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ABSTRACT 
The “green” industrial chemical processes are of great interest to scientists and engineers due 

to elimination of environmental pollution, especially air pollution. One of the most important 

air pollutants is class of materials called volatile organic compounds (VOCs) which are 

widely used in different industrial chemical processes. The recent research has revealed that 

ionic liquids (ILs) are generally the best possible alternative to the conventional solvents; 

because in general, the ILs have interesting properties such as very low vapor pressure, 

nonflammability, and high physical and chemical stability. 

 

Ionic liquids are constituted of ions, typically a cation and an anion, and their thermophysical 

properties are strongly dependent on the type and chemical structure of the cation and anion. 

As a result, in theory, they can be designed for specific applications with certain properties by 

choosing the appropriate combination of anion/cation pair. For this purpose, a predictive 

model is required to estimate the target property based on the chemical structure of ions. 

 

At the initial step of this study, the NIST Standard Reference Database #103b as well as the 

published papers in the literature was chosen as the source of experimental data of ionic 

liquids. As a result, a large database was collected covering several thermophysical properties 

of ILs. Thereafter, the collected data were examined carefully and the duplicated and 

erroneous data were screened. 

 

Speed of sound, heat capacity, refractive index, viscosity, infinite dilution activity 

coefficient (  � � ), and critical temperature of various ionic liquids were modeled by means 

of two well-known property estimation methods, Group Contribution (GC) and 

Quantitative Structure-Property Relationship (QSPR) methods. These methods were 

combined with different computational and regression techniques such as genetic function 

approximation (GFA) and least square support vector machine (LS-SVM). The combined 

routines then were applied to select reasonable number of parameters from thousands of 

variables and to develop the predictive models for representation/prediction of chosen 

temperature-dependent thermophysical properties of ionic liquids. 

 

Speed of sound in ionic liquids was modeled successfully and two models were developed, 

one GC and one QSPR model. These models were the first GC and QSPR models developed 
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for this property in the literature. Both models had better accuracy in terms of average 

absolute relative deviation (the AARD% of 0.36 for the GC and 0.92% for the QSPR models 

over 41 ILs) and covered a wider range of ionic liquids compared with the previous models 

published (AARD% of 1.96% over 14 ILs) and consequently, they were more applicable. 

 

Liquid heat capacity of ionic liquids was studied and one GC and one QSPR model were 

developed. Both models covered 82 ILs which was a larger number of ionic liquids compared 

with the best available model in the literature (32 ILs with an AARD% of 0.34%)  and had 

relatively low AARD%. The AARD% of the models was 1.68% and 1.70% for the GC and 

QSPR models, respectively. In addition, the QSPR model was the first model developed for 

this property through the QSPR approach. 

 

For the refractive index of ionic liquids, little attention had been given to modeling and 

consequently, one new GC (AARD% = 0.34%) and the first QSPR (AARD% = 0.51%) 

models were developed to predict this property using the experimental data for 97 ionic 

liquids. Both models covered a wider range of ionic liquids and showed very good prediction 

ability compared with the best available model (an AARD% of 0.18% for 24 ILs). 

 

Viscosity of Fluorine-containing ionic liquids was studied because the insertion of fluorinated 

moieties in the molecular structure of ionic liquids could result in reduction of viscosity. As a 

result, one QSPR (AARD% = 2.91%) and two GC models were developed using two 

different databases, one with fewer number of ionic liquids but with more reliable data 

(AARD% = 3.23%), the one with larger number of ionic liquids but with lower reliability 

(AARD% = 4.85%). All of the models developed had better prediction ability compared with 

the previous models and covered a wider range of fluorinated ionic liquids. 

 

Infinite dilution activity coefficient (γ∞) of organic solutes was modeled by developing six 

different models for different types of solutes (alkane, alkene, aromatic, etc.). The model 

developed were the first GC models for the prediction of γ∞ of solutes in ionic liquids. They 

were much easier to use, more comprehensive, and much more accurate compared with the 

UNIFAC model. 

 

Ultimately, the theoretical critical temperature (Tc) of ionic liquids was tried to model using 

the GC and QSPR approaches. The experimental data of surface tension of 106 ionic liquids 
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were used to calculate the critical temperature and then, these values were used to develop the 

models. It was found that the only available model in the literature was not accurate and 

predictive enough when its output was compared with the abovementioned Tc values. In 

addition, it was found that both of the models developed were not predictive enough to 

calculate the Tc of various types of ionic liquids as the models were developed using a few 

number of ionic liquids; however both models were accurate enough to fit the used values of 

Tc. The GC model has an AARD% of 5.17% and the QSPR model showed the AARD% of 

4.69%. 

 

It this thesis, much larger databases were used to develop the models compared with the 

models published previously in the literature. It was found that thermophysical properties of 

ionic liquids can be modeled fairly well by combination of the GC or QSPR methods with an 

appropriate regression technique. In addition, the developed models improved significantly 

the quality of fit and predictions for a wider range of ionic liquids compared with the 

previous models. Consequently, the models proposed are more predictive and can be used to 

design the ionic liquids with desired property for specific applications. 
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CHAPTER 1: INTRODUCTION 
 

In recent decades, the rapid growth of the world population has led to fast industrial 

development and higher usage of chemical materials. Among the chemical compounds, the 

chemical solvents, especially the volatile organic compounds (VOCs) are of great importance 

in numerous industrial processes and applications. The main benefit of using VOCs is their 

ease of removal and evaporation in several applications such as separation and extraction 

processes; but their critical disadvantages are their adverse health effects such as allergic skin 

reactions, dyspnea, nose and throat discomfort, and their environmental pollutant role 

destroying the ozone layer through free radical air oxidation processes [1].  

 

Recently, there are lots of demands among several countries to move toward “green” 

industries to eliminate the environmental pollutions, especially air pollution. In this regard, 

one of the basic and fundamental steps is to substitute the VOCs from different industrial 

chemical processes with a “green” alternative. Recent research has revealed that the ionic 

liquids (ILs) are typically the best possible environmental friendly alternative to the 

conventional solvents. In general, they show unusual but interesting properties such as 

extremely low saturation vapor pressure and negligible volatility, wide liquid range, 

nonflammability, high thermal conductivity, and high physical and chemical stability [2]. 

 

Ionic liquids are defined as molten salts which are generally liquid at or near room 

temperature (typically below 100 °C) due to the poor coordination of ions [3]. ILs are 

typically composed of a cation and an anion; so their thermophysical properties are strongly 

dependent on the type and chemical structure of the ions. As a result, they can be designed 

for specific applications with desired properties by choosing the proper pair of ions. This 

feature has made them the “tunable” and “designable” materials [4]. Consequently, ionic 

liquids are potential to be applied in numerous industrial applications, such as extraction and 

separation processes [5, 6], battery industry [7, 8], fuel cells [9, 10], solar panels [11, 12], 

polymer and biopolymer processing [13-15], electroplating [16, 17], lubricants [18-21], waste 

recycling [22-25], gas separation and CO2 capturing [26-33], catalysis [34-36], and many 

others [37-40]. 
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The existence of a large number of combinations of organic cations and anions leads to the 

generation of various groups of ionic liquids. The most popularly researched groups are 

imidazolium, ammonium, phosphonium, pyrrolidinium, pyridinium, guanidinium, 

isoquinolinium,  piperidinium, morpholinium, and sulphonium. As a result, thousands of 

ionic liquids can be synthesized in theory by different types of cations and anions. In 

addition, it is possible to design the ILs for specific applications before synthesis. In this 

regard, predictive models can play an important role to relate the physico-chemical properties 

of ILs to their constituent cation and anion combinations or other properties of ILs. 

 

The models used for property estimations of ionic liquids as well as other chemical 

compounds are classified into three main types: 

 

1. Models based on chemical structure and functions groups of the compounds. 

 

2. Models based on other physico-chemical properties. 

 

3. Models based on both chemical structure and other physico-chemical properties. 

 

 

Usually the model which uses the other thermophysical properties of the compounds has 

better accuracy and prediction ability, especially for nonlinear properties; but it strongly 

depends on the availability of the experimental data for all parameters of the model for 

desired compound. If one of the parameters does not exist in the literature, the model 

becomes useless if the missing parameter cannot be estimated by another model.  

 

The first ionic liquid was discovered in 1888 [41]. Since then, more than a thousand ionic 

liquids have been reported to date. Despite the great interest of introducing the new ionic 

liquids, less effort have been done to measure the physico-chemical properties of ionic liquids 

uniformly. For example, experimental density data is available for more than 500 ionic 

liquids, but surface tension has been measured for less than 150 ILs. At present, the results of 

experimental investigations for ionic liquids as well as other compounds are reported 

comprehensively in the form of large databases by Dortmund Data Bank [42], and NIST 

ThermoData Engine [43]. For non-ionic liquid compounds, there are few more databases 

such as DIPPR [44]. 
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Due to lack of enough experimental data for the thermophysical properties of ILs, use of 

other thermophysical properties of ILs as the parameters of a new model is not applicable 

and/or straightforward in most cases. Consequently, a chemical structure-based model can 

overcome such limitations and can be applied to develop more comprehensive and general 

models.  

 

The aim of this study is to develop the best new accurate and predictive models for prediction 

of the thermophysical properties of ionic liquids which are more comprehensive but have less 

limitation. For this purpose, the largest possible databases are collected by the use of the 

NIST standard reference database and searching the literature for data published recently; so 

the more comprehensive and predictive models can be developed with the use of various 

types of ionic liquids and more experimental data points, compared with the available models 

in the literature.  

 

Furthermore, it is targeted to develop some models for the prediction of infinite dilution 

activity coefficient (γ∞) of organic solutes in various ionic liquids. This property has not been 

modeled by Group contribution (GC) or Quantitative Structure-Property Relationship 

(QSPR) to date. These novel models make the calculation/prediction of γ∞ much easier 

compared with the UNIFAC model. 

 

Another aspect of this study is to assess the use of the QSPR method for development of new 

models for ionic liquids. The common approach in the model development for ionic liquids is 

the GC method and consequently, there is an opportunity to develop some new and predictive 

QSPR models for the first time for some thermophysical properties of ionic liquids.  

 

The main approach of the model development in this thesis is the use of chemical structure-

based parameters to develop accurate and predictive property estimation models for ionic 

liquids. The number of these parameters is more than a thousand for ionic liquids and when a 

temperature dependent property is studied, it may goes up to 40,000 parameters (all 

parameters are multiplied by each other or by a function of the temperature; e.g. � , � � , �
�  ). As 

a result, novel and different mathematical approaches and feature selection methods should 

be applied to choose the most effective parameters on the target property. 
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To achieve this goal, there are several steps that have to be undertaken to produce a 

predictive model. In this thesis, the procedure is as follows: 

 

1- Each property was selected carefully. The selected property should have reasonable 

number of data points and the previous models in the literature should have at least 

one drawback such as complexity, low accuracy, high number of parameters, limited 

supported compounds, etc.  

 

2- It was tried to collect all available data into a dataset using the NIST standard 

reference database and searching the literature for recent published data. 

 

3- The dataset was examined carefully to screen the duplicated and erroneous data. 

 

4- A mathematical method was selected and the model was developed. If the model did 

not have good accuracy, the mathematical method was changed. 

 

5- The model was validated through different statistical methods and its prediction 

power was evaluated. 

 

6- Finally, if it is applicable, the model developed was compared with previous models 

in term of simplicity, accuracy, prediction power, and comprehensiveness. 

 

All the steps will be explained in detail in other chapters of the thesis. Chapter 2 covers the 

literature review of the properties studied. In chapter 3, the data management procedure is 

described. Afterward, the methods used for modeling are explained in chapter 4. Thereafter, 

chapter 5 discusses about the model development procedure. Chapter 6 includes the result of 

modeling for physico-chemical properties studied. The conclusion of this thesis is presented 

in Chapter 7. Finally, Chapter 8 offers some recommendations for future works. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Scope 

In previous chapter, it was discussed that there are three types of models used for property 

estimation of chemical compounds. For non-ionic liquid compounds, it is common to use the 

other thermophysical properties of the substances to estimate the desired one. The most 

famous type is corresponding state models which use the critical properties and relate them to 

the target property. A collection of such models are available in “The properties of gases and 

liquids” text book [45].  

 

Ionic liquids have strong inter/intra-molecular interactions and consequently, their theoretical 

boiling point and critical properties are above the decomposition temperature [46]. As a 

result, corresponding state modeling is not applicable for the ionic liquids. Another option is 

to use the other thermophysical properties to model the desired one; but as explained earlier, 

it is not possible mostly due to lack of enough experimental data for various thermophysical 

properties of ionic liquids. Consequently, the best available option is the application of 

chemical structure-based models. 

 

The chemical structure-based models are classified as follows and will be explained in detail 

in section  4.2. 

 

1- Group contribution (GC) models. 

 

2- Quantitative structure-property relationship (QSPR) models. 

 

This chapter covers the literature review of thermophysical properties of ILs studied in this 

thesis. These properties are speed of sound, heat capacity, refractive index, viscosity of 

fluorine-containing ionic liquids, infinite dilution activity coefficient (γ∞) of organic solutes 

in ionic liquids, and the theoretical critical temperature of ionic liquids. 
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2.2 Speed of sound in ionic liquids 

In chemistry and physics, the speed of sound (u) is of great importance and can be used in 

modeling or deriving other thermophysical properties, such as isentropic and isothermal 

compressibility, thermal pressure coefficient, the reduced isobaric thermal expansion 

coefficient, isobaric and isochoric heat capacities, bulk modulus, and the Joule–Thomson 

coefficient. However, the speed of sound has not been extensively used to derive 

thermodynamic properties of ILs due to the short supply of experimental data [47-50]. 

 

The efforts for modeling the speed of sound in ILs are surprisingly very few. Gardas and 

Coutinho [48] conducted the first study in 2008 and modeled the 133 experimental data for 

14 imidazolium-based ILs using the density and surface tension data. Their model was the 

modified correlation originally proposed by Auerbach [51] and had the average absolute 

relative deviation (AARD%) of 1.96%. Despite the relatively low deviation, the lack of 

experimental data for both the density and surface tension for each ionic liquid is the 

drawback of their model. To overcome this limitation, two separate correlations were 

developed to predict the density and surface tension of ILs. This brought about another 

drawback which required a lot of computations for the use of proposed model in the 

prediction of the speed of sound in ILs. 

 

The next and only other study in the literature was undertaken by Singh and Singh [52]. The 

same approach as Gardas and Coutinho was used and a new model was developed for 3 

imidazolium-based ILs. 

 

The comparison of available models in the literature is summarized in Table  2.1.  

 

Table  2.1: Summary of available models for the speed of sound in ionic liquids. 
Model  Model Type and parameters NILs

* Ndata
** AARD%*** 

 

Gardas and Coutinho [48] 

 

Correlation, ρ , σ  14 133 1.96 

Singh and Singh [52] Correlation, ρ , σ  3 60 n.a. 
*   Number of ionic liquids. 
**  Number of data points. 
*** � � � � % =   � � �

�  ∑ � � (� ) � � � � � � (� ) � � �
� (� ) � � �

��� � �  
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2.3 Liquid heat capacity of ionic liquids 

Heat capacity at constant pressure (Cp) is defined as the partial derivative of the enthalpy with 

respect to temperature while pressure kept constant. Cp is related to several thermodynamic 

properties such as: Gibbs free energy, enthalpy, and entropy and knowing its behavior helps 

for further study of other properties. In addition, Cp of both solid and liquid state of 

compounds is used to determine the heat transfer of equipment such as reactors and heat 

exchangers, which is the important parameter in their design [53]. 

 

There are few models available in the literature for the estimation of liquid heat capacity 

(CpL) of ionic liquids. Gardas and Coutinho [54] used the second order group contribution 

method (GCM) and developed a 12-parameter model. They used a dataset comprising 19 ILs 

with 2396 data points over a wide temperature range of (196.36-663.10 K). Despite the good 

claimed prediction accuracy of the model, it must be noted that only 3 cations and 6 anions 

were used to develop the model, which limits its applicability. The number of model 

parameters is also relatively high when compared to the number of ionic liquids used (12 

parameters for 19 ILs).  

 

Soriano et al. [55] applied a similar approach to Gardas and Coutinho by using the entire 

structure of cations and anions instead of functional groups. Their dataset had 32 ILs and 

3149 data points, with 10 cations and 14 anions, over a temperature range of (188.06-663.10 

K). Since their model is dependent on certain type of ions used in its development, it cannot 

predict heat capacity for ILs for cation-anion combinations which were not in their dataset.  

 

Valderrama et al. [56] applied a new approach for the prediction of CpL which was called the 

mass connectivity index (MCI). It was based on the molecular connectivity concept 

introduced by Randic [57]. The model was developed from a dataset consisting of 541 data 

points for 15 ILs. The 40-parameter group contribution model was obtained with two specific 

constants for each ionic liquid. In another study, Valderrama [58] used the same approach as 

their previous study, but this time with 31 ILs and 477 data points and developed an artificial 

neural network (ANN) model for the prediction of Cp. The drawback of their models though 

is the use of a relatively small dataset and calculation of constants for a limited number of 

ionic liquids which reduces the model applicability for new ionic liquids with difference 

cation-anion combinations.  
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In addition to the models listed above, there are several studies [54, 59-61] published in 

literature for the prediction of CpL with respect to molar volume (Vm). The major problem 

with this approach is the need in the model for experimental values for Vm for ionic liquids. 

This property is generally not readily available for most of the ILs. 

 

The summary of the previous models are shown in Table  2.2. 

 

Table  2.2. Summary of available models for the of heat capacity of ILs. 
Model  Model Type and parameters NILs Ndata AARD% 

Gardas and Coutinho [54] GC, 12 parameters 19 2396 0.36 

Gardas and Coutinho [54] Correlation, Vm 19 2396 1.85 

Soriano et al. [55] GC, 10 cations and 14 anions 32 2414 0.34 

Valderrama et al. [56] MCI, 40 parameters 15 541 0.8 

Paulechka et al. [60] Correlation, Vm 19 653 6.0 (max error) 

Preiss et al. [59] Correlation, Vm 20 n.a 1.2 (max error) 

 

 

 

2.4 Refractive Index of ionic liquids 

Refractive index (nD) is defined by IUPAC as “the ratio of the speed of light in vacuum to 

that in a given medium” [62]. Refractive index is a fundamental physical property, especially 

for optics related research fields, and it is used to verify a material and its purity, or to 

measure the concentration of a mixture. It can also provide valuable information when 

studying the intermolecular forces or the behavior of molecules in solution. Refractive index 

is also related to other properties such as the density, surface tension, and dielectric constant 

through thermodynamic equations [63, 64].  

 

Surprisingly, little attention has been given to modeling and also measuring the refractive 

index of ILs, despite the simplicity of measurement. For other compounds however, several 
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models have been developed and published [65-70]. In the NIST Standard Reference 

Database #103b, there are experimental data available for more than 700 ILs, but for only 97 

of them has the nD been reported. 

   

The first method for the prediction of nD of ILs was proposed by Deetlefs et al. [71] whom 

related the nD of 9 methylimidazolium based ILs using Equation ( 2.1) to the surface tension 

(σ), molar refraction (RM), and parachor (P) of the molecule. 

 

 2.1 
� � / � = � �

� �
� � � � � � �

� � � � � �     

 

All of the parameters in this model are required to be experimentally available or correlated by 

other experimental properties, and in case of new compounds, this model therefore needs other 

models to predict the parameters. This unfortunately results in the increased errors in the 

prediction of nD. The model has been developed based on 9 ILs, and consequently its 

applicability is limited and its results cannot be generalized. Even with the limited application, 

the model is not good and its average absolute relative deviation (AARD%) is 6.4%. 

 

Gardas and Coutinho [63] developed a 10-parameter group contribution model using 24 

imidazolium based ILs having 7 different anions. The AARD% of their model was 0.18%, 

but it couldn’t predict the nD of ILs with different cations. The same approach was used by 

Soriano et al. [72] and Freire et al. [73] using a few new imidazolium ILs, but their models 

suffered the same limitations as that of Gardas and Coutinho. 

 

 

Table  2.3: Summary of different models for refractive index of ILs. 
Model  Model Type and parameters NILs Ndata AARD% 

Deetlefs et al. [71] Correlation 9 9 6.4 

Gardas and Coutinho [63] GC, 10 parameters 24 245 0.18 

 

 

 



10 
 

2.5 Viscosity of fluorine-containing ionic liquids (F-ILs) 

One of the barriers against replacing commonly used solvents with ionic liquids in various 

applications is the relatively high viscosity (η) of ILs which results in low diffusion 

coefficients, slow mass transfer, and low electrical conductivity [74, 75]. Therefore research 

has to be undertaken to synthesize ILs with low viscosity and low melting points. Initial 

investigations have shown that the insertion of a fluorine atoms (typically CF3 groups) into 

the chemical structure of the cation or in most cases the anion can reduce the viscosity as well 

as the melting point of ILs [74, 76-79]. 

 

ILs consist of ions, viz. a cation and an anion. In theory the cation and anion can be selected 

to have molecules with desired properties for a particular application. As such, ILs  have been 

termed as “tunable” and “designable” materials [80]. Consequently, the values of viscosity 

can be tuned by selecting appropriate combinations of ions, especially fluorine-containing 

ions. The process of selection can be sped up by using a predictive model which has the 

ability to correlate the viscosity data based on chemical structure of ions or other 

thermophysical properties. 

 

Abbott [81] recommended the application of hole theory for the definition of the viscosity of 

ILs and molecular liquids. Despite the introduction of this theory for the estimation of 

viscosity, the model did not produce satisfactory predictions for ILs and had a percentage 

average absolute relative deviation (AARD%) of 122%. Bandres et al. [82] predicted the 

viscosity of 8 pyridinium ionic liquids by modifying the hole theory suggested by Abbott 

[81]. They introduced an efficient IL radius (R*) to improve the estimations. The R* was fitted 

to real/laboratory viscosity data points at a pressure of 0.1 MPa. Consequently, their method 

yielded an AARD% of 4.5%. The weakness of their model is its lack of predictive capability 

for ILs without any experimental data, as the model needs the experimental data to evaluate 

R*. 

 

Gardas and Coutinho [83] presented a group contribution (GC) model which could predict 

the viscosity of ionic liquids based on an Orrick–Erbar-type [84] equation. They developed 

the model by using 500 data points for 30 ionic liquids with 8 anion and 3 cation types. In 

terms of performance, the AARD% of the model is 7.78%. The model developed however 

requires the density of the ionic liquids as an input, which may be considered as a 
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disadvantage of the approach [85]. This drawback was solved by Gardas and Coutinho [86] 

by developing a new model for 25 ILs based on the Vogel-Tammann-Fulcher (VTF) 

equation. Despite this improvement, the main disadvantage of the two models of Gardas and 

Coutino is the limited number of cations and anions used to develop the models which limits 

the applicability of the model for ionic liquids.  

 

The first nonlinear QSPR based model was developed by Yamomoto [87] for 62 ILs with a 

R2 of 0.9464 . The model shows fairly good results, but it is limited to 6 anions.  Thereafter 

Yamomoto and co-workers [88, 89] developed new nonlinear GC and QSPR models for more 

than 300 data points. Their last model has a R2 of 0.931 and an average error of 5.04% on a 

logarithmic scale which translates into a linear scale average error of 21.84%. This model has 

the same weakness in terms of applicability for a limited number of cations and anions.   

 

Bini el al. [90] presented two 4-parameter QSPR models for 33 ILs at two different 

temperatures (293 K and 353 K). Their model fails to correlate/predict nitrile-functionalized 

cations and it is also limited to a relatively small number of ionic liquids.  

 

Gharagheizi et al. [91] reported a 47-parameter GC model for 443 ILs with 1672 data points. 

The model has a R2 of 0.874 and an average error of 6.32% in a logarithmic scale; however the 

“real” average error in linear scale is nearly 31%. The data used to develop the model contained 

638 duplicated experimental values; thus only 1034 of the data points used were unique. 

Consequently, by removing the duplicated values, the average error in terms of log η and η 

increases to 7.1% and 35.7% respectively. In addition, the database used contained 724 data 

points for fluorine-containing ionic liquids (F-ILs) which was less than the dataset used in this 

study (863 data points). The average error of this model for only F-ILs is 6.7% and 59.7% for 

logarithmic and linear scales. Obviously, this model fails to predict the viscosity of F-ILs. 

 

There have been other studies by researchers [92, 93] on Neural Network modeling for 

viscosity, but these have been for limited numbers of ILs at a single temperature. 

 

The summary of the previous models are shown in Table  2.2 . 
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Table  2.4: Summary of different models for predicting the ln(η) of ILs. 
Model  Model Type and parameters NILs Ndata AARD% Comments 

Abbott [81] Correlation 11 n.a. 122 10  ILs contained fluorine 
atom. 

Bandres et al. 
[82] 

Correlation 8 n.a. 4.5 7  ILs contained fluorine 
atom. 

Gardas and 
Coutinho 
[83] 

GC, 13 parameters, ρ 30 500 7.78* Only 19 ILs contained 
fluorine atom. 
*AARD% is in linear scale. 

Gardas and 
Coutinho 
[86] 

GC, 12 parameters 25 482 7.50* Only 16 ILs contained 
fluorine atom. 
*AARD% is in linear scale. 

Tochigi and 
Yamomoto 
[89] 

QSPR, 24 parameters 161 334 5.04 149  ILs contained fluorine 
atom. 
Most of the ILs had just one 
data point. 

Bini el al. 
[90] 

QSPR, 4 parameters. 33 66 n.a. Authors proposed two models 
for T = 293 K and T = 353 K. 

Gharagheizi 
et al. [91] 

GC, 47 parameters 443 1672 6.32 638 duplicated data points 
were used. 
By removing the duplicates, 
the AD% was risen to 7.1%. 
724 data points were for F-ILs  

Valderrama 
et al. [92] 

ANN 58 327 n.a.  

Billard et al. 
[93] 

ANN 99 99 10 The data were only at 298 K. 

 

 

 

2.6 Infinite dilution activity coefficient of organic solutes in ionic liquids 

As discussed in Chapter 1, the unique properties of ILs make them to be looked upon as an 

alternative for conventional volatile, often toxic and flammable organic solvents in various 

applications such as extraction and separation processes, waste recycling, electroplating, gas 

separation and CO2 capturing, and many more. 
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Among these, the main application of ILs is extraction and extractive distillation processes in 

which ionic liquids can be utilized as the solvent. For this purpose the knowledge of activity 

coefficient at infinite dilution (γ∞) would be inevitable and numerous studies have been 

carried out to find this useful property in different mixtures [94-133]. Infinite dilution activity 

coefficients is also very beneficial in illustrating the behavior of liquid mixtures, estimating 

the mutual solubilities, predicting the existence of  an  azeotrope, analytical chromatography, 

calculating the Henry constant and partition coefficients, fitting the excess molar Gibbs 

energy (GE ) parameters of the models such as Wilson, NRTL and UNIQUAC, and 

developing the thermodynamic models based on the group contribution methods such as 

original and modified UNIFAC [134, 135]. 

 

In fact, infinite dilution activity coefficient is a hard property to model, especially for ionic 

liquids, due to presence of several interactions among three components in the system 

(cation, anion, solute). In addition, the values of γ∞ are dependent on the method of 

measurement, such as inverse gas chromatography and diluter methods, or solvent column 

packing concentrations [136-138]. So the reported values of γ∞ vary if it is not measured with 

the same method and at the same conditions. As a result, it is hard to develop a model to 

predict the γ∞ with very low deviation as there is reasonably high scatter in experimental data. 

 

The predictive models of activity coefficient of solutes in ionic liquids are categorized as 

group contribution and COSMO-based methods. The most well-known group contribution 

models for the prediction of γ∞ are the original and modified UNIFAC (Uniquac Quasi-

Chemical Functional Activity Coefficient). The modified UNIFAC (Dortmund) model just 

has a small difference in evaluation of interaction parameters which is shown in equation 

( 2.11). The activity coefficient in UNIFAC model is described as follows [134, 135, 139]: 
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in which zi is the mole fraction of component i, iθ  is the area function and iΦ is the segment 

function which are described by following equations: 
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where νki is the number of groups of type k in molecule i, Rk and Qk are UNIFAC volume and 

surface area parameters respectively which need to be adjusted. The interaction between the 

molecules have been taken to account by residual part of equation ( 2.2), R
iγln , which is 

expressed by following equation [139] :  
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The following equations have been used for evaluation of the interaction parameters, ψ, of 

the original and mod. UNIFAC activity model respectively [134, 135]: 
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in which a and b, are the temperature-independent group interaction parameters between 

main groups m and n and reliable experimental data are required for their fittings.  

 

As it can be observed from equation ( 2.11), the number of fitting parameters intensively 

depends on the number of subgroups of the considered molecules; so the more complicated 

molecules such as ILs can produce large number of fitting parameters which increases the 

complexity of the model and difficulty of its application. In addition, the interaction 

parameters are not available for all pair of subgroups, especially for ionic liquids, which may 

limit the use of the model for certain compounds [140]. 

 

COSMO-RS (COnductor-like Screening MOdel for Real Solvents) was developed by Klamt 

[141] which uses quantum chemistry calculations to predict various thermophysical 

properties of chemical equilibrium in liquid/liquid and vapor/liquid systems. The major 

difference between COSMO-RS and GCMs is that the predictive ability of a GC model 

depends on the availability of group interaction parameters, but the only limitation of 

COSMO-RS is the availability of individual component parameters [140]. COSMO-based 

models have been parameterized using the experimental data of several molecules covering 

most of the chemical functionality of these 10 elements: hydrogen, carbon, nitrogen, oxygen, 

fluorine, phosphorus, sulfur, chlorine, bromine, and iodine [142]. So they have few numbers 

of parameters, but the calculations are very time consuming and need powerful computers, 

especially for complex and large molecules such as ionic liquids [143]. In addition, the 

calculations need the use of commercial software which is not freely available. 

 

Consequently, there is not any easy-to-use GC or QSPR model in the literature to predict the 

γ∞ of different solutes in ionic liquids. 

 

 

2.7 Critical temperature of ionic liquids 

The critical temperature (Tc) of a substance is the temperature at and above which vapor of 

the substance cannot be liquefied, no matter how much pressure is applied. The behavior of a 
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fluid near its critical point is a specific property necessary to develop the thermodynamic 

models for fluids [144].  

 

Due to presence of high electrostatic interactions, as well as short-range van der Waals 

interactions in ionic liquids, the critical properties of ionic liquids usually cannot be measured 

as they are decomposed before their normal boiling temperature (Tb) are reached [46]. As a 

result, the experimental data of critical properties of ILs as well as their Tb are not available in 

the literature. 

 

Despite this limitation for the ionic liquids, some researchers tried to use the available 

correlations and estimation methods of common organic compounds to estimate the critical 

properties of ILs. The most accepted approach is to use the relationship between critical 

temperature, density, and surface tension and thereafter, estimate the Tc of ionic liquids. 

According to the fact that the surface tension becomes zero at critical temperature, two 

correlations were presented by Eötvos [145] and Guggenheim [146] which are shown in 

equation ( 2.12) and ( 2.13), respectively. 

 

 2.12 
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where γ is surface tension, ρ  is density, M is molar mass, k and K are two different constants. 

These equations usually can estimate the Tc of organic compound pretty well; so it is assumed 

that they are applicable for ionic liquids too. This approach has been followed by the majority 

of researchers [144, 147-152]  to calculate and report the critical temperature of ionic liquids. 

 

Another approached was followed by Valderrama et al. [46] where they used the Lydersen 

group contribution method to estimate the critical pressure and critical volume, and the 

Joback and Reid group contribution method to calculate the normal boiling temperature and 

the critical temperature of ionic liquids. They combined the best results of Lydersen’s method 
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with the best results of the Joback-Reid method to propose a “modified Lydersen-Joback-

Reid” method and claimed that this modified method had good results for molecules of high 

molecular weight. Thereafter, Valderrama at al. performed a consistency test and used a 

correlation for density to validate the estimated critical properties of ionic liquids. This 

correlation was developed earlier by Valderrama and Abu-Sharkh[153] to relate the critical 

properties of saturated liquids and petroleum fractions to their density. Consequently, they 

published the results of calculations for 1130 ionic liquids [154]. 

 

Despite their interesting approach, there is not a good agreement between the value of Tc 

estimated by their method and the first approach for most of the ionic liquids. However, 

these doubtful calculated critical properties are used by several researchers to develop the 

corresponding state models for prediction of thermophysical properties of ionic liquids 

[155-162]. 

 

As the experimental data of surface tension is limited for ILs, the more realistic value of Tc 

can be calculated only for less than 140 ionic liquids. As a result, the detailed analysis of 

Valderrama at al. model is not applicable; however, Table  2.5 shows the deviation of this 

model from Tc calculated from surface tension data for limited number of ionic liquids. 

 

Table  2.5: Summary of Valderrama at al. model for Tc of ionic liquids. 
Model  Model Type and parameters NILs Ndata AARD% Comments 

Valderrama 
at al. [154] 

GC, 44 parameters 1130 1130 30.2 AARD% was calculated over 
51 ionic liquids. 
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CHAPTER 3: DATA MANAGEMENT 
 

3.1 Scope 

The first step in development of a model is to find and gather the published data as much as 

possible. This can be done by searching the literature or using the comprehensive databases 

such as NIST Standard Data Reference Database [43] and Dortmund Data Bank [42].  

 

Using such databases has some benefits. They help to save a lot of time by eliminating the 

process of searching for data, extracting them from the context of the papers, checking the 

correctness of typed data, etc. In addition, they have a software which can read the database 

and visualize the data by plotting them, or estimate some of the properties using integrated 

codes for equation of states and some other property estimation correlations. 

 

 

3.2 Data source for the ionic liquids 

In this research, the NIST Standard Data Reference Database was used as the main source of 

data for each property of ionic liquids. In addition, the literature search was done to gather the 

most recent published data which have not been included in NIST database. As a result, all of 

the properties studied in this thesis have much larger data points and ionic liquids compared 

with the properties modeled previously by other researchers. The information about the 

dataset of properties modeled will be shown in next pages. 

 

 

3.3 Data screening 

After gathering the data for the desired property, the next step is to analyze and screen the 

data, and remove the duplicates and erroneous data points. As the chosen properties are 

temperature dependent, except the critical temperature, precise analysis of data was required. 

 

The data used in the model development was screened as follows:  

 

1) Where there were several reported values of the desired property for a single temperature, 

the values were plotted against temperature to find and remove the outliers. 
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2) If there were only two sources, the values with the lowest uncertainty were 

incorporated into dataset utilized.  

 

3) If the reported values had the equal uncertainties, the latest published values were 

utilized.  

 

4) To verify the potential outliers in final data points, the target values were plotted 

against temperature and a (non-)linear curve fitting algorithm was applied to fit the 

data. The data points which were far from the fitted curve were considered as the 

outliers and omitted from the dataset. 

 

 

3.4 Datasets of ionic liquids for different properties 

In this section, the information about the datasets used for different properties of ionic liquids 

is listed. The information includes the number of ionic liquids as well the number of different 

cations and anions. All the studied properties are temperature dependent and they are 

analyzed and screened carefully. 

 

 

3.4.1 Speed of sound in ionic liquids 

The NIST Standard Reference Database #103b [43] was the source of data for the speed of 

sounds in ionic liquids. After screening the extracted data, the resultant dataset contained 446 

reported experimental data points for 41 ILs at atmospheric pressure. In addition, the ILs were 

constituted from 29 types of cations and 11 types of anions. These ionic liquids belonged to the 

imidazolium, phosphonium, pyrrolidinium, pyridinium, and amino acid families. The data 

covered a wide range of temperatures (278.15-343.15 K) and values (1128.4- 1885.4 m s-1). 

 

The number of ionic liquids per family classification is presented in Figure  3.1. In addition, 

the database is provided as a supplementary file in the supplementary CD. 
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Figure  3.1: The number of ionic liquids in different families used for 

modeling the speed of sound. 
 

 

 

3.4.2  Liquid heat capacity of ionic liquids 

Same as the previous property, the reported experimental data of CpL were extracted from the 

NIST Standard Reference Database #103b. The screening process resulted in a dataset 

comprising 82 unique ILs with 3726 experimental data points. In addition, the ILs were 

constituted from 39 types of cations and 24 types of anions. 

 

The data covered a temperature range from (180.06-663 K) and CpL values ranged from 

(259.09-1805.7 Jmol-1K-1). These ILs belonged to the imidazolium, phosphonium, 

pyrrolidinium, pyridinium, ammonium, and isoquinolinium class of ionic liquids. 

 

The number of ionic liquids in different families is presented in Figure  3.2. In addition, the 

database is provided as a supplementary file in the supplementary CD. 
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Figure  3.2: The number of ionic liquids in different families used for 

modeling the liquid heat capacity. 
 

 

 

3.4.3  Refractive index of ionic liquids 

To prepare a dataset for refractive index (λ = 589 nm) of ionic liquids, the previous procedure 

was done and consequently, 931 experimental data points for 97 unique ILs constituted from 

50 different types of cations and 33 types of anions were obtained. The data covered a 

temperature range from (283-363.15 K) and nD values ranged from (1.3551-1.5778). The 

number of ionic liquids per family classification is presented in Figure  3.3. 

 

 
Figure  3.3. The number of ionic liquids in different families used for 

modeling the refractive index. 
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3.4.4  Viscosity of F-ILs 

Viscosity of ionic liquids is one of the hardest properties to model. Because the presence of 

small amount of contaminants in ionic liquids changes the viscosity drastically. Seddon et 

al.[163] showed that contamination with water decreases the viscosity, while the presence of 

chloride ions increases the viscosity. As a result, it was required to select the experimental 

data of viscosity very carefully and use the reliable sources. 

 

The NIST Standard Reference Database gathered the temperature dependent data of viscosity 

for 85 fluorine-containing ILs. There were in total 863 data points. The selected ILs were 

composed of 58 unique types of cations and 9 unique types of anions. The dataset has an 

extensive range of temperatures from 258.15 to 388.51 K and a wide range of viscosity 

values from 4.1 to 3067.3 cp. Figure  3.4 shows the number of ionic liquids per family 

classification including ammonium, imidazolium, phosphonium, pyridinium, pyrrolidinium, 

and quinolinium. 

 

Zhang et al. [164] gathered lots of data from different sources such as patents and papers and 

published them as a text book entitled “Ionic Liquids:: Physicochemical Properties”, which has 

been used extensively by Gharagheizi et al. [91]. The screening procedure was performed on 

the dataset reported by by Gharagheizi et al. and after removing lots of duplicated values, 297 

new data points for 247 different ionic liquids were remained. It was observed that most of 

these new ionic liquids just had one data point at a constant temperature without any reported 

uncertainties. In addition, some data points seemed to be erroneous. For example, the viscosity 

of “1-butyl-3-[3-(2-hydroxybenzylamino)propyl]-3H-imidazolium hexafluorophosphate” was 

reported originally by Quadi et al. [165] as 257,000 cP which seems as outlier compared with 

viscosity of other ionic liquids. Unfortunately, Quadi et al. didn’t report the temperature of the 

measurement; so Gharagheizi et al. assumed that it was measured at 298.15 K. Most of the data 

of these new ionic liquids suffered from unreported value of temperature. 

 

The initial steps of modeling revealed that these new data were not reliable as they had large 

deviations from the predicted values (mostly more than 70%). As a result, it was decided to 

ignore these data to avoid negative effects of accuracy of the model developed. However, 

another model was developed using the entire dataset (1160 data points for 332 ionic liquids) 

and the output of the model was illustrated in two separate figures in section  6.5. In addition, 
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the datasets used for two developed models as well as the models parameters is reported in 

the supplementary CD. 

 

 

 
Figure  3.4: The number of ionic liquids in different families used to 

model the viscosity (refined dataset). 
 

 

 

 
Figure  3.5: The number of ionic liquids in different families used to 

model the viscosity (unreliable dataset). 
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152, 166-177] were used to extract the γ∞ data of different solutes in ionic liquids. The entire 

screened database consisted of 20476 data points for 136 solutes in 126 ionic liquids. 

 

As mentioned in section 2.6, there is not any easy-to-use model for prediction of γ∞ of solutes in 

ionic liquids. During the model development, it was observed that it is almost impossible to 

develop a single model for all kinds of solutes. As a result, it was decided to break the database of 

γ∞ of solutes in ILs into several datasets with respect to the chemical families of solutes including 

alkanes, alkenes, aromatics, alcohols, and so on.  

 

 

3.4.5.1 γ∞ of aromatic solutes in ionic liquids 

The dataset of γ∞ of aromatic solutes in ILs was refined as explained in section  3.3. In 

addition, it was observed that some outliers existed in dataset as presented in Figure  3.6 and 

Figure  3.7. In such cases, the γ∞ data of each system was plotted against temperature and the 

outliers were removed visually. Accordingly, the data of 42 solute-IL systems were refined 

by this method and the outliers were removed. As a result, the final dataset contained 1653 

experimental data points for 10 different solutes in 123 unique ionic liquids which resulted in 

354 unique solute-IL systems.   

 

 
Figure  3.6: The γ∞ data of “benzene” in “1-butyl-3-methylimidazolium nitrate”. 
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Figure  3.7: The γ∞ data of “ethylbenzene” in “1-butyl-3-methylimidazolium thiocyanate”. 

 

 

The ILs studied were constituted of 55 types of cations and 32 types of anions, and belonged 

to the imidazolium, guanidinium, isoquinolinium,  phosphonium, piperidinium,  pyridinium, 

pyrrolidinium, morpholinium, sulphonium, and ammonium class of ILs. The number of data 

points in each class of ionic liquids is illustrated in Figure  3.8. 

 

 
Figure  3.8: Number of data points of γ∞ of aromatic solutes in each 

class of ionic liquids. 
 

 

The complete dataset, including the original source of experimental data, is provided as a 

supplementary file in the supplementary CD. 
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3.4.5.2 γ∞ of alcohol solutes in ionic liquids 

The same screening procedure was performed for alcohol solutes and a dataset of  γ∞ data for 

17 different alcohols in 126 unique ILs were extracted. According to the previous section, 

outliers were detected visually and removed for 54 solute-IL systems. Two sample systems 

are shown in Figure  3.9 and Figure  3.10. Consequently, the dataset had 2785 experimental 

data points which covered a temperature range from (293.15-413 K) and γ∞ values ranged 

from (0.029-12.42) for 615 solute-IL systems.  

 

These ILs were constituted of 54 types of cations and 28 types of anions and belonged to the 

ammonium, guanidinium, imidazolium, isoquinolinium, morpholiniu, phosphonium, 

piperidinium, pyridinium, pyrrolidinium, and sulphonium class of ionic liquids. The number 

of data points of each class is shown in Figure  3.11. 

 

 
Figure  3.9: The γ∞ data of “1-butanol” in “1-butyl-3-methylimidazolium trifluoromethanesulfonate”. 

 

 
Figure  3.10: The γ∞ data of “methanol” in “1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide”. 
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Figure  3.11: Number of data points of γ∞ of alcohol solutes in each class of ionic liquids. 

 

 

 

3.4.5.3 γ∞ of alkane solutes in ionic liquids 

Similar procedure was done for alkanes to extract and refine the data. The outliers were 

removed for 34 systems and the resultant database had 3935 experimental data points which 

covered a temperature range from (293.15-374.95 K) and γ∞ values ranged from (0.104-

4065.351) for 882 solute-IL systems. In addition, the database consisted of 18 solutes and 

123 unique ionic liquids constituted from 55 types of cations and 36 types of anions. The 

number of data points per family classification is shown in Figure  3.12. 

 

 
Figure  3.12: Number of data points of γ∞ of alkane solutes in each class of ionic liquids. 
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3.4.5.4 γ∞ of alkene solutes in ionic liquids 

For the alkene solutes, the refined database had 2011 experimental data points which covered 

a temperature range from (293.15-375.05 K) and γ∞ values ranged from (0.153-374) for 422 

solute-IL systems. In addition, the database consisted of 13 solutes and 123 unique ionic 

liquids constituted from 55 types of cations and 34 types of anions.  

 

The number of data points of each class is shown in Figure  3.13. 

 

 
Figure  3.13: Number of data points of γ∞ of alkene solutes in each class of ionic liquids. 
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removed. As a result, 1257 data points were remained which covered a temperature range 

from (298.15-373.15 K) and γ∞ values ranged from (0.28-96.61) for 270 systems. The 

database consisted of 6 solutes and 84 ionic liquids constituted from 44 types of cations and 

26 types of anions. 

 

The number of data points of each class is shown in Figure  3.14. 
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Figure  3.14: Number of data points of γ∞ of alkyne solutes in each class of ionic liquids. 

 

 

 

3.4.6 Critical temperature of ionic liquids 

As explained in section  2.7, the real critical temperature of ionic liquids cannot be measured; 

because they are decomposed before they reach to the boiling point temperature and/or the 

critical temperature. As a result, the critical temperature can only be estimated in theory. The 

more realistic value of critical temperature should be calculated by Eötvos and/or 

Guggenheim equations. The previous studies [144, 147] show that the Tc calculated by these 

equations are close to each other (less than 100 °C in most cases); however the Eötvos 

equation is more prone to show deviations due to use of two sources of experimental data as 

inputs (surface tension and density). In addition, it is hard to find the experimental data of 

surface tension and density measured by the same laboratories at the same conditions. As a 

result, the Guggenheim equation was chosen for the estimation of critical temperature of 

ionic liquids. 

 

The NIST Standard Reference Database and some newly published papers [178-182] were 

used to extract the experimental data of surface tension of ionic liquids. The result of the 

screening process was 1513 data points for 139 ionic liquids constituted from 65 types of 

cations and 42 types of anions. Figure  3.15 shows the number of ionic liquids in each family. 
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Figure  3.15: The number of ionic liquids in different families used for 

modeling the critical temperature. 
 

 

To calculate the critical temperature of ionic liquids, the Guggenheim equation was used to 

fit the surface tension data. Unfortunately, 33 ILs had only one data point; so the Tc could not 

be calculated for them. As a result, the critical temperature was calculated for 106 ionic 

liquids.  

 

In another attempt, it was tried to model the surface tension data and calculate the critical 

temperature thereafter; but it was observed that a small deviation in the prediction of surface 

tension, resulted in very large deviations in the calculated values of Tc compared with 

equation ( 2.13). As a result, this approach was not successful for the estimation of critical 

temperature of ionic liquids and only the values calculated by Guggenheim equation was 

used for model development. 
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CHAPTER 4: COMPUTATIONAL METHODS 
4.1 Scope 

This chapter covers all computational and mathematical steps required during the model 

development process. These steps cover all aspects from the input of data to the model 

outputs. The procedure and required steps of modeling the physico-chemical properties of 

chemical compounds are illustrated in Figure  4.1. Accordingly, these steps are discussed in 

next sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.1: The flow diagram of developing a property estimation model. 
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4.2 Property Estimation Methods 

To start modeling the physico-chemical properties of ionic liquids, it is required to select a 

structure-property estimation method. In the literature, various methods are reported which can 

be broadly categorized as GC-based methods, QSPR-based methods, and molecular 

simulations [183]. 

 

4.2.1 Group Contribution Methods 

The Group Contribution (GC) method was initially developed by Riedel [184] and Lyndersen 

[185] to estimate the critical properties of pure component from their molecular structure. 

Since there are an unlimited number of chemical compounds, but the number of functional 

groups is limited, it is more convenient to use functional groups of existing data to develop a 

model and then, apply that model to predict the properties of new compounds. Figure  4.2 

shows the common functional groups in “acetone” molecule. 

 

 

 

 

 

Figure  4.2: Functional groups in “acetone” molecule. 
 

 

Group contribution methods are based on the so called “additive principle”. That means any 

compound can be divided into fragments, usually atoms, bonds or group of atoms, etc. All 

fragments have a partial value called a contribution. The simplest form of GC is the 

calculation of the physical property by summing up the product of the contributions made by 

structural groups in the individual molecule and the number of times each group appears. 

This approach was first used by Joback and Reid [186] to predict the thermo-physical and 

transport properties of pure compounds [183, 187]. 

 

The disadvantage of this method is that it cannot differentiate the isomers and calculated the 

same result for all of them. In addition, GC method generally cannot deal with proximity 

effects of groups within the molecules such as inter/intra-molecular interactions, Hydrogen 

bonding, etc. Moreover, reliable GC models usually can be developed for a limited number of 
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thermodynamic properties and representing all atomic arrangements is not possible. As a 

result, it is difficult to have an accurate prediction for complex molecules. Constantinou and 

Gani [188] tried to apply a correction by introducing the second order groups where they 

have the first order groups as building blocks. The second order groups are used as follows: 

 

 4.1 
� (� ) =  ∑ � � � �� + � ∑ � � � ��       

 

where X is the property, � �  is the contribution of the first-order group type-i which occurs � �  

times and � �  is the contribution of the second-order group type-j with M �  occurrences in a 

compound. The constant W is set equal to unity if the second order term is to be used. Similar 

approach was done later by Marrero and Gani [189] by introducing third-order groups. 

 

Recently, a new GC method introduced by Wang, Ma and Neng [190] for estimation of 

critical properties, boiling point and melting point for organic compounds which is named the 

“position group contribution method”. This method differentiates isomers including cis- and 

trans-   structures and takes into account the ortho, meta, and para corrections in benzene ring 

and pyridines [183].  

 

Despite the benefits of “second”, “third”, and “position” group contribution methods, there is 

not any software for automating the calculations of groups; so the calculations need lots of 

time and efforts for large databases, such as properties used in this thesis. In addition, there 

will be the high risk of errors in manual calculations for large and complex molecules. As a 

result, the well-known “first” order group contribution method is used in this thesis. 

 

 

4.2.2 QSPR Methods 

The Quantitative Structure-Property Relationship (QSPR) is a well-established and highly 

respected technique to correlate diverse simple and complex physicochemical properties of a 

component by its molecular structure and interactions among different molecular groups 

based on their connectivities [191]. In this approach, it is assumed that the molecular features 

which are called “molecular descriptors”, affect directly the properties of compounds. 

Molecular descriptors are based on several different theories, such as quantum-chemistry, 
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information theory, organic chemistry, graph theory, and so on, and are used to model several 

different properties of chemicals in scientific fields such as toxicology, analytical chemistry, 

physical chemistry, and medicinal, pharmaceutical, and environmental chemistry [192].  

 

The molecular descriptors are the ultimate result of a mathematical procedure which 

transforms chemical information encoded within a molecular formula into an useful number 

or the result of some standardized experiment [193]. As a result, there are some descriptors 

which can differentiate isomers and take different values for different isomers. This feature is 

the most important advantage of QSPR method over GC method. In addition, QSPR models 

usually have less parameter than GC models at same accuracy, which shows that the 

descriptors can correlate the target property better than simple functional groups; however 

manual calculation of descriptors is not possible and it is required to use the special software. 

 

Figure  4.3 shows how the microstructure of the acetone molecule such as functional groups, 3D 

structure, topological characteristics, bond length, etc. can be used to create several descriptors. 

 

 

 

 

 

 

Figure  4.3: The schematic microstructure of “acetone” molecule. 
 

 

4.3 Calculation of descriptors/functional groups 

Ionic liquids consist of cations and anions. In order to associate the desired property with the 

constituent cation and anion combinations, the functional groups/descriptors of both ions 

should be calculated for each IL. 

 

In GC method, only the number and types of functional groups/sub-structure are taken into 

accounts which are just related to the chemical structure of components, not the 3D structure 

of the molecules. But the majority of descriptors are calculated based on the 3D structure of 
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the molecules. So QSPR models can deal with isomers and proximity effects (inter/intra-

molecular interactions). 

 

In this thesis, the ChemDraw software [194] was used to draw the molecular structure of 

cations and anions. Thereafter, each chemical structure was saved in an MDL Molfile which 

holds information about the atoms, bonds, connectivity and coordinates of a molecule. In the 

next step, the molecular structures were imported separately into ChemAxon JChem Base 

software [195] to optimize the 3D structure by Dreiding Force field [196]. The optimized 

structures then saved as new MDL Molfiles. 

 

In the next step, Dragon software [197] was used to calculate over 3000 molecular 

descriptors/functional groups by importing the optimized structures of all cations and anions, 

separately. These descriptors belong to 15 classes of descriptors: Constitutional descriptors; 

Topological indices; Connectivity indices; Walk and path counts; Information indices; 

Burden Eigen values; Edge-adjacency indices; Molecular properties; Functional group 

counts; Atom-centered fragments; Eigen value-based indices; topological charge indices; 2D 

binary finger print; 2D frequency finger print; 2D autocorrelations; and 3D conformational 

descriptors. 

 

After calculating the structure-based variables for ionic liquids, there are two common 

approaches to make the final dataset: 

 

1- Mixing the cations and anions descriptors together by adding the common descriptors 

of cations and anions to each other. 

 

2- Using the cations and anions descriptors separately. 

 

The second approach is beneficial for two reasons: 

 

a) It is easier to analyze the model and find out which descriptors of cations or anions 

have more effect on the model. 
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b) It is much easier to calculate the property modeled for the new ionic liquids which 

their both cations and anions are available in the dataset. So there is no need to 

calculate the structure-based variables again.  

 

In this thesis, the second approach was followed; so the cations and anions descriptors were 

collected in one dataset; but two suffixes were added to the name of descriptors to make the 

cations and anions descriptor distinguishable.  

 

 

 

4.4 Variable reduction 

After calculating the variables and gathering them together, the number of generated 

variables should be considered. Usually in GC modeling, the number of variables is not so 

much. In worst cases, it is less than 500 which is not a big deal in most cases. But in QSPR 

modeling, the variables are more than 3000 almost in all cases (summation of number of 

cations and anions descriptors). 

 

To reduce the number of variables, there is a method called “pair correlation” which 

calculated the correlation coefficient of each pair of variables and allows the exclusion of one 

of the two descriptors with a correlation coefficient equal or greater than the selected 

threshold value. In GC modeling, it is common to set the threshold equal to 1.0 to remove the 

duplicated variables. In QSPR modeling, the common accepted threshold is 0.9 which usually 

drops the number of variables significantly to 400-800. 

 

The pair correlation can be applied on all variables or on cations and anions variables, 

separately. In this thesis, second method was used for all properties modeled. 

 

 

4.5 Dataset partitioning 

One of the critical steps during the development of a “predictive” model is to have an 

external dataset for validating the model in terms of prediction ability. The common accepted 

method is dividing the entire dataset into two subsets: a “training” and a “test” datasets. The 

“training” set is utilized to develop the model and should contain different classes of 
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compounds to have a comprehensive model. On the other hand, the “test” set is implemented 

to evaluate the reliability and prediction ability of the model and like the “training set”, it 

should have different classes of compounds. In case of ionic liquids, they are usually 

classified by their cation type as imidazolium, ammonium, phosphonium, pyrrolidinium, 

pyridinium, guanidinium, isoquinolinium,  piperidinium, morpholinium, and sulphonium 

ionic liquids. Usually, 80% and 20% of the main dataset is allocated to the “training” and 

“test” sets, respectively. 

 

In order to distribute similar compounds into both subsets and overcome the problem of 

unsuitable allocation of subsets, cluster analysis is undertaken to maintain as close as possible 

a similarity between “training” and “test” subsets. One of the most important methods of 

cluster analysis is K-means clustering which divides n observations into k clusters in which 

each observation is counted within the cluster with the nearest mean [4, 198].  

 

After dividing the entire dataset into “training” and “test” sets, the proper mathematical 

method should be selected and applied on “training” set to fit the data. 

 

 

4.6 Feature Selection Methods 

In QSPR or GC modeling, one of the earliest steps before starting the use of a regression 

method is to select the most effective variables on target property which is called “feature 

selection” or “variable subset selection”. Feature selection method can reduce the 

computational cost by reducing dimensionality of data, improve the prediction performance 

and the comprehensibility of the models by eliminating redundant and irrelevant (probable 

noise) features [199]. For example, in QSPR approach, the researcher should select few 

variables within thousands of available descriptors and then use a mathematical method to 

find a model. As using all descriptors is not acceptable and a wise decision mainly due to 

overfitting and large model size, feature selection approach should be combined with a 

regression method during the model development. 

 

The highly used feature selection methods in GC or QSPR modeling are Stepwise method 

and Genetic Algorithm. 
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4.6.1 Stepwise Method 

This method was first proposed by Efroymson [200] which consists of two approaches: 

“forward selection” and “backward elimination”. Forward selection involves starting with no 

variables in the model, testing the addition of each variable using a selected objective 

function, adding the variable (if any) which improves the model the most, and repeating these 

steps until desired number of variables or none improves the model. 

 

Backward elimination involves starting with all candidate variables, testing the deletion of 

each variable using the defined objective function, removing the variable that enhances the 

model the most by being deleted, and redoing these steps until desired number of variables in 

the model or no further improvement is observed. As usually the number of initial variables is 

high, the backward elimination approach is required more computations and time comparing 

with forward selection approach; so the former is more applicable and popular. 

 

 

4.6.2 Genetic Algorithm 

Genetic Algorithm (GA) was introduced by Holland [201] which has “ability to exploit 

accumulating information about an initially unknown search space in order to bias subsequent 

search into promising subspaces”. GA is a domain independent search method, so its best 

application is where the theory and domain knowledge is hard or impossible to present [202]. 

 

In a genetic algorithm, a population of individuals (candidate solutions to the optimization 

problem) is evolved in order to find better solutions. Each individual has a set of properties, 

called chromosomes, which can be mutated and changed. 

 

The development process usually begins from a population of individuals which are 

generated randomly. The process is iterative and each iteration is called a generation. In each 

generation, the fitness of all individuals is evaluated. The more fit individuals are selected 

randomly from the current population, and each individual's genome is modified to form a 

new generation by recombination and possibly random mutation. Thereafter, the new 

generation of possible solutions is used in the next iteration. Usually, the “algorithm 

terminates when either a maximum number of generations has been produced, or a 

satisfactory fitness level has been reached for the” population [203]. 
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Genetic Algorithm shows better results compared with the stepwise methods in terms of 

speed and performance and is the most popular feature selection method in QSPR modeling. 

 

 

4.7 Mathematical Methods 

Use of GC or QSPR approaches needs a mathematical method as a regression tool to create a 

meaningful relationship between the calculated structure-based variables and the target 

property. There are several mathematical methods available in the literature which can be 

combined with GC or QSPR methods such as Multiple Linear Regression (MLR), Genetic 

Algorithm based Multiple Linear Regression (GA-MLR), Genetic Function Approximation 

(GFA), Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Gene 

Expression Programming (GEP), and so on. In this study, GA-MLR, GFA, SVM, and GEP 

methods are described. 

 

 

4.7.1 Genetic Algorithm based Multiple Linear Regression (GA-MLR) 

Multiple linear regression is an easiest approach to model the relationship between several 

variables and a target variable by fitting a linear equation to experimental data. “Each value of 

the independent variable x is related to the value of the dependent (target) variable y”. So for p 

explanatory variables and n observation, the MLR model is like following form. 

 

 4.2 
� � = � � + � � � � � + � � � � � + ⋯+ � � � � �              � = 1, 2, … , �   

 

In QSPR or GC modeling, the application of a feature selection method is compulsory, so the 

MLR is combined with Genetic Algorithm (GA-MLR) for feature selection and modeling at 

the same time. This method is very popular in QSPR research and was successfully applied 

before [204-207]. 

 

As MLR finds a linear correlation between selected variables and the response, it will not 

produce good results for complex and nonlinear responses; so other methods should be used 

in such cases.  
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4.7.2 Genetic Function Approximation (GFA) 

Genetic Function Approximation (GFA) is a combination of two different algorithms: 

Multivariate Adaptive Regression Splines (MARS) of  Friedman [208] and  Genetic 

Algorithm (GA) introduced by Holland [201]. It was originally propounded in the innovative 

work of Rogers and Hopfinger [209]. Generally, the target of most GC or QSPR studies is to 

introduce the linear combination of basic functions � � (� ) of the features 1{ , , }nX x x= …  in 

the training data set of size M: 

 

 4.3 
� (� ) =   � � +  ∑ � � � ��� � � (� )      

 

This equation in simple form of linear φ � (X) is equal to MLR formula, but in complicated 

form the functions can be splines, step functions, high-order polynomials, etc. In most cases, 

binary interactions of variables in the forms of simple multiplication or quadratic polynomials 

are used. This approach can facilitate modeling of some nonlinear responses as successfully 

applied on some problems which will be explained in the next chapters. For complicated 

behaviors, the GFA method is not very efficient and it’s required to apply the advanced 

nonlinear techniques such as ANN or SVM. 

 

 

4.7.3 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a highly accepted algorithm developed from the 

machine-learning community. SVM methods have outstanding benefits over Artificial Neural 

Networks (ANNs) which are [210, 211]: 

 

1. Unlike ANN which has a heuristic development path, SVM has a strong 

theoretical background which provides a high generalization capability so it can 

avoid local minima. 

 

2. SVM always has a solution that can be quickly acquired by a standard algorithm 

(quadratic programming). 
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3. SVMs are less prone to overfitting or underfitting because fewer parameters are 

required for its development in comparison with ANNs. 

 

4. The SVM need not determine the network topology and complexity in advance, 

which can be automatically obtained when the training process ends. 

 

5. SVMs use structural risk minimization whilst ANNs use empirical risk 

minimization. Thus, SVM is usually less vulnerable to the overfitting problem. 

 

As a result of its advantages, the SVM shows outstanding performance and can be used for 

both linear and nonlinear regression.  

 

Suykens and Vandewalle [212] applied some modifications to the traditional SVM algorithm 

to simplify the process of finding a model by solving a set of linear equations (linear 

programming) instead of nonlinear equations (quadratic programming) and named it as Least 

Squares Support Vector Machine (LSSVM). As a result, LSSVM includes similar advantages 

of traditional SVM, but it performs faster computationally. The basic concept of SVM is to 

transform the signal to a higher dimensional feature space and find the optimal hyper-plane in 

the space that maximizes the margin between the classes [213]. In LSSVM, the target is to fit 

a linear relation (y = wx + b) between the independent variables (x) and the dependent 

variable (y). To find the best relation, the cost function (penalized cost function) should be 

minimized. 

 

 4.4 
2

1

1
2

N
T

LSSVM k
k

Q w w eγ
=

= + ∑  

 

where 

 4.5 
( ( ) )T

k k ke y w x bφ= − +     k=1, 2,…, N   

 

The first part of equation ( 4.4) is the L2 norm on regression weights which is penalized 

quadratically. The second term is the summation of regression error (ek) for all of the N training 

objects weighted by parameter γ, which has to be optimized by the user. Equation ( 4.5) as the 
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definition of the regression error which is the difference between the true and the predicted 

values, can be seen as a constraint [211]. In both equations, w represents the regression weight, 

x is the input vector of parameters of the model, y is the independent variable, and b is the 

intercept of the linear regression in the LSSVM method. 

 

By using the Lagrange function in equation ( 4.4), the weight coefficient (w) can be written as 

an expansion of the Lagrange multipliers with the corresponding training objects (xk): 

 

 4.6 

1

N

k k
k

w xα
=

= ∑  ,   2  k keα γ=   

 

By substituting equation ( 4.6) into the linear relation (y = wx + b) between input and output 

variable, Lagrange multipliers can be written as: 

 

 4.7 
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Finding these Lagrange multipliers is very simple as comparing with the SVM approach in 

which a more difficult relation has to be solved to obtain these values [211]. 

 

To have a nonlinear regression function, the linear relation can be extended to nonlinear one 

by introducing Kernel functions, ( , )kK x x . 

 4.8 

1

( ) ( , )
N

k k
k

f x K x x bα
=

= +∑   
 

 

There are few types of nonlinear kernel functions, such as polynomial and radial basis function 

(RBF) kernels which the latter is commonly used. The RBF kernel function is defined as: 

 

 4.9 
2

2( , ) exp( )k
k

x x
K x x

σ
− −

=   
 

where σ2 is a RBF kernel parameter which should be optimized during model development.  
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4.7.4 Forward feature selection-based LSSVM 

As explained earlier, feature selection methods are required to be applied in QSPR or GC 

modeling and obviously, SVM needs to use such algorithms to produce models with the 

minimum variables. In fact, LSSVM algorithm is just a regression method and does not 

originally have the capability of selecting the variables. To solve this issue, there are two 

approaches: 

 

- Using GA-MLR or GFA to choose the most effective variables and then use them as 

the inputs of LSSVM afterwards [214, 215]. 

 

- Using Genetic Algorithm or stepwise methods with LSSVM algorithm simultaneously. 

 

For the first approach, obviously there is no guaranty that selected variables by a multi-linear 

or quadratic equations are good candidates and most efficient variables in SVM modeling. So 

it’s better to select variables directly during SVM modeling.  

 

In this study, “forward feature selection” algorithm was combined with LSSVM successfully 

(FFS-LSSVM) to find the best predictive SVM model with a minimum number of variables. 

As the calculations are very time consuming for the large number of variables, the variable 

reduction approach should be considered to decrease the number of variables. 

 

 

4.7.5 Genetic Programming (GP) 

Genetic Programming (GP) is an evolutionary computation technique that automatically 

solves problems without requiring the user to know or specify the form or structure of the 

solution in advance [216-218]. GP is a specialization of genetic algorithm which instead of 

fixed length binary strings, the solutions are recognized as computer programs [219]. Basing 

on the rules of natural evolution of genetic, the GP solution is a computer program denoted as 

tree structure. It is presented in a functional programming language so that it automatically 

creates computer models, while GA generates a string of numbers to denote the solution 

[220]. 
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Koza [218] explained that the genetic programming algorithm develops the computer 

programs to solve problems by executing the following three steps: 

 

1. Generate an initial population of computer programs composed of random 

compositions of the functions and terminals (standard arithmetic operations, standard 

programming operations, standard mathematical functions, logical functions, etc.). 

 

2. Iteratively perform the following substeps until the termination criterion has been 

satisfied: 

 

a) Execute each program in the population and assign it a fitness value according to 

how well it solves the problem. 

 

b) Create a new population of computer programs by applying the following two 

primary operations. The operations are applied to computer program(s) in the 

population chosen with a probability based on fitness. 

 

(i) Copy existing computer programs to the new population (crossover). 

(ii) Create new computer programs by genetically recombining randomly chosen 

parts of two existing programs (mutation). 

 

3. The best computer program that appeared in any generation (i.e., the best-so-far 

individual) is designated as the result of genetic programming. This result may be a 

solution (or an approximate solution) to the problem. 

 

 

4.7.6 Gene Expression Programming (GEP) 

Gene expression programming (GEP) proposed by Ferreira [221] is one of the most 

important and robust linear-based GP methods that utilizes a fixed length of character strings 

to denote solutions to the problems, which are subsequently represented as parse trees of 

different shapes and sizes. As a result, the main components of GEP mathematical algorithm 

are control parameters, function set, fitness function, terminal set, and termination condition 

[220]. Those parse trees are known as expression trees (ETs) for GEP algorithm [222].  
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The GEP nature permits the evolution of more complex programs composed of several 

substructures or subprograms called as GEP genes. Each GEP gene encompasses a list of 

symbols with a fixed length that can be any element from the terminal set such as {x, y, z, -2, 1} 

and a function set such as {×, /, +,-, sin, log} [222]. For instance, a two-gene chromosome 

can be made of four functions, Q, ∗, -, and +, (Q expresses the square root function) and four 

terminals, a, b, c, and d together with its decoded ET and the corresponding mathematical 

expression (Figure  4.4). The algebraic expression � (� − � ) × (� + � )  can be easily 

translated as a diagram or ET by the Karva language representation. Each character is placed 

in a position from zero to seven and can be indicated as follows: 

 

0 1 2 3 4 5 6 7 

Q * - + a b c d 

 
Figure  4.4: A typical expression tree in the gene expression programming, which represents 

� (� − � ) × (� + � ) by a two-gene chromosome. 

 

 

To reach a termination condition, the GEP mathematical strategy employs some 

computational steps similar to GP algorithm including reproducing the fixed-length 

chromosome of each individual randomly for the initial population, assessing fitness of each 

individual and also representing chromosomes as ETs, choosing the best individuals 

considering their fitness to generate and repeating the above process until a solution has been 

found for a certain number of generations [221, 222]. 

 



46 
 

The author has been previously studied the GEP [223-225] and showed that GEP can 

successfully produce small and accurate correlations for developing the models based on the 

other physico-chemical properties such as corresponding state models; however the 

calculations are very time consuming compared with GFA method.  

 

GEP cannot be used directly for developing the GC or QSPR models as it needs to be joint 

with a feature selection method. GEP has been combined with GA algorithm in 

GeneXproTools [226] software package to do variable selection and function estimation 

simultaneously; however it is not efficient enough to obtain a model at a reasonable time 

regarding this fact that two types of huge and time consuming calculations (variable selection 

and function estimation) should be done concurrently. Consequently, the best applicability 

domain of GEP is to develop the models when the number of variables is not too much.  

 

As mentioned in chapter 1, ionic liquids suffer from lack of enough experimental data; 

therefore, developing the models based on other thermophysical properties of ILs are not 

applicable and/or straightforward in most cases. Consequently, GEP is not applicable in this 

thesis as a regression method. 

 

 

4.8 Fitness function 

After selecting the appropriate regression method, it is required to choose a fitness function 

and minimize it by the regression method. Several types of fitness functions can be defined 

with respect to the nature of property, data, and desired minimization that the researcher 

wants to apply. 

 

Common fitness functions and their mathematical representation are shown as follows.  

 

v Mean Absolute Error (MAE): 

� � � =   1
�   � � � (� ) � � � � − � (� )� � � �

�

� � �
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v Mean Squared Error (MSE): 

� � � =   1
�   � � � (� )� � � � − � (� )� � � � �

�

� � �
 

 

v Root Mean Square Error: 

� � � � =   � 1
� � [� (� )� � � � − � (� )� � � ] �

�

� � �
 

 

 

v R-square (Coefficient of determination): 

� � = 1 −  ∑ [� (� )� � � � − � (� )� � � ] ��� � �
∑ [� (� )� � � � − � � � � � ]��� � �

 

 

v Average Absolute Relative Deviation (AARD%) which is also known as Mean Absolute 

Percentage Error (MAPE).: 

� � � � % =   100
�   � � � (� )� � � � − � (� ) � � �

� (� )� � �
�

�

� � �
 

 

where N is the number of data points, y(i) is the ith value of target variable (response), and �  

is the average of target variable values. 

 

During the modeling of some properties, it may be required to apply a transformation 

function on the target property or some variables in order to simplify and speed up the 

modeling process. The common types of transformation functions are ln or log, exp, and 

inversion (1/y) which can be combined with the fitness function and set it as an objective 

function to be minimized by the selected regression method. 

 

In this thesis, the AARD% was selected as the fitness function for all properties. In addition, 

natural logarithm (ln) was chosen as the transformation function for modeling the viscosity 

and γ∞ of ionic liquids.  
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CHAPTER 5: MODEL DEVELOPMENT 
5.1 Scope 

This section discusses the steps undertaken in the development of a chemical structure-based 

model for each properties of ionic liquids which have been studied in this thesis. The 

theoretical explanation of all steps was discussed in previous chapters. 

 

 

5.2 Speed of sound in ionic liquids 

5.2.1 The GC model 

As explained in section  4.3, the chemical structure of cations and anions were drawn by 

ChemDraw software and saved as separate MDL Molfiles. Thereafter, all the cations or 

anions files were opened by Dragon Software, simultaneously. Ultimately, the functional 

groups of both cations and anions were calculated. In the next step, the calculated functional 

groups of cations and anions were merged with each other to have the functional groups of 

the ionic liquids. As a result, a dataset comprised of 256 variables (123 for cations, 132 for 

anions, and T) was built. 

 

During the calculation of functional groups, it is common to have some duplicated variables. 

For example, the calculations may result in having a variable for number of Chlorine atoms, 

and another for the number of halogens in the molecule. If there is not any other halogen 

atom in the molecule, these two variables are equal. As a result, one of them can be removed 

to reduce the mathematical computations required for choosing the effective variables. 

 

As described in section  4.4, the pair correlation was done and pairs of functional groups with 

a correlation coefficient equal to 1.0 were removed and remainder kept in the dataset. As a 

result, the number of variables was reduced to 105 for cations, 68 for anions, and the absolute 

temperature. 

 

The next step was to divide the dataset into “training” and “test” subset using K-means 

clustering (section  4.5). As the LSSVM method was selected to model this property, it is 

common to build three subsets: a “training” set used to develop and train the model, a 

“validation set” for optimizing the model parameters (internal validation), and a “test” set 



49 
 

which was used to determine the prediction ability of the model for new compounds which 

have not been used in model development (external validation). 

 

In the group contribution approach, it is assumed that each functional group in the molecule 

has a contribution to the value of the physical property. This approach is most widely used in 

the form of linear multivariate models because it is relatively easy to use [191, 227]; but in 

case of complex and nonlinear relationships between input parameters and desired property, 

linear modeling fails. In such cases, nonlinear modeling such as Artificial Neural Networks 

(ANN) and Support Vector Machine (SVM) are used [213, 228].  

 

In primary steps of model development, it was found that GFA model failed to produce the 

accurate and predictive model. It might be due to complex behavior of molecules and ions or 

interactions among them. In such cases, functional groups cannot describe the interactions by 

a linear correlation or completely fail to interpret them. As a result, a nonlinear regression 

method can overcome this problem. 

 

In recent years, ANNs have been used extensively for modeling in various fields of science; 

however they may suffer from some disadvantages such as converging at local minima instead 

of global minima, overfitting if training goes on for too long, and non-reproducibility of results, 

partly as a result of random initialization of the networks and variation of the stopping criteria 

during optimization [211, 229]. As explained in section  4.7.3, the SVM overcomes these 

drawbacks and performs better than the ANN in the development of both linear and nonlinear 

models. 

 

According to above-mentioned explanations and section  4.7.4, the GFA approach was 

ignored for choosing the most effective variables. So FFS-LSSVM method was selected to 

model the speed of sound in ionic liquids using the group contribution approach. Moreover, 

the AARD% was selected as the objective function. 

 

 

5.2.2  The QSPR model 

According to the method explained in section  4.3, the Dreiding Force field was used to 

optimize the 3D structure of cations and anions. Thereafter, Dragon software was utilized to 
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calculate over 3000 molecular descriptors by importing the optimized structures of all cations 

and anions, separately.  

 

After calculation of descriptors, those which could not be calculated by the software used 

were completely removed from the list. Then, pair correlation was applied to all descriptors. 

Accordingly, pair of descriptors with a correlation coefficient greater than 0.9 were removed 

and the remainder used to develop the model. Consequently, the number of variables was 

reduced to 230 for cations, 125 for anions, and the absolute temperature.  

 

Thereafter, the “training” and “test” sets were allocated. Finally, the Genetic Function 

Approximation algorithm was applied on “training” set to select the most effective 

descriptors based on the AARD% as the objective function. 

 

 

5.3 Liquid heat capacity of ionic liquids 

5.3.1  The GC model 

The similar steps were done to calculate the functional groups and eliminate the correlated 

variables. As a result, the dataset had 56 variables for 3726 data points. Thereafter, the 

dataset was divided into two subsets: 80% of data points for “training” set and 20% for “test” 

set. 

 

In typical group contribution models, the summation of functional groups is used to develop a 

model. The advantage of this method is its simplicity, but its drawback is the weakness in the 

prediction of properties for compounds which exhibit complex behavior. For such cases, 

researchers have used more complicated mathematical models like Artificial Neural 

Networks or Support Vector Machine to find a predictive model using predefined functional 

groups; but the major problem of these methods is the selection of the most effective 

functional groups. In order to find an accurate predictive model for certain variables by ANN 

or SVM, numerous calculations and noticeable amounts of time are required. As a result, it is 

extremely difficult to determine the most effective variables from the pool available. ANN or 

SVM models also require specialized mathematical software for their implementation, which 

further adds to their drawbacks.  
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Consequently in this part of study, Genetic Function Approximation (GFA) has been used as 

a tool to select the most effective functional groups and do the regression, simultaneously.  

 

During the initial steps of modeling, it was observed that the relationship between the 

absolute temperature, functional groups, and the liquid heat capacity of ionic liquids can be 

formulated as follows. 

 

 5.1 
� � � = � ( � � � , � , � � ) 

 

 

For temperature dependent properties, the above equation can be written in two forms: 

 

 5.2 
� � � = � (� � � ) + � (� , � � ) 

 

 

 5.3 
� � � = � ( � � � , � , � � ) 

 

 

The equation ( 5.2) is the simplest approach and needs less computations and time, but the 

final model may have large deviations for some compounds with complex temperature 

dependence. The second approach results in more accurate models, because it can distinguish 

between compounds with � (� ) or � (� , � � ) as their temperature dependence. 

 

In this study, the absolute temperature was introduced as two variables (T and T2), and all 

variables were multiplied by each other; so more than 3700 new variables were generated 

( � � � × � , � � � × � � ). Ultimately, the AARD% was set as the objective function. 

 

 

5.3.2  The QSPR model 

Dragon software uses the 3D structure of the molecules to calculate more than half of the 

descriptors. So as a requirement, the Dreiding Force field was utilized to optimize the 3D 
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chemical structure of ions. Then, the optimized 3D structures were used to calculate the 

molecular descriptors and thereafter, pair correlation was done to omit the interrelated 

descriptors with a correlation coefficient greater than 0.9. As a result, 644 variables remained 

and used to develop the model. 

 

Normally in QSPR modeling, it is assumed that there is a linear relationship between the 

target property and one or more descriptors. Therefore, the output is a linear function which 

can be interpreted and understood easily; but this assumption shows weakness in the case of 

complicated relationships between the target property and the chemical structures of some 

materials.  

 

Same as the previous section, Genetic Function Approximation was performed to select the 

most effective descriptors, combine two descriptors by multiplication to create new variables, 

use them in modeling, and minimizing the AARD% as the objective function. 

 

 

5.4 Refractive index of ionic liquids 

5.4.1  The GC model 

After calculating the functional groups by Dragon software, the duplicated variables were 

eliminated and consequently, 279 variables were remained. Then K-mean clustering was used 

to distribute similar structures in both “training” and “test” sets. As a result, 20% of the data 

points (172 data points for 15 ILs) were used in the test set  and the remainder (759 data 

points for 82 ILs) used in the training set to develop the model. 

 

By analyzing the data of refractive index, it was observed that nD has a linear dependency 

with regard to temperature. Thereafter, it was assumed that the linear summation of 

functional groups can fit the data of refractive index. So, the GFA method was used and all of 

the functional groups were multiplied by the absolute temperature and new variables were 

produced. Finally, the AARD% objective function was minimized. 
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5.4.2  The QSPR model 

Same as the previous sections, the descriptors of cations and anions were calculation and the 

highly correlated descriptors were removed from the dataset. Thereafter, new variables were 

produced by multiplication of the absolute temperature and all of the descriptors. 

 

After allocating the “training” and “test” sets, the GFA method was performed to fit the data 

and minimize the AARD% objective function. 

 

 

5.5 Viscosity of F-ILs 

5.5.1 The GC model 

The substructures and their number of events/occurrences in chemical structures of cations and 

anions plus the absolute temperature were applied as the input parameters of the GC model. 

 

After eliminating the duplicated data by pair correlation, K-means clustering was used to 

divide the main dataset. In this study, approximately 80% (667 data points) and 20% (196 

points) of the main dataset were allocated to the “training” and “test” sets, respectively.  

 

Generally, it is assumed that the viscosity can be modeled using the more complex form 

Arrhenius equation, � = exp � � (� )� . As a result of greater reliability being required for 

smaller values of viscosity, taking the logarithm will increase the accuracy for small values of 

viscosity [89]. In this study, it was assumed that ln(η) had a multi-linear relationship with 

functional groups, and a nonlinear relationship with absolute temperature. The temperature 

dependency was assumed as � ( �
�   , �

� � ). Consequently, the “training” set was used to select the 

effective substructures and fine tuning the temperature nonlinear function in a polynomial 

form. 

 

It is notable that ILs are glass former and typically one has to use the VFT approach 

(equation) and with it the Vogel temperature T0, which is unfortunately an IL specific 

quantity.  

 5.4 

� �  (� ) = � � (� � ) +   �
� − � �
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As the η0 was not is available for most of the ionic liquids, unfortunately the VFT approach 

was not applicable for modeling the viscosity of ionic liquids. As a result, the Arrhenius 

equation was used in this thesis. 

 

 

5.5.2 The QSPR model 

The molecular descriptors of ionic liquids were calculated using their optimized 3D structure 

and then, the pair correlation was performed to remove highly correlated descriptors. 

Thereafter, the main dataset was divided into “training” and “test” sets by K-means clustering 

technique. As a result, 667 data points and196 data points were allocated to the “training” and 

“test” sets, respectively.  

As mentioned in previous section, it was assumed that ln(η)=� ( �
�   , �

� � ) so the “training” set 

was used to develop and train the model. 

 

 

5.6  γ∞ of organic solutes in ionic liquids 

5.6.1 Aromatic solutes 

From property estimation perspective, the data of γ∞ consists of three sets of variables which 

are related to the chemical structure of cations, anions, and solutes. 

 

Similar to previously discussed GC modeling, the functional groups of the cations, anions, 

and solutes calculated without 3D optimization of the structures. Thereafter, the calculated 

groups of each component were processed separately to remove any possible unnecessary 

variables. The result was 497 functional groups of which 137 belonged to cations, 201 to 

anions and 159 to solutes. 

 

In the next step, the data partitioning was performed and 1278 and 375 data pointes were 

chosen as the “training” and “test” sets, respectively. Moreover, the data were analyzed 

precisely to find the dependency of γ∞ to the temperature. It was observed that for the 

majority of solute-IL system, the ln(γ∞) was not linear against temperature; but transforming 

the γ∞ to  ln(ln(γ∞)) resulted in a linear curve for most cases; however it was observed that the 

aforementioned  transformation was remained nonlinear for some systems. In addition, 
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ln(ln(γ∞)) was a function of T for some systems, while it was depended to �
�  for the others. As 

a result, the equation ( 5.5) was used to fit the data; so four forms of the absolute temperature 

were utilized to generate more than 1000 new variables. Ultimately, the AARD% objective 

function was minimized. 

 

 5.5 
ln(ln(γ∞))=f (GCs, T, T2, �

� , �
� � ) 

 

It should be mentioned that for modeling the γ∞ of ionic liquids, only the GC approach was 

performed, because the primary QSPR modeling of this property revealed that an accurate 

model needed more than 30 descriptors. As large QSPR models are not well accepted, the 

QSPR modeling of the γ∞ of ionic liquids was ignored.  

 

 

5.6.2 Alcohol solutes 

The similar procedure was performed to generate new variables. Thereafter, K-means 

clustering was done and 2048 and 738 data pointes were allocated in the “training” and “test” 

sets, respectively. Finally, the equation ( 5.5) was used to develop the model and minimize the 

AARD% of calculated data. 

 

5.6.3 Alkane solutes 

The functional groups were calculated for cations, anions, and solutes, separately. The initial 

steps of model development were revealed that all available experimental data cannot be 

modeled by a single correlation. It was observed that for solutes with lower number of carbon 

atoms, the γ∞ was usually less than 100; but as the number of carbon atoms increased, the γ∞ 

increased drastically up to 4000. As a result, the main database was divided into two subsets:  

 

• Solutes with less than 10 carbon atoms. 

• Solutes with 10 or more carbon atoms. 

 

The first dataset contained 743 systems with 3368 experimental data points and the second 

dataset had 140 systems with 567 data points. For both datasets, the “training” and “test” sets 

were allocated separately by means of K-means clustering. Finally, Genetic Function 
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Approximation (GFA) was used as a tool to select the most effective functional groups and 

do the regression, simultaneously. In addition, the equation ( 5.5) was used to develop the 

model and minimize the AARD% of calculated data. 

 

 

5.6.4 Alkene solutes 

For alkene solutes, no strange behavior was observed. As a result, the functional groups of 

solutes, cations, and anions were calculated and thereafter, K-means clustering was 

performed to allocate the “training” and “test” sets. So 1536 experimental data points were 

selected as the “training” set and 475 data points as the “test” set. Ultimately, GFA method 

has been used to do the regression and select the effective functional groups, simultaneously. 

Similar to previous sections, the equation ( 5.5) was used for development of the model and 

the AARD% was set as the objective function. 

 

 

5.6.5 Alkyne solutes 

Similar procedures were done for alkyne solutes to screen and refine the database. Thereafter, 

1257 experimental data points were divided into two subsets by K-means clustering; so 945 

data points were considered as the “training set” and 312 data points as the “test” set. Finally, 

the equation ( 5.5) was used to develop the model by means of GFA method. 

 

 

5.7 Critical temperature of ionic liquids 

To develop the model, both the group contribution and QSPR approaches were followed up. 

In GC approach, it was observed that the model failed to predict the data and consequently, 

only the QSPR modeling were performed; however the results of both methods were 

explained in section  6.7. 

 

Similar to previous sections, the “training” and “test” sets were allocated by dividing the 

entire dataset by means of K-means clustering. 
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CHAPTER 6: RESULTS 
6.1 Scope 

In previous chapters, it was explained how to manage the data and how to do the computational 

procedures. In this chapter, the models developed and the outputs are discussed. 

 

 

6.2 Speed of sound in ionic liquids 

6.2.1 The GC model* 

The forward feature selection method was combined with the LSSVM algorithm to develop a 

reliable predictive SVM model. The result was an 8-variable model with the absolute 

temperature as the first variable and chemical substructures, as shown in Table  6.1, as the 

others. The two parameters of the SVM model are as follows: 

 

γ = 104.183 (the weight of the regression error)  

σ2 = 14.755 (the parameter of the RBF kernel) 

 

As listed in Table  6.2, the AARD% of the proposed model is 0.21%, 0.68%, and 0.87% for the 

training, validation, and test sets, respectively. These values indicate that the proposed SVM 

model can correlate and predict the speed of sound (u) fairly well. The values of the predicted u 

versus the experimental data are presented in Figure  6.1. In addition, the deviation of the model 

from the experimental data and the percentage of data points in different AARD ranges are 

shown in Figure  6.2 and Figure  6.3. 

 

According to Figure  6.3, greater than 99% of calculated data points for the training set, 81% 

for the validation set, and 64% for the test set are within an AARD% of 0-1%. The 

percentage of data points with an AARD% of 1-2% is less than 1%, 16%, and 26% for the 

training, validation, and test sets, respectively. The percentage of data points with an 

AARD% of 2-3%, is 3% and 10% for the validation and test sets respectively. For the 

training set, the relative deviation of all calculated data points is less than 2%. 

 

                                                
* The results have been published in Fluid Phase Equilibria 367 (2014) 188–193. 
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Figure  6.1: Predicted versus experimental values of speed of sound in ILs. 

 

 

 
Figure  6.2: Relative deviation of predicted speed of sound from experimental data. 
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Figure  6.3: Percentage of predicted values of speed of sound in different 
relative deviation ranges. 

 
 
Table  6.1: The input variables of LS-SVM 
Model for speed of sounds in ILs. 

 

Table  6.2: Statistical parameter of the model of 
speed of sound 

No. Symbol Description 
1 VT T / K - Absolute Temperature 

2 VC1 presence/absence of C-(A*)3-N 
in cation (value: 1 or 0) 

3 VC2 number of C-(A)-N in cation 

4 VC3 number of C-(A)2-N in cation 

5 VC4 number of C-(A)6-N in cation 

6 VA1 � � � � � � � �  - Number of atoms 
of anion 

7 VA2 Number of F-B in anion 

8 VA3 Number of O-(A)2-F in anion 

* A represents any type of atoms 

Statistical Parameter 
training set 

R2  0.999 
Absolute average relative deviation 0.21 
Standard deviation error 4.34 
Root mean square error 4.34 
No. of data points 324 

validation set 
R2 0.997 
Absolute average relative deviation 0.68 
Standard deviation error 11.98 
Root mean square error 13.39 
No. of data points 75 

test set  
R2 0.988 
Absolute average relative deviation 0.87 
Standard deviation error 11.54 
Root mean square error 16.29 
No. of data points 47 

total 
R2 0.997 
Absolute average relative deviation 0.36 
Standard deviation error 8.18 
Root mean square error 8.47 
No. of data points 446 
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As indicated in Table  6.3, the highest average error is observed for [GluC4][DS]  (L-glutamic 

acid, 1,5-bis(2-methylpropyl) ester, dodecyl sulfate) which has a value of 2.79%. This IL was 

in the test set. In most engineering applications, an error of this magnitude would be 

acceptable and shows that the proposed model has good prediction capability. However, this 

IL is the second largest molecule in our database with 86 atoms. As it is a big molecule, it 

seems that some interactions exist within this molecule and the selected functional groups of 

the model cannot account for the probable interactions. 

 

The IL with the second highest deviation is [C8MIm][NTf2] (1-octyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide) with an AARD% of 1.95%. As this IL has just one 

reported experimental data point and has been used to tune parameters of the model within 

the validation set, it has not been able to tune the model parameter for its own benefit due to 

its weighted contribution.  

 

The model can correlate or predict the remainder ILs with very good accuracy. This claim is 

justified by considering the [C6MIm] (1-hexyl-3-methylimidazolium) ionic liquids. As 

indicated in Table  6.3, three [C6MIm] ionic liquids with different anions were used in the 

validation set. The cation did not exist in the training set and it was not used in the process of 

variable selection by applied forward feature selection routine. It was explained earlier that in 

SVM, the training set has the major influence in the process of model development and the 

validation set is used simply to optimize the model parameters. Thus, if the model is able to 

predict the test set well, it shows that the model has prediction ability. As a result, the 

presented SVM model shows the good prediction ability for [C6MIm] ionic liquids for which 

this cation did not exist in the training and validation sets.  

 

The claim about the prediction ability of the SVM model proposed in this study can also be 

shown for [bmpy][BF4] (1-butyl-3-methylpyridinium tetrafluoroborate). There was just one 

IL available in whole dataset with 1-butyl-3-methylpyridinium cation which was in the test 

set. As a result its structure was not used in either the training set or validation set; however a 

similar cation (N-octyl-3-methylpyridinium) was used in the model development process. 

The speed of sound in [bmpy][BF4] was predicted with an AARD% of 1.29% which is fairly 

low deviation and further indicates the ability of the model to predict values for ILs for which 

their cations or anions did not exist in the training dataset. 
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In section  2.2, it was discussed that the available correlations need the experimental data of 

density and surface tension for calculation of speed of sounds. To compare those models with 

the SVM model developed, only one experimental data point was used; because for most of 

the ionic liquids, there was only one reported value for density at certain temperature, mostly 

at 298.15 K. In addition, there were not any reported values for surface tension of 

pyrrolidinium, pyridinium, and amino acid ionic liquids. So a model developed by 

Gharagheizi et al. [230] was used to predict the surface tension at desired temperature. 

 

According to Table  6.4, the SVM model had a very low AARD% comparing with other 

models. It can be found that the model of Gardas and Coutinho [48] had better prediction 

compared with work of Singh and Singh [52]. The model of Gardas and Coutinho showd that 

for pyrrolidinium and pyridinium ILs, the predicted values of surface tension were reliable 

and consequently, the low AARD values were observed. But for amino acid ionic liquids, the 

AARD values were high because of the error in prediction of surface tension. As a result, the 

presented model in this study is more applicable as it is not depend on any other physical 

properties which need to be measured by experiments. 

 

Furthermore, there is no need to calculate the functional groups to estimate the speed of 

sound in new ionic liquids which their cations and anions are available in this study. It is just 

required to insert the corresponding groups of cations and anions in the presented model. As a 

result, the speed of sound in 319 ionic liquids (the number of cations multiplied by number of 

anions) can be estimated using functional groups calculated previously. 
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Table  6.3: IL abbreviations and AARD% of ionic liquids modelled by LSSVM.  

No. Compound T (K) range u (ms-1) 
Uncertainty 

(ms-1) AARD% 
Number of 
data points Subset 

1 [C2MIm][TfO] 278.15-338.15 1348.51-1482.23 2.08 0.08 10 Train 
2 [C2MIm][NTf2] 293.15-293.15 1240 10.00 0.78 1 Train 
3 [C2MIm][EtSO4] 288.15-343.15 1566.4-1703.9 7.25 0.06 12 Train 
4 [C8MIm][NTf2] 293.15-293.15 1232 11.00 1.95 1 Validation 
5 [C8MIm][BF4] 293.15-343.15 1361.1-1495.6 2.09 0.94 11 Test 
6 [C8MIm][PF6] 278.15-343.15 1294.6-1481.6 5.00 0.18 14 Train 
7 [C5Mim] [NTf2] 298.15-298.15 1227 7.00 0.11 1 Train 
8 [C4MIm][PF6] 278.15-343.15 1329.4-1492.5 2.31 0.27 14 Train 
9 [C4MIm][TfO] 293.15-318.15 1348.1-1403.4 1.30 0.07 6 Train 
10 [C4MIm][NTf2] 293.15-293.15 1227 13.00 0.99 1 Train 
11 [C4MIm][MeSO4] 278.15-343.15 1552.1-1711.3 2.00 0.21 14 Train 
12 [C4MIm][OcSO4] 278.15-343.15 1349.6-1557.2 4.43 0.30 50 Train 
13 [C4MIm][BF4] 283.15-343.15 1462.1-1604.5 2.05 0.19 13 Train 
14 [C6MIm][BF4] 293.15-318.15 1470.5-1532.7 1.40 0.57 6 Validation 
15 [C6MIm][PF6] 278.15-343.15 1318.4-1490.7 5.00 0.54 14 Validation 
16 [C6MIm][NTf2] 283.15-343.15 1128.4-1262 1.70 0.52 8 Validation 
17 [C1MIm][MeSO4] 283.15-343.15 1708-1851 5.00 1.17 13 Validation 
18 [C3MIm][NTf2] 293.15-343.15 1137-1243 2.00 0.26 11 Train 
19 [OMIm][Cl] 278.15-343.15 1510.2-1885.4 2.00 0.43 14 Train 
20 [C4EPyr][EtSO4] 328.15-343.15 1564.9-1602 5.10 0.23 4 Test 
21 [C2MPyr][EtSO4] 308.15-343.15 1665.7-1750.2 5.10 0.10 8 Train 
22 [C4MPyr][NTf2] 278.15-343.15 1173-1316 3.00 0.09 14 Train 
23 [C4MPyr][MeSO4] 298.15-343.15 1625.5-1741.6 5.10 0.13 10 Train 
24 [C2Py][EtSO4] 298.15-343.15 1608-1711 3.00 0.10 10 Train 
25 [C8MPyr][BF4] 278.15-328.15 1433.6-1571.9 3.56 0.08 21 Train 
26 [bmpy][BF4] 293.15-318.15 1538.9-1599.8 1.40 1.29 6 Test 
27 [C3Py][BF4] 278.15-338.15 1549.54-1691.9 2.92 0.07 25 Train 
28 [M0-py][BF4] 293.15-323.15 1543.45-1611.47 1.58 0.91 4 Validation 
29 [P14,6,6,6][dca] 278.15-343.15 1390-1599 3.00 0.12 14 Train 
30 [TEMA][MeSO4] 308.15-343.15 1761.5-1853.5 5.10 0.44 8 Validation 
31 [NHHH,(CH2)2OH][ac] 298.15-298.15 1790.73 3.17 0.73 1 Train 
32 [GluC3][DS] 288.15-343.15 1233.6-1439.7 5.02 0.17 12 Train 
33 [GluC4][DS] 323.15-343.15 1270.5-1330.6 5.00 2.79 5 Test 
34 [GlyC3][DS] 303.15-343.15 1245.8-1373.4 5.00 0.18 9 Validation 
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No. Compound T (K) range u (ms-1) 
Uncertainty 

(ms-1) AARD% 
Number of 
data points Subset 

35 [GlyC4][DS] 303.15-343.15 1248.7-1372.1 5.00 0.12 9 Test 
36 [ValC3][DS] 288.15-343.15 1254.9-1438.4 5.02 0.13 12 Train 
37 [ValC4][DS] 288.15-343.15 1249.5-1434.4 0.01 0.86 12 Validation 
38 [ProC3][DS] 288.15-343.15 1284-1455.5 5.03 0.10 12 Train 
39 [AlaC3][DS] 288.15-343.15 1266.3-1432.3 5.01 0.50 12 Train 
40 [ProC4][DS] 288.15-343.15 1286.2-1460.2 5.03 0.57 12 Test 
41 [AlaC4][DS] 288.15-343.15 1246.6-1447.6 5.02 0.52 12 Train 
 

 

Table  6.4: Comparison between calculated values of speed of sound in ILs using different models 

No. Abbr T uexp (ms-1) 

 This study Gardas & Coutinho [48] Singh and Singh [52] 

 ucalc (ms-1) ARD%   ucalc (ms-1) ARD%   ucalc (ms-1) ARD% 
1 [C2MIm][TfO] 298.15 1435.6  1458.46 1.59 1361.09 5.19 1171.09 18.43 
2 [C2MIm][NTf2] 293.15 1240  1249.67 0.78 1193.36 3.76 828.72 33.17 
3 [C2MIm][EtSO4] 298.15 1679  1679.86 0.05 1599.37 4.74 1789.85 6.60 
4 [C8MIm][NTf2] 293.15 1232  1255.98 1.95 1210.29 1.76 859.99 30.20 
5 [C8MIm][BF4] 298.15 1491  1466.86 1.62 1361.98 8.65 1173.09 21.32 
6 [C8MIm][PF6] 298.15 1407.8  1409.56 0.13 1310.06 6.94 1059.13 24.77 
7 [C5Mim] [NTf2] 298.15 1227  1228.35 0.11 1181.18 3.73 806.67 34.26 
8 [C4MIm][PF6] 298.15 1442.2  1458.14 1.11 1441.89 0.02 1362.84 5.50 
9 [C4MIm][TfO] 298.15 1392.1  1393.18 0.08 1299.87 6.62 1037.62 25.46 
10 [C4MIm][NTf2] 293.15 1227  1239.14 0.99 1169.27 4.71 785.45 35.99 
11 [C4MIm][MeSO4] 298.15 1658  1659.62 0.10 1541.22 7.04 1623.76 2.07 
12 [C4MIm][OcSO4] 298.15 1484.7  1480.43 0.29 1236.19 16.74 909.23 38.76 
13 [C4MIm][BF4] 298.15 1576.1  1593.69 1.12 1581.15 0.32 1736.71 10.19 
14 [C6MIm][BF4] 298.15 1519.5  1513.47 0.40 1536.07 1.09 1609.52 5.92 
15 [C6MIm][PF6] 298.15 1424.2  1420.79 0.24 1371.92 3.67 1195.75 16.04 
16 [C6MIm][NTf2] 298.15 1226.8  1228.35 0.13 1173.44 4.35 792.84 35.37 
17 [C1MIm][MeSO4] 298.15 1813  1803.98 0.50 1887.14 4.09 2765.37 52.53 
18 [C3MIm][NTf2] 298.15 1232  1228.26 0.30 1187.00 3.65 817.16 33.67 
19 [OMIm][Cl] 298.15 1715  1720.28 0.31 1428.66 16.70 1330.20 22.44 
20 [C4EPyr][EtSO4]* 328.15 1602  1595.18 0.43 1760.51 9.89 2303.74 43.80 
21 [C2MPyr][EtSO4]* 308.15 1750.2  1744.24 0.34 1849.91 5.70 2624.24 49.94 
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No. Abbr T uexp (ms-1) 

 This study Gardas & Coutinho [48] Singh and Singh [52] 

 ucalc (ms-1) ARD%   ucalc (ms-1) ARD%   ucalc (ms-1) ARD% 
22 [C4MPyr][NTf2] 298.15 1269  1269.15 0.01 1224.24 3.53 886.29 30.16 
23 [C4MPyr][MeSO4]* 298.15 1741.6  1739.29 0.13 1762.56 1.20 2310.80 32.68 
24 [C2Py][EtSO4]* 298.15 1711  1712.08 0.06 1629.49 4.76 1879.85 9.87 
25 [C8MPyr][BF4] 298.15 1511.4  1513.47 0.14 1473.31 2.52 1442.33 4.57 
26 [bmpy][BF4]* 298.15 1587  1567.98 1.20 1567.96 1.20 1698.88 7.05 
27 [C3Py][BF4] 298.15 1641.7  1643.51 0.11 1670.81 1.77 2007.79 22.30 
28 [M0-py][BF4]* 293.15 1611.47  1602.03 0.59 1582.09 1.82 1739.45 7.94 
29 [P14,6,6,6][dca] 298.15 1526  1528.62 0.17 1624.33 6.44 1864.23 22.16 
30 [TEMA][MeSO4]* 318.15 1826.3  1838.54 0.67 1860.92 1.90 2665.51 45.95 
31 [NHHH,(CH2)2OH][ac]* 298.15 1790.73  1777.72 0.73 2021.11 12.86 3311.87 84.95 
32 [GluC3][DS]* 298.15 1389  1391.43 0.17 2520.36 81.45 5917.89 326.05 
33 [GluC4][DS]* 323.15 1330.6  1295.1 2.67 2531.09 90.22 5984.41 349.75 
34 [GlyC3][DS]* 303.15 1373.4  1375.36 0.14 2657.60 93.51 6803.24 395.36 
35 [GlyC4][DS]* 303.15 1372.1  1375.36 0.24 2669.31 94.54 6882.38 401.59 
36 [ValC3][DS]* 298.15 1400.5  1402.15 0.12 2668.72 90.55 6878.37 391.14 
37 [ValC4][DS]* 298.15 1408.6  1402.15 0.46 2689.24 90.92 7018.29 398.25 
38 [ProC3][DS]* 298.15 1419.2  1420.92 0.12 2690.00 89.54 7023.53 394.89 
39 [AlaC3][DS]* 298.15 1401.4  1403.19 0.13 2635.79 88.08 6657.43 375.06 
40 [ProC4][DS]* 298.15 1429.2  1420.92 0.58 2700.78 88.97 7097.74 396.62 
41 [AlaC4][DS]* 298.15 1401.9  1403.19 0.09   2636.98 88.10   6665.35 375.45 
             
 AARD%     0.51   25.69   112.64 
* Surface tension was predicted by the model published by Gharagheizi et al. [230] 
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6.2.2  The QSPR model* 

To get the most accurate but simplest predictive model, various models with different 

numbers of descriptors were examined and the best model in term of R2 was selected. The 

final model consisted of absolute temperature, and descriptors cation and anion. To simplify 

the model, the effect of the cation and anion descriptors is shown as uCation and uAnion. 

 6.1 
� = 3000.68059 + � � � � � � � + � � � � � � − 2.7271 �  
 

� � � � � � � = 98.66368 × � � � 03� − 88.27463 × � � � 5�   −  638.70715 × � 2�   
                   −  49.4333 × � − −� � −−�  

� � � � � � =  −30.37573 × � � − 47.8716 × � �   − 104.91867 ×  � � � � 3� − 510.95776
× � � � 2 

 

“In the above equation, T is the absolute temperature and nC and nF are the number of Carbon 

and Fluorine atoms, respectively. Also � −−� � −−�  is an atom centered fragment 

descriptor which is the number of Carbon atoms on an aromatic ring that has three carbon 

neighbors on the same aromatic ring. Mor03u is signal 3 / unweighted 3D MoRSE 

descriptors (3D Molecule Representation of Structures based on Electron diffraction) which 

are derived from Infrared spectra simulation using a generalized scattering function [231]. 

 

X2A is average connectivity index chi-2 which belongs to Kier-Hall Connectivity Indices. A 

molecular connectivity index is calculated by drawing out a chemical in a hydrogen-

suppressed molecular structure and calculating the number of adjacent non-hydrogen atoms 

for each atom. This descriptor reflects the relative accessibility of each bond to encounter 

other bonds of the same molecule [232]. ATS5m is the Broto-Moreau autocorrelation of a 

topological structure - lag 5 weighted by atomic masses [233]. MATS3p  is the Moran 

autocorrelation - lag 3 / weighted by atomic polarizabilities [234]. JGI2  is  the mean 

topological charge index of order2. The Topological Charge Indices evaluate the charge 

transfer between pairs of atoms and hence the global charge transfer in the molecule [235]”. 

 

According to equation ( 6.1) and above-mentioned descriptions, speed of sound is mostly 

affected by JGI2 descriptor in anions and X2A in cations. This means that the charge 

                                                
* The results have been published in Journal of Molecular Liquids 196 (2014) 7–13 
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transfers between atoms in anions, and the effects of bonds on each other in cations, are the 

most important factor on speed of sound in ILs. 

 

The predicted values of u in comparison with the experimental values are presented in 

Figure  6.4. In addition, the deviation of the model in comparison with the experimental data is 

shown as Figure  6.5. These figures indicate that the majority of calculated/predicted data 

points have small deviations from the experimental values. The summary of the statistical 

parameters of the model, training and test sets can be found in Table  6.6.  

 

 
Figure  6.4: Predicted versus experimental values of speed of sound in ILs. 

 

 
Figure  6.5: Relative deviation of predicted speed of sound from experimental data. 
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Figure  6.6: Percentage of the predicted values of speed of 

sound in different relative deviation ranges 
 

 

Table  6.5: List of ionic liquids and their frequency used to develop equation ( 6.1) 

No. Compound T range/K SS range/m s-1 AARD/% Subset 
Number of 
data points 

1 [TEMA][MeSO4] 308.15-343.15 1761.5-1853.5 1.77 Test 8 

2 [NHHH,(CH2)2OH][ac] 571.3-571.3 1790.73-1790.73 1.84 Training 1 

3 [OMIm][Cl] 278.15-343.15 1510.2-1885.4 3.35 Test 14 

4 [C1MIm][MeSO4] 283.15-343.15 1708-1851 0.36 Training 13 

5 [C2MIm][TfO] 278.15-338.15 1348.51-1482.23 0.63 Training 10 

6 [C4MIm][PF6] 278.15-343.15 1329.4-1492.5 0.88 Training 14 

7 [C4MIm][BF4] 283.15-343.15 1462.1-1604.5 1.39 Training 13 

8 [C4MIm][TfO] 293.15-318.15 1348.1-1403.4 0.29 Training 6 

9 [C2MIm][NTf2] 293.15-293.15 1240-1240 2.91 Training 1 

10 [C4MIm][NTf2] 293.15-293.15 1227-1227 1.11 Training 1 

11 [C8MIm][NTf2] 293.15-293.15 1232-1232 3.43 Test 1 

12 [M0-py][BF4] 293.15-323.15 1543.45-1611.47 1.31 Test 4 

13 [C3MIm][NTf2] 293.15-343.15 1137-1243 0.71 Training 11 

14 [C4MPyr][NTf2] 278.15-343.15 1173-1316 0.77 Training 14 

15 [C3Py][BF4] 278.15-338.15 1549.54-1691.9 0.36 Training 25 

16 [C6MIm][BF4] 293.15-318.15 1470.5-1532.7 0.33 Test 6 

17 [C8MIm][BF4] 293.15-343.15 1361.1-1495.6 1.32 Training 11 

18 [C5Mim] [NTf2] 298.15-298.15 1227-1227 0.95 Training 1 

19 [C6MIm][PF6] 278.15-343.15 1318.4-1490.7 0.34 Test 14 

20 [C8MIm][PF6] 278.15-343.15 1294.6-1481.6 0.40 Training 14 

21 [C2MIm][EtSO4] 288.15-343.15 1566.4-1703.9 1.04 Training 12 

22 [C6MIm][NTf2] 283.15-343.15 1128.4-1262 2.86 Test 8 

23 [C4MIm][MeSO4] 278.15-343.15 1552.1-1711.3 1.31 Training 14 
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No. Compound T range/K SS range/m s-1 AARD/% Subset 
Number of 
data points 

24 [C4MIm][OcSO4] 278.15-343.15 1349.6-1557.2 0.57 Training 50 

25 [bmpy][BF4] 293.15-318.15 1538.9-1599.8 1.47 Training 6 

26 [P14,6,6,6][dca] 278.15-343.15 1390-1599 0.52 Training 14 

27 [C8MPyr][BF4] 278.15-328.15 1433.6-1571.9 0.44 Training 21 

28 [C4MPyr][MeSO4] 298.15-343.15 1625.5-1741.6 0.70 Training 10 

29 [C2MPyr][EtSO4] 308.15-343.15 1665.7-1750.2 0.63 Training 8 

30 [C2Py][EtSO4] 298.15-343.15 1608-1711 0.78 Training 10 

31 [C4EPyr][EtSO4] 328.15-343.15 1564.9-1602 0.81 Training 4 

32 [AlaC3][DS] 288.15-343.15 1266.3-1432.3 0.88 Training 12 

33 [GlyC3][DS] 303.15-343.15 1245.8-1373.4 0.93 Test 9 

34 [GlyC4][DS] 303.15-343.15 1248.7-1372.1 0.32 Training 9 

35 [AlaC4][DS] 288.15-343.15 1246.6-1447.6 1.00 Training 12 

36 [GluC3][DS] 288.15-343.15 1233.6-1439.7 1.28 Training 12 

37 [GluC4][DS] 323.15-343.15 1270.5-1330.6 1.93 Training 5 

38 [ValC3][DS] 288.15-343.15 1254.9-1438.4 1.57 Test 12 

39 [ValC4][DS] 288.15-343.15 1249.5-1434.4 0.73 Training 12 

40 [ProC3][DS] 288.15-343.15 1284-1455.5 0.93 Training 12 

41 [ProC4][DS] 288.15-343.15 1286.2-1460.2 0.54 Training 12 
 

 

Table  6.6: Statistical parameters for equation ( 6.1) 
Statistical Parameter 

training set 
R2 0.9919 
Average absolute relative deviation 0.76 
Standard deviation error 13.53 
Root mean square error 13.54 
No. of data points 370 

test set  
R2 0.9701 
Average absolute relative deviation 1.66 
Standard deviation error 34.10 
Root mean square error 34.12 
No. of data points 76 

total 
R2 0.9862 
Average absolute relative deviation 0.92 
Standard deviation error 18.72 
Root mean square error 18.72 
No. of data points 446 
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According to Table  6.4 and Table  6.5, the overall AARD% of the “training” set is less than 

0.8 % which shows that the model fits the data very well. The calculated values of u in 

“training” set indicates that about 73 % data points have an AARD% of between 0 and 1 %,  

about 27 % between 1.01 and 3.00 %,  and only one data point with deviation over 3 %; i.e.   

3.01%. The summary of these results are presented in Figure  6.6 for both “training” set and 

“test” set. 

 

The AARD% of “test” set is less than 1.7 % which indicates that the model has good 

predictability. About 38% of predicted values present deviations between 0 to 1.00%, 46 % 

between 1.01 to 3.00%, and 16% over than 3.0%. The maximum prediction error belongs to 

“1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide” ([C8MIm][NTf2]) which 

has an AARD % of 3.43 for one data point. Also, “1-methyl-3-octylimidazolium chloride” 

([OMIm][Cl]) shows a relatively large deviation because of nonlinear temperature 

dependence of u (non-predictable by our  current linear model) . Other ILs have satisfactory 

predicted results due to their linear temperature dependence of u.  

 

A comparison between the model developed and the model proposed by Gardas and 

Coutinho [48] shows that the model developed has greater accuracy (AARD% = 0.92% vs 

1.96%) and does not require other thermophysical properties of ILs as the other model needs 

the data of density and surface tension. Furthermore, there is no need to calculate descriptors 

or use additional property estimation models to estimate the u of new ionic liquids for which 

their cations and anions are available in this study. It is just required to insert the 

corresponding descriptors of cations and anions in the presented model. As a result, the u of 

319 ionic liquids (the number of cations multiplied by number of anions) can be estimated 

using previously calculated descriptors. 

 

To compare the QSPR model with GC model developed in previous section, it is notable that 

the GC model has better accuracy (AARD% of 0.36% compared to 0.92% for the QSPR 

model); however it requires a special software package to use the SVM. So the application of 

QSPR model is easier. The summary of all available models for the speed of sound in ionic 

liquids is shown in Table  6.7. 
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All information for the entire dataset as well as the value of descriptors of ILs are available in 

the supplementary CD. 

Table  6.7: Summary of available models for the speed of sound in ionic liquids. 
Model  Model Type and parameters NILs Ndata AARD% 

Gardas and Coutinho [48] Correlation, ρ, σ 14 133 1.96 

Singh and Singh [52] Correlation, ρ, σ 3 60 n.a. 

GC LSSVM Model LSSVM, 8 parameters 

(7 GCs) 

41 446 0.36 

QSPR Model (equation  6.1) 9 parameters (8 descriptors) 41 446 0.92 

 

 

 

6.3 Liquid heat capacity of ionic liquids 

6.3.1  The GC model* 

In order to find the most accurate model with an acceptable number of variables, several 

possible models with different sizes were investigated. The changes in the accuracy of 

models in terms of the Average Absolute Relative Deviation with respect to the number of 

functions groups is shown in Figure  6.7, for models determined by both the GFA and 

classical linear GC method. It can be easily seen that the GFA models show better accuracy 

for the same number of parameters after the 6th functional group. As indicated in the figure, 

improvements in the accuracy of classical linear GC models becomes constant after the 

addition of the 29th variable; but in GFA models, there is continual improvement by addition 

of a new functional groups or new combination of previously entered groups in the model. 

  

To determine the least complex, but most accurate model, the changes in accuracy of the model 

versus the number of functional groups is plotted in Figure  6.8. From this plot it is evident that 

a 13-parameters model would suffice. The introduction of additional functional groups did not 

show noticeable changes in model accuracy; however a larger model would have better 

accuracy. Figure  6.9 shows that after the 16th parameter, the AARD% of the test set becomes 

lower than that of the training set and this behavior is also observed for larger models. This 

                                                
* The results have been published in J Therm Anal Calorim (2014) 115:1863–1882. 
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behavior indicates that some new functional groups should be added to the model to get better 

prediction. As a result, the 16-parameters model was selected as a final model. 

 

 
Figure  6.7: Effect of the number of functional groups on the accuracy of 

the classical GC and GFA models of CpL 

 

 

 
Figure  6.8: Changes in the accuracy of CpL model versus the increasing 

number of functional groups. 
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Figure  6.9: The effect of the number of CpL model parameters on 

the accuracy of the training and test sets. 
 

 

 

The result of the proposed modeling approach produces the model presented below where T 

is absolute temperature. The other model parameters are defined in  

Table  6.8. 

 

 6.2 
� � � = � + �  � + �  � �  

� = 8.292  � � � � � � � � � + 11.477 � � � � �   

� =        0.319 

−7.773 × 10 � �  � − −� � −−� � � � × � −−� � −− � � � �  

−4.827 × 10 � �  � � 3� � � � × � � 05� � �  

−1.649 × 10 � �  � � � � � � � � � × � � � �  

−1.636 × 10 � �  � � � � � � � � � × � � � � �  

+2.394 × 10 � �  � � � � � � × � � � � � � � �  

+5.319 × 10 � �  � � � � � � × � � � � �  

−4.838 × 10 � �  � � � � � � × � � � 3� �  

+1.786 × 10 � �  � � � � � × � � 4� �  

−1.355 × 10 � �  
� − −� � −− � � � � × � � � � � � � �  
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� =   +2.473 × 10� �  ×  � � � 2� � �  
 
Table  6.8: Description of parameters of the equation ( 6.2) 
No. Symbol Description No. Symbol Description 

1 � � � � � �  number of atoms 8 � �  
number of Nitrogen 

atoms 

2 � � �  number of non-h atoms 9 � �  number of Sulfur atoms 

3 � � �  number of triple bonds 10 � � �  number of Chlorine 

atoms 

4 � � 05 number of 5-membered rings 11 � � 3 �   

5 � � � 2 �  

 

12 � −− � � −−�  

 

6 � � � 3 

 

13 � −− � � −−�  

 

7 � � 4 

 

14 � −− � � −−�  

 

 

 

The AARD for the proposed model, represented by equation ( 6.2), is 1.68% for the training 

set which has 2939 experimental data points for 65 ILs, and 1.65% for the test set which 

consists of 787 experimental data points for 17 ILs. The coefficient of determination (R2) for 

the training and test sets are 0.987 and 0.997, respectively. A summary of the statistical 

parameters for the model for the training and test sets can be found in Table  6.9.   

 

In order to visualize the results of modeling, the values of the predicted CpL versus the experimental 

data are presented in Figure  6.10. In addition, the deviation of the model from the experimental data 

is shown in Figure  6.11. As seen in these figures, there are cases for some ILs for which the 

proposed model cannot predict the heat capacity well. As indicated in  Table  6.10, the largest 

deviation is observed for “1-hexyl-4-(4-methyl-1-piperidinyl)pyridinium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide” which has an AARD% of 33.67%. This ionic 
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liquid however had only two experimental points with an uncertainty of 7% (64.50 J mol-1 K-1).  
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Table  6.9: Statistical parameters for equation ( 6.2). 
Statistical Parameter 

training set 
R2 0.987 
Absolute average relative deviation 1.68 
Standard deviation error 19.71 
Root mean square error 19.71 
No. of data points 2939 

test set  
R2 0.997 
Absolute average relative deviation 1.65 
Standard deviation error 12.04 
Root mean square error 12.50 
No. of data points 787 

total 
R2 0.990 
Absolute average relative deviation 1.68 
Standard deviation error 18.42 
Root mean square error 18.42 
No. of data points 3726 

 

 
 

 
Figure  6.10: Predicted versus experimental values of CpL (GC model). 
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Figure  6.11: Relative deviation of predicted CpL from experimental data (GC model). 

 

 

There are several other ILs in the dataset used which also have two data points with large 

uncertainties and predictions for these ILs also show large deviations. Interestingly, all these 

data points have been measured by Crosthwaite et al. [236] whom generally have produced 

data which are not in good agreement with measurements of other researchers. Figure  6.12 and 

Figure  6.13 show such deviations for two ionic liquids. It is therefore highly probable that the 

experimental data for these ILs for which only two data points are available are not reliable. 

This observation as well as the large uncertainty value of the measured CpL is the most probable 

explanation for the large observed deviations between the predicted and experimental data. 

 

The second IL with the largest deviation (26.26%) is “1-ethyl-3-methylimidazolium 

hexafluorophosphate”. There are four IL in the dataset for which the anion is 

“hexafluorophosphate”. The calculations show that the model presented in this study cannot predict 

the CpL of the ILs with this anion well. However, the exception is “1-butyl-3-methylimidazolium 

hexafluorophosphate” which has the AARD% of 0.82%. For “1-ethyl-3-methylimidazolium 

hexafluorophosphate”, it seems that there is a problem with the experimental data for this, because 

similar deviation (26.82%) has been reported by Soriano et al. with respect to their accurate model 

[55]. 

 



77 
 

 
Figure  6.12: Comparison of CpL data for 1-hexyl-3-methylimidazolium tetrafluoroborate measured by 

Crosthwaite et al. [236] and Garcia-Miaja et al. [237] 
 

 

 
Figure  6.13: Comparison of CpL data for 1-octyl-3-methylimidazolium tetrafluoroborate measured by 

Crosthwaite et al. and other researchers. 
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Finally, Table  6.11 shows the AARD% of each family of ionic liquids. The results indicate 

that the model can correlate and predict each family on average with similar accuracy which 

shows the comprehensiveness of the model. The maximum deviation is observed in 

Phosphonium (3.65%) liquids and the minimum in Dialkyl Imidazolium ionic liquids 

(1.51%). It should be noted that the Quinolinium family has the absolute minimum deviation 

(0.19%); but as there is just one ionic liquid in that family, hence it cannot be considered as a 

well-predicted class of ILs.  

 

The proposed model performs better than the previous models presented in terms of 

simplicity, accuracy, and comprehensiveness. According to Table  2.2, the model proposed by 

Soriano et al. [55] has an AARD% of 0.34%; however it covers only 32 ILs. The model 

proposed in this study covers 82 ILs resulting in a higher overall AARD% of 1.68%. The 

presented model can predict the CpL of ionic liquids over a wider range of compounds. The 

summary of comparison between the models is shown in Table  6.14, at the end of next 

section. 
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Table  6.10: Name and AARD% of ionic liquids used to develop equation ( 6.2). 

No. Compound T/K range CpL /J mol-1 K-1 
Uncertainty/ 
J mol-1 K-1 AARD/% 

Number of 
data points Subset 

1 1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-1H-imidazolium  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 

298-323 725-752 74.50 1.95 2 Train 

2 3-hexyl-1-methyl-1H-imidazolium bromide 298-323 344-357 35.50 3.15 2 Train 

3 1-(2-hydroxyethyl)-3-methylimidazolium trifluoroacetate 283.15-343.15 362-394 29.43 0.87 7 Train 

4 1-tetradecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 309.98-368.07 896.3-953.3 7.30 0.18 50 Test 

5 1-ethyl-3-methylimidazolium bromide 347.66-367.5 265.34-272.58 1.27 1.43 11 Train 

6 1-ethyl-3-methylimidazolium tetrafluoroborate 283.15-358.15 303.4-330.7 7.06 5.09 16 Test 

7 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 386-425 21.61 0.78 23 Train 

8 1-ethyl-3-methylimidazolium methanesulfonate 293.15-343.15 327-350 22.43 0.78 6 Train 

9 1-ethyl-3-methylimidazolium hexafluorophosphate 353-453 289.43-345.77 12.53 26.26 11 Train 

10 1-ethyl-3-methylimidazolium ethyl sulfate 195-390 346.8-399.9 1.61 2.61 210 Test 

11 1-ethyl-3-methylimidazolium hydrogen sulfate 283.15-343.15 290-324 18.59 7.35 7 Train 

12 1-ethyl-3-methylimidazolium diethylphosphate 283.15-343.15 517-557 43.17 14.77 6 Train 

13 1-propyl-3-methylimidazolium glutamate 244.24-357.68 471-568.06 4.55 0.36 58 Test 

14 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 281.99-372.62 693.71-742.21 19.32 0.48 10 Train 

15 1-octyl-3-methylimidazolium tetrafluoroborate 195.88-367.89 463.2-542.7 3.95 1.03 107 Train 

16 1-octyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 604-680 30.51 8.19 23 Train 

17 1-octyl-3-methylimidazolium bromide 298-323 392-408 35.50 3.20 2 Test 

18 1-butyl-3-methylimidazolium chloride 343-453 298.69-354.58 13.10 2.91 12 Train 

19 1-butyl-3-methylimidazolium hexafluorophosphate 300.05-524.87 409.22-510.39 9.35 0.82 1528 Train 

20 1-butyl-3-methylimidazolium trifluoromethanesulfonate 290.98-370 423.9-466.4 2.98 1.19 48 Train 

21 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 190-363.18 515-602.48 10.82 0.99 22 Train 

22 1-butyl-3-methylimidazolium trifluoroacetate 190-370 367.4-442.6 5.70 1.20 21 Train 

23 1-butyl-3-methylimidazolium nitrate 309.16-370 357.7-383 9.12 2.12 8 Train 
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No. Compound T/K range CpL /J mol-1 K-1 
Uncertainty/ 
J mol-1 K-1 AARD/% 

Number of 
data points Subset 

24 1-butyl-3-methylimidazolium acetate 210-300 352.4-384.1 4.40 0.56 11 Train 

25 1-butyl-3-methylimidazolium methylsulfate 303.2-358.2 375.47-400.51 7.52 8.81 12 Train 

26 1-butyl-3-methylimidazolium tosylate 343.89-380 543.4-569.8 12.71 2.82 5 Train 

27 1-butyl-3-methylimidazolium dicyanamide 235.8-367.14 355.9-403.2 4.81 0.81 78 Train 

28 1-butyl-3-methylimidazolium bis(oxalato)borate 244.30-292.74 528.69-551.92 12.02 4.55 23 Train 

29 1-butyl-3-methylimidazolium octylsulfate 298.15-343.15 635.22-697.64 14.49 0.91 46 Train 

30 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate 298-323 643-652 65.50 9.31 2 Train 

31 1-n-butyl-3-methylimidazolium bromide 225.62-403.2 289.04-366.4 3.87 3.28 35 Train 

32 1-n-butyl-3-methylimidazolium tetrafluoroborate 189.66-367.98 332-400.1 2.94 3.46 79 Test 

33 1-hexyl-3-methylimidazolium tetrafluoroborate 293.15-318.15 425.1-438.1 5.82 2.18 6 Train 

34 1-hexyl-3-methylimidazolium hexafluorophosphate 293.15-343.15 421.53-452.44 13.95 11.88 51 Train 

35 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 188.06-370 572-677 2.73 0.63 191 Train 

36 1-hexyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 526-589 29.22 5.03 23 Train 

37 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate 293.15-343.15 725.56-767.81 25.45 0.37 51 Train 

38 1-hexyl-3-methylimidazolium bis(oxalato)borate 239.33-397.43 575.78-656.71 3.94 0.96 80 Train 

39 1-ethyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide 309-323 492.7-498.8 9.95 6.72 2 Test 

40 1-butyl-2,3-dimethylimidazolium hexafluorophosphate 298-323 433.6-449.1 8.85 7.23 2 Train 

41 1-n-butyl-2,3-dimethylimidazolium tetrafluoroborate 330-372 375.3-406.5 7.80 2.45 2 Train 

42 1-hexyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide 298-323 686-705 70.00 14.82 2 Train 

43 1-methyl-3-propylimidazolium bromide 212.2-368.28 259.0973-306.3 1.64 0.43 203 Test 

44 1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]amide 323-663 473.47-631.15 11.04 1.59 35 Train 

45 1-ethyl-3-methylimidazolium methylsulfate 283.15-343.15 324-354 20.24 5.10 7 Train 

46 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 237.44-368.4 546.8-638 4.85 0.71 72 Train 

47 1-butyl-1-methylpyrrolidinium triflouromethanesulfonate 288.15-308.15 424-441 7.67 8.24 3 Train 

48 1-butyl-1-methylpyrrolidinium dicyanamide 288.15-308.15 473-521 4.47 16.27 3 Train 

49 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate 293-358 767-812 36.29 8.29 14 Train 
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No. Compound T/K range CpL /J mol-1 K-1 
Uncertainty/ 
J mol-1 K-1 AARD/% 

Number of 
data points Subset 

50 1-Butyl-1-methylpyrrolidinium tetracyanoborate 298.2-323.2 524-554 13.54 5.64 2 Train 

51 1-methyl-1-propylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 283.15-358.15 544.2-594 8.26 0.44 16 Test 

52 1-octyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide 298-323 669-693 69.00 0.65 2 Train 

53 1-hexyl-4-(4-methyl-1-piperidinyl)pyridinium  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 

298-323 628-650 64.50 33.67 2 Train 

54 n-ethyl-4-(n',n'-dimethylammonium)pyridinium 
bis(trifluoromethylsulfonyl)imide 

315.15-425.15 603-659 33.30 2.42 23 Test 

55 n-butyl-4-(n',n'-dimethylammonium)pyridinium 
bis(trifluoromethylsulfonyl)imid 

315.15-425.15 672-739 36.35 1.60 23 Train 

56 1-hexyl-3-methyl-4-(dimethylamino)pyridinium 
bis[(trifluoromethyl)sulfonyl]amide 

298-323 725-764 75.00 1.36 2 Test 

57 1-methylpyridinium methylsulfate 288.15-308.15 288-305 6.00 9.65 3 Train 

58 1-ethyl-3-methylpyridinium ethylsulfate 298-323 389-402 40.00 5.24 2 Test 

59 N-octyl-3-methylpyridinium tetrafluoroborate 278.15-328.15 433.8-473.7 27.09 6.73 21 Train 

60 1-butyl-3-methylpyridinium trifluoromethanesulfonate 288.15-308.15 496-535 30.00 18.83 3 Train 

61 1-butyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide 298-323 622-641 64.00 12.44 2 Train 

62 1-butyl-3-methylpyridinium tetrafluoroborate 298-323 405-421 42.00 9.69 2 Train 

63 1-hexyl-3-methylpyridinium bromide 298-323 343-358 13.55 1.42 2 Train 

64 1-hexyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide 298-323 624-644 64.00 2.39 2 Test 

65 1-hexyl-3,5-dimethylpyridinium bis(trifluoromethylsulfonyl)imide 298-323 620-665 65.00 2.42 2 Train 

66 1-propylpyridinium tetrafluoroborate 278.15-338.15 352-385 7.90 1.55 25 Train 

67 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]amide 330.15-425.15 587-641 28.86 0.61 20 Test 

68 N-butylpyridinium tetrafluoroborate 286.06-390 377.18-428.45 0.88 0.68 62 Test 

69 3-methyl-N-butylpyridinium tetracyanoborate 298.2-323.2 495-524 59.98 2.95 2 Train 

70 1-hexylpyridinium bis(trifluromethylsulfonyl)imide 298-323 612-632 63.00 1.95 2 Train 

71 4-(dimethylamino)-1-hexyl-pyridinium  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 

315.15-425.15 750-825 51.37 0.54 23 Train 
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No. Compound T/K range CpL /J mol-1 K-1 
Uncertainty/ 
J mol-1 K-1 AARD/% 

Number of 
data points Subset 

72 N-hexylquinolinium bis(trifluoromethylsulfonyl)imide 322.72-370.13 578.47-599.38 58.11 0.19 77 Train 

73 trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]amide 293-358 1366-1413 65.71 0.52 14 Test 

74 trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate 338.15-513.15 1539.1-1805.7 163.40 0.75 36 Train 

75 tributyl(methyl)phosphonium methyl sulfate 343.15-463.15 660.8-757.4 72.02 8.16 25 Train 

76 trihexyltetradecylphosphonium chloride 338.15-463.15 833.5-969.5 84.57 4.53 26 Test 

77 trihexyltetradecylphosphonium dicyanamide 313.15-413.15 1065.1-1234.5 108.29 4.24 21 Train 

78 cocosalky pentaethoxi methylammonium methylsulfate 298-323 1066-1098 109.50 12.52 2 Train 

79 butyltrimethylammonium bis(trifluoromethylsulfonyl)imide 278.32-367.93 547.5-600.9 8.21 1.16 48 Train 

80 tetrabutylammonium docusate 298-323 1325-1385 137.00 23.84 2 Train 

81 1-butyl-nicotinic acid butyl ester  
1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 

298-323 707-727 72.00 6.35 2 Train 

82 1-ethyl-nicotinic acid ethyl ester ethylsulfate 298-323 513-530 53.00 12.34 2 Train 

 
 
  
Table  6.11: The AARD% of equation ( 6.2) for different families of ionic liquids.  

No. Family T/K range CpL /J mol-1 K-1 AARD/% 
Number 
of ILs 

Number of 
data points 

1 Ammonium 278.32-367.93 547.5-1385 2.47 3 52 

2 Dialkyl imidazolium 188.06-524.87 259.0973-953.3 1.51 40 3093 

3 Phosphonium 293-513.15 660.8-1805.7 3.65 5 122 

4 Pyridinium 278.15-425.15 288-825 2.66 22 229 

5 Pyrrolidinium 237.44-368.4 424-812 2.36 6 110 

6 Quinolinium 322.72-370.13 578.47-599.38 0.19 1 77 

7 Trialkyl imidazolium 298-663 375.3-705 2.74 5 43 
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6.3.2  The QSPR model* 

Same as the GC model, different models were developed to find the most accurate one with 

less number of parameters. It was observed that enhancement in the accuracy of classical 

MLR models becomes insignificant after the 30th descriptor; but in the GFA models, 

continuous improvement was perceived by the addition of new descriptors or new 

combination of previously entered descriptors in the model (Figure  6.14). 

 

In order to find the most accurate, but least complex model, the variation in the accuracy of 

the model versus the number of functional groups was plotted in Figure  6.15. Accordingly, it 

was observed that after the 13th descriptor, there were not any noticeable changes in the 

accuracy of the model; however larger models would be more accurate.  

 

 

 
Figure  6.14: Effect of the number of descriptors on the accuracy of the linear 

QSPR and GFA models of CpL 

 

 

                                                
* The results have been published in Ind. Eng. Chem. Res. 2013, 52, 13217−13221 
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Figure  6.15: Changes in the accuracy of CpL model versus the increasing 

number of descriptors. 
 

 

 

The final model is presented as equation ( 6.3), where T is absolute temperature. The other 

parameters of the model are defined in Table  6.12. 

. 

 

 6.3 
� � � = � + �  �   
          
� = 8.404 � � � � � � � � � + 10.246 � � � � �  

� =    0.272 

+5.074 � � � � 2 � � � � × � � � � 4 � � � �  +6.594 � � � � 4 � � � � × � � � 130 � � �  

−2.235 × 10 � �  � � � � 09 � � � × � � � � � � �  +0.448 � � � � 4 � � � � × � � � 3 � �  

+2.790  × 10 � �  � � � � � � � × � � � � � � � �  +0.108 � � 3 � � � � × � � � � � � � � �  
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Table  6.12: Definition of descriptors used in equation ( 6.3) 
No. Descriptors Definitions 
1 � � � � � �  Number of atoms 
2 � � �  Number of non-h atoms 
3 � � 3�   

4 � � � 3 
 

5 � � � � 2�  Moran autocorrelation - lag 2 / weighted by atomic masses 
6 � � � � 4�  Moran autocorrelation - lag 4 / weighted by atomic masses 

7 � � � � 4�  Moran autocorrelation - lag 4 / weighted by atomic Sanderson 
electronegativities 

8 � � � 130�  Radial Distribution Function - 13.0 / unweighted 
9 � � � � � � �  Fractional accessible surface area of hydrogen bond acceptors 
10 � � � �  Eccentric 
11 � � � � 09 Molecular multiple path count of order 9 
12 � � � � �  Eigenvalue sum from Z weighted distance matrix (Barysz matrix) 
R represents any group linked through carbon 

X represents any heteroatom (O, N, S, P, Se, halogens) 

 

 

 

The AARD% for equation ( 6.3) is 1.55% for the “training” set which has 3001 experimental 

data points for 61 ILs, and 2.32 % for the “test” set consisting of 725 experimental data 

points for 21 ILs. The coefficient of determination (R2) for the “training” and “test” sets is 

0.990 and 0.996, respectively. The results of statistical analyses of the model are summarized 

in Table  6.13. 

 

According to Figure  6.16, 62% of the calculated values of the CpL in the “training” set show 

deviations between 0 to 1%, 25 % between 1.01 to 3%, 8% between 3.01 to 5, 3% between 

5.01 to 10, and 2% over 10%. For the “test” set, the predicted values of the CpL show that 

41% of data points are within an AARD range of 0-1%,  33 % within the range of 1-3%,  

15% within the range of 3-5%, about 8% in the range of 5-10%, and 3% greater than 10%.  
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Figure  6.16: Percentage of the predicted values of CpL in different relative deviation ranges. 

 
 

Table  6.13: Statistical parameters for equation ( 6.3) 

Statistical Parameter 
training set 

R2 0.990 
Absolute average relative deviation 1.55 
Standard deviation error 14.19 
Root mean square error 14.20 
No. of data points 3001 
  

test set  
R2 0.996 
Absolute average relative deviation 2.32 
Standard deviation error 18.42 
Root mean square error 18.42 
No. of data points 725 
  

total 
R2 0.993 
Absolute average relative deviation 1.70 
Standard deviation error 15.11 
Root mean square error 15.11 
No. of data points 3726 
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Figure  6.17 shows the experimental data for the CpL versus the predicted values. In addition, 

Figure  6.18 demonstrates the deviation of the model from the experimental data. In these 

figures, some ILs show a large deviation which means the failure of the model for prediction 

of these data points. As indicated in Table  6.15, the largest deviation is observed for “1-ethyl-

2,3-dimethylimidazolium bis- [(trifluoromethyl)sulfonyl]amide”, with an AARD% of 27.9%. 

This IL has only two experimental points. Additionally, several other ILs are present in the 

dataset which have two data points and show large deviations. As mentioned in section  6.3.1, 

these data points were measured by Crosthwaite et al. [236] and it is highly probable that the 

experimental data for these two-point ILs are not reliable, and consequently the large 

deviations with respect to the proposed model. 

 

 

 
Figure  6.17: Predicted versus experimental values of CpL (QSPR model). 
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Figure  6.18: Relative deviation of predicted CpL from experimental data (QSPR model). 

 

 

 

“The IL with the second largest deviation (19.1%) is “1-ethyl-3-methylimidazolium 

diethylphosphate”. The largest model found during this study, which had 35 descriptors, was 

also used to predict the CpL of this IL, and it was observed that it can be predicted well with an 

AARD% of 0.8%. Consequently, more descriptors are required for better prediction of some of 

the ionic liquids in dataset, but the aim of this study is to produce the simplest model with still 

keeping fairly acceptable prediction capability for most of the ILs in the dataset. Similar 

behavior was observed for most of the ILs with large deviations and more than two data points. 

The only exception was “1-ethyl-3-methylimidazolium hexafluorophosphate”. It seems that the 

experimental data for this IL is problematic, because similar deviation (26.8%) is reported by 

Soriano et al. with respect to their accurate model” [55]. 

 

A comparison between equation ( 6.3), equation ( 6.2), and previous models (Table  2.2) shows 

that the proposed QSPR model performs better than other models. Both the QSPR and GC 

models presented in this study have similar accuracy, 1.70% for the QSPR model and 1.68% 

for the GC model; but the former has fewer parameters. In section  4.2.2  it was discussed that 
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QSPR models usually have fewer parameters compared to equivalent GC models; so the QSPR 

model seems simpler, but the calculation of descriptors cannot be done manually and needs 

special software. As a result, the GC model is more beneficial and applicable when such kinds 

of software are not available. 

 

 

Table  6.14. Summary of available models for the of heat capacity of ILs. 
Model  Model Type and parameters NILs Ndata AARD% 

Gardas and Coutinho [54] GC, 12 parameters 19 2396 0.36 

Gardas and Coutinho [54] Correlation, Vm 19 2396 1.85 

Soriano et al. [55] GC, 10 cations and 14 anions 32 2414 0.34 

Valderrama et al. [56] MCI, 40 parameters 15 541 0.8 

Paulechka et al. [60] Correlation, Vm 19 653 6.0 (max error) 

Preiss et al. [59] Correlation, Vm 20 n.a 1.2 (max error) 

GC Model (equation  6.2) 16 GCs 82 3726 1.68 

QSPR Model (equation  6.3) 13 descriptors 82 3726 1.70 

 

 

 

Information on the entire dataset and original data sources, as well as the values of the 

functional groups for ILs are available in the supplementary CD. 
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Table  6.15: Name and AARD% of studied ionic liquids for developing equation ( 6.3) 

No. Ionic Liquid T (K) range CpL
 exp (J Mol-1 K-1) range AARD% N Subset 

1 1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-1H-imidazolium  
1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 

298-323 725-752 9.09 2 Test 

2 3-hexyl-1-methyl-1H-imidazolium bromide 298-323 344-357 3.89 2 Train 
3 1-(2-hydroxyethyl)-3-methylimidazolium trifluoroacetate 283.15-343.15 362-394 0.85 7 Train 
4 1-tetradecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 309.98-368.07 896.3-953.3 0.15 50 Train 
5 1-ethyl-3-methylimidazolium bromide 347.66-367.5 265.3375-272.5791 4.04 11 Test 
6 1-ethyl-3-methylimidazolium tetrafluoroborate 283.15-358.15 303.4-330.7 0.94 16 Test 
7 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 386-425 2.33 23 Train 
8 1-ethyl-3-methylimidazolium methanesulfonate 293.15-343.15 327-350 1.84 6 Train 
9 1-ethyl-3-methylimidazolium hexafluorophosphate 353-453 289.43-345.77 18.05 11 Train 
10 1-ethyl-3-methylimidazolium ethyl sulfate 195-390 346.8-399.9 2.86 210 Test 
11 1-ethyl-3-methylimidazolium hydrogen sulfate 283.15-343.15 290-324 11.98 7 Train 
12 1-ethyl-3-methylimidazolium diethylphosphate 283.15-343.15 517-557 19.12 6 Train 
13 1-propyl-3-methylimidazolium glutamate 244.243-357.682 471-568.06 3.10 58 Train 
14 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 281.99-372.62 693.715-742.213 1.94 10 Train 
15 1-octyl-3-methylimidazolium tetrafluoroborate 195.88-367.89 463.2-542.7 0.85 107 Test 
16 1-octyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 604-680 4.91 23 Train 
17 1-octyl-3-methylimidazolium bromide 298-323 392-408 3.89 2 Train 
18 1-butyl-3-methylimidazolium chloride 343-453 298.69-354.58 4.14 12 Test 
19 1-butyl-3-methylimidazolium hexafluorophosphate 300.05-524.87 409.223-510.392 0.78 1528 Train 
20 1-butyl-3-methylimidazolium trifluoromethanesulfonate 290.98-370 423.9-466.4 4.29 48 Train 
21 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 190-363.18 514.998-602.48 1.45 22 Train 
22 1-butyl-3-methylimidazolium trifluoroacetate 190-370 367.4-442.6 0.52 21 Train 
23 1-butyl-3-methylimidazolium nitrate 309.16-370 357.7-383 9.64 8 Train 
24 1-butyl-3-methylimidazolium acetate 210-300 352.4-384.1 2.38 11 Train 
25 1-butyl-3-methylimidazolium methylsulfate 303.2-358.2 375.47-400.51 15.73 12 Train 
26 1-butyl-3-methylimidazolium tosylate 343.89-380 543.4-569.8 6.48 5 Test 
27 1-butyl-3-methylimidazolium dicyanamide 235.8-367.14 355.9-403.2 0.88 78 Train 

28 1-butyl-3-methylimidazolium bis(oxalato)borate 244.303-292.74 528.69-551.92 4.27 23 Test 
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No. Ionic Liquid T (K) range CpL
 exp (J Mol-1 K-1) range AARD% N Subset 

29 1-butyl-3-methylimidazolium octylsulfate 298.15-343.15 635.22-697.64 1.75 46 Test 
30 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate 298-323 643-652 6.42 2 Train 
31 1-n-butyl-3-methylimidazolium bromide 225.62-403.2 289.0441-366.4 2.11 35 Train 
32 1-n-butyl-3-methylimidazolium tetrafluoroborate 189.66-367.98 332-400.1 3.44 79 Train 
33 1-hexyl-3-methylimidazolium tetrafluoroborate 293.15-318.15 425.1-438.1 1.87 6 Train 
34 1-hexyl-3-methylimidazolium hexafluorophosphate 293.15-343.15 421.527-452.439 9.77 51 Train 
35 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 188.06-370 572-677 1.05 191 Train 
36 1-hexyl-3-methylimidazolium trifluoromethanesulfonate 315.15-425.15 526-589 2.84 23 Train 
37 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate 293.15-343.15 725.56-767.808 0.24 51 Train 
38 1-hexyl-3-methylimidazolium bis(oxalato)borate 239.332-397.436 575.78-656.71 1.27 80 Train 
39 1-ethyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide 309-323 492.7-498.8 27.87 2 Train 
40 1-butyl-2,3-dimethylimidazolium hexafluorophosphate 298-323 433.6-449.1 10.84 2 Train 
41 1-n-butyl-2,3-dimethylimidazolium tetrafluoroborate 330-372 375.3-406.5 5.58 2 Test 
42 1-hexyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide 298-323 686-705 6.07 2 Test 
43 1-methyl-3-propylimidazolium bromide 212.2-368.28 259.0973-306.3 0.52 203 Train 
44 1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]amide 323-663 473.465-631.146 1.13 35 Train 
45 1-ethyl-3-methylimidazolium methylsulfate 283.15-343.15 324-354 5.26 7 Train 
46 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 237.44-368.4 546.8-638 0.63 72 Train 
47 1-butyl-1-methylpyrrolidinium triflouromethanesulfonate 288.15-308.15 424-441 10.40 3 Train 
48 1-butyl-1-methylpyrrolidinium dicyanamide 288.15-308.15 473-521 16.49 3 Train 
49 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate 293-358 767-812 1.69 14 Test 
50 1-Butyl-1-methylpyrrolidinium tetracyanoborate 298.2-323.2 524-554 6.45 2 Train 
51 1-methyl-1-propylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 283.15-358.15 544.2-594 1.44 16 Train 
52 1-octyl-3-methylpydridinium bis(trifluoromethylsulfonyl)imide 298-323 669-693 8.99 2 Train 
53 1-hexyl-4-(4-methyl-1-piperidinyl)pyridinium  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 
298-323 628-650 8.18 2 Train 

54 n-ethyl-4-(n',n'-dimethylammonium)pyridinium 
bis(trifluoromethylsulfonyl)imide 

315.15-425.15 603-659 1.02 23 Train 

55 n-butyl-4-(n',n'-dimethylammonium)pyridinium 
bis(trifluoromethylsulfonyl)imide 

315.15-425.15 672-739 1.42 23 Train 

56 1-hexyl-3-methyl-4-(dimethylamino)pyridinium 
bis[(trifluoromethyl)sulfonyl]imide 

298-323 725-764 1.29 2 Train 
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No. Ionic Liquid T (K) range CpL
 exp (J Mol-1 K-1) range AARD% N Subset 

57 1-methylpyridinium methylsulfate 288.15-308.15 288-305 6.76 3 Test 
58 1-ethyl-3-methylpyridinium ethylsulfate 298-323 389-402 0.85 2 Train 
59 N-octyl-3-methylpyridinium tetrafluoroborate 278.15-328.15 433.8-473.7 13.70 21 Test 
60 1-butyl-3-methylpyridinium trifluoromethanesulfonate 288.15-308.15 496-535 8.21 3 Train 
61 1-butyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide 298-323 622-641 4.59 2 Train 
62 1-butyl-3-methylpyridinium tetrafluoroborate 298-323 405-421 2.55 2 Train 
63 1-hexyl-3-methylpyridinium bromide 298-323 343-358 8.61 2 Train 
64 1-hexyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide 298-323 624-644 5.41 2 Train 
65 1-hexyl-3,5-dimethylpyridinium bis(trifluoromethylsulfonyl)imide 298-323 620-665 9.23 2 Train 
66 1-propylpyridinium tetrafluoroborate 278.15-338.15 352-385 1.27 25 Train 
67 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]amide 330.15-425.15 587-641 1.14 20 Train 
68 N-butylpyridinium tetrafluoroborate 286.06-390 377.18-428.45 0.70 62 Test 
69 3-methyl-N-butylpyridinium tetracyanoborate 298.2-323.2 495-524 1.34 2 Train 
70 1-hexylpyridinium bis(trifluromethylsulfonyl)imide 298-323 612-632 2.09 2 Test 
71 4-(dimethylamino)-1-hexyl-pyridinium  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 
315.15-425.15 750-825 1.39 23 Test 

72 N-hexylquinolinium bis(trifluoromethylsulfonyl)imide 322.72-370.13 578.47-599.38 0.30 77 Test 
73 trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]amide 293-358 1366-1413 4.20 14 Train 
74 trihexyl(tetradecyl)phosphonium 

tris(pentafluoroethyl)trifluorophosphate 
338.15-513.15 1539.1-1805.7 0.84 36 Test 

75 tributyl(methyl)phosphonium methyl sulfate 343.15-463.15 660.8-757.4 1.83 25 Test 
76 trihexyltetradecylphosphonium chloride 338.15-463.15 833.5-969.5 4.43 26 Test 
77 trihexyltetradecylphosphonium dicyanamide 313.15-413.15 1065.1-1234.5 2.27 21 Train 
78 cocosalky pentaethoxi methylammonium methylsulfate 298-323 1066-1098 0.17 2 Train 
79 butyltrimethylammonium bis(trifluoromethylsulfonyl)imide 278.32-367.93 547.5-600.9 0.12 48 Train 
80 tetrabutylammonium docusate 298-323 1325-1385 5.90 2 Train 
81 1-butyl-nicotinic acid butyl ester  

1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 
298-323 707-727 2.51 2 Train 

82 1-ethyl-nicotinic acid ethyl ester ethylsulfate 298-323 513-530 8.36 2 Train 
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6.4 Refractive index of ionic liquids 

6.4.1 The GC model* 

During the development of the GC model for nD, it was observed that a linear summation of 

functional groups could produce an accurate and easy-to-use model. It was also observed that 

the nD of ILs has a linear dependency with regard to temperature. Hence, the resultant model 

was a 17-parameter linear model as shown in equation ( 6.4). 

 

 6.4 

� � = � + �  �   

 

� =  1.5082 + ∑ � � , � � ��� � �   � =  −1.4207 × 10� � + ∑ � � , � � ��� � �     

 

 

where ni is the number of occurrences of the ith functional group of anions and cations, k is 

the total number of different functional groups of the anions and cations, and � �  and � �  are the 

relevant coefficient of the ith functional group according to equation ( 6.4). The values of � �  

and � �  are presented in Tables 2 and 3 respectively. 

 

 

Table  6.16: Group contribution parameters na,i and ai in equation ( 6.4) 
 Symbol Comments ai 
Cations   
 n a,1 number of  N (Nitrogen) 3.7482×10-2 
 n a,2 number of 6-membered rings 6.2856×10-2 
 n a,3 number of C-(A†)8-N -2.1155×10-2 
    
Anions   
 n a,4 number of halogen atoms -3.6817×10-3 
 n a,5 number of H attached to C1(sp3) / C0(sp2) -4.1550×10-3 
 n a,6 presence/absence of F-A-F (value: 1 or 0) -7.3159×10-2 
 n a,7 number of C-N 2.0372×10-2 
 n a,8 number of C-S 2.2844×10-2 
 n a,9 number of N-(A)3-N -2.3814×10-2 
 n a,10 number of C-(A)4-S 6.2458×10-2 
 na,11 number of C-(A)8-S -4.7861×10-2 
† A represents any type of atoms. 

                                                
* The results have been published in Journal of Molecular Liquids 200 (2014) 410–415. 
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Table  6.17: Group contribution parameters nb,i  and bi in equation ( 6.4) 
 Symbol Comments bi 
Cations   
 n b,1 H attached to C3(sp3) / C2(sp2) / C3(sp2) / C3(sp) -5.3363×10-5 
 n b,2 presence/absence of C-(A)8-N (value: 1 or 0) 7.8234×10-5 
    
Anions   
 n b,3 number of H (Hydrogen) -6.2136×10-6 
 n b,4 number of O (Oxygen) 2.1976×10-5 
 n b,5 number of =O -6.1456×10-5 
 n b,6 presence/absence of S-A-F (value: 1 or 0) 4.8459×10-5 
 

 

The AARD% of the proposed model is 0.32% for training set and 0.45% for the test set. The 

coefficient of determination (R2) for the “training” and “test” sets is 0.971 and 0.919, 

respectively. A summary of the statistical parameters of the model for the “training” and “test 

sets” are listed in Table  6.18.   

 

 

Table  6.18: Statistical parameters for equation ( 6.4). 
Statistical Parameter 

training set 
R2 0.971 
Absolute average relative deviation 0.32 
Standard deviation error 7.43×10-3 
Root mean square error 7.43×10-3 
No. of data points 759 

test set  
R2 0.919 
Absolute average relative deviation 0.45 
Standard deviation error 9.94×10-3 
Root mean square error 9.99×10-3 
No. of data points 172 

total 
R2 0.964 
Absolute average relative deviation 0.34 
Standard deviation error 7.96×10-3 
Root mean square error 7.97×10-3 
No. of data points 931 
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The visual output of the model is illustrated in Figure  6.19, i.e.: the values of the predicted nD 

versus the experimental data. In addition, the deviation of the model from the experimental data 

is shown in Figure  6.20. It can be seen that almost all of the ILs can be predicted fairly well by 

the proposed model. Figure  6.21 illustrates that the AARD for all of the ILs are less than 3%. 

For “training” set which has been used to develop the model, 97% of data points are within an 

AARD% of 0-1%; 2% of the data points are within the range of 1-2%, and 1% of data points 

which belong to only one ionic liquid shows an AARD% of 2-3%. Similarly according to 

Figure  6.21, for “test” set, 93% of data points are within an AARD% of 0-1%; 3.5% within the 

range of 1-2%; and 3.5% within the range of 2-3%. 

 

 
Figure  6.19: Predicted versus experimental values of nD (––– diagonal line). 

 

 
Figure  6.20: Relative deviation of predicted nD from experimental data. 
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Figure  6.21: Percentage of predicted values of nD in different relative 

deviation ranges 
 

 

As indicated in Table  6.19, the largest deviation is observed for “3-(2-cyanoethyl)-1-

hexylimidazolium trifluoromethanesulfonate” which is 2.92%; however this is still a relatively 

low deviation. The data for this IL was published by Ziyada et al. [238] with a reported 

uncertainty in the measurement of 0.00081 (0.05%). It is probably unlikely that there is error 

with the data measurement. The possible reason for the deviation is the purity of synthesized 

ionic liquid, with the reported value being 96.4%. The effect of impurity can be seen in other 

ionic liquids containing “2-cyanoethyl” side chains in their cations, such as “1-butyl-3-(2-

cyanoethyl)-imidazolium chloride” and “1-propyronitrile-3-butylimidazolium bromide”, which 

have the third and fourth largest deviation (1.48% and 1.10%), respectively. The second largest 

deviation (2.45%) belongs to 1-butyl-3-methylimidazolium bromide and surprisingly, the 

reported nD over the temperature range of 298.3-323 K is constant at 1.54. This data have been 

reported by Kim et al. [239] with an uncertainty of 0.01, which is the largest uncertainty in 

comparison with the reported values of other ILs. As a result, these data are not precise enough 

and that is the probable reason of the observed deviation in the test set. 

 

The summary of the results can be found in Table  6.20 which shows the AARD% of proposed 

model for different families of ionic liquids. It is obvious that the AARD% of the model is 

less than 1% for all families of ILs which shows that the prediction capability of the model is 

fairly well. 
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As mentioned in section  2.4, the previous published models [62, 72, 73, 86] are applicable 

just for imidazolium-based ionic liquids; so they are not comparable with presented model 

which covers the various families of ionic liquids and it’s not limited to certain type of ionic 

liquids; however the output of model proposed by Gardas and Coutinho [63] is shown in 

Table  6.19. It is clearly obvious that its application range is too limited. According to the 

provided data in the supplementary CD, this model is applicable only for 21 imidazolium 

based ionic liquids and the AARD% is 0.28%. The model presented in this study has the 

AARD% of 0.34% over these ionic liquids. So it can be concluded that the GC model 

developed has the same performance on average compared with the Gardas and Coutinho 

model; however it had more application range and it is not limited to certain type of ionic 

liquids. 

 

Information on the entire dataset and original data sources, as well as the values of the 

functional groups for ILs are available in the supplementary CD. 
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Table  6.19: Name and AARD% of studied ionic liquids for developing equation ( 6.4). 

No. Compound T / K range Refractive Index 

Average 
Uncertainty AARD / % 

GC Model 

AARD / % 
Gardas and 

Coutinho [63]  

Data 
Points Subset 

1 L-glutamic acid, 1,5-bis(1-methylethyl) ester, dodecyl sulfate 288.15-343.15 1.4392-1.4575 1.10E-03 0.10 n.a. 12 Train 

2 L-glutamic acid, 1,5-bis(2-methylpropyl) ester, dodecyl sulfate 323.15-343.15 1.4393-1.4472 1.10E-03 0.14 n.a. 5 Test 

3 glycine, 1-methylethyl ester, dodecyl sulfate 303.15-343.15 1.4414-1.463 1.10E-03 0.53 n.a. 9 Train 

4 glycine, 2-methylpropyl ester, dodecyl sulfate 303.15-343.15 1.4365-1.4624 1.10E-03 0.36 n.a. 9 Test 

5 L-valine, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4388-1.4555 1.10E-03 0.03 n.a. 12 Train 

6 L-valine, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.439-1.4568 1.10E-03 0.06 n.a. 12 Train 

7 L-proline, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4398-1.4575 1.10E-03 0.10 n.a. 12 Train 

8 L-proline, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.4378-1.4648 1.10E-03 0.29 n.a. 12 Train 

9 L-alanine, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4371-1.4542 1.10E-03 0.09 n.a. 12 Train 

10 L-alanine, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.4336-1.456 1.10E-03 0.16 n.a. 12 Train 

11 1-(2-cyanoethyl)-3-(2-propen-1-yl)-imidazolium chloride 293.15-333.15 1.5368-1.5473 4.30E-04 0.07 n.a. 9 Train 

12 1-butyl-3-(2-cyanoethyl)-imidazolium chloride 293.15-333.15 1.5142-1.5257 6.20E-04 1.48 n.a. 9 Train 

13 1-(2-cyanoethyl)-3-(2-hydroxyethyl)-imidazolium chloride 293.15-333.15 1.5385-1.55 5.20E-04 0.33 n.a. 9 Train 

14 3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.4989-1.5093 5.00E-04 0.17 n.a. 9 Train 

15 1-ethyl-3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.5011-1.5115 5.00E-04 0.31 n.a. 9 Train 

16 1-butyl-3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.5028-1.5132 5.00E-04 0.42 n.a. 9 Train 

17 1-propyronitrile-3-decylimidazolium bromide 308.15-333.15 1.5028-1.5079 3.70E-04 0.44 n.a. 6 Train 

18 1-butyl-3-ethylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4279-1.4424 5.10E-04 0.43 n.a. 6 Train 

19 3-(6-hydroxyhexyl)-1-methylimidazolium chloride 293.15-333.15 1.5002-1.5106 5.00E-04 0.25 n.a. 9 Train 

20 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate 293.15-353.15 1.4251-1.441 4.70E-04 0.00 n.a. 7 Train 

21 1-ethyl-3-methylimidazolium acetate 283.15-353.15 1.4848-1.504 6.80E-04 0.13 n.a. 15 Train 

22 1-ethyl-3-methylimidazolium ammonioacetate 293.15-333.15 1.4932-1.5063 6.80E-04 0.28 n.a. 9 Train 

23 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 283-353 1.4076-1.4274 5.80E-04 0.17 0.28 15 Train 

24 1-ethyl-3-methylimidazolium dicyanamide 283-353 1.4956-1.5177 5.97E-04 0.16 n.a. 15 Train 

25 1-ethyl-3-methylimidazolium diethylphosphate 298.2-313.2 1.4691-1.4733 6.00E-04 0.57 n.a. 2 Train 

26 1-ethyl-3-methylimidazolium dimethylphosphate 298.19-327.64 1.4738-1.4817 3.70E-04 0.05 n.a. 7 Train 

27 1-ethyl-3-methylimidazolium ethyl sulfate 283-353 1.4647-1.4832 5.71E-04 0.08 0.79 15 Train 
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No. Compound T / K range Refractive Index 

Average 
Uncertainty AARD / % 

GC Model 

AARD / % 
Gardas and 

Coutinho [63]  

Data 
Points Subset 

28 1-ethyl-3-methylimidazolium hydrogen sulfate 283-353 1.4851-1.5004 5.50E-04 0.13 n.a. 15 Test 

29 1-ethyl-3-methylimidazolium imidodisulfurylfluoride 283-353 1.4321-1.4518 5.79E-04 0.32 n.a. 15 Test 

30 1-ethyl-3-methylimidazolium L-alanine 293.15-333.15 1.4923-1.5059 6.80E-04 0.35 n.a. 9 Train 

31 1-ethyl-3-methylimidazolium L-proline 293.15-333.15 1.5031-1.5152 6.80E-04 0.22 n.a. 9 Train 

32 1-ethyl-3-methylimidazolium L-serine 293.15-333.15 1.5008-1.512 6.80E-04 0.24 n.a. 9 Train 

33 1-ethyl-3-methylimidazolium methanesulfonate 283-353 1.481-1.4999 5.15E-04 0.07 n.a. 21 Train 

34 1-ethyl-3-methylimidazolium methyl phosphonate 288.37-317.82 1.4871-1.4953 3.70E-04 0.14 n.a. 7 Train 

35 1-ethyl-3-methylimidazolium tetracyanoborate 283-353 1.4292-1.4528 6.08E-04 0.15 n.a. 15 Train 

36 1-ethyl-3-methylimidazolium tetrafluoroborate 283-353 1.3986-1.4155 5.60E-04 0.66 0.09 15 Train 

37 1-ethyl-3-methylimidazolium thiocyanate 283-353 1.5355-1.556 5.85E-04 0.11 n.a. 15 Train 

38 1-ethyl-3-methylimidazolium tosylate 322.73-342.37 1.533-1.5384 3.70E-04 0.03 n.a. 10 Train 

39 1-ethyl-3-methylimidazolium tricyanomethide 283.15-313.15 1.5084-1.5154 1.10E-03 0.89 n.a. 4 Train 

40 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4222-1.436 4.40E-04 0.85 0.13 12 Train 

41 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate 283-353 1.3551-1.3731 5.69E-04 0.05 n.a. 15 Train 

42 1-propyl-3-methylimidazolium methylsulfate 298.15-328.15 1.4664-1.4761 2.50E-03 0.32 0.48 4 Test 

43 1-propyl-3-methylimidazolium tetrafluoroborate 298.15-338.15 1.4075-1.4165 4.00E-04 0.29 0.06 9 Train 

44 1-octyl-3-methylimidazolium hexafluorophosphate 283.15-343.15 1.4106-1.4272 1.01E-03 0.39 0.05 13 Train 

45 1-octyl-3-methylimidazolium tetrafluoroborate 283.15-363.15 1.4142-1.4363 8.00E-04 0.41 0.02 16 Train 

46 1-butyl-3-methylimidazolium acetate 283.15-353.15 1.4718-1.4927 3.70E-04 0.68 n.a. 15 Test 

47 1-butyl-3-methylimidazolium dicyanamide 288.15-308.15 1.5058-1.5121 5.20E-04 0.03 n.a. 3 Train 

48 1-butyl-3-methylimidazolium glycine 298.15-313.15 1.5166-1.5202 2.00E-03 0.78 n.a. 4 Train 

49 1-butyl-3-methylimidazolium hexafluorophosphate 283.15-343.15 1.3977-1.4133 1.01E-03 0.33 0.03 13 Train 

50 1-butyl-3-methylimidazolium L-alanine acid salt 298.15-313.15 1.5135-1.5184 4.00E-04 0.62 n.a. 4 Train 

51 1-butyl-3-methylimidazolium methylsulfate 283.15-343.15 1.4672-1.4835 9.52E-04 0.06 0.43 24 Train 

52 1-butyl-3-methylimidazolium octylsulfate 288.15-343.15 1.4577-1.4725 5.00E-04 0.14 n.a. 12 Train 

53 1-butyl-3-methylimidazolium perchlorate 283.15-353.15 1.4577-1.4763 1.20E-03 0.18 n.a. 15 Train 

54 1-butyl-3-methylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4261-1.4401 6.98E-04 0.57 0.04 17 Train 
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No. Compound T / K range Refractive Index 

Average 
Uncertainty AARD / % 

GC Model 

AARD / % 
Gardas and 

Coutinho [63]  

Data 
Points Subset 

55 1-butyl-3-methylimidazolium bromide 298.3-323 1.54 1.00E-02 2.45 n.a. 6 Test 

56 1-butyl-3-methylimidazolium tetrafluoroborate 293.15-353.15 1.4114-1.4259 6.50E-04 0.27 0.41 8 Train 

57 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide 302.95-332.95 1.4238-1.4296 1.26E-03 0.48 0.10 7 Train 

58 1-hexyl-3-methylimidazolium chloride 298.15-343.15 1.5045-1.5172 1.05E-03 0.73 0.61 10 Train 

59 1-hexyl-3-methylimidazolium hexafluorophosphate 288.15-318.15 1.4122-1.4206 1.09E-03 0.27 0.11 7 Train 

60 1-hexyl-3-methylimidazolium tetrafluoroborate 298.15-338.15 1.4179-1.427 4.00E-04 0.45 0.16 9 Train 

61 1-Benzyl-3-methylimidazolium chloride 298.15-343.15 1.5652-1.5778 5.10E-04 0.60 n.a. 10 Train 

62 1-benzyl-3-methylimidazolium methylsulfate 298.15-343.15 1.5246-1.5365 5.10E-04 0.39 n.a. 10 Test 

63 1,3-dimethylimidazolium methyl sulfate 283.15-343.15 1.4703-1.4866 9.96E-04 0.17 0.43 13 Train 

64 1-n-butyl-2,3-dimethylimidazolium tetrafluoroborate 298.15-298.15 1.4330 2.00E-03 0.28 0.93 1 Test 

65 1-methyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]amide 293.15-343.15 1.4119-1.4267 3.70E-04 0.06 0.20 11 Train 

66 1-propyronitrile-3-octylimidazolium bromide 298.15-333.15 1.506-1.5147 3.70E-04 0.68 n.a. 8 Train 

67 1-methyl-3-octylimidazolium chloride 288.15-343.15 1.4936-1.5089 5.00E-04 0.21 0.52 12 Train 

68 1-methyl-3-pentylimidazolium tetrafluoroborate 298.15-338.15 1.4153-1.4238 4.00E-04 0.24 0.80 9 Train 

69 1-propyronitrile-3-butylimidazolium bromide 298.15-333.15 1.5375-1.5454 3.70E-04 0.04 n.a. 8 Train 

70 3-(2-cyanoethyl)-1-hexylimidazolium trifluoromethanesulfonate 298.15-333.15 1.5223-1.5297 8.11E-04 2.92 n.a. 8 Train 

71 
3-(2-cyanoethyl)-1-hexylimidazolium 1,4-bis(2-ethylhexyl) 2-
sulfobutanedioate 298.15-333.15 1.4703-1.4797 7.61E-04 0.15 n.a. 8 Train 

72 3-(2-cyanoethyl)-1-hexylimidazolium 3-sulfobenzoate 298.15-333.15 1.515-1.523 7.65E-04 0.07 n.a. 8 Train 

73 3-(2-cyanoethyl)-1-hexylimidazolium benzenesulfonate 298.15-333.15 1.519-1.527 6.79E-04 0.21 n.a. 8 Test 

74 3-(2-cyanoethyl)-1-hexylimidazolium dodecyl sulfate 298.15-333.15 1.4742-1.4841 7.30E-04 0.86 n.a. 8 Train 

75 1-propyronitrile-3-hexylimidazolium bromide 298.15-333.15 1.5212-1.5287 3.70E-04 1.10 n.a. 8 Train 

76 1-butyl-1-ethylpyrrolidinium ethylsulfate 328.15-343.15 1.4632-1.4671 1.08E-03 0.16 n.a. 4 Train 

77 1-ethyl-1-methylpyrrolidinium ethylsulfate 308.15-343.15 1.4612-1.4702 1.08E-03 0.27 n.a. 8 Train 

78 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 283.15-343.15 1.4102-1.4272 3.70E-04 0.09 n.a. 13 Train 

79 1-butyl-1-methylpyrrolidinium dicyanamide 288.15-308.15 1.4939-1.4997 5.20E-04 0.44 n.a. 3 Train 

80 1-butyl-1-methylpyrrolidinium methyl sulfate 298.15-343.15 1.4614-1.4731 1.08E-03 0.22 n.a. 10 Train 

81 1-butyl-1-methylpyrrolidinium triflouromethanesulfonate 288.15-338.15 1.422-1.4354 3.70E-04 0.60 n.a. 6 Train 
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No. Compound T / K range Refractive Index 

Average 
Uncertainty AARD / % 

GC Model 

AARD / % 
Gardas and 

Coutinho [63]  

Data 
Points Subset 

82 1-methyl-1-propylpyrrolidinium bis[(trifluoromethyl)sulfonyl]amide 283-353 1.4059-1.4247 5.71E-04 0.07 n.a. 15 Test 

83 1-ethylpyridinium ethylsulfate 298.15-343.15 1.4931-1.5053 4.57E-04 0.04 n.a. 10 Train 

84 1-methylpyridinium methylsulfate 288.15-308.15 1.5108-1.516 3.80E-04 0.49 n.a. 3 Train 

85 1-butyl-2-methylpyridinium tetrafluoroborate 298.15-318.15 1.4500-1.4545 5.00E-04 0.57 n.a. 2 Train 

86 1-ethyl-3-methylpyridinium ethylsulfate 298.15-343.15 1.4936-1.5067 7.33E-04 0.07 n.a. 10 Train 

87 N-octyl-3-methylpyridinium tetrafluoroborate 283.15-328.15 1.4469-1.4598 1.30E-03 0.60 n.a. 19 Test 

88 1-butyl-3-methylpyridinium trifluoromethanesulfonate 288.15-308.15 1.4587-1.4645 3.80E-04 0.61 n.a. 3 Train 

89 N-butyl-4-methylpyridinium tetrafluoroborate 298.15-318.15 1.447-1.4517 5.00E-04 0.37 n.a. 2 Train 

90 1-propylpyridinium tetrafluoroborate 283.15-338.15 1.434-1.4486 5.07E-04 0.15 n.a. 23 Train 

91 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]amide 303.15-353.15 1.4269-1.4415 1.10E-03 0.51 n.a. 6 Train 

92 1-butylpyridinium tetrafluoroborate 303.15-353.15 1.4315-1.4444 1.10E-03 0.08 n.a. 6 Test 

93 trihexyltetradecylphosphonium dicyanamide 283.15-343.15 1.4685-1.4883 3.70E-04 0.99 n.a. 13 Test 

94 triethylmethylammonium methylsulfate 308.15-343.15 1.4528-1.4619 1.08E-03 0.83 n.a. 8 Test 

95 triethyloctylammonium bis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4287 7.00E-04 0.53 n.a. 1 Train 

96 triethylheptylammonium bis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4271 7.00E-04 0.41 n.a. 1 Train 

97 triethylhexylammonium bis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4260 7.00E-04 0.34 n.a. 1 Train 
 

 

Table  6.20: The AARD% of equation ( 6.4) for different families of ionic liquids. 
No. Family T (K) range nD range AARD% No. of ILs No. of Data Points 
1 Amino Acid 288.15-343.15 1.4336-1.4648 0.17 10 107 
2 Ammonium 298.15-343.15 1.426-1.4619 0.72 4 11 
3 Imidazolium 283-363.15 1.3551-1.5778 0.37 65 657 
4 Phosphonium 283.15-343.15 1.4685-1.4883 0.99 1 13 
5 Pyridinium 283.15-353.15 1.4269-1.516 0.29 10 84 
6 Pyrrolidinium 283-353 1.4059-1.4997 0.20 7 59 
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6.4.2 The QSPR model* 

Same as the GC model, it was found that a linear summation of functional groups could 

produce a precise and easy-to-use model. In addition, the nD of ILs showed a linear 

dependency with regard to the temperature. Hence, the resultant model was a 8-parameter 

linear model as shown in equations ( 6.5). 

 

 6.5 
� � = � + �  �   

 

� =  1.3278 + 4.3161 × 10 � � � � � � � � � � � + 3.4416 × 10� � � 2� � � � � � � − 2.4714 ×
10� � � 6� � � � � � − 2.6988 × 10 � � � � � � � � � � � �       

 

� =  7.0342 × 10� � − 1.1987 × 10� � � � � 0� � � � � � − 1.5328 × 10� � � � � 13� � � � � � � −
6.0483 × 10 � � � � � 1� � � � � + 1.6109 × 10� � � 03[� − � ] � � � � �      

 

where T is the absolute temperature. The other parameters are described in Table  6.21. The 

full description of all parameters are also available in Molecular Descriptors for 

Chemoinformatics [240]. 

 

 

Table  6.21: Definition of the descriptors used in equation ( 6.5). 
No. Symbol Definition 

1 AMW average molecular weight 

2 R2P+ R maximal autocorrelation of lag 2 / weighted by atomic polarizabilities 

3 H6m H autocorrelation of lag 6 / weighted by atomic masses 

4 HATSm leverage-weighted total index / weighted by atomic masses 

5 SIC0 structural information content (neighborhood symmetry of 0-order) 

6 Mor13m 3D-MoRSE - signal 13 / weighted by atomic masses 

7 CIC1 complementary information content (neighborhood symmetry of 1-order) 

8 B03[C-C] presence/absence of C-(A)2-C substructure which its value is 0 or 1 and A 

represents any type of atoms. 

 

 

                                                
* The results have been published in Journal of the Taiwan Institute of Chemical Engineers, In Press (2014) 
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The AARD% of the proposed model is 0.47% for the training set and 0.60% for the test set. 

The coefficient of determination (R2) for the training and test sets are 0.934 and 0.938, 

respectively. A summary of the statistical parameters of the model for the training and test 

sets is listed in Table  6.22. 

 

Table  6.22: Statistical parameters for equation ( 6.5). 
Statistical Parameter 

training set 
R2 0.934 
Absolute average relative deviation 0.47 
Standard deviation error 1.02E-02 
Root mean square error 1.02E-02 
No. of data points 678 

test set  
R2 0.938 
Absolute average relative deviation 0.60 
Standard deviation error 1.19E-02 
Root mean square error 1.19E-02 
No. of data points 253 

total 
R2 0.935 
Absolute average relative deviation 0.51 
Standard deviation error 1.07E-02 
Root mean square error 1.07E-02 
No. of data points 931 

 

 

The values of the predicted nD versus the experimental data are shown in Figure  6.22. In 

addition, the deviation of the model from the experimental data is presented in Figure  6.23. It 

can be seen that almost all of the ILs can be predicted fairly well by the proposed model. 

Figure  6.24 illustrates that the AARD% of all ILs are less than 3%, except for one ionic liquid 

in the training set. For the training set, which has been used to develop the model, 87% of data 

points are within an AARD% of 0-1%; 12% of the data points are within the range of 1-2%, 

and 1% of data points, which belong to only one ionic liquid, shows an AARD% of greater 

than 2%. Similarly according to Figure  6.24, for test set, 80% of data points are within an 

AARD% of 0-1%; nearly18% within the range of 1-2%; and nearly 2% of data points greater 

than 2% which is the predicted data of only one ionic liquid. 
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Figure  6.22: Predicted versus experimental values of nD (––– diagonal line). 

 

 

 
Figure  6.23: Relative deviation of predicted nD from experimental data. 
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Figure  6.24: Percentage of  calculated/predicted values of nD in different relative deviation ranges 

 

 

As indicated in Table  6.24, the largest deviation is observed for “3-(2-cyanoethyl)-1-

hexylimidazolium trifluoromethanesulfonate” which is 3.41%. In previous section, it was 

explained that the data for this IL was published by Ziyada et al. [238] with a reported 

uncertainty in the measurement of 0.00081 (0.05%). The possible reason for the deviation is 

the purity of synthesized ionic liquid which the reported value is 96.4%. The effect of 

impurity can be seen in other ionic liquids containing “2-cyanoethyl” side chains in their 

cations, such as “1-propyronitrile-3-decylimidazolium bromide”, and “1-propyronitrile-3-

octylimidazolium bromide” which have the third and fifth largest deviations (1.79% and 

1.31%) respectively.  

 

The second largest deviation (2.68%) was observed for 1-butyl-3-methylimidazolium 

bromide and surprisingly, the reported nD over the temperature range of 298.3-323 K is 

constant at 1.54. These data have been published by Kim et al.[239] with an uncertainty of 

0.01, which is the largest uncertainty in comparison with the reported values of other ILs. As 

a result, these data are not precise enough and that is the probable reason of the observed 

deviation in the test set. 

 

For the purpose of comparison of this model with previous ones, it was mentioned in the last 

section that previous models are only applicable for imidazolium-based ionic liquids, but the 

presented model covers various families of ionic liquids. In previous section it has been 
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explained that the model proposed by Gardas and Coutinho [63] can calculate the refractive 

index for only 21 ionic liquids used in this study and the AARD% is 0.28%. The QSPR 

model presented in this study has the AARD% of 0.35% over these ILs which is not a large 

difference. As a result, the average accuracy of both models is close to each other, but the 

QSPR model is more comprehensive.  

 

A comparison between GC and QSPR models developed in this study shows that the QSPR 

model (equation  6.5) has 8 parameters less than the GC one (equation  6.4) at similar 

accuracy. It is however a smaller and simpler model, but it requires special software for 

calculation of descriptors which may limits its usage if one does not have access to such 

software. The summary of different models for refractive index of ILs is shown in Table  6.23. 

 

 

Table  6.23: Summary of different models for refractive index of ILs. 
Model  Model Type and parameters NILs Ndata AARD% 

Deetlefs et al. [71] Correlation 9 9 6.4 

Gardas and Coutinho [63] GC, 10 parameters 24 245 0.18 

GC Model (equation  6.4) 17 GCs 97 931 0.34 

QSPR Model (equation  6.5) 8 descriptors 97 931 0.51 
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Table  6.24: Name and AARD% of ionic liquids studied for developing equation ( 6.5) 

No. Compound T / K range 
Refractive 

Index 
Average 

Uncertainty 
AARD / % 

QSPR Model 

AARD / % 
Gardas and 

Coutinho [63]  
No. of 

Data Points Subset 
1 L-glutamic acid, 1,5-bis(1-methylethyl) ester, dodecyl sulfate 288.15-343.15 1.4392-1.4575 1.10E-03 0.69 n.a. 12 Train 

2 L-glutamic acid, 1,5-bis(2-methylpropyl) ester, dodecyl sulfate 323.15-343.15 1.4393-1.4472 1.10E-03 0.94 n.a. 5 Test 

3 glycine, 1-methylethyl ester, dodecyl sulfate 303.15-343.15 1.4414-1.463 1.10E-03 0.37 n.a. 9 Train 

4 glycine, 2-methylpropyl ester, dodecyl sulfate 303.15-343.15 1.4365-1.4624 1.10E-03 0.20 n.a. 9 Test 

5 L-valine, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4388-1.4555 1.10E-03 0.06 n.a. 12 Train 

6 L-valine, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.439-1.4568 1.10E-03 0.27 n.a. 12 Train 

7 L-proline, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4398-1.4575 1.10E-03 0.08 n.a. 12 Train 

8 L-proline, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.4378-1.4648 1.10E-03 0.19 n.a. 12 Train 

9 L-alanine, 1-methylethyl ester, dodecyl sulfate 288.15-343.15 1.4371-1.4542 1.10E-03 0.19 n.a. 12 Train 

10 L-alanine, 2-methylpropyl ester, dodecyl sulfate 288.15-343.15 1.4336-1.456 1.10E-03 0.09 n.a. 12 Train 

11 1-(2-cyanoethyl)-3-(2-propen-1-yl)-imidazolium chloride 293.15-333.15 1.5368-1.5473 4.30E-04 0.43 n.a. 9 Train 

12 1-butyl-3-(2-cyanoethyl)-imidazolium chloride 293.15-333.15 1.5142-1.5257 6.20E-04 0.35 n.a. 9 Train 

13 1-(2-cyanoethyl)-3-(2-hydroxyethyl)-imidazolium chloride 293.15-333.15 1.5385-1.55 5.20E-04 0.19 n.a. 9 Train 

14 3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.4989-1.5093 5.00E-04 0.06 n.a. 9 Train 

15 1-ethyl-3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.5011-1.5115 5.00E-04 0.07 n.a. 9 Train 

16 1-butyl-3-(6-hydroxyhexyl)-imidazolium chloride 293.15-333.15 1.5028-1.5132 5.00E-04 0.11 n.a. 9 Train 

17 1-propyronitrile-3-decylimidazolium bromide 308.15-333.15 1.5028-1.5079 3.70E-04 1.79 n.a. 6 Train 

18 1-butyl-3-ethylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4279-1.4424 5.10E-04 0.47 n.a. 6 Train 

19 3-(6-hydroxyhexyl)-1-methylimidazolium chloride 293.15-333.15 1.5002-1.5106 5.00E-04 0.36 n.a. 9 Train 

20 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate 293.15-353.15 1.4251-1.441 4.70E-04 1.04 n.a. 7 Train 

21 1-ethyl-3-methylimidazolium acetate 283.15-353.15 1.4848-1.504 6.80E-04 0.08 n.a. 15 Train 

22 1-ethyl-3-methylimidazolium ammonioacetate 293.15-333.15 1.4932-1.5063 6.80E-04 0.26 n.a. 9 Train 

23 1-ethyl-3-methylimidazolium 
bis[(trifluoromethyl)sulfonyl]amide 283-353 1.4076-1.4274 5.80E-04 0.31 0.28 15 Train 

24 1-ethyl-3-methylimidazolium dicyanamide 283-353 1.4956-1.5177 5.97E-04 0.17 n.a. 15 Train 

25 1-ethyl-3-methylimidazolium diethylphosphate 298.2-313.2 1.4691-1.4733 6.00E-04 0.16 n.a. 2 Train 

26 1-ethyl-3-methylimidazolium dimethylphosphate 298.19-327.64 1.4738-1.4817 3.70E-04 0.25 n.a. 7 Train 
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No. Compound T / K range 
Refractive 

Index 
Average 

Uncertainty 
AARD / % 

QSPR Model 

AARD / % 
Gardas and 

Coutinho [63]  
No. of 

Data Points Subset 
27 1-ethyl-3-methylimidazolium ethyl sulfate 283-353 1.4647-1.4832 5.71E-04 0.19 0.79 15 Train 

28 1-ethyl-3-methylimidazolium hydrogen sulfate 283-353 1.4851-1.5004 5.50E-04 1.00 n.a. 15 Test 

29 1-ethyl-3-methylimidazolium imidodisulfurylfluoride 283-353 1.4321-1.4518 5.79E-04 0.10 n.a. 15 Test 

30 1-ethyl-3-methylimidazolium L-alanine 293.15-333.15 1.4923-1.5059 6.80E-04 0.67 n.a. 9 Train 

31 1-ethyl-3-methylimidazolium L-proline 293.15-333.15 1.5031-1.5152 6.80E-04 1.25 n.a. 9 Train 

32 1-ethyl-3-methylimidazolium L-serine 293.15-333.15 1.5008-1.512 6.80E-04 0.82 n.a. 9 Train 

33 1-ethyl-3-methylimidazolium methanesulfonate 283-353 1.481-1.4999 5.15E-04 1.00 n.a. 21 Train 

34 1-ethyl-3-methylimidazolium methyl phosphonate 288.37-317.82 1.4871-1.4953 3.70E-04 0.58 n.a. 7 Train 

35 1-ethyl-3-methylimidazolium tetracyanoborate 283-353 1.4292-1.4528 6.08E-04 1.03 n.a. 15 Train 

36 1-ethyl-3-methylimidazolium tetrafluoroborate 283-353 1.3986-1.4155 5.60E-04 0.51 0.09 15 Train 

37 1-ethyl-3-methylimidazolium thiocyanate 283-353 1.5355-1.556 5.85E-04 0.10 n.a. 15 Train 

38 1-ethyl-3-methylimidazolium tosylate 322.73-342.37 1.533-1.5384 3.70E-04 1.05 n.a. 10 Train 

39 1-ethyl-3-methylimidazolium tricyanomethide 283.15-313.15 1.5084-1.5154 1.10E-03 1.03 n.a. 4 Train 

40 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4222-1.436 4.40E-04 1.02 0.13 12 Train 

41 1-ethyl-3-methylimidazolium 
tris(pentafluoroethyl)trifluorophosphate 283-353 1.3551-1.3731 5.69E-04 0.22 n.a. 15 Train 

42 1-propyl-3-methylimidazolium methylsulfate 298.15-328.15 1.4664-1.4761 2.50E-03 0.45 0.48 4 Test 

43 1-propyl-3-methylimidazolium tetrafluoroborate 298.15-338.15 1.4075-1.4165 4.00E-04 0.22 0.06 9 Train 

44 1-octyl-3-methylimidazolium hexafluorophosphate 283.15-343.15 1.4106-1.4272 1.01E-03 0.24 0.05 13 Train 

45 1-octyl-3-methylimidazolium tetrafluoroborate 283.15-363.15 1.4142-1.4363 8.00E-04 0.20 0.02 16 Train 

46 1-butyl-3-methylimidazolium acetate 283.15-353.15 1.4718-1.4927 3.70E-04 0.87 n.a. 15 Test 

47 1-butyl-3-methylimidazolium dicyanamide 288.15-308.15 1.5058-1.5121 5.20E-04 0.50 n.a. 3 Train 

48 1-butyl-3-methylimidazolium glycine 298.15-313.15 1.5166-1.5202 2.00E-03 1.22 n.a. 4 Train 

49 1-butyl-3-methylimidazolium hexafluorophosphate 283.15-343.15 1.3977-1.4133 1.01E-03 0.18 0.03 13 Train 

50 1-butyl-3-methylimidazolium L-alanine acid salt 298.15-313.15 1.5135-1.5184 4.00E-04 1.52 n.a. 4 Train 

51 1-butyl-3-methylimidazolium methylsulfate 283.15-343.15 1.4672-1.4835 9.52E-04 0.25 0.43 24 Train 

52 1-butyl-3-methylimidazolium octylsulfate 288.15-343.15 1.4577-1.4725 5.00E-04 1.19 n.a. 12 Train 

53 1-butyl-3-methylimidazolium perchlorate 283.15-353.15 1.4577-1.4763 1.20E-03 0.70 n.a. 15 Train 
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No. Compound T / K range 
Refractive 

Index 
Average 

Uncertainty 
AARD / % 

QSPR Model 

AARD / % 
Gardas and 

Coutinho [63]  
No. of 

Data Points Subset 
54 1-butyl-3-methylimidazolium trifluoromethanesulfonate 288.15-338.15 1.4261-1.4401 6.98E-04 0.85 0.04 17 Train 

55 1-butyl-3-methylimidazolium bromide 298.3-323 1.54 1.00E-02 2.68 n.a. 6 Test 

56 1-butyl-3-methylimidazolium tetrafluoroborate 293.15-353.15 1.4114-1.4259 6.50E-04 0.28 0.41 8 Train 

57 1-hexyl-3-methylimidazolium 
bis[(trifluoromethyl)sulfonyl]amide 302.95-332.95 1.4238-1.4296 1.26E-03 0.21 0.10 7 Train 

58 1-hexyl-3-methylimidazolium chloride 298.15-343.15 1.5045-1.5172 1.05E-03 0.56 0.61 10 Train 

59 1-hexyl-3-methylimidazolium hexafluorophosphate 288.15-318.15 1.4122-1.4206 1.09E-03 0.33 0.11 7 Train 

60 1-hexyl-3-methylimidazolium tetrafluoroborate 298.15-338.15 1.4179-1.427 4.00E-04 0.06 0.16 9 Train 

61 1-Benzyl-3-methylimidazolium chloride 298.15-343.15 1.5652-1.5778 5.10E-04 0.32 n.a. 10 Train 

62 1-benzyl-3-methylimidazolium methylsulfate 298.15-343.15 1.5246-1.5365 5.10E-04 1.09 n.a. 10 Test 

63 1,3-dimethylimidazolium methyl sulfate 283.15-343.15 1.4703-1.4866 9.96E-04 0.09 0.43 13 Train 

64 1-n-butyl-2,3-dimethylimidazolium tetrafluoroborate 298.15-298.15 1.4330 2.00E-03 0.44 0.93 1 Test 

65 1-methyl-3-propylimidazolium 
bis[(trifluoromethyl)sulfonyl]amide 293.15-343.15 1.4119-1.4267 3.70E-04 0.25 0.20 11 Train 

66 1-propyronitrile-3-octylimidazolium bromide 298.15-333.15 1.506-1.5147 3.70E-04 1.31 n.a. 8 Train 

67 1-methyl-3-octylimidazolium chloride 288.15-343.15 1.4936-1.5089 5.00E-04 0.60 0.52 12 Train 

68 1-methyl-3-pentylimidazolium tetrafluoroborate 298.15-338.15 1.4153-1.4238 4.00E-04 0.09 0.80 9 Train 

69 1-propyronitrile-3-butylimidazolium bromide 298.15-333.15 1.5375-1.5454 3.70E-04 1.10 n.a. 8 Train 

70 3-(2-cyanoethyl)-1-hexylimidazolium trifluoromethanesulfonate 298.15-333.15 1.5223-1.5297 8.11E-04 3.41 n.a. 8 Train 

71 3-(2-cyanoethyl)-1-hexylimidazolium 1,4-bis(2-ethylhexyl) 2-
sulfobutanedioate 298.15-333.15 1.4703-1.4797 7.61E-04 0.86 n.a. 8 Train 

72 3-(2-cyanoethyl)-1-hexylimidazolium 3-sulfobenzoate 298.15-333.15 1.515-1.523 7.65E-04 1.22 n.a. 8 Train 

73 3-(2-cyanoethyl)-1-hexylimidazolium benzenesulfonate 298.15-333.15 1.519-1.527 6.79E-04 1.10 n.a. 8 Test 

74 3-(2-cyanoethyl)-1-hexylimidazolium dodecyl sulfate 298.15-333.15 1.4742-1.4841 7.30E-04 0.11 n.a. 8 Train 

75 1-propyronitrile-3-hexylimidazolium bromide 298.15-333.15 1.5212-1.5287 3.70E-04 0.13 n.a. 8 Train 

76 1-butyl-1-ethylpyrrolidinium ethylsulfate 328.15-343.15 1.4632-1.4671 1.08E-03 0.04 n.a. 4 Train 

77 1-ethyl-1-methylpyrrolidinium ethylsulfate 308.15-343.15 1.4612-1.4702 1.08E-03 0.71 n.a. 8 Train 

78 1-butyl-1-methylpyrrolidinium 
bis[(trifluoromethyl)sulfonyl]amide 283.15-343.15 1.4102-1.4272 3.70E-04 0.11 n.a. 13 Train 

79 1-butyl-1-methylpyrrolidinium dicyanamide 288.15-308.15 1.4939-1.4997 5.20E-04 0.87 n.a. 3 Train 
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No. Compound T / K range 
Refractive 

Index 
Average 

Uncertainty 
AARD / % 

QSPR Model 

AARD / % 
Gardas and 

Coutinho [63]  
No. of 

Data Points Subset 
80 1-butyl-1-methylpyrrolidinium methyl sulfate 298.15-343.15 1.4614-1.4731 1.08E-03 0.35 n.a. 10 Train 

81 1-butyl-1-methylpyrrolidinium triflouromethanesulfonate 288.15-338.15 1.422-1.4354 3.70E-04 0.79 n.a. 6 Train 

82 1-methyl-1-propylpyrrolidinium 
bis[(trifluoromethyl)sulfonyl]amide 283-353 1.4059-1.4247 5.71E-04 0.03 n.a. 15 Test 

83 1-ethylpyridinium ethylsulfate 298.15-343.15 1.4931-1.5053 4.57E-04 0.46 n.a. 10 Train 

84 1-methylpyridinium methylsulfate 288.15-308.15 1.5108-1.516 3.80E-04 0.64 n.a. 3 Train 

85 1-butyl-2-methylpyridinium tetrafluoroborate 298.15-318.15 1.4500-1.4545 5.00E-04 0.52 n.a. 2 Train 

86 1-ethyl-3-methylpyridinium ethylsulfate 298.15-343.15 1.4936-1.5067 7.33E-04 0.37 n.a. 10 Train 

87 N-octyl-3-methylpyridinium tetrafluoroborate 283.15-328.15 1.4469-1.4598 1.30E-03 0.45 n.a. 19 Test 

88 1-butyl-3-methylpyridinium trifluoromethanesulfonate 288.15-308.15 1.4587-1.4645 3.80E-04 0.59 n.a. 3 Train 

89 N-butyl-4-methylpyridinium tetrafluoroborate 298.15-318.15 1.447-1.4517 5.00E-04 0.57 n.a. 2 Train 

90 1-propylpyridinium tetrafluoroborate 283.15-338.15 1.434-1.4486 5.07E-04 0.17 n.a. 23 Train 

91 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]amide 303.15-353.15 1.4269-1.4415 1.10E-03 0.52 n.a. 6 Train 

92 1-butylpyridinium tetrafluoroborate 303.15-353.15 1.4315-1.4444 1.10E-03 0.27 n.a. 6 Test 

93 trihexyltetradecylphosphoniumdicyanamide 283.15-343.15 1.4685-1.4883 3.70E-04 0.09 n.a. 13 Test 

94 triethylmethylammoniummethylsulfate 308.15-343.15 1.4528-1.4619 1.08E-03 0.81 n.a. 8 Test 

95 triethyloctylammoniumbis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4287 7.00E-04 0.57 n.a. 1 Train 

96 triethylheptylammoniumbis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4271 7.00E-04 0.50 n.a. 1 Train 

97 triethylhexylammoniumbis[(trifluoromethyl)sulfonyl]amide 298.15-298.15 1.4260 7.00E-04 0.70 n.a. 1 Train 
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6.5 Viscosity of F-ILs 

6.5.1 The GC model* 

As discussed in section  5.5, the natural logarithm (ln) was chosen to transform the data of the 

viscosity to a simpler form to increase the quality of regression. Moreover, the refined dataset 

of viscosity data with total 863 data points were used to develop the model, as discussed in 

section  3.4.4. 

 

The modeling results revealed that the best model with the lowest possible number of 

variables was a 35-parameter GC model with a total R2 = 0.977, as is shown in equation ( 6.6). 
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where T is the absolute temperature, ni is the number of groups of type i, k is the total number 

of different types of groups, and the parameters ai, bi, and ci are for different substructures. 

The model parameters are available in Table  6.25. 

 

The calculated/predicted viscosities of fluorine-containing ILs used in this study and their 

families are available in Table  6.26 and Table  6.27, respectively. In addition, the cross-plot of 

experimental data versus calculated/predicted data and the relative deviation of � � (� � � � � ) 

from experimental data are presented in Figure  6.25 and Figure  6.26, respectively.  

 

To assess the performance and the accuracy of the GC model developed, statistical error 

analyses was undertaken, the results of which are summarized in Table  6.28. The results show 

that the total average absolute relative deviation (AARD%) of the model is 3.23% (2.91% for 

the “training” set and 4.31% for the “test” set). In addition, R2 is 0.977 for all data points, 

0.981 for the “training” set and 0.966 for the “test” set. 

 

                                                
* The results have been submitted to Journal of Fluorine Chemistry. 
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Table  6.25:Parameters of the GC model in equation ( 6.6). 
No. Chemical structure Descriptions ai bi ci 
 Intercept  5.05776   
1 nR06Cat    number of 6-membered rings 0.15706   
2 nCpCat 

   

number of terminal primary C(sp3) 
 
Y = any terminal atom or heteroaromatic 

-0.34962   

3 nCrsCat 

   

number of total secondary C(sp3) 
Y = H or any heteroatom 

0.26051   

4 nCconjCat 

   

number of non-aromatic conjugated C(sp2) -1.81670   

5  (R-C(=X)-X / R-C≡X / X=C=X)Cat X represents any heteroatom (O, N, S, P, Se, halogens) -3.58447 0.69161  
6 [C-(A)3-C]Cat A represents any atom -0.08890   
7 [C-(A)3-N]Cat  -0.21752   
8 [C-(A)5-C]Cat  0.02554   
9 [C-(A)5-N]Cat  -0.15649   
10 [C-(A)8-P]Cat  -5.34117   
11 (R-C(=X)-X / R-C≡X / X=C=X )An  -0.39713   
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No. Chemical structure Descriptions ai bi ci 
      
12 nR=CtCat 

   

number of aliphatic tertiary C(sp2)  2.11721  

13 nN+
Cat number of positive charged N  -4.57101  

14 (CH3R / CH4 )Cat   0.32222  
15 CH3XCat   0.16892  
16 [C-(A)4-N]Cat   0.04905  
17 [C-(A)4-O]Cat   -0.14875  
18 [C-(A)5-O]Cat   0.14203  
19 nPAn number of Phosphorous atoms  -0.42847  
20 [C-(A)2-O]An   0.03122  
      
21 nOCat number of Oxygen atoms   0.17796 
22 nArNR2 Cat 

 

         

number of tertiary amines (aromatic) 
Y = Aromatic or Aliphatic (not C = O) 

  -0.94346 

23 CH2R2Cat    0.02528 
24 R--CH--R Cat    0.05543 
25 (R--N--R / R--N--X )Cat    0.20778 
26 [C-N]Cat    0.28852 
27 [N-A-N]Cat    -0.75415 
28 [C-(A)2-N]Cat    0.01301 
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No. Chemical structure Descriptions ai bi ci 
29 [N-(A)2-O]Cat    0.57373 
30 [C-(A)3-O]Cat    -0.21222 
31 [C-(A)4-C]Cat    0.00218 
32 [C-(A)8-C]Cat    -0.00526 
33 [C-(A)8-N]Cat    0.02693 
34 [P-F]An    0.03452 
35 [S-(A)3-F]An    -0.01262 
R represents any group linked through carbon. 
X represents any heteroatom (O, N, S, P, Se, halogens). 
-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group. 
 

 

Table  6.26: Name and AARD% of ionic liquids studied. 
No. Compound T (K) range ln(ηexp) (cP) AARD% N Data Subset 

1 2-[2-hydroxyethyl(methyl)amino]ethanol tetrafluoroborate 303.15-343.15 3.477-5.341 0.29 5 Train 

2 3-hexyl-1-methylimidazolium 1,1,2,2,2-pentafluoro-N-[(1,1,2,2,2-pentafluoroethyl)sulfonyl]ethanesulfonamide 293 5.124 2.97 1 Train 

3 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate 293.15-328.15 5.05-7.349 1.65 5 Train 

4 1-decyl-3-methylimidazolium tetrafluoroborate 283-363 3.311-7.636 1.75 9 Train 

5 1-decyl-3-methylimidazolium hexafluorophosphate 313-363 3.78-6.111 3.24 6 Train 

6 1-decyl-3-methylimidazolium trifluoromethansulfate 283-363 3.572-7.63 1.52 9 Test 

7 1-decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 298.15-343.15 2.901-4.684 21.06 3 Test 

8 1-decyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide 293 5.342 25.12 1 Train 

9 1-undecyl-3-methylimidazolium tetrafluoroborate 293-363 3.818-7.641 6.33 8 Test 

10 1-dodecyl-3-methylimidazolium hexafluorophosphate 333-363 3.932-5.366 2.56 4 Train 

11 1-(2-ethylsulfonyl)ethyl-3-methyl-imidazolium trifluoromethanesulfonate 303 6.317 6.59 1 Train 

12 1-ethyl-3-methylimidazolium tetrafluoroborate 269-363 1.916-4.977 19.88 21 Train 

13 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 278.15-363.15 2.1-4.603 11.53 18 Test 

14 1-ethyl-3-methylimidazolium hexafluorophosphate 343-363 2.588-3.153 3.14 3 Train 
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No. Compound T (K) range ln(ηexp) (cP) AARD% N Data Subset 

15 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 263.1-388.19 1.411-5.165 5.32 23 Train 

16 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate 293.15-353.15 2.691-4.766 1.86 7 Train 

17 1-isobutenyl-3-methylimidazolium tetrafluoroborate 288.15-313.15 3.978-5.367 0.65 10 Train 

18 1-propyl-3-methylimidazolium tetrafluoroborate 298 4.635 2.46 1 Test 

19 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 283.15-353.15 2.555-5.384 7.95 8 Train 

20 1-octyl-3-methylimidazolium tetrafluoroborate 283.15-363.15 3.071-6.944 1.79 17 Train 

21 1-octyl-3-methylimidazolium hexafluorophosphate 283-363 3.434-7.522 2.16 9 Train 

22 1-octyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide 293 5.293 11.82 1 Train 

23 1-octyl-3-methylimidazolium trifluoromethanesulfonate 283-363 3.27-6.862 3.83 9 Train 

24 1-octyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate 298.15-373.15 2.728-5.633 8.62 4 Test 

25 1-butyl-3-methylimidazolium hexafluorophosphate 283.15-353.15 3.249-6.687 1.26 13 Train 

26 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 293.4-387.51 1.435-4.091 3.05 11 Train 

27 1-butyl-3-methylimidazolium trifluoroacetate 283-353 2.332-5.256 0.70 9 Train 

28 1-butyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide 283-353 2.646-5.675 2.31 9 Train 

29 1-butyl-3-methylimidazolium tetrafluoroborate 273-388.04 1.758-6.236 2.91 23 Train 

30 1-hexyl-3-methylimidazolium tetrafluoroborate 288.15-338.15 3.615-5.755 2.12 11 Train 

31 1-hexyl-3-methylimidazolium hexafluorophosphate 283-363 3.288-7.268 4.55 9 Train 

32 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 258.15-373.15 2.01-6.848 2.32 17 Test 

33 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate 293.15-343.15 2.695-4.739 7.60 11 Test 

34 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide 283.15-353.15 2.092-4.345 2.16 15 Train 

35 1-butyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide 273.15-373.15 2.176-6.251 1.48 21 Train 

36 1-butyl-2,3-dimethylimidazolium tris(pentafluoroethyl)trifluorophosphate 283.15-373.15 2.309-6.078 1.55 19 Train 

37 1-hexyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide 283-343 3.091-5.759 2.22 8 Train 

38 1-methyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]imide 298.15-343.15 2.366-3.777 2.57 10 Train 

39 1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]imide 290-365 2.944-4.875 6.19 16 Train 

40 3-(2-cyanoethyl)-1-hexylimidazolium trifluoromethanesulfonate 293.15-353.15 3.381-7.716 1.27 13 Train 

41 1-(2-methoxyethyl)-1-methyl-pyrrolidinium bis[(trifluoromethyl)sulfonyl]imide 258.15-373.15 1.983-6.43 2.36 24 Train 

42 1-(2-methoxyethyl)-1-methyl-pyrrolidinium tris(pentafluoroethyl)trifluorophosphate 258.15-373.15 2.286-7.733 2.06 24 Test 
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No. Compound T (K) range ln(ηexp) (cP) AARD% N Data Subset 

43 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide 278.15-373.15 2.135-5.439 4.13 20 Train 

44 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate 283.15-373.15 2.568-6.386 5.11 19 Test 

45 1-methyl-1-propylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide 298 4.143 3.47 1 Test 

46 1-(2-ethoxy-2-oxoethyl)-pyridinium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 293.15-343.15 3.627-6.667 1.49 6 Train 

47 1-hexyl-4-(4-methyl-1-piperidinyl)pyridinium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 283-343 2.708-5.652 1.09 8 Test 

48 1-(3-hydroxypropyl)pyridiniumbis[(trifluoromethyl)sulfonyl]imide 293.15-343.15 3.127-5.075 1.61 6 Train 

49 1-hexyl-3-methyl-4-(dimethylamino)pyridiniumbis[(trifluoromethyl)sulfonyl]imide 283-343 2.944-5.628 0.44 8 Train 

50 1-butyl-2-methylpyridinium tetrafluoroborate 288-328 4.041-6.893 5.56 7 Train 

51 1-octyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]imide 283-343 2.944-5.591 3.74 8 Test 

52 1-butyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.138-5.275 1.13 18 Train 

53 1-butyl-3-methylpyridinium tetrafluoroborate 283-343 3.135-6.248 2.37 8 Test 

54 1-hexyl-3-methylpyridinium bis[(trifluoromethyl)sulfonyl]imide 283-343 2.773-5.283 3.01 8 Train 

55 1-butyl-4-methylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.038-5.135 0.58 18 Train 

56 N-butyl-4-methylpyridinium tetrafluoroborate 298.15-373.15 2.351-5.325 3.99 4 Train 

57 1-hexyl-2-ethyl-3,5-dimethylpyridinium bis[(trifluoromethyl)sulfonyl]imide 283-343 3.367-6.562 2.99 8 Train 

58 1-hexyl-3,5-dimethylpyridinium bis[(trifluoromethyl)sulfonyl]imide 283-343 2.89-5.525 1.92 8 Train 

59 4-methyl-N-ethylpyridinium bis[(trifluoromethyl)sulfonyl]imide 298.15-363.15 1.823-3.489 1.17 14 Test 

60 1-propylpyridinium tetrafluoroborate 278.15-338.15 3.09-6.134 2.20 25 Train 

61 1-propylpyridinium bis[(trifluoromethyl)sulfonyl]imide 308.15-338.15 2.603-3.497 0.55 7 Test 

62 3-methyl-1-propylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.072-5.074 1.20 18 Train 

63 3,5-diethyl-1-hexyl-2-propylpyridinium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 283-343 3.296-6.361 1.84 8 Train 

64 1-octylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.463-5.988 0.76 18 Train 

65 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.151-5.203 1.58 18 Train 

66 1-hexylpyridinium bis[(trifluoromethyl)sulfonyl]imide 278.15-363.15 2.367-5.775 1.94 18 Train 

67 N-hexylquinoliniumbis[(trifluoromethyl)sulfonyl]imide 323.15-348.15 3.533-4.606 0.29 6 Train 

68 2-(acetyloxy)-N,N,N-trimethylethanaminium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 293.15-343.15 3.314-5.733 0.77 6 Train 

69 N-(2-hydroxyethyl)-N,N-dimethyl-1-propanaminium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 293.15-343.15 3.131-5.075 1.18 6 Train 

70 trihexyl(tetradecyl)phosphoniumbis[(trifluoromethyl)sulfonyl]imide 278.15-358.15 3.293-7.128 6.05 17 Test 
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No. Compound T (K) range ln(ηexp) (cP) AARD% N Data Subset 

71 trihexyl(tetradecyl)phosphoniumtris(pentafluoroethyl)trifluorophosphate 268.15-373.15 2.866-8.029 2.24 23 Train 

72 ethylheptyl-di-(1-methylethyl)ammonium bis[(trifluoromethyl)sulfonyl]imide 298 5.892 3.58 1 Train 

73 heptyltrimethylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 5.03 6.28 1 Train 

74 butyltrimethylammoniumbis[(trifluoromethyl)sulfonyl]imide 283-388.51 1.887-5.567 4.71 12 Train 

75 hexyltrimethylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 5.03 1.39 1 Test 

76 methyltrioctylammoniumtrifluoroacetate 298 7.443 0.54 1 Train 

77 triethyloctylammoniumbis[(trifluoromethyl)sulfonyl]imide 293.05-368.15 2.61-5.664 0.98 17 Test 

78 trimethyloctylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 5.198 4.15 1 Train 

79 tributyloctylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 6.353 2.51 1 Train 

80 tributyloctylammoniumtrifluoromethanesulfonate 298 7.616 3.29 1 Train 

81 triethylheptylammoniumbis[(trifluoromethyl)sulfonyl]imide 293.25-368.25 2.54-5.536 1.31 16 Train 

82 tributylheptylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 6.407 0.58 1 Test 

83 triethylhexylammoniumbis[(trifluoromethyl)sulfonyl]imide 293.25-368.15 2.548-5.457 0.58 16 Train 

84 tributylhexylammoniumbis[(trifluoromethyl)sulfonyl]imide 298 6.389 0.19 1 Train 

85 1-butyl-nicotinic acid butyl ester 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide 283-343 3.871-7.512 1.28 8 Train 
 

 

 

Table  6.27: The AARD% of equation (  6.6) for different families of ionic liquids. 

No. Family T (K) range ln(η) (cP) AARD% N Compounds N Data Points 

1 Ammonium 283-388.51 1.887-7.616 1.60 15 87 

2 Imidazolium 258.15-388.19 1.411-7.716 4.51 39 393 

3 Phosphonium 268.15-373.15 2.866-8.027 3.86 2 40 

4 Pyridinium 278.15-373.15 1.823-7.512 1.72 22 249 

5 Pyrrolidinium 258.15-373.15 1.983-7.733 3.29 4 88 

6 Quinolinium 323.15-348.15 3.533-4.606 0.29 1 6 
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Table  6.28: The statistical error parameters for ln(η) in equation ( 6.6). 
Statistical Parameter 

training set 
R2 0.981 
Average absolute relative deviation 2.91 
Standard deviation error 0.17 
Root mean square error 0.18 
No. of data points 667 

test set  
R2 0.966 
Average absolute relative deviation 4.31 
Standard deviation error 0.25 
Root mean square error 0.25 
No. of data points 196 

total 
R2 0.977 
Average absolute relative deviation 3.23 
Standard deviation error 0.19 
Root mean square error 0.19 
No. of data points 863 

 

 

 
Figure  6.25: Predicted versus experimental values of ln(η)(refined database) (––– diagonal line). 
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Figure  6.26: Relative deviation of predicted ln(η) from experimental data (refined database). 

 

 

According to Figure  6.25, a tight cluster of points near the diagonal for the training and 

testing datasets illustrates the robustness of the proposed GC model for the prediction of the 

viscosity of fluorine-containing ILs.  As indicated in Table  6.26, most of the data points with 

large deviations are for temperatures over 330 K or for very low viscosity values, for which a 

small deviation in predicted viscosity produces large AARD values.  

 

Another possible reason for the observed deviations for the model prediction/correlation is due to 

unreliability in viscosity values of ILs which are not as pure as claimed. Seddon et al. [163] 

showed that the presence of contaminants in ionic liquids changes the viscosity drastically; 

for example contamination with water decreases the viscosity, while the presence of chloride 

ions increases the viscosity. That is one of the main reasons for the existence of multiple 

reported values of viscosity at a single temperature in the literature. 

 

Table  6.28 shows the AARD% of each family of ionic liquids. The results indicate that the 

model can correlate and predict each family with a similar averaged accuracy and 

demonstrates the comprehensiveness of the model. The maximum deviation is observed in 

imidazolium (4.51%) ILs and the minimum in ammonium ILs (1.60%). It should be noted 

that the quinolinium family has the absolute minimum deviation (0.29%); but as there is just 

one ionic liquid in that family, it cannot be considered as a well-predicted class of ILs. 
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To have a better judgment about the model proposed, Figure  6.27 shows the “real” linear 

scale values of viscosity; however it is common to report just the accuracy of the model in 

logarithmic scale. By reversing the transformation function and applying the exp on the data, 

the “real” AARD% of the model became 13.31% which is very low compared with the 

previous models, as shown in Table  2.4. 

 

 
Figure  6.27: Predicted versus experimental values of η in linear scale (refined database) 

(––– diagonal line). 
 

 

As discussed in section  3.4.4, the viscosity data of 247 ILs with 297 data points were excluded 

from the development of the model proposed, because there were not any reported uncertainty 

values for those data points. To have a comprehensive but less accurate model, all available data 

points (1160 data points) were used to develop a new model. This new model had 36 parameters 

with an AARD% of 4.85% in logarithmic scale and 21.89% in linear scale.  Figure  6.28 and 

Figure  6.29 illustrate the result of model developed in logarithmic and linear scale. 
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Figure  6.28: Predicted versus experimental values of ln(η) (entire database) 

(––– diagonal line). 
 

 

 
Figure  6.29: Predicted versus experimental values of η in linear scale (entire database) 

(––– diagonal line). 
 

 

In comparison with the previous published models, these two models presented in this thesis have 

more accuracy and applicability for various ionic liquids. The first model which was developed 

based on less but refined data points, had an AARD% of 3.23% and 13.31% for ln(η) and η, 

respectively. Similarly, the second model, which was developed by some unreliable data points, 
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had an AARD% of 4.85% and 21.89% for ln(η) and η, respectively. According to the results, 

both can predict the viscosity of F-ILs more accurately compared with previous models. 

All previous models were developed for few types of ionic liquids, except the model proposed 

by Gharagheizi et al. [91]. They used a dataset consisted of 1034 unique data points of which 

724 were for F-ILs. By using only the data of F-ILs, that model showed an AARD% of 6.7% 

and 59.7% for ln(η) and η which the latter is a very large deviation and calls the applicability 

of this model for F-ILs into question. As a result, their model has lower accuracy compared 

with models presented in this thesis. 

 

The comparison between models proposed and previous models is shown in Table  6.31, at the 

end of next section. In addition, information for the entire dataset, as well as the values of the 

functional groups of the ILs for both developed models are available in the supplementary CD. 

 

 

 

6.5.2 The QSPR model 

The data of the viscosity was transformed using the natural logarithm (ln) function and 

modeled thereafter. Moreover, the refined dataset with total 863 data points were modeled. 

Similar to the GC model, the same equation ( 6.6) was used to develop a model. In order to 

have a similar accuracy compared with the GC model, a 22-parameter QSPR model with a 

total R2 = 0.983 was developed. 
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where T is the absolute temperature, ni is the number of groups of type i, k is the total number 

of different types of groups, and the parameters ai, bi, and ci are for different substructures. 

The model parameters are available in Table  6.29. 

 

The cross-plot of experimental data versus calculated/predicted data and the relative 

deviation of � � (� � � � � ) from experimental data are presented in Figure  6.30 and Figure  6.31, 

respectively. In addition, the statistical error analyses for the model are summarized in 
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Table  6.30. The results show that average absolute relative deviation (AARD%) of the model 

is 3.07%  overall data points, 2.91% for the “training” set, and 3.61% for the “test”set. In 

addition, R2 is 0.983 for all data points, 0.985 for the “training” set and 0.980 for the “test” 

set. 

 

Table  6.29:Parameters of the QSPR model in equation ( 6.6). 
No. Chemical structure Descriptions ai bi ci 
 Intercept  1.241   
1 GGI5Cat topological charge index of order 5 -2.728   
2 RDF035mCat Radial Distribution Function - 3.5 / 

weighted by atomic masses 
0.0648   

3 R1v+Cat R maximal autocorrelation of lag 1 / 
weighted by atomic van der Waals 
volumes 

-48.288  6.168 

4 R3v+Cat R maximal autocorrelation of lag 3 / 
weighted by atomic van der Waals 
volumes 

162.761 -58.990  

5 B05[N-O]Cat presence of [N-(A)4-O] (value 0 or 1) 1.539   
6 Mor32uAn 3D-MoRSE - signal 32 / unweighted -0.522   
7 E3uAn 3rd component accessibility directional 

WHIM index / unweighted 
2.368   

8 MSDCat mean square distance index (Balaban)  -5.676  
9 EEig02xCat Eigenvalue 02 from edge adj. matrix 

weighted by edge degrees 
 0.227  

10 EEig03xCat Eigenvalue 03 from edge adj. matrix 
weighted by edge degrees 

 -0.191  

11 ESpm01dCat Spectral moment 01 from edge adj. 
matrix weighted by dipole moments 

 -0.614 0.3123 

12 E3uCat 3rd component accessibility directional 
WHIM index / unweighted 

 0.996  

13 E3vCat 3rd component accessibility directional 
WHIM index / weighted by atomic van 
der Waals volumes 

 -3.220  

14 RBFCat rotatable bond fraction   1.694 
15 nR06Cat number of 6-membered rings   0.0389 
16 PW2Cat path/walk 2 - Randic shape index   1.532 
17 piPC07Cat molecular multiple path count of order 07   0.0189 
18 EEig02dCat Eigenvalue 02 from edge adj. matrix 

weighted by dipole moments 
  -0.1547 

19 L/BwCat length-to-breadth ratio by WHIM   0.0026 
20 HATS2mCat leverage-weighted autocorrelation of lag 

2 / weighted by atomic masses 
  -0.5904 

21 nBMAn number of multiple bonds   -0.0178 
22 Mor17pAn 3D-MoRSE - signal 17 / weighted by 

atomic polarizabilities 
  0.6370 

Table  6.30: The statistical error parameters for the ln(η) in equation ( 6.6). 
Statistical Parameter 
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training set 
R2 0.985 
Average absolute relative deviation 2.91 
Standard deviation error 0.15 
Root mean square error 0.15 
No. of data points 667 

test set  
R2 0.980 
Average absolute relative deviation 3.61 
Standard deviation error 0.20 
Root mean square error 0.20 
No. of data points 196 

total 
R2 0.983 
Average absolute relative deviation 3.07 
Standard deviation error 0.17 
Root mean square error 0.17 
No. of data points 863 

 

 

 
Figure  6.30: Predicted versus experimental values of ln(η) (––– diagonal line). 
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Figure  6.31: Relative deviation of predicted ln(η) from experimental data. 

 

 

As illustrated in Figure  6.33, almost all data points are near the diagonal which indicates the 

robustness of the QSPR model for the calculation/prediction of the viscosity of F-ILs. In 

previous section it was explained that most of the data points with large deviations are for 

very low viscosity values or for temperatures over 330K, or possible impurity of ionic liquids 

[163].  

 

To compare this model with the previous GC model more precisely, the linear scale values of 

viscosity are shown in Figure  6.32. In addition, the AARD% of linear scale data is 12.1% 

which is close to AARD% of GC model (13.31)%. As discussed in section  4.2.2, the QSPR 

models have fewer parameters than the GC model of similar accuracy and it can be seen 

obviously for this model; but the number of parameters is relatively high compared with the 

QSPR models of other physico-chemical properties of compounds. The common QSPR 

models have less than 15 parameters and consequently, the larger models are not well 

accepted by cheminformatics researchers. As a result, further QSPR modeling of this 

property was ignored; because the model developed had 22 parameters for the refined dataset. 

So the model would be larger if the complete dataset (1160 data points including unreliable 

data points) was used. 
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Figure  6.32: Predicted versus experimental values of η in linear scale by 

the QSPR model (––– diagonal line). 
 

 

Table  6.31: Summary of different models for predicting the ln(η) of ILs. 
Model  Model Type and parameters NILs Ndata AARD% Comments 

Abbott [81] Correlation 11 n.a. 122 10  ILs contained fluorine 
atom. 

Bandres et al. 
[82] 

Correlation 8 n.a. 4.5 7  ILs contained fluorine 
atom. 

Gardas and 
Coutinho 
[83] 

GC, 13 parameters, ρ  30 500 7.78* Only 19 ILs contained 
fluorine atom. 
*AARD% is in linear scale. 

Gardas and 
Coutinho 
[86] 

GC, 12 parameters 25 482 7.50* Only 16 ILs contained 
fluorine atom. 
*AARD% is in linear scale. 

Tochigi and 
Yamomoto 
[89] 

QSPR, 24 parameters 161 334 5.04 149  ILs contained fluorine 
atom. 
Most of the ILs had just one 
data point. 

Bini el al. 
[90] 

QSPR, 4 parameters. 33 66 n.a. Authors proposed two models 
for T = 293 K and T = 353 K. 

Gharagheizi 
et al. [91] 

GC, 47 parameters 443 1672 6.32 638 duplicated data points 
were used. 
By removing the duplicates, 
the AD% was risen to 7.1%. 
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Model  Model Type and parameters NILs Ndata AARD% Comments 

724 data points were for F-ILs  

Valderrama 
et al. [92] 

ANN 58 327 n.a.  

Billard et al. 
[93] 

ANN 99 99 10 The data were only at 298 K. 

GC Model (1) GC, 35 parameters 85 863 3.23 The reliable data sources were 
used. 

GC Model (2) GC, 36 parameters 332 1160 4.85 The entire database including 
unreliable data sources was 
used. 

QSPR Model QSPR, 22 parameters 85 863 2.91 The reliable data sources were 
used. 

 

 

 

6.6 γ∞ of solutes in ionic liquids 

6.6.1 Aromatic solutes 

After examining different computational methods and transformation functions, it was found 

that fitting the ln(ln(γ∞)) produced the more accurate correlation. But the γ∞ of some system 

was equal or less than 1 (more than 400 data points) which caused the computational problem 

in logarithmic scale. To eliminate the negative values after taking the first logarithm,  the 

values of γ∞ were multiplied by 1000 and then used as the target variable in modeling 

process. In addition, some systems showed an increase in γ∞ by temperature increment which 

was convincible to introduce T and T2 as the input variables, same as the interaction 

parameters of mod. UNIFAC (Dortmund) (equation  2.11). Hence, the resultant model was a 

42-parameter linear model as shown in equation ( 6.8). 

 

 6.8 
� �  (10� × � � ) = exp( � + �  � + �  � � +   �

� +   �
� � ) × [1 + � � � � � � � � � � � � �   � � � � , � , � � , �

� , �
� � � ]

  

� =  2.07 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   
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where T is absolute temperature, ni is the number of occurrences of the ith functional group of 

anions and cations, k is the total number of different functional groups of the anions and 

cations, and � � , � � ,… � �  are the relevant coefficient of the ith functional group.. In addition, 

� � � � � � � � � � � � �   � � � � , � , � � , �
� , �

� � �  is a correction term for the ionic liquids which have 

hydroxyalkyl group (2-hydroxyethyl, 3-hydroxypropyl, etc.) in their cation structure. The 

formula of this correction term is as follows. 

 

 6.9 
� � � � � � � � � � � � �   � � � � , � , � � , �

� , �
� � � = 1.43 + �  � + �  � � +   �

� �    

 

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �  

� =  ∑ � � , � ℎ��� � �   

 

 

It is notable that � � � � � � � � � � � � �   = 0 for ionic liquids which do not have hydroxyalkyl group in 

their cation structure. The values of � � , � � ,… ℎ�  are presented in Table  6.32 

 

 

Table  6.32: Parameters of the equation ( 6.8) for γ∞ of aromatic solutes in ILs 
   � �  Description � � , �  
� �   

nNan Number of Nitrogen -1.714E-02 
F-085an F attached to C2(sp2)-C4(sp2) / C1(sp) / C4(sp3) / X -5.222E-03 

 
� �   

nATcat Number of atoms -0.424 
nCpcat number of terminal primary C(sp3)   C-C-Y3 in cation 1.258 
B07[C-O] cat presence/absence of C-(A)6-O 11.787 
F02[C-C] cat Number of  C-A-C -0.91 
nSKan Number of non-H atoms -3.628 
nCpan number of terminal primary C(sp3)   C-C-Y3 in anion 4.999 
B03[C-S] an presence/absence of C-(A)2-S -8.952 
F03[C-C]sol Number of C-(A)2-C 8.476 

 
� �   

C-040cat R-C(=X)-X / R-C#X / X=C=X 7659.61 
B02[N-O] cat presence/absence of N-A -O -8420.78 
B05[N-O] cat presence/absence of N-(A)4-O 6651.02 
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   � �  Description � � , �  
B06[C-C] cat presence/absence of C-(A)5-C -1108.41 
B07[C-C] cat presence/absence of C-(A)6-C -901.33 
B08[C-O] cat presence/absence of C-(A)7-O -16021.12 
B10[C-C] cat presence/absence of C-(A)9-C -2096.88 
F03[C-O] cat Number of C-(A)2-O 3563.88 
F10[C-C] cat Number of C-(A)9-C 364.26 
nRCNan number of nitriles (aliphatic) -592.35 
B02[S-F] an presence/absence of S-A-F -4979.74 
F01[O-S] an Number of O-S 2016.16 
F05[O-F] an Number of O-(A)4-F 361.97 
F08[C-C] an Number of C-(A)7-C 482.61 
F06[C-C] sol Number of C-(A)5-C 1768.79 

 
� �   

F03[C-N] an Number of C-(A)2-N -8.172E-06 
F05[O-O] an Number of O-(A)4-O 2.172E-05 

 
    
� �   

nN+cat number of positive charged N 1.064E-07 
C-005cat Number of CH3X in cation 1.017E-07 
C-033cat Number of R--CH..X 6.578E-08 
H-046cat H attached to C0(sp3), no X attached to next C -2.060E-08 
B09[C-N] presence/absence of C-(A)8-N -6.268E-08 
C-005an Number of CH3X in anion 2.184E-07 
B04[C-F] an presence/absence of C-(A)3-F 4.222E-08 
B07[C-C] an presence/absence of C-(A)6-C -6.951E-07 
F01[C-N] an Number of C-N 3.422E-08 

 
� �   

nBan × F03[C-C] sol number of Boron atoms, Number of C-(A)2-C 7.670E-04 
nNcat × nCs sol Number of Nitrogen, number of total secondary C(sp3)  5.563E-07 

    
� �     

nATan × nCbH sol Number of atoms, number of unsubstituted benzene C(sp2) -2.348E-08 
    
ℎ �     

nSKcat × B04[C-C] an Number of non-H atoms, -1.826E+03 
nBan × nCs number of Boron atoms, number of total secondary C(sp3) 3.726E+04 
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The AARD% of the proposed model for � �  (10� × � � ) is near 1.33% for both the “training” 

and “test” sets. Usually the values of � �  (� � ) are shown in a scatter plot and it is preferable 

to calculate the AARD% of � �  (� � ) to show the prediction ability of the model, but the 

AARD% of � �  (� � ) is not meaningful for � � around 1 which causes division by zero or very 

large deviations. So the Root Mean Square Error (RMSE) of � �  (� � ) of the proposed model 

is 0.15 for “training” set and 0.20 for “test” set which shows fairly small average deviation 

between experimental and calculated values of � �  (� � ). In addition, the coefficient of 

determination (R2) for � �  (� � ) is 0.968 and 0.959 for the “training” and “test” sets, 

respectively. The scattered plot of experimental values versus calculated/predicted values for 

� �  (� � ) is shown in Figure  6.33. 

 

To have the fair comparison for the performance of proposed model, predicted values of γ∞ in 

linear scale were plotted in Figure  6.34 against the experimental values of γ∞. In addition, the 

summary of the statistical parameters for the model for γ∞ for the training and test sets are 

listed in Table  6.33.  Accordingly, the AARD% of model for actual values of γ∞ is 9.82% and 

9.22% for training and test sets, respectively. Furthermore, the RSME of training and test sets 

are 0.74 and 1.52, respectively which are relatively small values.  

 

 

 
Figure  6.33: Correlated/Predicted versus experimental values of ln(γ∞) of aromatic solutes  

(––– diagonal line). 
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Figure  6.34: Correlated/Predicted versus experimental values of γ∞ of aromatic solutes  

(––– diagonal line). 
 

 

Table  6.33: Statistical parameters for the presented model 
for γ∞ of aromatic solutes in ILs. 

Statistical Parameter 
training set 

R2 0.970 
Average absolute relative deviation 9.82 
Standard deviation error 0.73 
Root mean square error 0.74 
No. of data points 1278 

test set  
R2 0.935 
Average absolute relative deviation 9.22 
Standard deviation error 1.50 
Root mean square error 1.52 
No. of data points 375 

total 
R2 0.954 
Average absolute relative deviation 9.69 
Standard deviation error 0.96 
Root mean square error 0.98 
No. of data points 1653 
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Figure  6.35: Percentage of calculated/predicted values of γ∞ of aromatic solutes 

in different relative deviation ranges. 
 

 

As demonstrated in Figure  6.35, 50% of the calculated/predicted values show deviations 

between 0 to 5%, 20% between 5 to 10%, 16% between 10 to 20%, 14% over 20 %. 

According to the data provided in the supplementary CD, the largest deviation is observed for 

“benzene in trihexyltetradecylphosphonium chloride” which is 93.6%; but after a precise look 

at the data, it can be found that the range of γ∞ is 0.4-0.408 and the average error in prediction 

is -0.378 which is a small deviation; but since the experimental value of γ∞ for this system is 

very small, a large deviation is observed. Similar deviations are observed for different 

systems such as: “benzene and 3-(2-methoxyethyl)-1-methylimidazolium 

bis(trifluoromethylsulfonyl)imide”, “ethylbenzene and dodecylene-bis(ethylmorpholinium) 

bis(trifluoromethylsulfonyl)imide”, “ethylbenzene and dodecylene-bis(methylmorpholinium) 

bis(trifluoromethylsulfonyl)imide”, etc. 

 

There are some other systems with ethyl sulfate or nitrate anion which have large AARD% 

and relatively large deviations which is caused by presence of strong interactions such as 

hydrogen bonding between anion and benzene in solute molecule. These systems need further 

modification in equation ( 6.8). The typical modification has been done for the systems of 

which the cations has one hydroxyalkyl group (2-hydroxyethyl, 3-hydroxypropyl, etc.) in 

their structure. These cations can interact with themselves as well as other anions and solute 

molecules. Based on the findings of some research groups [165, 241-249], the schematic 

hydrogen bonding in cation-cation, cation-anion, and cation-solute pair in “benzene” and   
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“1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide” are shown in 

Figure  6.36, Figure  6.37, and Figure  6.38, respectively. 

 

 
Figure  6.36: Cation-Cation hydrogen bond for  

1-(2-hydroxyethyl)-3-methylimidazolium 
 

 

 
Figure  6.37: Cation-anion hydrogen bonds for  

1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 
 

 

 
Figure  6.38: Cation-solute hydrogen bonds for  

1-(2-hydroxyethyl)-3-methylimidazolium and benzene. 
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The correction term just for ILs with hydroxyalkyl group has been introduced by term 

� � � � � � � � � � � � �   � � � � , � , � � , �
� , �

� � �  in equation ( 6.8). These systems could not been correlated 

well in “training” set and consequently, all of them were located in the “test” set to eliminate 

their weight on deviation of the model. As this modification improved the prediction results 

of “test’ set, the AARD% of “test” set became less than the “training” set.  

 

Ultimately, the AARD% of calculated/predicted values of γ∞ for different classes of ionic 

liquids are presented in Table  6.34. Accordingly, the maximum deviations are observed in  

Phosphonium and Morpholinium families with AARD% of 16.89% and 14.77% respectively; 

however the range of γ∞ is 0.19-2.51 and 0.182-3.27 for these two classes, and as explained 

before, the small values of γ∞ are very sensitive to small deviations. The third large deviation 

class of ionic liquids is Imidazolium with AARD% of 11.58%; but this class consists of 187 

different systems with 860 data points and due to the nature of γ∞ and measurement 

techniques, it is not a large deviation. 

 

 

Table  6.34: AARD% of equation ( 6.8) for different class of ionic liquids. 

No. Family T /K range γ∞ range AARD% 
N 

Systems 
N Data 
Points 

1 Ammonium 303.15-385.45 0.31-7.92 8.53 33 117 
2 Guanidinium 308.15-348.15 0.821-1.76 4.218 3 15 
3 Imidazolium 293.15-413 0.429-43.51 11.58 187 860 
4 Isoquinolinium 328.15-368.15 0.605-1.07 5.72 3 15 
5 Morpholinium 308-368.15 0.182-3.27 14.77 18 82 
6 Phosphonium 298.15-373.15 0.19-2.51 16.89 16 73 
7 Piperidinium 308.15-368.15 0.546-5.18 4.20 21 116 
8 Pyridinium 298.15-378.15 0.664-10.87 7.33 29 154 
9 Pyrrolidinium 298.15-368.15 0.587-5.35 3.89 41 201 
10 Sulphonium 298.15-368.15 1.08-2.45 3.38 3 20 

 

 

 

In comparison with the other models, it should be noted that there is not any easy-to-use 

model available in the literature and the UNIFAC model requires special database and 

software (DDB) to calculate the γ∞ of aromatic solutes in ILs. To have a comparison between 

the output of the proposed GC model and the original and modified UNIFAC models, the γ∞ 

is calculated for few systems using the consortium delivery 2014 interaction parameters and 
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the results are shown in Table  6.36. Accordingly, there are many systems that both original 

and modified UNIFAC models fail to predict the correct value of γ∞; however there are few 

systems that modified UNIFAC model performs better than the GC model proposed in this 

study, such as “benzene” in “1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl) 

phosphate”. It seems that such systems have been used to fit the interaction parameters of the 

modified UNIFAC model. There few other systems that modified UNIFAC model shows the 

AARD% of over 1000%, such as “ethylbenzene” in “1-butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide” (3447.71%); however the original UNIFAC model fails to 

predict the γ∞ for them. 

 

The calculated/predicted values of γ∞ for all of the systems using the GC model proposed, 

and the original and modified UNIFAC models are available in the supplementary CD. It is 

notable that the interaction parameters are not available for all of the systems. The summary 

of results is shown in Table  6.35. Accordingly, the GC model proposed in this study has the 

best results and it is the first GC model for the calculation/prediction of γ∞ of aromatic solutes 

in ILs. 

 

 

Table  6.35: Summary of result of models for γ∞ of aromatic solutes in ILs. 
Model  Model Type and parameters NSystems Ndata AARD% Comments 

Original 
UNIFAC 

GC 9 27 64.07 3 solutes in 9 ILs. 

Modified 
UNIFAC 

GC 135 389 174.40 4 solutes in 85 ILs. 

GC Model 
(this study) 

GC, 42 parameters 354 1653 9.69 10 solutes in 123 ILs. 
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Table  6.36: γ∞ of some aromatic solutes in ILs calculated using the GC models proposed (equation  6.8), and the original and modified UNIFAC models. 

No. Solute IL T γ∞
exp γ∞

GC Model ARD% γ∞
org UNIFAC ARD% γ∞

mod UNIFAC ARD% 

1 benzene 1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate 313.1 1.06 0.727 31.38 n.a. n.a. 1.017 4.02 

2 ethylbenzene 1-ethyl-3-methylimidazolium tetrafluoroborate 313.15 6.3 6.266 0.55 n.a. n.a. 6.167 2.11 

3 ethylbenzene 1-butyl-3-methylimidazolium tetrafluoroborate 313.15 5.537 4.281 22.68 0.755 86.37 1.047 81.09 

4 ethylbenzene 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide 323.15 1.83 1.833 0.18 n.a. n.a. 64.923 3447.71 

5 toluene 1-butyl-3-methylimidazolium thiocyanate 298.15 3.4 3.469 2.03 n.a. n.a. 3.391 0.25 

6 toluene 1-butyl-1-methylpyrrolidinium tetracyanoborate 338.15 1.14 1.161 1.86 0.765 32.89 0.779 31.68 

7 toluene 1-hexyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate 312.8 0.674 0.670 0.66 n.a. n.a. 1.521 125.72 
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6.6.2 Alcohol solutes 

To model the data of alcohol solutes, the same procedure was done as explained in 

section  6.6.1. Hence, the resultant model was a 36-parameter linear model as shown in 

equation ( 6.10). 

 

 6.10 

� �  (10� × � � ) = exp( � + �  � + �  � � +   � � +   �
� � ) 

 

� =  1.853 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �  

  

 

where T is absolute temperature, ni is the number of occurrences of the ith functional group of 

anions, cations, and solutes, k is the total number of different functional groups of the anions, 

cations, and solutes, and � � , � � ,… � �  are the relevant coefficient of the ith functional group. 

The values of � � , � � ,… � �  and their description are presented in Table  6.37 and Table  6.38, 

respectively. 

 

The AARD% of the proposed model for � �  (10� × � � ) is approximately 1.93% for the 

“training” set and 2.30% for the “test” set. As mentioned before, usually the values of 

� �  (� � ) are shown in scatter plots; but the AARD% of � �  (� � ) is not meaningful for 

� � around 1 which causes division by zero or very large deviations. So the RMSE of � �  (� � ) 

of the proposed model is 0.21 for training set and 0.24 for test set which shows fairly small 

deviation between experimental and calculated values of � �  (� � ). In addition, the coefficient 

of determination (R2) for � �  (� � ) is 0.913 and 0.924 for the “training” and “test” sets, 

respectively. The scattered plot of experimental values versus calculated/predicted values for 

� �  (� � ) is shown in Figure  6.39. 

 

To compare the real output and performance of the presented model, Figure  6.40 

demonstrates the predicted values of γ∞ in linear scale versus the experimental values of γ∞. 

In addition, Table  6.39 shows the summary of the statistical parameters for the training and 

test sets of equation ( 6.9).   
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Table  6.37: Parameters of equation ( 6.10) 
   � �  � � , �  

� �  
B10[C-N]cat × F03[C-N]cat -1.696E-02 
B08[C-C]cat  × nHsol -2.057E-03 

 F02[C-C]cat  × nHAccsol -1.123E-04 
 B01[C-S]an × B01[C-C]sol 5.838E-03 

� �  
B02[C-N]an × nHsol -1.506E-05 

� �  
F01[C-O]an -7.880E-07 
B06[C-O]cat  × nBan 6.403E-07 
F02[C-C]cat  × nSO3an -5.762E-08 
nSO4an × nSKsol 1.595E-07 
H-051an × nSKsol 1.271E-07 
B04[C-O]sol × H-046sol 2.375E-08 

� �  
B02[F-F]an 36.388 
B01[C-C]sol × nHAccsol -17.994 

� �  
 F04[N-O]cat  × F10[C-C]cat 1810.573 

B10[C-N]cat  × nHAccan 678.267 
F02[C-C]cat  × B01[C-S]an -431.535 
F09[C-N]cat  × nBan 3340.265 

 B09[C-N]cat  × nHsol -713.324 
F06[C-C]cat  × nHsol -35.814 
nPan × nROH cat -11439.849 
B02[C-N]an × F03[C-C]cat 551.154 
B02[C-N]an × F08[C-O]cat -11746.388 
nN+

an  × nHAccan -2042.971 
 nBan × F03[C-N]an 252.926 
 F02[F-F]an × F-085an 50.732 
 H-046an × nSan -1230.705 
 H-05an  × B01[C-C]sol -14227.463 
 nOHtsol × nHAccan -346.107 
 nHsol × B02[F-F]an -309.651 
 nHsol × B01[C-C]sol 2091.650 
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Table  6.38: Definition of parameter of equation ( 6.10). 
No. Symbol Definition 
1 B01[C-C] absence/presence of C-C (0 or 1) 
2 B01[C-S] absence/presence of C-S (0 or 1) 
3 B02[C-N] absence/presence of C-A-N (0 or 1) 
4 B02[F-F] absence/presence of F-A-F (0 or 1) 
5 B04[C-O] absence/presence of C-(A)3-O (0 or 1) 
6 B06[C-O] absence/presence of C-(A)5-O (0 or 1) 
7 B08[C-C] absence/presence of C-(A)7-C (0 or 1) 
8 B09[C-N] absence/presence of C-(A)8-N (0 or 1) 
9 B10[C-N] absence/presence of C-(A)9-N (0 or 1) 
10 F01[C-O] number of C-O 
11 F02[C-C] number of C-A-N 
12 F02[F-F] number of F-A-F 
13 F03[C-C] number of C-(A)2-C 
14 F03[C-N] number of C-(A)2-N 
15 F04[N-O] number of N-(A)3-O 
16 F06[C-C] number of C-(A)5-C 
17 F08[C-O] number of C-(A)7-O 
18 F09[C-N] number of C-(A)8-N 
19 F10[C-C] number of C-(A)9-C 
20 F-085 F attached to C2(sp2)-C4(sp2) / C1(sp) / C4(sp3) / X 
21 H-046 H attached to C0(sp3) no X attached to next C 
22 H-051 H attached to alpha-Ca 

23 nB number of Boron atoms 
24 nH number of Hydrogen atoms 
25 nHAcc Total number of acceptor atoms for H-bonds (N, O, F), excluding N with a formal positive 

charge, higher oxidation states and pyrrolyl form of N 

26 nN+ number of positive charged N 
27 nOHt number of tertiary alcohols 
28 nP number of Phosphorous atoms 
29 nROH number of hydroxyl groups connect to an aliphatic group 
30 nS number of Sulfur atoms 
31 nSK number of non-H atoms 
32 nSO3 number of sulfonates (thio- / dithio-) 
33 nSO4 number of sulfates (thio- / dithio-) 
a An alpha-C may be defined as a C attached through a single bond with -C=X, -C#X, -C—X 
R represents any group linked through carbon 
X represents any heteroatom (O, N, S, P, Se, halogens) 
A represents any atom  
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Figure  6.39: Correlated/Predicted versus experimental values of ln(γ∞) of alcohol solutes  

(––– diagonal line). 
 

 

 
Figure  6.40: Correlated/Predicted versus experimental values of γ∞ of alcohol solutes  

(––– diagonal line). 
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Table  6.39: Statistical parameters for equation 

( 6.10) 

Statistical Parameter 
training set 

R2 0.900 
Average absolute relative deviation 13.42 
Standard deviation error 0.31 
Root mean square error 0.31 
No. of data points 2047 

test set  
R2 0.939 
Average absolute relative deviation 16.97 
Standard deviation error 0.42 
Root mean square error 0.42 
No. of data points 738 

total 
R2 0.921 
Average absolute relative deviation 14.36 
Standard deviation error 0.34 
Root mean square error 0.34 
No. of data points 2785 

 

Figure  6.41: Percentage of calculated/predicted 
values of γ∞ of alcohol solutes in different 
relative deviation ranges. 

 

 
 

As indicated in Table  6.39, the AARD% of the model for γ∞ is 13.42% for the “training” set 

and 16.97% for the “test” set. Furthermore, the RSME of “training” and “test” sets are 0.31 

and 0.42, respectively which are relatively small values. 

 

According to Figure  6.41, 31% of the calculated/predicted values show deviations between 

0 to 5%, 24% between 5 to 10%, 25% between 10 to 20%, 20% over 20 %. At the first look, 

it may seem that the model has large deviation; but as the γ∞ of more than 900 data points are 

below 1, a small deviation in predicted values cause a great value of AARD%.  

 

According to the dataset provided in the supplementary CD, the largest deviation belongs to 

“methanol” in “1,3-dimethylimidazolium dimethylphosphate” which is 547.7%; but is has 

just one data point and its � � � ��  is 0.029. Since the experimental value of � �  for this system is 
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very small, a large deviation is observed. In addition, as this system only has one data point, 

it has very low weight in model development process as its deviation does not change 

noticeably the AARD% of the model. Similar deviations are observed for different systems 

with just one or two data points such as: “methanol”, “ethanol”, and “1-propanol” in “1-octyl-

3-methylimidazolium chloride”; “ethanol” in “1-butyl-3-methylimidazolium chloride”, etc. 

 

There are some other systems with “nitrate” or “tetrafluoroborate” as anion which show large 

AARD% and relatively large deviations which is caused by presence of strong interactions 

such as hydrogen bonding between cation and anion. Normally, most of the studied alcohols 

have H-bond with cations which introduce a deviation in calculations, but the additional H-

bond between cation-anion pairs can be the source of large deviations [165, 241-249]. The 

evidence of such interactions is the presence of “number of acceptor atoms for H-bonds” of 

anion and solutes (nHAccan and nHAccsol) in presented model. In addition, anions and solutes 

can participate in hydrogen bonding too, such as “tetrafluoroborate” as acceptor and 

hydrogen at –OH group of “methanol” as donator. The proof of this interaction is the 

presence of � � � � � � � × � � � � � � �  in equation ( 6.10); however in this parameter, the � � � � � � �  

is the number of tertiary alcohols. The summary of these descriptions are presented in 

Figure  6.42, Figure  6.43, and Figure  6.44 which show the H-bond in cation-anion, cation-

solute, and anion-solute pairs for “methanol” and “1-ethyl-3-methylimidazolium 

tetrafluoroborate” system. Such systems may be correlated better by further modification of 

equation ( 6.10) and inserting a new term or more functional groups to model the systems with 

above-mentioned anions. 

 

 
Figure  6.42: Cation-Anion hydrogen bond for 1-ethyl-3-methylimidazolium tetrafluoroborate. 
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Figure  6.43: Cation-Solute hydrogen bond for 1-ethyl-3-methylimidazolium and methanol 

 

 
Figure  6.44: Anion-Solute hydrogen bond for tetrafluoroborate and methanol. 

 

 

Ultimately, the AARD% of calculated/predicted values of � �  for different classes of ionic 

liquids are presented in Table  6.40. Accordingly, the maximum deviations are observed in 

phosphonium and imidazolium families with AARD% of 19.8% and 17.6% respectively; 

however the range of � �  for phophonium class is 0.164-2.27 and as explained before, the 

small values of � �  are very sensitive to small deviations. The imidazolium class consists of 

337 different systems with 1470 data points and due to the nature of � �  and measurement 

techniques; it is not a large deviation. 

 

Table  6.40: AARD%  of equation ( 6.10) for different class of ionic liquids. 

No. Family T /K range γ∞ range AARD% 
N 

Systems 
N Data 
Points 

1 Ammonium 301.75-386.6 0.1-4.02 12.3 61 221 
2 Guanidinium 308.15-348.15 0.907-2.1 9.2 4 20 
3 Imidazolium 293.15-413 0.029-12.42 17.6 337 1470 
4 Isoquinolinium 328.15-368.15 0.916-1.78 7.9 5 25 
5 Morpholinium 308-368.15 0.218-3.73 10.4 28 138 
6 Phosphonium 302.45-373.15 0.164-2.27 19.8 20 80 
7 Piperidinium 308.15-368.15 0.366-3.75 8.0 38 218 
8 Pyridinium 298.15-378.15 0.195-5.759 10.7 40 210 
9 Pyrrolidinium 298.15-368.15 0.329-4.48 9.8 78 373 
10 Sulphonium 298.15-368.15 0.935-3.32 11.8 4 30 
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In order to compare this model with previous models, it is notable that there is not any easy-

to-use model available in the literature, as discussed in previous section.  The only available 

models are the original and modified UNIFAC models which require special software (DDB) 

to calculate the γ∞ of alcohol solutes in ILs. Table  6.42 shows the output of above mentioned 

models for few alcohol-IL systems. Accordingly, there are some systems that the original 

and/or modified UNIFAC models predict their γ∞ better than the GC model. 

 

The calculated/predicted values of γ∞ for all systems using these three models are available in 

the supplementary CD. It is notable that the interaction parameters are not available for all 

ionic liquids. The summary of results is shown in Table  6.35 . Accordingly, the GC model 

proposed in this study shows the best performance which is the first GC model for the 

calculation/prediction of γ∞ of alcohol solutes in ILs. 

 

 

Table  6.41: Summary of result of models for γ∞ of alcohol solutes in ILs. 
Model  Model Type and parameters NSystems Ndata AARD% Comments 

Original 
UNIFAC 

GC 47 205 27.34 13 solutes in 7 ILs. 

Modified 
UNIFAC 

GC 164 703 32.22 13 solutes in 26 ILs. 

GC Model 
(this study) 

GC, 36 parameters 615 2785 14.36 17 solutes in 126 ILs. 
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Table  6.42: γ∞ of some alcohol solutes in ILs calculated using the GC models proposed (equation  6.9), and the original and modified UNIFAC models. 

No. Solute IL T γ∞
exp γ∞

GC Model ARD% γ∞
org UNIFAC ARD% γ∞

mod UNIFAC ARD% 

1 1-butanol 1-butyl-3-methylimidazolium trifluoromethanesulfonate 308.15 1.66 2.080 25.30 n.a. n.a. 1.6603062 0.02 

2 1-pentanol 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 333.25 2.18 2.114 3.01 1.7951817 17.65 2.1152835 2.97 

3 2-butanol 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 293.15 2.03 2.597 27.94 1.6116513 20.61 2.0340787 0.20 

4 2-butanol 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate 303.15 6.876 6.869 0.10 n.a. n.a. 22.200032 222.86 

5 2-methyl-1-propanol 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 313.15 2.85 2.676 6.10 2.8376674 0.43 2.7749396 2.63 

6 2-methyl-1-propanol 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 322.55 2.38 2.390 0.44 2.6394176 10.90 3.1033135 30.39 

7 2-propanol 1-decyl-3-methylimidazolium tetracyanoborate 328.15 0.938 0.952 1.48 1.2407551 32.28 1.259237 34.25 

8 2-propanol 1-ethyl-3-methylimidazolium tetrafluoroborate 323 1.05 2.502 138.26 n.a. n.a. 5.6600154 439.05 

9 methanol 1-decyl-3-methylimidazolium tetracyanoborate 318.15 0.826 0.680 17.63 1.4178283 71.65 1.7590327 112.96 
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6.6.3 Alkane solutes 

As explained in section  5.6.3, the entire database was divided into two subsets based on the 

number of carbon atoms of the solute; so two separate models were developed. 

 

 

6.6.3.1 Solutes with less than 10 carbon atoms 

For this category, a 45-parameter model was developed of which 20 parameters were the 

functional groups of cations, 19 for anions, and 6 for solutes.  

 

 6.11 

� �  (10� × � � ) = exp( � + �  � + �  � � +   � � +   �
� � ) 

 

� =  2.02 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �  

  

 

The values of � � , � � ,… � �  and their description are presented in Table  6.43 and Table  6.44, 

respectively. 

 

 

Table  6.43: Parameters of equation ( 6.11) 
   � �  � � , �  

� �  
B06[C-O] cat 4.354E-02 
B09[C-C] cat -1.532E-02 

  � �  
nPyridines cat -8.743E-03 

 B10[C-N] cat -1.063E-02 
 B05[C-F] an 1.296E-02 
 B08[C-C] an -7.521E-03 
 B03[C-C] sol 2.793E-02 
 F01[C-C] sol 6.230E-03 

  � �  
nR10 cat 1.570E-04 
nN+ cat 5.241E-03 
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   � �  � � , �  
CH3X cat -7.571E-04 
CH2X2 cat -6.395E-04 
B06[O-O] cat 3.875E-03 
F02[C-C] cat -4.354E-04 

 F07[C-O] cat 5.144E-04 
 F09[C-O] cat -3.913E-03 
 nAT an -4.751E-04 
 nN an -6.077E-04 
 B01[C-S] an -1.094E-02 
 B02[S-F] an 1.002E-02 
 B05[C-C] an -9.266E-04 
 F06[C-O] an 9.572E-04 
 nCL sol 1.858E-03 

� �  
  R-SH an 1.911E-01 

 B02[F-F] an 2.539E-03 
 B05[C-F] an -2.113E-02 

  � �  
 nCs cat 2.196E-04 

nRCN cat 1.859E-02 
R--CH--R cat 1.419E-03 
B01[C-N] cat 1.425E-03 

 B07[C-C] cat -3.501E-03 
B08[C-N] cat -1.388E-03 
F02[C-C] cat -1.079E-03 
F07[C-N] cat -2.538E-03 
F08[C-N] cat 1.742E-03 
nN an -1.036E-03 

 nX an -1.965E-04 
 nN+ an -1.078E-04 
 CH3R/CH4 an 2.417E-03 
 R-SH an -4.012E-02 
 B02[C-S] an 1.317E-03 
 B06[C-O] an 1.445E-02 
 B06[C-S] an -1.471E-02 
 B07[C-C] an -3.362E-02 
 B08[C-S] an 1.537E-02 
 F04[O-S] an -7.609E-03 
 nCp sol 8.134E-04 
 nCs sol 1.105E-03 
 CH2RX sol 1.038E-03 
 B03[C-C] sol 2.212E-02 
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Table  6.44: Definition of parameter of equation ( 6.11). 
No. Symbol Definition 

1 CH3R / CH4  
2 CH3X  
3 CH2RX  
4 CH2X2  
5 R--CH--R  
6 B01[C-N] absence/presence of C-N (0 or 1) 
7 B01[C-S] absence/presence of C-S (0 or 1) 
8 B02[C-S] absence/presence of C-A-S (0 or 1) 
9 B02[F-F] absence/presence of F-A-F (0 or 1) 
10 B02[S-F] absence/presence of S-A-F (0 or 1) 
11 B03[C-C] absence/presence of C-(A)2-C (0 or 1) 
12 B05[C-C] absence/presence of C-(A)4-C (0 or 1) 
13 B05[C-F] absence/presence of C-(A)4-F (0 or 1) 
14 B06[C-O] absence/presence of C-(A)5-O (0 or 1) 
15 B06[C-S] absence/presence of C-(A)5-S (0 or 1) 
16 B06[O-O] absence/presence of O-(A)5-O (0 or 1) 
17 B07[C-C] absence/presence of C-(A)6-C (0 or 1) 
18 B08[C-C] absence/presence of C-(A)7-C (0 or 1) 
19 B08[C-N] absence/presence of C-(A)7-N (0 or 1) 
20 B08[C-S] absence/presence of C-(A)7-S (0 or 1) 
21 B09[C-C] absence/presence of C-(A)8-C (0 or 1) 
22 B10[C-N] absence/presence of C-(A)9-N (0 or 1) 
23 F01[C-C] number of C-C 
24 F02[C-C] number of C-A-C 
25 F04[O-S] number of O-(A)3-S 
26 F06[C-O] number of C-(A)5-O 
27 F07[C-N] number of C-(A)6-N 
28 F07[C-O] number of C-(A)6-O 
29 F08[C-N] number of C-(A)7-N 
30 F09[C-O] number of C-(A)8-O 
31 nAT number of atoms 
32 nCL number of Chlorine atoms 
33 nCp number of terminal primary Carbon (sp3) 
34 nCs number of total secondary Carbon (sp3) 
35 nN number of Nitrogen atoms 
36 nN+ number of positive charged N 
37 nPyridines number of Pyridines 
38 nR10 number of 10-membered rings 
39 nRCN number of nitriles (aliphatic) 
40 nX number of halogen atoms 
41 R-SH  
R represents any group linked through carbon , X represents any heteroatom (O, N, S, P, Se, halogens) 
A represents any atom  
-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group 
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The value of AARD% is not meaningful for � �  (� � ) for values near zero; so the RMSE of 

� �  (� � ) of the proposed model is 0.31 for the “training” set and 0.40 for the “test” set. In 

addition, R2 for � �  (� � ) is 0.966 and 0.960 for the “training” and “test” sets, respectively. 

The scattered plot of experimental values versus calculated/predicted values for � �  (� � ) is 

shown in Figure  6.45. 

 

Figure  6.40 demonstrates the predicted values of γ∞ in linear scale versus the experimental 

values of γ∞. In addition, Table  6.39 shows the summary of the statistical parameters of the 

model for γ∞ for the training and test sets.   

 

 
Figure  6.45: Correlated/Predicted versus experimental values of ln(γ∞) of alkane solutes (nCsol<10)  

(––– diagonal line). 
 

 
Figure  6.46: Correlated/Predicted versus experimental values of γ∞ of alkane solutes (nCsol<10)  

(––– diagonal line). 
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Table  6.45: Statistical parameters for equation ( 6.11) 

Statistical Parameter 
training set 

R2 0.920 
Average absolute relative deviation 20.56 
Standard deviation error 22.13 
Root mean square error 22.40 
No. of data points 2653 

test set  
R2 0.867 
Average absolute relative deviation 28.83 
Standard deviation error 31.42 
Root mean square error 32.04 
No. of data points 715 

total 
R2 0.907 
Average absolute relative deviation 22.32 
Standard deviation error 24.43 
Root mean square error 24.76 
No. of data points 3368 

 

Figure  6.47: Percentage of calculated/predicted 
values of γ∞ of alkane solutes (nCsol<10) in 
different relative deviation ranges. 

 

 

 

According to Table  6.45, the AARD% is 20.56% for the “training” set and 28.83% for the 

“test” set. Furthermore, the RSME of “training” and “test” sets are 22.40 and 32.04. The 

value of RMSE is relatively high compared with the models for γ∞ of aromatic and alcohol 

solutes. A comparison between γ∞ values of alkane solutes with aromatic and alcohol solutes 

(Figure  6.46 versus Figure  6.34 and Figure  6.40 ) shows that some alkane solutes have large 

values of γ∞. For example, the highest observed γ∞ for aromatic solutes is 43.51 while there 

are 685 data points of alkane solutes with γ∞ of greater than 50.0. 

 

As indicated in Figure  6.46, the model presented has higher deviations in prediction of the γ∞ 

values greater than 100.0. It is due to the type of objective function used which minimizes the 

average absolute “relative” deviation. The minimization of AARD% results in creation of 

large deviations for larger target values (the AARD% remains relatively low) while it tries to 

keep the deviation less for smaller target values. As most of the γ∞ data have small values, the 
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AARD% objective function is more useful compared with the other types of objective 

functions such as Mean Squared Error (MSE). MSE objective function is not useful for 

modeling both the small and large target values which may introduce very high AARD% 

(over 500%) for values less than 1.0. For example, 10% of deviation for γ∞ = 1000 is equal to 

100 which is a relatively large deviation; but if the model predicts the γ∞ = 1.0 as 2.0, the 

deviation is low while the AARD% is equal to 100%. As a result, the AARD objective 

function is more suitable for smaller values. 

 

According to Figure  6.47, 23% of the calculated/predicted values show deviations between 0 

to 5%, 20% between 5 to 10%, 23% between 10 to 20%, 34% over 20 %. At the first look, it 

may seems that the model has large deviations and fails to predict the data; but as the small 

values of γ∞ are more sensitive to deviations, a small deviation in prediction results in a great 

value of AARD%. For the solutes with less than 10 carbon atoms, there are 455 data points 

with γ∞ of less than 1.0 and the AARD% over these data points is 47.4%; so the smaller 

values of γ∞ are the main reason of the observing large AARD% in calculated/predicted 

values of γ∞. 

 

Regarding to the dataset provided in the supplementary CD, the largest deviations belong to 

trichloromethane and dichloromethane in 1-ethyl-3-methylimidazolium tosylate which are 

446.7% and 300.7%; but these systems has just one data point which have a very low weight 

in model development process as their deviations does not change noticeably the AARD% of 

the model. Similar deviations are observed for different systems with just one or two data 

points. 

 

The other systems with high AARD values have γ∞ of less than 1.0 which are very sensitive 

to small deviations. These systems mostly contain chloride and nitrate anions which are 

highly polar. As a result, the formation of strong H-bond between cation and anion are the 

reason of such deviations. 

 

According to the dataset provided in the supplementary CD, there are 742 systems for 13 

solutes and 122 ionic liquids. Due to presence of strong interactions between components 

(solute, cation, and anion), it seems that more functional groups should be inserted into the 

model developed; but as explained previously, large models are not desirable and the aim of 

this study is to develop the smallest model with reasonable accuracy over the entire database.   
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Ultimately, Table  6.46 is shown the AARD% of calculated/predicted values of � �  for 

different classes of ionic liquids. The maximum deviation belongs to Phosphonium family 

with AARD% of 46.3%; like the previous class of solutes. As approximately half of the data 

points of Phosphonium family are below 1.0 and the small values of � �  are very sensitive to 

small deviations, such a high AARD% is observed.  

 

Table  6.46: AARD%  of equation (6.10) for different class of ionic liquids. 

No. Family T (K) range Y range AARD% N Systems 
N  

Data Points 
1 Ammonium 301.62-374.95 0.29-100.55 24.4 76 256 
2 Guanidinium 308.15-348.15 0.786-37.2 9.0 8 40 
3 Imidazolium 293.15-373 0.17-996 27.2 367 1612 
4 Isoquinolinium 328.15-368.15 3.66-7.45 6.4 4 20 
5 Morpholinium 308-368.15 0.104-125 18.3 34 170 
6 Phosphonium 298.15-373.15 0.23-61.4 46.3 35 127 
7 Piperidinium 308.15-368.15 0.495-333 7.5 47 277 
8 Pyridinium 297-368.15 0.577-381 15.0 54 309 
9 Pyrrolidinium 298.15-368.15 0.26-408 17.0 112 517 

10 Sulphonium 298.15-368.15 12.7-87.2 4.7 5 40 
 

 

The comparison of model proposed is discussed in next section, over entire database of 

alkane solutes. Information on the entire dataset and original data sources, as well as the 

values of the functional groups for ILs are available in the supplementary CD. 

 

 

6.6.3.2 Solutes with 10 or more carbon atoms 

For the second part of γ∞ data of alkane solutes, a 28-parameter model was developed of 

which 18 parameters were the functional groups of cations, 9 for anions, 2 for solutes, and the 

absolute temperature.  

 6.12 

� �  (10� × � � ) = exp( � + �  � + �  � � +   � � +   �
� � ) 

 

� =  2.505 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �  
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The values of � � , � � ,… � �  and their description are presented in Table  6.43 and Table  6.44, 

respectively. 

 

Table  6.47: Parameters of equation ( 6.12) 
   � �  � � , �  

� �  
F07[C-C] cat -2.026E-03 
CH3X 9.973E-02 

  � �  
CH3X cat -1.861E-03 

 F01[C-C] cat 3.490E-04 
 F10[C-C] cat 1.355E-03 
 F02[C-N] an -3.382E-03 

  � �  
nCp cat -1.287E-03 
nRCN cat 8.633E-03 
F02[C-C] cat -1.087E-03 
B01[C-N] an 3.906E-03 
F03[C-N] an -9.085E-04 
F06[C-C] an -1.139E-03 

  � �  
B03[C-N] cat 9.071E-03 

 B04[C-N] cat -2.628E-03 
 B08[C-O] cat -1.042E-02 
 nB an 1.284E-02 
 F04[C-C] an -4.123E-02 
 F05[C-C] sol 1.235E-02 

  � �  
 nCs cat -7.273E-04 

nN+ cat 2.674E-03 
nROH cat 6.294E-03 
B07[C-C] cat -2.331E-03 

 B08[C-N] cat -4.246E-03 
B09[C-N] cat -2.937E-03 
F03[C-N] cat -3.622E-04 
F03[N-O] cat 2.666E-03 
nAT an -1.180E-03 
B02[C-S] an 6.688E-03 

 F04[C-C] an 1.607E-02 
 F08[C-C] sol -1.170E-03 
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Table  6.48: Definition of parameter of equation ( 6.12). 
No. Symbol Definition 

1 CH3X number of CH3X group 
2 B01[C-N] absence/presence of C-N (0 or 1) 
3 B02[C-S] absence/presence of C-A-S (0 or 1) 
4 B03[C-N] absence/presence of C-(A)2-N (0 or 1) 
5 B04[C-N] absence/presence of C-(A)3-N (0 or 1) 
6 B07[C-C] absence/presence of C-(A)6-C (0 or 1) 
7 B08[C-N] absence/presence of C-(A)7-N (0 or 1) 
8 B08[C-O] absence/presence of C-(A)7-O (0 or 1) 
9 B09[C-N] absence/presence of C-(A)8-N (0 or 1) 
10 F01[C-C] number of C-C 
11 F02[C-C] number of C-A-C 
12 F02[C-N] number of C-A-N 
13 F03[C-N] number of C-(A)2-N 
14 F03[N-O] number of N-(A)2-O 
15 F04[C-C] number of C-(A)3-C 
16 F05[C-C] number of C-(A)4-C 
17 F06[C-C] number of C-(A)5-C 
18 F07[C-C] number of C-(A)6-C 
19 F08[C-C] number of C-(A)7-C 
20 F10[C-C] number of C-(A)9-C 
21 nAT number of atoms 
22 nB number of Boron atoms 
23 nCp number of terminal primary Carbon (sp3) 
24 nCs number of total secondary Carbon (sp3) 
25 nN+ number of positive charged N 
26 nRCN number of nitriles (aliphatic) 
41 nROH number of hydroxyl groups 
R represents any group linked through carbon 
X represents any heteroatom (O, N, S, P, Se, halogens) 
A represents any atom  
-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group 
 

 

Figure  6.48 shows the experimental values versus calculated/predicted values for � �  (� � ). As 

mentioned before, the value of AARD% is not meaningful for � �  (� � ) for values near zero; 

so the RMSE of � �  (� � ) of the presented model is 0.24 for the “training” set and 0.29 for the 

“test” set. In addition, R2 for � �  (� � ) is 0.976 and 0.975 for the “training” and “test” sets, 

respectively.  

 

Figure  6.49 demonstrates the predicted values of γ∞ in linear scale versus the experimental 

values of γ∞. In addition, the statistical parameters for the model are summarized in 
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Table  6.49.  Accordingly, the AARD% of the model is 11.45% for the “training” set and 

12.72% for the “test” set. In addition, the RSME of “training” and “test” sets are 184.01 and 

110.96. As discussed earlier, this database contains the large values of γ∞ and AARD% 

objective function tried to minimize only the “relative” deviation. 

 

 
Figure  6.48: Correlated/Predicted versus experimental values of ln(γ∞) of alkane solutes (nCsol≥10)  

(––– diagonal line). 
 

 

 
Figure  6.49: Correlated/Predicted versus experimental values of γ∞ of alkane solutes (nCsol≥10)  

(––– diagonal line). 
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Table  6.49: Statistical parameters for equation (6.11) 

Statistical Parameter 
training set 

R2 0.961 
Average absolute relative deviation 11.45 
Standard deviation error 183.58 
Root mean square error 184.01 
No. of data points 402 

test set  
R2 0.971 
Average absolute relative deviation 12.72 
Standard deviation error 109.47 
Root mean square error 110.96 
No. of data points 165 

total 
R2 0.960 
Average absolute relative deviation 11.82 
Standard deviation error 166.06 
Root mean square error 166.10 
No. of data points 567 

 

Figure  6.50: Percentage of calculated/predicted 
values of γ∞ of alkane solutes in different relative 
deviation ranges (nCsol≥10). 

 

 

Figure  6.50 shows that 37% of the calculated/predicted values have deviations between 0 to 

5%, 26% between 5 to 10%, 25% between 10 to 20%, 13% over 20 %. Regarding to the 

dataset provided in the supplementary CD, the largest deviations belong to “decane” in 1-

“octyl-3-methylimidazolium tetrafluoroborate” and “trihexyl(tetradecyl)-phosphonium 

tetrafluoroborate” ionic liquids which are 108.3% and 100.9%. The first system has just one 

data point which has a very low weight in model development process as its deviation does 

not change noticeably the AARD% of the model; so the variable selection procedure may 

ignore the large deviation of this system. Similar deviations are observed for “dodecane” in 

“1-octyl-3-methylimidazolium tetrafluoroborate” (87.2%) and “undecane” in “1-octyl-3-

methylimidazolium tetrafluoroborate” (71.9%) which have just one data point. On the other 

hand, the average γ∞ value of above mentioned systems is less than 5.0 while the average γ∞ 

value of entire database is 525.5. As this model has been developed for the system with large 

values of γ∞, such deviations are inevitable for small values. 
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Figure  6.48 indicated that there are two systems with large deviations in logarithmic scale. 

The first one, which is located in “training” set, is “decane” in “1-hexyl-3-methylimidazolium 

trifluoromethanesulfonate”. The second system, which is in “test” set, is “decane” in “1-

ethyl-3-methylimidazolium diethylphosphate”. For the first system, Figure  6.51 shows the γ∞ 

of different solutes in “1-hexyl-3-methylimidazolium trifluoromethanesulfonate”. It is clearly 

obvious that the data of “decane” is outlier and the measured data are not correct. 

 

 
Figure  6.51: The γ∞ of different alkane solutes in 1-hexyl-3-methylimidazolium 

trifluoromethanesulfonate. 

 

 

 
Figure  6.52: The γ∞ of different alkane solutes in 1-ethyl-3-methylimidazolium 

diethylphosphate. 
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Figure  6.53: Correlated/Predicted versus experimental values of γ∞ of different alkane 

solutes in 1-ethyl-3-methylimidazolium diethylphosphate (––– diagonal line). 

 

 

For the second system, Figure  6.52 shows the γ∞ of different solutes in “1-ethyl-3-

methylimidazolium diethylphosphate”. Accordingly, there is not any strange behavior while 

the solutes are changed. For further analysis, the calculated/predicted versus the experimental 

values of γ∞ of different solutes in “1-ethyl-3-methylimidazolium diethylphosphate” is shown 

in Figure  6.53 (using equation  6.11 and equation  6.12). It is clear that previous model for 

solutes with nCsol<10 calculates/predicts the γ∞ of different solutes in this ionic liquid fairly 

well; but the model for solutes with nCsol≥10 fails to predict the γ∞ of “decane” in this ionic 

liquid as it is observed a large deviation from the diagonal line. The analysis of the dataset of 

solutes with nCsol≥10 reveals that there is only one ionic liquid with “diethylphosphate” anion 

in this dataset. As a result, the variable selection procedure has not included a functional 

group for this anion as it has been located in the “test” set. 

 

Regarding to Figure  6.49, there are few systems with γ∞ of higher than 3000 which also show 

large deviations. These systems belong to different alkane solutes in “1-ethyl-3-

methylimidazolium methanesulfonate”. Figure  6.54 shows that the model fails to predict the 

γ∞ of “tetradecane” in “1-ethyl-3-methylimidazolium methanesulfonate”; however the model 

calculates/predicts the γ∞ of tetradecane in other ionic liquids fairly good (Figure  6.55). 
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Figure  6.54: Correlated/Predicted versus experimental values of γ∞ of different alkane 

solutes in 1-ethyl-3-methylimidazolium methanesulfonate (––– diagonal line). 

 

 

 
Figure  6.55: Correlated/Predicted versus experimental values of γ∞ of tetradecane in 

different ionic liquids (––– diagonal line). 

 

 

Finally, the AARD% of calculated/predicted values of γ∞ for different classes of ionic liquids 

are shown in Table  6.52. Accordingly, the maximum deviation belongs to Phosphonium 

family with AARD% of 29.2%. As discussed before, this class contains several data point 

with γ∞ of below 1.0; so they are very sensitive to small deviations. The family with the 

second highest deviation is imidazolium which is the largest family and consists of 73 

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

γ∞
ca

lc

γ∞
exp

undecane

dodecane

tridecane

tetradecane

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

γ∞
ca

lc

γ∞
exp

1-ethyl-3-methylimidazolium dicyanamide

1-ethyl-3-methylimidazolium
methanesulfonate

1-butyl-3-methylimidazolium
bis(perfluoroethylsulfonyl)imide

3-(2-methoxyethyl)-1-methylimidazolium
bis(trifluoromethylsulfonyl)imide

1-(2-hydroxyethyl)-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

1,3-dimethoxyimidazolium
bis(trifluoromethylsulfonyl)imide

hexyltrimethylammonium
bis(trifluoromethylsulfonyl)imide



160 
 

different systems with 278 data points. As this family contains the data points with both small 

and large values of γ∞ and the presented model has been developed to correlate/predict the 

large values of γ∞, such a relatively large deviation is observed. 

 

Table  6.50: AARD%  of equation ( 6.12) for different class of ionic liquids. 

No. Family T /K range γ∞ range AARD% N 
Systems 

N Data 
Points 

1 Ammonium 302.15-374.95 2.21-158.777 6.7 21 64 
2 Guanidinium 308.15-348.15 32.8-51.3 4.0 1 5 
3 Imidazolium 298-373 3.328-4065.351 13.7 73 278 
4 Isoquinolinium 328.15-368.15 7.88-9.25 7.2 1 5 
5 Morpholinium 318.15-368.15 55.2-192 9.9 2 12 
6 Phosphonium 298.15-373.15 1.84-33.3 29.2 5 18 
7 Piperidinium 308.15-368.15 18.3-487 10.4 7 41 
8 Pyridinium 297-368.15 24.3-533 11.5 8 49 
9 Pyrrolidinium 298.15-368.15 8.7-615 8.0 21 87 

10 Sulphonium 298.15-368.15 59.7-131 11.3 1 8 
 

 

 

The summary of comparison between the presented models with nCsol<10 and nCsol≥10, and 

the original and modified UNIFAC models is shown in Table  6.51. It is obvious that the GC 

models proposed for alkane solutes has the lowest AARD% and consequently, it is more 

reliable compared with the original and modified UNIFAC models.  

 

For the modified UNIFAC model, there are 357 data points with an AARD% of greater than 

100%. For example, the output of the model for “2,2,4-trimethylpentane” in “1-octyl-3-

methylimidazolium nitrate” is 26.739 (AARD% = 100.6%) , while the γ∞ of “2,2,4-

trimethylpentane” in “1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl) 

phosphate” is predicted as 8144.442 (AARD% = 65055.53%). 

 

Consequently, the GC models proposed in this study have the best results and it is the first 

GC models for the calculation/prediction of γ∞ of alkane solutes in ILs. 

 

Information on the entire dataset and original data sources, as well as the values of the 

functional groups for ILs are available in the supplementary CD. 
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Table  6.51: Summary of result of models for γ∞ of alkane solutes in ILs. 
Model  Model Type and parameters NSystems Ndata AARD% Comments 

Original 
UNIFAC 

GC 96 254 331.04 12 solutes in 61 ILs. 

Modified 
UNIFAC 

GC 293 849 1927.49 14 solutes in 113 ILs. 

GC Model  
(this study) 

GC,  

45 parameters for nCsol<10 

28 parameters for nCsol≥10 

882 3935 20.81 18 solutes in 123 ILs. 

 

 

 

 

6.6.4 Alkene solutes 

As described in section  6.6.1, the same procedure was performed to model the 

ln(ln(1000×γ∞)) for alkene solutes. The resultant model was a 44-parameter linear model as 

shown in equation ( 6.13). 

 

 6.13 

� �  (10� × � � ) = exp( � + �  � + �  � � +   � � +   �
� � ) 

 

� =  2.467 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �  

  

 

where T is absolute temperature, ni is the number of occurrences of the ith functional group of 

anions, cations, and solutes, k is the total number of different functional groups of the anions, 

cations, and solutes, and � � , � � ,… � �  are the relevant coefficient of the ith functional group. 

The values of � � , � � ,… � �  and their description are presented in Table  6.37 and Table  6.38, 

respectively. 
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Table  6.52: Parameters of equation ( 6.13) 
   � �  � � , �  

� �  
nN+

cat 4.049E-02 
nHAcc cat -2.718E-02 

 X--CH..X cat -3.496E-02 
 F02[C-C] cat -1.622E-02 
 F07[C-N] cat -7.445E-02 
 F08[C-N] cat 5.492E-02 
 F10[C-C] cat 7.793E-03 
 nCs an -2.967E-02 
 nO–

an -4.480E-02 
 F01[O-P] an -1.314E-02 
 nCLsol -4.191E+00 
 F05[C-C] sol -2.641E-01 

� �  
CH3R/CH4cat -8.292E-03 

 nO an 7.470E-03 
 nHAcc an -9.283E-03 
 F07[C-O] an -1.344E-02 
 F08[C-S] an 4.459E-02 
 F09[C-C] an 6.119E-03 
 nR06sol -1.455E-02 

� �  
F04[C-N] cat 8.795E-04 
F10[C-N] cat 1.012E-03 
nF an 6.528E-02 
nX an -6.393E-02 
CH3R/CH4an -2.367E-03 
CH3Xan 2.317E-03 

 F03[C-O] an -4.863E-04 
 F04[C-C] an 8.818E-04 
 F04[O-S] an -1.773E-03 

� �  
nRCN cat 5.952E-02 

 nROH cat 1.611E-02 
 nPyridines cat -6.318E-03 
 F04[N-O] cat 1.204E-02 
 F06[O-O] cat 2.556E-02 
 F07[C-O] cat -1.019E-02 
 nF an -1.409E-01 
 nX an 1.362E-01 
 F01[C-C] an -2.905E-03 
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 F02[C-F] an 3.385E-03 
 nCLsol 2.789E+00 

F05[C-C] sol 1.924E-01 

� �  
 nCs cat -1.970E-03 

nCrs cat 7.915E-04 
F04[C-C] cat 9.973E-04 
F05[N-O] cat 5.367E-03 

 R#N/R=N–
an -2.457E-03 

F01[P-F] an 7.663E-04 
F05[C-S] an 3.040E-03 
nCLsol -4.681E-01 
F03[C-C] sol 3.171E-03 
F05[C-C] sol -3.420E-02 

 

 

 

 

Table  6.53: Definition of parameter of equation ( 6.13). 
No. Symbol Definition 

1 CH3R / CH4  
2 CH3X  
3 X--CH..X  
4 F01[C-C] number of C-C 
5 F01[O-P] number of O-P 
6 F01[P-F] number of P-F 
7 F02[C-C] number of C-A-C 
8 F02[C-F] number of C-A-F 
9 F03[C-C] number of C-(A)2-C 
10 F03[C-O] number of C-(A)2-O 
11 F04[C-C] number of C-(A)3-C 
12 F04[C-N] number of C-(A)3-N 
13 F04[N-O] number of N-(A)3-O 
14 F04[O-S] number of O-(A)3-S 
15 F05[C-C] number of C-(A)4-C 
16 F05[C-S] number of C-(A)4-S 
17 F05[N-O] number of N-(A)4-O 
18 F06[O-O] number of O-(A)5-O 
19 F07[C-N] number of C-(A)6-N 
20 F07[C-O] number of C-(A)6-O 
21 F08[C-N] number of C-(A)7-N 
22 F08[C-S] number of C-(A)7-S 
23 F09[C-C] number of C-(A)8-C 
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24 F10[C-C] number of C-(A)9-C 
25 F10[C-N] number of C-(A)9-N 
26 R#N / R=N–  
27 nCL number of Chlorine atoms 
28 nCrs number of ring secondary Carbon (sp3) 
29 nCs number of total secondary Carbon (sp3) 
30 nF number of Flourine atoms 
31 nHAcc number of acceptor atoms for H-bonds (N,O,F) 
32 nN+ number of positively charged N 
33 nO number of Oxygen atoms 
34 nPyridines number of Pyridines 
35 nR06 number of 6-membered rings 
36 nRCN number of nitriles (aliphatic) 
37 nROH number of hydroxyl groups 
38 nX number of halogen atoms 
39 nO– number of negatively charged Oxygen atoms 
a An alpha-C may be defined as a C attached through a single bond with -C=X, -C#X, -C—X 
R represents any group linked through carbon 
X represents any heteroatom (O, N, S, P, Se, halogens) 
A represents any atom  
-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group 
.. represents aromatic single bonds as the C-N bond in pyrrole.  

 

 

 

As mentioned before, the value of AARD% for � �  (� � ) does not represent the model 

accuracy very well; because � �  (� � ) tend to infinity when γ∞ approaches zero. As a result, 

the RMSE is 0.20 and 0.23 for the “training” and “test” sets, respectively. In addition, the 

coefficient of determination for � �  (� � ) is 0.973 and 0.957 for the training and test sets, 

respectively. The scattered plot of experimental values versus calculated/predicted values for 

� �  (� � ) is shown in Figure  6.56. 

 

To demonstrate the real output and performance of the presented model, Figure  6.57 shows 

the predicted values of γ∞ in a linear scale versus the experimental values of γ∞. In addition, 

Table  2.1 shows the summary of the statistical parameters of the model for the training and 

test sets. 
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Figure  6.56: Correlated/Predicted versus experimental values of ln(γ∞) of alkene solutes  

(––– diagonal line). 
 

 

 

 

Figure  6.57: Correlated/Predicted versus experimental values of γ∞ of alkene solutes  
(––– diagonal line). 
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Table  6.54: Statistical parameters for equation ( 6.13) 

Statistical Parameter 
training set 

R2 0.891 
Average absolute relative deviation 13.83 
Standard deviation error 14.93 
Root mean square error 15.11 
No. of data points 1536 

test set  
R2 0.890 
Average absolute relative deviation 16.86 
Standard deviation error 16.22 
Root mean square error 16.31 
No. of data points 475 

total 
R2 0.890 
Average absolute relative deviation 14.54 
Standard deviation error 15.25 
Root mean square error 15.40 
No. of data points 2011 

 

Figure  6.58: Percentage of calculated/ predicted 
values of γ∞ of alkene solutes in different relative 
deviation ranges. 
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16.86% for the “test” set. Furthermore, the RSME of the “training” and “test” sets are 15.11 

and 16.31. The value of RMSE is relatively high compared with the models for γ∞ of 
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aromatic and alcohol solutes (Figure  6.57 versus Figure  6.34 and Figure  6.40 ) shows that 
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aromatic solutes is 43.51 while there are more than 200 data points of alkene solutes with γ∞ 

of greater than 50.0. According to Figure  6.57, the presented model has more deviation in 

prediction of the γ∞ of greater than 100.0. It is due to the type of objective function used 

which minimizes the average absolute “relative” deviation. The minimization of AARD% 

results in production of large deviations for the larger target values (the AARD% remains 

relatively low) while it minimized the deviation for smaller target values. As most of the γ∞ 
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data have small values, the AARD% objective function is more useful compared with other 

types of objective functions such as Mean Squared Error (MSE). MSE objective function is 

not useful for modeling the small target values which may introduce very high AARD% 

(over 500%) for values less than 1.0. 

 

According to Figure  6.58, 30% of the calculated/predicted values show deviations between 0 

to 5%, 22% between 5 to 10%, 25% between 10 to 20%, 23% over 20 %. At the first look, it 

may seems that the model has a large deviation; but as the small values of γ∞ are more 

sensitive to deviations, a small deviation in prediction results in a great value of AARD%.  

 

Regarding to the dataset provided in the supplementary CD, the largest deviation belongs to 

“1-octene” in “1-octyl-3-methylimidazolium tetrafluoroborate” which is 100.2%; but is has 

just two data points which has a very low weight in model development process as their 

deviations does not change noticeably the AARD% of the model. Similar deviations are 

observed for different systems with just one or two data points such as “1-dodecene” in “1-

octyl-3-methylimidazolium tetrafluoroborate”, “1-heptene” in “1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide”, etc. 

 

It is notable that alkene solutes have strong interactions with cations and anions, similar to 

aromatic and alcohol solutes. In addition, the database used comprised of 422 different 

systems and it may be required to include more functional groups into the model to have a 

better prediction of γ∞; however inclusion of more parameters increases the complexity of the 

model which is not desirable. 

 

Ultimately, the AARD% of calculated/predicted values of γ∞ for different classes of ionic 

liquids is presented in Table  6.55. Accordingly, the maximum deviation belongs to 

Phosphonium family with AARD% of 28.9%; however about half of the data points are 

below 1.0 and as explained before, the small values of γ∞ are very sensitive to small 

deviations. The imidazolium class consists of 337 different systems with 1470 data points and 

due to the nature of γ∞ and measurement techniques; it is not a large deviation. 
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Table  6.55: AARD%  of equation ( 6.13) for different class of ionic liquids. 

No. Family T /K range γ∞ range AARD% 
N 

Systems 
N Data 
Points 

1 Ammonium 301.85-374.95 0.74-76.8 10.9 33 133 
2 Guanidinium 308.15-348.15 3.92-26.5 5.4 6 30 
3 Imidazolium 293.15-375.05 1.1-374 17.0 213 927 
4 Isoquinolinium 328.15-368.15 2.53-4.85 6.3 4 20 
5 Morpholinium 308-368.15 0.153-87.8 11.4 16 88 
6 Phosphonium 298.15-373.15 0.468-30.5 28.9 28 107 
7 Piperidinium 308.15-368.15 2.75-90.6 6.5 33 192 
8 Pyridinium 298.15-368.15 3.018-142 12.1 40 228 
9 Pyrrolidinium 298.15-368.15 2.57-62.49 13.6 45 254 

10 Sulphonium 298.15-368.15 6.69-27 4.2 4 32 
 

 

 

To compare the model proposed with the original and modified UNIFAC models, the 

AARD% and number of systems and data points are shown in Table  6.56 for all models. The 

entire results are available in the supplementary CD. Accordingly, the model proposed 

performs better than both the original and modified UNIFAC models in terms of better 

predictions, number of data points, and systems covered. As a result, the GC model proposed 

can be used easier as there is no need to use any special software, and it produces more 

reliable results. 

 

 

Table  6.56: Summary of result of models for γ∞ of alkene solutes in ILs. 
Model  Model Type and parameters NSystems Ndata AARD% Comments 

Original 
UNIFAC 

GC 49 212 36.80 11 solutes in 8 ILs. 

Modified 
UNIFAC 

GC 111 486 70.74 12 solutes in 29 ILs. 

GC Model 
(this study) 

GC, 44 parameters 422 2011 14.54 13 solutes in 123 ILs. 
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6.6.5 Alkyne solutes 

As mentioned previously for other solutes, ln(ln(1000×γ∞))  was molded for alkyne solutes. 

The final model has 37 parameters as shown in equation ( 6.13) of which 21 parameters are 

the functional groups of cations, 15 for anions, and 2 for solutes. 

 

 6.14 

� �  (10� × � � ) = exp( � + �  � + �  � � +   � � +   �
� � ) 

 

� =  2.044 + ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �   

� =  ∑ � � , � � ��� � �    � =  ∑ � � , � � ��� � �   � =  ∑ � � , � � ��� � �  

  

where T is absolute temperature, ni is the number of occurrences of the ith functional group of 

anions, cations, and solutes, k is the total number of different functional groups of the anions, 

cations, and solutes, and � � , � � ,… � �  are the relevant coefficient of the ith functional group. 

The values of � � , � � ,… � �  and their description are presented in Table  6.37 and Table  6.38, 

respectively. 

 

 

Table  6.57: Parameters of equation ( 6.14) 
   � �  � � , �  

� �  
F06[C-N]cat -5.724E-03 
nCar an -4.952E-03 

� �  
R--CR--Rcat -7.026E-03 

 F01[C-N] cat 4.034E-03 
 CRX3an -7.306E-04 
 R-SHan 2.327E-02 
 F05[C-F] an -9.289E-04 

� �  
nCrs cat 4.694E-04 
nROR cat -1.514E-03 
nPyridines cat -3.339E-03 
R--CH--Rcat 2.290E-03 
F02[C-C] cat -1.910E-04 
F02[C-N] cat 1.934E-04 
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   � �  � � , �  
 F03[N-O] cat 1.812E-03 
 F05[C-N] cat -6.661E-04 
 F06[O-O] cat 2.720E-03 
 F10[C-O] cat -7.997E-04 
 nBan -3.153E-04 
 F02[C-S] an -1.186E-03 
 F02[F-F] an 1.425E-04 
 F08[C-O] an -1.283E-03 

� �  
nR06 cat -2.451E-02 

 nCp cat 1.220E-02 
 nRCN cat 6.668E-02 
 F02[C-C] cat -2.197E-03 
 F02[N-N] cat -6.073E-03 
 F04[C-N] cat -1.711E-03 
 nPan 9.496E-03 
 CH3Xan 2.427E-02 
 F05[C-S] an 3.443E-02 
 nCs sol 1.162E-02 

� �  
 nR06 cat 8.114E-03 

nCs cat -8.140E-04 
CH3R/CH4cat -3.429E-03 
F10[C-C] cat 4.818E-04 

 nSO4an -1.184E-02 
F02[C-C] an -6.743E-04 
F03[N-F] an -2.208E-04 
F06[F-F] an -1.015E-04 
F08[C-C] sol -2.271E-03 

 

 

Table  6.58: Definition of parameter of equation ( 6.14). 
No. Symbol Definition 

1 CH3R / CH4  
2 CH3X  
3 CRX3  
4 R--CH--R  
5 R--CR--R  
6 F01[C-N] number of C-N 
7 F02[C-C] number of C-A-C 
8 F02[C-N] number of C-A-N 
9 F02[C-S] number of C-A-S 
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No. Symbol Definition 

10 F02[F-F] number of F-A-F 
11 F02[N-N] number of C-A-N 
12 F03[N-F] number of N-A-F 
13 F03[N-O] number of N-(A)2-O 
14 F04[C-N] number of C-(A)3-N 
15 F05[C-F] number of C-(A)4-F 
16 F05[C-N] number of C-(A)4-N 
17 F05[C-S] number of C-(A)7-O 
18 F06[C-N] number of C-(A)5-N 
19 F06[F-F] number of F-(A)5-F 
20 F06[O-O] number of O-(A)5-O 
21 F08[C-C] number of C-(A)7-C 
22 F08[C-O] number of C-(A)7-O 
23 F10[C-C] number of C-(A)9-C 
24 F10[C-O] number of C-(A)9-O 
25 nB number of Boron atoms 
26 nCar Sum of all the carbons belonging to any aromatic and heteroaromatic structure 
27 nCp number of terminal primary Carbon (sp3) 
28 nCrs number of ring secondary Carbon (sp3) 
29 nCs number of total secondary Carbon (sp3) 
30 nP number of Phosphorous atoms 
31 nPyridines number of Pyridines 
32 nR06 number of 6-membered rings 
33 nRCN number of nitriles (aliphatic) 
34 nROR number of ethers (aliphatic) 
35 nSO4 number of sulfates (thio- / dithio-) 
36 R-SH  
R represents any group linked through carbon 
X represents any heteroatom (O, N, S, P, Se, halogens) 
A represents any atom  
-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group 
 

 

The scattered plot of experimental values versus calculated/predicted values for � �  (� � ) is 

shown in Figure  6.59. In addition, Figure  6.60 shows the calculated/predicted values of γ∞ in 

linear scale versus the experimental values of γ∞. According to Table  6.59, the AARD% of the 

“training” set is 10.44% while it is 10.76% for the “test” set. 

 

To analyze the model output precisely, Figure  6.61 represents the percentage of 

calculated/predicted data points in different AARD% ranges. Accordingly, 41% of the 

calculated/predicted values show deviations between 0 to 5%, 25% between 5 to 10%, 20% 
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between 10 to 20%, 14% over 20 %. Same as the previous models, smaller values of γ∞ are 

the source of obtaining large deviated outputs. 

 

Regarding to Figure  6.59 and Figure  6.60, there is a system in “test” set which shows a large 

deviation from the diagonal line. This system is “1-pentyne” in “1-butyl-1-

methylpyrrolidinium thiocyanate”. In the initial steps of modeling, this system was in the 

“training” set, but it was observed that the models with different number of parameters failed 

to represent this system. As a result, it was suspected to be an outlier and consequently, it was 

moved to the “test” set to eliminate its weight on the model developed.  

 
Figure  6.59: Correlated/Predicted versus experimental values of ln(γ∞) of alkyne solutes  

(––– diagonal line). 

 

 
Figure  6.60: Correlated/Predicted versus experimental values of γ∞ of alkyne solutes  

(––– diagonal line). 
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Table  6.59: Statistical parameters for equation 

( 6.14) 

Statistical Parameter 
training set 

R2 0.916 
Average absolute relative deviation 10.44 
Standard deviation error 1.52 
Root mean square error 1.53 
No. of data points 938 

test set  
R2 0.973 
Average absolute relative deviation 10.76 
Standard deviation error 0.92 
Root mean square error 0.95 
No. of data points 305 

total 
R2 0.929 
Average absolute relative deviation 10.62 
Standard deviation error 1.39 
Root mean square error 1.40 
No. of data points 1250 

 

Figure  6.61: Percentage of calculated/predicted 
values of γ∞ of alkene solutes in different relative 
deviation ranges. 

 

 

 
Figure  6.62: The γ∞ of different alkene solutes in 1-butyl-1-methylpyrrolidinium thiocyanate. 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0-5 5-10 10-20 >20

41%

25%
20%

14%

Pe
rc

en
t o

f d
at

a 
in

 e
ac

h 
ra

ng
e

AARD Range / %

0

20

40

60

80

100

120

290 310 330 350 370

γ∞

T / K

1-pentyne

1-hexyne

1-heptyne

1-octyne



174 
 

A precise analysis of the γ∞ data of different solutes in “1-butyl-1-methylpyrrolidinium 

thiocyanate” is presented in Figure  6.62. This figure shows that the γ∞ of different alkene 

solutes in this ionic liquid are less than 20.0 except the abovementioned “1-pentyne” solute. 

As a result, the γ∞ data of “1-pentyne” in “1-butyl-1-methylpyrrolidinium thiocyanate” is 

outlier and the quality of measured data is questionable. 

 

Regarding to Figure  6.60, there are two other systems with “thiocyanate” anion which the 

presented model fails to predict correctly. These systems are “1-heptyne” and “1-octyne” in “1-

ethyl-3-methylimidazolium thiocyanate” which are shown in Figure  6.63. Accordingly, the 

model fails to predict correctly the change in γ∞ versus temperature. 

 

 

 
Figure  6.63: Correlated/Predicted versus experimental values of γ∞ of 1-heptyne and 

1-octyne in 1-ethyl-3-methylimidazolium thiocyanate (––– diagonal line). 

 

 

There are two possible reasons for observing such failures: 

 

• Quality of measured data is doubtful. 

 

• There are some unknown interactions among solute, cation, and anion. 
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Figure  6.64, Figure  6.65, and Figure  6.66 show the correlated/predicted versus experimental 

values of γ∞ of different alkene solutes in “1-ethyl-, 1-butyl-, and 1-hexyl-3-

methylimidazolium thiocyanate”. These figures demonstrate that the γ∞ of alkyne solutes is 

proportional to the number of carbon atoms in the solute molecule and γ∞ increases as the 

temperature increases. The only exceptions that the presented model fails to predict are the 

systems “1-heptyne” and “1-octyne” in “1-ethyl-3-methylimidazolium thiocyanate”.  

 

Despite the similarity in the cation of these three ionic liquids, such behavior is not observed 

in “1-butyl- and 1-hexyl-3-methylimidazolium thiocyanate” systems. As a result, the quality 

of reported data is questionable. 

 

 
Figure  6.64: The γ∞ of different alkene solutes in 1-ethyl-3-methylimidazolium thiocyanate. 
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Figure  6.65: The γ∞ of different alkene solutes in 1-butyl-3-methylimidazolium thiocyanate. 

 

 
Figure  6.66: The γ∞ of different alkene solutes in 1-hexyl-3-methylimidazolium thiocyanate. 

 

 

Ultimately, the AARD% of calculated/predicted values of γ∞ for different classes of ionic 

liquids are presented in Table  6.55. The maximum deviation is observed for Phosphonium 

family with AARD% of 21.2%; however 64% of data points (70 out of 110 data points) are 

below 1.0 and as explained before, the small values of γ∞ are very sensitive to small 

deviations.  

 

 

Table  6.60: AARD% of equation ( 6.14) for different class of ionic liquids. 
No. Family T /K range γ∞ range AARD% N N Data 
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Compounds Points 

1 Ammonium 303.15-352.65 0.52-3.567 10.4 29 97 
2 Guanidinium 308.15-348.15 1.99-5.24 1.6 4 20 
3 Imidazolium 298.15-368.2 0.899-38 13.5 110 482 
4 Isoquinolinium 328.15-368.15 1.6-2.44 6.9 3 11 
5 Morpholinium 318.15-368.15 2.52-11.4 6.3 7 42 
6 Phosphonium 298.15-373.15 0.28-3.19 21.2 29 110 
7 Piperidinium 308.15-368.15 1.42-13.7 3.0 24 131 
8 Pyridinium 298.15-368.15 1.67-16.2 5.4 24 148 
9 Pyrrolidinium 298.15-368.15 1.34-96.61 9.7 36 187 

10 Sulphonium 298.15-368.15 2.52-7.87 4.1 4 29 
 

 

Table  6.61 shows the comparison between output of model proposed and the original and 

modified UNIFAC models. Accordingly, both forms of the UNIFAC model are limited to 3 

systems, but the model presented covers more solute-IL systems. As a result, the alkyne-ILs 

systems have been modeled successfully and the model developed can be used to 

calculate/predict the γ∞ data. 

 

 

Table  6.61: Summary of result of models for γ∞ of alkyene solutes in ILs. 
Model  Model Type and parameters NSystems Ndata AARD% Comments 

Original 
UNIFAC 

GC 3 15 68.06 3 solutes in 1 ILs. 

Modified 
UNIFAC 

GC 3 15 48.44 3 solutes in 1 ILs. 

GC Model 
(this study) 

GC, 37 parameters 270 1257 10.62 6 solutes in 84 ILs. 

 

 

 

 

6.7 Critical temperature of ionic liquids 

To assess the possibility of developing a predictive model for estimating the Tc of ionic 

liquids, a 30-parameter GC and a 25-parameter QSPR models were developed. The GC 

model has an AARD% of 5.17% over 106 data points, and the QSPR model shows the 
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AARD% of 4.69%. As a result, the models can calculate the “training” and “test” sets fairly 

well. The models parameters as well as their outputs are available in the supplementary CD. 

 

To compare the model on other ionic liquids, the Tc for 33 additional ionic liquids were 

calculated. According to section  3.4.6, these ionic liquids only had one experimental surface 

tension data point; so it was not possible to use Guggenheim equation ( 2.13) for estimation of 

critical temperature. Table  6.62 shows the output of the GC and QSPR models for these ionic 

liquids. Unfortunately, the coefficients of functional groups were not available in paper 

published by Valderrama et al. [154] and it was not therefore possible to calculate the Tc for 

these ionic liquids. Only the Tc of some of them was reported by these authors. 

 

According to Table  6.62, for some ionic liquids, there is an agreement between GC, QSPR, and 

Valderrama et al. methods such as “1-hexyl-3-methylimidazolium nitrate”. On the other hand, 

the Tc of some ionic liquids calculated by the GC and QSPR models is similar, but different 

from Valderrama’s method (e.g. “1-ethyl-3-methylimidazolium acetate”); and some are 

different at all (“1-ethyl-3-methylimidazolium bis[(pentafluoroethyl)sulfonyl]amide”). The 

worst cases are the ionic liquids with “bis[1-methylimidazolium]” cations. The output of the 

GC and QSPR models are two different values and the trend of changes are not also similar. In 

addition, the GC model produces the strange negative values of Tc which are obviously 

meaningless and erroneous. In these cases, the QSPR model has better output compared with 

the GC model, but the trend of changes are not acceptable.  

 

For ionic liquids with “3,3'-(1,10-decanediyl)bis[1-methylimidazolium]” as the cation and 

“bis(trifluoromethylsulfonyl)imide”, “tetrafluoroborate”, and “1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide” as the anion, the value of Tc is 915.6 K, 

964.9 K, and 908.5 K respectively; but for the “1,1,2,2,2-pentafluoro-N-[(1,1,2,2,2-

pentafluoroethyl)sulfonyl]ethanesulfonamide” anion, the Tc is 1961.2 K. It is obvious that 

1000 K jump in the value of critical temperature by changing the anion is not correct and 

acceptable. In this case, the GC model produces negative value, as mentioned before. 

Unfortunately, Valderrama et al. have not calculated the critical temperature for these ionic 

liquids.  

 

Table  6.62: Comparison of estimated Tc of ionic liquids by different methods. 
  Tc 
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No. Name Guggenheim 
GC 

Model 
QSPR 
Model 

Valderrama 
et al. [154] 

1 1,2-dimethyl-3-propylimidazolium 
bis[(trifluoromethyl)sulfonyl]amide 

n.a. 536.5 543.8 1269.7 

2 1-butyl-1-methylpyrrolidinium 
tris(pentafluoroethyl)trifluorophosphate 

n.a. 1058.0 1037.2 n.a. 

3 1-butyl-3-methylimidazolium nitrate n.a. 1102.1 1174.2 954.8 

4 1-dodecyl-3-methylimidazolium hexafluorophosphate n.a. 901.2 829.1 857.6 

5 1-dodecyl-3-methylimidazolium tetrafluoroborate n.a. 901.2 822.5 784.6 

6 1-ethyl-3-methylimidazolium acetate n.a. 1400.7 1358.7 807.1 

7 1-ethyl-3-methylimidazolium 
bis[(pentafluoroethyl)sulfonyl]amide 

n.a. 492.3 1732.5 1231.4 

8 1-ethyl-3-methylimidazolium hexylsulfate n.a. 870.9 1025.5 n.a. 

9 1-ethyl-3-methylimidazolium octyl sulfate n.a. 870.9 892.4 n.a. 

10 1-hexyl-3-methylimidazolium nitrate n.a. 991.9 1044.1 991.8 

11 1-isobutenyl-3-methylimidazolium tetrafluoroborate n.a. 561.5 1133.3 n.a. 

12 1-methyl-3-pentylimidazolium 1,1,2,2,2-pentafluoro-N-
[(1,1,2,2,2-pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. 371.4 1616.6 n.a. 

13 1-methyl-3-pentylimidazolium nitrate n.a. 990.8 1082.0 n.a. 

14 1-methyl-3-propylimidazolium 
bis(pentafluoroethylsulfonyl)imide 

n.a. 466.0 1642.8 n.a. 

15 1-methyl-3-propylimidazolium nitrate n.a. 1085.5 1108.1 n.a. 

16 1-octyl-3-methylimidazolium bromide n.a. 980.9 981.3 912.3 

17 3,3'-(1,10-decanediyl)bis[1-methylimidazolium] 
1,1,2,2,2-pentafluoro-N-[(1,1,2,2,2-
pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. -825.9 1961.2 n.a. 

18 3,3'-(1,10-decanediyl)bis[1-methylimidazolium] 
bis(trifluoromethylsulfonyl)imide 

n.a. 556.3 915.6 n.a. 

19 3,3'-(1,10-decanediyl)bis[1-methylimidazolium] 
tetrafluoroborate 

n.a. 562.9 964.9 n.a. 

20 3,3'-(1,12-dodecanediyl)bis[1-methylimidazolium] 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

n.a. 531.0 908.5 n.a. 

21 3,3'-(1,12-dodecanediyl)bis[1-methylimidazolium] 
1,1,2,2,2-pentafluoro-N-[(1,1,2,2,2-
pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. -851.2 1955.6 n.a. 

22 3,3'-(1,12-dodecanediyl)bis[1-methylimidazolium] 
tetrafluoroborate 

n.a. 537.6 957.8 n.a. 

23 3,3'-(1,5-pentanediyl)bis[1-methylimidazolium] 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

n.a. 755.0 896.9 n.a. 

24 3,3'-(1,5-pentanediyl)bis[1-methylimidazolium] 
1,1,2,2,2-pentafluoro-N-[(1,1,2,2,2-
pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. -627.2 1942.5 n.a. 

25 3,3'-(1,6-hexanediyl)bis[1-methylimidazolium] 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

n.a. 636.0 1133.0 n.a. 

26 3,3'-(1,6-hexanediyl)bis[1-methylimidazolium] 1,1,2,2,2-
pentafluoro-N-[(1,1,2,2,2-
pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. -746.2 2181.1 n.a. 

27 3,3'-(1,8-octanediyl)bis[1-methylimidazolium] 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

n.a. 610.7 892.5 n.a. 

28 3,3'-(1,9-nonanediyl)bis[1-methylimidazolium] 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

n.a. 569.0 907.6 n.a. 

29 3,3'-(1,9-nonanediyl)bis[1-methylimidazolium] 1,1,2,2,2-
pentafluoro-N-[(1,1,2,2,2-

n.a. -813.2 1955.2 n.a. 
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  Tc 

No. Name Guggenheim 
GC 

Model 
QSPR 
Model 

Valderrama 
et al. [154] 

pentafluoroethyl)sulfonyl]ethanesulfonamide 

30 3,3'-(1,9-nonanediyl)bis[1-methylimidazolium] 
tetrafluoroborate 

n.a. 575.5 956.9 n.a. 

31 3-ethyl-1-methylimidazolium butyl sulfate n.a. 1068.9 1486.6 n.a. 

32 3-hexyl-1-methylimidazolium 1,1,2,2,2-pentafluoro-N-
[(1,1,2,2,2-pentafluoroethyl)sulfonyl]ethanesulfonamide 

n.a. 372.4 1576.8 n.a. 

33 butylammonium formate n.a. 1441.2 1093.4 546.7 

 

 

As the number of data points used in the model development procedure is not high enough, it 

is not possible to develop a model with a wide range of applicability; so such deviations are 

expected and inevitable. 

 

The outputs of the GC model as well as the QSPR one have been compared with the 

Valderrama’s method in the supplementary CD. According to the data provided, the results 

can be visualized for specific cation and different anions. For example, Figure  6.67 shows the 

critical temperatures calculated by Guggenheim equation, GC, QSPR, and Valderrama’s 

method. Accordingly, it is obvious that Valderrama’s model fails to predict the critical 

temperature of “1-ethyl-3-methylimidazolium” ionic liquids. Despite the deviations in values 

of Tc, that model also fails to estimate the Tc in a reasonable trend according to the anions 

type. Based on the experimental data of surface tension of “1-ethyl-3-methylimidazolium” 

ionic liquids, the critical temperature is related to the anion as follows; but Valderrama’s 

model fails to represent this relationship. 

 

[DEP] < [NTf2] <  [EtSO4] < [DCA] < [BF4] < [TfO] 
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Figure  6.67: Estimated Tc of 1-ethyl-3-methylimidazolium ILs by different models. 
 

 

In another comparison, the Tc of “1-butyl-3-methylimidazolium” ionic liquids are compared 

and the results are illustrated in Figure  6.68. Accordingly, similar fluctuations are observed in 

Valderrama’s model which indicates that the model does not produce reliable results. 
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Figure  6.68: Estimated Tc of 1-butyl-3-methylimidazolium ILs by different models. 

 

 

 

According to the published papers by Valderrama et al. [46, 154, 250], they used a density 

correlation to validate the calculated critical properties and normal boiling point of ionic 

liquids which had been developed for saturated liquids and petroleum fractions [153]. 
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shown that the critical temperatures calculated by Valderrama’s model were not valid and 

reliable compared with the Tc calculated using the experimental data of surface tension of 

ionic liquids. Thus, the estimated Tb, Vc, other critical properties, and the validation technique 

is questionable and these data are not reliable. In recent years, some corresponding state 

models [155-162] have been published to model the thermophysical properties of ionic 

liquids using the critical properties estimated by Valderrama et al. model. According to the 

aforementioned results, these models are also questionable and are not reliable. So 

developing the models for critical properties of ionic liquids and using them for developing 

the corresponding state models need more research and considerations.  

 

As discussed earlier, the QSPR model developed seems to be more reliable than the GC one 

as the later calculates the negative Tc values for some ionic liquids. Thus, the QSPR model is 

chosen to calculate the Tc of 1130 ionic liquids which has been used by Valderrama et al. 

[154]. According to the data provided in the supplementary CD, there are some ionic liquids 

that the QSPR model produces negative or very high values of Tc. As discussed before, it is 

not possible to develop a comprehensive model using only few number of data points. In this 

thesis, the QSPR model has been developed using 41 cations and 34 anions, but the 

Valderrama’s database consists of 484 cations and 113 anions. It’s completely expectable that 

the QSPR model developed fails to calculate proper value for some ionic liquids that their 

cation and/or anion have not been in the “training” subset.  

 

To have a precise comparison, the calculated Tc of “1-ethyl-3-methylimidazolium” ionic 

liquids with 45 different anions is shown in Figure  6.69. According to Figure  6.67, the 

average critical temperature of “1-ethyl-3-methylimidazolium” ionic liquids should be 

approximately 1200 K which is shown by a red tie line in Figure  6.69. Accordingy, the QSPR 

model represents the better results and only four strange values are observed; two for around 

700 K and two for over 1800 K. The Valderrama’s model has more fluctuations between 600 

K and 1000 K. Despite the better estimated results of the QSPR model proposed, both models 

are not reliable to be used for developing the corresponding state models; however the QSPR 

model seems to have better predictions for the ionic liquids which their cation and anion are 

present in the “training” set. 
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Figure  6.69: Tc of 1-ethyl-3-methylimidazolium ionic liquids with 45 different anions calculated by 

the QSPR and Valderrama et al. models. 
 

 

 

At this stage, only the critical temperature of ionic liquids can be estimated which highly 

depends of the quality of measurements and uncertainty of surface tension data. In addition, 

further model developments requires larger dataset of experimental data of surface tension 

and at this time, lack of enough data leads to the questionable models in term of prediction 

ability.  
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CHAPTER 7: CONCLUSION 
The objective of this thesis was to use the largest possible databases and different 

computational methods to represent and predict the physico-chemical properties of ionic 

liquids. To assess the effects of computational methods on quality of models developed, 

several thermophysical properties of ionic liquids were modeled by combining two well-

known property estimation methods (GC and QSPR) with different mathematical regression 

techniques. In addition, the larger databases were used compared with the models published 

previously in the literature, and the quality of fit and predictions were improved significantly. 

 

Speed of sounds in ionic liquids was the first property studied. One GC and one QSPR models 

were developed using the same database comprised of the experimental data for 41 ILs. The GC 

model was developed using FFS-LSSVM method and its AARD% was 0.36%.Thereafter, the 

QSPR model was developed using the GFA method with an AARD% of 0.92%. The results 

showed that both models had better fit and prediction ability compared with the best model 

published by Gardas and Coutinho [46] which had an AARD% of 1.96% for only 14 ILs. 

 

Liquid heat capacity of ionic liquids was chosen afterwards, and GFA method was used to 

develop both GC and QSPR models using the experimental data for 82 ionic liquids. It was 

found that binary multiplication of variables resulted in better prediction for the models. As a 

result, the GC and QSPR models had the AARD% of 1.68% and 1.70%, respectively. Both 

models were more comprehensive regarding to the model developed by Soriano et al. [53] 

which had an AARD% of 0.34% using only 32 ionic liquids.  

 

Refractive index of ionic liquids was the third property to examine the applicability of the 

previous approaches. In this regard, the experimental data for 97 ionic liquids were collected 

and through the GFA method, one GC and one QSPR model were developed. The models 

had the AARD% of 0.34% and 0.51%, respectively. In terms of number of covered ionic 

liquids, both models were more comprehensive regarding to the best previous model with the 

AARD% of 0.18% for 24 ionic liquids [61]. 

 

For the viscosity of fluorine-containing ionic liquids, the available experimental data were 

used to create two different databases. The first one was screened carefully and unreliable 

data points were removed; so the refined database contained the experimental data points for 
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85 F-ILs and it was used to develop one GC and one QSPR model. On the other hand, the 

second database included the unreliable data points for additional 247 different F-ILs and it 

was used to develop another GC model in order to have a comprehensive model for a wider 

range of ILs. All of the models had the AARD% of below 5% for ln(η)  which was less than the 

best model published by Gharagheizi et al. [89] (AARD% of 7.1%). 

 

The next reviewed property was infinite dilution activity coefficient (γ∞) of different organic 

solutes in ionic liquids. Developing a single model for all of the solutes was impossible and 

consequently, the data of γ∞ was split into several parts for aromatic, alcohol, alkane, alkene, 

and alkyne solutes. 

 

The dataset of aromatic solutes consisted of 1654 data points with 10 solutes and 123 ionic 

liquids which resulted in 354 different solute-IL systems. The result of the GFA method was 

a GC model with an AARD% of 9.69%. This model was much more simple and easier to use 

compared with the UNIFAC model as it required the interaction parameter of chemical 

subgroups in the molecules. The original UNIFAC model was able to predict only 9 systems 

with the AARD% of 64.07%. The modified UNIFAC model could predict the γ∞ of 135 

systems; however the prediction error was 174.40%. 

 

For the alcohol solutes, 2785 data points for 615 solute-IL systems (17 solutes and 126 ILs) were 

used and through a GFA method, a GC model was developed with an AARD% of 14.63%. The 

original UNIFAC model could calculate the γ∞ for only 47 systems with an AARD% of 27.34%. 

The AARD% of the modified UNIFAC model was 32.22% for 164 systems.  

 

The database of alkane solutes was divided into two subsets: one for solutes with less than 10 

carbon atoms in their structure, and one for solutes with equal or more than 10 carbon atoms. 

Using the GFA approach, two different models were developed with the AARD% of 20.81% 

over the entire database of alkane solutes (882 solute-IL systems). The original UNIFAC model 

was able to calculate the γ∞ for only 96 systems with an AARD% of 331.04%. The AARD% of 

the modified UNIFAC model was 1927.49% for 293 systems.  

 

For the alkene solutes, 422 systems were studied and the GC model was developed with an 

AARD% of 14.54%. The original UNIFAC had the prediction error of 36.80% for only 49 

systems. The AARD% of the modified UNIFAC model was 70.74% for 111 systems.  
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As the last γ∞ database, 270 systems of alkyne solute in ionic liquids were studied and the 

resultant GC model had an AARD% of 10.62%. Unfortunately, both the original and 

modified UNIFAC models could calculate the γ∞ for only 3 systems with the AARD% of 

68.06% and 48.44%, respectively.  

 

Consequently, the GC models developed for different solutes were more comprehensive, 

accurate, and applicable compared with the original and modified UNIFAC models. 

 

Finally, the theoretical critical temperature of ionic liquids was calculated using the 

experimental data of surface tension of ionic liquids by means of the Guggenheim equation. 

Thereafter, two different GC and QSPR models were developed to assess the prediction 

ability of the models and compare the results with the pioneering work of Valderrama et al. 

[46, 154, 250]. The study revealed that the QSPR model had better results compared with the 

GC one in terms of prediction and production of the meaningful results. In addition, it was 

shown that the critical temperatures calculated by Valderrama’s model had the relatively 

large deviations compared with values driven from surface tension data. Furthermore, it was 

discussed that the validation method used by Valderrama et al. was questionable and thus, the 

reported critical properties were not reliable enough to be used for developing the 

corresponding state models for different thermophysical properties of ionic liquids. 

 

As studied in this thesis, the GC method was easier to use in terms of manual calculation of 

variables. This method was able to model the properties studied with reasonable number of 

variables and relatively good accuracy. On the other hand, the QSPR method demonstrated its 

ability to correlate the target property better than the group contribution method with less number 

of parameters; however it was required the Dragon software for calculating the descriptors. 

 

This thesis results in successful modeling of several thermophysical properties of ionic 

liquids using different computational methods. The models developed improve the quality of 

prediction for larger number of ionic liquids in comparison with the currently available 

models in the literature. In addition, these models, specially the models developed for 

prediction of γ∞ for organic solutes in ionic liquids, are easier to use and more comprehensive 

and consequently, more applicable.  
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CHAPTER 8: RECOMMENDATIONS FOR FURTHER STUDIES 
According to the properties and techniques studied, there are some opportunities for future 

studies. 

 

1. The QSPR method can be used to develop the smaller and/or more accurate models 

for the prediction of � ∞ of solutes in ionic liquids; however these models may not 

being accepted by some researchers due to high number of descriptors used. 

 

2. Several new descriptors are developed periodically. Using the new version of Dragon 

software provides more than 1000 new descriptors which may increase the accuracy 

and prediction ability of the models developed. 

 

3. The provided techniques can be applied to develop models for other properties of 

binary mixture of ionic liquids and organic compounds such as binary diffusion 

coefficient, viscosity, heat capacity, etc.; however at the moment, the number of 

experimental data points are not high enough for model development. 

 

4. Different nonlinear regression methods such as GEP can be applied on results of 

linear modeling which may improve the accuracy of the models for complex and 

nonlinear behavior of ionic liquids; however it need more powerful computers and 

lots of time to perform the computations and consequently, it was ignored due to 

having limited amount of time during this PhD course. 

 

5. The calculation of critical temperature as well as other critical properties of ionic 

liquids needs some revisions. It is required to gather the more comprehensive data set 

for surface tension data of ionic liquids for calculation of the critical temperature. So 

one can develop the better model in future when the database of surface tension of 

ionic liquids becomes large enough. 
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