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ABSTRACT 

Highly prevalent HIV and helminth single infections continue to plague a significant proportion 

of the South African population. The geographic overlap of these infections lands to the 

expectation that high prevalence of co-infection with HIV and intestinal helminths exists, 

although this data for the South African adult population is lacking. Each of these single 

infections has an impact on the immune system, resulting in impaired responses due to the 

chronic activation. Also, both infections have an impact on the nutritional status, which may 

affect the potency of the immune responses, further compromising the immunity. A potent 

immune system requires adequate nutrition. Obesity, a form of malnutrition may mask micro- 

and macronutrient deficiency. Furthermore, obesity may result in low-grade inflammation, 

which may result is dysregulated responses. Therefore, malnutrition may start a cyclical process 

that may further predispose to infection, which in turn may result in malnutrition, where the 

cause-and-effect thread between malnutrition, infection and immune deficiency is indiscernible. 

Based on this, it was hypothesized that the HIV-intestinal helminth co-infection may have a 

deleterious effect on the nutrition and immunity of affected individuals, which may accelerate 

HIV progression. Thus, the aim of the study was to investigate the interaction between HIV and 

intestinal helminth single and co-infection with nutrition and immunity in an adult population (n 

= 263) in KwaZulu-Natal, a province with high prevalence of both HIV and intestinal helminths 

infections. The study expected to find an association between the co-infection with lower micro- 

and macro-nutrient levels, higher HIV viral load, increased immune activation, increased gene 

expression of Th2 and Treg cytokine responses and decreased Th1 cytokine responses compared 

to those singly infected and  those uninfected with HIV and intestinal helminths.  

 

However, the study found no significant association between HIV and intestinal helminth single 

or co-infection with micro- and macronutrient deficiency, although a general pattern of low 

intake of the nutrients was noted among the investigated cohort, who had a substantial 

proportion being overweight and obese. Difficulty in the assessment of nutritional status in the 

milieu of HIV and intestinal helminth co-infection, obesity and inflammation was noted. 

Furthermore, HIV-intestinal helminth co-infection was associated with an antiviral cytokine 

response profile of highly expressed IFN-γ and TNF-α cytokine genes and reduced viral load. 

The co-infected individuals with the IgEhiIgG4hi intestinal helminth infection phenotype had a 

compromised immune profile of low CD4 counts. We recommend that antihelminthic 

interventions are included in the HIV management programmes, particularly in adults.      
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1.0 CHAPTER 1 

Background and Literature Review 

 

1.1 Background 

Approximately 36.7 million of the world’s population is infected with human 

immunodeficiency virus (HIV), of which an estimated 19.4 million are in sub-Saharan Africa 

(UNAIDS 2017a). Compounding to this plague, approximately 2 billion individuals (24%) are 

infected with intestinal helminth parasites globally, with high prevalence occurring in tropical 

and sub-tropical countries populated by poor and deprived communities, particularly in sub-

Saharan Africa (World Health Organization 2016a). The geographic overlap between HIV, 

intestinal helminth infections and malnutrition, complicated by poverty has been well 

documented in sub-Saharan Africa (Himmelgreen et al. 2009; Hotez and Kamath 2009; Koethe 

and Heimburger 2010; Mwambete and Justin-Temu 2011; Noblick et al. 2011; Amare et al. 

2015). 

 

A substantial proportion of the South African population is exposed to both HIV and helminth 

infections, particularly in communities that live in poverty (Adams et al. 2006; Adeleke et al. 

2015). Also considering that there is more than fifty percent of the South African population 

living under conditions of deprivation, it is reasonable to deduce that HIV and helminth co-

infections are commonly overlapping with malnutrition in many parts of the country. KwaZulu-

Natal (KZN), a province with the highest prevalence of HIV in South Africa has always been 

the epicentre of the global epidemic (Department of Health South Africa 2017). Furthermore, in 

certain regions of KZN, especially along the coast, high intestinal helminth infection rates have 

been found (Kwitshana et al. 2008). Warm climatic and/or moist environmental conditions 

which occur along the KZN coast, promote the persistence and transmission of intestinal 

helminths (Appleton et al. 1999; Brooker et al. 2006; Mascarini-Serra 2011). A geographical 

overlap of HIV and helminth infections is thus anticipated, since KZN also has a significant 

fraction of its population that live in poor conditions worsened by lack of adequate sanitation, 

potable water and poor personal hygiene (Statistics South Africa 2018). However, studies that 

have determined the interactions between immunity, HIV-helminth co-infections and nutrition 

in KZN are limited, especially among adults, where peak HIV infection occurs.  

 

The current study, conducted in KZN, was premised on the hypothesis that the HIV-intestinal 

helminth co-infection has a deleterious effect on the nutritional status and the immune system, 

resulting in exacerbated HIV progression. It is suggested that chronic helminth infection may 
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induce immune system dysregulation as a result of persistent stimulation by helminth eggs, 

excretory/ secretory (ES) products that are released daily by the infecting parasites (Hewitson et 

al. 2009; Moreau and Chauvin 2010). ES products are actively exported through the secretory 

pathways of the helminths and those which may leak or diffuse from the intestines of adult 

worms (Hewitson et al. 2009). These helminth products increase the expression of C-C 

chemokine receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4) co-

receptors in cluster of differentiation-4 positive (CD4+) cells (Chachage et al. 2014). This 

constantly activated immune system is suggested to facilitate HIV entry more efficiently into 

the activated CD4+ target cells that are increased in numbers (Jaspan et al. 2011; Woodham et 

al. 2016). The continued HIV acquisition may directly lead to more rapid loss of CD4+ cells in 

HIV infected individuals (Vijayan et al. 2017).  

 

Furthermore, HIV infection is associated with factors that can result in nutritional deficiency 

such as the inability of the infected individuals to consume and utilise food (Duggal et al. 2012). 

Likewise, intestinal helminths may compromise the nutritional status, which can be worse in 

HIV-intestinal helminth co-infected individuals (Gedle et al. 2017). The importance of adequate 

nutrition on the immune system has been established (Karacabey and Ozdemir 2012). Potent 

immune responses and adequate nutrition are essential to resist infectious agents. Many 

infections, such as HIV and intestinal parasites impair the nutritional status by various 

mechanisms. These include (i) the loss of appetite induced by cytokines such as tumour necrosis 

factor-alpha (TNF-α) produced during an infection (Paulsen et al. 2017); (ii) painful swallowing 

as occurs during HIV-induced oral thrush, thus decreasing the desire to eat; (iii) diarrhoea and 

disruption of the intestinal mucosa lining which impedes the absorption of nutrients and (iv) 

parasites such as hookworms that feed directly from the host’s intestinal mucosa blood (Duggal 

et al. 2012). Unfortunately, in infected individuals from poor communities whose nutrient 

intake is already inadequate, the situation is worsened; malnutrition results in immune 

deficiency and further predisposition to infection leading to a vicious cycle of malnutrition, 

infection and immune deficiency such that the cause-and-effect thread is eventually lost 

(Rodriguez et al. 2011), as depicted in Figure 1, a model adapted with permission from Katona 

and Katona-Apte (2008).  
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Figure 1: A conceptual model illustrating the cyclical interaction between immune 

deficiency, infections, inadequate nutrient intake and malnutrition 

 

The milieu of HIV, intestinal helminth infections, malnutrition and poverty, may have an 

additive impact on the competency of the immune system which may lead to accelerated 

progression of the HIV and intestinal helminth infections. This may also facilitate increased 

transmission of HIV by promoting the susceptibility of the host to the virus or worsen the 

clinical course of the infection and/or augment viral replication in affected hosts (Karp and 

Auwaerter 2007; Assefa et al. 2009; Noblick et al. 2011). Neglecting to give the intestinal 

helminth infections the attention and priority they require contributes to the disease burden, 

especially in areas where there is high prevalence of HIV infection. Intestinal helminthiasis and 

schistosomiasis may be associated with healthcare challenges especially in poor resource 

communities, which further burden the public health system. Current literature on the impact of 

the HIV and intestinal helminths single and co-infections on the nutritional status and the 

immune system of those affected is discussed in this chapter. 
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1.2 Literature review 

1.2.1 The prevalence of human immunodeficiency virus-1 infection in South Africa 

The human immunodeficiency virus-1 (HIV-1) infection is continually spreading in many 

regions in spite of all the global campaigns and efforts that are deployed to curb the epidemic. 

Nearly 36.7 million individuals are infected globally, with 1.1 million HIV-related deaths in 

2016 (World Health Organization 2016a). Sub-Saharan Africa remains the epicentre of the HIV 

pandemic (World Health Organization 2016a). Nearly two thirds of the world’s HIV infected 

individuals live in this region, with 43% of the global new infections reported in sub-Saharan 

Africa in 2016 (UNAIDS 2017a).  

 

South Africa (SA) is amongst countries in sub-Saharan Africa with the highest HIV-1 epidemic, 

with approximately 7.1 million individuals living with HIV (UNAIDS 2017b). Notably, 

amongst the South African provinces, KZN has always had the highest human 

immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) 

prevalence (Statistics South Africa 2015b). Moreover, KZN is reported to have had larger 

increases of HIV-1 prevalence over the years compared to the national prevalence of 10.2% 

(Statistics South Africa 2015a; Department of Health South Africa 2017). The prevalence 

amongst the KZN antenatal women in 2013 was 40.1%, rising to 44.4% in 2015 (Department of 

Health South Africa 2017). The virus affects mostly the 15 to 49 year old individuals, an age 

group which is reproductive and economically active (Shisana et al. 2014), with peak 

prevalence in females occurring in the 35 to 39 year old age group, whereas in males affecting 

mostly an older age group of between 45 to 49 years old (Simbayi et al. 2018).  

 

1.2.1.1 Role of T-helper 1 (Th1) immune responses in intracellular infections  

In a normal competent immune system that responds adequately to intracellular pathogens such 

as HIV and other viruses, and intracellular bacteria such as Mycobacterium tuberculosis, the 

antigen presenting cells such as monocytes, macrophages and dendritic cells of the innate 

system recognise, capture and process microbial antigens and present them as fragments to T 

helper (Th) cells that are relatively undifferentiated and naïve (Kidd 2003). The adaptive 

response to infection results in the recruitment of T lymphocytes to the site of infection, with all 

the T cell subsets functioning in synchrony. T cells then produce cytokines, which are central to 

the host defence against pathogens (Maizels et al. 2004). These cytokines induce differentiation 

and polarisation of the naïve T cells, from null Th (Th0) cells into either T helper 1 (Th1) or T 

helper 2 (Th2) cells, depending on the type of pathogen (Kidd 2003). Intracellular pathogens 
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induce differentiation into Th1 lineage while extracellular ones promote predominance of Th2 

cells (Kaiko et al. 2007). 

 

Intracellular pathogens stimulate the production of pro-inflammatory cytokines by Th1 cells. 

These cytokines elicit a cell mediated immune response, with the increased proliferation of 

cytotoxic T lymphocyte (CTL) responses against the pathogens (Becker 2004). Cytokines 

secreted by Th1 cells include interferon-gamma (IFN-γ); interleukin-2 (IL-2), IL-12 and tumour 

necrosis factor-alpha (TNF-α) or tumour necrosis factor-beta (TNF-β). These Th1 cytokines 

promote phagocytosis and intracellular killing by macrophages among other functions (Maizels 

and Holland 1998; Brown et al. 2004; Wang et al. 2008; Cavalcanti et al. 2012). IFN-γ 

production is key to the activation of macrophages (Diaz and Allen 2007). IFN-γ also recruits 

natural killer (NK) cells and CTLs to the site of virally infected cells, augmenting their antiviral 

activities (Pak-Wittel et al. 2013; Januskevica et al. 2016). IL-12 on the other hand, promotes 

the differentiation of Th1 cells and their ability to eradicate intracellular pathogens through the 

activation of the lineage specifying T-box expressed in T cells (T-bet) and STAT4 transcription 

factors (Gazzinelli et al. 1993; Anderson et al. 2003; Duhen et al. 2012). Furthermore, IL-12 

augments the activation of CD8 T cells and promotes strong Th1 responses, enhancing the 

production of IFN-γ, mediated by C-C motif chemokine ligand 1 (CCL1) and CCL17 from 

dendritic cells and activated T cells  (Henry et al. 2008). 

 

1.2.1.2  HIV-1 infection induces Th1 immune responses 

The direct effects of the presence of viral proteins during HIV infection is persistent stimulation 

of Th1 responses. During the primary infection Th1 responses induce the activity of CD4+ Th1 

cells, CD8+ T cells, NK cells and antibody producing B cells, which contribute to a stable viral 

set-point (Walker and McMichael 2012; Salgame et al. 2013). HIV-1 infection elicits responses 

that are partially protective; they control the virus however, fail to eliminate it. T cell 

proliferation is stimulated, although the produced cells may have a limited protective benefit to 

the host. Particularly, in the chronic phase of the infection, the required Th1 cell proliferation 

and expansion is impaired and inadequate (Becker 2004; Shey et al. 2015). The levels of HIV-

specific CD8+ CTLs, NK cells and cytolytic perforin become reduced, resulting in a high viral 

load (Geldmacher et al. 2007). The impaired anti-viral function of CD8+ T cells and NK cells 

may then lead to the inability of the immune system to control the perpetual HIV replication 

within the CD4+ cells (Boasso et al. 2009). Furthermore, HIV may subvert the host defence 

mechanisms and use cell activation factors for further replication within the host cells. Activated 

host cells express transcription factors such as the nuclear factor of activated T cells (NFAT), 
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nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the positive 

transcription-elongation factor complex (pTEFb) which bind to the HIV-1 long terminal repeat 

(LTR) promoter, thereby driving viral transcription and replication within CD4+ cells (Kinoshita 

et al. 1998; Arendt and Littman 2001; Booiman et al. 2015).   

 

Infectious pathogens and their products may continuously activate the immune system, and 

these include helminths, their eggs and excretory/secretory (ES) products; bacteria and their 

products, such as lipopolysaccharide (LPS) and HIV and other viruses such as chronic hepatitis 

B and C (Miedema et al. 2013). The persistent activation of CD4+ and other immune cells 

drives viral replication (Jaspan et al. 2011). HIV replication is more efficient in activated than in 

naïve cells (Pan et al. 2013). The virus enters activated CD4+ T cells, macrophages and 

dendritic cells using C-C chemokine receptor type 5 (CCR5) and C-X-C chemokine receptor 

type 4 (CXCR4) co-receptors, respectively. Increased expression of these co-receptors at the 

surface of activated CD4+ cells confers increased susceptibility to HIV acquisition (Levacher et 

al. 1992; Janeway et al. 2001; Nattrass 2009). The CCR5-activated cells in mucosal surfaces 

allow the virus direct access for entry into these cells and notably, individuals who have a 32 

base pair deleted CCR5 gene are protected from acquiring HIV even when exposed to the virus 

(Janeway et al. 2001; Galvani and Novembre 2005; van Montfort et al. 2008). The chronic 

immune activation adds to the HIV disease challenge by providing more cells that are prone to 

more infection, which exhausts the immune system, resulting in hyporesponsiveness and 

anergy, characterised by the loss of proliferative capacity of potent effector cells (Reuter et al. 

2012). Moreover, the continued proliferation that may occur, as an attempt of replenishing the 

depleted immune cells, may inadvertently increase the number of activated cells which also 

become targets for entry for HIV (Paiardini and Muller-Trutwin 2013). 

 

Depleted CD4+, CD8+ and dendritic cells are also observed in the gastrointestinal (GIT) mucosa 

due to the immune activation and resultant inflammation (Klatt et al. 2013). These impaired 

responses fail to control incoming microbial pathogens in the GIT and this contributes further to 

the immune activation (Dandekar et al. 2010). The translocated pathogens then trigger elevated 

inflammatory responses, that result in immune activation (George et al. 2012). In chronic HIV 

infection, the translocated microbial products induce additive immune activation and 

dysfunction caused by the inflammation, resulting in exhausted intestinal macrophages and 

apoptotic enterocytes (Marchetti et al. 2013) that may result in the rapid progression of HIV 

infection (Klatt et al. 2013; Bi et al. 2016). 
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The activation and inflammatory responses induced by HIV and/or other infectious microbes 

persist throughout the course of the HIV disease (Janeway et al. 2001), resulting in immune 

dysregulated responses (Sonnenberg and Artis 2015). These dysregulatory mechanisms cause 

progressive and multifactorial impairment of all arms of the immune responses: innate and 

adaptive. These mechanisms include a decrease in the function of CD4+ and CD8+ cells and 

dendritic cells, induced by IL-10 and transforming growth factor–β1 (TGF-β) (Shey et al. 

2015). Also, defective upregulation of the co-stimulatory accessory molecules: CD40 ligand, 

CD28 and CD80 may be activated, which results in hyporesponsive and anergic antigen 

presenting cells (APCs), CD4+ and CD8+ T cells (Borkow and Bentwich 2004). Furthermore, 

the upregulation of inhibitory molecules such as cytotoxic T lymphocyte antigen 4 (CTLA-4) 

and programmed death-1 (PD-1) may also be activated (Boasso et al. 2009). These mechanisms 

are inhibitory and suppressive to anti-HIV responses and may lead to the accelerated 

progression of the HIV disease. The increasing viral load and persistent immune activation 

augments the progressive down-regulation of naïve and resting memory CD4+ and  CD8+ cells 

through anergy and attrition (Grossman et al. 2002), which is associated with HIV disease 

progression. The activated CD4+ and CD8+ immune cells in response to the HIV challenge may 

express indicators of activation such as increased levels of human leukocyte antigen-D related 

(HLA-DR)  and/or CD38 as well as Ki-67, a proliferation marker (Eggena et al. 2005; Paiardini 

and Muller-Trutwin 2013; Chachage et al. 2014). 

 

1.2.1.3 The impact of HIV-1 infection on nutritional status 

Furthermore, HIV infection is associated with factors that impact on the ability to consume and 

utilise food (Duggal et al. 2012). HIV may cause mild to moderate anaemia due to decreased or 

ineffective red cell production arising from nutritional deficiencies either from malnutrition or 

malabsorption as a result of gastrointestinal damage (Volberding et al. 2004; Gedle et al. 2015). 

This can lead to increased HIV disease progression. Micronutrient supplementation, in general, 

shows a significant slowing of HIV disease progression with better preservation of CD4+ T cell 

count and lower viral loads (Fawzi et al. 2004). This supports the notion that adequate intake of 

micro- and macronutrients is essential for the host to be able to mount efficient immune 

responses. 

 

Nutrients may augment the responsiveness of target cells or tissues to cytokines; for example 

fats may influence a change in fatty acid composition in cell membranes and proteins have an 

effect in protein metabolism during inflammation (Tesseraud et al. 2009). Furthermore, the 

synthesis of acute phase proteins and glutathione require an adequate intake of sulphur amino 
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acids (Grimble 2006). Therefore, infection may result in the depletion of nutrients, due to their 

increased utilisation during different metabolic processes following an invasion by a pathogen. 

For instance, protein energy malnutrition is associated with defects in the intrinsic components 

in the antigen presentation and the microbicidal activities in macrophages (Corware et al. 2014). 

Micronutrients, including zinc, selenium, iron, copper, β-carotene, folic acid, vitamins A, C, D 

and E are essential for the maintenance of metabolic and tissue function as well as a potent 

immune system (Erickson et al. 2000; Bhaskaram 2001; Shenkin 2006). The following illustrate 

the importance of the essential micronutrients for a competent immune system: vitamin A and 

zinc play a major role in the synthesis of nucleic acids in cells and tissues (Duggal et al. 2012). 

Vitamins A, D and E and trace elements are vital for phagocytic cells (macrophages and 

neutrophils) and NK cells activity against infectious agents (Erickson et al. 2000). Vitamin A 

supplementation increases the number of circulating CD4+ lymphocytes and NK cells and 

increases antibody production, indicating potential benefit to HIV infected individuals 

(Villamor and Fawzi 2005). 

 

Vitamin A deficiency is associated with increased susceptibility to gastrointestinal, respiratory 

and genitourinary tract infections, mostly impeding the innate immune response including the 

synthesis of lysozyme (Katona and Katona-Apte 2008). Vitamin A deficiency was associated 

with high mortality among HIV infected adult individuals (Mulu et al. 2011). The South 

African government has adopted a strategy of preventing vitamin A deficiency in children by 

instituting a programme that provides vitamin A supplementation (prophylactic and curative) to 

all children from the age of 6 months to five years (Department of Health South Africa 2012b).  

 

Zinc deficiency is also associated with impaired cell-mediated responses, where IL-2 and IFN-γ 

cytokine production by the Th1 immune system are decreased and consequently, the cytolytic 

capacity of NK cells is also reduced (Foster and Samman 2012). Meanwhile, a potent Th1 

response is essential for the control of HIV infection (Vingert et al. 2012). Both innate and 

adaptive immune responses induce the synthesis of molecules which require DNA replication, 

RNA expression, protein synthesis and secretion, all of which may consume nutrients and 

anabolic energy as well as catabolise the nutrients during inflammatory responses (Schaible and 

Kaufmann 2007). Hence, malnutrition may result in impaired innate and adaptive responses 

against pathogens (Chandrasekaran et al. 2017), particularly in HIV infection, even with 

effective antiretroviral therapy (ART) (Koethe et al. 2009; Duggal et al. 2012). 
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1.2.2 The epidemiology of intestinal helminth parasite infections in South Africa 

Intestinal helminth infection, an additional health burden reported to be infecting approximately 

2 billion individuals globally and similar to HIV, has the highest prevalence occurring in the 

sub-Saharan region (World Health Organization 2017b). Four countries in the region, namely 

Nigeria, Democratic Republic of Congo, South Africa (SA) and Tanzania carry 44% of the 

infections (Brooker et al. 2006; Hotez and Kamath 2009).  

 

At least 342 species of helminths can infect humans (Crompton 1999; Adu-Gyasi et al. 2018). 

Intestinal helminths are multicellular worms of three taxonomic groups, which are cestode 

tapeworms, nematode roundworms and trematode flukes (McSorley and Maizels 2012). Ascaris 

lumbricoides, Trichuris trichiura and hookworm species are the most common nematodes 

prevalent in poor communities in the tropics and subtropics including South Africa (CDC 

2013). In addition, Schistosoma haematobium and S. mansoni are the most common trematode 

blood flukes that infect humans in South Africa (Schutte et al. 1981; Appleton and Miranda 

2015; Hedley and Wani 2015).  

 

South Africa (SA) has a significant percentage (approximately 53%) of its population that live 

under conditions of poverty, overcrowding and malnutrition, worsened by lack of clean water 

supplies, adequate sanitation and inevitable poor personal hygiene (Statistics South Africa 

2016). Communities living in such conditions are more prone to intestinal helminth infections, 

owing to their oral-faecal route of transmission (World Health Organization 2017b). They are 

mostly transmitted through ingesting food, water or soil contaminated with the parasite eggs or 

larvae. These parasites are therefore known as soil-transmitted helminths, with a maturation 

stage in the soil (except for schistosomiasis which is transmitted through water bodies). 

Intestinal helminths can exist in human hosts in different developmental stages, as either eggs, 

larvae or adult worms, which can be detected in stool samples, except for S. haematobium 

detected in urine samples (Appleton and Miranda 2015). With the exception of the 

Strongyloides species, soil-transmitted helminths do not multiply within the host, however they 

produce eggs or larvae that infect the next host (Maizels and McSorley 2016).  

 

The distribution of intestinal helminths in SA varies according to the climatic and/or 

environmental conditions, with highest infection rates found in coastal regions (Appleton et al. 

1999). Figure 2, adapted from https://pixabay.com/en/south-africa-map-districts-country-

42772/, shows the locations of the different provinces of South Africa and their proximity to the 

coast, noting those that are situated along the coast of the Indian Ocean, which are KwaZulu-

https://pixabay.com/en/south-africa-map-districts-country-42772/
https://pixabay.com/en/south-africa-map-districts-country-42772/
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Natal and Eastern Cape. The Northern Cape is along the Atlantic Ocean and the Western Cape 

shares both the Indian and Atlantic Oceans.  

 

 

Figure 2: The map of South Africa, showing the KwaZulu-Natal, Eastern Cape, Western 

Cape and Northern Cape provinces that are along the coast and in close proximity of the 

Indian and/or Atlantic Oceans (https://pixabay.com/vectors/south-africa-map-districts-

country-42772/). 

 

The KwaZulu-Natal (KZN) and Western Cape provinces are recorded to have high prevalence 

of soil-transmitted helminth infections (Ajoge et al. 2014) (Figure 3) 

(http://www.thiswormyworld.org/maps/distribution-of-soil-transmitted-helminth-survey-data-

in-south-africa). However, the prevalence of Ascaris lumbricoides, Trichuris trichiura and 

hookworm species, the most common intestinal helminths, are mostly higher in KZN compared 

to other provinces (Appleton et al. 1999; Jinabhai et al. 2001; Saathoff et al. 2004a; Appleton 

and Kvalsvig 2006).  

 

An investigation among adults in KZN found a prevalence of intestinal helminths to be 20.4 – 

59%, the patients found to be mostly infected with Ascaris lumbricoides and Trichuris trichiura 

(Kwitshana et al. 2008). Others found in a household survey, a prevalence of 59% Ascaris 

lumbricoides and 48% Trichuris trichiura intestinal helminths (Tronnberg et al. 2010). 

http://www.thiswormyworld.org/maps/distribution-of-soil-transmitted-helminth-survey-data-in-south-africa
http://www.thiswormyworld.org/maps/distribution-of-soil-transmitted-helminth-survey-data-in-south-africa
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Figure 3: The percentage distribution of soil transmitted helminth infection in South 

Africa (http://www.thiswormyworld.org/maps/distribution-of-soil-transmitted-helminth-survey-

data-in-south-africa). 

 

The prevalence of intestinal helminths was reported as low in the inland parts of the country due 

to the lower temperatures and rainfall patterns (Mabaso et al. 2004). For example, Samie et al. 

(2009) found the most common intestinal helminths in adults and children who were diarrhoeal 

in Limpopo province as Ascaris lumbricoides (10.4%), Trichuris trichiura (10.4%), hookworm 

species (11.5%) and S. mansoni (11.9%). In Western Cape Province (coastal), Adams et al. 

(2005) found higher prevalence of Ascaris lumbricoides (24.8%), Trichuris trichiura (50.6%), 

and low prevalence of hookworm species (0.08%), Hymenolepsis nana (2.2%) and Enterobius 

(0.6%) among school-children. Similarly, in the coastal Eastern Cape, Nxasana et al. (2013) 

found higher prevalence of Ascaris lumbricoides (29%) and low prevalence of Trichuris 

trichiura (3.7%) and Hymenolepsis nana (4.9%) among school-children in Mthatha. These 

prevalence rates are generally lower than those recorded in KZN coastal regions. Table 1 

indicates the high prevalence of intestinal helminth infections, higher than in other provinces in 

most cases, except for the higher S. mansoni reported in Limpopo (Samie et al. 2009). 
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Table 1: Previous prevalence studies conducted in KZN primary school-children 

indicating that Ascaris lumbricoides, Trichuris trichiura and hookworm species are the 

most occurring intestinal helminths in north and south regions of KZN 

 
KZN region n Ascaris 

lumbricoides 
Trichuris 
trichiura 

Hookworm 
species 

Schistosoma 
haematobium 

Schistosoma 
mansoni 

Reference 

Coastal 156 69% 89.5% 62.7% NA NA (Appleton et al. 

1999) 

Rural South 
Coast 

268 19.4% 54% 2.9% 21.9% 0.7% (Jinabhai et al. 
2001) 

Rural North 1017 28.1% 57.2% 83.2% NA NA (Saathoff et al. 

2004a) 

Northern  

 

1109 NA NA NA 68.3% NA (Saathoff et al. 

2004b) 

Midlands  
 

608 NA NA NA 7.2% NA (Johnson and 
Appleton 2005) 

South  

 

180034 65% 89% 25% 94% NA (Appleton and 

Kvalsvig 2006) 

North East  153716 73% 88% 89% 98% NA (Appleton and 
Kvalsvig 2006) 

Northern  

 

320 NA NA NA 37.5% NA (Kabuyaya et al. 

2017) 

South Coast 428 55.9% 83.6% 59.4% 43.4% NA (Taylor et al. 2001) 

South Coast 271 NA NA NA 43% NA (Thomassen Morgas 

et al. 2010) 

South Coast 726 NA NA NA 36.9% NA (Molvik et al. 2017) 

NA: data is not available 

 

Schistosomiasis is also highly endemic in South Africa (Magaisa et al. 2015), with an estimated 

5.5 million infected individuals (World Health Organization 2017a). It is prevalent in the north 

and east parts of SA, especially in Mpumalanga, Limpopo, Eastern Cape and KZN provinces 

(Moodley et al. 2003; Wolmarans and de Kock 2009; Meents and Boyles 2010; Magaisa et al. 

2015).  

 

An overall S. haematobium prevalence of 70.4% was reported in Limpopo, although the 

prevalence rates differed among the different age groups (Samie et al. 2010). The primary 

school-children were noted to have a S. haematobium prevalence of 42%, whilst it was 36% 

among the university students and the hospital out-patients (which included adults and children) 

ranged between 78% and 86% (Samie et al. 2010). In another investigation among school-

children in Limpopo, nearly 80% were infected with S. haematobium (Wolmarans and de Kock 

2009). The Eastern Cape province is also highly plagued with S. haematobium infection, with 

prevalence of 73.2% (Meents and Boyles 2010). Figure 4 indicates the Mpumalanga, Limpopo, 

Eastern Cape and KZN provinces which have high prevalence of schistosomiasis 

(http://www.thiswormyworld.org/maps/distribution-of-schistosomiasis-survey-data-in-south-

africa).  

http://www.thiswormyworld.org/maps/distribution-of-schistosomiasis-survey-data-in-south-africa
http://www.thiswormyworld.org/maps/distribution-of-schistosomiasis-survey-data-in-south-africa
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Figure 4: The percentage distribution of schistosome infection in South Africa 

(http://www.thiswormyworld.org/maps/distribution-of-schistosomiasis-survey-data-in-south-

africa) 

 

KwaZulu-Natal (KZN), the main focus of this work, is among the poorest provinces in SA 

(Statistics South Africa 2015b). It has a substantial percentage of its population living in 

conditions where there is generally a poor standard of living, with nearly 22.7% and 14.6% of 

the households lacking adequate sanitation and safe water supplies respectively (Statistics South 

Africa 2016). The poor living conditions predispose these communities to intestinal helminth 

infections, hence KZN is plagued by intestinal helminth infections and schistosomiasis. In 

addition, the persistence of the intestinal helminths in KZN is due to (i) the environmental 

conditions of warm temperature and moisture from rainfall seen throughout the year and (ii) its 

long coast which is along the Indian Ocean, both promoting the transmission of highly prevalent 

Trichuris trichiura, Ascaris lumbricoides, Necator americanus, Taenia solium, Strongyloides 

stercoralis and S. haematobium parasites (Appleton et al. 1999; Jinabhai et al. 2001; Hotez et 

al. 2003; Saathoff et al. 2004b; Braae et al. 2015; Molvik et al. 2017). 

 

Most studies on the prevalence of intestinal helminths have been conducted in primary school-

children. High numbers of intestinal helminths are harboured by primary school-children, with 

peak infection occurring in the five to ten year old age group, the intensity of infection declining 

in adulthood, whilst hookworm infections peak in adulthood (Hall et al. 2008). The ten to 

fifteen year old age group is mostly infected with schistosomiasis (Maseko et al. 2018).  



14 

 

With all the recorded data on the prevalence of intestinal helminths from investigations in 

school-children, there is however paucity of this data in the adult population (Kwitshana et al. 

2008; Adeleke et al. 2015). A study on an adult population in Eastern Cape (Adeleke et al. 

2015), found that 27.4% of the participants in Mthatha (n = 57) were infected with intestinal 

helminths. It was observed that they were infected with Ascaris lumbricoides (42.1%), Trichuris 

trichiura (5.26%), hookworm species (5.26%), Hymenolepsis nana (5.26%), Diphylobothrium 

latum (28.07%) and Fasciolopsis buski (8.8%) (Adeleke et al. 2015). Furthermore, a study 

conducted on an adult population in Cape Town found high prevalence of Ascaris lumbricoides 

(51%) (Adams et al. 2006). Another study on a KZN adult population observed high prevalence 

of intestinal helminths in the coast (35.9% in the south and 42.8% in the north coast) with 

moderate levels (20.4%) in eThekwini, where the current study site was situated (Kwitshana et 

al. 2008). This intestinal helminth prevalence data for the adult population, albeit limited, 

indicates that the intestinal helminths may also be highly prevalent in adults. Untreated infected 

adults may be a reservoir and a source of intestinal helminth transmission and infection in a 

community, where in most cases antihelminthic interventions are primarily implemented in 

schools (Bopda et al. 2016; Masaku et al. 2017; Silver et al. 2018). 

 

1.2.2.1 Helminths induce strong Th2 immune responses  

Large eukaryotic pathogens, such as the helminths induce strong Th2 humoral immune 

responses (Borkow and Bentwich 2004). The responses occur after the recognition of pathogen-

associated molecular patterns (PAMP), which are extensively complex helminth worm-unique 

antigenic glycoconjugates (Maurya et al. 2012). They are recognised by Toll-like receptors 

(TLR) and/or pattern recognition receptors (PRR) expressed on dendritic cells (Everts et al. 

2010). After the TLRs have detected microbial infection, they then induce innate and adaptive 

responses (Sakaguchi 2005).  

 

Helminth infections initially elicit Th1 pro-inflammatory innate responses from macrophages 

soon after infection, where Th1 cytokines, including IFN-γ and TNF activate naïve T cells 

(Porthouse et al. 2006). In addition, Th17 cells, upon activation by helminths, secrete IL-17 

cytokines which are pro-inflammatory and are indicated to be key regulators of inflammation 

(Wang et al. 2008). The retinoic acid orphan receptor gamma theta (RORγt) and ROR-alpha 

(ROR-α) transcription factors are required for Th17 cells (Duhen et al. 2012).  

 

Thereafter over time, helminths induce Th2 responses. The Th2 cytokines secrete cytokines that 

typically include IL-4, IL-5, IL-10, IL-13 which result in B cell proliferation, immunoglobulin-
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E (IgE) and immunoglobulin-G subclass 4 (IgG4) antibody production as well as activation of 

specific effector cell responses from eosinophils, basophils and mast cells (Wang et al. 2008; 

Fukumoto et al. 2009). The important role of both IL-4 and IL-13, of mediating protective 

responses or resistance to infection in the host leads to effective expulsion of the intestinal 

helminths (Filbey et al. 2014), facilitating the reduction of the helminth infection intensity 

(Turner et al. 2003). IL-4 and IL-13 signaling through the IL-4 receptor-α drive the expulsion of 

intestinal helminths, whereby mucosal mast cells and goblet cells secrete mucus to trap and 

eliminate the parasites (Maizels and Holland 1998). Additionally, IgE targets the helminths, 

which cannot be phagocytosed due to their large size. IgE coats them through FcεRI receptors 

for recognition and subsequent destruction by eosinophils, basophils and mast cells, using 

highly toxic granule proteins and free radicals as well inflammatory mediators (Janeway et al. 

2001; Fitzsimmons et al. 2014). The IgE response can be further amplified by basophils, mast 

cells and eosinophils; when IgE is cross-linked by antigen on these cells. These effector cells 

express CD40 ligand which binds with CD40 on B cells, leading to the production of more IgE 

(Janeway et al. 2001). Eosinophils kill helminths through antibody-dependent cellular 

cytotoxity (ADCC) (Negrao-Correa 2001). Mastocytosis plays a role in the expulsion of 

intestinal helminths, by increasing permeability, smooth muscle contractility and intestinal 

epithelial cell fluid secretion (Maizels and Holland 1998; Turner et al. 2003). Although 

helminths stimulate stronger inflammatory Th2 cytokine responses, they however also induce 

complex immunomodulatory T regulatory (Treg) responses to attenuate these hostile Th2 host 

responses, for their survival within the human host (Girgis et al. 2013; McSorley et al. 2013; 

Johnston et al. 2016). The Th2 responses are important to the intestinal helminths for their 

survival in a human host, whereby the parasite and its products stimulate the production of anti-

inflammatory IL-10 from Treg cells and eosinophils to downregulate the responses elicited 

against the parasite (Nutman 2015; Motran et al. 2018). 

 

1.2.2.2 The modulated immune responses to intestinal helminth infections 

Helminth infections result in the daily release of eggs and ES products that persistently 

stimulate immune responses (Walson and John-Stewart 2007) that end up causing immune-

mediated inflammatory changes to the host (Borkow and Bentwich 2004). The intestinal 

helminths compromise the host epithelium to be able to feed, and they remain in preferred 

anatomic niches found in different locations which they migrate to so as to complete life cycles 

within the host (Porthouse et al. 2006; Boyett and Hsieh 2014). They induce modulatory 

mechanisms which enable them to evade and suppress the host responses to be able to live long 

within the host (Everts et al. 2010; Boyett and Hsieh 2014; Afifi et al. 2015), and to ensure 
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continuous transmission in a sequential passage between hosts (Klion and Nutman 2004). 

Helminths protect themselves by modulating responses mounted against them by host 

responses. These mechanisms protect the intestinal helminths against elimination and expulsion, 

such that they survive in the midst of the hostile host Th2 responses, with muted effector 

responses (Maizels and Balic 2004; Moreau and Chauvin 2010; Chatterjee and Nutman 2015; 

Smallwood et al. 2017).  

 

Helminths activate an immune regulatory network, mounted by both the host and the parasite 

(Girgis et al. 2013). They control the way antigens are presented to dendritic cells and also 

downregulate the dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin 

(DC-SIGN), a receptor required for entry of intracellular pathogens, such as HIV and 

Mycobacterium tuberculosis into dendritic cells (Kane et al. 2004; Manches et al. 2014; 

Chatterjee and Nutman 2015). They also produce cystatin molecules which inhibit cysteine 

proteases, required for antigen presentation to dendritic cells (Everts et al. 2010; Maizels and 

McSorley 2016). Helminths may also induce the immune system’s own down-regulatory 

mechanisms (McSorley et al. 2013). This is achieved through a balance in responses between 

Th2 innate (eosinophils, basophils and mast cells), adaptive effector CD4+ and CD8+ T cells and 

T regulatory (Treg) cells (Belkaid and Rouse 2005; Everts et al. 2010).  

 

Activated Treg cells suppress antigen presentation by down-modulating the expression of CD80 

and CD86 ligands on APCs (Sakaguchi 2005). Defective antigen presentation suppresses 

effective activation of T cells, which requires costimulatory signalling through the ligation of 

the CD28 receptor to CD80 and CD86 ligands of APCs (Borkow and Bentwich 2004). To 

downregulateT cell activation, activated Treg cells secrete the inhibitory molecule CTLA-4, 

which binds to CD28 and thus inhibit T cell responses and proliferation of activated T effector 

cells, resulting in apopotosis and hyporesponsiveness (Borkow and Bentwich 2004). In this 

regard, Treg cells achieve the regulatory function by suppressing T cell proliferation and Th2 

cytokine production in a cell-contact-dependent manner, in the quest of limiting host tissue 

immunopathology (Walker et al. 2005).  

 

Fairly recently, the inducible T cell co-stimulator (ICOS) molecule has been indicated as 

homologous to the immune attenuator CTLA-4, and it is regulatory to the adaptive T cell 

responses (Wikenheiser and Stumhofer 2016). Furthermore, CTLA-4+ Treg cells may induce 

dendritic cells to express the indoleamine 2.3-dioxygenase enzyme which catabolises 

tryptophan to kynurenine, which is toxic to dendritic cells (Sakaguchi et al. 2009). The lack of 
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the essential amino acid tryptophan inhibits T cell activation and promotes T cell apoptosis 

(Ricci et al. 2011). Furthermore, helminths may suppress intestinal mucosal Th1 and Th2 

responses and regulate the intense mucosal inflammation, by inducing the activity of the 

Foxp3+Treg cells (Nedim Ince et al. 2009; McSorley and Maizels 2012; McSorley et al. 2013). 

The balance between effector Th2 and Treg responses may be lost when the helminth-induced 

Treg cells suppress Th2 and Th1 effector responses, which may result in immunopathology 

(Belkaid and Rouse 2005; Everts et al. 2010; Girgis et al. 2013).   

 

In addition to the modulating mechanisms to the host responses that helminths employ to 

survive within the host, they may also evade the host immune system using other complex 

mechanisms. They may employ strategies such as (i) antigenic variation to escape immune 

surveillance; (ii) acquiring surface molecules from the host such as blood group antigens to 

avoid immune recognition; (iii) sequestering antigens away from the processing pathway by the 

major histocompatibility complex (MHC) class II molecules; (iv) secreting proteases that cleave 

chemotactic factors secreted by eosinophils, produce superoxide dismutase and glutathione S-

transferase that neutralise toxic oxide radicals; down-regulating T and B cell responses by 

inducing Treg cells or anti-inflammatory cytokines IL-10 and TGF-β (Constant and Bottomly 

1997; van Riet et al. 2007; Moreau and Chauvin 2010). 

 

Helminths may exhaust the host immune system through its chronic activation by helminth 

antigens, resulting in dysregulation of host T cell responses (Borkow and Bentwich 2004). This 

chronic activation may result in changes in T cell responses such as (i) decreased CD4+ and 

increased CD8+ cells; (ii) marked increase of CD4+ and CD8+ HLA-DR+ (activated) cells; (iii) 

decreased CD4+CD45RA+ (naïve) cells (Borkow and Bentwich 2004); (iv) impaired expression 

of CD26 on T cells, a costimulatory molecule that influences T cell activity, and this results in 

compromised recruitment of T cells to infection sites (Rai et al. 2012) and (v) increased 

expression of lymphocyte apoptosis markers (Kalinkovich et al. 1998; Boasso et al. 2009). 

Notably, this persistent activation of immune cells by helminths may be substantially similar to 

those documented for HIV infection (Kassu et al. 2003).  

 

In addition, in suppressing these effector cell responses, Th2 cytokines stimulated by helminths 

may also induce the development of immunoregulatory alternatively activated macrophages 

(AAMs) which downregulate Th1 cells, decrease the secretion of IL-12, control  inflammation 

and inhibit IL-17 (Anthony et al. 2007; Cooke 2008; Wang et al. 2008). AAMs also 

downregulate excessive Th2 activity (Moreau and Chauvin 2010). In support of the notion that 
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helminths are down-regulatory to host responses, Turner et al. (2003) observed a link between 

increased intensity of Ascaris lumbricoides infection and polyclonal anergy of leukocytes in 

peripheral blood, activated by Treg cells in response to the helminths. Others observed increased 

IL-10 frequencies in both the CD4+ and CD8+ cells, which demonstrated Treg upregulation and 

a strong Th2 response in whole blood cultures from tuberculoid leprosy patients co-infected 

with intestinal helminths (Diniz et al. 2010). Thus, as has been highlighted, helminth antigens 

may induce the down-regulation of both Th1 and Th2 responses (Maizels and Yazdanbakhsh 

2003). 

 

1.2.2.3 The impact of intestinal helminth infections on nutritional status 

Intestinal helminth infection may impair the nutritional status in infected individuals (Everts et 

al. 2010; Gedle et al. 2015). Malnutrition may result in impaired innate and adaptive responses 

against intestinal helminth infection (Franca et al. 2009; Elfstrand and Florén 2010; Mwambete 

and Justin-Temu 2011), resulting in lowered resistance to infection (Bhaskaram 2001; Faber and 

Wenhold 2007). In both children and adults, intestinal helminth infections have been associated 

with deficiency of most of the micronutrients such as vitamin A (Strunz et al. 2014; Arinola et 

al. 2015b). Vitamin A deficiency results in the down-regulation of Th2 cytokines, which may 

have an effect on the gut-associated lymphoid tissue, resulting in reduced expulsion of the 

intestinal helminths and prolonged survival within the host (Fekete and Kellems 2007; Ross 

2012). An increase in vitamin A levels was observed in Kenyan school-children infected with S. 

mansoni upon concurrent deworming resulting in the reduction of the egg output (Mwaniki et 

al. 2002). This indicates the benefit of eliminating intestinal helminths that may influence 

nutritional status, which in turn may affect the competency of the immune system of the 

affected hosts. Furthermore, zinc deficiency is associated with impaired expulsion of helminths 

from the intestines (Kheirvari and Alizadeh 2012). Ascaris lumbricoides helminths obstruct the 

intestines, thus impeding the absorption of vitamin A and other nutrients (de Gier et al. 2014; 

World Health Organization 2017b). 

  

The intestinal helminths may cause iron deficiency anaemia (Katona and Katona-Apte 2008) 

through various mechanisms such as (i) attachment of hookworm to the intestinal mucosa and 

sucking of the host blood, also resulting in loss of protein (Farham 2006; Osawuza et al. 2011); 

(ii) damage of intestinal blood vessels by the spined eggs of S. mansoni and (iii) urogenital tract 

irritation and inflammation by S. haematobium, leading to blood loss in stool and urine 

respectively (Friedman et al. 2005; Koukounari et al. 2008). Furthermore, intestinal helminth 

and schistosome infections can affect children by retarding their growth and development 
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(Adenowo et al. 2015) and impair their cognitive domains in learning, memory and verbal 

fluency (Colley et al. 2014). Some intestinal helminth infections can cause mild and transient 

pathology, while others result in significant clinical disease and mortality (Samie et al. 2009). It 

is thus put forward that potent responses against intestinal helminth infections are required for 

their elimination or else these helminths must be eradicated with efficient deworming therapy. 

This will be to prevent the development of sequelae of pathologies, as a result of trapped 

parasite eggs in the host’s tissues that may lead to tissue damage and subsequent failure of 

various organs (King and Dangerfield-Cha 2008; Barsoum et al. 2013; Colley et al. 2014), and 

urogenital obstruction in women (Kjetland et al. 2012).  

 

1.3 The interaction between nutrition and co-infection with HIV and intestinal 

helminths 

The significance of adequate nutrition on the potency of the immune system has been well 

established (Karacabey and Ozdemir 2012). Single infections with HIV or intestinal helminths 

are associated with micro- and macronutrient deficiencies (Papathakis et al. 2007; Garba and 

Mbofung 2010; Arinola et al. 2015b). Furthermore, research suggests that co-infection with 

HIV and intestinal helminths has an additive effect, where individuals co-infected may have 

lower biochemical levels of micronutrients (Moreau and Chauvin 2010) as well as carbohydrate 

and protein macronutrients compared with uninfected controls (Katona and Katona-Apte 2008; 

Koethe and Heimburger 2010). Deficiencies of protein, energy and micronutrients impact on 

competent cell mediated and humoral responses, and the link to increased susceptibility to HIV 

and intestinal helminth co-infections in such cases has been demonstrated (Chandra 1997; 

Schaible and Kaufmann 2007). As a result, micronutrient and macronutrient deficiencies may 

predispose individuals to HIV and intestinal helminth infections as well as lead to exacerbated 

HIV progression. Therefore, both infections may predispose the affected individuals to 

malnutrition and immune deficiency. Malnutrition may therefore start a cyclical process that 

may further predispose to infection, which in turn may result in malnutrition (Schaible and 

Kaufmann 2007; Katona and Katona-Apte 2008); previously illustrated in Figure 1, where the 

cause-and-effect thread between malnutrition, infection and immune deficiency is indiscernible. 

Infections may further worsen malnutrition through various mechanisms, which include 

decreased appetite induced by cytokines such as tumour necrosis factor alpha (TNFα) 

(Broadhurst and Wilson 2001) or decreased nutrient intake when swallowing is painful as 

occurs in some viral and fungal infections; while some intestinal viruses, bacteria and parasites 

cause diarrhoea, disrupt the intestinal mucosa lining and/or impede the absorption of nutrients 

(Amare et al. 2015; World Health Organization 2017b). This scenario increases the pressure on 
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the immune system’s ability to efficiently eliminate the infectious agent. Additionally, both the 

HIV and intestinal helminth single infections are associated with anaemia. Thus the co-infection 

may have additive effect on the development of anaemia. This supports the notion that adequate 

intake of micro- and macronutrients is essential for the host to be able to mount efficient 

immune responses. 

 

1.4 The importance of reliable assessment of nutritional status in adults 

With all the complex interactions between infection, a compromised immune system and 

nutritional deficiency, reliable and objective indicators of malnutrition are necessary (Steyn et 

al. 2006), which are not influenced by disease processes and are able to depict changes in 

nutrient intake (Hedrick et al. 2012). Weight or anthropometric measurements and mid-upper 

arm circumference are commonly used for the evaluation of nutritional status, especially in 

children (Hall et al. 2008) and in emaciated hospitalised adults (Bharadwaj et al. 2016). 

However, measurement of weight and other anthropometric indices may be subjective, fraught 

with measurement errors (Himes 2009) and difficult to reproduce (Bhurosy and Jeewon 2013). 

Measurement of mid-upper arm circumference, weight, height for age and BMI for assessing 

nutritional risks such as overweight and thinness in children are reliable, sensitive, and specific 

and they correctly classify BMI into the appropriate categories (Knox et al. 2003; Crespi et al. 

2012). In children, protein and carbohydrate malnutrition as well as an acute attack of diarrhoea 

easily manifest as weight loss. Anthropometric measurements, including mid-upper arm 

circumference detect fairly easily the wasting due to acute starvation and severe illness in 

children compared to adults (Corsi et al. 2011).  

 

In adults, the assessment of malnutrition is complicated by the relative stability of weight even 

during malnutrition states, due to the fact that adults tolerate nutrient deficiencies better 

compared to children (Navarro-Colorado 2003). Obesity in adults masks micro- and 

macronutrient deficiency, making it difficult to measure malnutrition reliably using 

anthropometry in the group, except in severely emaciated adults. A German study (Damms-

Machado et al. 2012) observed an association between inadequate dietary micronutrient supply 

(shown by low intake and low serum and intracellular levels of micronutrients) and obesity in 

adult participants. Also in other studies, obesity, viewed as a nutrition related disease on its 

own, has been associated with micronutrient malnutrition (Fekete and Kellems 2007; Garcia et 

al. 2009; Ngaruiya et al. 2017). Obesity impairs immunity, therefore further increasing the risk 

of infection (Andersen et al. 2016). In HIV infected South African individuals on ART, low 

abdominal adiposity was associated with better immune reconstitution, shown by an increase in 
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the CD4 counts in response to ART-mediated viral suppression compared to baseline pre-ART 

levels (Azzoni et al. 2011). This highlights the necessity of detecting malnutrition towards 

improving an immune system, especially in the presence of obesity. Fat accumulation has been 

associated with low grade inflammation due to persistent immune activation, which in turn may 

lead to lack of immune reconstitution (Mavigner et al. 2009; d'Ettorre et al. 2014; Fronczyk et 

al. 2014).  

 

South Africa has an increasing prevalence of malnutrition with a predominant pattern of 

overweight and obesity among adults, shown as high body mass index (BMI) levels (Puoane et 

al. 2002; Cois and Day 2015). BMI is defined as the weight in kilograms (kg) divided by the 

square of the height in metres (m2). Established cut-off points of between 25 and 29.9 kg/m2 for 

overweight and greater or equal to 30 kg/m2 for obesity for both males and females are used in 

the classification of BMI categories (World Health Organization 1995). The underweight 

category is when BMI is less than 18.5 kg/m2 and normal weight category is between 18.5 and 

24.9 kg/m2. It is often difficult to obtain accurate measurement of current and previous weight 

in adults to allow for calculation of rate of weight loss or gain and BMI (Shenkin 2006; 

Simmons et al. 2009). Thus, weight gain in adults may be misleading and inaccurate when 

monitoring the effectiveness of nutritional replenishment (Garcia et al. 2009).  

 

In addition to anthropometry, in clinical settings, serum biochemical markers such as total 

protein and albumin are commonly used to assess the nutritional status of patients, albeit 

albumin indicated as insensitive to acute changes in nutritional status (Banh 2006; Sathishbabu 

and Suresh 2012). This is due to albumin having a large body pool and a long half-life of twenty 

days (Andersen et al. 2014). Furthermore, albumin is decreased during inflammatory responses 

to infection, wherein protein synthesis is instead prioritized for the production of acute-phase 

proteins such as C-reactive protein (CRP), ferritin and complement at the expense of the former 

(Ahmed and Haboubi 2010). The inherent oedema during inflammation results in the 

redistribution of albumin from plasma into the interstitial compartment (Nicholson et al. 2000; 

Don and Kaysen 2004) thus resulting in artificial hypoalbuminaemia, and not necessarily 

protein malnutrition per se. Under these circumstances, the lower albumin levels may be 

interpreted as indicative of malnutrition in the event of albumin assayed on its own. A reliable 

indicator that would be able to differentiate between inflammation-induced hypoalbuminaemia 

and true malnutrition is thus essential.  
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HIV and intestinal helminth infections are documented to induce chronic inflammation through 

the persistent activation of the immune system (Deeks et al. 2013; Chachage et al. 2014; 

d'Ettorre et al. 2014). Furthermore, low grade chronic inflammatory response is also observed in 

obesity (Rodriguez-Hernandez et al. 2013; Castro et al. 2017), similar to the classical responses 

seen in the event of pathogenic infections (Lumeng and Saltiel 2011). Evidence shows that the 

obesity-induced chronic low-grade inflammation may elevate CRP levels, when the adipose 

tissues release IL-6 and TNF-α, resulting in the synthesis of CRP by the liver (Aronson et al. 

2004; Eder et al. 2009; Fronczyk et al. 2014). Other studies have found an association between 

increased BMI and increased CRP levels, that was independent of inflammation and other 

factors that are known to increase CRP (Visser et al. 1999; Aronson et al. 2004). It is thus 

crucial that malnutrition is particularly detected with considerable caution in situations where an 

obese adult individual has nutritional deficiencies masked by obesity, wherein weight, BMI and 

anthropometric indices would not be reliable measures of nutritional status (Laky et al. 2008; 

Garcia et al. 2009). Hence, a reliable indicator or algorithm that would be able to detect 

malnutrition in inflammatory conditions is essential.  

 

1.5  The use of pre-albumin as a reliable indicator of nutritional status in adults co-

infected with HIV and intestinal helminths 

Notwithstanding the fact that albumin and pre-albumin are affected by inflammation and 

infection (Bharadwaj et al. 2016), pre-albumin has nevertheless been suggested to be a more 

useful biochemical marker for monitoring nutritional status, due to its short half-life of two days 

and its sensitivity to changes in protein-energy status within four to eight days (Gaudiani et al. 

2014). Pre-albumin reflects more recent protein intake as opposed to albumin, which reflects 

long term protein supply (Mosby et al. 2009; Blass et al. 2013). Moreover, pre-albumin has the 

highest ratios of essential to nonessential amino acids, it may then be a useful marker of protein 

energy nutritional status than albumin (Quadros et al. 2018). Therefore, an increase in pre-

albumin in response to nutrient intake might be more specific to an improved nutritional status 

(Saka et al. 2011).  

 

Low levels of both pre-albumin and albumin in the absence of inflammation, (depicted by 

normal CRP levels) are indicative of poor protein nutritional status (Bishop et al. 2005; 

Stearman and Tetlow 2008; Chen et al. 2014), as CRP is raised by pro-inflammatory cytokines 

associated with an acute phase response (Johnson et al. 2007). Significantly lower pre-albumin 

levels were found in non-metastatic cancer patients with evidence of malnutrition that 

developed after radiotherapy and not in those who had no malnutrition (Unal et al. 2013). 
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However, albumin levels were not significantly different between the two groups, implying that 

albumin could not distinguish between the presence and absence of malnutrition. Another study 

found that low pre-albumin levels were able to predict risk of mortality due to protein-energy 

wasting in patients on haemodialysis who otherwise had normal albumin levels (Rambod et al. 

2008). Therefore, malnutrition should be assessed accurately, especially in the presence of 

infection with HIV and intestinal helminths, inflammation and obesity, which are factors that 

may confound the generation of reliable measurement of nutritional status. In light of the fact 

that pre-albumin is documented as a reliable predictor of malnutrition compared to albumin, the 

investigation of whether pre-albumin could be used as a reliable marker that would accurately 

determine nutritional status in HIV-intestinal helminth single and co-infections is crucial. 

 

1.5.1 The use of food recall in the investigation of nutritional status in adults 

The challenges of assessing malnutrition in adults have been cited, such as the unreliability of 

weight and anthropometric measurements in the presence of overweight and obesity. Although 

reliable and valid, biochemical markers of serum protein levels such as total protein and 

albumin are however not able to measure nutrient intake (Jacques et al. 1993; Shim et al. 2014). 

It is suggested that nutrient and energy intake be determined, especially when the risk or impact 

of disease is to be established (Yunsheng et al. 2009; Castell et al. 2015). The analysis of food 

intake data is the only method of evaluating energy intake (Cupisti et al. 2010). Biochemical 

micro- and macronutrient levels may not always correlate with food consumption (Moghames et 

al. 2016). Some food types may require absorption enhancers for adequate bioavailability, 

whilst others may have complex chemical compounds or consist of different forms (such as 

folic acid that has different glutamate residues) and this may impact on the accurate biochemical 

assessment of a nutrient (National Academy of Sciences 1986). This may then make it difficult 

to reliably correlate the data of the consumed food and nutrients with biochemical levels of 

micro- and macronutrients, where the biochemical markers may reflect on the nutrients that 

have already been metabolised. 

 

Food recall is a retrospective quantitative technique of recording the food and beverages 

consumed in the previous 24 hours, by time periods starting from waking up time (Castell et al. 

2015). The 24-hour food recall questionnaire is used to collect data on the types of food 

consumed, energy and micro- and macronutrient intake, their quantities and preparation, usually 

taken for a period spanning for two or more days from the same individual (Shim et al. 2014; 

Castell et al. 2015). Data collected for three days or more may be able to capture the daily 

variations of consumed food (Yunsheng et al. 2009; Streppel et al. 2013). The data is more 
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reliable when it is collected from the person who most likely prepared and/or cooked the food 

(Rose and Tschirley 2003). However, the reliance on memory and correct estimation of quantity 

is an inevitable limitation attached to the self-reported food recall data and the skill of a well-

trained interviewer may minimise recall bias (Shim et al. 2014). Prompts are used to indicate 

the portion sizes and then the data is coded for analysis and reporting, as nutrient adequacy 

ratios (NARS). NARS is the ratio of a nutrient intake divided by the recommended daily 

requirement for that nutrient (Steyn et al. 2006).  

 

1.6 The immune responses to HIV and intestinal helminth co-infection 

Potent responses are essential in any infection. As has been elucidated, single infections with 

either HIV or intestinal helminths evoke dysregulated responses that result in the activation of 

effector cells, which are not completely protective to the host (Fevrier et al. 2011; Vijayan et al. 

2017; Weisman et al. 2017). Moreover, these activated effector cells are further used by HIV as 

reservoirs and also as targets for entry and replication. In the activated CD4+ cells, HIV subverts 

the host cell transcription factors, such as NFAT and NF-κB, using them for further replication 

within these cells, which increases the viral load (Jiang et al. 2017). Thus, the challenge to the 

host immune system is that the HIV-intestinal helminth co-infection may have an additive 

negative impact on the responses. The co-infection may inadvertently result in worsening of 

both diseases.  

 

In addition, HIV infection may induce immune dysregulation of both innate and adaptive 

responses, further inhibiting control of viral replication. The activation of NK cells and the 

production of IFN-α or β by dendritic cells (the main antiviral responses from the innate arm of 

the immune system) may be dysfunctional, as a result of HIV-mediated signalling through 

CCR5, CXCR4 and the general immune activation (Boasso et al. 2009). Furthermore, attrition 

of CD4+ and CD8+ cells and failure to replenish them with naïve cells are some of the 

underlying HIV-induced mechanisms that cause dysregulated adaptive responses, which may 

result in further uncontrolled HIV replication (Borkow and Bentwich 2004). To make it worse, 

helminths may increase the expression of CCR5 and CXCR4 co-receptors in CD4+ cells, which 

facilitates HIV entry more efficiently into these activated target cells, further promoting viral 

replication (Jaspan et al. 2011; Chachage et al. 2014; Woodham et al. 2016). 

 

Helminths also induce Treg cells to secrete IL-10 and TGF-β cytokines so as to impede the 

production of aberrant adaptive host responses, to limit inflammation and defy immune 

exclusion, for their survival within the host (Weinstock and Elliott 2014). This helminth-
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induced modulatory mechanism attenuates host responses, resulting in hyporesponsiveness 

which may consequently inhibit HIV control, since the required anti-HIV responses would be 

anergic (van Soelen et al. 2012; Salgame et al. 2013; Johnston et al. 2017). Potent Th1 

responses are essential to control HIV and other intracellular pathogens, including 

Mycobacterium tuberculosis (Borkow and Bentwich 2004; Borkow et al. 2007; Diniz et al. 

2010; George et al. 2014). Thus, this exploitation of the immunoregulatory power of the 

immune system by helminths may unfortunately, to the detriment of the host, also suppress the 

mounting of potent responses directed against third party antigens and vaccinations (Tristao-Sa 

et al. 2002; van Riet et al. 2007; Wang et al. 2008; Girgis et al. 2013).    

 

It is therefore considered crucial that the helminth-induced activation of the immune system is 

reduced, through deworming interventions especially in adults in communities where such 

programmes are only provided to school-children. In addition, to ameliorate the impact of anti-

helminthic interventions, other microbes should be cleared, so as to conserve the immune 

system required to control the incurable HIV infection and slow down its rapid progression. It is 

also recommended that algorithms which would ensure that intestinal helminth infection is 

detected accurately and timeously be investigated and instituted. This would aid in the effective 

elimination of these pathogens which may otherwise result in impaired responses against the co-

infecting HIV and furthermore, deplete the essential micro- and macronutrients that may have 

reinforced the immune system against both the pathogens. It is therefore proposed that in HIV- 

intestinal helminth co-infection, the dysregulated responses may exacerbate the rapid 

progression of HIV infection to AIDS. 

 

In the HIV-intestinal helminth co-infection, it is suggested that opposing Th1 and Th2 immune 

responses would be elicited. HIV stimulates predominance of Th1 response, whilst helminths 

stimulate a stronger Th2 response, which may significantly suppress a Th1 response directed 

against the HIV infection (Kaur et al. 2016; Maizels and McSorley 2016). Cytokines produced 

by Th1 cells such as IFN-γ down-regulate Th2 responses and those produced by Th2 cells such 

as IL-4 alone or with IL-10, block the expansion of Th1 cells and down-modulate cell mediated 

responses (Mitchell et al. 2017). High prevalence of intestinal helminth infections is suggested 

to promote increased transmission of HIV, and may result in accelerated progression of the HIV 

infection to AIDS due to impaired immune responses (Noblick et al. 2011). 
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1.7 The diagnosis of intestinal helminth parasite infections 

The impact that intestinal helminth infection may have on the nutritional and immune status of 

affected individuals, especially those co-infected with HIV, makes it crucial that the diagnosis 

of intestinal helminth infections is accurate, more so in the situation where the infection is 

asymptomatic due to the modulatory effects of the parasite within the host. The host may not 

even be aware of the infection. Parasite infections are mostly expected and thus investigated in 

children, especially those that attend primary school. Generally, the sighting of worms in stools 

is what prompts adults to approach health care facilities for investigation. It is believed that 

early diagnosis and therefore early treatment of intestinal helminth infections would benefit the 

host that is co-infected with HIV, by limiting the additive effect of both infections, which may 

exacerbate the HIV disease progression. 

 

1.7.1  Microscopic screening and diagnosis of intestinal helminth infections 

Routine investigation and screening for intestinal helminth infection is commonly based on 

direct microscopic examination of a wet preparation of a single stool sample for parasite eggs 

and ova. The detection of the expelled parasite eggs or ova and/or parasite worms in stool 

samples is used as clinical and/or laboratory diagnostic indicators of parasite infection. 

Although this microscopic method is quick, cheap and convenient, accurate diagnosis is limited 

by several challenges: (i) the inconsistent egg production which may be caused by day to day 

variation in egg excretion (Hall et al. 2008); (ii) if individuals are infected by parasites in larval 

stages, by male worms only or non-fecund worms (Adams et al. 2006; Vlaminck et al. 2016); 

(iii) the method involves processing a wet preparation smear using saline with a small amount 

of the stool, usually picked off from the middle of the sample container. The stool may not have 

been mixed adequately in instances of light-intensity infections, or it could be formed and not 

loose, making it difficult to obtain a representative sample and (iv) microscopy may be 

subjective and the experience of microscopists may influence the ability to recognise eggs/ 

ova/worms versus artefacts. The above result in low sensitivity, thereby causing 

underestimation of true parasite infection and load (Hall et al. 2008). 

 

Polymerase chain reaction (PCR) is the most sensitive technique that may be used for detecting 

parasite infection, however this molecular diagnostic test is costly especially for mass screening 

purposes and it requires resourced laboratories (Tavares et al. 2011; Ricciardi and Ndao 2015). 

Therefore, in the absence of a molecular test or technique that may be used as a gold standard in  

resource limited settings, attempts to increase the chances of egg detection using light 

microscopy include the suggestion of multiple examination of a single stool (Tarafder et al. 
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2010). This would however not address the day to day variation in egg excretion. In view of this 

challenge, others suggest the examination of up to three or more stool samples collected in three 

or more consecutive days, to mitigate the day to day variation in egg excretion challenge 

(Utzinger et al. 2001; Tarafder et al. 2010). These detailed investigations are crucial, however 

they can be labour intensive and time consuming. To increase the sensitivity, stool 

concentration methods such as zinc flotation and the original formol ether which was developed 

by Ritchie (1948) and its modifications such as the Mini Parasep® methods (Couturier et al. 

2015) may be used. Also, the Kato Katz thick smear method may be used, which utilises a 

defined amount of stool sample, and has the ability to quantitate the number of eggs per gram of 

stool, thereby indicating the intensity of infection (Leuenberger et al. 2016).  

 

In addition to the challenge of reliable diagnosis of intestinal helminth infections by the 

conventional microscopy method, the excretion of parasite eggs by the host may be influenced 

by genetic, immunity and environmental factors, especially in adults (Bethony et al. 2002; 

Adams et al. 2006). In light of this, the serological diagnosis of intestinal helminth infections 

using parasite-specific IgE and IgG4 may be useful in providing reliable data compared to only 

using the microscopic detection method. 

  

1.7.2  Serological diagnosis of intestinal helminth infections 

Other factors that may affect accurate parasite eggs detection besides genetic and environmental 

factors, include the fact that the excretion of parasite eggs is also dependent on immune 

responses against the parasite infection (Adams et al. 2006). A weakened immune response 

measured as low CD4 counts, observed in HIV-intestinal helminth infected, may reduce egg 

excretion and thus result in low or no eggs detected in stool samples (Karanja et al. 1997; Secor 

et al. 2003; Mkhize-Kwitshana et al. 2011). Adult female worms can release up to 300 eggs per 

day within the host’s intestinal venules, some of which are not excreted (Secor et al. 1996). The 

host’s venous blood that flows in the opposite direction of the excretory pathway may also 

prevent the eggs excretion to the environment (Colley and Secor 2014). Many of the eggs that 

are not excreted are permanently lodged in the intestines, liver, bladder and other organs, 

inducing granulomas that result in chronic inflammation and morbidity (Colley et al. 2014). 

Therefore, to avoid perpetuation of transmission of intestinal helminths and re-infection 

especially in asymptomatic individuals, and subsequent morbidity and mortality, efficient 

diagnosis of intestinal helminth infections is critical even in situations of no egg detection in 

stool samples.  
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In the quest of ensuring that diagnosis of intestinal helminth infections is accurate, it is 

recommended that supplementary diagnostic methods such as the determination of parasite-

specific IgE serological levels are used (Adams et al. 2006; Mkhize-Kwitshana et al. 2011). For 

example, Adams et al. (2006) found higher proportions of adult individuals infected with 

intestinal helminths in Cape Town when parasite-specific IgE levels were used (51%) in 

addition to the microscopic detection of parasite eggs in stool samples compared to the 

diagnosis by microscopy only (26%). Furthermore, a study by Mkhize-Kwitshana et al. (2011) 

noted that some participants excreted helminth parasite eggs without increased Ascaris-specific 

IgE levels, and others had high Ascaris-specific IgE levels with no parasite eggs detected in 

their stool samples or both. Prevalence was 20–40% by egg detection only and 66% was 

detected by both methods. This way, intestinal helminth infection was not missed as both 

microscopic and parasite-specific serological methods supplemented each other. In contrast, a 

study conducted on children from Zimbabwe revealed a match between egg detection and 

serology positivity, however some egg-negative participants had positive serology results for 

anti-schistosome egg IgM antibodies (Imai et al. 2011). Absence of eggs in a stool sample 

should therefore not be interpreted as that there was no infection or no exposure to parasites 

(Vlaminck et al. 2016). Together these studies suggest that the use of stool samples as the only 

method of diagnosis of parasite infection may not give accurate results (Adams et al. 2006; 

Mkhize-Kwitshana et al. 2011). Notably, in the absence of stool samples, van Soelen et al. 

(2012) used high Ascaris-specific IgE levels as a proxy for intestinal helminth infection and 

cited that it is widely used as a standard indicator of Ascaris lumbricoides and/or Trichuris 

trichiura re-exposure or active infections. However, the limitation of this diagnostic modality is 

the fact that it may not distinguish between current and past infection (McKeand 1998; Smith et 

al. 2008). Another limitation in serodiagnosis is possible cross-reactivity between antigens of 

different intestinal helminth species which may reduce the sensitivity of the test (Khurana and 

Sethi 2017). In addition, the required use of an enzyme-linked immunosorbent assay (ELISA) 

technique associated with this modality as well as the need for the collection of blood samples 

may not be feasible in poor resource settings. Nevertheless, serological techniques have higher 

sensitivity compared to other conventional tests such as microscopy which is commonly used in 

resource-limited settings (Lamberton and Jourdan 2015).  

 

1.7.3   Variations in responses to intestinal helminth infection: different response 

phenotypes 

Th2 responses are elicited in helminth infection even before the parasite eggs are released, with 

the induction of Treg cells (de Oliveira Fraga et al. 2010; Webb et al. 2012). IL-4 and IL-13 
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then promote the production of IgE, thereafter the class switching to IgG4 occurs induced by 

IL-10 and TGF-β (McSorley and Maizels 2012; Filbey et al. 2014). Th2 responses are generally 

effective to eliminate and expel the intestinal helminths (Allen and Sutherland 2014), unless 

they become dysregulated or downregulated and immunopathology such as tissue damage may 

develop (Maizels et al. 2009; McSorley and Maizels 2012). Differences in immune responses to 

helminths within the Th2 compartment have been described. The Th2 responses elicited are 

different due to the fact that different species of helminths reportedly induce hugely different 

mechanisms of protection (Harris and Gause 2011). There are those mechanisms that lead to the 

expulsion of the helminths or those that result in the control of the helminth-induced 

inflammation, referred to as the ‘regulated’ helminth infection (Anthony et al. 2007).  

 

The types of responses that are stimulated against the helminths include: (i) A balanced 

Th1/Th2 response phenotype, which occurs in individuals who generate a less skewed 

distribution of IgE and IgG4 and are thus resistant to helminth infection (Maizels and 

Yazdanbakhsh 2003). (ii) A modified Th2 cell phenotype, which is associated with individuals 

who generate predominantly Th2 responses with low levels of Th1 cells, expressing low levels 

of IgE, high levels of IgG4 and high levels of IL-10, showing susceptibility to parasitic infection 

(Maizels and Yazdanbakhsh 2003; Maizels et al. 2004). High parasite antigen loads are 

associated with this modified Th2 phenotype, wherein the infection is asymptomatic with long-

lived metabolically active adult worms, found in peripheral tissues and organs (Borkow and 

Bentwich 2004). High levels of IgG4 in the modified phenotype are attributed to the IL-10-

induced hyporesponsiveness to the high helminth load, the so called ‘regulated’ helminth 

infection (Maizels et al. 2004). (iii) High IgE and IgG4 antibody responses occur as a result of 

strong IL-4 and IL-5 cytokines, produced in response to the processing and presenting of the 

helminth antigens to B cells (Milner et al. 2010). When individuals who had mounted both IgE 

and IgG4 responses to a recombinant worm antigen had increased intensity of helminth re-

infection, it was postulated that IgG4 was produced to attenuate the effect of IgE (Jiz et al. 

2009). Others had found in participants who had active filarial worm infection and had reduced 

the IgG4 levels after supervised treatment with antihelminthic treatment, thereafter producing 

high IgG4 levels post-treatment, which were associated with re-infection (Terhell et al. 2003). It 

may be presumed that high IgG4 levels in intestinal helminths, including Ascaris lumbricoides 

and Trichuris trichiura indicate active infection.  

 

The role of IgG4 in helminth infection is to regulate and dampen the anaphylactic reactions 

induced by IgE (Jiz et al. 2009; Guma and Firestein 2012; Rujeni et al. 2012; Sthoeger et al. 
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2012). It is therefore not surprising that IL-10 has been reported to be involved in the 

upregulation of IgG4 in helminth infection (van Riet et al. 2006; Filbey et al. 2014). In support 

of this view, Geiger et al. (2002) found high Ascaris- and Trichuris-specific IgE and IgG4 

levels in infected individuals, which correlated with egg output, whereas uninfected individuals 

had low Ascaris- and Trichuris-specific IgG4 levels regardless of whether they were from 

endemic or non-endemic areas. Others had found that IgG4 levels reduced rapidly after 

treatment (McSorley and Maizels 2012). Furthermore, the authors found significant Ascaris- 

and Trichuris-specific IgE levels in controls from endemic areas, which suggested an 

association of IgE with past or continued exposure to helminths in the uninfected controls. In 

other words, it may be extrapolated from this data that high parasite-specific IgE levels may 

indicate both past and active infections, whilst high IgG4 levels indicate active infection. Also, 

Bhattacharyya et al. (2001) found 100% matching results between detection of eggs and highly 

elevated Ascaris-specific IgG4 levels, although independent of worm load, which was attributed 

to chronic exposure to parasites. This data therefore supports the clinical usefulness of both high 

parasite-specific IgE and IgG4 levels in the diagnosis of intestinal helminths, especially in 

situations of low infection rates as may be seen in adults. This may contribute to more reliable 

diagnosis of intestinal helminthiasis as opposed to using microscopic detection only, and may 

contribute towards early and effective elimination of intestinal helminths. 

 

1.8 The benefit of antihelminthic treatment on HIV-intestinal helminth co-infection 

responses 

Deworming may have an impact on the HIV epidemic by facilitating reinstatement of potent 

cell mediated (Th1) immune responses (Mulu et al. 2015). Others found evidence of ART 

immunological failure (shown as poor CD4 counts increases) in HIV-intestinal helminth co-

infected patients (Efraim et al. 2013). Hence, the recommendation that infections with intestinal 

helminths and Schistosoma species be investigated and eradicated if present in HIV infected 

individuals is supported, as it may be an additional tool in the fight against the HIV epidemic 

(Chenine et al. 2008; Mulu et al. 2013; Kleppa et al. 2014). Deworming may reverse the 

persistent activation of the immune system by helminths and the stimulation of polarised Th2 

responses, which suppress Th1 responses essential in the control of the HIV infection and the 

associated opportunistic infections. This approach may slow the rapid rate of progression of 

HIV infection.  

 

Based on reviews of evidence, treatment of helminths in HIV co-infected individuals may 

decrease viral load (Modjarrad and Vermund 2010; Walson et al. 2010). Others observed 
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increased CD4 counts in HIV-intestinal helminth co-infected participants treated for 

helminthiasis after deworming, before starting ART (Abossie and Petros 2015). On the other 

hand, an HIV/AIDS Cochrane systematic review noted that antihelminthic treatment may have a 

short-term suppressive effect on viral load and small increases in CD4 counts of HIV infected 

adults (Means et al. 2016). Notably, high proportions of Treg cells decreased upon effective 

anti-schistosome treatment in patients infected with S mansoni, and the authors postulated that 

the decrease was due to the elimination of the chronic exposure to the parasites (Watanabe et al. 

2007). Neglecting to treat parasites in developing countries is thought to contribute to the failure 

of ART, thereby increasing viral load and enabling the transmission of HIV (Stillwaggon 2009). 

Contrary to these opinions, Hosseinipour et al. (2007) found that deworming did not decrease 

viral load in HIV-intestinal helminth co-infected individuals. Furthermore, Brown et al. (2006) 

reported a significant transient increase in HIV viral load a month after deworming in an HIV-

Schistosoma co-infection. Also, a retrospective study (Lankowski et al. 2014) found no benefit 

of deworming on CD4 count recovery among HIV infected individuals on ART. 

 

In support of deworming, Rajamanickam et al. (2017) suggested that it may decrease microbial 

translocation and inflammation. This may benefit the host as microbial translocation is 

implicated in immune activation of effector cells and systemic inflammation. Weisman et al. 

(2017) observed decreased immune activation and normalisation of the immune profile in 

helminth infected individuals after the eradication of intestinal helminths. It is noted that 

advocacy for regular deworming is directed at school-children, as per the World Health 

Assembly Resolution 2001 (Uneke 2010).  

 

Albeit the opposing views on the merits of deworming in HIV-intestinal helminth co-infection, 

our recommendation is that antihelminthic treatment be included in the management of HIV and 

intestinal helminth singly and co-infected individuals. We further recommend that the 

deworming programmes be extended to adults, in particular those co-infected with HIV. 

Decreasing helminth-induced activation of immune cells may reduce the rapid progression of 

the HIV infection or decrease the intensity of the infection that may be mediated by modulatory 

mechanisms that helminths use to survive the host immune system.  

 

1.9 Rationale for the study 

Previously, high intestinal helminth infections in KZN have been reported among primary 

school-children (Jinabhai et al. 2001). Later evidence suggested that in adults these infections 

generally range between 40-60% (Adams et al. 2006; Kwitshana et al. 2008). In eThekwini 
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particularly, where the current study is undertaken, intestinal helminthiasis was reported to be 

20.4 % among adults, albeit such studies are very few. On the other hand, KZN has the highest 

HIV prevalence in South Africa (Department of Health South Africa 2017) with peak infection 

occurring in adults (25-49 years). Evidently, a significant overlap of HIV and intestinal 

helminth infections is expected in adults residing in poor communities, due to the typical 

geographical distribution of these two infections. Superimposed upon these two is poverty and 

malnutrition. Malnutrition also manifests as obesity, and in SA the latter has been reported to be 

increasing exponentially (Cois and Day 2015), with evidence of high prevalence of obesity in 

KZN (Wand and Ramjee 2013).  

 

In spite of this milieu of HIV and intestinal helminth infections, poverty and malnutrition, 

studies that have determined the interactions in HIV-intestinal helminth co-infection are lacking, 

especially in the KZN adult population. Thus, this current work was aimed at determining the 

interaction between single or dual HIV and intestinal helminth infections with nutritional and 

immune status among KZN adults. Findings of the current study were intended to highlight and 

draw attention to the possible deleterious effects of HIV and intestinal helminth co-infections on 

the immune and nutritional status of adult participants. This current study, with the objective of 

diagnosing intestinal helminth infection accurately, in order to discern the interaction with HIV 

and also to determine the differences in immune responses associated with the different 

intestinal helminth infection phenotypes, included the use of high levels of Ascaris-specific IgE 

and IgG4, supplementary to the egg detection in stool samples.  

 

Also, in the backdrop of the co-infection, obesity and malnutrition, reliable detection of 

nutritional status was essential in this current study. Hence, another objective of this current 

study was to investigate the use of pre-albumin as a reliable nutritional marker that would 

accurately determine nutritional status in KZN adults singly or dually infected with HIV and 

intestinal helminths, with or without inflammatory conditions in different BMI categories. It 

was also considered necessary to investigate nutrient intake to supplement the nutritional status 

data measured biochemically and with anthropometry. The 24-hour food recall analysis was 

thus included in the assessment of nutritional status, so as to correlate the data of the consumed 

food, energy and nutrients with the biochemical levels of micro- and macro-nutrients, whereby 

the biochemical markers reflect on the already metabolised nutrients. It was expected that the 

food intake analysis would indicate the food consumption patterns and elucidate the presence or 

absence of micro- and/or macro-nutrient deficiency, in overweight and obesity in particular. 
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Such a study may inform policy on the practical approaches to the future management of 

individuals living with HIV, who are co-infected with intestinal helminth parasites and may 

present with different immune response phenotypes. Helminth infection is one of the diseases 

that is neglected by policy makers globally, giving more attention and priority to HIV/AIDS, 

TB and malaria which are considered more clinically significant, probably since most helminth 

infected individuals remain asymptomatic (Hotez et al. 2006; Kwitshana et al. 2008; Hotez and 

Kamath 2009; Uneke 2010).  

 

1.9.1 Hypothesis 

Adults who are co-infected with HIV and intestinal helminths have lower levels of micro- and 

macronutrients, higher HIV viral load, increased immune activation and they express increased 

Th2 and decreased Th1 cytokine responses compared to those singly infected and uninfected. 

 

1.9.2 Aims and objectives 

Aim 1  

To investigate the interaction between the nutritional status and co-infection with HIV and 

intestinal helminths in adults.  

 

Objective 1 

To investigate the effect of HIV and intestinal helminth single or co-infection on the nutritional 

status, measured by BMI and biochemical micro- and macronutrient markers against a 24-hour 

food recall nutrient intake levels, among adults singly or co-infected with HIV and intestinal 

helminths. 

 

Aim 2 

To evaluate an appropriate biochemical method for the assessment of nutritional status in adults.  

 

Objective 2 

To investigate the use of pre-albumin as a marker of nutritional status compared to albumin in 

adults singly or co-infected with HIV and intestinal helminths, with or without inflammatory 

conditions as indicated by CRP in different BMI categories. 

 

Aim 3 

To describe the immune profile of adult individuals with or without HIV and intestinal helminth 

co-infection. 
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Objective 3 

1. To determine the different intestinal helminth infection phenotypes by the presence of 

parasite eggs, ova and/ or parasite-specific IgE and IgG4 serological phenotypes and classify 

single or dual infections. 

2. To determine the immune profile as determined by levels of gene expression of IFN-γ and  

TNF-α (used as surrogate markers for T helper 1 responses); IL-4 (surrogate marker for T helper 

2 responses); IL-10 (surrogate marker of T regulatory responses); and CD38 (as marker of 

immune activation) of the different intestinal helminth infection phenotypes of individuals  (i) 

singly infected with intestinal helminths, as defined by the presence of parasite eggs, ova and/or 

parasite-IgE and IgG4 serological phenotypes; (ii) co-infected with HIV and intestinal 

helminths; (iii) singly infected with HIV and (iv) uninfected controls.  

 

1.10  The outline of the thesis 

The format of this thesis is presented as a thesis by manuscripts as per the recommended 

guidelines of the institution. The chapters therefore include published and in-preparation journal 

articles. 

 

Chapter 1: This chapter gives the background, the research problem and the rationale of the 

study, highlighting the global burden of the HIV and intestinal helminth single and co-

infections. It also includes the reviewed literature, which provides the body of work on the 

impact of the HIV-intestinal helminth co-infection on the immune and nutritional status as well 

as the use of pre-albumin as a marker of malnutrition. The chapter also outlines the challenges 

associated with the diagnosis of intestinal helminth infection using conventional microscopy 

only, and the merits of including serological diagnosis as supplementary. Furthermore, it 

provides a list of the three manuscripts that address the study objectives, presented as a chapter 

per objective. 

 

Chapter 2: This chapter describes the methodology including the study design and all the 

laboratory methods and statistical tests used to analyse the data. The methodology and statistical 

analyses described in detail in the manuscripts will be mentioned briefly in this chapter. 

 

Chapter 3: Paper 1 

Title: The interaction between HIV and intestinal helminth parasites co-infection with nutrition 

among adults in KwaZulu-Natal, South Africa. 
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Mkhize, B.T., Mabaso, M., Mamba, T., Napier, C. E. and Mkhize-Kwitshana, Z. L. 2017. 

Published in Biomed Research International, 2017: 1-12. 

 

Chapter 4: Paper 2  

Title: The investigation of the use of pre-albumin as a tool for nutritional assessment in adults 

co-infected with HIV and intestinal helminth parasites in KwaZulu-Natal, South Africa 

Mkhize, B.T., Mabaso, M., Madurai, S. and Mkhize-Kwitshana, Z. L. 2018.  

Published in Biomed Research International, 2018: 1-8. 

 

Chapter 5: Paper 3 

Title: The immune profile and parasite-specific IgE and IgG4 serological phenotypes of adults 

co-infected with HIV and intestinal parasites in KwaZulu-Natal, South Africa 

Mkhize, B. T., Singh, R., Thobakgale, C., Mabaso, M. and Mkhize-Kwitshana, Z. L. 

In manuscript, planned to be submitted for publication at a later stage. 

  

Chapter 6: Synthesis, conclusion and recommendations. A general discussion on the findings of 

the study and the recommendations for future interventions and further investigations. 
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2.0 CHAPTER 2 

Materials and methods 

 

2.1 Introduction 

This chapter describes the methodology used in data collection and analysis approaches for this 

current work. It also includes in brief the methods used to conduct the work highlighted in the 

attached research papers. The overall aim of the present work was to investigate the interaction 

between nutrition, immunity and co-infections with HIV and intestinal helminths in an adult 

population in KZN, South Africa. Furthermore, the work was to investigate the use of pre-

albumin compared to albumin in the assessment of malnutrition in uninfected controls, the 

singly or dually infected individuals with HIV and intestinal helminths, with or without 

inflammatory conditions in different BMI categories. 

 

2.2 Study setting and population 

The study was conducted in a peri-urban informal area, in the eThekwini Health District, which 

is in the north coast of KZN, South Africa. The area was selected randomly from the eThekwini 

enumeration areas. It is situated approximately twenty kilometres north-west of eThekwini city 

centre. It is governed by local government and municipal authority. The latest available census 

data indicate that the area comprises approximately 39,000 households with approximately 30% 

informal settlements (Statistics South Africa 2011). Poverty is widespread in this area, with low 

income households and approximately 52% of the population in the area reported to be living 

below the poverty line (eThekwini Municipality 2017). The population’s livelihood is sustained 

through formal employment, informal trading and approximately 25% of them either have no 

income or are dependent on government grants (Statistics South Africa 2011). There is a 

substantial fraction of the population that has poor access to facilities in the area with about 

22% households not having piped water inside the house approximately 25% not having access 

to flush toilet facility  (Statistics South Africa 2012; eThekwini Municipality 2017). The study 

site was selected randomly from a list of six clinics which provide pre- and post- HIV 

counselling and testing (HCT) (KwaZulu Natal Health Department: The GCIS Unit 2009). The 

study site is a primary health care clinic (PHC), providing all essential health care services, 

including HCT, servicing about 100 attendees per day. The reason for recruiting from an HCT 

was to make use of the pre- and post- HIV test counselling services. The study population 

consisted mostly of females (91.6%) due to the fact that the majority of the clinic attendees were 

female. 
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2.3 Study design  

A cross-sectional investigation of the immune response profile and nutritional status of 

individuals singly and co-infected with HIV and intestinal helminths was conducted between 

July 2015 and May 2016. 

 

2.4 Sample size calculation 

A sample size of 229 adults was calculated to detect an effect size of 0.4% of differences in 

nutritional and immune status among the HIV and helminth singly and dually infected study and 

control groups with 80% power and probability of 95%. The study sample was to include 160 

adults not infected with parasites and 69 infected with parasites, assuming that 30% of adults in 

KZN are infected with parasites, based on the 20.4% - 59% prevalence reported on KZN adults 

(Kwitshana et al. 2008). Fifty percent of the study sample were to be co-infected with HIV and 

50% not be infected with HIV, assuming that 50% of KZN adults are HIV infected, based on 

the HIV prevalence of 46.2% among antenatal women in KZN (Department of Health South 

Africa 2013a) and HIV prevalence of 38% in the eThekwini district (Department of Health 

South Africa 2012a). 

 

2.5 Recruitment and selection of the study participants 

Several education sessions on parasite infections, their impact on nutritional status were held 

with the clinic attendees. They were also made aware that adults may be infected with intestinal 

helminth parasites as well, not just children. Furthermore, on recruitment, they were informed of 

the possible impact of parasites on the nutritional status. Further one-on-one individual 

information sessions were held with those who were interested, who then gave written informed 

consent for participation in the study (appendix 6). Two hundred and ninety one potential 

participants were purposively recruited to allow for the enrolment of 20% more participants 

than the calculated sample size, in order to be able to adjust the sample in the event of 

withdrawals (Hanga et al. 2014) or when participants would not submit both the required stool 

samples, collected on a Friday and a Monday. The study site was a primary health care clinic, 

providing all essential health care services, including HCT. The reason for recruiting from an 

HCT was to make use of the pre- and post-test counselling services. A total of 263 eligible 

participants were enrolled into the study. 

 

Adults who were 18 years of age and above, and if female, they had to be not pregnant.  

Potential participants who were willing to be screened for intestinal parasites were included. 

They were required to not have taken any antihelminthic treatment six months prior to enrolling 
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into the study. They had to be willing to donate blood and stool samples. Furthermore, they had 

to be willing to be tested for HIV status, for the purpose of allocating them into either the study 

group or the control group. HIV infected individuals had to be ART naïve. 

 

The South African research guidelines recommend the protection of vulnerable individuals such 

as very sick or severely immunocompromised persons. At the time of study recruitment the 

country guidelines had set a threshold for ART initiation at 350 cells/µl. Thus, the HIV infected 

individuals who had CD4 counts below 350 cells/µl were referred to the HCT clinic and for 

ethical reasons were excluded from participating in the study (Figure 5). Likewise, for 

classifying helminth infection status, participants were screened for intestinal parasites. Those 

who were found to be infected were referred to the clinic for antihelminthic treatment. 

 

If a participant visited the study site only on one day they were excluded from participating, 

since two analyses of both stool samples and food recall data was essential, for accuracy 

purposes. 

 

Figure 5: The recruitment and enrolment process of the study participants which shows 

that 263 participants were enrolled into the study after those with CD4 counts less than 

350 cells/µl were excluded 
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2.6 Ethical considerations and gatekeeper permissions 

2.6.1 Ethical approval 

Ethical approval to conduct the PhD study was obtained from University of KwaZulu-Natal 

Biomedical Research Committee (BREC Ref: BE 230/14) (appendix 2). The current study was 

a sub-study of a main project (BREC Ref: BE193/11) (appendix 1.1), with some of the 

overlapping data that were collected for the main study used for the current study. The ethical 

approval for the main project had obtained recertification approval for the years 2013 - 2014 

(Appendix 1.2) and 2014 - 2015 (Appendix 1.3). Permission was also granted by the KZN 

Provincial Department of Health (Ref NHRD: KZ_2015RP23_787) (appendix 3) and the 

Provincial and eThekwini Health District office (appendix 4) and as well as the local political 

authorities (appendix 5).  

 

2.7      Data collection 

Data on the socio-economic, nutritional status and the immune profile were collected from the 

263 enrolled participants, who were stratified into four groups according to the infection status 

based on the HIV rapid (and enzyme-linked immunosorbent assay (ELISA) for indeterminate 

results), stool microscopy, IgE and IgG4 results. The groups were either singly infected, co-

infected or uninfected with HIV and intestinal helminths. A sub-sample of 56 participants was 

selected for polymerase chain reaction (PCR) downstream work, according to the availability 

and quality of sample for analysis (Figure 6). 

 

2.7.1 Socio-demographic data 

A primary screening was done by a trained fieldworker, to exclude potential participants who 

had other infectious diseases. The fieldworker then administered a structured questionnaire to 

collect demographic, socio-economic and 24-hour food recall data (appendix 7) from enrolled 

participants. Anthropometric measurements (weight and height for the calculation of BMI) were 

measured by a fieldworker.  

 

2.7.2 Laboratory analyses 

2.7.2.1 Specimen collection 

Blood and stool samples were collected from each participant, after enrolment in the study site. 

Blood samples were collected by a trained phlebotomist into the following blood tubes for the 

named tests/ assays: 

 Ethylene-diamine-tetra-acetic acid (EDTA) tube for a full blood count, lymphocyte  
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phenotypes assay and the quantification of cytokine gene expression levels by polymerase 

chain reaction (PCR) analysis (5ml) 

 EDTA tube for HIV viral load quantification (5ml) 

 Serum separator tubes for confirmation of HIV status and for biochemical assays for the   

 assessment of nutritional status (5ml) 

 

Each participant also donated two stool samples (morning or first stool), collected on two 

different days (on a Friday and a Monday) in universal containers. They collected the samples at 

home and delivered each of the two samples at the collection room of the study site immediately 

after collection. The samples were then sent to the laboratory within four hours of collection in a 

cooler box to ensure good sample quality. 

 

2.7.2.2 Testing for HIV and intestinal helminth infections 

Determination of HIV status and screening for intestinal helminth parasites were undertaken in 

a biosafety level II laboratory in the Department of Medical Microbiology in University of 

KwaZulu-Natal (UKZN), in Durban.  

 

Participants had been tested previously for HIV status in the HCT clinic which they were 

recruited from. However, they were tested again for confirmation. The HIV status was required 

for the purpose of allocating the participants into either a study group or a control group. Serum 

samples obtained after the centrifugation of blood samples in serum separator tubes were used 

to test for HIV status. The Alere DetermineTM HIV-1/2 Ag/Ab Combo rapid test (Orgenics Ltd, 

Israel) was used, according to the manufacturer’s instructions. When the Alere Determine™ 

HIV-1/2 Ag/Ab Combo rapid test results were negative, the participant was diagnosed as HIV 

uninfected. Positive and inconclusive results were confirmed using the Uni-GoldTM 

Recombigen® HIV-1/2 rapid test kit (Trinity Biotech, Ireland), following the manufacturer’s 

instructions. In the very few cases where the Uni-Gold™ Recombigen® was discordant, the 

sample was sent to Global Clinical and Virology laboratory for confirmation using ELISA. 

 

Upon arrival of the stool samples in the laboratory, the Kato Katz preparations were made on 

the same day of collection, between four to six hours after collection. The Kato Katz preparation 

for each stool sample were analysed according to the manufacturer’s instructions. Thereafter, a 

proportion of each stool sample was preserved with 10% formol ether in the Mini Parasep tubes 

(Mini Parasep® Faecal Parasite Concentrator: Apacor Ltd, England), and processed for analysis 

the following day following the manufacturer’s instructions. The stool samples were then 
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screened microscopically for intestinal helminth parasites eggs and ova using both the Kato 

Katz and modified formol ether (Mini Parasep) methods by two trained personnel. The study 

focused on the Ascaris lumbricoides, Trichuris trichiura and hookworm species, which are the 

most common intestinal helminths in KZN. 

 

Furthermore, serological diagnosis of intestinal helminth infections was undertaken, to 

supplement the conventional microscopic diagnosis. Ascaris-specific IgE and IgG4 antibodies 

show cross-reactivity between the antigens of different intestinal helminth parasites, including 

Trichuris trichiura and Necator americanus and other hookworm species (Pritchard et al. 1991; 

Chatterjee et al. 1996; Figueiredo et al. 2010). This implies that the high levels of Ascaris-

specific antibodies could be denoting reactions with antigens of Trichuris trichiura and 

hookworm species as well. This cross-reactivity between different intestinal helminth antigens 

as well as other allergens may reduce the sensitivity of the serological test (da Costa Santiago et 

al. 2015) and thus result in high levels of parasite-specific antibody levels that are not specific 

to the intestinal helminths. The Ascaris-specific IgE and IgG4 analyses were undertaken in the 

Allergy Diagnostic and Clinical Research Unit, a South African National Accreditation System 

(SANAS) accredited laboratory in the University of Cape Town Lung Institute, using the 

Phadia® ImmunoCAP method.  

 

Infection with intestinal helminths was then defined either by the presence of intestinal helminth 

eggs or ova in the stool samples and/or high levels of Ascaris-specific IgE and/or IgG4 in serum 

(Maizels and Yazdanbakhsh 2003; Adams et al. 2006; Mkhize-Kwitshana et al. 2011). Cut off 

values of Ascaris-specific IgE and Ascaris-specific IgG4 were 0.35 kUA/l and 0.15 mgA/l 

respectively, and any levels above the cut-off values were considered diagnostic of intestinal 

helminth infection. 

 

2.7.2.3 Stratification of study participants 

The participants were stratified into four groups, based on the HIV, stool, IgE and IgG4 results. 

The four participant groups were (1) co-infected with HIV and intestinal helminths, (2) singly 

infected with HIV, (3) singly infected with intestinal helminths, and (4) uninfected, a group that 

was used as a control (Figure 6). The design of the study required this stratification since 

interactions between HIV-intestinal helminth co-infection with the nutritional and the immune 

status were to be investigated in HIV and intestinal helminths single and co-infections. 

Furthermore, participants with one of the following helminth phenotypes were identified as 

being intestinal helminth infected: Egg+IgEhiIgG4lo; Egg+IgEloIgG4hi; Egg+IgEhiIgG4hi, Egg-
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IgEhiIgG4lo; Egg-IgEloIgG4hi; Egg-IgEhiIgG4hi, Egg+IgEloIgG4lo; and Egg-IgEloIgG4lo which was 

identified as uninfected with helminths. 

 

Figure 6: The stratification of participants into infection groups to enable the 

determination of the differences in nutritional status and immune profile among the 

participant groups. The infection groups were further stratified according to the 

serological intestinal helminth phenotypes 

 

2.8      Assessment of nutritional status 

2.8.1   Anthropometric measurements 

Weight and height were measured using a calibrated Kern® MPE scale (Kern & Sohn, 

Germany). The participants were weighed with light clothing, without shoes. The scale 
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calculated and displayed the body mass index (BMI) after the weight and height were keyed 

into the scale. To determine the BMI (kg/m2) of the participants, the cut-off points established 

by the World Health Organization (1995) were used to classify the participants into underweight 

(< 18.5), normal weight (18.5 - 24.9), overweight (25 - 29.9), and obese categories (≥ 30) for 

both males and females.  

 

2.8.2  Biochemical and haematologic analysis of micronutrients and macronutrients 

Biochemical and haematologic analyses were undertaken at Global Clinical and Virology 

laboratory, a SANAS accredited pathology laboratory in Durban. The following biochemical 

markers of nutritional status were analysed using the UniCel® DxC 600 Synchron System 

(Beckman Coulter, Inc.) spectrophotometric auto-analyser: (i) macronutrients: total protein, 

albumin, pre-albumin; (ii) micronutrients: calcium, magnesium, phosphate, zinc, iron and 

ferritin. (iii) The acute phase proteins: the C-reactive protein (CRP) was also measured by the 

spectrophotometric auto-analyser, to detect the presence of inflammatory conditions.  

(iv) Haemoglobin, haematocrit, white cell count and differential count levels were assayed with 

the Sysmex XT-1800i (Roche Diagnostics) haematology auto-analyser that uses flow cytometry 

and sodium lauryl sulphate (SLS)-haemoglobin methods.  

 

2.9 Determination of immune profile 

2.9.1 Measurement of immune and virological markers 

The immune status of all participants was determined by measuring the CD4/CD3/CD8/CD45 

markers, using the Multitest kit on a FACS Calibur flow cytometer (Becton Dickinson, USA). 

The HIV viral load quantification was done for the HIV infected participants only, using the 

automated COBAS Amplicor HIV-1 Monitor Test V1.5 (Roche Diagnostics).  

 

2.9.2 Cytokine gene expression using real-time PCR 

The sample preparation for RNA isolation, quantification and analysis using real-time PCR was 

conducted at the Hasso Plattner Research Laboratory in HIV Pathogenesis Programme (HPP) 

Laboratory, in UKZN, Durban. The methods used in the quantification of the levels of cytokine 

gene expression of Th1, Th2, Treg and CD38 activation marker using quantitative PCR were 

developed and standardized in the laboratory (Singh et al. 2011). The levels of cytokine gene 

expression of interferon-gamma (IFN-γ) and tumour necrosis-alpha (TNF-α) (used as surrogate 

markers for Th1 immune responses); interleukin-4 (IL-4) (used as a surrogate marker for Th2 

responses); IL-10, (a surrogate marker for Treg responses) and CD38, a marker of activation 

were compared among the study participants. 
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2.9.2.1   RNA isolation and analysis 

For all samples, lysates were prepared using 1 X RBC lysis solution (Qiagen, Germany) and 

were then stored in RLT buffer from an RNA extraction kit (RNeasy kit; Qiagen, Germany) in a 

-800C. RNA was then extracted immediately after thawing of the samples. The total RNA 

concentration was quantified, and samples were used only if the optical density (OD260)/OD280 

ratio was 1.90 or higher. All RNA samples were DNase treated (Thermo Fisher; USA). One 

microgram of total RNA from each sample was reverse transcribed by using the iScript cDNA 

synthesis kit (Bio-Rad, USA). The samples that were selected for analysis were those with 

optical density (OD260)/OD280 ratio of 1.90 or higher, using the Nanodrop (Thermo-Fisher; 

USA).  

 

RNA quantification of cytokine gene expression by real-time PCR   

For the quantification of RNA (cDNA) for cytokine gene expression by real-time PCR, the 

primers and cycling conditions for IFNα, IFN-γ, IL-4, IL-10 and CD38 real-time quantitative 

PCR were developed and validated in the laboratory (Table 2). The PCR product size of the 

primers that were used for the five cytokine gene expression quantification were between 150 

and 250 base pairs long. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

determined to be the most suitable reference gene among the five genes based on PCR 

efficiency of 87% (Singh et al. 2011). The product size of the primers used for GAPDH was 

225 base pairs long. 

 

Table 2: PCR primers and cycling conditions used in the amplification and quantification 

of cytokine gene by real-time PCR 

 
Gene GenBank  

accession no 

Sequence (5′-3′)* Cycling conditions (denaturation, 

annealing and extension 

IFN-γ NM_000619 5′-TCGGTAACTGACTTGAATGTCCA-3′ (F) 

5′-TCGCTTCCCTGTTTTAGCTGC-3′ (R) 

950C for 30s, 600C for 30s, and 

720C for 30s 

TNF-α NM_006291 5′-GGCCAATGTGAGGGAGTTGAT-3′ (F) 

5′-CCCGCTTTATCTGTGACCC-3′ (R) 

950C for 30s, 550C for 30s, and 

720C for 30s 

IL-4 NM_172374 5′-GCCAAGACCCCTTCGAGAAAT-3′ (F) 

5′-CCGATCCTGTTATCTGCCTCC-3′ (R) 

950C for 30s, 600C for 30s, and 

720C for 30s 

IL-10 NM_000572 5′-GACTTTAAGGGTTACCTGGGTTG-3′ (F) 

5′-TCACATGCGCCTTGATGTCTG-3′ (R) 

950C for 30s, 600C for 30s, and 

720C for 30s 

CD38 NM_001775 5′-CAACTCTGTCTTGGCGTCAGT-3′ (F) 

5′-CCCATACACTTTGGCAGTCTACA-3′ (R) 

950C for 30s, 600C for 30s, and 

720C for 30s 

GAPDH NM_002046 5′-AAGGTCGGAGTCAACGGATT-3′ (F) 

5′-CTCCTGGAAGATGGTGATGG-3′ (R) 

950C for 30s, 650C for 30s, and 

720C for 30s 

*F: forward; R: reverse 
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Each PCR mixture was comprised of 0.5pmol/µl (for IFNα, IFN-γ, IL-4, IL-10 and CD38) or 

0.25pmol/µl (for GAPDH) for each primer, 5µl SYBR green 1 master mix (2x) (Roche 

Diagnostics, Switzerland), 1µg cDNA, and nuclease-free water to 10µl. Reactions were run in 

duplicate on a Roche LightCycler 480 version 1.5 instrument, with 1 cycle at 950C (10 min) 

followed by 45 cycles consisting of denaturation, annealing, and extension steps (Table 2). 

Detection of the fluorescent products was carried out at the end of the 720C extension period. To 

confirm amplification specificity, the PCR products were subjected to a melting-curve analysis. 

Standard curves were generated using the Universal Human Reference RNA (Stratagene, USA) 

for quantitative analysis and also to determine the concentration of the unknown samples, 

reported as ratio of the unknown gene over GAPDH. 

 

2.10 Statistical data analysis 

Descriptive statistics (mean, frequencies and percentages) were used to summarize the immune 

profile data (lymphocyte subsets and cytokine levels) and intestinal helminth serology 

phenotypes (Ascaris-specific IgE and IgG4) and present the characteristics of the participants. 

All gene expression data (the messenger-ribonucleic acid (mRNA) levels) were log transformed 

to ensure normality. Values are expressed as medians. Groups singly or co-infected with HIV 

and intestinal helminth parasites, with or without helminth infection phenotypes, and those 

uninfected were compared using the Kruskal-Wallis test and paired observations were compared 

using Student’s t-test for numeric variables and chi-square tests for categorical variables. 

Furthermore, median mRNA expression levels between HIV singly infected, intestinal helminth 

singly infected, HIV-intestinal helminth co-infected and uninfected groups were compared and 

the differences between the study groups evaluated by using an unpaired t test. The differences 

with the p value of ≤ 0.05 and 95% confidence interval (CI) were considered statistically 

significant. Data was analysed using the statistics packages STATA version 13 (College Station, 

Texas: Stata Corporation, USA), SPSS version 25 (IBM Corporation., NY, USA) and GraphPad 

Prism version 5.01 (GraphPad Software, Inc., USA), which was also used to generate scatter 

plots and bar graphs.  

 

Assessment of nutritional status 

Differences between the infected and uninfected groups were assessed using the Kruskal Wallis 

test for categorical variables and the Wilcoxon signed rank sum test for continuous variables (p-

value < 0.001). The outcome variable had four levels: uninfected, HIV singly infected, intestinal 

helminth singly infected and HIV-intestinal helminth co-infected, which is a multinomial 

outcome. Therefore, univariate and multivariate multinomial probit regression models were 
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used to assess nutritional factors associated with each group (HIV singly infected, intestinal 

helminth singly infected and HIV-intestinal helminth co-infected), and the uninfected group was 

used as a reference category. Regression coefficients with 95% confidence intervals (CI) were 

reported to indicate the strength and direction of association, and a p- value ≤ 0.05 to indicate 

the level of statistical significance. 

 

Investigation of the use of pre-albumin compared to albumin in nutritional assessment 

Four different multivariate multinomial logistic regression models were fitted to investigate the 

effect of pre-albumin versus albumin for nutritional assessment among HIV singly infected, 

intestinal helminth singly infected and HIV-intestinal helminth co-infected groups, using the 

uninfected group as a reference category. Models used to analyse the relationship included not 

specifying BMI; for normal weight, overweight and obese categories. Each model was fitted for 

individuals with no inflammation (CRP≤5) and those with inflammation (CRP>5). The effect 

was estimated using relative risk ratios (RRR) with 95% CI significant at p-value ≤ 0.05. 

 

Immune profile using levels of cytokine gene expression Th1, Th2, Treg and CD38  

All gene expression data were log transformed to ensure normality. Groups singly or co-

infected with HIV and intestinal helminth parasites and uninfected were compared using a t-test 

and analysis of variance (ANOVA) with Tukey’s multiple comparison test for numeric 

variables and chi-square test for categorical variables. The differences with 95% CI and the p-

value of ≤ 0.05 were considered statistically significant. 
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3.0 CHAPTER 3 

The interaction between HIV and intestinal helminth parasites co-infection with nutrition 

among adults in KwaZulu-Natal 

 

As part of the broad aim of the thesis to investigate the interaction between the coinfection of 

HIV and intestinal helminths with the immune profile and nutritional status, this chapter aims to 

analyse the latter among singly and co-infected adults in KZN.  

 

Highly prevalent HIV and intestinal helminth single infections continue to plague a 

considerable proportion of the South African population (Adeleke et al. 2015; Kharsany and 

Karim 2016). The geographic overlap of these infections lands to the expectation that there may 

be high prevalence of dual infection with HIV and intestinal helminths. Furthermore, since HIV 

and intestinal helminth single infections may result in malnutrition, it is hypothesized that the 

HIV-intestinal helminth co-infection may result in worsened micro- and macronutrient 

deficiencies. These deficiencies are known to have negative impact on both the cell-mediated 

and humoral immune systems, resulting in rapid progression of HIV infection to AIDS (Duggal 

et al. 2012).  

 

In light of this, the current study aimed to investigate the interaction of HIV and intestinal 

helminth co-infection with the nutritional status of infected individuals. Such studies that have 

determined the interaction of HIV-intestinal helminth co-infections with nutritional status are 

scarce, especially in the KZN adult population. To the best of our knowledge, there is no 

evidence of such work in South Africa that has interrogated the interaction between the HIV-

intestinal helminth co-infection with malnutrition having been published. This is the first such 

study that has investigated the nutritional status in adults singly and co-infected with highly 

prevalent HIV and intestinal helminth infections in KZN. 

  

The work was expected to test the hypothesis that the co-infection would have a more 

deleterious effect on the nutritional status. The co-infected individuals were expected to have 

worse off nutritional status compared to those who are singly infected and those uninfected with 

HIV and intestinal helminths. Part of this work was published as “The interaction between HIV 

and intestinal helminth parasites co-infection with nutrition among adults in KwaZulu-Natal” as 

follows:  
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4.0 CHAPTER 4 

The investigation of the use of pre-albumin as a tool for nutritional assessment in adults 

co-infected with HIV and intestinal helminth parasites in KwaZulu-Natal 

 

The broader aim of this thesis focuses on the interaction between co-infection and nutritional 

status in adults. It therefore becomes imperative to investigate an appropriate marker of 

nutritional status in this population group. This chapter then addresses this need, so that the 

findings can inform even future work in the untapped area of impact of co-infection on 

nutritional status.   

 

In view of the interactions between infection, compromised immunity and malnutrition, an 

appropriate indicator of true malnutrition within the milieu of infection, inflammation, 

overweight and obesity, is essential. Notably, the findings of the current study (previous chapter 

publication), where the majority of the participants were overweight and obese point to the 

importance of using reliable assessment methods that can detect nutrient deficiency, especially 

in overweight and obese adults. A biochemical marker for nutritional status in adults that is 

commonly used is albumin. However, albumin is not reliable as there are many possible 

confounders. For example, during inflammation, dehydration and renal disease, albumin is 

redistributed from the intravascular to the extravascular compartments which can be 

misinterpreted as malnutrition from blood assays of albumin. Since obesity causes low-grade 

inflammation (Fronczyk et al. 2014; Castro et al. 2017), it therefore means that albumin may 

not be a reliable marker in detecting malnutrition in obesity. Hence, the second objective of the 

current study aimed to investigate a reliable biochemical marker for nutritional status in adults 

with or without co-infection with HIV and intestinal helminths. Pre-albumin was investigated as 

an indicator that could be used compared to albumin in HIV-intestinal helminths co-infected 

KZN adults, with or without inflammation as indicated by C-reactive proteins (CRP) in 

different body mass index (BMI) categories. Pre-albumin was considered since it has been 

suggested as being more reliable due to its short half-life and its increased sensitivity to changes 

in nutritional status (Gaudiani et al. 2014). It was hypothesized that pre-albumin would be able 

to detect malnutrition in all inflammatory conditions which include infection and obesity.  

To the best of our knowledge, this is the first such study, where CRP, albumin and pre-albumin 

biochemical markers were used in the investigation of nutritional status in the context of HIV-

intestinal helminth co-infection in KZN adults. Part of this work was published as “The 

investigation of the use of prealbumin as a tool for nutritional assessment in adults co-infected 

with HIV and intestinal helminth parasites in KwaZulu-Natal, South Africa”, as follows:  
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5.0 CHAPTER 5 

The immune profile and parasite-specific IgE and IgG4 serological phenotypes of adults 

co-infected with HIV and intestinal helminth parasites in KwaZulu-Natal 

 

The last aspect of this work aims to analyse the interaction between co-infection and the 

immune status in adults, to discern whether co-infection with HIV and intestinal helminths 

results in higher HIV viral load, increased immune activation and increased expression of Th2 

and decreased Th1 cytokine responses, compared to those singly infected and uninfected.  

 

Both HIV and helminth infections lead to constant stimulation of the immune system, which 

triggers chronic immune activation and dysregulated host responses. Furthermore, plausible 

evidence supports the hypothesis that intestinal helminths induce a favourable environment for 

HIV to replicate and spread unabated (Weissman et al. 1996; Alemu et al. 2013; Mkhize-

Kwitshana et al. 2017). High numbers of activated cells may increase the pool of cells available 

for HIV entry and replication, and HIV replicates better in activated than in naïve cells (Dai et 

al. 2009; Chavez et al. 2015). Moreover, chronic intestinal helminthiasis is associated with the 

activation of regulatory networks (Wammes et al. 2016), which augment a generalised immune 

suppression and hyporesponsiveness. This would mean that the co-infection with HIV and 

intestinal helminths may result in a more compromised immune system’s ability to respond to 

HIV, which may lead to the accelerated progression of HIV disease to AIDS. 

 

Despite the strong evidence emerging in helminth infection that demonstrates a characteristic 

strong Th2 and regulatory profile which may inadvertently suppress the essential Th1 HIV 

response (Brady et al. 1999; Figueiredo et al. 2010), others suggest that the regulatory network 

induced by helminths has a beneficial role in the affected host, whereby harmful inflammatory 

responses evoked in atopic and autoimmune diseases are controlled (Brown et al. 2006; 

Salgame et al. 2013). Moreover, helminths can benefit from these regulated responses and 

afford themselves an opportunity for survival within the host (Everts et al. 2010; Boyett and 

Hsieh 2014; Afifi et al. 2015),  

 

In light of this, the current study thus aimed to describe the immune response profile of KZN 

adult individuals singly and dually infected with HIV and intestinal helminths. A manuscript 

preparation for submission for this work titled “The immune profile and parasite-specific IgE 

and IgG4 serological phenotypes of adults co-infected with HIV and intestinal helminth 

parasites in KwaZulu-Natal, South Africa”, as follows:  
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ABSTRACT  

 

Background: A significant proportion of the South African population lives in conditions of 

highly prevalent HIV and intestinal helminth infections, superimposed onto malnutrition and 

poverty. It is suggested that stronger T helper 2 (Th2) responses are elicited in helminthiasis, 

which may significantly suppress T helper 1 (Th1) responses, essential to control HIV infection.  

 

Objective: The current study aims to describe the immune profile of a KZN adult population 

singly and co-infected with HIV and intestinal helminths.  

 

Methods: The immune profile among HIV singly infected; intestinal helminth singly infected 

and HIV-intestinal helminth co-infected participants was described by the differences in the 

levels of immune markers including total lymphocytes, CD4 and CD8 counts, viral load and C-

reactive protein. The differences in the levels of cytokine gene expression of the interferon-

gamma and tumour necrosis-alpha (surrogate markers for Th1 responses); interleukin-4 (for Th2 

responses); IL-10 (for Treg responses) and CD38 activation marker were determined using real 

time PCR. The effect of Ascaris-specific IgE and IgG4 responses on the immune profile among 

intestinal singly and co-infected participants was also described by the differences in the levels 

of the immune markers.  

 

Results: The CD4 counts were lower (p < 0.001) and CD8 counts higher (p < 0.001) in the 

HIV-intestinal helminth co-infected participants compared to the uninfected group. The 

eosinophils were higher in the intestinal helminth singly infected and co-infected groups (p = 

0.015) and the Ascaris-specific IgE (p < 0.001) and IgG4 (p < 0.001) levels were higher in the 

co-infected group. The co-infected participants had higher IFN-γ and TNF-α, higher IL-10 and 

lower IL-4 cytokine gene expression. Furthermore, the co-infected participants with the 

IgEhiIgG4hi helminth infection phenotype had significantly lower CD4 (p = 0.003) and higher 

CD8 counts (p = 0.004) compared to those with the IgEhiIgG4lo phenotype.  

 

Conclusion: The findings highlight the possible potent HIV responses that intestinal helminths 

may induce. This does not support the suggestion that the strong Th2 cytokine and 

immunoregulatory responses that may be induced by intestinal helminths may significantly 

down-regulate Th1 responses, required to control HIV. 
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1. Background 

Sub-Saharan Africa carries a heavy burden of both human immunodeficiency virus (HIV) and  

intestinal helminth infections (World Health Organization 2016b; UNAIDS 2017a), 

superimposed onto malnutrition, which is an additional major public health problem (Food and 

Agriculture Organization 2015). Infections with either HIV or helminths lead to persistent 

activation of the immune system, resulting in progressive impairment of all arms of the host 

immune responses (Borkow and Bentwich 2004). Malnutrition worsens the situation since it 

reduces the competence of the immune system, further predisposing to infections (Katona and 

Katona-Apte 2008; Bourke et al. 2016). Thus, the milieu of HIV, intestinal helminth infections, 

malnutrition and poverty may have an additive impact on the competency of the host immune 

system, which may accelerate the HIV disease (Shey et al. 2015).  

 

HIV infection activates the immune cells through various mechanisms which include the 

signalling through CD4 and the C-C chemokine receptor type 5 (CCR5) and C-X-C chemokine 

receptor type 4 (CXCR4) co-receptors (Boasso et al. 2009; Paiardini and Muller-Trutwin 2013). 

Chronic helminth infection also increases the expression of CCR5 and CXCR4 co-receptors in 

HIV target cells (Hu et al. 2010). Increased expression of these co-receptors at the surface of 

activated CD4+ cells confers increased susceptibility to HIV acquisition and more efficient HIV 

entry (Jaspan et al. 2011; Woodham et al. 2016). HIV also subverts host cell transcription 

factors, such as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) (Booiman et al. 2015; Jiang et al. 2017). These cell 

activation factors promote ease of virus entry and replication in the activated cells (Sokoya et al. 

2017). Furthermore, both HIV and intestinal helminths compromise the integrity of the 

intestinal mucosa which may increase the translocation of microbial products; this further 

contributes to the persistent activation of the immune system and drives perpetual HIV 

pathogenesis (Klatt et al. 2013; Rajamanickam et al. 2017). 

 

Moreover, HIV induces dysregulated host responses which result in depleted effector cells 

(Okoye and Picker 2013). This depletion may be caused by either the virus-induced cytolytic 

responses (Vijayan et al. 2017) or by the inability to effectively replenish naïve and memory 

effector cells due to clonal deletion, resulting from continuous programmed death -1 (PD-1) 

induced apoptosis (Boasso et al. 2009; Fevrier et al. 2011). Notably, an attempt to replenish the 

depleted CD4+ immune cells inadvertently proliferates HIV target cells, which further increases 

the viral load (Paiardini and Muller-Trutwin 2013). On the other hand, helminth eggs and 

excretory/secretory (ES) products released daily persistently stimulate CD4+ and other immune 
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cells (Walson and John-Stewart 2007; Hewitson et al. 2009), which presents a challenge of 

maintaining long-term CD4+ T cell responses (Taylor et al. 2012) which may increase HIV viral 

load (Borkow and Bentwich 2004). 

 

Helminths stimulate stronger T helper 2 (Th2) cytokine responses and they however induce 

complex immunomodulatory T regulatory (Treg) responses to attenuate these hostile Th2 host 

responses, to their benefit (Girgis et al. 2013; McSorley et al. 2013; Johnston et al. 2016). The 

helminth-induced regulatory mechanisms include the secretion of immunosuppressive IL-10 

and transforming growth factor–β1 (TGF- β1) cytokines by activated Treg cells, which ensure 

that the parasites survive and live long within the host (Everts et al. 2010; Boyett and Hsieh 

2014; Afifi et al. 2015). Other down-regulatory molecules which include cytotoxic T 

lymphocyte antigen 4 (CTLA-4) and apoptotic PD-1 (Wammes et al. 2016) also impede the 

production of aberrant adaptive host responses and limit inflammation, thus defy the immune 

exclusion of the intestinal helminths (Weinstock and Elliott 2014). The helminth-induced 

alternatively activated macrophages (AAMs) downregulate Th1 cells, decrease the secretion of 

IL-12 (which promotes strong Th1 responses) and inhibit pro-inflammatory IL-17 (Anthony et 

al. 2007; Cooke 2008; Wang et al. 2008). These modulatory mechanisms that result in anergic 

and hyporesponsive T lymphocyte and other cell-mediated responses, induced to protect the 

parasite, may inadvertently down-regulate Th1 responses, resulting in the dysregulation of cell-

mediated responses required to limit HIV replication (Borkow and Bentwich 2004; Maizels and 

McSorley 2016). Notably, HIV itself induces the upregulation of IL-10, TGF- β cytokines and 

CTLA-4 molecules, which result in hyporesponsive and anergic anti-HIV effector cell responses 

(Borkow and Bentwich 2004; Okoye and Picker 2013; Shey et al. 2015), which may lead to 

rapid progression of HIV. 

 

Since both HIV and helminth single infections persistently activate and modulate the immune 

system, it is thus anticipated that the HIV-intestinal helminth co-infection may result in 

hyporesponsive, dysregulated host responses with apoptosis, leading to continuous depletion of 

both naïve and resting memory CD4+ and CD8+ cells (Li et al. 2014; Prendergast et al. 2015; 

Sokoya et al. 2017). It is hypothesized that the HIV-intestinal helminth co-infection may 

inadvertently result in worsening of both diseases. There is however varying schools of thought 

on whether the typical Th2 cytokine and regulatory profile evoked by helminths have a 

detrimental effect on the HIV Th1 responses, wherein some investigators support this notion 

(Brady et al. 1999; Figueiredo et al. 2010). Others refute this, suggesting rather that the 

helminth-induced regulatory network has a beneficial role, whereby the host cell transcription 
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factors are down-regulated and therefore, may not promote HIV replication (Brown et al. 2006). 

This view suggests that the modulation of immune responses by helminths may slow down the 

HIV progression. Despite these opposing views, we however hypothesize that the chronic HIV-

helminth co-infection may result in weakened immune responses which may increase the viral 

load in the HIV infection, based on the dysregulated host responses that HIV and helminth 

single infections induce. 

 

In South Africa (SA), in spite of the highly prevalent HIV and intestinal helminth infections, 

and the impact each of these single infections have on the immune system, studies on the 

interactions between HIV and helminth single and co-infections with immunity are lacking 

(Mkhize-Kwitshana and Mabaso 2012; Adeleke et al. 2015). The study thus aimed to describe 

the immune profile of adults singly or co-infected with HIV and intestinal helminths in 

KwaZulu-Natal (KZN), a province that has approximately 45% of its population living in the 

milieu of the highest HIV epidemic (Department of Health South Africa 2017), compounded by 

highly prevalent intestinal helminth infections (Kwitshana et al. 2008; Molvik et al. 2017).  

 

2.      Methods 

2.1   Study setting  

The study was conducted in a peri-urban informal area, in the eThekwini Health District, which 

is in the north coast of KwaZulu-Natal (KZN), South Africa. It is situated approximately twenty 

kilometres north-west of eThekwini city centre. It is governed by local government and 

municipal authority. The latest available census data indicate that the area comprises 

approximately 39,000 households with approximately 30% informal settlements (Statistics 

South Africa 2011). Poverty is widespread in this area, with low income households and 

approximately 52% of the population in the area reported to be living below the poverty line 

(Statistics South Africa 2011; eThekwini Municipality 2017). The area has high prevalence of 

HIV, estimated to be 46.2% (Department of Health South Africa 2017). Also, the prevalence of 

intestinal helminths was found in the area to be 20.4 - 59%, with the most common species 

being Ascaris lumbricoides and Trichuris trichiura (Kwitshana et al. 2008; Tronnberg et al. 

2010). There is a substantial fraction of the population that has poor access to facilities in the 

area, with about 22% households not having piped water inside the house and approximately 

25% not having access to flush toilet facility (Statistics South Africa 2012; eThekwini 

Municipality 2017). Approximately 25% of the population either have no income or their 

livelihood depends on government grants with the rest sustained through formal employment, 

informal trading (Statistics South Africa 2011). These poor living conditions may be risk factors 
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to HIV and intestinal helminth infections (Smith Fawzi et al. 2010; Masaku et al. 2017).  The 

study site was selected randomly from a list of six clinics (KwaZulu Natal Health Department: 

The GCIS Unit 2009). It is a primary health care clinic (PHC), providing all essential health 

care services, including HIV counselling and testing (HCT), servicing about 100 attendees per 

day. Two hundred and ninety one potential participants were purposively recruited from the 

study site. The reason for recruiting from an HCT was to make use of the pre- and post-test 

counselling services. The study population consisted mostly of females (91.6%) due to the fact 

that the majority of the clinic attendees were female. A total of 263 eligible participants were 

enrolled into the study. 

 

2.2 Study design, sample size and selection of study participants 

A cross-sectional survey of HIV and intestinal helminths prevalence including the investigation 

of immune profile was conducted between July 2015 and May 2016 in the eThekwini Health 

District. A sample of 263 adults was used to describe the immune profile of adults singly and 

co-infected with HIV and intestinal helminths, comparing with those uninfected. The sample 

size calculation was to detect an effect size of 0.4% of differences in immune status among the 

HIV and helminth singly and dually infected study and control groups with 80% power and 

probability of 95%. The calculation assumed that 30% of adults in KZN are infected with 

parasites, based on the 20.4% - 59% prevalence found on the KZN adults (Kwitshana et al. 

2008). The sample thus included 168 adults uninfected and 95 infected with intestinal 

helminths. 

 

Adults who were 18 years of age and older, not on antiretroviral therapy and not pregnant were 

purposively recruited from the randomly selected PHC. A series of education sessions on 

parasite infections and their impact on immunity and nutritional status were held with the clinic 

attendees. They were also made aware that adults may be infected with intestinal helminth 

parasites as well, not just children. A total of 263 eligible participants were enrolled in the 

study, after giving written informed consent.  

 

2.3 Measures of the immune profile of the study participants 

2.3.1 Diagnosis of HIV status and intestinal helminth infection 

The overall design of the study required that participants be stratified according to their 

infection status, so that the interactions between HIV and intestinal helminth single and co-

infection with immune status were investigated. Hence the participants were tested for HIV as 

well as screened for intestinal helminth parasites, for the purpose of allocating them to either a 
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study or a reference group. Thus the participants were stratified into four groups: 1) HIV singly 

infected, 2) intestinal helminth singly infected, 3) HIV-intestinal helminth co-infected and 4) the 

uninfected, who were a reference group. 

 

HIV testing and diagnosis of intestinal helminth infection are described in detail elsewhere 

(Mkhize et al. 2017). Briefly, microscopy was used to detect the intestinal helminth eggs and/or 

ova. Two stool samples (morning or first stool), collected on two different days (on a Friday and 

a Monday) in universal containers were analysed by two trained personnel. The serological 

levels of Ascaris-specific immunoglobulin-E (IgE) and immunoglobulin-G subclass 4 (IgG4) 

were assayed in serum to supplement the conventional microscopic diagnosis. This was done to 

increase diagnostic sensitivity as well as to elucidate the effect of the different helminth 

infection phenotypes on the immune profile of the intestinal helminth singly and co-infected 

participants (Maizels and Yazdanbakhsh 2003; Adams et al. 2006; Mkhize-Kwitshana et al. 

2011). Thus, in this study, infection with intestinal helminths was defined either by the presence 

of helminth eggs/ova in the stool samples and/or by high serological levels of Ascaris-specific 

IgE and/or IgG4.  

 

2.3.2 Measurement of markers of immune status, viral load and CRP biochemical levels 

The immune profile of the participant groups was assessed using levels of CD4/CD3/CD8 T cell 

sub-types immune markers using the Multitest kit on a four-parameter FACS Calibur flow 

cytometer (Becton Dickson, USA). Viral load was quantified only for those who were singly or 

co-infected with HIV, using the automated COBAS Amplicor HIV-1 Monitor Test V1.5 (Roche 

Molecular Systems, USA). C-reactive protein (CRP) biochemical levels were measured by a 

spectrophotometric auto-analyser, to describe the inflammatory status among the participants.  

 

2.3.3 Levels of gene expression of Th1, Th2, Treg cytokines and CD38 activation marker 

To further describe the immune profile of the participants, a sub-sample (n = 60) was selected, 

for real time polymerase chain reaction (PCR) work, to determine the levels of expression of 

cytokine genes among the HIV singly infected, intestinal helminth singly infected, HIV- 

intestinal helminth co-infected and uninfected participants (Figure 1). The selection of this sub-

sample was based on availability and quality of the samples for the PCR downstream 

preliminary analysis. Messenger- ribonucleic acid (mRNA) levels of the Th1, Th2, Treg and 

CD38 cytokine genes were determined. Interferon-gamma and tumour necrosis factor-alpha 

were used as surrogate markers for Th1 responses; interleukin-4, used as a marker for Th2 

responses; IL-10 for Treg responses and CD38 used as a marker of activation.  
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Furthermore, of the sixty samples selected, a sub-sample of participants (n = 56) were stratified 

according to the serological helminth phenotypes, irrespective of whether helminth eggs were 

detected or not, into sub-groups: 1) IgEloIgG4lo, 2) IgEhiIgG4lo, 3) IgEhiIgG4hi, and 4) 

IgEloIgG4hi (Figure 2). A small proportion of the intestinal helminth singly infected participants 

(n = 4) were excluded from the analysis, due to the small number of the phenotypes: 

(IgEloIgG4hi: n = 3 and IgEhiIgG4hi: n = 1). Notably, there were no participants in the HIV- 

intestinal helminth co-infected group who had the IgEloIgG4hi helminth phenotype.  

 

 

Figure 1: The stratification of HIV singly infected, intestinal helminth singly infected, 

HIV-intestinal helminth co-infected and uninfected participants  
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The sample preparation for RNA isolation, quantification and analysis using real-time PCR was 

conducted in the HIV Pathogenesis Programme (HPP) Laboratory, at UKZN, Durban. The 

methods used in the quantification of the cytokine genes expression assays using quantitative 

PCR were standardized in the laboratory (Singh et al. 2011). 

 

RNA isolation and analysis 

Each of the selected samples were prepared by adding 1 X RBC lysis solution (Qiagen, 

Germany), and were stored in RLT buffer from an RNA extraction kit (RNeasy kit; Qiagen, 

Germany) in a -800C freezer. RNA was then extracted immediately after thawing of the 

samples, using the RNeasy kit according to the manufacturer’s instructions. The total RNA 

concentration was quantified, and the samples were used only if the optical density (OD260) 

/OD280 ratio was 1.90 or higher. All RNA samples were DNase treated (Thermo Fisher 

Scientific Inc., USA). One microgram of total RNA from each sample was reverse transcribed 

by using the iScript cDNA synthesis kit (Bio-Rad, USA) following the manufacturer’s 

instructions. The samples that were selected for analysis were those with optical density 

(OD260)/ OD280 ratio of 1.90 or higher, which showed purity of the cDNA, using a Nanodrop.  

 

RNA quantification of cytokine genes by real-time PCR 

The PCR primers and cycling conditions used for IFN-γ, TNF-α, IL-4, IL-10 and CD38 

cytokine genes real-time quantitative PCR were validated in the laboratory and are provided in 

Table 1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined to be the most 

suitable reference gene among the five genes based on PCR efficiency of 87% (Singh et al. 

2011). Each PCR mixture, added into each tube was comprised of 0.5pmol/µl for primer 1 

(forward template) and primer 2 (reverse template) for IFN-γ, TNF-α, IL-4, IL-10 and CD38 or 

0.25pmol/ µl for each forward and reverse primer for GAPDH; 5µl SYBR green 1 master mix 

(2x) (Roche), 1µg cDNA, and RNAse-free water to 10µl. Positive and negative controls were 

included, which were the GAPDH housekeeping gene and PCR-grade water with no cDNA 

added, respectively. The samples in a PCR 96-well plate were run in duplicate on a Roche 

Light-Cycler 480 version 1.5 instrument (Roche Diagnostics), with 1 cycle at 950C for 10 

minutes, followed by 45 cycles consisting of denaturation, annealing, and extension steps (Table 

1). Detection of the fluorescent products was carried out at the end of the 720C extension period. 

To confirm amplification specificity, the PCR products were subjected to a melting-curve 

analysis. Standard curves were generated using the Universal Human Reference RNA 

(Stratagene, USA) for quantitative analysis and also to determine the concentration of the 

unknown samples, reported as ratio of the unknown gene over GAPDH. 
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Table 1: The PCR primers and cycling conditions used in the cytokine gene expression 

real-time quantitative PCR 
 

Gene GenBank  

accession no 

Sequence (5′-3′)* Cycling conditions (denaturation, 

annealing and extension) 

IFN-γ NM_000619 5′-TCGGTAACTGACTTGAATGTCCA-3′ (F) 

5′-TCGCTTCCCTGTTTTAGCTGC-3′ (R) 

950Cfor 30s, 600C for 30s, and 

720C for 30s  

 

TNF-α NM_006291 5′-GGCCAATGTGAGGGAGTTGAT-3′ (F) 

5′-CCCGCTTTATCTGTGACCC-3′ (R) 

950Cfor 30s, 550C for 30s, and 

720C for 30s 

 

IL-4 NM_172374 5′-GCCAAGACCCCTTCGAGAAAT-3′ (F) 

5′-CCGATCCTGTTATCTGCCTCC-3′ (R) 

950Cfor 30s, 600C for 30s, and 

720C for 30s 

 

IL-10 NM_000572 5′-GACTTTAAGGGTTACCTGGGTTG-3′ (F) 

5′-TCACATGCGCCTTGATGTCTG-3′ (R) 

950Cfor 30s, 600C for 30s, and 

720C for 30s 

 

CD38 NM_001775 5′-CAACTCTGTCTTGGCGTCAGT-3′ (F) 

5′-CCCATACACTTTGGCAGTCTACA-3′ (R) 

950Cfor 30s, 600C for 30s, and 

720C for 30s 

 

GAPDH NM_002046 5′-AAGGTCGGAGTCAACGGATT-3′ (F) 

5′-CTCCTGGAAGATGGTGATGG-3′ (R) 

950Cfor 30s, 650C for 30s, and 

720C for 30s 

*F: forward; R: reverse 

 

2.4 Statistical data analysis 

Summary statistics (mean, medians, frequencies and percentages) were used to describe the 

immune profile (lymphocyte subsets and cytokine levels) and intestinal helminth serology 

phenotypes (Ascaris-specific IgE and IgG4) of the participants. All gene expression data (the 

messenger-ribonucleic acid (mRNA) levels) were log transformed to ensure normality. The 

association between helminth infection phenotypes: (1) IgEhiIgG4lo and (2) IgEhiIgG4hi and the 

immune profile among the intestinal helminth singly infected and the HIV-intestinal helminth 

co-infected participants was also assessed. A small proportion of the intestinal helminth singly 

infected participants (n = 4) were excluded from the analysis, due to the small number of the 

phenotypes, IgEloIgG4hi: n = 3 and IgEhiIgG4hi: n = 1. Groups singly or co-infected with HIV 

and intestinal helminth parasites, with or without helminth infection phenotypes, and those 

uninfected were compared using the Kruskal-Wallis test. Median mRNA expression levels 

between HIV singly infected, intestinal helminth singly infected, HIV-intestinal helminth co-

infected and uninfected groups were compared using unpaired t test. The differences with the p 

value of ≤ 0.05 and 95% confidence interval (CI) were considered statistically significant. Data 

was analysed using SPSS version 25 (IBM Corporation., USA) and GraphPad Prism version 

5.01 (GraphPad Software, Inc., USA).   

 

2.5  Ethical considerations 

Ethical approval to conduct the study was obtained from University of KwaZulu-Natal 

Biomedical Research Committee (BREC Ref: BE 230/14). Permission to conduct the study was 
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granted by the Provincial and eThekwini Health District office and the KZN Provincial 

Department of Health as well as the local political authorities. 

 

The HIV infected participants who had CD4 counts below 350 cells/µl (n = 28) were referred to 

the primary health care clinic (PHC), and were excluded from participating in the study as per 

the ethical directive of protection of vulnerable individuals such as very sick or severely 

immunocompromised. In addition, the participants who were found to be infected with 

helminths were referred to the clinic for antihelminthic treatment. 

 

3. Results 

3.1 Characteristics of the study sample 

Of the 263 participants, the mean age was 36 years, and the majority of the study participants 

were female (91.6%). Overall, the prevalence of HIV was 36.1% with 23.6% HIV singly 

infected and 12.5% co-infected with intestinal helminths. Similarly, the prevalence of intestinal 

helminths was 36.1%, based on stool and Ascaris-specific IgE and IgG4 serology. The species 

detected in the participants who were diagnosed with helminthiasis by eggs/ova in their stool 

samples (n = 31), were Ascaris lumbricoides (80.6%) and Trichuris trichiura (12.9%) and 6.5% 

were infected with both intestinal helminth species. The serological diagnosis revealed a 

prevalence of 24.3% compared to that diagnosed by eggs/ova detection positivity only, which 

was 6.5%. 

 

The HIV-intestinal helminth co-infected and the HIV infected participants were generally 

younger than the rest of the groups, with mean age of 30.5 and 32.9 years respectively. The 

intestinal helminth infected participants were older, with mean age of 41.6 years. Furthermore, a 

higher proportion of uninfected participants were observed to be overweight and obese (body 

mass index of ≥ 30 kg/m2) compared to the other participant groups, although with no statistical 

significance (p = 0.097).  

 

3.2 The immune profile of the study participants 

Table 2 shows the comparison of the immune markers (total T lymphocytes, CD4, CD8, CD3 

and eosinophil counts), Ascaris-specific antibody levels, viral load and CRP among HIV and 

intestinal helminth singly and co-infected individuals. Although within reference ranges, the 

mean levels of immune markers varied across the participant groups. However, the comparison 

may have been affected by the small sample size among the study groups. Overall, the CD4 

counts were significantly lower (p < 0.001) in the HIV singly infected and HIV-intestinal 
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helminth co-infected participants [649.8 (242.8); 729.0 (283.5)] compared to those of the 

uninfected participants [973.4 (296.3)].  The CD8 counts were significantly higher (p < 0.001) 

in the HIV singly infected and HIV-intestinal helminth co-infected participants [1059.7 (451.2); 

1127.9 (634.5)] compared to those of the uninfected participants [682.15 (369.4)]. The 

lymphocyte counts were significantly lower (p = 0.025) in the HIV infected group [2.12 (0.59)] 

compared to the uninfected participants [2.28 (0.64)] and the eosinophil counts were 

significantly higher (p = 0.015) in the intestinal helminth singly and co-infected groups [0.30 

(0.28); 0.40 (0.50)] compared to the uninfected participants [0.18 (0.16)]. The Ascaris-specific 

IgE (p < 0.001) and IgG4 (p < 0.001) antibodies were significantly higher in the co-infected 

group [2.51 (5.15) and 0.787 (3.125)] compared to the intestinal helminth singly infected group 

[1.72 (3.51) and 0.096 (0.131)]. The HIV viral load was lower in the co-infected participants 

compared to those singly infected with HIV, although with no statistical significance (p = 

0.496). The CRP levels were higher than the reference range in all participant groups, although 

with no statistical significance (p = 0.290).  

 

Table 2: The profile of immunological markers indicating the differences among HIV singly 

infected, intestinal helminth singly infected, HIV-intestinal helminth co-infected and uninfected 

participants (n = 263) 

*p-value significant at p < 0.05; §The HIV viral load was only assayed for participants who were singly or co-infected 

with HIV 

 

 

Immune 

markers 

 mean (SD) 

Reference 

range 

Uninfected  

(n=106) 

HIV infected 

(n=62) 

Intestinal 

helminth 

infected (n=62) 

HIV-intestinal 

helminth  

co-infected (n=33) 

p-

value* 

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) 

CD4 count 
(cells/µl) 

404 – 1612 973.4 (296.3) 649.8 (242.8) 1014.0 (322.2) 729.0 (283.5) <0.001 

CD8 count 

(cells/µl) 

220 – 1129 682.15 (369.4) 1059.7 (451.2) 671.4 (294.1) 1127.9 (634.5) <0.001 

CD3 count 
(cells/µl) 

723 – 2737 1714.7 (554.1) 1771.1 (538.4) 1746.3 (556.2) 1931.3 (754.4) 0.496 

HIV viral load 

(copies/ml)§ 

  58093.38 (243288.2)  12288.15 (28898.9) 0.496 

Lymphocyte 

count (X 109/l) 

1.5 – 4.0 2.28 (0.64) 2.12 (0.59) 2.46 (0.97) 2.46 (0.89) 0.025 

Eosinophil 

count (X 109/l) 

0.04 – 4.0 0.18 (0.16) 0.18 (0.15) 0.30 (0.28) 0.40 (0.50) 0.015 

Ascaris-

specific IgE 
(kU/l)  

below 0.35  0.08 (0.08) 0.07 (0.09) 1.72 (3.51) 2.51 (5.15) <0.001 

Ascaris-

specific IgG4 
(mgA/l) 

below 0.15  0.015 (0.018) 0.020 (0.032) 0.096 (0.131) 0.787 (3.125) <0.001 

C-reactive 

protein (mg/l) 

0 – 5 7.1 (11.3) 5.2 (7.1) 5.7 (10.7) 6.8 (12.4) 0.290 
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Figure 3 A-E shows the comparison of immune cytokine profiles among HIV singly infected, 

intestinal helminth singly infected, HIV-intestinal helminth co-infected and uninfected 

individuals. The results revealed that the HIV-intestinal helminth co-infected participants had 

significantly higher expression of IFN-γ and TNF-α cytokine genes (Th1 responses), lower IL-4 

gene expression (Th2 response) and higher IL-10 expressed gene levels (Treg response). 

Notably, the intestinal helminth singly infected individuals showed lower levels of IL-4 gene 

expression. Furthermore, there was no significant difference in the levels of gene expression of 

the CD38 activation marker across all the participant groups. 
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Figure 3 A-C: Comparison of the mRNA levels of cytokine genes for the Th1, Th2, Treg and CD38 

responses among HIV singly infected, intestinal helminth singly infected, HIV-intestinal helminth 

co-infected and uninfected participants using unpaired t-test. (A) and (B) depicts expression of IFN-

γ and TNF-α which were used as surrogate markers of Th1 responses, (C) expression of IL-4, used 

as surrogate marker of Th2 responses, (D) expression of IL-10, used as surrogate marker of Treg 

responses, and (E) expression of CD38, used as surrogate marker of activation. Data are depicted as 

the normalised ratios of IFN-γ, TNF-α, IL-4, IL-10 and CD38 to GAPDH. 

 

 



83 

 

Table 3 shows comparison of the immune markers and CRP among intestinal helminth singly 

and co-infected participant groups with different helminth infection phenotypes. Both the HIV- 

intestinal helminth co-infected sub-groups with IgEhiIgG4lo and IgEhiIgG4hi helminth infection 

phenotypes had significantly lower median CD4 counts compared to the uninfected group 

[759.5 (387-1151); 607.0 (438-1109)] vs 881 (657-1268)] (p = 0.003). This indicates that 

among the co-infected participants, the sub-group with the IgEhiIgG4hi helminth infection 

phenotype had lower CD4 counts compared to those with the IgEhiIgG4lo phenotype. 

Furthermore, both the co-infected sub-groups had higher CD8 counts, with higher counts 

observed in the IgEhiIgG4hi helminth infection phenotype [1091.0 (606-2034)] compared to 

those with the IgEhiIgG4lo phenotype [901.0 (265-3500)] (p = 0.004).  

 

The eosinophil counts were higher in the intestinal helminth infected group compared to the co-

infected sub-groups, although with no statistical significance (p = 0.408). The co-infected sub-

group with the IgEhiIgG4hi helminth infection phenotype had a higher eosinophil count than the 

co-infected sub-group with the IgEhiIgG4lo helminth infection phenotype. Although with no 

statistical significance, the co-infected participants with the IgEhiIgG4hi helminth infection 

phenotype had higher Ascaris-specific IgE (p = 0.164) and IgG4 levels (p = 0.438).  

 

Table 3: Immune markers, biochemical and haematological indicators of immune status among the 

intestinal helminth singly infected and HIV-intestinal helminth co-infected with IgEhiIgG4lo and 

with IgEhiIgG4hi helminth infection phenotypes 

 
Participant groups 

(n=46) 

Reference 

range 

Uninfected 

IgEloIgG4lo 

(n=11) 

Intestinal helminth 

infected IgEhiIgG4lo 

(n=12) 

HIV-intestinal helminth 

co-infected IgEhiIgG4lo 

(n=16) 

HIV-intestinal 

helminth co-infected  

IgEhiIgG4hi (n=7) 

p-

value* 

Median (minimum – maximum) 

CD4 count  

(cells/µl) 

404-1612 881 (657-1268) 1093.5 (353-1732) 759.5 (387-1151) 607.0 (438-1109) 0.003 

CD8 count 

(cells/µl) 

220-1129 464 (274-1381) 621.5 (223-1368) 901.0 (265-3500) 1091.0 (606-2034) 0.004 

CD3 count  

(cells/µl) 

723-2737 1388 (1118-2794) 1767 (606-2856) 1864.5 (782-4714) 1804.0 (1558-2501) 0.272 

Lymphocytes  

(X 109/l) 

1.5- 4.0 2.05 (1.25-3.43) 2.37 (1.69-3.67) 2.46 (1.02-5.35) 2.45 (2.05-3.07) 0.242 

Eosinophils  

(X 109/l) 

0.04- 4.0 0.13 (0.03-0.81) 0.44 (0.13-0.76) 0.23 (0.01-1.73) 0.37 (0.07-1.83) 0.408 

Ascaris- 

specific IgE  

(kU/l) 

below 0.35 0.04 (0.0-0.16) 0.735 (0.36-4.66) 1.055 (0.37-3.52) 2.87 (0.43-29.5) 0.164 

Ascaris-  

specific IgG4 

(mgA/l) 

below 0.15 0.01 (0.0-0.06) 0.030 (0.0-0.14) 0.02 (0.01-0.05) 0.47 (0.16-17.7) 0.438 

CRP (mg/l) 

 

0 – 5 3.1 (0.0-12.6) 3.6 (0.0-13.8) 2.90 (0.0-23.0) 4.6 (1-63.5) 0.486 

*p-value significant at p < 0.05 
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Further analysis which differentiated the medians of the immune markers was done, to elucidate 

the effect of the helminth infection phenotypes between both the HIV-intestinal helminth co-

infected sub-groups with IgEhiIgG4lo and IgEhiIgG4hi helminth infection phenotypes compared 

to the uninfected group (Figure 4 A-G). Furthermore, the viral load was compared between both 

the co-infected sub-groups with IgEhiIgG4lo and IgEhiIgG4hi helminth infection phenotypes 

compared to the HIV singly infected group (Figure 4H). The analysis revealed that, compared to 

the intestinal helminth singly infected group with IgEhiIgG4lo helminth infection phenotype, the 

co-infected group with IgEhiIgG4hi helminth infection phenotype had lower CD4 counts (p = 

0.077), higher CD8 counts (p = 0.06), significantly higher Ascaris-specific IgE (p < 0.001) and 

IgG4 levels (p < 0.001), higher CRP levels (p = 0.470) and higher viral load (p = 0.974).  
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Figure 4: Boxplots indicating the differences in the immune profile of the HIV-intestinal helminth 

co-infected participants, comparing the medians of immune markers between the intestinal 

helminth singly infected and the co-infected participants with the IgEhiIgG4lo with those co-infected 

with the IgEhiIgG4hi helminth infection phenotypes, using the Kruskal Wallis ANOVA comparison 

of phenotypes against the uninfected group used as a control (A to G).  The HIV singly infected 

group was used as a control for the differences in the viral load (H). 
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Discussion 

In light of the cumulative effects that the HIV and intestinal helminth single infections has on 

the immune system of affected hosts, and in the backdrop of a high proportion of individuals 

predisposed to these infections in South Africa, the current study aimed to characterise the 

immune profile of the HIV and intestinal helminths co-infected adult population in KZN, South 

Africa. The results showed that in this adult population, a significant proportion of the intestinal 

helminth singly infected participants (36.1%) with a mean age of 42 years, were infected with 

Ascaris lumbricoides and Trichuris trichiura intestinal helminths. This highlights the fact that 

intestinal helminths may infect adults in higher proportions, contrary to the notion that they 

predominantly affect school-children (Arinola et al. 2015a). The results further showed that 

those participants singly or co-infected with HIV were generally younger, with a mean age of 

30.5 and 32.9 years, respectively. This finding is relatively similar to the findings of the South 

African national survey on HIV where the highest HIV prevalence was observed in the 35 to 39 

year old age group, especially among females (Simbayi et al. 2018).  

 

The study characterised the immune profile of individuals singly and co-infected with HIV and 

intestinal helminths, and found that the co-infected participants had low CD4 and high CD8 

counts compared to the uninfected group. Both HIV and helminth single infections have been 

associated with reduced CD4 and increased CD8 counts (Borkow and Bentwich 2004; Means et 

al. 2016; Morawski et al. 2017). HIV infected individuals were also observed with significantly 

lower CD4 counts, higher CD8 counts as well as a higher viral load, which is a documented 

hallmark of HIV infection (Ndumbi et al. 2014; McBride and Striker 2017; Trickey et al. 2017). 

The findings also showed that the intestinal helminth singly infected group had the highest CD4 

counts compared to the rest of the infected groups, including those uninfected. This may be 

attributed to the observed eosinophilia in the intestinal helminth singly and dually infected 

participants. Helminths are classic inducers of eosinophils, and they express CD4 molecules 

upon activation (Hartnell et al. 1993). 

 

Further analysis revealed that HIV-intestinal helminth co-infected participants had increased 

levels of expression for IFN-γ and TNF-α cytokines, reduced expression levels for IL -4 and 

increased IL-10 cytokine gene expression, which is a typical antiviral cytokine profile (Janeway 

et al. 2001). The reduced IL-4 levels would possibly promote antiviral Th1 responses, since 

Th2-derived IL-4 mediates the attenuation of inflammatory Th1 responses (Mitchell et al. 

2017). The lower viral load in HIV-intestinal helminth co-infected individuals may explain this 

response compared to HIV singly infected individuals. This was contrary to Mulu et al. (2013) 
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who observed a higher viral load in co-infected individuals compared to those who were singly 

infected with HIV. However, in agreement with current findings, (Roberts et al. 2010) 

associated lower HIV viral load set-point with higher levels of IFN-γ cytokines. 

 

Our observation of increased Th1 cytokine responses and reduced Th2 cytokine responses with 

increased Treg responses in co-infected participants may not fully support the hypothesis that 

helminth infection evokes stronger Th2 with immunoregulatory responses, which may suppress 

Th1 responses. It is documented that helminths induce strong Th2 responses that result in the 

production of cytokines such as IL-4, IL-5, IL-10 and IL-13, with increased activation of Th2 

effector cells including eosinophils, mast cells, basophils and increased IgE and IgG4 antibody 

production (Anthony et al. 2007; Figueiredo et al. 2010; Abdoli and Pirestani 2014; Arinola et 

al. 2015a). Instead, in the current study the co-infection was associated with increased Th1 

responses and reduced Th2 cytokine response, albeit increased Th2 effector responses which 

included eosinophilia and high IgE and IgG4 antibody levels. This discrepant result of low IL-4 

gene expression and eosinophilia with high antibody levels cannot be explained. 

 

Furthermore, when the effect of the helminth infection phenotypes on the immune profile of 

intestinal helminth singly and HIV-intestinal helminth co-infected participants was analysed, the 

key finding was significantly lower CD4 and higher CD8 counts in the co-infected participants 

with the IgEhiIgG4hi helminth infection phenotype compared to the co-infected group with the 

IgEhiIgG4lo helminth infection phenotype. For the purpose of down-regulating the aberrant Th2 

responses helminths induce the production of high IgG4 antibodies, which suppress the 

inflammatory activity of IgE antibodies (McSorley and Maizels 2012) and thus counteract the 

host-protective physiological responses of IgE (Maizels and Yazdanbakhsh 2003; Fitzsimmons 

et al. 2014). In support, Jiz et al. (2009) found that individuals who had both IgE and IgG4 

responses had increased intensity of helminth re-infection as opposed to those who mounted 

sole IgE responses, who were able to resist re-infection. The majority of the participants in the 

current study had moderate intestinal helminth infections and only two participants had heavy 

infections (a grading of more than 400 eggs per gram of stool using the Kato Katz and 

MiniParasep methods (Ng'etich et al. 2016; Barenbold et al. 2017)). This could be explained by 

the fact that participants were adults and it is reported that generally adults usually present with 

moderate infections (Hall et al. 2008). Furthermore, the co-infected participants were observed 

with high levels of expressed IL-10 cytokine genes. The production of IgG4 while suppressing 

IgE in helminth infection is induced and regulated by IL-10 (Figueiredo et al. 2010; Girgis et al. 

2013; Filbey et al. 2014; Maizels and McSorley 2016). 
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The current study did not find any evidence of immune activation or the presence of 

inflammation in HIV-intestinal helminth co-infected participants, as would be defined by high 

CD38 cytokine gene expression and/or elevated CRP levels respectively. Instead, CRP levels 

and expressed CD38 cytokine gene levels were not significantly different across all the 

participant groups, including those uninfected. This finding was not expected, as it was contrary 

to the findings of others, where untreated HIV infected individuals showed evidence of HIV-

induced immune activation, shown by increased CD38 levels (Manjati et al. 2016). High 

expression of CD38 levels, even though assayed alone or in combination with HLA-DR have 

been reported to indicate an activated immune system (Meditz et al. 2011). Both HIV and 

helminth single infections are associated with immune activation and/or inflammation 

(Chachage et al. 2014; d'Ettorre et al. 2014; Sereti et al. 2016). The cause for this discrepant 

result cannot be explained. 

 

Limitations 

Due to the cross-sectional design, this study could not establish causality and was limited to 

determining the immune profile and the effect of the helminth infection phenotypes on the 

responses among HIV and intestinal helminth singly and co-infected individuals. The findings 

provided a “snapshot” of the interactions between HIV and intestinal helminth single and co-

infections with immunity in the cohort investigated. The purposive recruitment of the 

participants could not allow to make findings generalizable. The majority of the study 

participants were female. This was due to the fact that by default the most of the clinic attendees 

were female, recruited from a single primary health care clinic. This is a limitation.  

Furthermore, it may have introduced bias due to the physiological variation of gene expression 

patterns and other immune markers within the different genders.  

 

Although the sample size was calculated appropriately for power prior to the commencement of 

the investigation, the design of the study which stratified the participants by infection status 

resulted in small numbers in the infection groups and sub-groups. Furthermore, the small 

sample size, more so in the helminth infection phenotype sub-groups may have resulted in the 

inability to detect significant differences in CRP and viral load among the HIV-intestinal 

helminth co-infected sub-groups. In addition, the inability to analyse the effect of the 

IgEloIgG4hi helminth infection phenotype, referred to as the modified Th2 cell response 

phenotype on the immune profile (Maizels and Yazdanbakhsh 2003; Maizels et al. 2004) due to 

small numbers was another limitation. However, the observation of low CD4 counts in co-
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infected individuals with IgEhiIgG4hi helminth infection phenotype is an important finding that 

requires further exploration. 

 

The inability to determine significant associations between HIV and intestinal helminths single 

and co-infection with CD38 gene expression and CRP, so as to indicate the levels of immune 

activation among the study groups was a limitation. It was hypothesized that the activation 

levels would be high based on the fact that both chronic HIV and helminths single infections 

induce immune activation. Another limitation was the inability to assay for the genetic level of 

expression for HLA-DR to validate the CD38 result due to budgetary limitations. The inability 

to determine the association between co-infection with HIV and intestinal helminths and the 

cytokine expression by assaying for intracellular or plasma cytokine levels using flow 

cytometry was a limitation. Due to costs of the analytical tests and the budgetary limitations, to 

only be able to analyse a limited number of samples for cytokine gene expression was another 

limitation. These limitations may have played a role in the study hypothesis not being 

completely supported by the current findings. In particular, the possible antiviral cytokine 

profile associated with co-infection was an important finding that may require further 

interrogation.  

 

The study did not determine the infection intensity of the intestinal helminths, to be able to 

correlate the parasite-specific antibody levels and the helminth infection phenotypes. This was a 

limitation. The design of this investigation could not establish the stages of both HIV and 

intestinal helminth infections among the study participants, whether primary or chronic and thus 

the analysis included all in the same group. This resulted in the inability to decipher whether the 

responses were according to the disease stage. It was not feasible to determine the role played 

by the differences brought about by the stage of the disease, in particular the levels of 

expression of the cytokine genes, especially the lower IL-4 gene expression in the helminth 

singly infected individuals. The low levels of IL-4 cytokine gene expression in helminth singly 

infected participants cannot be explained.  

 

Furthermore, a small proportion of the intestinal helminth singly infected participants (n = 4) 

was excluded from the analysis of the effect of helminth responses on the immune profile, due 

to the small numbers of the helminth infection phenotypes: (IgEloIgG4hi: n = 3 and IgEhiIgG4hi: 

n = 1); this was a limitation and it may have introduced bias. The results therefore could not 

provide conclusive interpretations. In addition, the inability to analyse the effect of the presence 

or absence of eggs as well as the effect of the IgEloIgG4hi helminth infection phenotype on the 
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immune profile was a limitation. This may have indicated what the effect of helminth responses 

that trigger the sole production of high immunoregulatory IgG4 levels would have been on the 

immune profile of co-infected individuals. 

 

Nevertheless, despite these mentioned limitations, this however is the first such study that has 

been conducted in a KZN adult population wherein the impact of the HIV and intestinal 

helminth single and co-infection and the effect of the helminth infection phenotypes on the 

immune profile of individuals singly and co-infected with HIV and intestinal helminths was 

assessed. This study highlights an area in research that requires more attention: the interaction 

of HIV-intestinal helminth co-infection with immunity and the effect the responses to intestinal 

helminths have in the face of competent immune responses. Future prospective studies should 

be longitudinal in design and community based, with randomised sampling and large sample 

sizes. Furthermore, longitudinal studies that may determine changes in immune responses after 

effective antihelminthic treatment are recommended. 

 

Concluding remarks 

Notwithstanding the limitations of the sample size, the gender and selection bias, however the 

findings from the study suggest possible potent HIV responses that intestinal helminths may 

induce. The study findings do not support the hypothesis that suggests that intestinal helminths 

induce a stronger Th2 response, which may significantly suppress Th1 responses that are 

essential to control HIV.  

 

On the other hand, the study highlights the usefulness of including serological intestinal 

helminth infection phenotypes using parasite-specific IgE and IgG4 antibody levels when 

investigating the interactions of the HIV and intestinal helminth single and co-infection with 

immune status. The simultaneous increase in both Ascaris-specific IgE and IgG4 antibodies in 

the co-infection was associated with an immune profile of lower CD4 and higher CD8 counts, 

which as the disease progresses the effector cell responses required to limit HIV may weaken. 

 

Future studies should interrogate the possible potent HIV responses that intestinal helminths 

may induce when they attenuate the Th2 cytokine responses. Furthermore, the influence of the 

intestinal helminth infection phenotypes on the levels of expression of Th1, Th2, and Treg 

cytokine genes must be explored, to elucidate the responses associated with HIV-intestinal 

helminth co-infection and the intensity of the intestinal helminth infection. These studies should 

be longitudinal in design, with large sample sizes. 
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6.0 CHAPTER 6 

Synthesis, conclusion and recommendations 

 

6.1 Synthesis 

Despite global efforts to eliminate the highly prevalent HIV epidemic, strategies to curb new 

infection and HIV-related deaths are still met with challenges especially in resource-limited 

settings, with no immediate availability of a cure or vaccine (Kharsany and Karim 2016). 

Notwithstanding the challenges of this global epidemic, great strides have been made regarding 

the control of HIV infection in particular, in the southern region of sub-Saharan Africa, which is 

the epicentre of this disease. These strategies include and are not limited to declines in new 

infections (UNAIDS 2017b), decreased mortality rates and widespread antiretroviral coverage 

(Mutevedzi and Newell 2014). The fact that there are factors that promote HIV transmission and 

entry into target cells, illustrates that HIV infection may be enabled. These factors include 

sexually transmitted infections (Ward and Ronn 2010) due to inadequate condom use for 

cultural and socio-economic reasons (Sarkar 2008); as well as cultural and poor socio-economic 

reasons including malnutrition (Muula 2008; Oramasionwu et al. 2011). Hence, it is 

recommended that the enablers of HIV transmission and acquisition should be investigated and 

addressed (Temah 2009). 

 

The geographic overlap between HIV and intestinal helminth infections occurs, especially in 

poor communities, where malnutrition also co-exists (Amare et al. 2015) and thus a significant 

proportion of individuals is expected to be co-infected with HIV and intestinal helminths in 

these communities. Intestinal helminth infection is one of the promoters of HIV transmission 

due to the helminth-induced epithelial damage resulting in inflammation in the genital and 

gastrointestinal tracts, which persistently activates the immune system and also modulates the 

same immune responses (Mbabazi et al. 2011). The modulation of the immune system is to 

favour the chronic existence of the parasite within the host. The chronic activation of the Th2 

immune responses may result in dysregulated and weakened Th1 responses (Salgame et al. 

2013), whereas potent Th1 responses are required particularly to control HIV (Means et al. 

2016). In addition, the constantly activated immune system facilitates HIV entry and replication 

more efficiently in the activated CD4+ and other target cells, which further exacerbates HIV 

progression (Jaspan et al. 2011; Chachage et al. 2014; Woodham et al. 2016). To compound the 

disease challenge in the HIV-intestinal helminth co-infection, HIV infection is known to induce 

dysregulated responses as well (Sonnenberg and Artis 2015; Vijayan et al. 2017). However, 

much attention by policymakers and funders is afforded to the HIV epidemic, whilst the 
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infection with helminths remains largely a neglected disease. Notably, Farrell et al. (2018) 

recommends that the World Health Organization guidelines on antihelminthic therapy must 

ensure that it is community-wide and that adults are included in the treatment programmes as 

opposed to only targeting to school-children. Furthermore, neglecting to investigate the effect of 

intestinal helminth infection in promoting and perpetuating HIV transmission and acquisition is 

a concern and we are of a strong view that it should be given due consideration and attention. In 

lieu of the fact that both HIV and intestinal helminth single infections have a negative effect on 

the immune system and they induce hyporesponsiveness, therefore the thinking was that the 

HIV-intestinal helminth co-infection may have a more deleterious effect on the immune system, 

resulting in exacerbated HIV progression.  

 

In addition, both HIV and intestinal helminths single infection have a negative effect on the 

nutritional status in affected individuals, which may worsen the already compromised immune 

system. HIV infection affects food intake, nutrient absorption and metabolic processes due to its 

damage of the gastrointestinal tract (GIT) (Katona and Katona-Apte 2008; Ivers et al. 2009; 

Gedle et al. 2015). Likewise intestinal helminth infection may result in malnutrition due to GIT 

injury when the parasite breaks into the intestinal epithelial barrier for either maturation or for 

feeding purposes, resulting in nutrient malabsorption (Gentile and King 2018). It is well known 

that malnutrition lowers the potency of immune response required for the control of HIV 

infection, which may result in its progression (Saeed et al. 2016). Malnutrition interferes with 

resistance to infectious disease by affecting both the cell mediated and humoral arms of the 

immune system (Krawinkel 2012), which may further propagate the immunodeficiency and 

worsen the HIV-intestinal helminth disease outcome. Hence, the current study aimed to 

investigate the interaction between HIV and intestinal helminth co-infection with nutrition and 

immunity in an adult population in KZN. The study expectations were that adults who are co-

infected with HIV and intestinal helminths would have lower levels of micro- and macro-

nutrients, higher HIV viral loads, increased immune activation, increased gene expression of 

Th2 and decreased Th1 cytokine responses compared to those singly infected and  those 

uninfected with HIV and intestinal helminths.  

  

The first objective of the study was expected to test the hypothesis that the HIV-intestinal 

helminth co-infection would have a deleterious effect on the nutritional status of infected 

individuals. The co-infected individuals were expected to have nutritional deficiency, with 

reduced micro- and macronutrient biochemical levels compared to those singly infected or 

uninfected with HIV and intestinal helminths. It is essential that malnutrition is detected as it 
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may compound the burden of the two debilitating infections, especially when the immune 

system is compromised as is expected in co-infected individuals. It is well established that 

competent immune responses require adequate nutrition (Saeed et al. 2016). In addition, 

infection increases energy demands, which necessitates that energy intake be increased so to 

prevent wasting in the affected individuals (World Health Organization 2003). 

 

The work (reported in paper 1; Chapter 3) however showed no significant association 

between HIV and intestinal helminths single or co-infection with micro- and macronutrient 

deficiency in the cohort investigated. These findings did not support the hypothesis stated since 

the micro- and macronutrient levels were within reference range. The laboratory uses 

manufacturers’ reference ranges, which were not established for the local population. This may 

explain the possible cause of the biochemical tests being within reference range. However, a 

general pattern of low intake of micro- and macronutrients was noted among the participants. 

Paired with that was an observation of significantly increased intake of carbohydrates, which 

may have contributed to the overweight and obesity observed in the majority of participants, 

with lower energy intake. These findings of low intake of micronutrients, macronutrients and 

energy may point out to a risk of developing micronutrient deficiency and protein-energy 

malnutrition (PEM) in the participants investigated, in particular those who were co-infected 

with HIV and intestinal helminths, possibly due to the interaction of both these infections with 

nutrition.  

 

This work added value to the growing research area on the investigation of the impact of HIV- 

intestinal helminth co-infection on nutritional status in South Africa, a country with frequent 

occurrence of obesity and overweight, which are recognised as forms of malnutrition (Cois and 

Day 2015).  It is indicated that obesity may mask malnutrition (Garcia et al. 2009). This may be 

observed especially in adults who take time to manifest malnutrition as weight loss. Hence, 

malnutrition should be detected reliably even in overweight and obese individuals.  

 

In the investigation of the interaction between nutrition and the co-infection with HIV and 

intestinal helminths, it was therefore crucial that the assessment of nutritional status was 

reliable, considering the interaction between HIV and intestinal helminth single infections and 

nutrition. It is established that HIV and intestinal helminth single infections can worsen 

malnutrition in poor communities by various mechanisms, which include nutrient malabsorption 

as a result of the damage to the GIT caused by both these pathogens (Ramakrishna et al. 2006). 

Also, the effect of overweight and obesity in the measurement of nutritional status in the HIV- 
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intestinal helminth singly or co-infected cohort that was studied was essential. This was due to 

the fact that obesity may mask malnutrition, particularly in adults, where measurement of 

weight gain through anthropometric indices may be misleading when monitoring effective 

nutrient replenishment (Garcia et al. 2009).  In any case, obesity is also a form of malnutrition 

(Ngaruiya et al. 2017). Moreover, obesity is associated with low-grade chronic inflammation 

(Eder et al. 2009; Fronczyk et al. 2014), as occurring in single or dual infection with HIV and 

intestinal helminths, since both infections induce chronic inflammation (Wang et al. 2008; 

Marchetti et al. 2013). This therefore means that albumin, a commonly used biochemical 

marker of malnutrition in adults may also not be a reliable marker in detecting malnutrition in 

obesity and inflammatory conditions, since it is affected by inflammation (Bharadwaj et al. 

2016). Persistent inflammation may lead to hypoalbuminaemia, due to inflammation-induced 

catabolism of albumin and also its redistribution from the intravascular to the extravascular 

compartments (Bishop et al. 2005; Friedman and Fadem 2010; Alves et al. 2018).  

 

In light of the impact of infection singly or dually with HIV and intestinal helminths on 

nutritional status in the presence of inflammation and obesity, the second objective of the study 

aimed at investigating a biochemical marker that would measure nutritional status accurately 

and objectively, in the milieu of HIV-intestinal helminth single or co-infection, with or without 

inflammatory conditions as indicated by CRP in different BMI categories in KZN adults. It was 

expected that pre-albumin would be shown as more reliable and stable in the assessment of 

nutritional status compared to albumin in these conditions. Notably, hypoalbuminaemia is 

closely correlated with inflammation rather than with malnutrition, as albumin is insensitive to 

changes in nutritional status during nutrient replenishment, due to its half-life of twenty days, 

thus it can be misinterpreted as indicating malnutrition (Sathishbabu and Suresh 2012; Ishida et 

al. 2014). Pre-albumin was considered more reliable due to its short half-life of two days and its 

increased sensitivity to changes in nutritional status (Gaudiani et al. 2014). It was hypothesized 

that pre-albumin would be able to detect malnutrition in all inflammatory conditions which 

include infection and obesity. 

 

The work (reported in paper 2; Chapter 4) showed a general pattern of lower albumin and 

pre-albumin levels among HIV and intestinal helminth co-infected individuals, in all BMI 

categories in the absence of inflammation (as indicated by normal CRP levels), which was 

suggestive of malnutrition. In all cases when CRP was elevated, indicating presence of 

inflammation, pre-albumin levels were higher and albumin levels lower, which indicated that 

pre-albumin was able to delineate between inflammation-induced hypoalbuminaemia and true 



102 

 

malnutrition which would have been indicated by lower pre-albumin levels. The findings 

suggested that low albumin levels if assayed alone could be misinterpreted as indicating 

malnutrition, whereas if combined with increased pre-albumin and CRP levels it may point to 

inflammation-induced hypoalbuminaemia.  

 

Furthermore, discordant albumin and pre-albumin results were observed in the obese HIV- 

intestinal helminth co-infected group in both the presence and absence of inflammation, which 

was contrary to the patterns observed in other BMI categories. This highlighted the challenge in 

the assessment of nutritional status in HIV and intestinal helminth co-infection and obesity, in 

both the absence and presence of inflammation.  

 

The third objective was to characterise the immune profile between single infection and co-

infection with HIV and intestinal helminths by describing the differences in the immune 

responses of the adult participants. This was to determine whether co-infection results in a more 

weakened immunity compared to single infections with HIV and intestinal helminths. The 

impact of the HIV and intestinal helminth single infections on the immune system have been 

documented, however investigations on the interaction between the HIV-intestinal helminth co-

infection with immunity are limited. Thus, this study was addressing a broader aim of 

determining whether the co-infection with HIV and intestinal helminths results in higher HIV 

viral load, lower CD4 counts, increased immune activation and increased expression of Th2 and 

decreased Th1 cytokine responses, compared to those singly infected and uninfected. 

Furthermore, the variation in the Th2 responses to helminths have been documented (Maizels 

and Yazdanbakhsh 2003), thus this study also aimed to determine the effect of helminth 

infection phenotypes on the immune profile among the intestinal helminth singly infected and 

HIV-intestinal helminth co-infected individuals.  

 

The work (reported in manuscript 3; chapter 5) showed that the HIV-intestinal helminth co-

infection was associated with an immune profile of a reduced viral load and an antiviral 

cytokine response profile of highly expressed IFN-γ and TNF-α cytokine genes. The levels of 

the CD4 and CD8 immune markers in the co-infected participants were higher compared to 

those observed in HIV singly infected individuals. Moreover, the CD4 counts in intestinal 

helminth singly infected individuals were the highest compared to all the study groups, even 

higher than those of the uninfected participants. This was not expected, since we had 

hypothesized that infection with intestinal helminths, singly or dually would be associated with 

low CD4 counts that would be associated with high viral loads. However, the findings did not 
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support this hypothesis and further observed an association of co-infection with a stronger Th1 

immune response profile. Others, however, have suggested that helminths promote the 

activation of regulatory networks (Wammes et al. 2016), which may have dampened the virus 

replication and by extension the immune competence.   

 

The co-infected participants that elicited both IgE and IgG4 responses were associated with 

weak responses showed by reduced CD4 counts. This may have been as a result of the 

helminth-induced down-modulatory IgG4 antibodies, wherein Th2 CD4 responses were 

attenuated (de Moira et al. 2013; Fitzsimmons et al. 2014). This attenuation may possibly have 

resulted in potent HIV responses, depicted by the significantly higher expression of IFN-γ and 

TNF-α cytokine genes, which indicate Th1 responses required for HIV control. Efficient control 

of HIV infection requires competent Th1 responses (Kaur et al. 2016). Notably, these co-

infected participants had a lower viral load. This immune profile that supports an antiviral 

response was not expected due to the fact that infection with helminths is associated with 

polarised Th2 responses and suppressed Th1 responses (Motran et al. 2018) and a high viral 

load (Mulu et al. 2013). Some authors support this thinking that the typical Th2 cytokine and 

regulatory profile evoked by helminths have a detrimental effect on the HIV Th1 responses 

(Brady et al. 1999; Figueiredo et al. 2010). There is however a different school of thought that 

rather suggests that the helminth-induced anti-inflammatory IL-10 and TGF-β cytokines that 

downregulate T and B cell responses (Hoffmann et al. 1999; van Riet et al. 2007; Wang et al. 

2008) benefit the host, whereby the cell transcription factors are down-regulated and thus HIV 

replication and progression is reduced (Brown et al. 2006). Interestingly, the co-infected group 

expressed higher IL-10 cytokine gene levels. 

 

6.2 Limitations of the study 

6.2.1 Study design 

Due to the cross-sectional design, this study was limited to determining the associations only 

and could not infer causality. The findings provided a “snapshot” of the interactions between 

HIV and intestinal helminth single and co-infections with immunity and nutrition in the cohort 

investigated. The purposive recruitment of the participants have not allowed to make findings 

generalizable. Future prospective studies should be longitudinal in design and community 

based, with randomised sampling and large sample sizes. 

 

Due to costs of the analytical tests and the budgetary limitations, the inability to measure 

malnutrition and to only be able to analyse a limited number of samples for cytokine gene 
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expression was another limitation. Furthermore, the inability to determine the association 

between single and co-infection with HIV and intestinal helminths and the cytokine expression 

by assaying for intracellular or plasma cytokine levels using flow cytometry was a limitation. 

This may have validated the levels of expressed cytokine genes as well as to assay for the level 

of gene expression for HLA-DR to validate the CD38 result. Since the study was designed to 

determine the immune profile of the participants by using the levels of IL-4 gene expression as 

a surrogate marker for T helper 2 responses, thus it was expected that single and co-infection 

with helminths would be associated with increased IL-4 cytokine gene expression. The reduced 

levels of IL-4 cytokine gene expression in helminth singly and co-infected participants cannot 

be explained. It is however recognised that a higher gene expression does not always translate to 

higher levels of circulating cytokines (Vogel and Marcotte 2012). Future studies should include 

the measurement of IL-4, IL-5 and IL-13 cytokine cluster gene expression to establish an 

effective Th2 response, noting that Th2 inducing cytokines may not only be IL-4 as some 

responses could be induced by thymic stromal lymphopoietin (TSLP). Furthermore, it was 

indicated that some helminth infections would elicit strong Th2 responses even in the absence 

of TSLP receptors as long as the production of inflammatory cytokines such as IL-12 is 

inhibited through IL-10 (Maizels et al. 2009).  

 

6.2.2 Sample size and sampling 

Although the sample size was calculated appropriately for power prior to the commencement of 

the investigation, the design of the study which stratified the participants by infection status 

resulted in small numbers in the infection groups and sub-groups. Furthermore, a small 

proportion of the intestinal helminth singly infected participants (n = 4) was excluded from the 

analysis of the effect of helminth responses on the immune profile, due to the small numbers of 

the helminth infection phenotypes: (IgEloIgG4hi: n = 3 and IgEhiIgG4hi: n = 1); this was a 

limitation and it may have introduced bias. The results therefore could not provide conclusive 

interpretations. In addition, the inability to analyse the effect of the presence or absence of eggs 

as well as the effect of the IgEloIgG4hi helminth infection phenotype on the immune profile was 

a limitation. This may have indicated what the effect of helminth responses that trigger the sole 

production of high immunoregulatory IgG4 levels would have been on the immune profile of 

co-infected individuals. 

 

Furthermore, the small sample size may have resulted in the inability to determine significant 

associations between HIV and intestinal helminths single and co-infection with micro- and 

macro-nutrient levels, BMI (especially in obesity), CRP and viral load. 
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6.2.3 Cohort heterogeneity 

The design of this investigation could not establish the stages of both HIV and intestinal 

helminth infections among the study participants, whether primary or chronic and thus the 

analysis included all in the same group. This resulted in the inability to decipher whether the 

immune responses were according to the disease stage. It was not feasible to determine the role 

played by the differences brought about by the stage of the disease, in particular the levels of 

expression of the cytokine genes, especially the lower IL-4 gene expression in the helminth 

singly infected individuals as well as whether the presence or absence of eggs had an effect on 

these responses, in particular the cytokine gene expression levels. 

 

The majority of the study participants were female. This was due to the fact that by default the 

most of the clinic attendees were female, recruited from a single primary health care clinic. This 

is a limitation. Furthermore, it may have introduced bias due to the physiological variation of 

gene expression patterns and other biochemical analytes within the different genders (Whitney 

et al. 2003). Moreover, the fact that the study did not determine the use of contraceptives by the 

female participants and their effect on the immune responses was another limitation. It is 

established that selected progestins such as medroxyprogesterone suppress T cells and dendritic 

cell responses (Huijbregts et al. 2014; Zalenskaya et al. 2018).  

 

Quality controls were included in all the analyses and all the instruments were controlled for 

analytical errors. However, the day to day variation of the biochemical analytes could not be 

determined such as CD4 counts, CD8 counts and HIV viral load (VL) since each parameter was 

assayed only once, which was a limitation. In addition, the counted CD8+ T cells were not 

discerned whether they included CD8+ T regulatory cells as well, another limitation. 

 

These limitations may have played a role in the study hypothesis not being completely 

supported by the current findings. Importantly, the possible antiviral cytokine profile associated 

with co-infection was an important finding that may require further interrogation in community 

based studies, longitudinal in design, with randomised sampling and large sample sizes. 

 

The interpretation of the findings in the current study was cognisant of the mentioned 

limitations, as well as those alluded to in detail in the individual chapters. These include the use 

of self-reported food recall data collected over two days, with reliance on memory and correct 

estimation of quantity which was a limitation. However, the use of the skill of a well-trained 

fieldworker for the food recall interviews was an attempt to minimise recall bias. This has been 
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mentioned in paper 1 (in Chapter 3). Furthermore, the inability to screen the stool samples 

microscopically immediately after collection for the diagnosis of intestinal helminth infection 

by the presence of parasite eggs or ova is a limitation. This may have significantly affected the 

ability to detect hookworm eggs since these disintegrate upon storage of stools or the eggs may 

have hatched to first stage larvae. This may explain the non-detection of hookworm in the study. 

This limitation has also been mentioned in paper 1 (Chapter 3). In any case, hookworm 

infections have not been commonly reported in the study area as they are common in the north 

and south coast of KZN (Mabaso et al. 2004). 

 

Nevertheless, in spite of these limitations, this however is the first such study to the best of our 

knowledge that has been conducted in a KZN adult population, wherein the impact of the HIV 

and intestinal helminth single and co-infection on the nutritional status using biochemical, 

anthropometric and a 24 hour food recall analysis for nutrient adequacy ratios was assessed. 

This study also used CRP, pre-albumin and albumin biochemical markers in the investigation of 

malnutrition in the context of HIV and intestinal helminths single and co-infection. In addition, 

the study also determined the effect of helminth infection phenotypes on the immune profile of 

HIV and intestinal helminth singly and co-infected individuals by comparing the levels of 

immune markers, biochemical and haematological parameters and cytokine gene expression 

among the participants.  

 

6.3  Conclusion 

The current study confirms high prevalence of helminthiasis of 36.1% among adults. 

Furthermore, the study highlights the importance of reliable diagnosis of helminthiasis by 

including the serological diagnosis of helminth infection using the levels of parasite-specific 

IgE and IgG4 antibodies to supplement the conventional microscopic detection of helminth eggs 

and/or ova in stool samples, a method that may be fraught with challenges. The current study 

found a serological prevalence of intestinal helminths of 24.3% compared to that of 6.5% by 

helminth egg and/ova detection. Helminth infection is an area of research that is neglected and 

is also not included in the agenda that addresses the HIV epidemic. 

 

Notwithstanding the fact that micro- and macronutrient deficiency was not detected in the 

investigated cohort using biochemical indicators, however risk of malnutrition was noted based 

on the general low micro- and protein-energy macro-nutrient intake patterns of the population in 

the face of obesity and overweight that may be associated with imbalanced diets, co-existing 

with single or co-infection with HIV and intestinal helminths. This was the first such study that 
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incorporated the investigation of nutrient adequacy ratios versus the biochemical levels of 

micro- and macronutrients in HIV and intestinal helminth single and co-infection. This was 

viewed as very useful particularly since both infectious agents may cause malnutrition and thus 

predisposition to nutrient deficiency must be investigated at population level in HIV-intestinal 

helminth endemic areas. This is viewed essential as it may contribute and strengthen the South 

African Department of Health campaign on healthy lifestyle. 

 

The pre-albumin biochemical marker was found to be a reliable marker instead of the 

commonly used albumin in the detection of true malnutrition in HIV and intestinal helminth 

single and co-infection in adult participants. Pre-albumin was able to delineate between 

hypoalbuminaemia that was inflammation-induced and that which was indicating predisposition 

to malnutrition. This was also first such study, which investigated malnutrition taking into 

consideration the complex milieu of infection, inflammation as well as weight abnormalities, as 

defined by CRP levels and BMI respectively. A challenge in the assessment of nutritional status 

in HIV- intestinal helminth co-infection and obesity, whether in the presence of inflammation or 

not, was noted.   

 

Furthermore, although established that higher gene expression does not always translate to 

higher levels of circulating cytokines (Vogel and Marcotte 2012), however, based on the 

cytokine gene expression levels, HIV-intestinal helminth co-infection in this cohort was 

associated with reduced Th2 cytokine responses, high Treg responses and increased Th1 

responses, a typical antiviral responses profile. This is the first such study that has been 

conducted in a KZN population where the IgEhiIgG4hi helminth infection phenotype was 

associated with a weak immune response profile of low CD4 counts, particularly associated 

with HIV-intestinal helminth co-infection. 

 

6.4     Public health significance of the study findings  

1. The current study confirms high prevalence of helminthiasis among adults (36%), which 

warrants attention in the backdrop of antihelminthic programmes that are provided largely to 

school-children. Adults are generally not included in deworming programmes. Bopda et al. 

(2016) suggests that intestinal helminth infected adults may constitute a reservoir and source of 

persistent dissemination of the soil transmitted parasites. Thus, health authorities should that 

provision of antihelminthic treatment is community-wide and includes adults particularly in 

HIV-intestinal helminth co-endemic areas. In addition, there should be supply of adequate 
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sanitation and potable water in areas that lack such, which are risk factors to intestinal helminth 

infection.  

 

2. The high prevalence of HIV among the participants (36%) requires the strengthening of HIV 

prevention strategies. Community based campaigns must be deployed to curb this HIV 

epidemic. Antenatal and circumcision clinics should be some of the areas that must be targeted 

within the community. 

 

3. Furthermore, the reduction of obesity linked to high intake of carbohydrates among the 

participants, requires the strengthening of healthy lifestyle campaigns in the community. Also, 

the community needs to be supported with nutritional interventions by the government of the 

country and other non-governmental institutions, as one of the mechanisms of reducing obesity. 

In addition, education on the choice of diets with nutritional value rather than those with high-

carbohydrate and low-energy should be afforded to the communities where HIV and intestinal 

helminths are endemic. Reduced nutritional intake or clinical malnutrition may lead to a 

diversion of nutrients away from the immune system (Turner et al. 2003) which will result in 

immunodeficiency and infection in a cyclical process (Katona and Katona-Apte 2008).  

 

4. The study also highlighted the possible regulatory influence of helminths, although the 

sample size was small. Co-infection in this cohort was associated with reduced Th2 cytokine 

responses, high Treg responses and increased Th1 responses, a typical antiviral responses 

profile. This is an important finding that requires further interrogation.  

 

6.5 Recommendations 

This study highlighted an area in research that requires more attention, the interaction of HIV- 

intestinal co-infection with nutrition and immunity and the effect that the responses to intestinal 

helminths have in the face of HIV and intestinal helminths co-infection. We recommend a 

rethinking of the current HIV management, wherein the reliable detection of intestinal helminth 

infections and antihelminthic interventions if needed are included.  

 

Future studies must interrogate the interactions between the serological intestinal helminth 

infection phenotypes with the levels of expression of cytokine genes for Th1, Th2 and Treg 

responses in HIV-intestinal helminth coinfection so as to elucidate the responses associated with 

HIV-intestinal helminth co-infection and the intensity of the intestinal helminth infection. The 

simultaneous increase in both Ascaris-specific IgE and IgG4 antibodies in the co-infection was 
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associated with an immune profile of lower CD4 and higher CD8 counts, which as the disease 

progresses the effector cell responses required to limit HIV may weaken. Thus, the parasite-

specific antibody responses to intestinal helminths in the milieu of HIV and intestinal helminth 

infection, inflammation and malnutrition must also be explored. These studies should be 

longitudinal in design, with large sample sizes. 

The study highlighted the possible potent HIV responses that intestinal helminths may induce 

while they attenuate the Th2 cytokine responses. The study findings also do not support the 

hypothesis that suggests that intestinal helminths induce a stronger Th2 response, which may 

significantly suppress Th1 responses that are essential to control HIV. Future studies should 

interrogate the possible potent HIV responses that intestinal helminths may induce when they 

attenuate the Th2 cytokine responses. All efforts must be explored that will strengthen the 

immune system to mount potent responses against HIV, an incurable disease that can otherwise 

only be controlled by competent cell-mediated responses.  

 

Although the current study associated the co-infection with an antiviral cytokine profile, 

however a proportion of the co-infected group had high levels of both parasite-specific IgE and 

IgG4 antibodies which were associated with a weak immune response profile. As has been 

alluded to as a limitation, this study was not able to decipher whether this antiviral cytokine 

profile was generally due to the primary stage of the HIV infection in the HIV- intestinal 

helminth co-infected individuals and whether it would be sustainable.  

 

The co-infection is associated with a compromised immune system, which may worsened by 

malnutrition associated with the co-infection and/or overweight and obesity. Furthermore,  
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Appendix 6 (isiZulu version): Information letter and informed consent form 

 

UKZN BIOMEDICAL RESEARCH ETHICS COMMITTEE 

 

INCWADI YOLWAZI NEYOKUNIKA IMVUME YOKUHLANGANYELA KUCWANINGO 

 

Usuku:  

 

Sawubona  

 

Singabacwaningi abavela kwi Nyuvesi yaKwaZulu-Natali. Ucwaningo esilwenzayo luzobheka umthelela 

ongenziwa izilwanyazana ezitholakala emathunjini (izikelemu), ikakhulukazi uma zihambisana 

negciwane lengculazi, ekubeni nomthelela emasosheni omzimba nakwizondla mzimba kubantu abadala. 

 

Ucwaningo olwenziwa kwezinye izizwe zaphesheya lukhombisa ukuthi uma abantu benezikelemu, 

bengazilaphi, isikhathi eside, ukuhlala kwazo emzimbeni kuthikameza amasosha omzimba kanye 

nezondlamzimba. Uma umuntu edla, izikelemu zithatha umsoco kuqala bese onazo angatholi 

lezondlamzimba azidingayo. Ngoba uma izikelemu zingalashwa, zingahlala emzimbeni isikhathi eside 

(iminyaka), okushukuthi namasosha omzimba, nezondlamzimba kuhlala kuthikamezekile isikhathi eside, 

okwenza ukuthi kube lula-ke nokuthi uma lowomuntu ehlangabezana negciwane lengculazi, lisheshe 

limgulise ngoba vele amasosha omzimba asuke esethikamezekile. Yingakho-ke sifuna ukwenza 

lolucwaningo la eMzantsi Afrika, ukubheka ukuthi: 

1. Bangakanani abantu abadala abanezikelemu ezindaweni zakithi 

2. Bangakanani abanezikelemu kanye nesandulela ngculazi 

3. Ngabe izondlamzimba kanye namasosha omzimba kumi kanjani kulabo abangenalutho uma 

beqhathaniswa nalabo abanezikelemu, kanye nezikelemu nesandulelangculazi. 

4. Uma sithola ukuthi baningi abantu abanalezizinkinga, sesiyonxenxa uHulumeni ukuba engeze 

imizamo yokuba abantu abaningi belashelwe izikelemu, ukuze bahlale bondleke kahle futhi 

namasosha omzimba abo ahlale esezingeni elifunekayo ukuze bakwazi ukulwa namagciwane 

abahlangabezana nawo, kanye negciwane lesandulelangculazi. 

 

Kulolucwaningo sifuna ukuthola ukuthi bangaki abantu abadala abahhaqwe izikelemu endaweni 

yangakini. Sizobheka futhi ukuthi bangaki abanazo izikelemu kanye nesandulelangculazi. Uma lezizifo 

zitholakala ndawonye negciwane lengculazi, sifuna ukuthi lenzani emasosheni omzimba nakwi 

zondlamzimba zomuntu nokubona nesisindo sizobangakanani. 

 

Indawo yangakini itomuliwe ohlelweni lokutomula izindawo zaseThekwini (amagama afakwe 

esigqokweni, kwase kutonyulwa lendawo yangakini). Isizathu-ke sokuba sikumeme yingoba uhlala 
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endaweni etonyuliwe ukubamba iqhaza kulolucwaningo. Ngakho sikumema ukubamba iqhaza 

kuloluhlelo. Uyokwazi ukuba yingxenye kuloluhlelo uma usuwaziswe wavuma wasayina ifomu 

lokuvuma.  

 

Okuzokwenzeka kuwe yilokhu: uyocelwa ukuthathwa igazi lokubheka isimo sokondleka kwakho, isimo 

samasosha omzimba kanye negciwane lengculazi ngenhloso yokwenza izigaba ezimbili eyocwaningo 

necontrol. Isigaba esinye siyoba nomuntu elitholakalile kuye leligciwane, esinye kube elingatholakalanga 

kuye. Ucwaningo luyo kwenziwa kubantu abangu 229. Uma litholakalile igciwane lengculazi 

kuyobhekwa nenani leCD4, uyokwazi ukuqhubeka nohlelo uma utholakale unenani elingaphezu kuka 350 

wamacells/µl. Uma etholakala engaphansi ngeke ukwazi ukuqhubeka nohlelo, uyodluliselwa 

emtholampilo. Owesifazane oyotholakala ekhulelwe akavumelekile ukuqhubeka kuloluhlelo. Uyothathwa 

isisindo sakho kanye namasampula okudingekayo kuwe ukuze kuyohlolwa elebhu ukuhlola isimo 

samasosha omzimba kanye nezondlamzimba. Indle nomchamo kuzosetshenziswa ukubheka amaqanda 

ezikelemu. 

 

Umuntu obamba iqhaza uyocelwa ukuba anikele ngegazi elingaba ngangamathispuni ayisithupha, 

ayofakwa kumashubhu okuhlola ayisithupha, isampula lomchamo kanye nelendle.  Igazi liyothathwa 

unesi ogunyaziwe ukulikhipha. Isampula lendle liyothathwa nguwe ulifake esitsheni oyosinikwa. Ufanele 

uwabuyisele endaweni yocwaningo ukuze kuthathwe amanye amasampula omchamo nendle emva 

kwezinsuku ezintathu. Amasampula amabili omchamo nawendle ayosiza ekutholeni imiphumela 

esingayethemba. Uyocelwa futhi ukuba ubuzwe imibuzo emaqondana nendlela yakho yokuphila kanye 

nangokudla oyobe ukudle ngayizolo. Uyokuzwa ubuhlungwana obuncane ngenkathi kungena inaliti 

yokukhipha igazi kuwe. Kungenzeka ube nokungakhululeki ngenkathi uthatha isampula lomchamo 

nelendle kuwe. Nakanjani ngeke sifake impilo yakho ebucayini kanye nokulimala okuthile.  Unesi 

oqokelwe kuloluhlelo uyokusiza uma kwenzeka ubanezinhlungu noma ungazizwa kahle ngenkathi 

uthatha amasampula.   

 

Ngokubamba iqhaza kuloluhlelo uyohlolwa ukuthi unazo yini izikelemu, uma zitholakala uyodluliselwa 

kwabezempilo ukuze uthole imithi yokuzilapha. Siyobanomhlangano namalunga omphakathi 

ukuwafundisa ngazo izikelemu nokuthi ziwuthinta kanjani umphakathi nokunazisa ngemiphumela 

yocwaningo uma isitholakele.  

 

Uma ubamba iqhaza uzobe uvolontiya ngakho awuphoqelekile ukubamba iqhaza uma ungathandi. Noma 

ungabambanga iqhaza uyobe usenalo ilungelo lokusebenzisa umtholampilo noma ngasiphi isikhathi. 

Futhi unalo ilungelo lokunqamula ukuba yingxenye nomanini uma ungasathandi, unganxusa ukuthi 

amasampula akho alahlwe, ngaphandle kokulahlekelwa amalungelo akho asemtholampilo. Angeke 

ukhokhe lutho ngokubamba iqhaza kulolucwaningo. Kuphela uyobuyiselwa imali engango R100 

yokuhlangabezana nezindleko zakho zokugibela kulezizinsuku ezimbili ozokuza ngazo endaweni 

yocwaningo, okuwuR50 ngosuku. 
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Ukugcina imininingwane yakho kanye nemiphumela yakho kuyimfihlo kuyoqikelelwa ngaso sonke 

isikhathi. Wonke umuntu obamba iqhaza uyonikwa inombolo, bese konke okuphathelene naye kubhalwe 

ngalenombolo. Imininingwane yakho emaphepheni iyovela ngezinamba bese kugcinwa endaweni 

ekhiywayo iminyaka emihlanu, ukhiye uhlale kumphathi wocwaningo kanti futhi imininingwane ekwi 

computer inepassword ukuvikela ulwazi olukuyo lungaputshuki. Imiphumela yocwaningo 

iyohlanganiswa yonke ndawonye bese kubhalwa amarephothi, ngeke kubhalwe ngomuntu oyedwa, futhi 

imininingwane yabantu ababambe iqhaza ngeke idalulwe nanoma umuphi umuntu. Igama lakho 

nemininingwane yakho iyogcinwa iyimfihlo. Uyonikwa inamba echaza ngemiphumela yakho hhayi 

igama lakho ukugcina ongumnini engaziwa.  Imiphumela yakho iyobonwa ngumphathi womcwaningo, 

nethimba asebenza nalo kanye nezimemba zeUKZN Biomedical Research Ethics Committee.Emva 

kweminyaka emihlanu, amaphepha anemininingwane ayodatshulwa bese amafayela ecomputer 

anemininigwnae acishwe. Amasampula egazi ayogcinwa ephephile iminyaka emihlanu kwenzelwa 

ucwaningo olungalandela bese elahlwa ngendlela esemthethweni yaselebhu. Amasampula egazi angeke 

adayiswe, ayiswe kumazwe aphesheya noma asetshenziswe noma imuphi umcwaningi ongekho 

kuloluhlelo. 

 

Lolucwaningo lubukisisiwe ngokomthetho lwase lwaphasiswa yiUKZN’s Biomedical Research Ethics 

Committee (inombolo yemvume yi __________________). 

 

Uma kwenzeka ubanenkinga noma unemibuzo edlulele, ungaxhumana nabacwaningi noma neUKZN 

Biomedical Research Ethics Committee, ungathinta abalandelayo:  

Dr Zilungile Mkhize-Kwitshana    Mrs Brenda Mkhize 

Tel: 031 260 1930     031 373 5297 

Fax: 086 400 0407     086 674 0817 

Mobile: 078 842 4574     082 879 4923 

Email: kwitshana@ukzn.ac.za   mkhizebt@dut.ac.za 

 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION 

Research Office, Westville Campus 

Govan Mbeki Building 

Private Bag X 54001 Durban, 4000 

KwaZulu-Natal, SOUTH AFRICA 

Tel: 031 260 4769  

Fax: 031 260 4609 

Email: BREC@ukzn.ac.za  

 

 

 

mailto:kwitshana@ukzn.ac.za
mailto:mkhizebt@dut.ac.za
mailto:ngwenyap@ukzn.ac.za
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IFOMU YOKUNIKA IMVUME  

 

Mina………………………………………………………....ngazisiwe ngocwaningo “Umthelela 

ongenzeka kwizondlamzimba, kumasosha omzimba kubantu abaphethwe isandulela ngculazi nezikelemu 

ezitholakala emathunjini: nokusebenza kwe pre-Albumin njengethuluzi lokubhekisisa izakhamzimba 

kubantu abadala baKwaZulu-Natali” ngu ……..………………..….………………..(igama lomcwaningi). 

 

Ngiyaqonda inhloso yocwaningo kanye nenqubo mgomo yohlelo, okungukuthi ngiyonikela 

ngamabhodlela ayisithupha egazi kanye namabili omchamo namabili endle yami, elilodwa liyothathwa 

ngosuku lokuqala elesibili lithathwa emva kwezinsuku ezinthathu.  

 

Nginikeziwe ithuba lokubuza imibuzo maqondana nohlelo futhi ngiphendulekile ngendlela egculisayo. 

  

Ngiyaqinisekisa ukuthi ukuzinikela kwami ukubamba iqhaza kuloluhlelo kungukuvolontiya nokuthi futhi 

ngingahoxa noma inini ngaphandle kokuphazamiseka kwendlela yokuthola usizo noma ukuthola impatho 

ejwayelekile emtholampilo. 

  

Ngazisiwe nokuthi kuyoba khona umhlengikazi obhekelele uhlelo, uma kuba nezinhlungu noma 

ukungaphatheki kahle ngenkathi kuthathwa amasampula.  

 

Uma ngibanemibuzo noma imibono noma izinkinga eziqondene nohlelo ngiyaqonda ngingathintana 

abacwaningi ababhaliwe encwadini enikeza ulwazi. 

 

Uma ngiba nemibuzo noma imibono maqondana namalungelo ami njengobamba iqhaza, noma 

nginensolo ngendlela okuqhutshwa ngayo uhlelo noma ngabo abacwaningi ngingathintana nalaba:  

 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION: 

Tel: 27 31 2604769                            Fax: 27 31 2604609                       Email: BREC@ukzn.ac.za  

____________________      ____________________ 

Ukusayina kozimbandakanyayo                Usuku 

 

____________________   _____________________ 

Ukusayina kukafakazi                                   Usuku 

(uma kudingekile) 

____________________   _____________________ 

Ukusayina komhumushi                               Usuku 

(uma kudingekile) 

 

 

mailto:ngwenyap@ukzn.ac.za
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Appendix 6 (English version): Information letter and informed consent form  

 

UKZN BIOMEDICAL RESEARCH ETHICS COMMITTEE 

 

INFORMATION LETTER AND CONSENT TO PARTICIPATE IN RESEARCH  

 

Date:  

 

Greetings 

 

We are researchers from University of KwaZulu-Natal. The research we are doing will investigate the 

parasites found in the intestines (worms), especially if they exist together with HIV, how they impact on 

the immune system and the nutritional status of adults. 

 

Research that has been done in some countries overseas have shown that individuals infected with worms 

for long periods of time, not treated, have their immune system and their nutrition status affected by these 

worms. When an individual eats, the worms use the nutrients first, then a person infected with parasites 

will lack the nutrients needed by his/her body. If the worms are not treated, they remain in the body for 

long periods of time (for years), which leads to long term disturbance of the immune system and the 

nutritional status and this makes it easy that when the individual is infected with HIV, the disease 

progresses faster since the immune system is affected. That is why we want to do this study in South 

Africa, to investigate: 

 

1. How many adults are infected with worms in our areas. 

2. How many people are co-infected with parasites and HIV. 

3. The immune status of those not infected compared to those who are infected with parasites and those 

co-infected with parasites and HIV. 

4. If we find out that there are many people who are infected, we will ask the government to ensure that 

treatment programmes for parasite infections reach many people so that their nutritional status and 

their immune system are maintained at levels that will enable them to fight any diseases including 

HIV. 

 

In this study we want to find out how many adults are infected with parasites in your area. We will also 

investigate how many people are co-infected with parasites and HIV. If parasite infections are found 

together with HIV, we wish to know how they impact on the immune system and on the nutritional status 

and how they affect their weight. 
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Your area was chosen randomly from a list of many areas in eThekwini (names of areas were put in a hat 

and the area was selected). Therefore we are inviting you to participate in this study since you live in this 

area that was selected. We are kindly inviting you to participate in this study. You will only be able to 

participate in this study when you fully understand and sign an informed consent form. 

 

The following will happen to you: you will be asked to donate blood that will be used to assess the 

nutritional status your HIV status so that you will be allocated into one of two groups which is a study 

group and a control group. The study group will comprise of parasite infected individuals and a control 

group will comprise of individuals with no infection. The study will enrol 229 participants. If you are 

found to be infected, a CD4 count will be done and you will be able to enrol in the study if it is above 350 

cells/ µl. If it is below, you will be referred to a clinic and you will not be able to participate in this study. 

Females who are found to be pregnant will not be able to participate. You will be weighed and then 

blood, stool and urine samples will be collected from you and sent to a laboratory for testing your 

immune status and nutritional status as well as the presence or absence of parasite eggs. 

 

As a participant you will be asked to donate blood equal to 6 teaspoons taken into 6 blood tubes, a urine 

sample as well as stool sample. Blood samples will be collected by a qualified nurse. The stool sample 

will be collected by you in a stool jar you will be given. You will be required to return to the study site for 

the collection of another stool and urine samples three days later. Two urine and stool samples will assist 

in getting results that we will trust. You will be asked to fill in a questionnaire which will be asking about 

your living conditions and about the food you ate in the last 24 hours. You may experience mild 

discomfort when a needle is inserted during blood collection. You may also be uncomfortable during 

urine and stool sample collection. You will not however be put in any health risk and there will be no 

research related injuries. A study nurse will be available to help you if you experience any pain or 

discomfort during sample collection. 

 

By participating in this study you will be investigated whether you are infected with parasites and if you 

are found to be infected you will be referred to health facilities for deworming treatment. Workshops will 

be held with the community to educate you on parasites and how they affect the community and to inform 

you of the study results once they are available.  

 

Participation is entirely voluntary and you will not be forced into participating if you do not wish to do so. 

You will still be entitled to using the clinic facilities even if you do not participate in this study. You may 

discontinue participation at any time and you may request destruction of your samples without losing any 

of the benefits from the clinic. You will not pay anything for participating in this study. You will be given 

R100 as a refund for the money you would have used for transport to return to the study site for the two 

days, which will be R50 each day. 
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Your name, personal information and your results will be treated with confidentiality. You will be 

allocated a unique code which will be used to identify your results, and not by your name. All information 

linking your identity and the unique code will be stored separately in a locked cabinet for 5 years, the key 

will only be available to the principal investigator and electronic data will be stored in a password 

protected computer to ensure that your information is protected. Research results will be compiled and 

reports on all findings will be written and anonymity will be ensured at all times. Your results will only 

be available to the principal investigator, the study team and the UKZN’s Biomedical Research Ethics 

Committee members. After 5 years, data will be disposed of by shredding hard copy documents and 

deleting all electronic files. Serum and buffy coat samples will be stored securely for 5 years for future 

research after which will be disposed of according to laboratory protocol. Samples will not be sold, 

exported or made available to any other researchers.  

 

This study has been ethically reviewed and approved by the UKZN Biomedical research Ethics 

Committee (approval number____________________). 

 

In the event of any problems or concerns/questions you may contact the researchers or the UKZN 

Biomedical Research Ethics Committee, contact details as follows:  

Dr Lungi Mkhize-Kwitshana    Mrs Brenda Mkhize 

Tel: 031 260 1930      031 373 5297 

Fax: 086 400 0407      086 674 0817 

Mobile: 078 842 4574      082 879 4923 

Email: kwitshana@ukzn.ac.za    mkhizebt@dut.ac.za 

 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION 

Research Office, Westville Campus 

Govan Mbeki Building 

Private Bag X 54001 Durban, 4000 

KwaZulu-Natal, SOUTH AFRICA 

Tel: 031 260 4769  

Fax: 031 260 4609 

Email: BREC@ukzn.ac.za  

 

 

 

 

 

 

 

mailto:kwitshana@ukzn.ac.za
mailto:mkhizebt@dut.ac.za
mailto:ngwenyap@ukzn.ac.za
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INFORMED CONSENT FORM 

 

I ………………………………………………….. have been informed about the study entitled “The 

evaluation of the interactions between nutrition, immunity and co-infections with human 

immunodeficiency virus and intestinal parasites: the use of pre-Albumin as a tool for nutritional 

assessment in South African adults   by……….……………………………………..(researcher). 

 

I understand the purpose of the research and the procedures of the study, that I will donate six tubes of 

blood and  two urine and two stool samples, one taken on the first day and the second one three days later. 

 

I have been given an opportunity to ask questions about the study and have had answers to my 

satisfaction. 

 

I declare that my participation in this study is entirely voluntary and that I may withdraw at any time 

without affecting any treatment or care that I would usually be entitled to. 

 

I have been informed about the availability of a study nurse if I experience pain or discomfort during 

sample collection. 

  

If I have any further questions/concerns or queries related to the study I understand that I may contact the 

researchers listed in the information letter. 

 

If I have any questions or concerns about my rights as a study participant, or if I am concerned about an 

aspect of the study or the researchers then I may contact:  

 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION: 

Tel: 27 31 2604769                            Fax: 27 31 2604609                       Email: BREC@ukzn.ac.za  

 

____________________      ____________________ 

Signature of Participant                        Date 

 

____________________   _____________________ 

Signature of Witness                              Date      

(where applicable) 

____________________   _____________________ 

Signature of Translator                         Date 

(where applicable)  

 

 

mailto:ngwenyap@ukzn.ac.za
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Appendix 7: Questionnaire 

 

QUESTIONNAIRE 

 

SECTION A:  

 

Identification number       ................................................................: Lab Code……………………. 

 

Date of interview 

D D / M M / Y Y Y Y 

  

 

    2 0   

 

Name of Interviewer:   

Area of residence 

 

Weight (kg):                                 

 

Height: (cm):     

 

 

BMI  

 

 

SECTION B: Demographic Information 

 

Ethnic group  

 

Gender      

 

Marital status    

 

 

 

 

 

 

 

 

Age of participant      ……………………..years 

 

Date of birth 

 

 

 

 

SECTION C: Socio-Economic Status 

 

1. Where do you live?  

2. What would you classify the area as? Rural Urban Per-urban 

3. Are you employed? Yes No 

4. If no, please specify source of income  

5. If yes, what is your income per month? <R1000 R1001–R5000 R5000–R10 000 >R10 000 

6. What is your level of education? None Primary High school Tertiary 

7. What is your occupation?  

 

 

 

 

 

African  Coloured  Indian  White  

M ale  Female  

Single  

Married  

Divorced  

Widowed  

Separated  

Living together  

D D / M M / Y Y Y Y 

  /   /     

Mobile number  

Phone number (Home)  
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SECTION D: Household Information  

 

1. What type of house do you live in? …………………………………………………………… 

 

2. How many rooms does your house have? ........................................................................  

 

3. How many people live in your   

              household?    

 

 

 

 

4. Where does the household usually get  

              drinking water from?  

 

 

 

 

 

 

 

  

 

5. What kind of water activity do you do?

  

 

 

 

 

 

 

 

 

6. What toilet facilities do the household  

               have?  

 

 

 

 

 

7. What is the main source of energy for  

               cooking?  

 

 

 

 

 

8. From where do you get your food? 

 

 

 

 

 

 

 

 

 

 

Babies/Preschool  

Primary school  

Adults  

TOTAL  

River  

Own tap- inside the house  

Own tap-outside the house  

Public tap  

Neighbours’ tap  

Borehole  

Other, specify………………………………………......... 

……………………………………………………………… 

 

Swim  

Wash clothes  

Bathe  

Fish  

Farming  

Collect water for household use and cooking  

Cross the river  

Other, specify………………………………………………. 

………………………………………………………………. 

 

Flush toilet, connected to public pipes  

Flush toilet, not connected to public pipes  

Pit toilet  

None  

Other, specify……………………………………………… 

………………………………………………………………. 

 

Electricity  

Wood, open fire outside dwelling  

Wood open fire inside dwelling  

Gas  

Paraffin  

Other, specify……………………………………………… 

………………………………………………………………. 

 

Local shop(s)  

Shops in town  

Home garden  

Community garden  

Own livestock  

Food aids/welfare/NGO’s  

Other, specify………………………………………………. 

………………………………………………………………... 
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SECTION E: Presence of other diseases 

 

1. Do you presently have any diseases that you are aware of?  

 

2. Have you been ill in the past 30 days?     

 

3. If yes, please list the disease/s

   

  

 

 

 

 

4. Have you suffered from any parasitic infection in the past?  

 

5. Has any of your family members suffered from    

              any parasitic infection? 

 

6. Have you taken any deworming medication in the  

               past 6 months? 

 

7. How often is deworming    

              done in your household?  

 

 

 

 

 

8. Who gets deworming treatment in your household? 

 

 

 

 

9. Have you had an allergic reaction in the past 30 days?  

 

 

10. Do you suffer from any chronic illness? 

 

 

 

11. Please list any medication you are taking 

..……………………………………………………………………. 

  

.……………………………………………………………………. 

 

……………………………………………………………………… 

 

…………………………………………………………………….. 

 

…………………………………………………………………….. 

 

 

 

 

 

 

 

 

Yes  No  

Yes  No  

 

 

 

 

 

Yes  No  

Yes  No  Don’t know  

Yes  No  

Never  

Once in 6 months  

Once a year  

Don’t know  

Other, specify…………………………………….. 

……………………………………………………… 

 

Children only  

Adults only  

Everyone in the house  

Yes  No  

Yes  No  
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SECTION F: 24 hour food recall 

 

1. How often do you eat?  

2. Are you constantly hungry? 

 

Please indicate everything you ate or drank, including meals, snacks, sweets, beverages, alcohol in the 

past 24 hours 

 

Time of day What food and 

drink did you take 

How was it 

prepared 

What was added How much was 

eaten 

Waking up to 

about 9 o’clock  

 

(breakfast time) 

    

    

    

    

    

    

9 o’clock to 12 

o’clock  

 

(mid-morning) 

    

    

    

    

    

    
12 o’clock to 2 

o’clock  

 

(lunch time) 

    

    

    

    

    

    
2 o’clock to 5 

o’clock  

 

(afternoon) 

    

    

    

    

    

    
5 o’clock to sunset  

 

(supper time) 

    

    

    

    

    

    
After supper at 

bedtime and 

through the night 

    

    

    

    

    

    

 

     

 

 

 

Thank you for your participation 

                                       per day 

Yes  No  


