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Abstract 

The level of under-five child mortality is an important indicator of economic, social and health 

development of the nation. In the last two decades, substantial progress has been made in 

improving under-five child mortality globally, with deaths dropping among children under the 

age of five years from approximately 12 million in 1990 to about 6.3 million in 2015. However, 

significant strides to address the key risk factors are still needed in the Sub-Saharan Africa region 

if they are to achieve the Sustainable Development Goals 2030. The key objective of the study is 

to identify key factors associated with mortality of children under the age of five years in South 

Africa. In order to identify these factors, the study used different statistical models that 

accommodate a binary response variable. Models used include Logistic Regression, Survey 

Logistic Regression, Generalized Linear Mixed Models and Generalized Additive Models. 

Although logistic regression is useful in modelling data with a dichotomous outcome, it is not 

suitable for modelling data obtained through a complex survey that incorporates weights, 

stratification and clustering. Survey logistic regression is used to model the relationship between 

binary dependent and the set of explanatory variables by making use of the sampling design 

information. In this case, the inclusion of random effects in the model results in generalized linear 

mixed models (GLMM). These models are an extension of linear mixed models that allow 

response variable from different distributions, such as binary responses. One can think of GLMM 

as an extension of generalized linear models (e.g. logistic regression) that combine both features 

of fixed and random effects. These statistical models assume linearity parametric form for the 

explanatory variable. However, this assumption of linear independence of response on covariates 

may not hold. Hence, we introduce generalized additive models (GAM). The GAM models show 

some non-linear relationship between the response variable and some covariates. The results 

showed that, the size of child at birth, breastfeeding, birth order number, ethnicity, number of 

children 5 under, total children ever born, source of drinking water and province were 

significantly associated with under-five child mortality. The study concludes that prolonged 

breastfeeding, improved health services and source of water are among the main factors to 

decline under-five child mortality further. Therefore, the study suggests that there is a need to 

strengthen child health interventions in South Africa to reduce the under-five mortality rate even 

more in order to achieve sustainable development goals (SDG) 2030. 

Keywords: Under-five child mortality, Survey Logistic Regression, Generalized Linear Mixed 

Models and Generalized Additive Models. 
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Chapter 1 

Introduction 

1.1 Background of the study 

African children face a higher risk of death as compared to European children. Under-five 

child Mortality rate (U5MR) was reported to be 5.5% of live births in Sub-Saharan Africa by World 

Health Organization (WHO), while in European countries it was found to be 1.0% of live births 

(Khodaee et al., 2015). In the early 1990s, South Africa had the majority of young people who 

had been systematically deprived access to proper services by apartheid policies. About 5.9% 

children would die earlier than their fifth birthday because of completely preventable causes 

(South Africa Demographic and Health Survey (SADHS), 1998), which amongst others include 

diarrhea, pneumonia and HIV/AIDS. The occurrences of these diseases were high and provision 

of essential preventative interventions such as immunization were limited (Maluleke and Chola, 

2015). More than 30% of children under the age of one year were not immunized against 

measles, and even those that received the full suite of foremost vaccinations to protect them 

against preventable diseases were fewer than 66.4% of the children population. 

South Africa was amongst 189 countries that supported the United Nation’s Millennium 

Declaration (United Nations, 2000), committing to meeting eight goals, referred to as Millennium 

Development Goals (MDG) set to be attained by 2015, using 1990 as a base year (Statistics South 

Africa and National Treasury, 2007). The MDG 5 called for countries to improve maternal health 

and reduce child mortality by three-quarters (Ronsmans and Graham, 2006). Millennium 

Development Goals 4 called for a reduction in the child mortality rate by two-thirds (Statistics 

South Africa and National Treasury, 2007). Nevertheless, Bhutta et al. (2010) reported that 

maternal mortality and under-five child mortality in South Africa have both increased since the 

MDG baseline of 1990. The under-five mortality rate for South Africa was very high and the 

country was far from reaching the universal goal of 2.0% of deaths. An evaluation of South African 

provinces confirmed that Limpopo had the highest under-five child mortality rate of 11% which 

contribute 55% to the overall under-five mortality (MDG Country Report, 2010). Like many Sub-

Saharan nations, South Africa by 2010 was failing to reach the target to minimize child mortality. 

Sub-Saharan countries face a challenge of reducing under-five child mortality rate. Better 

health care services are not available to many South Africans living below breadline and 

government struggles to supply these primary services. In 2015, it was mentioned that globally 

under-five child mortality rates had declined between the period of 1990 and 2015. Over the 25-

year period, global child mortality lowered from 9% to 4.3% (WHO and UNICEF, 2015). Reports 

from the United Nations (UN) have shown a decline in child mortality rates in South Africa from 

6,1% of the total live births in 1990 to 4,5% of the total live births in 2015. However, in this regard, 

the overall performance of the country is low compared to the performance of many other 

countries. For instance, the world has made tremendous progress in reducing the under-five child 

mortality rate by 47% from 1990 to 2015. On the other hand, South Africa has attained a 
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reduction of about 26%, which makes the country very unlikely to obtain the MDG goal number 

4. The objective was to have under-five mortality rates of 1.8% and 2.0% births respectively 

through 2015 (Stats SA, 2013). Although HIV/AIDS is typically quoted as the essential reason for 

this poor performance, poverty and inequality are some of the factors to which need not to be 

overlooked. It has been reported that the health of under-five children in South Africa is largely 

influenced by socioeconomic conditions under which they live and about 66% of kids in the 

country live in poverty, with a monthly family income of much less than R1200 (SADHS, 2016).  

1.2 Problem statement 

South Africa remains the country with the largest number of people living with HIV/AIDS 

(Kerber et al., 2013). Hence, South Africa was one of the four countries worldwide where the 

under-five child mortality rate was higher in 2005 than 1990 the MDG (Kerber et al., 2013). 

However, between the space of 2006 and 2010, South Africa reduced under-five child mortality 

rates by approximately 40%. Progress on reducing child mortality has taken place due to 

numerous policies and programme adjustments that have expanded coverage of child health 

interventions. These consist of the increase in Prevention of Mother-to-Child Transmission 

(PMTCT), Anti-Retroviral Therapy (ART) and immunization coverage (Nannan et al., 2012; 

UNICEF, 2013; Dorrington et al., 2014).  

Even though South Africa has made developments towards lowering under-five child 

mortality in the past decade classically in 2005 to 2015 space of time frame, the country has not 

met the under-five child mortality target for the MDGs. Despite having invested substantially in 

programmes and policies aimed to achieve these targets (Mathews et al., 2016). The levels of 

under-five child mortality reflect about the state of public health and hygiene of the environment 

people live in. Above all, people’s attitude towards the dignity and value of human life itself 

necessitate research on the subject matter regarding their impact on under-five child mortality 

rates (Kyei, 2011). 

Despite the progress and achievements in tackling under-five child mortality rates, 

challenges remain unconquered. Many under-five children mortalities are still affected by 

malnutrition, pneumonia, diarrhea and AIDS whereas there is a lot of funding to support research 

on these areas. This calls for multi-displinary collaboration as a first step to tackle the issue. While 

the infant mortality rate (IMR) has shown improvement, there has been very little progress with 

the neonatal mortality rate (NMR). Almost 40% all under-five deaths occur in neonates, and 

about 20 000 babies are stillborn every year (Nannan et al., 2012; Dorrington, 2014; Health 

Systems Trust, 2012).  

1.3 Justification of the study 

Under-five child mortality rate is a key indicator of both poor and unimproved population 

health and development. Generally, this reflects the socio-economic and environmental 

conditions in which children live. Nevertheless, since 1994, South Africa has developed policies, 

programs and special committees in effort to forestall childhood morbidity and mortality, and 
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with such life circumstances of South Africans have been improving. The identification of 

determinants of under-five child mortality is important for formulating appropriate health 

programmes and policies. A significant pace of decline in under-five child mortality can only be 

achieved if the strategies and policies against mortality are directed towards those factors 

associated with high mortality rates (Mustafa and Odimegwu, 2008).  Therefore, this study will 

add on an ongoing body of research of under-five child mortality to help the South African 

government, non-governmental organizations and other partners in the health sector to know 

and understand the important areas they need to focus on. This research will also help 

government to develop more policies, programmes and projects to reduce under-five child 

mortality rates.  

 

1.4 Objectives 

The general objective of this study is to determine the factors affecting under-five child mortality 

in South Africa.  

The specific objectives are: 

 To determine the effect of socio-economic factors in under-five child mortality in South 

Africa. 

 To determine the effect of demographic factors in under-five child mortality in South 

Africa 

 To investigate the effect of the environmental factors in under-five child mortality in 

South Africa. 
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Chapter 2 

Literature review 

Chapter 2 provides an overview of child mortality of children under five years of age. The 

first section looks at the general overview of child mortality while the second one concentrates 

on worldwide overview of child mortality and then, the third one focuses on child mortality in 

South Africa. In the fourth section, the Mosley and Chen (1984) analytical framework of factors 

affecting child mortality: socio-economic, demographics and environmental factors are 

reviewed.  

2.1 Under-five Child mortality 

Under-five child mortality study has been researched by demographers due to the fact 

for a population to grow it is vital that children born live to tell the tale and develop to reproduce 

children of their own. Under-five child mortality rate is defined as the probability expressed as a 

rate per 1000 live births of a child born in a specific year dying before reaching the age of five 

years (United Nations, 2003).” The under-five child mortality is categorized by neonatal (0 – 27 

days), comprising of early neonatal (0-6 days) and late neonatal (7–27 days); post-neonatal (1–

11 months); and children (1–4 years) (Nannan et al., 2012). The first 28 days of life is the most 

vulnerable time for a child’s survival and this period is significantly important because a large 

portion of the under-five child death occurs during the neonatal period. Demographically, the key 

age groups are infants (0–12 months) measured by the infant mortality rate (IMR) and children 

(1–4 years) measured by the child mortality rate (CMR), both expressed as values per 1000 live 

births. Both age groups are inclusive of and measured by the under-five mortality rate” (Nannan 

et al., 2012). 

2.2 Worldwide overview on child mortality 

The level of child mortality is a significant indicator of economic, social and health 

development of the nation. In 2000, world leaders united aiming to decrease child mortality by 

two thirds, in between 1990 to 2015, which was named as MDGs target 4. There has been notable 

progress in decreasing child mortality worldwide in the last 25 years. The chart below shows the 

notable progress between 1990 and 2015 in under-five child mortality by regions.  
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                                              Number of under-five deaths by region 

 

Figure 2. 1 Child deaths by region 

Source: UN Inter-Agency Group for Child Mortality Estimation 

In this period, under-five mortality reduced from 9.1% live births to 4.3% live births, which 

is a 53% drop. In the same period, the annual child mortality rate decreased from 12.7 million to 

5.9 million. “Since 1990, developed and developing countries both lowered child mortality 

significantly. Developed countries had low child mortality with 15 deaths per thousand live births 

in 1990, which was reduced to six in 2015, which is 60% decline from 1990, while developing 

countries had 100 deaths per thousand live births which was reduced to 47 in 2015, with 54% 

decline from 1990. The MDG target to reduce child mortality to five deaths per thousand live 

births was not met in 2015. Similarly, in developing countries, the target to reduce child mortality 

to 3.3% deaths per thousand live births was not achieved in 2015. Globally, the annual decline 

rate of child mortality increased from 1.8% in 1990 to 3.9% in 2015. Between these periods, 

accelerated progress was seen which was important for reducing child mortality (UN Inter-

agency, 2015).  

Despite this progress, Sub-Saharan Africa still has high under-five child mortality, where 

one child in 12 dies before his or her fifth birthday. Another region with high under-five child 

mortality is Southern Asia, where one child in 19 had suffered death before reaching the age five. 

Whilst, high-income countries have an average ratio of 1 in 147 deaths before their fifth birthday 

(UN Inter-Agency, 2015). East Asia, the Pacific and Latin America met region wise MDG 4 target, 
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and the Caribbean based on point estimation. Globally, 62 countries met the target, among which 

24 countries belong to low and middle income. It is estimated that in certain countries between 

2016 and 2030, 94.4 million children will have to suffer death before reaching the age of five. 

Even if the countries will meet the sustainable development goals (SDGs) of reducing under-five 

mortality to 25 or below per thousand live births by 2030, the projected 56 million deaths will still 

stand. Sub-Saharan Africa needs to accelerate the progress along with South Asia where urgent 

action is needed to improve the scenario “(You et al., 2015). 

2.3 Child mortality in South Africa 

South Africans are now facing challenges for which the highest caliber of leadership, 

vision and commitment is needed. The large increase in under-five child mortality and morbidity 

are threatening to overpower the health system and undermine the potential of South Africa to 

attain the (MDGs) (UNICEF, 2009).  

South Africa falls into group of countries in which the vital statistics are not yet of a high 

enough quality to produce reliable estimates of child mortality directly (Nannan et al., 2012). 

However, compared to many other countries, in which there have generally been little or no 

improvements in the vital registrations (Setel et al., 2007), great strides have been made in 

improving population health statistics in South Africa. In terms of vital registration, a new death 

notification form was introduced in 1998, which complied with WHO standards for the 

certification of cause of death and was accompanied by efforts to extend death registration to 

all areas of the country. 

This improved availability of cause of death statistics in South Africa has occurred during 

a period of deep change in under-five child mortality due to the unfolding HIV/AIDS epidemic. 

Bradshaw and Nannan (2006) noted that HIV/AIDS has resulted in increased under-five child 

mortality rate in South Africa. However, reliable data are absent, as there has been no way to 

assess the extent to which improved death registration has contributed to the apparent increase 

in the number of child deaths.   

The level of under-five child mortality is one of the indicators of the level human 

development, hence its inclusion in the construction of human development indices (HDI) and 

the multi-dimensional approach to combat high level of poverty (Motshwaedi, 2011). (Lagerdien, 

2005) argues that under-5 child mortality is the most crucial element of a child’s right in South 

Africa. Child mortality indicators are universally accepted measures of whether a country is 

meeting its obligation towards children. The country’s socio-economic status can be derived from 

the level of indicators for the children under-five mortality. Demographic Health Survey 1998 

indicated that three-quarters of all under-five deaths occur in the first year of life and one thirds 

occur in the first month of life.  

Since a good start in life is critical to the physical, intellectual and emotional development 

of every individual, poverty in early childhood can prove to barrier for life. Poverty denies children 
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their rights to basic education, primary health, adequate nutrition and safe water and sanitation 

(UNICEF, 2007).   

The government of South Africa has succeeded in reducing income poverty considerably 

since 1994 through a three-fold increase in social grants expenditure, the number of 

beneficiaries, and introducing the child support grant in 1998 (UNICEF, 2007). The prevention of 

the mother to child transmission programmes reduced HIV transmission from mother to child; 

however, this has not been sustained owing to limitations in community-based child health care 

services.  

“Attempts have been made to quantify child poverty in South Africa. According to the report South 

African Child Gauge 2006 by the Children’s institute at the University of Cape Town: 

 Fifty-five percent of children belong to the households living under the ultra-poverty line 

of R800 or less a month and this amount to 10 million children. 

 The Eastern Cape and Limpopo presented the most poverty-stricken profiles, with close to 

three quarters of children living under the ultra-poverty line. 

 The poorest provinces were found to be those with large rural populations and little access 

to employment opportunities 

 63 percent of African children lived in ultra-poor households” (UNICEF, 2007).  

The under-five child mortality has declined, however; children continue to die from 

preventable and treatable causes of death. The next section focuses on factors affecting child 

mortality using analytical framework by considering the socio-economic level of households, 

environmental and the demographic factors. 

 

2.4 Factors affecting child mortality 

Many factors contribute to the level of child mortality. Mosley and Chen (1984) revealed 

that all social and economic determinants of child mortality necessarily operate through a 

common set of proximate determinants, to exert an impact on mortality.   In this framework, a 

set of proximate determinants or intermediate variables that directly influence the risk of 

morbidity and mortality are identified. All social and economic determinants must operate 

through these variables to affect child survival. This study adopted the Mosley and Chen (1984) 

approach to the analysis of child mortality.   

 Figure 2.2 illustrates the path to a healthy child or a sick child and eventual child mortality. The 

analytic framework proposed by socioeconomic factors operates through demographic factors, 

environmental factors leading to a healthy child or sick child. However, with modern medical 

intervention (through prevention or treatment), a child may remain healthy, the sick child could 

recover and become healthy or treatment may fail and the child dies.  Each of the factors is 

discussed below.  
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Socio-economic factors 

 Education 

 Wealth Index 

 Employment 

 Number of children 5 years and under in household 

 Total children ever born 

 Residential area 

 Residential area 
 Demographic factors 

 Sex of child 

 Birth order number 

 Size of child at birth 

 Breastfeeding  

 Age of the mother 

 Marital status 

 Ethnicity 

 

Household Environmental factors 

 Main source of water 

 Main floor material 
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Mortality 

 

   

 

  

  

 

   

 

 

 

 

 

 

 

 

 

  

  

 

Figure 2. 2 Analytical framework for child survival 

Adapted from Mosley and Chen (1984) 
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2.4.1 Socio-economic factors 

Quite a number of researchers (Cleland, 1989; Hobcraft, 1993; Sastry, 1996; Wagstaff, 

2000; Bawah and Zuberi, 2005; Mustafa and Odimegwu, 2008) has extensively reviewed the 

relationship between child survival and socio-economic factors. The present study ascertain 

research considers socio economic factors that has been adopted from the Mosley and Chen 

(1984) framework, which are mother’s education, wealth index, employment and place of 

residence 

Education 

Mother’s education is regarded as the most important socio-economic variable affecting 

child survival. It may affect child survival by influencing her alternatives and enhancing her ability 

on different health care practices. The relation has gained the attention of many researchers. 

According to Hobcraft (1993), an increased chance of child survival can even be associated with 

a small increase in the education level of mothers.  Cleland (1989) demonstrated that the 

enhancement of child survival due to mother’s education is because of the modest effect of 

education on health knowledge and beliefs. As births to teenage mothers are related to a high 

risk of mortality at the early ages of the child, mother’s education has an advantage by delaying 

the age at first birth. Moreover, it may be related to factors that form and alter the economic 

choices and health related practices of individuals. However, some studies have shown that the 

degree of association in Sub-Saharan Africa is weaker than in other regions. The reason for this 

is the weak health infrastructure in the sub-continent (Hobcraft, 1993). 

Bello and Joseph (2014) concluded using Twum-Baah et al., (1994) findings that children 

born to mothers with higher educational levels are associated with lower hazard of under-five 

child mortality as compared to children born to mothers with primary educational level or non-

educated. Wambugu (2014) outlined that the educational status of mothers had a significant 

impact on child mortality in relation to results obtained from Goro (2007) when using a multiple 

regression model. It was evident that the educational status of mothers had a significant impact 

on child mortality. Kumar and Gemechis (2010) stipulated that a mother’s educational status has 

a significant impact on lowering the risk of child mortality. 

Wealth index 

Improving the health of the poor and reducing health disparities between the poor and 

non-poor have become central goal of certain international organizations, including the World 

Bank and WHO (Wagstaff, 2000). Since 1997, the top priority of the World Bank has been to work 

with countries like South Africa to improve the health, nutrition and population outcomes of the 

world’s poor, to protect the population from the impoverishing effects of illness, malnutrition 

and high fertility (Wagstaff, 2000). In South Africa, urban households are more likely than non-

urban households to fall into the higher wealth quintiles, while non-urban households are more 

likely to fall into the lower wealth quintiles (SADHS, 2016). The reason is that; South Africa is still 
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a developing country. Rural mothers and children are often disadvantaged in term of access to 

basic health services that can lead to under-five child mortality.  

Employment 

The household income level is also an important factor in determining the level of child 

mortality amongst children under-five. In circumstances where there are low income earnings or 

no income, there will be limited or no access to the basic needs such as hygiene, shelter and food. 

Hence, in a society where inequality is rife and gap between the rich and poor is widening, the 

disparities in affordability and accessibility to fundamental human needs may also result into 

rising rates of malnutrition and under-five child mortality. For example, in Kenya most socio-

economic factors are not related with high risk of under-five child mortality though children born 

in the richest households automatically have a lower probability of mortality relative to children 

born in the poorer households (Mustafa and Odimegwu, 2008).  

Number of children 5 years and under in household and Total children ever born 

Family size has been found to influence under-five child mortality. According to 

(Woldemicael, 2001; Mambugu, 2014) when many children live together, the chance of contact 

with germs increases and hygiene may deteriorate. Many children in a household increases the 

likelihood of having disease like infections because of crowding and competition for the mother’s 

time. (Woldemicael, 2001 and Wambugu, 2014) have found that in Eritrea the probability of 

having diarrhea is about 60% higher if there are six or more children living in the household than 

if the number is less than three. While in Ethiopia, the odds of having infections are linked with 

the number of children remained significant even after controlling for all environmental, 

behavioral and other socio-economic variables considered in a study (Wambugu, 2014). 

Residential area 

Place of residence influences under-five child mortality especially with rural and urban 

area difference. Some studies found the risk of death of children is lower in the urban areas 

compared with rural areas (Kabir et al., 2001; Kembo and Ginneken, 2009). This is the general 

expectation considering that the level of development is more advanced for urban than for rural 

areas. One of the major studies done from DHS data in fifty-four low and middle-income 

countries from 2005 to 2013 showed under-five mortality was higher in rural areas. Among fifty-

four countries, half of them had under-five child mortality of 84 per 1000 live births in rural areas 

and 61 per 1000 live births in urban areas. The magnitude of difference in under-five child 

mortality in rural and urban areas of those countries varied ranging from 16 per 1000 live births 

to 50 per 1000 live births in countries like Cameron, Burundi. Certain countries like Ukraine, 

Jordan, showed low rural-urban differences in under-five mortalities 3 per 1000 live births (WHO, 

2016). One of the DHS studies from Brazil had shown urban areas had low child mortality. The 

differences were not clarified through urban life advantage, but community variables such as 

ecological setting, political economy and health system, played an important role through 

socioeconomic characteristics (Fotso, 2006). However, some studies that have found 
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contradictory results, where children in rural areas have a lower risk of dying than their urban 

counterparts have (Manda, 1998). Such findings are quite unusual considering that urban areas 

are associated with better socioeconomic and environmental factors that contribute to the 

reduction of under-five child mortality. A study of DHS on forty-seven developing countries had 

shown that the poor population in urban areas had higher under-five child mortality than rural 

areas in some countries, which was linked with high population growth in urban areas (Poel et 

al., 2007). 

In Zimbabwe, child mortality variations exist between urban-rural residence because of 

regional disparities and availability of healthcare infrastructure (Zimbabwe Central Statistical 

Office/ Macro International Inc., 2007). Sahn and Stifle (2003) utilized data from DHS of 24 African 

countries and concluded that under-five child mortality in urban areas is lower relative to in rural 

areas. However, it should be noted that the HIV/AIDS epidemic is partially responsible for the 

high risk of child mortality in Africa, especially in sub-Saharan African countries. Generally, it is 

assumed that under-five child mortality in urban areas is lower than observable levels in rural 

areas.   

2.4.2 Demographic factors 

Several demographic factors have been considered in studies of under-five child 

mortality. These factors, also referred to as maternal factors have an independent direct 

influence on pregnancy and child survival, as indicated in the Mosley and Chen framework. These 

affect the health of the child before and after delivery and in some cases affect the mother’s 

caretaking behavior towards the child (Mahy, 2003). These incorporate the age of the mother, 

sex of the child, Birth order, Breastfeeding, marital status and ethnicity. 

Age of the mother 

In studies conducted in different parts of the world, it has been uncovered that birth to 

women younger than the age of 18 and older than the age of 35 have a very high risk of under-

five child mortality during first and older births. It is believed that a young mother is not 

biologically matured and a much older mother experiences complication, thus the possibility of 

pregnancy-related complications is high (Jolly et al., 2000).  Children born to younger mothers, 

aged 15-19 years old, and older mothers, aged 35-49 years, were more likely to die as compared 

to children born to in the age category 25-34 years (Ezra and Gurum, 2002). A study of 

determinants of infant and child mortality in Tanzania used the data from 1991/92 DHS and 

concluded that demographic and biological factors inclusive of teenage pregnancies had a more 

pronounced impact on infant and child mortality. On the other hand, determinants of interest 

such as socioeconomic determinants of child mortality were not as significant as elsewhere in 

Africa (Mturi and Curtis, 1995).  
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Sex of the child 

According to (Kosher, 1993 and Raji, 2010) the sex of a child has been known to be a 

determinant and a cause of gender differential in mortality. Male mortality generally surpasses 

female mortality in the neonatal period. However, this differential is reversed in the post-

neonatal period. Studies by Chen et al. (1981); Bhuiya and Streatfield (1991), and Arokiasamy 

(2002) supported that higher female than male mortality continued through childhood. The 

reversal of the sex differential of mortality, noticeably during childhood and persisting through 

adolescence, was postulated to be reflective of sex-biased health and nutrition related behavior 

favoring male children (Chen et al., 1981). Moreover, they conclude that son preference in 

parental care, intra family food distribution, feeding practices, and utilization of health services 

are some of the behavioral mechanisms by which sex-biased attitudes may have led to the 

observed mortality pattern. In East Asia, South Asia, Middle East and North Africa son preference 

is the most prevalent. Hesketh and Xing (2006) point out that son preference is manifest 

prenatally, through sex determination and sex-selective abortion, and post-natal through neglect 

and abandonment of female children, which leads to higher female mortality.   

One would expect the mother’s education to intervene in sex discrimination. However, 

the positive effect of mother’s education on child survival is not analogous for boys and girls in 

Bangladesh (Bhuiya and Streatfield, 1991). They showed that for boys a change in mother’s 

education from no schooling to 1-5 years of schooling resulted in a reduction in the predicted risk 

of 45 percent, while for girls it was only seven percent. Furthermore, a change from no schooling 

to six or more years reduced the risk of dying by 70 percent for boys and by only 32 percent for 

girls. However, Eswaran (2002) concluded that the empowerment of women, which increases 

the bargaining power of wives relative to their husbands, results in a decline in fertility and in the 

mortality rate of children under-five.  

Even though most studies show discrimination bias towards girls, Pande (2003) 

recognized the sex composition of siblings as a factor in selective discriminatory practices that 

affect the health of surviving children. He identified that in rural India not all girls face the same 

level of discrimination; the first girl born after two or more boys may face less discrimination than 

a boy who has two or more older brothers. On the other hand, girls who were born into a family 

that already has two or more surviving daughters and no surviving sons are among the most likely 

to be severely stunted and are less likely to be immunized than are first daughters. 

Birth order number 

Birth order can be considered as one of the factors, and it has been the subject of a great 

deal of interest. Elliot (1992) came with reasons why birth order is likely related to mortality risk. 

To start with, the pool of parental resources, including both time and material resources, 

available to each child decreases as the sibling size increases. First and early born children will 

spend early years having exclusive or close to the exclusive attention of parents while later born 

will have to compete with siblings over resources right after they are born. Moreover, younger 
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siblings are likely to be introduced to developmentally inappropriate activities by older siblings. 

Finally, many siblings increase the likelihood of communicable diseases being introduced into the 

family, and younger siblings may be more susceptible to these diseases (Elliott, 1992). 

Size of child at birth 

Birth weight is an important determinant of perinatal, neonatal and post neonatal 

outcomes. Specifically, low birth weight, which are those infants born weighing less than 2 500g. 

Several studies have shown low birth weight is closely associated with under-five child mortality 

and affect child development and future risk of chronic disease.  Low birth weight (with or 

without prematurity) decrease the odds of the children in the first month (Suparmi et al., 2016). 

Pojda and Kelly (2000) categorized birth weight for children who weigh less than 2 500g as 

children with a very small weight, average weight are children who weigh between 3000g to 3 

500g and very large weight as children who weigh 4 500g or more at birth. The children weighing 

2000 – 2 499g at birth are 4 times likely to die during their first 28 days of life than children who 

weigh 2 500 – 2 999g and 10 times more likely to die than children weighing 3000-3 499g.  This 

because Low birth weight is associated with impaired immune function, poor cognitive 

development, and high risk of developing acute diarrhea of pneumonia. Bangladesh estimated 

that almost half of the under-five child mortality from pneumonia and diarrhea could be 

prevented if low birthweight were eliminated (Pojda and Kelley, 2000).  

Breastfeeding 

The relationship between breastfeeding and under-five child mortality has been fully 

documented in studies from many countries of the world. Although the magnitude of the 

estimates differs from study to study and across cultures, most research in developing countries 

attest to the significance of breastfeeding as a determinant of child survival. In general, the 

literature indicates that breastfed children are less vulnerable to the risk of under-five child death 

than are artificially fed children. In addition, even among breastfed children, both the duration 

and the intensity of breastfeeding are positively associated with child survival. Hence, entirely 

breastfed under-five children tend to have a lower risk of dying than partly breastfed ones 

(Akwara, 1994) 

In several traditional societies, women breastfeed their children for extended periods. 

According to Akwara (1994) and Buchanan (1975) prolonged breastfeeding is said to have the 

effect of safeguarding the health of the child. Some clinical and epidemiological studies have 

shown that mother's milk has at least three properties, which help to protect the health of 

infants. First, it is nutritious breast milk appears to meet the nutritional requirements for the 

normal growth of an infant for at least six months (Wray, 1978). Consumed in sufficient 

quantities, it provides protection against malnutrition syndromes such as kwashiorkor and 

marasmus (Akwara, 1994 and Kleinman, 1984). (Akwara, 1994; Barros and Victora, 1990) have 

found that absence of breastfeeding is related to an excess in the incidence of diseases, such as 

diarrhea and gastrointestinal infections that are worsened by malnutrition.   
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Marital status 

According to study, results of DHS data analysis from five countries in sub-Saharan Africa 

(Ethiopia, Kenya, Zimbabwe, Malawi, and Tanzania) shows children born from unmarried women 

are usually at disadvantage than the children born from married women. Particularly in 

unmarried mothers, the variation of effect was seen across different studied countries. In 

Ethiopia, the serious impact was seen while in Kenya it was much less. The study reports that the 

probability of children dying before the age of five for married women was 41.3% and for 

unmarried women was 75.5%.  Furthermore, Clark & Hamplova (2013) suggests where single 

motherhood is less common, and they are stigmatized, they face more challenges in fulfilling the 

needs of children. Another study published by Clark & Hamplova (2013) in Sub-Saharan Africa 

stated that maternal care and economic status had more impact on child death among single 

mothers. 

Ethnicity 

Anderson et al. (2002) points out the overwhelming consensus on the differentials in the 

under-five child mortality rate among various population groups in South Africa. For example, 

the 1998 SADHS estimated that in 1996 the under-five child mortality for Africans was 47%, for 

Coloured people 19% and 11% for White people. Heaton and Amoateng (2007); Yach (1994) 

estimated the very similar pattern to this, with 51% for Africans,38% for Coloured people,8% for 

Asians and 7% for White people. Many researchers interpret racial difference in under-five child 

mortality as an expression of differential access to health care and socio-economic resources.  

2.4.3 Household Environmental Factors 

The environment in which the children lives has long been considered to have an impact 

on child survival status. Source of water and floor material are among the environmental factors, 

which highly affect under-five child mortality. As indicated by Mosley and Chen (1984) better 

water supply and the provision of sanitation facilities are important for child survival. Many 

studies have included household environmental variables as determinants of under-five child 

mortality, and have found a strong association (Kabir et al., 2001).  However, such studies found 

out that environmental factors may not have an independent effect on childhood mortality but 

are influenced by some socioeconomic factors.  

Main source of water 

The risk of potentially fatal diarrheal diseases is expected to increase among households 

with no clean drinking water or with no safe sanitation. Mahmood (2002) has shown the 

relationship between access to clean water and sanitation to under-five mortality. According to 

Anderson et al. (2002) black and coloured populations showed a hierarchy of needs in which 

without clean water, sanitation matters little. In their analysis, they considered household social 

economic characteristic, access to and use of health care, environmental conditions and age of 

the mother. Mahmood (2002) also found that families living in households with piped water 
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connected in their houses have a significantly lower post neonatal mortality than those families 

that depend on wells for drinking water. However, the results did not show evidence of improved 

child survival in households that had flush toilets compared to those that did not have.  

Main floor material 

The floor material is strongly influenced by the socio-economic level of the household. 

This situation has become even worse where there is overcrowding, children have become more 

disposed to infectious diseases. Shehzad (2006) found that, in Pakistan, child illnesses such as 

diarrhea, acute respiratory infections and fever are affected by family size, flooring material, 

parental education and cleanliness of the area around the house. Anderson et al. (2002); Jacobs 

et al. (2009) and Shehzad (2006) has established the relationship between the type of dwelling 

and child mortality in their studies. This is expected, brick houses are likely to be more hygienic 

than those built from informal material, as is often the case in informal settlements in South 

Africa.   
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Chapter 3 

Methodology 

Introduction 

This chapter discusses in detail the research methodology that has been adopted in this 

study and focus on the source of the data, and the research instrument used. The basic statistical 

and advanced analytical tool were employed to perform exploratory data analyses, logistic 

regression, survey logistic regression, generalized linear mixed models and generalized additive 

models, and present the strategy used in the analysis of the data. The variables included in this 

study were also presented. 

3.1 Source of the data and Research instrument 

The study uses secondary data from South Africa Demographic and Health Survey, 2016 

(SADHS, 2016) source: https://www.dhsprogram.com/data/dataset_admin, which was 

conducted by Statistics South Africa (Stats SA) in partnership with the South African Medical 

Research Council (SAMRC) at the request of the National Department of Health (NDoH). “SADHS 

2016 data were collected using five questionnaires, the Household Questionnaire, the individual 

Woman’s Questionnaire, the individual Man’s Questionnaire, the Caregiver’s Questionnaire, and 

the Biomarker Questionnaire. These questionnaires were adopted based on the DHS Program’s 

standard of Demographic and Health Survey questionnaires to reflect the population and health 

issues relevant to South Africa. The input was solicited from various stakeholders representing 

government ministries and agencies, nongovernmental organizations, and international donors. 

After the preparation of the questionnaires in English, the questionnaires were translated into 

South Africa’s 10 other official languages. In addition, information about the fieldworkers for the 

survey was collected through a self-administered Fieldworker Questionnaire.” 

 

3.2 The sample design  

“The sampling frame used for the SADHS 2016 is the Statistics South Africa Master Sample 

Frame (MSF), which was created using Census 2011 enumeration areas (EAs). In the MSF, EAs of 

manageable size were treated as primary sampling units (PSUs), whereas small neighboring EAs 

were pooled together to form new PSUs, and large EAs were split into conceptual PSUs. The frame 

contains information about the geographic type (urban, traditional, or farm) and the estimated 

number of residential dwelling units (DUs) in each PSU. The sampling convention used by Stats SA 

is DUs. One or more households may be located in any given DU; recent surveys have found 1.03 

households per DU on average.  

Administratively, South Africa is divided into nine provinces. The sample for the SADHS 

2016 was designed to provide estimates of key indicators for the country as a whole, for urban 

and non-urban areas separately, and for each of the nine provinces in South Africa. To ensure that 

https://www.dhsprogram.com/data/dataset_admin
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the survey precision is comparable across provinces, PSUs were allocated by a power allocation 

rather than a proportional allocation. Each province was stratified into urban, farm, and 

traditional areas, yielding 26 sampling strata. 

The SADHS 2016 followed a stratified two-stage sample design with a probability 

proportional to size sampling of PSUs at the first stage and systematic sampling of DUs at the 

second stage. The Census 2011 dwelling unit count was used as the PSU measure of size. A total 

of 750 PSUs was selected from the 26 sampling strata, yielding 468 selected PSUs in urban areas, 

224 PSUs in traditional areas, and 58 PSUs in farm areas”.         

                                     

3.3 Exploratory Data Analysis 

Exploratory data analysis (EDA) is a critical step in analyzing data from an experiment. The 

main purpose of EDA is to help understand the data into detail before the modelling and 

inferences tasks. We use EDA to: 

 Determining the relationship between the dependent variable and the explanatory 

variable 

 

 Detection of mistakes and checking assumptions 

 

 Preliminary selection of appropriate models 

 

The descriptive statistics such as frequency distributions and percentages are computed to 

describe some of the variables and to check the variables that have missing values. We first 

describe variables from the data set of interest and then present results performed. 

 

3.4 Study variables 

3.4.1 Dependent variable 

The child is alive variable was the dependent variable. Since this is a dichotomous variable, 

it was treated as such. Therefore, 1 was coded for the survival of a child and zero for death. 

3.4.2 Independent variable 

The survey captured a vast range of variables. However, this study employed 17 variables. 

The selection of independent variables in this study was guided by the reviewed literature and 

by the theoretical foundation established from the reviewed literature. Below are the lists of 

predictor variables used in this study. 
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   Table 3. 1: Definition of variables 

No. Variable Definition Coding 

                                                
                                           Demographics 
 

1. Sex 
 

Sex of child Male (1) Female (2) 

2. Mother’s age Age of mother < 20 years (1), 20-35 years (2), >35 
years (3) 

3. Birth order Birth order number First birth (1) 2-3 births (2) More 
than 3 births (3) 

4. Birth size Size of child at birth Very small (1) Average (2) Very 
large (3) 

5 Breastfeeding Breastfeeding No (0) Yes (1) 

6. Age of the head Age of the household head Less than 30 years (1) 30 – 39 years 
(2) More than 40 years (3) 

7. Marital status Marital Status Never Married (0) Married (1) 
Living with partner (2) 

8. 
 

Ethnicity Ethnicity 
 

Black African (1) Coloured (2) 
Others (3) 

 
 
 

 
                                            Socio-Economics 

9. Education Level Highest level of Education  No education (0) Primary (1) 
Secondary (2) Higher (3) 

10. Employment Mother currently working No (0) Yes (1) 

11. Wealth index Wealth index Poor (1) Middle (2) Rich (3) 

12. Number of children 
under 5  

Number of children 5 years 
and under in household  

Less than 2 children (1)  
2 or more children (2) 

13. Children ever born Total children ever born Less than 2 children (1)  
2 or more children (2) 

14. Residential area 
 

Place of residence Urban (1) Rural (2)  
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                                                 Household Environment 
 

15. Water source Main source of water Safe water (1), Not safe water (2)  

16. Main floor 
 

Main floor material Finished (1) Unfinished (2) 

17. Province Province (1) Western cape  
(2) Eastern cape  
(3) Northern cape  
(4) Free state  
(5) Kwazulu-Natal  
(6) North west  
(7) Gauteng  
(8) Mpumalanga  
(9) Limpopo 

 

3.5 Preliminary data analysis 

The purpose of the present chapter is to summarize, and present results of the descriptive 

statistics used to describe the variables that are affecting under-five child mortality in South 

Africa. To perform this, we need to explore the demographics, socio-economics, fertility and 

household environment variables further. 

These variables are categorical variables; now will look at frequency tables to see how much 

influence these variables have in under-five child mortality.  

The distribution of the study population by demographic characteristics is presented in 

Table 3.2. The results from the dataset showed that male and female children were almost of the 

same proportion 51.6% and 48.6% respectively. Table 3.2: further showed that most children 

were from mothers aged 20-35 (48.4%) followed by mothers aged 35 and above that accounted 

for 34.3 %. The results indicated that 17.3% of children were from mothers aged 20 years and 

less. With respect to birth order, almost half of the children 49.5% were of birth order 2-3 births. 

Slightly more than one-third of the children 36.0% were of first birth then 14.5% were of birth 

order of more than three births. Considering self-rated child’s size at birth by mothers, more than 

half of the respondents 58.2% rated their children as average while only 25.3% and 16.5% 

described their children as very large or very small. The distribution revealed that most children 

73.2% did not receive breastfeeding from their parents while 26.8% did receive breastfeeding. 

More than half 58.6% of the heads of the households were above 40 years of age. This followed 

by household heads of age between 30-39 years who accounted for 27.1% and then followed by 

household heads age less than 30 years that accounted for 14.3%. 
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Results further showed that most mothers were never married as 54.3% of children were 

children of single mothers, followed by children of married women who accounted for 25.4%. 

Then 20.3% were children of mothers who live with their partners. Considering ethnicity 

affiliation, the results showed that 89.4% were children of Black African, which are the majority 

ethnic group in the country while 8.5% were children of Coloured, and others 2.2% were children 

of Whites and Indian/Asian combined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 | P a g e  
 

Table 3. 2: Percentage distribution of demographic characteristics 

Characteristics Frequency Percentage 

   

 
Sex of child 
Male 
Female 
 
Mother’s age 
<20 years 
20-35 years 
>35 years 
 
Birth order 
First birth 
2-3 births 
More than 3 births 
 
Birth size 
Very small 
Average 
Very large 
 
Breastfeeding 
Yes 
No 
 
Age of the household head 
Less than 30 years 
30 – 39 years 
More than 40 years 
 
Marital status 
Never Married 
Married 
Living with partner 
 
Ethnicity 
Black African 
Coloured 
Others 
 

 
 
1832 
1716 
 
 
615 
1717 
1216 
 
 
1278 
1755 
515 
 
 
586 
2065 
897 
 
 
951 
2597 
 
 
507 
962 
2079 
 
 
1926 
901 
721 
 
 
3171 
300 
77 

 
 
51.6 
48.4 
 
 
17.3 
48.4 
34.3 
 
 
36.0 
49.5 
14.5 
 
 
16.5 
58.2 
25.3 
 
 
26.8 
73.2 
 
 
14.3 
27.1 
58.6 
 
 
54.3 
25.4 
20.3 
 
 
89.4 
8.5 
2.2 
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Table 3.3: displays the distribution of socio-economic characteristics. The results revealed 

the highest percentage distribution of children 78.9% belonged to mothers with secondary 

education. 9.7% and 1.5% of children are from mothers with primary education and no schooling 

respectively. Only 9.9% of children had mothers with higher education. With respect to 

employment, more than two third of children 70.3% were of mothers who were not working 

while 29.7% of children were children of mother who are working. With respect to wealth index, 

about 49.0% of the children were of poor mothers, and then 23.0% and 27.9% were of middle 

and rich mothers respectively. Considering the number of children 5 years and under in 

household, results revealed that 88.4% number of children 5 years and under in household were 

from households of less than two children while 11.6% were from households of two or more 

children. The distribution by total children ever born showed that most children 62.6% were from 

households of less than two children while 37.4% were from households of two or more children. 

Most children are from mothers who live in urban areas 52.5% and the rest 47.5% are from 

mothers who live in rural areas.  
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Table 3. 3:  Percentage distribution of socio-economic characteristics 

Characteristics Frequency Percentage 

 
Education Level     
No education  
Primary  
Secondary 
Higher  
 
Employment  
Yes 
No 
 
Wealth index 
Poor  
Middle  
Rich  
 
Number of children 5 years 
and under in household 
Less than 2 children 
2 or more children 
 
Total children ever born 
Less than 2 children 
2 or more children 
 
Residential area 
Urban  
Rural 
 

 
 
53 
344 
2800 
351 
 
 
1052 
2496 
 
 
1740 
817 
991 
 
 
 
3137 
411 
 
 
2221 
1327 
 
 
1863 
1685 

 
 
1.5 
9.7 
78.9 
9.9 
 
 
29.7 
70.3 
 
 
49.0 
23.0 
27.9 
 
 
 
88.4 
11.6 
 
 
62.6 
37.4 
 
 
52.5 
47.5 

 

Table 3.4: demonstrates the distribution by house environment characteristics. 

Considering the type of dwelling, the results showed that most children 90.4% were children from 

mothers who live in a finished dwelling floor material while 9.6% lived in an unfinished floor 

material. With respect to the household source of water, more than two-thirds 68.5% households 

had access to safe water while 31.5% did not have access to safe water. Percentage distribution 

of the province showed that most of the children 15.6% were children from mothers residing in 

KwaZulu-Natal and 14.1% were children from mothers residing in Mpumalanga. Followed by 

children of mothers residing in Limpopo 13.2%, Eastern Cape 12.7%, North West 11.1%, Gauteng 

10.4%, Free State 9.0%, Northern Cape 8.1% and Western Cape 5.8%, respectively. 
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Table 3. 4: Percentage distribution of household environment characteristics 

Characteristics Frequency Percentage 

 
Main floor material  
Finished   
Unfinished  
 
Water source 
Safe water  
Not safe water   
 
Province 
Western cape                                                       
Eastern cape 
Northern cape 
Free state 
Kwazulu-Natal 
North west 
Gauteng 
Mpumalanga 
Limpopo 

 
 
3208 
340 
 
 
2430 
1118 
 
 
206 
450 
286 
318 
555 
395 
370 
501 
467 
 

 
 
90.4 
9.6 
 
 
68.5 
31.5 
 
 
5.8 
12.7 
8.1 
9.0 
15.6 
11.1 
10.4 
14.1 
13.2 
 

 

 

3.6 Chi-Square test of association  

The aim of this section is to determine if there is a significant association between two 

categorical variables, the response and predictor variable using cross-tabulation procedure. 

In Table 3.5 Table 3.6 and Table 3.7, we infer that the variables with p-value less than 5% level of 

significance were significantly associated with the response variable. The proportion of children 

in each category of the covariates and the results of the chi-square tests of association are 

presented in Table 3.5, Table 3.6 and Table 3.7 respectively.  

Results showed that the proportion of children dying is higher for respondents with 2-3 

births in birth order 49.5% as compared to the respondents with first birth and more than three 

births. Considering the birth size, the proportion of dying was higher for children born with 

average size 58.2 % than the other sizes. With respect to breastfeeding, the child from a mother 

who does not breastfeed had a higher proportion of dying 73.2% than children who received 

breastfeeding. The proportion of children dying was higher 54.3% for mothers that were never 

married than the child born by partner living together. Table 3.5 further showed that the 

proportion of children dying was higher 89.4% in the Black African population than the child born 

in other population groups was. Table 3.6: With respect to the wealth index, children born by 
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poor families had a higher proportion of dying 49% than the children born by middle and rich 

families. Considering the number of children 5 years and under in household, households with 

less than two children had a higher proportion of dying children 88.4% than the households of 

two or more children. With respect to the total number of children ever born, the results further 

showed that the proportion of dying children was more from households of less than two 

children 62.6% than the households of two or more children. Table 3.7: The proportion of 

children dying was higher 68.5% for children born drinking safe water than those who were not. 

It could be observed that KwaZulu-Natal had a higher proportion of dying children 15.6% than 

that of other provinces. 

In summary we can say that Table 3.5, Table 3.6 and Table 3.7: shows that birth order, 

birth size, breastfeeding, ethnicity, marital Status, wealth index, number of children 5 years and 

under in household, total children ever born, water source and the province are significantly 

associated with child survival status.   
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Table 3. 5:  Bivariate analysis of associations with under-five mortality demographic 
characteristics. 

Demographic Characteristics 

Covariate Sample Size DF Proportion Chi-Square P-Value 

Sex of child 
Male 
Female 
 
Mother’s age 
<20 years 
20-35 years 
>35 years 
 
Birth order 
First birth 
2-3 births 
More than 3 Births 
 
Birth size 
Very small 
Average 
Very large 
 
Age of the household head 
Less than 30 years 
30 – 39 years 
More than 40 years 
 
Breastfeeding 
Yes 
No 
 
Marital status 
Never Married 
Married 
Living with partner 
 
Ethnicity 
Black African 
Coloured 
Others 

3548 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
3548 
 
 
 
 
3548 
 

1 
 
 
 
2 
 
 
 
 
2 
 
 
 
 
2 
 
 
 
 
2 
 
 
 
 
1 
 
 
 
2 
 
 
 
 
2 

 
0.516 
0.484 
 
 
0.173 
0.484 
0.343 
 
 
0.36 
0.495 
0.145 
 
 
0.165 
0.582 
0.253 
 
 
0.143 
0.271 
0.586 
 
 
0.268 
0.732 
 
 
0.543 
0.254 
0.203 
 
 
0.894 
0.085 
0.022 

2.663 
 
 
 
0.388 
 
 
 
 
12.884 
 
 
 
 
40.894 
 
 
 
 
0.555 
 
 
 
 
19.318 
 
 
 
11.049 
 
 
 
 
12.431 

0.103 
 
 
 
0.824 
 
 
 
 
0.002 
 
 
 
 
<0.001 
 
 
 
 
0.758 
 
 
 
 
<0.001 
 
 
 
0.004 
 
 
 
 
0.002 
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Table 3. 6:  Bivariate analysis of associations with under-five mortality socio-economic 
characteristics 

Socio-Economic Characteristics 

Covariate Sample Size DF Proportion Chi-Square P-Value 

Education Level     
No education  
Primary  
Secondary 
Higher  
 
Employment  
Yes 
No 
 
Wealth index 
Poor  
Middle  
Rich  
 
Number of children 5 years 
and under in household 
Less than 2 children 
2 or more children 
 
Total children ever born 
Less than 2 children 
2 or more children 
 
Residential area 
Urban  
Rural 
 

3548 
 
 
 
 
 
3548 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
 
3548 
 
 
 
3548 
 

3 
 
 
 
 
 
1 
 
 
 
2 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
1 

 
0.015 
0.097 
0.789 
0.099 
 
 
0.297 
0.703 
 
 
0.49 
0.23 
0.279 
 
 
0.884 
0.116 
 
 
 
0.626 
0.374 
 
 
0.525 
0.475 
 

7.266 
 
 
 
 
 
2.379 
 
 
 
16.660 
 
 
 
 
6.984 
 
 
 
 
11.166 
 
 
 
0.737 

0.064 
 
 
 
 
 
0.123 
 
 
 
<0.001 
 
 
 
 
0.008 
 
 
 
 
0.001 
 
 
 
0.391 
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Table 3. 7: Bivariate analysis of associations with under-five mortality household environment 
characteristics 

Household Environment Characteristics 
Covariate Sample Size DF Proportion Chi-Square P-Value 

Water source 
Safe water  
Not safe water   
 
Main floor material  
Finished   
Unfinished  
 
Province 
Western cape                                                       
Eastern cape 
Northern cape 
Free state 
Kwazulu-Natal 
North west 
Gauteng 
Mpumalanga 
Limpopo 

3548 
 
 
 
3548 
 
 
 
3548 

1 
 
 
 
1 
 
 
 
8 

 
0.685 
0.315 
 
 
0.904 
0.096 
 
 
0.058 
0.127 
0.081 
0.009 
0.156 
0.111 
0.104 
0.141 
0.132 
 

10.878 
 
 
 
2.278 
 
 
 
16.013 

0.001 
 
 
 
0.131 
 
 
 
0.042 
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3.7 Generalized Linear Model 

Introduction 

Generalized Linear Model (GLM) are some of the most widely used statistical techniques 

to analyze data sets. Basically, the GLM can be used to test almost any hypothesis about the 

response variable or independent variables (Miller and Haden, 2006).  

In Chapter 1, we stated that the main objective of this study is to identify factors 

associated with the under-five mortality in South Africa. Now, this chapter will focus on modeling 

the relationship between the response variable and the predictor variables using logistic 

regression. The response variable is a binary outcome, which is assumed to follow the Bernoulli 

distribution. Bernoulli distribution is a member of the exponential family. To make valid statistical 

inference all the covariates that affect the child survival are assumed to have fixed effects. In the 

following section, the reviews for the theory of Generalized Linear Models is presented. 

3.7.1 Review of Generalized Linear Models 

Generalized Linear Models (GLM) are a flexible class of non-linear models for non-

normally distributed response data. GLMs includes normal linear models as special case, but also 

cater for other error distributions, in particular, error distributions catering for discrete data such 

as the Poisson and binomial distributions. GLMs originated from a variety of different analysis 

problems including dilution assay to determine infective organism concentration, probit analysis 

in toxicology experiments and log-linear models for cross-tabulation (McCullagh &Nelder, 1989). 

The GLMs are used to accommodate non-normal responses and provide a unified approach to 

modeling all types of response variables (McCullagh and Nelder, 1989; Olsson, 2002; Dobson and 

Barnett, 2008). Basically, the GLMs can be described as a unified mathematical way of describing 

the relationships between a response variable and a set of covariates. Generalized linear models 

are an extension of the linear models that are given by. 

                                                    𝑦 = 𝑋𝛽 + 𝑒                                                                  (3.1)                                                                                                                       

where, 𝑋 is the design matrix of covariates, 𝛽 is the vector of coefficients and 𝝐 is the vector of 

error terms. Let 𝜂 = 𝑋𝛽, here 𝜂 is the linear predictor part of the model. Since a generalized 

linear model extends the general linear models by relaxing the assumption that response variable 

𝑦 is independent normally distributed with mean zero and constant variance, this allows the 

distribution to be part of the exponential family of distributions (Olsson, 2002). Instead of 

modeling the mean directly, the model is specified in term of some function g(µ), so the model 

becomes        

                                                     g(μ) = η = Xβ                                                          (3.2)                                                                                    

where, g(.) is the link function. We now look at the key properties of the exponential family of 

distribution. 
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3.7.2 Exponential family of distribution 

The exponential family is known as a general class of distribution that includes the well-

known normal distribution as a special case (Olsson, 2002). The distribution can be shown that it 

belongs to the exponential family of distribution provided the probability distribution function 

(pdf) of an observation  𝑦𝑖(𝑖 = 1,2, … , 𝑛) from the distribution can be expressed as  

                                           𝑓(𝑦𝑖, 𝜃𝑖, ∅) = exp (
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝑎𝑖(∅)
+ 𝑐(𝑦𝑖, ∅))                                 (3.3) 

where 𝑎(∅) and 𝑏(𝜃𝑖) are known functions and 𝑐(𝑦𝑖, ∅) is some function of 𝑦𝑖 and ∅. The 

parameter 𝜃𝑖  is called the canonical parameter,∅ is the dispersion parameter. The mean, 𝜇 =

𝐸(𝑦) = 𝑏′(𝜃), and the variance, 𝑣𝑎𝑟(𝑦) = ∅𝑏"(𝜃), can be obtained by differentiation in 

Appendix C. 

3.7.3 The structure of Generalized Linear Models 

Generalized Linear Model consists of three components namely, random component, link 

function and systematic component. The random component refers to the probability 

distribution of the response variable 𝑌 given the values of the explanatory variables in the model. 

The distribution may include the normal distribution and we say the random component is 

normally distributed. This leads us to the ordinary regression model. When the outcome 

observation is dichotomous then the most plausible distribution for a random variable is the 

Bernoulli distribution. The link function is the logit link. This component leads to the application 

of the logistic regression models. The systematic component is a function of covariates 

𝑥1, 𝑥2, 𝑥3, ….  , 𝑥𝑝  that leads to the linear predictor 𝜂 given by 𝜂 = 𝛼 + ∑ 𝑥𝑗𝛽𝑗
𝑛
𝑗=1 . The 

following section describes the concept of logistic regression. 

 

3.8 Logistic regression  

The Logistic Regression technique is frequently used for the analysis of data collected 

retrospectively. It commonly used statistical modeling technique that describes the relationship 

of several covariates to a binary response variable. The main purpose of the logistic regression 

model with multiple predictors is the same as that of the ordinary multiple linear regression 

models; in a way that we attempt to construct a model to describe the relationship between a 

binary response variable and one or more explanatory variables (Keinbaum et al., 2002). The 

response variable is often taking two or more possible values when an individual is to be classified 

into two or more groups.  

Linear logistic regression technique fits the model for binary or ordinal response data 

using the method of maximum likelihood and this model has been in use of statistical analyses 

for many years (Harrell, 2015). In this study, we focus on predicting a binary response using 

multiple predictors. 
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3.8.1 Model 

Suppose the explanatory variables of interest   𝑋 = (𝑋1; … … . . ; 𝑋𝑝) are p predictors for 

the i-th individual. Let the probability that the outcome is present be denoted by 𝑃(𝑌𝑖 = 1) =  𝜋𝑖 

for the i-th individual and let the outcome of being absent be denoted by 𝑃(𝑌𝑖 = 0) = 1 −  𝜋𝑖. 

The ratio of these two events is defined as the odds. Logistic regression does not make any 

assumption of linear regression and general linear model that are based on ordinary least squares 

algorithms. The method is based on the log transformation of the odds and is given by the  

                  log(
𝜋𝑖

1−𝜋𝑖
) =  𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝                                                     (3.4)                                                           

Eq. (3.4) can also be written like this 

  

                        𝜋𝑖 =
exp (𝛽0 + 𝛽1𝑋1𝑖+ . . . +𝛽𝑝𝑋𝑝)

1 + exp (𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝)
                                           (3.5) 

                                                      

which is the probability of the event occurring, and the probability of the non-occurrence of the 

event is given by 1 − 𝜋𝑖. The ratio of the odds of the event occurring in one group to the odds of 

it occurring in the other group is known as an odds ratio. The purpose of logistic regression in this 

study is to find the parameters 𝛽0,𝛽1, … , 𝛽𝑝 that best fit the data relating child survival to number 

of covariates using SADHS 2016. The logistic regression enables researchers to overcome many 

of the linear regression assumptions that are too restrictive. The model holds the following 

assumptions. 

Firstly, the linear relationship between dependent and independent variables is not 

assumed. However, a linear relationship between log(odds) and the independent variables is 

assumed. Secondly, the dependent variable does not need to be normally distributed. In addition, 

normally distributed error terms are not assumed. Thirdly, homoscedasticity is not needed. 

However, logistic regression does not need variances to be heteroscedastic for each level of the 

independent variables. Lastly, response variable is required to be binary and the observation 

should be independent of each other. We now look at how the parameters can be estimated 

using the maximum likelihood 

3.8.2 Parameter estimation 

To obtain the parameter estimates set the first derivative of log-likelihood with respect 

to each 𝛽 equal to zero, so the maximum likelihood estimates for 𝛽 can be obtained by setting 

each of the 𝐾 + 1 equation obtained to zero and solving for each 𝛽𝑘. Each such solution, if any 

exists; specifies a critical point either a maximum or minimum. The critical point will be the 

maximum if the matrix of second derivatives is negative definite, which means every element on 
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the diagonal of the matrix is less than zero. One more useful property of this matrix is that it 

forms variance-covariance matrix of the parameter estimates. Differentiating each of the 𝐾 + 1 

equation for the second time with respect to each element of 𝛽, denoted by 𝛽𝑘 leads to the 

variance covariance matrix (Czepiel, 2002). 

The goal of logistic regression is to estimate the 𝐾 + 1 unknown parameter 𝛽 in Eq. (3.6) 

                            𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = ∑ 𝑥𝑖𝑘𝛽𝑘

𝐾

𝑘=0

             𝑖 = 1,2, … , 𝑁                        (3.6) 

Therefore, the values of maximum likelihood estimates are the values for 𝛽 that maximize the 

likelihood function in Eq. (3.7) 

 

                        (𝛽|𝑦) =  ∏
𝑛𝑖!

𝑦𝑖! (𝑛𝑖 − 𝑦𝑖)!

𝑁

𝑖=1

𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)𝑛𝑖−𝑦𝑖                                     (3.7) 

 

After rearranging terms, the equation to be maximized can be written as: 

                                                                                                                                                 

= ∏ (
𝜋𝑖

1 − 𝜋𝑖
)

𝑦𝑖

(1 − 𝜋𝑖)𝑛𝑖                                                                   (3.8)

𝑁

𝑖=1

 

 

After taking exponential 𝑒 on both sides Eq. (3.6), 

                                (
𝜋𝑖

1 − 𝜋𝑖
) =  𝑒∑ 𝑥𝑖𝑘𝛽𝑘

𝑘
𝑘=0                                                                   (3.9) 

 

which, after solving for 𝜋𝑖  becomes, 

                            𝜋𝑖 = (
𝑒∑ 𝑥𝑖𝑘𝛽𝑘

𝐾
𝑘=0

1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0

)                                                                    (3.10) 

 

Substituting Eq. (3.9) for the first term and Eq. (3.10) for the second term, Eq. (3.11) becomes 
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                    ∏ (𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0 )

𝑦𝑖

(1 −
𝑒∑ 𝑥𝑖𝑘𝛽𝑘

𝐾
𝑘=0

1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0

)

𝑛𝑖𝑁

𝑖=1

                                       (3.11) 

 

By simplifying the first product and the second product Eq.(3.11), becomes, 

                             ∏ (𝑒𝑦𝑖 ∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0 ) (1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘

𝐾
𝑘=0 )

−𝑛𝑖

𝑁

𝑖=1

                                    (3.12) 

 

Thus, taking the natural log of Eq. (3.12) yields the log likelihood function: 

 

         𝑙(𝛽) =  ∑ 𝑦𝑖 (∑ 𝑥𝑖𝑘𝛽𝑘

𝐾

𝑘=0

) − 𝑛𝑖 . log (1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0 )                              (3.13)

𝑁

𝑖=1

 

 

To find the critical points of the log likelihood function, set the first derivate with respect to each 

𝛽 equal to zero. In differentiating Eq. (3.13), we note that 

 

                                
𝜕

𝜕𝛽𝑘
∑ 𝑥𝑖𝑘𝛽𝑘 = 𝑥𝑖𝑘                                                                       (3.14)

𝐾

𝑘=0

 

 

In differentiating the second half of Eq. (3.13), we take note of the general rule 
𝜕

𝜕𝑥
𝑙𝑜𝑔𝑦 =

1

𝑦

𝜕𝑦

𝜕𝑥
. 

Thus, differentiating Eq. (3.13) with respect to each 𝛽𝑘, 

𝜕𝑙(𝛽)

𝜕𝛽𝑘
=  ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖  .  

1

1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0

.
𝜕

𝜕𝛽𝑘
(1 + 𝑒∑ 𝑥𝑖𝑘

𝑘
𝑘=0 𝛽𝑘)

𝑁

𝑖=1

 

               = ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖  .
1

1 + 𝑒∑ 𝑥𝑖𝑘
𝑘
𝑘=0 𝛽𝑘

. 𝑒∑ 𝑥𝑖𝑘𝛽𝑘 𝑘
𝑘=0 .

𝜕

𝜕𝛽𝑘
∑ 𝑥𝑖𝑘𝛽𝑘

𝐾

𝑘

𝑁

𝑖=1
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= ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖  .
1

1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0

 . 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0  . 𝑥𝑖𝑘  

𝑁

𝑖=1

 

                             = ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖𝜋𝑖𝑥𝑖𝑘
𝑁
𝑖=1                                                                 (3.15)                        

 

The maximum likelihood estimates for 𝛽 can be found by setting each of the 𝐾 + 1 equations in 

Eq. (3.15) equal to zero and solving for each 𝛽𝑘. The general form of the matrix of second partial 

derivatives is, 

𝜕2𝑙(𝛽)

𝜕𝛽𝑘𝜕𝛽𝑘′
=  

𝜕

𝜕𝛽𝑘′
∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖𝑥𝑖𝑘𝜋𝑖    

𝑁

𝑖=1

 

=
𝜕

𝜕𝛽𝑘′
∑ −𝑛𝑖𝑥𝑖𝑘𝜋𝑖

𝑁

𝑖=1

 

                                                      = − ∑ 𝑛𝑖𝑥𝑖𝑘

𝜕

𝜕𝛽𝑘′

𝑁

𝑖=1

(
𝑒∑ 𝑥𝑖𝑘𝛽𝑘

𝐾
𝑘=0

1 + 𝑒∑ 𝑥𝑖𝑘𝛽𝑘
𝐾
𝑘=0

)                (3.16) 

By applying the two general rules. First, a rule for differentiating exponential functions. Second, 

the quotient rule for differentiating the quotient of two function. Thus, we can write Eq. (3.16) 

as: 

                                        − ∑ 𝑛𝑖𝑥𝑖𝑘𝜋𝑖(1 − 𝜋𝑖)𝑥𝑖𝑘′                                                    (3.17)

𝑁

𝑖=1

 

However, solving a system of non-linear equation is not easy compared to a system of 

linear equation. The alternative is to numerically estimate the parameters using iterative 

methods. The popular method for solving non-linear equation is Newton-Raphson method. In 

the next section, we look at how non-linear equations can be solved iteratively using Raphson 

method.  

3.8.3 Newton-Raphson Method 

Setting the 𝐾 + 1 equations from the first derivative of log-likelihood equate these 

equations to zero, this results into a system of non-linear equations with each 𝐾 + 1 unknown 

variable. The solution to these equations is the vector with elements,𝛽𝑘. After verifying that the 

matrix of second partial derivatives is negative definite and that the solution is global maximum 

rather than a local maximum, then it can be concluded that this vector contains the parameter 
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estimates for which observed data would have the highest probability of occurrence (Czepiel, 

2002 and Dlamini, 2016).  

Generalizing Newton’s method to a system of equations is not difficult. In our case, we 

need to solve Eq. (3.15) the first derivative of the log likelihood function.  Since Eq. (3.15) is really 

a system of 𝐾 + 1 equations, whose root we want to find simultaneously. Hence, it is convenient 

to use matrix notation to express each step of the Newton Raphson method. Thus, the first step 

of Newton Raphson can be expressed as: 

                          𝛽(1) = 𝛽(0) + [−𝑙"(𝛽(0))]−1. 𝑙′(𝛽(0))                                                (3.18) 

 

Using matrix multiplication, we can show that 

                                𝑙′(𝛽) = 𝑋𝑇(𝑦 − 𝑢)                                                                       (3.19) 

 

Therefore, we can verify that  

                          𝑙"(𝛽) = −𝑋𝑇𝑊𝑋                                                                                (3.20) 

 

The system of equation to solve for 𝛽 is given by the following 

                𝛽(1) = 𝛽(0) + [𝑋𝑇𝑊𝑋]−1. 𝑋𝑇(𝑦 − 𝑢)                                                      (3.21) 

 

Applying Eq. (3.12) continuously until there is essentially no change between elements of 𝛽 from 

one iterative to the next. At that point, the maximum likelihood is said to have converged. 

These algorithms are available in statistical software such as SAS and STATA. Many 

packages, including SAS, use Fisher scoring algorithm as a default iterative technique. Using this 

FS method is equivalent to using iterative reweighted least squares (IWLS). Both NR and FS gives 

similar parameter estimates. However, estimated covariance matrix parameters could be slightly 

different. This is because FS is based on the expected information matrix while NR is based on 

the observed information matrix. In the case of the logistic regression model, both expected and 

observed information matrices yield identical covariance matrices for both models. The 

parameter estimates are used to assess the model adequacy and its fit. In the next section, we 

consider methods for model selection and diagnostics. 
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3.9 Model Selection and Diagnostics  

In a regression model, the problem of finding good predictors and discarding irrelevant 

ones becomes increasingly hard as the number of possible covariates increases. The regression 

uses as many variables as possible to minimize the sampling error, frequently leading to 

overfitting. Penalizing models with many parameters, allowing a compromise between 

complexity and fit, can solve this. Different forms of information criteria have been developed to 

help choose between models with different sets of covariates. The two most common are the 

Akaike information criteria (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) 

(Schwarz, 1978).  

3.9.1 Akaike’s Information Criterion 

The only way to assess a model fit is to use Information Criterion. This criterion quantifies 

how well the model has predicted the data. The Akaike’s Information Criterion (AIC) is a very 

useful statistic for comparing the relative fit of different models. This statistic was proposed by 

Akaike (1974) and is defined as 

                                           𝐴𝐼𝐶 = −2(𝐿𝑜𝑔-𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘                                                       (3.22)                                                          

where 𝑘 is the number of estimated parameters included in the model. The AIC penalizes for the 

addition of parameters, and thus selects a model that fits well but has a minimum number of 

parameters (Akaike, 1974). A model with the lowest AIC is preferred. The method is particularly 

useful when comparing non-nested. 

3.9.2 Schwarz Criterion 

Schwarz Criterion (SC) is another important criterion for model selection that measures 

the trade-off between model fit and the complexity of the model (Stone,1979), which provides 

more parsimonious model than AIC does. SC is also called Bayesian Information Criterion (BIC) or 

Schwarz Information Criterion (SIC) because Schwarz (Schwarz, 1978) gave a Bayesian argument 

on it. This criterion is closely related to Akaike’s Information Criterion. SC is given by 

                                 𝑆𝐶 = −2𝐿𝑜𝑔-𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘𝑙𝑜𝑔(𝑛)                                                              (3.23) 

where k is the number of independent parameters, and n is the sample size. SC produces more 

severe penalization on the likelihood for estimating more parameters (Dlamini, 2016; Allison, 

2012). BIC tends to favor parsimonious models. The model achieving the lowest BIC value is 

preferable model. When doing a model selection, we narrow down the options before comparing 

models. This is done by building the regression model systematically using selection procedure 

of variables that enters the model. These procedures are forward, backward and stepwise 

selection. Forward selection starts with the null model and enters one covariate at a time that is 

found to be significant at some level of significance (α) until all significant variables are added to 

the model. Backward selection begins with the model that contains all covariates and drops one 

at a time, that is, insignificant at some level of significance α. The procedure will continue until 
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all non-significant variables are discarded from the model. The stepwise selection works in the 

same way as the forward selection procedure. However, the advantage of stepwise over forward 

selection is that variables already in the model can be excluded from the model each time the 

new covariate is added to the model. In the case where there are many covariates the stepwise 

procedure is a preferable since it minimizes the chance of keeping redundant variables in the 

model, and leaving out some important ones (Dlamini, 2016). 

 

3.10 Model Checking 

3.10.1 Goodness-of-fit Test 

Goodness-of-fit or lack-of-fit tests are designed to determine formally the adequacy or 

inadequacy of the fitted logistic regression model. Therefore, after fitting the logistic model to 

data set, it is reasonable to determine how well the fitted values under the model compare with 

the observed. The Pearson and Deviance goodness-of-fit statistics used for assessing the 

goodness-of-fit of the model. 

3.10.2 Deviance 

Nelder and Wedderburn (1972) first proposed the deviance as a measure of goodness-of-

fit. The deviance is used to assess the fit of the model. It compares the models that are nested 

and in order to define the deviance we let 𝑙(𝜇̂, ∅, 𝑦) be the log-likelihood of the reduced model 

at the maximum likelihood estimate, and let 𝑙(𝑦, ∅, 𝑦) be the log-likelihood estimate of the full 

or saturated model. The deviance is then given by 

 

                           𝐷 = 2(𝑙(𝑦, ∅, 𝑦) − 𝑙(𝜇̂, ∅, 𝑦))                                                         (3.24) 

For any distribution that has a scale parameter φ the scaled deviance is given by 

 

                                   𝐷∗ =
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

∅
                                                                                       (3.25) 

The Binomial and Poisson distribution has deviance and scaled deviance that are identical 

because ∅ = 1 in both distributions. Given that the model is true, as the sample size increase 

deviance will asymptotically tend towards the chi-square distribution. Suppose that one model 

provides a deviance 𝐷1 with degree of freedom 𝑑𝑓1 and another model provides a deviance 𝐷2 

with degree of freedom (𝑑𝑓2). In order to compare two models, we need to compute the 

differences between deviances 𝐷1 − 𝐷2 and the degrees of freedom 𝑑𝑓1 − 𝑑𝑓2.This will result in 

a chi-square distribution. This kind of test works in comparing two models given those 

parameters of the first model corresponding to 𝐷1 are a subset of the parameters in the second 
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model corresponding to 𝐷2. We now look at the other statistic that can be used to assess the fit 

of the model. 

3.10.3 Pearson Chi-Square Statistics 

Karl Pearson (Pearson 1900) proposed chi-square goodness-of-fit test. This is another 

statistic for testing and comparing models and is defined as  

                    𝜒𝑃𝑒𝑎𝑟𝑠𝑜𝑛
2 = ∑

(𝑦𝑖 − 𝜇𝑖̂)
2

𝑉𝑎𝑟(𝜇𝑖̂)̂

𝑛

𝑖=1

                                                                       (3.26) 

where 𝑉𝑎𝑟(𝜇𝑖̂)̂  is the estimated variance function. The deviance is often preferred over the 

Pearson chi-square statistic since maximum likelihood estimation in the Generalized Linear 

Models minimizes the deviance while the Pearson does not have the necessary additive 

properties like the deviance for comparing models. 

 

 3.11 Testing hypothesis  

The method for testing the significance of the parameter estimates in logistic regression 

is similar to the approach used for linear regression, but logistic regression uses likelihood 

function for a binary outcome variable. When the model is fitted, one can test for the significance 

of each parameter. The distribution 𝛽̂ in Appendix C is 𝛽~𝑀𝑉𝑁(𝛽, 𝐼−1) and  can be used to test 

for the significance of 𝛽̂𝑗(𝑗 = 1,2, … , 𝑝) in the model. The Wald Chi-Square is given by  

                                  𝜒2
𝑤𝑎𝑙𝑑 = (

𝛽𝑗̂

√𝑉𝑗̂

)

2

                                                                        (3.27)  

where 𝑉𝑗 ‘ s are the diagonal elements of  𝐼−1. Chi-square distribution can be used with 1 degree 

of freedom and compare it with Wald Chi-square statistics. The hypothesis being tested is 

𝐻0: 𝛽 =  0 against the alternative 𝐻𝑎: 𝛽 ≠ 0. If the Wald Chi-square statistics is greater than the 

table value of Chi-Square, 𝐻0 is rejected that means the explanatory variables are significantly 

adding something in the model.  

3.11.1 Odds ratio 

Logistic regression quantifies the relationship between the binary dependent variable and 

the set of covariates using odds ratios (Kleinbaum; Kupper; Nizam and Muller, 2008). Odds ratios 

are used to compare the relative odds of the occurrence of the outcome of interest given 

exposure to the variable of interest divided by the probability that the event will not happen. 

Dlamini (2016) and Czepiel (2002) defined odds ratio as the ratio of the odds for those with risk 
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factor(𝑋 = 1) to the odds for those without the risk factor(𝑋 = 0). The log of the odds ratio is 

given by 

                      𝑙𝑜𝑔(𝑂𝑅̂) = 𝑙𝑜𝑔(𝑂𝑅( 𝑥 = 1, 𝑥 = 0))    

                                        = 𝑙𝑜𝑔𝑖𝑡(𝑥 = 1) − 𝑙𝑜𝑔𝑖𝑡(𝑥 = 0), 

                                        = (𝛽̂0 + 1 × 𝛽̂1 )– (𝛽̂0 +  0 × 𝛽̂1), 

                                        =  𝛽̂1                                                                                        (3.28)   

The odds ratio then obtained by taking exponent of both sides of equation 3.28 

                                       𝑂𝑅 = exp(𝛽̂1)                                                                             (3.29) 

The parameter 𝛽1 associated with 𝑋 represents the change in the log (odds) when X changes 

from 𝑋 = 0 to 𝑋 = 1. Then the odds ratio indicates how the odds of the event changes as 𝑋 
change from 0 to 1. Suppose we have a continuous variable called  𝑋 then we can therefore say 

𝑋 increases by unit, the odds of risk factor increase by exp (𝛽̂1).  

3.11.2 Confidence Interval for the Odds Ratio                                        

Social Science Journals often report the point estimates and hypothesis test for 

coefficients. However, confidence intervals provide a better picture of the sampling variability of 

the estimates (Dlamini, 2016; Allison, 2012). The confidence interval for slope and intercept is 

based on Wald tests. The 100 (1 −
𝛼

2
) % confidence interval for intercept given by     

                                              𝛽̂𝑗 ± 𝑍1−
𝛼

2
√𝑉0                                                                       ( 3.30)           

where √𝑉0 is the standard error of 𝛽0. The 100 (1 −
𝛼

2
) % confidence interval for intercept is 

given by  

                                              𝛽̂𝑗 ± 𝑍1−
𝛼

2
√𝑉𝑗                                                                         (3.31) 

where √𝑉𝑗   is the standard error of 𝛽𝑗. Here 𝑍1−
𝛼

2
 is the upper 100 (1 −

𝛼

2
) % value from the 

standard normal distribution. Since these confidence intervals are on the logit scale, they have 

to be transformed by exponentiation in order to get the corresponding 100 (1 −
𝛼

2
) % 

                                   exp (𝛽̂𝑗 ± 𝑍1−
𝛼

2
√𝑉𝑗)                                                                 (3.32) 

This is the confidence interval for odds ratio associated with 𝛽𝑗 where 𝑗 = 1,2,3, … , 𝑝 
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3.12 Logistic Regression Diagnostics 

3.12.1 Pearson Residuals 

The Pearson residual is the difference between observed and fitted values and divided by 

an estimate of the standard deviation of the observed value. This residual measure the relative 

deviations between observed and fitted values (Hosmer et al., 2013). The Pearson residual is 

defined as follows 

                                  𝑝𝑖 =
𝑦𝑖 − 𝜇̂𝑖

√𝜇̂𝑖(𝑛𝑖 − 𝜇̂𝑖)/𝑛𝑖

                                                                (3.33) 

where 𝜇̂𝑖  is the fitted value and the denominator follows from the fact that 𝑣𝑎𝑟(𝑦𝑖) =

𝑛𝑖𝜋𝑖(1 − 𝜋𝑖). The result is called the Pearson residual since the square of 𝑝𝑖  is the contribution 

of the 𝑖𝑡ℎ observation to Pearson’s chi-squared statistic. With grouped data, the Pearson 

residuals are approximately normally distributed, but this is not the case with individual data. In 

both cases, observations with a Pearson residual exceeding two in absolute value may be worth 

a closer look. 

3.12.2 Deviance Residuals  

An alternative residual is based on the deviance or likelihood ratio chi-squared statistic. 

The deviance residual is defined as  

 

                      𝑑𝑖 = √2 [𝑦𝑖𝑙𝑜𝑔 (
𝑦𝑖

𝜇𝑖̂
) + (𝑛𝑖 − 𝑦𝑖)𝑙𝑜𝑔 (

𝑛𝑖−𝑦𝑖

𝑛𝑖−𝜇̂𝑖
)] ,                                   (3.34) 

 

with the same sign as the raw residual 𝑦𝑖 − 𝑦̂𝑖. Squaring these residuals and summing over all 

observations yields the deviance statistic. Observations with deviance residual in excess of two 

may indicate lack of fit. 

3.12.3 Influential observations 

We now focus on detecting potential observations that have a significant impact on the 

model. Under the ordinary least square regression, we have different types of residuals and 

influence measure, which help us understand the behavior of each observation in the model, 

such observations, turn to be far away from the rest of the observations. If the observation has 

too much leverage on the regression line, we can view it as an observation that has a significant 

impact on the model (Hosmer et al., 2013). The same methods have been developed for logistic 

regression. 
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3.12.4 Leverage of an observation 

This is alternative measure where the observation with an extreme value on the predictor 

variable is known as a point with high leverage (Hosmer et al., 2013). The leverage is defined as 

a measure of how far an independent variable deviate from its corresponding mean. The large 

values suggest covariate patterns far from the average covariate pattern which can have a larger 

effect on the fitted model even if the corresponding residuals are small (Hosmer et al., 2013) 

3.12.5 Predictive Accuracy 

To check the predictive accuracy SAS procedure, PROC LOGISTIC produces other model 

statistics namely, Somers’ D, Gamma, Tau-a and C. All these statistics range between zero and 

one. In all larger values correspond to a strong association between predicted and observed 

values. These measures of association are given by 

                𝑆𝑜𝑚𝑒𝑟𝑠′ 𝐷 =  
𝐶 − 𝐷

𝐶 + 𝐷 + 𝑇
 ,                                    

𝐺𝑎𝑚𝑚𝑎 =
𝐶 − 𝐷

𝐶 + 𝐷
 ,  

𝑇𝑎𝑢 − 𝑎 =
𝐶 − 𝐷

𝑁
 ,    

𝐶 = 0.5(1 + 𝑆𝑜𝑚𝑒𝑟𝑠′𝐷).                   

The C statistic is the proportion of observation pairs with different observed outcomes for 
which the model correctly predicts a higher probability for observations with the event outcome 
than the probability for non-event observation. A value of one means that the model assigns the 
higher probability to all observations with the event outcome compared to non-event 
observations. We use concordant and discordant pairs to describe the relationship between pairs 
of observations. The pair is said to concordant (C) if the subject ranked higher on predictor 
variable X also ranked higher on response variable Y. The pair is said to be Discordant if the 
subject ranking higher on predictor variable X ranks lower on the response variable Y. The pair is 
said to be Tied (T) if subject have the same classification on predictor and response variable. The 
total number of pairs is given by N. The value of C corresponds to the receiver operating 
characteristics (ROC) curve in the case of the binary response, which is defined below (Simundic, 
2008). 

3.12.6 Area under the Receiver Operating Characteristics 

The specificity and sensitivity rely on the cutoff point to classify the result as positive 
(Lemeshow and Hosmer, 2000). To pilot the ROC curve, one needs to plot sensitivity versus 1-
specificity. Sensitivity measures the proportion of correctly classified positive outcome or event 
of interest (mortality), and the specificity measures the proportion of correctly classified event 
free outcome (no mortality). ROC provides a complete description of classification accuracy and 
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can be used as a graphical display of the prediction accuracy of the model (Dlamini, 2016; 
Vittinghoff et al., 2011; Simundic, 2008).  

The shape of a ROC curve and the area under the curve (AUC) helps us estimate how high 
the discriminative power of a test is. The closer the curve is located to upper-left hand corner 
and the larger the area under the curve, the better the test is at discriminating between mortality 
and no mortality. The area under the curve (AUC) is between zero and one as shown in Figure 
3.1. The ROC curve gives the measure of the model ability to classify between subjects, which 
have experienced the outcome versus those who did not. 

 

                                      

                                Figure 3. 1: Receiver Operating Characteristic (ROC) curve 

                                Source: Simundic (2008).  
 

Area under the curve (AUC) is a global measure of diagnostic accuracy. This area measures 
the prediction accuracy of the model and It tells us nothing about individual parameters, such as 
sensitivity and specificity (Simundic, 2008). If the area under the curve is large, the better the 
diagnostic accuracy of the test. Suppose three logistic models were fitted, and model one 
produced AUC of 0.5, model 2-produced AUC of 0.9 also, model 3 produced an AUC of 0.7. One 
can classify model 2 as the better model since it has an excellent diagnostic accuracy thus have a 
better accuracy. An AUC of 0.5 is not good because the test cannot discriminate between 
correctly classified positive outcome and those falsely classified as positive. One can classify the 
relationship between the AUC and diagnostic accuracy as described in the Table 3.8 below 
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Table 3. 8:  Relationship between the area under the curve and diagnostic accuracy 

Area Diagnostic accuracy 
 

0.9 – 1.0   Excellent 

0.8 – 0.9 Very good 

0.7 – 0.8 Good 

0.6 – 0.7 Sufficient  

0.5 – 0.6 Bad 

< 0.5 Test not useful 
Source: Simundic.2008 

3.13 Fitting the logistic Regression Model 

The model was fitted using PROC LOGISTIC in SAS. Multivariate model was fitted to 
identify the association between the response variable and the covariates. The logistic regression 
was then fitted with all the variables that were identified as significant in the multivariate 
analysis. The goodness-of-fit was tested using the Hosmer-Lemeshow test and the predictive 
accuracy of the model was assessed through the ROC. The coefficient and odds ratios were 
interpreted, and the limitations of the logistic regression outlined in this section. 

3.13.1 Interpretation of Logistic Regression coefficients, standard error and odds ratios 

Table 3.9: shows the parameter estimates, Standard errors, p-values and odds ratios for 
the multivariate models. Under ethnicity, I have three categories, namely Black African, Coloured 
and Others. I have combined Whites and Indians to form the category called others. The variable 
is considered to have a significant effect if the p-values associated with the test of the hypothesis 
of the regression coefficient is less than 0.05. 

The effect of size of child at birth (low birth weight) was positively associated with under-

five mortality (p-value=0.0001). The corresponding odds ratio was 3.173 with (95% CI: 2.110; 

4.771). The odds of death for a child born with very small weight was 3.173 times the odds of 

death for a child born with average weight. The effect of not breastfeeding was found to be 

positively associated (p-value=0.0002) with under-five child mortality. The corresponding odds 

ratio was 0.335 with (95% CI: 0.144; 0.782). The odds of death for a child from a mother who 

does not breastfeed was 0.335 times the odds of death for a child from a mother who breastfeed. 

The effect of birth order number above three was negatively associated (p-value=0.0312) with 

under-five child mortality. The corresponding odds ratio was 1.468 with (95% CI: 0.885; 2.132). 

The odds of death for a child whose birth order number is more than three was 1.468 times the 

odds of death for a child whose birth order number is between 2 - 3 births. The effect of ethnicity 

was negatively associated with under-five child mortality (p-value =0.0305). The corresponding 

odds ratio was 0.188 times with (95% CI: 0.041;0.855). The odds death of a child born from 

Coloured population group was estimated to be 0.188 times the odds of death for a child born 

from Black Africa population group. 
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Table 3. 9:  Logistic Regression Model Coefficients, Standard errors, P-values and Odds ratios  

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 

Parameter 
 

Estimate Standard 
Error 

P-Value Odds 
ratio 

95%Confidence 
interval 
Lower         Upper 

Intercept 
Mother’s age (ref 20-35 years) 
<20 years 
>35 years 
Size of child at birth (ref. average) 
Very small 
Very large 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. 2 – 3 births) 
First birth 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Black African)  
Coloured 
Others 
 

-3.9536 
 
-0.1999 
-0.1740 
 
1.1546 
0.2289 
 
-1.0942 
 
0.2635 
0.3840 
 
-0.3035 
0.3200 
 
-1.6702 
-1.9225 

0.3685 
 
0.2641 
0.2311 
 
0.2082 
0.2330 
 
0.2912 
 
0.2631 
0.2584 
 
0.2637 
0.2229 
 
0.7721 
0.8280 

<0.0001 
 
0.4491 
0.4513 
 
<0.0001 
0.3260 
 
0.0002 
 
0.3165 
0.0312 
 
0.2498 
0.1512 
 
0.0305 
0.9809 

 
 
0.819 
0.840 
 
3.173 
1.257 
 
0.335 
 
1.302 
1.468 
 
0.738 
1.377 
 
0.188 
0.146 

 
 
0.488 
0.534 
 
2.110 
0.796 
 
0.144 
 
0.777 
0.885 
 
0.440 
0.890 
 
0.041 
0.029 

 
 
1.374 
1.322 
 
4.771 
1.985 
 
0.782 
 
2.180 
2.436 
 
1.238 
2.132 
 
0.855 
0.741 

                                                             Socio-Economic characteristics 
Wealth index (ref. Poor) 
Middle 
Rich  
Number of children 5 and under (ref.< 2 Children) 
2 or more children 
Total children ever born (ref. less than 2 Children) 
2 or more children 

 
-0.3288 
-0.5520 
 
-1.0923 
 
0.5397 

 
0.2430 
0.2849 
 
0.4317 
 
0.2747 

 
0.1760 
0.0527 
 
0.0114 
 
0.0435 

 
0.720 
0.576 
 
0.335 
 
1.715 
 

 
0.447 
0.329 
 
0.144 
 
1.001 

 
1.159 
1.006 
 
0.782 
 
2.939 

                                                                                Household Environment characteristics  
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. KwaZulu-Natal) 
Eastern Cape 
Free State 
Gauteng 
Limpopo 
Mpumalanga 
North West 
Northern Cape 
Western Cape 

 
0.5133 
 
0.2932 
0.7492 
0.2728 
-0.3357 
0.7446 
0.2724 
0.5532 
0.2741 
 

 
0.2109 
 
0.3561 
0.3897 
0.4036 
0.3941 
0.3218 
0.3620 
0.4619 
0.5991 

 
0.0149 
 
0.4104 
0.0545 
0.4990 
0.3943 
0.0207 
0.4518 
0.2310 
0.6473 
 

 
1.671 
 
1.341 
2.115 
1.314 
0.715 
2.106 
1.313 
1.739 
1.315 

 
1.105 
 
0.667 
0.986 
0.596 
0.330 
1.121 
0.646 
0.703 
0.407 

 
2.526 
 
2.694 
4.540 
2.897 
1.548 
3.957 
2.670 
4.299 
4.256 

 

The effect of number of children 5 year and under in household that is above two was 
found to be positively associated (p-value=0.0114) with under-five child mortality. The 
corresponding odds ratio was 0.335 with (95% CI: 0.144; 0.782). The odds of death for a child 
from a mother with two or more children alive was 0.335 times the odds of death for a child from 
a mother who has less than two children alive. The effect of total number of children ever born 
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that is above two was found to be positively associated (p-value=0.0435) with under-five child 
mortality. The corresponding odds ratio was 1.715 with (95% CI: 1.001; 3.939). The odds of death 
for a child from a mother who gave birth to two or more children alive was 1.715 times the odds 
of death for a child from a mother who has less than two children alive. The effect of not drinking 
safe water was found to be positively associated (p-value=0.0149) with under-five child mortality. 
The corresponding ratio was 1.671 with (95% CI: 1.105;2.526). The odds of death for child who 
doesn’t not drink safe water was 1.671 times the odds death of a child who is drinking safe water. 
The effect of a province was found to be negatively associated (p-value=0.0207) with under-five 
child mortality. The correspondence ratio was 2.106 with (95% CI: 1.121;3.957). The odds of 
death for a child from a mother who lives in Mpumalanga was 2.106 times the odds death of a 
child from a mother who lives in KwaZulu-Natal provinces.  

 

3.13.2 Model selection for logistic regression 

Stepwise, forward and backward selection procedure were used to select significant 
variables associated with the response variable (child survival) in South Africa. All three 
procedures provided similar variable that were identified to be significant. Table 3.10 shows 
model statistics that was used to compare the two models.  

 

                                       Table 3. 10: Model fit statistics for logistic regression 

                                                                                                               Model Fit Statistics 

Criterion Intercept Only 

Intercept and 

Covariates 

AIC 1149.390 1063.219 

SC 1155.564 1205.120 

-2 Log- Likelihood 1147.390 1017.115 
 

 

 

3.13.3 Hosmer and Lemshow Goodness-of-fit test  

The Hosmer-Lemeshow goodness-of-fit statistic is another test used to assess the model 
fit. The test compares the predicted values against the actual values of the dependent variable. 
The method is similar to the chi-square goodness of fit. The Hosmer-Lemeshow test involves 
grouping the sample into groups based on the percentiles of estimated probability (Hosmer and 
Lemeshow, 2000). 

To test for the goodness of fit of the model one can use the Hosmer Lemeshow test. The 
goodness-of-fit Chi-square statistics for Hosmer and Lemeshow is 2.5983 with 8 degrees of 
freedom and the corresponding p-value is 0.9570 as shown below in Table 3.11. 
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                              Table 3. 11: Hosmer and Lemeshow Goodness-of-Fit Test 

       Hosmer and Lemeshow Goodness-of-Fit Test 
 

Number of observations 3548 

Number of groups 10 
Hosmer-Lemeshow Chi-Square 2.5983 
P - value 0.9570 

 

This shows that there is no sufficient evidence to claim that the model does not fit the data 
adequately. 

 

 3.13.4 Prediction accuracy of the model 

Model checking is important to check how much predicted probability associated with 
the response. The main objective is to have a model that maximizes the chance and sensitivity of 
identifying individuals that need justified intervention (Dlamini, 2016; Moeti, 2007). The table 3.5 
shows the association of predicted probability and observed responses with the area under the 
curve being c = 0.761 and a concordant rate of 76.1 which tells us how good the model is for 
separating the 0’s and 1’s with a chosen model. Figure 3.2 displays the ROC curve of the fitted 
model and the area under the curve c = 0.761, which indicates that 76% probabilities were 
predicted correctly and that shows the model is a good prediction accuracy. The model assigned 
higher probability to child status (not alive) correctly. The measures Sumers’ D, Gamma, and Tau-
a are the summaries of the table of concordant and discordant pairs. These measures are likely 
to lie between zero and one where the large values indicate better predictive ability of the model, 
and these can be viewed as the measure of strength and direction of the relationship between 
pairs. The value Gamma is 0.523, which suggest that there is no perfect association. It is 
interpreted as 52% fewer errors are in prediction by utilizing the estimated probabilities than by 
a chance alone. One of the problems with this statistic is the tendency to overstate the strength 
of association between probabilities and response. The value for Somers’D is 0.523. This shows 
that not all pairs are concordant, and one may use to compare the model. 

 

            Table 3. 12: Association of Predicted Probabilities and Observed Responses 

         Association of Predicted Probabilities and Observed Responses 

Percent Concordant 76.1 Somers’ D 0.523 

Percent Discordant  23.8 Gamma 0.523 

Percent Tied 0.1 Tau-a 0.038 

Pairs 460755 c 0.761 
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Figure 3. 2: Receiver Operating Characteristic (ROC) curve for model 

 

3.13.5 Logistic regression diagnostic plots 

We have discussed different techniques of diagnostics in section 3.12 above, now will 

focus on detecting potential observation that have significant impact on the model. The 

importance of diagnostic plots is to help us to detect if the was any error in data entry that may 

badly influence or skew the regression estimation. The residual and influence measures that help 

us to understand how the observations behave in the model, includes Standardized Pearson 

residuals, Standardized residuals, and Deviance residuals. Figure 3.3 shows influence diagnostics, 

which were produced by using, plots all option in procedure PROC LOGISTIC to fit a logistic 

regression model to the data. The vertical axis on each plot represents the value of the diagnostic, 

and the horizontal axis represents case number of the observation. These plots are useful for 

identification of extreme values. The observations that are further away from zero are said to be 

influential observation.  
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Figure 3. 3: Logistic Regression diagnostic plots 

 

3.14 Limitations of the Logistic regression 

In logistic regression, the goal is to find the best fitting model to describe the relationship 

between the dichotomous response variable and the set of independent variables. There is no 

assumption that is being made about the covariates, but covariates should not be highly 

correlated to one another since it may lead to problems with estimation. More covariates require 

larger sample sizes for estimation procedure. Logistic regression relies heavily on having an 

adequate number of samples for each combination of independent variables; small sample sizes 

can lead to widely inaccurate estimates of parameters. The other limitation that when there is 

non-linear relationship between log odds and covariates one may obtain invalid results. 

Furthermore, ordinary logistic regression is not an appropriate approach if the data come from 

sampling designs or complex nature of the survey design, which can lead to invalid statistical 

inference. In these cases, PROC SURVEYLOGISTIC is appropriate because it considers design (An, 

2002). In the next section, we consider the method, which considers the survey design features. 
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 3.15 Survey Logistic regression model 

Survey logistic regression model has a similar theory as ordinary logistic regression. 

However, survey logistic regression accounts for the complexity of the survey design (Dlamini, 

2016; Moeti, 2007). We can make a valid statistical inference by using survey logistic regression 

which to account for stratification, clustering, and unequal weighting. In the ordinary logistic 

regression, a model is fitted and selected based on the assumption that the data are collected 

using simple random sampling. If the complexity of the design is ignored when modeling, the 

standard errors would be underestimated or overestimated that hence leading to wider or 

narrow confidence intervals. Survey logistic regression and ordinary logistic regression would be 

identical if the data are collected using simple random sampling. The main advantage of 

stratification is that the survey is easier to administer, and parameters can be estimated for each 

stratum in which themselves can be important. Dividing the population into strata could reduce 

the variance of the estimator of a population total (An, 2002; Dlamini, 2016; Lemeshow and 

Hosmer, 2000). Parameter estimation methods are presented in the following section. 

 

3.15.1 Parameter estimation 

In a complex survey design, the assumption of independence does not hold. When 

clusters are drawn, they might introduce correlation among observation. This correlation might 

affect the standard error of the estimate. We need to appropriately estimate the standard errors 

associated with the model coefficients. In order to do such, we need to account for the 

complexity of the sample design. The standard error produced while assuming a simple random 

sample will probably underestimate the true population value (Siller and Tompkins, 2006). In the 

data considered the primary sample units were sampled in the first stage in each stratum (e.g 

Province).  In the second stage, the household was sampled.  

Thus, we specify the response variable as 𝑦ℎ𝑖𝑗𝑘(ℎ = 1,2, …  , 𝐻𝑘𝑗𝑖 ; 𝑖 = 1,2, …  , 𝑛𝑘𝑗; 𝑗 =

1,2, …  , 𝑚𝑘; 𝑘 = 1,2, …  , 𝐾) which is 1 if the event occurred in ℎ𝑡ℎ individual within 𝑖𝑡ℎ 

household within 𝑗𝑡ℎ primary sample units nested within 𝑘𝑡ℎ stratum and 0 otherwise. The total 

number of observations is given by 𝑛 = ∑ ∑ 𝑛𝑘𝑗
𝑚𝑘
𝑗=1

𝑘
𝑘=1  and sampling design weight for the 

𝑘𝑗𝑖ℎ𝑡ℎare given in the dataset which are denoted by 𝑤𝑘𝑗𝑖ℎ. The weights are based on the 

sampling probability calculated at each stage. These design weights are obtained by multiplying 

household design weights by the inverse of the household response rate by stratum. Let the 

probability that the event occurred in ℎ𝑡ℎ individual within 𝑖𝑡ℎ household within 𝑗𝑡ℎ primary 

sample units nested within 𝑘𝑡ℎ stratum be 𝜋𝑘𝑗𝑖ℎ = 𝑃(𝑦ℎ𝑖𝑗𝑘 = 1) and the probability that the 

event did not occur in ℎ𝑡ℎ individual within 𝑖𝑡ℎ within 𝑗𝑡ℎ primary sample units nest within 

𝑘𝑡ℎstratum be 1 − 𝜋𝑘𝑗𝑖ℎ = 𝑃(𝑦ℎ𝑖𝑗𝑘 = 0). The pseudo maximum likelihood is constructed as the 

product of individual contributions to the likelihood to the likelihood (Dlamini, 2016; Lemeshow 

and Hosmer, 2000). The contributor of a single observation using pseudo maximum likelihood is 

given by   
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𝜋
𝑘𝑗𝑖ℎ

𝑤𝑘𝑗𝑖ℎ𝑦𝑘𝑗𝑖ℎ(1 − 𝜋𝑘𝑗𝑖ℎ)(1−𝑤𝑘𝑗𝑖ℎ𝑦𝑘𝑗𝑖ℎ) 

Thus, the pseudo-likelihood function is given by  

        𝐿(𝛽; 𝑌) =  ∏ ∏ ∏ ∏ 𝜋
𝑘𝑗𝑖ℎ

𝑤𝑘𝑗𝑖ℎ𝑦𝑘𝑗𝑖ℎ(1 − 𝜋𝑘𝑗𝑖ℎ)(1−𝑤𝑘𝑗𝑖ℎ𝑦𝑘𝑗𝑖ℎ)

𝐻𝑘𝑗𝑖

ℎ=1

𝑛𝑘𝑗

𝑖=1

𝑚𝑘

𝑗=1

               (3.35)

𝐾

𝑘=1

 

 

The pseudo log-likelihood function is given by 

𝑙(𝛽; 𝑌) = ∑ ∑ ∑ ∑

 

{𝑤𝑘𝑗𝑖ℎ𝑦𝑘𝑗𝑖ℎ𝑙𝑜𝑔 (
𝜋𝑘𝑗𝑖ℎ

1 − 𝜋𝑘𝑗𝑖ℎ
) − 𝑙𝑜𝑔 (

1

1 − 𝜋𝑘𝑗𝑖ℎ
)}  (3.36)

𝐻𝑘𝑗𝑖

ℎ=1

𝑛𝑘𝑗

𝑖=1

𝑚𝑘

𝑗=1

𝐾

𝑘=1

 

 

Differentiating the log-likelihood with respect to unknown regression coefficients we obtain the 

vector of 𝑝 + 1 score equations which compactly written as  

                                     𝑋′𝑊(𝑦 − 𝜋) = 0                                                                      (3.37) 

where 𝑋 is the 𝑛 × (𝑝 + 1) matrix of covariates values, 𝑊 is as  𝑛 × 𝑛 diagonal matrix containing 

weights, 𝑦 is the 𝑛 × 1 vector of observed outcome values and [𝜋1111, … , 𝜋𝑘𝑚𝑘𝑛𝑘𝑗𝐻𝑘𝑗𝑖
]

′

is the 

  𝑛 × 1 vector of logistic probabilities.   

 

The survey logistic regression model is given by 

    𝑙𝑜𝑔𝑖𝑡(𝜋𝑘𝑗𝑖ℎ) = 𝑙𝑜𝑔 {
𝜋ℎ𝑗𝑖ℎ

1 − 𝜋𝑘𝑗𝑖ℎ
} = 𝑋′𝑘𝑗𝑖ℎ𝛽                                                        (3.38) 

where 𝑋𝑘𝑗𝑖ℎ is the vector that correspond to the characteristics of the ℎ𝑡ℎ individual within 𝑖𝑡ℎ 

household within 𝑗𝑡ℎ primary sample unit nested within 𝑘𝑡ℎ stratum and also 𝛽 is the vector of 

unknown model coefficients. In the following model, selection and checking procedure are 

discussed.  
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3.16 Survey logistic regression model selection and checking 

3.16.1 Model selection 

The SVY command in STATA provides a way to perform logistic regression with survey 

data. However, for survey data the estat gof, table group (10) command ordinarily used for 

estimating the Hosmer–Lemeshow goodness-of-fit test statistic associated with a fitted logistic 

regression model is not available after SVY estimation (Archer, K.J. and Lemeshow, S., 2006), and 

the Receiver Operating Characteristic (ROC) curve after fitting SVY prefix is also not appropriate. 

To address the goodness-of-fit problem, a Stata ado-command, svylogitgof, for estimating the F-

adjusted mean residual test after SVY: logit or SVY: logistic estimation has been developed 

(Archer and Lemeshow, 2006). The same model fitted in Section 3.13 is fitted using SVY 

estimation. 

 3.16.2 Testing hypothesis about 𝜷  

The computation of the standard errors of the parameter estimates used to construct 

confidence intervals and perform statistical tests is much complicated if data are from a complex 

design (Moeti, 2007). The estimate of the covariance matrix of the estimator of coefficients is 

given by  

                                𝑉𝑎𝑟(𝛽̂)̂ =  (𝑋′𝐷𝑋)−1𝑆(𝑋′𝐷𝑋)−1                                              (3.39) 

where,𝐷 = 𝑊𝑉 is the 𝑛 × 𝑛 diagonal matrix with general elements 

 

𝑤𝑘𝑗𝑖ℎ𝜋𝑘𝑗𝑖ℎ(1 − 𝜋𝑘𝑗𝑖ℎ) 

 

The matrix 𝑆 is a pooled within stratum estimator of the covariance matrix in the left side of 

equation (3.31). Lest us denote the general element of the vector of the score equation as 

𝑍𝑘𝑗𝑖ℎ
′ = 𝑤𝑘𝑗𝑖ℎ𝜋𝑘𝑗𝑖ℎ(1 − 𝜋𝑘𝑗𝑖ℎ) 

Thus,   

                                                          𝑍𝑘𝑗 = ∑ 𝑍𝑘𝑗𝑖ℎ

𝑛𝑘𝑗

𝑖=1

                                                   ( 3.40) 

The stratum specific mean is given by                                                           

 𝑍̅𝑘 =
1

𝑚𝑘
∑ 𝑍𝑘𝑗

𝑚𝑘

𝑗=1
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The within stratum estimator for the 𝑘𝑡ℎ stratum variance is given by 

                    𝑆𝑘 =
𝑚𝑘

𝑀𝑘
 ∑(𝑧𝑘𝑗 − 𝑧𝑘̅

𝑚𝑘

𝑗=1

)(𝑧𝑘𝑗 − 𝑧𝑘̅)′                                                       (3.41) 

 

The pooled estimator  𝑆 =  
𝑚𝑘

𝑀𝑘
∑ (1 − 𝑓𝑘)𝑆𝑘.  (1 − 𝑓𝑘)𝐾

𝑘−1  is the finite population correlation 

factor and 𝑓𝑘 =
𝑚𝑘

𝑀𝑘
  is the ratio of the number of sampling unit to the total number of primary 

sampling unit in the stratum 𝑘. Generally if 𝑀𝑘 is known one can assume that 𝑀𝑘 is large enough 

so that 𝑓𝑘 approaches zero, thus infinite population correction factor will be 1 (Dlamini, 2016; 

Lemeshow and Hosmer, 2000). The Wald statistics for testing all coefficients in the fitted model 

are equal to zero is by  

                       𝑊𝑎𝑙𝑑 =  𝛽̂′ [𝑣𝑎𝑟(𝛽̂)𝑝×𝑝
̂ ]

−1
𝛽̂                                                          (3.42) 

where 𝛽̂ is the  vector of 𝑝 slope coefficients and 𝑣𝑎𝑟(𝛽̂)𝑝×𝑝
̂  is the sub matrix from a  (𝑝 + 1)(𝑝 +

1) matrix of  𝑣𝑎𝑟(𝛽̂)̂  and the p-value can be computed using 𝜒2 distribution with 𝑝 degrees of 

freedom, thus 

                                     𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝜒2(𝑝)) ⩾  𝑤𝑎𝑙𝑑)            

Variances of the survey logistic regression parameters and odds ratios are computed 

using a Taylor series linearization (Siller and Tompkins, 2006). SVY code uses a Taylor series 

linearization approximation and incorporates the sample design information, including 

stratification, clustering, and unequal weighting. This also computes variances within each 

stratum and then pools the variance estimates together. In this case, t-test statistics could be 

used for testing significance of the parameter estimates and constructs the confidence interval if 

the sample size is small. However, if the sample size is large, the sampling distribution of the 

parameter estimators are almost normally distributed (Lemeshow and Hosmer, 2000). The Wald 

statistics will be used to test and construct the confidence intervals given by 

                                                                 𝛽̂𝑗 ± 𝑍1−
𝛼

2
√𝑉𝑗                                                    (3.43) 

where 𝛼 is the level of significant 𝑍1−
𝛼

2
 is 100 ((1 −

𝛼

2
) percentile of the standard normal 

distribution and 𝑉𝑗 is the variance obtained from the diagonal of the variance-covariance matrix. 

One can take the exponent of the confidence interval since it is on logit scale. The SVY code uses 

both Taylor series linearization and maximum likelihood. Procedures such as Jackknife Repeated 

Replication (JRR) and Balanced Repeated Replication (BRR) can be used to estimate variance of 
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each parameter. This procedure is used in this study to construct logistic regression model that 

account for the complex nature of the survey design.  

3.16.3 Model checking  

SVY command in STATA does not produce Hosmer-Lemeshow statistic test. However, 

Akaike’s Information Criterion (AIC) and Schwarz Criterion (SC) are used to compare the goodness 

of fit (GOF) of the two-nested model (Dlamini, 2016; Moet, 2007). The goodness-of-fit test 

applied in complex survey data is called the 𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  mean residual is obtained in the following 

manner, after the usual logistic regression model is fitted, the residuals 𝑟̂𝑗𝑖 = 𝑦𝑗𝑖 − 𝜋̂(𝑥𝑗𝑖) can be 

obtained. The goodness-of-fit test is based on the residuals since large departures between 

observed and predicted values that indicates lack of fit (Archer and Lemeshow, 2006). If we use 

grouping strategy, the observations are sorted into deciles based on their estimated probabilities, 

and each decile of risk includes approximately equivalent total sampling weights (Archer; 

Lemeshow and Hosmer, 2007).The survey estimates of the mean residual by decile of risk 𝑀̂ =

(𝑀̂1, 𝑀̂2,𝑀̂3, …  , 𝑀̂10) are obtained such that the 𝑀̂𝑔 = ∑ ∑ 𝑤𝑟̂𝑗𝑖/ ∑ ∑ 𝑤𝑗𝑖𝑖𝑗 (𝑔 = 1,𝑖𝑗 …  , 10). 

Here 𝑤𝑗𝑖  represent the sampling weights associated with the ordered residuals grouped into 

decile of risk. The association estimated variance-covariance matrix 𝑉̂(𝑀̂) is obtained using 

linearization, which is based on a first order Taylor series approximation. Therefore, the 

goodness-of-fit test implemented in svylogitgof is of the form 

                                         𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝑓−𝑔+2

𝑓𝑔
𝑀̂𝑡𝑉̂(𝑀̂)

−1
𝑀̂                                     (3.44) 

where 𝑓 is the number of sampled clusters minus the number of strata and 𝑔 is the number of 

groups in the hypothesis. We assume that the covariance is zero. The hypothesis being tested 

here is as follow 𝐻0: model is a good fit versus 𝐻𝛼: model is not a good fit. We compare the 

calculated 𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 value with 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . We reject the null hypothesis if 𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is greater than 

the 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and we say a model is not a good fit. 

 

3.17 Design Effects 

The design effect is defined as the ratio of the variance of an estimate under the complex 

sample design to the variance of the same estimate that would apply with a simple random 

sample of the same size (Kish, 1965). The sample size and sampling design determine the 

precision of the parameter estimates. However, due to the practical constraints such as cost and 

manpower, the national survey would not adopt the simple random sampling (Dlamini, 2016; 

Shackman, 2001). The complex design would be adopted instead. The problem we face in 

complex sample design is that sampling errors for survey estimates cannot be easily computed 

using the formulae found in statistical texts (Shackman, 2001). The design effects of survey 

estimates can be used as tools for measuring sample efficiency and for survey planning. The 
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STATA code estat effects, deff deft calculates the design effects for regression coefficients. Design 

effect is given by  

 

           𝐷𝐸𝐹𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑒𝑥 𝑑𝑒𝑠𝑖𝑔𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑖𝑚𝑝𝑙𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒
                       (3.45) 

The denominator of the equation is computed under the assumption that the design is 

simple random variable with no stratification, clustering and weighting. The variance can be 

computed under the assumption of simple random sampling. If we consider both sampling 

weights and sampling rates (population totals) for the analysis, then the sampling rates under 

the assumption of simple random sampling is given by 

𝑓𝑠𝑟𝑠 =
𝑛

𝑤
 

where 𝑛 is the sample size and 𝑤 estimates the population size. If the sum of the weights 

(population size) is less than the samples size, 𝑓𝑠𝑟𝑠 is set to zero.  

The design effect (DEFF) ratio indicates whether the sampling variability of an estimate 

was increased or decreased by the design used. A design effect of less than one indicates that 

fewer cases would be needed to obtain the same measurement precision obtained with simple 

random sampling. A design effect ratio greater than one indicates that more cases would be 

needed to obtain the same sampling precision found with a simple random sample. When the 

design effect is greater than one, then the standard errors of estimates from commonly used 

statistical packages underestimate the true sampling variability (Lee, Forthofer & Lorimer, 1989). 

This design effect is used to compare variance when the data were obtained from simple 

random sampling and the variance when the data were obtained under complex design. Hence, 

one can use DEFT which is simply the square root of DEFF. The DEFT can be used to reduce 

variability since DEFT is less variable than DEFF. The DEFT can also be used to estimate confidence 

interval directly (Dlamini, 2016; Shackman, 2001). DEFT shows how much the standard error and 

confidence intervals increase. Suppose we have a value of DEFT equal to 𝑘, then we say 

confidence interval has to be 𝑘 times as large as they would for a simple random sample. The 

model fitting follows in the next section.  

3.18 Fitting the Survey Logistic Regression Model 

The model was fitted using SVY command in STATA to estimate, parameter estimates, 

standard errors and odds ratio. A model similar to the one fitted in section (3.13.2) was fitted 

and interpreted. 
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3.18.1 Model checking 

The estat ic command in STATA does not produce plots and Hosmer-Lemeshow statistics. 

Therefore, one may use the Akaike’s Information Criterion (AIC) and Schwarz Criterion (SC) to 

check if the model is a good fit or not. The AIC of the full model smaller compared to the AIC of 

the reduced model and this indicates that the smaller AIC fits the data well. The table 3.13 

indicates the model fit that explains the data better. 

                               Table 3. 13: Model fit statistics for Survey logistic regression 

Model Obs        Log-likelihood(null)     Log-likelihood (model)       df             AIC                 BIC                    

          
           .                                             

 
3.471         -5.49e+08                       -4.88e+08                          22          9.76+08      9.76e+08    

              
            . 

 
3,471         -5.49e+08                       -4.74e+08                          19       9.89e+08         9.84e+08 

                                                                                      

 

3.18.2 Goodness-of-fit test           

The estat gof command in STATA is fitted in survey logistic to model the relationship 

between the categorical outcome (child survival status) and the set of predictor variables. 

However, the estat gof, command ordinarily used for estimating the Hosmer–Lemeshow 

goodness-of-fit test statistic associated with a fitted logistic regression model is not available 

after SVY estimation (Archer and Lemeshow, 2006). Therefore, the F-adjusted mean residual 

goodness-of-fit test was applied, and this indicates that the model fits the data well. 

 

Logistic model for child survival status, goodness-of-fit test 

 

   𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 33.07 

   𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.0001  
  

3.18.3 Interpretation of Survey Logistic Regression coefficients, standard error and odds 

ratios 

Table 3.14: shows the estimated coefficients, standard errors, p-values and odds ratios for the 
multivariate models. The variables that were found to be significant if p-values which were less 
than 0.05.  

The effect of the size of the child at birth (very small weight) was found to be positively 
associated with under-five mortality (p-value=0.001). The corresponding odds ratio was 3.7311 

with (95% CI: 0.7599; 1.8735). The odds of death for very small birth size were estimated to be 
3.7311 times the odds of death for average weight of a child. The effect of the size of a child at 
birth, very large weight was also found to be a negatively associated with under-five mortality (p-
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value=0.001). The corresponding odds ratio was 3.1161 with (95% CI: 0.5468; 1.7264). The odds 
of very large birth size were estimated to be 3.1161 times the odds of death for average weight 
of a child. The effect of not breastfeeding was found to be positively associated (p-value=0.017) 
with under-five child mortality. The corresponding odds ratio was 2.6993 with (95% CI: 0.1790; 
1.8070). The odds of death for a child from a mother who does not breastfeed was estimated to 
be 2.6993 times the odds of death for a child from a mother who breastfeeds. The effect of 
ethnicity was found to be negatively associated with under-five child mortality (p-value =0.001). 
The corresponding odds ratio was 15.8002 times with (95% CI: 1.1307;4.3893). The odds death 
of a child born from coloured population group was estimated to be 15.8002 times the odds of 
death for a child born from black African population. The effect of number of children 5 years 
and under in household that is above two was found to be positively associated (p-value=0.030) 
with under-five child mortality. The corresponding odds ratio was 1.0036 with (95% CI: 0.0981; 
1.9090). The odds of death for a child from a mother with two or more children alive were 
estimated to be 1.0036 times the odds of death for a child from a mother who has less than two 
children alive. The effect of a total number of children ever born that is above two was found to 
be positively associated (p-value=0.043) with under-five child mortality. The corresponding odds 
ratio was 0.4977 with (95% CI: -1.3953; -0.0029). The odds of death for a child from a mother 
who gave birth to two or more children alive were estimated to be 0.4970 times the odds of 
death for a child from a mother who has less than two children alive. The effect of not drinking 
safe water was found to be positively associated (p-value=0.035) with under-five child mortality. 
The corresponding ratio was 0.8922 with (95% CI: -0.6355;0.4073). The odds of death for child 
who doesn’t not drink safe water was 0.8922 times the odds death of a child who is drinking safe 
water. 
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Table 3. 14:  Survey Logistic Regression Model Coefficients, Standard errors, P-values and Odds 
ratios  

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 

Parameter 
 

Estimate Standard 
Error 

P-Value Odds 
ratio 

95%Confidence interval 
Lower                        Upper 

 
Mother’s age (ref <20 years) 
<20 years 
>35 years 
Size of child at birth (ref. Average) 
Very small 
Very large 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. First birth) 
2 – 3 births 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Black African)  
Coloured 
Others 
 

 
 
-0.4522 
-0.1746 
 
1.3167 
1.1366 
 
0.9930 
 
0.3048 
0.1555 
 
0.2352 
-0.0616 
 
2.7600 
0.0218 

 
 
0.3084 
0.3004 
 
0.2841 
0.3009 
 
0.4153 
 
0.3426 
0.5008 
 
0.3382 
0.2809 
 
0.8313 
0.0422 

 
 
0.143 
0.561 
 
<0.001 
<0.001 
 
0.017 
 
0.374 
0.042 
 
0.487 
0.826 
 
0.001 
0.605 
 

 
 
0.6362 
0.8398 
 
3.7311 
3.1161 
 
2.6993 
 
1.3564 
0.5850 
 
1.2651 
0.9403 
 
15.8002 
1.0220 
 

 
 
0.3476 
0.4661 
 
0.7599 
0.5468 
 
0.1790 
 
-0.3666 
-0.8260 
 
-0.4276 
-0.6122 
 
1.1307 
0.6612 

 
 
1.1645 
1.5133 
 
1.8735 
1.7264 
 
1.8070 
 
0.9762 
1.1370 
 
0.8979 
0.4890 
 
4.3893 
1.2010 

                                                             Socio-Economic characteristics 
Wealth index (ref. Poor) 
Middle 
Rich  
Number of children 5 and under (ref.< 2 Children) 
2 or more children 
Total children ever born (ref. less than 2 Children) 
2 or more children  

 
0.5610 
0.7754 
 
1.0036 
 
-0.6991 

 
0.3169 
0.3985 
 
0.4620 
 
0.3552 

 
0.077 
0.052 
 
0.030 
 
0.043 

 
1.7525 
2.1716 
 
2.7280 
 
0.4970 

 
-0.0600 
-0.0060 
 
0.0981 
 
-1.3953 

 
1.1821 
1.5565 
 
1.9090 
 
-0.0029 

                                                                          Household Environment characteristics  
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Western Cape) 
Eastern Cape 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape 

 
-0.1141 
 
0.1317 
-0.2265 
0.1622 
0.5147 
0.8666 
-0.3055 
0.1605 
-0.2481 
 

 
0.2660 
 
0.6376 
0.6579 
0.6698 
0.6366 
0.6699 
0.6317 
0.6740 
0.6748 
 
 

 
0.035 
 
0.836 
0.731 
0.809 
0.419 
0.196 
0.009 
0.812 
0.713 

 
0.8922 
 
1.1408 
0.7973 
1.1762 
1.6730 
2.3788 
0.7368 
1.1762 
0.7803 
 
 

 
-0.6355 
 
-1.1179 
-1.5159 
-1.1506 
-0.7331 
-0.4465 
-1.5436 
-1.1606 
-1.5706 

 
0.4073 
 
1.3813 
1.0630 
1.4751 
1.7624 
2.1797 
0.9327 
1.4816 
1.0744 

 

The effect of a province was found to be negatively associated (p-value=0.009) with 
under-five child mortality. The correspondence ratio was 0.7368 with (95% CI: -1.5436;0.9327). 
The odds of death for a child from a mother who lives in Mpumalanga was estimated to be 0.7368 
times the odds death of a child from a mother who lives in the Western Cape.  
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3.18.4 Similarities of Logistics and Survey Logistics regression model 

Tables 3.9 and 3.14: both contains regression coefficients, standard error, p-value, odds 
ratios and confidence interval for logistic and survey logistic regression respectively. Since the 
sample was not drawn using simple random sample, the parameter estimates for both models 
are not the same. One of the assumptions for logistic regression is that the observations are 
independent, but for complex design this assumption is violated thus a better model may be the 
one fitted using survey logistic regression since it accounts for the complexity of the design. The 
models fitted by both methods produce the areas under the curve, which are between 0.77 and 
0.76. This suggests that both models had good prediction accuracy.  
 

3.18.5 Interpretation of Design effects 

Table 3.15: below shows the DEFF and DEFT, which is calculated as the squared root of DEFF for 
each estimated coefficient.  

 
The effect of size of child at birth, average weight was found to be negatively associated 

with under-five mortality has DEFF value of 2.1479 and DEFT value of 1.4656. The standard error 
and confidence interval are 1.4656 times larger as they would be for simple random sampling. 
The effect of size of child at birth, very large weight was also found to be negatively associated 
with under-five mortality has DEFF value of 1.3184 and DEFT value of 1.1482. The standard error 
and confidence interval are 1.1482 times large as they would be for sample random sampling. 
The effect of not breastfeeding was found to be positively associated with under-five child 
mortality has DEFF value of 1.9302 and DEFT value of 1.3893. The standard error and confidence 
interval are 1.3893 times large as they would be for simple random sampling. The effect of 
ethnicity was found to be negatively associated with under-five child mortality has DEFF value of 
0.3709 and DEFT value of 0.6090. The standard error and confidence interval are 0.6090 times 
large as they would be for sample random sampling. The effect of number of children 5 year and 
under in household that is above two was found to be negatively associated with under under-
five child mortality has DEFF value of 1.1160 and DEFT value of 1.0564. The standard error and 
confidence interval are 1.0564 times large as they would be for simple random sampling. The 
effect of total number of children ever born that is above two was found to be negatively 
associated with under-five child mortality has DEFF value of 1.1872 and DEFT value of 1.0896. 
The standard error and confidence interval are 1.0896 times large as they would be for simple 
random sampling. The effect of a province was to be negatively associated with under-five child 
mortality has DEFF value of 1.6519 and DEFT value of 1.2853. The standard error and confidence 
interval are 1.2853 times large as they would be for simple random sampling. 
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Table 3. 15: Survey Logistic Regression Coefficients, Standard errors, P-values, Odds ratios and 
Design effects 

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 
Parameter 
 

Estimate Standar
d Error 

P-Value Odds 
ratio 

95%Confidence 
interval 
Lower        Upper 

 Design Effects 
 
DEFF            DEFT 

 
Mother’s age (ref 20-35 years) 
<20 years 
>35 years 
Size of child at birth (ref. Average) 
Very small 
Very large 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. First birth) 
2 – 3 births 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Black African)  
Coloured 
Others 
 

 
 
-0.4522 
-0.1746 
 
1.3167 
1.1366 
 
0.9930 
 
0.3048 
0.1555 
 
0.2352 
-0.0616 
 
2.7600 
0.0218 

 
 
0.3084 
0.3004 
 
0.2841 
0.3009 
 
0.4153 
 
0.3426 
0.5008 
 
0.3382 
0.2809 
 
0.8313 
0.0422 

 
 
0.143 
0.561 
 
<0.001 
<0.001 
 
0.017 
 
0.374 
0.042 
 
0.487 
0.826 
 
0.001 
0.605 
 

 
 
0.6362 
0.8398 
 
3.7311 
3.1161 
 
2.6993 
 
1.3564 
0.5850 
 
1.2651 
0.9403 
 
15.8002 
1.0220 
 

 
 
0.3476 
0.4661 
 
0.7599 
0.5468 
 
0.1790 
 
-0.3666 
-0.8260 
 
-0.4276 
-0.6122 
 
1.1307 
0.6612 

 
 
1.1645 
1.5133 
 
1.8735 
1.7264 
 
1.8070 
 
0.9762 
1.1370 
 
0.8979 
0.4890 
 
4.3893 
1.2010 

 
 
1.1972 
1.1116 
 
2.1479 
1.3184 
 
1.9302 
 
1.2006 
1.1981 
 
1.3665 
1.7347 
 
0.3709 
0.0026 

 
 
1.0942 
1.0543 
 
1.4656 
1.1482 
 
1.3893 
 
1.0957 
1.0946 
 
1.1690 
1.3171 
 
0.6090 
0.0510 

                                                                  Socio-Economic characteristics  
Wealth index (ref. Poor) 
Middle 
Rich  
Number of children 5 and under (ref.< 2 Children) 
2 or more children 
Total children ever born (ref. less than 2 Children) 
2 or more children  

 
0.5610 
0.7754 
 
1.0036 
 
-0.6991 

 
0.3169 
0.3985 
 
0.4620 
 
0.3552 

 
0.077 
0.052 
 
0.030 
 
0.043 

 
1.7525 
2.1716 
 
2.7280 
 
0.4970 

 
-0.0600 
-0.0060 
 
0.0981 
 
-1.3953 

 
1.1821 
1.5565 
 
1.9090 
 
-0.0029 

 
1.7359 
2.1099 
 
1.1160 
 
1.1872 

 
1.3175 
1.4526 
 
1.0564 
 
1.0896 

                                                                                Household Environment characteristics 

Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Western Cape) 
Eastern Cape 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape 

 
-0.1141 
 
0.1317 
-0.2265 
0.1622 
0.5147 
0.8666 
-0.3055 
0.1605 
-0.2481 
 

 
0.2660 
 
0.6376 
0.6579 
0.6698 
0.6366 
0.6699 
0.6317 
0.6740 
0.6748 
 

 
0.035 
 
0.836 
0.731 
0.809 
0.419 
0.196 
0.009 
0.812 
0.713 

 
0.8922 
 
1.1408 
0.7973 
1.1762 
1.6730 
2.3788 
0.7368 
1.1762 
0.7803 
 

 
-0.6355 
 
-1.1179 
-1.5159 
-1.1506 
-0.7331 
-0.4465 
-1.5436 
-1.1606 
-1.5706 

 
0.4073 
 
1.3813 
1.0630 
1.4751 
1.7624 
2.1797 
0.9327 
1.4816 
1.0744 

 
1.3401 
 
1.6448 
1.3376 
2.1940 
1.7047 
1.4587 
1.6519 
1.4340 
0.6153 

 
1.1576 
 
1.2825 
1.1565 
1.4812 
1.3057 
1.2078 
1.2853 
1.1975 
0.7844 

 

Generally, we observe that the most design effects values are above one and this suggest 

that the standard errors assuming simple random sampling are underestimates of the true 

standard errors. Therefore, the variance was underestimated while using logistic regression 

model compared to those computed while using complex design. This confirm that standard 
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errors are larger under survey logistic regression. This shows that there was an under estimation 

of variance while using logistic regression assuming that data was sampled using simple random 

sampling. Thus, using survey logistic regression model is good since it takes into consideration 

survey design features.  

3.19 Limitations of Survey Logistic Regression 

Even though survey logistic regression account for the complexity of the survey design, it 

may present some limitations due to unavailability of Hosmer-Lemeshow test. We may not be 

able to test the Goodness of fit of the model. The variable selection procedures are not available 

as a result one has to select variables manually which can be time consuming when there are 

many variables and possible errors may occur while choosing variables. The model is chosen 

based on the Akaike Information Criterion and Bayesian information criterion both of which 

introduce a penalty to the -2Log-likelihood of having many parameters. As they both have -2log-

likelihood term in their formulation, they are used only in the case of ungrouped data (Hosmer 

and Lemeshow, 2000).   
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Chapter 4 

Generalized Linear Mixed Models 

Introduction 

Generalized linear mixed models (GLMMs) are natural extensions of the generalized 

linear models (GLMs) discussed in section 3.7 that allow for additional components of variability 

due to unobservable effects. Typically, the unobserved effects are modelled by the inclusion of 

random effects in the generalized linear model (Song and Lee, 2006). This inclusion of random 

effects in the analysis results into Generalized linear mixed models. These models provide all 

advantages of a logistic regression such an information on a sample size, they can do one analysis 

with all random effects on it, and they accommodate the binary response variable. Moreover, 

the advantage of GLMMs is its ability to handle unbalanced data due to missing observations and 

ability to account for correlated data (Dlamini, 2016; Manning, 2007). 

GLMMs are powerful since they combine features of both linear mixed models and 

generalized linear models, such as fixed effects and random effects. They can handle a wide range 

of response distributions and data with observations sampled in some group structure instead of 

completely independent (Dean and Nielsen, 2007). In the following section, the theory of linear 

mixed models is reviewed.  

 

4.1 Review of Linear Mixed Models 

The generalized linear model in section 3.7 is not appropriate for the inclusion of random 

effect, however, it is necessary to expand the model 

                                                      𝑦 = 𝑋𝛽 + 𝜖                                                                         (4.1) 

This becomes generalized linear mixed models, which include both the fixed, and random effect 

is expressed as follows: 

                                                     𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜖                                                               (4.2) 

 where 𝑦 is a 𝑁 × 1 column vector, the outcome variable; 

𝑋 is a 𝑁 × 𝑝 matrix of the 𝑝 predictor variables; 

𝛽 is a 𝑝 × 1 column vector for the fixed effects coefficients; 

𝑍 is the 𝑁 × 𝑞 design matrix for the 𝑞 random effects (the random complement to the fixed 𝑋); 

𝜇 is a 𝑞 × 1 vector of the random effects (the random complement to the fixed 𝛽), and 

𝜖 is a 𝑁 × 1 column vector of the residuals, which have multivariate normal distribution with the 

mean vector 0 and variance covariance matrix 𝑅 i.e 𝜖 ~ 𝑁𝑛(0, 𝑅). Given nature random effect 
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hypothesis, 𝑈 is treat differently from 𝛽. Statistical linear mixed models state that observed data 

consist of two parts that is, random and fixed effects (Littell et al., 2000). We defined fixed effects 

as the expected value of the observation and random effects is defined as variance and 

covariance of the observation. We may assume that observations on the same unit are 

correlated. Hence, Linear mixed models address the issue of the covariation between measures 

on the same unit (Kincaid, 2005 and Littell et al., 2000) Representing variance of the model as 

𝑉(𝑦) shown in the equation (4.3) below is known as modelling covariance structure. It is 

modelled as function of relatively small number of parameters (Littell et al., 2000). The 

specification of the covariance structure for mixed model is done through 𝐺 and 𝑅 as  

 

                                                                   𝑉(𝑦) = 𝑍𝐺𝑍′ + 𝑅                                                 (4.3) 

where 𝑍𝐺𝑍′ represents the between subject portion of the covariance structure and 𝑅 represents 

within subject portion. In linear mixed models with more than one random effects, the random 

effects are assumed to come from a multivariate normal distribution with the mean 0 and 

variance-covariance matrix 𝐺. Random effect can be predicted and not estimated. The variance 

components are estimated instead.  

The diagonal elements of the matrix 𝐺 are the variance component for each random 

effect while off-diagonal elements are covariance that exists between different dimensions. 

Suppose that there is one random effect in the model, then 𝐺 will have only one element that is 

the variance component of random effects. If they are more than one random effects, 𝐺 is a 𝑘 ×

𝑘 for 𝑘 random effect. Suppose 𝑘 = 3 random present five different covariance structures in the 

Table 4.1 below and discuss them. Table 4.1: displays the list of simplest covariance structures 

that can be modelled in using PROC MIXED procedure. 

 

                                                    Table 4. 1: List of simplest covariance structure 

Structure  Description Number of parameters i,jth element 

AR(1) First Order Autoregressive  2 𝜎𝑖𝑗 = 𝜎2𝜌|𝑖−𝑗| 

CS Compound Symmetry 2 𝜎𝑖𝑗 = 𝜎1 + 𝜎21(𝑖 = 𝑗) 

UN Unstructured  𝑡(𝑡 + 1)/2 𝜎𝑖𝑗 = 𝜎𝑖𝑗 

TOEP Toeplitz 𝑡 𝜎𝑖𝑗 = 𝜎|𝑖−𝑗|+1 

VC Variance Component 𝑞 𝜎𝑖𝑗 = 𝜎𝑘
21(𝑖 = 𝑗) 
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Variance Component (VC) 

The variance component structure is the simplest, where the correlation of errors within 

a subject is presumed to be zero. This structure is the default setting in PROC Mixed but is not a 

reasonable choice for repeated measure designs. 

 

                                             𝑉𝐶 =  (

𝜎1
2              0                   0 

0                 𝜎2
2                 0 

0                 0                  𝜎3
2

) 

 

Compound Symmetry (CS) 

The only covariance structure that incorporates within-subject correlated errors is 

compound symmetry (CS). Here we see correlated errors between time points within subjects, 

and these correlations are assumed to be the same for each set of times, regardless of how 

distant in time the repeated measures are made. 

            

                              𝐶𝑆 = 𝜎2 (

1                 𝜌                 𝜌
𝜌                 1                 𝜌 
𝜌                 𝜌                 1 

) 

 

First Order Autoregressive AR (1) 

The autoregressive (Lag1) has homogenous variances and correlation decline 

exponentially with distance. This means that two measurements that are right next to each other 

in time are considered to be correlated. As the measurements get further apart, they are less 

correlated (Kincaid, 2005; Littell et al., 2000). However, this structure is only applicable for evenly 

spaced time intervals for the repeated measure. 

                                         𝐴𝑅(1) = 𝜎2 (

 1                 𝜌1              𝜌2

𝜌1              1                𝜌1

𝜌2              𝜌1              1 

) 
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Toeplitz (TOEP) 

The covariance structure known as Toeplitz specifies that covariance depends only on lag, 

but not as a mathematical function with smaller number of parameters. Toeplitz structure is 

similar to the autoregressive (AR (1)) in that all measurement next to each other have the same 

correlation measurements which are two apart have same correlation different from the first. 

However, the correlation does not necessarily have the same pattern. The AR (1) is basically a 

special case of Toeplitz itep (Kincaid, 2005). 

 

                                                    𝑇𝑂𝐸𝑃 =  (

𝜎2              𝜎1                𝜎2

𝜎1               𝜎2               𝜎1

𝜎2               𝜎1                𝜎2

) 

 

Unstructured (UN) 

The Unstructured covariance structure (UN) is the most complex since it is estimating 

unique correlations for each pair of time points. It is not uncommon to find out that you are not 

able to use this structure. SAS will return an error message indicating that there are too many 

parameters to estimate with the data. 

 

                                                   𝑈𝑁 = (

𝜎1
2                 𝜎12                 𝜎13

𝜎12                𝜎2
2                  𝜎23

𝜎13                𝜎23                 𝜎3
2

) 

 

The assumptions made for generalized linear models are retained in generalized linear 

mixed models. Hence, it is possible to have a variable that appears in both 𝑋 and 𝑍. In this case, 

the fixed effect is an average across all levels of random effects and the estimate is the amount 

of variance in the effect between levels. If 𝑋 contains a single column of ones, then this leads to 

the random intercept model. If 𝑋 contains an extra column, then this is known as the random 

slope model. However, the draw back for this model is that it requires the responses to be 

normally distributed. The models, which accommodate normal and non-normal data in which 

they are a member of exponential family of distributions known as, generalized linear mixed 

models (Dlamini, 2016; McCullagh and Nelder, 1989). Therefore, the linear mixed model can be 

viewed as a special case of the generalized linear mixed model. 
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4.2 Model Formulation 

Suppose we now relax the normality assumption of 𝑓(𝑌|𝜃), it can be assumed, that 𝑌 and 

𝜃 are independent and 𝑓(𝑌|𝜃) is the member of the exponential family distribution (McCullagh 

and Nelder, 1989).  

                             𝑓(𝑌|𝜃) = 𝑒𝑥𝑝 {
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎𝑖(∅)
− 𝑐(𝑦𝑖 , ∅}                                        (4.4) 

where ∅ is the scale parameter. Based on the model the conditional 𝑦 related to ∅𝑖 is given by 

 

𝐸(𝑦|𝜃) =
𝜕𝑏(𝜃𝑖)

𝜕𝜃𝑖
 

The model with both random and fixed effects is given by 

 

                                             𝑔(𝜃𝑖) = 𝑋𝑖
′𝛽 + 𝑍𝑖

′𝑈𝑖                                                           (4.5) 

where 𝜂𝑖 = 𝑔(𝜃𝑖), 𝑔 is the link function and 𝑈𝑖 is a vector of random effects. In this study, the 

child survival status is either zero (child not alive) or one (child alive). Hence we use the logistic 

regression where we consider 𝑔(. ) as the logit link with 𝑋𝑖 and 𝑍𝑖 (𝑖 = 1,2, … , 𝑛) being p-

dimension and q dimension a vector of know covariates, while 𝛽 is a p-dimension vector of 

unknown fixed effects regression coefficient.  

 

4.3 Maximum Likelihood Estimation 

To obtain the maximum likelihood estimates in GLMMs. The marginal likelihood is 

maximized which is obtained by integrating over the distribution of the q-dimensional random 

effects. The contribution of the 𝑖𝑡ℎ cluster to the likelihood is given by.  

 

            𝑓𝑖(𝑦𝑖𝑗|𝛽, 𝐺, ∅) =  ∫ ∏ 𝑓𝑖𝑗(𝑦𝑖𝑗|𝛾𝑖 , 𝛽, ∅)𝑓(𝛾𝑖|𝐺)

𝑛𝑖

𝑗=1

𝑑𝛾𝑖                                   (4.6) 

where 𝑓(𝛾𝑖|𝐺) is the distribution of the random effects. 

Therefore, the complete likelihood function for 𝛽, 𝐺 and ∅ is given by 
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𝐿(𝛽, 𝐺, ∅) = ∏ 𝑓𝑖(𝑦𝑖𝑗|𝛽, 𝐺, ∅)                                                             

𝑚

𝑖=1

 

                                   =  ∏ ∫ ∏ 𝑓𝑖𝑗(𝑦𝑖𝑗|𝛾𝑖 , 𝛽, ∅)𝑓(𝛾𝑖|𝐺)𝑑𝛾𝑖                                  (4.7)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 

In this case of normality assumptions, the method of maximum likelihood for the 

estimation of the fixed effects in the GLMM becomes the same as that for the Linear Mixed Model 

(LMM). However, for numerous cases of the GLMM, the likelihood function typically does not 

have a close form expression (Roberts, 2014 and Jiang, 2007). Usually, this is due to the likelihood 

involving high dimensional integrals that cannot be evaluated analytically. Hence, the 

approximations are required to evaluate the likelihood function. There is a number of proposed 

methods of approximation (Roberts, 2014 and Hedeker, 2005), though there are three basic 

approaches namely: Approximation of the integrand, Approximation of the integral itself and 

Approximation of the data. The listed methods are discussed in the following sections. 

 

4.4 Estimation Techniques for GLMMs 

4.4.1 Laplace approximation (LA) 

The Laplace method is one of the approaches of approximating the integrand and is one 

of the natural alternatives when exact the likelihood function is difficult to compute 

(Molenberghs and Verbeke, 2006). This method is based on an approximation of the integrand 

(Jiang, 2007). Suppose one wishes to approximate an integral in the form, 

 

                                                       ∫ 𝑒𝑄(𝑥)𝑑𝑥                                                                     (4.8) 

where 𝑄(𝑥) is known and unimodal function and 𝑥 is a 𝑞 × 1 vector of variables. If 𝑥̂ is such that  

𝑄(𝑥) is minimized, then the second order Taylor series expansion of 𝑄(𝑥) around 𝑥̂ is  

 

                                           𝑄(𝑥) ≈ 𝑄(𝑥̂) +
1

2
(𝑥 − 𝑥)′𝑄"(𝑥̂)(𝑥 − 𝑥)                              (4.9) 

where 𝑄"(𝑥̂) is the Hessian of 𝑄 evaluated at 𝑥̂. 

This yields approximation to Equation (4.8) 
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                                       ∫ 𝑒𝑄(𝑥) 𝑑𝑥 ≈ (2𝜋)
𝑞
2| 𝑄"(𝑥̂)|−

1
2𝑒−𝑄′(𝑥̂)                             (4.10) 

The approximation to this integral uses as many different estimates of 𝑥̂ as necessary 

according to the different models of function 𝑄. Since 𝛾~𝑁(0, 𝐺), it can be shown that the 

integral in the likelihood equation (4.7) is proportional to the integral in equation (4.8), where 

the function 𝑄 is given by 

𝑄(𝛾) = ∅−1 ∑[𝑦𝑖𝑗(𝑥𝑖𝑗
′ 𝛽 + 𝑍𝑖𝑗

′ 𝛾) − 𝑏(𝑥𝑖𝑗
′ + 𝑍𝑖𝑗

′ 𝛾)] −
1

2
𝛾′𝐺𝛾                          (4.11)

𝑛𝑖

𝑗=1

 

Thus, Laplace method can be applied. This approximation method tends to be better for larger 

cluster sizes and can be improved by adding higher order terms to the Taylor series expansion. 

 

4.4.2 Gaussian Quadrature 

It is pointed out above that Laplace approximation is based on the linearization method 

of the integrand. An alternative to this is the Gauss-Hermite quadrature and Adaptive Gauss-

Hermite quadrature, which often approximates the integral or numerical integration because of 

its relation with Gauss densities that give an approximation to an integral in the following form 

(Roberts, 2014; Lui, and Pierce, 1994). 

                                                      ∫ ℎ(𝑥)𝑒−𝑥2
𝑑𝑥                                                             (4.12) 

                                                   

To apply these two methods, the likelihood contribution for the 𝑖𝑡ℎ cluster in equation 

(4.6) must be represented in the form of the integral in equation (4.12). This is done by 

standardizing the random effects such that they have an identity variance-covariance matrix 𝐼. 

Let 𝛿𝑖 = 𝐺−
1

2𝛾𝑖. Thus, 𝛿𝑖 has a normal distribution with mean 0 and variance-covariance matrix 𝐼. 

The linear predictor, therefore, becomes 𝜃𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽 + 𝑧𝑖𝑗

′ 𝐺−
1

2𝛿𝑖, which now contains the variance 

component in 𝐺. Thus, the likelihood contribution for the 𝑖𝑡ℎ cluster is given by 

 

         𝑓𝑖(𝑦𝑖𝑗|𝛽, 𝐺, ∅) = ∫ ∏ 𝑓𝑖𝑗(𝑦𝑖𝑗|𝛾𝑖 , 𝛽, ∅)𝑓(𝛾𝑖|𝐺)𝑑𝛾𝑖                                     (4.13)

𝑛𝑖

𝑗=1
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                                     = ∫ ∏ 𝑓𝑖𝑗(𝑦𝑖𝑗|𝛿𝑖 , 𝛽, 𝐺, ∅)

𝑛𝑖

𝑗=1

𝑓(𝛿𝑖)𝑑𝛿𝑖                                    (4.14) 

Therefore, this equation is now in the form of equation (4.12) and can be approximated 

using the Gauss-Hermite quadrature or adaptive Gauss-Hermite quadrature. In Gauss-Hermite 

quadrature the integral in equation (4.12) is approximated by  

                                       ∫ ℎ(𝑥)𝑒−𝑥2
𝑑𝑥 ≈  ∑ 𝑤𝑖ℎ(𝑥𝑖)                                           (4.15)

𝐾

𝑖=1

 

where the nodes 𝑥𝑖  are the solutions of the 𝐾𝑡ℎ order to the Hermite polynomial and the 𝑤𝑖are 

suitable corresponding weights. The values of 𝑥𝑖  and 𝑤𝑖 for 𝑖 = 1,2,3, … , 20 are found in tables 

given by (Abramowitz & Stegun, 1972). Increasing 𝐾 improves the approximation. However, in 

this case, when the sum is taken from 1 to 𝐾, the Gauss-Hermite quadrature gives accurate 

solutions for all polynomials of degree 2𝐾 − 1 (Roberts, 2014; McCulloch & Searle, 2001). The 

only disadvantage to this method of approximation is the quadrature points 𝑥𝑖  chosen 

independently of the function, ℎ(𝑥), hence may result in 𝑥𝑖  not lying in the region of interest 

(Roberts, 2014; Pinheiro & Bates, 1995). This method of random effects in the model is increased 

(Hedeker, 2005). 

In order to overcome the difficulties with Gauss-Hermite quadrature discussed above the 

quadrature points are rescaled and shifted such the integrand in equation (4.12) is sampled in a 

suitable range (Roberts, 2014; Lui & Pierce, 1994). This method is referred to as the adaptive 

Guass-Hermite quadrature, is based on centering the quadrature points with respect to the mode 

of the function being integrated and scales them according to the estimated curvature at the 

mode (Roberts, 2014; Hartzel et al., 2001). This method requires significantly fewer quadrature. 

However, this adaptive Gauss-Hermite quadrature is much more time consuming to compute as 

the mode and curvature is calculated for each cluster in the dataset (Roberts, 2014; Hartzel et 

al., 2001). The adaptive Gauss-Hermite quadrature reduces to the Laplace Approximation when 

𝐾 = 1. 

Newton Raphson and Fisher Scoring iterative producers can be utilized to maximize the 

likelihood after applying these numerical approximations. These methods work relatively well in 

the case of a single random effects or even when there are two or three nested random effects 

in the model. However, for structures that are more complicated these methods fail (Roberts, 

2014; McCulloch & Searle, 2001). 
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4.4.3 Penalized Quasi-Likelihood  

The Penalized Quasi-likelihood (PQL) is one of the methods that approximates data by 

mean plus error term with variance equals to 𝑉𝑎𝑟(𝑌𝑖𝑗|𝑈𝑖). This method used Taylor expansion 

around estimates 𝛽̂ and 𝑈̂ of fixed and random effects respectively (Dlamini, 2016; Bolker et al., 

2009; Moeti, 2007). Thus 

𝑌𝑖𝑗 = 𝜇𝑖𝑗 + 𝜖𝑖𝑗 = ℎ(𝑋𝑖𝑗
′ 𝛽 + 𝑍𝑖𝑗

′ 𝑈) + 𝜖𝑖𝑗                                                                                                              

      ≈ ℎ(𝑋𝑖𝑗
′ 𝛽̂ + 𝑍𝑖𝑗

′ 𝑈̂) + ℎ(𝑋𝑖𝑗
′ 𝛽̂ + 𝑍𝑖𝑗

′ 𝑈̂ )𝑋𝑖𝑗
′ (𝛽 − 𝛽̂) + ℎ(𝑋𝑖𝑗

′ 𝛽̂ + 𝑍𝑖𝑗
′ 𝑈̂)𝑍𝑖𝑗

′ (𝑈 − 𝑈̂) + 𝜖𝑖𝑗            

      = 𝜇̂𝑖𝑗𝑉(𝜇̂𝑖𝑗)𝑋𝑖𝑗
′ (𝛽 − 𝛽̂) + 𝑉(𝜇̂𝑖𝑗)𝑍𝑖𝑗

′ (𝑈 − 𝑈̂) + 𝜖𝑖𝑗                                         (4.16) 

 

and 

𝑌𝑖𝑗 = 𝜇̂𝑖 + 𝑉̂𝑖𝑋̂𝑖(𝛽 − 𝛽̂) + 𝑉̂𝑖𝑍𝑖 ((𝑈) − 𝑈̂) + 𝜖𝑖 

where 𝜇̂𝑖 contains values of 𝜇̂𝑖𝑗 = ℎ(𝑋𝑖𝑗
′ 𝛽̂ + 𝑋𝑖𝑗

′ 𝑈̂), 𝑉𝑖 is the diagonal matrix with elements 

𝑉(𝜇̂𝑖𝑗) = ℎ(𝑋𝑖𝑗
′ 𝛽̂ + 𝑍𝑖𝑗

′ 𝑈̂), 𝑋𝑖 and 𝑍𝑖  contain the 𝑋𝑖𝑗
′  and 𝑍𝑖𝑗

′  respectively.  

Rearranging the above expression and multiply by 𝑉𝑖
−1 we obtain 

 

𝑌𝑖
∗ = 𝑉̂𝑖

−1(𝑉𝑖 − 𝜇̂𝑖) + 𝑋𝑖𝛽̂ + 𝑍𝑖𝑈̂                     

                                          ≈ 𝑉𝑖𝛽̂ + 𝑍𝑖𝑈̂ + 𝜖𝑖
∗                                                               (4.17) 

For 𝜖𝑖
∗ equal to 𝑉𝑖

−1 and has a zero mean. This can be viewed as a linear model for a pseudo data 

𝑌𝑖
∗ with error term 𝜖𝑖

∗. This gives the algorithm for fitting original generalized linear mixed model. 

Algorithm  

Step 1: Given starting value for parameter 𝛽, ∅ and 𝐺. In the marginal likelihood, empirical 

Bayes estimates are calculated for 𝑈𝑖 and pseudo data 𝑌𝑖
∗ are computed. Step 2: Approximate 

linear mixed model is fitted, which gives updated estimates for 𝛽, ∅ and 𝐺. The updated estimates 

are used to update the pseudo data. This entire scheme is iterated until convergence is reached, 

and the resulting estimates are called penalized quasi-likelihood estimate.  They are obtained 

from optimizing a quasi-likelihood function that involves first and second order conditional 

moments, augmented with a penalty term on the random effects (Dlamini, 2016; Molenberghs 

and Verbeke, 2006). 
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4.5 Generalized Linear Mixed Models in SAS 

The PROC GLIMMIX procedure allows GLMM to be fitted to the data. The random 

statement specifies the random effect to be incorporated into the model. To account for the 

heterogeneity between clusters in the under-five child mortality data. An intercept term that 

varied at cluster level was included in the model, thus resulting in a random intercept model. 

Once again, the logit link function with binary distribution was specified. The model was fitted 

using the Laplace approximation method, as this is likelihood based, hence it allows comparison 

of models using model selection criteria such AIC and BIC. The necessity for a random intercept 

was assessed by testing the responding covariance parameter if it is equaled to zero. This was 

done using the COVTEST statement in SAS, which produces likelihood ratio tests for covariance 

parameters. Since the parameter under the null hypothesis fell on the boundary of the 

parameter. The p-value for the test that was determined using a linear combination of central 

Chi-square probabilities. Table 4.2: below shows the null hypothesis of the covariance parameter 

equal to zero was rejected, thus suggestion random cluster was significant in the model. 

 

                                    Table 4. 2: Test of covariance parameters based on the likelihood 

         Label 
 

            DF -2Log Likelihood             𝝌𝟐           P-value 

 
No G-side effects 

 
             1 

 
        1016.30 

 
        3117.33 

 
       0.0034 

 

Table 4.3: below gives the type 3 tests of fixed effects the model fitted using laplace 

method in GLMMs. The denominator degree of freedom (Den DF) was calculated as 2861. The F-

statistics, which is used for the significant test for the fixed effects and corresponding p-value, 

shows that all effects are important in the fitted model when tested at 5% level of significance. 

The size pf child at birth, currently breastfeeding, birth order number, wealth index, number of 

children 5 and under, total number of children ever born, and source of drinking water were all 

significant. The Pearson chi-square statistics over its degrees of freedom was 0.88, which is close 

to one and this indicates the data was properly modeled. 
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                                                 Table 4. 3: Type III Tests of Fixed Effects 

Effects                                                              Numerator DF              F-Value                  P-Value 

Mother’s age 
Size of child at Birth 
Currently breastfeeding  
Birth order number  
Marital status 
Ethnicity  
Wealth index 
Number of children 5 and under 
Total children ever born 
Source of drinking water 
Province 

2 
2 
1 
2 
2 
2 
2 
1 
1 
1 
8 

0.39 
14.86 
14.22 
1.76 
2.53 
2.35 
2.11 
6.58 
4.20 
5.70 
1.52 

0.6782 
<0.0001 
0.0002 
0.0318 
0.0729 
0.0955 
0.0091 
0.0104 
0.0405 
0.0170 
0.1432 

 

The variance component for the random effect was estimated as 0.1204 with a standard 

error of 0.4945 using Laplace. This estimate is relatively far from zero, hence confirming the need 

for the random effect in the model as shown in the table 4.4: below. 

 

                                Table 4. 4: Random effect and model information 

                                                                   Random effects 

 
 
 

Laplace Estimate (SE) Gauss-Hermite  
Quadrature Estimate 
(SE) 

Penalized Quasi- 
Likelihood Estimates 
(SE) 

 
Variance (Intercept) 
 

 
0.0637(0.6313) 

 
0.1517 (0.3212) 

 
0.0097 (0.2713) 

                                                                     Model Information 

-2 Log likelihood  
AIC 

1016.29 
1068.29 

9.7275E8 514.7135 

 

Table 4.5, Table 4.6 and Table 4.7: shows the solution for the fixed effects. Parameter 

estimates, standard errors, P-value, odds ratio and 95% confidence intervals. The estimated 

parameters for the model are fitted in GLMMs using three different estimation methods, namely 

Laplace, Gauss-Hermite Quadrature and Penalized Quasi-Likelihood. The models fitted are 

random intercept models and it can be observed that standard errors are slightly larger than 

those in the fitted model in section 3.13.1. The parameters estimated are found to be different 

in all three methods; however, the parameters estimated by Laplace and Penalized Quasi-

Likelihood are found to be more significant than those estimated by the Gauss-Hermite 

Quadrature method. The coefficients for fixed effects are interpreted in the same way as in the 
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ordinary logistic regression model. The estimates are slightly lower than those in section 3.13.1 

and this is because this model accounts for the random effects. The odds ratio obtained using 

the procedure PROC GLIMMIX are lightly different from those obtained using PROC LOGISTIC in 

GLMs and the variables that were found to be significant in logistic regression may not found to 

be significant in GLMMs. Table 4.6 and 4.7 can be obtained in Appendix B.  

 
The effect of the size of a child at birth (average weight) was found to be negatively 

associated with under-five mortality (p-value=0.0003). The corresponding odds ratio was 0.796 

with (95% CI: 0.503; 1.261). The odds of death for average birth size were estimated to be 0.796 
times the odds of death for very small weight of a child. The effect of not breastfeeding was found 
to be positively associated (p-value=0.0002) with under-five child mortality. The corresponding 
odds ratio was 3.015 with (95% CI: 1.699; 5.352). The odds of death for a child from a mother 
who does not breastfeed were estimated to be 3.015 times the odds of death for a child from a 
mother who breastfeed. The effect of childbirth order number that is between two to three births 
was found to be negatively associated with under five child mortality with (p-value=0.0001). The 
corresponding odds ratio was 0.775 times with (95% CI: 0.458;1.311). The odds death of a 
childbirth order number that is between two to three births was estimated to be 0.775 times the 
odds of death of the first birth. The effect of childbirth order number of more than three births 
was found to be positively associated with under five child mortality with (p-value=0.0001). The 
corresponding odds ratio was 1.206 times with (95% CI: 0.574;2.534). The odds death of a 
childbirth order number that is more than three births was estimated to be 1.206 times the odds 
of death of the first birth. The effect of number of children 5 year and under in household that is 
above two was found to be positively associated (p-value=0.0104) with under-five child mortality. 
The corresponding odds ratio was 0.328 with (95% CI: 0.140; 0.769). The odds of death for a child 
from a mother with two or more children alive were estimated to be 0.328 times the odds of 
death for a child from a mother who has less than two children alive. The effect of total number 
of children ever born that is above two was found to be positively associated (p-value=0.0405) 
with under-five child mortality. The corresponding odds ratio was 1.773 with (95% CI: 
1.025;3.068). The odds of death for a child from a mother who gave birth to two or more children 
alive were estimated to be 1.773 times the odds of death for a child from a mother who has less 
than two children alive. The effect of source of drinking water was found to be positively 
associated with under five child mortality with (p-value = 0.0170). The corresponding ratio was 
1.681 times with (95%CI: 1.097;2.574). The odds of death for a child from a mother who does not 
drink safe water was estimated to be 1.681 times the odds of death for a child from a mother 
drinks safe water. 
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Table 4. 5: Laplace, estimated coefficients, odds ratios, standard errors, p-values and 
confidence interval. 

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 

Parameter 
 

Estimate Standard 
Error 

P-Value Odds 
ratio 

95%Confidence interval 
Lower                        Upper 

Intercept 
Mother’s age (ref >35 years) 
<20 years 
20 – 35 years 
Size of child at birth (ref. Very large) 
Very small 
Average 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. First birth) 
2 – 3 births 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Others)  
Black African 
Coloured 

-17.1932 
 
-0.02694 
0.1713 
 
0.9339 
-0.2281 
 
1.1037 
 
-0.2550 
0.1876 
 
-0.2846 
0.3230 
 
1.2099 
1.5310 
 

345.60 
 
0.2730 
0.2336 
 
0.2548 
0.2344 
 
0.2926 
 
0.2681 
0.3785 
 
0.2245 
0.2676 
 
345.63 
345.63 

0.9603 
 
0.4633 
0.9214 
 
0.3306 
0.0003 
 
0.0002 
 
0.0001 
0.0001 
 
0.1503 
0.2877 
 
0.9718 
0.9757 
 

 
 
0.973 
0.187 
 
2.544 
0.796 
 
3.015 
 
0.775 
1.206 
 
1.381 
0.752 
 
3.353 
4.623 
 

 
 
0.570 
0.751 
 
1.544 
0.503 
 
1.699 
 
0.458 
0.574 
 
0.889 
0.445 
 
0.850 
1.263 

 
 
1.663 
1.876 
 
4.193 
1.261 
 
5.352 
 
1.311 
2.534 
 
2.145 
1.271 
 
1.436 
4.671 

                                                             Socio-Economic Characteristics 
Wealth index (ref. Rich) 
Middle 
Poor 
Number of children 5 and under (ref.< 2 Children) 
2 or more children 
Total children ever born (ref. less than 2 Children) 
2 or more children  

 
0.2120 
0.5427 
 
-1.1137 
 
0.5729 

 
0.3171 
0.2875 
 
0.4341 
 
0.2795 

 
0.5038 
0.0592 
 
0.0104 
 
0.0405 

 
1.236 
1.721 
 
0.328 
 
1.773 
 
 

 
0.664 
0.979 
 
0.140 
 
1.025 

 
2.302 
3.023 
 
0.769 
 
3.068 

                                                                          Household Environment Characteristics  
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Western Cape) 
Eastern Cape 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape 

 
0.5192 
 
0.0217 
0.4862 
-0.0042 
-0.2719 
-0.5988 
0.4656 
0.0051 
0.2952 

 
0.2175 
 
0.6049 
0.6257 
0.6260 
0.6167 
0.6276 
0.5900 
0.6197 
0.6522 
 

 
0.0170 
 
0.9715 
0.4371 
0.9946 
0.6593 
0.3401 
0.4301 
0.9935 
0.6509 

 
1.681 
 
1.022 
1.626 
0.996 
0.762 
0.549 
1.593 
1.005 
1.343 

 
1.097 
 
0.312 
0.477 
0.292 
0.227 
0.161 
0.501 
0.298 
0.374 

 
2.574 
 
3.346 
5.546 
3.398 
2.553 
1.881 
5.066 
3.388 
4.826 
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4.6 Summary of Generalized Linear Mixed Models 

As discussed earlier on in the Chapter that GLMMS are natural extension of the GLM. In 

these models, the linear predictor is the mixture of random effects and fixed effects. These 

models also relax the normality assumption made in the case LMMs. GLMMs could be used to 

include correlations in the model and identify sensitive subjects. For GLMMS the modeling is 

straight forward, first one has to identify the distribution of data, understand what needs to be 

modeled and then identify random and fixed effects. SAS procedure used to fit such models is 

PROC GLIMMIX and estimation method can be specified under the statement method. The 

methods that could be specified are Laplace, Gauss-Hermite Quadrature and Penalized Quasi-

Likelihood. The results obtained using PROC GLIMMIX procedure and the Laplace method was 

the preferred method for the results since it is more accurate than Penalized Quasi-Likelihood 

and faster than Gauss-Hermite Quadrature; however, the Penalized Quasi-Likelihood had more 

significant results. The alternative is to use general additive models. 
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Chapter 5 

Generalized Additive Models 

5.1 Introduction 

The statistical models that have been discussed above assume linearity parametric form 

for the explanatory variables. However, this assumption of linear dependence of response on 

covariates may not hold. These parametric regression models discussed provide a powerful tool 

for modeling the relationship between response and set of explanatory variables. However, these 

parametric models are not flexible for modeling a complicated relationship between response 

set of explanatory variables. The limitation of the parametric modeling is that it is restrictive in 

many cases. The section describes the flexible statistical non-parametric models that can be used 

to model complicated relationship between the response and set of explanatory variables. These 

models are known as generalized additive models (GAMs) proposed by (Hastie and Tibshirani, 

1986). These models assume that the mean of the dependent variable depends on an additive 

predictor through a non-linear link function. GAMs can handle non-linear, linear and non-

monotonic relationships between response and predictor variables. They can be used in settings 

that include standard continuous response regression, count, binary response survival data and 

time series data. GAMs are suitable for exploring the data set, visualizing the relationship 

between the dependent variable and the set of explanatory variables (Liu, 2008). The GAMs 

generalize the generalized linear model by replacing the linear form  𝛽0 + ∑ 𝑥𝑗
𝑝
𝑗=1 𝛽𝑗 with the 

additive form   𝑓0 + ∑ 𝑓𝑗
𝑝
𝑗=1 (𝑥𝑗), where 𝑓𝑗 is unspecified (non-parametric) function. To determine 

the appropriate smooth function 𝑓, the steps in GLM are replaced by the non-parametric 

regression steps. Therefore, the GAM using the notation of (Wood, 2006) can be presented as: 

 

                   𝑔(𝜇𝑖) = 𝑋𝑖
∗𝜃 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) + 𝑓3(𝑥3𝑖) + ⋯                                 (5.1)  

where 𝜇𝑖 ≡ 𝐸(𝑌𝑖) and 𝑌𝑖 has a distribution that follows exponential family distribution, 𝑋𝑖
∗ is the 

design matrix, 𝜃 is the corresponding parameter vector and 𝑓𝑗(. ) are smooth functions of 

covariates. Model (5.1) is simply an additive model if 𝑔 is the identity link and the response is 

normally distributed (Faraway, 2006). This function 𝑓𝑖(𝑥𝑗)can be estimated in a flexible manner 

using cubic spline smoother, in an iterative method called back fitting algorithm (Lui, 2008; Hastie 

and Tibshirani, 1990). The name cubic is from the piecewise polynomial fit, with the order 𝑘 = 3 

(Lui, 2008 and Dlamini, 2016). We define smoother as the tool for summarizing the trend of a 

dependent variable as function of one or more independent variables. The smoother produces 

an estimate known as smooth (Lui, 2008). The main property of the smoother is its non-

parametric nature. The estimate of the trend produced is less variable than response or log odds 

itself.  The strength of GAMs is the ability to deal with non-linear and monotonic relationships 

between the log odds variable and one or more independent variables. Generalized additive 
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models rely on the assumption that functions have to be additive and that the added component 

needs to be smooth. We first begin with the overview of the methodology then discuss the form 

of the logistic regression in the generalized additive models setting. 

5.2 Univariate Smooth Function 

The smooth is the tool for summarizing the trend of response variable 𝑌 as function of 

one or more independent variables 𝑋1, … . 𝑋𝑝  (Lui, 2008). We first model the simplest smooth 

function where the model contains one smooth function of one independent variable. 

 

                                                        𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖                                                                (5.2) 

where 𝑦𝑖 is the response variable, 𝑥𝑖  is the covariate, 𝑓(. ) is the smooth function and 𝜖𝑖 are 

independent identically distributed random variables with mean zero and constant variance (𝜎2). 

In order to approximate the smooth function, suppose we have a scatterplot of the points (𝑥𝑖, 𝑦𝑖) 

where 𝑦𝑖 is the response and 𝑥𝑖  is the covariate value for a point. We want to fit the smooth 

curve which describes the relationship between 𝑦 and 𝑥. The method of curve interpolation to 

determine the curve that simply minimizes (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) will not yield the smooth curve 

at all (Wood, 2006). However, the cubic spline smoother does forces smoothness on 𝑓(𝑥). Then 

the model is fitted by minimizing the following penalized least square function. 

 

                                 ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝜆 ∫ [𝑓"(𝑥)]
2

𝑑𝑥                                          (5.3)
𝑏

𝑎

𝑛

𝑖=1

 

where 𝜆 is fixed constant and 𝑎 ≤ 𝑥1 ≤ ⋯  ≤ 𝑥𝑛  ≤ 𝑏. We assume (𝑎, 𝑏) includes all possible 

range. The function 𝑓 can be approximated by linear combination of basic functions 𝑓𝑗(𝑥) as 

𝑓(𝑥) = ∑ 𝑓𝑗(𝑥)𝑞
𝑗=1 𝛽𝑗 and ∫[𝑓"(𝑥)]

2
 measure the “Wiggliness” of the function 𝑓(𝑥). If the 

∫[𝑓"(𝑥)]
2

= 0 (indicate the straight line) then we have a function 𝑓 that is a linear function. 

However, a non-linear function of 𝑓 will produce values ∫[𝑓"(𝑥)]
2

> 0 (smoother 𝑓 is highly non-

linear). The smoothing parameter 𝜆 > 0 has to be chosen wisely by the analyst since its plays an 

important role in estimation. The parameter 𝜆 controls the tradeoff between the goodness of fit 

that is measured by (𝑦𝑖 − 𝑓(𝑥𝑖))
2
 and the model smoothness (Dlamini, 2016; Hastie and 

Tibshirani, 1990). The larger the value  𝜆 the smoother 𝑓 becomes and the penalty term becomes 

more important. Moreover, the small values of 𝜆 yield a wiggly curves and penalty become 

unimportant (Lui, 2008; Yee and Mitchell, 1991). We now look at additive model by penalized 

least square and general case.  
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5.3 Additive Models by Penalized Least-Squares 

The function 𝑓 is the linear combination of the parameters and one can show that the 

penalty from penalized least square is a quadratic form of 𝛽. This is given below. 

                                         ∫[𝑓"(𝑥)]
2

𝑑𝑥 = 𝛽′𝐻𝛽                                                          (5.4) 

Suppose now the model has two smoothers as follows 

 

                                𝑌𝑖 = 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) + 𝜖𝑖                                                               (5.5) 

 

The smoothers has the form 𝑓1(𝑥) = ∑ 𝑏𝑗(𝑥𝑖)𝛽𝑗
𝑞1
𝑗=1  and 𝑓2(𝑥) = ∑ 𝑏2𝑗(𝑧𝑖)𝛾𝑗

𝑞2
𝑗=1 ,where 𝑥 and 𝑦 

are two explanatory variables and for simplicity we assume that all 𝑥𝑖  and 𝑧𝑖 lie in [0,1].  Here 

𝑏1𝑗(. ) and 𝑏2𝑗(. ) are cubic spine basic functions of 𝑓1 and 𝑓2 respectively. When two smoothers 

are now used in place of one smoother then this the definition of 𝑌 as a function of 𝑞,𝑋 and 𝛽. 

However, the general form does not (Wood, 2012). The optimization becomes  

 

                            ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝜆1𝛽′

𝑛

𝑖=1

𝐻1𝛽 + 𝜆2𝛽1𝐻2𝛽                                     (5.6) 

where 𝑋 is a design matrix of covariates, 𝜆1, 𝜆2 directly control the effective degree of freedom 

per smoothing term. The smoothing parameter can also be obtained by generalized cross 

validation (Wood and Augustin, 2012). Here  𝐻 = ∫ 𝑑(𝑥)𝑑(𝑥)′dx is the penalty matrix, which 

consists of known coefficients and 𝑑(𝑥) is given by 

 

𝑑(𝑥) = [𝑏1
"(𝑥), 𝑏2

" (𝑥), 𝑏3
" (𝑥), … ]

′
 

 

We then can argue that the penalized regression spline-fitting problem is similar to minimizing 

 

                                           (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆𝛽′𝐻𝛽                                            (5.7) 

 

This can also be written as 
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                                                   𝑦′𝑦 − 𝑦′𝑋𝛽 − 𝑋′𝛽′𝑦 + 𝛽′(𝑋′𝑋 + 𝜆𝐻)𝛽 

 

Taking the derivative with respect to 𝛽 and equating to zero, we obtain 

 

                                       𝛽̂ = (𝑋′𝑋 + 𝜆𝐻)−1𝑋′𝑦                                                            (5.8) 

 

The parameter 𝜆 can be set by hand or selected automatically and penalized maximum likelihood 

could be used to estimate the known parameter 𝛽 (Lui, 2008). The influence matrix, 𝑨 for this 

model is given as 

 

                                                 𝐴 = 𝑋(𝑋′𝑋 + 𝜆𝐻)−1𝑋′                                                (5.9) 

 

We first require some method for choosing  𝜆. 

5.4 Selection of Smoothing Parameters 𝝀 

To minimize cubic smoother, which is being considered, we have to choose a smoothing 

parameter, 𝜆, wisely. If 𝜆 is much higher, then the data will be over smoothed but if 𝜆 is too low 

then the data will be under smoothed (Wood, 2006). It is possible to choose 𝜆 that is data driven. 

The penalized likelihood can be used to estimate model coefficients given 𝜆. There are other 

approaches that are useful when the scale parameter is known instead of attempting to minimize 

expected mean square error, which results into estimation, by Un-Biased Risk Estimation (UBRE). 

If the scale parameter is unknown, then attempting to minimize prediction error leads to ordinary 

cross validation (Wood, 2006). 

5.4.1 Average Mean Square and predictive Square Error 

The focus is on the global measure known as Average Mean Square Error (AMSE) instead 

of minimizing the Mean Square Error (MSE) at each covariate 𝑥𝑖  (Lui, 2008; Wood and Augustin, 

2002). The average mean square error is given by, 

 

                             𝐴𝑀𝑆𝐸(𝜆) =
1

𝑛
∑ 𝐸[𝑓𝜆(𝑥𝑖) − 𝑓(𝑥𝑖)]

2
                                        (5.10)

𝑛

𝑖=1
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where 𝑓𝜆(𝑥𝑖) is an estimator of 𝑓(𝑥) and 𝑓(𝑥𝑖 = 𝑌𝑖 − 𝜖𝑖). We now consider the average 

Predictive Square Error (PSE) that is given by, 

 

                                  𝑃𝑆𝐸(𝜆) =
1

𝑛
∑[𝑌𝑖

∗ − 𝑓𝜆(𝑥𝑖)]
2

                                                 (5.11)

𝑛

𝑖=1

 

AMSE and PSE differ by constant 𝛿 where 𝑌𝑖
∗ is the new observation at 𝑥𝑖, 𝑌𝑖

∗ = 𝑓(𝑥𝑖) + 𝜖𝑖
∗ and 

𝜖𝑖
∗ is independent of 𝜖′s. There are other methods for estimating and selecting 𝜆, for example 

Cross Validation (CV) and Generalized Cross Validation (GCV). 

5.4.2 Cross Validation (CV) 

The Statistical approach for partitioning sample into two subsets is known as Cross 

Validation (Lui, 2008 and Wood, 2006). This technique is sufficient when the sample is large. The 

data recycled by switching the role of test samples and training in CV. Cross validation could be 

used in selecting 𝝀 by minimizing, 

                                   𝐶𝑉(𝝀) = ∑[𝑦𝑖 − 𝑓𝜆
−𝑖(𝑥𝑖)]

2
                                                   (5.12)

𝑛

𝑖=0

 

where 𝑓𝜆
−𝑖(𝑥𝑖) indicates the fit at 𝑥𝑖  which is computed by leaving out the 𝑖𝑡ℎ data point. This is 

the approach that is available in SAS and is similar to minimizing 𝑃𝑆𝐸(𝜆). 

5.4.3 Generalized Cross Validation (GCV) 

GCV is another approach for selecting λ, which is computationally intensive. However, there are 

some shortcuts available for many situations (Lui, 2008 and Wood, 2006). The GCV is 

approximately the same as Mallow’s 𝐶𝑝 statistic and this shown in the study by (Lui, 2008). GCV 

is given by, 

                                            𝑉𝑔 =
𝑛‖𝑦𝑖 − 𝑋𝛽̂𝜆‖

[𝑛 − 𝑡𝑟(𝐹𝜆)]2
                                                           (5.13) 

where 𝑡𝑟(𝐹𝜆) is the effective degree of freedom of the model and 𝛽̂𝜆 is the coefficient of the 

estimate that is obtained by direct minimization of 

 

                                           ‖𝑦 − 𝑋𝛽‖2 + ∑ 𝜆𝑗𝛽′𝐻𝑗𝛽𝑗  
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5.4.4 Degrees of Freedom of a Smoother 

Degrees of freedom is the other way of expressing the required smoothness of the 

function in terms of λ. In SAS, the procedure PROC GAM can select the value of a smoothing 

parameter simply by specifying the degree of freedom for the smoother and this is sometimes 

called effective number of parameters. The effective number of parameters indicates the amount 

of smoothing. Suppose there is a linear smoother say 𝐹𝜆then the degrees of freedom are given 

by 

 

𝑑𝑓(𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟) = 𝑡𝑟(𝐹𝜆) 

The more the smoothing the fewer degrees of freedom of the smoother. The degrees of freedom 

may be a decimal number (Lui, 2008). 

5.5 Back fitting and Generalized Local Scoring Algorithm 

The basic idea behind generalized additive models is to plot the value of the response 

variable together with independent variable then compute the smooth curve that goes through 

the data. GAMs are designed to take advantage of the ability to fit the logistic regression and 

other GLMs. The main focus is to explore the data set and visualize the relationship between 

response and set of independent variables (Lui, 2008; Marx and Eilers, 1998). However, the GLMs 

focus specifically in estimation and inference. The data is divided into number of sections called 

knots. The scatterplot smoother used in GAMs attempts to generalize data into a smooth curve 

by local fitting to the subsection of the data. One of the advantages of GAMs is that the error 

term is estimated precisely since curves are fitted algorithmically. The algorithm used are often 

iteratively, non-parametric and do not show a great deal of complex numerical processing. The 

GAMs framework is based on back fitting with linear smoothers, limitations arise in the difficulty 

that is presented by back fitting in the selection of a model and inference (Dlamini, 2016; Marx 

and Eilers, 1998). There are different techniques for the formulation and estimation of additive 

models. The general algorithm for model formulation and estimation of the additive model is 

called back fitting. Back fitting can fit an additive model using any regression type fitting 

mechanism (Wood, 2006). 

5.5.1 Back fitting Algorithm 

Back fitting is known as the simple iterative procedure used to fit a generalized additive model. 

It defined as the partial residual 

 

𝑅𝑗 = 𝑌 − 𝑓0 − ∑ 𝑓𝑘(𝑥𝑘)

𝑘≠𝑗
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with 𝐸(𝑅𝑗|𝑋𝑗) = 𝑓𝑗(𝑋𝑗). This observation provides a way for understanding each smooth 

function 𝑓𝑗(. ) given the estimate [𝑓(. ), 𝑖 ≠ 𝑗] for all others. The resulting iterative procedure is 

known as back fitting. 

 Step1 Initialize: 

𝑓0 = 𝐸(𝑌), 𝑓1
1 = ⋯ = 𝑓𝑝

1, 𝑚 = 0. 

Step2. Iterate: 𝑚 = 𝑚 + 1 for 𝑗 = 1 to 𝑝 do: 

𝑅𝑗 = 𝑌 − 𝑓0 − ∑ 𝑓𝑘
𝑚(𝑥𝑘) − ∑ 𝑓𝑘

𝑚−1(𝑥𝑘)

𝑝

𝑘=𝑗+1

𝑗−1

𝑘=1

 

𝑓𝑗
𝑚 = 𝐸(𝑅𝑗|𝑋𝑗) 

 

Step 3: Calculate  

𝑅𝑆𝑆 = 𝐴𝑉𝐺 (𝑌 − 𝑓0 − ∑ 𝑓𝑗
𝑚(𝑥𝑗)

𝑝

𝑗=1

)

2

 

 

until fails to decrease. 𝑓𝑗
𝑚(. ) Denotes the estimate of 𝑓𝑗(. ) at the 𝑚𝑡ℎ iteration. RSS do not 

increase at any step and thus the algorithm always converges. 

5.5.2 General Local Scoring Algorithm 

Step 1: Initialize, 

𝑓0 = 𝐸(𝑌), 𝑓1
1 = ⋯ = 𝑓𝑝

1, 𝑚 = 0 

 

Step2: Iterate 𝑚 = 𝑚 + 1 , from the adjusted dependent variable 

 

𝑧𝑖 = 𝜂𝑖 + (𝑦𝑖 − 𝜇𝑖) (
𝜕𝜂𝑖

𝜕𝜇𝑖
) , 
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𝜂𝑚−1 = 𝑓0 + ∑ 𝑓𝑗
𝑚−1(𝑥𝑖𝑗),

𝑝

𝑗=1

 

𝜂𝑚−1 = 𝑔(𝜇𝑚−1) so 𝜇𝑚−1 = 𝑔−1(𝜂𝑖) construct the weight. 

𝑊𝑖 = (
𝑑𝜂𝑖

𝑚−1

𝑑𝜇𝑖
𝑚−1)

2

𝑉𝑖
−1 

where 𝑉𝑖 = 𝑣𝑎𝑟(𝑌𝑖). Fit a weighted additive model to 𝑧𝑖using the back-fitting algorithm with 

weights 𝑊. We obtain estimated functions 𝑓𝑖
𝑚(. ) and model 𝜂𝑚. 

Step 3: Repeat, continue with step 1 and step 2 until deviance fails to decrease. Suppose the 

initial estimate of 𝜂 is given. Then the first order Taylor series expansion and fisher scoring 

method will yield an improved estimate according (Lui, 2008). 

 

                                             𝜂𝑒𝑠𝑡(𝑥) = 𝜂𝑔𝑖𝑣𝑒𝑛 + 𝛿                                                      (5.14) 

Here, 

𝛿 =
𝑆𝑐𝑜𝑟𝑒 𝑓𝑢𝑐𝑡𝑖𝑜𝑛

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
 

 

                                            𝛿 =

𝜕𝑙
𝜕𝜂

𝐸 (−
𝜕2𝑙
𝜕𝜂2 |𝑥)

                                                             (5.15) 

= 𝐸 (𝜂(𝑥) −

𝜕𝑙
𝜕𝑛

𝐸 (
−𝜕2𝑙
𝜕𝜂2 |𝑥)

|𝑥) 

Using chain rule, we have that  

    
𝜕𝑙

𝜕𝜇𝑖
=

𝜕𝑙

𝜕𝜇

𝜕𝜇

𝜕𝜂
 ,                               

 

                                                 
𝜕𝑙

𝜕𝜇𝑖
=

1

𝜇𝑖
− (1 − 𝑦𝑖)

1

(1 − 𝜇𝑖)
                                    (5.16) 



83 | P a g e  
 

=
𝑦𝑖 − 𝜇𝑖

(1 − 𝜇𝑖)𝜇𝑖
                

We know that 𝑉𝑎𝑟(𝑌𝑖) = 𝐸(𝑌𝑖
2) − (𝐸(𝑌𝑖))

2
 

 

𝑉𝑎𝑟(𝑌𝑖) = 𝐸(𝑌𝑖
2) − (𝐸(𝑌𝑖))

2
                      

                                                      = 12𝜇𝑖 + 02(1 − 𝜇𝑖)(−𝜇𝑖)                                   (5.17) 

= 𝜇𝑖(1 − 𝜇𝑖)                   

and  

𝑉𝑖
−1 =

1

𝜇𝑖(1 − 𝜇𝑖)
 

 

Thus 

𝜕𝑙

𝜕𝜂
= (𝑦 − 𝜇)𝑉−1

𝜕𝜇

𝜕𝜂
 

𝜕2𝑙

𝜕𝜂2
= (𝑦 − 𝜇)

𝜕

𝜕𝜂
(𝑉−1

𝜕𝜇

𝜕𝜂
) − (

𝜕𝜇

𝜕𝜂
)

2

𝑉−1 

 

Therefore  

𝐸 (
𝜕2𝑙

𝜕𝜂2
|𝑥) = − (

𝜕𝜇

𝜕𝜂
)

2

𝑉−1                                                            

                              𝜂𝑒𝑠𝑡(𝑥) = 𝐸 [𝜂(𝑥) + (𝑌 − 𝜇)
𝜕𝜂

𝜕𝜇
|𝑥]                                          (5.18) 

Replacing the conditional estimation with smoothers, we have the improved estimates 

 

                     𝜂𝑒𝑠𝑡(𝑥) = 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑟 [𝜂(𝑥) + (𝑌 − 𝜇)
𝜕𝜂

𝜕𝜇
|𝑥]                                  (5.19) 
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5.6 Estimation of the Parameter Estimation 𝜷 

If the data is non-normal, the framework of the GLM can be applied. The linear predictor 

is modeled as the sum of the B-spline and iterative method is used. The number of B-spline and 

the value of the coefficients or amplitudes will influence the smoothness of the curve. If these 

are almost equal, then the curve will be flat. The curve will show many of wiggles if the amplitude 

varies widely. 

5.6.1 Splines 

The spline curve is a piecewise polynomial curve that joins two or more polynomial 

curves. The locations of the joins are known as knots. In addition, there are boundary knots, 

which can be located at or beyond the limits of data.  

5.6.1.1 B-splines 

There are other popular smoothing techniques besides cubic spline such as loess and 

kernel smoothers where the graphical summaries of non-parametric fits are provided in them. 

Even though non-parametric provides rich exploratory flexibility it is not possible to use for future 

prediction (Wood, 2006; Marx and Eilers, 1998). The B-spline smooth basis is independent of the 

response variable but only dependent: Firstly, one the range of the covariate. Secondly, on the 

number and position of knots (equally spaced), and the degree of the B-spline. 

The B-Spline of 𝑞 degree consists of 𝑞 + 1 polynomial pieces of degree 𝑞, these pieces are joined 

at 𝑞 inner knots at which the derivatives up to order 𝑞 − 1 are continuous. The B-spline is positive 

on the domain spanned by 𝑞 + 2 knots, for a given 𝑥 𝑞 + 1 B-spline is non-zero. The fit to the 

data can be expressed as 

                                 𝑆 = ∑ (𝑦𝑖 − ∑ 𝑏𝑖𝑡𝑎𝑡

𝑛

𝑡−1

)

2𝑁

𝑖=1

                                                         (5.20) 

where 𝑏𝑖𝑡 = 𝐵𝑡(𝑋𝑖), the value of the B-spline 𝑡 at 𝑋𝑖, ∑ 𝑏𝑖𝑡𝑎𝑡
𝑛
𝑡=1  is the sum of B-splines. The 

solution for the vector a is obtained from regression of 𝑦 on the matrix 𝐵 and 𝐵 known as B-

spline matrix of dimension 𝑁 × 𝑛𝑖. 

 

5.6.1.2    P-splines 

There is another way representing the cubic splines using B-spline basis. The B-spline basis 

are strictly local so there are more appealing, and each basis function is zero over intervals 𝑚 +

3 adjacent knots (Wood, 2006). The (𝑚 + 1)𝑡ℎorder spline can be expressed as  

                                                      𝑆(𝑋) = ∑ 𝛽𝑖
𝑚(𝑋)𝛽𝑖

𝑘

𝑖=1

                                             (5.20) 
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The B-spline basis function is defined recursively as 

 

 𝛽𝑖
𝑚 =

𝑋 − 𝑋𝑖

𝑋𝑖+𝑚+1 − 𝑋𝑖
𝛽(𝑋)𝑚−1 +

𝑋𝑖+𝑚+2 − 𝑋

𝑋𝑖+𝑚+2 − 𝑋𝑖+1
𝛽𝑖+1

𝑚−1, 𝑖 = 1, … , 𝑘                  (5.21) 

       

                            𝛽𝑖
−1(𝑋) = {

1         𝑖𝑓 𝑋𝑖 ≤ 𝑋 < 𝑋𝑖+1

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                            (5.22) 

 

5.6.2 Penalized Likelihood and Estimation 

The penalized likelihood is another way to find regression coefficients for categorical 

variables. The likelihood is maximized by using iterative methods such as the Newton Raphson 

algorithm and scoring method. Newton Raphson method is a technique used to find the zeros of 

a function taking real values (Wood, 2006; Marx and Eilers, 1998). 

5.6.2.1 Penalized Likelihood  

The disadvantage of using B-spline is that one is required to optimize the number and 

position of knots. Given a wiggliness measure for each function, the penalized log-likelihood can 

be defined as  

𝐿𝑜𝑔𝐿𝑝(𝛽) = 𝑙𝑜𝑔𝐿(𝛽) −
1

2
∑ 𝜆𝑗𝛽′𝐻𝑗𝛽,

𝑝

𝑗=1

 

                                                            = 𝑙𝑜𝑔𝐿(𝛽) −
1

2
𝛽′𝑆𝛽                                        (5.23) 

where 𝑆 = ∑ 𝜆𝑗𝐻𝑗
𝑝
𝑗=1 , L denotes the likelihood function and 𝜆𝑗 are penalty factors or smoothing 

parameters, controlling the tradeoff between goodness-of-fit of the model smoothness. 

Assuming that 𝜆𝑗 values are known then the likelihood is maximized in order to find 𝛽̂𝑗
′𝑠.          

5.6.2.2 Estimation       

The penalized log-likelihood in Eq. (5.23) can be maximized through iterative Re-weighted 

Least-Squares. Here we assume that 𝜆𝑗 is known. To maximize this equation, we need to take its 

derivative with respect to 𝛽𝑗and equate to zero, thus we have, 
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𝜕𝑙𝑝

𝜕𝛽𝑗
=

𝜕𝑙

𝜕𝛽𝑗
− [𝑆𝛽]𝑗 = ∅−1 ∑ {

𝑦𝑖 − 𝜇𝑖

𝑉(𝜇𝑖)
}

𝜕𝜇𝑖

𝜕𝛽𝑗
− [𝑆𝛽]𝑗 = 0                       (5.24)

𝑛

𝑖=1

 

The [. ]𝑗 is the 𝑗𝑡ℎ row vector. The equation resulted in minimizing the likelihood are the same as 

those equations that would to be solved to obtain 𝛽 by non-linear weighted least square given 

that 𝑉(𝜇𝑖) are known in advance and are independent of 𝛽 (Wood, 2006). The Least-Square 

objective would be, 

 

                                 𝑆𝑝 = ∑
(𝑦𝑖 − 𝜇𝑖)2

𝑉𝑎𝑟(𝑌𝑖)
+ 𝛽′

𝑛

𝑖=1

𝑆𝛽                                                      (5.25) 

where 𝜇𝑖 depends non-linearly on 𝛽 but the weights 𝑉(𝜇𝑖) are treated fixed. The assumption 

made here is that the 𝑉𝑎𝑟(𝑌𝑖) terms are known. To find Least Square, we take a derivative with 

respect to 𝛽𝑗 and equating to zero. The iterative of equations will be as in Eq. (5.24). If 𝑣𝑎𝑟(𝑦𝑖) 

terms were fixed. The iterative method is required to solve these equations. It can be shown that 

in the vicinity of some coefficient vector estimate 𝛽̂|𝑘| (Wood, 2006). 

 

                               𝑆𝑝 ≃  ‖√𝑤[𝑘] (𝑧[𝑘] − 𝑥𝛽)‖2 + 𝛽′𝑆𝛽                                         (5.26) 

 

The pseudo data is defined as 

 

                                   𝑧𝑖
[𝑘]

= 𝑔′(𝜇[𝑘]) (𝑦𝑖 − 𝜇𝑖
[𝑘]

) + 𝑋𝑖𝛽̂[𝑘]                                    (5.27) 

where 𝑧𝑘 is a vector of pseudo data with elements 𝑧𝑖
[𝑘]

 and 𝑊[𝑘] is the diagonal weight matrix 

with elements 𝑤𝑖
[𝑘]

 given by 

 

                               𝑤𝑖
[𝑘]

= [𝑉 (𝜇𝑖
[𝑘]

𝑔′ (𝜇𝑖
[𝑘]

)
2

)]
−1

                                                   (5.28) 

where 𝑔 is the model link function. Assuming the smoothing parameters are known then the 

maximum penalized likelihood estimate 𝛽̂ are obtained through iterating the following steps: 

Step 1: Use current 𝛽[𝑘], compute the pseudo data 𝑧[𝑘] and iterative weights 𝑊[𝑘].  
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Step 2: Minimize equation (5.26) with respect to 𝛽, then obtain 𝛽̂[𝑘+1], so that 𝜂[𝑘+1] =

𝑋𝛽[𝑘+1] and increase the value of 𝑘 by one unit. Then, the converged 𝛽̂ solves equation (5.24). 

 

5.7 The Generalized Additive Logistic Model 

The most popular and widely used approach for binary is Logistic regression. In this model 

the outcome is coded the same as in Chapter 3, with zero indicating the child is not alive and one 

the child is alive. 

 

𝑌𝑖 = {
1,       𝐶ℎ𝑖𝑙𝑑 𝑖𝑠 𝑎𝑙𝑖𝑣𝑒                  𝜋𝑖(𝑥)

0,     𝐶ℎ𝑖𝑙𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑖𝑣𝑒     1 − 𝜋𝑖(𝑥)
} 

where 𝑋 = (𝑋1, …  , 𝑋𝑝) is a vector of covariates. 

 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1 − 𝜋(𝑥)
= 𝛽0 + ∑ 𝛽𝑗

𝑃

𝑗=1

(𝑥𝑖𝑗) 

and 

                                              𝜋(𝑥) =  
𝐸𝑥𝑝(𝛽0+ ∑ 𝛽𝑗(𝑥𝑖𝑗)𝑃

𝑗=1 )

1+𝐸𝑥𝑝(𝛽𝑜+∑ 𝛽𝑗(𝑥𝑖𝑗)𝑃
𝑗=1 )

                                       (5.29) 

 

In logistic GAM. The basic Idea is to replace the linear predictor with an additive one. However, 

the logistic regression assumptions still apply except for linearity assumption. 

 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1 − 𝜋(𝑥)
= 𝑓0 + ∑ 𝑓𝑗(𝑥𝑖𝑗)

𝑃

𝑗=1

 

and 

                                𝜋(𝑥) =
𝐸𝑥𝑝(𝑓0 + ∑ 𝑓𝑗(𝑥𝑖𝑗)𝑃

𝑗=1 )

1 + 𝐸𝑥𝑝(𝑓0 + ∑ 𝑓𝑗(𝑥𝑖𝑗)𝑃
𝑗=1 )

                                       (5.30) 

The functions 𝑓1,𝑓2, … , 𝑓𝑝 are estimated by the algorithm described above, back fitting algorithm. 

This happens when the model consists of parametric and non-parametric terms. 
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Generally, let 𝐸(𝑌|𝑋) = 𝜇,   (𝜇𝑖 = 1 ∗ 𝜋𝑖 + 0 ∗ (1 − 𝜋𝑖) = 𝜋𝑖)   

So that, 

                                       𝜂(𝑥) = 𝑔(𝜇) = 𝑙𝑜𝑔
𝜋(𝑥)

1 − 𝜋(𝑥)
                                             (5.31) 

where  𝜂 is a function of 𝑝 variables. Assume 𝑌 = 𝜂(𝑥) + 𝜀, given some initial of 𝜂(𝑥), one can 

construct the adjusted dependent variable 

 

                                   𝑍𝑖 = 𝜂𝑖 + (𝑦𝑖 − 𝜇𝑖) (
𝜕𝜂𝑖

𝜕𝜇𝑖
)                                                        (5.32) 

 

Instead of fitting an additive model 𝑌, we fit an additive model to the 𝑍𝑖  ‘s where it is treated as 

the response variable 𝑌 in 𝜇 =  𝑓0 + ∑ 𝑓0
𝑃
𝑗=1 (𝑥𝑖𝑗). This algorithm is to fit the smoothing functions 

and is analogous to the algorithm described above (Lui, 2008). 

 

5.7.1 Fitting Generalized Additive Models Logistic using GAM procedure 

The Generalized additive models are useful in finding predictor- response relationships in 

many kinds of data without using a specific. GAMs combine the ability to explore many 

nonparametric relationships simultaneously with distributional flexibility of generalized linear 

models. The SAS procedure PROC GAM is a powerful tool for the nonparametric regression 

model, and it provides great flexibility in predictor-response relationships. Carrying out 

exploratory modelling with PROC GAM could inspire parsimonious parametric models. Thus, 

using PROC GAM, under model option, some variables are included in the keyword spline; in this 

case, non-linearity assumption is made for them. In the present section, we assume some of the 

covariates have a linear relationship with the log odds and some have non-linearity, this yields 

the semi parametric model. 

5.7.2 Fitting the Logistic Additive Model 

We consider the first part of the output that is obtained using PROC GAM procedure. 

Table 5.1: depicts a summary for the back fitting and local scoring algorithms.  The deviance for 

the final estimate is also provided in the table 5.1 and it can be used in computing the AIC as 

presented below 
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𝐴𝐼𝐶 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2𝑝𝑓, 

                                                                      =  863.08 + 2 × 13 × 1,                              (5.33) 

               =   889.06                         

where 𝑝 is the model degrees of freedom and 𝑓 is the scale parameter (𝑓 = 1 for Binomial and 

Poisson). The model degrees of freedom are 1 + 12 = 13.  This AIC value can be used to compare 

models fitted by PRO GAM. In PROC GENMOD the AIC value is calculated as  

 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑝, 

where 𝐿𝐿 is the log likelihood of the fitted model. 

 

                        Table 5. 1: Summary of algorithms used in fitting the model 

                                  Iteration Summary and Fit Statistics 

Number of local scoring iterations 
Local scoring convergence criterion 
Final Number of Back fitting Iterations 
Final Back fitting Criterion  
The Deviance of the Final Estimate 

                                         43 
                             8.67E-17 
                                           1 
                             8.42E-17  
                                863.08 

 

Table 5.2: shows the linear portion and parameter estimates for parametric part of the 

model, standard errors, t-values and p-values. The effect of size of child at birth, small weight 

was found to be positively associated with under-five child mortality (p-value= 0.0001). The 

breastfeeding was found to be positively associated with child mortality (p-value = 0.0007). The 

linear predictors mother’s age, number of children 5 and under, total children ever born, and 

birth order number were found to be significantly associated with under-five child mortality, with 

their p-values less than 0.05 significance level. Table 5.3: shows the summary of smoothing 

components of the nonparametric part of the model. This table presents the smoothing 

parameter, degrees of freedom, value of GCV for each component and a number of unique 

observations. The degrees of freedom are an indication of the amount of smoothing. The more 

the smoothing means less degrees of freedom or higher span. Each smoothing component has 

approximately 4 degrees of freedom. For univariate spline component, one degree of freedom is 

taken up by parametric linear portion of the model, so the smoothing was almost equal to one 

and the corresponding degree of freedom is 3. 
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                                                             Table 5. 2: Analysis of Model 

                                                                Regression Model Analysis  
                                                                   Parameter Estimates 

Parameter  Parameter 
Estimate 

Standard  
Error 

 
t-value 

 
p-value 

Intercept 
Size of child at birth (ref. Very large) 
Average 
Small 
Currently breastfeeding (ref. yes) 
No 
Current marital status (ref. Never married) 
Married  
Living with partner 
Ethnicity (ref. Others) 
Black African 
Coloured 
Wealth index (ref. Rich) 

Middle 
Poor 
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Western Cape) 
Eastern Cape 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape  
Mother’s Age 
Linear (Mother_Age) 
Number of children 5 and under 
Linear (NoOfChildrenU5) 
Total children ever born 
Linear (ChildrenEverBorn) 
Birth order number 
Linear (Bord) 
 

-15.081 
 

-0.1523 
1.0475 

 
1.0792 

 
-0.3016 
0.0668 

 
11.728 
9.8770 

 
-0.1087 
0.3668 

 
0.2896 

 
0.1992 
0.8304 

-0.0315 
-0.2114 
-0.2441 
0.5926 
0.1226 
0.5927 

 
-0.0524 

 
-1.1145 

 
1.7876 

 
-1.3622 

133.964 
 

0.2462 
0.2600 

 
0.3198 

 
0.2834 
0.2436 

 
113.9610 
113.9636 

 
0.3296 
0.2930 

 
0.2156 

 
0.6309 
0.6420 
0.6565 
0.6326 
0.6576 
0.6090 
0.6300 
0.6749 

 
0.0206 

 
0.1201 

 
0.1964 

 
0.1992 

-0.13 
 

-0.62 
4.03 

 
3.37 

 
-1.06 
0.27 

 
0.10 
0.09 

 
-0.33 
1.25 

 
1.34 

 
0.32 
1.29 

-0.05 
-0.33 
-0.37 
0.97 
0.19 
0.88 

 
-2.54 

 
-9.28 

 
9.10 

 
-6.84 

0.8947 
 

0.5363 
<.0001 

 
0.0007 

 
0.2874 
0.7840 

 
0.9180 
0.9309 

 
0.7417 
0.2107 

 
0.1793 

 
0.7522 
0.1959 
0.9618 
0.7383 
0.7105 
0.3306 
0.8457 
0.3799 

 
0.0111 

 
<0.0001 

 
<0.0001 

 
<0.0001 
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                                                     Table 5. 3: Smoothing Model Analysis 

                                                               Smoothing Model Analysis 
                                                    Fit Summary for Smoothing Components 

Component Smoothing 
Parameter 

DF GCV Num Unique            
Obs 

Spline (Mother Age) 0.998820 3 2.0601 35 

Spline (NoOfChildrenU5) 0.984050 3 27.362 8 

Spline (ChildrenEverBorn) 0.995178 3 25.062 11 

Spline (Bord) 0.999157 3 421.32 12 
 

Table 5.4: below shows the most important part of PROC GAM results, Analysis of 

Deviance. This table provides a Chi-Square (𝜒2) test comparing the deviance between full model 

and the one without non-parametric component variable for each smoothing effect in the model. 

The analysis of deviance results shows that non-parametric effects of three continuous predictors 

are significant since their p-value is less 5% significance level. 

 

                                                        Table 5. 4: Analysis of deviance  

                                                             Smoothing Model Analysis 
                                                                  Analysis of Deviance 

Source                                         DF         Sum of Squares         Chi-Square                    P-value        

Spline (Mother Age)                   3            14.095830                      14.0958                          0.0043 
Spline (NoOfChildrenU5)          3            16.062196                     16.0622                          0.0009 
Spline (ChildrenEverBorn)        3             2.05271                        2.0525                           0.5616 
Spline (Bord)                                 3            15.278154                      15.2782                          0.0033 

 

Figure 5.1: shows plots of the partial prediction for each of the continuous predictor 

considered. These plots can be used to investigate as to why PROC GAM and PROC GENMOD 

provide different result. These plots are produced by including the option PLOTS=COMPONENT 

(COMMONAXES) which gives curve wise Bayesian confidence band to each smoothing 

component and plot share the same vertical axis limits. The plots show that the partial 

predictions corresponding to total children ever born have a quadratic pattern. This suggests that 

under-five mortality was associated with a quadratic pattern for total children ever born. The 

mother’s age, birth order number and number of children 5 and under have 95% confidence 

limits containing zero axes and the line was straight, this means that mother’s age, birth order 

number and number of children 5 and under in household had no quadratic effect on the child 

survival status. 
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Figure 5. 1: Partial prediction for each predictor 

 

5.8 Summary of Generalized Additive Model 

Generalized Additive Models are an alternative method to Logistic regression, since the 

assumption about the linearity link function (logit) and predictors need to be made. This 

assumption may not hold in Logistic regression thus we introduce GAMs. The first step to fitting 

GAMs is to turn GAMs into penalized generalized linear model (P-GLMs) with coefficient 𝛽 and 

smooth parameter 𝜆. This can be done by choosing basis and wiggliness measures for the smooth 

term.  Secondly, select the smoothing parameters in which one can use either GCV or UBRE. The 

parameter estimates 𝛽 are then obtained by using penalized iteratively re-weighted least-square 

(P-IRLS). The hypothesis can be tested using GLM methods on un-penalized GAM, and confidence 

intervals can be obtained using Bayesian smoothing model (Wood, 2006). With the use of PROC 

GAM, we found that under-five child mortality was significantly associated with the size of child 

at birth and breastfeeding. The under-five child mortality was also associated with linear pattern 

of mother’s age, number of children 5 and under, total children ever born and Birth order 

number. Lastly, under-five child mortality was associated with quadratic pattern of total children 

ever born.  
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Chapter 6 

Discussion 
 
The main objective of the study was to determine the factors associated with the under-

five child mortality in South Africa. The determined factors can be used to help the South African 
Government, non-governmental organizations and other partners in the health sector to know 
and understand the important areas they need to focus on. Therefore, this will help to develop 
more policies, programmes and evaluate progress made towards achieving the Millennium 
Development Goals 4. In order to achieve these objectives statistical models such as generalized 
linear models, survey logistic regression, generalized linear mixed models and generalized 
additive models were used to identify the risk of factors affecting under-five child mortality. The 
data used in this study was obtained from South Africa Demographic and Health Survey 2016, 
which was conducted by Statistics South Africa (Stats SA) in partnership with the South African 
Medical Research Council (SAMRC) at the request of the National Department of Health (NDoH). 
The response variable was child survival status indicating whether the child is dead or alive, coded 
as zero for dead and 1 for alive.  
 

The associated demographic, socio-economic and environmental factors used in the 
study were: age of the mother, sex of child, birth order number, breastfeeding, marital status, 
ethnicity, education, wealth index, employment, number of children 5 years and under in 
household, total children ever born, residential area, main source of water and main floor 
material. The generalized linear models known as logistic regression assumes that the survey 
data was obtained using simple random sampling. Due to large number of variables, stepwise 
selection procedure was adopted to eliminate non-significant variables. After fitting logistic 
regression, the size of child at birth, breastfeeding, birth order number, ethnicity, number of 
children 5 and under in a household, total children ever born, source of drinking water and 
province were significantly associated with under-five child mortality. However, mother’s age, 
marital status and wealth index were not significantly associated with under-five child mortality. 
The model checking and goodness-of-fit test was performed using Hosmer-Lemeshow. The test 
failed to reject the model selection.   
 

The model was refitted using survey logistic regression and generalized linear mixed 

models since they account for the complexity of the survey design. However, the conclusion 

reached by survey logistic regression was similar to the one reached using generalized linear 

mixed models, despite the differences in the models. From the results of logistic regression and 

survey logistic regression models presented in Chapter 3. We observe that the standard errors of 

logistic regression model are smaller than the standard errors of survey logistic regression model 

for each parameter estimate and that suggests under estimation of the variance (Heeringa et al., 

2017 and Yirga et al., 2019). This shows that the assumption made in order to use logistic 

regression resulted in a wrong conclusion. We obtained the appropriate estimates considering 

the survey design features. The parameter estimates and odds ratios are almost the same for 
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both models. However, the confidence intervals for logistic regression are narrow and this has 

resulted in underestimation of the variance (Dlamini, 2016 and Yirga et al., 2019). The survey 

logistic regression and generalized linear mixed model are useful since they account for the 

complexity of the survey design. Logistic regression, survey logistic regression and generalized 

linear mixed models are often used when the response variable is binary. However, the 

assumption about linearity between log odds and independent variables need to be made. If the 

assumption does not hold the generalized additive models could be used as an alternative. Using 

generalized additive models, the under-five child mortality was found to be significantly 

associated with, size of a child at birth and breastfeeding. Under-five child mortality was also 

found to be significantly associated with linear predictors mother’s age, number of children 5 and 

under in household, total children ever born and birth order number. Lastly, the under-five child 

mortality was also found to be significantly associated with the quadratic pattern for total 

children ever born and has no quadratic pattern with mother’s age, number of children 5 and 

under in household, and birth order number. 

From the results, we observed that the incidents of child death for a mother who does 

not breastfeed was higher compared to incidents of child death from a mother who breastfeeds. 

Breastfeeding, initiated within the first hour of birth, provided exclusively for six months, and 

continued up to two years or beyond with the provision of safe and appropriate complementary 

foods, is one of the most powerful practices for promoting child survival and wellbeing (UNICEF, 

2018). Generally, the breastfed children are less vulnerable to the risk of under-five child death 

than are artificially fed children. Similar results were reported by Akwara (1994); Barros and 

Victora (1990) that the absence of breastfeeding exposes children to various diseases that 

facilitate under-five child mortality. This could be attributed to, malnutrition, lack of vitamins and 

calcium. So, the survival of breastfed children is as a result of nutrient nourishment by breast milk 

(UNICEF, 2018). 

This study has found the incidents of a child death to be more for a mother whose 
childbirth order number was more than three births and it was higher compared to incidents of 
a mother whose birth order number was less than two. The maternal mother might have less 
parental care for the children after the first born and that could lead under-five child mortality 
because children are not looked after properly and be exposed to hazardous environment. Elliott 
(1992) also reported that first born and early born children will spend early years having exclusive 
attention of parents while later born will have to compete with siblings over resources. Younger 
siblings are likely to be introduced to developmentally inappropriate activities by older siblings. 
Thus, many siblings increase the likelihood of communicable diseases being introduced into the 
family, and younger siblings may be more susceptible to these diseases (Elliott, 1992). 
 

The incidents of a child death of a very small weight of child at birth was found to be 
higher compared to the incidents of an average weight size of the child at birth. This is a major 
determinant in developing countries which is caused by poor maternal nutrition status at 
conception, low gestational weight gains due to inadequate dietary, and short maternal stature 
due to the mother’s own childhood under nutrition (Pojda and Kelly, 2000). Similar results were 
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reported by Suparmi et al. (2016) that low birth weight is closely associated with under-five child 
mortality and affects child development and future risk of chronic disease.  

 
The results also showed the total number of children ever born and the number of 

children 5 year and under in household have influence in under-five child mortality. The risk of 

child death for a mother with more than two children was found to be higher as compared to the 

incidents of child death for a mother with less than two children. These results are consistent 

with the results reported by Woldenmicael (2001); Mambugu (2014) that, where many children 

live together, there is high chance of spreading germs and poor hygiene. Therefore, this may lead 

to health problems. Many children in a household increase the likelihood of having disease like 

infections because of crowding and competition for the available resources. An environment of 

such nature has 60% chance of experiencing diarrhea if there are six or more children living in 

the household than if the number is less than three (Woldemicael, 2001 and Wambugu, 2014).  

The differences among population groups has been found to be linked with under-five 
child mortality. For example, the 1998 South Africa Demographic and Health Survey estimated 
that in 1996 the under-five child mortality for Africans was 47%, for Coloured people 19% and 
11% for White people. This could be caused by high inequality among population groups in 
accessing proper health services in the country. These results are consistent with the results 
reported by Heaton and Amoateng (2007); Yach (1994) where similar pattern to this were 
estimated, with 51% for Africans, 38% for Coloured people, 8% for Asians and 7% for White 
people.   
  

The incidents of child death for a mother who does not drink safe water was found to be 

higher compared to incidents of child death from a mother who drinks safe water. The risk of 

potentially fatal diarrheal diseases is high among households with no clean drinking water or with 

no safe sanitation which increases the likelihood of under-five child mortality. Mahmood (2002) 

also reported that families living in households with piped water connected in their houses have 

a significantly lower post neonatal mortality than those families that depend on wells for drinking 

water.   

In our study, provinces have been found to be closely associated with under-five child 
mortality. South Africa is divided into regions called province which are also divided into 
residential areas called urban and rural areas. This could be the difference between urban and 
rural health facilities since, South Africa is still a developing country. Rural mothers and children 
are often disadvantaged in term of access to basic health services that can lead to under-five 
child mortality. Similar work has been reported by Kabir et al. (2001); Kembo and Ginnken (2009) 
that risk of death of children is lower in the urban than that of rural areas. This is general 
expectation considering the level of development is more advanced for urban than for rural 
areas. One of the DHS studies from Brazil had shown urban areas had low child mortality. The 
differences were not clarified through urban life advantage, but community variables such as 
ecological setting, political economy and health system, played an important role through 
socioeconomic characteristics (Fotso, 2006). 
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Conclusion 
The results of the study have demonstrated that there is a decline in under-five child 

mortality in South Africa. Similar results were reported by Rademer (2017) that the under-five 
child mortality has significantly declined in South Africa. Even though there is notable decline of 
under-five mortality, it should be noted that the pace of reduction sheds light on improvement 
of child health services in South Africa. We cannot only isolate the astounding decline in under-
five child mortality to unfocused priorities but also there is equally a need to address 
demographic, socio-economic and environmental factors in order to reduce under-five child 
mortality. The South African government has adopted the Sustainable Development Goals (SDGs) 
in 2015 that are extension and expansion of the work done under Millennium Development Goals 
and established ambitious targets for improving child survival by 2030. The country also has its 
own National Development Program (NDP) that includes many ambitious targets that go beyond 
what SDGs hope to achieve by 2030. The NDP aims at alleviating poverty and inequality by 
improving health inequalities between the poor and non-poor by 2030. Therefore, these results 
can be used to project information on reduction of under-five child mortality to achieve the 
country’s (NDP). The identified factors will assist policy makers to understand the areas they need 
to improve on in order to enhance the planning and evaluation of health policies to prevent 
under-five child mortality in South Africa.   

 

Recommendations 
Given the findings, a number of recommendations were made. Mothers should 

breastfeed to reduce more death of under-five child mortality. If the government strengthen the 

progress on reducing child mortality by tackling numerous policies and programme adjustments 

that have expanded coverage of child health interventions. Fighting poverty and inequality by 

improving the health of the poor and reducing health disparities between the poor and non-poor. 

Drinking unsafe water should be eliminated because source of water is amongst detrimental 

factors associated with under-five child mortality. 
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Appendix A 

SAS and STATA codes 

A.1 Logistic regression SAS code 

PROC LOGISTIC fits the linear logistic regression for dichotomous response variable assuming that 

it was obtained from a simple random sample using maximum likelihood. 

proc logistic data = Cm plots=all; 

class Mother_Age(ref=”20-35 years”) Birth_Size (ref=”Average”) NoOfChildrenU5 

(ref=”Less than 2 children”) ChildrenEverBorn (ref=”Less than 2 children”) Breastfeeding 

(ref=”No”) Bord (ref “2-3 births”) MaritalStatus (ref=”Never Married”) Ethnicity (ref=”Black 

African”) Wealth_Index (ref=”Poor”) WaterSouce (ref=”Safe water”) Province 

(ref=”KwaZulu-Natal”) / param = ref; 

model Child_Dead (event=’Yes’) = Mother_Age Birth_Size NoOfChildrenU5 

ChildrenEverBorn Breastfeeding Bord MaritalStatus Ethnicity Wealth_Index WaterSouce 

Province / lackfit; 

run; 

 

A.2 Survey Logistic Regression using STATA Code 

SVY command in Stata fits logistic regression model for binary response survey data using 

maximum likelihood method. This command incorporates survey design such as clustering, 

stratification and sample weight.  

svyset ClusterNo [pweight=SampleWeight], strata (Stratification) 

logit Child_Dead i.Birth_Size i.NoOfChildrenU5 i.ChildrenEverBorn i.Breastfeeding i.Bord 

i.MaritalStatus i.Ethnicity i.Wealth_Index i.WaterSource i.Province [pweight = 

SampleWeight],robust  

logistic Child_Dead i.Birth_Size i.NoOfChildrenU5 i.ChildrenEverBorn i.Breastfeeding 

i.Bord i.MaritalStatus i.Ethnicity i.Wealth_Index i.WaterSource i.Province [pweight = 

SampleWeight],robust  

estat ic 

estat effects, deff deft 

 

A.3 Generalized Linear Mixed Model SAS Code 

PROC GLIMMIX fits the generalized linear mixed models to the data. This procedure allows 

random statement to specify the random effect to be incorporated in the model. 
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proc glimmix data = Cm method laplace; 

class Mother_Age Birth_Size NoOfChildrenU5 ChildrenEverBorn Breastfeeding Bord 

MaritalStatus Ethnicity Wealth_Index WaterSouce Province ClusterNo; 

model Child_Dead (event=’Yes’) = Mother_Age Birth_Size NoOfChildrenU5 

ChildrenEverBorn Breastfeeding Bord MaritalStatus Ethnicity Wealth_Index WaterSouce 

Province / link=logit DIST= binary ODDSRATIO Solution; 

LSMEANS Mother_Age Birth_Size NoOfChildrenU5 ChildrenEverBorn Breastfeeding Bord 

MaritalStatus Ethnicity Wealth_Index WaterSouce Province/PLOT=DIFFPLOT 

ADJUST=TUKEY ALPHA=0.05; 

random intercept / intercept / subject=ClusterNo; 

covtest zerog; 

run; 

 

proc glimmix data = Cm method = Quard empirical=classical; 

class ClusterNo Mother_Age Birth_Size NoOfChilidrenU5 ChildrenEverBorn Breastfeeding 

Bord MaritalStatus Ethnicity Wealth_Index WaterSource Province; 

model Child_Dead (event=’Yes’) Mother_Age Birth_Size NoOfChilidrenU5 

ChildrenEverBorn Breastfeeding Bord MaritalStatus Ethnicity Wealth_Index WaterSource 

Province/link=logit DIST=binary ODDSRATIOS Solution; 

LSMEANS Mother_Age Birth_Size NoOfChilidrenU5 ChildrenEverBorn Breastfeeding 

Bord MaritalStatus Ethnicity Wealth_Index WaterSource Province/PLOT=DIFFPLOT 

ADJUST=TUKEY ALPHA=0.05; 

RANDOM INT/SUBJECT = ClusterNo weight=SampleWeight; 

run; 

 

A.4 Generalized Additive Model SAS Code 

 

PROC GAM fits a logistic additive model with binary response variable child survival status and 

covariates. 

 

proc gam data = Cm plots=components (clm commonaxes); 

class Birth_Size Breastfeeding MaritalStatus Ethnicity Wealth-Index WaterSource 

Province; 

model Child_Dead(event=’Yes’) = spline(Mother_Age) spline(NoOfChildrenU5) spline 

ChildrenEverBorn) spline(Bord) param(Birth_Size) param(Breastfeeding) 

param(MaritalStatus) param(Ethnicity) param(Wealth_Index) param(WaterSource) 

param(Province)/DIST=binomial; 

score data=Cm out=Cm; 

run; 
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Where: 

Cm= Child mortality data 

Child_dead = Child survival status 

Mother_Age = Mother’s age 

Birth size = Size of child at birth 

Breastfeeding = Currently breastfeeding 

NoOfChildrenU5 = Number of children 5 and under 

ChildrenEverBorn = Total number of children ever born 

Bord = Birth order number 

MaritalStatus = Current marital status 

Ethnicity = Ethnicity  

Wealth_index = Wealth index 

WaterSource = Source of drinking water 

Province = Province 

ClusterNo = clustering 

stratification = Stratification 

SampleWeight = Sample weight.  
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Appendix B 

Additional Results 

B.1 Generalized Linear Mixed Model Results 

Table 4.6: Gauss-Hermite Quadrature, estimated coefficients, odds ratios, standard errors, p-

values and confidence interval. 

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 

Parameter 
 

Estimate Standard 
Error 

P-Value Odds 
ratio 

95%Confidence interval 
Lower                        Upper 

Intercept 
Mother’s age (ref >35 years) 
<20 years 
20 – 35 years 
Size of child at birth (ref. Very large) 
Very small 
Average 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. First birth) 
2 – 3 births 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Others)  
Black African 
Coloured 

-21.0488 
 
-0.1806 
0.2758 
 
1.1616 
-0.1838 
 
1.0083 
 
-0.2914 
-0.0286 
 
-0.2183 
0.0509 
 
1.2465 
1.4522 
 

688.74 
 
0.5199 
1.2570 
 
0.6733 
0.4753 
 
0.4538 
 
0.5205 
0.4630 
 
0.3691 
0.2800 
 
0.688 
0.697 

0.9756 
 
0.7284 
0.8264 
 
0.0845 
0.6990 
 
0.0263 
 
0.5755 
0.9508 
 
0.5542 
0.8558 
 
0.9812 
0.9844 
 

 
 
0.835 
1.318 
 
3.195 
0.832 
 
2.741 
 
0.747 
0.972 
 
0.804 
1.052 
 
3.478 
4.273 
 

 
 
0.301 
0.112 
 
0.854 
0.328 
 
1.126 
 
0.269 
0.362 
 
0.390 
0.608 
 
0.641 
0.724 

 
 
2.313 
15.480 
 
11.957 
2.112 
 
6.672 
 
2.072 
2.408 
 
1.657 
1.822 
 
1.522 
1.731 

                                                             Socio-Economic characteristics 
Wealth index (ref. Rich) 
Middle 
Poor 
Number of children 5 and under (ref.< 2 Children) 
2 or more children 
Total children ever born (ref. less than 2 Children) 
2 or more children  

. 
0.1800 
0.7355 
 
-1.0539 
 
0.7636 

 
0.6164 
0.5519 
 
0.4868 
 
0.5065 

 
0.7703 
0.1826 
 
0.0304 
 
0.1317 

 
1.197 
2.087 
 
0.349 
 
2.146 

 
0.358 
0.707 
 
0.134 
 
0.795 

 
4.007 
6.155 
 
0.905 
 
5.792 

                                                                          Household Environment characteristics  
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Western Cape) 
Eastern Cape 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape 

 
0.1281 
 
-0.1276 
0.2520 
-0.1773 
-0.5060 
0.8416 
0.3094 
-0.1347 
0.2838 

 
0.0969 
 
0.6706 
0.7029 
0.7891 
0.6593 
0.6910 
0.6146 
0.6164 
0.7048 

 
0.1862 
 
0.8491 
0.7200 
0.8223 
0.4428 
0.2233 
0.6146 
0.8270 
0.6871 

 
1.137 
 
0.880 
1.287 
0.838 
0.603 
0.431 
1.363 
0.874 
1.328 

 
0.940 
 
0.236 
0.324 
0.178 
0.166 
0.111 
0.409 
0.261 
0.334 

 
1.374 
 
3.276 
5.102 
3.933 
2.195 
1.670 
4.545 
2.925 
5.287 
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Table 4.7: Penalized Quasi-Likelihood, estimated coefficients, odds ratios, standard errors, p-

values and confidence interval. 

                       Analysis of Maximum Likelihood Estimates and Odds Ratio estimates 

                                                           Demographic characteristics 

Parameter 
 

Estimate Standard 
Error 

P-Value Odds 
ratio 

95%Confidence interval 
Lower                        Upper 

Intercept 
Mother’s age (ref <20 years) 
20 – 35 years 
>35 years 
Size of child at birth (ref. Very small) 
Average 
Very large 
Currently breastfeeding (ref. Yes) 
No 
Birth order number (ref. First birth) 
2 – 3 births 
More than 3 births 
Current marital status (ref. never married) 
Married 
Living with partner 
Ethnicity (ref. Black African)  
Coloured 
Others 

3.2896 
 
-0.1425 
-0.0092 
 
1.2380 
1.1228 
 
1.1030 
 
0.2598 
-0.2134 
 
0.4539 
-0.3666 
 
1.5798 
23.488 

0.62 
 
0.17 
0.18 
 
0.14 
0.16 
 
0.19 
 
0.16 
0.24 
 
0.18 
0.16 
 
0.59 
33759 

<0.0001 
 
0.4123 
0.9603 
 
<0.0001 
<0.0001 
 
<0.0001 
 
0.1145 
0.3680 
 
0.0114 
0.0193 
 
0.0070 
0.9994 

26.832 
 
0.867 
0.991 
 
3.449 
3.073 
 
3.013 
 
1.297 
0.808 
 
1.574 
0.693 
 
4.854 
1.587e+10 
 
 

2.069e+00 
 
-4.819e-01 
-3.700e-01 
 
9.681e-01 
8.047e-01 
 
7.394e-01 
 
-6.172e-02 
-6.766e-01 
 
1.035e-01 
-6.727e-01 
 
4.353e-01 
-6.594e+0.4 
 
 

4.511e+00 
 
1.970e-00 
3.516e-01 
 
1.508e+00 
1.441e+00 
 
1.467e+00 
 
5.814e-01 
2..497e-01 
 
8.043e-01 
-6.053e-02 
 
2.724e+00 
6.599e+04 

                                                             Socio-Economic characteristics 
Wealth index (ref. Poor) 
Middle 
Rich 
Number of children 5 and under (ref.< 2 
Children) 
2 or more children 
Total children ever born (ref. less than 2 
Children) 
2 or more children  

 
0.2310 
0.3765 
 
 
1.2199 
 
-0.5686 

 
0.17 
0.22 
 
 
0.29 
 
0.18 

 
0.1824 
0.0875 
 
 
<0.0001 
 
0.0017 

 
1.260 
1.457 
 
 
3.387 
 
0.566 

 
-1.074e-01 
-5.393e-02 
 
 
6.600e-01 
 
-9.232e-01 

 
5.694e-01 
8.069e-01 
 
 
1.780e+00 
 
-2.141e-01 

                                                                          Household Environment characteristics  
Source of drinking water (ref. safe water) 
Not safe water 
Province (ref. Eastern Cape) 
Free State 
Gauteng 
KwaZulu-Natal 
Limpopo 
Mpumalanga 
North West 
Northern Cape 
Western Cape 

 
-0.6088 
 
-0.1677 
-0.4995 
-0.7809 
-0.1787 
-0.4504 
-0.0384 
-0.8037 
0.5076 

 
0.16 
 
0.66 
0.69 
0.66 
0.65 
0.65 
0.67 
0.63 
0.67 

 
0.0002 
 
0.7983 
0.4714 
0.2378 
0.7835 
0.4874 
0.9546 
0.2056 
0.4507 

 
0.544 
 
0.846 
0.607 
0.458 
0.836 
0.637 
0.962 
0.448 
1.661 

 
-9.273e-01 
 
-1.451e+00 
-1.856e+00 
-2.074e+00 
-1.451e+00 
-1.719e+00 
-1.357e+00 
-2.045e+00 
-8.085e-01 

 
-2.903e-01 
 
1.116e+00 
8.568e-01 
5.122e-09 
1.092e+00 
8.180e-01 
1.280e+00 
4.375e-01 
1.824e+00 
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Appendix C 

Derivation of some properties of the Exponential Family 

 

B.1 Properties of the Exponential Family 

Here we get the general expression for the mean and the variance of the exponential distribution 

in term of a,b,∅.  

 

𝑓(𝑦, 𝜃, ∅) = 𝑒𝑥𝑝 {
𝑦𝜃 − 𝑏(𝜃)

𝑎(∅)
+ 𝐶(𝑦, ∅)} 

 

where 𝑓(𝑦, 𝜃, ∅) is the density function 

 

∫ 𝑓(𝑦, 𝜃, ∅)𝑑𝑦 = 1. 

 

Differentiating both sides with respect to 𝜃 we get 

 

𝜕

𝜕𝜃
[∫ 𝑒𝑥𝑝 {

𝑦𝜃 − 𝑏(𝜃)

𝑎(∅)
+ 𝐶(𝑦, ∅)} 𝑑𝑦] = 0 

∫
𝜕

𝜕𝜃
𝑒𝑥𝑝 {

𝑦𝜃 − 𝑏(𝜃)

𝑎(∅)
+ 𝐶(𝑦, ∅)} 𝑑𝑦 = 0, 

∫ [
𝑦 − 𝑏′(𝜃)

𝑎(∅)
] 𝑓(𝑦, 𝜃, ∅)𝑑𝑦 = 0, 

∫
𝑦𝑓(𝑦, 𝜃, ∅)

𝑎(∅)
𝑑𝑦 − ∫

𝑏′(𝜃)𝑓(𝑦, 𝜃, ∅)

𝑎(∅)
= 0, 

∫
𝑦𝑓(𝑦, 𝜃, ∅)

𝑎(∅)
= ∫

𝑏′(𝜃)𝑓(𝑦, 𝜃, ∅)

𝑎(∅)
𝑑𝑦, 

∫ 𝑦𝑓(𝑦, 𝜃, ∅)𝑑𝑦 = 𝑏′(𝜃) ∫ 𝑓(𝑦, 𝜃, ∅)𝑑𝑦, 
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𝐸(𝑦) = 𝑏′(𝜃) × 1, 𝑠𝑖𝑛𝑐𝑒 ∫ 𝑓(𝑦, 𝜃, ∅)𝑑𝑦 = 1, 

𝐸(𝑦) = 𝑏′(𝜃) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑦. 

 

Taking the second derivative with respect to 𝜃 we get, 

 

∫ [
𝑦 − 𝑏′(𝜃)

𝑎(∅)
] 𝑓(𝑦, 𝜃, ∅)𝑑𝑦 = 0, 

∫ {[
𝑦 − 𝑏′(𝜃)

𝑎(∅)
]

2

𝑓(𝑦, 𝜃, ∅) −
𝑏"(𝜃)

𝑎(∅)
𝑓(𝑦, 𝜃, ∅)} 𝑑𝑦 = 0, 

∫ [
𝑦 − 𝑏′(𝜃)

𝑎(∅)
]

2

𝑓(𝑦, 𝜃, ∅)𝑑𝑦 =
𝑏"(𝜃)

𝑎(∅)
∫ 𝑓(𝑦, 𝜃, ∅)𝑑𝑦, 

1

𝑎(∅)2
∫[𝑦 − 𝑏′(𝜃)]2𝑓(𝑦, 𝜃, ∅)𝑑𝑦 =

𝑏"(𝜃)

𝑎(∅)
, 

𝑉𝑎𝑟(𝑦)

𝑎(∅)2
=

𝑏"(𝜃)

𝑎(∅)
, 

𝑉𝑎𝑟(𝑦) = 𝑎(∅)𝑏"(𝜃). 

 

C.2 Sampling distribution of the Maximum Likelihood Estimator (MLE) 

 

The Taylor series expansion of the function 𝑓(𝑥) about 𝑥 = 𝑎 is given by  

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
1

2
(𝑥 − 𝑎)2𝑓"(𝑎) +

1

3
(𝑥 − 𝑎)3𝑓′′′(𝑎) + ⋯ 

                            

≈ 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎)                                                                                               (C. 1) 

 

 so that the Taylor series expansion of the score vector 𝑈(𝛽)  and 𝛽̂ becomes 

 

𝑈(𝛽) ≈ 𝑈(𝛽̂) + (𝛽 + 𝛽̂)
𝜕𝑈(𝛽̂)

𝜕𝛽
= 𝑈(𝛽̂) + (𝛽 − 𝛽̂)𝑈′(𝛽̂) 
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However, 𝑈(𝛽̂) = 0 we have this 𝑈(𝛽) ≈ (𝛽 − 𝛽̂)𝑈′(𝛽̂). If 𝑈′ is approximated by 𝐸(𝑈′) =

−𝑉𝑎𝑟(𝑈) = −𝐼 thus 𝑈(𝛽) ≈ (𝛽̂ − 𝛽)𝐼 which is 

 

                                                                    𝐼−1𝑈(𝛽) ≈ (𝛽̂ − 𝛽)                                                           (C. 2)     

 

Taking the expected value in Eq. (C.2) we get 

𝐸(𝛽̂ − 𝛽) = 𝐼−1𝐸(𝑈(𝛽)) = 0 

 

This implies that 𝐸(𝛽) = 𝛽, so 𝛽 is the consistent estimator of 𝛽. The variance is therefore given 

by  

𝑉𝑎𝑟(𝛽) = 𝐸 [(𝛽̂ − 𝛽)
′
]                                         

= 𝐸 [(𝐼−1𝑈(𝛽))(𝐼−1𝑈(𝛽))
′
] 

= 𝐼−1𝐸[(𝑈(𝛽))(𝑈(𝛽))′]𝐼−1   

= 𝐼−1𝑉𝑎𝑟(𝑈(𝛽))𝐼−1               

= 𝐼−1𝐼𝐼−1                                  

                                                              = 𝐼−1                                                                                            (C. 3)  

 

Therefore 𝛽~𝑀𝑉𝑁(𝛽, 𝐼−1) then we have this  

 

𝑄 = (𝛽̂ − 𝛽)(𝛽̂ − 𝛽)′~𝜒2(𝑝) 

 

which is known as the Wald statistics. 

 

 

 

  

 




