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ABSTRACT 

Fatal flood events around the world have led to the execution of many projects in an attempt to 

solve some of the prevailing flood control problems. These studies have identified an increase 

in the frequency of flood events over the years. The increases accompanied by hydrological 

alteration and rainfall variation may have great effects on future flood design and planning. This 

study focuses on the Luvuvhu river catchment in the Limpopo province of South Africa, which 

has been identified and considered vulnerable to flooding.  

The soil and water assessment tool (SWAT) was used to simulate daily streamflows (runoff) of the 

Luvuvhu River catchment. The model was executed through an interface between SWAT and QGIS 

desktop 2.6.1 software, QSWAT 1.3 2016. The model was run for a 33-year period of 1983 to 

2015. Having compared observed streamflow data with the simulated data, the initial 

streamflow evaluation was unsatisfactory and the model needed to be calibrated and validated.  

Sensitivity analysis, calibration and validation were conducted using the SUFI-2 algorithm 

through its interface with SWAT calibration and uncertainty procedure (SWAT-CUP). The 

calibration process was conducted for the period 1986 to 2005 while the validation process was 

from 2006 to 2015 inclusive. A minimum of 300 simulations were performed for each run. The 

model performance to simulate runoff was based on four objective functions coefficient of 

determination (R2), Nash–Sutcliffe efficiency (NSE) index, root mean square error (RMSE)-

observations standard deviation ratio (RSR) and percent bias (PBIAS) and two performance 

indices probability (P)-factor and correlation coefficient (R)-factor.  

During the calibration period, the model produced a P-factor of 0.64, 0.52, 0.67, and 0.45 and 

an R-factor of 0.59, 1.81, 0.68 and 0.91 for the four sub-catchments. The objective function 

results revealed an R2 of 0.61, 0.73, 0.63 and 0.75, an NSE index of 0.35, -16.46, 0.66 and -0.36, 

an RSR of 0.62, 3.23, 0.56 and 0.71 and a PBIAS of 1.18, -7.60, 16.30 and -2.10 for the sub-

catchments. During the validation period, the model produced a P-factor of 0.59, 0.34, 0.69 and 

0.41 and an R-factor of 0.46, 2.67, 0.53 and 0.75 for the sub-catchments. The objective function 

results revealed an R2 of 0.34, 0.63, 0.52 and 0.62, an NSE index of 0.35, -0.45, 0.48 and 0.31, 

an RSR of 0.86, 1.14, 0.72 and 2.10 and a PBIAS of 65.0, -12.30, 19.90 and -14.60 for the sub-

catchments.  
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Predominantly, parameter ranges of the P-factor and R-factor reached desired limits indicating 

considerable parameter uncertainties results, which were acceptable. Moreover, model 

uncertainties were falling within the permissible limits, which signified the capability of SUFI-

2 to capture the model’s behaviour. Objective functions analysed performed well during both 

calibration and validation. For this reason, results obtained in this study demonstrated 

acceptable model performance and acceptable accuracy of the model in runoff simulation. It 

can be concluded that SWAT simulation results were satisfactory for runoff simulation in the 

Luvuvhu catchment.  

Flood frequency analysis and design flood estimation were completed following model 

validation. This was accomplished using a 30-year period of simulated flood discharge from 

the SWAT model.  A log-normal probability distribution was used to fit the maximum annual 

peak data to estimate flood frequencies. Focusing on a sub-catchment, the Luvuvhu catchment 

outlet, 50, 100 and 200-year floods revealed flood magnitudes of 960.70, 1121.02 and 1281.35 

m3 s-1 respectively. The results obtained from the frequency analysis would assist in the 

planning and designing purposes of the catchment, to mitigate and adapt during flooding season. 
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CHAPTER 1: INTRODUCTION 

1.1 General background  

Flooding has often been identified as a natural, climatic and recurring event, during which an 

area of land is covered with an extensive amount of water, over a short period of time (Gichere 

et al., 2013). This occurs depending on the parameters that govern the flood phenomena such 

as: rainfall amount, catchment area and soil antecedent moisture content, to name a few 

(Alexakis et al., 2012; Gichere et al., 2013). In some cases, this type of event is not natural in 

its cause, but rather, anthropogenic (Tshikolomo et al., 2013). For example, the bursting of a 

dam wall or a water pipeline in an impervious area, may also lead to flooding (Kozlovac, 1995; 

Etuonovbe, 2011). In most cases flooding is caused by an event whereby heavy and continuous 

rainfall occurs for an extended period of time, which then exceeds the infiltration capacity of 

soil or flow capacity of rivers, streams, and coastal areas, thus resulting in runoff (Hirschboeck 

et al., 2000; Ezemonye and Emeribe, 2011; Singo et al., 2012; Tshikolomo et al., 2013). The 

runoff produced from this climatic condition (heavy rainfall) may then cause the catchment to 

respond in a manner that results in flooding (O'Connell et al., 2007; Warburton et al., 2010). 

 

The geographical distribution of river flood plains may also have an influence on flood 

occurrence (Smith, 2001) and according to Hart et al. (2013) and Wetterhall et al. (2015), 

South Africa’s rainfall distribution varies considerably both spatially and temporally, which 

has led to more floods across the country (Kane, 2009). The frequency and distribution of 

floods is usually defined by the cycle of El-Niño southern oscillation (ENSO) events where 

ENSO is an irregular phenomenon that recurs every 2 to 7 years (Kane, 2009; Trenberth, 2011). 

The phenomenon accounts for the extreme variability of climate in the global climate system 

(Allan, 2000). ENSO is often associated with rainfall in most parts of the southern African 

region, interchanging between two extremes known as El Niño (drought) and La Niña (floods) 

events (Allan, 2000; Moeletsi et al., 2011). The two events, El Niño and La Niña differ in 

magnitude, area of impact, onset, duration and cessation (Davis and Joubert, 2011). 

Although some floods may be accounted for by climate change, documentation and 

classification of the different types of floods exists, including among others river floods, flash 

floods, structural failure, urban drainage and coastal flooding (Table 1.1) (DePue, 2010; Sauer, 

2011). According to the South African Weather Service (SAWS), examples of floods that have 

occurred throughout South Africa over the past years displaying some characteristics 
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mentioned in (Table 1.1) include floods which occurred in the years: 1980, 1984, 1987, 1995, 

2000, 2007 and 2010/2011(Dyson, 2009; Zuma et al., 2012). 

Table 1.1 Different types of flooding and their characteristics (DePue, 2010) 

FLOOD TYPE CAUSE IMPACT DURATION  

River floods Inability of the river 

system to carry certain 

amount of flows due to 

heavy rains or prolonged 

rains. 

Floodplain areas along 

the river banks. 

Slow onset and 

may last for a 

short or long 

period depending 

on rainfall 

characteristics. 

Flash floods Heavy and localised 

rainfall over a short 

period of time, in a steep 

or impervious catchment. 

Closely linked with 

structural failure. 

Destruction of 

infrastructures such as 

bridges and roads. 

Quick onset and 

last over a short 

period of time, 

but impacts are 

severe. 

Structural 

failure 

Structure failure after 

periods of heavy rainfall 

in a catchment due to 

inadequate structure 

design, or the dam design 

structure capacity has 

been exceeded. 

Area along the 

structure and 

downstream residence 

if it is a dam. 

Quick onset, 

occurring without 

warning and over 

a short period of 

time. 

Urban drainage The drainage is unable to 

handle the floods due to 

heavy and localised 

rainfall, or the design has 

been exceeded.  

Urban areas and 

residence. 

Bursting of pipes, 

without warning 

over a short 

period of time. 

Coastal flood Hurricanes and tropical 

cyclones along the 

coastal lines. 

Impacts along the 

coastal area and may 

extend into the inland. 

Quick onset and 

flooding may last 

for a long period. 
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Fatal flood events around the world have led to the execution of many projects in an attempt to 

solve some of the prevailing flood control problems (Krzhizhanovskaya et al., 2011). These 

studies have identified an increase in the frequency of flood events over the years, with climate 

change being one of main root causes (Millington et al., 2011; Aronica et al., 2012; Norouzi 

and Taslimi, 2012; Xie et al., 2012). The increases accompanied by hydrological alteration and 

rainfall variation may have great effects, not only on dam and bridge designs, but also on future 

food security production due to reduced yield (Lauer, 2008; Millington et al., 2011 Sauer, 

2011; Syaukat, 2011). Floods usually occur with no warning, and under future climate 

conditions, flood frequency is expected to increase even further (Kang et al., 2009). For this 

reason, it is essential for hydrologists and engineers to be able to predict the magnitude and 

frequency of floods for planning and mitigation (Chetty and Smithers, 2005; Geoscience 

Australia, 2013).  

This study focuses on the Luvuvhu river catchment in the Limpopo province of South Africa, 

which has been identified and considered vulnerable to flooding (Muinga, 2004). As much as 

flood events have been occurring more frequently in the world (Xie et al., 2012), the Luvuvhu 

catchment is no exception. The catchment’s vulnerability to flooding is said to be caused by 

tropical depressions and the geographical distribution of river floodplains (Smith, 2001; 

Muinga, 2004; Wetterhall et al., 2014). This has led to the catchment experiencing extreme 

flooding events over the past years; washing away some of the crops and thus resulting in crop 

failure and reduced crop yield (Figure 1.1). A large portion of the catchment is under 

subsistence agriculture, and the remainder of the catchment is woodlands, mining and 

communal lands (Table 1.2) (Jewitt et al., 2004; Warburton et al., 2010). Intensive irrigation 

farming is practiced in the catchment, where vegetables, citrus and a variety of fruits such as 

bananas, mangoes, avocados and nuts are grown (Hall, 2008). State and privately owned 

forestry plantations (pine, eucalyptus and wattle) are located at the south of the Soutpansberg 

(Jewitt et al., 2004).  

The Luvuvhu river catchment, along with the Letaba river catchment, forms part of the 

Luvuvhu/Letaba Water Management Area (WMA), which is one of the 19 WMAs in South 

Africa, delineated and acknowledged by the South African Department of Water and Sanitation 

(DWS) (Jewitt et al., 2004; Masereka et al., 2015). The catchment consists of 14 Water 

Management Units (WMU), which are demarcated according to quaternary catchments (QCs) 



4 

and have been adjusted to account for streamflow gauging stations (Warburton et al., 2010). 

The Luvuvhu catchment is subdivided into 14 DWS QCs (Jewitt et al., 2004) (Figure 1.2). 

Table 1.2 Land use/cover in the Luvuvhu River catchment according to Jewitt et al. (2004) 

and Warburton et al. (2010) 

Land use (% of area) Jewitt et al. (2004) Warburton et al. (2010) 

Natural vegetation  - 62.5 

Water bodies  - 0.2 

Degraded areas  - 8.1 

Commercial forestry  4.0 6.0 

Commercial agriculture (Irrigated)  - 3.0 

Subsistence agriculture  - 15.8 

Informal residential areas  - 4.4 

Protected game reserve areas 30 - 

Urban areas 3 - 

Cultivated lands 13 - 

Subsistence agriculture and grazing 50 - 

Figure 1.1 Sanari area in the Luvuvhu catchment experiencing 2016/2017 flooding 

(Photo: Teboho Masupha) 
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1.2 Technical background 

1.2.1 Hydrological models 

Hydrological models have been developed over the years in order to understand the different 

aspects that occur in a hydrological system (Figure 1.3) (Chow et al., 1988). When designing 

a hydrological model, the main aim is to improve the understanding of the hydrological system 

on how changes, such as climate, land use and soil changes, may affect the system (Xu, 2002).  

In order to understand the phenomenon of a hydrological system, hydrological models are used 

to simulate the catchment’s responses to the various changes of climate, land use and soil 

(Leavesley et al., 1983; Viessman et al., 1989). Hydrological simulation may be used in flood 

frequency studies by modelling how the climate, land use and soil changes may affect flood 

occurrence in the future (McCuen, 2003). When modelling, one needs to be cognisant that the 

simulations are not real, but rather projected values to better understand and predict future 

scenarios (Smithers et al., 1997; McCuen, 2003; Chetty and Smithers , 2005). 

Figure 1.2 Luvuvhu River and quaternaries 



6 

 

Choosing the appropriate model to use in hydrological studies requires full knowledge of 

expected results, and hence assistance from experts and specialists is required (Viessman et al., 

1989; Lundin et al., 2000). Apart from expert knowledge, most hydrological models do not 

operate on their own, but require other software to operate (de Jong van Lier et al., 2005). In 

most cases geographic information system (GIS) is a system that is most relevant and highly 

used to complement hydrological applications (Fadil et al., 2011). A 2012 version of the SWAT 

model was used in this study to simulate runoff in order to estimate flooding in the Luvuvhu 

catchment. The SWAT model was run through an interface with a QGIS desktop 2.6.1 

software, QSWAT 1.3 2016. 

1.3 Main objectives 

This study aims to estimate design flood peaks in the Luvuvhu River catchment in Limpopo 

province, South Africa. This will be conducted through the simulation of runoff using QSWAT 

1.3 2016, an interface between the 2012 version of the SWAT model and QGIS 2.6.1 software.  

1.4 Specific objectives 

 To choose a hydrological model (QSWAT) that will best simulate streamflow using 

observed climate, land use and soil data. 

Figure 1.3 A catchment as a hydrological system (Chow et al., 1988) 



7 

 To conduct streamflow simulation from historical climate data using QSWAT to check 

how best the model mimics the Luvuvhu River catchment. 

 To conduct calibration and validation of the model using observed data of Luvuvhu 

river catchment for a better model representation of the catchment. 

 To conduct flood frequency analysis and design flood estimation for the Luvuvhu River 

catchment using simulated data from the SWAT model in order to estimate flooding in 

the catchment. 

1.5 Thesis layout 

Chapter 1 focuses on introducing the concept of a flood, its impacts and why the phenomenon 

should be studied. The study area is also introduced, giving reasons for the choice of the study 

area. Some historical background on hydrological models is also reviewed in this chapter. 

Chapter 2 informs the reader about hydrology, hydrological models and hydrological 

modelling. Different hydrological models that have been applied in previous studies are 

reviewed. A review on calibration process and sensitivity analysis is also presented. 

Chapter 3 is an in-depth record of the methods taken to achieve the objectives of the study. 

Here the method focuses mostly on the application of the SWAT model, the SWAT-CUP and 

the SUFI-2 algorithm. The use of log-normal distribution for flood frequency analysis is 

explained in this chapter.  

Chapter 4 presents the results obtained in the execution of SWAT model in the form of reports, 

tables and graphs. Furthermore, flood frequency analysis results are expressed in this chapter.  

Chapter 5 accounts for and explains the results obtained through a discussion and also gives 

recommendations for future research and application.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Climate change 

South Africa is considered a semi-arid region with greatest rainfall vulnerability in provinces 

such as the Eastern Cape, KwaZulu-Natal, North-West and Limpopo (Zuma et al., 2012; Hart 

et al., 2013). High intra-seasonal and inter-annual rainfall variability has led to extreme events 

such as floods occurring more frequently (Davis and Joubert, 2011). There have been several 

natural disaster events in South Africa between 1980 and 2014, and within these decades, 

flooding has occurred many times including the years 1981, 1987, 1994, 2000 and 2013 

(Moodley, 2014).  

Numerous studies have been conducted to identify the connection between rainfall anomalies 

that could lead to flooding in South Africa and the El Niño-southern oscillation (ENSO) 

phenomenon (Tennant and Hewitson, 2002; Kane, 2009). Furthermore, it has been established 

that South African rainfall is not equally distributed spatially and temporally (Hart et al., 2013) 

and according to Moeletsi et al. (2011) this causes extreme rainfall in La Niña years and may 

lead to flooding. A study done by Warburton et al. (2011) revealed that such climate change 

phenomena have a significant impact on hydrological responses of a catchment. This was 

further confirmed by a study done by Gaur (2013) where even small changes in climate 

variables showed results of significant impact on hydrological characteristics of a catchment. 

According to such findings, it can be ascertained that climate change continues to be one of the 

greatest challenges in terms of hydrological responses with an annual risk of flooding of 83.3% 

in South Africa (Zuma et al., 2012). 

Climate change alters the magnitude, spatial and temporal distribution of storms that produce 

flood events (Davis, 2011). This is through increases in air temperature and rainfall which thus 

influence the increase in frequency and magnitude of flood occurrences (Tadross M et al., 

2009; Millington et al., 2011). According to Kang et al. (2009), these frequencies will continue 

to increase under future climatic conditions. Therefore, continuous studies to predict magnitude 

and frequency of floods remain essential (Chetty and Smithers, 2005).  

2.2 Hydrology 

Hydrology is the study of water and its movement in a catchment (Tessema, 2011). The study 

focuses on various pathways such as the occurrence, distribution and disposal of water in a 
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hydrological system (Raghunath, 2006). Hydrology focuses on processes such as runoff that 

may occur in a hydrological system (Tessema, 2011). Understanding of the hydrology concept 

is achieved through monitoring water movement, speed and discharge in a catchment (Els, 

2011). Processes and interactions that govern the hydrological system are considered, bearing 

in mind the physical characteristics of the catchment (Els, 2011). It is important to study 

hydrology especially under changing climate caused by global warming since hydrology plays 

a great role in factors affecting human life (Pilgrim et al., 1988; Seibert, 1999). Moreover, 

hydrology plays an important role in the estimation of flood occurrence probability and 

frequency, which are essential for planning, and management purposes (Rogger et al., 2012; 

Gericke and du Plessis, 2013). 

In a hydrological system, input variables such as rainfall interact with the physical, chemical 

and/or biological processes to produce output variables such as runoff (Xu, 2002). These 

interactions are referred to as the hydrologic cycle (Figure 2.1) (Raghunath, 2006). The 

hydrological cycle is expressed through the hydrologic equation, a law of conservation 

explaining processes in the hydrological system, (Raghunath, 2006):  

𝐼 = 𝑂 + ∆𝑆                                                                       (2.1) 

where 𝐼 is the total inflow (m3) in a given area, 𝑂 is the total outflow (m3) from that area and 

∆𝑆 is the change in storage (m3).   

The hydrologic equation is generally influenced by the water balance, (Rasiuba, 2007): 

𝑃 = 𝑅 + 𝐸𝑇 + ∆𝑆
∆𝑡⁄                                                     (2.2) 

where  𝑃 is precipitation in mm a-1, 𝑅 is the runoff in mm a-1, 𝐸𝑇 is the evapotranspiration in 

mm a-1 and ∆𝑆
∆𝑡⁄  is the storage changes per time step in mm a-1. In this hydrological equation, 

events such as evapotranspiration and runoff that play a great role in the hydrologic cycle are 

captured and expressed through equations of their own (Latha et al., 2010): 

Evapotranspiration is represented in the shortened surface energy balance equation (Ncube, 

2006):  

                            𝑅𝑛 = 𝜆𝐸 + 𝐻 + 𝐺                                                         (2.3) 

where 𝑅𝑛 is the net radiation, 𝜆𝐸 is the latent heat (evapotranspiration; ET), 𝐻 is the sensible 

heat flux and 𝐺 is the soil heat flux. 
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Figure 2.1 The hydrological system and the water cycle (Source: Zhang et al., 2002)  

Runoff is expressed through the SCS curve number (Xiao et al., 2011; Soulis and Valiantzas, 

2012): 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 𝐼𝑎)2

(𝑅𝑑𝑎𝑦 − 𝐼𝑎 + 𝑆)
                                                       (2.4) 

where 𝑄𝑠𝑢𝑟𝑓 is the accumulated runoff (mm), 𝑅𝑑𝑎𝑦 is the rainfall depth (mm), 𝐼𝑎 is the initial 

abstraction (surface storage, interception and infiltration) (mm) and 𝑆 is the retention parameter 

(varies due to change in soils, land use and management) (mm). 

The above equations are essential for hydrological modelling since they are drivers of most 

hydrological models that have been developed over the past years (Ncube, 2006). Hydrological 

modelling has become a well-used technique in hydrology to improve the understanding of 

processes that occur in a hydrological system (Praskievicz and Chang, 2009).  
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2.3 Hydrological modelling 

Hydrological systems are very complex and not easily understood; hence, to overcome this, 

hydrologists have resorted to hydrological modelling which is a much simpler way of 

representing the hydrological system (Xu, 2002; Woessner, 2012). Hydrological modelling 

entails the use of mathematical equations to present the hydrological system and the processes 

that occur in the hydrological cycle (Woessner, 2012). Investigations on hydrological factors 

such as design flood, flood frequency and water quality may be achieved by the many ways of 

hydrological modelling (Todini, 2007; Smithers, 2012; Ahn et al., 2014). Due to data 

availability or lack thereof, different methods of hydrological modelling have been developed 

around the world and their applications vary (Chetty and Smithers, 2005; Ball, 2012). For 

example, in order to estimate for design flood, certain paths according to Smithers and Schulze 

(2001) can be followed (Figure 2.2).  

Figure 2.2 Different methods for estimating design flood in South Africa (Source: 

Smithers and Schulze, 2001) 

2.3.1 Flood frequency analysis and design flood estimation 

Flood estimation approaches are usually twofold: an analysis of observed floods, and rainfall-

based methods (Smithers, 2012). A number of probabilistic approaches including flood 

frequency statistics and design storm method can estimate design floods for a given location at 

a stream (Rogger et al., 2012). These probabilistic methods are most applicable where there 
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are sufficient streamflow data, and in such cases use of empirical equations, unit hydrograph 

and/or flood frequency analysis methods are applied (Chetty and Smithers, 2005; Smithers, 

2012) (Figure 2.2). Alternatively, in the case where there is inadequate streamflow data, for 

example, short duration recorded streamflow data, rainfall-runoff models (rainfall based 

methods) are thus more applicable (Smithers et al., 1997; Chetty and Smithers, 2005). 

Flood frequency analysis method is more of a statistical procedure whereby flood frequency 

distribution is fitted to observed flood peaks (Rogger et al., 2012). The procedure analyses the 

statistics of observed flood events by means of determining and estimating flood magnitudes 

at different exceedance probability or recurrence intervals (Hirschboeck et al., 2000; Atroosh 

and Moustafa, 2012; Waghaye et al., 2015). The probability of exceedance is the percentage 

chance that a given flood magnitude will be exceeded in any year while the recurrence interval 

is the reciprocal of percent probability of exceedance divided by 100 (Walker and Krug, 2003). 

Flood magnitude with a return period of T years is expected to equal or be exceeded, on 

average, once every T years (Kay et al., 2009). 

According to Smithers et al. (2013), design flood estimates and flood frequency analysis are 

important for planning and design purposes. Therefore, it is essential that peak flow estimates 

for varying return periods be accurate in order for the planning to reduce flood damage (Viviroli 

et al., 2009). Hydrologists have been using annual flood-peak data to monitor flooding and to 

evaluate the probability of occurrence of flood of a given magnitude (Hirschboeck et al., 2000). 

The problem with flood frequency method is that it requires long and continuous streamflow 

data, which is generally unavailable in most cases (Stedinger, 2000). It is thus important to use 

statistical techniques and available historic information to improve estimated flood and flow 

frequency relationship (Baker, 2000). This entails determining distribution pattern and 

estimating cumulative distribution functions to calculate extreme flood values that may occur 

in the future (Millington et al., 2011; Atroosh and Moustafa, 2012).  

It is essential that a probability distribution that provides a good fit for streamflow data be 

established in order to attain and interpret the probability occurrence and return period results 

(Mzezewa et al., 2010; Gamage et al., 2013; Waghaye et al., 2015). There are two most widely 

used probability distributions in hydrologic analysis, and they are the log normal and log- 

Pearson Type 3 distributions (McCuen, 2003). Frequency curve provides a probabilistic 

description of the likelihood of occurrence or non-occurrence of variables (McCuen, 2003). 

For concave and upward curve, a log normal distribution is more applicable while a large 
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sample requires an estimate of the skew coefficient distribution such as the log-Pearson type 3 

distribution (McCuen, 2003). Frequency analysis is used for data record more than 10 years 

(Viessman et al., 1989; Walker and Krug, 2003).  

2.4 Classification of hydrological models 

Hydrological models are said to be the application of scientific methods to represent and 

quantify hydrological processes in the hydrological system (Lundin et al., 2000; Woessner, 

2012). There are different types of models used in hydrological modelling and flood predictions 

and they are classified based on model input, parameters and extent to which physical 

principles are applied (Viessman et al., 1989; Gayathri et al., 2015). Hydrological models are 

classified and differentiated between empirical, conceptual and theoretical models, between 

lumped and distributed models and between deterministic and stochastic models (Refsgaard, 

1996). 

2.4.1 Distinction between empirical, conceptual and theoretical models 

2.4.1.1 Empirical models 

The empirical model is commonly known as the black box or the input-output model. This is 

because the model’s properties do not resemble any physical characteristics nor do they 

consider any physical laws that govern the processes in a hydrological catchment (Leavesley 

et al., 1983; Refsgaard, 1996; Xu, 2002). Simple mathematical equations fall under this model 

category and the main advantage is that the model is very simple and parameter-efficient (Ye 

et al., 1997). However, the disadvantages are that the model does not have any physical 

representation and neither does it capture the essential response characteristics of a catchment 

(Ye et al., 1997). Examples of an empirical model is a unit hydrograph for streamflow routing 

and the SCS runoff curve number method in equation 2.4 (Refsgaard, 1996; Aghakouchak and 

Habib, 2010). 

2.4.1.2 Conceptual models 

A conceptual model is usually referred to as a grey box, mostly because it captures some parts 

of the physical elements of the catchment by averaging the catchment’s parameters and 

variables (Refsgaard, 1996; Xu, 2002). Hence, conceptual models rely on probability to 

interpret the processes that occur in the catchment which do not fully represent the physical 
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processes (Viessman et al., 1989; Woessner, 2012). Although too much theory and 

assumptions may over-simplify the physical laws, according to Ramirez (2000), 

conceptualisation can still be useful in producing adequate estimates of flood hydrograph.  

 Advantages  

 Few input data requirements 

 Computationally fast 

 Interface easily with GIS databases 

 Use simple inputs and hence can be easily developed without much understanding of 

the modelled phenomenon  

Disadvantages  

 Sometimes assumptions may be false  

 Physical interpretation is often unclear  

Example of a conceptual model is the topography based hydrological model (TOPMODEL) 

(Seibert, 1999). The underlying assumptions governing the TOPMODEL are (Beven, 1997): 

(a) that the dynamics of the water table can be approximated by uniform subsurface runoff 

production per unit area over the area draining through a point, and 

(b) that the hydraulic gradient of the saturated zone can be approximated by the local surface 

topographic slope. 

The TOPMODEL is based on the following equations (Tarboton, 2003):  

Assuming an exponential decrease in hydraulic conductivity with depth z: 

𝐾(𝑧) = 𝐾𝑜𝑒−𝑓𝑧                                                                   (2.5) 

the down slope transmissivity of the saturated part of the soil profile can be written in terms of 

the depth of water table (zw): 

𝑇(𝑧𝑤) = ∫ 𝐾(𝑧)𝑑𝑧
∞

𝑧𝑤

=  ∫ 𝐾𝑜

∞

𝑧𝑤

𝑒−𝑓𝑧𝑑𝑧 =  
𝐾𝑂

𝑓
𝑒−𝑓𝑧𝑤 =  𝑇𝑂𝑒−𝑓𝑧𝑤             (2.6) 
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where 𝐾𝑂 is the hydraulic conductivity at the surface, 𝑓 is the sensitivity of parameter that 

quantifies how rapidly hydraulic conductivity decreases with depth and  𝑇𝑂 =
𝐾𝑂

𝑓
 is the 

transmissivity of the soil profile. 

Assuming effective porosity 𝜃𝑒, the soil moisture deficit 𝐷(𝑚) can be approximated: 

𝐷 = 𝜃𝑒𝑧𝑤                                                                       (2.7) 

and this assumes moisture content at the residual moisture content above the water table, thus, 

𝑇(𝐷) = 𝑇𝑜𝑒−𝑓𝑧𝑤 = 𝑇𝑜𝑒
−𝑓𝐷

𝜃𝑒
⁄

= 𝑇𝑜𝑒
−𝐷

𝑚⁄                                     (2.8) 

where 𝑚 =
𝜃𝑒

𝑓⁄   

2.4.1.3 Theoretical models 

A theoretical model is physically-based and represents the actual catchment (Lundin et al., 

2000). The model resembles the real world and details the hydrological processes that take 

place in the catchment (Viessman et al., 1989;). The model’s ability to detail most process and 

changes that occur in a catchment is an advantage since catchment parameters such as climate, 

land-use and soils are never stationary but continuously change time and space (Xu, 2002). 

Due to the model’s ability to capture laws that govern hydrological processes, it is commonly 

known as a “white-box” model (Viessman et al., 1989). Although every mathematical model 

is effective depending on the objective at hand, how complex the problem is and the degree of 

accuracy that the modeller desires, Leavesley et al. (1983) argue that it is imperative that 

physically-based models be applied in hydrological research because of their ability to simulate 

catchments’ hydrological processes in their entirety. However, simulating streamflow is a 

challenging process due to the numerous uncertainties that exist in the form of input parameter 

inaccuracies, processes unaccounted for by the model, and processes occurring in the catchment 

that are unknown to the modeller. 

Advantages 

 Details most processes occurring in the catchment 

 Best at simulating the catchment’s hydrological system 

Disadvantages  

 Extensive data requirement  
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 Time-consuming and needs a specialist to operate  

Examples of a physically-based white box model are, the WEPP model, the MIKE-SHE model 

and the SWAT model which have been described in detail in the following sections. The water 

balance equation is the main driver of the SWAT model:   

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝑊𝑖 − 𝑄𝑅𝑖)

𝑡

𝑡=1

                                  (2.9) 

where 𝑆𝑊𝑡 is the final soil water content (cm3 cm-3), 𝑆𝑊0 is the initial soil water content (cm3 

cm-3) on day i and 𝑅𝑖, 𝑄𝑖, 𝐸𝑇𝑖 , 𝑊𝑖 𝑎𝑛𝑑 𝑄𝑅𝑖 (mm) are precipitation, surface runoff, 

evapotranspiration, seepage flow and return flow on day i respectively (Mutenyo et al., 2013). 

2.4.2 Distinction between lumped and distributed models 

2.4.2.1 Lumped models 

Lumped models treat catchments as single entities, and do not take into consideration both 

spatial and temporal variability of the catchment parameters such as climate, land cover, slopes 

and soils management practices, but rather average input variables and parameters within the 

whole catchment (Ramirez, 2000; Pechlivanidis et al., 2011). Lumped models are usually 

applied in situations where there is lack of streamflow data (Refsgaard, 1996). Continuous 

models which require continuous data may apply lumping parameters since the volume of the 

continuous data becomes too great to manage (Viessman et al., 1989). Disadvantages of a 

lumped model are that it implies that the catchment does not change both spatially and 

temporally, and that the catchment’s hydrological response is direct, which is not correct 

because there will always be catchment variability and the hydrological rule “there is no 

linearity” will always apply (Schulze, 1998). Although the lumped model has been discredited 

in some research, it can assist in accounting for natural variability of a catchment while 

preserving the main feature (Ponce and Hawkins, 1996). 

2.4.2.2 Distributed models 

In contrast to lumped models, distributed models to some extent are capable of accounting for 

the spatial and temporal variability of hydrologic processes and catchment parameters 

(Ramirez, 2000). Distributed models use average variables and parameters at small grid scales 

to account for process variations from grid to grid throughout the entire catchment (Viessman 
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et al., 1989; Ramirez, 2000; Pechlivanidis et al., 2011). An example of the application of the 

distributed model is the “event-based simulation model” which uses distributed parameters and 

shorter time increments (Viessman et al., 1989).  

Both lumped and distributed models can further be classified as conceptual and physically-

based respectively (Ramirez, 2000). The lumped conceptual models try to mimic or capture 

parts of the physical processes in the catchment while distributed physically-based models 

actually model the physical processes when representing the hydrological processes 

(Refsgaard, 1996; Xu, 2002).  

2.4.3 Distinction between deterministic and stochastic models 

2.4.3.1 Deterministic models 

A deterministic model divides the hydrological cycle into parts and then outlines the different 

interactions that occur in each part (Viessman et al., 1989). In so doing, the model produces 

results which are uniquely determined from known interactions between processes in the 

hydrological cycle and data input (Pechlivanidis et al., 2011). A deterministic model is a model 

based on physical processes such as precipitation, evaporation and runoff (Viessman et al., 

1989). However, in the case where data are missing or for example, rainfall data need to be 

extended, stochastic methods are then used and incorporated to produce rainfall values, which 

are then converted into streamflow data (Viessman et al., 1989).  

2.4.3.2 Stochastic models 

Stochastic models depend on probabilities of existing data records rather than physical 

catchment characteristics and processes (Refsgaard, 1996). This is through the use of random 

variables representing catchment process uncertainty, which then leads to different results 

being generated from one set of input data (Pechlivanidis et al., 2011). The difference between 

these models is that a deterministic model produces the same output for the same set of input 

values while a stochastic model is less consistent, producing different random values of output 

from the same set of inputs (Gayathri et al., 2015). Although a significant part of hydrological 

processes, both spatial and temporal distinctions of hydrological parameter and variables are 

described using deterministic models, lack of data requires the hydrologist to apply the joint 

stochastic-deterministic approach (Refsgaard, 1996). 
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2.5 Weather generation  

A major obstacle facing research nowadays, in this event, in the field of hydrology is the 

absence of a complete and continuous data record; the data are either incomplete or not reliable 

(Viessman et al., 1989; McCuen, 2003; Smithers, 2012). This challenge has therefore led to 

researchers and hydrological modellers depending on weather generators to produce artificial 

(synthetic) data, in order to have meaningful research (Viessman et al., 1989). Due to limited 

historical data (less than 30 years), a hydrologist possesses limited knowledge to determine the 

magnitude of risk involved in the event of any future changes (Viessman et al., 1989). 

Hydrological models require observed long-term daily climatic data such as daily rainfall, air 

temperature, relative humidity, solar radiation and wind speed for them to run or be applied 

(Clemence, 1997; McKague et al., 2003; McKague et al., 2005; Tingem et al., 2007; Safeeq 

and Fares, 2011). This becomes a limitation since observed climatic data records are not readily 

available or are insufficient for good estimations of probability of extreme events such as floods 

(Tingem et al., 2007; Safeeq and Fares, 2011). Due to this limitation, there has been the 

formation of deterministic mathematical models known as stochastic weather generators, 

which in turn have addressed the situation and also reduced the time required to prepare 

weather input data (McKague et al., 2005; Tingem et al., 2007).  As previously mentioned, 

these stochastic models are known to simulate time series climatic variables such as air 

temperature and rainfall data to improve on the existing record and to provide climate 

information where measured data are not available (McKague et al., 2003; Tingem et al., 2007; 

Ailliot et al., 2015). Stochastic models use existing observed historical climatic data to generate 

statistically similar synthetic weather data to that of observed data when simulating variables 

(McKague et al., 2003; McKague et al., 2005; Tingem et al., 2007).  

There has been the development of different weather generators to account for missing data, 

weather generators such as WGEN by Richarsdon and Wright (1984), TAMSIM by McCaskill 

(1990), and WXGEN by Sharpely and Williams (1990) have been developed (Muthuwatta, 

2004). The WXGEN model uses the Markov chain model, where the input values include the 

probability of rain on a given condition of the day, not minding the state of the previous day 

(Hayhoe and Stewart, 1996). A wet day is defined as a day with rainfall greater than 0.1 mm 

(Muthuwatta, 2004). Having obtained wet-dry probabilities, WXGEN stochastically 

determines the occurrence of rainfall on the particular day. When the rain occurs, the amount 

is determined by generation from a skewed normal daily rainfall distribution. Simulations 

requiring four transition probabilities are depicted (Table 2.1). 
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Table 2.1 Transition probabilities for WXGEN simulations (Source: Muthuwatta, 2004) 

Day (i-1)/Day (i) Wet Dry 

Wet Pi (W/W) Pi (W/D) 

Dry  Pi (D/W) Pi (D/D) 

 

 Pi (W/W) is the probability of a wet day on day i given a wet day on day i -1 

 Pi (W/D) is the probability of a wet day on day i given a dry day on day i -1 

 Pi (D/W) is the probability of a dry day on day i given a wet day on day i -1 

 Pi (D/D) is the probability of a dry day on day i given a dry day on day i -1 

WXGEN requires only two of the above transition probabilities, deriving the remaining two 

using the following: 

𝑃𝑖(𝐷
𝑊⁄ ) = 1 − 𝑃𝑖(

𝑊
𝑊⁄ )                                                 (2.10) 

𝑃𝑖(
𝐷

𝐷⁄ ) = 1 − 𝑃𝑖(𝑊
𝐷⁄ )                                                    (2.11) 

In order to delineate the day as wet or dry, the model generates random number (X) between 0 

and 1, where the random number is then compared to the appropriate wet-dry probability, Pi 

(W/W) or Pi (W/D) (Muthuwatta, 2004).  

 

If X ≤ wet-dry probability, the day is regarded as wet 

If X > wet-dry probability, the day is regarded as dry  

The amount of rainfall in a wet day is thus calculated using: 

𝑅𝑑𝑎𝑦 = 𝜇𝑚𝑜𝑛𝑡ℎ + 2𝜎𝑚𝑜𝑛𝑡ℎ {
[(𝑆𝑁𝐷𝑑𝑎𝑦 −

𝑔𝑚𝑜𝑛𝑡ℎ

6 ) × (
𝑔𝑚𝑜𝑛𝑡ℎ

6 ) + 1]
3

− 1

𝑔𝑚𝑜𝑛𝑡ℎ
}                   (2.12) 

where 𝑅𝑑𝑎𝑦 is the amount of precipitation on a given day in mm, 𝜇𝑚𝑜𝑛𝑡ℎ is the mean daily 

precipitation for the month in mm, 𝜎𝑚𝑜𝑛𝑡ℎ is the standard deviation of daily precipitation for 

the month in mm, 𝑆𝑁𝐷𝑑𝑎𝑦 is the standard normal deviation calculated for the day and 𝑔𝑚𝑜𝑛𝑡ℎ 

is the coefficient of skewness for daily precipitation in the month (Muthuwatta, 2004). 

Mean daily precipitation for the month by: 
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𝜇𝑚𝑜𝑛𝑡ℎ =
𝑃𝐶𝑃𝑀𝑀

𝑃𝐶𝑃𝐷
                                                       (2.13) 

where 𝑃𝐶𝑃𝑀𝑀 and 𝑃𝐶𝑃𝐷 are average amount of precipitation falling in a month (mm month-

1) and average number of days of precipitation in month (days) respectively. 

The standard normal deviation is expressed by: 

𝑆𝑁𝐷𝑑𝑎𝑦 = cos  (6.283 × 𝑟𝑛𝑑1) × √−2 ln(𝑟𝑛𝑑2)                                                 (2.14) 

where 𝑟𝑛𝑑1 and 𝑟𝑛𝑑2 are random numbers between 0 and 1. 

2.6 A review on selected hydrological models 

Five hydrological models were selected for review. The water erosion prediction project 

(WEPP) model, MIKE-système hydrologique européen (SHE) model, Soil and water 

assessment tool (SWAT), TOPography based hydrological MODEL (TOPMODEL) and 

Agricultural catchment research unit (ACRU) Model. The models were selected because they 

are physically based and their ability to account for spatial variability. Moreover, these are 

hydrological models which can be used for streamflow simulations.  

2.6.1 Water erosion prediction project (WEPP) model 

The WEPP model is a physically- (process) based, distributed parameter, continuous 

simulation, water erosion prediction model (Bhawan, 1998; Bowen et al., 1998; Conroy et al., 

2006; Pieri et al., 2007; Wu, 2011). The WEPP model was developed in 1985 for soil and water 

conservation and environmental assessment by the United Nations Department of Agriculture-

Agricultural Research Service (USDA-ARS) (Wu, 2011). The WEPP model’s main application 

is the estimation of soil erosion (Wu, 2011). The WEPP model main input requirements are 

data files from climate, topography, soil and management (Bowen et al., 1998; Conroy et al., 

2006; Pieri et al., 2007; Wu, 2011). The model operates on a daily time step, and requires from 

the climate data file daily values of precipitation, air temperature, relative humidity, wind speed 

and solar radiation (Laflen et al., 1994; Bowen et al., 1998; Pieri et al., 2007).  

The WEPP model is composed of weather generation, winter processes, irrigation, surface 

hydrology and water balance, subsurface hydrology, soils, plant growth, residue 

decomposition, overland-flow hydraulics, and erosion (Pieri et al., 2007). The WEPP model 

divides the catchment into homogeneous properties, where the soil properties and vegetation 
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conditions are regarded uniform and unique. These properties are known as overland flow 

elements (OFE) (Pieri et al., 2007).  

The WEPP model simulates infiltration, runoff, rain drop and flow detachment, sediment 

transport, deposition, plant growth, and residue decomposition (Laflen et al., 1994; Bhawan, 

1998; Bowen et al., 1998; de Jong van Lier et al., 2005). Reference ET is estimated from the 

Penman equation (Penman, 1963) or Priestley-Taylor method (Priestley and Taylor, 1972) 

depending on the availability of wind speed and relative humidity data (Pieri et al., 2007). 

Climgen weather generator is embedded in the model and is used to generate climate data to 

be used for climate scenarios (Laflen et al., 1994; Bhawan, 1998; Pudasaini et al., 2004; de 

Jong van Lier et al., 2005; Pieri et al., 2007).  

One of the disadvantages of the WEPP model is that it is limited to small catchments (Bhawan, 

1998). Two other limitations of the model are that the WEPP model does not explicitly include 

hydrodynamic channel network flood flow routing or sediment transport algorithms but rather 

uses a simplified hydrologic model and single sediment transport capacity equation (Conroy et 

al., 2006). The model uses the soil conservation service curve number to simulate water routing 

from hillslope and this limits the accuracy of runoff simulations, since the method only 

determines the peak flow and volume but ignores the physical processes governing open 

channel flow (Conroy et al., 2006). The WEPP model is freely available online from the 

USDA-ARS website.    

2.6.2 MIKE-système hydrologique européen (SHE) model  

The MIKE-SHE is a deterministic, physically-based, fully distributed model used to simulate 

the different hydrological processes, such as, surface water flow, evapotranspiration, base 

channel flow and groundwater. (Refsgaard and Storm, 1996; El-Nasr et al., 2005; 

Golmohammadi et al., 2014).  The MIKE-SHE model has been used and applied widely in 

research over the past years, developed to substitute for the incompetency of lumped 

conceptual rainfall-runoff models such as the Stanford model (Refsgaard and Abbott, 1996). 

The MIKE-SHE model uses suitable concepts that detail the physical processes in the 

catchment and further capture the processes on various temporal and spatial scales (Refsgaard 

and Abbott, 1996).  
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To account for the spatial variations in catchment properties, Mike-SHE represents the basin 

horizontally by an orthogonal grid network and uses a vertical column at each horizontal grid 

square to describe the variation in the vertical direction (El-Nasr et al., 2005). This is achieved 

by dividing the catchment into a large number of discrete elements or grid squares, then solving 

for the state variables in every grid square (El-Nasr et al., 2005; Golmohammadi et al., 2014). 

The polygons or grid networks are divided according to land use, soil type and precipitation 

(Golmohammadi et al., 2014). It is essential that a large time step be used for this model 

because it has high computational demands (Golmohammadi et al., 2014). 

The Mike-SHE model can be used for any catchment size, small or large (Golmohammadi et 

al., 2014). The Mike-SHE system has been built in such a way that its digital post-processor is 

able to calibrate and evaluate for current conditions and for management alternatives where 

climate, soil and land use keep changing (Golmohammadi et al., 2014). Because of the 

distributed nature of the Mike-SHE model, it requires a large amount of input data to run the 

model. This is the model’s main disadvantage since it is unlikely or rare to find a catchment 

where all input data required to run the model are available and this may limit the model’s 

results (El-Nasr et al., 2005; Golmohammadi et al., 2014). The MIKE-SHE model is not freely 

available online and one needs licencing to have access to the software. 

2.6.3 Soil and water assessment tool (SWAT)  

SWAT is a conceptual physically-based hydrological model which has been developed to 

measure land management practices’ impacts on water, among other applications (Arnold et 

al., 1998; El-Nasr et al., 2005; Gassman et al., 2007; Fadil et al., 2011; Golmohammadi et al., 

2014). The SWAT model has been built and developed in a semi-distributed way, where the 

catchment is sub-divided into sub-catchments and further sub-divided into hydrological 

response units (HRUs), which then allows the model to account for soil, land use and climate 

changes (El-Nasr et al., 2005; Gassman et al., 2007; Golmohammadi et al., 2014). HRUs are 

categorised units, delineated to account for homogeneous regions. This is done by overlying 

digitized maps of soil, slope and land use (Golmohammadi et al., 2014). The water balance of 

each HRU is represented by four storage volumes including snow, soil profile (0–2 m), shallow 

aquifer (typically 2–20 m) and deep aquifer (>20 m) (Rostamian et al., 2008).  

The SWAT model uses a daily time step and is able to conduct continuous simulations over 

long time periods (Arnold et al., 1998; Gassman et al., 2007; Golmohammadi et al., 2014). 
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The main components of SWAT include among others climate, surface runoff, return flow, 

evapotranspiration, crop growth and irrigation, groundwater flow, and water transfers (Arnold 

et al., 1998; Gassman et al., 2007; Fadil et al., 2011). The SWAT model input requirements 

consist of information on climate, soil properties, topography, vegetation, and land 

management practices (Gassman et al., 2007; Golmohammadi et al., 2014).  

The SWAT model has been extensively used and applied for climate change impacts and 

hydrological processes (Gassman et al., 2007). Climatic inputs which are accepted by the 

SWAT model are daily precipitation, maximum and minimum air temperature, solar radiation, 

relative humidity, and wind speed (Gassman et al., 2007). Three methods for estimating 

potential evapotranspiration (ET) are provided: Penman‐Monteith, Priestly‐Taylor, and 

Hargreaves in the SWAT model (Golmohammadi et al., 2014). Relative humidity is required 

when using Priestly‐Taylor ET routines, and when Penman‐Monteith method is used both 

relative humidity and wind speed are required (Golmohammadi et al., 2014). ET values 

estimated outside the SWAT model can also be used as inputs for a simulation run (Gassman 

et al., 2007). According to Gassman et al., (2007), the Penman‐Monteith option must be used 

for climate change scenarios that account for changing atmospheric CO2 levels. The maximum 

and minimum air temperature inputs are used in the calculation of daily soil and water 

temperatures (Golmohammadi et al., 2014).  

SWAT uses GIS tools to process the input data. It has been coupled with a number of GIS 

software products such as ArcSWAT for ArcGIS, QSWAT for QGIS and MWSWAT for Map-

Window (Fadil et al., 2011). Spatial data needed for the ArcSWAT and QSWAT interface are 

DEM, soil type and land use, and the temporal data required are the weather and river discharge 

data (Fadil et al., 2011). Generated weather inputs are calculated from tables derived from 

long-term measured weather records (Gassman et al., 2007).  

The advantage of the SWAT model is that it is computationally efficient to operate on large 

catchments in a practical time scale (El-Nasr et al., 2005). One other advantage of the model 

is that a user can choose an auto-calibration option which reduces labour, frustration and 

minimises uncertainties which come with the manual calibration (Fadil et al., 2011). Another 

advantage is that, because it is supported by the USDA Agricultural Research Service at the 

Grassland, Soil and Water Research Laboratory in Temple, Texas, they have made it freely 

accessible for anyone from the USDA or online http://www.brc.tamus.edu/swat/swatmod.html. 

http://www.brc.tamus.edu/swat/swatmod.html
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As with other hydrological models, one of the limitations when it comes to application of the 

SWAT model is the scarcity of historical data (Fadil et al., 2011). The SWAT model assumes 

that the catchment dimensions remain static, which is unrealistic since simulations are made 

over 100 years or more and in that time-period a catchment could have changed greatly (Arnold 

et al., 1998). The SWAT model is freely available with no registration required. 

2.6.4 TOPography based hydrological MODEL (TOPMODEL) 

The TOPMODEL is a rainfall-runoff, physically-based and semi-distributed hydrological 

catchment model (Nourani et al., 2011; Beven, 2012). The model represents a set of modelling 

tools that combines the computational and parametric efficiency of a lumped modelling 

approach with the link to physical theory (Nourani et al., 2011), and due to this, Franchini et 

al. (1996) argues that the TOPMODEL is more of a lumped conceptual model rather than the 

physically-based model that it is purported to be. TOPMODEL simulates hydrological fluxes 

such as the infiltration-excess overland flow, saturation overland flow, infiltration, sub-surface 

flow, and evapotranspiration throughout the catchment (Nourani et al., 2011).  

The model reads the data in ASCII format, where the data inputs include rainfall, potential 

evapotranspiration which is averaged over the whole catchment and mean soil surface 

transmissivity (Famiglietti et al., 1992; Franchini et al., 1996). TOPMODEL has been 

successfully applied for flood forecasting purposes and has been linked with different random 

rainstorm simulators for flood frequency predictions (Nourani et al., 2011). Many studies have 

been done using TOPMODEL relating the interaction of longer term climate change and 

hydrology (Famiglietti et al., 1992; Beven, 2012). An advantage of TOPMODEL is that 

versions for demonstrations and teachings are freely available (Beven, 2012). 

2.6.5 Agricultural catchment research unit (ACRU) Model 

The ACRU is a physical, conceptual, agro-hydrological model which operates on daily time 

step (Warburton et al., 2010). ACRU was developed in the early 1970s for the application of 

design hydrology, crop yield modelling and reservoir yield simulation (Smithers et al., 1997). 

Model input requirement includes daily rainfall, air temperature, and reference evaporation 

(Smithers et al., 1997, 2013). 

According to Smithers et al. (1997), the ACRU model simulates all major processes of the 

hydrological cycle which affect the soil-water budget and this includes simulation of 
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streamflow volume, peak discharge and hydrograph, among others. The model thus uses past 

rainfall data to simulate and to develop hydrographs that show variations in peak discharges 

(Chetty and Smithers, 2005). The ACRU model may also be used for risk analysis and 

modelling by means of exceedance probability plots, for example flood exceedance probability 

(Smithers et al., 1997). 

The ACRU model is structured in such a way that it is highly sensitive to changes, for example 

climate, land cover/use and soil, hence it may be used for future predictions where there are 

changes involved (Jewitt et al., 2004). This is an advantage and thus, the ACRU model has 

been used extensively in flood estimation and climate change impacts (Smithers et al., 1997). 

The ACRU model may be applied as a point or as a lumped catchment model, and in a 

catchment where physical characteristics and processes are more complex, the model can be 

treated as a distributed model (Smithers et al., 1997). This is done by dividing the catchment 

into sub-catchments of less than 30 km2 (Chetty and Smithers, 2005).  A disadvantage of the 

ACRU model is that it is not user-friendly, hence it requires a model expert to fully run the 

model. The ACRU model is freely accessible from the University of KwaZulu-Natal website, 

under the Centre for Water Resources Research page (http://cwrr.ukzn.ac.za/acru).  

2.7 Model sensitivity analysis, calibration and validation  

Hydrological testing such as sensitivity/uncertainty analysis, calibration, validation and 

statistical measures are required to test the authenticity of a model’s results (Gassman et al., 

2014; Gyamfi et al., 2016). Therefore, before using a model for hydrological analysis, one 

should conduct a sensitivity analysis, calibrate and validate for the catchment parameters in 

which the model is to be applied (Refsgaard and Storm, 1996; Golmohammadi et al., 2014). 

This is because each study area or catchment is different from the other, and depending on the 

environment, land use and soil, some parameters may differ from catchment to catchment 

(Arnold et al., 1998). A model is thus calibrated and verified by means of comparing results of 

the simulation with existing observed data, and then by adjusting parameters so that the 

simulation results may fit the known period of data (Viessman et al., 1989; Mutenyo et al., 

2013).   

2.7.1 Parameter sensitivity analysis  

Catchment processes are influenced by a large number of parameters, which leads to distributed 

hydrological models being subjected to a great number of uncertainties (Rostamian et al., 

http://cwrr.ukzn.ac.za/acru
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2008). Therefore, researchers have developed various uncertainty analysis techniques such as 

the Markov chain Monte Carlo (MCMC) method (Metropolis et al., 1953; Hastings, 1970; 

Geyer, 1992); the generalized likelihood uncertainty estimation (GLUE) (Beven and Binley, 

1992); the parameter solution (ParaSol) (van Griensven and Meixner, 2006); and the sequential 

uncertainty fitting version 2 (SUFI-2) (Abbaspour et al., 2007) to account for such uncertainties 

(Rostamian et al., 2008; Manaswi and Thawait, 2014; Narsimlu et al., 2015).  

These techniques have been interfaced with SWAT into a package known as the SWAT 

calibration uncertainty procedure (SWAT-CUP) (Rostamian et al., 2008; Narsimlu et al., 

2015). SWAT-CUP is a freeware program developed by Abbaspour et al. (2007) which allows 

the use of the above-mentioned different algorithms (SUFI-2, GLUE, MCMC and ParaSol) for 

the optimisation of the SWAT model. This allows for sensitivity analysis, calibration, 

validation and uncertainty analysis looking at the variable at hand (for example, streamflow) 

(Mamo and Jain, 2013; Manaswi and Thawait, 2014; Szezesniak and Piniewski, 2015).  

2.7.2 Description and operation of SUFI-2 

SUFI-2 is an algorithm used to account for different types of uncertainties driving the model, 

parameters and observed data (Singh et al., 2013; Khalid et al., 2016). In SUFI-2, uncertainty 

is defined as the difference between measured and simulated variables (Rostamian et al., 2008). 

The input parameter uncertainty is represented by a uniform distribution, while the output 

uncertainty is computed at the 95% prediction uncertainty (95PPU) (Szezesniak and Piniewski, 

2015). The cumulative distribution of an output variable is obtained through the Latin 

hypercube sampling method calculated at the level of prediction limit of 2.5 and 97.5% 

(Abbaspour, 2015).  

The SUFI-2 model starts by assuming a large parameter uncertainty and then decreases this 

uncertainty through P-factor and R-factor performance statistics (Narsimlu et al., 2015). P-

factor and R-factor are performance indices used by SUFI-2 to evaluate the model performance 

(Narsimlu et al., 2015). The P-factor is the percentage of measured data bracketed in the 95% 

prediction uncertainty (95PPU) indicating how much of the uncertainty is being captured 

(Rostamian et al., 2008; Mamo and Jain, 2013; Singh et al., 2013). The R-factor is the average 

thickness of the 95PPU band divided by the standard deviation of the measured data and 

quantifies the strength of the calibration uncertainty analysis (Mamo and Jain, 2013; Khalid et 

al., 2016).  
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How good the model calibration is and the prediction uncertainties are quantified and judged 

on the basis of the P-factor approaching 100% while the R-factor approaches 1, which indicates 

a very high model perfomance and efficiency (Singh et al., 2013). The P-factor ranges from 0 

to 100% and the R-factor ranges from 0 to infinity (Narsimlu et al., 2015). A P-factor of 1 and 

R-factor of zero is a simulation that exactly corresponds to measured data and the degree to 

which simulation P-factor and R-factor results are different from these numbers can be used to 

judge the strength of the calibration (Mamo and Jain, 2013).   

2.7.3 Calibration  

Due to complex processes that occur in a catchment and uncertainties from modelling 

parameters, models require to be calibrated to minimise predictive errors (Gyamfi et al., 2016). 

Therefore, calibration is used to adjust the parameters until the simulated results and recorded 

data of streamflow correspond (McCuen, 2003; El-Nasr et al., 2005). The calibration procedure 

(Figure 2.3) determines the best values for parameters specified by the user through estimation 

of values for parameters which cannot be measured directly from field data (Refsgaard and 

Storm, 1996; Fadil et al., 2011). The process of calibration can be done manually or 

automatically based on a defined optimisation algorithm, which tries to minimise the objective 

function in order to illustrate the deviation between a measured and a simulated stream flow 

series (Abbaspour, 2015). The auto-calibration option is less labour-intensive and can be used 

to reduce the uncertainties that come with manual calibration (Fadil et al., 2011).  

 

Figure 2.3: Calibration of hydrological models (Refsgaard and Storm, 1996) 
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When calibrating, the total data period is divided into three parts where the first few years are 

used for calibration, the second part used for validation and the final few years are used to run 

the model (Viessman et al., 1989; Golmohammadi et al., 2014). The more complex the model 

is, the more it requires time, knowledge and experience to set up data correctly (McCuen, 

2003). Therefore, when selecting a model, one needs to understand that the model cannot 

substitute for lack of knowledge and neither can the model create new data but can only assume 

the possibility that simulated conditions indeed do occur (Smithers et al., 1997).  

There are three different types of calibration according to Refsgaard and Storm (1996) (Figure 

2.3). The trial and error method of calibration involves the manual adjustment of parameters, 

and assessing the parameters through a number of simulation runs (McCuen, 2003). According 

to Refsgaard and Storm, (1996), this type of calibration is widely used, especially for the more 

complex models. One disadvantage of this type of calibration is that the results are more 

subjective to the user unlike the automatic, numerical parameter optimisation type, thus it 

requires a more experienced user (Viessman et al., 1989). SWAT uses SWAT-CUP for both 

calibration and validation, which is semi-automatic (Abbaspour, 2015). SWAT calibrates by 

applying one of the most widely used algorithm, SUFI-2, which operates based on the Latin 

Hypercube sampling (Gyamfi et al., 2016) (Figure 2.4).  

 

 

 

 

 

 

 

 

 

Figure 2.4 Interaction between a calibration program and SWAT in SWAT-CUP 

(Rostamian et al., 2008) 
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2.7.4 Validation  

To ensure that a calibrated model is considered for later use, it must be tested against data 

different from that used for calibration, and this is called validation (Refsgaard and Storm, 

1996). The model validation is a process that demonstrates that the model is capable of making 

accurate simulations depending on the project aims (Mutenyo et al., 2016). Therefore, a second 

period of record is taken to conduct validation, for control and to confirm the accuracy of the 

parameters derived from the calibration with the first period of record (Manaswi and Thawait, 

2014). According to Refsgaard and Storm (1996), validation thus implies that a model which 

is site-specific can produce simulation results which are accurate for a particular study area.  

2.7.5 Statistical testing  

The most reported upon statistical measures used in hydrological modelling are the coefficient 

of determination (R2), Nash-Sutcliffe modelling efficiency (NSE), percent bias (PBIAS) and 

RMSE-observations standard deviation ratio (RSR) (Gassman et al., 2014; Gyamfi et al., 

2016). The R2 represents the fraction of data that are closest to the line of best fit and thus 

allows one to determine the certainty of predictions; the NSE is used to quantify and assess the 

predictive accuracy of hydrological models output relative to the mean; PBIAS measures the 

average tendency of modelled output to be larger or smaller than the corresponding measured 

data with positive and negative values representing underestimation bias and overestimation 

bias respectively; and the RSR is the ratio of root mean square error between simulated and 

observed values to the standard deviation of the observations (Golmohammadi et al., 2014; 

Narsimlu et al., 2015). The R2 and the NSE may also be used as probability measures through 

the comparison between observed and predicted streamflow (Narsimlu et al., 2015).  

R2 ranging from 0 to 1, below 0.5 is considered unsatisfactory while 0.5 to 0.75 are acceptable 

results and greater than 0.75 is considered good model simulation (Gassman et al., 2007). NSE 

ranges from -∞ to 1; 1 being the optimal value, below 0 considered unsatisfactory, 0 to 0.5 

considered acceptable, 0.5 to 0.75 considered satisfactory and above 0.75 considered good 

simulation results (Gassman et al., 2014; Szezesniak and Piniewski, 2015). The optimal value 

of PBIAS is 0, PBIAS greater than 0 is positive bias and less than 0 is negative bias, and low 

magnitude values indicate accurate model simulation (Narsimlu et al., 2015). RSR varies from 

an optimal value of 0 to a large positive value with lower values of RSR indicating good model 

simulation performance (Golmohammadi et al., 2014). According to Moriasi et al. (2007) and 



30 

Mutenyo et al. (2013), a model should aim at achieving a satisfactory model efficiency of 

concurrently having NSE greater than 0.5, PBIAS of ± 25% and RSR of less than 0.7.  

According to Singh et al. (2013), streamflow is more sensitive to HRU definition thresholds 

than sub-catchment delineation. Therefore, t-test and p-value are variables used to rank the 

various parameters considered to influence the streamflow (Abbaspour, 2015). The t-test and 

the p-value are used to provide a measure and the significance of the sensitivity respectively 

(Narsimlu et al., 2015). The t-test gives a measure of sensitivity of a parameter while p-value 

gives the significance of the sensitivity of that parameter (Gyamfi et al., 2016). Large t-test and 

smaller p-value shows great sensitivity on streamflow. Hence, for p-value < 0.05, the 

parameters are considered to be more sensitive to streamflow (Jha, 2011). On the other hand, 

if p > 0.05, the parameter is considered to be statistically insignificant and has no effect on 

streamflow (Gyamfi et al., 2016).  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Study area 

The Luvuvhu catchment is located in the Limpopo province of South Africa, adjacent to and 

shares watercourses with Zimbabwe and Mozambique (Maré et al., 2007; Hall, 2008). The 

catchment is located between latitudes -22.292658° and -23.299253° and between longitudes 

29.829489° and 31.392228° covering an area of about 5941 km2 on a plateau of 1312 m above 

sea level (Singo et al., 2012).The Luvuvhu catchment encompasses the Luvuvhu River which 

rises as a steep mountain stream in the south-easterly slopes of the Soutpansberg Mountain 

range and then flows 200 km in an easterly direction toward and through the Kruger National 

Park before reaching the confluence with the Limpopo River at the border of South Africa and 

Mozambique (Jewitt et al., 2004; Warburton et al., 2010; Singo et al., 2012). The Limpopo 

River then finally drains into the sea at the northern part of Mozambique (Jewitt et al., 2004) 

(Figure 3.1).  

 

Figure 3.1 The Luvuvhu River catchment 
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Rainfall in the Luvuvhu catchment is strongly seasonal and is influenced by the topography 

and therefore variable both spatially and temporally (Jewitt et al., 2004; Hall, 2008; Warburton 

et al., 2010) (Figure 3.2). The Luvuvhu catchment has a mean annual precipitation of 608 mm 

varying from 300 mm in the drier, lower regions of the catchment to 1870 mm in the 

mountainous upper regions of the catchment (Soutpansberg mountain range) (Jewitt et al., 

2004). The Luvuvhu catchment also experiences a high rate of evaporation with a mean annual 

evaporation of 1678 mm varying from 1905 mm to 2254 mm respectively (Warburton et al., 

2010). Catchment rainfall occurs mainly in the summer months, October to April (Hall, 2008; 

Singo et al., 2012). The Luvuvhu catchment experiences mean annual runoff of about 520×10
6
 

m3 (Jewitt et al., 2004; Maré et al., 2007). Mean annual air temperatures range from 17 oC in 

the mountainous regions to 24 oC towards the catchment outlet (Warburton et al., 2010) 

(Figure 3.3).  

 

Figure 3.2 Rainfall variability in the Luvuvhu River catchment 
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3.2 Soil and water assessment tool (SWAT) 

The SWAT model was chosen for the purpose of this study among the other models which 

were reviewed (Figure 3.4). The reasons for this choice are expressed in (Table 3.1). The 

purpose of using SWAT for this study was to model spatial and temporal variation of surface 

runoff in the Luvuvhu River catchment. Based on the literature and previous studies, the model 

was considered to be best in simulating past data. The choice of model was also based on its 

surpassing capabilities, such as: 

 ability to delineate the interactions of the different parts in the hydrological cycle through 

the model’s deterministic nature (Viessman et al., 1989);  

 ability to express and represent the actual catchment, detailing hydrological and physical 

processes that take place in the catchment (Viessman et al., 1989; Lundin et al., 2000);

Figure 3.3 Average monthly air temperature for the four selected stations over the Luvuvhu 

River catchment 
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Table 3.1 Advantages and disadvantages of hydrological models reviewed (Chapter 2) 

Models Description Advantages Disadvantages 

ACRU  Physical, conceptual agro-

hydrological model 

 Accounts for climate, land use and soil 

changes 

 Applied as a point, lumped or distributed 

model 

 Cannot simulate confined 

groundwater flow and storage 

 Operatively less user friendly 

MIKE-SHE  Physically based, 

deterministic, fully distributed 

model 

 Used for any catchment size 

 Can provide a water budget for the full 

hydrologic cycle 

 High computation demand 

 Large input data 

SWAT  Physically based, 

deterministic, semi- 

distributed model 

 

 Computationally efficient  

 The model has an inbuilt weather 

generator to simulate missing weather 

information. 

 Option for auto-calibration reduces labour 

and uncertainties  

 Freely accessible  

 Assumes catchment dimensions 

remains static 

TOPMODEL  Physically based, lumped, 

conceptual model 

 Freely accessible  Does not take into account 

heterogeneity of the catchment 

WEPP  Physically based, distributed, 

continuous simulation model 

 

 Allows spatial variability in land use and 

soil properties 

 Limited to smaller catchments 

 Does not explicitly include 

hydrodynamic channel networks 

flood flow routing 
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 ability to account for spatial variability of hydrologic processes and changes in the 

catchment (Ramirez, 2000). This is applicable through sub-dividing the catchment into sub-

catchments and further sub-dividing the sub-catchments into hydrological response units 

(HRUs) (El-Nasr et al., 2005; Jha, 2011; Arnold et al., 2012; Gyamfi et al., 2016);  

 the model has not been applied in the Luvuvhu River catchment and this gives an 

opportunity to test the model parameters for the area. 

SWAT is based on the principle that the water balance equation drives all processes that occur 

in a catchment (Arnold et al., 2012; Mutenyo et al., 2013). Therefore, the water balance for 

each sub-catchment is based on (Mutenyo et al., 2013; Kuhn, 2014):  

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝑊𝑖 − 𝑄𝑅𝑖)

𝑡

𝑡=1

                                                            (3.1) 

where 𝑆𝑊𝑡 is the final soil water content (cm3 cm-3), 𝑆𝑊0 is the initial soil water content (cm3 

cm-3) on day i and 𝑅𝑖, 𝑄𝑖, 𝐸𝑇𝑖 , 𝑊𝑖 𝑎𝑛𝑑 𝑄𝑅𝑖 (mm) are precipitation, surface runoff, 

evapotranspiration, seepage flow and return flow on day i respectively. The parameters for the 

water balance equation are estimated using acquired past data. 

Surface runoff is computed using a modification of the SCS curve number given by (Singh et 

al., 2013):  

𝑄𝑖 =
(𝑅𝑖 − 𝐼𝑎)2

𝑅𝑖 − 𝐼𝑎 − 𝑆
 ,                𝑅𝑖 > 𝐼𝑎                                                        (3.2) 

where 𝐼𝑎 is the initial abstraction of rainfall through interception, infiltration and surface 

storage before runoff and 𝑆 is the potential retention (maximum depth of storm rainfall that 

could potentially be abstracted by a given site) (Liu and Li, 2008). 

There is a linear relationship between the two parameters, where the amount of initial 

abstraction 𝐼𝑎 becomes a fraction of a potential maximum retention 𝑆 (Xiao et al., 2011) where: 

                                                             𝐼𝑎 = 𝜆𝑆                                                                            (3.3)  

where λ is an initial abstraction ratio of 0.2 (Singh et al., 2013). 

Therefore runoff will occur when 𝑅𝑖 > 0.2 𝑆 (Fennessey and Hawkins, 2001). The retention 

parameter 𝑆 varies spatially due to soil, land use, management and slope changes, and varies 

temporally due to changes in soil water content (Silveira et al., 2000): 
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                                                 𝑆 =
25400

𝐶𝑁
− 254                                                                (3.4) 

where 𝐶𝑁 is the curve number corresponding to soil type, land use and land management 

conditions which is obtainable from the National Engineering Handbook, Section 4: Hydrology 

(NEH-4) (Fennessey and Hawkins, 2001; Soulis and Valiantzas, 2012). 

3.3 Data collection 

3.3.1 Climate station data 

Although acquiring historical data is very difficult, be it climatological or hydrological, it is 

still essential to obtain such data and make sure that it undergoes quality and homogeneity 

checks using scientifically proven gap-filling techniques (Chen and Liu, 2012). This is because 

hydrological simulation models require observed long-term daily climatic data such as daily 

rainfall, maximum and minimum air temperature, relative humidity, solar radiation and wind 

speed for modelling purposes (Clemence, 1997; McKague et al., 2003; McKague et al., 2005; 

Tingem et al., 2007; Safeeq and Fares, 2011). Four of the ARC-ISCW weather stations in the 

Luvuvhu catchment from the  ARC-ISCW climatic weather database were chosen for this 

study. Their locations and station information are shown in Figure 3.1 and Table 3.2. The 

weather stations chosen were selected according to the availability of data and position in the 

catchment, so that there would be a proper representation of the whole Luvuvhu catchment. 

Stations with fewer years of data were disregarded.  

Table 3.2 Summary of climate stations 

Station 

name 

Latitude 

(degrees) 

Longitude 

(degrees) 

Elevation 

(m) 

Start date End date Years 

Levubu -23.04175 30.1505 880 1983/01/01 2015/06/30 32 

Lwamondo -23.044008 30.37361 648 1978/01/01 2015/06/30 37 

Sigonde -22.3965 30.71308 416 1983/01/01 2015/06/30 32 

Tshiombo -22.80147 30.48145 650 1983/01/01 2015/06/30 32 
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Figure 3.4 SWAT model (source: Garrison, 2012) 

Rainfall data was patched using an inverse distance weighting (IDW) method that is based on 

the concept of Tobler’s law of geography (Chen and Liu, 2012, Moeletsi et al., 2016). The 

method assigns a value to the missing data using neighbouring stations with known values that 

are within a certain radius from the weather station to be patched (Chen and Liu, 2012). Three 

closest weather stations were considered to implement the IDW method using the adjustment 

of power of two (∝= 2): 

𝑅̂𝑝 = ∑ 𝑤𝑖𝑅𝑖

𝑁

𝑖=1

                                                                           (3.2) 

𝑤𝑖 =
𝑑𝑖

−∝

∑ 𝑑𝑖
−∝𝑁

𝑖=1

                                                                           (3.3) 

where 𝑅̂𝑝 is the estimated rainfall data value in mm for the missing value, 𝑅𝑖 is the measured 

rainfall from the closest rainfall stations in mm, 𝑁 is the number of rainfall stations used, 𝑤𝑖 is 

the weighting of each rainfall station, 𝑑𝑖 is the distance from each rainfall station to that with 

the missing rainfall and ∝ is the power or control parameter. 
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Minimum and maximum air temperatures were patched using the method known as the 

multiple linear regression (MLR) (Moeletsi et al., 2016). The method considers the best 

correlated stations (Montgomery et al., 2006). In this case, five best correlated stations were 

chosen. With the stations chosen, a linear regression line that best defines the five stations was 

identified. Thus the regression equation (Equation 3.4) obtained from the regression line was 

then used to estimate the missing air temperature values (Equation 3.5):  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀                                                    (3.4) 

𝑦 = ∑ 𝛽𝑖𝑥𝑖

𝑁

𝑖=1

+ 𝛽0                                                                     (3.5) 

where 𝑦 is the estimated value, 𝛽0 is the intercept of the regression plane, 𝛽𝑖 (𝛽1, 𝛽2 … ) is the 

slope coefficient, 𝑥𝑖 (𝑥1, 𝑥2 … ) are the known variables, 𝑁 is the number of stations and 𝜀 is 

the error term (Montgomery et al., 2006). 

Since daily shortwave radiation measurements were not available, daily sunshine hours were 

used to calculate solar radiation. Solar radiation was calculated using the equation developed 

by Ångström (1924) (Equation 3.6), where solar radiation is related to radiation received at 

the top of the atmosphere (extra-terrestrial radiation) 𝑅𝑎 and the fraction of actual to maximum 

possible sunshine hours 𝑛 (Ncube, 2006).  

𝑅𝑠 = [𝑎 + 𝑏
𝑛

𝐷
] 𝑅𝑎                                                                    (3.6) 

where Rs is the daily solar radiation in (MJ m-2 ), a, b are the regression constants for estimation 

of shortwave radiation from sunshine duration and the general values for southern Africa are 

0.24 and 0.53 respectively (Ncube, 2006). The constants vary seasonally, regionally and 

depend on the time scale (i.e. daily, weekly or monthly); n is the actual sunshine duration in 

hours; D is the day length in hours, varying with latitude and day of year; Ra is the solar 

radiation received on a horizontal plane at the top of the atmosphere (i.e. extra-terrestrial solar 

irradiance in MJ m-2).  

Table 3.3 summarises the interpolated values for D and Ra obtained from Table B.1 and Table 

B.2 in Appendix B by Wilson 1(990) (cited by Ncube, 2006). The values together with the 

sunshine hour time series were used to calculate the solar radiation using the solar radiation 

equation above. The latitude for the study area is 22 degrees south of the equator. Average 
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daily solar radiation estimated for the four weather stations over the Luvuvhu River catchment 

depicted high solar radiation over the mountainous region of the catchment (Figure 3.5).    

Table 3.3: Daily interpolated values for day length D and extra-terrestrial solar 

irradiance Ra for 22 °S 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

D 

(h) 

13.35 12.90 12.30 11.65 11.05 10.75 10.85 11.40 12.0 12.65 13.20 13.50 

Ra 

(MJ 

m-2) 

40.79 42.44 34.10 29.72 24.17 22.88 23.30 27.30 33.46 36.98 41.36 41.27 

 

 

Figure 3.5: Average daily solar radiation of four selected stations from the Luvuvhu River 

catchment 

Relative humidity (RH) missing values were filled by using a method by Eccel (2012). For this 

method, estimations of water vapour pressures at the maximum (Tx) and minimum (Tn) air 

temperatures were required. This meant that the dew point temperature had to be estimated 

through the following assumptions: 

(a) the minimum air temperature was assumed to equal the dew point temperature;  
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(b) correction of the first assumption was carried out depending on either the presence or 

absence of precipitation or the water balance of the previous day (Eccel, 2012).  

From the two assumptions, RH was estimated using air temperature using the following ratio:  

𝑅𝐻 =
𝑒

𝑒𝑠
× 100                                                          (3.7) 

where 𝑒 is the actual water vapour pressure (kPa), and 𝑒𝑠 the saturation water vapour pressure 

(kPa).  

The water vapour pressure was calculated using a common exponential function:  

𝑒𝑠(𝑇𝑛) = 0.61078 𝑒𝑥𝑝17.269 
𝑇

𝑇+237.3                                                      (3.8) 

where 𝑒𝑠 is the water vapour pressure (kPa) at the daily minimum air temperature (𝑇𝑛) (°C) 

(Allen et al., 1998). 

Wind speed gaps were patched with a 2.0 m s-1 value since it is a standard acceptable average 

wind speed infilling value for most locations (Pasi, 2014). 

3.3.2 Streamflow data 

Daily flow data from the Department of Water and Sanitation (DWS) were used in this study. 

Stations with 20 years or more of data were selected. Out of the streamflow weir stations 

located inside the Luvuvhu catchment only four weir stations were chosen: A9H003, A9H006, 

A9H012 and A9H013 (Figure 3.1 and Table 3.4). The stations were chosen based on the 

following: availability of data; representation of the catchment (location); and that the data set 

included recent years. The streamflow data were used to calibrate simulated runoff. 

3.3.3 GIS data (soil, land use and digital elevation model (DEM) data) 

Shape files were obtained from the ARC-ISCW GIS data library. The dataset contains 

catchment delineation shape files of the Luvuvhu catchment (Luvuvhu secondary, quaternary 

and river shape files), digital elevation model (DEM), land use map and soils map. Soil and 

land use data were taken from the national land type and land cover maps respectively; 

however, a new and rarely researched “flow path improved STRM_90 DEM” was used for 

DEM. The data were modified according to model requirements. The soil and land use were 

converted to raster files and together with the DEM were re-projected from WSG 84 to WSG 

84/UTM zone 36S projection which was recommended as an improved projection since the 
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study area has a north-south orientation. The soil, land use and DEM were projected into the 

same projection so that they would be accepted by the model.     

Table 3.4 Summary of the weir stations  

Station no Location Catchment 

area (km²) 

Latitude 

(degrees) 

Longitude 

(degrees) 

Data 

available 

Years 

A9H003 Tshinane River 

in  haTshivhase 

62 -22.89828 30.52391 1931-09-02 

2015-04-15 

84 

A9H006 Livhungwa 

River in Barotta 

16 -23.03577 30.27752 1961-11-13 

2014-08-28 

53 

A9H012 Luvuvhu River 

in haMhinga 

1758 -22.7705 30.88672 1987-11-04 

2015-03-03 

28 

A9H013 Mutale River in 

Kruger National 

Park 

1776 -22.43775 31.07832 1988-11-02 

2013-02-14 

25 

3.4 Data processing and preparation 

The processing tools used were: MS Excel using pivot tables; pcpSTAT (Stefan Liersch, 2003) 

for precipitation data manipulation; and QGIS desktop 2.6.1 for all GIS data.  All maps 

generated were projected into the same projection (Table 3.5). 

Table 3.5 Universal transverse Mercator for the Luvuvhu river catchment 

Parameters WSG 84/UTM zone 36S 

Projection Transverse Mercator 

Spheroid WGS_1984 

Datum D_WGS_1984 

Zone 36 

Central meridian 33 

Reference Latitude  0 

Northing (m) 10000000 

Easting (m) 500000 

Scale factor 0.9996 
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3.4.1 DEM Preparation 

A DEM is required to facilitate the delineation of the catchment into multiple hydrologically 

connected sub-catchments (Dile et al., 2015). As mentioned previously, a flow-path improved 

90 m DEM from the Shuttle Radar Topography Mission (SRTM) was used. Although the 90- 

m resolution is considered to be inadequate, the study area catchment is large and using a less 

detailed DEM was advisable. The created DEM for the study area is depicted (Figure 3.6). 

 

Figure 3.6: DEM for the study area (flow-path improved STRM_90m) 

3.4.2 Land use and soil data preparation 

Land use and soil data are important in determining soil and land use hydrologic parameters 

for the creation of hydrological response units (HRUs) (Ncube, 2006; Golmohammadi et al., 

2014). The land use and soil shapefile maps which were obtained from the ARC-ISCW GIS 

data library were clipped to fit the Luvuvhu River catchment.  

The model requires that a table be created for land use and soil maps. The prepared tables 

should be copied to either the QSWAT project database which is created when SWAT Editor 

software is installed or the project database that is created for every new project. In the case of 

the former, the tables are copied into every new project database created. For the latter, the 
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tables are only for the particular project. For this study, the prepared tables were copied to the 

QSWAT project database. 

Soils 

In the case of the soil map, the table which is created needs to have a string soil in its name 

thus allowing the table to be recognised by the model and be offered as an option for soil table 

on the dropdown menu. The table should contain the soil identity and the soil name. All the 

soil names used should also be available on the usersoil table found in the SWAT reference 

database. The soil map created is depicted in Figure 3.7 while the table created is depicted in 

Table B.3 in Appendix B. 

 

The SWAT model requires soil physical properties for simulation purposes (Table 3.6) and 

since there were no available data for different soil layers, it was assumed that there was only 

one layer. One of the soil physical properties required is the soil hydrologic group. The different 

groups are defined by grouping soils with same infiltration rates, soil depths, and drainage 

capacity and runoff potential under storm and cover conditions (Ponce and Hawkins, 1996). 

The soil hydrologic group were assigned to each soil class in the catchment according to the 

Figure 3.7 Soil map for the Luvuvhu River catchment   
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information obtained from the soil map and soil inventory datasets from the ARC-ISCW 

(Table B.3). Soil albedo (0.1) was taken from default value.  

Table 3.6: Soil physical properties required by SWAT model 

 

The available water capacity (𝜃𝑎) parameter was attained by taking the difference between field 

capacity (𝜃𝑓𝑐) and permanent wilting point (𝜃𝑝𝑤𝑝). Field capacity is the index of water content 

that can be held against the force of gravity thus corresponding to the pressure head of -3.4 m  

while the permanent wilting point is calculated as soil water content corresponding to -150 m 

since plants cannot exert suctions stronger than -150 m (Karkanis, 1983; Muthuwatta, 2004). 

These parameters are thus computed as follows: 

PARAMETER DEFINITION 

HYDGRP Soil hydrologic group (A, B, C and D). 

SOL_ZMX Maximum rooting depth of soil profile. 

ANION_EXCL Fraction of porosity (void space) from which anions are excluded. 

SOL_CRK Crack volume potential of soil. 

TEXTURE Texture of soil layer. 

SOL_Z Depth from soil surface to bottom of layer. 

SOL_BD Moist bulk density. 

SOL_AWC Available water capacity of the soil layer. 

SOL_K Saturated hydraulic conductivity. 

SOL_CBN Organic carbon content. 

CLAY Clay content. 

SILT Silt content. 

SAND Sand content. 

ROCK Rock fragment content. 

SOL_ALB Moist soil albedo. 
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field capacity (θfc):     

𝜃𝑓𝑐 = ∅(
𝜑𝑎𝑒

340
)

1
𝑏⁄                                                                          (3.9) 

permanent wilting point (θpwp): 

𝜃𝑝𝑤𝑝 = ∅(
𝜑𝑎𝑒

15000
)

1
𝑏⁄                                                                  (3.10) 

and therefore:  

𝜃𝑎 = 𝜃𝑓𝑐 − 𝜃𝑝𝑤𝑝                                                                          (3.11) 

where ∅ is the porosity,  𝜑𝑎𝑒 is the air entry water content in m, and b the exponent describing 

the soil water characteristic relationship.  

Values for the different variables above are expressed (Table 3.7) including the saturated 

hydraulic conductivity (Kh) values. Other soil parameters required by the SWAT model such 

as bulk density and organic carbon are expressed in Appendix C.  

Land use  

In the case of preparing a land use table, there should be a string landuse in the file name so 

that it would be recognised by the model and be offered as an option for the land use table on 

the dropdown menu. The land use table should contain at least columns land use ID and SWAT 

code, where the SWAT code strings are four letters and should be found in the crop table 

contained in the SWAT reference database. The created land use table is depicted in Table 3.8 

while the map is depicted in Figure 3.8. 

3.4.3 Climate data preparation 

The model requires that the station information of all climate variables available be prepared 

before it can be implemented. The information needed includes station ID, station name, 

latitude, longitude and elevation. Missing values in the data were replaced with -99. Data 

format of all climate variables: solar radiation (MJ m-2), wind speed (m s-1), relative humidity 

(decimal fraction) and precipitation (mm) were the same, while the difference was when 

preparing minimum and maximum air temperature, where the minimum and maximum air 

temperature had to be separated by a comma. 
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Table 3.7 Parameter for estimating the available water capacity in different soils 

(Muthuwatta, 2004) 

Soil Texture ϕ Kh (m s-1) φae (m) b 

Sand 0.395 1.76×10-4 121 4.05 

Loamy sand 0.410 1.56×10-4 90 4.38 

Sandy loam 0.435 3.47×10-5 218 4.90 

Silt loam 0.485 7.20×10-6 786 5.30 

Loam 0.451 6.95×10-6 478 5.39 

Sandy clay loam 0.420 6.30×10-6 299 7.12 

Silty clay loam 0.477 1.70×10-6 356 7.75 

Clay loam 0.476 2.45×10-6 630 8.52 

Sandy clay 0.426 2.17×10-6 153 10.40 

Silty clay 0.492 1.03×10-6 490 10.40 

Clay 0.482 1.28×10-6 405 11.40 

Figure 3.8 Land use map for the Luvuvhu River catchment 



47 

Table 3.8 SWAT land use name convention 

Land-use SWAT code Physical name 

1 WATR Water 

2 FRST Forest-mixed 

3 SAVA Savana 

4 CRWO Cropland/woodland mosaic 

5 GRAS Grassland 

6 SHRB Shrubland 

7 ORCD Orchard 

8 MIXC Mixed dryland/irrigated crop 

9 FRSE Forest-evergreen 

3.4.4 Weather generation and preparation 

The SWAT model requires observed long-term daily climatic data such as daily rainfall, air 

temperature, relative humidity, solar radiation and wind speed for it to run or be applied 

(Clemence, 1997; McKague et al., 2003; McKague et al., 2005; Tingem et al., 2007; Safeeq 

and Fares, 2011). In the case where there are no measured data available, SWAT model uses 

data which is simulated by a weather generator model WXGEN. The WXGEN model generates 

precipitation data for the day and is thus able to generate data for other parameters (min/max 

air temperature, solar radiation and relative humidity) based on the availability of daily rainfall 

(Muthuwatta, 2004).   

SWAT was able to generate rainfall using the WXGEN model based on historical statistics of 

weather elements like precipitation. The estimated parameters expressed in Table 3.9 were 

tabulated in a weather generator table required by SWAT. The weather generator table 

contained parameters for all the weather stations where each weather station was represented 

by one line in the table. The weather generator table was created using statistical parameter 

data of daily precipitation obtained from the precipitation statistics (pcpSTAT) software while 

other parameters such as air temperature, RH, solar radiation and wind speed were obtained 

using the Excel pivot tables.  
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Table 3.9 Climate and statistical parameters needed by the SWAT model for the weather generator table 

PARAMETER MIN_ MAX_ DEFAULT UNITS DEFINITION 

RAIN_YRS 5 100 14 Numeric The number of years of maximum monthly 0.5 h rainfall data. 

TMPMX -30 50 0 oC Average maximum air temperature for month. 

TMPMN -40 40 1 oC Average minimum air temperature for month. 

TMPSTDMX 0.1 100 2 oC Standard deviation for maximum air temperature in month. 

TMPSTDMN 0.1 30 3 oC Standard deviation for minimum air temperature in month. 

PCPMM 0 600 4 mm month-1 Average amount of precipitation falling in month. 

PCPSTD 0.1 50 5 mm month-1 Standard deviation for daily precipitation in month. 

PCPSKW -50 20 6 na Skew coefficient for daily precipitation in month. 

PR_W1 0 0.95 7 fraction Probability of a wet day following a dry day in the month. 

PR_W2  0 0.95 8 Fraction Probability of a wet day following a wet day in the month. 

PCPD 0 31 9 days Average number of days of precipitation in month. 

RAINHHMX 0 125 10 Mm Maximum 0.5 hour rainfall in entire period of record for month. 

SOLARAV 0 750 11 MJ m-2 Average daily solar radiation in month. 

DEWPT -50 25 12 oC Average dew point temperature in month. 

WNDAV 0 100 13 m s-1 Average wind speed in month. 



49 

The created weather generator table was added to the QSWAT reference database starting with 

a string WGEN so that whenever a new project is created the table would be available. The 

SWAT Editor allocates to each sub-catchment the nearest weather generation from the selected 

table. Figure 3.9 depicts a snapshot of the window that appears in SWAT Editor when selecting 

the appropriate weather generator table.     

3.5 Modelling using SWAT hydrological model 

3.5.1 Model setup 

Hydrological simulation was performed with the 2012 version of SWAT model through an 

interface between the model and QGIS desktop 2.6.1 software, QSWAT 1.3 2016. The model 

was set up following the guidelines laid out in (Dile et al., 2015), which details the use of QGIS 

interface of SWAT 2012 known as QSWAT. The process of running SWAT model on a QGIS 

interface, QSWAT, is shown in Figure 3.10. The model was run for a 33-year period of 1983 

to 2015 but the first 3 years were used as “warm up” period to mitigate unknown initial 

conditions and hence were excluded from the analysis. 

Figure 3.9 Weather data definition menu in the QSWAT program 
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Figure 3.10 The SWAT model process flow diagram 

There are three steps that a user needs to complete before the model can run, and these are: 

delineating the catchment, Creating HRUs and Editing inputs and Run SWAT (Figure D.1 and 

Figure D.2). The following sections will be looking at the different steps detailing the five 

input parameters required by the model. 

3.5.1.1 Delineation of catchments and sub-catchments 

Delineation of the catchment and sub-catchment were done automatically using the SWAT tool 

whereby the catchment was sub-divided into smaller catchments and stream networks 

generated looking at topography, flow direction and flow accumulation (Figure 3.11).  In 

delineating the catchment, a flow vector is created by filling the basins in the DEM thus 

increasing the elevation of basins until they overflow (Fadil et al., 2011). When the overflow 
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has occurred, flow accumulation grid is then created by numbering the cells flowing into each 

unit in the grid, meaning the flow accumulation is related to the flowing cells (which are part 

of the stream network) (Ncube, 2006). Stream networks were created automatically and the 

catchment outlet was modified to fit the project’s requirements by adding the outlet position 

manually. The watershed was then created, and point sources added to each sub-catchment.  

Figure 3.11 Catchment and sub-catchment delineation  
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3.5.1.2 Definition of land use and soil overlay 

Soil and land use data are very important when it comes to the creation of HRUs. Soil and land 

use maps were imported into the SWAT model following the procedure expressed in (Dile et 

al., 2015). The created soil and land use tables were saved in the QSWAT project database in 

order to appear as options in the model drop down (Figure 3.12). 

3.5.1.3 Hydrological response units 

Having divided the catchment into several sub-catchments, the catchments were further divided 

into smaller units. These are the hydrological response units (HRU) which are used by the 

SWAT model (Figure 3.12) (Vazquez-Amabile et al., 2006; Jha, 2011).  

Figure 3.12 HRUs creation through land use and soil overlay definition  
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The SWAT model was able to read the information supplied in the land use and soil tables and 

also in the maps and therefore able to create the HRUs. The HRUs were created by overlaying 

analysis of land use, soil and slopes from information obtained from slope range, soil and land 

use maps and tables (Vazquez-Amabile et al., 2006). A threshold of 10% was recommended 

and selected for soil, land use and slope to divide the HRUs. This meant that if the percentage 

of soil and land use was less than the threshold value (10%) of the sub-catchment area it was 

then considered insignificant and not included in the analysis (Mutenyo et al., 2013). This 

approach defines the HRUs by creating at least one HRU per sub-catchment given the threshold 

value for soil and land use (Ncube, 2006). In the process of delineation, QSWAT automatically 

estimates the number of HRUs and stores the parameters into a SWAT sub-catchment input 

file.  

3.5.1.4 Edit input and run SWAT 

 The SWAT editor was connected to the project database and SWAT reference database, which 

then was able to activate the “Write input tables” (Figure 3.13 and Figure 3.14). Weather 

generator and climate data are provided through the option of “Weather stations”. For each 

sub-catchment, the model uses observed climate data from the closest station. If there is no 

observed station climate data, QSWAT uses simulated data from the weather generator 

(Golmohammadi et al., 2014).  

 

Figure 3.13   SWAT Editor input database
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3.6 Sensitivity analysis, calibration and validation  

3.6.1 Parameter sensitivity analysis 

Before calibration and validation processes, SWAT requires that a sensitivity analysis of the 

most sensitive parameters for a given catchment be conducted (Mutenyo et al., 2013). A large 

number of parameter inputs influences the catchment processes (Gyamfi et al., 2016). Hence, 

it is essential to perform a sensitivity analysis test. A sensitivity analysis was conducted using 

the sequential uncertainty fitting (SUFI-2) algorithm to categorise main parameters that have 

more effect on streamflow. To determine the most sensitive parameters, the global sensitivity 

analysis approach was chosen. The global sensitivity analysis considers the sensitivity of one 

parameter in relation to other parameters which are under consideration  (Arnold et al., 2012). 

The global sensitivity of surface runoff parameters was calculated using Latin hypercube 

Figure 3.14 Window of complete written database tables  
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regression analyses and the minimum and maximum ranges of parameters were then fitted for 

calibration using the SUFI-2 uncertainty technique. The parameters were ranked according to 

their model sensitivity during calibration. Consistent with literature, these parameters are 

responsible for model calibration and parameter changes during different iterations. During 

sensitivity analyses, scatter plots were created and were used to display the distribution of 

simulations in parameter sensitivity analysis by comparing parameter values on the x-axis with 

the objective functions on the y-axis, value R2 with a threshold of 0.5. 

The level of significance between datasets was established by applying t-test and p-value 

sensitivity analyses parameters, to identify relative sensitivity of each parameter and to provide 

the significance of the sensitivity respectively. The t-test and p-value were used to rank the 

various parameters considered to have more influence on streamflow. The t-test gives a measure 

of the sensitivity of a parameter while the p-value gives the significance of the sensitivity of 

that parameter (Gyamfi et al., 2016). Parameters with higher t-test values and lower p-values 

show greater sensitivity on the streamflow (Jha, 2011).  

According to past studies, Table 3.10 depicts parameters which have been found to be sensitive 

to streamflow. A sensitivity analysis was conducted for each sub-catchment because parameters 

vary from one catchment to the other depending on geomorphological characteristics and other 

processes occuring in the catchment (Arnold et al., 2012). Initially, parameters in Table 3.10 

were considered for sensitivity analyses and final parameters were selected based on the t-test 

and p-value. Having accomplished the sensitivity analyses, model calibration was then carried 

out using the selected most sensitive parameters. 

3.6.2 Calibration and validation 

It is important to calibrate and validate the model in order to reduce errors (Pasi, 2014; Gyamfi 

et al., 2016). SUFI-2 was used to calibrate and validate the hydrologic setup of the model 

through its interface with SWAT calibration and uncertainty procedure (SWAT-CUP). The 

streamflow weir station A9H013 was selected to be the outlet point of the catchment. The 

reason for the selection was due to its location in the catchment and the availability of 

streamflow data, which makes it applicable for calibration and validation.  
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Table 3.10 Parameters considered for sensitivity analysis (Gyamfi et al., 2016) 

Parameter 

name 

Description 

CN2 SCS runoff curve number. 

ESCO Soil evaporation compensation factor. 

GWQMN Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm H2O). 

SOL_AWC Soil available water storage capacity (mm H2O/mm soil). 

GW_REVAP Groundwater revap coefficient. 

RCHRG_DP Deep aquifer percolation function. 

SOL_Z Soil depth (mm). 

SURLAG Surface runoff lag coefficient (days). 

SOL_K Soil conductivity (mm h-1). 

CH_K2 Effective hydraulic conductivity in the main channel (mm h-1). 

ALPHA_BF Baseflow alpha factor (day). 

GW_DELAY Groundwater delay (day). 

ALPHA_BNK Baseflow alpha factor for bank storage (day). 

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur 

(mm). 

A split sample procedure using daily streamflow data from weir stations, A9H003, A9H006, 

A9H012 and A9H013 for the period 1986-2005 and 2006-2015 were used for calibration and 

validation respectively. Multiple simulation iterations were executed with a minimum of 300 

simulations in each run.  

3.6.3 Performance indices 

Performance of the model in simulating the observed streamflow was judged against four 

objective functions. Objective functions are not universally applicable to all situations hence 

the choice is dictated by the objective of the particular study (Gyamfi et al., 2016). The 

goodness-of-fit and efficiency of the model were tested using four main objective functions, 

R2, NSE, PBIAS, RSR and two performance indices, P-factor and R-factor. The performance 

of the model was judged according to findings from literature.  

The formulae of these efficiency measures are as follows: 
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𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

                                                     (3.17) 

𝑅2 = [
∑ (𝑂𝑖 − 𝑆𝑖)(𝑆𝑖 − 𝑆̅)𝑛

𝑖=1
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𝑖=1 )0.5(∑ (𝑆𝑖 − 𝑆̅)2𝑛
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]

2

                  (3.18) 
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𝑛
𝑖=1 × 100

∑ 𝑂𝑖
𝑛
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                                               (3.19) 

𝑅𝑆𝑅 =
√∑ (𝑂𝑖 − 𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

                                                            (3.20) 

where 𝑂𝑖 is observed variable, 𝑆𝑖 is simulated variable, 𝑂̅ is the mean observed variable, 𝑆̅ is 

the mean simulated variable and 𝑛 is the number of observations under consideration. 

The model calibration was aimed at achieving a satisfactory model efficiency of concurrently 

having NSE ≥ 0.5, PBIAS ± 25 % and RSR < 0.7 (Mutenyo et al., 2013). 

SUFI-2 assumes large parameter uncertainty and decreases this uncertainty through P-factor 

and R-factor performance statistics. The P-factor was used to quantify all the uncertainties 

associated with the SWAT model by bracketing an amount of measured data containing all 

uncertainties. SUFI-2 algorithm was used to reduce uncertainty by placing most of the observed 

streamflow data in the 95% band. These model uncertainties can be accounted for due to some 

errors in data input sources, data preparation and parameterization. Other sources of uncertainty 

may be the result of human and instrumental errors during data processing. Rainfall in the 

Luvuvhu catchment is not equally distributed due to topography variation and thus may 

contribute to some of the uncertainties in the model because of insufficient data availability. 

Furthermore, model structure may also be the source of uncertainties.  

3.6.4 Flood frequency and risk analysis 

Following calibration and validation, SWAT was run to simulate 30 years in order to compute 

flood annual exceedance probability. Flood frequency analyses were performed for all four sub-

catchments for the simulated peaks. The log-normal probability distribution was used to fit the 

maximum annual peak data to estimate the flood frequencies. The flood magnitudes were 

estimated at seven different return periods of 2, 5, 10, 25, 50, 100 and 200 years. Graphical 

extrapolation was used to estimate the flood peaks for higher return periods. A 30-year period 

of data from 1986 to 2015 was used to attain the flood frequencies. The data were sorted from 
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highest to lowest so that a reoccurrence interval could be calculated. The reoccurrence interval 

was calculated using:  

𝑅𝐼 =
𝑛 + 1

𝑚
                                                                                     (3.21) 

where 𝑛 is the number of years in the set, and 𝑚 is the rank of discharge.  

The exceedance probability of the critical value were presented in plots for the whole catchment 

and for the other three sub-catchments.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Initial model run analysis 

Once the SWAT model was set up, reports retrieved from the model indicated elevation ranging 

from 199 to 1588 m with mean of 625.21 m and standard deviation of 235.72 m.  The model 

was initially run for four sub-catchments: sub-catchment 6, 10, 15 and 17 produced during the 

delineation process (Figure 4.1). Simulations from the four sub-catchments were compared 

with the observed daily flows from four weir stations chosen for the study (Figure 4.2).  

The water balance components of the catchment were calculated using the water balance 

equation of the SWAT model and the computed results were analysed in the SWAT check tool 

(Table 4.1). The average curve number was computed to be 49.96 which meant the 

hydrological condition of the Luvuvhu River catchment ranged from fair to poor and therefore 

prone to runoff and ultimately flooding (Table E.1) (Pitt, 2002). 

Figure 4.1 Sub-catchments delineation through QSWAT 
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Table 4.1 Simulation details of the SWAT model set-up 

General details  

  Simulation length (years) 33 

  Warm up (years) 3 

  Hydrological response units 214 

  Sub-basins 17 

  Output time-step  

  Precipitation method 

Daily 

Measured 

  Watershed area (km2) 

 

5273.1 

Hydrology (water balance ratio)  

  Streamflow/precipitation 0.61 

  Baseflow/total flow 0.68 

  Surface run-off/total flow 0.32 

  Percolation/precipitation 0.42 

  Deep recharge/precipitation 0.02 

  ET/precipitation 0.34 

 

Hydrological parameters  

  Average curve number 49.96 

  ET and transpiration (mm) 268.4 

  Precipitation (mm) 

  PET (mm) 

780.3 

946.4 

  Surface run-off (mm) 153.18 

  Lateral flow (mm) 33.18 

  Return flow (mm) 293.45 

  Percolation to shallow aquifer (mm) 325.04 

  Recharge to deep aquifer (mm) 16.25 

  Re-evaporation from shallow aquifer (mm) 16.53 

To evaluate the performance of the model before calibration, correlation coefficient (R), 

coefficient of determination (R2), mean absolute error (MAE), mean bias error (MBE), root 

mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) index were used (Table 4.2).  
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Table 4.2 Statistic evaluation of simulated versus observed streamflow data before 

calibration. 

Sub-catchments MAE* MBE** RMSE*** R2 R NSE**** 

6 7.68 3.01 9.41 0.46 0.68 0.54 

10 23.87 23.82 25.93 0.43 0.66 -11.05 

15 36.14 25.57 58.01 0.37 0.61 0.11 

17 66.51 66.06 98.80 0.30 0.55 -3.04 

*MAE=Mean absolute error (m3 s-1) **MBE=Mean bias error (m3 s-1)      ***RMSE=Root mean 

square error (m3 s-1) ****NSE=Nash–Sutcliffe efficiency 

Results reveal a significant correlation in all the sub-catchments 6, 10, 15 and 17 with R of 0.68, 

0.66, 0.61 and 0.55 respectively (Figure 4.2). However, the coefficient of determination results 

for sub-catchment 6, 10, 15 and 17 reveal that in all of the sub-catchments, one cannot be certain 

when predicting using the model because of the R2 of 0.46, 0.43, 0.37 and 0.30 respectively.  

The regression line does not represent the data well, since the strength between the observed 

and simulated variables was not strong, and only less than 46% of the simulated variation can 

be explained by the linear relationship between observed and simulated while more than 54% 

remains unexplained. The RMSE imply unacceptable model results since there is larger 

variation than bias while the positive MBE shows that the model overestimates the observed 

data. There is not much difference between MAE and RMSE for sub-catchment 6 and 10 hence 

there was less variance in the individual errors in the sample. However, sub-catchments 15 and 

17 revealed a greater difference between MAE and RMSE, which implies greater variance in 

the individual errors in the sample. The NSE index indicated a good model performance in sub-

catchments 6 and 15 showing an NSE index of 0.54 and 0.11 respectively. Conversely, sub-

catchments 10 and 17 revealed an NSE index less than zero which suggests that the observed 

mean was a better predictor than the model. Judging the initial model run by the above 

efficiency measures, it is evident that a calibration and validation procedure should be done for 

each of the sub-catchments to attain improved parameter estimation for improved model 

simulation.  
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Figure 4.2 Comparison of simulated and observed daily discharge through hydrographs 

and regression graphs for the period 1986-2015 at stations: A9H003, A9H006, A9H012 

and A9H013 
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4.1.2 Model calibration 

SUFI-2 was applied for model sensitivity, calibration and uncertainty analysis. The model was 

calibrated using twelve parameters which, based on previous studies, were recorded to be the 

most sensitive parameters for streamflow. Over 300 simulations in five iterations were run to 

achieve the best model efficiency between the observed and simulated flows.  

4.1.2.1 Parameter sensitivity analysis 

The global sensitivity analysis based on surface runoff showed that the most sensitive 

parameters in SWAT hydrological modeling for the Luvuvhu river catchment are baseflow 

alpha factor (ALPHA_BF), initial SCS runoff curve number for moisture condition II (CN2), 

groundwater delay time (GW_DELAY), and saturated hydraulic conductivity (SOL_K) with p 

< 0.05 (Figure 4.3 and Table 4.3). This result confirms similar studies done by Fadil et al. 

(2011), Mamo and Jain (2013) and Gyamfi et al. (2016) where these parameters were shown to 

be most sensitive to streamflow. The remaining parameters were found to have no significant 

effect on streamflow simulations and caused no significant changes in the model surface runoff 

output with p > 0.05. This agreed with literature with Jha (2011) confirming that great 

sensitivity on streamflow is when there is high t-test value and lower p-value.  

Figure 4.3: Global sensitivity analysis and ranking of SWAT parameters 
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Looking at the scatter plots created during calibration, significant variation/distribution 

parameter values were observed in most of the parameters ( 

Figure E.1). However, parameters ALPHA_BF, CN2, GW_DELAY and SOL_K were more 

distinguishable, showing more variance than the other parameters indicating that the other 

1:R__CN2.mgt 

 

 

2:V__ALPHA_BF.gw 

3:V__GW_DELAY.gw 4:R__SOL_AWC(..).sol 

5:R__GW_REVAP.gw 6:R__SURLAG.bsn 
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parameters were the primary source of streamflow uncertainty in the Luvuvhu River catchment. 

ALPHA_BF parameter forms part of the baseflow, which contributes to channel runoff and 

thus delay may have an effect on streamflow discharge and runoff. SOL_K is important for 

groundwater seepage to streamflow, while GW_DELAY is as important in know the amount 

time the percolated water will eventually reach the streams (van Liew et al., 2007; Chapuis, 

2012). 

4.1.2.2 Performance indices during calibration 

The P-factor during calibration was 0.64, 0.52, 0.67, and 0.45 for sub-catchments 6, 10, 15 and 

17 respectively. The model produced R-factor of 0.59, 1.81, 0.68 and 0.91 for sub-catchments 

6, 10, 15 and 17 respectively showing good calibration results.  

Performance indices results obtained (Figure 4.4 and Table 4.4 ) for all the sub-catchments 6, 

10, 15 and 17 proved to have satisfactory simulation results with an R2 of 0.61, 0.73, 0.63 and 

0.75 respectively.  Results further indicated an NSE index of 0.35 and 0.66 for sub-catchments 

6 and 15 respectively, which meant acceptable results, while sub-catchments 10 and 17 revealed 

unsatisfactory results of -16.46 and -0.36 respectively. The model revealed acceptable RSR 

results of 0.62, 0.56 and 0.71 for sub-catchments 6, 15 and 17 respectively while sub-

catchments 10 showed unsatisfactory results of 3.23. Sub-catchments 6 and 15 showed positive 

PBIAS of 1.18 and 16.3 respectively, while sub-catchments 10 and 17 gave a negative PBIAS 

of -7.60 and -2.40 respectively.  



66 

Table 4.3 Sensitivity ranking of SWAT parameter in the Luvuvhu River catchment   

Parameter Parameter definition Ranking t-Stat p-

value 

Minimum Maximum Fitted 

values 

r__CN2.mgt Initial SCS (Soil Conservation Service) runoff 

curve no. for moisture condition II 
2 6.420 0.000 -0.018 0.345 0.082 

r__ALPHA_BF.gw Baseflow alpha factor (days) 4 2.050 0.040 0.499 1.498 0.943 

r__GW_DELAY.gw Groundwater delay time (days) 1 -31.740 0.000 -17.162 24.294 0.319 

r__GWQMN.gw Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 
12 -0.410 0.690 -2388.583 2538.583 1873.416 

r__GW_REVAP.gw Groundwater “revap” coefficient 7 1.230 0.220 0.091 0.234 0.167 

r__ESCO.hru Soil evaporation compensation factor 11 -0.440 0.660 -0.123 0.626 0.108 

r__CH_K2.rte Effective hydraulic conductivity in main 

channel alluvium 

9 1.010 0.310 54.592 163.908 159.718 

r__ALPHA_BNK.rte Baseflow alpha factor for bank storage 6 1.250 0.210 0.127 0.709 0.658 

r__SOL_K.sol Saturated hydraulic conductivity 3 2.440 0.020 -137.606 154.218 7.819 

r__SOL_AWC.sol Available water capacity of the soil layer 8 1.090 0.270 0.484 1.453 0.889 

r__SURLAG.bsn Surface runoff lag coefficient (days) 10 0.820 0.410 -0.853 15.722 2.379 

r__REVAPMN.gw Threshold depth of water in the shallow aquifer 

for "revap" to occur (mm) 
5 1.670 0.100 153.640 461.360 454.692 
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Figure 4.4 Comparison of observed and simulated streamflow for the calibration period 

(1986-2005) for sub-catchments 6, 10, 15 and 17 
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Table 4.4 Performance indices of the SWAT model during calibration 

Index P-factor R-factor R2 NSE RSR PBIAS 

FLOW_OUT_ 6 0.64 0.59 0.61 0.35 0.62 1.18 

FLOW_OUT_10 0.52 1.81 0.73 -16.46 3.23 -7.60 

FLOW_OUT_15 0.67 0.68 0.63 0.66 0.56 16.30 

FLOW_OUT_17 0.45 0.91 0.75 -0.36 0.71 -2.10 

4.1.3 Model validation  

During the period 2006-2015, the P-factor obtained was 0.59, 0.34, 0.69 and 0.41 for sub-

catchments 6, 10, 15 and 17 respectively, while the R-factor obtained was 0.46, 2.67, 0.53 and 

0.75 for the same sub-catchments respectively. The percentage of observed data grouped 

together by 95% prediction uncertainty (95PPU) during validation was 59, 34, and 69 and 41 

for sub-catchments 6, 10, 15 and 17 respectively, which indicates the strength of the model 

calibration to be satisfactory and thus satisfactory model performance.  

Objective function results obtained (Figure 4. and Table 4.5) revealed an R2 of 0.63, 0.52 and 

0.62 for sub-catchment 10, 15 and 17 respectively which showed satisfactory results while sub-

catchment 6 still showed unsatisfactory results with an R2 of 0.34. NSE in sub-catchments 6, 

15 and 17 gave acceptable results of 0.35, 0.48 and 0.31 respectively while sub-catchment 10 

still gave unsatisfactory results of -0.45. Sub-catchment 15 showed acceptable RSR result of 

0.72 while sub-catchments 6, 10 and 17 showed unacceptable RSR results of 0.86, 1.14 and 

2.10 respectively. Sub-catchments 6 and 15 gave positive PBIAS of 65.0 and 19.90 respectively 

and negative PBIAS of -12.30 and -14.60 was observed in sub-catchments 10 and 17 

respectively. 

Table 4.5 Performance indices of the SWAT model during validation 

Index P-factor R-factor R2 NSE RSR PBIAS 

FLOW_OUT_ 6 0.59 0.46 0.34 0.35 0.86 65.00 

FLOW_OUT_10 0.34 2.67 0.63 -0.45 1.14 -12.30 

FLOW_OUT_15 0.69 0.53 0.52 0.48 0.72 19.90 

FLOW_OUT_17 0.41 0.75 0.62 0.31 2.10 -14.60 
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Figure 4.5 Comparison of observed and simulated streamflow for the validation period 

(2006-2015) for sub-catchments 6, 10, 15 and 17 
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4.1.4 Flood frequency analysis and design flood estimation 

Flood return periods were plotted against the flood discharges in order to estimate 100- and 

200-year floods (Figure 4.6). Sub-catchment 6 received very low flood discharges compared 

to sub-catchment 17, and this was expected since sub-catchment 6 had a smaller catchment area 

compared to sub-catchment 17. A 30-year period flood data was used, thus the 5 % and 95% 

confidence bound showed considerable scatter. Using the equations created from the plots for 

each sub-catchment, flood magnitudes for different return periods were established (Table 4.6). 

At the outlet sub-catchment 17, the 50-, 100- and 200-year flood magnitudes of 960.70, 1121.02 

and 1281.35 m3 s-1 respectively occur. 
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Figure 4.6 Flood return periods and the magnitude for 30-year period 



71 

Table 4.6 Sub-catchments’ return periods and the estimated flood magnitudes  

Return period 

(years) 

Probability of 

exceedance (%) 

Probability of non-

exceedance (%) 

Estimated flood magnitude (m3 s-1) 

Sub-catchment 6 

405.2 km2 

Sub-catchment 10 

1068 km2 

Sub-catchment 15 

2800 km2 

Sub-catchment 17 

5273 km2 

2 50 50 24.02 65.56 132.54 216.17 

5 20 80 42.97 129.56 250.13 428.11 

10 10 90 57.31 177.98 339.08 588.43 

25 4 96 76.26 241.98 456.66 800.37 

50 2 98 90.60 290.40 545.62 960.70 

100 1 99 104.94 338.82 634.57 1121.02 

200 0.5 99.5 119.27 387.24 723.52 1281.35 
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Cumulative frequency distribution indicate that there is a 99.5 % chance of non-exceedance for 

such a 200-year flood of 1281.35 m3 s-1 in the catchment, which means that there is only 0.5 % 

chance for this flood magnitude to equal or be exceeded (Figure 4.7). The cumulative 

probability graphs in Figure 4.7 indicate the non-exceedance probability for all possible flood 

magnitudes in the catchment. A 100- year flood of magnitude 1121.02 m3 s-1 has a 99% chance 

of non-exceedance, while 50-, 25-, 10-, 5-, and 2-year floods indicate a 98, 96, 90, 80 and 50% 

chance of them not exceeded respectively.  
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Figure 4.7 Cumulative frequency distribution for sub-catchments 6, 10, 15 and 17 
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4.2 Discussion  

Simulating streamflow is a challenging process due to the numerous uncertainties that exist in 

the form of input parameter inaccuracies, processes unaccounted for by the model, and 

processes occurring in the catchment that are unknown to the modeller. Even more so with the 

lack of continuous high quality data, is a challenge that hydrologists face when modelling 

streamflow. The process of modelling streamflow becomes even more difficult in catchments 

where irregular rainfall distribution occurs, such as the Luvuvhu River catchment. Despite this, 

modelling efforts involving the SWAT model have been conducted in various catchment types 

such as agricultural land and mountainous catchments by Jha (2011) and Mutenyo et al. (2013) 

respectively and the studies proved the SWAT model is capable of simulating runoff with 

satisfactory results for these conditions.  

Initially the model was unable to capture runoff discharge flows well. It is commonly experienced 

when simulating streamflow using SWAT because the model is executed through numerous 

parameters that interact and thus affect various processes. It is therefore a challenge to determine 

which parameter or parameter combination may be reducing the model’s performance. 

Initial simulation values were generated by SWAT, based on the general land use, soil and 

slope, where the peak flows were drastically overestimated. This meant that the water balance 

within the catchment may have been incorrect, thus contributing to the overestimation of the 

peak flows. Initial sensitivity analysis resulted in the choice of twelve parameters, which were 

used for calibration and validation. The twelves parameters were found to be more sensitive to 

streamflow output based on the large t-stat values and low p-values (< 0.05). After careful 

parameter adjustments based on SUFI-2 minimum and maximum parameter output values, 

parameters ALPHA_BF, CN2, GW_DELAY and SOL_K showed to be more sensitive to 

streamflow output. Ultimately, the model was able to simulate both peak and low flows well 

for both calibration and validation.  

The use of SUFI-2 in SWAT-CUP to calibrate assisted in enabling adequate modelling since it 

incorporates almost all forms of uncertainties in the modelling processes. The model produced 

reasonable results of the P-factor during calibration and validation and the small indication of 

uncertainties could be due to inputs driving variables such as rainfall. Since an R-factor less 

than one generally indicates good calibration results (Rostamian et al., 2008), this was the case 

for all sub-catchments 6, 10, 15 and 17 during both calibration and validation. However, the P-
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factor values for sub-catchments 10 and 17 were just lower than the acceptable value of 60% 

and according to Rostamian et al. (2008) this indicates that the actual uncertainty is higher than 

that shown, and could be improved by a higher R-factor value. The remainder of the sub-

catchments’ results indicated that most of the observed values were bracketed and were within 

the 95PPU boundary.  

Overall, parameter ranges of the P-factor and R-factor reached desired limits, indicating 

substantial parameter uncertainties results, which were acceptable. Moreover, model 

uncertainties were falling within the permissible limits. Hence, SUFI-2 is capable of capturing 

the model’s behaviour, with P-factor results indicating good model calibration strength and 

desirable levels of R-factor. For this reason, results obtained in this study demonstrate good 

model performance and acceptable accuracy of the model in runoff simulation. It can be 

concluded that SWAT simulation results were satisfactory for the simulation of runoff in the 

Luvuvhu catchment. 

Observation functions R2, NSE, RSR and PBIAS were analysed according to the limits placed 

by Moriasi et al. (2007) and Mutenyo et al. (2013) with objective functions reaching model 

efficiency of concurrently having an NSE index greater than 0.5, PBIAS ± 25% and an RSR < 

0.7. According to this standard, the model performed well during both calibration and 

validation. For sub-catchments that were unable to reach these limits, such as sub-catchment 

10 and 17, this could be due to the choice of objective function influencing the results 

(Abbaspour, 2015).  

To achieve the runoff simulation, a careful and time-intensive effort of calibrating SWAT 

parameters to better represent catchment area was made. Once the parameters were set within 

a sufficient and acceptable calibration range, the model’s results demonstrated the capability of 

the model to provide reasonable simulation of runoff.  

One of the limitations of the model is the high number of parameters, which complicates the 

model’s parameterization and calibration process, and is therefore considered SWAT model’s 

weakness. Parameterization continues to be of importance, as highlighted in previous studies 

conducted and for parameterization to be more efficient and sustainable, long period quality 

data are needed, which however is a major obstacle in hydrological modelling. Despite results 

from this study being generally acceptable, the lack of datasets hinders better results and 

increases prediction uncertainties. Good quality data of climate and observed streamflow would 
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improve the ability of runoff modelling to accurately simulate flow and improve the 

parameterization and calibration process.    

Following calibration and validation, a 30-year period of simulated flood discharge from 1986 

to 2015 was used to analyse flood frequencies and estimate design flood. The data was sorted 

from highest to lowest and a reoccurrence interval was estimated. Through the sorting of 

simulated data it was evident that the highest flood flows were experienced in the years 

1987/1988, 2000/2001, 2010/2011, 2013/2014, and these are years that correspond with the 

years Luvuvhu catchment received great flooding. The increase in flood peak frequency may 

be attributed to the changing land uses over the years. 

Four probability plot graphs were created for the four sub-catchments using log-normal 

probability distribution. Sub-catchment 17 which is the outlet catchment, produced the highest 

flood magnitudes compared to the other catchments. This was because it covered the whole 

Luvuvhu catchment in area. The 100- and 200-year floods revealed flood magnitudes of 

1121.02 and 1281.35 m3 s-1 respectively. This means that for example, in 100 years a flood of 

1121.02 m3 s-1 will occur in any given year. This flood magnitude may occur several times in 

that 100-year period and may occur in two or more years consecutively. This is also the case 

for 200-year flood. However, it is also likely that they might not occur even once over these 

periods since the return period is the average time over which one expects a flood equal to or 

exceeding the specified magnitudes. 

From the results, it is evident that the low-lying areas received more flooding during the 2000 

and 2013 flood events while the mountainous areas received less flooding. This was unusual 

since naturally the Luvuvhu catchment receives high rainfall in the mountainous areas. 

However, literature confirms that low-lying areas are more prone to flooding unlike 

mountainous area. Furthermore, the floods were caused by tropical cyclones from 

Mozambique, hence results obtained can be justified. 

The 2000 floods had more impact on the Limpopo province and Mozambique due to tropical 

cyclone Eline (Reason and Keibel, 2004). The cyclone occurred from February to March 2000, 

causing intense flooding, which was later recorded as the worst flood event in 50 years thus 

making it a 50-year flood (Heritage et al., 2000; Smithers et al., 2001). The 2013 floods started 

as a tropical low over Mozambique in January 2013. Later, tropical cyclone Hellen met the 

tropical low causing extreme rainfall and flooding in South Africa (Pringle et al., 2013). 
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The 10- and 50-year floods are regarded as high-risk floods since they occur more frequently. 

Knowing such magnitude will better help prepare the community and disaster management 

groups in the catchment. Looking at upstream (sub-catchment 10) and downstream (sub-

catchment 17) sub-catchments, the log-normal distribution showed a 10-year return period with 

estimated flood magnitude of 177.98 m3 s-1 upstream and 588.43 m3 s-1 downstream while a 

50-year flood had an estimated flood of 290.40 m3 s-1 upstream and 960.70 m3 s-1 downstream. 

Cumulative frequency distribution indicates that there is a 0.5 % chance for a 200-year flood to 

occur which means that there is a 0.5 % chance for the event to be equal to or be exceeded. 

The log-normal distribution model showed high peak events which can be used as estimating 

limiting values for design purposes. Furthermore, the distribution performed well enough to be 

considered as a distribution of choice in terms of flood frequency analysis and planning in the 

Luvuvhu River catchment. 

Results obtained in this study were based on daily data that were available. However, a study 

undertaken by Lee et al. (2017) indicated that a shorter time increment might be suitable in 

producing an improved estimation. Therefore, it is suggested that use of hourly data can be 

useful in producing approximate estimations. However this can be impractical in our study site 

since there are no shorter time increment data available. Nevertheless, it can still be 

recommended that future data collection may be done in hourly time increment for more 

accurate results.   

The 2000 and 2013 flood disasters caught the Luvuvhu community unawares and this is because 

the people were not prepared for such disasters. The effects of the flooding could have been 

minimized through proper planning and investment management strategies. Therefore, results 

obtained from this study can further be used for such planning to mitigate and adapt during 

future flooding events. It is further recommended that there be improved transfer of knowledge 

system to the community and farmers of weather forecast and warnings of possible heavy rains 

that may lead to flooding so that people may be better prepared for such events. In planning, it 

is of utmost importance that planners be advised and reminded that hydrological models are 

guides and results are not certain. The floods may or may not occur as modelled, because there 

are probabilities with various uncertainties involved. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

This study aimed at assessing the SWAT model in simulating runoff in the Luvuvhu River 

catchment. The catchment lies in an area vulnerable to flooding due to tropical depressions and 

the geographical distribution of river floodplains. This has led to catchments experiencing 

extreme flooding events over the past years, destroying crops and thus resulting in crop failure 

and reduced crop yield. A 2012 version of SWAT model was run through an interface with a 

QGIS desktop 2.6.1 software, QSWAT 1.3 2016. The model was chosen because it is physically 

based, deterministic and semi-distributed, thus capturing many physical processes occuring in 

the catchment. 

The SWAT model’s initial run was successfully implemented. The model successfully 

simulated streamflow and proved to be capable of capturing streamflow trends despite sub-

catchment’s characteristics and location. However, initial results indicated an over-estimation 

of observed flows in parts of the catchment, revealing unacceptable correlation coefficient 

results in three of the sub-catchments (sub-catchment 6, 15 and 17) while sub-catchment 10 

displayed a good correlation. The evaluation of the model using the six statistical parameters 

R, R2, MAE, MBE, RMSE and NSE index revealed model results that were unsatisfactory. 

From the initial results, it was evident that calibration and validation of the model needed to be 

conducted before attempting further analyses.  

Calibration was conducted using twelve parameters which, based on previous studies, were 

recorded to be the most sensitive parameters for streamflow. Global sensitivity analyses found 

ALPHA_BF, CN2, GW_DELAY and SOL_K to be more distinguishable with p < 0.05. 

Performance indices results indicated that most of the observations with different parameters 

were grouped together by the 95PPU boundary, which signified the capability of SUFI-2 to 

capture the SWAT model behaviour. Following calibration and validation, SWAT simulation 

revealed satisfactory results for the prediction of runoff and the final parameter ranges were 

considered acceptable for the Luvuvhu catchment. The percentage of observed data being 

grouped together by 95PPU during calibration indicated the strength of the model calibration 

to be satisfactory, with 60 % of the data bracketed. R-factor results showed acceptable model 

calibration. Objective functions R2, NSE index, RSR and PBIAS used to quantify the model’s 

calibration result showed satisfactory results for both calibration and validation. It can be 
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concluded that the SWAT model performed well in simulating runoff in the Luvuvhu catchment 

after calibration and validation. 

Flood frequency analyses were done, and a design flood estimation completed. This was 

accomplished using a 30-year period of simulated flood discharge from the SWAT model. 

Flood frequency analyses indicated increasing floods at greater probability of exceedance for 

all return periods. Focusing on sub-catchment 17 being the Luvuvhu catchment outlet, 50-, 100- 

and 200-year floods revealed flood magnitudes of 960.70, 1121.02 and 1281.35 m3 s-1 

respectively. This meant that in 50 years, a flood of 960.70 m3 s-1 would occur in any given 

year. The flood may occur several times in the 50 years and may occur in two or more years 

consecutively. It is the case for 100- and 200-year floods as well. However, it is also likely that 

they might not occur even once over these periods since the return period is the average time 

over which one expects a flood equal to or exceeding the specified magnitudes. Cumulative 

frequency distribution indicates that there is a 0.5 % chance for a 200-year flood to occur which 

means that there is a 0.5 % chance for the event to be equal to or be exceeded. The log-normal 

distribution model produced good results that can be used to support planning and decision 

making about development, flood mitigation and adaptation during the flooding season. Hence, 

it can be considered as a distribution model of choice among other probability distribution 

models for flood frequency analysis at any point in the Luvuvhu River catchment. It is of utmost 

importance that planners remember that hydrological models are guides and results are not 

certain. The floods may or may not happen, because these are probabilities with various 

uncertainties involved. 

5.1 Challenges 

Meteorological data availability or lack thereof due to continuous missing data affected the 

quality and accuracy of the results. The study relied on treated patched data, which increase the 

inaccuracies and uncertainties in the model results. For example, in some of the weather 

stations, sunshine hours had to be used to estimate solar radiation. Therefore, to improve the 

quality of the study results, improved longer record with quality data are needed. The land cover 

and soil datasets are essential for SWAT model input since they both have an influence on the 

runoff process. Ground-truthing and soil field analyses were not done, hence relying solely on 

soil and land use maps for which some information was not up to date. It would be of great 

benefit to produce high quality results if reclassification could be done in order to have a more 

reliable up-to-date data bank. The model is purposed to be physically based but continues to 
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possess many assumptions; therefore, due to many assumptions and uncertainties it is 

recommended that the SWAT model be used in conjunction with other hydrological models as 

a conceptual model. For South Africa, the SWAT model user group support base is small. A 

larger user support base would encourage the exploration of possible interaction with other 

hydrological models already available in South Africa.  

5.2 Future possibilities 

There are many future research areas involving the SWAT model that need attention. Due to 

the size of the catchment study area, a lower resolution DEM was used which also contributed 

to the lack of accuracy of the results obtained. The accuracy of results would increase if a study 

were undertaken on a smaller, more specific sub-catchment using a much higher DEM 

resolution. Use of more than one weather generation model could improve the quality of 

generated climate data and reveal some inconsistencies that may have existed with the SWAT 

model. The SWAT model simulation results in the catchment may be compared with another 

hydrological model simulation results in order to quantify the calibration process, and this may 

be a possible future study. SWAT model interaction with other hydrological models may also 

be a good tool for future catchment planning and management purposes. The model can be used 

to simulate sediment loading and land use management practices, which due to the scope of the 

study was not undertaken. 

5.3 Final comments and summary conclusions 

The use of SUFI-2 in SWAT-CUP quantified the calibration and validation results well. The 

SWAT simulation results were satisfactory for the prediction of runoff in the catchment, 

proving the model to be a useful tool for simulating runoff.  

The log-normal distribution model showed high peak events which can be used as estimating 

limiting values for design purposes and can be considered as a distribution of choice in terms 

of flood frequency analysis and planning in the Luvuvhu River catchment. 
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APPENDIX A 

PARAMETERISATION USING SUFI-2 ALGORITHM 

Table A.1: Parameter definitions and initial ranges used in SUFI-2 (Szezesniak and Piniewski, 2015) 

Name Lower Limit Upper Limit Definition 

ESCO.hru 0.7 1 Soil evaporation compensation factor 

SOL_AWC.sol -0.4 0.4 Available water capacity of the soil layer 

SOL_K.sol -0.9 2 Saturated hydraulic conductivity 

ALPHA_BF.gw -0.9 2 Baseflow alpha factor (days) 

GW_DELAY.gw 50 400 Groundwater delay time (days) 

GWQMN.gw 0 1000 Threshold depth of water in the shallow aquifer required for return flow to occur 

GW_REVAP.gw 0.02 0.2 Groundwater “revap” coefficient 

CN2.mgt -0.15 0.15 Initial SCS (Soil Conservation Service) runoff curve no. for moisture condition II 

SURLAG.bsn 0.3 3 Surface runoff lag coefficient 

REVAPMN 0 500 Threshold depth of water in the shallow aquifer for "revap" to occur (mm) 

CH_K2 -0.01 500 Effective hydraulic conductivity in main channel alluvium 

ALPHA_BNK 0 1 Baseflow alpha factor for bank storage 
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APPENDIX B 

TABLES USED TO CALCULATE FOR SOLAR RADIATION 

Table B.1 Angot’s values of daily short-wave radiation flux RA at the outer limit of the 

atmosphere in g cal cm-2* as a function of the month of the year and the latitude (Source: 

adapted from Ncube, 2006). 

LAT 

(DEG) 

 

JA

N 

 

FE

B 

 

MA

R 

 

AP

R 

 

MA

Y 

 

JUN 

 

JU

L 

 

AU

G 

 

SE

P 

 

OC

T 

 

NO

V 

 

DE

C 

N 90 0 0 55 518 903 1077 944 605 136 0 0 0 

80 0 3 143 518 875 1060 930 600 219 17 0 0 

60 86 234 424 687 866 983 
89

2 

71

4 
494 258 113 55 

40 358 538 663 847 930 1001 
94

1 

84

3 
719 528 397 318 

20 631 795 821 914 912 947 912 887 856 740 666 599 

Equat

or 
844 963 878 876 803 803 

79

2 

82

0 

89

1 
866 873 829 

20 970 
102

0 
832 737 608 580 

58

8 

68

0 
820 892 986 978 

40 998 963 686 515 358 308 333 453 648 817 994 1033 

60 947 802 459 240 95 50 77 
18

7 
403 648 920 1013 

80 981 649 181 9 0 0 0 0 113 459 917 1094 

S 90 995 656 92 0 0 0 0 0 30 447 932 1110 

* 1 g cal m-2 = 0.0419 MJ m-2  

Table B.2 Mean daylength (h) for different months and latitudes (Source: Ncube, 2006). 

LATITU

DE 

(° 

SOUTH) 

JU

L 
AUG SEP 

OC

T 

NO

V 

DE

C 
JAN FEB 

MA

R 

AP

R 

MA

Y 

JU

N 

50 8.5 
10.

1 

11.

8 

13.

8 

15.

4 

16.

3 

15.

9 

14.

5 

12.

7 

10

.8 
9.1 8.1 

48 8.8 
10.

2 

11.

8 

13.

6 

15.

2 

16.

0 

15.

6 

14.

3 

12.

6 

10

.9 
9.3 8.3 

46 9.1 
10.

4 

11.

9 

13.

5 

14.

9 

15.

7 

15.

4 

14.

2 

12.

6 

10

.9 
9.5 8.7 

44 9.3 
10.

5 

11.

9 

13.

4 

14.

7 

15.

4 

15.

2 

14.

0 

12.

6 

11

.0 
9.7 8.9 
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42 9.4 
10.

6 

11.

9 

13.

4 

14.

6 

15.

2 

14.

9 

13.

9 

12.

5 

11

.1 
9.8 9.1 

40 9.6 
10.

7 

11.

9 

13.

3 

14.

4 

15.

0 

14.

7 

13.

7 

12.

5 

11

.2 
10.0 9.3 

35 
10.

1 

11.

0 

11.

9 

13.

1 

14.

0 

14.

5 

14.

3 

13.

5 

12.

4 

11

.3 
10.3 9.8 

30 10.4 11.1 12.0 12.9 13.6 14.0 13.9 13.2 12.4 11.5 10.6 
10.

2 

25 
10.

7 

11.

3 

12.

0 

12.

7 

13.

3 

13.

7 

13.

5 

13.

0 

12.

3 

11

.6 
10.9 

10.

6 

20 
11.

0 

11.

5 

12.

0 

12.

6 

13.

1 

13.

3 

13.

2 

12.

8 

12.

3 

11

.7 
11.2 

10.

9 

15 
11.

3 

11.

6 

12.

0 

12.

5 

12.

8 

13.

0 

12.

9 

12.

6 

12.

2 

11

.8 
11.4 

11.

2 

10 
11.

6 

11.

8 

12.

0 

12.

3 

13.

6 

12.

7 

12.

6 

12.

4 

12.

1 

11

.8 
11.6 

11.

5 

5 
11.

8 

11.

9 

12.

0 

12.

2 

12.

3 

12.

4 

12.

3 

12.

3 

12.

1 

12

.0 
11.9 

11.

8 

0 
12.

1 

12.

1 

12.

1 

12.

1 

12.

1 

12.

1 

12.

1 

12.

1 

12.

1 

12

.1 
12.1 

12.

1 

SOIL AND LAND USE TABLES CREATED FOR SWAT MODEL 

Table B.3: Soil properties and classification for Luvuvhu River catchment 

SNAM HYDGRP TEXTURE SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 

Fb359 A LS 1.24 0.013327 0.0156 0.61 

Fc484 A LS 1.24 0.013327 0.0156 0.61 

Ae267 A LS 1.24 0.013327 0.0156 0.61 

Ia113 A S 1.25 0.017587 0.0176 0.71 

Ae268 A LS 1.24 0.013327 0.0156 0.61 

Fc485 A SL 1.19 0.03343 0.00347 0.71 

Ib315 A LS 1.24 0.013327 0.0156 0.61 

Ea206 C SCL 1.3 0.041541 0.00063 0.19 

Fc729 A LS 1.24 0.013327 0.0156 0.61 

Fc728 A SL 1.19 0.03343 0.00347 0.71 

Ae332 A LS 1.24 0.013327 0.0156 0.61 

Fc486 A SL 1.19 0.03343 0.00347 0.71 

Fb499 A SL 1.19 0.03343 0.00347 0.71 

Fc488 A SL 1.19 0.03343 0.00347 0.71 

Fc487 A SL 1.19 0.03343 0.00347 0.71 

Ae331 A LS 1.24 0.013327 0.0156 0.61 
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Fb498 A LS 1.24 0.013327 0.0156 0.61 

Ib313 A LS 1.24 0.013327 0.0156 0.61 

Ac164 A LS 1.24 0.013327 0.0156 0.61 

Bc47 A LS 1.24 0.013327 0.0156 0.61 

Ib442 A SL 1.19 0.03343 0.00347 0.71 

Ah109 A LS 1.24 0.013327 0.0156 0.61 

Fb358 A LS 1.24 0.013327 0.0156 0.61 

Ab181 A LS 1.24 0.013327 0.0156 0.61 

Ea161 C SCL 1.3 0.041541 0.00063 0.19 

Ae330 A SL 1.19 0.03343 0.00347 0.71 

Ba62 A SL 1.19 0.03343 0.00347 0.71 

Ib443 A SL 1.19 0.03343 0.00347 0.71 

Dc51 C SCL 1.3 0.041541 0.00063 0.19 

Ba60 A LS 1.24 0.013327 0.0156 0.61 

Ca93 A SL 1.19 0.03343 0.00347 0.71 

Ae329 A SL 1.19 0.03343 0.00347 0.71 

Ba61 A LS 1.24 0.013327 0.0156 0.61 

Bd56 A SL 1.19 0.03343 0.00347 0.71 

Ib441 A SL 1.19 0.03343 0.00347 0.71 

Ea205 A SL 1.19 0.03343 0.00347 0.71 

Ab178 A SL 1.19 0.03343 0.00347 0.71 

Ab180 C SCL 1.3 0.041541 0.00063 0.19 

Fb496 A SL 1.19 0.03343 0.00347 0.71 

Fa756 A SL 1.19 0.03343 0.00347 0.71 

Ab177 D SC 1.3 0.020626 0.000217 0.38 

Ae328 A SL 1.19 0.03343 0.00347 0.71 

Ab179 A SL 1.19 0.03343 0.00347 0.71 

Water D C 0 0 260 0 

Ib304 A LS 1.24 0.013327 0.0156 0.61 

Bb128 A LS 1.24 0.013327 0.0156 0.61 

Ib440 A LS 1.24 0.013327 0.0156 0.61 

Ab173 D SC 1.3 0.020626 0.000217 0.38 

Ab109 C SCL 1.3 0.041541 0.00063 0.19 

Ab111 C SCL 1.3 0.041541 0.00063 0.19 
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Ab108 C SCL 1.3 0.041541 0.00063 0.19 

Ab151 A SL 1.19 0.03343 0.00347 0.71 

Fa535 A SL 1.19 0.03343 0.00347 0.71 

Ab107 C SCL 1.3 0.041541 0.00063 0.19 

Ae291 C SCL 1.3 0.041541 0.00063 0.19 

Ae260 C SCL 1.3 0.041541 0.00063 0.19 

Fa308 A SL 1.19 0.03343 0.00347 0.71 

Bd48 A LS 1.24 0.013327 0.0156 0.61 

Ca102 A SL 1.19 0.03343 0.00347 0.71 

Bc48 A LS 1.24 0.013327 0.0156 0.61 

Bc54 A SL 1.19 0.03343 0.00347 0.71 

Fa331 A SL 1.19 0.03343 0.00347 0.71 

Fa396 A LS 1.24 0.013327 0.0156 0.61 

Ca91 A SL 1.19 0.03343 0.00347 0.71 

Fa306 A LS 1.24 0.013327 0.0156 0.61 

Fa754 A SL 1.19 0.03343 0.00347 0.71 

Ab174 C SCL 1.3 0.041541 0.00063 0.19 

Ab175 C SCL 1.3 0.041541 0.00063 0.19 

Bc50 A LS 1.24 0.013327 0.0156 0.61 
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APPENDIX C 

WATERSHED SOIL INFORMATION  

Table C.1 Soil hydrological input parameters for different textural classes (Source: 

Ncube, 2006) 

Soil 

texture 

class 

Horizon Typical percentages of: Bulk density 

(Mg m-3) 

Effective 

porosity 

(m3 m-3) 
Clay Silt Sand Organic 

Carbon 

Clay Topsoil 

Subsoil 

50 37 13 0.38 1.21 

1.37 

0.536 

0.470 

Loam Topsoil 

Subsoil 

18 25 57 0.52 1.18 

1.42 

0.512 

0.464 

Sand Topsoil 

Subsoil 

3 4 93 0.71 1.25 

1.50 

0.452 

0.430 

Loamy 

sand 

Topsoil 

Subsoil 

7 7 86 0.61 1.24 

1.51 

0.457 

0.432 

Sandy 

loam 

Topsoil 

Subsoil 

10 15 75 0.71 1.19 0.505 

1.46 0.448 

Silty loam Topsoil 

Subsoil 

18 55 27 0.58 1.07 

1.34 

0.527 

0.495 

Sandy 

clay loam 

Topsoil 

Subsoil 

27 8 65 0.19 1.30 

1.58 

0.486 

0.393 

Clay loam Topsoil 

Subsoil 

32 22 46 0.10 1.17 

1.41 

0.497 

0.451 
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Silty clay 

loam 

Topsoil 

Subsoil 

33 46 51 0.13 1.23 

1.40 

0.509 

0.469 

Sandy 

clay 

Topsoil 

Subsoil 

40 5 55 0.38 1.30 

1.53 

0.430 

0.423 

Silty clay Topsoil 

Subsoil 

50 37 13 0.38 1.22 

1.38 

0.531 

0.476 

Table C.2 Land types with spatial information and soil patterns 

Broad 

soil 

pattern 

code 

DESCRIPTION 

Aa Freely drained, red and yellow apedal soils with humic topsoils comprise >40% of 

the land type 

Ab Freely drained, red and yellow, dystrophic/mesotrophic, apedal soils comprise 

>40% of the land type (yellow soils <10%) 

Ac  Freely drained, red and yellow, dystrophic/mesotrophic, apedal soils comprise 

>40% of the land type (red and yellow soils each >10%) 

Ad Freely drained, red and yellow, dystrophic/mesotrophic, apedal soils comprise 

>40% of the land type (red soils comprise <10%) 

Ae Freely drained, red, eutrophic, apedal soils comprise >40% of the land type (yellow 

soils comprise <10%) 

Af Freely drained, red, eutrophic, apedal soils comprise >40% of the land type (yellow 

soils comprise <10%); with dunes 

Ag Freely drained, shallow (<300 mm deep), red, eutrophic, apedal soils comprise 

>40% of the land type (yellow soils comprise <10%) 

Ah Freely drained, red and yellow, eutrophic, apedal soils comprise >40% of the land 

type (red and yellow soils each comprise >10%) 

Ai Freely drained, yellow, eutrophic, apedal soils comprise >40% of the land type (red 

soils comprise <10%) 
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Ba Red and yellow, dystrophic/mesotrophic, apedal soils with plinthic subsoils 

(plinthic soils comprise >10% of land type, red soils comprise >33% of land type) 

Bb Red and yellow, dystrophic/mesotrophic, apedal soils with plinthic subsoils 

(plinthic soils comprise >10% of land type, red soils comprise <33% of land type) 

Bc Red and yellow, eutrophic, apedal soils with plinthic subsoils (plinthic soils 

comprise >10% of land type, red soils comprise >33% of land type) 

Bd Red and yellow, eutrophic, apedal soils with plinthic subsoils (plinthic soils 

comprise>10% of land type, red soils comprise <33% of land type) 

Ca Land type qualifies as Ba-Bd, but >10% occupied by upland duplex/margalitic soils 

Da Duplex soils (sandier topsoil abruptly overlying more clayey subsoil) comprise 

>50% of land type; >50% of duplex soils have red B horizons 

Db Duplex soils (sandier topsoil abruptly overlying more clayey subsoil) comprise 

>50% of land type; <50% of duplex soils have non-red B horizons 

Dc Either red or non-red duplex soils (sandier topsoil abruptly overlying more clayey 

subsoil) comprise >50% of land type; plus >10% occupied by black or red clays 

Ea Black or red clays comprise >50% of land type 

Fa Shallow soils (Mispah and Glenrosa forms) predominate; little or no lime in 

landscape 

Fb Shallow soils (Mispah and Glenrosa forms) predominate; usually lime in some of 

the bottomlands in landscape 

Fc Shallow soils (Mispah and Glenrosa forms) predominate; usually lime throughout 

much of landscape 

Ga Podzols occur (comprise >10% of land type); dominantly deep 

Gb Podzols occur (comprise >10% of land type); dominantly shallow 

Ha Deep grey sands dominant (comprise >80% of land type) 

Hb Deep grey sands sub dominant (comprise >20% of land type) 

Ia Deep alluvial soils comprise >60% of land type 

Ib Rock outcrops comprise >60% of land type 

Ic Rock outcrops comprise >80% of land type 
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Table C.3 Average depth and average clay class that define different land types 

AVR_DEPTH_CLASS Dominant depth class of land type 

D1 Percentage of Land Type with very shallow soils (<300 mm) 

D2 Percentage of Land Type with  shallow soils (300-600 mm) 

D3 Percentage of Land Type with mod. deep soils (601-900 mm) 

D4 Percentage of Land Type with deep soils (901-1200 mm) 

D5 Percentage of Land Type with very deep soils (>1200 mm) 

AVR_CLAY_CLASS Average topsoil clay percentage of land type 

C1 Percentage of Land Type with sandy soils (<6%) 

C2 Percentage of Land Type with loamy sand soils (6.1-15%) 

C3 Percentage of Land Type with sandy loam soils (15.1-25%) 

C4 Percentage of Land Type with sandy clay loam soils (25.1-35%) 

C5 Percentage of Land Type with sandy clay /clay soils (35.1-55%) 

C6 Percentage of Land Type with very clayey soils (>55%) 

Table C.4 Description of hydrologic soil groups according to soil texture classes 

 HSG  Soil Textures  

A  Sand, loamy sand, or sandy loam  

B  Sandy clay loam  

C  Silt loam or loam  

D  Clay loam, silty clay loam, sandy clay, silty clay, or clay  

 



105 

APPENDIX D 

SWAT MODEL SET UP AND PROCESS 

 

Figure D.1 Model setup interface window in the QSWAT program   
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Figure D.2 SWAT model simulation and run window 
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APPENDIX E 

SELECTION OF CURVE NUMBER AND CHARACTERISATION, AND 

SENSITIVITY ANALYSIS 

Table E.1 Representative curve number values for pasture, grassland and woods 
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Figure E.1 Scatter plots of sensitive parameters showing the sensitivity of model 

parameters for streamflow discharge 

1:R__CN2.mgt 

 

 

2:V__ALPHA_BF.gw 

3:V__GW_DELAY.gw 4:R__SOL_AWC(..).sol 

5:R__GW_REVAP.gw 6:R__SURLAG.bsn 
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7:V__GWQMN.gw 8:V__ESCO.bsn 

9:R__REVAPMN.gw 10:V__CH_K2.rte 

11:V__ALPHA_BNK.rte 12:R__SOL_K(..).sol 

Figure E.1 (Continued) Scatter plots of sensitive parameters showing the sensitivity of 

model parameters for streamflow discharge continued 




