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Abstract 

The consumption of fossil fuels such as coal and oil are unsustainable and has proved to 

be detrimental to the environment. There was a need to explore alternative sources of 

energy. Microalgal biomass and lipids have the potential to produce a variety of high value 

products; such as biofuels, bioactive medicinal products and food additives and these 

microorganisms have attracted worldwide interest. Microalgal biodiesel was an excellent 

substitute to liquid fossil fuels due to its cost effectiveness, renewability and environmental 

benefits.  Although biodiesel production from microalgal feedstock was a feasible source 

of bioenergy, its commercialization was still curbed by a number of techno-economical 

challenges.  

Bioprocess modelling and optimization at upstream and downstream stages was necessary 

to enhance product yields and improve viability of the technoeconomic output. In this 

study, the Response Surface Methodology (RSM) was used to model and  optimize their 

biomass and lipid productivity of Chlorella sp. based on the input parameters; nitrogen 

concentration, iron concentration and phosphorus concentration within the ranges of 0.50 

– 2.00 g L-1, 3.00 – 9.00 mg L-1, and 0.00 - 40.00 mg L-1, respectively. The experiments were

carried out in a novel miniature raceway pond photobioreactor. This reactor comprised 

of 15 units of 1.5L raceway ponds enclosed in a transparent plexiglass case with 

dimensions of 820 × 970 × 190 mm. This structure allowed for parallelization raceway 

pond experiments.  

 Experimental data were used to develop polynomial models. Analysis of variance 

(ANOVA) carried out on the developed models gave coefficient of determination values 

of 0.99 and 0.98 for biomass and lipid productivity, respectively. Nitrogen was found to 

be the most important input factor to biomass productivity whereas iron was most 

influential to lipid productivity. Optimized process yielded biomass and lipid 

productivities of 114.5 mg L-1 d-1 and 38.23 mg L-1 d-1, respectively. The use of a parallel 

miniature raceway pond photobioreactor enabled high throughput experimentation for 

microalgae process development with the geometrical configuration of large-scale 

raceway ponds 
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The kinetic studies of Chlorella sp growth showed a maximum specific growth rate (µmax) 

of 0.01 g L-1 h-1 and a cell concentration (Xmax) of 1.78 g L-1. The logistic model fitted well 

to the experimental data (R2 value of 0.98). These kinetics data provide insights into 

Chlorella bioprocess scale up as well as the biological characteristics of a microorganism 

involved in a bioprocess. Knowledge of such characteristics will inevitably enhance the 

feasibility of a bioprocess.  

An additional challenge in microalgae bioprocessing was the harvesting of microalgae 

biomass. In this study, the potential of using magnetic iron oxides for harvesting Chlorella 

sp. was investigated. The response surface methodology was used to optimize the recovery 

efficiency of crude (uncoated), tri-sodium citrate (TSC) and chitosan coated magnetic iron 

oxides. The operational parameters consisted of nanoparticles to microalgae culture 

exposure time, magnet retention time, pH and nanoparticles concentration. Experimental 

data were used to fit polynomial models using RSM. Analysis of variance gave coefficients 

of determination (R2) values of >0.7 for crude, TSC and chitosan nanoparticles. Findings 

showed that tri-sodium citrate coated magnetic nanoparticles had the highest recovery 

efficiency of 95% compared to crude and chitosan (efficiencies of 85% and 87%, 

respectively). Additionally, the exposure time of the algae culture to the nanoparticle’s 

solution was found to be a significant factor for the recovery efficiency of crude 

nanoparticles, whereas magnet retention time had a higher positive influence on the 

recovery efficiency of TSC nanoparticles. The concentration of nanoparticles positively 

affected the recovery efficiency of chitosan coated nanoparticles. This was evident from 

the polynomial model equations illustrating individual and interactive effects of the input 

parameters on the output.  

Sensitivity studies on the recovery efficiency as a function of changes on process inputs 

revealed that for crude nanoparticles, the concentration of nanoparticles has a non-linear 

relationship with the recovery efficiency. Magnet retention time displayed a linear 

relationship for all nanoparticles types where an increase in this factor resulted in a 

proportional increase in the recovery efficiency. Increasing the exposure time of the algae 

culture to nanoparticles as well as pH increased recovery efficiency of chitosan coated 

nanoparticles whereas the opposite effect was observed for crude and TSC nanoparticles.  
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These findings demonstrated that Chlorella sp. was an attractive biodiesel feedstock. 

Modelling of biomass and lipid productivity revealed that optimal productivities of both 

biomass and lipid could be obtained using an appropriate mixture ratio of nitrogen and 

iron. The kinetic model provided crucial information on the growth of Chlorella sp for 

bioprocess development and scale up. The use of a novel miniature raceway pond 

photobioreactor provided a throughput experimentation using a geometrically similar 

environment for large scale microalgae production using raceway reactor. This ensured 

that reliable process data were generated for subsequent scale up. For downstream 

processing, tri-sodium citrate coated nanoparticles displaying the highest recovery 

efficiency. Sensitivity studies revealed shorter exposure time to algal culture and a lower 

pH resulted in a higher recovery efficiency from TSC coated nanoparticles. Findings from 

this study provided insight for upstream and downstream microalgae process 

development using the local isolate of Chlorella sp. 

 

Keywords: Chlorella sp, bioprocess development, response surface methodology, kinetic 

models, artificial neural networks, miniature parallel photobioreactors  
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Chapter 1: General Introduction 

1.1 Fossil fuel depletion and alternative energy source 

 

Rapid increases in the human population and technological advancements have led to energy 

demands escalating to levels that cannot be sustained by fossil fuels alone. According to BP’s 

2019 World Energy Review, South Africa used 533 thousand barrels per day of fossil fuels, an 

increase from the 2008 data which were 511 thousand barrels per day (BP Statistical Review 

of World Energy 68th Ed; 2019) Rapidly depleting fossil fuel reserves and the release of 

greenhouse gases (GHG) from their combustion resulting in climate change, receding glaciers, 

increasing sea levels and biodiversity loss, necessitate the need for renewable, sustainable, 

efficient and cost-effective energy sources with less emissions (Gullison et al., 2007). 

 

Amongst the four most important sustainable fuel sources (biofuels, hydrogen, natural gas and 

syngas), biofuels have emerged as the most environmentally friendly energy source and have 

therefore become widely explored as a fossil fuel replacement due to their renewability, 

biodegradability and acceptable emissions (Bhatti et al., 2008). A biofuel describes a liquid, 

solid and gas fuel derived from biomass such as bioethanol, biomethanol and biodiesel 

(Dermibas, 2008). In the year 2015, renewable energy fulfilled 19.3% of the global energy 

consumption and 0.8% of these renewable fuels was used for transportation, thus indicating 

the acceptance of renewable energy as a fossil fuel replacement. In 2016, government policies 

were put in place in 176 countries to increase renewable energy production (Renewables, 

2017). In South Africa, the mandatory blending of biofuels are 5 and 2% for biodiesel and 

bioethanol, respectively (DoE., 2015). One of the major bioethanol producing countries, Brazil 

has increased biodiesel and bioethanol blend minimums from 7 to 8% and 25 to 27% , 

respectively (Biofuels Digest, 2016). The increasing worldwide interest in renewable biofuels 

requires the development viable bioprocess technologies to meet global targets. 

 

1.2 Biodiesel production   

 

Biodiesel was a diesel-fuel alternative produced by chemically reacting vegetable or animal 

fats with an alcohol such as methanol in a process known as transesterification (Figure 1.) A 
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strong acid or base catalyst was used to drive the reaction and the end product was methyl 

esters, which are biodiesel (van Gerpen, 2005).  

                   

                                                            

Figure 4: Transesterification mechanism (adapted from van Gerpen, 2005) 

 

Biodiesel was an attractive energy resource due to its sustainable nature, high 

biodegradability, minimal toxicity, economic potential, closed carbon cycle, low emission 

profile and ability to be used in diesel engines with minimal or no modification (Ahmad et 

al., 2011). Biodiesel can be produced from a variety of feedstock’s (Table 1).  

 

Table 1. Current feedstock for biodiesel worldwide (Adapted from Ahmad et al., 2011) 

Country/region Feedstock 

USA Soybeans 

Europe/EU Rapeseed, sunflower 

Western Canada Canola oil 

Africa Jatropha 

India Jatropha 

Malaysia/Indonesia Palm 

Philippines Coconut 

China Waste cooking oil 

Spain Linseed oil 

Greece Cottonseed 
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First generation feedstock’s are classified as edible oils such as rapeseed, soybeans, palm oil 

and sunflower oil. Such oils produce biodiesel but unfortunately succumb to global food 

security issues (Brennan and Owende, 2010). Most first generation plants form part of the 

human diet in various regions across the world, therefore their large scale use as biodiesel 

feedstock would inadvertently result in global food market imbalances (Gui et al., 2008). The 

requirement of arable land and freshwater resources was another socio-economic challenge 

diminishing the use of these plants as a feedstock (Ahmad et al., 2011).  

 

Second generation feedstock’s aim to reduce the dependency on edible oils by using energy 

crops such as, jatropha (Foidl et al., 1996), jojoba (Canoira et al., 2006), tobacco (Usta, 2005), 

waste cooking oils, restaurant grease and animal fats (Canacki, 2007).  Second generation 

feedstock’s eliminates competition for food and feed (Leung et al., 2010), less farmland 

required for cultivation (Leung et al., 2010), higher cetane number and non-corrosive qualities 

associated with animal fat methyl esters (Guru et al., 2009). However the non-abundancy of 

these feedstock’s challenges their sustainability and biodiesel derived from vegetable and 

animal oil perform poorly in colder temperatures (Singh and Singh, 2010; Janaun and Ellis, 

2010).  

 

Third generation feedstock’s attempt to address the challenges associated with the first and 

second generation feedstock’s.  

 

1.3 Microalgae as biodiesel feedstock: major challenges  

 

Microalgae are unicellular, photosynthetic, lipid producing microorganisms. They are 

considered as the third generation feedstock’s. Interest has arisen in the use of microalgae as 

biodiesel feedstock’s due to a number of advantages that these microorganisms present over 

first and second generation biodiesel feedstock’s. Microalgae have higher biomass 

productivities than land plants, higher lipid accumulating capabilities (up to 20 -50% w/wdw), 

their cultivation does not require arable land or fresh water resources and the resultant biomass 

after oil extraction can be used to produce other high value products such as bioethanol and 

pharmaceuticals (Mata et al., 2010).  

 

The production of biodiesel using microalgae as feedstock consists of 5 steps, namely strain 

selection, cultivation, harvesting, oil extraction and biodiesel production as seen in figure 2.  
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Figure 5: Biodiesel production process from microalgae 

 

Fig. 2 shows a schematic of the production of biodiesel from microalgae. The selection of an 

appropriate species with a high lipid content and lipid quality suitable for transesterification to 

biodiesel was the first step. The cultivation conditions such as growth medium composition, 

cultivation temperature, pH, CO2 and nutrient concentration have an impact on biomass and 

lipid productivity of microalgae. Following the cultivation step was harvesting. 

 

Downstream operations focus on the separation of the biomass from the spent media. 

Commonly used methods are sedimentation, microscreens, centrifugation, flocculation or 

membrane filtration (Ahmad, 2011). The harvested biomass was then dried to release water 

and pulverized prior to oil extraction. Oil expeller/press, solvent extraction and supercritical 

fluid extraction are the most common methods used for oil extraction (Dermibas, 2009). The 

final stage was the transesterification process where oils are converted into biodiesel. 

 

Strain selection  Cultivation Harvesting Oil extraction 
Biodiesel 

production  

Growth medium  

Light 

Temperature 
pH 

Air (CO2)  

Nutrient 
concentration  

Drying  

Grinding  
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Screening of microalgae species for high oil producing species was a crucial step in the 

biodiesel production process. Selection of an appropriate species can result in a cell that was 

capable of producing up to 50% oil by weight (Ahmad et al., 2011). Nannochloropsis sp.  and 

Chlorella sp. have been reported to produce high lipid content (Widjaja et al., 2009; Travieso 

et al., 2006, Scragg et al., 2003).   

 

The cultivation conditions have an impact on biomass and lipid productivities. Converti et al. 

(2009) reported that nitrogen concentration and temperature influence the lipid content of 

Chlorella vulgaris and Nannochloropsis oculata. Yeesang and Cheirsilp (2010) increased lipid 

content of Botryococcus spp. by nitrogen deficiency, high light intensity (82.5 µE m-2 s-1) and 

high iron levels (0.74mM). Another aspect of cultivation conditions affecting biomass and lipid 

productivities was cultivation reactors. These can be categorized into open ponds or closed 

photobioreactors. Open ponds have been the most commonly used large scale vessels since the 

1950s. These can be described as shallow ponds with a paddle wheel to provide circulation of 

medium and nutrients. Open ponds are inexpensive to build and operate but present challenges 

in the form of contamination, poor mixing, dark zones and inefficient use of CO2 (Chisti, 2007; 

Mata et al., 2010). Tubular photobioreactors are currently the only types of closed 

photobioreactor systems used at large scale (Chisti, 2007). Such reactors allow for improved 

pH and temperature control, complete protection against contamination, improved mixing, less 

evaporative losses and higher cell densities (Mata et al., 2010). Microalgal cultivation systems 

can have an impact on the biological characteristics of the microalgal cell therefore, ultimately 

affecting cell growth and product formation.  

 

Separation of microalgae from growth medium (harvesting) remains a major hurdle at 

industrial scale due to small algal cell size (3-30µm) and the dilute nature of algal cultures 

(Grima et al., 2003; Uduman et al., 2010). Most microalgae processing industrial scale plants 

achieve harvesting by the use of chemical coagulation, followed by sedimentation or dissolved 

air flotation (Friedman et al., 1977). This form of harvesting creates resultant chemical waste 

sludge which requires treatment before disposal, thereby increasing production costs 

(Hoffman, 1998). Centrifugation was a rapid and reliable method for harvesting microalgae 

but remains the most expensive method to carry out at large scale due to high energy 

requirements (Christenson and Sims, 2011). Lowering the costs of harvesting microalgae was 

a significant challenge hindering the commercialisation of biodiesel production from 

microalgae.  
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Microalgal feedstock cultivation was a multi-step process requiring the in-depth development 

and maximisation of each individual step to create a highly efficient and cost effective 

bioprocess. Bioprocess development was the sequential design of a process initiated at a 

laboratory scale and progressively scaled up to larger volumes, ultimately reaching 

production scale level (Clarke., 2013). Figure 3 shows the bioprocess development steps 

starting from shaken microtiter plates, successively increasing the scale until production scale 

bioreactor was reached. 

 

Figure 6. Schematic diagram of biopocess development (adapted from Betts and 

Baganz, 2006)  

 

Parameters such as oxygen transfer, mixing and shear stress differ with changing scales, 

resulting in an alteration of microbial metabolism and ultimately compromising kinetic 

parameters such as yields and productivities (Clarke, 2013). It was essential that bioprocess 

development reactors used during scale up procedures allow for the optimum physiological 

parameters to be kept the same. Geometric similarity between small and large scales has been 

explored as a method to ensure symmetric scale up. Keeping important criteria constant 

between scales results in accurate and optimum bioprocess development (Betts and Baganz, 

2006). Criteria such as oxygen mass transfer, mixing, shear stress and calculated power input 

are the most commonly kept constant between scales (Vallejos et al., 2006, Clarke, 2013).  

 

1.4 Bioprocess modelling and optimization 

 

Optimisation of biomass and lipid productivity of microalgae has been achieved using 

modelling tools such as Response Surface Methodology (RSM) and Artificial Neural 

Network (ANN) (Wang and Lan, 2011; Mohamed et al., 2013; Singh et al., 2015). RSM was 
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a modelling tool that evaluates factors and their interactive effects on process yields as well 

as select optimum conditions for a desirable response (Rorke and Kana, 2016; Haland, 1989). 

ANNs can be described as a mathematical understanding of the neurological functioning of 

the human brain (Sewsynker-Sukair et al., 2016) and they detect patterns and relationships 

within data (Agatonovic-Kustrin and Beresford, 2000).  Mathematical modelling allows for 

the generation of quantitative knowledge that can be used to describe and predict the 

behaviour of bioprocesses under the influence of control variables (Omar et al., 2006). 

Kinetic modelling allows for increased product yield, reduced by-product formation and high 

product quality (Almquist et al., 2014). Monod models describe biomass growth in terms of 

the limiting substrate and modified Gompertz models describes  production lag times, 

maximum product concentration and maximum production rate on a given substrate 

(Imamoglu and Sukan, 2013; Dodic et al., 2012; Putra et al., 2015). Bioprocess modelling 

allows for virtual experimentation as well as increasing the efficiency and success of process 

design, control and optimisation, thereby reducing scale up challenges (Linville et al., 2013).  

 

1.5 Problem statement and justification of study  

 

The diminishing fossil fuels reserves and their negative environmental impacts make this 

energy source unsustainable for long term energy supply (Shafiee and Topal, 2009).  

Microalgal biodiesel was being explored as an alternative due to its sustainable nature, 

biodegradability, minimal toxicity, closed carbon cycle, low emission profile, ability to be 

used in diesel engines with minimal or no modification, and economic potential (Ahmad et 

al., 2011).  

However, the biodiesel production process was subject to a few challenges such as a low 

biomass and lipid productivities, inaccurate scale up methods and high harvesting costs. These 

combined challenges hinder the feasibility of microalgal biodiesel as a commercial fuel.  

 

Challenges associated with microalgae process development could be addressed through 

efficient process modelling and optimization. Optimisation of biomass and lipid productivities 

can be carried out through the determination of optimal physico-chemical cultivation 

parameters. The Response Surface Methodology has been employed as a modelling tool to 

effectively optimise biomass and lipid productivities. Similarly, challenges associated with 

microalgae harvesting could be optimized using Response Surface Methodology. Kinetic 
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models such as the logistic model could provide insights into microalgae growth and lipids 

accumulation.   

 

Previous optimisation studies on microalgae cultivation are based  the flask culture  data. These 

laboratory reactors lack the geometry configuration of raceway ponds system which are 

traditionally used for large scale microalgae cultivation. Therefore, the use of miniature 

reactors that are geometrically similar to large scale production systems could enhance large 

scale process yields and subsequently have an impact on biodiesel economics. Such findings 

therefore contribute to the implementation of microalgal biodiesel production at a large and 

commercial scale.  

 

1.6 Aims and objectives  

 

The aim of this study was to model and optimize the upstream and downstream stages of 

microalgae bioprocess development for biodiesel production using Chlorella sp. in a 

miniature parallel raceway pond photobioreactor.  

 

To achieve the aim above, the following specific objectives were undertaken:  

 

i. Modelling and optimisation of biomass and lipid productivity of Chlorella sp. for 

biodiesel production using miniature parallel raceway pond photobioreactor 

ii. Kinetic studies of Chlorella sp. growth and lipid accumulation.  

iii. Modelling and optimisation of microalgae biomass harvesting using various MION 

and the development of ANN based soft sensor for prediction of recovery efficiency 

of said MION. 

 

1.7 Outline of dissertation/thesis  

 

This thesis contains six chapters presented in research paper format as outlined in the 

dissertation/thesis template by the College of Agriculture, Engineering and Science (AES) of 

the University of KwaZulu-Natal. Each chapter contains a literature review, materials and 

methods, results, discussion and conclusion. The use of microalgae as a feedstock for the 

production of biodiesel was central to all chapters.  
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Chapter 2 was a literature review that describes the use of microalgae as a feedstock for 

biodiesel production. The challenges associated with biodiesel production, modelling and 

optimisation of biodiesel production as well as miniature microalgae cultivation systems  

 

Chapter 3 investigates the modelling and optimisation of biomass and lipid productivity in 

Chlorella sp on input parameters of nitrogen, iron and phosphorus using BG11 medium. 

Kinetic studies of Chlorella sp. growth and lipid accumulation are presented.  

 

In Chapter 4, microalgae biomass recovery was modelled and optimized on three type of 

magnetic iron oxide nanoparticles (MION).  The process parameters of pH, algae-

nanoparticles exposure time and magnet exposure time were considered. Additionally, three 

Artificial Neural Network models were developed for prediction of recovery efficiencies and 

knowledge extraction was implemented to reveal functional relationships between inputs and 

recovery efficiency.  

 

Chapter 6 integrates the work, states major conclusions obtained from the study and provides 

recommendations for future research.  
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Chapter 2: Process development for microalgal biofuel production: A mini 

review  

* This mini review forms part of a book chapter titled:  

Biologically Renewable Resources of Energy: Potentials, Progress and Barriers. 

In Microbial Fuel Cell Technology for Bioelectricity (pp. 1-22). Springer, Cham. 

(Chapter 2)  

 

2.1 Abstract  

 

This review discussed the effects of various culture conditions on biomass and lipid 

productivity, the kinetics of microalgal growth and potential harvesting efficiency of magnetic 

iron oxide nanoparticles. Various cultivation methods were discussed as well as optimisation 

methods and the economic feasibility of the process. Rapid fossil fuel depletion and the 

negative impact on the environment has necessitated the need for a sustainable, renewable, and 

environmentally friendly energy resource. Biodiesel was a potential energy source which has 

received a great amount of interest in the research sphere. Biodiesel was traditionally produced 

from crop plants albeit with a large amount of disadvantages.  Microalgae offer a more feasible 

alternative to crop plants due to their higher growth rates and their minimal impact on food 

security; arable land and freshwater resources. Microalgae offer a range of commercially 

important products such as astaxanthin, poly unsaturated fatty acids such as omega-3, pigments 

used in the food and cosmetic industry, animal/aquaculture feed and biodiesel. The commercial 

production of biodiesel has yet to be commercialized due to challenges such as slow culture 

process and high production costs in comparison to conventional diesel. Separation of 

microalgal biomass from culture medium; harvesting, was a critical step in the production of 

algal biofuels. Centrifugation, flocculation, and filtration are currently being employed but are 

either energy intensive, costly, time consuming or generate large amounts of chemical waste. 

Magnetic iron oxide nanoparticles are a potential solution to this harvesting bottleneck by 

reducing the energy intensiveness of the process and costs. Bioprocess development and 

optimisation are necessary for the determination of large scale microalgal product production 

feasibility. Design of experiment (DoE) methods such as Response Surface Methodology are 

commonly used in the optimisation of bioprocesses as they could evaluate more than one factor 
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at a time and identify patterns often missed by the human eye. Artificial Neural Networks are 

less commonly used but offer the ability to model non-linear bioprocesses with greater 

accuracy. The study of the kinetics of microalgal growth and lipid production was also a useful 

tool in the commercialization of biodiesel production, once models are developed they allow 

for the understanding, design, and control of fermentation processes. Differences in reactors 

used at experimental scale and large scale reduce the accuracy of quantitative scale up after 

optimisation studies. Miniature parallel raceway reactors are a popular tool for process 

development as they allow for parallelization, thereby reducing labour and allowing for 

accurate quantitative scale up.  

 

Keywords: Microalgae, Magnetic iron oxides, Process development, Miniature parallel 

raceway reactors, Biodiesel   

2.2 Introduction 

 

The rise in world-wide populations has resulted in increased energy demand as could be seen 

by the trend shown in Fig. 1 (Global energy statistical yearbook; 2019). Currently, conventional 

energies such as petroleum, coal and natural gas are being used to meet the world’s energy 

demands with crude oil being the most utilized resource worldwide (Fig 2). Unfortunately, 

these conventional fossil fuels have limited reserves, impact the environment negatively as well 

as contribute to the global warming crisis (Abou-Shanab et al., 2011). According to BP's 2019 

World Energy Review, South Africa used 533 thousand barrels of fossil fuels per day (BP 

Statistical Review of World Energy 68th Ed, 2019), highlighting the country's dependency on 

such fuels. Due to the disadvantages associated with fossil fuel usage, an alternative energy 

source that was sustainable, renewable, and environmental friendly was required. 

 

Biodiesel was a biofuel commonly produced from plant oils such as soybean oil, rapeseed oil, 

palm oil, corn oil, animal fat and waste cooking oil and was defined as fatty methyl esters 

derived from the transesterification of the oils mentioned above using an alcohol or acid as a 

catalyst (Satyanarayana et al., 2011; Abomohra et al., 2014). Feasibility of a biodiesel 

feedstock was dependent on many factors such as its impact on net energy supply, greenhouse 

gas (GHG) emissions, water and air quality and global food impact (Ahmad et al., 2011). The 

use of plant oils, animal fat and waste cooking oils as feedstock’s for the worldwide production 
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of biodiesel was therefore unsustainable as these feedstock’s do not meet the criteria stated 

above, due to the fact that these feedstock’s require large amounts of arable land, freshwater 

resources and would therefore have a severe negative impact on global food security (Liu et 

al., 2007).  

 

Figure 1. Total global energy consumption in 2018 (Global Energy Statistical Yearbook, 

2019)  

 

 

Figure 2. Breakdown of the types and amounts of energy consumed globally in 2018 

(Global Energy Statistical yearbook, 2019)  
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Microalgae are a large group of unicellular, autotrophic, photosynthetic microorganisms. These 

microorganisms convert solar energy into chemical energy with a productivity of 10 – 20 times 

more than any other biofuel crop (Harun et al., 2010; Mata et al., 2010). This group of 

microorganisms have received a lot of attention as a promising biodiesel feedstock as they have 

a widespread availability, rapid growth rates in comparison to terrestrial food crops, higher oil 

yields, do not require arable land or freshwater resources used for food crops thereby 

minimising damage to food chain systems and food security (Chisti, 2007).  

 

Microalgal biomass was a rich source of an immense variety of chemical products with 

applications in many different sectors such as food and feed (biomass), cosmetics (chlorophyll, 

𝛽- carotene), pharmaceuticals (antioxidants, antibiotics, toxins and vitamins) and fuel 

industries (Olaizola, 2003; Borowitzkwa, 2013).  

 

Key steps in microalgal biodiesel production process are; cultivation, biomass harvesting, and 

downstream processing of dry biomass (lipid extraction and transesterefication) (Wang et al., 

2015). As previously stated, microalgae are photosynthetic organisms therefore 

photoautotrophic cultivation was the most commonly used culture method where microalgae 

utilize carbon dioxide (CO2) and sunlight as carbon and energy source , respectively (Zhu et 

al., 2017). A large amount of algal species have been reported in studies employing the 

photoautotrophic cultivation method, including Botyrococcus, Chlorella, Chlamydomonas, 

Desmodesmus, Dunaliella,Monallanthus and Neochloris (Kiran et al., 2014; Nascimento et al., 

2013; Leesing et al., 2013). Heterotrophic cultivation differs from photoautotrophic cultivation 

in that microalgae utilize organic carbon materials as a carbon and energy source instead of 

CO2 and sunlight for biomass accumulation. This method results in a decrease in formation of 

light induced products such as chlorophyll and carotenoids (Zhu et al., 2017). Mixotrophic 

cultivation was a combination of both photoautrophic and heterotrophic cultivation method.  

 

A variety of cultivation vessels could also be used for microalgal bioprocessing, including open 

ponds, photobioreactors (PBRs) and fermenters (Zhu et al., 2017). Open raceway ponds are 

advantageous in terms of cost as they are cheaper to install and operate as compared to 

photobioreactors but present a disadvantage in their susceptibility to contamination (Chisti, 

2007). Photobioreactors have a much higher initial cost and must be built specifically to the 

physiology of the cultivated strain but offer advantages in that they are less susceptible to 
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contaminants and allow control over nutrients and cultivation parameters required for growth 

such as temperature, dissolved carbon dioxide and pH (Harun et al., 2010). 

 

Harvesting was aimed at achieving a highly concentrated biomass slurry (Sustainable Energy 

Ireland Report; 2009). This step was considered to be the main bottleneck in microalgal 

bioprocessing as it was costly and energy intensive. This stage was reported  to contribute to 

20 -30% of the total production costs (Xu et al., 2010; Sostanc et al., 2012; Kim et al., 2013). 

Traditional harvesting methods include centrifugation, sedimentation, flocculation, filtration, 

flotation and combined flocculation-filtration (Chen et al., 2011; Rawat et al., 2013; Zhou et 

al., 2014, Bharathraja et al., 2015). Such methods are disadvantageous due to high cost, high 

energy requirements, time-consuming nature and accumulation of chemical waste (Uduman et 

al., 2010; Chen et al., 2011).  Low cost harvesting methods are a significant factor in microalgal 

bioprocess development, recently magnophoretic harvesting using naked or functionalized 

magnetite particles has been reported to be energy efficient and time saving (Prochazkova et 

al., 2013).  

 

Downstream processing of microalgal biomass includes biomass drying, extraction of lipids 

and transesterification of extracted lipids. Solvent extraction was the most widely reported 

method for extraction of lipids, it involves the use of polar organic solvents to disrupt the 

hydrogen bonds between polar lipids and non-polar organic solvents to disrupt hydrophobic 

interactions between non-polar/neutral lipids (Pragya et al., 2013). Transesterification was the 

chemical process responsible for converting algal lipids into fatty acid methyl esters. It involves 

the reaction of alcohols such as ethanol, methanol. butanol, propanol and amyl alcohol with 

lipids (triglycerides) to produce glycerol and fatty acid methyl esters (Zhu et al., 2017). The 

process requires a alkaline, acid or enzyme catalyst. Commonly reported alkaline catalysts are 

potassium hydroxide, sodium methoxide and sodium hydroxide (Aliya et al., 2012). Reported 

acid catalyst examples include hydrochloric acid, sulfonic acid, phosphoric acid and sulfuric 

acid (Viegas et al., 2015) and enzymatic catalysts include calcium oxide, magnesium oxide 

and lipases (Bharathiraja et al., 2016). 

 

 

 

The production of good quality bioproducts depends on the interactions of the culture medium 

components. Therefore, it was important to investigate and fully understand the effect of 
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various cultural conditions on the productivity of these microorganisms (Sforoza et al., 2012; 

Garcia-camacho et al., 2011). Optimisation of bioprocesses was necessary for the enhancement 

of the commercial feasibility of microalgae biotechnology (Ho et al., 2015). Statistical methods 

such as Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) are 

commonly used for these purposes. Response Surface Methodology describes the interactive 

effects of process variables and develops a quadratic model illustrating these interactive effects, 

which was then used to optimise the desired process (Bezera et al., 2008; Wang and Wan, 

2009a). Artificial Neural Networks mimic the neurological functions of the brain by 

deciphering the patterns and relationships found in data and transforming this information into 

mathematical models (Vani et al., 2015; Wang and Wan, 2009a). The use of such modelling 

tools allows for bioprocess development and reduction of production costs. Microalgae are not 

an extensively well-studied group in terms of an industrial biotechnological approach. Due to 

this, these microorganisms present an opportunity for discovery of a large range of highly 

valuable metabolites (Olaizola, 2003).  

 

This review describes the importance of growth conditions on microalgal biomass and lipid 

productivities and how these factors could be manipulated to increase or decrease such outputs. 

The importance of mathematical and kinetics modelling was also discussed, focusing on how 

it could be used to gain relevant information on microalgal bioprocessing. The benefits of 

novel, modern microalgal harvesting techniques over conventional methods was explained. 

Large scale production of microalgae was  focuses on optimizing culture conditions affecting 

the productivity of microalgal biomass and lipids, mathematical kinetic modelling for 

bioprocess development, novel biomass harvesting methods, the benefits of using miniature 

raceway pond photobioreactors for bioprocess development and the economic feasibility of a 

microalgal biorefinery at large commercial scale. 

 

2.2 Microalgae cultivation methods 

 

Microalgal cultivation requires light, carbon dioxide, water and inorganic salts and was 

commonly carried out in raceway ponds or photobioreactors (Chisti, 2007). Microalgae may 

assume three types of metabolism\ based on nutrients provided; autotrophic (light as sole 

energy source), heterotrophic (organic compounds as carbon and energy source) and 
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mixotrophic (light as sole energy source for photosynthetic activities but organic compounds 

or CO2 play an essential role). Microalgae could shift from one type of metabolism\ to another 

based on changes in environmental conditions (Mata et al., 2010) 

 

2.2.1. Raceway ponds  

 

Raceway ponds are open circular ponds in the form of natural waters such as lakes and lagoons 

or artificial ponds and containers. As seen in Figure 3, the configuration of raceway ponds was 

a closed loop oval recirculation channel typically 0.2-0.5m deep, depth was limited due to the 

penetration limit of light as an increase in depth would result in a decrease in the efficiency 

light penetration (Brennan and Owende, 2010). A paddlewheel provides mixing and circulation 

in the pond, evaporation achieves temperature regulation therefore temperatures in ponds 

fluctuate seasonally (Chisti, 2007). As the atmosphere only contains 0,03 – 0,06% of CO2, most 

raceway pond structures sparge CO2 in at the bottom of the bond to avoid mass transfer 

limitation (Mata et al., 2010). Raceway ponds have a lower capital costs but present limitations 

in the form of maintaining monoculture conditions, poor mixing and media loss due to 

evaporation (Chisti, 2007). Monoculture conditions can be maintained by adopting high 

salinity, high nutrition or high alkalinity environments but this limits microalgal strains that 

could be cultivated in raceway ponds to strains such as Dunaliella sp., Spirulina sp. and 

Chlorella sp. are most commonly used (Lee, 2001). Raceway ponds are currently used in 

research and in industry in the form of shallow big ponds, circular pond tanks and closed ponds, 

which are usually operated in continuous mode to prevent sedimentation (Harun et al., 2010). 

The algal culture is introduced into the pond directly after the position of the paddlewheels, the 

flow of the culture follows the shape of the pond and mechanical aeration is provide by CO2 

spargers. Culture is harvested before the paddlewheel point.  
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Figure 3. Schematic drawing of an open raceway pond (Molina-Grima, 1999)  

 

 

2.2.2. Photobioreactors 

 

Photobioreactors can come in several configurations such as airlift, tubular, flat plate, and 

vertical column photobioreactors. Photobioreactors are advantageous in that they show higher 

productivities than open ponds, have a greater ability to capture light energy, and efficient 

mixing and gas/liquid mass transfer (Jorquera et al., 2010). Sunlight or artificial light was 

captured in an array of transparent tubes that are made of plastic or glass, less than 0.1m in 

diameter (Chisti, 2007) These tubular arrays  can be aligned horizontally, vertically, inclined 

or as a helix (Brennan and Owende., 2010). The tubing configurations can have effect on a 

number of parameters in energy usage, horizontal tubing was more scaleable but requires large 

areas of land (Halim et al., 2010). A degassing column functions in circulating the culture 

medium to the tubes and back (Chisti, 2007). Zhu et al., 2013 cultivated Chlorella zofingiensis 

on piggery wastewater in tubular bubble column photobioreactor resulting in a net biomass 

productivity of 1.314 g l-1 day-1. Scenedesmus actus was cultivated in a tubular photobioreactor 

with six vertical cylinders housed in a greenhouse illuminated by solar light, a biomass of 

113.7g dry weight was obtained from 123.1l of wastewater (de Alva et al., 2013). Feng et al., 

2011 used a 4 2.2L column aeration photobioreactors for the cultivation of Chlorella vulgaris 

in artificial wastewater, resulting in a cell concentration of 0.28g/l. Figures 4a and 4b showed 

schematic drawings of horizontal tubular and flat-plate photobioreactors, respectively. 
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Figure 4. Schematic drawings of (a) horizontal tubular solar array (Chisti, 2007) and (b) 

flat-plate photobioreactors (Cheng-Wu et al., 2001, Tredici and Rodolfi., 2004 and Sierra 

et al., 2008) 

 

2.3 Effect of nutrient concentration on biomass and lipid productivity in microalgae  

Lipid productivity was dependent on both lipid content and biomass productivity in microalgal 

species. Therefore a suitable medium was paramount in achieving optimal lipid production in 

a microalgal species. The concentration of macro and micronutrients in a growth medium 

ultimately have impacts on the profile of the cellular macromolecular composition (Richardson 

et al., 1969; Hu et al., 2008; Khozin-Goldberg and Cohen, 2006; Li et al., 2010), appropriate 

knowledge on the effects and interactions of each nutrient in a growth medium on product 

formation could therefore allow for increased bioprocess efficiency. Studies have shown that 

nutrient stress increases lipid production and this stress was most commonly exerted by 

nitrogen starvation (Singh et al., 2015; Lv et al., 2010; Fu et al., 2017; Chu et al., 2013).  

 

Nitrogen was required for protein synthesis which was essential to the cell division and growth 

of microalgae. In conditions where nitrogen was at a sufficient concentration, a metabolic 

balance between carbon fixation rate and nitrogen assimilation rate could be observed, which 

is necessary for the cellular metabolism (Adams et al., 2013). Nitrogen limitation has a negative 

effect on protein synthesis and reduces the photosynthetic rate of the cell, resulting in a 

metabolic flux towards lipid biosynthesis (Chu et al., 2014; Ho et al., 2014). Nitrogen 

limitation was the most efficient method of increasing the content of neutral lipids in 



37 

 

microalgae, but results in decreased biomass productivity. An increase in lipid accumulation 

due to nitrogen limitation has been reported in Chlorella vulgaris, Chlorella zofingiensis, 

Neochloris oleoabundans, Scenedesmus obliquus, Ankistrodesmus falcatus KJ671624 and 

Scenedesmus dimorphus KMITL(Breuer et al., 2012, Singh et al., 2015; Ruangsomboon et al., 

2012). A drawback to nitrogen limitation was the decrease in biomass productivity of the 

microalgal species which ultimately translates to a low lipid productivity.  

 

Phosphorus was an essential nutrient to microalgal growth which plays an essential role in 

cellular metabolic processes related to energy transfer, signal transduction, photosynthesis, and 

respiration (Chu et al., 2011; Sharma et al., 2012; Xin et al., 2010). Similar to nitrogen, 

phosphorus limitation has been shown to increase the lipid content in Chlorella sp, 

Phaeodactylum trocornutum, Chaetoceros sp, Isochrysis galbana and Pavlova lutheri (Liang 

et al., 2012; Sharma et al., 2012) In a study done by Goldberg and Cohen, under phosphorus 

limited conditions, the triacylglycerol content of the starved cells increased from 6.5% to 

39.3% (Goldberg & Cohen, 2006).  

 

Iron, a trace metal component in most microalgal growth mediums, was involved in the 

photosynthetic enzymatic reactions occurring in photosystem I (PSI) and photosystem II (PSII) 

which are linked to biomass accumulation (Cao et al., 2014). Studies by Liu et al. concluded 

that a high iron concentration in combination with low nitrogen concentration results in an 

increase in lipid accumulation in Chlorella vulgaris (Liu et al., 2008).  Singh et al achieved the 

highest lipid content and lipid productivity of 59.6% and 74.07mg L-1 d-1, respectively under 

high iron supplementation of 9 mg L-1 d-1 (Singh et al., 2015). A combination of stresses and 

gains aids in relating the lipid productivity yields to biomass productivity yields and was 

required in order to achieve productivities that will ensure the feasibility of a commercial 

bioprocess. Other strategies used to enhance biomass or lipid productivities include CO2, 

temperature influence, salinity stress, metal influence and oxidative stress. By altering these 

medium or environmental components a relative increase or decrease in biomass or lipid 

productivity can be observed (Sibi et al., 2016).  
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2.4 Valuable products obtained from microalgae 

2.4.1 Lipids 

 

Microalgae are capable of accumulating a higher percentage of lipids than their terrestrial plant 

counterparts. Most oleaginous microalgal strains accumulate between 20-50% of lipids based 

on culture conditions and on the microalgal species making these organisms an attractive 

biodiesel feedstock (Chew et al., 2017). Nitrogen starvation, high temperature, pH shift and 

high salt concentrations are all stress conditions that have been used to manipulate lipid 

accumulation in microalgae and enhance lipid productivity (Kwak et al., 2016). The main lipid 

fraction of microalgae consists of fatty acids (FA), waxes, sterols, hydrocarbons, pigments and 

ketones (Halim et al., 2011). Lipids are produced intra-cellularly and therefore need to be 

extracted during downstream processing. The following extraction methods have been used in 

various scientific literature; solvent extraction, ultrasonic extraction, microwave assisted 

extraction and electroporation (Biller et al., 2013; Hernández et al., 2014). Such methods are 

energy intensive, operate at high temperatures and generate organic solvent wastes, therefore 

hindering the commercial success of microalgal lipid production. Other than neutral lipids, 

microalgae produce poly unsaturated fatty acids (PUFAs) which are significant to human 

health and nutrition (Wang et al., 2015b). Marine microalgal species are the most commonly 

used and the PUFAs are extracted using a variety of methods such as Bligh and Dyer extraction, 

solvent extraction and sonication, direct saponification and supercritical fluid extraction (SFE) 

(Li et al., 2014) 

 

2.4.2 Biodiesel  

 

Fatty acid methyl esters originating from vegetable and animal fats are known as biodiesel 

(Widjaja et al., 2009). The neutral lipid portion in microalgae can be converted into biodiesel 

by transesterification. The process of transesterification replaces the glycerol molecule with 

methanol to form fatty acid methyl esters (FAME) which are otherwise known as biodiesel. 

Neutral microalgal lipids with a low degree of saturation are suitable for conversion to biodiesel 

(Harun et al., 2010). The conversion of triglycerides to fatty acid methyl esters was catalysed 

by an acid or base, using a homogenous or heterogenous catalytic process (Suganya et al., 
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2016). Methanol and ethanol are most commonly utilized alcohols in literature, methanol was 

preferable due to its cost-effectiveness and physical and chemical advantages. Figure 5 

illustrates the overall biodiesel production reaction where an alcohol was used to react with a 

triglyceride to produce glycerol and a fatty acid methyl ester using a catalyst to drive the 

reaction forward (van Gerpen, 2005; Zhu et al., 2017). In-situ or direct transesterification was 

a single step method where lipid extraction and transesterification occur in one reactor 

(Maceiras et al., 2011). It has emerged as a technique with the potential to reduce the fuel 

conversion process units therefore production costs (Zhu et al., 2017). Research has shown that 

in-situ transesterification has the potential to produce more biodiesel than the conventional 

two-step method (Pragya et al., 2013). Haas and Wagner (2011) obtained a biodiesel yield of 

83% from microalgal biomass using the in-situ transesterification method. In-situ 

transesterification can also be applied to wet algal biomass as illustrated by Lopez et al., (2016) 

where a 99.5% biodiesel conversion was achieved.  

 

Figure 5: Transesterification mechanism (adapted from van Gerpen, 2005) 

 

2.4.3 Pigments 

 

There are three important classes of pigments found in microalgae; chlorophylls, carotenoids 

and phycobiliproteins (Chew et al., 2017). These pigments play a role in the photosynthetic 

and pigmentation metabolism of microalgae but have been found to possess various beneficial 

biological activities such as being antioxidant, anti-carcinogenic, anti-inflammatory, anti-

obesity and neuroprotective (Guedes et al., 2011; Pangestuti and Kim, 2011). Chlorophyll was 

a greenwash, lipid soluble pigment with a porphyrin ring in its structure (Cuellar-Bermudez et 
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al., 2015). Under optimal conditions, most microalgal species can produce up to 4% dry weight 

of chlorophyll (Harun et al., 2010). In general, cyanobacteria contain chlorophyll a and green 

algae contain chlorophyll b (Deng et al., 2008; Dring, 2001). The chelating agents in 

chlorophyll allow for its addition into ointments, treatments for pharmaceutical benefits such 

as in liver recovery, ulcer treatment and its use as cosmetic and in food pigments due to 

increasing consumer demands for natural cosmetic and food additives (Puotinen, 1999). 

Carotenoids are fat-soluble pigments that are responsible for giving colour to certain parts of 

plants and are considered as “accessory pigments” (Chen et al., 2016).  Phycobiliproteins can 

be considered to be the major accessory pigment in microalgae (Chew et al., 2017). 

Applications of these pigment classes include vitamin precursors in food and animal feed, 

additives, colourants, pharmaceuticals and biomaterials (Krupa et al., 2010; Nobre et al., 2013; 

Tamiaki et al., 2014; Zhou et al., 2015). Extraction of these pigments include organic solvent 

extraction and  super critical CO2 extraction, however the extraction pigments was tedious, time 

consuming and produces low yields (Chew et al., 2017).  

 

2.4.4 Microalgal biomass 

 

Residual (spent) biomass refers to biomass left over after the extraction of lipids for biofuel 

production, consisting mainly of carbohydrates and proteins (Rizwan et al., 2015). The 

application of residual (spent) algal biomass can have two objectives; the use of the residual 

biomass as a substrate for energy production (bioethanol, biomethane) or for the extraction of 

valuable metabolites for nutritional and economic value (Ansari et al., 2015). Algal proteins 

contribute to 50-70% of the cells composition (Chew et al., 2017). Proteins have become an 

important microalgal biorefinery product due to their nutritional value and amino acid profile 

and can be used for human and animal nutrition (Becker, 2007). Proteins can be extracted by 

solvent extraction and extraction was affected by pH, ionic strength and salt type (Vanthoor-

Koopmans et al., 2013). Microalgal carbohydrates are a favourable source of biologically 

active molecules due to the high carbohydrate content (<50% dcw) of microalgal cells. Algal 

carbohydrates consist of glucose, starch, cellulose and various kinds of polysaccharides (Chew 

et al., 2017). Glucose or starch was commonly used for bioethanol or biohydrogen production 

(Fu et al., 2010; Sun and Cheng, 2002) and polysaccharides are used as pharmaceutical agents, 

cosmetic additives and food ingredients due to their ability to regulate the immune system and 

inflammatory reactions (Aikwa et al., 2012; John et al., 2011).  
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2.5 Microalgal lipid profiles and fatty acid quality for biodiesel 

2.5.1 Lipid profiles 

 

There are many different classes of lipids produced in microalgal cells, their characterization 

was based on chemical structure and polarity and are divided into polar and neutral lipids. Polar 

lipids consist of phospholipids and glycolipids, and function as membrane structure 

components, neutral lipids consist of tri-di- and mono-acylglycerols, waxes and isoprenoid-

type lipids e.g. carotenoids (Gong and Jiang et al., 2011; Cuellar-Bermudez et al., 2015 ). 

Triacylglycerols (TAGs) contain fatty acid esters that have been bonded onto a glycerol 

backbone and according to the number of fatty acid chains could be classified as 

triacylglycerols, diacylglycerols or monoacylglycerols (Halim et al., 2011). Microalgal lipid 

accumulation, lipid content, lipid class and fatty acid composition is species dependant and can 

also be affected by certain changes in culture conditions such as light intensity periods, nitrogen 

depletion, salinity stress, temperature change and pH (Richmond, 2004; Guschina & Harwood, 

2006). A study by Breur et al. (2012) reported an increase in the accumulation of 

triacylglycerols in Chlorella vulgaris, Chlorella zofingiensis, Neochloris oleoabundans and 

Scenedesmus obliquus under nitrogen stress conditions. Depending on strain or strains, 

microalgae produced fatty acids with chain lengths varying from C10 to C28 (Hu et al., 2008). 

The filamentous cyanobacterium Trichodesmium erythraeum synthesizes C10 fatty acids 

(Parker et al., 1967); Crypthecodinium cohnii produces docosahexaenoic acid (De Swaaf et al., 

1999). Table 1 showed lipid content and lipid productivities of various microalgal strains that 

have been reported in literature as suitable strains for commercial biodiesel production due to 

their high lipid contents and lipid productivities.  
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Table 1. Various microalgal species lipid content and productivities (Gouveia et al., 2009; 

Li et al., 2007; Mata et al., 2010)  

 

Microalgal species  Lipid content (% w/w) Lipid productivity (mg L-1 d-1)  

Chlorella protothecoides 15-58 1214 

Chlorococcum sp.  19 54 

Chlorella sorokiniana  19-22 45 

Dunaniella salina  6-25 116 

Ellipsoidion sp.  27 47 

Nannochlropsis sp.  21-36 38-61 

Nannochloropsis oculata  22-30 84-142 

Neochloris oleoabundans 29-65 90-134 

Pavlova salina  31 49 

Pavlova lutheri  36 50 

Phaeodactylum 

tricornutum 

18-57 45 

Scenedesmus sp 20-21 41-54 

 

  

2.5.2 Fatty acid quality and biodiesel standards  

 

Microalgae fatty acids are carboxylic acids with hydrocarbon chains between 4 and 36 carbons 

(DÁlessandro and Filho, 2016). These fatty acids are divided into 3 groups; monosaturated 

fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids (DÁlessandro and 

Filho, 2016). Commonly, microalgae fatty acids range from butanoic (C4:0) to octanoic (c28:0) 

with palmitic (c16:0) being the most commonly reported fatty acid (DÁlessandro and Filho, 

2016). Polyunsaturated fatty acids (PUFA’s) with 4 or more double bonds such as 

eicosapentaenoic acid containing 5 double bonds and docosahexaenoic acid with 6 double 

bonds are also very common in microalgae. Unfortunately, biodiesel produced from such fatty 

acids was extremely susceptible to oxidation during storage which reduces its acceptability as 

a fuel replacement (Chisti, 2007). Triglycerides are made up of 3 chains of fatty acids joined 

to a glycerol backbone (Halim et al., 2011). The process of transesterification replaces the 

glycerol molecule with methanol to form fatty acid methyl esters (FAMEs) (Harun et al., 2010). 
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Fatty acid profiles in microalgae are influenced by factors such as microalgal strain as well as 

growth conditions (nutrient levels, temperature, light intensities); this makes it difficult to 

determine a single compositional profile for all algal biodiesel (Hu et al., 2008, Hoekman et 

al., 2012). Ashokkumar et al., (2014) showed that the major fatty acids found in Botyrococcus 

braunii were methyl palmitate and methyl oleate, biodiesel produced from these fatty acids 

yielded an acid number of 0.49 mg KOH/g and a cetane number of 55.4, which were both 

within the ASTM standards. Whereas, a study done by De Alva et al., (2013) using 

Scenedesmus actus showed that the biodiesel produced from this microalgal species did not 

meet ASTM standards. In addition, the dominant fatty acids found; palmitic acid, 

hexadecadienoic acid and linoleic acid over the ASTM limit, and a 1.08 mg KOH/g acid value 

which does not comply with both ASTM D6751 and EN14214 standards. This highlights the 

difference in compositions based on microalgal strains and culture conditions. These 

differences can be manipulated in order to ensure fatty acid quality of a high standard when 

producing biodiesel at a commercial scale. The American Society for Testing and Materials 

(ASTM) definition of biodiesel was a fuel comprised of mono alkyl esters of long chain fatty 

acids derived from vegetable oils and animal fats (Hoekman et al., 2012). It has the ability to 

serve as alternative to diesel fuel that could be used in diesel engines, only if its physical and 

chemical properties conform to the international standard specification. The relevant standard 

in the USA was the ASTM Biodiesel Standard D 6571 (Knothe, 2006). The European union 

uses separate standards for biodiesel used in vehicles (standard EN 14214) and biodiesel used 

as heating oil (standard EN 14213) (Knothe, 2006). South Africa’s relevant standard was the 

SANS 342:2016 

2.6 Modelling and optimisation of culture conditions for enhanced biomass and lipid 

productivities. 

2.6.1. Response Surface Methodology 

 

Response surface methodology (RSM) was a statistical tool that allows for the optimisation of 

multiple variables simultaneously at a reduced number of experimental runs (Singh et al., 

2015). RSM effectively depicts the synergistic interactions between various inputs, shows 

which inputs are most important and generates a polynomial equation which was used to 

determine the optimum process parameter set points (Mohamed et al., 2013, Mandenuis and 

Brundin, 2008). RSM has been reported in the modelling and optimisation of microalgal 
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biomass and lipid productivity (Kirrolia et al., 2014, Yang et al., 2014, Binnal and Babu, 2017, 

Karpagam et al., 2015).  

 

2.6.2. Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are data-driven modelling tools capable of computing 

relationships between process parameters and process responses in order to describe the 

behaviour of the system (Sewsynker et al., 2015). ANNs are extremely effective at modelling 

highly non-linear bioprocesses (Himmelblau et al., 2008) such as most biological processes. 

Feed forward back propagation networks are most commonly used in bioprocess modelling 

due to their ability to effectively model these non-linear processes, having been applied in the 

modelling of microalgal growth in natural habitats, treatment of wastewaters with algal-

bacterial mixed cultures in photobioreactors, bioremediation and in controlled photobioreactors 

(Garcia-Camacho et al., 2016; Hu et al., 2008; Das & Kundu, 2011). Models based on artificial 

neural networks do not require any in-depth understanding of the microalgal cell metabolism\ 

(Garcia-Camacho et al., 2016) and thus can be easily applied to commercial scenarios where 

costs and labour play a huge factor. The downside of ANN was the requirement for a large set 

of data to train the network with a view to achieve accurate pattern recognition (Mohamed et 

al., 2013).  

 

2.6.3. Mathematical models  

 

The use of mathematical models to understand, predict and optimise the behaviour of 

microorganisms in fermentation processes has increased significantly (Almquist et al., 2014). 

Mathematical models can increase product yields and productivity of bioprocesses while 

minimising formation of unwanted by-products (Almquist et al., 2014). Commonly used 

models are the Monod kinetic models and the modified Gompertz models. Monod kinetic 

models describe the formation of biomass with respect to limiting substrate (Imamglu and 

Sukan, 2013) and the modified Gompertz model determines lag time, maximum production 

rate and maximum product concentration for a given substrate (Dodić et al., 2012, Putra et al., 

2015).  Understanding the kinetics of microalgal biomass and lipid production will provide 

important insights into the development, scale up and commercialization of this bioprocess.  

 

2.7 Mismatch between laboratory and industrial scale production reactor properties 
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A major problem with the industrial production of microalgal metabolites was presented in 

scale-up. Photobioreactors are the main cultivation method used in the photoautotrophic 

production of high value microalgal metabolites but the scale-up of research PBRs to 

commercial PBRs was a major obstacle as research scale reactors are unable to effectively 

mimic large commercial scale reactors. The process of scaling up needs to take into 

consideration the control of illumination source, gas transfer and temperature (Olaizola, 2003). 

Valid scale imitation can be achieved by maintaining geometric similarities which allows 

certain assumptions to remain valid (Betts and Baganz, 2006), if such similarities are 

maintained mechanisms such as oxygen mass transfer, mixing and power input can be based 

on the same principles as those at large scale (Vallejos et al., 2006).  

 

2.8:   Downstream procedures in Microalgae cultivation 

 

The separation of growth medium from microalgal cells was a critical step that accounts for 20 

– 30% of total production costs due to its energy intensive nature (Gudin & Therpenier, 1986, 

Uduman et al., 2010). Harvesting was dependent on the properties of the microalgal species; 

its size and density. Most commonly used harvesting methods include centrifugation, 

sedimentation, filtration, flocculation, flotation or a combination of these methods, with 

centrifugaion being the most popular (Milledge et al., 2013). Centrifugation was a more 

reliable harvesting method but at a commercial scale, it is quite expensive and energy intensive 

(Olaizola, 2003).  Magnetic separation was a separation technique that has been used in a 

variety of industries (Yavuz et al., 2009). Iron oxide nanoparticless have been successfully 

used in the sepration of Botryococcus braunii, Chlorella ellipsoidea and Nannochloropsis 

maritima from growth medium (Hu et al., 2013; Xu et al., 2013). Iron oxide nanoparticles are 

beneficial in that they are low cost, biocompatible, strong paramagnetic behaviour, low toxicity 

and ease of synthesis (Kumar-Reddy and Lee, 2013). 

The economic feasibility of biodiesel production at a commercial scale was highly dependent 

on high biomass productivity, high lipid yields and low production costs (Liu et al., 2007). A 

microalgal species with a high biomass productivity will result in higher lipid yields which was 

essential to ensure the economic feasibility of commercial biodiesel production.  
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Abstract 

The economic viability of microalgal biodiesel production was dependent on high biomass and 

lipid productivities in microalgal species. This study investigated the effect of iron, nitrogen 

and phosphorus concentration on biomass and lipid productivity in a local microalgal isolate 

Chlorella sp. The isolate was cultivated in fifteen miniature parallel raceway pond reactors 

under varying concentrations of nitrogen, iron and phosphorus between the ranges of 0.5 – 2.0 

g L-1; 3.0 – 9.0mg L-1 and 0.0 – 40.0mg L-1 , respectively for a period of 20 days, after which 

biomass and lipids were extracted from the cultivated algae. The obtained experimental data 

on biomass and lipid accumulation was used to develop two response surface models with high 

coefficients of determination (R2<0.80). Process optimisation yielded significant quantities of 

Chlorella sp. biomass and lipids (114.5 and 38.23mg L-1 d-1), respectively.  Kinetic studies 

using the Logistic model showed a maximum biomass concentration and specific growth rate 

of 1.78g L-1and 0.01 g L-1 h-1, respectively with a coefficient of determination (R2) of 0.98. 

Biomass and lipid productivity were successfully optimized demonstrating the commercial 

potential of Chlorella sp. as a biodiesel feedstock. 

Keywords: Response surface methodology, logistic model, miniature reactors, microalgae, 

process development 
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3.1. Introduction  

 

Alleviating climate change issues and meeting the worlds’ increasing energy demands have 

resulted in significant focus on sustainable, renewable and alternative fuels driving intense 

research and development efforts into biofuels (Hallenbeck et al., 2015). Biofuels produced 

from microalgae have the unique ability of producing a variety of replacement fuels; such as 

biodiesel, biomethane and bioethanol while addressing sustainability issues faced by large 

scale fuel production from first and second generation feedstock’s (Hu et al., 2008; Abdelaziz 

et al., 2013).   

 

Microalgae are prokaryotic or eukaryotic photosynthetic microorganisms with the rapid growth 

and survival capabilities due to their simple and unique unicellular or multicellular structures 

(Mata et al., 2010). Microalgae, as a third generation feedstock, have been widely reported to 

be advantageous over first and second generation feedstock’s when considering biofuel 

production and this was due to reasons such as ease of cultivation; being able to grow with 

little or no attention, using water unsuitable for plant or human consumption and not requiring 

any arable land (Mata et al., 2010).  

 

Despite these advantages, high production costs are still a major bottleneck in the successful 

large scale commercialization of microalgal biofuels. Large amounts of microalgal lipids are 

required to fulfil the worlds’ biodiesel demands. Most strains can accumulate 20 – 50% lipids 

based on their dry cell weight (Amaro et al., 2011). The exploitation of microalgae species 

with high biomass and lipid productivities was essential for biodiesel production capable of 

meeting high world demands (Singh et al., 2015).  

 

Factors such as nutrients stress directly influence biomass and lipid productivities in 

microalgae (Chu et al., 2014; Hao et al., 2013; Converti et al., 2009). Nitrogen deficiency 

affects protein synthesis and photosynthetic rates, resulting in a metabolic shift towards lipid 

synthesis as opposed to biomass accumulation (Chu et al., 2014; Ho et al., 2014). Phosphorus 

deprived conditions increase lipid contents in a variety of microalgal strains including 

Chlorella sp. (Liang et al., 2012). Iron was an essential trace metal involved in the reactions of 

photosystem I and photosystem II which are directly linked to biomass accumulation (Cao et 

al., 2014). It has been reported that increasing iron concentrations in growth media (1.2x10-5 

mol L-1) resulted in an increase in both biomass and lipid content of Chlorella vulgaris (Liu et 
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al., 2008). A study by Niagam et al. (2011), showed that biomass concentration in Chlorella 

pyrenoidosa increased as the concentration of nitrogen source, KNO3 increased from 0 – 0.4g 

L-1 over a period of 24 days whereas the opposite was observed for lipid content. Liang et al. 

(2012) investigated the effect of phosphorus on lipid accumulation in Chlorella sp. and 

observed and increase in lipid accumulation when phosphorus concentration was decreased 

from 240 to 32 µM. Biomass accumulation increased with phosphorus concentration increase 

from 16 to 80 µM but above 80µM, biomass concentration was negatively affected.  

 

Understanding the synergistic effects of environmental growth parameters on cell growth and 

product formation provides knowledge for process design and enhances yields. It was therefore 

essential that the interactive effects of key parameters affecting microalgae biomass and lipid 

accumulation be investigated and optimized. 

 

Bioprocess optimisation is a complex and necessary stage that results in the improvement of 

product yields and allows for consistency during scale-up (Cheng et al., 2017). Response 

surface methodology (RSM) has been used to identify the individual and interactive effects of 

process variables and determine optimum operational conditions for investigated processes. 

Fermentation process development was an integral part into achieving commercialization of 

bioproducts formed from bioprocesses.  

 

Currently, microalgal bioprocess operations are carried out in illuminated shake flask systems 

as pilot and lab-scale photobioreactors tend to limit the number of experimental variables 

examinable in parallel (Ojo et al., 2015). The shake flask system of experimentation was 

challenged with differences in agitation, mixing efficiency as well as gas-liquid mass transfer 

resulting in a significant impact on reproducibility of cell cultivations in scale up bioreactors.  

Commercial scale raceway systems have reported performances that are considerably less than 

the theoretical values as productivities at large scale do not mimic results obtained at lab scale 

(Posten, 2009).  

 

The use of miniature bioreactors has become increasingly necessary due to their ability to 

simulate the mechanisms of large scale processes. Their size allows for parallelization, thereby 

reducing the labour involved in performing a large number of cell cultivations necessary for 

bioprocess development. Miniature reactors are able to minimize differences in agitation 

methods, mixing and gas-liquid mass transfer that significantly challenge the reproducibility 
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of results at large scale (Ojo et al., 2015). Betts and Baganz reported a variety of parallel reactor 

systems such as miniature stirred-tank and miniature bubble column reactor systems for 

microalgal growth (Betts and Baganz, 2006), however there was a dearth of knowledge on the 

potential of miniature raceway pond photobioreactors for laboratory scale bioprocess 

modelling and optimisation of biomass and lipid productivities in microalgae. 

 

Bioprocess kinetic modelling represents the complex biochemistry of microbial cultures and 

can describe microbial growth, substrate utilization and product formation (Ordonez et al., 

2016). Kinetic modelling provide knowledge to improve the design, optimisation and control 

of biological systems (Linville et al., 2013), thus increase product yield and productivity and 

reduces the formation of unwanted by-products (Alquimist et al., 2014). The logistic kinetic 

model has been used to describe biomass growth and the modified Gompertz model describes 

product formation as functions of time (Dodic et al., 2012; Phukoetphim et al., 2017).  

 

In this study, a miniature raceway pond photobioreactor was used to model and optimize the 

growth and lipid formation in Chlorella sp. using miniature raceway ponds. The considered 

response surface model inputs were nitrogen, iron and phosphorus concentrations ranging from 

0.5 – 2.0 g L-1; 3.0 – 9.0mg L-1 and 0.0 – 40.0 mg L-1, respectively. Furthermore, kinetic studies 

of Chlorella sp.  growth were carried out using the Logistic model. 

 

3.2. Materials and methods 

3.2.1. Culture maintenance  

Chlorella sp. was isolated from the Botanical Garden ponds at the University of Kwa-Zulu 

Natal, Pietermaritzburg campus (29 33’ S, 30 19’ E) and maintained on both solid and liquid 

BG11 medium (Allen and Stainer, 1968). Sub-culturing was performed every 4-6 weeks as 

means of culture maintenance (Feng et al., 2011). The BG11 agar plates were para filmed and 

incubated in a MRC Conviron at 25C for 12h:12h light:dark cycle with light intensity of 

30umol m-2 s-1. Liquid cultures were maintained in 50ml of BG11 medium grown in 

Erlenmeyer flasks at ambient temperature agitating at 200rpm on orbital shakers (DragonLab 

SK-O330-Pro-benchtop orbital shakers). A fluorescent lighting system was assembled above 

the orbital shakers set at a light:dark cycle of 16h:8h, light intensity of 100µmol m-2 s-1. 
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3.2.2. Photobioreactor configuration  

A miniaturized parallel raceway photobioreactor was designed with geometric similarities to 

pilot scale raceway ponds as (Figure 1). The transparent reactor components (paddles, central 

baffle and incubator box) were constructed using Perspex due to its favourable mechanical and 

optical properties (>62 MPa tensile strength, >92% light transmittance) (Ojo et al., 2015). The 

reactor consisted of 15 high density polyethylene (HDPE) miniature raceway vessels 

configured at 90mm wide and 285mm long. A 19mm long central baffle was included in each 

miniature raceway vessel. The total surface area accessible for light absorption in each vessel 

was 0.026m2 and a liquid height/light path through the media of maximum 55mm for each 

vessel. The total working volume of the photobioreactor was 15L. Mixing in each vessel was 

achieved by a 30  60mm paddle which was anchored on a stainless steel agitation shafts. The 

15 raceway vessels and mixing system were encased in an 820  970  190 mm transparent 

incubator box. Illumination of the photobioreactor was achieved by four 36W fluorescent 

lamps mounted above the photobioreactor Perspex box using height adjustable clamps. 

Temperature thermocouple (0-150C) and light dependant resistor (0-6000lux) sensors were 

mounted inside the incubator box. Lab Quest 2 light sensor (Vernier Software and Technology, 

Beaverton, USA) were used to calibrate the light dependant resistor. Three stepper motors with 

programmable speed between 40 – 150rpm were used to rotate the agitation shafts. The 

actuators and sensors were interfaced with programmed Arduino microcontroller. 
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Figure 1. Implemented photobioreactor structures: (A) raceway vessel, (B) impeller, (C) 

reactor arrangement, (D) photo-incubator box  

3.2.3. Experimental design 

The selection of process parameter type and ranges was aimed at increasing both biomass and 

lipid productivity in Chlorella sp., and was guided by previous reports (Singh et al., 2015). The 

input parameters consisted of nitrogen concentration (0.5 – 2.0g L-1), iron concentration (3.0-

9.0mg L-1) and phosphorus concentration (0.0 – 40.0mg L-1) with biomass and lipid 

productivity as the response outputs (Table 1). The Box-Behnken design was used generating 

seventeen experiments. Experiments were carried out in duplicate.   

3.2.4. Cultivation process 

Each raceway vessel was filled to 800ml with BG11 medium modified with various parameters 

as specified by the experimental design and inoculated with 10% (v/v) of Chlorella sp. culture 

(OD680nm of 0.1). The runs were carried out for 20 days at 25°C ± 2°C at continuous light of 

4600 lux and an agitation speed of 40rpm. The process was terminated on the 20th day and the 

cultures were analysed for biomass and lipid productivity. A control experiment was also 
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carried out simultaneously under BG11 medium conditions (1.5g L-1 nitrogen concentration, 

6.0mg L-1 iron concentration and 40mg L-1 phosphorus concentration). 

 

Table 1. Experimental design input variables and their corresponding ranges  

Coded factor  Variable  Unit Input range/ coded values 

-1 0 +1 

A Nitrogen 

concentration 

g L-1 0.50 1.25 2.00 

B Iron 

concentration 

mg L-1 
3.00 6.00 9.00 

C Phosphorus 

concentration 

mg L-1 0.00 20.00 40.00 

 

Table 2. Box-Behnken experimental design used for optimisation of biomass and lipid 

production.  

  
Investigated factors Response 1 Response 2  

Std Run A: Nitrogen B: Iron C: Phosphorus 

Biomass 

productivity 

Lipid 

productivity 

 

Lipid Content 

  
g L-1 mg L-1 mg L-1 mg L-1 d-1 mg L-1 d-1 (%) 

15 1 1.25 6 20 65.00 13.32 20.49 

8 2 2 6 40 118.9 28 23.54 
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11 3 1.25 3 40 56.78 18.94 33.36 

10 4 1.25 9 0 46.57 15.65 33.61 

14 5 1.25 6 20 62.50 12.28 19.65 

17 6 1.25 6 20 65.00 13.48 20.74 

3 7 0.5 9 20 57.50 41.4 72.00 

6 8 2 6 0 87.65 26.43 30.15 

9 9 1.25 3 0 38.67 28.55 73.83 

12 10 1.25 9 40 82.5 32.14 38.96 

1 11 0.5 3 20 41.97 29.88 71.20 

16 12 1.25 6 20 67.89 15.67 23.08 

13 13 1.25 6 20 68.00 16.00 23.53 

5 14 0.5 6 0 47.98 34.67 72.26 
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4 15 2 9 20 123.45 39 31.59 

2 16 2 3 20 96.78 21 21.69 

7 17 0.5 6 40 62.5 42.37 67.79 

 

3.2.4. Analytical methods 

3.2.4.1. Biomass quantification  

Biomass concentration (mg/l) was determined by measuring optical density of the algal culture 

at 680nm by spectrophotometer (UV mini-1240 UVVWAS, Shimadzu). Optical density was 

related to biomass concentration (mg/L) using the equation y=0.0679x – 0.0025 (R2=0.9626) 

for Chlorella sp. where y was the biomass concentration and x was the OD680nm. Biomass 

productivity was calculated as per Eq. (2)  (Singh et al., 2015) 

 Biomass productivity (mg L-1 d-1) = Biomass concentration (mg L-1) / days   (2) 

3.2.4.2. Total lipids determination  

Microalgal cells were harvested by centrifugation at 8000rpm for 10 min using a Beckman 

Coulter centrifuge. Microalgal paste was washed twice with distilled water and dried in an oven 

overnight at 60C. A modified method of extraction adapted from Lee et al. (2010) and Blight 

and Dyer. (1959) was used for solvent extraction of lipids. Ultrapure water (0.8ml) was added 

to 10mg of algal biomass, this mixture was homogenized and placed in a microwave (Samsung) 

for 5 minutes at 2450 MHz to achieve cell lysis. Chloroform, Methanol and Ultrapure water 

was added in a 2:2:1 ratio vortexing in between solvent addition. The mixture was filtered using 

Whatman No.1 filter paper to remove residual biomass. Layers were allowed to separate and 
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the solvent layer was evaporated in a fume hood for 24 hours after which lipids were measured 

gravimetrically. Lipid productivity was calculated as per Eq 3 (Singh et al., 2015) 

Lipid productivity (mg L-1 d-1) = Biomass productivity x Lipid content (%) / 100  (3) 

3.2.4.3. Optimisation of biomass and lipid productivities using Response Surface Methodology 

(RSM) 

The experimental biomass and lipid productivity data were used to fit two polynomial 

equations relating the input parameters to the biomass and lipid productivity using Design 

Expert software (Stat-Ease Inc., USA). The general form model equation was shown in Eq. (4) 

where Y represents the process response (biomass or lipid productivity), 𝑎0 was the free term; 

𝑎1, 𝑎2 and 𝑎3are the linear coefficients; 𝑎11  , 𝑎22  and 𝑎33 are the squared term coefficients ; 

 𝑎12 , 𝑎13, and 𝑎23  are the interaction coefficients also X1,  X2,  X3  are the nitrogen, iron and 

phosphorus , respectively. Process optimisation was carried out using the method of Myers and 

Montgomery (Myers and Montgomery, 1995).The optimized process conditions for biomass 

and lipid productivity were validated experimentally in duplicate.   

 𝑌 =  𝑎0  +  𝑎1𝑋1 +  𝑎2𝑋2 +  𝑎3𝑋3  +  𝑎11𝑋1
2  + 𝑎22𝑋2

2  +  𝑎33𝑋3
2  + 𝑎12𝑋1𝑋2  +

 𝑎13𝑋1𝑋3  +  𝑎23𝑋2𝑋3       (4) 

3.2.4.3. Kinetic model and calculation of kinetic parameters  

The logistic model equation in the differential form as seen in Eq. (5) representing the 

exponential and stationery phases of growth, was integrated to give Eq. (6) where biomass (X) 

was related to initial biomass concentration (X0), maximum cell concentration (Xmax) and 

maximum specific growth rate (µmax) at specific times (t) during exponential and stationery 

phases of Chlorella sp. growth. This model does not predict the death phase of microorganisms 

(Zajsek and Gorsek, 2010). Model coefficients were determined using CurveExpert (Hyams 

Development).  

𝑑𝑋

𝑑𝑡
 =  𝜇𝑚𝑎𝑥 (1 −  

𝑋

𝑋𝑚𝑎𝑥
) 𝑋        (5) 
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𝑋 =  
𝑋0𝑒𝑥𝑝(𝜇𝑚𝑎𝑥𝑡)

1 − [(
𝑋0

𝑋𝑚𝑎𝑥
)(1−𝑒𝑥𝑝(𝜇𝑚𝑎𝑥𝑡))]

       (6) 

 

3.3. Results and discussion  

 

3.3.1. Modelling of biomass and lipid productivity  

 

The experimental design generated 17 experimental conditions (Table 2). Process data was 

used to generate polynomial equations (Table 4) relating biomass and lipid productivities to 

the investigated parameters (nitrogen, iron and phosphorus concentration). The statistical 

suitability of the developed models was assessed using Analysis of Variance (ANOVA) (Table 

3). F-values of 63.91 and 31.20 were observed for the biomass and lipid productivity models, 

respectively. In addition, biomass and lipid productivity models both yielded p-values of 

<0.0001. High F-values and low P-values are indicative of the statistical significance by 

relating the response and selected factors at a 95% confidence level (Singh et al., 2015).  

 

The coefficient of determination (R2) value was a measure of variation where values above 

0.70 translate the models ability to accurately predict the bioprocess. R2 values of 0.9880 and 

0.9757 were obtained for biomass and lipid productivity models respectively, highlighting the 

models ability to relate the input parameters to the responses. ANOVA coefficients such as p-

values, indicate statistically the model's ability to fit the data. Model terms with p- value’s less 

than 0.05 are termed to be significant to the corresponding model response (Qing et al., 2016). 

Nitrogen, iron and phosphorus all obtained p-values less than 0.05 illustrating the significance 
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of these factors to biomass productivity whereas significant factors to lipid productivity were 

shown to be iron concentration (Table 3).   

 

This was due to nitrogen being essential to microalgal cell structure as well as functional 

processes of microalgae. It was an integral component of proteins, amino acids, nucleic acids, 

enzymes and photosynthetic pigments (Sajjadi et al., 2018). Iron plays a major role in 

photosynthesis due to its involvement in the enzymatic reactions of photosystem I (PSI) and 

photosystem II (PSII) (Sun et al., 2014). Efficient photosynthetic activity results in efficiency 

and high biomass productivity. Phosphorus was also a significant medium composition to the 

biomass productivity of Chlorella as shown by the p-value obtained in Table 3. Mediums that 

are replete in phosphorus allow for the accumulation of large amounts of Poly-P in microalgal 

cells which cells then use to synthesize ATP which could be used for protein, DNA and RNA 

anabolism during unfavourable growth conditions (Harold., 1966). 

 

A study by Singh et al., 2015 showed that both nitrogen and iron were essential for high 

biomass productivity as depicted by the p-values obtained for both input factors (>0.05). An 

increase in nitrogen, iron and phosphorus levels resulted in an increase in both biomass 

productivity and chlorophyll a concentration as shown in a study by Ruangsomboon et al., 

2013.  

 

Table 3. Analysis of Variance (ANOVA) for response surface quadratic models  

 

Response 1 

Biomass Productivity 

 (mg L-1 d-1) 

Response 2 

Lipid Productivity 

(mg L-1 d-1) 

Source F-value p-value Source F-value p-value 

Model 63.91 <0.0001 Model 31.20 <0.0001 

A 350.67 <0.0001 A 12.74 0.0076 

B 43.03 0.0003 B 25.19 0.0015 

C 75.15 <0.0001 C 0.064 0.7998 

AB 1.86 0.2122 AB 2.61 0.1505 

AC 4.39 0.0782 AC 7.20 0.0314 

BC 4.75 0.0641 BC 46.14 0.0003 

A2 87.59 <0.0001 A2 160.15 <0.0001 

B2 4.86 0.0596 B2 4.70 0.0668 

C2 6.70 0.0363 C2 11.35 0.0119 

Lack of fit 5.98 0.0600 Lack of fit 5.02 0.0765 
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R2: biomass productivity = 0.9880 and lipid productivity = 0.9757 (F value – probability 

distribution; p value – probability)  

 

Table 4. RSM polynomial model equations relating input parameters to the biomass and 

lipid productivities of Chlorella sp.  

 

Model  Equation  Equation 

number 

Biomass 

productivity  

 

+65.68 + 27.06A +9.48B + 12.53C + 2.78AB + 4.28AC + 

4.46BC + 18.64A2 – 4.39B2 – 5.16C2 

 

  7 

 

Lipid 

productivity  

 

+14.15 – 3.48A + 4.72B – 0.2475C +2.14AB – 3.75AC + 

9.03BC + 16.39A2  - 2.81B2 – 4.36C2 

 

  8 

A: nitrogen concentration, B: iron concentration, C: phosphorus concentration  

 

3.3.2. Interactive effects of input process parameters;  

 

The highest biomass productivity was obtained for run 15 (2.0g L-1of nitrogen,  9.0mg L-1 of 

iron and 20.0mg L-1 of phosphorus), resulting in a biomass productivity of 123.45mg L-1 d-1 

and a corresponding lipid productivity of 39mg L-1 d-1 and lipid content of 31.59%. The highest 

lipid productivity of 42.37 mg L-1 d-1 was obtained from experimental run 17 (0.5g L-1 of 

nitrogen, 6.0 mg L-1of iron and 40.0 mg L-1 of phosphorus) with a corresponding biomass 

productivity of 62.5 mg L-1 d-1 and lipid content of 67.79% (Table 2).  

 

When comparing the above results to the control (standard BG11 medium; 1.5g L-1 nitrogen, 

6.0mg L-1 iron and 40.0mg L-1 phosphorus) a biomass productivity, lipid productivity and lipid 

content of 71.43mg L-1 d-1, 18.43mg L-1 d-1  and 67.79% , respectively was obtained. By 

increasing the nitrogen concentration from 1.5 g L-1 to 2.0 g L-1 a 2-fold increase in biomass 

productivity was observed. When comparing the control to the run 17 it could be seen that 

decreasing nitrogen concentration from 1.5 g L-1 to 0.5 g L-1 resulted in a 2-fold increase in 

lipid productivity and a 3-fold increase in lipid content. Singh et al. (2015) reported a 2.55 fold 

increase in lipid content when nitrogen concentration was reduced to 750 mg L-1. Ben-Atmoz 
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et al. (1985) reported an improvement in the lipid content of Ankistrodesmus sp. of up to 45% 

under nitrogen deficient conditions.  

 

Nitrogen deficient medium shifts metabolic flux from protein synthesis, photosynthetic 

efficiency and growth to lipid or carbohydrate storage (Jiang et al., 2012). This explains the 

high lipid productivity achieved under nitrogen deficient conditions. Nitrogen deficient 

conditions have been reported to be effective in increasing lipid productivities in Chlorella sp 

in various studies; Lv et al. (2010); Li et al. (2014); Fu et al. (2017) and Arora et al. (2016) 

used a nitrogen deficiency strategy to increase lipid productivity and lipid content in various 

strains of Chlorella sp.  

 

A significant drawback in using nitrogen limited medium to increase lipid productivity was the 

slow growing nature of the culture due to the shift in metabolic flux.  This decrease in cell 

growth rate and biomass generation ultimately affects the rate at which lipids are being 

produced (Tan and Lee, 2016). In order to overcome this phenomenon and achieve conditions 

suitable to increasing both biomass and lipid productivities, a nutrient stresses and gains 

combination medium must be used (Singh et al., 2015). As illustrated in Table 2; runs 7, 14 

and 17, the combination of a low nitrogen concentration (0.5g L-1) with a high iron 

concentration (6 - 9 mg L-1) and high phosphorus concentration (20 mg L-1  - 40 mg L-1) can be 

seen to supplement the growth of Chlorella sp.  
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Previous research by Li et al. (2014) showed a high lipid productivity (224.14 mg L-1 d-1) was 

obtained in Chlorella sp using a nitrogen deficient medium supplemented with phosphorus. Li 

et al. (2015) achieved a lipid productivity of 820.17 mg L-1 d-1 in Chlorella protothecoides 

when using a heterotrophic iron induction strategy. Another study by Fu et al. (2017) used a 

nitrogen limited medium combined with surplus phosphorus to obtain a lipid productivity of 

310 mg L-1 d-1 in Chlorella regularis .Chu et al, (2013) reported a 58.39 mg L-1 d-1 lipid 

productivity in Chlorella vulgaris when using a nitrogen deficient phosphorus sufficient 

medium. Lv et al. (2010) obtained a lipid productivity of 40mg L-1 d-1 when using nitrogen 

deficient medium supplemented with phosphorus in Chlorella vulgaris. A study by Arora et 

al. (2016) achieved similar results in which supplementing nitrogen deficient mediums with 

phosphorus yielded lipid productivities of 49.1 mg L-1 d-1 in Chlorella minutissima whereas 

using a medium deficient in nitrogen and phosphorus yielded low lipid productivities of 1mg 

L-1 d-1. The data shown in table 5 successfully demonstrates the importance of supplementing 

nitrogen deficient mediums for high biomass and lipid productivities.  

 

Table 5. Biomass and lipid productivities obtained from various Chlorella species under 

different nutrient stress conditions  

 

Strain BP  

mgL-1d-1 

LP  

mgL-1 d-1  

Medium  Temp 

(°C) 

Nutrient 

status  

Reference  

Chlorella sp.  57.50 41.40 BG11 25 N-Fe+P+ Present 

study  

C.protothecoides - 224.14 Basal 

medium 

28 N-P+ Li et al., 

2014 

C.protothecoides - 820.17 Modified 

Basal 

medium 

28 Heterotrophic 

iron 

induction 

Li et al., 

2015 

C.minutissima  119±0.3 49.1±0.4

1 

BBM 25 N+P+ (BP) 

N-P-(LP) 

Arora et 

al., 2016 

C.vulgaris  - 40 - - N-P+ Lv et al., 

2010 

C.regularis  720 310 BG11 25 NlimP++ Fu et al., 

2017 

C.vulgaris  100.4 58.39 BG11 25 N-Psufficient Chu et al., 

2013 
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The response surface graphs in Fig 2(A-F) showed the interactive effects of the process input 

parameters on biomass and lipid productivities. In Figure 2A it can be seen that a combination 

of high iron concentration (9mg/l) and 1.5g/l nitrogen resulted in high levels of biomass 

productivities (±118mg/l). This was in alignment with a study done by Singh et al. (2015) 

where 750mg/l nitrogen concentration combined with 9mg/l iron resulted in a biomass 

productivity of 124.6 mg/l/d in Ankistrodesmus falcatus KJ671624. Increasing phosphorus 

concentration from 35 to 40mg/l and nitrogen from 1.5 to 2g/l resulted in an increase in biomass 

productivity from 60mg/l/d to ±135mg/l/d. Studies reported by Chu et al. (2013) and 

Ruangsomboon et al. (2013) suggested that a combination of high concentrations of nitrogen, 

iron and phosphorus result in increased biomass productivities due to the importance of these 

components to the growth of all microalgal species. As shown in  Fig 2D,  ±1.7g/l of nitrogen 

combined with 8.5mg/l iron resulted in high lipid productivities of 40mg/l/d. Fig 2E combines 

35mg/l of phosphorus and 1.5g/l nitrogen to give a lipid productivity of 35mg/l/d. A 

combination of lower level nitrogen concentrations with excess iron or phosphorus was known 

to enhance lipid productivity. Phosphorus limited media result in a large number of Poly-P 

accumulated in microalgal cells. This poly-p are  utilized  by microalgae to synthesize ATP 

which was used  in the carbon concentration mechanism (CCM) pathways responsible for 

capturing CO2 and converting the captured CO2 into lipid and/or carbohydrate (Young and 

Beardall., 2005). Iron was an essential trace element for microalgal growth as it plays a role as 

a precursor for many enzymatic and photochemical reactions (Terauchi et al., 2010).  
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Figure 2. Response surface plots showing interactive effects of: (A) nitrogen and iron 

concentration on biomass productivity, (B) nitrogen and phosphorus on biomass 

productivity, (C) phosphorus and iron on biomass productivity, (D) nitrogen and iron on 

lipid productivity, (E) nitrogen and phosphorus on lipid productivity, (F) phosphorus and 

iron on lipid productivity.   

A 
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E 
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The predicted optimal conditions for biomass productivity, lipid were validated in duplicate 

(Table 6). Validated experimental condition 1 demonstrated the importance of the 

micronutrients; iron and phosphorus for biomass accumulation. High concentrations of these 

micronutrients (7 mg L-1 and 40mg L-1) in combination with a high nitrogen concentration 

(2.00g L-1) resulted in an observed biomass productivity of 114.5mg L-1 d-1. Validated 

experimental condition 2 shows a high lipid productivity (38.23mg L-1 d-1) can be obtained 

with a combination of low nitrogen concentration and high iron concentration (0.5g L-1 

nitrogen, 8mg L-1 iron). This was due to the presence of iron which supplements the growth of 

Chlorella sp. to ultimately yield a high lipid productivity in deficient nutrient conditions as 

described in section 3.3.2.  

 

Table 6. Validation of the optimized conditions for biomass and lipid productivity  

 

Run Nitrogen 

(g/L) 

Iron 

(mg/L) 

Phosphorus  

(mg/L) 

Biomass productivity 

(mg/L/d) 

Lipid productivity 

(mg/L/d) 

 Predicted Observed Predicted  Observed  

1 

 

 

2.00 

 

 

7 

 

40 

 

125.6 

 

 

114.5 

 

 

- 

 

 

- 

 

2  

0.5 

 

8 

 

0 

 

- 

 

- 

 

42.56 

 

38.23 
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3.3.3. Kinetics of Chlorella sp. growth  

 

The microbial biomass grown in BG11 medium was shown in figure 3. An exponential phase 

of 288 hours was observed and the stationery phase began at 384 hours. The experimental data 

for biomass concentration over time were used to fit the logistic model and a high coefficient 

of determination (R2) of 0.98 was obtained showing the models ability in predicting the growth 

of Chlorella sp. Kinetic coefficients showed a maximum specific growth rate (µmax) of 0.01 g 

L-1, an initial cell concentration (X0) of 0.03g/l and a maximum cell concentration (Xmax) of 

1.78g/l (table 7). These were similar to the experimental values of X0= 0.01g/L and Xmax = 

1.5g/L. The results obtained in this study agree satisfactorily with other similar studies. The 

µmax of Chlorella vulgaris has been reported in literature as 0.01h-1, 0.0125h-1 and 0,0309h-1 

which was in line with the µmax obtained in this study (Morais and Costa, 2007; Chiu et al., 

2008 and Mansouri, 2017). Chiu et al., 2008 reported a maximum cell concentration (Xmax) of 

1.4g/l for Chlorella vulgaris which was comparable to the Xmax of 1.78g/l obtained in this 

study.  

 

 

Figure 3. Chlorella sp. cell growth and lipid production in BG11 medium over a 20 day 

period  
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Table 7. Logistic model kinetic coefficients for cell biomass growth  

 

Kinetic parameter Biomass kinetic process  

µmax (h-1)  

0.01 

X0 (g/L)  

0.03 

Xmax (g/L)  

1.78 

 

3.4. Conclusions 

 

In this study, optimisation of process conditions for biomass and lipid accumulation in 

Chlorella sp as well as the employment of the logistic model to model and predict the growth 

kinetics of Chlorella when grown in BG11 media was investigated. The highest biomass 

productivity of 123.45 mg L-1 d-1 was obtained under high nitrogen (2.0g/l), high iron (9mg/l) 

and moderate phosphorus (20.0mg/l) growth conditions. The process model revealed that  

biomass accumulation is highly dependent on all three input parameters; nitrogen, iron and 

phosphorus. The highest lipid productivity of 42.37mg L-1 d-1 was obtained under low nitrogen 

(0.5g/l), moderate iron (6mg/l) and high phosphorus (40mg/l). Decreasing the nitrogen 

concentration resulted in a 2 fold increase in lipid productivity in comparison with BG11 

media. The  RSM models gave  R2 values of >0.80, highlighting the models significance. 

Experimental validation gave biomass productivities of  114.50mg L-1 d-1 under conditions of 

high nitrogen (2.0g L-1), high iron (7mg L-1) and high phosphorus (40mg L-1) . Lipid 

productivity of 38.23mg L-1 d-1 , respectively was obtained under conditions of low nitrogen 

(0.5g L-1), average iron (3mg L-1) and no phosphorus (0mg L-1), highlighting the importance 

of micronutrients such as iron and phosphorus in growth medium as the  presence of such 

nutrients supplements Chlorella sp. growth, thereby improving both biomass and lipid 

productivities. Kinetic modelling of microalgal growth using the Logistic model gave 

important insights into Chlorella sp growth characteristics. A maximum specific growth rate 

(µmax) value of 0.01h-1 ,  an initial (X0) and maximum (Xmax) biomass concentrations of 0.03 

g/L and 1.73g/L  , respectively  were obtained which strongly correlated to the experimental 

data. The miniature parallel raceway pond reactors used in this study  mimicked  the geometry 

configuration  of large scale raceway ponds , unlike laboratory flask experiments thus 
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providing accurate  data for process development. The findings demonstrate the importance of 

understanding interactions between nutrients in growth medium and how this affects the 

growth kinetics and product formation. The potential of replacing laboratory flasks with 

miniature parallel reactors was also demonstrated. Chlorella sp. was therefore a viable 

feedstock for biodiesel production.  
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Abstract  

This study described the modelling, optimisation and prediction of microalgae recovery using 

magnetic iron oxide nanoparticles (MION). The input parameters consisted of nanoparticles to 

algae exposure time, magnet retention time, pH and nanoparticles concentration for three 

MION types; crude, tri-sodium citrate and chitosan. Using three response surface models, 

recovery efficiencies of 85%, 95% and 87% were obtained for crude, tri-sodium citrate and 

chitosan MIONs, respectively. Three multilayer Artificial Neural Network models were 

developed to predict microalgae removal efficiencies under novel process conditions. R2 values 

up to 0.82 were obtained for the three MION types. Knowledge discovery on ANN models 

revealed that the impact of MION operational inputs on microalgae recovery efficiency could 

be illustrated with sigmoidal and dose response type relationships.  The prediction of 

microalgae removal efficiency under varied MION conditions provides a virtual analytical tool 

highly suitable for downstream process design in microalgae production and impact the 

technoeconomic output.  

Keywords: Microalgae, Magnetic Iron Oxide Nanoparticles, Harvesting, Artificial 

Neural Networks      
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4.1. Introduction  

Currently, 80% of the world’s energy was obtained from fossil fuels (Brennan and Owende., 

2010). Due to their unsustainable nature and negative impacts on the environment, the search 

for new fuels that are sustainable and eco-friendly has been on the rise worldwide (Wu et al., 

2012). Amongst such sustainable and eco-friendly biofuels, biodiesel has received great 

interest. Traditionally used plantation crops such as soybean and rapeseed will not be able to 

meet the worldwide biofuel demand because their sustainable production and availability  

require large amounts of arable land and freshwater (Clarens et al., 2010; Feng et al., 2011).  

This has brought much attention to microalgae as a biodiesel feedstock. Microalgae offer 

several advantages over plant based feedstock’s in that their cultivation does not require arable 

land, microalgae have higher lipid productivities than plants and their cultivation could be 

coupled to wastewater treatment which reduces the need for fertilizers and fresh water during 

cultivation, microalgae have the ability to bio-mitigate carbon dioxide from the atmosphere 

and flue gases (Lam & Lee, 2014).  

In addition to biodiesel, microalgae also produce a variety of products such as poly unsaturated 

fatty acids, chlorophyll, antioxidants and pharmaceuticals (Wang et al., 2015). Microalgae 

have also been reported in the treatment of industrial wastewaters such as those contaminated 

with heavy metals, organic chemical toxins, hydrocarbons etc. (de-Bashan and Bashan, 2010) 

and domestic wastewaters (Abdel-Raouf et al., 2012). Unfortunately, the commercialization of 

microalgal based products especially biodiesel was quite limited due to economic and 

technological challenges such as the dilute nature of microalgal cultures and high harvesting 

costs (Xu et al., 2009, Stephens et al., 2010, Liu et al., 2012). To improve the technoeconomic 

output of microalgal production, process modelling and optimisation are required at both 

upstream and downstream stages.  

Microalgal cells typically fall into a size range of 5 – 50 µm with algal cells having a negative 

surface charge therefore forming stable suspensions with growth media (Wu et al., 2012). The 

separation of these cells from the growth medium was a critical step that couldaccount for 20 

to 30% of the total production costs due to its energy intensiveness, thereby emphasizing the 

need for an efficient, cost effective harvesting technique (Gudin & Therpenier, 1986; Uduman 

et al., 2010).  

Various harvesting methods have been assessed in the separation of microalgal cells from 

growth medium such as centrifugation, sedimentation, filtration, flocculation, flotation or a 
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combination of such methods. Unfortunately none of these strategies was superior over the 

other, or was best suited for a particular algal species and are all disadvantageous in that they 

are either too energy intensive, have a high cost or are time consuming (Uduman et al., 2010, 

Milledge et al., 2013). A cost-effective and efficient harvesting method was required for the 

commercialisation of microalgal based products.  

Magnetic separation was a simple, easy, low energy consuming and low cost separation process 

that has been employed in a variety of industries (Yavuz et al., 2009).  This separation was 

based on the movement of the magnetically tagged particles in response to a magnetic field 

(Yavuz et al., 2009, Borlido et al., 2013). Naked magnetites are a useful tool in the separation 

of microalgae from growth medium. Fe3O4 particles have been successful in the separation of 

Botryococcus braunii, Chlorella ellipsoidea, Nannochloropsis maritima (Hu et al., 2013; Xu 

et al., 2013). Iron oxides are preferred due to their biocompatibility, strong paramagnetic 

behaviour, low toxicity and easy synthesis (Kumar-Reddy and Lee, 2013). Viable industrial 

application of flocculation using magnetic iron oxides for microalgal harvesting requires an in-

depth understanding of the interactions between various input parameters. The process of 

magnetic separation was greatly influenced by a variety of factors such as the algal cell type 

and surface charge, the characteristics of the magnetic particles, the pH of the solution and the 

nanoparticles concentration (Wang et al., 2015). To achieve an efficient separation procedure, 

optimisation of significant factors will be required. To the best of our knowledge there was a 

dearth of information in public domain on the modelling, optimisation and sensitivity of 

process inputs on Chlorella sp. harvesting using crude, chitosan and tri-sodium citrate MION. 

Response Surface Methodology (RSM) was a suitable and efficient tool for the optimisation of 

process conditions for the maximisation of the desired output (Yang et al., 2014). RSM works 

by evaluating the interactions of the input variables and the effect that these interactions have 

on the process output (Moodley & Kana, 2015).  This provides knowledge on the process 

dynamics and efficiency which can be used to determine the optimum process operational 

setpoints.     

Artificial Neural Network (ANN) is a data driven modelling technique that mimics the learning 

process of the human brain.  ANN are highly efficient in modelling the non-linear relationship 

patterns between the process inputs and outputs based on experimental data used in training 

(Whiteman & Kana, 2013). ANN has been used to predict the growth dynamics of the 

microalga Karlodinium veneficum in a growth medium based on the concentration of key 
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nutrients (Garcia-Camacho et al., 2016). Nasr et al (2013) used artificial neural network to 

predict the hydrogen production profile over time in batch studies (Nasr et al., 2013).   

This study investigated the interactive effects of process input parameters; nanoparticles 

concentration, pH, algae-nanoparticles exposure time and magnet exposure time, for optimal 

recovery of Chlorella sp. using crude, tri-sodium citrate (TSC) and chitosan nanoparticles. 

Additionally, three Artificial Neural Network models were developed and validated to predict 

the microalgal harvesting efficiency using crude, TSC and chitosan nanoparticles under novel 

operational conditions. Knowledge discovery on ANN models was implemented to reveal 

functional relationships between the various inputs and the recovery efficiency.  

4.2. Methods and Materials  

 

 4.2.1. Culture Conditions  

 A local strain of Chlorella sp. was isolated from the Botanical garden ponds at the University 

of KwaZulu Natal, Pietermaritzburg. Cultivations and maintenance were conducted in a liquid 

BG11 medium comprising of the following constituents: NaNO3 (15g/l), MgSO4.7H2O 

(0.075g/l), CaCl2.H2O (0.036g/l), citric acid (0.006g/l), ammonium ferric citrate green 

(0.006g/l). EDTA (0.04g/l), EDTA.Na2 (0.001g/l), Na2CO3 (0.02g/l), K2HPO4 (0.02g/l) and 

1g/l of a trace metal solution that comprised of H3BO3 (2.86g/l), MnCl2.4H2O (1.81g/l), 

ZnSO4.7H2O (0.22g/l), Na2MoO4.2H2O (0.39g/l), CuSO4.5H2O (0.08g/l) and Co (NO3)2.6H2O 

(0.05g/l). pH was adjusted to 7.1 using 1M NaOH or HCl. Cultures were grown on an orbital 

shaker at 250rpm at a 12h:2h light and dark cycle with a light intensity of 30µmolm-2s-1. 

Biomass concentrations of the cells were determined using a spectrophotometer at 680nm.  

4.2.2 Synthesis of magnetic iron oxide nanoparticles (MION) 

 

4.2.2.1 Crude MION 

The synthesis of the magnetic iron oxide was carried out as described by Zheng et al. (2010). 

A known weight of FeSO4.7H2O (0.556g) was dissolved in 100ml of deionized water in an 

800ml beaker. NaOH was added to the mixture in a dropwise manner under constant stirring, 

until a pH of 11 was obtained. The solution gradually changed from clear to black, indicating 

the formation of Fe(OH)2 nanoparticles. The beaker was heated in a regular microwave for 1 
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minute at 700W for the formation of Fe3O4 nanoparticles created by the oxidation of Fe(OH)2. 

The solution was cooled to ambient temperature and washed several times with deionized water 

and ethanol. The magnetic nanoparticles were then dispersed in deionized water and stored at 

room temperature (~25°).  

4.2.2.2. Tri-sodium citrate (TSC) coated MION 

Crude MION were coated as described by Lakshmanan (2013). The TSC of 0.2g was dissolved 

in 20ml of deionized water to form a TSC solution. The MION was maintained at 90°C and 

continuously stirred for 30min, whilst the TSC solution was added dropwise. Citrate groups 

were charged on the surface of the TSC coated MION.  

 

4.2.2.3. Chitosan coated MION 

Chitosan coated MION were synthesized similar to Lakshman (2013). Chitosan of 1g was 

dissolved in 50ml of deionized water. Subsequently, 50ml of a 2% acetic acid solution (2ml 

water and 98ml acetic acid) was added to the mixture, and continuously stirred for 30 minutes 

to create a 1% chitosan solution. The chitosan solution was then added to the crude MION and 

stored at room temperature, undisturbed for 24 hours. The solution was then washed several 

times with deionized water and ethanol. The chitosan coated nanoparticles were dispersed in 

deionized water and stored at 4°C. Concentrations of crude, TSC and chitosan MION were 

determined gravimetrically. 

4.2.3   Microscopy  

The synthesized MION were observed using transmission electron microscopy and scanning 

electron microscopy 

4.2.3.1. Transmission electron microscopy (TEM) 

A TEM grid was dipped into the crude, chitosan and TSC coated MION which were stored in 

water. Each grid was placed on a filter paper under a light source to dry for 30minutes. Once 

dried, the grids were loaded into the JEOL 1400 TEM and viewed.  

4.2.3.2. Scanning electron microscopy (SEM) 

The MION samples were dried using a rotorvap for 15minutes. Subsequently, the dried 

powdered form of MION was added onto carbon paper attached to the SEM stubs. The SEM 

stubs were then viewed using the Zeiss EVO Ls15 under variable pressure.  
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4.2.4. Experimental design for process modeling and optimisation 

A four factor Box-Behnken experimental design was used to generate 29 experiments with 

varied input conditions of algae-nanoparticles exposure time (sec), magnet retention time 

(min), pH and nanoparticles concentration (g/l). The input ranges and coded values are shown 

in Table 1 and the experimental design was presented in Table 2.   

 

Table 1: Input variables and their corresponding ranges used un the experimental design  

 

Independent 

variable 

Coded Factor  Input range  Coded values 

(-1, 0, +1) 

Algae – 

Nanoparticles 

Exposure time (sec) 

 

A 30 – 90 30, 60, 90 

Algae solution – 

Magnet exposure 

time (min) 

 

B 5 -15 5, 10, 15 

pH 

 

C 6 – 10 6, 8, 10 

Nanoparticles 

concentration (g/l) 

D 0.10 – 1.00 0.10, 0.55, 1.00 
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Table 2: Box-Behnken design for crude, TSC and chitosan coated NPs to determine 

removal efficiency (%) by varying four parameters.  

Run Factor 1 

Microalgae-NP 

exposure time 

(s) 

Factor 2 

Magnet 

exposure time 

(min) 

Factor 3 

pH 

Factor 4 

NP 

concentration 

(g/l) 

1 60.00 10.00 8.00 0.55 

2 90.00 10.00 8.00 0.10 

3 60.00 10.00 8.00 0.55 

4 60.00 15.00 8.00 1.00 

5 60.00 10.00 8.00 0.55 

6 60.00 10.00 8.00 0.55 

7 60.00 5.00 8.00 0.10 

8 60.00 15.00 8.00 0.10 

9 60.00 5.00 8.00 1.00 

10 30.00 5.00 8.00 0.55 

11 60.00 5.00 10.00 0.55 

12 60.00 10.00 10.00 0.10 

13 60.00 15.00 6.00 0.55 

14 90.00 5.00 8.00 0.55 

15 60.00 10.00 6.00 0.10 

16 30.00 10.00 6.00 0.55 
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17 60.00 5.00 6.00 0.55 

18 60.00 10.00 6.00 1.00 

19 90.00 10.00 8.00 1.00 

20 30.00 15.00 8.00 0.55 

21 60.00 10.00 10.00 1.00 

22 30.00 10.00 10.00 0.55 

23 90.00 15.00 8.00 0.55 

24 60.00 10.00 8.00 0.55 

25 60.00 15.00 10.00 0.55 

26 30.00 10.00 8.00 0.10 

27 90.00 10.00 6.00 0.55 

28 90.00 10.00 10.00 0.55 

29 30.00 10.00 8.00 1.00 

 

4.2.5. Microalgal harvesting procedure 

Crude, TSC and chitosan coated nanoparticles were added at varied concentrations according 

to the experimental design to 3 ml of a 5-day old algal culture. The exposure time to 

nanoparticles and magnet was varied as per the design. After harvesting, the optical density of 

the supernatant was measured at 680nm using a UV mini -1240 UV VWAS Spectrophotometer 

(Shimadzu) to determine the removal efficiency percentage as shown in Equation 1.  

   

(1)   
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4.2.6. Magnet Properties 

The magnet used in the harvesting process was a 10mm x 5mm round super strong neodymium 

magnet, grade N50 with a Ni-Cu-Ni plating silver in colour. The magnetized direction was 

towards both North and South pole. 

 

4.2.7 Optimisation of removal efficiency using Response Surface Methodology (RSM) 

The experimental data were used to fit polynomial model equations for each type of 

nanoparticles using Design Expert software (Stat-Ease Inc., USA). The model equations relate 

input parameters to the removal efficiency. Optimum set-point values for removal efficiencies 

were obtained by solving the polynomial equations using the method of Myers and 

Montgomery (1995), followed by an experimental validation in duplicate for each 

nanoparticles type. 

 

4.2.8. Artificial Intelligent Model Development for the prediction of Removal Efficiency (%) 

Three Artificial Neural Network models were used to develop intelligent models for the 

prediction of microalgal removal efficiency under varied conditions. The input vector consisted 

of nanoparticles- algal solution exposure time (s), magnet exposure time (min), pH and 

nanoparticles concentration. The output was the microalgae removal efficiency. The networks 

topology for each model consisted of 1 input layer with 4 neurons, 1 hidden layer consisting of 

3 neurons and 1 output layer of 1 neuron (Figure 1).  

The hidden layer functioned in the simultaneous addition of weighted inputs and linked bias 

and in shifting input data to a non-liner form, as shown in equations 2 and 3. (Desai et al., 

2008) 

(2) 

 

 

where wi (i = 1, n) are the connection weights, θ was the bias and xi was the input variable 
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(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Neural network topology used for the development of three models (crude, TSC 

and chitosan). The network consists of input layer (4 neurons), 1 hidden layer (3 neurons) 

and an output layer (1 neuron).  

 

4.2.9. Artificial Neural Network Training and Validation  

Prior to implementing the models, each experimental dataset was normalized using equation 4.  

                                        Normalized (𝑒𝑖) = 
𝑒𝑖−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
                                            (4) 

where ei was the normalized data and Emin and Emax denote the minimum and maximum values. 

For each model, the normalized experimental data were divided into 75% set used for training 

and 25% set used for validation. 

INPUT 

LAYER 
HIDDEN 

LAYER 
OUTPUT 

LAYER 

Removal 

 

efficiency 

 (%) 

pH 

Algae-NP 

 exposure 

time 

Magnet 

exposure 

 time 

NP   

concentration 
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 The network was trained using a back-propagation algorithm with the aim of achieving a 

minimal net error value on the validation set while preventing an overtraining or memorisation 

of the data. After training, regression analyses were performed with the predicted and observed 

outputs and the coefficients of determination (R2) were obtained. 

 

Figure 2: Back propagation training algorithm for artificial neural network  

 

4.2.10. Sensitivity Analysis and Knowledge Discovery 

In this study, sensitivity analyses were performed to give insight into the rate and direction of 

change in output (microalgae removal efficiency) when each of the inputs were varied within 

its operational range. The rest of the inputs were kept at their median values using the 

developed predictive models. Knowledge extraction was then carried out with the aim of 

discovering the functional relationships between the inputs and outputs. These relationships 

were derived using curve fitting and illustrated with mathematical expressions.   
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4.3. Results and Discussion 

 

4.3.1 Microscopy and composition of crude, TSC and chitosan nanoparticles  

  

The size and characteristics of the crude and coated MION show non-uniformity. The crude 

(Figure 3(a)) consisted of nanoparticles within the size range of 80-90nm, however smaller 

nanoparticles in the range of 55-65nm were also observed. Prochazkova et al. (2013) obtained 

crude nanoparticles within the range 150-200nm. The nanoparticles were either cubic or 

spherical. These structural observations coincide with previous reports, Zheng et al. (2010) 

microwave synthesized MION that were spherically shaped and approximately 80nm in size. 

The chitosan MION (Figure 3(b)) displayed a broad range in size of approximately 50-60nm 

and 100-105nm. Chitosan coated nanoparticles obtained in this study were smaller in size 

compared to those reported by Lakshmanan (2013), which were synthesized using a co-

precipitation technique. The TSC coated NPs (Figure 3(c)) had a broad size range of 20-55nm 

and 80-90nm. MION size correlates to their magnetic properties where MION below 20nm are 

supermagnetic, between 20-100nm are stable and single-domain ferromagnetic and MION 

over 100nm are multi-domain ferromagnetic (Mirabello et al., 2016). The synthesized MION 

in this study were stable and single-domain ferromagnetic. According to Lee et al. (2015), 

separation of smaller MION (>20nm) from microalgae was difficult and costly, therefore larger 

sized MION are preferred. 

 

Figure 3: Crude (A), chitosan coated (B) and TSC coated (C) MION viewed under JEOL 

1400 transmission electron microscope. 

 

4.3.2 Optimisation of removal efficiency using the Response Surface Model   
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The fitness of the polynomial equation models was assessed by performing analysis of variance 

(ANOVA). Coefficients of determination (R2) of 0.75, 0.87 and 0.70 were obtained for the 

crude, chitosan and TSC MION’s , respectively (Table 3). This was a measure of variance that 

falls between a range of 0-1, 1 indicating the model’s ability to accurately predict the bioprocess 

and 0 indicating complete inability (Rorke and Gueguim Kana, 2016). Each of the 3 polynomial 

models accounted for more than 70% of the variation observed in the experimental data. The 

developed polynomial equations 5,6 and 7 for crude, chitosan and TSC MIONs, respectively 

are as presented. 

Crude MION: 

Removal efficiency = 71.65 + 0.73A + 12.28B + 0.50C – 3.59D + 5.65AB – 0.88AC – 8.80AD 

+ 4.86BC + 3.25BD + 2.35CD + 1.04A2 – 6.54B2 + 1.43C2 – 1.68D2        (5)   

                      

Chitosan MION:  

Removal efficiency = 77.47 + 0.20A + 3.46B – 3.79C + 9.06D – 0.20AB + 0.73AC – 4.09AD 

– 3.37BC + 2.04BD – 11.22CD + 1.07A2 – 1.85B2 - 5.54C2 – 14.83D2                (6)  

          

TSC MION:  

Removal efficiency = 65.81 – 2.02A + 16.20B + 2.88C + 3.41D + 8.11AB – 9.68AC + 4.86AD 

–0.95BC + 1.93BD – 2.68CD + 2.71A2 – 2.58B2 + 8.00C2 – 2.24D2               (7)                          

Where A was the microalgae and nanoparticles exposure time, B was microalgae and magnet 

exposure time, C was the pH and D was nanoparticles concentration.  

 

Table 3: Statistical analyses of variance (ANOVA) for removal efficiency using crude, 

chitosan coated and TSC coated MION.  

 

MION 

 

Sum of 

squares 

 

Degrees of 

Freedom 

 

Mean 

Squares 

 

F-Value  

 

P-Value  

 

 

    R2 
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Crude 2930.47 14 209.32 3.04 0.0229 0.75 

Chitosan 3545.83 14 253.27 6.47 0.0060 0.87 

TSC 4849 14 346.40 2.35 0.0606 0.70 

All RSM models were significant with an R2 value above 0,7. 

 

 The predicted optimum setpoints for crude, chitosan and TSC MION are presented in Table 

4. Crude MION gave the highest predicted and observed removal efficiency of 90% with 

optimal setpoints of 81 seconds, 15 minutes, 10 and 0.30g/l for algae-nanoparticles exposure 

time, algae-magnet exposure time, pH and nanoparticles concentration , respectively. For 

chitosan and TSC MION, the observed removal efficiencies were 83 and 75% with prediction 

errors of 6 and 27% , respectively. As seen in Table 4, the optimal pH set point for chitosan 

was 6, which was lower than the optimal pH set point of 10 for both crude and TSC MION.  

Microalgal recovery was dependent on pH as changes in pH affect the electrostatic forces of 

the MION (Xu et al., 2011; Hu et al., 2014). A pH of 6 was optimal for chitosan MION, 

increases in pH decreased the removal efficiency of chitosan MION due to increasing 

competition between algal cells and hydroxyl groups for an adsorption site on the MION (Hu 

et al., 2014). The optimal pH of 10 for crude MION correlates to literature where Cerff et al., 

(2012) and Xu et al., (2011) used pH between 7 and 12 for harvesting of Chlorella sp. using 

naked magnetite. Nanoparticles concentration (0.30-0.38g/l) was favourable for microalgae 

removal when using crude or TSC coated nanoparticles, this correlates with results obtained 

by Xu et al. (2011). A higher nanoparticles concentration of 0.90g/l was suitable for microalgae 

removal when using chitosan MION.  Liu et al. (2016) observed that an increase in graphene 

MION concentration enhanced the removal efficiency of the microalgae. A shorter 

nanoparticles-algae exposure time (30-31 sec) was optimal when using chitosan and TSC 

MION as compared to crude MION (81 sec). 
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Table 4: Optimized conditions obtained using the three RSM polynomial models  

MION  Algae-

Nanoparticles 

Exposure 

Time (sec)  

Algae-

Magnet 

Retention 

Time 

(Min) 

pH Nanoparticles 

Concentration 

(g/l) 

Predicted 

Removal 

Efficiency 

(%) 

Observed 

Removal 

Efficiency 

(%)  

Crude 81 15 10 0.30 90 90 

Chitosan 30 10 6 0.90 88 83 

TSC 31 14 10 0.38 95 75 

 

4.3.3 Prediction of algae removal efficiency using Artificial Neural Network models  

To assess the accuracy of the developed ANN models, regression analyses were performed on 

model predicted and observed removal efficiency values.  The obtained coefficients of 

determination (R2) are shown in Figure 4 with values of 0.80, 0.76 and 0.76 for crude, chitosan 

and TSC MION, respectively. Regression analysis highlights the significant impact of outliers 

on the prediction accuracy of the model (Khamis et al., 2005) and illustrates the predictive 

accuracy of the model (Desai et al., 2008).  All the models could account for more than 75% 

variation in observed data, thus indicating their suitability to predict the removal efficiency 

under novel MION process conditions. A higher R2 value correlates to a higher prediction 

accuracy therefore indicating potential for using the model as a virtual analytical tool. 

 

 

R² = 0,8003

0

20

40

60

80

100

0 50 100

P
re

d
ic

te
d

Observed

Crude

R² = 0,7626

0

50

100

0 50 100

P
re

d
ic

te
d

Observed

Chitosan

R² = 0,7629

0

50

100

0 50 100

P
re

d
ic

te
d

Observed

TSC



94 

 

Figure 4: Regression plots for crude, chitosan and TSC MION showing R2 values ranging 

from 0.76 to 0.8.  

4.3.4 Knowledge discovery on ANN model 

A high sensitivity to an input shows that the process output was significantly affected by 

minimal changes in the input and vice versa (Sewsynker et al., 2015). Variation of the input 

parameter algae-magnet exposure time within its operational range for all 3 MION types 

showed an increase in the removal efficiency only up to a 10-minute time point after which no 

significant improvement was observed (Figure 5(a)). The mathematical relationship illustrating 

the algae-magnet exposure time and removal efficiency showed a sigmoidal type relationship 

for the crude, TSC and chitosan MION (Table 5(b), (f) and (j)). The magnet exposure time 

affects the rate at which the MION bind to the microalgae, binding was dependent on the size 

and force of the magnet, quantity of MION and size of the reactor used (Hu et al., 2013). Figure 

5(b) showed that an increase in algae-nanoparticles exposure time from 38 seconds to 92 

seconds resulted in a decrease in the removal efficiency from 74 to 63% for both crude and 

TSC coated MION. Whereas for chitosan coated MION showed that an increase in the 

exposure time, from 28 to 92 seconds resulted in an increase removal efficiency up to 75%. Hu 

et al. (2014) reported an optimal duration of 120 seconds for the recovery of Chlorella 

ellipsoidea using MION coated with polyethylenimine. These functional relationships between 

the algae-nanoparticles exposure time and the removal efficiency were best described by 

sigmoidal class of relationships for all MION types (Table 5(a), (e), (i)). The microalgal 

solution together with the MION solution needs to be adequately mixed to promote the 

electrostatic adhesions.  Figure 5(c) showed that an increase in pH from 5 to 10 resulted in a 

decrease in removal efficiency from 76 to 68% for both crude and chitosan MION whereas for 

TSC coated MION, an increase in pH from 5 to 10 enhanced the removal efficiency (74%). 

These relationships were well illustrated by Weibull type of sigmoidal models for all MION 

(Table 5(c), (g), (k)). Microalgal cell wall surfaces carry a negative charge, therefore 

nanoparticles carrying a positive surface charge will bind to such algae. At a pH above the 

isoelectric point of iron oxide nanoparticles (6,5), nanoparticles surface charges become 

negative therefore preventing binding of microalgal cells. This phenomenon can be seen in 

both the crude and chitosan MION (Lee et al., 2013; Xu et al., 2011). A non-linear relationship 

was observed between crude MION and nanoparticles concentration (Figure 5(d)). The highest 

removal efficiencies (77.32 – 77.54%) were observed when nanoparticles concentration was 
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between 0.71 to 0.76 g/l. A nanoparticles concentration of 0.61g/l corresponded to a removal 

efficiency of 76% highlighting the fact that minimal changes in nanoparticles concentration 

significantly affect the removal efficiency. A Dose Response Multistage type of equation could 

be used to describe this non-linearity (Table 5(d)). Increase in nanoparticles concentration 

(0.073 – 0.66g/l) increased the removal efficiency of chitosan MION from 52% to 74.4%. 

Further increase in nanoparticles beyond this threshold resulted in a steep decline in removal 

efficiency from 74.4% to 71.8%. The interaction between TSC MION removal efficiency and 

nanoparticles concentration follow a linear relationship where a continual increase in 

nanoparticles concentration from 0.073 – 1g/l resulted in an increase in removal efficiency 

from 63.6% to 70.5%.The rate and direction of change for both chitosan and TSC MION are 

both illustrated by a dose response model (Table 5(h) and (l)).  

 

 

 

 

 

 

 

 

 

(a)                                    (b)                                       (c)                                         (d)  

Figure 5: Impact of input variations on the process output (algae removal efficiency (%)) 
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Table 5: Model equations describing the direction and rate of change of removal efficiency due to variation of input parameters within 

their limits 

 

 

DR: Dose -Response, NP: Nanoparticles

MION Equation 

number 

Process 

Input/output 

Model Equation Form  

Equation 

Type 

 

Fitted Model 

 

R2 

value 
Crude  (a) Algae:NP 

exposure time  
𝑦 =  

𝑎

(1 + 𝑒𝑏−𝑐𝑥)
1

𝑑⁄
 

 

Richards  

𝑦 =
7,80

(1 + 𝑒−5,69+1,52𝑥)
1

7,07⁄
 

 

                                 

0.99 

 (b) Algae-Magnet 

exposure time 
𝑦 =  

𝑎

(1 + 𝑒𝑏−𝑐𝑥)
1

𝑑⁄
 

 

Richards 
𝑦 =

7,99

(1 + 𝑒9,30−8,86𝑥)
1

1,27⁄
 

0.99 

 (c) pH 𝑦 = 𝑎 − 𝑏𝑒−𝑐𝑥𝑑
 

 

Weibull 𝑦 = 7,72 − 3,31𝑒−7,27𝑥−2,74
 0.99 

 (d) Nanoparticles 

concentration 
𝑦 = 𝛾 + (1 − 𝛾)[1−𝑒−𝛽1𝑥−𝛽2𝑥2−𝛽3𝑥3−𝛽4𝑥4]

 

 

DR-Multistage 

4 
𝑦 = 8,51 + (1 − 8,51)[1 − 𝑒−2,11𝑥+6,30𝑥2−6,49𝑥3+2,17𝑥4

] 0.98 

TSC (e) Algae:NP 

exposure time 
𝑦 =  

𝑎

(1 + 𝑒𝑏−𝑐𝑥)
1

𝑑⁄
 

 

Richards 
𝑦 =

7,44

(1 + 𝑒−1,21+2,61𝑥)
1

9,24⁄
 

0.99 

 (f) Algae-Magnet 

exposure time 
𝑦 = 𝑎 − 𝑏𝑒−𝑐𝑥𝑑

 

 

Weibull 𝑦 = 8,21 − 3,78𝑒−9,27𝑥3,01
 0.99 

 (g) pH 𝑦 = 𝑎 − 𝑏𝑒−𝑐𝑥𝑑
 

 

Weibull 𝑦 = 8,25 − 3,54𝑒9,25𝑥3,01
 0.99 

 (h) Nanoparticles 

concentration 
𝑦 = 𝛾 + (1 − 𝛾)[1−𝑒−𝛽1𝑥−𝛽2𝑥2−𝛽3𝑥3−𝛽4𝑥4]

 

 

DR-Multistage 

4 
𝑦 = 6,30 + (1 − 6,30)[1 − 𝑒−1,53𝑥−2,94𝑥2−1,92𝑥3+7,14𝑥4

] 0.99 

Chitosan (i) Algae:NP 

exposure time 
𝑦 =  

𝑎

(1 + 𝑒𝑏−𝑐𝑥)
1

𝑑⁄
 

 

Richards 
𝑦 =

7,67

(1 + 𝑒−5,27−1,51𝑥)
1

7,24⁄
 

0.99 

 (j) Algae-Magnet 

exposure time 
𝑦 = 𝑎 − 𝑏𝑒−𝑐𝑥𝑑

 

 

Weibull 𝑦 = 8,15 − 1,52𝑒−6,26𝑥1,09
 0.99 

 (k) pH 𝑦 = 𝑎 − 𝑏𝑒−𝑐𝑥𝑑
 

 

Weibull 𝑦 = 7,71 − 4,48𝑒−1,66𝑥−3,07
 0.99 

 (l) Nanoparticles 

concentration 
𝑦 = 𝛾 + (1 − 𝛾)[1−𝑒−𝛽1𝑥−𝛽2𝑥2−𝛽3𝑥3−𝛽4𝑥4]

 

 

DR-Multistage 

4 
𝑦 = 4,33 + (1 − 4,33)[1 − 𝑒−2,96𝑥−5,79𝑥2+4,95𝑥3−1,61𝑥4

] 0.99 
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4.4. Conclusion 

 Process optimisation enhanced the removal efficiency of all MION types, resulting in 85%, 

87% and 95% removal efficiencies for crude, chitosan and TSC MION , respectively. Three 

predictive tools built on Artificial Neural Network were implemented and assessed with great 

accuracy as illustrated by their coefficient of determination values up to 0.82. The impact of 

MION operational input changes on microalgae recovery efficiency showed sigmoidal and dose 

response type relationships. The elucidated functional relationships between microalgae 

recovery efficiency and MION operational parameters provide knowledge for an efficient 

design of harvesting regimes for microalgae bioprocessing, thus enhancing technoeconomic 

output.  
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Chapter 5: Conclusions and recommendations for further research  

This study investigated microalgae process development for biomass and lipid production using 

a local Chlorella isolate cultivated in a novel miniature parallel raceway pond photobioreactor. 

Biomass and lipid productivity was optimized in Chlorella sp using Response Surface 

Methodology (RSM), revealing optimal nutrient concentrations for high biomass and lipid 

productivity. Early stage microalgae bioprocess development using parallel miniaturised 

raceway ponds reactor has been demonstrated. Kinetic studies of cell growth using the logistics 

was undertaken. Three types of magnetic nanoparticles (crude, chitosan and TSC) were 

assessed for downstream harvesting of Chlorella biomass from growth medium.  This process 

was optimized using RSM and artificial neural networks were used to further explain the impact 

of input changes on the recovery efficiency of all three types of nanoparticles.  

 

 

5.1. Biomass and lipid production from local Chlorella isolate: Process optimisation and 

kinetics  

The generated response surface quadratic models were statistically analysed using Analysis of 

Variance (ANOVA). Model coefficients of determination (R2) of above 0.80 were obtained 

which was an indication of the model’s accuracy in describing the relationship between the 

process inputs and outputs (biomass and lipid productivity). Nitrogen was revealed to be an 

important nutrient component to biomass productivity as illustrated by the p value (<0.0001), 

whereas iron was shown to be important to lipid productivity. The developed process model 

equations described the individual and interactive effects of nitrogen, iron and phosphorus 

concentrations on both biomass and lipid productivity of Chlorella sp. As per the model 

equation, nitrogen was most influential to biomass productivity in a positive manner. Nitrogen 

was most influential to lipid productivity albeit in a negative manner. Iron had the highest 

positive effect on lipid productivity. The interactive effects as determined by the model 

equations showed how supplementation using micronutrients was important in obtaining high 

lipid productivity. The lipid productivity model equation showed a positive interaction between 

micronutrient iron and macronutrient. Therefore, iron can act as a growth supplement in 

nitrogen deficient medium to ensure high lipid productivity. Individually, the importance of 

such micronutrients can be overlooked highlighting the importance of determining interactive 

effects and not only individual effects. The model predicted a biomass productivity of 125.60 
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mg L-1 d-1 under the conditions 2.0g L-1nitrogen, 7.0mg L-1 iron and 40.0mg L-1phosphorus 

concentrations. A lipid productivity of 42.56mg L-1 d-1 was predicted under the conditions 0.5g 

L-1nitrogen, 3.0mg L-1 iron and 0.00mg L-1phosphorus concentrations. Experimental 

validations gave 114.50mg L-1 d-1 and 38.23mg L-1 d-1 biomass and lipid productivities, 

respectively. The optimized culture conditions underscored the models predictions.  

The logistic model gave a R2 value of 0.98, a maximum biomass concentration and maximum 

specific growth rate of 1.78g L-1 and 0.01g L-1 h-1 , respectively. These results highlight the 

potential of Chlorella sp. to be used as a feedstock for biodiesel production under optimized 

process conditions.                                                                                     

 

5.2. Development and assessment of intelligent models to predict the recovery efficiency 

of Chlorella sp. using coated and non-coated iron oxide magnetic particles 

 

Using ANOVA, R2 values of above 0.70, was obtained for all nanoparticles types (crude, 

chitosan and TSC), indicating the model’s accuracy in describing relationships between inputs 

and outputs. Microalgae-magnet exposure time, nanoparticles concentration and microalgae – 

MION exposure time had the highest positive individual effects on crude, chitosan and TSC 

nanoparticles types, respectively. It was observed that interactions between microalgae and 

magnet exposure time and nanoparticles type had a positive impact on recovery efficiency of 

crude nanoparticles. The interactions between microalgae to nanoparticles exposure time and 

nanoparticles concentration positively impacted the recovery efficiency of chitosan coated 

nanoparticles. TSC coated nanoparticles were positively influence by the interactions between 

microalgae-magnet exposure time and nanoparticles concentration. The model predicted 90%, 

88% and 95% removal efficiency of crude, chitosan and TSC coated nanoparticles, 

respectively. Experimental validation resulted in 90%, 83% and 75% for crude, chitosan and 

TSC nanoparticles, respectively. Regression analysis using artificial neural network gave R2 

values of above 0.70 for all nanoparticles types indicating the ability of ANN to be used as a 

virtual analytical tool. Sensitivity analyses revealed that minor changes in nanoparticles 

concentration has a significant impact on the recovery efficiency. This was indicated by the 

dose response multistage equation developed by the model.   
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5.3. Recommendations for future research  

The following recommendations can be implemented to future research based on the findings 

obtained in this study: 

• The use of miniature parallel raceway pond photobioreactors was a useful tool for 

bioprocess development as it was able to mimic the geometric configuration of large 

scale raceway ponds, resulting in laboratory scale work that was able to be correlated 

accurately to larger scales. The use of miniature reactors also decreases the tedious 

nature of the multiple experimentation required in research and development, increasing 

experiment efficacy.   

• Assessment of various industrial wastes for microalgae cultivation using mathematical 

models could enhance knowledge of microalgal biomass and lipid production, and 

reveal a cost effective medium to use for commercial biodiesel production  

• The effect of growth media, macro and micronutrients on fatty acid methyl ester 

(FAME) profiles could be investigated allowing for a full assessment of different media 

and their suitability for microalgal biodiesel production.  
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