University of Natal

A Low Cost, High Performance PC Based
Integrated Real-Time Motion Control
Development System

by

Adam Wojciech Stylo

Submitted in fulfilment of the academic requirements for the degree of Master of
Science in Engineering, in the Department of Electrical Engineering, University of
Natal, Durban, South Africa.

December 2000

| hereby declare that all the material incorporated into this thesisis my own original and
unaided work except where specific reference is made by name or in the form of a

numbered reference. The work contained herein has not been submitted for a degree at

any other University.

Signed : Date: _
A W Stylo

ABSTRACT

The control of electrical drives, or motion control, is important in modern industry. In order to
satisfy the requirements of industry, it is important for tertiary institutions to produce graduates
skilled in this field. The theoretical content of a typical electrical engineering course will
prepare students to tackle design and offline simulation of a digital motion controller. However,
to gain an in-depth understanding of the field, students need to be able to implement and test

their designs in practice.

The complete design process of a digital motion controller is an inherently lengthy process
requiring a number of diverse skills, for example microprocessor based hardware and software
design. While hardware design issues can be minimised by a choice of acommercially available
controller board, the coding of real-time software for a complex controller can pose a steep
learning curve. At the undergraduate level, students seldom will possess sufficient practical
expertise to fully implement a challenging motion control design in the limited time frames

alocated for such projects.

This thesis presents a complete rapid prototyping environment for the design of motion control,
the Control System Development Environment (CSDE). The CSDE allows a seamless
progression of a motion control project through all stages, from initial design and simulation,
through real-time implementation to final online tuning and validation. Users are freed from all
low-level software and hardware design issues. In the context of undergraduate design projects,
the CSDE allows students to design, simulate and prototype challenging solutions in the limited
time available. Thus, students can gain in-depth, system level expertise in the design of motion

control without being hampered by low-level design issues.

The CSDE has been successfully tested by a number of undergraduate students at the
Department of Electrical Engineering at the University of Natal. In particular, the CSDE's
effectiveness has been demonstrated by its application during two prize winning fina year

design projects.

Abstract (i)

ACKNOWLEDGEMENTS

The work presented in thisthesis was supervised by Mr. G Diana of the Department of Electrical
Engineering at the University of Natal. | wish to thank Mr. Diana for his support,

encouragement and guidance throughout the project.

| aso wish to express my gratitude to the following people :
Ms. Melinda Huisman for her love, understanding and continuous support;
My family and friends for their help and support;

My colleagues Mr. Myles Walker, Mr. Cedric Worthmann, Mr. Magash Pillay and Mr.

Ravi Govender for their co-operation and providing a friendly working environment;

Final year students Mr. Shaun Sturgeon and Mr. Lynden Moodley for agreeing to field
trial the CSDE during their design projects;

The University of Natal, the ESKOM Tertiary Education Support Programme and the

Foundation for Research Development for financial support.

Acknowledgments (i)

TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION
L1 GeNEIal. ..o 11
12 Teaching Motion Control. 12
13 Project Goals and DeSCription ... 13
14 TReSIS SEMCUIe 14
15 SUMIMBIY.. oo 15

CHAPTER TWO
REVIEW OF AUTOMATED DEVELOPMENT TOOLS FOR DIGITAL

CONTROL

2.1 INtrodUCTION ..o 2-1

2.2 Digital Controller Design Process.. 2-2
221 Modédling and Simulation.......................... 2-2
222 HardwareDesign ... 2-4
223 SOftware DESIQN. ... 2-4
224 Rapid Prototyping 2-5
225 AnIntegrated Development System 2-7

2.3 What is Currently Available? 2-7
231 Transputer Based System ... 2-8
232 MATLAB and Simulink 2-9
233 Hypersignal RIDE ... 2-10
234 dSPACE .. . 2-11

24 Goalsforthe Project ... 2-13

25 CONCIUSION ... 2-14

Table of Contents (iii)

CHAPTER THREE
OVERVIEW OF MATHWORKS TOOLS

31 INrodUCIONo 31
32 MathWOrKS. ... 31
321 Hostvs. Target Platforms........ .. 33
3.3 Rapid Prototyping with MathWorks 34
34 SIMUIINK ..o 3-6
341 Simulink BIOCKS ... 37
34.2 Librariesand Library Links 37
343 SUDSYSIEMS 38
344 Sfunctionsin a Simulink Block Diagram....................................... 3-10
345 Creating STunCtioNS ... 311
34.6 Sfiinction APL ... 3-13
34.7 External Modeand Datalogging... 3-17
35 Rea-TimeWorkshop................ . 3-19
351 Code Generation ProCESS. ... 3-20
3.5.2 Structure of the Generated Code...........................o 321
3.5.3 Platform Dependent Layer. ... 3-22
354 Platform Independent Layer................... ... 3-23
355 Sfunctionsin RTW........... 3-23
356 RTW LImMIitationS. ... 3-25
3.6 Target Language Compiler 3-25
3.7 CONCIUSION ... 3-27

CHAPTER FOUR
TARGET HARDWARE PLATFORM

4.1 INtrOQUCTION ... 4-1
4.2 TMS320C32DSP ... 4-1
421 'C32 Architecture. ... 4-1
422 Cacheand Pipelining................... . 4-2
423 Memory Organisation ... 4-3
424 THMEIS oo 4-4
4.25 'C32 Development TOOIS ... 4-7

Table of Contents (iv)

4.3
4.4

4.5

4.6

Motion Controller Hardware ... 4-7

PC32 DSP Controller Card....................coo 4-9

441 MEMOIY. . 4-9

4.4.2 Dua Port Memory (DPRAM).............oo oo 4-11
443 Memory Mapped Peripherals.............. ... 4-11
444 Anaogueto Digital Converters...................... 4-12
445 Digital to Analogue Converters....................... 4-14
446 PC32Interrupts. ... 4-14
447 Innovative Integration Development Environment 4-16
PWM/Tacho Expansion Card ... 4-16
451 AddressDecoding............... . 4-16
452 PWMASIC 4-18
453 FibreOpticinterface ... 4-20
454 TachoASIC ... 4-20
CONCIUSION ... 4-22

CHAPTER FIVE
CONTROL SYSTEM DEVELOPMENT ENVIRONMENT

51 INtrodUCTION 51

5.2 Development of the Global CSDE Structure... 52

53 Code GeNneration ... 54

531 Controlling the Build Process ... 54

5.3.2 Structure of the Template Make File ... 56

54 CONCIUSION ... 57
CHAPTER SX

TARGET REAL-TIME SUPPORT COMPONENTS

6.1 INtrodUCHION ... 6-1
6.2 TheReal-TimeKernel............................ 6-1
6.21 RTK Initialisation.... ... 6-2
6.22 RTK Execution LOOP ... 6-3
6.23 RTK Timer Interrupt] 6-5
6.24 Model Codeinthe RTK ... 6-7
6.3 External Mode Communication............................ apmgsey o sl 6-7

Table of Contents (V)

6.4
6.5

6.3.1 Target Side External Communications.......................... .
Data Logging................... .

CONCIUSION ..

CHAPTER SEVEN
HARDWARE DEVICE DRIVERS

71
7.2
7.3
7.4
75

7.6

INErOdUCEION. ...
Generating aDriver Block
Driver Block Masking
Inlining Driver Code
Driver Block TLC Files...................
751 ADC TriggerBlock
752 ADClInputBlock
753 DACO Output Block ...
754 Asynchronous Interrupt Support Block
755 PWM Card Driver Block ...
7.5.6 Scope Channel Block ...

CONCIUSION o

CHAPTER EIGHT
HOST SUPPORT COMPONENTS AND UTILITIES

81
82

8.3
84

85

INtrodUCEION. ...
External Mode Communication...............................
821 Host Side External Communications..................................
Code Download Utility.
Display Utility ...
841 Display Initidlisation...................................
842 Upload Mechanism
843 DaaBuffering. ...
844 Scalingand Plotting.......................

CONCIUSI ON .. o

Table of Contents

.................. 8-6
.................. 8-6

(vi)

CHAPTER NINE
CSDE APPLICATION AND CASE STUDIES

91 Introduction. 91
9.2 Motion Controller Design Usingthe CSDE ... 9-2
921 Hardware Setup................. 9-2
9.22 Generating a Rea-Time Prototype..................... ... 9-3
9.23 Online Parameter Tuning.. 9-8
9.3 Student Projects - Case StUdI€S ... 9-12
9.4 Field Oriented Control of an Induction Machine.................................... . 9-12
94.1 Feedback and Observations. ... 9-13
95 DC Machine Controller for aBall Catcher............... 9-15
951 Feedback and Observations. ... 9-18
9.6 CONCIUSION 9-20
CHAPTER TEN
CONCLUSIONS
102General . 101
10.1.1 Undergraduate Design............................ 101
10.1.2 Rapid Prototyping ... 10-2
102 Project SUMMary. ... 10-2
1021 TheCSDE. 10-2
1022 FedTrials.. ... 10-3
10.3 Suggestions for Further Work ... 10-3
10.31 Profiler and Exception Handler 10-3
10.3.2 Implementation over aNetwork ... 104
10.3.3 Improving Scope Utility 104
Appendix A
A.l CSDEUSsers'Guide. ... A-l
A2 Introduction ... A-l
A21 WhatisSimulink? ... A-l
A.22 ThePC32 Controller... A-3

Table of Contents (vii)

A.23 TexasInstruments TOOIS. ... A-4
A.2.4 Real-Time Interface Software.. A-4
A.25 AbouttheUser'sGuide................................ A-5
A3 INstallation ... A-5
A.3.1 Hardware Requirements.. ... A-5
A.3.2 Software Requirements. ... A-6
A.3.3 Installation INStruCtions..........................ooo A-6
A4 Getting Started A-7
A4l SmpleExample. ... A-7
A.42 Examplewith A/D and D/A................. A-8
A.4.3 Interrupt Support Example ... A-9
AP T EPC B2 05y b8 0 S A B 3 B A-10
AS51 PC32ADCBIlock A-l1
A5.2 PC32DACBIOCK ... A-12
A.53 PC32 Int Support BIOCK ... A-12
AS54 PWM BlocK ... A-14
AL55 AD Trigger Block ... A-15
A.5.6 Scope Channel Block ... A-15
A6 Display UtIlity. ... A-16
A.6.1 Running Display................... . A-17
A.6.2 Working With Channel Windows A-17
A.7 Operation of the CSDE ... A-18
A.7.1 Setting Up a Simulink Block Diagram.. A-19
A.7.2 Limitations of CSDE ... A-21
Appendix B
B.I Dual Port Memory ACCESS B-I
B.l.I' DPRAM AIOCEtON ... B-
B.1.2 Host Commands. ... B-2
B.I.3 Target RESPONSE ..o B-2
B.I.4 Target StatusWord ... B-3
B.1.5 Host Status Word ... B-3
B.1.6 Packetized DataUploads ... B-3

Table of Contents (viii)

Appendix C

C.l Hardware Registers. C-l
C.I.I 'C32 Timer Control RegiSters ... C-I
C.12 PMB U187 ReQiSters. ... C-l
Appendix D
D.I Template Make File ... D-I
D.I.I Source Listing of pc32.tmf...................... D-I
Appendix E
E.l Real-TimeKernel................ E-I
E.l.l Source Listing of pc32main.Cc..........................oo E-I
E. 16 Source Listing of pc32funC.C....................co E-6
Appendix F
F.I Driver BIock DLL. ... F-I
F.I.1 Source Listing of iiinterrupt.C.......................oooo F-I
Appendix G
G.I Hardware Drivers TLC Files ... G-
G.l.I Source Listing of ADTrigger.tlc.....................oo G-l
G.1.2 Source Listing of iiinterrupt.tlc...................... G2
G.1.3 Source Listing ofpc32_ad.tlc..................... G-6
G.l.4 SourcelListing ofpc32_datlc............... G-7
G.1.5 Source Listing of pwmblock.tlc....................... G-8
G.1.6 Source Listing of Upload.tic................... G-Il
Appendix H
H.l Target Language Compiler H-I
H.2 TLC DIr€CIVES H-I
H.21 Comments and Line Parsing........... . T T o e H-2

Table of Contents (ix)

H.2.2 EXPressions..
H.2.3 Conditional Inclusions............................
H.2.4 MultipleInclusions...
H.25 FileOutput.
H.2.6 DebugMessages. ...
H.2.7 Macro Definitions....................................
H.2.8 Identifier Definitions..
H.29 TLCFUNCLONS. ...

Appendix |

I.I External Mode CommuniCation...........................coiiiiii
111 Source Listing of ext PC32.c.................................

Appendix J

JI Display Utility.............
J.1.I Source for DisplayChildFrm.cpp................................
J.1.2 Source for DisplayDIlg.cpp.....................oo
J.1.3 Source for ChildPropDIlg.cpp..................................

APPENDIX K

K. RTW Build Example....................... ...
K.2 Block Diagram.................................

K.2.1 Settingup RTW Parameters...................................
K.3 The Build Process......................coo
K.4 Header File. ...
K5 CSourceFile. ...
K.6 Model ParametersFile ...
K.7 Model Registration File..
K.8 Make File.......................l

Table of Contents

........................... 11

.......................... JH
.......................... J3
.......................... J-8

x)

A/D
ADC

API
ASIC
CACSD
CSDE
D/A
DAC
DLL
DPRAM
DSP
FIFO
FOC
GUI

110

ISR
MCDS
PC
PDL
PIL
PWM
RIDE
ROM
RTK
RTW
SRAM
TAG
Tl

Texas Instruments

LIST OF ACRONYMS

Analogue to Digital

Analogue to Digital Converter
Application Program Interface
Application Specific Integrated Circuit
Computer Aided Control System Design
Control System Development Environment
Digital to Analogue

Digital to Analogue Converter

Dynamic Link Library

Dual Port Random Access Memory
Digital Signal Processing

First In First Out

Field Oriented Control

Graphical User Interface

Input and Output

Innovative Integration

Interrupt Service Routine

Motion Control Development System
Personal Computer

Platform Dependant Layer

Platform Independent Layer

Pulse Width Modulation

Rapid Integrated Development Environment
Read Only Memory

Real-Time Kernel

Real-Time Workshop

Static Random Access Memory

Transputer Application Group

List of Acronyms

(xi)

TLC Target Language Compiler
UND University of Natal, Durban
VXD Virtual External Device Driver

List of Acronyms (xii)

Chapter One - Introduction

CHAPTER ONE
INTRODUCTION
11 General

Intoday's world we are surrounded by motion - for example motorcars, trains and escalators. A
large proportion of the force that provides this motion in our society is derived from electricity
and there is a continuing drive to make the use of this relatively clean electrical power more
widespread. Less obvious to the layman, but also crucial to our way of life, is the motion that
drives modern industrial processes. In factories today, most of the driving force is derived from
electricity. The majority of pumps, fans and conveyor belts, for example, are driven by

electrical motors, thus electric drives form acrucial part of any modern day industrial process.

The precise control of speed and position in machinery is often of paramount importance
[LINZENKIRCH1]. One example is the paper industry, where the speed of various winding
stages needs to be synchronised and maintained to prevent damage to the product and thus
subsequent costly interruptions in the manufacturing process [BLERK1]. Another example is
precision robotic manipulators which often have to perform complex manoeuvres. Accurate
position control needs to be employed as their position has to fal within tight tolerances. Many
more areas can be named where control of electric motors isimportant, and collectively the field

is termed motion control. Fig. L1 shows a schematic of a basic motion control setup. Although

< Speed / Position feedback
Setpoint......._> Controller

< Current / Voltage feedback
5.
PWM

Y

DC Supply

Inverter R
Electric Motor

Fig. 1.1: Block diagram of a typical motion control setup

Genera Page 11

Chapter One - Introduction

details might vary with the particular field of application, typically they will be derived from the

above.

Motion control forms a subset of the broad control field. A common set of mathematics and
techniques is used to model al control problems. Be it a ssmple temperature controller or a
complex chemical plant, we use similar tools to represent them for simulation and subsequently
to control them. Although this thesis focuses on issues pertaining to the design and rapid

prototyping of motion control, the ideas can easily be applied in other control disciplines.

12 Teaching Motion Control

The importance of motion control in the industry draws with it a need for engineering graduates
with in-depth skills in the field. Currently, most undergraduate courses in electrical engineering
include a sound theoretical grounding in the principles of control and particular attention often
is paid to issues specific to the control of electrical machines. However, to apply the theory in
practice students need to master a number of other skills including digital hardware and
software design. The design of a complete digital motion controller is a lengthy process

involving a number of steps :

(i) Modelling of the controlled plant

(i) Controller design and simulation in non real-time
(iii) Design of the controller hardware

(iv) Coding of the control algorithm software

(v) Prototyping and tuning in real-time

(vi) Final validation and testing

Each of these individual steps forms an important component in aformal design process, but it is

equally important to have an overall grasp of the design at the system level.

Author's own experience as well as the input from a number of students at the Department of
Electrical Engineering at the University of Natal (UND) indicated that the theoretical content of
the course prepared graduates well for points (i) and (ii) above. With the use of commercial

microprocessor boards, the design of a controller platform can be greatly simplified. However,

Teaching Motion Control Page 1-2

Chapter One - Introduction

the writing of deterministic software to replicate the exact action of the simulated controller

seems to be the greatest challenge.

The time allocated for final year projects is typically around 13 weeks. This short time
combined with lack of prior experience in some practical design issues means that it is difficult
for students to gain sound system level experience in the design and implementation of motion
control. Students are seldom able to take challenging motion control projects through a formal
design process and typically only focus on a small component of a design. The problem also
exists at the postgraduate level, although it is far less pronounced due to the more generoustime
frames. The complete design of advanced control algorithms, for example field oriented control
(FOC), was outside the scope of an undergraduate project and even at postgraduate level usually
constituted a substantial portion of the dissertation[HEMMEL, MEYER 1, RANDELHOFF1].

13 Project Goas and Description

After considering the above points, a need was identified to create an integrated environment
which would allow students to conduct their motion control designs entirely at system level.
The emphasis should be placed on the students' in-depth understanding of the control issues
rather than the low-level details of implementation. With the ability to generate real-time
prototypes directly from simulations, more challenging control strategies could be fully
implemented and tested during atypical final year design course. In essence, students would be
given an opportunity to gain valuable experience of designing, simulating, implementing and
verifying advanced control algorithms in practice without first having to become expert
software or hardware developers. The tool could prove equally valuable at postgraduate level.
Here more emphasis could be placed on verification or comparison of awide variety of complex
control strategies without the time overhead usually associated with designing dedicated

controllers based on the various algorithms.

To satisfy the above objectives, the proposed Control System Development Environment

(CSDE) has to meet a number of seemingly conflicting requirements :

(i) Low cost - the overall cost of the CSDE will determine whether, and how many,

systems can be made available to students.

Project Goals and Description Page 1-3

Chapter One - Introduction

(i) High performance - the system has to provide adequate processing power to
implement complex control algorithms,

(iii) Ease of use - students must be able to get up to speed with minimum time and effort.

Before deciding on the exact specifications for the CSDE, the author evaluated two
commercially available solutions. The findings are presented in Chapter 2. Although the CSDE
was designed particularly with motion control in mind it should prove useful in other control

applications.

14 Thesis Structure

Chapter 2 discusses the issues involved in the development of a digital motion controller and
identifies the need for an integrated development environment to simplify the process. Two
commercially available solutions are briefly evaluated before a list of requirementsis drawn up

for the CSDE presented in this thesis.

Chapter 3 introduces the Math Works modelling and simulation software as the foundation of

the author's work.

Chapter 4 describes the hardware platform targeted by the CSDE, paying attention to the DSP

core, the I/O peripherals as well as custom expansion hardware.

Chapter 5 deals with the overall structure of the software components developed by the author
in order for the CSDE to satisfy the requirements as laid out in Chapter 2. The process of

automatic code generation is introduced in some detail.

Chapter 6 describes the custom kernel and other real-time support functions developed

specifically for the hardware platform from Chapter 4.

Chapter 7 introduces the library of hardware driver blocks created to support the CSDE
functionality under the Math Works software platform from Chapter 3.

Chapter 8 covers the components of the CSDE developed for the host PC's Windows

environment.

Thesis Structure Page 1-4

Chapter One - Introduction

Chapter 9 demonstrates the operation of the CSDE by means of an example and outlines two
practical case studiesto demonstrate how the CSDE was used by students during their final year

design projects.

Chapter 10 concludes the thesis and suggests possible improvements and extensions to the
CSDE.

A number of Appendices provide additional information not directly included in the body of the

thesis.

15 Summary

The CSDE presented in this thesis consists of a number of software and hardware components
which were integrated by the author to form a complete design environment. Some of these
components were of commercial origin, whilst others were created in collaboration with other
researchers. An overview of these components is included in order to provide a complete
description of the CSDE. For work which was not entirely the author's own, suitable

recognition and references are provided in the text.

Components of the CSDE sourced commercially include :

(i) The host workstation PC running the Windows 95 operating system.
(i) MATLAB, Simulink and Real-Time Workshop packages from MathWorks.
(ili) PC32 DSP Controller board from Innovative Integration (I1).

The choice of Windows 95 as the software platform for the CSDE was dictated by its wide
availability on the PC's in the laboratories. PC's equipped with the necessary hardware and
running other operating systems were not readily available, thus there was no opportunity to test

the CSDE on other software platforms.

A custom expansion card for the PC32, which provides pulse-width modulation (PWM) and
incremental tacho support, was designed by Mr. Walker. The technical staff at the Electrical
Engineering Department designed and constructed the power electronics and sensor setup

necessary for driving electrical machines.

Summary Page 1-5

Chapter One - Introduction

The author's work involved integrating the above components by providing the following

software :

(i) Real-time kernel for the PC32

(i) Standalone visualisation utility

(iii) Library of hardware driver blocks for use in Simulink

(iv) Routinesto maintain a bi-directional communication link between the host PC and

the PC32
(v) Varioustemplate and batch filesto automate the code generation and downloading

The work discussed in this thesis resulted in a number of publications which were presented at

both local and international conferences [DIANA 1, STYLO 1, 2, 3, 4].

Summary Page 1-6

Chapter Two - Review of Automated Development Tools for Digital Motion Control

CHAPTER TWO
REVIEW OF AUTOMATED
DEVELOPMENT TOOLS FOR DIGITAL
MOTION CONTROL

2.1 Introduction

Today there are a host of powerful processing platforms available with which to implement
sophisticated mation control algorithms [TRZYNADLO1]. But, as the available hardware
grows ever more powerful the design process becomes correspondingly more complex,
demanding multi disciplinary expertise [FENGI]. The designer not only needs to have in-depth
knowledge of the control problem at hand, but also needs to be able to implement the solution in
practice. This might involve both low-level microprocessor based hardware design as well as
the coding of the control algorithm to execute correctly in real-time [AHMED1]. These
practical issues often mean that a complete implementation of a complex motion control

solution would extend beyond the time alocated for such projects at undergraduate level.

This Chapter discusses a number of issues involved in the complete design cycle of a digital
motion controller, starting with modelling and simulation through to final real-time prototyping
and validation. The need for an integrated devel opment environment to shorten the traditionally
drawn out design process of an embedded solution [SENESEL] is presented. The discussion is
applicable to motion control design at al levels - undergraduate, postgraduate and in industry.
Regardless of the design engineers background, similar issues will have to be considered and a
structured design method followed.

There are a number of commercially available Computer Aided Control System Design
(CACSD) packages to help engineers during the design of digital controllers. The author
evaluated two CACSD packages, paying particular attention to their application in motion
control. Their strengths and weaknesses are discussed and used to set goals for the CSDE which
was developed in order to fill in the gaps left by existing packages.

Introduction Page 2-1

Chapter Two - Review of Automated Development Tools for Digital Motion Control

2.2 Digital Motion Controller Desi?;n Process

The design of adigital motion control solution requires a careful and structured approach. The
control engineer should follow a number of distinct steps, first getting acquainted with the
dynamics of the plant, before proposing a solution and finaly testing it by implementing it in
real-time [SLIVINSKI1]. A flow chart diagram of the typical steps and iterations in the design
of a digital controller is shown in Fig. 2.1. The flow chart shows how the design process
progresses from initial modelling of the controlled plant, through simulation and real-time

prototyping to a final implementation.

2.2.1 Modelling and Simulation

Before any successful control algorithm can be suggested, it is imperative to be familiar with the
transfer characteristics of the plant in question - in most cases this will be a DC machine or an
AC induction machine. Physical data needs to be collected from experiments and processed to
establish the relationship between input currents, the resultant voltages and the outputs (torque,
speed, position) of the given machine. There are modelling software packages available for the
PC which can ad the designer in this area, for example MATLAB [MATHWORKSL,
MATHWORKST7].

Once an adequate model of the machine is constructed and verified, it can then be used by
simulation software to test a cross section of control strategies. There are several commercial

packages on the market which can help, for example :

(i) Simulink [MATHWORKSZ2], an extension of MATLAB, is a capable package. It
has a number of specialised toolboxes to alow design and simulation of controllers
for a variety of applications in a single graphical user interface (GUI).

(i) CASED (Computer Anaysis and Simulation of Electrica Drives)
[KLEINHANS]] is specifically designed with motion control applications in mind.
However, it lacks the user friendliness and graphical front end expected of modern

software tools.

Once the simulation of a particular controller setup meets required specifications the

implementation in real-time can proceed.

Digital Motion Controller Design Process Page 2-2

Chapter Two - Review of Automated Development Tools for Digital Motion Control

Initial Moddlling

& Smulation of
Controlled Object

(the pI ant)
Y

-W Controller Design

\J

Simulation &
Tuning
N
< Meset Spec? ">
Yes
__ W Generate Red-Time Design and Build
Code ~ Hardware]
Prototyping on Target Hardware
Adjust : !
Parameters
Y
_ _ .
No &/ Meet Spec 7 >— B e M
| Yes
Implement Find
Controller
.]

Fig. 2.1 : Steps and iterations in the design of a controller

Digital Motion Controller Design Process

Page 2-3

Chapter Two - Review of Automated Development Tools for Digital Motion Control

2.2.2 Hardware Design

A vital issue in the development of a motion controller is the hardware platform used to execute
the controller software developed from a simulation. A commercially available controller board
could be used or the designer might choose to design custom hardware around one of many
available processors [CRAVOTTA1]. Whatever the choice, the following issues need to be

considered:

(i) processing power of the processor (or processors)

(i) size of available memory

(iif) number of input and output channels

(iv) sampling resolution and conversion times of A/D and D/A converters

(v) other peripherals - eg. PWM generators or incremental tacho support

The simulation results will determine the required number and resolution of I/0 channels but
can only serve as a guideline to the selection of a processor and memory size. Some additional
functions can either be implemented in hardware or later incorporated into the controller
software, for example for the switching of power electronics or support for high resolution

tachometers.

2.2.3 Software Design

Even with the availability of high-level programming languages and their advanced optimising
compilers, designing software to implement complex motion controllers is non-trivial. Most
undergraduate students will face a steep learning curve when confronted with the low-level
issues of writing and debugging hard real-time code for a modern processor [GANSSLEL1].
Even experienced control engineers or postgraduate students might find the software
development takes a disproportionate amount of time allocated for the entire motion control
project. With the diverse choice of algorithms available the designer might also want to
experiment with a number of them before committing to a specific choice. Such experimenting
may result in the need to completely, or at least partially, re-write the code. Even after a specific
controller setup is chosen, tuning individual control parameters might involve a recompilation

each time a small adjustment is made.

Digital Motion Controller Design Process Page 2-4

Chapter Two - Review of Automated Development Tools for Digital Motion Control

By nature human programmers are prone to making errors. As the size of the source code for a
controller grows so do the chances of errors creeping in. Two major types of errors encountered
in programming are syntax and logical errors. Syntax errors are easily picked up by the compiler
and can usually be corrected with minimum effort. Logic errors, on the other hand, often prove
to be difficult to locate and correct, as the resultant software might actually execute, but not
perform the exact function the programmer had in mind. After successfully designing and
simulating a controller it might be found that the hand coded real-time prototype fails to meet
the design specifications. The reason for this could either be a logic error in the software or that
the plant model used in simulation was incorrect thus producing a badly tuned controller. There

could be substantial difficulty in differentiating between these two cases.

The fina result of low-level development may be highly efficient code in terms of size and
execution times, but a penalty could be paid in terms of the drawn out development time. In an
industrial environment, upgrading and maintaining software could aso be problematic
[BASSETT1], especialy with the high turnover of manpower. With the original designer of a
particular system leaving, a simple upgrade could easily turn into a complete re-engineering
project even if adequate documentation for the software is available. In the academic
environment at the undergraduate level, lack of thorough documentation is often a problem.
This means that substantial design effort can unnecessarily be duplicated by each subsequent

generation of students.

2.2.4 Rapid Prototyping

Rapid prototyping means that the usual cycle of initial modelling, design, simulation and finaly
real-time prototyping, shown in Fig. 2.1, is made as short as possible. All the traditionally
separate steps are combined into a transparent process which involves no manual coding and
minimal adjustments to hardware. The engineer can seamlessly progress the design through all
stages in a user-friendly, PC based environment, without having to write asingle line of code. A

rapid prototyping environment for motion control can present a number of advantages :

(i) Inindustry the length of time from initial idea to marketable product is of utmost
importance [SENESE1]. Rapid prototyping has a potential to reduce the overall
design time while improving the software quality [GORDON1].

(ii) In the tertiary education environment students are alocated limited time to

complete their projects. Rapid prototyping can eliminate the tedious, low-level

Digital Motion Controller Design Process Page 2-5

Chapter Two - Review of Automated Development Tools for Digital Motion Control

design issues. Thus, students could concentrate their effort on more in-depth
investigation of the control theory and observe and verify their designs in practice
[KOZICK1].

An outline of a rapid prototyping system is shown in Fig. 2.2. The design environment is
subdivided into layers, helping to isolate the user from low-level design issues. By employing
such an environment, the designer could easily evaluate the real-time performance of a number
of completely diverse control algorithms in a short time, since the transition from simulation to a
functioning prototype would be taken care of automatically in a matter of minutes, or even

seconds.

Graphical Block Diagram

I I
I I
Design Level ! 1 :
(Platform Independent) : > > 64 > i
|
: Gain Transfer Fen i
! :
ik s s e A e e R AT T e AT RRERELEIY
Automatic Code Generation Source Code Modules
(Transparent to user))
Platform
» dependant

controller code

Supported Hardware Platforms

Fig. 2.2 : Levels of arapid prototyping environment

The automatic code generation involves combining of pre-tested and optimised modules and
thus, it has the additional advantage of guaranteeing the absence of both syntax and logic errors
from the final controller code. Potential sources of confusion are eliminated when a

malfunctioning prototype fails to meet simulation results, making the debugging easier.

Digital Motion Controller Design Process Page 2-6

Chapter Two - Review of Automated Development Tools for Digital Motion Control

Apart from the shortened development cycle, the major advantage is that controller design is
kept entirely at a graphical, user-friendly level. Thisin turn means that the task of documenting
a design becomes limited to the documentation of a clear schematic diagram. By employing
rapid prototyping methods, software maintenance problems can be reduced [GORDON 1] as all
code generation is handled transparently by the rapid prototyping environment.

2.2.5 An Integrated Development System

From the discussion above, a clear picture emerges of a complete environment dedicated to the
development of motion control. A practical platform for implementing such an environment
would be the widely available IBM compatible personal computer (PC), running a GUI
operating system, for example Windows 95 or WindowsNT. The targeted embedded hardware
would be a selection of commercially available DSP platforms, preferably in the form of
standard PC expansion cards. A range of hardware platforms would be decided on based on both
price and performance. The proposed environment, the CSDE, would have to provide the

following functionality under a unified user-friendly GUI:

(i) modelling;

(if) controller design, simulation and tuning;

(iif) automatic generation of hard real-time code for a particular hardware platform;
(iv) online tuning of parameters in real-time;

(v) data capture in real-time for visualisation and validation.

A possible setup for such a development environment and the interaction between various

components is shown in Fig. 2.3.

2.3 What is Currently Available ?

The ideas presented in the preceding sections of this Chapter are certainly not new or unique.
Befor e designing the CSDE, the author reviewed some commercial systems currently available.
Also, inthepast a substantial research effort has gone into creating a complete Motion Control
Development System (MCDS) at the University of Natal [MEYER1]. In the following
sub-sections a number of systems are introduced and their relative strengths and weaknesses are

outlined.

What is Currently Available ? Page 2-7

Chapter Two - Review of Automated Development Tools for Digital Motion Control

DSP Controller

" . Controlled Plant

Sensors

Fig. 2.3 : Interaction between parts of the proposed rapid prototyping environment.

2.3.1 Transputer Based System

The Electrical Engineering Department at the University of Natal has conducted extensive
research into the control of high dynamic performance AC motors using parallel processing
techniques [WEBSTER1]. The promising results of this early research effort led to the
establishment of the Transputer Applications Group (TAG) to design and build transputer based

controllers and to provide high-level tools for the design of motion control.

The hardware and software tools developed by TAG [MEYER 1, WOODWARD 1] were used to
implement advanced control algorithms in practical applications [RANDELHOFF1]. The
system was strong in terms of predictable code generation from graphical block diagrams and
the hardware developed formed a capable and highly scalable platform.

What is Currently Available ? Page 2-8

Chapter Two - Review of Automated Development Tools for Digital Motion Control

The MCDS relied on external software for modelling and simulation and its associated
Transputer based platform was specifically targeted at the motion control sector. All hardware
and software was a custom in-house development, which meant the project required an ongoing
development effort to keep up with trends in industry and the available technology. With a
number of the researchersleaving, TAG was dissolved and the MCDS became obsolete in terms

of other emerging tools.

2.3.2 MATLAB and Simulink

The MATLAB/Simulink package, from the MathWorks Incorporated, is a universal modelling
and simulation environment requiring only a PC to run. Its popularity in the academic as well as
industrial environment is mainly due to its modular structure. The core MATLAB engine
provides robust support for most mathematical problems. An entire array of associated
toolboxes are available to apply this mathematics engine to a number of specific fields.
Simulink provides a GUI extension which moves the process of modelling and simulation to a
graphical schematic level. The complete MathWorks package forms a comprehensive set of
tools for most modelling and simulation requirements. Chapter 3 offers an in-depth discussion
on the capabilities of the MATLAB system.

While modelling and simulation are very well covered by the MATLAB software, it provides
limited support for generating the embedded hard real-time code necessary to implement
motion control successfully. The Real-Time Workshop (RTW) extension, allows raw code to be
generated from Simulink graphical diagrams [MATHWORKS5]. Due to the scripting language
used, the Target Language Compiler (TLC) can customise the RTW to provide output in any
programming language. However, a significant amount of "glue" code still needs to be
manually added before implementation on any particular hardware platform. The generic
real-time framework created automatically by RTW does not allow for true real-time, interrupt
driven, deterministic code. In many applications, and motion control in particular, software
needs to perform predictably and it is vitally important that some hard real-time deadlines are
met.

At the time of writing, version 5.2 of MathWorks environment did not provide support for
uploading of data from external sources for displaying and visualisation. The designers of

Simulink leave a framework open which allows custom code to be attached to provide only a

What is Currently Available ? Page 2-9

Chapter Two - Review of Automated Development Tools for Digital Motion Control

one-way link with an externally executing code. Thus, on-line parameter tuning can be

implemented.

Despite its shortcomings the RTW is capable of generating raw high-level code from graphical
diagrams and can form a solid starting point for a complete solution to motion control

development.

2.3.3 Hypersignal RIDE

Hypersignal Rapid Integrated Development Environment (RIDE), available from Hyperception
Incorporated, is a stand alone, graphical environment for the development and real-time
implementation of DSP algorithms. A typical Hypersignal block diagram window is shown in
Fig. 2.4.

§8§ Hypersignal RIDE 4.0 - [Filter. 1st] 2 =]
File Edit View Control Blocks Realtime Jools Options Project Window Help - -|fljxj

D|(E| S| B8] [eolskl-2x| #| 2| B8 E k|2 2] 7] A8
=

RT Fixed LPF (Lite Version] T3P to PC Uploat
Single Channel Display 1

RT FFT 1 RT Magnitude 1P ta PC Upload 3

T Sweep Generator 1

L—T—{:

RTFFT 2 RT Maanitude 2P ta PC Uplaad 4

fFor'HéIp, press F1 P R T e e e AR U Rt 0 [U.Elﬂﬂs L]

Fig. 2.4 : Typical Hypersignal RIDE diagram

What is Currently Available ? Page 2-10

Chapter Two - Review of Automated Development Tools for Digital Motion Control

The Hypersignal package supports a wide cross section of DSP hardware, ranging from low end
cards to high end multiprocessor solutions. Itstrue strength lies in the seamless code generation
from graphical block diagrams. Individual blocks can be made to run on either the host PC or on
the target DSP hardware. Special blocks called RT DSP to PC Upload and RT PC to DSP
Download are used to connect sections of the diagram executing on different platforms. Thus
the complete controller can be initially made to operate on the host PC for simulation purposes,
and then moved to the target hardware. In the final design some blocks can remain on the PC to

provide bi-directional communication with the controller executing in real-time.

As far as the user is concerned the entire process of generating code is completely transparent.
Hypersignal also handles the issue of ensuring that processes executing on DSP hardware as
well as on the PC remain synchronised. While the block diagram is executing, parameters in
most of the blocks can be changed and Hypersignal updates variables in the real-time code

without interrupting execution.

Despite the strengths of this package in terms of its real-time support for a wide range of DSP
hardware, it does not provide adequate support for modelling and simulation. Hypersignal is
mainly targeted at the classical DSP applications and numerous sets of blocks are provided for
applications such as communications, speech processing and filter design. Even in these fields
Hypersignal does not quite match the functionality of dedicated modelling and simulation
packages like MATLAB and Simulink.

Hypersignal is an open environment which lends itself to customisation, if necessary in a
particular field. The package has been used to implement control of power electronics at the
University of Natal, in particular an artificial intelligence solution for a boost rectifier
[WORTHMANN 1] and classical motion controller [WALKER 1]. Researchersinvolved in both
these projects needed to commit considerable effort to extend Hypersignal before using it.
However a basic requirement for a truly integrated development environment is that users do

not need to write any custom low-level code.

2.3.4 dSPACE

The German company dSPACE GmbH provides a number of DSP based hardware platforms
and some of their products are specifically aimed at the control sector. In terms of software
support they have the Total Development Environment (TDE) [VATER1].

What is Currently Available ? Page 2-11

Chapter Two - Review of Automated Development Tools for Digital Motion Control

The TDE is an extension of the MATLAB and Simulink environment introduced above, and as
such it inherits al the modelling and simulation power from the MathWorks product family.
However, real-time code generation and support are only provided for the dSPACE boards,

which limits the choice of controller hardware.

Furthermore, the dSPACE product range is prohibitively expensive when compared to other
DSP hardware vendors. For example the DS1102 controller board at an educational discount
costs around US$3000, where as a PC32 card from Innovative Integration sells for less then

US$1000 and provides similar performance.

The TDE does not currently make use of Simulink's external mode for communication between
the block diagram and the code executing on target hardware. Thus downloading parameters
from within the Simulink environment is impossible. dSPACE ship a program called Cockpit
which takes over this functionality. However, the process of connecting various controls on the
Cockpit front end with correct parameters in the Simulink diagram is not straight forward.
Cockpit seems to use the intermediate files produced by Simulink to bring up alist of available
parameters for each block on the diagram. Some Simulink blocks have a number of parameters
associated with them which are internal to their operation and should not be modified
dynamically. The process of choosing the desired parameters in Cockpit form the available list
is not intuitive and could be especially confusing to anovice user. If the incorrect parameters are

connected to Cockpit controls and modified online, the problem may be difficult to find.

Not using the standard Simulink external mode also means that there is no way for the user to
start and stop the execution of the code once it is generated and downloaded to the target DSP
platform. Execution starts immediately as the code is downloaded, and the default set of
parameters is used. The user is responsible for ensuring that the initial set of parameters is safe.
An error on the user's part could mean the controlled plant runs out of control on downloading
the controller code and the only way to stop it from causing or sustaining damage would be a
physical intervention, for example cutting off the power supply. There could simply not be

enough time to start Cockpit and change the necessary parameters.

Although dSPACE provides al the necessary ingredients for a complete motion control

development environment, there is still room for improvement.

What is Currently Available ? Page 2-12

Chapter Two - Review of Automated Development Tools for Digital Motion Control

2.4 Goals for tHe_P[o_jeCI

Based on the discussion presented in this Chapter, the author decided that there was a need to
develop a solution for the design and rapid prototyping of motion control which, while fulfilling

al requirements as set out in section 2.2.5, meets following criteria :

(i) Low cost - the developed system needs to be affordable enough to appeal to the
wider educational system,

(i) Ease of use - as far as possible al functionality needs to be packaged in a single
environment,

(ili) Computational power - the DSP hardware platforms supported need to provide

adequate processing power to implement ambitious control projects.

The CSDE is designed mainly with educational institutions in mind, thus to address the above
points it was decided to base the system on the MATLAB and Simulink package. This will
reduce costs as most tertiary institutions already make extensive use of these modelling and
simulation tools. Further, more ambitious projects may be attempted by students within limited
time frames, as they will already be familiar with the software. MATLAB and Simulink are well
established CACSD packages and the author's intention is not to modify them, but rather to

extend and supplement their functionality as necessary to meet the goals set out section 2.2.5.

The standard external mode of Simulink has to be supported and any functionality not provided
for under Simulink can be implemented externally. With the current version of the MathWorks
software only the data visualisation needs to be done by a separate utility. The MATLAB and
Simulink package is discussed in detail in the next Chapter.

Hardware targeted by the author's proposed system will initially be the PC32 DSP Controller
card from Innovative Integration Inc. Choice of hardware was based on the cost to performance
ratio. The PC32 card provides 32 hit, floating point power of a 60MHz TMS320C32 DSP
processor from Texas Instruments, 16 bit resolution on A/D and D/A channels as well as an
open architecture for expansion. This gives enough computing power to implement advanced
control algorithms while at the same time being affordable enough (US$ 1000) for wide spread

use in the tertiary environment.

While being capable and affordable, the PC32 card does not provide built-in support for motion
control specific functionality. This problem was addressed in collaboration with other

Goals for the Project Page 2-13

Chapter Two - Review of Automated Development Tools for Digital Motion Control

researchers, in particular Mr. Walker [WALKER1], who designed a custom extension card to
the PC32. This custom card provides hardware support for a high resolution tachometer as well
as PWM for switching of power electronic devices. This expansion card in not absolutely
necessary for implementation of motion control on the PC32, but it does make the task easier by
delegating those computationally expensive tasks to dedicated integrated circuits (IC). The
hardware employed in the project is described in detail in Chapter 4.

2.5 Conclusion

The issues involved in the design process of a modern digital controller were discussed and a
need for a high-level integrated tool was identified. Some available solutions, commercial and
otherwise, were discussed and their individual strengths and weaknesses pointed out. From this

argument a number of goals were set for the proposed CSDE.

The following Chapter introduces the MATLAB and Simulink environment which was chosen
asthe starting point for the author's project. Chapter 4 will continue by describing the hardware

targeted.

Conclusion Page 2-14

Chapter Three - Overview of MathWorks Tools

CHAPTERTHREE
OVERVI EWOF MATHWORKS TOOLS

3.1 Introduction

Chapter 2 discussed the steps involved in the design process of a motion controller, starting with
modelling of the controlled plant, through simulation of the control algorithm to the final
real-time implementation. Particular emphasis was placed on motion control design issues in
the tertiary environment, and a need was identified to simplify the design process. The idea of an
integrated development environment was introduced, to aid the designer by combining all

necessary tools under one package.

MATLAB and Simulink from MathWorks Incorporated are well established products and are a
defacto standard in terms of modelling and simulation in the academic community [FOSTER 1,
GUMASL, MIROTZNIK1]. The MathWorks software as well as a number of other design and
simulation packages were previously used and evaluated at the Electrical Engineering
Department of University of Natal [KLEINHANS1]. Recommendations from researchers
experienced with the available software packages led to the selection of Simulink and the RTW
to form the foundation of the CSDE.

In this Chapter, an overview will be provided of the MATLAB, Simulink and the RTW
packages. The intention is not to give an exhaustive discussion of the complete MathWorks
range, but rather to focus on a few points of interest. Specific detail will only be provided on
issues relevant to this thesis, in particular Chapters 5, 6, 7 and 8 which present the work

undertaken in extending and unifying the MathWorks components into the CSDE.

3.2 MathWorks

MATLAB [MATHWORKS1, 7] is ahigh performance mathematical language interpreter for
technical computing and is particularly useful for problems which can be formulated in terms of
vectors and matrices. Its open architecture lends itself to be customised by users and the system
has evolved over a number of years of continuous use in academic and industrial environments.
Fig. 3.1 shows the relationship between various MathWorks products. MATLAB forms the
foundation of the core mathematical engine for the rest of al the MathWorks range. It provides

Introduction Page 3-1

Chapter Three - Overview of MathWorks Tools

MATLAB Extensions:

MATLAB >, MATLAB Compiler

* MATLAB C Math Library

Simulink Toolboxes:

* Control System
* Communications
* Financid
* Freguency Domain System Identification
* Fuzzy Logic
* Higher Order Spectra Anaysis
* Image Processing
*
Simulink Extensions : N II(/Il\t/)ltljeIC(I)Dnrtégilctive Control
* Simulink Accelerator i ﬁl,ﬁg%l%’ 2 a>w nthes's
* Real-Time Workshop (RTW) * Neural N&w klon
with Target Language Compiler (TLC) N O&Jirrni sar[ionor
*
=y * Partial Differentil Equation
) * QFT Control Design
Elosis * Robust Control
* Signd Processin
L DSP ; N Sp?ine |
* Fixed-Point o
* Nonlinear Control Design) gﬁ'}g{;ﬁi "
e * Sygtem Identification
* Power System * Wavdet

Fig. 3.1: MathWorks Product Family

a programming interface, numeric computation and has advanced data plotting capabilities.
Toolboxes are collections of MATLAB functions which target specific areas of application.
There is a rich selection of such toolboxes available from MathWorks to satisfy most needs.
New toolboxes can be written using the high-level MATLAB programming interface or
existing ones can easily be modified to meet custom needs. The wide spread use of MATLAB
also resulted in a range of custom third party extensions being available. Simulink is a GUI
extension to MATLAB which alows for dynamic simulation of nonlinear systems in a
user-friendly graphical environment. MATLAB's core functionality, including access to
toolboxes, is retained while the design is abstracted to a schematic block diagram level.
Simulink Extensions form a set of tools which extend the functionality of Simulink. The RTW

is of particular interest to this thesis as it forms a starting point for transforming the simulated

MathwWorks Page 32

Chapter Three - Overview of MathWorks Tools

systems into real-time prototypes. Blocksets are collections of Simulink blocks which target

specific areas of application.

A complete discussion of al the available toolboxes, and extensions is beyond the scope of this
thesis. The following sections will concentrate only on those MathWorks products which are
directly relevant to the author's work and show how they help to form a complete rapid
prototyping environment. Simulink, the RTW and the Target Language Compiler (TLC) will be

introduced in more detail.

3.2.1 Host vs. Target Platforms

Before further discussing the MathWorks environment, it is important to define clearly how it
integrates into the CSDE in terms of the two distinct hardware platforms. Namely, the host and
target platforms.

The platform on which Simulink and the RTW run is denoted as the host platform. In the case of
the CSDE it takes the form of a personal computer (PC) workstation running the Windows 95
operating system.

The code automatically generated by the RTW is executed on the target platform. The target

platform could be any of the following examples :

(i) A stand alone embedded microprocessor based controller linked to the host via a
serial connection,

(i) A DSP processor on an expansion card in one of the host's slots, communicating
with the host via the ISA or PCI bus.

(iii) Another workstation linked to the host via alocal area network (LAN) or the world
wide web (WWW)

(iv) The host workstation itself

In the case of the CSDE the target platform is the PC32 controller card installed on the host PC's
ISA bus.

MathWorks Page 3-3

Chapter Three - Overview of MathWorks Tools

3.3 Rapid Prototyping with Math\l_vbrkg

The set of tools from the MathWorks, as introduced above, form a solid base for modelling,
design and simulation of digital controllers. In addition, the RTW provides a framework for
extending these tools into a complete rapid prototyping environment which can provide the

following functionality:

(i) Automatic code generation. The ability to automatically turn a graphical
simulation into executable code means users are freed from al software
development issues. Controller development takes place in the standard Simulink
environment and the RTW handles the transformation into a real-time prototype
transparently to the user.

(i) On-line parameter tuning. Controller parameters can be modified in real-time
without interrupting the prototype's execution. A feature of Simulink called
external mode establishes a communication link between the host PC and the
controller executing on the target hardware. The Simulink block diagram
effectively becomes a GUI for the real-time controller prototype.

(iii) Visualisation. Release 10 of the MathWorks environment, which was used as a
base for the CSDE, does not support uploading of data into Simulink from external
sources. This functionality was implemented by the author outside the MathWorks
system as described in Chapter 8. Release 11 from MathWorks provides the
necessary functionality, but was shipped too late to be included in the current
version of the CSDE.

Fig. 3.2 shows the relationship between the MathWorks components involved in automated
code generation. Stateflow allows one to include state-machine logic into Simulink block
diagrams, but was not available for inclusion at the time of the development of the CSDE. It
could prove to be a valuable tool during the development of real-time code for embedded

applications.

The starting point for generating code is a standard Simulink block diagram. Any functionality
specific to the target hardware can be included at this level in the form of custom blocks. The
RTW processes the block diagram into an intermediate netlist description. This intermediate
netlist is parsed and converted to source code by the TLC. The TLC output is passed to atarget

specific compiler whereit is combined with custom real-time support code and results in a stand

Rapid Prototyping with MathWorks Page 3-4

Chapter Three - Overview of Math Works Tools

MATLAB “
Simulink
/ erhica block diagram
Stateflow
\ Real Time Workshp j

« Netlist
(Target Language i
Y, Compiler J

t MathWorks Tools T Code

Target Hardware Tools o ——

Custom Target-*
Specific |
Compiler /

Fig. 3.2 : Relationship between MathWorks tools for code generation

alone executable. The process of converting a Simulink block diagram into executable code is

discussed in more detail in sections 3.5 and 3.6.

Automatically generating real-time code is an important requirement of the rapid prototyping
process. Equally important, however, is the ability to interact with the generated prototype in
real-time without adversely affecting its performance. For this purpose Simulink supports the
external mode. When placed in external mode, Simulink acts as a remote GUI to the prototype
controller, as shown in Fig. 3.3. Any changes to parameters on the Simulink block diagram are
automatically communicated to the equivalent real-time executable. This mechanism allows for

on-line controller tuning without the need to recompile the controller code after each change.

The above discussion briefly presented two features of the MathWorks environment which
allow its expansion into a complete rapid prototyping system, namely automated code
generation and external mode. The following sections introduce Simulink, the RTW and the

TLC and elaborate on issues important to the design of the CSDE around these components.

Rapid Prototyping with MathWorks Page 3-5

Chapter Three - Overview of MathWorks Tools

Simulink in
External Mode

’___,_—I__‘
- _H\‘-.\

(/Communication Path \
\ eg. TCHIP, ISA, '

1 Host PC
¢ Target Hardware \ RS232 /
-~

.)
\—"'“"'—._,-—'-“"J

/ Generated executable)
V controller code [/

Fig. 3.3 : Interaction with prototype controller via Simulink external mode

34 Simulink

Simulink [MATHWORKSZ2] is a GUI from MathWorks Inc. It is a software package for
modelling, simulation and analysis of dynamic systems and can utilise the proven MATLAB
engine. It supports linear and nonlinear systems, modelled in continuous and/or discrete time.
Discrete systems can also be multi-rate, i.e. Have different parts that are sampled or updated at
different rates.

For modelling, Simulink provides a user-friendly GUI alowing users to intuitively build
models as graphical block diagrams, using click-and-drag mouse operations. With this interface

Simulink Page 3-6

Chapter Three - Overview of MathWorks Tools

users no longer need to formulate equations in a language or programme, but can simply choose
from a comprehensive collection of block libraries and additional toolboxes. Simulink also

alows for custom blocks and libraries to be added by users to accommodate their specific needs.

Simulink models are hierarchal, thus complex systems can be broken down and approached in a
top-to-bottom or bottom-to-top manner. Systems can then be viewed at the top level, and by
double-clicking one can navigate down through the lower levels to see increasing amounts of

detail .

In the context of the CSDE, Simulink provides a comprehensive graphical environment for the
modelling, design and simulation of motion control. It is also a well proven package and is
widely used in tertiary institutions, both in South Africa and abroad [FOSTER1, GUMASIL,
MIROTZNIK1]. These factors mean that Simulink iswell suited to form a base for the CSDE as
discussed in Chapters 1 and 2. The following subsections will introduce a number of practical
aspects of Simulink. Particular attention is paid in sections 3.4.4, 3.4.5 and 4.4.6 to issues
pertaining to creating custom Simulink blocks, as this is important to the author's work

presented in Chapter 7. Simulink's external mode is discussed in section 3.4.7.

3.4.1 Simulink Blocks

Blocks are the basic elements from which Simulink models are built. Virtually any dynamic
system can be modelled by interconnecting blocks appropriately. Simulink blocks fall into two
basic categories : virtual and non-virtual blocks [MATHWORK S3]. Non-virtual blocks play an
active role in the simulation of a system, thus adding or removing a non-virtual block changes
the model's behaviour. Virtual blocks, by contrast, play no active role in the simulation. They
simply help to organize a model graphically to make it more readable. Fig. 3.4 illustrates a

number of typical Simulink blocksin a diagram and labels each as either virtual or non-virtual.

3.4.2 Libraries and Library Links

Simulink libraries are collections of blocks that alow blocks to be grouped according to their
specific area of application. There are a number of standard libraries shipped with Simulink, as
shown in Fig. 3.1, and further blocksets can be added. New libraries can be created containing
existing blocks, subsystems or completely new custom blocks. Fig. 3.5 shows an example of a

typical Simulink library and alogical link with a library block used in a diagram.

Simulink Page 3-7

Chapter Three - Overview of MathWorks Tools

Virtual
Non-virtual Non-virtual
| 1
y V
.Q;...... e In1 Ooutl [
o W J.
Signal Scope
Generator Subsystem <
l"________"““____-__'_‘-_“'_______‘___________—_"'___I
: |
! |
| _ Non-virtual |
' Virtua MO IES J Virtua |
1\ y Vv |
1 1 Il
\ CO-»»— - G N
rn N st outt |
| Gain Transfer Fen :

Fig. 3.4 : Virtual and non-virtual Simulnik blocks

A library link is established whenever a library block is used in a Simulink diagram. Any
changesto the library block will automatically be reflected in dl its instances. Thus, changesto

a library block can have a widespread effect on a number of Simulink diagrams.

3.4.3 Subsystems

Subsystems, like virtual blocks, play no active role in a Simulink block diagram. Their main
function is to collect blocks together into convenient, logical groups to help break down large
systems into a more manageable hierarchal structure, Fig. 3.4 demonstrated the use of a simple

subsystem. Five types of subsystems can be identified, as shown in Fig. 3.6 :

(i) Smple Subsystem. Its only purpose is to keep block diagrams neat and readable.

Simulink Page 3-8

Chapter Three - Overview of MathWorks Tools

File

D

|
\
1§

Vlew Simulation Format Tools

Edlt

H é L »
L= _.|_ Sal e mubrary simulink/Linear !EB
File Edit View _Cinilaice: Format | Lol
DDDD] [~ T
178 q1 > 4
00 [=] //} 3
Signal in Scope Gain Sum
Generator % -
“tan emmm = e
r— —— O —. pe— NETRR——— l l
ode45 B O
Integrator Transfer Fen
X? = Ax4-Bu =1 '
y= Cx+Du s+1) |
State-Space Zero-Pole
A du/dt |> 1+« k
Derivative Dot Product I
> K > > 1 />
Matrix Slider
Gain Gain
Fig. 35 : Example of a library and a library link
Simple Enabled Triggered
N f i Trigger() |
|
| | |
L
_ |
Triggered Function Call
and Enabled

Fig. 3.6 : Subsystem types in Simulink

Simulink

Page 3-9

Chapter Three - Overview of Math Works Tools

(i)

(iii)

Enabled Subsystem. An external signal can collectively enable or disable all blocks
in a Enabled Subsystem. The execution of the contained blocks continues as long as
the control signal remains positive,

Triggered Subsystem. The execution is controlled by the level changes in an
external control signal. The contained blocks execute only once for each trigger

event,

(iv) Triggered and Enabled Subsystem. Execution occurs only if both an enable signal is

v)

present and a trigger event occurs,

Function-call Subsystem. This type of a subsystem is only used when code is
generated from a Simulink diagram using the RTW. The code generated for all
contained blocks is placed in a separate function, making it easy to assign parts of

the block diagram to external events like interrupts.

3.4.4 Sfunctionsin a Simulink Block Diagram

The standard set of Simulink blocks can be expanded by creating new custom blocks in the form

of S-functions. By allowing high-level code to be seamlessly integrated into Simulink block

diagrams, S-functions, or system functions, provide a powerful way to extend and further

customise the capabilities of Simulink. In the CSDE, S-functions are used to create custom

driver blocks specific to the PC32 controller and expansion hardware.

Apart for their application in the CSDE for accessing hardware, S-functions can be used in a

number of other applications :

(i)

(i)

(iii)

Creating new simulation blocks that are not supported in Simulink. Using a
high-level programming language can allow a solution in a single S-function block,
in place of a potentially complex interconnection of standard blocks.

Importing m-file or C-code algorithms into ablock diagram simulation. This option
could save existing and well tested code from having to be re-created using
interconnections of standard Simulink blocks.

Incorporating graphical animations into the simulation.

Sfunctions, like al standard Simulink blocks, can be fully described in terms of the following

equations, wherey isthe vector of outputs, x isthe vector of statesand u isthe vector of inputsto

the block:

Simulink Page 3-10

Chapter Three - Overview of Math Works Tools

(0 y=fo("*») "> outputs

AN} xC = fq(t,x,n) -> derivatives (in continuous time)
(i) xm = fy(tx, u) -> update (discrete)

(iv) X=X +Xg -> dates

Fig. 3.7 shows how the input, output and states vectors of a block relate to each other. At every
smulation step Simulink updates each S-function's vectors via calls to a standardised
Application Program Interface (APl) [MATHWORK$4, 5] and makes the results available to
other blocks in the diagram. The code contained in the API defined function calls can interact
with hardware or other external sources of data. This mechanism allows SHiinctions to provide
an interface between standard Simulink blocks and outside hardware devices.

U (inputs) Y (outputs
Ak P X (states) ‘

Fig. 3.7 : Relationship between input, output and states vectors of a Simulink block

The code for S-functions can either be written in MathWorks' own m-file format or athird party
C compiler can be used to generate executable code specific to the host platform in C-MEX
format. The following two subsections will describe how S-functions are created and introduce
the necessary APl in more detail.

3.4.5 Creating Sfunctions

Creating a new S-function for use in Simulink requires two steps. Firstly a graphical front-end
block is needed. Simulink provides a generic S-function block in the Nonlinear Blocks library
which forms a starting point for al new S-functions. Secondly the algorithm hasto be coded into
a format compatible with the S-function API introduced in section 3.4.6.

The graphical front-end block forms a user interface to the underlying S-function code and
alows parameters to be passed which can dynamically influence its behaviour. Simulink
provides a generic front-end block, which can then be customised by a process called masking.
Without masking parameters can be manually formatted and entered as an array in the generic

Simulink Page 3-11

Chapter Three - Overview of Math Works Tools

dialog box. Simulink's Mask Editor alows the design of fairly elaborate user interfaces which

support familiar Windows
mask can also be designed

based features like drop-down and check boxes. The S-function

to perform range checking of parameters to filter out invalid user

input before passing it to the code for processing. Fig. 3.8 shows the generic unmasked block
used for the S-function demo_sf, while Fig. 3.9 shows the same S-function after it has been

masked. The masked interface alows a more intuitive way of entering the two required

parameters - gain and phase shift.

File Edit View Simulation
[- ;

DDDD
00 | demo_sf
Signal S-Function
Generator

I VE O ATHC

DIBE&| L ®E

) | 'S-function parameters' field.

Foi -~ :
— Block Parameters: S-Function

;= S-Function— =
——

I User-definable block. Blocks may be written in M, C or Fortran and must

| conform to S-function standards. t,x,u and flag are automatically passed to
! the S-function by Simulink. "Extra" parameters may be specified in the

|
AR

r Parameters — . - ——a]
S-function name: | .
|demo_sf

|od S-function parameters: | |
| sec |
S e T, r peTE e S R e ST |

ADPYV Revert Help | Close 1 !

= |

Fig. 3.8 : A sample S-function block and its parameters dialog box

qdemol =

[-y i i e sttt @1_—‘. TR L Y A
- il Seshoiiet U e R M AREE e]

File Edit View Simulation Format Tools
: e
| 0 '
| D & y # &- /0 e Block Parameters: Subsystem Ed
[~ Subsystem fmattt)
LSampIe S-function block ma:l¢- tor demo in the then:
%DODD L it A 4’E Pararnetem
Gain
Signal S il R
Generator Subsystem | | . iy
’ Pase shift
i [ttne lodedl ey 12
Lol Rewvert Help I - Close I

Fig. 3.9 : A sample Sfunction block with a masked interface

Simulink Page 3-12

Chapter Three - Overview of Math Works Tools

Asmentioned, the code for an S-function can be supplied in one of the two supported formats:

(i) A standard MATLAB m-file.
(iil) A C-MEX file compiled for the specific host platform

Both formats have to comply with an API set out by Math Works. A generic template for each of
the formats is provided with Simulink to make this integration easy.

Standard m-file S-functions are interpreted at runtime by the MATLAB engine, thus they are
fully portable and platform independent. C-MEX S-functions, on the other hand, are executed at
runtime by the host processor. In the case of a PC running Windows, the C-MEX filetakes the
form of a32-bit Dynamic Link Library (DLL). A number of third party compilers are supported
for that purpose:

(i) WatcomC
(i) Borland C
(iif) Microsoft Visual C/C++

Since the main interest of this thesis lies in the generation of real-time code, only C-MEX
functions are relevant. Thus, in the following Chapters al referencesto S-functions will refer to
C-MEX functions and points specific to m-file S-functions will be omitted. Fig. 3.10
demonstrates steps in creating a custom C-MEX S-function and inserting it into a Simulink

block diagram.

3.4.6 S-function API

To function correctly, S-functions must adhere to the APl as defined by MathWorks. Apart
from the vector updates, each S-function is responsible for implementing API calls which
initialise it at the commencement of a simulation and clean up at the end of a simulation run. A
number of the API functions are compulsory, while some calls are optional and their use
depends on a particular area of application. Table 3.1 lists a subset of the S-function API

relevant to the work presented in this thesis (compulsory functions are marked in bold).

Simulink Page 3-13

Chapter Three - Overview of Math Works Tools

Template S |
function :
sfuntmpl.c

Q4 ¥

S-function :
custom.c

Y
32-bit Compiler

Y

Sfuction DLL:
citstorn, dll

Custom Source

Code
Simulink Mask
| Editor
Y
Graphical Block
Mask Interface
4 »
| Simulink Block
Diagram

Fig. 3.10 : Incorporating a custom C-MEX S-function into a Simulation

Simulink Request

Initialisation at beginning of simulation

APl Function Call

mdlInitialiseSizes

mdllnitializeSampleTimes

mdI Start
Calculation of output vector and derivatives | mdlOutputs
and update of states mdlUpdate

mdlDerivatives

Termination and cleanup tasks

mdlTerminate

Table 3.1 : Simulink S-function APl (compulsory functions in bold)

Simulink

Page 3-14

Chapter Three - Overview of Math Works Tools

The functionality of the API calls, listed in Table 3.1, is as follows [MATHWORKSS3, 4] :

(i)

(i)

(iii)

(iv)

(v)

(vi)

(vii)

mdllnitialiseSizes - it is the first call Simulink performs while interacting with a
S-function. The sizes of the input, output and states vectors as well as the number of
parameters is specified in this function.

mdllInitializeSampleTimes - here information about the S-function's sampling is
specified. All S-functions used in the CSDE are set to continuous time mode and are
thus executed at every sampling step of the model. If discrete time mode is selected
the S-function will only be updated at the specified sample hits.

mdlStart - this optional routine contains any application specific initialisation that
needs to be performed once only at the start of the model execution. S-functions
which implement hardware specific drivers might use this call to initialise the
hardware.

mdlOutputs - here code is included to compute the S-function's output vector. This
function is called at every sampling step of the model.

mdlUpdate - this optional call is performed only once per every major integration
step of the model. Typicaly it is used to update the discrete state vector.
mdIDerivatives - all code involved in calculating the derivatives should be placed in
this optional function.

mdlTerminate - it is a compulsory function and should contain all termination code
for the Sfunction. Any memory allocated during initialisation should be freed up
here and any hardware devices controlled by the S-function should be placed into a

sofe state.

Apart from the function calls listed above, the S-function APl also specifies a common data
structure format - SmSruct [MATHWORKS4, 5]. Each Sfunction in a Simulink model has a
corresponding SmStruct structure alocated for its private use. In addition there is a single

global (root) SmSruct defined for the model. The various SmStructs in amodel are arranged in

a hierarchal manner starting at the root (similar to a directory tree). Each structure contains a

pointer to its parent as well as a pointersto the root. Thus, the root SmStruct will have aNULL

parent pointer and al other SmStructs will point to it. Table 3.2 shows a broad outline of the

SmSruct structure. The SmStruct is a flexible, pointer based data structure, and is scaled

according to the particular needs of the given S-function or model. Some of the fields listed in

Table 3.2 can represent relatively complex structures themselves. To simplify access to the data

Simulink Page 3-15

Chapter Three - Overview of MahWorks Tools

Field Contained Data
Version version of the SmSruct) |
Parent this SmSrucfs parent
Root the root SmSruct
Sizes al size informaFio_r_l - e.g. number of inputs, outputs, states, sample times
Inputs input arguments passed from the block diagram
_Xectors) _v_ectors - eg. input, ouEput, states, derivatives, parameters
_ T —_— s;_miall_on time - not used for real-time
TFind N “final simulation time -_not used for real-time
TCount additional counter used for accurate time base
StepSize sampling time period on which to update
MinorTime | flag indicating that a minor time step is taking place
StepFlag
| Sﬂgs] additional timing information - e.g. skew time, current and next sample time _
Utility temporary storage and user defined data

Table 3.2 : Sfunction API data structure - SmStruct

contained in the Sm3truct MathWorks define a host of macros. The subset of macros relevant to

the CSDE can be summarized as follows :

(i)
(i)

ssSetSolverName - selects the solver to use in integration.
ssSetNumSFcnParams - sets the number of parameters expected from the block

mask,

(iii)

ssSetSFcnParamNotTunable - used to set some of the parameters as not tunable.

Simulink will report an error if the user attempts to change those parameters while

simulation is in progress,

(iv)

ssSetNumlnputPorts - sets the number of input ports to the block.

Page 3-16

Chapter Three - Overview of MathWorks Tools

(v) ssSetlnputPortWidth - sets the vector width for each port.

(vi) ssSetlnputPortDirectFeedThrough - specifies which of the input ports are used
directly in the computation of outputs. Simulink uses this information to set the
update sequence for the blocks in a model.

(vii) ssSetNumOutputPorts - sets the number of output ports from a block.

(viii) ssSetOutputPortWidth - sets the vector width for each output port.

(ix) ssSetNumSampleTimes - specifies the total number of sample times for the block,

(X) ssSetT - forces the smulation time to a specific value,

(xi) ssSetSampleTime - configures the sampling characteristics for a particular sample
time,

(xii) ssSetTFinal - setsthe stop time for a simulation run. Setting thisto zero indicates an
unlimited time, and is used for most real-time applications,

(xiii) ssSetSolverStopTime - sets the time period for the integration algorithm.

(xiv) ssGetNumSFcnParams - reads the number set by ssSetNumSFcnParams.

(xv) ssGetSFcnParamsCount - returns the actual number of parameters entered by the
user.

(xvi) ssGetSampleTime - reads the sample time setting as set by ssSetSampleTime.

(xvii) ssGetDefaultParam - returns a pointer to the parameter array.

(xviii)ssGetStepSize - returns the base sampling period for the model,

(xix) ssGetChecksum - used to access the checksums calculated for the model by
Simulink. The checksums are used during code generation to match executables
with their corresponding block diagrams,

(xx) ssGetSolverStopTime - reads the value set by ssSetSolverStopTime.

3.4.7 External Mode and Data L ogging

The preceding sections introduced the various building blocks of a Simulink block diagram and
showed how S-function can be used to add custom functionality. Sections 3.5 and 3.6 will
describe how a Simulink diagram can be used by the RTW to automatically produce areal-time
prototype. A block diagram can also serve as a remote GUI for the generated prototype, thanks
to Simulink's external mode. External mode establishes and maintains a communication link
between Simulink running on the host platform and the generated prototype code executing on
the target platform as was shown in Fig. 3.3. The execution on the target platform can be started

or suspended in a similar fashion to the traditional Simulink block diagram simulations. Any

Simulink Page 3-17

Chapter Three - Overview of MathWorks Tools

parameter changes are automatically downloaded and updated in the target executable's
SmSruct data structure without interrupting real-time execution. Simulink does not make
provision for datalogging and visualisation in real-time and this functionality is implemented in
the CSDE using a custom stand alone utility, Scope. The overall logical interaction is shown in
Fig. 3.11.

User Input - User Output -
Commands and Graphical data
Parameters plots in real-time
v .
|
> > > [|
3 |
s 1 G Tramim F i
> |
3AC]]
E
PC32 D - _'l_ -
Simulink in ! "Scope" ¥
Externa Mode x(custom Win 95 utility),*
i T T~ i
Host PC : 5
t © _“Communication Path \
eg. TCP/IP, ISA, [—
j Target Hardware Vg, RS232 P /

ﬂ-\.__‘_’__'_

.;j" Generated executable |
controller code

Fig. 3.11: Simulink external mode and data visualisation

Simulink Page 3-18

Chapter Three - Overview of MathWorks Tools

The external mode communication link can be implemented over a variety of interfaces :

(i) Transmission Control Protocol (TCP) - A Local AreaNetwork (LAN) or an Internet
connection can serve as a medium for external mode,

(i) Serial Connection - A traditional RS232 port can connect the target platform to the
host PC.

(iii) Dua Port RAM (DPRAM) - targets connected to one of the host's expansion buses
can share an area of memory. This is the method used by the CSDE.

The ability to tap into the target executables data structures and control its execution without
adversely affecting its performance in real-time presents the user with a powerful tool. The
performance of the generated code can be fine tuned on-line while it is responding to real world

inputs.

Also the combination of external mode and data logging alows an easy means to verify, in
real-time, that the generated code performs equivalently to Simulink simulations. Inputs
identical to those used during simulation can be applied to the target and the corresponding
outputs can then be compared graphically on the host work station. Thisway the user can verify

that the RTW correctly converted a given block diagram into executable code.

The preceding subsections described the design and simulation environment of Simulink. The
following sections will describe how the Simulink diagrams are converted to executable code

customised to a specific hardware platform.

3.5 Real-Time Workshop

The RTW extension to Simulink [MATHWORKS5] forms an environment whereby Simulink
block diagrams can be converted directly into executable real-time code. The RTW is a starting
point for a true rapid-development environment and allows a direct path from system design,
through simulation to prototyping and final implementation. It can be applied to a variety of

areas :

(i) Real-time control - Control algorithms designed using MATLAB/ Simulink can be

compiled into standalone executables and downloaded to target hardware.

Redl-Time Workshop Page 3-19

Chapter Three - Overview of Math Works Tools

(i) Real-time signal processing - MATLAB and Simulink are well suited to the design
of signal processing algorithms which then can be targeted to a DSP platform,

(iii) Hardware-in-the-loop (HIL) simulation - responses of a real life plant can be
included into a simulation at an early stage in the controller design,

(iv) Online real-time parameter tuning - Simulink's External Mode can form a graphical
front-end to a real-time program. Parameters can be changed, and the effects of such
changes observed in real-time, without interrupting controller execution,

(v) High speed stand-alone simulations - performance gains can be achieved by
compiling a Simulink diagram to execute directly on the host platform, without
having to go through the MATLAB interpreter,

(vi) Generation of raw ANSI C code - Simulink diagrams can be exported for use in

other simulation packages.

Within the CSDE, the RTW is used to generate ANSI C code representation of Simulink block
diagrams. The following subsections will introduce the code generation process and show how

custom source code can be linked in.

3.5.1 Code Generation Process

The RTW goes through a three stage process to convert the graphical Simulink model into a
final executable, as shown in Fig. 3.12 :

(i) RTW Build - The graphical block diagram is broken down and described in terms of
an intermediate RTW-file (*.rtw). This ASCII text file contains all information
about the diagram's blocks, hierarchy, interconnections and parameters. A compiler
specific makefile (*.mk) is also generated.

(i) TLC Parse - The Target Language Compiler parses through the RTW-file and
interprets appropriate TLC-files to create source and header files. A list of all block
parameters in the model is also generated and saved as a parameter file (*.prm).

(iii) Platform Specific Build - A compiler specific to the target hardware is used to
process the generated files and link them to the real-time kernel to produce the final

executable.

After this process is completed, the RTW can be configured to automatically download the

generated executable to the target hardware and start execution.

Real-Time Workshop Page 3-20

Chapter Three - Overview of Math Works Tools

Simulmk Modd
sfunctAW .
s = 1 I S-Functions
model.mcIr
) -
> RTW Build
Target Specific SystemXml
Template Make File
model.rtv/
‘f

* System target file sfunctXic |

* Block target files
* TLC function library

> TLC <«

moddl, ¢
model, h
/not/el.prm
) j‘) _l 1
* Redl-Time Kernd < moaei.mK.\
* External Mode ' - —» Cus@om
functions Build
¥

Target Specific Executable

Fig. 3.12 : Real-Time Workshop Code Generation and Build Process

3.5.2 Structure of the Generated Code
The RTW structures the generated source code into two distinct layers :

(i) Platform Dependant Layer (PDL) - the source code for this layer is not
automatically generated by RTW, and needs to be manually customised specifically
for the targeted platform. The various components of the PDL in the CSDE are
introduced in detail in Chapter 6.

Real-Time Workshop Page 3-21

Chapter Three - Overview of MathWorks Tools

(i) Platform Independent Layer (PIL) - the source code here is directly generated by the
RTW from a Simulink diagram and is structured to conform to the S-function API.

Structuring the code in this manner ensures maximum portability - only the PDL needs to be
changed to port the design to a particular target platform. The PIL is isolated from hardware
specific issues and can be ported to any platform which supports the S-function API. Fig. 3.13
demonstrates the basic structure of a RTW generated program. Conforming to the S-function
APl means that all data structures in the PIL are kept external to the code using the standard
Simulink SmSruc data structure. This alows an external process to modify a programme's

parameters without interrupting its execution, as mentioned in section 3.4.7.

Platform Dependant Layer (PDL)

Real-Time Kernel - Timing, Interrupt »| External Mode Comms
Handling, External I/O drivers | and Data L ogging

_4- A
Platform Inpendant Layer (PIL) v

RTW generated code functions and Inlined S-functions
v I T \ o |
A - 4 Y
Integration Algorithms Noninlined S-functions Data Structures

Fig. 3.13 : Basic Structure of a RTW Generated Program

3.5.3 Platform Dependent Layer

The Real-Time Kernel (RTW) forms the backbone of the PDL and is specific to a particular
target platform. It servesto isolate the PIL from hardware issues. The RTK needs to ensure that

adequate processing resources are available to meet timing deadlines of the generated code. In

Real-Time Workshop Page 3-22

Chapter Three - Overview of MathWorks Tools

cases where the target platform does not automatically support multitasking, an emulation

scheme ox pseudo-multitasking can be implemented.

The RTK is aso responsible for reserving memory resources for data structures and
dynamically allocating al spare processing time to the external mode comms and data logging

which are defined as low-priority background tasks.

The details of the PDL implementation specific to the PC32 hardware platform are provided in
Chapter 6.

3.5.4 Platform Independent Layer

To generate code for the PIL, the RTW uses the Target Language Compiler (TLC) which is
further introduced in section 3.6. The TLC allows full control over the generated source code. A
separate TLC-file is provided for each standard Simulink block and there are aso global
TLCHfiles. The set of TLC-files shipped with RTW results in the generation of code compliant
with the ANSI C standard. The source code generated for the PIL conforms to the S-function
API as st out in section 3.4.

3.5.5 Sfunctionsin RTW

The use of S-functions provides a powerful mechanism for customising the generated code for
the particular hardware platform. Particularly, S-functions can be used to incorporate hardware
specific driver level code into the final executable. Most hardware platforms targeted by the
RTW will incorporate some form of external inputs and outputs (1/0), as well as a range of
application specific peripherals. These devices can be represented as graphical blocks on the
Simulink block diagram, and the code needed to initialise and drive them can be incorporated

into a S-function.
Two types of S-functions can be used by the Real-Time Workshop :

(i) Inlined S-functions - a separate TLC-file is created for the S-function. During the
build processthe TL C uses thisfileto incorporate, or inline, target-specific code of
the S-function directly into the generated source code.

(i) Non-inlined S-functions - target-specific code for the S-function is provided in a

standard source file conforming to the S-function API.

Real-Time Workshop Page 3-23

Chapter Three - Overview of Math Works Tools

S func.c

Y

~ Compile

S func.dll

Y

Yy _
Simulink Manual
rewrite

I
'
|
! S functlc [€
I
1
|
I

Simulation

I Code Generation

RTW Build

]
I
R : —
Non-inlined « Lnlined

Fig. 3.14 : Including inlined and non-inlined S-functions into generated code

Fig. 3.14 shows the different steps in including inlined and non-inlined S-functions into
Simulink diagrams as well as the RTW build. Non-inlined S-functions are simpler to manage
but they incur a performance penalty at run-time as all of the API defined procedures have to be
called. In most casesthe code for an S-function will be concentrated in only one or two routines.
However, all cals defined in the S-function API have to be declared even if some of them are
left blank. Effectively unused dummy calls are created. Some simple S-functions can end up
wasting more processing time in switching overheads than performing their intended function.

Real-Time Workshop Page 3-24

Chapter Three - Overview of Math Works Tools

Inlined S-functions are merged directly into the generated code and thus do not suffer from
losses due to switching between sub-routines. However, writing TLC-files requires the user to

master the Math Works Target Language and would not prove viable for a once-off project.

When processing an S-function block, the TLC will, as default, first search for a corresponding
TLC-file. If found it will be parsed and the code will be inlined along with the standard Simulink
blocks. If no TLC-file is found on the MATLAB path, the standard C-MEX S-function source
file will be added to the make file to be compiled and linked at the final stage.

3.5.6 RTW Limitations

All standard Simulink blocks can be handled automatically by the RTW build process, with two

exceptions :

(® MATLAB functions and S-function blocks that call m-files first need to be
re-written as either C MEX S-functions or TLC files,

(i) Any Simulink block which relies on absolute time to compute its outputs, e.g. Sine
Wave Generator. Depending on the target hardware and the specific real-time
kernel, variables used to store absolute time could wrap around and cause

unpredictable results.

3.6 Target Language Compiler

The RTW as introduced above is responsible for co-ordinating the automatic transformation of
a Simulink block diagram into a complete executable. TLC isatool included with the RTW and
plays an integral role in this process. It parses the intermediate text description of a Simulink
model produced by the RTW and generates a number of source and header files which represent
the model's functionality in terms of a programming language. By default TLC's output is

ANSI C, but it can be customised to any other language.

While parsing through the intermediate RTW-file, the TLC uses a set of TLC-files to generate
its output. This processis highlighted in Fig. 3.15. The TLC-files specify what goes into each of
the output files and by modifying those files the output of the TLC process can be customised.

The changes can range from small platform specific changes to optimise code for size, through

Target Language Compiler Page 3-25

Chapter Three - Overview of MathWorks Tools

RTW intermediate file

model, rtw

Block specific TLC-files Target specific TLC-ile
*.1tlc
*tlc
Y
»| Target Language [«
Compiler
Y A yff W >f

model. c model.h model.prm model.reg j wot/e/_export.h

Fig. 3.15 : Target Language Compiler Process

algorithmic changes to optimise for speed, to a complete re-write of all TLC-files to generate
output in a different programming language. A RTW extension is available from MathWorks
which includes a set of TLC filesto generate Ada compliant code. In short the TLC can be used

in the following cases :

(i) Changes to the code generated for a particular Simulink block,

(i) Mining Sfunctions into the generated code,

(iii) Modify some global aspects of the generated code.

(iv) A complete re-make of the way TLC produces code to target a different

programming language.

Assuming that standard ANSI C code is generated, the TLC will generate the following set of

files starting with the model.rtw intermediate file :

(i) Model.c - Cfilecontaining all the generated source code.

Target Language Compiler Page 3-26

Chapter Three - Overview of MathWorks Tools

(i) Model.h - Header file containing all structure definitions needed by the generated

code,

(iii) Model.prm - Include file containing global data declarations and all default
parameter values,

(iv) Modelseg - Include file containing all registration functions and initialisation
routines.

(v) Model_export.h - Header file containing all definitions needed to interface and link
the TLC generated code to the Real-Time Kernel.

A complete description of the MathWorks Target Language is beyond the scope of this thesis
and the relevant documentation should be consulted for this purpose [MATHWORKS 6]. A
brief introduction to the relevant subset of the TLC language is offered in Appendix H.

3.7 Conclusion

This Chapter introduced Simulink and RTW as the foundation of the CSDE. Features of these
software packages relevant to author's work were highlighted. Chapter 4 will introduce
hardware components of the CSDE. Thereafter, Chapters 5, 6, 7 and 8 will describe how the
MathWorks platform was modified and extended to form a complete rapid prototyping system.

Conclusion Page 3-27

Chapter Four - Target Hardware Platform

CHAPTERFOUR
TARGET HARDWARE PLATFORM

4.1 Introduction

The previous Chapter introduced the Math Works package which forms the software foundation
of the CSDE. This Chapter will continue by presenting the hardware targeted by the CSDE. The
hardware platform consists of a commercial DSP card, the PC32 from Innovative Integration,
as well as a custom PWM / Tacho expansion card designed in-house at the Electrical
Engineering Department at University of Natal [WALKER1]. The PC32 card is built around the
TMS320C32 floating-point DSP from Texas Instruments (T1). All interfacing between the host
PC and the PC32 is done via the PC's ISA bus. The following subsections will introduce the

various components and focus on issues relevant to the author's work.

4.2 TMS320C32 DSP

The TMS320C32 processor from Tl forms the heart of the PC32 controller card. The TMS320
range of DSPs is very popular due to its good price to performance ratio and has been well
documented in literature [CHUNG 1, LIN 1, TRZYNADLOL1]. This section does not aim to fully
describe the 'C32 but briefly introduces the processor. Fig. 4.1 shows a simplified block
diagram of the processor.

4.2.1 'C32 Architecture

The 'C32 employs a modified version of the Harvard architecture [LIN1]. In a strict Harvard
architecture, the program and data memories are separated, thus permitting simultaneous
fetching of both instruction codes and operands. This setup coupled with pipelining allows the
execution of most instructions in a single processor cycle. The TMS320 family of processors
modifies this architecture to alow transfers between the two memory areas. Thereby the

flexibility is increased while the architecture's inherent processing power is maintai ned.

Introduction Page 4-1

Chapter Four - Target Hardware Platform

External Busses
and strobes

A

A

) Program Ceche
(64 x 32)
CPU -
(’ RAM Block 0
(1kx32)
DMA >
— < , RAM Block 1
(1kx32)
‘) ROM Block 0
v (4k 32)
A
Y Y Y Y
Serid Port 0 Serid Port 1 Timer O Timer 1

Fig. 4.1 : TMS320C32 Block Diagram

4.2.2 Cache and Pipelining

The 'C32 processor's cache can store up to 64 ingtructions [TEXASINSTR1]. The cache
maintains alist of the most recently accessed instructions. Before a new instruction is fetched
from externa memory thelocd list is consulted and the cache copy isused if possible. Only the
ingtruction codes are cached, data memory accesses bypass the cache dgorithm. Smdl, time
critical sections of code can benefit in performance due to the cache, but the code timing
becomes|lessdeterministic. For applications relying on code timing the cache can be disabled.

A four level pipelineis employed on the 'C32 to maximise the processor core usage [LIN1]. A
basic instruction goes through four levels during processing [TEXASINSTRY] :

TMS320C32 DSP Page 4-2

Chapter Four - Target Hardware Platform

(i) Fetch Unit (F) - This unit fetches the instruction words from program memory via
cache (if enabled).

(i) Decode Unit (D) - The instruction is decoded and pre-processed,

(iif) Read Unit (R) - If required operands are read from external data memory,

(iv) Execute Unit (E) - The required action is performed, registers updated and if

necessary results of previous operations are written to memory.

Each level requires aprocessor cycle to complete and each instruction can only be at one level at
the time. Pipelining allows four consecutive instructions to occupy al the core levels. Table 4.1
demonstrates the pipeline operation graphically for fictitious instructions & b, ¢ and d. Under
perfect overlap conditions the 'C32 can be processing up to four instructions in parallel, and

each instruction is at a different stage of its execution.

Cycle\ Unit F D R E
| m-3 [a
m-2 [b a
m-1 | ¢ b a
m d c b a
m_+_1] d c b
m+2 _.._ d c
m+3 [d

Table 4.1: Pipeline Operation for Instructions (a,b,c,d) under Perfect Overlap

4.2.3 Memory Organisation

The 'C32 uses a 32-bit wide data bus and a 24-bit wide address bus. The total addressable
memory range therefore is 22* Words (16 Mwords). Some of this memory space is reserved for
on-chip peripherals, ROM boot |oader and interrupt vectors [TEXASINSTRZ2]. The remaining
address ranges are available for mapping of external memory modules or peripherals. Three

strobe signals control access to various areas of memory :

(i) STRB 0and STRB 1 control the program and data memory regions.
(i) 1OSTROBE controls memory addresses used for mapping external peripherals.

TMS320C32 DSP Page 4-3

Chapter Four - Target Hardware Platform

Each strobe can be programmed to have a wait state from O to 7. This flexibility in wait state
allocation allows for fast program memory to be intermixed with slower data memory chips and
also allows a separate setting for the external peripherals. Section 4.4.1 outlines the memory
usage particular to the PC32 card.

Internally, all memory accesses are treated as 32-bit, but externally each strobe region can be
either 32, 16 or 8 bits wide. The on-chip programmable memory interface of the 'C32 resolves
the data width conflicts. There is a trade off in access speed, however. For example, to access a
word from a 16-bit wide memory, the processor will perform two consecutive 16-bit reads

before using the 32-bit result. Accesses to 8-bit wide devices require 4 bus cycles.

424 Timers

The 'C32 has two internal programmable 32-bit timer modules. Each module can operate as

either a timer or an event counter and can be clocked either by internal or external signals

~7/ TimerIn
Counter 32-bit :— f :
. . . . : INV
Period Register | Counter Register
A A Internal Clock / 2

» Comparator

No Period =
Counter ?

Yes

Pulse Generator

__ " TSTAT (interrupt)

i yv

vTi mer Out

Fig. 4.2 : 'C32 Timer Module Block Diagram

TMS320C32 DSP Page 4-4

Chapter Four - Target Hardware Platform

[TEXSASINSTRI1]. Fig. 4.2 shows a simplified block diagram of a 'C32 timer module. Each
module is controlled by three memory mapped registers, detailed in Appendix B :

(i) Global Control Register - determines the operating mode of the timer, monitors its
status and controls the function of the timer's 1/0 pin (TCLK).

(i) Period Register - specifies the timers signalling frequency,

(iii) Counter Register - contains the current value of the incrementing counter.

Two flags in the control register specify the timer mode :

(i) FUNC (bit 0) - controls the function of TCLK. If FUNC = 0, TCLK is configured as
a general purpose I/0O pin. If FUNC = 1, TCLK is used as the timer pin.

(i) CLKSRC (bit 9) - specifies the source of the timer input. With CLKSRC = 1, the
internal chip clock is used at half its frequency. If CLKSRC = 0, an external signal

on the TCLK pin will drive the counter.

On the PC32 card, introduced in section 4.4, thetwo signals from timers 0 and 1 can be used to
trigger the ADC and DAC peripherals. In a control system it is sometimes important to
synchronise 1/0O sampling to a fixed common clock or to an asynchronous external event as will
be shown in Chapter 9. Using FUNC and CLKSRC flags a total of four different timer modes
can be set up as demonstrated in Table 4.2. Setups (a) and (b) are of particular interest to the
CSDE and are further explained graphically in Fig. 4.3. In both modes the timer input is
independent of the TCLK pin and the timer output can be used to generate internal interrupts via
TSTAT. In mode (a) the TCLK line is isolated from the timer and can be used to patch trigger

No. | FUNC | CLKSRC Description
a 0 1 TCLK isagenera /O pin, isolated from the timer. Internal
clock drives the timer. - _
b 1 1 TCLK isthe timer output pin. Internal clock drives the timer.
c 0 0 TCLK is agenera 1/0 pin, and the timer is triggered by any

activity on the pin, internal clock isignored.

d 1 0 TCLK is the timer input pin, interna clock is ignored

Table 4.2 : 'C32 Timer Module Modes

TMS320C32 DSP Page 4-5

Chapter Four - Target Hardware Platform

'C32 PC32
Int. Clock
Timer In . :
Externa
TCLK :
Timer Out Expansion
- Header

1 v

r == ADC
I
I

. DAC

TSTAT 1/0 Port Control e | ADC
I
- DAC
(@ CLKSRC=1,FUNC =0
'C32 I| PC32
|
Int. Clock |
Timer In f€ |
Externa
TCLK \ .
Timer Out f- | , ->] Expansion
| I Header
Y | |
TSTAT] J
|
I
I

(b) CLKSRC =1, FUNC =1

Fig. 4.3 : Timer Modes (a) and (b)

signals from the PC32 expansion header to the peripherals. Thus, in this mode the 1/0 sampling
can take place asynchronously to the internal 'C32 clock. In mode (b) the TCLK signal is

derived from the timer and the 1/O sampling will be synchronised to the internal clock.

TMS320C32 DSP Page 4-6

Appendix G

(Data word) = TAUS; [turn off time */

pol I pwr() ;

(Data_word) = TTOT; / dead band */

pol I pwn() ;

(Data_word) = TM N / turn on time */

pol | pwr() ;

(Data_word) = VORITL; / switching frequency scale value */
pol | pwr() ;

(Data_word) = TSTART, / start of processing cycle */

*(Status_word) = 129;
%l osefile buffer
%<Li bMll St art Qust onCode(buffer, "trailer")>

%openfile buffer

/*
di ssable the PW/ board at termnate
*/

*(Status_word) = 0;

*(Status_word) = 0;

%l osefile buffer
%<Li bMIl Ter m nat eQust onCode(buffer, "trailer")>
%endf uncti on
% uncti on Qut puts(bl ock, systen) Qutput
/* 9%Type> Bl ock: %Name> (%<Parantettings.Functi onName>) */

*(Status_word) = 129;

pol | pwr() ;
*(Data_word) = (int)%LibBl ockl nput Si gnal (0, "", "", 0)>;
pol | pw() ;
*(Data_word) = (int)%LibBl ockl nput Si gnal (0, "", "", 1)>;

if ((int)%CrlMde> == 1) /* skip three values to wite frequency */
{

- pol I pwn();

* (Status_word) = 897;
}

pol | pwr() ;
*(Data word) = (int)%LibBl ockl nputSignal (0, "", "", 2)>;

Hardware Drivers TLC Files Page G-10

Appendix G

}

%endf unction %46 Qut puts

G.1.6Source Listing of Upload.tlc

%0 Abstract :

9w A TLC file for upload channels.
%% Aut hor :

%% Adam Stylo

%% Dat e:

%0 98/ 11/ 03

% npl enents " Upl oad" "C'

% nclude "iilib.tlc"

% uncti on Bl ockl nst anceSet up(bl ock,

%f EX STS("Upl dSeen")
%assi gn
%l se
%assign ::UpldSeen = 1
Yopenfile buffer
ext ern QUEUE queue[] ;
extern
extern
extern
extern

int queue_error;
int NumQueues;

extern LogDat a;

extern channel _map[];

%! osefile buffer

%<Li bCacheDefi ne(buffer) >
%endi f

Yopenfile buffer

#i fdef UPLD_YES
buf f er _si ze[%<Upl dSeen>-1] = (unsigned
Down_Sanpl e[%<Upl dSeen>-1] = (unsigned

NumQueues = %<Upl dSeen>;
if (!queue_init(&ueue[%Upl dSeen>-1],

#ifdef 1O ENABLE

::UpldSeen = ::UpldSeen + 1

unsi gned int buffer_size[];
unsi gned int Down_Sanple[] ;

| mpl enents one channel at a time

systenm) void

i nt) %Li bBl ockParaneter(Pl,"",

oy 1 O) >;
i nt) %Li bBlI ockPar aneter (P3,"",

") 0) >;

(2*buf fer_size[%<Upl dSeen>-11)))

printf("Menory allocation error in %Nane>\n");

#endi f

gueue_error = TRUE;
LogDat a = FALSE;

}

1, el se

Hardware Drivers TLC Files

Page G-11

Appendi x G

ttifdef | O ENABLE
printf("%l menory words allocated for %Nane>\n",
2*puf fer_size[%<Upl dSeen>-11]);
#endi f

LogDat a = TRUE;

#endi f

%l osefile buffer

%<Li bMdl St art Cust onCode(buffer, "trailer")>
Y%openfile buffer

free(queue[%<Upl dSeen>-1] . base);

ftifdef | QJENABLE
printf("Menory freed for %Name> (%<ParanSettings.Functi onName>)\n");

#endi f

%l osefile buffer

%<Li bMdl Ter m nat eCust onCode(buffer, “trailer")>

Y%openfile buffer

/* Y<Type> Bl ock: %Name> (%<ParantSettings.FunctionNane>) */

if (LogData)

Down_Sanpl e[%<Upl dSeen>- 1]
if (Down_Sanpl e[%<Upl dSeen>-1] ==0) [*capture this sanple*/

{
channel _map[%<Upl dSeen>-1] =%<Li bBI ockPar ameter (P2, "","", 0) >; ;
((volatile float)enqueue_ptr(&queue[¥%<Upl dSeen>-1]1)) =
%<Li bBl ockl nput Si gnal (0, "", "", 0)
Down_Sanpl e[%<Upl dSeen>-1] = (unsigned int)%Li bBl ockParaneter(P3,"",
} " H 0) >;

}

%l osefile buffer
%<Li bSyst emQut put Cust omCode (system buffer, "trailer")>

%endf uncti on

Hardware Drivers TLC Files Page G-12

Appendix H

Appendix H
H.l Target Language Compiler

The TLC is atool included with the RTW. It parses the intermediate files generated by the RTW
build process as well as the necessary sat of TLC files to generate source code for the
corresponding Simulink model [MATHWORK S6]. This appendix provides a brief introduction
to writing TLC files.

H.2 TLC Directives

All TLC files consist of series of statements in the following form :

%eyword [argurentl, argument2, =]

Where keyword represents one of the TLC directives listed in Fig. H.l and arguments define
an expression or parameter. The line below illustrates the use of the directive assign to change

the value of the variable myjnum :

%ssi gn ny_num = your_num + 1

Directive Type General Syntax

comment %% comment text

/% comment text %/

TLC expression | Yo<expression>

conditional inclusion |%if expression :
%dse
%elseif expression

Yo endif

macro definition %define identifier argument-list

%undd identifier |

Fig. H.I : TLC Directives

Target Language Compiler PageH-1

Appendix H

Directive Type General Syntax

I multipleinclusion |%foreach variable = expression
Yobreak
%continue

%endforeach

output file control |%penfileidentifier
%l osefile
% lushfile identifier

O%electfileidentifier

debug statements |%rror error-text
%nar ni ngwar ni ng- t ext
% racetrace-text

o%exit exit-text

identifier definition |%assign [::]variable = expression

TLC functions %function identifier (optional-arguments) [Output|void]
%oreturn

%0endfunction

Fig. H.I : TLC Directives (continued)

H.21 Commentsand Line Parsing

All lines contained between the /% and %/ directives are treated as comments and omitted
during the TLC parse. The %% directive specifies a line based comment - all characters

between the directive and the end of the line become a comment.

Non-directive lines outside of comment directives are copied verbatim to the output buffer.

Non-directive lines are lines which do not have % as their first non-blank character.

TLC Directives Page H-2

Appendix H

Long TLC statements can be broken down to span a number of lines. To indicate line
gpanning either the C language \ character or MATLAB ... sequence can be used. This
mechanism alows code to be kept more readable.

H.2.2 Expressions

Statements contained within a TLC expression can include a mixture of variables, constants,
logic and arithmetic constructs. During the parse the TLC evaluates the complete expression
and subgtitutes it with the result. Expressions appearing on directive lines do not need to be
ddimited by the %< > directives.

H.2.3 Conditional Inclusions

The %if directive dlows a conditiond incluson of TLC code sections based on the value of
an expression. If the expression evaluates to zero the statements between the corresponding
%if and %elseif or %endif directives are omitted during the parse. Any other result of the
expression is conddered as true and the statements are included.

The %elseif directive dlows the nesting of a number of conditional inclusions. If a %el saif
directive appears without a preceding %if it does not cause an error and is Smply treated the
same as a %lf.

H.24 Multiple Inclusions

The %foreach directive alows multiple inclusion loops to be generated. Theloop variableis
incremented from O to the vaue of the expresson minus 1. For example :

%foreach x = max_loop

could be equated to the following ANSI C statement:
for(x = 0; x < max_loop; Xx++t)

Within the loop the vaue of the loop variable can be used in expressions. To exit a loop
before the loop variable reaches its maximum the %break directive can be used. The
directive % continue forces the next iteration of the loop.

TLC Directives Page H-3

Appendix H

H.2.5 File Output

The % openfile directive allows the channelling of the non-directive lines' output to either a
local buffer or a external file. A number of buffers and files can be open simultaneously and
access to them can be controlled using the % selectfile directive. The % closefile directive
closes the corresponding buffer or file and if the closed file was currently selected, the

selection is moved to the last previously selected file.

H.2.6 Debug Messages

The various debug directives allow text to be printed to the MATLAB command window
during the TLC parse. This functionality is especially useful during the debugging stages.
Various levels of message priority can be specified by using the different debug directives.
TLC command line option -v allows the blocking of selected message levels. The debug

directive % exit always causes itstext argumentsto be displayed and stopsthe TL C process.

H.2.7 Macro Definitions

To smplify complicated references macros can be defined. The macros are automatically
expanded to their full content during the TLC parse. The % define directive alows definition
of macros and is similar in use to the ANSI C #define compiler directive. The % undef

directive removes the previously defined macro.

H.2.8 Identifier Definitions

Variable identifiers can be defined and their data type is automatically determined from the
initial assignment. The %assign directive is used to introduce a new variable aor to modify
the contents of an existing one. All defined variables are only visible within the scope of their

function. To access variables globally the :: operator is used before the variable name.

H.2.9 TLC Functions

The TLC functions are recursive and have their own variable scopes. No output is produced
by the functions of type void unless they use the % openfile directives explicitly. Functions

defined as Output automatically channel their output to the currently selected file or buffer.

TLC Directives Page H-4

Appendix |

Appendix |

|.I External Mode Communication

This appendix list source code for the ext PC32.c file which implements the external mode

comms under Simulink on the host side. When compiled it produces ext PC32.dIl.

111 Source Listing of ext PC32.c

/*

External comms . dll for use with Sirmulink and I nnovative Integration PC32
*/

#include <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude "mex. h"

#i ncl ude "w ndows. h"

#include "target.h"

#i ncl ude "cardinfo.h"

CARDI NFO* dsp;
vol atil e unsigned |ong* dpram /* 4 bytes long = 32bit */
int starting=0Q

i nt handshake (int opt)
{

int count=0, got _it=0;
dpranf0] = (XXAAAO + opt); /* Send the sync + option to target */

target _interrupt (0) ,-

whi l e((count<50) && !((dprani0] & OXFFFO ==0xABQ)))
/* wait for acknow edge */

{

count ++;
Sl eep(100);

if (count<50)
{

got it = dpram[0] & OxOOCF;
}

return got _it;

}

/* Function: nmdl Coominitiate

* Abstract:
* Inititate communi cation with the host and pass down initial paraneter
* val ues.
*/
int nmdl Conmi niti ate(
int bl ock param count, /*total nunber of bl ock paramneters*/

External Mode Communication Page I-1

Appendix |

double *block_params, [+l ength = bl ock_param count */
const char *modd_name, /[*nmodel nane */
const uint32 T mode_checksum[] , /*128 bit nodel checksum]
int nrhs, [*nunber of additional arguments */
const mxArray *prhs[] , /* additional arguments i}
char *error_nmessage /* error nessage for SIMILINK */
)
{
int xxx=0
mexPrintf("\n\nExternal node initiation for model : %\n", nodel nane);

if (target_open(0))
{
printf("Target Open. \ n");
dsp = target _cardi nfo(0);
dpram = (volatile unsigned |ong*)dsp->Dual Port.PhysAddr;

dpram[1] =nodel _checksum[(] ,-

dpr ani 2] - nodel _checksuni 1];
dprani 3] = nodel _checksuni 2] ;
dprani 4] = nmodel _checksuni 3];
mexPrintf("Verifying checksums ") ;
if (handshake (4) == 4)
mexPrintf("0KI\n");
XXX = O;

starting = 1;

el se

mexPrintf("FAI LED'\n");
XXX =-1;
} mexPrintf (" Checksumerror. Reconpile/Rel oad Diagram\n");

}

return Xxxx;
} /* end nmdl Comm nitiate */

* Abstract:

* Upl oad scope inputs from target.

*/

't F.‘%'t' Get Scopel npué(%pe_i nput _cnt, /* Nunber of scope inputs */
doubl e *scope_i nput s, /* Pointer to the scope inputs */
doubl e > /* Pointer to tine */
const char *nmodel _nane, /* the nodel nane */
const uint32_T nodel _checksun{], /* 128 bit model checksum)
i nt nrhs, /[* # of additional argunents)
const mxArray *prhs[], /* additional argunents *
char *error_message /* error message for SIMJLINK */

/* Not supported yet under Simulink 2.2 - for future use.*/
return O; /* no errors */
}

/* Function: mdl GetBl ockQut puts

External Mode Communication Page 1-2

Appendi x |

* Abstract:
. Upl oad bl ock outputs fromtarget.

* /
!

int mdl Get Bl ockQut put s(

i nt bl ock_out put _cnt, /* Nunmber of bl ock outputs */
doubl e *bl ock_out put s, /* Pointer to block outputs */
doubl e M /* Pointer to tine */
const char *nodel _nane, /* the nodel nane */
const ui nt32_T nodel _checksunf] , /* 128 bit nodel checksum */
i nt nr hs, /[* # of additional argunents */
const nxArray *prhs[], /* additional argunents */
char *error_nessage [* error message for S| MJLINK*/
/* Not supported yet under Simulink 2.2 - for future use.*/
return O; /* no errors */
}
/* Function: ndl Set Paraneters
"% Apstract:
* Downl oad paraneter changes to the target .
* /
int ndl Set Par anet er s(
i nt bl ock_param_count . /* number of block parameters o/
doubl e bl ock_par ans, /* length = block_param count */
i nt num changed, /* # of changed paraneters */
i nt el ens, /* indices of changed params */
const char *nmodel name, /* the nodel nane */
const uint32 T nodel checksun{], /* 128 bit rmodel checksum */
i nt nrhs, /e # of additional arguments */
const nxArray *prhs[], f* additional arguments */
char serror_nmessage /* error message for SIMILINK */
)
{
int i,xxx=0,count=0,tenp;
uni on {
float f;
unsi gned | ong u;
} bl _param
mexPrintf("\n");
for (i=0; i<numchanged; i ++)
"~ dpran{!] =elems[i];
bl _paramf = block_paranms[elems[i]];
dpranf 2] = bl _paramu;
if (handshake(2) == 2)
} mexPrintf("Changed paranmeter P[%] = %g\n",elens[i], bl _paramf);

el se

mexPrintf("Handshake Failed\n") ;
XXX=1,¢

}

if (!xxx & starting)

[eFirst time we downl oaded params, need to tell target*/

External Mode Communication

Page 1-3

Appendix |

mexPrintf("Starting execution....");
i f (handshake(1l) == 1)

mexPrintf("OKI\n");

XXX=0;
starting=0
mexPrintf("Qutput to Terminal is %.\n",
(dprami3] & 1) ? "ON' : "OFF");
mexPrintf("Timer O is % used for base sanmple tine.\n",
(dprami3] & 2) 2 "" : "NOT");
mexPrintf("Data Upl oads are %s.\n",
} (dprami3] & 4) ? "ON' : "OFF");
el se
} mexPrintf("Failed!'\n"); xxx=I;}
return Xxxx;
/* Function: ndl ConmiTer ni nat e
* Abstract:
N Term nate conmunication with the host.
*/
int nmdl CormiTer mi nate (
const char *model _nane, /* the nodel nane */
const uint32_T nodel _checksuni], /* 128 bit nodel checksum */
i nt nrhs, [* # of additional argunents */
const nxArray *prhs[], /* additional argunents */
char *error_nessage [* error nessage for SIMILINK */
'}
int xxx=0;
mexPrintf("Termnating Cooms ") ;

if (handshake(3) == 3)

L mexPrintf("DONE!'\n");
target_cl ose(0);
XXX=0Q-

else
{
mexPrintf("FAI LED \n") ;
XXX=-1;
mexPrintf("Target programdid not respond!");

}

return XxXxx;

}

#include "ext_main.c* /* MX glue */

/* [EOR ext_PC32C */

External Mode Communication Page 14

Appendix J

Appendix J

J.I Display Utility

This appendix list the source code for the Display utility. The utility was generated using the
Microsoft Visual Studio and some of the code is automatically generated, thus only relevant

excerpts are listed to conserve space.

J.1.l Source for DisplayChildFrm.cpp

/!l DisplayChildFrmcpp : inplementation file
/1

#i ncl ude "stdafx.h"
#i ncl ude "Display.h"
#include "D splayChil dFrm h"
#i ncl ude "ChildPropD g. h"
#i ncl ude "math.h"
ttifdef _DEBUG

#def i ne new DEBUG NEW
#undef TH S_FI LE

static char THHS_ FILE[] = FILE ;
#endi f
FECEZLLT 0 2200 vt 20t e v v e 222200 P 12200 11121221210 111

Il CDisplayChildFrm

| MPLEMENTJ3YNCREATE(CDi spl ayChi | dFrm CFr ameWhd)
extern CDi spl ayApp theApp;

CDi spl ayChi | dFrm : CDi spl ayChi | dFrm()

{
Creat e(NULL, ")
num sanpl es=200;
y_span=100;
trigg_l evel =0;
trigg_reset =FALSE;
use_trigger =FALSE;
for (UNT i=0; i<1000; I++)
sanples|[i] .x=i;

}
CDi spl ayChi | dFrm : - CDi spl ayChi | dFrn()

}{

BEG N_MESSAGE_MAP(CDi spl ayChi | dFrm CFr ame\Whd)
[1 {{ AFX_MSG_MAP(CDhi spl ayChi | dFrm
ON_WW_PAI NT()

ON_WM_SI ZE()

ON_WW CLOSE()
ON_WW_LBUTTONDBLCLK()
ON_WWM_SHOWA NDOW()
/1}} AFX_MSG_MAP

Digplay Utility PageJ-1

Appendi x J

END_MESSAGE_MAP()

EPTEETETETTT 1
[l CDisplaytil

FEEEEEEEEr TEErEr e 1222

[]
dFr m message handl ers

void CD splayChil dFrm : OnPai nt ()

{

CPai nt DC dc(this); // device context for painting

/I draw zero line
dc. MoveTo(0, size.y/2);
dc. Li neTo(si ze. x, size.yl/2);

dc. Pol yl i ne(sanpl es, num sanpl es);

1

void CDi splayChildFrm: nSi ze(U NT nType, int ex, int cy)

{

CFrameWid: : OnSi ze(nType, ex, cy) ;
if (nType!=SIZE_M N M ZED)

{

Si ze. X=cx;

si ze . y=cy;

if (size.x<numsanples) numsanples = size.x;
for (UNT i=0; i<=numsanples; |++)

sanmpl es[i].x=(i *size.x)/num sanpl es;
}

J
BOOL CDOi spl ayChi | dFrm : PreQO eat eW ndow(CREATESTRUCT &cs)

static UNT ny_x, ny_y;

cs.cx = 212;
cs.cy =10 0;

return CFrameWd: : PreCr eat eW ndow(cs) ;
'
void CD splayChil dFrm : Ond ose()

1
L

t heApp. acti ve_chi | d[ny_nunj =FALSE;
CFrameWhd: : Ond ose() ;

}

voi d CDi spl ayChi | dFrm : OnLBut t onDbl A k(U NT nFl ags, CPoint point)
{

RECT tenp_rect;

Chi I dPropDli g tenp_dl g;

t enp_dl g. DoModal (ny_num point);

if (size.x<numsanples) //check if we need to expand the w ndow

{
si ze. x=num sanpl es;

Display Utility Page J-2

Appendi x J

Get W ndowRect (& enp_rect);
Set W ndowPos(NULL, 0, 0, size.x, tenp_rect.bottomtenp_rect.top,
SWP_NOMOVE | SWP_NCZORDER) ;

1

f

for (UNTi =0; i <=numsanpl es,- | ++)
sanpl es[i].x=(i*size.x)/num sanpl es;
Redr awwW ndow() ;

CFrameWhd: : OnLBut t onDbl A k(nFl ags, point);

J.1.2 Source for DisplayDIg.cpp

/] DisplayDg.cpp : inplenentation file
/1

#i ncl ude "stdafx. h"

#i nclude "D splay.h"

#i nclude "D splayD g.h"

#i nclude "D spl ayChil dFrm h"

tfifdef DEBUG

#def i ne new DEBUG NEW
#undef TH S FI LE

static char THS FILE[] = FILE ;
ttendif

11111111111111211111121111112111711112171711112117111121717171111717171111111173°
Il CAboutD g dialog used for App About

class CAboutD g : public Cdial og

éubl ic:
CAbout Dl g();

/1 Dialog Data
[1 {{ AFX_DATA(CAbout Dl g)
enum { DD = | DD ABQUTBXX };
/1}} AFX_DATA

/1 dassWzard generated virtual function overrides
/1 {{ AFXJVI RTUAL(CAbout Dl g)
pr ot ect ed:
virtual voi d DoDat aExchange(CDat aExchange* pDX) ;
/1}} AFX M RTUAL
/1 1nplementation
pr ot ect ed:
[1 {{ AFX_MBGE CAbout Dl g)
/1}} ARX_MSG
DECLARE MESSAGE_NAP()

%
CAbout Dl g: : CAbout Dl g() : CDi al og(CAbout D g: : |1 DD)

{
/1 {{ AFX_DATA | NIl T(CAbout DI g)
//}}YAFX DATA INT

Display Utility Page J-3

Appendi x J

voi d CAbout Dl g: : DoDat aExchange(CDat aExchange* pDX)

i
CD al og: : DoDat aExchange(pDX) ;
/1 {{ AFX_DATA _MAP(CAbout Dl g)

| /1}} AFX_DATA NAP

BEA N_MESSAGE MAP(CAbout Dl g, Cdi al og)
11 {{ AFX_NMBG_MAP(CAbout DI g)
/1 No nessage handl ers
[1}} ARX_MBG VAP
END_MESSAGE_NAP()

[ELLLLL20 P e e e e 2200 e e e PeEr e e 222 e 2 e e 11111111
//CD splayD g dial og

CDi spl ayDl g: : CDi spl ayDl g(Cwhd* pPar ent)
CDi al og(CDi spl ayDl g: : 1 DD, pParent)

{

[{{AFX_DATA | NI T(CD spl ayDl g)

m num channei's = 0;

mtarget = 0O;

[1}}ARX DATA INT

m_hl con = Af xGet App() - >Loadl con(| DR_MAI NFRAME) ;
}
voi d CD spl ayD g: : DoDat aExchange(CDat aExchange* pDX)
{

CDi al og: : DoDat aExchange(pDX) ;

/1 {(AFX_DATA MAP(CDi spl ayD g)

DDX Text (pDX, I DC_EDI T1, m num channel s);
DDV_M nNMaxUl nt (pDX, m num channel s, 0, 10);
DDX_Text (pDX, |1 DC _EDI T2, mtarget);

DDV_M nMaxU nt (pDX, mtarget, 0, 5);

/1}} AFX_DATA NAP

J
BEA N_MESSAGE_MAP(CDi spl ayDl g, Cdi al og)
[{{ AFX_NM5G_MAP(CDi spl ayD g)

COETTEEE T r e e e re e e e ee e e ee e e e e eer e e 2220000 222220011111
[/ CD splayDl g nessage handl ers
BOOL CDi splayD g:: Ol nitDial og()
{
Chialog: :lnithalog() ,-
/1 Add "About..." menu itemto system nmenu.
/1 ID\/IABOJTBO(must be in the system command r ange.
ASSERT ((| DM ABOUTBOX & OxFFFOQ == | DM ABOUTBOX) ;

ASSERT(| DM ABOUTBOX < OXFOOO) ;

Cvenu* pSysMenu = Get Syst envenu(FALSE) ;
if (pSysMenu !'= NULL)
{

Display Utility Page J4

Appendi x J

CString StrAbout Menu;
st r About Menu. LoadStri ng (| DS_ABOUTBOX) , -
if (!strAbout Menu.|sEnmpty())

pSysMenu- >AppendMenu (M/_SEPARATOR) ;
pSysMenu- >AppendMenu(MF_STRI NG, | DM_ABOUTBOX,
X str About Menu) /
}
Setl con(m_hl con, TRUE); /1l Set big icon
Setl con(m_hl con, FALSE); /1l Set small icon
return TRUE;
voi d CDi spl ayDl g: : OnSysCommand(Ul NT nl D, LPARAM | Param

if ((nD & OxFFFO) == | DM _ABOUTBOX)

CAbout Dl g dl gAbout ;
dl gAbout . DoModal () ;

el se

{
} }

voi d CDi spl ayDl g: : OnPai nt ()

Chi al 0g: : OnSysConmand(nl D, | Param);

if (IslconicO
CPai nt DC dc(this); // device context for painting .
SendMessage(WM _| CONERASEBKGND, (WPARAM) dc. Get Saf eHdc(), 0)
/1 Center icon in client rectangle
int cxlcon = GetSystemvetrics(SM_CXI CON);
int cylcon = GetSystemvetrics(SM _CYI CON);
CRect rect;
Get Cli ent Rect (& ect) ;
int x = (rect.Wdth() - cxlcon +1) [/ 2;
int y = (rect.Height() - cylcon +1) /[2;
/1 Draw the icon
dc. Drawi con(x, y, m_hlcon);
el se
CDi al og: : OnPai nt () ;
) }
HCURSOR CDi spl ayDl g: : OnQuer yDr agl con()
return (HCURSOR) m hl con;

extern CDi spl ayApp theApp;

voi d CDi splayDl g:: OnOk()

{

Display Utility Page J5

Appendi x J

char title[100] ;
W NDONPLACEMENT wpl ;

for (UNT i=0; i<mnumchannels; |++)
if (theApp.active ch|Id[|])

t heApp. chil d[i]->DestroyW ndow() ;
t heApp. acti ve_chil d[i]=FALSE;

i f(Updat eDat a())

{

for (i=0; i<mnumchannels; |++)

{
t heApp. chil d[i] = new CD' spI ayChi | dFrm
sprintf(title,"CH #%l"
theApp. child[i]- >Showw ndow(SW SHOW ;
t heApp. chi l d[i]->Updat eW ndow() ;
t heApp. chi | d[i]->Set WndowText (title) ;
t heApp. active_child[i]=TRUE
theApp. child[i]->ny_nun¥Ei;
t heApp. queueli]. head = O;
t heApp. queue[i].trigg = 0;
t heApp. queue[i].tail = O;

for (UNT j=0; j<5000; j++)
t heApp. queue [i] .sample[j] = 0;
}

t heApp. num chi | dr en=m num channel s;

if(!'target_open(mtarget))
sprintf(title, "Unable to open Device Driver for target %\ n"
"Check target nunber setting", mtarget);
MessageBox(title, "FATAL ERROR', MB_| CONI NFORMATI ON) ;
Post Qui t Message(0) ;

/] Set up the Virtual ISR
host _interrupt _install(mtarget, EnqueueData, (PVO Dy mtarget);
host i nterrupt_enabl e(mtarget) ;

/1 Set DPRAM addrss
t heApp. dsp = (CARDI NFOr) target _cardinfo(mtarget) ,-
theApp.dpratn = (volatile int*)theApp.dsp->Bushaster. Addr;

if (theApp. pThread==NULL) theApp.pThread = Af xBegi nThr ead(Thr eadFunc,
NULL) ;

/] tell target we are ready for data
t heApp. dpram[4] &= XFFFE;

CGet W ndowP!l acenent (&wpl) ;
wpl . showCmd=SW M N M ZE;
Set W ndowPl acenent (&apl) ;

__inline long enqueued(U NT num

{
I ong depth = theApp. queue[nunj. head - theApp. queue[nuni.tail;
return ((depth < 0) ? (depth + Q SIZF) : depth);

Display Utility Page J-6

Appendi x J

}

__inline float dequeue(U NT num

{
float val ue = theApp. queue[nunj. sanpl e[t heApp. queue[nunj . tail ++];
if (theApp.queue[nunj.tail == QSIZE) theApp. queue[nuni.tail =0;
return (val ue);

inline void enqueue(U NT num float val ue)

t heApp. queue[nunj . sanpl e[t heApp. queue[nunj . head++] =val ue;
if (theApp. queue[nuni.head == Q Sl ZE) theApp. queue[nunj . head=0;

1
]

U NT ThreadFunc(LPVA D pPtr)

while (1)

{ J++)
for (UNT j=0; j<theApp.numchildren;
if ((theApp.active child[j]) &%
(enqueued(j) >=t heApp. chi I d[j]->num sanpl es))

if (theApp.child[j]->use_trigger)

//1ooking for trigger reset
whi | e((enqueued(j) >=t heApp. chil d[j]->num sanpl es) &&
(!theApp.child[j]->trigg reset))

if ((int)dequeue(j)<theApp.child[j]->trigg_level)
theApp.child[j]->trigg_reset = TRUE

} //1ooking for new trigger

whi | e((enqueued(j) >t heApp. chil d[j]->num sanpl es) &&
(theApp.child[j]->trigg_reset))

{

if ((int)dequeue(j)>=theApp.child[j]->trigg_|evel)

{
theApp.child[j]->trigg_reset = FALSE; #+)
or (int i=0; i<theApp.child[j]->numsanples; i
L heApp. child[j]->sanples[i]. y=
((float) (theApp.child[j]->size.y/2) *
(1-(fl oat)dequeue(j) /
(float)theApp.child[j]->y_span)) ;

} t heApp. chi | d[]]->Redr awW ndow() ;

1
/

}

else //no trigger needed

{
for (int k=0; k<theApp.child[j]->numsanples; k++)
theApp.child[j]->sanples[k].y =
((float)(theApp.child[j]->size.y/2) * (1-(float)dequeue(j) /
(float)theApp.child[j]->y_span));
t heApp. chi 1 d[j]->Redr awW ndow() ;

éleep(O);

Display Utility Page 37

Appendix J

VA D EnqueueData (PVAD pvoi d)
{

U NT I;

l ong of fset;

unsi gned |ong buffer_size;
int buffer _num

uni on {
float f;
unsi gned long u;
} pl ot _dat a;

of fset = 0;

buf fer __num= theApp dpram[5 + of f set ++] ;
buf fer_size = theApp. dprani5 + of f set ++]

while ((buffer_num !=099) && (offset < 1000))
|
for (i =0; i <buffer_size; |++)

pl ot _data.u=theApp.dpram[5 +offset ++] ;
enqueue(buf fer _num pl ot data.f);

buf fer_num = theApp.dprani5 + of f set ++];
buf fer _size =theApp.dpranj5 + offset ++] ;

1
f

/l/signal to target that we are finished reading
t heApp. dpranf 4] &= XFFFE;
}

voi d CDi splayD g: : Ond ose ()
{

| for (UNT i=0; i<mnumchannels; |++)
if (theApp.active_child[i])

t heApp. chil d[i]->DestroyW ndow() ;
t heApp. active_chil d[i]=FALSE;

Chalog::nQose ();

J.1.3 Source for ChildPropDIg.cpp

/1 ChildPropDig.cpp : inplementation file

i
."" !

#i ncl ude "stdafx. h"
#i nclude "D spl ay. h"
#i ncl ude "Chil dPropD g. h"

#i fdef _DEBUG

#def i ne new DEBUG NEW
#undef TH S FI LE

static char THS FILE] = FILE
#endi f

NN I|IIIII||IIIII|III FECEEEEEEEE R T e e e e e e e e e e e e e e e e e
Il ChlIdProp g dial og

Display Utility Page J-8

Appendi x J

Chi | dPropDl g: : Chi | dPropDl g(CWhd* pParent)
CDi al og(Chi | dPropDl g:: 1 DD, pParent)

{
[T {{ AFX_DATA_I NI T(Chi | dPropDl g)
m num sanpl es = O0;
mtrigg_level = 0;
my_span = 0;
m use_trigger = FALSE;
} /1}}ARX-DATA_INIT
voi d Chil dPropDl g: : DoDat aExchange(CDat aExchange* pDX)
{

CDi al og: : DoDat aExchange(pDX) ;
/1 {{ AFX_DATA_MAP(Chi | dPr opDl g)
DDX_Text (pDX, | DC_EDI T1, m num sanpl es);
DDV_M nMaxUl nt (pDX, m num sanples, 20, 1000);
DDX_Text (pDX, | DC_EDI T4, mtrigg_level) ;
DDV_M nMaxl nt (pDX, mtrigg_l evel, -32000, 32000);
DDX_Text (pDX, | DC_EDI T2, m_y_span);
DDV_M nMaxUl nt (pDX, my_span, 0, 32000);
DDX_Check(pDX, |DC_CHECK1l, m use_trigger);

) /1}} AFX_DATA_MAP

BEGI N_MESSAGE_MAP(Chi | dPropDI g, Cdi ai 0g)
[{{ AFX_MSG_MAP(Chi | dPr opDl g)
ON_BN_CLI CKED(| DOK, OnGCk)

/1}} AFX_MSG_MAP

END_MESSAGE_MAP()

LR F e 101102002 PEE 22000 00 P12 122 12 ter tee 210 e 12212 e Pee 1
Il ChildPropDl g nmessage handl ers

extern CDi spl ayApp theApp;

void Chil dPropDl g:: OnCk()

if (UpdateData ())
t heApp. child[m_ chil d_num - >num sanpl es = m num sanpl es;
t heApp. child[m_chil d_num ->y_span = m.y_span;
t heApp. child[mchild_num ->trigg_level = mtrigg_|level;
t heApp. child[m child_num ->use_trigger = m.use_trigger;
EndDi al og(TRUE) ;
) }
int Chil dPropDl g:: DoModal (U NT child_num CPoint cPt)
m _chi |l d_num=chil d_num
m_y_span=t heApp. chil d[chil d_num ->y_span;
m num_sanpl es=t heApp. chi |l d[chi | d_nuni - >num_sanpl es;
mtrigg_| evel =theApp.child[child_nunml->trigg_|evel;
m use_trigger=theApp.child[child_num ->use_trigger;
} return CDi al og: : DoModal () ;
BOOL Chil dPropDl g: : PreCreat eW ndow(CREATESTRUCT& cs)

CS. x=m_cPt. x;
cs.y=mchPt.vy,-
return CDi al og:: PreCreat eW ndow(cs) ;

Display Utility Page J9

Appendix K

APPENDIX K

K.1 RTW Build Example

This Appendix presents a step-by-step example of the RTW build. It is shown how a simple

block diagram is converted into ANSI C source code and compiled into an executable.

K.2 Block Diagram

The Simulink block diagram Example is showninFig. L. 1. It is assumed that an external trigger
event is connected to the EO interrupt of the 'C32. Each time EO is triggered the AD
TRIGGER block executes, and starts a conversion on the four ADC channels. The end of
conversion signal from the ADC in turn triggers the Ell interrupt and the Process subsystem

executes. The contents of the Process subsystem block are shown in Fig. K.I.

File Edit View Simulation Format Tools
| T | .|
| ' et b el NI !
EID |
Ell Y
Trigger®
EI2
Ei3 b .|l’ AD TRIGC-ER
TriggerO
TMRO [>
TMR1 | Process
PC32 Int Support
3_ Process (=] B3
FI] File £dit View .Simulation Format Tools
Trigger
ADCD 4>|>—> DACO
ADCH Gain S DACH
ADC2 B H DAC2
ADCE b HDAC3
PC32 ADC PC32 DAC

Fig. K.l : Simulink diagram used in the RTW example

RTW Build Example PageK -1

Appendix K

The overall effect of this setup is a simple feed-through from ADC channel 0 to DAC channel O.
The sampling rate is determined by the signal driving EIO and the gain can be adjusted
dynamically.

K.21 Setting up RTW Parameters

The simulation parameters dialog box for the Example diagram is shown in Fig. K.2. The code

generation switches are set as follows :

(i) TMRO =NO - the diagram will be triggered asynchronously by and external event,
thus there is no need to use timer O to generate a clock,

(il) UPLD = NO - there are no scope upload blocks used in the diagram, thus all data
buffering and uploading functions will be excluded,

(iii) 10 = DISABLE - the debug printouts to the terminal emulator will be disabled.

:\'~4 Simulation parameters: Example

Solver | Workspace I/0| Diagnosticsi RTWI RTW External |

Code generation

System target file: ‘Pifﬂe ™ !
P~ Inline parameters [~ Retain.rtwfile |
Build options

Template makefile: } pc32.trnf

Make command:
| make_tA> TMRO=NO UPLD=NO |O=DISABLE

Build l

Apply l Revert| Help I Close

F' Generate code only

Fig. K.2 : RTW Simulation parameters dialog

Block Diagram Page K-2

Appendix K

K.3 The Build Process

After initiating the RTW build by clicking onthe Build button, the progress can be followed in
the MATLAB command window. The output generated during building of the Example

diagram is listed below (some lines are truncated due to the limited line length) :

»
Starting RTWbuild procedure for nodel : Exanpl e

Using fixed-step discrete time solver for nmodel ' Exanplel.

| nvoki ng Target Language Conpiler on Exanple.rtw

tic -r Exanple.rtw C\NATLAB\rtwc\iilii.tlc -0. -IC\MATLAB\rtwhc\ii -lc:
Loadi ng TMNTLC function libraries

Initial pass through nodel to cache user defined code

VWarning - No code wi || be generated for ISR2 since it is not connected to any-
VWarning - No code wi |l be generated for ISR3 since it is not connected to any-
VWarning - No codew || be generated for ISR4 since it is not connected to any
VWarning - No code will be generated for ISR5 since it is not connected to any
CGeating (Real Tine) source file Exanple.c

reating part 1 of registration file Exanple.reg

reating paraneter file Exanple.prm

(reating nmodel header file Exanple.h

reating part 2 of registration file Exanple.reg

TLC code generation conpl et e.

reating project marker file: rtwproj.tmw

O eating Exanpl e.nk frompc32.tnf

Bui | di ng Exanpl e: grmake -f Exanpl e. nk TMRO=NO UPLD=NO | O=Dl SABLE
c:\fltc\cl30 c:\matlab\rtwc\iilti_fpc\PC32main. c

[pc32nai n. c]

c:\fltc\cl30 C\MATLAB\rtw c\src\rt_simc

[rt_simc]

c:\fltc\cl 30 C\MATLAB\rtw c\libsrc\rt_matrx.c

[rt_matrx.c]

c:\fltc\cl30 Exanple.c

[exanpl e. c]

echo PC32mai n. 030 rt_simo30 rt_matrx. 030 Exanpl e. 030 > Exanple.lin

echo C\MATLAB\rtwc\ii\ti_fpc\pc32func.030 » Exanple.lin

echo C\MATLAB\rtwc\ii\ti_fpc\ii PC32.cmd >> Exanple.lin

c:\fltc\Ink30 -x -a -cr -heap 0x2000 C \MATLAB\rtwAc\ii\ti_fpc\vectors. obj
TMB32 0C3x/ 4x COFF Li nker Version 4.70

Copyright (c) 1987-1996 Texas Instruments | ncorporated

echo Conpl et ed Exanpl e. out

The Build Process Page K-3

Appendi x K

Conpl et ed Exanpl e. out

Downl oadi ng Exanpl e:

C\MATLAB\rtw c\ii\D Load. exe Exanpl e. out

Successf ul

conpl etion of RTWhbuild procedure for nodel:

gmake -f Exanpl e. nk downl oad TMRO=NO UPLD=NO | O=D

Exanpl e

Firstly, the TLC parse process generates all source code into files Example.c, .reg, .h and .prm.

The last file generated is the customised make file Example.mk. These files will be discussed in

more detail inthe following sections. Next, it can be seen how the source code files are compiled

and linked by the TI tools. The final executable, Example.out, is downloaded to the target after

the successful completion of all preceding steps.

K.4 Header File

The generated header file, Example.h is listed below :

/*

*

*

*/

Exanpl e. h

Real - Ti ne Wor kshop code generation for Simulink nodel

RTWfile version 2.11 (Aug 28, 1997)
Fri Nov 12 08:34:15 1999
1.0 (Dec 12 1997)

Fri Nov 12 08:34:15 1999

RTwWfile generated on
TLC version
C source code generated on :

Rel evant TLC Opti ons:
InlinePararmeters = 0
Rol | Threshold = 5
Fi | eSi zeThreshol d = 50000
CodeFor mat = Real Ti ne

#i fndef _RTW HEADER FI LE_
ttdefi ne RTW HEADER FI LE_

ttdefi neassert (exp)

#i ncl ude

"simstruc. h"

#defi ne CODEGENERATCR_VERSION " 2. 2"

" Exanpl e".

Header File

Page K-4

Appendi x K

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

MODEL_NAME Exanpl e
NMODES (0)
NSAMPLEJTI MES (2)
NI NPUTS (0)
NCUTPUTS (0)
NSTATES (0)

t t def i ne NDSTATES (0)
tt defi ne NBLOCKI O(4)
ttdefi ne NUM ZC EVENTS (0)

ttifndef NCSTATES
define NCSTATES (0)
ttelif NCSTATES != 0

/* Nunber
/* Nunber
/* Nurber
/* Nurber
/* Nurber
/* Number
/* Number
/* Nunber

[* Nunber

of

bl ock nmode el ements */
sanple times */

nodel inputs */

nodel outputs */
states (total) */
discrete states */

data output port signals */

zero-crossing events */

conti nuous states */

error Invalid specification of NCSTATES defined in conpiler command
#endi f
/* include header files for Il O/S calls */
ttincl ude " peri ph. h"
ttincl ude"dsp. h"
/*
define addresses for AD & DA Triggering

*/
ttdefine ADD (volatile int*) 0x810000
ttdefine ADCL (volatile int*) 0x810800
ttdefine ADZ2 (volatile int*) 0x811000
ttdefine ADC3 (volatile int*) 0x811800
/* define addresses for control registers */
ttdefine GC CTR.O (volatile int*) 0Ox808020
ttdefine GCCTRL1 (volatile int*) 0Ox808030
/*

redefine arguments for ISR <Roo>/AD TRGEER
*/
ttdefine Sys root_ AD_TRIG_OutputUpdate(rtS,control Portldx,tid) c_intO1()
/*

redefine arguments for ISR: <Root>/Process
*/
ttdefine Sys root_Process OutputUpdate(rtS,control Portldx,tid) c_intO2 ()

it TRUE

Header File

Page K-5

Appendi x K

#

define TRUE (1)

#endi f
#i f ndef FALSE

define FALSE (0)

#endi f

/*

* Block 1/O Structure

*

* Note: Individual fieldnanes are derived fromthe signal nane when present,
* otherwi se, field names are derived fromthe source block name with an
* optional port nunber appended to the bl ock name if the bl ock has multiple
* output ports. The comment to the right of structure field contains the
* signal source bl ock nane.

*

*/

typedef struct Bl ockl Ot ag {

}

/*

*

*

real _T sl_S Functionl; /* Source: sl_S Functionl */
real T s4 S Function[4] ; /* Source: s4_S Function */
real T s3_Gain; /* Source: s3 @Gin */
real T s2_S Function[6] ; /* Source: s2 S Function */
Bl ockl O

Default Parameters Structure

Not e: The structure nanes are derived fromthe bl ock name and the
structure fields are derived fromthe bl ock parameter name. The
comrent to the right of the structure field contains the actual
contents of the dialog box entry.
/!

typedef struct Parameters_tag {

struct { /* Block Type: Gin */
real _ T Gain; /* Dalog Entry: 1 */

} s3_Gin;

struct { /* Block Type: S Function */
real JT Pl Si ze[2] ; [* PIS ze */
real T PI; /* Pl */

Header File Page K-6

Appendix K

real_ T P2Size[2];
real JT P2;

real_ T P3Size[2];
realT P3;

real T P4Size[2];
reaI_T PA4;
real_ T P5Size[2];
real_T P5;

real_ T P6Size[2];
real T P6[6];

} £2S

Function;

} Parameters;

extern real T rtlnf;

extern real T rtM nuslnf;

extern real T rtNaN

extern real T rtReal GROUND,

/1—

*

*

System hi erar chy

<Root >:
<S1>:
<82>:
<S3>:
<4>;
<SH>;

*/

#endi f

Exanpl e

Exanpl e/ AD TR GEZER

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Exanpl e/ PC32 Int Support

Exanpl e/ Process

Exanpl e/ Process/ PC32 ADC
Exanpl e/ Process/ PC32 DAC

K.5CSource Ale

/* _RTW HEADER FILE */

P2Si ze
P2 */
P3Si ze
P3 */
PASI ze
P4 */
P5Si ze
P5 */
P6Si ze
P6 */

*/

*/

*/

*/

/.

The generated C source file, Examplex, is listed below :

/*

* Exanple.c

*

* Real - Ti me Workshop code generation for Simulink nodel

*

*

RTWfile version

2.11 (Aug 28,

1997)

" Exanpl e".

C Source File

Appendi x K

* RTWfile generated on : Fri Nov 12 08:34:15 1999
* TLC version 1.0 (Dec 12 1997)
* C source code generated on : Fri Nov 12 08:34:15 1999

* TLC Options:

* I nlineParaneters = 0

* Rol | Threshold = 5

* Fi | eSi zeThreshol d = 50000
* CodeFormat = Real Ti ne

* Simulink nodel settings:

* Sol ver : FixedStep
* StartTime : O s

* StopTinme : O s

* Fi xedStep : 0.0002 s
*/

#i ncl ude <nath. h>

#i ncl ude <string. h>

#i ncl ude "Exanpl e. h"
#i ncl ude "Exanple. prnt

real T rtReal GROUND = 0.0;

/* Qutput and update for function-call system <Root>/AD TR GER */
void Sys_root AD TRI G Qut put Updat e(void *reserved, int_T control Portl dx,
int_T tid)

/* (outputs) */

/* S Function Block: <S1>/S Functionl (ADTrigger) */

/* awite to those addresses triggers a conversion on A/D */
* (ADQD) =0;

*(ADQ) =0;

*(ADC2) =0;

*(ADC3) =0;

/* (no update code required) */

/* Qutput and update for function-call system <Root>/Process */
voi d Sys_root _Process_Qut put Updat e(void 'reserved, int_T control Portl dx,
int T tid)

C Source File Page K-8

Appendi x K

-

/* (outputs) */
/* S Function Block: <$4>/ S Function (pc32_ad) */
/* read in the corrected values fromA/D and scale to + 10 */

{
rtB.s4_S Function[0] =read_adc(BASEBQARD, 0)/ (3276.7);
rtB.s4_S Function[l]=read_adc(BASEBOARD, 1)/(3276.7);
rtB.s4_S Function[2] =read_adc(BASEBOARD, 2)/(3276.7);
rtB.s4_S Function[3] =read_adc(BASEBOARD, 3)/(3276.7);

}

/* Gin Block: <S3>/Gin */
rtB.s3_Gin =rtB.s4_S Function[0] * rtP.s3_Gin. Gin;

/* S Function Bl ock: <S5>/S Function (pc32_da) */
/* Start an output conversion*/

{
wite_ (BASEBQARD, 0, rtB.s3_Gin* (3276.7));
convert _dac(BASEBQARD, 0) ;
write_(BASEBQARD, 1, rtReal GROUND*(3276.7));
convert _dac(BASEBQARD, 1) ;
write_(BASEBOARD, 2, rtReal GROUNND*(3276.7));
convert _dac(BASEBQARD, 2) ;
write (BASEBQARD, 3, rtReal GROUND*(3276.7));
convert dac(BASEBQARD, 3) ;

}

/* (no update code required) */

/* Initialize the nodel */
void Ml Start (voi d)

{

/* User specific code (function declaration) */

#ifdef | O ENABLE
printf("Connecting I nterrupts\n");
#endi f

/* Make edge triggered only if required */
if ((int)rtP.s2_S Function.P == 1)
{asm (" (R 4000h, ST");

C Source File Page K-9

Appendi x K

#i fdef | OENABLE
printfCEIO - E3 Set to edge triggered\n");
#endi f

}

el se
{asm (= ANDN 4000h, ST");
#ifdef | O ENABLE
printf CEIO - BH3 Set to level triggeredin");
#endi f

}

/* End of user specific code (Ml Start function declaration) */

/* connect |SR system <Root>/AD TRl GEER */
if (rtP.s2_S Function. P6[0] ==9)
{
/* check that tinerO int is unused before assigning new vector */
#i f ndef TMRO_YES
install _int_vector(c_int01, (int)rtP.s2_S Function.P6 [0]);
enabl einterrupt((int)rtP.s2_S Function.P6[0]-1);
ttifdef | OENABLE
printf("Vectior installed for INT #%.\n",(int)rtP.s2_ S Function. P6[0]);
#endi f
#endi f

}

el se {
install _int_vector(cintd,(int)rtP.s2_S Function.P6[0]);
enable interrupt((int)rtP.s2_S Function.P6[0]-1);
#ifdef | O ENABLE
printf("Vectior installed for INT #%.\n", (int)rtP.s2_S Function.P6[0]);
#endi f
}
/* connect |SR system <Root>/Process */
if (rtP.s2_S Function.P6[l]==9)
{
/* check that timerO int is unused before assigning new vector */
#i fndef TMRO_YES
install _int_vector(c_int02, (int)rtP.s2_S Function.P6 [1]);
enabl ei nterrupt ((int)rtP.s2_S Function. P6[1] -1) ;
#i fdef | O ENABLE
printf("Vectior installed for INT #%l.\n",(int)rtP.s2_S Function. P6[1]);
#endi f

C Source File Page K-10

Appendi x K

#endif
}
el se {
instal lintvector(c_intO2, (int)rtP.s2_S Function.P6 [1]);
enabl ei nterrupt ((int)rtP.s2_S Function. P6[1]-1);
ttifdef | O ENABLE
printf("Vectior installed for INT #%.\n", (int)rtP.s2_S Function. P6[1]);
ttendif

}
#i f ndef TMRO_YES
/[*nly change Timer O settings if it isn't used for base sanpling rate */
timer(0, (int)rtP.s2_S Function. P4);
#endi f
timer(1l, (int)rtP.s2_S Function. P5);
if ((int)rtP.s2_S Function.P2 == 2)
{*GC_ CTRLO = 0x6c3;
#ifdef | O ENABLE
printf("TCLKO driven by Timer 0.\n");
ttendif

}

el se
{GCCTRLO = 0x6cO;
tifdf 1O ENABLE
printf("TCLKO driven externaly.\n");
ttendif

}
if ((inHrtP.s2_S Function.P3 == 2)
{*GCCTRL1 = 0x6c3;
ttifdef | OENABLE
printf("TCLKL driven by Timer [.\n");
ttendif

>
el se

{*QC_CTRL1 = 0x6cO0;
ttifdef | OENABLE
printf("TCLK1 driven externaly.\n");
ttendif
tti}f def | O ENABLE
printf("Interrupts Connected & Enabl ed\n");
ttendif

C Source File Page K-11

Appendi x K

/* End of user specific code (MIl Start function exit) */

}

/* Conpute bl ock outputs */
void Mil Qutputs(int_T tid)

{

/* (no output code required) */

/* Performnodel update */
void Ml Update(int_T tid)

{

/* (no update code required) */

/* Termnate function */
voi d Ml Ter nmi nat e(voi d)
{
/* User specific code (Ml Termnate function exit) */
/* di sconnect ISR system <Root>/AD TRIGER */
if (rtP.s2_S Function. P6[0] ==9)
{
/* only disconnect timerOif it was set up here */
#i f ndef TMRO_YES
disabl einterrupt((int)rtP.s2_S Function. P6[0] -1);
deinstal lintvector((int)rtP.s2_S Function.P6[0]);
#ifdef | O ENABLE

printf("INT #%4 di sabled.\n", (int)rtP.s2_S Function.P6[0]);

#endi f
#endi f

}

el se {
disable interrupt((int)rtP.s2_S Function.P6[0]-1);
deinstal lintvector((int)rtP.s2_S Function. P6[0]);
#ifdef | O ENABLE

printf ("I NI #4 disabled.\n",(int)rtP.s2_S Function.P6[0]);

#endi f

}

/* disconnect ISR system <Root>/Process */
if (rtP.s2_S Function. P6[1] ==9)

C Source File

Page K-12

Appendix K

/* only disconnect timerOif it was set up here */
#i f ndef TMRO_YES
disable interrupt((int)rtP.s2_S Function. P6[1]-1);
deinstal lintvector((int)rtP.s2_S Function.P6 [1]);
ttifdef | OENABLE
printff' I NT #%l disabled.\n», (int)rtP.s2_S Function.P6[1]);
ttendif
#endi f
>
el se {
disable_interrupt((int)rtP.s2_S Function.P6tl]-1);
deinstallintvector((int)rtP.s2_S Function.P6[1]);
tiifokf ICENABLE
printfC'INT #@ disabled.\n", (int)rtP.s2_S Function.P6 [1]);
#Hendif
}
/* reset DA outputs to O at termnation. */
wr it e_dac(BASEBQARD, 0, O0) ;
convert _dac(BASEBQARD, 0) ;
write_dac(BASEBQARD, 1, 0);
convert dac(BASEBQARD, 1) ;
write_dac(BASEBOARD, 2, 0);
convert _dac(BASEBQARD, 2) ;
wri t edac(BASEBOARD, 3, 0);
convert _dac(BASEBQARD, 3) ;
/* End of user specific code (Ml Termnate function exit) */

/* model registration */
#i ncl ude "Exanpl e.reg"

K.6 Modd Parameters File

The model parameter file, Example.prm, is listed below :

/*

* Example.prm

* Real - Ti me Workshop code generation for Simulink nodel "Exanple"

Model Parameters File

Page K-13

Appendi x K

* RTWfile version : 2,11 (Aug 28, 1997)
* RTWfile generated on : Fri Nov 12 08:34:15 1999
* TLC version : 10 (Dec 12 1997)

* C source code generated on : Fri Nov 12 08:34:15 1999

* Relevant TLC Opti ons:

* I nlineParaneters = 0

* Rol | Threshold = 5

% Fi | eSi zeThreshol d = 50000
* CodeFormat = Real Ti e

*/

#i ncl ude <si nstruc. h>
/* Default Paraneters Structure */
Paraneters rtP =

{

/[* Gin: <S3>/Gin */

{
1.0 /[* Gin */

} o

/* S Function: <S2>/ S Function */

{
1.0, /* Conputed: PISize[0] */
1.0, /* Conmputed: PISizefl] */
1.0, /[* Pl */
1.0, [* Conputed: P2Size[0] */
1.0, [* Conputed: P2Size[l] */
1.0, [* P2 */
1.0, /* Conput ed: P3Size[0] */
1.0, /* Conputed: P3Size[l] */
1.0, /* P3 */
1.0, /* Conputed: P4Size[0] */
1.0, [* Conputed: P4Size[l] */
0.0, [* P4 */
1.0, /* Conput ed: P5Size[0] */
1.0, /* Conputed: P5Si ze[l] */
1100. 0, [* P5 */
1.0, /* Conputed: P6Si ze[0] */
6.0, /* Conputed: P6Size[l] */
1.0, /* PE[0O] */
2.0, [* Pe[I] */

Model Parameters File Page K- 14

Appendi x K

3.0, /* P6[2] */
4.0, /* P6[3] */
9.0, /* P6[4] */
10.0 /* PB[5] */

}i

/* Block I/O Structure */

Bl ockl O rt B;

/* Parent Sinstruct */

SinBtruct nodel _S;
SinBtruct *const rtS = &odel S

K.7 Model Registration File

The source code file containing all model registration functions, Example.reg, is listed bel ow:

/*

*

»

*

*

*

»

*

Exanpl e. reg

Real - Ti me Wrkshop code generation for Simulink model "Exanple®.

RTWfile version :2.11 (Aug 28, 1997)
RTWfile generated on : Fri Nov 12 08:34:15 1999
TLC version : 1.0 (Dec 12 1997)

C source code generated on : Fri Nov 12 08:34:15 1999

Rel evant TLC Opti ons:
I nlineParameters = 0
Rol | Threshold = 5
Fi | eSi zeThreshol d = 50000
CodeFormat = Real Ti me

Simul i nk nmodel settings:

Sol ver : K xedStep
StartTime : Os
St opTi e : 0s

Fi xedStep : 0.0002 s

Model Registration File

PageK-15

Appendi x K

* SOURCES: Exanple.c

* Ml Updat e: Required
*/

/* Function to initialize sizes */

void MilInitializeSizes(void)

{
ssSet NunCont States(rtS, 0); /* Nunmber of continuous states */
ssSet NunDi scStates(rtS, 0); /* Number of discrete states */
ssSet NumQut puts(rtS, 0); /* Number of nodel outputs */
ssSet Num nputs(rtS, 0); /* Nunber of nodel inputs */
ssSet Di rect FeedThrough(rtS, 0); /* The nodel is not direct feedthrough*/
ssSet NunSanpl eTi mes(rtS, 2); /* Nunmber of sanple tines */
ssSet Numvbdes(rtS, 0); /* Number of node elements */
ssSet NunBl ocks(rtS, 7); /* Nunber of blocks */
ssSet NunBl ockl O(rtS, 4); /* Nunber of block outputs */

ssSet NunBl ockParans(rtS, sizeof (Paraneters)/sizeof(realT));
[* Number of block paraneters */

/* Function to initialize sanple times */
void MlInitializeSanpl eTi nes(voi d)

{

[* task periods */
ssSet Sanpl eTime(rtS, 0, 0.0002);
ssSet Sanpl eTime(rtS, 1, 1);

/* task offsets */
ssSet O fset Time(rtS, 0, 0);
ssSet OFfset Tinme(rt S, 0);

[EEN

/* Function to register the nodel */
Si nBtruct *Exanpl e(voi d)
{

static struct _ssMllInfo ndll nfo;

nenset ((char *)rtS, 0, sizeof (SinStruct));

Model Registration File Page K-16

Appendi x K

menset ((char *)Smdl I nfo, 0, sizeof(struct _ssMillnfo));

ssSetMil | nfoPtr(rtS, &mdl | nfo);

uintT I;
/[* timng info */

{

static tine_T [NSAMPLE TI MES];
static time_T [NSAVMPLE TI MES];
static ti meT [NSAMPLETI MES];
static int_T [NSAWLEITI MES] ;
static bool eanT [NSAMPLE TI MES] 7

for(i =0; i < NSAMPLE TIMES; i++) {
mdl Periodfi] = 0.0;

mdl Period[i] = 0.0;

mdl TaskTi mes[i] = 0.0;

nmenset ((char _T *) Sndl TsMap[0], 0, 2 * sizeof (int_T));
menset ((char _T *) &dl Sanpl eH ts[0] , 0, 2 * sizeof (bool eanT))

ssSet Sanpl eTinePtr(rtS, fendl Period[0]);
ssSetOFfsetTimePtr(rtS, Smdl O fset[0]);
ssSet Sanpl eTi meTaskl DPtr (rtS, Smdl TsMap[0]);
ssSet TPtr(rtS, Sndl TaskTi nes[0]);
ssSetSanpleH tPtr(rtS, i mdl Sanpl eH ts[0]);

#f defined(MLTI TASKI NG

{

}

#endi f

/*

{

i

stati c bool ean_T ndl Per TaskSanpl eH t s| NSAMPLETI MES * NSAMPLE_TI MES] ;
menset ((char T *) Smdl Per TaskSanpl eH t s[0], 0, 2* 2*si zeof (bool eanT));

SsSet Per TaskSanpl eH tsPtr(rtS, Sndl Per TaskSanpl eH ts[0]);

nodel work vectors */

real JT *b = (real _T *) &tB;

Model Registration File

Page K-17

Appendi x K

}

ssSet Bl ockl (rtS, b) ;

for(i = 0; i < sizeof(BlocklOQ/sizeof(real _T);

b[i] = 0.0;

/* Model specific registration */
ssSet Root SS(rtS, rtS);

ssSet Version(rtS, SI MSTRUCTVERSI ONLEVEL?2) ;

ssSet Model Nane(rt S, " Exanpl e");
ssSetPath(rtS, "Exanple");

ssSetTStart(rtS, 0);

ssSet TFinal (rtS, 0) ;

ssSet StepSi ze(rtS, 0.0002);
ssSet Fi xedSt epSi ze(rtS, 0.0002);

ssSet LogT(rt S, i KR
ssSet LogX(rtS,)
ssSet LogY(rtS, Y
ssSet LogXFinal (rtS, " ") ;

ssSet LogMaxRows(rtS, 0) ;
ssSet LogDeci mation(rtS, 1);

ssSet ChecksunQ(rt S, 2735119696U) ;
ssSet Checksum (rtS, 24756335120 ;
ssSet Checksun®(rt S, 39529327820 ;
ssSet Checksun8(rtS, 953123913U);

/* model paraneters */
ssSetDefaul tParan(rtS, (realT*) &tP);

return rts;

i++)

{

Model Registration File

Page K-18

Appendix K

K.8 Make File

#'k************'k********'k*'k********'k*'k*******************‘k***********

SYS_TARGET_FI LE

MAKE
HOST

BU LD
DOMLQAD

BU LD_SUCCESS
DOMLQAD SUCCESS

ii.tlc

= gmake

= PC

= yes

= yes

= Conpl et ed
= Downl oaded

Qust om zati on Macr os
#

The followi ng set of nmacros are custonized by the make_rt program
#

MODEL = Exanpl e

MCDEL_MCDULES =

MODEL_MODULES OBJ =

MAKEFI LE = Exanpl e. nk

MATLABROOT = C \ MATLAB

MATLABBI N = C\MATLAB\ bi n

S _FUNCTI ONS =

S _FUNCTI ONS_CBJ =

SALVER -

SOLVEROBJ =

NUVST =2

TI DO1EQ =0

NCSTATES =0

BU LDARGS = TMRO=NO UPLD=NO | G=Di SABLE
COWPUTER = PCWN

H pc32 Definition
#

BOARDTYPE = PC32

DSP_FAMILY =30

COMPILER = TIFPC

Tl Tools

#

You may need to nmodify the Tl ROOT
Texas Instrunent Conpiler in a different

if you have installed the
| ocati on.

Make File

Page K-19

Appendi x K

#
TI _ROOT = c:\fltc
Tl _FLAGS = -v$(DSPFAM LY)

CC = §(TI_ROON)\cl 3 0
LD = $(TI_ROON)\1nk30

Il Tool $ msrecmmmvsssmrnsnss s snsscns e
#

Il _Roor = $(MATLABROOT)\rtwhc\i i

[1_COWPILER = $(I1_ROON\ti_fpc

I1_Qavw = $(I1_COowl LER)\ii PC32. cnd

1 _BOOT = $(11 COWI LER)\ vect or s. obj

#1 | _BOARD = c:\pc32cc

PC32_DOMLQAD = $(11ROOM)\D Load. exe

Include Path__ .

VATLAB_| NCLUDES = \

$(MATLABROOT) \ si mul i nk\'i ncl ude; \
$(MATLAB_ROOM) \ ext er n\i ncl ude; \
$(MATLABROOT)\rtwhc\src; \

$(MATLABROOT)\rtwh c\ i bsrc;
Tl _I NCLUDES = $(TI _ROQOT); $(TI_ROON\ I ncl ude\ Tar get ;
|1 _INCLUDES = $(I1BQARD)\ Li b\ Tar get

INCLUDES = .; $(MATLAB | NCLUDES) $(TI I NCLUDES) $(| T NCL UDES)

C H ags
Required ptions
REQ CPTS = $(TI_FLAGS) -q -eo .0$(DSPFAM LY)

Qptimzation Qptions
CPT _OPTS = -xO -03

Make File Page K-20

Appendix K

Debug Options
DBGJ3PTS

CCOPTS = $(REQ OPTS) $(OPT_OPTS) $(DBGOPTS)
-dTMRO_$(TMR0) -dUPLD_$(UPLD)

-dlo_$(10) \

CPP_REQ DEFINES = -dMODEL=$%MODEL)
-dTIDO1EQ=$(TIDO1EQ)

-dRT -ONUMST=$(NUMST) \
-dNCSTATES=$(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ_DEFINES) $(CPPDEFINES)
LDFLAGS = -x -a -cr -heap 0x2000 $(I11_BOOT) -m $(MODEL).map

Source Files —— MM — —— ..
REQ SRCS = PC32main.c pc32upld.c rt_sim.c rtmatrx.c $MODEL).c
OPT_SRCS =

S FCN_SRCS = $(S_FUNCTIONS)

INT_SRCS = $(SOLVER)

REQOBJS = $(REQSRCS:.c=.0$(DSPFAMILY))

OPT_OBJS = $(OPTSRCS:.c=.0$(DSPFAMILY))

S FCN OBJS = $(SFCNSRCS:.c=.0$(DSPFAMILY))

INTOBJS = $(INTSRCS:.c=.0$(DSPFAMILY))

OBJsS = $(REQ_OBJS) $(OPT_OBJIS) $(S FCN_OBJIS) $(INT_OBJIS)
PROGRAM = $(MODEL).out

Exported Environment Variables

#

Because of the 128 character command line length limtations in DOS, we

use environment variables to pass additional information to the

Conpil er and Li nker

#

COPTI ON : = $(CFLAGS)

CDOR := $(I NCLUDES); $(CDIR)

C_MODE = PROTECTED

0 S A T i 3 P i RUI £S5 ssmmasimmmans v e m i i S0 i i s
Make File PageK-21

Appendi x K

$(PROGRAN) @ $(CBIS)
echo $(OBJS) > $(MXIEL).lin
echo $(11_OWVD) >> $(MODEL).lin
$(LD) $(LDFLAGS) -O $@$(MODEL).lin
echo $(BU LD _SUCCESS) $(PROGRAM)

Conpile existing code if it exists in current dir

% 0$(DSP_FAM LY)
$(CO %<

D %C

Cll to PC32 rtmain.c
% 0$(DSP_FAMLY) : c:\natlab\rtwc\iilti_fpc\%c
$(Q0 $<
Call to simulink files
% 0$(DSP_FAM LY) : $(MATLAB ROOT)\simulink\src\%c
$(C0 $<
Call conpile RTWfiles
% 0$(DSP_FAM LY) : $(MATLAB ROOTM)\rtwc\src\%c
$(Q0 $<
% 0$(DSPFAM LY) : $(MATLABROOT)\rtwhc\libsrc\%c
$(Q0 $<
Rule for Downloading to Target -------oooooooooo o
downl oad :
del $(MXDEL).lin
del $(MIXDEL).c
del S(MXDEL).h
del S(MZDEL). map
del $(MDEL).03 0
del S(MODEL).prm
del S(MCDEL).reg

$(PC32_DOMLOAD) $(PROGRAV)
echo $(DOMLQAD SUCCESS) $(PROGRAN)

Dependenci @S ~-----cmmmm e
iirt_main. o$(DSP_FAMLY) : $(MXDEL).c
$(ABIY) $(MAKEFI LE)

Make File Page K-22

References

REFERENCES

AHMED 1 Ifran Ahmed, "Implementation of PID and Deadbeat Controllers with the

B AS SETT 1

BLERK1

BURRBROWN1

BURRBROWN2

CHUNG1

CRAVOTTAL

DIANA 1

FENG1

TMS320 Family", Digital Sgnal Processing Applications with the
TMS320 Family (Theory, Algorithms, and Implementations), VOL. 2,

Texas Instruments, 1990

Paul Bassett, "Managing for Flexible Software Manufacturing”,
Computer, VOL. 31, NO. 7, pp. 100-102, |IEEE Computer Society, July
1998

Bruce van Blerk, "Development of a Scaled Down Paper Machine to
Demonstrate the Principles of Tension Control", MSCEng Thesis, Dept.
of Electrical Engineering, University of Natal, Durban, December 1998

"ADS7805 16-Bit |Ous Sampling CMOS Analogue-to-Digital
Converter", Burr-Brown Data Sheet.

"DAC712 16-Bit Digital-to-Analogue Converter With 16-Bit Bus
Interface”, Burr-Brown Data Sheet

Ka M. Chung, Astro Wu, Tresna Hidgjat, "Using the TM S320C24x DSP
Controller for Optimal Digital Control”, Application Report: SPRA295,
Texas Instruments Taiwan Limited, January 1998

Nicholas Cravotta, "Buying a Single Board Computer”, Embedded
Systems Programming, pp. 75-83, May 1997

G. Diana, M. PFillay, AW. Stylo, M.L. Walker, "An Advanced
Development Tool for Rapid Prototyping of Motion Control
Applications", to be published.

Henry Feng, Martin Torngren, Bengt Eriksson, "Experiences Using
dSPACE Rapid Prototyping Tools For Rea-Time Control
Applications’, Proceedings of the DSP Scandinavia Technical
Conference, Sweden, June 1997

PageR-1

FORSYTHE1L

FOSTER1

GABRIEL1

GANSSLE1

GORDON 1

GUMAS1

HANNING1

HANNING2

HEMME1L

INNOVATIVEL

INNOVATIVE2

References

W. Forsythe, R.M. Goodall, "Digital Control - Fundamentals, Theory
and Practice”, Macmillan Education Ltd., England, 1991, ISBN
0-333-53501-4

Kenneth R. Foster, "Matrices and much, much more", Software
Reviews, |IEEE Spectrum, VOL. 34, NO. 2, February 1997

R. Gabriel, W. Leonhard, C. Nordby, "Microprocessor Control of
Induction Motors Employing Field Coordinates”, Proceedings of the 2nd
International Conference on Electrical Variable-Speed Drives.
146-150, |EE Power Division, London, September 1979

Jack G. Ganssle, "Debuggers for Modern Embedded Systems',
Embedded Systems Programming, pp. 58-65, November 1998

V. Scott Gordon, James M. Bieman," Rapid Prototyping : Lessons
Learned", |IEEE Software, VOL. 12, NO. 1, pp. 85-95, IEEE Computer
Society, January 1995

Charles Constantine Gumas, "The DSP Workshop - a compelling
CASE", Software Reviews, |IEEE Spectrum, VOL. 36, NO. 8, August
1999

"Pulse Width Modulator, PBM 1/87", Hanning Elektro-Werke GmbH
Data Sheet, Rev.2.0

"Incremental Rotary Encoder Interface, TC3005H", Hanning
Elektro-Werke GmbH Data Sheet

Alexander W.M. Hemme, "A Software Platform for a Transputer Based
Embedded Real-Time System for Motion Control Applications’,
MScEng Thesis, Dept. of Electrical Engineering, University of Natal,
Durban, April 1992

"PC32 Hardware Manual", Innovative Integration, May 1995

"PC32 Developer's Package Software Manual", Innovative Integration,
July 1996

Page R-2

KLEINHANS1

KOzZICK1

LEM1

LEONHARD1

LIN1

LINZENKIRCH1

References

C. Kleinhans, G. Diana, R. Harley, M. McCulloch, "The Application of
CASED as a Simulation Tool for the Design and Analysis of Variable
Speed Drives', Conference Proceedings of the IEEE Industrial
Applications Society Annual Meeting, |AS, pp. 750-757, Denver,
Colorado, 1994

Richard J. Kozick, Curtis C. Crane, "An Integrated Environment for
Modelling, Simulation, Digital Signal Processing, and Control”, IEEE
Transactions on Education, VOL. 39, No. 2, pp. 114-119, |EEE
Professional Technical Group on Education, May 1996

LEM Group web site - http://lem.com

Werner Leonhard, "Control of Electric Drives', Springer-Verlag,
Germany, 1990, TSBN 3-540-13650-9

Kun-Shan Lin, Gene A. Frantz, Ray Simar, Jr., "The TMS320 Family of
Digital Signal Processors®, Proceedings of the IEEE, Vol. 75, No.9,
September 1987

Edmund Linzenkircher, "The Importance of Control Engineering in
Automation”, South African Instrumentation and Control, VOL. 15,
NO. 7,pp.50-51, July 1999

MATHWORKS1 "Using MATLAB, Version 5", The Math Works inc., June 1997

MATHWORKS2

MATHWORKS3

MATHWORKS4

MATHWORKS5

MATHWORKS6

MATHWORKS?

"Using Simulink, Version 2.2", The MathWorks Inc., January 1998
"Using Simulink, Version 3", The MathWorks Inc., January 1999

"Simulink, Writing S-Functions, Version 3", The MathWorks Inc,
October 1998

"Real-Time Workshop, User's Guide, Version 3", The MathWorks Inc.,
January 1999

"Target Language Compiler Reference Guide, Version 12', The
MathWorks inc., January 1999

MathWorks web site - http://www.mathworks.com

Page R-3

MEYER1

MIROTZNIK1

MOODLEY1

RANDELHOFF1

SENESE1

SLIVINSKI1

STURGEON1

STYLO1

References

Benjamin S. Meyer, "A Transputer Based Digital Controller with High
Performance I/0O for Motion Control Applications', MSCEng Thesis,
Dept. of Electrical Engineering, University of Natal, Durban, December
1992

Mark S. Mirotzmk, "Translating Matlab programs into C code",
Software Reviews, IEEE Spectrum, VOL. 33, NO. 2, pp. 63-64, February
1996

Lynden Modley, "Position Controller for a DC Drive",BSCEng Thesis,
Dept. of Electrical Engineering, University of Natal, Durban,
December 1999.

Mark C.Randehoff, "Automated Generation of Predictable Real-Time
Code for Motion Control Applications”, PhD Thesis, Dept. of Electrical
Engineering, University of Natal, Durban, January 1995

Brian Senese, "Meeting Aggressive Schedules Through Smart
Integration”, Embedded Systems Programming, pp. 30-45, September
1997

Charles Slivnski, Jack Borninski, "Control System Compensation and
Implementation with the TMS32010", Digital Sgnal Processing
Applications with the TMS320 Family (Theory, Algorithms, and

Implementations), VOL. 1, Texas Instruments, 1989

Shawn Sturgeons, "DSP Based Field Oriented Control of an Induction
Machine", BScEng Thesis, Dept. of Electrical Engineering, University
of Natal, Durban, November 1998

Adam Stylo, Greg Diana, "A Low Cost, High Performance PC Based
Integrated Real-Time Motion Control Development System",
Proceedings of the 7th Southern African Universities Power Electronics
Conference, Stelenbosch, South Africa, January 1997

Page R-4

STYLOZ

STYLO3

STYLOX4

TEXASINSTR1

TEXASINSTR2

TEXASINSTRS

TRZYNADLO1

VATER1

WALKER1

References

Adam Stylo, Greg Diana, "A Low Cost, High Performance PC Based
Integrated Real-Time Motion Control Development System”,
Proceedings of the IEEE International Symposium on Industrial
Electronics, pp. 127- 130, Pretoria, South Africa, June 1998

Adam Stylo, Greg Diana, "Hard Real-Time Code Generation Using
Simulink And Real-Time Workshop", Proceedings of the 8th Southern
African Universities Power Electronics Conference, Potchefstroom,
South Africa, January 1999

Adam Stylo, Greg Diana, "An Advanced Real-Time Research and
Teaching Tool for the Design and Analysis of Control”, Proceedings of
the AFRICON Conference, Cape Town, South Africa, September 1999.

"TMS320C3x User's Guide", SPRUO031D, Texas Instruments Inc.,
October 1994.

"TMS320C32 User's Guide", Addendum to the TMS320C3x User's

Guide, Texas Instruments Inc., March 1995

"Field Oriented Control of 3-Phase AC-Motors', BPRAO073, Texas
Instruments Europe., February 1998.

Andrzef M. Trzynadlowski, "DSP Controllers - An Emerging Tool for
Electric Motor Drives', IEEE Industrial Electronics Society Newdletter,
VOL. 45, NO. 3, pp. 11-13, IEEE, September 1998

Jorg Vater, "The Need For And The Principle Of High-Resolution
Incremental Encoder Interfaces In Rapid Control Prototyping”,
Proceedings of PCIM '97, Germany, June 1997

Myles Walker, "Test Bed System to Investigate the Energy Efficiency of
Variable Speed Drive Systems Under Variable Load Conditions',
MScEng Thesis in preparation, Dept. of Electrica Engineering,
University of Natal, Durban, October 1999.

Page R-5

References

WORTHMANN1 Cedric Worthmann, "Feasibility Study of a Neural Network Current
Controller for a Boost Rectifier", MSCEng Thesis in preparation, Dept.
of Electrical Engineering, University of Natal, Durban, January 2000.

WEBSTER 1 M.R. Webster, "Field Oriented Control of AC Motors Using
Transputers’, MSCEng Thesis, Dept. of Electrical Engineering,
University of Natal, Durban, January 1991

WOODWARD 1 D. Woodward, "A Transputer Based High Speed Embedded Controller
for Motor Drives', MSCEng Thesis, Dept. of Electrical Engineering,
University of Natal, Durban, November 1992

Page R-6

Chapter Nine - CSDE Application Case Studies

the AC induction machine can be directly controlled by adjusting the current. The method
allows agood transient response to be obtained from an AC machine and is a good candidate for

substituting the traditional DC machine in variable speed drive applications.

The implementation of an FOC algorithm in practice is a computationally expensive task
[RANDELHOFF1, TEXASINSTR3] and only became viable with the advent of fast
programmable microprocessors. Designing software to implement the FOC mathematics on an
embedded platform would normally be beyond the time frames allocated for final year design
projects. In the past a formal FOC design was only attempted as part of postgraduate level
research projects [RANDELHOFF1, HEMMEL].

Using the CSDE, Mr. Sturgeon implemented an FOC agorithm [STURGEON1] in 1998 in the
time alocated for his 4th year design. The project included all stages of forma control design
from initial modelling and simulation right through to demonstrating a working prototype. Mr.
Sturgeon was awarded the prize for the best final year design in electrical engineering in 1998 at
UND.

The FOC controller topology is shown in Fig. 9.14. This Simulink diagram was used for offline
simulation. The resultant controller was then modified, as shown in Fig. 9.15, before being
implemented in real-time. All Scope Channel blocks which were used to monitor the feedback
signals in Fig. 9.15, are omitted in order to keep the diagram clear. A photograph of Mr.
Sturgeon with the CSDE workstation as well as the hardware used to implement and test the
FOC design is shown in Fig.9.16.

9.4.1 Feedback and Observations

The FOC design was the first formal student motion control project to use the CSDE and
showed that the lack of support for synchronous sampling was a critical problem. The feedback
signals were distorted by switching noise from the power electronic devices and the control

loops were difficult to tune and stabilise.

To solve the synchronous sampling problem both hardware and software modifications to the
CSDE were necessary. On the PWM/Tacho card, the interrupt signal from the PWM ASIC was
inverted using a spare gate and patched to the El O interrupt line on the PC32 card's expansion
header. Section 4.5.2 in Chapter 4 described the PWM ASIC and its interrupt signal. The

Field Oriented Control of an Induction Machine Page 9-13

Chapter Nine - CSDE Application Case Studies

!foe_sim !EIIE

File Edit View Stimulaion Formal Tools

|IDZE&| s B[22z 0

Wiksp3
jds
. ikspd
[lds: 1gs] p
WikspS
> ~]
L Demux
Saturation
W 9
hespl
B
f
-
7
H g
Sy, llls:selpoiid Saturation
- > Pl >
Speed |5gisec hsp2
to Set point PI
with anti-windup 17wp =>—
pm > .//
: ¥
Stator Current Constantd
Caontrallers
- Squirrel Cage
< ﬂq— Induction Machine
2 Model
Humber of
Pale Pairs | K
secto rpm Wesp
Clodk Wiksp8
Ready | i ~ [oded 0

Fig. 9.14 : FOC smulation

software modification involved creating an AD Trigger block to allow software triggering of the

ADC channels, as described in section 7.5.1, Chapter 7.

To achieve synchronous sampling the PC32 Int Support block is used to trigger the AD Trigger
block via El 0. The ADC end of conversion interrupt (EI 1) is then used to trigger the control
loop. This procedure ensures that the feedback signals used to update the controller are sampled

free of switching noise.

Field Oriented Control of an Induction Machine Page 9-14

Chapter Nine - CSDE Application Case Studies

File _Edit Miew §imu|ation Format Tools ‘

EIO
EM ir
El2 > ﬁ: TriggenQ
E3 > TriggerO
TMRO > AD TRIGGER
TMRL |> foe_Ctrl
PC32 Int Support
foe_Ctrl EE! [X] ‘
File Eds view sSM™MMIBW™ Format Tools ., |
‘bﬁ—”a il f——P —I—’ e
la scal N ! |
>—»>|
—e']Jl|7L| ib »| o ‘|
-
i | .
Ib scale Prtheta_e i
theta e |
|
1
abc-to-dq, PWM
for balanced system 3
ids" -K-
M [rpm] tpim A___‘
tolsec Bl Rad/HAN
hanningijheta)
Speed = ui_syn
Controller ‘ : parksljheta) —
F] theta__elec
AD CO No of
A Stator Current
pole pairz1
b Controllers
ADC1
@—ADCZ 3
Speed z
scale nce s Unit Delay
volts-to-/sec PC32 ADC

Fig. 9.15 : FOC real-time controller

9.5 DC Machine Controller for a Ball Catcher

Thefinal year design project of Mr. Moodley in 1999 involved the design of a precision position
controller for a DC machine using the CSDE [MOODLEY |]. The setup was used to implement
an automatic ball catcher. Fig. 9.17 shows a simplified diagram of the mechanical assembly. A
tennis ball is placed in the cup at the bottom of itstravel. The arm then swings counterclockwise
by 180 °. Asthe ball passes the sensor the cup is moved clockwise back to its bottom position in

time to catch the falling ball. After a short delay the cycle is repeated.

DC Machine Controller for a Ball Catcher Page 9-15

Chapter Nine - CSDE Application Case Studies

i 2 e
- . \ i
A g _'_." ; \
' \
Ball sensor \H
] I \
I;lc.- Ibl DC Machine ‘——I :]
Ie | |
' /
\ /
‘ /
S
> 4
w / /,‘/
Tube 4"
SdeView Front View

Fig. 9.17 : Ball catcher mechanics

DC Machine Controller for a Ball Catcher Page 9-16

Chapter Nine - CSDE Application Case Studies

In order to achieve the necessary degree of position control, the design necessitated the use of a
high resolution incremental encoder. The TC3005H IC on the expansion card described in
section 4.5.4 was used to interface to the encoder. A custom driver block for use with the RTW
was created by Mr. Moodley for that purpose in collaboration with the author.

The design process was completed in a structured manner well before the deadline and Mr.

Moodley was awarded the top control design prize for his project. A photograph of the complete
Ball Catcher assembly is shown in Fig. 9.18.

Fig. 9.18 : Photograph of the Ball Catcher setup

Fig. 9.19 shows the Simulink diagram used for offline ssmulation and tuning of the current,
speed and position control loops for the DC motor. These controllers were bundled into asingle
subsystem block and used to construct the real-time prototype, shown in Fig. 9.20. In the
simulation a signal generator is used to provide the position reference signals. In the real time
diagram this is replaced by a photo sensor fed into ADC 3 and an Automatic Re-trigger Block
which introduces some delay before the catcher arm is swung back to the top. The delay is

DC Machine Controller for a Ball Catcher Page 9-17

Chapter Nine - CSDE Application Case Studies

necessary in order to allow the ball to stop bouncing in the cup after being caught. Another
difference between the simulation and real-time diagrams is the replacement of the DC machine
model with the PWM driver block and feedback inputs from sensors on the real machine.

i
B vaii_sim =] B |
.

File Edit View Simulation Format Tools

— »{EH

DDDD Scope b :l
00 P Pos.ref .
w P Wief 4 i
Signal — Pos.f |] Iref Curren Scopel
Generator e W y T ol i
Position If W 1_{?,_--’;_’ IN Speed L l
Controller = |
Speed 32000/250V Position Scope2
Controller Current
Controller CO Machine Model
] e
00 (o
~] Soope3

Fig. 9.19 : Ball Catcher controllers simulation

9.5.1 Feedback and Observations

The ball catcher project uncovered a shortcoming in the mechanism used by the CSDE in
uploading data for visualisation. The Scope Channel blocks capture and buffer samples of data
which are then transferred via the DPRAM to the Display utility on the PC, as described in
Chapter 6, section 6.4. The Display utility can only display up to 1000 samples in a window.
Since the current control loop for the ball catcher executed at 5 kHz, samples are captured every
0.2 msand the Display utility can plot at most 200 ms worth of data. To observe the performance
of the speed and position control loops much longer capture period is required.

In response to this observation the Scope Channel block was modified to allow for down
sampling. Effectively, data is captured at a lower frequency and the display period in the
Display utility can be adjusted as described in Chapter 7, section 7.5.6.

DC Machine Controller for a Ball Catcher Page 9-18

Chapter Nine - CSDE Application Case Studies

File £dit View .Simulaion Format Tools
El0
Ell ﬁ ‘Jr
Ei2 | Trigslerfj
EI3 [> TriggerO |
| TMRO AD TRIGGER
TMR1 |>
| I
PC32 Int Support Controller
EControIIer HEIE!
File Edit View Simulation Format Tools
. |*o I
i i
« Trigger
fibs. Speed _.1] Speed in Filtered Speed f
TachoDriveri = Tacho In "Running" Filter
Position
S-F tionl
EnCHST Subsystem
ol
Scope Channel
= Pos.feed
In (ol
Scope Channeli +— Wieed
To Pyl ——{ a1
AD CD = Current feed
AOC1 | DC MOTOR
r>- Pos. ref. PWM
ADC2 [» Controllers
ADC3 P DACO
.—-7
PC32 ADC - = DAC1
Default Pos
3 DAC2
N
DAC3
Start/Stop :
Switch-) PC32 DAC
- ¢|Ext. Inp New Ref. In
Automatic re-trigger Scope Channel2

Fig. 9.20 : Ball Catcher real-time controller

DC Machine Controller for a Bal Catcher

Page 9-19

Chapter Nine - CSDE Application Case Studies

9.6 Conclusion

This Chapter verified the usefulness of the CSDE as an aid in the development of motion
control. The operation of the CSDE was demonstrated using a DC machine speed controller as
an example. The case studies in sections 94 and 9.5 show that by using the CSDE
undergraduate students can successfully implement challenging motion control projects in the

limited time allocated for the design courses.

By using the rapid prototyping environment, students can spend more time exploring the
underlying control theory rather that be burdened with the low-level issues of developing and
debugging a stable controller. There was an additional spinoff from the use of the CSDE in the
number of field trials. The students found it easier to follow a formal and structured approach to

the overall design and produced documentation above the quality usually expected at that level.

Conclusion Page 9-20

Chapter Ten - Conclusions

CHAPTER TEN
CONCLUSIONS

10.1 General

The general trend in motion control is towards microprocessor based solutions
[TRZYNADLOZ1] and as the processing power of the available hardware improves, ever more
sophisticated algorithms become practical. The complexity of designing a stable and reliable
digital controller means that a structured approach is crucial as outlined below :

(i) Modelling - an accurate model of the machine is necessary before simulation can
become useful,

(i) Design and simulation - a control algorithm is proposed and its feasihility is tested
in a offline simulation,

(iii) Hardware design - the controller hardware is designed or a commercially available
platform can be used.

(iv) Software design - the simulated algorithm is converted into real-time code,

(v) Prototyping and validation - the controller is tested in real-time and fina parameter
adjustments take place.

The traditional approach is to program the controller software by hand - a tedious and error
prone task. During the design process a number of the above steps might need to be revisited and

the process becomes drawn oui.

10.1.1 Undergraduate Design

It becomes especially difficult to follow the above design methodology at the undergraduate
level where project time frames are short. Most electrical engineering students will have limited
embedded programming experience, meaning that the coding and debugging of complex
real-time software might take most of the project time. Time pressure and subsequent lack of
adequate explorative simulation limit the complexity of control algorithms that can be

successfully implemented.

Genera Page 10-1

Chapter Ten - Conclusions

10.1.2 Rapid Prototyping

The application of a rapid prototyping platform, like the CSDE, eliminates the software and
hardware issues from the motion control design process. Students can focus their effort on
modelling and simulation and observe the results ailmost immediately inreal time on apractical
system. In the limited time allocated students can explore advanced algorithms in more depth

and verify their actual performance in rea life.

10.2 Project Summary

The overal goa of the author's work was to develop a rapid prototyping environment to aid
undergraduate students during the design of motion control. Taking into consideration the user

group targeted a number of requirements were laid down :

(i) Low cost - the overall cost needs to be kept down for the system to be practical inan
undergraduate environment,

(i) Adequate processing power - the processing platform needs to support complex
control algorithms,

(iii) Ease of use - the learning curve associated with the system must be as short as

possible so that valuable design time is not further compromised.

10.2.1 The CSDE

To respond to the above requirements, the CSDE was based on the proven and well established
modelling and simulation platform from MathWorks [FOSTER1, GUMASI1, MIROTZNIK1].
The MATLAB and Simulink packages are widely available to students and their use is
compulsory in a number of courses. As aresult fina year design students are well versed in the
use of those tools for modelling and simulation. An additional benefit to the CSDE is the cost
saving - no additional software license need to be purchased.

The hardware platform for the CSDE, the PC32 DSP controller, represents a good balance
between price and processing power and to keep further costs down, the additional PWM /

Tacho expansion card was designed in-house.

Project Summary Page 10-2

Chapter Ten - Conclusions

10.2.2 Field Trials

A number of students were selected to use the CSDE during their design courses. The level and
quality of the resultant motion control projects demonstrated that the CSDE is a valuable tool

which can aid students in tackling more challenging problems than was possible before.

Unfortunately no formal record was kept of the feedback from students who field trialed the
CSDE. In all cases the students reported the CSDE to be a valuable design tool which allowed
them to produce working prototypes early in their project schedule. The fact that two projects
won the best final year design prizes is a good indication that the CSDE does, in fact, fulfill the
requirements set out in Chapters 1 and 2.

10.3 Suggestions for Further Work

The CSDE in its present form represents a stable environment for the design and rapid
prototyping of motion control. Notwithstanding the positive feedback from a number of student
users, there remain a number of areas which can be further extended or improved. The following

sections list a number of suggestions for such improvements.

10.3.1 Profiler and Exception Handler

Currently there is no way of predicting whether there is sufficient processing bandwidth to
execute the controller designed in Simulink reliably. If the control loop execution time is longer
than the sampling time in real-time the controller will fail to execute. The current version of the

RTK does not provide for neat handling of such exceptions.

Firstly, the RTK can be extended to include exception handling and to fail safe in such cases.
Secondly, a static profiler could be designed to estimate the worst case execution time for the
designed control loop. The profiler output could aid in the selection of the maximum sampling

frequency for the controller.

Suggestions for Further Work Page 10-3

Chapter Ten - Conclusions

10.3.2 Implementation over a Network

The most expensive part of the CSDE setup is the controller hardware as well as the controlled
machine. However, during anormal project cycle most time is spent on design and simulation
and the real-time validation and prototyping usually only takes a small fraction of the project
time. Presently the CSDE is limited to a single standal one system.

In the ideal scenario the controller hardware as well as the electric motor would be shared
between a number of design workstations in alaboratory. A number of students could carry out
their usual design and simulation on their own workstations and only link up via anetwork to the
central station to verify their controller design and capture results. In this manner the cost of
providing rapid prototyping facilities per student would be greatly reduced, while till

maintaining the benefits of hands-on verification of final design on real hardware.

10.3.3 Improving Display Utility

Currently the Display utility applies a triggering algorithm to each channel individually and
each channel is displayed in a separate window. This means that it is impossible to compare
timing between two channels, as was seen in Fig. 9.6. To overcome this, timing information
would need to be included into the data uploads from the target to enable the Display utility to
synchronise individual channels. To improve the Display GUI further a number of
improvements could be introduced. For example grids, axis labels and more flexible zooming
options. Another useful feature would be the ability to log the plots to a file in various formats.

The data could then be imported into MATLAB and compared directly with simulation results.

Suggestions for Further Work Page 10-4

Appendix A

Appendix A
A.1l CSDE Users Guide

This Appendix contains an edited version of the CSDE Users' Guide. Some of the material
contained in this Appendix has already been discussed in more depth in the preceding chapters.
However, the intention of the Users' Guide is not to summarise the thesis, but to be a practical
'hands-on' introduction to the CSDE.

A.2 Introduction

The Control System Development Environment (CSDE) represents a complete solution for the
development of most control and digital signal processing solutions. All phases of development
are conveniently bundled under a user friendly Graphical User Interface (GUI), from initial

modelling through design, simulation right to fina real-time prototyping and validation.

The CSDE integrates the following major components :

(i) MATLAB with Simulink and Real-Time Workshop from MathWorks Inc.
(i) PC32 DSP Controller Card from Innovative Integration
(iif) Texas Instruments C Compiler for the TM S320C32

(iv) Real-Time Interface Software - custom libraries and visualisation tools

Fig. A.l shows how the various components of the CSDE interact to provide a complete
solution. This User's Guide describes how to generate predicabl e real-time code from Simulink
diagrams for execution on the PC32 Controller Card. As far as the user is concerned the only
"visible" components of the CSDE are Simulink GUI, the physical 1/O of the PC32 and Display
which handles data plotting and capture on the PC. Most of the Real-Time Interface Software
(RTIS) which formsthe "glue" between the various components is essentially transparent to the

user.

A.2.1 What is Simulink?

The MATLAB / Simulink environment forms the front-end GUI for the CSDE, as such it is
important that the user if familiar with MathWorks' software before proceeding.

CSDE Users' Guide Page A-I

Appendix A

Matlab / Simulink environment

_ Simulink block All standard Simulink toolboxes
diagram in external < ' PC32Lib
mode
A
DSP Hardware Windows 95
Innovative Integration ! —» Dispay.exe

PC32 For visualisation and data logging

Fig. A.l : Interaction of the major components of the CSDE from the users perspective.

Simulink is a graphical user interface (GUI) for the well known MATLAB system from
MathWorks Inc. It is a software package for modeling, simulation and analyzing dynamical
systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or
a hybrid of the two. Systems can also be multi-rate, i.e. Have different parts that are sampled or
updated at different rates.

For modeling, Simulink provides a user-friendly GUI allowing usersto intuitively build models
as graphical block diagrams, using click-and-drag mouse operations. With this interface users
no longer need to formulate equations in a language or program, but simply choose from a
comprehensive collection of block libraries and additional toolboxes. Simulink also allows for

custom blocks and libraries to be added by the user to facilitate for their specific needs.

Simulink models are hierarchal, so complex systems can be broken down and approached in a
top-to-bottom or bottom-to-top manner. System can then be viewed at a high level, and by

double-clicking one can navigate down through the levels to see increasing amount of detail.

Introduction Page A-2

Appendix A

For more information on the MATLAB \ Simulink environment please refer to the
corresponding manuals shipped with the Math Works Inc products. In the following sections of
this manual it is assumed that the reader is familiar with Simulink. Math Works Inc can be

contacted at www.mathworks.com.

A.2.2 The PC32 Controller

The PC32 from Innovative Integration, shown in Fig. A.2, is an affordable and capable DSP
card. The high performance 32-bit floating point TMS320C32 DSP from Texas Instruments is
coupled with full featured analog and digital peripherals to form a complete DSP based
acquisition and control system for the PC/AT on a single card.

e . 4]
i

Fig. A.2 : Photograph of the Innovative Integration PC32 card.

The Texas Instruments TMS320C32 is capable of up to 60 MFLOPS/30 MIPS. On-chip
peripherals include two 32-bit counter/timers, two flexible DMA controllers, 15 prioritized
interrupts, and much more. The '‘C32 has a memory range of 16M words total with on-chip
memory control for wait states and bus sizing. Memory on the PC32 may be expanded up to
512K x32 zero wait and 1 Mbyte, 1 wait-state memory for an optimal mix of performance, size

and cost.

The PC32 features analog and digital 1/O for a wide range of applications in process control,
audio processing, data logging and signal processing. Features include four channels of 16-bit,

Introduction Page A-3

Appendix A

instrumentation-grade analog-to-digital converters with -120 dB/decade tunable anti-alias
filters capable of sampling up to 100K samples/sec, and 4 channels of 16-bit,
instrumentation-grade digital-to-analog converters at 100khz per channel. Sixteen bits of
high-drive digital 1/0 are also on-card. The PC32 is compatible with the full range of 3xBUS
cards for I/O expansion including analog 1/O, digital camera interfacing, prototyping and SCSI

devices.

The PC32 is a half-card which plugs into a standard 16-bit ISA bus slot. The ISA bus interface
provides high-performance dual-ported memory capable of 5 Mbytes/sec, on most platforms.

For more detailed information on the PC32 card please refer to Innovative Integration manuals.

Innovative Integration can also be contacted at www.innovative-dsp.com.

A.2.3 Texas Instruments Tools

The CSDE relies on the Real-Time Workshop (RTW) to generate C code from Simulink
diagrams. This C code then needs to be compiled and linked into an executable before it can be

run on the target hardware.

As far as the user is concerned the Texas Instruments compiler is transparent and the CSDE

ensures that all necessary parameters and settings are passed to the TI compiler.

A.2.4 Real-Time Interface Software

What makesthe CSDE into a complete package is the glue interface software which ensures that
even the most complex diagrams constructed and simulated in Simulink perform as expected
once run on the target hardware. All Simulink models for which code can be generated by the
RTW can be implemented in CSDE, this includes continuous-time, discrete-time as well as
hybrid models.

The Real-Time Interface Software (RTIS) consists of three parts :

(i) PC32Lib, alibrary containing blocks to incorporate hardware access from within

a Simulink block diagram

Introduction Page A-4

Appendix A

(i) Template make file to govern the compilation, source code need to make RTW
generated code into an executable and a .dll library to implement external mode
communications from Simulink

(iii) Display, a standalone Windows executable to facilitate data uploads from the
PC32 target hardware for logging and visualisation

These parts will be discussed in more detail in the following sections.

A.2.5 About the User's Guide

Section A.3 explains the installation of the CSDE

Section A .4 gives a quick introduction to the environment by means of afew simple examples
Section A.5 gives more detailed information on blocks contained in PC32Lib

Section A.6 explains the use of the Display utility

Section A.7 discusses the various modes of operation and the limitations of the CSDE

A.3Installation

A.3.1 Hardware Requirements

The PC32 DSP Controller is designed to fit into a ISA expansion dot of any IBM/PC
compatible machine. However, the software tools require at least a Windows 95 system. Any
PC capable of running Windows 95 should be able to support the CSDE, however it is strongly
recommended to use a Pentium machine with 32 Mbytes of RAM, but preferably more (e.g. 64
Mbytes).

The installation of the PC32 is as simple as that of any PC expansion card, the PC32 Hardware
Manual from Innovative Integration should be consulted before fitting the card into a vacant
ISA dlot.

For the purposes of the examples in section A.4 the jumper settings on the PC32 should be
initially left in their factory default setting :

Installation Page A-5

Appendix A

(i) A/D pair 0 and 1 triggered by software
(i) DI/IA O, 1, 2 and 3 triggered by timer O
(ili) JP 5 should be set to IRQ 5

The exact function and usage of these (and other) jumpers will be explained in more detail in

section A.5 when the components of PC32Lib are discussed.

A.3.2 Software Requirements

The CSDE requires a number of software packages to be installed on the host computer. The
CSDE might also function correctly with other versions or releases of these packages but only

the following set has been fully tested :

(i) Windows 95
(i) Texas Instruments ANSI C Compiler Version 4.70
(iii) MATLAB Version 5.2.1.1420
Simulink Version 2.2.1
Real-Time Workshop Version 2.2.1
(iv) Innovative Integration Device Driver and Peripheral Library Version 1.18
(v) RTIS shipped with this manual

A.3.3 Installation Instructions

For the installation of Texas Instruments, Math Works and Innovative Integration software

please refer to the respective documentation shipped with these products.

To install the RTIS simply run the setup utility provided on the install disk and follow the

instructions provided.

It is recommended that during installation of al components the default directory structure is
used as far as possible. Should some of the directories be changed RTIS template make file will
need to be modified to reflect the new locations. In the next sections the following directory

structure is expected :

Installation Page A-6

Appendix A

Texas Instruments

(i) C:flte\
MathWorks

(i) C:\MATLAB\
Innovative Integration

(iii) C:\pc32cc\
Real-Time Interface Software

(iv) CAMATLAB\RTW\c\ii\
(v) CAMATLAB\RTW\ext_mode

Before proceeding to the next section it is recommended that the correct installation of the PC32
DSP Controller hardware and drivers is verified. An easy way to do this is to run one of the

demo programs included in the Innovative Integration package.

A4 Getting Started

This section provides a quick glance at the CSDE. Since most users will aready be familiar with

the Simulink GUI, the examples presented should prove straightforward.

Three simple, ready to use examples are presented to demonstrate how Simulink block
diagrams is compiled and transferred to the PC32 DSP Controller. The following demos give a

chance to experiment with the 1/0 block as well as the various modes of operation.

A.41 Simple Example
To run the first simple model:

(i) Stat MATLAB
(i) Typepc32_demol

Getting Started Page A-7

Appendix A

This opens the block diagram for the first demo. Fig. A.3 shows the Simulink block diagram for

the pc32_demol example.

ﬁ no n

Scope Channel Scope Channeli
DDDD 20002
oo —P 10 P
52+2*0.3*2000s+2000"2
Signal Slider Transfer Fen
Generator Gain

Fig. A.3 : Simulink block diagram forpc32_demol example

The block diagram contains a signal generator set to provide a square wave at I00Hz, a slider

gain, a second order continuous transfer function and two scope channel upload blocks.

To get things working on the DSP card go to Tools menu and select RTW Build. The
build/compile/download process can be followed in the MATLAB main window. When that is
complete select Start from the Simulation menu or push the play button on the toolbar of your
pc32_demol window. At this point in time the code generated from the block diagram begins

execution on the DSP target.

Start the Display.exe utility, enter 2 as the number of channels and push OK. Two windows
appear - CH #0 and CH # 1. CH #0 displaysthe square wave output from the signal generator and
CH #1 displays the result of putting it through a second order system.

Now, going back to the block diagram, experiment with changing the values of the dider gain,
damping factor of the transfer function and settings of the signal generator. The effect of these

changes can be seen immediately in the CH #0 and 1 windows.

By double-clicking on the CH # display windows their properties can be adjusted, the OK
button on Display's main dialog needs to be clicked each time a simulation is restarted, the

various options are discussed in section A.6 when we present the Display utility.

Getting Started Page A-8

Appendix A

Timer 0 onboard the 'C32 processor is used to generate the base sampling rate for the diagram.
To experiment with other sampling rates go to Tools | RTW Options | Solver and adjust the step
size. The diagram needs to be recompiled each time the step size changes.

A.4.2 Example with A/D and D/A

In the previous example the input signal was generated on board the DSP card, in a real-world
application we are more likely to process some signal captured through a A/D channel. In
MATLAB window typepc32_demo2. Fig. A.4 shows the block diagram for this example.

—r | o |

Scope Channel Scope ChanneH
20002
AD CD}———§+ 10 i —J» DACO
s2+2"0.3"2000s+2000"2
ADC1 [> Stider Transfer Fen >[DAC1
Gain
ADC2 > > DAC2
ADC3 |> > DAC3
PC32 ADC PC32 DAC

Fig. A.4 : Simulink block diagram for pc32_demo2 example

Essentially this is pc32_demol revisited, with the exception of the signal generator being
replaced by an A/D block and the addition of a D/A block. Before compiling and starting this
diagram, connect a signal generator to A/D O connector on the PC32 card (pin 26 and 6 onthe D
type connector) and set it to provide a 100 Hz sguare wave with a 5 volt amplitude. The A/D
channels of the PC32 Controller take a maximum of + 10 V, so care should be take not to exceed
these levels. Optionally a oscilloscope can be connected to D/A 0 (pin 16 and 35).

Select RTW Build and after the build process is complete start the simulation. Once again select
two channels on the Display utility. Adjusting the signal generator affects the plots in both CH

#0and#! windows.

Getting Started Page A-9

Appendix A

A.4.3 Interrupt Support Example

The final example can be accessed by typing pc32_demo3 in the MATLAB window, Fig. A.5
shows the block diagram.

In In
Scope Channel Scope Channeld
DDDD 20002
oo I+ 10
s?+2"0.2*2000s+2000"2 o
Signal Slider Transfer Fen | -
Generator Gain = Lo
Ea' -
» ~o—P DALCD
—Pin | S Jpact
anno
00 P 10 —_—
Scope Channel2 s pacs
Signal Slider g S—
Generatori Gaini —| down-sample - o DALCS
*‘ N ourt)
- PC32 DAC
DTF in DTF out !
TriggerO
3
EID |» r— e i
IN ouT
Bl i S Ch 13
gk Data Store Data Store g anne
Memory Memon/1
El3 p
TMRO [
TR 1

PC32 Int Support

Fig. A.5 : Simulink block diagram forpc32_demo3 example

At first glance we can see the familiar second order system fed by a signal generator. The new
blocks, despite their numbers, perform a very simple task - down-sampling. A second signal
generator provides a 100 Hz sine wave which is then passed, through a memory store element,
to the down-sample block. All the down-sample block does is copy from the IN memory store
to OUT. However, since it is triggered at a different frequency to the rest of the diagram, the
signal that passes through it is down-sampled. The down-sample block is triggered by Timer 1
interrupt at 11 kHz, while the rest of the diagram is executed by Timer O at 5 kHz. Thus
effectively the sine wave is down-sampled from 5 kHz to 11 kHz and the effect can be observed
in CH #2 and 3 windows.

Getting Started Page A-10

Appendix A

If there is an oscilloscope attached to D/A 0 the various signals can be observed by changing the

configuration of switches SWO, 1 and 2.

A.5PC32Lib

This section describes the custom block contained in the PC32Lib blockset for Simulink. These
blocks allow low-level hardware access to the PC32 Controller from within a block diagram.
Fig. A.6 shows the collection of blocks in the PC32Lib. To bring up the library simply type
PC32Lib in MATLAB window.

{3 Library: PC32Lib ==l B3
File Edit View Simulation Forma] 1<l
| > J v B T
DR |0 |
EID Triggert}
ADCD |5 3 DACO [>|va
Ell
ADC1 [3 DAC1 i s Ub AD TRIGGER
. ADC2 [, .| DAC2 EI3 > o e In
TMRO
ADC3 [> > DAC3 SR Scope Channel
TMR1 [»
i PC32 ADC PC32 DAC
PC32 Int Support
f T —
Ready \Unlocked

Fig. A.6 : Contents of PC32Lib

A.5.1 PC32 ADC Block

This block allows access to the on-board A/D converters of the PC32 Controller. When making
use of thisblock it isimportant to understand the way in which the Innovative Integration board

triggers the A/D converters.

ADC O and 1 form ADC pair 0. ADC 2 and 3 form pair 1. Each pair can be triggered by one of

the following :

PC32Lib Page A-11

Appendix A

(i) A software memory write
(i) Signal on TCLKO
(iii) Signal on TCLK1

JP 6 and JP 5 control the trigger sources for ADC pair 0 and 1 respectively. Irrespective of the
jumper setting a memory write in software always triggers a conversion. Setting thejumper to
position 1-2 selects the trigger source to be TCLKO, position 2-3 selects TCLK 1. Depending on

a software setting signal for each TCLK can come from either :

(i) anexternal TTL compatible source

(i) aon-board timer

The source for each TCLK is selected in the PC32 Int Support block (see below). If no PC32 Int
Support block is present on the diagram the default setting is for both TCLKO and TCLK1 to be

driven by respective on-board timers.

If either, or both JP5 and 6 are completely removed the respective ADC pair can only be
triggered by a software memory write. This option is discussed below when the AD Trigger

block is introduced.

A.5.2 PC32DAC Block

This block allows access to the on-board D/A converters of the PC32 Controller. When making
use of this block it is important to understand the way in which the Innovative Integration board

triggers conversions on the D/A channels.

Each DAC channel can be triggered separately by one of the following :

(i) A software memory write
(i) Signal on TCLKO
(iii) Signal on TCLK1

PC32Lib Page A-12

Appendix A

Jumpers JP 3,4,11 and 10 control trigger sources for DAC 0,1,2 and 3 respectively. In contrast
to the A/D triggering each jumper has three possible positions and if it is completely removed
the respective DAC channel is net triggered at all. Once again the source for TCLK signals can
be selected in the PC32 Int Support block to be one of:

(i) anexternal TTL compatible source

(i) aon-board timer

The default source, if PC32 Int Support block is not used, is the respective on-board timer.

The software memory write triggering is build into the PC32 DAC block. In other words, if a
jumper is in the DSP position the corresponding D/A channel will be triggered each time a new
value is passed to the PC32 DAC block.

A.5.3 PC32 Int Support Block

The PC32 Int Support block is used to perform a number of functions. Double-clicking on it

brings up the menu shown in Fig. A.7. Let us go through the various options.

ElO - EI3 Triggering, this alows the user to specify how the 'C32 processor responds to external
interrupts. In all but the most specific applications the default setting will be adequate.

TCLKO and TCLK1 source, allows to specify whether the signal is drawn from one of the
on-board timers or from an external connector. When the default setting is used both TCLKO
and 1 are taken from an external pin (JP 15 or U34 memory expansion connector). Care should
be taken when changing those settings since the configuration of these pins changes from input

to outpui.

TimerO Freq and Timerl Freq, alow to set frequencies for the on-board TimerO and 1
respectively. TimerO can be used to generate the base sample time for a block diagram (see
section A.7 for details). When TimerO is thus engaged, the corresponding menu in Fig. A.7 is
disregarded.

Interrupt Numbers, set the numbers of interrupts available form the outside of a PC32 Int
Support block. Default setting is for interrupt 1 to 4 (EIO to EI3) and interrupt 9 and 10 (Timer O
and 1 interrupts). If any additional interrupts need to be trapped Texas Instruments 'C32 Users's

PC32Lib Page A-13

Appendix A

Block Parameters: PC32 Int Support _
PRG S 28 nte Mt Bloc ki Ak) e e e e

. Asynchronous interrupt support for the inovative Integration PC32 card. |

| Note : TCLKO/1 settigs depend also on jumpers (JP3 - G] '.

| WARNING : Changing TCLKO/1 settings to TimerO/1 configures them as
outputs. Check external connections!

j_ Parameters ——————— e —————

EI0-EI3 Triggering:] il
| TCLKO Source : |Extemal =]
| TeLK1 Source : [External]

Timer O Freq

I°

|
| Tinner 1 Freq
i
|

Interrupt Numbers (top to bottom)

Snply Hewert Help Close

Fig. A.7 : Mask for the PC32 Int Support block

Guide should be consulted for the relevant numbers. Should the Interrupt Numbers array be
changed, it will be necessary to go under the mask for the PC32 Int Support block and make
relevant changes. For details on this topic see Math Works' Using Simulink.

The interrupts specified in Interrupt Numbers array are available the outside of the PC32 Int
Support block. These outputs can be used to drive inputs of standard Simulink triggered
subsystems. An example of such subsystem is the AD Trigger block.

As adefault the external interrupts Ell and EI2 aretriggered by the end-of-conversion signals

from ADC pair 0 and 1 respectively. JP17 controls the sources for these interrupts.

External interrupt EI3 isreserved by the CSDE for communication from the host PC and should

not be used for other purposes.

PC32Lib Page A-14

Appendix A

A.54 PWM Block

This block requires a PWM/Tacho expansion card to be connected to the PC32 Controller. For
information on the operation of the PWM/Tacho card please refer to the relevant documentation
shipped with the card.

1 Block Parameters: PWM Block Eq

r Subsystem (mask) - i

IR i R S ——

~ Parameters !
1
|

VORTI
4

CONTROL MODE |Frequency v

Apply Tip', ! £ Help I Close |

Fig. A.8 : Mask for the PWM Block

Fig. A.8 shows the mask for the PWM block. VORTL specifies the frequency of operation of
the PWM generator as follows :

() 1=20KkHz
(i) 2=10kHz
(iii) 3=5kHz
(iv) etc.

Control Mode can be changed from Freguency to Angle depending on the control algorithm
employed.

A.55 AD Trigger Block

This block causes a conversion to be triggered on both ADC pairs of the PC32 Controller. It is
designed to be driven from an output of the PC32 Int Support block.

PC32Lib Page A-15

Appendix A

To synchronise sampling to an external trigger signal feed this signal to EIO. Use EIO output of
the PC32 Int Support block to drive the AD Trigger block and use the end-of-conversion signals

on Ell and/or EI2 to trigger subsystems which require data from the A/D converters.

This method is particularly useful when the external trigger signal is not directly compatible to
hardware trigger the A/D converters (i.e. Pulse width too long), but still provides an acceptable

negative edge to trigger an external interrupt.

A.5.6 Scope Channel Block

This block provides a buffer for uploading a channel of data form the PC32 Controller to the
Display utility on the host PC. Presently up to 10 such block can be used in a single block
diagram. Fig. A.9 shows the mask for the first Scope Channel block. Each such block placed on
a block diagram should have a number between 0 and 10 entered under Channel Number. The
CSDE does not check for validity of users choice of numbers. Should two (or more) blocks point
to the same channel the associated window of the Display utility will show a mixture of the

blocks data, which in most cases will be meaningless.

Block Parameters: Scope Channel

'f Subsystem (mask)-

A e e——— TRl T

Channel Number
| 0

Buffer Size

150

Down Sample by:

B

Apply Revert Help Close

Fig. A.9 : Mask for the Scope Channel block

Buffer Size specifies the size of the packets sent to the host for a particular block. As arule of
thumb blocks with faster sampling rates should have larger buffers. When a number of Scope

Channel blocks is used and only some operate correctly it is most likely that the total of all

PC32Lib Page A-16

Appendix A
buffer sizes exceeds the memory alocated for the purpose. In such case the size of buffers
should be decreased.

The Down Sample option allows for adjustment of the sampling frequency. The input signal to
the Scope Channel block will be sampled at the block's execution frequency divided by the
value of Down Sample.

A.6 Display Utility

The Display utility is a stand-alone Win95 application which allows to plot graphically data
uploaded from the PC32 Controller in real-time. Up to 10 channels can be captured

simultaneously.

A.6.1 Running Display

To gart the utility run Display.exe from C:\MATLAB\RTW\c\ii. The main dialog of the utility
isshownin Fig. A. 10.

£V Display Utility for PC32

Target Number: ||3

Number of Channels : fi]

Cancel |

Fig. A. 10 : Main window of the Display utility

The assumption is that a Simulink block diagram containing a Scope Channel block (or blocks)
and with the UPLD=YES option specified was build and started. The default setting is for
Target Number O, this should not be changed unless more than one PC32 Controller card is

Display Utility Page A-17

Appendix A

installed in the host system. The number of Scope Channel blocks used in the corresponding
Simulink block diagram should be entered under Number of Channels. When OK is pressed the
main dialog is minimised and the specified number of channel windows appear. Every time a
Simulink block diagram is started the OK button will have to be pressed.

A.6.2 Working With Channel Windows

Each channel window has a caption - CH# 0, CH# 1 etc. Those numbers correspond to numbers
entered in each Scope Channel block in the Simulink block diagram. A typical channel window
isshown in Fig. A. 11. Settings specific to each window can be modified by double-clicking of
the window to bring up a properties dialog shown in Fig. A. 12.

Fig. A.11 : Typica Channel Window

Channel Properties

Number of Samples: |200
Y Axis Span: 100

f~ Trigger Level: |O

Fig. A. 12 : Channel Properties dialog

Display Utility Page A-18

Appendix A

Default settings are :

(i) Number of Samples = 200

(i) Y Axis Span = 100

(iii) Trigger Level =0

(iv) No Triggering (check-box clear)

Number of Samples specifies the total number of sample points visible in the window. If this
number is less then the windows physical x-size, adjoining samples arejoined by straight lines.
Display does not allow the opposite to happen, however. If the x-size of the window is

decreased bel ow the specified number of samples, Display automatically decreases this setting.

Y Axis Span is the highest value displayed on both positive and negative y-axis. This setting

does not change when a window is resized.

Trigger Level allows to set the triggering for a particular window. For waveforms which cross
the x-axis a number of timesin each period it might be necessary to increase the trigger level to

avoid re-triggering. By default triggering is not enabled, to enable it select the check-box.

A.7 Operation of the CSDE

As described in preceding sections, the CSDE is a system based around the MATLAB/Simulink
environment. Any new design starts with a Simulink block diagram. There are a few limitations
as to which blocs may be used (see below) but most standard Simulink blocks (including

toolboxes) and blocks in the PC32Lib will function as expected.

A.7.1 Setting Up a Simulink Block Diagram

First step in any new project will most likely be the design and initial simulation of a standard
Simulink diagram. The transition from simulation to actual real-time implementation involves a

few steps.

Firstly under Simulation Parameters | Solver, as shown inFig. A. 13, the Solver options have to
be set to Fixed-step. If the block diagram contains any continuous-time integration blocks an

integration algorithm needs to be specified. A step size has to be set if the block diagram makes

Operation of the CSDE Page A-19

Appendix A

'4 Simulation parameters: pc32_demol

Workspace I/OI Diagnostics‘ RTW| RTW External

JPotfs

Simulation time

7 Start time:] 0.0 Stop time: I 0.0

Solver options

Type: J Fixed-step J7 | |ode4(Runge-K.utta] _"_’J

Fixed step size:] 0.0002

Output options

e '::—j\—(.'-).(. 3 i
Zl :

Kehne output

Apply | ;:-.'.f;»,:er:_‘ Help | Close

Fig. A. 13 : Simulation Parameters | Solver

use of Timer O to generate the base sampling rate (see below). The values of Start and Stop Time
are ignored by the RTW.

The name for the external mode .dIl needs to be entered in Simulation Parameters | RTW

External asin Fig. A.M.

Final changes haveto be donein Simulation Parameters | RTW, Fig. A. 15. System Target fileis
ii.tlc and the Template Make File is pc3 2. tmf. A number of options can be included behind the
make command make_rtw, these options have to be specified exactly as listed below :

(i) TMRO=YES. This option sets Timer O to generate the base sampling rate for the
block diagram at the rate specified under Simulation Parameters. When Timer O
is used in this way it cannot be used by the PC32 Int Support block. If this option
is not used any blocks not contained within triggered subsystems will execute as

Operation of the CSDE Page A-20

Appendix A

“ASimulation parameters: pc32_demol

SoK'er

W'orkspace I/O] Diagnosticsl RTWI RTW EXteTAl
b

I MEX-file options

MEX-file for external interface:

l ext_pc32

MEX-file arguments:

Download options

F" Batch parameter downloads

Download parameters l

Apply I Fitza.u.fezf.l Help | Close

Fig. A.14 : Simulation Parameters | RTW External

background tasks and their execution frequency cannot be guaranteed. Default is
not to use Timer O.

(i) UPLD=YES. This option needs to be included if use is made of the Scope
Channel block(s) to capture data. If it is omitted any Scope Channel blocks on the
diagram will not be serviced. Default is not to service uploads.

(iii) 1O=ENABLE. This option is included for debugging purposes. Diagrams
compiled with this option will need to be downloaded using Innovative
Integration’'s Terminal program. With this option set any diagram executing on
the PC32 Controller prints text to the Terminal window. If Terminal utility is not
used when this option is set programs will hang on the DSP hardware. Default is

not to give output to the Terminal window.

If the syntax for any of the options is changed or it is omitted all together the default setting for
that particular option is used.

Operation of the CSDE Page A-21

Appendix A

' Simulation parameters: pc32_demol

R'[:%’ | RTW External

!
Solver | Workspace I/O% Diagnostics

Code generation

System target file: II W\
f Inline parameters |~ Retain .rntw file

Build options

Template makefile: 1 pc32_tmf

Make command:

make_rtw TM RO=YESUPLD =YE S10=D ISAB LE

Build |

Apply | Hevert I Help I Close

V Generate code only

Fig. A.15 : Simulation Parameters | RTW

A.7.2 Limitations of CSDE

Due to technical reasons some Simulink blocks might not function correctly when compiled to

run on real-time hardware :

(i) Any Simulink block which depends on absolute time - e.g. Sine Wave. Thisis
due to the overflowing of the time register if the code is run for extended periods
of time.

(i) All Simulink Sinks blocks and Source blocks reading from files or MATLAB
workspace. This functionality is implemented using the Scope Channel blocks.

Operation of the CSDE Page A-22

B.I Dual Port Memory Access

Appendix B

Appendix B

This appendix details the protocol used by the CSDE during bi-directional communication
between the host PC and the target PC32 card. All data exchange takes place viathe DPRAM.

To avoid conflicts interrupts are used to arbitrate access to the shared memory regions.

B.I.I DPRAM Allocation

The DPRAM allocation map is shown in Fig.B. 1. The only exception to this allocation is during

initial checksum verification when locations 0x0001 to 0x0004 are temporarily used to pass the

four checksum values from the host to the target. Location 0x0000 can be read and written by

both the host and the target, all other locations are uni-directional as indicated in the Read and

Write columnsin Fig. B.1.

| Offset | Function Write | Read
0x0000 | Bits0to 7 - host command to target, or target response to host | H/T H/T
Bits 8 to 31 - command confirmation padding
0x0001 [Bits 0 to 31 - parameter offset H T
_ 0x0002 | BitsOto 31 - parameter value H T
0x0003 | Bits 0 to 2 - current target status T H
_Bits 3to 31 - unused
- 0x0004 | Bit O - current host status H T
Bits 1 to 31 - unused
5 0x0005 | Data upload packets from target to host T H
00s0 N
Fig. B.1 : Memory usage during normal operation (H = host, T = target)
Dual Port Memory Access Page B-I

Appendix B

B.1.2 Host Commands

To communicate a command to the target the host places the command number within the least

significant byte at location 0x0000 and pads the remaining 3 bytes with the value OxAAA.

Interrupt EI3 is then signalled to target. The padding is done to add a degree of security to the

communication.

In the event of a spurious interrupt the target will not process a command

unless the security padding is not correct. The possible host commands are listed in Fig. B.2.

Command No. | Description
1 Start Execution - The Simulink generated code is initialised, interrupts |
installed, and host writes its status to location 0x0003
2 Parameter Update - The parameter offset in SimStruct and its updated value
are placed in locations 0x0001 and 0x0002 respectively. I
3 | Suspend Execution - The model execution is suspended and the termination
|
| functions are called. Model can be re-started by command 1.
4 Checksum Verification - Four checksum values passed in locations 0x0001
| to 0x0003 are compared against copies embedded in the target executable.
5 Start Data Upload - The upload queues are cleared and the uploads are
started.
6 Suspend Data Upload - The uploading of data is stopped. It can be restarted

by command 5. |

Fig. B.2 : List of host commands

B.l.3 Target Response

After receiving and processing a host command, the target places its response in the least

significant byte at location 0x0000 and pads it with OXABC. If processing is successful the

command number is echoed, aresponse of O signals failure. After sending a command the host

polls DP RAM location 0x0000 until the correct padding value is seen.

Dual Port Memory Access Page B-2

Appendix B

B.1.4 Target Status Word

During processing of the Start Execution command the target updates its status word at
location 0x0003 to signal to host which options were enabled. Fig. B.3 lists the bit allocation in
the status word.

Bit Description

0 Status of the debug printouts (IO_YES define). A 1 signals that debug info is being
printed to the terminal emulator, a 0 means that al printouts are disabled.

1 Usage of the on-board timer 0 (TMRO_Y ES define). A 1 means that timer O is used to
generate the base sampling rate for the model, a 0 signals that timer O is available for

other uses.

2 Status of the data uploads (UPLD_YES define). A 1 signals that compiled code
supports data uploads, a 0 means that all data upload functionality was excluded

during compilation.

| 3..31 | unused

Fig. B.3 : Target Status Word contents

B.l.5 Host Status Word

Bit O at location 0x0004 signals whether the Display utility on the host PC is ready to accept data
uploads. A 1 signals aready condition. A 0 signalsthat Display is either not running or it is still
busy reading packets out form DPRAM. The remaining bits (1 to 31) in the status word are not
used.

B.1.6 Packetized Data Uploads

The continuous DPRAM block from location 0x0005 to 0x0400 is reserved for data uploads
from the target to host. When enough buffered data is available on the target, the host status
word is polled until it is 1. Next packetized datais placed in the DP ARAM in the manner shown
in Fig. B.4 and interrupt IRQ5 is signalled to the host PC.

Dual Port Memory Access Page B-3

Appendix B

DPRAM offset: Description:
0x0005 ChanneINNumber
XN
-
0x0007
Packet Data

0x0007 + XN Channel Number

M
0x0007 + Xy + 1 Packet Size
Xm
et e e et
OX0007 + Xy +2 |
, Packet Data
I
I
|
I
|
|
o
0x0007 + Xy + 2 + Xy Tem;lgngailon

Fig. B.4 : DPRAM usage for data uploads

Dua Port Memory Access

Page B-4

Appendix C

Appendix C

C.| Hardware Registers

This appendix lists the functionality of the timer configuration registers of the TMS320C32
processor, and all registers of the PMB 1/87 ASIC.

C.l.I 'C32 Timer Control Registers

Timer control registers are memory mapped in the general address space of the 'C32 processor
as shown in Fig.C. 1. The function of the various flags in the Timer Global Control Registersis
explained in Fig. C.2.

Register Timer O address Timer 1 address

__Timeflo_bal E:ontrol 0x808020) 0x808030 o
Timer Counter L £x808024 . I__0x808034]
Timer Period 0x808028 0x808038

Fig. C.I : Timer Control Register memory locations

C.1.2 PMB 1/87 Registers

All communication with the PWM ASIC is conducted via two memory mapped locations.
Assuming the PWM/Tacho card is set to the default settings (Decodes 0 and offset 0x000) the
memory mapping is shown in Fig. C.3. Writing to the control word sets various internal
functions as well as the read and write addresses for internal registers, as shown in Fig. C.4.
During reading the status word contains the | C's status information as shown in Fig. C.5.

The various registers available for writing are listed in Fig. C.7. Registers which can be read
back are shown in Fig. C.6.

Hardware Registers PageC-1

Appendix C

Bit Name Rst. Val | Description

0 FUNC 0 FUNC controls the function of TCLK. If 0, TCLK is a
general 1/O pin, if 1 TCLK is atimer pin |

1 110 0 If TCLK isal/O pin then 1/O = 0 configures it as an input, 1
makes it an output

2 DATOUT | 0 Data for TCLK in output I/0O mode, can be used as input to
the timer

3 DATIN |? Data input for TCLK, write has no effect

4..5 |Reserved |0 Read as 0

6 GO 0 GO resets and starts the timer. If 1 and timer is not held, |
counter is reset,started and GO is cleared. GO = 0 has no
effect. I

7 HLD 0 Counter hold signal. If O counter is stopped, if 1 timer carries
on running.

8 c/P 0 Clock/Pulse mode control]

9 CLKSRC |0 Selects source for thetimer. If 1 the internal clock isused. If
0 TCKL pin drives the timer.

10 INV 0 Inverter. If 1 timer input and output signals are inverted. If O
no effect.

n TSTAT 0 Timer status. Sends an interrupt to the CPU on each |

transition from 0 to 1. A write has no effect.

12 .31 | Reserved | O Read as 0

Fig. C.2 : Timer Global Control Register

Hardware Registers Page C-2

Appendix C

Address Function
0x819800 | Data Word
0x819801 Status Word (during a read)
: Control Word (during a write)
Fig. C.3 : Memory mapping of the PMB 1/87 ASIC
| Bit Name Description
0 EIN EIN=1 enables pulse calculation and output, O disables
| l IINT IINT=0 selects external control over current polarity (pins
! 11.13), 1 internal control viabitsIINT1 .. [INT3 '
2.4 [INT1 ..IINT3 Current polarity in inverter branch 1 .. 3 (I=positive current) |
'_5 A_I_\lot used _ |
6 | TESTFL Test flag, should be Ieft at 0
7 BUS 16 BUS16=1 selects 16-bit bus mode, O selects 8-bit bus mode
8..11 | WADO .. WAD3 | Write address used by next write to Data Register, |
automatically increments after each write
12.. 13 RAI?_Q .. RADI Read address u§ed by next_read from Data Word. :
14 RDSTART Start read cycle.
15_ Npt used)

Fig. C.4. Control Word during a write

Hardware Registers

Page C-3

Appendix C

Fig. C.5 : Status Word during a read

Bit Name Description
_U WRFLAG Data may only be writt_en to registers when WRFLAG = 0
1 RDELAG RDSTART = 0 means dataread cycle is complete.
2 CALCFLAG | Processing flag indicates when an internal processing cycle is in
progress. Read cycle can be started when CALCFLAG =0
Not used

| RAD 1.0 |Name [_)_escr_iption)
00(0) PHIO Phase angle, lower half
01(1) PHI1 Phase angle, upper half
10(2) uo Voltage value
11(3) Not used

Fig. C.6 : Readable registers

Hardware Registers

Page C-4

Appendix C

WAD3..0 | Name Description
0000 (0) UA Ua voltage component
0001(1) UB Ub voltage component [
0010(2) PHI1 Phase angle, upper half |
0011 (3) DPHI1 Frequency, upper half I
|

0100(4) PHIO Phase angle, lower half
0101 (5) DPHIO Frequency, lower half 1
0110(6) PHIADD Difference in phase angle !(i
0111 (7) Not used]
1000(8) TAUS Turn-off time
1001(9) TTOT Dead-band time |
1010(10) TMIN Turn-on time
1011 (11) VORTL Switching frequency scale value
1100(12) TSTART Start of processing cycle
1101 (13) | Not used
1110(14) | Not used

1111 (15) | Not used

Fig. C.7 : Writeable control registers
Hardware Registers Page C-5

Appendix D

Appendix D
D.I Template Make File

This appendix list the template make file specifically customised to generate code for the PC32
platform.

D.I.I Source Listing of pc32.tmf

ﬂ*ﬁ'k******'i***'\l’********'\k*'\\'*****i’i‘t*****i*'k******i'k'A'******tk*********:*k*&-j-

e CGeneral Defines ----------cccmmmmm -
SYS TARGET_FILE = ii.tlc

MAKE = gtnake

HOST = PC

BUI LD = yes

DOWNL CAD = yes

BUI LD_SUCCESS = Conpl et ed

DOWNLOAD_SUCCESS = Downl oaded

Custom zati on Macros

#
The followi ng set of macros are custom zed by the make_rt program
#

MODEL
MODEL_ MODULES
MODEL_MODULES_OBJ

| >MODEL_ NANE<|
j >MODEL_MODULES<|
j >MODEL_MODULES_OBJ<|

MAKEFI LE = | >MAKEFI LE_NANE<|
MATLAB_ROOT = | >MATLAB_ROOT<|
MATLAB_BI N = j>MATLAB_BI N<|
S_FUNCTI ONS = J >S_FUNCTI ONS<|
S_FUNCTI ONS_0BJ = | >S_FUNCTI ONS_0BJ<|
SOLVER = | >SOLVER<|
SOLVER_0OBJ = | >SCLVER_OBJ<|
NUMST = | >NUMST<|

TI DO1EQ = | >TI DO1EQX|
NCSTATES = | >NCSTATES<|

BUI LDARGS = | >BUI LDARGS<|
COMPUTER = | >COVPUTER<|

Il pc32 Definitions
it

BOARDJTYPE = PC32

DSP_FAM LY =30

COWPI LER = Tl _FPC

|1 _ROOT = $(MATLAB_ROOT)\rtwhc\ii

Il _COWPILER = $(I11_ROOT)\ti _fpc

Il_CvD = $(11_COWPI LER)\ii PC32. cnd
|1 _BOOT = $(11_COWPI LER)\ vect ors. obj

PC32_DOWNLOAD = $(I1_ROQOT)\ D_Load. exe

x Tools

#
You may need to nodify the TI_ROOT if you have installed the

Template Make File Page D-|

Appendi x D

Texas Instrunent Conpiler in a different |ocation.

#

TI _ROOT = c:\fltc

Tl _FLAGS = -v3(DSP_FAM LY)

CC = $(TI_Roamn\cl 30

LD = $(TI_ROON\Ink30

Include Path

MATLAB_| NCLUDES = \
$(MATLAB_ROOM) \ si nul i nk\i ncl ude; \
$(MATLAB_ROQOT) \ ext ern\i ncl ude; \
$(MATLAB_ROOT) \rtwhc\src; \

$(MATLAB_ROOT)\rtwh c\li bsrc;

TI_I NCLUDES = $(TI _ROCOT); $(TI_ROOT)\Incl ude\ Target;
|1 _INCLUDES = $(I1_BQARD)\Li b\ Tar get

NCLUDES = .; $(MATLAB | NCLUDES) $(TI I NCLUDES) $(I1 | NCLUDES)

Conpiler Flags .. .
Required Options

REQ OPTS = $(TI_FLAGS) -q -eo .0$(DSP_FAMLY)

Optimzation Options

OPT_CPTS = -xO -03

Debug Options

DBG_OPTS

CC_COPTS = $(REQ OPTS) $(OPT_OPTS) $(DBG OPTS) -dlIO$(1O \

- dTMRO_$(TMRO) - dUPLD_$(UPLD)
CPP_REQ DEFI NES = - dMODEL=$(MODEL) -dRT - dNUMBT=$(NUVBT) \
- dTI DO1EQ=$(TI DO1EQ) - ANCSTATES=$(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ DEFI NES) $(CPPJDEFI NES)

LDFLAGS = -x -a -cr -heap 0x2000 $(!1_BOOT) -m $(MODEL). map

Source Files ..
REQ SRCS = PC32main.c pc32func.c rt_simc rt_matrx.c $(MODEL).c
OPT_SRCS =

S_FCN_SRCS = $(S_FUNCTI ONS)

| NT_SRCS = $(SOLVER)

REQ OBJS = $(REQ_SRCS: . c=. 0$(DSP_FAM LY))

OPT_OBJIS = $(OPT_SRCS: . c=. 0$(DSP_FAM LY))

S_FCN_OBJS =$(S_FCN_SRCS: . c=.Ch(DSP_FAMLY))

| NT_OBJS = $(I NT_SRCS: . c=. Cb(DSP_FAM LY))

IS = $(REQ OBJS) $(OPT_OBIS) $(S_FCN OBIS) $(INT_0OBIS)
PROGRAM = $(MODEL) . out

Exported Environnent Vari abl es

#

Because of the 128 character command line length linitations in DOS, we
use environment variables to pass additional information to the

Conpiler and Linker

#

Template Make File Page D-2

Appendix D

C_OPTION := $(CFLAGS)

C DIR := $(INCLUDES); $(C_DIR)

C MODE = PROTECTED

Compile and Link Rules - - - - ___

HPROGRAM) : $(OBJS)
echo $(CBIS) > $(MIDEL).lin
echo $(11_COvD) >> $(MDEL).lin
$(LD) $(LDFLAGS) -0 $@$(MXIDEL).lin
echo $(BU LD SUCCESS) $(PROGRAV

Conpile existing code if it exists in current dir
% o$(DSP_FAM LY) : %c
$(00 $<

Call to PC32 rt main.c

% 0$(DSP_FAMLY) : c:\nmatlab\rtwc\iilti _fpc\%c
$(00 $<

Call to simulink files
% 0$(DSP_FAM LY) : $(MATLAB ROOT)\sinulink\src\%c
$(00 $<

Call conpile RTWfiles
% 0$(DSP_FAMLY) : $(MATLAB ROOT)\rtwh c\src\%c

$(CO) $<
%CE(IEI(DCIII::)AN!BIEY) . $(MATLAB_ROOT) \rtwhc\libsrc\%c

e Rulie for Downl oading to Target

downl oad :
del $(MDEL).lin
del $(MDEL).c
del $(MXDEL).h
del $(MXDEL). map
del $(MXDEL). 030
del $(MXDDEL).prm
del $(MXDEL).reg

$(PC32_DOMLQAD) $(PROGRAM)
echo $(DOMLQAD_SUCCESS) $(PROGRAN)

#_._.__.. i e [BpendenCIeS il e e B e e e e R e

iirt_main. o$(DSP_FAMLY) : $(MDEL).c
$(CBIY) : $(MAKEFI LE)

Template Make File

Page D-3

Appendix E

Appendix E

E. Real TimeKernel

This appendix list source code for the Real Time Kernel. The functionality is contained in two

files pc32main.c and pc32func.c.

E.I.l Source Listing of pc32main.c

ll.,"l***'l'ir*'k*'#‘a"A"ﬂ’**'k*'\\"\\’*'ﬁr*i***i***'ﬁ*****'x***i'*i******t***ﬁ*****‘l**'ﬁ#****

* pc32main.c *

Entry point to code generated with RTWfor the *
* PC32 DSP card. *
* This file is specifically for the Tl conpiler, V4.6, but *
* wi |l probably work under |ater versions. *
* *
* am Stylo (07 Jan 1999) *
EE R S S E X E R EEE S, kh***'k**w**i**\k*ii*k*li*i****ii—**—i*i**'ﬁ'ﬁikk**i*iir**k*;’

#i ncl ude "pc32main, h"

/* Defines */

#i fndef RT
error "nust define RT"
#endi f

#i f ndef MODEL
error "nust define MIDEL"
#endi f

ttifndef NUVST
error "nust define nunber of sanple times, NUMST"
#endi f

ttifndef NCSTATES
error "nust define NCSTATES"
#endi f

/* BExternal functions */

extern SinBtruct *MODEL(void);

extern void Mil InitializeSizes(void);
extern void Mil I nitializeSanpl eTi mes(void);
extern void Mll Start (void) ;

extern void MIl Qutputs(int_T tid);

extern void Ml Update(int T tid);

extern void Ml Ter m nat e(voi d);

extern voi d Servi ceUpl oads(voi d);

#if NCSTATES > 0

extern void rt_Createlntegrati onData(Si nStruct *S);

extern void rt_Updat eConti nuousSt at es(Si nStruct *S) ;
#el se

#define rt_Oeatelntegrati onbData(S)

ssSet Sol ver Nane(S, " Fi xedSt epDi screte”) ;

#define rt_Updat eConti nuousStates(S) ssSet T(S, ssCet Sol ver St opTi me(S));

#endi f

Real Ti me Kernel Page E1

Appendi x E

/* dobal data */
real T rtlnf;
real _TrtMnuslnf -
real T rtNaN,

static SinbBtruct *S;
static real T *par am -
volatile uint32_T *dpral
int int_flag = 0;

int dprx = 0;

/* @ obal structure for Data Upl oads */

QUEUE queue[MAX_QUEUES] ;

unsi gned int buffer_size[MAX_ QUEUES] ;
unsi gned int Down_Sanpl e[MAX_QUEUES] ;
int LogData = FALSE;

int gueue_error = FALSE;

int NunfQueues = 0;

unsi gned int channel _map [MAX_QUEUES] ;

, -

* Local functions *
* */

#def i ne PQ int c.intl4
static void PQO_int(void);

#ifdef TMRO_YES /* Include rtCneStep function only if we use Timer 0 to
trigger it */
#defi ne rtOneStep c_intl9
static void rtOneStep(void);

/* Function: rtCneStep

N Performs one step mof the ﬁbdél. | */

static void rt(neStep(void)

{

real T tnext;

tnext = rt_Get Next Sanpl eH t();
ssSet Sol ver St opTi ne(S, t next);

Ml Qut put s(0) ;
Ml Updat e(0) ;

rt _Updat eDi scret eTaskSanpl eH ts(S) ;

if (ssGetSanpl eTime(S,0) == CONTI NUOUS SAMVPLE TI ME)

{

rt _Updat eConti nuousStates(S) ;
} /* end rtOneStep */
#endi f /* TMRO_YES */

PP S SR E
* Interrupt Service Routines *
o3 o3 /

static void PQ _int()

Real Time Kernel Page E-2

Appendix E

/* wait for the sync signal from host*/

if ((lint_flag) && ((dpranf0] & OxFFFO) ==0xAAA0))

int_flag=l;

dpr x=dprani{ 0] & OxOOCF;} /* extract the conmand byte */

}

* Visible functions *
* */

/*

* main - The main program which calls the initialization routines and
= execut es the background task.

*/

int_T main(int_T argc, char_T *argv[])

int rxnmo;
int waiting_for_comrs;

int host_start=0, ChecksumOK=0;
dpram = (volatile uint32_T*) kPeri ph- >Dpram -

/* Get going on the PC32 */
VHZ = detect_cpu_speed();
timer (0, 0),*
enabl e_cache();
enabl e_cl ock();
enabl e_monitor();

#i fdef | O_ENABLE

clrscr(),-

printf("Real Time Code Execution.\n");
ttendif

/* Initialize the nodel */
S = MODEL();
ssSet TFi nal (S, 0. 0); /* run forever */

Mdl I nitializeSizes();
Mdl I nitializeSanmpl eTi mes();

rt_InitTimngEngine(S);
rt_CreatelntegrationData(S) ;

/*get address of parameter structure */
param = ssGet Def aul t Param(S) ;
#i fdef | O_ENABLE
printf("Standing by to establish comms.\n");
#endi f

/* trap the host interrupt for coms */
install _int_vector(PCO_int, 4);
enabl e_interrupt(3);

dprani 0] = O;
enabl e_interrupts() ;

/* infinite loop - but execution can still be stopped by host

*/

Real Time Kernel

Page E-3

Appendi x E

while (1)
/* dont respond to interrupts 'till we process the current one */
di sable_interrupt(3);
if (int_flag)

switch (dprx)

case 1: /* command to start execution */
#i f def | O_ENABLE
printf ("External Comms Initiated. Initialising Mdel.\n") ;

#endi f
di sable_interrupts();
Ml Start () ;

dpran{3] =0; /* assume all options are OFF */
ttifdef TMRO_YES
/* Timer O used to generate base clock for the model */
/* trap the timerO interrupt for base time*/

install _int_vector(rtOneStep, 9);

enabl e_i nterrupt (8);

timer (0, (int)(1.0 / ssGetStepSize(S)));

dpranf3] += 2; /* tell host we are using timer 0 */

#i fdef 1 O_ENABLE
printf("Mdel base sanple time is % Hz (generated by Timer
0) .\n", (int) (1.0 / ssGetStepSize(S)));
#endi f
ttendif
enabl e_interrupts();
host _start=l;
ttifdef | O ENABLE
printf("Mdel Initialised.\n");
dpranf{3] += 1; /* tell host if 10 to Term nal is enabled */
ttendif

#i f def UPLD_YES
dpranf3] += 4; [/* tell host uploading is enabled */
Cl ear Al | Queues();
#i fdef 1O _ENABLE
printf("Data upload buffers are ready.\n");
#endi f
ttendif
br eak;

case 2: /* accept a parameter from host */
rxmb=dpram [1] ;
param[rxmb] =from_ieee(dpram[2]);

ttifdef | 0_ENABLE

printf("Parani%] = %g\n",rxnb, param rxnmb]);
#endi f

break;

case 3: [*suspend execution-run through all term nation code */
ttifdef | O ENABLE
printf("Term nating Execution.\n");
#endi f

di sabl e_interrupts();

ttifdef TMRO_YES
/* stop timer O int only if it was used */
di sabl e_interrupt (8);
ttendif

Real Time Kernel Page E-4

Appendix E

MdlITerminate();
enable_interrupts();

host_start=0;

break;

case 4:

/* verify that

ttifdef | O ENABLE

printf("Verifying cheksuns....");

ttendif
ChecksunOK=l ;
if (dpranfl] != ssGetChecksum(S)) ChecksumOK=0;
if (dpranf2] != ssGetChecksum (S)) ChecksumOK=0;
if (dprani3] != ssCGetChecksum2(S)) ChecksumOK=0;
if (dpranf4] != ssGetChecksunmB3(S)) ChecksunOK=0;
if (ChecksuntX)

{

ttifdef | O ENABLE
printf("OKI\n");

ttendif
el se
dpr x=0;
#i fdef 1 O_ENABLE
printf("FAILEDI\n");
#endi f
br eak;
case 5: /* clear queues and start |ogging data */
#i fdef |1 O _ENABLE

printf("Data |ogging started.\n");

#endi f

Cl ear Al | Queues() ;
LogDat a = TRUE;

br eak;

case 6:
#i f def

ttendi

/* suspend | ogging data */
| O_ENABLE
printf("Data |ogging suspended.\n");

f

LogDat a = FALSE;

br eak;

}

dpranf 0] =
int_flag =0

}

enabl e_interrupt(3);

OXABCO + dprx,- /* send an acknow edge to host */
: /* ready for a new conmand */

if (host_start)

{

#i f def UPLD_YES
Servi ceUpl oads(); /* Upload data if neccesary */

ttendif

/* lets listen out for coms from host

we have the latest build on both host and DSP*/

*/

Real Time Kernd

Page E-5

Appendi x E

/* run background blocks (if any) if Timer O is not doing it already*/
#i f ndef TMRO_YES

Ml Qut put s(0) ; Mil Updat e(0) ;
ttendif

/* we never get here, but just in case of a MAJCR probl em
exit (or rather die) gracefully */

Ml Ter mi nate();
return(l);

} /* end main */

E 1.2 Source Listing of pc32func.c

A AR R i S e e i e
* pc32func.c *
* support functions for data uploading via DPRAM on the g
* PC32 DSP card. *
* This file is specifically for the Tl conpiler, V4.6, but *
* will probably work under |ater versions. *
+ *
* Adam Styl o (07 Jan 1999) *
*ii*iti*irii**-k-l-A.i-kk-l—-):'kw'pkA"*a'xwk*i-n-i*i—i-x**1\-*-&1—*1—1--l--x\\f\l-\\--k*-#**-.kwwkk*\\-s\if_.-'

#i ncl ude "pc32main. h"

extern SinBtruct* S

ext ern QUEUE queue[];

extern unsigned int buffer_size[];
extern vol atile uint32_T* dpram
extern int NumQueues;

extern int queue_error;

extern LogDat a;

ext ern channel _map[] ;

extern real T* param

extern int int_flag;

extern int dprx;

#defi ne MAXOFFSET 1001
#def i ne BASE DPRAM 5

voi d d ear Al | Queues(voi d)
{

int num

/* chuck all enqued data out */
for (nume0; numM<NunQueues; numt+)
whi | e (enqueued(kqueue [nunj)) dequeuej ptr (kqueue [nunj) ;

voi d Servi celpl oads(voi d)

{

int nuneO;
int offset=0;

Real Time Kernel Page E-6

Appendix E

int dpram_full=0;

int XXX
unsigned int z72Z;

if ((LogData) && !(dpram[4] & 1))

whil e ((nunxNunmQueues) && (of fset <MAXCFFSET))
{
if ((enqueued(&ueue[nun]) >= buffer_size[nun]) &&
(buf f er—si ze[nun] <MAXCFFSET- of f set))

[
{

dpr anf BASE_DPRAM + of f set ++] = channel _map[nunj ;
/* put queue nunber in dpram */

dpr anf BASE_DPRAM + of f set ++] = buffer_si ze[nunj;
/* put queue size in dpram */

for (xxx=0; xxx<buffer_size[nunj; xxx++)

doranBASE DFRAM + offset++] =
to_ieee(* (volatile float*)dequeue_ptr(& queue [num])) *
l

dpram full = TRUE;

}

numt+;

}
/* got something to sent to host, tell him*/

if (dpramfull)

{

dpr anf BASE DPRAM + of fset] = (int)999;
dpram[4] += 1;
; host -i nterrupt();

Real Time Kernel Page E-7

Appendix F

Appendix F

F.| Driver Block DLL

This appendix list source code for the S-function DLL file for the Il interrupt driver block. The
differences between the DLL files for other driver blocks are minor, thus to conserve space only

this one will be listed as an example.

F.I.I Source Listing of iiinterrupt.c

/* Front-end file for the PC3 interrupt support block.
There is absolutely no useful code here apart from
setting the number of parameters to use with the mask.

Adam Stylo (January 1999)
*
/

#define SFUNCTION NAME iiinterrupt
#define S FUNCTION LEVE. 2

#include "simstruc.h"
#ifndef MATLAB MEX HALE

/* Since we have a target file for this S-function, declare an error here

* so that, if for some reason this file is being used (instead of the
* target file) for code generation, we can trap this problem at compile
* time. */

error This_file_can_be_used_only_during_simulation_inside_ Simulink
#endi f

* S function nethods *

_____________________ /

static void mil I nitializeSi zes(Si nBtruct *S)

{

ssSet NunSFcnParans(S, 6) ;
if (ssCGetNunBFcnParans(S) != ssCet SFcnParansCount (S))

{
}

ssSet SFcnPar amNot Tunabl e (
ssSet SFcnPar amNot Tunabl e(
ssSet SFcnPar amNot Tunabl e(
ssSet SFcnPar amNot Tunabl e(
(
(

return, /* Simulink will report a paraneter m smatch error */

(=]

OB WN =~
—_—— o —

ssSet SFcnPar amNot Tunabl e
ssSet SFcnPar amNot Tunabl e

CXCRGRT RN

ssSet Numl nput Ports(S 1) ,-
ssSetl nput PortWdthf S, 0, DYNAM CALLY_SI ZED);
ssSet I nput PortDirect FeedThrough(S, 0, 1);

ssSet NumOut put Ports(S, 1) ;
ssSet Out put Port Wdth(S, 0, DYNAM CALLY_SI ZED);

Driver Bl ock DLL Page FI

Appendi x F

ssSet Num Work(S, 0);
ssSet NumRWrk(S, 0);
ssSet NumPWrk(S, 0) ;

ssSet NunBanpl eTimes(S, 1);
ssSet NumCont States (S, 0) ;
ssSet NunDi scStates (S, 0) ;

ssSet Numvbdes (S, 0) ;

ssSet NumNonsanpl edZCs(S, 0);

ssSetptions(S, (SS_CPTI ON_EXCEPTI ON_FREE_CCDE |
. SS OPTI ON ASYNCHRONQUS)) ;
}
static void ndlInitializeSanpleTi mes(SinBtruct *9

{
int i;
/* simulation mode - used inside of triggered subsystem */
ssSet Sanpl eTime(S, 0, 1.0);
ssSetFfsetTime(S, 0, 0.0);

for(i =0; i < ssCGtQutputPortWdth(S, 0); |++)
{

ssSet Cal | SystenQut put (S, i) ;

j

static void mdlInitializeConditions(SinBtruct *S)
{,

}

J

static void mdl Qut puts(SinBtruct *S, int_T tid)
{

1
H
J

static void ndl Ternminate(SinBStruct *S)
{

/r* *
: Required S-function trailer :/

#ifdef MATLAB_MEX FI LE /* Is this file being conpiled as a MEX-file? */

#i nclude "simlink.c" /* MEX-file interface mechani sm */

#el se

#i nclude "cg_sfun.h" /* Code generation registration function */
#endi f

Driver B ock DLL Page F-2

Appendix G

Appendix G

G.I Hardware Drivers TLC Files

This appendix list the TLC source code for the functions which implement hardware access on

the target side.

G.I.l Source Listing of ADTrigger .tic

o
i

o® o\®

o
B

%6 Abst ract :

%% TLC file for the PC32 A/D Trigger Bl ock.

%0 Performs four wites to A/D nmenory |ocations thus
%6 triggering a conversion. Conversion is triggered
%0 regardl ess of the status of JP5 & 6 on the board
%% Aut hor :

%% Adam Stylo

%0 Dat e:

%% 98/ 11/ 03

5.3
D

% npl enents "ADTrigger" "C'
% nclude "iilib.tlc"

%o 11 define these addr in their headers, but rather safe then sorry. ..
Yopenfile buffer

/*

define addresses for ADC Triggering

*/
ftdefine ADCO (volatile int*) 0x810000

#define ADCL (volatile int*) 0x810800
#define ADC2 (volatile int*) 0x811000

ttdefine ADC3 (volatile int*) 0x811800
%! osefile buffer
%<Li bCacheDef i ne(buffer)>

% unction CQutputs(block, system Qutput
/* Y%Type> Bl ock: %Name> (%<Paranfettings.FunctionName>) */
/[* awite to those addresses triggers a conversion on A/D */
* (ADCO) =0;
*(ADCl) =0;
*(ADC2) =0;
* (ADC3) =0;

%endf uncti on %% Qut puts
%6 [ECF] ADTrigger.tic

Hardware Drivers TLC Files Page G-I

Appendix G

G.1.2 Source Listing of iiinterrupt.tlc

e

@
a0 o

of

%% Abstract :

%% TLC file for the PC32 Asynchronous Interrupt Bl ock.

9o This file is used to generate code to support asynchronous
%80 interrupts on the PC32.

%% Aut hor :

) Adam Styl o

%% Dat e:

Wh 98/ 11/ 03

% npl ements “iiinterrupt" "C

% nclude "iilib.tlc"

%% Function: Bl ockl nstanceSetup

%% Abstract:

9o Find all the function-call subsystens that are attached to the
2% interrupt block and hook-in the necessary code for each routine.
%% This function

%%

9o 0 Connects each ISR in the nodel's start function.

%%

96 o Enables each ISR at the bottom of the mpdel's start function.
%0

9o o Disables each ISR in the nodel's term nate function.

%%

9% o Saves floating point context in the ISR s critical code section
%ssign ::ElTrigg = LibBlockParaneter(Pl,"","",0)

Y%assign ::TnrOfreq = LibBlockParameter(P4,"","",0)

Y%assign ::Tmrlfreq = LibBlockParameter(P5,"","",0)

Y%assign ::Trigg_srcO = LibBlockParanmeter(P2,"","",0)

Y%assign ::Trigg_srcl = LibBlockParanmeter(P3,"","",0)

% uncti on Bl ockl nstanceSet up(bl ock, systen) void

%6 Only allow 1 interrupt block
%f EXISTS("IIlInterruptBl ockSeen")
Yassign errTxt = "Only 1 Interrupt block is allowed in
"nmodel : %<Conpi | edvbdel . Nane>. "
%exit RTW Fatal: %<err Txt>
%l se
%ssign ::llInterruptBl ockSeen = 1
%endi f

%0 Di sable interrupts while setting up
Yopenfile buffer

/* Disable interrupts while setting up */
#i fdef | O_ENABLE
printf("Connecting Interrupts\n");
#endi f

/* Make ints edge triggered only if required */
if ((int)%ElITrigg> == 1)

Hardware Drivers TLC Files Page G-2

Appendi x G

{

asm (" CR 4000h, ST");

ttifdef | O ENABLE

printf("EIO - EI3 Set to edge triggered\n");
#endi f

el se
asm (" ANDN 4000h, ST");
#i fdef | O_ENABLE
printf("EIO - EI3 Set to level triggered\n");

\ ttendi f

%! osefile buffer

%<Li bMdl St art Cust onCode(buf fer, "header")>
Y%openfile buffer

/* define addresses for control registers */

#define GC_CTRLO (volatile int*) 0x808020
#define GC_CTRL1 (volatile int*) 0x808030

%l of c»efil e buffer

%<Li bCacheDef i ne(buffer)>

% oreach callldx = NumSFcnSysCQutputCalls

%o Cet downstream block if there is one

%f "%<SFcnSystenOutputCall[callldx].BlockToCall>" != "unconnected"
%assi gn ssSysl dx SFcnSyst emQut put Cal | [cal I 1 dx] . Bl ockToCal | [Q]

%assi gn ssBI kI dx SFcnSyst enfut put Cal [[cal | | dx] . Bl ockToCal | [1]
%assi gn ssBl ock = Conpil edvbdel . Syst em[ssSysl dx] . Bl ock[ssBI kI dx]

%6 Check to see if this is a direct connection

%f (ssBlock.Controllnput.Wdth != 1)

Y%assign errTxt = "The Il Interrupt block '%bl ock.Name>' ..
"outputs nust be directly connected to one function-call subsystem
"The destination function-call subsystem block '%<ssBl ock. Name>" "
"has other inputs."”

%xit RTW Fatal: W<errTxt>

%endi f

%6 Assume it is a subsystem bl ock(Sinmulink checked for a f-c subsys
Who al ready) .

%assi gn isrSystem = SystenissBl ock. ParanSettings. System dx]
%06 redefine argunents of ISR function
Yopenfile buffer

/*

redefine arguments for ISR: %<ssBlock.Name>
*/

ttdefine
%<i sr Syst em Qut put Updat eFcn>(%<t Si nSt r uct >, %<t Cont r ol Port | dx>, %<t Tl D>)
c_i nt O%<cal | I dx+I >()

%l osefile buffer

Hardware Drivers TLC Files Page G-3

Appendi x G

%<Li bCacheDefine(buffer) >
%% Connect the ISR in the model's start function

Yopenfile buffer
/*
connect ISR system %<ssBlock. Name>
*/
if (%LibBlockParameter(P6,"","", callldx)>==9)
{
\ "
check that timerO int is unused before assigning new vector
*/
#i fndef TMRO_YES
%f callldx < 9

install int_vector(c_into%<callldx+l >, (int)%LibBlockParameter(P6," !
o callldx) >) ,-

%l se
install _int_vector(c_int%<callldx+l>, (int)%LibBlockParameter(P6,"","
"",ocallldx)>);
%endi f
enable_interrupt((int)%LibBl ockParameter(P6,"","", callldx)>-1);

#i fdef 1O _ENABLE
printf("Vectior installed for INT

#9d.\n", (int)%Li bBl ockParameter(P6,"","", callldx)>)
#endi f
#endi f
}
el se
{%f callldx < 9
install _int_vector(c_into%<callldx+l>, (int)%LibBlockParameter(P6, ",
"tocallldx) > ,-
%l se
install _int_vector(c_int%<callldx+l> (int)%LibBlockParameter(P6," ",
""ocallldx)>);
%endi f
enable_interrupt((int)%LibBl ockParameter(P6,"","",callldx)>-1);

#ifdef | O_ENABLE
printf("Vectior installed for INT
#9d.\n", (int) %Li bBl ockParameter(P6,"","", callldx)>)
#endi f

}

%l osefile buffer
%<Li bMll St art Qust onCode(buf fer, "trailer")>

Yopenfile buffer

/7\-

di sconnect 1SR system %ssBl ock. Nane>

*/
if (9%LibBl ockParaneter(P6,"","", cal | | dx) >==9)
{ =

only disconnect timerOif it was set up here
*

/
#i fndef TMRO_VYES
di sabl e_i nterrupt ((int)%Li bBl ockParaneter (P6, "", "",callldx)>-1) ;

Hardware Drivers TLC Files Pege G4

Appendi x G

deinstall _int_vector((int)%<Li bBl ockParameter(P6,"","",callldx)>);
#i fdef | O_ENABLE
printf ("I NT #% disabled.\n", (int)%LibBl ockParaneter(P6,"",
" cal lldx)>);

#endi f
#endi f
}
)
el se
{
di sabl e_i nterrupt ((int)%<Li bBl ockParameter (P6, "", "",callldx) >1);
deinstall _int_vector((int)%<Li bBl ockParameter(P6,"","",callldx)>);

#i fdef | O_ENABLE
printf ("I NT #% disabled.\n", (int)%<Li bBl ockParaneter(P6,"",
" callldx)>);

#endi f
}

%l osefile buffer

%<Li bMdl Ter mi nat eCust omCode(buffer, "trailer")>

%l se %6 The element is not connected to anything

%assign wrnTxt = "No code will be generated for ISR %<callldx> "\
"since it is not connected to anything."

%war ni ng %<wr nTxt >

%endi f

%endf or each

%6 Setup tiners and enable global interrupts

Y%openfile buffer

ttifndef TMRO_YES

/*
Only change Timer O settings if it isn't used for base sanpling rate
*/
timer(0, (int)%TnrO0freqg>);
ttendif

timer(1, (int)%Tnrlfreqg>);
i{f ((int)%Trigg_srcC> == 2)

*GC_CTRLO = 0x6c3;
ttifdef | O ENABLE
printf("TCLKO driven by Timer 0.\n").
ttendif

}

el se

*GC_CTRLO = 0x6CO;
ttifdef IO_ENABLE
printf("TCLKO driven externaly.\n");

ttendlif
}

if ((int)%<Trigg_srcl> == 2)
{

*GC_CTRL1 = 0x6c3;
ttifdef 10 ENABLE

Hardware Drivers TLC Files Page G-5

Appendi x G

printf("TCLK1 driven by Timer I.\n");
#endi f

el se

*CGC_CTRL1 = 0x6c0;
#ifdef 10O _ENABLE

printf ("TAKL driven externaly. \n") ,e
#endi f

#i fdef 10O _ENABLE

printf("Interrupts Connected & Enabled\n

#endi f

%! osefil e buffer

%<Li bMll St ar t Cust onCode(buf f er,

%endf uncti on

%%

[ECF] iiinterrupt.tic

G.1.3Source Listing of pc32_ad.tlc

%80 Abstract :

"trailer")>

'|'I Yo

%% TLC file for the PC32 A/ D Bl ock.
%% This file is used to generate code to read
% values fromthe A/D converters and scale themto +-10.
%86 Aut hor :
%% Adam Styl o
%% Dat e:
98/ 11/ 03

%10

% npl enents "pc32_ad" "C'

% nclude "iilib.tlc"

% unction Bl ockl nst anceSet up(bl ock,

%6 Only allow 1 instance of the A/'D bl ock
%f !EX STS("Rt _pc32ad")

Y%assign :.Rt_pc32ad = 1

%l se

%rror Only 1 PC32adn block is allowed in the nodel.

%ndi f

%endf uncti on %% Bl ockl nst anceSet up

% unction Qutputs(block, systen) Qutput
/* 9%Type> Bl ock: %Name> (%<Paranfettings.FunctionNane>) */

systen) void

/*
read in the corrected values fromA/D and scale to +10
*/

%<Li bBl ockQut put Si gnal (0,"","", 0) >=r ead adc(BASEBOARD,

0)/(3276.7)

Hardware Drivers TLC Files

Page G-6

%<Li bBl ockQut put Si gnal (0, "",
%<Li bBl ockQut put Si gnal (0, "",

%<Li bBl ockQut put Si gnal (0, "",
|

%endf uncti on %% CQut puts

Appendi x G

" 1) >=r ead_adc(BASEBOARD, 1)/ (3276.7);
" 2)>=read_adc(BASEBOARD, 2) / (3276.7) |-
" 3)>=read_adc(BASEBOARD, 3)/(3276.7) ;

G.l.4Source Listing of pc32_datlc

oo
5%

%% Abstract :

% TLC file for the PC32 DA Bl ock.
9o This file is used to generate code to wite
%) values to the DDA converters. At term nation

%% all outputs are set to
%% Aut hor :

9o Adam Stylo
%% Dat e:
%W 98/ 11/ 03

o o

% nmpl enents "pc32_da" "C
% nclude "iilib.tlc"
% uncti on Bl ockl nstanceSet up(
%6 Only allow 1 instance of
%f !EXI STS("Rt_pc32da")

%ssign ::Rt_pc32da = 1
%l se

0.

bl ock, system) void

the DA bl ock

%rror Only 1 PC32dan block is allowed in the nodel.

%Endi f

%endf unction %% Bl ockl nst anceSet up

%% Function: CQutputs

[

%% Abstract :

9% Generate inlined code to performone DA conversion.

L

T0

% uncti on Qut puts(bl ock, system OQutput

/* 9%<Type> Bl ock: ¥%Nane>

/*

(%<Par anSetti ngs. Functi onName>) */

Start an output conversion

*/

write_dac(BASEBOARD, O,
convert _dac(BASEBOARD,
write_dac(BASEBOARD, 1,
convert _dac(BASEBOARD,
write_dac(BASEBOARD, 2,

%<Li bBl ockl nput Si gnal (0,"","",0)>*(3276.7)) ;
0);

%<Li bBI ockl nput Si gnal (0, "","",1)>*(3276.7));
1) ;

%<Li bBI ockl nput Si gnal (0, "","",2)>*(3276.7));

Hardware Drivers TLC Files Page G-7

convert _dac(BASEBOARD,

Appendi x G

2);

write_dac(BASEBOARD, 3, %<Li bBl ockl nputSignal (0,"","",3)>* (3276.7)) ;

convert dac(BASEBOARD,

}
%endf uncti on %% CQut puts
Y%openfile buffer

/*

3);

reset DDA outputs to O at term nation.

*/

write_dac(BASEBOARD, 0, 0) ;
convert _dac(BASEBOARD, 0) ;
write_dac(BASEBOARD, 1, 0);
convert _dac(BASEBOARD, 1) ;
write_dac(BASEBOARD, 2, 0);
convert __dac (BASEBOARD, 2) ;
write_dac(BASEBOARD, 3, 0);
convert _dac(BASEBOARD, 3) ;

%l osefile buffer

%<Li bMdl Ter m nat eCust onCode(buffer, "trailer")>

%% EOF: PC32dan.tlc

G.1.5Source Listing of pwmblock.tlc

a

[
50
%

-
o

%% Abstract :

2% TLC file for the PWM Bl ock. Generates code used to
% control a PWVM Tacho add on card.

%% Aut hor :

9o Adam Styl o
%% Dat e:

%% 98/ 11/ 03

o8

% npl ement s " pwrbl ock” "C'

% nclude "iilib.tlc"
%ssign ::Vortl = LibBlockParameter(PI,"","",0)
%ssign ::Cirl Mode = LibBl ockParaneter(P2,"","", 0)

% unction Bl ockl nstanceSet up(bl ock, system void

%0 Only allow 1 pwm bl ock

%f EXI STS("I I PWVBI ockSeen")

Y%assign errTxt = "Only 1

Interrupt block is allowed in "

"nmodel : %<Conpi | edModel . Name>. "
%exit RTW Fatal: %<errTxt>

%l se
Y%assign :: 11 PWWBI ockSeen
%endi f

Y%openfile buffer

=1

Hardware Drivers TLC Files Page G-8

Appendi x G

#define Status_word (volatile int*) 0x81a001
#define Data_word (volatile int*) 0x81a000

#def i ne TAUS (0)
#define TTOT (0)
#define TM N (0)

int VORTL, TSTART;

void pol |l pwn(void)

while (*(Status_word) & 0x1);

}

%l osefile buffer

%<Li bCacheDef i ne(buffer)>

Yopenfile buffer

ttifdef | O ENABLE

printf("Initializing PAM Block\n");

ttendif

VORTL = (int)(%Vortl>);

TSTART = ((int) (512-(322/ (VORTL +1)))) ;

*] OBCR = 0x58;
*(Status_word) =
*(Status_word) =

pol I pwm() ;

/[* set up 16 bit addressing node */
/* set addres to zero */

(Data_word) =0; [/ Ua */

pol I pwm() ;

(Data_word) =0; / Ub */

pol I pwn() ;
*(Data_word) = O0;
pol I pwm() ;

/* phil */

(Data_word) = 0; [/ dphil */

pol I pwm() ;

(Data_word) = 0; / phiO */

pol | pwm() ;

(Data_word) = 0; [/ dphiO */

pol | pwm() ;

(Data_word) = 0; / phiadd */

pol I pwm() ;

(Data_word) = 0; / unused */

pol | pwm() ;

Hardware Drivers TLC Files

Page G-9

Chapter Four - Target Hardware Platform

4.2.5 'C32 Development Tools
TI provide a code development suite for the 'C32, including :

(i) Optimising ANSI C compiler - translates standard ANSI C language directly into
optimised assembly code,

(i) Assembler/Linker - converts source mnemonics to executable object code and links
all specified modules int a single image file,

(iii) Pre compiled libraries - provide support for specific DSP algorithms as well as
standard ANSI C functionality.

4.3 Motion Controller Hardware

Having discussed the 'C32 processor's architecture, the following sections will introduce the
two components of the CSDE hardware platform, namely the PC32 DSP controller and the
PWM/Tacho card. The PC32 is a commercially available solution while the PWM/Tacho
expansion card was developed in-house at UND [WALKERI]. Fig. 4.4 shows the overall
structure of the CSDE target hardware.

The PC32 dlots into the PC expansion bay and all interfacing is done via the ISA bus. The
custom expansion card is "piggy-backed" onto the PC32 and slots into an adjacent |SA slot for
mechanical support and also draws its power supply from the PC. The interfacing between the
PWM/Tacho card and the PC32 is performed via the PC32's expansion bus. This way the
expansion card is mapped directly into the 'C32 address space.

Motion Controller Hardware Page 4-7

Chapter Four - Target Hardware Platform

Host PC
ISA Bus
PC32 Card A
o | Y |
I
i TMS320C32 DPRAM 16-bit ISA .
)
| osp €T (4kb) [Interface :
| S —
Memeory Decode .
: —> rreA < » 4xADC ir
? |
| S —_—
|| SRAM).) 4xDAC |>
| —> (512 kb) :
; . M —
| » Digital 10 <
. 196 pin — - et
| =3 Expansion o n
[Header :
: |
Mfioimmims s moecemaes Coeceneiines Sy I e e re e el e e e I
PWM/Tacho Expansion Card
Y i
| - |
! Address :
; Decode |
: ’ A o |
| I
Harming Tacho | ! Hanning PWM l
| > arm|r|1g acho | > |I g .
I | I
1 ! ' T !
|
: Y :
[} B B]
Fibre Optic | 3
| Interface »
|
I

Fig. 4.4 : Overall CSDE Hardware Structure

Motion Controller Hardware Page 4-8

Chapter Four - Target Hardware Platform

44 PC32 DSP Controller Card

The PC32 card from Innovative Integration [INNOVATIVEL], represents a complete DSP
system on a single half-length 1SA expansion card and forms the centre of the CSDE target
hardware. A photo of the card is shown in Fig. 4.5. The board incorporates a number of memory

mapped peripherals, namely:

(i) Four ADC channels

(i) Four DAC channels

(iii) 16 digital 1/0, which can be configured as 16 in, 16 out, or 8 in/ 8 out.

(iv) 196 pin expansion header, which gives direct access to the memory bus, interrupts
as well as other processor pins,

(v) 4 kb of DPRAM, mapped to a 16-bit ISA interface for communicating with the host
PC.

(vi) 512 kb SRAM, up to 2Mb can be supported.

Fig. 4.5 : Photo of the Innovative Integration PC32 card.

4.4.1 Memory

The total address range of 16 MWords (addresses from 0x000000 to OxFFFFFF), is mapped on
the PC32 as shown in Fig. 4.6. The PC32 directly supports up to 512 kWords (2 Mb) of
zero-wait-state SRAM. Optionally up to 256 kWords (1 Mb) of slower one-wait-state memory
can be supported. The 1 kWord (4 kb) of DPRAM and the onboard peripherals are also mapped
into the general address range. Internally the 'C32 uses 32-bit data representation. Physically,

PC32 DSP Controller Card Page 4-9

Chapter Four - Target Hardware Platform

'C32 memory strobe : Description : Addr ess :
0x000000
Bootloader
0x001000
STRBO Dual Port Memory
16-bit physical
32-bit logical
0x200000
STRBO Data Memory
16-bit physical
32-bit logical
' T T 0x400000
STRBO Expansion
16-hit physical
32-bit logical
0x800000
Reserved and
Internal Peripherals
0x810000
10STROBE External Peripherals
— 0x830000
Reserved and
Interna RAM
STRBO Expansion 0x880000
16-bit physical
32-bit logical
STRB 1 Fest SRAM | 0x900000
32-bit physical
32-bit logical
OxFFFFFF

Fig. 4.6 : 'C32 Memory Map on the PC32

only the SRAM memory mapped into STRB 1 region is 32-bit wide. Since the SRAM is also
zero-wait-state, accessesto it require only asingle processor cycle. STRB 0 memory regions are
populated with 16-bit, one-wait-state memory devices (DPRAM and data memory). Accessing
data in those areas requires atotal of four processor cycles, two cycles per 16-bit access due to
the wait state and two cycles to emulate a 32-bit transaction. The IOSTROBE region of memory
is used to map peripherals external to the 'C32 processor and can also be utilised in applications
using the external PC32 expansion header.

PC32 DSP Controller Card Page 4-10

Chapter Four - Target Hardware Platform

4.4.2 Dual Port Memory (DPRAM)

The DPRAM is addressable as a continuous block of 32-bit memory from address 0x1000 to
0x1400. From the PC side it is visible at a conventional memory address specified by DIP
switch S2 on the PC32 card, the default setting is 0xD000:0000. DPRAM accesses are not wait
stated from the PC side, thus data rates can be significantly faster than the conventional PC 1/O

bus interface which normally requires three bus cycles per transaction.

The access to DPRAM is not arbitrated in hardware. This means that simultaneous accesses to
the same DPRAM address by both the PC and the PC32 will yield unpredictable results. To
avoid conflicts, acommon protocol has to be defined between the PC and the PC32 application.
The use of specific areas of the DPRAM can be arbitrated using one of the following methods
[INNOVATIVEZ] :

(i) Four hardware semaphores are provided as peripherals on the PC32 and are visible
via conventional 1/O registers on the host PC. A semaphore can be owned by only
one side at atime, and simultaneous requests for ownership are elegantly resolved
by hardware. However, semaphore requests might have to be polled until
successful, thus incurring a possible performance penalty.

(i) Interrupt signals passed between the host and target can signal when DPRAM is
available for access to either side. A careful use of this method can avoid the

overheads involved in semaphore switching and polling.

The CSDE makes use of an interrupt based DPRAM access protocol as defined in Appendix B.

4.4.3 Memory Mapped Peripherals

All PC32 peripherals external to the 'C32 processor are memory mapped. The address range
from 0x81000 to Ox81CFFF is reserved for this purpose and the IOSTROBE signal from the
'C32 is used. Due to the address decoding mechanism used on the PC32 each peripheral
consumes an address range of 0x800 words. Table 4.3 shows the memory allocation for the

peripherals.

Decode 0 and 1 are specifically decoded by the PC32 with custom daughter boards in mind and
the resultant signals are available viathe expansion header. The PWM/Tacho card, introduced

in section 4.5 makes use of these signals to map its devices.

PC32 DSP Controller Card Page 4-11

Chapter Four - Target Hardware Platform

Address Device
0x810000 ADCO
0x810800 ADC 1
0x811000 ADC 2
~ 0x811800 ADC 3 |
0x812000 PC Refresh
0x812800 to Reserved
Ox813FFF) |
0x814000 DACO
| 0x814800 DAC1
- 0x815000 | DAC2 !
~ 0x815800 DAC 3 !
0x816000 Update DAC 0 output |
0x816800 Update DAC 1 output |
0x817000 Update DAC 2 output
1 0x817800 Update DAC 3 output
0x818000 _ Digital 110~ _
| 0x818800 Boot Indication Override to PC
I 0x819000 Interrupt to PC
0x819800 Decodes 0
0x81a000 Decodes 1
0x81a800 Reserved]
0x81b000 Semaphore 0]
0x81b800 Semaphore 1]
I 0x81c000 Semaphore 2
0x81c800 Semaphore 3

Table 4.3 : IOSTROBE PC32 Peripheral Mapping

4.4.4 Analogue to Digital Converters

The PC32 offers four independent ADC channels, each with 16-bit accuracy, + 10V input range
and a guaranteed maximum conversion time of 10 /Jus [BURRBROWNI]. The analogue inputs
are filtered through a 6 pole anti-alias filter preset to have a 50 kHz passband. The filter poles
can be adjusted by means of resistor banks. The ADC channels are mapped into the | OSTROBE

PC32 DSP Contraller Card Page 4-12

Chapter Four - Target Hardware Platform

region of memory as shown in Table 4.3. Reading a 32-bit word form any of the ADC addresses
returns the result of the last completed conversion in the lower 16 bits as an unsigned integer.
The top 16 bits are undetermined and should be masked off.

ADC conversions can be triggered by a combination of the following methods :

(i) Memory write to the ADC address. The write does not affect the value of the last
sample stored,

(i) An external active low TTL signa with a minimum pulse width of 40 ns. The
signals can be connected via PC32's external D-type connector,

(iii) One of the timer signals (TCLK 0 and 1) from the 'C32 processor. Setting up timer

modes and outputs is detailed in section 4.2.4.

For the purpose of triggering, the ADC devices are grouped into two pairs. ADC 0 and 1 form
pair 0 and ADC 2 and 3 form pair 1. The triggering source for each pair is selected using jumpers
JP 5 and JP 6. This selection is logically ORed with the memory writes. Fig. 4.7 demonstrates
the triggering logic for ADC pair O, the triggering setup for pair 1 is identical, but uses JP 6.

Memory write to 0x810000

ADCO < <«
<
P5
TCLK 0
External TTL ']
&
. _ TCLK 1
ADC1 < | <
= 'S

Memory write to 0x810800

Fig. 4.7 : Triggering for the ADC pair O

PC32 DSP Controller Card Page 4-13

Chapter Four - Target Hardware Platform

4.4.5 Digital to Analogue Converters

The PC32 has four independent 16-bit DAC channels with a 10V output swing
[BURRBROWNZ2]. The maximum output settling time is 10 /J.S for a full scale 20V step.
Analogue outputs are filtered through a 200 kHz filter to remove any digital noise. The DAC
data latches are memory mapped as shown in Table 4.3, only the lower 16 bits are significant.

Writing to the latches does not trigger a conversion and reading returns an undetermined value.

All DAC channels may be triggered separately by one of the following :

(i) Memory write to the update register,
(i) TCLK 0 signal,
(iii) TCLK 1 signal.

Jumpers JP 3, JP 4, JP 10 and JP 11 select trigger sources for DAC 0, 1,2 and 3 respectively. No

additional logic is provided making the three trigger sources mutually exclusive.

4.4.6 PC32 Interrupts

Four external interrupt pins are available onthe 'C32 - EI 0, 1,2 and 3. El 1 to 3 can be patched
through to selected trigger sources on the PC32 via thejumper header JP 17. Table. 4.4 shows
the possible combinations. El 0 to 4 are also directly available via the expansion header. In the
CSDE, El 0 is used by the custom expansion card, introduced in section 4.5. The PC_INT 0 and
1 signals can be generated by the host PC via writes to PC32 control registers mapped into the
PC's genera /0O space. The CSDE uses PC_INT 0, patched through to El 3 as part of the
communication protocol between the host PC and the PC32.

Interrupts can also be generated on the host PC by the PC32 card. A memory write to PC32
address 0x819000 generates an interrupt signal which can be patched viajumper JP 7 to trigger
IRQ 5, 7,11 or 15 onthe host PC. The interrupt signalling between the host PC and the PC32 is
shown in Fig. 4.8.

PC32 DSP Controller Card Page 4-14

Chapter Four - Target Hardware Platform

Interrupt Source] _JP 17 setting _
| Ell ADC pair 0 end of conversion 13 !
Ell External digital clock 8-10
El 1 PCINT O 12
El2 ADC pair 0 end of conversion 35 [
El2 ADC pair 1 end of conversion 57
El2 External digital clock 10-12 1
El2 PCINT 1 11-12
EI3 PCJINT O 2-4
EI3 ADC pair 0 end of conversion 34
EI3 PCJINT 1 9-11
El3 External digital clock 9-10
EI3 ADC pair 1 end of conversion 7-9 J'I!

Table 4.4 : PC32 Interrupt Sources Selection

'C32 memory bus

' Host PC :
|]

|
. IRQ5,7, 1115 VO memory 1
L __AAAA_ oo
| e 1 i IR o 1
: ISA bus :
O I |
, PC32 | P17 !
[; :
|
: IP7 :
I
: + :
| = - El 123 |
i Interrupt I
l | Generate :
| - A TMS320C32 :
I

]
i <€ |
! :
! I
; I
L I
J I
' I
. |
I

Fig. 4.8 : Interrupt Signalling between the PC and the PC32

PC32 DSP Controller Card Page 4-15

Chapter Four - Target Hardware Platform

4.4.7 Innovative Integration Development Environment

I1 ship the PC32 controller card with a comprehensive set of support software in the form of both

pre-compiled libraries as well as corresponding source code, namely :

(i) Application specific libraries - this includes advanced maths and DSP functions,

(i) Hardware access - functions implementing easy access to on board peripherals,

(ilf) Target-to-host access - functions which allow access to hardware semaphores and
mailboxes, and also interrupt signalling to the host PC.

(iv) Host-to-target access - a 32-bit DLL which implements al communication and
access to the PC32 target from within the Windows 95 environment.

4.5 PWM/Tacho Expansion Card

Alongside the PC32, as introduced above, the custom PWM/Tacho card forms the second
component of the CSDE target hardware. This expansion card for the PC32 was designed by
Mr. Walker [WALKER1] to be used in a control system using the RIDE platform. The author
added minor modifications to the interrupt signalling to adapt it to the needs of the CSDE. In
motion control applications the TWM/Tacho card relieves the 'C32 processor of two
computationally intensive and time critical tasks :

(i) Generation of PWM power electronics switching waveforms. The PBM 1/87 ASIC
[HANNING]] is a dedicated PWM slave peripheral,

(i) Decoding signals from incremental speed or position encoder. The ASIC used for
this purpose is the TC3005H [HANNING?2].

A photograph of the expansion card is shown in Fig. 4.9, while Fig. 4.10 shows the
interconnection between the PC32 and the PWM/Tacho card inside the host PC. The two cards

occupy two adjacent ISA dots and arejoined via the expansion header on the PC32 card.

4.5.1 Address Decoding

The PWM/Tacho card is designed to use either the Decodes O or 1 region of PC32 memory
space, as described in section 4.4.3. Each Decodes region spans an address range of 0x800

PWM/Tacho Expansion Card Page 4-16

Chapter Four - Target Hardware Platform

m——easealy

I .‘i,\!
; ‘

.
.|-||.|..| e LLLE L]

li i
_.I“';!.‘ l-an -4 14
- b

=% h
-8 il

.q..-

| /'
=2

Fig. 4.10 : Photograph of the PC32 and PWM/Tacho cards inside the host PC.

PWM/Tacho Expansion Card Page 4-17

Chapter Four - Target Hardware Platform

words, and by means of a DIP switch on the expansion card this range is further sub divided into
blocks of size 0x100 words. This mechanism allows up to 8 expansion cards in each Decodes
region. Thus, atotal of 16 PWM/Tacho cards can be addressed by asingle PC32 controller. The
memory decoding arrangement is shown in Fig. 4.11.

DIP
Switch

i

Addr. Bus(A8..A10) ,, Address |

. Decode —]
% . Decodes O : ,7 A
E Decodes 1 jp il.
O
‘D
é yf
1 PWM IC
s >
U Daa Bus 11 .
= .

Fig. 4.11: Address Decoding on the Expansion Card

452 PWM ASIC

The PBM 1/87 is a slave peripheral designed specifically with motion control in mind
[HANNING1]. It can generate PWM switching waveforms for a 3-phase inverter to generate a
sinusoidal supply at the desired voltage, frequency and phase. The host processor is relieved of
any time critical calculations and simply writes the PWM settings to the I1C's configuration
registers. The IC uses these values to calculate the required switching pattern. The PMB 1/87
registers and their function are listed in Appendix C.

The PMB 1/87 uses "space vector or triangular modulation with a third harmonic injection”
[HANNING1] with switching events positioned symmetrically around a switching period.
Fig. 4.12 shows atypical waveform for one of the 6 outputs. The switching period T is equa to
the sum of the on-time T,, and the off-time T4. The INT signal always occurs when no
switching is taking place and can be used to trigger the 1/O channels used to sample currents and

PWM/Tacho Expansion Card Page 4-18

Chapter Four - Target Hardware Platform

on

01

INT

< »
T

Fig. 4.12: Typical switching waveform for a single output

voltages at the inverter's outputs. Since no switching occurs at the sampling instants, the

resultant samples are guaranteed to be free from switching noise.

Writes to the PWM ASIC's configuration registers can only be performed when the calculation
cycle is inactive. To ensure al register accesses fdl during the idle time of the PWM
calculation, the interrupt signal can be used or aflag can be monitored in the | C's status register.
These two mechanisms are discussed in chapter 7, section 7.5.5. Values written during a
half-cycle are used in the next calculation, but their result is only used to control the switching
during the following half-cycle. Thisisshownin Fig. 4.13, the diagonal arrows indicate how the
result of each calculation is delayed by a half-cycle each time.

Calculations | 4 \/

Switching 4

INT

T

Fig. 4.13 : Calculation and switching cycle timing

PWM/Tacho Expansion Cad Page 4-19

Chapter Four - Target Hardware Platform

4.5.3 Fibre Optic Interface

The six outputs of the PWM |IC are used to drive fibre optic transmitters. The use of fibre optic
links between the PWM card and the inverter offers a number of advantages over conventional

copper wiring:

(i) Electrical isolation - the PC housing the PC32 and PWM/Tacho cards is completely
protected from potential faults in the inverter,

(i) Separate ground - errors due to ground loops are avoided,

(iif) Noise immunity - optic fibre links are inherently immune to induced noise,

(iv) Voltage levels - interfacing problems due to different logic voltage levels on the

inverter are avoided.

454 Tacho ASIC

The TC3005H ASIC [HANNINGZ2] alows simultaneous interfacing for up to two incremental

rotary encoders. A typical encoder produces three outputs :

(i) Two sine or squarewave signals A and B. These are phase shifted by 90° relative to
each other.

(i) A logic pulse signal, R, indicating a full revolution.

The speed and position information is extracted by counting the number of cycles in signals A
and B, the phase difference indicating the direction of rotation. The resolution of an encoder is
thus limited by the number of cycles (or quadrants) per revolution. Encoders producing
sinusoidal outputs can provide better resolution. The amplitude of the sine signals can be

measured thus providing additional position information within each quadrant.

The TC3005H can be connected to two standard resolution encoders as shown in Fig. 4.14. In
this configuration each encoder interface is fully independent of the other. Fig. 4.15 shows the
connection used for a high resolution encoder. This option requires the use of two external 6-bit
ADC devices as well as two comparators to convert the sine signals into square waves. The
standard speed and position information can be read out from the second encoder interface

while the first one provides additional position information within each quadrant.

PWM/Tacho Expansion Card Page 4-20

Chapter Four - Target Hardware Platform

Encoder 1 A » | Encoder
B » Interface
R > 1

Encoder 2, R - |

_ A > Encoder
B » | Interface
R | > 2

Fig. 4.14 : Interfacing standard resolution encoders

' 6
» ADC1 1w
i i 6 Encoder
_ . » ADC2 . ~1 5 Inteface
Encoder 1 x|] 1 |
B mail
R
»CMPL > | |
: - .|~ | Encoder
> __CMPZI > | Interface

> 2

Fig. 4.15 : Interfacing a high resolution encoder

PWM /Tacho Expansion Card Page 4-21

Chapter Four - Target Hardware Platform

46 Qoncl_tis'_on

This Chapter introduced the motion controller hardware platform used by the CSDE. Firstly the
TMS320C32 processor which forms the processing core was discussed. Next, the PC32
controller card and its on board peripherals were described. Finally, the custom PWM/Tacho
expansion card was introduced. Together these components provide a capable processing
platform for implementing digital motion control. Chapters 5, 6, 7 and 8 will now describe how
the Simulink and RTW software platform from Chapter 3 was adapted and extended to interact

with the target hardware components.

Conclusion Page 4-22

Chapter Five - Control System Development Environment

CHAPTER FIVE
CONTROL SYSTEM DEVEL OPMENT
ENVIRONMENT

5.1 Introduction

In Chapters 1 and 2 a need was identified for an integrated rapid prototyping system for the
development of motion control. Subsequently, a number of requirements were set out for the
author's proposed CSDE. Chapter 3 introduced Simulink, RTW and the Target Language
Compiler from Math Works Inc. as the high-level software tools on which the CSDE is based.
The PC32 DSP card as well as custom hardware used during the development of the CSDE were
described in Chapter 4. The bulk of the author's work was to integrate the various components
and to extend the standard MathWorks products. Features not supported by MathWorks were
implemented separately. This Chapter outlines the overall structure of the CSDE and focuses in
more detail on the automatic code generation under RTW and TLC.

During the development of the CSDE various components were created in four diverse

environments :

(i) GNU make utility
(i) 'C32ANSIC
(iii) TLC language
(iv) MS Visua C++

The following sections, as well as Chapters 6, 7, and 8, make reference to code excerpts targeted
at these environments. To keep the text readable the complete code listings are placed in the
appendices. In particular, sections dealing with the TLC language might not be immediately
clear to readers unfamiliar with the RTW development environment. Thus, a practical example
is provided in Appendix K in an attempt to clarify the process of transforming a set of TLC files
into ANSI C source code. Appendix H offers more detail on the structure and syntax of the TLC

language.

Introduction Page 51

Chapter Five - Control System Development Environment

5.2 Development of the Global CSDE Structure

The CSDE can be broken down into two distinct parts :

(i) Host Platform - A personal computer running the Windows 95 operating system.
All algorithm development and simulation takes place here. The host also serves as
an interface during real-time prototyping.

(i) Target Platform - The processing platform is a commercial PC32 board from
Innovative Integration based around the TMS320C32 processor from Texas
Instruments. A dedicated PWM / Tacho card is interfaced to the processor to take
away form it the burden of generating power electronics switching waveforms and

also provides support for an incremental tachometer.

Hardware ‘ > Model Code |

Device Drivers

HOST (PC)
; Simulink . | :
Display (Visualisation I
| Simulation Externa P yP|(olin !
| Mode | T :
: RTW Buffering & Scaling i
: Data Upload :
l A A A |
A 2. A) .
| RTW Code External > ;
: Generation Comms 8 :
| (pc32.tmf) (ext_pc32.dil) : |
i I
: I Honrmi] J y A ft |
! N 2 .‘
: Code 5 u |
! Download " $:
L e Bl skt as onssrnosssags Jeses a|
TARGET (PC3) |f u
o O T e | T T o e e I e A . e 1
. - |
: DPRAM |
I o =
: | .=~ \4 |
I l_External > <« Data l
: |__Comms «— RTK | —» Logging :
: A "
I \ 1
I I
I I
I }
I I

Fig. 5.1 : Logical Diagram of the CSDE

Development of the Global CSDE Structure Page 5-2

Chapter Five - Control System Development Environment

The overal structure of the CSDE is shown in Fig. 5.1. Clearly, the development environment

apart from being split over the two physical hardware platforms (host / target), is further divided

into a number of distinct logical components. In order to meet the requirements set out in

Chapter 2 the author developed the following software components :

(i)

(i1)

(iii)

(iv)

v)

(vi)

(vii)

Real-Time Code Generation - a Template Make (TMK) File was created which
automates the compilation and linking of all necessary components into an
executabl e,

Real-Time Kernel (RTK) - a basic real-time operating system was written to
supervise the execution of generated code on the target PC32 platform,

External Mode Communication - functions were created to handle both host and
target sides of communication. On the host PC a DLL was compiled which is used
by Simulink's external mode. On the target, the RTK was extended to receive,
process and respond to commands from the host,

Data Logging - support functions were created to enable the RTK to log and buffer
user selected signals and supervise the uploading of the resultant data to the host in
real-time,

Hardware Device Drivers - the development of a driver for each hardware device
involved both writing source code for the target platform as well as creating a
graphical representation for use in Simulink. The resultant Simulink blocks were
grouped in a library - PC32Lib.mdl

Code Download - a utility was written which could be called from a DOS batch file
and handle downloads to the PC32 target. This replaced the more elaborate utility
shipped by 11 which lacked command line support,

Visualisation Utility - due to lack of support for plotting of external signals under
Simulink ver.2.2, a separate Windows utility was created which uploads data from

the target, processes it and plots it in real-time.

Asfar as the end users of the author's system are concerned the above components are bundled

within the CSDE either as executables, compiled libraries, or read-only source code. The

components listed above can broadly be grouped according to the development environment in

which they were created :

(i)

Automated code generation - developed for the GNU make utility, Gmake. This

will be introduced further in section 5.3.

Development of the Global CSDE Structure Page 5-3

Chapter Five - Control System Development Environment

(i) Target Real-Time Support Components - includes the RTK aswell as the target side
of the external mode communication and data logging. The code was developed
using Tl 'C32 ANSI C and is introduced in Chapter 6.

(iii) Hardware Device Drivers - most development here took place using the TLC
language. Chapter 7 describes this part of the author's work

(iv) Host Support Components and Utilities - includes Simulink's external mode
implementation as well as code download and Scope utilities. The development
environment here was the MS Visua C++. These components are covered in
Chapter 8.

53 RTW Code Generation

The generic RTW build process was described in Chapter 3, section 3.5.1. To adapt this process
to target the PC32 card, a custom TMK file needsto be provided. The RTW parsesthe TMK file
and produces a final make file specific to the particular build. This final make file contains
information about al files needed to compile and link the target executable. It is passed as a
command line argument to gmake.exe which in turn makes calls to the Tl compiler and linker.
This process is illustrated in Fig. 5.2. Gmake is a make utility from GNU Software and is

distributed as freeware.

5.3.1 Controlling the Build Process

Fig. 5.3 shows the RTW dialog box. The system target file 'ii.tIlc' is a global TLC file which
configures the MathWorks TLC for generation of ANSI C compliant code. Behind the make

command, make_rtw, three switches can be specified :

(i) TMRO - 'YES' configures the on-board timer O to generate the base sampling rate
for the model. Default setting is 'NO', in which case the user is responsible for
ensuring correct triggering for al blocks in the model, for example by connecting
them to an external interrupt support block.

(i) UPLD -"YES' enablesdatalogging support inthe generated code. Default setting is
'NO', which excludes al data logging source code from the build process.

(iii) 10 - this option is included mainly for debugging purposes. 'ENABLE' causes

information to be printed out to the Il terminal emulator at run time. The seria

RTW Code Generation Page 5-4

Chapter Five - Control System Development Environment

Simidink Model TMK file
model.mdl pc32.tmf
TLC files {
*tlc
RTW /TLC
M akefile
~ model.mk
RTK Y Compiler
pc32main.c » Gmake. : > cl30.exe
Comms & Data L ogging matese 1« Linker
pc32func.c Ink30.exe
Il Libraries ' '
stdio.lib,periph.lib,dsp.lib
Boot Code
vectors.obj
: ' \4
Target Executable |
model, out

Fig. 5.2 : CSDE Build Process

<i ' Simulation parameters: pc32_demol

Solver Diagnostics

Workspace 1/0 HW I RTW Externall

Code generation

System target file: II i\
f~ Inline parameters F Retain jtw file

Build options

Template makefile: II pe X! tmf

Make command; :
}| make_rtw TMRO=YES UPLD=YES IO=DISABLE

~ Buid l

[Generate code only

Appl}' | Hever Help | Close

Fig. 5.3 : Simulation Parameters | RTW

RTW Code Generation Page 5-5

Chapter Five - Control System Development Environment

printing of debug strings slows down the code execution on the PC 3 2 target
considerably. The default setting is 'DISABLE'.

During the build process the switches are translated into defines which control the compilation
of source code. The following excerpt from the pc32.tmf file translates the switches and

includes them as define (-d) command line parameters for the TI compiler :

-dlO_$(10) -dTMRO_$(TMRO) -dUPLD_$(UPLD)

The following lines of source code demonstrate how the 10O switch is used to control the text

output to the terminal emulator :

#i fdef | OENABLE
printf("Printing debug info to termnal....\n");
#endi f

If IO_ENABLE is not defined the printf statement will be excluded from the compilation

process. In this fashion the defines control which blocks of source code are compiled.

5.3.2 Structure of the Template Make File

In Appendix D a full listing of the pc32.tmf file can be found. The TMK file has a fixed

structure, as follows :

(i) Genera Defines - global definitions and settings.

(ii) Customization Macros - RTW passes a number of parameters which are substituted
here into defines. These parameters later control the compilation of model source
code,

(iii) 11 PC32 Definitions - defines and path settings for 11 components. The download
utility is also specified here,

(iv) TI Tools - paths to the Tl compiler and linker.

(v) Include Path - paths to directories containing al necessary libraries and header files,

(vi) Compiler Flags - command line options for the compiler and linker,

(vii) Source Files - all necessary source code files are listed here,

(viii) Exported Environment Variables - due to the command line length limitation in
DOS, parameters to be passed to the compiler and linker are assigned to
environment variables,

(ix) Compile and Link Rules - Gmake rules for compiling and linking source code.

RTW Code Generation Page 5-6

Chapter Five - Control System Development Environment

(x) Rule for Downloading to Target - commands to be performed after a successful
build,
(xi) Dependencies - gmake dependencies. Based on this relationship gmake decides

whether it is necessary to recompile and re-link the target executable.

The TMK file, after being parsed by the RTW, carries all information necessary for Gmake and
the Tl tools to generate the final target executable. The main purpose of the TMK is to list
additional source files, for example the integration algorithm, which need to be linked to the

RTK in order to replicate the Simulink diagram exactly in software.

54 Conclusion

This Chapter started by introducing the overall structure of the CSDE and subdividing it into a
number of logical components to be introduced further in Chapters 6, 7 and 8. The process of

automatic code generation with the RTW and TLC was described.

Conclusion Page 57

Chapter Six - Target Real-Time Support Components

CHAPTER SIX
TARGET REAL-TIME SUPPORT
COMPONENTS

6.1 Introduction

This Chapter describes components of the CSDE designed to provide support for the
automatically generated code in real-time on the PC32 controller. Three sections fdl into this

category, namely :

(i) RTK -thekernel controls and supervises al execution on the PC32 target platform,

(i) External Mode Communication - this component is responsible for receiving and
processing of commands from Simulink's external mode DLL.

(iif) Data Logging - this set of routines handles data buffered by the Scope Channel
blocks (introduced in Chapter 7). The data is arranged into packets and sent to the
Display utility for visualisation in real-time.

The above components form the PDL as described in Chapter 3, section 3.5.2. During the
automatic code generation process they are linked with the code generated from the Simulink
model to create a single executable for downloading to the target. The following sections will

introduce each of the three components in turn and show how they fit together.

6.2 The Rea-Time Kernel

The RTK is a basic real-time operating system designed to run on the Tl 'C32 processor. It
controls the execution of the target side CSDE components on the PC32 platform. A full listing
of the RTK source code can be found in Appendix E. Math Works provide ageneric RTK aswell
as a host of RTKs specifically tailored to a variety of target platforms. However, none of the
generic modules support the Il environment based around the 'C32 processor and the author

decided to develop his own RTK.

Introduction Page 6-1

Chapter Six - Target Real-Time Support Components

6.2.1 RTK Initialisation

Once the build process is complete, the download utility places the compiled target executable
in RAM on the PC32 card and resets the 'C32 processor. Execution starts in the boot strap image
vectors.bin provided by 1. After this low-level initialisation the boot code hands the control

over to RTK's main function. The first few lines of code perform callsto Il library functions:

dpram = (vol atile uint32_T*) &Peri ph->Dpram
MHZ = det ect _cpu_speed();

tinmer(0, 0);

enabl ecache();

enabl e_nonitor();

Firstly the DPRAM address is configured. The variable dpram is used for al accesses to the
DPRAM. The PC32 can be configured with a number of crystals, thus the board speed is not
hardcoded but is detected dynamicaly. The MHZ variable is defined globally in the |1 header
files and is used in al timing calculations. The call to enable_cache enables the use of the
built-in 'C32 hardware caching algorithms. The on-board monitor allows the use of functions to
print to the 1l terminal emulator and is initialised via the call to enable_monitor. After this
low-level initialisation, the following lines perform calls to Math Works' functions :

S = MDEL() ;

ssSet TFinal (S,0.0); /* run forever */
Ml I nitializeSanpl eTi mes();

rt_InitTimngEngi ne(S) ;
rt_CreatelntegrationData(S) ;

The variable S is a pointer to type SmStruct, a Simulink defined data structure containing al
model settings and parameters. A cal to MODEL dynamically reserves memory for and
initialises the SmStruct. It also returns a pointer to the global SmSruct, and later this pointer is
used for direct access to model parameters in the structure. MODEL is a define which is
substituted with the actual Simulink model's name by RTW during the build process. Setting
model's stop timeto zero inthe call to ssSetTFinal, means it will execute forever. Thisoption is
hard-coded since it is uncommon to limit the run period of a real-time controller. Simulink's
external mode allows models to be suspended and restarted from within Simulink GUI as will
be described in section 6.3 and in Chapter 8.

The Real-Time Kernel Page 6-2

Chapter Sx - Target Real-Time Support Components

The call to MdlInitializeSampleTimesis part of the Simulink S-function API as introduced in
Chapter 3. MdllnitializeSampleTimes sets the sampling period for the model to the value
entered by the user under Simulation Parameters in Simulink. The cal to rt_InitTimingEngine

initialises the timing data structures in the SmStruct.

I there are any continuous time blocks in the Simulink block diagram the RTW will reflect the
number of continuous time states with the define NCSTATES. The following compiler

directive at the top of 'pc32main.c’ evaluates depending on the value of this define :

#if NCSTATES > 0
extern void rtCreatel ntegrationData(SinStruct *S);
extern void rtUpdat eConti nuousSt ates(Si nStruct *S);
#el se
#define rtCreatel ntegrationData(S)
ssSet Sol ver Nane(S, " Fi xedSt epDi screte");
#define rt_Updat eConti nuousSt at es(S)
ssSet T(S, ssCet Sol ver St opTi me(S)) ;
#endi f

Thus, if there are no continuous time blocks NCSTATES is set to zero and al calls to
rtCreatelntegrationData are redirected and hard-coded to set the solver to
"FixedStepDiscrete'. During RTK initialisation the cal to rtCreatelntegrationData will
either setup the continuous time integration data structures in SmStruc or it will set the

execution mode to be purely discrete.

Only a portion of the SmSruc is dedicated to holding model parameters. To speed up access to
the parameter array a dedicated pointer, param is defined. A cal to the macro
ssGetDefaultParam returns the address of the parameter array within SmStruc :

param = ssGetDefaultParam(S);

The above sections of the RTK code perform the hardware initialisation and also setup the
Math Works defined structures. Thereafter, the model code is ready for execution.

6.2.2 RTK Execution Loop

After initialisation the RTK enters an infinite while loop. Fig. 6.1. shows the logical flow

diagram of the main loop.

The Red-Time Kerndl Page 6-3

Chapter Six - Target Real-Timc Support Components

while (1)

Host command processing

if (hoststart)

tifcf UALD YES
ServiceUploads();
ttendif

ttifndef TMRO YES
MdlOutputs(O);
MdlUpdate(O);
#Hendif
}
}

\

Gota [
command Y5 » Processthe

from command
host? ;

No
<

Y

No
~ Is Model
A . running?

Yes]

Yy

Service Uploads
(If enabled)

Y

i Execute
| Background
Bl Qcks

Fig. 6.1 : RTK Execution Loop flow diagram

The Real-Time Kernel Page 6-4

Chapter Six - Target Red-Time Support Components

The RTK main loop is effectively a background process as no attempt is made to prevent
interrupts of any priority from interrupting its execution. Within the loop, however, the

following subsections have equal priority :

(i) Processing of commands from host
(i) Servicing of upload buffers
(iii) Executing code for blocks in the root of Simulink's diagram

Processing of commands from the host forms a large part of the RTK main loop and is outlined
separately in section 6.3. Likewise, data uploading is discussed in section 6.4. The compiler
#ifdef directives make use of defines introduced in Chapter 5 to control the remainder of the
loop. If no data uploading is selected the call to the relevant ServiceUploads function will be
omitted. Likewise, MdIOutputs and MdlUpdate will only be called if the calls are not already
attached to the timer O interrupt.

Due to the low priority of the main loop, its execution frequency cannot be guaranteed and the
model update functions caled from the loop will be caled at irregular intervals. Thus, any
blocks which depend on execution frequency are likely to produce results inconsistent with
simulation if executed in the background loop. Diagrams containing blocks like that should be

executed using interrupts as described in the following section.

6.2.3 RTK Timer Interrupt

The only way the RTK can guarantee a fixed execution rate for the model is to cal the update
functions from an interrupt service routine (ISR). The ISR can be triggered either by atimer or
by a hardware interrupt via the PC32 Int Support block, described in Chapter 7. If TMRO_YES
is defined the following code is included during the external mode initialisation and attaches the

rtOneStep function to timer O interrupt:
#i fdef TMROYES
install _int_vector(rtCneStep, 9);

enable_interrupt (8);
timer (0, (int)(1.0/ ssCetStepSize(9S)));

#endi £

The Red-Time Kerndl Page 6-5

Chapter Six - Target Real-Time Support Components

Timer O period is set up with a call to the ssGetStepSize macro which returns the model time
step in seconds. On each overflow of timer O interrupt 8 is triggered and the following ISR

executes:

static void rtOneStep(void)
real_T tnext;

tnext = rtGetNextSampleHit();
ssSetSolverStopTime(S,tnext);

MdlOutputs (O) ;
MdlUpdate(O);

rtUpdateDiscreteT askSampleHits(S);
if (ssGetSampleTime(S,0) == CGONTINUOUS SAMALE TIME)
{

rtUpdateContinuousStates(S);

} /* end rtOneStep */

The above ISR performs a complete update of the model code. The variable tnext is used to set
the step time for the integration routines. The code as above should perform correctly even if the
model update frequency changes dynamically, however, the CSDE currently only supports
fixed model step times.

As with any ISR it is necessary to ensure that the processor context is not changed after the
routine terminates. The Tl compiler automatically generates code to save al registers used by
the ISR on the stack on entry to the routine and also to restore them on exit. The requirement for
this mechanism is that the ISR naming has to comply with the following convention
[TEXASINSTRI]:

c_intXX
Where XX is atwo digit decimal number in the range 01 to 99. To ensure that al referencesto

the rtOneStep function comply with the ISR naming convention the following define is
included :

#defi ne rtneStep c_intl9

The Real-Time Kernd Page 6-6

Chapter Six - Target Real-Time Support Components

6.2.4 Model Codein the RTK

The above sections described the operation of the RTK. The kernel ensures the correct
execution of the model code generated directly from the Simulink diagram and alocates
remaining processing time to background tasks. The model code will be concentrated in a
number of routines conforming to the S-fiinction API as described in Chapter 3, section 3.4.6.
The RTK then interacts with the model code via this API. The following two sections will
introduce the External Mode Communication and Data L ogging as the two background tasks in
the RTK.

6.3 External Mode Communication

After a code is generated from a Simulink block diagram and downloaded to the PC32 target,
Simulink can be placed in external mode, as described in Chapter 3, section 3.4.7. Inthis mode a
communication channel is established between the executable on the target and Simulink. This
communication link between the host PC and the PC32 target is physically implemented viathe
DPRAM. The user can then utilise the Simulink GUI to issue commands and modify parameters

online in the controller executing on the DSP card.

Appendix B shows the details of memory mapping and protocols used in implementing the
communication link viathe DPRAM. A list of the possible command codes which the RTK can
interpret is shown in Table 6.1. For a reliable communication link two sets of functions are

necessary :

(i) Onthehost PC - aDLL is needed to implement Simulink's external mode requests
across the DPRAM. This component is introduced in Chapter 8.

(i) On the target PC32 - functions have to be included into the RTK to receive and
process commands from the host as outlined in the following section.

External Mode Communication Page 6-7

Chapter Six - Target Real-Time Support Components

! Command Code | Action
1 Start Model Execution) _
2 Siggle Parameter Update o - Il
3 Suspend Model Execution . _ ||
4 Verify Check?ums
5 _ Initialise Data Logging |
6 Suspend Data L ogging _ 1

Table 6.1 : List of External Mode commands

6.3.1 Target Side External Communications

Processing of commands received by the target from the host is done in two steps within the
RTK as shown in Fig. 6.2 :

(i) An ISR receives the command and buffers it.
(i) The buffered command is decoded and processed within the RTK background loop.

During the RTK initialisation interrupt El 3 is trapped for host command reception and mapped
toan ISR :

install _int_vector(PCO.int, 4);
enabl e i nterrupt (3);

The routine PCO_int below checks if avalid synch value was placed in DPRAM by Simulink's

DLL, extracts the command byte and places it in a global buffer variable dprx :
static void PCOIntO

{
/* wait for the sync signal fromhost*/
if ((lintflag) &% ((dpranf0] & OXFFFO ==0xAAAQ))

int_flag=l;
} dprx=dpranfd & xQOOCF;} /* extract the command byte */

External Mode Communication Page 6-8

Chapter Six - Target Real-Time Support Components

Command processing in RTK loop : Command receive :

X EI3 interrupt |

No = Gota N
\ command?

vdid \No
Yes sync from
Y _host? /
Dissable IE3
Yes
Y A

Act on command < ,
: Command - N©
I

\4

buffer /
'] free?/
Send acknowledge Command buffer:
to host dprx Yes
L : Extract the
Enable IE3 e m e m e - command byte and
buffer it
> <«
\ 4 Y
(Rest of RTK \ . =100
\Y Loop J

Fig. 6.2 : Flow diagram of the command receive and processing on target

The command processing forms part of the background process and is integrated into the RTK
loop as shown in Fig. 6.1. The commands are decoded in a switch statement, as the following
source code excerpt demondtrates :

disable_interrupt(3);
if (int_flag)

?witch (dprx)

case 1. /* command to start execution */

}
dpranf0] = OxABQO + dprx; [/* send an acknow edge to host */
int_flag =0; /* ready for a new comnmand */

}

enabl e_i nterrupt (3); /* lets listen out for coms fromhost */

External Mode Communication Page 6-9

Chapter Sx - Target Red-Time Support Components

The switch statement has six case subsections each implementing a single command code as
listed in Table 6.1. Command code 1 performs model initialisation by calling MdIStart and if
necessary attaches the rtOneStep ISR to the timer O interrupt. The setting of the three build
switches introduced in Chapter 5 is reported back to the host.

Command code 2 reads two values from DPRAM :

(i) At offset 0x0001 the index of the parameter to be written to SmStruc
(ii) At offset 0x0002 the value of the parameter in |EEE floating point format

The value read out from DPRAM is then converted to Tl floating point format via a call to the
function from_ieee in Il library :

rxmb = dpraml[l];
param[rxmb] = from_ieee(dpram[2]) ;

Command code 3 executes the following code to suspend execution :

disableinterrupts();
#ifdef TMROYES
/* stop timer O int only if it was used */
disable_interrupt (8);
#endif
MdITerminateO ;

enableinterrupts();
host_start=0;

All interrupts are disabled globally to ensure that no part of the model code is running while the
cal to MdITerminate is performed. MdITerminate destroys global data structures and it is
imperative that these structures are not accessed while the termination process is active. Setting
host_start to O disables any model updates in the RTK background |oop.

Command code 4 reads four checksums placed by the Simulink DLL in DPRAM and compares
them to the local copies :

ChecksunmK=l ;

if (dpranjl] != ssGet ChecksumS)) ChecksunK=0;
if (dpranj2] != ssGetChecksum (S)) ChecksunOK=0;
if (dpranj3] != ssGetChecksun?(S)) ChecksunK=0;
if (dpranmf4] != ssGet Checksun8(S)) ChecksunK=0;

if (ChecksuntK)

Externa Mode Communication Page 6-10

Chapter Six - Target Real-Time Support Components

#ifdef | OENABLE
printf("OKI\n");
#endi f

}

el se

dprx=0;
#itdef |OENABLE
printf("FAILED!\n");
) ttendif

If a discrepancy is found between local checksums and the ones sent from the host, an error is
signalled back to the host. This mechanism is implemented in order to verify that the correct

version of generated executable is present on the target before model execution can be started.

Command codes 5 and 6 (upload start and stop) are currently not used since external mode
under Simulink 2.2 does not support datalogging. The uploading of datais started automatically

during data queues initialisation.

6.4 Data Logging

The Scope Channel blocks continuously queue up data in circular buffers as described in
Chapter 7, section 7.5.6. In the background RTK process loop the function ServiceUploads is
called to monitor the queues and to send the buffered data up to the host when full packets
become available. Appendix E lists the source code for the data upload functions contained in
pc32func.c and Fig. 6.3 shows a flow chart of the data transfer process on the target. The
standalone Display utility on the host PC monitors interrupt IRQ 5, uploads data from the
DPRAM and displaysit as it becomes available. The Display utility isintroduced in Chapter 8.

The following code excerpt from the ServiceUploads function first checks that data logging is
enabled. Next, aflag at offset 0x0004 in DPRAM is tested to make sure the host has finished
reading the previous set of packets. The while loop then steps through each active queue and a
packet is copied into the DPRAM provided two conditions hold true :

(i) There is enough data buffered in the queue to fill a packet, and
(i) There is sufficient free memory left in DPRAM to hold the resultant packet.

Data Logging Page 6-11

Chapter Six - Target Real-Time Support Components

Y
 Data :
Logging \No
_enabled?
Yes Y
Y
| Host
busy with)Y &
.DPRAMZ
NU N
[All N\
Queues -Y&S
“..checked?,
Increment Y
queue count % -
No
A Y \-V'fl,‘\‘ data No
. written to -
no/ Enough’ .DPRAM?
- - dataavilable®, L
“xin Queue?/ Yes
\ v
il Terminate packet
Y sequence with 999
\ and signa IRQ 5to
No / Enoug host
-« : <(spaceleftin
“VDPRAM?/
Yes
Y
Place packet number and size in
header
Y

'Remove data from queue, covert it
| to IEEE format and placeitina |
packet in DPRAM

End

Fig. 6.3 : Flow diagram of the Data Upload mechanism on target

Data Logging

Page 6-12

Chapter Sx - Target Redl-Time Support Components

if ((LogData) && !(dpram[4] & 1))

whil e ((numcNunQueues) && (of fset <MAXCOFFSET))

if ((enqueued(&jueue[nunj) >= buffer_size[nun]) &&
(buf f er_si ze[nun] <MAXCFFSET- of f set))

{
dpr ani BASEDPRAM + of f set ++] = channel _map[nunj ;

/* put queue nunber in dpram */

dpr ani BASEDPRAM + of f set ++] = buffer_size[nuni;
/* put queue size in dpram */

for (xxx=0; xxx<buffer_size[nun]; Xxxx++)

{
doanBASE DPRAM + offset++] =
to_ieee(* (volatile float*)dequeue_ ptr(& queue[num]))

}
dpram_full = TRUE;
}

num-++;

}

i

Thelll library call to_ieeetakes a Tl floating point type as an argument and returns a 32-bit value

formatted as a |EEE floating point. After all queues are checked and if any data was placed in

DPRAM the packet sequence is terminated with the value 999 and the host is notified that datais

available with and interrupt on IRQ 5 :

if (dpram_full)

doranBASEDPRAM + offset] = (int)999;
dpram[4] += 1;
host_interrupt ();

The function Clear AllQueuesis also included in pc32func.c, it is called during the model start

procedure to clear and initialise the queues in memory.

Data Logging

Page 6-13

Chapter Six - Target Real-Time Support Components

6.5 Concl usial

This Chapter introduced the RTK as well as its background tasks. External mode
communication forms one of the background processes and handles all commands issued by
Simulink via its external mode DLL, as introduced in Chapter 8. A second background task
monitors the data queues of all Scope Channel blocks and sends the resultant data packetsto the
Display utility on the host PC viathe DPRAM. The Scope Channel block is introduced with the
other CSDE hardware device driver blocks in Chapter 7, while Chapter 8 describes the
standalone Display utility.

Conclusion Page 6-14

Chapter Seven - Hardware Device Drivers

CHAPTER SEVEN
HARDWARE DEVICE DRIVERS

7.1 Introduction

This Chapter introduces the practical issues of developing the hardware driver blocks for use in
Simulink. All source code for the hardware drivers is included in the Simulink diagrams in the
form of inlined S-functions. This method of including custom source code into the RTW build

process requires three components for each device driver :

(i) A DLL file for use by Simulink in the graphical model representation

(i) A Simulink block mask to make entering parameters for the driver more intuitive.

(iii) A TLC file describing how to inline the actual source code for the driver during the
RTW build process.

Based on the above points, the steps in creating a hardware driver block for Simulink will be
described in the following sections. Each of the CSDE driver blocks will be treated individually
in Section 7.5.

7.2 Generating a Driver Block

The process of creating an inlined S-function block is illustrated in Fig. 7.1. The block's DLL
file does not contain any useful code but serves simply as a guide for the block's graphical
appearance in a Simulink block diagram. It servesto indicate to Simulink the number of inputs,
outputs and parameters for the driver block. The block's mask is the user interface and is
included for blocks which require user interaction. Creating a mask is further discussed in
section 7.3. All the actual source code for a driver is placed in the corresponding block's TLC
file to be inlined during the build process. Section 7.4 introduces this.

The DLL file for each of the CSDE driver blocks is derived from a blank S-function template.
The source code for atypical driver DLL fileislisted in Appendix F. The TLC source code files
for the various driver blocks are listed in Appendix G. The following two sections will describe

a number of issues common to al driver blocks.

Introduction Page 7-1

Chapter Seven - Hardware Device Drivers

Driver.c

¥

MS Visual C++
Compiler

Y
Block Mask Driver.dll DriverXlc

Yy Y

Simulink Block RTWCode
Diagram » Generation

Fig. 7.1 : Process in development of hardware drivers

7.3 Driver Block Masking

The ability to mask Simulink blocks and subsystems allows creation of custom user interfaces,
as described in Chapter 3, section 3.4.5. A well designed block mask can provide additional
information to users and provide help with entering parameters. The Simulink Block Mask
Editor is shown in Fig. 7.2, the Interrupt Support block's mask is used as an example. The
‘Initialisation’ tab of the editor allows the design of a custom parameter entry interface. Under

i Mask Editor - PC32Lib/PC32 Int Support & B3

Icon ‘ Jrtfiahzaton Documentation |

MaskKlype! " | Pr.C Ir,ir-,upt Bl.,ck
Prompl Type Variable
Add
; : 5 .
_Delete | |Ta k1 Source ¥ . popup Tri
[- |Timer 0 Feeq oy T T
i Timer 1 Fceq . -edit emi

| Interrupt Humbers (t-dJ to ”-edit Iil"ﬂ :
4

:;‘:';ir.(.l.mgn |EllI - Ell Triggering .' Cwﬁulqu jPopup 'll.
~ vaiable' | LITngg | Assgnment’ jE'/alua'e . i

2 Popup stfings: I EdgelLevel

Fig. 7.2 : Simulink Block Mask Editor

Driver Block Masking Page 7-2

Chapter Seven - Hardware Device Drivers

the 'Documentation’ tab a brief help screen for the block can be created. The resultant user
interfaces for the driver blocks which have masks are shown in section 7.5. A step-by-step
description of the masking process is well documented in the MathWorks literature
[MATHWORKS2, 3,4].

Only aDLL file is necessary to incorporate an S-function block into a Simulink block diagram.
A corresponding mask is optional. However, for the RTW to be able to generate code for the
driver correctly, a TLC file needs to be provided. The following sections describe this.

74 Inlining Driver Code

The TLC splits code generated for amodel into five functions, which can be grouped into three

sections :

(i) Initiaisation - MdIStart

(i) Model Step- MdlOutputs,
MdlUpdate,
MdIDerivatives

(iii) Termination - MdITerminate

The above functions conform to the S-function API, as described in Chapter 3 in section 3.4.6.
The TLC file for each individual driver block can specify source code to be placed into any of
these pre-defined global functions, or it can create additional functions. Definitions and variable
declarations can also be placed into a common model header file. A more in-depth discussion of
the TLC and its command set is offered in Appendix H.

Mining the source code for a driver is advantageous to including it as a separate module as
discussed in Chapter 3, section 3.5.5. The inlined code executes faster since there is no
unnecessary function switching overheads, thus improving overall system performance. Also
the final code becomes more compact and readable as it is no longer split over multiple source
code and header files. The following section will describe the development of the individual
block TLC files in more detail.

Inlining Driver Code Page 7-3

Chapter Seven - Hardware Device Drivers

7.5 Driver Block TLC Files

The following driver blocks are provided with the CSDE for operation with the PC32 and

expansion cards as introduced in Chapter 4 :

(i) AD TRIGGER - alows software triggering of the individual ADC channels.

(if) PC32 ADC - support for the four onboard ADC channels, including scaling of the
inputs to the + 10V range,

(iif) PC32 DAC - support for the four onboard DAC channels, including scaling of the
outputsto the £+ 10V range,

(iv) PC32 Int Support - allows mapping of various interrupt signals on the PC32 to
triggered subsystems on the Simulink diagram. This block's mask also provides a
way to configure a number of interrupt related registers in the 'C32 processor,

(v) PWM Block - provides an interface to the PWM I C on the custom expansion card,

(vi) Scope Channel - this block buffers its inputs and sends the resultant data via the

DPRAM to the Scope utility for displaying.

The following sections will discuss each of the above blocks individually in more detail. For
convenience all CSDE driver blocks are grouped into a Simulink library, shown in Fig.7.3. One
component which is clearly missing from the library is adriver block to support the tachometer
interface on the custom expansion card. The high resolution tachometer hardware necessary to
develop and fully test support for the tachometer interface only became available very late into
the author's project. Although a driver for a high resolution tachometer was designed to support
one of the students' projects described in section 9.5, the driver block has not formally been
tested and included into the CSDE by the author.

[B8 Library: PC32Lib e
Fie tdit VKK =/ .~ Fomat oo
O =8 @) ac
0 [e
DACO = 3 Us riggaft) r
ENn | ————a-
ADC1j» ¥DAC1 e2b S Ub AD TRIGGER
|
J
ADC2 .[DAcz 83 on Al
MR = =
ADC3|,) DAC3 PWM Bio* ATt «l
—_— [,—_ TMR1
PC32 ADC PC32 DAC -
PC32 Int Support
Fleady [Urocked £

Fig. 7.3 : PC32 hardware driver block library

Driver Block TLC Files Page 7-4

Chapter Seven - Hardware Device Drivers

Some of the driver blocks can only be used once in a given model block diagram. Multiple

instances of source code for these blocks could cause unpredictable results :

(i) PC32 ADC
(i) PC32 DAC

(iii) PC32 Int Support
(iv) PWM Block

The TLC files for those blocks report an error should there be multiple instances found during
the TLC parse. The following TLC code excerpt illustrates an example of the error trapping

mechanism :

%function BlocklnstanceSetup(block, system) void
%% Only allow 1 instance of the A/D block
%f EXISTS("Rt_pc32ad")
Y%assign ::Rt_pc32ad = 1
%else
%error Only 1 PC32adn block is allowed in the model.
Yoendif

%endfunction %6 BlocklnstanceSetup

While the above discussion was applicable to al CSDE driver blocks, the following sections

will describe each individual block in turn.

7.5.1 ADC Trigger Block

The ADC Trigger block is designed to be attached to one of the outputs of the asynchronous
interrupt support block. When triggered, a write is performed to each of the four memory

mapped ADC devices starting a conversion :

*(ADCO0)=0;
*(ADCL1)=0;
*(ADC2)=0;
*(ADC3)=0;

In Chapter 4 the memory mapping of the various peripherals was discussed. The addresses for
the ADC devices on the PC32 card are defined as follows in the header file :

#define ADCO (volatile int*) 0x810000
#define ADCL (volatile int*) 0x810800
#define ADC2 (volatile int*) 0x811000
#define ADC3 (volatile int*) 0x811800

Driver Block TLC Files Pege 7-5

Chapter Seven - Hardware Device Drivers

This block is particularly useful when sampling of the ADC inputs needs to be synchronised
with an external trigger signal. In motion control applications, the associated power electronics
switches can introduce substantial amount of noise into the current and voltage feedback
signals. However, the effect of the switching noise can be eliminated if the signals are sampled
during periods when the switches are inactive. The PWM IC provides a trigger signal in the
centre of each switching interval and using it to trigger sampling of the feedback channels
ensures minimum interference from switching noise. In Chapter 9 an example is presented
which illustrates the use of the AD TRIGGER block.

7.5.2 ADC Input Block

The PC32 ADC block reads the result of the last conversion from the onboard ADC, latches and
makesthevalues available at its output. The ADC reads are performed via callstothe 1 library:

%<Li bBl ockQut put Si gnal (0,"","", 0) >=read_adc(BASEBQARD, 0)/(3276.7);
%<Li bBl ockQut put Si gnal (0,"","", 1) >=read_adc(BASEBQARD, 1)/ (3276.7);
%<Li bBl ockQut put Si gnal (0,"","", 2) >=read_adc(BASEBQARD, 2)/(3276.7);
%<Li bBl ockQut put Si gnal (0,"","", 3) >=read_adc(BASEBQARD, 3) / (3276.7);

The TLC translates the <LibBlockOutputSignal > macros into variable names during its parse
process. Callsto the read_adc function return a 16-bit signed integer value representing the full
range of the ADC. For convenience the range is scaled down to + 10V. No loss of resolution
occurs since the variable on the lefthand side of the equal sign is of 32-bit floating point type.

7.5.3 DAC Output Block

Onthe PC32 awrite to the onboard DAC devices takes two steps. Firstly the value is written to
the memory mapped latch. Conversion only takes place after a subsequent memory write to a
control register. The write_dac and convert_dac function provided in the Il library provide an
elegant way to perform these steps :

wite_dac(BASEBOARD, 0, %Li bBl ockl nput Signal (0,"","",0)>*(327 6.7));
convert dac(BASEBOARD, 0) ;
write_dac(BASEBOARD, 1, %Li bBl ockl nput Si gnal (0,"","", 1) >*(3276.7));
convert dac(BASEBQARD, 1) ;
write_dac(BASEBQARD, 2, %Li bBI ockl nput Si gnal (0,"","", 2)>*(3276.7));
convert _dac(BASEBQARD, 2) ;
wr it e_dac(BASEBOARD, 3, %Li bBIl ockl nput Si gnal (0,"","", 3)>*(3276.7));

convert dac(BASEBQARD, 3) ;

Driver Block TLC Files Page 7-6

Chapter Seven - Hardware Device Drivers

Before being written the values are scaled up form the + 10V range used internally by the model.
On termination of model execution it isimportant to zero the DAC outputs. For this purpose the

following code is inlined into the MdITer minate function :

write_dac(BASEBQARD, 0, 0);
convert dac(BASEBOARD, 0) ;
write_dac(BASEBQARD, 1, 0) ;
convert dac(BASEBOARD, 1) ;
wri t edac(BASEBOARD, 2, 0);
convert dac(BASEBQARD, 2) ;
wr i t edac(BASEBOARD, 3, 0) ;
convert dac(BASEBQARD, 3);

7.5.4 Asynchronous Interrupt Support Block

The PC32 Int Support block allows subsystems on the Simulink block diagram to be triggered
by PC32 interrupts. Also timer frequencies and hardware interrupt triggering modes can be set
up. The corresponding block mask is shown in Fig. 7.4.

Block Parameteis: PC32 Inl Support | %]
PC32 Intenupt Block (mask)

Asynchronous intenupt suppoit for the Inovative Integration PC32 card.
Note: TCtKO/1 settigs depend also on jumpws (JP3 ¢ 6)
| WARNING : Changing TCIXO0/1 settings to TimerO/1 configures them as
| outputs. Check external connections!

Parameters

EI0-EI3Ttiggeing: ¥

TCLKO Source . |Exlernal :J
TCLK1 Source : (External ZI
Timer 0 Freq
fo
“Timei 1 Ffeq
fo
|
Ilalealﬂ yﬂw?ers (fop to bottom)
: I i I Help | Dose]

Fig. 7.4 : Block mask for the PC32 Int Support block

The source code generated for triggered subsystems is placed in separate functions and not
included into the model's main update functions. This fact isused by the PC32 Int Support block
to attach these functions as individual ISRs. During the TLC parse all outputs of the PC32 Int
Support block are probed for attached subsystems as shown inthe flow diagraminFig. 7.5. Itis
verified that only one connection exists per output port. If the connection leads directly to a
subsystem its update function is mapped as an ISR and code is generated to support that

interrupt at runtime.

Driver Block TLC Files Page 7-7

Chapter Seven - Hardware Device Drivers

callldx =0
Y
All Yes
output ports
. checked? Y
No"'. . EndLoop)
Y
Is port \ Generate warning : "No code will be |
[lcdlldx] - » generated for ISR %<callldx>... "
Xconnected?/
Yes

Y
[s it

<" asingle \No Generate Fatal Error : " ... outputs

connection?” % must be directly connected to one
¥ ' function-call subsystem... "
// .
Yes T
v Y
Map target subsystem's update function to an { End Loop

ISR in the header file.

Connect and enable the corresponding
interrupt in MdlStart function

Dissable and Dissconnect the ihterrupi in |
MdITerminate function

Y

Increment callldx

<«

Fig. 7.5 : TLC parse loop for processing subsystems connected to a PC32 Int Support block

Driver Block TLC Files Page 7-8

Chapter Seven - Hardware Device Drivers

The following TLC code excerpt demonstrates the loop structure and the error trapping
algorithm. The TLC loop variable callldx is used to step through all outputs of the interrupt
support block :

% oreach callldx = NunBFcnSysCQut put Cal | s

%6 Get downstreambl ock if there is one

%f "9%SFcnSystemutputCall[callldx] .Bl ockToCall>" != "unconnected"
%assi gn ssSysldx = SFcnSystenmQut put Cal I [cal |1 dx] . Bl ockToCal | [0Q]
%assi gn ssBl kldx = SFcnSystenmQut put Cal I [cal |1 dx] . Bl ockToCal | [1]
%ssi gn ssBl ock = Conpi |l edMbdel . Syst enf ssSysl dx] . Bl ock[ssBl ki dx]

%% Check to see if this is a direct connection

%f (ssBlock.Control |l nput. Wdth !'= 1)
%ssign errTxt = "The Il Interrupt block '%bl ock. Narme>'". ..
"outputs rmust be directly connected to one function-call subsystem"...
"The destination function-call subsystem block '%ssBl ock. Narme>'". ..
"has ot her inputs.”
%xit RTWFatal: %errTxt>

%endi f

process the valid subsystem

%l se 9%b The element is not connected to anything

%ssign wnTxt = "No code will be generated for ISR %callldx> "\
"since it is not connected to anything."

%nar ni ng Y%sw nTxt >

%endi f

%ndf or each

All valid subsystems' update functions need to be mapped as ISRs.The following TLC code

ensures the correct definitions are placed in the header file :

%assign isrSystem = System[ssBlock.ParamSettings.Systemldx]

ttdefine %o<isrSystem.OutputU pdateFcn>(%<tSimStruct>,
%<tControl Portl dx=>,
%<tTID>)
c_intOscal | | dx+l >()

Driver Block TLC Files Page 7-9

Chapter Seven - Hardware Device Drivers

This define ensures that the resultant ISR naming adheres to the TI convention as discussed in
Chapter 6, section 6.2.3, and also ignores any parameters passed to the function. The three
default function parameters can be safely disregarded for any triggered subsystem since :

(i) Simulink only alows discrete blocks in triggered subsystems, thus the SmStruc
parameter is not needed since no timing information is necessary.

(i) No direct inputs or outputs to a triggered subsystem are allowed, thus
ControlPortldx has no meaning.

(iii) Since the blocks within atriggered subsystem execute asynchronously to the rest of
the model the sample hit time, TID, is not needed either.

Inthe MdlIStart function the |SRs are attached to their corresponding interrupts as specified by
the user in the block mask and the interrupts are enabled :

installintvector(c_intO%<callldx+I>,(int)%<LibBlockParameter(P6,"",
" callldx)>) ;

enable interrupt”® (int)%<LibBlockParameter(P6,"","" ,callldx)>-1);

Correspondingly, in the MdITer minate function the interrupts are disabled and the ISR vectors
freed up :

disableinterrupt((int)%<LibBlockParameter(P6,"","" ,callldx)>-1);
deinstall int vector((int)%<LibBlockParameter(P6,"","",callldx)>);

Apart from attaching subsystem blocks as interrupts the PC32 Int Support block generates code
inthe MdIStart function to set hardware interrupts to either level or edge triggering. The source
for TCLKO and TCLK1 signals, described in Chapter 4, can be specified too. Code is aso
generated to setup onboard timer frequencies. To effect the above settings the user input is read
from the block's mask.

Driver Block TLC Files Page 7-10

Chapter Seven - Hardware Device Drivers

The TLC file for the interrupt support block generates source code only into MdIStart and
MdITerminate functions, thus it only affects the model's initialisation and termination and has

no effect on the model update functions since the 1SRs execute independently once initiated.

755 PWM Card Driver Block

The PWM block is designed to facilitate access to the custom PWM board, described in Chapter
4. The mask for this block is shown in Fig. 7.6. The Harming PWM IC is a memory mapped

peripheral, and following addresses are defined to allow reads and writes to its registers :

#define Status word (volatile int*) 0x81a001
ttdefine Data word (volatile int*) 0x81=a000

Block Parameters: PWM Block
Subsystem (mask) (link)

rParameters=—————— = — — e
VORTL

|4

CONTROL MODE | Frequency |

Help Close I

Fig. 7.6 : Block mask for the PWM Block

All writesto the Hanning | C haveto be performed outside its processing cycle. This can be done

using two methods :

(i) Polling - the WRFLAG flag in the status register of the PWM IC is polled and writes
are only performed while it is low.

@ii) Interrupt - the PWM IC issues an interrupt signa at the end of each processing
cycle. The write operations will be successful after this signal providing that they

are complete before the start of the next processing cycle.

Driver Block TLC Files Page 7-11

Chapter Seven - Hardware Device Drivers

During initialisation default values are written to all registers and the polling method is used.

The pollpwm function is called before each write access :
voi d pol | pwr(void)

while (*(Status-word) & Oxl);

If aprocessing cycle is active this function will effectively suspend execution on the target until
the Harming IC is ready for data. Another side effect of the polling method is that there is no
guarantee that subsequent writes will fal during the same idle cycle of the Harming IC. During
startup there are no pressing time deadlines and the target code can afford the resultant delays.
Since the PWM outputs are disabled it is not critical if the writes are split over a number of
cycles. During normal operation, however, it is important that registers required for output
calculations are all written during one cycle. Otherwise, the PWM IC will calculate its outputs
based on an incorrect set of data and the results will be unpredictable. The user hasto ensure that
the PWM driver block is placed in a subsystem triggered by the interrupt signal from the PWM
IC. The example in Chapter 9 illustrates a safe use of the PWM block.

The following lines perform updates of the PWM 1C registers during execution of the model

*(Status_word) = 129;

pol I pwn() ;
*(Data_word) = (int)%Li bBl ockl nput Si gnal (0, "", "", 0)>;
pol I pwn() ;
*(Data_word) = (int)%LibBl ockl nputSignal (0, "", »', 1)>;

if ((int)%QrlMde> == 1) /* skip three values to wite frequency */

pol | pwr() ;
*(Statusword) = 897,
}
pol I pwn() ;
*(Data_word) = (int)%LibBl ockl nputSignal (0, "", ", 2)>;

Block inputs 1 and 2 are written to the UA and UB registers respectively. The variable
CtrIMode is passed dynamicaly as parameter from the PWM block's mask and specifies
whether the third input signal value is written into the frequency or phase angle register. The
pollpwm function is called between the writes simply as a safety precaution. Assuming the
block is executed on an interrupt signal from the PWM 1C, the pollpwm function calls should

Driver Block TLC Files Page 7-12

Chapter Seven - Hardware Device Drivers

always return true immediately. At model termination the output of the PWM IC is disabled by

writting O to the status register :

*(Status_word) = O;
*(Status word) =

7.5.6 Scope Channel Block

The Scope Channel block is used to queue its input data in a circular buffer. The corresponding
block mask is shown in Fig. 7.7. The data buffered by the Scope Channel block is then uploaded
to the host in packets by a background process of the RTK, as described in Chapter 6. This
mechanism ensures that minimum time is wasted during model updates on data capture. There
is no theoretical limit to the number of Scope Channel blocks in any Simulink diagram.
However, there is a physical limitation since memory for each queue is dynamically allocated
for the individual queues on the program stack on model startup. To establish the number of
Scope Channel blocks in the model the following code is included in each TLC file :

%f EX STS(" Upl dSeen")
%ssign ::UpldSeen = ::lpldSeen + 1
%l se
%assign ::Upl dSeen
Yopenfile buffer
ext ern QUEUE queue[];
externunsignedint buf f ersize[] ;
extern int queueerror;
extern int NumQueues;
extern LogDat a;
extern channel map[];
% osefile buffer
%<Li bCacheDefi ne(buffer)>
%endi f

1

Block Parameters: Scope Channel m

1'._ Subsystem (mask)_ L S =i e LN e —

PO — —_—]

-~ Parameters — — -
Channel Number
[
Buffer Size
{50
Down Sample by :

=

Apply Revert Help Uose

Fig. 7.7 : Block mask for the Scope Channel Block

Driver Block TLC Files Page 7-13

Chapter Seven - Hardware Device Drivers

The above TLC code ensures that global variable definitions are only included once to avoid
multiple declarations. At the end of the TLC parse process the variable UpldSeen holds the
number of Scope Channel blocks present. The value is then used to dynamically allocate

resources for the correct number of upload queues :

ttifdef UPLDYES
buf f er _si ze[%Upl dSeen>-1] = (unsigned int)
%Li bBl ockParameter(Pl,"", "', 0)>;
Nunmueues = %Upl dSeen>;

if (!queue_init(&queue[%Upl dSeen>-1], (2*buffersi ze[%Upl dSeen>-1])))

ttendif

On termination of the model the memory is freed up again :

free(queue[Yo<UpldSeen>-1].base);

The Scope Channel blocks and the data queues are numbered according to the value of
UpldSeen, however the block mask allows each Scope Channel to have a user defined logical
number as well. Data packets sent to the host are numbered using this logical numbering
scheme, while within the target code the physical numbering is used. Thus, all Scope Channel
blocks will have a unique physical number, however, no checking is performed to ensure that
the logical numbers are unique aswell. Should auser assign the same logical number to multiple
Scope Channel blocks, their data packets will be mixed and treated as a single stream by the
visualisation utility, Display.

The down sample option allows adjustment of the sampling frequency for the Scope Channel
block. The Display utility limits the number of samples which can be displayed at a single time
to 1000. This limitation can make it difficult to view waveforms with frequencies much lower
than the execution frequency of the Scope Channel block. In atypical motion control project the
controller execution frequency might be in the region of 5 kHz, while the frequency of the speed
or position referenceisnot likely to beabove 1 Hz. Thismeans that only upto 200 ms (1 /5 kHz)
of the captured waveform would be visible at any time. The down sampling option allows to
divide the sampling frequency internally in the Scope Channel block and effectively to extend
the time visible in the Display utility. For example, with a Scope Channel block executing at 5
kHz and with down sampling set to 5, a full period of a 1 Hz waveform could be viewed.

Driver Block TLC Files Page 7-14

Chapter Seven - Hardware Device Drivers

The following code excerpt illustrates how data samples are queued up :

if (LogData)

DownSanpl e[%<Upl dSeen>-1] - -;
if (DownSanpl e[%<Upl dSeen>-1]==0) /[*capture this sanpl e*/

{
channelmap[%<UpldSeen>-l]=%<LibBlockParameter(P2, "","",0)>;
((volatile float)enqueue_ptr(& queue[%<UpldSeen>-1])) = -
%-<LibBlocklnputSignal (0, "', "", 0" 7
Down_Sample[%<UpldSeen>-1] = (unsigned int)
} %-<LibBlockParameter(P3,"", "",0)>;

}

Each time a sample is captured into a queue, the value of Down_Sample is reloaded with the
current value from the corresponding Scope Channel block's dialog box. Down_Sampleisthen
decremented each time the Scope Channel block executes and a sample is captured when it

reaches zero.

7.6 Conclusion

The above sections described the details of operation of the various driver blocks included in the
CSDE. Each block has a corresponding graphical block for use in the Simulink block diagram
and a TLC file which is used during the build process to include the block's code into the final
executable. Blocks requiring parameter input for the user also have a mask. Chapter 8 will
describe the implementation details of the standalone utilities created as part of the CSDE.

Conclusion Page 7-15

Chapter Eight - Host Support Components and Utilities

CHAPTER EIGHT
HOST SUPPORT COMPONENTS AND
UTILITIES

8.1 Introduction

This Chapter describes three components of the CSDE which reside in the Windows 95

environment on the host PC, namely :

(i) External Mode Communication DLL - this module provides an interface between
Simulink in external mode and the RTK on the PC32 target.

(i) Code Download Utility - this is acommand line based utility designed to download
executables to the PC32 card.

(iii) Display Utility - this standalone Windows executable receives data packets from
the target in real-time and displays the data graphically.

All three components were created using MS Visual C++ and will be introduced individually in

the following sections.

82 External Mode Communication

The external mode link between Simulink on the host PC and the RTK on the PC32 target is
implemented via the DPRAM. Section 6.3 in Chapter 6 focussed on the subsection of the RTK
responsible for receiving and executing commands issued from Simulink. In order to implement
Simulink's external mode on the host PC a custom DLL file (ext_ PC32.dll) was created and is
introduced in detail inthe following section. The DPRAM memory mapping and protocol s used

for communication are listed in Appendix B.

8.2.1 Host Side External Communications

The DLL fileto implement the Simulink External Mode needsto conformto an API as shownin
Table 8.1. Appendix | lists the source code which is compiled to obtain the ext PC32.dll file.
Apart from the three default functions specified in the Simulink External Mode API, a common

function handshake is implemented. Fig. 8.1 shows the flow diagram for sending a single

Introduction Page 81

Chapter Eight - Host Support Components and Utilities

| Smulink Request | Function Call |
Externd Mode comms initidisation mdlComminitiate
Send changed parameter to target mdlSetParameters 1
Terminate comms - | _deCommTer minate

Table 81 : Smulink External Mode APl

Place dataiin
DPRAM

Y

Send an interrupt
to target &
st count =0

<
X

/ vaid\ No

< response fron,

\ target?

\ Y
Yes I 7

_ . Yes Delay 100 ms
~count <50 P jncrement count’

Y

Processdata |
returned from
target

No-,”

P ety
,-" Reurn Suoc&ss\'J l-"' Return Failure "]

Fig. 81 : How Diagram of Command Communication on the Host

External Mode Communication Page 82

Chapter Eight - Host Support Components and Utilities

command to the target. Each of the API functions first sets up data in DPRAM and then calls
handshake to initiate the data transfer. If handshake returns successfully, the DPRAM
contains the target's response and the corresponding API function can process it and send the
result back to Simulink. If no response is received from the target within 5 seconds (50 x 100
ms) a comms failure is signalled back to Simulink. The relatively long time before a comms
timeout is necessary since the RTK on the target implements its communication routines within

alow priority background task and response time cannot be guaranteed.
The API function mdlComminitiate performs two steps :

(i) Initialisation of the Il VXD driver and a virtual pointer to DPRAM on the PC
(i) Checksum verification between the host and target. This is done to ensure the
executable about to be started on the target corresponds to the block diagram in

Simulink.

The following calls to the Il driver ensure the VXD is initialised and that the local pointer,
dpram, points to the virtual address where DPRAM is mapped on the host PC :
if (target_open(0))
printf("Target Open. \n");

dsp = targetcardinfo(0);
dpram = (volatile unsigned long*)dsp->Dual Port.PhysAddr;

If the above initialisation is successful local block diagram's checksums are passed to the target

executable for comparison:

dpram[1] = modelchecksum[O];
dpram[2] = modelchecksum[1];
dpram[3] = model_checksum[2];
dpram[4] = model_checksum[3];
mexPrintf("Verifying checksums ");
if (handshake(4) == 4)
mexPrintf (" OK!\n");
xxx = 0;
starting = 1;
}élse

mexPrintf("FAILED!\n");
XXX =-1;
mexPrintf("Checksum error. Recompile/Reload Diagram!\n");

External Mode Communication Page 8-3

Chapter Eight - Host Support Components and Utilities

If the checksum comparison fails, -1 is returned to Simulink and an error is printed in the
MATLAB command window. During parameter updates no range checking is performed on the
pointers into SmSruc passed to the target. Invalid pointers could cause memory to be corrupted
on the target and result in unpredictable results or even a complete software crash. Thus it is
crucial at startup to ensure that the compiled executable on the target corresponds exactly to the

block diagram used as the external mode interface.

After a successful call to mdliCommlnitiate Simulink passes a complete set of default
parameters to mdlSetParameters to be downloaded to the target. The function

mdlSetPar ameter s sends the parameters serially in afor loop :

for (i=0; i<num_changed; i++)

{

dpramtl] = elemsl[i];
blparam.f = blockparams[elems[i]];
dpram[2] = bl_param.u;

if (handshake(2) == 2)

mexPrint f (" Changed paraneter P[%] = %g\n",elens[i], bl param f);

el se

{
mexPrint f ("Handshake Fai | ed\ n");
XxXx=l ;

}

The floating point parameter values passed by Simulink in the array block_params are mapped
to 32-bit unsigned integers before being placed in DPRAM using a union definition :

uni on {
float f;
unsi gned |ong u;
} bl _param

This conversion is necessary due to the different floating point representations used on the host
PC and the Tl 'C32 target processor. Execution of the model is only started after a successful
download of default parameters. The connection between host and target is terminated in the
mdlCommTer minate function viathe call to target_close in the Il library. The flow diagram
in Fig. 82 demonstrates al the processes during Simulink's External Mode. Using codes
defined in Table 6.1 the command sequence in atypical external moderun couldbe: 4, 2,... 2,
1,2,. ..2,3.

External Mode Communication Page 84

<

o *
o

GIPMO[d - €

=
o

Jow

UONEIUNWIWO.) 9POJA] [ELIIXF
OTUNUIADS © == [3ULI X1 YUI|

Q
o

-8 a8e(d

Commes Initialisation : Parameter Update : Comms Termination :

| .
Initi a::se the ‘ '[i j' | v l
i= Execution on |
VXD & DPRAM | : ‘__ =0 | Stop TaerCL{ettlo 0 |
pointer \ | - ’|_ L (Y- S
i | 2 "
! Send parameter e calia ! N
No | : 0
' (i —‘ <_ Success? >
I _ '\-\\\\ -
Yes : ‘ Yes
. v | ;
| Verify Checksums | | ‘ /!\\
< Success? >]
| o | Close the VXD |
2 ! YesT I
|
| ‘ Increment i_‘ i
Yes ! : | £
. ' | :
Download Default| | ! i
Parameters | p o
7 1 - T/ No
\Start Execution on <« — - - - - | o cmcenes e s
Target r
| |
No
: i
v l v i ‘,
—— ~ N N ~ S
Return Success Return Fallurew ‘ Return Success | | Return Failure | Return Succe$‘ ‘ Return Failure
N / b AN . \2 y . S

saninn pue sjuauodwo) poddng 1soy - ydig 1adey)

Chapter Eight - Host Support Components and Utilities

The communication process as described above, as well asin section 6.3 of Chapter 6, allows a
user to use the Simulink GUI to interact with the controller executing on the PC32 target in
real-time. Execution of the target code can be started or suspended and parameters can be
modified online. The following two sections will describe two standalone Windows based

utilities which also form a part of the CSDE.

8.3 Code Download Utility

The download utility, D_Load.exe is a tool which allows downloading and starting of
executable code from the host PC to the PC32 card. Itisacommand line based program with the

following calling convention :
D_Load parameter 1

Where parameter! is the name of the file to be downloaded, including the full path. Internally,
D_Load uses calsto alibrary supplied by 11 to communicate with the PC32 card.

As part of the development package, 11 ship a download tool - download.exe. Although this
Windows based utility offers a number of extra options, it requires an external dongle to
operate. The use of CSDE on PCs not fitted with one of 11's dongles does not violate any of the
company's license agreements. Thus, the author decided to develop a scaled down download
utility to accommodate CSDE users who opt not to install the complete development package
from 11, but want to make full use of the CSDE.

84 Display Utility

Thevisualisation utility, Display.exe, is a Windows based program that uploads raw data from a
CSDE compiled executable running on the PC32 card and plots it in a number of windows. Up
to ten channels are supported simultaneously. Section 6.4 in Chapter 6 describes how the RTK
handles the process of formatting and sending the data on the PC32. The packetised data is
transferred via the DPRAM, buffered in the Display application's local memory, processed

according to user-specified settings and plotted to scale. The logical interaction of various

Code Download Utility Page 8-6

Chapter Eight - Host Support Components and Utilities

components of Display is shown graphically in Fig. 8.3. The listing of all relevant source code
for the Display utility can be found in Appendix J.

_ ISA Bus_
i~ = I
PC32 : : (RS » Data Receive
| | Packetised Data | nterrupt
IDrKAM 1 : I Handler
I I S
Y
r
_ <« | Circuler Data
Data Scaling & € - - LD Buffers
Plotting Thread < ' channels 1-10
. S —————
A i : i
Plot Window |4
CH#1 Plot Window i
CH#2
Plot Window
CH#10

Fig. 83 : Logical Diagram of the Display Utility

8.4.1 Display Initialisation

When started, Display comes up with the dialog box shown in Fig. 8.4. Unlessthere are multiple
PC32 cards installed, the target number defaults to 0. The number of channels has to be entered
manually and should correspond to the number of channel blocks on the corresponding

Simulink diagram.

After the user clicks on 'OK", Display performs its initialisation. Firstly, should there be any

channel windows open they are closed to prevent multiple instances of the same window.

for (UINT i=0; i<MAX NUM_CHANNELS i++)
if (theApp.active_child[i])
{

theApp.child[i]->DestroyWindow();
theApp.active_child[i]=FAL SE;

Display Utility Page 87

Chapter Eight - Host Support Components and Utilities

Target Number: rg]"_‘

Number of Channels: IE’;H .

i
e |

Fig. 84 : Display utility dialog box

Next Display creates a separate child window for each channel, and initiates its title to reflect the
corresponding channel number. Also the circular buffer for each active channel is cleared and
initialised.

for (i=0; i<m_num_channels; I[++)
{
theApp.child[i] = new CDi splayChil dFrm
sprintf(title,"CH #%",i);
t heApp. chi 1 d[i] - >ShowW ndow(SW SHOW ;
t heApp. chi I d[i]->Updat eW ndow() ;
i

t heApp. chil d[i]->Set WndowText (title) ;
t heApp. active_chil d[i]=TRUE
theApp. child[i]->ny_nunFi;

t heApp. queue[i]. head = O;

t heApp. queue[i].trigg = 0;

t heApp. queue[i].tail = 0;

for (UNT j=0; j<5000; j++) theApp.queuel[i].sanple[j] = O;

The following initialisation step checks whether a PC32 card is present and opens the
Innovative Integration VXD driver. If there is no response from the selected PC32 target,
Display terminates with an error message.

if(!target open(ntarget))

{

sprintf(title, "Unable to open Device Driver for target %i\n"
"Check target nunber setting", ntarget);

MessageBox(title, "FATAL ERROR', MBICONI NFORMATI ON) ;

Post Qui t Message(0) ;

}
The DPRAM isphysically installed on the PC32, but is also mapped to alogical area of the host
PC memory through the ISA bus. This logical addressis accessed via callsto the Il drivers. To
respond to the signals from the target on IRQ 5, Display installs an ISR routine. Further, athread
is launched to monitor the channel buffers and to process, scale and plot the data.

Display Utility Page 8-8

Chapter Eight - Host Support Components and Utilities

/I Set DPRAM addrss
t heApp. dsp = (CARDI NFO*)t ar get cardi nfo(nt arget);
t heApp. dpram = (volatile int*)theApp. dsp- >BusMast er. Addr;

/[l Set up the Virtual ISR
host interrupt _install(mtarget, EnqueueData, (PVO D) mtarget);
host i nterrupt_enabl e(m target);

/!l Set up the Thread function
if (theApp.pThread==NULL)
t heApp. pThread = Af xBegi nThr ead(Thr eadFunc, NULL) ;

Finally, bit O is cleared at the first location in DPRAM reserved for data logging (see
Appendix B for details). This value flags the target data upload routine that Display is ready to
receive data. The main Display window is then minimised out of the way :

[/l tell target we are ready for data
t heApp. dpranf 4] & XFFFE;

/1 Mnimse the mai n wi ndow
Get W ndowPl acenent (&wpl) ;

wpl . showGd = SWM NI M ZE;
Set W ndowPl acenent (&wpl) ;

After the above initialisation code completes successfully, the IRQ 5 interrupt signal from the
target is monitored and data uploaded as shown in the following section.

8.4.2 Upload Mechanism

To avoid the need for use of semaphores to arbitrate access to DPRAM, the area from offset
0x0004 up to offset 0x1000, is reserved solely for the uploading of data for visualisation. The
memory mapping for DPRAM as well as data transfer protocol are described in detail in
Appendix B.

The data logging function on the PC32 places raw packets of data in DPRAM and signals an
interrupt (IRQ 5) to the PC when finished, as described in section 6.4 in Chapter 6. Display's
interrupt handling routine then decodes the packets and places their contents in the correct
channel's buffer. The following excerpt shows the source code for the ISR routine
EnqueueData, the flow diagram of the process is shown in Fig. 85 :

VA D EnqueueData (PVA D pvoi d)
{ UNT I;
l ong of f set;
unsi gned | ong buffer_size;
int buffer_num
uni on

{

f | oat f:

Display Utility Page 89

Chapter Eight - Host Support Components and Utilities

unsi gned | ong u;
} pl ot _dat a;

of fset = 0;
buf fer _num = theApp.dpranf5 + of f set ++];
buffersize = theApp.dprani5 + of fset ++];

while ((buffer_num !=999) && (offset < 1000))

{

for (i =0; i <buffersize; i++)

{

plot _data.u = theApp.dpranf5 + of fset ++];
enqueue(buf f ernum pl ot_data.f);

buf fer _num = theApp.dpranf5 + of f set ++] ;
buffer_size = theApp.dprani5 + of fset ++];

} t heApp. dpranf 4] & XFFFE;
//signal to target that we are finished reading

f IRQ 5 interrupt)

»
Y

Read in buffer num &
buffer_size from packet header

Y

; ~Yes
Buffer num™.

~ 009 ?
Move to next packet Noy/
header Y
A End 01.:'\\(0lq
< DPRAM AT »
\, reached?
N(] "\I 4 ' |
j _ Y _ _— Yy
| Move a packet of data | Signal to target that
from DPRAM to the | DPRAM s ready for |
; right queue i writting ;
Y

[B

Fig. 85 : Flow diagram of the data upload and buffering on host

Display Utility Page 8-10

Chapter Eight - Host Support Components and Utilities

The intermediate variable plot_data is defined as a union of types unsigned long and float,
which means the the physical 32 bit of data stored under plot_data can be accessed as either of
the types. This mapping of datatypesis necessary to account for the difference between floating
point number representation in the compilers for the target and host platforms. Thus raw data
from the DPRAM isread out as an unsigned long which means it will beread out 'asis' on a bit

by bit basis. The datais meaningless in this format until it is mapped to a floating point type.

Each packet header consists of two values :

(i) Buffer_num - the channel number for which this packet's data is destined.

(ii) Buffer_size - the number of data points in the packet, not including the header. The
value of buffer_size also points to the beginning of the next packet in the sequence.
The value of 999 (decimal) signals the end of a packet sequence in DPRAM.

The data points read out from each packet are queued in the corresponding channel's queue by a
cal to the function enqueue. After the last packet is processed by the EnqueueData function,
bit 0 at DPRAM offset 0x0004 is cleared to hand access to DPRAM back to the target for

writing.

8.4.3 Data Buffering

Three functions are defined to facilitate access to the channel buffers :

(i) Enqueue - this function is used to add new entries to a circular buffer.
(i) Dequeue - is used to read from a buffer.
(i) Enqueued - returns the number of entries currently stored in a buffer.

All three functions are defined as Mined in order to optimise the speed at which Display can
access the buffers. Defining functions as inlined could mean a sacrifice in terms of the size of the
resultant executable, but it improves the execution speed by removing the overheads involved in
switching between functions. In the case of the Display utility, file size and memory usage on
the PC is not a mgjor consideration. Slow execution, however, could create a bottleneck in the
transfer of data from the target and result in loss of information.

The channel buffers are implemented in a circular fashion which means each buffer has both a

head and a tail pointer which wrap around when the maximum size is reached. The circular

Display Utility Page 8-11

Chapter Eight - Host Support Components and Utilities

buffering mechanism was chosen by the author as it allows for the fast data access while

maintaining the first-in-first-out (FIFO) principle.

The following code implements the enqueue function. An entry is added at current queue head,

the head pointer is incremented and wrapped around if necessary.

__inline void enqueue(U NT num float val ue)

{

t heApp. queue[nunj . sanpl e[t heApp. queue[nunj . head++] =val ue;
if (theApp.queue[nunj.head == Q SIZE) t heApp. queue[nunj . head=0;

To remove an entry from a queue the tail pointer is used. It is then incremented and wraps

around if necessary.

__inline float dequeue(U NT num
float val ue = theApp. queue[nunj. sanpl e[t heApp. queue[nunj . tail ++];
if (theApp.queue[nunj.tail == QSI ZE) theApp. queue[nuni.tai 1=0;
return (val ue);

}

To check the number of entries in a given queue the difference between the tail and head

pointers is calcul ated.

__inline long enqueued(U NT num

{

[ong depth = theApp. queue[nunj .head - theApp. queue [nun} .tail;
return ((depth < 0) ? (depth + QSI ZE) : depth);

The above sections describe the mechanism by which the Display utility receives and buffers
data sent by the target in real-time. The following section shows how the buffered data is
processed before being plotted.

8.4.4 Scaling and Plotting

The uploaded data is dequeued and plotted individually for each channel in a background thread

function ThreadFunc. The flow diagram in Fig. 8.6 demonstrates this process.

Display Utility Page 8-12

Chapter Eight - Host Support Components and Utilities

Thread

<
Y

Channd =0

)v

EnougH \ No
samples in /
queue?,

Y esX
\{

r . ‘H
[riggered Yt‘

Channel?
No

| ncrément
Channd

Plot a screen of data

<
Y

No Lag Yes

Channd? . >

» Look foratrigger |

event _indata]
Y
Found \ No
trigger? ./ ¢
Yest
> Sep(0) |

Fig. 86 : Flow diagram of the data processing on host

The following source code excerpt demongtrates the structure of the function :

UINT ThreadFunc (LPVOID pPtr)

{ while(1)
{
brocess queue data
SIéep(O);
}

Display Utility

Page 8-13

Chapter Eight - Host Support Components and Utilities

The infinite while loop forms the body of the ThreadFunc function. A call to the system
function Sleep at every iteration ensures that other Windows processes are not deprived of
processing time. Each individual child window's settings can be set by the user via a properties
popup window shown in Fig. 8.7. The number of samples to be plotted and the maximum Y axis
range can be specified. The number of samples in a child window is used to determine when
there is enough data in a queue to fill the window. If the trigger level check box is selected the
ThreadFunc algorithm will look for atrigger event in the data before plotting it. The leftmost
sample plotted in the window will be the first sample found by an trigger finding algorithm
shown in Fig. 8.8. Every time a window's plot is updated it is forced to redraw itself via the
object call :

theApp.childtj]->RedrawWindow();

Channel Properties

Number of Samples: Jt_>rjrj

Y Axis Span: |ioo

W Trigger Level: ID

Fig. 8.7 : Child window properties

Display Utility Page 8-14

Chapter Eight - Host Support Components and Utilities

/ Enough ®\No
samplesin /'

\ queue?/
Increment

I Y
A Sy

No

| Samplefi]
\trigg_level’

YesY

I ncrement
i

Y

Enough - No
“samplesin >
queue? /

Yes Y
) 4

No / N
./ Sample[i] > .
“trigg_level

\\

3 4
\\ ./,
Yes]
. =X
(Return Succes | Return Failure |

Fig. 88 : How diagram of the trigger find algorithm

Display Utility Page 815

Chapter Eight - Host Support Components and Utilities

8—.5 Conclusion

This Chapter has discussed the software developed as part of the CSDE which is resident on the
host PC. These components, as well as the components described in Chapters 5, 6 and 7, form
the author's practical contribution to the complete CSDE. Chapter 9 will describe an example of
the application of the CSDE to a motion control problem. Two case studies will also be
presented of students who applied the CSDE during their undergraduate design projects.

Conclusion Page 8-16

Chapter Nine - CSDE Application Case Studies

CHAPTER NINE
CSDE APPLICATION AND CASE
STUDIES

9.1 Introduction

The preceding Chapters have built up a description of the various components of the CSDE. The
am was to create a complete rapid prototyping tool for the development and real-time
implementation of motion control. The particular focus of the project was to aid final year
electrical engineering students in tackling challenging design problems in the field of motion
control, as introduced in Chapters 1 and 2. By using the CSDE, students are able to gain an
in-depth experience in the development of real-time digital controllers without being slowed

down by the traditionally drawn out design process.

No such development project can be complete without a field trial to validate whether the
objectives have been met. This Chapter shows how the CSDE is used to address issues raised in
Chapters 1 and 2. It should be noted that the main aim here is to focus on the transition of
controller designs into real-time prototypes. Suitable references are provided to cover controller

design and simulation in greater detail.

First example presented is the design of a simple digital controller for a DC machine. The
controller itself is straight forward but the example serves well to demonstrate and prove the
operation of the CSDE. Next, two case studies are presented of students at the Electrical
Engineering Department at UND who used the CSDE to implement complex motion control
projects. Mr. Sturgeon implemented a field oriented controller (FOC) on a 3-phase induction
machine [STURGEON1]. His project wasjudged to be the best final year design in 1998. Mr.
Moodley's final year design in 1999 involved the design of a ball-catcher [MOODLEY 1] and
wasjudged to be the best control project.

Introduction Page 9-1

Chapter Nine - CSDE Application Case Studies

92 Motion Controller Design Us ric] fhé CSDE

The steps in the design of a digital motion controller were outlined in Chapter 2. In a rapid

prototyping environment, like the CSDE, they can be summarised as follows :

(i) Modelling - gathering data and creating a model of the controlled machine.

(i) Simulation - proposing a control algorithm and simulating its performance in non
real-time,

(ili) Hardware setup - connecting the machine and required sensors to the controller
platform

(iv) Generating prototype - converting the simulation block diagram to a real-time
prototype and generating code.

(v) Online tuning - running the controller in real-time, verifying its performance and

final adjustment of parameters.

The issues involved in modelling and simulation of motion control are well covered in literature
[FORSYTHEL, LEONHARDZ1]. And in particular the application of MathWorks tools in this
field is covered in [FENG1, MATHWORKSL, 2, 3]. This Chapter will, therefore, not revisit

those topics but rather focus on points (iii) to (v) above.

9.2.1 Hardware Setup

The hardware used for the demonstration is a DC machine fed by an H-bridge inverter. A
tachometer and aLEM current transducer module [LEM 1] are used to provide speed and current
feedback respectively. The PC32 controller and a PWM / Tacho expansion card are housed
inside the host PC case and form the controller platform. A signal generator is used to provide a
speed profile for the controller. Fig. 9.1 shows the schematic diagram of the overall hardware
setup used. Fig. 9.2 shows a photograph of the actual setup in the lab.

The speed and current feedback signals are captured by the PC32 on-board ADC channels and
displayed in real-time by the Display utility. To verify the correct operation the signals are also
made available at the DA C outputs and can be monitored using adigital storage oscilloscope.

Motion Controller Design Using the CSDE Page 9-2

Chapter Nine - CSDE Application Case Studies

Current (D AC1)

—" Oscilloscope
Speed (DAC 0)
»

Speed reference (ADC 2) | Signal Generator
| nnn

<
<« Analogue speed feedback (ADC 1)
-« Current feedback (ADC 0)

» PWM /Tacho

248V DC

Armature voltage

128V DC

Field voltage |DPC Machine | Tacho

| J
Fig. 9.1 : CSDE Demonstration hardware setup

9.2.2 Generating a Real-Time Prototype

After the controller has been simulated in Simulink, the diagram has to be modified to include
hardware driver blocks before a real-time prototype can be generated and executed on the
hardware platform. Fig. 9.3 shows the ssimulation diagram while Fig. 9.4 shows the modified

real-time version.

The conversion of a simulation diagram into real-time involves replacing the DC machine
model block with external inputs and outputs to the actual machine. Standard Simulink scope
blocks are replaced with custom CSDE scope channel blocks which allow uploading of datain

Motion Controller Design Using the CSDE Page 9-3

Chapter Nine - CSDE Application Case Studies

Fig. 9.2 : Photograph of the DC machine demonstration setup

B8 sPEEDY9_sim
Hle Edt Viev Smuldion Foma Tools
DSRE| s2d (22|) =
11 g
i+ s Current
] i1 Outl [IS _
It P Ini Outl 128 ‘a
Suml
Speed
Speed Sum
Controller Current Controller 32000/250V
DC MOTOR MODEL
current feedback
%4
speed feedback
speed reference OODODD
— [
o | - Signal
i Generator Scopei Soope2
Scope
| e | b IFixedStepDiscrete 7

Ready
Fig. 9.3 : Simulation diagram for the DC machine controller

Motion Controller Design Using the CSDE Page 9-4

Chapter Nine - CSDE Application Case Studies

B8 cperpas

'I_:ilé Edit View Simulation Format Tools

PC82 Int Support -Ugnal tioniro

Ready

ller

(DS EH& sB2B(2|[) =
[=(e]
EM *
= ‘r TriggerO
EB > TriggerO
TMRO AD TRIGGER
TMR1

== I

| FixedStepDfecrete

J

§j8§ Digital Controller !Ei E3

File £dit View Simulation Format Tools

Scope Channel 0

g

Scope Channel 2

Fig. 9.4 : Real-time controller diagram

| DACD
P DACH
@ HDACZ
Trigger DAC3
PC32 DAC
oIt
| — —{In1 Ot | 2B
o — F—Fe{ 01 Outl \a
Sum1
Speed Sum
Controller Current 320007250V 4 for b€ MOTOR
Controller
current feedback
10/6 ADCO
speed feedback
-1 ADCH
d ref 5
sSpeed rererence ﬂDCQ
in qancs
Scope Channel 1 PC32 ADC
In

Motion Controller Design Using the CSDE

Page 9-5

Chapter Nine - CSDE Application Case Studies

real-time to the Display utility. To ensure synchronous sampling, the interrupt signal (El 0)
from the Hanning PWM IC is used to trigger the ADCs. In turn, the end of conversion signal
(El 1) from the ADC's is used to trigger the control loop. This arrangement ensures that the
feedback signals are free of power electronics switching noise as they are always sampled at the

centre of the PWM switching period as described in Chapter 4, section 4.5.2.

The next step is to set up the RTW parameters. Fig. 9.5 shows the corresponding RTW dialog
box. Uploads are enabled since there are a number of scope channel blocks used. Upon pressing
the Build button RTW generates the controller code and downloads it to the PC32. After the
diagram is started the Scope utility can be initiated. Fig. 9.6 shows the plots obtained :

(i) CH#O displays the speed reference
(i) CH#1 shows the resultant speed feedback, and
(iii) CH#2 shows the armature current feedback

The signals in Fig. 9.6 are also made available at the DAC outputs and were captured using a
digital oscilloscope to give the speed plot in Fig. 9.7 and the current waveform in Fig. 9.8. There
isaclear timing skew between the plotsin Fig. 9.6 when compared to the results obtained using
an external oscilloscope. This is due to the fact that the Display utility does not attempt to
synchronise the display channels, but rather triggers each channel individually as described in

section 8.4.4.

i Simulation parameters: SPEED99

Solver | Workspace I/OI Diagnostics| RTW| RTW External |

Code generation

System target file: Iljj_tic
J— Inline parameters \7 Retain .rw file

Build options

Template makefile: | pc32 tnf

Make command:
j make_rtw |IO=DISABLE UPLD=YES

 Buid |

Apply l FiEvEr | Help | Close

f~ Generate code only

Fig. 9.5 : RTW parameters

Motion Controller Design Using the CSDE Page 9-6

Chapter Nine - CSDE Application Case Studies

M CH«2 =] E3

Fig. 9.6 : Speed and current plots with optimal parameters

1 5.00v__2 2007 Roll 2002/ Sngljj SIoP

Fig. 9.7 : Speed signal

Motion Controller Design Using the CSDE Page 9-7

Chapter Nine - CSDE Application Case Studies

1 5.00V 2 SQO? . : Roll 2002~ Sngljl SICP

RN | et | et | bedoten- | begete i—}—l-l-l-l-f-l-l-l-l-: [|-|-|-_l-|-|-|-|-i-|-|-|-|-

M
_,.‘J}
ij

........ Mmmulwm e

Mapbdmngis

wMM ‘,m

| SRR B RS

Fig. 9.8 : Armature current waveform

The plots in Fig. 9.6, Fig. 9.7 and Fig. 9.8 correspond to what can be expected from the
experiment. The armature current is at its maximum during acceleration and minimum during
deceleration. During periods of constant speed the current it almost zero since the machine is
running without a load. The above plots are obtained for a well tuned controller. The following
section will demonstrate how the controller can be tuned online.

9.2.3 Online Parameter Tuning

A powerful feature of the is the ability to modify controller parameters in real-time without
interrupting its execution. Fig. 9.9 shows the discrete controller subsystems used for the speed
and current control loops respectively. While any parameter on the diagram can be modified, for
the purpose of demonstration only the gains Kp are adjusted. The plotsin Fig. 9.6 were obtained
with Kp set to the values determined from simulation, namely 15 for the speed and 40 for the
current controller. Fig. 9.10 shows the dialog box used to modify parameters. After anew value
is entered and Apply is pressed the CSDE automatically updates the parameter in the real-time
prototype and the effect can be observed on the Display plots.

Table 9.1 lists the various Kp settings and the figures which show the corresponding plots
obtained. These plots clearly illustrate the effect of the parameter changes on the controller
response. The important point to keep in mind is that the various settings were tried out in
real-time in a matter of a few minutes. There was no need to rewrite or regenerate any code and
the machine was constantly online during the experiment.

Motion Controller Design Using the CSDE Page 9-8

Chapter Nine - CSDE Application Case Studies

File Edit View Simulaton Format Tools

b ‘;
- -
+ e »(1)

COn

In1

B speed Contoller

>

K
7 P + - Outt
- + Sum2 Saturation
i + L
Unit Delay1 - |
Sum1 Kp Kt Tal2 =

Unit Delay

Current Controller
file £dit View Simulation Format Tools

R o

In1

——————|+

+
g i g G
1

& . outt
| — Sum2 Saturation
1

=z + T
Unit Delay1 -
Kp* Ki"Ts/2 =

Unit Delay

Fig. 9.9 : Discrete controller subsystems

Speed controller Kp Current controller Kp Figure
20 40 Fig. 9.6
10 40 Fig. 9.11
4 40 Fig. 9.12 |
20 8 Fig. 9.13 B _'

Table 9.1 : Various controller gain combinations

Motion Controller Design Using the CSDE Page 9-9

Chapter Nine - CSDE Application Case Studies

R Speed Contioller
|File Edit View Simulation Format Tools

int P = < S T = |

|— Gain

: Um [Scalar or vector gain, y = k."u

1 b
i = Parameters

2 Current C [

File Edit Vie Appli I Revert I Help Il Close I

) P *
In1 ""‘_ 8 +
Sum K " + — ’ @
P +
1 _ Dut1
- Sum2 Saturation
z
— K i 1
Unit Dalay1 -
Kp " Ki*Ts/2 —=
Unit Delay

Fig. 9.10 : Modifying parameters online

= CH #1

(=] B3

TN

L

Fig. 911 : Spead Kp = 10, Current Kp =40

Motion Controller Design Using the CSDE

Page 9-10

Chapter Nine - CSDE Application Case Studies

mCH#1 (=] B3

7 <

w

= CH #2 (O] x|

Fig. 9.12: Speed Kp = 4, Current Kp = 40

mCH# =] B3

i CH #2 [_ O[]

Fig. 9.13 : Speed Kp = 20, Current Kp = 8

Motion Controller Design Using the CSDE Page 9-11

Chapter Nine - CSDE Application Case Studies

E% Student Projects - Case Studies_“

The demonstration in section 9.2 shows that the CSDE functions as intended by the author and
fulfills al requirementslaid down in Chapter 2. However, the main purpose of the project wasto
create aresearch tool aimed at the undergraduate students. Thus, the author felt it was important
to alow a number of students to use the CSDE during their design courses in order to verify its

usefulness in this environment.

Dueto limited resources only one complete rapid prototyping station could be made availableto
undergraduate students. The setup included the following :

(i) Pentium PC running Windows 95, with the full CSDE software installed
(i) PC32 DSP Controller card

(iii) PWM / Tacho expansion card

(iv) H-bridgc inverter

(v) Current and speed sensors

(vi) A choice of either a DC motor or a 220 V 3-phase induction motor

During the 1998 and 1999 academic years a number of 3rd and 4th year students used the above
setup to implement their motion control designs at the Department of Electrical Engineering at
UND. Although no formal record was kept, in al cases the feedback was positive and the
students felt that the CSDE allowed them to complete more challenging projects than their
colleagues in less time. The feedback from the field trials allowed a number of improvements to
be made to the CSDE, as listed in sections 9.4.1 and 9.5.1.

Two of the final year designs which made use of the CSDE are briefly introduced in the
following sections. An in-depth discussion of these projectsis beyond the scopeis of thisthesis,
and only an overall outline is provided. Both projects were supervised by Mr. Diana.

9.4 Fidd Oriented Control of an Induction Machine

The method of FOC [LEONHARDI1] attempts to change the complex characteristics of an
induction machine to be more like the simpler DC counterpart. The algorithm attempts to
establish a fixed angular relationship between the stator current vector and the rotor flux vector

and in doing so decouples the two values. Effectively, if the flux is kept constant the torque of

Student Projects - Case Studies Page 9-12

