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Abstract 

Non-coherent detection is a simple form of signal detection and demodulation for digital 

communications. The main drawback of this detection method is the performance 

penalty incurred, since the channel state information is not known at the receiver. 

Multiple symbol detection (MSD) is a technique employed to close the gap between 

coherent and non-coherent detection schemes. 

Differentially encoded JW-ary phase shift keying (DM-PSK) is the classic modulation 

technique that is favourable for non-coherent detection. The main drawback for standard 

differential detection (SDD) has been the error floor incurred for frequency flat fading 

channels. Recently a decision feedback differential detection (DFDD) scheme, which 

uses the concept of MSD was proposed and offered significant performance gain over 

the SDD in the mobile flat fading channel, almost eliminating the error floor. 

This dissertation investigates multiple symbol decision feedback detection schemes, and 

proposes alternate adaptive strategies for non-coherent detection. An adaptive algorithm 

utilizing the numerically stable QR decomposition that does not require training symbols 

is proposed, named QR-DFDD. The QR-DFDD is modified to use a simpler QR 

decomposition method which incorporates sliding windows: QRSW-DFDD. This 

structure offers good tracking performance in flat fading conditions, while achieving 

near optimal DFDD performance. 

A bit interleaved coded decision feedback differential demodulation (DFDM) scheme, 

which takes advantage of the decision feedback concept and iterative decoding, was 

introduced by Lampe in 2001. This low complexity iterative demodulator relied on 

accurate channel statistics for optimal performance. In this dissertation an alternate 

adaptive DFDM is introduced using the recursive least squares (RLS) algorithm. The 

alternate iterative decoding procedure makes use of the convergence properties of the 
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RLS algorithm that is more stable and achieves superior performance compared to the 

DFDM. 
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Chapter 1 

Introduction 

1.1 General 

We are in the midst of an exciting and dynamic digital age. Technology today allows for 

broadband Internet access, high definition multimedia streaming, mobile audio and 

video streaming for motor vehicles, the home and cellular. Most of these applications are 

now being done wirelessly. At the core of all these technologies is digital 

communication. 

The amount of research being done in developing wireless technologies and applications 

have stemmed from the expeditious growth of wireless users. Today the number of 

wireless users has exceeded the number of wireline users. Cellular telephony has spurred 

the development of new mobile data services other than voice over wireless channels. 

Wireless communications today forms an integral part of modern day living, and is used 

in a wide variety of applications. Recent wireless data applications are exemplified by 

the IEEE 802.Ix standards. These new wireless applications will probably be 

collectively standardized under the next generation (4G) cellular, which include personal 

local area networks (localized networks e.g. Bluetooth), wireless local area networks 

(LANs) and HiperLAN (IEEE 802.11 family), wireless metropolitan area network 

(MAN 802.16 also known as WiMax systems), satellite communications and a few 

others. 
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Chapter 1 Introduction 

1.2 Digital Communication Systems 

This section gives a generic overview of a digital communications system mostly 

summarized from [1]. Each element will be discussed briefly, while associated research 

developments are highlighted. 

1.2.1 An Overview 

The goal of any communication system is to ensure that all the data gets from the source 

to the required sink with no errors, and in as efficient a way as possible. A typical digital 

communication system is depicted in Fig. 1.1. 

Information 
Source 

Source 
Encoder 

Channel 
Encoder 

Digital 
Modulator 

-

Information 
Sink 

Source 
Decoder 

Channel 
Decoder 

Digital 
Demodulatoi 

ir 

Wireless 
Channel 

Fig. 1.1 Block diagram of a digital communication system 

The information source may be digital or analogue in nature. The source information is 

then digitized or compressed into binary words, which are sequentially fed into the 

channel encoder. The channel encoder introduces a structured form of redundancy into 

the binary words so they may be readily and reliably decoded at the receiver. A further 

discussion of channel coding is warranted and will be covered later. The coded binary 

words (codewords) are now mapped to some finite constellation which will be used to 

transmit the information across the channel. The modulator converts the codewords into 

readily detected analogue signals. The choice of modulation depends on the channel 

characteristics and application. 



Chapter 1 Introduction 

The wireless channel, due to its physical constraints corrupts the channel signals in both 

amplitude and phase, which could result in incorrect detection. Wireless channels suffer 

primarily for three reasons namely: additive white Gaussian noise (AWGN), multipath 

fading, and interference. 

The demodulator determines an estimate of the transmitted signal based on the received 

corrupted version and transfers the estimate of the codewords to the decoder. The 

channel decoder attempts to reconstruct the original information sequence, while 

correcting as many errors as possible. 

A performance measure of the demodulator and decoder is the bit error rate (BER), 

where the decoded sequence of binary information is compared to the original sequence. 

The average occurrence of errors is equivalent to the probability of bit error. 

The source decoder transforms the binary words into their original form (mostly for 

analogue outputs), knowing what source coding was employed. This is an estimate of 

the original analogue sequence, because due to the generally quantized nature of source 

encoding an exact copy is not possible. 

1.2.2 Channel Coding and Decoding 

Channel coding is usually performed using some forward error correcting codes (FEC). 

A bit sequence of length k is represented by a unique bit sequence of length n called a 

codeword. The amount of redundancy is measured using the ratio n I k, where n > k. 

The reciprocal of this ratio is known as the code rate. 

There are many different types of coding schemes and this is still very much an active 

area of research. The encoding may be applied to blocks of data as in block codes, or 

sequentially as in convolutional codes. It is also important to mention the concatenated 

code, where multiple codes are used to encode the information. Typical codes 

encountered in practice are Hamming codes, Hadamard codes, Golay codes, cyclic 

Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes and Reed Solomon (RS) 
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Chapter 1 Introduction 

codes [2], which may be regarded as non-binary BCH codes. Many efficient algorithms 

exist to decipher these coding techniques, which make them favourable for 

implementation. 

Convolutional codes, first proposed in [3], pass the information bits through a linear m -

stage shift register, and at each instant in time there exists n encoded bits which are a 

function of the k bits, and the m -stage shift register. The optimal maximum likelihood 

(ML) decoding algorithm was introduced by Viterbi in [4]. Many telecommunication 

applications stemmed from this ML sequence detector, and the Viterbi decoder is still 

being used today. Non-trivial soft decision based algorithms like the soft output Viterbi 

algorithm (SOVA) and the maximum a posteriori (MAP) algorithm may also be used for 

convolutional codes. 

Concatenated coding was introduced in 1966 by Forney [5], which combined an RS 

code with a convolutional code. Concatenated codes have already found applications in 

space communications with NASA's Galileo mission. A new class of concatenated 

codes emerged in 1993 by Berrou, Glavieux and Thitimajshima [6], called "Turbo 

codes". Turbo codes performed within 1 dB of the Shannon limit in AWGN channels. 

The main contribution of this type of code was not just the performance but the 

algorithm itself, which could be adopted in other ways. Berrou et al. introduced two 

recursive systematic convolutional codes in parallel, separated by a pseudo random 

interleaver. The decoding process was iterative with extrinsic information being 

exchanged, thereby decreasing the number of errors after each iteration. The decoding 

process itself has been applied to numerous other problems, including serial 

concatenation [7, 8], channel equalization [9], CDMA systems [10, 11], automatic repeat 

request (ARQ) protocols for error control [12], joint source channel decoding [13], and 

non-coherent differential detection [14, 15]. The concept of Turbo codes was indeed a 

significant contribution in the area of channel coding. 

4 
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1.2.3 Modulation 

There are a host of digital modulation techniques that may be used to map the encoded 

binary words to some analogue form. The selection of a specific modulation technique is 

dependent on the channel characteristics, the intended application and the susceptibility 

of the channel to fading. A number of digital modulation techniques are described in 

[16] e.g. M-ary phase shift keying (M-PSK), frequency shift keying (FSK), amplitude 

shift keying (ASK), etc. In this dissertation, the differential M-PSK type of modulation 

is used, where non-coherent methods are employed to decipher the binary words. 

1.2.4 Wireless Channels: Types and Models 

Mobile telecommunication occurs over wireless channels, therefore it is important to 

understand the properties and limitations placed on wireless channels. The requirements 

for wireless communication are based on the frequency of operation, especially the size 

and configuration of the antenna. The frequency bands of use currently range from the 

low frequency audio bands to the extremely high frequency (EHF) band. 

The problem with electromagnetic (EM) propagation (apart from noise, which -is 

ubiquitous for all frequencies) in the higher frequency bands is signal multipath 

propagation. The transmitted signal arrives at the receiver, after taking several paths due 

to reflection or refraction, at different time delays. These different signals could interfere 

constructively or destructively with each other. This multiple signal effect is referred to 

as multipath fading. It severely inhibits reliable detection due to its random nature. 

Another phenomenon experienced in mobile communications related to this multipath 

fading is the Doppler shift associated with the velocity of the mobile terminal. 

Considering these effects a mathematical model is developed to model the concept of 

fading. 

Fading is treated in terms of the time and frequency domains. In terms of the multipath 

effect the largest delay among the various multipaths is referred to as the delay spread 

(rd). The reciprocal of the delay spread is defined as the coherence bandwidth 
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(Bd D \/rd). Using the coherent bandwidth it can be determined whether the channel 

would be frequency selective or frequency non-selective. 

The Doppler spread (Fd), which is the maximum Doppler frequency shift associated 

with the channel, due to the continuous motion between the transmitter and receiver, is 

the mobility parameter. The time domain counterpart is the coherent time, defined as 

Td D 1 / Fd, the reciprocal pf the Doppler spread. These parameters are used as an 

indicator for time selectivity. 

Letting the bandwidth of the transmitted signal be denoted by Bs, and the period of the 

channel symbol Ts and using the definitions of the coherent bandwidth and coherent 

time, channels may be classified. The classification of the fading channel is described in 

Table 1.1, summarized from [17]. 

Table 1.1 Classification of Fading Channels 

TSC Td 

Ts^Td 

BSC Bd 

Frequency non-selective 

Time non-selective 

Frequency non-selective 

Time selective 

Bs>Bd 

Frequency selective 

Time non-selective 

Frequency selective 

Time selective 

The term frequency selective arises from the fact that under these channel conditions the 

fading gains are different for different frequencies, while a similar argument applies to 

time selectivity. It is worth mentioning another case where there is no Doppler shift. The 

channel remains virtually static for the entire frame of data to be transmitted, this case is 

referred to as the quasi-static fading channel. 

Statistical models are used to represent the classified channels in Table 1.1, because 

these multipaths are random in nature. Due to central limit theorem the amplitude of the 

fading may be modelled as a complex Gaussian random variable, with the envelope 

having different statistical distributions. Typical distributions include Rayleigh fading, 
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where the multipaths are scattered and no dominant line of sight (LOS) path exists 

between transmitter and receiver, or Ricean fading where a dominant LOS path exists 

and the scattered components contribute little to fading amplitude. 

1.3 Motivation for Research 

Information in most digital communication systems today are conveyed through the 

modulation of the phase of the carrier wave, such as M-PSK. There are primarily two 

ways of detecting these signals: coherent detection or non-coherent detection. 

Ideally the symbol transmitted may be determined just by observing the phase of the 

carrier during a particular time interval. The signal is first demodulated, through the use 

of a local oscillator, and the resulting signal is then filtered to adequately nullify the 

effects of noise. A phase discriminator is then applied to determine the resulting symbol. 

Typically, there is a carrier phase offset resulting from the channel path and the time 

taken to traverse the wireless channel. To accurately demodulate the M-PSK symbols, 

the phase offset has to be known or estimated with great certainty. Coherent detection 

has accurate knowledge of the phase offset which is removed during demodulation, 

while non-coherent detection removes the phase offset after demodulation. 

When using coherent detection, the main problem experienced in practical systems is 

synchronization. The receiver has to be synchronous for both the time propagation delay 

(symbol synchronization) between the transmitter and receiver, and the phase offset 

(carrier synchronization). Mathematically the phase offset may be estimated using the 

propagation delay time. However, the problem of oscillator drift at both transmitter and 

receiver does not make this reliable. There are two basic approaches to carrier phase 

estimation at the receiver. One approach is to use a pilot tone in addition to the 

information carrying signal. A phase-locked loop (PLL) is then employed at the receiver 

to acquire and track this phase. The second approach which is more efficient in terms of 

the power and bandwidth is to derive the carrier phase directly from the modulated 

carrier. This sort of transmission is known as a suppressed carrier system, e.g. double 
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sideband suppressed carrier (DSB-SC). The latter approach is the one most prevalent in 

modern communication systems. There are however problems with both methods. 

Detailed methods of carrier and symbol synchronization are discussed in [1] and [18]. 

In the pilot approach, the acquisition time may be long, especially for mobile 

communications. The PLL may also encounter false locks or lock slips in noisy 

environments. This will degrade the response and performance of the coherent detector. 

The second method when generalized for M-ary constellations suffers from multiple 

phase ambiguities, and high complexity for large constellations. The overall analogue 

circuitry required for both methods may be too taxing for the receiver, therefore non­

coherent detection is the natural alternative. This neither requires knowledge of the 

carrier nor the complex circuitry involved for carrier and symbol synchronization. 

Non-coherent detection is generally employed for differentially encoded M-PSK (DM-

PSK), where the information is carried between the phases of sequential channel 

symbols. The alternative non-coherent strategy, uses absolutely encoded M-PSK signals 

and pilot symbols to estimate the phase. This method is not efficient in terms of 

information capacity and transmission power. DM-PSK is therefore still the most 

common form of digital modulation used in non-coherent detection. 

Mobile channels are typically slow fading environments where speeds of about lOOkm/h 

are the norm, however, third generation (3G) European standards for example, are 

required to operate on trains travelling up to 500km/h [19]. At this speed large Doppler 

shifts are expected and so the channel may be regarded as fast fading. In this case 

differential encoding in conjunction with channel coding has to be utilized for realizable 

performance. In fading channels the use of interleaving is essential, which in 

conjunction with convolutional coding offers protection against fading and noise. The 

use of an interleaver allows for an iterative decoding structure and mitigates the effect of 

fading. 
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Multiple symbol detection (MSD) first proposed in [20] offered a solution to try and 

bridge the gap between coherent and non-coherent detection. The introduction of MSD 

marginally increased the complexity of the non-coherent receiver, but improved the 

performance. The concept of MSD was to use multiple symbols to more accurately 

determine the phase error. MSD applied to non-coherent detection is still an active area 

of research as will be shown in the literature covered in chapter 2. Non-coherent 

receivers still do not match the performance of the coherent schemes, but the 

performance gap is closing. MSD techniques are beginning to shrink the performance 

gap which is often called the non-coherence penalty. 

Conventional differential detection encounters a performance floor in flat fading 

environments. Many MSD techniques require the channel statistics for optimal detection 

in fading environments, so there is still some dependence on the channel. In mobile 

communications, and typically fast flat fading channels, the statistics measured and 

calculated may be inaccurate and unreliable. Therefore adaptive filtering forms an 

attractive solution in making these MSD schemes totally independent of the channel. 

Adaptive schemes and MSD based non-coherent detection offer viable solutions for use 

in mobile communication. 

This dissertation focuses on adaptive non-coherent techniques for flat fading channels, 

in conjunction with MSD. The MSD technique used is centred on a simple decision 

feedback scheme which is used in systems with and without channel coding. Adaptive 

low complexity iterative decoding is also investigated. 

1.4 Dissertation Overview 

This dissertation is divided into six chapters. Chapter two covers the literature regarding 

the important non-coherent MSD detection schemes and the fundamental theory 

prevalent in the research covered. The relevant algorithms and structures of the MSD 

schemes are described. Standard linear filter theory and related adaptive filter techniques 

are also summarized. 
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In chapter three the prominent MSD decision feedback differential detection (DFDD) 

scheme and its adaptive counterpart are reviewed and their respective results replicated. 

A brief explanation of the iterative DFDM scheme for flat fading channels follows, with 

the associated BER performance shown. These existing schemes form the framework for 

the new research that is covered in the ensuing chapters. 

The new alternate adaptive DFDD scheme using the QR decomposition is introduced in 

chapter four. The QR least squares solution and the resulting QR-DFDD scheme is 

derived. The modified QRSW-DFDD scheme is detailed and compared to the existing 

DFDD schemes. Simulation results comparing these DFDD schemes are shown for time 

non-selective and selective, flat fading channels. 

A new adaptive DFDM scheme and its associated iterative process are discussed in 

chapter five. The metrics for the new adaptive DFDM algorithm and the application of 

the RLS algorithm is described. The convergence and number of iterations of the new 

adaptive structure are discussed. A performance comparison between the existing 

DFDM and the new adaptive DFDM structure is shown through BER simulation curves. 

Chapter six draws the relevant conclusions from the dissertation, and discusses possible 

future work. 

1.5 Research Contributions of the Dissertation 

The DFDD detector [21], is a novel, simple MSD detector using decision feedback 

symbols to improve the performance of non-coherent differential detection. The DFDD 

has a linear predictor structure, which is advantageous for the application of adaptive 

filtering. 

An alternate DFDD approach was introduced by the same authors in [22], which 

includes an adaptive scheme utilizing the RLS algorithm, referred to in this dissertation 
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as RLS-DFDD. All these systems have similar decision feedback and linear filter 

structures. The mathematical equivalence between the DFDD of [21], and the linear 

prediction based DFDD of [22], for Rayleigh fading channels is shown in chapter 3 of 

this dissertation. 

An alternate adaptive scheme is proposed using decision feedback in chapter 4. This 

adaptive decision feedback scheme utilizes the highly modular, pipelined and 

numerically stable QR decomposition, which is called the QR-DFDD algorithm. An 

alternate simplified approach to the QR-DFDD is also proposed using sliding windows, 

referred to as QRSW-DFDD. Both QR decomposition methods do not require any 

channel information and the adaptive process is based solely on the received sequence, 

so the adaptation is blind. The DFDD and its associated adaptive schemes are simulated 

for both time non-selective and time selective environments. The simulation results 

show that QRSW-DFDD is superior to RLS-DFDD in fast fading conditions, while 

maintaining a comparable performance to the DFDD and RLS-DFDD in flat fading 

environments with less mobility. 

An iterative non-coherent scheme using channel coding was introduced in [23], which 

utilized the DFDD metric. This scheme used the simple bit branch metrics, of the Viterbi 

decoder, and achieved high performance gains over conventional bit interleaved non­

coherent detection. This scheme was called iterative decision feedback differential 

demodulation (DFDM), and used decision feedback symbols through the iterative 

process to improve the performance. In chapter 5, an adaptive scheme utilizing the RLS 

algorithm is introduced to eliminate the dependence of the DFDM on the channel 

statistics. The new iterative decoding procedure, with training, is introduced. The 

adaptive algorithm does not require pilot symbols therefore the training procedure is 

blind. The RLS algorithm is not used for continuous adaptation, therefore the 

complexity of this DFDM architecture is only marginally increased, while still 

maintaining the advantages of the DFDM. The performance of the adaptive DFDM was 

superior to that of the DFDM in flat fading conditions. The adaptive DFDM is stable at 
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low signal-to-noise ratios (SNRs), and has improved performance at higher SNRs, 

confirmed with simulation results. 

The original contributions of this dissertation are summarized below: 

1. The mathematical equivalence of the DFDD and linear prediction DFDD is 

derived for Rayleigh fading channels. The literature mentions that the schemes 

are equivalent, but it has not been shown mathematically. 

2. An alternate adaptive scheme for the DFDD scheme is proposed using the QR 

decomposition called QR-DFDD. A simpler QRSW-DFDD is also proposed 

using a sliding window approach. Both QR based DFDD structures are 

favourable to VLSI. The QR based algorithms offer stable performance in fast 

fading environments, and comparable performance otherwise. 

3. A new approach to the iterative DFDM scheme using prediction based metrics 

and the RLS algorithm is introduced. The new iterative procedure involves a 

blind training iteration. The new adaptive DFDM is independent of the channel 

state and the channel statistics, with superior performance when compared to the 

DFDM. 
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Chapter 2 

Current Literature and Theory 

The research documented in this dissertation covers various aspects of digital 

communications, digital signal processing as well as adaptive filtering. In recent years 

the area of non-coherent detection has been receiving much attention. Some of the 

notable literature will be covered in this chapter, while additional theory used in this 

dissertation will also be covered. 

The most notable improvement of non-coherent detection (NCD) has been through the 

use of multiple symbol observation windows. The use of multiple symbol detection 

(MSD) has been applied to many different types of uncoded and coded systems. 

2.1 MSD Techniques for Improved Uncoded Differential 
Detection 

The concept of MSD is not a new one; it was documented in one form or another since 

1988 [20, 24, 25]. This section describes notable improvements for uncoded systems 

using non-coherent detection and MSD. 

2.1.1 Multiple Symbol Differential Detection 

The concept of MSD was first applied to communications systems by Divsalar and 

Simon in [20]. In general for an additive white Gaussian noise (AWGN) channel, 

coherent detection (CD) of M-PSK symbols outperforms differential detection by 

approximately 3dB, even for coded systems. The authors in [20] introduced a maximum 

likelihood (ML) metric to determine the most likely sequence of symbols based on an 

observation window of size N. It was seen that this method of multiple symbol 

differential detection (MSDD) held great promise in bridging the performance gap 

between CD and standard differential detection (SDD). 
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As a special case SDD was equivalent to the MSDD with N = 2, where an observation 

window of size two is required, just as in SDD where the decision is made on a symbol-

by-symbol basis. It was shown for multiple constellation sets that the MSDD metric 

offers significant performance gain with just finite window sizes e.g. N = 3,5, while the 

ideal coherent detection is approached if TV -» QO . However, it should be mentioned that 

the complexity for an M-ary signal is exponential with N where the number of trial 

sequences is MN'X. This would mean that for a window N = 5, for constellations of 

M = 4,8,16, the corresponding number of trial sequences would be 256, 4096 and 

65536 respectively. A method for decreasing this complexity was introduced in [26], 

where a smaller set of samples are used and where the complexity was decreased. The 

reduction factor varied from 16 to 4096 due to constellation size. 

2.1.2 MSD over Flat Fading Channels 

The performance of MSDD virtually bridged the gap between CD and NCD for AWGN 

channels. The performance for the correlated Rayleigh flat fading channel was 

investigated in [27], where it was clearly seen that SDD suffered an error floor for 

fading channels with large Doppler frequencies. The performance of this MSD system in 

the presence of fading eliminated the error floor by choosing the ML sequence of 

symbols. For an AWGN channel the decision metric became exactly that of MSDD in 

[20], while for the fading channel the decision metric included the channel fading 

characteristics. This system however, suffered the same problem as MSDD where for 

large observation windows the number of phase sequences to be searched became 

exponentially large. 

An alternate method of MSDD using trial sequences was introduced in [28] which is 

suboptimal to [27], but achieves near identical performance. In [28], an alternate 

expression for the fading process in terms of the Karhunen-Loeve expansion is derived, 

which is used to formulate the new decision metric. This detection algorithm also 

requires a large number of trial sequences and has the same complexity as [27]. 
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Another method of MSD using sphere decoding was introduced in [29]. This uses 

ordered trial sequences, therefore it performed better than the decision feedback 

differential detection (DFDD) scheme discussed in the next section, but at increased 

complexity. However, the ordered sequences become more reliable at higher SNRs and 

hence not all trial sequences are used, and in this case the complexity was shown to be 

less than the DFDD. 

2.1.3 MSDD with Decision Feedback 

The previous MSD schemes have one common detriment; the number of phase search 

sequences. An alternate method to trial sequences, was introduced by Edbauer in [25]. 

This is a method of using previously deciphered symbols and using them heuristically to 

determine the current ML symbol. It showed performance gains over SDD, and at high 

SNRs, approached the case where correct symbols were fed back, which will be referred 

to as the genie aided case. However, this feedback scheme was not generalized to flat 

fading channels. 

In [21], Schober introduced the optimal decision feedback detection scheme for flat 

fading channels referred to as decision feedback differential detection (DFDD). This 

detection scheme offered low complexity metrics, and virtually eliminated the error 

floor always experienced in frequency non-selective fading channels. 

In [22], the same author of the DFDD introduced an alternate DFDD structure using 

linear prediction. This structure was focused for use in Ricean fading channels, but could 

still be used for Rayleigh fading channels. In the same paper, an adaptive DFDD 

scheme, using the RLS algorithm, was introduced which performed just as well as the 

DFDD in flat Rayleigh fading channels. 

These DFDD schemes are covered in greater detail in a chapter 3, because they provide 

the foundation of the research introduced in this dissertation. When compared to other 

MSD schemes the DFDD offered better performance with reduced complexity in most 

cases. 
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The DFDD concept was further extended to multi-antenna systems. The uncoded case 

was introduced in [30], where its application to orthogonal frequency division 

multiplexing (OFDM) systems was also discussed. It should be noted that this 

dissertation focused on single antenna systems. 

2.2 MSD Techniques for Coded Non-coherent Systems 

The MSD techniques of the previous section are impractical for application in the real 

world because of the power constraints for reliable communication in a mobile fading 

environment. As mentioned earlier the performance between CD and NCD schemes for 

AWGN channels is approximately 3dB. In multipath fading channels this gap is 

significantly larger, since the CD knows the channel information. 

In this section detection schemes using the MSD principles in conjunction with channel 

coding are outlined. Non-iterative schemes are introduced and then a low complexity 

iterative decoding algorithm is discussed. Alternative iterative decoding algorithms with 

high complexity are subsequently described. 

2.2.1 Bit Interleaved Coded Modulation (BICM) 

A traditional BICM system is depicted in Fig. 2.1, which is applicable for both coherent 

and non-coherent schemes. For a non-coherent system the modulator will be appended 

by a differential encoder. The key feature in the structure is that there is separate 

demodulation and decoding, which is favourable in Rayleigh fading channels. 

Conv. Enc. 
vW n 4'J 

Modulator 
a[k\ Fading 

Channel 

t\k\ Demod. 
Metric Calc. 

m n-1 Viterbi 
Decoder 

I T - Interleaver I T 1 - Deinterleaver 

Fig. 2.1 Block Diagram of BICM scheme 

A standard off the shelf convolution code (A table of standard convolutional codes can 

be found in [1]) and bit interleaver are standard features in the transmitter. The 
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interleaving is assumed to be ideal, however, it was shown that practically, interleavers 

with finite shallow depth performed almost as well. The interleaver was used to nullify 

the relationship between encoder output and decoder input, essentially making the 

channel memoryless. The decoder employed a soft metric computation (p(rk\sLk)) 

based on the modulation scheme, and deinterleaved the metrics as input to the standard 

Viterbi decoder. As can be seen a standard BICM system has a non-iterative structure 

with no feedback. 

Although the importance of labelling was mentioned in [31], a more thorough 

investigation was made in [32], where the traditional BICM system was converted into 

an iterative system with hard decision feedback. It was shown in [32], that the iterative 

scheme performed better than standard trellis coded modulation (TCM) in fading 

channels. The structure was very similar to that proposed in [33], however for [32], the 

scheme was coherent and assumed accurate knowledge of the channel state information. 

BICM was generalized in [31], and offered an analytic framework for BICM systems. 

BICM did not include any MSD technique, but this system formed the backbone of the 

DFDM, which is discussed later. 

2.2.2 Non-coherent Sequence Detection 

In [34], the authors exploited the fact that MSD was known to improve the performance 

of non-coherent detection. The authors introduced a shortened trellis where each trellis 

state was defined in terms of the truncated trial information sequence. This scheme was 

also generalized for the differential encoding structure for quadrature amplitude 

modulation (QAM). The analytic bounds for coded PSK were given in [35]. The 

analysis and results were applicable to channels with noise, and inter-symbol 

interference (ISI). 

It should be noted that this scheme is not iterative, and has complexity issues for large 

constellations or large observation windows, which was referred to as implicit phase 

memory in [34]. An additional deficiency was the absence of interleaving, which for flat 

fading channels is a necessity. 
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2.2.3 Iterative Decision Feedback Differential Demodulation 

Using the BICM principle of keeping the demodulator and channel decoder separate, a 

feedback scheme utilizing hard decisions from the Viterbi decoder is fed back to the 

demodulator. This feedback scheme known as iterative decision feedback differential 

demodulation (DFDM) was introduced in [33]. The demodulator used the simple DFDD 

metric to exploit performance gains of MSD and enhances the performance after ensuing 

iterations. It was shown in [23] that with larger observation windows the performance 

gap between the CD and conventional NCD was decreased significantly. 

The conventional NCD curve was equivalent to BICM with SDD applied, and was also 

equivalent to a special case of the DFDM when the observation window was limited to 

two. The DFDM system was recently modified by the original authors to improve the 

performance in [36], which included a more in depth analysis of the DFDM scheme. 

This new scheme is now also able to work with alternate labelling structures, unlike the 

DFDM which only showed performance improvement for Gray labelling. 

It should be mentioned that this scheme is suboptimal, since there exists other strategies 

to improve the performance using soft decision feedback, but these are also more 

complex. A major contribution of this scheme was the trade-off between improved 

performance and low complexity. Alternate iterative structures with soft metrics are 

discussed in the next section. It should be noted that the original DFDM scheme is about 

2dB worse than [15], where virtually the same conditions existed. However, the 

complexity, in contrast to the DFDM is extremely high. 

2.2.4 Iterative Non-coherent Detection with Soft Metrics 

There exist multiple iterative schemes that employ soft metric feedback for NCD. One 

such method was introduced in [14], which was essentially equivalent to the turbo 

coding scheme of [15]. In this system a trellis structure was used to represent the 

demodulation metric where the differential encoding process was regarded as a very 

high rate code. In addition a linear predictor was used to estimate the fading process, 

while the maximum a posteriori (MAP) algorithm was used to decode the ML symbols. 
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This yielded significant improvement over coded SDD, while improving on coherent 

detection by 0.2dB after three iterations. This turbo decoding scheme utilized the soft-

input soft-output (SISO) structure, where soft metrics were passed to the channel 

decoder and soft metrics were fed back and extrinsic information extracted. 

An alternate turbo decoding scheme was proposed in [37], which offered two versions of 

turbo decoding techniques. One version maximized the probability of the correct symbol 

detection using the Bahl et al. (BCJR) algorithm, a form of the MAP algorithm. The 

other version maximized the probability of choosing the most likely sequence of 

information through the use of the soft output Viterbi algorithm (SOVA). However, 

these performances may not be used for comparison with the other iterative schemes 

since the results published were only for an AWGN channel, while fading channels were 

used otherwise. 

Based on the application of sphere decoding to differential detection, an alternate 

iterative turbo scheme with SISO decoding was introduced in [38] for flat fading 

channels. It utilized the MAP algorithm and near channel capacity results are achieved.. 

2.2.5 Coded MSD Techniques with Antenna Diversity 

Antenna diversity was combined with MSD for uncoded systems in [30]. However, two 

notable coded schemes applied MSD to exploit the spatial diversity offered by multi-

antennae systems. In [39], an alternate form of the DFDD metric was used to create a 

multi-antenna iterative DFDM structure. It is also important to note that orthogonal 

constellations are favourable to space time modulation. This scheme was applied to 

Ricean channels, since the original DFDD metrics of [21], was derived for Rayleigh 

channels. The alternate DFDD metric was based on the metric in [22], which used linear 

prediction coefficients. 

Another coded scheme that exploited both multiple antennae and MSD was presented in 

[40]. However, this system was not iterative. It compared different channel coding 

schemes, and extended the BICM system to multiple antennae. Other coding structures 
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explored were multilevel coding (MLC) and hybrid coded modulation (HCM) which is a 

combination of BICM and MLC. 

Note this section introduced multi-antenna systems, but this dissertation focused on the 

single antenna case. It is possible that the algorithms presented in this dissertation may 

be employed in multi-antenna systems. 

This concludes the summary of pertinent literature on MSD techniques. There are 

alternate schemes using linear predictors and adaptive linear prediction, these will be 

summarized after some basic filter theory is introduced in the next section. 

2.3 Adaptive Filter Theory 

Adaptive filter theory (AFT) is still an active research area in its own right. However, 

since aspects of AFT are employed in this dissertation an endeavour is made to 

introduce the topic as well as algorithms used. 

From an information theoretic point of view, a filter is a device (structure) or algorithm 

that is used to extract useful or specific information from a set of received and available 

data. Filters can be used to perform three basic information processing operations, 

namely: filtering, smoothing and prediction. 

A digital signal processing perspective is used to define these processes. Filtering is the 

extraction of information for a required quantity at time / by using data determined or 

measured up to and including time t. Smoothing is similar to filtering, but differs in the 

fact that it can make a decision on the quantity of interest later than time /, and it can 

incorporate data captured after time t. Prediction is a forecast of the quantity of interest 

using data up to and including time t, for some time t + r, where r > 0. These are 

based on the definitions in [41]. 
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In general these filter structures are linear; meaning the filter is a linear function of the 

measured or the observed data received as inputs to the filter. Filter design may be 

approached from a statistical point of view where certain statistical characteristics of the 

input are known, and hence the filter structure would be fixed accordingly. However, 

there may be occasions where the required statistics are unavailable, therefore an 

adaptive filter offers an attractive solution to the filtering problem. In many cases the 

adaptive versions may actually offer performance improvement over their fixed 

coefficient counterparts. 

2.3.1 Adaptive Filters 

In general, if an environment is stationary, the required statistics are available and an 

optimum filter may be designed by minimizing the mean square error. The resulting 

solution is often referred to as the Wiener solution and is optimal in the mean square 

sense. 

An adaptive filter is a self designing filter that is continually changing to try and 

optimize the output. It would generally employ a recursive algorithm to account for the 

changes in the input and change the filter accordingly. In this fashion it will work 

satisfactorily when there is no knowledge of the relevant input characteristics available. 

In a stationary environment the recursive algorithm after a finite number of iterations 

would approach the optimal Wiener solution. A non-stationary environment has 

statistics that are time variant hence fixed coefficients would be suboptimal, in this case 

the adaptive solution would offer a tracking capability. The statistical changes must be 

sufficiently slow, otherwise the adaptive filter will not work effectively. 

Invariably the structure of a filter would be linear, adaptive or fixed. It is worth 

mentioning that although this structure is linear an adaptive filter is data dependent, and 

hence "it may be regarded as non-linear. However, we will consider it from the structural 

approach and regard it as linear. 
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Numerous recursive algorithms have been developed and applied in an adaptive filter. 

However, each algorithm offers a trade-off between many factors. These performance 

criteria are outlined as in [41], 

• Rate of convergence: the number of iterations before the adaptive solution 

reaches the optimal Wiener solution. This is important if the requirement is fast 

adaptation to an unknown environment, and also for tracking statistical variations 

in a non-stationary environment. 

• Misadjustment (estimation error difference): A quantitative yardstick, the value 

by which the mean square error averaged over an ensemble of filters, deviates 

from the minimum mean square error that is produced by the Wiener Filter 

solution. If this value is small then that implies the adaptive process is working 

well, since it is close to the Wiener solution. 

• Robustness: the ability of the algorithm to work satisfactorily, given the fact that 

the input data is very badly conditioned (i.e. the input suffers from excessive 

noise, and variations are too fast to track easily). 

• Computational requirements: practical implications of the algorithm, namely the 

number of mathematical operations for each iteration indicating complexity, 

memory required to store data for each iteration, investment required to program 

the algorithm on a PC or some other form of computer, e.g., Field programmable 

gate array (FPGA), microprocessor, digital signal processor, etc. 

• Structure: the information flow of the algorithm, determining the manner in 

which the algorithm may be implemented, e.g., an algorithm whose structure has 

high modularity, parallelism or concurrency is well suited for very large scale 

integration (VLSI) implementation. 

• Numerical properties: numerical stability is important since some algorithms do 

not cope well with round off noise and the introduction of these errors affects 

future iterations. Some algorithms are not well suited for continuous adaptation, 

unless some rescue methods are employed. Another aspect which could affect 

the algorithm is the eigenvalue spread, or if the input data matrix is 

underdetermined. 
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Adaptive filtering has found applications in many vistas of science and engineering. The 

ability to operate effectively in an unknown environment and also track variations of 

input statistics are sought-after traits. Digital communications, image processing, 

acoustics, seismology, control systems, radar and sonar systems, etc. are some of the 

areas where adaptive filtering has been employed. 

2.3.2 Development of AFT 

The development of the recursive algorithms to update the adaptive filter was 

historically developed using three approaches, the statistic approach, the deterministic 

approach or a combination of the two. In [41], Haykin categorized these approaches 

slightly differently; the approaches were based on the traditional algorithms they were 

derived from. It also partially stemmed from the chronological order of the development 

of these algorithms. 

2.3.2.1 Statistical Approaches 

The solution to the linear filter problem based on the statistics of the inputs was 

determined independently by Kolmogorov, Krein and Wiener. Kolmogorov used the 

discrete time approach while Wiener used the continuous time approach. It was Wiener 

who derived the explicit formula for determining the optimum predictor for a process 

corrupted by noise, which was known as the Wiener-Hopf equation. The discrete time 

matrix form was later formulated by Levinson, which is now referred to as the normal 

equation 

Rw0=p, (2.1) 

because it is so often used in linear filter theory. R, w0 and p are the correlation matrix 

of the tap inputs, the tap weight vector of the optimum Wiener filter and cross 

correlation vector between the tap inputs and the desired response, respectively. 

The adaptive filter would normally have a tapped delay line or transversal filter 

structure. The mean square error (the mean square value of the difference between the 

desired response and the filter output) is precisely a second order function of the tap 
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weights. Hence the error surface may be viewed as a multidimensional paraboloid with a 

uniquely defined minimum point which corresponds to the optimum Wiener solution. 

The resulting algorithm from this approach was the least mean squares (LMS) algorithm, 

which was derived through manipulation of the normal equation and the method of 

steepest descent. 

The LMS algorithm is computationally simple. However, common drawbacks are slow 

convergence, and sensitivity to the eigenvalue spread of the correlation matrix of the tap 

inputs. Hence the LMS algorithm would work effectively only in certain cases. 

2.3.2.2 Deterministic Approaches 

Unlike the Wiener solution approach, which uses a statistical approach to minimize the 

mean square error, these approaches minimize the sum of the weighted error squares, 

where the error is the difference between the desired response and output of the filter. 

Among the deterministic approaches are the recursive least squares (RLS), the least 

squares lattice algorithm (LSL) and the QR decomposition least squares (QRD-LS) 

approach, etc. These approaches improve on the LMS algorithm; they are rapidly 

convergent and are virtually insensitive to eigenvalue spread. The RLS approach is 

computationally complex, while the LSL and the QRD-LS are highly pipelined and 

modular which make them favourable to VLSI manufacturing. 

2.3.2.3 Combinational Approach 

The Kalman filter approach is the typical case in point. The Kalman filter is defined by 

two equations, the plant equation and the measurement equation. The plant equation 

describes the dynamics of the system in terms of the state vector, while the measurement 

equation describes the measurement errors experienced by the system. Here again a 

transversal filter structure is used. 

However, in the Kalman filter model a state describing optimal conditions is required for 

the Kalman filter to track, which may affect the rate of convergence. The Kalman filter 
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offers superior performance to the LMS algorithm, and is insensitive to eigenvalue 

spread. The main drawback of the Kalman filter is the computational complexity. 

It is also worth mentioning that for an estimation of a constant state, the RLS filter is 

equivalent to the Kalman filter, so it can be said that the RLS algorithm is the 

deterministic counterpart of the Kalman filter algorithm. 

2.3.3 Linear Prediction Filters 

One of the basic information processing operations is prediction. This section will 

discuss special cases thereof: the forward linear predictor (FLP) and the forward linear 

error predictor (FEP).The derivations and definitions are summarized from [41]. The 

FLP makes a prediction using the input samples uL, 

uL(i-l) = {u[i-l],u[i-2],...,u[i-L]}T (2.2) 

where i is the time index, and L is the effective length of the required input vector, also 

representing the order of the filter. It is assumed that the samples are drawn from a 

stationary stochastic process with zero mean. The prediction is a linear combination of 

the samples, therefore the prediction relation may be written as 

L 

u[i] = puL(i) = Y,pAi-k], (2.3) 
*=i 

where p is the constant vector of tap weights defined as 

pD[Pl,p2,...pL]. (2.4) 

The corresponding transversal structure is shown in Fig. 2.2, where the order is 

determined by the number of unit time delays, which in this case is L . 

The desired response d[i] is equal to the input u[i], hence the FLP error is the 

difference between the prediction and desired response written as 

eFLP U] = d\i] - u[i] = u[i] - u[i]. (2.5) 
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Fig. 2.2 A standard transversal forward linear predictor structure with fixed tap weights 

Another quantity is introduced, Pe, which denotes the minimum mean square prediction 

error and is defined as 

P.UElle •FLP (Of}- (2.6) 

This quantity is also viewed as the ensemble averaged forward prediction error power. If 

the input samples u[i] have zero mean, then the corresponding forward prediction error 

would also have zero mean, hence the power under these conditions would be equal to 

the prediction error variance. As the linear filters are applied in communication systems, 

they will invariably experience these conditions, hence it is referred to as the prediction 

error variance a]. 

Letting p0 denote the optimum tap weight vector which is defined as 

the optimum weights may be solved using the statistical Wiener approach. However, this 

approach requires two statistics: the cross correlation matrix of the input samples uL and 

the cross correlation vector between the inputs and the desired response u[i]. To 

calculate the prediction error variance, the variance of u[i] is additionally required. 

Under the assumption that u[i] has zero mean the variance is equal to r[0]. 

The correlation matrix may be determined by 

26 



Chapter 2 Current Literature and Theory 

RL=E{uL(i-\)u"L (/-!)} = 

r[0] 
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r [ I - l ] 

r[X-2] 

r[0] 

(2.8) 

where r[£] is the autocorrelation of k'h lag, which is would be time invariant for a 

stationary process. 

The cross correlation vector is calculated in a similar fashion, 

r = E{uLu'[i]} = 

E{u[i-l]u[i]}~ 

E{u[i-2]u[i]} 

E [u[i-L]u[i]) 

= 

"r[-l]l 
r[-2] 

_r[-L] 

(2.9) 

Therefore after defining these quantities the normal equation is now modified to 

R i P o = r , (2.10) 

which when compared to Yule-Walker equations for the solution of an AR model, it can 

be seen that they are mathematically of the same form. Due to this mathematical 

equivalence the solution to the Yule-Walker equations can be applied to solve for the 

coefficients of a forward linear predictor. The forward prediction error variance may be 

expressed as 

Pe=r[0]-rHp0=a2
u-r

Hp0. (2.11) 

A forward prediction error filter estimates the error in the estimate rather than the 

estimate itself. The forward error predictor is a new transversal filter with an additional 

tap weight, however, the order of the filter is still regarded as that of the linear predictor 

within as seen in Fig. 2.3, since the first tap weight is one. 
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Fig. 2.3 Forward error predictor showing relationship with linear predictor 
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The forward error predictor may be written in the form of an augmented normal 

equation. Using (2.10) and (2.11) the augmented form is 

r[0] r" 1 

"Po 
= 

0 ( 2 ' , 2 ) 

These linear predictor forms are important in understanding the DFDD and prediction 

based DFDD structures, which will be covered in detail in the next chapter. 

2.3.4 The Recursive Least Squares Algorithm 

The recursive least squares (RLS) algorithm is one of the most commonly used adaptive 

recursive algorithms. Its use dates as far back as Gauss (1809). However, its derivation 

and use has been done independently by many people. 

As mentioned earlier the RLS algorithm may be regarded as the deterministic 

counterpart of the Kalman filter. The RLS algorithm yields an optimal filter in the mean 

square sense, for each set of input data. The advantage is that it also takes into account 

the history of the input samples. The rate of convergence of the RLS algorithm is 

typically an order faster than the simple LMS algorithm. The improvement in 

performance is of course traded for an increase in computational complexity. 

This summary for the RLS algorithm is based on [41], which includes the terms and 

partial derivation. Generally for recursive implementations the adaptation starts from 

some known initial conditions, and the filter is used to minimize the performance index 

%(n) (the variance of the estimation error), where n is the variable length of observable 

data. In the exponentially weighted RLS algorithm an exponential weighting factor (or 

forgetting factor) is introduced into the definition of the performance index. The 

performance index is now 

^n) = J^/3{n,i)\e{if =fjP{n,i)\dr{i)-y{i)\2, (2.13) 
;=i (=i 

where /?(»,/) is the weighting factor and e(i) is the difference between the desired 

response dr(i) and the estimated output y{i) at time index /, over the observation 
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interval n. It is the same structure as that of a forward linear error predictor. However, 

instead of computing the error between known inputs to estimated outputs, a known 

desired response is compared to the linear estimate of the desired response. The 

forgetting factor /?(«,/) is an exponential forgetting factor and is defined as 

f3(.n,i) = K"-,i = \,2,..,n, (2.14) 

where 0 < A < 1, and is generally close to 1 due to the exponential relation. The role of 

the forgetting factor is important when the environment is non-stationary and tracking is 

required. The forgetting factor limits the effect of earlier observed data. In general for a 

stationary environment the forgetting factor is 1, while for a non-stationary environment 

the forgetting factor is less than 1. The inverse of 1 - A is regarded as the memory of the 

algorithm. 

Defining the exponential forgetting factor the performance index is written as 

Z(n) = J A""' \e(i)\2 = J A""' \dr(i)-y(i)\2 . (2.15) 
i=i j- i 

The optimal value of the tap weight vector w(«), is obtained by solving the normal 

equation 

R(«)w(«) = 8(w), (2.16) 

where R(«) is the autocorrelation matrix (ACM) defined as 

R(») = 2;A' , - ,U(0U/ , ( / ) , (2.17) 
1=1 

and 9(H) is the cross correlation vector between the tap inputs and the desired response 

defined as 

0 (» ) = | ; A " - ' I I ( / X , ( O - (2.18) 
1=1 

Isolating the term corresponding to i = n, equations (2.17) and (2.18) may be re-written 

in a time recursive fashion as 
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( n-\ \ 

R(n) = A jA H - 'B( / )n" ( ' ) + u(n)uH(n) = AR(«-l) + u(n)u"(w) (2.19) 

and 
8(«) = A8(rc-l) + u O K > ) (2.20) 

respectively. 

The derivation of the RLS algorithm is based on a theorem in matrix algebra known as 

the matrix inversion lemma (described in [41]). Applying the lemma to the recursive 

expression (2.19), the Kalman gain factor k(ri), and the tap weight time update a{n) 

may be derived as shown in [41]. These parameters and their role in the RLS algorithm 

are shown below. 

2.3.4.1 Summary of exponentially weighted RLS Algorithm 

• Initialize the algorithm 

o J(0) = Q'% Q is a small positive constant 

o w(0) = 0 

• For each time instant after initialization compute 

0 k(n) = A-'JQi-!)•(,,) 
l + A']uH(n)J(n-\)u(n) 

o a(n) = dr(n)--wH (n-l)u(n) 

o w(n) = w(« - l ) + k(«)or*(«) 

o J(w) = A-1 J O -1) - A - ' k ^ u " (n)J(n -1) 

These four equations are the recursive relations of the RLS algorithm. The initialization 

of the RLS algorithm will in general be as stated in the summary, unless modified to a 

particular application. However, it is noted that J(0) is not explicitly defined. There are 

two approaches to initialize J(0) the exact approach or the approximation approach. 

The exact approach would use a small segment of the input data because of the relation 

J(n) = R_1(n). The correlation of a few input samples may be used. However, due to the 
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environment it may not be possible to determine the number of samples needed to 

ensure the invertibility of the matrix. Hence the approximation method is generally 

applied. In the approximation method J(0) = Q_II, hence an appropriate Q needs to be 

chosen. Intuitively the amount of information gathered in the beginning of the algorithm 

is vague, hence the inverse correlation matrix is expected to be large; as a rule of thumb, 

Q~' > 1 OOcr, where <ru
2 is the variance of the input samples. However, for large data 

lengths, the choice of Q is of no consequence. 

2.3.4.2 Convergence Properties of the RLS algorithm 

The RLS algorithm converges to a solution in the mean square sense approximately after 

2Z iterations, where L is the order of the transversal filter. Hence it is almost an order of 

magnitude faster than the LMS algorithm 

The convergence rate of the RLS algorithm is relatively insensitive to variations in the 

eigenvalue spread of the correlation matrix of the input samples u(«), unlike the LMS 

algorithm. 

Assuming infinite memory (A = 1), as the number of iterations approach infinity the 

RLS algorithm in theory produces zero excess mean square error, which implies zero 

misadjustment, therefore it approaches the Wiener solution. 

It is noted that the improvement of the convergence rate is inversely proportional to the 

measurement error, so if the SNR is high the measurement error is small relative to the 

desired response and hence rapid convergence. 

2.3.5 The QR Factorization 

The QR factorization is a linear process applied to any matrix. It is used to solve linear 

systems, and more importantly linear least squares problems. It is used in the new 

adaptive algorithm, which will be introduced in chapter 4. 
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The QR factorization, also called the QR decomposition, may be applied to any m x n 

matrix A, which may be decomposed as 

A = QR (2.21) 

where Q and R are an mxm unitary matrix and an mxn upper triangular 

respectively. One of the most important applications of the QR factorization is to solve 

full rank least squares problems, when Ax » b , where m > n and the columns of A are 

linearly independent. The solution x that minimizes ||Ax-b| is x = (A//A)"1A//b. 

However, the condition number+ of (AWA) is the square of the condition number of A, 

hence it would not be advisable to compute x directly. In these cases the QR 

decomposition is useful, since it mitigates this ill conditioning, by transforming A into 

QR. 

In some texts the unitary matrix Q may actually be referring to QH, e.g., in [41]. 

However, depending on the context in which it is used, it may be appropriate to use one 

or the other. For now the convention used in [42] will be used which is the same as that 

in (2.21). 

Where m > n so the matrix A is full rank, it may written as 

(2.22) 

where Rg is the n x n upper triangular matrix, and 0 is an (m-n)xn null matrix. 

Then taking the squared Euclidean norm of the least squares problem 

||Ax - bf = |QRx - bf = |QRx - QQ^b]2 = ||Q(RX - Q"b)|2 (2.23) 

which follows because of the unitary matrix definition QQ" = I (where I is the identity 

matrix). 

The condition number is a measure of how ill conditioned a matrix is. The formal definition is given in 
chapter 4. 

A = QR = Q 
R„ 
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If we let 

Q"b = c 
e 

(2.24) 

where c and e is an n x 1 and an (m - n) x 1 vector respectively. Utilizing the pre-

multiplication property of a unitary matrix: if y = Qx, where Q is a unitary matrix then 

||y| = |x||, then (2.23) may be simplified into: 

2 

Ax-b 
R * 
0 x - (2.25) 

where (2.24) was substituted, and Q was removed. This may then be rewritten as 

|Ax-b||" = R ? x - c +||e| 

The solution that minimizes (2.26) is the value x which satisfies 

Rgx = c. 

(2.26) 

(2.27) 

This can be readily computed since Rq is upper triangular. This least square solution is 

summarized from [42]. The QR decomposition will not be able to solve this problem 

directly if A does not have full rank, i.e. when m < n, in these cases alternate methods 

would have to be used, however, it is recommended in [42] that the single value 

decomposition be used. 

2.3.5.1 Computation of QR Decomposition 

There are numerous ways of calculating the QR decomposition, which vary in terms of 

accuracy and complexity. Some methods also suit applications to certain algorithms, e.g. 

RLS with the QR decomposition. Generally the most commonly used methods for 

computing the QR decomposition (as shown in [42]), are: 

• The Gram-Schmidt algorithm 

• The modified Gram-Schmidt algorithm 

• The Householder transformation 

• The sequence of Givens rotations. 
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The Gram Schmidt procedures are the simplest methods to implement. They are also the 

most inaccurate, therefore a discussion of these procedures is not covered here (for a 

detailed discussion see section 2.15 in [42]). The Householder transformation attempts 

to nullify entire columns to achieve the upper triangular matrix by using a suitable 

reflection operation. The Givens rotations apply a sequence of plane rotations to create 

the upper triangular matrix one element at a time. 

2.3.5.2 The Givens Rotations 

The Givens rotations as shown in [41], multiply an nxn unitary plane rotation matrix 

G with an «xm input matrix A (n > m), to zero an element in an attempt to achieve 

the n x m upper triangular matrix R . The plane rotation matrix is defined as follows 

cos^, i,k = m 

sm<j>e'e, i = m,k - n 

-s\ru/>e~,e, i = n,k = m 

cos^, i,k = n 

1, i,k = \,2,...,n-1, excluding m 

0, otherwise. 

S,„ (2.28) 

The product in matrix form is 

GA = 

"1 

0 

0 • 

0 

cos^ 

-sin^e~;* • 

0 

• sin <pe,e 

COS (25 

-

•• • « m m • •• 
mm 

• • • # „„, • • • 
nm 

(2.29) 

where amm and anm represent elements in position (m,m) and (n,m) of the matrix, 

respectively. 

-th From (2.29), it can be seen that the m element in the last row of the product is nulled if 

the angles 6 and <f> satisfy the condition 

-sinfite ' amm + cos eta =0 
T mm T nm 

(2.30) 

Noting that cos2 <j> + sin2 <f> -1, and the real and imaginary parts of the left hand side of 

(2.30), have to equate to zero respectively, it is determined that 
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C O S ^ : 

vk nm I mm I 

(2.31) 

and 

sin^e J8 _ 

\amm J 

cos^. (2.32) 

Using these relations, elements are annihilated from the first column to the last column, 

last row to uppermost row. Each element annihilated will have an associated unitary 

rotation matrix, so let this rotation matrix be denoted by G(i,k), where (i,k) represents 

the element position nulled. 

As a typical example, let A be a 4x2 matrix therefore the Givens sequence will 

be 

x 

X 

X 

X 

X 

X 

X 

X 

G(4,l) . 

X 

X 

X 

0 

X 

X 

X 

X 

G(3,l) 

X 

X 

0 

0 

X 

X 

X 

X 

G(2,l) v 

X 

0 

0 

0 

X 

X 

X 

X 

G(4,2) 

X 

0 

0 

0 

X 

X 

X 

0 

G(3,2) 

X 

0 

0 

0 

X 

X 

0 

0 

Hence in this case the decomposition becomes G(4,1)G(3,1)G(2,1)G(4,2)G(3,2)A = R, 

therefore from the definition of the decomposition A = QR, the unitary matrix becomes 

Q = (G(4,1)G(3,1)G(2,1)G(4,2)G(3,2))" . (2.33) 

2.4 Adaptive Techniques for Non-coherent Detection 

A number of attempts have been made to employ adaptive filter theory (AFT) to 

improve the performance of non-coherent detection. They have been successful to 

varying degrees. Some of the adaptive schemes show promising performance with 

minimal penalties in terms of information capacity and complexity. A few of these 

adaptive detection schemes are discussed in this section. 
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2.4.1 Adaptive Channel Estimation 

One of the early attempts to improve the performance of differential detection in fast 

fading environments was introduced in [43]. Here the channel gain was estimated using 

multiple delays, in conjunction with an adaptive algorithm, hence the name: adaptive 

channel estimation or the ACE detector. 

This scheme focused on continuous phase modulation (CPM) with minimum shift 

keying (MSK). ACE offered significant improvement over differential MSK in both 

AWGN and fast fading channels. An improvement of an order was evident for channels 

with normalized bandwidths of FdT = 0.05 and FdT = 0.1. The ACE detector utilized 

the recursive least squares lattice (RLSL) algorithm, which is numerically stable, 

modular and fast converging. However, the filter order would be relatively high, 

generally ten or more delays are necessary for the performance gains shown. 

2.4.2 Decision Feedback Adaptive Linear Prediction 

An alternate adaptive technique which performed better than SDD was introduced in 

[44]. This algorithm involved decision feedback of the actual channel estimate. The 

LMS algorithm was the adaptive algorithm used. The LMS algorithm is not ideal, with 

slow convergence. A training period was used, which was not bandwidth efficient, and 

the improvement over SDD is only evident if the training period is ignored. In addition 

to being slow converging, the order of the filter used was high and was not optimal over 

a range of normalized Doppler frequencies. At a frequency of FdT = 0.05, the required 

filter order was approximately 50, hence this algorithm is not suited for use in fast 

fading environments. 

2.4.3 DFDD with RLS 

This scheme involves decision feedback of symbols, and not the channel estimate. In 

[22], an analogous system to DFDD over flat Rayleigh fading channels was introduced. 

Instead of the original DFDD which was derived specifically for Rayleigh fading 

channels, an alternate system based on linear prediction was used. The filter coefficients 

were based on the Yule-Walker equations. 
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In the same publication an adaptive scheme using the RLS algorithm was also 

introduced. Both the adaptive and linear predication based scheme was found to be 

equivalent in performance to the DFDD for Rayleigh flat fading environments. It should 

be noted that this scheme was introduced for Ricean fading, and the decision metric was 

not derived from the optimal maximum likelihood probability metric, unlike that of 

DFDD for flat fading channels. A Ricean channel may be regarded as an AWGN or 

Rayleigh channel under special circumstances. This scheme will also be discussed in 

greater detail in chapter 3, since it is later applied to the original DFDM scheme as part 

of this dissertation's contribution. 

2.4.4 Adaptive Detection and Decoding via Mixture Kalman Filtering 

Recently an alternate scheme was introduced by Chen and Wang in [45], which can be 

utilized for both coded and uncoded cases. The receiver uses sequential Monte Carlo 

methodology for the adaptive Bayesian receiver. The scheme is self adaptive, with no 

training necessary, while the receiver structure is well suited for VLSI. 

The performance of this receiver approached the theoretical bounds, and significantly 

improved on SDD in flat fading environments. There is additional discussion in [46], 

regarding the mixture Kalman filtering employed as the adaptive algorithm. 
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Fundamental Decision Feedback Schemes 

Standard differential detection (SDD) of DM-PSK signals does not require the current 

channel state information, nor does it require the channel statistical characteristics (e.g. 

autocorrelation, noise and fading variance). However, as mentioned in chapter 2, in 

frequency flat channels with high Doppler frequencies, an error floor is incurred that 

would not allow reliable transmission of information. Therefore in an attempt to reduce 

this error floor, MSD with decision feedback [21], was a technique introduced, which 

virtually eliminated the error floor while remaining computationally simple. This 

scheme is known as DFDD. 

For optimal performance of DFDD it is necessary to know the channel characteristics: 

the noise variance and the correlation of the fading channel. If these statistics are 

unknown at the receiver, sub-optimal performance would be achieved, which would still 

be superior to SDD in most cases. Adaptive filtering mitigates the need for any channel 

knowledge, even the second order channel statistics, while still achieving performance 

comparable to the optimal fixed solution. One such structure employing the RLS 

algorithm was introduced in [22], which is referred to as adaptive DFDD. This adaptive 

DFDD has the same feedback structure as the DFDD detector of [21], and is based on 

the linear prediction based DFDD introduced in [22]. 

In addition to these DFDD systems, the iterative coded DFDM scheme of [23] is 

discussed. The DFDM utilizes the DFDD decision metric of [21 ] as a probability metric. 

The DFDM is derived and the related performance analysis from [23] discussed. 

In section 3.1, the original DFDD system for Rayleigh flat fading channels of [21] is 

introduced. The alternate DFDD system and its adaptive counterpart of [22], are 

discussed in section 3.2. The iterative coded DFDM scheme of [23] and the associated 
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convergence and analysis are described in section 3.3. The performance of these 

uncoded DFDD detectors, and the iterative DFDM are replicated for comparison 

purposes in section 3.4. 

3.1 Decision Feedback Differential Detection (DFDD) 

This section summarizes the DFDD scheme for flat fading channels introduced in [21], 

with relevant derivations and definitions shown. 

3.1.1 System model 

The block diagram of the DFDD system is shown in Fig. 3.1. The information bits are 

modulated to the M-PSK constellation set for any constellation size M=2, 4, 8 and 16. 

The constellation set Y D {exp(j(27rv/M)) \ ve {0,1,...,M-1}}, would represent both 

the modulated symbols a[k] as well as the differentially encoded symbols d[k]. The 

differentially encoded symbols are given by 

d[k] = a[k]d[k-l], k eU , (3.1) 

Information 

Bits 
Modulator 

a[k\ Differential 
Encoder 

d[k\ Fading 
Channel 

r[k\ DFDD 
Detector 

a[k\ 
Demod. 

Decoded 

Bits 

Fig. 3.1 The block diagram of the DFDD detector. 

As it is only necessary to utilize the baseband signals the equivalent carrier signals are 

ignored. The fading channel is modelled as time varying Rayleigh frequency flat fading. 

The mobility of the channel is characterized by the maximum Doppler frequency Fd. 

The Doppler shifts may be normalized with the symbol period T, to yield the 

normalized fading bandwidth FdT . The symbols at the receiver are scaled by the fading 

gain and perturbed by noise which can be written as 

r[k] = d[k]f[k] + 4k] (3.2) 

where the fading process f[Q, and the noise samples «[D] are correlated and mutually 

independent zero mean complex Gaussian random processes, respectively. It is also 

assumed that /[[J and «[[]] are mutually uncorrelated. Due to normalization, /[[]] and 
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«[[J have variance crj = E{\f[k}2} = \ and a\ = E{\n[k}2} = N0f Es, where N0 and Es 

denote the one sided power spectral density of the AWGN process and the mean symbol 

energy, respectively. The received sequence is deciphered using the DFDD detector and 

demodulated (denoted as Demod. in Fig. 3.1) into the equivalent bits to represent the 

original information sequence. 

3.1.2 Derivation of DFDD Metric 

The DFDD metric is based on the optimum MSD metric. The optimum MSD metric is 

derived using an observation window over N symbol periods, i.e., NT, where T is the 

period of a symbol and a length constraint of vV > 1 is used. Considering that an 

observation interval is used, vectors are defined accordingly. Based on (3.2), the vector 

equation is 

r t - d A + n , (3.3) 

where, 

rk D [r[k],r[k-l],...Ak-N + l]f, (3.4) 

d, Ddiag{d[k],d[k-\],...,d[k-N + l]}, (3.5) 

fkn[f[k],f[k-\],...,f[k-N + \]]T, (3.6) 

n, D [n[k],n[k-l],...,n[k-N+l]f, (3.7) 

and diag{x[l],x[2],...,x[£]} denotes an LxL diagonal matrix with the diagonal 

elements comprised of the elements {x[l],x[2],...,x[Z]}, respectively. 

In matrix form (3.3) is as follows 

if*] 

r[*-l] 

_r[k-N + \) 

The conditional probability density function (pdf) / ^ |a t ) is 

40 
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0 ••• ( 

0 

o 

) d[k-N + l] 

f[k] 
/T*-i] 

_f[k-N + l] 

+ 

n[k] 

n[k-\] 

n[k-N + 
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p(rk\ak) = exp ( - r fR> , ) , (3.9) 

where Ra is the NxN conditional autocorrelation matrix of rk defined as 

R a D E { r f | a A } (3.10) 

Defining the autocorrelation of the fading process as 

R/DE{f,ff} (3.11) 

the autocorrelation Ra is re-written as 

R a = d , R 7 d f + ^ I (3-12) 

where I is the NxN identity matrix. The maximum likelihood decision for ak 

corresponding to MSD can be obtained by maximizing (3.9). This is equivalent to 

maximizing the metric 

7 = -rfRa-1ri-ln|Ra|de t. (3.13) 

Ra can be expressed in another form due to the relation d^df = I , substituting this 

relation into (3.12), 

R a =d t (R / + c7„ 2 l )dfDd i Rdf . (3.14) 

Thus the determinant of Ra may also be re-written as 

\Kl =\dkl |RL ldfl =ld*l, lRL k l " =IRL . (3-15) 
I o Idet I * Idet I Idet I * Idet ' k 'det I Idct I * Idet ' Idet v ' 

where it can be seen that the determinant is independent of the transmitted symbol 

sequence. Knowing d^df = I , this means df = d^1, therefore the first term in (3.13) of 

the ML metric can be simplified to 
7 ' - - i f d , R X > * . (3.16) 

Defining the negative inverse correlation matrix T as 
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T = -R-1 D 

'00 

1̂0 

AM)0 

0̂1 

'n 

'-. ' 

. . . 

' • '(A1'-

•• y 

... 

-2Y.N-2) 

-iy.N-2) 

'O(AM) 

• 

'(JV-2XAM) 

'(AMXAM) _ 

(3.17) 

and noting that since R is Hermitian, its inverse would hold the same property, 

therefore t = t* for 0 < v, u < N - 1 . 
uv vu 

Equation (3.16) can be written as 

AM AM 

ri^Y^tyik-vy'ik-uYik-vyik-u] (3.18) 
v=0 u=0 

determined through some basic linear algebra. However, this metric can be further 

simplified as 

7 ' = X ' w K * - v ] f | r [ * - v ] f + 2 . R e W J tmr[k-uy[k-v]f[a[k-j]\ (3.19) 
v=0 v=0 u=v+l J=V 

where the difference relation of equation (3.1) has been applied. From (3.19) it can be 

seen that the decision to determine the estimated symbol vector 

kk D [a[k],a[k-\],....,a[k-N + 2]f, a[CJeY, is determined by the second term, 

therefore 

{ (N-I N-l u-1 

R e ]Z X C4£-"]>"*[*-v]]~]5[£-./]j 
(̂  v=0 u=v+\ 

(3.20) 

;-» 

where the vector of unknown transmitted symbols are replaced by a vector of trial 

symbols &k D [a[k],a[k-l],....,a[k-N + 2]]T, <5[[]]eY, and ak =argmax{[} denotes the 

vector kk = a.k that maximizes the function in parentheses. ** 

However, this is a block level metric, which can be simplified by using decision 

feedback symbols (symbols already deciphered) fl[£-v] instead of the trial symbols in 

the decision metric (3.20). By doing this, the block level implementation becomes a 

symbol level implementation, i.e., a decision is made for only one symbol at a time. 
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Omitting all terms that do not influence the symbol decision the decision metric 

becomes 

a[k] = arg max 
a[k] 

Re< 
f N-\ v-1 

a[k]r[k] Y,toAk-v]Yla[k-j] (3.21) 

3.1.3 DFDD Detector 

The structure of the DFDD detector is shown in Fig. 3.2, where it can be seen that the 

DFDD detector is an autoregressive (AR) FIR filter of order N -1. The Rayleigh 

frequency flat fading is modelled using the Jakes model. 

r[k] 

Fig. 3.2 The DFDD detector structure. 

For the Jake's model the autocorrelation function (ACF) of the fading process is given 

by 

Rf[T] = E{f[k]f[k+T)} = <r}'M2*F*Tt)> w (3-22) 

where J0(D) is a zeroth order Bessel function of the first kind. Therefore the 

autocorrelation matrix (ACM) would have the structure shown below. If, for example, a 

normalized fading bandwidth of FdT = 0.03 and observation window of N = 3 was used 

the ACM of the fading process would be as follows: 
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R / = 

J0 (in -0.03-0) J0 (In -0.03-1) J0 (2n -0.03 -2)' 

J0 (In -0.03-1) J0 (2^--0.03-0) J0 (in -0.03-1) 

J0 (In -0.03 -2) J0 (2^--0.03-1) J0 (in -0.03-0) 

1 0.9911 0.9648 

0.9911 

0.9648 

1 

0.9911 

0.9911 

1 

(3.23) 

Knowing this the negative inverse of the ACM (R = Rf+a*lN) may be solved and 

used for the filter coefficients in the DFDD metric. 

The ACM is symmetric, this implies that the corresponding inverse has the same 

property, and hence the first row or the first column may be used interchangeably for the 

decision, and t0v =tv,for \<v<N~l. Therefore the expression becomes 

a[k] = arg max 
5[k] 

Re a[k\r[k] 2 f ¥ r [* -v ] f l ^ -7 l 
;=i 

(3.24) 

It was noted in [21] that for N = l, the structure and performance of DFDD is 

equivalent to SDD. The decision is made with only two received symbols, and no 

feedback. The performance for N = 1 also depicts an error floor for large normalized 

bandwidths in flat fading conditions. 

The detector structure as seen in Fig. 3.2, is similar to that of a standard linear predictor, 

described in chapter 2. In [21], this linear predictor approach proved highly useful for 

the purpose of analysis, and for understanding the dynamics of the structure. It was seen 

that the probability of error was dependent on the prediction error variance, the fading 

variance and the noise variance. When the noise approached zero, the fading variance 

would dominate the probability, which implies an irreducible error floor. 

3.2 Adaptive DFDD 

An alternate form of detection using decision feedback and linear prediction was 

introduced in [22], which was designed to perform in Ricean channels. The Ricean 
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channel incorporates the AWGN channel and the Rayleigh flat fading channel as special 

cases. This prediction based DFDD may be regarded as the normalized DFDD structure, 

because it utilizes normalized filter coefficients for the linear predictor. 

The normalized filter structure is conducive to adaptive filtering techniques. In [22], the 

authors introduced an adaptive algorithm utilizing the RLS algorithm. This adaptive 

DFDD algorithm was introduced as an alternative to the fixed coefficient prediction 

based DFDD. These two versions of DFDD are derived and discussed in this section. 

3.2.1 Prediction based DFDD 

The derivation of the DFDD of [21] is derived directly from the ML probability 

expression, which may be considered to be the optimal DFDD scheme for flat fading 

channels. The prediction based DFDD is derived differently. In [22], the transmission 

model is not strictly a Rayleigh fading channel, but it is shown that the system does 

compare to the DFDD scheme for flat Rayleigh fading channels. 

The transmission model in [22] has a frequency offset Af between the modulator and 

demodulator included as well as a uniformly distributed phase shift 0 . The received 

signal sample for differentially encoded symbols become 

r[k] = ejeej2'I^rkf[k}d{k} + n[k]. (3.25) 

The noise process and fading process have normalized energy and variance, where 

(T2
n = E{\n[kf} = NQ/ES and a) = E{\f[kf} = 1, respectively. 

The prediction based DFDD is based on standard differential detection. In SDD, the 

reference symbol used to make the decision on a[k] is r[k -1], where in general 

a[k] = r[k]r'[k-l]. (3.26) 

It is also noted that (3.25) may be re-written as 

r[k] = a[k]ej@ej2,Afrkf{k]d[k -1] + n[k], (3.27) 
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hence it is proposed that an estimate of ejeej2'r^Tkf[k]d[k-\], is made using not just 

r[k-\], but the last N-l received samples as well. Hence the estimated symbol may 

be written as 

AT—1 

r.[*-l]-2>b/tt-v], (3.28) 
v=l 

where p0v is the tap weight coefficients of the linear predictor with 1 < v < TV - 1 . Since 

the noise process is an uncorrelated Gaussian random process, the estimator is 

equivalent to a linear estimate of (ejeej2^JTkf[k]d[k-l] + n[k])/a[k] = r[k]/a[k]. The 

mean square error variance <72
mse, of the estimation is 

-1] \ = E{\r[k]-a[k]re[k-\f}, a1 =E 
mse 

r[k] 

4k] 

which, in terms of the transmission model may be written as 

kf[k]d[k-l] + n[k]-

* [ * £ Pov (ejeej2m-v)f[k - v]d[k - v] + n[k - v]) ^L=E 

ej&ej2xtm 

N-l 

v=l 

Using the substitution and the differential encoding relation, 

this is substituted into (3.30), simplifying it to 

a1 =E< 
mse 

N-l 

c[k]-Y,PAk~v] 
v=l 

21 

where 

and 

c[k]UeJ2,:mf[k] + n'[k] 

n'[k]U 
e-J@n[k] 

d[k] 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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It is noted that w'[CJ is uncorrected white Gaussian noise with the same variance a* as 

the noise process n[D|. 

As shown in (3.28), pv may be interpreted as the tap weights of an N-\ order linear 

predictor, where the coefficients may be solved using the Yule-Walker equations 

RcP = rc (3.35) 

where Rc is the (N -1) x (N -1) autocorrelation matrix of the process c[Q|, p is the tap 

weight coefficients, and rc is the correlation vector. These quantities are defined as 

follows 

^[r ]D E{c[k + z]c[k]} = ej2**TTRf[T] + cr2
nS[T], (3.36) 

pU[pvp2,...pN_,f, (3.37) 

rcD[Rc[-\],Rc[-2],...,Rc[-N + \]]T (3.38) 

and Rc is the ACM whose structure is based on the ACF as shown in (2.8) and £>[•] is 

the unit pulse sequence (i.e. S[0] = 1, S[r] = 0, for t * 0 ). 

Thus far it was assumed that the symbols a[k - v] were perfectly known at the receiver. 

However, in a practical system this is not possible. Hence decision feedback symbols 

a[k - v] are used for 1 < v < N - 2. The resulting reference symbol due to decision 

feedback becomes 

rJ*-l] = XM*-v]n<5[*-./j, <3-39) 
v=l j=l 

and the resulting decision metric based on SDD becomes 

a[k] = argmax{Re{5[*]r*[ifc]re[Jfc-l]}} . (3.40) 
S[k] ( >> 

Since Rayleigh frequency flat fading is the required channel, the channel parameters Af 

and 0 may be assumed 0. The fading process is modelled using the Jakes model, hence 

the ACF and ACM of the process c[D|, would be equivalent to the autocorrelation matrix 

described in standard DFDD. 
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The process described here is the prediction based DFDD. In this case the channel 

statistics are known a priori and the Yule-Walker equations may be solved directly. 

However, if they were not then the filter coefficients may be determined adaptively. The 

adaptive scheme is discussed in the next section. 

3.2.2 Adaptive DFDD with RLS algorithm 

In many cases the channel statistics in mobile communications are non-stationary hence 

channel statistics would have to be measured at regular intervals in order to determine 

them a priori. Once the channel statistics are available, prediction based DFDD or the 

DFDD may be employed, because these algorithms require the channel statistics for 

optimal performance. 

In [22] an adaptive scheme was proposed to compute the linear filter coefficients 

recursively, using the RLS algorithm. The RLS algorithm is a common, fast converging, 

and recursive algorithm which is superior to the LMS algorithm in almost every 

performance criteria. It is however computationally more complex and intermittently 

suffers from numerical instability. 

The associated performance index related to predictive DFDD is 

J V - 1 

r[J]-^Pv[k]r[J,v] 
v=l 

(3.41) 

where pv[k] are the predictor coefficients at time k and r[k,v] is defined as 

v- l 

r[k,v]Ur[k-v]Y\a[k-^l l < v < J V - l , (3.42) 

which is taken from (3.39) which is part of the linear estimate of re[£-l] . The desired 

response would hence be r[k - 1 ] , or depending on the time reference r[k], because the 

relative time index is merely shifted by one. For the RLS algorithm the desired response 

is the previous symbol in terms of the decision metric for prediction based DFDD. 
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Provided all random processes are ergodic (the time averages may be used as the 

ensemble averages, this implies weakly stationary), for a forgetting factor A = 1 and k 

approaching oo, pv[k]->pv, the optimal Wiener solution from the Yule-Walker 

equations for prediction based DFDD. The equations of the RLS algorithm, from [22], 

for adaptive DFDD referred to as RLS-DFDD are: 

k, = A'\3"/k ; (3.43) 

a[k] = r[k]-pT
kJk (3.44) 

J ^ A - M ^ - A - V f J * - , (3-45) 

P*=P*- i+k>M (3-46) 

where rk and pk are defined as 

rk D [r[k,\],?[k,2l...,r[k,N-l]]T (3.47) 

and 

P^[pl[k],P2[k],...,pN.l[k]]T (3-48) 

respectively. The approximation initialization approach was used hence J(0) = Q_1I, 

and the initial filter coefficients are 

p0=[l,0,0,...,0f. (3.49) 

The initial filter coefficients are non-standard to allow the algorithm to start the 

adaptation process from the conventional differential detection case (N = 2). Based on 

this implementation the adaptation may start blind, with no training symbols, and with 

no a priori channel statistics. As mentioned in the previous section, if the mobile 

channel is known to be statistically stationary, then A = 1 may be used, however, this is 

typically not the case so A < 1 should be chosen. 

It was noted in [22] that the filter coefficients approached the optimal values, and after 

10 iterations the performance for N - 3,5 at typical SNRs, the mean square error of the 
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adaptive receiver was lower than that of N = 2. Since the BER is dependent on the 

mean square error, it was expected that the adaptive receiver will outperform SDD. 

3.2.3 Equivalence of DFDD and Prediction based DFDD 

It should be noted that for Rayleigh fading channels, there is a mathematical equivalence 

between the original DFDD metric of [21], and that of [22], which was not shown in 

[22] or any other literature available. Mathematical equivalence; meaning the decisions 

of both metrics would yield the same result, for the same input samples. The channel 

statistics are known at the receiver in both cases. 

In [21], it was shown that the DFDD detector may be treated as a linear prediction error 

filter. As shown a linear error predictor has an augmented normal equation structure as 

in (2.12), so for DFDD it is, 

1 
R 

-P o 
(3.50) 

where p is an TV -1 x 1 vector of filter coefficients defined as 

pU[p1,p2,...,pN_1] , (3.51) 

and a] is the prediction error variance, while R is an NxN matrix defined as for 

DFDD in (3.23). The optimum coefficients are related to the inverse of the correlation 

matrix R. From (3.50) it can be seen that 

* - - * 

1 
* 

-P 
(3.52) 

where t0, is defined as the first column of negative inverse correlation matrix R, 

defined in (3.17). The optimum coefficients in terms of p are 

1 
h=-<rl 

t^-^j, l<v<N-l 

(3.53) 

(3.54) 
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Hence it may be seen that prediction based DFDD is the normalized linear prediction 

filter for standard DFDD for a Rayleigh channel, since the autocorrelation function was 

based on the Jakes model. For convenience the DFDD metric for Rayleigh flat fading 

channel from [21] is 

f v- V" 
ReJ5*[*]r[*] | > r [ * - v ] f [ a [ * - . / ] a[k] = arg max 

S[k) V-=i 7=1 

while the decision metric for prediction based DFDD is 

a[/:] = argmax ReUk]r\k]^pAk-v]f\a[k-j)\ 
S[k] [ { v-1 / . i J 

(3.56) 

Taking the complex conjugate of the inner expression of (3.55) would not alter the 

decision since only the real part of the expression is required and substituting (3.54) the 

standard DFDD metric for Rayleigh frequency flat fading becomes 

/ ' A ' - I v-1 A 

a[k] = arg max <̂  —yCRe \ a[k]/[k] 
5[*j [cr. 

ZA^-VO*-/] 
7=1 

(3.57) 

therefore it can be seen that prediction based DFDD is the normalized DFDD metric and 

they would both make the same decision. 

3.3 Iterative Decision Feedback Differential Demodulation 

Thus far the DFDD schemes discussed above did not have channel coding applied. 

Numerous MSD systems with channel coding were introduced in chapter 2. Among 

these was iterative decision feedback differential demodulation (DFDM). This relatively 

simple receiver, utilized the DFDD metric, and the concept of bit interleaved coded 

modulation (BICM). This iterative receiver improved the performance over the 

conventional non-coherent BICM in Rayleigh flat fading channels. 

This section summarizes the DFDM system from [23]. The derivation of the metrics, as 

well as the convergence and cut-off rate analysis are covered. 
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3.3.1 System Model 

The discrete time model of the iterative DFDM is shown in Fig. 3.3. It can be seen that 

the transmission scheme is exactly the same as BICM, however, the detection scheme is 

iterative in nature. 

Information 

Bits 

Decoded 
< 

Bits 

Fig. 3.3 Block Diagram of iterative DFDM 

All signals are represented by their baseband equivalents, and all quantities are complex 

valued. The information bits are encoded using a standard off the shelf convolutional 

code, into coded bits denoted by y/[i]. These coded bits are randomly permuted when 

passed through a bit interleaver yielding a shuffled coded bit sequence s[i]. A standard 

MPSK constellation Y, defined as in DFDD, is assumed with Gray labelling. The 

permuted sequence is mapped to the constellation set Y, via an appropriate mapping 

function X{[}. The modulated symbols a[k] are then differentially encoded to represent 

the channel symbols d[k]. The standard differential relation for PSK is used: 

d[k] = a[k]d[k-\] (3.58) 

The random fading process /[D] is mutually independent and correlated, modelled 

according to Jakes [47], with variance <j2
f. The random noise process r^\ is mutually 

uncorrected zero mean complex Gaussian with variance <j2
n. 

Under these condition the received symbol is represented as 

r[k] = f[k]d[k] + n[k], (3.59) 
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The iterative receiver is discussed in a subsequent section. 

3.3.2 DFDM Metric Derivation 

From BICM the soft bit metrics, A[i] are computed according to the conditional 

probability density function (pdf) p{rk \ak). However, the soft metric used in DFDM is 

based on MSD and hence the soft metric is determined using observation windows. 

Assuming all data symbols are a priori equally probable, the probability density function 

is given by: 

p(rk\ak) = p(r[k]Ak-\],...,r[k-N + \]\a[k],a[k-\],...,a[k-N + 2]). (3.60) 

From this it can be seen that if trial sequences are used for sik, then the complexity is 

exponentially related to N. Instead of the set of all possible vectors (for e.g. [48]), 

which would yield the optimal performance, the computationally less complex case of 

decision feedback symbols are used, analogous to DFDD. 

The soft bit metric A[i] may be determined through the use of hard decision feedback 

symbols a[k-v], v = \,2,...,N-2, leaving only a[k] as atrial symbol, which is exactly 

the metric used in DFDD. If M is the size of the constellation, then / = log2 M is the 

number of bits used to represent the modulated symbol. An index £ = 0,l,...,l-\, is used 

to denote the position of the bit, where it can be determined that i = kl + i. Due to the 

use of observation windows, and only one trial symbol, the time index k, is of no 

importance. The metric notation will be determined by the type of feedback (sym or bit) 

used, the value of the bit (be {0,1}), and the bit position in the trial symbol. Hence i 

may be replaced by I, and the metric may be written as 

#""[*] = log X p(rk\a[k],a[k-n,...,a[k-N + 2]), (3.61) 

where A^m , denotes the bit metric with symbol feedback and bit value b . Additional 

notation is for the Y^, which is the subset of the constellation Y that has all the symbols 

in the constellation with bit value b in position i, e.g. assuming 4-PSK Y| = {01,11}. 
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This metric can be further simplified by using bit feedback in conjunction with symbol 

feedback, hence the metric now becomes, 

^'[£] = \og(p(rk\a[k],a[k-\],...,a[k-N + 2])) (3.62) 

where a[k] = X{y/[0],...,i//[£-\],b,i//[£ + \],...,y/[l-]]}, and \f/\C\ represents the decision 

feedback bits. 

The metrics using the ML probability metric of DFDD and substituting it for (3.61) and 

(3.62), now become 

( r AM v-i n 
AT[£] = \og £ exp 2-Re\a[k]r'[k]£tAk-v]Yla[k-j]\ (3.63) 

fl[t)en v=l 7=1 

and 

/ 

cm=»og 
r 

exp 
/V-1 v-1 \ \ 

2-Re \3iky[k]^tAk-v]Y[a[k-j]\ 
j-i 

(3.64) 

which can be simplified to 

AM v-1 

^V] = ^\Siky[k}^tvr{k-v]Ylalk-j]\ (3.65) 
v-1 / - I 

The DFDD decision metric is used as the soft bit metric of the inner modulation code. 

Both (3.64) and (3.65) are referred to as the decision feedback differential demodulation 

(DFDM) metrics as in [23]. As with DFDD, with an observation window /V = 2 for 

DFDM is equivalent to conventional coded differential detection. The bit feedback 

metric (3.65), is simpler than the symbol feedback metric (3.63). Both metrics do not 

increase exponentially with N, remaining relatively simple to compute. 

3.3.3 The Iterative Decoding Algorithm 

In DFDD the decision feedback symbols were determined immediately and could be 

used for processing the metric for the next symbol, however, this is not the case for 

DFDM. In DFDM there are no feedback symbols available for the first iteration, so 

DFDM would resort to conventional differential demodulation, i.e., with JV = 2 which 
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as mentioned earlier would be equivalent to standard non-coherent BICM. Once the 

metrics are determined they are deinterleaved and used as soft inputs to the standard 

Viterbi decoder, which adds the respective bit metrics to constitute the branch metric. 

The ML sequence of bits is decoded from the Viterbi decoder. These decoded bits are 

re-encoded according to the channel code. This new coded bit sequence is interleaved 

and remodulated, and used as decision feedback bits and symbols for the next iterations. 

Once there is feedback available larger observation windows may be used, i.e., N>2. 

The metric used for all these iterations is (3.65), which is computationally low, however 

(3.63) may also be used. 

As mentioned earlier from [31, 32, 49], the labelling structure affects the performance. It 

was determined experimentally by the authors that for all other labelling (e.g. standard 

and set partitioning) structures, the loss in the first iteration could not be compensated 

for by further iterations, and the gain in performance after the first iteration was largest 

with Gray labelling. 

3.3.4 Convergence and Cut-off Rate Analysis 

Due to the iterative nature of DFDM, the question of convergence arises. In [23], for the 

purposes of convergence analysis the linear prediction approach was used as a 

performance measure as in [21] and [22]. Instead of determining the actual estimate 

T;[&-1], as in [22], it was shown that the mean square error may be expressed in terms 

of p[k], which is defined as 

p[k]U f[k] + n[k]d\k], (3.66) 

and the corresponding estimate thereof was defined in [23] as 

p[k]D d\k-\]^pAk-v]f\a[k-j], (3.67) 
v=l j=\ 

where pv are the predictor coefficients. It can be seen that from (3.67), the minimum 

mean square estimate will correspond to a[k - j] = a[k - j], which is the genie aided 
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case. Hence it was appropriate to choose the mean square estimation error variance as 

the convergence metric. It may be defined in terms of the p[k) as 

a*QE{\p[k]-p[kf}. (3.68) 

It is shown in [23], that for the genie aided curves, the error variance is lower than the 

standard N = 2 case. Hence if a] decreases from that of N = 2 for observation 

intervals N > 2 after successive iterations with normal decision feedback symbols, then 

the corresponding BER will likewise decrease and converge towards the genie aided 

case. If however, the error variance increases beyond the N = 2 case with the decision 

feedback symbols for larger N, then the BER would also increase above that of the 

standard BICM system and hence diverge. The error variance may be re-written as 

a) D E{\p[kf}-2-Rt{E{p[k]p[k]}} + E{\p[kf}. (3.69) 

which simplifies to 

cx2
e=CT2

f+a2
n-2-Re{E{p[k]p[k]}} + E{\p[kf}. (3.70) 

For mathematical simplicity the authors made the assumption that the decision feedback 

symbols are mutually statistically independent, and independent of the corresponding 

channel gain, which of course in a practical system is not the case. The received 

sequence r[k], may be re-written as 

r[k] = d[k]f[k] + n[k] = a[k]- (f[k] + n[k]d'[k]) • d[k -1 ] , (3.71) 

using the differential relation 

a[k] = d[k]d'[k-l]. (3.72) 

Using (3.71), with some statistical manipulations the third and fourth terms on the right 

hand side of (3.70), become 

^{pik]fik]}=!Ep[v]RfM^{4k-Mk-j]}, and (3.73) 
v=I y-1 

E p f h l E ^ ' M f ^ b - v l + ̂ - v ] ) [ 1 Z{4k~j]a[k-j}}, (3.74) 
v=l //=1 ;=min{v„u} 
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where £[Q| is the Kronecker delta. 

With each iteration, the error variance needs to be recalculated to determine whether it is 

decreasing or increasing, hence whether it is converging or diverging. However, for this 

to be seen the expectations were required to be a function of the BER. To calculate the 

expectation with respect to the bit error rate, the constellation and labelling needs to be 

considered. Assuming Gray labelling and 4-PSK or 8-PSK constellations, the 

expectation was defined as 

ZDE{a[k-j]a[k-j]}, (3.75) 

which for 4-PSK becomes 

Z = 1-2 BER, (3.76) 

and for 8-PSK was 

7 = l-(3-V2/2)-BER + (2-V2)-BER2, (3.77) 

where the BER is the bit error rate of the previous iteration. 

Using these equations and substituting into (3.70), the error variance was determined as 

v=l fl=\ 

It was shown in [23] that for low SNRs the error variance increased above N = 2 after 

two iterations with decision feedback symbols, while for higher SNRs the error variance 

converged to that of the minimum variance represented by the genie aided lines. Hence, 

it was determined that the DFDM scheme should converge and provide better 

performance for SNRs of interest. It was also determined experimentally that the 

majority of the performance gain is achieved after the second iteration, which is the first 

iteration to use larger observation windows. 
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Another method to confirm performance gain of the DFDM was through the cut-off rate, 

which is a common measure of performance for information throughput. It was 

determined in [31], that for the BICM system the cut-off rate is given by 

^ = / - ( l - l o g 2 ( 5 + l)), (3.79) 

where B is the so-called average Bhattacharyya factor, defined by the bit metrics as 

1 '-' 
BD-J^E-

I //=fi A=0 

exp(^x[//]) 

exp(AM) 
xe{sym, bit}, (3.80) 

for which both derived metrics may be used. For the largest computational savings the 

bit feedback metric was used, with genie aided feedback. It was shown in [23] that for 

slow fading channels, there is a definite gap between the N = 2 and perfect channel 

state information (CSI) case. The genie aided curves showed improvement in the cut-off 

rate when larger observation windows were used. The cut-off rate analysis also 

confirmed that for fast fading channels the improvement for DFDD genie aided was 

negligible, and hence would not be viable for use in fast fading channels. The perfect 

CSI and N = 2 are used as reference curves to confirm that the genie aided DFDM 

decreases the performance gap between coherent and non-coherent detection. 

Using the mean square error variance, and the cut-off rate, it is seen that for relevant 

SNRs the DFDM system converges to the genie aided case which is the performance 

bound for this feedback scheme. Provided the DFDM with decision feedback symbols 

converges to the genie aided case then there will be a corresponding improvement in the 

cut-off rate, which all translates to an improvement in BER performance, which is 

confirmed by simulation in [23]. It should be mentioned that the authors have recently 

improved the DFDM structure and given a much more in-depth analysis on the new and 

improved iterative DFDM structure in [36]. 
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3.4 Simulation Results 

In this section the replicated simulation results are shown for the DFDD of [21], the 

RLS-DFDD of [22], and the DFDM of [23]. These simulation results will be used for 

comparison purposes. In all cases the BER curves were replicated for the stated 

conditions and parameters in the respective papers, unless otherwise stated. It is 

important to note that the simulation results are plotted with respect to the bit energy to 

noise, and this is consistent throughout this dissertation. The discussions may use SNR, 

because of the direct relationship with the bit energy. Therefore a corresponding trend 

will be seen for SNR and bit energy respectively. 

The DFDD for flat fading channels [21], was derived directly from the conditional 

probability density function, and hence will be regarded as the optimal DFDD 

benchmark. 

3.4.1 Standard DFDD Results 

As derived earlier the optimal filter coefficients may be determined by the 

autocorrelation of the fading process and the noise variance. Assuming a normalized 

Doppler frequency FdT = 0.03, the optimal coefficients for the fading process according 

to the Jakes model are Rf[0] = l, Rf[\] = 0.9911, ^[21 = 0.9648, Rf[3] = 0.9216 and 

Rf[4] = 0.8628. 
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Fig. 3.4 Standard DFDD results for FdT=0.03, for 7V=2,3,4, optimal coefficients used. 

In Fig. 3.4 the optimal results for standard DFDD is shown, where it can be seen that the 

N = 2 curve, which is equivalent to SDD floors at just below IE"2 (10"2). The 

performance of DFDD for N > 2, shows significant gains over SDD. It is also noticed 

that there is virtually a constant gap between the genie aided DFDD and the DFDD with 

decision feedback symbols, which is to be expected due to erroneous feedback symbols. 
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Fig. 3.5 Standard DFDD results for non-optimal filter coefficients, with ^7=0.03. 

However, it was shown in [21] that for the correlation values: Rf[0] = 1, Rf[l] = 0.9917, 

Rf[2] = 0.9671 and Rf[3] = 0.9267, the performance as shown in Fig. 3.5 is suboptimal 

with early flooring evident. These correlation values were used in [21] for the 

normalized bandwidth FdT = 0.03. The penalty for marginally suboptimal coefficients 

may be as high as an order of magnitude if no channel coding is applied. The results 

shown in Fig. 3.5 are virtually exactly what was produced in [21]. 

3.4.2 RLS-DFDD Results 

It was shown in [22] that RLS algorithm was stable for a Rayleigh fading channel with 

FdT = 0.03. For the range of forgetting factors 0.95 < A < 1 the BER remained virtually 

flat. Hence to maximize memory for the RLS algorithm, while still giving some tracking 

capability, A = 0.99 was used for the simulation results. 

61 



Chapter 3 Fundamental Decision Feedback Schemes 

20 30 40 
Eb / rVd B) 

Fig. 3.6 A comparison of the DFDD vs. the RLS-DFDD. Optimal coefficients were used. FdT=0.03. 

In Fig. 3.6, a comparison is drawn between standard DFDD and RLS-DFDD. It is clear 

that RLS-DFDD is equivalent in performance to the DFDD of [21] with optimal 

coefficients. This proves that RLS-DFDD would not suffer from a performance penalty 

related to incorrect channel statistics as with the DFDD with fixed coefficients. It is 

noted that there is a similar performance pattern for genie aided DFDD and RLS-DFDD, 

where both curves virtually overlap each other. It should be noted that the results shown 

in [22], did not match the replicated curves of Fig. 3.6. However, it was shown that 

RLS-DFDD is virtually overlapping the DFDD curve. The N = 5 floored earlier than 

the curve shown in Fig. 3.6. This slight discrepancy is most likely due to the accuracy of 

the fading generator used. However, the principle is still accurately demonstrated in Fig. 

3.6. 
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3.4.3 Iterative DFDM Results 

The BER for iterative DFDM with 4-PSK is shown in Fig. 3.7, where observation 

windows of N = 2,3,5 were used. The N = 2 curve, and perfect CSI curve form 

performance bounds for the iterative DFDM scheme. 

It is seen that for observation intervals N > 2, at low SNRs the BER is above that of the 

standard N = 2 case, while at higher SNRs the actual decision feedback converges to 

the genie aided case. It is also seen that there is still a performance gap between the 

perfect CSI case and DFDM. These curves are almost exactly those shown in [23]. 

These results were achieved after 100 frame errors, not just bit errors, to ensure that even 

with burst errors a proper average is achieved. 

10 
FdT=0.01 

N=2 

cr 
LU 
CD 

- 0 — N=3 DFDM 
- • — N=5 DFDM 

— 0 — N=3 Genie Aided DFDM 
— • - - N=5 Genie Aided DFDM 

- Perfect CSI 

7 8 
Eb/NQ(dB) 

Fig. 3.7 BER results of the DFDM for observation windows of 7V=2,3,5. Associated genie aided 

curves and perfect CSI case also shown 
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3.5 Conclusion 

This chapter has covered the derivation and performance of various decision feedback 

schemes used for MSD. The curves replicated match those in their respective 

publications. 

The equivalence of prediction based DFDD, and the DFDD for Rayleigh flat fading 

channels was derived. It was seen that the adaptive RLS-DFDD offered the most 

attractive solution among the DFDD, the prediction based DFDD, and the adaptive RLS-

DFDD for flat fading channels. It was seen that marginally suboptimum coefficients will 

yield early error floors, and as a worst case, an error floor above that of SDD as shown 

in [21]. However, it is also known that the RLS algorithm, suffers from numerical 

instability and RLS-DFDD may perform poorly under time selective conditions. 

The DFDM offers high performance gains, for a relatively simple decision metric. 

Although still marginally inferior to coherent detection (perfect CSI), it offers an 

attractive non-coherent solution for flat fading environments, while keeping receiver 

complexity low, which is important for mobile communications. The use of hard 

decision feedback is obviously suboptimal. However, the complexity for soft decision 

feedback would increase, and the performance improvement may not warrant the 

additional power and computational requirements. If suboptimum coefficients are used, 

it is expected that the genie aided performance bound would be closer to the N = 2 

curve and then even if convergence occurs, it would be to a suboptimal bound. 
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Adaptive DFDD with the QR Decomposition 

The introduction of DFDD for flat fading channels [21], was significant in improving 

the performance of non-coherent differential detection. The decision metric was simple 

and yielded results that lowered the error floor or virtually eliminated it. Although it did 

not require exact channel state information (CSI), the accurate second order channel 

characteristics were necessary for optimal performance. 

The channel characteristics, for slowly time varying channels would not impact the 

performance of the DFDD detector significantly. For rapidly time varying channels, the 

characteristics would have to be updated regularly, because they may change rapidly, 

due to the high mobility of the channel. In this case DFDD might not be able to offer 

significant performance gains over standard differential detection (SDD). In this case it 

would be preferable to have an adaptive DFDD scheme. 

An adaptive DFDD scheme was introduced in [22], which incorporated the recursive 

least squares (RLS) algorithm, referred to as RLS-DFDD. This provided an alternate, 

blind adaptive DFDD scheme which offered the same performance as the DFDD with 

optimal filter coefficients. This adaptive scheme would be favourable over the DFDD, if 

channel characteristics are not accurate. The performance penalty with marginally 

suboptimum coefficients was shown in the previous chapter, where early flooring was 

observed. 

However, the performance of RLS-DFDD is also dependent on the channel 

characteristics remaining time invariant, otherwise the RLS algorithm may become 

unstable numerically, and therefore performance degrades. Other adaptive schemes were 

developed to improve the performance of differential detection, using different adaptive 

algorithms. The ACE detector of [43] used the recursive least squares lattice filter to 
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improve the performance over standard non-coherent detection. An alternate decision 

feedback scheme was proposed in [44], which used the LMS algorithm but could not be 

used for fast fading channels and also required training. Both [43] and [44] require high 

filter orders for their respective performance gains. The mixture Kalman filtering 

approach was used in [45], which performed near the optimal performance bound for 

perfect feedback. 

In this chapter, a new robust adaptive DFDD scheme is introduced that uses the QR 

decomposition, which is superior to the RLS-DFDD for Rayleigh time selective 

channels, and is comparable to the DFDD with optimal coefficients. In section 4.1, the 

least squares problem, and its theoretical solution using the weighted QR decomposition 

is described. The use of the QR decomposition to adaptive DFDD, is outlined in section 

4.2. The generic QR decomposition based DFDD (QR-DFDD) system of section 4.2 is 

modified in section 4.3, to yield a sliding window based approach to QR-DFDD. The 

initialization for both algorithms, are discussed in section 4.4, while a summary of the 

sliding window approach is described in section 4.5. Simulation results and comparisons 

are illustrated in section 4.6, thereafter the chapter is concluded. 

4.1 The QR Decomposition and the Least Squares Problem 

The QR decomposition offers a numerically stable method of computing the full rank 

least squares problem: 

A x « b . (4.1) 

The straight forward solution x that minimized the error |Ax-b | , is x = (AHA)_1A"b. 

However, for cases when the matrix A is ill-conditioned, this method is not advisable. 

This is further endorsed by the concept of the condition number, which was touched on 

in chapter 2. The condition number is defined from [42] as: 

AT( A) D || A|| I A - 1 1 . (4.2) 

The condition number is an indication of the degree to which a matrix is ill-conditioned. 

An ill-conditioned matrix is a matrix which is close to being rank deficient. The problem 
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with the straight forward solution indicated above is that ic(AHA) = (K(A))2 , therefore 

the ill-conditioning effect is doubled. Another way of describing the condition number 

tc(Q), is in terms of the eigenvalues of the matrix also shown in [42], where the condition 

number may be defined as: 

le,g 

max 

I2f 
K ( A ) « j p S - , (4.3) 

V IT min 

where A^ and A^ are the largest and smallest eigenvalues of A, respectively. 

Therefore when the eigenvalue spread of a matrix is large, it also implies that the 

condition number of the matrix is large, and hence the matrix is ill-conditioned. 

The primary advantage of solving least squares problems with QR algorithms is not 

speed, but the numerical stability in dealing with a system with eigenvalues \Ue'gl 

instead of the normal equations with eigenvalues |Ue,? . 

The QR decomposition, which is computed using the sequence of Givens rotations was 

covered in chapter 2. Using the alternate form of the QR decomposition where 

QA = R, (4.4) 

the least squares problem of 

Ax = b , (4.5) 

will be solved, which is summarized from [41]. 

The solution of the least squares problem introduces an error in the estimate, especially 

in noisy environments. Hence the error in the estimate is denoted as 

e(i) = dr(i)-x
Hu(i), (4.6) 

where dr{i) is the desired response, x is the least squares solution, and u(z') is the pre-

windowed input samples. As in the RLS algorithm an exponentially weighted factor is 

introduced as a memory factor, so that in non-stationary cases the effect of earlier data is 
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weighted less than the more recent samples. The index of performance with the 

weighting factor now becomes 

£(«) = £*>"-'|e(/)f, (4.7) 
;=1 

where n > L is the input sample length, L is the dimension of the solution, / is a time 

index for the sample data, 1 < i < n, and co is the weighting factor associated with i. 

These definitions are alternately expressed in a vector form. The «xl error vector is 

defined as 

eH(n)U[e(l),e(2),...,e(n)], (4.8) 

while the n x 1 desired response vector is defined as 

bH(n)U[dr(\), </r(2),...., d,(n)), (4.9) 

and the nx« exponential weight matrix is defined as 

A(n) = diag[o)"-\o)"-2,...,\]. (4.10) 

The QR factorization decomposes A, using the unitary matrix Q into an upper 

triangular matrix R. Noting that the Euclidean norm of a vector does not change by the 

pre-multiplication of any unitary matrix, the performance index becomes 

£(H) = |Q(»)A,/2(»)e(»)|f, (4.11) 

where Q(«) is any nxn unitary matrix. Re-writing the error vector as 

e(«) = b(«) - A(«)x(/i), (4.12) 

then introducing the unitary and exponential weight matrices, (4.12) becomes 

Q(») A1/2 (»)e(w) = Q(«) A1/2 (n)b(n) - Q(») Am («) A(«)x(»). (4.13) 

At this point Q(«) is an arbitrary unitary matrix. However, applying the QR 

decomposition to A1/2 («) A(n), for a specific Q(«) it is seen that 

Q(«)A1/2(n)A(n) = 
R(«) 

0 
n>L. (4.14) 
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where R(«) is an LxL upper triangular matrix, and 0 is an ( n - l ) x l zero matrix. 

Using this relation in (4.13), the third term in the equation becomes 

Q(n)Auz(n)A(n)x(n) = 
R(«) 

0 
X ( H ) = 

R(rc)xO) 

0„ , 
(4.15) 

where the result is an n x 1 vector, with 0n_L being a (n - Z) x 1 zero vector. 

If the unitary matrix is partitioned into an Xxn matrix F(n), and an (n-L)xn matrix 

S(«), representing the first L rows, and the remaining rows respectively. With this 

partition the first term on the right hand side of (4.13) becomes 

Q{n)A["(n)b(n) = 
F(w) 

S(«) 
Alu(n)b(n) 

g(«) 
h(n) 

where it follows that the vectors g(n) and h(«) are defined as 

g(«) = F(«)A1/2 (n)b(n), (L x 1 vector), 

and 

h(«) = S(n)A1/2 (n)b(n), ((n-L) x 1 vector). 

(4.16) 

(4.17) 

(4.18) 

Substituting (4.16) and (4.15) into (4.13), the equation may be represented as a 

partitioned vector written as 

Q(n)Alu(n)£(n)--
g(«) 
h(«) 

R(n)x(») g(«)-R(«)x(«)' 

h(«) 
(4.19) 

Hence to minimize the squared norm of the performance index, we determine the least 

solution x(«) that will solve g(«)-R(rc)x(«) = 0. Hence, the squared norm of 

Q(«)A1/2 (n)e(n) will be minimized when 

R(n)i(H) = g(»). (4.20) 

It also follows that the minimum value of the performance index is determined solely by 

h(«) since g(«) - R(n)x(n) = 0, therefore 

«»X*-|h(»)f (4.21) 
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4.2 Adaptive DFDD with the QR Decomposition 

As seen from the previous section to utilize the QR decomposition we require an input 

data matrix A, which will be used as data to determine the optimal filter coefficients 

p = x for the given desired response b . 

The system model is similar to that used for the DFDD scheme in [21]. An JW-PSK 

modulator was assumed, with differential encoding applied. The Rayleigh frequency flat 

fading channel is time selective, with AWGN. Both the noise and fading processes are 

mutually uncorrected complex random Gaussian processes. The fading process is 

correlated in time and modelled using the Jakes model [47]. The appropriate 

normalizations for the fading and symbol energy, as in [21] still applies. The notation for 

system and channel parameters in chapter 3 is also employed in this chapter. 

It was stated in [50], that there was no universally accepted boundary for values of FdT, 

which resulted in fast fading. So in this case it is assumed that for FdT>Q.Q5, fast 

fading occurs. 

A linear prediction filter approach is used, where the incoming data is used to make a 

predictive estimate of the desired response. Similar to the derivation of the RLS-DFDD 

algorithm for adaptive DFDD [22], a linear estimate of the received symbol based on 

decision feedback symbols was used, according to the relation 

rAk-^ = ZpAk~v)Y[a[k-ju]^pvr[k,v], (4.22) 
v=l p=\ v-\ 

where re[A: — 1] was the estimate of the previously received symbol, pv were the filter 

coefficients and a[k-ju] were the decision feedback symbols. It was also seen that 

f[k,v] was defined as in [22]: 

v - l 

r[k,v]Ur[k-v]Y[a[k-iil \<v<N-l. . (4.23) 
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It can be seen that (4.22) is the form of an N-l order linear prediction filter. 

The RLS algorithm implicitly uses data from the start of the adaptive process. However, 

it was shown in the previous section that the data matrix A would explicitly contain 

data from the start of the adaptive process. In (4.22) it is clear that pv will be the 

required solution to the least squares problem, with r[k,v] populating the rows of the 

data matrix A, and the desired response being a vector of received symbols r[k]. The 

least squares problem of Ax = b for DFDD is now represented by fp = r defined 

below: 

r[U] r[l,2] 

f[2,l] ••. 

r[n,\] r[n,2] 

r[l,JV-l]" 

r[n,N-\}_ 

' Pi ' 

Pi 

.PN-I. 

= 

>[1]" 

r[2] 

r[w] 

(4.24) 

where n is the number of information symbols in the entire frame. However, this 

representation is not possible unless decision feedback symbols have already been 

determined. Hence a stacking technique is used to determine the least squares solution as 

the matrix is populated, which can be interpreted as 

r[l,l] r[l,2] 

r[2,l] ••. 

r[k,l] r[k,2] 

r[l,N-l] 

?[k,N-\]_ 

' pm' 
P2[k] 

_pN-m_ 

= 

>[i]" 

r[2] 

r[k] 

(4-25) 

where for each new time index k there is a corresponding vector p that is optimal in the 

mean square sense. In this way decisions are made immediately and can be used as 

decision feedback symbols. This adaptive DFDD detector using the QR decomposition 

is referred to as QR-DFDD. It should be noted that for large n, the performance of QR-

DFDD may not be optimal when compared to recursive algorithms like the RLS because 

the minimum error in estimate, ^(n)min =|h(«)| , where h(n) is an (n-N + \)xN-\ 

matrix. Only TV rows are used for the solution, therefore it is expected that for smaller 

n, the minimum mean square error is smaller than for large n, because of large number 

of rows in h(ri). 
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4.3 Adaptive DFDD with QR Decomposition and Sliding 
Window 

In QR-DFDD, the memory requirement is linearly dependent on the number of symbols 

in the frame. Therefore, for large frame lengths the memory and computational 

requirements of the QR decomposition (if a non-pipelined method is used) become 

large, and hence time consuming. It is also noted that the forgetting factor is 

exponentially weighted, hence for large frame lengths, the decision is dominated by the 

latest data, e.g. if a> = 0.9 the weighting associated for data received 207 before is 

0.122, and after 507 is 0.005. Hence, for larger frame lengths (e.g. 1000 or 10000 

symbols) there are redundant calculations that would not affect the resulting solution of 

the QR decomposition. 

To reduce the memory requirements a sliding window approach is proposed to solve for 

the filter coefficients. This approach introduces another memory constraint w, the size 

of the data window used to compute the least squares solution. The sliding window 

approach used here works out the solution for each window independently, which is 

suboptimal. This sliding window approach is very similar to the method in [51], where a 

recursive update of the basis window through downdating was used. This would be the 

more optimal approach, because there is a relationship between the windows. Therefore, 

more information would be used. This approach however, requires additional 

computation. Other fast sliding window QR algorithms, were discussed in [52], which 

may also be applied to this system, but with additional complexity. 

The least square problem using the independent sliding window approach is now 

represented as 

r[k-m + \,\] r[k-m + \,2] 

r[k-m + 2,\] 

r[k,l] r[k,2] 

r[k-cr + \,N-X\ 

r[k,N-\\ 

Pm 

P2W 

PN-IW 

r[k-zv + \] 

r[k-m + 2] 

r[k] 

(4.26) 
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where for each time instant k a window m of previous data is used to compute the filter 

coefficients of the N -1 order linear predictor. This windowed matrix will be denoted 

Am
k , and the corresponding desired response vector b^. This method is suboptimum but 

the requirements for real time application are clearly met. The RLS algorithm requires 

the direct calculation of the matrix inverse, hence numerical stability comes into 

question. The least squares problem for the windowed DFDD is now written as 

A f c - b r - t f t h - i f , (4.27) 

where the superscript m is the size of the sliding window, and the row dimension of the 
respective matrices. 

r[U] r[U] - r[l,A'-l] 
r[2,l] r[2,2] 

r[n-ll] f[n-lN-l] 
r[n,l] r[n.2] f[n,N-2] r[n,N-l) 

\ pm' 
pm 

PxAk] 
,PHM. 

— 

r[l] 
r[2] 

r[n-l] 
r[n] 

Fig. 4.1 Sliding window operation on the data matrix 

This method of using the QR decomposition and sliding windows is referred to as 

QRSW-DFDD. The sliding window principle applied to DFDD is shown in Fig. 4.1, 

where a constant window is moving over the frame data. A special case of QRSW-

DFDD is m = n-l, then QRSW-DFDD is equivalent to QR-DFDD. It is also evident 

that m > N -1, otherwise the least squares problem would no longer be full rank. 

It is shown [41], that the QR decomposition and the least squares solution can be 

implemented in a pipelined fashion using systolic arrays. Another improvement that can 

be made for high speed real time applications is the use of CORDIC (Coordinate 

.Rotation D/gital Computation) rotations to compute the Givens rotations, discussed 

briefly in [42]. CORDIC rotations are a set of micro rotations based on predefined 

angles, which are a function of the power two. Generally any angular rotation may be 

represented by these micro rotations to some degree of accuracy. The advantage of the 
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CORDIC rotations is that it lends itself to a pipelined implementation, which is 

favourable to VLSI hardware implementation. 

It is also worth mentioning that the exponential weight matrix for this application need 

not be exponential. It may be represented by fixed constants or some other function, 

which may prove useful for application in non-stationary environments. The application 

of the QR decomposition may also perform better in noisy environments since as seen in 

the computation the history of the data is explicitly used. 

In terms of convergence the algorithm is windowed, and computes the least squares 

solution according to the windowed data. Once the windowed data matrix is populated 

then the error norm would already be optimal. It should be mentioned that there is a QR 

based recursive least squares algorithm, outlined in [41]. However, this alternate 

approach with suboptimal sliding windows is simpler. 

4.4 Initialization of the QR based Algorithms 

According to the definitions of the data matrix A = r, the first JV-1 rows are defined in 

terms of r[£,v]. However, in reality this cannot be, because there are insufficient 

feedback symbols to use. Therefore the data matrix will have to be initialized until the 

data matrix is full rank. 

In a differentially encoded transmission scheme the first transmitted symbol is always 

known and does not contain any information, hence with this in mind the least square 

problem actually does not start from k = 1, since there is no feedback available for 

DFDD. Until the required number of decision feedback symbols is available 

conventional differential detection is used. While the decisions are being made using the 

conventional method, the data matrix may be populated according to the definition of 

r[k,v], but the feedback window used for calculating r[k,v] will change until the actual 

intended feedback window is reached. The initialization period is dependent on the order 
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of the filter used, which is also the observation interval. The data matrix and desired 

response vector is ordered as shown 

"f[2,l] 0 ••• 0 

?[3,1] r[3,2] ••. 

; '•. o 
r[N,\) r[N,2] - r[N,N-\] 

This ensures that the QR decomposition may be applied, and it can be seen that the 

initial matrix is lower triangular. Since the estimation is actually for re[k-l], there will 

be decision feedback symbols available for computation of f[k,v]. 

4.5 Summary of QRSW-DFDD 

• Initialize the algorithm according to (4.28) 

• Apply QR decomposition on A^ for each k until window size m is reached, 

then drop oldest row and shift newest data in. 

• Compute least square solution x according to 

o i 4 -R 4 \g(n) 

o ek =bk- Ak
m\k, the residual error 

o e = R \ ¥kA
i
k
2£k, correction factor based on residual 

o xk=xk+e 

• Computing the least square solution without explicitly computing Qk, using only 

o xk=Rk\(Rk
H\(A"k«bk)) 

o e = R t \ ( R / \ ( A ; \ ) ) 

o xk=xk+e 

where B \ C is the left matrix divide operation between B and C. It is equivalent to 

B_1C. 

P = 

r[2] 

r[3] 

r[N] 

(4.28) 
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4.6 Simulation Results 

A 4-PSK constellation is assumed for all results shown. There are two main performance 

factors, the forgetting factor Km
k and the sliding data window size w for the QRSW-

DFDD. In conjunction to these factors, the observation window size N, which dictates 

the order of the filter used. 

The channels are modelled as Rayleigh flat fading channels, with the Jakes model used. 

Genie aided results are the results obtained when perfect feedback symbols are used. 

The frame and window sizes are stated for each subsection, as well as the respective 

forgetting factors. 

4.6.1 Effect of Sliding Window Size 

The results in this section show the effect that the sliding window has on the 

performance of QRSW-DFDD. QR-DFDD as mentioned is a special case of the QRSW-

DFDD with the sliding window size equal to the length of the frame. The results 

displayed use observation windows of N - 3 and N = 5, which is sufficient to 

demonstrate the effectiveness of the QRSW-DFDD algorithm. The results shown in this 

section use a forgetting factor of unity, hence the entire window of data was weighted 

with 1. The frame consisted of 1000 channel symbols, or equivalently 2000 information 

bits. 

In Fig. 4.2, the results are shown for observation window N = 3, with the N = 2, and 

genie aided curves shown as performance bounds for m = N = 3 and rn - 20. The 

results of the genie aided DFDD with optimal coefficients were also shown for 

comparison purposes. In Fig. 4.2, the performance of the QRSW-DFDD was almost 

equivalent with the DFDD genie aided bound with optimum coefficients. At high SNRs 

where the fading dominated the performance, the error floor of QRSW-DFDD is lower 

than the DFDD. 
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Fig. 4.2 Plot of the QRSW-DFDD genie aided bounds. Sliding window sizes of 3 and 20, and 

observation window size ^=3 . DFDD genie aided bound and SDD also shown. 

The performance of QRSW-DFDD with normal decision feedback is shown in Fig. 4.3. 

Erroneous feedback for the QRSW-DFDD severely hinders the performance as seen for 

the ET = N = 3 curve where in noisy conditions the QRSW-DFDD could not adapt. 

However, as m increases the noise averages out and the performance improves. 

The QR-DFDD case clearly illustrates that at low SNRs the performance virtually 

matches that of the DFDD. However, at high SNRs, the tracking performance is 

suboptimal, depicted by the early error floor. This is due to a higher minimum error 

(^(n)nan) with large windows. 
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Fig. 4.3 Plot of the QRSW-DFDD and the DFDD with decision feedback. Sliding window sizes of 3 

and 20, and observation window size N=3. SDD also shown. 

The or = 20 curve nearly matched the DFDD error floor. However, it does not manage 

to completely counteract the effect of noise at the low SNRs. The QRSW-DFDD had 

superior performance than SDD at low noise levels, where the fading was the dominant 

process. The results in Fig. 4.3 suggest that QRSW-DFDD is heavily dependent on 

correct feedback, since the genie aided curves of Fig. 4.2 showed near equivalent 

performance to the DFDD. 

In Fig. 4.4, the genie aided bounds for observation window N = 5 are plotted. The genie 

aided performance bounds improve as the sliding window size increases. The QRSW-

DFDD bounds approach that of the DFDD genie aided bound, but is suboptimal. 

However, it is clear that the performance potential is superior to that of SDD. 
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Fig. 4.4 Plot of the genie aided QRSW-DFDD bounds for sliding window sizes of 5 and 20. SDD 

and the genie aided DFDD are used as performance benchmarks. 

A similar trend for the decision feedback curves of N = 5, shown in Fig. 4.5, is seen. 

The QRSW-DFDD is heavily reliant on correct decision feedback symbols, where in the 

case of m - N = 5, the performance was worse than SDD. However, as cr increased, 

the performance improved and became superior to SDD, while the DFDD with optimal 

filter coefficients maintained the best performance with decision feedback. It is evident 

that choosing the sliding window size is dependent on the SNR, where at low SNRs a 

higher size is preferable; while at the higher SNRs smaller sliding windows may be 

used. 
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Fig. 4.5 Plot of the QRSW-DFDD for sliding window sizes of 5 and 20, for N=S. The SDD and the 

DFDD is shown as performance bounds. 

The DFDD and RLS-DFDD curves were shown to be equivalent in the previous chapter 

for this fading bandwidth, therefore the RLS-DFDD curves were not used for 

comparison. In this slowly time varying, flat fading condition, the RLS-DFDD would 

therefore be superior to QRSW-DFDD. 

4.6.2 Effect of Forgetting Factor 

Although from the definition the forgetting factor matrix is made up of elements that are 

exponentially weighted, it may also be defined using constants. In QRSW-DFDD, due to 

the windowed nature of the algorithm, the forgetting factor should be weighted as high 

as possible, because the decision is based solely on the window, especially if the 

window is small with respect to the frame size. The forgetting factor matrix with 

constants may be written as 
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M% (0.9) = diag {[0.9,0.9,..., 0.9,1]}, (4.29) 

where the latest data were weighted the most with unity. In Fig. 4.6 the impact of the 

forgetting factor matrix was shown for constant matrices, while in Fig. 4.7 the effect of 

an exponential weight matrix is displayed. 

a: 
HI 
CD 

0.96 0.97 0.98 
Constant Forgetting Factor 

0.99 

Fig. 4.6 Plot of BER vs. constant forgetting factor at 60dB, sliding window of 20. The dashed lines 

are for the genie aided cases. 

It can be seen in Fig. 4.6 that for all observation windows, with constant forgetting 

factor the performance degrades. Hence it would be advisable for the QRSW-DFDD to 

maximize the entire possible memory of the data. The same could be said for the 

standard exponential forgetting factor matrix, only the performance degraded more 

sharply, as can be seen in Fig. 4.7. For these results a window m = 20 was used, and a 

normalized Doppler frequency FdT = 0.03. It should also be noted that similar trends are 

seen for lower SNRs, where the BER will degrade to about 0.5 as well. 
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Fig. 4.7 Plot of BER vs. Exponential forgetting factor at 60dB. sliding window of 20. The dashed 

lines are for the genie aided cases. 

4.6.3 Time Selective Fading Conditions 

The reason for introducing the QR decomposition was because it should theoretically be 

more stable in more dynamic environments. Hence in this section fast fading conditions 

are used, and the corresponding performance of the DFDD, RLS-DFDD and QRSW-

DFDD are shown. 
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Fig. 4.8 Comparative plot of RLS-DFDD, QRSW-DFDD and DFDD with optimum metrics, for 

rapid flat fading channel, FdT=0.0S and 7V=3. 

In chapter 3, it was suspected that RLS-DFDD may have unstable and poor performance 

in rapid fading channels. The results for a normalized Doppler frequency of FdT = 0.08 

with N = 3, are shown in Fig. 4.8, where the DFDD, the RLS-DFDD and the QRSW-

DFDD results for a rapid fading channel are compared. In Fig. 4.9, the results with an 

observation window N = 4 are plotted. 

The simulation results for RLS-DFDD confirm that in rapid fading channels the RLS-

DFDD does not match the DFDD with the optimum metric. It is seen, however, that the 

QRSW-DFDD with a sliding window size, m - 20, was nearly equivalent to the DFDD 

with the optimum metric. In a fast fading environment the channel statistics, would be 

changing, and the accuracy of the statistics will be suboptimum, therefore the DFDD 

error floor would be encountered earlier. The performance gap between the DFDD and 
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the QRSW-DFDD is small compared to that of the DFDD and the RLS-DFDD. It is 

therefore favourable to use the QRSW-DFDD in rapid fading environments. 

e — N=4 RLS-DFDD 
•B— N=4 QRSW-DFDD 

0 10 20 30 40 50 60 

Eb
/N0 <dB> 

Fig. 4.9 Comparative plot of RLS-DFDD, QRSW-DFDD and DFDD with optimum metrics, for 

rapid flat fading channel, F,/7=0.08 and 7V=4. 

4.7 Conclusion 

The proposed QRSW-DFDD is marginally inferior to the RLS-DFDD and standard 

DFDD detectors under flat fading conditions. However, QRSW-DFDD showed better 

tracking capabilities at higher Doppler frequencies than its adaptive RLS-DFDD 

counterpart, which is evident from the BER performance curves, for multiple 

observation windows. The results under time selective conditions clearly demonstrate 

that the RLS-DFDD should not be used, while the DFDD due to the large Doppler 

frequencies may not be reliable, hence QRSW-DFDD offers an attractive solution. It is 
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pipelined and does need large memory, while offering a stable performance under both 

time selective and time non-selective conditions. 

The choice of sliding window size is dependent on the noise present in the channel. The 

forgetting factor impacts the QRSW-DFDD significantly. If the sliding window is large 

then a non-unity forgetting matrix may be used. However, when the window is small, 

which would be the most likely case for implementation, it would be more effective to 

use all the data available and have no forgetting factor. 

The rate of convergence of the QRSW-DFDD is dependent on the sliding window size 

EX . The least squares solution is reached soon after initialization period for small sliding 

windows, while for RLS-DFDD, the optimal Wiener solution is approached after 

training, generally about 50 iterations as shown in [22]. This is also the reason that 

QRSW-DFDD experiences the performance loss compared to the RLS-DFDD, because 

the misadjustment is not necessarily small for QRSW-DFDD. 

If ill-conditioned data is used then the RLS-DFDD suffers in performance as illustrated 

by the high frequency curves. The QRSW-DFDD was less susceptible to ill-conditioning 

due to the orthogonal decomposition inherent in the QR decomposition. 

The computational complexity of RLS-DFDD is comparable to that of QRSW-DFDD, 

since for each iteration the inverse matrix had to be calculated, while for the QRSW-

DFDD a series of Givens rotations are applied, dependent on the data window w. 

However, the QRSW-DFDD approach is modular and may be implemented in a 

pipelined fashion for high speed real time processing, which is not the case for RLS-

DFDD. The QRSW-DFDD offers performance comparable to the DFDD under flat 

fading conditions. 

Hence the detection scheme chosen is an engineering trade-off among these various 

factors. It also depends on channel reliability. In a typical mobile communications 

system the channel statistics would have to be updated regularly, hence it may be more 
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viable to implement the adaptive schemes described. In choosing an adaptive DFDD 

scheme Table 4.1, which summarizes the properties of the algorithms, may be used. In 

this way the appropriate trade-off may be made. 

Table 4.1 Summary of Adaptive DFDD Algorithms 

PropertyVDetector 

Rate of Convergence 

Misadjustment 

Robustness/Immunity 

Structure 

Optimal Channel 

Conditions 

RLS-DFDD 

Rapid, approaches Wiener 

solution 

Generally small 

depending on channel 

Susceptible to ill-

conditioned data 

Not highly modular, not 

suited to VLSI 

Time non-selective 

frequency flat fading 

QRSW-DFDD 

Solution in least squares 

form from the start. 

Does not approach Wiener 

solution, hence 

suboptimal 

More stable than RLS 

Highly modular and 

pipelined, suitable for 

VLSI. 

Time selective frequency 

flat fading 
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Chapter 5 

Adaptive DFDM with RLS Algorithm 

The iterative decision feedback differential modulation (DFDM) algorithm of [23], 

exploited the gains of decision feedback differential detection (DFDD) in Rayleigh flat 

fading channels [21]. It was analogously used in the iterative BICM system of the 

DFDM as the inner modulation code. 

Other coded MSD systems were introduced in chapter 2. The DFDM was one of the 

simplest techniques using MSD to address the problems associated with flat fading 

channels. Non-coherent sequence detection [34], did not employ interleaving, which is 

crucial, to mitigating the effects of fading. Hence its application to a fading channel 

would prove less effective. It is evident that the use of hard decision feedback is 

suboptimal, but the computational complexity associated with the SISO algorithms of 

[15], and [37] are extremely high. 

The low complexity iterative DFDM offers many advantages over these non-coherent 

schemes. The soft metrics are computed using simple expressions and the presence of 

the convolutional code increases the error correcting capability of the scheme. The 

DFDM however, is reliant on the channel statistics being known, which in practical 

mobile systems may be inaccurate. In these cases they have to be sampled and updated 

regularly. The accuracy of the channel statistics will affect the soft metrics of the inner 

modulation code adversely as shown in [21]. Therefore, the performance gains over the 

conventional differential demodulation may be suboptimal. An additional drawback of 

the scheme was that at low SNRs, the system was unstable and caused the performance 

to degrade beyond that of conventional non-coherent BICM even with optimal filter 

coefficients. 
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It was seen that an alternate adaptive DFDD scheme with linear prediction equivalent to 

the DFDD of [21], was introduced in [22]. This adaptive scheme utilized the RLS 

algorithm. The adaptive DFDD algorithm is introduced to the DFDM to create a blind 

adaptive iterative DFDM scheme. The performance of this adaptive DFDM should be 

similar to that of the DFDM, because the performance of their uncoded counterparts was 

shown to be equivalent in Rayleigh flat fading channels in [22]. The mathematical 

equivalence between the linear prediction scheme DFDD and the DFDD, was shown in 

chapter 3 of this dissertation. The new adaptive DFDM would not require any channel 

information, which would be advantageous for mobile communications, where channel 

conditions are never constant. 

This chapter is organized as follows. In section 5.1 the derivation of the metric is shown. 

The training routine and iterative decoding procedure is described in section 5.2. The 

issue of convergence for adaptive DFDM is addressed in section 5.3. An alternate form 

of the metric is shown in section 5.4. The simulation parameters are given in section 5.5, 

with the simulation results displayed in section 5.6. Conclusions are drawn in the final 

section. 

5.1 Adaptive DFDM metric 

It should be noted that the discrete time system model and symbol notations used in 3.3 

of this dissertation are used. This channel model is based on the channel model 

described in [23], the notations however, are different. 

Adopting the RLS-DFDD strategy of incorporating decision feedback symbols in the 

decision for calculating the predictor coefficients adaptively is used again. However, as 

mentioned the RLS algorithm has convergence problems under noisy conditions, and the 

convergence may be comparable to the LMS algorithm. It is expected that in the worst 

case, the performance should be worse than the DFDM, but remaining better than 

conventional demodulation. 

88 



Chapter 5 Adaptive DFDM with RLS Algorithm 

The DFDM soft bit metrics may be analogously defined in terms of prediction based 

DFDD [22], where the symbol feedback metric is 

V M D t o g X exp 2 - R e L [ A : ] r * [ ^ M ^ - v ] n ^ - 7 ] } L (5-1) 
a[k]^l

b { { v=l jml J J 
and the bit feedback metric is 

^V] = RJa[k)r'[k]^pAk-v}fla[k-j]\, (5.2) 

where pv is the normalized optimum filter coefficients. These metrics will be referred to 

as the adaptive RLS-DFDM metrics. 

The RLS equations used in RLS-DFDD are defined as: 

a[k] = r[k]-pT
kJk, (5.4) 

J ^ A - J ^ - A - V ^ - P (5-5) 

P/t = Pi-i + k*A«[A:], (5.6) 

where the following parameters are defined as 

rkn[r[k,\],r[k,l],...,r[k,N-\]]T, (5.7) 

pkn[Pl[k]>P2lkl~,pN-m]T> (5-8) 

r[k,v]Ur[k-v]f[a[k-j]. (5.9) 

The same initialization of J0 =Q_1I and p0 =[l,0,...,0]r, as described in [22], is used. 

These will be used in the adaptive DFDM as well. Alternate adaptive techniques have 

been described in chapter 2, but due to the performance equivalence of the RLS-DFDD 

and the DFDD, a performance comparison can easily be shown. 
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5.2 The Iterative Decoding Procedure 

It may be thought that since the DFDD and the RLS-DFDD are equivalent, consecutive 

iterations in the DFDM structure may use the RLS-DFDM metrics. An alternate simpler 

strategy is proposed that uses the convergence property of the RLS algorithm. As in the 

case of the DFDM, the first iteration would entail the use of conventional BICM 

detection. The assumption was made that no channel knowledge is available, hence the 

DFDM detector with N = 2, may be used with an arbitrary constant filter coefficient 

(only 1 coefficient in this case). The filter coefficients may also be estimated using 

inaccurate channel characteristics that may be available. The resulting decisions from 

the Viterbi decoder are feedback for the subsequent training iteration. 

The training iteration utilizes the RLS equations (5.3) to (5.6) for the specified 

observation interval N . This training iteration has a dual purpose, the metrics for the 

next stage of decoding are being calculated, while the optimum filter coefficients pv, 

are simultaneously approached. At the end of the training iteration, pv should be the 

optimal coefficients for the frame of data. The ensuing iterations will use these 

coefficients pv as the filter coefficients for observation windows N > 2 . In this way the 

RLS only needs to be utilized once per frame, decreasing the computational complexity, 

required by continuous use of the RLS algorithm. 

It is seen for the genie aided case the training iteration is also required. The steady state 

coefficients obtained after training should theoretically be close to the optimal Wiener 

solution. Using the steady state filter coefficients an additional iteration is required to 

yield the genie aided performance bound. Although perfect feedback was used for the 

training as well as the decisions made during the training iteration, the training 

procedure might take long to converge. This implies that full performance gain is not 

achieved after just the training iteration. Therefore, an additional iteration using these 

optimum coefficients, in conjunction with perfect feedback should yield the optimum 

performance bound. The iterative procedure is summarized in Table 5.1, where the genie 

aided case will only reach the third iteration. 
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Table 5.1 Summary of Iterative Decoding Scheme for Adaptive DFDM 

Iteration # 

1 

2 

3^END 

• ~ • 

Role in Adaptive DFDM 

N = 2, Standard differential demodulation, determines decision 

feedback for next iteration. 

N>2, Training for observation window N, to estimate optimal 

coefficients pv, 1 < v < N -1 for frame. 

Use pv as fixed predictor coefficients for remaining iterations 

5.3 Convergence of Adaptive DFDM 

The approach used in [23] to illustrate convergence as discussed earlier was to use a 

linear predictor of the two random processes, the fading and the noise respectively. It 

was shown in [22] that statistically the optimal solution for the linear predictor approach 

is the Wiener solution, based on the autocorrelation matrix and noise variance. It was 

also shown in [22] that the RLS-DFDD detector filter coefficients converge toward the 

optimal Wiener solution. Provided during the training iteration the optimal Wiener 

solution is approached then the adaptive DFDM scheme with decision feedback would 

also converge to the genie aided performance bound, just as the DFDM. 

5.4 Alternate Approach to Adaptive DFDM 

As derived earlier the prediction based DFDD metric is equivalent to the standard 

DFDD metric. The prediction based metric is the normalized version of the standard 

DFDD metric, where the normalizing factor is the mean of the error variance. The 

random noise and fading processes are weakly stationary, then provided the frame is 

large; the average mean square error variance of the adaptation process may be 

approximated by the mean square error variance of the frame during the training 

iteration, where 

a2
e=E{\a[kf},\/k, (5.10) 
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hence the metric now takes the form of the standard DFDM metric, with 

?„=-&. (5.H) 

It is seen that for the bit feedback metric A%", there should be no performance difference 

between the normalized metric and the standard metric, because they are mathematically 

equivalent. The symbol feedback metric A^" on the other hand might differ since the 

metric is exponentially weighted and added. However, it was mentioned in [23], that the 

cut-off rates associated with X^"", was marginally inferior to that of A%", so either 

method should have negligible performance difference. 

5.5 Simulation Parameters and Models 

The standard 4-PSK constellation is used, with Gray labelling employed. The BER is 

displayed as a function of the average bit energy-to-noise ratio (Eb/N0). The 

convolutional code used in [23] for the 4-PSK case was a 64 state, half rate 

convolutional code with memory 6 and generator polynomial (133, 171)g. Standard 

Viterbi decoding was applied. For comparison purposes the same conditions are used. It 

was not mentioned in [23], whether zero forcing the trellis to the zero state was 

employed, but it was mentioned in [15], that there is negligible performance difference 

with or without zero state forcing. In this case zero forcing will be used, hence additional 

bit redundancy is added to the information bit frame before convolutional coding. 

Random bit interleaving is assumed, for 4000 bits, hence there are 2000 channel 

symbols. The random interleaving introduces transmission diversity. The Jakes fading 

model is assumed with normalized Doppler frequency of 0.01. The forgetting factor of 

the RLS algorithm was 0.99. It is worth mentioning that the fading generator1 used, 

could drastically affect the resulting BER, especially if trying to replicate the results of 

published work. 

* The actual fading generator used is described in the appendix. 
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5.6 Simulation Results 

The adaptive DFDM yields better results than the standard DFDM as depicted by the 

two plots Fig. 5.1 and Fig. 5.2, where the genie aided case and normal decision feedback 

cases are investigated, respectively. The curves for the genie aided adaptive DFDM are 

achieved after 1 training iteration as described earlier, while the normal decision 

feedback results are achieved after 5 iterations. 
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Fig. 5.1 Comparative genie aided BER curves for the adaptive DFDM and the DFDM. 

In Fig. 5.1 only the genie aided cases are investigated to see if there is a possible 

improvement in the ideal feedback bound. It is seen that the genie aided case for the 

adaptive DFDM (ADFDM in the graphs) shows improvement for both observation 

windows N = 3 and N = 5, with a reduction in the error floor. 
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The performance of DFDM was achieved using the optimal statistical coefficients for 

the channel, which is assumed known at the receiver. However, the adaptive DFDM 

scheme adapts to the actual channel variations, therefore with the noise and fading 

variances being large in comparison to that of the DFDD, the statistically determined 

fixed coefficients do not achieve optimal performance for the DFDM. It was shown that 

the metrics are mathematically equivalent, therefore the only difference between the 

adaptive and fixed metric are the filter coefficients. Since the adaptive DFDM results are 

better than the DFDM, the adaptively determined coefficients are more optimal than the 

fixed coefficients determined statistically. 

In Fig. 5.2, the performance of the adaptive DFDM with decision feedback symbols is 

shown. The plot displays a comparison between the adaptive DFDM and the DFDM. 

The results for adaptive DFDM are achieved after 5 iterations, while those for the 

DFDM after 4, just as in [23]. If the training iteration is excluded from the iteration 

count then the adaptive DFDM should exhibit similar performance gains after the same 

number of iterations as the DFDM. It is for this reason that the number of iterations used 

for the adaptive DFDM was 5. 

As can be seen in Fig. 5.2, like the genie aided case the adaptive scheme performs better 

than the standard DFDM for both observation windows, N = 3 and N = 5. It was also 

noted that at the lower spectrum of SNRs, for observation windows N>2, the 

performance diverges from the N = 2 case for the standard DFDM. The adaptive 

DFDM on the other hand does not, and remains below that of the N = 2 case for both 

observation windows, remaining more stable than the DFDM. 
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Fig. 5.2 Comparative BER curves for the adaptive DFDM and the DFDM with decision feedback 

after 5 and 4 iterations respectively. 

The adaptively determined coefficients are yet again the only difference between the 

DFDM and the adaptive DFDM schemes, while the simulation parameters remained 

constant. The adaptive DFDM offers stability at the low SNRs, while the error floor is 

reduced and convergence is achieved for a larger range of SNRs. 

In [23], it was seen that for larger observation windows the performance in the low SNR 

region is expected to be worse than smaller observation windows through the 

convergence analysis. In the case of the adaptive DFDM, the adaptive process seems to 

compensate for the larger noise levels, and allows the adaptive DFDM to maintain 

performance better than that of the standard BICM. 
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In Fig. 5.1 and Fig. 5.2, the adaptive DFDM was compared to its fixed coefficient 

counterpart, the DFDM. It was seen that the adaptive DFDM offers stability at low 

SNRs and a reduction in the error floor. Based on these results it is worth investigating 

the filter coefficients that are achieved after the training iteration. 
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Fig. 5.3 The filter coefficients reached over 100 frames of training for N=3 with Fd7=0.01 at lOdB. 

The optimal Wiener Coefficients are also shown 

In Fig. 5.3, the filter coefficients that are reached after the training iteration are 

compared to the optimal Wiener solution. It can be seen that the values do not always 

converge to the Wiener solution. The results were shown for an SNR of lOdB, where the 

fading dominates the performance. It was calculated that the mean of the trained 

coefficients after 1000 training iterations were 0.4674 and 0.4653 for pY and p2 

respectively. This is close to the optimal normalized solution of ^=0.5144 and 

p2 = 0.4378 , however, the standard deviation about the mean value was calculated to be 

0.04, which is relatively large. The performance improvement is therefore due to the fact 
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that the statistics do not accurately depict the optimum performance per frame. The 

adaptive scheme is trained to the optimal solution for each frame, and hence better 

performance is achieved. It was seen in Fig. 5.3, that the coefficients deviated a great 

deal from the optimal solution in some cases. 

These results reinforce the necessity for accurate statistics for even a coded decision 

feedback scheme. In the case of the adaptive DFDM a superior performance is achieved 

because in general the filter coefficients are more optimal for the frame instead of the 

statistically determined fixed coefficients. 

In Fig. 5.4 the convergence of adaptive DFDM scheme is seen after subsequent 

iterations. It is seen that for the training iteration there is virtually no difference between 

the N = 3 and N = 5 curves. The majority of the gain occurs in the iteration after 

training and in smaller increments thereafter. As noted before, the iterations in general 

seem to converge in areas where the standard DFDM diverges for larger observation 

windows. The solid lines are for observation window A7 = 3, while the dashed lines 

represent observation window N = 5. The genie aided bounds are also shown to 

illustrate the achievable performance gains through normal decision feedback. 
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Fig. 5.4 Plot of BER convergence for adaptive DFDM, 4 iterations for ./V=3 (solid lines), while 5 

iterations for 7V=5 (dashed lines). 

In Fig. 5.5, the results for the adaptive DFDM are summarized, and it can be seen that 

the decision feedback curves converge to the genie aided case. It is seen that the 

adaptive DFDM with decision feedback performs better than the DFDM genie aided 

bound for both observation intervals at high SNRs due to the flooring of the DFDM. A 

similar occurrence of early flooring occurs in the DFDD with even marginally 

suboptimum coefficients as illustrated in chapter 3. 
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Fig. 5.5 BER of adaptive DFDM with genie aided performance bounds. Coherent detection with 

perfect CSI is also shown. 

5.7 Conclusion 

The new blind iterative DFDM scheme performs in a more robust manner than the 

standard DFDM. Not only did it remain convergent at the lower SNRs, but it also 

performed better at the high SNRs. 

The adaptive DFDM has increased complexity due to the RLS algorithm, but this occurs 

only for one iteration, while the remaining iterations have the same complexity, since a 

fixed coefficient is used. This adaptive DFDM does not require any channel state 

information, nor does it require the channel statistics, like the DFDM. In addition the 

training does not require pilot symbols therefore the adaptation is blind. 
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The convergence and performance gains were confirmed through simulation. This new 

iterative structure of adaptive DFDM may be utilized in alternate iterative decision 

feedback detection structures. 

The adaptive DFDM scheme maintained the advantages of the DFDM, while improving 

the overall performance, and making the performance robust at lower SNRs. 
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Conclusion 

6.1 Conclusion of Dissertation 

The idea behind this dissertation was to investigate non-coherent detection through the 

use of multiple symbol detection (MSD) for flat fading channels. A novel and simple 

scheme employing decision feedback over a multiple symbol observation window, 

proved an effective strategy for the frequency flat Rayleigh environment, often 

encountered in mobile wireless channels. This system was the DFDD introduced in [21]. 

The core of the work presented in this dissertation revolves around this decision 

feedback principle. In chapter 2, relevant literature involving MSD was reviewed, and 

the DFDD principle stood out as a favourable MSD technique. The literature covered 

papers for the uncoded differential detection; the channel encoded differential detection 

schemes; as well as some multi-antennae differential schemes. The Linear filter theory 

for linear prediction filters were additionally summarized since these were employed in 

the DFDD, and the other DFDD schemes. The DFDD, the alternate linear prediction 

DFDD scheme of [22], and the associated adaptive DFDD scheme using the RLS 

algorithm were summarized and replicated through simulation in chapter 3. These 

performance results were later used for comparison purposes. The performance penalty 

of inaccurate channel statistics was also seen and noted. The equivalence of the DFDD 

([21]), and the alternate DFDD ([22]), for Rayleigh channels was derived. To the authors 

knowledge this equivalence was not shown in any published literature reviewed. 

An alternate adaptive scheme is proposed in chapter 4 for uncoded DFDD. In this new 

adaptive algorithm, the numerically stable, pipelined QR decomposition was utilized to 

offer a stable and efficient algorithm for differential detection. This system is referred to 

as QR-DFDD. However, memory requirements were inhibitive, therefore an alternate 
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simpler QR based algorithm using sliding windows was introduced. The sliding window 

DFDD algorithm (QRSW-DFDD), was less memory intensive, and still maintained the 

highly pipelined architecture associated with the QR decomposition. 

The performance of QR-DFDD and QRSW-DFDD was suboptimal in normal flat fading 

conditions, but remained comparable to the DFDD and the adaptive DFDD algorithms. 

The QRSW-DFDD proved superior to the adaptive DFDD in [22], referred to as RLS-

DFDD, in the time selective fading channel. The performance was near the optimal 

DFDD performance in these conditions. In fast fading conditions the QR based 

algorithms are advantageous. The channel varies rapidly in time, and the channel 

statistics are harder to determine in this case. The adaptive algorithms do not require 

training or any pilot symbols, hence the adaptation is blind. 

In summary the QR based DFDD algorithms offered all round performance that was 

comparable to the DFDD, for time selective or time non-selective fading. The QR based 

algorithms were simpler to compute, offered highly pipelined implementations, and 

were suitable to VLSI. The adaptive process is blind, therefore the performance does not 

need any channel information, statistics or pilot symbols. 

An iterative coded system utilizing the DFDD principle was introduced in [23], called 

iterative decision feedback differential demodulation (DFDM). The DFDM offered large 

performance gains, while using metrics that were computationally simple for frequency 

flat fading channels. In chapter 5, an alternate approach to DFDM was introduced; it 

utilized the RLS algorithm in an adaptive scheme to maximize the gains of DFDM, over 

conventional bit interleaved coded non-coherent detection. 

An alternative iterative decoding procedure was proposed, which required the 

application of the RLS algorithm for a single training iteration, minimizing the 

additional complexity, on the adaptive DFDM. The performance was expected to be 

similar to that of the DFDM, but the adaptive DFDM scheme proposed offered 

improved performance at higher SNRs, while maintaining stability at low SNRs. An 
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additional advantage of this scheme was that the channel statistics were no longer 

required. The adaptive scheme was therefore totally ignorant of the channel. It also had 

the same properties of the RLS-DFDD, where no pilot symbols are required, and hence 

the adaptive process was blind. 

The aim of this dissertation was to investigate MSD. The pertinent literature in this area 

has been reviewed. The decision feedback schemes that form the foundation of this 

dissertation were summarized and replicated through simulation. Two new adaptive 

approaches to non-coherent detection using MSD and decision feedback were 

introduced. The performances of these systems were compared to relevant literature. The 

advantages of these new schemes were highlighted. 

6.2 Future Work 

Theoretical performance analysis of the iterative DFDM would be useful. However, the 

combination of interleaving, convolutional coding, decision feedback and non-coherent 

detection offers many difficulties. 

The application of these adaptive algorithms has been limited to the single user, and the 

single antenna cases. These adaptive algorithms may offer improved performance in 

multi-antenna systems. In deep fades the concept of cooperative diversity is another 

diversity method that may be employed. 

The application of MSD has been restricted to the AWGN channel, the Rayleigh fading 

channel or the Ricean channel. This is due to the complexity of the analysis using other 

models. Alternate channel models may be used and investigated e.g. Nakagami m-

distributions. The application of multiple symbol decision feedback for channel 

equalization may also be a subject of interest. 
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An alternate MSD technique for differential detection, using the Karhunen-Loeve 

expansion was described in [28]. It may be possible to exploit this expansion to employ 

the decision feedback principle. 

The reduced complexity algorithm for multiple symbol differential detection was 

introduced in [26]. This may be applied to the MSD techniques available for fading 

channels. The complexity should be comparable to that of [29] in the uncoded case. It 

may also be introduced to reduce the trellis complexities in [15, 34]. 

In conclusion, the results are very encouraging for the application of adaptive algorithms 

in MSD non-coherent detection. These other research topics may prove fruitful areas for 

future work. 
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Appendices 

A: Rayleigh Fading Generation Method 

Using the following equations an accurate Rayleigh Fading generator is developed. M 

is the number of sinusoids, Fd the maximum Doppier frequency and T the symbol 

period. This is based on the Jakes Model outlined in [47]. 

Assuming N = AM + 2, and wd = 2nFdT, the fading gain is 

h[k] = ur[k] + ju,[k], (A.l) 

where 

2 M /— 
ur [k] D —r== ̂  a„ cos(wn [ k]) + V2 cos(;r / 4) cos(wd), (A.2) 

and 

2 M 

u,[k]U ^=^bncos(wn[k]) + y[2sm(7r/4)cos(wd). (A.3) 

The coefficients are defined as 

a„ =2cos/?„] 
"\n = \,2,...,M, (A.4) 

and 

with 

j3„=^,n = l,2,...,M, (A.5) 
M 

wn = wd cos(—-) . (A.6) 
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