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ABSTRACT

The control of electrical drives, or motion control, is important in modern industry. In order to

satisfy the requirements of industry, it is important for tertiary institutions to produce graduates

skilled in this field. The theoretical content of a typical electrical engineering course will

prepare students to tackle design and offline simulation of a digital motion controller. However,

to gain an in-depth understanding of the field, students need to be able to implement and test

their designs in practice.

The complete design process of a digital motion controller is an inherently lengthy process

requiring a number of diverse skills, for example microprocessor based hardware and software

design. While hardware design issues can be minimised by a choice of a commercially available

controller board, the coding of real-time software for a complex controller can pose a steep

learning curve. At the undergraduate level, students seldom will possess sufficient practical

expertise to fully implement a challenging motion control design in the limited time frames

allocated for such projects.

This thesis presents a complete rapid prototyping environment for the design of motion control,

the Control System Development Environment (CSDE). The CSDE allows a seamless

progression of a motion control project through all stages, from initial design and simulation,

through real-time implementation to final online tuning and validation. Users are freed from all

low-level software and hardware design issues. In the context of undergraduate design projects,

the CSDE allows students to design, simulate and prototype challenging solutions in the limited

time available. Thus, students can gain in-depth, system level expertise in the design of motion

control without being hampered by low-level design issues.

The CSDE has been successfully tested by a number of undergraduate students at the

Department of Electrical Engineering at the University of Natal. In particular, the CSDE's

effectiveness has been demonstrated by its application during two prize winning final year

design projects.
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Chapter One - Introduction

CHAPTER ONE
INTRODUCTION

1.1 General

In today's world we are surrounded by motion - for example motorcars, trains and escalators. A

large proportion of the force that provides this motion in our society is derived from electricity

and there is a continuing drive to make the use of this relatively clean electrical power more

widespread. Less obvious to the layman, but also crucial to our way of life, is the motion that

drives modern industrial processes. In factories today, most of the driving force is derived from

electricity. The majority of pumps, fans and conveyor belts, for example, are driven by

electrical motors, thus electric drives form a crucial part of any modern day industrial process.

The precise control of speed and position in machinery is often of paramount importance

[LINZENKIRCH1]. One example is the paper industry, where the speed of various winding

stages needs to be synchronised and maintained to prevent damage to the product and thus

subsequent costly interruptions in the manufacturing process [BLERK1]. Another example is

precision robotic manipulators which often have to perform complex manoeuvres. Accurate

position control needs to be employed as their position has to fall within tight tolerances. Many

more areas can be named where control of electric motors is important, and collectively the field

is termed motion control. Fig. 1.1 shows a schematic of a basic motion control setup. Although

Setpoint . _> Controller
Speed / Position feedback

Current / Voltage feedback

DC Supply

Inverter

Tacho

Electric Motor

Fig. 1.1: Block diagram of a typical motion control setup
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Chapter One - Introduction

details might vary with the particular field of application, typically they will be derived from the

above.

Motion control forms a subset of the broad control field. A common set of mathematics and

techniques is used to model all control problems. Be it a simple temperature controller or a

complex chemical plant, we use similar tools to represent them for simulation and subsequently

to control them. Although this thesis focuses on issues pertaining to the design and rapid

prototyping of motion control, the ideas can easily be applied in other control disciplines.

1.2 Teaching Motion Control

The importance of motion control in the industry draws with it a need for engineering graduates

with in-depth skills in the field. Currently, most undergraduate courses in electrical engineering

include a sound theoretical grounding in the principles of control and particular attention often

is paid to issues specific to the control of electrical machines. However, to apply the theory in

practice students need to master a number of other skills including digital hardware and

software design. The design of a complete digital motion controller is a lengthy process

involving a number of steps :

(i) Modelling of the controlled plant

(ii) Controller design and simulation in non real-time

(iii) Design of the controller hardware

(iv) Coding of the control algorithm software

(v) Prototyping and tuning in real-time

(vi) Final validation and testing

Each of these individual steps forms an important component in a formal design process, but it is

equally important to have an overall grasp of the design at the system level.

Author's own experience as well as the input from a number of students at the Department of

Electrical Engineering at the University of Natal (UND) indicated that the theoretical content of

the course prepared graduates well for points (i) and (ii) above. With the use of commercial

microprocessor boards, the design of a controller platform can be greatly simplified. However,
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Chapter One - Introduction

the writing of deterministic software to replicate the exact action of the simulated controller

seems to be the greatest challenge.

The time allocated for final year projects is typically around 13 weeks. This short time

combined with lack of prior experience in some practical design issues means that it is difficult

for students to gain sound system level experience in the design and implementation of motion

control. Students are seldom able to take challenging motion control projects through a formal

design process and typically only focus on a small component of a design. The problem also

exists at the postgraduate level, although it is far less pronounced due to the more generous time

frames. The complete design of advanced control algorithms, for example field oriented control

(FOC), was outside the scope of an undergraduate project and even at postgraduate level usually

constituted a substantial portion of the dissertation [HEMME1, MEYER 1, RANDELHOFF1 ].

1.3 Project Goals and Description

After considering the above points, a need was identified to create an integrated environment

which would allow students to conduct their motion control designs entirely at system level.

The emphasis should be placed on the students' in-depth understanding of the control issues

rather than the low-level details of implementation. With the ability to generate real-time

prototypes directly from simulations, more challenging control strategies could be fully

implemented and tested during a typical final year design course. In essence, students would be

given an opportunity to gain valuable experience of designing, simulating, implementing and

verifying advanced control algorithms in practice without first having to become expert

software or hardware developers. The tool could prove equally valuable at postgraduate level.

Here more emphasis could be placed on verification or comparison of a wide variety of complex

control strategies without the time overhead usually associated with designing dedicated

controllers based on the various algorithms.

To satisfy the above objectives, the proposed Control System Development Environment

(CSDE) has to meet a number of seemingly conflicting requirements :

(i) Low cost - the overall cost of the CSDE will determine whether, and how many,

systems can be made available to students.
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Chapter One - Introduction

(ii) High performance - the system has to provide adequate processing power to

implement complex control algorithms,

(iii) Ease of use - students must be able to get up to speed with minimum time and effort.

Before deciding on the exact specifications for the CSDE, the author evaluated two

commercially available solutions. The findings are presented in Chapter 2. Although the CSDE

was designed particularly with motion control in mind it should prove useful in other control

applications.

1.4 Thesis Structure

Chapter 2 discusses the issues involved in the development of a digital motion controller and

identifies the need for an integrated development environment to simplify the process. Two

commercially available solutions are briefly evaluated before a list of requirements is drawn up

for the CSDE presented in this thesis.

Chapter 3 introduces the Math Works modelling and simulation software as the foundation of

the author's work.

Chapter 4 describes the hardware platform targeted by the CSDE, paying attention to the DSP

core, the I/O peripherals as well as custom expansion hardware.

Chapter 5 deals with the overall structure of the software components developed by the author

in order for the CSDE to satisfy the requirements as laid out in Chapter 2. The process of

automatic code generation is introduced in some detail.

Chapter 6 describes the custom kernel and other real-time support functions developed

specifically for the hardware platform from Chapter 4.

Chapter 7 introduces the library of hardware driver blocks created to support the CSDE

functionality under the Math Works software platform from Chapter 3.

Chapter 8 covers the components of the CSDE developed for the host PC's Windows

environment.
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Chapter One - Introduction

Chapter 9 demonstrates the operation of the CSDE by means of an example and outlines two

practical case studies to demonstrate how the CSDE was used by students during their final year

design projects.

Chapter 10 concludes the thesis and suggests possible improvements and extensions to the

CSDE.

A number of Appendices provide additional information not directly included in the body of the

thesis.

1.5 Summary

The CSDE presented in this thesis consists of a number of software and hardware components

which were integrated by the author to form a complete design environment. Some of these

components were of commercial origin, whilst others were created in collaboration with other

researchers. An overview of these components is included in order to provide a complete

description of the CSDE. For work which was not entirely the author's own, suitable

recognition and references are provided in the text.

Components of the CSDE sourced commercially include :

(i) The host workstation PC running the Windows 95 operating system.

(ii) MATLAB, Simulink and Real-Time Workshop packages from MathWorks.

(iii) PC32 DSP Controller board from Innovative Integration (II).

The choice of Windows 95 as the software platform for the CSDE was dictated by its wide

availability on the PC's in the laboratories. PC's equipped with the necessary hardware and

running other operating systems were not readily available, thus there was no opportunity to test

the CSDE on other software platforms.

A custom expansion card for the PC32, which provides pulse-width modulation (PWM) and

incremental tacho support, was designed by Mr. Walker. The technical staff at the Electrical

Engineering Department designed and constructed the power electronics and sensor setup

necessary for driving electrical machines.
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Chapter One - Introduction

The author's work involved integrating the above components by providing the following

software :

(i) Real-time kernel for the PC32

(ii) Standalone visualisation utility

(iii) Library of hardware driver blocks for use in Simulink

(iv) Routines to maintain a bi-directional communication link between the host PC and

the PC32

(v) Various template and batch files to automate the code generation and downloading

The work discussed in this thesis resulted in a number of publications which were presented at

both local and international conferences [DIANA 1, STYLO 1, 2, 3, 4].
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Chapter Two - Review of Automated Development Tools for Digital Motion Control

CHAPTER TWO
REVIEW OF AUTOMATED

DEVELOPMENT TOOLS FOR DIGITAL
MOTION CONTROL

2.1 Introduction

Today there are a host of powerful processing platforms available with which to implement

sophisticated motion control algorithms [TRZYNADL01]. But, as the available hardware

grows ever more powerful the design process becomes correspondingly more complex,

demanding multi disciplinary expertise [FENGl ]. The designer not only needs to have in-depth

knowledge of the control problem at hand, but also needs to be able to implement the solution in

practice. This might involve both low-level microprocessor based hardware design as well as

the coding of the control algorithm to execute correctly in real-time [AHMED1]. These

practical issues often mean that a complete implementation of a complex motion control

solution would extend beyond the time allocated for such projects at undergraduate level.

This Chapter discusses a number of issues involved in the complete design cycle of a digital

motion controller, starting with modelling and simulation through to final real-time prototyping

and validation. The need for an integrated development environment to shorten the traditionally

drawn out design process of an embedded solution [SENESE1] is presented. The discussion is

applicable to motion control design at all levels - undergraduate, postgraduate and in industry.

Regardless of the design engineers background, similar issues will have to be considered and a

structured design method followed.

There are a number of commercially available Computer Aided Control System Design

(CACSD) packages to help engineers during the design of digital controllers. The author

evaluated two CACSD packages, paying particular attention to their application in motion

control. Their strengths and weaknesses are discussed and used to set goals for the CSDE which

was developed in order to fill in the gaps left by existing packages.
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Chapter Two - Review of Automated Development Tools for Digital Motion Control

2.2 Digital Motion Controller Design Process

The design of a digital motion control solution requires a careful and structured approach. The

control engineer should follow a number of distinct steps, first getting acquainted with the

dynamics of the plant, before proposing a solution and finally testing it by implementing it in

real-time [SLIVINSKI1]. A flow chart diagram of the typical steps and iterations in the design

of a digital controller is shown in Fig. 2.1. The flow chart shows how the design process

progresses from initial modelling of the controlled plant, through simulation and real-time

prototyping to a final implementation.

2.2.1 Modelling and Simulation

Before any successful control algorithm can be suggested, it is imperative to be familiar with the

transfer characteristics of the plant in question - in most cases this will be a DC machine or an

AC induction machine. Physical data needs to be collected from experiments and processed to

establish the relationship between input currents, the resultant voltages and the outputs (torque,

speed, position) of the given machine. There are modelling software packages available for the

PC which can aid the designer in this area, for example MATLAB [MATHW0RKS1,

MATHW0RKS7].

Once an adequate model of the machine is constructed and verified, it can then be used by

simulation software to test a cross section of control strategies. There are several commercial

packages on the market which can help, for example :

(i) Simulink [MATHW0RKS2], an extension of MATLAB, is a capable package. It

has a number of specialised toolboxes to allow design and simulation of controllers

for a variety of applications in a single graphical user interface (GUI).

(ii) CASED (Computer Analysis and Simulation of Electrical Drives)

[KLEINHANS1] is specifically designed with motion control applications in mind.

However, it lacks the user friendliness and graphical front end expected of modern

software tools.

Once the simulation of a particular controller setup meets required specifications the

implementation in real-time can proceed.
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Initial Modelling
& Simulation of

Controlled Object
(the plant)

-w Controller Design

Simulation &
Tuning

i
No

Meet Spec? ">

Yes

__ wj Generate Real-Time
Code

f •

Adjust
Parameters

I

Design and Build
Hardware j

Prototyping on Target Hardware

No /

Implement Final
Controller

Fig. 2.1 : Steps and iterations in the design of a controller
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Chapter Two - Review of Automated Development Tools for Digital Motion Control

2.2.2 Hardware Design

A vital issue in the development of a motion controller is the hardware platform used to execute

the controller software developed from a simulation. A commercially available controller board

could be used or the designer might choose to design custom hardware around one of many

available processors [CRAVOTTA1]. Whatever the choice, the following issues need to be

considered:

(i) processing power of the processor (or processors)

(ii) size of available memory

(iii) number of input and output channels

(iv) sampling resolution and conversion times of A/D and D/A converters

(v) other peripherals - eg. PWM generators or incremental tacho support

The simulation results will determine the required number and resolution of I/O channels but

can only serve as a guideline to the selection of a processor and memory size. Some additional

functions can either be implemented in hardware or later incorporated into the controller

software, for example for the switching of power electronics or support for high resolution

tachometers.

2.2.3 Software Design

Even with the availability of high-level programming languages and their advanced optimising

compilers, designing software to implement complex motion controllers is non-trivial. Most

undergraduate students will face a steep learning curve when confronted with the low-level

issues of writing and debugging hard real-time code for a modern processor [GANSSLE1].

Even experienced control engineers or postgraduate students might find the software

development takes a disproportionate amount of time allocated for the entire motion control

project. With the diverse choice of algorithms available the designer might also want to

experiment with a number of them before committing to a specific choice. Such experimenting

may result in the need to completely, or at least partially, re-write the code. Even after a specific

controller setup is chosen, tuning individual control parameters might involve a recompilation

each time a small adjustment is made.
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Chapter Two - Review of Automated Development Tools for Digital Motion Control

By nature human programmers are prone to making errors. As the size of the source code for a

controller grows so do the chances of errors creeping in. Two major types of errors encountered

in programming are syntax and logical errors. Syntax errors are easily picked up by the compiler

and can usually be corrected with minimum effort. Logic errors, on the other hand, often prove

to be difficult to locate and correct, as the resultant software might actually execute, but not

perform the exact function the programmer had in mind. After successfully designing and

simulating a controller it might be found that the hand coded real-time prototype fails to meet

the design specifications. The reason for this could either be a logic error in the software or that

the plant model used in simulation was incorrect thus producing a badly tuned controller. There

could be substantial difficulty in differentiating between these two cases.

The final result of low-level development may be highly efficient code in terms of size and

execution times, but a penalty could be paid in terms of the drawn out development time. In an

industrial environment, upgrading and maintaining software could also be problematic

[BASSETT1], especially with the high turnover of manpower. With the original designer of a

particular system leaving, a simple upgrade could easily turn into a complete re-engineering

project even if adequate documentation for the software is available. In the academic

environment at the undergraduate level, lack of thorough documentation is often a problem.

This means that substantial design effort can unnecessarily be duplicated by each subsequent

generation of students.

2.2.4 Rapid Prototyping

Rapid prototyping means that the usual cycle of initial modelling, design, simulation and finally

real-time prototyping, shown in Fig. 2.1, is made as short as possible. All the traditionally

separate steps are combined into a transparent process which involves no manual coding and

minimal adjustments to hardware. The engineer can seamlessly progress the design through all

stages in a user-friendly, PC based environment, without having to write a single line of code. A

rapid prototyping environment for motion control can present a number of advantages :

(i) In industry the length of time from initial idea to marketable product is of utmost

importance [SENESE1]. Rapid prototyping has a potential to reduce the overall

design time while improving the software quality [G0RD0N1].

(ii) In the tertiary education environment students are allocated limited time to

complete their projects. Rapid prototyping can eliminate the tedious, low-level
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design issues. Thus, students could concentrate their effort on more in-depth

investigation of the control theory and observe and verify their designs in practice

[K0ZICK1].

An outline of a rapid prototyping system is shown in Fig. 2.2. The design environment is

subdivided into layers, helping to isolate the user from low-level design issues. By employing

such an environment, the designer could easily evaluate the real-time performance of a number

of completely diverse control algorithms in a short time, since the transition from simulation to a

functioning prototype would be taken care of automatically in a matter of minutes, or even

seconds.

Graphical Block Diagram

Design Level
(Platform Independent)

Automatic Code Generation
(Transparent to user)

Source Code Modules

Platform
dependant

controller code

Supported Hardware Platforms

Fig. 2.2 : Levels of a rapid prototyping environment

The automatic code generation involves combining of pre-tested and optimised modules and

thus, it has the additional advantage of guaranteeing the absence of both syntax and logic errors

from the final controller code. Potential sources of confusion are eliminated when a

malfunctioning prototype fails to meet simulation results, making the debugging easier.
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Apart from the shortened development cycle, the major advantage is that controller design is

kept entirely at a graphical, user-friendly level. This in turn means that the task of documenting

a design becomes limited to the documentation of a clear schematic diagram. By employing

rapid prototyping methods, software maintenance problems can be reduced [GORDON 1 ] as all

code generation is handled transparently by the rapid prototyping environment.

2.2.5 An Integrated Development System

From the discussion above, a clear picture emerges of a complete environment dedicated to the

development of motion control. A practical platform for implementing such an environment

would be the widely available IBM compatible personal computer (PC), running a GUI

operating system, for example Windows 95 or Windows NT. The targeted embedded hardware

would be a selection of commercially available DSP platforms, preferably in the form of

standard PC expansion cards. A range of hardware platforms would be decided on based on both

price and performance. The proposed environment, the CSDE, would have to provide the

following functionality under a unified user-friendly GUI:

(i) modelling;

(ii) controller design, simulation and tuning;

(iii) automatic generation of hard real-time code for a particular hardware platform;

(iv) online tuning of parameters in real-time;

(v) data capture in real-time for visualisation and validation.

A possible setup for such a development environment and the interaction between various

components is shown in Fig. 2.3.

2.3 What is Currently Available ?

The ideas presented in the preceding sections of this Chapter are certainly not new or unique.

Before designing the CSDE, the author reviewed some commercial systems currently available.

Also, in the past a substantial research effort has gone into creating a complete Motion Control

Development System (MCDS) at the University of Natal [MEYER1]. In the following

sub-sections a number of systems are introduced and their relative strengths and weaknesses are

outlined.
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GUI

DSP Controller

Controlled Plant

Fig. 2.3 : Interaction between parts of the proposed rapid prototyping environment.

2.3.1 Transputer Based System

The Electrical Engineering Department at the University of Natal has conducted extensive

research into the control of high dynamic performance AC motors using parallel processing

techniques [WEBSTER1]. The promising results of this early research effort led to the

establishment of the Transputer Applications Group (TAG) to design and build transputer based

controllers and to provide high-level tools for the design of motion control.

The hardware and software tools developed by TAG [MEYER 1, WOODWARD 1 ] were used to

implement advanced control algorithms in practical applications [RANDELH0FF1]. The

system was strong in terms of predictable code generation from graphical block diagrams and

the hardware developed formed a capable and highly scalable platform.
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The MCDS relied on external software for modelling and simulation and its associated

Transputer based platform was specifically targeted at the motion control sector. All hardware

and software was a custom in-house development, which meant the project required an ongoing

development effort to keep up with trends in industry and the available technology. With a

number of the researchers leaving, TAG was dissolved and the MCDS became obsolete in terms

of other emerging tools.

2.3.2 MATLAB and Simulink

The MATLAB/Simulink package, from the MathWorks Incorporated, is a universal modelling

and simulation environment requiring only a PC to run. Its popularity in the academic as well as

industrial environment is mainly due to its modular structure. The core MATLAB engine

provides robust support for most mathematical problems. An entire array of associated

toolboxes are available to apply this mathematics engine to a number of specific fields.

Simulink provides a GUI extension which moves the process of modelling and simulation to a

graphical schematic level. The complete MathWorks package forms a comprehensive set of

tools for most modelling and simulation requirements. Chapter 3 offers an in-depth discussion

on the capabilities of the MATLAB system.

While modelling and simulation are very well covered by the MATLAB software, it provides

limited support for generating the embedded hard real-time code necessary to implement

motion control successfully. The Real-Time Workshop (RTW) extension, allows raw code to be

generated from Simulink graphical diagrams [MATHW0RKS5]. Due to the scripting language

used, the Target Language Compiler (TLC) can customise the RTW to provide output in any

programming language. However, a significant amount of "glue" code still needs to be

manually added before implementation on any particular hardware platform. The generic

real-time framework created automatically by RTW does not allow for true real-time, interrupt

driven, deterministic code. In many applications, and motion control in particular, software

needs to perform predictably and it is vitally important that some hard real-time deadlines are

met.

At the time of writing, version 5.2 of MathWorks environment did not provide support for

uploading of data from external sources for displaying and visualisation. The designers of

Simulink leave a framework open which allows custom code to be attached to provide only a
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one-way link with an externally executing code. Thus, on-line parameter tuning can be

implemented.

Despite its shortcomings the RTW is capable of generating raw high-level code from graphical

diagrams and can form a solid starting point for a complete solution to motion control

development.

2.3.3 Hypersignal RIDE

Hypersignal Rapid Integrated Development Environment (RIDE), available from Hyperception

Incorporated, is a stand alone, graphical environment for the development and real-time

implementation of DSP algorithms. A typical Hypersignal block diagram window is shown in

Fig. 2.4.

§§ Hypersignal RIDE 4.0 - [Filter. 1st]

File Edit View Control Blocks Real-time Jools Options Project Window Help fljxj

fFor Help, press F1 'Fit: 0

Fig. 2.4 : Typical Hypersignal RIDE diagram
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The Hypersignal package supports a wide cross section of DSP hardware, ranging from low end

cards to high end multiprocessor solutions. Its true strength lies in the seamless code generation

from graphical block diagrams. Individual blocks can be made to run on either the host PC or on

the target DSP hardware. Special blocks called RT DSP to PC Upload and RT PC to DSP

Download are used to connect sections of the diagram executing on different platforms. Thus

the complete controller can be initially made to operate on the host PC for simulation purposes,

and then moved to the target hardware. In the final design some blocks can remain on the PC to

provide bi-directional communication with the controller executing in real-time.

As far as the user is concerned the entire process of generating code is completely transparent.

Hypersignal also handles the issue of ensuring that processes executing on DSP hardware as

well as on the PC remain synchronised. While the block diagram is executing, parameters in

most of the blocks can be changed and Hypersignal updates variables in the real-time code

without interrupting execution.

Despite the strengths of this package in terms of its real-time support for a wide range of DSP

hardware, it does not provide adequate support for modelling and simulation. Hypersignal is

mainly targeted at the classical DSP applications and numerous sets of blocks are provided for

applications such as communications, speech processing and filter design. Even in these fields

Hypersignal does not quite match the functionality of dedicated modelling and simulation

packages like MATLAB and Simulink.

Hypersignal is an open environment which lends itself to customisation, if necessary in a

particular field. The package has been used to implement control of power electronics at the

University of Natal, in particular an artificial intelligence solution for a boost rectifier

[WORTHMANN 1 ] and classical motion controller [WALKER 1 ]. Researchers involved in both

these projects needed to commit considerable effort to extend Hypersignal before using it.

However a basic requirement for a truly integrated development environment is that users do

not need to write any custom low-level code.

2.3.4 dSPACE

The German company dSPACE GmbH provides a number of DSP based hardware platforms

and some of their products are specifically aimed at the control sector. In terms of software

support they have the Total Development Environment (TDE) [VATER1].
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The TDE is an extension of the MATLAB and Simulink environment introduced above, and as

such it inherits all the modelling and simulation power from the MathWorks product family.

However, real-time code generation and support are only provided for the dSPACE boards,

which limits the choice of controller hardware.

Furthermore, the dSPACE product range is prohibitively expensive when compared to other

DSP hardware vendors. For example the DS1102 controller board at an educational discount

costs around US$3000, where as a PC32 card from Innovative Integration sells for less then

US$1000 and provides similar performance.

The TDE does not currently make use of Simulink's external mode for communication between

the block diagram and the code executing on target hardware. Thus downloading parameters

from within the Simulink environment is impossible. dSPACE ship a program called Cockpit

which takes over this functionality. However, the process of connecting various controls on the

Cockpit front end with correct parameters in the Simulink diagram is not straight forward.

Cockpit seems to use the intermediate files produced by Simulink to bring up a list of available

parameters for each block on the diagram. Some Simulink blocks have a number of parameters

associated with them which are internal to their operation and should not be modified

dynamically. The process of choosing the desired parameters in Cockpit form the available list

is not intuitive and could be especially confusing to a novice user. If the incorrect parameters are

connected to Cockpit controls and modified online, the problem may be difficult to find.

Not using the standard Simulink external mode also means that there is no way for the user to

start and stop the execution of the code once it is generated and downloaded to the target DSP

platform. Execution starts immediately as the code is downloaded, and the default set of

parameters is used. The user is responsible for ensuring that the initial set of parameters is safe.

An error on the user's part could mean the controlled plant runs out of control on downloading

the controller code and the only way to stop it from causing or sustaining damage would be a

physical intervention, for example cutting off the power supply. There could simply not be

enough time to start Cockpit and change the necessary parameters.

Although dSPACE provides all the necessary ingredients for a complete motion control

development environment, there is still room for improvement.
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2.4 Goals for the Project

Based on the discussion presented in this Chapter, the author decided that there was a need to

develop a solution for the design and rapid prototyping of motion control which, while fulfilling

all requirements as set out in section 2.2.5, meets following criteria :

(i) Low cost - the developed system needs to be affordable enough to appeal to the

wider educational system,

(ii) Ease of use - as far as possible all functionality needs to be packaged in a single

environment,

(iii) Computational power - the DSP hardware platforms supported need to provide

adequate processing power to implement ambitious control projects.

The CSDE is designed mainly with educational institutions in mind, thus to address the above

points it was decided to base the system on the MATLAB and Simulink package. This will

reduce costs as most tertiary institutions already make extensive use of these modelling and

simulation tools. Further, more ambitious projects may be attempted by students within limited

time frames, as they will already be familiar with the software. MATLAB and Simulink are well

established CACSD packages and the author's intention is not to modify them, but rather to

extend and supplement their functionality as necessary to meet the goals set out section 2.2.5.

The standard external mode of Simulink has to be supported and any functionality not provided

for under Simulink can be implemented externally. With the current version of the MathWorks

software only the data visualisation needs to be done by a separate utility. The MATLAB and

Simulink package is discussed in detail in the next Chapter.

Hardware targeted by the author's proposed system will initially be the PC32 DSP Controller

card from Innovative Integration Inc. Choice of hardware was based on the cost to performance

ratio. The PC32 card provides 32 bit, floating point power of a 60MHz TMS320C32 DSP

processor from Texas Instruments, 16 bit resolution on A/D and D/A channels as well as an

open architecture for expansion. This gives enough computing power to implement advanced

control algorithms while at the same time being affordable enough (US$ 1000) for wide spread

use in the tertiary environment.

While being capable and affordable, the PC32 card does not provide built-in support for motion

control specific functionality. This problem was addressed in collaboration with other
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researchers, in particular Mr. Walker [WALKER1], who designed a custom extension card to

the PC32. This custom card provides hardware support for a high resolution tachometer as well

as PWM for switching of power electronic devices. This expansion card in not absolutely

necessary for implementation of motion control on the PC32, but it does make the task easier by

delegating those computationally expensive tasks to dedicated integrated circuits (IC). The

hardware employed in the project is described in detail in Chapter 4.

2.5 Conclusion

The issues involved in the design process of a modern digital controller were discussed and a

need for a high-level integrated tool was identified. Some available solutions, commercial and

otherwise, were discussed and their individual strengths and weaknesses pointed out. From this

argument a number of goals were set for the proposed CSDE.

The following Chapter introduces the MATLAB and Simulink environment which was chosen

as the starting point for the author's project. Chapter 4 will continue by describing the hardware

targeted.
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CHAPTER THREE
OVERVIEW OF MATHWORKS TOOLS

3.1 Introduction

Chapter 2 discussed the steps involved in the design process of a motion controller, starting with

modelling of the controlled plant, through simulation of the control algorithm to the final

real-time implementation. Particular emphasis was placed on motion control design issues in

the tertiary environment, and a need was identified to simplify the design process. The idea of an

integrated development environment was introduced, to aid the designer by combining all

necessary tools under one package.

MATLAB and Simulink from MathWorks Incorporated are well established products and are a

defacto standard in terms of modelling and simulation in the academic community [FOSTER 1,

GUMAS1, MIR0TZNIK1 ]. The MathWorks software as well as a number of other design and

simulation packages were previously used and evaluated at the Electrical Engineering

Department of University of Natal [KLEINHANS1]. Recommendations from researchers

experienced with the available software packages led to the selection of Simulink and the RTW

to form the foundation of the CSDE.

In this Chapter, an overview will be provided of the MATLAB, Simulink and the RTW

packages. The intention is not to give an exhaustive discussion of the complete MathWorks

range, but rather to focus on a few points of interest. Specific detail will only be provided on

issues relevant to this thesis, in particular Chapters 5, 6, 7 and 8 which present the work

undertaken in extending and unifying the MathWorks components into the CSDE.

3.2 MathWorks

MATLAB [MATHWORKS 1, 7] is a high performance mathematical language interpreter for

technical computing and is particularly useful for problems which can be formulated in terms of

vectors and matrices. Its open architecture lends itself to be customised by users and the system

has evolved over a number of years of continuous use in academic and industrial environments.

Fig. 3.1 shows the relationship between various MathWorks products. MATLAB forms the

foundation of the core mathematical engine for the rest of all the MathWorks range. It provides
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MATLAB

Simulink

Simulink Extensions :

* Simulink Accelerator
* Real-Time Workshop (RTW)

with Target Language Compiler (TLC)
* Stateflow

Blocksets:

*DSP
* Fixed-Point
* Nonlinear Control Design
* Communications
* Power System

MATLAB Extensions:

* MATLAB Compiler
* MATLAB C Math Library

Toolboxes:

* Control System
* Communications
* Financial
* Frequency Domain System Identification
* Fuzzy Logic
* Higher Order Spectral Analysis
* Image Processing
* LMI Control
* Model Predictive Control
* /i-Analisys and Synthesis
* NAG® Foundation
* Neural Network
* Optimisation
* Partial Differential Equation
* QFT Control Design
* Robust Control
* Signal Processing
* Spline
* Statistics
* Symbolic Math
* System Identification
* Wavelet

Fig. 3.1: MathWorks Product Family

a programming interface, numeric computation and has advanced data plotting capabilities.

Toolboxes are collections of MATLAB functions which target specific areas of application.

There is a rich selection of such toolboxes available from MathWorks to satisfy most needs.

New toolboxes can be written using the high-level MATLAB programming interface or

existing ones can easily be modified to meet custom needs. The wide spread use of MATLAB

also resulted in a range of custom third party extensions being available. Simulink is a GUI

extension to MATLAB which allows for dynamic simulation of nonlinear systems in a

user-friendly graphical environment. MATLAB's core functionality, including access to

toolboxes, is retained while the design is abstracted to a schematic block diagram level.

Simulink Extensions form a set of tools which extend the functionality of Simulink. The RTW

is of particular interest to this thesis as it forms a starting point for transforming the simulated
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systems into real-time prototypes. Blocksets are collections of Simulink blocks which target

specific areas of application.

A complete discussion of all the available toolboxes, and extensions is beyond the scope of this

thesis. The following sections will concentrate only on those MathWorks products which are

directly relevant to the author's work and show how they help to form a complete rapid

prototyping environment. Simulink, the RTW and the Target Language Compiler (TLC) will be

introduced in more detail.

3.2.1 Host vs. Target Platforms

Before further discussing the MathWorks environment, it is important to define clearly how it

integrates into the CSDE in terms of the two distinct hardware platforms. Namely, the host and

target platforms.

The platform on which Simulink and the RTW run is denoted as the host platform. In the case of

the CSDE it takes the form of a personal computer (PC) workstation running the Windows 95

operating system.

The code automatically generated by the RTW is executed on the target platform. The target

platform could be any of the following examples :

(i) A stand alone embedded microprocessor based controller linked to the host via a

serial connection,

(ii) A DSP processor on an expansion card in one of the host's slots, communicating

with the host via the ISA or PCI bus.

(iii) Another workstation linked to the host via a local area network (LAN) or the world

wide web (WWW)

(iv) The host workstation itself

In the case of the CSDE the target platform is the PC32 controller card installed on the host PC's

ISA bus.
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3.3 Rapid Prototyping with MathWorks

The set of tools from the MathWorks, as introduced above, form a solid base for modelling,

design and simulation of digital controllers. In addition, the RTW provides a framework for

extending these tools into a complete rapid prototyping environment which can provide the

following functionality:

(i) Automatic code generation. The ability to automatically turn a graphical

simulation into executable code means users are freed from all software

development issues. Controller development takes place in the standard Simulink

environment and the RTW handles the transformation into a real-time prototype

transparently to the user.

(ii) On-line parameter tuning. Controller parameters can be modified in real-time

without interrupting the prototype's execution. A feature of Simulink called

external mode establishes a communication link between the host PC and the

controller executing on the target hardware. The Simulink block diagram

effectively becomes a GUI for the real-time controller prototype.

(iii) Visualisation. Release 10 of the MathWorks environment, which was used as a

base for the CSDE, does not support uploading of data into Simulink from external

sources. This functionality was implemented by the author outside the MathWorks

system as described in Chapter 8. Release 11 from MathWorks provides the

necessary functionality, but was shipped too late to be included in the current

version of the CSDE.

Fig. 3.2 shows the relationship between the MathWorks components involved in automated

code generation. Stateflow allows one to include state-machine logic into Simulink block

diagrams, but was not available for inclusion at the time of the development of the CSDE. It

could prove to be a valuable tool during the development of real-time code for embedded

applications.

The starting point for generating code is a standard Simulink block diagram. Any functionality

specific to the target hardware can be included at this level in the form of custom blocks. The

RTW processes the block diagram into an intermediate netlist description. This intermediate

netlist is parsed and converted to source code by the TLC. The TLC output is passed to a target

specific compiler where it is combined with custom real-time support code and results in a stand
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Simulink

Graphical block diagram
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Fig. 3.2 : Relationship between MathWorks tools for code generation

alone executable. The process of converting a Simulink block diagram into executable code is

discussed in more detail in sections 3.5 and 3.6.

Automatically generating real-time code is an important requirement of the rapid prototyping

process. Equally important, however, is the ability to interact with the generated prototype in

real-time without adversely affecting its performance. For this purpose Simulink supports the

external mode. When placed in external mode, Simulink acts as a remote GUI to the prototype

controller, as shown in Fig. 3.3. Any changes to parameters on the Simulink block diagram are

automatically communicated to the equivalent real-time executable. This mechanism allows for

on-line controller tuning without the need to recompile the controller code after each change.

The above discussion briefly presented two features of the MathWorks environment which

allow its expansion into a complete rapid prototyping system, namely automated code

generation and external mode. The following sections introduce Simulink, the RTW and the

TLC and elaborate on issues important to the design of the CSDE around these components.
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Simulink in
External Mode
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Fig. 3.3 : Interaction with prototype controller via Simulink external mode

3.4 Simulink

Simulink [MATHW0RKS2] is a GUI from MathWorks Inc. It is a software package for

modelling, simulation and analysis of dynamic systems and can utilise the proven MATLAB

engine. It supports linear and nonlinear systems, modelled in continuous and/or discrete time.

Discrete systems can also be multi-rate, i.e. Have different parts that are sampled or updated at

different rates.

For modelling, Simulink provides a user-friendly GUI allowing users to intuitively build

models as graphical block diagrams, using click-and-drag mouse operations. With this interface
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users no longer need to formulate equations in a language or programme, but can simply choose

from a comprehensive collection of block libraries and additional toolboxes. Simulink also

allows for custom blocks and libraries to be added by users to accommodate their specific needs.

Simulink models are hierarchal, thus complex systems can be broken down and approached in a

top-to-bottom or bottom-to-top manner. Systems can then be viewed at the top level, and by

double-clicking one can navigate down through the lower levels to see increasing amounts of

detail.

In the context of the CSDE, Simulink provides a comprehensive graphical environment for the

modelling, design and simulation of motion control. It is also a well proven package and is

widely used in tertiary institutions, both in South Africa and abroad [FOSTER1, GUMAS1,

MIR0TZNIK1 ]. These factors mean that Simulink is well suited to form a base for the CSDE as

discussed in Chapters 1 and 2. The following subsections will introduce a number of practical

aspects of Simulink. Particular attention is paid in sections 3.4.4, 3.4.5 and 4.4.6 to issues

pertaining to creating custom Simulink blocks, as this is important to the author's work

presented in Chapter 7. Simulink's external mode is discussed in section 3.4.7.

3.4.1 Simulink Blocks

Blocks are the basic elements from which Simulink models are built. Virtually any dynamic

system can be modelled by interconnecting blocks appropriately. Simulink blocks fall into two

basic categories : virtual and non-virtual blocks [MATHW0RKS3]. Non-virtual blocks play an

active role in the simulation of a system, thus adding or removing a non-virtual block changes

the model's behaviour. Virtual blocks, by contrast, play no active role in the simulation. They

simply help to organize a model graphically to make it more readable. Fig. 3.4 illustrates a

number of typical Simulink blocks in a diagram and labels each as either virtual or non-virtual.

3.4.2 Libraries and Library Links

Simulink libraries are collections of blocks that allow blocks to be grouped according to their

specific area of application. There are a number of standard libraries shipped with Simulink, as

shown in Fig. 3.1, and further blocksets can be added. New libraries can be created containing

existing blocks, subsystems or completely new custom blocks. Fig. 3.5 shows an example of a

typical Simulink library and a logical link with a library block used in a diagram.
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Fig. 3.4 : Virtual and non-virtual Simulnik blocks

A library link is established whenever a library block is used in a Simulink diagram. Any

changes to the library block will automatically be reflected in all its instances. Thus, changes to

a library block can have a widespread effect on a number of Simulink diagrams.

3.4.3 Subsystems

Subsystems, like virtual blocks, play no active role in a Simulink block diagram. Their main

function is to collect blocks together into convenient, logical groups to help break down large

systems into a more manageable hierarchal structure, Fig. 3.4 demonstrated the use of a simple

subsystem. Five types of subsystems can be identified, as shown in Fig. 3.6 :

(i) Simple Subsystem. Its only purpose is to keep block diagrams neat and readable.
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(ii) Enabled Subsystem. An external signal can collectively enable or disable all blocks

in a Enabled Subsystem. The execution of the contained blocks continues as long as

the control signal remains positive,

(iii) Triggered Subsystem. The execution is controlled by the level changes in an

external control signal. The contained blocks execute only once for each trigger

event,

(iv) Triggered and Enabled Subsystem. Execution occurs only if both an enable signal is

present and a trigger event occurs,

(v) Function-call Subsystem. This type of a subsystem is only used when code is

generated from a Simulink diagram using the RTW. The code generated for all

contained blocks is placed in a separate function, making it easy to assign parts of

the block diagram to external events like interrupts.

3.4.4 S-functions in a Simulink Block Diagram

The standard set of Simulink blocks can be expanded by creating new custom blocks in the form

of S-functions. By allowing high-level code to be seamlessly integrated into Simulink block

diagrams, S-functions, or system functions, provide a powerful way to extend and further

customise the capabilities of Simulink. In the CSDE, S-functions are used to create custom

driver blocks specific to the PC32 controller and expansion hardware.

Apart for their application in the CSDE for accessing hardware, S-functions can be used in a

number of other applications :

(i) Creating new simulation blocks that are not supported in Simulink. Using a

high-level programming language can allow a solution in a single S-function block,

in place of a potentially complex interconnection of standard blocks.

(ii) Importing m-file or C-code algorithms into a block diagram simulation. This option

could save existing and well tested code from having to be re-created using

interconnections of standard Simulink blocks.

(iii) Incorporating graphical animations into the simulation.

S-functions, like all standard Simulink blocks, can be fully described in terms of the following

equations, where y is the vector of outputs, x is the vector of states and u is the vector of inputs to

the block:
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(0 y = fo(t'x'») "

^n ' xc - fd(t,x,n) -> derivatives (in continuous time)

(iii) XIIM = fu(t,x, u) -> update (discrete)

(iv) x - xc + xd -> states

Fig. 3.7 shows how the input, output and states vectors of a block relate to each other. At every

simulation step Simulink updates each S-function's vectors via calls to a standardised

Application Program Interface (API) [MATHW0RKS4, 5] and makes the results available to

other blocks in the diagram. The code contained in the API defined function calls can interact

with hardware or other external sources of data. This mechanism allows S-fiinctions to provide

an interface between standard Simulink blocks and outside hardware devices.

U (inputs)
V F ; w ; X (states)

Fig. 3.7 : Relationship between input, output and states vectors of a Simulink block

The code for S-functions can either be written in MathWorks' own m-file format or a third party

C compiler can be used to generate executable code specific to the host platform in C-MEX

format. The following two subsections will describe how S-functions are created and introduce

the necessary API in more detail.

3.4.5 Creating S-functions

Creating a new S-function for use in Simulink requires two steps. Firstly a graphical front-end

block is needed. Simulink provides a generic S-function block in the Nonlinear Blocks library

which forms a starting point for all new S-functions. Secondly the algorithm has to be coded into

a format compatible with the S-function API introduced in section 3.4.6.

The graphical front-end block forms a user interface to the underlying S-function code and

allows parameters to be passed which can dynamically influence its behaviour. Simulink

provides a generic front-end block, which can then be customised by a process called masking.

Without masking parameters can be manually formatted and entered as an array in the generic
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dialog box. Simulink's Mask Editor allows the design of fairly elaborate user interfaces which

support familiar Windows based features like drop-down and check boxes. The S-function

mask can also be designed to perform range checking of parameters to filter out invalid user

input before passing it to the code for processing. Fig. 3.8 shows the generic unmasked block

used for the S-function demo_sf, while Fig. 3.9 shows the same S-function after it has been

masked. The masked interface allows a more intuitive way of entering the two required

parameters - gain and phase shift.

It

File Edit View Simulation Foil
Block Parameters: S-Function

DDDD
OO

Signal
Generator

demo_sf

S-Function

;- S-Function -
I
! User-definable block. Blocks may be written in M, C or Fortran and must
I conform to S-function standards. t,x,u and flag are automatically passed to
' the S-function by Simulink. "Extra" parameters may be specified in the
'S-function parameters' field.

r Parameters • - -

i S-function name:

|od

|demo_sf

S-function parameters:

|5,9C|

ADP'V Revert Help j Close 1

Fig. 3.8 : A sample S-function block and its parameters dialog box

File Edit View Simulation Format Tools

| D & y # & %

DDDD
OO Out1

Signal
Generator Subsystem

Block Parameters: Subsystem

Subsystem fmatt.)

Sample S-function block ma:I - tor demo in the then:

Parameters

Gain

' lffl _._ ~
Pase shift

,ode4

Help Close

Fig. 3.9 : A sample S-function block with a masked interface
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As mentioned, the code for an S-function can be supplied in one of the two supported formats:

(i) A standard MATLAB m-file.

(ii) A C-MEX file compiled for the specific host platform

Both formats have to comply with an API set out by Math Works. A generic template for each of

the formats is provided with Simulink to make this integration easy.

Standard m-file S-functions are interpreted at runtime by the MATLAB engine, thus they are

fully portable and platform independent. C-MEX S-functions, on the other hand, are executed at

runtime by the host processor. In the case of a PC running Windows, the C-MEX file takes the

form of a 32-bit Dynamic Link Library (DLL). A number of third party compilers are supported

for that purpose:

(i) Watcom C

(ii) Borland C

(iii) Microsoft Visual C/C++

Since the main interest of this thesis lies in the generation of real-time code, only C-MEX

functions are relevant. Thus, in the following Chapters all references to S-functions will refer to

C-MEX functions and points specific to m-file S-functions will be omitted. Fig. 3.10

demonstrates steps in creating a custom C-MEX S-function and inserting it into a Simulink

block diagram.

3.4.6 S-function API

To function correctly, S-functions must adhere to the API as defined by MathWorks. Apart

from the vector updates, each S-function is responsible for implementing API calls which

initialise it at the commencement of a simulation and clean up at the end of a simulation run. A

number of the API functions are compulsory, while some calls are optional and their use

depends on a particular area of application. Table 3.1 lists a subset of the S-function API

relevant to the work presented in this thesis (compulsory functions are marked in bold).
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Template S- |
function :

sfuntmpl.c

S-function :
custom.c

32-bit Compiler

S-fuction DLL:
citstorn, dlI

Simulink Mask
Editor

Graphical Block
Mask Interface

Simulink Block
Diagram

Fig. 3.10 : Incorporating a custom C-MEX S-function into a Simulation

Simulink Request

Initialisation at beginning of simulation

Calculation of output vector and derivatives

and update of states

Termination and cleanup tasks

API Function Call

mdllnitialiseSizes

mdllnitializeSampIeTimes

mdlStart

mdlOutputs

mdlUpdate

mdlDerivatives

mdlTerminate

Table 3.1 : Simulink S-function API (compulsory functions in bold)
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The functionality of the API calls, listed in Table 3.1, is as follows [MATHW0RKS3, 4] :

(i) mdllnitialiseSizes - it is the first call Simulink performs while interacting with a

S-function. The sizes of the input, output and states vectors as well as the number of

parameters is specified in this function.

(ii) mdllnitializeSampleTimes - here information about the S-function's sampling is

specified. All S-functions used in the CSDE are set to continuous time mode and are

thus executed at every sampling step of the model. If discrete time mode is selected

the S-function will only be updated at the specified sample hits.

(iii) mdlStart - this optional routine contains any application specific initialisation that

needs to be performed once only at the start of the model execution. S-functions

which implement hardware specific drivers might use this call to initialise the

hardware.

(iv) mdlOutputs - here code is included to compute the S-function's output vector. This

function is called at every sampling step of the model.

(v) mdlUpdate - this optional call is performed only once per every major integration

step of the model. Typically it is used to update the discrete state vector.

(vi) mdlDerivatives - all code involved in calculating the derivatives should be placed in

this optional function.

(vii) mdlTerminate - it is a compulsory function and should contain all termination code

for the S-function. Any memory allocated during initialisation should be freed up

here and any hardware devices controlled by the S-function should be placed into a

safe state.

Apart from the function calls listed above, the S-function API also specifies a common data

structure format - SimStruct [MATHW0RKS4, 5]. Each S-function in a Simulink model has a

corresponding SimStruct structure allocated for its private use. In addition there is a single

global (root) SimStruct defined for the model. The various SimStructs in a model are arranged in

a hierarchal manner starting at the root (similar to a directory tree). Each structure contains a

pointer to its parent as well as a pointers to the root. Thus, the root SimStruct will have a NULL

parent pointer and all other SimStructs will point to it. Table 3.2 shows a broad outline of the

SimStruct structure. The SimStruct is a flexible, pointer based data structure, and is scaled

according to the particular needs of the given S-function or model. Some of the fields listed in

Table 3.2 can represent relatively complex structures themselves. To simplify access to the data
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Field

Version

Parent

Root

Sizes

Inputs

Vectors

T

TFinal

TCount

StepSize

MinorTime

StepFlag

States

Utility

Contained Data

version of the SimStruct

this SimStrucfs parent

the root SimStruct \

all size information - e.g. number of inputs, outputs, states, sample times

input arguments passed from the block diagram

vectors - e.g. input, output, states, derivatives, parameters

simulation time - not used for real-time

final simulation time - not used for real-time

additional counter used for accurate time base

sampling time period on which to update

flag indicating that a minor time step is taking place

additional timing information - e.g. skew time, current and next sample time

temporary storage and user defined data

Table 3.2 : S-function API data structure - SimStruct

contained in the SimStruct MathWorks define a host of macros. The subset of macros relevant to

the CSDE can be summarized as follows :

(i) ssSetSolverName - selects the solver to use in integration.

(ii) ssSetNumSFcnParams - sets the number of parameters expected from the block

mask,

(iii) ssSetSFcnParamNotTunable - used to set some of the parameters as not tunable.

Simulink will report an error if the user attempts to change those parameters while

simulation is in progress,

(iv) ssSetNumlnputPorts - sets the number of input ports to the block.
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(v) ssSetlnputPortWidth - sets the vector width for each port.

(vi) ssSetlnputPortDirectFeedThrough - specifies which of the input ports are used

directly in the computation of outputs. Simulink uses this information to set the

update sequence for the blocks in a model.

(vii) ssSetNumOutputPorts - sets the number of output ports from a block.

(viii) ssSetOutputPortWidth - sets the vector width for each output port.

(ix) ssSetNumSampleTimes - specifies the total number of sample times for the block,

(x) ssSetT - forces the simulation time to a specific value,

(xi) ssSetSampleTime - configures the sampling characteristics for a particular sample

time,

(xii) ssSetTFinal - sets the stop time for a simulation run. Setting this to zero indicates an

unlimited time, and is used for most real-time applications,

(xiii) ssSetSolverStopTime - sets the time period for the integration algorithm.

(xiv) ssGetNumSFcnParams - reads the number set by ssSetNumSFcnParams.

(xv) ssGetSFcnParamsCount - returns the actual number of parameters entered by the

user.

(xvi) ssGetSampleTime - reads the sample time setting as set by ssSetSampleTime.

(xvii) ssGetDefaultParam - returns a pointer to the parameter array.

(xviii)ssGetStepSize - returns the base sampling period for the model,

(xix) ssGetChecksum - used to access the checksums calculated for the model by

Simulink. The checksums are used during code generation to match executables

with their corresponding block diagrams,

(xx) ssGetSolverStopTime - reads the value set by ssSetSolverStopTime.

3.4.7 External Mode and Data Logging

The preceding sections introduced the various building blocks of a Simulink block diagram and

showed how S-function can be used to add custom functionality. Sections 3.5 and 3.6 will

describe how a Simulink diagram can be used by the RTW to automatically produce a real-time

prototype. A block diagram can also serve as a remote GUI for the generated prototype, thanks

to Simulink's external mode. External mode establishes and maintains a communication link

between Simulink running on the host platform and the generated prototype code executing on

the target platform as was shown in Fig. 3.3. The execution on the target platform can be started

or suspended in a similar fashion to the traditional Simulink block diagram simulations. Any
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parameter changes are automatically downloaded and updated in the target executable's

SimStruct data structure without interrupting real-time execution. Simulink does not make

provision for data logging and visualisation in real-time and this functionality is implemented in

the CSDE using a custom stand alone utility, Scope. The overall logical interaction is shown in

Fig. 3.11.

User Input -
Commands and

Parameters

User Output -
Graphical data

plots in real-time

t

Simulink in
External Mode

Host PC

' "Scope" v

x(custom Win 95 utility),*

— i
I Target Hardware V

T

Communication Path \
e.g. TCP/IP, ISA, /~~

RS232 /

Generated executable
controller code

•

Fig. 3.11: Simulink external mode and data visualisation
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The external mode communication link can be implemented over a variety of interfaces :

(i) Transmission Control Protocol (TCP) - A Local Area Network (LAN) or an Internet

connection can serve as a medium for external mode,

(ii) Serial Connection - A traditional RS232 port can connect the target platform to the

host PC.

(iii) Dual Port RAM (DPRAM) - targets connected to one of the host's expansion buses

can share an area of memory. This is the method used by the CSDE.

The ability to tap into the target executables data structures and control its execution without

adversely affecting its performance in real-time presents the user with a powerful tool. The

performance of the generated code can be fine tuned on-line while it is responding to real world

inputs.

Also the combination of external mode and data logging allows an easy means to verify, in

real-time, that the generated code performs equivalently to Simulink simulations. Inputs

identical to those used during simulation can be applied to the target and the corresponding

outputs can then be compared graphically on the host work station. This way the user can verify

that the RTW correctly converted a given block diagram into executable code.

The preceding subsections described the design and simulation environment of Simulink. The

following sections will describe how the Simulink diagrams are converted to executable code

customised to a specific hardware platform.

3.5 Real-Time Workshop

The RTW extension to Simulink [MATHW0RKS5] forms an environment whereby Simulink

block diagrams can be converted directly into executable real-time code. The RTW is a starting

point for a true rapid-development environment and allows a direct path from system design,

through simulation to prototyping and final implementation. It can be applied to a variety of

areas :

(i) Real-time control - Control algorithms designed using MATLAB/ Simulink can be

compiled into standalone executables and downloaded to target hardware.
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(ii) Real-time signal processing - MATLAB and Simulink are well suited to the design

of signal processing algorithms which then can be targeted to a DSP platform,

(iii) Hardware-in-the-loop (HIL) simulation - responses of a real life plant can be

included into a simulation at an early stage in the controller design,

(iv) Online real-time parameter tuning - Simulink's External Mode can form a graphical

front-end to a real-time program. Parameters can be changed, and the effects of such

changes observed in real-time, without interrupting controller execution,

(v) High speed stand-alone simulations - performance gains can be achieved by

compiling a Simulink diagram to execute directly on the host platform, without

having to go through the MATLAB interpreter,

(vi) Generation of raw ANSI C code - Simulink diagrams can be exported for use in

other simulation packages.

Within the CSDE, the RTW is used to generate ANSI C code representation of Simulink block

diagrams. The following subsections will introduce the code generation process and show how

custom source code can be linked in.

3.5.1 Code Generation Process

The RTW goes through a three stage process to convert the graphical Simulink model into a

final executable, as shown in Fig. 3.12 :

(i) RTW Build - The graphical block diagram is broken down and described in terms of

an intermediate RTW-file (*.rtw). This ASCII text file contains all information

about the diagram's blocks, hierarchy, interconnections and parameters. A compiler

specific makefile (*.mk) is also generated.

(ii) TLC Parse - The Target Language Compiler parses through the RTW-file and

interprets appropriate TLC-files to create source and header files. A list of all block

parameters in the model is also generated and saved as a parameter file (*.prm).

(iii) Platform Specific Build - A compiler specific to the target hardware is used to

process the generated files and link them to the real-time kernel to produce the final

executable.

After this process is completed, the RTW can be configured to automatically download the

generated executable to the target hardware and start execution.
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Simulmk Model

Target Specific
Template Make File

* System target file
* Block target files
* TLC function library

* Real-Time Kernel
* External Mode

functions

sfunctAW

model.mc

systemXm.

r

r

RTW Build

S-Functions

model.rtv/

f

TLC

>

sfunctXlc

model, c
model, h
/not/e/.prm

r
Custom
Build

>

moaei.mK.\

Target Specific Executable

Fig. 3.12 : Real-Time Workshop Code Generation and Build Process

3.5.2 Structure of the Generated Code

The RTW structures the generated source code into two distinct layers :

(i) Platform Dependant Layer (PDL) - the source code for this layer is not

automatically generated by RTW, and needs to be manually customised specifically

for the targeted platform. The various components of the PDL in the CSDE are

introduced in detail in Chapter 6.
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(ii) Platform Independent Layer (PIL) - the source code here is directly generated by the

RTW from a Simulink diagram and is structured to conform to the S-function API.

Structuring the code in this manner ensures maximum portability - only the PDL needs to be

changed to port the design to a particular target platform. The PIL is isolated from hardware

specific issues and can be ported to any platform which supports the S-function API. Fig. 3.13

demonstrates the basic structure of a RTW generated program. Conforming to the S-function

API means that all data structures in the PIL are kept external to the code using the standard

Simulink SimStruc data structure. This allows an external process to modify a programme's

parameters without interrupting its execution, as mentioned in section 3.4.7.

Platform Dependant Layer (PDL)

Real-Time Kernel - Timing, Interrupt
Handling, External I/O drivers

j External Mode Comms
I and Data Logging

-4-
Platform Inpendant Layer (PIL)

RTW generated code functions and Inlined S-functions

Integration Algorithms

I
Noninlined S-functions Data Structures

Fig. 3.13 : Basic Structure of a RTW Generated Program

3.5.3 Platform Dependent Layer

The Real-Time Kernel (RTW) forms the backbone of the PDL and is specific to a particular

target platform. It serves to isolate the PIL from hardware issues. The RTK needs to ensure that

adequate processing resources are available to meet timing deadlines of the generated code. In
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cases where the target platform does not automatically support multitasking, an emulation

scheme ox pseudo-multitasking can be implemented.

The RTK is also responsible for reserving memory resources for data structures and

dynamically allocating all spare processing time to the external mode comms and data logging

which are defined as low-priority background tasks.

The details of the PDL implementation specific to the PC32 hardware platform are provided in

Chapter 6.

3.5.4 Platform Independent Layer

To generate code for the PIL, the RTW uses the Target Language Compiler (TLC) which is

further introduced in section 3.6. The TLC allows full control over the generated source code. A

separate TLC-file is provided for each standard Simulink block and there are also global

TLC-files. The set of TLC-files shipped with RTW results in the generation of code compliant

with the ANSI C standard. The source code generated for the PIL conforms to the S-function

API as set out in section 3.4.

3.5.5 S-functions in RTW

The use of S-functions provides a powerful mechanism for customising the generated code for

the particular hardware platform. Particularly, S-functions can be used to incorporate hardware

specific driver level code into the final executable. Most hardware platforms targeted by the

RTW will incorporate some form of external inputs and outputs (I/O), as well as a range of

application specific peripherals. These devices can be represented as graphical blocks on the

Simulink block diagram, and the code needed to initialise and drive them can be incorporated

into a S-function.

Two types of S-functions can be used by the Real-Time Workshop :

(i) Inlined S-functions - a separate TLC-file is created for the S-function. During the

build process the TLC uses this file to incorporate, or inline, target-specific code of

the S-function directly into the generated source code.

(ii) Non-inlined S-functions - target-specific code for the S-function is provided in a

standard source file conforming to the S-function API.
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i
Simulation

Code Generation

S func.c

Compile

I
S func.dll

Simulink

S func.tlc

RTW Build

Non-inlined • Lnlined

Fig. 3.14 : Including inlined and non-inlined S-functions into generated code

Fig. 3.14 shows the different steps in including inlined and non-inlined S-functions into

Simulink diagrams as well as the RTW build. Non-inlined S-functions are simpler to manage

but they incur a performance penalty at run-time as all of the API defined procedures have to be

called. In most cases the code for an S-function will be concentrated in only one or two routines.

However, all calls defined in the S-function API have to be declared even if some of them are

left blank. Effectively unused dummy calls are created. Some simple S-functions can end up

wasting more processing time in switching overheads than performing their intended function.
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Inlined S-functions are merged directly into the generated code and thus do not suffer from

losses due to switching between sub-routines. However, writing TLC-files requires the user to

master the Math Works Target Language and would not prove viable for a once-off project.

When processing an S-function block, the TLC will, as default, first search for a corresponding

TLC-file. If found it will be parsed and the code will be inlined along with the standard Simulink

blocks. If no TLC-file is found on the MATLAB path, the standard C-MEX S-function source

file will be added to the make file to be compiled and linked at the final stage.

3.5.6 RTW Limitations

All standard Simulink blocks can be handled automatically by the RTW build process, with two

exceptions :

(1) MATLAB functions and S-function blocks that call m-files first need to be

re-written as either C MEX S-functions or TLC files,

(ii) Any Simulink block which relies on absolute time to compute its outputs, e.g. Sine

Wave Generator. Depending on the target hardware and the specific real-time

kernel, variables used to store absolute time could wrap around and cause

unpredictable results.

3.6 Target Language Compiler

The RTW as introduced above is responsible for co-ordinating the automatic transformation of

a Simulink block diagram into a complete executable. TLC is a tool included with the RTW and

plays an integral role in this process. It parses the intermediate text description of a Simulink

model produced by the RTW and generates a number of source and header files which represent

the model's functionality in terms of a programming language. By default TLC's output is

ANSI C, but it can be customised to any other language.

While parsing through the intermediate RTW-file, the TLC uses a set of TLC-files to generate

its output. This process is highlighted in Fig. 3.15. The TLC-files specify what goes into each of

the output files and by modifying those files the output of the TLC process can be customised.

The changes can range from small platform specific changes to optimise code for size, through
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Block specific TLC-files

.tlc

model. c

RTW intermediate file

model, rtw

Target specific TLC-file

Target Language
Compiler
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r >f
model.reg j wot/e/_export.h

Fig. 3.15 : Target Language Compiler Process

algorithmic changes to optimise for speed, to a complete re-write of all TLC-files to generate

output in a different programming language. A RTW extension is available from MathWorks

which includes a set of TLC files to generate Ada compliant code. In short the TLC can be used

in the following cases :

(i) Changes to the code generated for a particular Simulink block,

(ii) Mining S-functions into the generated code,

(iii) Modify some global aspects of the generated code.

(iv) A complete re-make of the way TLC produces code to target a different

programming language.

Assuming that standard ANSI C code is generated, the TLC will generate the following set of

files starting with the model.rtw intermediate file :

(i) Model.c - C file containing all the generated source code.
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(ii) Model.h - Header file containing all structure definitions needed by the generated

code,

(iii) Model.prm - Include file containing global data declarations and all default

parameter values,

(iv) Modelseg - Include file containing all registration functions and initialisation

routines.

(v) Model_export.h - Header file containing all definitions needed to interface and link

the TLC generated code to the Real-Time Kernel.

A complete description of the MathWorks Target Language is beyond the scope of this thesis

and the relevant documentation should be consulted for this purpose [MATHWORKS 6]. A

brief introduction to the relevant subset of the TLC language is offered in Appendix H.

3.7 Conclusion

This Chapter introduced Simulink and RTW as the foundation of the CSDE. Features of these

software packages relevant to author's work were highlighted. Chapter 4 will introduce

hardware components of the CSDE. Thereafter, Chapters 5, 6, 7 and 8 will describe how the

MathWorks platform was modified and extended to form a complete rapid prototyping system.
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CHAPTER FOUR
TARGET HARDWARE PLATFORM

4.1 Introduction

The previous Chapter introduced the Math Works package which forms the software foundation

of the CSDE. This Chapter will continue by presenting the hardware targeted by the CSDE. The

hardware platform consists of a commercial DSP card, the PC32 from Innovative Integration,

as well as a custom PWM / Tacho expansion card designed in-house at the Electrical

Engineering Department at University of Natal [WALKER1]. The PC32 card is built around the

TMS320C32 floating-point DSP from Texas Instruments (TI). All interfacing between the host

PC and the PC32 is done via the PC's ISA bus. The following subsections will introduce the

various components and focus on issues relevant to the author's work.

4.2 TMS320C32 DSP

The TMS320C32 processor from TI forms the heart of the PC32 controller card. The TMS320

range of DSPs is very popular due to its good price to performance ratio and has been well

documented in literature [CHUNG 1, LIN 1, TRZYNADLO1 ]. This section does not aim to fully

describe the 'C32 but briefly introduces the processor. Fig. 4.1 shows a simplified block

diagram of the processor.

4.2.1 'C32 Architecture

The 'C32 employs a modified version of the Harvard architecture [LIN1]. In a strict Harvard

architecture, the program and data memories are separated, thus permitting simultaneous

fetching of both instruction codes and operands. This setup coupled with pipelining allows the

execution of most instructions in a single processor cycle. The TMS320 family of processors

modifies this architecture to allow transfers between the two memory areas. Thereby the

flexibility is increased while the architecture's inherent processing power is maintained.
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External Busses
and strobes

Program Cache
(64 x 32)

RAM Block 0
(Ikx32)

RAM Block 1
(Ikx32)

Serial Port 0 Serial Port 1 Timer 0 Timer 1

Fig. 4.1 : TMS320C32 Block Diagram

4.2.2 Cache and Pipelining

The 'C32 processor's cache can store up to 64 instructions [TEXASINSTR1]. The cache

maintains a list of the most recently accessed instructions. Before a new instruction is fetched

from external memory the local list is consulted and the cache copy is used if possible. Only the

instruction codes are cached, data memory accesses bypass the cache algorithm. Small, time

critical sections of code can benefit in performance due to the cache, but the code timing

becomes less deterministic. For applications relying on code timing the cache can be disabled.

A four level pipeline is employed on the 'C32 to maximise the processor core usage [LIN1]. A

basic instruction goes through four levels during processing [TEXASINSTR1] :
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(i) Fetch Unit (F) - This unit fetches the instruction words from program memory via

cache (if enabled).

(ii) Decode Unit (D) - The instruction is decoded and pre-processed,

(iii) Read Unit (R) - If required operands are read from external data memory,

(iv) Execute Unit (E) - The required action is performed, registers updated and if

necessary results of previous operations are written to memory.

Each level requires a processor cycle to complete and each instruction can only be at one level at

the time. Pipelining allows four consecutive instructions to occupy all the core levels. Table 4.1

demonstrates the pipeline operation graphically for fictitious instructions a, b, c and d. Under

perfect overlap conditions the 'C32 can be processing up to four instructions in parallel, and

each instruction is at a different stage of its execution.

Cycle \ Unit F

m-3 [ a

m-2 [ b

m-1

m

c

d

m+1 j

m+2

m+3 ||

D

a

b

c

d

...

R

a

b

c

d

E

...

a

b |

c

d

Table 4 .1 : Pipeline Operation for Instructions (a,b,c,d) under Perfect Overlap

4.2.3 Memory Organisation

The 'C32 uses a 32-bit wide data bus and a 24-bit wide address bus. The total addressable

memory range therefore is 224 Words (16 Mwords). Some of this memory space is reserved for

on-chip peripherals, ROM boot loader and interrupt vectors [TEXASINSTR2]. The remaining

address ranges are available for mapping of external memory modules or peripherals. Three

strobe signals control access to various areas of memory :

(i) STRB 0 and STRB 1 control the program and data memory regions.

(ii) IOSTROBE controls memory addresses used for mapping external peripherals.
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Each strobe can be programmed to have a wait state from 0 to 7. This flexibility in wait state

allocation allows for fast program memory to be intermixed with slower data memory chips and

also allows a separate setting for the external peripherals. Section 4.4.1 outlines the memory

usage particular to the PC32 card.

Internally, all memory accesses are treated as 32-bit, but externally each strobe region can be

either 32, 16 or 8 bits wide. The on-chip programmable memory interface of the 'C32 resolves

the data width conflicts. There is a trade off in access speed, however. For example, to access a

word from a 16-bit wide memory, the processor will perform two consecutive 16-bit reads

before using the 32-bit result. Accesses to 8-bit wide devices require 4 bus cycles.

4.2.4 Timers

The 'C32 has two internal programmable 32-bit timer modules. Each module can operate as

either a timer or an event counter and can be clocked either by internal or external signals

~7/ Timer In

Counter 32-bit <—

Period Register j Counter Register
INV

Internal Clock / 2

INV
^ TSTAT (interrupt)

Timer Out

Fig. 4.2 : 'C32 Timer Module Block Diagram
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[TEXSASINSTR1]. Fig. 4.2 shows a simplified block diagram of a 'C32 timer module. Each

module is controlled by three memory mapped registers, detailed in Appendix B :

(i) Global Control Register - determines the operating mode of the timer, monitors its

status and controls the function of the timer's I/O pin (TCLK).

(ii) Period Register - specifies the timers signalling frequency,

(iii) Counter Register - contains the current value of the incrementing counter.

Two flags in the control register specify the timer mode :

(i) FUNC (bit 0) - controls the function of TCLK. If FUNC = 0, TCLK is configured as

a general purpose I/O pin. If FUNC = 1, TCLK is used as the timer pin.

(ii) CLKSRC (bit 9) - specifies the source of the timer input. With CLKSRC = 1, the

internal chip clock is used at half its frequency. If CLKSRC = 0, an external signal

on the TCLK pin will drive the counter.

On the PC32 card, introduced in section 4.4, the two signals from timers 0 and 1 can be used to

trigger the ADC and DAC peripherals. In a control system it is sometimes important to

synchronise I/O sampling to a fixed common clock or to an asynchronous external event as will

be shown in Chapter 9. Using FUNC and CLKSRC flags a total of four different timer modes

can be set up as demonstrated in Table 4.2. Setups (a) and (b) are of particular interest to the

CSDE and are further explained graphically in Fig. 4.3. In both modes the timer input is

independent of the TCLK pin and the timer output can be used to generate internal interrupts via

TSTAT. In mode (a) the TCLK line is isolated from the timer and can be used to patch trigger

No.

a

b

c

d

FUNC

0

1

0

1

CLKSRC

1

1

0

0

Description

TCLK is a general I/O pin, isolated from the timer. Internal
clock drives the timer.

TCLK is the timer output pin. Internal clock drives the timer.

TCLK is a general I/O pin, and the timer is triggered by any
activity on the pin, internal clock is ignored.

TCLK is the timer input pin, internal clock is ignored

Table 4.2 : 'C32 Timer Module Modes
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Timer In

Timer Out

'C32

Int. Clock

T
TSTAT

I/O Port Control

(a) CLKSRC = 1, FUNC = 0

Timer In f

Timer Out f-

Int. Clock

TSTAT

PC32

TCLK

'C32 I PC32

TCLK

External
Expansion

Header

ADC

DAC

External
->j Expansion

Header

ADC

DAC

(b) CLKSRC = 1, FUNC = 1

Fig. 4.3 : Timer Modes (a) and (b)

signals from the PC32 expansion header to the peripherals. Thus, in this mode the I/O sampling

can take place asynchronously to the internal 'C32 clock. In mode (b) the TCLK signal is

derived from the timer and the I/O sampling will be synchronised to the internal clock.
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*(Data_word) = TAUS; /* turn off time */

pollpwm();

*(Data_word) = TTOT; /* dead band */

pollpwm();

*(Data_word) = TMIN; /* turn on time */

pollpwm();

*(Data_word) = VORTL; /* switching frequency scale value */

pollpwm();

*(Data_word) = TSTART; /* start of processing cycle */

*(Status_word) = 129;

%closefile buffer

%<LibMdlStartCustomCode(buffer, "trailer")>

%openfile buffer
/*
dissable the PWM board at terminate
*/

*(Status_word) = 0;
*(Status_word) = 0;

%closefile buffer

%<LibMdlTerminateCustomCode(buffer, "trailer")>

%endfunction

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */

*(Status_word) = 129;

pollpwm();

*(Data_word) = (int)%<LibBlockInputSignal(0, "", "", 0)>;

pollpwm();

*(Data_word) = (int)%<LibBlockInputSignal(0, "", "", 1)>;

if ((int)%<CtrlMode> == 1) /* skip three values to write frequency */

pollpwm();

* (Status_word) = 897;

pollpwm();

*(Data word) = (int)%<LibBlockInputSignal(0, "", "", 2)>;
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%endfunction %% Outputs

G.1.6Source Listing of Upload.tlc

%% Abstract:
%% A TLC file for upload channels. Implements one channel at a time
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "Upload" "C"

%include "iilib.tlc"

%function BlocklnstanceSetup(block, system) void

%if EXISTS("UpldSeen")
%assign ::UpldSeen = ::UpldSeen + 1

%else
%assign ::UpldSeen = 1
%openfile buffer
extern QUEUE queue[] ;
extern unsigned int buffer_size[];
extern unsigned int Down_Sample[] ;
extern int queue_error;
extern int NumQueues;
extern LogData;
extern channel_map[];
%closefile buffer
%<LibCacheDefine(buffer) >

%endif

%openfile buffer

#ifdef UPLD_YES
buffer_size[%<UpldSeen>-1] = (unsigned int)%<LibBlockParameter(PI,"",

" " , 0 ) > ;
Down_Sample[%<UpldSeen>-l] = (unsigned int)%<LibBlockParameter(P3,"",

" " , 0) > ;
NumQueues = %<UpldSeen>;

if (!queue_init(&queue[%<UpldSeen>-l], (2*buffer_size[%<UpldSeen>-l])))

{
#ifdef IO_ENABLE
printf("Memory allocation error in %<Name>\n");

#endif

gueue_error = TRUE;
LogData = FALSE;

}
else
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ttifdef IO_ENABLE
printf("%d memory words allocated for %<Name>\n",

2*buffer_size[%<UpldSeen>-l]);
#endif

LogData = TRUE;

}

#endif

%closefile buffer

%<LibMdlStartCustomCode(buffer, "trailer")>

%openfile buffer

free(queue[%<UpldSeen>-1].base);

ftifdef IOJENABLE
printf("Memory freed for %<Name> (%<ParamSettings.FunctionName>)\n");

#endif

%closefile buffer

%<LibMdlTerminateCustomCode(buffer, "trailer")>

%openfile buffer

/* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */

if (LogData)

{
Down_Sample[%<UpldSeen>-1]
if (Down_Sample[%<UpldSeen>-l]==0) /*capture this sample*/

{
channel_map[%<UpldSeen>-l]=%<LibBlockParameter(P2,"","",0)>;
•((volatile float*)enqueue_ptr(&queue[%<UpldSeen>-l])) =

%<LibBlockInputSignal(0, "", "", 0)
Down_Sample[%<UpldSeen>-l] = (unsigned int)%<LibBlockParameter(P3,"",

" " , 0 ) > ;

}

%closefile buffer

%<LibSystemOutputCustomCode (system, buffer, "trailer")>

%endfunction
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Appendix H
H.I Target Language Compiler

The TLC is a tool included with the RTW. It parses the intermediate files generated by the RTW

build process as well as the necessary set of TLC files to generate source code for the

corresponding Simulink model [MATHW0RKS6]. This appendix provides a brief introduction

to writing TLC files.

H.2 TLC Directives

All TLC files consist of series of statements in the following form :

%keyword [argumentl, argument2, ]

Where keyword represents one of the TLC directives listed in Fig. H.I and arguments define

an expression or parameter. The line below illustrates the use of the directive assign to change

the value of the variable myjnum :

%assign my_num = your_num + 1

Directive Type

comment

TLC expression

conditional inclusion

macro definition

General Syntax

%% comment t ex t

/% comment text %/

%<expression>

%if expression

%else

%elseif expression

%endif

%define identifier argument-list

%undef identifier

Fig. H.I : TLC Directives
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Directive Type

! multiple inclusion

General Syntax

%foreach variable

%break

%continue

%endforeach

= expression

output file control %openfile identifier

%closefile

%flushfile identifier

%selectfile identifier

debug statements %error error-text

%warning warning-text

%trace trace-text

%exit exit-text

identifier definition %assign [::]variable = expression

TLC functions %function identifier (optional-arguments ) [Output|void]

%return

%endfunction

Fig. H.I : TLC Directives (continued)

H.2.1 Comments and Line Parsing

All lines contained between the /% and %/ directives are treated as comments and omitted

during the TLC parse. The %% directive specifies a line based comment - all characters

between the directive and the end of the line become a comment.

Non-directive lines outside of comment directives are copied verbatim to the output buffer.

Non-directive lines are lines which do not have % as their first non-blank character.
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Long TLC statements can be broken down to span a number of lines. To indicate line

spanning either the C language \ character or MATLAB ... sequence can be used. This

mechanism allows code to be kept more readable.

H.2.2 Expressions

Statements contained within a TLC expression can include a mixture of variables, constants,

logic and arithmetic constructs. During the parse the TLC evaluates the complete expression

and substitutes it with the result. Expressions appearing on directive lines do not need to be

delimited by the %< > directives.

H.2.3 Conditional Inclusions

The %if directive allows a conditional inclusion of TLC code sections based on the value of

an expression. If the expression evaluates to zero the statements between the corresponding

%if and %elseif or %endif directives are omitted during the parse. Any other result of the

expression is considered as true and the statements are included.

The %elseif directive allows the nesting of a number of conditional inclusions. If a %elseif

directive appears without a preceding %if it does not cause an error and is simply treated the

same as a %if.

H.2.4 Multiple Inclusions

The %foreach directive allows multiple inclusion loops to be generated. The loop variable is

incremented from 0 to the value of the expression minus 1. For example :

%foreach x = max_loop

could be equated to the following ANSI C statement:

for(x = 0; x < max_loop; x++)

Within the loop the value of the loop variable can be used in expressions. To exit a loop

before the loop variable reaches its maximum the %break directive can be used. The

directive %continue forces the next iteration of the loop.
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H.2.5 File Output

The %openfile directive allows the channelling of the non-directive lines' output to either a

local buffer or a external file. A number of buffers and files can be open simultaneously and

access to them can be controlled using the %selectfile directive. The %closefile directive

closes the corresponding buffer or file and if the closed file was currently selected, the

selection is moved to the last previously selected file.

H.2.6 Debug Messages

The various debug directives allow text to be printed to the MATLAB command window

during the TLC parse. This functionality is especially useful during the debugging stages.

Various levels of message priority can be specified by using the different debug directives.

TLC command line option -v allows the blocking of selected message levels. The debug

directive %exit always causes its text arguments to be displayed and stops the TLC process.

H.2.7 Macro Definitions

To simplify complicated references macros can be defined. The macros are automatically

expanded to their full content during the TLC parse. The %define directive allows definition

of macros and is similar in use to the ANSI C #define compiler directive. The %undef

directive removes the previously defined macro.

H.2.8 Identifier Definitions

Variable identifiers can be defined and their data type is automatically determined from the

initial assignment. The %assign directive is used to introduce a new variable aor to modify

the contents of an existing one. All defined variables are only visible within the scope of their

function. To access variables globally the :: operator is used before the variable name.

H.2.9 TLC Functions

The TLC functions are recursive and have their own variable scopes. No output is produced

by the functions of type void unless they use the %openfile directives explicitly. Functions

defined as Output automatically channel their output to the currently selected file or buffer.
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Appendix I
I.I External Mode Communication

This appendix list source code for the ext_PC32.c file which implements the external mode

comms under Simulink on the host side. When compiled it produces ext_PC32.dll.

1.1.1 Source Listing of ext_PC32.c

/*
External comms . dll for use with Simulink and Innovative Integration PC32
*/

#include <stdlib.h>
#include <math.h>
#include "mex.h"
#include "windows.h"
#include "target.h"
#include "cardinfo.h"

CARDINFO* dsp;

volatile unsigned long* dpram; /* 4 bytes long = 32bit */

int starting=O;

int handshake (int opt)

{

int count=0, got_it=0;

dpram[0] = (OxAAAO + opt); /* Send the sync + option to target */

target_interrupt (0) ,-
while((count<50) && !((dpram[0] & OxFFFO)==0xABC0))

/* wait for acknowledge */
{

count++;
Sleep(100);

}
if (count<50)

{
got_it = dpram [0] & OxOOOF;

}
return got_it;

}
/* Function: mdlCommlnitiate

* Abstract:
* Inititate communication with the host and pass down initial parameter
* values.
*/

int mdlCommlnitiate(
int block param count, /*total number of block parameters*/
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double *block_params,
const char *model_name,
const uint32_T model_checksum[]
int nrhs,
const mxArray *prhs[] ,
char *error_message

/•length = block_param_count */
/*model name */
/*128 bit model checksum */
/*number of additional arguments */
/* additional arguments */
/* error message for SIMULINK */

int xxx=O;

mexPrintf("\n\nExternal mode initiation for model

if (target_open(0))

%s\n",model name);

printf("Target Open. \n");
dsp = target_cardinfo(0);
dpram = (volatile unsigned long*)dsp->DualPort.PhysAddr;

dpram [1] = model_checksum [0] ,-
dpram[2] = model_checksum[1];
dpram[3] = model_checksum[2] ;

dpram[4] = model_checksum[3];

mexPrintf("Verifying checksums .... ") ;

if (handshake (4) == 4)
mexPrintf("0K!\n");
XXX = 0;
starting = 1;

else

{
mexPrintf("FAILED!\n");
XXX = -1;
mexPrintf("Checksum error. Recompile/Reload Diagram!\n");

return xxx;
} /* end mdlCommlnitiate */

/* Function: mdlGetScopelnputs

* Abstract:
* Upload scope inputs from target.
*/
int mdlGetScopelnputs(

int scope_input_cnt, /*
double *scope_inputs, /*
double *t, /*
const char *model_name, /*
const uint32_T model_checksum[], /*
int nrhs, /*

*prhs[], /*
*error_message /*

const mxArray
char

Number of scope inputs */
Pointer to the scope inputs */
Pointer to time
the model name
128 bit model checksum
# of additional arguments
additional arguments
error message for SIMULINK

*/
*/
*/
*/
*/
*/

/* Not supported yet under Simulink 2.2 - for future use.*/
return 0; /* no errors */

/* Function: mdlGetBlockOutputs
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* Abstract:
* Upload block outputs from target.

int mdlGetBlockOutputs(
block_output_cnt, /*
*block_outputs, /*
*t, /*
*model_name, /*

const uint32_T model_checksum[] , /*
int nrhs, /*

*prhs[], /*
*error_message /*

int
double
double
const char

const mxArray
char

Number of block outputs */
Pointer to block outputs */
Pointer to time */
the model name */
128 bit model checksum */
# of additional arguments */
additional arguments */
error message for SIMULINK*/

/* Not supported yet under Simulink 2.2 - for future use.*/
return 0; /* no errors */

/* Function: mdlSetParameters

* Abstract:
* Download parameter changes to the target

int mdlSetParameters(
int
double
int
int
const
const
int
const
char

char
uint32 T

mxArray

block param count
•block params,
num changed,
•elems,
•model name,
model checksum[],
nrhs,
*prhs[] ,
•error message

'* number of block parameters •/
length = block_param_count

'* # of changed parameters
'* indices of changed params
'* the model name
/+ 128 bit model checksum
'• # of additional arguments
f* additional arguments
'* error message for SIMULINK

*/
*/
*/
*/
*/
*/
*/

int i,xxx=0,count=0,temp;
union {

float f;
unsigned long u;
} bl_param;

mexPrintf("\n");

for (i=0; i<num_changed; i

}

dpram[l] = elems[i];
bl_param.f = block_params[elems[i] ];

dpram[2] = bl_param.u;

if (handshake(2) == 2)

mexPrintf("Changed parameter P[%d] = %g\n",elems[i], bl_param.f);

else
mexPrintf("Handshake Failed\n") ;
xxx= 1 ,•

if (!xxx & starting)
/•First time we downloaded params, need to tell target*/
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mexPrintf("Starting execution....");

if(handshake(1) == 1)

mexPrintf("OK!\n");
XXX=0;
starting=O;

mexPrintf("Output to Terminal is %s.\n",
(dpram[3] & 1) ? "ON" : "OFF");

mexPrintf("Timer 0 is %s used for base sample time.\n",
(dpram[3] & 2) ? "" : "NOT");

mexPrintf("Data Uploads are %s.\n",

(dpram[3] & 4) ? "ON" : "OFF");

else

mexPrintf("Failed!\n"); xxx=l;}

return xxx;

/* Function: mdlCommTerminate

* Abstract:
* Terminate communication with the host.
*/

int mdlCommTerminate (
const char *model_name, /* the model name */
const uint32_T model_checksum[], /* 128 bit model checksum */
int nrhs, /* # of additional arguments */
const mxArray *prhs[], /* additional arguments */
char *error_message /* error message for SIMULINK */

int xxx=0;

mexPrintf("Terminating Comms .... ") ;

if (handshake(3) == 3)

mexPrintf("DONE!\n");
target_close(0);
xxx= 0,-

}
else

mexPrintf("FAILED!\n") ;
XXX=-1;
mexPrintf("Target program did not respond!");

return xxx;
}

#include "ext_main.c" /* MEX glue */

/* [EOF] ext PC32.C */
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Appendix J
J.I Display Utility

This appendix list the source code for the Display utility. The utility was generated using the

Microsoft Visual Studio and some of the code is automatically generated, thus only relevant

excerpts are listed to conserve space.

J.I.I Source for DisplayChildFrm.cpp

// DisplayChildFrm.cpp : implementation file
//

#include "stdafx.h"
#include "Display.h"
#include "DisplayChildFrm.h"
#include "ChildPropDlg.h"
#include "math.h"
ttifdef _DEBUG

#define new DEBUG_NEW
#undef THIS_FILE

static char THIS_FILE[] = FILE ;
#endif

I III 1111 III 11 III III III 11 III I III III III I III 1111IlllI III 111 III 11111111111 III I

II CDisplayChildFrm

IMPLEMENTJ3YNCREATE(CDisplayChildFrm, CFrameWnd)

extern CDisplayApp theApp;

CDisplayChildFrm::CDisplayChildFrm()

{
Create(NULL, " " ) ;
num_samples=200;
y_span=10 0;
trigg_level=0;
trigg_reset=FALSE;
use_trigger=FALSE;
for (UINT i=0; i<1000; I++)

samples [i] .x=i;

CDisplayChildFrm::-CDisplayChildFrm()
{

BEGIN_MESSAGE_MAP(CDisplayChildFrm, CFrameWnd)
//{{AFX_MSG_MAP(CDisplayChildFrm)
ON_WM_PAINT()
ON_WM_SIZE()
ON_WM_CLOSE()
ON_WM_LBUTTONDBLCLK()
ON_WM_SHOWWINDOW()
//}}AFX_MSG_MAP
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END_MESSAGE_MAP()

IIIIIIIIIIIII IIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II111III
II CDisplayChildFrm message handlers

void CDisplayChildFrm::OnPaint()

{
CPaintDC dc(this); // device context for painting

// draw zero line
dc.MoveTo(0, size.y/2);
dc.LineTo(size.x, size.y/2);

dc.Polyline(samples, num_samples);

void CDisplayChildFrm::OnSize(UINT nType, int ex, int cy)

{
CFrameWnd::OnSize(nType, ex, cy) ;

if (nType!=SIZE_MINIMIZED)

{
size.x=cx;
size .y=cy;
if (size.x<num_samples) num_samples = size.x;
for (UINT i=0; i<=num_samples; I++)
{

samples[i].x=(i*size.x)/num_samples;

}

BOOL CDisplayChildFrm::PreCreateWindow(CREATESTRUCT &cs)

static UINT my_x, my_y;

cs.cx = 212;
cs.cy = 10 0;

return CFrameWnd::PreCreateWindow(cs) ;

void CDisplayChildFrm::OnClose()

theApp.active_child[my_num]=FALSE;

CFrameWnd::OnClose();

void CDisplayChildFrm::OnLButtonDblClk(UINT nFlags, CPoint point)

RECT temp_rect;

ChildPropDlg temp_dlg;

temp_dlg.DoModal(my_num, point);

if (size.x<num_samples) //check if we need to expand the window

size.x=num_samples;
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GetWindowRect(&temp_rect);
SetWindowPos(NULL,0,0, size.x, temp_rect.bottom-temp_rect.top,

SWP_NOMOVE | SWP_NOZORDER);

for (UINT i = 0; i<=num_samples,- I + + )
samples[i].x=(i*size.x)/num_samples;

RedrawWindow();

CFrameWnd::OnLButtonDblClk(nFlags, point);

}

J.I.2 Source for DispIayDlg.cpp

// DispIayDlg.cpp : implementation file
//

#include "stdafx.h"
#include "Display.h"
#include "DisplayDlg.h"
#include "DisplayChildFrm.h"

tfifdef _DEBUG
#define new DEBUG_NEW

#undef THIS_FILE
static char THIS_FILE[] = FILE ;

ttendif

11111111111111111111111111111111111111111111111111111111111111111111111111
II CAboutDlg dialog used for App About

class CAboutDlg : public Cdialog
{
public:

CAboutDlg();

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFXJVIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
//}}AFX_VIRTUAL

// Implementation
protected:

//{{AFX_MSG(CAboutDlg)
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{
//{{AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT

}
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void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//}}AFX_DATA_MAP

}
BEGIN_MESSAGE_MAP(CAboutDlg, Cdialog)

//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers

//}}AFX_MSG_MAP
END_MESSAGE_MAP()

II1111111II III I III III I III 111 III III I III IIlllllIIIII1111II111 III I III 11111111
//CDisplayDlg dialog

CDisplayDlg::CDisplayDlg(CWnd* pParent)
: CDialog(CDisplayDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CDisplayDlg)
m_num_channels = 0;
m_target = 0;

//}}AFX_DATA_INIT
m_hlcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CDisplayDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
//{(AFX_DATA_MAP(CDisplayDlg)
DDX_Text(pDX, IDC_EDIT1, m_num_channels);
DDV_MinMaxUInt(pDX, m_num_channels, 0, 10);
DDX_Text(pDX, IDC_EDIT2, m_target);
DDV_MinMaxUInt(pDX, m_target, 0, 5);
//} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CDisplayDlg, Cdialog)
//{{AFX_MSG_MAP(CDisplayDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDOK, OnOk)
ON_WM_CLOSE()
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

III I III I III I III III II III III I III I III IIIIlllIII III I III 1111 III 11111 IIIIlll1111
//CDisplayDlg message handlers

BOOL CDisplayDlg::OnInitDialog()

{
CDialog: :OnInitDialog () ,-

// Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range.
ASSERT ( (IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
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CString StrAboutMenu;
strAboutMenu. LoadString (IDS_ABOUTBOX) ,-
if (!strAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu (MF_SEPARATOR) ;
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,

strAboutMenu)

Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

return TRUE;

}

void CDisplayDlg::OnSysCommand(UINT nID, LPARAM lParam)

{

if ((nID & OxFFFO) == IDM_ABOUTBOX)

{
CAboutDlg dlgAbout;
dlgAbout.DoModal();

}
else

{
CDialog::OnSysCommand(nID, lParam);

}

void CDisplayDlg::OnPaint()

{
if (IsIconicO)

{

CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0)

// Center icon in client rectangle

int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect (&rect) ;
int x = (rect.Width() - cxlcon + 1 ) / 2;
int y = (rect.Height() - cylcon + 1 ) / 2;
// Draw the icon
dc.Drawlcon(x, y, m_hlcon);

}
else

{
CDialog::0nPaint();

}

HCURSOR CDisplayDlg::OnQueryDragIcon()

{
return (HCURSOR) m_hlcon;

}
extern CDisplayApp theApp;

void CDisplayDlg::OnOk()
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char title [100] ;
WINDOWPLACEMENT wpl;

for (UINT i=0; i<m_num_channels; I++)
if (theApp.active_child[i])
{

theApp.child[i]->DestroyWindow();
theApp.active_child[i]=FALSE;

}
if(UpdateData())

{
for (i=0; i<m_num_channels; I++)

{
theApp.child[i] = new CDisplayChildFrm;
sprintf(title,"CH #%d",i);
theApp.child[i]->ShowWindow(SW_SHOW);
theApp.child[i]->UpdateWindow();
theApp.child[i]->SetWindowText(title) ;
theApp.active_child[i]=TRUE;
theApp.chiId[i]->my_num= i;
theApp.queue[i].head = 0;
theApp.queue[i].trigg = 0;
theApp.queue[i].tail = 0;

for (UINT j=0; j<5000; j++)

theApp.queue [i] .sample [j] = 0;
}

theApp.num_children=m_num_channels;

if(!target_open(m_target))

{
sprintf(title, "Unable to open Device Driver for target %d\n"

"Check target number setting", m_target);
MessageBox(title, "FATAL ERROR", MB_ICONINFORMATION);
PostQuitMessage(0) ;

}
// Set up the Virtual ISR
host_interrupt_install(m_target, EnqueueData, (PVOID)m_target);
host_interrupt_enable(m_target) ;

// Set DPRAM addrss
theApp.dsp = (CARDINFO*) target_cardinfo (m_target) ,-
theApp.dpratn = (volatile int*)theApp.dsp->BusMaster.Addr;

if (theApp.pThread==NULL) theApp.pThread = AfxBeginThread(ThreadFunc,
NULL);

// tell target we are ready for data
theApp.dpram [4] &= OxFFFE;

GetWindowPlacement(&wpl);
wpl.showCmd=SW_MINIMIZE;
SetWindowPlacement(&wpl);

}

inline long enqueued(UINT num)

{
long depth = theApp.queue[num].head - theApp.queue[num].tail;
return ((depth < 0) ? (depth + Q_SIZE) : depth);
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inline float dequeue(UINT num)

float value = theApp.queue[num].sample[theApp.queue[num].tail++];
if (theApp.queue[num].tail == Q_SIZE) theApp.queue[num].tail=0;
return (value);

inline void enqueue(UINT num, float value)

theApp.queue[num].sample[theApp.queue[num].head++]=value;
if (theApp.queue[num].head == Q_SIZE) theApp.queue[num].head=0;

UINT ThreadFunc(LPVOID pPtr)

{
while (1)

{
for (UINT j=0; j<theApp.num_children;
if ((theApp.active_child[j]) &&

(enqueued(j)>=theApp.child[j]->num_samples))
{
if (theApp.child[j]->use_trigger)
{

//looking for trigger reset
while((enqueued(j)>=theApp.child[j]->num_samples)&&

(!theApp.child[j]->trigg_reset) )
{

if ((int)dequeue(j)<theApp.child[j]->trigg_level)
theApp.child[j]->trigg_reset = TRUE;

} //looking for new trigger
while((enqueued(j)>theApp.child[j]->num_samples)&&

(theApp.child[j]->trigg_reset))
{

if ((int)dequeue(j)>=theApp.child[j]->trigg_level)

{
theApp.child[j]->trigg_reset = FALSE;
for (int i=0; i<theApp.child[j]->num_samples; i

{
{
theApp.child[j]->samples[i]. y =

((float)(theApp.child[j]->size.y/2) *
(1-(float)dequeue(j) /

(float)theApp.child[j]->y_span) ) ;
}
theApp.child[j]->RedrawWindow();

}
else //no trigger needed

{
for (int k=0; k<theApp.child[j]->num_samples; k++)
theApp.child[j]->samples[k].y =

((float)(theApp.child[j]->size.y/2) * (1-(float)dequeue(j) /
(float)theApp.child[j]->y_span));

theApp.child[j]->RedrawWindow();

,'
Sleep (0);
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VOID EnqueueData (PVOID pvoid)

UINT I;
long offset;
unsigned long buffer_size;
int buffer_num;
union {

float f;
unsigned long u;
} plot_data;

offset = 0;
buffer__num = theApp. dpram [5 + offset++];
buffer_size = theApp.dpram[5 + offset++];

while ((buffer_num !=999) && (offset < 1000))

for (i = 0; i < buffer_size; I++)

plot_data.u = theApp.dpram [5 + offset + + ] ;

enqueue(buffer_num, plot data.f);
}
buffer_num = theApp.dpram[5 + offset++];
buffer_size = theApp.dpram[5 + offset + + ] ;

//signal to target that we are finished reading
theApp.dpram[4] &= OxFFFE;

void CDisplayDlg: :OnClose ()

for (UINT i=0; i<m_num_channels; I++)
if (theApp.active_child[i])

theApp.child[i]->DestroyWindow() ;
theApp.active_child[i]=FALSE;

}

CDialog::OnClose ();
}

J.1.3 Source for ChildPropDIg.cpp

// ChildPropDIg.cpp : implementation file

#include "stdafx.h"
#include "Display.h"
#include "ChildPropDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW

#undef THIS_FILE
static char THIS_FILE[] = FILE ;

#endif

IllllllII IIIIllllllllllllllIII IIIIllllllllllllllllllllllllllllllllllllllll
II ChildPropDlg dialog
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ChildPropDlg::ChildPropDlg(CWnd* pParent)
: CDialog(ChildPropDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(ChildPropDlg)
m_num_samples = 0;
m_trigg_level = 0;
m_y_span = 0;
m_use_trigger = FALSE;
//}}AFX DATA_INIT

}
void ChildPropDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(ChildPropDlg)
DDX_Text(pDX, IDC_EDIT1, m_num_samples);
DDV_MinMaxUInt(pDX, m_num_samples, 20, 1000);
DDX_Text (pDX, IDC_EDIT4, m_trigg_level) ;
DDV_MinMaxInt(pDX, m_trigg_level, -32000, 32000);
DDX_Text(pDX, IDC_EDIT2, m_y_span);
DDV_MinMaxUInt(pDX, m_y_span, 0, 32000);
DDX_Check(pDX, IDC_CHECK1, m_use_trigger);
//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(ChildPropDlg, Cdiaiog)
//{{AFX_MSG_MAP(ChildPropDlg)
ON_BN_CLICKED(IDOK, OnOk)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

11 III III I III 111111II11 III 11III III III111111111111 III III 111 III 11111 III III III
II ChildPropDlg message handlers

extern CDisplayApp theApp;

void ChildPropDlg::OnOk()

{
if (UpdateData ())

{
theApp.child[m_child_num]->num_samples = m_num_samples;
theApp.child[m_child_num]->y_span = m_y_span;
theApp.child[m_child_num]->trigg_level = m_trigg_level;
theApp.child[m_child_num]->use_trigger = m_use_trigger;
EndDialog(TRUE);

}

int ChildPropDlg::DoModal(UINT child_num, CPoint cPt)

{
m_child_num=child_num;
m_y_span=theApp.child[child_num]->y_span;
m_num_samples=theApp.child[child_num]->num_samples;
m_trigg_level=theApp.child[child_num]->trigg_level;
m_use_trigger=theApp.child[child_num]->use_trigger;
return CDialog::DoModal();

}
BOOL ChildPropDlg::PreCreateWindow(CREATESTRUCT& cs)

{
cs.x=m_cPt.x;
cs .y=m_cPt. y ,-
return CDialog::PreCreateWindow(cs) ;
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APPENDIX K
K.1 RTW Build Example

This Appendix presents a step-by-step example of the RTW build. It is shown how a simple

block diagram is converted into ANSI C source code and compiled into an executable.

K.2 Block Diagram

The Simulink block diagram Example is shown in Fig. L. 1. It is assumed that an external trigger

event is connected to the EIO interrupt of the 'C32. Each time EIO is triggered the AD

TRIGGER block executes, and starts a conversion on the four ADC channels. The end of

conversion signal from the ADC in turn triggers the Ell interrupt and the Process subsystem

executes. The contents of the Process subsystem block are shown in Fig. K.I.

File Edit View Simulation Format Tools

EID

EI1

EI2

EI3

TMRO

TMR1

>

l
TriggerO

Process

V

Trigger^

AD TRIGC-ER

PC32 Int Support

3 Process
File £dit View .Simulation Format Tools

<0
Trigger

PC32 ADC PC32 DAC

Fig. K.I : Simulink diagram used in the RTW example
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The overall effect of this setup is a simple feed-through from ADC channel 0 to DAC channel 0.

The sampling rate is determined by the signal driving EIO and the gain can be adjusted

dynamically.

K.2.1 Setting up RTW Parameters

The simulation parameters dialog box for the Example diagram is shown in Fig. K.2. The code

generation switches are set as follows :

(i) TMRO = NO - the diagram will be triggered asynchronously by and external event,

thus there is no need to use timer 0 to generate a clock,

(ii) UPLD = NO - there are no scope upload blocks used in the diagram, thus all data

buffering and uploading functions will be excluded,

(iii) IO = DISABLE - the debug printouts to the terminal emulator will be disabled.

\~4 Simulation parameters: Example I XI:

Solver Workspace I/0 Diagnostics RTW

Code generation

System target file: Piffle ™ *"*"

P~ Inline parameters [~ Retain.rtwfile

Build options

Template makefile: I pc32.trnf

Make command:

RTW External

I make_rt'A> TMR0=NO UPLD=NO IO=DISABLE

F" Generate code only

Build

Apply Revert Help Close

Fig. K.2 : RTW Simulation parameters dialog
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K.3 The Build Process

After initiating the RTW build by clicking on the Build button, the progress can be followed in

the MATLAB command window. The output generated during building of the Example

diagram is listed below (some lines are truncated due to the limited line length) :

### Starting RTW build procedure for model: Example

Using fixed-step discrete time solver for model 'Example1.

### Invoking Target Language Compiler on Example.rtw

tic -r Example.rtw C:\MATLAB\rtw\c\ii\ii.tlc -0. -IC:\MATLAB\rtw\c\ii -Ic:

### Loading TMW TLC function libraries

### Initial pass through model to cache user defined code

Warning - No code will be generated for ISR 2 since it is not connected to any-

Warning - No code will be generated for ISR 3 since it is not connected to any-

Warning - No code will be generated for ISR 4 since it is not connected to any

Warning - No code will be generated for ISR 5 since it is not connected to any

### Creating (RealTime) source file Example.c

### Creating part 1 of registration file Example.reg

### Creating parameter file Example.prm

### Creating model header file Example.h

### Creating part 2 of registration file Example.reg

### TLC code generation complete.

### Creating project marker file: rtwproj.tmw

### Creating Example.mk from pc32.tmf

### Building Example: gmake -f Example.mk TMR0=NO UPLD=N0 IO=DISABLE

c:\fltc\cl3 0 c:\matlab\rtw\c\ii\ti_fpc\PC32main.c

[pc32main.c]

c:\fltc\cl30 C:\MATLAB\rtw\c\src\rt_sim.c

[rt_sim.c]

c:\fltc\cl30 C:\MATLAB\rtw\c\libsrc\rt_matrx.c

[rt_matrx.c]

c:\fltc\cl30 Example.c

[example.c]

echo PC32main.o30 rt_sim.o30 rt_matrx.o30 Example.o30 > Example.lin

echo C:\MATLAB\rtw\c\ii\ti_fpc\pc32func.o30 » Example.lin

echo C:\MATLAB\rtw\c\ii\ti_fpc\iiPC32.cmd >> Example.lin

c:\fltc\lnk30 -x -a -cr -heap 0x2000 C:\MATLAB\rtw\c\ii\ti_fpc\vectors.obj

TMS32 0C3x/4x COFF Linker Version 4.70

Copyright (c) 1987-1996 Texas Instruments Incorporated

echo Completed Example.out
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Completed Example.out

### Downloading Example: gmake -f Example.mk download TMR0=NO UPLD=NO IO=D

C:\MATLAB\rtw\c\ii\D_Load.exe Example.out

### Successful completion of RTW build procedure for model: Example

Firstly, the TLC parse process generates all source code into files Example.c, .reg, .h and .prm.

The last file generated is the customised make file Example.mk. These files will be discussed in

more detail in the following sections. Next, it can be seen how the source code files are compiled

and linked by the TI tools. The final executable, Example.out, is downloaded to the target after

the successful completion of all preceding steps.

K.4 Header File

The generated header file, Example.h is listed below :

/*
* Example.h

*

* Real-Time Workshop code generation for Simulink model "Example".

*

* RTW file version : 2.11 (Aug 28, 1997)

* RTW file generated on : Fri Nov 12 08:34:15 1999

* TLC version : 1.0 (Dec 12 1997)

* C source code generated on : Fri Nov 12 08:34:15 1999

*

* Relevant TLC Options:

* InlineParameters = 0

* RollThreshold = 5

* FileSizeThreshold = 50000

* CodeFormat = RealTime

*/

#ifndef _RTW_HEADER_FILE_

ttdefine _RTW_HEADER_FILE_

ttdefine assert(exp)

#include "simstruc.h"

#define CODEGENERATOR_VERSION "2.2"
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#define MODEL_NAME Example

#define NMODES (0) /* Number of block mode elements */

#define NSAMPLEJTIMES (2) /* Number of sample times */

#define NINPUTS (0) /* Number of model inputs */

#define NOUTPUTS (0) /* Number of model outputs */

#define NSTATES (0) /* Number of states (total) */

ttdefine NDSTATES (0) /* Number of discrete states */

ttdefine NBLOCKIO (4) /* Number of data output port signals */

ttdefine NUM_ZC_EVENTS (0) /* Number of zero-crossing events */

ttifndef NCSTATES

# define NCSTATES (0) /* Number of continuous states */

ttelif NCSTATES != 0

# error Invalid specification of NCSTATES defined in compiler command

#endif

/* include header files for II 0/S calls */

ttinclude "periph.h"

ttinclude "dsp.h"

/*

define addresses for AD & DA Triggering

*/

ttdefine ADC0 (volatile int*) 0x810000

ttdefine ADC1 (volatile int*) 0x810800

ttdefine ADC2 (volatile int*) 0x811000

ttdefine ADC3 (volatile int*) 0x811800

/* define addresses for control registers */

ttdefine GC_CTRL0 (volatile int*) 0x808020

ttdefine GCCTRL1 (volatile int*) 0x808030

/ *

redefine arguments for ISR: <Root>/AD TRIGGER

* /

ttdefine Sys_root_AD_TRIG_OutputUpdate(rtS,controlPortldx,tid) c_int01()

/ *
redefine arguments for ISR: <Root>/Process

* /

ttdefine Sys_root_Process_OutputUpdate(rtS,controlPortldx,tid) c_intO2 ()

ttifndef TRUE
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# define TRUE (1)

#endif

#ifndef FALSE

# define FALSE (0)

#endif

/*

* Block I/O Structure

*

* Note: Individual field names are derived from the signal name when present,

* otherwise, field names are derived from the source block name with an

* optional port number appended to the block name if the block has multiple

* output ports. The comment to the right of structure field contains the

* signal source block name.

*

*/

typedef struct BlocklOtag {

real_T sl_S_Functionl;

real_T s4_S_Function[4] ;

realT s3_Gain;

realT s2_S_Function[6] ;

} BlocklO;

/* Source: sl_S_Functionl */

/* Source: s4_S_Function */

/* Source: s3_Gain */

/* Source: s2 S Function */

* Default Parameters Structure

*

* Note: The structure names are derived from the block name and the

* structure fields are derived from the block parameter name. The

* comment to the right of the structure field contains the actual

* contents of the dialog box entry.

typedef struct Parameters_tag {

struct {

real_T Gain;

} s3_Gain;

struct {

realJT PlSize[2];

real T PI;

/* Block Type: Gain */

/* Dialog Entry: 1 */

/* Block Type: S-Function */

/* PISize */

/* PI */
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real_T P2Size[2];

realJT P2;

real_T P3Size[2];

realT P3;

realT P4Size[2];

realT P4;

real_T P5Size[2];

real_T P5;

real_T P6Size[2];

realT P6 [6];

} s2_S Function;

} Parameters;

/* P2Size */

/* P2 */

/* P3Size */

/* P3 */

/* P4Size */

/* P4 */

/* P5Size */

/* P5 */

/* P6Size */

/* P6 */

extern realT rtlnf;

extern real_T rtMinusInf;

extern real_T rtNaN;

extern real_T rtRealGROUND;

* System hierarchy

*

* <Root>: Example

* <S1>: Example/AD TRIGGER

* <S2>: Example/PC32 Int Support

* <S3>: Example/Process

* <S4>: Example/Process/PC32 ADC

* <S5>: Example/Process/PC32 DAC

*/

#endif RTW HEADER FILE

K.5 C Source File

The generated C source file, Examplex, is listed below :

/*

* Example.c

*

* Real-Time Workshop code generation for Simulink model "Example"

*

* RTW file version : 2.11 (Aug 28, 1997)
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* RTW file generated on : Fri Nov 12 08:34:15 1999

* TLC version : 1.0 (Dec 12 1997)

* C source code generated on : Fri Nov 12 08:34:15 1999

*

* TLC Options:

* InlineParameters = 0

* RollThreshold = 5

* FileSizeThreshold = 50000

* CodeFormat = RealTime

*

* Simulink model settings:

* Solver : FixedStep

* StartTime : 0 s

* StopTime : 0 s

* FixedStep : 0.0002 s

*/

#include <math.h>

#include <string.h>

#include "Example.h"

#include "Example.prm"

real_T rtRealGROUND = 0.0;

/* Output and update for function-call system: <Root>/AD TRIGGER */

void Sys_root_AD_TRIG_OutputUpdate(void *reserved, int_T controlPortldx,

int_T tid)

{
/* (outputs) */

/* S-Function Block: <S1>/S-Functionl (ADTrigger) */

/* a write to those addresses triggers a conversion on A/D */

*(ADC0)=0;

*(ADCl)=0;

*(ADC2)=0;

*(ADC3)=0;

/* (no update code required) */

/* Output and update for function-call system: <Root>/Process */

void Sys_root_Process_OutputUpdate(void 'reserved, int_T controlPortldx,

int T tid)
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/* (outputs) */

/* S-Function Block: <S4>/S-Function (pc32_ad) */

/* read in the corrected values from A/D and scale to +-10 */

{
rtB.s4_S_Function[0]=read_adc(BASEBOARD, 0)/ (3276.7);

rtB.s4_S_Function[l]=read_adc(BASEBOARD, 1)/(3276.7);

rtB.s4_S_Function[2]=read_adc(BASEBOARD, 2)/(3276.7);

rtB.s4_S_Function[3]=read_adc(BASEBOARD, 3)/(3276.7);

}

/* Gain Block: <S3>/Gain */

rtB.s3_Gain = rtB.s4_S_Function[0] * rtP.s3_Gain.Gain;

/* S-Function Block: <S5>/S-Function (pc32_da) */

/* Start an output conversion*/

{
write_(BASEBOARD, 0, rtB.s3_Gain* (3276.7));

convert_dac(BASEBOARD, 0) ;

write_(BASEBOARD, 1, rtRealGROUND*(3276.7));

convert_dac(BASEBOARD, 1) ;

write_(BASEBOARD, 2, rtRealGROUND*(3276.7) );

convert_dac(BASEBOARD, 2);

write_(BASEBOARD, 3, rtRealGROUND*(3276.7));

convert_dac(BASEBOARD, 3);

}
/* (no update code required) */

/* Initialize the model */

void MdlStart(void)

{
/* User specific code ( function declaration) */

#ifdef IO_ENABLE

printf("Connecting Interrupts\n");

#endif

/* Make edge triggered only if required */

if ((int)rtP.s2_S_Function.Pl == 1)

{asm (" OR 4000h,ST");
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#ifdef IOENABLE

printfC'EIO - EI3 Set to edge triggered\n");

#endif

}
else

{asm (•• ANDN 4000h,ST");

#ifdef IO_ENABLE

printfC'EIO - EI3 Set to level triggered\n");

#endif

}
/* End of user specific code (MdlStart function declaration) */

/* connect ISR system: <Root>/AD TRIGGER */

if (rtP.s2_S_Function.P6[0]==9)

{
/* check that timerO int is unused before assigning new vector */

#ifndef TMR0_YES

install_int_vector(c_int01, (int)rtP.s2_S_Function.P6 [0]);

enableinterrupt((int)rtP.s2_S_Function.P6[0]-1);

ttifdef IOENABLE

printf("Vectior installed for INT #%d.\n",(int)rtP.s2_S_Function.P6[0]);

#endif

#endif

}
else {

install_int_vector(cintOl,(int)rtP.s2_S_Function.P6[0]);

enable_interrupt((int)rtP.s2_S_Function.P6[0]-1);

#ifdef IO_ENABLE

printf("Vectior installed for INT #%d.\n", (int)rtP.s2_S_Function.P6 [0]);

#endif

/* connect ISR system: <Root>/Process */

if (rtP.s2_S_Function.P6[l]==9)

/* check that timerO int is unused before assigning new vector */

#ifndef TMR0_YES

install_int_vector(c_int02, (int)rtP.s2_S_Function.P6 [1]);

enableinterrupt((int)rtP.s2_S_Function.P6[1] -1) ;

#ifdef IO_ENABLE

printf("Vectior installed for INT #%d.\n",(int)rtP.s2_S_Function.P6[1]);

#endif
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#endif

else {

installintvector(c_intO2, (int)rtP.s2_S_Function.P6 [1]);

enableinterrupt((int)rtP.s2_S_Function.P6[1]-1);

ttifdef IO_ENABLE

printf("Vectior installed for INT #%d.\n",(int)rtP.s2_S_Function.P6[1]);

ttendif

}
#ifndef TMR0_YES

/*Only change Timer 0 settings if it isn't used for base sampling rate */

timer(0, (int)rtP.s2_S_Function.P4);

#endif

timer(1, (int)rtP.s2_S_Function.P5);

if ((int)rtP.s2_S_Function.P2 == 2)

{*GC_CTRL0 = 0x6c3;

#ifdef IO_ENABLE

printf("TCLKO driven by Timer 0.\n");

ttendif

}
else

{•GCCTRLO = 0x6cO;

ttifdef IO_ENABLE

printf("TCLKO driven externa ly . \n") ;

ttendif

}

if ((int)rtP.s2_S_Function.P3 == 2)

{•GCCTRL1 = 0x6c3;

ttifdef IOENABLE

printf("TCLK1 driven by Timer l.\n");

ttendif

>

else

{*GC_CTRL1 = 0x6c0;

ttifdef IOENABLE

printf("TCLK1 driven externaly.\n");

ttendif

}
ttifdef IO_ENABLE

printf("Interrupts Connected & Enabled\n");

ttendif

C Source File Page K-11



Appendix K

/* End of user specific code (MdlStart function exit) */

}

/* Compute block outputs */

void MdlOutputs(int_T tid)

{
/* (no output code required) */

/* Perform model update */

void MdlUpdate(int_T tid)

{
/* (no update code required) */

/* Terminate function */

void MdlTerminate(void)

{.
/* User specific code (MdlTerminate function exit) */

/* disconnect ISR system: <Root>/AD TRIGGER */

if (rtP.s2_S_Function.P6[0]==9)

{
/* only disconnect timerO if it was set up here */

#ifndef TMR0_YES

disableinterrupt((int)rtP.s2_S_Function.P6[0] -1);

deinstallintvector((int)rtP.s2_S_Function.P6[0]);

#ifdef IO_ENABLE

printf("INT #%d disabled.\n", (int)rtP.s2_S_Function.P6 [0]);

#endif

#endif

}
else {

disable_interrupt((int)rtP.s2_S_Function.P6[0]-1);

deinstallintvector((int)rtP.s2_S_Function.P6[0]);

#ifdef IO_ENABLE

printf("INT #%d disabled.\n",(int)rtP.s2_S_Function.P6[0]);

#endif

}
/* disconnect ISR system: <Root>/Process */

if (rtP.s2 S Function.P6[1]==9)
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/* only disconnect timerO if it was set up here */

#ifndef TMR0_YES

disable_interrupt((int)rtP.s2_S_Function.P6[1]-1);

deinstallintvector((int)rtP.s2_S_Function.P6 [1]);

ttifdef IOENABLE

printff'INT #%d disabled.\n», (int)rtP.s2_S_Function.P6 [1]);

ttendif

#endif

>

else {

disable_interrupt((int)rtP.s2_S_Function.P6tl]-1);

deinstallintvector((int)rtP.s2_S_Function.P6[1]);

ttifdef IOENABLE

printfC'INT #%d disabled.\n", (int)rtP.s2_S_Function.P6 [1]);

#endif

}

/* reset D/A outputs to 0 at termination. */

write_dac(BASEBOARD, 0, 0) ;

convert_dac(BASEBOARD, 0);

write_dac(BASEBOARD, 1, 0);

convert_dac(BASEBOARD, 1);

write_dac(BASEBOARD, 2, 0);

convert_dac(BASEBOARD, 2);

writedac(BASEBOARD, 3, 0);

convert_dac(BASEBOARD, 3);

/* End of user specific code (MdlTerminate function exit) */

/* model registration */

#include "Example.reg"

K.6 Model Parameters File

The model parameter file, Example.prm, is listed below :

/*
* Example.prm

* Real-Time Workshop code generation for Simulink model "Example".

*
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* RTW file version

* RTW file generated on

* TLC version

: 2.11 (Aug 28, 1997)

: Fri Nov 12 08:34:15 1999

: 1.0 (Dec 12 1997)

* C source code generated on : Fri Nov 12 08:34:15 1999

*

* Relevant TLC Options:

* InlineParameters = 0

* RollThreshold = 5

* FileSizeThreshold = 50000

* CodeFormat = RealTime

*/

#include <simstruc.h>

/* Default Parameters Structure */

Parameters rtP =

/* Gain: <S3>/Gain */

1.0 /* Gain */

/* S-Function: <S2>/S-Function */

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

1.0,

0.0,

1.0,

1.0,

1100.0,

1.0,

6.0,

1.0,

2.0,

/* Computed:

/* Computed:

/* PI */

/* Computed:

/* Computed:

/* P2 */

/* Computed:

/* Computed:

/* P3 */

/* Computed:

/* Computed:

/* P4 */

/* Computed:

/* Computed:

/* P5 */

/* Computed:

/* Computed:

/* P6[0] */

/* P6[l] */

PlSize[0] */

PISizefl] */

P2Size[0] */

P2Size[l] */

P3Size[0] */

P3Size[l] */

P4Size[0] */

P4Size[l] */

P5Size[0] */

P5Size[l] */

P6Size[0] */

P6Size[l] */
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3.0,

4.0,

9.0,

10.0

/* P6[2] */

/* P6[3] */

/* P6[4] */

/* P6[5] */

/* Block I/O Structure */

BlocklO rtB;

/* Parent Simstruct */

SimStruct model_S;

SimStruct *const rtS = &model S;

K.7 Model Registration File

The source code file containing all model registration functions, Example.reg, is listed below:

Example.reg

Real-Time Workshop code generation for Simulink model "Example1

RTW file version

RTW file generated on

TLC version

: 2.11 (Aug 28, 1997)

: Fri Nov 12 08:34:15 1999

: 1.0 (Dec 12 1997)

* C source code generated on : Fri Nov 12 08:34:15 1999

Relevant TLC Options:

InlineParameters = 0

RollThreshold = 5

FileSizeThreshold = 50000

CodeFormat = RealTime

Simulink model settings:

Solver : FixedStep

StartTime : 0 s

StopTime : 0 s

FixedStep : 0.0002 s
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*

* SOURCES: Example.c

*

* MdlUpdate: Required

*/

/* Function to initialize sizes */

void MdllnitializeSizes(void)

{
ssSetNumContStates(rtS, 0); /* Number of continuous states */

ssSetNumDiscStates(rtS, 0); /* Number of discrete states */

ssSetNumOutputs(rtS, 0); /* Number of model outputs */

ssSetNumlnputs(rtS, 0); /* Number of model inputs */

ssSetDirectFeedThrough(rtS, 0); /* The model is not direct feedthrough*/

ssSetNumSampleTimes(rtS, 2); /* Number of sample times */

ssSetNumModes(rtS, 0); /* Number of mode elements */

ssSetNumBlocks(rtS, 7); /* Number of blocks */

ssSetNumBlocklO(rtS, 4); /* Number of block outputs */

ssSetNumBlockParams(rtS, sizeof(Parameters)/sizeof(realT));

/* Number of block parameters */

/* Function to initialize sample times */

void MdllnitializeSampleTimes(void)

{
/* task periods */

ssSetSampleTime(rtS, 0, 0.0002);

ssSetSampleTime(rtS, 1, 1);

/* task offsets */

ssSetOffsetTime(rtS, 0, 0) ;

ssSetOffsetTime(rtS, 1, 0);

/* Function to register the model */

SimStruct *Example(void)

static struct _ssMdlInfo mdllnfo;

memset((char *)rtS, 0, sizeof(SimStruct));
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memset((char *)Smdllnfo, 0, sizeof(struct _ssMdlInfo));

ssSetMdllnfoPtr(rtS, &mdllnfo);

uintT I;

/* timing info */

{
static time_T [NSAMPLE_TIMES];

static time_T [NSAMPLE_TIMES];

static timeT [NSAMPLETIMES];

static int_T [NSAMPLEJTIMES] ;

static booleanT [NSAMPLE_TIMES]

for(i = 0 ; i < NSAMPLE_TIMES; i

mdlPeriodfi] = 0.0;

mdlPeriod[i] = 0.0;

mdlTaskTimes[i] = 0.0;

memset((char_T *) SmdlTsMap[0], 0, 2 * sizeof(int_T));

memset((char_T *)&mdlSampleHits[0] , 0, 2 * sizeof(booleanT))

ssSetSampleTimePtr(rtS, fcmdlPeriod[0]);

ssSetOffsetTimePtr(rtS, SmdlOffset[0]);

ssSetSampleTimeTasklDPtr(rtS, SmdlTsMap[0]);

ssSetTPtr(rtS, SmdlTaskTimes[0]);

ssSetSampleHitPtr(rtS, imdlSampleHits[0]);

#if defined(MULTITASKING)

static boolean_T mdlPerTaskSampleHits[NSAMPLETIMES *NSAMPLE_TIMES];

memset((charT *) SmdlPerTaskSampleHits[0],0,2*2*sizeof(booleanT));

SsSetPerTaskSampleHitsPtr(rtS, SmdlPerTaskSampleHits[0]);

#endif

/* model work vectors */

realJT *b = (real_T *) &rtB;
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ssSetBlockIO(rtS, b);

for(i = 0; i < sizeof(BlocklO)/sizeof(real_T);

b[i] = 0.0;

/* Model specific registration */

ssSetRootSS (rtS, rtS);

ssSetVersion(rtS, SIMSTRUCTVERSIONLEVEL2);

ssSetModelName(rtS, "Example");

ssSetPath(rtS, "Example");

ssSetTStart(rtS, 0);

ssSetTFinal(rtS, 0);

ssSetStepSize(rtS, 0.0002);

ssSetFixedStepSize (rtS, 0.0002);

ssSetLogT(rtS, " " ) ;

ssSetLogX(rtS, " " ) ;

ssSetLogY(rtS, ' " ' ) ;

ssSetLogXFinal (rtS, " " ) ;

ssSetLogMaxRows(rtS, 0);

ssSetLogDecimation(rtS, 1);

ssSetChecksumO(rtS, 2735119696U);

ssSetChecksuml(rtS, 2475633512U);

ssSetChecksum2(rtS, 3952932782U);

ssSetChecksum3(rtS, 953123913U);

/* model parameters */

ssSetDefaultParam(rtS, (realT *) &rtP);

}
return rtS;
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K.8 Make File

# * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SYS_TARGET_FILE = ii.tlc

MAKE = gmake

HOST = PC

BUILD = yes

DOWNLOAD = yes

BUILD_SUCCESS = Completed

DOWNLOAD SUCCESS = Downloaded

# Customization Macros

#

# The following set of macros are customized by the make_rt program.

#

MODEL = Example

MODEL_MODULES

MODEL_MODULES_OBJ =

MAKEFILE = Example.mk

MATLABROOT = C:\MATLAB

MATLABBIN = C:\MATLAB\bin

S_FUNCTIONS

S_FUNCTIONS_OBJ

SOLVER

SOLVEROBJ =

NUMST = 2

TID01EQ = 0

NCSTATES = 0

BUILDARGS = TMR0=NO UPLD=NO IO=DISABLE

COMPUTER = PCWIN

# H pc32 Definition

#

BOARDTYPE = PC32

DSP_FAMILY = 3 0

COMPILER = TIFPC

# TI Tools

#

# You may need to modify the TIROOT if you have installed the

# Texas Instrument Compiler in a different location.
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#
TI_ROOT = c:\fltc

TI_FLAGS = -v$(DSPFAMILY)

CC = §(TI_ROOT)\cl3 0

LD = $(TI_ROOT)\lnk3 0

# II Tools

#

II_ROOT = $(MATLABROOT)\rtw\c\ii

II_COMPILER = $(II_ROOT)\ti_fpc

II_CMD = $(II_COMPILER)\iiPC32.cmd

II_BOOT = $(IICOMPILER)\vectors.obj

#II_BOARD = c:\pc32cc

PC32_DOWNLOAD = $(IIROOT)\D_Load.exe

# Include Path

MATLAB_INCLUDES = \

$(MATLABROOT)\simulink\include; \

$(MATLAB_ROOT)\extern\include; \

$(MATLABROOT)\rtw\c\src; \

$(MATLABROOT)\rtw\c\libsrc;

TI_INCLUDES = $(TI_ROOT); $(TI_ROOT)\Include\Target;

II_INCLUDES = $(IIBOARD)\Lib\Target

INCLUDES = .; $(MATLAB_INCLUDES) $(TI_INCLUDES) $(IIINCLUDES)

# C Flags

# Required Options

REQ_OPTS = $(TI_FLAGS) -q -eo .0$(DSPFAMILY)

# Optimization Options

OPT OPTS = -xO -o3
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# Debug O p t i o n s

DBGJ3PTS

CCOPTS = $(REQ_OPTS) $(OPT_OPTS) $(DBGOPTS) -dIO_$(10) \

-dTMRO_$(TMR0) -dUPLD_$(UPLD)

CPP_REQ_DEFINES = -dMODEL=$(MODEL) -dRT -dNUMST=$(NUMST) \

-dTID01EQ=$(TID01EQ) -dNCSTATES=$(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ_DEFINES) $(CPPDEFINES)

LDFLAGS = -x -a - c r - heap 0x2000 $(II_BOOT) -m $(MODEL).map

# Source Files

REQ_SRCS = PC32main.c pc32up ld .c r t _ s i m . c r t m a t r x . c $(MODEL).c

OPT_SRCS

S_FCN_SRCS = $(S_FUNCTIONS)

INT_SRCS = $(SOLVER)

REQOBJS = $(REQSRCS:.c=.o$(DSPFAMILY))

OPT_OBJS = $(OPTSRCS:.c=.o$(DSPFAMILY))

S_FCN OBJS = $(SFCNSRCS:.c=.o$(DSPFAMILY))

INTOBJS = $(INTSRCS:.c=.o$(DSPFAMILY))

OBJS = $(REQ_OBJS) $(OPT_OBJS) $(S_FCN_OBJS) $(INT_OBJS)

PROGRAM = $(MODEL) .out

# Exported Environment Variables

#

# Because of the 12 8 character command line length limitations in DOS, we

# use environment variables to pass additional information to the

# Compiler and Linker

#

COPTION := $(CFLAGS)

C_DIR := $(INCLUDES); $(CDIR)

C MODE = PROTECTED

Rules
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$(PROGRAM) : $(OBJS)

echo $(OBJS) > $(MODEL).lin

echo $(II_CMD) >> $(MODEL).lin

$(LD) $(LDFLAGS) -O $@ $(MODEL).lin

echo $(BUILD_SUCCESS) $(PROGRAM)

# Compile existing code if it exists in current dir

%.o$(DSP_FAMILY) : %.C

$(CC) $<

# Call to PC32 rtmain.c

%.o$(DSP_FAMILY) : c:\matlab\rtw\c\ii\ti_fpc\%.c

$(CC) $<

# Call to simulink files

%.o$(DSP_FAMILY) : $(MATLAB_ROOT)\simulink\src\%.c

$(CC) $<

# Call compile RTW files

%.o$(DSP_FAMILY) : $(MATLAB_ROOT)\rtw\c\src\%.c

$(CC) $<

%.o$(DSPFAMILY) : $(MATLABROOT)\rtw\c\libsrc\%.c

$(CC) $<

# Rule for Downloading to Target

download :

del $(MODEL).lin

del $(MODEL).c

del S(MODEL).h

del S(MODEL).map

del $(MODEL).o3 0

del S(MODEL).prm

del S(MODEL).reg

$(PC32_DOWNLOAD) $(PROGRAM)

echo $(DOWNLOAD SUCCESS) $(PROGRAM)

# Dependencies

iirt_main.o$(DSP_FAMILY) : $(MODEL).c

$(OBJS) : $(MAKEFILE)
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Chapter Nine - CSDE Application Case Studies

the AC induction machine can be directly controlled by adjusting the current. The method

allows a good transient response to be obtained from an AC machine and is a good candidate for

substituting the traditional DC machine in variable speed drive applications.

The implementation of an FOC algorithm in practice is a computationally expensive task

[RANDELHOFF1, TEXASINSTR3] and only became viable with the advent of fast

programmable microprocessors. Designing software to implement the FOC mathematics on an

embedded platform would normally be beyond the time frames allocated for final year design

projects. In the past a formal FOC design was only attempted as part of postgraduate level

research projects [RANDELHOFF1, HEMME1].

Using the CSDE, Mr. Sturgeon implemented an FOC algorithm [STURGEON1] in 1998 in the

time allocated for his 4th year design. The project included all stages of formal control design

from initial modelling and simulation right through to demonstrating a working prototype. Mr.

Sturgeon was awarded the prize for the best final year design in electrical engineering in 1998 at

UND.

The FOC controller topology is shown in Fig. 9.14. This Simulink diagram was used for offline

simulation. The resultant controller was then modified, as shown in Fig. 9.15, before being

implemented in real-time. All Scope Channel blocks which were used to monitor the feedback

signals in Fig. 9.15, are omitted in order to keep the diagram clear. A photograph of Mr.

Sturgeon with the CSDE workstation as well as the hardware used to implement and test the

FOC design is shown in Fig.9.16.

9.4.1 Feedback and Observations

The FOC design was the first formal student motion control project to use the CSDE and

showed that the lack of support for synchronous sampling was a critical problem. The feedback

signals were distorted by switching noise from the power electronic devices and the control

loops were difficult to tune and stabilise.

To solve the synchronous sampling problem both hardware and software modifications to the

CSDE were necessary. On the PWM/Tacho card, the interrupt signal from the PWM ASIC was

inverted using a spare gate and patched to the El 0 interrupt line on the PC32 card's expansion

header. Section 4.5.2 in Chapter 4 described the PWM ASIC and its interrupt signal. The
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foe sim

File Edit View Stimulation Formal Tools

Squirrel Cage
Induction Machine

Model

Speed

Fig. 9.14 : FOC simulation

software modification involved creating an AD Trigger block to allow software triggering of the

ADC channels, as described in section 7.5.1, Chapter 7.

To achieve synchronous sampling the PC32 Int Support block is used to trigger the AD Trigger

block via El 0. The ADC end of conversion interrupt (El 1) is then used to trigger the control

loop. This procedure ensures that the feedback signals used to update the controller are sampled

free of switching noise.
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Fig. 9.15 : FOC real-time controller

9.5 DC Machine Controller for a Ball Catcher

The final year design project of Mr. Moodley in 1999 involved the design of a precision position

controller for a DC machine using the CSDE [MOODLEYl]. The setup was used to implement

an automatic ball catcher. Fig. 9.17 shows a simplified diagram of the mechanical assembly. A

tennis ball is placed in the cup at the bottom of its travel. The arm then swings counterclockwise

by 180 °. As the ball passes the sensor the cup is moved clockwise back to its bottom position in

time to catch the falling ball. After a short delay the cycle is repeated.
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Fig. 9.16 : Photograph of the FOC design layout
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Fig. 9.17 : Ball catcher mechanics
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In order to achieve the necessary degree of position control, the design necessitated the use of a

high resolution incremental encoder. The TC3005H IC on the expansion card described in

section 4.5.4 was used to interface to the encoder. A custom driver block for use with the RTW

was created by Mr. Moodley for that purpose in collaboration with the author.

The design process was completed in a structured manner well before the deadline and Mr.

Moodley was awarded the top control design prize for his project. A photograph of the complete

Ball Catcher assembly is shown in Fig. 9.18.

Fig. 9.18 : Photograph of the Ball Catcher setup

Fig. 9.19 shows the Simulink diagram used for offline simulation and tuning of the current,

speed and position control loops for the DC motor. These controllers were bundled into a single

subsystem block and used to construct the real-time prototype, shown in Fig. 9.20. In the

simulation a signal generator is used to provide the position reference signals. In the real time

diagram this is replaced by a photo sensor fed into ADC 3 and an Automatic Re-trigger Block

which introduces some delay before the catcher arm is swung back to the top. The delay is
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necessary in order to allow the ball to stop bouncing in the cup after being caught. Another

difference between the simulation and real-time diagrams is the replacement of the DC machine

model with the PWM driver block and feedback inputs from sensors on the real machine.

ball sim
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Fig. 9.19 : Ball Catcher controllers simulation

9.5.1 Feedback and Observations

The ball catcher project uncovered a shortcoming in the mechanism used by the CSDE in

uploading data for visualisation. The Scope Channel blocks capture and buffer samples of data

which are then transferred via the DPRAM to the Display utility on the PC, as described in

Chapter 6, section 6.4. The Display utility can only display up to 1000 samples in a window.

Since the current control loop for the ball catcher executed at 5 kHz, samples are captured every

0.2 ms and the Display utility can plot at most 200 ms worth of data. To observe the performance

of the speed and position control loops much longer capture period is required.

In response to this observation the Scope Channel block was modified to allow for down

sampling. Effectively, data is captured at a lower frequency and the display period in the

Display utility can be adjusted as described in Chapter 7, section 7.5.6.
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9.6 Conclusion

This Chapter verified the usefulness of the CSDE as an aid in the development of motion

control. The operation of the CSDE was demonstrated using a DC machine speed controller as

an example. The case studies in sections 9.4 and 9.5 show that by using the CSDE

undergraduate students can successfully implement challenging motion control projects in the

limited time allocated for the design courses.

By using the rapid prototyping environment, students can spend more time exploring the

underlying control theory rather that be burdened with the low-level issues of developing and

debugging a stable controller. There was an additional spinoff from the use of the CSDE in the

number of field trials. The students found it easier to follow a formal and structured approach to

the overall design and produced documentation above the quality usually expected at that level.
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CHAPTER TEN
CONCLUSIONS

10.1 General

The general trend in motion control is towards microprocessor based solutions

[TRZYNADLO1] and as the processing power of the available hardware improves, ever more

sophisticated algorithms become practical. The complexity of designing a stable and reliable

digital controller means that a structured approach is crucial as outlined below :

(i) Modelling - an accurate model of the machine is necessary before simulation can

become useful,

(ii) Design and simulation - a control algorithm is proposed and its feasibility is tested

in a offline simulation,

(iii) Hardware design - the controller hardware is designed or a commercially available

platform can be used.

(iv) Software design - the simulated algorithm is converted into real-time code,

(v) Prototyping and validation - the controller is tested in real-time and final parameter

adjustments take place.

The traditional approach is to program the controller software by hand - a tedious and error

prone task. During the design process a number of the above steps might need to be revisited and

the process becomes drawn out.

10.1.1 Undergraduate Design

It becomes especially difficult to follow the above design methodology at the undergraduate

level where project time frames are short. Most electrical engineering students will have limited

embedded programming experience, meaning that the coding and debugging of complex

real-time software might take most of the project time. Time pressure and subsequent lack of

adequate explorative simulation limit the complexity of control algorithms that can be

successfully implemented.
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10.1.2 Rapid Prototyping

The application of a rapid prototyping platform, like the CSDE, eliminates the software and

hardware issues from the motion control design process. Students can focus their effort on

modelling and simulation and observe the results almost immediately in real time on a practical

system. In the limited time allocated students can explore advanced algorithms in more depth

and verify their actual performance in real life.

10.2 Project Summary

The overall goal of the author's work was to develop a rapid prototyping environment to aid

undergraduate students during the design of motion control. Taking into consideration the user

group targeted a number of requirements were laid down :

(i) Low cost - the overall cost needs to be kept down for the system to be practical in an

undergraduate environment,

(ii) Adequate processing power - the processing platform needs to support complex

control algorithms,

(iii) Ease of use - the learning curve associated with the system must be as short as

possible so that valuable design time is not further compromised.

10.2.1 The CSDE

To respond to the above requirements, the CSDE was based on the proven and well established

modelling and simulation platform from MathWorks [FOSTER1, GUMAS1, MIROTZNIK1].

The MATLAB and Simulink packages are widely available to students and their use is

compulsory in a number of courses. As a result final year design students are well versed in the

use of those tools for modelling and simulation. An additional benefit to the CSDE is the cost

saving - no additional software license need to be purchased.

The hardware platform for the CSDE, the PC32 DSP controller, represents a good balance

between price and processing power and to keep further costs down, the additional PWM /

Tacho expansion card was designed in-house.
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10.2.2 Field Trials

A number of students were selected to use the CSDE during their design courses. The level and

quality of the resultant motion control projects demonstrated that the CSDE is a valuable tool

which can aid students in tackling more challenging problems than was possible before.

Unfortunately no formal record was kept of the feedback from students who field trialed the

CSDE. In all cases the students reported the CSDE to be a valuable design tool which allowed

them to produce working prototypes early in their project schedule. The fact that two projects

won the best final year design prizes is a good indication that the CSDE does, in fact, fulfill the

requirements set out in Chapters 1 and 2.

10.3 Suggestions for Further Work

The CSDE in its present form represents a stable environment for the design and rapid

prototyping of motion control. Notwithstanding the positive feedback from a number of student

users, there remain a number of areas which can be further extended or improved. The following

sections list a number of suggestions for such improvements.

10.3.1 Profiler and Exception Handler

Currently there is no way of predicting whether there is sufficient processing bandwidth to

execute the controller designed in Simulink reliably. If the control loop execution time is longer

than the sampling time in real-time the controller will fail to execute. The current version of the

RTK does not provide for neat handling of such exceptions.

Firstly, the RTK can be extended to include exception handling and to fail safe in such cases.

Secondly, a static profiler could be designed to estimate the worst case execution time for the

designed control loop. The profiler output could aid in the selection of the maximum sampling

frequency for the controller.
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10.3.2 Implementation over a Network

The most expensive part of the CSDE setup is the controller hardware as well as the controlled

machine. However, during a normal project cycle most time is spent on design and simulation

and the real-time validation and prototyping usually only takes a small fraction of the project

time. Presently the CSDE is limited to a single standalone system.

In the ideal scenario the controller hardware as well as the electric motor would be shared

between a number of design workstations in a laboratory. A number of students could carry out

their usual design and simulation on their own workstations and only link up via a network to the

central station to verify their controller design and capture results. In this manner the cost of

providing rapid prototyping facilities per student would be greatly reduced, while still

maintaining the benefits of hands-on verification of final design on real hardware.

10.3.3 Improving Display Utility

Currently the Display utility applies a triggering algorithm to each channel individually and

each channel is displayed in a separate window. This means that it is impossible to compare

timing between two channels, as was seen in Fig. 9.6. To overcome this, timing information

would need to be included into the data uploads from the target to enable the Display utility to

synchronise individual channels. To improve the Display GUI further a number of

improvements could be introduced. For example grids, axis labels and more flexible zooming

options. Another useful feature would be the ability to log the plots to a file in various formats.

The data could then be imported into MATLAB and compared directly with simulation results.
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Appendix A
A.1 CSDE Users' Guide

This Appendix contains an edited version of the CSDE Users' Guide. Some of the material

contained in this Appendix has already been discussed in more depth in the preceding chapters.

However, the intention of the Users' Guide is not to summarise the thesis, but to be a practical

'hands-on' introduction to the CSDE.

A.2 Introduction

The Control System Development Environment (CSDE) represents a complete solution for the

development of most control and digital signal processing solutions. All phases of development

are conveniently bundled under a user friendly Graphical User Interface (GUI), from initial

modelling through design, simulation right to final real-time prototyping and validation.

The CSDE integrates the following major components :

(i) MATLAB with Simulink and Real-Time Workshop from MathWorks Inc.

(ii) PC32 DSP Controller Card from Innovative Integration

(iii) Texas Instruments C Compiler for the TMS320C32

(iv) Real-Time Interface Software - custom libraries and visualisation tools

Fig. A.I shows how the various components of the CSDE interact to provide a complete

solution. This User's Guide describes how to generate predicable real-time code from Simulink

diagrams for execution on the PC32 Controller Card. As far as the user is concerned the only

"visible" components of the CSDE are Simulink GUI, the physical I/O of the PC32 and Display

which handles data plotting and capture on the PC. Most of the Real-Time Interface Software

(RTIS) which forms the "glue" between the various components is essentially transparent to the

user.

A.2.1 What is Simulink?

The MATLAB / Simulink environment forms the front-end GUI for the CSDE, as such it is

important that the user if familiar with MathWorks' software before proceeding.
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Simulink block
diagram in external
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DSP Hardware
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Windows 95

Dispay.exe
For visualisation and data logging

Fig. A.I : Interaction of the major components of the CSDE from the users perspective.

Simulink is a graphical user interface (GUI) for the well known MATLAB system from

MathWorks Inc. It is a software package for modeling, simulation and analyzing dynamical

systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or

a hybrid of the two. Systems can also be multi-rate, i.e. Have different parts that are sampled or

updated at different rates.

For modeling, Simulink provides a user-friendly GUI allowing users to intuitively build models

as graphical block diagrams, using click-and-drag mouse operations. With this interface users

no longer need to formulate equations in a language or program, but simply choose from a

comprehensive collection of block libraries and additional toolboxes. Simulink also allows for

custom blocks and libraries to be added by the user to facilitate for their specific needs.

Simulink models are hierarchal, so complex systems can be broken down and approached in a

top-to-bottom or bottom-to-top manner. System can then be viewed at a high level, and by

double-clicking one can navigate down through the levels to see increasing amount of detail.
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For more information on the MATLAB \ Simulink environment please refer to the

corresponding manuals shipped with the Math Works Inc products. In the following sections of

this manual it is assumed that the reader is familiar with Simulink. Math Works Inc can be

contacted at www.mathworks.com.

A.2.2 The PC32 Controller

The PC32 from Innovative Integration, shown in Fig. A.2, is an affordable and capable DSP

card. The high performance 32-bit floating point TMS320C32 DSP from Texas Instruments is

coupled with full featured analog and digital peripherals to form a complete DSP based

acquisition and control system for the PC/AT on a single card.

Fig. A.2 : Photograph of the Innovative Integration PC32 card.

The Texas Instruments TMS320C32 is capable of up to 60 MFLOPS/30 MIPS. On-chip

peripherals include two 32-bit counter/timers, two flexible DMA controllers, 15 prioritized

interrupts, and much more. The 'C32 has a memory range of 16M words total with on-chip

memory control for wait states and bus sizing. Memory on the PC32 may be expanded up to

512Kx32 zero wait and 1 Mbyte, 1 wait-state memory for an optimal mix of performance, size

and cost.

The PC32 features analog and digital I/O for a wide range of applications in process control,

audio processing, data logging and signal processing. Features include four channels of 16-bit,
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instrumentation-grade analog-to-digital converters with -120 dB/decade tunable anti-alias

filters capable of sampling up to 100K samples/sec, and 4 channels of 16-bit,

instrumentation-grade digital-to-analog converters at 100khz per channel. Sixteen bits of

high-drive digital I/O are also on-card. The PC32 is compatible with the full range of 3xBUS

cards for I/O expansion including analog I/O, digital camera interfacing, prototyping and SCSI

devices.

The PC32 is a half-card which plugs into a standard 16-bit ISA bus slot. The ISA bus interface

provides high-performance dual-ported memory capable of 5 Mbytes/sec, on most platforms.

For more detailed information on the PC32 card please refer to Innovative Integration manuals.

Innovative Integration can also be contacted at www.innovative-dsp.com.

A.2.3 Texas Instruments Tools

The CSDE relies on the Real-Time Workshop (RTW) to generate C code from Simulink

diagrams. This C code then needs to be compiled and linked into an executable before it can be

run on the target hardware.

As far as the user is concerned the Texas Instruments compiler is transparent and the CSDE

ensures that all necessary parameters and settings are passed to the TI compiler.

A.2.4 Real-Time Interface Software

What makes the CSDE into a complete package is the glue interface software which ensures that

even the most complex diagrams constructed and simulated in Simulink perform as expected

once run on the target hardware. All Simulink models for which code can be generated by the

RTW can be implemented in CSDE, this includes continuous-time, discrete-time as well as

hybrid models.

The Real-Time Interface Software (RTIS) consists of three parts :

(i) PC32Lib, a library containing blocks to incorporate hardware access from within

a Simulink block diagram
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(ii) Template make file to govern the compilation, source code need to make RTW

generated code into an executable and a .dll library to implement external mode

communications from Simulink

(iii) Display, a standalone Windows executable to facilitate data uploads from the

PC32 target hardware for logging and visualisation

These parts will be discussed in more detail in the following sections.

A.2.5 About the User's Guide

Section A.3 explains the installation of the CSDE

Section A.4 gives a quick introduction to the environment by means of a few simple examples

Section A.5 gives more detailed information on blocks contained in PC32Lib

Section A.6 explains the use of the Display utility

Section A.7 discusses the various modes of operation and the limitations of the CSDE

A.3 Installation

A.3.1 Hardware Requirements

The PC32 DSP Controller is designed to fit into a ISA expansion slot of any IBM/PC

compatible machine. However, the software tools require at least a Windows 95 system. Any

PC capable of running Windows 95 should be able to support the CSDE, however it is strongly

recommended to use a Pentium machine with 32 Mbytes of RAM, but preferably more (e.g. 64

Mbytes).

The installation of the PC32 is as simple as that of any PC expansion card, the PC32 Hardware

Manual from Innovative Integration should be consulted before fitting the card into a vacant

ISA slot.

For the purposes of the examples in section A.4 the jumper settings on the PC32 should be

initially left in their factory default setting :
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(i) A/D pair 0 and 1 triggered by software

(ii) D/A 0, 1, 2 and 3 triggered by timer 0

(iii) JP 5 should be set to IRQ 5

The exact function and usage of these (and other) jumpers will be explained in more detail in

section A.5 when the components of PC32Lib are discussed.

A.3.2 Software Requirements

The CSDE requires a number of software packages to be installed on the host computer. The

CSDE might also function correctly with other versions or releases of these packages but only

the following set has been fully tested :

(i) Windows 95

(ii) Texas Instruments ANSI C Compiler Version 4.70

(iii) MATLAB Version 5.2.1.1420

Simulink Version 2.2.1

Real-Time Workshop Version 2.2.1

(iv) Innovative Integration Device Driver and Peripheral Library Version 1.18

(v) RTIS shipped with this manual

A.3.3 Installation Instructions

For the installation of Texas Instruments, Math Works and Innovative Integration software

please refer to the respective documentation shipped with these products.

To install the RTIS simply run the setup utility provided on the install disk and follow the

instructions provided.

It is recommended that during installation of all components the default directory structure is

used as far as possible. Should some of the directories be changed RTIS template make file will

need to be modified to reflect the new locations. In the next sections the following directory

structure is expected :
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Texas Instruments

(i) C:\fltc\

MathWorks

(ii) C:\MATLAB\

Innovative Integration

(iii) C:\pc32cc\

Real-Time Interface Software

(iv) C:\MATLAB\RTW\c\ii\

(v) C:\MATLAB\RTW\ext_mode

Before proceeding to the next section it is recommended that the correct installation of the PC32

DSP Controller hardware and drivers is verified. An easy way to do this is to run one of the

demo programs included in the Innovative Integration package.

A.4 Getting Started

This section provides a quick glance at the CSDE. Since most users will already be familiar with

the Simulink GUI, the examples presented should prove straightforward.

Three simple, ready to use examples are presented to demonstrate how Simulink block

diagrams is compiled and transferred to the PC32 DSP Controller. The following demos give a

chance to experiment with the I/O block as well as the various modes of operation.

A.4.1 Simple Example

To run the first simple model:

(i) Start MATLAB

(ii) Type pc32_demol
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This opens the block diagram for the first demo. Fig. A.3 shows the Simulink block diagram for

the pc32_demol example.

DDDD
OO 10

In

Scope Channel

2000A2

52+2*0.3*2000s+2000A2

In

Scope Channeli

Signal
Generator

Slider
Gain

Transfer Fen

Fig. A.3 : Simulink block diagram forpc32_demol example

The block diagram contains a signal generator set to provide a square wave at lOOHz, a slider

gain, a second order continuous transfer function and two scope channel upload blocks.

To get things working on the DSP card go to Tools menu and select RTW Build. The

build/compile/download process can be followed in the MATLAB main window. When that is

complete select Start from the Simulation menu or push the play button on the toolbar of your

pc32_demol window. At this point in time the code generated from the block diagram begins

execution on the DSP target.

Start the Display.exe utility, enter 2 as the number of channels and push OK. Two windows

appear - CH #0 and CH # 1. CH #0 displays the square wave output from the signal generator and

CH #1 displays the result of putting it through a second order system.

Now, going back to the block diagram, experiment with changing the values of the slider gain,

damping factor of the transfer function and settings of the signal generator. The effect of these

changes can be seen immediately in the CH #0 and 1 windows.

By double-clicking on the CH # display windows their properties can be adjusted, the OK

button on Display's main dialog needs to be clicked each time a simulation is restarted, the

various options are discussed in section A.6 when we present the Display utility.
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Timer 0 onboard the 'C32 processor is used to generate the base sampling rate for the diagram.

To experiment with other sampling rates go to Tools | RTW Options | Solver and adjust the step

size. The diagram needs to be recompiled each time the step size changes.

A.4.2 Example with A/D and D/A

In the previous example the input signal was generated on board the DSP card, in a real-world

application we are more likely to process some signal captured through a A/D channel. In

MATLAB window type pc32_demo2. Fig. A.4 shows the block diagram for this example.

AD CD

ADC1

ADC2

ADC3

PC32 ADC

k

In

Scope Channel

2000A2

s2+2"0.3"2000s+2000A2

In

Scope ChanneH

> S l i d e r Transfer Fen >
Gain

> >

> >

DACO
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DAC2
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PC32 DAC

Fig. A.4 : Simulink block diagram for pc32_demo2 example

Essentially this is pc32_demol revisited, with the exception of the signal generator being

replaced by an A/D block and the addition of a D/A block. Before compiling and starting this

diagram, connect a signal generator to A/D 0 connector on the PC32 card (pin 26 and 6 on the D

type connector) and set it to provide a 100 Hz square wave with a 5 volt amplitude. The A/D

channels of the PC32 Controller take a maximum of ± 10 V, so care should be take not to exceed

these levels. Optionally a oscilloscope can be connected to D/A 0 (pin 16 and 35).

Select RTW Build and after the build process is complete start the simulation. Once again select

two channels on the Display utility. Adjusting the signal generator affects the plots in both CH

#0and#l windows.
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A.4.3 Interrupt Support Example

The final example can be accessed by typing pc32_demo3 in the MATLAB window, Fig. A.5

shows the block diagram.
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Fig. A.5 : Simulink block diagram forpc32_demo3 example

At first glance we can see the familiar second order system fed by a signal generator. The new

blocks, despite their numbers, perform a very simple task - down-sampling. A second signal

generator provides a 100 Hz sine wave which is then passed, through a memory store element,

to the down-sample block. All the down-sample block does is copy from the IN memory store

to OUT. However, since it is triggered at a different frequency to the rest of the diagram, the

signal that passes through it is down-sampled. The down-sample block is triggered by Timer 1

interrupt at 1.1 kHz, while the rest of the diagram is executed by Timer 0 at 5 kHz. Thus

effectively the sine wave is down-sampled from 5 kHz to 1.1 kHz and the effect can be observed

in CH #2 and 3 windows.
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If there is an oscilloscope attached to D/A 0 the various signals can be observed by changing the

configuration of switches SWO, 1 and 2.

A.5 PC32Lib

This section describes the custom block contained in the PC32Lib blockset for Simulink. These

blocks allow low-level hardware access to the PC32 Controller from within a block diagram.

Fig. A.6 shows the collection of blocks in the PC32Lib. To bring up the library simply type

PC32Lib in MATLAB window.

1 | Library: PC32Lib

File Edit View

;
|

ADCD

ADC1

ADC2

ADC3

> >

> >

DACO

DAC1

DAC2

DAC3

i PC32 ADC PC32 DAC

f

Forma] I <.

EID

EI1

EI2

EI3

TMRO

TMR1

[ >

>

PC32 Int Support

—

Ua

Ub

Ctrl

PWM Block

Triggert}

AD TRIGGER

In

Scope Channel

\ Unlocked ;

Fig. A.6 : Contents of PC32Lib

A.5.1 PC32 ADC Block

This block allows access to the on-board A/D converters of the PC32 Controller. When making

use of this block it is important to understand the way in which the Innovative Integration board

triggers the A/D converters.

ADC 0 and 1 form ADC pair 0. ADC 2 and 3 form pair 1. Each pair can be triggered by one of

the following :
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(i) A software memory write

(ii) Signal on TCLKO

(iii) Signal on TCLK1

JP 6 and JP 5 control the trigger sources for ADC pair 0 and 1 respectively. Irrespective of the

jumper setting a memory write in software always triggers a conversion. Setting the jumper to

position 1-2 selects the trigger source to be TCLKO, position 2-3 selects TCLK1. Depending on

a software setting signal for each TCLK can come from either :

(i) an external TTL compatible source

(ii) a on-board timer

The source for each TCLK is selected in the PC32 Int Support block (see below). If no PC32 Int

Support block is present on the diagram the default setting is for both TCLKO and TCLK1 to be

driven by respective on-board timers.

If either, or both JP5 and 6 are completely removed the respective ADC pair can only be

triggered by a software memory write. This option is discussed below when the AD Trigger

block is introduced.

A.5.2 PC32DAC Block

This block allows access to the on-board D/A converters of the PC32 Controller. When making

use of this block it is important to understand the way in which the Innovative Integration board

triggers conversions on the D/A channels.

Each DAC channel can be triggered separately by one of the following :

(i) A software memory write

(ii) Signal on TCLKO

(iii) Signal on TCLK1
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Jumpers JP 3,4,11 and 10 control trigger sources for DAC 0,1,2 and 3 respectively. In contrast

to the A/D triggering each jumper has three possible positions and if it is completely removed

the respective DAC channel is net triggered at all. Once again the source for TCLK signals can

be selected in the PC32 Int Support block to be one of:

(i) an external TTL compatible source

(ii) a on-board timer

The default source, if PC32 Int Support block is not used, is the respective on-board timer.

The software memory write triggering is build into the PC32 DAC block. In other words, if a

jumper is in the DSP position the corresponding D/A channel will be triggered each time a new

value is passed to the PC32 DAC block.

A.5.3 PC32 Int Support Block

The PC32 Int Support block is used to perform a number of functions. Double-clicking on it

brings up the menu shown in Fig. A.7. Let us go through the various options.

EIO - EI3 Triggering, this allows the user to specify how the 'C32 processor responds to external

interrupts. In all but the most specific applications the default setting will be adequate.

TCLKO and TCLK1 source, allows to specify whether the signal is drawn from one of the

on-board timers or from an external connector. When the default setting is used both TCLKO

and 1 are taken from an external pin (JP 15 or U34 memory expansion connector). Care should

be taken when changing those settings since the configuration of these pins changes from input

to output.

TimerO Freq and Timerl Freq, allow to set frequencies for the on-board TimerO and 1

respectively. TimerO can be used to generate the base sample time for a block diagram (see

section A.7 for details). When TimerO is thus engaged, the corresponding menu in Fig. A.7 is

disregarded.

Interrupt Numbers, set the numbers of interrupts available form the outside of a PC32 Int

Support block. Default setting is for interrupt 1 to 4 (EIO to EI3) and interrupt 9 and 10 (Timer 0

and 1 interrupts). If any additional interrupts need to be trapped Texas Instruments 'C32 Users's
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Block Parameters: PC32 Int Support

pPC32 Interrupt Block

. Asynchronous interrupt support for the inovative Integration PC32 card.
I Note : TCLKO/1 settigs depend also on jumpers (JP3 - G]

WARNING : Changing TCLKO/1 settings to TimerO/1 configures them as
outputs. Check external connections!

L
j - Parameters

EI0-EI3 Triggering:

TCLKO Source :

TCLK1 Source :

Timer 0 Freq

Tinner 1 Freq

Interrupt Numbers (top to bottom)

Help Close

Fig. A.7 : Mask for the PC32 Int Support block

Guide should be consulted for the relevant numbers. Should the Interrupt Numbers array be

changed, it will be necessary to go under the mask for the PC32 Int Support block and make

relevant changes. For details on this topic see Math Works' Using Simulink.

The interrupts specified in Interrupt Numbers array are available the outside of the PC32 Int

Support block. These outputs can be used to drive inputs of standard Simulink triggered

subsystems. An example of such subsystem is the AD Trigger block.

As a default the external interrupts Ell and EI2 are triggered by the end-of-conversion signals

from ADC pair 0 and 1 respectively. JP17 controls the sources for these interrupts.

External interrupt EI3 is reserved by the CSDE for communication from the host PC and should

not be used for other purposes.
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A.5.4 PWM Block

This block requires a PWM/Tacho expansion card to be connected to the PC32 Controller. For

information on the operation of the PWM/Tacho card please refer to the relevant documentation

shipped with the card.

1 Block Parameters: PWM Block

r Subsystem (mask)

Parameters

VORTL

; . I4

CONTROL MODE |

Apply rip', £,' Help

E

Close

i

Fig. A.8 : Mask for the PWM Block

Fig. A.8 shows the mask for the PWM block. VORTL specifies the frequency of operation of

the PWM generator as follows :

(i) 1 = 20 kHz

(ii) 2 =10 kHz

(iii) 3 = 5 kHz

(iv) etc.

Control Mode can be changed from Frequency to Angle depending on the control algorithm

employed.

A.5.5 AD Trigger Block

This block causes a conversion to be triggered on both ADC pairs of the PC32 Controller. It is

designed to be driven from an output of the PC32 Int Support block.
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To synchronise sampling to an external trigger signal feed this signal to EIO. Use EIO output of

the PC32 Int Support block to drive the AD Trigger block and use the end-of-conversion signals

on Ell and/or EI2 to trigger subsystems which require data from the A/D converters.

This method is particularly useful when the external trigger signal is not directly compatible to

hardware trigger the A/D converters (i.e. Pulse width too long), but still provides an acceptable

negative edge to trigger an external interrupt.

A.5.6 Scope Channel Block

This block provides a buffer for uploading a channel of data form the PC32 Controller to the

Display utility on the host PC. Presently up to 10 such block can be used in a single block

diagram. Fig. A.9 shows the mask for the first Scope Channel block. Each such block placed on

a block diagram should have a number between 0 and 10 entered under Channel Number. The

CSDE does not check for validity of users choice of numbers. Should two (or more) blocks point

to the same channel the associated window of the Display utility will show a mixture of the

blocks data, which in most cases will be meaningless.

Block Parameters: Scope Channel

'f: Subsystem (mask)-
] :

- Parameters

Channel Number

0

Buffer Size

150
Down Sample by:

Apply Revert Help Close

Fig. A.9 : Mask for the Scope Channel block

Buffer Size specifies the size of the packets sent to the host for a particular block. As a rule of

thumb blocks with faster sampling rates should have larger buffers. When a number of Scope

Channel blocks is used and only some operate correctly it is most likely that the total of all
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buffer sizes exceeds the memory allocated for the purpose. In such case the size of buffers

should be decreased.

The Down Sample option allows for adjustment of the sampling frequency. The input signal to

the Scope Channel block will be sampled at the block's execution frequency divided by the

value of Down Sample.

A.6 Display Utility

The Display utility is a stand-alone Win95 application which allows to plot graphically data

uploaded from the PC32 Controller in real-time. Up to 10 channels can be captured

simultaneously.

A.6.1 Running Display

To start the utility run Display.exe from C:\MATLAB\RTW\c\ii. The main dialog of the utility

is shown in Fig. A. 10.

£V Display Utility for PC32

Target Number:

Number of Channels : fi]

OK Cancel

Fig. A. 10 : Main window of the Display utility

The assumption is that a Simulink block diagram containing a Scope Channel block (or blocks)

and with the UPLD=YES option specified was build and started. The default setting is for

Target Number 0, this should not be changed unless more than one PC32 Controller card is
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installed in the host system. The number of Scope Channel blocks used in the corresponding

Simulink block diagram should be entered under Number of Channels. When OK is pressed the

main dialog is minimised and the specified number of channel windows appear. Every time a

Simulink block diagram is started the OK button will have to be pressed.

A.6.2 Working With Channel Windows

Each channel window has a caption - CH# 0, CH# 1 etc. Those numbers correspond to numbers

entered in each Scope Channel block in the Simulink block diagram. A typical channel window

is shown in Fig. A. 11. Settings specific to each window can be modified by double-clicking of

the window to bring up a properties dialog shown in Fig. A. 12.

Fig. A. 11 : Typical Channel Window

Channel Properties

Number of Samples:

Y Axis Span:

f~ Trigger Level:

|200

|1OO

|o

: OK i

Fig. A. 12 : Channel Properties dialog
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Default settings are :

(i) Number of Samples = 200

(ii) Y Axis Span = 100

(iii) Trigger Level = 0

(iv) No Triggering (check-box clear)

Number of Samples specifies the total number of sample points visible in the window. If this

number is less then the windows physical x-size, adjoining samples are joined by straight lines.

Display does not allow the opposite to happen, however. If the x-size of the window is

decreased below the specified number of samples, Display automatically decreases this setting.

Y Axis Span is the highest value displayed on both positive and negative y-axis. This setting

does not change when a window is resized.

Trigger Level allows to set the triggering for a particular window. For waveforms which cross

the x-axis a number of times in each period it might be necessary to increase the trigger level to

avoid re-triggering. By default triggering is not enabled, to enable it select the check-box.

A.7 Operation of the CSDE

As described in preceding sections, the CSDE is a system based around the MATLAB/Simulink

environment. Any new design starts with a Simulink block diagram. There are a few limitations

as to which blocs may be used (see below) but most standard Simulink blocks (including

toolboxes) and blocks in the PC32Lib will function as expected.

A.7.1 Setting Up a Simulink Block Diagram

First step in any new project will most likely be the design and initial simulation of a standard

Simulink diagram. The transition from simulation to actual real-time implementation involves a

few steps.

Firstly under Simulation Parameters | Solver, as shown in Fig. A. 13, the Solver options have to

be set to Fixed-step. If the block diagram contains any continuous-time integration blocks an

integration algorithm needs to be specified. A step size has to be set if the block diagram makes
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Simulation parameters: pc32_demo1

JS°tf Workspace I/O Diagnostics RTW RTW External

Simulation time

??. Start time: 0.0

Solver options

Stop time: 0.0

Type: J Fixed-step J j | |ode4(Runge-K.utta]

Fixed step size: 0.0002

Output options

Kehne output zl >-•••:;:"<>.•; ::-j\-(.-y. J i

Apply Help Close

Fig. A. 13 : Simulation Parameters | Solver

use of Timer 0 to generate the base sampling rate (see below). The values of Start and Stop Time

are ignored by the RTW.

The name for the external mode .dll needs to be entered in Simulation Parameters | RTW

External as in Fig. A.M.

Final changes have to be done in Simulation Parameters | RTW, Fig. A. 15. System Target file is

ii.tlc and the Template Make File is pc3 2. tmf. A number of options can be included behind the

make command make_rtw, these options have to be specified exactly as listed below :

(i) TMR0=YES. This option sets Timer 0 to generate the base sampling rate for the

block diagram at the rate specified under Simulation Parameters. When Timer 0

is used in this way it cannot be used by the PC32 Int Support block. If this option

is not used any blocks not contained within triggered subsystems will execute as
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^Simulation parameters: pc32_demo1

SoK'er Vv'orkspace I/O Diagnostics RTW

I MEX-file options

MEX-file for external interface:

RTW Extern^

ext_pc32

MEX-file arguments:

Download options

F" Batch parameter downloads

Download parameters

Apply Help Close

Fig. A. 14 : Simulation Parameters | RTW External

background tasks and their execution frequency cannot be guaranteed. Default is

not to use Timer 0.

(ii) UPLD=YES. This option needs to be included if use is made of the Scope

Channel block(s) to capture data. If it is omitted any Scope Channel blocks on the

diagram will not be serviced. Default is not to service uploads.

(iii) IO=ENABLE. This option is included for debugging purposes. Diagrams

compiled with this option will need to be downloaded using Innovative

Integration's Terminal program. With this option set any diagram executing on

the PC32 Controller prints text to the Terminal window. If Terminal utility is not

used when this option is set programs will hang on the DSP hardware. Default is

not to give output to the Terminal window.

If the syntax for any of the options is changed or it is omitted all together the default setting for

that particular option is used.
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I Simulation parameters: pc32_demo1

Solver Workspace I/O I Diagnostics R RTW External

Code generation

System target file: I \\\\c

f Inline parameters |~~ Retain .rtw file

Build options

Template makefile: I pc32 trnf

Make command:

make_rtw T M R 0=YE S U PLD =YE S 10 =D ISAB LE

V Generate code only

Build

Apply Help Close

Fig. A. 15 : Simulation Parameters | RTW

A.7.2 Limitations of CSDE

Due to technical reasons some Simulink blocks might not function correctly when compiled to

run on real-time hardware :

(i) Any Simulink block which depends on absolute time - e.g. Sine Wave. This is

due to the overflowing of the time register if the code is run for extended periods

of time.

(ii) All Simulink Sinks blocks and Source blocks reading from files or MATLAB

workspace. This functionality is implemented using the Scope Channel blocks.
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Appendix B
B.I Dual Port Memory Access

This appendix details the protocol used by the CSDE during bi-directional communication

between the host PC and the target PC32 card. All data exchange takes place via the DPRAM.

To avoid conflicts interrupts are used to arbitrate access to the shared memory regions.

B.I.I DPRAM Allocation

The DPRAM allocation map is shown in Fig.B. 1. The only exception to this allocation is during

initial checksum verification when locations 0x0001 to 0x0004 are temporarily used to pass the

four checksum values from the host to the target. Location 0x0000 can be read and written by

both the host and the target, all other locations are uni-directional as indicated in the Read and

Write columns in Fig. B.I.

Offset

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0400

Function

Bits 0 to 7 - host command to target, or target response to host

Bits 8 to 31 - command confirmation padding

Bits 0 to 31 - parameter offset

Bits 0 to 31 - parameter value

Bits 0 to 2 - current target status

Bits 3 to 31 - unused

Bit 0 - current host status

Bits 1 to 31 - unused

Data upload packets from target to host

Write

H/T

H

H

T

H

T

Read

H/T

T

T

H

T

H

Fig. B. 1 : Memory usage during normal operation (H = host, T = target)
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B.1.2 Host Commands

To communicate a command to the target the host places the command number within the least

significant byte at location 0x0000 and pads the remaining 3 bytes with the value OxAAA.

Interrupt EI3 is then signalled to target. The padding is done to add a degree of security to the

communication. In the event of a spurious interrupt the target will not process a command

unless the security padding is not correct. The possible host commands are listed in Fig. B.2.

Command No.

1

2

3

4

5

6

Description

Start Execution - The Simulink generated code is initialised, interrupts |

installed, and host writes its status to location 0x0003

Parameter Update - The parameter offset in SimStruct and its updated value

are placed in locations 0x0001 and 0x0002 respectively. I

Suspend Execution - The model execution is suspended and the termination

functions are called. Model can be re-started by command 1.

Checksum Verification - Four checksum values passed in locations 0x0001

to 0x0003 are compared against copies embedded in the target executable.

i

Start Data Upload - The upload queues are cleared and the uploads are

started.

Suspend Data Upload - The uploading of data is stopped. It can be restarted

by command 5. |

Fig. B.2 : List of host commands

B.I.3 Target Response

After receiving and processing a host command, the target places its response in the least

significant byte at location 0x0000 and pads it with OxABC. If processing is successful the

command number is echoed, a response of 0 signals failure. After sending a command the host

polls DP RAM location 0x0000 until the correct padding value is seen.
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B.1.4 Target Status Word

During processing of the Start Execution command the target updates its status word at

location 0x0003 to signal to host which options were enabled. Fig. B.3 lists the bit allocation in

the status word.

Bit Description

Status of the debug printouts (IO_YES define). A 1 signals that debug info is being

printed to the terminal emulator, a 0 means that all printouts are disabled.

Usage of the on-board timer 0 (TMR0_YES define). A 1 means that timer 0 is used to

generate the base sampling rate for the model, a 0 signals that timer 0 is available for

other uses.

Status of the data uploads (UPLD_YES define). A 1 signals that compiled code

supports data uploads, a 0 means that all data upload functionality was excluded

during compilation.

3..31 unused

Fig. B.3 : Target Status Word contents

B.I.5 Host Status Word

Bit 0 at location 0x0004 signals whether the Display utility on the host PC is ready to accept data

uploads. A 1 signals a ready condition. A 0 signals that Display is either not running or it is still

busy reading packets out form DPRAM. The remaining bits (1 to 31) in the status word are not

used.

B.1.6 Packetized Data Uploads

The continuous DPRAM block from location 0x0005 to 0x0400 is reserved for data uploads

from the target to host. When enough buffered data is available on the target, the host status

word is polled until it is 1. Next packetized data is placed in the DP ARAM in the manner shown

in Fig. B.4 and interrupt IRQ5 is signalled to the host PC.
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DPRAM offset:

0x0005

0x0006

0x0007

0x0007 + XN

0x0007 + XN + 1

0x0007 + XN + 2

0007 + XN + 2 + XM

Description:

Channel Number
N

Packet Size
XN

Packet Data
i
i
i
i

Channel Number
M

Packet Size
XM

1
Packet Data i

i
i
i

Termination
999

Fig. B.4 : DPRAM usage for data uploads
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Appendix C
C.I Hardware Registers

This appendix lists the functionality of the timer configuration registers of the TMS320C32

processor, and all registers of the PMB 1/87 ASIC.

C.I.I 'C32 Timer Control Registers

Timer control registers are memory mapped in the general address space of the 'C32 processor

as shown in Fig.C. 1. The function of the various flags in the Timer Global Control Registers is

explained in Fig. C.2.

Register

Timer Global Control

Timer Counter

Timer Period

Timer 0 address

0x808020

0x808024

0x808028

Timer 1 address

0x808030

0x808034

0x808038

Fig. C.I : Timer Control Register memory locations

C.1.2 PMB 1/87 Registers

All communication with the PWM ASIC is conducted via two memory mapped locations.

Assuming the PWM/Tacho card is set to the default settings (Decodes 0 and offset 0x000) the

memory mapping is shown in Fig. C.3. Writing to the control word sets various internal

functions as well as the read and write addresses for internal registers, as shown in Fig. C.4.

During reading the status word contains the IC's status information as shown in Fig. C.5.

The various registers available for writing are listed in Fig. C.7. Registers which can be read

back are shown in Fig. C.6.
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Bit

0

1

2

3

4. . 5

6

7

8

9

10

11

12 ..31

Name

FUNC

I/O

DATOUT

DATIN

Reserved

GO

HLD

C/P

CLKSRC

INV

TSTAT

Reserved

Rst. Val

0

0

0

?

0

0

0

0

0

0

0

0

Description

FUNC controls the function of TCLK. If 0, TCLK is a

general I/O pin, if 1 TCLK is a timer pin |

If TCLK is a I/O pin then I/O = 0 configures it as an input, 1

makes it an output

Data for TCLK in output I/O mode, can be used as input to

the timer

Data input for TCLK, write has no effect

Read as 0

GO resets and starts the timer. If 1 and timer is not held, I

counter is reset,started and GO is cleared. GO = 0 has no

effect. |

Counter hold signal. If 0 counter is stopped, if 1 timer carries

on running.

Clock/Pulse mode control j

Selects source for the timer. If 1 the internal clock is used. If

0 TCKL pin drives the timer.

Inverter. If 1 timer input and output signals are inverted. If 0

no effect.

Timer status. Sends an interrupt to the CPU on each |

transition from 0 to 1. A write has no effect.

Read as 0
i

Fig. C.2 : Timer Global Control Register
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Address

0x819800

0x819801

Function

Data Word

Status Word (during a read)

Control Word (during a write)

Fig. C.3 : Memory mapping of the PMB 1/87 ASIC

Bit

0

j
1

2 . .4

5

6

7

8.. 11

12.. 13

14

15

Name

EIN

IINT

IINT1 ..IINT3

Not used

TESTFL

BUS 16

WAD0 .. WAD3

RAD0 .. RADl

RDSTART

Not used

Description

EIN=1 enables pulse calculation and output, 0 disables

IINT=0 selects external control over current polarity (pins

11..13), 1 internal control via bits IINT1 .. IINT3

Current polarity in inverter branch 1 .. 3 (l=positive current)

Test flag, should be left at 0

BUS 16=1 selects 16-bit bus mode, 0 selects 8-bit bus mode

Write address used by next write to Data Register,

automatically increments after each write

Read address used by next read from Data Word.

Start read cycle.

Fig. C.4. Control Word during a write
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Bit Name

WRFLAG

Description

Data may only be written to registers when WRFLAG = 0

RDFLAG RDSTART = 0 means data read cycle is complete.

CALCFLAG Processing flag indicates when an internal processing cycle is in

progress. Read cycle can be started when CALCFLAG = 0

3 . . 15 Not used

Fig. C.5 : Status Word during a read

RAD 1 .. 0

00(0)

01(1)

10(2)

11(3)

Name

PHI0

PHI1

UO

Not used

Description

Phase angle, lower half |

Phase angle, upper half j
i

Voltage value

I

Fig. C.6 : Readable registers
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WAD3 .. 0

0000 (0)

0001(1)

0010(2)

0011 (3)

0100(4)

0101 (5)

0110(6)

0111 (7)

1000(8)

1001(9)

1010(10)

1011 (11)

1100(12)

1101 (13)

1110(14)

1111 (15)

Name

UA

UB

PHI1

DPHI1

PHIO

DPHIO

PHIADD

Not used

TAUS

TTOT

TMIN

VORTL

TSTART

Not used

Not used

Not used

Description

Ua voltage component

Ub voltage component |

Phase angle, upper half |

Frequency, upper half I
II

Phase angle, lower half

Frequency, lower half 1

i
Difference in phase angle !(

Turn-off time

Dead-band time I

Turn-on time

Switching frequency scale value

Start of processing cycle

Fig. C.7 : Writeable control registers
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Appendix D
D.I Template Make File

This appendix list the template make file specifically customised to generate code for the PC32

platform.

D.I.I Source Listing of pc32.tmf

General Defines

SYS_TARGET_FILE = ii.tlc
MAKE = gtnake
HOST = PC
BUILD = yes
DOWNLOAD = yes
BUILD_SUCCESS = Completed
DOWNLOAD_SUCCESS = Downloaded

# Customization Macros
#
# The following set of macros are customized by the make_rt program.
#

MODEL = |>MODEL_NAME<|
MODEL_MODULES = j >MODEL_MODULES<|
MODEL_MODULES_OBJ = j >MODEL_MODULES_OBJ<|
MAKEFILE = |>MAKEFILE_NAME<|
MATLAB_ROOT = j >MATLAB_ROOT<|
MATLAB_BIN = j>MATLAB_BIN<|
S_FUNCTIONS = j >S_FUNCTIONS<|
S_FUNCTIONS_OBJ = j>S_FUNCTIONS_OBJ<|
SOLVER = I>SOLVER<|
SOLVER_OBJ = |>SOLVER_OBJ<|
NUMST = I>NUMST<|
TID01EQ = |>TID01EQ<|
NCSTATES = I>NCSTATES<|
BUILDARGS = j>BUILDARGS<|
COMPUTER = I>COMPUTER<|

# II pc32 Definitions

BOARDJTYPE = PC3 2
DSP_FAMILY = 3 0
COMPILER = TI_FPC

II_ROOT = $(MATLAB_ROOT)\rtw\c\ii
II_COMPILER = $(II_ROOT)\ti_fpc
II_CMD = $(II_COMPILER)\iiPC32.cmd
II_BOOT = $(II_COMPILER)\vectors.obj

PC32_DOWNLOAD = $(II_ROOT)\D_Load.exe

# XI Tools

#
# You may need to modify the TI_ROOT if you have installed the
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# Texas Instrument Compiler in a different location.
#

TI_ROOT = c:\fltc
TI_FLAGS = -v$(DSP_FAMILY)

CC = $(TI_ROOT)\cl30
LD = $(TI_ROOT)\lnk3 0

# Include Path

MATLAB_INCLUDES = \
$(MATLAB_ROOT)\simulink\include; \
$(MATLAB_ROOT)\extern\include; \
$(MATLAB_ROOT)\rtw\c\src; \
$(MATLAB_ROOT)\rtw\c\libsrc;

TI_INCLUDES = $(TI_ROOT); $(TI_ROOT)\Include\Target;

II_INCLUDES = $(II_BOARD)\Lib\Target

INCLUDES = .; $(MATLAB INCLUDES) $(TI INCLUDES) $(II INCLUDES)

# Compiler Flags
# Required Options

REQ_OPTS = $(TI_FLAGS) -q -eo .o$(DSP_FAMILY)

# Optimization Options
OPT_OPTS = -xO -o3

# Debug Options
DBG_OPTS

CC_OPTS = $(REQ_OPTS) $(OPT_OPTS) $(DBG_OPTS) -dIO_$(IO) \
-dTMR0_$(TMR0) -dUPLD_$(UPLD)

CPP_REQ_DEFINES = -dMODEL=$(MODEL) -dRT -dNUMST=$(NUMST) \

-dTID01EQ=$(TID01EQ) -dNCSTATES=$(NCSTATES)

CFLAGS = $(CC_OPTS) $(CPP_REQ_DEFINES) $(CPPJDEFINES)

LDFLAGS = -x -a -cr -heap 0x2000 $(II_BOOT) -m $(MODEL).map

# Source Files

REQ_SRCS = PC32main.c pc32func.c rt_sim.c rt_matrx.c $(MODEL).c
OPT_SRCS
S_FCN_SRCS = $(S_FUNCTIONS)
INT_SRCS = $(SOLVER)
REQ_OBJS = $(REQ_SRCS:.c=.o$(DSP_FAMILY))
OPT_OBJS = $(OPT_SRCS:.c=.o$(DSP_FAMILY))
S_FCN_OBJS = $(S_FCN_SRCS: . c= .O$ (DSP__FAMILY) )
INT_OBJS = $(INT_SRCS:.c=.O$(DSP_FAMILY))
OBJS = $(REQ_OBJS) $(OPT_OBJS) $(S_FCN_OBJS) $(INT_OBJS)
PROGRAM = $(MODEL).out

# Exported Environment Variables
#
# Because of the 128 character command line length limitations in DOS, we
# use environment variables to pass additional information to the
# Compiler and Linker
#
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C_OPTION := $(CFLAGS)
C_DIR := $(INCLUDES); $(C_DIR)
C_MODE = PROTECTED

# Compile and Link Rules
$(PROGRAM) : $(OBJS)

echo $(OBJS) > $(MODEL).lin
echo $(II_CMD) >> $(MODEL).lin
$(LD) $(LDFLAGS) -o $@ $(MODEL).lin
echo $(BUILD SUCCESS) $(PROGRAM)

# Compile existing code if it exists in current dir
%.o$(DSP_FAMILY) : %.c

$(CC) $<

# Call to PC32 rt_main.c
%.o$(DSP_FAMILY) : c:\matlab\rtw\c\ii\ti_fpc\%.c

$(CC) $<

# Call to simulink files
%.o$(DSP_FAMILY) : $(MATLAB_ROOT)\simulink\src\%.c

$(CC) $<

# Call compile RTW files
%.o$(DSP_FAMILY) : $(MATLAB_ROOT)\rtw\c\src\%.c

$(CC) $<

%.O$(DSP IFAMILY) : $(MATLAB
$(CC)

download
del
del
del
del
del
del
del

$
$
$
$
$
$
$

$<

Pi 1 1 ̂

(MODEL).lin
(MODEL).c
(MODEL).h
(MODEL).map
(MODEL).o30
(MODEL).prm
(MODEL).reg

ROOT)\rtw\c\libsrc\%.c

Rule for Downloading to Target

$(PC32_DOWNLOAD) $(PROGRAM)
echo $(DOWNLOAD SUCCESS) $(PROGRAM)

#-

iirt_main.o$(DSP_FAMILY) :
$(OBJS) : $(MAKEFILE)

Dependencies

$(MODEL).c
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Appendix E
E.I Real Time Kernel

This appendix list source code for the Real Time Kernel. The functionality is contained in two

files pc32main.c and pc32func.c.

E.I.I Source Listing of pc32main.c

* pc32main.c *
* Entry point to code generated with RTW for the *
* PC32 DSP card. *
* This file is specifically for the TI compiler, V4.6, but *
* will probably work under later versions. *
* *
* Adam Stylo (07 Jan 1999) *

#include "pc32main,h"

/* Defines */

#ifndef RT
# error "must define RT"
#endif

#ifndef MODEL
# error "must define MODEL"
#endif

ttifndef NUMST
# error "must define number of sample times, NUMST"
#endif

ttifndef NCSTATES
# error "must define NCSTATES"
#endif

/* External functions */

extern SimStruct *MODEL(void);
extern void MdllnitializeSizes(void);
extern void MdllnitializeSampleTimes(void);
extern void MdlStart(void) ;
extern void MdlOutputs(int_T tid);
extern void MdlUpdate(int_T tid);
extern void MdlTerminate(void);
extern void ServiceUploads(void);

#if NCSTATES > 0
extern void rt_CreateIntegrationData(SimStruct *S);
extern void rt_UpdateContinuousStates(SimStruct *S);

#else
#define rt_CreateIntegrationData(S)

ssSetSolverName(S,"FixedStepDiscrete" ) ;
#define rt_UpdateContinuousStates(S) ssSetT(S,ssGetSolverStopTime(S));

#endif
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/* Global data */
real_T rtlnf;
real_T rtMinusInf ,-
real_T rtNaN;

static SimStruct *S;
static real_T *param,-
volatile uint32_T *dpram;
int int_flag = 0;
int dprx = 0 ;

/* Global structure for Data Uploads */

QUEUE queue[MAX_QUEUES] ;
unsigned int buffer_size[MAX_QUEUES];
unsigned int Down_Sample[MAX_QUEUES];
int LogData = FALSE;
int gueue_error = FALSE;
int NumQueues = 0;
unsigned int channel_map [MAX_QUEUES] ;

/*_„_._._„___„_______*

* Local functions *
*=================*/

#define PC0_int c_intl4

static void PC0_int(void);

#ifdef TMR0_YES /* Include rtOneStep function only if we use Timer 0 to
trigger it */

#define rtOneStep c_intl9
static void rtOneStep(void);

/* Function: rtOneStep

* Performs one step of the model. */

static void rtOneStep(void)

{
real_T tnext;

tnext = rt_GetNextSampleHit();
ssSetSolverStopTime(S,tnext);

MdlOutputs(0);
MdlUpdate(0);

rt_UpdateDiscreteTaskSampleHits(S) ;

if (ssGetSampleTime(S,0) == CONTINUOUS SAMPLE TIME)

{
rt_UpdateContinuousStates(S) ;

}
} /* end rtOneStep */

#endif /* TMR0_YES */

* Interrupt Service Routines *
* * /

static void PC0 int()
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/* wait for the sync signal from host*/
if ((!int_flag) && ((dpram[0] & OxFFFO)==0xAAA0))

{
int_flag=l;

dprx=dpram[0] & OxOOOF;} /* extract the command byte */

}

* Visible functions *
* = = = = = = = = = = = = = = = = = = = * /

/*
* main - The main program, which calls the initialization routines and

* executes the background task.
*/

int_T main(int_T argc, char_T *argv[])

{
int rxmb;
int waiting_for_comms;

int host_start=0, ChecksumOK=0;

dpram = (volatile uint32_T* ) kPeriph- >Dpram,-

/* Get going on the PC32 */

MHZ = detect_cpu_speed();
timer (0 , 0) ,•
enable_cache();
enable_clock();
enable_monitor();

#ifdef IO_ENABLE
clrscr () ,-
printf("Real Time Code Execution.\n");

ttendif

/* Initialize the model */

S = MODEL();

ssSetTFinal(S,0.0); /* run forever */

MdllnitializeSizes();
MdllnitializeSampleTimes();

rt_InitTimingEngine(S) ;
rt_CreateIntegrationData(S) ;

/*get address of parameter structure */
param = ssGetDefaultParam(S);

#ifdef IO_ENABLE
printf("Standing by to establish comms.\n");

#endif

/* trap the host interrupt for comms */
install_int_vector(PC0_int, 4) ;
enable_interrupt(3);

dpram[0]= 0;
enable_interrupts() ;

/* infinite loop - but execution can still be stopped by host */
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while (1)

{
/* dont respond to interrupts 'till we process the current one */
disable_interrupt(3);
if (int_flag)
{
switch (dprx)

{
case 1: /* command to start execution */

#ifdef IO_ENABLE
printf ("External Comms Initiated. Initialising Model.\n") ;

#endif
disable_interrupts();
MdlStart () ;
dpram[3] = 0 ; /* assume all options are OFF */

ttifdef TMR0_YES
/* Timer 0 used to generate base clock for the model */
/* trap the timerO interrupt for base time*/

install_int_vector(rtOneStep, 9);
enable_interrupt(8);
timer (0, (int)(1.0 / ssGetStepSize (S)));
dpram[3] += 2; /* tell host we are using timer 0 */

#ifdef IO_ENABLE
printf("Model base sample time is %d Hz (generated by Timer

0) .\n", (int) (1.0 / ssGetStepSize (S)));
#endif
ttendif

enable_interrupts();
host_start=l;

ttifdef IO_ENABLE
printf("Model Initialised.\n");
dpram[3] += 1; /* tell host if 10 to Terminal is enabled */

ttendif

#ifdef UPLD_YES
dpram[3] += 4; /* tell host uploading is enabled */
ClearAllQueues();

#ifdef IO_ENABLE
printf("Data upload buffers are ready.\n");

#endif
ttendif

break;

case 2: /* accept a parameter from host */
rxmb=dpram [1] ;
param[rxmb] =from_ieee(dpram[2]);

ttifdef I0_ENABLE
printf("Param[%d] = %g\n",rxmb,param[rxmb]);

#endif
break;

case 3: /*suspend execution-run through all termination code */
ttifdef IO_ENABLE

printf("Terminating Execution.\n");
#endif

disable_interrupts();

ttifdef TMR0_YES
/* stop timer 0 int only if it was used */

disable_interrupt (8);
ttendif
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MdlTerminate();
enable_interrupts();
host_start=0;
break;

case 4:
/* verify that we have the latest build on both host and DSP*/

ttifdef IO_ENABLE
printf("Verifying cheksums....");

ttendif

ChecksumOK=l;

if (dpram[l] != ssGetChecksumO(S)) ChecksumOK=0;
if (dpram[2] != ssGetChecksuml(S)) ChecksumOK=0;
if (dpram[3] != ssGetChecksum2(S)) ChecksumOK=0;
if (dpram[4] != ssGetChecksum3(S)) ChecksumOK=0;

if (ChecksumOK)

{
ttifdef IO_ENABLE

printf("OK!\n");
ttendif

}
else

{
dprx=0;

#ifdef IO_ENABLE
printf("FAILED!\n");

#endif

}
break;

case 5: /* clear queues and start logging data */
#ifdef IO_ENABLE

printf("Data logging started.\n");
#endif

ClearAllQueues() ;
LogData = TRUE;

break;

case 6: /* suspend logging data */
#ifdef IO_ENABLE

printf("Data logging suspended.\n");
ttendif

LogData = FALSE;
break;

}

dpram[0] = OxABCO + dprx,- /* send an acknowledge to host */
int_flag = 0 ; /* ready for a new command */

}

enable_interrupt(3); /* lets listen out for comms from host */

if (host_start)

{
#ifdef UPLD_YES

ServiceUploads(); /* Upload data if neccesary */
ttendif
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/* run background blocks (if any) if Timer 0 is not doing it already*/

#ifndef TMR0_YES
MdlOutputs(0);MdlUpdate(0);

ttendif
}

/* we never get here, but just in case of a MAJOR problem
exit (or rather die) gracefully */

MdlTerminate();
return(1);

} /* end main */

E.1.2 Source Listing of pc32func.c

/ • A - * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* pc32func.c *
* support functions for data uploading via DPRAM on the *
* PC32 DSP card. *
* This file is specifically for the TI compiler, V4.6, but *
* will probably work under later versions. *
+ *

* Adam Stylo (07 Jan 1999) *

#include "pc32main.h"

extern SimStruct* S;
extern QUEUE queue[];
extern unsigned int buffer_size[];
extern volatile uint32_T* dpram;
extern int NumQueues;
extern int queue_error;
extern LogData;
extern channel_map[] ;
extern real_T* param;
extern int int_flag;
extern int dprx;

#define MAXOFFSET 1001
#define BASE_DPRAM 5

void ClearAllQueues(void)

{
int num;

/* chuck all enqued data out */
for (num=0; num<NumQueues; num++)
while (enqueued(kqueue [num] ) ) dequeuejptr (kqueue [num]

void ServiceUploads(void)

{
int num=0;
int offset=0;
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i n t dpram_full = O;

i n t xxx;
unsigned i n t zzz;

if ((LogData) && !(dpram[4] & 1))
{

while ((num<NumQueues) && (offset<MAXOFFSET))

{
if ((enqueued(&queue[num]) >= buffer_size[num]) &&

(buffer size[num]<MAXOFFSET-offset))

dpram[BASE_DPRAM + offset++] = channel_map[num];
/* put queue number in dpram */

dpram[BASE_DPRAM + offset++] = buffer_size[num];
/* put queue size in dpram */

for (xxx=0; xxx<buffer_size[num]; xxx++)

{
dpram[BASE_DPRAM + offset++] =

to_ieee(*(volati le float*)dequeue_ptr(&queue [num]))

dpram_full = TRUE;
}

num++;
}

/* got something to sent to host, tell him */

if (dpram_full)

{
dpram[BASE_DPRAM + offset] = (int)999;
dpram [4] += 1;
host interrupt();
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Appendix F
F.I Driver Block DLL

This appendix list source code for the S-function DLL file for the II interrupt driver block. The

differences between the DLL files for other driver blocks are minor, thus to conserve space only

this one will be listed as an example.

F.I.I Source Listing of iiinterrupt.c

/* Front-end f i l e for the PC32 in ter rupt support block.
There is absolutely no useful code here apart from
se t t ing the number of parameters to use with the mask.

Adam Stylo (January 1999)
* /

#define S_FUNCTION_NAME i i i n t e r r u p t
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#ifndef MATLAB_MEX_FILE

/* Since we have a target f i l e for t h i s S-function, declare an er ror here
* so tha t , if for some reason th i s f i l e is being used (instead of the
* target f i le ) for code generation, we can trap th i s problem at compile
* time. */

# error This_file_can_be_used_only_during_simulation_inside_Simulink
#endif

* S-function methods *

static void mdllnitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams( S, 6);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))

{
return; /* Simulink will report a parameter mismatch error */

}
ssSetSFcnParamNotTunable ( S, 0) ,-
ssSetSFcnParamNotTunable( S, 1) ;
ssSetSFcnParamNotTunable( S, 2 ) ;
ssSetSFcnParamNotTunable( S, 3 ) ;
ssSetSFcnParamNotTunable( S, 4) ;
ssSetSFcnParamNotTunable( S, 5) ;

ssSetNumlnputPorts ( S, 1) ,-
ssSetlnputPortWidthf S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDirectFeedThrough( S, 0, 1 ) ;

ssSetNumOutputPorts( S, 1) ;
ssSetOutputPortWidth( S, 0, DYNAMICALLY_SIZED);
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ssSetNumlWork( S, 0);
ssSetNumRWork( S, 0);
ssSetNumPWork( S, 0) ;

ssSetNumSampleTimes( S, 1);
ssSetNumContStates ( S, 0);
ssSetNumDiscStates ( S, 0) ;

ssSetNumModes ( S, 0) ;
ssSetNumNonsampledZCs( S, 0);
ssSetOptions( S, (SS_OPTION_EXCEPTION_FREE_CODE

SS OPTION ASYNCHRONOUS));

static void mdllnitializeSampleTimes(SimStruct *S)

{
int i;
/* simulation mode - used inside of triggered subsystem */

ssSetSampleTime(S, 0, 1.0);
ssSetOffsetTime(S, 0, 0.0);

for(i = 0; i < ssGetOutputPortWidth(S,0); I++)

{
ssSetCallSystemOutput(S, i) ;

static void mdllnitializeConditions(SimStruct *S)

static void mdlOutputs(SimStruct *S, int_T tid)

static void mdlTerminate(SimStruct *S)

/*=============================*
* Required S-function trailer *
*=============================*/

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

/* Is this file being compiled as a MEX-file? */
/* MEX-file interface mechanism */

/* Code generation registration function */
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Appendix G
G.I Hardware Drivers TLC Files

This appendix list the TLC source code for the functions which implement hardware access on

the target side.

G.I.I Source Listing of ADTrigger .tic

%% Abstract:
%% TLC file for the PC32 A/D Trigger Block.
%% Performs four writes to A/D memory locations thus
%% triggering a conversion. Conversion is triggered
%% regardless of the status of JP5 & 6 on the board
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "ADTrigger" "C"

%include "iilib.tlc"

%% II define these addr in their headers, but rather safe then sorry.
%openfile buffer

/*
define addresses for ADC Triggering
*/

ftdefine ADCO (volatile int*) 0x810000
#define ADC1 (volatile int*) 0x810800
#define ADC2 (volatile int*) 0x811000

ttdefine ADC3 (volatile int*) 0x811800

%closefile buffer

%<LibCacheDefine(buffer)>

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
/* a write to those addresses triggers a conversion on A/D */

*(ADCO)=0;
*(ADCl)=0;
*(ADC2)=0;
*(ADC3)=0;

%endfunction %% Outputs

%% [EOF] ADTrigger.tic
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G.1.2 Source Listing of iiinterrupt.tlc

%% Abstract:
%% TLC file for the PC32 Asynchronous Interrupt Block.
%% This file is used to generate code to support asynchronous
%% interrupts on the PC32.
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "iiinterrupt" "C"

%include "iilib.tlc"

%% Function: BlocklnstanceSetup

%% Abstract:

%% Find all the function-call subsystems that are attached to the
%% interrupt block and hook-in the necessary code for each routine.
%% This function
%%
%% o Connects each ISR in the model's start function.
%%
%% o Enables each ISR at the bottom of the model's start function.
%%
%% o Disables each ISR in the model's terminate function.
%%
%% o Saves floating point context in the ISR's critical code section

%assign ::EITrigg = LibBlockParameter(PI,"","",0)
%assign ::Tmr0freq = LibBlockParameter(P4,"","",0)
%assign ::Tmrlfreq = LibBlockParameter(P5,"","",0)
%assign ::Trigg_srcO = LibBlockParameter(P2,"","",0)
%assign ::Trigg_srcl = LibBlockParameter(P3,"","",0)

%function BlocklnstanceSetup(block, system) void

%% Only allow 1 interrupt block
%if EXISTS("IIInterruptBlockSeen")

%assign errTxt = "Only 1 Interrupt block is allowed in " ...
"model: %<CompiledModel.Name>."

%exit RTW Fatal: %<errTxt>
%else

%assign ::IIInterruptBlockSeen = 1
%endif

%% Disable interrupts while setting up
%openfile buffer

/* Disable interrupts while setting up */
#ifdef IO_ENABLE

printf("Connecting Interrupts\n");
#endif

/* Make ints edge triggered only if required */
if ((int)%<EITrigg> == 1)
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{
asm (" OR 4000h,ST");
ttifdef IO_ENABLE
printf("EIO - EI3 Set to edge triggered\n");
#endif

}
else

{
asm (" ANDN 4000h,ST");
#ifdef IO_ENABLE
printf("EIO - EI3 Set to level triggered\n");
ttendif

%closefile buffer

%<LibMdlStartCustomCode(buffer, "header")>

%openfile buffer

/* define addresses for control registers */

#define GC_CTRL0 (volatile int*) 0x808020
#define GC_CTRL1 (volatile int*) 0x808030

%clofc»efile buffer

%<LibCacheDefine(buffer)>

%foreach callldx = NumSFcnSysOutputCalls

%% Get downstream block if there is one
%if "%<SFcnSystemOutputCall[callldx].BlockToCall>" != "unconnected"
%assign ssSysIdx = SFcnSystemOutputCall[callldx] .BlockToCall [0]
%assign ssBlkldx = SFcnSystemOutputCall[callldx] .BlockToCall [1]
%assign ssBlock = CompiledModel.System [ssSysIdx] .Block[ssBlkldx]

%% Check to see if this is a direct connection
%if (ssBlock.ControlInput.Width != 1)
%assign errTxt = "The II Interrupt block '%<block.Name>' " ...
"outputs must be directly connected to one function-call subsystem. " ...
"The destination function-call subsystem block '%<ssBlock.Name>' " ...
"has other inputs."
%exit RTW Fatal: %<errTxt>
%endif

%% Assume it is a subsystem block(Simulink checked for a f-c subsys
%% already).

%assign isrSystem = System[ssBlock.ParamSettings.Systemldx]

%% redefine arguments of ISR function

%openfile buffer

/*

redefine arguments for ISR: %<ssBlock.Name>
* /

ttdefine
%<isrSystem.OutputUpdateFcn>(%<tSimStruct>,%<tControlPortIdx>,%<tTID>)

c_intO%<callIdx+l>()

%closefile buffer
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%<LibCacheDefine(buffer) >

%% Connect the ISR in the model's start function

%openfile buffer
/*
connect ISR system: %<ssBlock.Name>
*/

if (%<LibBlockParameter(P6,"","",callldx)>==9)

/*
check that timerO int is unused before assigning new vector
*/

#ifndef TMR0_YES
%if callldx < 9

install_int_vector(c_into%<callldx+l>,(int)%<LibBlockParameter(P6,"
11", callldx) >) ,-

%else
install_int_vector(c_int%<callldx+l>,(int)%<LibBlockParameter(P6,"",

"",callldx)>);
%endif

enable_interrupt((int)%<LibBlockParameter(P6,"","",callldx)>-1);
#ifdef IO_ENABLE

printf("Vectior installed for INT
#%d.\n",(int)%<LibBlockParameter(P6,"","",callldx)>);

#endif
#endif

else
{
%if callldx < 9

install_int_vector(c_into%<callldx+l>,(int)%<LibBlockParameter(P6,
"", callldx) >) ,-

%else
install_int_vector(c_int%<callldx+l>,(int)%<LibBlockParameter(P6,"

"",callldx)>);
%endif

enable_interrupt((int)%<LibBlockParameter(P6,"","",callldx)>-l);
#ifdef IO_ENABLE

printf("Vectior installed for INT
#%d.\n",(int)%<LibBlockParameter(P6,"","",callldx)>);

#endif

%closefile buffer

%<LibMdlStartCustomCode(buffer, "trailer")>

%openfile buffer

/*
disconnect ISR system: %<ssBlock.Name>
*/

if (%<LibBlockParameter(P6,"","",callldx)>==9)

/*
only disconnect timerO if it was set up here
*/

#ifndef TMR0_YES
disable_interrupt((int)%<LibBlockParameter(P6, "", "",callldx)>-l) ;
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deinstall_int_vector((int)%<LibBlockParameter(P6,"","",callldx)>);
#ifdef IO_ENABLE

printf("INT #%d disabled.\n",(int)%<LibBlockParameter(P6,"",
"",callldx)>);

#endif
#endif

else

disable_interrupt((int)%<LibBlockParameter(P6 , "", "",callldx) >-l) ;
deinstall_int_vector((int)%<LibBlockParameter(P6,"","",callldx)>);

#ifdef IO_ENABLE
printf("INT #%d disabled.\n",(int)%<LibBlockParameter(P6,"",

"",callldx)>);
#endif

%closefile buffer

%<LibMdlTerminateCustomCode(buffer, "trailer")>

%else %% The element is not connected to anything

%assign wrnTxt = "No code will be generated for ISR %<callldx> "\

"since it is not connected to anything."

%warning %<wrnTxt>

%endif

%endforeach

%% Setup timers and enable global interrupts

%openfile buffer

ttifndef TMR0_YES
/*
Only change Timer 0 settings if it isn't used for base sampling rate
*/

timer(0, (int)%<Tmr0freq>);
ttendif

timer(1, (int)%<Tmrlfreq>);
if ( (int)%<Trigg_srcO> == 2)

*GC_CTRL0 = 0x6c3;
ttifdef IO_ENABLE

printf("TCLKO driven by Timer 0.\n");

ttendif

else

*GC_CTRL0 = 0x6CO;
ttifdef IO_ENABLE

printf("TCLKO d r i v e n e x t e r n a l y . \ n " ) ;
ttendif

}

if ( ( i n t )%<Tr igg_s rc l> == 2)

*GC_CTRL1 = 0x6c3;
ttifdef 10 ENABLE
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printf("TCLK1 driven by Timer l.\n");
#endif
}
else
{

*GC_CTRL1 = 0x6c0;
#ifdef IO_ENABLE
printf ("TCLK1 driven externaly. \n") ,•

#endif
}
#ifdef IO_ENABLE

printf("Interrupts Connected & Enabled\nT

#endif

%closefile buffer

%<LibMdlStartCustomCode(buffer, "trailer")>

%endfunction

%% [EOF] iiinterrupt.tic

G.1.3 Source Listing of pc32_ad.tlc

%% Abstract:
%% TLC file for the PC32 A/D Block.
%% This file is used to generate code to read
%% values from the A/D converters and scale them to +-10.
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "pc32_ad" "C"

%include "iilib.tlc"

%function BlocklnstanceSetup(block, system) void

%% Only allow 1 instance of the A/D block
%if !EXISTS("Rt_pc32ad")

%assign ::Rt_pc32ad = 1
%else
%error Only 1 PC32adn block is allowed in the model.

%Endif

%endfunction %% BlocklnstanceSetup

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */

/*
read in the corrected values from A/D and scale to +-10
*/

{
%<LibBlockOutputSignal(0,"","",0)>=read_adc(BASEBOARD, 0)/(3276.7)
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%<LibBlockOutputSignal(0,"","",1)>=read_adc(BASEBOARD, 1)/(3276.7);
%<LibBlockOutputSignal(0,"","",2)>=read_adc(BASEBOARD, 2)/ (3276 .7) ,-
%<LibBlockOutputSignal(0,"","",3)>=read_adc(BASEBOARD, 3)/(3276.7) ;

%endfunction %% Outputs

G.I.4Source Listing of pc32_da.tlc

%% Abstract:
%% TLC file for the PC32 D/A Block.
%% This file is used to generate code to write
%% values to the D/A converters. At termination
%% all outputs are set to 0.
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "pc32_da" "C"

%include "iilib.tlc"

%function BlocklnstanceSetup(block, system) void

%% Only allow 1 instance of the D/A block
%if !EXISTS("Rt_pc32da")

%assign ::Rt_pc32da = 1
%else

%error Only 1 PC32dan block is allowed in the model.
%Endif

%endfunction %% BlocklnstanceSetup

%% Function: Outputs

%% Abstract:
%% Generate inlined code to perform one D/A conversion.

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */

/*
Start an output conversion
*/

write_dac(BASEBOARD, 0, %<LibBlockInputSignal(0,"","",0)>*(3276.7)) ;
convert_dac(BASEBOARD, 0);
write_dac(BASEBOARD, 1, %<LibBlockInputSignal(0,"","",1)>*(3276.7));
convert_dac(BASEBOARD, 1) ;
write_dac(BASEBOARD, 2, %<LibBlockInputSignal(0,"","",2)>*(3276.7));
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convert_dac(BASEBOARD, 2);
write_dac(BASEBOARD, 3, %<LibBlockInputSignal(0,"","",3)>* (3276.7))
convert dac(BASEBOARD, 3);

%endfunction %% Outputs

%openfile buffer

/*
reset D/A outputs to 0 at termination.
*/

write_dac(BASEBOARD, 0, 0);
convert_dac(BASEBOARD, 0);
write_dac(BASEBOARD, 1, 0);
convert_dac(BASEBOARD, 1);
write_dac(BASEBOARD, 2, 0);
convert__dac (BASEBOARD, 2);
write_dac(BASEBOARD, 3, 0);
convert_dac(BASEBOARD, 3 ) ;

%closefile buffer

%<LibMdlTerminateCustomCode(buffer, "trailer")>

%% EOF: PC32dan.tlc

G.1.5Source Listing of pwmblock.tlc

%% Abstract:
%% TLC file for the PWM Block. Generates code used to
%% control a PWM/Tacho add on card.
%% Author:
%% Adam Stylo
%% Date:
%% 98/11/03

%implements "pwmblock" "C"

%include "iilib.tlc"

%assign ::Vortl = LibBlockParameter(PI,"","",0)
%assign ::CtrlMode = LibBlockParameter(P2,"","",0)

%function BlocklnstanceSetup(block, system) void
%% Only allow 1 pwm block
%if EXISTS("IIPWMBlockSeen")

%assign errTxt = "Only 1 Interrupt block is allowed in
"model: %<CompiledModel.Name>."

%exit RTW Fatal: %<errTxt>
%else

%assign ::IIPWMBlockSeen = 1
%endif

%openfile buffer

Hardware Drivers TLC Files Page G-8



Appendix G

#define Status_word (volatile int*) 0x81a001
#define Data_word (volatile int*) 0x81a000

#define TAUS (0)
#define TTOT (0)
#define TMIN (0)

int VORTL,TSTART;

void pollpwm( void )

{
while (*(Status_word) & 0x1);

}

%closefile buffer

%<LibCacheDefine(buffer)>

%openfile buffer

ttifdef IO_ENABLE

printf("Initializing PWM Block . . . . \ n " ) ;
ttendif
VORTL = (int)(%<Vortl>);
TSTART = ((int) (512-(322/(VORTL + 1))) ) ;

*IOBCR = 0x58;
*(Status_word) = 128; /* set up 16 bit addressing mode */
*(Status_word) = 128; /* set addres to zero */

pollpwm();

*(Data_word) = 0 ; /* Ua */

pollpwm();

*(Data_word) = 0 ; /* Ub */

pollpwm();

*(Data_word) = 0; /* phil */

pollpwm();

*(Data_word) = 0; /* dphil */

pollpwm();

*(Data_word) = 0; /* phiO */

pollpwm();

*(Data_word) = 0; /* dphiO */

pollpwm();

*(Data_word) = 0; /* phiadd */

pollpwm();

*(Data_word) = 0; /* unused */

pollpwm();
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4.2.5 'C32 Development Tools

TI provide a code development suite for the 'C32, including :

(i) Optimising ANSI C compiler - translates standard ANSI C language directly into

optimised assembly code,

(ii) Assembler/Linker - converts source mnemonics to executable object code and links

all specified modules int a single image file,

(iii) Pre compiled libraries - provide support for specific DSP algorithms as well as

standard ANSI C functionality.

4.3 Motion Controller Hardware

Having discussed the 'C32 processor's architecture, the following sections will introduce the

two components of the CSDE hardware platform, namely the PC32 DSP controller and the

PWM/Tacho card. The PC32 is a commercially available solution while the PWM/Tacho

expansion card was developed in-house at UND [WALKERl]. Fig. 4.4 shows the overall

structure of the CSDE target hardware.

The PC32 slots into the PC expansion bay and all interfacing is done via the ISA bus. The

custom expansion card is "piggy-backed" onto the PC32 and slots into an adjacent ISA slot for

mechanical support and also draws its power supply from the PC. The interfacing between the

PWM/Tacho card and the PC32 is performed via the PC32's expansion bus. This way the

expansion card is mapped directly into the 'C32 address space.
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PC32 Card

Host PC
ISA Bus

TMS320C32
DSP

DPRAM
(4kb)

Memeory Decode
FPGA

SRAM
(512 kb)

196 pin
Expansion

Header

16-bit ISA
Interface

4xADC

4xDAC

Digital I/O

PWM/Tacho Expansion Card

Address
Decode

r Harming Tacho
IC

Hanning PWM
IC

Fibre Optic
Interface

Fig. 4.4 : Overall CSDE Hardware Structure
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4.4 PC32 DSP Controller Card

The PC32 card from Innovative Integration [INN0VATIVE1], represents a complete DSP

system on a single half-length ISA expansion card and forms the centre of the CSDE target

hardware. A photo of the card is shown in Fig. 4.5. The board incorporates a number of memory

mapped peripherals, namely:

(i) Four ADC channels

(ii) Four DAC channels

(iii) 16 digital I/O, which can be configured as 16 in, 16 out, or 8 in / 8 out.

(iv) 196 pin expansion header, which gives direct access to the memory bus, interrupts

as well as other processor pins,

(v) 4 kb of DPRAM, mapped to a 16-bit ISA interface for communicating with the host

PC.

(vi) 512 kb SRAM, up to 2Mb can be supported.

Fig. 4.5 : Photo of the Innovative Integration PC32 card.

4.4.1 Memory

The total address range of 16 MWords (addresses from 0x000000 to OxFFFFFF), is mapped on

the PC32 as shown in Fig. 4.6. The PC32 directly supports up to 512 kWords (2 Mb) of

zero-wait-state SRAM. Optionally up to 256 kWords (1 Mb) of slower one-wait-state memory

can be supported. The 1 kWord (4 kb) of DPRAM and the onboard peripherals are also mapped

into the general address range. Internally the 'C32 uses 32-bit data representation. Physically,
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'C32 memory strobe : Description :

STRBO

STRBO

STRBO

1OSTROBE

STRBO

STRB 1

Bootloader

Dual Port Memory
16-bit physical
32-bit logical

Data Memory
16-bit physical
32-bit logical

Expansion
16-bit physical
32-bit logical

Reserved and
Internal Peripherals

External Peripherals

Reserved and
Internal RAM

Expansion
16-bit physical
32-bit logical

Fast SRAM
32-bit physical
32-bit logical

Address :

0x000000

0x001000

0x200000

0x400000

0x800000

0x810000

0x830000

0x880000

0x900000

OxFFFFFF

Fig. 4.6 : 'C32 Memory Map on the PC32

only the SRAM memory mapped into STRB 1 region is 32-bit wide. Since the SRAM is also

zero-wait-state, accesses to it require only a single processor cycle. STRB 0 memory regions are

populated with 16-bit, one-wait-state memory devices (DPRAM and data memory). Accessing

data in those areas requires a total of four processor cycles, two cycles per 16-bit access due to

the wait state and two cycles to emulate a 32-bit transaction. The IOSTROBE region of memory

is used to map peripherals external to the 'C32 processor and can also be utilised in applications

using the external PC32 expansion header.
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4.4.2 Dual Port Memory (DPRAM)

The DPRAM is addressable as a continuous block of 32-bit memory from address 0x1000 to

0x1400. From the PC side it is visible at a conventional memory address specified by DIP

switch S2 on the PC32 card, the default setting is 0xD000:0000. DPRAM accesses are not wait

stated from the PC side, thus data rates can be significantly faster than the conventional PC I/O

bus interface which normally requires three bus cycles per transaction.

The access to DPRAM is not arbitrated in hardware. This means that simultaneous accesses to

the same DPRAM address by both the PC and the PC32 will yield unpredictable results. To

avoid conflicts, a common protocol has to be defined between the PC and the PC32 application.

The use of specific areas of the DPRAM can be arbitrated using one of the following methods

[INNOVATIVE2] :

(i) Four hardware semaphores are provided as peripherals on the PC32 and are visible

via conventional I/O registers on the host PC. A semaphore can be owned by only

one side at a time, and simultaneous requests for ownership are elegantly resolved

by hardware. However, semaphore requests might have to be polled until

successful, thus incurring a possible performance penalty.

(ii) Interrupt signals passed between the host and target can signal when DPRAM is

available for access to either side. A careful use of this method can avoid the

overheads involved in semaphore switching and polling.

The CSDE makes use of an interrupt based DPRAM access protocol as defined in Appendix B.

4.4.3 Memory Mapped Peripherals

All PC32 peripherals external to the 'C32 processor are memory mapped. The address range

from 0x81000 to 0x81CFFF is reserved for this purpose and the IOSTROBE signal from the

'C32 is used. Due to the address decoding mechanism used on the PC32 each peripheral

consumes an address range of 0x800 words. Table 4.3 shows the memory allocation for the

peripherals.

Decode 0 and 1 are specifically decoded by the PC32 with custom daughter boards in mind and

the resultant signals are available via the expansion header. The PWM/Tacho card, introduced

in section 4.5 makes use of these signals to map its devices.
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Address

0x810000

0x810800

0x811000

0x811800

0x812000

0x812800 to

0x813FFF

0x814000

I 0x814800

0x815000

0x815800

0x816000

0x816800

0x817000

1 0x817800

0x818000

| 0x818800

! 0x819000

0x819800

0x81a000

0x81a800

0x81b000

0x81b800

! 0x81c000

0x81c800

Device

ADCO

ADC 1

ADC 2

ADC 3

PC Refresh

Reserved

DACO

DAC 1

DAC2 !

DAC 3 !

Update DAC 0 output |

Update DAC 1 output |

Update DAC 2 output

Update DAC 3 output

Digital I/O

Boot Indication Override to PC

Interrupt to PC

Decodes 0

Decodes 1

Reserved j

Semaphore 0

Semaphore 1 j

Semaphore 2

Semaphore 3

Table 4.3 : IOSTROBE PC32 Peripheral Mapping

4.4.4 Analogue to Digital Converters

The PC32 offers four independent ADC channels, each with 16-bit accuracy, ± 10V input range

and a guaranteed maximum conversion time of 10 /us [BURRBROWNl]. The analogue inputs

are filtered through a 6 pole anti-alias filter preset to have a 50 kHz passband. The filter poles

can be adjusted by means of resistor banks. The ADC channels are mapped into the IOSTROBE
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region of memory as shown in Table 4.3. Reading a 32-bit word form any of the ADC addresses

returns the result of the last completed conversion in the lower 16 bits as an unsigned integer.

The top 16 bits are undetermined and should be masked off.

ADC conversions can be triggered by a combination of the following methods :

(i) Memory write to the ADC address. The write does not affect the value of the last

sample stored,

(ii) An external active low TTL signal with a minimum pulse width of 40 ns. The

signals can be connected via PC32's external D-type connector,

(iii) One of the timer signals (TCLK 0 and 1) from the 'C32 processor. Setting up timer

modes and outputs is detailed in section 4.2.4.

For the purpose of triggering, the ADC devices are grouped into two pairs. ADC 0 and 1 form

pair 0 and ADC 2 and 3 form pair 1. The triggering source for each pair is selected using jumpers

JP 5 and JP 6. This selection is logically ORed with the memory writes. Fig. 4.7 demonstrates

the triggering logic for ADC pair 0, the triggering setup for pair 1 is identical, but uses JP 6.

Memory write to 0x810000

ADC0

External TTL

ADC 1

JP 5 _ .
TCLK 0

_ TCLK 1

Memory write to 0x810800

Fig. 4.7 : Triggering for the ADC pair 0
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4.4.5 Digital to Analogue Converters

The PC32 has four independent 16-bit DAC channels with a ±10V output swing

[BURRBR0WN2]. The maximum output settling time is 10 /J.S for a full scale 20V step.

Analogue outputs are filtered through a 200 kHz filter to remove any digital noise. The DAC

data latches are memory mapped as shown in Table 4.3, only the lower 16 bits are significant.

Writing to the latches does not trigger a conversion and reading returns an undetermined value.

All DAC channels may be triggered separately by one of the following :

(i) Memory write to the update register,

(ii) TCLK 0 signal,

(iii) TCLK 1 signal.

Jumpers JP 3, JP 4, JP 10 and JP 11 select trigger sources for DAC 0, 1,2 and 3 respectively. No

additional logic is provided making the three trigger sources mutually exclusive.

4.4.6 PC32 Interrupts

Four external interrupt pins are available on the 'C32 - El 0, 1,2 and 3. El 1 to 3 can be patched

through to selected trigger sources on the PC32 via the jumper header JP 17. Table. 4.4 shows

the possible combinations. El 0 to 4 are also directly available via the expansion header. In the

CSDE, El 0 is used by the custom expansion card, introduced in section 4.5. The PC_INT 0 and

1 signals can be generated by the host PC via writes to PC32 control registers mapped into the

PC's general I/O space. The CSDE uses PC_INT 0, patched through to El 3 as part of the

communication protocol between the host PC and the PC32.

Interrupts can also be generated on the host PC by the PC32 card. A memory write to PC32

address 0x819000 generates an interrupt signal which can be patched via jumper JP 7 to trigger

IRQ 5, 7,11 or 15 on the host PC. The interrupt signalling between the host PC and the PC32 is

shown in Fig. 4.8.
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Host PC

IRQ 5, 7, 11,15 I/O memory

ISA bus

PC32

JP7

±
Interrupt
Generate

JP 17

EI 1,2,3"

TMS320C32

'C32 memory bus

Fig. 4.8 : Interrupt Signalling between the PC and the PC32

Interrupt

El l

El l

EI 1

EI2

EI2

EI2

EI2

EI3

EI3

EI3

EI3

EI3

r

Source

ADC pair 0 end of conversion

External digital clock

PCJNT 0

ADC pair 0 end of conversion

ADC pair 1 end of conversion

External digital clock

PCJNT 1

PCJNT 0

ADC pair 0 end of conversion

PCJNT 1

External digital clock

ADC pair 1 end of conversion

JP 17 setting

1-3 !

8-10

1-2

3-5 |

5-7

10-12 1

11-12

2-4

3-4

9-11

9-10
!

7-9 j|

Table 4.4 : PC32 Interrupt Sources Selection
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4.4.7 Innovative Integration Development Environment

II ship the PC32 controller card with a comprehensive set of support software in the form of both

pre-compiled libraries as well as corresponding source code, namely :

(i) Application specific libraries - this includes advanced maths and DSP functions,

(ii) Hardware access - functions implementing easy access to on board peripherals,

(iii) Target-to-host access - functions which allow access to hardware semaphores and

mailboxes, and also interrupt signalling to the host PC.

(iv) Host-to-target access - a 32-bit DLL which implements all communication and

access to the PC32 target from within the Windows 95 environment.

4.5 PWM/Tacho Expansion Card

Alongside the PC32, as introduced above, the custom PWM/Tacho card forms the second

component of the CSDE target hardware. This expansion card for the PC32 was designed by

Mr. Walker [WALKER1] to be used in a control system using the RIDE platform. The author

added minor modifications to the interrupt signalling to adapt it to the needs of the CSDE. In

motion control applications the TWM/Tacho card relieves the 'C32 processor of two

computationally intensive and time critical tasks :

(i) Generation of PWM power electronics switching waveforms. The PBM 1/87 ASIC

[HANNING1] is a dedicated PWM slave peripheral,

(ii) Decoding signals from incremental speed or position encoder. The ASIC used for

this purpose is the TC3005H [HANNING2].

A photograph of the expansion card is shown in Fig. 4.9, while Fig. 4.10 shows the

interconnection between the PC32 and the PWM/Tacho card inside the host PC. The two cards

occupy two adjacent ISA slots and are joined via the expansion header on the PC32 card.

4.5.1 Address Decoding

The PWM/Tacho card is designed to use either the Decodes 0 or 1 region of PC32 memory

space, as described in section 4.4.3. Each Decodes region spans an address range of 0x800
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Fig. 4.9 : Photograph of the PWM/Tacho Expansion Card

Fig. 4.10 : Photograph of the PC32 and PWM/Tacho cards inside the host PC.
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words, and by means of a DIP switch on the expansion card this range is further sub divided into

blocks of size 0x100 words. This mechanism allows up to 8 expansion cards in each Decodes

region. Thus, a total of 16 PWM/Tacho cards can be addressed by a single PC32 controller. The

memory decoding arrangement is shown in Fig. 4.11.
pa

ns
io

n 
H

ea
de

r

1

U
a.

Addr. Bus(A8...A10) w

Decodes 0 ^ m

7
Decodes 1 jp i

Data Bus

H

DIP
Switch

>f
Address I
Decode —|

A

f

PWM IC

r "
Tacho IC

-..

Fig. 4 .11: Address Decoding on the Expansion Card

4.5.2 PWM ASIC

The PBM 1/87 is a slave peripheral designed specifically with motion control in mind

[HANNING1]. It can generate PWM switching waveforms for a 3-phase inverter to generate a

sinusoidal supply at the desired voltage, frequency and phase. The host processor is relieved of

any time critical calculations and simply writes the PWM settings to the IC's configuration

registers. The IC uses these values to calculate the required switching pattern. The PMB 1/87

registers and their function are listed in Appendix C.

The PMB 1/87 uses "space vector or triangular modulation with a third harmonic injection"

[HANNING1] with switching events positioned symmetrically around a switching period.

Fig. 4.12 shows a typical waveform for one of the 6 outputs. The switching period T is equal to

the sum of the on-time Ton and the off-time Toff. The INT signal always occurs when no

switching is taking place and can be used to trigger the I/O channels used to sample currents and

PWM/Tacho Expansion Card Page 4-18



Chapter Four - Target Hardware Platform

0 1

INT

loff

Fig. 4.12: Typical switching waveform for a single output

voltages at the inverter's outputs. Since no switching occurs at the sampling instants, the

resultant samples are guaranteed to be free from switching noise.

Writes to the PWM ASIC's configuration registers can only be performed when the calculation

cycle is inactive. To ensure all register accesses fall during the idle time of the PWM

calculation, the interrupt signal can be used or a flag can be monitored in the IC's status register.

These two mechanisms are discussed in chapter 7, section 7.5.5. Values written during a

half-cycle are used in the next calculation, but their result is only used to control the switching

during the following half-cycle. This is shown in Fig. 4.13, the diagonal arrows indicate how the

result of each calculation is delayed by a half-cycle each time.

Calculations

Switching

INT

Fig. 4.13 : Calculation and switching cycle timing
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4.5.3 Fibre Optic Interface

The six outputs of the PWM IC are used to drive fibre optic transmitters. The use of fibre optic

links between the PWM card and the inverter offers a number of advantages over conventional

copper wiring:

(i) Electrical isolation - the PC housing the PC32 and PWM/Tacho cards is completely

protected from potential faults in the inverter,

(ii) Separate ground - errors due to ground loops are avoided,

(iii) Noise immunity - optic fibre links are inherently immune to induced noise,

(iv) Voltage levels - interfacing problems due to different logic voltage levels on the

inverter are avoided.

4.5.4 Tacho ASIC

The TC3005H ASIC [HANNING2] allows simultaneous interfacing for up to two incremental

rotary encoders. A typical encoder produces three outputs :

(i) Two sine or square wave signals A and B. These are phase shifted by 90° relative to

each other.

(ii) A logic pulse signal, R, indicating a full revolution.

The speed and position information is extracted by counting the number of cycles in signals A

and B, the phase difference indicating the direction of rotation. The resolution of an encoder is

thus limited by the number of cycles (or quadrants) per revolution. Encoders producing

sinusoidal outputs can provide better resolution. The amplitude of the sine signals can be

measured thus providing additional position information within each quadrant.

The TC3005H can be connected to two standard resolution encoders as shown in Fig. 4.14. In

this configuration each encoder interface is fully independent of the other. Fig. 4.15 shows the

connection used for a high resolution encoder. This option requires the use of two external 6-bit

ADC devices as well as two comparators to convert the sine signals into square waves. The

standard speed and position information can be read out from the second encoder interface

while the first one provides additional position information within each quadrant.
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Encoder 1 A
B
R

Encoder
Interface

1

Encoder
Interface

2

Fig. 4.14 : Interfacing standard resolution encoders
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Fig. 4.15 : Interfacing a high resolution encoder
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4.6 Conclusion

This Chapter introduced the motion controller hardware platform used by the CSDE. Firstly the

TMS320C32 processor which forms the processing core was discussed. Next, the PC32

controller card and its on board peripherals were described. Finally, the custom PWM/Tacho

expansion card was introduced. Together these components provide a capable processing

platform for implementing digital motion control. Chapters 5, 6, 7 and 8 will now describe how

the Simulink and RTW software platform from Chapter 3 was adapted and extended to interact

with the target hardware components.
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CHAPTER FIVE
CONTROL SYSTEM DEVELOPMENT

ENVIRONMENT
5.1 Introduction

In Chapters 1 and 2 a need was identified for an integrated rapid prototyping system for the

development of motion control. Subsequently, a number of requirements were set out for the

author's proposed CSDE. Chapter 3 introduced Simulink, RTW and the Target Language

Compiler from Math Works Inc. as the high-level software tools on which the CSDE is based.

The PC32 DSP card as well as custom hardware used during the development of the CSDE were

described in Chapter 4. The bulk of the author's work was to integrate the various components

and to extend the standard MathWorks products. Features not supported by MathWorks were

implemented separately. This Chapter outlines the overall structure of the CSDE and focuses in

more detail on the automatic code generation under RTW and TLC.

During the development of the CSDE various components were created in four diverse

environments :

(i) GNU make utility

(ii) 'C32 ANSI C

(iii) TLC language

(iv) MS Visual C++

The following sections, as well as Chapters 6, 7, and 8, make reference to code excerpts targeted

at these environments. To keep the text readable the complete code listings are placed in the

appendices. In particular, sections dealing with the TLC language might not be immediately

clear to readers unfamiliar with the RTW development environment. Thus, a practical example

is provided in Appendix K in an attempt to clarify the process of transforming a set of TLC files

into ANSI C source code. Appendix H offers more detail on the structure and syntax of the TLC

language.
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5.2 Development of the Global CSDE Structure

The CSDE can be broken down into two distinct parts :

(i) Host Platform - A personal computer running the Windows 95 operating system.

All algorithm development and simulation takes place here. The host also serves as

an interface during real-time prototyping.

(ii) Target Platform - The processing platform is a commercial PC32 board from

Innovative Integration based around the TMS320C32 processor from Texas

Instruments. A dedicated PWM / Tacho card is interfaced to the processor to take

away form it the burden of generating power electronics switching waveforms and

also provides support for an incremental tachometer.

HOST (PC)
i

Simulink

Simulation External
Mode

RTW

RTW Code
Generation
(pc32.tmf)

I
._ .j

Display (Visualisation)

Ploting

Buffering & Scaling

Data Upload

External
Comms

(ext_pc32.dll)

Code
Download

TARGET (PC32) jf

_i_ >
External
Comms

8

ft

2
u
$
a

Hardware
Device Drivers

Fig. 5.1 : Logical Diagram of the CSDE
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The overall structure of the CSDE is shown in Fig. 5.1. Clearly, the development environment

apart from being split over the two physical hardware platforms (host / target), is further divided

into a number of distinct logical components. In order to meet the requirements set out in

Chapter 2 the author developed the following software components :

(i) Real-Time Code Generation - a Template Make (TMK) File was created which

automates the compilation and linking of all necessary components into an

executable,

(ii) Real-Time Kernel (RTK) - a basic real-time operating system was written to

supervise the execution of generated code on the target PC32 platform,

(iii) External Mode Communication - functions were created to handle both host and

target sides of communication. On the host PC a DLL was compiled which is used

by Simulink's external mode. On the target, the RTK was extended to receive,

process and respond to commands from the host,

(iv) Data Logging - support functions were created to enable the RTK to log and buffer

user selected signals and supervise the uploading of the resultant data to the host in

real-time,

(v) Hardware Device Drivers - the development of a driver for each hardware device

involved both writing source code for the target platform as well as creating a

graphical representation for use in Simulink. The resultant Simulink blocks were

grouped in a library - PC32Lib.mdl

(vi) Code Download - a utility was written which could be called from a DOS batch file

and handle downloads to the PC32 target. This replaced the more elaborate utility

shipped by II which lacked command line support,

(vii) Visualisation Utility - due to lack of support for plotting of external signals under

Simulink ver.2.2, a separate Windows utility was created which uploads data from

the target, processes it and plots it in real-time.

As far as the end users of the author's system are concerned the above components are bundled

within the CSDE either as executables, compiled libraries, or read-only source code. The

components listed above can broadly be grouped according to the development environment in

which they were created :

(i) Automated code generation - developed for the GNU make utility, Gmake. This

will be introduced further in section 5.3.
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(ii) Target Real-Time Support Components - includes the RTK as well as the target side

of the external mode communication and data logging. The code was developed

using TI 'C32 ANSI C and is introduced in Chapter 6.

(iii) Hardware Device Drivers - most development here took place using the TLC

language. Chapter 7 describes this part of the author's work

(iv) Host Support Components and Utilities - includes Simulink's external mode

implementation as well as code download and Scope utilities. The development

environment here was the MS Visual C++. These components are covered in

Chapter 8.

5.3 RTW Code Generation

The generic RTW build process was described in Chapter 3, section 3.5.1. To adapt this process

to target the PC32 card, a custom TMK file needs to be provided. The RTW parses the TMK file

and produces a final make file specific to the particular build. This final make file contains

information about all files needed to compile and link the target executable. It is passed as a

command line argument to gmake.exe which in turn makes calls to the TI compiler and linker.

This process is illustrated in Fig. 5.2. Gmake is a make utility from GNU Software and is

distributed as freeware.

5.3.1 Controlling the Build Process

Fig. 5.3 shows the RTW dialog box. The system target file 'ii.tlc' is a global TLC file which

configures the MathWorks TLC for generation of ANSI C compliant code. Behind the make

command, make_rtw, three switches can be specified :

(i) TMRO - 'YES' configures the on-board timer 0 to generate the base sampling rate

for the model. Default setting is 'NO', in which case the user is responsible for

ensuring correct triggering for all blocks in the model, for example by connecting

them to an external interrupt support block.

(ii) UPLD - 'YES' enables data logging support in the generated code. Default setting is

'NO', which excludes all data logging source code from the build process.

(iii) 10 - this option is included mainly for debugging purposes. 'ENABLE' causes

information to be printed out to the II terminal emulator at run time. The serial
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printing of debug strings slows down the code execution on the PC 3 2 target

considerably. The default setting is 'DISABLE'.

During the build process the switches are translated into defines which control the compilation

of source code. The following excerpt from the pc32.tmf file translates the switches and

includes them as define (-d) command line parameters for the TI compiler :

- d I O _ $ ( 1 0 ) -dTMR0_$(TMRO) -dUPLD_$(UPLD) . . .

The following lines of source code demonstrate how the IO switch is used to control the text

output to the terminal emulator :

#ifdef IOENABLE
printf("Printing debug info to terminal....\n" );

#endif

If IO_ENABLE is not defined the printf statement will be excluded from the compilation

process. In this fashion the defines control which blocks of source code are compiled.

5.3.2 Structure of the Template Make File

In Appendix D a full listing of the pc32.tmf file can be found. The TMK file has a fixed

structure, as follows :

(i) General Defines - global definitions and settings.

(ii) Customization Macros - RTW passes a number of parameters which are substituted

here into defines. These parameters later control the compilation of model source

code,

(iii) II PC32 Definitions - defines and path settings for II components. The download

utility is also specified here,

(iv) TI Tools - paths to the TI compiler and linker.

(v) Include Path - paths to directories containing all necessary libraries and header files,

(vi) Compiler Flags - command line options for the compiler and linker,

(vii) Source Files - all necessary source code files are listed here,

(viii) Exported Environment Variables - due to the command line length limitation in

DOS, parameters to be passed to the compiler and linker are assigned to

environment variables,

(ix) Compile and Link Rules - Gmake rules for compiling and linking source code.
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(x) Rule for Downloading to Target - commands to be performed after a successful

build,

(xi) Dependencies - gmake dependencies. Based on this relationship gmake decides

whether it is necessary to recompile and re-link the target executable.

The TMK file, after being parsed by the RTW, carries all information necessary for Gmake and

the TI tools to generate the final target executable. The main purpose of the TMK is to list

additional source files, for example the integration algorithm, which need to be linked to the

RTK in order to replicate the Simulink diagram exactly in software.

5.4 Conclusion

This Chapter started by introducing the overall structure of the CSDE and subdividing it into a

number of logical components to be introduced further in Chapters 6, 7 and 8. The process of

automatic code generation with the RTW and TLC was described.
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CHAPTER SIX
TARGET REAL-TIME SUPPORT

COMPONENTS
6.1 Introduction

This Chapter describes components of the CSDE designed to provide support for the

automatically generated code in real-time on the PC32 controller. Three sections fall into this

category, namely :

(i) RTK - the kernel controls and supervises all execution on the PC32 target platform,

(ii) External Mode Communication - this component is responsible for receiving and

processing of commands from Simulink's external mode DLL.

(iii) Data Logging - this set of routines handles data buffered by the Scope Channel

blocks (introduced in Chapter 7). The data is arranged into packets and sent to the

Display utility for visualisation in real-time.

The above components form the PDL as described in Chapter 3, section 3.5.2. During the

automatic code generation process they are linked with the code generated from the Simulink

model to create a single executable for downloading to the target. The following sections will

introduce each of the three components in turn and show how they fit together.

6.2 The Real-Time Kernel

The RTK is a basic real-time operating system designed to run on the TI 'C32 processor. It

controls the execution of the target side CSDE components on the PC32 platform. A full listing

of the RTK source code can be found in Appendix E. Math Works provide a generic RTK as well

as a host of RTKs specifically tailored to a variety of target platforms. However, none of the

generic modules support the II environment based around the 'C32 processor and the author

decided to develop his own RTK.
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6.2.1 RTK Initialisation

Once the build process is complete, the download utility places the compiled target executable

in RAM on the PC32 card and resets the 'C32 processor. Execution starts in the boot strap image

vectors.bin provided by II. After this low-level initialisation the boot code hands the control

over to RTK's main function. The first few lines of code perform calls to II library functions:

dpram = (volatile uint32_T*)&Periph->Dpram;

MHZ = detect_cpu_speed();
timer(0, 0);
enablecache();

enable_monitor();

Firstly the DPRAM address is configured. The variable dpram is used for all accesses to the

DPRAM. The PC32 can be configured with a number of crystals, thus the board speed is not

hardcoded but is detected dynamically. The MHZ variable is defined globally in the II header

files and is used in all timing calculations. The call to enable_cache enables the use of the

built-in 'C32 hardware caching algorithms. The on-board monitor allows the use of functions to

print to the II terminal emulator and is initialised via the call to enable_monitor. After this

low-level initialisation, the following lines perform calls to Math Works' functions :

S = MODEL() ;

ssSetTFinal(S,0.0); /* run forever */
MdllnitializeSampleTimes();

rt_InitTimingEngine(S) ;
rt_CreateIntegrationData(S) ;

The variable S is a pointer to type SimStruct, a Simulink defined data structure containing all

model settings and parameters. A call to MODEL dynamically reserves memory for and

initialises the SimStruct. It also returns a pointer to the global SimStruct, and later this pointer is

used for direct access to model parameters in the structure. MODEL is a define which is

substituted with the actual Simulink model's name by RTW during the build process. Setting

model's stop time to zero in the call to ssSetTFinal, means it will execute forever. This option is

hard-coded since it is uncommon to limit the run period of a real-time controller. Simulink's

external mode allows models to be suspended and restarted from within Simulink GUI as will

be described in section 6.3 and in Chapter 8.
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The call to MdllnitializeSampleTimes is part of the Simulink S-function API as introduced in

Chapter 3. MdllnitializeSampleTimes sets the sampling period for the model to the value

entered by the user under Simulation Parameters in Simulink. The call to rt_InitTimingEngine

initialises the timing data structures in the SimStruct.

If there are any continuous time blocks in the Simulink block diagram the RTW will reflect the

number of continuous time states with the define NCSTATES. The following compiler

directive at the top of 'pc32main.c' evaluates depending on the value of this define :

#if NCSTATES > 0
extern void rtCreatelntegrationData(SimStruct *S);
extern void rtUpdateContinuousStates(SimStruct *S);

#else
#define rtCreatelntegrationData(S)

ssSetSolverName(S,"FixedStepDiscrete");
#define rt_UpdateContinuousStates(S)

ssSetT(S,ssGetSolverStopTime(S));
#endif

Thus, if there are no continuous time blocks NCSTATES is set to zero and all calls to

rtCreatelntegrationData are redirected and hard-coded to set the solver to

"FixedStepDiscrete". During RTK initialisation the call to rtCreatelntegrationData will

either setup the continuous time integration data structures in SimStruc or it will set the

execution mode to be purely discrete.

Only a portion of the SimStruc is dedicated to holding model parameters. To speed up access to

the parameter array a dedicated pointer, param is defined. A call to the macro

ssGetDefaultParam returns the address of the parameter array within SimStruc :

param = ssGetDefaultParam(S);

The above sections of the RTK code perform the hardware initialisation and also setup the

Math Works defined structures. Thereafter, the model code is ready for execution.

6.2.2 RTK Execution Loop

After initialisation the RTK enters an infinite while loop. Fig. 6.1. shows the logical flow

diagram of the main loop.
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while (1)

Host command processing

if (hoststart)

{
ttifdef UPLD_YES

ServiceUploads();
ttendif

ttifndef TMR0_YES
MdlOutputs(O);
MdlUpdate(O);

#endif

G o t a

command
from

Yes Process the
command

Service Uploads
(If enabled)

i Execute
| Background

Blocks

Fig. 6.1 : RTK Execution Loop flow diagram

The Real-Time Kernel Page 6-4



Chapter Six - Target Real-Time Support Components

The RTK main loop is effectively a background process as no attempt is made to prevent

interrupts of any priority from interrupting its execution. Within the loop, however, the

following subsections have equal priority :

(i) Processing of commands from host

(ii) Servicing of upload buffers

(iii) Executing code for blocks in the root of Simulink's diagram

Processing of commands from the host forms a large part of the RTK main loop and is outlined

separately in section 6.3. Likewise, data uploading is discussed in section 6.4. The compiler

#ifdef directives make use of defines introduced in Chapter 5 to control the remainder of the

loop. If no data uploading is selected the call to the relevant ServiceUpIoads function will be

omitted. Likewise, MdlOutputs and MdlUpdate will only be called if the calls are not already

attached to the timer 0 interrupt.

Due to the low priority of the main loop, its execution frequency cannot be guaranteed and the

model update functions called from the loop will be called at irregular intervals. Thus, any

blocks which depend on execution frequency are likely to produce results inconsistent with

simulation if executed in the background loop. Diagrams containing blocks like that should be

executed using interrupts as described in the following section.

6.2.3 RTK Timer Interrupt

The only way the RTK can guarantee a fixed execution rate for the model is to call the update

functions from an interrupt service routine (ISR). The ISR can be triggered either by a timer or

by a hardware interrupt via the PC32 Int Support block, described in Chapter 7. If TMR0_YES

is defined the following code is included during the external mode initialisation and attaches the

rtOneStep function to timer 0 interrupt:

#ifdef TMROYES
install_int_vector(rtOneStep, 9);
enable_interrupt (8);
timer (0, (int)(1.0 / ssGetStepSize(S)));

#endi£
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Timer 0 period is set up with a call to the ssGetStepSize macro which returns the model time

step in seconds. On each overflow of timer 0 interrupt 8 is triggered and the following ISR

executes:

s t a t i c void rtOneStep(void)

real_T tnext;

tnext = rtGetNextSampleHit();
ssSetSolverStopTime(S,tnext);

MdlOutputs (0) ;
MdlUpdate(O);

rtUpdateDiscreteTaskSampleHits(S);

if (ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME)

rtUpdateContinuousStates(S);

} /* end rtOneStep */

The above ISR performs a complete update of the model code. The variable tnext is used to set

the step time for the integration routines. The code as above should perform correctly even if the

model update frequency changes dynamically, however, the CSDE currently only supports

fixed model step times.

As with any ISR it is necessary to ensure that the processor context is not changed after the

routine terminates. The TI compiler automatically generates code to save all registers used by

the ISR on the stack on entry to the routine and also to restore them on exit. The requirement for

this mechanism is that the ISR naming has to comply with the following convention

[TEXASINSTR1]:

c_intXX

Where XX is a two digit decimal number in the range 01 to 99. To ensure that all references to

the rtOneStep function comply with the ISR naming convention the following define is

included :

#define rtOneStep c_intl9
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6.2.4 Model Code in the RTK

The above sections described the operation of the RTK. The kernel ensures the correct

execution of the model code generated directly from the Simulink diagram and allocates

remaining processing time to background tasks. The model code will be concentrated in a

number of routines conforming to the S-fiinction API as described in Chapter 3, section 3.4.6.

The RTK then interacts with the model code via this API. The following two sections will

introduce the External Mode Communication and Data Logging as the two background tasks in

the RTK.

6.3 External Mode Communication

After a code is generated from a Simulink block diagram and downloaded to the PC32 target,

Simulink can be placed in external mode, as described in Chapter 3, section 3.4.7. In this mode a

communication channel is established between the executable on the target and Simulink. This

communication link between the host PC and the PC32 target is physically implemented via the

DPRAM. The user can then utilise the Simulink GUI to issue commands and modify parameters

online in the controller executing on the DSP card.

Appendix B shows the details of memory mapping and protocols used in implementing the

communication link via the DPRAM. A list of the possible command codes which the RTK can

interpret is shown in Table 6.1. For a reliable communication link two sets of functions are

necessary :

(i) On the host PC - a DLL is needed to implement Simulink's external mode requests

across the DPRAM. This component is introduced in Chapter 8.

(ii) On the target PC32 - functions have to be included into the RTK to receive and

process commands from the host as outlined in the following section.
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Command Code

1

2

3

4

5

6

1
Action

Start Model Execution

Single Parameter Update II

Suspend Model Execution ||

Verify Checksums

Initialise Data Logging

Suspend Data Logging 1

Table 6.1 : List of External Mode commands

6.3.1 Target Side External Communications

Processing of commands received by the target from the host is done in two steps within the

RTK as shown in Fig. 6.2 :

(i) An ISR receives the command and buffers it.

(ii) The buffered command is decoded and processed within the RTK background loop.

During the RTK initialisation interrupt El 3 is trapped for host command reception and mapped

to an ISR :

install_int_vector(PCO_int, 4);
enable interrupt(3);

The routine PC0_int below checks if a valid synch value was placed in DPRAM by Simulink's

DLL, extracts the command byte and places it in a global buffer variable dprx :

static void PCOintO
{

/* wait for the sync signal from host*/
if ((lintflag) && ((dpram[0] & OxFFFO)==0xAAA0))
{

int_flag=l;
dprx=dpram[O] & OxOOOF;} /* extract the command byte */
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Command processing in RTK loop : Command receive :

No Got a N

\ command?

Yes

Dissable IE3

Act on command

Send acknowledge
to host

Command buffer:
dprx

Enable IE3

( Rest of RTK \
V Loop J

EI3 interrupt \

Valid \ N o
sync from

host? /

Yes

Command
buffer /
free?/

No

Yes

Extract the
command byte and

buffer it

End

Fig. 6.2 : Flow diagram of the command receive and processing on target

The command processing forms part of the background process and is integrated into the RTK

loop as shown in Fig. 6.1. The commands are decoded in a switch statement, as the following

source code excerpt demonstrates :

disable_interrupt(3);
if (int_flag)

switch (dprx)

case 1: /* command to start execution */

}
dpram[0] = OxABCO + dprx; /* send an acknowledge to host */
int_flag = 0 ; /* ready for a new command */
}
enable_interrupt(3); /* lets listen out for comms from host */
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The switch statement has six case subsections each implementing a single command code as

listed in Table 6.1. Command code 1 performs model initialisation by calling MdlStart and if

necessary attaches the rtOneStep ISR to the timer 0 interrupt. The setting of the three build

switches introduced in Chapter 5 is reported back to the host.

Command code 2 reads two values from DPRAM :

(i) At offset 0x0001 the index of the parameter to be written to SimStruc

(ii) At offset 0x0002 the value of the parameter in IEEE floating point format

The value read out from DPRAM is then converted to TI floating point format via a call to the

function from_ieee in II library :

rxmb = dpram[l];
param[rxmb] = from_ieee(dpram[2] ) ;

Command code 3 executes the following code to suspend execution :

disable interrupts( ) ;

#ifdef TMR0_YES
/* stop timer 0 int only if it was used */

disable_interrupt (8);
#endif

MdlTerminateO ;
enableinterrupts() ;
host_start=0;

All interrupts are disabled globally to ensure that no part of the model code is running while the

call to MdlTerminate is performed. MdlTerminate destroys global data structures and it is

imperative that these structures are not accessed while the termination process is active. Setting

host_start to 0 disables any model updates in the RTK background loop.

Command code 4 reads four checksums placed by the Simulink DLL in DPRAM and compares

them to the local copies :

ChecksumOK=l;

if (dpram[l] != ssGetChecksumO(S)) ChecksumOK=0;
if (dpram[2] != ssGetChecksuml(S)) ChecksumOK=0;
if (dpram[3] != ssGetChecksum2(S)) ChecksumOK=0;
if (dpram[4] != ssGetChecksum3(S)) ChecksumOK=0;

if (ChecksumOK)
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#ifdef IOENABLE
printf("OK!\n");

#endif
}
else

{
dprx=0;

#ifdef IOENABLE
printf("FAILED!\n");

ttendif

If a discrepancy is found between local checksums and the ones sent from the host, an error is

signalled back to the host. This mechanism is implemented in order to verify that the correct

version of generated executable is present on the target before model execution can be started.

Command codes 5 and 6 (upload start and stop) are currently not used since external mode

under Simulink 2.2 does not support data logging. The uploading of data is started automatically

during data queues initialisation.

6.4 Data Logging

The Scope Channel blocks continuously queue up data in circular buffers as described in

Chapter 7, section 7.5.6. In the background RTK process loop the function ServiceUploads is

called to monitor the queues and to send the buffered data up to the host when full packets

become available. Appendix E lists the source code for the data upload functions contained in

pc32func.c and Fig. 6.3 shows a flow chart of the data transfer process on the target. The

standalone Display utility on the host PC monitors interrupt IRQ 5, uploads data from the

DPRAM and displays it as it becomes available. The Display utility is introduced in Chapter 8.

The following code excerpt from the ServiceUploads function first checks that data logging is

enabled. Next, a flag at offset 0x0004 in DPRAM is tested to make sure the host has finished

reading the previous set of packets. The while loop then steps through each active queue and a

packet is copied into the DPRAM provided two conditions hold true :

(i) There is enough data buffered in the queue to fill a packet, and

(ii) There is sufficient free memory left in DPRAM to hold the resultant packet.
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Fig. 6.3 : Flow diagram of the Data Upload mechanism on target
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if ((LogData) && !(dpram[4] & 1))
{

while ((num<NumQueues) && (offset<MAXOFFSET))

{
if ((enqueued(&queue[num]) >= buffer_size[num]) &&

(buffer_size[num]<MAXOFFSET-offset) )

dpram[BASEDPRAM + offset++] = channel_map[num];
/* put queue number in dpram */

dpram[BASEDPRAM + offset++] = buffer_size[num];
/* put queue size in dpram */

for (xxx=0; xxx<buffer_size[num]; xxx++)

{
dpram[BASE_DPRAM + offset++] =

to_ieee(*(volat i le float*)dequeue_ptr(&queue[num]))

dpram_ful l = TRUE;
}

num++;
}

The II library call to_ieee takes a TI floating point type as an argument and returns a 32-bit value

formatted as a IEEE floating point. After all queues are checked and if any data was placed in

DPRAM the packet sequence is terminated with the value 999 and the host is notified that data is

available with and interrupt on IRQ 5 :

if (dpram_full)
{

dpram[BASEDPRAM + offset] = (int)999;
dpram[4] += 1;
host_interrupt ();

The function Clear AllQueues is also included in pc32func.c, it is called during the model start

procedure to clear and initialise the queues in memory.
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6.5 Conclusion

This Chapter introduced the RTK as well as its background tasks. External mode

communication forms one of the background processes and handles all commands issued by

Simulink via its external mode DLL, as introduced in Chapter 8. A second background task

monitors the data queues of all Scope Channel blocks and sends the resultant data packets to the

Display utility on the host PC via the DPRAM. The Scope Channel block is introduced with the

other CSDE hardware device driver blocks in Chapter 7, while Chapter 8 describes the

standalone Display utility.
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CHAPTER SEVEN
HARDWARE DEVICE DRIVERS

7.1 Introduction

This Chapter introduces the practical issues of developing the hardware driver blocks for use in

Simulink. All source code for the hardware drivers is included in the Simulink diagrams in the

form of inlined S-functions. This method of including custom source code into the RTW build

process requires three components for each device driver :

(i) A DLL file for use by Simulink in the graphical model representation

(ii) A Simulink block mask to make entering parameters for the driver more intuitive.

(iii) A TLC file describing how to inline the actual source code for the driver during the

RTW build process.

Based on the above points, the steps in creating a hardware driver block for Simulink will be

described in the following sections. Each of the CSDE driver blocks will be treated individually

in Section 7.5.

7.2 Generating a Driver Block

The process of creating an inlined S-function block is illustrated in Fig. 7.1. The block's DLL

file does not contain any useful code but serves simply as a guide for the block's graphical

appearance in a Simulink block diagram. It serves to indicate to Simulink the number of inputs,

outputs and parameters for the driver block. The block's mask is the user interface and is

included for blocks which require user interaction. Creating a mask is further discussed in

section 7.3. All the actual source code for a driver is placed in the corresponding block's TLC

file to be inlined during the build process. Section 7.4 introduces this.

The DLL file for each of the CSDE driver blocks is derived from a blank S-function template.

The source code for a typical driver DLL file is listed in Appendix F. The TLC source code files

for the various driver blocks are listed in Appendix G. The following two sections will describe

a number of issues common to all driver blocks.
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Driver.c

MS Visual C++
Compiler

Block Mask Driver.dll DriverXlc

Simulink Block
Diagram

RTWCode
Generation

Fig. 7.1 : Process in development of hardware drivers

7.3 Driver Block Masking

The ability to mask Simulink blocks and subsystems allows creation of custom user interfaces,

as described in Chapter 3, section 3.4.5. A well designed block mask can provide additional

information to users and provide help with entering parameters. The Simulink Block Mask

Editor is shown in Fig. 7.2, the Interrupt Support block's mask is used as an example. The

'Initialisation' tab of the editor allows the design of a custom parameter entry interface. Under

i Mask Editor - PC32Lib/PC32 Int Support

Icon Jrtfiahzaton Documentation

Masklype | Pr C I ,ir-,,uPt Bl.,

Type Variable

Add
• ,•

Delete |

Ouwn

EIO - EI3 Triggering :
TCIKO .̂ oucce :

TCLK1 Source :
Timer 0 Fceq
Timer 1 Fceq

Interrupt Humbers (t-ou to

popup
popup

popup
edit
edit

edit

Tri
Tai,

• m i

Prompt |EIII El l Triggering

Vaiable | LITngg

j Popup

Assgnment j E /alua'e

Popup stfings:

Fig. 7.2 : Simulink Block Mask Editor
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the 'Documentation' tab a brief help screen for the block can be created. The resultant user

interfaces for the driver blocks which have masks are shown in section 7.5. A step-by-step

description of the masking process is well documented in the MathWorks literature

[MATHW0RKS2, 3,4].

Only a DLL file is necessary to incorporate an S-function block into a Simulink block diagram.

A corresponding mask is optional. However, for the RTW to be able to generate code for the

driver correctly, a TLC file needs to be provided. The following sections describe this.

7.4 Inlining Driver Code

The TLC splits code generated for a model into five functions, which can be grouped into three

sections :

(i) Initialisation - MdlStart

(ii) Model Step- MdlOutputs,

MdlUpdate,

MdlDerivatives

(iii) Termination - MdlTerminate

The above functions conform to the S-function API, as described in Chapter 3 in section 3.4.6.

The TLC file for each individual driver block can specify source code to be placed into any of

these pre-defined global functions, or it can create additional functions. Definitions and variable

declarations can also be placed into a common model header file. A more in-depth discussion of

the TLC and its command set is offered in Appendix H.

Mining the source code for a driver is advantageous to including it as a separate module as

discussed in Chapter 3, section 3.5.5. The inlined code executes faster since there is no

unnecessary function switching overheads, thus improving overall system performance. Also

the final code becomes more compact and readable as it is no longer split over multiple source

code and header files. The following section will describe the development of the individual

block TLC files in more detail.
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7.5 Driver Block TLC Files

The following driver blocks are provided with the CSDE for operation with the PC32 and

expansion cards as introduced in Chapter 4 :

(i) AD TRIGGER - allows software triggering of the individual ADC channels.

(ii) PC32 ADC - support for the four onboard ADC channels, including scaling of the

inputs to the ± 1OV range,

(iii) PC32 DAC - support for the four onboard DAC channels, including scaling of the

outputs to the ± 10V range,

(iv) PC32 Int Support - allows mapping of various interrupt signals on the PC32 to

triggered subsystems on the Simulink diagram. This block's mask also provides a

way to configure a number of interrupt related registers in the 'C32 processor,

(v) PWM Block - provides an interface to the PWMIC on the custom expansion card,

(vi) Scope Channel - this block buffers its inputs and sends the resultant data via the

DPRAM to the Scope utility for displaying.

The following sections will discuss each of the above blocks individually in more detail. For

convenience all CSDE driver blocks are grouped into a Simulink library, shown in Fig.7.3. One

component which is clearly missing from the library is a driver block to support the tachometer

interface on the custom expansion card. The high resolution tachometer hardware necessary to

develop and fully test support for the tachometer interface only became available very late into

the author's project. Although a driver for a high resolution tachometer was designed to support

one of the students' projects described in section 9.5, the driver block has not formally been

tested and included into the CSDE by the author.

File tdit VKK Format

ADCO

ADC1

ADC2

ADC3

PC32 ADC

* )

DACO

DAC1

DAC2

DAC3

PC32 DAC

EIO

EI2

8 3

TMR1

* >

>

Us

Ub

on

Triggaft)

AD TRIGGER

PWM B i o * - ^ l - t l . « l

PC32 Int Support

Fig. 7.3 : PC32 hardware driver block library
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Some of the driver blocks can only be used once in a given model block diagram. Multiple

instances of source code for these blocks could cause unpredictable results :

(i) PC32 ADC

(ii) PC32 DAC

(iii) PC32 Int Support

(iv) PWM Block

The TLC files for those blocks report an error should there be multiple instances found during

the TLC parse. The following TLC code excerpt illustrates an example of the error trapping

mechanism :

%function BlocklnstanceSetup(block, system) void

%% Only allow 1 instance of the A/D block
%if 'EXISTS("Rt_pc32ad")

%assign ::Rt_pc32ad = 1
%else

%error Only 1 PC32adn block is allowed in the model.
%endif

%endfunction %% BlocklnstanceSetup

While the above discussion was applicable to all CSDE driver blocks, the following sections

will describe each individual block in turn.

7.5.1 ADC Trigger Block

The ADC Trigger block is designed to be attached to one of the outputs of the asynchronous

interrupt support block. When triggered, a write is performed to each of the four memory

mapped ADC devices starting a conversion :

*(ADC0)=0;
*(ADC1)=O;
*(ADC2)=0;
*(ADC3)=0;

In Chapter 4 the memory mapping of the various peripherals was discussed. The addresses for

the ADC devices on the PC32 card are defined as follows in the header file :

#define ADCO (volatile int*) 0x810000
#define ADC1 (volatile int*) 0x810800
#define ADC2 (volatile int*) 0x811000
#define ADC3 (volatile int*) 0x811800
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This block is particularly useful when sampling of the ADC inputs needs to be synchronised

with an external trigger signal. In motion control applications, the associated power electronics

switches can introduce substantial amount of noise into the current and voltage feedback

signals. However, the effect of the switching noise can be eliminated if the signals are sampled

during periods when the switches are inactive. The PWM IC provides a trigger signal in the

centre of each switching interval and using it to trigger sampling of the feedback channels

ensures minimum interference from switching noise. In Chapter 9 an example is presented

which illustrates the use of the AD TRIGGER block.

7.5.2 ADC Input Block

The PC32 ADC block reads the result of the last conversion from the onboard ADC, latches and

makes the values available at its output. The ADC reads are performed via calls to the II library:

%<LibBlockOutputSignal(0,"","",0)>=read_adc(BASEBOARD, 0)/(3276.7);
%<LibBlockOutputSignal(0,"","",1)>=read_adc(BASEBOARD, l)/(3276.7);
%<LibBlockOutputSignal(0,"","",2)>=read_adc(BASEBOARD, 2)/(3276.7);
%<LibBlockOutputSignal(0,"","",3)>=read_adc(BASEBOARD, 3)/ (3276.7);

The TLC translates the <LibBIockOutputSignaI> macros into variable names during its parse

process. Calls to the read_adc function return a 16-bit signed integer value representing the full

range of the ADC. For convenience the range is scaled down to ± 1OV. No loss of resolution

occurs since the variable on the lefthand side of the equal sign is of 32-bit floating point type.

7.5.3 DAC Output Block

On the PC32 a write to the onboard DAC devices takes two steps. Firstly the value is written to

the memory mapped latch. Conversion only takes place after a subsequent memory write to a

control register. The write_dac and convert_dac function provided in the II library provide an

elegant way to perform these steps :

write_dac(BASEBOARD, 0, %<LibBlockInputSignal(0,"","",0)>*(327 6.7));
convertdac(BASEBOARD, 0);
write_dac(BASEBOARD, 1, %<LibBlockInputSignal(0,"","",1)>*(3276.7));
convert_dac(BASEBOARD, 1);
write_dac(BASEBOARD, 2, %<LibBlockInputSignal(0,"","",2)>*(3276.7));
convert_dac(BASEBOARD, 2);
write_dac(BASEBOARD, 3, %<LibBlockInputSignal(0,"","",3)>*(3276.7));
convert dac(BASEBOARD, 3);
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Before being written the values are scaled up form the ± 1OV range used internally by the model.

On termination of model execution it is important to zero the DAC outputs. For this purpose the

following code is inlined into the MdlTerminate function :

write_dac(BASEBOARD, 0, 0);
convertdac(BASEBOARD, 0) ;
write_dac(BASEBOARD, 1, 0) ;
convertdac(BASEBOARD, 1) ;
writedac(BASEBOARD, 2, 0);
convertdac(BASEBOARD, 2) ;
writedac(BASEBOARD, 3, 0) ;
convert dac(BASEBOARD, 3);

7.5.4 Asynchronous Interrupt Support Block

The PC32 Int Support block allows subsystems on the Simulink block diagram to be triggered

by PC32 interrupts. Also timer frequencies and hardware interrupt triggering modes can be set

up. The corresponding block mask is shown in Fig. 7.4.

teis: PC32 Inl Support

PC32 Intenupt Block (mask)

Asynchronous intenupt suppoit for the Inovative Integration PC32 card.
Note: TCtKO/1 settigs depend also on jumpws (JP3 • 6)
WARNING : Changing TCIX0/1 settings to TimerO/1 configures them as
outputs. Check external connections!

Parameters - .

EI0-EI3Ttiggeing:

TCLKO Source

TCLK1 Source

Timer 0 Freq

o
Timei 1 Ffeq

. |Exlernal

: (External

°
nterfupt Numbers (top to bottom)(1 234910 ]

Help |

zl

Dose

Fig. 7.4 : Block mask for the PC32 Int Support block

The source code generated for triggered subsystems is placed in separate functions and not

included into the model's main update functions. This fact is used by the PC32 Int Support block

to attach these functions as individual ISRs. During the TLC parse all outputs of the PC32 Int

Support block are probed for attached subsystems as shown in the flow diagram in Fig. 7.5. It is

verified that only one connection exists per output port. If the connection leads directly to a

subsystem its update function is mapped as an ISR and code is generated to support that

interrupt at runtime.
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callldx = 0

output ports
checked?

Yes

End Loop )

Is port \
/ [callldx]
Xconnected?/

Generate warning : "No code will be
generated for ISR %<callldx>... "

<'' a single \ N o

I

Generate Fatal Error : " ... outputs
must be directly connected to one

function-call subsystem... "

Map target subsystem's update function to an
ISR in the header file.

End Loop

Connect and enable the corresponding
interrupt in MdlStart function

Dissable and Dissconnect the interrupt in
MdlTerminate function

Increment callldx

Fig. 7.5 : TLC parse loop for processing subsystems connected to a PC32 Int Support block
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The following TLC code excerpt demonstrates the loop structure and the error trapping

algorithm. The TLC loop variable callldx is used to step through all outputs of the interrupt

support block :

%foreach callldx = NumSFcnSysOutputCalls

%% Get downstream block if there is one
%if "%<SFcnSystemOutputCall[callldx] .BlockToCall>" != "unconnected"
%assign ssSysIdx = SFcnSystemOutputCall[callldx] .BlockToCall [0]
%assign ssBlkldx = SFcnSystemOutputCall[callldx] .BlockToCall [1]
%assign ssBlock = CompiledModel.System[ssSysIdx].Block[ssBlkldx]

%% Check to see if this is a direct connection
%if (ssBlock.ControlInput.Width != 1)
%assign errTxt = "The II Interrupt block '%<block.Name>'"...
"outputs must be directly connected to one function-call subsystem."...
"The destination function-call subsystem block '%<ssBlock.Name>'"...
"has other inputs."
%exit RTW Fatal: %<errTxt>
%endif

process the valid subsystem

%else %% The element is not connected to anything

%assign wrnTxt = "No code will be generated for ISR %<callldx> "\
"since it is not connected to anything."

%warning %<wrnTxt>
%endif

%endforeach

All valid subsystems' update functions need to be mapped as ISRs.The following TLC code

ensures the correct definitions are placed in the header file :

%assign isrSystem = System[ssBlock.ParamSettings.Systemldx]

ttdefine %<isrSystem.OutputUpdateFcn>(%<tSimStruct>,
%<tControlPortIdx>,
%<tTID>)
c intO%<callIdx+l>()
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This define ensures that the resultant ISR naming adheres to the TI convention as discussed in

Chapter 6, section 6.2.3, and also ignores any parameters passed to the function. The three

default function parameters can be safely disregarded for any triggered subsystem since :

(i) Simulink only allows discrete blocks in triggered subsystems, thus the SimStruc

parameter is not needed since no timing information is necessary.

(ii) No direct inputs or outputs to a triggered subsystem are allowed, thus

ControlPortldx has no meaning.

(iii) Since the blocks within a triggered subsystem execute asynchronously to the rest of

the model the sample hit time, TID, is not needed either.

In the MdlStart function the ISRs are attached to their corresponding interrupts as specified by

the user in the block mask and the interrupts are enabled :

installintvector(c_intO%<callIdx+l>,(int)%<LibBlockParameter(P6,"",
"",callldx)>

enable interrupt^ (int)%<LibBlockParameter(P6,"","",callldx)>-l);

Correspondingly, in the MdlTerminate function the interrupts are disabled and the ISR vectors

freed up :

disableinterrupt(( int)%<LibBlockParameter(P6,"","",cal l ldx)>-l) ;
de ins ta l l in t vector((int)%<LibBlockParameter(P6,"","",callldx)>);

Apart from attaching subsystem blocks as interrupts the PC32 Int Support block generates code

in the MdlStart function to set hardware interrupts to either level or edge triggering. The source

for TCLKO and TCLK1 signals, described in Chapter 4, can be specified too. Code is also

generated to setup onboard timer frequencies. To effect the above settings the user input is read

from the block's mask.
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The TLC file for the interrupt support block generates source code only into MdlStart and

MdlTerminate functions, thus it only affects the model's initialisation and termination and has

no effect on the model update functions since the ISRs execute independently once initiated.

7.5.5 PWM Card Driver Block

The PWM block is designed to facilitate access to the custom PWM board, described in Chapter

4. The mask for this block is shown in Fig. 7.6. The Harming PWM IC is a memory mapped

peripheral, and following addresses are defined to allow reads and writes to its registers :

#define Status_word (volatile int*) 0x81a001
ttdefine Data word (volatile int*) 0x81a000

Block Parameters: PWM Block

Subsystem (mask) (link)

r Parameters — -

VORTL

CONTROL MODE | Frequency

Help Close

Fig. 7.6 : Block mask for the PWM Block

All writes to the Hanning IC have to be performed outside its processing cycle. This can be done

using two methods :

(i) Polling - the WRFLAG flag in the status register of the PWM IC is polled and writes

are only performed while it is low.

(ii) Interrupt - the PWM IC issues an interrupt signal at the end of each processing

cycle. The write operations will be successful after this signal providing that they

are complete before the start of the next processing cycle.
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During initialisation default values are written to all registers and the polling method is used.

The pollpwm function is called before each write access :

void pollpwm( void )

{
while (*(Status_word) & Oxl);

If a processing cycle is active this function will effectively suspend execution on the target until

the Harming IC is ready for data. Another side effect of the polling method is that there is no

guarantee that subsequent writes will fall during the same idle cycle of the Harming IC. During

startup there are no pressing time deadlines and the target code can afford the resultant delays.

Since the PWM outputs are disabled it is not critical if the writes are split over a number of

cycles. During normal operation, however, it is important that registers required for output

calculations are all written during one cycle. Otherwise, the PWM IC will calculate its outputs

based on an incorrect set of data and the results will be unpredictable. The user has to ensure that

the PWM driver block is placed in a subsystem triggered by the interrupt signal from the PWM

IC. The example in Chapter 9 illustrates a safe use of the PWM block.

The following lines perform updates of the PWM IC registers during execution of the model:

*(Status_word) = 129;
pollpwm();

*(Data_word) = (int)%<LibBlockInputSignal(0, "", "", 0)>;
pollpwm();

*(Data_word) = (int)%<LibBlockInputSignal(0, "", »", 1)>;

if ((int)%<CtrlMode> == 1) /* skip three values to write frequency */

{
pollpwm();
•(Status word) = 897;

}
pollpwm();
*(Data_word) = (int)%<LibBlockInputSignal(0, "", 1I"/ 2)>;

Block inputs 1 and 2 are written to the UA and UB registers respectively. The variable

CtrlMode is passed dynamically as parameter from the PWM block's mask and specifies

whether the third input signal value is written into the frequency or phase angle register. The

pollpwm function is called between the writes simply as a safety precaution. Assuming the

block is executed on an interrupt signal from the PWM IC, the pollpwm function calls should
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always return true immediately. At model termination the output of the PWM IC is disabled by

writting 0 to the status register :

*(Status_word) = 0;
•(Status word) = 0;

7.5.6 Scope Channel Block

The Scope Channel block is used to queue its input data in a circular buffer. The corresponding

block mask is shown in Fig. 7.7. The data buffered by the Scope Channel block is then uploaded

to the host in packets by a background process of the RTK, as described in Chapter 6. This

mechanism ensures that minimum time is wasted during model updates on data capture. There

is no theoretical limit to the number of Scope Channel blocks in any Simulink diagram.

However, there is a physical limitation since memory for each queue is dynamically allocated

for the individual queues on the program stack on model startup. To establish the number of

Scope Channel blocks in the model the following code is included in each TLC file :

%if EXISTS("UpldSeen")
%assign ::UpldSeen = ::UpldSeen + 1

%else
%assign ::UpldSeen = 1
%openfile buffer
extern QUEUE queue [];
extern unsigned int buf f ersize [] ;
extern int queueerror;
extern int NumQueues;
extern LogData;
extern channelmap[];
%closefile buffer
%<LibCacheDefine(buffer)>

%endif

Block Parameters: Scope Channel

r Subsystem (mask)

Parameters

Channel Number

Revert Help Uo;e

Fig. 7.7 : Block mask for the Scope Channel Block
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The above TLC code ensures that global variable definitions are only included once to avoid

multiple declarations. At the end of the TLC parse process the variable UpldSeen holds the

number of Scope Channel blocks present. The value is then used to dynamically allocate

resources for the correct number of upload queues :

ttifdef UPLDYES
buffer_size[%<UpldSeen>-l] = (unsigned int)

%<LibBlockParameter(PI,"",•"',0)>;
NumQueues = %<UpldSeen>;

if (!queue_init(&queue[%<UpldSeen>-l],(2*buffersize[%<UpldSeen>-l])))
{

ttendif

On termination of the model the memory is freed up again :

free(queue[%<UpldSeen>-l].base);

The Scope Channel blocks and the data queues are numbered according to the value of

UpldSeen, however the block mask allows each Scope Channel to have a user defined logical

number as well. Data packets sent to the host are numbered using this logical numbering

scheme, while within the target code the physical numbering is used. Thus, all Scope Channel

blocks will have a unique physical number, however, no checking is performed to ensure that

the logical numbers are unique as well. Should a user assign the same logical number to multiple

Scope Channel blocks, their data packets will be mixed and treated as a single stream by the

visualisation utility, Display.

The down sample option allows adjustment of the sampling frequency for the Scope Channel

block. The Display utility limits the number of samples which can be displayed at a single time

to 1000. This limitation can make it difficult to view waveforms with frequencies much lower

than the execution frequency of the Scope Channel block. In a typical motion control project the

controller execution frequency might be in the region of 5 kHz, while the frequency of the speed

or position reference is not likely to be above 1 Hz. This means that only up to 200 ms (1 / 5 kHz)

of the captured waveform would be visible at any time. The down sampling option allows to

divide the sampling frequency internally in the Scope Channel block and effectively to extend

the time visible in the Display utility. For example, with a Scope Channel block executing at 5

kHz and with down sampling set to 5, a full period of a 1 Hz waveform could be viewed.
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The following code excerpt illustrates how data samples are queued up :

if (LogData)
{
DownSample[%<UpldSeen>-l]--;
if (DownSample[%<UpldSeen>-l]==0) /*capture this sample*/

{
channelmap[%<UpldSeen>-l]=%<LibBlockParameter(P2, " " , " " , 0 ) > ;
• ( ( v o l a t i l e f loat*)enqueue_ptr(&queue[%<UpldSeen>-l])) =

%<LibBlockInputSignal(0, •" ' , " " , 0
Down_Sample[%<UpldSeen>-l] = (unsigned i n t )

%<LibBlockParameter(P3,"", " " , 0 ) > ;

Each time a sample is captured into a queue, the value of Down_Sample is reloaded with the

current value from the corresponding Scope Channel block's dialog box. Down_Sample is then

decremented each time the Scope Channel block executes and a sample is captured when it

reaches zero.

7.6 Conclusion

The above sections described the details of operation of the various driver blocks included in the

CSDE. Each block has a corresponding graphical block for use in the Simulink block diagram

and a TLC file which is used during the build process to include the block's code into the final

executable. Blocks requiring parameter input for the user also have a mask. Chapter 8 will

describe the implementation details of the standalone utilities created as part of the CSDE.
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CHAPTER EIGHT
HOST SUPPORT COMPONENTS AND

UTILITIES
8.1 Introduction

This Chapter describes three components of the CSDE which reside in the Windows 95

environment on the host PC, namely :

(i) External Mode Communication DLL - this module provides an interface between

Simulink in external mode and the RTK on the PC32 target.

(ii) Code Download Utility - this is a command line based utility designed to download

executables to the PC32 card.

(iii) Display Utility - this standalone Windows executable receives data packets from

the target in real-time and displays the data graphically.

All three components were created using MS Visual C++ and will be introduced individually in

the following sections.

8.2 External Mode Communication

The external mode link between Simulink on the host PC and the RTK on the PC32 target is

implemented via the DPRAM. Section 6.3 in Chapter 6 focussed on the subsection of the RTK

responsible for receiving and executing commands issued from Simulink. In order to implement

Simulink's external mode on the host PC a custom DLL file (ext_PC32.dll) was created and is

introduced in detail in the following section. The DPRAM memory mapping and protocols used

for communication are listed in Appendix B.

8.2.1 Host Side External Communications

The DLL file to implement the Simulink External Mode needs to conform to an API as shown in

Table 8.1. Appendix I lists the source code which is compiled to obtain the ext_PC32.dll file.

Apart from the three default functions specified in the Simulink External Mode API, a common

function handshake is implemented. Fig. 8.1 shows the flow diagram for sending a single
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Simulink Request

External Mode comms initialisation

Send changed parameter to target

Terminate comms

Function Call

mdlCommlnitiate

mdlSetParameters 1

mdlCommTerminate ||

Table 8.1 : Simulink External Mode API

Place data in
DPRAM

Send an interrupt
to target &

set count = 0

/ Valid \ No
response fror

\ target?

\
Yes

Process data
returned from

target

Return Success

Yes Delay 100 ms
increment count

T
' Return Failure

Fig. 8.1 : Flow Diagram of Command Communication on the Host
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command to the target. Each of the API functions first sets up data in DPRAM and then calls

handshake to initiate the data transfer. If handshake returns successfully, the DPRAM

contains the target's response and the corresponding API function can process it and send the

result back to Simulink. If no response is received from the target within 5 seconds (50 x 100

ms) a comms failure is signalled back to Simulink. The relatively long time before a comms

timeout is necessary since the RTK on the target implements its communication routines within

a low priority background task and response time cannot be guaranteed.

The API function mdlCommlnitiate performs two steps :

(i) Initialisation of the II VXD driver and a virtual pointer to DPRAM on the PC

(ii) Checksum verification between the host and target. This is done to ensure the

executable about to be started on the target corresponds to the block diagram in

Simulink.

The following calls to the II driver ensure the VXD is initialised and that the local pointer,

dpram, points to the virtual address where DPRAM is mapped on the host PC :

if (target_open(0))
{

printf("Target Open. \n" ) ;
dsp = t a rge tca rd in fo (0) ;
dpram = (volat i le unsigned long*)dsp->DualPort.PhysAddr;

If the above initialisation is successful local block diagram's checksums are passed to the target

executable for comparison:

dpram[1] = m o d e l c h e c k s u m [ 0 ] ;
dpram[2] = m o d e l c h e c k s u m [ 1 ] ;
dpram[3] = model_checksum[2];
dpram[4] = model_checksum[3];
m e x P r i n t f ( " V e r i f y i n g checksums . . . . " ) ;
if (handshake(4) == 4)
{

mexPrintf("OK!\n");
xxx = 0;
starting = 1;

}
else
{

mexPrintf("FAILED!\n");
xxx = - 1 ;
mexPrintf("Checksum error . Recompile/Reload Diagram!\nM);
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If the checksum comparison fails, -1 is returned to Simulink and an error is printed in the

MATLAB command window. During parameter updates no range checking is performed on the

pointers into SimStruc passed to the target. Invalid pointers could cause memory to be corrupted

on the target and result in unpredictable results or even a complete software crash. Thus it is

crucial at startup to ensure that the compiled executable on the target corresponds exactly to the

block diagram used as the external mode interface.

After a successful call to mdlCommlnitiate Simulink passes a complete set of default

parameters to mdlSetParameters to be downloaded to the target. The function

mdlSetParameters sends the parameters serially in a for loop :

for (i=0; i<num_changed; i++)

{
dpramtl] = elems[i];
blparam.f = blockparams[elems[i]];
dpram[2] = bl_param.u;

if (handshake(2) == 2)

{
mexPrintf("Changed parameter P[%d] = %g\n",elems[i], blparam.f);

}
else
{
mexPrintf("Handshake Failed\n");
xxx=l;

The floating point parameter values passed by Simulink in the array block_params are mapped

to 32-bit unsigned integers before being placed in DPRAM using a union definition :

union {
float f;
unsigned long u;
} bl_param;

This conversion is necessary due to the different floating point representations used on the host

PC and the TI 'C32 target processor. Execution of the model is only started after a successful

download of default parameters. The connection between host and target is terminated in the

mdlCommTerminate function via the call to target_close in the II library. The flow diagram

in Fig. 8.2 demonstrates all the processes during Simulink's External Mode. Using codes

defined in Table 6.1 the command sequence in a typical external mode run could be : 4, 2 , . . . 2,

1,2,. . . 2 , 3 .
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The communication process as described above, as well as in section 6.3 of Chapter 6, allows a

user to use the Simulink GUI to interact with the controller executing on the PC32 target in

real-time. Execution of the target code can be started or suspended and parameters can be

modified online. The following two sections will describe two standalone Windows based

utilities which also form a part of the CSDE.

8.3 Code Download Utility

The download utility, D_Load.exe is a tool which allows downloading and starting of

executable code from the host PC to the PC32 card. It is a command line based program with the

following calling convention :

D_Load parameter 1

Where parameter! is the name of the file to be downloaded, including the full path. Internally,

D_Load uses calls to a library supplied by II to communicate with the PC32 card.

As part of the development package, II ship a download tool - download.exe. Although this

Windows based utility offers a number of extra options, it requires an external dongle to

operate. The use of CSDE on PCs not fitted with one of II's dongles does not violate any of the

company's license agreements. Thus, the author decided to develop a scaled down download

utility to accommodate CSDE users who opt not to install the complete development package

from II, but want to make full use of the CSDE.

8.4 Display Utility

The visualisation utility, Display.exe, is a Windows based program that uploads raw data from a

CSDE compiled executable running on the PC32 card and plots it in a number of windows. Up

to ten channels are supported simultaneously. Section 6.4 in Chapter 6 describes how the RTK

handles the process of formatting and sending the data on the PC32. The packetised data is

transferred via the DPRAM, buffered in the Display application's local memory, processed

according to user-specified settings and plotted to scale. The logical interaction of various
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components of Display is shown graphically in Fig. 8.3. The listing of all relevant source code

for the Display utility can be found in Appendix J.

PC32

I DrKAM 1
| |

ISA
i~ ~

i

Bus
IRQ 5

Packetised Data

i

Data Receive
Interrupt
Handler

Data Scaling &
Plotting Thread

r

J

1

Circular Data
Buffers

channels 1-10
i

T

i

Plot Window
CH#1 Plot Window

CH#2
Plot Window

CH#10

Fig. 8.3 : Logical Diagram of the Display Utility

8.4.1 Display Initialisation

When started, Display comes up with the dialog box shown in Fig. 8.4. Unless there are multiple

PC32 cards installed, the target number defaults to 0. The number of channels has to be entered

manually and should correspond to the number of channel blocks on the corresponding

Simulink diagram.

After the user clicks on 'OK', Display performs its initialisation. Firstly, should there be any

channel windows open they are closed to prevent multiple instances of the same window.

for (UINT i=0; i<MAX_NUM_CHANNELS;
i f (theApp.active_child[i])

theApp.child[i]->DestroyWindow();
theApp.active_child[i]=FALSE;
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) Display Utility for PC32

Target Number: fg"

Number of Channels: R~

OK Cancel

Fig. 8.4 : Display utility dialog box

Next Display creates a separate child window for each channel, and initiates its title to reflect the

corresponding channel number. Also the circular buffer for each active channel is cleared and

initialised.

for (i=0; i<m_num_channels; I++)

{
theApp.child[i] = new CDisplayChildFrm;
sprintf(title,"CH #%d",i);
theApp.child[i]->ShowWindow(SW_SHOW);
theApp.child[i]->UpdateWindow();
theApp.child[i]->SetWindowText(title) ;
theApp.active_child[i]=TRUE;
theApp.child[i]->my_num=i;
theApp.queue[i].head = 0;
theApp.queue[i].trigg = 0;
theApp.queue[i].tail = 0;
for (UINT j=0; j<5000; j++) theApp.queue[i].sample[j] = 0;

The following initialisation step checks whether a PC32 card is present and opens the

Innovative Integration VXD driver. If there is no response from the selected PC32 target,

Display terminates with an error message.

if(!target open(mtarget))

{
sprintf(title, "Unable to open Device Driver for target %d\n"

"Check target number setting", mtarget);
MessageBox(title, "FATAL ERROR", MBICONINFORMATION);
PostQuitMessage(0);

The DPRAM is physically installed on the PC32, but is also mapped to a logical area of the host

PC memory through the ISA bus. This logical address is accessed via calls to the II drivers. To

respond to the signals from the target on IRQ 5, Display installs an ISR routine. Further, a thread

is launched to monitor the channel buffers and to process, scale and plot the data.
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// Set DPRAM addrss
theApp.dsp = (CARDINFO*)targetcardinfo(mtarget);
theApp.dpram = (volatile int*)theApp.dsp->BusMaster.Addr;

// Set up the Virtual ISR
host_interrupt_install(m_target, EnqueueData, (PVOID)m_target);
host_interrupt_enable(m_target);

// Set up the Thread function
if (theApp.pThread==NULL)
theApp.pThread = AfxBeginThread(ThreadFunc, NULL);

Finally, bit 0 is cleared at the first location in DPRAM reserved for data logging (see

Appendix B for details). This value flags the target data upload routine that Display is ready to

receive data. The main Display window is then minimised out of the way :

// tell target we are ready for data
theApp.dpram[4] &= OxFFFE;

// Minimise the main window
GetWindowPlacement(&wpl);
wpl.showCmd = SWMINIMIZE;
SetWindowPlacement(&wpl);

After the above initialisation code completes successfully, the IRQ 5 interrupt signal from the

target is monitored and data uploaded as shown in the following section.

8.4.2 Upload Mechanism

To avoid the need for use of semaphores to arbitrate access to DPRAM, the area from offset

0x0004 up to offset 0x1000, is reserved solely for the uploading of data for visualisation. The

memory mapping for DPRAM as well as data transfer protocol are described in detail in

Appendix B.

The data logging function on the PC32 places raw packets of data in DPRAM and signals an

interrupt (IRQ 5) to the PC when finished, as described in section 6.4 in Chapter 6. Display's

interrupt handling routine then decodes the packets and places their contents in the correct

channel's buffer. The following excerpt shows the source code for the ISR routine

EnqueueData, the flow diagram of the process is shown in Fig. 8.5 :

VOID EnqueueData (PVOID pvoid)
{ UINT I;
long offset;
unsigned long buffer_size;
int buffer_num;
union
{

float f;
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unsigned long
plot_data;

u;

offset = 0;
buffer_num = theApp.dpram[5 + offset++];
buffersize = theApp.dpram[5 + offset++];

while ((buffer_num !=999) && (offset < 1000))

{
for (i = 0; i < buffersize; i++)

{
plot_data.u = theApp.dpram[5 + offset++];
enqueue(buffernum, plot_data.f);

}
buffer_num = theApp.dpram[5 + offset++];
buffer_size = theApp.dpram[5 + offset++];

}
theApp.dpram[4] &= OxFFFE;

//signal to target that we are finished reading

f IRQ 5 interrupt )

Read in buffer_num &
buffer_size from packet header

Move to next packet
header

End of \ Y
DPRAM ^

Move a packet of data
from DPRAM to the

right queue

Signal to target that
DPRAM is ready for

writting

End

Fig. 8.5 : Flow diagram of the data upload and buffering on host
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The intermediate variable plot_data is defined as a union of types unsigned long and float,

which means the the physical 32 bit of data stored under plot_data can be accessed as either of

the types. This mapping of data types is necessary to account for the difference between floating

point number representation in the compilers for the target and host platforms. Thus raw data

from the DPRAM is read out as an unsigned long which means it will be read out 'as is' on a bit

by bit basis. The data is meaningless in this format until it is mapped to a floating point type.

Each packet header consists of two values :

(i) Buffer_num - the channel number for which this packet's data is destined.

(ii) Buffer_size - the number of data points in the packet, not including the header. The

value of buffer_size also points to the beginning of the next packet in the sequence.

The value of 999 (decimal) signals the end of a packet sequence in DPRAM.

The data points read out from each packet are queued in the corresponding channel's queue by a

call to the function enqueue. After the last packet is processed by the EnqueueData function,

bit 0 at DPRAM offset 0x0004 is cleared to hand access to DPRAM back to the target for

writing.

8.4.3 Data Buffering

Three functions are defined to facilitate access to the channel buffers :

(i) Enqueue - this function is used to add new entries to a circular buffer.

(ii) Dequeue - is used to read from a buffer.

(iii) Enqueued - returns the number of entries currently stored in a buffer.

All three functions are defined as Mined in order to optimise the speed at which Display can

access the buffers. Defining functions as inlined could mean a sacrifice in terms of the size of the

resultant executable, but it improves the execution speed by removing the overheads involved in

switching between functions. In the case of the Display utility, file size and memory usage on

the PC is not a major consideration. Slow execution, however, could create a bottleneck in the

transfer of data from the target and result in loss of information.

The channel buffers are implemented in a circular fashion which means each buffer has both a

head and a tail pointer which wrap around when the maximum size is reached. The circular
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buffering mechanism was chosen by the author as it allows for the fast data access while

maintaining the first-in-first-out (FIFO) principle.

The following code implements the enqueue function. An entry is added at current queue head,

the head pointer is incremented and wrapped around if necessary.

inline void enqueue(UINT num, float value)

{
theApp.queue[num].sample[theApp.queue[num].head++]=value;

if (theApp.queue[num].head == Q_SIZE) theApp.queue[num].head=0;
}

To remove an entry from a queue the tail pointer is used. It is then incremented and wraps

around if necessary.

inline float dequeue(UINT num)

float value = theApp.queue[num].sample[theApp.queue[num].tail++];
if (theApp.queue[num].tail == QSIZE) theApp.queue[num].tai1=0;
return (value);

To check the number of entries in a given queue the difference between the tail and head

pointers is calculated.

inline long enqueued(UINT num)

{
long depth = theApp.queue[num] .head - theApp.queue [num] .tail;

return ((depth < 0) ? (depth + QSIZE) : depth);
}

The above sections describe the mechanism by which the Display utility receives and buffers

data sent by the target in real-time. The following section shows how the buffered data is

processed before being plotted.

8.4.4 Scaling and Plotting

The uploaded data is dequeued and plotted individually for each channel in a background thread

function ThreadFunc. The flow diagram in Fig. 8.6 demonstrates this process.
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Thread

Channel = 0

Enough \ No
samples in /

queue?,

YesX

Look for a trigger |
event in data j

Increment
Channel

A

Found \ No
trigger? / ^

Yes*

Plot a screen of data

No YesLast
Channel? > j Sleep (0)

Fig. 8.6 : Flow diagram of the data processing on host

The following source code excerpt demonstrates the structure of the function

UINT ThreadFunc (LPVOID p P t r )

whi le (1 )

process queue data

Sleep(0);
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The infinite while loop forms the body of the ThreadFunc function. A call to the system

function Sleep at every iteration ensures that other Windows processes are not deprived of

processing time. Each individual child window's settings can be set by the user via a properties

popup window shown in Fig. 8.7. The number of samples to be plotted and the maximum Y axis

range can be specified. The number of samples in a child window is used to determine when

there is enough data in a queue to fill the window. If the trigger level check box is selected the

ThreadFunc algorithm will look for a trigger event in the data before plotting it. The leftmost

sample plotted in the window will be the first sample found by an trigger finding algorithm

shown in Fig. 8.8. Every time a window's plot is updated it is forced to redraw itself via the

object call :

theApp.childtj]->RedrawWindow();

Channel Properties

Number of Samples: brjrj

Y Axis Span: |ioo

W Trigger Level:

OK

Fig. 8.7 : Child window properties
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Fig. 8.8 : Flow diagram of the trigger find algorithm
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8.5 Conclusion

This Chapter has discussed the software developed as part of the CSDE which is resident on the

host PC. These components, as well as the components described in Chapters 5, 6 and 7, form

the author's practical contribution to the complete CSDE. Chapter 9 will describe an example of

the application of the CSDE to a motion control problem. Two case studies will also be

presented of students who applied the CSDE during their undergraduate design projects.
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CHAPTER NINE
CSDE APPLICATION AND CASE

STUDIES
9.1 Introduction

The preceding Chapters have built up a description of the various components of the CSDE. The

aim was to create a complete rapid prototyping tool for the development and real-time

implementation of motion control. The particular focus of the project was to aid final year

electrical engineering students in tackling challenging design problems in the field of motion

control, as introduced in Chapters 1 and 2. By using the CSDE, students are able to gain an

in-depth experience in the development of real-time digital controllers without being slowed

down by the traditionally drawn out design process.

No such development project can be complete without a field trial to validate whether the

objectives have been met. This Chapter shows how the CSDE is used to address issues raised in

Chapters 1 and 2. It should be noted that the main aim here is to focus on the transition of

controller designs into real-time prototypes. Suitable references are provided to cover controller

design and simulation in greater detail.

First example presented is the design of a simple digital controller for a DC machine. The

controller itself is straight forward but the example serves well to demonstrate and prove the

operation of the CSDE. Next, two case studies are presented of students at the Electrical

Engineering Department at UND who used the CSDE to implement complex motion control

projects. Mr. Sturgeon implemented a field oriented controller (FOC) on a 3-phase induction

machine [STURGE0N1]. His project was judged to be the best final year design in 1998. Mr.

Moodley's final year design in 1999 involved the design of a ball-catcher [M00DLEY1] and

was judged to be the best control project.
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9.2 Motion Controller Design Using the CSDE

The steps in the design of a digital motion controller were outlined in Chapter 2. In a rapid

prototyping environment, like the CSDE, they can be summarised as follows :

(i) Modelling - gathering data and creating a model of the controlled machine.

(ii) Simulation - proposing a control algorithm and simulating its performance in non

real-time,

(iii) Hardware setup - connecting the machine and required sensors to the controller

platform

(iv) Generating prototype - converting the simulation block diagram to a real-time

prototype and generating code.

(v) Online tuning - running the controller in real-time, verifying its performance and

final adjustment of parameters.

The issues involved in modelling and simulation of motion control are well covered in literature

[FORSYTHE1, LEONHARD1]. And in particular the application of MathWorks tools in this

field is covered in [FENG1, MATHW0RKS1, 2, 3]. This Chapter will, therefore, not revisit

those topics but rather focus on points (iii) to (v) above.

9.2.1 Hardware Setup

The hardware used for the demonstration is a DC machine fed by an H-bridge inverter. A

tachometer and a LEM current transducer module [LEM1 ] are used to provide speed and current

feedback respectively. The PC32 controller and a PWM / Tacho expansion card are housed

inside the host PC case and form the controller platform. A signal generator is used to provide a

speed profile for the controller. Fig. 9.1 shows the schematic diagram of the overall hardware

setup used. Fig. 9.2 shows a photograph of the actual setup in the lab.

The speed and current feedback signals are captured by the PC32 on-board ADC channels and

displayed in real-time by the Display utility. To verify the correct operation the signals are also

made available at the DAC outputs and can be monitored using a digital storage oscilloscope.

Motion Controller Design Using the CSDE Page 9-2



Chapter Nine - CSDE Application Case Studies

Current (D AC 1)

_wl PC 32

Speed (DAC 0)
—- |̂ Oscilloscope

Speed reference (ADC 2) I Signal Generator

I n n n

Analogue speed feedback (ADC 1)
Current feedback (ADC 0)

Fig. 9.1 : CSDE Demonstration hardware setup

9.2.2 Generating a Real-Time Prototype

After the controller has been simulated in Simulink, the diagram has to be modified to include

hardware driver blocks before a real-time prototype can be generated and executed on the

hardware platform. Fig. 9.3 shows the simulation diagram while Fig. 9.4 shows the modified

real-time version.

The conversion of a simulation diagram into real-time involves replacing the DC machine

model block with external inputs and outputs to the actual machine. Standard Simulink scope

blocks are replaced with custom CSDE scope channel blocks which allow uploading of data in
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Fig. 9.2 : Photograph of the DC machine demonstration setup
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Fig. 9.3 : Simulation diagram for the DC machine controller
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Fig. 9.4 : Real-time controller diagram
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real-time to the Display utility. To ensure synchronous sampling, the interrupt signal (El 0)

from the Hanning PWM IC is used to trigger the ADCs. In turn, the end of conversion signal

(El 1) from the ADC's is used to trigger the control loop. This arrangement ensures that the

feedback signals are free of power electronics switching noise as they are always sampled at the

centre of the PWM switching period as described in Chapter 4, section 4.5.2.

The next step is to set up the RTW parameters. Fig. 9.5 shows the corresponding RTW dialog

box. Uploads are enabled since there are a number of scope channel blocks used. Upon pressing

the Build button RTW generates the controller code and downloads it to the PC32. After the

diagram is started the Scope utility can be initiated. Fig. 9.6 shows the plots obtained :

(i) CH#0 displays the speed reference

(ii) CH#1 shows the resultant speed feedback, and

(iii) CH#2 shows the armature current feedback

The signals in Fig. 9.6 are also made available at the DAC outputs and were captured using a

digital oscilloscope to give the speed plot in Fig. 9.7 and the current waveform in Fig. 9.8. There

is a clear timing skew between the plots in Fig. 9.6 when compared to the results obtained using

an external oscilloscope. This is due to the fact that the Display utility does not attempt to

synchronise the display channels, but rather triggers each channel individually as described in

section 8.4.4.

-i Simulation parameters: SPEED99

Solver Workspace I/O Diagnostics RTW RTW External

Code generation

System target file: I jj tic

J~~ Inline parameters \7 Retain .rtw file

Build options

Template makefile: | pc32 tmf

Make command:

j make_rtw IO=DISABLE UPLD=YES

f~ Generate code only

Build

Apply Help Close

Fig. 9.5 : RTW parameters
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Fig. 9.7 : Speed signal
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Fig. 9.8 : Armature current waveform

The plots in Fig. 9.6, Fig. 9.7 and Fig. 9.8 correspond to what can be expected from the

experiment. The armature current is at its maximum during acceleration and minimum during

deceleration. During periods of constant speed the current it almost zero since the machine is

running without a load. The above plots are obtained for a well tuned controller. The following

section will demonstrate how the controller can be tuned online.

9.2.3 Online Parameter Tuning

A powerful feature of the is the ability to modify controller parameters in real-time without

interrupting its execution. Fig. 9.9 shows the discrete controller subsystems used for the speed

and current control loops respectively. While any parameter on the diagram can be modified, for

the purpose of demonstration only the gains Kp are adjusted. The plots in Fig. 9.6 were obtained

with Kp set to the values determined from simulation, namely 15 for the speed and 40 for the

current controller. Fig. 9.10 shows the dialog box used to modify parameters. After a new value

is entered and Apply is pressed the CSDE automatically updates the parameter in the real-time

prototype and the effect can be observed on the Display plots.

Table 9.1 lists the various Kp settings and the figures which show the corresponding plots

obtained. These plots clearly illustrate the effect of the parameter changes on the controller

response. The important point to keep in mind is that the various settings were tried out in

real-time in a matter of a few minutes. There was no need to rewrite or regenerate any code and

the machine was constantly online during the experiment.

Motion Controller Design Using the CSDE Page 9-8



Chapter Nine - CSDE Application Case Studies

File Edit View Simulation Format Tools

Unit Delay

Current Controller

£ile £dit View Simulation Format Tools

Kp* Ki"Ts/2
Unit Delay

Fig. 9.9 : Discrete controller subsystems
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Table 9.1 : Various controller gain combinations
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Fig. 9.10 : Modifying parameters online

Fig. 9.11 : Speed Kp = 10, Current Kp = 40
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Fig. 9.12: Speed Kp = 4, Current Kp = 40

Fig. 9.13 : Speed Kp = 20, Current Kp = 8
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9.3 Student Projects - Case Studies

The demonstration in section 9.2 shows that the CSDE functions as intended by the author and

fulfills all requirements laid down in Chapter 2. However, the main purpose of the project was to

create a research tool aimed at the undergraduate students. Thus, the author felt it was important

to allow a number of students to use the CSDE during their design courses in order to verify its

usefulness in this environment.

Due to limited resources only one complete rapid prototyping station could be made available to

undergraduate students. The setup included the following :

(i) Pentium PC running Windows 95, with the full CSDE software installed

(ii) PC32 DSP Controller card

(iii) PWM / Tacho expansion card

(iv) H-bridgc inverter

(v) Current and speed sensors

(vi) A choice of either a DC motor or a 220 V 3-phase induction motor

During the 1998 and 1999 academic years a number of 3rd and 4th year students used the above

setup to implement their motion control designs at the Department of Electrical Engineering at

UND. Although no formal record was kept, in all cases the feedback was positive and the

students felt that the CSDE allowed them to complete more challenging projects than their

colleagues in less time. The feedback from the field trials allowed a number of improvements to

be made to the CSDE, as listed in sections 9.4.1 and 9.5.1.

Two of the final year designs which made use of the CSDE are briefly introduced in the

following sections. An in-depth discussion of these projects is beyond the scope is of this thesis,

and only an overall outline is provided. Both projects were supervised by Mr. Diana.

9.4 Field Oriented Control of an Induction Machine

The method of FOC [LEONHARD1] attempts to change the complex characteristics of an

induction machine to be more like the simpler DC counterpart. The algorithm attempts to

establish a fixed angular relationship between the stator current vector and the rotor flux vector

and in doing so decouples the two values. Effectively, if the flux is kept constant the torque of
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