University Of Natal

A Network based Rapid Prototyping Systeﬁ1 for
Applications in Research and Engineering

Education

By

Magash Pillay

Submitted n partial fulfilment of the academic requirements for the degree of Master of Science in

Engineering, in the Depariment of Electrical Engineering, University of Natal, Durban, South Africa

February 2001

I hereby declare that all the material incorporated into this thesis is my own original and unaided work
except where specific reference is made by name or in the form of a numbered reference. The work

contained herein has not been submitied for a degree at any other University.

Signed /W(Date: 9—77 02’/2002-'
[4
M. Pmayy

ABSTRACT

Engineering educators the world over are being faced with the dilemma of combining traditional
mathematically intensive courses, like Control Systems and Robotics with advances in computational
hardware and software. This is because it is impractical to inciude both software engineering issues as

well as conventional course content.

A solution to the problem lies in Rapid Prototyping technology to develop and design software, for
application on PC’s and embedded systems. Rapid Prototyping, based on automatic code generation,
allows users 10 develop advanced software on high level graphical platforms like Simulink® and
LabView®, while “hiding” the underlying layers of complex code. This approach allows‘lhe advanced
hardware, traditionally reserved for software engineers, to be accessed by a much wider audience and

is an ideal educational tool.

This thesis presents the complete development of the Rapid Application Development Environment
(RADE). The RADE system customises the Mathworks Real Time Workshop (RTW) revision 11 for
application on both standalone and networked DSP cards. The functionality of the RTW is
incorporated into the RADE system. This affords the user seamless code generation, downloading, on-
line parameter tuning and on-line data visualisation with storage capability. An added advantage of the
RADE system is its easy portability to multiple target platforms, which is demonstrated by its

implementation on two different DSP cards.

Finally the functionality of the RADE system is demonstrated as an educational tool, with the

demonstration of a DC motor speed and position controller.

(i)

Dedication

With deep gratitude and affection to my uncle Authemullam Govender and my anut Visalachee

Kuppasamy for their support and guidance.

(iti)

ACKNOWLEGMENTS

I will like to express my greatest thanks to my supervisor Mr Gregory Diana. Who has endeavoured
and succeed in establishing a stimulating and challenging environment at the Motion Control Group in
the Department of Electrical Engineering at the University of Natal. His guidance and encouragement

throughout this project has been sincerely appreciated.

The following people have also supported me during the course of this work

My family and friends for their understanding and support;
My colleagues Adam Stylo, Myles Walker and Cedric Worthmann for providing a
friendly working environment. In addition Adam Srtylo requires special mention for Jaying the

groundwork for this project.

The academic and technical staft of the Electrical Department, who are always willing to

assist students,.

(iv)

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTIONot s s e n s e 1-1
P 3 £ Y= o Y P SO PPUUPTUU 1-1
1.2. An Overview 0f WoOrk Presented ... o icicsiisciiniincs s ssis s asssmssssas s e 1-1
1.3, T eSS SEUCLUNE ciirirreiiiiimrreerirsriireranairsernrrret s rrrtattsrerirtaraassaaen £ rbasben o) bamas hiem s rabam sabssassaereseaannseanannns 1-3
1.4. Publications and Contributions ..o ccrr s tee s s cae s aan s aa e anes 1-3
CHAPTER TWO: LITERATURE SURVEY ... rvrin e D e e 21
P28 TR0 Y o 1o 01 T £ 15 1 OO OO PO 2-1
2.2. Real Time Rapid PrototyPing . e niccsnnnee s e sieesss o sesnsns 2-1
2.2.1 The Conventional Real-Time DESIZN ...cccvoiiiieriiiiii it 2-2
222 The Rapid Prototyping APPrOaChottt 2-3
2.2.3 The Role of Rapid Prototyping in EQUCAEION ..uviiiiiiici e st e e 2-3
224 | TS 531 -3 1 - L P 2-5
228 The Mathworks Rapid Prototyping Framework..........coccov i e 2-6
2.3. Third Party Tools Based On The Mathworks RT VW .. .o v irrr e rrrsan e vrrreneesennnns 2-7
23.1 BSPACE ..o e e e e et e 2-7
2.3.2 Use of dSPACE in Engineering EdUCAtIONc.cooiiiiviiiiieiice et 2-8
233 Complete EXperimental SOIULIONSccoiiiviiimir et ce et s st e s ctn e a e 2-10
2.4. Academic Developments with RTW ... e s 2-11
2.4.1 Control System Development ENVIFONMENL ..o e e 2-11
2.4.2 Work at Other Acadermic INSHIULIONS ...oooeiiiiiii v et 2-13
2.5. Context of Work Presented in this Thesis. ..o iier v esss e st essian 2-15
2.5.1 Categories Of RTW Targets.....coo it et e e e 2-16
252 SUMMATY Of Project GOAlS. ...ttt et e e e e ar e 2-17
2.6, COMCIUSION 1ttt vt e b Er O R e b e e ae e ae €2 b st peRne a1 bEe s ARER £ Ab £ 2 bR S 2ambe abaanbbeannsnnas 2-18
CHAPTER THREE: OVERVIEW OF SIMULINK AND THE RTW ..coviciiiiirirnrerrrereier e aenes 31
ST TR 0410 oo T 101 4 o (T O OO OOV VPR 3-1

)

TABLE OF CONTENTS

3.2. Products Available From The IV at iy orKS. o oo iiiiiremaraniesnsisnsscnssasssssssiasnnsssesseesssmmnessosssssns 3-1

3.3, A Overview Of Simulink
3.3.1 An Example with SImUulink ... i 33

332 How SImUNK WOrKS ..o e s 3.7
333 AN OVErvieW 0f S-fUDNCUIONS. ...o.oie ittt 3-8
3.4. The Real Time WOrkshop....ococcovieicmiiicrmieeinr s st s s ssaesssessrinsees ras 3-11
3.4.1 An Overview 0f 1the RTW L e 3-12
3.5. Target Language Compiler ... e i s e e s .3-14
351 System Tar@et Files ..ot e 3-16
3.5.2 Block Targel FIlEs ..o vt et e s 3-17
3.6. The Code BUild CyCle.iririiirrrserissinrcrsrtenserrreseses e s s atin e s aaasssseasamnnssersansnsnsesssnnssserseass 3-20
3.6.1 IMEBKE ULIIILES oo iviieiiie ettt ettt ettt e et e et e etn e e e e nreereen 3-20
3.6.2 Systern Template Make File . ..o e 3-21
3.6.3 The Build FIOW DIABIamcoooiiiioiiien it 3-22
3.7. Rapid Prototyping Program Architecturecc.ocoomiiiinciiiiic s innscsnees 3-24
3.7.1 Syst1em DePendent Layer.........oooiiiiiiiiiii e e a s 3-24
3.7.2 System INAependent LAYELc....ooieiiiiie e carte e ees et e s sa e e e erep e eeennes 3-25
3.73 APPIICAtION LaYEI .ottt 3-26
3.8. The Mathworks TCP/IP External Mode........covvimriciinimmiim e ssee s csnessessesssesns 3-26
3.8.1 Message Frames Between Simulink and Target.......cooooeeiiiiieciiiieciie e 3-28
3.8.2 SIMULINK INLEMAIS Lot a e e e e et een e 3-29
383 TArGet INTEIMAIS o eeii it ettt e e ee et r e 3-31
R 1) 1 Ve U T O OO P PRROTOP 3-32
CHAPTER FOUR: DESIGN OF THE RADE FRAMEWORKccuoiiiiiiiirieinieiecaiinasannes 4-1
L R 18 € s T 4 « R O OOt 4-1
4.2. Developing the RADE frameworK e s ssssssnnonn 4-1
42.1 Mathworks TCP/IP External Mode ArchiteCtureocvv it 4-1
422 CSDE External Mode ArchileCIUIecoiiiiriiiiiirei e eiessmn st s seresen e s ee 4-2
423 RADE External Mode ArchiteCturettt 4-3

(v))

TABLE OF CONTENTS

VTN T S0 9 11) (T3 ot B0] =X YOOI 4-5
431 WINAOWS SOCKELS ...otiie ittt et e e et e e e ae ettt e et e e re e ne s e naans 4-5
432 Zuma Toolset for Target DevelOPIMEnToccv i ar e e e 4-6

4.4. Modifications to the Simulink Communication Layer......cccccoincmicrccnimmiionnonmnnnae 4-8
4.4.1 COnNVErSION FUMCHIONSooiiiiiiir et e b s 4-8
442 FUNCLON REGISITATION L.iiviiiiiiriee ittt sttt bttt aa st 4-11

T BTN G U3 N o) 1) N 4o e OO OO OO OO, 4-12
4.5.1 GraphiC USer INTEILACE . ..o iiiieie ettt ettt et e et e 4-14
4.5.2 FH1E TranSEET PrOCESS ..o ciiiite ettt s e e et e e et e s e 4-15

4.6. Target RUD Time IMECTIACE .o uuummrrreeessescrinnr i msnese st e i s meeraiee bbb e seesbdassaba e s s nsabsnas aabaaaben s e asn 4-16
4.6.1 System Dependent Layer. .. .ot 4-17

4.7. RADE CommMUNICAtIONS ..ciiricieiirreceimrrrcieeersrrmrerrrsesreserrameseass s srnress smsan smreesassnnmsressrsensesasamsnnrnns 4-18
4.7.1 Server 10 Target ProtoCol. ... oot e 4-19
4.7.2 MESSBEE POTT ..ttt e e e et e e a2 re et 4-20
473 UPload Data POovie ettt e e et a e e et eeann 4-22

B8, CONCIUSIOM 1o itiieiiiitisiitiriicin et brrescernerresee e o srmree s e rieee e s sresaraas s sne e e e s mmaneseeneanssreesraessrarannannenrness 4-23

CHAPTER FIVE: RADE PC32 IMPLEMENTATION ...ccoviiiiiiiieeeenrcennms s i ssn e 51

0 W T8 s 2o 103 L' 1 O PO RO U SREPTUUTOP 5-1

5.2. Description 0f PC32 Card....iiiiiiiiiciiecoierrresisimie s e seesea s saaesssasssmassanses s saressnsssnsmesssssesnnennees 5-2

5.3 . TIMISB20C32 e ceeeee s srr e e s e e e s s rar e b A e e R e £ AR a6 b anees sbanes s bedbaaba e e abb R e £ A be R ba e b bt 54

5.4. Description Of PWIVL Cardcccvcevvemriesssminssaarsiesssiossteraeeesaessssrrsasssrssasssssansasssersssssessenssanesans 5-6

TSI D T3 T30 0 T R U U UU OO PRI 5-8
5.5.1 A D S ettt e st n e et n e ne et 5-9
552 | N O RPPRTPOT 5-10
553 L 1 O BSOSOV 5-11
5.5.4 Asynchronous INtermupt SUPPOIT ..couii it ra et evaes 5-11

5.6. Customising RADE for the PC32.....c.coireriririen s rrseerssseieassesssnssceeseneaessvessssansnsessssssnsessannes 5-14
5.6.1 External Mode and the Server to Target Protocol.........ccoveviieiiiiverii oo 5-14
5.6.2 System Target File. ... e e 5-17

TABLE OF CONTENTS

563 Template Make Flle. ..o ot 5-19
T R Y 113 LT3 T OO PN 5-20
CHAPTER SIX: RADE ADC64 IMPLEMENTATION. ..o e 6-1
(30 I €T s Yo ETY T o T PO N 6-1
6.2. Description 0f ADCES Card ...c.coecereriiieriininiscsisresss e ssnssarassaesabaasessssnssressaransnsnsssssssersssesasernnssss 6-1
6.3. Device Drivers for the RADE ADCGOG i iiiiiiiriiioremineermannr s cesresa s anssensaesssassensms sasassmsnnsesssonne 6-4

6.3.1 N B T O S USSR 6-5

6.3.2 LD 1 1 - B0 15 T o SRS SRR 6-6

633 DAC’s, PWM and Interrupt BIOcKS ..o 6-7
6.4. Customising RADE framework for the ADC64 Cardccoeeiiveriivcriniinnceenr e 6-8

6.4.1 Extermal mode and Server To Target ProtoCol v it e e 6-8
6.5, COMCIUSTON . oii ittt i sy e e E e bR e e b bR SRS R 4 e b bA £ L e 1bb a6 S b an b bbe drben trbb e peat 6-12
CHAPTER SEVEN: DEMONSTRATION OF THE RADE SYSTEM ... 71
7 TR T8 4T R T OO TP TP 7-1
7.2. A Case Study: Designing a DC Servo Motor Speed controller........coviimmiiniinniiiciiiinnenne. 7-2

7.2.1 MOtOr MIOGET. .. oo ey e e v e an e 7-2

7.2.2 Design of Current PICONTONEr ... sttt e 7-3

7.2.3 Simulation of Current ConTONET.. ... vveiiiieriii vttt 7-7

724 Design and Simulation of Speed PI Controller ..ot 7-10
7.3. Demonstration of the RADE ADC64 Systen......ccovviiiiininiiiniimmicnsiniiiis s sssersessessies e 7-12

7.3.1 Real-Time Prototyping with the RADE ADCO64 ... 7-13

7.3.2 DC Current COMITOIET.....eviiiiirieiie et c et e e s s s re s e e see e e e 7-15

7.3.3 DC Speed COnITOIIET ..ot ettt e e e e s ek s s as ibbaevas s eeeeeneeesnneeeeeas 7-21
7.4. Demonstration of RADE PC32 System ...t sossesssnsssssssisseras 7-26

7.4.] DC Servo Speed COmMITOL .o it et e b eeee e e ae e e e e e et sresaanes 7-26

7.4.2 Position Controller EXPeriment......cccooiieiiiiiiiiiisivic et cir st e e 7-30
ARSI O 1 U] U T Y OO O OO 7-34

(viii)

TABLE OF CONTENTS

CHAPTER EIGHT: CONCLUSION ...ttt et cr e bt ana s s s s e 8-1
2 =3 V=0 L O OO 8-1
8.1.1 Role of the RADE FrameworKccoocooiiiiinnriiiii e 8-1
8.2. Suggestions for Further Work .. sne s s 8-2
APPENDIX A: USER GUIDE ...ttt it e s e e e e reemms e s e asssbasns s s b enssssannnennes 1
A.L. Installation anual for RADE version 1 .. iicrrrcecnier e nesccnsnnenns s sssrssonassas soeens 1
A.1.1 Installation of the RADE Components to Matlab directorycccoo oo 1
A.1.2 Installation of Server APPHCAtION.....cciiviiieriici ettt e e me e 2
A.2. Sine Wave EXAMIPLE ..ot e er s s ba s s sbs s s s ae s s ae s s rnsean s s bt s 3
AL T RADE Pl it et oot h e e b ettt e s 3
AL22 RADE ADCE4 ... oottt ettt h et e e r e e e et et et a sttt n et 6

APPENDIX B: A PROGRAMMER'’S GUIDE TO THE INTERNAL WORKING OF THE RADE

RS S I =1 PO 1
B.1. Modifications to The Mathworks External Mode Implementationccovvecvciimiiniimninninnennnns 1
B.1.1 Default Mathworks Externa) Mode Implementationc......ooeeiiiiiiiiciieceiee e, !
B.1.2 RADE EXternal MOde.ooooiiiiiiiiii e ettt et 3
B.2. Server t0 Target ProtOCO]. oo mscisirrrsaeer sreeaseenssssnsenessrsssesssasassosiasassansssnasannsns 5
APPENDIX C: EVALUATION OF MOTOR PARAMETERS ...t 1
APPENDIX D: LISTING OF CODE FOR THE RADE PC32.....cccimimmiimrnn s 1
D.1. Conversion Functions exXt_cODVert_C3X.C .. reeecesea e essessis e ssasnssrsssssasssnssernes 1
D.2. System Target File .. s siesmis s s bn e s e b n s s b 13
D.3. System Template Make File......comiiiimmimiiiiic e sene e ssssssiessanssns s sssssssseesas 14
D.4. Device DIIVEE FHILS ..oiieeiceceeerereee s erere e cmresernseceesresse e s sarsts trant s e smeess e saes srebessmss s atasbassasasssanranes 18
D41 ADC BIOCKS. .. ueictieeciriii ettt ettt re s et varas b he etk ettt et 18
D42 DAC BIOCK ettt et ettt e e en s 18
D43 PWM BIOCK ..ottt st s ettt e et e s b bt 19

TABLE OF CONTENTS

APPENDIX E: LISTING OF CODE FOR THE RADE ADCGHB4 ..ot sreicneraineeans 1
E.1. System Target File .ot ssc s ssan s e ssnensasasssasesasvonseas 1
E.2. System Template M2aKke File......ccccmrriiiiiiieniirnceiersrern s issn e see s s rnesssn e s s e s esnnesssrse s snes srasees 3
E. 3. Device DIiver FAles. it aesssrcaiaiss e e vesrseessamssssss e sransnnssasnsassrnressasssnesaneeasessssimnres 6
L T BN B LG = 1 o Yot <o RSP TSURPPPR 6
E.3.2 DAC BIOCK ittt et e e et e et e e e e e e e et e et s an e ra e e anes 7
E. 3.3 PWIM BLOCK ..oooeiieeiee e ea et sen s s et bt et st r et a e e an 8
E.3.4 Asynchronous INLEITUDT SUDDOTL..u.uiiiteiorrieveriiitiessete e tee e e e e e oo ee st e e easteea s e eeeennes 9
E.3.5 EXErNal TIMETS..coiiuiiii sttt sttt e et et e e et assee e re e e 13
APPENDIX F: DESCRIPTION OF CD .ottt rtrnis s se s s e s s s s e e en svas s e e ss e e nenan s e 1
L3 = = = e O S 1

(x)

TABLE OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.1:
2.1:
2.2:
2.3:
2.4:
2.5
2.6.
2.7:
2.8:
2.9:
2.10
3.1:
2
3.3:
3.4:
3.5:
3.6:
3.7:
3.8:
3.9:
3.10

3.11:
3.12;
3.13:
3.14:
3.15:
3.16:
3.17:
3.18:
3.19:
3.20:
3.21:
3.22:
3.23:
3.24:
3.25;

Mathworks rapid prototyping process

Conventional real-time design

The rapid prototyping design

Hypersignal environment

Simplified operation of Mathworks RTW

AdSPACE TDE toolset

Rapid prototyping laboratory

Function diagram Quanser system

Functional operation of CSDE

Function diagram of ROGER the robot

: Functional diagram for TMS320C30 EVM RTW target

Product range from The Mathworks

A Simulink simulation

A sample of the common Simulink library blocks

Simulink simulation paramnerers

The scope block output of the step response of the system in Fig. 3.2

An example of a subsystem

An example of a triggered subsystem

General model of a Simulink block [

Flow diagram of Simulink internals

: How Simulink calls into a S-function

The flow diagram of writing and compiling a S-function

API function and their calling sequence

Flow diagram of code generation process

Object-oriented view

Operation of the Target Language Compiler

List of system target files

Flow diagram of the build process

Rapid protoryping program framework

Structure of model code

TCP/IP implementation of external mode

Message frame

Data upload frame

Stmulink internals

Target internals

Message Transactions

3-10
3-12
3-14
3-15
3-16
3-23
3-24
3-26
3-27
3-28
3-28
3-30
3-31
3-32

(xi)

TABLE OF FIGURES

Fig. 4.1: Mathworks TCP/IP external mode

Fig. 4.2: CSDE external mode architecture

4-2

Fig. 4.3: RADE external mode architecture

4-4

Fig. 4.4:Zuma toolset

4-6

Fig. 4.5: Byte format

Fig. 4.6: Server application

Fig. 4.7: Server GUI

Fig. 4.8: Functional representation of the file transfer process

Fig. 4.9: Flow diagram of file transfer process

Fig. 4.10: Flow diagram of RTI entry function

Fig. 4.11: Server lo target communications

Fig. 4.]2: Overview of Communication Channel

Fig. 4.13: Graphical representation of the Message Ports

Fig. 4.14: Packetisation of external mode messages

Fig. 4.15: Graphical representation of the Upload Ports

Fig. 5.1 : Overview of RADE PC32 implementation

4-10
4-13
4-14
4-15
4-16
4-18
4-19
4-20
4-21
4-22
4-23

5-1

Fig. 5.2: Photo of PC32 card

3-2

Fig. 5.3: Functional diagram of the PC32 card

Fig. 5.4: ADC triggering

Fig. 5.5: TMS320C32 block diagramn

Fig. 5.6: Photo of PWM card

Fig. 5.7: The DSP and PWM plug into the target PC

Fig. 5.8:Block diagram Of PWM card

Fig. 5.9: Device driver blocks for PC32

Fig. 5.10: Parameters for interrupt block

Fig. 5.11: Flow diagram for the modified Run-Time interface

Fig. 5.12: Files used for external mode and STP

Fig. 5.13: RTW build option window

Fig. 6.1 Photo of the ADCG64 DSP card

Fig. 6.2 Functional diagram of the ADC64 card

Fig. 6.3: ADC trigger sources for the ADC64 card

Fig. 6.4:Device Drivers for the ADC64 card

Fig. 6.5.ADC trigger source selection

Fig. 6.6: Parameters for external timer Block

Fig. 6.7:Interrupt block parameters

Fig. 6.8: A comparison berween DPRAM and rthe PCI bus

Fig 6.9: Files used for external mode and STP and the RADE ADCG64

(xii)

TABLE OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

7.37:Simulink model

7.38: Subsystem I block

7.39: Current response

7.40:ADC64 Current sampling

7.41: Small signal speed response

7.42: Small signal current response

7.43: Large signal speed response

7.44.; Large signal current response

7.45: Simulink model

7.46:The controllers subsysten

7.47:Regulating position response

7.48:Under damped response

7.49: Over damped response

7-27
7-27
7-28
7-28
7-29
7.29
7-30
7-30
7-31
7-32
733
7-33
7-34

(xiv)

LIST OF ABBREVIATIONS

ADC Analogue to Digital Converter

APl Application Program Interface

ASIC Application Specific Integrated Circuit
BSD Berkeley Software Distnbution

DAC Digital to Analogue Converter

DLL Dynamic Linked Library

DMA Direct Memory Access

DPRAM Dual Port RAM

DSP Digital Signal Processor

FTP File Transfer Protocol

GUI Graphic User Interface

11 Innovative Integration

IPC Inter Process Communications

ISR [nterrupt Service Routine

MFEC Microsoft Foundation Class

RADE Rapid Application Development Environment
RAM Random Access Memory

RPM Revolution per Minute

RTI Run-Time Interface

RTW Real Time Workshop

STP Server to Target Protocol

TCP/AP Transmission Control Protocol/Internet Protocol
TI Texas Instruments

TLC Target Language Compiler

VSD vanable speed dnive

(xv)

Chapter One: Introduction

CHAPTER ONE:
INTRODUCTION

1.1. General

In our modern world the use of real-time systems has become commonplace in our homes, cars and
workplaces. This is due 10 the reducing cost of microprocessors coupled with the phenomenal increase
in processor bandwidth [AHMEDI1]. The use of DSP and real-time control is set to continue and
engineering educators are therefore required to produce graduates that are equipped to tackle the

challenges and technological changes in these fields [TQ2].

Teaching courses that rely on real-time system presents a dilemma to engineering educators, as the
implementational details require students to be relatively well versed in software engineering concepts
(GAN1]. This is further aggravated by the time constraint of presenting both theoretical course content
as well as practical implementanions. A point in case is the teaching of Contro} Systems. This is a
challenging theoretical course that is fundamental to many engineering disciplines but is difficult to
teach from a practical standpoint, as most modem day implementations rely on complex real-time
processing hardware [FENGI1]. A plausible solution to this problem is the use of Real-Time Rapid
Prototyping Tools.

Rapid prototyping tools allow educators to concentrate on core concepts without being hamstrung by
implementational details. Students can use these tools to experimentally validate theoretical assertions
without needing to be experienced in software engineering [DSPACES]. Rapid prototyping allows
students from diverse engineering backgrounds to utilise sophisticated digital hardware to

control/analyse real-time systems.

1.2. An Overview of Work Presented

The work presented in this thesis deals with the design, development and implementation of a rapid

prototyping tool, which is the Rapid Application Development Environment (RADE).

The RADE system consists of three components:
e Simulink ® MATHWORKS?2], which is a widely used graphical simulation package.
e Real Time Workshop (RTW)[MATHWORKXS4], an add-on toolbox from The Mathworks,

which converts Simulink, models into reai-time code

Chapter One: Introduction

o Target hardware platform that executes the real-time code.
The RADE system, shown in Fig. 1.1 integrates the above components, and offers searnless generation
of real-time code from Simulink models. This allows students with ljttle expertises in software
engineering, fo utilise advanced DSP hardware. The advantage of this approach is that it allows
students, to immediately apply concepts taught in courses like contro! systems, communications and

robotics, to real-time systems and see first hand practical verification of theory.

' 5 f L T™s320C32
el = B e
O A et S
i FaUS T S I'-.g: i B e e s
T SimulinleModerT " Conversionto " DSP target

real-time code

hardware

Fig. 1.1: Mathworks rapid prototyping process

The RADE system features the following functionality:

1. Full network and standalone functionality
The system can operate in a standalone mode, whereby Sumulink and the t.argct DSP
hardware reside on one workstation or in a network mode, whereby multiple users can
access a single target DSP hardware. The latter scenario is ideally suited to the
educational environment since numerous students can use one DSP card.

2. Online Visualisation
The RADE system is a world first to provide online data visualization using the
Simulink scope block, for the TMS320C3x DSP. This allows various signals within a
model, to be monitored when it is executing in real -time on the target hardware.

3. Online Parameter Tuning
This feature allows for live changes to parameters within a model, while it is
executing on the target hardware, It is especially useful for varying controller
parameters and observing system responses. Concepts of controller stability and
saturations are easily and quickly demonstrated by varying coniroller parameters.

4. Multiple Target DSP platforms
The RADE system conforms closely to The Mathworks conventions and is therefore
portable to various target platforms. The RADE has been successfully ported to, two
DSP cards; the PC32 and ADC64. These cards use the TMS320C32 DSP and are
manufactured by Innovative Integration.

Chapter One: Introduction

5. In house build PWM VO card
The RADE system was designed to serve a wide spectrum of applications, which also
include Motion Control. Therefore a PWM add-on card was designed, to interface
directly to the target DSP and provide PWM signal for an invener. This reduces the

processing burden on the target processor and allows for more complex real-time

controllers to be implemented.

1.3. Thesis Sructure

Chapter 2 presents a literature survey of the current work in the Rapid Protoryping ficld and
concentrates on educational applications. This chapter concludes with the context and purposc of the
work presented in this thesis.

Chapter 3 presents background information on Simulink and the workings of the RTW.

Chapter 4 covers the system level design of the RADE framework. It highlights the modifications
needed to The Mathworks RTW and details the components of the RADE framework.

Chapter 5 details the implementation of the RADE framework to the PC32 card.

Chapter 6 details the implementation of the RADE framework to the ADC64 card.

Chapter 7 provides a demonstration of the RADE system. An implementation of a DC motor current
and speed 1s presented using the ADC64 and PC32 cards. In addition a DC motor postition controller 1s

implemented on the PC32 system.

Chapter 8 concludes this thesis and provides suggestions for further work.

1.4. Publications and Contributions

During the course of the work presented in this thesis the following publications and contributions

were made:

M. Pillay Greg Diana “A Design Tool To Facilitate a Matlab/Simulink Simulation, to Run in Real
Over a Networked DSP Card”, Proceedings of the 8" Southem African

Universities Power Electronics Conference, Potchefstoom, South Africa

January 1999.

Chapter One: Introduction

Worlds First Implementation of The Mathworks RTW-3 for the TMS320C32 Target

During the development of the RADE system software bugs were found in the Simulink internals and
,with the help of The Mathworks Support Centre, were cortected. The Mathworks support engineers
also stated that this implementation was there first 10 use a non-PC byte compliant target within The

Mathworks TCP/IP External Mode Architecture. Chapter 4 provides more details in this regard.

Chapter Two: Literature Survey

CHAPTER TWO:
LITERATURE SURVEY

2.1. Introduction

The landscape of engineering education is being transformed by the advent of the Information Age.
The availabjlity of high-speed communication networks, powerful computing technology and
advanced sofiware are allowing engineering educators to provide students with a ri(;hcr leamning
experience [TQ2]. Real-Time Rapid Prototyping' is one such technology that is impacting on the
teaching of courses like control engineering, DSP and robotics. Engineering educators at numerous

institutions across the world are starting to use rapid prototyping tools in their research and teaching

syllabuses [KOZICK, STYLO1, GANI].

This chapter describes the use and role of rapid prototyping in the research being conducted by the
University of Natal’s Motion Control Group and other researchers across the world. It presents a
concise overview of The Mathworks rapid prototyping framework and a general review of both
commercial and academic implementations derived from this framework. The main aim of this chapter

is to review the use of The Mathworks rapid prototyping framework from an educational perspective.

Finally the author contextualises the purpose and role of his work and develops project goals for the
development of the RADE system.

2.2. Real Time Rapid Prototyping

In a description of rapid prototyping it is informative to first outline the conventional methodology for

designing real-time systems and then compare it to the rapid prototyping approach. This is presented

in the next two sections.

' Any rcference 1o Rapid Prototyping in this thesis will exclusively deal with Real-Time Rapid Prototyping.

12
'

Chapter Two: Literature Survey

2.21

The Conventional Real-Time Design

Simulation &
Analysis

) / \
Algorithm Development @ Hardware Development

\/

Implementation

Fig. 2.1: Conventional real-time design

The conventional design process of a real-time system is shown in Fig. 2.1. This normally requires

multiple design teams and involves the following four stages:

1.

Sumulation and Analysis

At this stage the system to be designed is evaluated and different control strategies are
simulated. The results are then analysed and a feasible specification is passed on to the
next stage.

Algorithm development®

From the specifications the software team develops an appropriate algorithms, which
vaditionally involve C and some low level programming.

Hardware development
The hardware team is responsible for the designing of the hardware platform on which
the final system will run.

Implementation phase

Once the hardware and software teams have produced their components the
implementation team is responsible for the integration and testing. If the system fails

during the test cycle the design processes is restarted at the stage where the problem is

anticipated to be.

In the conventional approach, different tools and expertise are utilised in the development process,

with control engineers being used in the first stage and hardware and software engineers being

involved in the remaining stages. This approach is very time and labour intensive with each design

* This stage can run in paralle} with hardware development.

2-2

Chapter Two: Literature Survey

cycle being costly. A further disadvantage is that code produced by the software teams tend to be
difficult to reuse and incorporate in new systems. The advantage of the conventional approzach is that

the resulting system can be both cost and performance optimised for volume production.

2272 The Rapid Prototyping Approach

Simulation &
Analysis ~

v

]
v L E Step Transfar Fen
[]

Graphical Algorithm |.*
Development

l M

Implementation:
Seamless code generation

Fig. 2.2 : The rapid prototyping design

In the rapid prototyping approach shown in Fig. 2.2, it is evident, that the hardware stage has been
removed allowing a seamnless step from algorithm to implementation. Further more the algorithm stage
uses a high level graphical language [MATHWORKSG]. The appeal of rapid prototyping over the
conventional approach is that:

e The user need not be skilled in software engineering.

e There is no need for multi-disciplinary design teams.

e There is a dramatic time saving,
The rapid protoryping approach eliminates the hardware development stage by using generic hardware
platforms. These platforms consists of DSP or microprocessors, with /O devices that interface to the

sensors and actuators on the plant being controlled [DSPACES].

From the above discussion it is apparent that rapid prototyping is not a replacement for the
conventional approach but rather an alternative that allows the designer more flexibiliy at the
simulation and analysis stage. Rapid prototyping applications provide the user with more functionality

and less complexity. They do not compete with the conventional approach but are rather an

augmentation to it.

223 The Role of Rapid Prototyping in Education

Rapid prototyping in an educational context is targeted towards courses that rely on real-time systems

Chapter Two: Literature Survey

[SADASIVA1]. These include control systems, robotics and DSP to name a few. There are both
teaching and research applications with research being further split berween users and developers of

rapid prototyping tools®.

The appeal of rapid prototyping is that it now frees the vser from the need to be highly skilled in
software engineering and allows advanced hardware to be used by a “/ay” audience. Researchers
using rapid prototyping are freed to concentrate on their applications rather than being distracted by
the peripheral hardware and coding design issues. Educators are able to present bener courses, as

students are able 1o immediately evaluate theoretical concepts experimentally.

The teaching of control system is a good example of a theoretically intensive course that benefits from
rapid prototyping tools. Lecturers can concentrate on the core concepts that are independent of
implementation issues while at the same time allowing students to apply these concepts to a live real-
time systems. The traditional design of a motor controller, which normally ends with students merely
simulating it, can now be followed up with immediate implementation. Students can also investigate

the practical issues of controller stability and plant saturation, which are difficult to appreciate without

a live system.

Another aspect that needs consideration in the development of rapid prototyping educational tools is
their ability to be networked. Network features provide value adding by maximising utilisation of
cxpensive resources® while also minimising total system costs. Further, with Virtual Laboratories®,
[HAMMANNI1, HUGH!, REIDI1] based on Internet technologies gaining in popularity, it makes a

compelling argument to providing network supported rapid prototyping tools that can be easily

incorporated into such laboratories.

Within the rapid prototyping arena there are various tools and in the next two sections products from

Hyperception and The Mathworks are reviewed, as they are both being used by the Motion Control

Group.

¥ The work in this thesis falls into the rapid prototyping development category.
* These resources include the DSP target hardwarc and ¢xternal plant being controlled

¥ Virnal Laboratories use Intemet technology to allow student 24-hour access to experimental apparatus.

Chapter Two: Literature Survey

2.2.4 Hypersignal

RT Fixed LF‘F (Lite \o“e!smn] 1>F' o PC Upload
Single Channel Display 1

LIT—7—[]

RT FET 1 RT Magnitude 1P to FC Upload 3

:lHl

RT FET 2 BT Magrulude 2F to PC Upl ad 4

T Sweep Generator 1

[Fgr Heap,m anm:m&;%mz SRE

Fig. 2.3: Hypersignal environment

Hyperception Inc. produces the Hypersignal rapid prototyping tool, which uses a graphical
environment for algorithm development as shown in Fig. 2.3. It however lacks a comprehensive
simulation environment but allows algorithms to be tested on the PC platform before being executed
on the intended hardware platform. This tool is targeted mainly for advanced DSP development and is

provided with drivers, which support numerous third party DSP cards [BLERK1].

Hypersignal is being used by the Motion Control Group to implement and evaluate motion control
applications and tools. A Variable Speed Drive (VSD) test bed too! has been developed to evaluate the
performance of VSD’s for different load conditions [WALKERI1]. Worthmann [WORTHMANN1)
evaluated the use of an artificial intelligence algorithm for the control of a boost rectifier. Both these
researchers have stafed that a considerable portion of their time was spent customising® the

Hypersignal environment for their applications. Further, simulations of these systems were also

performed using other packages.

¢ This involves the hand coding of application specific blocks that can then be used with the Hypersignal environment.

2-5

Chapter Two: Literature Survey

The Hypersignal package provides a powerful algorithm development tool that concentrates on
traditional DSP development and is ideally suited to research applications. However it lacks

simulation and analysis components and requires a steep learning curve, making the system unfeasible

as a teaching tool.

225 The Mathworks Rapid Prototyping Framework

i onversion t P target
Simulink Model C nversion to DSP targ
real-time code hardware

?urrp‘i-:_sc«'ﬂrd_md-.':
(Ba) Edr “¥aw Sausior ‘Fome Tt 01000
[CzdalibR oz &

L Truabs F

- I R e SR

RTW External Mode

Fig. 2.4: Simplified operation of Muthworks RTW

The Mathworks provide the Real Time Work (RTW) [MATHWORKA, 6], which is integrated with
the widely used Simulink environment [PAIl, POUSI]; together they form an open architecture rapid
prototyping framework. Fig. 2.4 shows a simplified representation of the operation of the RTW, which
consists of:

e Simulink, which is a graphical simulation and analysis tool.

) Thc_ RTW, which is a toolset and framework responsible for the entire rapid prototyping
process.

s Target hardware 15 the platforrn on which the generated code runs. The open architecture of
the RTW allows users to incorporate third party hardware within the RTW, This process is
referred to as RTW targeting’,

e RTW External Mode is a feature that allows Simulink to connect to the target platform,

whereby target operation may be controlled from within the Simulink environment. This

feature allows for:
= Communication to remote targets.

* Control of start/stop actions on the target.

7 Some of the RTW targets supported by The Mathwarks are: DOS real time; Windows 95/98/NT; VxWorks

2-6

Chapter Two: Literature Survey

= On-line parameter tuning and data logging.
Due to The Mathworks open architecture both academic and many comumercial developers have
extended the RTW to incorporate their custom hardware platforms. From the literature [KOZICK,
STYLOI, GANI, TQ1, DSPACEIL, 2, 5] there are namely two approaches to use the RTW, either to
use commercial products or to develop in house implementation. Both approaches provide viable
educational tools, and the Motion Contro! Group has opted for in house solutions, as development of

rapid prototyping tools is one of its active research objectives.

Sections 2.3 and 2.4 respectively, provide a look at some of the connimercial and academic solutions
available. These sections highlight the operation and general feedback from the use of these tools in

both the research and teaching environments.

2.3. Third Party Tools Based On The Mathworks RTW

This section reviews comumercial solutions based on the RTW framework and concentrates on

companies that are providing viable educational tools.

231 dSPACE

dSPACE GmbH® is German company that produces the Total Development Environment (TDE)
(DSPACEI, 4, 5] rapid prototyping toolset. The TDE js based on the RTW and is targeted at both
commercial and academic environments. It consists of the five components, shown in Fig. 2.5 and is
explained below.
1. The Mathworks RTW has been explained in section 2.2.5
2. Cockpit
This utility replaces Simulink’s external mode control, but affords user similar
functionality to interface to the target hardware for parameter tuning and visualisation.
Using the Cockpit tools users can develop custom GUTs that contain graphs, gauges,
slider gains, knobs, etc.
3. Trace
This utihity is a digital oscilloscope, which allows the user to get time histories of
block outputs.
4. MLIB and MTRACE
Theses are Matlab toolboxes from dSPACE that provide similar features to the
Cockpit and Trace utilities from within the Matlab environment. The purpose of these

toolboxes is to allow the use of Matlab analysis tools for on-line, real-time data

wavw.dspace.com and www.dspace de

2-7

Chapter Two: Literature Survey

analysis in applications like system identification and control optimisation.

Simulink

= simple sucond ordor
iBie - EHR - e v iSymieton s Formag STpels it iy

oleaa tme|cae» =sih

= g S>epa
i

TCP/IP

MLIB &MTRACE
Toolbox
A
2 A 4
COCKPIT TCP/IP
GUI
A
3 \
TRACE
Digital Oscilloscope

PLANT —

Fig. 2.5: dSPACE TDE (oolset

5. Real-Time Hardware
dSPACE provides a range of hardware processor cards that consist of either DSP or
microprocessors processing elements, with combinations also available. These cards
use either the Texas Instruments DSPs or DEC ALPHA microprocessors [DSPACE?2,
3]. In addition VO cards are provided that interface directly to processor cards, and
connect to plant sensors and actuators. There are also Ethernet network cards that

allow dSPACE target platform to operate in network environments.

2.3.2 Use of dSPACE in Engineering Education

dSPACE tools are being actively used at numerous academic institutions’. This section provides a

review of some of this work and gives researcher’s and student’s opinion of these rapid prototyping

tools.

? Bucknelt University ([KOZICK 1], The Mechatronics Laboratory at the Royal Institute of Technology [FENGI], University
of Girona, [POUS1], University of Technology, Nanyang Singapore [GAN!).

2-8

Chapter Two: Literature Survey

Bucknell University ([KOZICK 1] USA has incorporated dSPACE tools into several of their courses,
which included:

¢ Exploring Engineering, a first vear introductory course.

s Confrol systems.

e DSP.
A functional diagram of the rapid processing laboratory is shown in Fig. 2.6. The emphasis at
Bucknell is to allow a large volume of student to experiment with a2 wide variety of real-time

application'®. This is accomplished by using a network environment.

Mathworks Mathworks
Simulink workstation Simulink workstation ® ® ®
TCPAP
dSPACE dSPACE
BOX &1 BOX #2 ® o ®
PLANT PLANT
Liquid Level System DSP Filtering

Fig. 2.6: Rapid prototyping laboratory

The experiences at Bucknell have shown that rapid prototyping has allowed under-graduates to access

advanced real-time applications, which give the students a greater appreciation and understanding of

theoretical courses.

At the Mechatronics Laboratory at the Royal Institute of Technology [FENG1] in Sweden, Prof Jan
Wikander has been using dSPACE tools for a masters level control course. His reasons for using rapid
prototyping tools are that they bridge the gap between the theory of automatic control and
implementation issues; students from a mechanical engineering background, with limited advanced
software experience are able to implement real-time contro! systems. Further more the Simulink
environment lends itself to an easier understanding and visualisation of control system models.
Feedback from students has shown that they have positively received the dSPACE tools and Prof.

Wikander’s controls course.

' These applications include: a liquid level control system; servomechanisms for position of lascr pointing devices, magnetic

levitation of a metal ball; various DSP filiering applications.

2-9

Chapter Two: Literature Survey

The work by Sadasiva etal [SADASIVA] and Virvalo efal [FENGI1], presented below, shows a
different application for dSPACE tools. These researchers use rapid prototyping in their actual

research.

Sadasiva efal [SADASIVAI1] have used dSPACE tools to evaluate various PWM control algorithms'".
dSPACE tools have allowed them to quickly implement different control algorithms and evaluate their
performances, Sadasiva etal have stated that rapid prototyping tools have dramatically reduced their

experimental time from months to a single week.

Prof Virvalo [FENG1] and colleagues from the Institute of Hydraulics and Automation in Tampere,
have used the dSPACE toolset to evaluate several controllers, which included; one degree of freedom
pneumatic servo drive; one degree of freedom hydraulic servo drive; two degree freedom hydraulic
crane. Their feedback shows that the dSPACE toolset provides a powerful platform to implement

complicated controllers with relative easy.

From the above discussion it is evident that dSPACE provides a useful rapid prototyping toolset for
both research and teaching applications. The only notable drawback with this toolset is cost and

learning curve involved with the use of the Cockpit and Trace utilities [STYLOI].

233 Complete Experimental Solutions

Quanser Consulting, Inc'> [WINCONI] and TecQuipment Limited [TQ!] are two of several
companies that provide complete (canned) experimental apparatus used in the teaching of control
systems and aligned fields. Their solutions are based on the RTW framework and are mainly targcted
for teaching applications. Both Quanser and TecQuipment provide similar solutions and it is sufficient

for the purposes of this thesis to discuss only one: Quanser was chosen as they provide more

information on their products at their website.

Linear Experiments Rotary Experiments Specialty Experiments

Linear Position Servo Rotary Position Servo 3 Degree of freedom (DOF) helicopter
Inverted Pendulum (TP) Ball and Beam 2 DOF helicopter

Self Erecting [P Rotary IP Magnetic levitation

Linear Gantry Crane Double [P Planar Rotary IP

Double TP 2 DOF IP Coupled Tanks

"' Theses algorithms include: PI voltage coniroller cascaded with predictive current control; Model based voltage control
cascaded with predictive current ¢ontrol; Pl voltage controller cascaded with Veetor current control.

¥ www.quanscr.com

I} www.1g.com

2-10

Chapter Two: Literature Survey

Table 2-1: List of experimenral apparatus from Quanser

WinCon Server

WinCon Server

1

WinCon Client

WIN 95, Matworks WIN 95, Matworks ® O
Simulink Simuhink
Remote User &1 Remaote User #2
I I TCP/IP
WinCon Client
® ©® o

PC #1

P(; H2

A

!

Quanser Plant
e.g. Linear Inverted
Pendulum

Quanser Plant
e.g. Rotary Inverted
Pendulum

Fig. 2.7: Function diagram Quanser system

Quanser provide a wide range of experiments, which include, linear; rotary; and speciality
experiments: a list is shown in Table 2-1. A functional diagram of the Quanser networked WinCon
systemn is shown in Fig. 2.7, which consists of a WinCon server that is responsible for interfacing to
Simulink and WinCon client, which is the real-time hamess that runs generated model code™. An
interesting feature of the systems from Quanser and TecQuipment is that they both use the soft
real-time functionality of the Windows platform to execute target code (PC /O cards are used to

interface to external plants.). This technique minimises systern cost and complexity by eliminating the

DSP hardware. The drawback of this approach is that:

e The soft real-time makes sampling and latency times unpredictable'’,

¢ Therigid interface requirements limit the use of user designed custom plants.

e The PC platform also diminishes the application of these systems to courses that require the

student to get DSP and embedded systern experience.

2.4. Academic Developments with RTW

241 Contro! System Development Environment

The Control System Development Environment (CSDE) was developed for the Motion control

14 : ' i ,
WinCon can also run as a standalone systern, whereby the WinCon server and client run on one PC.

' While the Window platform does not provide hard real-time functionality, it is being increasingly used in industrial

applications that do not have strict uming specifications.

Chapter Two: Literature Survey

Group by Stylo and represents the group’s first implementation of an in house rapid prototyping tool,
and 1s therefore used as a reference point to the development of the RADE system. This section

reviews the CSDE environment.

Simulink Model

! RT\V External :’\ h 4
1

 Mode : RTW :
: y : / :
‘ Dual Port RAM : Exlemfal de

, mplemen

PLANT <

DSP target hardware

Fig. 2.8: Functional operation of CSDE

The CSDE is a cost effective rapid protofyping environment for both research and teaching
application. The CSDE uses Simulink 2.2 and RTW 2.0'® and provides the following functionality:

e Seamless code generation

e On-line parameter tuning

o External visualization utility

s Support for the Innovative Integration PC32 DSP card

* Asynchronous inferrupt support
A functional representation of the CSDE'” is shown in Fig. 2.8 and from this figure the following
observation can be made:

o The network support of the RTW is replaced by DPRAM communication technique, which

makes CSDE a solely standalone system.

The standalone impediment did not however affect the operation of CSDE and it was well received by

'® CSDE docs not operate with newer versions of the RTW as The Matworks have updated the intemal workings of the RTW.

'” Further details on the iniernals of the CSDE system are presented in chapter 4.

(54
«
(183

Chapter Two: Literature Survey

under-graduate students that used the system in their final year design course. Shawn Sturgeon
[STURGEONI1] implemented Field Oriented Control drive for an induction motor and Lynden
Moodley [MOODLEY1] implemented a DC motor position controller. Both these projects would not
have been feasible if it had not been for rapid prototyping tools. Additional support for rapid
prototyping is that both students found confrol systems a theoretical abstract subject, with very little
appreciation for its practical uses. This however changed during the course of their design projects as
first hand experimentation allowed them to get to gnps with control theory. This new found

understanding culminated in them both wining design awards in their respective years

242 Work at Other Academic Institutions

The Mathworks RTW framework has been well received by other academic institutions, which have
also opted to develop in house RTW targets. This section presents a review of some of these

developments and how they were incorporated into course syllabuses at these institutions.

At the University of Girona, [POUS1] Catalonia Spain, Pous eral implemented a novel approach for a
control system laboratory experiment in which they have used a robot named ROGER. A functional
diagram of ROGER is shown in Fig. 2.9. The image processing system'® is used to provide XY
coordinates of a target object. This information is fed to a Simulink designed controller that provides
the actuators signals for the left and nght motors. The objective of the controller is to track a mowving
target while maintaining a specified distance. The ROGER experiment uses a PC platform' to
implement the real-fime target code and is aimed at allowing students to test different control
algonithms easily without much emphasis placed on the underlying coding. This experiment

incorporates both the simulation and live testing, which is an advantage of the Simulink environment.

' This image processor is done on an independent processor and only the XY coordinates are feed to Simulink.

"7 Pous etal did not specify if a DOS or Windows real-1ime target was used. It is the author's opinion that a DOS target was
used, as it 1s a standard component of thc RTW and provides hard real-lime specifications, with a maximum sarnpling
frequency of 400KHz.

2-13

Chapter Two: Literature Survey

Mathworks
Simulink workstation

TCP/IP
r

A

Simulink
Controller P Image Processing '

On Target Platform

Right Motor

> Left Motor

Fig. 2.9: Funcrion diagrant of ROGER the robot

At the University Mining and Metallurgy, [GREGA1] Krakow Poland, Grega etal have built a RTW
windows target. Their implementation targets Windows 95/98/NT platforms with the emphasis of their
work to evaluate the real-time performance of the windows platform. This in house windows target
achjeved a maximum usable sampling time of 10ms” and a latency of around 80ps. This windows
target is feasible for soft real-time?' experiment but lacks the precision needed for hard real-time
applications. The poor performance of this system is evident by Grega etal recommending the use of a

commercial windows target, RT-CON by InTeCo Ltd, which provides better timing specifications.

At the University of Technology, Nanyang Singapore [GANI1], Gan era/ have implemented a RTW
target for the Texas Instruments TMS320C30 EVM board. The emphasis of this work was to produce
a bare bones low cost DSP rapid prototyping teaching solution. A functional diagram of their solution
is shown in Fig. 2.10. From this figure it is evident that the RTW external mode is not supported, as a
result no on-line parameter tuning or visualisation will be possible. Gan’s e/al rationale for not
supporting external mode is that quick repetitions of the RTW build process can be performed to
change parameters, while an external oscilloscope can be used for visualisation. By using this
technique a dramatic reduction in target complexity is achieved, albeit at the sacrifice of functionality.
This system has been used in a DSP course at Nanyang University and allowed students to implement

theoretically challenging DSP applications in short laboratory sessions. This would not have been

0 Using the Windows WIN32 API a maximum of sampling time of ! ms can be achieved using TIMER objects (ring 3). [tis
also possible to use PC's 8254 timer for higher sampling time but Grega ctal did nol do this.

*' Soft real-time applications don't requice strict specification on: sampling time; interrupt latencics; and internupt pre-

emption and priorities.

Chapter Two: Literature Survey

possible without the use of rapid prototyping tools and student’s feedback has shown a positive

response to this method of teaching.

Simulink Model

] 1
> T .
— s2-7%1s-)

Scape
Step Transfer Fen

Y
RTW

Real-Time i

Code Generation i

v i External Mode !
' NotImplemented !
Executable !

Code 4

. .| TMS320C30 o .
Signal Genecrator > EVM » QOscilloscope

Fig. 2.10: Functional diagran: for TMS320C30 EVM RTW rarget

2.5. Context of Work Presented in this Thesis

From the preceding sections, it is evident that The Mathworks RTW is being actively used in
commercial and academic, educational endeavours. The work undertaken in this thesis follows in this
vain and is targeted at educational applications. This section highlights the purpose and context of this

work and finally ends with a summary of project goals.

Is this work mere duplication?

NO. Rapid prototyping and more specifically the RTW are active research topics, in which the Motion
Control Group has been involved in from 1996 with the development of the CSDE system. Rapid
prototyping is making significant inroads in engineering education and other institutions are also
investigating its uses [GANI], GREGA1, POUSI]. The Motion Contro] Group as well as other
academic institutions are also opting to develop in house rapid prototyping solutions that are based on
the RTW framework. This route allows the researcher the flexibility to develop solutions around their

courses and they are not hamswrung by ngid solutions similar to those produced by Quanser and

TecQuipment.

2-15

Chapter Two: Literature Survey

The RTW workshop as a rapid prototyping framework is allowing interesting developments in the
field of engincering education and therefore warrants the atiention of any academic institution intent
on using modem approaches to teaching. The Motion Control Group is therefore actively contributing
to this process by the development of new RTW targets. Notwithstanding this, the RTW itself is an
ever-changing framework, which allows greater functionality with every version update and the
Motion Conftrol Group is in an ideal position to capitalise on new developments in this field. A point
in case is The Mathworks development of rapid prototyping tools for FPGA’s. These tools are being
incorporated into the RTW framework and in the not too distant future it will help to drastically reduce
development time for FPGA and hybrid FPGA and DSP systems** [GORDONI1].

The CSDE was the Motion Control Group's first attempt to use the RTW framework as a rapid
prototyping tool, but has been outdated with the 1999 release of Simulink 3 and the RTW 3. The
Mathworks constantly upgrades the RTW and there have been significant changes and improvements
from RTW version 2 to 3. As a result tools based on tHe RTW have to be constantly maintained and
upgraded. Consequently a methodology 1s needed to ease version upgrades and this was not provided
with the CSDE system. The design approach adopted for the CSDE system was to provide an
operational system while minimising system complexity. This resulted in Stylo [STYLO1) removing
network support and not adhenng to The Mathworks conventions, as a result CSDE met the
operational criteria but lacked the framework requirements for revision changes and inclusion of other
DSP cards™. In the development of the CSDE system no attempt was made to document the internal
warkings of the RTW in respect of the TCP/IP external mode implementation. While this did not
impede the operation of the CSDE system it did hinder revision changes, as The Mathworks
ymplements revisions using the TCP/TP externa)l mode framework. This thesis aims to redress these

issues and provide a system that adheres closely with Mathworks conventions.

2.5.1 Categories of RTW Targets

For the RADE system to be properly contextaulised it is necessary to group work in this field into
different categories of RTW targets. This allows for an appreciation of which category the RADE

system is fargeting and the intended functionality. Deveclopments with the RTW target can be

categonised into namely types:

1. High-End Systems

** The University of Natal's Radio Access and Transmission Centre is currently involved in CDMA rescarch and uses FPGA
to implement high-spced signal algorithms. It is therefore cnvisaged that the RADE framework will be expanded to
accommodate FPGA targets.

** CSDE only supports the PC32 DSP card

2-16

Chapter Two: Literature Survey

These systems use targets with powerful real-time OS’s and have either a DSP or PC
processor or a combination thereof. These systems are targeted at advanced
commercial and research applications, which include avionics and military uses. In
this category issues of hard real-time specification and code performance are well
analysed. The systems developed at this level have immediate end product uses and
are not solely used for evaluation purposes. Companies producing solutions at this

level include dSPACE [DSPACE2, 5] and Wind River Systems [MATHWORKS4].

1. Medium-End Systems

These sysiems can be broadly categorised as the PC RTW targets segment and are
primarily used in applications with soft real-time specification and for algorithm
evaluation purposes. The advantage of these systems is that they can be easily
networked and can draw on sophisticated PC visuahsation techniques. The systems
from Quanser [WINCONI1) and TecQuipment [TQ!) are good examples of this
category of RTW targets

2. Low-End Systems

At this level barebones systems are incorporated into the RTW., These systems include
medium to low-end DSP cards with no real-time OS and network support. These
systems have adequate bandwidth for evaluation of simple contro! algorithms and are
simple, cost effechve platforms for educational applications. This presents a dilemma
to commercial developers, as there is little financial benefit in producing products in
this category. This has resulted in academics institution filling this gap and producing
in house tools. Example of these develops include the work by Gan [GAN!] and Stylo
[STYLOI].

The RADE system is a hybrid of the latter two categories, as it aims to incorporate the benefits of
both the PC and DSP plaiforms:

2.5.2

The PC will provide network support and visualisation.

The DSP targer will provide real-time code execution.

Summary Of Project Goals

1. Incorporate maximum RTW version 3 functionality into the RADE framework with the

following support:

¢ Seamless code generation and downloading.
* On-line parameter tuning.

* On-line visualisation within Simulink.

¢ Full network support

Chapter Two: Literature Survey

2. Document The Mathworks TCP/IP external mode implementation. This will allow for
proper understanding of the Mathworks frameworks and facilitate easy version
revisions. It will also allow DSP targets to be networked and therefore maximise
utilisation of an expensive resource, which makes the RADE system more atiractive to
teaching applications.

3. The development of the RADE framework must conform to an easily maintainable and
scaleable framework.

4. Apply the RADE framework to the PC32 and ADC64 target DSP cards from Innovative
Integration [INNOVATIVEL, 3].

2.6. Conclusion

This chapter presented an overview of rapid prototyping and its application to the educational
environment. It is clear from the literature that both commercial and academic rapid prototyping tools
are finding increasing use in courses to provide students with more interactive laboratory experiments.
Theoretical concepls, which are traditionally not easy or practical for students to implement in short
laboratory sessions are now, becoming common place in rapid prototyping laboratories. In addition
researchers who are not skilled in software engineering can use rapid prototyping tools to implement

and evaluate complex applications in real-time.

The Mathworks RTW, which was also featured in this chapter, is being used extensively in
engineering education applications. The RTW in conjunction with Simulink provides an effective
teaching and rescarch platform that is both scalable and customisable. The open architecture of the
RTW allows both commercial and academic rapid prototyping tools to be incorporated and is being

well received by students and researchers alike.

While this chapter highlighted uses of the RTW, it did not provide a detailed discussion on the internal
workings of Simulink and the RTW. These details are necessary for the implementation of RTW

targets and are presented in the next chapter.

Chapter Three: Overview of Simulink and the RTW

CHAPTER THREE:
OVERVIEW OF SIMULINK AND THE RTW

3.1. Introduction

This chapter provides an overview of Simulink and the Recal Time Workshop, products (rom The
Mathworks, which form the core elements of the RADE system. A large part of the chapter is devoted
to RTW conventions, as this information will be required in subsequent chapters. The aim of this

chapter is to highlight the important aspects of Simulink and the RTW in the context of work

presented in this thesis.

Matlab and Simulink, which form the core products from The Mathworks, are becoming popular tools
for modelling and simulation in academic environments [HUGH1]. These products are being widely
used in both undergraduate and post-graduate teaching the world over, and are also acquirning a large
rescarch user base due to the advanced add-on toolboxes [KOZICK1, GAN1, MATHWORKI1]. With
the Real Time Workshop add-on extension, Simulink becomes a powerful open architecture, rapid

prototyping environment with numerous applications in teaching and research. The RADE system is

one such application

3.2. Products Available From The Mathworks

Matlab is the core product from The Mathworks, which is tailored for fast and efficient numerical
computation and visualisation. Matlab, which stands for Matrix Laboratory is a high performance
technical compulting and visualisation tool, which provides an easy to use environment were problems
and soluiions can be expressed in mathematical notation. This product is further enhanced by the
availability of numerous advanced application specific toolboxes. The Mathworks also produces a
dynamic graphical simulation environment calied Simulink, which runs above the core Matlab engine.
Simulink is also available with application specific add-on blocksets. Fig. 3.1 shows the entire
Mathworks product range and distinguishes Matlab and Simulink components. Matlab and Simulink
are well-established software packages, which are being used in both the commercial and academic
fields. Its open architecture, which allows for the easy development of customer specific solutions, is a
further reason for its wide scale use. Both these packages have become the standard jnstructional tool

for courses in engineering, mathematics and science [MATHWORKS1].

3-\

Chapter Three: Overview of Simulink and the RTW

MATLAB Extenslons
*MATLAB Compiler
*MATLAB C/C ++

M ath Librarics
*MATLAB Web Server
*"MATLAB Report

M atlab Generutor

The corc processing cngine Toolboxes

«Control System
«Communications
«Database

*Financial
‘Frequency Domain
System Identification
*Fuzzy Logic
*Higher-Order Spectral -
Analysis

*Image Processing
*LMI1Control
*Model Precdictive Conltrol
u-Analysis and
Synthesis

*NAG ® Foundation
*Ncural Newwaork
*Oplimization

v ™~ ~Partial Differential
Simulink Extensions Equation

*Simuliak Accelerator “QFT Control Dcsign
tReal-Time Workshop sRobust Control
*Real-Time Windows -Signal Processing
Target -Spline

Satellow® *Staltistics

Blocksets +Symbolic Math

'D.SP . *System ldentification
*Fixecd-Poinl ‘Weavelet

*Nonlincar Control Design

‘Power Sysicms \\ /

Fig. 3.1: Product range from The Mathworks

The Mathworks provides an extensive set of computing tools with a complete list shown in Fig. 3.1.
As shown in Fig. 3.1 The Mathworks extension products, allow Matlab and Simulink functionality to
be exported {o external programs, by means of the C code or web server applications. There are also
two categories of add-on products, toolboxes for Matlab and Blocksets for Simulink. As shown in Fig.
3.1 there are numerous Blocksets and Toolboxes from The Mathworks spanning a wide variety of
topics and it is beyond the scope of this thesis to discuss all. Therefore material presented herein will

only be that directly relevant to the author’s work, of which Simulink and the RTW form a crucial

part.

3-2

Chapter Three: Overview of Simulink and the RTW

3.3. A Overview Of Simulink

“What is Simulink?

Simulink is a software package for modelling, simulating and analyzing
dynamical systems. Its supports linear and non-linear systems, modelled in
continuous fime, sampled time, or a hybrid of the two. Systems can also be

multirate, i.e. have different parts that are sampled or updated at different
rates.”

Using Simulink Version 3,1999

Simulink forms an integral part of the work presented in this thesis, and it is therefore necessary to
review this package to enable the reader to gain an understanding of it. A short overview follows in
the nexr section, using a simple example to illustrate the operation of Simulink. It then focuses on the

internal operation of this package, which is necessary to gain 2 proper understanding of the real-time

code generation process.

3.31 An Example with Simulink

[~ simple_second_order [Z[olx]

. Eile | Edit " Miew ﬁmulmqn qu*ai Tonls R
e aa s sl =k

Visualisation

:I_,L__l
> — <
1247 1541 Soope
Step TransferFen
A A A
Ready [100% 10 (] wod i i [ddeds . |
Blocks - Solver

Fig. 3.2: A Simunlink simulation

Fig. 3.2 is a Simulink simulation of a simple second order system to a siep response and is vsed to
outline the general aspects of a Stmulink model. In Fig. 3.2 it is shown that a basic model consists of

blocks, an integration solver and a visualisation method. These topics are expanded upon in the

following sections

I Blocks

Blocks are the elementary components of a Simulink model. There are numerous types of
blocks ranging from simple mathematical operations to advanced application specific blocks.

Fig. 3.3, shows some of the more common blocks available in the Simulink lbrary
[MATHWORKS2?].

3-3

Chapter Three: Overview of Simulink and the RTW

L=} Librany: simalink3

wha | [Ny " = n s

cadl |[mod 0L - yin Culp

i EZES .P"" K \

Saurcar Sinka Coalinusus Oherale gty YuncBons Ncoalimear Signals
& Tabinx & Systams

Bioovsats & Simulink Blea Library 3.0
Tooldmces Copyright (5] 19001608 by Tha MatKWasa Ina
[=Ytibrary: simulink2/Sources =4

) Ele"CEda " Yiew" Fdimal TR

i Library: simulink3/5inks HE]H

‘ﬁe Edit iew L Formal 0 1
[}
yporr rer = @ LlLibra : simulinkS/Continuous !Elﬂ
Gananter R L e
,1 1 f Teape XY Graph
_/ ¥ ;M
Slqu’ljhil ey Imtegrates Danvialiva
|J'|J'Lﬂ% fh“ pyern ey e (1)
Drcinta Pulne Pulse Chirp Signat +n”““r may % movt] y= Ombu i:_ =4)
Fengcins Sdnuziity TaFila Yo Wokagaca State-Spaca Tianster Foa Zaic-Pala
O 1—_|.> Dw :;E%z}
Clode Diglui Clodk
Stop Simulation Marneny Transpod Vanadls
|unﬁﬂ.d.mu} | Lo0] } Dalay Trangpon Delay
fram ¥ita Feom
Wokzo pze

Random Unitorm Random BansLimited
Humbar Humbar Whita Helia |

Fig. 3.3: A sample of the common Simulink library blocks
I1. Libraries

Simulink uses libraries to group common blocks and they have the added advantage of
allowing models that contain library blocks, to automatically update when the source blocks

are updated. The common Simulink libraries have already been shown in Fig. 3.3

III. Simularion Parameters

1. The Simulink simulation parameters are set in the parameter window, as shown in

Fig. 3.4. The mmport parameters are:

2. Start and stop time
These parameters are used to set the duration of a simulation.

3. The integration solver
The solver is a fundamental component of Simulink, which is responsible for the
numerical integration of the ordinary differential equations of a model. There are

various types of solvers varying from fixed to variable step algorithms
[MATHWORK?2 ,3].

34

Chapter Three: Overview of Simulink and the RTW

Fig. 3.4: Simulink simulation parameters

1V. Visualisation

Visualisation of simulation data is an important aspect of Simulink with which it allows the
user to graphically interpret simulation data. There are two methods to view simulation data,
firstly to use either a scope or XY graph block and secondly to pass the data to the Matlab
workspace and then use one of the, extensive set of, Matlab' visualisation functions. Fig. 3.5 is

an example of the typical output of a scope block.

-06 | 1 H H
0 s 0 16

me offs

Fig. 3.5: The scope block output of the step response of the system in Fig, 3.2

' Simulink also supponts interfacing to the Graphic User Intecface (GUIY toolbox, which support the use of advanced

animation routines.

Chapter Three: Overview of Simulink and the RTW

V. Subsystems and Triggered Subsystents

Subsystems are used in Simulink to build hierarchical models by grouping parts of a model
into subsystems®. This technique allows models to be constructed in a top-down manner by
placing high-level aspects on the first layer and “*hiding” model details in lower levels. This
makes for easier understanding and navigation of complex Simulink madels. Fig. 3.6 details

the concept of a subsystem of a simple case.

Subsystem

Alnput OwpLn b

Subsystam

U

Sine Wava

Output

Input

Contents of subsystem

Fig. 3.6: An example of a subsystem

= I
TRO p l
TdggerQ
TWR1
ADCO4 Int Suppon
Sudsystamt

Fig. 3.7: An example of a triggered subsystem

An evenl driven subsystem is an extension of this process whereby a subsystem is only
executed when triggered by an external ttgger source. This technique allows a subsystem
within a model to execute in an asynchronous mode, and is vsed in RTW implementations’ to

synchronise different sections of a model to external signals. Fig. 3.7 shows a triggered

* A subsystem is a Virucal Blocks. these blocks play no active role in a simulation, they are mcrely a technique to organise a
model in a graphically efficient mannecr.

* The dSPACE GmbH implementation of the RTW uses this technique [DSPACES)

Chapter Three: Overview of Simulink and the RTW

subsystem.

3.3.2 How Simulink Works

This section briefly outlines the internal operation of Simulink, which will help with the understanding
of how the RTW converts 2 model into real time code. Every block within a model has the standard
characteristic detailed in Fig. 3.8, with the mathematical relationship expressed in equations [3-1],
[3-2] and [3-3]. It is evident from these equations that Simulink uses a general state space model to
"implement dynamical blocks [MATHWORKS?2, 3].

X

. u * states: Y
input vector continuous and discrete ’ output vector

Fig. 3.8: General moadel of a Simulink block [

y= fo(t,x,u)(output) [3-1]

xe = [, 1)(derivative) [32)

x, . = f,(t,x,u)....(update for discrete states)

[3-3]
Whel‘c X = xronn'nuolu + deu‘u'I\':

The simulation process is a multistage process that is detailed in Fig. 3.9:
1. Initialisation
This step consists of:
o Evaluation of block parameters.
e Reducing mode] hierarchy to a single ter.
e Sorting blocks for execution order
o Verification of correct signal flow between blacks.
2. Simulation stage
The simulation stage involves the repetitive process of finding the state derivative of the
model® and then integrating it to find the next state value. This process is further
enhanced by, integration algorithms, which support variable stepping and zero crossing
detection [MATHWORKS2).

3. Termination

At this the stage termination routines for the mode! execute and output data is sent to the

workspace.

¢ A models state and state derivatives can be evaluated because each block within a model conforms to equations [3-13, [3-2],

(3-3].

3-7

Chapter Three: Overview of Simulink and the RTW

(START

~

v

initialisation

h 4

simulation

h 4

terminaiion

C END

~

simulation loop

calculate time for
next sample (only for
variable sample time
blocks)

v

calculate outputs
and
updatc discrete
. states
In major time step

v

integration
minor steps

T

locate zero

crossing

Fig. 3.9: Flow dlagran of Simulink internals

3.3.3 An Overview of S-functions

S-functions are a window into Simulink [MATHWORKS3]; they allow third party developers to
develop custom blocks for Simulink. It can also be said that all library blocks within Simulink
conform to S-function semantics, and therefore understanding S-function allows for a richer
understanding of Simulink. This section details the programmatic aspects of S-functions, which has

important relevance to the RTW, since custom blocks for the RTW are developed using S-functions

and generated code i1s modelled around S-functions; see section 3.7.3.

Mathworks provides two techniques for writing a S-function, either using a Matlab script or a
C-Matlab Executable (C-MEX). Since only C-MEX files can be used with the RTW, they are

discussed exclusively in the following sections.

1. How S-functions work

An S-function model is uniform for all Simulink blocks, the input to output relationship is
shown in Fig. 3.8 and the mathematical mode) is described in equations [3-1], {3-2], [3-3]. All
S-functions export a standard Application Program Interface (API) that Simulink can call
into, Fig. 3.10 shows this process. Fig. 3.11 details the step involved in the writing and

compiling of 2 C-MEX S-function. The next section defines The Mathworks conventions for

the S-function API.

Chapter Three: Overview of Simulink and the RTW

S-function

Strnulink \ initialisation

S-function

API
roufines

simulation
loop e

................

Template S-function: \‘\.... py| S@mple_sfc

sfuntmpl.c 7 l

Window compliant
C compiler

-

C-MEX
sample_sf.dll

A 4

Ready for
Simulink

Fig. 3.11: The flow diagramn of writing and compiling a S-function

II. The S-function API

Fig. 3.12 details the function calls for a S-function and their sequence of operation’.

1. mldInitializeSizes
This is the first function called by Simulink when interfacing to an S-function. It is
used to setup block characteristics like, input and output port sizes, number of
parameters, block states, working variables and other block functionality.

2. mdlInitializeSampleTimes
This function is used to setup the sample times for a S-function.

3. mldStart
This optional function is called once at the initialisation stage. It can perform any

additional application specific initialisation.

5
A scaled down version of the S-funclion AP is documcented, covering only the section relevant to the work presented in

this thesis.

3-9

Chapter Three: Overview of Simulink and the RTW

4. mdlOutputs
This function calculates the outputs of a block when called. It uses the output equation
shown in [3-1].

5. mdiUpdate
This optional function is used to update discrete state of a block.

6. mdlDerivatives
This optional function is used to evaluate the continuous time derivatives of a block,
and use the state derivative equation shown in [3-2]

7. mdlTerminate

This {unction is called at simulation termination and is used to free up memory or

/_
mldinitializeSizes (.....)
[nitialization T i
funetions < midlnitializeSampleTimes (.....)
mldStart (.....)
- +
4 » mldOutputs (.....)
Simulation ¢
loop < mldUpdate (.....)
functions
\ 4
_ mldDerivatives (.....)
Termination]
function mldTerminate (.....)

other resources used by the S-function.

Fig. 3.12: API function and their calling sequence

1. SimStruct, the data object of a S-function

SimStruct is a data strucrure used by Simulink to mange all aspects of data transactions within
a model. The various categories of data stored in SimStruct are detailed in Table 3-1. A
Simulink model contains a single parent SimStruct and a child SimStruct for each block
within the model. Another feature of SimStruct is data encapsulation, i.e. ali data is accessed

via macro functions, this allows for easy data manipulation without detailed knowledge of the

complex SimStruct structure®.

® For reference purposes the entire SimSeract declaration can be found in the simstruc.h file found on the accompanying CD.

3-10

Chapter Three: Overview of Simulink and the RTW

Field Data Type Stored

Version Used for version control.

Parent Pointer to parent SimStruct of current child
SimStruct.

Root Pointer to model main SimStruct.

i Sizes Stores S-function characteristic.
Parameters Stores parameters passed to S-function
Work Vecrors Stores working vectors
Timing Stores timing data
States Store the states of a S-function
Derivative Stores derivative data.,

Table 3-1: Data stored in SimStruct

3.4. The Real Time Workshop

In this and subsequent sections the Real Time Workshop (RTW) (see section 2.2.5) is described,
highlighting aspects relevant to the work undertaken in this project. It will concentrate on

undocumented internal workings of the RTW.

What is the role of the RTW?
The RTW is responsible for the entire rapid prototyping process, which consists of:
1. Converting a model into real time code.
2. Building code’ and downloading to a target processor.
3. Provide 2 communication protocol for online parameter tuning, data logging and target
signalling,

4. Program architecture of code executing on target hardware®

? Building code refers to the rwo-stage process of compiling and then linking code into an executable module.

¥ The RTW indirecily controls exccution on the target hardware by specifying the run-time interface.

3-11

Chapter Three: Overview of Simulink and the RTW

3.4.1 An Overview of the RTW

The RTW [MATHWORKSA4] is provided with an open architecture, which can be broadly categorised
into two parts, code generation and program architecture. The code generation process involves all the
physical steps required for converting a Simulink model into a standalone executable module. The
program architecture defines the structure of the code generated and deals with the issues of setting up
a standard runtime interface, under which generic model code may be executed. With the RTW being
inherently complex, a hierarchical approach is used to describe it i.e. a system level description is

initially presented in the next two sections with subsequent sections containing the lower levels

details.

make_rtw.m

, Y
\ model.:/—A\idel.mk /

h) A

4 .
A
\, ~model code / 6 y)
=| M

4

Runtime
interface
files

AKE

v

\ model.exe /

Fig. 3.13: Flow diagram of code generation process

I. Code generation
With the help of Fig. 3.13 the stages involved in the code generation process are detailed as
follows:
1. make_rtw.m
This is the entry point of the RTW build® process, i.e. it is the first function to be

called when a Simulink model is convertied to real-time code. The make_rtw.m is a

9 - - - - 4 .
Thc cntire process of converting a model into real-lime code is referred 1o as the bulld process by Mathworks conventions,

however the process of compiling and linking code into an execulable moduice is alse referred 1o by the same name. For

clarity the former shell by referred (o as the RTW bulld process.

3-12

Chapter Three: Overview of Simulink and the RTW

Matlab function, or m-file, that controls the execution order of the different
components involved in the RTW build process.

2. model'®.rtw
This file is generated by a RTW function that converts the modelmd!’’ into the
model.rtw file, The model.rtw file describes the Simulink model using a text
convention (ASCII file), specified by the RTW. The reason for converling a
model.mdl file into a model.rtw is 10 allow the RTW maximum flexibility, i.e. a
model.rtw file can then be converted to any language by using the Target Language
Compiler (TLC). -

3. The Target Language Compiler)
The TLC is a proprietary tool that forms part of the RTW, which is solely used for the
generation of model code from the model.rtw. The model code is gencerated in the
target language'’. Currently Mathworks supports conversion to either ADA or C, for
the purpose of this thesis only C is used and therefore any future reference to the TLC
will imply conversion to C files. See section 3.5 for more details.

4. Model Code
This represents the model in real time code. A full description of the various C files
generated from the TLC is presented in section 3.5.

5. model.mk
This file is generated from the template make file and is used by the make utility to
build the model code into a target executable module. The conversion of the
system.imf into the model.mk file is controlled by the make_rtw.m function. See
section 3.6 for more detail.

6. Make Utility
A make utility is a programming tool that avtomates the build process of projects with
numerous files. See section 3.6 for more details.

7. Run-Time [nterface
This component of the RTW represents, the hardware specifics, timing scheduler,
solvers, and communications layers. This interface represents the point at which the
RTW is customised for various target platforms.

II. Program architecture

The program architecture details how the real time mode code executes. The RTW

' The term model refers 1o a generic Simolink model.

1« mdi filc is the native format of a Simulink file,

" The Target Language refers to the programming language of the target system.

313

Chapter Three: Overview of Simulink and the RTW

supports two code styles, one suitable for Rapid prototyping' and the other for embedded
applications'®. For the purpose of the RADE system the Rapid prototyping style was
chosen as 1t ofters the most functionality and flexibility. The rapid prototyping
architecture specifies a run-time interface that executes the generated model code. Fig.
3.14 illustrates an object-oriented view of the run time interface interaction with the

model code. [MATHWORKS4]. Section 3.7 expands on this topic in more details.

Run Time
Interface
- Execution driver for model
code Model Code
= /O routines <
« Solver
» External mode

Fig. 3.14: Object-oriented view

3.5. Target Language Compiler

The Target Language Compiler (TLC) is a Mathworks tool that parses the intermediate model.rtw
file into either ADA or C'. The gencrated code produced by the TLC is fully customisable for
hardware specifics and performance tuning. The TLC is used to:
e Generate C code from the model.rtw file
s Modify generated code to accommodate for hardware or algorithm specifics
e Optimise code for size or performance
e Generate optimised code for user defined s-functions
The operation of the TLC is detailed in Fig. 3.15
1. sample.rtw file
This is the intermediate text file that represents the model described by the sample.mdl
2. System target file
This is the entry point of the TLC, which is synonymous with the main() function of a
C program. The purpose of this file is to setup different irnplementations of the RTW.

Section 3.5.1 provides more details.

" The Rapid Prototyping architecture includes the simstruct dala structure, which by default places a performance penalty on
the real-time code.
'* The cmbedded version sirips oul the simstruct data structure and external mode funclionality for belter code performance.

'* The RADE system only uses C code, and any reference to the TLC will imply generation of C code.

Chapter Three: Overview of Simulink and the RTW

3. Block target files
These files specify how to convert blocks in the model into C code. Section 3.5.2
provides more details.

4. Target language Compiler functions
The TLC uses these functions when generating code [MATHWORKSS].

sample.md]
— M =
m 524 Mgt 7 ﬁ

E2p Transfar §en

Block Target
files

Target Language S

Target Language

Compiler Function

) 4 \ 4 \ 4 \ 4 A A
5a 5b 5¢ 5d Se 5f
sample.c sample.h sample.prm sample_export.prm sample.reg sample.dt

N -
—

mode! code

Fig. 3.15: Operation of the Target Language Compiler

5. Model code
The generated code consists of the following files:
a sample.c
Source file for implementing model algorithm.

b sample.h

Header file used for global variable definitions,
¢ sample.prm

Parameter files that defines models tuneable parameters

d sample_export.prm

3135

Chapter Three: Overview of Simulink and the RTW

Header file that contains source code produced by the user.
e sample.reg
Registration file, used for model registration and initialisation functions.
f sample.dt
This file contains model data types and is only produced if extemal mode is being
used.
The TLC process discussed above shows how the model code s produced and the different files
involved. Another important file in the TLC is the System Target File, which is discussed in the next

section.

3.51 System Target Files

The RTW supports numerous target types and is customisable to include new targets like the RADE
system. A system target file is used to identify and implement different real-time targets. The RTW is

shipped standard with numerous real time targets and their corresponding system target files are listed
in Fig. 3.16.

4 Syslem Tomel File Browser
R e e e

Fig. 3.16: List of system target files
1. Structure of System target file

The simplified structure of a Systern target file is listed below, which is composed of 4
sections. Section one is used to serup default parameters for the RTW build process. Section
two, defines various variables used for the TLC process, Section three is used to include the
code generation function, which generates the acrual code. Section 4 is used to setup platform
defined parameters.

Section 1
%%a Default Values
%% SYSTLC: Generic Real-Time Target for PC32\

Chapter Three: Overview of Simulink and the RTW

%% TMF: pc32.4mf MAKE: make_rtw EXTMODE: ext_comm_c3x

Sectlon 2

%% TLC setup varibles
%assign MatFlleLogging = 1

%assign TargetType = "RT"

Saction 3

%% et — Include file --
%include “codegenentry.tic”
Section 4

7R —
1%
BEGIN_RTW_OPTIONS

RTW Oplion Parameters -

rtwoptions(1).prompt ="'MAT-file variable name modifier’;

rtwoptions(1).type 'Popup’;

rtwoptions(1).default t_"; p

rtwoptions(1).popupstrings ='rt_|_rijnone’;

rtwoptions(1).tlcvariable = 'LogVarNameModifier;

riwoptions(1).tooltip = [prefix rt_ to variable name,’, spranff(\n'). ...
‘append _rt to variable name,', sprintf(\n’), ‘or no modification;

3.5.2 Block Target Files

Block rarget files (see Fig. 3.15) play an important role in the generation of efficient code and it is
imperalive to understand their function, as these are the files that have to be modified to accommodate

for algorithmic and hardware specific changes.

These files specify how C code is generated for Simulink library blocks, as opposed to using the
respective blocks C-MEX S-function directly. This techmique of replacing calls into C-MEX S-
functions by generated code, is referred to as S-function in-lining. The purpose of S-function inlining
is to reduce the processing overhead, by removing the use of S-function API. This zallows for more
efficient and flexible code to be generated'®. S-function inlining applies both to user defined and all
library Simulink blocks. In the latter case The Mathworks provides the block target files. The process
of S-function in-lining is best demonstrated by an example that follows in the next section.

L An example of S-function inlining"’

Below is a listing of an S-function for a simple gain block, i.e. y=u *p. The first function in
this listing is the mdlnitializeSizes(SimStruct *S) which s used to setup block
specifications, which include number of input and output parameter, number of block states
both discrete and continuous, and various other parameters. The second function, mdlOutputs
implements the intended S-function operation and is called by Simulink when the output of

this S-function needs to be evaluated. This S-function is now used by the TLC to produced

'® [ndividual blocks no longer require a simstruct of their own.

' This example is found in TLC reference guide version 1.2 (MATHWORKSS]

Chapter Three: Overview of Simulink and the RTW

non-inlined code, which is shown below,

S-function for gain block

#define S_FUNCTION_NAME foogain

#define S_FUNCTION_LEVEL 2

#include "simstruc.h™

#define GAIN mxGetPr(ssGetSFenParam(S,0))[0]
static void mdlinitializeSizes(SimStruct *S)

//Block specification
ssSetNumContStates (S, 0):
ssSetNumbDiscStates (S, 0);

}

static void

mdlOutputs(SimStruct S, Int_T tid)

{
real_T ‘y = ssGetOutpulPortRealSignal(S, 0);
const InputRealPlrsType u = ssGetinputPonRealSignalPirs(S, 0);
y(0] = ("u){0] ~ GAIN;

static void
mgdlinitializeSampleTimes(SimSiruct *S){}
stalic void

md{Terminate(SimStruct *S) {}

#ifdef MATLAB_MEX_FILE

#include "simulink.c”

H#else

#include “"cg_sfun.h"

#endif

From the non in-lined, TLC generated code below, it can be noted that this code calls into the
S-function above by using function pointers and the S-function API. This technique is very
inefficient, as each block requires its own child simstruct and both the S-function and
generated code'® have to be compiled for the target. There is also a large amount of

registration'” code added to the model.reg file, which further slows down the initialisation of

the target system?.
Non In-lined code
/I
model.C
i
real_T untiled_RGND = 0.0; /" real_T ground */
/* Start the model */
void MdIStart(void)

I” (no start code required) */
}

/* Compute block outputs */
void MdIQutputs(int_T tid) Thesc are calls into
{ the S-function API.
/* Level2 S-Funclion Block: <Root>/S-Function (foogain) */ | SimStruct memory
is allocated for the

SimStruct rts = ssGetSFunction(rtS, 0); g S-function.

'¥ Generated code in a non-lined funclion is merely a wrapper that calls into the base S-function.
19 . ,
This code is used 10 register parameter, state variables, functions and so forth, in the child simstruct.

* This code is not reproduced in this thesis as il is of little significance.

3-18

Chapter Three: Overview of Simulink and the RTW

sfcnOutputs(rts, tid);
}
)

I~ Perform model update */
void MdlUpdate(int_T tid)
/” (no update code required) */

I* Terminate function */
void MdITerminate(vold)

I~ Level2 S-Function Block: <Root>/S-Funclion (foogain) */

{
SimStruct "ris = ssGelSFunction(rtS, 0);¢—— | These are calls to
sfenTerminate(rts); the S-function API.

}

#include "model.reg”
/" {EOF] model.c */

The in-lined gencrated code that appears below dispenses with the rigours of simulation
constraints placed on S-functions and generates code that is called directly. With the in-lined
generated code there is no child simstruct and this code is independent of the source
S-function file.

In-lined generated code

I‘

“ modél.c

*/

I~ Start the model */

void MdIStart{void)

{

/" (no start code required) */

}

I* Compute block outpuls */ Aﬁ There are no calls

void MdIQutputs(int_T tid) to the S-function

/* S-Function block: <Root>/S-Function */ API 1n the inlined

tB.S_Function = 0.0 " tP.S_Function_Gain; version of model.c.
Also, note that

/* Perform model update °/ there is no child

void MdlUpdate(int_T tid) SimStruct for the
S-function.

/* (no update code required) ~/
}

I* Terminate function */

void MdiTerminate(void)

{

/" (no terminate code required) */

Inlining eluminates
any unnecessary calls

#include “"madel.reg” to S-function API.

I* [EOF] model.c */

The corresponding block target file used to generate in-line code appears below. It is evident
that there is a big saving in both the size and speed of in-lined code, this saving results from a
more streamlined function which only implements the required operation: no S-function and
simstruct convention are used. It is worthwhile to note that the block target files completely
replace their respective C-MEX S-functions and they are, functionally independent of each

other. This independence is used extensively in Device Driver Blocks, which is discussed in

Chapter Three: Overview of Simulink and the RTW

the next section.

Block Target file

%implements “foogain” "C"

% unction Outputs (block, system) Output
I* %<Type> block: %<Name> */

%%

%assign y = LibBlockOutputSignal (0, ™, ™", 0)
%assign u = LibBlockinputSignal (0, ™, ™", 0)
%assign p = LibBlockParameter (Gain, ™, ™, 0)

Ya<y> = Y%<u> * %<p>;
%endfunction

II. Device Driver blocks

Device Driver blocks are blocks that allow Simulink models to access peripheral devices, like
ADC, DAC, timers and interrupt controllers, on the target hardware. However these blocks
function differently in simulation and real-time mode; therefore block target files are used 10
allow real-time code to access peripheral devices while the C-MEX S-functions represent
“dumb’?' Simulink blocks, used in simulation mode. An example of a device driver block
target files appears below. The S-function is not listed, as it is merely an “empty” template
file.

Block Target file for a ADC
%implements "pc32_ad" "C"

Y%function Cutputs(block, system) Output
I* %<Type> Block: %<Name> (%<ParamSettings.FunclionName>) =/
/" read in the corrected values from A/D and scale to +-10 */

%<LibBlockOulputSignal(0,”.™ 0)>=read_adc{BASEBOARD, 0)/{3276.7);
%<Lib8lockCutputSignal(0,™,"",1)>=read_adc{BASEBOARD, 1)/{3276.7);
%<LibBlockQutputSignal(0."",",2)>=read_adc(BASEBOARD, 2)/(3278.7):
%<LibBlockOQutputSignal(0,"."".3)>=read_adc(BASEBOARD, 3)/(3276.7):

}
%endfunclion %% Outputs

3.6. The Code Build Cycle

The code build cycle (see Fig. 3.13) is the point at which the RTW uses the target hardware
compilations tools to generale an executable module. It accomphshes this task by using a system
template make file and a standard make utility. Section 3.6.1 gives an overview of make utilities.
Section 3.6.2, discusses the system template make file in more detail, and finally in section 3.6.3 a

flow diagram of the code build process is discussed.

3.6.1 Make Utilities

A make utility is used to manage the building of programming projects by automating the compiling

and linking stages. A Make utility processes a user make file, which consists of rules on how to build

! These blocks perform no work during simulation mode. Sec listing of device driver example S-function code.

3-20

Chapter Three: Overview of Simulink and the RTW

objects, libraries and executables [GNUI1]. In the case of the RTW build process the model.mk file

represents the user make file.

Various vendors provide their own make utilities, for example Microsoft use Nmake while GNU?*
uses Gmake. The latter tool provides more functionality in general, and is recommended by
Mathworks, [MATHWORKS4] i1 is therefore used with the RADE system, A complete description of
a make utility 15 beyond the scope of this thesis, please refer to the Gmake manual: an electronic copy

15 found on the accompanying CD.

3.6.2 System Template Make File

The template make file, as the name suggests, is a used to generate the make file that controls the
building of the real time executable module. A template make file is made up of five sections, a
simplified template make file is listed below with the different sections highlighted. A discussion of
these sections follows,

Section 1

- Comments -

Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
#

B File :gri_vctmf SRevision: 1.43 3

Section 2

#+ Macros read by make_rtw

SYS_TARGET_FILE = grt_c3x.tic

MAKE = gmake

HOST =PC

BUILD =yes

DOWNLCAD = yes

Section 3

e EEEE LR Tokens expanded by make_rtw -
MODEL = [>MODEL_NAME<|

MODEL_MODULES = |>MODEL_MODULES<|

MATLAB_ROOT = [>MATLAB_ROOT<}

Section 4

Tool Specifications --—

H— Include Path ~--u.

C Flags

Source Files

Rules

Dependencies - -—
Section 5

e Rule for Downloading lo Target —-=w-msmmm- ——
download :

ftp_program model.exe
echo “file sent to target system”
I Comments

This 1s a standard comments section.

43

GNU is pant of Free Sollware Foundation that produces open source sotftware and development tools. See
hup://www.gnu.org

3-21

Chapler Three: Overview of Simulink and the RTW

II. Macros for make_rtw.mt function

This section is used to inform the rtw_make function: what make utility to use; which real
time target is being built; if make is to be executed from the rtw_make function; if built
module is to be downloaded.

ITI. Tokens

Tokens are a means of passing variables to the model make file. For example, the following
token for the Matlab root directory >PMATLAB_ROOT<| will be replaced in the model.mk to
the location of Matlab, which is ¢:\\matlabr11 for a default installation.

1V, Build rules

The build rules section is where the most important work gets done. In this section all
compiler, linker options, source files and libraries are defined, so to are the rules for compiling
and linking.

V. Downloading

This section is only called if the building of the executable module is successful, and the
download macro in section two is enabled. The rules in this section call an ftp like routine to

download the executable module to the target system.

3.6.3 The Build Flow Diagram

Fig. 3.17 details the flow diagram of the build process:
1. model.mk

The rtw_make function controls the generation of the model.mk file from the system

template file.

2. Gmake
The model.mk file is then used by Gmake to build an executable model. The model
code and runtime interface are also included in the executable module.

3. Downloading
Once the executable model is built, the rtw_make function calls Gmake again, which
processes the download section of the model.mk file. An ftp program is called which
sends the executable module to the target system.

4. Target system

Target system receives executable module and waits for a start signal from Simulink.

3-22

Chapter Three: Overview of Sirmulink and the RTW

make_rtw.m

model.mk . \ 4

2 v model code JJ
_ __
/Gmake —fmodel.mk

model.cxe
3
/Gmakc ~f mode¢l.mk downloac/

}

/ fip model.exe /

R

ﬂﬁ

i

Fig. 3.17: Flow diagram of the build process

Chapter Three: Overview of Simulink and the RTW

3.7. Rapid Prototyping Program Architecture

4 high

Generated 1

model code

Execution Scheduler, Solver,
Run Time SimStruct

Interface / Systemn Independent Layer

Main funetion,
Peripheral Devices,
Communicalions

System Dependent Layer v low

Application Layer

UOIITNSE DIBMPITY JO [9ADT]

Fig. 3.18: Rapid prototyping program framework

The RTW specifies a program framework for rapid prototyping to allow third party developers to
develop real time targets for their specific hardware, This framework specifies the internal working of
the target code and how generated mode) code interacts with the run time interface section. The rapid
prototyping framework consists of the three layers shown in Fig. 3.18. These layers are discussed in

the next three sections.

3.7.1 System Dependent Layer

This level represents the hardware dependant aspect of the target system, which has to be tailored to
the hardware being used. This layer is responsible for the following tasks:
1. main() function
This is the entry point for target execution, and is responsible for the initialisation,
mode! execution and program termination.
2. Peripheral devices
The functionality of hardware devices is exponied by functions that are callable from
the application layer. The initialisation of timers and interrupts are also handled in this
section,
3. Communications

The purpose of this section is to incorporate external mode functionality into the target

3-24

Chapter Three: Overview of Simulink and the RTW

system. The model code calls into this section to send or receive data. Section 3.8

provides more details.

3.7.2 System Independent Layer

Al this level a standard platform is developed, which represents a simulation real-time harmess for the
application layer above. The code used at this level is provided by The Mathworks and is hardware
independent. This level controls the following functionality:
1. Execution scheduler
This section is responsible for the execution of the mode! code. In real-time code an
interrupt source is used to provide accurate timing for the scheduler.
2. Integration solver
The solver is responsible for integration of continuous states in the model code. The
RTW provides source files for all the solvers available in Simulink, which are then
compiled into the executable target code. It is worthwhile to note that real time code
does not use variable step solvers, as the step sizes are normally regulated by
interrupts which have strict timing specifications,
3. SimStruct
This section includes the simswuc.h, which contains the API for management of
simstruct data. A model with only in-lined S-function contains only a single root

simstruct.

3-25

Chapter Three: Overview of Simulink and the RTW

3.7.3 Application Layer

Model code resides at this layer. The structure of model code is detailed in Fig. 3.19 and from
inspection of this figure and the structure of a S-function, a close correlation can be drawn. The
following observations can be made: the model code represents a single S-function® with each of the
individual S-function sections being merged™ into the respective section in the model code; from a

data perspective all child SimStructs are merged into the root SimStruct.

Model Code

Main Program Initializations v

mldInitializeSizes (.....)

Y

mldInitializeSampleTimes (.....)

> mldStart (.....)

Model execution

mldOutputs (.....)

Y

» mldUpdate (.....)

midDerivatives (.....)

Main Program Termination

Y

mldTerminate (.....)

Fig. 3.19: Structure of model code

3.8. The Mathworks TCP/IP External Mode

This section builds on the introduction of RTW External Mode given in chapters one and two. In this
section coverage of the RTW External Mode protocol and TCP/IP implementation is provided, as it
forms an important part of the RTW and certain aspects are not adequately documented in The
Mathworks literature. The details explained in this section are the result of analysis of the code

provided with the standard (The Mathworks) external mode implementation. The target system used

B This assumes all S-function blocks are in-lined.

¥ Merging of code is done by S-function inlining. See scction 3.5.2

3-26

Chapter Three: Overview of Simulink and the RTW

for the standard external mode implementation is a networked PC running Windows 95.

External mode is a protoco) that specifies a communication channel between Simulink and the target.
[t allows for the conitrol of the target operation from within Simulink. This approach is beneficial to
the user as there 1s no need to move out of the Simulink environment. The external mode protocol
allows for:

» Start/ Stop control of the target. After a model has been build and downloaded to the target it
can be started or stopped from Simulink.

¢ Online parameter changes. This feature allows for various Simulink parameters to be changed
as the target is executing i.e. parameter are changed in the Simulink environment and
downloaded to the target. Tuning PID parameters online is a good example of where this
feature is used.

e Online data visualisation and logging. This feature allows data from the target to be displayed
on scope blocks within Simulink. [n addition data from Scope block can be passed to the
Matlab workspace where it can be save and manipulated by other Matlab functions.

Fig. 3.20 detzils the TCP/IP architecture of external mode where Simulink is the client and the target

is the server. A more detailed coverage of the Simulink and target internals is provided in sections

3.8.]1 and 3.8.3 respectively.

Simuliok Client PC Target Server PC
E ﬂ_ﬂ Target code
s1o)iset Fo executing
Stap Transferfen
TCP/IP on Ethemet

Fig. 3.20: TCP/IP implementation of external mode

3-27

Chapter Three: Overview of Simulink and the RTW

3.8.1 Message Frames Between Simulink and Target

During communication between the Simulink client PC, and the target server PC, standard message

frames® are used by the external mode convention. This section describes theses frame formats.

During the setup of the external mode channe! between Simulink and the target, two stream sockets™
are open: the first is used for messaging and is called the message socket; the second is used for data
uploading and is called the upload socket. Fig. 3.21 and Fig. 3.22 represents the message and upload
frames respectively. It is worthwhile to note that the message socket 15 bi-directional while the upload

socket 1s unidirectional. These are not physical limitations but rather external mode conventions.

External Mode Message Frame

Header Data in target byte format
- .
LN
— - N\
Ii/ i
- ’ \,
message .
coden size Do,Dyyvvviiivievin oo Diyigen
Header Packe: Darta Packet

Fig. 3.21: Message frame

External Mode Upload Frame

Size Data in target byte format

N\
\

\ N\
\‘ ;

Fip. 3.22: Data upload frame

The message frame (Fig. 3.21) consists of 2 header portion, which further consists of a message code

and the size of the data packet to follow. The message codes used are listed in Table 3-2 with a brief

** These frames refer 1o a software abstraction within exiernal mode conventions and must not be confused wilh frames and
packet from the transpon layer of a TCP/IP stack.

* The term Stream Socket refers to a communication end point that guarantees data transmission [WINSOCKI, 2]. Sec
section 4.3.1 for an introduction to the WinSock APIL.

3-28

Chapter Three: Overview of Simulink and the RTW

explanation of their use. Section 3.8.3 also provides more details of the purpose and operation of the

various categories of the messages.

Category Message Code Purpose
Control actions
EXT_CONNECT The first message sent to the target to setup
the external mode communication channel.
EXT_DISCONNECT Used to closes the extermal mode channel
but leaves the target running
EXT MODEL_START Used to start target execution.
EXT_MODEL STOP Used to stop target. 4
Parameter download actions
| EXT SETPARAM | Send parameters to target. '
Data upload actions
EXT SELECT SIGNALS These messages are used to setup the data
EXT SELECT TRIGGER logging for scope block within a
EXT ARM TRIGGER simulation.

EXT CANCEL_LOGGING
EXT CHECK UPLOAD DATA

Responses signals

EXT_CONNECT_RESPONSE An acknowledge message from target
when Simulink tries to connect.
EXT_SETPARAM _RESPONSE | An acknowledge mcssage from target once
parameters are updated.

EXT MODEL SHUTDOWN Signals target has shutdown.

Table 3-2: List of external mode messages

3.8.2 Simulink internals

On Simuhnk’s client side of the external mode protocol there are three components, which are shown
in Fig. 3.23 and discussed in the following sections.

I Ext_main.c

This is an intermediate file called from Simulink to send and receive extemal mode data. It is
only responsible for passing function calls from Simulink to the under lying commnunications
layer. The purpose of this module is 10 allow various communication channels to be integrated
into the communication layer. In the TCP/IP implementation ext_main.c calls into
ext_comm.c module, which provides the communication layer.

11 Ext_sim.h

This component is the data structure that is used to pass external mode data between Simulink
and the communication layer. It manages all aspects of data use, including storage of function

pointers for the data conversion functions.

3-29

Chapter Three: Overview of Simulink and the RTW

Simulink in External Mode

m EETY A Sceoe
Siio Te3rs% e
Simulink Model
Ext_main.c Ext_sim.h
I S O I
Ext_comm.c Data Conversion
B convert.c
WinSock
Communication Layer

1. Convert.c

Fig. 3.23: Simulink internals

As discussed in section 3.8.1 all corununication between Simulink and the target is done

using the target data byte format, while this feature is redundant if the target and Simulink

have the same byte format it is indispensable when this is not the case. In the case of the

RADE system this feature is used as the real-time targets use the TMS320C3X byte format

which is not compatible with the PC byte format. See section 4.4

Identity code

Data type

Real maximum precision

Real 32 bit precision

8 bit signed integer

8 bit unsigned integer

16 signed integer

16 unsigned integer

32 bit signed integer

32 bit unsigned integer

Boolean type

Table 3-3: List of Data types and their identity codes

Table 3-3 lists the standard data types, and their identities used by external mode. Each of the

data types listed in Table 3-3 have 1two corresponding data conversion functions, one to

3-30

Chapter Three: Overview of Simulink and the RTW

convert from PC 1o target byte format, and one to do the opposite. These functions are located
in the convert.c file.

V. Ext_comm.c
This module provides the communication layer by using the Windows Socket (WinSock) API.

This module consists of the external mode functions, which send or receive messages.

3.8.3 Target Internals

As described in section 3.7.1 the external mode functionality falls into the system dependant portion of
the rarget, i.e. it is dependent on the type of communication channel used. In The Matworks TCP/IP
implementation the target application uses the ext_server.c module. This module uses the WinSock
API*’ [WINSOCK 1, 2] to communicate over the network. Fig. 3.24 highlights the interaction between

the ext{_server.c module and the higher layers of code on the target platform.

Target in External VMlode

Application Layer Model code
~
SimStruct.h
SystemIndependentlayer 1 | || | Rentime
s interface
Ext_server.c
Communication Layer WinSock P

Fig. 3.24: Target internals

Fig. 3.25 elaborates on the message transaction process that occurs between Simulink and the target
platform. The ext_server.c module is responsible for;

1. Receiving and processing messages received from Simulink.

2. Generating messayges and data frames being sent to Simulink.
The four categories of messaging (Table 3-2) that are transacted between Simulink and the target are
as follows:

1. Control actions

These messages are received by the ext_server.c module and are used to control

7 Chapter four provides a overview of the WinSock API.

Chapter Three: Overview of Simulink and the RTW

execution on the target. They perform action of setting up the communication channel,

controlling model code execution status and teyminating communications.

2. Parameter changes

When a change parameter message is received it is processed by ext_server.c and the

appropriate changes are made to parameter data contained in the sirastruct. The model

code then uses the changed parameters when 1t executes.

3. Data logging

Data logging consists of two parts, the setup and the sending of logged data. The setup
messages (Table 3-2) select the signals to be logged, duration and trigger type. Once
this i1s complete signals are sampled at each execution of the model code. This data is

then used by the ext server.c module to form data frames, which are sent to Simulink

via the upload socket..

4. Response actions
These messages are generated from within the ext_server.c module and are used to
inform Simulink of the completion of an action on the target. For example the
EXT_SETPARAM_RESPONSE message is sent to Simulink to acknowledge a

parameter change.

For more details on the ext_server.c module please refer to Appendix B.

Message Frames

between target and
Simulink

<+ Data Frame
to Simulink

3.9. Conclusion

<>

)

[
|/ mode] code

()

/| : /
ext_server.cy| |/ simstruct
TCP/IP ~

Fig. 3.25: Message Transactions

The matenal presented in this chapter provides a foundation for the customisation of the RTW for the
RADE system. It highlighted the important components and processes involved with the RTW and the
role of Simulink and the target hardware. The issues relating to code generation and program
architecture were discussed. It also provided the insight required for the customisation and adaptation
of these processes to accommodate various hardware platforms. The Mathworks conventions for the

rapid prototyping process will be incorporated into the design of the RADE system and this material is

presented in chapter four.

3-32

Chapter Four: Design Of THE RADE Framework

CHAPTER FOUR:
DESIGN OF THE RADE FRAMEWORK

4.1. Introduction

Chapter 3 described The Mathworks default TCP/IP external mode implementation that is targeted at
platforms that have direct access to a socket API. This chapter draws on this work and presents the
RADE framework, which is an adaptation of The Mathworks TCP/IP implementation. "[‘he emphasis
of this chapter is 1o provide a functional understanding of the RADE framework independent of the
hardware and implementation issues. This approach allows understanding of the framework, which is

applicable to any target card'.

The first part of this chapter reviews the CSDE and The Mathworks systems and then presents the
RADE framework within the context of aforementioned systems. Subsequent sections expands on the
components of the RADE systems, while also paying attention to aspects drawn from The Mathworks

implementation.

4.2. Developing the RADE framework

Before an overview of the RADE framework can be presented it is necessary to first recap on the
RTW TCP/IP [MATHWORKS4] and the CSDE [STYLOI1] external mode implementations. The
reason for concentrating on the external mode protocol is that it represents the area where significant
differences exist between both these systems. The RADE framework is then described in perspective

of these systems.

4.2.1 Mathworks TCP/IP External Mode Architecture

The Mathworks TCP/IP implementation has already been presented in chapter 3 and this section only
highlights the pertinent aspects with regard to the RADE framework. It is worthwhile to note The
Mathworks TCP/IP network functionality is built using the WinSock API and therefore references to
either are equivalent, i.¢. they are used interchangeably in this thesis. Fig. 4.1 shows a functional
representation of The Mathworks external mode architecture from, which the following observations

can be made:

' The RADE implementation issucs for the PC32 and ADC64 cards are presented in chapters 5 and 6 respectively.

4-)

Chapter Four: Design Of THE RADE Framework

e The Targer system has direct access to a Socket APl which in the case of the Windows

platform is Windows Sockets.

» External mode uses the client/server distributed computing model, where the Target 15 the

server and Simulink 15 the client.

Simulink in External Mode Tarset in External Mode
g 3

H = Application Model code
% = Layer

uz Trangher Fea

Simulink Model .
... iy Sys[cm S)mSlmClJ‘l
Independent
} Layer S
Ext_main.c 2 o e
Interface Layer h
R i Communication | ___ E_: }_‘E—_S_e_l:‘ie_r_'f____
Layer WinSock
Ext_comm.c A
WinSock

Communication Layer

Fig. 4.1: Matinworks TCP/IP external mode
4.2.2 CSDE External Mode Architecture

Stmulink in External Mode Target in External Mode

Application Model code
_______ Layer
Simulink Modc) .
System SimStruct.h
= Independent
. Layer A
Ex't_malnc - S - ——
Interface Layer c -
i PRk LT H P ¥ W SRR, ommunicatlion “ dpl"ﬂm.c
Layer -
ii_comm.c

Communication Layer A

> DPRAM <

Fig. 4.2: CSDE external mode architecture

4-2

Chapter Four: Design Of THE RADE Framework

The CSDE external mode architecture, developed by Stylo [STYLO1] is shown in Fig. 4.2, and it is
evident that the TCP/IP component has been replaced with an in house DPRAM communication
protocol. This protocol was developed by Stylo and only works in a standalone mode. On the Simulink
side the communication layer (ii_comm.c) provides the data conversion functions and the operations
of these function do not conform to The Mathworks conventions’. The target (ii_dpram.c) side is also
modified to Stylo’s protocol and deviates considerably from The Mathworks protocol. Due to these
modifications very little of the source code can be reused with the RADE development and an
effective rewrite is needed to incorporate The Mathworks TCP/TP conventions. With this said, it
should be reiterated that CSDE was the reference point for the RADE framework, without which

development on the RADE framework would have been hampered.

423 RADE External Mode Architecture

The RADE framework builds on the Mathworks TCP/IP extermal mode architecture because:

e Itallows of for maximum functionality, i.e. full network support, on-line parameter tuning and
data logging.

e By adhering to The Mathworks conventions version upgrades of the RTW can be more easily
implemented’.

e The Mathworks convention allows for the incorporation of various targets.

e A significant portion of The Mathworks code can be reused.

e The TCP/IP protocol also proved a useful means of Inter Process Communication (IPC)* and

allows the RADE system 10 operate in a standalone mode with no changes.

Due to the complexiry of the RADE framework the remaining part of this section is exptained using a
hierarchical approach i.e. it introduces the various components of the RADE framework and provides
references {o the relevant sections that provide greater detail. A functional representation of the RADE
framework is shown in Fig. 4.3, which comprises of three processes and the server to target
communications protocol. These are highlighted below:
1. Simulink: ext_comms_c3x

This module provides the communication layer to Simulink and is based on The Mathworks

ext_comm.c module, besides for some modifications to the data conversion functions.

Further details are provided in section 4.3.

2. Server Application

* Stylo did not implermnent any of the conversion functions found in the convcrt.c file as describe in chapter 3.
* The Motion Contro) Group’s experience with CSDE has shown that siraying from The Mathworks convention presents
significant challenges when faced with version upgrades in the RTW.

T IPC refers to the exchange of data benween separate processes execuling on a single platform.

4.3

Chapter Four: Design Of THE RADE Framework

This process was developed by the author, to allow target to Simulink communications. The

purpose of the server is to allow messages between Simulink and the target to be exchanged

seamlessly, i.e. Simulink “believes” it is communicating directly with the target and the

server is transparent to it. The reason for using this approach is that the DSP target does not

have access to a Socket API. Therefore the server utilises the target PC’s WinSock API to

receive or send messages from Simulink. The server application is described in more detail

in section 4.5

' o 5 Server Application
: o ext_server pc
; £n T i : ! TCP/1P » ------ e —— _:12 [
E L WinSock
P | ... Simulink Mods) ¥ -
: ' 4
' P Server to
' Ext_main.c o Target
:_ 7y E E Communications
i Interface Layer ' '
:) pyo4
: ext_comru_c3x.c i
R S . o Communication Channel
' WinSock : '
! Communication Layer i !
. iVl Target
\ Client PC B 3 &
E Application Model code
: A e
E Execution Scheduler,
: , System _So]ver,
: Independent SimStruct
! Layer
Run time :
interface ' Main function,
! Peripheral Devices,
' Communjcations
: = System 4
5 Dependent V-
! Layer Server to
E Target
; Commuanications
i Target PC

Fig. 4.3: RADE external mode architecture

3. Target Application

This process comprises of two parts, namely the run time interface and the application layer.

These processes are adapted from The Mathworks implementation and more details are

4-4

Chapter Four: Design Of THE RADE Framework

provided in section 4.6

4. Server to Target Communication
This protocol was developed by the author to allow for communication between the server
and target. It is designed to allow existing code, from The Mathworks, to be reused in the
server and target applications while also being independent of the underlying hardware

communication channel. Details of this protocol are provided in section 4.7.

4.3. Peripheral Issues

’

The previous section highlighted the RADE framework in perspective of The Mathworks TCP/IP
implementation and subsequent sections in this chapter expand on these topics. However before such a
discussion can be presented a review of two peripheral issues needs to be presented. These issues
concern the Windows Socket API and the target development toolset by Innovative Integration (II)

and their role in the RADE framework. These issues are addressed below.

4.3.1 Windows Sockets

Windows Socket (WinSock) [WINSOCK], 2] is the API that allows for network programming on the
Windows platform and is used by Simulink and the Server applications. The WinSock API is designed
to allow application programs to use a standard set of functions, which are conceptually independent
of the underlying network protocol, to communicate over a network. The WinSock specification
version 1.1 was designed in conjunction with the TCP/TP communication protocol but did not preclude
use of other network protocols®. This API is the industry defacto standard of network programming

and provides an efficient interface to a TCP/IP network [WASHBURNI].

The WinSock API 1s based on based on the UNEX sockets implementation found in the Berkeley
Software Distribution (BSD, release 4.3)[MSDN2]. The WinSock API's basic data object is a socket:
this represents a communications endpoint, which is bound to an address and port number. A sockel
object allows for the bi-directional exchange of data between sockets in the same communication
domain i.e. sockets exchanging data must use the same underlying network protocol. There are namely
two types of sockets, Streamn and Datagram sockets. A Siream socket provides a reliable guaranteed

data transmission while a Datagram socket® provides an unguaranteed transmission channel suited for

$ Version 2 of the WinSock specification defines a Service Provider Interface, which allows network vendors 10 provide
WinSock support 10 any network protocol.
¢ Datagram sockets arc used for application that broadcast regular record oricnled messages 10 numerous computers. The

synchronisation of sysiem clocks on a nenwork is an example of an application that can use Datagrams.

4.5

Chapter Four: Design Of THE RADE Framework

burst messages. The RADE framework only uses Siream sockets as they provide reliable data

frransmission,

I. Socket Parameters

This section claborates on a Socket Address and Port Number [MSDN3]. The socket
address is associated with the Internet Protocol (IP) address. This address is a 32-bit number
that identifies a computer’ and can be quoted using the following dot notation X.X.X.X, where
X represents an 8-bit number. (Eg. 146.230.192.1)

The Port Number uniquely identifies a socket with a process i.e. multiple sockets can exists
simultaneously on a single PC and the port number is used to distinguish which socket
belongs to which process. Port numbers for common services like FTP, HTTP and others are
reserved. The Port numbers used for the RADE framework are 17725 and 700. Port 17725 is
The Mathworks default port used for Simulink to target communication whilst port 700 is

used for the automatic downloading of the target application.

4.3.2 Zuma Toolset for Target Development

Zuma Toolset

l

Stanodard
API
C67 DSP Card PC32 DSP Card ADC64 DSP Card
PCI ISA PCI

Fig. 4.4:Zuma toolset

An import component of the RADE framework is the DSP target processor. In the work presented in
this thesis, the RADE framework is applied to DSP cards® produced by II, who supply their DSP cards
with the Zuma® Toolset. This toolset comprises of an extensive set of functions for both the host'® and
target applications [[INNOVATIVE2, 4]. The Zuma toolset, shown in Fig. 4.4 allows for efficient and

portable applications to be developed for II DSP cards and comprises of two components, the host API

7 . - . B .
It is also possible to us¢ a computer machine name for example demo_PC.und.ac.za, which is then resolved to an IP
address.

¥ An overview of the DSP cards used is presented in chapiers 5 and 6.
* The Zuma Toolset is a propriety development suit provided by II.
'® The host is the PC where DSP card is inscrted

4-6

Chapter Four: Design Of THE RADE Framework

and target library functions. These are highlighted below.
I Zuma Host API

The host API provides functions, which allow for easy communications between the host PC
and the target DSP. This API also exports core functions that are portable across the [I range
of DSP cards. This portability is exploited in the RADE framework because it allows similar
code to be used on different I cards with only the respective DSP card DLL being used. The
PC32 card uses the PC32.DLL and the ADC64 uses the ADC64.DLL. The functions exported
by the host API allow for:

1. Downloading of target applications.

2, Starting, stopping and resetting the DSP card. .
3. Communication to target via Mailboxes. Section 4,3.2-I0 elaborates on this topic.
4. Block transfer of data between host and target.

S. Data conversions functions.

1I. Zuma Target Library Functions

The target hibrary functions allow for the easy and quick development of target applications by
allowing the developer to use C style functions for virtually all operations. The targel library
has a core set of functions that are portable while there are also target specific functions that
interface to specialised hardware components. The target library functions afford the
developer the following functionality.
1. Functions for Standard I/O.
2. Function for the control of processor features that would normally require
assembly language routines. Examples include the setup of timers, ADC’s and
DAC’s.
3. Full host to target communication functions.
4. Registering, enabling and disabling interrupt service routines.
Ill. Mailbox Operation

When interfacing to a target DSP via the ISA or PCI buses, mailboxes are used to send/receive
single data words'’ and provide a convenient technique for the contro! and arbitration of host
to target communications. This section outlines the relevant Zuma host and target functions
used for mailbox transactions, as mailboxes are used extensively in the server to target
communication protocol. (Described in section 4.7) The PC32 and ADC64 cards both have 4
mailboxes and use the same functions definitions, however the underlying implementations

differ considerably'?. A few of the host and target functions used to access mailboxes are list

"' The 11 implementation for mailboxes uses a signed 32-bit integer.

'* The PC32 card implemcnts mailboxes in DPRAM, The ADC64 mailboxcs are implemented on the $5933 PCI matchmaker
IC.

4-7

Chapter Four: Design Of THE RADE Framework

in Table 4-1 and Table 4-2 respectively.

Function Prototype Description

Int read_mailbox(int target_handle, int box_number); read_mailbox() returns a 32-bit value from the
specified mailbox, when available. The function
will wait for data to become available.

void write_mailbox(int target_handle, int box_number, | write_mailbox({) writes a 32-bit value lo the
int value); specified output mailbox and target. Before
wriling, the function checks to make sure the
mallbox is empty (all previous data has been read),
and will wail for the target to empty the mailbox if
current data Is still pending.

Table 4-1:Host mailbox functions

Function Prototype Description

Int read_mazilbox(int box_number); read_mailbox() waits for data to appear in the
specified incoming mailbox, then reads the 32 bit
contents of the mailbox.

void write_mailbox(int value, Int box_number }; write_mailbox() waits for the specified outgoing
mailbox to become empty, then writes the 32 bil
contents of the mailbox with the argument value.

Table 4-2:Target mailbox functions

4.4. Modifications to the Simulink Communication Layer

This section descnbes the modifications, which were made to the Simulink TCP/IP communication
layer (see Fig. 4.3), which will enable Simulink to comrmunicate with a target that does not conform to
the PC byte format. The modification involves two parts: the conversion functions and the registration

of these functions within the ext_sim structure. The following sections expand on these topics.

It 1s also interesting to note that while The Mathworks built in the functionality of supporting targets
with different byie formats, this functionality was never tested. During the development of the RADE
framework bugs were identified within Simulink intermals. The Mathworks support centre were
helpful in rectifying these problems and state that our implementation was in all likelihood the first in

the world to use the RTW-3 TCP/IP framework, for targets with non-PC compliant byte formats.

441 Conversion Functions

Conversion functions are needed because in certain instances the target platform and the Simulink PC
have different byte formats. Table 3-3 lists the nine data types that can be used in communication

between the server and target. Each of these data types requires two-conversion functions, one to

4-8

Chapter Four: Design Of THE RADE Framework

convert data from target to PC format" and the other to convert from PC to target'* format. Data
manipulation only occurs at the Simulink communication layer and all messages sent or received on
the Simulink side are done in the target byte format. This approach allows the target to process and

generate messages in its native byte format, which saves processing bandwidth.

Table 4-3 lists the TI C3x and corresponding PC byte formats for the relevant data types. The
following can be noted:

e All data types on the TI C3x DSP are 32 bits

e Floating point formats differ

e Both platforms use Little Endian'* .
With the aid of the information above and Table 4-3 it can be deduced that there are namely two
categories of conversion functions: byte ordering and floating-point conversions. These categories are

explained in the next two sections.

Data Type Texas Jastruments TMS320C3x IBM PC
C storage types Bit Size | Format Endian Bit Size | Format Endian
L=Little L=Little
double 32 TI L 64 TEEE L
Float 32 TI L 32 IEEE L
Char 32 Binary E 8 Binary L
unsigned char 32 Binary L 8 Binary L
Short 32 2’s comp L 16 2’'scomp | L
unsigned short 32 Binary L 16 Binary L
Int 32 2’s comp L 32 2’'scomp | L
unsigned int 32 Binary L 32 Binary L
BOOL 32 2's comp L 32 2’s com L

Table 4-3: Byte formats

1. Byte reordering conversions

Byte reordering is used for most of the data formats list in Table 4-3 excluding the floatng-
point types. An operational representation of the byte-reordering algorithm is shown in Fig.
4.5, and the following observation can be made, when converting from the PC to target format
or vice versa the data is merely repacked into the appropriate memory format. This repacking
is achieved by using pointer type casting and is illustrated below with the conversion function

used for target to PC char conversions.

1 - . -

* These functions are used to interpret messages reccived from the target.

™ These functions are used to format messages transmitied o the target.

' The Little Endian formats data with the least significant bil at posilion zero and most significant at position n, where n is

the bit size of the daia type concemed.

4-9

Chapter Four: Design Of THE RADE Framework

PC Byte Format

B, B,

B B

-

16 (87n)

w
N

<

B B, | |

64 - (327n)

TI Byte Format

Fig. 4.5: Byte format

static void Intg_TargetToHost(

ExternalSim ‘ES,
void *
const char -
constint n,

dst,
S8rc,

constint dType) /* internal Simulink data type id */

/itarget has 32 bit format; host 8 bit format

int32_T "p_src:
int8_T “p_dst;
int32_T i,

p_src=(int32_T"}src; // data from target in 32 bits

p_dst=(int8_T")dst;

for(i=0;i<n;i++)

//data typecast to 8 bits for pc

“p_dst=(int8_T)("p_src):

p_Src++;
p_Gst++;
)
)

As explained in section 4.4.1, each data type requires two conversion functions and the host to

target function for the char type is listed below. As the bulk of the function remains the same

only the part which differs is listed. It is worthwhile to note that these functions are reciprocals

of each other and only repack data: there is no numerical manipulation. The functions for the

other data fypes are based on a similar reordering algorithm and can be found in

ext_convert_c3x.c file listed in appendix C

p_src=(int8_T*)src; data from PC in 8 bits
p_dst=(int32_T")dst; //data typecast to 32 bits for Target

for(i=0;i<n;i++)

{

‘p_dst=(int32_T)(*p_src);

p_SrCt+;

4-10

Chapter Four: Design Of THE RADE Framework

p_dste+;

)
)

Il. Floating point conversions

The two floating-point data types supported within the external mode framework are listed in
Table 4-3. The target DSP however only supports a 32-bit TI formatted, floating point data
type while the PC supports both a 32-bit and 64-bit IEEE format floating point numbers. The
double data type is therefore truncated to 32-bits and conversion functions supplied with the
Zuma host API are used. These functions are listed in Table 44 and convert float type data
between the IEEE and TI formats. Complete listings of the floating-point conversion function

can be found in the ext_convert_c3x.c file listed 1n appendix C.

Function Prototype Description I

int from_leee(float x); from_ieee() convents a floating point number to the
representation used by the target for 32 bit floating
point numbers.

float to_ieee(unsigned int i), to_leee() converts a floating point number to the
representation used by the host from the
represenlation used by the target for 32 bit floating
point numbers.

Table 4-4: Floating-point conversion functions

4.4.2 Function Registration

An important part of The Mathworks external mode specification is the registering of the [8-
conversion functions pointer within the ext_sim structure. This allows Simulink to directly access
these functions for the processing and generating of messages. The code segment! that is responsible
for this registration is shown below, with the complete function found in the ext_convert_c3x.c file
listed 1n appendix C. The registration of each data type entails the calling of a macro to add the
required function pointer into the ext_sim structure.

vold ProcessConnectResponset(ExternalSim "ES, MsgHeader “msgHdr)

* Set up fecn pirs for data conversion - Simulink data types.
*/

esSetDoubleTargetToHostFen(ES, Double_TargetToRost);
esSetOoubleRostToTargetFen(ES, Double_HostToTarget);

esSelSingleTargetToHastFen(ES. Single_TargetToHost); /* assume 32 bit */
esSetSingleHostToTargetFcn(ES, Single_HostToTarget); /" assume 32 bit */

esSetint8TargeiToHostFcn(ES, Int8_TargetToHost):
esSetint8BHostToTargetFen(ES, Int8_HostToTarget);

esSetUInt8TargetToHostFen(ES, Uint8_TargelToHost);

Chapter Four: Design Of THE RADE Framework

esSetUInt8HosiToTargetFcn(ES, Uint8_HostToTarget);

esSetint16TargetToHostFen{ES, Int16_TargetToHost):
esSstint16HostToTargetFen(ES, Intt6_HostToTarget);

esSetUInt16TargetToHostFen(ES, Uint16_TargetToHost):
esSetUInt16HostToTargetFen(ES, Uint16_HostToTarget):

esSetint32TargetToHostFen(ES, Int32_TargetToHost);
esSetint32HostToTargetFen(ES, Int32_HostToTarget):

esSelUInt32TargetToHostFen(ES, Uint32_TargetToHost):
esSettInt32HostToTargetFen(ES. Uint32_HostToTarget);

esSetBoolTargeiToHostFen(ES, Bool_TargetToHost);
esSetBoolHasiToTargetFen(ES, Bool_HostToTarget),

EXIT_POINT: .

retumn;
} " end ProcessConnectResponse1 “/

4.5, Server Application

This section describes the server application'® at a system level and s intended to provide the reader
with a general understanding of this application within the context of the RADE framework. The
Server application is primarily an “invisible” helper that links Simulink to the target DSP as discussed
in section 4.2.3. To the best of the author’s knowledge and according to the information available in
the open literature the RADE framework is the world’s first RTW implementation to use a hybrid
target approach, that incorporates the target PC*s WinSock API (server application), and a DSP target
within The Mathworks TCP/IP framework'’. It allows a relatively inexpensive DSP card to be

incorporated within the RTW framework with full network support by “piggy backing” on the target
PC’s WinSock API.

'* There are two versions of the server applications: onc for the PC32 target and the other for the ADC64 target. Both the
Visual C++ project files are contained on the CD attached. Appendix F lists their locations

17 See section 4.4 for substuntiation.

4-12

Chapter Four: Design Of THE RADE Framework

Server Processes

|
hf—»% \VinSOCk I
TCP/iP)

2

Simulink

PC

|-

File Transfer

3

Server
Application

» Communications

A

3| N Graphic User

Server to < Tnterface

Fig. 4.6: Server application

A simplified functional diagram of the server application is shown in Fig. 4.6, which comprises of
three processecs that are highlighted below:
1. GUI

The GUI's primary function is to echo text messages from the target, as this is the only
reliable means to debug the target'®, Tt is also used to display status messages of both the
target and server and is invaluable during development. The GUT of the server is however of
little significance to a user of the RADE system since the messages echoed are of no use to a
user. A more detailed description is presented in section 4.5.1.
2. File Transfer Utility

The file transfer utility is used for the automated downloading of target application from the
Simulink PC to the target PC. Tt uses the WinSock API to perform the file transfer and
comprises of two applications, auto_download and server. Auto_download is an
application developed by the author, which is executed on the Simulink PC when the target

application is ready for downloading. The server application in turn receives and stores the

'" A JTAG debugger is more effective bul was only avaiiable towards the end of the develapment, in the latier part of 2000.

Chapter Four: Design Of THE RADE Framework

target application on the target PC. A more detailed discussion is presented in section 4.5.2.
3. Communications

The communication process of the server application is made up of the WinSock part and

server to target communication protocol. The WinSock part is used to send and receive

messages between Simulink and the target PCs while the server to target communication is

used to fransact these messages berween the target and server applications. The

comrnunication aspects of the server application are a critical part of the RADE framework

and therefore warrant the detailed discussion that is presented in section 4.7.

4.5.1 Graphic User Interface

This section describes the graphical attributes of the server application and its purposes. A goal of the
RADE framework is to allow for easy upgrading. Therefore a simple technique to view execution
status of the target and server application during development is needed: the server GUI provides this.
The GUI 1s shown in Fig. 4.7 and comnprises of two display windows. The Server IO WIN32, which

displays text messages from the PC and the Target IO ¢3x, which displays target text messages.

The primary neced for the server GUI is to provide feedback from both the server and rarget
applications. This feedback is then used to track bugs or the execution status on either application.
Messages from the target platform use the ANSI C printf statement while the PC platform uses the
MFC Cstring object, which allows printf Jike functionality.

~iBerver

e R e S N
F Server [DWINI2

R ——

- TagellO c3x

i i R

Fig. 4.7: Server GUI

An added feature of the server application is the logging of these text messages to files, which is

414

Chapter Four: Design Of THE RADE Framework

useful for message analysis if the server application'” crashes. The logging feature is intended for use
during development only. The server application is prone to crashes during development because it is
interdependent on the target system, i.e. a bug on the target system can crash both the target and the
server applications. With this said it must be noted that the current server application has been
thoroughly tested by the author and found to be extremely stable i.e. it does not crash after repeated

Simulink model RTW rebuilds and continuous execution of the target code.

4.5.2 File Transfer Process

5 Target {oTCPap | o
: file ! p———— Secrver :

i E ' v ‘:

: Auto_download [——————— ! Target :

' file

Simulink PC ; Target PC :

Fig. 4.8: Functional representation of the file transfer process

This section descnbes how the target application is transferred to the target PC. The Mathworks
TCP/IP implementation does not provide a utility to automatically download the target application
from the Simulink PC to the target PC*°. Therefore the author developed an FTP?' like process. The
combination of Auto_download utility, on the Simulink PC, and the Server®” application on the target
PC are used. Fig. 4.8 shows the functional operation of these two applications, and it should be noted
that the file transfer process on the target PC is 2 component of the server application as shown in Fig.
4.6, while the auto_download utility is an independent MS-DOS console application. The command
line parameters for the auto_download application are shown below. This application is automatically

executed from the RTW build process.

Auto_download —f[FILE_NAME] -s|SERVER_NAME] —p[SERVER_PORT)

' PC and target messages are logged to the server_dara.Ixl and target_data.ixi files respectively. These files are overwritten
on cach launch of the server application.

It does however allow for a third party, FTP ulility to be called for the code build cycle. Sce Chapier 3.

' The protocol used by the routines does not conform 1o FTP, but from an operational perspeclive does allow for file

ransfers berween compulers.

= These processes are adupted from CHATTER and CHATSRVR samiple programs by Microsoft [MSDNI]

4-15

Chapter Four: Design Of THE RADE Framework

Load target
application into memory

'

Try to

Wait for
connect event

connect to server PC lf aiminiaih o Get Data
|
y 1
b e e = L .
Send Data Write (o file
A 4
Close Socket

Wail for
Server terminate

signal

and free memory

tSimulink PC: Auto Download

e Sy

1
1
Ll
1
1
1
1
1
1
)
]
]
]
Ll
]
1
1
1
1
I
]
Ll
1
1
)
1
'
1
1
1
l !
’ 1
[
1
1
I
1
]
1
]
[l
i
V
1
1
1
1
1
1
[
1
1
(
1
[
1
I
1
]
)

Target PC: Server

Fig. 4.9: Flow diagram of file transfer process

Fig. 4.9 shows a simplified flow diagram of the file transfer process. The server application opens a
socket and then waits for a connection signal from the auto_download application. Once the
auto_download application executes it, loads the target file and then proceeds to transmit it to the
server application. Once the file is received by the server application it is stored on the target PC. The
auto_download application then terminates while the server application returns to the “wait for

connect signal” state.

4.6. Target Run Time Interface

This section describes the RTI, which forms apart of the target application. The RTI is composed of
two parts, the system independent and the system dependent layers, which must be designed to
provide a harness on which model code can execute. The system independent layer is hardware
independent ANSI C code provided by Mathworks that is merely compiled by the TI C compiler. It
therefore does not require discussion here as it has already been discussed in chapter 3. The system
dependent layer however, provides the core hub for target execution and is adapted from The

Mathworks default implementation. A description is presented below.

4-16

Chapter Four: Design Of THE RADE Framework

4.6.1 System Dependent Layer

The system dependent layer of the RTI is composed of:

1. The entry function main(}

2. Communication aspects

3. Peripheral device drivers
The entry function is the core hub, around which the rest of the target application executes. The
Mathworks specify the general structure, which is shown in Fig. 4.10. The communication aspects are
presented in section 4,7 and the peripheral device drives, which hardware specific are described in

chapter 5 for the PC32 card and chapter 6 for the ADC64 card.

The simplified flow diagram of the main() function is shown in Fig. 4.10, with the individual steps
described as follows:

1. This step is used to synchronise the target and host systems at 1arget start-up. This ensures
that data sent to the target is correctly processed and not lost due to the target being in a
undefined state.

2. The model code initialisation routines are executed and the root simstruct is declared.

3. The target then halts unni! a start signal is received from Simulink.

4. Once the start signal is received the target registers and enables the ISR routine. This routine
1s responsible for the real-time execution of the model code. See step 8

5. This 1s a foreground process that can be pre-empted by the ISR, It is responsible for
processing messages being sent or received from the server application.

6. This routine sends logged data to Simulink via the server application. The data being sent is
logged during the ISR.

7. This is a standard termination routine that shutdowns the target and resets peripheral devices.
Once the target is shutdown the server application holds it in reset until the target code has to
be executed again.

8. The ISR routine is mode! around Simulink’s simulation [oop. See chapter 3.

8.a This routine maintains the absolute time, which is used by certain Simulink blocks.

8.b These routines are all generated by the RTW and represent the Simulink model being
executed.

8.c When data logging is enabled this routine logs each time step of data to a buffer,

When this buffer is full it signals the foreground upload process. See step 6

Chapter Four: Design Of THE RADE Framework

START
maln

3.b l ’

Md(Outputs

MdiUpdate
rt_UpdateDiscreteTaskSampleHits
rt_UpdateContinuousStates

v

Store Upload data

v

RETURN FROM
ISR

Sync with
Server
25
2 ; v
Model : Simulation
Initialisation : 8 loop ISR
Process 3 :
Y Messages ' .
y'y ' START
s TGN, P ISR
Starl : : %
Signal :
‘ Time=Time+step_size
yes {

Attach and start
Simulation loop [-------=-------- !
ISR

Process

Messages

Process
Upload Mcssages

L

Shutdown and
Terminate

N
(START)

Fig. 4.10: Flow diagram of RTI entry function

4.7. RADE Communications

This section discusses the communication details between Simulink and the target DSP, with the
server application being an intermediary. The purpose of this section is to provide a conceptual
overview of the communication operations within the RADE framework. The two important aspects,
which will be addressed, is the adaptation of The Mathworks TCP/TP code for reuse within the RADE

framework and the operation of Server to Target Protocol (STP).

The operation of target PC communication within the RADE framework is shown in Fig. 4.11. The

4-18

Chapter Four: Design Of THE RADE Framework

Mathworks target side TCP/IP external mode implementation” which is intended to be executed on
one platform is dissected into two parts:

e The WinSock part which runs on the PC

e The external mode message processing and generation part which runs on the target DSP.
This code dissection while not trivial from an implementation perspective allows the bulk of The
Mathworks TCP/TP code to be reused and this approach allows for maximum functionality. The PC
component of The Mathworks TCP/TP implementation is found in the ext_srv_pc.cpp file and the

target component is found in the ext_srv_c3x.c. These files run on separate platforms and

communicate via the STP.

STP is designed to link the PC WinSock component with the target message-processing component
through a protocol that abstracts the underlying communication channel to a software layer. The STP
allows for flexible communication between the server and target that can be easily ported to vanous

target platforms. The next section elaborates on the STP.

Server Application

Server Application WinSock
Processing

WinSock frefemmmmmmmmmamesassmammmsdocanan ,

/ Pro,c/e\s\sing PC side STP* .
% ! -
Mathworks -+ ' Hardware Comms (=W
TCP/P STP i :
) Chaannel i

External Mode ; 7%

7 5
Message i .
Processing & ; Target side STP*
Generation bl se="""==-—" 1
Message
Target DSP Processing &
Generation
Target DSP
¥ Serverto Target Protocol

Fig. 4.11: Server to targer conumunications
4.71 Server to Target Protocol
The STP is primarily designed to allow for the transfer of external mode messages and upload data

between the target and server. It is accomplished by using the communication data structure shown in

Fig. 4.12. This structure consists of two Message Ports and two Upload Ports, which are overlaid

* The Mathworks TCP/IP implementation has been described in chapter 3.

4-19

Chapter Four: Design Of THE RADE Framework

onfo a shared memoty resource. The message ports are used for external mode messages transactions.
The reason for having two is to allow for the full-duplex transfer of data i.e. the TO-TARGET port
only receives data from the server, while the FROM-TARGET port only sends data to the server. The
communication structure also consists of two upload ports, which are used for the uploading of logged

data. Two upload ports are used because a “ping-pong”** technique is used for the uploading of data.

Both the server and target application regularly” poll the message ports and upload ports to check for
new data. A polling techrique was employed, as opposed to the interrupt base approach used in the
CSDE system because this method does not compromise the real-time operation of the target i.e. the
target wil) not be pre-empted by lower priority messaging overhead. The messaging and data logging
function therefore have minimal effect on the targets real-time performance. A further advantage of
this method is that it does not use any interrupt resources on the target which is useful in cases where

targets do not support PC to target interrupts or have no spare interrupts?.

The message and upload ports are import components of the STP and warrant a detailed description,

which is presented in sections 4.7.2 and 4.7.3 respectively.

Server Application

g
=9
Message Port Message Port Uploagd Port Upload Port g
To Target From Target A B rg)
2

Target DSP

Fig. 4.12: Overview of Communication Channel

4.7.2 Message Port

This section describes the functional operation and purpose of the mai) port data structure. Mail ports

have two purposes, which are namely to facilitate transfer of external mode messages between the

* A “ping-pong” technique consists of the target writing data 10 port A and then once finished the server retricves (his data.
Simultaneously while the server is reading part A the target writes port B and then again hands off 10 the server. This process
continues until all the data is transferred. The advantage of this technique is that it allows the server ang target simultaneous
access 1o different parts of a share memory resource, thereby allowing for maximum data through put. This method is
recommended by 1l to achieve maximum data through put.

* The Server application uses 2 10ms timer and the target runs (he polling routine in the foreground.

* This applies 1o the ADC64 card as all jts interrupt resources arc used by on card peripherals, it does however support PC to

target interrupts by multiplexing inferrupts, but is clumsy to implement.

4-20

Chapter Four: Design Of THE RADE Framework

server and target and to allow local communication between the target and server,

The detailed structure of the mail ports used is shown in Fig. 4.13. The server application uses the
TO-TARGET mail port to send data to the target and the target uses the FROM-TARGET mail port to
send data to the server. This allows both applications simultaneous access to the shared memory
resource. Each mail port is associated with a mailbox and a status flag. The mailboxes are used to
signal the respective applications when data in the mail ports are ready to be received, while the status
flags arbitrate port access. Acknowledge signals are used to inform the respective applications when

data has been retrieved and to clear the port’s busy status for new messages.

Server Application

Port Status
Busy or Ready

Mailbox 3 To Targel Message Port Mailbox 4 From Target Messagc Port z
2

A o z

» é—” l Header Data >¢ e THeader Data z
Q Q = [®)]
g

Port Status
Busy or Ready

Target DSP

Fig. 4.13: Graphical representation of the Message Ports

A crucial feature of STP is to allow the incoming or outgoing external mode messages to be broken
into packets. Message packeting is needed, as the shared memory between the server and target is a
limited resource, and the sizes of these messages can be larger than the space allotted. Fig. 4.14 shows
the packeting of an external mode message being sent to the target. The message is first received by
the WinSock component of The Mathworks TCP/TP code; it is then broken into packets and
sequentially sent to the target via the TO-TARGET mail port. On the target side the packets are
reassembled and the complete message is passed to the message-processing component of The
Mathworks TCP/IP code.
The mail port structure dectaration is shown below, and consists of’
typedef struct {

msg_id msg_type;

int32_T current_size, full_size:

int32_T spare(2); //spare data for debugging

MsgHeader msg_hdr; //lexternal mode header

int32_T buf[MP_BUF_SIZE];
} Msg_Port,*p_Msg_Port;

1. message type (msg_type)
This data type is used to identify to the application reading the mail port what data it is being

received and what action to take. This information is normally used to sequence data packets

4-21

Chapter Four: Design Of THE RADE Framework

being received.
2. current_size, full_size
These variables contain size information about the data buffer section of the mail port
3. spare{2]
Two integer variables used to send additional information with the mail port header. It was
primarily used during debugging.
4. message header (msg_hdr)
This is the external mode header component.
5. buffer (buf)
This is a buffer that stores the data being transferred. Its size is limited by the amount of

shared memory allotted to the mail port and varies for different targets®’.

Server Appllication
Exiemal Mode WinSock
Messipc Processing
PC side STP* il Il Il Il s

P1 | P2 | P3 | P4 Ps

Target side STP*

. Me%sggf& External Mode
rocessing < Message Transfer To
Generalion Target

Targer DSP

Fig. 4.14: Pachetisation of external mode messages

4.7.3 Upload Data Port

This section describes the upload port, which is modelled along similar lines to the message port. The
differences are primarily that: data is only ransferred from targer to server; the amount of upload data
is considerably more than message data; and there is also an emphasis on maximising data throughput.

A functional diagram of the upload ports is shown in Fig. 4.15; there are two ports A and B, which are

7 On the PC32 the buffers size is 50 while on the ADCG4 it is 200.

Chapter Four: Design Of THE RADE Framework

used in a ping-pong”® fashion to transfer dara.

On the target application a logging buffer is filled with data. When this buffer is full it is sent to the

server via the upload ports. The buffer is broken into packets and transferred to the server using the

ping-pong technique. The server sequences these packets and then transmits the entire buffer to

Simulink. This operation is similar to the packeting of the message port as described above and used

because the logging buffer is much larger then the size of the upload port’s buffer.

Server Application
Mailbox 4 Upload Port A Upload Port B ;:'L
4
ggT lég” T Header| BUFA Tl—[eadcr BUF B g
< £ o)
_ E

Port A Status Pon B Starus
Busy or Ready Busy or Readv
Target DSP

Fig. 4.15: Graphical representation of the Upload Ports

4.8. Conclusion

This chapter presented the RADE framework within the context of T he Mathworks TCP/IP

implementation. It highlighted and described the four components of the RADE framework which are:

¢ The Simulink Communications layer

e The Server application

e The STP

a The RTI for the target platform.

The RADE framework presents a methodology to incorporate medium to low end targets within the

RTW, which allows full extemal mode functionality. The next two chapters provide details of

application of the RADE framework to the PC32 and ADCG64 DSP cards

2
* The ping-pong techniquc is recommended by 11 for achieving maximum dala through pu.

Chapter Five: RADE PC32 Implementation

CHAPTER FIVE:
RADE PC32 IMPLEMENTATION

5.1. Introduction

In chapter 4 a functional overview of the RADE framework was provided, which was mostly
independent upon hardware and implementation issues'. This chapter discusses the implementation of
the RADE framework to the PC32 DSP card. This entails the development of Simulink device drives,
for the peripheral card /O and the customising of the RTW files as shown wn Fig. 5.1. It also provides
an overview of the PC32 DSP card, the Texas Instruments TMS320C32 DSP and PWM card, as they

are required for the implementation of the RADE framework.

RADE Framework

Hardware Issues
and device drivers RTW Files
PWM Card PC32
-STP
TMS320C32 RTI
Expansion | ¢ Expansion -System Files
Header Header Interrupts
ADCs DACs

Fig. 5.1 : Overview of RADE PC32 implementation

The implementation of the RADE framework can be broadly categorised into two sections:
= Hardware issues. This entails the development of device drivers and is presented in section
5.5. Before device drivers can be developed, an overview of the hardware is needed and
sections 5.2 to 5.4 respectively provide information on the PC32 card, TMS320C32 DSP and
the PWM card.
s RTW files, which cover the development of the RTI, STP and system files is presented in

secfion 5.0.

' Chapter 4 provides dctails of data type conversions function, which arc hardware specific.

5-1

Chapter Five: RADE PC32 Implementation

5.2. Description of PC32 Card

N =pgr) oy

&

4 [U TNEEL D e el

Fig. 5.2: Photo of PC32 card

This section provides an overview of the PC32 DSP card from Innovative Integration (I[)
[INNOVATIVEL, INNOVATIVE2], shown in Fig. 5.2. It is intended to only describe the functional
operation of the card from a rapid prototyping perspective and neglects the complex low-level details,

which are not necessary for an understanding of the PC32 RADE implementation’.

A block diagram of the PC32 card is shown in Fig. 5.3, which highlights the tollowing aspects:
TMS320C32 DSP processor; on-board peripherals; external memory; Dual Port RAM (DPRAM); and
an expansion header. The discussion on the TMS320C32 processor is deferred to section 5.3 while the

remaining aspects are covered in this section.

As shown in Fig. 5.3 the PC32 card has 4 channels of ADC’s consisting of 16-bit Burr Brown
ADS7805° ADC’s[BURRBROWNI]. The ADC’s are double buffered have a maximum sampling
frequency of 100K Hz and can be triggered using three techniques:

s An external trigger signal.

e Either of the intemnal processor imers.

s By software.
Fig. 5.4 shows the different triggering methods. It should be noted that the ADCs triggers are grouped
into two banks as shown in Fig. 5.4 and jumpers 5 and 6 are used to select either of the processor

timers for triggering. For the RADE system all the triggering methods are supported but it should be

® An electronic copy of the PC32 software and hardware manuals are found on the CD attached.

* The datasheet can be found in the PC)2 hardware manual.

Chapter Five: RADE PC32 Impiementation

noted that the external triggering has limited use due to the strict timing conditions specified by II. The
ADC’s end conversion signal can also be patched to the processor’s external interrupt 2 pin, with the
use of a jumper. II have also included anti-aliasing filters and differential signal amplifiers on each
channel to allow for high precision sampling. The sampling voltage range ts also adjustable but the

default range of +/- 10V is adequate for RADE applications.

/4 4-channels /4 Bank of VA
' Signal conditioning ' 4 ADC’s
'\ §
o g8 /4 4-channels /4 Bank of /4
[§ ' Signal conditioning ' 4 DAC’s !
@)
Processor Peripherals
l P TMS320C32
! A
128 K Word(32 bit) | K Word(32 bit) A&
0 wait state DPRAM Eg:andselfn
A
PC32 16 Bit ISA
DSP CARD Connector

Fig. 5.3: Functional diagram of the PC32 card

There are 4 DAC's channels on the PC32 card, which use the Burr Brown ADS7805% 16-bit DAC IC
(BURRBROWN?2]. The DAC's are double buffered and are capable of a maximum conversion
throughput of 200K Hz. Each channel is connected to a gain stage to allow for difterent output voltage

ranges®. The DAC’s conversions can be iriggered by software or either of the two internal DSP

processor timers’.

The PC32 card is capable of supporting 128 K Words 10 2M Words of static external memory (Fig.
5.3). The cards being used with the RADE system have 128 K Words of external memory. The
external memory used, supports zero wait sate access, which allows for fast external memory access.
A DSP cards performance and ability to run large programs is closely linked to memory sizes i.e. more
memory more power, The 128K words, memory size, on the PC32 was sufficient for motion control

applications tested on the RADE PC32 system.

¥ The defaull range of +/- 10V is uscd

* The RADE system uses software triggers as this frecs up the timers fos other uses and reduces the scrup complexity for the

USCT.

5-3

Chapter Five: RADE PC32 Implementation

External
» ADCO
Software ADC Bank 0
Trigger
| » ADC I
—b-e
Timer 0 [—
JPS
Timer i P6
L e » ADC?2
> ADC.Bank |
Trigger
External »| ADC3
Software

Fig. 5.4: ADC triggering

The PC32 card (Fig. 5.3) also comtains 1K Word of DPRAM that is used for target to PC
communications. Both the target and the host PC can access this memory and access is arbitrated
through the use of four semaphores. The STP over lays the message and uploads ports within this

memory.

The PC32 card supports external interrupts from the host PC, ADC’s, DAC’s and extemal sources,
these signals can be patched to the processor’s external interrupt pins with the use of jumpers. The
RADE system supports the use of all board interrupts within Simulink, however the PC interrupt bas

Iittle use within Simulink and is not supported.

5.3. TMS320C32

This section describes the target DSP used on both the PC32 and ADCG64 DSP cards. It provides a
review of the salient features of the processor pertinent to the RADE system. The Jow-level details are
omitted as all target code written for the RADE system is done in C, which is relatively independent of

the intemal processor operation.

The TMS320C32 is part of TI C3X family of DSP processors {TEXASI1]. All processors within the
C3X family are C code compatible (i.e. have C compliers available) and differ only by internal

memory sizes and types of on-chip peripherals. A functional diagram of the TMS320C32 is shown in
Fig. 5.5. This processor contains:

54

Chapter Five: RADE PC32 Implementation

o 32 bit data bus.

s 24 bit address bus.

s 32 floating point CPU.

e Two banks of 256 Words of on-chip memory used for either program or data storage.
e 64 words of program cache.

¢ 2 Direct Memory Access (DMA) channels.

¢ One senal port.

¢ Two internal 32-bit timers.

¢ Four extemal interrupts.

Program RAM Block RAM Block
Cache 0)
64 x 32 256 x 32 256x 32
T I 1x A A I
/24 ad.leess bus \ 4
’ A) Ixternal
/32 l dala bus Yy v Memory
I A
A 4 v Vv
A 4
2 channel
4 External > .) c DZL‘;‘} A
Interrupts 32 Floating Point ontrolier »| Serial Port
CPU
; Tumer 0
32 bit
TMS320C32 L 5 Timerl
32 bit

Fig. 5.5: TMS§320C32 block diagram

The C32 uses a modified Harvard architecture internally whereby the program address and data buses
are separate from data address and data buses. This allows for simultaneous access 10 internal program
and data stores. These buses are multiplexed into a single address and data bus for external memory
access. The processor also supports instructions pipelining which allows for one cycle instruction
execution provided the pipeline is optimally used®. The C32 has an instruction cycle time of 33ns
(30M Hz) with a maximum instruction through put of 60 Million Floating Point Operations
(MFLOPs)’,

¢ The TI C compiler is designed to produce highly optimised codc and ensures minimally pipeline conflicts.
7 This processor includes parallel operations in its instruction set and is therefore able (o executc two instructions in onc

machine cycle, This is however ot a sustainable Jevel of performance.

5-5

Chapter Five: RADE PC32 Implementation

In the design of the RADE system, emphasis is placed on rapidly evaluating real-time control
strategies and not the efficiency of the code itself. As a result there is no use of on-chip memory and
DMA channels in the RADE system. While there may be performance benefits with their use, these
are offset by the aim of the RADE system to produce generic code®. With processor technology
changing rapidly, there is little point to hand optimise code as conventional wisdom dictates that it is
easier to use a faster processor. A point in case is the TI 1999 release of the TMS320C33, which is pin
compatible with the C32 but 3 to 4 times faster [TEXAS2].

5.4. Description of PWM Card

The RADE systern was designed for motion control applications but is applicable to a much wider
spectrumn of applications, which also included motion control applications. Therefore a PWM add-on
card was designed by M. Walker [WALKERI], to interface via the expansion header to the target DSP
and provide PWM signal for an external inverter. This reduces the processing burden on the target
processor and allows for more complex models (v be implemented. The PWM card also supports a
Tacho interface, which atlows for the easy interfacing of incremental rotary encoders to the target

DSP. A photo of the PWM card appears in Fig. 5.6 and a photo of the combined host PC, target DSP
and PWM card is shown in Fig. 5.7.

Expansion Fiber Optic
Header Transducers

SARARL R

ARTTERY T

Fig. 5.6: Photo of PWM card

A block diagram of the PWM card is shown in Fig. 5.8. This card primarily consists of two ASIC’s by
Hanning Eleckiro-Werke GmbH, the PBM 1/87 for PWM signals [HANNING1] and the TC300SH for

¥ The RADE system is focused on Educational Value as opposed 10 efficient real-lime code,

5-6

Chapter Five: RADE PC32 Implementation

the tacho interface [HANNING?). Both these ASIC’s are memory mapped into the target DSP’s

external mernory space and setup by writing command signals to the respective control ports.

J‘-“- _.v' E - : T 'L{%ﬁ_."‘ _A |
Fig. 5.7: The DSP and PWM plug into the target PC

2

A 4 N

Header
connector o DSP card

Hanning Tacho Hanning PWM
1C IC
3
y
PWM Fiber Optic
DSP CARD Transducers
S 2 . AN
Incremental ' Invent :
) Tacho . nverter

.............................

Fig. 5.8:Block diagram Of PWM card

The PBM 1/87 PWM ASIC provides switching signals for a 3-phase® frequency inverter, and is

designed to generate a sinusoidal supply at the desired voltage, frequency and phase. The target

® 3.phase signals are intended for induction machines applications. Single phase operation is also possible for DC motor
applications

5-7

Chapter Five: RADE PC32 Implementation

processor is responsible for writing the required PWM setting while the PBM 1/87 performs all the
necessary calculations. The PWM ASIC also includes an interrupt feature, which allows for the
synchronous sampling of current and voltage waveforms i.¢. sampling only occurs when, no inverter

switching'® [STYLO1] is taking place and is therefore synchronised to the inverter,

The PWM card also uses high speed optical transducers to enable the PWM signals to be transmitted
via fibre optic cable to the inverter. This approach allows for:

¢ Electrical isolation between the computer and inverter.

e Prevents ground loops.

e Provide better noise immunity.
The use of fibre optic transducers improves the safety of the system and goes a long way to “student

proofing” the system, which is a high priority in an educational environment.

The TC3005H tacho ASIC allows for the simultaneous interfacing of two incremental rotary encodes
to the target DSP. The tacho ASIC monitors the incremental tacho’s signals and provides both position
and speed information. An added advantage of the tacho ASIC is that it allows for both digital and
analog incremental tachos to be used. The target DSP communicates with the tacho ASIC using a

memory mapped technique, as discussed above and is able to read position data from registers on the

tacho chip.

5.5. Device Drivers

An important component of the RADE framework is the development of target specific device drivers
for the RTW, as they allow generated code to communicate with target peripherals. This section
describes the device drivers used with the PC32 target and explains their operations. The RADE PC32
has the following peripheral incorporated into Simuiink:

¢ ADCs

s DACs

® Processor asynchronous interrupt support and internal timers.

e PWM control block for the PWM card"'.
Fig. 5.9 shows the device driver library for the RADE PC32 with the device driver blocks. The

individual device driver blocks are now discussed in more detail.

1% Synchronous sampling allows signals to be sampled relatively free of switching noise.
" The author acknowledges Stylo's [STYLOI] contribution in the development of the device drivers as the device drives
from the CSDE system provided a good framework.

5-8

Chapter Five: RADE PC32 Implementation

NC
TriggerO
ADCO b 3 DACO 0 Hua
a1 b
ADCI b % DAC1 NITS AD TRIGGER
B2p
ADC2 b S oAz b Ja
oo 4 e TMRD b PWM Black
R
PC3zZ ADC FC32 DAC ™RI b
PC32 Int Suppon

Fig. 5.9: Device driver blocks for PC32

5.5.1 ADC’s

The PC32 card contains 4 ADC’s and the PC32 ADC (Fig. 5.9) device driver block uses the I
read_adc function to read each of these ADCs. The read_adc function 1s 2 Zuma toolset function and
is described in Table 5-1. The pe32_ad.ilc file contains the device driver, of which the important
segment is listed below. The value read from the ADCs are 2’s complement signed integers and are
divided by 3276.7 to convert them into the voltage being sampled i.e. +/- 10V. It is worthwhile to note
that after the division the values are stored as 32 floating-point numbers, and therefore, there is
minimal degradation to the dynamic range of the data. The 2%<LibBlockOutputSignal(0,"","",0)> is a
TLC function used to write to the output ports of a block [MATHWORKSS3]. In the case of the PC32

card, there are four output ports, which correspond to the four ADC’s.

Y%function Outputs(block, system) Cutput
" %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) *J
{* read in the corrected values from A/D and scale to +-10 */

%<LibBlockOutputSignal(0,"*,"*,0)>=read_adc(BASEBOARD, 0)/(3276.7); %%ADCO
%<LibBleckOutputSignal(0,**,",1}>=read_adc(BASEBCARD, 1)/(3276.7); %%ADC1
%<LibBlockOutputSignal(0,"™,™.2)>=read_adc(BASEBOARD., 2)/(3276.7); %%ADC2
%<LibBlockCutputSignal(0,™,™,3)>=read_adc{BASEBOARD, 3)/(3276.7); %%ADC3

%sendfunction %% Oulputs

Function Prototype Description

read_adc(unsigned int site, unsigned int channel); read_adc{) reads a 16-bit sample from the ADC
indicated by site and channel. Thea result is sign
extended to 32 bits.

Table 5-1: The read_adc function

5-9

Chapter Five: RADE PC32 Implementation

L. ADC rtrigger
The ADCs used on the PC32 card are double buffered i.e. the reading of an ADC value and the

triggering'’ are two separate operations. The ADCs device driver discussed above did not
perform conversion triggering, which is necessary after each sample. This intended omussion is
rectified with the ADC trigger device driver that provides this feature. The device driver is found
in the adtriger.ilc file and a code segment representing the important part js listed below. The
ADCs are triggered by a memory write 10 their respective memory-mapped address; this does not
however affect the data stored from the pervious sample. The reason for separating the ADC read
and trigger operations is to allow for independent external triggerring of the ADCs via one of the
processors interrupts. This feature is used in the implementation of a DC motor contral, discussed
in chapter 7.

%functicn Outputs(block, system) Output
I* %<Type> Block: %<Name> (%<ParamSettings.F unctionName>) */
/* a write lo those addresses triggers a conversion on A/D */

{
“(ADCO)=0; %% Trigger conversion
*(ADC1)=0; %% Trgger conversion
*(ADC2)=0; %% Trigger conversion
*(ADC3)=0; %% Trigger conversion
)

%endfunction %% Outpuls

5.5.2 DAC’s

The DAC’s on the PC32 card are accessed with the write_dac function, which is described in Table
5-2. The device driver is found in the pc32 da.ilc file and the main segment is listed below. As with
the ADC’s, the DAC’s also use a 2°s complement signed integer value. This value is generated by
scaling the output'’ by 3276.7 and then converting it to an integer. The DACs are triggered
immediately after a value is written to them by the converr_dac function. It should be noted that the
DAC’s used are double buffered and the writing of data and the triggering of a conversion are two

separate operations.

%function Oulpuis(block, system) Oulput

I* %<Type> Block: %<Name> (%<ParamSeftings.FunctionName>) */
[Start an output conversion*/

{
write_dac(BASEBOARD, 0, %<LibBlockinputSignal(Q,","",0)>"(3276.7));%%write to latch
convert_dac(BASEBOARD, 0); %% trip conversion
write_dac(BASEBOARD, 1, %<LibBlocklnputSignal(0."","™,1)>*(3276.7));
convert_dac(BASEBOARD. 1);
write_dac(BASEBOARD, 2, %<LibBlockinputSignal(0,™,™,2)>"(3276.7));
convert_dac(BASEBOARD, 2);
write_dac(BASEBOARD, 3, %<LibBlockinputSignal(0,™ "".3)>*(3276.7)):

12 . . . L.
ADC rigger sources are discussed in section 5.2.
13 - - .
The value being passed to the DAC is constrained 10 the range +/- 10. In simulations wcre larger signals are writien 10 the

DAC's a pain block musi precede these signals; this will allow for scaling to the desired range.

5-10

Chapter Five: RADE PC32 Implementation

converl_dac(BASEBOARD, 3);

)
%endfunction %% Outputs

- T\

Function Prototype Description

write_dac(unsigned Int site, unsigned int channel, int | write_dac() delivers a new sample value to the
DAC indicated by site and channel. The DAC
output will change on the next DAC conversion,
iriggered by software or hardware.
conver_dac(unsigned Int site, unsigned int channel); | conver_dac() triggers a conversion on the DAC
indicated by site and channel. A new data sample
will be available on the output line as soon as the

hardware conversion time has gassed.

Table 5-2:The write_dac function

value);

5.5.3 PWM

The PWM block device driver (Fig. 5.9) is used to write the required PWM setting to the PWM ASIC.
This device driver is found in the pwmblock.tic file and the main segment is listed below. During real-
fime code execution the polipwm() function polls the PWM ASIC unti] it is ready to receive data.
When this is true the required output values UA and UB are written to the PWM ASIC. The last
serting to be written depends on the control mode (CtriMode) parameter, which specifies either the

frequency or phase angle register of the PWM ASIC.

%function Outputs(block, system) Output
I" %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */

{
*(Status_word) = 129;
pollpwm():
*(Data_word) = (int)%<LibBlockinputSignal(0, "", *", 0)>; %%UA
pollpwm():
*(Data_word) = (int)%<LIibBlocklnputSignal(0, *“, ™, 1)>:.%%UB

if ((int)%<CtriMode> == 1) /* skip three values to write frequency */
{pollpwm(};
*(Status_word) = 8387;)

pollpwm();
*(Data_word) = (int)%<LibBlockinputSignal(0, ", *", 2)>; %% CtriMode

%endfunction %% Outputs

554 Asynchronous Interrupt Support

The interrupt support block for the PC32 card provides functionality that allows the user to
synchronise execution of subsystems to external events. These events include external interrupts and
timer overflows. The parameters used to setup this block are shown in Fig. 5.10 and consist of:
1. External Interrupt Type
This setting configures external interrupts for either edge or level triggering
2. External Timer Pins (TCLKX)

5-11

Chapter Five: RADE PC32 Implementation

This setting is used to disable/enable external timer signals that are used to trigger ADC’s and
DAC’s. The settings are either External to disable timer signals or Timerx to enable signals.
The purpose of this parameter is to allow use of the internal timers without affecting the
triggering of the ADC’s or DAC’s'".

3. TimerX

This parameter is used Lo setup the frequency of timer overflows.

1 Suppaort

Fig. 5.10: Parameters for interrupt block

4. [nterrupt Numbers
This is an array of the interrupt vector addresses for the respective interrupt sources. This
parameter is hardware specific and is setup once and does not need to be modified by the user.
The numbers use correspond to the following interrupt sources:
» (1): External Interrupt 0.
s (2): External Interrupt 1.
» (3): External Interrupt 2
s (4): Extemal Intenrupt 3.
s (9): Internal Timer 0.
e (10):Internal Timer |
5. Base Rate Interrupt
This parameter is used to select which interrupt is used to execute the main simulation loop.

The occurrence of this interrupt is expected to be regular as it is used to maintain the absolute

" It is also possible to use jumper sctting on the PC32 card to manually disconnect these signals however the software

approach aliows for the same functionality without the need to modified jumper settings.

5-12

Chapter Five: RADE PC32 Implementation

time, integration of continuous states and data logging operations.

The previous paragraph described the interrupt block from a users perspective and ignored the internal
workings, which are necessary for a proper understanding of this device driver as it modifies the

workings of the run-time interface.

Ininalisation]

Modified Simulation
loop ISR
Attached to Base Rate

attach ISR for
Simulation Loop

is interrupt
Base Rate

A
RETURN FROM
ISR

: Time=Time+step_size :

attach ISR : v
for current i l
. ' Call '
1nterrupt) . '

)) Subsystem Function)
if present ' ;
1 :

Iy s v s
move to ' | Execute Normal Simulation Loop :
next interrupt . '
: !

for
final interrupts

Continue with
rest of [nitialisation

Fig. 5.11: Flow diagram for the modified Run-Time interface

The Mathworks allows Simulink the use of triggered function called subsystems', which produce
independent functions when real-time code is generated. These functions can be called from the
interrupt sources. These functions have to be attached to their respective interrupt sources by the run-
time interface. A flow diagram detailing these changes to the main()'® function is shown in Fig. 5.11.

There are two parts, the initialisation and the simulation loop ISR that require modifications. The

'* The Mathwaorks impose a restriction on triggered subsystem, which prevents them from containing continuous state
variables i.e. all block within triggered subsystem with dynamical behaviour must be of the discrete type.

*¢ The siendard main() function is discussed in chapter 4.

Chapter Five: RADE PC32 Implementation

initialisation part entails the looping through each of the possible interrupts and installing ISRs for the
interrupts that are connected to subsystems. The unused interrupts are ignored. The interrupt that is
used to generate the base rate is attached to the simulation loop and the subsystem function is called
from within the modified simulation loop. The device driver for the interrupt block is found in the

iiinterrupt.tlc file

5.6. Customising RADE for the PC32

During the customising of the RADE system for the PC32 card the following aspects needed to be
addressed:

1. The Simulink communication layer as discussed in chapter 4.

2. The runtime harness as discussed in chapter 4 and section 5.5.4 above.

3. The implementation of external mode and the STP.

4. The system target file

5. The template make file.
The latter three issues listed above, are discussed in this section. The system files used for the RADE

PC32 are listed in Table 5-3 with more details present in the following sections.

System File Name

System Target File grt_.c3x.tlc
Templale Make File PC32.tmf

Simulink Communications | ext_comm_C3x.dil

Layer

Run-time hamess PC32 _grtm.c

Table 5-3: Files used for the RADE P(C32

5.6.1 External Mode and the Server to Target Protocol

When applying the RADE framework to the PC32 card the implementation of the external mode and
the STP represents a large portion of the work. This section documents which files are used on the PC
and the target platforms and their respective functions, as shown in Table 5-4. In addition this section

also elaborates upon the physical implementation of the STP.

File Name Purpose

ext_srv_pc.cop Implements WinSock part of external mode

ii_comms_pc.cpp PC side of STP

ii_pc32.c Target side of STP

5-14

Chapter Five: RADE PC32 Implementation

File Name Purpose

ext_srv_c3x.c | External mode message processing and data
logging routines

Table 5-4: Files used for external mode and STP

Server Application

WinSock
e)
Processing eX!_STv_po.Ccpp l

PC side STP* 4———'—* ii_comms_pc.cpp }

i Hardware Comms
: Channel

Target side STP* |[¢{————— iipc32c |

Message

Processing & *——-—{ ext_srv_c3x.c l

Generation
Target DSP

* Server 1o Target Prolocol

Fig. 5.12: Files used for external mode and STP

Fig. 5.12 shows the entire interaction between the external mode and STP components with the
respective files involved. The ex/_srv_pc.cpp and ii_comms_pc.cpp files are used on the PC platform;
the former 1s the WinSock component of The Mathworks TCP/IP external mode implementation,
while the latter is the PC component of the STP. On the target platform the ext_srv_c3x.c and
ii_pc32.c files are used. They respectively provide the external mode message processing and the
target component of the STP. The STP framework, discussed in chapter 4, explained the operation of
both the message and upload ports but neglected the implementational details for the PC32 card. This

section now describes theses details i.e. the physical charactenistics of the message and uploads ports.

The PC32 card as stated before, uses DPRAM to transfer data between the PC and target platforms.
This resource is mapped in both the PC and PC32 memory and can be accessed as normal memory
from either platform. This allows for the message and upload ports to be directly overlaid in the
DPRAM memory segment. The access to the ports themselves is controlled by the use of status flags

and mailbox semaphores, which prevents both platforms from accessing the same region of memory

5-1§

Chapter Five: RADE PC32 Implementation

simultaneously'’. The layout for the DPRAM region is shown in Table 5-5. As seen from this table,
each port buffers consumes the lion’s share of the DPRAM memory, which allows maximum data
throughput. The upload port’s buffers are significantly larger as to accommodate for the higher

volumes of logged data relative to external messages.

Port Size of port Location offset Description
(32 bit words) (decimal)

From Server 57 (buffer = 50) 0 This port recieves data from the PC

To Server 57 (buffer = 50 57 This port sends messages 10 the PC

Upload Buffer A | 408 (buffer = 400) 114 This the first of the upload port used
for sending logged data lo the PC

Upload Buffer B | 406 (buffer = 400) 520 This the second of the upload port
used for sending logged data to the
PC

Total 926 The total size of portsr for the
fransfer of data is 926. 82 words are
unused

I —— |

Table 5-5: DPRAM layout

The code listed below, has been extracted from the ii_commis_pc.cpp file, and shows the overlaying of
the message and upload ports in DPRAM on the PC platform. This process entails the setting up of
pointers to their respective position in DPRAM. On the PC platform the logical address location of
DPRAM is non-unique and is found using the ZUMA target_cardinfo() function. This address is then
copied to the RAM_START variable and used as the starting point for the first message port. The

remaining message and upload ports are then sequentially overlaid into DPRAM.

vold Setup_Comms{() //PC platform
{

/lused to initionalised global data
//Over laying two msg port onto DPRAM
CARDINFO* dsp = {CARDINFO*}target_cardinfo{0); I/ (CARDINFO®)isr->cardinfo;
RAM_START = (int)dsp->BusMaster, Addr;

To_Targe!_MP=(p_Msg_Port)RAM_START;
From_Target_MP=(p_Msg_Port)((UINT)RAM_START+sizeof(Msg_Port));

/lover lay upload buffer onto DPRAM after the two msg ports
Buf_A=(p_upload_buf)({UINT)RAM_START+2*sizeof(Msg_Port)):
Buf_B=(p_upload_buf}({UINT)RAM_START+2"sizeof(Msg_Port) +sizeof(upload_buf)):

linitialise buffer parameters
8uf_A->current_size=0;
8uf_A->free=UPLOAD_BUF_SIZE;
Buf_A->full_size=0;
)
The code listed below, has been extracted from the Jji_pc32.c file, and details the overlaying of the
message and upload ports in DPRAM on the PC32 card. This function is very similar to the one listed
above with exception that the starting location of DPRAM on the target platform is fixed at address
0x1000. Aside from this fact both these functions operate in a similar fashion.

void Setup_Comms() //target platform

' 1t is however possible for different regions of DPRAM 10 be accessed simultaneously by both the 1arget and PC platforms.

Chapter Five: RADE PC32 Implementation

/lused to initlonalised global data

HIOver laying two msg port onto DPRAM
From_Server_MP=(p_Msg_Port)RAM_START.// RAM_PORT=0x1000
To_Server_MP=(p_Msg_Port)({int) RAM_START+sizeof(Msg_Port)):

llover lay upload buffer onto DPRAM after the two msg ports
Buf_A=(p_upload_buf){{int)RAM_START+2sizeof(Msg_Port));
Buf_B=(p_upload_buf){((int)RAM_START+2*sizeof(Msg_Port) +sizeof(uptoad_buf));
finitialise buffer parameters
Buf_A->current_size=0;

Buf_A->free=UPLOAD_BUF_SIZE;
Buf_A->full_size=0;

5.6.2 System Target File

The system target file used for the RADE PC32 system is the grt_C3x.tlc file and is based on the
standard generic real-time system target file provided by The Mathworks (grt.t/c) [MATHWORKS4].

The modifications to this file involve two parts; the default parameters and RTW build options

The default parameters are used to setup the:
]. System description
2. Template make file
3. The RTW build function
4. External mode Simulink communication layer
The code segment used to set these parameters is listed below.

%% SYSTLC: Generic Real-Time Target for PC32\
%% TMF: pc32.tmf MAKE: make_rtw EXTMODE: ext_comm_c3x

The RTW build options are used to pass user defined parameters to the make file. This is
accomplished by adding in new variables into the option window and by modifying the RTW build
option section of the system target file. The segment of one of these variables is listed below, with the

entire file being listed in appendix C. The parameter being defined in this segment is the server name.

rtwoptions(6).prompt = 'Server name’;
rtwoptions(6).type = 'Edit;
rtwoptions(6).default ='magash’;

rtwoptions(6).ticvariable = 'server_name’;
rtwoplions(6).makevariable ='SERVER_NAME’;
rtwoptions(6).tooltip = [Enter name of server computer];

The complete option window is shown in Fig. 5.13 and consists of;
1. MAT File modifier
This parameter is used when data is being logged to a MAT file and is not supported by the
RADE system.

317

Chapter Five: RADE PC32 Implementation

2. External Mode

Used to select an external mode build.

Hle Rl Eire el

Fig. 5.13: RTW build aption window

3. Function Management; Function Split and File Split Threshold
These parameters are a standard feature of the RTW and are used to manage file and function
sizes. As this feature has minimal impact on the RADE system it has not been used.

4. Server and Port
These parameters specify the location of the target PC and are used for the automatic
downloading of the target application.

S. Quick Build
This flag, when set speeds up repeated mode) builds by preventing unnecessary compilation of
static files.

6. Heap and Stack
These parameters are passed to the linker and setup the required heap and stack sizes.

7. Loop Rolling Threshold
This parameter is a standard feature of the RTW and is used for code optimisation by
wrapping TLC algorithms that repeat more then the threshold value, into a for loop.

8. Show Elimunated Statements

Used to comment statements that are eliminated by the TLC optimising process.

5-18

Chapter Five: RADE PC32 Implementation

9. Verbose builds

Used to enable feedback during the RTW build process.
[0. Inline Invariant Signals

Used to inline constant signals that are passed between blocks.
11. Local Block Outputs

Used to place block output variables into a local scope as opposed to a global scope.

5.6.3 Template Make File

The template make file used for the RADE PC32 system is the pe32..mf file. This file is responsible
for producing the make file that builds the target application. As template make file is well
documented, this section only highlights a few of the changes that have been made to this file. The

complete file listing is found in appendix C

In the previous section the RTW build parameters were discussed. These parameters are passed to the

make file by using tokens. The segment that is used for this process is listed below.

SERVER_NAME |>SERVER_NAME<|
SERVER_PORT |>SERVER_PORT<|
I>QUICK_BUILD<|

|

I

QUICK
HEAP >HEAP_SIZE<|
STACK >STACK_SIZE<|

The section responsible for the downloading of code is histed below. Once the target application has
been built the make file download section is called and the auto_download application is executed.
From the listing below it is evident that make utility inserts the appropriate parameters for the
download process, which are passed from the RTW options window,

_ROOT = $(MATLAB_ROOT)\rtwAchit
PC32_DOWNLOAD = $(lI_ROOT)\bin\auto_download.exe
download :
$(PC32_DOWNLOAD) -f§(PROGRAM) -s$(SERVER_NAME) -p$(SERVER_PORT)
#the line above expanded typically looks like the line below:
¢:\mablabri 1\rtwAclitbin\auto_download —fsample_model.out —starget_pc —p700
#

Chapter Five: RADE PC32 Implementation

5.7. Conclusion

This chapter discussed the implementation of the RADE framework to PC32 card and highlighted the
development of the device drives and the STP. It also provided 2 hardware overview of the PC32 card,
the TMS320C32 DSP and the PWM card. This chapter exclusively concentrated on the
implementational details and excluded the demonstration of the RADE system to the educational
applications, which is present in chapter 7. The next chapter applies the RADE framework to the
ADCG64 card and draws on this chapter for the common elements that exists between the two systems.

These elements include the TMS320C32 DSP, PWM card and a large potion of the system files for the
RTW,

5-20

Chapter Six: RADE ADCG64 Implementation

CHAPTER SIX:
RADE ADC64 IMPLEMENTATION

6.1. Introduction

The previous chapter described the application of the RADE framework to the PC32 card. This
chapter will describes its application to the ADC64 card. It draws upon the RADE PC32
implementation as both the ADC64 and PC32 cards are TMS320C32 DSP based. While this similarity
eases the RADE implementation for the ADCG4 card, there are significant differences in its

implementation.

An example of a difference between the cards is their communication channel; the PC32 uses the ISA
bus while the ADCG64 uses the PCI bus. This difference serves as an ACID test for the portability of
the RADE framework across different targets and illustrates the flexibility of the STP.

The structure of this chapter is similar to chapter 5. It starts with a functional description of the
ADCG64 card, progresses to the developrent of device divers and ends with a discussion of the RADE
ADC64 implementational details. A discussion of the processor and PWM card for the ADC64 card is

excluded from this chapter as this has already been presented in chapter 5.

6.2. Description of ADC64 Card

This section gives a brief description of the ADC64 card shown in Fig. 6.1. The ADC64 card uses the
TMS320C32 DSP and interfaces to the host PC via the PCI bus. It also contains 8 ADC channels, 2
DAC channels, five external timers, and 128K words of exiernal memory. These peripheral

components along with the processor are shown in a functiona) diagram in Fig. 6.2

The ADC64 card supports 8 channels of simultaneous ADC’s and uses the 16- bit Burr-Brown
ADS7805' [BURRBROWNI!] ADC’s; as with the PC32 card. On the ADC64 card, the triggering of
the ADC’s are done in pairs i.e. there are four-trigger signal for the 4 banks of ADCs pairs. The trigger

signals themselves can be provided by one of the 5 external fimers or by an extemal source’, Fig.

' The datasheet can be found in the ADC64 hardware manual. An clectronic copy is on the CD attached.

® The external trigger signals for the ADC’s are negative edge sensitive and do not have the sirict timing specification as with
the PC32 carg.

Chapter Six: RADE ADC64 Implementation

6.3.shows this. Unlike the PC32 card, which uses jumpers to select the trigger source, the ADC64 used
a software programmable trigger matrix that can patch any of the external timer signals to the desired
ADC bank. (Section 6.3.1 elaborates on this topic). The ADCG64 card also provides differential inputs
with anti-aliasing filters and a gain stage on each channel. The default voltage range for sampling 1s

+/-10V.

The ADCG64 card supports 2 channels of DACs, which uses the Burr-Brown DAC712 IC
[(BURRBROWN?2]. These channels also contain low-passing filters for analog signal reconstruction.
The default output range for the DACs is +/-10V.

As mentioned above the ADC64 card contains 5 external timers, which are implemented using the
82C54 timer IC. These timers are used primarily for the generation of trigger signals for the ADCs and
DACs. The use of these timers together with the trigger selection matrix provides an effective method

for the implementation of multirate sampling on this card. See Fig. 6.3.

TUIETIN T wre
RIJNOCHS
LD

v

o, | |

Fig. 6.1 Photo of the ADC64 DSP card

The ADC64 communicates with the host PC wvia the PCI bus and uses an AMCC S5933 PCI
[AMCCI1] matchmaker ASIC for this purpose. The DSP on the card communicates to the PCI ASIC
via memory-mapped registers. There are two modes of data exchange allowed on the ADCG64 card,
namely bus master’ transfers or mailbox transactions, with both being supported concurrently. Bus

master transfers are ideally suited for the transfer of large banks of data while the mailboxes provide a

* During bus master transfers the PCl ASIC controls the bus and allows for burst transfers of data between the PC and
ADCG4 carg.

Chapter Six: RADE ADC64 Implementation

convenient method for the control of communication between the two platforms. The use of the PCI
bus significantly improves data throughput on the ADC64 relative to the PC32 as the ADC64 card is
rated at 41 M-byte/sec-transfer rate while the PC32 only achieves a 400Kbyte/sec-transfer rate. Due to
this difference in bus architecture between the ADC64 and PC32 cards the STP implementation for the

ADC64 differs and warrants a discussion, which is presented in section 6.4.1.

The ADC64 card also supports end of conversion and PC interrupts which are respectively patched to
external interrupts 2 and 3. The first two interrupts EI 0 and EI 1, on the ADC64 card, are used by the
PCI ASIC during data transfers. It should also be noted that the PC interrupt is used during bus master
transfer. Due to 3 out of the 4 external interrupts being used for on board functionality only the end

conversion interrupt 1s supported for the RADE ADC64 system. Section 6.3.3 elaborates on this topic.

.| Triggering
"l Mati
amx 5 Extemal
¢ Timers
/8 8-channels /8 Bauk of /8
g Signal conditioning ' 8 ADC’s
o
= 3
Qa5 2 2-channels /2 Bank of 2
s Signal conditioning | 4 ADC’s
Processor Peripherals
l P TMS320C32
128 K Word(32 bit) i
0 wait state PCI Matchmaker Expansion
Header
\
ADC64 .
DSP CARD 32 bit PCI
Connector

Fig. 6.2 Functional diagram of the ADC64 card

Chapter Six: RADE ADC64 Implementatjon

External
ADCO
. . . ADC Bank 0
Selection |Tripger Signal Software Triggaer
Eg. Ext imer 3 Trgd T/ Trig 0 ADC 1
Eg. Ext limer 0 Trig) : . .
. L] [J e]
Eg. Exltimer | Tng 2
External
Eg. Exl timer 0 Trig3 ADC6
Software ADCBa.nk 3
Trigger Matrix Trigger
ADC 7
> Trig3

Fig. 6.3: ADC trigger sources for the ADC64 card

6.3. Device Drivers for the RADE ADC64

In chapter 5 the device dnvers for the RADE PC32 system were explained and much of this is relevant
to the RADE ADCG64 system. The peripherals supported within Simulink on both cards fzll into
similar categories i.e. there are both DACs, ADCs, PWM blocks, and Interrupt biocks. The DAC,
PWM and Interrupts device driver blocks are closely based on the PC32 implementation, while the
External Timers and ADC blocks have been specifically designed for the ADCG64. For this reason the
new device driver blocks are discussed in detai] while the modified device drive block are explained in

perspective of the PC32 implementation.

Ei2 p
ADACS U=
#Ub ™R b
N OAC! o cut
TMRI p
ADCB4A PWiv. Blook
ABCBA DAC ADCBA Int Buppodt ADCE4 Exd Timues
ADC D b ADC2b ADC 4 b 20T o b
ADC 1 b ADC3L Aceh | socth
ADCO1 ADC23 ADC a5 ADC 87

Fig. 6.4:Device Drivers for the ADC64 card

6-4

Chapter Six: RADE ADC64 Implementation

6.3.1 ADC'’s

IBlock Parameters: ADC 4.5 (]
- Device Diiver lor ADCE4 fmask] (k] —— o

' Uudwmmmnsp card
Ensure exteinal taner e T
mmma&mrmsnaw twmt«a igger souce

|
i &

: - Edu TIhguSm Iswwme Trvgger ﬂ

S EXT Timer 0
E4EXT Yimer 1
EXT Timer 2
EXT Timer 3
EXT Time: 4

Fig. 6.5:ADC trigger source selection

On the ADC64 card there are 8 ADC channels, which are grouped in pairs for triggering and therefore
form four banks of ADCs. Each of these banks is individually implemented in Simulink, as seen in
Fig. 6.4 where there are four ADC blocks. Using the respective ADC block’s parameter window the
appropriate trigger source can be selected as shown in Fig. 6.5. The ADC64 card also supports the use
external ADC triggers concurrently with any of the internal triggers i.e. both signals are ORed to
produce the final trigger signal. For exclusive external triggering an unused timer must be selected as
the trigger source with its frequency set to 0 Hz. (The setting-up of the external timers frequencies is

explained in the next section)

The first part of this section described the operational details of the ADC blocks and attention is also
given to the implementational details. A single device driver found in the ade64_ad.tic file is used to
implement the four ADC blocks. This is done by passing the ADC’s bank number parameter to the
device driver file, which allows for the physical ADC channel numbers to be generated. The code
listed below details this process. The LibBlockParameterValue (P1,0) function extracts the ADC
bank number passed .The physical ADC channels are generated using this value and are then stored in
the ADC _num0 and ADC_numl vanables. For example if bank 2 of the ADC was used the physical
channel numbers would be 4 and 5 i.e. ADC 4 and S make up bank 2. The reading of the ADC then
follows a similar procedure to the PC32 implementation and uses the read_ade function, previously
discussed in chapter 5. The final part of the code implements the ADC software triggering and is only
included if trigger source (Trig_s) equals 1, which corresponds to software trigger source selection in
the parameter window.

%function Oulputs(block, system) Output
I" %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
I* read in the corrected values from A/D and scale fo +-10 */

%assign Trig_s= LibBlockParameterValue(P2,0)

%assign ADC_numQ = LibBlockParameterValue(P1,0)*2

%assign ADC_num1 = LibBlockParameterValue(P1,0)*2+1

%assign ADC_num0 =CAST("Number”, ADC_numQ0)

%assign ADC_num1 =CAST("Number’ ADC_num1)

6-5

Chapter Six: RADE ADC64 Implementation

{

%<LibBlockOutputSignal(0."","".0)>=read_adc(BASEBOARD,(%<ADC_num0>))/(3276.7);

%<LibBlockOutputSignal(0,™,"",1)>=read_adc(BASEBOARD.(%<ADC_num1>))/(3276.7);

%if (Trig_s==1)
convert_adc_pair(BASEBOARD.(int)(%<LibBlockParameterValue(P1,0)>));

%endif

}

%endfunclion %% Outputs

Another function of the ADC device driver, is the connection of the ADC bank to the selected external
timer.This is done by the code below. This code uses the ZUMA toolset trigger {unction {o connect
the ADC bank to the selected timer. It is worthwhile to note that the code generated from this segment
is inserted in the ADC block’s initialisation and only executed once i.e. trigger source cannot be
changed during program execution.

%function Start(block, system) Output
I” %<Type> Block; %<Name> (%<ParamSettings.FunctionName>) */
Y%assign Trig_s= LibBlockParameterValue(P2,0)
/* Connect to Tngger source™/
%switch (Trg_s)
%case 2
trigger(PITO_TIMER, (int)(%<LibBlockParameter(P1,™,",0)>));
%break
%case 3
trigger(PIT1_TIMER,(int)(%<LibBlockParameter(P1,","",0)>));
%break
%case 4
trigger(PIT2_TIMER, (inl)(%<LibBlockParameter(P1." ™.0)>)):
%break
%case 5
trigger(PIT3_TIMER,(int}(%<LibBlockParameter{P 1, '™ 0)>)});
%break
%case 6
trigger(PIT4_TIMER,(int){(%<LibBlockParameter(P1,",",0)>));
%break
%endswiltch

Function Prototype

Description

trigger (unsigned int souce, unsigned int bank); trigger() sets the triggering source for a pair of

ADC channesls in software.

6.3.2 External Timers

The external timer device driver block is used to setup the frequency of the five external timers on the
ADC64 card. This device drniver produces code that only executes during the initialisation stage of
model code and its parameters cannot be changed during execution. Fig, 6.6 shows the parameter

window used to enter the timer frequencies.

6-6

Chapter Six: RADE ADC64 Implementation

654 El IimE:t_s

Fip. 6.6:Parameters for external timer Block

The device driver code for this block is found in the ex:_timer_adc.tlc listed in appendix D with a

segment detailing the main part of the device drive listed below. This code uses ZUMA Toolset

timer() function to

setup the respective timers. The variables tmrQ, to tmr4 correspond to the values

entered in the parameter window of this block.

I*setup extemal timers °/
timer(0,(int)%<tmr0>);
timer(1,(int)%<tmr1>);
timer(2,(int)% <tmr2>);
timer(3,(int)%<tmr3>);
timer(4,(int)%<tmr4>);

6.3.3 DAC’s, PWM and Interrupt Blocks

The device drives

implementation but

for the DAC, PWM and Interrupt blocks are closely based on the PC32

for a few minor modifications. These modifications entail the changing of the

memory location of the respective peripheral if necessary, The device dnver file names for these

blocks are listed in Table 6-1 with complete file listing in appendix D

Block Device Driver File
DAC ADC64_dautlc

PWM PWMBLOCK_ADC.lic
Interrupt Support iiinterrupt_adc.llc

Table 6-1:Device driver files

The Interrupt Support block for the ADC64 card only supports 3 interrupts; the two internal timers and

one external interrupt used to signal an ADC end conversion event. Fig. 6.7 shows the parameter

6-7

Chapter Six: RADE ADC64 Implementation

window for this block, which is based along PC32 interrupt block already discussed in chapter S.

Block Parameters: ADC6E4 Int Support Ed|

- ADCB4 Block (mask) —- ——— e e e LT

Timer) Freq

In
Interrupt Numbers (top to bottom)
[t3910)

Bass Rate inteaupt |3 ___El}

Fig. 6.7:Interrupt block parameters

6.4. Customising RADE framework for the ADC64 Card

To customise the RADE framework for the ADC64 a major portion of the RADE PC32 system can be
reused with slight modifications. Table 6-2 lists the system files that are used and summarises the
modifications needed. These file have all been renamed to show their association with ADC64 card

and prevent any confusion with PC32 system.

System File Name Modifications

Systemn Target File Grt_ADC64.tic Change Defualt parameters

Template Make File ADC64.Imf Change files used for STP and run-time
harness

Simulink Communications | Ext_comm_C3x.dll No modifications needed

Layer

Run-time harness adcb4_grtm.c Change initialisation to accomodate for
ADC64 peripherials

Table 6-2: Files used for the RADE ADC64 system

The files listed above deal with the RTW build process, run-time hamess and Simulink
communication layer. The files used for external mode and the STP on the ADCG4 have not been

discussed as this will be presented in the next section.

6.4.1 External mode and Server To Target Protocol

The RADE framework was designed to encapsulate complexity®. This is demonstrated by the use of
external mode components from the PC32 system on the ADC64 system. These components are

independent of the underlying communication channel and can therefore be reused unchanged on both

* The principle of encapsulation is drawn from object oriented design methods. [BOOCH1)

G-8

Chapter Six: RADE ADC64 Implementation

systems. The principle of encapsulation® allows the changes in communication architecture between
the PC32 and ADC64 cards to be restricted to the STP layer. The changes made to the STP layer are

discussed below. Table 6-4 summaries the files that are reused and modified.

File Name Purpose

Ext_srv_pc.cpp Implements WinSock part of external mode.
Same fiile used for the RADE PC32 system
li_adc64_pc.cpp PC side of STP. Madified for ADC84 based on
the RADE PC32 system

li_adc64.c Target side of STP. Modfied for ADC64 based
on the RADE PC32 system.

Ext_srv_c3x.c External mode message processing and data
logging routines. Same file used for the RADE
PC32 system

Table 6-3: File used for external mode and STP on the RADE ADC64

DPRAM Channel PCI Channel
PC Host PC Host
y A
\ 4
A
PC Bufler
DPRAM . 7y
y ' :
Block move dala ! E Block move data
A 1o larget ! 1 from target
Target PCI Bus : i
System : ;

v
Target Memory

Fig. 6.8: A comparison berween DPRAM and the PCJ bus

Before the STP implementation for the ADCG64 card can be discussed it is advantageous to review the
physical differences and similarities between the DPRAM and PC] bus architectures. Fig. 6.8 shows a
graphical representation of both these communication channels. In the case of DPRAM both the PC
and target platforms have direct read/write assess to the DPRAM memory segment. The STP message
and upload ports are overlaid in this region and both platforms can read and write the necessary data.
In the case of the PCI bus only a PC buffer exists and the target can only block move data to and fro
between its memory and the PC buffer. This means that the target cannot directly access the PC buffer

and memory moves are needed.

6-9

Chapter Six: RADE ADC64 Implementation

Server Application

WinSack 4{]
. <_ t .
Processing ext_srv_pc.cpp

PC side STP* |«

Hardware Comms
E Channel

ii_adc64_pc.cpp I

Target side STP* |4 | ii_adc6ic |
Message [
Processing & < 1 ext_srv_c3x.c]
Generation
Target DSP

* Server (o Target Protocol

Fig. 6.9: Files used for external mode and STP and the RADE ADC64

The modifications to the STP needed for the PCI bus are shown in Fig. 6.10. Unlike the PC32 card
there is no buffer that that can be accessed directly by both platforms, as shown in Fig. 6.8. There is,
however a PC side 32K word (32Bits) buffer that is used to overlay the message and upload ports. A
mirror of this buffer is then maintained on the target angd transfers between these buffers allow data to
be moved across platforms. This mirroring of the PC buffer on the target allows the PCI bus

architecture to resemble DPRAM and allows the reuse of STP code from the RADE PC32 system.

The size of the PC buffer is one-fourth the size of the total memory on the target and it is unfeasible to
miurror the entire PC buffer on the target. This problem is solved by only mirroring the message ports
and the header part of upload ports. The sizes of the message port and upload ports are listed in Table
6-4. From this table it is evident that the upload ports buffers consume the lion share of memory and
eliminating them on the target results in a significant saving of memory. The effective size of the
mirror buffer on the target platform is now reduced to around 1K word of memory and does not affect

the performance of the target.

The part that does not now tie in is, if the target upload port buffers are removed how is data uploaded
to the PC? By referring to Fig. 6.10 it is evident that an upload buffer is already present on the target
and data from this buffer can be directly transferred to the PC. It should be noted that this upioad
buffer is not part of the STP and is declared and controlled by the data logging routines that execute on

the target. The upload port headers on the target are used to control the packetisation of this buffer.

6-10

Chapter Six: RADE ADCG64 Imp)ementation

This section shows that the STP can be easily modified to fit the PCI bus architecture and is therefore

flexible for the porting to different target platforms.

Upload Buffer
Sequenced on PC

Server Application

Message Port Message Port Upload Port Upload Port é
To Target From Target A . B 2
b x
! e ,
PCI Bus : :.
B LG E e L LR o
| e [e it [et L it \ g] E
v " 0 1 N [) 3 b
i 1 Message Port 11 A Message Port |14 Upload Port oA Upload Port : g oo
! e G Header i Header ! s T
‘v To Target :!! From Target !!! o i o Voo
' X ‘e A vy B ' B : :
L OSSR GO U P RUEY GNP a3 Co
‘o
_____________ i {
! 1
|
Target DSP Upload Buffer
on Target
Fig. 6.10: Modified STP for PCI bus Architecture
Port On PC | Size of port Location offset Description
Buffer (32 bit words) (decimal)
From Server 512 (buffer = 502) 0 This por recieves data from the PC
To Server 512 (buffer = 502) 512 This port sends messages to the PC
Upload Buffer A | 15872 (buffer = 15862) 1024 This the first of the upload port used
for sending logged data to the PC
Upload Buffer B | 15872 (buffer = 15862) 16896 This the second of the upload port
used for sending logged data to the
PC
Total 32768 The total size of ports for the
fransfer of data is 32768 with no
unused space

Table 6-4: Size of ports used for the RADE ADC64 system

Chapter Six: RADE ADC64 Implementation

6.5. Conclusion

This chapter presented the implementation of RADE ADC64 system. It covered a description of this
card, details of how the device drivers were developed and the modifications needed for the STP. 1t
highlighted the portability of the RADE framework between different target platforms. The next
chapter demonsirates the RADE ADC64 system and illustrates the use of this system to educational

applications.

6-12

Chapter Seven: Demonstation of the RADE system

CHAPTER SEVEN:
DEMONSTRATION OF THE RADE SYSTEM

7.1. Introduction

The previous three chapters detailed the internal operation of the RADE system This chapter now
demonstrates the RADE system as an effective rapid prototyping and teaching tool and describes its
use with motor control experiments. Bearing in mind that the primary purpose of the RADE sysiem is
o allow students 10 easily evaluate simulated system with live real-time systems, this chapter is
presented in the vein of a student practical and emphasises the controls problems from the student’s

perspective.

A complete design of a DC servo motor speed controller 1s presented that covers the entire process
from simulation 10 final implementation. The justification for using a DC servo system is that it is
current)y being used in the both the third year Controls Systems and Electrical Design courses, at the
University of Natal’s Electrical Engineering department. The Controls Systems course concentrates on
the theoretical design issues and uses solely simulation methods to illustrate designs, while 1he
Electrical Design courses emphases the implementational issues using a micro controller. This chapter
now demonstrates how the RADE system can unifies both the simulation implementation issues

within one course without requiring students to be well versed in software engineering techniques'.

This chapter rapidly protolypes a theoretically designed speed and current controller and uses the
results to vernfy the performance of both the RADE ADC64 and PC32 sysiems and demonstrates how
students can jmplement real-time control systems without being preoccupied by complex software
engineering issues. Further the theorelical concepts used in the design of the controller will be

practically verified.

Topics also included are a demonstration of the concepts of plant saturation, controller stability and

integrator windup. Finally a position controt experiment is presented with the RADE PC32 system.

' It must be noted that the RADE sysiem does not make the Electrical Design courses obsolete as these courses covers lower

level implementational specifics, which are hidden by the RADE sysiem.

7-1

Chapter Seven: Demonstration of the RADE system

7.2. A Case Study: Designing a DC Servo Motor Speed controller

This section presents the complete design of a DC servo motor speed controller. which entails the
development of a plant model, design of controller parameters and the simulation of the resulting
system. Cascaded speed and current Joop Pl controllers are used, as this control architecture yields
good results for both regulation and disturbance rejection specifications [BLERK1]. The controller
parameters are designed using a root locus technique, as this is a typical design method taught 1o

. 2
under-graduale students in control systems courses”.

This section forms the theoretical basis for the evaluation of the RADE systems as an cducational tool.

The simulated results presented in this section are used o evaluate the real-time results produced by

the RADE ADC64 and PC32 systems in sections 7.3 and 7.4.

7.2.1 Motor Mode]

The block diagram of a separately excited motor is shown in Fig. 7.1 [OGATAI] and is used for the
simulation stages. The input (0 the model is the armature voltage (Varm) and the outputs are armature
current (la) and shaft speed (W). The parameters for the motor are listed in Table 7-1 and the

evaluation is shown in appendix C.

—p(2
Spe——— P fa
= 1 I 1
._; \ _'-_. } _>| l = *—’KITI'__’ » _‘ : : .. i
M +R1 3 R 3
Varmm A SERD o b Wmd/e
A L | Gain L= | e
Transfer Fen Transfer Feal
<
L "[4'—_ -]
li.‘lml-

Fig. 7.1: Motor model

~ The Universiries of Natal and Durban Westville teach root locus design methods in control systems courses.

7-2

Chapter Seven: Demonstration of the RADE syslem

Parameter Value Unit
Armature inductance (La) 46 mH
Armature resistance (Ra) 3.36 (9]
Rotor moment of inertia (J) 4.889x 10° Kgm3
Rotor viscous damping (B) 4.291x 107 Kam'/s
Motor Constant (Km) | 0.834

|

Table 7-1: Motor parameters

7.2.2 Design of Current Pl Controller

The regulation specification for this design is loosely stated as, “good rise time with minimal over

shoot and steady state error”, for a +/-8A 10 Hz reference square wave signal. Plant limitations must

also be taken into account i.e. maximum supply voltage of 128V. The purpose of such an ambiguous

design specification is to allow students the scope to investigate different controller behaviour. The

root locus design of the controller is done by using The Mathworks Root Locus Tool (rltool)

[MATHWORKS7].

The first requirement for the design 1s the development of the plant transfer function, which is shown

in [7-1] and the corresponding bode plot is shown in Fig. 7.2. This transfer function is derived from

Fig. 7.1 with the plant input being the armature voltage (Varm) and the plant output being armature

current (Ia) [OGATAL). The wransfer function used for the Pl controller is shown in [7-2] [OGATAI]

7a (s +§)
P(S) = 2 8 R .
sT+(G+)s+K
where K = BRa + Kekt
LaJ
G(s) = Kpls + Ki)
s

[7-1]

17-2]

Chapter Seven: Demonstration of the RADE system

Bode Diagrams

o
z -20 dB cut-off @ S0Hz
D
3
c
53
[x:3
E_
>
[1id
o
Py
[
2
o
Frequency {(Hz)

Fig. 7.2: Bode plot of [7-1]

The next pan of the design process details the choices of the two controller parameters. Three root
locus diagrams are presented showing the plant’s response to various controller parameters. In all the
subsequent root loci diagrams the controller zero is positioned after (higher absolute radian frequency)
the plants complex open loop poles as this configuration allows the current controller integrator to

operate faster than the plant’s electrical dynamics.

Fig. 7.3 shows 1he resulting root locus with Kp=6 and Ki=100 and the corresponding unit step
response. From the step response (Fig. 7.3) it seems that a steady state error exists but a closer analysis
of the root locus diagram shows a slower first order dominated pole (Fig. 7.4). This dominant pole
slows the unit step response down considerably as shown in Fig. 7.4 and makes this design unfeasible
to meet specifications. This design however illustrates an over damped response with a “steady state
error” and will be verified on the real-time systems. The next step in the design is to reduce the effect

of the fist order dominant pole.

74

Chapter Seven: Demonstration of the RADE system

Root Locus Desiga Step Responss
= i
80 Sieady 1l
v
B0 | - b
40 . ® L 2ms
v
20 |
- g
- v 4 ']
< 0 —= - o8 — a a
r(]_: E
E ..l B
ral
40 /
£0 h
80|
YT 100 .50 T o Tirns (sa5.)
Real Axis
Fig. 7.3: Root locus for over dumped response
Root Locus Design SepResponss for 10s
1
18+
Sow response
6! N from listomder pole
! First order dominant pole -
21 | 3 * Fastintial esporse
v ° from real polas
c
o o—su S —— g
2
4
5.
8! o .
05 -0.4 -0.3 -0.2 =01 0
Real Axis Time {sec)

Fig. 7.4: First order dominant pole

The effect of the first order pole can be reduced in two ways:

By increasing controller gain, the dominated first order pole moves closer 10 the zero,
resulting in a pole zero cancellation. This is unfeasible because the required controller gain of
around 30 will saturate the current controller. A maximum crror of 8A will demand an
armature voltage of 240V, which exceeds the armature voltage that is limited to 128V
(AHMEEDI].

The other option is to make the controller integrator faster as this will integrate out the effect

of the slower first order pole [OGATAT1].

The controller integrator constant is increased to 1000 (Ki=1000) and the proporiional constant is

reduced to 5 (Kp=5)" with resulting root locus and step response shown in Fig. 7.5. This figure shows

T
* Kp was reduced 10 make the overshoot more pronounced and to demonstrate an under damped response.

7-5

Chapter Seven: Demonstration of the RADE system

an under damped current response with a 36% overshoot and a ris¢ 1ime of 2.7 ms. The faster
integrator (Ki=1000) has removed the effect of the first order pole and made the current step response
faster but has introduced an excessive overshoot coupled with a relatively large settling time. The next

iteration in the design will need to reduce the overshoot and improve the seutling time.

Raot Locus Dasign
Step Response

Max= 136 @ 7ms

1000+ -—
rd D pol
/ W s f |
500¢ ' i
| / \._. T 5 S [
3 3 & N
o - - % paeime 27
© Ly I3
£ \ 4
K \
1 [
500 / i !
k |
-1000})
-2500 -2000 -1500 -1000 500 0 Time (sec.)

Real Axis
Fig. 7.5: Root locus for under damped response

The excessive overshoot is reduced by decreasing the integrator constant to 200 (Ki=200) and
increasing the proportional gain 10 14.5 (Kp=14.5). The resulting design is shown in Fig. 7.6 and
meets the specified performance with a rise time of 3.5 ms and a 7% overshoot. This design from this

point forward is referred to as the “specified response™.

Root Locus Design
Step Response

200/
150 | N

| ol T~ Max=10F @7 7ms

100

Risa lime= 3 5ms

50+ Ki=200

Oi'

mag Axes
|
|
]
Amglitud e

50|
-100 . /
-150_-

QDOi

<00 <00 200 -100 (8] Time (sec)

Fig. 7.6: Roor locus for specified response

The closed loop bode plot of both the independent plant (i.e. no controller) and the controller and plant

Chapter Seven: Demonstration of the RADE system

is shown in Fig. 7.7, which demonstrates the benefit of the PI countroller on the overall system

performance. The overall sysiem bandwidth (-20 dB) improves from 48 Hz to 775 Hz with an infinite

gain margin and a 148-degree phase margin. The controlled system has a relatively flal response

(0 dB) up to 70 Hz, which helps improve the regulating performance of the system.
Bode Diagrams

Cicsed loop response
wath controller v 2ME @ ?75Hz
) \
Closed locpresponse 3

without controller -

+——Closed loop response
vathou! f:ﬂ_"{)"e"

Phase (deg). Magnitude (¢B)

Phase margine=148 deg

w»_Closed loopresponse 3 >
with controller

Frequency (Hz)

Fig. 7.7: Bode plot of closed loop responses

7.2.3 Simulation of Current Controller

0oDo o,
00 L W radisp
Signal ou W e
Generator | Feedbaciky "'
Current Discreta motor
| -
.
h Scope
P | red W ormdin b
Cuat P Varm
[oooa!
Ii]._. | Feedback Ila
Signal Current Continuous motor!
Genearator]
»
>
.
7] Scope!

Fig. 7.8: Simulink model for current conmoller and plant

The controller parameters developed in the previous section are used 10 investigate simulated plant

responses. Io this stage of the design process both continuous and discrete Pl controllers are

7-7

Chapter Seven: Demonstration of the RADE system

simulated”. The continuous P1 controller is discretised with the Tustin transform as this yields a good
approximation of the continuous system [OGATAZ2] providing the sampling time is 10 times greater
than the ~20dB bandwidth of the plant. This sampling consiraint is easily met and exceeded with the

8K Hz’ sampling time used noting that the plant’s bandwidth is around 50 Hz (Fig. 7.2).

The Simulink model used for the simulation of the current controllers is shown in Fig. 7.8. This mode)
consists of both a continuous and a discrele controller attached to the plant models. The internal
workings of the controllers are shown in Fig. 7.9 and Fig. 7.10. Both these conuollers conain
saturation blocks, which limit the output voltage applied to the motor to +/- 128V and also support
integrator anti-windup. The discrete controller shown in Fig. 7.10 is an implementation of the
difference equation [7-4]. which is derived from the discrete controller in [7-3] [OGATA2]. Equation
[7-3] is the Tustin transform of the continuous PI controller shown in [7-2], where Ts is the sampling
time. It should be noted that the zero order holds are omitted from the simulation, since a fixed
integration step of 125 us (8K Hz) is used. This malches the sampling frequency used on the real-time
system. [n addition, with the inverter not being simulated, the integration step of 125us is small

enough to simulate system dynamics.

C>:
|-
1 ret = _.l * i - 3
3 Sum3 kp | _= >+ Quty
- 1T s Saturation
) Fasdnacs integrator Sum2 *f-128V
R
)
0 »
Constant Switeh
flu) |«
Switch off
integrator when output is
in saluration

Fig. 7.9: Continuous PI controlicr

* The discrete controllers are simulated ag the controller models used with the RADE system are of this type. Section 7.3.2
provides morc details.
* The § KHx sampling frequency is used since 4 KHz PWM signals arc uscd to control the power inverter on the real-time

systemn. See section 7.3.1.

7-8

Chapter Seven: Demonstration of the RADE system

| ret » : ‘.Iu/ »ls
) & ‘
Sum
| Feadback 1
—! - A,
L * » 1
Unit Delay Outl
-+ Saturation
Pl ¢
Suml .
1
Sum2
1
Uni Delay
Fig. 7.10: Discrete PI controller
KiTs KiTs
K+ =)z =kp(1= =)
G(z) = 4 [7-3)
z—1
KiTs
,Vu = l(p((,\'” _'\'n-l) + 2 ('xu + xn—l) + .vu—l / 7—4l
Curmrent Response kp=14.5 Ki=200
10.— -— — - T P
Curent Response kp=#. 5 Ki=200
8 f— I A —— ————— T B —
6 = =g - el RERE T T S
discree
4 sl S
2 : -- | ‘ L
< [| | i B H— e ——
_— 5 | . |
g 0 - = — E cmrnmcs
= §75¢ -
A I . NI | SEPEE SRR SRR o :
| 7} :- =
A= [
| || ll, | | .F
8 S T ANNON ¢ emce . R Sl &
\ \ /
4 LN ; ——— 6
*I5Aref @ 10HZ T om 0,035 0.04 0045 005
B .o P oo Ha A Time (s}
0 0pz5 005 0075 0.1 0125 035 0175 02

Time (s)

Fig. 7.11: Simularion results continuous and discrete controllers

The specified current controller response (Kp=14.35, Ki=200) is shown in Fig. 7.11 together with both
the continuous and discrete results over-laid and a zoom of the response overshoot also shown. From
Fig. 7.11 it is evident that the discrete controller is a good approximation of the continuous controller.
The results for the controller over damped and under damped response are shown in Fig. 7.12. It

should be noted the under damped response is subjected to a reduced reference of +/-5A as the motor

7-9

Chapter Seven: Demonstration of the RADE system

current should not exceed 10A on the real-time system. The simulated results presented in this section
will be used to evaluate the real-time results produced by the RADE systems. The next par of the

design entails the development of a speed loop and this is presented in the next section.

Curent Response kp=6 KI=100 Curent Response kp=5 ki=1000

T - 10 et SRS = —

10— —_

8 = == 8 B
6 [1
| J L e Y .o 2
F el T T e, S 4 !
T a2 =
< £
€ o+ - . IS 1) CAMPREI SRS LS | -
e
§ 3
2 F . 1 © 2|
1 | |
4 - | 4 - -
£ -- 8
£ - P S S NI T R _! B LT brEp - oz pasdse s
K 54 fef @ 10Hz | *-SArel @ 10Hz : : : : J
Py st e Al (ol L = TR 10 T ! ! S i
0 0025 005 0075 0.1 0.125 0415 0.175 02 [¢] gonzs 0.05 G075 0.1 0.125 015 0175 02
Time (s) Time (s)

Fig. 7.12: Simularion results for discrete controller over and under damped responses

7.2.4 Design and Simulation of Speed Pl Controller

s+KO KI 1 Km
a Kourowd -}
5 Las+Ra Jse8 W revimint

revimin
Current Controlier electrical dynamics shaft speed for conversion
armature current

lrel

Km*Km
Js-B

=

mechanical dynamics

Fig. 7.13: Modified motor model

In the previous section the current Joop was designed and is included in the system when designing the
speed loop. Fig. 7.13 shows the effective model of the system® used for the speed loop design. The
input to the system is current with the output being speed. The regulation specification for the speed
loop is loosely stated, as “good rise time with minimal overshoot and steady state error”, for a +/-800

rpm 2 Hz reference square wave signal.

The root locus of this system combined with the speed Pl controller is shown in Fig. 7.)4. From this
figure the mechanical and electrical dynamics of the system can be seen and when designing the speed

loop only the mechanical dynamics are of interest. The zoomed mechanical dynamics of the system

§ The current controller parameters arc sl at Kp=14.5 and Ki=200

7-10

parameclers.
600 Rool Locus Design Root Locus Design for Mecranical Dynamics
600 - 30/ Closed loopes @
Electncal Dynamics Kp=.008
20 —
400 ’ Mechanical dynamics =] e
ya o .- N d R
200 N 10 - N
e e e
1 [) 3
0 A 3 E—" — ' =
H : ' \ g’ 0 1 — —
g K ioe ol e b
— . i E
2000 T ;
-10
-400 | ’
, 201 T
600 |
‘mo — S — S n — eo o N | - — - .
2300 250 200 -150 -100 50 0 <6 35 K80 25 20 45 -0 B
Real Axts Real Axs

Chapter Seven: Demonstration of the RADE system

presented in Fig. 7.14 shows the speed controller zero for Ki=20 and the resulting closed loop complex
poles for Kp=0.03. The corresponding step response is shown in Fig. 7.15. where a 20% overshoot and

26ms rise time can be observed, which meet specifications. This system is now simulated for these

Fig. 7.14:Root locus of system and zoomed mechanical dynamics

Speed Slep Resporse

{ Rise lime = 28ms Seming ime = 165ms

Amplide

Time (¢
Fig. 7.15:Speced Srep Response
The Simulink model used to simulate the speed loop 3s shown in Fig. 7.16. This model coosists of a
discrete controller for both the speed loops and uses a fixed integration step of |25us. The speed
controller is limited to +/-10A and the current controller is Jimited to +/-128V. The simulated
responses are shown in Fig. 7.17. Both the small signal (+/-300 rev/min) and large signa) (+/-800
rev/min) responses are shown. The smaller signal is used to demonsirate the system in a linear region
of operation while the large response shows the non-linear operation of the system. These results will

be used to evaluate the real-time results produced by the RADE systems.

1]

Chapter Seven: Demonstration of the RADE system

Speed (revimin)

Pl Controlier
oopo Pi Controller
[ola] s rol
currand P) el WY revimin _= D
ignal
Gfr“age.!:'loi : pd teedbach Cutt B Varm
| Feedback in g ~ Scope2
-
speed
Current limited «/-10A Current motor

Valtage Limit « /- 128V

Fig. 7.18: Cascuded speed und currvent Pl lnops

Sirmulated Speed Response: Small Signal Simuated Speed Respanse: Large Signal

400 - it - = 0o ———— e -
| Kp=03 Ki=20 Kp=03, Ki=20
:) 2 | 8OO} - -- — s BB = ===
300 | ~ Y [—" - |
| ~ 600+ s | - e b 8% pwershog |
200i T 16% Cvarshoot| . due lo nonlirearefiecs
| Close o linear esp onse 400'..._ al curre L saturabon |
100 =
= 200
s
0 L3 of----
3
100 | _ 2 -ZDG;
| 400 |
200 i) £ P s e -
£00 -
S T I O e P |
| *1-300 revimin ref signal @ 2Hz «LB00 revimin refsigral @ 2Hz J
400! i = i i 1000 — — . — —
o 025 05 075 1 0 025 05 0.75 1
Time (5) Time (5)

Fig. 7.17:Simulared results with discrete controller

7.3. Demonstration of the RADE ADC64 System

This sechion presents the rapid-prototyping of the current and speed controller, designed in the last
section, on the RADE ADC64 system. It demonstrates how the RADE system allows students to
interactively investigate the range of real-time plant behaviour simulated in the previous section. The
practical use of the on-line parameter tuning and data logging features of the RADE ADC64 system

are also demonstrated.

The first pant of this section deals with the experimental setup used to rapid protolype the speed and
current controllers. Thereafter the real-time results for the current and speed controllers are presented
and evaluated against simulated results from the previous section. Finally this section concludes with a

demonstration of saturation and the effect of integrator windup on the speed loop.

Chapter Seven: Demonstration of the RADE system

7.3.1 Real-Time Prototyping with the RADE ADC64

The experimental setup for demonstrating the real-time rapid prototyping of the current controller is
shown in Fig. 7.18. It consists of:
e The Simulink PC.
¢ The Target PC, which contains the ADC64 DSP and PWM cards. The PWM card provides the
4K Hz switching signals to the inverter and an 8K Hz interrupt signal that is used to
synchronise the ADC sampling.
¢ An H-bridge power inverter, which is connected to 128V DC battery supply.
* An analog tacho and LEM module current provide motor feedback.
The Simulink PC is used for both the simulation and rapid prototyping stages of the coutroller
development. Once the current controller has been designed in Simulink it is convened into a target
application via the RTW and downloaded 1o the target PC. The target PC, which is executing the

server application, recetves the target application and stores it. Simulink is then used in external mode

to control target execution.

Target
Simulink PC e
‘\ Server]
DEES IBRF 2.) § RTW External Mode Application
N
—

T .

A~~~
Pesy 1% | >

yury ondo 15944

Inverter

=
Sensor

Fig. 7.18: Diagram of experimenial setup

The current controller example as well as the following speed controller example both used the same

Chapter Seven: Demonstration of the RADE system

apparatus and also exploit the network tunctionality of the RADE ADC64 system. Fig. 7.19 shows the
independent Simulink and arget PC’s and for a matter of interest. both these PC’s were operated in

WO s¢parateé rooms.

Simulink PC

Target PC and Motor

oscilloscope

motor

Fig. 7.19: Photo of target PC

Chapter Seven: Demonstration of the RADE system

7.3.2 DC Current Controller

Before the current controller shown Fig. 7.8 can be rapid-prototyped a few modification are needed,
these include:

1. Inclusion of ADC devices which sample plant sensor data,

2. The addition of the PWM block, which controls the inventer.

3. The Interrupt Block is also used to provide synchronous sampling

4. The plant from the original model is removed as the live plant is controjled in the rapid

prototyping case.

Fig. 7.20 shows the revised Simulink model. which is ready for rapid-prototyping and shall be referred
1o as the real-time model. While this mode) looks considerably different from the original model in
Fig. 7.8 it is in essence funciionally identical. The interrupt block is added to allow the controller in
subsystem | to be synchronised with the PWM signals i.e. the PWM ASIC provides a 8K Hz ADC
irigger signal and the ADC in tumn trips the external interrupt 2 art the end of the conversion. With each
end conversion signal, subsystem | is executed, which ensures the controller is executed at 8K Hz.
The ADC64 Ext Timer block is used to set the external timers on the ADC64 board to 0 Hz as to

prevent them from triggering the ADC’s.

Subsystem 1 is a triggered system and is restricted by The Mathworks from containing continuous
states 1.¢. all controller used in subsystem 1 have to be discrete and this is the reason for simulating the
discrete controller in section 7.2.3. The coniroller is contained in the subsystem block, shown in Fig.
7.20, consists of:

o ADC 0,1 which is used to sample the current sensor. This value is then scaled by 13/6 A/V,
which transforms the ADC voltage signal into a current value.

o The PWM block is used to write PWM setting to the PWM ASIC.

e The sine wave and relay block’ combination provide the 10 Hz square wave signal, as the
function generator block canpoot be used in real-time models. (A 10 Hz +/-8A square wave
reference signal is used for the evaluation of the current controlicr)

e The Pl current controller block subsystem implements the discrete controller shown in Fig.

7.10.

7 The positive and ncgalive threshold points for the relay block arc respectively sctut *-0.1x107

Chapter Seven: Demonstration of the RADE system

ADCE64 Ext Timers

Root Layer
fm o m e meememeeas
[il e |
E A B
Dala Slore Dala Store
Memory Memory1

1
!)
! :
! 1
! 1
{ 1
1 1
1]
' 1
' 1
: A :
!]
! | > 1
: E2 Daia Store kiid I |
' Read1 |)
1
' v 8 Scope! !
' THMRO> Trigger) '
!)
. Data Store :
' Read? :
« TMR 1D Subgystemni :
+ 1
' Data Loggin '
E ADCE4 Int Suppon e e e e g_%] g_ '
]
: Controller .
l Subsystem 1
— 4 | Data Store |" 5| Dala Store
\

il 2 | Wite _B | Writer
Trigger A X

ADCOp

Pi Current Controlier
ADC 1 P4 13/6
—I-H | Feegback
ADC 0.1 Current Scaling
AN Varm P Vai
r i PWM for DC MOTOR
o) e
Sine Wave Relay!
o DACO
Current ref
Current la ADC64 DAC

The Data Store, Read and Write blocks, shown in Fig. 7.20, are used to pass data between the
subsystem]1 block and the root layer. These blocks are needed to supply data 10 the scope blocks,
which are restricted from being placed in trigger subsystems®. The scope blocks are used to provide

on-line data visualisation and data logging. The scope block shown in Fig. 7.22 highlights this

Fig. 7.20: Simulink model for the current controller

* This restriction is imposed by The Mathworks.

Chapter Seven: Demonstration of the RADE system

functionality.

The proceeding section presents the results of the real-time current controller. The controller is
investigated in three regions of operation that were designed and simulated in section 7.2.2:

}. Designed behaviour.

2. Under damped behaviour

3. Over damped behaviour
Students would use the on-line parameter-tuning feature of the RADE ADC64 system to change
controller parameters on the target system, which allows changes in plant behaviour to be immediately
observed. Fig. 7.21 illustrates how a controller parameter can be changed on-line. By double clicking
on the Kp block, its gain can be manually adjusted which results in the seamless change to the
equivalent parameter on the real-time target sysiem. This allows parameters to be easily changed

without interrupling the execution of the 1arget system.

Hinck Patometers kp [%]
— Gw e = —

Scala o vedion gan y=k."u

Pararoeters
Ganc

]
[F Sawursie on integer overflow

S I T

Fig. 7.21: On-line parameter tuning

The results presented in this section have been logged using the scope block as alluded 1o earlier io
this section. This data 1s passed to the Matlab workspace and is presented in one of rwo ways, either
by directly using a bit map image of the scope block (Fig. 7.22) taken during simulation execution
(on-line visualisation) or, by using the Matlab plo:r comunand (Fig. 7.24) on data passed to the
workspace (batched data visualisation). The scope block image method is used to demonsirate the

system from a user perspective while the plot method is favoured when data analysis is needed”.

) e - - . . aye . . - -
Ihe plot function allows for more flexibility und produccs vector graphic images that have better resolurion for

7-17

Chapter Seven: Demonstration of the RADE system

PRI TR

PPR(}3: 1,77V

The first test of the real-time current controller will use the controller values designed in section 7.2.2
1.e. Kp=14.5, Ki=200. The real-time scope block results shown in Fig. 7.22 are verified against both
simulation results from Fig. 7.11 and data captured by an external digital scope, Fig. 7.23. The daia
from the external digital scope is scaled'® by 10A/V and superimposed ob the real-time result captured
by the scope block and is shown in Fig. 7.24. From Fig. 7.24 1t is evident that that the results measured
by the Simulink scope block and external digital scope agree with the exception of switching noise.
This is an expected discrepancy as the Simulink scope uses data samples that are synchronised to the

inverter while the external digital scope does not.

incorporation into printed documents.

'® The current probe scales measured current by 100mV/A. The measure voltage signa has to be multiplied by 10A/V 1o get

the absolute currenl measured.

Chapter Seven: Demonstration of the RADE system

Cumrent (A)

Qurrent Res ponse wiih Scope Data

Kp=14K Ki=200

Current Resporse with Scope Dai

10— — ———— S

Kp=14.5; K=200 RED=scope
3 e e o Epeum—, ar g BLUE=teai¥mTe
£ | _> GREEN=ref
6.. . . - P S - I: -
1 .j' : 85 - ‘. .I. ' . —
4 F | I;‘I‘t-r?_)
| |
L] 8[- }
24t . -
<
{ \ = |
Gt=f----- et T & B RED=scaye 575 [
| \ BLLE=mealime (5 |
z - ! GREEN=&f)
Tr 4
A1 “ [
| 65 !
St 1\ . | |
I % |
_5!-. — fna e P Ea— N ot T ei- : |r) |
“H8A ref @ 10H | «-BA el @D 10H2
‘0!. b i B L —— H S, S I_ I K J_ S i NN ERETS——r D T
0 002 004 006 o008 01 o 002 003 00 005
Time (s) Timae (s)
Fig. 7.24: Comparison of results (scope dara has been scaled by 10 A/V)
Curen! Respornse
10— . Curent Response
Kp=145: (=200 W s - T T —
! - : 3 : P 145 Kr=266
- T3 ———f> RED=sinaed s ’ *
6} | P a: -
| | i ' '
" 1 85! R te = |
| \ | t ol .
- 2 | ' ! X T |
< < o / T —————— = .
5 of g ' T i
E 2.}
75; - -
‘3 -2 | Q
| ' Thtprestrontfeammedonsad seeoniiomorsfror .
H b
_51” i { 85! &
I I'. iR I { : :
U VR S | SN L L
-Bll— L : ot i 8 ko . .
+-8A ref @ 10Hz | — ot e MM SR L,
10 - — s — 01 05 011 O%N5 012 0125 0193 0135 014 0145
0 005 01 0.15 02 Time (s)

Time (s)

Fig. 7.25:Comparison of real-time and simulation results
The graphs of simulation and real-time data are superimposed in Fig. 7.25 and it 1s evident that there is
good correlation between the two systems. This figure shows that Simulink simulation can be easily

rapid prototyped to practically observe real-1ime control of systems.

For the under damped case Kp=5 and Ki=1000, the corresponding plant response compared 10 the
simulation response is shown in Fig. 7.26. From this figure it is evident that simulated behaviour and

real-time results agree, aside for some switching noise on the real-time system'".

1 - . . - . .
! Though synchronise sampling is used, switch noisc cannot entirely be removed.

7-19

Chapter Seven: Demonstration of the RADE system

Curen Responss Under-Damped

10 T g
Kp=5, Ki=1000 o - FU‘I?TD_OMU@E!‘DWPEU) _
A =simulated Kp=5, Ki=100G |
8 n) g '{\ T BLUE=makime | 9f ; :
' \ [l oReEENtres A
6- i (TR RsEe g . X 1 | » , \
/\(\) 'ﬁ\'.'—- —’ 8- - S '
4! ‘ 0] . P \/ - 4 2
| |
| | } i3 e Theeeram t 1
z 47 | | Il
= < 1 |
= 0| | = 1
& 1) ; \
Y 58
© 5] O
5. . | 4
-4;_}- e L T e A f’\-. - _ |
: |\ 1 [V . . '
G s - .o =+ -} ' pys I ¢ 4 al |
- | |
8 e & .' = o L | o L ! Ly
~/5A 1Rl D 10Hz v * 3 37"[“ . S STy [y 9 forkeroe.
-0} S —— - Sy 0.11 D12 013 014 015 016
0 005 0.1 0.15 02 Time (s}
Time (5)

Fig. 7.26: Under damped current controller response

The next part of the investigation invoives the changing of controller parameters 10 observe an over
damped plant response. The parameters used are Kp=6 and Ki=100. The real-time and simulated
responses are compared in Fig. 7.27, which also demonstrate good correlation between the systems.

Curen(Resporse Over-Damped
] _ __Kp=6, Ki=100 —— B

Cumrent Response Over-D amped

L . Kp=5. K100

asaa e
.'l | i
Y I 7.51
1 |" \] | |
2 / . , } 1 i 7
-) | -
< | | | <
g0 | '. [" 1 Ses
3 | 5
(5]
\] &
| \ I \
R R i e e e 3 e e !
| l'nl 55¢
6|)

L.} . LW e | RED=simutated | __//I |
1| | BLUE=reakirpe
k= L/' GREEN=rel 5t

~BArel@ 10HZ

0 005 0.1
Time (s)

015 02

Fig. 7.27:0ver damped current controller response

This section demonstrated that the implementation of a current controller with the RADE ADC64

system produces real-time results that agree closely with simulated results. The next section introduces
the rapid prototyping of the speed loop.

7-20

Chapter Seven: Demonstration of the RADE system

7.3.3 DC Speed Controller

In this section a speed loop is added to the current controller loop implemented io the previous section.
The Simulink model used for the current controller (Fig. 7.20) does not change aside for the
subsystem 1 block with the modified block shown in Fig. 7.28 and new controller subsystem block
shown in Fig. 7.29. The changes made include the addition of:

e The ADCA4.,5 block. Used (o sample the speed data from the tacho sensor. This signal is then
scaled by 1000rpm/2.6V to convert the voliage signal into a speed signal.

» The sine wave and relay block’? combination provide the 2 Hz reference square wave signal.
as the function generator block cannot be used in real-time models.

» The data store biocks A, B and C respectively, pass currenl, speed and reference signal data
back 1o the root layer for on-line visualisation.

e The controllers subsystem contains the cascaded speed and current controller and is shown in
Fig. 7.29. This block consists of two discrete Pl controllers, Speed controller and Curren
controller with internal models shown in Fig. 7.10.

The experimental setup (Fig. 7.18) does not change and the tacho sensor provides speed feedback. The

PWM switching frequency remains at 4K Hz with an 8K Hz sampling time.

[0] Data Store| 2 —5 | Date Store [~ Data Store
wnt — | Write1 _~ lwrite2
Trigger 7'y T
ADC O
»'\DC|——p| 138> P 1 reedback
ADC 0,1 Current Scaling
AN
ADC 4b
mcs—>|400012.5 p| Spoodloodback Vam ! vet
ADC 45 romiV
¥M for DC MOTOR
> 800 P Speed Rel
Sine Wavel RelayZ e

Controllers

Fig. 7.28: Subsystem model for speed controller

'* The positive and negative threshold points for the relay block are respectively set at +/-0.1x107

Chapter Seven: Demonstration of the RADE system

Conwollers subsysiem

Wrel
Speed Rel . o e
Wi N v C 1)
Speeg Contrater »r Varm
Speed feedback Current Controlier PWM Scaling
&R
I feedback

Fig. 7.29: Controllers subsystem block

The controller parameters used for the speed loop are Kp=0.03 and Ki=20. The plant’s small signal
speed Tresponse compared with simulated data is shown in Fig. 7.30. This figure shows that the real-
time results agree with simulated data, aside for speed jitter of the shafi. This resulted from the
inverter swilching noise and its effect is more conspicuous at low speeds as the tacho has a low output
voltage For example at 300rpm the tacho voltage is O.78V and with 70mV switching noise observed
on this signal this translates (o a 27 rpm error which can be seen in Fig. 7.30. The corresponding
current waveform compared with simulated data is shown in Fig. 7.31. Here again results agree if the
effect of noise is ignored it is also evident that the current controller is not held in saturation which

allows the system to operate in a linear region.

Spead Re sponse: Small Signal

600 — - - —
| Kp=003; Ki=20 | J |
500 —------ Pt PR -....RED=simulated |
. ‘ BLUE=real-trme
400 - bweuainvazinak GREEN=ref
300 —- g -'-\\v"v"\.r‘-_-‘ : ir .~ r...s-_.t. B i ei i
[y |
:E 200 I;_ i { . e e {
d |
£ yo0f ! foroee e
g oL - o
,100’> - NS SSRIUR! WL P | [—— - |
! - Voo ’ \
200..'_ amp ey pue e) mm e — PR
300 | NG Fncfmd 1 e ML
+-300 revimin ref @ 2Hz |
-400 e ——— = ;
0 0.2 0.4 0.8 08 1

Time (s)

Fig. 7.30:Small signal speed response

Chapter Seven: Demonstration of the RADE system

Currert Response: S mall S ignal
Curent Response: Small S ignal — : = = =
15 S S — . - Kp=0 03 Ki=20 FE D=amulaed
Kp=0 03:Ki=20 RE D=simukated 107 a7~ ks b’ ki BUUEzrealite
: BLUE=real-tme 4 GRE EN=mef -
| GRE EN=ref \ |
1071 ¢ N | v e s T 8 ", .llk |
(I\ | \
| u\ - \ i
5¢ l 1 - R T TP PR] '. Ptam e 8t T R \w—l‘\ s -
N) . =2
< \\/ b =
£ o anfnay A U S g 4
g] 3 :
8 i | /h ‘ q
| 2/ -
L ¥ ! Y
5 4 H
{ I o} -
a0} A 3. [FIIRC PR | l‘"’
| «:300 revmin ref @ 2H: : ; :
300 revmin ref @ 2Hz Zp v v { S——. R SRR oo
A5 3 ——t 002 O04 006 008 04 D12 014 028 018
o 02 04 05 08 1 Time (s)
Time (s)

Fig. 7.31: Small signal current response

With the controller running the reference signal is changed to +/-800 mpm the resulting speed and

current waveforms are shown in Fig. 7.32 and Fig. 7.33. Both these figures have simulated data

overlaid, which confirm that the real-time and simulated results agree.

Speed Response: Large Sigral

1000 T
Kp=0.03:Ki=20
800 - 'Aﬁﬂﬂmfﬁi caw !ﬂl:{n'-"f‘aliN, s
o It ! Pl (¥ J
800 . :._.‘,.._____... B e TP PR P S R ll'. _______ |
400~ - '
= L. | N
£ 200 {
2 |
k=3 o- P |- H
g | ; I' RED ; fated -I
L s | RED=simuated |
t% 2090 BLUE=reakFume
200! GREEN=ref
| i |
Lo) i I
o |- < |
1t { s
800 | ",\s.-."kusll-.»,.-' - t"‘*f.«.,g_,,-;-;.\'nn’ i
+/-800 revmin ref@ 2Hz
-1000 - ! i
0 0.2 0.4 0.6 0.8 1
Time (s)

Fip. 7.32: Large signal speed response

7-23

Chapter Seven: Demonstration of the RADE system

Cument (A

Curent Response: Large Signal CurentResporse. Large S ignal
15— S— — - —_ — 127~ e - ————— = e e g
Kp=003:Ki=20
10 ol 10
‘l\ | L. |
§
5 « b
\ \
! L™) 3 6
J'W...q,) l”r-«....\, =
of _iiu,-\.w“ R o ' g
;." ‘)/ \ 3 4]‘
Lk LT T PRI = S ﬂ,'
b
=10+] o |
Gl . R N\ AAAAAN
«-B00 revmin ref @ 2Hz | r"!@i’{' revmin el @ 2He :
| ; | Y
Y1 P S —) X H L. L L
0 02 04 06 08 1 015 02 025 03 035
Time (s) Time (8)

Fig. 7.33: Large signal current response

This part now demonstrates how the RADE system allows students to qualitatively investigate the
effects of plaot saturation and integrator windup. While the system is running the reference signal is
changed from +/-800 mpm at 2 Hz to +/-2000 rpm at 1.2 Hz. The resulting speed response is shown in
Fig. 7.34. This figure demonstrates how the motor can only rotate at a8 speed physically constrained by
supply voltage ie. 1500 rpm. This example while trivial, allows students to get a tangible

understanding and visualisation of plant saturation.

Spced Response

2000

1500 & "'""'T""J . it
" ki 'y Py
[R ’

1000+
| A fi \

SO0 - ! \ A

or \

| A

S peed (e vimm)

-500 +
-1000

(o ;
1500 ¢ i\\"l"‘""*“f“"ﬂ?m%' |

2000 - —_ -

0 0z 0.4 06 08 i
Time {s)

Fig. 7.34:Plant saturation speed response

The concepr of integrator windup is closely related to plant saturation and car also be demonstrated 10
students. A “manual’” switch block, shown in Fig. 7.35, is inserted into the speed controller loop to

switclh in or out the integrator windup.

7-24

Chapter Seven: Demonstration of the RADE system

[t works on the prninciple of changing the input to the oulpul delay term of the controller. If this input is
taken before the saturation block, the delay term or integrator is able 10 windup. and conversely if
taken afier the saturation block, the maximum value attainable by the integrator is constrained to the
saturation block limits. It is worthwhile to note that the manual switch position can be changed during
real-time code execution. When the integrator windup has been disabled the resulting speed response
1s shown o Fig. 7.36. The controller parameters are unchanged from the ones used for the response in
Fig. 7.32 i.e. Kp=0.03 and Ki=20. From Fig. 7.36 it can be seen how integrator windup affecis the
predicied system responses. This now concludes the demonsiration of the RADE ADC64 and 1he next

section focuses on the RADE PC32

yret P L’IK/ -
Suma > = §i
| Faedback
1
- -
: > =D
Urit Daay Outt
» Saturation
> 15/2°Ki
Sumi . P+
Marua Swtch
Sum2
3
Z
Unit Delay
Fig. 7.35:Discrete PI controller with windup switch
SpcedResporse
2000 ; — —
13500+ .
by
r‘JJ 1 {#
]
1000 - { 1
. = f - e - !,"‘1 |
/ W 7
= 500 ' /
E '
£ 0F
- /
31 f
8- / '\I |
w500 - / bt
I \.‘ ;‘ W“-‘-vw.-'
-1 000 - { .
-\ r I
-1500 ¢ " a
2000 - — A
0.2 0.4 0.6 0.8 |
Time

Fig. 7.36:Speed response with no anti-windup

Chapter Seven: Demonstration of the RADE system

7.4. Demonstration of RADE PC32 System

This section demonstrates rapid prototyping with the RADE PC32 system. The first part of the section
rapidly prototypes the current and speed controllers designed o sections 7.2.2 and 7.2.4. These results
are compared against both simulaied and RADE ADCG64 results. This section then concludes with a

demonstration of a rapid prototyped position controller.

7.41 DC Servo Speed Control

The DC servo implemented in this section is based on the Simulink models used on the RADE
ADCG64 system. The tuned current and speed loop results presented wn this section, are used to evaluate

the RADE PC32 sysiem against simulated and RADE ADC64 data.

The operation of the RADE PC32 system is functionally equivalent to RADE ADCG64 and the similar
Simulink model used on both these system. Fig. 7.38 and Fig. 7.28 respectively show the PC32 and
ADC64 versions of 1the subsystem | block; only the device driver blocks are changed. This illustrates
the flexibility of the RADE system to reuse models across different targets. The experimenial setup,

shown in Fig. 7.18, does not change except for the target PC using the PC32 card.

Fig. 7.37 shows the root layer of the DC servo speed controller model and consists of:

o AD Trigger block which is used to sofitware trigger ADCs on external interrupt 0. The
interrupt signal is generated by the PWM card and occurs at 8K Hz synchromised to the 4K Hz
PWM signals.

¢ The subsysiem 1 block contains the controller model (Fig. 7.38) and is synchronised to the
ADC end conversion signal which tops interrupt). This is identical to ADC64 version (Fig.
7.28) except for the ADC and PWM device driver being changed.

e The PC32 Int Support block used to synchronise AD Trigger block to exicrnal interrupt 0 and
the subsystem | to external interrupt |

» The Data Store Memory, Data Store Read and scope blocks are used for on-line visualisation.

Data Store Read block B and C provide speed data and A provides current data.

Chapter Seven:

Demonstration of the RADE system

PC32 ADC A
/\—/ > -—>| 300
Sine Wavel Relay? mm

Spesa Rel

A 4

A B c
Dala Store Data Store Data Store
Memory Mamory Memory2
E
- —
=L L B | Speed Data
Eizp Trgges
s Data Store .
Efp Read3
MRS AD TRIGGER _C Scopet
TMR 1D
. Data Store
PC32 Int Support v Read2
il Cument Data
T -
Subsystem
Data Store Scope
Read
Fig. 7.37:Simulink model
i) Data Store A B Data Sore C_ Data Sore
L= ——— — | Wiile1 ~— | Wirite2
Trgger A S 3
"| 13/6 ~Pp| | fvadnack
ADCO Cument Scaling
AN
ADCY }
ADG2
ioeak 10002, ~P| Sooed feadvack Varm | vat

WM for DC MOT OF

Controliers

Fig. 7.38: Subsystem I block

The current loop response (without speed loop) is shown in Fig. 7.39 and it is evident that simulated

and real-1ime results agree, aside for the switching noise. The zoomed responses in Fig. 7.39 and Fig.

7.40 show the ADC64 and PC32 results'. A visual comparison of these results reveals that the PC32

system is more susceptible 1o noise and this can be explained by analysing the ADC triggering used on

these systems. On the ADC64 system the trigger signals are supplied directly by the PWM card and

there will only be signal propagation delay. On the PC32 system the PWM signal can not be directly

12 ; i ‘aVa i
These results have not been overlaid, as the switching noise makes i1 difficult 1o diflerennate signals.

7-27

Chapter Seven: Demonstration of the RADE system

used to trigger ADC conversions' and is instead patched to the processor external interrupt 0 pin
which in turn trips software ADC conversions. In this case there is the interrupt latency and the

processing delays, which skews sampling and results in more, switching noise being sampled.

PC32 Curenl Resporse PCA2 Curen! Response
1 — ~ —— -
° Kp=145: Ki=200 Kp=14 5 Ki=200
Bt T M‘ oAl FaNTE P— =1 BB_ .a e banad, . -
G- I{ L " e a : ;
| | | IJ 1| ol I I _ ||||J|| “'““HI
| PSR i S ais B S H yaa et T H | I
S, \ . f \ S i '
T B0
-
i 2 | i 1 573' J
-t | } 1
\ 78
|]
p]
| | 74 o
8 I :
«I8A ref@ 10Hz ! +BA el @ 10Hz |
10 "1) . o A, Teses .
0 0.05 R} 015 02 012 0.125
Time(s) Time (s)
Fig. 7.39: Current response
ADCGd Curenl Re&oonse
] g i v e T REDeamiimed |
BLUE=realtme
GREE N=ref
85. B e aipes 5 B - - _; _____
j ~ |
a § TT— = —_l
< |
T ceeand
g 75 :
=3
o |
7 1 < : . _1
5 / |
gh-1i-BArEl@10Hz |

01 0105 011 0115 012 0125 013 0135
Time (s)

Fig. 7.40:ADC64 Current sampling

The speed loop small and large signal results are presented below and also confirm that the RADE
PC32 system produces results that closely match simulated and ADC64 data. Table 7-2 summarises

these results. The next section demonstrates the RADE PC32 system for a position controller.

* The external trigger signals for the ADCs on the PC32 card have sirict fming resiriction that arc not met by the interrupt

signal generated from the PWM ASIC.

Curmrt (A)

Chaprer Seven: Demonsrration of the RADE system

Result Type Comment

Small signal speed Simulated ADC64 results agree.

Small signal current 2 Simulated ADC64 results agree
Large signal speed Simulated ADC64 results agree
Large signal current Simulated ADC64 results agree

Tuble 7-2: Summary of RADE PC32 resulis

PC32 Spead Response: Small Signal ADC6B4 Speed Response. Small Signal

400 ——

— - 600 ——

Speed (revimin)

Kp=003 Ki=20 | T Kp=003! Ki=20]
AL fatar, : 500 F------ H P 1 - - BEC=simulawed [
300 =- /I 8 | "WT-' 5 g e (."\ \'_._‘,T\,\,ll LTI RN BLUE=makme
/ i . s00t I[. GREEN=ref
zm [i | H o {1 [5, e ., _‘\;
200 - i d) oo S R e
) /
100 = | f
200+ —
3 : '.
0 : H E i S 100+ 1
[] ° |
l b
| | | | 2 L A
100 | II 3. s L R R e - S 1 l (% Ol Ji 1
| |
(. : 100+ R T : { .
200+ - . . N ; | s e d { | \ |
\ \ 200+ ! S
| \ | i\ L% i
-300 -~ "-‘..‘_ AP \:-!E =mmuted = ‘\‘.‘_,‘I\ -1 L300 " asaf : A . F Vaoadp
+-300 revmin ref @ 2Hz .:]_L;ll‘::—IEE)i-!ﬂ‘IL‘ | «£300 revmin rel @ 2Hz)
400" ; GREENem(J 400! T : i
[} 02 04 06 08 { 0 0z 04 06 o8 1
Time (s) Time (s)

Fig. 7.41: Small signal speed response

PC32 Curent Resporse: Smal Sigral ADCB4 Currert Response: Small Signal

15 PR e — 15] T
p=003;Ki=20 P ——
e GREEN=simulste d | Frdaionel
BLUE=realdime
10+ f i" earna s | iO[. . o
| ||'l '.l : | | [\ ‘
I IP‘ I : 1 =
1\ G (A RO R i sh-1-3 [S S—]
‘ \ : ‘ \ A
i I - b
Ohe~- = -is H o R | E \"ﬁuwx-’-\ j ""-A.A.AM
| S Rt \ - 3 0 res ’M-vau ;”'M
i by | I
I]| 3 ‘ : d / ‘ /
St - =T L P } SRS | I 2 4 _55 1 |
| o e ‘ | \p v
| . } I |
| . I . . \ I
_I 1 . \ 1 L
J [+ | SE— - L H i - P 4 A0+ - : . S - - N
L300 reviminrel @ 2Hz | 4-I0revmnrel @ 2He
-15 — - - - 45— —— i .
0 02 04 06 08 1 0 02 04 06 08 1
Time(3) Time (%)

Fig. 7.42: Smull signal current response

Spead (ewimin)

Chapter Seven: Demonstration of the RADE system

PC32 Speed Resporse: Large Signal

ADCBA Speed Resporse: Large Signal

1000 — : — 1000 — . —
Kp=003:Ki=20] Kp=003;Ki=20
800 | At prtH 800 - Fakiin oo .wa.Jw s
I | Fal \ ¥ ! Tl \
/ ! i ¢ I
600 | \ ' 600 1
400 I \ 400 - - =
SN | SO i\ _ ¥ oot i . 5
) \ | § = |
or = I_' s e B - ot Saa _-.1i = 0 - L
\ f | &
I I B | vined
2001 1 (.% 2007~ | BLUE=re: ume
_ \ |] ' GRE EN=ret
_400; . {-+ - \- o A W g Ll. 400 + l << g ERTEE i ‘F Lk
1 1
J '\ | |
A \ § f ,
. " .
800 Mamdnen 800 Snsurle-- Mgl -~ - -~
=800 rewmin rel @ 2+ [| ++800 remin ref @ 2Hz
1000 —— L — - — ——_— ~1000 " —_— - ——— I — L —
0 02 04 06 08 [} 02 04 08 08
Time {s) Time {s)
Fig. 7.43: Large signul speed response
PC32 Current Response: Large Sigral ADC 64 Curmrent Resporse. Large Signal
15— — ; e = s 15— = = .
Kp=003;Ki=20 GREEN=sirmulsted Kp=003: Kiz20 GREEN=anulted
BLUE=realtime BLUE=teal-tme
10| A 5 . G i 4 10 Ao Ao
1 i | |
% | N | 4\
\ ! ' | \
5 y fooed 1 5 « \
\ \ \ \
z | \ \ i z poo \ : Y
= | | = | " A o
T faas £ TR e e g . i’ .
g 0+ 'fw‘d : : g ;] E OF ||y Arthnia, oy ; Pt
2 : iy o
o J’ ' 3 _." W
sl N foveee | 5 4
hj [|
| | | : :
“)!.. vu . 1{‘ A0+ n"L_) - lharsn it
*/80Qrevimrirel @ 2Hz +-800 revmin re! @ 2Rz
15— L — a5 — — — -
0 02 0A 06 08 1 0 02 04 06 os
Time (s) Time (s)
Fig. 7.44: Large signal current response
7.4.2 Position Controller Experiment

The RADE PC32 system, from an operational standpoint, functions in a similar fashion to the RADE
AD64 system and this section illustrates its use with a position control experiment. This experiment i3
presented 1n a qualitative manner, as it is envisaged that students would use a supplied model to
investigated plant responses. This experiment could therefore be used in inroductory courses with
students having little controls backgrounds. An added advantage of using a position control
experimenr is thal changes in plant responses can be easily observed. For example in the under

damped case the student can observe how the shafi over shoots the set point and then converges.

The experimental setup for this experiment is based on the system used for the RADE ADC64 system
(Fig. 7.18) with a different motor and the 1acho replaced with an incremental encoder. The Simulink

mode! used is sbow in Fig. 7.45 and Fig. 7.46.

7-30

Chapter Seven: Demonstration of the RADE system

r Position Controller

A B C
Data Slore Data Store Dala Store
Memaory Mamory1 Memory2
€ e -
Eny
y Data Store Scope
Eizp Triggen(} Read
El3 L 4
o' Trigger) —_
fiugd AD TRIGGER B L]
TMR ¢ Data Store Muxt—p>
Read!
PC32 Int Support Scopet
c |
Data Store
Modge! Read2
| Model subsystem
10
: TachoDriver1 Abs. Speed
Trager Lb' Tacho In [Lyl speeain Fitered Speed
S-Function1 Position
Subsyslem "Running” Filter
c
ADCO—
Data Store
Wrile2
ADC1p
ADC2b P Pos. fead
P Wieed
a
s i To PWM P Vat
| -
PC32 ADC3 1378 P Current fead
PWM forDC MOTO
y P Pos. ref. R
Data Siorg™——
W nle A Controllers
Sine Wave Relayt degrees Dala Siwore
Wrile ?

Fig. 7.45: Simulink model

The PC32 Interrupt block is used to synchronise controller execution to PWM ASIC as done with
RADE ADC64 system. On the PC32 card the PWM ASIC’s interrupt signal cannot be used directly 1o
trigger ADC conversion'” and is instead used 10 trip external interrupt | that in rurn triggers a sofiware
ADC conversion. At the end of the conversion the ADCs trip the external interrupt 2, which runs the

model subsysiem code.

" The external idgger signals for the ADCs on the PC32 card have strict timing resiriction that are nol met by the 1nterrupt

signal generated from the PWM ASIC.

Chapter Seven: Demonstration of the RADE system

In the model subsystern, shown in Fig. 7.45, the ADC block is used to sample the current sensor
signal, the Tacho dnver is used to input position daia from the tacho ASIC on the PWM card. The
position data is then used to gcnerate speed signal'®, which used for speed feedback. The sine and

relay combination are used to provide a reference square wave signal for the position control loop.

The coniroller subsysier, shown in Fig. 7.45 is expanded in Fig. 7.46. It consists of 3-cascaded
discrete PI controllers. The inner most conurol loop regulates the armature current. This is followed by
the speed loop and then the position loop. For the purpose of this discussion the inner two loops are
assumed to be tuned and the student would only need to modify position loop parameters Lo observe

different plant responses.

‘ Controllers subsystem l

CPE-I—-» Pos ref

os.
-

W
ref, @_' Pos feed L Wrat
1 —| trof

Pos feed ——————
cs. g Position Controller L — 32000-’12#,}'—@
if L/_,_,’

>
Speed Controller To PWM
Current Controller 32000/128
Ve

Curreni feed

<

Fig. 7.46: The controllers subsystem

With the plant running, the student can enter different position controller parameters. Table 7-3 lists
three examples of Ki and Kp parameters for the position conuol loop and their corresponding
responses. These responses show a regulating, under damped and over damped plant/controller
behawviour, The controller parameters for the speed and current }oop are shown in Table 74, note these

parameters are not modified.

Kp Position Ki Position Description Figure

7 Good regulation Fig. 7.47
30 Under damped plant | Fig. 7.48
response
Over damped plant | Fig. 7.49
response

Table 7-3:Controller parameters for various plant responses

Kp Speed ‘ Ki Speed Kp Current Ki Current
45/30 | 20 | 30 300

Table 7-4: Fixved controller parameters for the speed and current loops

1* Tl is done by differentiating the position signal.

Chapter Seven: Demonstration of the RADE system

Positon Response

150 - e
el ‘—_‘_\.
/ \
100 k- . r. S R— |[| . S Y- 1 cae e
/ tl /
| |
| f f
50|—--- 1 | / }
| { | [
an II' ||
2 | r 5 |
= OI_.._. “pee e o = §=-
et | I| | |
= i [
< II \
50+ A1
| 3
|I \ |
A00F--- II 2 T, N - . .I
poor @2 0 N
A =
150 | i
0 0.2 04 06 08 i
Time (s)
Fig. 7.47:Regulating position response
Peosibon Response
250 : - - :
200 - { \‘. § : £/ \ J
150 ---- bya :. PPN RNIC IR e a i g o s _.‘.' . Iﬂ;'
100 F--- | e ke . : ".II s S e .i,.-,..rl. I'\I..
| N\ : \ : : J
B) e STt SETECRTITSPRPTE CEER) CES R LErTRT o ECCEIT [T RN .
U l|I . ' |
N | H
= !
5 O - [t T ‘
2 [| f
< S0+ | IO
| | | P
100/ '1 -\ !
Iy S 7
150 +- s “ !H_
SO s svassibnrrtyandiiaeiee "‘./._r“. -
Tiom ibent . VB TH 250
a 0.2 0.4 0.6 08 I
Time (s)

Fig. 7.48:Under damped response

Chapter Seven: Demonstration of the RADE sysiem

Position Response
150 — = T

o A
= '
i Y
= Ol ;
o
£ ;
50 2 v
|
|
100 L- ; ; S |
a5 |
50— > eSS — i -
0 02 04 0.6 08 1

Time (s)

Fig. 7.49: Over damped response

7.5. Conclusion

This chapter demonsirated the use of the RADE ADC64 and PC32 systems with the implementation
educational motion control applications and highlighted the use of rapid prototyping technique for the
teaching of theoretically challenging courses. The theoretically designed controller yielded a real-time
controller with predicted response. While this chapter concentrated on motion control examples the

RADE system has immediate applications to the teaching of DSP and communications courses.

The on-line parameter and data-logging fearure of the RADE sysiem illusirates how students can
inleractively investigate planvcontroller responses. An added benefit of the Simulink system is that
students can perform quick qualitative experiments at the introductory siage of courses and then
progress (o the implementation of quantitatively designed controllers. This system allows students to
practically explore real-time systems and gain an appreciation of the theoretical control topic withoul

being bewildered by the complexities of the lower levels of DSP real-time code.

Both the RADE ADCé64 and PC32 have been demonstrated to provide an effective rapid prototyping

plaiform for educational applications.

Chapter Eight:: Conclusion

CHAPTER EIGHT:
CONCLUSION

8.1. General

The practical work for this thesis produced a rapid prototyping tool that that is suited for the teaching
of controls and allied fields. Tt was based on The Mathworks RTW and implemented the RADE
framework for two 1 DSP cards i.c. the PC32 and ADC64 cards.

This thesis also presented a cross section of the activity within the rapid prototyping arena, focused on
educational application. The work of [GAN1, GREGA1, KRONSIC1] shows the positive impact rapid
prototyping can rmake on engineering education. In the South Africa context of poor pass rates and
disparaging backgrounds of undergraduate students [JAWTTZ1], rapid prototyping present a possible
avenue to assist these students. The major advantage of rapid prototyping is that it promotes authentic
cognitive' learning and affords the students the opportunity to interactively be involved with

experiments.

While rapid prototyping allows for new and improved teaching methods it still faces a few hurdles,
which will have to be over come, in order to become a mainstream teaching tool. These include
equipment cost and development time. However these pale in comparison to the attitudes of the
educators themselves. A point in case 5 the author’s engineering department, while the Motion
Control Group has done a sterling job of producing rapid prototyping tools very few of the other
academics are willing to tma) or contribute to the development process. It seems that the appeal of
rapid prototyping is not clear to them and this mindset needs to be changed in-order for rapid

prototyping to be an effective teaching aid.

8.1.1 Role of the RADE Framework

The Motion Control Group’s first rapid prototyping tool was CSDE developed by Stylo. The RADE
framework built from this start and produced a system that:
e Closely conforms to The Mathworks specifications.

e Provides full network support.

' Authentic cognitive lcaming refers 10 the learning process whereby the individual develops knowledge by forming and and

refining concepts in 3 personal idiosyncralic manner [SQUIRES1|

8-1

Chapter Eight:: Conclusion

¢ Provides a scalable framework that can be ported to various target cards.

o Supports on-line parameter tuning and data logging with capture features.

The RADE framework while an effective rapid prototyping tool, is not the final point in the
development cycle. It rather represents a step in the Motion Controls Groups on going development
strategy. The RADE framework will aid this process and help future developers produce more
effective and user-fmendly rapid prototyping tools.

8.2. Suggestions for Further Work

As mentioned above the rapid prototyping tools being developed at the Motion Control Group is an on
going process and the author during the course of his work has identified the following areas as

possible research topics for further work.

Addition of a Real-Time OS on the target
Currently the target platforms used in the RADE framework are at the lower to medium end of DSP
processor available and are not suitable to run a real-time OS (RTOS) due to bandwidth constraints. 1t
is envisaged that more sophisticated/powerful processor platforms® will be incorporated into the
RADE framework and these platforms will have the necessary bandwidth needed to run a RTOS. The
benefirs of using a real-time OS are:

¢ Itallows for multitasking.

e More features can be built into the target.

e [t will be possible to directly connect to the target platform onto a network as most RTOSs

include network support.

Analysis of course impact

An aim of the RADE system is to improve the teaching of controls systems, DSP and aligned courses.
This aim needs to be quantitatively evaluated as feedback from lecturers and students are necessary to
develop the RADE framework further. Currently the use of the RADE system has shown qualitative

benefits, which needs to backed up by proper analysis of the course impact, which such tools make.

Local DSP cards
A major hurdle that rapid prototyping tools face in general is the cost factor, which is amplified, in the

South African context. A possible solution to this impediment is the development of a local DSP

* A TMS320C67 card is scheduled for incorporation into the RADE framework in the near future.

Chapter Eight:: Conclusion

platform. A collaborative effort among local universities will be an ideal way to develop a cost

effective platform that can be utilised by all role payers.

Revision Control issue

The RADE framework is inherently complex due to the incorporation of numerous tools and
packages. There are about 20 to 30 files that make up each implementation of the RADE framework
and it is difficult and near impossible to keep track of revisions. It is therefore advisable for revision
contro! software to be used for future developments. Packages like Visual Source Safe from Microsoft
or CVS from GUN will be ideal.

8-3

APPENDIX A: User Guide

APPENDIX A:

USER GUIDE
A.1. INSTALLATION MANUAL FOR RADE VERSION 1

The installation for the RADE system s inherently a complex task, due to the use of three different
packages. Namely:
a. T]compiler
a. Innovative Integration Zuma tool set
b. Matlab release R11
It is recommended that the TT and 1 Zuma toolset are installed using the II installation manual with
the following additional comment
1. TI compiler
a. Use default directory. c:\fltc for ver 4.7 and c:\c3xtools for ver 5.10
b. Note there is a patch for the TI compiler ver 5.10, which upgrades it to version 5.11.
Run self-exfraction file 3xwinpSx.exe found on RADE installation CD, in the
\c3xtools directory. Then run the install.bat file.
c. CSDE uses only compiler ver 4.7
d. The following header files should be copied from RADE installation CD (\C3xtools\include)
to the respective TI directory on the installation PC. This applies to version 5.10 only. For
version 4.7 use the header file found in the \flic directory on the RADE installation CD.
1.d.1. bus30.h
1.d.2, bus32.h
1.d.3. dma30.h
1.d.4. dma32.h
1.d4.5. timer30.h
2. Zuma toolset
a. Use the newest II installation ver 2.28, as the libraries files for older version are not
compatible with TL compiler 5.11
b. For the PC32 card Adam has modified library files, these files reside in the Matlab directory

and are copied to the target PC in the following steps.

A.1.1 INSTALLATION OF THE RADE COMPONENTS TO MATLAB
DIRECTORY

1. Use the default directory of c:\matlabrl1 for Matlab installation on target PC.

Appendix A: .1

APPENDIX A: User Guide

Copy the following directories from the RADE installation CD.
CD:\matlabrl I\rtw\c\ii

b. CD:\matlabr! I\rtw\c\grt_c3x

c. Optional demo directories CD:\matlabrl l\work\adc_demo and
D:\matlabr1 1\work\PC32_demo

Bug fixes for R11.

a. Make backup of the c:\bin\licence.dat file to the c:\matlabrll directory on the target
installation PC.

b. Copy the d:\matlabrll\bin directory from the RADE installation CD to the target PCs
c:\matlabr1 1\bin directory.

c. Replace the licence.dat file backup at step 3.a above.

Moving files on target installation PC

a. copy the files in directory c:\matlabrl 1\rtw\c\ii\stc_mod fo c:\matlabr! 1\rtw\c\src

b. copy the files in directory c:\matlabr| [\rtw\c\ii\tlc_mod to c:\matlabrl I\rtw\c\tlc

Setup Matlab path with the following paths.

a. c:\matlabr] I\rtw\c\ii\devices

b. c:\matlabr] I\rtwAc\iiti_fpe

c. cimatlabrl J\rtwAc\in\ext_mode

d. c:\matlabrll\rtw\c\iladc\devices

e. c:\matlabrl l\rtw\c\it\adc\src

A.1.2 INSTALLATION OF SERVER APPLICATION.

There are two versions of the server application for the respective DSP cards. In addition there are two

different builds of each server application: (all in all four server applications)

1.

Dynamical linked. This version uses MCF DLL’s dynamically and works only if visual C/C-++ is
installed.

Static linked. This version uses the MFC DLL’s statically and works on machines without the
need for visual C/C++

For a standalone system, 1.e. Matlab and DSP target on same PC

a. The server applications 1s found in the c:\matlabr I\rtw\c\ii\bin directory

b. Create shortcuts to the respective applications.

For a DSP card at a remote workstation

a. Make a server directory on PC

b. Copy the server application from the RADE CD (c:\matlabr! I\rtw\c\ii\bin) to c:\server

direcrory.

Appendix A: .2

APPENDIX A: User Guide

You are now ready to use the RADE system

A.2. SINE WAVE EXAMPLE

The following examples are to be used in conjunction with RTW manual. They are iniended to

demonstrate how to setup the RADE systemn and are suitable to use as a control measure to ensure the

system is working. Therealter refer to chapters 5 and 6 for information on uses of specific device

dnivers

A.2.1 RADE PC32

Cisine_wave Ei=1 3
_Ele Edt View Simistion Fomat Tools | ATl
DNsaas=r(acr « | B yis
i —
Soopet FSoope
> 2
Sine Wave
Galn
\ »- DACD
. :2/ H0AL!
I poacz
O xind
HqDac3
PC32 DAC
Ready [iooz™ [| [FiadStepDieciets |z

Fig. A. I: Simulink diagram

The Simulink model shown in Fig. A. 1 is uses a sine wave block to output a sine wave on two DAC

channels. The gain blocks are used to alter the signal amplitude on each of the DAC channels. It

should be note that both the gain and sine wave blocks can be modified on-line.

The setup of Simulink parameters involves a five-stage process':

1. Setup Simulation Parameters

When a model is being converted into real-time code only fixed step size can be used. It

possible to use either a continuous or discrete solver. Fig. A. 2 shows the parameters used.

2. RTW Options

' The RTW manua provides detailed information on the setup process and purpose of the respective parameters. This scction

is only intended to highlight the RADE PC32 paramelers used.

Appendix A: .3

APPENDIX A: User Guide

The RTW options are used to select the target type. In the case of the RADE PC32 the
grt_c3x.tle {ile is used. The options used are shown in Fig. A. 3.

RTW Build Options

The RTW build options are used to setup option used for the code build cycle. The options
used are shown in Fig. A. 4.

External Mode Parameters

These parameters are used to setup external mode. Fig. A. 5 shows the parameters used.
Data-Logging

The rwo scope blocks shown in Fig. A. | can be used for data logging and are setup in the
External Signal & Triggering window shown in Fig. A. 6. It should be noted that a maximum

of 8000 samples are allowed, due target memory constraints.

Once these parameters have been setup, the mode! can be built. The results obtained are showa in

Fig. A. 7. Note the server program must be operating on the target PC.

4 Simulation Paramelers

; discrete (no continuous states) _. ‘ ;

.0

l Rafine output _ -

| LT e

8]
K

Fig. A. 2: Simulation parameters

Appendix A: 4

APPENDIX A: User Guide

Fig. A. 3: RTW oaptions

¢ Code Generalion Oplions: sing wave

|

Fig. A. 4: RTW build options

'sine_wuave: External Target Interfa

Fig. A. 5: External mode setup

Appendix A: .S

APPENDIX A: User Guide

sine_wave/8cope
=zine_wsve/gScopel

A.2.2 RADE ADC64

The use of the RADE ADCG64 system is functionally very similar to the RADE PC32 and only
requires the ADC64 device drivers to be used with a few changes to the RTW options. The Simulink
model use, shown in Fig. A. 1, is equivalent to the RADE PC32 example demonstrated above. The
RTW options that have changed are shown in Fig. A. 9. Once these parameters have been change the
model is ready to be built. With the server executing on the target PC the results shown in Fig. A. 10
should be obtained.

Appendix A: .6

APPENDIX A: User Guide

[T adc_wave

Sine Wave L/o’a-l’n//
|
N ™ DACI
/ |
oalns ADCO4 DAC

Fig. A. 9: RTW options

Appendix A: .7

APPENDIX A: User Guide

ime offset: 0 ime offset: O

. |
Fig. A. 10: Scope block results

Appendix A: .8

APPENDIX B: A Programmer’s Guide to the Internal working of the RADE systems

APPENDIX B:
A PROGRAMMER'S GUIDE TO THE INTERNAL WORKING
OF THE RADE SYSTEMS

B.1. MODIFICATIONS TO THE MATHWORKS EXTERNAL MODE
IMPLEMENTATION

This section is intended to provide programmatic details on the modifications made to The Mathworks
external mode implementation. The emphasis of this section is to highlight the various funciions used
in the default implementation and then explains the changes needed for the RADE implementation. [t
is recommended that the reader have a proper understanding of the RTW and workings of the RADE

framework before attempting to make modifications.

B.1.1 DEFAULT MATHWORKS EXTERNAL MODE IMPLEMENTATION

The default Mathworks external mode implementation consists of two major files and two munor files;
Table B 1 lists these files. Ext_comm.c modute which implements the Simulink communication layer

has already been adequately covered in chapter 3 and 4 and further explanation is not necessary. Hard

copies of these files are not listed in this thesis, as electronic copes are available on the CD attached.

Related Files

Ext_comm.c Simulink communicaticn layer module. See chapter 3

File Name Description

Ext_convert.c Conversion module. Converts data between targel and
host types.
Ext_srv.c External mode module that run on the target side.

Updown.c This is a addition file that containes all the data procesing
function. Function from exi_srv call into this module.

Table B 1: Default external mode files

The external server module consists of three major functions:
1. Main loop
Used to manage the external transaction
2. Message Processing
Used to process Simulink messages.

3. Upload Processing

Appendix B: .1

APPENDIX B: A Programmer’s Guide to the Intermal working of the RADE systems

Used to processing the uploading of logged data
These functions all reside in the ext_srv.c module and pseudo code listing are presented below. These
listing convey the general algorithms for the respective functions and need to be read in conjunction

with the C implementation for a full understanding to be a gained.

Function Main execution loop
/*This is function represent the execution loop that manages external mode transactions.
It is hypothetical function that has been extracted from MAIN function in run time
interface i.e. it only represents details pertaining to the extemal mode aspects */
{
Call rt_ExtModelnit(SimStruct *§, int_T port)
/*This function setup a listening socket on the target PC*/

Execution loop /*runs in foreground and can be pre-empted by rt_onestep and other
interrupts*/
Start
Call int_T rt_MsgServerWork(SimStruct *S)
/*This function is used to receive and process messages sent from
Simulink*/

Call int_T rt_UploadServerWork(SimStruct *S)
/*Used to send upload data if present*/
end

Function int_T rt_MsgServerWork(SimStruct *S)
/* Used to receive and process messages sent from Simulink*/

{
If Comms NOT CONNECTED then

{

fs Simulink try to Connect

1If YES then
{
Call static int_T ConnectToHost(void)
/*used to open message and upload sockets*/
Set Comms=CONNECTED
}
else
{
Waits till Simulink connects to target
Retumn
}

}

else /* comms CONNECTEDY/
{

If first message Then
Set message code 1o EXT_CONNECT
Get data from message socket

Case Message

{

Appendix B: .2

APPENDIX B: A Programmer’s Guide to the Internal working of the RADE systems

If EXT_CONNECT
Call ProcessConnectMsg(S);
/*used to connect to Simulink client*/
If EXT_SETPARAM
Call ProcessSetParamMsg(S, msgHdr.size);
/*updates parameters*/

/* All external mode messages are processed here */

}
End Case

} /*end else*/
} /* end function */

Function int_T rt_UploadServerWork(SimStruct *S)

{

If data available

{
For al} buffers

Call send(upFd, bufMem->sectionl, bufMem->nBytes], 0);
/*WinSock API function to send data*/
Next
}/*end if */
}/*end function™®/

B.1.2 RADE EXTERNAL MODE

On the RADE system all the function described above are used in a modified form i.e. the WinSock
parts resides on the PC while the rest resides on the target. The files used for RADE framework
extemal mode implementation are listed in Table B. 2. The Simulink communication layer has already

been discussed in chapter 4 and is not revisited here.

The RADE implementation conforms closely to The Mathworks conventions and therefore also
consists of three major functions. However these functions are split between the PC (server

application) and target platforms. Pseudo code is listed below for these functions.

File Name & | Related Files Mathworks default file Description

Platform

Ext_comm_c3x.c Exi_comm.c Simulink communication layer

PC platform module. See chapter 4

Ext_Convert_c3x.c | Ext_Conver.c Conversion madule. Converts data

between target and host types. See
chapter 4

Ext_srv_pc.cpp Ext_srv.c

PC platform

Appendix B: .3

APPENDIX B: A Programmer’s Guide to the Internal working of the RADE systems

File Name & | Related Files Mathworks default file Description
Platform

Ext_srv_c3x.c Ext_srv.c
Target Platform

Updown_c3x.c Updown.c No functional change only added in
debugging printf statements.

Table B. 2: Files used for external mode

Function Main Execution Loop PC Side
/*Found in ext_srv_pc.cpp file and is attached to a timer running at {Oms*/

{
Call Process_Target_Msg Work()

/*used to manage STP fransactions */
Call rt_MsgServerWork()
Call Thread_Upload(LPVOID pParam)

/*used to send upload data to Simulink. Found in the STP file, see next section*/
}

Function int_T rt_MsgServerWork() /*PC side*/
/*Used to receive Simulink messages. ext_srv_pc.cpp */

{
if comms=CONNECTED then
{
Get data from message socket
Call Send_Data((char*)&msgHdr,sizeof(MsgHeader), TO_TARGET_HDR);
/*This is a STP function. See next section*/
Call Send_Data(recv_buf,size*4,TO_TARGET_MSQG);
/*This is a STP function. See next section*/
}

Function Main Execution Loop Target Side
/*manages external mode execution on the target. Ext_srv_c3x.c*/
{
Call n_MsgServerWork(S);
/*This function process messages that have been sent (o the target®/
Call Process_Msg_Work();
/*This function manages STP. See next section*/
Call rt_UploadServerWork(S);
/*This function sends data to the Server application using STP functions®/

}

Function int_T rt_MsgServerWork(SimStruct *S) /*target side*/

{

1f message to be processed
{
l
If first message Then
Set message code to EXT_CONNECT
Case Message
{
If EXT_CONNECT

Call ProcessConnectMsg(S);
/*used to connect to Simulink client*/

Appendix B: 4

APPENDIX B: A Programmer’s Guide to the Internal working of the RADE systems

I[f EXT_SETPARAM
Call ProcessSetParamMsg(S, msgHdr.size);
/*updates parameters*/

/* All external mode messages are processed here */

}
End Case

}

Function int_T rt_UploadServerWork(SimStruct *S)

{
If data available
{
For all buffers
Call Send_Upload_Data(bufMem->sectionl, bufMem->nBytesl)
/*STP function to send data*/
Next
Y/ *end if */
}

B.2. SERVER TO TARGET PROTOCOL

STP as explained in chapter 4 is the channel through which the server and target application

communicate. STP exports standard function that the RADE external mode implementation uses, as
describe in the last section. Table B. 3 list the file used of the STP on both the PC32 and ADC64

platforms.
Target Type File Name Platform Description
PC32 ii_comms_pc.cpp | PC Implements PC side of SPT based on a DPRAM
architecture.
ii_pc32.c TMS320C32 Implements target side STP
ADCB4 li_adc64_pc.cpp | PC Implements PC side SPT based on a PCI bus
architecture
ii_adcB4.c TMS320c32 implments target side STP
Table B. 3

The STP is made up of three major functional aspects:

}. The overall management of STP transactions. This entails the checking of mailboxes for

incoming data.

2. The sending of data. This part is mirrored on both the PC and target sides of the STP. When

data is sent from the target the STP management on PC receives the data and vice versa when

Appendix B: .5

APPENDIX B: A Programmer’s Guide to the Internal working of the RADE systemns

the PC is sending data to the target.

3. The uploading of data. The target sends upload data and the PC STP rmanagement function

receives, sequences and sends data to Ssmulink.

The functions used to implement the STP are listed in Table B. 4.

Function
al area

Function

Platform

File

Description

PC side
SPT
managem
nt

Process_Target_Msg_Work()

pPC32

ii_comms_pc.cpp

Checks from target mait
port for data and recieves
data

Process_Target_Msg_Work()

ADCs4

li_adc64_pc.cop

Checks from target mall
port for data and recieves
data

Thread_Upload{LPVOID
pParam)

Both PC32
and ADCg4

ii_comms_pc.cpp
+

li_ adcb4 oc.cpp

This thread chech if
upload data is ready o be
sent to Simulink

PC send
functions

Send_Data(char "p_msg,int
len,msg_id id)

PC32

ii_comms_pc.cpp

Send extermal mode
messages to the target

Send_Data(char ‘p_msg,int
len,msg_id id)

ADC64

li_adc64_pc.cpp

Send extermal mode
messages to the target

Target
STP
managme
nt

Process_Msg_Work()

PC32

ii_pcdz.c

Recieves data for server

Process_Msg_Work()

ADCo4

i_adch4.c

Recieves data for server

Target
Send
function

Send_Data(char *p_msg.int
len,msg_id id)Send data

PC32 +ADC64

ii_pc32.c+
ii_adcb4.c

Sends extermmal mode

messages to server

Send_Upload_Data(char “buf,

int len)

PC32 +ADC64

Table B. 4

ii_pc32.c+
ii_adcB4.c

Sends upload data to
server application

Appendix B: .6

Current (A}

APPENDIX C: Evaluation of motor parameters

APPENDIX C:
EVALUATION OF MOTOR PARAMETERS

The motor parameters are found using a no-load test and The Mathworks Non-linear Design Control

Blockset MATHWORKSS]. The motor used is a permanent magnet type shown in Fig. C. 1.

Fig. C. I: Photo af motor

The motor armature is subject to a 85V DC voliage step and the captured current and speed responses

are shown in Fig. C. 2. This data js used with the NCD block [MATHWORKSZS] to perform a system

identification analysis on the motor.

No Load Curent Response (Varm=85V) No .oad Speed Response (Varm=85V)

N i i ¥ i A [1
. .I. O S . . - N h . { iy :-'." -\Ilk-ll."\,"_ Ta Ml i 3 fia A ¥ ‘
o : ' S 100H et e - o b . e {[l"l" |
y H Y . of 1)
D% TR S S VA : . | L_“|
|
12 80 o eme
‘ﬁ |
{
10 s ’ l
2 ool d
B § 11
[-5s | v 40 ¥ I|
O et T e e L | |
20; {
2 / Siswnang. niwia] foe |
[' f ‘
| | . | |
proiog s nommaboono. M, Lt 3 e g PO i e
k e - _.:_'_,: H H i ["1“]-
0 002 004 006 008 01 012 0.4 06 018 - =
Time (s) [005 0.1 0.5

Fig. C. 2; Measured no-load motor responses

Appendix D: .1

APPENDIX C: Evaluation of motor parameters

d NCD
OutPart 2
NCD Quipeny
[| A
o ! P o ™{ nco
- Y LaseRa | Js-8 | QutPon 1
Slep Galn
Transfer Fen Transfer Fent NCD Outpart
laa

\ 4

ToWorkspaze

Fig. C. 3: Simulink model used for system Identification

The NCD block operates within the Simulink environment and requires the theoretical model of the
motor to be implemented, as shown in Fig. C. 3. This model uses the variables to represent the
parameter of the system that need to be identified, which are:

s Ammature inductance La

s Armature resistance Ra

e Motor rotational moment J

e Motor viscous damping constant B

e Motor constant Km

The current response is loaded into NCD outport 2 and the plant constraints are set using the NCD
environment, and Fig. C. 4 shows this. A similar process is used for the speed response and Fig. C. 5
shows this, The motor parameters to be estimated are setup using the optimusation window shown in
Fig. C. 6. The motor parameters estimated by the NCD block are sumrnarised in

Fig.C. 7.

Appendix D: .2

APPENDIX C: Evaluation of motor parameters

006

Rasponse

10

- i. C. 5: Speed constraints

Appendix D: .3

APPENDIX C: Evaluation of motor parameters

KmJB Rala

]

[0.1 0.000010.00001 1 183

[330.10.15500-3 {{Fren

Parameter Value

Armature inductance (La) 46 mH
Armature resistance (Ra) 3.36 9]
Rotor moment of inertia (J) 4.889x 10~ Kgm’
Rotor viscous damping (B) 4291x 107 Kgm'/s
Motor Constant (Km) 0.834

Fig. C. 7: Motor parameters estimared

Appendix D: 4

APPENDIX D: Listing of Code for the RADE PC32

APPENDIX D: LISTING OF CODE FOR THE RADE PC32
D.1. CONVERSION FUNCTIONS EXT_CONVERT_C3X.C

~
* Utility fonctions for ext_comm.c.
*/

#inciude <string.h>
finclude <windows.h>
#include "tmwtypes.h”
#incluge "mex.h"
#incluge "extsim.h"
#include “extutil.h"

/IMagash 13/09/1999
/lii header

/Inote directory
#include "target.h"

static void Single_TargetToHost(
ExternalSim *ES,
void “dst,
const char ‘*sre,
constint n,
constint dType);
static void Single_HostToTargel(
ExternalSim °ES,
volid "gst,
const char *sre,
constint n,
constint dType);
static void Double_HostToTarget(
ExternalSim “ES,
void *dst,
const char ‘src,
constint n,
constint dType):
stalic void Double_TargetToHost(
ExternalSim °ES,
void “dst,
const char ‘src,
constint n,
constint dType);
static void Int8_TargetToHos{(
ExternalSim ‘ES,
voig “dst,
const char ‘src,
constint n,
constint dType); /” internal Simulink data type id =/

static void Int16_TargefToHost(
ExternalSim “ES,
void ‘gst,
const char °src,
constint n,
constint gType)./” internal Simulink data typs id </

static void Uint32_HostToTarget(
ExternalSim “ES,
void ‘gst,
const char ‘“src,
constint n,
constint dType);

static void Uint32_TargetToHost(
ExternalSim °ES,

Appendix D: .1

APPENDIX D: Listing of Code for the RADE PC32

void “dst,

const char *src,

constint n,

constint dType) .f" internal Simulink data type id */
static voigd Int32_TargetToHosY(

ExternalSim "ES,

void *dst,

const char “src,

constint n,

const Int dType); /* internal Simulink data type id */

static vold Uint8_TargetToHost(
ExternalSim °ES,
void “dst,
const char *sr¢,
constint n,
constint dType) i/* internal Simulink data type id */ .

static void Uint16_TargetToHost(
ExternalSim “ES,
void *dst,
const char “src,
constint n,
constint dType): /" intemal Simulink data typs id */

static void Int8_HostToTarget(
ExtemalSim °ES.
void "dst,
cons! char “src,
constint n,

constint dTyps); /* internal Simulink data type id */

static void Int16_HostToTarget(
ExternalSim “ES,
void “dst,
const char “src,
constint n,
constint dType); /* intarnal Simulink data type id "/

static void Int32_HostToTarget(
ExternalSim °ES,
void “dst,
const char ‘src,
constint n,
constint dType): /* Internal Simulink data type id */

static void Uint8_HostToTargel(
ExternalSim “ES,
void “dst,
const char “src,
constint n,
const Int dType): I internal Simulink data type id =/

static void Uint16_HostToTarget(
ExternalSim ‘*ES,
void “dst,
const char “src,
constint n,
constint dType); /" internal Simulink data type id */

I* Funclion: Bool_HostToTarget ==================s=============zz=ss============
" Abstract:
* Convert Simulink (hosts) bool value (uint8_T) to target boolean_T value.

Appendix D: .2

APPENDIX D: Listing of Code for the RADE PC32

No assumptions may be made about the alignment of the dst ptr.

The src pointer is aligned for type uin8_T. As implemented, this function
supports either uint8_T boolean values on the target or uint32_T beoleans
on the target (for dsps that support only 32-bit words).

e s @

¥/
static void Bool_HostToTarget(
ExternaiSim ‘ES,
char “dst,
const void "voidSrc,
constint n,
constint dType) /™ internal Simulink data type id °/

boolean_T swapBytes = esGetSwapBytas(ES);
constuint8_T *sr¢c = (const uint8_T *)voidSrc;

int sizeofTargetBool = esGetSizeOfTargetDataTypeFcn(ES)ES, dType) *
esGetHostBytesPerTargetByle(ES);

int 1;
char “dstPtr = dst;

for (i=0; i<n; i++)
{
uint32_T tmp = (uint32_T)srcli);
(void)memcpy(dstPtr, &tmp, 4);
dstPtr += 4;
}

} I end Bool_HostToTarget */

/* Function: BOO'_Targen-OHOSt —=========-================S===S=S=S=================
° Abstract:

* Convert target bool vatue to host bool value (uint8_t). No assumptions may

* be made about the alignment of the src ptr. The dst pointer Is aligned for

type uinB_T. As implemented, this function supports either uint8_T boolean

* values on the target or uint32_T booleans on the target (for dsps that

support only 32-bit words).
"/

static void Baol_TargetToHost(
ExternalSim “‘ES,
void *voidDst,
const char *src,
constint n,
constint dType)/* internal Simulink data type id */

-~

define MAX_ELS (1024)
boolean_T swapBytes = esGetSwapByles(ES);
uint8_T “dst = (uint8_T “)voidDst;

int sizeofTargelBool = esGetSizeOfTargetDataTypeFcn(ES)ES, dType) *
esGetHostBytesPerTargetByte(ES);
int i;
uint32_T “tmp = (uint32_T *)src;
for (i=0; i<n; i++t)

{
dstfi] = (uint8_T)(“tmp++):
)

#undef MAX_ELS
}/* end Bool_TargatToHost */

/* Function: Generio_HostToTarget S=======S====S=S=S===SSSSSSS=SSSSSSSSSSSST=SIRESNSESS
* Abstract:
* Convert generic data type from host to target format. This function

Appendix D: .3

APPENDIX D: Listing of Code for the RADE PC32

* may be used with any data type where the number of bits Is known to
* be the sama on both host and target (e.g., int32_T, uinti6_t, etc).
* It simply copies the correct number of bits from target to host performing
* byte swapping if required. If any other conversion is required, then
* a custom HostToTarget function must be used.
[
/
static void Generic_HostToTargel(
ExternalSim °ES,
char “gst,
const void “src,
constint n,
constint dType) /* internal Simulink data type id */

int dTypeSize = esGetSizeOfDataTypeFcn(ES)ES, dType).
boolean_T swapByltes = esGetSwapBytes(ES);

/I siCopyNByles(dst, src, n, swapBytes, dTypeSize);
} /* end Genedc_HostToTarget */

* Abstract:

" Convert generic data type from target to host format. This function

* may be used with any data type where the number of bits Is known to

* be the same on both host and target (8.g., Int32_T, uint16_t, elc).

* It simply copies the correct number of bits from host to target performing

* byte swapping if required. If any other conversion is required, then

* a custom TargetToHost function must be used.

)

static vold Generic_TargetToHost(
ExternalSim °ES,
void *dst,
const char “src
constint n,
constint dType) /” internal Simulink data type id */

int dTypeSize = esGetSizeOfDataTypeFcn(ES)ES, dType);
boolean_T swapBytes = esGetSwapBytes(ES);

1/ slCopyNBytes(dst, src, n, swapBytes, dTypeSize);
} " end Generic_TargetToHost */

/" Function: COpﬂZBitSTOTarge(S===S===S=SS===SSSSS=SSSSSSSS==SSSSRSSSES

* Abstract:
* Copy 32 bils to the target. 1t is assumed that the only conversion needed
* is bytes swapping (if needed) (e.g., uint32, int32). Note that this fcn
* does not rety on the Simulink Internal gata type id.
i
void Copy32BitsToTarget(
ExternalSim “ES,
char *dst,
const void ‘*src,
constint n)

MHjust use uint32

Uint32_HostToTargel(ES.dst,src,n,0);
}/* end Copy32BitsToTarget */

/‘ Function: Copy32B“5FromTarge[oS- C oSS =s===========S==============2=

“ Abstract:

* Copy 32 bits from the target. Itis assumed that the only conversion needed
* is bytes swapping (if needed) (e.g., Uint32, int32). Note that this fcn

* does not rely on the Simulink internal data type id.

)

Appendix D: .4

APPENDIX D: Listing of Code for the RADE PC32

void Copy32BitsFromTarget(
ExternalSim "ES,
voigd *dst,
const char “src,
constint n)

Uint32_TargetToHost(ES,dst,src.n,0);

)
/* end Copy32BitsFromTarget */

/* Funclion

* Process the first of two EXT_CONNECT_RESPONSE messages from the target.
“ This message consists of nothing but a message header. In this special

* instance we interpret the size fisld as the number of bits in a target

* byte (not always 8 - see Tt compller for C30 and C40).

“ This function Is responsible for deducing the engian format of the target,
‘ validating that the number of bits per target byle and selting up pointers
* to data conversion functions.

* NOTE: The caller must check that the error status is clear after calling

‘ this function (i.e., eslsErrorClear(ES)).

*/

void ProcessConnectResponse1(ExternalSim ‘ES, MsgHeader "msgHdr)

{
/-

* Deduce the endian-ness of the target.

*/

if (msgHdr->type == EXT_CONNECT_RESPONSE) {
esSetSwapBytas(ES, FALSE);

} else {
const boolean_T swapBytes = TRUE;

llcommented out by Magash

/1sICapyFourBytes(msgHdr, msgHgr, NUM_HDR_ELS, swapBytes):

if (msgHdr->type t= EXT_CONNECT_RESPONSE) (
esSetError(ES, "Invalid EXT_CONNECT_RESPONSE message.\n");
goto EXIT_POINT;

)
esSetSwapByles(ES. swapBytes);
}

,.
" Process bits per target byte.
)
{
Int_T bitsPerTargetByte = msgHdr->size;
int_T hostBytesPerTargetByte = bitsPerTargetByte/8:

asserl(bitsPerTargetByte%8 == 0);
esSetHostBylesPerTargetByte(ES. hostBytlesPerTargetBylte),
)

,n
* Set up fen ptrs for data conversion - Simulink data types.
"/
esSelDoubleTargstToHostFen(ES, Double_TargetToHost);

esSetDoubleHostToTargetFen(ES, Double_HostToTarget);

esSeltSingleTargetToHostFcn(ES, Single_TargetToHost); /* assume 32 bil */
asSetSingleHostToTargetFen(ES, Single_HostToTarget); /* assume 32 bit */

esSetint8TargetToHostFen(ES, Int8_TargetToHosl);
esSetini8HostToTargetFen(ES, Int8_HostToTarget):

Appendix D: .5

APPENDIX D: Listing of Code for the RADE PC32

esSetUInt8TargetToHostFcn(ES, Uint8_TargetToHost),
esSetUIni8HostToTargetFecn(ES, Uint8_HostToTarget);

asSetint18TargetToHostFcn(ES, Int16_TargetToHost);
esSetlnt1680stToTargetFen(ES, Int16_HostToTarget);

esSetUInt16TargetToHostFen(ES, Uint16_TargetToHost):
esSetUInt18HostToTargetFen(ES, Uint16_HostToTarget);

esSetint32TargetToHostFen(ES, In132_TargetToHost);
esSetlnt32HostToTargetFen(ES, Int32_HostToTarget);

esSelUInt32TargetToHostFcn(ES, Uint32_TargetToHost);
esSetUInt32HostToTargetFen(ES, Uint32_HostToTarget);

esSetBoolTargetToHosiFen(ES, Bool_TargetToHost);
esSetBoolHostToTargetFen(ES, Boo!_HostToTarget);

EXIT_POINT:
return;
} " end ProcessConnectResponse1 */

/" Function

* Process the data sizes information from the second EXT_CONNECT_RESPONSE
* messages. The data passed Into this function Is of the form:

* nDataTypes - # of data types (uint32_T)
* dataTypeSizes - 1 per nDataTypes (uint32_TM)

* NOTE: The caller must check that the error status is clear after calling
. this function (l.e., eslsErrorClear(ES)).

“/

void ProcessTargetDataSizes(ExternalSim “ES, uint32_T “bufPtr)

uint32_T i;

/" nDataTypes */

if (¢sGetNumDataTypes(ES) I= “bufPlr++) {
esSetError(ES, "Unexpected number of data types retumed from host.\n");
goto EX{T_POINT;

)

/* dala type sizes 7/
for (i=0: i<esGetNumDataTypes(ES): i++) {
esSetDataTypeSize(ES. I, ("bulPir++));

Jlcorrection by magash
//mul by 4
/lremoved because of updated files

}

EXIT_POINT:
return;
}/* end ProcessTargetDataSizes */

void PC_Format(ExternalSim *ES)
{
ll
* Process bits per target byte.
*/
esSetHostBytesPerTargetByte(ES, 1);

Appendix D: .6

APPENDIX D: Listing of Code for the RADE PC32

esSelDataTypeSize(ES, 0, 8);//correction by magash

EXIT_POINT:
retum;
} /" end ProcessTargetDataSizes */

”
Magash 13/09/1999
All mods for conversion routines

*f
static void Single_TargetToHos{{
ExternalSim °ES,
void “dst,
const char *src,
constint n,
constint dType) /" intemal Simulink data type id °/

int dTypeSize = esGetSizeOMataTypeFcn(ES)(ES, dType);
boolean_T swapBytes = esGetSwapBytes(ES):
/lassume data is 32 bits in target format

float “p_dst;
uint32_T *p_src;
int32_T i;
o_src=(uint32_T*)src:
p_dst=(float")dst;

far(i=0;i<n;i++)

‘p_dst=lo_iees("p_src);
Hlprintf("call to single to target %f\n" *p_dst);
p_dst++;
p_sSrc++;
}
}

static void Single_HostToTarget(
ExternalSim “ES,
void ‘dst,
const char “src,
constint n,
constint dType) /* internal Simulink data type id */

int dTypeSize = esGetSizeOiDataTypeFcn(ES)(ES. dType);
booiean_T swapBytes = esGetSwapBytes(ES):
/lassume data Is 32 bits in target format

float *p_src;

Lint32_T *p_dst;
int32_T i;
p_src=(lloat")src;
p_dst=(ulnt32_T~)dst;

for(i=0;i<m;i++)
‘p_dst=from_ieee("p_src);

p_ost++;
p_Ssrc++;

}
)

static void Doubie_HostToTarget(

Appendix D: .7

APPENDIX D: Listing of Code for the RADE PC32

ExternalSim *ES,

void "dst,

consl char "src,

constint n,

constint dType) / internal Simulink data type id */

int dTypeSize = esGetSizeOfDataTypeFcn(ES){ES, dType);
bootean_T swapBytes = esGetSwapBytes(ES);
/lassume gata is host 64 bits and 32 bits in target format

double *p_src;

IMoat "p_src;

Int32_T |;

float "tmp;

tmp=malloc(n"4);
p_src=(double*)src;
/iconvert all src data to single

for(i=0:i<n;i++)

tmpli]=(float)(*p_src);
fimexPrintf("the matlab double is %f, float is %An","p_src tmpl[i]):
p_srct++;

}
Single_HostToTarget(ES,dst,(char*)}tmp,n,dType):
tmp(0]=to_ieee("{int*)dst);

/ImexPrintf("the target data is %fn",tmp|0]);

free(tmp);

)
extemn int Convert_Status;

static voig Double_TargetToHost(
ExternalSim ‘ES,
void *dst,
const char “src,
constint n,
constinl dType) /™ internal Simulink data typa id */

int dTypeSize = esGetSlzeOfDataTypeFcn(ES)(ES, dTyps);
boolean_T swapBytes = esGetSwapBytes(ES);
/fassume data is host 84 bits and 32 bils in target format

double “p_dst;
Int32_T1;

float “tmp;
tmp=malloc(n“4);

if (Convert_Stalus)

{
/Ino need to do conversion, just copy over data
memcpy(dst,src,n®8);
limexPrintf{"call to convert double target to host, number"
i " of conversions %3 \n"
Vi "src data s %f , dst data is %MAn",n,*(doubie*)sre,” (double™)dst);
}
else
{

p_dst=(double™)dst:

//convert all src data to single in host format
/ImexPrintf("call to convert double target to hast, number of conversions %d \n",n);
Single_TargetToHost(ES,(char*)tmp,src,n,dTypa):

Appendix D: .8

APPENDIX D: Listing of Code for the RADE PC32

for(i=0;i<n;i++)

*p_dst=(doubie)tmp(i];
/imexPrintf("number as float Is %f, number as double is %f\n".tmpli]."p_dst);
p_dst++;
)
)
free(tmp);
/ImexPnntf("call to double to host passed \n™);

}

static void Int8_TargstToHost({
ExtemalSim °“ES,
void *dst,
const char “src,
constint n,
constint dType) 7™ intemal Simulink data type id */

/ltarge! has 32 bit format host 8 bit format

int32_T “p_src;
int8_T “p_dst;
int32_Ti;

p_src=(int32_T")src;
p_dst=(int8_T")dst;
for(i=0;l<n;i++)

"p_dst=(int8_T){"p_src):
p_src++;
p_dst++;
}
)

static void Int16_TargetToHost(
ExtemalSim °ES,
vold *dst,
const char “src,
constint n,
constint dType) /" internal Simulink data type Id */

Htarget has 32 bit format host 8 bit format

int32_T *p_src;
int16_T °"p_dst;
int32_T i;

p_sre=(int32_T")src;
p_dst=(int16_T*)dst;
for(i=0;l<n;i++)

"p_dst=(int16_T)("p_src);
P_SIC++;
p_dst++;
}
)

sfatic void Int32_TargetToHost(
ExternalSim "ES,
void ‘dst,
const char “src,
constint n,
constint dType) /" intemal Simulink data type Id */

/lcan optermize with memcopy target and host same format

Appendix D: .9

APPENDIX D: Listing of Code for the RADE PC32

int32_T *p_src,
int32_T *p_dst;
int32_T i;

p_src=(int32_T")src;
p_dst=(int32_T")dst;
for(i=0;i<n;i++)

{
*p_ost="p_src;
p_src++;
p_dst++;

}

)

static void Uint8_TargetToHost{
ExternalSim “ES,
void “Ost,
const char “src,
constint n,
constint dType) /™ intemal Simulink data type id °/

MMtarget has 32 bit format host 8 bit format

uint32_T *p_src;
uint8_T °p_dst;
int32_Ti;

p_src={uint32_T")src;
p_dst=(uint8_T")dst;
for(i=0;i<n;i++)

‘p_dst=(uint8_T){*p_src);
p_Src++;
p_dst++;
}
)

static void Uint18_TargetToHost(
ExternalSim "ES,
void “dst,
const char ‘*src,
constint n,
constint dType) /* internal Simulink data type id */

uini32_T *p_src;
uint16_T *p_dsy;
InI32_T §|;

p_src=(uint32_T"})src;
p_dst=(uint16_T")dst;
for(i=0;i<n;i++)
{
*p_dsi=(uint16_T)("p_src);
p_Sfc++,;
p_dst++;
)

static void Uint32_TargelToHost{
ExternalSim “ES,
void *dst,
const char “src,
constint n,
constint dTypa) /" Internal Simulink data type id */

uintd2_T “p_src;
uint32_T "p_dst:
int32_Ti;

Appendix D: .10

APPENDIX D: Listing of Code for the RADE PC32

p_sre=(uint32_T")src;
p_dst=(uint32_T")dst;
for(i=0;i<n;i++)
{
‘p_dst="p_src;
p_src++;
p_dst++;

static void Int8_HostToTargel(
ExternalSim °ES,
vold “dst,
const char *src,
constint n,
constint dType) /" internal Simulink data type id */

/Marget has 32 bit format host 8 bit format

Int32_T *p_dst;
int8_T “p_src;
int32_T I;

p_src=(int8_T *)src;
p_dst=(int32_T")dst;
for{(i=0;i<n;l++)

{
“p_ost=(int32_T)("p_src);
p_SIc++;
p_dst++;

}

static void Int16_HostToTarget(
ExternalSim “ES,
void “dst,
const char “src,
constint n,
constint dType) /* internal Simulink data type id */

int32_T *p_dst:
int16_T “p_src;
int32_T i;

p_src=(int16_T")src;
p_dst=(int32_T")dst;
for(i=0:i<n;i++)

*p_dst=(int32_T)("p_src):
p_src++;
p_dst++;
)
}

static vold Int32_HostToTargeY(
ExternalSim “ES,
vold *dst,
const char “src,
constint n,
constint dType) 7 internal Simulink data type ig =/

intd2_T "p_dst.

Appendix D: .11

APPENDIX D: Listing of Code for the RADE PC32

int32_T “p_src;
int32_T i;

p_src=(int32_T")sr¢;
p_dst=(int32_T")dst;
for(i=0:i<n;i++)

{
*p_dst="p_src;
] mexPrintf("matlab data is %d, target data is %d\n","p_sre, p_dst);
p_Src++;
p_dst++;
}
}
static void Uint8_HostToTargel(
ExternalSim *ES, .
void ‘dst,
const char ‘“src,

constint n,
constint dType) /” intemal Simulink data type id */

/ltarget has 32 bit format host 8 bit format

vint8_T “p_src;
uint32_T *p_dst;
int32_TI;

p_src=(uint8_T*)src;
p_dst=(uint32_T")dst;
for(i=0:i<n;i++)
{
*p_dst=(uint32_T)("p_src);
p_SICH+:
p_dst++;
)
}

static void Uint16_HostToTarget(
ExternalSim “ES,
void *dst,
const char ‘*sic,
constint n,
constint dType)/* internal Simulink data type id */

uint16_T “p_src;
uint32_T ‘p_dsy;
int32_TH;

p_src=(uint16_T")src;
p_dst=(uint32_T")dst;
for(i=0;i<n;i++)
{
*p_ds{=(uint32_T)("p_src);
p_Src++;
p_dst++;
}
}

static void Uint32_HostToTarget(
ExternalSim “ES,
void ‘dst,
const char “src,
constint n,
const int dTypse) /* internal Simulink data type id */

Appendix D: .12

APPENDIX D: Listing of Code for the RADE PC32

uint32_T *p_src;
uint32_T “p_dst:
int32_T1;

p_src=(uint32_T*)src;
p_dst=(uint32_T")dst;
for(i=0:i<n;i++)

{
“p_ost="p_src;
p_srct+;
p_dst++;

)

}
I [EOF] ext_util.c */

D.2. SYSTEM TARGET FILE

%% SYSTLC: Generic Real-Time Target far PC32\

%% TMF: pc32.4mf MAKE: make_rnw EXTMODE: ext_comm_c3x
%%

%selectfile NULL_FILE

%assign MatFileLogging = 1
%assign TargetType = "RT"
%assign Language ="C"
%assign DSP32=1

%assign BlocklOSignals=0
%lncluge "codegenentry.tic”

%include "codegenentry tic”
%% The contents between 'BEGIN_RTW_OPTIONS’ and 'END_RTW_OPTIONS' are strictly

%% written by the standard format. We need o use this structure in RTW
%% options GUI function rtwoptionsdig.m file.

%%
1%
BEGIN_RTW_OPTIONS
rtwoptions(1).prompt = 'MAT-file variable name modifier’

rtwoptions(1).type = 'Popup";

rtwoptions(1).default ='_"

rtwoptions(1).popupstrings ='rt_|_rt|none";

rtwoptions(1).ticvariable = ‘LogVarNameModifier;

rtwoptions(1).tooltip = ['prefix rt_ to variable name,’, spnntf(\n’), ...
‘append _rt 10 variable name,’, sprintf(\n’), 'or no modification?;

rtwoptions(2).prompt = ‘External mode’,

rtwoptions(2).type = '‘Checkbox’;

rtwoptions(2).defaull ='on’;

rtwoplions(2).ticvariable = 'ExtMode’;

awoptions(2).makevarable ='EXT_MODE"

rwoptions(2).tooltip = ['Adds TCP/IP communication support for, ...
‘use with', sprintf(\n’), 'Simulink extemal modeT;

riwoptions(3).prompt = ‘Function Management';

rtwoptions(3).type = ‘Popup’;

rtwoptions(3).popupstrings = {None|Function Splitting|File ', ...
‘Splitting|Funclion znd Fite Splitting?:

rtwoptions(3).dafault = ‘None';

rtwoptions(3).tigvariable = *;

rtwoptions(3).tooltip = ‘Limit size of generated files and functions’;

rtwoptions(3).caliback = ‘callback_function_management’;

rtwoplions(3).opencallback = ([userData = get(gchbf, "UserData");' ...
'‘hModel_local = userData.mogel;’ ...
‘get_value_of_fields(hModel_local,dialogFig,"open®);’ ...
'tmp = compute_value_from_rtwoptions(hMode!_local);’ ...

Appendix D: .13

APPENDIX D: Listing of Code for the RADE PC32

‘o = findobj(dialogFig, "Tag", “Function Management_PopupFieldTag");’ ...

'set (0, "Value”, tmp); callback_function_management(dialogFig):);
rtwoptions(3).closecallback = (['userData = get(gcebf, "UserData”);" ...

'hModet_local = userData.model;’ ...

‘get_value_of fislds(hModel_local,dialogFig, close™);]);

rtwoptions(4).prompt = 'Function Split Threshold';

riwoptions(4).type = ‘Edit;

rtwoptions(4).default ='200"

rtwoptions(4).llcvariable = 'FunctionSizeThreshold';

rtwoptions(4).toollip = [Split the generated functions after specified threshold.";
rtwoptions(4).enable = ‘off';

rtwoptions(5).prompt = ‘File Split Threshold';

rtwoplions(5).type = "Edil";

rtwoptions(S).default = '5000';

rtwoptions(5).ticvariable = 'FileSizeThreshold";

rtwoptions(S).toollip = [Split ihe gensrated files after specified threshold.T;
rfwoptions(5).enable = 'off',

riwoptions(6).prompt ="Server name';
rtwoplions(6).type ="Edi;

rtwoptions(6).default = ‘magash’;
rtwoptions(6).tlcvariable = 'server_name';
rtwoptions(6).makevariable = 'SERVER_NAME';
rtwoptions(8).tooltip = [Enter name of server computer’;
rnwoptlions(7).prompt = ‘Port Number’;
riwoptions(7).type ="Edit";

rtwoptions(7).defaull ='700';

rtwoptions(7).ticvariable = 'server_port";
riwoptions(7).makevariable ='SERVER_PORT;

rtwoptions(7).toollip = [Enter port number of server computer?;
rfwoptions(8).prompt = 'Quick Build Project’;
rtwoptions(8).type ='Checkbox'’;

rtwoptions(8).default ='on';

rtwoptions(8).ticvariable ='QUICK_BUILD";

rtwoptions(8).makevariable ='QUICK_BUILD";

riwoptions(8).tooltip = [Used to speedup repetive bullds ', ...

', sprintf(\n'), ‘Warning!! Disable if mods to RTW internals are being made’];

rtwoptions(8).prompt = 'Heap Size";
nwoptions(8).type 'Edit’;
nwoptions(9).defaull '0x100007;
rtwoptlons(9).ticvariabls = ‘'hsap_size";
rtwoptions(9).makevariable ='HEAP_SIZE";

rtwoptions(9).tooltip = ['Enter heap size for compilerT:
rtwoptions(10).prompt = 'Stack Size’;
twoptions(10).type ="Edit’;

nwoptions(10).default = '0x5000';

rtwoptions(10).tlcvariable = 'stack_size’;
rtwoptions(10).makevariable ='STACK_SIZE"
rtwoptions(10).tooltip = [Enter stack size for compiler?;

END_RTW_OPTIONS
%/

D.3. SYSTEM TEMPLATE MAKE FILE

#Illll'l(i‘l]'l‘llll]'lI'I'tl’l'l.l“lt'."l"'lll!llilllllill'iil-b‘A

SYS_TARGET_FILE = grt_c3x.ic
MAKE = |>MATLAB_ROOT<[\twAcliitbin\gmake_3_71
HOST = PC

Appendix D: .14

APPENDIX D: Listing of Code for the RADE PC32

BUILD = yes

DOWNLOAD = yes
BUILD_SUCCESS = Completed
DOWNLOAD_SUCCESS = Downloaded

#
#

The following set of macros are customized by the make_rt program.
#

MODEL = |>MODEL_NAME<]
MODEL_MODULES = [>MODEL_MODULES<{

MODEL_MODULES_08J = |>MODEL_MODULES_OBJ<|

MAKEFILE = |>MAKEFILE_NAME<|
MATLAB_ROOT = [>MATLAB_ROOT<|
MATLAB_BIN = |>MATLAB_8IN<|
S_FUNCTIONS = [>S_FUNCTIONS<|
S_FUNCTIONS_OBJ = |>S_FUNCTIONS_OBJ«<|
SOLVER = |>3OLVER<|

SOLVER_OBJ = [>SOLVER_OBJ<|

NUMST = |>NUMST<|

TIDO1EQ = |>TIDO1EQ<|

NCSTATES = |>NCSTATES<|

BUILDARGS = |>BUILDARGS«<|
COMPUTER = |>COMPUTERc«]|
SERVER_NAME = |>SERVER_NAME<|

SERVER_PORT

QUICK = |>QUICK_BUILD<|
HEAP = |>HEAP_SIZE<|
STACK = |[>STACK_SIZE<]|

QUICK:=8(strip $(QUICK))
p. 3

-— Customization Macros —-s—-———aeemce.-

[>SERVER_PORT<|

~ Il PC32 Definition
#

BOARD_TYPE = PC32
DSP_FAMILY =30

COMPILER = TI_FPC
e Tl Tools
#

You may need to modify the TI_ROQCT if you have instalied the

Texas Instrument Compiler in a different location.
#

#sel old_c=1 for compiler 4.7 or 0 for compiler 5.10
old_c =0

Ifeq ($(old_c).1)

TI_ROOT =cMlc

else

TI_ROOT = ci\¢3xtools\bin

endif

HTI_ROOT = citieval3x\c3x4x\cgtoais
TI_FLAGS =-v3(DSP_FAMILY)

CC = $(TI_ROOT)\cI30
#CC = $(TI_ROOT)\bin\cl30

LD = $(TI_ROOT)\Ink30

- Il Tools

#

I_DIR =c:i\pc32ce

#11_DIR is the dir were Il Zuma tool set is installed
II_ROOT = $(MATLAB_ROOT)\rtwAc\ii
II_COMPILER = $(II_ROOT)\Mi_fpc

I_CMD = $(Il_COMPILERNIPC32.cmd
I_BOOT = $(I_COMPILER)wectors.obj

ifeq ($(old_c).1)

Appendix D: .15

APPENDIX D: Listing of Code for the RADE PC32

[I_INCLUDES = $(lI_DIR)\include\target;

else

II_INCLUDES = ${lI_DIR}includeMarget; c:\c3xtools\include;c:\e3xdools\ib
endif

H DOWNLOAD Taol

PC32_DOWNLOAD = §(II_ROOQT)\bin\auto_download.exe

#o-meee- Include Path -—

MATLAB_INCLUDES =\
$(MATLAB_ROOT)\simulinkiinclude; \
$(MATLAB_ROOT)\externtinclude: \
$(MATLAB_ROOT\rtwAchsre; \
$(MATLAB_ROOT)\rtwAckint_fpc: \
$(MATLAB_ROOT)\rtwiclibsre;

TI_INCLUDES = $(TI_ROOTY;

INCLUDES = .; 3{(MATLAB_INCLUDES) 3(TI_INCLUDES) $(II_INCLUDES)

B C Flags -

Required Options
REQ_OPTS =-s -ma -mf -g $(TI_FLAGS) -pf-q -eo .0${DSP_FAMILY)

Ifneq ($(old_c),1)

REQ_OPTS := $(REQ_OPTS) -mi -00 -x2 -op0 -on1
endif

Optimization Options

OPT_OPTS =ox

Debug Options

DBG_OPTS =

CC_OPTS = $(REQ_OPTS) S(OPT_OPTS) $(DBG_OPTS) -d10_3(10) \

-dTMRO_3$(TMRO) -8UPLO_$(UPLD) -dDSP32 -dEXT_MODE -dIO_ENABLE \
-dTARGET_SYSTEM -dVERBOSE

CPP_REQ_DEFINES = -gMODEL=$(MODEL) -dRT -dNUMST=§(NUMST)\
-dTIDO1EQ=$(TID01EQ) -dNCSTATES=$(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ_DEFINES) $(CPP_DEFINES)

LDFLAGS :=-g -x -cr -heap $(HEAP) -stack $(STACK) $(1I_BOOT) -m $(MODEL).map
t Source Files

REQ_SRCS =li_pec32.c $(MODEL).c rt_sim.c rtwlog_c3x.c pc32_grtm.c i_matrx.c
updown_c3x.c ext_srv_c3x.c

OPT_SRCS =

S _FCN_SRCS = $(S_FUNCTIONS)

INT_SRCS = $(SOLVER)

#PC32_0OBJS = $(MATLAB_ROOT)\rtwicliiMti_fpc\pc32func.o30

REQ_08BJS = $(REQ_SRCS:.c=.0$(DSP_FAMILYY)

OPT_0O8IS = $(OPT_SRCS:.c=.0$(0OSP_FAMILY))

S_FCN_OBJS = $§(S_FCN_SRCS:.c=.03(DSP_FAMILY))
INT_OBJS = $(INT_SRCS:.c=.0$(DSP_FAMILY))

oBJS = $(REQ_08JS) $(OPT_0BJS) $(S_FCN_OBJIS) $(INT_0OBIS)
0BJSH = $(REQ_OBJS) $(OPT_OBJS)
0BJS2 = $(S_FCN_OBJS) $(INT_0O8JS)

Appendix D: .16

APPENDIX D: Listing of Code for the RADE PC32

PROGRAM = $(MODEL).out

B
#

Because of the 128 chbaracter command line length limitations In DOS, we
use environment variables to pass additional information to the

Compiler and Linker

-4

Exported Environment Variables -———-——~

C_OPTION := $(GFLAGS)
C_DIR := $(INCLUDES); $(C_DIR)
C_MODE = PROTECTED

B Rules

$(PROGRAM) : ${0OBJS)

echo $(0BJS1) > ${MODEL).lin -
ifneq ($(strip $(0BJS2)),)

eche §(0BJS2) »> $(MODEL).lin
endif

echo $(Ii_CMD) >> ${MODEL).lin

$(LD) $(LDFLAGS) -0 $@ $(MODEL).lin

del ${MODEL).lin

echo $(BUILD_SUCCESS) $(PROGRAM)
Compile existing code if it exists in current dir
%.05(DSP_FAMILY) : %.c

$(CC) $<

Call to PC32 ri_rmain.c

edit mags using token for matlab root

%.03(DSP_FAMILY) : $(MATLAB_ROOT)\rtw\c\ii\ti_{pc\%.c
$(CC) 8<

Call to simulink files
%.0$(DSP_FAMILY) : $(MATLAB_ROOT)\simulink\src\%.c
$(CC) $<

Call compile RTW fites
%.0$(DSP_FAMILY} : $(MATLAB_ROOT)\rtwAc\sre\%.c
$(CC) $<

%.0$(DSP_FAMILY) : 3(MATLAB_ROOT\riw\c\libsrc\%.c
$(CC) 8«

#---~-~—sme-- Rule for Downloading to Target —-—---—--—--- —

download :

del $(MODEL}.lin

de! $(MODEL).c

del $(MODEL).h

del $(MQODEL).map

del $(MODEL).030

del $(MODEL).prm

del $(MODEL).reg

$(PC32_DOWNLOAD) -f$(PROGRAM) -s3(SERVER_NAME) -p$(SERVER_PORT)
echo $(DOWNLOAD_SUCCESS) $(PROGRAM)

I I}’

Hamen Dependencias
pc32_grtm.o$(DSP_FAMILY) :$(MODEL).c

#ifneq (3(QUICK),1)
$(0BJS) : $(MAKEFILE)

Hendif
#il_pc32.0$(DSP_FAMILY) : $(MATLAB_ROOT)\rtwic\ii\ti_fpchil _comms.h \
$(MATLAB_ROOT)\rtwic\src\ext_srv_c3x.h

Appendix D .17

APPENDIX D: Listing of Code for the RADE PC32

#ext_srv_c3x.0$(DSP_FAMILY) : $(MATLAB_ROOT)\rtwAchiitti_fpelii_comms.h \
S(MATLAB_ROOT)\rtwAc\srcext_srv_c3x.h

D.4. DEVICE DRIVER FILES

D.4.1 ADC BLOCKS

%%

%%

%% Abstract:

%% TLC file for the PC32 A/D Block.

%% This file is used to generate code to read
%% values from the A/D converiers and scale them fo +-10.
%% Author:

%% Adam Stylo

%% Date:

%% 98/11/03

%% Revised By Magash Pillay

%% 2000/01/20

%%
%Iimplements “pc32_ad" "C"

Y%inciude Tiitib.tic"”

%funclion BlocklnstanceSetup(block, system) void
%% Only allow 4 Instance of the A/D block
%If IEXISTS("Rt_pc32ad™)
%assign ::Rt_pc32ad = 1
Y%else
%error Only 1 PC32adn block is allowed In the model.
Y%endif
%endfunction %% BlockinstanceSetup

%function Outputs(block, system) Output
I* %<Type> Block: %a<Name> (%<ParamSettings.FunctionName>) */
/* read in the corrected values from A/D and scale to +-10 */

%<LibBlockOutputSignal(0,™,"™,0)>=read_adc(BASEBOARD, 0)/(3276.7);
%-<LibBlockOutputSignal(0,™,™ 1)>=read_adc(BASEBOARD, 1)/(3276.7):

%<LibBlockOutputSignal{C,™,",3)>=read_adc(BASEBOARD, 3)/(3276.7),
}
%endfunction %% Outputs

D.4.2 DAC BLOCK

%%

%%

%% Absliract:

%% TLC file for the PC32 D/A Block.

%% This file is used to generate code o wrile
%% values to the D/A converters. At termination
%% all outputs are set to 0.

%% Author:

%% Adam Stylo

%% Date:

%% 98/11/03

%% Revised By Magash Plllay
%% 2000/01/20

%%

%Iimplements "pc32_da" “C"

%include "iilip tic”

Appendix D: .18

APPENDIX D: Listing of Code for the RADE PC32

%function BlockinstanceSetup(block, system) void

%% Only allow 1 Instance of the D/A block
%if IEXISTS("Rt_pc32da")
%assign ::Rt_pc32da = 1
%else
%error Only 1 PC32dan block is aflowed in the madel.
%endgif
%endfunction %% BlockinstanceSstup

%% Function: Outputs

%%

%% Abstract:

%% Generate Inlined code to perform one D/A conversion.
%Y

Y%function Outputs(biock, system) Output

I* %<Type> Block: %<Name> (% <ParamSettings.FunctionName>) */
I~ Start an output conversion®/
{

write_dac(BASEBOARD, 0, %<LibBlocklnputSignal(0,™,"" ,0}>"(3276.7)};
convert_dac(BASEBOARD, 0):
write_Gac(BASEBOARD, 1, %<LibBlockInputSignal(0,"™ "™ 1)>*(3276.7));
convert_dac(BASEBOARD, 1);
write_dac(BASEBOARD, 2, %<LIbBlockinputSignal(0,*","",2)>"(3276.7));
convert_dac{BASEBOARD. 2);
write_dac(BASEBOARD, 3. %<Lib8lockinputSignal(0,",",3)>"(3276.7)):
convert_dac{BASEBOARD, 3);

%endfunction %% Qutputs

%openfile buffer
I" reset D/A outputs to 0 at termination. */

write_dac(BASEBOARD, 0, 0);
convert_dac(BASEBQARD, 0);
write_dac(BASEBOARD, 1, 0);
convert_dac(BASEBOARD, 1);
write_dac(BASEBOARD, 2, 0);
convert_dac(BASEBOARD, 2);
write_dac(BASEBOARD, 3, 0);
convert_dac(BASEBOARD, 3);

%closefile buffer
%<LibMdITerminateCustomCaode(buifer, “lrailer’)>

%% EOF: PC32dan.lic
D.4.3 PWM BLOCK

%%

%%

%% Abstract:

%% TLC file for the PWM Block. Generates code used to
%% control 8 PWM/Tacho add on card.
%% Author:

%% Adam Stylo

%% Date:

%% 98/11/03

%%

%% Revised By Magash Pillay

%% 2000/01/20

%implements "pwmblock” "C*

%include tiitib.Uc"

Appendix D: .19

APPENDIX D: Listing of Code for the RADE PC32

D/oassign :ZVOrtI = leBIOCkParameter(P1"““"".0)
%assign ::CtriMode = LibBlockParameter(P2,","*,0)

%function BlocklnstanceSetup(block, system) void
%% Only allow 1 pwm block
%if EXISTS("lIPWMBlockSeen")
%assign errTxt = "Only 1 Interrupt block is allowed in " ...
“model: %<CompiledModel.Name>."
Y%exit RTW Fatal: %<errTxt>
%else
%assign :IIPWMBIlockSeen = 1
%endif

%openfile buffer
#define Status_word (volatile int*) 0x81a001
#define Data_word (volatile Int*) 0x81a000

#define TAUS (0)
#define TTOT (0)
#define TMIN (0)
int VORTL, TSTART;

volgd pollpwm(void)

while ("(Status_word) & 0x1);
)

%closefile buffer
%<LIbCacheDefine(buffer)>

Y%openfile buffer

#ifdef {O_ENABLE

printf{“Initializing PWM Block ...\n");
#endif

VORTL = (int)(%<Vortl>);
TSTART = ({int)(512-(322/(VORTL+1))));

*IOBCR = 0x58;
*(Status_word) = 128; [~ set up 16 bit addressing mode */
(Status_word) = 128; / set addres to zero */

pollpwm(};

"(Data_word) = 0; /~Ua */

pollpwm();

*(Data_word)=0; /- Ub */

pollpwm();

“(Data_worgd) = 0; r phit "/

polipwm();

*(Data_word) = 0; I~ dphi1 */

pollpwm();

"(Data_word) = 0; /* ohi0 =/

pollpwm();

*(Data_word) = 0; /" dphi0 */

polipwm():

*(Data_word) = 0; /" phiadd */
pollpwm():

(Data_word) = 0; / unused */
pollpwm();

*(Data_word) = TAUS; /" turn off time */
polipwm();

“(Data_word) = TTOT; [* dead band */
pollpwm();

*(Data_word) = TMIN; /™ turn on time */
potlpwmy);

(Data_word) = VORTL; [switching frequency scale value */

Appendix D: .20

APPENDIX D: Listing of Code for the RADE PC32

pollpwm();
(Data_word) = TSTART; / start of processing cycle */

*(Status_worg) = 129;

%closeflle buffer
%<LibMdiStartCustomCade(buffer, "trailer”)>

%openfile buffer
I dissable the PWM board at terminate =/
*(Status_word) = 0;
*(Status_word) = 0;
Y%closefile buffer
%<LibMd{TerminateCustomCode(buffer, “traller")>
%endfunction

%function Outputs(block, system) Output
I %<Type> Block: %<Name> (%<ParamSetlings.FunctionName>) */

*(Status_word) = 129;

pollpwm(};

*(Data_word) = (int)%<Lib8lockInputSignal(0, ™, ™, 0)>;
pollpwm();

*(Data_word) = (int)%<LibBlockinputSignal(0, *, ™. 1)>:

if ((inl)%<CtriMode> == 1) /* skip three values to write frequency */
{pollpwm();
*(Status_word) = 897;)

polipwm();
*(Data_word) = (int)%<LibBlocklnputSignal(0, ", ", 2)>:

%endfunction %% Oulputs

D.4.4 ASYNCHRONOUS INTERRUPT SUPPORT

mod on 17/04/2000
problem with formated c file produced

%%

%%

%% Abstract:

%% TLC file for the PC32 Asynchronous Interrupt Block.
%% This file Is used to generate code to support asynchronous
%% interrupts on the PC32.

%% Author:

%% Adam Stylo

%% Date:

%% 98/11/03

%% Revised By Magash Pillay

%% 2000/01/20

c/I:i‘:/t)

%implements “ifinterrupt” "C"
%Include "iilib.tic"

0/00/0 Funcﬁon: Blocklns[anceSetup S-S - Co=S oS-SS S S-S C- oSS oSS oSS CSSCASSS =SS S=SS=SS===SS
%% Abstract:

%% Find all the function-call subsystems that are attached to the

%% interrupt block and hook-in the necessary code for each routine.

%% This function

%%

% % o Connect each ISR in the model's siart function.

%%

%% o Enable each ISR at the bottom of the model's start funclion.
%%

Appendix D: .21}

APPENDIX D: Listing of Code for the RADE PC32

%% o Disable each ISR in the model's lerminate function.
%%
%% o Save floating point context in the ISR’s crilical code section

%assign ::EITrigg = LibBlockParameter(P1,","",0)
%assign :TmrOfreq = LibBlockParameter(P4,"" " 0)
%assign :Tmrifreq = LibBlockParameter(P5,”,"",0)
Y%assign :Trgg_src0 = LibBlockParameter(P2,",",0)
%assign ::Trigg_src1 = LibBlockParameter(P3,",*".0)

%function BlocklnstanceSetup(block, system) void
%% Only allow 1 interrupt block
%if EXISTS("llinterruptBlockSeen")
%assign errTxt = "Only 1 {nterrupt block is allowed in “ ..,
"model: %<CompiledModel.Namea>."
%exit RTW Fatal: %<errTxt>
%else
%assign ::llinterruptBlockSeen = 1
%endif

%openfile buffer
#Hifdef |IO_ENABLE
printf("Connecting Interrupts\n”);
#endif
/" Make ints edge triggered only if required */
If ((int)%<EITngg> == 1)
{asm (" OR 4000h,ST");
#ifdef IO_ENABLE
printf("EIQ - EI3 Set to edge triggered\n®);
#endif
)
else
{asm (" ANDN 4000h,ST");
#ifdef IO_ENABLE
printf("EIO - EI3 Set to level triggered\n®),
#endif

%closefile buffer
% <LibMdIStartCustiomCode(buffer, "header’)>

%openfile buffer
I” define addresses for control registers “/
#define GC_CTRLO (volatila int") 0x808020
#define GC_CTRL1 (volatile Int")} 0x808030
I*Define a interrupt_block */
#define INTERRUPT_BLOCK
#incluge "pc32main_comms.h”

%closefile buffer
%<LibHeaderFlleCustomCode(buffer, trailer”}>

%foreach calitdx = NumSFcenSysOutputCalls

%% Get downstream block If there Is one

%if "%<SFcnSystemOutputCall{callidx].BlockToCall>" 1= "unconnected”

%assign ssSysldx = SFcnSystemOutputCali[callldx].BlockToCall[0]

%assign ssBIkldx = SFenSystemOutputCall[callldx).BlockToCallf1)

%assign ssBlock = CompiledModel.System(ssSysldx].Block{ss8ikIdx]

%% Check to see if (his Is a direct connection

%if (ssBlock.ControlinputPort.Width 1= 1)

%assign errTxt = "The Il Intecrupt block "% <block.Name>' " _..
"outputs must be directly connected to one function-call subsystem. " ...
“The destination funclion-call subsystem block '%<ssBlock.Name> “ ...
“has other inputs.”

%exit RTW Fatal: %<errTxt>

%endif

%% Assume it is a subsystem block(Simulink checked for a f-c subsys already).

Appendix D: .22

APPENDIX D: Listing of Code for the RADE PC32

%assign isrSystem = System[ssBlock.ParamSettings.Systemidx]

%<LibForceOutputUpdateFcn(isrSystem)>

%% NO need to redefine since function callis are from dummy interrupt functions
%openfile buffer

void c_int0% <calllgx+1>(void);

%closefile buffer

%<tLibCacheDehne(buffer)>

%openfile buffer

/%notes on P7

range 1 to 6 ,coresspondes to interrupt number.

%!/

%if callldx ==(%<LibBlockParameterValue(P7,0}>-1)
%%call system function call not using Tl interrupt convention
%if callldx==4
%openfile tamp
#define TMRO_BASE_RATE
%closefile temp
%<LibCacheDefine(temp)>

Y%endif
void Base_Rate_Function()
{
%<isrSystem.OutputUpdateFon>(rtS,1.0):
)
%else
,'
ISR for ; %<ssBlock.Name>
]
%if callldx < 9
void ¢_int0%<callldx+1>(}
{

I* call subsystem block
Using TID =0 since, single tasking simulation

!

%<isrSystem.OutputUpdateFen>(rtS,1,0);

}

%else
void c_int%<callldx+1>()
{
/7 call subsysiem block
Using TIO =0 since, single tasking simulation
¢/
%<isrSystem.OutputUpdateFen>(rtS,1.0);

%endif

%endif

%closefile buffer
%<LibSourceFiteCustomCode(buffer,"traller”)>

%openfile buffer
%% controlPortldx will never get used when only one f-¢ control input

/* use base tid Inside an ISR for any blocks accessing task time~/
fidefine %<tTID> 0

%closefile buffar

%<LibSystemOQOutputCustomCode(isrSystem, buffer, "declaration”)>
%openfile buffer

#Hundef %<tTID>

%closefile buffer

%<LibSystemOutputCustomCoda(isrSystem, buffer, “trailer)>

%% Connect the ISR In the model’s start function

Appendix D: .23

APPENDIX D: Listing of Code for the RADE PC32

%openfile buffer
/" connect ISR system: %<ssBlock.Name> */
/fint regisiration
%If callldx ==(%<LibBlockParameterValus(P7.0)>-1)
{
I’ assign ri_onestep from real time kennel to interrupt */
install_int_vector(rtOneStep,(Int)% <LibBlockParameter(P86,"" " callldx)>);
enable_interrupt((int)%<LibBlockParameterValue(P6 callldx)>-1),
#ifdef IO_ENABLE
printf(*Vectior installed for INT #%d, Base rate interrupt.\n"
(int)%<LibBlockParameter(P8,"","" callldx)>);
#endif

Yselse

{
%if callldx < 9
install_int_vector(c_int0%<callldx+1>,(int)%<LibBlockParameterValue(P8,callldx)>);
%eelsa ‘
instali_int_vector(c_int%<callldx+1>,{int)%<LibBlockParameterValue(P6,callldx)>);
%endif
enable_interrupt((int)%<LibBlockParameterValue(P8.callldx}>-1):
#ifdef IO_ENABLE
printf("Vectior installed for INT #%d.\n".(int)%<LibBlockParameter(P6,", cailldx)>};
#endif

}
%endif

Y%closefile buffer
%<LibMdIStartCustomCode(buffer, “trailer)>

%openfile buffer
/* disconnect ISR system: %<ssBlock.Name> */
if (%<LibBlockParameter(P8, " callldx)>==9)

{ F* only disconnect timer0 if it was set up here */
Hifndef TMRO_YES
disable_interrupt((int)%<LibBlockParameter{P8.,™ " callldx)>-1):
deinstall_int_vector((int)%<LibBlockParameter(P6,"," calildx)>):

#ifdef IO_ENABLE
onntf(“INT #%d disabled.\n",(int)%<LibBlockParameter(P§,", " callldx)>);
#endif

#endif
}
else
{
disabla_interrupt((int)%<LibBlockParameter(P8,"","" callidx)>-1);
deinstall_int_vector((int)% <LibBiockParameter(P6.","" callldx)>);

#ifdef IO_ENABLE
printf(“INT #%d disabled.\n",(int)%<LibBlockParameter(P8,"" " callldx)>),
#endif

%closefile buffer

% <LibMdITerminateCustomCode (buffer, “trailer”)>

Y%else %% Tha element is not connected to anything

%assign wrnTxt = "No code will be generated for ISR %<calildx> ™\
“since it is not connected to anything.”

%warning % <wrnTxt>

%endif

%endforeach

%% Setup timers
%openfle buffer
Interrupt_Block=1;
If ((Int)%<Trigg_src0> == 2)
{(*"GC_CTRLO = 0x6¢3;
#ifdef IO_ENABLE
printf("TCLKO driven by Timer 0.\n");

Appendix D: .24

APPENDIX D: Listing of Code for the RADE PC32

#endif
}
else
("GC_CTRLO = 0x6¢0;
Hifdef IO_ENABLE
printf("TCLKO driven externaly.\n");
#endif

)
if ((int)%<Trigg_src1> == 2)
{"GC_CTRL1 = 0x6¢3;
#ifdef VO_ENABLE
printf("TCLK1 driven by Timer 1.An");
#Hendif
)
else
{*GC_CTRL1 = 0x6¢O0;
#ifdef |IO_ENABLE
printf("TCLK1 driven externaty \n");
#endif
}

#ifdef TMRO_BASE_RATE

I"simulation step size take precdence over TMRO freq when set as base rate °/

timer(0, (in1)(1.0 / ssGetStepSize(nS))):

Holse

/* Only change Timer 0 settings if it isn't used for base sampling rate */
timer(0, (int)%<TmrOfreq>);

#Hengif

timer(1, (in})%<Tmrifreq>);

#ifdef IO_ENABLE
printf("Interrupts Connected ,Waiting for start Signal...\n");
#endif

%closefile buffer

%<LibMdIStartCustomCode(buffer, "header”)>

%endfunction

%% [EOF] iiinterrupt.tic

Appendix D: 25

APPENDIX E: Listing of Code for the RADE ADC64

APPENDIX E: LISTING OF CODE FOR THE RADE ADC64
E.1. SYSTEM TARGET FILE

%% SYSTLC: Generic Real-Time Target ADC64 \

%% TMEF: adc64.tmf MAKE: make_rtw [O=DISABLE EXTMODE: ext_comm_c3x
%%

%selectfile NULL _FILE

%addincludepath "c:\matlabrl I\rtw\c\ii\devices"

%assign MatFileLogging = 1
Y%assign TargetType ="RT"
%assign Language ="C"
%assign DSP32=|

%assign BlockIOSignals=0
%include “codegenentry.tc”

%% The contents between 'BEGIN_RTW_OPTIONS' and 'END_RTW_OPTIONS' are
strictly

%% written by the standard format. We need to use this structure in RTW

%% options GUTI function rtwoptionsdlg.m file.

%%
1%
BEGIN_RTW_OPTIONS
rtwoptions(1).prompt = MAT-file variable name modifier’
rtwoptions(1).type = 'Popup’;
rtwoptions(1).default ="

riwoptions(1).popupstrings ='rt_|_rtjnone’;

rtwoptions(1).tlcvariable ='LogVarNameModifier’;

rtwoptions(1).tooltip = ['prefix rt_ to vanable name,', sprintf(\n’), ...
‘append _rt to variable name,', sprintf("n"). ‘or no modificavon’];

riwoptions(2).prompt = 'External mode’;
rtwoptions(2).type ='Checkbox’;
rtwoptions(2).default ='on’;

rtwoptions(2).tlcvariable = 'ExtMode’;

rtwoptions(2).makevanable ='EXT_MODE"

rtwoptions(2).tooltip = ("Adds TCP/IP comrunication support for’, ...
‘use with', sprintf("\n'), ‘Simulink external mode');

rtwoptions(3).prompt = 'Function Management';
rtwoptions(3).type ="Popup’
riwoptions(3).popupstrings = ['None|Function Splitting|File ', ...
‘Spliting|Function and File Splitting');
rtwoptions(3).default = None';
riwoptions(3).tlevariable = ",
rtwoptions(3).tooltip = 'Limit size of generated files and functions’;
rtwoptions(3).callback = 'callback_function_management;
rtwoptions(3).opencallback = (['userData = get(gcbf, "UserData");' ...
'hModel_local = userData.model;' ...
‘get_value_of_fields(hModel_local,dialogFig,"open™);’ ...
‘tmp = compute_value_from_rtwoptions(hModel_local);' ...
'o = findobj(dialogFig, "Tag", "Function Management_PopupFieldTag");' ...

Appendix E: .|

APPENDIX E: Listing of Code for the RADE ADC64

'set (o, "Value", tmp); callback_function_management(dialogFig);'));
riwoptions(3).closecallback = ([‘userData = get(gebf, "UserData");' ...

'hModel_local = userData.model;’ ...

'‘gset_value_of fields(hModel _local,dialogFig,"close");');

rtwoptions(4).prompt = ‘Function Split Threshold’;

rtwoptions(4).type = 'Edit;

rtwoptions(4).default =200

rrwoptions(4).tlcvariable = 'FunctionSizeThreshold';

rtwoptions(4).tooltip = ['Split the generated functions afler specified threshold.’];
rtwoptions(4).enable = 'off;

rrwoptions(5).prompt = 'File Split Threshold);

rtwoptions(5).tvpe ="'Edit}

rtwoptions(S).default ='5000";

rtwoptions(5).tlevanable = 'FileSizeThreshold’;

rtwoptions(5).tooltip = ['Split the generated files after specified threshold.”;
rtwoptions(5).enable ="off;

rtwoptions(6).prompt ='Server name';
rtwoptions(6).type ="Edit’;

rtwopltions(6).default = 'magash’;
rtwoptions(6).tlcvariable = 'server_name';
rowoptions(6).makevariable ='SERVER_NAME),
rtwoptions(6).tooltip = ['Enter name of server computer'];
riwoptions(7).prompt = 'Port Number’;
rtwoptions(7).type ="'Ldit};

rtwoptions(7).default ='700"

rtwoptions(7).tlcvariable ='server_port
rtwoptions(7).mzkevanable ='SERVER_PORT
rtwoptions(7).tooltip = ["Enter port number of server computer'];
rtwoptions(8).prompt = 'Quick Build Project’;
rtwoptions(8).type = 'Checkbox’;

rtwoptions(8).default ="off;

rtwoptions(8).tlevariable ='QUICK_BUILD;
riwoptions(8).makevariable ='QUICK_BUILD',
rtwoptions(8).tooltip = ['Used to speedup repetive builds ', ...
"', sprintf(\n"), 'Warning!! Disable if mods to RTW internals are being made'];

rtwoptions(9).prompt ='Heap Size'
rtwoptions(9).type = 'Edit;

rtwoptions(9).default ='0x10000";
rtwoptions(9).tlcvariable = ‘heap_size’;
rtwoptions(9).makevariable ='HEAP_SIZE',
rtwoptions(9).tooldp = [‘Enter heap size for compiler’];
rtwoptions(10).prompt = 'Stack Size’;
rtwoptions(10).type ="Edit’;

rtwoptions(10).default ='0x5000";

rtwoptions(10).ticvariable = 'stack_size",
riwoptions(10).makevariable ='STACK_SIZE',
rtwoptions(10).tooltip = ['Enter stack size for compiler'];

Appendix E: .2

APPENDIX E: Listing of Code for the RADE ADC64

END RTW_OPTIONS
%/

E.2. SYSTEM TEMPLATE MAKE FILE

DT Ty S PR
SYS_TARGET_FILE = grt_adcs4.lic

MAKE = [>MATLAB_ROOT<\rtwc\i\bin\gmake_3_71
HOST =PC

BUILD =yes

DOWNLOAD =yes

BUILD_SUCCESS = Completed
DOWNLOAD_SUCCESS = Downloaded

B Customization Macros -

#

The following set of macros are customized by the make_nr program.
#

MODEL = [>MODEL_NAME«|

MODEL_MODULES = [>MODEL_MODULES<]|
MODEL_MODULES_08J = [>MODEL_MODULES_OBJ<|

MAKEFILE = |>MAKEFILE_NAME<|
MATLAB_ROOT = [>MATLAB_ROOT<]|
MATLAS_BIN = [>MATLAB_BIN<|
S_FUNCTIONS = |>S_FUNCTIONS<]|
S_FUNCTIONS_OBJ = |>S_FUNCTIONS_08J<|
SOLVER = |>SOLVER<|

SOLVER_OBJ = [>SOLVER_OBJ<|

NUMST = [>NUMST<|

TIDO1EQ = {>TIDO1EQ«]

NCSTATES = |>NCSTATES<|

BUILDARGS = [>BUILDARGS<]

COMPUTER = |>COMPUTER<]|
SERVER_NAME = |>SERVER_NAME<|
SERVER_PORT = |>SERVER_PORT<
QUICK = |>QUICK_BUILD<|
HEAP = |>HEAP_SIZE<|
STACK = |>STACK_SIZE<|

QUICK:=3(slrip ${QUICK))
---— 1 PC32 Definition

#

BOARD_TYPE = ADC64
DSP_FAMILY =30
COMPILER = TI_FPC
Ti Jools

#
You may need to modify the TI_ROOT if you have installed tha
Texas Instrument Compiler in a different location,

#

fset old_c=1 for compiler 4.7 ocr 0 for compiler 5.11

old_c =0

ifeq ($(old_c).1)

TI_ROOT =ciMtc

else

TI_ROOT = ¢:\c3xtools\bin

endif

TI_FLAGS =-v§(DSP_FAMILY)

CC = $(TI_ROOT)\cl30
LD = $(TI_ROOT)nk30

Il Tools

Appendix E: .3

APPENDIX E: Listing of Code for the RADE ADC64

#

II_DIR = c:\adcb4ce

#1_DIR Is the dir were Il Zuma tool set is installed
II_ROOT = $(MATLAB ROOT)\rtw\c\i\adcE4
II_COMPILER = $(ll_ROOT)\stc

_CMD = 3$(Il_COMPILERN\iadc64.cmd
#I1I_BOOT = $(lI_COMPILER)\vectors.obj

ifeq ($(old_c),1)
Il_INCLUDES = $(lI_DIRN\include\target; $(II_DIRNib\target
else

II_INCLUDES = ${lI_DIR\include\target;3(lI_DIR\ib\target; c:\c3xtools\include;c:\c3xtools\lib
endif

- DOWNLOAD Tool --

PC32_DOWNLOAD = §(lI_ROOT)\bin\auto_downtoad.exe

#using this location during development only

BPC32_DOWNLOAD = c:\projects\matiab_nellaulo_download\debug\auto_download.exe
H— Incluge Path

MATLAB_INCLUDES =\
S(MATLAB_ROOM\simulinkiinclude; \
$(MATLAB_ROOT)\extern\include; \
$(MATLAB_ROOT)\rtwAc\src:; \
$(MATLAB_ROOT)\rtwchiNadcB4\src; \
S(MATLAB_ROO T\ rtwAc\libsre;

TI_INCLUDES = $(TI_ROOT);
INCLUDES = .; $(MATLAB_(NCLUDES) $(TI_INCLUDES) $(I|_INCLUDES)

C Flags --—--

Required Options
REQ_OPTS =-s -ma -mf -g $(TI_FLAGS) -pf -q -e0 .03(DSP_FAMILY)

ifneq ($(cld_c),1)

REQ_OPTS := $(REQ_OPTS)-mi -00 -x2 -op0 -on1
endif

Optimization Options

OPT_OPTS =-X

Debug Options

DBG_OPTS =

CC_OPTS = $(REQ_OPTS) ${OPT_OPTS) $(DBG_OPTS) -dIO_%$(10)\

-dTMRO_$(TMRO0) -dUPLD_$(UPLD) -dDSP32 -dEXT_MODE -diO_ENABLE \
-dTARGET_SYSTEM -dVERBOSE -dADC64

CPP_REQ_DEFINES = -dMODEL=${MODEL) -dRT -dNUMST=§(NUMST) \
-dTIDO1EQ=$(TIDO1EQ) -dNCSTATES=3(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ_DEFINES) §(CPP_DEFINES)

LDFLAGS :=-g -x -c -heap $(HEAP) -stack $(STACK) $(II_BOOT) -m $(MODEL).map

#? Source Files —

REQ_SRCS = li_adcb4.c t_sim.c rtwiog_c3x.c adcB4_grm.c rt_matrx.c $(MODEL).c\
ext_srv_c3x.c updown_c3x.c

OPT_SRCS =

Appendix E: .4

APPENDIX E: Listing of Code for the RADE ADC64

S_FCN_SRCS = 3$(S_FUNCTIONS)

INT_SRCS = $(SOLVER)

#PC32_OBJS = $(MATLAB_ROOT)irtw\c\itti_fpc\pc32func.030
REQ_OBJS = $(REQ_SRCS:.c=.0$(DSP_FAMILY))

OPT_OBJS = $(OPT_SRCS:.c=.0$(DSP_FAMILY))

S_FCN_OBJS = $(S_FCN_SRCS:.c=.0$(DSP_FAMILY))
INT_OBJS = $(INT_SRCS:.c=.0$(DSP_FAMILY))

0oBJS = $(REQ_OBJS) ${OPT_0BJS) ${S_FCN_OBJS) $(INT_OBJS)
0OBJS1 = §(REQ_OBJS) $(OPT_OBJS)

OBJS2 = $(S_FCN_OBJS) 3(INT_OBJS)

PROGRAM = $(MODEL).out

#——— Exported Environment Variables ——————

#

Because of the 128 character command line length limitations in DOS, we
use environment variables to pass additional infarmation to the

Compiler and Linker

#

C_OPTION := $(CFLAGS)

C_DIR :=$(INCLUDES); $(C_DIR)

C_MODE =PROTECTED

B Rutes -—

$(PROGRAM) : $(OBJS)
echo $(0OBJS1) > $(MODEL).lin
ifneq (${strip $(OBJIS2)),)
echo $(OBJS2) >> $(MODEL).lin
endif
echo $(II_CMD) >> $(MODEL).lin
$(LD) S(LDFLAGS) -0 $@ $(MODEL).lin
del $(MODEL).lin
echo $(BUILD_SUCCESS) $(PROGRAM)

Compile existing code if it exists In current dir
%.08(DSP_FAMILY) : %.c
3(CC) <

edit mags using token for matiab root

%.03(DSP_FAMILY) : ${MATLAB_ROOT)\rtw\c\iNadcb4\src\%.c
$(CC) 3<

%.0$(DSP_FAMILY) : $(MATLAB_ROOTNrtwWACNNI_fpc\Y%.c
$(CC) %<

Call to simulink flles

%.0S(DSP_FAMILY) : $(MATLAB_ROOTN\simulink\src\%.c
$(CC) 8<

Call compile RTW flles
%.0$(DSP_FAMILY) : ${(MATLAB_ROOT)\rtwic\src\%.c

$(CC) 3<
%.0$(DSP_FAMILY) : $(MATLAB_ROOT)\rtwic\libsrc\%.c

$(CC) $<
L Rule for Downloading to Target -~—-——-——---- -
download :

de! pc32main.o30
det $(MODEL).lin
del ${MODEL).c
del $(MODEL).h
del $(MODEL).map

3t 3t 3 R

Appendix E: .S

APPENDIX E: Listing of Code for the RADE ADC64

del $(MODEL).030

del $(MODEL).prm

de! $(MODEL).reg

$(PC32_DOWNLOAD) -f$(PROGRAM) -s$(SERVER_NAME) -p$(SERVER_PORT)
echo $(DOWNLOAD_SUCCESS) $(PROGRAM)

It 3 It

- LR Dependencles —-
adchb4_grim.o$(DSP_FAMILY) :$(MODEL).c

ifneq (${(QUICK).1)

$(OBJS) : $(MAKEFILE)

endif
#il_pc32.03(DSP_FAMILY) : $(MATLAB_ROOT)\twAc\iMi_fpcVli_comms.h \
S(MATLAB_ROOT\riwic\srclext_srv_e3x.h

#ext_srv_c3x.0$(DSP_FAMILY) : $(MATLAB_ROOT\rtwAc\iMti_fpelii_comms.h \
$(MATLAB_ROOT)Mwic\srclext_srv_c3x.h

E.3. DEVICE DRIVER FILES

E.3.1 ADC BLOCKS

%% Absiract:

%% TLC file for the ADC84 A/D Block.

%% This file is used to generate codse to read

%% values from the A/D converters and scale them to +-10.
%% Author:

%% Magash Plllay

%% Date:

%% 2000/08/11

%%

%implements "adc64_ad™ "C"

%include "iilib_adc64.tic"

%function Start{block, system) Qutput
I" %<Type> Block: %<Name> (%<ParamSettings.FunclionName>) =/
%assign Trig_s= LibBlockParameterValue(P2,0)
/* Connect to Trigger source*/
%switch (Trig_s)
%hcase 2
triggec(PITO_TIMER, (int)(%<LibBlockParameter(P1,™,"",0)>));
%break
%case 3
trigger(PIT1_TIMER,(int)(%<LibBlockParameter(P1,"",",0)>));
%braak
%case 4
tigger(PIT2_TIMER,(int){(%<LibBlockParameter(P1,",",0)>));
%break
%case 5
trigger(PIT3_TIMER,(int){%<LibBlockParametar(P1."" " .0)>));
%break
%case 6
trigger(PIT4_TIMER (int)(%<LibBlockParameter(P1,"."",0)>});
%break
%endswitch

%endfunction %% BlocklnstanceSeatup

Appendix E: .6

APPENDIX E: Listing of Code for the RADE ADC64

%function Outputs(block, system) Output
I %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
/" read In the corrected values from A/D and scale {o +-10 */

%assign Trig_s= LibBlockParameterValue(P2,0)

%assign ADC_num0 = LibBlockParamelerVatue(P1,0)*2

%assign ADC_num1 = LibBlockParameterValue(P1,0)'2+1

Y%assign ADC_num0 =CAST(“Number”, ADC_num0)

%assigh ADC_num1 =CAST("Number’, ADC_num1)

%<LibBlockOutputSignal(0,", " 0)>=read_adc(BASEBOARD,(%<ADC_num0>))/(3276.7);
%<LioBlockOutputSignal(0,™ ™ 1)>=read_adc(BASEBOARD,(%<ADC_num1>))/(3276.7);
%if (Trig_s==1)

convert_adc_pair(BASEBOARD (int)(%<LibBlockParameterValug(P1,0)>)):
%endif

Y%endfunction %% Outputs

E.3.2 DAC BLOCK

%%

%%

%% Abstract:

%% TLC file for the PC32 D/A Block.

%% This file Is used to generate code to write
%% values to the D/A converters. At termination
%% all outputs are set to 0.

%% Author:

%% Adam Stylo

%% Date:

%% 98/11/03

% %

%implements "adc84_da" "C"

%include "iilib_adc64.tc"
%function BlocklnstanceSetup(block, system) void

%% Only allow 1 instance of the D/A block
%if IEXISTS{"Rt_pc32da")
%assign ::Rl_pc32da = 1
%else
%error Only 1 PC32dan block is allowed In the madel.
%endif
%endfunction %% BlockinstanceSetup

%% Function: Outputs

%%

%% Abslract:

%% Generate inlined code to perform one D/A conversion.
%%

%function Outputs(block, system) Output

I % <Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
/* Start an output conversion®/
{
write_dac(BASEBOARD, 0, %<LibBlocklnpuiSignal(0,™,".0)>*(3276.7));
convert_dac(BASEBOARD, 0);
write_dac{BASEBOARD, 1, %<LibBlocklnputSignal(0,"."",1)>"(3276.7));
convert_dac(BASEBOQOARD. 1);

%endfunction %% Outputs
%openflle buffer

I” reset D/A outputs to O at termination. */
write_dac(BASEBOARD, 0, 0);

Appendix E: .7

APPENDIX E: Listing of Code for the RADE ADC64

convert_dac(BASEBOARD, 0);
write_dac(BASEBOARD, 1, 0);
convert_dac(BASEBOARD, 1);

%closefile buffer
%<LibMdITerminateCustomCode(buffer, "trailer’)>

%" EOF: ADCB4_da.tic

E.3.3 PWM BLOCK

%%
Y%

%% Abslract:
%% TLC file for the PWM Block. Generates code used to
%% control a PWN/Tacho add on card.

%% Author; Magash Pillay
%%
%implements "pwmblock_adc¢” “C"

Yinclude "tilio_adcB4.tic”

%assign :Vorll = LibBlockParameter(P1,","™,0)
%assign ::CtriMode = LibBlockParameter{P2,"," 0}

%function BlocklnstanceSetup(black, system) void
%% Only aflow 1 pwm block
%if EXISTS('IIPWMBIlockSeen”)
%assign errTxt = "Only 1 Interrupt block is allowed in " ...
“"model: %<CompiledModel.Name>."
%exit RTW Fatal: %o<errTxt>
%else
%assign :IPWMBIlockSeen = 1
Y%endif

%openfile buffer

%%DECODEQ
#define Status_word (volatile int") 0x818801
#define Data_word (volatile int) Ox818800

%%DECODE1
%%#define Status_ward {volatila int*) 0x819001
%%#defing Data_word (volalile int™) 0x813000

#define TAUS (0)
#define TTOT (0)
#Hdefine TMIN (0)
int VORTL,TSTART;

void pollpwm(void)

while (*(Status_word) & 0x1);
)

%closefile buffer
%<LibCacheDefine{buffer)>

%openfile buffer

#ifdet IO_ENABLE
prntf("Initializing PWM Block\n");
#endit

VORTL = (int){%<Vorll>);
TSTART = ((int){512-(322/(VORTL+1))));

*{OBCR = 0x58;

Appendix E: .8

APPENDIX E: Listing of Code for the RADE ADC64

(Status_word) = 128; / set up 16 bit addressing mode */
(Status_word) = 128; / set addres to zero */

pollpwm();

“(Data_word) =0; /" Ua~/

polipwm();

‘(Data_word) = 0; /* Ub */

pollpwm();

*(Data_word) = 0; /" phi1 */

pollpwm();

*(Data_word) = 0; /" dphit */

pollpwm();

(Data_word) = 0; / phi0 */

pollpwm();

*(Data_word) = 0; 7 dphiQ */

pollpwm();

(Data_word) = 0; / phiadd */

polipwm();

*(Data_word) = 0; /" unused */

pollpwm();

“(Data_word) = TAUS; /° tum off time */
pollpwm():

“(Data_word) = TTOT: /' dead band °/
pollpwm():

*(Data_word) = TMIN; /" turn on time */
poltpwm();

(Data_word) = VORTL; [swiiching frequency scale value “/
pollpwm();

*(Data_word) = TSTART; /° start of processing cycle “/

*(Status_word) = 129;

%closefile buffer
%<LioMdIStantCustomCode(buffer, “trailer’)>

%openfile buffer
I dissable the PWM board at terminate */
*(Status_word) = 0;
*(Status_word) = 0;
%closefile buffer
%<LibMdITerminateCustomCode(buffer, "trailer")>
%endfunction

%function Outputs(block, system) Output
I* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) °/

*(Status_word) = 129;

pollpwm().
*(Data_word) = (int)%<LibBlockinputSignal{0, ™, ", 0)>;
pollpwm();
*(Data_word) = (int)%<LibBlocklnputSignal(0, **, **, 1)>;

if ((int)%<CtriMode> == 1) /* skip three values to write frequency */
{pollpwrmy);
*(Status_word) = 897;)

pollpwm();
*(Data_word) = {int)%<LibBlockinputSignal(0, ™, ", 2)>;
)

%endfunction %% Outputs

E.3.4 ASYNCHRONOUS INTERRUPT SUPPORT

mod on 17/04/2000

%%

Appendix E: .9

APPENDIX E: Listing of Code for the RADE ADCé64

%%

%% Abstract:

%% TLC file for the ADC64 Asynchronous Interrupt Block.

%% This file Is used to generate code to support asynchronous
% % interrupts on the ADC64.

%% Author:

%% Magash Pillay

%% Date:

%% 2000/08/11

%%

%Implements “liinterrupt_adc” "C"

%include "iilib_adc64 .ic”

°/°% Funcﬁon: B[ock|n5tanceSetup LSS CS=S=SSC-o=SSCSSr oS- ==============

%% Abstract;

%% Fing all the function-call subsystems that are attached to the
%% interrupt block and hook-in the necessary code for each routine.
%% This function

%%

%% o Connect each ISR in the model's start function.

%%

%% o Enzable each ISR at the bottom of the model's start function.
%%

%% o Disable each ISR in the model's terminate function.

%%

%% o Save floating point context in the ISR's critical code section

%assign : TmrOfreq = LibBlockParameter(P1,",",0)
Yassign ::Tmrifreq = LibBlockParametsr(P2,",",0)

%function BlockinstanceSetup(block, system) void
%% Only allow 1 Interrupt block
%if EXISTS("llintarruptBlockSeen™)
%assign errTxt = "Only 1 Interrupt block is allowed in “ ...
"model: %<CompiledMode!.Name>."
%exit RTW Fatal: %<errTxt>
%else
Y%assign :llinterruptBlockSeen = 1
%endif

%openfile buffer

#ifdef |O_ENABLE
prinff("Connecting Interrupts\n™);
#endif

%openfile buffer
/"Deflne a interrupt_block */
#define INTERRUPT_BLOCK
#include “adcmain_f.h"

%closefile buffer
%<LibHeaderFileCustomCode(ouffer, trailer")>

%foreach callldx = NumSFenSysOutputCalls

%% Get downstream block if there is one

%if "%<SFcnSystemOutputCali{callldx).BlockToCall>" (= "unconnected”

Y%assign ssSystdx = SFenSystemOutputCall[callldx].BlockToCall|0]
%assign ssBIkldx = SFenSystemOutputCallfcallldx].BlockTaCall[1]
Y%assign ssBlock = CompiledModel.System(ssSysldx}.Block[ssBlkldx]
%% Check to see If this is a direct connection

%If (ssBlock.ControllnputPort. Width |= 1)

%assign errTxt = "The Il Interrupt block '%<block.Name>'* ..,

“outputs must be directly connacted to one function-call subsystem. " ..,
"The destination function-call subsystem block '%<ss8lock.Name>'" ...

Appendix E: 10

APPENDIX E: Listing of Code for the RADE ADC64

“has other inputs.”
%exit RTW Fatal: %<errTx>
%endif

%% Assume It is a subsystem block(Simulink checked for a f-c subsys already).

%assign isrSystem = System{ssBlock.ParamSettings.Systemldx]

%<LIbForceQutputUpdateFcn(isrSystem)>

%% NO need to redefine since function calls are from dummy interrupt functions
%openfile buffer

void ¢_int0% <calilgx+1>(void);

%closefile buffer

%<LibCacheDefine{ouffer)>

%openfile buffer

I%notes on P4

range 1 to 3 ,caresspondes to interrupt number.

%/

%If calllgx == 0 %% this is an engd of conversion, analog intacrupt
%%enable one interrupt mask
%openfile buffert
It enable all ADC's interrupt

write_analog_interrupt_mask(BASEBOARD. 0x1):

%closefile buffer1
%<LibMdIStartCustomCode(buffer1, “trailer”)>

%endif
%if callldx ==(%<LibBlockParameterValue(P4.0)>-1)
%% checking which int Is base rate generator

%%call system function without using Tl Interrupt convention

%%ie wrap it In Base_Rate Function

%if calllgx==

%openfile temp

#define TMRO_BASE_RATE

%closefile temp

%<LibCacheDefine(temp)>

%endif

void Base_Rate_Function()

{

%<isrSystem.OutputUpdateFen>(ntS,1,0);

%else
/h
ISR for : %<ssBlock.Name>
*/
%if callldx < 9

void ¢_int0%<callldx+1>()

/* call subsystem block
Using TID =0 since, single tasking simulation

*/
%<1srSystem.QutputUpdateFcn>(rtS,.1.0);
}
%else
void c_int%<callldx+1>()
I call subsystermn block
Using TID =0 since, single tasking simulation
‘/
% <isrSystem.OutputUpdateFcn>(rtS,1,0);
Y%endif
%endif

%closefile buffer
%<LibSourceFiteCustomCode(buffer,"trailer’)>

%openfile buffer

Appendix E: .11

APPENDIX E: Listing of Code for the RADE ADC64

4% controlPortidx will never get used when only one f-¢ control input
/* use base tid inside an ISR for any blocks accessing task time*/
fidefine %<tTID> 0

%closefile bufier

%<LibSystemOutputCustomCode(isrSystem, buffer, “declaration*)>
%openfiie buffer

#undef %<tTID>

%closefile buffer

%<LibSystemOutputCustomCode(isrSystem, buffer, "trailer”)>

%% Connect the 1SR in the model's start funclion

%openfile buffer
I" connect ISR system: %<ssBlock.Name> =/
Hint registration
%If callldx ==(%<LibBlockParameterValue(P4,0)>-1)
{
[~ assign t_onestep from real time kennel to interrupt */
install_int_vector{ntOneStep (int)%<LibBlockParameterValue(P3.callldx)>);
enable_interrupt{(int)%<LibBlockParameterValue(P3 callldx)>-1);
#ifdef IO_ENABLE
printf("Vectior installsd for INT #%d, Base rate interrupt.\n"
(int)%<LibBlockParameter(P3,"*,"" callidx)>);
#endif

%else

{
%If callidx < 9
install_int_vector(c_int0%<callidx+1> (int)%<LibBlockParameterValue(P3.callldx)>);
Y%else
install_Int_vector(c_Int%<callldx+1> (int)%<LibBlockParameterValue(P3,callidx)>).
%endif
enable_interrupt((int)%<LibBlockParameterValue(P3,callldx)>-1);
#ifdef |I0_ENABLE
printf("Veclior installed for INT #%d.\n" (int)%<LibBlockParameter(P3,"" " callldx)>):
Hendif
}

%endif

%closefite buffer
%<LibMdIStartCustomCode(buffer, "trailer")>

%openfile butfer

P> disconnect ISR sysiem:; %<ssBlock.Name> */

if (% <LibBlockParameter(P3,","" callidx)>==8)

{ /* only gdisconnect timer0 If it was set up here */

disable_interrupt{(int)%<LibBlockParameter(P3." '™, callldx)>-1).

deinstall_int_vector((int)% <LibBlockParameter{P3," " callldx)>);
#ifdef IO_ENABLE
printf("INT #%d disabled \n",(int)%<LibBlockParameter(P3," ™, callldx)>);
#endif

}

else

disable_interrupt((int)%<LibBlockParameter(P3," " callldx)>-1);
deinstall_int_vector((int)%<LibBlockParameter(P3,™ " callldx)>);

#Hifdef IO_ENABLE

orintf("INT #%d disabled \n" (int)%<LibBlockParameter(P3 ™ " callldx)>);
#endif

%closefile buffer
%<LibMdITerminateCustomCods(buffer, “traller")>
%else %% The element is not connected to anything

Appendix E: .12

APPENDIX E: Listing of Code for the RADE ADC64

Y%assign winTxt = "No code will be generated for ISR %<callldx> ™
"since it is not connected to anything."

Y%warning %<wrnTxt>

%endif

%endforeach

%% Setup timers
%openfile buffer
Interrupt_Block=1;
#fdef TMRO_BASE_RATE
["simulation step size take precdence over TMRO freq when set as bass rate “/
timer(6, (int)(1.0 / ssGetStepSize(nS))):
Helse
I~ Only change Timer 0 settings if it isn't used for base sampling rate =/
timer(8, (int)%<TmrOfreqg>);
#endif
timer(7, (int)%<Tmr1freq>);

Hifdef 1O_ENABLE
print(“Interrupls Connected .Waiting for start Signal...\n");
#endif
%closefile buffer
%<LioMdIStanCustomCode(buffer, "header”)>
%endfunction

%% (EOF] iiinterrupt.tic

E.3.5 EXTERNAL TIMERS

%%

%%

%% Abstract:

%% TLC file for the external timers. Generates code used to
%% control external timers.

%% Author:

%% Magash Pillay

%% Date:

%% 2000/08/14

%%

%implements “ext_timers_adc" "C"
%include “iilib_adcs4.tic"

%assign ::tmr0 = LIbBlockParameter(P1,"".",0)
%assign :itmr1 = LibBlockParameter(P2,"",™.0)
%assign ::tmr2 = LibBlockParamater(P3,™ ™ 0)
%assign ::tmr3 = LibBlockParameter(P4,"."".0)
%assign ::tmr4 = LibBlockParameter(P5,",,0)

%function BlocklnstanceSetup(block, system) void
%% Only allow 1 pwm block
%if EXISTS(UTIMERS")
%assign errTxt = "Only 1 Timer block Is aliowed in " ...
"model: % <CompiledModel.Name>."
%exit RTW Fatal: %<ercTxt>
%else
%assign ZIITIMERS = 1
%endif

%openhle buffer

Hifdef I0_ENABLE

pnntf("Initializing PWM Block ...\n");
Hondif

Appendix E: .13

APPENDIX E: Listing of Code for the RADE ADC64

I"setup external timers */
timer(0,(int)%<tmr0>};
timer(1,(int)%<tmr1>);
timer(2,(int)% <tmr2>);
timer(3,(int)%<imr3>);
timer(4,(int)%<tmr4>),

%closefile buffer
%<LibMdIStartCustomCode(buffer, "trailer”)>

%endfunction

Appendix E: .14

APPENDIX F: Description of CD

APPENDIX F: DESCRIPTION OF CD

Category Sub Category [Comments File Location
cd-rom drive =e:
Documents
| TMS320C3x User's Guide e:\documents\texas
Software and Hardware
1] Manuals e:\documentsii
Windows Sockets API

WinSock documents e:\documentsiwinsock

Mathworks Mathworks manuals e\matlabr11\help\pdf doc
RADE PC32 ’

Server Server executable E:\matlabrt 1\rtwAc\ii\bin\server PC3

software System files E:\matlabr11\rtwAcliilti_fpc

device drives Block TLC files E:\matlabr11\rtw\c\devices
RADE ADCB4 EAmatlabrd Tiiw\cubinserver_ADC

Server Server executable 64

software System files E:\matlabr1 1\riw\cli\adc4\src

device drives Block TLC files E:\mallabri 1\riw\c\iadc64\devices
Server Projects

PC32 Visual C project workspace E:\visua! c\server pc32

IADCE4 Visual C project workspace E:\visual c\server adcb4d
Mathworks Patch E:\Mathworks patch

Newer binaries supplied by;
Mathworks to fix external
mode bugs

Innovative Integration

Library files used for the E:\pc32ce

PC32 library target system

4!
Library files used for theE adcb4ce

IADCB4 library target system

Tl compilers

Older compiler used withiE:\fllc

Version 4.7 CSDE
Latest compiler used fonE:\c3xtools
Version 5.11 RADE system

Appendix F: .1

References

AHMEDI1

AMCCI

BLERKI1

BOOCH!

BURRBROWNI1

BURRBROWN?2

CHUNG]

DANIEL1

DSPACEL

REFERENCES

Ifran Ahmed, “Implementation of PID and deadbeat controllers with the
TMS320 famity”, Digital Signal Processing Applications with the TMS320
family (Theory, Algorithms, and Implementations), VOL 2, Texas
Instruments, 1990

“Bus Mastering with the S5933 PCI Matchmaker”, Applied Micro Circuits
Corporation, February 1996

Bruce van Blerk, “Development of a Scaled Down Paper Machine to
Demonstrate the Principles of Tension Control® MSc Thesis, Dept. of

Electrical Engineering, University of Natal, Durban 1998

Grady Booch “Object-Oriented Analysis and Design: with applications”,
Second Edition, Addison-Wesley Publishing Company, 1994

“ADS7805 16-bit 10us sampling CMOS analogue-to-digital converter”,

Burr-Brown data sheet

“DAC712 16-bit digital-to-analog converter with 16-bit bus interface”, Burr-

Brown data sheet

Kai M. Chung, Astro Wu, Tresna Hidajat, “Using the TMS320C24X DSP
controller for optimal digital control”, Application report:SPRA295, Texas
Instruments, January 1998

Daniel J. Wisehart, “Debugging Embedded Systemns”, C/C++ User Joumal,
June 1999

Herbert Schutte, “TDE: An integrated toolset for real-time control
applications”, dSPACE GmbH, Proceedings of the MOVIC 1998, August
1998

Reference: 1

References

DSPACE2

DSPACE3

DSPACE4

DSPACES5

FENGI

GAN1

GANSSLE)

GNU1

GORDONI

GREGAI

Susanne Kohl, Peter Bechberger, « In-flight simulators and Stationary flight
simulator with dSPACE development tools”, dSPACE GmbH, Proceedings
of the EADC, France, June 1999

Rainer Otterbach, Thomas Pohlmann, Andreas Rukgauer, Jorg Vater.
“DS1103 PPC controller board: Rapid prototyping with combined RSIC and
DSP power for motion control”, dSPACE GmbH, Proceedings of PCIM
1998, Germany, May 1998

Jorg Vater, “The need for and the principle of high-resolution incremental
encoder interfaces in rapid control prototyping” dSPACE GmbH, dSPACE
GmbH, Proceedings of PCIM 1997, Germany, June 1997

Rainer Otterbach, Robert Leinfellner, “Real-Time Simulation: Requirments
and the State of Technology”, Translation from “Vituelles Ausprobieren”
Elektronik, August 1999

Henry Feng, Martin Torngren, Brengt Eriksson, “Experiences Using
dSPACE Rapid Prototyping Tools For Real-Time Control Applications”,
Proceedings of the DSP Scandinavia Technical Conference, Sweden, June
1997

Woon-Seng Gan, Yong-Kim Chong, Wilson Gong, Wei-Tong Tan, “Rapid
prototyping system for teaching real-time digital signal processing”, [EEE

transactions on education, VOL 43, NO 1, February 2000

Jack G. Ganssle, “Debuggers for Modern Embedded Systems”, Embedded
Systems Programming, pg 58-65, November 1998

Richard M. Stallman, Roland McGrath “ GNU Make. A Program for
Directing Recompilation”, Free Software Foundation, May 1998

V. Scon Gordon, James M. Bieman, “Rapid Prototyping: Lessons Learned”,
IEEE Software VOL 12, NO 1, January 1995

Wojciech Grega, Krzysztof Kolek, Andrzej Turnau, “ Rapid prototyping

Reference: 2

References

environment for real-time control education”, IEEE 1999, 0-7695-0134-6/99

Reference: 3

References

HAMANNI

HANNING!I

HANNING2

HUGH]

INNOVATIVE]

INNOVATIVE2

INNOVATIVE3

INNOVATIVE4

JAWITZ]

KOZICK 1

MATHWORKSI1

MATHWORKS?2

MATHWORKS?3

MATHWORKS4

Hamann Jerry C, Muknahallipatna Suresh, “Distributed instrumentation and
computation: a look at what's out on the end of the Internet”, ASEE Annual

Conference Proceedings, Washington, DC, USA, 1998

“Pulse width modulator, PBM 1/87”, Hanning Elektro-Werke GmbH, data
sheet, Rev 2.0

“Incremental Rotary Encoder Interface, TC3005H", Hanning Elektro-Werke
GmbH, data sheet

Hugh Jack, Michael Karlesky, “A virtual manufacturing Laboratory”, ”

ASEE Annual Conference Proceedings, Washington, DC, USA, 1998
“PC32 Hardware Manual”, Innovative Integration, 1599

“PC32 Developer’s Sofrware Manual”, Innovative Integration, 1999
“ADC64 Hardware Manual”, Innovative Integration, 1999

“ADCé64 Developer's Software Manual”, Innovative Integration 1999

Jeff Jawitz, * It takes more than just lecturing: Developing engineering
education in South Africa”, 9" Annual South African Universities Power
Engineering Conference (SAUPEC), University of Natal, January 2000
Richard J. Kozick, Curtis C. Crane, “An integrated environment for the
modelling, simulation, digital signal processing and control”, IEEE
transactions on education, VOL. 39, NO 2, May 1996

“Using Matlab, Version 5.3%, The Mathworks In¢, January 1999

“Using Simulink, Version 3”, The Mathworks In¢, January 1999

“Simulink, Writing S-Function, Version 3", The Mathworks Inc, October

1998

“Real-Time Workshop, User's Guide, Version 3”, The Mathworks Inc,
January 1999

Reference: 4

References

MATHWORKSS

MATHWORKS6

MATHWORKS?

MATHWORKSS

MOODLEY!

MSDNI

MSDN2

MSDN3

MSDN4

OGATAL

OGATAZ2

PAII

POUSI

“Target Language Compiler Reference Guide, Version 1.2”, The Mathworks
Inc, January 1999

“Real-Time Workshop, User's Guide, Version 4”, The Mathworks Inc,
September 2000.

“Control System Toolbox User’'s Guide, Version 4.2”, The Mathworks Ine,
J'anuary 1999

“Non-Linear Design Control Blockset, User’s Guide. Version 57, The

Mathworks Inc, April 1997

Lynden Moodely, “Position Controller for a DC Drive”, B.S¢. Eng Thesis,
Dept. of Electrical Engineering, University of Natal, Durban 1999

“CHATTER and CHATSRVR sample programs”, MSDN Microsoft 1999

“Windows Sockets for WNetwork Programming: Overview”, MSDN
Microsoft 1999

*Windoswvs Sockets: Ports and Socket Addresses”, MSDN Microsoft 1699
“IPC and Windows 95", MSDN Microsoft 1999

Katsuhiko Ogata, “Modern Control Engineering, Second Edition”, Prentice-
Hall International, Inc, 1990

Katsuhiko Ogata, “Discrete-Time Control Sytems”, Prentice-Hall
[nternational, Inc, 1987

Pai Devdas, Kelkar Ajit, Layton Richard, Schulz Mark, “Vertical integration
of the undergraduate learning experience” », ASEE Annual Conference

Proceedings, Washington, DC, USA, 1998

C. Pous, A, Oller, J. Vehi, J.L. de la Rosa, “ Using Matlab Real-Time
Workshop in teaching control design techniques”, IEEE 1996, 0-8186-7649-
3/96

Reference: $

References

REIDI

SADASIVAI

SQUIRESI

STURGEONI1

SLIVINSKII

STYLO!

TEXASI1

TEXAS2

TQI

TQ2

Reid, Richard J, *“Virtual laboratory for the introductory engineering
course”, ASEE Annual Conference Proceedings, Washington, DC, USA,
1998

Indu Sadassiva, Frank Flinders, Wardina Oghanna, “ A graphical based
automatic real-time code generator for power electronic control

applications”, Proceedings of the [SIE 1997, Guimaraes Portugal, 1997

David Squires, Jenny Preece, “Predicting quality in educatiopal sofrware:
Evaluating for learning, usability and synergy between them”, interacting

with Computers L1, Elsevier, 1999

Shaun Sturgeon, “DSP based Field Oriented Control of an Induction
Machine”, B.Sc. Eng, Dept. of Electrical Engineering, University of Natal,
Durban 1998

Charles Slivinski, Jack Borninski, “Control Systems Compensation and
Implementations with the TMS32010”, Digital Signal Processing
Application with the TMS320 Family, VOL 1, Texas Instruments 1989
Adam W. Stylo, “ A low cost, high performance PC based integrated real-
time motion control development system”, M.SC. Thesis, Dept. of Electrical
Engineering, University of Natal, Durban 2001

“TMS320C3X User's Guide”, SPRUO3 1E, Texas Instruments, July 1997

“TMS320C33 Product Information”, Texas Instruments, January 2000

Product information from TQ Education and Training LTD web site

www.td.com

Peter Wellstead, “Control Systems Engineering: A core skill for Engineers in

a Changing World”, TQ Education and Training LTD

Reference: 6

References

WALKERI1

WASHBURN!I

WINCONI

WINSOCK |

WINSOCK?2

WOEHR

WORTHMANNI

Myles Walker, “ Test Bed System to Investigate the Energy Efficiency of
Variable Speed Drives Systems Under Variable Load Conditions”, M.Sec.
Thesis in preparation, Dept. of Electrical Engineening, University of Natal,
Durban 2000

K. Washburn, J.T. Evans “TCP/IP Running a Successful Nefwork",
Addison-Wesley, 1993

“WinCon 3.0 Description “ Quanser Consulting [nc,

www.wincon.quaser.con/description.html

“Windows Sockets: An Open Interface for Network Programming under

Microsoft Windows”, Version 1.1, January 1993 (www.stardust.com)

“Windows Sockets 2: Application Programming Interface”, Revision 2.10,

January 1996.

Woehr Jack J, “A Conversation with Glenn Reeves: Really remote

debugging for real-time systems”, Dr Dobb’s Journal, November 1999

Cedric Worthmann, “Feasibility Study of a Neural Network Current
Controller for a Boost Rectifier”, M.Sc. Thesis in preparation, Dept. of

Electrical Engineering, University of Natal, Durban 2000

Reference: 7

