Block. 
%% This file is used to generate code to read 
%% values from the NO converters and scale them to +·1 0. 
%% Author: 
%/,1/0 Magash Pillay 
%% Date: 
%% 2000/08/11 
%% 
%implements ·adc64_ad- ·C" 

%include "iilib_adc64.tlc~ 

%function Start(block, system) Output 
r %<Type> Block: %<Name> (%<ParamSettings.FunclionName» ·1 
%assign Trig_s= UbBlockParamelerValue(P2,0) 
r Connect 10 Trigger source· ' 
%swilch (Trig_s) 

%case 2 
trigger(PITO _ TI MER,(int)(%<UbBlockParameter( P 1 , ~~ , ~~ ,0» »: 
%break 
%case 3 
trigger(P IT 1_ TI ME R, (inl)(%< UbBlockParameler(P 1 . '''' ,"" ,0»»: 
%break 
%case 4 
Irig ger(PIT2_ TI MER .(int)(%<UbBlockParameter( P 1 , ~~ , ~~ ,0» »: 
%break 
%case 5 
trigger(PIT3_ TIMER.(int)(%<UbBlockParameter(P 1 ,'''' ,"" ,0»»; 
%break 
%case 6 
trigger(PIT 4_ TIME R,(int)(%<UbBlockParameter(P 1 ,"" , MM ,D» )); 
%break 

%endswitch 

%endfunction %% 810cklnstanceSetup 

Appendix E: .6 



APPENDIX E: Listing of Code for the RADE ADC64 

%function Outputs(block, system} Output 
r %<Type> Block: %<Name> {%<ParamSettings.FunctionName» · f 
r read in the corrected values from AJD and scale to +·10·' 

%assign Trig_s= LibBlockParameterValue(P2.0} 
%ass ign ADC_numO = LibBlockParameterValue(P1,O}"2 
%assign ADC_num1 = LibBlockParameterValue(P1 ,0)'2+1 
%assign ADC_numO =CASTrNumber",ADC_numO) 
%assign ADC_num1 =CASr rNumber",ADC_num1) 

( 
%<libBlockOulputSignal(O, ~~ , ~~ ,0» =read _ adc(BASEBOARD ,(% <ADC _ numO» )/(3276. 7); 
%<libBlockOutpuISig na 1(0, MM ,MM. 1 »= read _ adc(BASEBOAR D,(%<ADC _ num 1 >))/(3276.7); 
%if (Trig_s==1) 

convert _ adc "pair(BASE BOARD, (int)(%<LibBlockPara meterValue(P 1 ,0» »; 
%endif 

} 
%endfunction %% Outputs 

E.3.2 DAC BLOCK 

%% 
%% 
%% Abstract: 
%% TLC file for the PC32 D/A Block. 
%% This file is used 10 generate code to write 
%% values to the D/A converters. At termination 
%% all outputs are set to O. 
%% Author: 
%% Adam Stylo 
%% Date: 
%% 98/11 /03 
%% 
%implements "adc64_daM MC" 

%function BlocklnslanceSetup(block, system) void 

%% Only allow 1 instance of the D/A block 
%if !EXISTSrRt"pc32daR) 

%assign ::RtJlc32da = 1 
%else 

%error Only 1 PC32dan block is allowed in the model. 
%endif 

%endfunction %% BlocklnstanceSetup 

%% Function: Outputs 
========================================================== 
%% 
%% Abstract: 
%% Generate inlined code to perform one DIA conversion. 
%% 
%function Oulputs(block, system) Output 

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» · ' 
,. Start an output conversion"1 

( 
wrile_dac(BASEBOARD, 0, %<LibBlocklnpuISignal(O:M ,MM ,0» " (3276. 7»; 
convert_dac(BASEBOARD,O): 
write_dac(BASEBOARO, 1, %<LibBlocklnputSignal(O,"","", 1 »*(3276.7»; 
convert_dac(BASEBOARD,1); 
} 

%endfunction %% Outputs 

%openfile buffer 
r reset D/A outputs to 0 at termination. ' f 

write_dac(BASEBOARD, 0, 0); 

Appendix E: .7 



APPENDIX E: Listing of Code for the RADE ADC64 

convert_dac(BASEBOARD,D); 
write_dac(BASEBOARD, 1, 0); 
convert_dac(BASEBOARD. 1); 
%closefile buffer 
%<LibMdITerminateCustomCode(buffer. "trailer"» 

%% EOF: ADC64_da.tlc 

E.3.3 PWM BLOCK 

%% 
%% 
%% Abstract: 
%% TLC file for the PWM Block. Generates code used to 
%% control a PWMfTacho add on card. 
%% Author: Magash Pillay 
%Ofc~ 
%implements "pwmblock_adc" .. c .. 

%include "iilib_adc64.tlc" 

%assign ::Vortl = LibBlockParameter(P1 ..... ,-.0) 
%assign ::CtrlMode = UbBlockParameter(P2 ........... D) 

%function BlocklnstanceSetup(block. system) void 
%% Only allow 1 pwm block 
%if EXISTS("IIPWMBlockSeen") 

%assign errTxt = "Only 1 Interrupt block is allowed in ..... 
"model: %<CompiledModel.Name>." 

%exit RTW Fatal : %<errTxt> 
%else 

%assign ::1IPWMBlockSeen = 1 
%endif 

%openfile buffer 
%%DECODED 
#define Status_word (volatile intO) Dx8188Dl 

#define Data_word (volatile intO) Dx8188DD 

%%DECODE1 
%%#define Status_word (volatile intO) Dx819DD1 
%%#define Data_word (volatile Int*) Dx819DDD 

#define TAUS (0) 
#define TTOT (0) 
#define TMIN (0) 
int VORTL,TSTART; 

void pollpwm( void) 
( 

while ('(Status_word) & Dx1); 
) 

%closefile buffer 
%<LibCacheDefine(buffer» 

%openfile buffer 
#ifdef IO_ENABLE 
printf("lnitializing PWM Block .... \n .. ): 
#endif 

VORTL = (int)(%<Vortl»; 
TSTART: ({int){512·{322/{VORTL +1 )))); 

'IOSCR = Dx58: 

Appendix E: .8 



APPENDIX E: Listing of Code for the RADE ADC64 

· (Status_word) = 128; r set up 16 bit addressing mode·' 
·(Status_word) = 128; r set addres to zero·' 

pollpwm(); 
·(Data_word) = 0; r Ua ., 
pollpwmO; 
·(Data_word) = 0; ,. Ub ., 
pollpwm(); 
·(Data_word) :: 0; r phi1 ., 
pollpwmO; 
·(Data_word) = 0; r dphi1 ., 
pollpwm(); 
·(Data_word):: 0; r phiO·' 
pollpwmO; 
·(Data_word) = 0; r dphiO ., 
pollpwmO; 
·(Data_word) = 0: r phiadd *' 
pollpwmO; 
·(Data_word) :: 0; r unused ., 
pollpwmO; 
·(Data_word) = TAUS; r turn off time ., 
pollpwmO; 
"(Data_word) :: TTOT; r dead band ., 
pollpwmO: 
-(Data_word) = TMIN; r turn on time ., 
pollpwmO; 
·(Data_word) :: VORTL; r switching frequency scale value *' 
pollpwmO: 
·(Data_word) = TSTART: ,. start of processing cycle·' 

· (Status_word):: 129; 

%closefile buffer 
%<LibMdIStartCustomCode(buffer, Mtrailer"» 

%openfile buffer 
r dissable the PWM board at terminate "I 
' (Status_word):: 0; 
·(Status_word) = 0; 

%closefile buffer 
%<lIbMdITerminateCustomCode(buffer, Mtrailer"» 
%endfunction 

%function Outputs(block, system) Output 

{ 

) 

r %<Type> Block: %<Name> (%<ParamSettings.FunctionName» ., 

"(Status_word):: 129; 
pollpwm(): 
" (Data_word) = (int)%<UbBlocklnputSignal(O, -, -, 0»; 
pollpwmO: 
·(Data_word):: (int)%<LibBlocklnputSignal(O, MM, "",1»; 

if ((int)%<CtrlMode> =; 1)" skip three values to write frequency *' 
(pollpwm(); 
*(Status_word) = 897;} 

pollpwmO; 
*(Data_word) = (int)%<LibBlocklnputSignal(O, "", "", 2»: 

'%endfunction %% Outputs 

E.3.4 ASYNCHRONOUS INTERRUPT SUPPORT 

mod on 17/04'2000 

%% 

Appendix E: .9 



APPENDIX E: Listing of Code for the RADE ADC64 

%% 
%% Abstract: 
0/0% TLC file for the ADC64 Asynchronous Interrupt Block. 
%% This file is used to generate code to support asynchronous 
%% interrupts on the ADC64. 
%% Author: 
%% Magash Pillay 
%% Date: 
%% 2000/08/11 
%% 

%implements "iiinterrupl_adc" "C" 

0/00/0 Function: Blockl nstanceSetup = == = == = == === == = === ==== ====== === = ==== === ==== === = 
%% Abstract: 
%% Find all the function-call subsystems that are attached to the 
%% interrupt block and hook-in the necessary code for each routine. 
%% This function 
%% 
%% 0 Connect each ISR in the model's start function. 
%% 
%% 0 Enable each ISR at the bottom of the model's start function . 
%% 
%% 0 Disable each ISR in the model's terminate function. 
%% 
%% 0 Save floating point context in the ISR's critical code section 

%assign ::TmrOfreq = libBlockParameter(P1,~~.~~.0) 

%assign ::Tmr1freq = libBlockParameter(P2."" ...... 0) 

%function BlocklnstanceSetup(block, system) void 
%% Only allow 1 interrupt block 

%If EXISTS("Il lnterruptBlockSeen") 
%assign errTxt = "Only 1 Interrupt block is allowed in ..... 

"model: %<CompiledModeI.Name>." 
%exit RlW Fatal : %<errTxt> 

%else 
%assign ::lIlnlerruptBlockSeen = 1 

%endif 

%openfile buffer 
#ifdef IO_ENABLE 

printf("Connecting Interrupts\n"); 
#endif 

%openfile buffer 
rOefine a interrupt_block -I 

#define INTERRUPT_BLOCK 
#include "adcmainJh" 

%closefile buffer 
% <libHeaderFileCustomCode(buffer ,"trailer"» 

%foreach call1dx = NumSFcnSysOutputCalls 

%% Get downstream block if there is one 
%if "%<SFcnSystemOutputCall[callldx].BlockToCall>" != "unconnected" 
%assign ssSysldx = SFcnSystemOutputCall[callldx}.BlockToCall[O] 
%assign ssBlkldx = SFcnSystemOutputCall[cal11dx}.BlockToCall(1) 
%assign ssBlock ::: CompiledModeI.System{ssSysldx).Block[ssBlkldx] 
%% Check to see if this is a direct connection 
%if (ssBlock.Conlrol1nputPortWidth != 1) 
%assign errTxt = "The IIlnterrupl block '%<block.Name>' " ... 

"outputs must be directly connected to one function-call subsystem. " .. . 
"The destination function-call subsystem block '%<ssBlock.Name>'" .. . 

Appendix E: .10 



APPENDIX E: Listing of Code for the RADE ADC64 

"has other inputs." 
%exit RlW Fatal: %<errTxt> 
%endif 
%% Assume it is a subsystem block(SimuHnk checked for a f-c subsys already). 
%assign isrSystem = System(ssBlock.ParamSettings.Systemldx) 

%<UbForceOutputUpdateFcn(isrSystem» 
%% NO need to redefine since function calls are from dummy interrupt functions 
%openfile buffer 
void c_intO%<callldx+1>(void); 
%closefile buffer 
%<UbCacheDefine(buffer» 

%openfile buffer 
J%notes on P4 
range 1 to 3 ,coresspondes to internJpt number. 
%1 
%if call1dx == 0 %% this is an end of conversion, analog interrupt 

%%enable one interrupt mask 
%openfile buffer1 
11 enable all ADC's interrupt 

write_analog_interrupt_mask(BASEBOARO,Ox1); 
%closefile buffer1 
%<UbMdIStartCustomCode(buffer1, "trailer"» 

%endif 
%if call1dx ==( %<UbBlockParameterValue(P4,0»-1) 
%% checking which Int is base rate generator 

%%call system function without using TI interrupt convention 
%%ie wrap it in Base_Rate Function 
%if call1dx==1 
%openfile temp 
#define TMRO_BASE_RATE 
%closefile temp 
%<UbCacheDefine(temp» 
%endif 
void Bas8_Rate_FunctionO 
( 

%else 
r 

%<isrSystem.OutputUpdateFcn>(rtS. l ,O): 

rSR for: %<ssBlock.Name> 

"' %if call1dx < 9 
void c_intO%<callldx+l >0 
( 
r call subsystem block 
Using T[D =0 since, single tasking simulation 

"' % <isrSystem. OutputUpdateF cn>(rtS, 1 ,0): 
} 

%else 
void cjnt%<callldx+1 >0 
( 
r call subsystem block 
Using TID =0 since, single tasking simulation 

"' %<isrSystem.OutputUpdateFcn>(rtS,1,0): 
} 

%endif 
%endif 
%closefile buffer 
% <UbSourceFileCustomCode( buffer, "trailer"» 

%openfile buffer 

Appendix E: .11 



APPENDIX E: Listing of Code for the RADE ADC64 

%% controlPortldx will never get used when only one f·c control input 
r use base tid inside an ISR for any blocks accessing task time·' 
#define %<tTlD> 0 

%closefile buffer 
%<LibSyslemOutputCustomCode(isrSystem, buffer, "declaration"» 
%openfile buffer 
#undef %<tTlD> 
%closefile buffer 
%<LibSystemOulputCustomCode(isrSystem, buffer, ~trailer"» 

%% Connect the ISR in the model's slart function 

%openfile buffer 
r connect ISR system: %<ssBlock.Name:> . / 
/lint registration 
%if call1dx ==( %<LlbBlockParameterValue(P4,O):>·1) 

( 
r assign rt_onestep from real time kennel to interrupt ./ 

instaIUnt_vector(rtOneStep,(int)%<libBlockParameterValue(P3,call1dx»); 
enable _interrupt( (int)% <LlbBlockParameterValue(P3 ,callldx):>·1 ); 
#ifdef IQ_ENABLE 

printf('Vectior installed for INT #%d, Base rate interrupt.\n" 
,(inl)% <libBlockPa rameter(P3,"" , "M ,ca III dx»): 

#endif 
} 

%else 
( 
%If call1dx < 9 

instalUnt_ vector( c _ intO%<caUldx+ 1 :> ,(int)%<LlbBlackParameterValue( P3 ,calli dx):> ); 
%else 

instalUnt_ vector( c _int%<call Idx+ 1 > ,(int)%<LibBlockParameterV alue( P3 ,callldx):> ); 
%endif 

enable _ interrupt( (int)% <libBlockPara meterVa lue(P3 ,ca IIldx):>·1 ); 
#ifdef IQ_ENABLE 

printf("Vectiar installed far INT #%d.\nM,(int)%<LibBlockParameter(P3,H","",callldx»); 
#endif 

} 

%endif 

%closefile buffer 
%<LibMdISlartCustomCode(buffer, "trailer"» 

%openfiJe buffer 
r discannect ISR system: %<ssBJack.Name> ., 
if (%<LibBlockParameter(P3,"" ,MH,callldx):>==9) 
( r only disconnect timerO if it was set up here ./ 

} 

disable _interrupt((int)% <libBlockParameter(P3, - :" ,callldx» -1 ); 
deinstalUnt_ vector((int)% <LibBlockPa rameter(P3, MM , MM ,callldx» ): 
#ifdef 10_ENABLE 
printf(MI NT #%d disabled. \n" ,(inl)% < Lib BJackParameter(P3, "" ,"" ,callldx» ): 
#endif 

else 
( 
disable _interrupt{(int)%<Li bBlockParameter( P3. "",MM ,cal Ildx»-1 ); 
deinstalUnt_ veclor((int)% < LibBlockPa rameter(P3, MM , MM ,calli dx» ): 
#itdef 10_ENABLE 
printfCl NT #%d disabled. \n" ,(inl)%< LibBlockParameter(P3, -, - ,callldx» ): 
#endif 
} 

%c1osefiJe buffer 
% <LibMdIT erminaleCustomCode(buffer, "trailer"):> 
%else %% The element is not connected to anything 

Appendix E: .1 2 



APPENDIX E: Listing of Code for the RADE ADC64 

%assign wrnTxt = ~No code will be generated for ISR %<callldx> "\ 
"since it is not connected 10 anything." 
%warning %<wrnTxt> 
%endif 
%endforeach 

%% Setup timers 
%openfile buffer 

Interrupl_Block:::1 ; 
#ifdef TMRO_BASE_RATE 
rsimulation step size take precdence over TMRO freq when set as base rate -/ 
timer(6. (int)(1.0 / ssGetStepSize(rtS»): 
#else 
r Only change Timer 0 settings if it isn't used for base sampling rate -, 
timer(6, (int)%<TmrOfreq»; 

#endif 
timer(7. (int)'%<Tmr1freq»; 

#ifdef 10_ENABLE 
printWlnterrupts Connected ,Waiting for start Signal. ... \n"); 
#endif 
%closefile buffer 
%<LibMdIStartCustomCode(buffer, "header"):> 

%endfunction 

%% (EOF] iiinterrupt.tlc 

E.3.5 EXTERNAL TIMERS 

%% 
%% 
%% Abstract: 
%% TLC file for the external timers. Generales code used 10 
%% control external timers. 
%% Author: 
%% Magash Pillay 
%% Date: 
%% 2000/08/14 
%% 

%implements "exUimers_adc~ ~Cft 

%include ~iilib_adc64.tlc" 

%assign ::lmrO:: UbBlockParameter(P1,"","~,O) 
%assign ::tmr1 ::: UbBlockParameter(P2,"","",O) 
%assign ::tmr2 = Ub810ckParameter(P3,"","",0) 
%assign ::tmr3::: UbBlockParameter{P4,"","" ,O) 
%assign ::tmr4 = UbBlockParameter{P5."","H,0) 

%function 810cklnstanceSetup(block, system) void 
%% Only allow 1 pwm block 
%if EXISTSnITIMERS~) 

%assign errTxt = "Only 1 Timer block is allowed in .. ... 
"model: %<CompiledModel.Name>." 

%exit RTW Fatal: %<errTxt> 
%else 

%assign ::IITIMERS = 1 
%endif 

%openfile buffer 
#ifdef 10_ENABLE 
printf("lnilializing PWM Block .... \n"); 
#endif 

Appendix E: .13 



APPENDIX E: Listing of Code for the RADE ADC64 

rsetup external timers */ 
timer(O,(int)%<tmrO»; 
limer(1 ,(int)%<tmr1 »; 
timer(2,(int)%<tmr2> ); 
timer(3,(int)%<tmr3»; 
timer(4,(int)%<tmr4»; 

%closefile buffer 
%<LibMdIStartCustomCode(buffer, Mtrailer"» 

%endfunction 

Appendix E: .14 



APPENDIX F: Description of CD 

APPENDIX F: DESCRIPTION OF CD 

Category Sub Category Comments File Location 

cd·rom drive -e: 
Documents 

ITI MS320C3x User's Guide e:\documenls\lexas 
Software and Hardware 

11 Manuals e:\documents\ii 
lWindows Sockets API 

WinSock Idocuments e:\documents\winsock 
Mathworks Mathworks manuals e:\mallabr11Il1elp\pdf doe 

RADE PC32 
. 

Server Server executable E:\matJabr11 \rtw\c\ii\bin\server PC3 
software System files E:\matlabr11\rtw\c\ii\1i foc 
device drives Block TLC files E:\matlabr11\rnv\c\devices 

RADEADC64 E:\matlabr11 \rnv\c\ii\bin\server _ADC 
Server Server executable 64 
software System files E:\matlabr11\rtw\c\ii\adc64\src 
device drives Block TLC files E:\matlabr11\rtw\c\ii\adc64\devices 

Server Projects 
PC32 Visual C proiect workspace E:\visual c\server pc32 
~DC64 Visual C project workspace E:\visual c\server adc64 

Mathworks Patch 
Newer binaries supplied b 

E:\Mathworks patch 

Mathworks 10 fix external 
mode bugs 

Innovative Integration . 
Library files used for Ihe E:\pc32cc 

PC32 library arQet system 

Library files used for Ihe 
E:\adc64cc 

DC64 library tarqet system 
TI compilers 

Older compiler used with E:\f1tc 
Version 4.7 CSDE 

Latest compiler used fo E:\c3xtools 
Version 5.11 RADE system 

Ap~ndi)( F: .1 



AHMEDI 

AMCCI 

BLERKI 

BOOCHI 

BURRBROWNI 

BURRBROWN2 

CHUNGI 

DANIEL! 

DSPACEI 

References 

REFERENCES 

Ifran Ahmed, " Implementation of PlO and deadbeat controllers with the 

TMS320 fami ly", Digital Signal Processing Applications with the TMS320 

family (Theory, Algorithms, and lmplementations), VOL 2, Texas 

Instruments, 1990 

"Bus Mastering with the S5933 PCl Matchmaker", Applied Micro Circuits 

Corporation, February 1996 

Bruce van Blerk, "Development of a Scaled Down Paper Machine to 

Demonstrate the Principles of Tension Control" MSc 11,esis. Dept. of 

Electrical Engineering, University of Natal, Durban 1998 

Grady Booch "Object-Oriented Analysis and Design: with applications", 

Second Edition, Addison-Wesley Publishing Company, 1994 

"ADS780S 16-bit IOus sampling CMOS analogue-ta-digital converter", 

Burr-Brown data sheet 

"DAC7 12 16-bit digital-to-analog converter with 16-bit bus interface", Burr­

Brown data sheet 

Kai M. Chung, Astro \Vu, Tresna Hidajat, "Using the TMS320C24X DSP 

controller for optimal digital control", Application report:SPRA295, Texas 

Instruments, January 1998 

Daniel J. Wisehart, "Debugging Embedded Systems", C/C++ User Journal , 

June 1999 

Herbert Schutte, "TDE: An integrated toolset for real-time control 

applicat ions", dSPACE GmbH, Proceedings of the MOVIC 1998, August 

1998 

Rererenee: I 



DSPACE2 

DSPACE3 

DSPACE4 

DSPACE5 

FENGI 

GANl 

GANSSLEl 

GNU 1 

GORDONl 

GREGAl 

References 

Susanne Kohl, Peter Bechberger, "In-flight simulators and Stationary flight 

simulator with dSPACE development tools", dSPACE GmbH, Proceedings 

of the EADC, France, June 1999 

Rainer Otterbach, Thomas Pohlmann, Andreas Rukgauer, Jorg Vater, 

"OS1103 PPC controller board: Rapid prototyping with combined RSIC and 

OSP power for motion control", dSPACE GmbH, Proceedings of PCIM 

1998, Germany, May 1998 

Jorg Vater, "The need for and the principle of high-resolution incremental 

encoder interfaces in rapid control prototyping" dSPACE GmbH, dSPACE 

GmbH, Proceedings ofPClM 1997, Germany, June 1997 

Rainer Onerbach, Robert Leinfellner, "Real-Time Simulation: Requirments 

and the State of Technology", Translation from "Vituelles Ausprobieren" 

Elektronik. August 1999 

Henry Feng, Martin Torngren, Brengt Eriksson, "Experiences Using 

dSPACE Rapid Prototyping Tools For Real-Time Contro l Applications", 

Proceedings of the OSP Scandinavia Technical Conference, Sweden, June 

1997 

Woon-Seng Gan, Yong-Kim Chong, Wilson Gong, Wei-Tong Tan, "Rapid 

prototyping system for teaching real-time digital signal processing", IEEE 

transactions on education, VOL 43, NO I, February 2000 

Jack G. Ganssle, "De buggers for Modem Embedded Systems", Embedded 

Systems Programming, pg 58-65, November 1998 

Richard M. Stallman, Roland McGrath .. GNU Make. A Program for 

Directing Recompilation", Free Software Foundation, May 1998 

V. Scott Gordon, James M. Bieman, "Rapid Prototyping: Lessons Learned", 

IEEE Software VOL 12, NO 1, January 1995 

Wojciech Grega. Krzysztof Kolek, Andrzej Tumau, " Rapid prototyping 

Reference: 2 



References 

environment for real-time control education", lEEE 1999, 0-7695-0134-6/99 

Rererenee: 3 



HAM ANN 1 

HANNlNG I 

HANNING2 

HUGHI 

INNOVATIVE 1 

INNOV ATIVE2 

INNOV ATIVE3 

INNOV ATIVE4 

JAWITZI 

KOZICKI 

MATHWORKSI 

MATHWORKS2 

MATHWORKS3 

MATHWORKS4 

References 

Hamann Jerry C, Muknahallipatna Suresh, "Distributed instrumentation and 

computat ion: a look at what's out on the end of the Internet", ASEE Annual 

Conference Proceedings, Washington, DC, USA, 1998 

"Pulse width modulator. PBM 1187", Hanning Elektro-Werke GmbH, data 

sheet, Rev 2.0 

" Incremental Rotary Encoder Interface, TC300SH", Hanning Elektro-Werke 

GmbH, data sheet 

Hugh Jack, M ichael Karies\,:y, "A virtual manufacturing Laboratory", .. 

ASEE Annual Conference Proceedings, Washington, DC, USA, 1998 

"PC32 Hardware Manual", Innovat ive Integration, 1999 

" PC32 Developer's Software Manual", Innovative Integration, 1999 

"ADC64 Hardware Manual", Innovative Integration, 1999 

"ADC64 Deve loper's Software Manual", Innovative Integrat ion 1999 

Jeff Jawitz, " It takes more than just lecturing: Developing engineering 

educat ion in South Africa", 9111 Annual South African Universities Power 

Engineering Conference (SAUPEC), University of Natal, January 2000 

Richard J. Kozick, Curtis C. Crane, "An integrated environment for the 

mode ll ing, simulation, digital signal processing and contro''', IEEE 

transactions on education, VOL. 39, NO 2, May 1996 

"Using Matlab, Version 5.3", The Mathworks Inc, January 1999 

"Using Simuli nk, Vers ion 3", The Mathworks lnc, January 1999 

"Simulink, Writing S-Function, Ve rsion 3", The Mathworks Inc, October 

1998 

"Real-Time Workshop, Use r's Guide, Vers ion 3", The Mathworks Inc, 

January 1999 

Reference: 4 



MATHWORKS5 

MATHWORKS6 

MATHWORKS7 

MATHWORKS8 

MOODLEYI 

MSDNI 

MSDN2 

MSDN3 

MSDN4 

OGATAI 

OGATA2 

PAll 

POUSI 

References 

"Target Language Compiler Reference Guide, Version 1.2", The Mathworks 

Inc, January 1999 

"Real·Time Workshop, User's Guide, Version 4", The Mathworks Inc, 

September 2000. 

"Control System TooJbox User's Guide, Version 4.2" , The Mathworks lnc, 

January 1999 

"Non·Linear Design Control Blockset, User's Guide. Version 5", The 

Mathworks Inc, April 1997 

Lynden Moode\y. "Position Controller for a DC Drive", B.Sc. Eng Thesis, 

Dept. of Electrical Engineering, University of Natal, Durban 1999 

"CHA TIER and CHA TSRVR sample programs", MSDN Microsoft 1999 

"Windows Sockets for Ncnvork Programming: Overview", MSDN 

Microsoft 1999 

"Windows Sockets: Ports and Socket Addresses", MSDN Microsoft 1999 

"IPC and Windows 95", MSDN Microsoft 1999 

Katsuhiko Ogata. "Modem Control Engineering, Second Edition", Prentice· 
Hall International, Inc, 1990 

Katsuhiko Ogata, "Discrete-Time Control Sytems", Prentice-Hall 
International, Inc, 1987 

Pai Devdas, Kelkar Ajit, Layton Richard, Schulz Mark, "Vertical integration 

of the undergraduate learning experience" ", ASEE Annual Conference 

Proceedings, Washington. DC, USA, 1998 

C. Pous, A. Oiler, J. Vehi, J.L. de la Rosa, " Using Matlab Real-Time 

Workshop in teach ing control design techniques", IEEE 1996, 0-81 86-7649-

3/96 

Rererence: 5 



RElDl 

SADASNAl 

SQUIRES 1 

STURGEON 1 

SLNINSKlI 

STYLOl 

TEXAS 1 

TEXAS2 

TQI 

TQ2 

References 

Reid, Richard J, " Virtual laboratory for the introductory engineering 

course", ASEE Annual Conference Proceedings, Washington, DC, USA, 

1998 

Indu Sadassiva, Frank Flinders, Wardina Oghanna, .. A graphical based 

automat ic real~time code generator for power electronic control 

applicat ions", Proceedings of the ISlE 1997, Guimaraes Portugal, 1997 

David Squires, Jenny Preece, " Pred icting quality in educatiofla l software : 

Eva luating for learning, usability and synergy between them", In teracting 

with Computers 11, Elsevier, 1999 

Shaun Sturgeon, "DSP based Field Oriented Control of an Induction 

Machine", B.Sc. Eng, Dept. of Electrical Engineering, University of Natal, 

Durban 1998 

Charles Sliv insk i, Jack Borninski, "Control Systems Compensation and 

Implementations with the TMS32010", Digital Signal Processing 

Application with theTMS320 Family, VOL 1, Texas Instruments 1989 

Adam W. Stylo, " A low cost, high performance PC based integrated real~ 

time motion control development system", M.SC. Thesis, Dept. of Electrica l 

Engineering, University of Natal , Durban 2001 

"TMS320C3X User's Guide", SPRU031E, Texas Inst ruments, July 1997 

"TMS320C33 Product Information", Texas Instruments, January 2000 

Product information from TQ Education and Training LTD web site 

www.tg.com 

Peter Wellstead, "Contro l Systems Engineering: A core sk ill for Engineers in 

a Changing World", TQ Education and Training LTD 

Reference: 6 



WALKER I 

WASI-lBURNI 

WINCONI 

WINSOCKI 

WINSOCK2 

WOEHRI 

WORTHMANN I 

References 

Myles Walker, .. Test Bed System to Investigate the Energy Efficiency of 

Variable Speed Drives Systems Under Variable Load Conditions", M.Sc. 

Thesis in preparation, Dept. of Electrical Engineering, University of Natal, 

Durban 2000 

K. Washburn , J.T. Evans "TCPflP Running a Successful Network", 

Addison-Wesley, 1993 

"WinCon 3.0 Description " Quanser Consulting Inc, 

www.wincon.guaser.comldescriotion.html 

"Windows Sockets: An Open Interface for Nehvork Programming under 

Microsoft Windows", Version 1.1 , January 1993 (W\vw.stardust.com) 

"Windows Sockets 2: Application Programming Interface", Revision 2.10, 

January 1996. 

Woehr Jack J, "A Conversat ion with Glenn Reeves: Really remote 

debugging for real-time systems", Or Dobb's Journal, November 1999 

Cedric Worthmann, "Feasibil ity Study of a Neural Network Current 

Controller fo r a Boost Rectifi er", M.Sc. Thesis in preparation, Dept. of 

Electrical Engineering, University of Natal, Durban 2000 

Rc:rc:rc:nce: 7 


