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Abstract

In this dissertation, we introduce and investigate locally conformal almost Kenmotsu
structures. We show that, under some conditions, these structures contain the classes
of C(λ)-structures. We prove that its contact distributions admit foliations whose
leaves are locally conformal almost Kählerian with mean curvature vector propor-
tional to the characteristic vector �eld. A locally conformal Kenmotsu manifold is
a locally warped product space. We also prove that integral manifolds immersed in
the CR-submanifolds of the locally conformal Kenmotsu which are locally conformal
Kählerian which, under some conditions cannot be minimal.

Keywords : Kenmotsu manifold, locally conformal almost Kenmotsu manifold, Fo-
liation.
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Chapter One

Introduction

The �rst study on locally conformal Kähler manifolds was done by Libermann in
1955 [24]. Vaisman in [40] introduced a geometric condition for locally conformal
Kähler manifolds to be Kähler and in 1982 Tricerri [37] gave di�erent examples.
In 2001, Banaru [3] succeeded in classifying the sixteen classes of almost Hermitian
manifolds by using the so-called Kirichenko tensors. Abood studied the properties
of these tensors in [1]. The class of locally conformal Kähler manifolds is one of the
sixteen classes of almost Hermitian manifolds (see, for example, [18]).

In 1972, K. Kenmotsu [21] studied a class of almost contact Riemannian manifold
and introduced a new class of almost contact Riemannian manifold which are called
Kenmotsu manifold. Kenmotsu manifolds are normal almost contact Riemannian
manifolds. Kenmotsu [21] investigated fundamental properties on local structure of
such manifolds . A Kenmotsu manifold is always an almost Kenmotsu manifold, but
the converse is not necessarily true.

In general, the contact and almost contact structures are two of the most interest-
ing examples of di�erential geometric structures. Their theory is a natural generaliza-
tion of so-called contact geometry, which has important applications in quantum and
classical mechanics. Their study as di�erential geometry structures dates form the
work of Gererdo [36] and Sasaki [33]. Almost contact metric structures are an odd-
dimensional analogue of almost Hermitian structures and there exist many important
connections between these two classes. Sasakian manifolds are manifolds of positive or
zero curvature. But Kenmotsu manifolds are manifolds of negative curvature. Tanno
in [34] classi�ed the connected almost-contact metric manifolds whose automorphism
groups has the maximum dimension. For such a manifold, the sectional curvature of
plane sections containing ξ is a constant, say c. Then there are three classes:

(i) Homogeneous normal contact Riemannian manifolds with c > 0,

(ii) Global Riemannian products of a line or a circle with a Kähler manifold of
constant holomorphic sectional curvature if c = 0,

(iii) Warped product space L×f F if c < 0.
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CONTENTS 2

In [21], the author proved that a locally kenmotsu manifold is a warped product
L ×f F of an interval L and Kähler manifold N with mapping function f(t) = cet,
where c is a non-zero constant and that a Kenmotsu manifold of constant φ-sectional
curvature is a space of constant curvature -1 and so it is locally hyperbolic space.
He also proved that if Kenmotsu manifold satis�es the condition R(X, Y ).R = 0,
then it is of constant negative curvature −1. Kenmotsu manifolds were studied by
many authors such as G. Pitis [13], De and Pathak [9], Jun, De and Pathak [10],
Binh, Tamassy, De and Tarafdar [8], Bagewadi and collaborators [5], [6], [7], Ozgur
[11],[14] and many others. Since then, up to our knowledge, a systematic study of
locally conformal almost Kenmotsu manifolds has not been undertaken yet.

The aim of this dissertation is to study, thus, providing some technical apparatus
needed for further investigations. Therefore, we consider the class of almost contact
metric manifolds called locally conformal almost Kenmotsu manifolds.

We asked ourself �can a locally conformal almost Kenmotsu manifold admit a
1-form ω that is proportional to η�. We shall try to prove why this is true; where is
the connection?

This dissertation covers foundations of almost contact geometry in modern lan-
guage. Throughout the dissertation, we provide theorems. Almost contact metric
structure is given by a pair (η,Φ), where η is a 1-form, Φ is a 2-form and η ∧ Φ is a
volume element. It is well known that then there exists a unique vector �eld ξ, called
the characteristic (Reeb) vector �eld such that η(ξ) = 1.

The dissertation is organized as follows: In Chapter 2, we recall some preliminary
de�nitions on almost Kenmotsu, Kenmotsu and locally conformal (l.c.) almost Ken-
motsu structures. We characterize l.c. almost Kenmotsu manifolds. We prove that,
under a certain condition, the class of locally conformal almost Kenmotsu structures
belong to the class of β-Kenmotsu structures. Furthermore, we give an example of
a three-dimensional conformal Kenmotsu manifold that is not Kenmotsu. We also
prove that the contact distribution is always integrable and admits foliations whose
leaves are almost Kähler with mean curvature vector supported by the line bundle
spanned by the characteristic vector �eld. Chapter 3 gives some preliminary lemmas
on submanifolds of l.c. almost Kenmotsu manifolds. By adapting the concept of con-
tact CR-submanifolds given in [41] and under some conditions, there exist foliations
whose leaves are l.c. Kähler manifolds which cannot be minimal. We �nally end the
thesis by a concluding remark and some perspectives.
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Chapter Two

Locally Conformal Almost

Kenmostu Manifolds

In this chapter, we recall some general de�nitions and basic properties of contact met-
ric structures and (almost) Kenmotsu manifolds with particular attention to locally
conforml almost Kenmotsu manifolds. For more information and details, we recom-
mend the reference [30]. We assume (unless otherwise stated) that all manifolds in
this dissertation are smooth and paracompact.

2.1 Almost Kenmotsu and Kenmotsu structures

Let M be a (2n+ 1)-dimensional manifold endowed with an almost contact structure
(φ, ξ, η), i.e. φ is a tensor �eld of type (1, 1), ξ is a vector �eld, and η is a 1-form
satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η) is an
almost contact structure on M and g is a Riemannian metric on M such that, for
any vector �eld X, Y on M [10]:

g(φX, φ Y ) = g(X, Y )− η(X) η(Y ). (2.2)

for any vector �eld X on M ,
η(X) = g(X, ξ). (2.3)

Let consider the manifold M × R. We denote a vector �eld on M × R by (X, f d
dt

),
where X is tangent to M , t the coordinate on R, and f a C∞ function on M × R.
De�ne an almost complex structure J on M × R by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
;
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Almost Kenmotsu and Kenmotsu structures 4

where J2 = I. If now J is integrable, we say that the almost contact structure (φ, ξ, η)

is normal (Sasaki and Hatakeyama [32]). Since the vanishing of the Nijenhuis torsion
of J is a necessary and su�cient condition for integrability, we seek to express the
condition of normality in terms of the Nijenhuis torsion of φ. Since [J, J ] is a tensor
�eld of type (1, 2), it su�ces to compute [J, J ]((X, 0), (Y, 0)) and [J, J ]((X, 0), (0, d

dt
))

for vector �elds X and Y on M :

[J, J ]((X, 0), (Y, 0)) = ([X, Y ], 0) +

[(
φX, η(X)

d

dt

)
,

(
φY, η(Y )

d

dt

)]
− J

[(
φX, η(X)

d

dt

)
, (Y, 0)

]
− J

[
(X, 0) , (φY, η(Y )

d

dt
)

]
=
(
φ2[X, Y ]− η([X, Y ])ξ, 0

)
+

(
[φX, φY ], (φXη(Y )− φY η(X))

d

dt

)
−
(
φ[φX, Y ] + (Y η(X)ξ, η([φX, Y ])

d

dt

)
−
(
φ[X,φY ] + (Xη(Y )ξ, η([X,φY ])

d

dt

)
=

(
[φ, φ](X, Y ) + 2dη(X, Y )ξ, ((LφXη)(Y )− (LφY η)(X))

d

dt

)
,

(2.4)

[J, J ]((X, 0), (0,
d

dt
)) =

[(
φX, η(X)

d

dt

)
, (−ξ, 0)

]
− J

[(
φX, η(X)

d

dt

)
,

(
0,
d

dt

)]
− J [(X, 0), (−ξ, 0)]

=

(
−[φX, ξ], (ξη(X))

d

dt

)
+

(
φ[X, ξ], η([X, ξ])

d

dt

)
= ((Lξφ)X, (Lξη)(X)). (2.5)

Here we call LX the Lie derivative with respect to the vector �eld X.
We are thus led to de�ne four tensors N (1), N (2), N (3), N (4) by

N (1)(X, Y ) = [φ, φ](X, Y ) + 2dη(X, Y )ξ, (2.6)

N (2)(X, Y ) = (LφXη)(Y )− (LφY η)(X), (2.7)

N (3) = (Lξφ)X, (2.8)

N (4) = (Lξη)(X). (2.9)

The almost contact structure (φ, ξ, η) is normal if and only if these four tensors vanish.
However, the vanishing of N (1) implies the vanishing of N (2), N (3) and N (4), so that
the normality condition is simply

[φ, φ](X, Y ) + 2dη(X, Y )ξ = 0, (2.10)
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Locally conformal almost Kenmotsu 5

where [φ, φ] is the Nijenhuis torsion of φ de�ned by

[φ, φ](X, Y ) = φ2[X, Y ]− φ[φX, Y ]− φ[X,φY ] + [φX, φY ].

The fundamental 2-form of M is de�ned by

Φ(X, Y ) = g(X,φY ),

for any vector �elds X and Y on M .
If, moreover,

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.11)

where ∇ is the Levi-Civita connection for the Riemannian metric g, we call M a
Kenmotsu manifold.

Moreover, Kenmotsu proved that such a manifoldM2n+1 is locally a warped prod-
uct (−ε, ε)×f N2n, N2n being a Kähler manifold and f 2 = ce2t, c a positive onstant.

More recently in [15], [22] and [27], almost contact metric manifolds such that

dη = 0 and dΦ = 2η ∧ Φ, (2.12)

are studied and they are called almost Kenmotsu. Obviously, a normal almost Ken-
motsu manifold is a Kenmotsu manifold.

2.2 Locally conformal almost Kenmotsu

Let (M (2m+1), φ, ξ, η, g) be an almost contact metric manifold. Such a manifold is said
to be locally conformal (l.c.) almost Kenmotsu, if M has an open covering {Ut}t∈I
endowed with smooth function σt : Ut −→ R such that over each Ut the almost
contact metric structure (φt, ξt, ηt, gt) de�ned by

φt = φ, ξt = exp (σt)ξ, ηt = exp (−σt)η, gt = exp (−2σt)g, (2.13)

is almost Kenmotsu.
This means that if ∇t is the Levi-Civita connection associated with gt, then (see

[15] for more details and references therein)

2gt((∇t
Xφt)Y, Z) = 2ηt(Z)gt(φX, Y )− 2ηt(Y )gt(φX,Z)

+ gt(N
(1)
t (Y, Z), φX), (2.14)

for any vector �elds X, Y and Z. Therefore, we have the following.

Theorem 2.2.1. An almost contact manifold M is l.c. almost Kenmotsu manifold

if and only if there exists a closed 1-form ω such that

dη = ω ∧ η and dΦ = 2 {exp(−σt)η + ω} ∧ Φ, (2.15)

with ω = dσt.
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Locally conformal almost Kenmotsu 6

Proof. Since ηt = exp(−σt)η on Ut, we obtain,

0 = dηt = − exp(−σt)dσt ∧ η + exp(−σt)dη. (2.16)

That is

dη = dσt ∧ η. (2.17)

Likewise,
Φt = exp(−2σt)Φ.

Then its di�erential is given by

dΦt = −2 exp(−2σt)dσt ∧ Φ + exp(−2σt)dΦ

= exp(−2σt) {−2dσt ∧ Φ + dΦ} . (2.18)

On the other hand,

dΦt = 2ηt ∧ Φt

= 2 exp(−3σt)η ∧ Φ. (2.19)

From (2.18) and (2.19), we have

2 exp(−3σt)η ∧ Φ = exp(−2σt) {−2dσt ∧ Φ + dΦ} . (2.20)

That is,
2 exp(−σt)η ∧ Φ = −2dσt ∧ Φ + dΦ, (2.21)

which completes the proof with ω = dσt.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))− g(X, [Y, Z])

+ g(Y, [Z,X]) + g(Z, [X, Y ]), (2.22)

which is known as the Koszul formula. Let ∇ and ∇t be Levi-Civita connections
associated with the metrics g and gt, respectively. We set

σXY = ∇XY −∇t
XY, (2.23)

for any vector �elds X and Y on M . Then σ is symmetric, that is,

σXY = σYX.
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Locally conformal almost Kenmotsu 7

Lemma 2.2.1. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Let ∇ and ∇t

be Levi-Civita connections associated with the metrics g and gt, respectively. Then,

for any vector �elds X and Y on M ,

∇t
XY = ∇XY − ω(X)Y − ω(Y )X + g(X, Y )B, (2.24)

where B is the vector �eld de�ned by ω(X) = g(X,B).

Proof. For any X, Y, Z ∈ Γ(TM),

0 = (∇t
X)gt(Y, Z) = X(gt(Y, Z))− gt(∇t

XY, Z)− gt(Y,∇t
XZ). (2.25)

Since gt = exp(−2σt)g, we have that gt(Y, Z) = exp(−2σt)g(Y, Z). Similarly,

gt(∇t
XY, Z) = exp(−2σt)g(∇t

XY, Z),

gt(Y,∇t
XZ) = exp(−2σt)g(Y,∇t

XZ), (2.26)

and X(gt(Y, Z)) = X(exp(−2σt)g(Y, Z)) + exp(−2σt)X(g(Y, Z))

= −2 exp(−2σt)X(σt)g(Y, Z) + exp(−2σt)X(g(Y, Z))

= exp(−2σt){−2X(σt)g(Y, Z) +X(g(Y, Z))}. (2.27)

Substituting equations (2.26) and (2.27) into (2.25) gives

0 = exp(−2σt){−2X(σt)g(Y, Z) +X(g(Y, Z))} − exp(−2σt)g(∇t
XY, Z)

− exp(−2σt)g(Y,∇t
XZ)

= −2X(σt)g(Y, Z) +X(g(Y, Z))− g(∇t
XY, Z)− g(Y,∇t

XZ)

= −2X(σt)g(Y, Z) +X(g(Y, Z))− g(∇XY − σXY, Z)− g(Y,∇XZ − σXZ)

= −2X(σt)g(Y, Z) +X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) + g(σXY, Z)

+ g(Y, σXZ)

= −2X(σt)g(Y, Z) + (∇Xg)(Y, Z) + g(σXY, Z) + g(Y, σXZ)

= −2X(σt)g(Y, Z) + g(σXY, Z) + g(Y, σXZ)

= −2dσt(X)g(Y, Z) + g(σXY, Z) + g(Y, σXZ)

= −2ω(X)g(Y, Z) + g(σXY, Z) + g(Y, σXZ). (2.28)

Rearranging relation (2.28), yields

g(σXY, Z) + g(Y, σXZ) = 2ω(X)g(Y, Z). (2.29)

The circular permutation in (2.29) gives

g(σYZ,X) + g(Z, σYX) = 2ω(Y )g(Z,X). (2.30)
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Locally conformal almost Kenmotsu 8

g(σZX, Y ) + g(X, σZY ) = 2ω(Z)g(X, Y ), (2.31)

and using the operation (2.29)-(2.31)+(2.30), we get

g(σXY, Z)− g(X, σZY ) + g(σYZ,X) + g(Z, σYX) = 2ω(X)g(Y, Z)

− 2ω(Z)g(X, Y ) + 2ω(Y )g(Z,X), (2.32)

which is simpli�ed as

g(σXY, Z) = g(ω(X)Y, Z) + g(ω(Y )X,Z)− ω(Z)g(X, Y )

= g(ω(X)Y, Z) + g(ω(Y )X,Z)− g(B,Z)g(X, Y )

= g(ω(X)Y + ω(Y )X − g(X, Y )B,Z), (2.33)

which implies that

σXY = ω(X)Y + ω(Y )X − g(X, Y )B, (2.34)

where B is the vector �eld de�ned by g(B,Z) = ω(Z) and this ends the proof.

Now consider the tensors N (1) and N (2) given in (2.6) and (2.7). Clearly the
almost contact structure (φ, ξ, η) is normal if and only if N (1), N2 vanishes. However
the vanishing of N (1) implies the vanishing of N2. We now prove the tensors for the
structure (φt, ξt, ηt, gt) on Ut in the following lemma.

Lemma 2.2.2. If the structures (φt, ξt, ηt, gt) are almost Kenmotsu, we have that, on

Ut,

N
(1)
t (X, Y ) = N1(X, Y )− 2dη(X, Y )ξ, (2.35)

N
(2)
t (X, Y ) = exp(−σt){ω(φY )η(X)− ω(φX)η(Y ) +N2(X, Y )}. (2.36)

Proof. From equation (2.6) we have that

N
(1)
t (X, Y ) = [φt, φt](X, Y ) + 2dηt(X, Y )ξt

= [φ, φ](X, Y ) + 2dηt(X, Y )ξt, (2.37)

where [φ, φ] is the Nijenhuis torsion. Making [φ, φ](X, Y ) the subject of the formula
in equation (2.6) and substituting what you get into equation (2.37) gives

N
(1)
t (X, Y ) = N1(X, Y )− 2dη(X, Y )ξ + 2dηt(X, Y )ξt. (2.38)

Since the structures (φt, ξt, ηt, gt) are almost Kenmotsu, dηt = 0, equation (2.38)
becomes

N
(1)
t (X, Y ) = N1(X, Y )− 2dη(X, Y )ξ. (2.39)
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Locally conformal almost Kenmotsu 9

from (2.7), one gets that

N
(2)
t (X, Y ) = (LφtXηt)Y − (LφtY ηt)X, (2.40)

where L is the Lie derivative. Note that

(LφtXηt)Y = φX(exp(−σt)η(Y ))− exp(−σt)η([φX, Y ])

= φX(exp(−σt)η(Y )) + exp(−σt)φX(η(Y ))− exp(−σt)η([φX, Y ])

= φX(σt) exp(−σt)η(Y ) + exp(−σt)φX(η(Y ))− exp(−σt)η([φX, Y ])

= exp(−σt){−ω(φX)η(Y ) + (LφXη)Y } (2.41)

and

(LφtY ηt)X = φY (exp(−σt)η(X))− exp(−σt)η([φY,X])

= φY (exp(−σt)η(X)) + exp(−σt)φY (η(X))− exp(−σt)η([φY,X])

= φY (σt) exp(−σt)η(X) + exp(−σt)φY (η(X))− exp(−σt)η([φY,X])

= exp(−σt){−ω(φY )η(X) + (LφY η)X}. (2.42)

Now substituting equation (2.41) and (2.42) into equation (2.40), gives

N
(2)
t (X, Y ) = exp(−σt){−ω(φX)η(Y ) + (LφXη)Y } − exp(−σt){−ω(φY )η(X)

+ (LφY η)X}
= exp(−σt){ω(φY )η(X)− ω(φX)η(Y ) + (LφXη)Y − (LφY η)X}
= exp(−σt){ω(φY )η(X)− ω(φX)η(Y ) +N2(X, Y )}, (2.43)

and this ends the proof.

On Ut, if the structures (φt, ξt, ηt, gt) are almost Kenmotsu, the relation (2.14)
leads to

2 exp(−2σt)g((∇t
Xφt)Y, Z) = 2 exp(−3σt) {η(Z)g(φX, Y )− η(Y )g(φX,Z)}

+ exp(−2σt)g(N (1)(Y, Z), φX). (2.44)

That is,

2g((∇t
Xφt)Y, Z) = 2 exp(−σt) {η(Z)g(φX, Y )− η(Y )g(φX,Z)}

+ g(N (1)(Y, Z), φX). (2.45)

The covariant derivatives ∇tφt and ∇φ are related as follows. For any vector �elds
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X, Y on M and using (2.24), we have

(∇t
Xφt)Y = ∇t

XφtY − φt(∇t
XY )

= ∇t
XφY − φ(∇t

XY )

= ∇XφY − ω(X)φY − ω(φY )X + g(X,φY )B − φ∇XY + ω(X)φY

+ ω(Y )φX − g(X, Y )φB

= ∇XφY − ω(φY )X + g(X,φY )B − φ∇XY + ω(Y )φX − g(X, Y )φB

= (∇Xφ)Y − ω(φY )X + ω(Y )φX + g(X,φY )B − g(X, Y )φB. (2.46)

Now, using the relation (2.46) into (2.45), one has

2 exp(−σt) {η(Z)g(φX, Y )− η(Y )g(φX,Z)}+ g(N (1)(Y, Z), φX)

= 2g((∇Xφ)Y, Z)− 2ω(φY )g(X,Z) + 2ω(Y )g(φX,Z) + 2g(X,φY )ω(Z)

− 2g(X, Y )g(φB,Z). (2.47)

Therefore, we have the following.

Theorem 2.2.2. An almost contact metric manifold M is l.c. almost Kenmotsu if

and only if there exists a 1-form ω on M such that dω = 0 and

2g((∇Xφ)Y, Z) = 2 exp(−σt) {η(Z)g(φX, Y )− η(Y )g(φX,Z)}+ g(N (1)(Y, Z), φX)

+ 2ω(φY )g(X,Z)− 2ω(Y )g(φX,Z)− 2ω(Z)g(X,φY )

− 2ω(φZ)g(X, Y ), (2.48)

for any vector �elds X, Y and Z on M .

As a consequence, we have the following result.

Theorem 2.2.3. An almost contact metric manifold M is l.c. almost Kenmotsu if

and only if there exists a 1-form ω on M such that dω = 0 and

2g((∇Xφ)Y, Z) = 2 exp(−σt) {η(Z)g(φX, Y )− η(Y )g(φX,Z)}+ g(N (1)(Y, Z), φX)

+ 2ω(φY )g(X,Z)− 2ω(Y )g(φX,Z)− 2ω(Z)g(X,φY )

− 2ω(φZ)g(X, Y ), (2.49)

for any vector �elds X, Y and Z on M .

For an l.c. Kenmotsu manifold, the structures (φt, ξt, ηt, gt) are normal. Therefore,
we have the following theorem.

Theorem 2.2.4. An almost contact metric manifold M is l.c. Kenmotsu if and only

if there exists a 1-form ω on M such that dω = 0 and

(∇Xφ)Y = exp(−σt){g(φX, Y )ξ − η(Y )φX}+ ω(φY )X − ω(Y )φX

− g(X,φY )B + g(X, Y )φB, (2.50)

for any vector �elds X, Y and Z on M .
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Example of l.c. Kenmotsu manifolds 11

Proof. The proof follows from Theorem 2.2.3 and the fact if M is an l.c. Kenmotsu
manifold, then the structures (φt, ξt, ηt, gt) are Kenmotsu, that is, they are normal
almost Kenmotsu.

IfM is an l.c. almost Kenmotsu manifold and the smooth 1-form ω is proportional
to η, that is, ω = αη, α = const 6= 0, the relation (2.48) becomes

2g((∇Xφ)Y, Z) = 2{exp(−σt) + α} {η(Z)g(φX, Y )− η(Y )g(φX,Z)}
+ g(N (1)(Y, Z), φX). (2.51)

This means that an l.c. almost Kenmotsu manifold with ω = αη is an almost β-
Kenmotsu manifold with β = α+exp(−σt). If the structures (φt, ξt, ηt, gt) are normal,
from (2.48), one has

(∇Xφ)Y = exp(−σt){g(φX, Y )ξ − η(Y )φX} − αη(Y )φX

− αg(X,φY )ξ

= (α + exp(−σt)){g(φX, Y )ξ − η(Y )φX}. (2.52)

Therefore, we have the following result.

Theorem 2.2.5. An l.c. Kenmotsu manifold with ω = αη is β-Kenmotsu manifold

with β = α + exp(−σt). Moreover, the structure (φ, ξ, η, g) satis�es

dη = 0 and dΦ = 2βη ∧ Φ. (2.53)

Note that an l.c. Kenmotsu manifold which is not Kenmotsu.

2.3 Example of l.c. Kenmotsu manifolds

We construct an example of an l.c. Kenmotsu manifold which is not Kenmotsu. We
consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 : x > 0} with the linearly
independent vector �elds

e1 = −2x
∂

∂z
, e2 = −2x

∂

∂y
, e3 = −2 exp(−x)x

∂

∂x

Let g be the Riemannian metric de�ned by

g(ei, ei) = exp(2x), for i = 1, 2, g(e3, e3) = 1, g(ei, ej) = 0, for i 6= j, i, j = 1, 2, 3.

Let η be the 1-form de�ned by

η(e1) = η(e2) = 0 and η(e3) = 1.
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Classes of l.c. almost Kenmotsu structures 12

We de�ne the (1, 1)-tensor �eld φ as φe1 = e2, φe2 = −e1, and φe3 = 0. Then using
the linearity of φ and g, we have

φ2X = −X + η(X)e3, g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all X and Y on M . Thus for e3 = ξ, in view of the de�nition of almost contact
metric manifold, (φ, ξ, η, g) yields an almost contact metric structure on M .

[e1, e2] = 0, [e1, e3] = 2 exp(−x)e1, [e2, e3] = 2 exp(−x)e2.

By using the Koszul formula (2.22), we obtain

∇e1e2 = 0, ∇e1e3 = −2 exp(−x)(−x+ 1)e1, ∇e1e1 = 2 exp(x)(−x+ 1)e3,

∇e2e3 = −2 exp(−x)(−x+ 1)e2, ∇e2e2 = 2 exp(x)(−x+ 1)e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 2 exp(−x)xe2, ∇e3e1 = 2 exp(−x)xe1.

By the following contact transformation

g̃ = exp(−2x)g, ξ̃ = exp(x)ξ, η̃ = exp(−x)η, φ̃ = φ,

(M, φ̃, ξ̃, η̃, g̃) is a Kenmotsu manifold (see [21]). Hence, (M,φ, ξ, η, g) is a conformal
Kenmotsu manifold but is not Kenmotsu because we have

(∇Xφ)Y 6= g(φX, Y )ξ − η(Y )φX,

for all X and Y on M (for instance, (∇e2φ)e1 6= g(φe2, e1)ξ− η(e1)φe2). By using the
above results, we can easily see that

R(e1, e2)e2 = −4(−x+ 1)2e1, R(e2, e3)e3 = −4 exp(−2x)e2,

R(e1, e2)e3 = 0, R(e1, e3)e3 = −4 exp(−2x)e1, R(e3, e1)e1 = −4e3,

R(e3, e2)e1 = 0 R(e3, e1)e2 = 0, R(e2, e1)e1 = −4(−x+ 2)2e2, R(e3, e2)e2 = −4e3.

In view of the above relations, we conclude that

K(X, e3) = − exp(−2x), K(X, Y ) = − exp(−2x)(−x+ 1)2,

for all X and Y orthogonal to e3. Note that (M, φ̃, ξ̃, η̃, g̃) is a Kenmotsu manifold of
constant φ-holomorphic sectional curvature −1 (see [21]).

2.4 Classes of l.c. almost Kenmotsu structures

Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Now, we investigate the
Olszak and Blair (1, 1)-tensor �elds de�ned, respectively, by

hX = ∇Xξ − ω(ξ)X + η(X)B, (2.54)

and ĥX =
1

2
(Lξφ)X, (2.55)
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Classes of l.c. almost Kenmotsu structures 13

for any vector �eld X on M . The relation (2.54) leads to

∇ξξ = −B + ω(ξ)ξ. (2.56)

Using (2.13) and (2.24), we can see that on each Ut,

exp(−σt) {−X + η(X)ξ} = hX. (2.57)

The linear operator h has the following properties [28]:

hφ+ φh = 0, hξ = 0, trace(h) = 0, g(hX, Y ) = g(hY,X). (2.58)

For the Blair (1, 1)-tensor �eld, we have the following:

2ĥX = (Lξφ)X

= [ξ, φX]− φ[ξ,X]

= ∇ξφX −∇φXξ − φ(∇ξX −∇Xξ)

= ∇ξφX −∇φXξ − φ∇ξX + φ∇Xξ

= (∇ξφ)X −∇φXξ + φ∇Xξ, (2.59)

for any vector �eld X on M . Using (2.54), the relation (2.59) becomes

2ĥX = (∇ξφ)X − hφX − ω(ξ)φX + φhX + ω(ξ)φX

− η(X)φB. (2.60)

Since
(∇ξφ)X = ω(φY )ξ + η(Y )φB, (2.61)

one obtains

2ĥX = ω(φY )ξ + η(Y )φB − hφX − ω(ξ)φX + φhX + ω(ξ)φX

− η(X)φB

= ω(φY )ξ + 2φhX. (2.62)

From trace(ĥ) = 0, ĥξ = 0 and

ĥφX + φĥX =
1

2
{ω(ξ)η(X)− ω(X)} ξ, (2.63)

g(ĥX, Y )− g(X, ĥY ) =
1

2
{ω(φX)η(Y )− ω(φY )η(X)} .

Therefore, we have the following:
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Classes of l.c. almost Kenmotsu structures 14

Lemma 2.4.1. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. The Olszak

and Blair (1, 1)-tensor �elds h and ĥ are related as

ĥ =
1

2
(ω ◦ φ)⊗ ξ + φ ◦ h.

Moreover, ĥ is not a symmetric operator, ĥ does not anticommute with φ,

trace(ĥ) = 0 and ∇Xξ = ω(ξ)X − η(X)B + φĥX,

for any vector �eld X on M .

We have the following:

Lemma 2.4.2. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Then ĥφ +

φĥ = 0 and ĥ is a symmetric operator if and only if there exists a smooth function f

on M such that ω = fη with df ∧ η = 0 and ĥ = φh.

Another condition in which an l.c. almost Kenmotsu manifold admits a 1-form ω

that is proportional to η is as follows.
Let D := ker η be the contact distribution and D⊥ be the distribution spanned

the structure vector �eld ξ. Then, we have the following decomposition

TM = D ⊕D⊥, (2.64)

where ⊕ denotes the orthogonal direct sum. By the decomposition (2.64), any X ∈
Γ(TM) is written as

X = QX +Q⊥X, (2.65)

where Q and Q⊥ are the projection morphisms of TM into D and D⊥, respectively.
Then, Q⊥X = η(X)ξ and X = QX + η(X)ξ.

Lemma 2.4.3. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Then the

contact distribution D de�nes on M a foliation F of codimension 1.

Proof. Let X, Y ∈ Γ(D). Then, η(X) = η(Y ) = 0 and

η([X, Y ]) = −2(ω ∧ η)(X, Y ) = ω(Y )η(X)− ω(X)η(Y ) = 0.

This means that [X, Y ] ∈ Γ(D), i.e, the contact distribution D is integrable.

Let F be a foliation on an l.c. almost Kenmotsu manifold (M,φ, ξ, η, g) of codimen-
sion 1. The metric g is said to be bundle-like for the foliation F if the induced metric
on the transversal distribution D⊥ is parallel with respect to the intrinsic connec-
tion on D⊥. This is true if and only if the Levi-Civita connection ∇ of (M,φ, ξ, η, g)

satis�es (see [7] and [35] for more details):

g(∇Q⊥YQX,Q
⊥Z) + g(∇Q⊥ZQX,Q

⊥Y ) = 0, (2.66)
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Classes of l.c. almost Kenmotsu structures 15

for any X, Y , Z ∈ Γ(TM). If for a given foliation F, the Riemannian metric g on M
is bundle-like for F, then we say that F is a Riemannian foliation on (M,φ, ξ, η, g).

Let F⊥ be the orthogonal complementary foliation generated by ξ. Now we provide
necessary and su�cient conditions for the metric on an l.c. almost Kenmotsu manifold
to be bundle-like for foliations F and F⊥. Therefore, we have the following results.

Theorem 2.4.1. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold and let F

be a foliation on M of codimension 1. Then the following assertions are equivalent:

(i) The metric g on M is bundle-like for the foliation F.

(ii) The dual vector �eld B of ω has a no components along D.

Proof. Using (2.56), for anyX, Y , Z ∈ Γ(TM), we haveQ⊥Y = η(Y )ξ,Q⊥Z = η(Z)ξ

and the left-hand side of (2.66) gives

g(∇Q⊥YQX,Q
⊥Z) + g(∇Q⊥ZQX,Q

⊥Y ) = 2η(Y )η(Z)ω(QX).

Next, we investigate the torsion tensor τ for an l.c. almost cosymplectic manifold.
This tensor was introduced by Chern and Hamilton [16] and is de�ned by

g(τX, Y ) = (Lξg)(X, Y ),

for vector �elds X, Y on a contact metric manifold (see [17] for details).
The Lie derivative Lξ of g with respect to the vector �eld ξ is given by

(Lξg)(X, Y ) = 2g(hX, Y ) + 2ω(ξ)g(X, Y )− ω(X)η(Y )− ω(Y )η(X), (2.67)

where h is given by (2.54). Thus, an l.c. almost cosymplectic manifoldM has a tensor
τ such that g(τX, Y ) = (Lξg)(X, Y ), ∀X, Y ∈ Γ(TM). By (2.67), have

τX = 2hX + 2ω(ξ)X − ω(X)ξ − η(X)B. (2.68)

Lemma 2.4.4. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Then, the

following assertions are equivalent:

(a) The structure vector �eld ξ is Killing.

(b) The di�erential 1-form ω and the operator h vanish.

Proof. Suppose the structure vector �eld ξ is Killing. Then, the Lie derivative

(Lξg)(X, Y ) = 0,
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Classes of l.c. almost Kenmotsu structures 16

for any vector �elds X and Y on M . The latter implies that the Chern-Hamilton
tensor τ vanishes identically on M . Its trace, with respect to an adapted frame
{ei}1≤i≤2n+1 in TM , gives

0 = 2
2n+1∑
i=1

g(hei, ei) + 2ω(ξ)
2n+1∑
i=1

g(ei, ei)−
2n+1∑
i=1

ω(ei)g(ξ, ei)−
2n+1∑
i=1

η(ei)g(B, ei)

= 2trace(h) + 2(2n+ 1)ω(ξ)− 2ω(ξ)

= 2trace(h) + 4nω(ξ). (2.69)

Since trace(h) = 0 and n ≥ 1, we have ω(ξ) = 0. Also, for X = ξ in (2.68) with
τ = 0, we have B = 0. Hence ω = 0 and h = 0. This means that (a) implies (b), and
the conserve is obvious.

For any X, Y , Z ∈ Γ(TM), using (2.67) and the fact that h is symmetric and

g(∇QYQ
⊥X,QZ) = η(X){g(hQY,QZ) + ω(ξ)g(QY,QZ)}, (2.70)

we have

g(∇QYQ
⊥X,QZ) + g(∇QZQ

⊥X,QY ) = 2η(X){g(hQY,QZ)

+ 2ω(ξ)g(QY,QZ). (2.71)

Using the Lie derivative in (2.67), one obtains

g(∇QYQ
⊥X,QZ) + g(∇QZQ

⊥X,QY ) = 2η(X)(Lξg)(QY,QZ). (2.72)

We have therefore the following.

Theorem 2.4.2. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold and let F

be a foliation on M of codimension 1. Then the following assertions are equivalent:

(a) The metric g on M is bundle-like for the canonical totally real foliation F⊥.

(b) The structure vector �eld ξ is D-Killing (i.e. D⊥ is D-Killing distribution).

Let M ′ be a leaf of the distribution D. Since M ′ is a submanifold of M and for
any X, Y ∈ Γ(TM ′), we have

∇XY = ∇′XY + α(X, Y ), (2.73)

∇Xξ = −AξX +∇′⊥Xξ, (2.74)

where ∇′ and α are the Levi-Civita connection and the second fundamental form of
M ′, respectively. On the other hand, since ξ is a unit normal vector �eld, we have
g(∇Xξ, ξ) = 0, hence ∇′⊥Xξ = 0, for any X ∈ Γ(TM ′). Therefore, the Weingartem
formula (2.74) becomes

∇Xξ = −AξX.
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Classes of l.c. almost Kenmotsu structures 17

Proposition 2.4.1. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Then,

integral manifolds of the distribution D in (2.64) are l.c. almost Kähler manifolds with

mean curvature vector �eld H ′ = −ω(ξ)ξ. They are totally umbilical submanifolds of

M if and only if the operator h vanishes.

Proof. Let M ′ be an integral manifold of D. The tensor �elds φt and gt induce an
almost complex structure Jt = J and a Hermitian metric g′t on M

′. Then, for any X,
Y ∈ Γ(TM ′), we have Φ′t(X, Y ) = g′t(X, JtY ) = gt(X,φtY ) = Φt(X, Y ) and dΦ′t =

(dΦt)|M ′ = 0, so M ′ is an l.c. almost Kähler. Using (2.73), the second fundamental
form of M ′ gives

α(X, Y ) = g(AξX, Y )ξ = −g(hX, Y )ξ − ω(ξ)g(X, Y )ξ. (2.75)

Fixing a local orthonormal frame {e1, · · · , en, φe1, · · · , φen} in TM ′ and applying the
properties on h, one has,

H =
1

rank(D)
{

n∑
i=1

α(ei, ei) +
n∑
i=1

α(φei, φei)} = −ω(ξ)ξ.

The last assertion follows and this completes the proof.

This result can be extended to the foliation F⊥. That is, if h = ω(ξ) = 0,
g(∇XY, ξ) = 0. This means that the foliation F⊥ is Riemannian. Therefore, h = 0, the
leaves of F are totally geodesic if and only if the orthogonal complementary foliation
F⊥ generated by ξ is Riemannian.

On each Ut ∩M ′, the Gauss and Weingartem formulas are given by

∇t
XY = ∇′tXY + αt(X, Y ), (2.76)

∇t
Xξt = −AξtX, (2.77)

where gt(αt(X, Y ), ξt) = gt(AξtX, Y ), that is, αt(X, Y ) = gt(AξtX, Y )ξt. However,

αt(X, Y ) = gt(AξtX, Y )ξt = g(AξX, Y )ξ = α(X, Y ). (2.78)

For any X, Y ∈ Γ(TM ′), and using (2.24) and (2.73), we have

(∇′tXJ)Y = ∇′tXJY − J(∇′tXY ) = ∇t
XφY − α(X,φY )− φ(∇t

XY )

= (∇Xφ)Y − ω(φY )X + ω(Y )φX + g(X,φY )B

− g(X, Y )φB − g(AξX,φY )ξ. (2.79)

If the integral manifold M ′ is an l.c. Kähler, then, (∇′tXJ)Y = 0 and we have

(∇Xφ)Y = ω(φY )X − ω(Y )φX − g(X,φY )B + g(X, Y )φB

+ g(AξX,φY )ξ, (2.80)
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Classes of l.c. almost Kenmotsu structures 18

for any X, Y ∈ Γ(TM ′). Therefore, if the foliation F has locally conformal Kähler
leaves, then for any X, Y ∈ Γ(TM), the vector �elds X − η(X)ξ, Y − η(Y )ξ and
B − η(B)ξ belong to D and using (2.56) and (2.61), we have

(∇X−η(X)ξφ)(Y − η(Y )ξ) = (∇Xφ)Y − η(Y )φAξX − η(X)ω(φY )ξ,

g(Aξ(X − η(X)ξ), φY ) = g(AξX,φY )− η(X)ω(φY ).

Putting these pieces into (2.80) and taking into account the following relations

ω(φ(Y − η(Y )ξ))(X − η(X)ξ) = ω(φY )X − η(X)ω(φY )ξ,

ω(Y − η(Y )ξ)φ(X − η(X)ξ) = ω(Y )φX − η(Y )ω(ξ)φX,

g(X − η(X)ξ, φ(Y − η(Y )ξ)) = g(X,φY ),

g(X − η(X)ξ, Y − η(Y )ξ) = g(X, Y )− η(X)η(Y ),

one obtains,

(∇Xφ)Y = −g(φAξX, Y )ξ + η(Y )φAξX + ω(φY )X + {η(Y )ω(ξ)− ω(Y )}φX
− g(X,φY ){B − ω(ξ)ξ} − η(X)ω(φY )ξ.

Proposition 2.4.2. Let (M,φ, ξ, η, g) be an l.c. almost Kenmotsu manifold. Then

the distribution D in (2.64) has locally conformal Kähler leaves if and only if

(∇Xφ)Y = −g(φAξX, Y )ξ + η(Y )φAξX + ω(φY )X + {η(Y )ω(ξ)− ω(Y )}φX
− g(X,φY ){B − ω(ξ)ξ} − η(X)ω(φY )ξ, (2.81)

for any X, Y ∈ Γ(TM).

When the di�erential 1-form ω is reduced to ω = fη, where f is a function such
that df ∧ η = 0, then M becomes β-Kenmotsu manifold with β = α + exp(−σt) and
the relation (2.81) for any leaves of M to be Kählerian becomes

(∇Xφ)Y = −g(φAξX, Y )ξ + η(Y )φAξX,

for any X, Y ∈ Γ(TM). The latter relation is exactly the one found by Aktan et al

in [2, Proposition 6] but in the case of f -cosymplectic. We have the following.

Theorem 2.4.3. Let (M,φ, ξ, η, g) be an l.c. Kenmotsu manifold and let F be a

foliation on M of codimension 1. If the metric g on M is bundle-like for the foliation

F, then the leaves of F are Kähler and totally umbilical.

Proof. Let F be a foliation on an l.c. Kenmotsu manifold M of codimension 1. If the
metric g on M is bundle-like for the foliation F, then, by Theorem 2.4.1, the dual
vector �eld B of ω is proportional to ξ, that is, B = ω(ξ)ξ. This means that M
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Classes of l.c. almost Kenmotsu structures 19

becomes β-Kenmotsu manifold with β = α+exp(−σt) and the leaves of F are almost
Kähler.

Since the structures (φt, ξt, ηt, gt) are normal, then the tensor N (1) = N
(1)
t = 0 in

(2.35) vanishes. By the equality

N (1)(X, Y ) = [φ, φ](X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]

= [J, J ](X, Y ),

and Proposition 2.4.1, we complete the proof.

Let Rt and R denote the curvature tensors of (M,φt, ηt, ξt, gt) and (M,φ, η, ξ, g),
respectively. Then the relation between Rt and R is given by

Rt(X, Y )Z = ∇t
X∇t

YZ −∇t
Y∇t

XZ −∇t
[X,Y ]Z

= ∇t
X (∇YZ − ω(Y )Z − ω(Z)Y + g(Y, Z)B)

−∇t
Y (∇XZ − ω(X)Z − ω(Z)X + g(X,Z)B)

−∇[X,Y ]Z + ω([X, Y ])Z + ω(Z)[X, Y ]− g([X, Y ], Z)B. (2.82)

Since

∇t
X (∇YZ − ω(Y )Z − ω(Z)Y + g(Y, Z)B) = ∇X∇YZ − ω(X)∇YZ − ω(∇YZ)X

+ g(X,∇YZ)B −X(ω(Y ))Z − ω(Y )∇XZ + ω(X)ω(Y )Z + 2ω(Y )ω(Z)X

− ω(Y )g(X,Z)B −X(ω(Z))Y − ω(Z)∇XY + ω(X)ω(Z)Y − ω(Z)g(X, Y )B

+X(g(Y, Z))B + g(Y, Z)∇XB − ω(B)g(Y, Z)X (2.83)

and

∇t
Y (∇XZ − ω(X)Z − ω(Z)X + g(X,Z)B) = ∇Y∇XZ − ω(Y )∇XZ − ω(∇XZ)Y

+ g(Y,∇XZ)B − Y (ω(X))Z − ω(X)∇YZ + ω(Y )ω(X)Z + 2ω(X)ω(Z)Y

− ω(X)g(Y, Z)B − Y (ω(Z))X − ω(Z)∇YX + ω(Y )ω(Z)X − ω(Z)g(X, Y )B

+ Y (g(X,Z))B + g(X,Z)∇YB − ω(B)g(X,Z)Y, (2.84)
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Classes of l.c. almost Kenmotsu structures 20

and using the fact that ω is closed, we have

Rt(X, Y )Z = R(X, Y )Z − ω(X)∇YZ − ω(∇YZ)X + g(X,∇YZ)B −X(ω(Y ))Z

− ω(Y )∇XZ + ω(X)ω(Y )Z + 2ω(Y )ω(Z)X − ω(Y )g(X,Z)B

−X(ω(Z))Y − ω(Z)∇XY + ω(X)ω(Z)Y − ω(Z)g(X, Y )B

+X(g(Y, Z))B + g(Y, Z)∇XB − ω(B)g(Y, Z)X + ω(Y )∇XZ

+ ω(∇XZ)Y − g(Y,∇XZ)B + Y (ω(X))Z + ω(X)∇YZ − ω(Y )ω(X)Z

− 2ω(X)ω(Z)Y + ω(X)g(Y, Z)B + Y (ω(Z))X + ω(Z)∇YX − ω(Y )ω(Z)X

+ ω(Z)g(X, Y )B − Y (g(X,Z))B − g(X,Z)∇YB + ω(B)g(X,Z)Y

+ ω([X, Y ])Z + ω(Z)[X, Y ]− g([X, Y ], Z)B

= R(X, Y )Z + ((∇Y ω)Z)X + ω(Y )ω(Z)X − ω(Y )g(X,Z)B

− (∇Xω)Z)Y − ω(X)ω(Z)Y + g(Y, Z)∇XB − ω(B)g(Y, Z)X

+ ω(X)g(Y, Z)B − g(X,Z)∇YB + ω(B)g(X,Z)Y. (2.85)

Therefore, we have, for all X, Y , Z, and W on M ,

g(Rt(X, Y )Z,W ) = g(R(X, Y )Z,W ) + {(∇Y ω)Z + ω(Y )ω(Z)}g(X,W )

− ω(Y )ω(W )g(X,Z)− {(∇Xω)Z + ω(X)ω(Z)}g(Y,W )

+ g(Y, Z)g(∇XB,W )− ω(B)g(Y, Z)g(X,W )

+ ω(X)ω(W )g(Y, Z)− g(X,Z)g(∇YB,W )

+ ω(B)g(X,Z)g(Y,W )

= g(R(X, Y )Z,W ) + {(∇Y ω)Z + ω(Y )ω(Z)}g(X,W )

− {(∇Xω)Z + ω(X)ω(Z)}g(Y,W )

− ω(B){g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+ {(∇Xω)W + ω(X)ω(W )}g(Y, Z)− {(∇Y ω)W + ω(Y )ω(W )}g(X,Z). (2.86)
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Classes of l.c. almost Kenmotsu structures 21

This leads, on the arbitrary Ut, to

exp(2σt)gt(R(X, Y )Z,W ) = g(R(X, Y )Z,W ) + {(∇Y ω)Z + ω(Y )ω(Z)}g(X,W )

− {(∇Xω)Z + ω(X)ω(Z)}g(Y,W )

− ω(B){g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+ {(∇Xω)W + ω(X)ω(W )}g(Y, Z)− {(∇Y ω)W + ω(Y )ω(W )}g(X,Z)

= g(R(X, Y )Z,W ) + {(∇Y ω)Z + ω(Y )ω(Z)− 1

2
ω(B)g(Y, Z)}g(X,W )

− {(∇Xω)Z + ω(X)ω(Z)− 1

2
ω(B)g(X,Z)}g(Y,W )

+ {(∇Xω)W + ω(X)ω(W )− 1

2
ω(B)g(X,W )}g(Y, Z)

− {(∇Y ω)W + ω(Y )ω(W )− 1

2
ω(B)Y,W )}g(X,Z)

= g(R(X, Y )Z,W ) + g(X,W )P (Y, Z)− g(Y,W )P (X,Z)

+ g(Y, Z)P (X,W )− g(X,Z)P (Y,W ), (2.87)

where
P := ∇ω + ω ⊗ ω − 1

2
||B||2g. (2.88)

Note also that, with the help of (2.56), from (2.88), it can be derived

P (ξ, ξ) = ξ(ω(ξ)) +
1

2
||B||2, trace(P ) = divB − 1

2
(2n− 1)||B||2. (2.89)

Lemma 2.4.5. The operator P in (2.88) is symmetric.

Proof. For any vector �elds X and Y on M

P (X, Y )− P (Y,X) = (∇Xω)Y − (∇Y ω)X

= X(ω(Y ))− ω(∇XY )− Y (ω(X)) + ω(∇YX)

= X(ω(Y ))− Y (ω(X))− ω([X, Y ]) = 2dω(X, Y ) = 0,

which completes the proof.
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Chapter Three

Submanifolds of l.c. Almost

Kenmotsu Manifolds

This chapter is focused on submanifolds of l.c. almost Kenmotsu manifolds, We de�ne
the contact CR-submanifolds in these settings and prove that they contain distribu-
tions which, under some conditions, admit foliations that are l.c. (almost) Kähler.

3.1 Gauss and Weingarten formulas

Let (M̃, g̃) be an m-dimensional submanifold of a (2n + 1)-dimensional l.c. almost
Kenmotsu manifold (M, g). The Gauss and Weingarten formulas are given by

∇XY = ∇̃XY + h̃(X, Y ), (3.1)

∇XN = −ANX + ∇̃⊥XN, (3.2)

for all vector �elds X and Y tangent to M̃ and the normal vector �eld N on M̃ ,
where ∇̃ is the Riemannian connection on M̃ determined by the induced metric g̃,
∇̃⊥ is the normal connection on TM⊥ of M̃ and h̃ is the second fundamental form of
M̃ . It is known that

g(h̃(X, Y ), N) = g(ANX, Y ) = g̃(ANX, Y ), (3.3)

where A is called the shape operator of M̃ with respect to the unit normal vector
�eld N .

If we assume that ξ is tangent to M̃ and if X is a vector �eld in M̃ , then by
(2.57), hX is tangent to M̃ , that is, hX ∈ TM̃ .

Lemma 3.1.1. Let M̃ be a submanifold of a conformal Kenmotsu manifold M tan-
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Gauss and Weingarten formulas 23

gent to ξ and normal to B. Then

P (X, Y ) = −ω(h(X, Y ))− 1

2
||B||2g(X, Y ), (3.4)

h̃(X, ξ) = −η(X)B, (3.5)

∇̃Xξ = hX + ω(ξ)X, (3.6)

for all vector �elds X and Y tangent to M̃ .

Proof. From (2.88), we have

P (X, Y ) = (∇Xω)Y + ω(X)ω(Y )− 1

2
||B||2g(X, Y )

= ∇X(ω(Y ))− ω(∇XY ) + ω(X)ω(Y )− 1

2
||B||2g(X, Y ),

for all vector �elds X and Y tangent to M̃ . Since B is normal to M̃ , the above
equation can be written as

P (X, Y ) = −ω(∇XY )− 1

2
||B||2g(X, Y ),

for all X and Y on M̃ . Then we obtain (3.4) using the Gauss formula.
Taking Y = ξ in the Gauss formula and using (2.54), we have

∇̃Xξ + h̃(X, ξ) = ∇Xξ = hX + ω(ξ)X − η(X)B (3.7)

for each vector �eld X tangent to M̃ . Since B is normal to M̃ , we compare the
tangential part and the normal part in the above equation. Then we obtain (3.5) and
(3.6).

Lemma 3.1.2. Let M̃ be a submanifold of a conformal Kenmotsu manifold M tan-

gent to both ξ and B. Then

P (X, Y ) = g(∇XB, Y ) + ω(X)ω(Y )− 1

2
||B||2g(X, Y ), (3.8)

h̃(X, ξ) = 0, (3.9)

∇̃Xξ = hX + ω(ξ)X − η(X)B, (3.10)

for all vector �elds X and Y tangent to M̃ .

Proof. From (2.88), we have

P (X, Y ) = (∇Xω)Y + ω(X)ω(Y )− 1

2
||B||2g(X, Y )

= ∇X(ω(Y ))− ω(∇XY ) + ω(X)ω(Y )− 1

2
||B||2g(X, Y ),
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Contact CR-submanifolds 24

for all vector �elds X and Y tangent to M̃ . Since ω(X) = g(X,B), the above equation
can be written as

P (X, Y ) = ∇X(g(Y,B))− ω(g(∇XY,B)) + ω(X)ω(Y )− 1

2
||B||2g(X, Y ),

= g(∇XB, Y ) + ω(X)ω(Y )− 1

2
||B||2g(X, Y ),

for all X and Y on M̃ . Then we obtain (3.8) using the Gauss formula.
Taking Y = ξ in the Gauss formula and using (2.54), we have

∇̃Xξ + h̃(X, ξ) = ∇Xξ = hX + ω(ξ)X − η(X)B

Substitution of (2.54) into the above equation, we get

hX + ω(ξ)X − η(X)B + h(X, ξ) = hX + ω(ξ)X − η(X)ξ

h(X, ξ) = 0

for each vector �eld X tangent to M̃ .

3.2 Contact CR-submanifolds

In this section, we introduce the concept of contact CR-submanifold of an l.c. almost
Kenmotsu manifold.

Let (M̃, g̃) be an immersed submanifold of a (2n + 1)-dimensional l.c. almost
Kenmotsu manifold M . Then we have the following de�nition adapted from the one
given in [41].

De�nition 3.2.1. A submanifold M̃ in an l.c. almost Kenmotsu manifold M is

called contact CR-submanifold if ξ is tangent to M̃ and there exists on M̃ a smooth

distribution D̃ : x 7−→ D̃x ⊂ TxM such that

(i) D̃x is invariant under φ (i.e. φD̃x ⊂ D̃x) for each x ∈ M̃ ;

(ii) the orthogonal complementary distribution D̃⊥ : x 7−→ D̃⊥x ⊂ TxM̃ of the dis-

tribution D̃ is totally real (i.e. φD̃⊥ ⊂ TxM̃
⊥);

(iii) TM̃ = D̃ ⊕ D̃⊥ ⊕ {ξ}, where TxM̃ and TxM̃
⊥ are the tangent space and the

normal space of M̃ at x, respectively, ⊕ denotes the orthogonal direct sum and

{ξ} is the line bundle spanned by ξ.
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Contact CR-submanifolds 25

The projections of TM̃ to D̃ and D̃⊥ are denoted by h and v, respectively, i.e for
any X ∈ Γ(TM̃),

X = Xh +Xv + η(X)ξ. (3.11)

Applying φ to X, one gets

φX = FX +NX, ∀X ∈ Γ(TM), (3.12)

where FX = φhX and NX = φνX are tangential and normal components of φX,
respectively. The normal bundle to M has the following decomposition

TM̃⊥ = φD̃⊥ ⊕ ν, (3.13)

where ν denotes the orthogonal complementary distribution of φD̃⊥ and is an invari-
ant normal subbundle of TM̃⊥ under φ. For any V ∈ TM⊥, we have

V = pV + qV, (3.14)

where pV ∈ φD̃⊥, qV ∈ ν. Applying φ to the above equation yield

φV = fV + nV, ∀V ∈ TM⊥, (3.15)

where fV = φpV ∈ D̃⊥ and nV = φqV ∈ ν.

Comparing tangential and normal components in (2.1), we obtain the following lem-
mas.

Lemma 3.2.1. For a contact CR-submanifold M̃ of an l.c. almost Kenmotsu man-

ifold M tangent to ξ, the following identities hold:

F 2 + fN = −I + η ⊕ ξ, (3.16)

NF + nN = 0, (3.17)

Ff + fn = 0, (3.18)

n2 +Nf = −I. (3.19)

Proof. Let X ∈ Γ(TM̃). Then

φX = FX +NX. (3.20)
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Multiplying equation (3.20) by φ, gives

φ2X = φ(φX)

= φ(FX +NX)

= φFX + φNX

= F (FX) +N(FX) + fNX + nNX

= F 2X +NFX + fNX + nNX

= F 2X + fNX + FNX + nNX. (3.21)

Since φ2X = −X + η(X)ξ, we have

−X + η(X)ξ = F 2X + fNX +NFX + nNX, (3.22)

and by comparing the tangential and normal part in (3.22), we get

F 2X + fNX = −X + η(X)ξ, (3.23)

NFX + nNX = 0. (3.24)

Therefore,

F 2 + fN = −I + η ⊕ ξ, (3.25)

NF + nN = 0. (3.26)

Similarly, let V ∈ Γ(TM̃⊥). Then φV = fV + nV . Applying φ, we have,

φ2V = φ(φV )

φ2V = φ(fV + nV )

−V = φfV + φnV

−V = FfV +NfV + fnV + nnV (3.27)

Therefore,

Ff + fN = = 0

Nf + n2 = −I, (3.28)

and this ends the proof.

By letting Y = ξ into (3.1), one has,

∇̃Xξ + h̃(X, ξ) = ∇Xξ

= hX + ω(ξ)X − η(X)B. (3.29)

We have the following.
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Lemma 3.2.2. Let M̃ be a contact CR-submanifold of an l.c. almost Kenmotsu M

tangent to ξ. Then, we have the following identities:

∇̃Xξ = ω(ξ)X − η(X)BT + hX,

h̃(X, ξ) = −η(X)BN , (3.30)

for all vector �elds X and Y tangent to M̃ .

Proof. If M is an l.c. almost Kenmotsu manifold, then we have

∇Xξ = ω(ξ)X − η(X)B + hX. (3.31)

Then

∇̃Xξ + h̃(X, ξ) = hX + ω(ξ)X − η(X)B (3.32)

= (hN + hT )X + ω(ξ)X − η(X)(BN +BT ). (3.33)

Thus,

∇̃Xξ = ω(ξ)X − η(X)BT + hTX, (3.34)

h̃(X, ξ) = −η(X)BN + hNX, (3.35)

and this ends the proof.

We de�ne the covariant derivatives of F and N by

(∇̃XF )Y = ∇̃XFY − F ∇̃XY (3.36)

and

(∇̃XN)Y = ∇̃⊥XNY −N∇̃XY, (3.37)

respectively, for all vector �elds X and Y tangent to M̃ . We have

(∇Xφ)Y = ∇XφY − φ(∇XY )

= ∇XFY +∇XNY − φ(∇XY + h̃(X, Y ))

= ∇̃XFY + h̃(X,FY )− ANYX + ∇̃⊥XNY − φ∇̃XY − φh̃(X, Y )

= ∇̃XFY + h̃(X,FY )− ANYX + ∇̃⊥XNY − F ∇̃XY −N∇̃XY+

− fh̃(X, Y )− nh̃(X, Y )

= (∇̃XF )Y + h̃(X,FY )− ANYX + (∇̃XN)Y − fh̃(X, Y )+

− nh̃(X, Y ). (3.38)
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If M̃ is a contact CR-submanifold of an l.c. KenmotsuM tangent to ξ, then equating
(2.50) and (3.38), gives

exp(−σt){g̃(φX, Y )ξ − η(Y )φX}+ ω(φY )X − ω(Y )φX

− g̃(X,φY )B + g̃(X, Y )φB = (∇̃XF )Y + h̃(X,FY )− ANYX

+ (∇̃XN)Y − fh̃(X, Y )− nh̃(X, Y ). (3.39)

We know that φB = FB + NB and B = BT + BN , φX = FX + NX. Comparing
the tangential and normal components in (3.39), one gets

exp(−σt){g̃(φX, Y )ξ − η(Y )FX}+ ω(φY )X − ω(Y )FX − g̃(X,φY )BT

+ g̃(X, Y )FB = (∇̃XF )Y − ANYX − fh̃(X, Y ), (3.40)

and

− exp(−σt)η(Y )NX − ω(Y )NX − g̃(X,φY )BN + g̃(X, Y )NB = h̃(X,FY )

+ (∇̃XN)Y − nh̃(X, Y ). (3.41)

Therefore,

(∇̃XF )Y = exp(−σt){g̃(φX, Y )ξ − η(Y )FX}+ ω(φY )X − ω(Y )FX

− g̃(X,φY )BT + g̃(X, Y )FB + ANYX + fh̃(X, Y ), (3.42)

and

(∇̃XN)Y = − exp(−σt)η(Y )NX + nh̃(X, Y )− h̃(X,FY )− ω(Y )NX

− g̃(X,φY )BN + g̃(X, Y )NB. (3.43)

Therefore, we have the following.

Lemma 3.2.3. Let M̃ be a contact CR-submanifold of an l.c. Kenmotsu M tangent

to ξ. Then,

(∇̃XF )Y = exp(−σt){g̃(φX, Y )ξ − η(Y )FX}+ ω(φY )X − ω(Y )FX

− g̃(X,φY )BT + g̃(X, Y )FB + ANYX + fh̃(X, Y ), (3.44)

and

(∇̃XN)Y = − exp(−σt)η(Y )NX + nh̃(X, Y )− h̃(X,FY )− ω(Y )NX

− g̃(X,φY )BN + g̃(X, Y )NB, (3.45)

for all vector �elds X and Y tangent to M̃ .
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Similarly, for any vector �elds X tangent to M̃ and any vector �eld V normal to
M̃ , we have

(∇Xφ)V = ∇XφV − φ(∇XV )

= ∇XfV +∇XnV − φ(−AVX + ∇̃⊥XV )

= ∇̃XfV + h̃(X, fV )− AnVX + ∇̃T
XnV − φ(−AVX)− φ∇̃T

XV

= ∇̃XfV + h̃(X, fV )− AnVX + ∇̃T
XnV + fAVX + nAVX

− f∇̃T
XV − n∇̃T

XV

= (∇̃Xf)V + h̃(X, fV )− AnVX + (∇̃Xn)V + fAVX + nAnX.

That is,

exp(−σt)g̃(φX, V )ξ + ω(φV )X − ω(V )φX − g̃(X,φV )B = (∇̃Xf)V + h̃(X, fV )

− AnVX + (∇̃Xn)V + fAVX + nAnX. (3.46)

Since φX = FX +NX, (3.46) becomes

exp(−σt)g̃(φX, V )ξ + ω(φV )X − ω(V )(FX +NX)− g̃(X,φV )(BT +BN)

= (∇̃Xf)V + h̃(X, fV )− AnVX + (∇̃Xn)V + fAVX + nAnX. (3.47)

Lemma 3.2.4. Let M̃ be a contact CR-submanifold of an l.c. Kenmotsu M tangent

to ξ. Then,

(∇̃Xf)V = exp(−σt)g̃(φX, V )ξ + AnVX − fAVX + ω(φV )X − ω(V )FX

− g̃(X,φV )BT , (3.48)

and (∇̃Xn)V = −nAnX − h̃(X, fV )− ω(V )NX − g̃(X,φV )BN , (3.49)

for all vector �eld X tangent to M̃ .

3.3 Integrability of distributions in CR-submanifolds

In this subsection we study the integrability of distributions of D̃ and D̃⊥ of the
contact CR-submanifold M̃ of an l.c. Kenmotsu manifold M . Let X, Y ∈ D̃⊥. Then
FX = 0, and hence

g̃((∇̃ZF )X, Y ) = g̃(∇̃Z(FX), Y )− g̃(F ∇̃ZX, Y )

= −g̃(φ∇̃ZX −N∇̃ZX, Y )

= −g̃(φ∇̃ZX, Y ) + g̃(N∇̃ZX, Y )

= −g̃(φ∇̃ZX, Y )

= g̃(∇̃ZX,φY )

= 0 (3.50)
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for any vector �eld Z tangent to M̃ . Since

(∇̃XF )Y = exp(−σt){g̃(φX, Y )ξ − η(Y )FX}+ ω(φY )X − ω(Y )FX

− g̃(X,φY )BT + g̃(X, Y )FB + ANYX + fh̃(X, Y ), (3.51)

then, for any X, Y ∈ Γ(D̃⊥) and Z ∈ Γ(TM̃), we have that

0 = g̃((∇̃ZF )X, Y ) = exp(−σt){g̃(φZ,X)η(Y )− η(X)g̃(FZ, Y )}+ ω(φX)g̃(Z, Y )

− ω(X)g̃(FZ, Y )− g̃(Z, φX)g̃(BT , Y ) + g̃(Z,X)g̃(FB, Y )

+ g̃(ANXZ, Y ) + g̃(fh̃(Z,X), Y ). (3.52)

since η(X) = η(Y ) = 0. Equation (3.52) becomes

0 = g̃((∇̃ZF )X,Y ) = ω(φX)g̃(Z, Y )− ω(X)g̃(FZ, Y )− g̃(Z, φX)g̃(BT , Y )

+ g̃(Z,X)g̃(FB, Y ) + g̃(ANXZ, Y ) + g̃(fh̃(Z,X), Y ). (3.53)

On the other hand, g̃(FZ, Y ) = 0, g̃(Z, φX) = 0, g̃(FB, Y ) = −ω(φY ) and

g̃(fh̃(Z,X), Y ) = g̃(φh̃(Z,X), Y )

= −g̃(h̃(Z,X), φY )

= −g̃(h̃(Z,X), NY )

= −g̃(ANY Z,X). (3.54)

Substituting (3.54) into (3.53) gives

0 = ω(φX)g̃(Z, Y )− ω(φY )g̃(Z,X) + g̃(ANXZ, Y )− g̃(ANY Z,X). (3.55)

That is,

g̃(ANXY,Z)− g̃(ANYX,Z) = −ω(φX)g̃(Z, Y ) + ω(φY )g̃(Z,X). (3.56)

Thus, we have the following Lemma.

Lemma 3.3.1. Let M̃ be a contact CR-submanifold of an l.c. Kenmotsu M tangent

to ξ. Then,

ANXY − ANYX = ω(φY )X − ω(φX)Y (3.57)

for all vector �elds X and Y tangent to M̃ .

Theorem 3.3.1. Let M̃ be a contact CR-submanifold of a (2n+ 1)-dimensional l.c.

Kenmotsu manifold M tangent to ξ. The distribution D̃⊥ is completely integrable and

its maximal integral submanifold is a �nite-dimensional anti-invariant submanifold

of M normal to ξ.
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Proof. Let X, Y ∈ D̃⊥. Then we have that

φ[X, Y ] = F [X, Y ] +N [X, Y ]

= F ∇̃XY − F ∇̃YX +N [X, Y ]

= ∇̃XFY − (∇̃XF )Y − ∇̃Y FX + (∇̃Y F )X +N [X, Y ]

= −(∇̃XF )Y + (∇̃Y F )X +N [X, Y ]. (3.58)

Substituting (3.51) into (3.58), gives

φ[X, Y ] = ω(φX)Y − ω(φY )X + ANXY − ANYX +N [X, Y ], (3.59)

and by using (3.57), equation (3.59) simpli�es to

φ[X, Y ] = N [X, Y ]. (3.60)

Therefore, [X, Y ] ∈ Γ(D̃⊥).

Theorem 3.3.2. Let M̃ be a contact CR-submanifold of a (2n+ 1)-dimensional l.c.

Kenmotsu manifold M tangent to ξ. Then the distribution D̃ ⊕ {ξ} is integrable if

and only if

h̃(X,FY )− h̃(Y, FX) = 2g(Y, φX)BN , (3.61)

for any X, Y ∈ Γ(D̃ ⊕ {ξ}).

Proof. Let X, Y ∈ Γ(D̃ ⊕ {ξ}). Then, NX = NY = 0 and

φ[X, Y ] = F [X, Y ] +N [X, Y ]

= F [X, Y ] +N(∇̃XY )−N(∇̃Y )X

= F [X, Y ] + ∇̃XNY − (∇̃XN)Y − ∇̃YNX + (∇̃YN)X

= F [X, Y ] + (∇̃YN)X − (∇̃XN)Y. (3.62)

Substituting (3.45) into (3.62), gives

φ[X, Y ] = F [X, Y ] + nh̃(Y,X)− h̃(Y, FX)− ω(X)NY − g̃(Y, φX)BN

+ g̃(Y,X)NB − nh̃(X, Y ) + h̃(X,FY ) + ω(Y )NX + g̃(X,φY )BN

− g̃(X, Y )NB, (3.63)

which becomes

φ[X, Y ] = F [X, Y ]− h̃(Y, FX)− 2g̃(Y, φX)BN

+ h̃(X,FY ). (3.64)

Thus, we see that [X, Y ] ∈ Γ(D̃⊕{ξ}) i� h̃(X,FY )− h̃(Y, FX) = 2g̃(Y, φX)BN .
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Proposition 3.3.1. Let M̃ be a contact CR-submanifold of a (2n + 1)-dimensional

l.c. Kenmotsu manifold M tangent to ξ. Then the distribution D̃ ⊕ {ξ} is integrable
if and only if

h̃(X,FY )− h̃(Y, FX) = 2g̃(Y, φX)BN , (3.65)

for any X, Y ∈ Γ(D̃ ⊕ {ξ}).

Proof. Let X, Y ∈ Γ(D̃). Then, NX = NY = 0 and

φ[X, Y ] = F [X, Y ] +N [X, Y ]

= F [X, Y ] +N(∇̃XY )−N(∇̃Y )X

= F [X, Y ] + ∇̃XNY − (∇̃XN)Y − ∇̃YNX + (∇̃YN)X

= F [X, Y ] + (∇̃YN)X − (∇̃XN)Y. (3.66)

Substituting (3.45) into (3.66), gives

φ[X, Y ] = F [X, Y ] + nh̃(Y,X)− h̃(Y, FX)− ω(X)NY − g̃(Y, φX)BN

+ g̃(Y,X)NB − nh̃(X, Y ) + h̃(X,FY ) + ω(Y )NX + g̃(X,φY )BN

− g̃(X, Y )NB, (3.67)

which becomes

φ[X, Y ] = F [X, Y ]− h̃(Y, FX)− 2g̃(Y, φX)BN + h̃(X,FY ), (3.68)

Thus, we see that [X, Y ] ∈ Γ(D̃ ⊕ {ξ}) if and only if

h̃(X,FY )− h̃(Y, FX) = 2g̃(Y, φX)BN ,

and that completes the proof.

The relation (3.65) in the Theorem 3.3.2 is also equivalent to the integrability of
the distribution D̃.

Assume that D̃ is integrable. Then, the relation (3.65) can be rewritten as,

h̃(FX,FY ) = h̃(X, Y )− 2g̃(X, Y )BN , (3.69)

for any X, Y ∈ Γ(D̃).
Let M ′ be a leaf of D̃. Then M ′ is a maximal integral submanifold immersed in

M . For any X, Y ∈ Γ(TM ′),

∇XY = ∇′XY + h′(X, Y ), (3.70)

where
h′ = h̃+ σ + {−ω(ξ)g + g ◦ h}ξ, (3.71)

is the second fundamental form of M ′, immersed as a submanifold in M with σ a
vector �eld in D̃⊥, and ∇′ the Levi-Civita connection on M ′.
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Theorem 3.3.3. Let M̃ be a contact CR-submanifold of a (2n+ 1)-dimensional l.c.

Kenmotsu manifold M tangent to ξ. Assume that the distribution D̃ is integrable.

Then the integral manifolds of the distribution D̃ are l.c. Kähler manifolds with mean

curvature vector �eld given by

H ′ =
1

rank(D̃)
{
rank(D̃)∑
i=1

h̃(ei, ei) + trace|M′σ} − 4BN − 2ω(ξ)ξ}. (3.72)

Proof. Assume that the distribution D̃ is integrable. Let M ′ be an integral manifold
of D̃. The tensor �elds φt and gt induce an almost complex structure Jt = J and a
Hermitian metric g′t onM

′. Then, for anyX ∈ Γ(TM ′), we have φ′2t X = −X+η′tXξt =

−X = J2
tX = J2X and dΦt = 0, so M ′ is an l.c. Kähler. Using (3.71), the second

fundamental form of M ′ is explicitly given by

h̃′(X, Y ) = h̃(X, Y ) + σ(X, Y ) + {−ω(ξ)g̃(X, Y ) + g̃(hX, Y )}ξ. (3.73)

Fixing a local orthonormal frame {e1, · · · , en, φe1, · · · , φen} in TM ′ and applying the
properties on h, one has,

H ′ =
1

rank(D̃)
{
rank(D̃)∑
i=1

h̃′(ei, ei) +

rank(D̃)∑
i=1

h̃′(φei, φei)}

=
1

rank(D̃)
{trace|M′ h̃+ trace|M′σ +

rank(D̃)∑
i=1

(−ω(ξ)g̃(ei, ei) + g̃(hei, ei)) ξ

+

rankD)∑
i=1

(−ω(ξ)g̃(φei, φei) + g̃(hφei, φei)) ξ}

=
1

rank(D̃)
{trace|M′ h̃+ trace|M′σ − 2ω(ξ)

rank(D̃)∑
i=1

g̃(ei, ei)ξ

=
1

rank(D̃)
{trace|M′ h̃+ trace|M′σ − 2rank(D̃)ω(ξ)ξ}. (3.74)

Now, using the identity (3.16) and (3.69), the trace of h̃ on M ′ is given,

trace|M′ h̃ =

rank(D̃)∑
i=1

h̃(ei, ei) +

rank(D̃)∑
i=1

h̃(φei, φei)

=

rank(D̃)∑
i=1

h̃(ei, ei)− 4rank(D̃)BN . (3.75)

Putting the relation (3.75) into (3.74) completes the proof.
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Corollary 3.3.1. Let M̃ be a contact CR-submanifold of a (2n + 1)-dimensional

l.c. Kenmotsu manifold M tangent to ξ. Assume that the distribution D̃ is integrable

with a non-vanishing normal component of the vector �eld B ( or a non-vanishing

function ω(ξ)), then the integral manifolds of the distribution D̃ cannot be minimal.
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Chapter Four

Conclusion and Perspectives

We introduced a new concept of almost contact structures, namely, l.c. almost Ken-
motsu structures, supported by an example. The latter was characterized by the
existence of a closed 1-form ω such that

dη = ω ∧ η and dΦ = 2 {exp(−σt)η + ω} ∧ Φ,

with ω = dσt. We proved that a locally conformal almost Kenmotsu manifold with
the smooth 1-form, ω, that is proportional to the contact structure, η, i.e. ω = αη, is
a β-Kenmotsu manifold with β = α + exp(−σt).

In addition, the integrability of distributions was studied and the results have
shown that the contact distribution D = ker η admits foliations whose leaves are l.c.
almost Kählerian with mean curvature vector �eld H ′ = −ω(ξ)ξ. We also proved that
there exist classes of almost contact structures that admit foliations whose leaves are
Kählerian and umbilical.

We investigated CR-submanifolds of l.c. almost Kenmotsu manifold and paid
attention of distributions D̃, D̃⊥ and D̃ ⊕ {ξ}. As a result, we concluded that the
distribution D̂⊥ is completely integrable and its maximal integral submanifold is a
�nite-dimensional anti-invariant submanifold of M normal to ξ. Furthermore, D̃ and
D̃ ⊕ {ξ} are integrable if and only if

h̃(X,FY )− h̃(Y, FX) = 2g̃(Y, φX)BN .

The latter can then be extended to the foliation on the ambient manifolds M . That
is, if the metric on an l.c. (almost) Kenmotsu manifold is bundle-like for the foliation
F, as one of the perspectives, we would like to know whether the leaves of F are
(almost) Kähler or admit another geometric structure.

However, studies indicated that we are only at the beginning of the �rst study
of locally conformal (almost) Kenmotsu manifolds. A lot can still be done in an l.c.
(almost) Kenmotsu manifold. One may also look at which properties can be preserved
in an l.c. (almost) Kenmotsu manifold with reference to other types of manifolds.

Our study revealed that l.c. almost Kenmotsu manifolds are not necessary Ken-
motsu and that the vector �eld ξ is not a Killing vector �eld for l.c. almost Kenmotsu
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manifolds. Among other orientations, we shall study the topology of l..c almost Ken-
motsu geometry. It is known that there are more than four thousand almost contact
structures, so we are planing to pay attention to some of them and see how we can ex-
tract their even-dimensional structure in order to see the light of proving the Golberg
Conjecture which says that: Any Einstein symplectic structure is Kähler.
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