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ABSTRACT 

Fifteen quinoline-2-thiosemicarbazone hybrid derivatives were synthesised in a three step 

reaction involving formation of the quinoline, oxidation of the 2-methyl group and 

condensation to the thiosemicarbazones. The phenylhydrazines were prepared in an additional 

step prior to the condensation. Twelve of the fifteen hybrid molecules were novel. A full 

structural elucidation of all synthesised compounds were carried out using amongst others 1D 

and 2D NMR spectroscopy and mass spectrometry. The data presented here will provide a 

basis for the identification of further molecules of this type.  The hybrid molecules were then 

subjected to antibacterial bioassays against Gram -ve and Gram +ve bacterial strains. 

Unfortunately, only one compound, the 6-bromo-4'-fluoro derivative on the (E)-2-quinoline-2-

yl)methylene-N-phenylhydrazinecarbothiamide framework showed any antibacterial activity.  

They were active against both Staphylococus aureus and methicillin resistant Staphylococcus 

aureus (MRSA) at 387 M.  

 

Keywords: Quinoline-2-thiosemicarbazone, antibacterial, Doebner-von Miller, structural 

elucidation 
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Chapter 1. Introduction 

Since the discovery of penicillin in 1928 by Sir Alexander Fleming, antibiotics have been used 

to treat bacterial infections, preventing secondary infections and even death.  Even prior to this, 

there was evidence of antibiotics being used, with traces of tetracycline being found in human 

skeletal remains of Egyption and Sudanese Nubia populations dating back to 350-550 CE 

(Aminov, 2010).  These antibiotics have also played an important role in medicine and surgery 

preventing bacterial infections from setting in after surgery (Ventola, 2015).  However, over 

the years, overuse, inappropriate and incorrect prescribing, self-medicating and extensive 

agricultural use of antibiotics has led to antibiotic resistance (Ventola, 2015; Rather et al., 

2017). 

 

Antibiotic resistance occurs when bacteria modifies its structure and form in some way that 

reduces or eliminates antibiotic binding reducing or eliminating their effectiveness (Bisht et 

al., 2009).  As a result, resistant bacteria are able to survive and mutate, leading to bacteria that 

are not susceptible to known antibiotics.  The consequences are prolonged illnesses, greater 

risk of death, longer periods of hospitalization and an increase in infections.  A huge percentage 

of bacteria (at least 70%) has become resistant to at least one of the most commonly used 

antibiotics used for treatment (Bisht et al., 2009). 

 

To combat this problem, scientists and pharmaceutical companies have developed and 

introduced many new antibiotics.  This was rampant from 1940-1980, but significantly 

declined thereafter, largely contributing to the antibiotic resistance crisis we find ourselves in 

today (Martens and Demain, 2017).  This has been attributed to the merging of pharmaceutical 

companies, leading to less productive companies, a decline in Natural Products research, which 

inspired or contributed to the development of antibiotics and the cost involved in producing 
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these drugs (12-15 years and costing in the region of 1.2 billion US dollars) (Martens and 

Demain, 2017). 

 

However, antibiotic resistance has now become a crisis, since the rate at which these antibiotics 

are being rendered inactive due to antibiotic resistance is alarming with more and more bacteria 

becoming resistant to commonly used drugs.  For Gram positive bacteria, this has been 

described as a crisis that is under control and for Gram negative bacteria, a crisis going out of 

control (Rossolini et al., 2014).  The inactivity of current antibiotics through antibiotic 

resistance will lead to loss of human lives if alternative antibiotics are not discovered soon.  

There is thus an urgent need for the development of new antimicrobials to treat bacteria that 

have become resistant to first line antibacterial agents used in treatment.   

 

The current project aims to address this by synthesising new molecules, which have a good 

chance of having antibacterial activity and hence could be developed into alternative antibiotics 

to currently marketed drugs.  We aim to use an approach of creating hybrid molecules.  

 

Hybrid molecules are those incorporating the frameworks of two molecular scaffolds, each 

with bioactivity of their own.  These compounds contain the basic framework of each of the 

individual structures. The desired effect of the hybrid molecule is to have a synergistic effect 

between the different pharmacophores, increasing the activity of either of them alone.  The 

ultimate prize is one drug which can treat more than one disease or medical condition or 

enhance the therapeutic potential of an existing drug.   These molecules are usually formed by 

an organic reaction with two functional groups, one on each molecular framework.  Quinoline 

hybrids have produced compounds with increased bioactivity (Vandekerckhove and D'Hooghe, 

2015), for example anti-malarial (Burgess et al., 2006), antitubercular (Jain et al., 2016), 
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anticancer (Solomon et al., 2010; Alegaon et al., 2017), antileishmanial (Coa et al., 2017) and 

antimicrobial activities (Desai et al., 2013) amongst others.  Likewise, thiosemicarbazide 

hybrids have also shown good bioactivity such as antidiabetic (Taha et al., 2016), antibacterial, 

antitubercular (Rane et al., 2014) and anticancer agents (Rane et al., 2015). 

 

When a quinoline with an aldehyde or ketone substituent reacts with a thiosemicarbazide 

moiety, the hybrid molecule that forms is termed a quinoline-thiosemicarbazone. These 

quinoline-thiosemicarbazone hybrids have shown anticancer (Huang et al., 2010), 

antimicrobial (Abdel-Moty et al., 2005; Kulkarni et al., 2010), anti-oxidant  (Ramachandran et 

al., 2012), anti-HIV, antitubercular (Banerjee et al., 2010), anticonvulsant and analgesic 

activities (Aly et al., 2010).  

 

1.1 Quinolines 

Quinoline is an aromatic heterocyclic compound consisting of two fused rings, a benzene ring 

fused with a pyridine ring (Figure 1.1), and has the synonyms benzopyridine, 

benzo[b]pyridine, and benzazine. The quinoline nucleus occurs in several naturally occurring 

compounds (O'Donnell et al., 2006; Michael, 2008; Zhang et al., 2012) and pharmacologically 

active substances displaying a broad range of biological activity (Gopaul et al., 2015). These 

include antimalarial (Vandekerckhove and D'Hooghe, 2015), anti-cancer (Afzal et al., 2015; 

Gopaul et al., 2015), antioxidant (Maddela et al., 2015), anti-HIV (Luo et al., 2009), 

antimicrobial (Musiol et al., 2011), antileishmanial (Gopinath et al., 2013), antimycobacterial 

(Eswaran et al., 2010), and anticonvulsant activities (Siddiqui, 2010).  
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Figure 1.1 The general structure of the quinoline nucleus 

 

Several natural occurring compounds that contain the quinoline moiety are either 

pharmaceuticals or employed as lead compounds for the development of new and more potent 

drugs (Kumar et al., 2009). One such example is quinine (Figure 1.2) isolated from the bark 

of the cinchona tree, used in the treatment of malaria (Kumar et al., 2009). This initial discovery 

was followed by the development of more potent drugs such as chloroquine, primaquine and 

mefloquine (Figure 1.2) (Kumar et al., 2009).  

 

Figure 1.2  Biologically active compounds containing a quinoline nucleus 

 

Synthesis 

Many methods are used to synthesise quinolines (Yamashkin and Oreshkina, 2006; Madapa et 

al., 2008).   Most start with simple anilines and make use of electrophiles, which form a 

heterocyclic ring from their reaction.  Reactions used to synthesise quinolines include the 

Skraup, Conrad-Limpach, Combes, Pavarov, Doebner and Doebner-von Miller reaction (Li 

and Corey, 2004; Ramann and Cowen, 2016). 

 



5 

The Skraup synthesis involves anilines, such as m-toluidine reacting with glycerol in the 

presence of a sulphuric acid catalyst and nitrobenzene (an oxidising agent in the reaction) 

forming a mixture of 7-methylquinoline and 5-methylquinoline (Scheme 1-1) (Zibaseresht et 

al., 2013).   

 

 

Scheme 1-1 Skraup quinoline synthesis 
 

In the Combes synthesis, condensation of anline with β-diketones take place to form 2,4-

substituted quinolines in the presence of an acid catalyst (Scheme 1-2) (Aribi et al., 2016). 

 

 

Scheme 1-2 Combes quinoline syntheses 
 

The Conrad-Limpach synthesis conditions are like those of the Combes synthesis but uses β-

ketoesters, which results in quinolones being formed (Scheme 1-3).  A modification of this 

synthesis makes use of a vinyl ether instead of ethyl acetoacetate.  With a deactivating p-nitro 

substituent on the aniline, the 4-hydroxyquinoline predominates (Scheme 1-4) (Brouet et al., 

2009). 
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Scheme 1-3  Conrad-Limpach quinoline syntheses 

 

 

Scheme 1-4  Conrad-Limpach quinoline syntheses making use of a vinyl ether ester 

 

Anilines reacted with substituted aldehydes and pyruvic acid forming quinoline-4-carboxylic 

acids in a reaction called the Doebner reaction (Scheme 1-5) (Wang et al., 2016).  The resultant 

quinoline products have a carboxyl group at C-4 and substituent at C-2 depending on the 

aldehyde used in the synthesis. 

 

 

Scheme 1-5  Quinoline synthesis via the Doebner reaction 

 

The Doebner-von Miller synthesis makes use of α,β-unsaturated ketones and aldehydes in the 

presence of an acid catalyst (Scheme 1-6) (Gopaul and Koorbanally, 2016).  When aldehydes 

are used, 2-substituted quinolines are formed and when ketones are used, 2,4-disubstituted 

quinolines result (Chaskar et al., 2010). 
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Scheme 1-6  Doebner-von Miller quinoline synthesis  
 

In the Pavarov synthesis, condensation between an aniline and aromatic aldehyde first takes 

place forming an imine, which then undergoes a cycloaddition reaction with an alkene having 

an electron donating substituent such as ethoxyethene to form 2-phenylquinolines. This 

reaction uses boron trifluoride as a Lewis acid catalyst (Scheme 1-7) (Kouznetsov, 2009). 

 

Scheme 1-7 Pavarov quinoline syntheses  
 

This reaction proceeds by imine formation from a condensation reaction between aniline and 

benzaldehyde followed by a 2+2 cycloaddition reaction between the imine and ethoxyethene 

forming an unstable four membered ring intermediate.  Ring opening and cyclisation to a six-

membered intermediate then occurs, after which aromaticity is restored forming the product 

(Scheme 1-8). 
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Scheme 1-8  Proposed reaction mechanism for the Pavarov synthesis 

 

In the Friedlander synthesis, o-aminobenzaldehyde reacts with ketones, aldehydes or other 

carbonyl compounds containing reactive α-methylene groups to form 2,3-disubstituted 

quinoline derivatives (Scheme 1-9) (Shiri et al., 2011). 

 

Scheme 1-9  Friedlander quinoline syntheses  
  

The Niementowski quinoline synthesis is similar to the Friedlander synthesis, however instead 

of the aldehyde, a carboxylic acid group is present in the aniline derivative.  When this reagent 

is reacted with a β-diketo ester, a pseudo coumarin skeleton occurs in an angular fashion on 

the quinoline framework (Scheme 1-10) (Poronik et al., 2017). 
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Scheme 1-10  Niementowski quinoline syntheses  
 

The Pfitzinger quinoline synthesis uses isatin instead of aniline derivatives, which reacts with 

carbonyl compounds in the presence of strong bases such as potassium hydroxide.  This 

reaction produces quinolines with a carboxyl group at C-4 (Scheme 1-11) (Sangshetti et al., 

2014).   

 

Scheme 1-11  Pfitzinger quinoline synthesis 

 

In the present work, the Doebner-Miller reaction was used to synthesise quinolines since the 

design of the target molecules used crotonaldehyde as a reagent along with aniline to form 2-

methylquinolines.  This was an essential intermediate for subsequent oxidation to quinoline-2-

carbaldehyde from which thiosemicarbazones were synthesised.   

 

More about the Doebner-von Miller reaction 

This reaction is normally conducted in a biphasic solvent system consisting of toluene and 

aqueous hydrochloric acid, in order to keep nucleophiles away from the aldehyde moiety, 

preventing polymerisation of the aldehyde.  The biphasic system also helps in the isolation of 

the quinoline derivative in that the quinoline remains in the organic phase and other polar 
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compounds in the aqueous phase (Matsugi et al., 2000).  This reaction has some limitations, 

such as being limited to sterically accessible aldehydes such as crotonaldehyde.  Sterically 

bulky aldehydes such as cinnamaldehyde does not produce corresponding phenylquinolines 

under similar reaction conditions (Reynolds et al., 2010). 

 

The Doebner-von Miller reaction involves cyclization of the amino group from aromatic 

amines with α,β unsaturated compounds (Reynolds et al., 2010). The four carbon 

crotonaldehyde (an α,β-unsaturated compound)  can be formed by the reaction of two 

molecules of  acetaldehyde (Snell et al., 2010).  Aniline then condenses with crotonaldehyde 

forming an enol.  Subsequent departure of the hydroxy group after protonation results in a 

conjugated imine.  A 2+2 cycloaddition reaction of two molecules of the imine then forms a 

four-membered intermediate, which opens and cyclises to a six-membered intermediate.  After 

aromatisation is restored, one of the nitrogen atoms (that which is not adjacent to the aromatic 

ring) is then protonated, catalysing the opening of the six-membered heterocyclic ring.  

Cyclisation then occurs with the adjacent alkene moiety and the aromatic amine is then 

released.  The final step involves a dehydrogenation step to yield the quinoline (Scheme 1-12) 

(Eisch and Dluzniewski, 1989).  

 

This reaction takes place at temperatures between 80 – 111 °C (Reynolds et al., 2010; Ramann 

and Cowen, 2015) and is usually catalysed by Brønsted acids  such as hydrochloric acid 

(Gopaul and Koorbanally, 2016), sulfuric acid (Yadav et al., 2016) and heteropoly acids such 

as phosphomolybdic acid (Chaskar et al., 2010) and phosphotungstic acid (Sivaprasad et al., 

2006). Ranu et al. (2003) also demonstrated that quinolines and dihydroquinolines could be 

synthesised using solvent free microwave reactions on the surface of silica gel impregnated 

with In (III).   
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Oxidation of 2-methylquinoline to quinoline-2-carboxaldehyde 

The oxidation of 2-methylquinoline (quinaldine) to either quinoline-2-carbaldehyde or 

quinoline-2-carboxylic acid (quinaldinic acid) creates functionality at C-2 on the quinoline 

nucleus, which can be used for further nucleophilic and coupling reactions. Selenium dioxide 

(SeO2) is a commonly used oxidant for the oxidation of quinaldine to quinoline-2-

carboxaldehyde (Scheme 1-13) (Achremowicz, 1996; Pérez-Melero et al., 2004; Gopinath et 

al., 2013; Wang et al., 2015; Gopaul and Koorbanally, 2016).   

 

Scheme 1-12  Proposed mechanistic pathway for the Doebner-von Miller synthesis (Eisch 
and Dluzniewski, 1989) 
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Precautions are to be taken when working with SeO2 as it is known to be toxic and to form 

selenous acid, a severe skin irritant when in contact with the body fluids such as perspiration 

and tears (Mlochowski and Wojtowicz-Mlochowska, 2015). The oxidation was carried out in 

boiling aprotic solvents such as dioxane with yields as high as 90% (Wang et al., 2015) or 

xylene (Pérez-Melero et al., 2004) with yields of between 50 – 80%. Using SeO2 in the absence 

of reflux conditions produces yields of 70%, but only after two weeks (Achremowicz, 1996).  

 

 

Scheme 1-13  Oxidation of 2-methylquinoline to quinoline-2-carbaldehyde 

 

A much greener photo-oxidation of 2-methylquinoline (quinaldine) to quinoline-2-

carboxaldehyde in good yield (65%) was reported where the methyl group was oxidised with 

TFA and I2 by irradiation under an oxygen atmosphere for 20 hours (Nagasawa et al., 2016).  

Aerobic oxidation of 2-methylquinolines using copper catalysts in DMF at 130 °C in 12 hours 

was also carried out (Zheng et al., 2016).  Microwave assisted oxidation of methylquinolines 

to quinoline aldehydes was demonstrated using phenyliodine(III) diacetate (PIDA) as a catalyst 

in DMSO in 18 to 42 minutes (Jiang et al., 2016).  

 

Quinaldine (2-methylquinoline) can also be oxidized to quinoline-2-carboxylic acid 

(quinaldinic acid) when using selenium dioxide in dioxane refluxing for 2-8 hours (Musiol et 

al., 2009; Chandrasekhar et al., 2011) (Scheme 1-14).  An aerobic oxidation of quinaldine to 

quinaldinic acid was also carried out using N-hydroxyphthalimide 

(NHP)/Co(OAc)2/Mn(OAc)2 catalysts with a NO2 initiator (Sakaguchi et al., 2002). 

 



13 

 

Scheme 1-14  Oxidation of 2-methylquinoline to quinoline-2-carboxylic acid 

 

Quinoline-2-carbaldehyde was easily oxidized to quinaldinic acid  using hydrogen peroxide in 

formic acid (Dodd and Le Hyaric, 1993) or hydrogen peroxide in water catalysed by a 

sulfoxyalkyl-substituted N-heterocyclic carbene catalyst (Scheme 1-15) (Yoshida et al., 2009). 

 

 

Scheme 1-15  Oxidation of quinoline-2-carbaldehyde to quinaldinic acid 

 

Mechanism of oxidation 

In the proposed mechanism by Trump and Zhou (1993) (Scheme 1-16), nucleophilic attack by 

methylquinoline to selenium dioxide followed by proton transfer, leads to an unstable four 

membered cyclic intermediate, resulting in the oxygen adding to the 2-methyl group to open 

up the four-membered ring by breaking the C-Se bond.  In the final step, the oxygen bound to 

Se abstracts the proton from the 2-methylene group, forming quinoline-2-carbaldehyde and 

releasing selenium and water. 

 

In SeO2 oxidation of methylquinoline, Se4+ is reduced to Se, which is subsequently removed 

from the reaction mixture by filtration. The aldehyde formed is then separated by biphasic 

extraction and purified by column chromatography. 
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Scheme 1-16  Proposed mechanism for the oxidation of 2-methylquinoline by selenium 
dioxide (Trump and Zhou, 1993) 

 

1.2 Thiosemicarbazides and thiosemicarbazones 

Thiosemicarbazides are an important class of compounds, which together with their derivatives 

have good biological activity (Singhlal et al., 2013), including anticancer (Arora et al., 2014), 

antitubercular (Patel et al., 2014), antibacterial (Nevagi and Dhake, 2013), antiproliferative 

(Pitucha et al., 2016), and antifungal (Er et al., 2017) activity.  When thiosemicarbazides form 

imines with aldehydes or ketones in an additional step, the resultant molecules are termed 

thiosemicarbazones (Figure 1.3) (Singh et al., 1978). Thus, thiosemicarbazones have an 

unsaturated N-1 whereas thiosemicarbazides have a fully saturated N-1.  Thiosemicarbazones 

have shown antibacterial (Souza et al., 2013), anticancer (Thanigaimalai et al., 2012), 

antiparasitic (Glinma et al., 2014) and antioxidant activities (Nguyen et al., 2013).  

 

 

Figure 1.3  The structures of thiosemicarbazides and thiosemicarbazones 
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Thiosemicarbazones have also demonstrated their ability to complex with metal ions, such as 

Fe(II), Cu(II), Pd (II) and Zn(II) resulting in pharmaceutically active compounds (Zeglis et al., 

2011; Yu et al., 2009; Hernandez et al., 2013). The metallation has been shown to play a role 

in bioactivity such as topoiosomerase IIα inhibition and antiproliferative activity (Zeglis et al., 

2011).  Examples of commercially available thiosemicarbazone based drugs are Marboran® 

(methisazone), an antiviral used to treat smallpox, and Triapine® (3-aminopyridine-2-

carboxaldehyde thiosemicarbazone) which is an anti-cancer drug (Figure 1.4).  

 

Synthesis  

Thiosemicarbazide synthesis involves the preparation of isothiocyanates in situ by nucleophilic 

addition of amines to carbon disulfide, resulting in potassium arylcarbamodithioates.  These 

intermediates then react with methyl iodide, which replaces the potassium to afford N-aryl 

methyldithiocarbamates, which undergo hydrazinolysis to give 4-arylthiosemicarbazides 

(Scheme 1-17). They can also be formed by starting directly from isothiocyanates or 

ammonium thiocyanates which undergo a condensation reaction with carbohydrazines 

(Scheme 1-18) (Metwally et al., 2011). 

 

 

Figure 1.4  Examples of thiosemicarbazone based drugs available on the market 
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Scheme 1-17  Synthesis of 4-arylthiosemicarbazides 

 

 

Scheme 1-18  Synthesis of thiosemicarbazide derivatives from carbohydrazines 

 

Substituted phenylthiosemicarbazides were synthesiszed by nucleophilic addition between 

aromatic isothiocyanates and hydrazine (Bečka et al., 2017). A proposed mechanism for the 

reaction involves nucleophilic attack by hydrazine on the carbon of the isothiocyanate followed 

by proton transfer, resulting in the formation of phenylthiosemicarbazides (Scheme 1-19).   

 

 

Scheme 1-19  Postulated mechanism for thiosemicarbazide formation 

 

This reaction was carried out in protic solvents such as ethanol under both under reflux (for 7 

hours) (Foroughifar et al., 2014), and at  room temperature (for 30 mins) (Benmohammed et 

al., 2014). Water can also be used with hydrochloric acid as a catalyst for selected 

thiosemicarbazides such as 1-(2-hydroxybenzoyl) thiosemicarbazide at 95 °C for 4 hours 

(Nurkenov et al., 2016). 

  

This moiety also reacts with compounds containing C=O and C=N groups to form a variety of 

five or six membered heterocyclic molecules, including thiazoles, pyrazoles, thiadiazoles, 
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triazoles, oxadiazoles and thiazines, which have shown potential biological activities 

(Metwally et al., 2011; Gazieva and Kravchenko, 2012; Singhal et al., 2013). 

 

1.3 Quinoline thiosemicarbazone hybrids 

Quinoline thiosemicarbazide hybrid molecules contain both quinoline and thiosemicarbazone 

moieties (Figure 1.5).  The thiosemicarbazone moiety can be linked to the quinoline 

framework at a variety of positions.  These molecules have shown  anti-tubercular (Patel et al., 

2014), anticancer (Huang et al., 2010), antimalarial (Pingaew et al., 2010), antifungal (Abdel-

Moty et al., 2005; Degola et al., 2015) and anticonvulsant (Singh et al., 2011) activity.  The Cu 

(II) and Ni (II) complexes of quinoline-2-carboxaldehyde thiosemicarbazone derivatives were 

also shown to have anticancer and antifungal activity (Kulkarni et al., 2010; Bisceglie et al., 

2015).  5-Acetyl (or 5 benzoyl)-8-hydroxyquinoline-4-phenyl thiosemicarbazones and 2-

hydroxyquinoline-3-thiosemicarbazones were tested for the antibacterial activity, but proved 

to be mildy active or inactive against the bacterial strains tested against (Abdel-Moty et al., 

2005; Kulkarni et al., 2010).  There have been no reports on the antibacterial activity of 

quinoline-2-thiosemicarbazones in the literature. 

 

 

Figure 1.5  The structure of a quinoline-thiosemicarbazone hybrid 

 

These molecules have been prepared by a condensation reaction between quinoline-2-

carboxaldehyde and thiosemicarbazides (Scheme 1-20) (Biscegli et al., 2015; Degola et al., 

2015; Huang et al., 2010). The reaction is quick and simple and occurs by adding equimolar 
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quantities of the thiosemicarbazide and quinoline-2-carbaldehyde in methanol or ethanol at 

room temperature with a few drops of glacial acetic acid to catalyse the reaction and left to stir 

in an ice bath for 20 hours (Bisceglie et al., 2015; Degola et al., 2015).  Variations of the 

synthesis involve changing the solvent to isopropanol and duration of the reaction (2-8 hours) 

(Huang et al., 2010). 

 

 

Scheme 1-20  Condensation reaction of quinoline-2-carbaldehyde with thiosemicarbazides  

 

A similar acid catalysed (HCl) condensation reaction between quinoline with ketone 

substituent at C-5 and thiosemicarbazide has also been reported (Scheme 1-21) (Abdel-Moty 

et al., 2005). In this reaction, alkanoyl chlorides were first reacted with 8-hydroxyquinoline to 

functionalise C-5 with a ketone from which quinoline-thiosemicarbazones were formed.   

 

 

Scheme 1-21  Synthesis of 8-hydroxyquinoline bearing a thiosemicarbazone moiety 

  

Serda et al. (2010) used a microwave assisted reaction between quinolones and 

thiosemicarbazide in ethanol using polyphosphoric acid as a catalyst to synthesise quinoline-

thiosemicarbazones where the thiosemicarbazone moiety was directly attached to the quinoline 

skeleton rather than a functional group on the ring.  The quinoline substrate was first nitrated 
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in order to deactivate the aromatic quinoline system, making the amide carbonyl more reactive 

toward nucleophilic addition (Scheme 1-22). 

 

 

Scheme 1-22  Synthesis of quinoline-diylidene bearing a thiosemicarbazone moiety 

 

The proposed mechanism of thiosemicarbazone formation proceeds by nucleophilic attack of 

the thiosemicarbazide on quinoline-2-carboxyaldehyde.  This is followed by proton transfer 

and dehydration to form an imine (Scheme 1-23). 

 

 

Scheme 1-23  Proposed mechanistic pathway for the synthesis of substituted quinoline-2-
thiosemicarbazones  
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1.4 Hypothesis and aims 

Hypothesis 

Since both the quinoline and thiosemicarbazide moieties each have good biological activity on 

their own, combining these two structural motifs into one molecule may enhance the activity 

that each of them have on their own.  Furthermore, synthesising novel molecules with each of 

these moieties may lead to a new drug with possible anticancer, anti-HIV, antimalarial, 

antitubercular and antibacterial activity. 

 

Aims  

1. To synthesise a small library of quinoline thiosemicarbazone derivatives, with varying 

functional groups on both the quinoline and thiosemicarbazide moieties. 

2. To characterise the synthesised compounds using NMR spectroscopy and mass 

spectrometry. 

3. To determine the antibacterial activity of the synthesised compounds. 

4. To conduct a structure activity relationship analysis of the synthesised compounds with 

regard to antibacterial activity. 
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Chapter 2. Results and Discussion 

2.1 Chemistry 

Fifteen 2-quinoline thiosemicarbazones (6a-o), of which 12 were novel (6b-e, g-j and l-o) were 

synthesised in a four-step reaction (Scheme 2-1).  The 2-methylquinolines were first 

synthesised from fluoro, chloro and bromo substituted anilines (1a-c) and crotonaldehyde 

under acidic conditions using the Doebner-von Miller reaction.  The Doebner-von Miller 

reaction was used since this is the most popular method to synthesise 2-methylquinolines 

(Gopaul et al., 2015).  The resultant 2-methylquinolines were oxidised immediately without 

further purification to the quinoline-2-carbaldehydes (3a-c), which were then purified.  The 

thiosemicarbazide intermediates 5a-e were formed by a nucleophilic addition reaction between 

hydrazine hydrate and para substituted isothiocynates and thereafter reacted with the 

carbaldehyde intermediates (3a-c) to form quinoline-2-thiosemicarbazone derivatives 6a-o by 

a condensation reaction in yields of between 55 to 65%. 

 

 

Scheme 2-1  Reaction scheme for the synthesis of quinoline-2-carboxaldehyde 
thiosemicarbazone derivatives 6a-o 
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Characterisation of the 6-chloroquinoline-2-carbaldehyde intermediates (3a-c) 

The intermediates were characterised by 1H and 13C NMR spectroscopy as well as 2D NMR 

spectroscopy. For example, the 6-chloroquinoline-2-carbaldehyde (3b) showed six proton 

resonances in the 1H NMR spectrum, a sharp singlet at  10.17 assigned to the aldehyde group, 

and two olefinic doublets at  8.19 and  8.01 with J values of 8.5 Hz.  The H-5, H-7 and H-8 

resonances appeared at  7.86 (J = 2.2 Hz), 7.73 (J = 9.0, 2.2 Hz) and 8.16 (J = 9.0 Hz) as a 

doublet, double doublet and doublet respectively (Figure 2.1).  

 

 

Figure 2.1  1H NMR spectrum for 6-chloroquinoline-2-carbaldehyde 3b 

 

The 13C NMR spectrum showed the presence of ten carbon resonances, which includes the 

aldehyde carbon at  193.4 and five aromatic methine carbon resonances at  118.3 (C-3), 

136.4 (C-4), 126.6 (C-5), 131.6 (C-7) and 132.0 (C-8).  The remaining four carbon resonances 

were quaternary, the most deshielded being C-2 at  152.7, adjacent to the aldehyde and the 
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nitrogen atom, followed by C-8a at  146.3, adjacent to only the nitrogen and then followed by 

C-4a and C-6 at  136.4 and  130.6 respectively (Figure 2.2).   

 
Figure 2.2  13C NMR spectrum of 6-chloroquinoline-2-carbaldehyde (3b) 

 

H-5, H-7 and H-8 could be assigned by their splitting patterns and coupling constants.  H-5 is 

a doublet with a 2.2 Hz coupling to H-7, which appears as a double doublet with an additional 

9.0 Hz coupling to H-8 appearing as a doublet.  However, H-4 was assigned due to a HMBC 

correlation to C-8a.  Its coupled resonance was assigned to H-3.  The quaternary C-4a was 

assigned to  135.2 due to a HMBC with H-3 (Figure 2.3).  The remaining quaternary 

resonance at  130.6 was assigned to C-6.  The other halogenated quinoline-2-carbaldehydes 

were elucidated in a similar manner.   

 

Figure 2.3  Selected HMBC correlations for 3b used for the structural assignment  
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In 3a, the splitting pattern of H-5, H-7 and H-8 becomes rather complex, due to the presence 

of the 6-fluoro group.  H-5 is now a double doublet with JH5,F = 8.6 Hz and JH5,H7 = 2.8 Hz, H-

7 is a doublet of doublet of doublets (ddd) with JH7,F = 8.2 Hz, JH7,H8 = 9.2 Hz and JH5,H7 = 2.8 

Hz and H-8 appeared as a double doublet (JH7,H8 = 9.2 Hz and JH8,F = 5.0 Hz) (Figure 2.4).  

Changes in the 13C NMR spectrum were also evident due to the presence of fluorine.  The C-6 

resonance was seen as a doublet with a large J value of 253.0 Hz at  162.0, the ortho carbon 

resonances were doublets with smaller coupling constants of 26.1 Hz (C-7 at  121.1) and 22.0 

Hz (C-5 at  111.0) and the meta carbon resonances appeared at  133.2 and 131.0 as doublets 

with J values of 9.6 and 10.5 Hz respectively (Figure 2.5).  

 

  

Figure 2.4  Aromatic region of the 1H-NMR spectrum of compound 3a 
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Figure 2.5  13C-NMR spectrum for compound 3a 

 

Since the quinolines were reaction intermediates, it was found that the yields could be 

maximised by using the methylquinoline reaction mixture directly (without isolating it) in the 

oxidation reaction with selenium dioxide as an oxidant to form the desired quinoline-2-

carboxyaldehydes 3a-c. The reaction was monitored to completion using thin layer 

chromatography.  The yields of the substituted quinoline-2-carboxyaldehydes ranged from 55-

65%.  It was found that chloro and bromo substituents at C-6 on the quinoline moiety have 

higher oxidation yields (63-65%) than when a fluoro group is present at the same position 

(55%), probably due to the high electronegativity of fluorine, making the nitrogen on the 

quinoline ring less nucleophilic.  This affects the nucleophilic addition to the selenium in the 

first instance. The mechanism for this reaction is shown in Scheme 1-16 on page 12. 
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Synthesis and characterisation of the thiosemicarbazides 5a-e 

The thiosemicarbazides 5a-e were obtained in good yields (80 to 90%) by a straight forward 

nucleophilic addition reaction between hydrazine hydrate and various para substituted 

isothiocynates in isopropanol at ambient temperature.  The mechanism for this reaction is 

shown in Scheme 1-19 on page 14.  These compounds crystallised out of solution upon 

completion of the reaction.  Their 1H NMR spectra were recorded and their structures 

confirmed by mass spectroscopy.  

 

The NMR spectrum of a typical phenyl thiosemicarbazide, for example 5a contained the 

aromatic resonances H-2/6 at 7.64 (d, J = 7.5 Hz), H-3/5 at 7.29 (t, J = 7.5 Hz) and H-4 at 

7.09 (t, J = 7.5 Hz).  The NH2 proton resonance integrating to two protons appeared at  4.79 

and H-1' and H-3', the two NH protons, appeared at 9.11 as a sharp singlet and 9.64 as a broad 

singlet.  These two resonances are interchangeable.  The HMBC spectrum showed no 

correlation between NH-1 and H-2/6, which would have allowed these two resonances to be 

distinguished (Figure 2.6).   

 

Figure 2.6  1H NMR spectrum for phenyl thiosemicarbazide 5a 
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The mass spectra of all the compounds 5a-e contained the molecular ion peak, which indicated 

that the hydrazide had formed.  For example, in 5a, a mass at m/z 168 was obtained. 

 

The desired substituted quinoline-2-thiosemicarbazone derivatives 6a-o were obtained via a 

simple condensation reaction between the quinoline aldehydes 3a-c and the para substituted 

thiosemicarbazides 5a-e (Table 2-1). The resulting quinoline-2-thiosemicarbazone derivatives 

were obtained in good yields (59 to 80%). Similar compounds were synthesised previously 

using the same condensation reaction (Biscegli et al., 2015; Huang et al., 2010), however the 

compounds in this work, 6a-o differ from those synthesised previously in that they have 

substitution on the quinoline scaffold as well as para substituted phenylthiosemicarbazides 

used for the first time to form novel derivatives. The mechanism for this reaction is shown in 

Scheme 1-23 on page 17.   

Table 2-1  The yields of the synthesised quinoline-2-thiosemicarbazone derivatives 

Compound 6 R
1
 R

2
 Melting point °C Yield % 

a F H 193-210 75 

b F F 200-210 61 

c F Cl 188-193 67 

d F CH
3
 185-195 82 

e F NO
2
 195-205 72 

f Cl H 205-210 68 

g Cl F 215-225 62 

h Cl Cl 185-205 65 

i Cl CH
3
 198-205 80 

j Cl NO
2
 205-214 64 

k Br H 190-205 70 

l Br F 215-220 60 

m Br Cl 205-220 66 

n Br CH
3
 212-220 76 

o Br NO
2
 208-219 59 
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In general, the yield for the thiosemicarbazides with electron withdrawing groups were lower 

than those with electron donating groups.  The synthesised compounds were then characterised 

by NMR and mass spectroscopy.  

 

The 1H NMR spectrum of 6f containing a chloro group at position 6, had resonances similar to 

both of the starting materials, 3b and 5a.  Two of the resonances are however worth noting, H-

9 and H-3.  H-9 is the imine singlet proton and occurs as the result of the condensation between 

the aldehyde and thiosemicarbazone.  This is an indication that the reaction was successful.  H-

3, which occurred at  8.01 in the carbaldehyde, now occurs more downfield at  8.66.  This 

indicates that the thiosemicarbazide moiety has decreased the electron density at C-3, probably 

by induction after introducing all the electronegative groups present in the thiosemicarbazide 

moiety.  The other resonance which had a slight shift was H-5, which shifted from  7.86 in 3b 

to  8.12 in 6f (Figure 2.7).  The reason for this cannot be explained.  Resonance and inductive 

effects were discussed, but a reasonable explanation could not be provided. 

 

The 13C NMR spectrum of 6f contained similar resonances to that of its precursors, 3b and 5a.  

There were slight differences in the chemical shifts, however none were worth noting with the 

exception of the aldehyde carbon in 3b at  193.3 now being absent and appearing as an imine 

carbon in 6f at  142.6, also an indication that the reaction had occurred (Figure 2.8).  
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Figure 2.7  Aromatic region of the 1H NMR spectrum for compound 6f 

 

 

Figure 2.8  13C NMR spectrum for compound 6f 
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2.2 Antibacterial activity of compounds 6a-o 

The synthesised compounds were tested for their antibacterial activity against six bacterial 

strains, two Gram +ve strains, Staphylococcus aureus and methicillin resistant Staphylococcus 

aureus (MRSA) and four Gram –ve strains, Escherichia coli, Pseudomonas aeruginosa, 

Salmonella typhimurium and Klebsiella pneumonia.   These gram negative bacteria are on the 

WHOs priority 1 (critical) list and the Staphylococcus species on the priority 2 (high) list for 

bacterial strains where new drugs are needed 

(www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/).  

Pseudomonas is no. 2 on the critical list with the Enterobacteriaceae, such as Escherichia, 

Salmonella and Klebsiella being no. 3.  Staphylococcus aureus and MRSA is no. 2 on the high 

priority list. 

 

A disc diffusion assay was first used as a preliminary screening method to select compounds 

for further minimum bactericidal concentration (MBC) tests.  Compounds 6c, 6g, 6h, 6l and 

6o showed activity against four or more strains (Table 2-2).  This set contained all compounds 

with a para substituted fluoro group on the thiosemicarbazide portion of the molecule 6c, 6g 

and 6l.  These three compounds were also active against both S. aureus and MRSA.  

 

Compound 6h (with a 6-Cl, 4'-Cl substitution pattern) was active in all four of the Gram –ve 

bacterial strains. The activity was lost when a fluoro group replaced the chloro group at C-4' 

(6g), resulting in loss of activity with E. coli, however this resulted in added activity with 

MRSA.  The compound with a bromo group at C-6 and methyl group at C-4' (6o) had the least 

activity among these five compounds, showing activity in four of the bacterial strains when the 

other four compounds showed activity in five of the bacterial strains.   Thus, the best lead for 
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antibacterial activity was fluoro substitution at the para position of the thiosemicarbazide 

moiety. 

 

Table 2-2  Antibacterial activity of 6a-o using the disc diffusion assay 

 

 

 

  Diameter of zone inhibition (mm) 

 Substituents    Gram-Positive  Gram-negative 

Compound R1 R2  Sa MRSA  Ec Pa St Kp 

6a F H  _ 17  _ 15 _ _ 

6b F F  _ 15  _ 14 _ _ 

6c F Cl  15 14  15 15 15 _ 

6d F NO2  _ 13  _ 13 _ 13 

6e F CH3  _ _  _ 15 15 15 

6f Cl H  _ 15  _ 15 _ _ 

6g Cl F  14 15  _ 15 15 15 

6h Cl Cl  14 _  14 16 15 15 

6i Cl NO2  _ _  _ _ _ _ 

6j Cl CH3  14 15  _ _ _ 15 

6k Br H  _ 15  _ _ 15 _ 

6l Br F  15 15  _ 13 16 14 

6m Br Cl  _ _  _ _ 14 14 

6n Br NO2  _ _  _ _ 16 _ 

6o Br CH3  15 _  _ 16 14 15 

Sa = Staphyllococcus areus; MRSA = Methicillin resistant Staphyloccocus areus; Ec = Escherichia coli; Ps = 
Pseudomonas aeruginosa; St = Salmonella typhimurium; Kp = Klebsiella pneumonia. 

 
 
The five compounds (6c, 6l, 6g, 6h and 6o) showing activity in four or more bacterial strains 

were then diluted to different concentrations and spotted directly on agar plates containing the 
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different microorganisms to determine their MBC values.  This method was used since the 

compounds were insoluble in aqueous media and precipitated out on trying the broth dilution 

method.  Unfortunately, most of the compounds had MBC values of > 625 µM, with the 

exception of 6l, containing a 6-Br substitutent and fluoro group at the para position of the 

thiosemicarbazide moiety (Table 2-3).  Thus, the larger and more polarisable bromo group on 

the quinoline scaffold was essential for this antimicrobial activity as when the smaller chloro 

and fluoro groups occupy the same position, activity is decreased.   

 
Table 2-3  Minimum bactericidal concentration (MBC in µM) of selected quinoline-2-
thiosemicarbazone derivatives 

   Gram +ve strain  Gram –ve strain 

Compound  R1 R2     Sa MRSA  Ec Pa St Kp 

6c F  Cl > 625 > 625  > 625 > 625 > 625 > 625 

6l Br F    387    387  > 625 > 625 > 625 > 625 

6g Cl F > 625 > 625  > 625 > 625 > 625 > 625 

6h Cl Cl > 625 > 625  > 625 > 625 > 625 > 625 

6o Br CH3 > 625 > 625  > 625 > 625 > 625 > 625 

Ciprofloxacin       94.3  188.6  2.95 188.6 2.95 11.8 

Levofloxacin      21.6    86.5  0.34 345 21.6 21.6 

Sa = Staphyllococcus areus; MRSA = Methicillin resistant Staphyloccocus areus; Ec = Escherichia coli; Ps = 
Pseudomonas aeruginosa; St = Salmonella typhimurium; Kp = Klebsiella pneumonia. 

 
 

It was already established from the disc diffusion assays that fluoro substitution on the 

thiosemicarbazide moiety resulted in antimicrobial activity.  Thus, the 6-Br, 4'-F substitution 

pattern on these quinoline-2-thiosemicarbazides was the best substitution pattern on this 

particular quinoline-thiosemicarbazide scaffold for antibacterial activity against 

Staphylococcus aureus and MRSA to occur.  However, the results were not comparable to the 
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standard antibiotics, ciprofloxacin and levofloxacin (Table 2-3), hence cell viability and 

cytotoxicity studies on 6l were not carried out.  

 

Our results corroborated findings by Kulkarni et al. (2010) and Abdel-Moty et al. (2005) who 

also found that 5-Acetyl (or 5 benzoyl)-8-hydroxyquinoline-4-phenyl thiosemicarbazones and 

2-hydroxyquinoline-3-thiosemicarbazones showed weak to no activity in the bacterial strains 

tested against.  However, 6l (6-Br, 4'-F derivative) did show interesting antibacterial activity 

and further research on this particular molecule, perhaps by adding other groups to the molecule 

using this as a basic scaffold can be determined in order to identify a compound that can be 

developed into a potential antibiotic.  
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Chapter 3. Experimental 

3.1 General Experimental Procedures 

Chemicals and reagents used in this study were purchased from Sigma-Aldrich through Capital 

Laboratories, South Africa.  Organic solvents were redistilled according to standard 

procedures.  TLC analysis was carried out on silica gel 60 F254 plates purchased from Merck 

South Africa. Purifications were carried out by column chromatography using silica gel (60- 

120 mesh) as the stationery phase and varying ratios of ethyl acetate and hexane as the mobile 

phase.  IR spectra were recorded using a Perkin Elmer 100 FT-IR spectrometer.  1H, 13C and 

2D NMR experiments were carried out in DMSO-d6 using a Bruker Avance 400 MHz 

instrument. Tetramethylsilane (TMS) was used as the internal standard with chemical shifts 

reported in (ppm) and coupling constants (J) in Hz, referenced to the DMSO-d6 solvent line 

(2.50 ppm for 1H and 39.52 ppm for 13C). Spectra were analysed using Topspin 3.1 software 

(2013). High-Resolution mass spectral data (HRMS) were obtained at ambient temperature 

using a Bruker micro TOF-Q II ESI instrument. Melting points were carried out on a Stuart 

Scientific melting point apparatus SMP3 and UV data were obtained on a Shimadzu UV-3600 

UV-Vis-IR spectrometer. 

 

3.2 Synthesis 

Synthesis of 6-substituted quinoline-2-aldehyde derivatives 3a-c 

The respective para substituted anilines 1a-c (40.0 mmol) were reacted with crotonaldehyde 

(60.0 mmol, 5.00 mL) in 40 mL of HCl:H2O (1:1) under reflux at 100 °C for 12 h. The reaction 

was monitored by TLC. Upon completion, the mixture was basified with NaHCO3 to pH 8 and 

NaCl added to the mixture, which was subsequently extracted with EtOAc (3 × 60 mL). The 
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mixture was then dried over anhydrous Na2SO4 and concentrated using a rotary evaporator to 

yield the crude 2-methylquinoline intermediates 2a-c as brown gummy residues.  These 

intermediates were not purified, but were oxidized directly using SeO2 (5.00 g, 40.0 mmol) in 

15 mL of 1,4-dioxane. Selenium dioxide was added gradually over a period of 5 min and the 

reaction left to stir under reflux at 110 °C for 1.5 h to produce the 6-substituted quinoline-2-

aldehydes 3a-c (Scheme 3-1). The reaction was monitored by TLC until completion. Once 

cooled, the reaction mixture was filtered through celite, diluted with water and extracted with 

ethyl acetate. The organic extract was dried over anhydrous MgSO4, concentrated and 

subjected to column chromatography on silica gel using a mobile phase of hexane:ethyl acetate 

(95:5) in yields of between 55 to 65%.  

 

 

Scheme 3-1  Reactions for the synthesis of 6-substituted quinoline-2-aldehydes 3a-c 

 

6-fluoroquinoline-2-carbaldehyde (3a); Orange solid residue; 55% yield; 1H NMR (DMSO-

d6, 400 MHz) 10.18 (s, H-9), 8.25 (1H, d, J = 8.5 Hz, H-4), 8.24 

(1H, dd, J = 9.2, 5.0 Hz, H-8), 8.03 (1H, d, J = 8.5 Hz, H-3), 7.58 

(1H, ddd, J = 9.2, 8.2, 2.8 Hz, H-7), 7.50 (1H, dd, J = 8.6, 2.8 Hz, 

H-5); 13C NMR (DMSO-d6, 100 MHz)193.4 (C-9), 162.0 (d, JCF = 253.0 Hz, C-6), 152.2 (d, 

JCF = 2.9 Hz, C-2), 145.0 (C-8a), 136.7 (d, JCF = 5.6 Hz, C-4), 133.2 (d, JCF = 9.6 Hz, C-8), 

131.0 (d, JCF = 10.5 Hz, C-4a), 121.1 (d, JCF = 26.1 Hz, C-7), 118.1 (C-3), 111.0 (d, JCF = 22.0 

Hz, C-5).  
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6-chloroquinoline-2-carbaldehyde (3b); Cream white; 65% yield; 1H NMR (DMSO-d6, 400 

MHz)  10.17 (s, H-9), 8.20 (1H, d, J = 8.5 Hz, H-4), 8.16 (1H, d, 

J = 9.0 Hz, H-8), 8.01 (1H, d, J = 8.5 Hz, H-3), 7.86 (1H, d, J = 2.2 

Hz, H-5), 7.73 (1H, dd, J = 9.0, 2.2 Hz, H-7); 13C NMR (DMSO-

d6, 100 MHz)  193.3 (C-9), 152.7 (C-2), 146.3 (C-8a), 136.4 (C-4), 135.2 (C-4a), 132.0 (C-

8), 131.6 (C-7), 130.6 (C-6), 126.6 (C-5), 118.3 (C-3). 

 

6-Bromoquinoline-2-carbaldehyde (3c); light brown solid residue; 63% yield;  1H NMR 

(DMSO-d6, 400 MHz) 10.18 (s, H-9), 8.20 (1H,d, J = 8.5 Hz, H-

4), 8.10 (1H, d, J = 9.0 Hz, H-8), 8.04 (1H, d, J = 2.1 Hz, H-5 ), 

8.02 (1H, d, J = 8.5 Hz, H-3), 7.86 (1H, dd, J = 9.0, 2.3 Hz, H-7); 13C NMR (DMSO-d6, 100 

MHz) 193.3 (C-9), 152.8 (C-2), 146.5 (C-8a), 136.4 (C-4), 134.1 (C-8), 132.0 (C-7), 131.0 

(C-4a), 130.0 (C-5), 123.6 (C-6), 118.3 (C-3). 

 

Synthesis of para substituted phenylisothiosemicarbazides 5a-e 

Para substituted phenylisocynates 4a-e (6.70 mmol) were dissolved in isopropanol (10 mL), 

to which hydrazine hydrate (0.66 mL, 13.40 mmol) was added and the mixture stirred for 15 

min at room temperature and then placed in an ice-bath for 30 min. The crystals that formed 

were filtered and washed with isopropanol to yield the phenylisothiosemicarbazides 5a-e in 

yields of between 82 and 90% (Scheme 3-2). 

 

Scheme 3-2  The reaction of phenylisocyanates with hydrazine hydrate to produce 4-
substituted thiosemicarbazides 5a-e 
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N-phenylhydrazinecarbothioamide (5a); white solid residue: 90% yield:  1H NMR (DMSO-d6, 

400 MHz)  9.64 (s, 3'-NH), 9.11 (s, 1'-NH) 7.64 (2H, bd, J = 8.1 Hz, 

H-2/6), 7.29 (2H, dd, J = 8.1, 7.3 Hz, H-3/5), 7.09 (1H, t, J = 7.3 Hz, 

H-4), 4.79 (s, 4'-NH). 

 

N-(4-fluorophenyl) hydrazinecarbothioamide (5b); white solid residue: 86% yield: 1H NMR 

(DMSO-d6, 400 MHz)  9.60 (s, 3'-NH), 9.11 (s, 1'-NH), 7.60 (bs, 

H-2/6), 7.12 (2H, t, J = 8.9 Hz, H-3/5), 4.76 (s, 4'-NH). 

 

N-(4-chlorophenyl) hydrazinecarbothioamide (5c); white solid residue: 84% yield: 1H NMR 

(DMSO-d6, 400 MHz)  9.19 (s, 1'-NH), 7.68 (2H, bd, J = 8.7 Hz, 

H-2/6), 7.33 (2H, d, J = 8.7 Hz, H-3/5), 4.81 (s, 3'-NH). 

 

N-(4-nitrophenyl) hydrazinecarbothioamide (5d); yellow solid residue: 80% yield: 1H NMR 

(DMSO-d6, 400 MHz)  9.35 (s, 3'-NH), 8.13 (2H, d, J = 9.2 Hz, 

H-3/5), 7.80 (3H, bs, H-2/6, 1'-N-H), 4.45 (s, 4'-NH). 

 

N-p-tolylhydrazinecarbothioamide (5e); yellow solid residue: 88% yield: 1H NMR (DMSO-d6, 

400 MHz)  9.75 (s, 3'-NH), 7.41 (2H, d, J = 8.2 Hz, H-2/6), 7.10 

(2H, d, J = 8.2 Hz, H-7/9), 2.26 (s, CH3). 

 

Synthesis of quinoline-2-carboxyaldehyde thiosemicarbazone derivatives 6a-o 

Phenylthiosemicarbazides 5a-e (0.482 mmol) were dissolved in ethanol by heating slightly 

while stirring in an oil bath. The substituted quinoline aldehydes 3a-c (0.583 mmol) were then 

added separately to each of the dissolved phenylthiosemicarbazides (5a-e) and the resulting 
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mixture refluxed for 5 h at 110 °C. The reaction mixture was then placed in an ice bath for 30 

min, where the product crystallised out and was filtered to yield the products 6a-o in yields of 

between 59 and 80% (Scheme 3-3). 

 

 

Scheme 3-3  The reaction of quinoline-2-carbaldehydes and thiosemicarbazides to form 
quinoline-2-carboxaldehyde thiosemicarbazone derivatives 6a-o 

 

(E)-2-((6-fluoroquinolin-2-yl)methylene)-N-phenylhydrazine carbothioamide (6a); light 

yellow solid: 75% yield: mp 193-210 °C: UV λmax 

(EtOAc) nm (log ɛ) 250 (4.24), 287 (4.15), 326 (4.13), 

341 (4.16), 355 (4.20); IR (KBr) max: 3317 (N-H), 3105 (C-H), 2939 (C-H), 1542 (C=C), 1498 

(C=C), 1181 (C-F) cm-1; 1H NMR (DMSO-d6, 400 MHz)  12.20 (s, 11-NH), 10.38 (s, 13-NH), 

8.65 (1H, d, J = 8.8 Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4), 8.33 (s, H-9), 8.10 (1H, dd, J = 

9.2, 5.5, Hz, H-8), 7.80 (1H, dd, J = 9.3, 2.8 Hz, H-5), 7.70 (1H, ddd, J = 9.2, 8.9, 2.8 Hz, H-

7), 7.56 (2H, d, J = 7.8 Hz, H-2'/6') , 7.41 (2H, t, J = 7.8 Hz, H-3'/5'), 7.25 (1H, t, J = 7.8 Hz, 

H-4'); 13C NMR (DMSO-d6, 100 MHz) 176.6 (C-12), 160.0 (d, JCF = 245.2 Hz, C-6), 153.4 

(d, JCF = 2.5 Hz, C-2), 144.5 (C-8a), 142.7 (C-9), 138.9 (C-1'), 135.8 (d, JCF = 5.0 Hz, C-4), 

131.6 (d, JCF = 9.4 Hz, C-8), 128.7 (d, JCF = 10.3 Hz, C-4a), 128.1 (C-2'/6'), 126.3 (C-3'/5'), 

125.7 (C-4'), 119.9 (d, J = 25.8 Hz, C-7), 119.2 (C-3), 111.2 (d, J = 21.9 Hz, C-5). 
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(E)-N-(4-fluorophenyl)-2-((6-fluoroquinolin-2-yl)methylene)hydrazine carbothioamide(6b); 

yellow solid residue: 78% yield: mp 200-210 °C: 

UV λmax (Ethylacetate)nm (log ɛ) 250 (4.24), 326 

(4.31), 340 (4.35), 354 (4.37); IR (KBr) max: 3302 (N-H), 3117 (C-H), 2977 (C-H), 1504 

(C=C), 1176 (C-F) cm-1 ;1H NMR (DMSO-d6, 400 MHz)  12.22 (s, 11-NH), 10.37 (s, 13-NH), 

8.64 (1H, d, J = 8.8 Hz, H-3), 8.39 (1H, d, J = 8.8 Hz, H-4 ), 8.32 (s, H-9), 8.10 (1H, dd, J = 

8.8, 5.5, Hz, H-8), 7.80(1H, dd, J = 9.3, 2.8 Hz, H-5), 7.70 (1H, ddd, J = 8.8, 8.8, 2.9 Hz, H-

7), 7.55 (2H, dd, J = 8.9 ,5.1 Hz, H-2'/6'), 7.24 (2H, dd, J = 8.8, 8.8 Hz, H-3'/5'); 13C-

NMR(DMSO-d6, 100 MHz)  176.9 (C-12), 160.1 (d, JCF = 245.1 Hz, C-6), 159.9 (d, JCF = 

241.3 Hz, C-4'), 153.4 (d, JCF = 2.7 Hz, C-2), 144.5 (C-8a), 142.9 (C-9), 135.8 (d, JCF = 5.1 Hz, 

C-4), 135.2 (C-1'), 131.6 (d, JCF = 9.3 Hz, C-8), 128.7 (d, JCF = 10.6 Hz, C-4a), 128.5 (d, J = 

8.4 Hz, C-2'/6'), 119.9 (d, JCF = 25.5 Hz, C-7), 119.1 (C-3), 114.8 (d, J = 22.3 Hz, C-3'/5'), 

111.2 (d, J = 21.7 Hz, C-5); HRMS(pos) (m/z): calculated for C17H12F2N4S (M + H)+: 341.0672, 

found: 341.0680. 

 

(E)-N-(4-chlorophenyl)-2-((6-fluoroquinolin-2-yl)methylene)hydrazine carbothioamide (6c); 

yellow solid residue: 67% yield: mp 188-193 °C: UV 

λmax (Ethylacetate)nm (log ɛ) 249 (4.29), 326 (4.39), 

340 (4.33), 354 (4.44); IR (KBr) max: 3303 (N-H), 3118 (C-H), 2972 (C-H), 1503 (C=C), 1177 

(C-F) cm-1; 1H NMR (DMSO-d6, 400 MHz) 12.27 (s, 11-NH), 10.40 (s, 13-NH), 8.63 (1H, d, 

J = 8.8 Hz, H-3), 8.39 (1H, d, J = 8.8 Hz, H-4 ), 8.33 (s, H-9), 8.10 (1H, dd, J = 8.8, 5.5, Hz, H-

8), 7.80 (1H, dd, J = 9.3, 2.8 Hz, H-5), 7.70 (1H, ddd, J = 8.8, 8.8, 2.9 Hz, H-7), 7.61 (1H, dd, 

J = 8.9 ,5.1 Hz, H-2'/6') , 7.46 (1H, dd, J = 8.8, 8.8 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 MHz) 

176.6 (C-12), 160.1 (d, JCF = 245.1 Hz, C-6), 153.3 (C-2), 144.5 (C-8a), 143.1 (C-9), 137.9 

(C-1'), 135.8 (d, JCF = 4.9 Hz, C-4), 131.7 (d, JCF = 9.3 Hz, C-8), 129.7 (C-4'), 128.7 (d, JCF = 
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10.6 Hz, C-4a), 128.0 (C-3'/5'), 127.9 (C-2'/6'), 119.9 (d, JCF = 25.6 Hz, C-7), 119.2 (C-3), 111.2 

(d, JCF = 22.0 Hz, C-5); HRMS(pos) (m/z): calculated for: C17H12ClFN4S (M-H)+: 358.05, 

found: 357.081. 

 

(E)-2-((6-fluoroquinolin-2-yl)methylene)-N-(4-nitrophenyl)hydrazine carbothioamide (6d); 

yellow solid residue: 82% yield: mp 200-210 °C: 

UV λmax (Ethylacetate) nm (log ɛ) 249 (4.30), 

330 (4.67), 344 (4.62); IR ʋmax 3359 (N-H), 3083 (C-H), 2927 (C-H), 1702*, 1596 (C=C), 1529, 

1499, 1485, 1322, 1299, 1222, 1153, 1106 (C-F) cm-1;1H-NMR(DMSO-d6, 400 MHz)  11.49 

(s, 11-NH), 9.71 (s, 13-NH), 8.56 (1H, d, J = 8.8 Hz, H-3), 8.42 (1H, d, J = 8.8 Hz, H-4), 8.24 

(d, J = 9.3 Hz, H-3'/5'), 8.17 (s, H-9), 8.08 (1H, dd, J = 9.1, 5.4 Hz, H-8), 8.01 (d, J = 9.3, Hz, 

H-2'/6'), 7.82 (1H, dd, J = 9.4, 2.9 Hz, H-5) , 7.69 (1H, ddd, J = 9.1, 8.9, 2.9 Hz, H-7); 13C-NMR 

(DMSO-d6, 100 MHz) 160.0 ( d, JCF = 244.7 Hz, C-6), 153.2 (d, JCF = 2.8 Hz, C-2), 152.4 (C-

12), 145.6 (C-4'), 144.5 (C-8a), 142.3 (C-9), 141.7 (C-1'), 135.8 (d, JCF = 5.0 Hz, C-4), 131.6 

(d, JCF = 9.4 Hz, C-8), 128.6 (d, JCF = 10.4 Hz, C-4a), 124.7 (C-2'/6'), 119.9 (d, JCF = 25.6 Hz, 

C-7), 119.2 (C-3'/5'), 118.9 (C-3), 111.2 (d, JCF = 22.0 Hz, C-5). *These absorption bands only appear 

for the nitro substituted compounds, however the frequency is higher than usual for a nitro stretch, typically 

occurring at 1535-1600 cm-1. 

 

(E)-2-((6-fluoroquinolin-2-yl)methylene)-N-p-tolylhydrazine carbothioamide(6e); yellow 

solid residue: 72% yield: mp 186-195 °C: UV 

λmax (Ethylacetate)nm (log ɛ) 250 (4.27), 326 

(4.38), 340 (4.42), 354 (4.44); IR ʋmax 3300 (N-H), 3113 (C-H), 2962 (C-H), 1509 (C=C), 1178 

(C-F) cm-1;  1H-NMR (DMSO-d6, 400 MHz)  12.14 (s, 11-NH), 10.31 (s, 13-NH), 8.65 (1H, 

d, J = 8.8 Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4 ), 8.31 (s, H-9), 8.10 (1H,dd, J = 9.1, 4.9, Hz, 
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H-8), 7.80 (1H, dd, J = 9.3, 2.8 Hz, H-5), 7.70 (1H, ddd, J = 9.1, 8.9, 2.9 Hz, H-7), 7.41 (1H, 

d, J = 8.3, Hz, H-2'/6'), 7.20 (1H,d, J = 8.2 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 MHz)  

176.6 (C-12), 160.0 (d, JCF = 246.5 Hz, C-6), 153.4 (d, JCF = 2.7 Hz, C-2), 144.5 (C-8a), 142.6 

(C-9), 136.3 (C-4'), 135.8 (d, JCF = 5.1 Hz, C-4), 134.8 (C-1'), 131.6 (d, JCF = 9.3 Hz, C-8), 

128.7 (C-4a), 128.6 (C-2'/6'), 126.2 (C-3'/5'), 119.9 (d, JCF = 25.9 Hz, C-7), 119.2 (C-3), 111.2 

(d, J = 21.7 Hz, C-5), 20.6 (C-7'); HRMS (m/z): calculated for: C18H15FN4S (M + Na)+: 338.10, 

found: 361.0901. 

 

(E)-2-((6-chloroquinolin-2-yl)methylene)-N-phenylhydrazine carbothioamide (6f); light 

yellow solid residue: 62% yield: mp 200-210 °C: UV 

λmax (Ethylacetate)nm (log ɛ) 250 (4.19), 270 (4.10), 330 

(4.16), 344 (4.22), 359 (4.25); IR ʋmax 3313 (N-H), 3110 (C-H), 2962 (C-H), 1532 (C=C), 1505, 

1487, 1250, 1186 (C-F) cm-1;1H-NMR (DMSO-d6, 400 MHz)  12.22 (s, 11-NH), 10.39 (s, 13-

NH), 8.66 (1H, d, J = 8.8 Hz, H-3), 8.37 (1H, d, J = 8.8 Hz, H-4), 8.32 (s, H-9), 8.12 (1H,d, J 

= 2.3, H-5), 8.04 (1H, d, J = 9.0 Hz, H-8), 7.79 (1H, dd, J = 9.0, 2.3 Hz, H-7), 7.56 (2H, d, J = 

7.7 Hz, H-2'/6'), 7.41 (2H, t, J = 7.8 Hz, H-3'/5'), 7.25 (1H, t, J = 7.4 Hz, H-4'); 13C NMR 

(DMSO-d6, 100 MHz)  176.6 (C-12), 154.3 (C-2), 145.8 (C-8a), 142.6 (C-9), 138.9 (C-1'), 

135.5 (C-4), 131.4 (C-4a), 130.8 (C-7), 130.4 (C-8), 128.6 (C-6), 128.1 (C-2'/6'), 126.7 (C-5), 

126.3 (C-3'/5'), 125.7 (C-4'), 119.4 (C-3). 

 

(E)-2-((6-chloroquinolin-2-yl)methylene)-N-(4-fluorophenyl)hydrazine carbothioamide (6g); 

yellow solid residue: 65% yield: mp 215-225°C: 

UV λmax(Ethylacetate) nm (log ɛ) 250 (4.42), 295 

(4.33), 384 (4.31); IR ʋmax 3301 (N-H), 3055 (C-H), 1511 (C=C), 1492, 1171 (C-F), 1067  cm-

1;1H NMR (DMSO-d6, 400 MHz)  12.24 (s, 11-NH), 10.38 (s, 13-NH), 8.65 (1H, d, J = 8.8 
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Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4), 8.32 (s, H-9), 8.12 (1H, d, J = 2.4 Hz, H-5), 8.04 (1H, 

d, J = 9.0 Hz, H-8), 7.79 (1H, dd, J = 9.0, 2.4 Hz, H-7), 7.55 (1H, dd, J = 8.9 ,5.1 Hz, H-2'/6') 

, 7.24 (1H, t, J = 8.8 Hz, H-3'/5'); 13C NMR (DMSO-d6, 100 MHz)  176.9 (C-12), 159.9 (d, 

JCF = 242.5 Hz, C-4'), 154.2 (C-2), 145.8 (C-8a), 142.7 (C-9), 135.5 (C-4), 135.2 (d, JCF = 2.6 

Hz, C-1'), 131.5 (C-4a), 130.8 (C-7), 130.4 (C-8), 128.6 (C-6), 128.5 (d, JCF = 8.3 Hz, C-2'/6'), 

126.7 (C-5), 119.4 (C-3), 114.8 (d, JCF = 22.4 Hz, C-3'/5'); HRMS (pos) (m/z): calculated for 

C17H12ClFN4S (M + H)+: 358.05, found: 358.0416. 

 

 (E)-N-(4-chlorophenyl)-2-((6-chloroquinolin-2-yl)methylene)hydrazine carbothioamide (6h); 

yellow solid residue: 80% yield: mp 185-205°C: 

UV λmax (Ethylacetate) nm (log ɛ) 250 (4.32), 330 

(4.44), 343 (4.50), 359 (4.53); IR ʋmax 3316 (N-H), 3133 (C-H), 2989 (C-H), 1588 (C=C), 1536, 

1509, 1488, 1190 (C-F), 1086 cm-1;1H-NMR (DMSO-d6, 400 MHz)  12.29 (s, 11-NH), 10.41 

(s, 13-NH), 8.64 (1H, d, J = 8.8 Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4), 8.32 (s, H-9), 8.12 

(1H, d, J = 2.4 Hz, H-5), 8.04 (1H, d, J = 9.0 Hz, H-8), 7.79 (1H, dd, J = 8.5, 2.3 Hz, H-7), 

7.60 (1H, d, J = 8.7 Hz, H-2'/6'), 7.46 (1H, d, J = 8.7 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 

MHz)  176.6 (C-12), 154.2 (C-2), 145.8 (C-8a), 142.9 (C-9), 137.9 (C-1'), 135.6 (C-4), 131.5 

(C-4a), 130.8 (C-7), 130.4 (C-8), 129.7 (C-4'), 128.6 (C-6), 128.0 (C-2'/6'), 127.9 (C-3'/5'), 

126.7 (C-5), 119.4 (C-3); HRMS (pos) (m/z): calculated for :C17H12Cl2N4S (M + H)+: 374.02, 

found: 374.0122. 

 

 (E)-2-((6-chloroquinolin-2-yl)methylene)-N-(4-nitrophenyl)hydrazine carbothioamide (6i); 

yellow solid residue: 64% yield: mp 198-215 

°C: UV λmax (Ethylacetate) nm (log ɛ) 249 

(4.47), 321 (4.58), 334 (4.61), 349 (4.55); IR ʋmax 3364 (N-H), 3072 (C-H), 2921 (C-H), 1711*, 
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1598 (C=C), 1539, 1504, 1491, 1332, 1302, 1223, 1144, 1110 (C-F) cm-1;1H NMR (DMSO-d6, 

400 MHz)  11.52 (s, 11-NH), 9.71 (s, 13-NH), 8.57 (1H, d, J = 8.8 Hz, H-3), 8.42 (1H, d, J = 

8.8 Hz, H-4), 8.24 (1H, d, J = 9.3 Hz, H-3'/5'), 8.17 (s, H-9), 8.14 (1H, d, J = 2.4 Hz, H-5), 8.03 

(1H, d, J = 8.8 Hz, H-8), 8.02 (1H, d, J = 9.3 Hz, H-2'/6') , 7.79 (1H, dd, J = 9.0, 2.4 Hz, H-7); 

13C-NMR (DMSO-d6, 100 MHz)  154.1 (C-12), 152.2 (C-4'), 145.7 (C-2), 145.5 (C-8a), 142.1 

(C-9), 141.7 (C-1'), 135.6 (C-4), 131.4 (C-4a), 130.8 (C-7), 130.4 (C-8), 128.5 (C-6), 126.7 (C-

5), 124.7 (C-3'/5'), 119.2 (C-2'/6'), 119.1 (C-3). *These absorption bands only appear for the nitro 

substituted compounds, however the frequency is higher than usual for a nitro stretch, typically occurring at 1535-

1600 cm-1. 

 

(E)-2-((6-chloroquinolin-2-yl)methylene)-N-p-tolylhydrazine carbothioamide (6j); yellow 

solid residue: 80% yield: mp 198-205 °C: UV 

λmax (Ethylacetate) nm (log ɛ) 251 (4.40), 330 

(4.26), 360 (4.37); IR ʋmax 3348 (N-H), 3308, 3114 (C-H), 2964 (C-H), 1513 (C=C), 1250, 

1177 (C-F) cm-1 ;1H NMR (DMSO-d6, 400 MHz)  12.17 (s, 11-NH), 10.32 (s, 13-NH), 8.66 

(1H, d, J = 8.8 Hz, H-3), 8.37 (1H, d, J = 8.8 Hz, H-4 ), 8.31 (s, H-9), 8.12 (1H, d, J = 2.4 Hz, 

H-5), 8.04 (1H, d, J = 9.0 Hz, H-8), 7.79 (1H, dd, J = 9.0, 2.4 Hz, H-7), 7.41 (1H, d, J = 8.3 

Hz, H-2'/6'), 7.20 (1H, d, J = 8.3 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 MHz)  176.6 (C-12), 

154.3 (C-2), 145.8 (C-8a), 142.4 (C-9), 136.3 (C-1'), 135.5 (C-4), 134.9 (C-4'), 131.4 (C-4a), 

130.8 (C-7), 130.4 (C-8), 128.6 (C-6), 128.0 (C-3'/5'), 126.6 (C-5), 126.2 (C-2'/6'), 119.4 (C-

3), 20.6 (C-7'); HRMS (pos) (m/z): calculated for C17H12F2N4S (M + Na)+: 354.07, found: 

377.0609. 
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(E)-2-((6-bromoquinolin-2-yl)methylene)-N-phenylhydrazine carbothioamide(6k); light 

yellow solid residue: 70% yield: mp 190-205 °C: UV 

λmax (Ethylacetate) nm (log ɛ) 249 (4.37), 331 (4.30), 

347 (4.35), 360 (4.40); IR ʋmax 3327 (N-H), 3139 (C-H), 2993 (C-H), 1533 (C=C), 1511, 1245, 

1188 (C-F), cm-1 ;1H-NMR (DMSO-d6, 400 MHz)  12.22 (s, 11-NH), 10.39 (s, 13-NH), 8.66 

(1H, d, J = 8.8 Hz, H-3), 8.37 (1H, d, J = 8.8 Hz, H-4), 8.32 (s, H-9), 8.28 (1H, d, J = 2.1 Hz, 

H-5), 7.97 (1H, d, J = 9.0 Hz, H-8), 7.89 (1H, dd, J = 9.0, 2.3 Hz, H-7), 7.56 (2H, d, J = 7.6 

Hz, H-2'/6'), 7.41 (2H, t, J = 7.8 Hz, H-3'/5'), 7.25 (1H, t, J = 7.4 Hz, H-4'); 13C-NMR (DMSO-

d6, 100 MHz)  176.6 (C-12), 154.3 (C-2), 146.0 (C-8a), 142.6 (C-9),138.9 (C-1'), 135.4 (C-4), 

133.0 (C-7), 130.9 (C-8), 129.9 (C-5), 129.1 (C-4a), 128.1 (C-2'/6'), 126.3 (C-3'/5'), 125.7 (C-

4'), 120.1 (C-6), 119.4 (C-3). 

 

(E)-2-((6-bromoquinolin-2-yl)methylene)-N-(4-fluorophenyl)hydrazine carbothioamide (6l); 

yellow solid residue: 60% yield: mp 215-220 °C: 

UV λmax (Ethylacetate) nm (log ɛ) 250 (4.42), 285 

(4.17), 310 (4.23), 361 (4.37); IR ʋmax 3303 (N-H), 3107 (C-H), 2973 (C-H), 1505 (C=C), 1176 

(C-F) cm-1 ;1H NMR (DMSO-d6, 400 MHz)  12.24 (s, 11-NH), 10.38 (s, 13-NH), 8.65 (1H, d, 

J = 8.8 Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4), 8.31 (s, H-9), 8.28 (1H, d, J = 2.1 Hz, H-5), 

7.97 (1H, d, J = 9.0 Hz, H-8), 7.90 (1H, dd, J = 9.0, 2.1 Hz, H-7), 7.54 (1H, dd, J = 9.0, 5.1 

Hz, H-2'/6'), 7.24 (1H, t, J = 8.7 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 MHz)  176.9 (C-12), 

159.9 (d, JCF = 240.2 Hz, C-4'), 154.3 (C-2), 146.0 (C-8a), 142.7 (C-9), 135.4 (C-4), 134.2 (C-

1'), 133.0 (C-7), 130.9 (C-8), 129.9 (C-5), 129.1 (C-4a), 128.5 (d, JCF = 8.3 Hz, C-2'/6'), 120.1 

(C-6), 119.3 (C-3), 114.8 (d, JCF = 22.3 Hz,C-3'/5'); HRMS (pos) (m/z): calculated for 

C17H12BrFN4S (M + H)+: 402.00, found: 402.9850. 
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 (E)-2-((6-bromoquinolin-2-yl)methylene)-N-(4-chlorophenyl)hydrazine carbothioamide 

(6m); yellow solid residue: 66% yield: mp 205-

220 °C: UV λmax (Ethylacetate) nm (log ɛ) 228 

(4.70), 275 (4.58), 333 (4.48); IR ʋmax 3313 (N-H), 3284, 3129 (C-H), 2990 (C-H), 1510 (C=C), 

1176 (C-F) cm-1; 1H-NMR (DMSO-d6, 400 MHz)  12.29 (s, 11-NH), 10.41 (s, 13-NH), 8.64 

(1H, d, J = 8.8 Hz, H-3), 8.38 (1H, d, J = 8.8 Hz, H-4), 8.32 (s, H-9), 8.29 (1H, d, J = 2.1 Hz, 

H-5), 7.97 (1H, d, J = 9.0 Hz, H-8), 7.90 (1H, dd, J = 9.0, 2.3 Hz, H-7), 7.61 (1H, d, J = 9.0 

Hz, H-2'/6'), 7.46 (1H, d, J = 8.7 Hz, H-3'/5'); 13C NMR (DMSO-d6, 100 MHz)  176.6 (C-12), 

154.2 (C-2), 146.0 (C-8a), 142.9 (C-9), 137.9 (C-1'), 135.5 (C-4), 133.0 (C-7), 130.9 (C-8), 

129.9 (C-5), 129.7 (C-4'), 129.1 (C-4a), 128.0 (C-3'/5'), 127.9 (C2'/6'), 120.1 (C-6), 119.3 (C-

3); HRMS (pos) (m/z): calculated for C17H12BrClN4S (M + H)+: 417.97, found: 418.9957. 

 

 (E)-2-((6-bromoquinolin-2-yl)methylene)-N-(4-nitrophenyl)hydrazine carbothioamide (6n); 

yellow solid residue: 76% yield: mp 195-205 

°C: UV λmax (Ethylacetate) nm (log ɛ) 249 

(4.32), 323 (4.63), 334 (4.67), 349 (4.61); IR ʋmax 3366 (N-H), 3071 (C-H), 2914 (C-H), 1721*, 

1598 (C=C), 1539, 1504,  1333, 1145 (C-F) cm-1; 1H-NMR (DMSO-d6, 400 MHz)  11.52 (s, 

11-NH), 9.71 (s, 13-NH), 8.57 (1H, d, J = 8.8 Hz, H-3), 8.41 (1H, d, J = 8.8 Hz, H-4), 8.30 

(1H, d, J = 2.1 Hz, H-5), 8.24 (1H, d, J = 9.4 Hz, H-3'/5'); 8.16 (s, H-9), 8.01 (1H, d, J = 9.2 

Hz, H-2'/6'), 7.96 (1H, d, J = 9.0 Hz, H-8), 7.89 (1H, dd, J = 9.0, 2.2 Hz, H-7), 13C-NMR 

(DMSO-d6, 100 MHz)  154.1 (C-12), 152.4 (C-4'), 145.9 (C-2), 145.6 (C-8a), 142.1 (C-9), 

141.7 (C-1'), 135.5 (C-4), 133.0 (C-7), 130.9 (C-8), 130.0 (C-5), 129.0 (C-4a), 124.7 (C-3'/5'), 

120.0 (C-6), 119.2 (C-2'/6'), 119.1 (C-3).  *These absorption bands only appear for the nitro substituted 

compounds, however the frequency is higher than usual for a nitro stretch, typically occurring at 1535-1600 cm-

1. 
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(E)-2-((6-bromoquinolin-2-yl)methylene)-N-p-tolylhydrazine carbothioamide (6o); yellow 

solid residue: 59% yield: mp 212-220 °C: UV λmax 

(Ethylacetate) nm (log ɛ) 229 (4.71), 280 (4.64), 330 

(4.57); IR ʋmax 3309 (N-H), 3123 (C-H), 2963 (C-H), 1592 (C=C), 1537, 1514, 1485, 1249, 

1177 (C-F) cm-1;1H NMR (DMSO-d6, 400 MHz)  12.17 (s, 11-NH), 10.32 (s, 13-NH), 8.66 

(1H, d, J = 8.8 Hz, H-3), 8.37 (1H, d, J = 8.8 Hz, H-4), 8.31 (s, H-9), 8.28 (1H, d, J = 2.2 Hz, 

H-5), 7.97 (1H, d, J = 9.0 Hz, H-8), 7.90 (1H, dd, J = 9.0, 2.3 Hz, H-7), 7.41 (1H, d, J = 8.3 

Hz, H-2'/6'), 7.20 (1H, d, J = 8.2 Hz, H-3'/5'); 13C-NMR (DMSO-d6, 100 MHz)  176.6 (C-12), 

154.4 (C-2), 146.0 (C-8a), 142.4 (C-9), 136.3 (C-1'), 135.4 (C-4), 134.9 (C-4'), 133.0 (C-7), 

130.9 (C-8), 129.9 (C-5), 129.1 (C-4a), 128.6 (C-3'/5'), 126.2 (C2'/6'), 120.1 (C-6), 119.4 (C-

3), 20.6 (C-7'); HRMS (pos) (m/z): calculated for C17H12F2N4S (M + Na)+: 398.02, found: 

421.0108. 

 

3.3 In-vitro antimicrobial studies 

The antimicrobial activities of the synthesised compounds 6a-o were tested against two Gram 

+ve strains (Staphylococcus aureus ATCC 25923 and Methicillin resistant Staphylococcus 

aureus ATCC BAA-1683) and four Gram –ve strains (Escherichia coli ATCC 25922, 

Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14026 and Klebsiella 

pneumonia ATCC 314588) using levofloxacin and ciprofloxacin as standards for comparison. 

The disc diffusion method was used for initial screening.  Those compounds that showed a 

broad spectrum of activity across all the bacterial strains, showing activity in at least four of 

the six strains were chosen to determine their minimum bactericidal activity (MBC).   
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For the disc diffusion assay, the bacterial micro-organisms were grown overnight at 37 °C in 

nutrient broth (Biolab, South Africa) and adjusted to a 0.5 McFarland standard using distilled 

water.  Mueller-Hinton agar (MHA) (Biolab, South Africa) plates were prepared by dissolving 

38 g of agar in 1 L of water and pouring these into sterile petri dishes, which were then allowed 

to set and dry at room temperature.  They were then inoculated with the respective strains of 

bacteria by streaking a swab (dipped into the micro-organism solution) evenly over the entire 

sterile agar surface. A volume of 5 μL of a 10 mg mL-1 solution of each test compound was 

then impregnated onto antibiotic test discs (12 mm) and placed onto the Mueller-Hinton plates. 

They were then left to incubate for 24 hours at 37 °C, and the zones of inhibition measured in 

millimeters.  

 

For the determination of MBCs, a swab of the microbial cultures (adjusted to 0.5 McFarland) 

prepared as described previously were again evenly streaked over sterile agar plates. The test 

compounds were dissolved in DMSO and serially diluted in 1 mL Eppendorf tubes.  A volume 

of 5 μL of concentrations of 19.5 to 625 µg mL-1 were directly spotted on MHA plates 

containing the respective bacterial strains and incubated at 37 °C for 20 h to determine the 

MBCs. The MBC was the lowest concentration showing a zone of inhibition around the spotted 

compound.  DMSO was used as a control and showed no zones of inhibition to any of the 

bacterial strains tested against.  Levofloxacin and ciprofloxacin served as the standard drugs 

for all antimicrobial studies.  All experiments were conducted in triplicate. 
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Chapter 4. Conclusion 

Fifteen 6-substituted quinoline-2-thiosemicarbazones were synthesised in good yields from a 

Doebner-von Miller reaction between para-substituted anilines and crotonaldehyde to form 

quinoline intermediates. Oxidation with SeO2 to form quinoline-2-carbaldehydes proved to be 

a useful method to functionalise the 2-position for further reactions and to hybridise the 

quinoline framework.  Formation of thiosemicarbazones was an easy derivatisation and way in 

which the quinolines could form quinoline thiosemicarbazone hybrid molecules.  Thus, the 

reaction sequence carried out was a good way of forming quinoline thiosemicarbazone hybrids 

which have the attributes of both quinolines and thiosemicarbazones. 

 

A full structural elucidation of all the compounds synthesised was carried out and will provide 

a basis for the identification of similar molecules in future research. The different substitution 

patterns were found to have an effect on the antibacterial activity of the compounds with 

compound 6l, containing a 6-Br substituent on the quinoline moiety and fluoro group at the 

para position of the thiosemicarbazide moiety showing the best antibacterial activity at 387 

µM.  Unfortunately, the antibacterial activity of the synthesised compounds were inactive as 

antibacterial agents even though the individual constituents, quinolines and 

thiosemicarbazones have previously demonstrated good antibacterial activity.  This could 

partly be due to the insolubility of the compounds in aqueous media. 

 

Future work will involve modifying the structure of 6l (6-Br, 4'-F derivative), by adding other 

groups to the molecule using this as a basic scaffold.  Compound 6l was the only compound 

that showed good antibacterial activity.  It is hoped that modifications of the structure will 

identify a compound that can be developed into a potential antibiotic.  The modifications can 

include groups that will increase the solubility of the product.  
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