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Abstract

Oftentimes, application of regression models to analyse cereals data is limited to estimating and

predicting crop production or yield. The general approach has been to fit the model without much

consideration of the problems that accompany application of regression models to real life data, such

as collinearity, models not fitting the data correctly and violation of assumptions. These problems

may interfere with applicability and usefulness of the models, and compromise validity of results

if they are not corrected when fitting the model. We applied regression models and diagnostics

on national and household data to model availability of main cereals in Lesotho, namely, maize,

sorghum and wheat. The application includes the linear regression model, regression and collinear

diagnostics, Box-Cox transformation, ridge regression, quantile regression, logistic regression and

its extensions with multiple nominal and ordinal responses.

The Linear model with first-order autoregressive process AR(1) was used to determine factors

that affected availability of cereals at the national level. Case deletion diagnostics were used to

identify extreme observations with influence on different quantities of the fitted regression model,

such as estimated parameters, predicted values, and covariance matrix of the estimates. Collinear-

ity diagnostics detected the presence of more than one collinear relationship coexisting in the data

set. They also determined variables involved in each relationship, and assessed potential negative

impact of collinearity on estimated parameters. Ridge regression remedied collinearity problems

by controlling inflation and instability of estimates. The Box-Cox transformation corrected non-

constant variance, longer and heavier tails of the distribution of data. These increased applicability

and usefulness of the linear models in modeling availability of cereals.

Quantile regression, as a robust regression, was applied to the household data as an alternative

to classical regression. Classical regression estimates from ordinary least squares method are sen-

sitive to distributions with longer and heavier tails than the normal distribution, as well as to

outliers. Quantile regression estimates appear to be more efficient than least squares estimates for

a wide range of error term distribution. We studied availability of cereals further by categorizing

households according to availability of different cereals, and applied the logistic regression model

and its extensions. Logistic regression was applied to model availability and non-availability of

cereals. Multinomial logistic regression was applied to model availability with nominal multiple

categories. Ordinal logistic regression was applied to model availability with ordinal categories and

this made full use of available information. The three variants of logistic regression model gave

results that are in agreement, which are also in agreement with the results from the linear regression

model and quantile regression model.
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Chapter 1

Introduction

1.1 Background

Food security is an important topic for all countries in the world (Jones, 1982). The topic consists

of three main components, namely, food availability, access and utilization, referred to as the basic

elements of USAID’s food security framework by Gervais (2004). Availability of cereals, in a coun-

try, can be defined as physical existence of food cereals measured through food cereals supplies.

National food availability derives from a combination of domestic food stocks, domestic food pro-

duction, commercial food imports, and food aid. Thus food security is a function of production,

stocks, commercial imports, food aid and their underlying factors (Riely et al., 1999). These factors

are normally used by Food and Agriculture Organization (FAO) in compiling food balance sheets

used to inform countries on expected food deficit or surpluses, food import requirements as well as

food aid requirements.

Investigations about availability of food cereals, as a component of food security, are important

and need to be undertaken at both the national and household levels. This need emanates from

an observation by (FAO, 1997) that food availability at the national level does not guarantee food

access at the household level. In others words it is possible that food can be available at the

national level while households and/or individuals do not have access to such food. This is be-

cause adequate national food supplies is a necessary but not sufficient condition for ensuring food

security (Cohen, 2005). Households have access to food if they have the entitlement to produce

from own land, purchases, and other means such as exchanges or food received as gifts (Maxwell

and Frankenberger, 1992). Entitlement to food originates from their resources, assets, employment

opportunities at their disposal, own production, prices of commodities and services, and social

security benefits (Sen, 1981). If the combination of factors that constitute entitlement is not ade-

quate to enable individuals or households to obtain the minimum food required, such individuals

or households become food insecure. Household entitlement and access to food cereals are used to
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measure availability of food cereals to households in this research.

Major crops that are grown in Lesotho are maize, sorghum and wheat, each occupying approx-

imately 60%, 20% and 10% of the area planted (FAO and WFP, 2005). Like for most communities

in Southern and East Africa, maize is the most important staple food for Basotho, and it constitutes

80% of the diet of people in the rural areas of Lesotho (FAO and WFP, 2007). The majority of

farmers in the country are subsistence farmers with low productivity and average yields of less than

1 tonne per hectare (FAO and WFP, 2007). Cereal shortages in Lesotho are generally offset by

commercial imports and food aid, and this makes the country highly dependent on cereal imports

to meet domestic food requirements. The importance of these factors in contributing to availability

of food, cereals included, justifies the need to study and understand availability of cereals in their

context.

Understanding of availability of food cereals at both the national and household levels requires

application of statistical methods that are appropriate for analysis of the current data. The com-

monly applied statistical method is regression analysis, which is often limited to estimation and

prediction of crop production or yield. Currently crop yield estimation is based on classical regres-

sion analysis and trend analysis (Prasad et al., 2005). The general approach has been to regress a

time dependent response variable, crop production or yield, on predictor variables that include time

and some meteorological variables (Jones, 1982). This is usually done without much consideration

of problems that may come with the application of these models to real life data. The problems

that are common include collinearity, models not fitting the data correctly, and violation of model

and estimation procedures assumptions. Violation of assumptions may be due to factors such as the

presence of extreme values in the data. Realizing that such problems exist in real life, modelling of

real life data should take into consideration their existence and appropriate statistical methods be

used to study and correct them when fitting the regression models. Otherwise they may interfere

with the applicability and usefulness of the models.

Generally, regression models may differ based on the form of the regression function, which could

be linear or nonlinear. They may also differ based on the shape of the probability distribution of

the response variable, which could be symmetric or skewed, and based on other ways. Lewis et al.

(1998), Balaghi et al. (2008), Ren et al. (2008), Jones (1982), Schillinger et al. (2008) and Bella

et al. (1996) used classical regression to model crop yield. Prasad et al. (2005) used piecewise linear

regression, Cutts and Hassan (2003) used two stage least squares, and Hansen and Indeje (2004)

used nonlinear regression. Evenson and Mwabu (1998) applied quantile regression to model crop

production.

Oftentimes real life data, specifically the data from observational studies, consist of variables that

are highly correlated, resulting with collinearity or the presence of near linear dependencies among
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predictor variables. This implies that there is redundancy in the set of variables because the same

information is being given by more than one variable and thus variables have the same predictive

power of the response variable. Collinearity has effects that can affect the efficiency of linear models

in estimating and predicting the response variable. Belsley (1991) noted that collinearity is a data

problem not a statistical problem. Thus data need to be checked using collinearity diagnostics

when fitting the regression model and remedial measures be used to remedy collinearity problems

that may exist in the data.

Real life data may contain some observations that are far too extreme when they are compared

with other observations on the response or predictor variables. In such cases extreme observations

are called outlying observations or high leverage points, respectively. The existence of outlying

observations is a concern for ordinary least squares (OLS) estimates as they are very sensitive to

outlying observations. On the other hand, one of the important uses of classical regression mod-

els of making inferences about parameter estimates requires the distributional assumption about

error terms. The standard distributional assumption about error terms is that they are normally

distributed. This assumption is required for the applicability and optimality of OLS estimation

procedure. However, real life data do not always satisfy the assumption. Furthermore, the classical

regression model is based on the assumption that the error terms have a constant variance. In this

case the regression model is referred to as the location shift or location model, where predictor

variables are assumed to affect only the location of the conditional distribution of the response

variable, not the scale or its distributional shape (Koenker and Hallock, 2000). The estimated

model of the conditional mean function is appropriate for such situations. However, there is more

that can be established by the application of regression to real life situations than what can be

learned from the location shift model alone.

Diagnosis of the regression model and how the model agrees with a particular set of data is critical

for developing statistical models and sound inferences (Schabenberger and Pierce, 2002). Regres-

sion diagnostics can be used to check results from the fitted model and see if assumptions of the

model are not violated, the data contain extreme observations and the extent of their influence

on different quantities of the fitted model. The existence of outlying observations and asymmet-

ric or symmetric distributions but rather with heavier and longer tails than that of the normal

distributions need to be taken care off when fitting the regression models. One of the corrective

measures could be to transform the data. Box and Cox (1964) suggested the transformation that

automatically identifies an appropriate transformation from the family of power transformations.

Robust regression procedures such as quantile regression are normally preferred from the OLS

procedures due to their robustness to violation of some assumptions of the regression models, and

the presence of outlying observations in the data set. Quantile regression of Koenker (2005) is a

robust and flexible estimation approach that estimates various quantile functions at different parts
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of the distribution of the response variable. The majority of the application of regression in study-

ing relationships of variables focus on estimating rates of change in the mean response given a set

of predictor variables. This may give an incomplete view of the entire distribution of the response

variable, and can lead to wrong conclusions, particularly when the assumptions of homoscedastic-

ity and normality do not hold, and when there are outliers in the data. Predictor variables can

influence the distribution of the response variable in a number of other ways. They can influence

the variability and result in heteroscedasticity, one tail of the distribution can be elongated while

the other is compressed, and the distribution can even have more than one mode. A comprehensive

investigation of these effects can be done through the use of quantile regression because unlike the

conditional quantiles, the conditional mean model is not able to detect the changes in shape and

scale of the distributions that deviate from the normal distributions, such as right or left skewed

distributions. Mosteller and Tukey (1977) noted that the mean is not always sufficient by itself

and most of the regression analysis resulted with an incomplete picture of how variables are related.

The use of classical regression and quantile regression models to model availability of food cereals

becomes inappropriate when households are categorized according to availability of specific cereals.

The categorization results with a categorical variable that indicates what cereal was available to

which households, and thus invalidating the use of classical regression and quantile regression mod-

els, where the response variable is a continuous variable. The categorical response variable takes

three different forms not measured in a ratio scale, and as a result does not satisfy the distribu-

tional assumptions required for the classical regression model. The three forms are binary response,

multiple nominal categories and ordinal categories. In this case generalized linear models (GLMs),

of which logistic regression with its three variants is a special case, can be used as an alternative

to the linear regression and quantile regression models.

1.2 Objectives

The overall objective is to model availability of food cereals at both the national and household

levels, in consideration of problems that accompany the application of regression models to real life

data. Specific objectives are:

1. to detect the presence of more than one collinear relationship that exist simultaneously in

the current data, and identify variables involved in each of such relationships using condition

index and variance-decomposition proportions, respectively.

2. to remedy collinearity problems and control the instability of parameter estimates using ridge

regression.

3. to determine the existence of outlying observations and leverage points in the current data,

detect if they are influential and establish the extent of their influence on different quantities
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of the fitted model.

4. to establish if the distributional assumptions about the error terms are violated, and check

the extend to which they are violated.

5. To correct violation of the distributional assumptions that error terms have a normal distri-

bution and a constant variance using the Box-Cox transformation

6. to deal with asymmetric distributions of data by fitting the quantile regression model at the

different parts of the distribution of the response variable.

7. to study availability of cereals further using the generalized linear models, in particular logistic

regression model in its three different forms

The approach used to achieve the above outlined objectives is to identify problems that may

compromise the validity of the results obtained from fitting the regression models to the real life

data. This is done by applying statistical tools that have long been established as relevant to the

problems but their application in the analysis of availability of food cereals is limited.

1.3 Organization of the Thesis

This thesis started by describing the composition of the two sets of data used in Chapter 2. The

two sets are of the national and household data about availability of cereals. The chapter fur-

ther presents the descriptive analysis of the data, pointing to relationships that may exist between

variables, exploring distributions of data and suggesting further and in-depth analysis of the data.

Chapter 3 gives a review of classical regression models and diagnostics, where the general linear

model and its alternatives specialized in dealing with different situations and problems that emerge

in the application of linear models are discussed. Chapter 4 presents the application of the classi-

cal regression models and diagnostics on the national data. The application starts by fitting the

model, and using collinearity and regression diagnostics to identify problems in the data, which

may interfere with the usefulness and efficiency of the models. Furthermore, it applies Box-Cox

transformation to correct violation of distributional assumptions about the error terms, and ridge

regression to remedy collinearity problems and control instability in estimated regression coeffi-

cients.

Chapter 5 presents the application of the classical regression models and diagnostics to the house-

hold data. The regression model with categorical predictor variables is applied and problems that

accompany this application are identified and dealt with using appropriate remedial measures.

Chapter 6 presents a review of robust regression with an emphasis on quantile regression model,

which estimates functional relationships for all parts of the distribution of the response variable.
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In Chapter 7, the quantile regression model is applied to the household data, where the model is

fitted at the 25th quantile, median and 75th quantile. Chapter 8 gives a review of three variants of

logistic regression, namely, simple logistic regression with binary response, multinomial regression

with nominal categories, and ordinal logistic regression. Chapter 9 presents the application of the

variants of logistic regression on household data. Lastly, chapter 10 presents the discussion and

conclusions together with suggestions for future research work.
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Chapter 2

Data Description and Exploratory

Analysis

2.1 Introduction

The data used in this research are observational in nature rather than being experimental because

they were not compiled under a controlled experiment. They consist of two sets, where the first

set is of the national data with variables that are normally used to measure availability or supplies

of cereals at the national level, and related variables. The second set is of household data collected

from households in some villages in Lesotho. The data were collected by the researcher through a

small survey that investigated about households entitlement to the three main cereals in Lesotho,

namely, maize, sorghum and wheat. This chapter focuses on describing and exploring data in the

two sets of data.

2.2 National Data

The national data are secondary data about food cereals and related variables, compiled from dif-

ferent organizations in Lesotho. These are aggregated data that reflect annual figures for the entire

country. The variables in the data include domestic production in tonnes, commercial imports in

tonnes, food aid in tonnes, and average price per tonne for maize, sorghum and wheat, in South

African Rands. The data on production of the cereals include cultivated area in hectares, and crop

yield per hectare in kilograms for each of the cereals. Cultivated area was categorized into planted

area, harvested area, and area under crop failure. Harvested area is part of planted area which

was not affected by crop failure, and household harvested some crop from it. Crop failure occurs

when planted crop gets destroyed by either frost, floods, animals, pests, diseases, or other things

that may cause damage to crops. Other variables that are part of the national data are the average
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amount of rainfall in milliliters, population size in millions, and time in years.

The data on production of cereals were collected by Bureau of Statistics (BoS) Lesotho through

agriculture production surveys (APS) conducted annually, and agriculture censuses conducted ev-

ery 10 years. The agriculture production survey was conducted by selecting a random sample of

farming households in the rural areas throughout the country. These households were interviewed

about their farming activities and monitored from the beginning of the agricultural year when they

start planting until the end of the agricultural year when they harvest. The Lesotho agricultural

year starts in August and ends in July of the following year. Agricultural censuses are generally

conducted in the same manner as agriculture production surveys, except that a bigger sample size

is selected from both the rural and urban areas.

The data on commercial imports and food aid are compiled by the Early Warning Unit under

the Lesotho Disaster Management Authority (DMA). In compiling these data the unit uses in-

formation from different government’s departments, non-governmental organizations (NGOs), and

the World Food Programme (WFP). Prices of cereals are compiled by the Department of Market-

ing of the Ministry of Trade and Industry, Cooperatives and Marketing (MTICM). The rainfall

data are collected and compiled by the Lesotho Meteorological Services (LMS) from a number of

weather stations throughout the country. Population size is obtained through population censuses

conducted every ten years by the Bureau of Statistics Lesotho, and mid-year population projections

for the years that are in between the years in which population censuses were conducted, also made

by the Bureau of Statistics Lesotho.

Some variables that are considered to be important in studying the national food cereals demand

and supplies are not included in this research due to the scantiness and incompleteness of the data.

Such variables are cereals domestic stocks, domestic requirements, surplus or deficit, and consump-

tion per capita. The national data on these variables are available but with insufficient observations

as there are gaps of data for some years. The scantiness and incompleteness of the data can be

attributed to, among other things, the fact that the data were compiled by different organizations

that operate independently with little or no coordination, and varying levels of appreciation of the

importance of the data and uses to which the data are put, among the organizations that compile

the data. The scantiness of data, specifically of the agricultural data is not a problem to Lesotho

only as Cutts and Hassan (2003) noted that agricultural data are scanty in most of the Southern

Africa countries.
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2.3 Household Data

The household data are primary data collected from a sample of 296 households. The data about

households entitlement and access of the three main cereals were collected in a survey conducted in

Lesotho by the researcher in 2008. A structured questionnaire was designed and administered by

the researcher to a sample of 296 households through interviews. The pilot survey was conducted

before the main survey to test the questionnaire. Due to financial and time constraints, the survey

was conducted in few villages from three districts out of the ten districts of Lesotho. The three

districts are Berea, Maseru and Mafeteng. Households that were included in the survey were ran-

domly selected from easily accessible villages of the three districts. The sampling technique used

to select a sample of households is systematic sampling, where a pattern of selecting every fifth

household in a village was followed. Thus conclusions made from the results of this survey should

be confined to the villages from where the households were selected, and not generalized to the

three districts. This is because the interviewed sample of households is not representative of the

districts where the villages are located.

The data include information on demographic and socio-economic characteristics of household

heads, household entitlement to the three main cereals that constitute sources of the cereals and

coping strategies. The characteristics include household size, age, sex, education level and occupa-

tion of household head. Households entitlement and copying strategies include, household monthly

income in South African Rands, the amount of a given cereal produced from own land, purchases

of cereals, exchanges of cereals, food aid from government and NGOs, and gifts of cereals, all mea-

sured in kilograms. The data are largely based on memory of respondents since households do not

normally keep records of their activities concerning procurement, access, and consumption of food.

The variable name used to measure household entitlement and access to food cereals is avail-

ability of a given cereal to the household. Availability of a cereal, for example maize, consists

of a combination of different sources that households had for acquiring and accessing such food

cereal. Respondents in the households were asked to provide information about sources of food

cereals for their households and the amount acquired during the observational period. The survey

was conducted in December 2008 and the observational period was from the beginning of the last

harvest season, which was June 2008, until in December 2008 when the survey was conducted.

Normally the harvest season in Lesotho starts in June of every year. Thus availability of cereals in

this context is the total amount of a given cereal, in kilograms, acquired or accessed by a household

during the observational period.
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2.4 Exploratory Data Analysis

The application of regression models and diagnostics to both the national and household data was

preceded by an exploratory analysis of the data. The data on maize, sorghum and wheat were

explored to reveal the underlying structure of the data for a better understanding of variables in

each set, and to establish relationships that may exist between the variables, prior to modelling

the data. The establishment of relationships in a set of data is the initial step of modelling the

data, which can lead to some variables being classified as response variables and others as predictor

variables. Generally, subsequent steps of statistical modeling can be done when some patterns in

the data are thought to exist and have been identified (Everitt and Dunn, 1983). The relationships

between variables can be simple or complex depending on questions being answered in a research,

and the nature of the data. Summary statistics, scatter plots, box plots and correlation matrices

were used to explore the data.

The national data were compiled for the period 1973/1974 to 2006/2007, and this period is consid-

ered to be the period under investigation in this research. However, data on some variables such

as price of cereals and population size were not available for the entire period, meaning that there

were data gaps in some years within the specified period. Each of the national data set on maize,

sorghum and wheat was sub-divided into three subsets, based on years in which data on some vari-

ables were available. The composition of the three subsets vary in terms of the number of variables

and observations. The subsets are not mutually exclusive since they overlap and hence have some

observations in common. The subdivision of the data was used to find out if different time inter-

vals make a difference in studying the national availability of the three main food cereals in Lesotho.

All the 296 households included in the survey had entitlement or access to maize, while some

had access to sorghum and/or wheat. Having a larger number of households in the sample with

access to maize than for sorghum and wheat is not surprising because as it was mentioned in Chap-

ter one, maize is the only staple food in Lesotho consumed by almost all people in the country.

The villages from which the survey was conducted were grouped into four locations, on the basis of

their geographical locations in the country. The locations are Mafeteng, Maseru lowland, Maseru

foothill and Berea. The majority of households that were included in the study, 55.07%, were

located in Maseru Lowland, followed by Mafeteng, Maseru foothill and Berea with 20.17%, 14.19%,

and 10.47%, respectively. The demographic and socio-economic characteristics of household heads,

who are regarded as household representatives in this research, were used in studying households

entitlement and access to maize and sorghum. Wheat was excluded in the analysis because few

households had access to it during the observational period.
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2.4.1 Exploration of National Maize Data

The first subset of maize data contains the data for the entire period under investigation, 1973/74

to 2006/2007, and consists of 9 variables and 33 observations, corresponding to the number of

years in the observational period. The variables include; time in years, the amount of rainfall, area

planted to maize, planted area affected by crop failure, area harvested to maize, yield of maize per

hectare, maize production, maize commercial imports, and maize received as food aid. This subset

excludes two variables, price of maize and population size, because the variables have data gaps

for some of the years within the observational period. The second subset with 31 observations of

the years 1976/1977 to 2006/2007, consists of all variables in the first subset plus population size

as an additional variable. This variable does not have data for the first three years, 1973/74 to

1975/1976, meaning that it has data starting from 1976/1977 and thus it could not be included

in the first subset of data. The third subset with 29 observations for the period 1973/1974 to

2001/2002 is similarly made up of all variables in the first subset but with price of maize per tonne

as an additional variable. This variable has missing data for the period 2002/2003 to 2006/2007

and thus it could not be part of either the initial subset or the second subset.

Table 2.1 presents summary statistics of the variables in the subset that contains data for 1973/1974

to 2001/2002. The lowest maize production that Lesotho experienced in this period was 48918

tonnes, with the maximum of 277685 tonnes. The lowest amount of maize imported for commer-

cial purposes was 60100 tonnes with the maximum of 186000 tonnes. The minimum amount of

maize received by the country as food aid was zero tonnes with the maximum of 49900 tonnes.

The minimum of zero indicates that there was a time within this period when the country did not

receive any maize in the form of food aid. The years in which the country did not receive maize

in the form of food aid are 2000/2001 and 2001/2002. There is no literature that gives specific

reasons why the country did not receive maize as food aid in these two years. On average the

country produced 116860.32 tonnes of maize, imported 111216.43 tonnes for commercial purposes,

and received 13110.71 tonnes as food aid during the years 1973/1974 to 2001/2002. These statistics

show that on average, domestic production of maize contributed a lager proportion of the Lesotho

maize requirements in that period.

Food aid varied greatly, when it is compared with the other two supplies of maize, domestic produc-

tion and commercial imports. This is shown by the highest coefficient of variation (CV) of 85.54.

The lowest price of maize per tonne was R49.00 per tonne in 1973/1974 while the maximum price

was R739.00 in 2001/2002. The big difference between the minimum and maximum price shows

how price of maize increased progressively over the years. The average cost of maize for the period

was R345.78.

The smallest area that was planted and harvested to maize in Lesotho during the period under
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Table 2.1: Summary Statistics for 1973 - 2002 Maize Data

Summary Statistics

Variables Minimum Maximum Mean Std deviation CV

Production 48918 277685 116860.32 48748.19 41.71

Rainfall 465 1043 730.79 128.71 17.61

Planted area 55676 208905 143124.29 36387.84 25.42

Harvested area 76954 177503 122272.39 28744.18 23.51

Failed area 4768 126076 24423.32 24687.45 101.08

Yield/hectare 359 1632 821.68 299.11 36.40

Imports 60100 186000 111216.43 32109.29 28.87

Food aid 0 49900 13110.71 11215.51 85.54

Price/Ton 49 739 345.78 235.25 68.03

investigation were 55676 and 76954 hectares, respectively. The country had the highest area under

crop failure of 126076 hectares in 1997/1998, which constituted 60% of area planted to maize in

that year. The highest yield of maize per hectare attained in the years 1973/1974 to 2001/2002

was 1632 kilograms per hectare, with the minimum and average of 359 and 821.68 kilograms per

hectare, respectively. The minimum, maximum and average amount of rainfall were 465, 1043,

and 730.79 milliliters, respectively. The planted area affected by crop failure has the highest CV of

101.08, meaning that it varied greatly when it is compared with all other variables in the table. The

large variability of crop failure is probably caused by erratic weather conditions that are becoming

frequent lately. The amount of rainfall was less variable than all other variables since it has the

lowest CV of 17.61.

Table 2.2 presents all variables that appear in the scatter matrices for maize, sorghum and wheat

data. Some of the variables in the table do not appear in some scatter matrices, depending on

the subset of data represented in a matrix. Figure 2.1 shows a scatter-plot matrix that presents

scatter plots of all pairs of variables in the 1973/1974 to 2001/2002 maize data, except yield of

maize. Yield is omitted from the matrix because it almost measures the same quantity as maize

production and thus its inclusion will cause redundancy in the data.

Scatter plots of maize production and other variables on the first row and the first column show

that maize production is linearly related with time in years, the amount of rainfall, area planted,

area harvested and price of maize. The plot of maize production and the amount of rainfall shows

an outstanding observation. This observation is identified as the 1975/1976 case with the highest

amount of rainfall of 1042.52 milliliters, and a relatively low maize production of 49128 tonnes.

Scatter plots of time on the second row shows that time has linear relationships with area planted,

area harvested, commercial imports and price of maize. The plot of price of maize and time, at

a glance, shows a strong positive correlation between the two variables, which is almost perfect.

The plots indicate that almost all variables which have a linear relationship with area planted
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Figure 2.1: Scatter Plot Matrix for 1973 - 2002 Maize Data

are similarly related with area harvested. The variables are maize production, time and amount of

rainfall. The reason for this could be that the two variables measure almost the same quantity since

area harvested is part of area planted not affected by crop failure. Thus one of the two variables,

area planted, was dropped to avoid redundancy when relationships between variables were studied

further.

The correlation matrix in Table 2.3 presents Pearson correlation coefficients between all pairs of

variables. Pearson correlation coefficient is a quantitative measure of the strength of linear rela-

tionship between two variables. Thus the correlation coefficients quantify the strength of linear

relationships identified from the scatter-plot matrix in Figure 2.1. Lack of correlation between a

pair of variables does not necessarily mean that there is no relationship between the two variables,

it only shows lack of a linear relationship. The correlation coefficients of maize production and

each of time, the amount of rainfall, area harvested and price of maize are 0.42, 0.39, 0.68 and

0.43, respectively. All the coefficients are positive, indicating positive relationships that maize

production increased with an increase in each of the variables. The strong positive relationship

between price of maize and time identified from Figure 2.1 is confirmed by a very high positive

correlation coefficient of 0.97. When the suspected extreme observation is excluded from the data,

the correlation coefficient of production and rainfall increases from 0.39 to 0.62.

Summary statistics of the data for the periods 1973/74 to 2006/2007 and 1976/1977 to 2006/2007
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Table 2.2: Variables in the Scatter Matrices

Variable Label

Production Production of a given cereal

Lag-Prod Production of a given cereal in the past immediate year

Time Time in years

Population Population of people in Lesotho

Rainfall Amount of rainfall

AreaP Area planted to a given cereal

AreaH Area harvested to a given cereal

AreaF Area planted to a given cereal affected by crop failure

CommImports Commercial imports of a given cereal

FoodAid A given cereal received as food aid

Price Price of a given cereal per tonne

Table 2.3: Correlation Matrix for 1973 - 2002 Maize Data

Production Time Rainfall PArea HArea FArea Imports Food aid Price/Ton

Production 1.0000 0.4167 0.3934 0.2811 0.6799 -0.1567 0.1016 0.0314 0.4295

Time 0.4167 1.0000 -0.1156 0.3747 0.4103 0.2296 0.3587 0.1027 0.9665

Rainfall 0.3934 -0.1155 1.0000 0.2632 0.3884 -0.0177 -0.1135 0.1113 -0.0966

PArea 0.2811 0.3747 0.2632 1.0000 0.4963 0.5356 -0.0234 -0.1113 0.2471

HArea 0.6799 0.4103 0.3884 0.4963 1.0000 -0.2834 0.1990 0.2469 0.3823

FArea -0.1567 0.2296 -0.0177 0.5356 -0.2834 1.0000 0.0834 -0.1453 0.1699

Imports 0.1016 0.3587 -0.1134 -0.02335 0.1989 0.0833 1.0000 0.5676 0.4372

Food aid 0.0314 0.1028 0.1113 -0.1113 0.2469 -0.1454 0.5676 1.0000 0.24328

Price/Ton 0.4295 0.9665 -0.0967 0.2471 0.3823 0.1699 0.4372 0.2433 1.0000

are not presented because they do not differ much with that of the subset presented in Table 2.1.

Scatter-plot matrices in Figures A.1 and A.2 of Appendix A show linear relationships that exist

among some pairs of variables in the two data subsets, respectively. The plots show that in both

subsets, maize production is linearly related with only three variables, which are the amount of

rainfall, area planted and area harvested to maize. The plots also show two linear relationships

of area planted and area harvested, and the amount of rainfall and area harvested. The positive

relationships of maize production and each of the amount of rainfall and area harvested, for the

data of 1973/74 to 2006/2007, are quantified by the correlation coefficients of 0.39 and 0.61, respec-

tively (Table B.1 in Appendix B). In the case of the 1976/1977 to 2006/2007 data, the correlation

coefficients for maize production and each of the amount of rainfall and area harvested are 0.60 and

0.58, respectively (Table B.2 in Appendix B). The correlation coefficients of the amount of rainfall

and area harvested for the two data subsets are 0.40 and 0.60, respectively. This indicates that

the relationship between the two variables is stronger for the 1976/1977 to 2006/2007 data, where

the 1975/1976 observation that appeared outstanding in terms of the amount of rainfall is excluded.
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Skewness, kurtosis and box plots were used to explore the distribution of a variable that was

identified as a potential response variable when fitting regression models in the subsequent chap-

ters. The variable is production of each of maize, sorghum and wheat. The values of skewness and

kurtosis of maize production are 1.26 and 3.06, respectively. The two quantities provide summary

information about the shape of the distribution of the data. The value of skewness of 1.26 shows

that the distribution deviates slightly from the normal distribution and it is skewed to the right.

The value of kurtosis of 3.06 shows that the distribution is a little bid leptokurtic, meaning that it

has a slightly higher peak and heavier tails than the normal distribution. The tails that are heav-

ier than that of the normal distribution imply high probability of extreme observations of maize

production. The values of skewness and kurtosis for the 1973/74 to 2006/2007 and 1976/1977 to

2006/2007 data in Table 2.8 show similar pattern as that of the 1973/74 to 2001/2002 data, though

the 1976/1977 to 2006/2007 data has the highest values.

The box plot of 1973/1974 to 2001/2002 maize data in Figure 2.2, at a glance shows that maize

production is approximately normal. This is indicated by the line inside the box showing the

median, which is almost equidistant to the lower and upper edges of the box. The Box plot of

1973/1974 to 2006/2007 maize that in Figure M.1 shows a slight positive skewness where the line

in the box is not equidistant to the lower and upper edges of the box but also not far from the

middle of the box. In this case, the line is slightly towards the lower edge of the box. In the case

of the 1976/1977 to 2006/2007 maize data, the line is towards the lower edge of the box showing

a positively skewed distribution where the majority of the observations fell in the lower side of the

distribution of maize production (Figure M.2). This implies that the majority of the years in the

observational period had lower production of maize.

In general, the observations from the plots agree with what was observed from the values of the

skewness and kurtosis in Table 2.8. The 1973/1974 to 2001/2002 has the lowest values of skewness

and kurtosis showing a relatively slight deviation from normality, followed by the values from the

1973/1974 to 2006/2007 maize data. The 1976/1977 to 2006/2007 maize data is the worst in terms

of maize production deviating from normality, shown by both the box plot and values of skewness

and kurtosis. All box plots for maize data at different time intervals show one extreme observation

of maize production.

2.4.2 Exploration of National Sorghum Data

The sorghum national data were similarly divided into three subsets, which are not mutually ex-

clusive. The first subset of 1973/1974 to 2006/2007 has the same composition of variables as that

of maize for the same period. The 1973/1974 to 1997/1998 data consists of all variables in the first

subset plus price of sorghum per tonne as an additional variable. The 1976/1977 to 2006/2007 data

consists of all variables in the first subset plus population size as an additional variable. Table 2.4
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presents summary statistics for the 1976/1977 to 2006/2007 data. Unlike maize supplies, which

included food aid, sorghum supplies consisted of domestic production, and commercial imports

only. This shows that Lesotho did not receive any sorghum in the form of food aid within the

period under investigation.

Table 2.4: Summary Statistics for 1976 - 2007 Sorghum Data

Summary Statistics

Variables Minimum Maximum Mean Std deviation CV

Production 6887 85775 35421.67 19916.76 56.23

Rainfall 465 969 718.16 121.92 16.98

Area Planted 11047 81594 48267.03 18535.06 38.41

Harvested area 8579 76355 43166.83 17748.43 41.16

Failed area 0 19153 5100.20 4416.22 86.59

Yield/hectare 329 1383 736.03 305.48 41.50

Imports 0 16900 1676.67 3228.82 192.57

The lowest sorghum production experienced in Lesotho in the period, 1976/1977 and 2006/2007,

was 6887 tonnes, with the highest production of 85775 tonnes. Sorghum imports had the minimum

of zero, indicating that there were years in which the country relied entirely on domestic production

to meet its sorghum needs. On average the country produced and imported 35421.67 and 1676.67

tonnes of sorghum, respectively in that period. The highest CV of 192.57 for commercial imports

indicates that the amount of sorghum imported by the country within that period varied greatly,

when it is compared with other variables (Table 2.4). The minimum of zero for area under crop

Figure 2.2: Box Plot for 1973 - 2002 Maize Data
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Figure 2.3: Scatter Plot Matrix for 1976 - 2007 Sorghum Data

failure is an indication that the country had good years when sorghum was not affected by factors

that cause crop failure. In those years area planted to sorghum turned out to be equivalent to area

harvested to sorghum. The lowest and highest yield of sorghum attained during that period were

329 and 1383 kilograms per hectare, respectively. The average yield of sorghum in the same period

was 736.03 kilograms per hectare.

Scatter plots on the first row of Figure 2.3 show that sorghum production has a positive linear

relationships with production of sorghum in the past immediate year or at time t − 1, and area

harvested, whereas it has a negative relationship with time and population size. Like in the maize

data, every variable related with area planted is also related with area harvested. In this case,

the variables are sorghum production, time and population size. Almost all the four variables

that are linearly related with sorghum production have pairwise relationships among themselves.

In particular time shows, at a glance, a negative relationship with production of sorghum in the

current year, production of sorghum in the past immediate year and area planted to sorghum show

a positive relationship.

The correlation coefficients of sorghum production and each of production of sorghum in the im-

mediate past year, time in years, population size and harvested area are 0.53, -0.67, -0.66 and

0.71, respectively (Table 2.5). These coefficients show that in the years 1976/1977 to 2006/2007,

if sorghum production in the immediate past was high, the current sorghum production was also
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Table 2.5: Correlation Matrix for 1976 - 2007 Sorghum Data

Production Production-t Time Population Rainfall PArea HArea FArea Imports

Production 1.0000 0.5272 -0.6707 -0.6613 0.2118 0.6531 0.7140 -0.1285 0.0338

Production-t 0.5272 1.0000 -0.6692 -0.6540 -0.2052 0.2411 0.2127 0.1570 0.0642

Time -0.6707 -0.6692 1.0000 0.9975 0.0941 -0.6245 -0.5733 -0.3169 -0.0039

Population -0.6613 -0.6540 0.9975 1.0000 0.1011 -0.6271 -0.5785 -0.3072 0.0043

Rainfall 0.2118 -0.2052 0.0941 0.1011 1.0000 0.1597 0.2067 -0.1605 -0.0968

PArea 0.6531 0.2411 -0.6245 -0.6272 0.1597 1.0000 0.9713 0.2935 0.0069

HArea 0.7140 0.2127 -0.5733 -0.5785 0.2067 0.9713 1.0000 0.0577 0.0132

FArea -0.1285 0.1570 -0.3169 -0.3072 -0.1605 0.2935 0.0577 1.0000 -0.0241

Imports 0.0338 0.0642 -0.0040 0.0043 -0.0968 0.0069 0.0132 -0.0241 1.0000

high, and sorghum production increased with an increase in area harvested, while it declined with

time and an increase in population size. The correlation coefficient that measures a relationship

between time and area harvested to sorghum is -0.57. This shows that area harvested to sorghum

declined with time. Time and population size have a positive perfect relationship shown by the

correlation coefficient of 0.9975, showing that population size increased with time.

Scatter plots for 1973/1974 to 1997/1998 sorghum data show that production of sorghum has

negative linear relationships with time, area under crop failure, and price of sorghum per tonne

(Figure A.3 in Appendix A). In addition, sorghum production has positive linear relationships with

area harvested to sorghum. Like it is the case in the 1973/1974 to 2006/2007 data, time is linearly

related with almost all other variables that are related with production of sorghum, plus imported

sorghum. The strength of the identified relationships is measured by correlation coefficients in

Table B.3 of Appendix B. The Correlation coefficients between sorghum production and each of

time, area harvested, area under crop failure, and price of sorghum are -0.52, 0.70, -0.45 and -0.41,

respectively. The correlation coefficients between time and area harvested, imported sorghum and

price of sorghum are -0.52, -0.63 and 0.90, respectively. In the case of 1973/1974 to 2006/2007

sorghum data, the pattern of the relationships between sorghum production and production of

sorghum in the past immediate year, time and area harvested, in Figure A.4 of Appendix A, is

similar to the pattern in the 1973/1974 to 2006/2007 data. The strength of these relationships is

shown by correlation coefficients in Table B.4 of appendix B.

The values of skewness and kurtosis of sorghum production for the period, 1976/1977 to 2006/2007,

are 0.60 and -0.14, respectively. The value of skewness of 0.60 shows that the distribution deviates

a little bid from the normal distribution and it is skewed to the right. The value of kurtosis of

-0.14 shows that the distribution is a little bid platykurtic, meaning that it is a little bid flatter

than the normal distribution. The values of skewness and kurtosis for the 1973/74 to 2006/2007

and 1973/1974 to 1997/1998 data in Table 2.8 show similar pattern as that of the 1976/1977 to

18



2006/2007 data.

The box plot of 1976/1977 to 2006/2007 sorghum data in Figure 2.4, at a glance, shows that

the line inside the box is not equidistant to the lower and upper edges of the box, but it is towards

the lower edge of the box. The implication is that sorghum production deviates from the normal

distribution and is skewed to the right. This observation is confirmed by the positive value of

skewness in Table 2.8, though it is not too far from zero. The box plots of 1973/1974 to 2006/2007

and 1973/1974 to 1997/1998 sorghum data in Figures M.3 and M.4 portray the same pattern,

though the deviation for the normal distribution is more pronounced in the case of the 1973/1974

to 1997/1998 data. This is the subset of data with relatively the lowest value of skewness but the

highest negative value of kurtosis (Table 2.8).

2.4.3 Exploration of National Wheat Data

The national wheat data were similarly divided into three subsets. The subsets are for the 1973/1974

to 2006/2007, 1973/1974 to 2001/2002, and 1976/1977 to 2006/2007 data, with the same compo-

sition of variables as that of maize and sorghum data. Summary statistics in Table 2.6 show that

in the period, 1976/1977 to 2006/2007, imported wheat contributed a larger part of the national

wheat requirements than domestic wheat production. This is shown by a minimum of 6844 tonnes,

a maximum of 61381 tonnes, and an average of 26258.48 tonnes for wheat production, which are

relatively low when they are compared with their counterparts for imported wheat. The minimum,

maximum and average of imported wheat are 21500, 77000 and 43610.34 tonnes, respectively. Food

Figure 2.4: Box Plot for 1976 - 2007 Sorghum Data
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aid was one of the supplies of wheat until 1994/1995 as the country did not receive wheat in the

form of food aid beyond that period. Imported wheat was less variable than domestic production

and food aid since it has the lowest CV of 33.14.

Table 2.6: Summary Statistics for 1973 - 2002 Wheat Data

Summary Statistics

Variables Minimum Maximum Mean Std deviation CV Skewness

Production 6844 61381 26258.48 16080.21 61.24 0.89

Rainfall 465 1043 738.99 133.88 18.12 0.24

Planted area 2900 82100 34202.00 16660.21 48.71 0.91

Harvested area 11088 76600 29936.52 14377.87 48.03 1.50

Failed area 94 21562 5186.17 4618.43 89.05 2.19

Yield/hectare 215 1925 770.90 363.06 47.10 1.24

Imports 12700 77000 43610.34 14454.37 33.14 0.82

Food aid 0 42900 9527.59 11416.96 119.83 0.66

Price/Ton 61 1095 525.77 366.23 69.66 0.35

Wheat had the minimum yield per hectare of 172 kilograms and the maximum yield per hectare

of 1925 kilograms. Area planted to wheat affected by crop failure with a CV of 119.83 was more

variable than area planted and harvested. The big variability in area under crop failure was prob-

ably due to erratic weather conditions, which are more prevalent lately.

The first row and column of Figure 2.5, at a glance, show that wheat production is linearly related

with wheat production in the past immediate year, time in years, the amount of rainfall, area

harvested to wheat, wheat received by the country as food aid, and price of wheat per tonne.

Correlation coefficients between wheat production and wheat production at time t − 1, time in

years, area harvested, wheat received as food aid and price of wheat are 0.68, -0.47, 0.68, -0.45 and

-0.37, respectively (Table 2.7). The strong positive relationship between time and price of sorghum

is shown by a correlation coefficient of 0.93.

The scatter plot matrix in Figure A.5 of Appendix A and correlation matrix in Table B.5 of

Appendix B, show relationships that exist in the 1973/1974 to 2006/2007 wheat data. Wheat

production at time t is linearly related with wheat production in the past immediate year, time,

the amount of rainfall, and area harvested, with the correlation coefficients of 0.72, -0.56, 0.36 and

0.72, respectively. In the case of the 1976/1977 to 2006/2007 wheat data, wheat production is

linearly related with wheat production in the past immediate year, time, population size, and area

harvested (Figure A.6 and Table B.6 in Appendices A and B). The correlation coefficients that

measure the strength of the identified relationships are 0.62, -0.45, -0,45 and 0.60, respectively.

The box plot of 1973/1974 to 2001/2002 wheat data in Figure 2.6, at a glance, shows that the line
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Figure 2.5: Scatter Plot Matrix for 1973 - 2002 Wheat Data

Table 2.7: Correlation Matrix for 1973 - 2002 Wheat data

Production Production-t Time Rainfall PArea HArea FArea Imports Food aid Price/Ton

Production 1.0000 0.6761 -0.4659 0.3548 0.6033 0.6790 0.1053 -0.1304 -0.4447 -0.3654

Production-t 0.6761 1.0000 -0.4187 0.4096 0.4650 0.5565 0.0674 0.0156 -0.2845 -0.2856

Time -0.4659 -0.4187 1.0000 0.0008 -0.6627 -0.7127 0.0224 0.6492 -0.1211 0.93042

Rainfall 0.3548 0.4096 0.0008 1.0000 0.2461 0.2991 0.0055 0.2129 -0.1758 -0.0661

PArea 0.6033 0.4650 -0.6627 0.2461 1.0000 0.9239 0.3431 -0.5307 -0.0711 -0.5923

HArea 0.6790 0.5565 -0.7127 0.2991 0.9239 1.0000 0.1084 -0.4468 -0.1686 -0.6119

FArea 0.1053 0.0674 0.0224 0.0055 0.3431 0.1084 1.0000 -0.0466 0.0959 0.0299

Imports -0.1304 0.0156 0.6492 0.2129 -0.5307 -0.4468 -0.0466 1.0000 -0.3563 0.7194

Food aid -0.4447 -0.2845 -0.1211 -0.1758 -0.0711 -0.1686 0.0959 -0.3563 1.0000 -0.2244

Price/Ton -0.3654 -0.2856 0.9304 -0.0661 -0.5923 -0.61187 0.0299 0.7194 -0.2244 1.0000

inside the box is not equidistant to the lower and upper edges of the box, but it is towards the

lower edge of the box. The box plot and value of skewness (0.89) in Table 2.8 are in agreement

that wheat production deviates from the normal distribution and is skewed to the right. The Box

plot of 1973/1974 to 2006/2007 and 1976/1977 to 2006/2007 wheat data in Figures M.5 and M.6 of

Appendix M show the same pattern as the one observed in Figure 2.6. Further, Figure M.6 shows

that the 1976/1977 to 2006/2007 wheat data has two extreme values. Looking at the values of

skewness and kurtosis together with the box plots to determine the deviation of the distribution of
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Table 2.8: Values of Skewness and Kurtosis for National Data

Cereal Subset of Data Skewness Kurtosis

Maize 1973/1974 to 2006/2007 1.47 3.85

1973/1974 to 2001/2002 1.26 3.06

1976/1977 to 2006/2007 1.54 3.98

Sorghum 1973/1974 to 2006/2007 0.70 -0.04

1973/1974 to 1997/1998 0.54 -0.20

1976/1977 to 2006/2007 0.60 -0.14

Wheat 1973/1974 to 2006/2007 0.99 -0.01

1973/1974 to 2001/2002 0.89 -0.31

1976/1977 to 2006/2007 1.39 1.59

a given variable from the normal distribution, it looks like the quantity in which the values should

be far from zero varies from one set of data to another. This idea comes with an observation that

for subsets of maize data, the values are relatively higher than zero but box plots show slight devi-

ations from the normal distribution. Yet in the case of subsets of sorghum and wheat data where

the values are not too far from zero the box plots portray a noticeable deviation from normality.

Figure 2.6: Box Plot for 1973 - 2002 Wheat Data

In general, the values of skewness and kurtosis for maize data are higher than zero and show that

maize production for all the three periods are skewed to the right and have leptokurtic distributions

that are peaked (Table 2.8). In the case of sorghum data, the values are close to zero and show

distributions of sorghum production that are do not deviate much from the normal distribution. In
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the case of wheat data, the subset with the values that show a deviation from normality in wheat

production is of 1976/1977 to 2006/2007.

2.4.4 Exploration of Household Maize Data

Characteristics of households heads, the number of households and their proportions are presented

in Table 2.9. More than half (55.4%) of these households were headed by males while 44.5% were

headed by females. The biggest proportion of household heads (60.14%) attained primary educa-

tion only, followed by 24% who did not have any form of formal education, and only 3.72% managed

to attain education beyond high school, such as diploma and university degrees. Unemployment

was prevalent among heads of the studied households since 43.24% of household heads were un-

employed and only 17.91% constitute salary earners. The rest of the households were headed by

either subsistence farmers, casual workers or pensioners.

Table 2.9: Characteristics of Heads of Households

Characteristic Category Households Heads Percent

Gender Female 132 44.59

Male 164 55.41

Education Status No Formal Education 73 24.66

Primary Education 178 60.14

High School Education 34 11.49

Post High School Education 11 3.72

Occupation Casual Worker 39 13.18

Pensioner 20 6.76

Salary Earner 53 17.91

Subsistence farmer 56 18.92

Unemployed 128 43.24

Summary statistics in this section are based on the information provided by households for the

observational period, which was from the beginning of the last harvest season in June 2008 until in

December 2008 when the survey was conducted. The statistics in Table 2.10 show that the smallest

household in terms of size had one member while the biggest had fifteen members. The average

size of households was five members, and the 25th, 50th and 75th quantiles of the distribution of

household size are four, five and seven, respectively. This shows that 25%, 50% and 75% of the

households had less or equal to four, five and seven members, respectively. The mean and median

number of household size are both equal to five, showing that the distribution of household size is

not skewed but symmetric. Some of the households were headed by teenagers since the youngest

head of a household was aged seventeen years, while some were headed by very old people, aged

ninety six years. The minimum monthly income of zero suggests that there were households with-

out any monthly income, while the maximum monthly income of R5000.00 suggests that some
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households had monthly income as high as five thousand Rands. The 25th, 50th and 75th quantiles

of the distribution of households monthly income are 200, 350 and 735, respectively. This means

that 25%, 50% and 75% of the households had monthly income less or equal to R200.00, R350.00

and R735.00, respectively.

The minimum availability of maize was as little as 18 kilograms for the entire observational pe-

riod, indicating that availability of maize for some households was 18 kilograms. This could be

due to various reasons, such as households did not have means to acquire more or households had

alternative food cereals such as sorghum and wheat. The maximum quantity of maize available to

households was 4800 kilograms and the mean value of maize availability was 631.63 kilograms, for

the specified observational period. The 25th, 50th and 75th quartiles of the distribution of maize

availability are 336, 504 and 840, respectively. These quartiles indicate that 25%, 50% and 75%

of the households had maize availability less or equal to 336, 504 and 840 kilograms, respectively.

Both household monthly income and maize availability have distributions that are skewed to the

right because their respective mean values are greater than their respective median values. This

implies that the majority of households fell in the lower side of the distributions of monthly income

and maize availability, while few households fell in the upper side of the distributions.

Table 2.10: Summary Statistics of Continuous Variables for Maize Household data

Summary Statistics

Variable Minimum Maximum Q1 Median Q3 Mean Std. Deviation CV MAD

Household Size 1 15 4 5 7 5 2.57 47.83 2.97

Age 17 96 42 56 69 54.80 16.72 30.51 19.27

Income 0 5000 200 350 735 587.40 670.23 114.10 222.40

Availability 18 4800 336 504 840 631.63 488.58 77.35 302.50

The values of skewness and kurtosis of availability of maize are 3.60 and 24.36, respectively. As

indicated earlier, the two quantities provide summary information about the shape of the distribu-

tion of the data. The value of skewness of 3.60 shows that the distribution deviates slightly from

the normal distribution and it is skewed to the right. The value of kurtosis of 24.36 shows that

the distribution is leptokurtic, meaning that it has a higher peak and heavier tails than the normal

distribution. The tails that are heavier than that of the normal distribution imply high probability

of extreme observations of maize availability.

The box plot in Figure 2.7, at a glance, shows that the distribution of maize availability deviates

from the normal distribution. This is indicated by the line inside the box, showing the median

value, which is not equidistant to the lower and upper edges of the box. This line is towards the

lower edge of the box, showing a concentration of observations in the lower end of the distribution.
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The concentration means that the majority of households fell in the lower side of the distribution of

maize availability with relatively small quantities of maize available to them, while few households

fell in the upper side of the distribution with relatively bigger quantities of maize availability. The

box plot also shows several observations that appear beyond the end of the upper whisker. This is

an indication of the presence of suspected extreme observations.

The variability within each of the variables in Table 2.10 is measured using the standard devi-

ation, coefficient of variation (CV) and median absolute deviation (MAD). The CV of 114.10 for

monthly income shows that monthly income was more variable than other variables, followed by

availability of maize with the CV of 77.35. Age of household heads with CV of 30.51 was relatively

less variable. The MAD is the robust measure of variability calculated as the median of absolute

deviations between observations and their median. It is robust in the sense that it is minimally

affected by a small fraction of extreme observations. Households maize availability and monthly

income have large MAD of 302.50 and 222.40, respectively. This is an indication that the two

variables were highly variable around their median.

Tables 2.11, 2.12, and 2.13 present summary statistics of households monthly income and maize

availability by households location, education level and occupation of household head, respectively.

Since there are suspected extreme values in both household income and maize availability, the me-

dian is an appropriate measure of location for both cases. Unlike the mean, the median is robust

and not affected by extreme values. Households that resided in Berea were better off in terms of

Figure 2.7: Box Plot of Household Maize Availability
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Table 2.11: Summary Statistics by Location of Households For Maize Data

Summary Statistics

Location Variable Minimum Maximum Q1 Median Q3 Mean Std. Deviation CV

Mafeteng Income 100 1500 200 250 500 372.92 293.77 78.76

Availability 43 1680 336 504 840 621.07 396.94 63.91

Maseru FootHill Income 0 2000 130 238 300 311.07 343.00 110.26

Availability 120 2000 420 580 860 686.88 419.12 61.02

Maseru Lowland Income 0 5000 100 200 500 687.55 716.84 104.26

Availability 18 4800 321 504 800 607.81 499.50 82.17

Berea Income 100 4000 300 500 960 850.32 993.51 116.84

Availability 170 4000 420 540 840 702.48 661.30 94.14

monthly income since they had the highest median of R500.00 (Table 2.11). On the other hand

households in Maseru foothill were better off in terms of maize availability as they had the highest

median of 580 kilograms. High minimum values as well as high values of the first and third quar-

tiles, of both variables, are another indication that households in Berea and Maseru foothill were

better-off, in terms of monthly income and maize availability, respectively. According to the first

and third quartiles, 25% of Berea households had less or equal to R300.00 as their monthly income,

while 75% had less or equal to R960.00. In the case of Maseru foothill, 25% of households had less

or equal to 420.00 kilograms of maize availability, while 75% had less or equal to 860.00 kilograms.

The difference in monthly income within households in Maseru lowland was relatively high. Some

households had no monthly income while others had monthly income as high as R5000.00. Some

households had maize availability as low as 18 kilograms and others had as high as 4800 kilograms.

Generally, income had a relatively high variability shown by high coefficients of variation. Maize

availability for households in Berea had the highest variability followed by that of households in

Maseru foothills, and Maize availability for households in Mafeteng had the lowest variability. The

variability is shown by respective coefficients of variation of 116.84, 110.26 and 78.76.

Households with heads who attained post high school education, such as diploma and university

degrees, had higher monthly incomes (Table 2.12). This is shown by high values of the first quar-

tile, median and third quartile of income that correspond to post high school level of education

of R1000.00, R1200.00 and R3500.00, respectively. This observation is not surprising because the

expectation is that the higher the level of education the higher the earnings in terms of a salary.

The median and third quartile for maize availability also shows that these households were better

off when they are compared with their counterparts headed by people who had lower education

qualifications. Interestingly, households headed by persons without any formal education rank sec-

ond in terms of their maize availability. The distributions of monthly income and maize availability

for households headed by people who attained primary education are characterized by too low
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Table 2.12: Summary Statistics by Education of Household Head for Maize Data

Summary Statistics

Education Level Variable Minimum Maximum Q1 Median Q3 Mean Std. Deviation CV

No Formal Education Income 100 2000 260 500 770 389.18 437.88 112.57

Availability 53 1680 356 560 870 659.08 410.05 62.22

Primary Income 0 5000 200 400 800 608.90 666.59 109.47

Availability 75 4800 336 504 800 609.39 476.53 78.20

High School Income 100 1500 200 500 700 523.53 353.39 67.50

Availability 18 1512 356 510 700 594.35 401.80 67.60

Post High School Income 150 4000 1000 1200 3500 1752.27 1338.96 76.41

Availability 168 4000 336 600 1050 924.73 1079.72 116.76

minimum values and high maximum values, respectively. In general, monthly incomes of house-

holds headed by people with no formal education and those who attained primary and high school

education were almost similar.

Table 2.13: Summary Statistics by Occupation of Household Head for Maize Data

Summary Statistics

Occupation Variable Minimum Maximum Q1 Median Q3 Mean Std. Deviation CV

CasualWorker Income 100 2000 300 500 800 607.69 445.52 73.31

Availability 18 1008 178 420 672 430.46 253.03 58.78

Pensioner Income 200 1500 200 300 400 407.50 341.54 83.81

Availability 168 4000 323 576 1008 802.00 853.67 106.40

Salary earner Income 100 5000 500 1000 1800 1299.53 1114.05 85.73

Availability 150 4800 400 672 1020 828.13 711.74 85.94

Subsistence farmer Income 50 2000 200 300 500 421.43 359.91 85.40

Availability 43 1680 433 575 871 692.78 393.31 56.77

Unemployed Income 0 2000 150 255 500 387.07 364.52 94.18

Availability 53 1680 336 500 820 558.15 334.19 59.87

Households headed by salary earners were better off as they had the highest monthly income. This

is shown by values of the maximum of R5000.00, lower quartile of R500.00, middle quartile of

R1000.00 and upper quartile of R1800.00 (Table 2.13). This is not surprising as their heads were

employed and earned some income on a monthly basis. Monthly incomes for households headed

by people of other occupations than salary earners varied slightly. In the case of maize availability,

households headed by salary earners were better off, followed by households headed by pensioners

and subsistence farmers, which were slightly different. The coefficients of variation of monthly

income and maize availability, under different occupations of household heads, show that the vari-

ability of the two variables was not that different. However, maize availability for households headed
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by pensioners had high variability, shown by the highest CV of 106.40.

2.4.5 Exploration of Household Sorghum Data

Generally, the minimum, maximum, and median values as well as the first, second and third quar-

tiles of sorghum availability are smaller than that of maize availability (Tables 2.10 and 2.14). For

example the median value of sorghum availability is 150 kilograms while that of maize availability

is 350 kilograms. This is an indication that households in the sample acquired less sorghum than

maize during the observational period. The skewness and kurtosis of sorghum availability are 1.78

and 5.96, respectively. The value of skewness shows that the distribution of sorghum availability is

slightly skewed to the right and the value of kurtosis shows that the distribution has a peak that

is slightly higher than that of the normal distribution.

Table 2.14: Summary Statistics of Sorghum Availability

Minimum Maximum Q1 Median Q3 Mean Std. Deviation MAD

3 1050 60 150 250 176.53 150.73 133.50

The box plot in Figures 2.8, at a glance, shows that the distribution of sorghum availability is

approximately normal since the line in the box is almost in the middle. In addition, it shows two

observations that appear as suspected extreme values.

Figure 2.8: Box Plot of Household Sorghum Availability
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Tables 2.15, 2.16 and 2.17 show sorghum availability by location of a household, education level

and occupation of the head of a household, respectively. Generally, households in Maseru lowlands

and Berea were better off in terms of availability of sorghum. This is because they had almost

the same sorghum availability, which is higher than that of households in Mafeteng and Maseru

foothill. This is shown by higher median value of one hundred and sixty eight (168) kilograms for

both Maseru lowlands and Berea. Sorghum availability for households in Berea had the highest

variability shown by the highest standard deviation of 215.84.

Table 2.15: Sorghum Availability by Location of Households

Summary Statistics of Availability

Location Minimum Maximum Q1 Median Q3 Mean Std. Deviation

Mafeteng 3 480 36 91 170 126.24 122.47

Maseru Foothill 10 420 50 84 160 126.77 117.55

Maseru Lowland 3 504 84 168 300 196.36 136.34

Berea 17 1050 92 168 278 224.16 215.84

Availability of sorghum for households headed by people who attained post high school education

was relatively high when it is compared with that of their counterparts headed by people with

lower education qualifications (Table 2.16). This could be an indication that households headed

by people who attained diploma and/or university degree had more resources or purchasing power,

which enabled them to have more access to sorghum than those headed by people with lower qual-

ifications. The highest standard deviation of 325.36 of sorghum availability for these households

show that their sorghum availability was highly variable when it is compare with that of households

headed by people with lower qualifications.

Table 2.16: Sorghum Availability by Education of Household Head

Summary Statistics

Education Level Minimum Maximum Q1 Median Q3 Mean Std. Deviation

No Formal Education 3 504 36 95 160 137.14 135.93

Primary 8 700 65 150 240 171.36 128.14

High School 3 500 80 140 316 196.84 157.64

Post High School 50 1050 198 316 460 372.91 325.36

In general, summary statistics in Table 2.17 show that households headed by salary earners had

higher availability of sorghum than their counterparts headed by people of other occupations. Sim-

ilar reasoning used in the case of maize availability that salary earners earn income monthly and
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Table 2.17: Sorghum Availability by Occupation of Household Head

Summary Statistics

Occupation Minimum Maximum Q1 Median Q3 Mean Std. Deviation

CasualWorker 60 500 126 200 300 220.51 133.28

Pensioner 10 1050 50 150 310 220.73 267.84

Salary earner 10 500 60 199 336 197.97 145.95

Subsistence farmer 3 700 90 159 232 179.53 139.47

Unemployed 3 504 48 93 210 141.96 124.23

can use their income to acquire maize for their households can be extended to the case of sorghum

availability. Households headed by unemployed people had the lowest sorghum availability. This

is inline with the general understanding that if households heads are unemployed they do not have

enough resources or purchasing power to acquire or access sorghum for their households. Variability

of sorghum availability for households headed by pensioners, shown by the standard deviation of

267.84, was the highest.

2.5 Summary

Exploration of the national data showed that on average, domestic production of maize contributed

a larger proportion of the Lesotho requirements for maize, in the years 1973 to 2002, than imports.

In the case of wheat, commercial imports contributed a larger part of the national requirements

than domestic production. The area planted to maize and wheat affected by crop failure varied

greatly within the specified period. The big variability could be due to erratic weather conditions

that are prevalent lately. Generally the averages of area planted to maize and maize production

were the highest when they were compared with their counterparts for sorghum and wheat. This

is inline with the known fact that Lesotho produce more maize than sorghum and wheat because

maize is the only staple food in the country.

Skewness, kurtosis and box plots were used to explore the distribution of a potential response

variable in each subset of data. Deviations from normality were observed and there was an inter-

esting observation concerning the use of skewness, kurtosis and box plots in different sets of data.

It looks like the quantity in which the values of skewness and kurtosis should be far from zero to

indicate deviation from assumption of normality varies from one set of data to another. This was

observed from subsets of the maize data where the values were relatively higher than zero but the

box plots showed slight deviations from the normal distribution. Yet in the case of subsets of the

sorghum and wheat data where the values were not too far from zero, the box plots portrayed a

noticeable deviation from the assumption of normality.
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Exploration of household data showed that the distribution of maize availability deviated slightly

from the normal distribution and showed outlying observations, while sorghum availability was ap-

proximately normally distribution but with two outlying observations. Summary statistics showed

that availability of maize was generally higher than availability of sorghum for the studied house-

holds. This could be due to the fact that maize is the only staple food in Lesotho and thus every

household used available resources to acquire it in big quantities than the other two cereals during

the observational period. The exploration of both the national and household data formed the

basis for modelling the data by detecting preliminarily relationships that exist in the sets of data

and variables that are involved in such variables.
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Chapter 3

Regression Modelling and Diagnostics

3.1 Introduction

Regression analysis is the most researched and applied area in statistics, which is used to study

relationships among variables. It is a statistical tool that is commonly applied to study the rela-

tionship of two or more variables so that the response variable Y can be described and predicted

from (p ≥ 1) predictor variables, normally denoted by X1, . . . , Xp. The overall analysis includes

graphical and analytic methods of exploring relationships between a response variable and predictor

variables. The application of regression analysis is common in business, social sciences, behavioral

sciences, biological sciences, medicine and many other research areas (Kutner et al., 2005).

Regression models include the simple linear regression model that involves a response variable

Y and one predictor variable X, and the multiple regression model that involves a response vari-

able and two or more predictor variables X1, . . . , Xp, with p ≥ 2. Typical data associated with a

regression analysis problem are generated from a process where the response variable and predictor

variables are measured on a sample of say n individuals, years, plots or any other unit of interest,

depending on the field of application. The general linear model has alternatives specialized in deal-

ing with different situations and problems that emerge in the application of linear regression models.

3.2 Linear Regression Model

The simplest form of a regression model is called the simple linear regression model and it is used to

study bivariate relationships of variables. The model that represents a linear bivariate relationship

for n observations can be presented as

yi = β0 + β1xi + ui, i = 1, 2, . . . , n, (3.1)
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with the mean response, E(yi|xi) = β0 + β1xi, where yi is the ith value of the continuous response

variable and xi is the corresponding value of the predictor variable, β0 and β1 are unknown model

parameters or regression coefficients, and ui is the error term that gives the random variation in

Y not explained by X. The error terms ui are assumed to be random variables with mean zero

and a constant variance σ2, and to be pairwise independent. The predictor variable is known and

assumed to be measured without error. The coefficient β1 is the slope of the regression line that

gives the change in the mean of the probability distribution of Y associated with a unit increase in

X. The coefficient β0 is the Y intercept of the regression line that gives the mean of the probabil-

ity distribution of Y whenX = 0. The regression model in equation (3.1) is linear in the parameters.

The simple linear regression can be generalized to the multiple linear regression model used when

one predictor variable in the model cannot provide an adequate description of a response variable

and the knowledge of more than one predictor variable is necessary to give a better understating

and prediction of a response variable, as it is the case in this research. Kutner et al. (2005) noted

that in most applications of regression analysis predictions of the response variable based on a

model with one predictor variable are not precise to be useful. This happens when a number of

variables affect the response variable substantially in a different manner.

The general linear regression model that relates the response variable Y with p predictor vari-

ables X1, . . . , Xp can be defined as

yi = β0 + β1xi1 + β2xi2 + . . . βpxip + ui, (3.2)

where β0, . . . , βp are model parameters or partial regression coefficients. The variables X1, . . . , Xp

are a set of known quantities assumed to be measured without error and thus designated as pre-

dictor variables. Like in a simple linear regression model, ui are error terms assumed to have mean

zero, constant variance σ2, and to be pairwise independent.

Generally the linear multiple regression model can be presented in matrix form as

y = Xβ + u, (3.3)

where y is a n × 1 vector of observations on the response variable, X is a n × (p + 1) matrix

of predictor variables or the design matrix with the first column of ones, and β is a (p + 1) × 1

vector of model parameters including the constant, also called partial regression coefficients. A

partial regression coefficient reflects the partial effect of one predictor variable when the rest of

the predictor variables included in the model are held constant. The vector u is a n× 1 vector of

independent error terms with mean vector zero, and the covariance matrix, σ2I. The two vectors

y and u are random because their elements are random variables, and X is a matrix of known

constants. The classical regression analysis assumes that in a regression relationship only the

response variable Y is assumed to be measured with error. The ith row of the design matrix is
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the vector x′i = (1, xi1, . . . , xip) of observed values of p predictor variables corresponding to the

response variable value measured in the ith observational or experimental unit.

3.2.1 General Linear Model

Multiple linear regression models with quantitative predictor variables can be extended to more

complex models by including qualitative predictor variables. This extension results in what is

commonly known as the general linear model, which consists of a combination of quantitative and

qualitative or categorical predictor variables. Categorical variables identify the category to which a

studied observation belongs and can be useful in explaining the variability in the response variable.

These variables increase flexibility in the application of regression models to real life situations.

Dummy variables or indicator variables are used to represent categorical variables in regression

models. These variables can take on two values, normally 0 or 1, which signify that an observation

belong or does not belong to a category. The number of dummy variables required to represent a

categorical variable in a model is one less than the number of categories in the represented variable.

In general if a categorical variable has m categories, m − 1 dummy variables are sufficient in the

model, since the inclusion of all the m categories can result in linear dependency among columns of

the design matrix X (Kutner et al., 2005). The variation in the response variable associated with

a particular categorical variable is the total variation among the categories of the variable.

Consider the general linear model with two quantitative variables and one categorical variable

with two categories, which can be presented as

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ui, (3.4)

where xi1 and xi2 are the ith values ofX1 andX2 respectively, xi3 is the value of the dummy variable

representing one of the two categories of the categorical variable, which is 1 if an observation belongs

to a category and 0 otherwise. The omitted category is normally referred to as the reference or

base category. This is usually the category of the variable of interest to which other categories of

the variable are compared. The coefficients, β1, β2 and β3 are model parameters as in model (3.2).

However, unlike the other two parameters, β3 that corresponds to the dummy variable, measures

how the mean response varies as a categorical variable changes from one category to another.

It represents the differential effect of the categorical predictor variable on the response variable,

for fixed values of X1 and X2. This is the difference or contrast between a given category and the

reference category, showing how much higher or lower the mean response of a given category is than

the mean response of the reference category, for fixed values or categories of the other variables.
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3.2.2 Multiple Regression Model with First-order Autoregressive Process AR(1)

Sometimes multiple regression model can involve a component of an autoregressive process where

some of the predictor variables are past values of the response variable. In such cases the response

variable Y is regressed on its past values and separate predictor variables. Consider the linear

regression model that include the first-order autoregressive process AR(1) where one autoregressive

term Yt−1 is included as one of the predictor variables. The response variable at time t, Yt is

regressed on its past immediate values yt−1 and some other predictor variables X1t, . . . , Xpt at time

t. The regression model with first-order autoregressive process AR(1) can be presented as

yt = αyt−1 + Xβ + u, (3.5)

where yt is a vector of observations on the response variable at time t, yt−1 is a vector of observa-

tions on the response variable at time t − 1, and X is the design matrix. The parameters in the

model consists of an autoregressive coefficient α associated with the autoregressive term yt−1 and

a vector of partial regression coefficients β. The autoregressive coefficient reflect the dependence

of successive observations of the same variable. This is the dependence of the current values of the

response variable and their past immediate values. Each of the partial regression coefficients in the

vector β reflect the partial effect of one predictor variable when the rest of the predictor variables

are held constant. The vector u is as defined under model (3.3), and the ordinary least squares

(OLS) procedure can be used to estimate model parameters.

3.3 Estimation of Model Parameters

3.3.1 Ordinary Least Squares Procedure (OLS)

Estimation of model parameters in linear regression model can be done by the OLS estimation

procedure. The least squares procedure was first published by Legendre in 1805 and later by

Gauss in 1809 (Sen and Srvastava, 1990). The procedure seeks to find the estimates of parameters

that minimize the sum of squared deviations of the n observed values y1, . . . , yn from their model

predicted values ŷi, . . . , ŷn. The sum of squared residuals for the general linear model can be

expressed as

S(β) = u′u = (y −Xβ)′(y −Xβ). (3.6)

The estimates are obtained by differentiating the sum of squared residuals with respect to the

vector β. This yields a set of normal equations given by

X′y = X′Xβ. (3.7)

This set has a unique solution if and only if the matrix X is full rank. The full rank implies that

the inverse (X′X)−1 exists. The solution to the normal equations, assuming X is of full rank, is
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the unique OLS estimates of β given by

β̂ = (X′X)−1X′y. (3.8)

When the assumptions about the error terms hold, OLS estimators β̂ have optimal properties

of being best linear unbiased estimators (BLUE). The assumptions about the error terms are

sometimes referred to as Gauss-Markov (G-M) conditions. Under the G-M conditions the mean and

covariance matrix of β̂ are given by E(β̂) = β and cov(β̂) = σ2(X′X)−1, respectively. Oftentimes

σ2 is not known and is replaced by its estimate S2, which is the mean square error (MSE), given

by

S2 =
S(β)
n− p

, (3.9)

where S(β) is as defined in equation (3.6), n is the number of observations and p is the number of

model parameters to be estimated.

The least squares estimation procedure of regression coefficients does not require distributional

assumption about the error terms to give unbiased estimators with minimum variance. However,

for making inferences about the parameter estimates, assumptions about the distribution of the

error terms are required. The standard assumption about the distribution of the error terms is

that the errors follow a normal distribution. When the Gauss-Markov conditions and normality

assumption hold, the regression model is called the normal error regression model. The error terms

in this model are independent and identical normally distributed with mean zero and covariance

matrix σ2, that is, u ∼ iid N (0, σ2I). When the distribution of the response variable is skewed,

transformation such as the Box-Cox transformation discussed in the subsequent section can be

applied to validate the normality assumption. The model specified in terms of the mean response

possesses a good feature that it can be extended to other distributions which are not necessarily

normal (McCullagh and Nelder, 1989).

When the matrix X is not full rank, the inverse (X′X)−1 does not exist, and the set of nor-

mal equations in equation (3.7) does not have a unique solution. In such situations, the generalized

inverse (X′X)− is used and the resultant parameter estimates are given by

β̂ = (X′X)−X′y. (3.10)

In this case β̂ is not an unbiased estimator of β, and further the solution is not unique because it

depends on the g-inverse used.

3.3.2 Generalized Least Squares (GLS)

Generalized least squares (GLS) estimation method is an alternative to ordinary least squares pro-

cedure, which works when one or both of the assumptions about the error terms are not satisfied.
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Sometimes it happens that the assumption that the variance of the error terms, ui is constant

does not hold. In such cases the covariance matrix of u is not σ2I, but it is a diagonal matrix

with unequal diagonal elements. It can also happen that the assumption that error terms are not

correlated is violated, which would mean that the off-diagonal elements of the covariance matrix

are not zero, and hence the covariance matrix of error terms is not σ2I, but rather a more general

variance-covariance matrix, for example V multiplied with a variance component σ2. When one

or both of these assumptions are not satisfied the OLS estimates of β do not apply and this calls

for the transformation of the linear model in such a way that the least squares estimates can be

obtained.

Consider the general linear model in equation (3.3), where in this particular case, E(u) = 0,

cov(u) = σ2V, and u ∼ N (0, σ2V). Assume the design matrix X is of full rank, and V is a

known positive definite matrix. In this case the ordinary least squares estimation procedure is

not applicable and the response variable Y need to be transformed to some variable Z, which

satisfy the assumptions required for the estimation procedure. This can be achieved by multiply-

ing the linear model by the inverse of a nonsingular symmetric matrix P, given by P−1, where

P′P = PP = P2 = V. The resultant transformed model can be presented as

z = Qβ + f , (3.11)

where z = P−1y, Q = P−1X, and f = P−1u so that E(f) = 0. Since f is a random variable

with mean zero and is a linear combination of the elements of a normally distributed u, it is also

normally distributed with mean zero and covariance matrix σ2I, that is f ∼ N (0, σ2I).

The ordinary least squares procedure can be applied to obtain the estimates β̂ of β for the trans-

formed regression model in equation (3.11) since the assumptions about the vector of the error

terms that, E(f) = 0 and cov(f) = σ2I are satisfied in the transformed model (Montgomery et al.,

2012). The estimates of the model parameters in the vector β are the unique generalized least

squares estimates defined by

β̂ = (X′V−1X)−1X′V−1y, (3.12)

with the mean β and covariance matrix σ2(X′V−1X)−1. When the Gauss-Markov conditions hold,

the generalized least squares estimators β̂ are best linear unbiased estimators (BLUE) of β.

3.3.3 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation (MLE) procedure can also be used to obtain estimates of the param-

eters for the linear regression model when the functional distribution of the probability distribution

of the error term u is specified. The method of maximum likelihood chooses, as estimates of the
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parameters, the values in the parameter space that are most consistent with the sample. MLE re-

quires the specification of the probability of the observations yi in order to arrive at the estimates of

the unknown parameters. In other words the method relies on the distributional assumptions about

the data, without loss of generality that assumes the data are generated from a normal distribution.

Generally the density function of the ith observation of the response variable for the normal simple

regression model is defined as

f(yi) =
1√
2πσ

exp

{
−1

2

(
yi − β0 − β1xi

σ

)2
}
. (3.13)

The density function derives from the fact that E(Yi|xi) = β0 + β1xi and var(Yi) = σ2.

The likelihood function of n observations y1, y2, . . . , yn, which is the function of unknown parame-

ters, β = (β0 β1)′, and σ2, is the product of individual density functions given in equation (3.13).

Thus the likelihood function is given by

L(β, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
. (3.14)

The maximum likelihood estimation method maximizes the likelihood or the log-likelihood func-

tion with respect to β and σ2, to obtain the corresponding maximum likelihood estimators β̂ and

σ̂2. Maximum likelihood estimators are identical to least squares estimators in equation (3.10),

by possessing optimal properties of least squares estimators, provided the same data were used

for both estimators (Montgomery et al., 2001). In addition, maximum likelihood estimators have

other desirable properties that they are consistent, sufficient, and have minimum variance among

all linear and nonlinear unbiased estimators. However, the maximum likelihood estimator σ̂2 is

a biased estimator of the parameter σ2 since E(σ̂2) 6= σ2. The MLE method can be generalized

to deal with the case where y ∼ N (Xβ,Vσ2), discussed earlier under generalized least squares

procedure. In this case the maximum likelihood estimators turnout to be equal to the ones given

in equation (3.12), provided the same data were used.

3.3.4 Box-Cox Transformation

Oftentimes, real life data are not normally distributed, which is a problem concerning the applica-

tion of linear regression models, since these models require the assumption of normality for making

inferences about parameter estimates. An appropriate transformation of data can lead to data that

are approximately normally distributed, and increase the applicability and usefulness of linear re-

gression models. The Box and Cox (1964) transformation of the response variable Y automatically

identifies a transformation from the family of power transformations. The transformation’s aim

is to ensure that the normality and constant variance assumptions for linear model are satisfied.
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Consider a set of n positive observations y1, . . . , yn on the response variable, Y , then if the ratio of

the largest observation to the smallest is of a considerable size, say, 10 or bigger the transformation

of of Y can be made (Draper and Smith, 1998). The Box-Cox family of transformation can be

expressed as

y(λ) =

{
yλ−1

λ , if λ 6= 0;

log y, if λ = 0.
(3.15)

The transformation is continuous at λ = 0. For some unknown λ, the transformed observations

denoted by y(λ)
i are assumed to be independently normally distributed with the mean Xβ and con-

stant variance σ2, that is y(λ) ∼ N (Xβ, σ2In), where y(λ) is a vector of transformed observations,

X is a design matrix and β is a vector of parameters associated with the transformed observations.

The likelihood of the transformed observations can be presented as

1
(2πσ2)

n
2

exp

{
−(y(λ) −Xβ)′(y(λ) −Xβ)

2σ2

}
J(λ;y), (3.16)

where J(λ;y) =
n∏

i=1

∣∣∣∣∣dy(λ)
i

dyi

∣∣∣∣∣ is the Jacobian of the transformation from y to y(λ).

Box and Cox (1964) suggested two approaches that can be used to make inferences about the

parameters in equation (3.16). The two approaches are the maximum likelihood and Bayesian

methods. Using the maximum likelihood method, the estimates of the regression parameters β, σ2

and the transformation parameter λ are obtained by maximizing the likelihood function of equation

(3.16) or its log-likelihood. For the fixed λ, the maximum likelihood estimates of β are least squares

estimates and the maximum likelihood estimate of σ2 is given by

σ̂2(λ) =
y
′(λ)(In −G)y(λ)

n
=
S(λ)
n

, (3.17)

where G = X(X′X)−1X′, S(λ) is the residual sum of squares, and the matrix X is full rank. The

100(1 − α)% confidence interval for λ can be derived by inverting the likelihood ratio test of the

null hypothesis that H0 : λ = λ0.

3.4 Goodness-of-Fit for Linear Regression

It becomes necessary that after the regression model is fitted, some measure is used to detect how

good the fit of the model is. The coefficient of determination denoted by R2 is one of such measures

and it is commonly used to measure goodness-of-fit for the classical regression model. This measure

is calculated from sum of squares and can be defined as

R2 = 1− SSres

SStot
, (3.18)
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where SSres and SStot are the residual sum of squares and total sum of squares, respectively. The

coefficient of determination is a global measure of goodness-of-fit over the entire distribution of the

response variable, which shows the proportion of total variability in the response variable accounted

for by the regression model. It assumes values in the range [0, 1], with the value of 0 indicating that

predictor variables in the regression model are not useful in predicting or explaining the response

variable and thus there is no linear relationship between the predictor and response variables. On

the other hand, an R2 value of 1 indicates that all variability in the response variable is accounted

for by the linear regression model or predictor variables in the model.

The application of linear regression model to real life data can sometimes be confronted with

problems that occur in the data set. These problems may interfere with applicability and useful-

ness of the models, if they are not corrected or taken care off when fitting the model. Some of the

problems that are common in the real life data sets are collinear variables, models not fitting the

data well and assumptions that are violated due to various reasons such as the presence of extreme

values in the data set. Collinearity, its diagnostics, and regression model diagnostics are discussed

in the subsequent sections.

3.5 Collinearity and Remedies

Most observational studies, in which multiple regression is commonly applied involve predictor

variables that are correlated among themselves (Kutner et al., 2005). When predictor variables

are highly correlated there exists a condition called multicollinearity or collinearity. This condition

where the data are said to be ill-conditioned is sometimes referred to as the presence of near linear

dependencies among predictor variables or columns of the design matrix X. Collinearity result in

the violation of a classical regression assumption that predictor variables are independent. If there

are no linear dependencies among columns of X, predictor variables are said to be orthogonal.

3.5.1 Effects of Collinearity

The presence of collinearity in predictor variables can cause difficulties in answering some of the

questions that are addressed in multiple regression analysis. Some of the questions are, on the

relative importance of the effects of different predictor variables on the response variable, the size

of the effect a given predictor variable has on the response variable, and the decision to drop any

predictor variable from the model due to having little or no effect on the response variable (Kutner

et al., 2005). When the data are ill-conditioned the matrix X′X is not of full rank. This implies

that X′X is not invertible and the parameter estimates from the data are not unique.

Collinearity does not affect the overall fit of the model, and does not affect inferences about the
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mean response, or prediction, provided the inferences are done within the scope of the observations.

However, it reduces the efficiency of regression if the purpose of the analysis is to determine the

effects that predictor variables have on the response variable. When there is collinearity problem

regression coefficients become unstable with large standard errors, they become large in magnitude

and have wrong signs that are opposite to the anticipated signs, based on theory or prior knowledge.

In addition, the coefficients become very sensitive to small random errors in the response variable

and are likely to fluctuate as predictor variables are added or removed from the model.

When two or more predictor variables are highly correlated, it becomes almost impossible to sepa-

rate their influence on the response variable. The interpretation of regression coefficients that they

reflect the change in the mean response variable when a given predictor variable is increased by one

unit while the rest of the predictor variables included in the model are held constant, is not appli-

cable. Under severe collinearity, regression coefficients are likely to have large roundoff errors. As

it is the case with regression coefficients, the coefficients of partial correlation between the response

variable and each predictor variable are likely to be variable from one sample to another.

3.5.2 Diagnosis of Collinearity

There are a number of diagnostics reported in literature for detecting the presence of collinearity

among the columns of X (Draper and Smith, 1998; Kutner et al., 2005; Belsley et al., 1980; Belsley,

1991). Some of the suggested diagnostics are; some estimated regression coefficients having wrong

sign that is opposite to the sign anticipated on the basis of theory, intuition or prior knowledge in

the subject matter, nonsignificant results of individual tests on the regression coefficients for pre-

dictor variables that are considered to be important on the basis of prior knowledge, big changes

in the fitted model caused by deleting or adding a predictor variable or an observation, and large

correlation coefficients between pairs of predictor variables. According to Kutner et al. (2005) these

are informal diagnostic of collinearity, which have some limitations.

Belsley et al. (1980) and Belsley (1991) discussed a number of procedures that have been used

to detect collinearity. The discussed collinear diagnostics include examining the correlation ma-

trix of predictor variables, variance inflation factors (VIF), examining the determinant det(X′X)

of the matrix X′X or the determinant of the correlation matrix det(C), performing all-subsets of

regression on predictor variables, partial correlations of the the data matrix X and the correlation

matrix of the least squares estimates β̂, and examining the eigenvalues and eigenvectors, or prin-

cipal components of X or of the correlation matrix C. The authors outlined shortfalls of these

procedures, which rendered them incomplete as collinearity diagnostics, and suggested collinearity

diagnostics based on eigenvalues and eigenvectors that take care of the identified shortfalls. This

section discusses some of the commonly used procedures.
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1. Correlation Matrix

The correlation matrix is a commonly used and easy to compute tool for detecting collinearity

between predictor variables, however it has some limitations as a collinearity diagnostics.

High correlation coefficient between a pair of predictor variables can indicate collinearity

problem, but the absence of high correlation coefficient does not always mean that there

is no collinearity problem. The correlation matrix is not able to diagnose collinearity that

involves three or more variables when there are no pairwise collinear relationships between the

variables. This is due to the fact that three or more variables taken together can be collinear

while there are no high pairwise correlations observed among them. The correlation matrix

is also not able to show several collinear relationships that coexist in the set of data. Another

shortfall of the correlation matrix as a collinearity diagnostic is lack of standard measure of

how large should the correlation coefficient be to indicate collinearity.

2. Variance Inflation Factor (VIF)

The variance inflation factor (VIF) is one of the commonly used measures of detecting the

presence of collinearity in predictor variables. Variance inflation factors are computed from

the correlation matrix C of the predictor variables. The factors measure the quantity by which

the variances of the estimated regression coefficients for correlated variables are inflated as

compared to when the predictor variables are not correlated. Assuming that the predictor

variables, which are columns of the data matrix X have been centered and scaled to unit

length. The variance inflation factors are the diagonal elements of the inverse C−1 of the

correlation matrix C. The variance inflation factor of the jth regression coefficient, V IFj is

defined by

V IFj =
1

1−R2
j

, 0 ≤ R2
j ≤ 1, (3.19)

where R2
j is the coefficient of determination computed based on regressing Xj on other pre-

dictor variables.

The name variance inflation factor was introduced in the 1960s by Marquardt (Belsley, 1991).

The high value of VIFj shows that the value of R2
j is close to 1.0. This is an indication of

the presence of collinearity, which leads to inflated variances of regression coefficients. When

variances of estimated coefficients get inflated they lead to small values of the t-statistics for

individual coefficients hence causing insignificance, despite the overall model F-statistic being

significant. If predictor variables are orthogonal, meaning that they are not linearly related,

R2
j will be 0 and VIFj will be 1.0. A value of variance inflation factor that is greater than 10

is an indication of collinearity problems (Belsley, 1991). Variance inflation factor values that

are greater than 30 imply severe collinearity problems. However, values of variance inflation

factors should be evaluated in relation to the overall fit of the model of interest (Freund and

Wilson, 1998).
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3. Tolerance

Sometimes tolerance is used together with the variance inflation factor to detect the presence

of near linear relationships among predictor variables. Tolerance measures the amount of

variance in the jth predictor variable Xj , which is not explained by other predictor variables.

Tolerance can be expressed as the reciprocal of the variance inflation factor defined as

Tolerance =
1

VIFj
= 1−R2

j , (3.20)

where R2
j is as defined earlier. If there are linear relationships that involve Xj and other

predictor variables, R2
j will be close to 1.0 and tolerance will be close to 0. This implies that

almost all of the variability in Xj is explained by other predictor variables. The variance

inflation factor and tolerance are inversely related. Values of tolerance that are less than

or equal to 0.10, or equivalently values of variance inflation factor that are greater than or

equal to 10 show that there may be problems of near dependencies among predictor variables.

Like the correlation matrix, the variance inflation factor and tolerance have a number of

shortfalls. As it is the case with any measure based on correlation, large values of variance

inflation factors and small values of tolerance are a sign of collinearity problems. However,

small values of variance inflation factor and large values of tolerance do not necessarily indi-

cate the absence of collinearity problems. The variance inflation factor and tolerance are not

able to diagnose several separate collinear relationships that exist simultaneously in the data

matrix X. Another shortfall of the variance inflation factor and tolerance is the lack of the

well established methods of determining a meaningful cutoff point of large and small values

of the two collinear diagnostics.

4. Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of the matrix X′X or of the correlation matrix C have

been used to detect and deal with collinearity. Principal components of the matrix X can

also be used to deal with collinearity problems. Silvey (1969) suggested that small singular

values of X or small eigenvalues of X′X indicate the presence of near linear dependency

among columns of X, where singular values of X are the square roots of the eigenvalues of

X′X. The eigenvalues and eigenvectors procedure is superior to the collinearity diagnostics

discussed earlier. This procedure has the ability to deal with several collinear relationships

that exist at the same time in the data set since there is a small eigenvalue that corresponds

to each of such relationships. However the eigenvalues procedure has a shortfall of lacking a

clear definition of how small should the eigenvalue be to indicate the presence of near linear

dependency.
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3.5.3 Singular-value Decomposition (SVD) Method

Belsley et al. (1980) and Belsley (1991) noted that the reported collinearity diagnostics have lim-

itations in detecting near linear dependencies since they are not able to diagnose the presence of

more than one collinear relationship that exist simultaneously in the set of data. In addition they

fail to determine variables that are involved in each of such relationships, and assess the potential

negative impact of collinearity on estimated regression coefficients. The authors applied the nu-

merical analysis and extended the idea of Silvey (1969) to develop two diagnostics that are able to

deal with collinearity problems sufficiently. The two diagnostics, which make use of the eigenvalues

and eigenvectors, are condition index and variance-decomposition proportion.

Condition index and variance-decomposition proportion are based on the singular-value decom-

position (SVD) of the data matrix X, given by X = DUV′, where U′U = V′V = Ip. The matrix

D is a p× p diagonal matrix with nonnegative diagonal elements µ1, . . . , µp referred to as singular

values of X, which are positive square roots of the eigenvalues λ1, . . . , λp of X′X. The matrix V is

a p× p matrix whose columns are eigenvectors of X′X, and U is p× p matrix whose columns are

p eigenvectors of XX′ that correspond to its p nonzero eigenvalues.

1. Condition Index

Condition indices are able to detect more than one collinear relationships that coexist among

columns of the matrix X. They are developed from the concept of the condition number of

the matrix X. The condition number is the ratio of the largest to the smallest singular value

defined as

κ(X) =
√
λmax

λmin
=
µmax

µmin
≥ 1, (3.21)

where λmax and λmin are the largest and smallest eigenvalues, respectively, and µmax and

µmin are the respective largest and smallest singular values. The largest singular value or

eigenvalue is used as a measure that determines how small should be a singular value or an

eigenvalue that indicates the presence of near linear dependency among columns of the matrix

X. A large value of the condition number κ(X) suggests high degree of collinearity among

predictor variables.

The concept of condition number was extended to develop the condition index such that

the set of condition indices of the matrix X, {ηk : k = 1, 2, . . . , p} are given by

ηk =

√
λmax

λk
=
µmax

µk
, k = 1, . . . , p (3.22)

where λmax and µmax are as defined above, and λk and µk are the kth eigenvalue and singular

value, respectively. The condition index ηk ≥ 1 for all values of k, and it is computed for
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each singular value. The largest value of the set {ηk : k = 1, 2, . . . , p} is equal to the condi-

tion number of X, κ(X). A singular value µk, which is small when it is compared with its

yardstick, µmax, corresponds to a large condition index. A large condition index indicates the

presence of near linear dependency among predictor variables that correspond to the smaller

singular value.

Belsley et al. (1980) and Belsley (1991) showed empirically that condition indices in the

range of 5 to 10 suggest weak collinear relationships whereas condition indices of 30 to 100

suggest moderate to strong collinear relationships. Condition indices have two advantages, as

collinearity diagnostics, over other collinearity diagnostics discussed earlier. The first advan-

tage is that the use of condition indices makes it possible to determine when an eigenvalue

or a singular value is small. The second advantage is that the occurrence of more than one

large condition index indicates the presence of more than one near linear dependencies that

coexist in the set of data. This is so because there are as many collinear relationships among

the columns of X as there are large condition indices.

2. Variance-Decomposition Proportion

Despite the fact that condition indices are helpful in establishing the existence and number

of collinear relationships among predictor variables, they fail to point to variables that are

involved in such relationships. Belsley et al. (1980) adapted the work of Silvey (1969) on

variance-decomposition and combined it with the idea of condition indices to develop the

variance-decomposition proportion to address this limitation. The variance-decomposition

proportion establishes predictor variables that are involved in a particular collinear relation-

ship, and measures the extent to which the least squares parameter estimates are adversely

affected by the presence of collinearity. This collinear diagnostic is based on the fact that

when a predictor variable used in least squares regression is involved in a collinear relation-

ship, the variance of its estimated regression coefficient gets inflated.

Let φkj =
υ2

kj

µ2
j

and φk =
p∑

j=1

φkj , for k = 1, . . . , p, then (k, j)th variance-decomposition

proportion can be defined by

πjk ≡
φkj

φk
k, j = 1, . . . , p, (3.23)

where υkj are components of the matrix V. The variance-decomposition proportion is derived

from the fact that the variance of the estimate of the kth regression parameter β̂k, can be

expressed as

var(β̂k) = σ2
p∑

j=1

υ2
kj

µ2
j

= σ2
p∑

j=1

υ2
kj

λj
, (3.24)

where p is the number of predictor variables, µj is the jth singular value of X, λj is the jth

eigenvalue of X′X, and V = (υij). The variance of β̂k follows from the covariance matrix
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σ2(X′X)−1 of OLS estimates β̂, which can be expressed in terms of the SVD of the matrix

X as

cov(β̂) = σ2(X′X)−1 = σ2VD−2V′, (3.25)

where σ2 is the variance of the error term, and the matrices D and V are as defined ear-

lier. The var(β̂k) is the kth diagonal element of the covariance matrix of β̂ decomposed

into the sum of p components, where each component corresponds to only one of the p singu-

lar values, µj , of the matrix X or to only one of the p eigenvalues, λj = µ2
j , of the matrix X′X.

The variance-decomposition proportion is the proportion of the variance of β̂k associated

with the jth component of the variance-decomposition in equation (3.23). Components of

the variance of β̂k associated with collinear relationships among columns of X, or with small

singular value µj and large condition index ηk are considered to be large when they are

compared with other components. Thus large proportions of the variances of at least two

regression coefficients associated with one small singular value µj , provides evidence that

predictor variables that correspond to the regression coefficients whose variances are affected

are involved in the identified collinear relationships. Since two or more variables are required

to have a near linear dependency, the variances of two or more regression coefficient should

be adversely affected to show a linear dependency. The cutoff point for variance proportions

that show involvement of a variable in a near linear dependency is 0.5.

3.5.4 Remedies of Collinearity

Once near linear relationships that exist among predictor variables are identified through the use

of collinearity diagnostics the next step would be to find ways of dealing with such relationships.

Hocking (1996) noted that the method of dealing with near linear dependencies depends on the

objective of the analysis at hand and source of collinearity. A number of remedies of collinearity have

been reported in literature and for some of them one has to be aware of the existence of near linear

dependencies and their consequences and use the best judgement possible. If collinearity is caused

by redundancy where several variables measure the same thing then one of the methods, which can

be applied is to drop one of the collinear variables. Other collinear remedies are; respecification

of the model, use of additional or new data, use of data reduction techniques such as principal

component analysis, principal components regression, and the commonly used ridge regression

(Kutner et al., 2005). Some of these remedies are not commonly used because of their limitations

or because they are not always possible to apply. For example, principal components regression

has serious limitations (Hadi and Ling, 1998), and the use of additional or new data is not always

possible because it is too costly in terms of time and expense. Ridge regression has been used as a

remedial measure of collinearity, in the current research work.
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3.5.5 Ridge Regression

One of the methods that are commonly used to remedy collinearity problems in data, and control

the instability of parameter estimates is ridge regression. Ridge regression achieves all these by

modifying the least squares procedure to allow for a biased estimator of regression coefficients,

which is called ridge estimator. Ridge estimation was first introduced by Hoerl in 1962 to con-

trol inflation and general instability in least squares estimates (Hoerl and Kennard, 1970a). An

estimator with a small bias but with high precision than an unbiased estimator may be preferred

because it will have a larger probability of being close to the value of the true parameter. It is

worth noting that generally, the precision of an estimator is inversely related to its variance. The

smaller the variance of an estimator, the higher the precision of the estimator. The ordinary least

squares estimator β̂ is unbiased but may be imprecise, while the ridge estimator, β̂R, may be more

precise despite having some bias.

Ridge regression is applied to the standardized regression model, which is the centered and scaled

model. According to Kutner et al. (2005), the standardized regression model is given by

Y ∗i = β∗1X
∗
1 + . . .+ β∗pX

∗
p + u∗i , (3.26)

where Y ∗i = 1√
n−1

(
Yi−Ȳ
SY

)
and X∗

ik = 1√
n−1

(
Xik−X̄k
SX(k)

)
. The unbiased least squares estimator for

the standardized model is given by

β̂
∗

= (X∗′X∗)−1X∗′y, (3.27)

where X∗′X∗ = rXX and X∗′y = rXY are the correlation matrix that consist of correlation coef-

ficients between the predictor variables, and the correlation vector between the response variable

and predictor variables, respectively. Both matrices have elements that are between -1 and 1. The

use of the standardized regression model helps to control roundoff errors when the matrix X∗′X∗

is inverted, and to express regression coefficients in the same units for comparison purposes.

When the data are ill-conditioned due to near linear dependency among columns of the matrix

X∗, the standardized least squares estimator becomes unreliable with large variances. In the pres-

ence of linear dependencies, normal equations do not have a unique solution because X∗′X∗ matrix

is singular and cannot be inverted. Ridge regression estimator is used to remedy collinearity prob-

lems by introducing a biasing vector δ to the diagonal of X∗′X∗. The introduction of δ leads to

a non-singular matrix (X∗′X∗ + δI) and thus reduces the impact of collinearity on parameter es-

timates. This yields biased estimates of β but with smaller variances than ordinary least squares

estimates, and narrower confidence intervals of β. Hoerl and Kennard (1970a); Montgomery et al.

(2012) defined the biased ridge estimator as

β̂
∗
R = (X∗′X∗ + δI)−1X∗′y, (3.28)
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where δ is a small positive number called the ridge factor, determined by the user. Alternatively

the biased ridge estimator can be expressed as a linear transformation of the ordinary least squares

estimator β̂
∗

as

β̂
∗
R = (X∗′X∗ + δI)−1(X∗′X∗)β̂

∗
, (3.29)

(Marquardt and Snee, 1975; Montgomery et al., 2012). The covariance matrix of the ridge estimator

and the bias in ridge estimator can be presented as var(β̂
∗
R) = σ2(X∗′X∗ + δI)−1X∗′X∗(X∗′X∗ +

δI)−1 and Bias(β̂
∗
R) = −δ(X∗′X∗ + δI)−1β∗, respectively. Montgomery et al. (2012) defined the

mean square error of the ridge estimator, used to measure the precision of regression estimates, by

MSE(β̂
∗
R) = var(β̂

∗
R) + {Bias(β̂

∗
R)}2

= σ2
p∑

j=1

λj

(λj + δ)2
+ δ2β∗′(X∗′X∗ + δI)−2β∗, (3.30)

where λ1, . . . , λp are the eigenvalues of X∗′X∗. The variance of β̂
∗
R decreases as the biasing factor

increases, but the squared bias in β̂
∗
R increases as the biasing factor increases. When δ = 0, the

ridge regression estimator is similar to the unbiased standardized least squares estimator β∗. How-

ever, when δ > 0, the ridge regression estimator is biased but it is more stable than the ordinary

least squares estimator.

Determination of the Biasing Factor

A number of suggestions were made in literature on how to determine the value of the biasing

factor δ. Hoerl and Kennard (1970b) recommended the use of ridge trace to determine the value

of δ. The ridge trace is a plot of the individual parameter estimates β̂∗jR against δ, for values of

δ in the interval [0, 1]. The smallest value of δ at which the parameter estimates are stabilized is

chosen as the ridge factor. The objective of the ridge trace is to show the sensitivity of estimation

of parameters to nonorthogonality of predictor variables.

Hoerl et al. (1975) suggested that a reasonable selection of the biasing factor δ is

δ =
pσ̂2

β̂
∗′
β̂
∗ , (3.31)

where β̂
∗

is the least squares estimator under scaled variables, and σ̂2 is an estimator of the variance

of the error term. The suggested choice of δ gives ridge regression coefficients with smaller mean

square error than least squares estimator. Hoerl and Kennard (1976) suggested an iterative method

of selecting δ based on the selection method suggested by Hoerl et al. (1975). The selection of the

biasing factor based on the iterative method is defined as

δ =
pσ̂2

β̂∗′δi
β̂∗δi

, (3.32)
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where β̂δi
, i = 0, 1, ..., is estimated using different values of δ until the termination criteria is sat-

isfied. The iteration process is repeated until the difference between two successive estimates is

negligible (Chatterjee and Hadi, 2006). The ridge factor is chosen in such a way that the decrease

in the variance term of the mean square square error of β̂
∗
R is greater than the increase in the

squared bias. In that case the mean square error of β̂
∗
R will be less than the variance of the least

squares estimator β̂
∗
. Hoerl and Kennard (1970a) showed that there is a positive value of δ, for

which the ridge estimator has a smaller mean square error than the variance of the least squares

estimator.

Chatterjee and Hadi (2006) noted that ridge regression yields parameter estimates that are more

robust to small changes in the data than the least squares procedure. Ridge coefficients estimates

have the property of smaller mean square error, which makes them to be closer to the true unknown

parameters than the least squares estimates. However, the choice of the biasing factor δ is to some

extent subjective since there are several methods of selecting δ that are suggested, of which none is

recommended as the best in terms of performance. Like the least squares estimator, a ridge estima-

tor is sensitive to the presence of extreme observations in the data. Hence the need for regression

diagnostics that detect extreme observations and their influence on the ridge estimator.

3.6 Regression Model Diagnostics

In regression analysis it is important to scrutinize the results and find out if there are problems that

may compromise the validity of the results. This is commonly done through regression diagnostics,

which consist of a number of techniques used to check the quality of data, and if the assumptions

of the model are satisfied. If the distributional and model assumptions are not satisfied model

diagnostics check the extent to which they are violated. Most of the regression diagnostics have

three major components, namely, fitted values, ŷi, residuals, ei and leverages, hii. Residuals and

leverages are diagnostic techniques by themselves, and they also constitute fundamental parts in

building almost all diagnostic techniques based on case deletion (Cook and Weisberg, 1982) and

(Sen and Srvastava, 1990).

Oftentimes regression analysis is applied on data sets that involve some extreme observations called

outliers and high leverage points. The presence of outlying observations can be attributed to a num-

ber of factors. Belsley et al. (1980) outlined three sources of outlying observations as, erroneous

recording of data either at the data collection stage or at the data capturing stage, observational

errors, and correct extreme observations that contain important information. Extreme observations

are a concern in ordinary least squares estimation because the procedure is very sensitive to outly-

ing observations. This is mostly attributed to the fact that the procedure is used on the regression

based on the mean response. The regression model based on quantiles of the distribution of the
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response variable were also studied in the current research. Outlying observations may have large

residuals and affect the least squares regression coefficients.

Graphic diagnostics such as scatter plots can be used to identify outlying observations for re-

gression with one or two predictor variables. However, when more than two predictor variables are

included in the regression model scatter plots may not show multivariate outliers (Belsley et al.,

1980; Hocking, 1996). In such cases residuals can be used to identify observations that are outly-

ing with respect to a response variable, while leverage can be used to identify observations that

are extreme with respect to predictor variables. The three components of regression diagnostics,

predicted values, residuals and leverage, are discussed in the subsequent sections.

3.6.1 Predicted Values and Leverages

Given the solution to the general linear model in equation (3.10), the vector of n fitted values is

defined by ŷ = X(X′X)−1X′y. This can also be presented as ŷ = Hy, where H is the n × n hat

matrix defined as

H = X(X′X)−1X′. (3.33)

The hat matrix is sometimes referred to as the projection matrix. The matrix H has two important

properties that it is symmetric and idempotent. A diagonal element of the hat matrix is the leverage

of the ith case denoted by hii, which is defined as

hii = x′i(X
′X)−1xi i = 1, 2, . . . , n, (3.34)

where x′i, the ith row of the design matrix X, corresponds to a single observation or case in the

data. Leverages are helpful in detecting cases that are extreme with respect to their p predictor

variables values in multiple regression analysis. One of their properties is that 0 ≤ hii ≤ 1. The

diagonal element hii measures the distance that indicates how far away an individual observation xi

is from the centroid or the mean, x̄, of all n observations in the data. It reflects how extreme is an

observation relative to other observations. A large value of hii shows that the ith observation is far

from the center of all observations for a predictor variable, and hence it is extreme in terms of the

predictor variable. This observation has a large leverage value and it is called a high leverage point,

which has a big influence in determining the fitted value ŷi. According to Belsley et al. (1980), the

ith observation is considered as the leverage point when its value of hii is greater than 2p/n. A

leverage value of zero indicates that the ith observation has no influence on the fitted model.

3.6.2 Residuals

Residuals consist of important information, which can be used to detect inadequacies in the regres-

sion model and problems in the data. Thus they are normally used as diagnostic tools to check if
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the fitted model deviates from the linear regression model in terms of nonlinearity of the regression

function, unequal variance of error terms, correlated error terms, presence of extreme and influential

observations, error terms that are not normal, and omission of important variables from the model.

Diagnostics plots of residuals against predictor variable or fitted values give information on these

departures for the linear model. Some of the plots that are used are scatter plot, box plot, and

normal probability plot. Although graphic analysis of residuals is sometimes considered to be an

informal diagnostic tool, in most cases it gives adequate information for assessing the correctness

of the model (Kutner et al., 2005).

The residuals, ûi = yi − ŷi, are observed errors of the unknown true error terms ui. Like the

true error terms, the residuals have mean zero. However, residuals may have varying variances,

where the variance of the ith residual is given by Var(ûi) = σ2(1 − hii). If the error terms are

normally distributed the residuals are also normally distributed. Unlike the error terms that are

independent, residuals are correlated. The ordinary residuals, ûi can be used to detect outlying ob-

servations but they are not good indicators of extreme observations, and they cannot be compared

because they have different variances (Hocking, 1996). Ordinary residuals can be standardized so

that they have a common variance of one and become more effective diagnostic measure. The stan-

dardized residuals ri called internally studentized residuals are defined as ri = ûi

s
√

(1−hii)
, where s is

the square root of the MSE used to estimate the variance of the error term σ2, under independence

and common variance, and s
√

(1− hii) is the estimate of the standard error of the residuals.

An alternative method that is often recommended is to use the leave one observation out method in

calculating the standardized residuals. These residuals are called the studentized deleted residual

or externally studentized residual, and can be defined as

ti =
ûi√

s2(i)(1− hii)
, (3.35)

where s2(i) is the mean square error computed from fitting the regression model when the ith ob-

servation is deleted or left out.

Sometimes the study of residuals does not give full information on outlying observations since

some of the observations can have relatively small residuals yet they are outliers (Belsley et al.,

1980). Cook and Weisberg (1980) noted that in some cases, an individual observation or a group of

observations can influence important computations from fitting the linear regression model while

they cannot be detected by studying residuals. Such situations call for the use of alternative

diagnostics with the ability to identify outlying observations and study them further.
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3.6.3 Identification of Influential Cases

When observations that are outlying in terms of their response variable values, predictor variable

values or both have been identified, it is important to study them further and establish whether

they are influential or not. An observation is considered influential if deleting it from the data

causes major changes in the fitted regression model. Sen and Srvastava (1990) noted that a case

is considered influential if it has a large residual or it is far away from the centroid of the space of

the predictor variables. There are a number of diagnostic techniques based on the deletion of the

ith observations, which have been proposed in literature (Cook, 1977; Belsley et al., 1980). These

techniques measure the influence of the ith observation on the fitted regression model.

Chatterjee and Hadi (1996) reviewed a number of the proposed influence measures and discussed

their relationships. Their relationships emanates from the fact that they are functions of the resid-

uals ûi, the residual mean square error s2, and the ith diagonal element of the hat matrix hii.

However, different diagnostic tools are intended to detect influence of the ith case on different

quantities of the fitted regression model, such as the estimated coefficients, predicted values, and

the covariance matrix of the estimated coefficients. Four measures of influence based on the dele-

tion of a single observation that are commonly applied to detect influence on different quantities

of the fitted model are discussed. The measures are, DFBETAS, DFFITS, Cook’s Distance, and

COVRATIO.

1. DFBETAS

Belsley et al. (1980) proposed DFBETAS as the measure of the influence of the ith case on

each regression coefficient β̂j , where j = 1, . . . , p. This influence measure is used to study

the change in the estimated regression coefficients caused by leaving out the ith observation

from the data. If the primary objective of regression analysis is estimation of parameters,

DFBETAS is the appropriate measure of the influence of the ith observation. DFBETAS is

defined by

(DFBETAS)j(i) =
β̂j − β̂j(i)√
s2(i)cjj

j = 1, 2, . . . , p, (3.36)

where β̂j is the regression coefficient estimated from all n observations, and β̂j(i) is the regres-

sion coefficient estimated when the ith observation is deleted from the n observations. The

term cjj is the jth diagonal element of (X′X)−1, and s2(i)cjj is an estimate of the variance of

β̂j given by σ2cjj . The variance of the error term σ2 is estimated by s2(i), the mean square

error obtained when the ith case is left out in fitting the regression model.

The sign of DFBETAS indicates whether including the ith case leads to an increase or a

decrease in the estimated regression coefficient. Belsley et al. (1980) noted that large ab-

solute values of DFBETAS show that the ith case has an influence in determining the jth
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regression coefficient β̂j . The authors suggested a cutoff point of 2/
√
n of DFBETAS for

observations that are considered influential and need to be studied further.

2. DFFITS

If the main objective of regression analysis is prediction, the assessment of the influence of

the ith observation on predicted values becomes important. Welsch-Kuh’s distance by Welsch

and Kuh (1977) also referred to as DFFITS by Belsley et al. (1980) is a diagnostic technique

used to measure the influence of the ith case on the fitted value ŷi. It measures the change

in the ith fitted value in terms of standard error units when the ith observation is excluded

(Schabenberger and Pierce, 2002). DFFITS is defined by

DFFITSi =
ŷi − ŷi(i)

s(i)
√
hii

, (3.37)

where ŷi is the fitted value for the ith observation when all the data are used in fitting the

regression model, and ŷi(i) is the predicted value for the ith case obtained when the regression

model is fitted without the ith case.

DFFITS can also be expressed as DFFITSi = ti

(
hii

1−hii

)1/2
. In this case, the DFFITS value

for the ith case is the externally studentized residual ti adjusted by the factor
(

hii
1−hii

)1/2
.

This factor is a function of the leverage value for the same ith case. If the ith case is extreme

with respect to the predictor variable X and has a high leverage value, the adjusting factor

will be greater than 1 and the value of DFFITSi will be large in absolute value. A large value

of DFFITSi indicates that the ith observation is influential. Belsley et al. (1980) suggested

a cutoff point of 2
√
p/n when using DFFITS to identify observations that are considered

influential and need to be investigated further.

3. Cook’s Distance

The Cook’s distance proposed by Cook (1977) is an aggregate influence measure that measures

the influence of the ith case on all n fitted values. The Cook’s distance Di compares each of

the n fitted values ŷi with the corresponding fitted value ŷi(i) obtained when the ith case is

deleted in fitting the regression model and can be expressed in vector notation as

Di =
(ŷ(i) − ŷ)′(ŷ(i) − ŷ)

ps2
, (3.38)

where ŷ = Xβ̂ is the vector of fitted values when all n cases are used for fitting the regression

model, and ŷ(i) = Xβ̂(i) is the vector of the fitted values when the ith case is deleted. The

diagnostic Di is the scaled Euclidean distance moved by the fitted vector when the ith case

is deleted from the data (Cook and Weisberg, 1980; Chatterjee and Hadi, 1996).

In another expression, Di = t2i
p

hii
(1−hii)

, the Cook’s distance depends on the size of the ex-

ternally studentized residual ti and leverage value hii. If ti, hii or both of them are large, Di
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will be large, hence the ith case will be influential. Cook (1977) suggested that the values of

Di be compared with the probability 100(1− α)% points of F distribution with p and n− p

degrees of freedom. According to Weisberg (2005) if the largest value of Di is substantially

less than 1, the ith observation does not influence β̂.

4. COVRATIO

The covariance matrix of the estimated regression coefficients σ2(X′X)−1 is another impor-

tant aspect of regression analysis, for which the effect of the ith observation needs to be

investigated. Belsley et al. (1980) introduced a diagnostic technique based on the deletion

of the ith row of the design matrix X that compares the covariance matrix computed from

all the data, σ2(X′X)−1, and the covariance matrix computed when the ith observation is

deleted from the data, σ2(X′
(i)X(i))−1. This diagnostic technique measures the influence of

the ith observation on the covariance matrix and is given by the ratio of the determinants of

the two covariance matrices defined by

COVRATIO =
det

[
s2(i)

(
X′

(i)X(i)

)−1
]

det
[
s2 (X′X)−1

]
=

(
n− p− t2i
n− p− 1

)p 1
1− hii

, (3.39)

where s2 and s2(i) are mean square errors used to estimate the variance σ2 computed from all

the data and the variance σ2
(i) computed when the ith observation is deleted from the data,

respectively. COVRATIO measures the effect of the ith observation on the precision of the

estimated regression coefficients. According to Belsley et al. (1980) observations that result

in COVRATIO values not close to 1 have a potential of being influential and hence they

need to be investigated further. Values of COVRATIO that are close to 1 show that the ith

observation has a little influence on the precision of the estimates.

Rawlings et al. (1998) noted that when the value of COVRATIO is greater than 1, there

is an indication that the ith observation increases the precision of the estimates, whereas

when the value of COVRATIO is less than 1 there is an indication that the ith observation

decreases precision of the estimates. Belsley et al. (1980) suggested a cut-off point of 1±3p/n

for observations that need to be investigated further. That is, if COVRATIO ≥ 1 + 3p/n or

COVRATIO ≤ 1−3p/n the ith observation influences the covariance matrix of the estimated

regression coefficients.

Once an influential observation and its effect on quantities of the fitted model have been detected,

the first step would be to examine if the observation was erroneously recorded and if so the possi-

bility of correcting the error, or if the case is a valid observation that gives important information.

In cases where it is a valid observation, robust regression procedures that reduce the influence of
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influential observations can be applied, instead of OLS procedure. Quantile regression by Koenker

and Bassett (1978), as an alternative robust and flexible estimation approach to classical regression

approach is discussed and applied in the subsequent in chapters.
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Chapter 4

Linear Regression Models and

Diagnostics of National Data

4.1 Introduction

Linear regression models were applied to model the national food cereals availability. Domestic

production of each of the three main cereals, maize, sorghum and wheat, as one component of na-

tional availability of cereals, was modelled using the general linear regression model. The classical

linear regression model was fitted to the national maize data, while the linear regression model

with the first-order autoregressive process AR(1) was fitted to the sorghum and wheat data, where

production in the past immediate year was identified to be having a relationship with the current

production. This model included the autoregressive term, Yt−1, which is production of sorghum

or production of wheat in the past immediate year as one of the predictor variable. This variable

consists of past values of the response variable, which is the current production of sorghum or

current production of wheat in this research. The ordinary least squares estimation procedure was

used to estimate regression parameters.

Collinearity diagnostics were used to detect the presence of collinear relationships that exist among

predictor variables in the model. The condition index was used to diagnose the presence of

more than one collinear relationship that exist simultaneously in the set of data. The variance-

decomposition proportion was used to identify variables that are involved in a particular collinear

relationship, and assess the extent to which the least squares parameter estimates are adversely

affected by collinearity. On the basis of the identified near linear dependencies among columns

of the data matrix X, we used ridge regression to control inflation and instability of estimated

regression coefficients caused by the dependencies.

We applied linear regression model diagnostics to check if the distributional and model assumptions
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are satisfied. Diagnostics based on the deletion of the ith observations were used to identify extreme

observations that influence different quantities of the fitted model, such as, the estimated regression

coefficients, predicted values, and covariance matrix of the estimates. The model was refitted after

excluding each of the identified influential observations, one at the time. The results from fitting

the model to the data with and without a particular observation or case, were compared to estab-

lish the extent to which the observation was influential. In cases where violation of assumptions

such as the non-constant variance of the error term and distributions of error term with longer and

heavier tails than the normal distribution were established, we applied the Box-Cox transforma-

tion to identify an appropriate transformation from a family of power transformation for correction.

The REG procedure of SAS was used to fit the linear regression model to the national data as

well as to perform collinearity and regression diagnostics. In identifying collinear relationships

and variables that are involved in such relationships, the procedure uses an approach that follows

the one of Belsley et al. (1980). The REG procedure has the INFLUENCE option that produces

influence statistics proposed by Belsley et al. (1980) to measure influence of each observation on

estimates of model parameters. The diagnostics and box plots were plotted by the R system of

graphics, after checking that R gives the same results as the ones produced by SAS when fitting

the linear regression models.

4.2 Regression Model of National Maize Data

The linear regression model was fitted to different subsets of maize data. In fitting the model to the

1973/1974 to 2001/2002 data, maize production was regressed on four predictor variables for both

cases of with and without suspected extreme observations. The four predictor variables are time,

the amount of rainfall, area harvested to maize and price of maize, which appeared in Figure 2.1

and Table 2.1 as having linear relationships with maize production. The suspected extreme cases

are the third and twenty seventh observations of the years 1975/1976 and 1999/2000, respectively.

The third observation has the highest amount of rainfall of 1042.52 milliliters, and a relatively low

maize production of 49128 tonnes. The twenty seventh observation has the highest maize produc-

tion of 277685 tonnes. This is suspected to be the observation that appeared outstanding in Figures

2.2, M.1 and M.2 of box plots for all the three subsets of maize data, in Chapter 2.

The results from fitting the model with and without the extreme cases show that the overall F test

of the null hypothesis that none of the predictor variables is linearly related to maize production, is

significant at 5% level of significant. This suggests that at least one of the four predictor variables

in the fitted models has a linear relationship with maize production. According to the value of the

coefficient of determination R2 of 0.54 from fitting the model to the data set with all observations,

the predictor variables in the regression model explain 54% of the variability in maize production.
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Table 4.1: Parameter Estimates for the Full Set of 1973 - 2002 Maize Data

Response Variable: maize production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -62918.00 44599.00 -1.41 0.1717 . 0

Time 1 -1290.13 3378.31 -0.38 0.7061 0.06 16.23

Rainfall 1 82.11 61.85 1.33 0.1974 0.75 1.33

Harvested Area 1 0.86 0.30 2.85 0.0091 0.63 1.58

Price/Ton 1 96.85 115.04 0.84 0.4086 0.06 15.40

The significance of regression coefficients are tested both at the 5% and 10% level of significance

for comparison of strength of evidence. According to the results of the t test of the significance

of each variable in affecting the mean response of maize production, only area harvested to maize

is significant at 5% level of significant (Table 4.1). This shows that among the four predictor

variables in the model, area harvested is the only variable which had a significant effect on maize

production in the years, 1973/1974 to 2001/2002. The size of the effect of harvested area on maize

production is given by its parameter estimate of 0.86. The estimate shows that an increase in area

harvested to maize by 1 hectare resulted with an increase of the mean maize production by 0.86

of a tonne during the specified period, when other variables in the model are held constant. The

additional variable in the subset of data, price of maize per tonne, is not significant and thus it does

not add value in explaining and predicting maize production in the period, 1973/1974 to 2001/2002.

The value of tolerance of 0.06 that corresponds to each of the two predictor variables, time and

price of maize is less than 0.10. In addition, the values of VIF, 16.23 and 15.40 that correspond

to each of the variables are greater than 10 (Table 4.1). These are signs that there are collinearity

problems in the subset of data that might be affecting the two predictor variables. The tolerance

value of 0.06 for both time and price shows that only 6% of the variability in each of the variables

is independent of other predictor variables in the model. This means that there is at least one

collinear relationship in the data set since almost all (94%) of the variability in each of the vari-

ables is explained by other predictor variables in the model. The VIF values for time and price of

maize, 16.23 and 15.40, show that the variance of the parameter estimates that correspond to these

variables are inflated due to collinearity by 16.23 and 15.40, respectively.

The eigenvalues, condition indices, and variance-decomposition proportions for parameters esti-

mates were used to identify the number of near linear dependencies that exist in the data set, and

the variables that are involved in each of them (Table 4.2). The largest condition index of 24.08

that corresponds to the smallest eigenvalue of 0.01 indicates the presence of one near linear de-

pendency among the columns of the design matrix X. Variables that are involved in the identified

near linear dependency are indicated by high variance-decomposition proportions of their regres-
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Table 4.2: Collinear Diagnostics for 1973 - 2002 Maize Data

Number Eigenvalue Condition
Proportions of Variance

Index Time Rainfall Harvested Area Price/Ton

1 4.62 1.00 0.00063 0.00095 0.00144 0.00082

2 0.33 3.72 0.01004 0.01256 0.00654 0.02261

3 0.03 13.53 0.00010 0.04508 0.86995 0.00763

4 0.01 18.05 0.07307 0.73878 0.03840 0.12941

5 0.01 24.08 0.91618 0.20263 0.08367 0.83953

sion coefficients that are greater or equal to 0.50 and correspond to one small eigenvalue and the

highest condition index. High variance proportions of 0.91 and 0.84 correspond to the regression

coefficients of time and price of maize, respectively. Thus in the period, 1973/1974 to 2001/2002,

two variables, namely, time in years and price of maize in Rands per tonne were highly correlated.

These results confirm a strong linear relationship between the two variables portrayed in their scat-

ter plot in Figure 2.1 and its strength shown by high correlation coefficient of 0.97 in Table 2.3.

The strong collinear relationship that exists between time and price of maize has an effect on

the standard error of the estimated regression coefficients and the value of the t statistic of price

of maize. This is because when time is excluded in fitting the same model, the standard error

of the estimate declines from 115.04 to 32.54 and the value of t statistic increases from 0.84 to

1.68, but price of maize remains not having a significant effect on maize production. Thus there is

no need to remove the time from the model because though its exclusion when fitting the model

increases the value of the t statistic for price of maize, it does not change the status of the variable

in terms of it having a significant effect on maize production in the period, 1973/1974 to 2001/2002.

The case deletion regression diagnostics were applied to check if the third and twenty seventh

observations, which were identified as suspected extreme cases are influential. The diagnostics that

were used to measure the influence of the observations on different quantities of the fitted regression

model are externally studentized residual ti, leverage hii, DFFITS, Cook’s Distance, DFBETAS

and COVRATIO. The values of the diagnostics and their cut off points are given in Table 4.3.

According to the results, the third observation is not considered as an outlying observation since

its absolute value of ti, 1.95 is less than the cutoff point of 2. However, it is considered as a high

leverage point because its value of hii, 0.47 is high when it is compared with the cutoff point of

0.29. On the other hand, the twenty seventh observation is not a high leverage point, but it is an

outlying observation since its value of ti of 4.13 is two times bigger than the cutoff point. Thus the

third observation of the year 1975/1976 is extreme in terms of one of the predictor variables, while

the twenty seventh observation of the year 1999/2000 is extreme in terms of the response variable,

production of maize.
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Table 4.3: Case Deletion Diagnostic for 1973 - 2002 Maize Data

Diagnostic 3rd Case 27th Case Cutoff
Measure Diagnostics Diagnostics Point

RStudent ti -1.95 4.13 2

Leverage hii 0.47 0.16 2p/n = 0.29

DFFITS -1.85 1.78 2
p

p/n = 0.75

Cook’s Distance Di 0.61 0.37 F(0.5,p,n−p) = 1.16

COVRATIO 1.07 0.08 1± 3p/n = 1± 0.43

DFBETAS 2/
√

n = 0.38

Time 0.03 -0.19 0.38

Rainfall -1.55 0.27 0.38

Harvested Area 1.11 0.41 0.38

Price/Ton -0.05 0.50 0.38

The absolute values of DFFITS, 1.85 for the third case and 1.78 for the twenty seventh case, are

greater than the cutoff point of 0.75. Thus the two observations have influence on the ith fitted

values and fitting the model when each of them is excluded will change the third fitted value ŷ3 and

the twenty seventh fitted value ŷ27 by 1.85 and 1.78 standard errors, respectively. The negative sign

of the value of DFFITS for the third observation indicates that ŷ3 from fitting the model with all

the observations is less than ŷ3 from fitting the model without the third observation. The positive

sign of the value of DFFITS for the twenty seventh observation indicates that ŷ27 from fitting the

model with all the observations is larger than ŷ27 from fitting the model without the twenty seventh

observation.

The value of COVRATIO, 1.07, for the third observation is neither greater than the cutoff point of

1+0.43 = 1.43 nor less than the cutoff point of 1−0.43 = 0.57. This suggests that the exclusion of

the third case from the data does not influence the covariance matrix of the estimated coefficients,

and thus the observation does not affect the precision of the estimates. The twenty seventh obser-

vation has an effect on the precision of the estimates since its COVRATIO of 0.08 is less than the

cutoff point of 1−0.43. According to Rawlings et al. (1998) the observation decreases the precision

since its COVRATIO is less than 1.

In the case of the influence of the two cases on the jth parameter estimates β̂j , the deletion of

the third observation influences the estimated coefficients of the amount of rainfall and harvested

area. This is so because the respective absolute values of DFBETAS for the two variables of 1.55

and 1.11 are greater than the cutoff point of 0.38. On the other hand, the deletion of the twenty

seventh observation affects the estimated coefficient of price of maize because its absolute value

of DFBETAS, 0.50, is bigger than the cutoff point. In the case of harvested area the difference

between the absolute value of DFBETAS, 0.41, and the cutoff point is minimal. The results from
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the case deletion diagnostics suggest that the third and twenty seventh observations are influential

since fitting the model after their deletion from the data has an effect on a number of quantities of

the fitted model.

Table 4.4: Influence of the 3rd Case on the Fitted Model for 1973 - 2002 Maize Data

Predictor
With the 3rd case R2 = 0.54 Without the 3rd Case R2 = 0.58

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -62918.00 44599.00 -1.41 0.1717 -87860.00 44018.00 -2.00 0.0585

Time -1290.13 3378.31 -0.38 0.7061 -1394.38 3190.53 -0.44 0.6663

Rainfall 82.11 61.85 1.33 0.1974 172.89 74.72 2.31 0.0304

Harvested Area 0.86 0.30 2.85 0.0091 0.54 0.33 1.66 0.1111

Price/Ton 96.85 115.04 0.84 0.4086 102.20 108.67 0.94 0.3572

Tables 4.4 and 4.5 present the comparison of the results from fitting the regression model when all

observations in the data set were used and when each of the third and twenty seventh observations

were excluded, one at the time. The results helped to assess the influence of the observations on

the estimated parameters and their summary statistics. The exclusion of the observations caused

a slight increase in the coefficient of determination from 0.54 to 0.58 and 0.56 for the third and

twenty seventh observations, respectively. This is an indication that the exclusion of each obser-

vation do not have a considerable impact on the goodness-of-fit of the model. However, when the

observations were deleted one at a time the size of all parameter estimates changed. Substantial

changes were observed from 82.11 to 172.89 in the parameter estimate of the amount of rainfall

and from 96.85 to 102.20 in the parameter estimate of price of maize when the third observations

is excluded (Table 4.4). Similarly, when the twenty seventh observations was excluded substan-

tial changes were observed for parameter estimates corresponding to the same predictor variables,

though in this case the estimates declined (Table 4.5). This is in agreement with the results from

DFBETAS in Table 4.3 that the estimated coefficients of amount of rainfall and price of maize are

affected by the exclusion of the third and twenty seventh observations from the data, respectively.

Table 4.5: Influence of the 27th Case on the Fitted Model for 1973 - 2002 Maize Data

Predictor
With the 27th case R2 = 0.54 Without the 27th Case R2 = 0.56

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -62918.00 44599.00 -1.41 0.1717 -38145.00 34714.00 -1.10 0.2838

Time -1290.13 3378.31 -0.38 0.7061 -798.18 2593.16 -0.31 0.7611

Rainfall 82.11 61.85 1.33 0.1974 69.25 47.53 1.46 0.1592

Harvested Area 0.86 0.30 2.85 0.0091 0.76 0.23 3.29 0.0034

Price/Ton 96.85 115.04 0.84 0.4086 52.49 88.86 0.59 0.5607
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The values of the standard errors of estimated coefficients, t statistics and p-values are affected by

the deletion of each of the third and twenty seventh observations (Tables 4.4 and 4.5). When the

model was fitted using the complete data set, area harvested to maize is the only variable that had

a significant effect on maize production in the period, 1973/1974 to 2001/2002. However, when

the third observation was deleted harvested area is not significant any more, instead the amount

of rainfall appears as the only variable which had a significant effect on maize production. On the

contrary, when the model was fitted without the twenty seventh observation, the significance of

the variables in affecting maize production does not change since area harvested remains the only

variable with a significant effect on maize production.

Figure 4.1: Plot of Residuals for 1973 - 2002 Maize Data

Residual plots in Figure 4.1 were used to check the assumptions of constant variance and normality

of error terms for the fitted model. The first plot on the top left is a plot of residuals against fitted

values. It shows a pattern of residuals that decrease as the fitted values get larger. This is a sign of

violation of constant variance assumption or heteroscedasticity. The next plot on the top right is
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a normal QQ plot that plots standardized residuals against theoretical normal quantiles. The plot

shows that plotted points lie on a straight line with one point on the right end being above the line,

another point on the left being above the line, and one outstanding case. This is an indication of a

symmetric distribution with tails that deviate slightly from that of normal distribution. The plot

also shows evidence of the presence of outliers in the set of data. The bottom left plot is a plot

of square root of standardized residuals against fitted values. This plot is similar to the first plot

but with positive values only. It also shows a pattern of residuals decreasing with bigger values of

fitted values.

The last plot on the bottom right is a plot of standardized residuals against leverage that shows the

upper and lower Cook’s distance contour. The plot highlights outliers and high leverage points that

are influential on the quantities of the fitted model. The twenty seventh observation that stands

out in the first three plots with the highest residual is considered influential since it appears in the

upper Cook’s distance contour. The third observation is considered as a high leverage point since

it appears in the lower Cook’s distance contour, with the highest leverage. The observations from

the plot confirms the findings from the case deletion diagnostics that the third observation is a high

leverage point, observation twenty seven is an outlier, and that both observations are influential.

The two observations could not be removed from the data because they are legitimate cases in the

data, providing an important observation. The third observation is the case of the year 1975/1976

with the highest amount of rainfall of 1042.52 milliliters and relatively low maize production of

49128 tonnes. Probably the country experienced heavy rains in 1975/1976 which resulted with

flooding that adversely affected production of maize. Maize yields are highly sensitive to rainfall

deficiency since they are adversely affected by dry spells with little rain as well as flooding caused

by heavy rains, depending on the stage of maize crop growth (Singh et al., 1985). The authors

further noted that young crop of maize is more prone to damaging effects of flooding, which lead

to decreased maize yields. The twenty seventh observation is the case of 1999/2000 showing that

maize production was high in that year.

In the case of the 1973/1974 to 2006/2007 and 1976/19777 to 2006/2007 maize data, maize produc-

tion was regressed on two predictor variables only. The two variables are the amount of rainfall and

area harvested, which appear to have a linear relationship with maize production from the scatter

plot and correlation matrices in Figures A.1 and A.2, and Tables B.1 and B.2 of Appendices A and

B, respectively. The model for the 1973/1974 to 2006/2007 data was fitted with and without each

of the third and twenty seventh observations. This was done to assess if the influence of each ob-

servation on the fitted model is similar in the two periods, 1973/1974 to 2006/2007 and 1973/1974

to 2001/2002. In the case of the 1976/1977 to 2006/2007 data, the model was fitted using all the

observations only, since none of the observations was identified as a suspected extreme observation

in this period.
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The results from fitting the model to the 1973/1974 to 2006/2007 maize data, with and with-

out the third and twenty seventh observations, are almost similar to the results from fitting the

model to the 1973/1974 to 2001/2002 maize data for the two scenarios. They are similar in the

sense that like in Table 4.1, only one variable, area harvested, had a significant effect on maize

production (Table C.1 in Appendix C). On the Contrary, for the 1976/19777 to 2006/2007 maize

data, the amount of rainfall instead of area harvested is the only variable with a significant effect on

maize production (Table C.3 in Appendix C). This is an indication that different time intervals at

which maize data were compiled make a difference in terms of which variables had significant effects

on maize production. However, the additional variable in the 1976/19777 to 2006/2007 subset of

data, population size, does not add value in explaining and predicting maize production since it is

not linearly related with maize production (Table B.2 in Appendix B) and thus it is not included

in the model.

Collinear diagnostics for both the 1973/1974 to 2006/2007 and 1976/19777 to 2006/2007 maize

data do not show the presence of any near linear dependency among the two predictor variables

in the model (Tables C.1, C.2, C.3, C.4 in Appendix C). The tolerance of 0.84 and 0.64 for the

amount of rainfall and harvested area from fitting the model to the two subsets of data show that

84% and 64% of variability in one of the two variables, say area harvested to maize, is not depen-

dent on the amount of rainfall. In addition, the VIF of 1.19 and 1.55 for each of the two variables

in each subset of data are less than 10, indicating that the variances of their respective estimated

coefficients are not inflated due to collinearity. Thus the values of tolerance and VIF show that

there are no collinearity problems in the two subsets of maize data.

The results of condition indices and variance-decomposition proportions are in line with what

is shown by the values of tolerance and VIF that there is no near linear dependency in the data.

For example, the highest condition index of 14.11 that corresponds to the small eigenvalue of 0.02

does not indicate the presence of collinearity in the 1973/1974 to 2006/2007 data (Table C.2). This

is because to have a collinear relationship in a data set, two or more variables should have a variance

proportion of 0.50 or more, which correspond to the small eigenvalue and highest condition index

(Belsley et al., 1980; Belsley, 1991). This applies to both subsets of data because there is only one

regression coefficient with high variance proportion that corresponds to the highest condition index

(Tables C.2, C.4).

The results of case deletion diagnostics for the 1973/1974 to 2006/2007 data in Table D.1 of Ap-

pendix D are similar to that of the 1973/1974 to 2001/2002 data in Table 4.3. The comparison of

the results from fitting the model with and without the third observation in Table D.2 and twenty

seventh observation in Table D.3 of Appendix D, yields almost similar results as that of 1973/1974

to 2001/2002 data in Tables 4.4 and 4.5. Thus despite the time interval in which the maize data
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were compiled, the influence of the third and twenty seventh observations on different quantities of

the fitted model remains the same regarding the parameter estimates and their summary statistics.

The top and bottom left plots in Figure E.1 for the 1973/1974 to 2006/2007 maize data show

that residuals are randomly scattered without showing any specific pattern. This is indicative of

homoscedasticity where the assumption of constant variance holds. The normal QQ plot on the top

right shows that plotted points lie on a straight line with points on the right and left ends being

above the line, and one outstanding point. This is an indication of a symmetric distribution but

with a rather longer and heavier tail than that of the normal distribution. Furthermore, the plot

shows evidence of the presence of an outlier in the set of data. The last plot on the bottom right

shows that, unlike in the 1973/1974 to 2001/2002 data, the twenty seventh observation, which

stands out in the first three plots, is an extreme but not influential outlier in the 1973/1974 to

2006/2007 data. This is because the point is close to the upper Cook’s distance contour but not

inside it. On the other hand, the plot shows that, as it is the case in the 1976/1977 to 2001/2002

maize data, the third observation appears in the lower Cook’s distance contour and thus it is an

influential high leverage point even in this subset of data.

The top and bottom left plots in Figure E.2 for the 1976/1977 to 2006/2007 data show residu-

als that increase with the fitted values. This suggests that the assumption of constant variance

does not hold. The normal QQ plot on the top right shows that plotted points lie on a straight

line with an exception of one point on the right end being above the line and one outstanding

case. This suggests a symmetric distribution but with tails that deviate slightly from that of the

normal distribution. Further, the plot shows evidence of the presence of an outlier in the set of

data. The last plot on the bottom right shows that the twenty fourth observation is an extreme but

not influential outlier, since it appears close to the upper Cook’s distance contour but not inside

it. This is the 1998/1999 observation that stands out in residuals plots for all the three subsets of

maize data.

4.3 Regression Model of National Sorghum Data

Linear regression models were fitted for all the three subsets of the national sorghum data. Sim-

ilarly, the models were fitted with and without the identified suspected extreme observations, for

subsets of data with such observations. The linear regression model with first-order autoregressive

process in which sorghum production in the current year was regressed on time, production of

sorghum in the past immediate year, population size and area harvested to sorghum was fitted to

the 1976/1977 to 2006/2007 data. This model was applied because one of the predictor variables,

production of sorghum in the past immediate year, consists of past values of the response variable.

The suspected extreme observation is the eleventh case of the year 1986/1987 with high area har-
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vested to sorghum of 70909 hectares and a relatively low sorghum production of 31232 tonnes. The

observation deviates from the pattern observed from this subset of data that sorghum production

increased with area harvested.

According to the results, the F test is significant at 5%, indicating that at least one of the predictor

variables in the model had a significant linear relationship with sorghum production in the period

1976/1977 to 2006/2007, when the eleventh case was included and when it was excluded. The

respective values of the coefficient of determination R2 from fitting the model with and without the

eleventh case, show that the regression model explains 67% and 78% of the variability in sorghum

production.

Table 4.6: Parameter Estimates for the 1976 - 2007 Sorghum Data

Response Variable: Sorghum production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -95696.00 105604.00 -0.91 0.3735 . 0

Time 1 -3877.89 3875.18 -1.00 0.3266 0.004 225.40

Production-t 1 0.28 0.17 1.71 0.0988 0.480 2.08

Population 1 0.09 0.09 0.93 0.3607 0.005 217.84

Harvested Area 1 0.65 0.16 3.98 0.0005 0.617 1.62

Table 4.6 presents results from fitting the model using all observations in the data subset, including

the eleventh observation. Two variables, production in the immediate past year and area harvested

to sorghum are significant at 10% and 5% levels of significance, respectively. The smaller value of

the p-value [0.0005] for harvested area shows that though both variables were significant in affecting

sorghum production, the evidence for harvested area is stronger than that of sorghum production

in the immediate past year. The estimate of the autoregressive coefficient for sorghum production

in the immediate past year of 0.28 indicates a weak positive serial correlation between sorghum

production at time t and sorghum production at time t − 1. The serial correlation shows that

sorghum production in the immediate pas year t− 1 predicted current sorghum production at time

t in a positive direction. This means that if sorghum production at time t − 1 was high, sorghum

production at time t was also high, when other variables are held contant.

The estimated coefficient of area harvested shows that, in the years 1976/1977 to 2006/2007, an

increase in area harvested to sorghum by 1 hectare increased the mean sorghum production by

0.65 of a tonne when the rest of the variables in the model are held constant. Despite the strong

correlation between population size and sorghum production shown by the correlation coefficient

of -0.66 in Table 2.5, population size is not significant in affecting sorghum production. This is

probably because the perfect correlation between time and population size with the correlation

coefficient of 0.99 conceals the significant effect that population size could have had on sorghum
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production. The presence of collinear relationships among predictor variables can lead to regres-

sion coefficients with small values of t statistics for predictor variables that are anticipated to be

having an effect (Draper and Smith, 1998; Kutner et al., 2005). It is worth noting that the sign of

the regression coefficient for population size in Table 4.6 has a positive sign while the correlation

coefficient between population size and sorghum production in Table 2.4 has a negative sign. This

could be another effect of the perfect correlation observed between time and population size, since

when there is collinearity problem, regression coefficients can have wrong signs that are opposite

to the anticipated (Kutner et al., 2005).

Table 4.7: Collinear Diagnostics for 1976 - 2007 Sorghum Data

Number Eigenvalue Condition
Proportions of Variance

Index Time Production-t Population Harvested Area

1 4.37 1.00 0.00004 0.00484 0.000009 0.00394

2 0.48 3.02 0.00097 0.09868 0.000025 0.01848

3 0.14 5.56 0.00023 0.31718 0.000005 0.36366

4 0.02 16.98 0.01692 0.53144 0.000721 0.60926

5 0.00 196.07 0.98182 0.04786 0.999240 0.00467

The values of tolerance of 0.004 for time and 0.005 for population size indicate that almost all

the variability in each of the two predictor variables is explained by other predictor variables in

the model (Table 4.6). This is a sign of the presence of collinearity problem in the 1976/1977 to

2006/2007 sorghum data. The values of VIF for time and population size show that the variance

of the regression coefficient for both variables is inflated due to collinearity by 225.40 and 217.84,

respectively.

Table 4.7 shows the presence of two near linear dependencies among the variables in the data.

The dependencies are indicated by two high condition indices of 196.07 and 16.98, which are as-

sociated with the small eigenvalues of 0.00 and 0.02, respectively. The highest conditional index

of 196.07 is indicative of serious collinear problems that involve time and population size. The

estimated coefficients of the two variables have high variance decomposition proportions of 0.98 for

time and 0.99 for population size. Both proportions correspond to the highest condition index of

196.07 and small eigenvalue of 0.00. The condition index of 196.07 and high variance proportions

confirm the perfect correlation between time and population size observed earlier from their scatter

plot and correlation coefficient of 0.99 (Figure 2.3 and Table 2.5). The variance of regression coeffi-

cients for the two variables are adversely affected by collinearity. The second near dependency that

involve two variables, sorghum production in the past and area harvested to sorghum is shown by

the second highest condition index of 16.98. The involvement of the two variables in the collinear

relationship is indicated by high variance-decomposition proportions of their coefficients of 0.53 for
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sorghum production in the past immediate year and 0.61 for harvested area, which correspond to

the condition index of 16.98 and the eigenvalue of 0.02.

Table 4.8: Case Deletion Diagnostic for for 1976 - 2007 Sorghum Data

Diagnostic 11th Case Cutoff
Measure Diagnostics Point

RStudent ti -3.40 2

leverage hii 0.21 2p/n = 0.27

DFFITS -1.74 2
p

p/n = 0.73

Cook’s Distance Di 0.42 F(0.5,p,n−p) = 1.16

COVRATIO 0.22 1± 3p/n = 1± 0.40

DFBETAS 2/
√

n = 0.36

Time 0.38 0.36

Production-t -0.83 0.36

Population -0.48 0.36

Harvested Area -1.35 0.36

The results for the case deletion diagnostics of the eleventh observation are presented in Table

4.8. The absolute value of the externally studentized residual of 3.40 is greater than the cut off

point of 2, whereas the value of the leverage hii of 0.21 is less than the cut off point of 0.27. Thus

the eleventh case is considered as an outlier, not a high leverage point, because it is extreme in

terms of sorghum production, the response variable. The absolute value of DFFITS, 1.74, is higher

than the cut off point of 0.73 and thus the eleventh predicted value is influenced by the deletion

of the eleventh case. The exclusion of the eleventh case also has an influence on the covariance

matrix of the estimates of β since the COVRATIO value of 0.22 is less than the cut off point of

1 − 0.40 = 0.60. This means that the eleventh observation decreases precision of estimated coef-

ficients. All parameters estimated from the model are influenced by the deletion of the case since

their absolute values of DFBETAS are greater than the cut off point of 0.36. However, the outlying

case seem to be influencing the parameter estimate for harvested area, with DFBETAS of -1.35,

more than any other parameter estimate.

Table 4.9: Influence of the 11th Case on the Fitted Model for 1976 - 2007 Sorghum Data

Predictor
With the 11th case R2 = 0.67 Without the 11th Case R2 = 0.78

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -95696.00 105604.00 -0.91 0.3735 -154045.00 90157.00 -1.71 0.1004

Time -3877.89 3875.18 -1.00 0.3266 -5109.86 3268.11 -1.56 0.1310

Production-t 0.28 0.17 1.71 0.0988 0.40 0.14 2.80 0.0100

Population 0.09 0.09 0.93 0.3607 0.12 0.08 1.58 0.1275

Harvested Area 0.65 0.16 3.98 0.0005 0.83 0.15 5.67 <.0001
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The comparison of the results from fitting the model when the eleventh case was included and

when it was excluded is given in Table 4.9. The coefficient of determination R2 increased from

0.67 of when the model was fitted with the observation to 0.78 of when the model was fitted with-

out the observation. Thus the eleventh observation has an influence on the goodness-of-fit of the

model since the predictor variables in the model explain a larger proportion of the variability in

production of sorghum when the case is included than when it is included. The deletion of the case

causes an increase in magnitude of all parameter estimates and their t statistics, and a decrease

in standard errors of estimates and p-values. When the case is deleted, the evidence that sorghum

production in the current time t and sorghum production in the past immediate time t − 1 have

serial dependence becomes stronger. This is shown by the increase in the autoregressive coefficient

from 0.28 to 0.40, and the p value that declines from 0.0988 to 0.0100. The results show that the

eleventh observation is an influential case that improves the efficiency of the model in predicting

sorghum production of the period 1976/1977 to 2006/2007.

Figure 4.2: Plots of Residuals for 1976 - 2007 Sorghum Data
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The plots on the top and bottom left show a random pattern of residuals, indicating that the

assumption of constant variance holds in these data (Figure 4.2). The top right plot shows that

plotted points almost lie on a straight line with an exception of the eleventh point on the left end,

which is far below the line. This is an indication of an approximation of a symmetric distribution

but with evidence of the presence of an extreme observation. The last plot on the bottom right

shows that the eleventh case is not influential since it does not appear in any of the Cook’s distance

contours.

Like in the previous subset of sorghum data, the regression model with first-order autoregres-

sive process was fitted for the 1973/1974 to 2006/2007 subset. In this case sorghum production at

time t was regressed on three predictor variables used in the model fitted to the previous subset of

data. The variables are time, sorghum production in the past immediate year, and area harvested

to sorghum (Tables C.5 and C.6 in Appendix C). The influence of the 1986/1987 observation iden-

tified as the fourteenth observation in this subset of data and as the eleventh case in the previous

subset was studied by fitting the model when it was included and when it was excluded (Table D.5

in Appendix D). The interest here is to find out if the influence of the observation is the same in

the two different time periods.

The results of the F test for both cases of fitting the model with and without the suspected extreme

case indicate that at least one of the variables in the model had a significant linear relationship

with sorghum production during the period under investigation. The regression model fitted when

the extreme case is included, explains 66% of the change in sorghum production. The pattern of

significant variables in this subset of data is similar to that in the 1976/1977 to 2006/2007 subset

(Table C.5). Sorghum production in the past immediate year and area harvested to sorghum are

both significant but with varying strength of evidence of significance, [p-value=0.0521] for Sorghum

production in the past immediate year and [p-value<0.0001] for harvested area. The interpretation

of the estimated coefficients for the two variables in this subsets is similar to that of the previous

subset because their magnitudes are almost equal.

All values of tolerance are greater than 0.10 and all values of VIF are less than 10 (Table C.5

in Appendix C). This is an indication that there are no collinear relationships among the predictor

variables in the model. On the contrary, the highest condition index of 15.56 associated with the

smallest eigenvalue of 0.01 shows that there is one near linear dependency among the predictor

variables (Table C.6 in Appendix C). The identified near dependency involves all the three vari-

ables in the model. The involvement of the variables is indicated by high variance-decomposition

proportions of their regression coefficients, which are associated with the highest condition index of

15.56. The proportions are 0.84, 0.50 and 0.67 for time, sorghum production at time t− 1 and har-

vested area, respectively. These results establish that condition index and variance-decomposition

proportion are superior to both tolerance and VIF, as collinear diagnostics, since they are able to
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detect the presence of a collinear relationship where tolerance and VIF failed to do so. In addition,

condition index and variance-decomposition proportion manage to point to more than two variables

that are involved in a collinear relationship, which is not the case with tolerance and VIF.

Case deletion diagnostics in Table D.4 of Appendix D show that the pattern of influence of

the 1986/1987 observation on different quantities of the fitted model in the period 1973/1974

to 2006/2007 is the same as that in the period 1976/1977 to 2006/2007. The comparison of results

from fitting the regression model with and without the observation in Table D.5 of Appendix D

show that, like in 1976/1977-2006/2007 data, the deletion of the extreme case improves the effi-

ciency of the model in predicting sorghum production. The results show that the observation is

considered influential in both periods. These suggest that the period under which the data were

observed and position of the extreme observation in the data set do not make a difference in terms

of its influence on different quantities of the fitted model.

In the case of the 1973/1974 to 1997/1998 sorghum data, sorghum production was regressed on

time, harvested area, area affected by crop failure and price of sorghum per tonne. The model was

fitted when the twenty fourth observation identified as a suspected extreme case was included and

when it was deleted. Results are given in Tables C.7 and C.8 in Appendix C. According to the

results of the F test, at least one of the predictor variables had a significant linear relationship

with sorghum production in both cases. The regression model explains 68% of the variability in

sorghum production when all observations are used in fitting the model. The p-values show that

there is evidence that area harvested to sorghum and area under crop failure had a significant effect

on sorghum production. The parameter estimates of the two variables show that an increase of

harvested area by 1 hectare increased the mean sorghum production by 0.50 of a tonne, while the

increase of area under crop failure by 1 hectare reduced the mean production by 1.77 tonnes, when

the rest of the variables in the model are held constant (Table C.7).

The values of tolerance are greater than 0.10 and the values of VIF are smaller than 10, indicating

the absence of collinear relationships among the predictor variables in the model (Table C.7). This

is inline with the highest condition index of 13.67 that corresponds to the smallest eigenvalue of

0.02, which is associated with only one high variance-decomposition proportion of the regression co-

efficient of 0.61 for harvested area (Table C.8). When there is only one high variance-decomposition

proportion associated with the highest condition index, there is no collinearity because the variance

of two regression coefficients should be affected to indicate the presence of collinearity in the data

set (Belsley, 1991).

It is interesting to note a peculiar finding from the results of this subset of data that the high-

est condition index of 13.67 failed to identify the presence of collinear relationships, while the

second highest condition index of 12.33 corresponding to the second smallest eigenvalue of 0.03
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shows the presence of one such relationship. This condition index is associated with two high

variance-decomposition proportions of the regression coefficients for time and price of sorghum,

and hence the existence of a near linear dependency. This finding deviates from the normal pattern

of condition indices and variance proportions that show the presence of collinear relationships in the

set of data. Normally the highest condition index should be associated with high variance propor-

tions of coefficients of two or more variables to indicate the presence of collinear relationships. The

identified linear dependency confirms the strong linear relationship of the two variables observed

from Figure A.3 and Table B.3 in Appendices A and B. The peculiar pattern shown by condition

index and variance proportion is an empirical finding that needs to be investigated further in the

future research to establish the statistical theory behind it.

The absolute values of ti, 1.24, and hii, 0.65, suggest that the twenty fourth observation iden-

tified as a suspected extreme case is not an outlier but it is a high leverage point (Table D.6).

This observation is extreme with respect to one of the predictor variable. The absolute values of

DFFITS, COVRATIO and DFBETAS for time and sorghum price are greater than their respective

cutoff points. This suggests that the deletion of the observation has an influence on the twenty

fourth predicted value, precision of the regression coefficients, and two estimated coefficients of

time and price of sorghum, and thus it is considered influential. The results from fitting the model

when the observation was included are almost similar to the results from fitting the model without

the observation (Table D.7). Though the deletion of the twenty fourth observation affect some

quantities of the fitted model, it does not affect the overall efficiency of the model in predicting

sorghum production for the years 1973/1974 to 1997/1998 since the change in R2 is not that much.

The top and bottom left plots in Figure E.3 for the 1973/1974 to 2006/2007 sorghum data suggest

that the assumption of constant variance is violated since the residuals are increasing with the

values of the predicted values. The normal QQ plot on the top right shows that plotted points

are almost on a straight line with points on the right end being slightly below the line. This is an

indication of a symmetric distribution but with a rather heavier tail than that of the normal distri-

bution. The last plot on the bottom right shows that the fourteenth observation, which stands out

in the first three plots, is an extreme but not influential. In the case of the 1973/1974 to 1998/1999

sorghum data, the top left plot in Figure E.4 shows residuals that are randomly scattered. The

random pattern shows that the the assumption of constant variance of error terms holds. The

normal QQ plot shows a symmetric distribution but with a rather heavier tails than that of the

normal distribution. The bottom right plot shows that though the twenty fourth observation does

not appear outstanding in any of the first three plots, it is an influential high leverage point because

it appears inside the lower Cook’s distance contour.
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4.4 Regression Model of National Wheat Data

Linear regression models were fitted for all the three subsets of the national wheat data, as it was

the case with the national maize and sorghum data. The models were fitted with and without the

observations identified as suspected extreme observations. The regression model with a first-order

autoregressive process where wheat production at time t was regressed on four predictor variables

was fitted for the three subsets of 1973/1974 to 2001/2002, 1973/1974 to 2006/2007 and 1976/1977

to 2006/2007 data. Three of the predictor variables namely, time in years, production of wheat at

time t − 1, and area harvested appear in the models fitted to each of three subsets of data. The

fourth variable varies from one subset to another, where it is price of wheat in the 1973/1974 to

2001/2002 data, the amount of rainfall in the 1973/1974 to 2006/2007 data, and population size in

the 1976/1977 to 2006/2007 data.

Table 4.10: Parameter Estimates for 1973 - 2002 Wheat Data Using All Variables

Response Variable: wheat production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -2862.02 11583.00 -0.25 0.8069 . 0

Time 1 129.86 798.64 0.16 0.8722 0.09 10.51

Production-t 1 0.46 0.17 2.67 0.0132 0.64 1.55

Harvested Area 1 0.53 0.23 2.34 0.0278 0.41 2.45

Price/Ton 1 -0.55 16.51 -0.03 0.9737 0.12 8.31

The 1998/1999 observation that occupies the 26th and 23rd positions in the three subsets of wheat

data was identified as a suspected extreme case in all the subsets. When the model was fitted to

the data including the suspected extreme case, the results of the F test show that at least one of

the predictor variable in the model have a significant linear relationship with wheat production, in

all the subsets. The results from fitting the model to each of the subsets are almost similar (Table

4.10, and Tables C.9 and C.11 of Appendix C). They are the same in the sense that only two vari-

ables, wheat production at time t− 1 and harvested area, appear to have had a linear relationship

with wheat production at time t, in all the subsets of data. This shows that variables that are

additional to each of the two subsets of wheat data, which are price of wheat in the 1973/1974 to

2001/2002 data, and population size in the 1976/1977 to 2006/2007 data, do not add any value

in explaining the mean response of production of wheat, because they are not linearly related to

production wheat.

The size of the parameter estimates of the wheat production at time t − 1 and harvested area,

differs slightly in all subsets of data and thus the interpretation of the estimates is similar. The

estimate of the autoregressive coefficient for wheat production in the immediate past year is positive

and is in the interval [0.45, 0.55] for all subsets. This is an indication that the serial correlation
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between production of wheat at time t and production of wheat at time t−1 does not differ much in

the three periods, 1973/1974 to 2001/2002, 1973/1974 to 2006/2007, and 1976/1977 to 2006/2007.

The positive sign of the autoregressive coefficient shows that the low or high production of wheat

in the past immediate year was followed by a similarly low or high production of wheat in the

following year, for all the periods under investigation, when other variables are held constant. The

estimated coefficient for harvested area is also positive and is within the interval [0.51, 0.80], which

shows that an increase in area harvested to wheat increased wheat production by at least a half of

a kilogram for all the three periods, when other variables are held constant.

Table 4.11: Collinear Diagnostics for 1973 - 2002 Wheat Data

Number Eigenvalue Condition
Proportions of Variance

Index Time Production-t Harvested Area Price/Ton

1 4.14 1.00 0.00109 0.00775 0.00342 0.00175

2 0.69 2.46 0.00785 0.05406 0.02682 0.01625

3 0.12 5.87 0.00048 0.81702 0.15097 0.01279

4 0.04 10.66 0.03259 0.06046 0.56410 0.27994

5 0.01 18.63 0.95800 0.06071 0.25469 0.68927

The tolerance of 0.09 and the VIF of 10.51 associated with the variable, time, is a sign of the

presence of near linear dependencies in the 1973/1974 to 2001/2002 wheat data (Table 4.10). The

highest condition index of 18.63 associated with the eigenvalue of 0.01 reveals that there is one

near linear dependency in the data (Table 4.11). The identified collinearity involves time and price

of wheat since their regression coefficients have high variance-decomposition proportions of 0.96

for time and 0.69 for price, which are associated with the highest condition index of 18.63. This

finding confirms the strong linear relationship of the two variables observed from their scatter plot

in Figure 2.5 and high correlation coefficient of 0.93 in Table 2.7.

The values of tolerance and VIF calculated from the 1973/1974 to 2006/2007 wheat data are

greater than 0.10 and less than 10, respectively (Table C.9), indicating that there are no near

linear dependencies in this subset of wheat data. On the other hand, the condition index and

variance-decomposition proportions of coefficients give contradicting results that show the pres-

ence of one collinear relationship (Table C.10). The identified collinear relationship involves time

and area harvested because they have high variance-decomposition proportions of 0.82 and 0.71,

respectively. These proportions are associated with the second highest condition index of 12.55. It

is worth noting the peculiar finding similar to that of the 1973/1974 to 1997/1998 sorghum data

that high variance-decomposition proportions of coefficients of two variables are associated with

the second highest condition index of 12.55, instead of the highest condition index of 18.13.
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In the case of 1976/1977 to 2006/2007, the tolerance of 0.01 for each of time and population

size indicates that almost all the variability in the two variables is explained by other predictor

variables in the model (Table C.11 in Appendix C). According to the values of VIF, the variance

of estimated regression coefficients for time and population size are inflated by 214.41 and 209.28,

respectively, due to collinearity. In addition, the highest condition index of 192.58 shows that there

is one collinear relationship in the 1976/1977 to 2006/2007 sorghum data (Table C.12 in Appendix

C). This relationship involves time and population size since the variance-decomposition propor-

tions of their respective regression coefficients are high and correspond to the highest condition

index. The proportions of the variances that are affected by collinearity are 0.99 for time and 0.99

for population size. A very large value of condition index is the sign of severe collinearity between

the two variables. The severe collinearity could have concealed the effect of population size on

wheat production. This is because though the correlation coefficient between the two variables in

Table B.6 of Appendix B, show a negative linear relationship, population size appear to have not

been significant in affecting wheat production in the years, 1976/1977 to 2006/2007.

Table 4.12: Case Deletion Diagnostic for 1973 - 2002 Wheat Data

Diagnostic 26th Case Cutoff
Measure Diagnostics Point

RStudent ti 4.32 2

leverage hii 0.13 2p/n = 0.28

DFFITS 1.69 2
p

p/n = 0.74

Cook’s Distance Di 0.33 F(0.5,p,n−p) = 1.16

COVRATIO 0.07 1± 3p/n = 1± 0.41

DFBETAS 2/
√

n = 0.37

Time -0.23 0.37

Production-t -0.58 0.37

Harvested Area 0.39 0.37

Price/Ton 0.75 0.37

The values of externally studentized residual in the interval [4.32, 4.92], for the three subsets of

wheat data, are larger than the cutoff point of 2, while the values of leverage in the interval [0.07,

0.13] are smaller than the cutoff points in the interval [0.24, 0.28] (Table 4.12, and Tables D.8 and

D.10 in Appendix D). These values suggest that the 1998/1999 observation is an outlier in all the

subsets, but not a high leverage point. Thus the observation is extreme in terms of the response

variable, wheat production, but it is not extreme in terms of any of the predictor variables in the

model. Since the DFFITS value that corresponds to the observation is greater than the given cutoff

point in all the subsets, the observation has an influence on the ith predicted value that correspond

to it in each subset of data. The absolute values of DFBETAS show that the observation has in-

fluence on parameter estimates of production of wheat in the immediate past year, area harvested,
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and price of wheat, in the 1973/1974 to 2001/2002 wheat data (Table 4.12). In the case of the

1973/1974 to 2006/2007 data, the observation has an influence on parameter estimates of time,

the amount of rainfall and area harvested (Table D.8). For the 1976/1977 to 2006/2007 data, the

observation has an influence on parameter estimates of time and population size (Table D.10).

Table 4.13: Influence of the 26th Case on the Fitted Model for 1973 - 2002 Wheat Data

Predictor
Full Data Set R2 = 0.59 26th Case Deleted R2 = 0.75

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -2862.02 11583.00 -0.25 0.8069.00 -1232.21 8791.85 -0.14 0.8898

Time 129.86 798.64 0.16 0.8722 271.40 606.53 0.45 0.6587

Production-t 0.46 0.17 2.67 0.0132 0.54 0.13 4.07 0.0005

Harvested Area 0.53 0.23 2.34 0.0278 0.47 0.17 2.69 0.0132

Price/Ton -0.55 16.51 -0.03 0.9737 -10.00 12.71 -0.79 0.4394

The comparison of the results from fitting the model with and without the outlying observation is

presented in Table 4.13, and Tables D.9 and D.11 in Appendix D. When the case is deleted, the

proportion of the variability in production of wheat attributed to the predictor variables in the

model changes from 59% to 75% in the 1973/1974 to 2001/2002 data, from 64% to 78% in the

1973/1974 to 2006/2007 data, and from 57% to 75% in the 1976/1977 to 2006/2007 data. The

substantial changes in the proportions show that the exclusion of the observation has an effect on

the goodness-of-fit of the model used to predict wheat production in all subsets of wheat data.

On the other hand, the significance of individual variables does not change when the 1998/1999

observation is excluded, for all the subsets. The two variables, wheat production in the past imme-

diate year and area harvested remain as the only variables with a significant linear relationship with

wheat production. However, the declining p-values in the 1973/1974 to 2001/2002 and 1973/1974

to 2006/2007 wheat data show that the strength of evidence that area harvested had a significant

linear relationship with wheat production increased when the outlying case was deleted. In addi-

tion, the magnitude of parameter estimates and values of their standard errors changed when the

model was fitted without the observation. The influence of the observation on different quantities

of the fitted model is similar in all the three periods under investigations.

The top and bottom left plots in Figure 4.3 and Figures E.5 and E.6 of Appendix E show a pattern

where residuals increase with the values of the predicted values up to some point of the distribution

of data, and then they started to decrease. This is an indication that the variance of error terms is

not constant up a certain point of the distribution, for all subsets of wheat data. The plot on the

top right of Figure 4.3 and Figure E.5 show that plotted points lie on a straight line with points on

the right end being above the line, and one outstanding point. This is an indication of a symmetric

distribution but with rather longer and heavier tails than the normal distribution. On the other
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Figure 4.3: Plots of Residuals for 1973 - 2002 Wheat Data
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hand, the plot on the top right of Figure E.6 show that almost all the points, except the twenty

third and second observations, fall on a straight line. The plots for all the three subsets show

evidence of the presence of two outliers in the subsets. The last plot on the bottom right of Figure

4.3 highlights the twenty sixth point, that stand out in the first three plots, as an extreme but

not influential outlier. This is because the point is close to the upper Cook’s distance contour, but

not inside it. Thus the 1998/1999 observation is identified as an outlier, which is not considered

influential in all subsets of wheat data.

4.5 Box-Cox Transformation of National Data

The violation of the assumption of constant variance of error terms and the problem of distribu-

tions of error terms that are symmetric but with rather longer and heavier tails than the normal

distribution were corrected through the transformation of the response variable. These problems

were observed from the values of skewness and kurtosis, box plots and diagnostics plots in Chapter

2 and preceding sections of this chapter respectively. In particular, the problems were identified

for the 1976/1977 to 2006/2007 maize data, 1973/1974 to 2006/2007 sorghum data and all subsets

of wheat data. The TRANSREG procedure was used to perform a Box-Cox transformation of the

response variable. The procedure gives an option of specifying a list of transformation parameters

and chooses the optimal value of the parameter.

Table 4.14: Values of Skewness and Kurtosis for National Data

Original Data Transformed Data

Cereal Subset of Data Skewness Kurtosis Skewness Kurtosis

Maize 1976/1977 to 2006/2007 1.47 3.85 0.19 0.41

Sorghum 1973/1974 to 2006/2007 0.70 -0.04 -0.52 -0.35

Wheat 1973/1974 to 2006/2007 0.99 -0.01 0.43 -0.43

1973/1974 to 2001/2002 0.89 -0.31 0.06 -0.95

1976/1977 to 2006/2007 1.39 1.59 -0.69 2.21

The values of skewness and kurtosis for the original data and the transformed data are given in

Table 4.14. In the case of maize data for the period 1976/1977 to 2006/2007, both values decreased

after the transformation, implying that the transformation of maize production reduced the degree

of the deviation from the normal distribution. The absolute value of skewness for sorghum data of

1973/1974 to 2006/2007 decreased a bid from 0.70 to 0.52 but with a change of sign from positive

to negative, while the absolute value of kurtosis increased from 0.04 to 0.35 with the sign remaining

negative. This implies that when sorghum availability is transformed it becomes negatively skewed

but with a flatter curve than the normal curve. In the case of wheat data, the transformation
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of wheat production caused a decrease in the values of skewness for all the three subsets of data

with the 1973/1974 to 2001/2002 data having the biggest decrease. This decrease shows that the

transformation corrected skewness of the distribution of data for all the subsets. The values of

kurtosis changed signs for all the three subsets and their absolute values increased.

The Box-Cox family of power transformation was applied to identify the appropriate power trans-

formation used to transform the response variable in each subset of data, so that the applicability

and usefulness of linear regression models in modelling cereals availability at the national level is

increased.

Figure 4.4: Log Likelihood Plot for 1976 - 2007 Maize Data

In the case of the 1976/1977 to 2006/2007 maize data, the estimated optimum value of the trans-

formation parameter, λ obtained by the maximum likelihood method, is -0.22. The plot of the log

likelihood against values of λ shows an approximate 95% confidence interval for λ as [−0.87, 0.42]

(Figure 4.4). The confidence interval contains the standard power transformation value of zero,

which is used as the nearest convenient value of λ̂. This value suggests a natural logarithm trans-

formation for the response variable, maize production. The results obtained from fitting the model

using the transformed maize production are not shown since they do not differ much with the results

obtained using the untransformed maize production in Table C.3 of Appendix C. Two variables,

the amount of rainfall and area harvested remain significant in affecting maize production. The use

of the transformed response variable improved the fit of the model since the value of R2 increased

from 0.43 to 0.51.

The box plot in Figure 4.5 confirms the observation from the values of skewness and kurtosis for the
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transformed maize production of 1976/1977 to 2006/2007 data that the suggested transformation

corrected the deviation from assumption of normality. This is portrayed by the line in the box

being equidistant to the lower and upper edges of the box, rather than being towards the lower

edge as it was the case in the box plot for the original maize production in Figure M.2 of Appendix

M. Further, the extreme observation shown in the box plot for original data does not appear in the

box plot of the transformed data.

The top and bottom left plots in Figure 4.6 do not show any specific pattern of the residuals,

the residuals are scattered randomly. This is an indication that the heteroscedasticity observed in

Figure E.2 of Appendix E was corrected by using the suggested natural logarithm transformation

to transform maize production. The points on the lower end of the QQ plot in Figure E.2, which

were above the straight line, are now on the line in Figure 4.6. However, the points on the upper

end of the QQ plot have now moved and they are below the straight line. This shows that the

distribution of the error term with longer and heavier tails, was corrected partly by the suggested

transformation of the response variable.

The estimated optimum value of λ̂ for the 1973/1974 to 2006/2007 sorghum data is 0.34. Figure 4.7

shows an approximate 95% confidence interval of [−0.06, 0.74]. Like in the case of the 1976/1977

to 2006/2007 maize data, the confidence interval contains the value of the standard power trans-

formation as zero. This value is used as the nearest convenient value of λ̂ and it suggests a natural

logarithm transformation for the response variable, sorghum production.

Figure 4.5: Box Plot of the Transformed 1976 - 2007 Maize Data
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Figure 4.6: Plot of Residuals for Transformed 1976 - 2007 Maize Data

Figure 4.7: Log Likelihood Plot for 1973 - 2007 Sorghum Data
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Figure 4.8: Box Plot of the Transformed 1973 - 2007 Sorghum Data

Similarly, the box plot of the transformed sorghum data for the period 1973/1974 to 2006/2007 in

Figure 4.8 shows that transforming sorghum production corrected its distribution to being approx-

imately normally distributed. This is shown by the line inside the box being almost in the middle

of the box, rather than being towards the lower edge of the box as it was the case in Figure M.3 of

Appendix M for the original sorghum production.

The results from using the natural logarithm of sorghum production as the response variable in

fitting the model are the same as the results obtained using the untransformed sorghum production

in Table C.5 of Appendix C. Two variables, production of sorghum at time t-1 and area harvested,

remain significant and the strength of evidence for their significance remains the same. The value of

the coefficient of determination increased slightly from 0.66 to 0.69, indicating a small improvement

in the fit of the model. The violation of the assumption of constant variance observed from Figure

E.3 of Appendix E was corrected because the residuals on the top and bottom left plots in Figure

4.9 do not show any specific pattern, they are scattered randomly. However, the QQ plot on the

top right shows that the longer and heavier tails have been corrected but partially.

The estimated optimum value of the transformation parameter for the 1973/1974 to 2006/2007

wheat data is 0.42. Figure 4.10 shows an approximate 95% confidence interval for λ as [0.1, 0.79].

The interval contains the standard power transformation value of 0.5, suggesting a square root

transformation of the response variable, wheat production. The results from fitting the model
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Figure 4.9: Plot of Residuals for Transformed 1973 - 2007 Sorghum Data

Figure 4.10: Log Likelihood Plot for 1973 - 2007 Wheat Data
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using the square root of wheat production are the same as the results obtained from using wheat

production in its original form, given in Table C.9 of Appendix C. Two variables, production of

wheat at time t-1 and area harvested remain significant and the strength of evidence for their

significance remains the same. The value of the coefficient of determination decreased slightly from

0.64 to 0.63. This is an indication that the use of the transformed wheat production as the response

variable does not improve the fit of the model.

Figure 4.11: Box Plot of the Transformed 1973 - 2007 Wheat Data

In the case of wheat data for 1973/1974 to 2006/2007, the box plot in Figure 4.11 shows that

though the line in the middle of the box shifted upwards a bid after the transformation of wheat

production, the distribution of the variable remains skewed to the right. The box plot of the trans-

formed wheat production for the 1973/1974 to 2001/2002 data in Figure M.7 of Appendix M shows

that the suggested transformation did not correct the deviation of the distribution of the variable

from the normal distribution. Probably this is due to the fact that though the value of skewness

decreased from 0.89 to 0.06, the absolute value of kurtosis increased from 0.31 to 0.95. The box plot

for the 1976/1977 to 2006/2007 wheat data in Figure M.8 of Appendix M shows the same pattern

as the one in the previous subset of wheat data in the sense that the suggested transformation did

not correct the deviation from the normal distribution.

In the case of 1973/1974 to 2001/2002 and 1976/1977 to 2006/2007 wheat data, the estimated

optimum values of the transformation parameter are 0.23 and 0.28, respectively. Figure F.1 in

Appendix F for the 1973/1974 to 2001/2002 data and Figure F.2 in Appendix F for the 1976/1977
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Figure 4.12: Plot of Residuals for Transformed 1973 - 2007 Wheat Data
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to 2006/2007 data show the approximate 95% confidence intervals for λ as [−0.34, 0.79] and [-0.04,

0.64], respectively. Both intervals contain the standard power transformation value of zero, sug-

gesting a natural logarithm transformation of wheat production. Like in the case of 1973/1974 to

2006/2007 wheat data, the results from fitting the model to the transformed data in both subsets

remain the same as the ones obtained from using wheat production in its original form in Table 4.10

and Table C.11 of Appendix C. Two variables, production of wheat at time t-1 and area harvested

remain significant. The strength of evidence for the significance of production of wheat at time

t-1 remains the same in both subset of data. However, in the 1973/1974 to 2001/2002 data, the

strength of evidence for harvested area has decreased. The value of the coefficient of determination

decreased in both cases, showing that the fit of the model gets worse when the transformed Wheat

production is used as the response variable.

The top left plot in Figure 4.12 and Figure G.2 in Appendix G of diagnostics plots from fit-

ting the model using the transformed wheat production, show that a pattern of residuals is not

very different from that of residuals from fitting the model using untransformed wheat production.

This shows that using the square root transformation of wheat production for the 1973/1974 to

2006/2007 data and natural logarithm transformation of wheat production for the 1973/1974 to

2001/2002 data does not correct the observed heteroscedasticity completely. On the other hand,

almost all points on the QQ plots of the two subsets of wheat data fall on the straight line, except

the outlying observation of 1998/1999 and few observations on the left and upper ends. These show

that the transformation have corrected longer and heavier tails of the distributions for the two sub-

sets, but partially. In the case of 1976/1977 to 2006/2007 data, the top left plot in Figure G.3 of

Appendix G shows residuals that are randomly scattered. This shows that the violation of non-

constant variance was corrected by using the natural logarithm transformation of wheat production.

Though there are a number of cases where the Box-Cox transformation failed to correct the viola-

tion of the assumptions of constant variance of the error terms and normality, quantile regression

could not be applied to the national data as a robust alternative to the leas squares procedure

because these data have a limitation of a relatively small sample size. (Cade, 2003) noted that

quantile regression does not give reliable confidence intervals when the sample size is small.
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4.6 Application of Ridge Regression in National Data

Ridge regression was applied to control inflation and instability of parameter estimates caused by

collinearity or near linear dependencies among columns of the data matrix X. The dependencies

were identified from the results of collinearity diagnostics obtained when fitting the regression model

to the national maize, sorghum and wheat data. We used ridge trace to select the biasing factor

δ for which the ridge regression estimate β̂
∗
R is closer to the true underlying regression parameters

β, than the least square estimate β̂. This is the estimate of β with a smaller mean square error

(MSE) than the one of β̂. Ridge traces were used to show the sensitivity of parameter estimates to

nonorthogonality of predictor variables in the fitted regression model for maize, sorghum and wheat

data. These are plots where parameter estimates β̂∗jR for different values of δ are plotted against

values of δ in the interval [0, 1]. The REG procedure was used to perform the ridge regression

analysis because it has a RIDGE option that requests a ridge regression analysis and specifies the

values of the biasing factor. Microsoft Excel was used to plot ridge traces using the data generated

from the REG procedure when performing the ridge analysis.

The ordinary least squares estimates are parameter estimates at δ = 0, while the ridge regres-

sion estimates are at values of δ that are greater than zero. Unlike the least squares estimation

procedure with established distributional theory, ridge regression lacks distributional theory (Gunst

and Mason, 1980). The lack of distributional theory does not allow inferences such as t test be-

cause the t statistic rely on the assumption of normality, and in ridge regression the validity of

approximated t statistics is not guaranteed. Thus inferences about ridge parameter estimates were

not made.

The ridge trace for the 1973/1974 to 2001/2002 maize data in Figure 4.13 shows that, in general,

ordinary least squares estimates at δ = 0 are unstable and overestimated in absolute values. The

small increase from δ = 0 to δ = 0.05 causes a rapid decline in absolute values of estimated regres-

sion coefficients for both time and price of maize. The parameter estimate for time has a negative

value at δ = 0, which moves rapidly to zero and further to positive values with a small increase

in the biasing factor. The parameter estimate for price of maize has the second highest positive

value at δ = 0, but it moves quickly towards zero when δ increases. The rapid movement indicates

the instability involved in the parameter estimates, and severity of collinearity that exist between

time and price of maize. Gunst and Mason (1980) and Schabenberger and Pierce (2002) noted that

parameter estimates for variables that are involved in a near linear dependency change rapidly as

the biasing factor increases from zero, and signs for some estimates may change. The more the

ridge trace moves rapidly, the higher the degree of collinearity among the variables. The estimates

stabilize at the values of δ in the interval [0.10, 0.40], since it is within this interval where the

estimates begin to show small change as the biasing factor increases. Thus ridge estimates at this

interval are likely to be closer to the true parameter β and more stable. The value of δ within the
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interval that gives a biased but more stable estimate of β is 0.25.

Table 4.15: Parameter Estimates for 1973 - 2002 Maize Data at δ = 0 and δ = 0.25

Variable
δ = 0 δ = 0.25

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time -1290.13 3378.31 16.23 564.4 547.26 0.41

Rainfall 82.11 61.85 1.33 80.81 44.79 0.67

Harvested area 0.86 0.30 1.58 0.67 0.21 0.72

PriceTon 96.85 115.04 15.40 34.29 19.58 0.43

Table 4.15 shows parameter estimates, their standard errors and variance inflation factors (VIF)

for both ordinary least squares estimation procedure at δ = 0 and ridge regression at δ = 0.25,

for the 1973/1974 to 2001/2002 maize data. Ordinary least squares estimates have large absolute

values for all variables. They also have large standard errors, which decline rapidly as the value

of the biasing factor increases to 0.25. Variance inflation factors associated with time and price of

maize declined from 16.23 and 15.40 to 0.41 and 0.43, respectively, when the value of the biasing

factor increases from zero to 0.25. The reduction in the variance inflation factors to values that are

less than 10 is an indication of the extent to which the use of ridge regression remedies collinearity

problems. Ridge regression remedies collinearity by reducing the quantities by which the variances

of the estimated regression coefficients for time and price are inflated due to collinearity.
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Figure 4.13: Ridge Trace for 1973 - 2002 Maize Data
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Figure 4.14: Ridge Trace for 1976 - 2007 Sorghum Data

Similarly, least squares estimates for the 1976/1977 to 2006/2007 sorghum data are overestimated

and unstable (Figure 4.14). The increase of the ridge factor from 0 to 0.05 yields a rapid decline

of absolute values of the estimated coefficients for time and population size. The least squares

estimate for population size has the largest positive value. However an increment in the biasing

factor from 0 to 0.05 pushes it to zero and further to negative values as the factor increases further.

The estimate of time at δ = 0 has a negative value, which changes rapidly towards zero as the

biasing factor increases. The estimates for the two variables are the most unstable, indicating that

they are strongly correlated. The parameter estimates stabilize at values of δ in the interval [0.05,

0.30]. A biased but more stable estimate β̂
∗
R is at δ = 0.15.

Table 4.16: Parameter Estimates for 1976 - 2007 Sorghum Data at δ = 0 and δ = 0.15

Variable
δ = 0 δ = 0.15

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time -3877.89 3875.18 225.4 -307.33 152.55 0.39

Production-t 0.28 0.17 2.08 0.24 0.12 1.02

Population 0.09 0.09 217.84 -0.005 0.004 0.42

Harvested area 0.65 0.16 1.62 0.52 0.12 0.95

The least squares estimates for the 1976/1977 to 2006/2007 sorghum data are large in absolute
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values, their standard errors and VIF are large when they are compared to that of ridge estimates

at δ = 0.15 (Table 4.16). The use of ridge estimation seem to be remedying the effects of collinearity

since it reduces substantially the quantity by which the variance of each of the coefficients for time

and population size are inflated. The VIF that corresponds with time is reduced from 225.4 to

0.39, and the VIF that corresponds with population size is reduced from 217.84 to 0.42.
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Figure 4.15: Ridge Trace for 1973 - 2002 Wheat Data

Estimated regression coefficients for time, production of sorghum in the immediate past year and

area harvested to sorghum, for the 1973/1974 to 2006/2007 sorghum data, show the same pattern

of movement as δ increases from zero (Figure H.1). In addition, their signs do not change as the

biasing factor increases. The gradual movement of the estimates suggests the presence of moderate

collinearity problems that involve the three variables. The ridge trace confirms the results from

the condition index of 15.56 and variance-decomposition proportions in Table C.6 in Appendix C,

which suggested that the three variables are involved in a moderate collinear relationship.

Estimated coefficient for time increases slightly in absolute value as the biasing factor increases

from zero, whereas the estimates for production of sorghum in the past immediate year and area

harvested decline slightly (Table I.1 in Appendix I). The standard errors of the estimates decline

as δ increases. The estimates stabilize at values of the biasing factor in the interval [0.05, 0.20].

The value of the biasing factor that gives an unbiased but stable estimate of β∗ is 0.05.
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The ridge trace of 1973/1974 to 1997/1998 sorghum data in Figure H.2 in Appendix H shows

that an increase in the biasing factor from zero results in an increase and a decrease in absolute

value of parameter estimates for price of sorghum and time, respectively. Parameter Estimates for

area harvested and area under crop failure for sorghum are stable. These show that time and price

are collinear, while area harvested and area under crop failure are not involved in any near linear

dependency in the data set. The movement in the estimates of time and price is not as rapid as

that of the same variables in maize data in the 1973/1974 to 2001/2002 period, which indicates

that collinear relationship that exists between time and price for sorghum data is moderate. The

least squares estimates of time and price are large in absolute values, their standard errors are

large and decline as δ increases (Table I.2 in Appendix I). The unstable estimates become stable

at values of δ that range from 0.05 to 0.25. A stable but bias estimated coefficient β̂
∗
R is at δ = 0.20.

In the case of 1973/1974 to 2001/2002 wheat data, the least squares estimates are slightly larger in

absolute values than the ridge regression estimates (Figure 4.15). The estimates change gradually

with the increase in the biasing factor. The estimated coefficient for time has a small positive value

at δ = 0, which is driven to zero and further slightly below zero as δ increases. The estimated

coefficient for price of wheat has a small negative value at δ = 0, which is driven to zero and further

slightly below zero as δ increases. The stabilization of parameter estimates occurs at values of δ

that range between 0.15 and 0.35. A more stable estimate of β∗ is at δ = 0.25.

Table 4.17: Parameter Estimates for 1973 - 2002 Wheat Data at δ = 0 and δ = 0.25

Variable
δ = 0 δ = 0.25

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time 129.86 798.64 10.51 -93.71 182.00 0.52

Production-t 0.46 0.17 1.55 0.39 0.12 0.71

Harvested area 0.53 0.23 2.45 0.39 0.13 0.79

Price/Ton -0.55 16.51 8.31 0.03 4.42 0.57

The least squares estimates have relatively bigger absolute values, standard errors and VIF than

ridge regression estimates, specifically for the variable, time (Table 4.17). Like in maize data, the

variables that are affected by collinearity are time and price. The gradual movement of the ridge

trace and small decline in absolute values of estimates is an indication that the degree of collinearity

between the two variables is not as severe as it is for the 1973/1974 to 2001/2002 maize data.

Like for sorghum data set in the period 1973/1974 to 2006/2007, estimated regression coefficients

for all variables in the ridge trace of wheat data set for the same period change gradually as the

biasing factor increases from zero (Figure H.3 in Appendix H). The estimate for time moves from a
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positive value at δ = 0 to negative values as δ increases. The stabilization of parameter estimates

occurs at values of the biasing factor in the interval [0.10, 0.35]. Table I.3 shows a change in the

parameter estimate of time from 36.33 at δ = 0 to -114.61 at δ = 0.15. Similarly its standard error

changes with big magnitude from 298.94 to 196.69. The sizeable changes in the parameter estimate

and its standard error is a sign of severe collinearity that has been remedied by ridge regression.

The pattern of parameter estimates of the 1976/1977 to 2006/2007 wheat data in Figure H.4

in Appendix H is similar to that of sorghum data in the same period in Figure 4.14. The increase

of the ridge factor from 0 to 0.05 results with a rapid decline of absolute values of the estimated

coefficients for time and population size. The decline of estimates as δ increases shows that the

two variables are highly correlated. The estimates stabilize at values of δ in the interval [0.05,

0.45]. The value of the biasing factor that provides a biased but more stable estimate of β∗ is 0.25.

Parameter estimates and their standard errors decline with an increase in the biasing factor (Table

I.4 in Appendix I).

4.7 Summary

Fitting the linear regression model to the national maize data show that area harvested was the

only factor that affected maize production during the two periods, 1973/1974 to 2001/2002 and

1973/1974 to 2006/2007. However, when the third observation of 1975/1976 identified as an influ-

ential observation was left out from the 1973/1974 to 2001/2002 data, the results show that area

harvested did not have an effect on maize production, instead the amount of rainfall had a positive

effect. During the period 1976/1977 to 2006/2007, both the amount of rainfall and harvested area

affected maize production positively, but with the amount of rainfall having a stronger evidence. In

the case of sorghum data, area harvested had a positive effect on sorghum production, and produc-

tion of sorghum in the past immediate year had a positive association with sorghum production in

the current year, for the two periods, 1976/1977 to 2006/2007 and 1973/1974 to 2001/2002. Con-

cerning the years, 1973/1974 to 1997/1998, area harvested affected sorghum production positively,

while area under crop failure affected sorghum production negatively. With regard to wheat data,

the results from all the three subsets are almost similar in the sense that harvested area and wheat

production in the past immediate year are the only variables with a relationship with sorghum

production in the current year. The relationship is positive for both variables in all the subsets of

data. Though the additional variables in the subsets of data on the three cereals did not add value

in predicting production of cereals, some subsets of sorghum and wheat data showed interesting

patterns of condition index and variance proportions in detecting collinear diagnostics.

The results from collinearity diagnostics indicate that high variance-decomposition proportions

that correspond to one small eigenvalue and the highest condition index pointed to collinear re-
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lationships, and thus confirmed strong collinearity suggested by high correlation coefficients. The

superiority of condition index and variance-decomposition proportion, to both tolerance and vari-

ance inflation factors, as collinear diagnostics was not only shown by them pointing to more than

two variables involved in a collinear relationship. It was also shown by the diagnostics being able to

detect collinear relationships where tolerance and variance inflation factors failed to do so. In the

1973/1974 to 1997/1998 sorghum data and 1973/1974 to 2006/2007 wheat data, condition index

and variance-decomposition proportion showed a peculiar pattern that deviated from the normal

that the highest condition index indicates the presence of collinear relationship. Instead the second

highest condition index pointed to the presence of collinear relationships. The observed peculiar

pattern is an empirical finding that needs to be investigated further in the future research to es-

tablish the statistical theory behind it. Strong collinear relationship between variables decreased

values of the t statistics for variables involved in such relationships. A very large value of condition

index signified severe collinearity that concealed the effect that the involved predictor variables

could have had on the response variable. Ridge estimates at values of the biasing factor selected

by ridge traces have smaller standard errors and variance inflation factors, indicating the extent to

which ridge regression remedied collinearity problems and controlled the instability in parameter

estimates.

Fitting the model without the ith observation identified by case deletion diagnostics as influen-

tial on different quantities of the fitted model showed how quantities such as the goodness-of-fit

measure (R-squared), parameter estimates, their standard errors and values of t statistics were af-

fected by the observation. The plot of standardized residuals against leverage that shows the upper

and lower Cook’s distance contour, highlighted outliers and high leverage points that are influential.

The use of Box-Cox transformation to correct violation of assumptions increased the strength of

evidence for significance of some variables in predicting the response variable, and improved the

goodness of fit of the model in some cases. In the case where the Box-Cox transformation corrected

the violation of assumptions partially or failed to correct it completely, the best option could have

been to use quantile regression as a robust alternative to the OLS procedure. However, it could

not be applied because the national data have a limitation of having a relatively small sample size

for quantile regression to give reliable confidence interval. In the next chapter, the linear regression

models were used to model availability of cereals at the household level. Regression diagnostics

were used to detect problems in the data, which may compromise the quality of the results, and

appropriate remedial measures were used where possible.
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Chapter 5

General Regression Model and

Diagnostics of Household Data

5.1 Introduction

In the previous chapter, we applied linear regression models and diagnostics to model national avail-

ability of cereals. The focuss in this chapter is to apply the general linear model and diagnostics

to model availability of cereals at the household level, in particular maize and sorghum availability.

The models where each of maize availability and sorghum availability was regressed on predictor

variables consisting of continuous, discrete and categorical variables were fitted. Continuous and

discrete predictor variables in the model are household monthly income and household size, respec-

tively. Categorical variables are location of a household, sex, education level and occupation of

the head of a household. Location of a household is divided into four categories depending on the

place of location of households included in the study. The categories are Berea, Mafeteng, Maseru

lowland and Maseru Foothill. Education level is divided into four categories, namely, no formal

education, primary, high school and post high school education. Occupation is divided into five

categories, namely, casual worker, salary earner, subsistence farmer, pensioner and unemployed.

When fitting the model, one category of each categorical variable served as a reference or base

category.

Conclusions made from the analysis of the household data are restricted to the villages from which

households were selected, not the districts where the villages were located. The reason being that

households within locations included in the study were selected at random from villages that were

easily accessible, using systematic sampling where every fifth household was selected and inter-

viewed on the spot. This did not give all households in the districts an equal chance of being

included in the study. Thus households in the study are not a true representative of households in

the districts.
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The model fitted to the household data is the general linear regression model with categorical

predictor variables. The GLM procedure of SAS and command lm() of R were used to fit the

general linear model as well as to perform regression diagnostics. The two statistical softwares give

the same results for the general linear model and influence measures. The diagnostics and box

plots were plotted by the R system of graphics. The type III sum of squares that evaluate the

effect of each variable after all other variables have been accounted for was used for both cases of

household maize availability and sorghum availability. This is the partial sum of squares used when

one predictor variable is added one at time and examining its effect on the response variable given

that all other predictor variables are already in the model. It shows by how much is the residual

sum of squares reduced by adding a particular term to the model that contains all other terms.

In the case of type III sum of squares, there is one degree of freedom sum of squares measur-

ing the contribution of each regression coefficient βi on the regression sum of squares, given that

all the terms not involving βi were already in the model. Estimated coefficients for categories of

categorical predictor variables represent differential effects of the variables on the response variable.

These are differences or contrasts between a given category and the respective reference category

and thus they are interpreted relative to the reference categories. For example, the estimate that

corresponds to the category of Berea, −13.99, is the mean response difference between Berea and

the reference category Mafeteng (Table 5.2).

5.2 Modelling of Maize Availability

The overall F test of the null hypothesis that none of the predictor variables is linearly related to

maize availability for households is significant at 5% level of significant. The significance of the

tests shows that at least one of the predictor variables in the model is linearly related to availability

of maize. The value of the coefficient of determination R2 of 0.30 shows that predictor variables in

the model explain 30% of the variability in maize availability.

Three variables, household size, household monthly income and occupation of the head of a house-

hold, are significant at 5% level of significance, suggesting that maize availability is linearly related

to the three variables (Table 5.1). The linear relation of the three variables with maize availability

means that they had a significant effect on household availability of maize.

The effect of household size and household monthly income was measured by their estimated regres-

sion coefficients of 87.22 and 0.14, respectively (Table 5.2). The coefficients show that an increase

in the size of a household by one member increased the mean maize availability by 87.22 kilograms,

and an increase in household monthly income by one Rand increased the mean maize availability
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Table 5.1: Sources of Variation and Sum of Squares for Maize Household Data

Response Variable: Maize availability to households

Source of Type III
Variation DF Sum of Squares Mean Square F Value Pr > F

Household Size 1 12226241.96 12226241.96 70.13 <.0001

Income 1 1726321.14 1726321.14 9.90 0.0018

Sex 1 3922.92 3922.92 0.02 0.8809

Location 3 349506.14 116502.05 0.67 0.5722

Education 3 432105.60 144035.20 0.83 0.4803

Occupation 4 1886103.40 471525.85 2.70 0.0307

Table 5.2: Regression Parameter Estimates for Maize Availability

Response Variable: Maize availability to households

Standard
Variable Category Estimate Error t value P-value

Intercept 265.20 103.66 2.56 0.01104

Household Size 87.22 10.41 8.37 <.0001

Income 0.14 0.05 3.15 0.00183

Sex ref=Male

Female 8.43 56.22 0.15 0.88087

Location ref=Mafeteng

Berea -13.99 98.15 -0.14 0.88678

Maseru Foothill -61.26 99.59 -0.62 0.53897

Maseru Lowland -88.54 67.09 -1.32 0.18798

Education ref=No educ

High School 29.27 94.96 0.31 0.75817

Primary -53.35 69.11 -0.77 0.44074

Post High School 131.98 156.43 0.84 0.39954

Occupation ref=farmer

Casual Worker -195.97 92.85 -2.11 0.03568

Pensioner 92.74 112.39 0.83 0.40998

Salary Earner -105.42 95.56 -1.10 0.27086

Unemployed -159.55 72.27 -2.21 0.02807

by 140 grams, when the rest of the variables in the model are held constant.

Sex of household head is not significant and this suggests that maize availability for a household was

not affected by whether the household was headed by a male or a female. All categories of location

of a household in Table 5.2 have negative estimated coefficients, indicating that maize availability

for households in Berea, Maseru lowland and Maseru foothills was less than maize availability for

households in Mafeteng, the reference category. However, large p-values is an indication that the

differences are not statistically significant for all categories. Similarly, in the case of education

level, maize availability for households that were headed by people with high school, primary or

post high school education, was not significantly different from maize availability for households
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headed by people with no formal education. The results show that sex of household head, location

of a household and education level of household head did not have a significant effect on how much

maize was available to households.

On the contrary, two categories of occupation of household head, namely, casual workers and

unemployed, are significant at 5% level of significance. This means that maize availability for

households headed by casual workers and unemployed heads was significantly different from that

of households headed by subsistence farmers. However, maize availability for households headed

by pensioners and salary earners was not significantly different from that of households headed

by subsistence farmers. The estimated regression coefficients show that maize available to house-

holds headed by casual workers and unemployed people was less than that of households headed by

subsistence farmers by 195.97 and 159.55 kilograms, respectively. The difference in maize availabil-

ity was higher for households headed by casual workers than for those headed by unemployed people.

An observation that households headed by casual workers and unemployed people were worse

off than households headed by subsistence farmers, in terms of maize availability, is not surprising

because subsistence farming is an occupation devoted to agricultural production for subsistence

including production of food cereals. On the other hand, it could be that households headed by

casual workers and unemployed people did not have enough resources that enabled them to acquire

maize for their households through purchases or food production because their heads were not

employed. In the case of households headed by salary earners the reason for their maize availability

being not significantly different from that of households headed by subsistence farmers may be that

they earned income, which enabled them almost the same access to maize as households headed by

subsistence farmers who engaged in food production. The reason for lack of significant difference

in the category of households headed by pensioners could be that some pensioners engaged in food

production after they retired from their respective jobs and thus their availability of maize was

almost similar to that of subsistence farmers.

We used residual plots in Figure 5.1 to check the assumptions of constant variance and normality of

error terms for the fitted model. The plots on the top and bottom left show a pattern of residuals

that increase as the fitted values get larger. This is a sign of violation of constant variance assump-

tion also referred to as heteroscedasticity. The normal QQ plot on the top right shows that plotted

points lie on a straight line with points on the right end being above the line, and two outstanding

points. This is an indication of a symmetric distribution but with a rather longer and heavier tail

than the normal distribution. The plot also shows evidence of the presence of outliers in the set of

data.

The last plot on the bottom right highlights outliers and high leverage points that are influen-

tial. Points 219 and 281 that stand out in the first three plots with large residuals are considered
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Figure 5.1: Plot of Residuals for Maize Availability
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influential since they appear in the upper Cook’s distance contour in this plot. These observations

represent households 219 and 281 in the sample, with 4800 and 4000 kilograms of maize availabil-

ity. The two amounts are too big when they are compared with maize availability of the rest of

the households in the sample. Thus the two observations are considered influential outliers since

they are extreme with respect to the response variable, maize availability, and appear in the upper

Cook’s distance contour.

Table 5.3: Case Deletion Diagnostic for Maize Availability

Diagnostic 219th Case 281st Case Cutoff
Measure Diagnostics Diagnostics Point

RStudent ti 10.92 8.28 2

Leverage hii 0.08 0.15 2p/n = 0.04

DFFITS 3.26 3.42 2
p

p/n = 0.29

Cook’s Distance Di 0.54 0.67 1

COVRATIO 0.01 0.06 1± 3p/n = 1± 0.06

DFBETAS 2/
√

n = 0.12

Income 2.75 0.14 0.12

Post High School -1.00 1.89 0.12

Pensioner 0.14 1.51 0.12

The two observations identified as influential were studied further using the case deletion diagnostics

to examine their influence on different quantities of he fitted model. According to the diagnostics

results in Table 5.3, observations 219 and 281 are considered to be outlying observations since their

absolute values of the externally studentized residual ti are greater than the cutoff point of 2. This

is inline with what is reflected in all the plots in Figure 5.1. In addition, both observations are

considered as high leverage points because their values of hii are higher than the cutoff point of

0.04. Though the difference between the value of leverage and the cutoff point for observation 281

is relatively small. This means the observations are extreme with respect to both the response

variable and at least one of the predictor variable.

The values of the DFFITS of 3.26 and 3.42 for observations 219 and 281 respectively, are both

higher than the cutoff point of 0.29. This shows that the two observations have influence on the

219th and 281st fitted values, and excluding each of them one at time when fitting the model will

change their respective fitted values, ŷ219 and ŷ281. The positive sign of the values of the DFFITS

means that the 219th, and 281st fitted values from fitting the model with all observations are larger

than the two 219th, and 281st fitted values from fitting the model without each of the observations

219 and 281. The values of COVRATIO for both observations are less than the cutoff point of

1− 0.06 = 0.94, indicating that the exclusion of each of the two observations affects the covariance
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matrix of the estimated regression coefficients. The observations decrease precision of the estimates

as their COVRATIO values are less than 1.

The absolute values of DFBETAS that are greater than the cutoff point of 0.12 is an indication

that both observations affect parameter estimates of variables that correspond to large DFBETAS.

Observation 219 affects the parameter estimates of household monthly income and one category

of education level of household heads, post high school education. Observation 281 affects the

parameter estimates of the category of heads with post high school education, and the category of

heads who were pensioners.

The model was fitted without each of the observations 219 and 281, to examine how different

quantities of the fitted model are affected by excluding each observation when fitting the model.

When the model was fitted without observation 219, the value of R2 increased from 0.30 to 0.35.

This shows that the deletion of the influential observation improved the goodness-of-fit of the model

slightly, since the proportion of the variability in household maize availability explained by predic-

tor variables in the model increased from 30% to 35%. In addition, the deletion of this observation

affected the significance of some of the variables in the model in terms of the significant effect they

had on maize availability. For example, when the observation was excluded, household monthly

income is not significant anymore and one category of education level of household head is signifi-

cantly different from the reference category of heads with no formal education. The category that

becomes significant is of household heads with beyond high school qualifications such as diploma

and university degrees. The results suggest that observation 219 is more influential than observa-

tion 281 because when the model was fitted without observation 281, R2 increased from 0.30 to

0.33 and the significance of the variables in the model was not affected.

5.3 Modelling of Sorghum Availability

The overall F test is significant at 5% level of significant, showing that at least one of the predictor

variables in the model is linearly related to availability of sorghum. The value of R2 of 0.19 suggests

that predictor variables in the model explain only 19% of the variability of sorghum availability.

Three variables, household size, the location of a household, and education level of the head of a

household are significant at 5% level of significance (Table 5.4). This means that household size,

the location of a household and education level of the head of a household had a significant effect

on household sorghum availability.

Though Table 5.4 shows that the location of a household had a significant effect on household

sorghum availability, the categories of this variables are not significantly different from the reference

category, Berea (Table 5.5). This implies that location of a household had a significant effect on
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Table 5.4: Sources of Variation and Type III Sum of Squares for Sorghum Availability

Response Variable: Sorghum availability to households

Source of Type III
Variation DF Sum of Squares Mean Square F Value Pr > F

Household Size 1 92309.05 92309.05 4.61 0.0332

Income 1 3549.43 3549.43 0.18 0.6741

Sex 1 1283.01 1283.01 0.06 0.8004

Location 3 161740.29 53913.43 2.70 0.0478

Education 3 271789.39 90596.46 4.53 0.0045

Occupation 4 114536.90 28634.22 1.43 0.2259

sorghum availability but the the effect of the other three locations of households was not significantly

different from that of Berea. Like it was the case with maize availability, sex of household head did

not have an effect on household sorghum availability. However, sorghum availability was affected

by education level of household head, where all categories in the table are significantly different

from the reference category of post high school education, at 5%. Only one category of occupation

of household head was significantly different from the reference category of casual workers at 10%.

Table 5.5: Regression Parameter Estimates for Sorghum Availability

Response Variable: Sorghum availability to households

Standard
Variable Category Estimate Error t value P-value

Intercept 397.85 79.85 4.98 <.0001

Household Size 10.63 4.95 2.15 0.03318

Income 0.01 0.02 0.42 0.67414

Sex Ref=Male

Female 6.41 25.30 0.25 0.80039

Location Ref=Berea

Mafeteng -44.62 36.32 -1.23 0.22098

Maseru Foothill -78.99 53.27 -1.48 0.14005

Maseru Lowland 20.69 34.37 0.60 0.54800

Education Ref=Post COSC

High School -210.94 73.51 -2.87 0.00466

No Formal Education -250.68 71.47 -3.51 0.00059

Primary -245.50 70.24 -3.50 0.00059

Occupation Ref=Casual Worker

Subsistence Farmer -23.66 41.29 -0.57 0.56741

Pensioner -26.99 53.46 -0.50 0.61437

Salary Earner -84.41 46.15 -1.83 0.06925

Unemployed -64.23 40.53 -1.59 0.11494

The results in Table 5.5 show that it did not matter whether households were headed by a female

or a male their sorghum availability was not significantly different. In addition it did not matter
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where households were located their availability of sorghum was not significantly different from

that of households residing in Berea. Furthermore, the occupation of household head did not make

a significant difference in terms of household sorghum availability. All categories of education of

a household head are significant at 5% level of significance, indicating that education level of a

head of household played a significant role in determining availability of sorghum to a household.

Sorghum availability for households headed by people with high school, primary and no formal

education was less than that of households headed by people with post high school education by

210.94, 250.68 and 245.50 kilograms, respectively. The reason could be that household heads with

diploma and university degrees qualifications got employed and earned better salaries than those

with lower qualifications. Hence they were able to acquire more sorghum for their households,

either through purchases or own produce.

Figure 5.2: Plot of Residuals for Sorghum Availability

The plots on the top and bottom left of Figure 5.2 show a pattern of residuals that increase as the

fitted values get bigger, which is a sign of heteroscedasticity. The normal QQ plot shows that most

of the plotted points lie on a straight line with points on both right and left ends being above the

line, and two outstanding cases. This suggests a symmetric distribution but with rather longer and

heavier tails than the normal distribution. In addition the plot shows the presence of two outliers,
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which are observations 175 an 176. The plot on the bottom right shows that observation 176 that

stand out in the first three plots, is not an influential case since though it is close to the Cook’s

distance contour in the plot, but does not appear inside it.

5.4 Box-Cox Transformation of Household Data

The Box-Cox family of power transformation was applied to identify the appropriate power trans-

formation used to correct the nonconstant variance problem and longer and heavier tails of the

distribution of data. These were identified through skewness, kurtosis, box plots and diagnos-

tic plots for the model fitted to the household maize and sorghum data, respectively. As it was

mentioned earlier, the correction of violation of assumptions about the distribution of the error

term increases the applicability and usefulness of linear regression models in modeling data. The

TRANSREG procedure was used to perform a Box-Cox transformation of the response variable.

The procedure gives an option of specifying a list of transformation parameters and chooses the

optimal value of the parameter.

In the case of household maize data, the estimated optimum value of the transformation parameter

λ̂ for maize availability is 0.20. The plot of the log likelihood against values of λ shows an approx-

imate 95% confidence interval of λ as [0.11, 0.30] (Figure 5.3). The confidence interval does not

contain any of the standard power transformation values that could have been used as the nearest

convenient value of λ̂. Thus the estimated optimum value 0.20 is used to transform the response

variable.

Figure 5.3: Box-Cox Plot for Maize Availability

103



The values of skewness and kurtosis of the transformed maize availability are 0.03 and 0.99 respec-

tively. They are less than the ones of the maize availability in its original form, where the values

are 3.60 for skewness and 24.36 for kurtosis. The values for the transformed data are close to zero,

indicating that the transformation corrected the positive skewness and leptokurtic distribution ob-

served in Chapter 2. Thus sorghum availability becomes approximately normally distributed after

the transformation. When we compare the box plots of the transformed maize availability in Figure

5.4 and untransformed maize availability in Figure 2.7, we notice that the transformation corrected

the deviation of the distribution of maize availability from the normal distribution, though the plot

shows the presence of extreme values. The correction is shown by the line inside the box, which is

still not equidistant to the lower and upper edges of the box, but shifted from being very close to

the lower edge to getting nearer to the middle of the box.

Figure 5.4: Box Plot of Transformed Household Maize Availability

The interpretation and conclusions from the results from fitting the model in which the trans-

formed availability of maize was used as the response response variable remain the same as the the

ones of the results obtained using the untransformed response variable in Table 5.2. Household

size, monthly income and occupation of household head had a significant effect on the transformed

availability of maize. Similarly, the transformed maize availability of households headed by casual

workers and unemployed people was significantly different from that of households headed by sub-

sistence farmers. However the strength of evidence for both categories increased, while the strength

of evidence that income had an effect on maize availability decreased. These increase and decrease

in the strength of evidence are shown by the p-value of casual workers that decreased from 0.0357
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to 0.0053, the p-value of unemployed that decreased from 0.0281 to 0.0056 and the p-value of in-

come that increased from 0.0018 to 0.0293. The transformation of availability of maize using the

suggested value of the transformation parameter 0.20 improved the fit of the model slightly since

the value of R2 increased from 0.30 to 0.38.

Figure 5.5: Plot of Residuals for Transformed Maize Availability

The residual plots in Figure 5.5 were used to check further if the assumptions violated when the

regression model was fitted using the untransformed response variable are corrected by using the

suggested transformation of the response variable. The plots on the top and bottom left show a

random pattern of the points, indicating that the non constant variance observed in Figure 5.1 was

corrected by transforming the data. The plot on the top right shows that the long heavy tail of

the distribution is also corrected but partially. The two outlying observations, 219 and 281 are not

influential anymore since they do not appear in the Cook’s distance contour, as it was the case in

Figure 5.1.
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In the case of household sorghum data, the values of skewness and kurtosis of the transformed

sorghum availability are -0.76 and -0.31 respectively, which are less than the ones of the untrans-

formed sorghum availability [skewness = 1.78 and kurtosis = 5.96]. The values are close to zero,

indicating that the transformed sorghum availability is approximately normally distributed. On

the other hand, when we compare the box plots of the transformed sorghum availability in Figure

5.6 and untransformed sorghum availability in Figure 2.8, we observe that the transformation made

the deviation from the assumption of normality worse, instead of correcting it. The line inside the

box shifted from being nearer to the middle of the box towards the upper edge, while it was closer

to being equidistant to the lower and upper edges of the box, in the case of untransformed data.

The contracting observations from the two statistics (skewness and kurtosis) and the box plots

suggests that several statistical tools need to be explored for detecting the distribution of data as

one may not be enough to give the true picture of the distribution.

The estimated optimum value of the transformation parameter λ̂ for sorghum availability is 0.30.

The plot of the log likelihood against values of λ shows an approximate 95% confidence interval for

λ as [0.19, 0.42] (Figure 5.7). The confidence interval does not contain any of the standard power

transformation values that could have been used as the nearest convenient value of λ̂. Thus the

estimated optimum value of 0.30 is used to transform the sorghum availability.

The interpretation of the results from fitting the model using the transformed availability of sorghum

changes slightly from that of the results from fitting the model using the availability of sorghum in

Figure 5.6: Box Plot of Transformed Household Sorghum Availability
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its original form, shown in Table 5.2. Education level and occupation of a household head still had

a significant effect on household sorghum availability. However, unlike in the case of the untrans-

formed data, two categories of occupation of the head of a household are significantly different from

the reference category of casual worker at 5% level of significant. The two categories are of salary

earners and unemployed people, with negative estimates. This means that when the transformed

data were used, sorghum availability for households headed by unemployed people, in addition to

that of households headed by salary earners, was less than that of households headed by casual

workers.

Furthermore, the strength of evidence for the significant difference between sorghum availabil-

ity to households headed by people who attained high school education and sorghum availability

to households headed by people who attained education beyond high school, decreased when the

transformed data were used. However, the strength of evidence for the significant difference be-

tween sorghum availability to households headed by salary earners and sorghum availability to

households headed by casual workers, increased. The transformation of the response variable using

the suggested value of the transformation parameter 0.30 improved the fit of the model slightly by

increasing the value of R2 from 0.19 to 0.21.

The Residual plots in Figure 5.8 show that the heterogeneous variance of the error term is not

corrected by transforming the data, while long heavy tails of the distribution of the error terms

observed in Figure 5.2 are corrected. The plots on the top and bottom left of the figure show a

pattern where residuals increase with the fitted values up to some point, and they start decreasing

as fitted values increase. This suggests that the heterogeneity is not corrected by transforming

Figure 5.7: Box-Cox Plot for Sorghum Availability
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Figure 5.8: Plot of Residuals for Transformed Sorghum Availability
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sorghum availability, using the estimated optimum value of 0.30. The QQ plot shows that the tail

of the distribution of the error terms that was longer and heavier than the normal distribution is

corrected. After transforming the data observation 176 does not appear near the Cook’s distance

contour in Figure 5.8, as it was the case in Figure 5.2.

5.5 Summary

The results from fitting the linear model show that both household size and monthly income had

a significant positive effect on maize availability for households, while household monthly income

did not have a significant effect on sorghum availability. The occupation of heads of households

had a significant effect on availability of maize. Maize availability for households headed by casual

workers and unemployed people was less than that of households headed by subsistence framers.

This is not surprising because subsistence farming is an occupation devoted to agricultural pro-

duction for subsistence including production of food cereals. On the other hand, maize availability

for households headed by pensioners and salary earners was not significantly different from that of

households headed by subsistence farmers. Education level of heads of households played a signif-

icant role in determining sorghum availability to households. Sorghum availability for households

headed by heads with lower education qualifications was less than that of households headed by

people with qualifications beyond high school such as diploma and university degrees.

Two observations that were identified as extreme with respect to maize availability influenced

the fitted values, estimated regression coefficients, and decreased precision of the estimates. Sta-

tistical tools such as skewness, kurtosis, box plots and diagnostics plots were used to check if the

use of Box-Cox transformation to correct the deviation of the distributions of maize availability

and sorghum availability from normality worked. In some cases the tools gave agreeing results that

the Box-Cox transformation worked or did not work, while in other cases they gave contradicting

results. The contradicting results call for further research where these tools will be investigated

to establish causes of such contradictions. The failure to correct the violation of normality and

constant variance assumptions on the part of the the Box-Cox transformation called for the appli-

cation of quantile regression model as a robust alternative to OLS approach, which deals with the

presence of outliers, homoscedasticity and symmetric and asymmetric distributions with long and

heavy tails.
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Chapter 6

Robust Regression

6.1 Introduction

Robust regression refers to a general class of statistical procedures designed to reduce the sen-

sitivity of the estimates to departures from the assumptions of the parametric model (Rawlings

et al., 1998). One of the objectives of robust regression procedures is to reduce the influence of

outlying influential cases in order to have a better fit for the majority of cases in the data set. The

procedures outperform the ordinary least squares procedure when the data are not well behaved

in the sense that there are outliers in the data and the error terms have non-normal distribution

with longer and heavier tails than the normal distribution (Koenker and Bassett, 1978). How-

ever, they should perform almost as well as least squares estimation procedures when the data are

well behaved. Thus the use of robust regression in an analysis will not compromise the benefit

that one would get even when the data are well behaved. The advantage is that it will control

for any undetected lack of adherence to ordinary least squares assumptions, if any exists. Ro-

bustness of regression estimation procedure can be from the point of view of its stability when

some of the regression model assumptions are violated. An estimation procedure can be robust

to an incorrectly specified model, heterogeneous variances, or the contamination of data by outliers.

Despite their appealing properties and computational simplicity, least squares estimates are no-

toriously known for their lack of robustness (Koenker, 2005). The application and optimality of

ordinary least squares (OLS) estimation procedure in regression analysis requires the assumption

that the error terms have a normal distribution, and the mean regression assumption. In practice

distributions of the error terms with longer and heavier tails than that of the normal distribution are

commonly encountered, and more generally the distribution of the response variable Y may not be

classified as Gaussian. When the errors have a non-normal distribution, specifically a heavy-tailed

distribution, least squares estimates may lose their efficiency. Least squares estimation is strongly

influenced by the presence of outliers, sometimes referred to as model shifts, and heavy-tailed error
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distributions. This influence is caused by the pull of the regression line towards the deviant data

points. The extreme sensitivity of the least squares estimates to moderate contamination due to

outlying cases, renders them to perform poorly in heavy-tailed distributions and thus outliers pose

serious threat to ordinary least squares estimates (Rousseeuw and Leroy, 2003). The deficiencies in

least squares estimates under the circumstances stated above call for the use of robust regression

estimation procedures as alternatives.

6.2 Preliminary Concepts of Robustness

When the distribution of the error terms is normal the conditional mean of least squares is the best

method of estimation, whereas the median regression is less effective (Kolmogorov, 1931). However,

when there are outliers, the error distribution is not known and deviates from normality, the median

regression is preferable (Yu et al., 2003). The nature of least squares that it minimizes the sum

of the squared residuals, allows outliers to exert disproportionate influence on regression results.

Unlike the robust regression procedures which have the ability to weight observations unequally

in finding parameter estimates, the least squares weights each observation equally. On the other

hand observations that gives large residuals are down-weighted under robust estimation procedures.

Thus the squaring of residuals in OLS procedure gives more weight to large residuals than when

their absolute values are considered. In cases where error terms have a distribution with heavier

tails than the normal distribution the least squares is no longer an optimal estimation procedure

and robust estimation procedures are preferred.

The classical robust estimation theory provides methods of dealing with the sensitivity of the

sample mean to departures from the distributional assumptions of the observations. The theory is

based on the idea of the estimating equation ψ(y, θ), which can take various forms. The objective

of robust estimation is to reduce the influence of outlying observations by controlling the function

ψ(.), which controls the weight assigned to each residual and is sometimes called the influence

function. Pawitan (2001) and Montgomery et al. (2001) showed that the least squares function is

unbounded and as a result outlying observations have unlimited influence on estimates.

The theory of robust estimation of a location parameter was developed by (Huber, 1964). His

estimation procedures were based on the idea of replacing the sum of squared residuals
∑n

i=1 e
2
i

with another function of the residuals,
∑n

i=1 ρ(ei), which weight residuals differently depending on

the importance or contribution of the corresponding observation. There are a number of robust

estimators which are maximum likelihood type estimators reported in literature as alternatives to

ordinary least squares estimators. The least median of squares (LMS) estimator by Rousseeuw

(1984) minimizes the median of the squared residuals, and yields the smallest value of the median

of squared residuals computed from the entire data set. The least trimmed squares (LTS) estimator
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also suggested by Rousseeuw (1984) minimizes the ordered squared residuals. The least absolute

deviations (LAD) estimation procedure of the conditional median or L1 procedure minimizes the

sum of absolute values of the residuals as

min
β̂

n∑
i=1

|yi − x′iβ̂| (6.1)

The LAD procedure was introduced by Edgeworth in 1887 as the first initiative on a more robust

regression estimator (Rousseeuw, 1984). This estimation procedure generalizes the median of a one-

dimensional sample to the conditional median regression. The median regression model estimates

the effect of predictor variables on the conditional median and thus it represents the central loca-

tion even when the distribution is skewed. Koenker and Bassett (1978) noted that many graphical

illustration by Gauss, Laplace and Legendre indicated that minimizing absolute deviations may be

preferred to minimizing sum of squared deviations when some observations are not well behaved.

The LAD estimation procedure is more robust than the OLS estimation procedure for asymmetric

distribution and heavy-tailed distributions, and to influence of observations that are extreme in

terms of the response variable (DasGupta and Mishra, 2004). The procedure puts less emphasis on

outlying observations than the OLS procedure because it involves absolute deviations rather than

squared deviations (Rousseeuw and Leroy, 2003).

The median is a special quantile that describe the central location of the distribution. Hence

the conditional median regression is a special case of quantile regression where the 50th quantile,

is modeled as a function of predictor variables. Similarly, a full range of other quantiles can be

modeled as functions of predictor variables. Like other robust regression procedures, quantile re-

gression provides more robust estimators that are as efficient as the least squares estimator for

normal distributions but more efficient for continuous non-normal distributions where the least

squares estimator may be seriously deficient. In the current work quantile regression was applied

as an alternative to deal with the sensitivity of classical regression to long-tailed distributions and

outliers.

6.3 Qauntile Regression

Quantile regression was introduced by Koenker and Bassett (1978) as an alternative robust and

flexible estimation approach to classical regression approach. It estimates functional relationships

between a response variable Y and predictor variables X for all parts of the response variable

distribution. Unlike the classical regression model, which is confined to the estimation of the condi-

tional mean of the distribution of Y given a set of predictor variables, quantile regression allows for

the estimation of various quantile functions of the conditional distribution of Y given X and thus

estimates the entire distribution of the response variable. In so doing quantile regression provides a

more comprehensive explanation or view of the possible relationship between variables than when
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the mean is exclusively used (Buchinsky, 1998). Koenker (2005) suggested that the conditional

mean estimated by least squares approach needs to be supplemented with the estimates of condi-

tional quantiles. The off-median conditional quantiles have the ability to distinguish between the

location shift and the shape shift. This feature of conditional quantiles is critical in determining

the effect of a predictor variable on the location and shape shift of the conditional distribution of

the response variable.

Quantile regression is the generalization of the concept of a sample quantile to the conditional

quantile of the response variable Y given one or more predictor variables X. The sample median

is the 50th quantile denoted by Q̂Y (0.50). Like the mean, which is obtained as the solution to

the problem of minimizing a sum of squared deviations min
µ∈R

n∑
i=1

(yi − µ)2, the median can be ob-

tained as the solution to the problem of minimizing the sum of absolute deviations min
ξ∈R

n∑
i=1

|yi − ξ|.

The τth sample quantile ξ̂τ can also be obtained as the solution to the problem of minimizing an

asymmetric weighted absolute deviations. This problem assigns different weights to positive and

negative deviations. The optimization problem is defined as

min
yi∈R

( ∑
i:yi≥ξ

τ |yi − ξ|+
∑

i:yi<ξ

(1− τ)|yi − ξ|
)

= min
yi∈R

n∑
i=1

ρτ (yi − ξ), (6.2)

where ρτ (u) = τ |u|I(u ≥ 0) + (1− τ)|u|I(u < 0) is called the check function (Koenker and Bassett,

1978). The check function can also be expressed as ρτ (u) = (τ − I(u < 0))u, where I(.) is the

indicator function that assign 1 to negative residuals and 0 to positive deviations. In this case

finding the τth sample quantile is expressed as the solution to an optimization problem instead of

the common method of ordering the sample observations.

6.3.1 Quantile Regression Model

The quantile regression model of Koenker and Bassett (1978) can be expressed as

yi = x′iβτ + uτi with Qτ (yi|xi) = x′iβτ

and Qτ (uτi |xi) = F−1
u (τ |xi) = 0, (6.3)

where yi is the ith observation of the response variable, xi is a vector of predictor variables, βτ

is a vector of unknown regression parameters, and uτi are independent identically distributed (iid)

error terms with unspecified distribution. The quantities, Qτ (yi|xi) and Qτ (uτi |xi) denote the τth

conditional quantiles of yi and uτi given xi, respectively. Following that the τth sample quantile,

QY (τ) = ξτ , (0 ≤ τ ≤ 1), of a random variable Y is the inverse of the cumulative distribution

function, FY (y) = τ , defined as

QY (τ) = F−1
Y (τ) = inf{y : FY (y) ≥ τ}, (6.4)
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Qτ (yi|xi) can be defined as the inverse of the cumulative distribution function of the response

variable conditional to the predictor variable, F−1
Y (τ |X).

The model in equation (6.3) is referred to as the linear location model where predictor variables af-

fect only the location of the conditional distribution of the response variable. When error terms are

independent and identically distributed the τth regression parameter βτ = β + (F−1
u (τ), 0, . . . , 0)′.

This is the case where conditional quantile planes are parallel and all parameters in β, except the

intercept, are similar for every value of τ . Thus quantile regression slopes are constant for every

quantile τ . However, when error terms are not independent and identically distributed the quantile

regression model is the linear location-scale model of heteroscedasticity, which can be stated as

yi = x′iβτ + (x′iγ)uτi with

Qτ (yi|xi) = x′iβτ + x′iγF
−1
u (τ), (6.5)

where γ is an unknown scale parameter. In the case of iid error terms in equation (6.3), the scale

parameter γ = (1, 0, . . . , 0), meaning that the τth conditional quantiles of yi given xi depends on X

only in location. The linear location-scale model of heteroscedasticity is an important case of general

class of quantile regression models including the iid error terms case (Koenker and Basett, 1982a).

In this model predictor variables affect the location as well as the scale of the response variable

distribution and result into heteroscedastic error models. In such models there is no single rate of

change that represents changes in the distribution since regression slopes vary across all parts of

the distribution of the response variable, and thus the τth regression parameter βτ = β+γF−1
u (τ).

6.3.2 Estimation of Regression Quantiles

In a similar manner that the optimization problem for the sample mean can be generalized to the

linear conditional mean function of Y givenX, E(yi|xi) = x′iβ, the optimization problem for sample

quantiles in equation (6.2) can be generalized to the estimation of conditional quantiles. The τth

quantile regression estimator β̂τ , also called the regression quantile, is obtained by minimizing an

asymmetric sum of weighted absolute deviations for the τth regression quantile (0 ≤ τ ≤ 1) defined

as

min
β∈Rp

( ∑
i:yi≥x′iβτ

τ |yi − x′iβτ |+
∑

i:yi<x′iβτ

(1− τ)|yi − x′iβτ |
)

= min
β∈Rp

n∑
i=1

ρτ (yi − x′iβτ ), (6.6)

where ρτ (u) is as defined under equation (6.2). Positive and negative residuals are assigned the

weights of τ and 1− τ , respectively. The LAD estimator of β obtained by minimizing a symmetric

sum of weighted absolute deviation is a special case of quantile regression for τ = 0.5, which is the

median or L1 regression.
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The minimization of the weighted sum of absolute deviations in equation (6.6) can be formu-

lated as a linear programming (LP) problem, which can be solved using a linear programming

algorithm. Literature reported a number of algorithms that can be used to solve the linear pro-

gramming problems for quantile regression. The algorithms include the simplex-based algorithm

for median regression of Barrodale and Roberts (1974) adapted by Koenker and D’Orey (1987) for

quantile regression, the interior point algorithm by Karmarkar (1984), referred to as the Frisch-

Newton algorithm by Koenker and Hallock (2000), the finite smoothing algorithm of Madsen and

Nielsen (1993) extended to quantile regression by Chen (2007), and the combination of the statis-

tical preprocessing and interior point methods proposed by Portnoy and Koenker (1997).

Interpretation of quantile regression parameter estimates is not different from that of the gen-

eral linear model estimates since they are all rates of change when the effects of some variables in

the model are adjusted for. The classical regression coefficient reflects the change in the mean of the

distribution of the response variable Y , associated with a unit change in the predictor variable X

that corresponds to the coefficient. However, the quantile regression coefficient reflects the change

in a specified quantile of the response variable associated with a unit change in that predictor vari-

able. The use of quantile regression allows for comparison of how some percentiles of the response

variable may be more affected by certain predictors than other percentiles. This is reflected in the

change in the size of the regression coefficients of different percentiles.

6.4 Properties of Quantile Regression Estimates

6.4.1 Properties of Equivariance

The quantile regression estimates have a number of equivariance properties, which are important

for meaningful interpretation of results from regression analysis, particularly for transformed data.

When the data are altered, the expectation is that regression estimates also change in such a

way that the interpretation of the results remain invariant (Koenker, 2005). Thus equivariance

properties play a critical role in ensuring an expressive interpretation of statistical results. Con-

sidering the τth regression quantile estimate based on observations (yi, xi) denoted by β̂(τ ;y,X),

the equivariance properties by Koenker and Bassett (1978) and Bassett and Koenker (1982) are

defined as

β̂(τ ;λy,X) = λβ̂(τ ;y,X) λ ∈ [0,∞) (6.7)

β̂(1− τ ;λy,X) = λβ̂(τ ;y,X) λ ∈ (−∞, 0] (6.8)

β̂(τ ;y + Xγ,X) = β̂(τ ;y,X) + γ γ ∈ Rp (6.9)

β̂(τ ;y,XA) = A−1β̂(τ ;y,X) Ap×p nonsingular. (6.10)
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The properties in equations (6.7) and (6.8) suggest that β̂τ is scale equivariant. This means

that if the vector of responses y is adjusted by a factor λ, then the quantile regression β̂τ is

adjusted by the same factor. The property in equation (6.9) suggests that β̂τ is location, shift or

regression equivariant, which means that if β̂τ is a solution to (y,X), then β̂τ + γ is the solution

to (y∗,X), where y∗ = y + Xγ. The property in equation (6.10) suggests that β̂τ is equivariant

to reparameterization of design and it means that the transformation of β̂τ is given by the inverse

transformation of X. The four equivariance properties also hold for least squares estimate β̂.

6.4.2 Property of Equivariance to Monotone Transformation

Quantile regression estimates have another more powerful equivariance property (Koenker, 2005).

This property is important for a complete understanding of the potential of quantile regression in

studying relationships between variables. The property is called equivariance to monotone trans-

formations and it is stated as follows: if h(.) is a nondecreasing function on R

Qτ (h(Y )|X) = h(Qτ (Y |X), (6.11)

for any random variable Y . This property suggests that conditional quantiles are equivariant to

monotone transformation of the response variable in the sense that the conditional quantile of the

transformed random variable h(Y ) is the transformed conditional quantiles of the original variable

Y . The equivariance to monotone transformations property follows from the fact that P (Y ≤ y) =

P (h(Y ) ≤ h(y)), but does not hold for the conditional mean because E(h(y)|X) 6= h(E(y|X)),

unless the function h(.) is affine. This property makes the interpretation of transformations in

quantile regression easier than they are in classical regression.

6.4.3 Property of Robustness

Another important property of quantile regression estimates is that of robustness to observations

that are extreme with respect to the response variable Y , referred to as outliers. This property is

critical in this research as it constitute part of motivation for quantile regression estimates to serve

as an alternative to ordinary least squares estimates, which are highly sensitive to outlying obser-

vations. The robustness of quantile regression with respect to outliers means that if yi − x′iβ̂τ > 0,

or yi − x′iβ̂τ < 0, yi can be increased or decreased toward ∞ or −∞, respectively without chang-

ing the solution β̂τ (Buchinsky, 1998). In other words what is important in estimating regression

quantiles is whether the observation lies above or below the estimated hyperplane, not necessarily

the magnitude of the observations on the response variable. This is not the case with the least

squares estimates as they are overly sensitive to outliers. However, quantile regression estimates

lack robustness against observations that are extreme with respect to predictor variables, called

high leverage points.
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The property of robustness of an estimator can be quantified using two measures of robustness,

namely, the breakdown point and influence function of an estimator. The two measures are designed

to assess robustness of an estimator at two different levels and thus they complement each other in

quantifying robustness of an estimation method. The influence function by Hampel (1974) deals

with local robustness, while the breakdown point introduced by Hampel in 1968 deals with global

robustness. The influence function describes how the estimator θ̂ from an underlying distribution F

is affected by contaminating or perturbing the distribution. It measures sensitivity to change in the

distribution caused by infinitesimal contamination and indicates how quantile regression estimates,

like the least squares estimates, it can be highly influenced by high leverage points. The breakdown

point of an estimator measures the smallest fraction of the data contaminated with outliers that

can make the estimator to take values that are far from the initial vector of regression estimates

θ̂. The main idea in robustness is to construct high breakdown point estimators such as the least

median of squares by Rousseeuw (1984) with a breakdown point of 0.50.

6.5 Goodness-of-Fit for Quantile Regression

The goodness-of-fit measure for quantile regression proposed by Koenker and Machado (1999) de-

rives from the classical R2 of the ordinary least squares regression estimation procedure. The

measure compares the quantile regression model fitted with a given number of predictor variables

including the intercept, and the model fitted with the intercept only. Consider the quantile regres-

sion model yi = x′iβτ + uτi , which can be partitioned and expressed as

Qτ (yi|xi) = x′i1β1τ + x′i2β2τ . (6.12)

The partitioned model presented above results from partitioning the design matrix X into (X1,X2),

and the vector of parameters βτ into β1τ and β1τ . The components of the model xi1 and xi2 are

the ith rows of X1 and X2, which are the n× (p− q) and n× q design matrices, respectively. The

components β1τ and β2τ are (p− q)× 1 and q × 1 vectors of parameters, respectively.

The unrestricted τth quantile regression estimate β̂τ , of the full model, minimizes the weighted

sum of absolute deviations given by

V̂τ = min
ˆβτ∈Rp

n∑
i=1

ρτ (yi − x′iβ̂τ ). (6.13)

Consider the restricted model, which can be defined as Qτ (yi|xi) = x′i1β1τ . Then the restricted

estimator β̃τ = (β̃
′
1τ ,0

′)′, which is the τth quantile regression estimate under the q dimensional

linear restriction corresponding to null hypothesis H0 : β2τ = 0, minimizes the corresponding

constrained problem with q restrictions given by

Ṽτ = min
ˆβ1∈Rp−q

n∑
i=1

ρτ (yi − x′1iβ̂1τ ). (6.14)

117



Thus the goodness-of-fit criterion can be defined in terms of the two objective functions, V̂τ and

Ṽτ as

R1
τ = 1− V̂τ

Ṽτ

. (6.15)

Like the classical R2, 0 ≤ R1
τ ≤ 1, since V̂τ ≤ Ṽτ . However unlike R2, which is a global measure of

goodness-of-fit over the entire distribution of the response variable measuring the relative success

of the unrestricted and restricted models, R1
τ serves as a local measure of goodness-of-fit measuring

the relative success of the regression model at a specific quantile. Under certain circumstances R1
τ

may be high at one tail of the distribution than at the other tail, which could be an indication of

heteroscedasticity (Melly, 2001). If the full model in equation (6.12) is better at the τth quantile

than the restricted model, V̂τ should be significantly smaller than Ṽτ and R1
τ will be high indicating

a better model fit. Better in this context means that the predictor variables X2 has a significant

effect at the τth quantile (Koenker and Machado, 1999).

The assessment of the goodness-of-fit through the comparison of the two objective functions, V̂τ

and Ṽτ forms the basis for constructing some of the tests of the linear hypothesis H0 : β2τ = 0,

presented in the subsequent section.

6.6 Inference for Quantile Regression

In classical regression analysis, the conditional quantile functions of the response variable given

predictor variables in the model are assumed to be all parallel to one another. This means that the

effects of predictor variables in the model shift the location of the conditional distribution of the

response variable only, but do not change its scale or shape and thus the slope coefficients of distinct

quantile regressions are equal. However in many applications of quantile regression estimated slopes

often differ substantially across quantiles and this makes the test of equality of slope parameters

across quantiles to form a fundamental component of inference in quantile regression (Koenker,

2005). Though there are no practical statistical inference in the case of finite sample for quantile

regression, like it is the case in least squares, the asymptotic theory provides practical statistical

inference for quantile regression. The theory forms the basis for statistical tests such as, the Wald,

rank and likelihood ratio tests and construction of some confidence intervals for regression quantiles.

The asymptotic theory is based on (Koenker, 2005) work.

6.6.1 Asymptotics of Quantile Regression

The asymptotic distribution of quantile regression estimator β̂τ follows from that of sample quan-

tiles. The asymptotic distribution of the sample quantile, ξ̂τ , calculated from the n independent
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identically distributed (iid) observations of the response variable with the distribution function F ,

can be defined as

√
n(ξ̂τ − ξτ ) → N (0, ω2), (6.16)

where ω2 = τ(1−τ)
f2(F−1(τ))

. This shows that the asymptotic precision of the quantile estimated from the

sample, measured by its asymptotic variance ω2, depends on two quantities, τ(1− τ) and 1
f(F−1(τ))

.

The second quantity is the reciprocal of a density function evaluated at the quantile of interest ξτ ,

which is referred to as the sparsity function by Tukey (1965) or quantile density function by (Parzen,

1979). The sparsity function, normally denoted by s(τ), reflects the density of observations near

ξτ , such that the estimation of the quantile becomes difficult when the observations are very sparse

at the close proximity of the quantile. On the contrary, the quantile is precisely estimated when

the sparsity of the data near ξτ is low, such that there are many observations near the quantile. In

other words the sparsity of the data at a specific quantile ξτ determines how precise is the estimated

value of the quantile.

To generalize the asymptotic distribution of sample quantiles to that of regression quantiles, con-

sider the quantile linear regression model yi = x′iβτ + uτi , with independent identically distributed

error terms uτi . These terms have a common distribution function F associated with the density

function f , and f(F−1(τi)) > 0, for i = 1, . . . ,m. Then the asymptotic distribution of the quantile

regression estimator β̂τ can be stated as

√
n(β̂τ − βτ ) → N (0, τ(1− τ)H−1

τ DH−1
τ ) = N (0,Λτ ), (6.17)

where D = lim
n→∞

n−1
∑

i

xix′i

and Hτ = lim
n→∞

n−1
∑

i

xix′ifi(ξτi).

The matrix D is a positive definite p × p matrix. When the error terms are assumed to be iid,

the density functions fi(ξτi) are identical and the sandwich covariance matrix Λτ collapses to

a simplified expression given by Λτ =
τ(1− τ)

f2(F−1(τ))
lim

n→∞
n
( ∑

i

xix′i
)−1

, such that the asymptotic

distribution of β̂τ becomes

√
n(β̂τ − βτ ) → N (0, ω2D−1), (6.18)

The simplified expression of Λτ shows that under the iid error regression model, the asymptotic

precision of quantile regression estimates depends on the sparsity function and the term τ(1− τ).

Under the quantile regression model the sparsity function plays a role similar to that of the standard

deviation of the error terms, σ, in the least squares estimation procedure of the iid error regression

model.

However, the assumption of iid error terms is too restrictive and oftentimes it does not hold in
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practical applications. When the assumption holds the conditional quantiles are simple shifts of

one another since all conditional quantiles planes are parallel. Thus the application of quantile

regression does not provide any additional information to that provided by the least squares esti-

mator since estimated regression coefficients for different quantiles, β̂τj , have a common value, β̂τ .

However, in real life problems it is almost impossible to justify the assumption of iid error terms.

Thus the use of quantile regression in such problems should be a way to go.

The asymptotic distribution of estimated regression coefficients in equation (6.17) can be extended

to several regression coefficient vectors calculated at different quantiles. Hence the joint asymptotic

distribution of the m× p variate quantile regression estimators defined as ζ̂n = (β̂
′
τ1 , . . . , β̂

′
τm

)′ can

take the form

√
n(ζ̂n − ζ) → N (0,Ω⊗D−1), (6.19)

where Ω is an m×m matrix with the elements (ωij) = min(τi,τj)−τiτj

f(F−1(τi))f(F−1(τj))
, and D is as defined under

the asymptotic distribution of β̂τ . Inference about quantile regression estimator β̂τ requires the

estimation of its asymptotic covariance matrix Λτ . Literature reports different estimation methods

of Λτ for both cases of the iid and non-iid error terms as discussed in the subsequent section.

6.6.2 Estimation of the Covariance Matrix of Regression Quantiles

The covariance matrix that measures the precision of the τth quantile can be estimated using

several approaches. Some are direct and asymptotic approaches that require the estimation of the

sparsity function, while other are bootstrap approaches based on resampling. Koenker and Machado

(1999) obtained an estimator of the sparsity function, s(t), using simple difference quotients of the

empirical quantile function as

ŝn(t) =
[
F̂−1

n (t+ hn)− F̂−1
n (t− hn)

]
/2hn, (6.20)

where F̂−1 is an estimate of F−1, and hn is a bandwidth that tends to zero as n → ∞. Hall and

Sheather (1988) suggested a bandwidth rule based on Edgeworth expansions for studentized sample

quantiles as

hn = n−1/3z2/3
α

[
1.5s(t)/s′′(t)

]1/3
, (6.21)

where zα satisfies Φ(zα) = 1−α/2. After the bandwidth is selected the estimate of the quantile func-

tion, F̂−1 can be obtained as the empirical quantile function of the residuals, ûi = yi−x′iβ̂τ , i =

1, . . . , n, from fitting the quantile regression model as suggested by (Bassett and Koenker, 1982).

Substituting the estimate of the sparsity function in the simplified equation of Λτ , gives the esti-

mate of the asymptotic covariance matrix of β̂τ .

120



The Powell (1986) estimator for censored regression quantiles can be modified and used in the

quantile regression model. The estimator can be used to estimate both the sparsity function for

the independent identically distributed error terms case, and Hτ for the general case where error

terms are not independent and identically distributed. Under the iid error terms assumption the

sparsity function can be estimated by one sided estimator defined as

f̂
(
F−1(τ)

)
= (ĉnn)−1

n∑
i

I(0 ≤ ûτi ≤ ĉn), (6.22)

where ûτi = yi − x′iβ̂τ and cn is the Kernel bandwidth. Cross validation methods such as, least

squares and log likelihood can be used for the optimal selection of cn. The resultant Kernel estimator

of the covariance matrix for βτ can be given by

Λ̂τ =
τ(1− τ)

f̂2(F−1(τ))

(
1
n

n∑
i=1

xix′i

)−1

. (6.23)

The two sided Kernel estimator in which the indicator function in equation (6.22) is replaced by

I(−ĉn/2 ≤ ûτi ≤ ĉn/2) can be used to estimate Λτ . When the error terms are heteroscedastic, Hτ

can be estimated by (ĉnn)−1
∑n

i I(0 ≤ ûτi ≤ ĉn)xix′i.

Instead of estimating the sparsity function, bootstrap method based on varying assumptions about

error terms and the form of the asymptotic covariance matrix of β̂τ can be used to estimate the

covariance matrix. He and Hu (2002) suggested the Markov chain marginal bootstrap (MCMB)

method that differ with other bootstrap methods in two important aspects. The aspects are that

the method solves only one-dimensional equations for parameters of any dimension, and produces a

Markov chain instead of an independent sequence. The purpose of the MCMB method is to reduce

the problems of computations that are associated with bootstrap in high-dimensional problems.

6.6.3 Tests of Linear Hypothesis

Having discussed the estimation of the parameters for one conditional quantile as well as for several

conditional quantile functions, and observed differences that may exist in their estimated regression

slopes, it becomes necessary to look into statistical tests that are used to establish if the differences

are significant. Koenker and Basett (1982a) proposed tests of linear hypothesis that are used to

test the equality of slope parameters across quantiles slopes. Koenker and Basett (1982b) proposed

tests of linear hypothesis for the linear model in the case of median (l1) regression that include the

Wald, likelihood ratio test, which were extended to other quantiles. The tests that are normally

used to test equality of slopes in quantile regression are the Wald, likelihood and rank tests. The

asymptotic distribution of the quantile regression estimates discussed in the preceding section serves

as the basis for these tests.
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1. Wald Test

The Wald test is based on the regression coefficient estimated from the unrestricted model

(Koenker and Basett, 1982b). It tests the general linear hypothesis for p × 1 vector of pa-

rameters, βτ , in the case of a single quantile regression coefficient, stated as H0 : Hβτ = h

against H1 : Hβτ 6=,h, where H is k × p matrix of coefficients defining k linear functions of

the βτ , and h is a k×1 vector of constants, which are frequently zeros (Melly, 2001; Koenker,

2005). The test statistic under H0 is defined as

Wτ = n(Hβ̂τ − h)′
[
HΛ̂

−1
τ H′]−1(Hβ̂τ − h), (6.24)

which is asymptotically χ2
q , where q is the rank of the matrix H.

Koenker and Basett (1982a) proposed tests of heteroscedasticity for quantile regression, which

generalize the Wald test for the parameter βτ of one quantile to a m×p matrix of parameters

ζ in which several distinct quantiles are considered. They relaxed slightly the assumption of

iid error terms and considered the asymptotic behavior of
√
n(β̂τ −βτ ) under a specific form

of asymptotically vanishing heteroscedasticity. In this case the general linear hypothesis can

be stated as H0 : Hζ = h, and the test statistic, under H0, is given by

Wτ = n(Hζ̂ − h)′
[
H(Ω⊗D−1)H′]−1(Hζ̂ − h). (6.25)

This is asymptotically non-central χ2 with rank q degrees of freedom and non-centrality

η = (H(Qτ (u)⊗ γ0))′
[
H(Ω⊗D−1)H′]−1(H(Qτ (u)⊗ γ0)).

In the case of homoscedastic model, the slope parameters are identical for every quantile,

and the test statistic Wτ is asymptotically central χ2 with (m− 1)(p− 1) degrees of freedom,

where p is the number of parameters in the model, and m is the number of quantiles for which

the model is fitted (Koenker, 2005). This form of the Wald test accommodates a wide variety

of testing situations, including joint tests that involve several predictor variables and several

distinct quantiles. The tests offer a robust alternative to the conventional least-squares based

tests of heteroscedasticity since they are insensitive to outlying response variable observa-

tions. In addition the tests do not require parametric assumptions about the shape of the

error distribution.

2. Likelihood Ratio Test

The likelihood ratio test is based on the difference between the sum of absolute residuals in

the restricted and unrestricted models. The linear hypothesis to be tested using the likelihood

ratio test is as stated under the Wald test. Koenker and Machado (1999) adapted the Koenker

and Basett (1982b) approach of the likelihood ratio test and showed that under H0 when the

error terms are iid but drawn from the distribution function F , the test statistic is given by

Ln(τ) =
2(Ṽτ − V̂τ )
τ(1− τ)s(τ)

, (6.26)

122



where Ṽτ and V̂τ are as defined under the section of goodness-of-fit criterion, and s(τ) is the

sparsity function. Like the Wald test statistic, Ln(τ), is asymptotically χ2
q .

In the case of the location-scale shift model, Koenker and Machado (1999) showed that under

H0 the test statistic becomes

Λn(τ) =
2nστ

τ(1− τ)s(τ)
log(Ṽτ/V̂τ ), (6.27)

where the estimate of στ is σ̂τ = n−1V̂τ → στ . The test statistics Λn(τ) is also asymptotically

χ2
q . Similarly, the likelihood ratio test can be used to test the global hypothesis that quantile

regression slopes coefficients are identical across quantiles.

3. Rank Tests of Linear Hypothesis

Gutenbrunner et al. (1993) introduced tests of a general linear hypothesis for the linear re-

gression model, which are based on regression rank scores of Gutenbrunner and Jurec̆ková

(1992). The tests are robust to observations that are outlying with respect to the response

variable, and are asymptotically distribution free in the sense that no nuisance parameters

that depends on the error term distribution need to be estimated for the computation of the

test statistic.

Gutenbrunner et al. (1993) considered the general linear model with the design matrix, X,

partitioned into (X1:X2), and the vector of parameters, βτ , partitioned into β1τ and β2τ .

Then the linear hypothesis can be stated as H0 : β2τ = 0; β1τ unspecified, against the local

alternative Hn : β2nτ
= β0τ/

√
n; with β0τ ∈ Rq, fixed. The regression rank scores are a n×1

vector, ân(τ) = (ân1(τ), . . . , ânn(τ)). The proposed test statistic for testing H0 against Hn

can be defined by

Tn =
S′nM

−1
n Sn

A2(ϕ)
, (6.28)

where Sn = n−1/2(Xn2−X̂n2)′b̂n , Mn = n−1(X2−X̂2)′(X2−X̂2), X̂2 = X1(X′
1X1)−1X′

1X2,

b̂n is the scores vector given by the intergral
∫ 1
0 ân(t) dϕ(t), A2(ϕ) =

∫ 1
0 (ϕ(t) − ϕ̄)2 dt, ϕ̄ =∫ 1

0 ϕ(t) dt andϕ is a score function. The test is based on the asymptotic distribution of Tn

under the null hypothesis H0. Under H0, Tn is asymptotically distributed as a central χ2

with q degrees of freedom, while under the local alternative hypothesis Hn, Tn is a noncentral

χ2 with q degrees of freedom and non-centrality parameter η2, defined under the Wald test.

Koenker and Machado (1999) extended the work of Gutenbrunner and Jurec̆ková (1992)

and Gutenbrunner et al. (1993) to the location-scale linear model. Their modification of the

test statistic is similar to substituting an ordinary least squares fit by a weighted least squares

fit at this stage. The test statistic can be defined by

Tn =
S′nQ

−1
n Sn

τ(1− τ)
. (6.29)
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Under the null hypothesis, the modified Tn has a central χ2
q distribution, while under the local

alternative hypothesis it has a noncentral χ2
q distribution with the non-centrality parameter,

η(ϕ, ζ). The statistic can be used to determine the global effects of the predictor variables

on the response variable across quantile, or local effects by choosing the score function ϕ to

focus exclusively on one quantile τ (Koenker, 2005).

6.6.4 Confidence Intervals of Regression Quantiles

Literature reported various approaches of constructing confidence intervals and confidence bands

for regression quantiles. There are approaches based on the asymptotic distribution of the quantile

regression estimator βτ that require the estimation of the sparsity function, and there are distribu-

tion free approaches that do not require the estimation of the sparsity function (Zhou and Portnoy,

1996). Some are based on the inversion of rank scores by Koenker (1994) and others are based on

resampling methods (Koenker, 1994; Parzen et al., 1994; Chen and Wei, 2005).

Zhou and Portnoy (1996) proposed the studentized and direct approaches for constructing con-

fidence intervals for regression quantiles. They noted that the two approaches are the generaliza-

tion of their analogues in constructing confidence interval for sample quantiles. The studentization

approach is based on the asymptotic normality of the estimated regression quantiles, and thus it

requires the estimation of the sparsity function. On the contrary, the direct approach referred to as

the distribution-free approach, does not require the estimation of sparsity function. The confidence

interval of regression quantiles from the distribution-free approach is the generalization of the con-

fidence interval of sample quantiles. Zhou and Portnoy (1996) showed that the studentized and

distribution-free confidence intervals are asymptotically equivalent when the consistent estimator

of the sparsity function is used.

The application of the tests based on rank scores involves the construction of confidence intervals

for the parameters of the quantile regression model. Koenker (1994) proposed a robust approach

of constructing confidence intervals for quantile regression based on the inversion of the rank score

test, which does not require the estimation of the sparsity function. Unlike the confidence intervals

based on the estimation of the sparsity function, the confidence intervals resulting from the inver-

sion of rank tests are not symmetric. However, they are centered on the point estimate β̂2τ of the

partitioned model consisting of one predictor variable X2, y = X1β1τ +X2β2τ + uτ , in the sense

that Tn(β̂2τ ) = 0. This approach of constructing confidence interval possesses a good feature that

it inherits the scale invariance of the test statistic Tn.

Bootstrap methods construct more reliable confidence intervals but they are computationally in-

efficient for moderate to large data sets (He and Hu, 2002; Kocherginsky et al., 2005). Chen and

Wei (2005) noted that resampling methods are not recommended for small data sets with sample
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size, n < 5000, and the number of predictor variables, p < 20, since they are stable for relatively

larger data sets. Koenker (1994) proposed a resampling method that can be used to construct

confidence interval for estimates of quantile regression and named it Hegf bootstrap. The method

resamples directly from the full regression quantile process. Parzen et al. (1994) proposed a general

and simple resampling method based on pivotal estimating functions Sx(β) for inferences about

the true parameter β. This method can be adapted and used to construct confidence intervals for

quantile regression estimates. The approach achieves robustness to some heteroscedastic quantile

regression models by exploiting the asymptotical pivotal role of the quantile regression (Koenker,

1994).

Kocherginsky et al. (2005) adapted the Markov chain marginal bootstrap (MCMB) method pro-

posed by He and Hu (2002) that aims to provide faster computations, to construct confidence

intervals for quantile regression and called it MCMB-A method. The MCMB-A method is an affine

transformation of the parameter space that helps to eliminate the problems of autocorrelation in

the MCMB sequence generated by repeating the sampling process B times, denoted by β
(B)
τ .
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Chapter 7

Fitting the Quantile Regression

Model to Household Data

7.1 Introduction

Quantile regression model was applied as a robust alternative to the linear model fitted using

least squares procedure, to deal with asymmetrical distributions of maize and sorghum household

availability, including the distributions with longer and heavier tails than the normal distribution.

Such distributions are the same as the ones observed from the values of skewness and kurtosis, box

plots in Figures 2.7 and 2.8, and diagnostics plots in Figures 5.1 and 5.2. The quantile regression

package in R, quantreg, by Koenker (2005) was used to fit the quantile regression model as well as

to plot the quantile plots. The quantreg uses the command rq() to fit the quantile regression model.

The effects of predictor variables used in Chapter 4 to fit the classical linear regression model

on maize availability and sorghum availability for households were investigated at different posi-

tions of the distribution of the response variable. As it was discussed in the preceding chapter, the

use of quantile regression in modeling availability of the two cereals provides a more comprehensive

explanation of the relationships that exist between availability and predictor variables in the model

than in the classical regression model where the mean response was exclusively used. This was done

by fitting the quantile regression model at the selected three quantiles, the 25th, 50th and 75th

quantiles. The simplex based algorithm adapted for quantile regression by Koenker and D’Orey

(1987) was used to compute the quantile regression parameter estimates given in Tables 7.1 and 7.2.

Since the sample size is not very large the simplex algorithm performed well. Following Koenker

(2005) that the introduction of the quardratic component alleviates some nonmonotonicity in the

qauntile regression estimates that may occur at the lower and upper tails of the distribution of the

response variable, the quadratic term of household size was added as one of the predictor variables

to cater for possible nonlinearities in the data.
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7.2 Regression Quantiles

The goodness-of-fit of the quantile regression model fitted to the household maize data at each of

the three quantiles was assessed using the goodness-of-fit measure, R1
τ by Koenker and Machado

(1999). The values of R1
τ at the 25th, 50th and 75th quantiles together with the value of the measure

of goodness-of-fit for the classical regression models, R2, are shown in the last row of Tables 7.1 and

7.2. The value of R1
τ for maize data, increased by almost the same amount from one quantile to

another. This is an indication that in some cases the effects of the predictor variables in the quantile

regression model are different at different quantiles and they become more significant as values of

quantiles increase. The asterisks next to some estimates indicate the statistical significance of a

variable corresponding to the estimates, and the level of significance as indicated below the table.

Table 7.1: Quantile Regression Parameter Estimates for Maize Availability

Predictor
Quantile Regressions

Variable Category 0.25 0.50 0.75 OLS Estimate

Intercept 205.46 *** 270.37 *** 571.23 *** 265.20 ***

HHSize 54.52 ** 72.45 *** 73.49 *** 87.22 ***

Household Size2 0.69 2.75 ** 3.46 -0.03

Income 0.03 0.01 0.08 ** 0.14 ***

Sex Ref=Male

Female -4.72 24.03 18.74 8.43

Location Ref=Mafeteng

Berea 11.46 -59.77 -53.29 -13.99

Maseru Foothills 10.28 -165.69 *** -61.08 -61.26

Maseru Lowland -44.08 -130.89 *** -67.04 -88.54

Education Ref=No educ

High School 28.79 -4.37 -16.39 29.27

Post High School -45.64 295.11 *** 131.86 131.98

Primary -9.31 -55.49 * -162.04 *** -53.35

Occupation Ref=Farmer

Casual Worker -146.36 ** -82.10 * -248.82 *** -195.97 **

Pensioner -86.75 -78.64 -218.84 ** 92.74

Salary Earner -124.20 ** -13.55 -228.00 *** -105.42

Unemployed -153.44 *** -86.06 ** -279.37 *** -159.55 **

R2 and R1
τ 0.18 0.23 0.27 0.30

Asterisks denote the significance level as ***: 1%, **: 5%, *: 10%.

Household size is significant throughout the three quantiles of maize availability as well as at the

conditional mean of maize availability from the ordinary least squares procedure. Significance of

household size is observed with an increasing effect from 54.52 of the 25th quantile to 73.49 of

the 75th quantile, and an increasing strength of evidence shown by the level of significance that

decreases from 5% of the 25th quantile to 1% of the median, 75th quantile, and under the mean

response (Table 7.1). Thus the effect of household size is higher at the 50th and 75th quantiles
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as well as the mean response than at the 25th quantile. The results suggest that an increase in

the size of households by one member, when other variables are held constant, increased the 25th

percentile, median regression, 75th percentile and mean response of maize availability by 54.52,

72.45, 73.49 and 87.22 kilograms respectively. The effect of household size at the median and 75th

quantile of maize availability does not differ that much. The quadratic term of household size

is significant at the 5% level of significance, for the median regression only. Household monthly

income is significant at the 75th quantile and the mean response only, with very small effects of less

than half a kilogram. Like under ordinary least squares, sex of household head is not significant

across the entire distribution of maize availability. This suggests that household maize availability

for households headed by females was not significantly different from that of households headed by

males.

The location of a household is statistically significant at 1%, under the median regression only.

Maize availability for households that resided in Maseru foothill and Maseru lowland was signifi-

cantly different from that of households that resided in Mafeteng at the 50th quantile, when other

variables are held constant. Maize availability of households from both locations was less than

that of households in Mafeteng, with households in Maseru foothill having a bigger difference of

165.69 kilograms. On the other hand, maize availability of households that resided in Berea was

not significantly different from that of households in Mafeteng, throughout the three quantiles as

well as at the mean response.

In the case of education level of the household head, maize availability for households headed

by people who attained post high school education was significantly higher than that of households

headed by people without any form of formal education, at the 50th quantile, by 295.11 kilograms.

The reason behind this could be that household heads with post high school qualifications such

as diploma and university degrees had skills that got them better jobs, and hence earned income

that enabled them to acquire more maize for their households, either through purchases or pro-

duction from own land. Maize availability of households headed by people with primary education

was significantly less than that of households headed by heads with no formal education by 55.49

and 162.04 kilograms, at the 50th and 75th quantiles respectively. Though the differential effect

of education level at the median regression, measured by the size of the regression quantile, is

less than that at the 75th percentile. The strength of evidence for the significance of the differen-

tial effect, shown by the number of asterisks, is also lower at the median than at the 75th percentile.

Occupation of the head of a household played an important role in determining availability of

maize for households because almost all occupations in Table 7.1, except pensioners, are signifi-

cantly different from subsistence farmers at the 25th and 75th quantiles. According to the regression

quantiles, availability of maize for households headed by casual workers, salary earners, and unem-

ployed people was significantly less than that of households headed by subsistence farmers at the
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two quantiles. In addition, maize availability of households headed by casual workers and unem-

ployed heads was also significantly less than that of households headed by subsistence farmers at

the median regression, though the differential effects are low when they are compared with their

counterparts at the other two quantiles and the mean response.

The size of the regression quantiles show that the differential effect of occupation on maize availabil-

ity is the highest at the 75th quantile. Households headed by casual workers and unemployed people

maintained the highest differences throughout the quantiles as well as at the mean response, with

the biggest differences of -248.82 kilograms for casual workers and -279.37 kilograms for unemployed

people observed at the 75th quantile. The differences suggest that maize availability for households

headed by casual workers and unemployed heads was less than that of households headed by sub-

sistence farmers by 248.82 and 279.37 kilograms respectively. Normally, unemployed heads do not

earn any income and casual workers do not have stable income that enable them to purchase food

or finance food production for their households and thus the likelihood of maize availability for

their households being far less than that of households headed by subsistence farmers is high. An

observation that households headed by casual workers, salary earners, and unemployed people were

worse off than those headed by subsistence farmers in terms of maize availability is not surprising

because subsistence farming is an occupation devoted to production of food for households.

Table 7.2: Quantile Regression Parameter Estimates for Sorghum Availability

Predictor
Quantile Regressions

Variable Category 0.25 0.50 0.75 OLS

Intercept 300.39 *** 436.72 *** 399.18 429.13 ***

Household Size -0.67 -22.74 5.16 1.35

Household Size2 0.81 2.96 *** 0.94 1.03

Income -0.01 0.01 0.03 0.01

Sex Ref=Male

Female -0.18 15.75 7.86 3.67

Location Ref=Berea

Mafeteng -71.84 ** -25.02 -13.17 -41.78

Maseru Foothills -71.82 * -72.78 * -6.03 -78.41

Maseru Lowland -28.42 36.32 52.36 -21.78

Education Ref=Post COSC

High School -140.65 ** -231.00 *** -123.80 -215.90 ***

No Formal Education -132.12 ** -226.08 *** -277.27 *** -255.20 ***

Primary -132.68 ** -225.03 *** -203.13 ** -247.50 ***

Occupation Ref=Casual Worker

Subsistence farmer -62.75 * -50.53 -64.78 -24.29

Pensioner -89.08 ** -127.43 *** -38.50 -29.78

Salary Earner -80.28 ** -124.88 *** -95.92 -84.42 *

Unemployed -94.67** -85.41 *** -87.77 -63.50

R2 and R1
τ 0.11 0.12 0.13 0.19

Asterisks denote the significance level. ***: 1%, **: 5%, *: 10%.
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The value of R1
τ for sorghum availability increased by 0.01 from one quantile to another (Table

7.2). The small increment in R1
τ values shows that the effect of predictor variables does differ but

slightly, at the three quantiles. The results from the goodness-of-fit measure for the two models

fitted using maize and sorghum availability will be confirmed by the test of equality of slopes in

the subsequent analyses.
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Figure 7.1: Goodness-of-fit of Quantile Regression Model for Maize and Sorghum Availability

The two plots of R1
τ (pseudo R square) values against quantiles at which the quantile regression

model was fitted were used to illustrate the goodness-of-fit of maize and sorghum availability mod-

els (Figure 7.1). The plots, at a glance, give an idea of how regression slopes differ across quantiles.

Both plots have small values of R1
τ at the lower tails of the conditional maize and sorghum availabil-

ity distribution than at the upper tails. This indicates the poor fit of the model at the lower tails

than at the upper tails of the distributions. The plot for maize availability shows a better fit than

that of sorghum availability since it has higher values of pseudo R square across quantiles. The plot

also shows that the value of pseudo R square increased with the quantile at which the model was

fitted. This suggests that the effects of the predictor variables varies across quantiles, with more

significant effects in the upper tail of the distribution. On the contrary, the flat slope of the plot

for sorghum availability, up to the 85th quantile, is indicative of the regression slopes that remain

the same across quantiles up to the quantile. This suggests that the effects of the predictor vari-

ables remains the same up to the 85th quantile, and begin to vary at quantiles beyond this quantile.

The results from the quantile regression model for sorghum availability show that household size,

130



household monthly income and sex are not significant throughout the three quantiles (Table 7.2).

However, the quadratic term of household size is significant at 1% for the 50th quantile. Two

categories of location of households, Mafeteng and Maseru foothills, are significantly different from

Berea. Mafeteng is significant at 5% level of significance at the 25th quantile, while Maseru foothills

is significant at 10% level at both the 25th quantile and median regression. The differential effects

of location of a household shown by the regression quantiles are almost the same in the two loca-

tions. The quantiles suggest that sorghum availability for households from Mafeteng was less than

that of households from Berea by 71.84 kilograms at the 25th quantile. Sorghum availability of

households from Maseru foothills was less than that of households from Berea by 71.82 and 72.78

kilograms at the 25th quantile and median regression respectively.

Education level of household head played an important role in determining availability of sorghum

to households. Sorghum availability for households headed by people with no formal education,

primary, and high school education was significantly different from that of households headed by

people with post high school qualifications such as diploma and university degrees, at the 25th

quantile, median regression, as well as at the mean response of ordinary least squares (Table 7.2).

Though the strength of evidence at the 25th percentile is weaker than at the median regression. At

the 75th quantile, sorghum availability for households headed by people with no formal education

and those headed by people with primary education was significantly different from that of house-

holds headed by diploma and degree holders. Negative regression quantiles show that sorghum

availability for all these households was less than that of households headed by people who at-

tained diploma and university degrees. The differential effect of education level is bigger at 75th

quantile and under the mean response for households headed by people with no formal education,

where sorghum availability was less by 277.27 and 255.20 kilograms, respectively.

Occupation of household head is significant at both the 25th quantile and median regression, ex-

cept for one category of subsistence farmer. The regression quantiles show that differential effect

of occupation on sorghum availability for households headed by pensioners and salary earners are

increasing with the quantile from -89.08 to -127.43 and from -80.28 to -124.88, respectively. These

quantiles indicate that at the median regression, sorghum availability of households headed by pen-

sioners and salary earners was less than that of households headed by casual workers by 127.43 and

124.88 kilograms respectively. The decrease in the significance level from 5% to 1% for the cate-

gories of pensioners, salary earners, and unemployed shows an increase in the strength of evidence

as the quantile increases from 0.25 to 0.50.
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7.3 Standard Errors for Regression Quantiles for Household Maize

Standard errors of regression quantiles reported in Tables 7.3, 7.4, 7.5 and Tables in Appendix J

were computed at the 25th, 50th and 75th of maize and sorghum availability. They were computed

using two asymptotic methods and one bootstrap method of computing the covariance matrix of

the quantile regression estimates. The asymptotic methods used are the sparsity function estima-

tion under the assumption of independent identically distributed error terms using the Hall and

Sheather (1988) bandwidth rule and the Kernel estimator. The boostrap estimator used the He

and Hu (2002) MCMB resampling method.

Table 7.3: Standard Errors of the 25th Regression Quantile for Maize Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 205.46 83.02 131.14 120.15

Household Size 54.52 22.68 53.05 50.20

Household Size2 0.69 1.80 5.32 5.00

Income 0.03 0.03 0.04 0.04

Sex Ref=Male

Female -4.72 36.06 50.50 41.59

Location Ref=Mafeteng

Berea 11.46 62.99 85.46 71.71

Maseru Foothills 10.28 63.87 98.28 90.21

Maseru Lowland -44.08 42.99 70.76 62.08

Education Ref=No educ

High School 28.79 60.92 89.49 78.58

Post High School -45.64 100.59 173.80 189.32

Primary -9.31 44.56 65.44 56.06

Occupation Ref=Farmer

Casual Worker -146.36 59.59 86.81 80.73

Pensioner -86.75 72.02 113.15 83.89

Salary Earner -124.20 61.24 94.28 74.59

Unemployed -153.44 46.31 71.83 58.43

The sparsity function estimation using Hall and Sheather (1988) bandwidth rule reports a higher

precision of all estimates of regression quantiles across the three quantiles for maize and sorghum

data. The high precision is shown by standard errors that are relatively low when they are com-

pared with the ones estimated by the Kernel estimator and MCMB resampling method. However,

standard errors estimated by the Kernel estimator show varying patterns of the precision of esti-

mates depending on the quantile and the data used.

Standard errors estimated from the Kernel estimator at the 25th and 50th quantile of maize avail-

ability show a lower precision of estimates in the sense that they are greater than standard errors

estimated by MCMB resampling method, except in the case of one level of education of household
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Table 7.4: Standard Errors of the 50th Regression Quantile for Maize Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 270.37 63.26 124.02 98.93

Household Size 72.46 17.28 40.46 31.97

Household Size2 2.75 1.37 3.70 3.12

Income 0.01 0.02 0.05 0.05

Sex Ref=Male

Female 24.03 27.48 52.21 39.60

Location Ref=Mafeteng

Berea -59.77 48.00 86.12 69.55

Maseru Foothills -165.69 48.67 93.45 72.98

Maseru Lowland -130.89 32.76 61.93 52.26

Education Ref=No educ

High School -4.37 46.42 98.47 92.72

Post High School 295.11 76.65 186.40 254.79

Primary -55.49 33.95 65.75 53.78

Occupation Ref=Farmer

Casual Worker -82.10 45.40 82.10 65.69

Pensioner -78.64 54.88 108.58 94.20

Salary Earner -13.58 46.66 91.43 75.06

Unemployed -86.07 35.29 71.38 65.12

head, post high school education, where the Kernel estimator shows a higher precision than the

MCMB resampling method (Tables 7.3 and 7.4). On the contrary, at the 50th quantile of sorghum

data, the Kernel estimator show a higher precision than the MCMB resampling method for all esti-

mates under the education level of household head and one estimate under occupation of household

head, salary earner (Table J.2).

On the basis of the empirical evidence from the application of quantile regression model on house-

hold data, standard errors of quantiles estimated by sparsity function using the Hall and Sheather

(1988) bandwidth rule are recommended since they are the smallest when they are compared with

standard errors estimated from the Kernel estimator and MCMB resampling method. This rec-

ommendation follows from the fact that small standard errors of regression estimates imply high

precision of the estimates in estimating regression parameters. However, we should note that larger

standard errors are not always a disadvantage. This might indicate the capacity to a statistical

method to capture inherent additional variability in the estimation of a parameter, which protects

against committing type I error too frequently, compared to a method that does not have such a

strength.
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Table 7.5: Standard Errors of the 75th Regression Quantile for Maize Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 571.24 102.88 144.48 109.20

Household Size 73.49 28.11 40.82 32.75

Household Size2 3.47 2.23 3.74 3.13

Income 0.08 0.04 0.07 0.08

Sex Ref=Male

Female 18.74 44.69 60.80 63.77

Location Ref=Mafeteng

Berea -53.29 78.05 98.58 73.11

Maseru Foothills -61.08 79.14 107.26 122.65

Maseru Lowland -67.04 53.27 63.10 67.30

Education Ref=No educ

High School -16.39 75.49 115.62 126.80

Post High School 131.86 124.65 185.42 679.19

Primary -162.04 55.21 80.67 85.33

Occupation Ref=Farmer

Casual Worker -248.82 73.83 94.48 72.58

Pensioner -218.84 89.24 130.04 193.31

Salary Earner -228.00 75.88 108.60 105.02

Unemployed -279.37 57.39 82.53 68.39

7.4 Test of Equality of Slopes for Household Data

The Wald test was used to test the hypothesis of pure location shift that all the slope coefficients of

the quantile regression model fitted to the household data are the same across the three quantiles.

The joint test of equality of slope coefficients of maize data for the quantiles 0.25, 0.50 and 0.75

is significant at 1% level of significant. This means that not all slope coefficients across the three

quantiles are the same and thus the effects of the predictor variables on maize availability are not

the same across the three quantiles.

Since the test of joint slopes shows that the effect of predictor variables in the model are not the

same across quantiles, then the next step is to establish predictor variables that are associated with

the effects differences. The test of equality of distinct slopes was used to find out predictor variables

whose effects do not remain the same across quantiles. The results in Table 7.6 show that the dif-

ferences in the effects on maize availability across quantile are associated with each of the categories

marked with asterisks, in relation to their reference categories. The categories are of households

that resided in Maseru foothill, households headed by someone who attained primary education,

someone who was a casual worker, salary earner or an unemployed head. These categories are of

the variables, location of a household, education level of head of household, and occupation of head

of household, respectively. However, the category of households headed by unemployed heads has
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Table 7.6: Test of Equality of Distinct Slopes for Maize Availability

Quantiles = 0.25, 0.50, 0.75

Variable Category F value Pr>F

Household Size 0.2946 0.744876

Household Size2 0.3324 0.717322

Income 1.7398 0.176163

Sex Ref=Male

Female 0.3572 0.699731

Location Ref=Mafeteng

Berea 0.7023 0.495711

Maseru Foothills 4.0566 0.017631 **

Maseru Lowland 2.0175 0.133602

Education Ref=Post COSC

High School 0.1956 0.822346

Post High School 1.4700 0.230478

Primary 3.5055 0.030450 **

Occupation Ref=Farmer

Casual Worker 3.7056 0.024966 **

Pensioner 0.1988 0.819791

Salary Earner 4.0411 0.017903 **

Unemployed 5.6469 0.003657 ***

Asterisks denote the significance level. ***: 1%, **: 5%, *: 10%.

the strongest evidence that its estimates vary across quantiles, shown by three asterisks that denote

the significance level of 1%.

In the case of sorghum availability the joint test of equality of slope coefficients for the three

quantiles is significant at 10%. This suggests the effect of the predictor variables on sorghum

availability that are not the same across the three quantiles, though the evidence for significance is

weaker than that of the test for maize availability. The difference in the effects of predictor variables

on sorghum availability are associated with each of the two categories marked with asterisks, in

relation to their reference categories. The two categories are of the location of households, namely,

Mafeteng and Maseru Lowlands (table 7.7).

Quantile plots in Figure 7.2, and Figure K.1 of Appendix K present a summary of quantile regres-

sion results that show quantile regression estimates for the entire distribution and mean response of

maize availability and sorghum availability, respectively. It shows their confidence bands of quantile

regression estimates and confidence intervals of the ordinary least squares estimates of the mean

effect. Each plot illustrates one regression coefficient for distinct regression estimates for the values

of τ in the range [0.02, 0.98]. The dotted line represents point estimates for different values of τ ,

β̂j(τ), for j = 1, . . . , 15, the solid line superimposed on the quantile plot shows the ordinary least

squares estimate of the mean effect. The two dashed lines represent 90% confidence intervals for

the least squares estimates and the shaded grey area illustrates the 90% confidence band for the
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Table 7.7: Test of Equality of Distinct Slopes for Sorghum Availability

Quantiles = 0.25, 0.50, 0.75

Variable Category F value Pr>F

Household Size 1.4309 0.24001

Household Size2 1.2903 0.27606

Income 0.6942 0.49992

Sex Ref=Male

Female 0.3720 0.68955

Location Ref=Berea

Mafeteng 2.6464 0.07185 *

Maseru Foothills 0.4376 0.64583

Maseru Lowland 4.0716 0.01759 **

Education Ref=Post COSC

High School 0.3558 0.70077

No Formal Education 0.4055 0.66684

Primary 0.3722 0.68941

Occupation Ref=Casual Worker

Subsistence Farmer 0.1228 0.88448

Pensioner 1.0292 0.35802

Salary Earner 0.4135 0.66155

Unemployed 0.0463 0.95476

Asterisks denote the significance level. ***: 1%, **: 5%, *: 10%.

quantile regression estimates. The plots shows how estimates for different regression coefficients

change across quantiles. The computation of the confidence intervals for the regression quantiles

was based on the asymptotic distribution of the estimates, which requires the estimation of the

sparsity function.

The first plot in Figure 7.2, which shows the intercept of the model, may be interpreted as the es-

timated conditional quantile function of the distribution of maize availability of a household which

had five members, and monthly income of R587.40, which resided in Mafeteng and headed by a

male who did not have formal education and whose occupation was of a subsistence farmer. The

number of members of households and monthly income are chosen to reflect the sample means of

these two variables given in Table 2.10. The rest of the plots in Figure 7.2 show the effects of

different variables and categories of categorical variables, in relation to their reference categories,

across the distribution of maize availability.

The plots confirm what was shown by the results from the test of equality of distinct slopes.

The plot of the category of households that resided in Maseru Foot Hills shows that the slope co-

efficients at quantiles 0.25, 0.50 and 0.75 are not constant (Figure 7.2). The plots of the categories

of households headed by casual workers, salary earners and unemployed heads also show that slope

coefficients are changing across quantiles, and thus the effect of these categories, in relation to their

respective reference categories, is different across quantiles. The plot of a category of households
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that resided in Maseru lowlands shows changing slope coefficients across quantiles (Figure K.1).

Slope coefficients that are constant across quantiles, such as that of high school level of education,

are around the ordinary least squares estimate shown by the solid line (Figure 7.2).
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Figure 7.2: Quantile Plot of Maize Availability
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7.5 Summary

The plots of the local measure of goodness of fit, pseudo R square, show a poor fit of the quantile

regression model at lower tails of the conditional distributions of both maize and sorghum avail-

ability, with maize availability having a better fit across quantiles. At a glance, the plots show that

the effects of predictor variables on maize availability varies across quantiles, with more significant

effects at the upper tail of the distribution, while the effects on sorghum availability remained con-

stant up to 85th quantile, and started varying beyond this quantile.

Fitting the regression model at different quantiles shows the effects of predictor variables that

were not shown under the mean response of OLS procedure. This is in line with the observation by

Baur et al. (2004) that OLS procedure conceals a lot of information about the dependence of the

conditional distribution of the response variable on predictor variables in the model, which can be

revealed by applying quantile regression. Occupation of heads of households had a significant effect

on availability of maize for a household, particularly at the 75th percentile. It also had significant

effect on sorghum availability at the median regression, while it did not have effect under the mean

response. Household size had a positive effect on maize availability under the three quantiles. The

significant role played by education status of head of household in determining sorghum availability

shown under the mean response regression is also shown by the quantile regression model of the

three quantiles.

Standard errors of quantiles estimated by sparsity function using the Hall Sheather bandwidth

rule are recommended since they are the smallest when they are compared with those estimated

from the Kernel estimator and MCMB resampling, and hence they give high precision of the regres-

sion quantiles in estimating regression parameters. The joint test of equality of slope coefficients

confirmed what was illustrated by the pseudo R square that the effects of predictor variables on

maize availability are not the same across the three quantiles. The results from the test of equality

of distinct slopes show that the differences in the effects are associated with one category of each

of the two variables, location of households and education status of heads of households, and three

categories of the occupation of households heads. Quantile plots confirmed variables that are as-

sociated with the differences in the effects. The modelling availability of cereals for households in

this chapter and preceding chapters used availability of a given cereal as the continuous variable.

In trying to understand availability of cereals further, households were categorized according to

specific cereals that were available to them, and the GLM was applied to model availability of

cereals in the subsequent chapter.
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Chapter 8

Logistic Regression Models and

Diagnostics

8.1 Introduction

Sometimes applied research requires generalized linear models (GLMs) such as the logistic regression

for analysis of non-Guassian data, not linear regression models. This is due to the nature of the

response variables, which is categorical but not continuous. The generalized linear model is a natural

generalization of classical linear models (McCullagh and Nelder, 1989), of which the simple logistic

regression model is one of the special cases. The choice of the model in studying the relationships

that exist between the response variable and a set of predictor variables is largely determined

by the scale of measurement of the response variable (Greenland, 1985). Logistic regression is a

statistical tool with three variants used to model data where the response variable is a categorical

variable with two categories, normally referred to as a binary outcome variable, or its extension to

categorical variables with more than two categories that can be nominal or ordinal. Thus logistic

regression and its extensions are an alternative to the classical regression used when the response

variable is not measured on a ratio scale but takes on limited number of discrete values within

a specified range. It is used when the distributional assumptions required for the classical linear

regression model do not hold. Simple logistic regression with a dichotomous response, multinomial

or polytomous logistic regression model with a nominal or ordinal response are discussed in the

subsequent sections.

8.2 Binary Response Logistic Regression Model

Binary logistic regression normally referred to as logistic regression is commonly applied to model

data with a binary response (Hosmer and Lemeshow, 2000). The binary response variable takes on
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values one for the outcome of interest normally called a success, and 0 for the other outcome nor-

mally called a failure. Predictor variables in the model can be continuous or categorical. Generally

the probability that the value of the response variable is a success, given values of the predic-

tor variables, is given by P (Y = 1|X = x) = π(x) hence the probability that it is a failure is

P (Y = 0|X = x) = 1− π(x). Unlike in the general linear regression model where the interest is to

study the relationship between the response variable Y and the predictor variables (X1, X2, . . . , Xp),

the interest in logistic regression centers on the relationship between the probability of the response

variable being a success or equivalently being a failure.

The logistic regression model is used to model the probability of occurrence of an outcome of

interest, π(x), which is the conditional mean of Y given x for the binomial distribution. Like in

the classical regression model, we can consider two cases of the logistic regression model, namely

a model with one predictor variable and a model with multiple predictor variables. The logistic

model with one predictor variable can be defined in terms of the odds of the outcome of interest as

π

1− π
= exp(β0 + β1x1). (8.1)

If the predictor variable X is a dichotomous predictor variable with values 0 and 1, the model

defined in equation (8.1) can be presented as

π(1)/[1− π(1)]
π(0)/[1− π(0)]

= exp(β1), (8.2)

which indicates that the odds ratio (OR) depends on the regression parameter β1. Alternatively

the logistic model can refer directly to the probability of the outcome of interest and be presented

as

π =
eβ0+β1x1

1 + exp(β0 + β1x1)
, (8.3)

where π is the expected response, E(Y |X) and β1 is the regression coefficient.

The link function, g(π) = log{π/(1− π)}, called the logit or logistic function is used to trans-

form the model in (8.1). The transformation changes the range of π from [0 to 1] to [−∞ to +∞]

and yields a linear logistic model given by

log
( π

1− π

)
= β0 + β1x1, (8.4)

for the log odds of the outcome of interest. This model states that the log odds of the outcome

of interest is linearly related with the predictor variable X1. The parameters β0 and β1 are the

intercept and slope coefficient respectively. The regression coefficient measures the effect of a unit

change in X1 on the log odds of the probability of the outcome of interest. The sign of β1 indicates

the direction of the change in π. When β1 > 0, π increases as X1 increases and when β1 < 0, π

decreases as X1 increases.
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The logistic regression model can be generalized to a case with p predictor variables, X1, X2, . . . , Xp,

so that the odds of the outcome of interest are defined as

π

1− π
= exp(β0 + β1x1 + . . .+ βpxp). (8.5)

Interaction terms can be included in the model and when an interaction of X1 and X2 is included,

the model becomes

π

1− π
= exp(β0 + β1x1 + . . .+ βpxp + βp+1x1x2). (8.6)

Alternatively the logistic model refers directly to the probability of the outcome of interest as in

the single predictor case presented in equation (8.3) and can be presented as

π =
exp(β0 + β1x1 + . . .+ βpxp)

1 + exp(β0 + β1x1 + . . .+ βpxp)
, (8.7)

where βj is the regression parameter that shows the effect of the jth predictor variable on the log

odds that Y = 1 when other predictor variables in the model are held constant. In equation (8.7),

eβj is the multiplicative effect of a one unit increase in Xj , on the odds , when other predictor

variables are fixed.

Using the link function, g(π), to transform the model in equation (8.7) gives the linear logistic

model or logit model expressed as

log
( π

1− π

)
= β0 + β1x1 + . . .+ βpxp. (8.8)

The multiple logistic regression model is based on the same assumptions underlying the logistic

regression model with one predictor variable. The model states that the log odds of the outcome

of interest is linearly related with predictor variables in the model, where β0 is an intercept and

β1, β2, . . . , βp are slope coefficients. The logistic model in equation (8.8) can also be expressed in a

matrix form as

log
( π

1− π

)
= Xβ, (8.9)

where X is a matrix of predictor variables or the design matrix that includes a column of ones

as the initial column to signify the constant term β0, and thus β is a vector of model parameters

including the constant.

The specification of the logistic regression model assumes that the logit of the outcome of in-

terest is a linear combination of the predictor variables in the model. This involves two aspects of

the model as shown in equations (8.4) and (8.8). The first aspect is about the link function of the

outcome where the assumption is that the logit function is the correct function to use. The second

aspect is about the assumptions that all relevant variables are included in the model, no irrelevant
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variables are included, and the logit function is a linear combination of the predictor variables in

the model. It can happen that the logit function as the link function is not the correct choice or

the relationship between the logit and the predictor variables is not linear. The appropriateness

of the link function can be tested by computing the square of the linear predictor after fitting the

generalized linear model, and refitting the model with a quadratic term (Hinkley, 1985). If the

linear predictor is statistically significant and the square of the linear predictor is not, there is

evidence that the link function is appropriate.

Estimation of the unknown parameters for logistic regression model is done using the method

of maximum likelihood discussed under section 2.4 (Hosmer and Lemeshow, 2000). This method

yields values of the parameters that maximize the likelihood or log likelihood of the parameters for

the observed data. The log likelihood of a set of independent observations y1, y2, . . . , yn may be

expressed as

`(β;y) =
∑

i

∑
i

yixijβj −
∑

i

nilog
[
1 + exp

( ∑
i

βjxij

)]
. (8.10)

The likelihood depends on y only, through the p linear combinations X′y, which are the sufficient

statistics for the model parameters, β. The likelihood equations that result from differentiating the

log likelihood with respect to the vector β can be given by

X′y = X′µ̂, (8.11)

where µ̂i = niπ̂i. The likelihood equations equate the sufficient statistics to their expected value.

Maximum likelihood estimates satisfy the equation

β̂ = (X′WX)−1X′Wz, (8.12)

where W = diag
[
niπ̂i(1− π̂i)

]
is the n× n diagonal matrix of weights. The maximum likelihood

estimates are unbiased to the first order of approximation, with the asymptotic covariance matrix

that is equivalent to the inverse of the Fisher information matrix. The estimated covariance matrix

of the estimates can be presented as

ĉov(β̂) =
{
X′WX

}−1
. (8.13)

The square roots of the main diagonal elements of the matrix are the estimated standard errors of β̂.

The maximum likelihood estimates of the parameters can be obtained by the Newton-Raphson,

Fisher’s scoring or iterative weighted least squares methods. The Newton-Raphson method is an

iterative method for solving nonlinear equations whose solution determines the point at which a

function reaches its maximum (Agresti, 2002). In the iterative weighted least squares, both the

adjusted response variable Z and the weight W depend on the fitted values, for which only current

estimates are available. The adjusted response variable Z0 is developed using the current estimate
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of the linear predictor η̂0 and the corresponding fitted value µ̂0, derived from the link function

η = g(µ).

Once the maximum likelihood estimates are obtained, they can be used to make statistical in-

ferences concerning the relationship between the response variable and predictor variables. These

inferences involve assessment of the significance of predictor variables in the logistic regression

model. The assessment is done by formulating and testing a statistical hypothesis that the predic-

tor variables in the model are significantly related to the response variable. Three tests, namely,

the Wald, likelihood ratio and score tests can be used to test the hypothesis in logistic regression

(Agresti, 2002; Kleinbaum and Klein, 2010).

The Wald test statistic that is used to test the significance of each coefficient β in the model

or the null hypothesis, H0 : β = 0, is the square of the approximate z test statistic given by

z =
β̂

ŜE(β̂)
, (8.14)

where β̂ is the maximum likelihood estimate of β and ŜE(β̂) is the estimated standard error of the

estimate. The z statistic follows a standard normal distribution and its square, z2, which is the

Wald statistic is asymptotically chi-square with one degree of freedom (χ2
1). In the case of multiple

logistic regression, the Wald test has the test statistic

W = β̂
′[

cov(β̂)
]−1

β̂ (8.15)

= β̂
′(
X′VX

)−1
β̂. (8.16)

This has a chi-square distribution with k degrees of freedom, where k is the rank of the covariance

matrix, cov(β̂).

The likelihood ratio test compares two models, where one model is a special case of another.

The larger model is normally referred to as the full model and the smaller model is the reduced

model, obtained by setting certain parameters in the full model to zero. The likelihood ratio test

tests the hypothesis that extra parameters in the full model are equal to zero. The likelihood ratio

test statistic is given by

−2ln
[
`(µ̂0;y)− `(µ̂A;y)

]
= −2ln

(
`(µ̂0;y)
`(µ̂A;y)

)
, (8.17)

where `((µ̂A;y) and `(µ̂0;y) are maximum likelihoods for the full and reduced models respectively.

Under the null hypothesis, H0, the likelihood ratio statistic has approximately a chi-square distri-

bution with the degrees of freedom equal to the difference between the number of parameters in

the full and reduced models. When the sample size is large the Wald and likelihood ratio tests give

similar results. In the case of small to moderate sample sizes, the likelihood ratio statistic tend to

be larger and gives more powerful test than the Wald test (Agresti, 2002).
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The score test is used to test the significance of a variable in the model. It uses the size of

the score function given by U(β) = ∂`
∂β . The score statistic is the ratio of the score function to its

standard error and it can be expressed as

U(β)√
I

=
∂(β)/∂β0√

(−E
[
∂2L(β)/∂β2

0

] , (8.18)

where I is the information matrix. The statistic has an approximate standard normal distribution

and its square is a χ2
1. In the case of multiple logistic regression, the score statistic can be presented

as

U′(β)I−1U(β) (8.19)

Under H0, the score statistic is approximately distributed as a chi-square with degrees of freedom

equal to the number of parameters tested.

There are other criteria that can be used to select a good model in terms of estimating quan-

tities of interest (Agresti, 2002). The commonly known is the Akaike Information Criterion (AIC)

introduced by Akaike in 1971 (Akaike, 1974). The criteria assesses the model fit by comparing its

values from fitting the model with an intercept only and the model with predictor variables. The

Akaike Information Criterion can be given by

AIC = −2 ln(L) + 2p, (8.20)

where L is the likelihood function and p is the number of parameters in the model. According to

Akaike (1974), a model with a smaller value of AIC is considered to be a better model.

8.3 Multinomial Logistic Regression Model

Logistic regression with binary response variable can be generalized to handle cases where the re-

sponse variable has more than two categories (Kleinbaum and Klein, 2010). This case is sometimes

referred to as logistic regression with polychotomous response variable or multinomial logistic re-

gression model. Multinomial logistic regression model is applicable when the response variable Y

has more than two categories that are nominal, meaning that they do not have inherent ordering.

One of the categories is designated as a reference or base category and each of the rest of the

categories is compared with the reference category (Agresti, 2002). The comparison gives pairs of

each category with the reference category, which provide several logistic regression models. When

the response variable has m categories, the multinomial logistic regression model consists of m− 1

logit functions, also called pairwise or generalized logits. The model is based on the assumption

that the categories are independent.
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The probability that the response variable takes on the value j given a set of predictor variables is

given by P (Y = j | x) = πj(x) and
m∑

j=1

πj(x) = 1. The counts in the m categories of Y are con-

sidered as multinomial with probabilities π1(x), π2(x), . . . , πm(x). The multinomial logistic model

can be presented in terms of these probabilities as

πj(x) =
exp(αj + β′jx)

1 +
∑m−1

j=1 exp(αj + β′jx)
. (8.21)

The probability for the reference category, is given by

πj(x) =
1

1 +
∑m−1

j=1 exp(αj + β′jx)
, (8.22)

where αj is the intercept common to all the m−1 logit functions, and βj are regression parameters

that vary from one logit function to another. By comparing each response variable with the

reference category, the multinomial logistic regression provides m − 1 logit functions. The use of

the logit functions results with the multinomial logistic regression model consisting of m−1 logistic

regression equations that are estimated simultaneously. Thus multinomial logistic regression is a

statistical tool that fits multiple logistic regression models. When the reference category is the last

category, which is the mth category, the jth logistic regression equation can be presented as

log
( πj(x)
πm(x)

)
= α+ β′jx, (8.23)

where πj(x) is as defined earlier in this section and πm(x) is the probability of the reference cate-

gory. The probability distribution of the response variable is multinomial distribution instead of the

binomial distribution of the case in binary logistic regression. The multinomial logistic regression

describes the effects of predictor variables in the model on the m− 1 logits, where the effects vary

depending on the category paired with the reference category.

Multinomial logistic regression model uses maximum likelihood procedure to estimate regression

coefficients, as it is the case with the binary logistic regression. The likelihood function in equation

(8.10) can be generalized to accommodate j categories of the response variable.

8.4 Ordinal Logistic Regression Model

In some application of multinomial logistic regression, the categories of the response variable are

ordered in nature or the data can be grouped by the researcher in such a way that the categories

are ordinal not nominal. The regression model applicable in such situations is multinomial logistic

model for ordinal responses normally called ordinal logistic regression model. Like in binary and

multinomial logistic regression models, predictor variables may be categorical and/or continuous.
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The ordinal logistic regression model takes the ordering of the categories into account and hence it

makes full use of the information about the ordering (Kleinbaum and Klein, 2010).

Literature reports a number of logistic regression models that can be used for ordinal responses,

such as the cumulative logit model by Walker and Duncan (1967), continuation-ratio model by

Feinberg (1980), stereotype logistic model by Anderson (1984) and partial proportional odds model

by Peterson and Harrel (1990). The most commonly used model is the cumulative logistic model

also called the proportional odds model (McCullagh, 1980). When the response variable have or-

dered categories, the category with Y = yi is considered to be in the lower rank than the category

with Y = yj , if i < j.

Consider m categories of an ordinal response variable Y , the proportional odds model is based

on the cumulative probability that the value of the response variable falls in category j or below,

P (Y ≤ j). According to Agresti (2002), the cumulative probabilities given a vector of predictor

variables, x, can be defined by

P (Y ≤ j | x) =
exp(αj − β′x)

1 + exp(αj − β′x)
, j = 1, 2, . . . ,m (8.24)

The proportional odds model aims to model several logits of cumulative probabilities called cumu-

lative logits. These logits can be presented as

logit(γj) = log
P (Y ≤ j | x)

1− P (Y ≤ j | x)
(8.25)

= log
π1(x) + . . .+ πj(x)
πj+1(x) + . . .+ πm(x)

, j = 1, 2, . . . ,m− 1. (8.26)

Each of the cumulative logits uses all the m categories of the response variable and m − 1 log-

its are modeled, one for each of the cut points of the response variable, 1 versus 2, 3, . . . ,m −
1; 1, 2 versus 3, . . . ,m− 1 and others. The proportional odds model uses all the cumulative logits

and can be presented by

logit(γj) = αj + β′x, j = 1, 2, . . . ,m− 1, (8.27)

where each cumulative logit has its own intercept αj , satisfying the inequality that α1 ≤ α2 ≤
. . . ≤ αm. The intercept depends on j and it increases with j, since the probability P (Y ≤ j | x)

increases with j for given values of predictor variables. The proportional odds model assumes that

the cumulative logits can be represented as parallel linear functions of predictor variables. In other

words for each cumulative logit the slopes β remain the same. This assumption is referred to as

the assumption of proportional or parallel odds. The proportional odds model is based on the

assumption that the observations of the response variable are independent and have multinomial

distribution. Maximum likelihood estimation procedure can be used to estimate parameters in the

proportional odds model.
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The score test can be used to test the assumption of proportional odds, so that the proportional

odds is valid. It tests the null hypothesis H0 : βj = β, that is the effect of the predictor variables on

the odds of the category j of a response variable or below is the same for all j. This test compares

p parameters for p predictor variables across (m − 1) logits, where m is the number of categories

of a response variable. Let the parameter vector θ of the proportional odds model consists of the

parameters [α1, α2, . . . , αm−1,β
′
1,β

′
2, . . . ,β

′
m−1], where β′j = β1j , β2j when there are two predictor

variables in the model. Then Abeyskera and Sooriyarachchi (2008) presented the score statistic

that tests the hypothesis, H0 : β1 = β2 = . . . = βm−1, as

S = U ′(β̂0)W
−1(β̂0)U(β̂0), (8.28)

where U is the multivariate analogue of the quasi-score function given by

U =
n∑

i=1

(∂µi

∂β

)
V −1

i (Yi − µi). (8.29)

This function is asymptotically multivariate normally distributed with µi and Vi, the mean and the

working covariance matrix of Yi, respectively. The statistic S is asymptotically χ2 with p(m − 2)

degrees of freedom, where p is the number of parameters corresponding to the predictor variables

in the model. If the score test is not significant, there is evidence that the effect of the predictor

variables on the odds of the category j of a response variable or below is the same for all j. Thus

the odds ratios can be considered constant across all possible cut points of the response variable.

When the assumption of proportional odds does not hold, alternative ordinal regression models

based on alternative assumptions about the ordinal nature of the response variable may be used

(Kleinbaum and Klein, 2010). Examples of such models are the continuation-ratio model, stereo-

type logistic model and partial proportional odds model.

8.5 Goodness-of-Fit in Logistic Regression

The assessment of goodness-of-fit for any generalized linear model should start with examining the

deviance, Pearson chi-square statistic and, if possible, a goodness of fit statistic based on deciles

(Hosmer et al., 1991). The first two measures are functions of residuals, which can also be used to

assess goodness-of-fit in multinomial and ordinal logistic regression models. The Pearson statistic

is defined as

χ2 =
n∑

i=1

χ2
i =

n∑
i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
, (8.30)

where χi is the Pearson residuals, which can be defined as

χi =
yi − niπ̂i√
niπ̂i(1− π̂i)

. (8.31)
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The larger the value of the Pearson statistic, the worse the model fits the data. The Pearson

statistic is asymptotically χ2 with (n − p) degrees of freedom, where n is the number of subjects,

experimental or observational units and p is the number of parameters in the logistic regression

model.

The diagonal elements of the hat matrix, hii defined under diagnostics for linear regression model,

can be used to standardize the Pearson residual. The standardized Pearson residuals is given by

rP
i =

χi√
1− hii

=
yi − niπ̂i√

niπ̂i(1− π̂i)(1− hii)
, (8.32)

An absolute value of rP
i larger than 2 and 3 shows that there is lack of fit (Agresti, 2002).

The deviance is the log-likelihood ratio test statistic of a saturated model with n parameters

against the fitted model with p parameters. The deviance for a logistic model is an analogy of

the residual sum of squares in ordinary least squares regression for the linear model. The larger

the deviance, the worse the logistic model fits the data, and the smaller the deviance the better

the fit of the logistic model. Like the Pearson statistic, the deviance is asymptotically χ2 with

(n− p) degrees of freedom. It is worth noting that when the asymptotic approximation is doubted,

such as in binary data, deviance cannot be used to provide an absolute goodness-of-fit test because

the Pearson chi-square and deviance statistics are identical and become the scaled residuals sum

of squares with χ2
n−p distribution for normal models (Lee et al., 2006). In performing tests of

hypotheses regarding the fit of the model, the deviance is compared with the percentiles of a χ2

distribution. The degrees of freedom is determined by the number of observations less the number

of parameters estimated.

In the case of the binomial GLM, where the logistic regression model is a special case with ni = 1,

the deviance statistic is

D =
n∑

i=1

t2i = 2
n∑

i=1

yi log
yi

niπ̂i
+ (ni − yi) log

ni − yi

ni − niπ̂i
(8.33)

where ti = 2
(
yi log yi

niπ̂i
+ (ni − yi) log ni − yi

ni − niπ̂i

) 1
2 .

The deviance statistic is build from the deviance residual, which can be given by

di =
√

(ti)× (yi − niπ̂i). (8.34)

Similarly, the deviance residuals can be standardized and be presented as

rD
i =

di√
1− hii

(8.35)

Plots of residuals against predictor variables or linear predictor values may detect lack of fit of the

model. The residuals lose relevance in detecting lack of fit when fitted values are small, so do the
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Pearson statistic X2 and deviance G2 (Agresti, 2002).

Hosmer and Lemeshow (1980) used a contingency table approach type and developed seven goodness-

of-fit test statistics that involve grouping based on estimated probabilities obtained from the fitted

logistic regression model, and grouping based on the fixed pre-determined cutoff points. Four of

these statistics have a χ2(g − 2) distribution and the other three have a χ2(2g − 5) distribution,

where g is the number of groups. The majority of the applications of logistic regression use g = 10,

however, less or more than 10 groups can be used (Lemeshow and Hosmer (1982)). In developing

the test statistic, Hosmer and Lemeshow (1980) required that g > (p + 1), where p is number of

predictor variables in the model.

Two of the seven test statistics are commonly used. These are Ĉ∗g , based on grouping the data

according to the probabilities of the n observations, π̂(x1), π̂(x2), . . . , π̂(xn), estimated from the

fitted model, and Ĥ∗
g based on grouping the data according to the fixed cutoff points. Under the

null hypothesis H0, if the number of predictor variables plus one is less than the number of groups,

(p + 1 < g), and the logistic regression model is the correct model, Ĉ∗g has a distribution closely

approximated by χ2 with (g − 2) degrees of freedom. This statistics can be defined as

C∗g =
1∑

k=0

g∑
r=1

(okr − ekr)2

ekr
, (8.36)

where nr is the number of observations in the rth group, k is 0 for observations without the attribute

of interest and 1 for observations with the attribute of interest Hosmer and Lemeshow (1980). The

quantities,

o1r =
nr∑
i=1

yi and o0r =
nr∑
i=1

(1− yi) (8.37)

denote the observed number of observations with the attribute and without the attribute of interest,

respectively. The quantities,

e1r =
nr∑
i=1

π̂(xi) and e0r =
nr∑
i=1

(1− π̂(xi)) (8.38)

denote the expected number of observations with and without the attribute of interest, respectively.

The first group of the g groups contains approximately the smallest n′1 = n
g values of π̂(xi), the

second group contains approximately the second smallest n′2 = n
g values of π̂(xi), up to the last

group that contains approximately the highest n′g = n
g values of π̂(xi).

The test statistic Ĉ∗g is computed using empirical deciles. The approach that uses deciles has

an advantage that it ensures that each group has a fair number, (n
g ), of observations. However, it

has a disadvantage that the actual values of the estimated probabilities of the outcome of interest

are not included. Hosmer and Lemeshow (1980) developed Ĥ∗
g as an alternative goodness-of-fit
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test, where grouping is done according to the fixed cutoff points. The cutoff points are the pre-

determined values of estimated probabilities from the fitted model given by 0.0 ≤ π̂(xi) < 0.1, 0.1 ≤
π̂(xi) < 0.2, . . . , 0.9 ≤ π̂(xi) < 1.0. The test statistic Ĥ∗

g can be defined as

H∗
g =

1∑
k=0

g∑
r=1

(o′kj − e′kr)
2

e′kr

, (8.39)

where o′kr and e′kr are as defined in equations (8.37) to (8.38), nr in this case is the number of

observations whose estimated probabilities fall in the rth cutoff point, and r = 1, 2, . . . , g. Like

C∗g , the statistic H∗
g has a distribution closely approximated by χ2 with (g− 2) degrees of freedom.

Hosmer and Lemeshow (1980) noted that H∗
g was found to be more powerful than C∗g , however,

H∗
g has a disadvantage that when the sample size n is small nr could be small for some cutoff points.

Fagerland et al. (2008) derived three goodness-of-fit test statistics for multinomial regression model.

The statistics are the Pearson chi-square statistic, standardized statistic derived from the work of

Osius and Rojek (1992), and the modification of Hosmer and Lemeshow (1980) test statistic to suit

multinomial logistic model. The Pearson chi-square statistic compares binary indicator variables yi

with the predicted probabilities, π̂i, estimated from the fitted model. The statistic can be defined

as

χ2 =
n∑

i=1

m-1∑
j=0

(yij − π̂ij)2

π̂ij
, (8.40)

where yij is the observed frequency in cell (i, j), and π̂ij is the expected frequency. The Pearson

chi-square statistic is asymptotically χ2 with n×(m−1) degrees of freedom. Fagerland et al. (2008)

noted that if the model is fitted with more than few binary predictor variables, the expected fre-

quencies will be too small for the asymptotic χ2 distribution to hold, though they did not indicate

how much is considered to be more than few and to be small in this case.

A standardized statistic with p-values computed using the standard normal distribution suggested

by Osius and Rojek (1992), was used to derive the goodness-of-fit statistic. The standardized

statistic is defined by

z =
(X2 − µ̂)

σ̂
, (8.41)

where the asymptotic mean µ̂ = n × (m − 1), and the estimator of the asymptotic-variance was

obtained using the estimator β̂. The statistic z has the asymptotic standard normal distribution,

under the hypothesis that the correct model is fitted.

Fagerland et al. (2008) adapted the Hosmer and Lemeshow (1980) statistic based on the deciles

formed from the estimated probabilities and proposed the statistic based on the deciles formed from

the sum of estimated probabilities,
∑m−1

j=1 π̂ij = 1− π̂i0, for testing goodness of fit for multinomial
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logistic regression. The sizes of g groups n1, . . . , ng are determined using a similar procedure as that

used for C∗g . When n
g is not an integer, all groups will not have the same number of observations.

However, the value of the statistic is not affected by the small imbalances in the size of groups,

unless there are a number of tied values. The test statistic for multinomial logistic regression is

given by

C∗g =
g∑

r=1

m−1∑
j=1

(Orj − Erj)2

Erj
, (8.42)

where Orj and Erj are the sums of the observed frequencies and estimated probabilities for each

category of the response variable in each group. The two sums are defined as

Orj =
∑
l∈Ωr

yli and Erj =
∑
l∈Ωr

π̂lj , (8.43)

for r=1, 2, . . . , g, j=0, 1, . . . , m-1, where Ωr denote the indices of the n
g observations in group r.

The statistic Cg has an approximate χ2 distribution with (g − 2)× (c− 1) degrees of freedom.

Lipsitz et al. (1996) noted that the deviance and Pearson chi square statistics can be used to assess

goodness-of-fit for ordinal logistic regression models with categorical predictor variables. However,

the two statistics require that most of the expected counts formed by cross classifying the categories

of the response variable are greater than 5. If more than 20% of the expected counts are less than

5, they may not be appropriate for testing the goodness-of-fit for ordinal logistic regression model.

The authors then proposed an extension of Hosmer and Lemeshow (1980) goodness-of-fit test that

suits ordinal logistic regression model under the circumstance.

The proposed goodness-of-fit statistic is based on scores and it starts by assigning a score sj

to category j of the response variable. The score can be the actual numerical value of the re-

sponse or the midpoint of the interval when the response variable is a grouped continuous variable.

In cases where the response variable has no underlying numerical scale, integer scores, such as

1 ≡ poor, 2 ≡ moderate and 3 ≡ good, can be used. Then the fitted score or predicted mean score

is calculated as

µ̂i =
m∑

j=1

sj π̂ij ; i = 1, 2, . . . , n, (8.44)

where π̂xi1 , π̂xi2 , . . . , π̂xim are the predicted probabilities for the ith observation in category j of the

response variable. The observed score for the ith observation is given by

Zi =
m∑

j=1

sjYij = s′Yi, (8.45)

where s = (s1, s2, . . . , sm)′. The goodness of fit statistic is formed by partitioning subjects into

regions based on the percentiles of the mean scores µ̂i. Lipsitz et al. (1996) followed Hosmer and

152



Lemeshow (1980) approach for a binary response variable and suggested 10 groups of approximately

equal size. The grouping is done according to the mean scores, where size is determined as in C∗g .

Abeyskera and Sooriyarachchi (2008) suggested that as a general rule, the value of g should satisfy

the inequality 6 ≤ G < n/5m.

Given the partitioning of the data, the goodness-of-fit statistic is developed by defining the g − 1

group indicators and an alternative model is used to assess the goodness-of-fit of the proportional

odds model. If the proportional odds model is correctly specified, the likelihood ratio, Wald and

score statistics have an approximate χ2 distribution with (g − 1) degrees of freedom when the

sample size n is large.

8.6 Logistic Regression Model Diagnostics

The step that naturally follows the fitting of the regression model is that of assessing the fit criti-

cally (Pregibon, 1981). The fit of the model is normally assessed using diagnostics, which are used

to identify observations that are not well explained by the fitted model, as well as observations

that unduly influence some important aspects of the fit of the model. Diagnostics used in logistic

regression are analogues of some of the linear regression model diagnostics. However, an observa-

tion can have a big influence in ordinary regression than a binary observation can have in logistic

regression (Agresti, 2002).

Other regression diagnostics tools that include plots of ordered residuals against normal percentiles,

and case deletion diagnostics can be used to assess the fit of the model. However, when there are

more than two predictor variables in the logistic regression model, plots of residuals are not ade-

quate in identifying influential outliers Sarkar et al. (2011), and case deletion diagnostics can be

used. Case deletion diagnostics measure an influence of an observation on parameter estimates and

different quantities of the fitted model.

In logistic regression as it is the case in the classical regression, the basic components that build

diagnostics measures used to identify outlying and influential points, are residuals and diagonal ele-

ments of the projection matrix. Residuals for the logistic regression are components of the Pearson

chi-square and deviance as discussed under the section of goodness-of-fit in logistic regression. The

projection matrix for the logistic regression model can be denoted by M, which can be defined as

M = I−H = I−W1/2X(X′WX)−1X′W1/2. (8.46)

The examination of the Pearson residuals χi, deviance residuals di and diagonal elements of the

projection matrix mii, can point to outlying and influential points in the data set (Pregibon, 1981).

Pregibon recommended the use of index plots of the three quantities χi, di, andmii, and plots of
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each of the quantities against fitted values, for specific cases. The index plots are based on plotting

each of the quantities against the observations index numbers. Another plot proposed by Pregibon

(1981) is based on the weighted hat matrix

H∗ = W1/2X∗(X∗′WX∗)−1X∗′W1/2, (8.47)

where X∗ = (X; z) with diagonal elements h∗ii = hii + χ2
i /χ

2, which are called leverages as hii in

the linear regression model, χ2 and χ2
i are defined in equations 8.30 and 8.31. Values of h∗ii near

one correspond to observations that are either poorly fit by the model and extreme with respect to

the predictor variables or both. These will be shown by large values of the Pearson residuals and

leverage, respectively. The plot of χ2
i /χ

2 against hii can be used to detect poorly fit observations

and high leverage points.

The discussed quantities identify observations that are not well explained by the model or have

unduly effect on some quantities of the fitted model, but cannot measure the influence of such obser-

vations on quantities of the fitted model. Pregibon (1981) addressed this limitation by generalizing

diagnostics for linear regression models by Welsch and Kuh (1977) and developing diagnostics for

logistic regression models. The diagnostics measure the influence of the ith observation on regres-

sion coefficients, goodness-of-fit, and the remaining n− 1 observations.

The suggested diagnostic that measures the influence of the ith observation on the model coef-

ficients is given by

∆iβ̂
1

=
(X′VX)−1xisi

(1− hii)
, (8.48)

where ∆iβ̂
1

= β̂
′
(w̄) is the derivative of the one-step estimate, β̂(w̄), evaluated at w̄ and si =

yi − ŷi = yi − nip̂i. Plots of
∆i

ˆβ
1

j

SE(
ˆβ

1

j )
against the observations index numbers can be used to identify

observations that influence some coefficients.

In realizing that it becomes cumbersome to look at the index plots of each coefficient when there

are many predictor variables in the model, Pregibon (1981) adapted the aggregate measure of in-

fluence by Cook (1977) to develop the confidence interval displacement diagnostic. The developed

diagnostics is given by

ci =
χ2

ihii

(1− hii)2
. (8.49)

This diagnostic is based on an approximate ellipsoidal confidence region. The plots of the confidence

interval displacement against the index numbers or predicted values θ̂ = xβ̂ can be used to identify

influential observations. Another confidence interval displacement diagnostic similar to ci was

suggested by Pregibon (1981) as

c̄i =
χ2

ihii

(1− hii)
. (8.50)
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This measure of influence has a smaller value, when it is compared with ci in equation (8.49). It

measures the overall influence of the ith observation in the fitted values for all cases in the data set

except the deleted case, while ci include all the cases in the data set.

Pregibon (1981) noted that observations with a big influence on the model are likely to have a

big effect on the quality of the fit of the model, which is determined by the Pearson and deviance

statistics. Hence the proposal of measures of influence that identify observations that have substan-

tial influence on the two statistics, D and χ2. The diagnostic proposed for the deviance statistic D

is given by

∆iD = d2
1 +

χ2
ihii

(1− hii)
. (8.51)

It measures a change in deviance associated with deleting the ith observation. Index plot of ∆iD or

plot of square of the components of the deviance t2i against c̄i can be used for identifying observa-

tions that influence the deviance statistic. Normal probability plot based on the ordered values of

normal studentized residuals, ti√
mii

, was suggested as an alternative plot for identifying influential

observations.

The diagnostic proposed for identifying observations that influence the Pearson Statistic χ2 is

given by

∆iχ
2 =

χ2
i

(1− hii)
. (8.52)

This is the logistic regression analogue to ∆iRSS, the change in residual sum of squares, of a linear

regression model. Similarly, index plots of ∆iχ
2 can be used to identify observations that affect

the Pearson statistic.

Pregibon (1981) also developed a diagnostic that measures the extent to which the ith obser-

vation influence the fit of the remaining n − 1 observations. This analysis is normally based on a

subset of λ ≤ 0.05n observations that clearly or marginally stood out in the diagnostics plots that

were discussed earlier. This diagnostic can only show the magnitude of the change in the fit not

the direction as whether the fit is moving toward or away from yi. The diagnostic is given by

∆id
2
i =

2χ2
ihliχl

(1− hii)
+

χ2
l h

2
li

(1− hll)2
, (8.53)

which is a function of χi, hli, and χl. The index plot of ∆id
2
i against i for a subset of observations

with indices L = (l1, l2, . . . , lλ) can be used to identify influential observations.

Diagnostics have not yet been extended to multinomial and ordinal logistic regression models,

and thus diagnostics for logistic regression model can be used where separate binary responses are

used (Hosmer and Lemeshow, 2000).
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Chapter 9

Application of Logistic Regression

Models to Households Data

9.1 Introduction

We applied the three variants of logistic regression to model availability of the three major food

cereals in Lesotho, namely, maize, sorghum and wheat. In the application of linear regression mod-

els to households data, availability of a given cereal, for example sorghum, used as the response

variable is a continuous variable. It was defined as the amount of sorghum available to a household,

measured in kilograms. In this chapter, we further investigated availability of cereals to households

by creating three categorical response variables. These are a binary response variable, a polychoto-

mous or multiple response variable with nominal and ordinal categories, respectively.

The binary response variable is created for sorghum and wheat only, where the two responses

are ”availability of sorghum or wheat” and ”non-availability of sorghum or wheat”. The binary

response variable is not created for maize because the cereal was available to all households included

in the studied sample, thus there were no households without maize. In creating a multiple response

variable with nominal categories, all the three food cereals were taken into consideration and four

categories of households were created. The first category is of households with availability of maize

only, the second is of households with availability of maize and sorghum, the third is of households

with availability of maize and wheat, and the last category is of households with availability of all

the three food cereals. The creation of multiple responses compensated for the loss of information

that resulted from dichotomizing households as households with availability of a given food cereal

and households without availability, without indicating if households had availability of one, two

or all the three cereals.

The third categorical variable has ordinal categories in the sense that households were ranked
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according to whether one cereal, two or all the three cereals were available to them. Thus the cre-

ated ordinal categorical variable has three categories as; households with availability of maize only,

households with availability of maize and either sorghum or wheat, and households with availability

of maize, sorghum and wheat. This ranking was done with the realization that a household with

availability of all the three food cereals might be better off in terms of access to a variety of cereals

than a household with availability of maize only, or availability of maize and one of sorghum or

wheat. On the other hand a household with availability of maize and one of sorghum or wheat was

better off than a household with availability of maize only.

Ordering of categories gives additional information about which households had better entitle-

ment or access to food cereals than when categories are nominal without considering order. The

difference between the three ordinal categories and the four nominal categories is that in ranking

the responses, the second and third nominal categories were collapsed to have a category that con-

sists of households with maize and one additional food cereal. In the case of nominal categories,

the point was to show that there were households with access to maize and sorghum and those with

access to maize and wheat. These two nominal categories do not say much about which category

of households was better off in terms of variety of food cereals available to households.

9.2 Logistic Regression Modeling of Wheat Availability

The LOGISTIC procedure was used to fit the simple logistic regression model as well as to perform

logistic regression diagnostics. The procedure has the INFLUENCE and IPLOTS options that

produce diagnostics plots. The fitted model compares availability and non-availability of wheat

for households. The predictor variables in the model are the characteristics of households that

were used to fit the linear and quantile regression models. The response variable is binary with cat-

egories, ’0 = availability of wheat to a household’ and ’1 = non availability of wheat to a household’.

Out of the 296 households in the sample 152 (51%) had wheat available to them and 144 (49%)

did not, during the observational period. The iterative method used to estimate the logistic re-

gression coefficients is Newton-Raphson method. The Akaike Information Criterion (AIC) and the

Log-Likelihood (-2 Log L) tests were used to assess the model fit by comparing their values from

fitting the model with an intercept only and the model with predictor variables. The values for the

model with an intercept only are 412.127 and 410.127 for AIC and -2 Log L, respectively, while

the values from the model fitted with predictor variables are 377.396 and 347.396 respectively. The

smaller values of the test statistics associated with the fitted model than those from the model with

the intercept only suggest that the model fits the data well.

The appropriateness of the logit link function used in fitting the logistic regression model was
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checked by computing the square of the linear predictor and refitting the model with a quadratic

term. The results show a small p-value of the linear predictor and a large p-value of the quadratic

term (Table 9.1). These values suggest that the linear predictor is significant while the quadratic

term is not significant. Thus the logit is the correct link function for this model.

Table 9.1: Results of the Link Function Test for Wheat Data

Variable DF Chi-square P-value

Constant 1 -0.25 0.804

Linear Predictor 1 6.33 <.0001

Squared Linear Predictor 1 0.42 0.676

The likelihood ratio, score and Wald tests, that test the global null hypothesis that all the regres-

sion coefficients associated with the predictor variables in the model are equal to zero against the

alternative hypothesis that at least one of the coefficients is not equal to zero, are all significant at

5% level. This indicates that there is enough evidence that at least one of the predictor variables

in the model predicts the probability of availability of wheat to households.

Table 9.2: Type III Analysis of Effects on Wheat Availability

Effect DF Wald Chi-square P-value

Household Size 1 0.0000 0.9962

Income 1 0.8752 0.3495

Sex 1 1.6472 0.1993

Location 3 8.5468 0.0360

Education 3 7.2824 0.0634

Occupation 4 12.7860 0.0124

The Wald test with p-values that are smaller than 0.05 show that only two variables are significant

at 5% level of significance (Table 9.2). The variables that correspond to the small p-values are the

location of a household and education level of head of household. The significance of the variables

shows that there is evidence that the two variables predicts the probability of availability of wheat

to a household. In particular one category of location, Berea with a p-value of 0.008, and one

category of occupation of unemployed household heads with a p-value of 0.006, are significant at

5% level of significance (Table 9.3). This suggests that the odds of availability of wheat for house-

holds which resided in Berea was significantly different from that of households which resided in

Mafeteng. The results further suggest that the odds of availability of wheat for households headed

by unemployed people was significantly different from that of households headed by subsistence

farmers.

Table 9.3 further presents 95% confidence intervals of odds ratios, obtained by exponentiating con-
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Table 9.3: Logistic Regression Estimates for Wheat Availability

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Household Size -0.00 0.06 -0.00 0.996 1.00 0.897 1.114

Income 0.00 0.00 0.94 0.350 1.00 1.000 1.001

Sex (ref=Male)

Female -0.38 0.30 -1.28 0.199 0.68 0.383 1.222

Location (ref=Mafeteng)

Berea 1.56 0.59 2.64 0.008 4.78 1.499 15.234

Maseru Foothill -0.33 0.54 -0.61 0.545 0.72 0.249 2.083

Maseru Lowland 0.27 0.35 0.78 0.438 1.31 0.664 2.576

Education (ref=No educ)

Primary -0.00 0.36 -0.00 0.998 1.00 0.497 2.010

High School 0.42 0.44 0.91 0.340 2.97 1.061 8.324

Post High School 1.57 1.18 1.34 0.181 4.82 0.481 48.380

Occupation (ref=Farmer)

Casual Worker -0.25 0.48 -0.52 0.603 0.78 0.303 2.000

Pensioner -0.28 0.58 -0.49 0.625 0.76 0.244 2.333

Salary Earner 0.12 0.51 0.23 0.820 1.12 0.415 3.039

Unemployed -1.03 0.37 -2.77 0.006 0.36 0.171 0.740

fidence intervals of parameter estimates shown in the first column. The confidence intervals for

categories of households that resided in Berea [1.499, 15.234], households headed by unemployed

people [0.171, 0.740] and households headed by people with high school education [1.06, 8.32] do not

contain the value one. This indicates that the results of the confidence intervals are in agreement

with the results from the Wald test that availability of wheat for households in these categories

was significantly different from that of their counterparts in the respective reference categories.

Considering the effect of the location of a household on availability of wheat, households that

resided in Berea with an odds ratio of 4.78 were 4.78 more likely to have availability of wheat than

households that resided in Mafeteng, when other variables in the model are adjusted for. In the

case of the effect of education status of household head, households headed by people who attained

high school education with an odds ratio of 2.97 were 2.97 times more likely to portray availability

of wheat than households headed by people with no formal education. Concerning the effect of

occupation of household head, households headed by unemployed people have an odds ratio of 0.36,

which is less than one, meaning such households were less likely to portray availability of wheat

than their counterparts headed by subsistence farmers. The effect in each category was observed

when the rest of the variables in the model were held constant.

The goodness-of-fit of the logistic regression model was assessed using the Pearson chi-square, de-

viance and Hosmer and Lemeshow test. The tests were used to test the null hypothesis that the

logistic regression model fits the data against the alternative that the model does not fit the data.
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Table 9.4: Grouping for the Hosmer and Lemeshow Goodness-of-Fit Test for Wheat Availability

Group Total
Success = Wheat Failure = No Wheat

Observed Expected Observed Expected

1 30 5 5.74 25 24.26

2 30 12 7.96 18 22.04

3 31 8 10.27 23 20.73

4 30 11 12.19 19 17.81

5 30 17 14.23 13 15.77

6 31 12 16.87 19 14.13

7 30 18 18.32 12 11.68

8 30 24 20.64 6 9.36

9 30 24 23.96 6 6.04

10 24 21 21.83 3 2.17

The value of Pearson chi-square statistic is 278.58 with a p-value of 0.2857. The large p-value

shows that the null hypothesis cannot be rejected and hence the model fits the data well. The

value of deviance statistic is 348.65 with a p-value of 0.0041. Contrary to the results of the Pearson

statistics, the p-value of the deviance statistic is small leading to the rejection of the null hypothesis

that the model fits the data. However, the results of the Hosmer and Lemeshow test having a value

10.07 with 8 degrees of freedom and the large p-value of 0.2599, are in agreement with the the

results of the Pearson test that the model fits the data well, The disagreement between the results

from the Pearson chi-square and deviance statistics is explained by Lee et al. (2006) noting that

in the case where the asymptotic approximation is doubted, like in the binary data that we are

dealing with in this section, deviance cannot be used to provide an absolute goodness-of-fit test.

This is so because the two statistics are identical and become the scaled residuals sum of squares

with χ2
n−p in the case of normal models. Hence we conclude on the basis of the results from the

Pearson chi-square statistic and Hosmer and Lemeshow test that the model fits the data well. The

grouping of observations for the Hosmer and Lemeshow test according to the probabilities of the

observations is presented in Table 9.4.

Influential observations were identified using index plots of diagnostics measures presented in Fig-

ures 9.1, 9.2, 9.3, and Figures L.1, L.2, L.3 of Appendix L. The index plots of Pearson and deviance

residuals in Figure 9.1 suggest that observations 166, 168, 177 and 179 are poorly fitted by the

model. These are outlying observations with large values of the residuals. The bottom left plot of

diagonal elements of the hat matrix shows observation 169 as a high leverage point that is extreme

with respect to predictor variables.

The top left and right plots of confidence interval displacement C and CBar in Figure 9.2 show

that observation 122 [displacement C = 1.26 and displacement C = 1.07] and observation 129 [dis-

placement C = 1.25 and displacement CBar = 0.87], have undue influence on individual parameter
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Figure 9.1: Plots of Residuals and Hat Matrix Diagonal for Wheat Availability

Figure 9.2: Plots of CI Displacements C and CBar, and Change in ChiSquare and Deviance for

Wheat Availability
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estimates and the fit of the model. The plots can only identify observations with undue influence

on estimates but cannot show how each estimate is being affected. Observations 122 also have

undue influence on the Pearson chi-square and deviance goodness of fit measures since it appears

outstanding in the bottom left and right plots. Similarly, observation 114 [Pearson 7.25 and De-

viance = 4.39] have a substantial influence on the two goodness-of-fit measures and hence a big

effect on the quality of the fit of the model.

Figure 9.3: Plots of DBetas for Berea, Maseru Foot Hills, Maseru Low Lands and High School for

Wheat Availability

Observation 169 has an effect on estimated coefficients of three levels of education, namely, primary,

high school and post high school education (Figures 9.3 and L.2). In the case of occupation, obser-

vations 73 and 92 have an impact on the parameter estimate of casual workers, while observations

125 and 169 have an impact on the parameter estimate of salary earners (Figures L.2 and L.3).

9.3 Logistic Regression Modelling of Sorghum Availability

The second logistic regression model fitted compares availability and non-availability of sorghum

for households. More than half of the households 162 [55%] had availability of sorghum and 134

[45%] did not have. The iterative method used to estimate the logistic regression coefficients is

Newton-Raphson method. The values of AIC and -2 Log L for the model with an intercept only

are 409.691 and 407.691 respectively, while their respective values for the fitted model are 380.755
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and 352.755. The smaller values from the fitted model than the values from the model with the

intercept only show that the model fits the data well.

Table 9.5: Results of the Link Function Test for Sorghum Data

Variable DF Chi-square P-value

Constant 1 -0.25 0.804

Linear Predictor 1 6.33 <.0001

Squared Linear Predictor 1 0.42 0.676

The results from testing the appropriateness of the logit link function suggest that the logit is the

correct link function for this model since the linear predictor is significant while the quadratic term

is not (Table 9.5). The likelihood ratio, score and Wald tests are all significant at 5% level. This

suggests that there is evidence that at least one of the predictor variables in the model predicts the

probability of availability of sorghum to household.

Table 9.6: Type III Analysis of Effects on Sorghum Availability

Effect DF Wald Chi-square P-value

Household Size 1 0.2936 0.5879

Income 1 0.3561 0.5507

Sex 1 1.1298 0.2878

Location 3 6.2572 0.0997

Education 3 6.9933 0.0721

Occupation 4 22.7183 0.0001

The results of the wald test from the Type III analysis of effects on sorghum availability suggest that

there is evidence that only occupation of head of a household predicts the probability of availability

of sorghum to a household (Table 9.6). Specifically, two categories, of subsistence farmers [p-value

is <.0001] and salary earners [p-value = 0.0079], are significantly different from the category of

casual workers, in terms of availability of sorghum (Table 9.7). In addition, a category of location,

Mafeteng [p-value = 0.0249], and a category of education level, no formal education [p-value =

0.0269] are significantly different from their respective reference categories. This is contrary to the

results from the type III analysis that location and education level are not significant at 5% level.

The 95% confidence interval for a category of households headed by subsistence farmers [3.015,

26.436] suggests that sorghum availability for households headed by subsistence farmers was sig-

nificantly different from that of households headed by casual workers as indicated by the Wald

test. The confidence intervals of categories of households that resided in Mafeteng and households

headed by people with no formal education contain the value one, suggesting that the location
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Table 9.7: Logistic Regression Estimates for Sorghum Availability

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Household Size 0.03 0.05 0.29 0.5879 1.03 0.925 1.147

Income 0.00 0.00 0.36 0.5507 1.00 1.000 1.001

Sex (ref=Male)

Female -0.16 0.15 1.13 0.2878 0.73 0.401 1.311

Location (ref=Berea)

Mafeteng 0.65 0.29 5.03 0.0249 2.20 0.719 6.719

Maseru Foothill -0.26 0.35 0.56 0.4559 0.89 0.256 3.056

Maseru Lowland -0.25 0.22 1.31 0.2529 0.89 0.337 2.346

Education (ref=Post COSC)

No formal educ -0.70 0.32 4.90 0.0269 0.43 0.092 2.037

Primary -0.07 0.27 0.08 0.7782 0.81 0.184 3.583

High School 0.64 0.37 3.08 0.0790 1.67 0.326 8.499

Occupation (ref=Casual Worker)

Pensioner 0.46 0.43 1.16 0.2811 3.19 0.95 10.684

Salary Earner -0.89 0.33 7.06 0.0079 0.83 0.320 2.128

Subsistence farmer 1.50 0.38 15.89 <.0001 8.93 3.015 26.436

Unemployed -0.38 0.23 2.74 0.0981 1.37 0.622 3.021

and education level are not good predictors of the probability of availability of sorghum. Consid-

ering the effect of occupation of household head on sorghum availability, the odds ratio of 8.93 for

households headed by subsistence farmers suggests that the households were 8.93 times more likely

to portray availability of sorghum than their counterparts headed by casual workers, when other

variables in the model are held constant.

The value of the Pearson chi-square statistic is 284.69 with a p-value of 0.4439. The large p-

value suggests that the model fits the data well. The value of the deviance statistic is 352.76 with a

p-value of 0.0026. This statistic contradicts what was shown by the Pearson statistics since the small

p-value suggests that the model does not fit the data well. However, the Hosmer and Lemeshow

test with a value 11.36, 8 degrees of freedom and a large p-value of 0.1818, is in agreement with the

Pearson statistic that the model fits the data well. The disagreement between the results from the

Pearson chi-square and deviance statistics is explained by Lee et al. (2006). Hence we conclude on

the basis of the results from the Pearson chi-square statistic and Hosmer and Lemeshow test that

the model fits the data well.

Index plots in Figures L.4, L.5, L.6, L.7, L.8, L.9 of Appendix L are used to identify observations

that are influential. The index plots of Pearson and deviance residuals suggest that observation

251 is an outlying observation with large respective values of the residuals. Observation 122 is

identified from the bottom left plot of Figure L.4 as a high leverage point that is extreme in the

design space.
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The index plots of confidence interval displacement C and CBar show that observation 122 [dis-

placement C = 0.37 and displacement C = 0.29] and observation 275 [displacement C = 0.36 and

displacement CBar = 0.31], have undue influence on individual parameter estimates and the fit

of the model. Observation 286 is outstanding in the bottom left and right plots of Figure L.5,

with values 7.05 for the change in Pearson chi-square statistic and 4.39 for the change in deviance

statistic. Thus the observation has substantial influence on the two goodness-of-fit measures as

well as a big effect on the quality of the fit of the model.

Observations 277, 219 and 286 have undue influence on estimated coefficients of household size,

income and a category of households headed by females, respectively (Figure L.6). In the case

of location, observation 286 has an effect on parameter estimates of two categories, Mafeteng and

Maseru lowlands, while observations 188, 197 and 198 have an effect on the estimate of Maseru

foothills (Figure L.7). Observation 260 has undue influence on estimated coefficients of two cate-

gories of education level, namely, primary and high school, whereas observation 169 has influence

on an estimate of the category of no formal education (Figures L.7 and L.8). When it comes to

occupation, observation 76 has undue influence on the parameter estimates of subsistence farmers

and unemployed, whereas observation 251 has undue influence on an estimate of salary earners

(Figures L.8 and L.9). The parameter estimate of pensioners is unduly influenced by observations

38, 252 and 265 (Figure L.8).

9.4 Fitting Multinomial Logistic Regression Model to Household

Data

The multinomial logistic regression model fitted three logits that are based on four nominal cate-

gories of households according to cereals that were available to them, using the CATMOD procedure

of SAS. The three logits were formed from designating the category of households with availability

of all the three cereals, maize, wheat and sorghum, as the base category and comparing each of the

other three categories with it. The first logit is of the category of households with availability of

maize only versus the category of households with availability of all the three cereals. The second

logit is of the category of households with availability of maize and sorghum versus the category of

households with availability of all the three cereals. The third logit is of a the category of house-

holds with availability of maize and wheat versus the base category.

The profile of availability of cereals with nominal categories is given in Table 9.8. The category

of households with availability of all the three cereals had the highest number of households, 103

that constitutes 35%. The category with availability of maize only was the second highest with 85

households, making 39%. The category of households with availability of maize and wheat was the
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lowest with 49 households, making 16%.

Table 9.8: Profile of the Nominal Availability of Cereals

Ordered Availability Households Percentage

Maize Only 85 29

Maize Wheat 49 16

Maize Sorghum 59 20

Maize Wheat Sorghum 103 35

The iterative method used to estimate the regression coefficients is Newton Raphson method. The

values of AIC and -2 Log L for the model with an intercept only are 802.14 and 796.14 respectively,

while the respective values from the model with predictor variables are 756.36 and 672.36. The

smaller values from the model with predictor variables than those from the model with the intercept

only show that the model fits the data well. The three tests, likelihood ratio, score and Wald tests

are all significant at 5% level of significance, suggesting that at least one of the predictor variables

in the three logits, predicts the probability of availability of cereals with nominal categories of

households.

Table 9.9: Multinomial Logistic Regression Estimates for Availability of Cereals (Maize Only)

Comparison: Maize Only and the Base Category (maize, wheat and sorghum)

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Intercept -2.35 0.96 -2.44 0.015

Household Size 0.02 0.07 -0.23 0.819 0.98 0.858 1.128

Income 0.00 0.00 -1.37 0.171 1.00 0.999 1.000

Sex (ref=Male)

Female 0.50 0.39 1.30 0.193 1.66 0.775 3.540

Location (ref=Mafeteng)

Berea -0.80 0.91 -0.87 0.383 0.45 0.075 2.696

Maseru Foothill 0.93 0.68 1.36 0.172 2.53 0.667 9.570

Maseru Lowland 0.59 0.48 1.23 0.218 1.81 0.705 4.632

Education (ref=No educ)

Primary -0.47 0.47 -1.00 0.316 0.62 0.246 1.571

High School -1.90 0.71 -2.67 0.008 0.15 0.037 0.604

Post High School -1.77 1.24 -1.43 0.154 0.17 0.015 1.944

Occupation (ref=Farmer)

Casual Worker 2.65 .88 3.02 0.003 14.15 2.536 78.943

Pensioner 1.72 0.98 1.75 0.080 5.58 0.816 38.243

Salary Earner 2.55 0.89 2.87 0.004 12.86 2.248 73.602

Unemployed 2.96 0.79 3.77 0.000 19.29 4.133 90.049

The results from fitting the three logits are presented in three different tables, where Table 9.9
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presents the results from the logit that compares the category of households with maize only and

the base category. Tables 9.10 and 9.11 present the results from fitting the logits that compare

the base category and each of the categories of households with maize and wheat, and households

with maize and sorghum. The Type III analysis of effects show that three variables, location of

a household, education level and occupation of household heads predicts the probabilities of the

three categories of households when they are compared with the base category.

Considering availability of maize only versus availability of all the three cereals in Table 9.9, house-

holds headed by people who obtained high school education [odds ratio = 0.15] were less likely to

have maize only than to have all the three cereals, when they are compared with their counterparts

headed by people with no formal education. Households headed by casual workers were 14.15 times

more likely to have maize only than to have all the three cereals, when they are compared with their

counterparts headed by subsistence farmers. Further more, households headed by salary earners

and unemployed people with odds ratios of 12.86 and 19.29, respectively, were more likely to have

maize only than to have all the three cereals, when they are compared with their counterparts

headed by subsistence farmers. The effect in each category is observed when other variables are

adjusted for. All these suggest that households headed by subsistence farmers and those headed

by people with some education were relatively better off in terms of availability of food cereals.

Table 9.10: Multinomial Logistic Regression Estimates for Availability of Cereals (Maize and

Wheat)

Comparison: Maize and Wheat, and the Base Category (maize, wheat and sorghum)

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Intercept -1.38 0.86 -1.60 0.110

Household Size -0.06 0.08 -0.79 0.431 0.94 0.800 1.100

Income 0.00 0.00 0.50 0.615 1.00 0.999 1.001

Sex (ref=Male)

Female 0.34 0.45 0.76 0.450 1.40 0.584 3.365

Location (ref=Mafeteng)

Berea 0.80 0.73 1.10 0.273 2.23 0.531 9.409

Maseru Foothill -0.06 0.87 -0.07 0.940 0.94 0.171 5.133

Maseru Lowland 0.65 0.58 1.13 0.259 1.92 0.618 5.987

Education (ref=No educ)

Primary -1.03 0.53 -1.95 0.052 0.36 0.128 1.007

High School -1.48 0.68 -2.20 0.028 0.23 0.060 0.853

Post High School -1.11 0.97 -1.15 0.252 0.33 0.050 2.197

Occupation (ref=Farmer)

Casual Worker 1.73 0.69 2.52 0.012 5.65 1.469 21.713

Pensioner 0.34 0.96 0.36 0.719 1.40 0.217 9.173

Salary Earner 1.76 0.71 2.47 0.014 5.81 1.438 23.503

Unemployed 1.10 0.62 1.78 0.075 3.00 0.896 10.048
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Concerning availability of maize and wheat versus availability of all the three cereals, households

headed by people who obtained high school education [odds ratio = 0.028] were less likely to have

maize and wheat than to have all the three cereals, when they are compared with their counter-

parts headed by people with no formal education (Table 9.10). Further more, households headed

by casual workers and salary earners with respective odds ratios 5.65 and 5.81 were more likely

to have maize and wheat than to have all the three cereals, when they are compared with their

counterparts headed by subsistence farmers.

Table 9.11: Multinomial Logistic Regression Estimates for Availability of Cereals (Maize and

Sorghum)

Comparison: Maize and Sorghum, and the Base Category (maize, wheat and sorghum)

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Intercept 0.06 0.67 0.09 0.928

Household Size -0.01 0.08 -0.17 0.862 0.99 0.852 1.143

Income 0.00 0.00 0.73 0.463 1.00 0.999 1.001

Sex (ref=Male)

Female 0.451 0.385 1.17 0.241 1.57 0.738 3.336

Location (ref=Mafeteng)

Berea -1.68 0.73 -2.32 0.020 0.19 0.045 0.771

Maseru Foothill -0.59 0.76 -0.77 0.442 0.56 0.125 2.479

Maseru Lowland -0.66 0.43 -1.55 0.121 0.52 0.224 1.192

Education (ref=No educ)

Primary -0.26 0.50 -0.52 0.606 0.77 0.289 2.060

High School -1.23 0.72 -1.71 0.088 0.29 0.071 1.200

Post High School -13.25 551.85 -0.02 0.981 0.00 0.00 -

Occupation (ref=Farmer)

Casual Worker -0.37 0.70 -0.53 0.593 0.69 0.176 2.697

Pensioner 0.00 0.69 0.00 1.000 1.00 0.259 3.857

Salary Earner -1.69 0.92 -1.85 0.065 0.18 0.031 1.110

Unemployed 0.55 0.44 1.26 0.206 1.74 0.738 4.083

In the case of availability of maize and sorghum as opposed to availability of all the three cereals,

households that resided in Berea with odds ratio of 0.19 were less likely to have maize only than to

have all the three cereals, when they are compared with their counterparts that resided in Mafeteng

(Table 9.11).

The goodness-of-fit of the multinomial logistic regression model was assessed using the Pearson

chi-square and deviance tests. The value of Pearson chi-square statistic is 804.47 with a p-value of

0.4293, and the value of deviance statistic is 639.77 with a p-value of 1.0000. The large p-values of

both tests suggest that the model fits the data well.
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9.5 Fitting Ordinal Logistic Regression Model to Household Data

The ordinal logistic regression model that we applied is the proportional odds model. The LO-

GISTIC procedure of SAS was used to fit the proportional odds model for ordinal responses. This

model fitted two cumulative logits formed on the basis of the two cut points of the data. The first

cumulative logit based on the first cut point is of the high ranking category of households with

availability of all the three cereals as opposed to the middle category of households with availability

of maize and either wheat or sorghum, and the low ranking category of households with availability

of maize only. The second cumulative logit based on the first cut point is of high and middle

ranking categories as opposed to the low raking category.

Table 9.12: Profile of the Ordered Availability of Cereals

Ordered Availability Households Percentage

Maize Only 85 29

Maize with Wheat or Sorghum 108 36

Maize with Wheat and Sorghum 103 35

The profile of the ordered availability of the three cereals is given in Table 9.12. The ordered cat-

egories of households are presented in their order of importance in terms of availability of cereals.

The category that ranked highest with respect to availability of cereals, which is of 103 households

with availability of all the three cereals constitutes 35% of the studied households. The middle

category of households with availability of maize and either wheat or sorghum had 108 households,

making 29%. The category of households that ranked lowest with availability of maize only had 85

households, making 29%.

The score test that tests the assumption of proportional or parallel odds that H0 : βj = β, has a

value 14.46 with 13 degrees of freedom and a large p-value of 0.3423. The large p-value indicates

that the null hypothesis is not rejected and the test supports the assumption of proportional odds

as valid. This suggests that the proportional odds model adequately fits the data and the effect of

predictor variables on the proportional odds of the jth category of ordered availability of cereals

or below is the same for all j. Hence there is only one parameter estimated for the two cumulative

logits that corresponds to each predictor variable .

The iterative method used to estimate the regression coefficients is Fisher’s scoring method. The

values of AIC and -2 Log L for the model with an intercept only are 651.35 and 647.35 respectively,

while the values from the model with predictor variables are 617.55 and 587.55 respectively. The

smaller values from the model with predictor variables than the values from the model with an

intercept only show that the model fits the data well. The three tests of significance of the predic-
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tor variables in the model, likelihood ratio, score and Wald tests are all significant at 5% level of

significance. This suggests that there is enough evidence that at least one of the predictor variables

in the model predicts the cumulative probabilities of ordered availability of cereals to households.

The results of the Wald test from Type III analysis of effects suggest that only two variables,

education level and occupation of head of household predicts the cumulative probabilities of avail-

ability of the three cereals to a household. Specifically, one category of education level, high school,

with a p-value of 0.0309, and one category of occupation, unemployed heads of households, with a

p-value of 0.0031, are significant at 5% level of significance (Table 9.13).

Table 9.13: Ordinal Logistic Regression Estimates for Availability of Cereals

Standard Wald 95% Conf. Interval
Variable Estimate Error Chi-square P-value Odds Ratio of Odds Ratio

Intercept

1st Cumulative Logit -0.50 0.33 2.20 0.1382

2nd Cumulative Logit 1.31 0.34 14.65 0.0001

Household Size 0.02 0.05 0.13 0.7136 1.02 0.927 1.118

Income 0.00 0.00 0.61 0.4363 1.00 1.000 1.001

Sex (ref=Male)

Female -0.20 0.13 2.45 0.1176 0.67 0.402 1.107

Location (ref=Mafeteng)

Berea 0.53 0.32 2.64 0.1042 1.53 0.610 3.828

Maseru Foothill -0.49 0.31 2.50 0.1136 0.55 0.226 1.347

Maseru Lowland -0.13 0.19 0.49 0.4856 0.79 0.434 1.437

Education (ref=No educ)

Primary -0.28 0.24 1.40 0.2362 1.45 0.786 2.669

High School 0.70 0.33 4.66 0.0309 3.89 1.607 9.402

Post High School 0.24 0.52 0.20 0.6533 2.43 0.585 10.128

Occupation (ref=Farmer)

Casual Worker -0.32 0.28 1.36 0.2444 0.31 0.134 0.727

Pensioner 0.32 0.37 0.75 0.3850 0.60 0.215 1.643

Salary Earner -0.24 0.29 0.69 0.4052 0.34 0.142 0.812

Unemployed -0.59 0.20 8.72 0.0031 0.24 0.123 0.467

The two intercepts are the estimated ordered logits for the two cut points of the response variable

when the predictor variables are evaluated at zero. The first intercept with log odds of -0.50 cor-

responds to the first cumulative logit while the second intercept with log odds of 1.31 corresponds

to the second cumulative logit. The 95% confidence intervals of the proportional odds ratios for

categories of households headed by people with high school education [1.607, 9.402] and households

headed by unemployed people [0.123, 0.467] do not contain the value 1. This suggests that the

confidence intervals of proportional odds ratio are in agreement with the Wald test.

Considering the first cumulative logit, households headed by people with high school education
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were 3.89 times more likely to have availability of all the three cereals as opposed to availability

of maize and either wheat or sorghum, or availability of maize only, when they are compared with

their counterparts headed by people who had no formal education (Table 9.13). Similarly, for the

second cumulative logit, households headed by people with high school education were 3.89 times

more likely to have availability of all the three cereals and availability of maize and either wheat or

sorghum as opposed to having availability of maize only, when they are compared with households

headed by people with no formal education. Further more, households headed by unemployed

people with a proportional odds ratio of 0.24 were less likely to portray availability of all the three

cereals as opposed to availability of maize and either wheat or sorghum, or availability of maize

only, when they are compared with their counterparts headed by subsistence farmers. The same

odds ratio and the respective interpretation apply in the case of the second cumulative logit of

availability of all the three cereals and availability of maize and either wheat or sorghum as op-

posed to availability of maize only.

The goodness-of-fit of the ordinal logistic regression model was assessed using the Pearson chi-

square and deviance. The value of the Pearson chi-square statistic is 536.48 with a p-value of

0.5946, and the value of the deviance statistic is 554.95 with a p-value of 0.3745. The large p-values

suggest that the null hypothesis that the ordinal logistic regression model fits the data, cannot be

rejected and thus the model fits the data well.

9.6 Summary

The results from fitting the simple logistic regression model for both wheat and sorghum availability

show that the logit was found to be an appropriate link function. The type III analysis of effects

show only two variables, location and occupation, with significant effects on wheat availability,

while the Wald test of individual regression coefficients and confidence intervals show three vari-

ables, location, occupation and education level, with significant effects. Households that resided in

Berea were likely to portray wheat availability than households from Mafeteng. Households headed

by someone with high school education were likely to portray wheat availability than households

headed by someone with no formal education, while households headed by unemployed people were

less likely to portray wheat availability than those headed by subsistence farmers.

Pearson chi-square and Hosmer and Lemeshow tests are in agreement and show that the model

for availability of wheat and availability of sorghum fits the data well, while the deviance statistic

shows contradicting results that the model does not fit the data. Hence we go by the results of the

agreeing two tests and conclude that the model fits the data well. Index plots of different quan-

tities of the fitted logistic regression model pointed to outlying observations, high leverage points,

observations with undue influence on individual parameters, the Pearson chi-square and deviance,
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and hence a substantial effect on the quality of the fit of the model.

The important role played by the occupation of heads of households in determining availability

of cereals, shown by the results from the quantile regression model is also shown by the results

from the multinomial regression model with nominal categories. In general, the results from the

three variants of logistic regression model are in agreement, and they are also in agreement with

the results from the OLS procedure and quantile regression model that households headed by sub-

sistence farmers were better off in terms of availability of cereals than households headed by people

with other occupations. Further more, the logistic regression results are in agreement with the

results from the quantile regression model that households headed by people with higher education

qualifications were better off in terms of availability of cereals than households headed by people

with lower education qualifications. Probably, higher education qualifications equipped heads of

households with skills that enabled them to earn better salaries. Better salaries helped them ac-

quire cereals for their households, either through production from own land or purchases, and the

know-how necessary for cereals production.
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Chapter 10

Discussions and Conclusions

Given the importance attached to availability of food cereals as one of the main components of

food security, its study and understanding through statical modelling has been given little or no

attention. Modelling of food cereals has always focussed more on crop production and yield, where

regression models were applied without much consideration of problems and challenges that may

emerge with the application of the models to real life data, and thus compromising the validity of

the results. Hence the focuss in this thesis was to apply a series of regression models with increas-

ing complexity to model availability of the three main cereals in Lesotho, at both the national and

household levels. In addition, the work involved the application of diagnostics to identify prob-

lems that accompany this application, and to use appropriate corrective measures that address the

problems.

Modelling of availability of the three main cereals in Lesotho at both the national and house-

hold data was preceded by exploration of data. At the national level, the exploratory analysis

detected preliminary relationships between variables and it further helped to identify one of the

supplies of cereals, which is production of a given cereal, that was used as the response variable.

As in most application problems some data limitations were encountered. The national data on

maize, sorghum and wheat do not contain some of the variables that are considered to be impor-

tant in studying the national food cereals demand and supplies. The variables are; cereals domestic

stocks, domestic requirements, surplus or deficit, and consumption per capita. This is due to the

scantiness and incompleteness of the data on these variables, which resulted with gaps of data in

some years, and hence insufficient observations. The scantiness and incompleteness of the data also

necessitated that the data on each cereal be sub-divided into three subsets, based on time intervals

with informative data. These sub-divisions were based on availability of data under each variable

in the data, since there were data gaps in some years within the observational period. Thus three

subsets of data were created for each cereal, which varied in terms of the number of observations and

one additional variable. These subsets were identified by the years in which the data were available.
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The relationships that were identified through exploration of the national data formed the ba-

sis for the in-depth analysis where two forms of the linear regression model were applied. The first

form is of the classical linear model with continuous predictor variables, while the second is of the

linear regression model with first-order autoregressive process AR(1). The two forms of the linear

model are similar except that parameters of the model with the first order autoregressive process

AR(1) includes an autoregressive coefficient associated with the autoregressive term. Thus this

model did not only measure the effects of predictor variables on production of a given cereal, but

it also reflected the dependence of production of a given cereal in the current year on production

of the cereal in the past immediate year, which is commonly referred to as serial correlation.

In the case of the household data, the general linear regression model with categorical predictor

variables was applied. The application of this model was justified by the composition of predictor

variables in these data, which consist of a mixture of continuous, discrete and categorical variables.

The use of categorical predictor variables increased flexibility of the linear regression model in es-

timating and predicting availability of cereals by measuring how the conditional availability of a

given cereal varied as categorical variables changed from one category to another. For example,

availability of sorghum for households headed by someone with no formal education, primary educa-

tion or high school education was significantly different from availability of sorghum for households

headed by someone with diplomas and university degrees, by varying amounts.

Collinearity diagnostics identified collinear relationships among predictor variables in the national

data, and the variables that were involved in such relationships. These helped to understand incon-

sistencies that emerged in some of the results, such as some variables that were identified to have

correlation with production of a given cereal, by preliminary analysis, but did not have significant

effects on production when the linear regression model was fitted. A typical example is of a case

where the correlation coefficient showed a negative linear relationship between population size and

production of wheat, yet the results from fitting the model showed that population size had no

significant effects on wheat production. This is one of the collinearity problems, where a severe

collinearity identified between population size and time in the subset of 1976/1977 to 2006/2007

wheat data concealed the possible effect of population size on production of wheat. Empirically, in

some subsets of sorghum and wheat data, condition index and variance-decomposition proportion

showed a peculiar pattern that instead of the highest condition index indicating the presence of a

collinear relationship, the second highest did by being associated with high variance-decomposition

proportions of coefficients of two or more variables. Though the ridge regression allows for a small

bias in the estimates, it remedied collinearity problems and controlled the instability in parameter

estimates by reducing inflation factors to values that are less than 10, and reducing standard errors

of the estimates.
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Case deletion diagnostics identified observations that were influential on different quantities of

the fitted model, such as the goodness-of-fit measure (R-squared), parameter estimates, and their

standard errors. Diagnostics plots highlighted outliers and high leverage points that were influen-

tial, and showed violation of normality and constant error assumptions. The use of the Box-Cox

transformation corrected violation of the assumptions, increased the strength of evidence for sig-

nificance of some variables in predicting the response variable, and improved the goodness of fit of

the model in some cases. In cases where the Box-Cox transformation did not correct violation of

the assumptions completely, quantile regression as an alternative that is more robust to outlying

observations and distributions that deviate from the normal distribution, applies. However, the

limited number of observations in the national data could not allow the application of quantile

regression, and hence it was applied to the household data only.

The application of quantile regression to the household data helped to have a comprehensive inves-

tigations of effects of predictor variables by estimating various regression quantiles at different parts

of the distribution of the response variable. It showed that the effects of predictor variables varied

across quantiles because regression slopes are not constant across quantiles. The most important

strength of quantile regression is its capacity to assess the significant effects at different positions

of the distribution and by so doing it deals with skewed data and reveals information about the

dependence of the conditional distribution of the response variable on predictor variables, that

otherwise could be concealed when OLS procedure is applied.

Further investigations of availability of cereals to households was done by categorizing households

according to availability of specific cereals, and applying the logistic regression model and its two

extensions of polytomous logistic regression models with nominal and ordinal responses, as spe-

cial cases of GLMs. The application of GLMs gave a different perspective of modelling data on

food cereals, which gave a broader understanding of how availability of specific cereals can relate

with other characteristics of households. The results from the three logistic regression models are

in agreement, and they are also in agreement with the results from the mean response regression

model estimated by OLS procedure and the results from the quantile regression model. It was quite

interesting to assess the effects of different factors on availability of cereals based on continuous and

discrete scales and yet lead to the same conclusions. It was assuring to get such results because

this increased our confidence in the way the problem was approached.

In general, linear and generalized linear regression models were reviewed and applied, within the

scope and limitations of the data, to model availability of the three main cereals in Lesotho. The

models were used in consideration of problems that may come with their applications to real life

data, and may consequently compromise the validity of the results. In the light of the application of

regression models with varying complexities and approaches of handling problems that accompany

their application to real life data, we recommend that statistical modelling of data of this nature
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be preceded by detailed exploratory data analysis. This will help to understand the structure of

variables in a set of data, and establish preliminarily, the distribution of data and any accompany-

ing problems in the data that may interfere with modelling of such data and compromise validity

of the results. We further recommend that for statistical analyses to produce useful information,

modelling of real life data should be done in consideration of problems that exist in the data.

There are problems that were not addressed in this thesis and call for further research. The

sensitivity of the ridge estimator to the presence of extreme observations in the data was not ad-

dressed, hence there is a need for application of diagnostics that can detect extreme cases and their

influence in ridge regression. The peculiar pattern observed from condition index and variance

proportions in identifying collinear relationships needs to be investigated further to establish the

statistical theory behind it. There is a need for the development of distributional theory for ridge

regression, which is required for making inferences about ridge estimates. There is also a need

for diagnostics that detect influence of leverage points on estimates of quantile regression model

since quantile regression estimates are robust to outliers but they lack robustness to high leverage

points. Diagnostics for logistic regression are developed for a case of binary response, however,

they have not yet been extended to polytomous logistic regression models for both nominal and

ordinal responses. Thus logistic regression diagnostics need to be developed further and generalized

to polytomous logistic regression models.
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Appendix A

Scatter Plot Matrices for National

Data

Figure A.1: Scatter Plot Matrix for 1973 - 2007 Maize Data
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Figure A.2: Scatter Plot Matrix for 1976 - 2007 Maize Data

Figure A.3: Scatter Plot Matrix for 1973 - 1998 Sorghum Data
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Figure A.4: Scatter Plot Matrix for 1973 - 2007 Sorghum Data

Figure A.5: Scatter Plot Matrix for 1973 - 2007 Wheat Data
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Figure A.6: Scatter Plot Matrix for 1976 - 2007 Wheat Data
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Appendix B

Correlation Matrices

Table B.1: Correlation Matrix for 1973 - 2007 Maize Data

Production Time Rainfall PArea HArea FArea Imports Food aid

Production 1.0000 0.1896 0.3906 0.4862 0.6143 -0.0926 0.0128 -0.0420

Time 0.1896 1.0000 -0.0845 0.3836 0.4122 0.0127 0.3970 0.2338

Rainfall 0.3906 -0.0845 1.0000 0.3518 0.3974 -0.0112 -0.1393 -0.0004

PArea 0.4862 0.3836 0.3518 1.0000 0.6806 0.4991 0.1139 0.0984

HArea 0.6143 0.4122 0.3974 0.6806 1.0000 -0.2952 0.1208 0.2479

FArea -0.0926 0.0127 -0.0112 0.4991 -0.2952 1.0000 0.0056 -0.1648

Imports 0.0128 0.3970 -0.1393 0.1139 0.1208 0.0056 1.0000 0.5688

Food aid -0.0420 0.2338 -0.0004 0.0984 0.2479 -0.1648 0.5688 1.0000

Table B.2: Correlation Matrix for 1976 - 2007 Maize Data

Production Time Population Rainfall PArea HArea FArea Imports Food aid

Production 1.0000 0.0997 0.1003 0.5962 0.4536 0.5802 -0.0824 -0.0908 -0.0793

Time 0.0997 1.0000 0.9975 0.0941 0.3429 0.3860 -0.0021 0.2245 0.1856

Population 0.1003 0.9975 1.0000 0.1011 0.3353 0.3840 -0.0094 0.2525 0.2156

Rainfall 0.5962 0.0941 0.1011 1.0000 0.5042 0.5965 -0.0361 -0.0138 0.0675

PArea 0.4536 0.3429 0.3353 0.5042 1.0000 0.6644 0.5208 0.0387 0.0717

HArea 0.5802 0.3860 0.3840 0.5965 0.6644 1.0000 -0.2921 0.0544 0.2293

FArea -0.0824 -0.0021 -0.0094 -0.0361 0.5208 -0.2921 1.0000 -0.0127 -0.1701

Imports -0.0908 0.2245 0.2525 -0.0138 0.0387 0.0544 -0.0127 1.0000 0.5709

Food aid -0.0793 0.1856 0.2156 0.0675 0.0717 0.2293 -0.1701 0.5709 1.0000
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Table B.3: Correlation Matrix for 1973 - 1998 Sorghum Data

Production Time Rainfall PArea HArea FArea Imports Price/ton

Production 1.0000 -0.5181 0.2251 0.5995 0.7032 -0.4475 0.3558 -0.4127

Time -0.5181 1.0000 -0.1895 -0.5578 -0.5166 -0.1303 -0.6296 0.9023

Rainfall 0.2251 -0.1895 1.0000 0.2432 0.2532 -0.0541 0.3596 -0.0409

PArea 0.5995 -0.5578 0.2432 1.0000 0.9679 0.0677 0.3711 -0.5667

HArea 0.7032 -0.5166 0.2532 0.9679 1.0000 -0.1853 0.3359 -0.4897

FArea -0.4475 -0.1303 -0.0541 0.0677 -0.1853 1.0000 0.1176 -0.2715

Imports 0.3558 -0.6296 0.3596 0.3711 0.3359 0.1176 1.0000 -0.4042

Price/Ton -0.41267 0.9023 -0.0409 -0.5667 -0.4897 -0.2715 -0.4042 1.0000

Table B.4: Correlation Matrix for 1973 - 2007 Sorghum Data

Production Production-t Time Rainfall PArea HArea FArea Imports

Production 1.0000 0.4479 -0.6296 0.1599 0.6796 0.7513 -0.1828 0.1281

Production-t 0.4479 1.0000 -0.6122 -0.0699 0.2246 0.1922 0.1633 0.1062

Time -0.6296 -0.6122 1.0000 -0.0845 -0.6682 -0.6033 -0.3582 -0.1574

Rainfall 0.1599 -0.0697 -0.0845 1.0000 0.1924 0.2052 -0.0221 0.01974

PArea 0.6796 0.2246 -0.6682 0.1924 1.0000 0.9702 0.26970 0.1219

HArea 0.7513 0.1920 -0.6033 0.2052 0.9702 1.0000 0.0274 0.1266

FArea -0.1828 0.1633 -0.3582 -0.0221 0.2690 0.0274 1.0000 -0.0000

Imports 0.1281 0.1062 -0.1574 0.0197 0.1219 0.1266 -0.0000 1.0000

Table B.5: Correlation Matrix for 1973 - 2007 Wheat data

Production Production-t Time Rainfall PArea HArea FArea Imports Food aid

Production 1.0000 0.7170 -0.5550 0.3569 0.6540 0.7176 0.2094 -0.3129 -0.3020

Production-t 0.7170 1.0000 -0.5370 0.4124 0.5363 0.6102 0.1855 -0.2444 -0.1407

Time -0.5550 -0.5370 1.0000 -0.0845 -0.7138 -0.7440 -0.1727 0.6756 -0.2560

Rainfall 0.3569 0.4124 -0.0845 1.0000 0.2655 0.3112 0.0532 0.1479 -0.1178

PArea 0.6540 0.5363 -0.7138 0.2655 1.0000 0.9334 0.4251 -0.5503 0.0400

HArea 0.7176 0.6102 -0.7440 0.3112 0.9334 1.0000 0.2127 -0.4910 -0.0551

FArea 0.2094 0.1855 -0.1727 0.0532 0.4251 0.2127 1.0000 -0.2193 0.1819

Imports -0.3129 -0.2444 0.6756 0.1479 -0.5503 -0.4910 -0.2193 1.0000 -0.3790

Food aid -0.3020 -0.1407 -0.2560 -0.1178 0.0400 -0.0551 0.1819 -0.3790 1.0000
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Table B.6: Correlation Matrix for 1976 - 2007 Wheat data

Production Production-t Time Population Rainfall PArea HArea FArea Imports Food aid

Production 1.0000 0.6177 -0.4459 -0.4490 0.2321 0.4952 0.5993 0.2746 0.2268 -0.0979

Production-t 0.6177 1.0000 -0.3637 -0.3532 0.2451 0.2679 0.3702 0.1907 0.2340 -0.0345

Time -0.4459 -0.3637 1.0000 0.9975 0.0941 -0.6020 -0.6818 -0.1500 0.4142 -0.4172

Population -0.4490 -0.3532 0.9975 1.0000 0.1011 -0.5999 -0.6738 -0.1426 0.4213 -0.4232

Rainfall 0.2321 0.2451 0.0941 0.1011 1.0000 0.1107 0.1610 0.0611 0.2063 -0.0619

PArea 0.4952 0.2679 -0.6020 -0.5999 0.1107 1.0000 0.8604 0.5309 -0.3036 0.2631

HArea 0.5994 0.3702 -0.6818 -0.6738 0.1610 0.8604 1.0000 0.2532 -0.1970 0.1673

FArea 0.2746 0.1907 -0.1500 -0.1426 0.0611 0.5309 0.2532 1.0000 -0.0221 0.2050

Imports 0.2268 0.2340 0.4142 0.4213 0.2063 -0.3037 -0.1970 -0.0221 1.0000 -0.4199

Food aid -0.0979 -0.0345 -0.4172 -0.4232 -0.0619 0.2631 0.1673 0.2050 -0.4199 1.0000
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Appendix C

Parameter Estimates and Collinear

Diagnostics

Table C.1: Parameter Estimates for 1973 - 2007 Full Maize Data

Response Variable: maize production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -44129.00 40380.00 -1.09 0.2832 . 0

Rainfall 1 61.76 54.60 1.13 0.2670 0.84 1.19

Harvested Area 1 0.90 0.25 3.55 0.0013 0.84 1.19

Table C.2: Collinear Diagnostics for 1973 - 2007 Maize Data

Number Eigenvalue Condition
Proportions of Variance

Index Rainfall Harvested Area

1 2.96 1.00 0.00281 0.00438

2 0.03 10.63 0.15224 0.99546

3 0.02 14.11 0.84495 0.00016

Table C.3: Parameter Estimates for 1976 - 2007 Maize Data

Response Variable: maize production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -60968.00 40606.00 -1.50 0.1448 . 0

Rainfall 1 146.53 68.10 2.15 0.0405 0.64 1.55

Harvested Area 1 0.57 0.30 1.93 0.0638 0.64 1.55
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Table C.4: Collinear Diagnostics for 1976 - 2007 Maize Data

Number Eigenvalue Condition
Proportions of Variance

Index Rainfall Harvested Area

1 2.97 1.00 0.00197 0.00331

2 0.02 11.28 0.00416 0.69769

3 0.01 15.99 0.99387 0.29900

Table C.5: Parameter Estimates for 1973 - 2007 Sorghum Data Using All Variables

Response Variable: sorghum production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -5788.36 15685.00 -0.37 0.7148 . 0

Time 1 -112.22 378.29 -0.30 0.7688 0.38021 2.63

Production-t 1 0.31 0.15 2.03 0.0521 0.57577 1.74

Harvested Area 1 0.76 0.16 4.71 <.0001 0.58572 1.71

Table C.6: Collinear Diagnostics for 1973 - 2007 Sorghum Data Using All Observations

Number Eigenvalue Condition
Proportions of Variance

Index Time Production-t Harvested Area

1 3.42 1.00 0.00570 0.00964 0.00622

2 0.42 2.87 0.13459 0.10045 0.01476

3 0.15 4.83 0.02311 0.38733 0.30837

4 0.01 15.56 0.83659 0.50258 0.67064

Table C.7: Parameter Estimates for 1973 - 1998 Sorghum Data Using All Variables

Response Variable: sorghum production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 40805.00 14451.00 2.82 0.0105 . 0

Time 1 -991.28 871.46 -1.14 0.2688 0.16973 5.89

Harvested Area 1 0.50 0.17 2.87 0.0095 0.64359 1.55

Failed Area 1 -1.77 0.64 -2.76 0.0122 0.75400 1.33

Price/Ton 1 1.39 25.05 0.06 0.9563 0.15576 6.42
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Table C.8: Collinear Diagnostics for 1973 - 1998 Sorghum Data Using All Observations

Number Eigenvalue Condition
Proportions of Variance

Index Time Harvested Area Failed Area Price/Ton

1 4.06 1.00 0.00215 0.00387 0.01065 0.00284

2 0.61 2.58 0.01004 0.01702 0.12222 0.04212

3 0.294 3.76 0.00217 0.11921 0.45198 0.00222

4 0.03 12.24 0.57438 0.24153 0.31529 0.86987

5 0.02 13.67 0.41126 0.61838 0.09986 0.08295

Table C.9: Parameter Estimates for 1973 - 2007 Wheat Data Using All Variables
Response Variable: wheat production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -4407.79 12450.00 -0.35 0.7260 . 0

Time 1 36.33 298.94 0.12 0.9041 0.39749 2.52

Rainfall 1 4.64 16.22 0.29 0.7769 0.75258 1.33

Production-t 1 0.45 0.16 2.82 0.0088 0.53882 1.86

Harvested Area 1 0.51 0.21 2.42 0.0222 0.36008 2.78

Table C.10: Collinear Diagnostics for 1973 - 2007 Wheat Data Using All Observations

Number Eigenvalue Condition
Proportions of Variance

Index Time Rainfall Production-t Harvested Area

1 4.33 1.00 0.00357 0.00116 0.00721 0.00335

2 0.52 2.89 0.09950 0.00026 0.08499 0.02334

3 0.12 6.21 0.04403 0.00207 0.81208 0.23121

4 0.03 12.55 0.81554 0.25793 0.04251 0.70964

5 0.01 18.13 0.03735 0.73857 0.05320 0.03246

Table C.11: Parameter Estimates for 1976 - 2007 Wheat Data Using All Variables
Response Variable: wheat production

Variable DF Estimate Std. error t value Pr > |t| Tolerance VIF

Intercept 1 -7060.86 86757 -0.08 0.9358 . 0

Time 1 347.88 3182.94 0.11 0.9138 0.00466 214.41

Production-t 1 0.55 0.16 3.41 0.0022 0.82609 1.21

Population 1 -0.004 0.08 -0.05 0.9579 0.00478 209.28

Harvested Area 1 0.80 0.29 2.72 0.0117 0.51274 1.95
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Table C.12: Collinear Diagnostics for 1976 - 2007 Wheat

Number Eigenvalue Condition
Proportions of Variance

Index Time Production-t Population Harvested Area

1 4.39 1.00 0.00005 0.00971 0.000009 0.00270

2 0.44 3.15 0.00107 0.20172 0.000031 0.01758

3 0.15 5.49 0.00067 0.75864 0.000001 0.16087

4 0.02 14.90 0.01114 0.01511 0.000545 0.81266

5 0.00 192.58 0.98707 0.01483 0.999410 0.00619

195



Appendix D

Case Deletion Diagnostics for

National Data

Table D.1: Results of Regression Diagnostic for 1973 - 2007 Maize Data

Diagnostic 3rd Case Cutoff
Measure Diagnostics Point

RStudent ti -1.76 2

leverage hii 0.42 2p/n = 0.12

DFFITS -1.49 2
p

p/n = 0.49

Cook’s Distance Di 0.69 F(0.5,p,n−p) = 1.41

COVRATIO 1.41 1± 3p/n = 1± 0.18

DFBETAS 2/
√

n = 0.35

Rainfall -1.32 0.35

Harvested Area 1.05 0.35

Table D.2: Effect of the 3rd Case on the Fitted Model for 1973 - 2007 Maize Data

Predictor
With the 3rd case R2 = 0.40 Without the 3rd Case R2 = 0.42

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -44129 40380 -1.09 0.2832 -60363 40116 -1.50 0.1432

Rainfall 61.76 54.60 1.13 0.2670 131.30 65.95 1.99 0.0560

Harvested Area 0.90 0.25 3.55 0.0013 0.64 0.29 2.24 0.0327
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Table D.3: Effect of the 27th Case on the Fitted Model for 1973 - 2007 Maize Data

Predictor
With the 27th case R2 = 0.40 Without the 27th Case R2 = 0.44

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -44129 40380 -1.09 0.2832 -24803 30548 -0.81 0.4234

Rainfall 61.76 54.60 1.13 0.2670 62.46 40.96 1.52 0.1381

Harvested Area 0.90 0.25 3.55 0.0013 0.71 0.20 3.63 0.0011

Table D.4: Case Deletion Diagnostic for 1973 - 2007 Sorghum Data

Diagnostic 14th Case Cutoff
Measure Diagnostics Point

RStudent ti -3.08 2

leverage hii 0.18 2p/n = 0.18

DFFITS -1.43 2
p

p/n = 0.60

Cook’s Distance Di 0.40 F(0.5,p,n−p) = 1.24

COVRATIO 0.43 1± 3p/n = 1± 0.27

DFBETAS 2/
√

n = 0.35

Time -0.88 0.35

Production-t -0.89 0.35

Harvested Area -1.14 0.35

Table D.5: Effects of the 14th Case on the Fitted Model for 1973 - 2007 Sorghum Data

Predictor
With the 14th case R2 = 0.66 Without the 14th Case R2 = 0.75

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -5788.36 15685 -0.37 0.7148 -20940 14650 -1.43 0.1640

Time -112.22 378.29 -0.30 0.7688 182.24652 346.26 0.53 0.6028

Production-t 0.31 0.15 2.03 0.0521 0.43 0.14 3.07 0.0047

Harvested Area 0.76 0.16 4.71 <.0001 0.92 0.15 6.09 <.0001
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Table D.6: Case Deletion Diagnostic for 1973 - 1998 Sorghum Data

Diagnostic 24th Case Cutoff
Measure Diagnostics Point

RStudent ti -1.24 2

leverage hii 0.65 2p/n = 0.32

DFFITS -1.70 2
p

p/n = 0.80

Cook’s Distance Di 0.56 F(0.5,p,n−p) = 1.15

COVRATIO 2.52 1± 3p/n = 1± 0.48

DFBETAS 2/
√

n = 0.40

Time 1.00 0.40

Harvested Area -0.26 0.40

Failed Area -0.12 0.40

Price/Ton -1.43 0.40

Table D.7: Effects of the 24th Case on the Fitted Model for 1973 - 1998 Sorghum Data

Predictor
With the 24th case R2 = 0.68 Without the 24th Case R2 = 0.70

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept 40805 14451 2.82 0.0105 39167 14323 2.73 0.0132

Time -991.28 871.46 -1.14 0.2688 1853.27 1106.12 -1.68 0.1102

Harvested Area 0.50 0.17 2.87 0.0095 0.55 0.18 3.10 0.0059

Failed Area -1.77 0.64 -2.76 0.0122 -1.69 0.64 -2.65 0.0156

Price/Ton 1.39 25.05 0.06 0.9563 36.65 37.69 0.97 0.3431

Table D.8: Case Deletion Diagnostics for 1973 - 2007 Wheat Data

Diagnostic 26th Case Cutoff
Measure Diagnostics Point

RStudent ti 4.61 2

leverage hii 0.07 2p/n = 0.24

DFFITS 1.28 2
p

p/n = 0.70

Cook’s Distance Di 0.25 F(0.5,p,n−p) = 1.16

COVRATIO 0.19 1± 3p/n = 1± 0.36

DFBETAS 2/
√

n = 0.35

Time 0.74 0.35

Rainfall -0.51 0.35

Production-t -0.03 0.35

Harvested Area 0.38 0.35
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Table D.9: Effects of the 26th Case on the Fitted Regression for 1973 - 2007 Wheat Data

Predictor
With the 26rd case R2 = 0.64 Without the 26th Case R2 = 0.78

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -4407.79 12450 -0.35 0.7260 -5599.63 9487.80 -0.59 0.5600

Time 36.33 298.94 0.12 0.9041 -133.84 230.70 -0.58 0.5666

Rainfall 4.63921 16.22 0.29 0.7769 10.90 12.43 0.88 0.3881

Production-t 0.45 0.16 2.82 0.0088 0.46 0.12 3.72 0.0009

Harvested Area 0.51 0.21 2.42 0.0222 0.45 0.16 2.79 0.0095

Table D.10: Case Deletion Diagnostics for 1976 - 2007 Wheat Data

Diagnostic 23rd Case Cutoff
Measure Diagnostics Point

RStudent ti 4.92 2

leverage hii 0.09 2p/n = 0.27

DFFITS 1.57 2
p

p/n = 0.73

Cook’s Distance Di 0.25 F(0.5,p,n−p) = 1.16

COVRATIO 0.04 1± 3p/n = 1± 0.40

DFBETAS 2/
√

n = 0.36

Time 0.96 0.36

Production-t -0.14 0.36

Population -0.91 0.36

Harvested Area 0.27 0.36

Table D.11: Effects of the 23rd Case on the Fitted Model for 1976 - 2007 Wheat Data

Predictor
With the 23rd case R2 = 0.57 Without the 23rd Case R2 = 0.75

Variable Estimate Std. error t value Pr > |t| Estimate Std. error t value Pr > |t|
Intercept -7060.86 86757 -0.08 0.9358 -62193 63475 -0.98 0.3370

Time 347.88 3182.94 0.11 0.91 -1866.19 2335.95 -0.80 0.4322

Production-t 0.55 0.16 3.41 0.0022 0.57 0.12 4.87 <.0001

Population -0.004 0.08 -0.05 0.9579 0.05 0.06 0.82 0.4194

Harvested Area 0.80 0.29 2.72 0.0117 0.74 0.21 3.50 0.0018
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Appendix E

Model Fit Diagnostics Plots for

Untransformed National Data

Figure E.1: Residual Plots for 1973 - 2007 Maize Data
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Figure E.2: Residual Plots for for 1976 - 2007 Maize Data
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Figure E.3: Residual Plots for 1973 - 2007 Sorghum Data

202



Figure E.4: Residual Plots for 1973 - 1999 Sorghum Data
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Figure E.5: Residual Plots for 1973 - 2007 Wheat Data
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Figure E.6: Residual Plots for 1976 - 2007 Wheat Data
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Appendix F

Box-Cox Transformation Log

Likelihood Plots for National Data

Figure F.1: Log Likelihood Plot for 1973 - 2002 Wheat Data
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Figure F.2: Log Likelihood Plot for 1976 - 2007 Wheat Data
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Appendix G

Model Fit Diagnostics Plots for

Transformed Data

Figure G.1: Plot of Residuals for Transformed 1973 - 2007 Maize Data
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Figure G.2: Plot of Residuals for Transformed 1973 - 2002 Wheat Data
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Figure G.3: Plot of Residuals for Transformed 1976 - 2007 Wheat Data
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Appendix H

Ridge Traces for National Data
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Figure H.1: Ridge Trace for 1973 - 2007 Sorghum Data
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Figure H.2: Ridge Trace for 1973 - 1998 Sorghum Data
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Figure H.3: Ridge Trace for 1973 - 2007 Wheat Data
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Figure H.4: Ridge Trace for 1976 - 2007 Wheat Data
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Appendix I

Ridge Regression Parameter

Estimates for National Data

Table I.1: Parameter Estimates for 1973 - 2007 Sorghum Data at δ = 0 and δ = 0.05

Variable
δ = 0 δ = 0.05

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time -112.22 378.29 2.63 -210.01 317.24 1.84

Production-t 0.31 0.15 1.74 0.27 0.13 1.34

Harvested area 0.76 0.16 0.71 0.70 0.14 1.32

Table I.2: Parameter Estimates for 1973 - 1998 Sorghum Data at δ = 0 and δ = 0.20

Variable
δ = 0 δ = 0.20

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time -991.28 871.46 5.89 -664.63 324.70 0.78

Harvested area 0.50 0.17 1.55 0.43 0.12 0.82

Failed area -1.77 0.64 1.33 -1.56 0.48 0.73

Price/Ton 1.39 25.05 6.42 -6.73 8.87 0.78

Table I.3: Parameter Estimates for 1973 - 2007 Wheat Data at δ = 0 and δ = 0.15

Variable
δ = 0 δ = 0.15

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time 36.33 298.94 2.52 -114.61 196.62 1.07

Rainfall 4.64 16.22 1.33 9.15 13.06 0.84

Production-t 0.45 0.16 1.86 0.39 0.12 1.03

Harvested area 0.51 0.21 2.78 0.41 0.14 1.13
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Table I.4: Parameter Estimates for 1976 - 2007 Wheat Data at δ = 0 and δ = 0.25

Variable
δ = 0 δ = 0.25

Estimate Std. Error V IFi Estimate Std. Error V IFi

Time 347.88 3182.94 214.41 -204.1 114.42 0.26

Production-t 0.55 0.16 1.21 0.45 0.12 0.68

Population -0.004 0.08 209.28 -0.0003 0.003 0.28

Harvested area 0.80 0.29 1.95 0.57 0.19 0.78
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Appendix J

Standard Errors of Regression

Quantiles for Sorghum Availability

Table J.1: Standard Errors of the 25th Regression Quantile for Sorghum Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 300.39 75.60 131.53 117.08

Household Size -0.67 15.33 28.40 22.79

Household Size2 0.81 1.28 2.56 2.15

Income -0.01 0.02 0.02 0.02

Sex (Ref=Male)

Female -0.18 20.87 32.89 21.67

Location (Ref=Berea)

Mafeteng -71.84 29.77 39.80 25.21

Maseru Foothills -71.82 43.37 59.37 41.53

Maseru Lowland -28.42 28.01 38.13 29.58

Education (Ref=Post COSC)

High School -140.65 60.15 109.19 87.95

No Formal Education -132.12 58.44 106.28 89.34

Primary -132.68 57.23 107.08 88.05

Occupation (Ref=Casual Worker)

Subsistence Farmer -62.75 33.62 46.50 30.63

Pensioner -89.08 43.65 66.54 41.00

Salary Earner -80.28 37.57 63.33 33.61

Unemployed -94.67 33.00 45.06 27.10
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Table J.2: Standard Errors of the 50th Regression Quantile for Sorghum Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 436.72 70.84 140.01 163.00

Household Size -22.74 14.36 31.26 26.82

Household Size2 2.96 1.19 2.80 2.48

Income 0.01 0.02 0.03 0.03

Sex (Ref=Male)

Female 15.75 19.56 33.97 24.53

Location (Ref=Berea)

Mafeteng -25.02 27.90 42.39 30.21

Maseru Foothills -72.78 40.64 62.95 46.14

Maseru Lowland 36.32 26.25 42.75 31.20

Education (Ref=Post COSC)

High School -231.00 56.36 109.16 133.83

No Formal Education -226.08 54.76 106.90 139.10

Primary -225.04 53.63 103.99 131.74

Occupation (Ref=Casual Worker)

Subsistence Farmer -50.53 31.50 55.35 46.47

Pensioner -127.43 40.90 77.09 72.85

Salary Earner -124.88 35.21 69.75 74.14

Unemployed -85.41 30.93 53.79 47.14

Table J.3: Standard Errors of the 75th Regression Quantile for Sorghum Availability

Predictor
Standard Errors

Variable Category Estimate Sparsity Kernel Bootstrap

Intercept 399.18 127.14 168.59 295.61

Household Size 5.16 25.78 31.80 34.56

Household Size2 0.94 2.14 2.91 2.93

Income 0.03 0.03 0.06 0.06

Sex (Ref=Male)

Female 7.86 35.10 37.99 34.69

Location (Ref=Berea)

Mafeteng -13.17 50.07 54.14 60.14

Maseru Foothills -6.03 72.93 86.48 94.15

Maseru Lowland 52.36 47.11 53.25 58.29

Education (Ref=Post COSC)

High School -123.80 101.16 151.65 277.36

No Formal Education -277.27 98.29 148.37 270.82

Primary -203.13 96.25 133.94 262.82

Occupation (Ref=Casual Worker)

Subsistence Farmer -64.78 56.54 72.91 81.82

Pensioner -38.50 73.41 93.10 101.28

Salary Earner -95.92 63.19 80.39 89.27

Unemployed -87.77 55.51 74.92 83.87
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Appendix K

Quantile Plots of Sorghum Household

Data
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Figure K.1: Quantile Plot of Sorghum Availability
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Appendix L

Diagnostics Plots For Logistic

Regression

Figure L.1: Plots of DBetas for Intercept, Household Size, Income and Females for Wheat Avail-

ability
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Figure L.2: Plots of DBetas for PostCOSC, Primary, Casual Worker and Pensioner for Wheat

Availability

Figure L.3: Plots of DBetas for Salary Earner and Unemployed for Wheat Availability
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Figure L.4: Plots of Residuals and Hat Matrix Diagonal for Sorghum Availability

Figure L.5: Plots of CI Displacements C and CBar, and Change in ChiSquare and Deviance for

Sorghum Availability
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Figure L.6: Plots of DBetas for Intercept, Household Size, Income and Females for Sorghum Avail-

ability

Figure L.7: Plots of DBetas for Mafeteng, Maseru Foot Hills, Maseru Low Lands and High School

for Sorghum Availability
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Figure L.8: Plots of DBetas for No Formal, Primary, Casual Worker and Pensioner for Sorghum

Availability

Figure L.9: Plots of DBetas for Salary Earner and Unemployed for Sorghum Availability

224



Appendix M

Box Plots for National Data

Figure M.1: Boxplot for 1973 - 2007 Maize Data
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Figure M.2: Boxplot for 1976 - 2007 Maize Data

Figure M.3: Boxplot for 1973 - 2007 Sorghum Data
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Figure M.4: Boxplot for 1973 - 1998 Sorghum Data

Figure M.5: Boxplot for 1973 - 2007 Wheat Data
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Figure M.6: Boxplot for 1976 - 2007 Wheat Data

Figure M.7: Boxplot for the Transformed 1973 - 2002 Wheat Data
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Figure M.8: Boxplot for the Transformed 1976 - 2007 Wheat Data
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