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Abstract 

The desire for precise polymer property control , minimum wastage through grade transitions, 
and early instrument fault detection, has led to a significant effort in the modelling and control 
of ethylene polymerisation world·wide. Control is difficult due to complex inter-relationships 
between variables and long response times from gas to solid phase. 

The approach in this study involves modelling using the kinetic equations. This forms the 
basis of a scheme for real-time kinetic parameter identification and Kalman filtering of the 
reactor gas ·composition. The scheme was constructed off-line and tested on several 
industrial polymer grades using historical plant data. The scheme was also converted into a 
form for use on the linear low-density polyethylene plant, Poly 2, at POll FIN Limited. 

There proved to be no difficulty in the identification step, but the Kalman filter requires more 
tuning for reliable fault detection. The software has been commissioned on-line and results 
from the POLlFIN plant match the off-line model exactly. 
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Preface 

POL1FIN initiated this project in an attempt to explore different advanced control techniques 
with the view of improving polyethylene product quality and throughput, as well as plant 
stability and operability. Commercial quality control packages are extremely costly and use 
published methods. By funding MO postgraduate research studies, it was hoped that a novel 
solution would be found. 

The investigation required close co-operation with the Process Control engineers at POLlFIN 
Ltd., Nirmal Narotam and eilius van der Merwe. During the study. the plant in Sasolburg was 
visited frequently in an attempt to gain a better understanding of the Poly 2 process and, at a 
later stage, to commission the software on-line. 

Other studies and off·line simulations were carried out in the postgraduate offices of the 
School of Chemical Engineering at the University of Natal, Durban under the supervision of 
Professor Michael Mulholland. 

This research study comprises 80 cred its, with the remaining 64 credits being filled by 
appropriate coursework. The completed coursework is listed below, with the corresponding 
credit weightings and results achieved: ,. 
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This was the first time that the process control group has had a coursework component within 
the faculty. The coursework was very beneficial in that it provided an introduction to the 
concepts of process control. Algorithms discussed in lectures were used in assignments as 
well as in this research study. 

The work contained in this document, except where otherwise stated, is my own work . 
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CHAPTER 1 

Introduction 

The global plastic consumption for 1999 was 147 million tons. Of this consumption, 72 % was 
polyolefins (mainly polyethylene, polypropylene or polystyrene) and 45 % was polyethylene 
((Davidovici 2000). 

POll FIN Limited is the largest producer of linear low-density polyethylene (LLDPE) in 
Southern Africa ahead of SAFRIPOL, its principle competitor. The Poly 2 plant in Sasolburg 
produces LLDPE. LLDPE has established itself as the third major member of the world 
polyethylene business (Schumacher 199B). Its consumption has grown substantially to 
exceed 10 million metric tons in 1999. Projected consumption in 2005 is 15 million tons. 
There are strong indications that the polyethylene market, and in particular the LLDPE 
market, is set to grow well into the future. 

The LLDPE produced by Poly 2 is mainly used for the production of plastic bags, a 
commodity that should be in demand for the next few years at least. The UNIPOL gas-phase 
process also has the capability of producing resins with different grades that can be used in 
the manufacture of products such as plastic sheeting and piping. 

With these factors in consideration it seems reasonable to assume that the Poly 2 plant 
should have a sufficient market for its LLDPE products in the near future. This warrants 
attempts to improve the control strategies on the plant, increasing profitability. 

1.1 Layout of this Thesis 

Chapter 1 introduces the reader to polyethylene, its various derivatives and the corresponding 
commercial polymerisation processes used in its manufacture. The chapter following this 
looks specifically at the Poly 2 process that was used for the investigation. It a lso looks 
closely at ethylene polymerisation with respect to the reactions that occur to allow polymer 
growth. Chapter 3 presents a comprehensive literature review on issues pertaining to the 
current problem. It also covers the complex theory behind polymerisation as well as the 
theory of the advanced control techn iques employed in the project. Chapter 4 focuses on the 
current control techniques used at Poly 2 and outlines the control problem. The next chapter 
is used to formulate the control algorithm and outlines its objectives. The following two 
chapters (6 and 7) present the off-line (in Durban) and on-line (at Poly 2) applications of the 
observation application. Finally some conclusions are drawn in chapter 8. 

1.2 Polymerisation Processes 

In characterising any polymerisation process, certain factors need to be considered. The 
monomer used is the first factor. The reaction medium can be emulsion, solution 
heterogeneous, gas-phase or bulk. Also the type of catalyst used is important 
(heterogeneous or homogeneous). The types of reactors investigated also vary: batch, semi­
batch, tubular, continuous stirred tank reactors (CSTR), continuous fluidised bed reactors 
(CFBR) and continuous stirred autoclave reactors. Lastly there are three types of 
polymerisation reactions that may occur. They are homopolymerisation, copolymerisation 
and terpolymerisation. 

Due to the fact that the investigation is of POLlFIN's Poly 2 process, the parameters to be 
investigated have already been set. Poly 2 manufactures linear low-density polyethylene 
using a titanium-based Ziegler-Natta catalyst and an o.-olefin comonomer (1 -butene or 1-
hexene). The catalyst itself has multiple active sites and this gives rise to broad chain length 
and copolymer composition distributions. These distributions affect the polymer properties 
that govern its end uses. . 



CHAPTER I INTRODUCTION 

1.3 The World of Polyethylene 

Polyethylene is a polymer made using the mono mer ethylene. It is probably the most 
commonly encountered polymer in everyday life and it is used to produce grocery bags, 
shampoo bottles, children's toys, and even bulletproof vests. The chain structure is relatively 
simple, in fact the simplest of all commercial polymers. A molecule of polyethylene is simply 
a long chain of carbon atoms, with two hydrogen atoms attached to each carbon atom (figure 
1.1 ). 

H H H H H H H H H H H 

~b-b-6-b-b-b-b-6-b-b-6~ 
I I I I I I I I I I I 

H H H H H H H H H H H 

Figure 1.1: The Chain Structure of a Polyethylene Molecule (Michalovic, Anderson et al. 1996) 

The main carbon chain often has long chains of polyethylene attached to it. This is called 
low--density polyethylene (LDPE). Hydrogen can act as a chain-terminating agent and this 
type of polyethylene with controlled branching is known as linear low-density polyethylene 
(LLDPE). When tllere is no branching, it Is called linear polyethylene, or hlgh-density 
potyethylene (HDPE). Linear polyethylene is much stronger than branched polyethylene, but 
branched polyethylene is cheaper and easier to make. 

Linear polyethylene is normally produced with molecular weights in the range of 200 000 to 
500 000, but it can be made even higher. Polyethylene with molecular weights of three to six 
million is referred to as ultra-high molecular weight polyethylene, or UHMWPE. This form of 
polyethylene has the ability to replace kevlar in bulletproof vests (Michalovic, Anderson et al. 
1996). 

Branched polyethylene is made by free-radical vinyl polymerisation. Linear and linear low­
density polyethylene is made by Ziegler-Natta polymerisation. UHMWPE is made using 
metal10cene catalysis polymerisation. 

1.3.1 Classification, Properties and Uses 

Polyethylene (PE), or polythene as it is sometimes called, is the largest synthetic commodity 
polymer in terms of annual production (Xie, McAuley et al. 1994). It has highly versatile 
chemical and mechanical properties, depending on the molecular structure of the material. It 
is non-toxic and enjoys a wide range of application, including supermarket bags, milk sachets 
and frozen food packaging, stretch film, lamination, tanks, heavy-duty sacks and roto­
moulded objects. Figure 1.2 below from James (1986) and Foster (1991) illustrates this well. 

2 
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Figure 1.2: Applications of low-pressure polyethylene «James 1986) and (Foster 1991)) 

PE has been classified into four groups, based on density, by the American Society for 
Testing and Materials (ASTM): 

• Low density: 
• Low density (also): 
• High-density copolymers: 
• High-density homopolymer: 

910 - 925 kg/m' 
926 - 940 kg/m3 

941 - 959 kg/m' 
910 - 925 kg/m3 and above. 

Normally it is simply referred to as low-density polyethllene (LOPE) at 910 - 930 kg/m3 or 
high-density polyethylene (HOPE) at 931 - 970 kg/m. LOPE can be classified as high­
pressure low-density polyethylene (HP-LOPE) and linear low-density polyethylene (LLOPE). 
This is based on the polymer chain structure and its degree of branching. These two resins 
share the market and are mainly used for manufacturing films. 

Referring to figure 1.3 below, HOPE has few or no short chain branches and as a result it is 
very rigid. Therefore it has structural applications like piping and sheeting. 

Figure 1,3: Schematic showing chain structures of commercial polyethylene types 

LlDPE is formed by copolymerisation with an a-olefin (1-butene or 1-hexene). The orderly 
behaviour of the chain is disrupted in that copolymer molecules are incorporated into the 
chain and this leads to a short chain branching effect. HP-LOPE has a high degree of short 
and long-chain branching and this ensures good processability . It is tough whilst still 
transparent and it is this feature that makes it suitable for thin film applications. Interestingly, 
the Poly 1 plant, adjacent to Poly 2, produces this polymer. 

3 



CHAPTER 1 INTRODUCTION 

1.3.2 Gas-phase Polymerisation 

Polyethylene can be produced by at least five commercial processes: tubular, autoclave, 
solution, slurry and gas phase polymerisation. Of these, the gas phase and solution 
processes commercially produce LLDPE. The gas phase process is the most modern and is 
very popular due to its high versatility (it can produce PE with densities of 910 - 970 kg/m3 

and with melt indices of <0.01 - 200g/10min). Other advantages include good temperature 
control, low operating costs and good comonomer incorporation. With every process there 
are some disadvantages. Large amounts of off~spec product can be produced, fouling can 
occur, control is complex and a good catalyst design is required. 

There are 56 technologies and processes in commercial use, many of which are available for 
licensing. In fact no two licensed processes have identical capabilities and no combination of 
catalyst and process is able to offer all things to all people (that is low capital and operating 
costs, product and process flexibility and low environmental impact) (Davidovici 2000). Many 
new polymer grades are introduced every year due to the continual development of catalysts 
and the new processes available. Union Carbide has patented a gas~phase process called 
the UNIPOL process. This process has been licensed worldwide and it is used at Poly 2. 
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Figure 1.4: The UNIPOL (Union Carbide Gas-phase Ethylene Polymerisation) process 

The reactor vessel consists of a straight section (the reaction zone) and an expanded section 
(the disengagement zone). The latter allows the fluidised pOlymer particles to disengage from 
the reactant gas. Unreacted gases are combined with the fresh feeds and recycled to the 
base of the reactor. Due to the highly exothermic nature of the reaction. heat must be 
removed from the cycle gas stream. This is achieVed via a cycle gas cooler, which uses 
tempered water as a cooling medium on the shell side. Conversion in the reactor per pass is 
very low (2-3 %) therefore the recycle gas stream is much larger than fresh feed streams. A 
cycle gas analyser is located at the top of the reactor and it indicates the recycle gas 
composition. Fresh feed can then be added to maintain a constant gas composition within 
the reactor. 

1.3.3 Catalyst History and Development 

In Britain in the 1930's it was discovered that a 'waxy white solid ' could be synthesised with 
ethylene at high pressure. It was subsequently discovered that oxygen was needed in the 
reaction and its role was believed to be the creation of free radicals for polymerisation. This 
type of polymer produced by free-radical polymerisation is now known to be Hp·LDPE. 
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It was also in 1930 that the first unintentional catalysed synthesis of PE occurred in the 
laboratories of C.S. Marvel, a polymer chemist (Coville 1999). The reaction took place at 
atmospheric pressure and it involved ethylene and a lithium alkyl. The reaction was not 
researched further though. During the 1940's no real effort was made to pursue this 
polymerisation reaction under mild conditions. 

The polymerisation world was revolutionised in the early 1950's when Karl Ziegler (Germany) 
and Guilio Natta (Italy) reported formation of polymers under mild conditions in the presence 
of a transition metal catalyst. This gave birth to the industrially used Ziegler-Natta catalyst. 
Since then the subject of catalysis in ethylene polymerisation has been the most active area 
of research in laboratories around the world . A good catalyst is instrumental in order to 
succeed at gas-phase polymerisation. It should have a high productivity , induce proper 
kinetic behaviour, have the correct morphology, control the polymer morphology, incorporate 
the comonomer; it should be reproducible at low cost and it should be easy to feed to the 
reactor. The catalyst should also be capable of controlling polymer properties. These include 
molecular weight and molecular weight distribution, density, chain branching and particle size 
distribution, particle size and polymer chain unsaturation (Xie, McAuley et a1. 1994). Ziegler­
Natta catalysts consist of a transition metal salt of metals from group IV to VIII e.g. TiCI3 (the 
catalyst) and a metal alkyl base from groups I to III e.g. AIEhCI, AIE~ (the cocatalyst). For 
industrial applications titan ium salts and aluminium alkyls are normally used (Hamielec and 
Soares 1996). This catalyst is used to manufacture HOPE and LLD PE. 

A type of catalyst currently undergoing major research is the metallocene or homogeneous 
catalyst. At the time of writing, $3.2 billion U.S. had already been spent in this area 
(Davidovici 2000). A metallocene is a positively charged metal ion incorporated between two 
negatively charged cyclopentadienyl anions. Without going into too much more detail, these 
catalysts offer numerous advantages over the heterogeneous catalysts. Among others, these 
are low extractables, improved physical properties, improved clarity and a better heat seal. 
Disadvantages include high costs, poor processability, low melt strength and melt fracture. 
These first two deficiencies are the major reasons why metallocenes have not penetrated the 
market, despite the hype and good results. 
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CHAPTER 2 

The Poly 2 Process 

POLlFIN Ltd. has four plants in three major provinces across South Africa: Sasolburg (Free 
State), Secunda (Mpumalanga). Umbogint..vini (Kwazulu-Natal) and Witbank (Mpumalanga). 
The Witbank works produces calcium cyanide, which is used in gold recovery. In Secunda 
the plant produces potypropyJene. Products produced at Umbogintwini are Chlorine, 
Cereclor, Sodium hypochlorite, Sodium hydroxide and Hydrochloric acid. Trichloroethylene is 
no longer produced there. The other products shown in figure 2.1 below are produced on the 
Midland plant in Sasolburg, with the exception of polypropylene, which is only produced in 
Secunda. 
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Figure 2.1: POll FIN's Main Production Units 

The main feedstock used in the process at Poly 2 is ethylene, which is supplied from the 
nearby SASOL plant. This supply of ethylene can vary as a result of fluctuations in SASOL's 
production. On the Midland site the Poly 1 plant, which produces LOPE (under extremely 
high pressure, using four independent reactors), has priority for the available ethylene 
feedstock. The remaining ethylene is then used by Poly 2. The reason for this is that the 
market demands for LOPE are more favourable than for LLD PE. Comonomer (1-butene or 1-
hexene) is supplied from Secunda via rail cart. 

Until recently only butene was used but after a R53-million upgrade project the plant can now 
use hexene as a comonomer. This is in line with international trend of increased demand for 
hexene-LLDPE. The project was commissioned in mid-year of 1998 and ensures that a wider 
range of polymer grades, with good mechanical properties can be produced. Production 
capacity should also increase from 85 000 t/a to 105 000 tla (Royle and Rackham 1998). 
Elsewhere in the world, some manufacturers are starting to use octene as a comonomer. 

2.1 Process Description 

The feed to the reactor consists of ethylene, comonomer, hydrogen and nitrogen. These 
gaseous feed streams enter the cycle gas line upstream of the cycle gas cooler. The 
ethylene flow is manipulated to maintain reactor pressure and the comonomer and hydrogen 
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flows are ratioed to this ethylene flow. The gases in the cycle gas line supply reactants to the 
growing polymer chains and provide the fluidisation and heat transfer media. 

Catalyst and cocatalyst are also fed continuously into the reactor. The catalyst is a 
heterogeneous (titanium~based) Zieg ler~Natta type and due to its high reactivity, only small 
feeds are required. These feeds are delivered from two feeders that operate simultaneously. 
The cocatalyst is triethyl aluminium (Teal, AIE~). There are two families of catalysts used, an 
M~catalyst and an F~catalyst. These produce M and F·resins respectively. Resin is simply a 
colloquial name for the product polymer. 

The UNIPOL fluidised bed reactor is designed to produce 19 Uh of polymer. The reactor 
vessel consists of a straight section and an expanded section. The latter allows the fluidised 
polymer particles to disengage from the reactant gas. The typical weight of a bed of 
polyethylene in the reactor is 35 tons. A distributor plate is inserted at the base of the vessel 
to distribute gas evenly throughout the bed and to hold the bed, should fluidisation be lost. 

Figure 2.2: Poly 2's UNIPOL reactor 

Cycle gas 
line 

Oegassing 
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Expanded 
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Straight 
section 

Unreacted gases are combined with the fresh feeds and recycled to the base of the reactor. 
A cycle gas compressor circulates these gases through a 30·inch line at a rate of 500 Uh. 
Due to the highly exothermic nature of the reaction, heat must be removed from the cycle gas 
stream. This is achieved via a cycle gas cooler, using tempered water as a cooling medium 
on the shell side. Conversion in the reactor per pass is very low (2~3 %) therefore the recycle 
gas stream is much larger than fresh feed streams. Polymer is periodically discharged from 
the reactor through a slide valve into one of two product discharge systems. These operate 
alternately. The product is degassed and proceeds to the extruder, where additives are 
included and pelletisation occurs. Figure 2.3 below illustrates this more clearly. 
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Figure 2.3: Diagram of the UNIPOL Poly 2 polymerisation process 

2.2 Polymer Growth 

- -- -

Figure 2.4 (Xie, McAuley et al. 1994) below classifies the polymer yields at various stages of 
the polymer growth. 

Catalyst 
Particle Low Polymer 

Yield Mediate 
Polymer Yield 

High Polymer 
Yield 

Figure 2.4: Schematic of the polymer growth on a catalyst particle (Xie, McAuley et a1. 1994) 

A catalyst particle is porous in nature and is composed of microscopic particles. These are 
called primary particles and are bonded by van der Waals forces. They provide the interstitial 
spaces required for a large surface area. 

A mono mer will diffuse through these spaces and adsorb onto the active sites. The polymer 
then precipitates and forms around the primary catalyst particles by the propagation reaction 
(explained in section 2.3). In this way the interstitial spaces are slowly fi lled up. When the 
stress between the particles becomes too great the primary particles, covered in polymer 
chains, separate. 

The polymerisation process is highly exothermic and the temperature within the catalyst 
particle may increase rapidly. causing some of the polymer chains to fuse together. The final 
polymer particles are eventually 200-500 microns and consist of aggregates of primary 
particles. The shape is governed by the degree of annealing and distorting forces 
experienced during growth. 
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2.3 Chemistry: Polymerisation Reactions 

There are a wide range of reactions that occur during the polymerisation process. There has 
been a great deal of research on Ziegler-Natta catalyst kinetics but to date there is no definite 
set of reactions that fully describe ethylene copolymerisation. Models that have been 
developed are based on a site balance and are very complex. The existence of multiple 
types of active sites makes logical sense but has yet to be proved fundamentally. It has been 
established that there are four main stages involved in the formation of polymer, namely 
formation, initiation, propagation and transfer. Deactivation and other reactions also occur. 
Assuming that all the sites exhibit the same mechanisms but at different reaction rates. the 
commonly used set of reactions is given below (Shaw, McAuley et al. 1998). 

The organometallic cocatalyst, AIE~. activates the potential active sites of type j, N*U) (2.1 
below). Monomers of type k, Mk then join onto these activated sites to form a living polymer 
chain of length 1, Nk (1 ,j) (2.2). This small chain propagates, with monomers, Mk joining onto 
the end of the polymer chain (2.3). Transfer reactions are able to displace a chain to form a 
dead polymer segment of length t. These take place via hydrogen, mono mer, and cocatalyst 
and can also occur spontaneously (2.4)-(2.7). Sites with monomer, hydrogen, cocatalyst or 
nothing attached to their active centres can be deactivated into dead sites, Nd U)(2.8). 
Reactions with impurities also affect the polymerisation process. These impurities block the 
respective active sites and the equations are given in equation (2.9). Impurities can be 
desorbed at a later stage (2.12). Sites with hydrogen or cocatalyst attached can also be 
displaced by monomer (2.11). Alternatively the hydrogen can be released (2.10). 

Active Site Formation: N *(j) + R *,(j» N(O,j) 

Initiation: N(O,j) + M. "(j» N.(l,j) 

Propagation: M(l,j) + M. "'(j» N.(l + l,j) 

Transfer to Hydrogen: M(l,j) + H, "'(J) NH(O,j) + Q(l,j) 

Transfer to Monomer: M(l,j) + M. ".(j» N.( l ,j) + Q(l,j) 

Transfer toCocatalyst: M(l,j) + R ~(j» NR(O,j) + Q(I,j) 

Spontaneous Transfer: M(I,j) "'(j» NH(O,j) + Q(l,j) 

Spontaneous Deactivation; N;(l,j) "-<J) Nd(j) + Q(I,j) 

Reactions with Poisons: 

N(O,j) 

NH(O,j) 

NR(O,j) 

"'" ) Nd(j) 

"'" ) Nd(j) 

"'11 ) Nd(j) 

N;(l,j)+!In "'I» NdlH(O,j) + Q(l,j) 

NH(O,j) + Im "'D) N&H(O,j) 

NR(O,j) +!In "W ) N&R(O,j) 

N(O,j) +!In "'(j» NdI(O,j) 

Hydrogen Regeneration: NH(O,j) k'jfl(j) N(O,j) + H2 
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Reinitiationby Monomer: NH(O,j) + M. ""U» N;( l,j) 

N,(O,j)+ M, >NU» M(l,j) 

Desorptionof Impurity: NJm(O,j) ~(j) N,,(O,j) + Im 

NJ>(O,j) ko'I» N(O,j) + Im 

NJ,,(O,j) ko',, ) NR(O,j) + Im 

(2.11) 

(2.12) 

To obtain a clearer understanding of the polymerisation process, diagrams of each of the key 
stages of the polymerisation process are shown. These are included below (figures 2.5 
through 2.9) and are merely illustrative. They show active site formation, initiation, 
propagation, transfer, deactivation and re-initiation . The large circles denote catalyst 
particles, which are divided into three sections (types of sites). 

j=1 

j=2 j=3 

R = AIEt, 
(cocatalyst) 

Figure 2.5: Active site formation schematic 

j=1 

j=3 

Triethylaluminium (Teal) is a cocatalyst and its function is to activate catalyst sites on the 
catalyst particle. This is commonty referred to as the formation reaction. 

j=1 

j=2 j=3 

....... ' M ' k=1,2 
· ..... 1 k ' 

~ 
length 1 

Figure 2.6: Initiation schematic 

An activated site is now available for the attachment of monomers. These monomer blocks, 
Mk may be ethylene (k=1) or the comonomer, 1-butene or 1-hexene (k=2) . The reaction is 
known as the initiation reaction and it results in a chain of length 1. 

j=1 i=1 2 i=1 2 

j=2 j=3 
M. M. .... kpl,Ul 

I I : Jc----'CJ : ,- -, 
: ... , M

k
, k=1 ,2 

length 1 L _ 

length I +1 

Figure 2.7: Propagation schematic 
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The pOlymer chain propagates by the addition of further monomers, as in the above initiation 
reaction, giving it the name of the propagation reaction. 

1=1,2 (::1,2 i=1,2 

j=2 J=3 

Q(lj) 

Figure 2.8: Transfer schematic 

The above schematic represents a chain transfer (or transfer) reaction . The diagram shows a 
chain with terminal monomer MI attached to site type j(=3), reacting with hydrogen. Other 
possible reactions in this category are chain transfer by reaction with monomer or cocatalyst 
and spontaneous transfer. These molecules attach themselves to the active centre, 
Mcleaving- the polymer chain, which results in a dead polymer chain Q . 

j=1 Dead 

R 
j=2 j=3 

Figure 2.9: Deactivation schematic 

A site can also be spontaneously deactivated. Active sites with no monomer attached or with 
polymer chains attached may undergo this reaction. Sites with only cocatalyst and hydrogen 
attached (from transfer reactions above) are also candidates for this reaction . These catalyst 
particles are deactivated and do not take part in any further reactions. 

M 
1 

j=1 

j=2 j=3 

length 0 

Figure 2.10: Re· initiation schematic 

j=1 

j=3 

i=1.2 

Mj 

~ 
length 1 

Sites with only cocatalyst and hydrogen attached (from transfer reactions above) .can be re· 
initiated. This reaction is similar to the transfer reaction mechanism. The monomer attaches 
itself to the active centre. allowing the polymer chain to take part in polymerisation again. 
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Other reactions that are not detailed here also occur. These are reactions with impurities (CO 
(a reversible poison), H20 , CO2, O2 and S-compounds) (2.9) as well as desorption of these 
impurities (2.12). Hydrogen regeneration is also a possibility (2.1 0). 
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CHAPTER 3 

Previous Work 

3.1 Literature Review 

The availability of specific articles on advanced control of polyethylene production appears to 
be limited. A small team of well-recognised researchers dedicated to this field often writes the 
few papers that are available. However, other polymerisation processes and the 
corresponding control techniques used were also explored. The review presented below 
gives details on polyethylene reviews (3.1.1), complex micro-scale modelling (3.1.2), (often 
too detailed for any on-line applications) and the two techniques used in the formulation of a 
parameter and state estimation scheme for Poly 2. The final heading (3.1.5) details 
combinations of these methods as well as alternative approaches. 

3.1.1 Process Reviews 

Xie, McAuley et al. (1994) provide an excellent summary of the gas phase polyethylene 
production process. Detailed summaries of the major ethylene processes are given, including 
the UNIPOL Union Carbide Process. Descriptions of the catalysts used, their development 
and production are also included. A large section of the paper deals with modetting of 
reactors, including both microscale (kinetic) and macroscale (dynamic) aspects. 

A comprehensive literature review of advanced control of polymerisation reactors has been 
compiled (Embirucu, Lima et al. 1996). The paper discusses reactor modelling and control , 
estimation of polymer properties, optimal control and steady-state optimisation, non-linear 
control, linear predictive control, adaptive control, classical controllers and alternative control 
schemes. 

3.1.2 Kinetic Models 

McAuley, MacGregor et al. (1990) provide a detailed kinetic model of gas-phase olefin 
copolymerisation using multiple active site Ziegler-Natta catalysts. The model is able to 
predict production rate, molecular weight and copolymer composition changes in an industrial 
polyethylene reactor. Two potential uses for such a model are: 
• Simulation and testing of on-line quality control schemes. 
• Prediction of the effects of grade recipe transitions on molecular weight and 

compositional distributions. 

A paper by Shaw, McAuley et al. (1998) gives extensive reaction mechanisms; material 
balances on active sites, polymer chains and gaseous components, moment balances, kinetic 
reaction data and initial conditions. All balances are for a semi-batch reactor situation but the 
equations are easily extended to a continuous situation. This paper is useful in that it updates 
some of the equations and kinetic rate constants in the earlier research (McAuley, MacGregor 
et al. 1990). The essence of the study is described below. 

Heterogeneous Ziegler-Natta catalysts used in industry have multiple active sites, each site 
having its own kinetic rate constants. Broad chain length distributions (CLD's) and copolymer 
composition distributions (eCD's) are characteristic of these catalysts. Measuring joint CL 
and CC distribution can be accomplished but the methods are both costly and time­
consuming. The development of a mathematical model that predicts these parameters would 
prove advantageous and the authors set about formulating this. The development is 
hampered by the need for many kinetic rate constants. These parameters were estimated by 
cross-fractionation of the polymer into CL and CC bins using Temperature Rising Elution 
Fractionation (TREF) and Size Exclusion Chromatography (SEC). Polymer produced at each 
site is then obtained, giving the relevant rates of reaction at each site. Stockmayer's (1945) 
bivariate distribution was used to develop a methodology for modelling the quantity of 
accumulated copolymer corresponding to each specific bin. 
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A comprehensive site-based kinetic model is developed by Xie, McAuley et al. (1995). The 
model can be used in the design of catalysts to achieve products with the desired 
polydispersity. Other uses include simulation of industrial a-olefin copolymerisation 
processes and for kinetic parameter estimation. 

3.1 .3 Kalman Filters 

State estimation techniques are very popular in polymerisation research and one of the most 
widely used is the extended Kalman filter (EKF). Using this technique McAuley and 
MacGregor (1993) estimated rate constants and process parameters. A property inference 
scheme then updated the polymer properties (melt index (MI) and density). The effectiveness 
of the controller was demonstrated by comparing it to a linear decoupled internal model 
control (IMC) design. This provides a linear analogue to the non-linear control design above. 
The performance of the non-linear controller was far superior to that of the linear controller, 
due to the fact that it accounts for nonlinearities. It was found to be capable of achieving near 
optimal grade transitions and was able to control product properties at many different grades. 

In an earlier paper by the same authors, McAuley and MacGregor (1991) use a scheme to 
infer MI and density in a fluidised-bed polyethylene reactor. While the above-mentioned 
kinetic model presented by McAuley, MacGregor et al. (1990) is able to predict these polymer 
properties and production rate, it is too complex for on-line use. This article attempts to 
provide a simpler model for on-line use. It develops instantaneous and cumulative MI and 
density models. The cumulative parameters require initial estimates and a series of 
measurements. Updating of model parameters is needed and recursive parameter estimation 
is ideal. Linear empirical models are not suitable since models must hold over a wide range 
of reactor products. The methods investigated in this paper and used for recursive parameter 
estimation with non-linear models are the extended Kalman filter (EKF) and recursive 
prediction error methods (RPEM). The potential benefits of the EKF over the RPEM are: 
• The ability to estimate un measured model states. 
• The potential for estimating several time-varying parameters simultaneously while 

controlling the rate of change of each parameter. 
• The ability to estimate parameters that appear simultaneously in several highly 

coupled models. 
• A means of optimally accounting for errors in the measured model inputs. 
This study eventually used the RPEM method since it is easier to implement and has fewer 
parameters to specify . This article is almost exactly the scheme that POll FIN wish to 
implement, only that the paper predicts MI and p and not gas ratios, as desired by POLlFIN. 

de WOlf, Cuypers et al. (1996) address the problem of predicting the MI in a polypropylene 
slurry reactor. The investigation involved changing the controlled variable from the hydrogen 
concentration in the gas cap to the hydrogen concentration in the slurry phase. However 
because this variable is not easily measured, a linear Kalman filter was used to predict it. 
This was combined with a model predictive controller that was implemented to make up for 
the lack of feed-forward in the system. It was found that this new control system showed 
better performance for both grade changes and disturbances. 

Valappil and Georgakis (2000) tackle the problem of selecting the model error covariance 
matrix, a, for tuning an extended Kalman filter. In the article , Q is referred to as the process­
noise covariance matrix. Estimates for this matrix are normally difficult to obtain and it is often 
viewed as a tuning parameter for trial-and-error simulations. The authors investigate toNo 
methods that estimate the matrix on-line using the current filter states. The first method uses 
linear approximation of the dependence of the model predictions on the model parameters. 
The second method is more rigorous and is for non-linear processes. It finds this non-linear 
dependence using Monte Carlo simulations. Although these methods seem to offer benefit 
over the trial-and-error technique, the authors still use a single tuning coeffiCient. This 
parameter '1 is a coefficient of the a matrix and can be adjusted, should the filter diverge. 

Another application of the extended Kalman filter was reported by Becerra and Roberts 
(2000), who used it for the state estimation of non-linear systems. A class of differential~ 
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algebraic models described the system investigated and a time-varying linearisation was 
derived for a semi-explicit, index one, differential-algebraic equation (DAE). A simulation 
study, including a single EKF, was then carried out as an example of a semi-explicit, index 
one DAE system. A study of a mixing process also showed that for a system model with two 
index one DAE's, it was necessary to use a bank of estimators. ' 

Kozub and MagGregor (1992) investigated an EKF, using the semi·batch emulsion 
copolymerisation of styrene/butadiene rubber (SBR) as a case study. It was discovered that 
the filter was sometimes slow to converge from state initialisation errors, owing to its recursive 
nature. The solution suggested was to implement a second filter, or a recursive prediction 
error method. The latter would provide improved initial estimates of the unmeasurable states. 
Another approach studied was the use of a full non-linear optimisation procedure. However, 
a reiterative EKF provided better results. The importance of including non-stationary 
disturbances and/or model parameter mismatch in an EKF implementation was also stressed. 

The batch free-radical solution polymerisation process was studied by Crowley and Ghoi 
(1998) using a bench scale setup. The aim of the study was to control directly an important 
resin quality control variable, the molecular weight distribution (MWO) of polymer. An EKF 
was an ideal candidate algorithm for the study. The filter used reactor temperature setpoints 
and these were recomputed and updated at each sampling point in order to meet the desired 
MWD. 

In an older paper by Jo and Bankoff (1976), an extended Kalman filter was used in one of the 
first polymerisation applications. A simulation study of the free-radical polymerisation of vinyl 
acetate was carried out using a bench scale CSTR. During the course of polymerisation the 
impurity concentration was varied. Samples taken periodically from the reactor were 
analysed for conversion and weight-average molecular weight. It was found that adaptive 
and/or iterative techniques did not prove advantageous. This was attributed to the long 
residence time in the reactor. Another conclusion was that the initial state estimates had little 
effect on the filter. The authors also made the important point that simulation studies of 
detailed systems with complex relationships may give over-optimistic results. 

Wilson, Agarwal et al. (1998) published a relevant paper that assesses the industrial 
feasibility of an on-line state estimator by means of tests on a 1 m3 semi-batch reactor. Many 
model predictive control (MPC) schemes find routine applications in the petrochemical 
industry but there seems to be a reluctance to use state-space ideas in industry. The reason 
is that these techniques require reliable models and a means of measuring states. The EKF 
is a simple way of predicting unmeasurable states and the authors use th is algorithm to 
comment on the industrial feasibility of it. There have only been a handful of industrial 
applications of the EKF but most applications reported have been in the polymerisation and 
biotechnology fields. Both these have expensive measurement alternatives and state 
estimation techniques offer definite cost benefits. The authors presented several comments 
that they felt were the reasons why the EKF had not penetrated industry on a large scale, 
despite good simulation results. A pilot-scale application was studied in order for researchers 
to comment on the industrial feasibility of an EKF. It was found that the EKF gave no real 
improvement to the state estimation of batch end-point, already achieved through 
measurement techniques. This was attributed to plant-model mismatch, poor system 
observability at times and poor quality of state measurements. This led the authors to be 
doubtful of the usefulness of on-line estimators in industry. Several criteria in the form of a 
checklist were presented for those wishing to pursue industrial applications. 

Applications of EKF's in other areas of research include Tham and Parr (1994) (data 
validation) and Zorzetto and Wilson (1996) (bioprocess monitoring). 

3.1 .4 Recursive Least Squares Parameter Estimation 

Varela (2000) applied a recursive least-squares estimation algorithm with a forgetting factor 
as part of a self-tuning pressure control algorithm. The estimation enabled model parameters 
to be determined on-line. Th is allowed a self-tunin9 algorithm (along with a first order 
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observer and state feedback) to be implemented. Its use was demonstrated for pressure 
control in an injection-moulding cavity for thermoplastics. 

Some practical aspects of process identification are given by Isermann (1980). Areas 
covered include the final goal of the model application, type of process model, required 
accuracy and identification method (off-line, on-line etc.). Other sections given are selection 
of input signals, selection of sampling time, off-line and on-line identification, data filtering , 
model order testing and model verification. There is also a brief record of software packages 
available for process identification. A useful comparison of parameter estimation methods is 
given. These include least squares (LS), generalised least squares (GLS), instrumental 
variables (IVA), maximum likelihood (ML) and correlation and least squares (COR·LS). 

Mulholland and Seinfeld (1995) used a recursive least squares (RLS) technique to identify 
source parameters from air pollution observations. A Kalman filter was used to control the 
extent to which emissions were allowed to deviate from a base case. 

Afonso, Ferreira et al. (1998) employed a RLS algorithm with an EKF in a fault detection and 
identification (FOI) strategy. During normal operation on an industrial·scale pilot plant the 
RLS and EKF run and allow faults to be detected and identified. When a fault is detected, the 
RLS is halted to prevent contamination of parameters, but the EKF state estimation is 
continued. Such a setup could be useful for fault identification, reducing false alarms and 
providing redundant measurements for alternative control purposes. 

3.1.5 Other 

Mulholland and Fernandes (1997) present a paper that models the reactor at Poly 2. A model 
was developed in order to simulate the UNIPOL process in real time. Open·loop tests 
showed that the predictions were in advance of the GC output by 450 seconds. A Smith 
predictor was then introduced with the purpose of establishing the error between the 
predicted compositions and the measurements. The predictor then uses the old error to 
correct the present prediction. The Smith predictor was combined with a Kalman filter to shift 
the state to reasonable regions. This proved important in the reactor gas phase, which acts 
as a pure integrator. The Kalman fi lter is simply a proportional controller controlling the state 
to set point, which happens to be the measurements. The Smith predictor handles dead time 
well. The periodic and asynchronous laboratory data generated in polymerisation industries 
makes it an ideal candidate. The Smith predictor therefore used these periodic 
measurements and provided the filter with continuous updates. This arrangement, where the 
'passive' Smith predictor was combined with the 'active' Kalman filter by means of a weighting 
factor proved to be advantageous. The disadvantage however is that the formulation of the 
Smith predictor is not trivial. 

In an article by Lines, Hartlen et a!. (1993), model predictive control (MPC) is used with the 
objective of reducing product variability. The dynamic model was built using pseudo random 
binary sequence (PRBS) testing. This was done in order to avoid modify ing product 
specifications. All tests were done in the open·loop mode. Some step tests were also 
required in order to relate manipulated variables to polymer properties at the extruder. The 
modelling involved three stages: 
• A linear multiple regression method to identify impulse and step response weights. 
• A more detailed model was used to develop confidence in the model responses. The 

method used was based on an approach used by Box and Jenkins (1976). 
• All models were configured in a matrix. 
Due to the long delay between the analysers and the reactor, a linear properties estimation 
algorithm had to be used to infer In(MI) and density values from the reactor operating 
conditions. The estimator proved reliable and was able to provide accurate estimates even 
when the analysers were faulty. The algorithm uses internal models of the process matrix to 
anticipate future process responses. It predicts future control actions to provide smooth 
control. PRBS testing is a good method that can be used to avoid disturbing normal plant 
operation. Unfortunately not much detail of the actual algorithm formulation is given. Also, 
there appears to be very little literature available on this topic. 
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McAuley and MacGregor (1992) present an article that makes use of optimal open-loop 
policies, using dynamic model-based optimisation, in order to achieve better grade 
changeovers. The goals of the paper are: 
• To formulate a set of dynamic opUmisation problems. 
• To solve the optimisation problems. 
• To determine the effect of problem formulation on the optimal solution. 
• To decide which of the optimal trajectories might be desirable for on-line use. 
A review of dynamic optimisation techniques and applications Is also given. Some issues 
involved in formulation and solving of the optimal grade transition problem are addressed. 
Optimal trajectories are shown for a series of grade changes. Lastly, the importance of 
feedback control associated with the implementation of optimal off-line grade transitions is 
discussed. Three optimal transition pOlicies are outlined: 
• Policy 1: Uses butene and hydrogen as manipulated variables. 
• Policy 2: Uses temperature set point and bleed valve position as manipulated variables. 
• Policy 3: Uses catalyst feed rate and bed level set point as manipulated variables. 

3.2 Complex Site-based Kinetic Modelling 

McAuley, MacGregor et al. (1990) and Shaw, McAuley et al. (199B) offer comprehensive site­
based models. The latter paper features some changes but it uses a semi-batch reactor for 
testing purposes. Thus to match the POUFIN situation, equations were simply extended to 
include inflows and outflows. Also the number of monomers at POLlFIN is two and the 
number of sites was taken as three. 

The authors used the simplifications below in the model development: 

• The recycle stream is very large and the conversion per pass through the bed is very 
low. Thus the vertical concentration gradients in the fluidised bed are small and can 
be neglected. 

• Since the recycle to fresh feed ratio is approximately 40:1 in a normal industrial reactor, 
the plug flow reactor dynamics approach that of a continuous stirred-tank reactor (CSTR). 

• A rise of < 3°C from the reaction zone to the top of the bed is typical and vertical 
temperature gradients are small. Therefore the effects of small radial and axial 
temperature gradients are neglected. 

Reaction rates are controlled by the concentrations of reactants dissolved in the polymer 
around the active site and not by bulk concentrations in the gaseous phase. This is because 
fresh catalyst particles injected into the reactor quickly become covered by polymer. 

In order for a model to be developed where one can predict polymer quality variables from 
gas-phase concentrations, some assumptions need to be made (McAuley, MacGregor et al. 
1990). The first is that the polymer phase is in equilibrium with the gas phase and the 
diffusional effects within the polymer phase are neglected. The second is that the plasticising 
effects of dissolved monomers on solubilities in the polymer are negligible. These allow one 
to conclude that the partition coefficients between polymer and gas phases remain constant. 

[MJ pol = Kp[MJgas 

where : Concentration of component i within the polymer particles 
: Partition coefficient 
: Concentration of component i in the gas phase 

Now, if the rate of reaction occurring at a site j is defined by R, 

R = k [M,J.,V(O.D 
where k : Rate constant 

Y(O,j): : The number of moles of active sites of type j in the reactor 
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Hence: 

R = k·[Mu,,,Y(O,j) 

where k'" = (kKp) is a pseudo·rate constant. The balances in section 3.2.1 below use rate 
constants of this form. 

This convention is used since gas-phase concentrations are measured on-line, whereas 
concentrations in the polymer phase are not as easily measured. 

3.2.1 Balances 

The mass balance equations are of the form: 

Accumulation = Inflow + Generation - Consumption - Outflow 

3.2.1.1 General balances 

A molar balance on the potential active sites in the reactor is set out below: 

dN'(j) F*; .. (j)-/q{j)N'{j)[R]- N'{j) R. 
dl Vp 

(3 .1 ) 

where F * i,,(J) is the molar flow rate of potential active sites into the reactor, N * (j) is a 
potential active site of type j, R. is volumetric polymer outflow rate and Vp is the volume of 
polymer phase in the reactor. 

Similar balances can be seen for the moles of initiation sites N(O,j) and for NH(O,}) and 

NR(O,j) , 

dN(O,j) 
kJ(j)N • (j)[R ] + k' JH(j) NH(O, j) + kn(j)Ndi(O,j) -

dl 

N(O,j){ Icrr(j)[ Mr] + ka,{j) + kdi(j)[Im] + ~; } 
(3.2) 

dNH(O,j) 
Y(O,j){ i(pn(j)[ H,] + /q,r(j)} + kn(j)NJJH(O,j)-

dl 

NH(O,j){ kHT(j)[ Mr] + k' JH(j) + ka,(j) + k.ti(j)[Im] + ~;} 
(3.3) 

dNR(O,j) 
iQRr(j)Y(O,j)[R]+ kn(j)NdiR(O,j)-

dl 

NR(O,j){ kRr(j)[MT]+ ka,(j) + k.o(j)[Im] + ~J 
(3.4) 

and Mr is the total monomer concentration and is given by: 

IM,] = [M,] + IM,] (3.5) 

where (M,] and (M21 are the concentrations of monomer 1 (ethylene) and monomer 2 (1M 
butene or 1M hexene) respectively. [R] and [Im) are the concentrations of cocatalyst and 
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impurities. Y(O,}) is the zeroth moment of live polymer chain length distribution from site 
type j as defined in equation (3.10) below. Initiated polymer chains of length 1 with monomer 
i as the terminal monomer give a mass balance as follows: 

dN,(I,j) kuN(O,j)[M,]+kH'(j)NH(O,j)[M] +kR'U)NR(O,j)[M,] 
dl 

+ Y(O,j)kMn(j)[ M,] 

{

k,.ir{j)[MT] + kpuU)[H,] + kftfiTU)[ MT] } 

N(! 1 R 
- I ,} +/qR'U)[R]+/q,'U)k.uU)+k.uU)[Im]+-' 

Vp 

Mass balances can also be written for impurity deactivated sites: 

(3.6) 

dNdlH(O,j) k.u(j)[Im]{Y(O,j)+ NH(O,j)} _ NdlH(O,j) {kQ(j) + R'} (3.7) · .~ 

dNdl(O,j) = lul(j)[Im] N(O,j) _ NdI(O,j){ka(j) + R'} (3.8) · ~ 
dNdlR(O,j) = lu,(j)[lm]NR(O,j) _ NdlR(O,j){kQ(j) + R, } (3.9) · ~ 
3.2.1.2 Moment balances 

If one adds the balances on living polymer (of length l and with terminal monomer Mi) 
together one obtains the moment balances. 

dY(O,j) [MTJ{ kn·(j) N(O,j) + kHrU)NH(O,j) + kRT(j) NR(O, j) } 
dl 

- Y(O,j){ /qHr(j)[H,] + kf,T(j) + kfl/r(j)[R] + k.u(j) + k.u(j)[lm] + ~;} 
(3. 10) 

One can obtain balances for the first and second moments of living polymer chain length 
distribution as well: 

dY(!,j) = Y(O,}){ kpTr(j )[MT]+ k)MTT(j)[ MTJ} 
dl 

{

/qHr(j)[H,] + k"T(jl + kf,1IT(j)[MT] + /qRr(})[R]} 
Y(! .) 

- ,} + k.u(j) + k.u(j)[lm] + R. 
Vp 

+ [MTJ{ ka(j)N(O,j) + kHr(j)NH(O,j) + kKT(j) NR(O, j) } 
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dY(2,j) = Y(O,j){ kprr(j)[ MT1+ kfo17T(j)[ MTn 
dl 

{

kMr(j)[H21 + /q'T(j) + ~'(j)[MT1 + k/>1T(j) [ Rl} 
Y(2 .) 

- ,j +Io4(j)+kH(j)[Iml+R. 
Vp 

+ [MT J{ Iur(j) N (O,j) + kHT(j) NH(O, j) + kRr(j) NR(O, j)} 

+ 2kpn{j)[ MT1Y(1 , j) 

(3.12) 

The nth moment of the living·polymer chain·length distribution Y(n,j), is defined as: 

NM ~ 

Y(n,j)= LLi" N.(I,j) (3.13) 
k= 1 (",I 

where l is the number of units in the polymer chain. 

Chain length distributions for dead polymer chains are required for calculating molecular 
weight by the method of moments. 

dX(n,j) = {Y(n .)_ NT(l ')}{""flT(j)[MTl + '-<j)[ H 21 + k/>1r(j)[Rl + } 
dl ,j ,j /q,r(j) + Io4(j)+/eJIU)[Iml 

(3.14) 
. R. 

-X(n,j) V
p 

The nth moment of the dead·polymer chain·length distribution, X(n,j), is defined as: 

• 
X(n,j)= ,,[)"Q(l,j) (3.15) I., 

where Q(t,j) is dead polymer of length £ produced at a site of type j. Only chains of length 
longer than 1 are considered polymer, hence the summation begins at £=2. Equation (3.14) is 
obtained by writing a mass balance for dead polymer of length t and then inserting the result 
into the definition (3 .15) above. 

3.2.2 Pseudo-kinetic Rate Constants 

Some of the mass balance equations given above have pseudo·kinetic rate constants. These 
are a function of the distribution of terminal monomers at each site as well as the gas 
composition in the reactor. 

The first is a pseudo·rate constant for initiation of a site of type j, by monomer M1• 

IurU) = f Ikil(j) + f 2k,,(j) (3.16) 

Analogous to this is a rate constant for re·initiation of a site of type j, with hydrogen attached, 
by reaction with monomer M1• 

(3.17) 

A further relationship exists for a rate constant for re·initiation of a site of type j, with co· 
catalyst attached, by reaction with mono mer M1. 

(3.18) 

20 



--- -_.- ----- . ~,~- ~-, ...... -'-

CHAPTER 3 PREVIOUS WORK 

The term fi is simply the mole fraction of monomer i: 

fi= [Mi] 
[M,]+[M'l 

(3.19) 

Following these relationships there are also pseudo-kinetic propagation rate constants: 

k,,'T(J) = f"'p;,(J) + f>k,,;,(J) 

k"n(J) = 1/> ,(J)/cpu(J) + 1/>, (J)k"u(J) 

(3.20) 

(3.21) 

(3.22) 

Here, fjJl is the fraction of sites of type j with terminal monomer M1• The equations below are 
for a two-monomer system. For a system with more than two, the equations are easily 
extended using the cross producl 

",,=1-1/>, (3.24) 

The transfer to monomer pseudo-rate constants are defined in the same format as the 
propagation rate constants (3.20)-(3.22) above: 

kpflT(J) = f'k" m(J) + f,k]MT2(j) (3.27) 

Other possible transfer reactions that may occur are transfer to hydrogen, cocatalyst and 
spontaneous transfer: 

kpn-(J) = I/> ,(J)kfl,,(J) + 1/>,(J)kpn(J) 

kp,T(J) = '" ,(J)!q,,(J) + "',(J)kp,,(J) 

/q,T(J) = '" ,(J)kp,(J) + "',(J)kp,(J) 

3.2.3 Monomers bound in the Polymer 

(3.28) 

(3.29) 

(3.30) 

In order to give a prediction of the average composition of polymer in the reactor at a given 
time, a balance for 8 i can be used. This parameter is the number of moles of monomer 
bound in the polymer: 

(3.31) 

where RI is the instantaneous consumption rate of monomer i. It is safe to assum'e that most 
of the monomer is consumed in the propagation reaction. Therefore: 
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N, 

R;= ~)M1Y(O,j)kpn(j) (3.32) 
j-' 

3.2.4 Molecular Weight Properties 

The term F 10 is the mole fraction of each comonomer in the polymer. 

(3.33) 

Following on from this is the definition for the mean molecular weight of monomer i: 

m=mwIFlo+mW2F2a (3.34) 

Here mWi is the molecular weight of monomer i. The cumulative number average and 
weight average molecular weights can then be evaluated using the method of moments: 

_ ;"N' {X(1,j)+Y(I,j)} 
1.1 _ ~J .. l 
iVll1- Ns 

L..:
j

_, {X(O,j)+ Y(O,j)} 
(3.35) 

_ ;"N, {X(2,j)+Y(2,j)} 
Mw= L..Jj_\ 

L..:;:, {X(1,j) + Y(1,j)} 
(3.36) 

Finally , the polydispersity index can be defined as the ratio of the weight average to number 
average molecular weights: 

Z=M. 
M, 

(3.37) 

3.3 On-line Model Estimation by Recursive Least Squares 

Recursive least squares (RLS) parameter estimation - or recursive parameter estimation 
(Ljung 1999) - is useful in non-linear processes, which can be approximated, for example, by 
allowing the coefficients in a linear representation to vary. RLS estimation is often used along 
with an EKF in control problems. Mulholland and Seinfeld (1995) used a RLS technique to 
identify source parameters from air pollution observations. A Kalman filter was used to 
control the extent to which emissions were allowed to deviate from a base case. Afonso, 
Ferreira et at. (1998) employed a RLS algorithm with an EKF in a fault detection and 
identification (FDI) strategy. During normal operation on an industrial-scale pilot plant the 
RLS and EKF run and allow faults to be detected and identified. When a fault is detected, the 
RLS is halted to prevent contamination of parameters, but the EKF state estimation is 
continued. 

Consider the system, of which the order, n is known: 

Here, A is a n-square matrix of unknown elements and B is not necessarily square; but its 
elements are also unknown. The final term indicates a noise component. 

That is: 
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a" Q" a" b" b" b" 
a" Qu au b" b" bn 

x;= Xr_I + u, . ,+o,., 

a .. a., a .. b., b .. b .. 

Here the aij and bij are the effective coefficients of XI and ll/ 

the operating point of the process changes. 

More simply: 

[
all] 

where for example al = al2 and 

and since 

-
X,. , T 

- T 
0 

x;= 

- T 
0 

- r- -T­
a. X=X a. 

-T 
0 

-
X,_ , T 

-T 
0 

-T 
0 

all 

- T 
0 

a, 
-T 
0 a, 
- T 
0 

- T x; -, a. 

+ 

If one augments the vectors a and b: 

T -T -T X,_, 0 0 U_I 
- T - -T -T 
0 X,_ . T 0 0 

x; = -T 
0 

-T - T -T - T -T 
0 0 0 x; _, 0 

-u _, 
-T 
0 

-T 
0 

T 

all all] 

T -T 
0 

-
u _, T 

- T 
0 

- T 
0 

- T 
0 

-T 
0 

- -T 
u _, T 0 

-T 
0 

- T -T -
0 0 liI _ I 
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(3.38) 

-T 
0 b, 
-T b, 0 
-T +0,. 1 (3.39) 
0 

-
u-, T b. 

a, 
a, 

a. 

+0,., 

T b, 
(3.40) 
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This is now of the form y(t)=G(t)p. During the identification procedure, X,.Xi _ 1 and 

III _ I are observed on-line and the parameters in A and B are found, Hence p (the vector of 
parameters to be idenUfied) is updated recursively. This is illustrated in figure 3.1 below: 

-, 1Ie., ......... 

- - -- ---- - - -
, 
-

Le " .~ ---• - -, 
,-, '., 

Figure 3.1: General On-line Recursive Least Squares (RLS) Identification Configuration 

The algorithm is laid out below: 

T [ T ]-1 JG= M.G GM.G +R 

-, 

A 

• 

Plant 

COl1lJUloIr 

(3.41) 

(3.42) 

(3.43) 

An initial error covariance matrix, Mo is defined and is usually chosen to be small (e.g. 
0.001 xl) and diagonal. Also Q and R are normally distributed error covariance matrices. 
These allow the user to place confidence in the model or observations respectively, Here the 
error covariance matrice Q determines the rate at which the parameter vector changes, whilst 
the R matrix expresses the expe,cted error covariance in the measurements. 

Kalman (1960) showed that ~ gives the optimum gain for the system. Equation (3.41) then 
updates the parameters to be identified, using the gain evaluated above to match the 

measured vector, y and predicted vector, y. The error covariance matrix, M is then updated 

and the process repeats itself. 

This procedure is very useful in non-linear processes where the coefficients aij and bij vary as 
the operating point changes. The RLS procedure then allows on-line automatic adjustment of 
the control algorithm on the basis of the first order linear model: 

(3.44) 

This is known as adaptive control. 

3.4 Kalman Filtering 

State estimation techniques for the polymerisation process have been considered by a 
number of researchers, including McAuley and MacGregor (1993), who used an extended 
Kalman filter (EKF). The idea of Kalman fil tering came about some 40 years ago (Kalman 
1960). The EKF was created for dealing with non-linear systems and is discussed in a text by 
Jazwinski (1970). Not many industrial applications of the EKF are reported , but a fair number 
of those reported on are in the polymerisation and biotechnology fields. 80th of these fields 
require expensive measurement alternatives and state estimation techniques offer definite 
cost benefits (Wilson, Agarwal et al. 1998). However, it appears difficult to find' the correct 
formulation to make it useful in a real process environment (Kozub and MagGregor 1992). 
Wilson, Agarwal et a!. (1998) go on to assess the industrial feasibility of an on-line state 
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estimator. One of the earliest bench-scale applications to polymerisation was by Jo and 
Bankoff (1976). Kozub and MagGregor (1992) used an EKF as one of three methods for 
state estimation in the semi-batch emulsion copolymerisation of styrenelbutadiene rubber 
(SBR) as a case study. Mulholland and Fernandes (1997) use a Smith predictor combined 
with a Kalman filter to account for dead time when modelling the same Poly 2 reactor 
considered in this study. Applications of EKF's in other areas of research include Tham and 
Parr (1994) and Zorzetto and Wilson (1996). 

The Kalman filtering algorithm provides a means of estimating the values of all state variables 
when perhaps not all of them are measurable. It uses the linear model described by equation 
(3.44) above. G can be defined as a selection matrix, containing 1's to select the measurable 
elements and O's so that the unmeasurable elements are not selected. 

Hence, the predicted states, y can be compared with the measured variables, y. If one 

includes the filter with a gain matrix giving the necessary increments in x , then the 

differences between y, and y can be reduced. The arrangement is shown below: 

(3.45) 

With good tuning of the error covariance matrices, Q and R (defined below), the filter tends to 
follow observations smoothly, dictated by its attempt to simulate the dynamics of equation 
(3.44). 

\4, Lumped Deaet )\., 

process !,till)"'1 
PLANT - - f-- - ------ -- -- ---- --- --

Observations COMPUTE R 

Kalman ~ ::: A~_1 + B~_1 + K [y.., 0 G~., 1 
Filter 'I 

- z·, \<-

Figure 3.2: General Discrete Ka[man Filter Configuration 

The algorithm (equations 3.46 to 3.48 below) is similar to the RLS above. The equation that 
evaluates the gain (3.46) is identical but the other two differ slightly. Again there are 
'tuneable' diagonal error covariance matrices, Q and R. Specification of high values in the 
model error covariance matrix Q forces the filter to follow observations more closely, whilst 
high measurement errors in R force it to follow the model more closely. 

K.=M,G, GM,G, +R T [ T lO' 
(3.46) 

(3.47) 

(3.48) 
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There are numerous advantages and disadvantages of the EKF and the following have been 
obtained from the research of various workers: 

Advantages: 

• Its recursive nature. 
• Accounts for model uncertainties. 
• Able to obtain reliable state estimates from a few measurable measurements. 
• Handles unstable and integrating processes. 
• Comparably low computational effort. 
• Its simplicity. 
• Robust and theoretically suitable for industrial applications. 
• The theory is well understood. 

Disadvantages: 

• Locallinearisation of model is required . 
• Assumption of Gaussian and white noise processes. 
• Requires good knowledge of the process in order to formulate a model suitable for an 

industrial application. 
• Tuning can be arduous and is usually done by trial·and-error. 
• May diverge under certain process cond itions. 
• Difficult to implement and maintain industrially. 
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CHAPTER 4 

Control at Poly 2 

4.1 Current Control Scheme 

There are two main layers of control used on the plant: base·layer and advanced layer 
control. 

Gas Ra~os 

PID Conlrol 

Figure 4.1: Control layers used at Poly 2 

• 

I 

• 

Advanced-layer 
control 

Base-layer 
control 

The base-layer is used for control over the reactor environment, that is temperatures, 
pressures, flows, concentrations, etc. This is very well handled by multi-loop PlO control 
systems. 

The advanced-layer controls intermediate variables, such as gas ratios, and the polymer 
properties, such as density and Ml. This is obviously more difficult since these properties 
cannot be measured on-line. At the top of the advanced-layer is the resin property control 
(RPC). Th is is operating well at Poly 2 under license from Union Carbide. There are two gas 
ratios controlled, namely H2IC2 and C4/C2 or C6/C2. These in turn affect the resin 
properties. More detail is given in section 4.1.2 below. 
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The following figure and description is taken from Narotam (1999). 

Opera lOf" SlatlonD o 
I 

RTAP SCADA SYSTEM 

RTAP ACARM Operator SchemaUca Application Uaer 
Datab.se SERVER aod Panels 

Programming Applications 
Interface 

UNIX with X-Windows 

TCP-IP 
protocol 

Advanced Control InpuUOutput 
Modules Modules 

1 I 
Field Instrumentation 

PLANT 

Figure 4.2: POllFIN's Control Setup (Narotam 1999) 

Polifin uses a Distributed Control System (DCS) supplied by Moore Controls to control the 
reactor. Referring to figure 4.2 above, signals to and from field instrumentation are connected 
to Input/Output (1 /0 ) modules. These 110 modules are attached to Advanced Control Modules 
(ACM's). It is here that the standard PlO, sequencing and logic control are performed. Scan 
cycle times of the ACM's normally range from 200-500 milliseconds. Ethemet cables provide 
the connection with the supervisory control and data acquisition (SCADA) system (the 
human-machine interface) and communication takes place via the TCP-IP protocol. 

Hew/eft Packatd's RTAP (Real-time Application Programming) setup is used as the SCADA 
system. The system executes on the UNIX operating system on Digital Alpha workstations 
(APS1 for development work and APS100 I APS101 on the plant). Data from the ACM's are 
scanned into the RTAP database every second through Network Interface Modules (NIM's). 
This information can be read by an operator and displayed on schematics if required. 
Operator actions can in turn be sent from the SCADA system to the ACM's. The alarm 
server allows alarming functions to be performed in the database and displayed on the 
operator's screen. 

The Application Programming Interface (API) allows data acquisition from the database. It 
consists of a set of C/C++ header and library files where objects are provided to access the 
RTAP database an!=l the scheduling functions. In order to obtain the requested data for the 
study, a custom C/C++ database interface was created by the control engineers at Polifin Ltd. 
This allowed data to be sampled from the RTAP database at a user-specified interval (20 
seconds in this case). The logged output is a comma-delimited text file. More detail of this is 
given in section 5.3. The full set of data logged is given in table A2 and only the data used for 
the study in table 5.2 . 

The following operator control strategies are implemented on the plant 
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4.1.1 Pressure and Partial Pressure Control 

This type of control is vital for controlling catalyst activity in M-resins. In F-resins, although 
catalyst activity is unaffected, good control is necessary for economic reasons. 

Reactor pressure is kept as high as possible since it increases productivity. Low pressures 
may also lead to loss of fluidisation or compressor surging. Pressure is therefore kept 
constant and a pressure controller regulates it. This controller regulates the ethylene feed 
rate to the reactor. 

The reactor pressure tends to fall as the reaction proceeds and additional gas is added to 
maintain operating pressure. Ethylene partial pressure control is achieved by split-range 
control mechanism: addition or venting. If the partial pressure is too low, reactor gas is 
vented to flare. Conversely, if it is too high, Nitrogen is injected to lower the partial pressure. 

4.1.2 Gas Rat io Control 

Two gas ratios, comonomer/ethylene (C4 /C2 or C6/C2) and hydrogen/ethylene (H2IC2) are 
controlled. These ratios affect the polymer grade that is being produced. Comonomer ratio 
predominantly affects density whereas hydrogen ratio mostly affects melt index. However, 
the two are inter-linked. In fact it is not possible to make a single change to reactor operating 
conditions without affecting both properties. 

The incorporation of comonomer into polymer chains causes more short side branches. The 
result is that the chains cannot pack too tightly together and this leads to a decrease in 
density. 

An increase in hydrogen in the polymer chain causes a lower average molecular weight of 
polymer and a higher melt index. 

Control is very difficult since the polymerisation equations (chapter 3) are coupled and the 
system is a multivariable one. Furthermore, the system has large time constants and 
responds slowly to changes. At the moment the cycle gas is analysed every 3 minutes by two 
on-line gas chromatographs. The results are fed to the DCS, which calculates the current 
ratios. These ratios are compared with the ratio set points by ratio controllers. The output of 
these ratio controllers is multiplied with the current measured ethylene flow rate to achieve a 
setpoint for the butene, hexene and hydrogen flow control loops. 

4.1.3 Temperature Contro l 

Optimal reactor temperature is vital as it affects resin density and melt index for both M and F­
resins . The reactor temperature must be kept optimal; increasing it raises reaction rate but if 
it is too high the polymer tends to stick together and catalyst productivity decreases. 

Temperature affects melt index and density to a lesser extent for M-resins. Thus, when 
controlling these properties for M-resins temperature is kept constant and the cycle gas 
composition is altered. For F-resins the effect of temperature is much greater, hence 
temperature is adjusted to control melt index and density. 

The reactor bed is essentially isothermal due to the good mixing characteristics of fluidised 
beds. The reactor temperature is achieved by altering the cycle gas temperature (inlet to the 
reactor). This gas stream is manipulated via the cycle gas cooler. This cooler has a 
tempered water flow passing through it. The closed-loop tempered water system allows the 
water to pass either through a heater or a plate cooler (uses cooling tower water). During 
normal operation the water passes through the heater but if more cooling is required, the 
water is redirected through the plate cooler. A temperature controller compares bed 
temperature (measured by a thermocouple located a third of the way up the reactor) with set 
point. This signal is then sent to the reactor inlet temperature controller to determine if the 
tempered water should pass through or bypass the tempered water cooler. This form of 
cascaded control is intended to give a speedy response to temperature variations. 
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4.1.4 Catalyst Feed Control 

Catalyst feed rate is the primary control variable for production rate. An increase in feed rate 
leads to an increase in production rate. This increase in polymerisation requ ires ethylene feed 
rate to be increased and in turn the other feeds are raised. The co-catalyst triethylaluminium 
(Teal) is used in the production of M·resin only. It activates the catalyst and also acts as a 
poison scavenger. Teal is fed in proportion to the flow of ethylene by a flow controller. 

The production rate is calculated by the simple heat balance: 

Cycle gasrale(1 / h) x [CpTw-CpT,.j(kJ / I) 
Production rate (tfh) = --'_-=-_:-;--'--:;--'--..L_-:-;-:-:--:---"-'_-'­

Heal of reaction(kJ / I) 
(4 .1 ) 

The denominator is actually a -fudge factor" used to match the actual with the calculated 
production rate as large amounts of heat are lost from the reactor. 

There are two catalyst feeders located on opposite sides of the straight section of the reactor. 
Due to the high activity of the catalyst, only small quantities of catalyst are fed (roughly 3 
kg/h). Metering discs with holes in them deliver catalyst to a pick·up block where nitrogen 
flow can distribute it into the reactor. The control variable is the speed of the catalyst feeder 
motor. This is normally increased very gradually when increasing production rate in order to 
avoid chunk formation and hot spots. 

4.1.5 Cycle Gas Flow Control 

The minimum fluidisation rate is the rate at which bed particles become supported by the 
cycle gas flow. This gas flow is however controlled at a point higher than the minimum 
fluidisation rate to ensure an expanded bed and a good degree of mixing and heat transfer. It 
is not set too high though to ensure that there is no solids carryover. The cycle gas line 
features a venturi flow meter for measurement and a butterfly valve on the same line for 
control. 

4.1.6 Bed Level Control 

Bed level does not affect resin properties but it does have an impact on production rate and 
catalyst productivity, both of which will increase with an increase in bed level at a constant 
catalyst feed. 

The bed level is kept constant and the best level for operation is a few feet below the bottom 
of the expanded section. Therefore bubbles bursting at the top of the bed can scrub off resin 
dust particles which would otherwise accumulate into sheets and slide off the walls, clogging 
the reactor. A bed weight controller maintains a constant bed weight by regu lating the 
product discharge. 

4.1.7 Reactor Computer Control 

Licensed software ensures that computer control can be implemented on the plant. The 
reason that this control is used is twofold: 

• The process responds very slowly to settings and an operator may not see the results 
of a grade change (this may take up to 3 bed turnovers) during a shift. This may 
cause over·tampering. 

• The resin properties are largely affected by the gas ratios. As mentioned above in 
section 4.1.2 these ratios are inter·linked and it is these complex inter·relationships 
that make control of resin properties so difficult. 
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4.1.8 Melt Index and Density Control 

The actual instrumentation diagram for resin property control on Poly 2 cannot be reproduced, 
as it is confidential information of Union Carbide Corporation. However, figure 4.3 below 
(McAuley and MacGregor (1993)) illustrates a similar setup to the scheme at POUFIN Ltd. 

MI. 
Product 

Control 
Reactor Mic Pc 

Property 
p~ Controller actions • • • • .,. • • • • • On-line • • , , 

measurements ~ , 
MI 

, , 
p; : - --~~~~! - ------- Property Quality parameters 

Inference .... _M~'!S_u.!~~ Control 
Scheme Mic Pc Laboratory 

Figure 4.3: Product property control scheme, similar to POll FIN Ltd 

Due to the fact that MI and p cannot be measured directly, MII and PI. used in feedback 
control, are inferred from measurements and theoretical models. These parameters are 
updated every few hours by means of laboratory measurements of cumulative melt index and 
density, Mic and Pc. The property inference scheme predicts values for instantaneous melt 
index and density, MII and PI between laboratory measurements, by using parameter 
estimates from the previous update step. The product property controller then uses these 
estimates, setpoints, model parameters and on·1ine measurements to calculate control 
actions for the reactor. 

Table 4.1 summarises the control variables and the corresponding effects on the resin 
properties. 

ncreaslng vanaDle ·reSInS IM.reslns 
MI Density MI Density I 

empera ure ncrease luecrease ncrease ncrease 
ratio ncrease luecrease ncrease luecrease I 
ra 10 ncrease ecrease ncrease Uecrease 
ra 10 .Iwe errec I Little enec ncrease ncrease I 

UL concentra Ion ncrease ncrease IN/ A N /A 

olsons ncrease ncrease It! e e eet It! e ellec 

Table 4.1: Summary of variables affecting resin properties 

The computer calculates the instantaneous and bed average properties and suggests set 
points required to make a particular grade of resin. The gas ratios required to achieve these 
resin properties are given by the computer and are fed to the DeS. Laboratory analysis is 
supposedly carried out every 2 hours (although records analysed show new results from 55 
minutes to 255 minutes apart) during operation. These actual results are compared with the 
computer's predicted results. The computer model is then updated to take these variations 
into account. 

There is an on·1ine continuous melt index unit, which is also read by the computer, but density 
uses only the laboratory analysis results. 
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4.2 The Control Problem 

There are a few problems with the current control scheme: 

• The gas space acts as a pure integrator, which means that if a certain gas flow is 
increased. its composition will continue to ramp until something is done to prevent the 
rise. The gas space is also open loop unstable. This prohibits the use of algorithms 
such as dynamic matrix control (DMC) on the plant. Interestingly though, a paper by 
Gupta (1998) presents a method for modifying the DMC algorithm for use in 
integrating processes, such as at Poly 2. The modification allows the steady-state 
offset, present during sustained load changes to be eliminated. This warrants further 
investigation by researchers working in this area. 

• The gas flow ratios controlled are C4/C2, (or C6/C2) and H21C2. The problem is that 
there is no accommodation of imbalances. That is, if the butene ratio needs to be 
raised, more butene will be added to the system. However, this will cause the other 
ratios to be compromised in an attempt to accommodate the change. That is there is 
this nesting effect, and the controllers continuously work against each other. 

• The polymer properties depend heavily on the gas compositions in the reactor. 
These compositions are measured on-line by one of mo gas chromatographs (GC's). 
Polymer properties respond slowly to settings, making this a difficult control problem. 
The plant laboratory experimentally determines key properties like melt index (MI) 
and density off-line and intermittently (new results are entered every 55-255 minutes). 
These results are used to update the setpoints for proprietary on-line resin property 
control software. Therefore a large amount of off-spec product can be produced 
before an incorrect gas composition measurement is detected. 
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CHAPTER 5 

Control Algorithm Formulation and Operation 

5.1 The Control Objectives 

One way of overcoming some of the problems mentioned in section 4.2 is to implement real­
time fault detection and property prediction, using a mode1. The optimal prediction and 
control of the gas ratios can reduce the amount of off-spec product. 

The objectives of the proposed control algorithm are threefold : 

• The primary objective of the proposed control scheme is to improve product quality by 
reducing the quantity of off-spec product produced during grade changeovers. This 
would arise from better control over the gas ratios, which are used to accomplish 
some of these grade changes. 

• A secondary objective is better control of the gas ratio control scheme, which would 
impact on the primary objective, and result in steadier properties in normal operation. 

• A fault detection system can be implemented. This will alert operators to erroneous 
composition measurements and will support both present and proposed control of the 
plant. 

5 1.1 A Different Modelling Approach 

A colleague, Ryan Dunwoodie, also approached the control of ethylene polymerisation at Poly 
2, but from a different angle. The method used was a Mblack-boX- description of the process 
by regression of an artificial neural network (ANN). It was the intention that the ANN would 
eventually be used in conjunction with the model used in this research study (Thomason, 
Ounwoodie et al. 2000). The ANN provides a simple means of inversion to obtain a gas 
composition controller and will cover gaps in the interpretation of the kinetics. 

5.2 Proposed Simpler Model : Algorithm Formulation 

McAuley (2000) stresses that different types of models are appropriate for different 
applications. The temptation is to design a rigorous model to fulfil every possible need. Such 
a model would be too computationally intensive for on-line use. Therefore when proposing a 
model for on-line use in industry, it is necessary to make simplifications where appropriate. A 
complex site-based kinetic modelling scheme (based on sections 3.2 and 6.1.1) has its 
strengths in off-line use. It can be used for prediction of MWO and CCO, given a set of rate 
constants. 

One of the reasons that kinetic models do not find use in industry is not only the complexity of 
polymer reactions but also the fact that these models use a large number of kinetic 
parameters. These kinetic parameters can be determined for a given set of reaction 
conditions via expensive, time-consuming techniques (TREF, SEC). 

The plant flow scheme can be simplified for modelling purposes and is shown in figure 5.1 
below. This is a simplified version of figure 2.3, showing only the dashed lines around the 
reactor input and output streams. 
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Figure 5.1: Poly 2 process simplified for the purpose of modelling 

FAS 

POllFIN has proposed that a non-linear feedforward/feedback controller be designed. Th is 
would be able to account for changes in reactor temperature, vent flow rate, catalyst feed rate 
and bed level (the main parameters affecting grade changeovers). The ultimate goal would 
be to run a filter/estimator in a feedforward situation on the plant. One would like to know how 
much to step a flow (e.g. H2) and for how long (in other words the ramp rate) in order to get 
from one steady state to the next. 

The complex site-based model has been included in its entirety in section 3.2 for reference. 
Due to the complexity of this model, it was necessary to formulate a reduced model. This is 
in line with POLlFIN's final goal of an on-line application. 

The goal of this chapter is to present the formulation of an alternative, simpler model of the 
polymerisation kinetics, suitable for on-line use. Whenever a grade change takes place, new 
kinetic parameters are required for good predictions of plant behaviour. This problem is 
addressed by using an on-line recursive least squares (RLS) parameter estimator to identify 
these kinetic parameters. The values are then used in a state estimation scheme (in the form 
of an extended Kalman filter (EKF» in order to obtain useful state estimates for the reactor. 
The plant model is first formulated and linearised into a system of first order differential 

equations. It is then discretised and the vector of kinetic parameters, p for the RLS is 
isolated. Thereafter the algorithm sequence for the RLS and EKF are presented respectively . 

Using McAuley and MacGregor (1993) as a basis, simplified balances were written for 
ethylene, comonomer, hydrogen, nitrogen, catalyst sites, monomer fractions in the polymer 
and total gas and polymer in the reactor. These balances « 5.1) through (5. 11)) can be used 
to predict gas and solid molar inventories in the reactor, given flow rates of ethylene, 
comonomer, hydrogen, nitrogen, active catalyst Sites. vent and product. 

(5.1 ) 

(5 .2) 

(5.3) 
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"AS is the number of active catalyst sites in the reactor 
Fv is the vent flow of gas 
Fp is the polymer outflow rate (as (kmol Cz, C., Cs) 5·'] 
"ex is the moles of monomer/comonomer in the gas 

(5.4) 

(5.11 ) 

(5 .5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

"H2 and " NZ are the number of moles of hydrogen and nitrogen in the gas 
nflx is the number of moles of monomer/comonomer present in the polymer. 

kp2 is the propagation rate constant for ethylene 
kp4 is the propagation rate constant for butene 
kp6 is the propagation rate constant for hexene 
kH is the rate constant for hydrogen 
QH is a mismatch factor to account for uncertainty in the hydrogen mass balance 
k.! is a deactivation rate constant 
"AS is the total number of moles of active sites in the reactor 

These equations are simplified into a manageable model later. 

The total number of moles in the gas phase is estimated using the ideal gas law: 

/>l - pv. 
~ - RT (5.12) 

and the total number of moles of solid polymer phase is evaluated as follows: 

Np = bed mass I mMMp (5.13) 

Here mMMp is the mean molecular weight of polymer and is calculated from the individual 
monomer molecular weights and their corresponding mole fractions. These are evaluated 
from the cycle gas analyser read ings. 

Then the unmeasurable fractions of monomer and comonomer in the polymer are calculated 
as follows: 
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x_typical is a vector containing typical mole fractions of monomer and comonomer in the 
polymer. The mole fraction of butene comonomer in the copolymer has been correlated in 
figure 5.2 below (McAuley 1991). This figure was used as a guide for obtaining initial 
estimates of x_typical for the various grades tested. This parameter was initially estimated at 
0.98 for ethylene and 0.02 for comonomer. The situation was later improved in that the 
Kalman filter was able to provide updated estimates. 

950 

945 • 
940 

1; 935 • m 
"'- 930 
.~ .. • • 925 c • c 

920 

915 

910 
0.01 0.015 0.02 0.Q25 0.03 0.035 0.04 

Mole Fraction Butene in Copolymer 

Figure 5.2: Mole Fraction Butene In Coploymer 

A basic linear open-loop multivariable system can be represented as a system of first...order 
differential equations as follows: 

d x - -
--= A x+ B u 
dl 

where u are the inputs and x are the outputs. 

The system under investigation takes the form: 

F 

Hence, writing equations (5.1) through (5.11) in vector form: 

d n - -
-~An+BF 
dl 

where 
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n<, 

n<, 

n« 

n", 

ti" 

n= n.. 

n" 

n" 

n" 
N. 
N, 

F. F,( ) A=nASK+-G+g+- H+H..u +F,h 
N, N, 

(5.17) 

The matrices used in parameter A above are of dimension 11x11 and are K, G, g, H, HAS and 
h. 

lk' n,. ne. 111{1 n..1 n4 n" lip< n" N, N, 

nn -fr., 0 0 0 0 0 0 0 0 0 0 
n<. 0 -k,. 0 0 0 0 0 0 0 0 0 
n« 0 0 -k,. 0 0 0 0 0 0 0 0 

"", 0 0 0 -I<. 0 0 0 0 0 0 0 

n.'1 0 0 0 0 0 0 0 0 0 0 0 
K =n .. 0 0 0 0 0 0 0 0 0 0 0 

n~ l k" 0 0 0 0 0 0 0 0 0 0 
n,. 0 fr.. 0 0 0 0 0 0 0 0 0 

n" 0 0 k,. 0 0 0 0 0 0 0 0 
N. -fr., -k,. -k,. -I<. 0 0 0 0 0 0 0 
N, fr., fr.. k,. 0 0 0 0 0 0 0 0 

K is the propagation matrix. It contains the kinetic rate constants and selects the gaseous 
species taking part in the formation of polymer from monomer. 
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The G matrix selects the fraction of each gaseous species leaving the reactor via the vent. 

n CI 0 0 

ne. 0 0 

no 0 0 
n HI 0 0 
n~'l 0 0 

H=nAS 0 0 
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H selects the mole fractions of each monomer in the polymer leaving the reactor with the 
product. 
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HAS is similar to H but selects the fraction of active sites leaving the reactor with the product. 
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11<. n" 11<. n .. nn n~ n" n" n" N. N, 

n" 0 0 0 0 0 0 0 0 0 0 0 

nn 0 0 0 0 0 0 0 0 0 0 0 

n" 0 0 0 0 0 0 0 0 0 0 0 

n •• 0 0 0 -g. 0 0 0 0 0 0 0 

1/1<) 0 0 0 0 0 0 0 0 0 0 0 

g=n .. 0 0 0 0 0 - IY 0 0 0 0 0 

n" 0 0 0 0 0 0 0 0 0 0 0 

n" 0 0 0 0 0 0 0 0 0 0 0 

n" 0 0 0 0 0 0 0 0 0 0 0 

N. 0 0 0 -g. 0 0 0 0 0 0 0 
N, 0 0 0 0 0 0 0 0 0 0 0 

This matrix accounts for site deactivation (I<.:!) and for uncertainties in the hydrogen mass 
balance (QH). 

n" ne. n" n •• n..) I/~ n" 1I~ . n" N. N, 

n e) -So 0 0 0 0 0 0 0 0 0 0 

/I" 0 - So 0 0 0 0 0 0 0 0 0 

lie . 0 0 -So 0 0 0 0 0 0 0 0 
lln , 0 0 0 0 0 0 0 0 0 0 0 

n.n 0 0 0 0 0 0 0 0 0 0 0 
h= n,u 0 0 0 0 0 0 0 0 0 0 0 

1/" 0 0 0 0 0 0 0 0 0 0 0 

1/" 0 0 0 0 0 0 0 0 0 0 0 

nro 0 0 0 0 0 0 0 0 0 0 0 

N. -So -So - So 0 0 0 0 0 0 0 0 
N, 0 0 0 0 0 0 0 0 0 0 0 

h selects the moles of monomer and comonomer dissolved in the product copolymer leaving 
the reactor. 
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1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 
B~ 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 1 0 -1 0 
0 0 0 0 0 0 0 -1 

Fe> 

Fe. 

Fe. 

Fill 
F~ 

F,n 
F~ 

F. 

F, 

Ng =nC2+ ne. + nca + nH2 + nN2 

Np = np2 + np4 + nps 

The matrices K and 9 contain the parameters kP20 kp4• kPfi • I<.i. 9H. k.:, that will be identified by 
recursive least squares. To do this, first consider that the matrices K and 9 and the scalar 
parameter nAS consist of some "original" part Ko. 9o. nAS .. and a small deviation from this, lI.K. 
a g, 6 nAS. Then 

dn { } - --= A" +nAS,,M+K/JJ.nAS +6.g n+BF 
dt 

(S. 18) 

(S.19) 

(S.20) 

Assuming that the deviation portion makes only a small contribution to the integral, use it to 
obtain an "Euler" contribution only: 

n"6J = eA.61 n/ + [1- eA.t.t ]A;'BF + {nASoM + K"MAS+6.g}n,6.t 
(S.21) 
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Now 

='" 

- llJcl'2"C2, 
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OkP21lC2, + t:Jcp.llc. , + Ml'snCs, 

-IlASl.>IlC21 0 0 0 

0 -nASoIlC-41 0 0 

0 0 - IlASoIlC6f 0 

0 0 0 - IlA.'HI IlH21 

0 0 0 0 
0 0 0 0 

IlASollC21 0 0 0 
0 IlASoIlC-4 f 0 0 
0 0 "ASo"C61 0 

0 

0 

0 

-IlH21 

0 
0 
0 
0 
0 

-kP2a"C2, 

-kl'-4"nc-4, 

-kps"ncs, 

-kH"IlH21 

o 
o 

knonc2/ 

kp-40nc-41 

kp60nc6, 

-kn " IlC21 -kr . " IlC-4, - kp&nC6/ -kHo1lH21 

kp2"nC21 + kr l.<>"C-41 + kp60IlC6' 

(5.22) 

0 -kp2onC21 

0 -kl'."nC-41 

0 - kp6onC61 

0 -kHonH21 

0 0 
-nAS< 0 

0 KP20 nC2J 

0 KP-4,,"C-41 

0 kp60llCM 

0 
0 
0 

-OgHnH21 

0 

+'" -kJIlAS 

0 
0 
0 

-OgH IlH21 

0 

""P2 
""" ""PS 
MH 
;.gH 

""d 
""AS 

- "ASo"C21 -nASo"C-41 -nASo" C61 -nASl.>nH21 - nH21 0 -KI'20"C21 - kp40nC-41 - kps"nC61 - k llonH21 

nA$ollC21 IlASoIlC-4f llA50nC6f 0 0 0 *p201lC21 + kp40nC-41 + kl'60nC61 

(5.23) 

The large matrix is G10 and the vector following it is p (as seen in equation (3.42)). Thus 

6.kP2 

6.kp -4 

Mps 

if'+61 = A.n; + B. F + G,o MH 

llgH 

Md 
M A!; 

i.e. ji = Gm p 

with Y = n,."" - A.n; - B. F 

(5.24) 

The polymer molar inventories cannot be observed, so an 8x11 selection matrix is used to 
restrict to measurable states: 
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1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 
C= 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 1 
Setting 

Y' = Cn,+ 6J - CA.fi, - CB. F 

- , 
= n /+/lI A '-. - .n, - B: t 

with A. = C A, C 

Then 

y' = G" D P (5.25) 

Now the right-hand-side above can be evaluated on each step to give a " measured~ y. The 

calculation sequence, in which an optimal gain K is calculated on each time-step, is as 
follows: 

K;_l = M ;_l G,,>Ll [OIDI_1 M I _1 GJDI~I + Rt 

15, = P, -1 + K,.] [p', - G,u,.l P,-l ] 
M/ =[/ - K1_ 1 0 IDi _1] M i _1 +Q 

(5.26) 

(5.27) 

(5.28) 

Here the error covariance matrix Q determines the rate at which the parameter vector 
changes, whilst the R matrix expresses the expected error covariance in the measurements 
of y. The filter covariance matix Mo is initialised with small diagonal terms. In this case the 
parameters found on each step are incremental adjustments to the kinetic rate constants. 
The RLS identification of the kinetic parameters kp2• kp •• kp6• ~. gH. kc and nAS is represented 
graphically below in figure 5.3. 

, _-'-___ J !Io~_. 

I 
" 

Plant ------ ----1------- -
CompLlter -

" ... - ... " .. ~ ... r' --• ' . - '" '" • r ' f-· "~ '. 
Figure 5.3: RLS Identification procedure for parameters kp2. kp •• kP6. kH. gH. nAS and It.! 

The kinetic parameters identified from the above procedure are now used in a state 
estimation scheme in the form of an extended Kalman filter. The filter is based on the full 
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state equations, which include the three polymer composition terms (molar inventories), as 
well as the gas molar inventories. 

n- - e""' -n + [I e""' lA-'EF-
' .. L - I - "I 

ie. n'+l = A; 11, + B; F, 

The calcu lation sequence is 

Ki = M;G;' [G"., M ,O;'+ Rr' 

n i+1 = A;if; + Bj°F,+Ki[y, -Guif;] 

(5 .29) 

(5.30) 

(5.31) 

The GKF matrix, consisting of O's and 1'$ in this case, selects the measured variables from the 
full state if for comparison with the actual measurements - . Notice that varying A" and S' 
matrices have been specified (EKF) to accommodate the RLS parameter updates. 
Specification of high values in the model error covariance matrix Q forces the filter to follow 
observations more closely , whilst high measurement errors in R force it to follow the model 
more closely. 

This filter runs on a smaller time step (20s) than the parameter estimator, and asynchronously 
with it. It takes the present flows and measured gas inventories (composition x Nil) as inputs 
(selected by GKF from the full state) and uses these to obtain a full state description that 
recognises to some extent the mass·balance. The filter acts as an observer and is useful for 
fault detection. An instrumentation fault will be revealed as an excessive difference between 
original and filtered signals. The identifier runs in the background, providing new parameters 
for the A' and B' matrices of the model. These kinetic parameters are only updated every 
time a GC update is detected (approximately every 180 s) . This overall scheme is illustrated 
in figure 5.4 below. 

~ Plant inputs Lumped Dead Present plant 
time outputs process 

. - - . - . - . - - . - . - . - . -
plant Identifier I 
~ 

~t+(It = i~t + ~ !:t+ Kil· G !!\] Kalman 
Filter 

. + 

zo' 

!'. 

. 
• 

PLANT -COMPUTE R 

Predict 
futurll outp 

.. 
~. 

~.061 

Figure 5.4: The State Estimator configuration - discrete Kalman Filter with the RLS Identifier 

A' and B' as seen in the state estimator and A, and B. and as seen in the RLS 
parameter estimator are discrete forms of A and B. In order to get the discrete system for 
integration the matrix exponential is used. This is in effect a zero-order hold (ZOH) that 
allows samples to be taken at discrete sampling time intervals 'At' . The sampling interval for 
the filter wil l be 20s whereas for the identifier it will be governed by the interval between 
successive GC update detections (mentioned above and in section 6.2.2). 

For example, for the Kalman filter, the system goes from: 
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dn - -
-= An + BF (5.32) 
dt 

to: 

(5.33) 

Therefore: 

(5.34) 

5.3 Analysis of Historical Data 

The purpose of this procedure is to arrange historical plant data in a format in which it can be 
visually inspected with the intention of gaining a 'feel' for the plant characteristics. The 
procedure used in formatting raw plant data is as follows. The section of data to be analysed 
was selected, all the series adjusted to a similar scale and all the relevant data series plotted 
on the same set of axes. From the adjusted plot the following important aspects were noted. 

• The relationships between the plots illustrate the basic dependencies between the 
variables. This assists one in understanding the dynamics of the system. 

• The rates of change of the curves give a very important indication of the time dynamics of 
the process. This is important for choosing the data-sampling rate to be used for the 
model. The required sampling rate should be short enough to properly define changes in 
the curves, but not too short so as to cause unnecessary calculations. 

For the purposes of running the original site-based off-line model it was necessary to 
determine a set of average operating conditions, during which the plant behaviour was stable 
and representative of standard plant conditions. This serves as a base condition from which 
to run the models and test the effect of disturbances. These average conditions were chosen 
from the plots during a period when al1 the series on the plots showed little change, indicating 
that there were steady conditions on the plant. 

After formulating the simpler non site-based model, actual plant data was used. During the 
first visit to Sasolburg, the tags (e.g. a flow process variable FC_50aO.PV) that were thought 
to be relevant were noted. A logger was then set up to log these tags at the desired interval. 
These were periodically sent to Durban via e-mail. A complete description of all the raw plant 
signals logged is given, in the order logged, in table A2. 
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arameler u escnp Ion Units Logge UnI s useCl In sOftware 

"' "'LV ~ 1 emy ene HOW contro Kgm KmOlfS 
L U ,~ . DU ene flOW contra Kgm Kmolfs 

[H: hexene f low contra Kgm I<m ol/s 
H < r LU I~ - ' nyaragen HOW contra Kgm Kmolfs 
N2 FLO Cat feeder support flow Nm Ih kmolls 

v" '. -u"" I\..;ala yst aw ra e - Te eaer I Kgm Kg,. 

'-'A' -,U K < Iljata ys ow rate - eeaer L Kgm KglS 
R1VE NT FLO R1 reactor vent Nm Ih km ails 

raa r; are roaUCllon a,e vn KglS 
ReacTemp R1 Bed Tem p. Control C C 

IKWK O""U K O [K l pressure contrOl K~a-g oar-aos 
on A Tlag Tor WnlC ana yser IS on - --

" H_' :thylene ana yser , % 

I"' H_ U I t mYlene ana yser L -" -" 
I ~ U tsutene ana yser 1 % "10 

l~ul OUtene ana yser L -" 7, 

H"" Hexene analyser 1 , , 
H oX Hexene analyser L 70 -" 
HTU Hyorogen analyser 1 % 7' 
H 1U ~y~~ogen ana~ser2 % % 

N il Nitrogen analyser 1 -" 7, 

INII NI ragen ana yser 2 7' % 

I " ' I t mane ana yser 7. % 

IOIHA NI t tnane ana yser L "10 '" "U I-C::' ana yser 1 "10 % 

'''V I-\..;;;) ana yser L -" -" 
,-'"- L,;4 Iner s ana yser % 7' 

v"_"'""" " \..; , Iner s ana yser L , , 
'-'O_' N OK ' " L,;o Iner s ana yser "f, "10 

"" -" CB me s ana yser L , • 
I ~ "U_ " r; 1 oeo welgnt Kg 

Table 5.2: Plant data used in the software 

Some of the points logged were not required for use in the software. A list of the tags that 
were however used is given above in table 5.2. The logger was eventually amended to reflect 
only the above variables. 

Original plant data were sent in a comma-delimited text formal. Then data were manipulated 
in a spreadsheet, extracting only the 31 relevant columns of data listed in table 5.2 above. 
The off-line software reqUires that this data be stored in a text format for it to be read during a 
run of a program. 
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Off-line Applications 

MATLAS* is a program by MathWorks Inc. The code was first written in this language since it 
is easy to use and code is easy to read and understand. It also handles matrices extremely 
well (MATLAB is short for MATrix LABoratory) and these are present throughout the proposed 
control algorithm. Another feature of the package is that graph plotting and annotating is 
extremely simple. This was vital for both debugging and analysis of results. 

6.1 The Site-based Model 

Two researchers, Guillard and Mulholland had already done some programming work in this 
area in 1998. The code followed the paper by McAuley, MacGregor et a!. (1990). The 
system modelled was a 2·5ile, 3-monomer system. 

The Poly 2 plant has a 3-5ile Ziegler-Natta catalyst. a monomer (ethylene) and a comonomer 
(either 1-butene or 1-hexene - only one is used exclusively). The work by Guillard and 
Mulholland was thus altered to match this . Furthermore, it was found that the kinetic 
parameters used by McAuley, MacGregor et al. (1990) above had since been updated in a 
later paper «Shaw, McAuley et al. 1998). These were incorporated as well to update the 
code. The rate constants used can be found in table A.1. Note that the model used by Shaw, 
McAuley et a1. (1998) only caters for a 2-site catalyst. Hence, as no further kinetic data were 
available, the same parameters as for site 2 were used for site 3. 

arame er alue iunlts 

MWethylene 28 kg/kmol 

MWbU!ene 56 kg/kmol 

MWhnene 84 kg/kmol 

VPmn 40 m 

R 0.08314 bar.m IkmoLK 
p 920 kg /m 

Table 6.1: Fixed parameters used in the sited-based model simulation 

Table 6.1 gives some parameters that were used in the simulation model. The normal 
operating temperature and pressure of the Poly 2 reactor have been withheld for 
confidentiality reasons. The volume of the reactor vessel itself was found among equipment 
specifications. Due to the fact that there is so much cycle gas in the recycle loop, the volume 
of the loop was added to this initial volume. An estimate of the lengths, heights and 
diameters of the lines was obtained by pacing out the loop on-site. The density of polymer 
was set at 920 kg/m3

. 
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Vent 

Polymer outflow 
(open slide valve 

Yes 

Yes 

Evaluate: 
- Moles 

Initialisation 

Freq>O? 

Vp>Vpmax? 

- Mole fractions 
- Step moles 
- Concentrations 
- Pseudo-rate constants 
- Site balances 
- Moment balances 

No 

Add N2 

No 

No polymer outflow 
(close slide valve) 

- Step site and moment balances 
- Consumptions, polymer volume 
- Molecular weight parameters 

Store for plotting 

Plot 

Figure 6.1: Organogram of the Site-based Model's Software 

Figure 6.1 shows the basic flow of information in the site-based model. No historical plant 
data were used in the running of this software. Steady plant flows were used as inputs. After 
initialisation, 'Freq' (the flow required) was calculated using a pressure set point and the ideal 
gas law. If the flow was positive, the vent was opened and if negative, nitrogen was added. 
This was an attempt to simulate the split-range control mechanism: addition or venting. A 
'Vpmax' was set and if the volume of polymer in the reactor exceeded this maximum, product 
was allowed out. FOllowing these steps, many parameters and balances were updated. 
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6.2 The Simpler Model 

Figure 6.2 below illustrates the logic used in the simpler software developed. It is analogous 
to the control diagram in figure 5.4. After initialisation, new readings are scanned from the 
logged historical plant data stored in text files. Data is logged at 20·second intervals from the 
plant. These new data are then compared with old data to test whether the GC has been 
updated. If it has (usually detected every 180 seconds), the identifier uses these new 
readings in order to update the kinetic parameters. The Kalman filter then runs, using these 
new parameters. Should there not be a GC update, the Kalman filter witl still run, using the 
last set of kinetic data. 

Initialise 

Scan N e w 
Readings 

-<GC Change,>--

Yes No 

Identify and - Update 
Parameters 

Step Kalman 
Filter 

Figure 6.2: Organogram of the Simpler Model's Software 
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6.2.1 Project Stages 

Below is a schematic that shows the various blocks of code that were written for the project. 
A block of code is denoted by the inner rectangles. 

0) 1 1 Mod,l 1 + 1 Id"",,, 

Model 1--1 GC Updates H Update 
Detection 

I Real Process Oala 

Model GC Updates 

I Real Pnxess Data 

Update 
I -I Detection 

I 

Update 
Detection 

Update 
Detection 

H Identifier 

Identifier I 

Identifier 

J Identifier ModeLIFiller 1 

~ IL~I=============o=="=-'=i"=e=i=m=p=,=e=m=e="=t=at=io="==a=t =P=O=Ii=fi="=============OJ1 I 

Figure 6.3: Diagram of the blocks of code used in building the on-line algOrithm 

Stage 2 simulates a GC update on the plant so that the measured output variables can be 
synchronously compared with the model predictions at the time of update. Thus the 'GC 
Updates' block and the 'Update Detection' block were built into the code in stage 1 to simulate 
this timing aspect. 

Stage 3 is merely the same code as in stage 2 but with the Polifin process data being passed 
through it instead of fixed flows and arbitrary mole fractions. 

The next step (stage 4) required the attachment of the state estimator (extended Kaiman 
Filter). This uses the parameters estimated in the RLS algorithm above, and predicts the gas 
compositions. It also has the ability to predict additional properties, namely nP2, np", and nps. 

The fifth stage involved the passing of real process data through the model in order to test 
whether the algorithm was ready for on-tine implementation. 

In an on-line situation, fault detection would be simple: deviations from the identifier kinetics 
will be easily observed if for example an impurity causes nAS to decrease. Faulty gaseous 
measurements will also be detected since there will be predicted trajectories corresponding to 
these measurements. Significant deviations from this trajectory will alert the operator to the 
possible source of a fault. 
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6.2.2 Why are all results scaled? 

A secrecy agreement with POLlFIN Ltd. was signed at the beginning of the project. This was 
so that all plant operating data is protected from the public. This is also common practice by 
most polymerisation researchers. For this reason, all results were scaled from 0 to 100. 
Dividing a data point by the maximum of the range of data and converting the result to a 
percentage did this. The scaling may cause some confusion in certain areas but, 
understandably, the agreement must be honoured. 

6.2.3 GC Update Detection 

An array called 'buffer' was created. 'Nbuffer' rows, (100) long by 'Nm' columns, (20) wide. 
'Nm' is the number of measurements obtained from the ptant (see table 5.2). 

Nm 

Nbuffer 
buffer 

Figure 6.4: Illustration of the 'buffer' array, showing dimensions 

This array is loaded with historical plant readings on each time step. The first five entries are 
process inputs and are flows. The sixth entry is the total fresh catalyst feed rate and is used 
for the active site flow. The next two entries are vent flow and production rate, which are 
followed by operating temperature and pressure. The following nine entries are outputs from 
the GC analysers, used for update detection. The final column required is the bed weight, 
which is used in calculating the volume of polymer in the reactor. 

A line of data is written into the buffer array' with every time step (20s). Once the buffer array 
is sufficiently full, computation begins. When data have filled the entire array, the oldest data 
are overwritten (Le. in position 1) with the current data. 

For detecting updates, the current and previous rows, 'Data Line' and 'LastUnelndex' are 
compared. If any of the entries from the two rows differs, a GC update is signalled. A 
tolerance can be set on this though. 

The gas phase compositions from the GC are only updated every 180 seconds at POUFIN . 
Thus updated gas compositions are always as a result of the corresponding input flows 180 
seconds ago. Therefore it is necessary to search back 180 seconds in the buffer array for the 
flows that correspond to the current GC compositions. The flow corresponding to the last GC 
update is also read and the two are combined to form an average. This is more clearly 
illustrated in the cyclic file extract and XL graph (table 6.2 and figure 6.5 respectively). In 
order to calculate the GC update interval, the difference between 'buff-pointer' and the last 
GC update, 'pointerlastupdate' is calculated. If this gap is less than 1, 'Nbuffer' is added to 
'gap'. The interval, 'dtGC' is then this gap multiplied by the logging interval, 'dt'. The 
parameter 'pointerlastupdate' is made equal to 'buff_pointer' for use the next time an update 
is detected. 
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The interval between GC updates at Poly 2 is 1805. The updates detected by the software 
are generally between 140-180 seconds but it is not important to get the exact time of update, 
provided that the correct corresponding flow is used. When a GC update is not detected for 
10005. one is forced , simply to get an update on kinetic data. 
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pOinterlastupdate 

buffyointer 

Igapl 

LastLinelndex 

Dataline 

OFF-LINE APPLICATIONS 

ETHFLO 
(kmoVs) 

99.12 

2 99.19 

3 98.88 

4 98.96 

5 98.96 

6 98.68 

11 99.07 

12 98.82 

98.82 

99.14 

19 99.00 

20 99.00 

21 99.00 

22 99.25 

23 99.25 

24 99.25 

25 99.23 

'6 99.23 
• 27 98.94 

28 98.94 

29 

N A r 'y S- E- R------=-S 

ETH_' BUT HEX HYD NIT ETHA ISO C4_ C6_ BED_WEIG 

kg 
100.0 100 100 100 99.53 100 100 100 100 99 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100 100 100 

100 100 100 

100 100 100 
100 100 100 

100 100 100 

100 100 100 

100 100 100 

100 100 100 

100 100 100 

100 100 100 

99.53 

99.53 

99.53 
99.53 

99.53 

99.53 

99.53 

99.53 
99.53 

99.53 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 

100 100 100 100 
100 100 100 100 

100.0 100 100 100 99.53 100 100 100 100 

100.0 100 100 100 99.53 100 100 100 100 

100.0 

100.0 

100.0 

100 100 100 

100 100 100 

100 100 100 

99.53 

99.53 

99.53 

100 100 100 100 

100 100 100 100 

l OO 100 100 100 

100 100 99.69 100 100 100 100 

99 

99 

99 
100 
100 
100 

100 
99 

99 

100 
100 
100 
100 

100 
99 
99 
99 
99 
99 

99 
99 
99 

99 

99 
99 

30 ~ ............... 99.5 100 100 100 99.69 100 100 100 100 99 

'H./oo ~ 99.5 100 100 100 99.69 100 100 100 100 99 

33 99.79 

341 99.52 
35 99.91 

36 100.00 
37 99.70 

38 99.65 

39 99.94 

40 99.68 

41 99.68 

42 99.68 

43 99.68 

44 99.68 

45 99.36 

46 99.10 

47 99.35 

48 99.30 

49 99.30 

50 99.31 

I 
100 

99.5 

99.5 

99.5 
99.5 

100 
100 100 

100 100 
lOO 100 

100 100.00 

100 100.00 100 100 100 89 

100 100.00 100 100 100 89 
100 100.00 100 100 100 89 

99.5 100 100 100 100.00 100 100 100 89 

100 
99 

98 
98 
98 

98 
98 
98 
98 
98 
98 
98 
98 
98 
98 
98 
99 
99 

99 

Table 6.2: An example of the buffer and its role in update detection 
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Updates detected by the 
cyclic file Scaled Ethylene Flow and % Ethylene (ex-analyser) vs Time 

96.10 +++++++-H-t-++-H-t-++H-+++-H-t-.. +H-t+++t-r+t-+++++t+++H+'+H+i-~ +t-t-+it" -t+H-t+H-H-H-H-t"i-H-H 85.4000 

96.00 -H+H+H+H-H++-H+++H+I-HIH--H-H-I-H-H-H-H+ .. +t-H-t-H+H+H-H-H-H-H4f+1-H+H++l-H-lfH-H-H 85.2000 

/ 

95.90 ++++++H-H-I-H-H-++H-H-t-H-HIH+++++t-H'H-HttH-t-HH-t-H-H+H-++H-tI+t-++-*-lH-tt-H-H-H-t-++++-+++ 85.0000 

Q) 
c 95.80 I 84.8000 
Q) 

~ 
.c: ..., 
w 
~ 95.70 84.6000 
0 

. ~ 

If 
I.~ 

95.60 '1'/ 84.4000 
'I 

I!IJ'I 

11~· 
/~ 

95.50 
~ ne average 84.2000 

I~~ of these flows 
is used 

95.40 84.0000 

1\ 

I 95.30 83.8000 t · ., , ., 
t I t I Normal plant GC updates I TIme (5) 

Figure 6.5: Illustration of the buffer function 
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6.2.4 Results 

The code was tested off-line on numerous historical data sets. These included six different 
industrial grades, both butene and hexene-based, and a wide range of MI and p. Trial-and­
error tuning (section 6.2.5) of the model error covariance matrix, Q was carried out to achieve 
a standard set of values that was used for all grades. 

All results presented in this section have been given a code. These differ from the codes 
used on the plant and are: 

A: A hexene film grade, low density, low Ml 
B: A hexene film grade, low density, lower MI 
C: A hexene rota-moulding grade, high density, medium MI 
0: A butene grade, medium density, high Ml 

The keywords low, medium and high are simply comparisons made betv.Jeen the grades and 
do not relate to those mentioned in section 1.3.1 in any way. 

6.2.4.1 RLS Identifier 

The RLS algorithm has been given earlier in the previous chapter and is laid out using 
equations (5 .26) to (5.28). The first equation evaluates an optimal gain, K for use in 

determining the new parameter vector, Pi (equation (5.27». This vector contains the kinetic 
parameters to be identified, kp2• kp4 , kps, kH, g H, kc! and nAS and is evaluated by using 
measured input flows and output compositions. Equation (5.28) evaluates a new M matrix for 
use in calculating another updated K matrix. 

A real strength of the algorithm lies in the RLS parameter estimation. Published values of the 
pseudo-kinetic rate constants are of limited use as they are specific to catalyst and conditions. 
Figure 6.6 illustrates the ability of the identifier to reach a relatively constant value when no 
initial estimates are available. 

" 
" 
00 2 3 .. 6 e 

Iime(.) 

, , . .. ,. 
Figure 6.6: kP2 as estimated by the RLS identification 

Once approximate values for each grade had been obtained, better initial estimates were 
included. The identifier was tested on various grades and graphs 6.7 through 6.10 show the 
results. Grades A. Band Care hexene grades whereas grade 0 is a butene grade. In all the 
cases it was demonstrated that it is possible to obtain a value for pseudo-kinetic rate 
constants. 
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Grade A: 

.. 
., " 
! .-
~ " 

~,r-~,-~,---t,---.t-~,c-~.---t,---.t-~, 
timej.j 

Figure 6.7: kp2 for 'Grade A' as estimated by the RLS identification 

The above results for grade A are perhaps not conclusive. The graph does not remain as 
constant as in the case of grades B, C and D. This probably relates to the fact that the inputs 
(flows) or other plant variables were frequently altered. 

Grade B: 

.. 
JaJ 
S 70 

" 
");-, ---t----<,~~,t_--,.. ---.,----.,---;,;-----i., 

11,,,.(1) ~ 10' 

Figure 6.6: kP2 for 'Grade B' as estimated by the RLS identification 
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Grade C: 

tme(l) K IO' 

Figure 6.9; kn for 'Grade C' as estimated by the RLS identification 

Grade D: 

• , 
I 

.10' 

Figure 6.10: kp2 for 'Grade D' as estimated by the RLS Identification 

What should also be noted from the above plots is that different grades exhibit different rate 
constants. This is due to the different hydrogen and comonomer ratios in the system. The 
incorporation of more or less hydrogen and/or comonomer in the polymer will affect the rate at 
which the chain propagates. 
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~,r---~--~,r---~,---c.r---,,---1,,---t7 --~' 
tlme(1) )( 10' 

Figure 6.11: kP2 as estimated by the RLS identification. for a grade change from C to 0 

Figure 6.11 demonstrates the identifier's ability to easily find a new kp2 after a hexene·butene 
comonomer change. 

•• • • 
• • • 

i: ' . 
I ~ . " ! • I 
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" 
• • • , • • • • • • • .... , .,0' _., .,0' 

Figure 6.12: kP4 as estimated by the RLS identifier Figure 6.13: kPG as estimated by the RLS identifier 
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Figure 6.14: kH as estimated by the RLS identifier Figure 6.15: gH as estimated by the RLS identifier 

Although the above graphs are for a hexene grade (A), a very small rate constant for butene 
(kp4) is estimated in figure 6. 12. This is due to the fact that a small , step-like analyser reading 
for butene is logged when running hexene grades (figure 6.17) . The same phenomenon does 
not occur when butene grades are run as the hexene analyser reading is always zero. 
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It can be seen that the shapes of the graphs for kp2 (figure 6 .7) and ~ (figure 6.13) are the 
same, but of different orders of magnitude. The same can be noticed for kt. (figure 6.14) and 
QH (figure 6.15) . This can be readily explained. Referring to section 5.2, one notices that kP2 
and kp. depend on nAS and Np. When n"s was held constant over the run time, there seemed 
to be no effect. However, setting Np constant, the graphs both moved with the same shape. 
It can be concluded that these parameters are strongly correlated with nAS. 

Both the parameters i<H and gH depend on n"s, nH2 and Nil' The graphs are also of similar 
shape but are not exact, as above, since gH has no dependence on nAS. 

The rate constant for deactivation, I<.:! remains zero, which is of some concern as it is well 
known that deactivation of active sites occurs. A possible explanation is that there are simply 
not enough active sites available to cause death of the sites as well. 

6.2.4.2 K alman Filter 

The results given below stem from the Kalman filter algorithm laid out in equations (5.29) to 
(5.31) in the previous chapter. 

A full set of graphical results from the Kalman fi lter for grade A is given below. 
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Figure 6.22: np2 as estimated by the Kalman filter 
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Figure 6.26: Np as estimated by the Kalman filter 
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The above resu lts are varied. One notices for figure 6.16 and figure 6.25 that the prediction 
trend is very noisy as opposed to filtered. The predictions are also somewhat different in 

shape to the measured trends. This arises from the input flows F: that are frequently 
changed on the plant. The smoother, more sustained responses (figures 6.19, 6.20 and 6.26) 
arise from the fact that predicted outputs if; are fed back in order to predict future states 

if;." 

6.2.4 .3 Spikes and NaNQ's 

Suspect raw plant data may impact on the quality of the results. This commonty affected 
logged readings for bed weight and production rate and the way in which they were affected 
is described below. 

Bed weight is calculated via a differential pressure over the reactor. Typical bed weights are 
of the order of 31 tons but both negative and uncharacteristically high or low readings are 
often recorded (observed in almost one in every two sets of historical data). The effect of this 
on nH2 can be seen in figure 6.27. Large spikes in the measured data are present. However, 
the prediction trend does not follow the measurement closely in this case. It was found that 
this was also the case for "N2 and Ng. However, slight disturbances (spikes) in measured nC2, 
nC4, nCB and Np resulted in the predictions following the measured values. This phenomenon 
is not only as a result of the tuning but also as a result of the components attempting to 
simultaneously satisfy the mass balance in the system. 
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Figure 6.27: ntU showing spikes as a result of faulty plant data 

Production rate is calculated by equation (4.1). It is common that a code 'NaNQ' (Not a 
Normal Quantity) is logged for this parameter. A division by zero in the formula is normally 
the cause. The result during off-line runs is that data simply cannot be read in and the 
program aborts. During on-line testing, the effect was that matrices would not invert due to 
singularity problems. To remedy this, raw data protection criteria were included in the 
software. 

6 .2.4 .4 Noisy Results 

Figures 6.28 and 6 .29 for grade D below appear very noisy compared to earl ier figures 
presented (6.19 and 6.25 respectively). A possible reason for this is that an M-resin is being 
produced. For M-resins, temperature as a control variable has very little effect; thus the gas 
ratios are controlled. nC2 (not shown here) has the biggest influence on the total gaseous 
moles, Ng• This (and comonomer and hydrogen to a lesser extent) gives rise to the noisy 
effect below. The effect of the comonomer changeover is illustrated in the figure 6.30 

60 



CHAPTER 6 OFF-LINE APPLlCA nONS 

following . It combines grades C and 0 and the effect of controlling the gas ratios for grade 0 
is clearly illustrated after 80000 seconds. 
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Figure 6.28: Noisy nH2 from Grade 0 Figure 6.29: Noisy Ng from Grade 0 
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Figure 6.30: Ng from Grades C and 0 

6.2.4.5 Comonomer changeover 

The un measurable states for the C to 0 grade change cope well with the comonomer change, 
as illustrated in figures 8.31 and 6.32 below. Soon after 80000 seconds, the moles of 
ethylene in the polymer are reduced by 10. This is caused by a marked increase in the 
butene incorporation in the polymer chain. 
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Figure 6.31: np2 from Grades C and D 
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6.2.4.6 Response time 

The lengthy response time present in the system is shown below. Figure 6.33 shows that 
after 20000 seconds the hexene gaseous inventory was zero. The result of this is no further 
incorporation of hexene in the polymer chain. This is only registered some 40000 seconds 
(11 hours) later when npe becomes zero in figure 6.34. This is in agreement with the earlier 
discussion in section 4.1.7. 
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Figure 6.33: ncs from Grades C and 0 

6.2.4.7 Fault detection possibilities 
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Figure 6.34: nF'! from Grades C and 0 

Figure 6.35 below shows moles of hydrogen as predicted by the Kalman filter. An offset error 
was inserted into the measurement data, and this is revealed in Figure 6.36. Correct tuning of 
the EKF will make it responsive to changes in operating cond itions, yet also to follow such 
faults slowly enough to reveal a sustained error for fault detection. 

1000 , 0000 12C1OO 10000 ,1000 ,1000 _., 
Figure 6.35: EKF nIQ showing a possible fault 

6.2.5 Kalman Filter Tuning 

~r-----------------------, 

• 

Figure 6.36: EKF measured-predicted error for 
ne> 

This is a very important stage in the implementation of any Kalman filter. It is also by no 
means simple, especially in the case of polymerisation, where complex interrelationships 
between control variables occur. 

The matrix R represents the measurement error covariance matrix. It contains the error 
covariances for each of the corresponding measurable variables. Q is the model error 
covariance matrix. Similarly, it holds the expected error covariances corresponding to the 
predicted states. A high Q relative to R is equivalent to a high error in the model prediction 
(and good confidence in measurements) and the result is that the predictions follow the 
measurements very closely. On the other hand a high R relative to Q represents a large error 
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in observations and the consequence is a smoother prediction line relative to the noisy 
measured output. 

These matrices are usually treated as design parameters rather than measurable constants. 
They are changed in order to achieve better state estimates in relation to the measured states 
(Wilson, Agarwal et at 1998). This causes one to be suspicious of the predicted states being 
generated from the filter. Crowley and Choi (1998) were able to determine values for the 
measured error covariances (R) for sensors from repetitive experimental measurements. For 
thermocouple measurements and conversion measurements, the values were estimated from 
experiments. The values for Q were then used as tuning parameters as these parameters 
are not easily quantifiable. 

Due to the complexity of the system the tuning of the off·line filter was achieved by trial·and­
error. Initially all elements in both Q and R were set to unity. All of the prediction trends 
followed the measurements very closely except for slight offsets in nC2 and nC6. Increasing all 
elements in Q to 1000 caused the nC2 offset to be eliminated but had no effect on nC5' Any 
further increase in 0 33 (corresponds to n(6) did not eliminate this offset. 

The converse, that is 0 values were left at unity and R values were set at 1000, was also 
tested. The result was much smoother predictions in general. Good state estimations were 
observed for nH2 and nN2. However, large errors (measured-predicted) were observed for nC2 
(8%) and nC5 (26%). Therefore Rll (the error covariance matrix element corresponding to 
nC2) , R22 (nC4) and R33 (nCB) were set back to 1 in order to track these measurements more 
closely. The predictions were brought closer to the measurements, but the important 
unmeasurable states, n.,2, n.,,. and nps, predicted by the filter were adversely affected. These 
curves all seemed to tend towards zero as opposed to the more likely result shown in figure 
6.22. 

Model error covariance Corresponding variable Value Meuuremen' error coyariance Corresponding variable Value 

a" "" 1E-02 R" "" 1 

a" ne. 1E-01 R" ne. 1 

a" ne. 1E-01 R" ne. 1 

a.. n .. 1E-03 R.- n,., 1 

a" nm 1E·03 R" nm 1 

a" n", 1E·03 R., N9 1 
an n", lE-06 Rn Np 1 
a .. n" lE-06 

a" n .. 1E-06 

01OttO N9 1E-02 
011/11 Np 1E-06 

Table 6.3: Final off·line tuning values used in error covariance matrices 

The final tuning values used are above in table 6.3. It was noticed that the values in each of 
the matrices complement each other. For example if R66 (Ng) has a value of 0.01 and QIIYIO 

(also Ng) has a value of 1x10·3, the R66 may be equivalently increased by 100 to 1 and the 
Q'0I10 may be reduced by 100 to 1x10·' . For this reason, and the fact that measurement 
device errors are difficult to quantify, all R elements were left at unity and Q was used as a 
tuning parameter. 

The tunings listed appear to give the best and smoothest possible predictions for nC2, nC4, nC6 
and Ng• A passive offset between measured and predicted may be present. This is caused 
by an apparent imbalance bet'-Neen gas supply and consumption. Although the results are 
still satisfactory, this offset is difficult to reduce without compromising on other predictions. 
Improvements can be achieved by increasing Rn, but this causes some of the detail in 
unmeasurable states (polymer fractions) to be lost. 
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6.2.6 Other Important Points 

6.2.6.1 Problems with Matrix Inversions 

There was a problem with the discretisation of B during the testing of the software. This was 
due to the fact that the matrix A would not invert due to its singular nature. It was suggested 
that the expansion of eAcIt be used: 

Al II 2 l( , e =1+1!(AI)+2!(AI) +3! AI) + ......................... . 

A. _\ I (I) ( I ) , [e -J)A = l!+ 2! (AI)+ 3! (AI) + ............... .... .. . 

This can be evaluated to any given tolerance. 

6.2.6.2 Which Comonomer Is being Used? 

POll FIN produces either a butene or a hexene grade at any given time. As a resu lt only one 
comonomer is used exclusively for any particular recipe, whilst the flow of the other 
comonomer is kept zero. However, when examining logged flows of butene and hexene, one 
finds that both flows are identical because the same flow meter I control valve is shared. One 
of the flows must be selected to zero for use in the software. Thus one requires some 
knowledge of which resin reCipe is in use. The first letter of the grade code stamp normally 
tells the user this at a glance. This method was employed initially until it was discovered that 
there is often a substantial lag before the new grade code appears. This is demonstrated 
below in figure 6.37. The graph shows the analyser readings during a comonomer change 
from hexene to butene. One notices that after 2500 seconds there is more butene present 
than hexene. However, the grade code stamp is only changed some 57500 seconds (16 
hours) later (where labelled). Therefore the criterion in the code was changed. A check on 
analyser compos itions is now performed - the greater of the two comonomer compositions 
determines the correct comonomer used. 
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Figure 6.37: Graph showing analyser results for comonomer during a hexene-butene changeover 
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6.3 Conversion to C Code 

Before travelling to Poly 2 to begin commissioning of the code, it was necessary to convert all 
of the MATLAB code to C code. The code itself is similar. Among other differences, in C the 
structures of a loop is slightly different and all variables used require a declaration. The main 
hurdle was to write routines to perform matrix arithmetic. Some of these are readily available 
from the Internet and the newer ones make use of overloaded operators. However, it was 
decided to construct new routines using ANSI C for use at Poly 2. Prof M. Mulholland w rote 
the routines for the program based on his knowledge from previous routines programmed in 
MODULA 2 for control of a multi-component distillation column. 

6.3.1 In Durban: Using Visual C++ 

Visual C++ 4.0 using Microsoft Developer Studio was used to create the first rough version of 
C code. Figures 6.38 and 6.39 illustrate results from the identifier for kpz from MATLAB and 
C++ respectively. The basic shape is the same but the two were matched exactly during the 
conversion to ANSI C during the on-line implementation (chapter 7). Figures 6.40 and 6.41 
are nN2 as pred icted by the Kalman filter. The shapes are very similar in this case. 
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Figure 6 .38: MATLAB version of k p2 Figure 6.39: C++ version of kp2 
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Figure 6.40: MATLAB version of nN2 measured and predicted 
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Figure 6.41 : C++ version of nN2 measured and predicted 

6,3,2 In Sasolburg: Using ANSI C 

ANSI C is a version of C standardised in 1989 in the United States, through the American 
National Standards Institute (AN SI), and around the world through the International Standards 
Organisation (ISO). Full details of this conversion can be found in chapter 7. 
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CHAPTER 7 

Real-time Application at Poly 2 

7.1 I ntrod uction 

When writing the software using MSVC++, mentioned in section 6.3.1, care was taken so as 
to use ANSI C. This would minimise the effort during on· line commissioning. 

The conversion to ANSI C and on-line implementation was a lengthy procedure. The code 
was reconstructed and re-written using object-oriented code. The structure is outlined in 
section 7.2 below. For debugging purposes, the MATLAB code was run alongside the C 
version. Results were compared at various key stages of the algorithm (initialisation, 
identifier, Kalman filter, and matrices) until the results matched. 

7.2 The Program Structure 

The ANSI C code is stored in five different C files along with four corresponding header files. 
They are listed below with a general description of the function of each module. 

Oblnterface.c: 

Dblnterface.h: 

KalmanCalc.c: 

KalmanCalC.h: 

KalmanControl.c: 

KalmanControl.h: 

PointsDef.c: 

nrutil.c: 

Software written so that one can read from and write to the database 
easily. 

Header file for the above (RTAP database access functions and 
APACS access functions). 

Main program source code. 

Header file for controller program 

Links with RTAP database. It also sets up the timekeeper (an RTAP 
function) to read every 20s. Sends a message to a message handler 
and it is tested to see if it is a timekeeper or an event driven 
message. The message will execute functions if it is a timekeeper 
message. 

Contains general structure and function definitions that are needed 
by all other modules. 

RTAP database points are defined in this module. Each point to be 
read from the database has a structure with corresponding attributes. 
One of these attributes is an identity number, which is all the main 
program needs to link with the database. 

Contains downloaded numerical recipe functions for vector and 
matrix manipulation (Trevelyan 1996). 

nrutil.h: Header file for the above. 

7.3 Results 

Examples of on-line resu lts from Poly 2 are shown in figures 7.1 to 7.6 below. 
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7.3.1 RLS Identifier 

Figure 7.1 below again illustrates the strength of the identifier. Upon startup of the algorithm 
with a new butene grade, the pseudo-kinetic rate constant kp4 fast approaches a constant 
(scaled) value of 96 . 
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Figure 7.1: On-fine results on algorithm start-up for a butene grade for kp~ 

7.3.2 Ethylene vs Hydrogen Results 

On comparison of figure 7.2 and 7.3, taken from the same on-line data set as figure 7.1 
above, one finds that the hydrogen prediction (figure 7.3) is much slower than the ethylene 
(figure 7.4). The ethylene's response to measurement changes is quite rapid in comparison 
with the hydrogen, which takes almost 5000 seconds (83 minutes) to respond, and displays a 
large overshoot. This is in agreement with the findings of McAuley and MacGregor (1992) 
who also encountered slow hydrogen dynamics during large transitions in MI. 
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Figure 7.2: On-line results on algorithm start-up for a butene grade for nC2 
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Figure 7.3 : On-line results on algorithm start-up for a butene grade for nH2 
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7.3.3 A Comparison of Hexene and Butene Runs 

Below (figures 7.4 and 7.5) are results from the EKF for a hexene and a butene grade. One 
can see that the trends are similar in that they both provide a very smooth prediction in 
contrast to the noisy plant data. These plots were also achieved with a universal tuning set, 
used for both butene and hexene grades. This is encouraging. Of some concern is that the 
predictions are clearly following the measured values, as opposed to predicting in advance. 
As mentioned above in section 6.2.3.7, correct tuning of the EKF should improve the situation 
and provide some opportunities for fault detection. 
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Figure 7.4: On-line results for a hexene grade for nH2 
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Figure 7.5: On-line results for a butene grade for nH2 
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7.3.4 Unmeasurable States 

One of the strengths of the EKF is its ability to provide un measurable state estimates from a 
few measurable measurements. The unmeasurable states in this study were np2. np4 and "p&. 
In addition to off-line results (figures 6.24 to 6.26) these parameters were successfully 
predicted on .. line as well. Figure 7.6 below is an example of np2 . 
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Figure 7.6: On-line results for a butene grade for unmeasurable nP2 

Similar graphs were obtained for np4 for butene grades and for nP6 for hexene grades. When 
one compares the np4 and np6 plots (not shown here, since scaled values cannot be used for 
comparison purposes), it is interesting to note the differences in comonomer incorporation in 
the polymer chain for hexene grades and for butene grades. The degree of comonomer 
incorporation varies according to the grade that is being manufactured. 

7.3.5 Operator Interfacing 

A schematic of the algorithm was built, using the RTAP Schematic Builder. This allows 
operators easy access to the key results from the control algorithm. A copy of the schematic 
is given in figure 7.3 below. The plant version uses a range of colours though. It not only 
displays the measured and predicted values, it allows the user access to the identifier and 
Kalman filter trends. Should there be a suspected fault, (excessive difference between the 
predicted vector, nbar and the measured vector, nhat) the Karman filter error (KFerror) trend 
can be accessed easily . 
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Identifier 

xfbar 

kP20.CXXXlOOe-OO 

1lP4 0.00000Qe.00 
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gH 0.000000.00 

kd 0.000()()()e.0() 
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xfbar trend 
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REAL-TIME APPLICATION AT POLY 2 

Kalman Filter Results 

I Reactor Grade DGM1810 I 
Kalman Filter 

nhat nbar 
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Figure 7.7: Resul ts Schematic at Poly 2 
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CHAPTERB 

Conclusions and Recommendat ions 

B.1 Conclusions 

There are major gains to be made in precise polymer property control, control through grade 
changes to minimise off~specification product. and early detection of instrumentation faults. 
As a resu lt, numerous researchers around the world have tackled these issues in ethylene 
polymerisation. The kinetic modelling, if it proves reliable, will offer the advantage of insight 
into the process, and allow monitoring of significant intermediate parameters such as reaction 
rate constants. 

The algorithms described in this thesis were developed off-line in MATLAB, and tested on 
long records of plant data in this form before being translated into quite different code on a 
plant computer for the application. The program is running continuously at Poly 2. Basic 
range checking of input plant data has improved the robustness of the scheme. Results are 
similar to the off-line experiments. Bearing in mind the long response times of the process, 
the tuning of the algorithms is easier off-line, where long plant records can be processed quite 
rapid ly. Since the on-line and off-line computations have been shown to be equivalent. there 
should be no difficulty in the near future in improving the tuning of the on-line algorithms. 

This thesis presents an industrial application of an EKF in the polymerisation field. On-line 
tuning may still need some attention due to the complexity of the system. A RLS parameter 
estimator calculates pseudo-kinetic rate constants for POLlFIN 's Ziegler-Natta catalyst 
system. These are updated with every detected GC update and are used to improve an EKF 
model that runs on a smaller time cycle (samples every 20s). This model provides smoothed 
estimates for some plant data and allows pred iction of unmeasurable states, such as the 
polymer composition. There is also scope for a fault detection scheme to be implemented via 
the EKF. 

B.2 Recommendations 

Areas for possible improvement of the code are: 

• For the polymer density, a constant, ro is used as a typical average laboratory value. 

• Henry's Law can possibly improve the 'solubility factors', s1 , s2 and s3. This would 
require some literature research. 

• The use of sparse matrix methods to eliminate wasted space arising from the zero­
based matrices. 

• The parameters kct and nAS play an integral role in the polymerisation process yet the 
results achieved are not as satisfactory as was anticipated. 

POll FIN now has the required groundwork completed and has suggested that the code be 
used as follows: 

• The schematic will allow monitoring of reaction rate constants via the RLS parameter 
estimation scheme. Graphical results from the EKF, in addition to providing operators 
with additional information, should be linked to a fault detection/alarm system, where 
possible instruments errors could be detected early. 

• Special attention must be paid to the tuning issues and the complexity in this area. 
Tuning should be continued, bearing in mind that it may be different for the two 
comonomer grade types. 
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APPENDIX A 

Pseudo-kinetic Rate Constants used in Site-based Modell ing 

Parameter Units Site 1 Site 2 Site 3 

k, m /(kmol.s) 1 1 1 

k" m /(kmol.s) 1 1 1 

k., m /(kmol.s) 0.14 0.14 0.14 

k,,, m /(kmol.s) 85 85 85 

kP12 m /(kmot.s) 2 15 15 

kp21 m /(kmol.s) 64 64 64 

k,,, m /(kmol.s) 1.5 22.6 22.6 

ktH, m /(kmol.s) 0.088 0.37 0.37 

ktH, m /(kmol.s) 0.088 0.37 0.37 

k",,, m /(kmol.s) 0.0021 0.0021 0.0021 

k",,, m /(kmol.s) 0.006 0.11 0.11 

k",,, m I(kmol.s) 0.0021 0.0021 0.0021 

kom m I(kmol.s) 0.006 0.11 0.11 

km, m /(kmol.s) 0.024 0.12 0.12 

kill, m /(kmol.s) 0.048 0.24 0.24 

krs1 s · 0.0001 0.0001 0.0001 

kfS2 s · 0.0001 0.0001 0.0001 

k", s · 0.0001 0.0001 0.0001 

k", m /(kmol.s) 2000 2000 2000 

k'," s · 0.0088 0.037 0.037 

,,", m /(kmol.s) 1 1 1 

,,", m /(kmol.s) 0.1 0. 1 0.1 

k", m /(kmol.s) 0.1 0.1 0.1 

k., m /(kmol.s) 0.01 0.01 0.01 

k. s' 0.0003 0.0003 0.0003 

Table A.1 ; List of kinetic values used in the site-based model (Shaw, McAuley et al. 1998) 
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APPENDIX 8 

Raw Signals Logged for Possible use in the Software 

Param eler luescriplion Umts 
,me - s 

urade ICOd e -
BedAvDE Bed average density kg/m 
InsiDE Instantaneous density kg/m 
BedAvMI Bed average melt Index g/ 10m in 
InstMJ Instantaneous melt Index 911 min 

IMlI,b labora tory melt Index g/10min 
DElab laboratory density kg/m 

ReacTemp RI Bed Temp. Control C 
4/~ 2 Butene Gas Ratio -

~b/~2 Hexene (jas Ratio -
H<I~2 Hydrogen (j as Ratio -
~LeP It:tnylene pa rt ia pressu re control k t'a-g 
BTR l !:led turnover rate h 

rod Rate roduction Ha te tlh 
l,.NAL_, _on lA lag for which ana lyser is on -
ETH , Ethy lene analyser 1 % 

'TH _O IEthylene analyser 2 % 
BU Butene analyser 1 ~ 

BUT Butene analyser 2 ,. 
HEX Hexene analyser 1 % 

HEX Hexene analyser 2 Y. 
HY Hydrogen analyser 1 % 
HYD Hydrogen an a lyser 2 % 
NI Nitrogen analyser 1 % 

NIT Nitrogen analyser 2 % 
HAN thane ana lyser 1 % 

AN Ethane ana lyser 2 ~ 

I ;- S analyser 1 % 

I ,- S analyser 2 % 

4_ INER 5 4 merts analyser 1 % 

4 - N 4 merts analyser • 
6_INE R _I : merts analyse r 1 Y. 
~ INE R 6 merts analyser • 

V ENT MR DUPLICATE OF MO NREC V ENT Nm I h 

VE NTFl OW DUPLI CATE O F R1VENT FLO Nm l h 

L L or be evel t 
l EVElPV corrected bed level It 
R1l NlETT R1 reactor Inlet tem p. C 

R 1 pressure control kPa -g 

USED DEN R 1 upper bed density kg/m 

lSED_DE N R 1 lower bed density kg /m 

ETHFlO R 1 ethylene flow contro Kg / h 

<EC CaMON FLO Recovered comonomer flow IIh 

BUTFla I R 1 butene low control Kg /h 

<EXFLO R 1 hexene low co ntro l kg/h 
TEAL FlO IR1 Teal low conlrol kg/h 
H2FlO IR1 hydrogen f low co ntro kg/h 

HP DEOXO_FlO R1 HP deoxo nitrogen injection Nm Ih 
,- S - L 1 ISO pentane low control kg /h 

MO NREC_VENT Monom er recov ery venl Nm Ih 
R1VENT_FlO R 1 rea ctor vent Nm Ih 

CYCl E_GASFlO R 1 cycle gas flow Nm Ih 
BED_WEluHT R1 bed weight t 
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APPENDIX B RAW SIGNALS LOGGED FOR POSSIBLE USE IN THE SOFTWARE 

CAT_FOR1 Catalyst flow rate · feeder 1 kg/h 
CAT_FOR2 atalyst ow rate - feeder 2 kg/h 
N2J lO Cat feeder support flow Nm fh 

Table A.2: Raw signals logged for possible use in the software 
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APPENDIX C 

Extracts of ANSI C Source Code used at Poly 2 

KalmanCalc.h 

r sources/KalmanCalc.h 2000/04/11 N Narolam '" ,. ./ 

r Copyright (c) N Narotam 1999, 2000 *' 
r All Rights Reserved *' ,. ./ 

r DESCRIPTION *' 
r Header file for controller program .( r···· ... ··········· .. ···· ...... ·*·· ...... · ... ··_ .......... · .... u/ 
r COMPILlTATIQN CONTROL 
r 2000104/11 N Narotam conceived ,. 

extern void InitKalmanCalc (int); 
extern int KalmanCalclnilialize (void); 
extern rtUlnt8 ControlDalaBuffer (void); 
extern int MainldentLoop (void); 
extern int UpdaleldentData (void); 
extern int MainKalmanLoop (void); 
extern int UpdateKalmanData (void); 
extern int IdentPlolData (void); 
extern int KalmanPlotData (void); 

' / 
' / 
' / 

r Sets up debug status *' 
r Main initialisation routine *' 
r Routine for GC update detection in buffer ./ 
r Main RLS loop run whenever the GC updates *' 
r Routine containing writes back to the database . , 
r Main Kalman filler loop run on every time cycle *' 
r Routine containing writes back to database . , 
r Routine to store identifier data in DataBase for plotting '" 
r Routine to store Kalman filter data in DataBase for *' 
r plotting . , 
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APPENDIXC EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

KalmanCalc.c 

r····· .. ······ .. ········· .. · .. ······ ..... ······· ..... ·· .... · .. ······ ........ , r sourceslKalmanCalc.c 2000104/11 N Narotam,R Thomason ., 
r M.Mulholland, C. van der Merwe "I 
r Copyright (c) N Narotam 1999, 2000 ., 
r All Rights Reserved ., r ., 
r DESCRIPTION ., 
r Source file - Main program source code 0' r··· .. ········ ..... ··· .. · .. · .. ······· .... ····· .. · .. · .... · .. ········ ........ ····f 
r COMPIUTATION CONTROL 
,. 2000104/11 N Narotam Conceived 
r 

0' 0' 0' r····..--······· ... ···· .. · ..... ·· .. ·· .. ·························· ............ , 
#indude <cr'crStandardS.h> 
#include <rtap/rtap.h> 
#include <math.h> 
#include <time.h> 
#include <sysltime.h> 

#include "KalmanControl.h" 
#indude "KalmanCalc,h­
#indude "Dblntenace.h" 
#indude "nrutil.h" 

r local function prototypes .. , 
void PrintBufferUne (inl); 
void DalalineRead (void); 
int HexeneMode (void); 
in! PartMalExpKF (double "',double .. ·.double ·",double "',jnt,int); 
in! PartMalExpldenl (double .. ·.double ··,double u ,double ··.inl,inl); 

1* local data storage ., 
static int thisDebug; 
static int firstldent; 

1* Data History Stack ., 
stalic SufferControl bc; 
stalic bufferTable buffert100); 
stalic bufferTable DataLine; 
static rtDouble *r1; 
static rtDouble *r2; 

,. Model Data storage area *1 
static rtDouble ··S; 
static rtDouble ··G; 
static rtDouble ··H; 
static rtDouble uHAS; 
static rtDouble ··h; 

,. RlS (identifier) data storage area *' 
slatic rtDouble ·xfbar; 
static TypicalData xfTyp; 
static rtDouble "·Kid; 
static rtDouble "nobs; 
static rtDouble ·nobsJlred; 
static rtDouble ·nobs tm1; 
static rtDouble •• Q; -
static rtDouble "'C; 
slatic rtDouble .oM; 
slatic rtDouble uGir; 
static rtDouble "R; 
static rtDouble ··Iid; 
stalic rtDouble "Ii; 
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APPENDIXC EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

static rtDouble ·xfbarmin; 
static rtDouble ·xfbarmax; 

r Kalman filter data storage area ., 
static rtDouble uGkf; 
static rtDouble uQkf; 
static rtDouble uRkf; 
static rtDouble ··Mkf; 
static rtDouble ··Ikf; 
static rtDouble uKkf; 
stalic rtDouble ·nbarmin; 
static rtDouble ·nbarmax; 
static rtDouble ·nbar; 
static rtDouble "nhat; 
stalic rtDouble ·KFerror; 

r general data storage area ., 
static FixedParam fp; 
static rtDouble ·x_typicaLhex: 
static rtDouble ·x_typicaLbut; 
static rtDouble ·x_typical; 
static rtDouble ·MW; 

r············· .. · .. · .. · ... · .. ···· ... ········ ....................... / 
r InitKalmanCalc: Initialisation routine for this .. , 
r function. Currenly sets up .. , 
r debug status only. . / 
r type: external .( 

r .. •·••••••••••••••••••••••••••••••••••••••••·•·•·••••• ....... , 
void InitKalmanCalc (int GlobDebug) 
{ 
thisDebug = GlobDebug & Ox04; 
if (thisDebug) 

printf ("KalmanCalc is in Debug mode\nj; 
) 

/ ............................................................................ , 
r KalmanCalclnitialize: Main initialization routine. .., 
r Must be called at the start of *' 
r application and is done once only or by ./ 
,. operator action on demand ., 
r type: external ., 
r Return Codes: 0 if no errors ., 
r 1 if there were errors ., 
r· ........ •••••••·••·•••••••·••·•• .. ••••••··•· .. ········:··· ............• , 
int KalmanCalclnitialize (void) { 

bufferTable zerobuffer11001 = {O}; 
rtDouble smallnumber = 0.001; 
xfbarHist xfbarhist, xfbarzero = (O); 
nhatHist nhathist, nhatzero= CO}; 
nhatHist KFerrorhist, KFerrorzero = {Ol; 
nbarHist nbarhist. nbarzero = CO}; 
int i; 

r Allocate memory· general data·' 
MW = dvector (0,2): 
B = sdmatrix (11,8); 
G = sdmatrix (11.11); 
H = sdmatrix (11,11); 
HAS = sdmatrix (11,11); 
h = sdmatrix (11,11); 

x_typicaLhex = dvector(O,2); 
x_typical_but = dvector(O,2): 
x_typical = dvector{0.2); 

82 



APPENDlXC EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

r1 = dvector{O,8): 
r2 ::: dvector(O,B); 

r Allocale memory· Kalman Filler *' 
Gkf = sdmalrix (7,11); 
Qkf = sdmalrix (11 ,11); 
Rkf = sdmatrix (7,7); 
Mkf = sdmalrix (11,11); 
Ikf = sdmalrix (11 ,11); 
Kkf = sdmalrix (11,7); 

nbarmin = dvector (0,10); 
nbarmax = dvector (0,10); 
nbar = dvector (0,10); 
nhat = dvector (O,S); 
KFerror = dveclor (0,6); 

r RLS Memory Alloc *' 
Kid = sdmatrix (7.8); 
C = sdmalrix (8.1 1); 
R = sdmatrix (8,8); 
Q = sdmatrix (7, 7); 
M = sdmatrix (7,7); 
Gir = sdmalrix (8,7); 
l id = sdmalrix (7.7); 
1i = sdmatrix (11.11); 
xfbar = dvector (0,ROWlDENT·1); 
xfbarmin ::: dvector (0.ROWlDENT.1); 
xfbarmax = dvector (0,ROWIDENT-1); 
nobs '" dvector(O.7); 
nobs...,pred = dvector(O.7); 
nobs_tm1 = dvector(0,7): 

r general program initialisation '" 
if (thisOebug) prinlf (" ...... Start General Program Initialisalions .... "\11"); 
firstldent = 1; 

r initialize global identity matrices *' 
deyes (7,7.lid); 
deyes (11 .11 ,1i); 
deyes (11 ,11,lkf); 

SingleRead «rtUlntB *) &fp,43); 
SingleRead «rtUlnt8 *) x_typical_hex,44); 
SingleRead «rtUlntB *) x_typical_but,45); 
SingleRead «rtUlnt81 MW.4S); 

fp.dt '" DT; 
SingleWrile ( (rtUlnlB *) &fp,43); 

r Fixed Matrices Initialisation '" 
if (thisDebug) printf (" .... n Fixed model matrices initialisation .... "\11"); 

SingleRead «rtUlnt8 *) "B,42); 
SingleRead «rtUlntB *) *G,3B); 
SingleRead «rtUlnt8 ") "H,39); 
SingleRead «rtUlnt6 *) *HAS,40); 
SingleRead «rtUlnt6 *) "h,41); 

r 
if (thisDebug) ( 

printf ("uuMwu *\n*): 
Show_dvector (MW,O,2) ; 
printf (" ... uB· .... "\n"): 
show_dmalrix (B,0,10,0,7): 
printf ("·· .. G· .... *\n .. ); 
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APPENDIXC EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

) 
./ 

show_dmatrtx (G,Q,10,0,10); 
printf (" .. ··Hu ·"\n1; 
show_dmatrix (H,0,10,0, 10); 
printf ("····HAS···"\n"); 
show_dmatrix (HAS,O,10,0,10): 
printf ("****h-*"\n"); 
show_dmatrix (h,O,10,O,10); 

r set up h (depends on the grade)·' 
h[O)[O) = -1.0·fp.s2; 
h[9)[0) = -1.0·fp.s2; 
if (HexeneModeQ) ( 

h[2)[2) = -fp.s6; 
h[1)[1) = 0.0; 
h[9)[2) = -fp.s6; 
h[9)[1) = 0.0; 

} else { 

) 

h[2)[2) = 0.0; 
h[1)[1) = -fp.s4; 
h[9)[2) = 0.0; 
h[9)[1) = -fp.s4; 

SingleWrite « rtUlnt8·) ·h,41): 

r Kalman Filter specific initialization *' 
if (lhisOebug) prinlfC' .. •• Initializing Kalman filter "*"\n"); 

SingleRead ( (rtUlnt8 . ) "Okf,55); 
SingleRead ( (rtUlnt8 . ) ·Mkf,56); 
SingleRead ( (rtUlnt8 .) *Rkf,57); 
SingleRead ( (rtUlnt8 . ) ·Gkf,58); 
SingleRead «rtUlnt8 j *Kkf,65); 
SingleRead «rtUlnt8 .) nbarmin,53); 
SingleRead «rtUlnI8 .) nbarmax,54); 

zero_dvector (nbar,0,10); 

r initialize Mkt *' 
dmsmy (Ikf, 11,11 ,smallnumber,Mkf); 
SingleWrite ( (rtUlnt8 *) ·Mkf,56); 

r 
if (thisDebug) { 

) 
. / 

printf ("-··Okf'··"\n"): 
show_dmatrix (Okf,0,10,0,10): 
printf C·ulkf*··"\n"); 
show_dma!rix (lkf,0,10,0, 10); 
printf (" .. ··Mkf* .. "\n"): 
show_dmalrix (Mkf,0,10,0,10): 
printf C'·· .. ·Rkf" .. "\n"); 
show_dma!rix (Rkf,0,6,0,6); 
printf (""-Gkf'u"\n"); 
show_dmatrix (Gkt,0,6,O,10); 
printf ("*'***nbarmin·"*\rI1; 
show_dvector (nbarmin,O,10); 
printf r *-*nbarmax"·"\n"}: 
show_dvector (nbarmax,0,10); 

r RLS (iden!) Specific initialization *' 
if (thisOebug) printf ("u .. Initializing RlS Identifier .u"\n"); 

SingleRead «rtUlnt8 *) xfbarmin,51); 
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APPENDIXC EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

SingleRead ( (rtUlnt8 .) xfbarmax,52); 
SingleRead ( (rtUlnt8 .) *M,35); 
SingleRead «rtUlnt8 *) *Kid ,34); 
SingleRead «rtUlnt8 .) &xfTyp,33); 
SingleRead ( (rtUlnt8·) *C,48); 

r Initial values for kinetic parameters to be identified ., 
xfbar[KP2] = xffyp.kP2Uypical; 

OalaLineReadO; r so that HexeneMode function is active·' 

if (HexeneMode 0)( 
xfbarfKP4] = xffyp.kP4UypicaLhex; 
xfbarfKP6] = xffyp.kP6UypicaLhex; 

}else{ 
xfbarfKP4] = xITyp.kP4LtypicaLbut; 
xfbar[KP6] = xITyp.kP6LtypicaLbul; 

} 

xfbarfKH] 
xfba<lGH] 
xfbarfKD] 
xfbarfNASI] 

= xfTyp.kHi_typical: 
= xfTyp.gHUypical; 
= xfTyp.kdUypical; 
= xfTyp.nAS_typical; 

r write xfbar to the DataBase ., 
SingleWrite ( (rtUlnt8 *) xfbar,32); 

r initialize M *1 
dmsmy (Ii, 7,7 ,smalJnumber,M); 
SingleWrile ( (rtUlnt8 *) '"M,35); 

zero_dmatrix (R,0.7,O,7): 
R[OIlO] = 1.De15 , pow[30,2); 
R[1111] = 1.De12 , pow[1,2}; 
R[2][2] = 1.0e121 pow(1,2); 
R[3113] = 1.DeS , pow(1,2); 
R[4114] = 1.De15 ' pow(50,2); 
R(5][5] = 1.0e14 1 pow(8,2); 
R[6](6) = 1.0e14 1 pow(100.2); 
R[7][7] = 1.0e14 1 pow(100.2); 

SingleWrile ( (rtUlnt8 .) '"R,37): 

zero_dmatrix (0,O.S,O,6); 

rnC2 
rnC4 
rnC6 
rnH2 
r nN2 
rnAS 
rNg 
rNp 

0[0110] = 1.0e-1 0 , pow(JdTyp.kP2Uyp;cal,2}; 

if (HexeneMode 0) ( 
0[1111]=1.-20; 

"' "' "' "' "' "' "' "' 

rkP2 "' 

0(2)[2)=1e-13 I pow(xffyp.kP6UypicaLhex,2); 
} 
else { 

Q(1)[1)=1e-12 1 pow(xffyp.kP4Ltypical_but,2); 
0(2112)=1.-20; 

) 

0[3)[3) = 1.0e-17 I pow(xfTyp.kHi_typical,2): r kH was a bit jumpy·' 
0[4)[4) = 1.0e-14 1 pow(xfTyp.gHi_typical ,2); r gH was a bit jumpy ., 
0[5][5] = 1.0 I pow(xfTyp.kdLtypical,2); r kd : minimise kd variations to fit data until we 

r understand it better *' 
0[6](6] = 1.0e·10 I pow{xffyp.nAS_typical,2);r nAS : minimise nAS variations to fit data until we 

r understand it better ., 

SingleWrite ( (rtUlnt8 .) ·0.47): 

r 
if (thisDebug) { 

printf ("*h*C*U*\n"); 
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) 
'/ 

show_dmatrix (C,O,7.0,10): 
prinlf (" .... xfbarmin .. ~"'\n"); 
show_dvector (xfharmin,Q,ROWlDENT-1); 
printf (""·"xfbarmax·""\n"); 
show_dvector (xfbarmax,O,ROWlDENT -1); 
printf (" ..... O .. ·"\n·); 
show_dmatrix (0,0.6,0,6): 
printf (" .... R* .... .. \rn; 
show_dmatrix (R,O,7,D,7); 

r Initialize the data history points for plotting (KalmanHist) *' 
if (thisOebug) printf r .... Initializing history stacks """\n.); 

SingleRead ( (rtUlnt8 .) &xfbarhist,68): 
SingleRead ( (rtUlnt8 .) &nhathist,69): 
SingleRead ( (rtUlnt8 ") &nbarhist,70): 
SingleRead «rtUlntS *) &KFerromist,71): 

for (i=O;i<MAXIOHIST;i++) { 
ChangePtRecord (68,i): 
SingleWrite ( (rtUlnt8 *) &xfbarzero,68); 

} 
for (i=O;i<MAXKFHIST;i++) { 

ChangePtRecord (69,1); 

} 

SingleWrite ( (rtUlnt8 .) &nhatzero.69); 
ChangePtRecord (70.i); 
SingleWrile «rtUlnI8·) &nbarzero,70); 
ChangePtRecord (71,i); 
SingleWrite «rtUlnt81 &KFerrorzero,71); 

r Data History Stack initialisation ., 

SingleRead ( (rtUlnt8 *) &bc.59); 

bc.buffJ)Ointer :: bc.Nbuffer - 1; 
bc.pointergap_GCdeadlime :: fp.GCdeadlime I fp.d!: 
bc.pointerlastupdate = bc.poinlergap_GCdeadlime; 
bc.Nstored = 0; 

SingleWrile ( (rtUlnl8 . ) &bc,59); 

if (thisDebug) printf ("Reading buffer table ... \nl; 
SingleRead «rtUlnt8 ") &DataLlne.60): 
SingleRead «rtUlnI8 .) &buffer,61): 

,. 
if (thisDebug) PrintBufferLine (0); 
'/ 

r Initialize buffer 10 zero '" 
SingleWrile «rtUlnt8·) &Zerobuffer,61): 

if (thisDebug) printf (" •••• Finished main initialisation routine .... \n"); 

retum (0); 
} r end of KalmanCalclnitialize *' 
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r··· ...... ········· .. ··········· .... ·· .. ·· .. ··· .... ··············· .... ··**····· ...... ••• .. ••• .. •·•••• .. • .. **1 
r 
r 
r 
r 

PrintBufferLine: Prints the desired quantity of the current line of plant data 
(that has been appropriately manipulated for 
use in the code) directly from the buffer 

Type: Local 

"' "' "' "' r···················· .... ······· .. · .... ········ ... ·· .. · ...... ······ .............. ** •••• _ ........................ , 

void PrintBufferLine (int line) 
{ 
printf rOataLine: %d\n~,line); 
printf rETHFlO: %1f\n~,buffertline).ETHFlO); 

printf rBUTFlO: %tf\n* ,buffer{line].BUTFlO); 
printf C'CATFDRTOT: %If\n" ,buffer[line].CATFDRTOn; 
} 

r········· .. •··········· .. ·······**······················ .................................................. , 
r 
r 
r 
r 
r 
r 
r 
r 

HexeneMode: Tells the user which comonomer is being used 
for the current recipe by checking which composition. 
from the analysers is greater. Cannot look at the grade 
code siring as the new code often appears only long after 
an actual grade changeover. 
Type: local 
Retum codes: 0 if 1-butene is being used 

1 if 1-hexene is being used 

"' "' "' "' "' "' "' "' r···· .. ·· ... ············································· ................................................. , 
int HexeneMode (void) 
{ 

if (Data Line. BUT > DataLine.HEX) r base on composition ./ 
{ 

return(O); 
} 
else 
{ 

retum(1); 
} 

} 

r····· .. ·················· .. ·············· .. ···· .... ·· .. ··· .. · .................... **** ..................... , 
r DataLineRead: Reads raw plant data and manipulates it into a form suitable ., 
r for the model. Also checks which analyser is being used and ./ 
r selects appropriate GC values. Butene and hexene flows are ., 
r logged as identical so one is selected to zero, using HexenemodeO '" 
r Type: local ./ r······ .... · ... ··· ...... · .... ·· .. ··· .. ····················· ... · ...... ···-.................. _ .............................. , 
void DataLineRead (void) 
{ 
ApsPV 
ApsAnalog 
UniPV 
ApsSOOL 

PVPoint; 
AnalogPoint01,AnalogPoint02; 
PVUni; 

SOOlPoint; 

r read the current data "' 
SingleRead «rtUlntS·) &AnalogPoint01,62); 
DataLine.BEDWEIGHT = AnalogPoint01.value·1 000.0; 

SingleRead ( (rtUlnt8 .) &PVPoint,2); 
DataLine.ETHFlO = PVPoint.value I (MW[O]·3600.0); 
SingleRead ( (rtUlntS .) &PVPoint,3); 
DataLlne.BUTFLO = PVPoint.value I (MW[1]*3600.0); 
SingleRead «rtUlntS .) &PVPoint,4); 
DataLine.HEXFlO = PVPoint.value' (MW[2]·3600.0): 
SingleRead «rtUlntS·) &PVPoint,5); 
DataLine.H2FLO = PVPoint.value I (2·3600.0): 
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SingleRead ( (rtUlnt8 ~) &PVPoint,6); 
DataLine.N2FLO = (PVPoinl.value *1.013)1 (0.08314" (20.0 + 273.15) " 3600.0); 

SingleRead «rtUlnt8·) &AnalogPoint01,7); 
SingleRead ( (rtUlnta ") &AnalogPoint02,8): 
DataLine.CATFDRTOT = (AnalogPoint01.value + AnalogPoint02 .value)J3600.0; 

SingleRead «rtUlnt8 *) &PVPoint,9); 
DataUne.R1VENTFLO = (PVPoint.value*1.o13)/(O.08314 .. (20.0 + 273.15) .. 3600.0}; 

SingleRead ( (rtUlntB ") &PVUni ,10): 
DataLine.PRODRATE = PVUnLvalue*'OOO.0I3600.0; 

SingleRead «rtUlntB *) &PVPoint,11); 
DataLine.REACTEMP = PVPoint.value; 

SingleRead ( (rtUlntB .) &PVPoint,12); 
DataLine.R1 PRESSURE = (PVPoint.value+101 .325)"O.01; 

SingleRead « rtUlnt8 *) &BOOLPoint.13): 

if (BOOLPoint.value == 1) { 
SingleRead «rtUlnt8 *) &AnalogPoint01 ,14); 
DataLine.ETH = AnalogPoint01 .value; 
SingleRead ( (rtUlnt8 *) &AnalogPointo1 ,16); 
DataLine.BUT = AnalogPoint01 .value; 
SingleRead ( (rtUlnt8 *) &AnalogPointo1 ,18); 
DataLine.HEX = AnalogPoinI01 .value; 
SingleRead ( (rtUlnt8 *) &AnalogPoint01 ,20); 
DataLine.HYD = AnalogPoint01 .value; 
SingleRead «rtUlnt8 *) &AnalogPoint01,22): 
DataLine.NIT = AnalogPoint01.value; 
SingleRead ( (rtUlnt8 *) &AnalogPoint01 ,24); 
DataLine.ETHANE = AnalogPoint01.value; 
SingleRead «rtUlnt8 *) &AnalogPoint01,26); 
DataLine.ISO = AnalogPoint01 .value; 
SingleRead «rtUlnt8 *) &AnalogPoint01,28); 
DataLine.C4INERTS = AnalogPointo1.value; 
SingleRead ( (rtUlnt8 *) &AnalogPoint01 ,30); 
DataLine.C6INERTS = AnalogPoint01.value; 

} else { 
SingleRead «rtUlnt8 *) &AnalogPoinI01,15) ; 
DalaLine .ETH = AnalogPoint01.value; 
SingleRead ( (rtUlnt8 *) &AnalogPoinlO1 ,17); 
DataLine.BUT = AnalogPoint01 .value; 
SingleRead ( (rtUlnt8 *) &AnalogPoint01 ,19) : 
DataLine.HEX = AnalogPoint01 .value; 
SingleRead ( (rtU lnt8 *) &AnalogPoint01 ,21); 
DataLine.HYD = AnalogPoint01 .value; 
SingleRead «rtUlnI8 *) &AnalogPoint01 ,23); 
DataLine.NIT = AnalogPoint01.value; 
SingleRead ( (rtUlnt8 *) &AnalogPoint01 ,25); 
DataLine.ETHANE = AnalogPoint01.value; 
SingleRead { (rtUlnt8 *) &AnalogPointOl ,27); 
DataLine .ISO = AnalogPoint01 .value: 
SingleRead ( (rtUlnt8 *) &AnalogPoinlOl ,29); 
DataLine .C4INERTS = AnalogPoinlOl.value; 
SingleRead { (rtUlnt8 *) &AnalogPointOl,31): 
Dalaline.C6INERTS = AnalogPoinI01 .value; 

) 

if (HexeneModeQ) 
DalaLine.BUTFLO = 0.0; 

else 
DataLine.HEXFLO = 0.0; 
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} r end of DataLineRead ~, 

r··· ... ····· .. ·· .... " .. *"*"*""""*" .. "*""*"*~"*" ........ -""· ... ·-"u .. " ...... "*" ... ""_."" .. _-"." ... "., 
r 
r 
r 
r 
r 
r 
r 

ControlDataBuffer: Checks for GC updates by comparing current and 
previous lines of data. Also allows one to look 
back in historical data for input flows for the 
identifier and filter. Evaluates intelVal that 
the identifier runs on. 
Type: 
Return Codes: 

External 
o 10 7 (See return statement at end of function) 

"' "' "' "' "' "' "' r····· ... ······" .... "· .. ·"··" .... " ...... ,,,,·,,·· .... ········,, ... ,,""····· ... ".".""""" .... " .. " ... ".".".".""" .......... , 
rtUlntB ControlOataBuffer (void) 
{ 

slatic int lastupdate_tempstore; 
static int firstloop = 1; 
rtUlntB retumcode = 0; 
rtUlnt32 gap; 
rtUlnt16 Lastlinelndex; 
bufferTable lastLineValues; 
int i; 

r Value holder for the buffyointer '" 

if (thisOebug) printf (".-- ControlDataBuffer "."\0"); 

jf (firstloop != 1) bc.pointerlastupdate = lastupdale_tempstore; 
fi rs!loop = 0; 

bc.buffyointer = bc.buff....Pointer + 1; 
if (bc.buff....Pointer >= bc.Nbuffer) 

bc.buff....Pointer '" 0; 

if (thisDebug) { 
printf ("buff""pointer is %d\n~.bc.buff....POinter); 

printf ("pointenastupdate is %d\n", bC.pointenastupdate); 
) 

DataLineRead 0; 

r do validity checks on raw data '" 

r set reactor up bit if the production rate is a valid number '" 
printf("I!!OataLine.PROORATE is %1f\n",Dataline.PROORATE); 
if (Oataline.PROORATE > MINPRODRATE) 

returncode += REACTORBIT; r reactor is up "/ 

r update the history slack with the latest information "/ 
ChangePtRecord (60,bc.buff....Pointer); 
SingleWrite ( (rtUlntB *) &OataUne.60); 

r set Nstored bit if the buffer is full "/ 
bc.Nstored '" bc.Nstored + 1; 
if (bc.Nslored >=bc.Nstored_criterion) { 

r set Nstored bit iflhe buffer is full·' 
retumcode +'" NSTOREOBIT; r buffer full "/ 
if (bc.buftpointer "'''' 0) 

lastUnelndex '" bc.Nbuffer· 1; 
else 

lastUnelndex '" bc.buffJlointer - 1; 

r read the data from the buffer for the last and current readings '" 
ChangePtRecord (60,lasILinelndex); 
SingleRead «rtUlnt8 ") &lasILineValues,60); 

if (thisOebug) prinlf ("LastUnelndex is %d\n~ ,LastLinelndex); 
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r 

./ 

} 

r1[OJ = LasILineValues.ETH; r the previous line of readings *1 
r1 [1J = LasILineValues.BUT; 
r1 [2] = LasILineValues.HEX; 
r1 [3] = LastLineValues.HYD; 
r1 [4] = LastLineValues.NIT; 
r1 [5] = LastLineValues.ETHANE; 
r1 [6] = LastLineValues.ISO; 
r1 [7] = LastLineValues.C4INERTS; 
r1 [8] = LastLineValues.C6INERTS; 

r2[0] = DataLine.ETH; r the current line of readings ./ 
r2[1] = DataLine.BUT; 
r2[2] = DataLine.HEX; 
r2[3] = DalaLine.HYD; 
r2[4] = DataLine.NIT; 
r2[S] = DataLine.ETHANE; 
r2[6] = DataLine.ISO; 
r2[7] = DataLine.C4JNERTS; 
r2[8] = DataLine.C6JNERTS; 

if (thisDebug) { 

} 

printf C'·"·LastLineValues -."\r1"); 
show_dvector (r1 ,0,8); 
printf C'· .. ·DataLine· .. "\n"); 
show_dvector (r2,0,8); 

bc.changecount = 0; 
for (1 = 0; i <= 8; i++) 
{ 

if( fabs(r1[i) - r2[i]) > fp.tolerance_conc_change) 
{ 

bc.changecount = bc.changecount + 1; 
} 

} 

if (bc.pointenastupdate > bc.buff-.J)ointer) 
gap = bC.Nbuffer + bc.buffyointer - bc.poinlenastupdate; 

else 
gap = bc.buff-.J)oinler - bc.pointerlastupdate; 

bc.dtident = (rtUlnI32)(gap" fp.dt); 

if (thisDebug) { 

} 

printf("gap is %d\n",gap); 
prinUC'bc.dUdent is %d\n",bc.dtidenl); 

r set the GC update bit if an update occurred '" 
if«bc.changecount >= bC.changecounl_criterion) I (bc.dtident >= fp.dt_forced_ident» 
{ 

lastupdate_tempstore = bc.buff-.J)ointer; r Cannot update directly yet, ., 
r store for future use *' 

returncode += GCUPDATEBIT; 
} 

if (thisDebug) printf C'ControlDataBuffer returncode: %d\n",returncode); 

return (returncode); 
r retumcode = 0: Reactor down ., 
r retumcode = 1: Reactor up *' 
r returncode = 2: > Nslored, reactor down *' 
r returncode = 3: > Nstored, reactor up *' 
r returncode = 4: GC update, < Nstored, reactor down *' 
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,.. retumcode = 5: GC update, < Nstored, reactor up ., 
,.. retumcode '" 6: GC update, > Nstored, reactor down ., 
r returncode :: 7: GC update, > Nstored, reactor up .. , 

} ,.. end of ControlDataBuffer '" 

r ......... ·· .. ·-······· .... ••••••• .. • .. • ... ····----· ... •••·•••••• ... •• .......... _ ............. _ .• _ ••••.. , 
r 
r 
r 
r 
r 
r 
r 

MainldentLoop: The Recursive Least Squares (RLS) parameter estimator. 
Only runs when a GC updates (returncodes 6,7). 
Uses 'dtident' and calculates an improved set of 
pseudo-kinetic rale constants in 'xfbar'. 
Type: External 
Return Codes: 0 if no errors 

1 if there were errors 

" 
" 
" 

" 
" 
" 
" 

,...*** .... * ...................................... - .......................... ***** ..... * ........................... , 

int MainldentLoop(void) r RLS loop ., 
( 
int k; ,.. Counter for clipping'" 

rtDouble Fin,Fout,percenCerror; 
rtDoubleBed_Mass, Vp, Vg, T, P, Ng.mMMp.Np; 
rtDouble "flowread1; 
rtDouble ·flowread2; 
rtDouble ·flowread; 
rtDouble kP2i; 
rtDouble kP4i; 
rtDouble kP6i; 
rtDouble kHi; 
rtDouble gHi; 
rtDouble kdi; 
rtDouble Fvi; 
rtDouble Fpi; 
rtDouble nC2i; 
rtDouble nC4i; 
rtDouble nCSi; 
rtDouble nH2i; 
rtDouble nN2i; 
rtDouble nASi; 
rtDouble Ngi; 
rtDouble Npi; 
rtDouble "'Kayi; 

··gi; 
"'Ai; 
"·8i; 
··Gi; 
··Aislar; 
""'Bistar; 
-Aisr; 

rtDouble 
rtDouble 
rtDouble 
rtDouble 
rtDouble 
rtDouble 
rtDouble 
rtDouble 
rtDouble 

**8ist; 
·Fbar; 

r vector of flow readings corresponding to the last GC update .. , 
r vector of flow readings corresponding to the current GC update '" 
r vector of average readings of flowread1 and flowread2 "f 

,. Temporary storage arrays (used by both identifier and filler) .. , 
rtDouble "·tmOl; r temporary storage matrix 1 - used in matrix computations '" 
rtDouble "·tm02; r temporary storage matrix 2 - used in matrix computations ., 
rtDouble Utm03; r temporary storage matrix 3 - used in matrix computations '" 
rtDouble Utm04; r temporary storage matrix 4 - used in matrix computations '" 

rtUlnt16 DTlndex1; 
rtUlnt16 DTlndex2; 
bufferTable DTValues1; 
bufferTable DTValues2; 

if (thisDebug) printf (" ..... MainldentLoop "."\n"); 
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r allocate memory for our local data ., 
Fbar 
f10wread 
f1owread1 
f1owread2 
Kayi 
g; 
A; 
B; 
G; 
Aislar 
Bistar 
Aisr 
Bisr 
Im01 
tm02 
tm03 
tm04 

= dvector (0,7); 
= dvector (0,7); 
= dvector(O,7); 
= dvector (0,7); 
= dmatrix (0,10,0.10); 
= dmatrix (0,10,0.10); 
= dmatrix (0.10,0,10); 
= dmatrix (0,10,0,7); 
= dmatrix (0.10,0,6): 
= dmatrix (0.10,0,10): 
= sdmatrix (11,8); 
= dmalrix (0,7,0,7): 
= dmalrix (0,7,0,7): 
= dmatrix (0,10,0,10); 
= dmalrix (0,10,0,10); 
= dmalrix (0,10,0,10); 
= dmatrix (0,10,0.10): 

r Read from the DataBase ., 
if ((in!) (bc.pointeriastupdate · bc.pointergap_GCdeadlime) < 0) 

DTlndex1 ::: bC.Nbuffer + bc.pointeriastupdate· bc.pointergap_GCdeadtime; 
else 

DTlndex1 = bc.pointenastupdale - bc.pointergap_GCdeadtime; 

if ((inl) (bc.buff-pointer - bc.poinlergap_GCdeadlime) < 0) 
DTlndex2 = bc.Nbuffer + bc.buffJ)Oinler - bc.poinlergap_GCdeadtime; 

else 
OTlndex2 = bC.buff-poinler - bc.pointergap_GCdeadlime; 

r read the data from the buffer for indices DTlndex1 and DTlndex2·' 
ChangePtRecord (60,DTlndex1); 
SingleRead «rtUlnt8 *) &DTVatues1 ,60); 
ChangePtRecord (60,DTlndex2); 
SingleRead «rtUlnt8 *) &DTVatues2.60); 

if (this Debug) { 
printf ("DTlndex1 is %d\nft ,DTlndex1 ); 
printf ("DTlndex2 is %d\n",DTlndex2); 
) 

r flows for the last GC update . , 
f1owread1[FR1FC2] = DTValues1.ETHFLO; 
flowread1[FR1FC4) ::: DTValues1.BUTFLO; 
f1owread1 (FR1 FC6] = DTValues1.HEXFLO; 
f1owread1[FR1 FH2] ::: DTValues1.H2FLO; 
f1owread1 [FR1 FN2] = DTValues1 .N2FLO; 
f1owread1 [FR1 FAS] = DTValues1.CATFDRTOT; 
flowread1 [FR1 FV] = DTValues1 .R1VENTFLO; 
f1owread1 [FR1 FP] = DTValues1 .PRODRATE; 

r flows for the current GC update·' 
flowread2(FR2FC2] ::: DTValues2.ETHFLO; 
f1owread2(FR2FC4] = DTValues2.BUTFLO; 
flowread2(FR2FC6] ::: DTValues2.HEXFLO; 
flowread2[FR2FH2] ::: DTValues2.H2FLO; 
f1owread2(FR2FN2] = DTValues2 .N2FLO; 
flowread2[FR2FAS] ::: DTValues2.CATFDRTOT; 
f1owread2[FR2FV] = DTValues2.R1VENTFLO; 
f1owread2[FR2FP] = DTValues2.PRODRATE; 

r average flows for the lasl2 GC update *' 
flowread[FRFC2] ::: (flowread1 (FR1FC2] + flowread2[FR2FC2]) 12.0; 
flowread[FRFC4] ::: (flowread1 [FR1 FC4] + flowread2[FR2FC4]) 12.0; 
flowread[FRFC61 = (f1owread1[FR1FC6] + f1owread2[FR2FC61) 12.0; 
f1owread[FRFH2] = (f1owread1[FR1FH2] + f1owread2[FR2FH2]) 12.0; 
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f1owread[FRFN2] = (flowread1 [FR1 FN2] + flowread2(FR2FN2l) '2.0; 
flowread(FRFAS] = (f1owread1{FR1 FAS] + flowread2[FR2FAS) 12.0; 
flowread(FRFV] = (flowread1 [FR 1 FVj + flowread2(FR2FV]) 12.0; 
f1owread(FRFP] = (f1owread1 (FR 1 FP] + f1owread2[FR2FPJ) 12.0; 

Bed_Mass 
Vp 

= DataUne.BEDWEIGHT; 

Vg 
T 
P 
Ng 

= Bed_Mass /fp.ro; 
= fpVreactor - Vp; 
= DataUne.REACTEMP; 
= DataUne.R1PRESSURE; 
= P * Vg I (fp.Rgasconst * (T + 273.15»; 

x_typical[O] = nbartNP2V(nbar[NP2]+nbartNP4]+nbartNP6}); 
x_typical[1] = nbartNP4V(nbartNP2]+nbar[NP4]+nbar[NP6]); 
x_typical(2j = nbar[NP6]/(nbar[NP2)+nbar[NP4]+nbar[NP6]); 
mMMp = MW(Otx_typical[O] + MW(1]*x_typical[1] + MW[2]*x_typical[2]; 
Np = Bed_Mass/mMMp; 

r Gas inventories '" 
nobs[ONC2j = 0.01 * DataUne.ETH * Ng; 
nobs{ONC4j = 0.01 * Dataline.BUT * Ng; 
nobs(ONC61 = 0.01 * Dataline.HEX * Ng; 
nobs[ONH2] = 0.01 .. DataUne.HYD * Ng; 
nobs[ONN21 = 0.01 " Dataline.NIT * Ng; 
nobs[ONAS] = xfbar[NASI]; 
nobs(ONG] = Ng; 
nobs[ONP] = Np; 

r Flow readings this time step (Set up vector Fbar) *' 

r kg polymer *1 

r temperature (OC) *' 
r pressure (bar-abs) *' 
r ideal gas law */ 

Fbar[FC2] = f1owread[FRFC2]; r readings from interface (kmoVs) *1 
FbarfFC4] = f1owread[FRFC4j; r readings from interface (kmoUs) "I 
Fbar[FC6] = f1owread[FRFC6j; r readings from interface (kmol/s) "I 
Fbar[FH2] = f1owread[FRFH2j; 1* readings from interface (kmolls) "I 
FbarlFN2] = f1owread[FRFN2j; 1* readings from interface (kmolls) *' 
Fbar[FASj = flowread{FRFASj ; r total catalyst flow (kg/s) - will affect k parameters */ 
Fbar{FV] = flowread[FRFVj; r readings from interface (1(moVs) *J 
Fbar[FP] = flowread[FRFP) , mMMp; r readings from interface (1(moUs) *J 

r Rough Mass Balance Check - will be a bit off as vent 10 MonRec is nol induded *' 
Fin = Fbar[FC2] + Fbar[FC4] + Fbar1FC6] + Fbar(FH2] + Fbar(FN2]; 
Fout = Fbar[FVj + Fbar(FPj; 

if (Fin>O.O) 
percent_error = 100 * (Fin - Fout) I Fin; 

else 
percent_error = 100.0; 

if (firslldenl) 
{ 

) 

dvcopy (nobs,8,nobs_tm1); 
firstldent = 0; 

nC2i = nobs_tm1 [OM1 NC2j ; 
nC4i = nobs_tm1[OM1NC4]; 
nC6i = nobs_tm1[OM1NC6]; 
nH2i = nobs_lm1[OM1 NH2); 
nN2i = nobs_tm1[OM1NN2]; 
nASi = nobs_tm1[OM1NAS]; 
Ngi = nobs_tm1[OM1NGJ; 
Npi = nobs_tm1[OM1NP); 

kP2i = xfbar[KP2j; 
kP4i = xfbar[KP41; 
kP6i = xfbar(KP61; 
kHi = xfbar(KH]; 
gHi = xfbar(GH]; 

r steady state for the first step *' 
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kdi = xfbartKO); 

Fvi '" Fbar{FV] ; 
Fpi '" FbartFP); 

zero_dmatrix (Kayi,O,10,O,10); 
Kayi[O][O]:::-kP2i; 
Kayi{1][1 ]:::-kP4i; 
Kayi{2][2)=-kPBi ; 
Kayi(3113)=-kHi; 
Kayi{6]{0)=kP2i; 
Kayi(7]{1)=kP4i; 
Kayi[8)[2J=kP6i; 
Kayi(9)[0):::-kP2i; 
Kayi[9](1 ]:::-kP4i; 
Kayi[9][2]=-kP6i; 
Kayi[9][3]=-kHi; 
Kayi[10][O]=kP2i; 
Kayi{10]{1]=kP4i; 
Kayi[10][2]=kP6i; 

zero_dmalrix (gi,O,10,O,10); 
gi[3)[3J = -gHi; 
gi[5)[5J = -kdi; 
gi[9][3] = -gHi; 

r Fpi"h = tmOl'" 
dmsmy (h,ll ,11,Fpi ,tmOl); 
r H + HAS = tm02'" 
dmadd (H,1l ,11,HAS,tm02); 
r (FpilNpi) " (H+HAS) ::: tm03*' 
dmsmy (tm02,11,11,(Fpi/Npi),tm03); 
r (FpiINpi) " (H+HAS) + Fpj"h = tm02 '" 
dmadd {tm03,11,1 1 ,tm01 ,tm02); 
r (FvilNgi) " G = tmOl '" 
dmsmy (G,11,11 ,(FvilNgi),tm01); 
r (Fvi/Ngi) " G + gi = tm03 '" 
dmadd (tm01,11,11,gi,tm03); 
'" (Fvi/Ngi) "G + gi + (Fpi/Npi) " (H+HAS) + Fpi"h = tmOl '" 
dmadd (tm03, 11, 1l ,tm02,tm01); 
r nASi"Kayi "" tm02 '" 
dmsmy (Kayi,11,ll,nASi,tm02); 
r nASi"Kayi + (Fvi/Ngi) .. G + gi + (FpilNpi)" (H+HAS) + Fpi"h = Ai '" 
dmadd (tmOl, 11 ,11 ,tm02,Ai); 

dmcopy (B, 11 ,6,81); 

PartMatExptdent (Ai,8i,Aistar,Bistar,11,6): 

zero_dmatrix (Gi,O,10,O,6); 

Gi[O]{O] = -nASi" nC2i; 
Gi[O)[6] = -kP2i " nC2i; 

Gi[1)[1] = -nASi" nC4i ; 
Gi[1]{6] ::: -kP4i .. nC4i; 

Gi[2Jl2] = -nASi" nC6i; 
Gi[2J[6J = -kP6i .. nC6i ; 

Gi[3][3] = -nASi" nH2i; 
Gi[3][4] = -nH2i; 
Gi[3][6] "" -kHi .. nH2i ; 

Gi[5)[5J = -nASi; 
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Gi[6J[0] = nASi· nC2i; 
Gi[61(6) = kP2i " nC2i; 

Gi[7][1] = nASi" nC4i: 
Gi[7][61 = kP4i " nC41; 

Gi[8][2] = nASi" nC6i; 
Gi[8][6] = kP6i " nC6i; 

Gi{9][0] = ·nASi • nC2i; 
Gi[9][1] = ·nASi" nC4i; 
Gi[9J[2] = ·nASi " nC6i; 
Gi[9J[3] = ·nASi • nH2i: 
Gi(9)[4) = ·nH2i; 
Gi[9][6] = ·kP2i " nC2i • kP4i " nC4i - kP6i • nC6i - kHi • nH2i; 

Gi[10)[0] = nASi· nC2i; 
Gi[10][1] = nASi· nC4i: 
Gi[10][2] = nASi" nC61: 
Gi[10][6] = kP2i • nC2i + kP4i • nC4i + kPSi • nC6i: 

r 
if (this Debug) { 

) 
·f 

printf (".h"Kayi···~1: 
show_dmatrix (Kayi,0.10.0.10); 
printf ("· .. ·gi· .. ~ .. ): 
show_dmalrix (gi.0.10.D.10); 
printf ("uuAi· .. ~"); 
show_dmatrix (Ai.D.10,0,10): 
prinlf(" .... Aislar· .. ~M): 
show_dmatrix (Aislar.0.1 0.0.1 0); 
printf("····8istar .. ·~M) : 
show_dmatrix (8istar.0.10.0.7); 
printf ("·· .. Gi .. ·~·); 
show_dmatrix (Gi.0.10.0.S); 

r Set up reduced matrices '" 
r Aisr '" 
dmtranspose (C.B,ll.tmOl); 
dmmult (Aislar.11 ,11 ,tmOl ,11 ,a.tm02): 
dmmult (C,B,11.tm02.11.B,Aisr): 

r Bisr '" 
dmmult (C.B.11 ,8istar,11.a,Bisr): 

r Gir·/ 
dmmult (C,B.11 ,Gi, 11.7.Gir); 

r Prediction in identifier '" 
'" nObs....,Pred=Aisr·nobs_tm1 + 8isr"Fbar '" 
dmvmult (Bisr,B,a.Fbar.a,"lm01); 
dmvmull (Aisr,B,B.nobs_lm1 ,a."tm02); 
dvadd (*tm01.B,·lm02,nobs....,Pred); 

r Patch in nAS "observation" ./ 
nobs[ONAS] = nobs....,pred[ONAS]; 
xfbar[NASIJ = nobsJ)red[ONAS]: 

r Kid=M"Gir'''(Gir·M''Gir'+R)''(-l) '" 
dmtranspose (Gir,8,7,lm01): 
dmmult (M,7.7,tm01.7.B,tm02): 
dmmull (Gir,B,7,tm02,7,B,tm01): 
dmadd (tm01,8,B.R,lm02): 
dinverse (tm02,8,tm01): 
dmtranspose (Gir,B.7.tm02); 

rC'=tm01 
r Aislar" C' = tm02 
r C .. Aislar • C = Aisr 

r C " Bistar = Bisr 

re" GI = Gir 

r Bisr"Fbar=tm01 
r Aisr"nobs_tm1=tm02 

·f 
·f 
·f 

·f 

·f 

r Aisr"nobs_tm1 + Bisr"Fbar=nobsJlred 

r Gir'=lm01 
r M"Gir'=lm02 
r Gir"M"Gir'=tm01 
r Gir·M"Gir'+R=tm02 
r (Gir"M"Gir'+R)"(·1)=lm01 
r Gir'=tm02 
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dmmull (M,7, 7 ,tm02,7 ,B,tm03); 
dmmull (tm03,7,a,tm01 ,B,a,Kid); 

r xfbar=xfbar+Kid*(nobs-nobsJ)red) *' 
dvsub (nobs,8,nobsJlred:lm01); 
dmvmult (Kid,7,B,"lm01 ,a:lm02); 
dvadd (xfbar,7,"lm02,xfbar); 

r M=(lid-Kid"Gir)"M+Q '" 
dmmult (Kid,7,B,Gir,B,7,tm01); 
dmsub (lid,7,7,tm01,tmD2); 
dmmull (tm02,7,7,M,7,7,lm01); 
dmadd (tm01,7,7,Q,M); 

r clip '" 
for (k = 0; k < ROWIDENT; k++) 
{ 

if(xfbar[k)<xfbarminlk]) 
xfbar{k]=xfbarmin[k]; 

else 

r M"Gir'=tm03 
r M"Gir'''(Gir*M''Gir'+R)''(-1)=Kid 

r nobs-nobsJ)red=tm01 
r Kid"(nobs-nobsJlred)=tm02 
r xfbar+Kid·(nobs-nobs....Pred)=xfbar 

r Kid·Gir=tm01 
r lid-Kid*Gir=tmD2 
r (lid-Kid"Gir)*M 
r (lid-KidoGir)·M+Q=M 

if (xfbarlk]>xfbarmax[kJ) 
xfbar{k]=xfbarmax[k); 

} 

if ( thisOebug ) { 
r printfru"*nobs"'''''\n°); 

show_dvector (nobs,O,7); 
printfC'h"·nobsJlred""*\n~): 
show_dvector (nobsJ)red,0,7); 
printfC'''''''''Kid''''''*\nH

); 

show_dmalrix (Kid,O,6,O,7); *' prinlfC' .... xfbar· .. "\n·); 
show_dveclor (xfbar,O,6); 

r printf("o·""M·""\n"): 

0' 
} 

show_dmatrix (M,0,6,O,6); 

dvcopy (nobs,8,nobs_tm1); 

r free up allocated local identifier memory ./ 
free_dvector (Fbar,O,7); 
free_dvector (flowread,O,7); 
free_dvector (flowread1 ,0,7): 
rree_dvector (flowread2,O,7); 
rree_dmatrix (Kayi,0,10,O,10): 
free_dmatrix (9i,O,10,O,10); 
free_dmatrix (Ai,O,10,D,10); 
free_dmatrix (8i,O,10,0,7): 
free_dmatrix (Gi,O,10,0,6); 
free_dmatrix (Aislar,O,10,0,10); 
free_dmalrix (8islar,O,10,0,7); 
free_dmatrix (Aisr,0,7,O,7); 
free_dmatrix (8isr.0,7.0,7); 
free_dmatrix (Im01,O, 10,0,10): 
free_dmatrix (tm02,O,10,0,10): 
free_dmatrix (tm03,D,10,D,10): 
free_dmatrix (tm04.D,10,D,lD); 

return (0): 
} r end of Mainldentloop "/ 
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r 
r 
r 
r 
r 

UpdateldenlData: Parameters updated by the Identifier are 
written back to the DataBase. 
Type: External 
Return Codes: 0 if no errors 

1 if there were errors 

inl UpdateldentDala (void) 
{ 

if (thisOebug) printf(" ...... UpdateldentData U*"\n1; 

1* write xfbar to the DataBase . / 
SingleWrite «rtUlnt8 '") xfbar,32); 

r write nobs back to the DataBase */ 
SingleWrite « rtUlnt8 .) nobs,49); 

1* write nobs_tm1 back to the DataBase */ 
SingleWrile ( (rtUlnl8 '") nobs_lm1 ,67); 

1* write nobsJ)red to the DataBase ., 
SingleWrile ( (rtUlnt8 *) nobsJ)red,50); 

1* write Kid to the DataBase *' 
SingleWrite ( (rtUlnl8 *) ·Kid,34); 

1* write M 10 the DataBase ., 
SingleWrite ( (rtUlnl8 .) ·M,35); 

return (0); 
} r end of UpdateldentData */ 

r IdentPlotData: Creates a history table for recording the *' 
1* results of the identifier, 'xfbar' in the DataBase. '"I 
r When the maximum lines are exceeded, values in the '"I 
1* table are shifted up one place. Presently not used '"' 
r for Irending. *' 
r Type: Local *' 
r Return Codes: 0 if no errors '"I 
r 1 if there were errors '"I r····· .. ·· .... ·· ... · .... ·········· .. ·· .. ··_· __ · ... ················· ............ _-, 
inlldentPlotData (void) 
{ 
xfbarHistxfbarhisl, xfbarshift ; 
static int xfbarlndex = 0; 
struct timeval now; 
1nl shiftlndex; 

if (thisDebug) printf (" .... tdenlPlotDala ..... "\n~) ; 

now.tv_sec = time(NULL); 

r generate xfbar historical data *' 
SingleRead ( (rtUlnt8 *) &Xfbarhist, 68); 

xfbarhisttimestamp = now; 
xfbarhist.kP2i = xfbar(KP2] ; 
xfbarhist.kP4i = xfbar(KP4] ; 
xfbarhist.kP6i = xfbar[KP6]; 
xfbarhist.kHi = xfbar{KH]; 
xfbarhist.gHi = xfbar[GH); 
xfbarhist.kdi = xfbarf.KD] : 
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xfbamist.nASi = xfbar[NASI); 

if (xfbarlndex < MAXIDHISn { 
ChangePtRecord (68,xfbarlndex); 
SingleWrite «rtUlnt8 ") &xfbamist, 68); 
xfbarlndex++; 

) 
else { 

for (shiftlndex = 1; shiftlndex < MAXIDH1ST; shiftlndex++) { 
ChangePtRecord (68,shiftlndex); 
SingleRead «rtUlnt8 ") &xfbarshift, 68); 
ChangePtRecord (68,shiftlndex.1); 
SingleWrite ( (rtUlnt8 .) &xfbarshifl:, 68); 

) 

) 
ChangePtRecord (68,MAXIDHIST·1); 
SingleWrite ( (rtUlnl8 .) &xfbarhisl, 68); 

return (0); 
} r end of IdentPlotData . / 

r MainKalmanLoop: The main Kalman filler algorithm. Executed·' 
r every time step but only if the reactor is up ., 
r (returncodes 1,3,5,7). Calculates state estimates ., 
r in the form of mote fractions (nbar) from measurable ., 
r states nhat. .J 
r Type: External ., 
r Return Codes: 0 if no errors ., 
r 1 if there were errors ., 
r· .... · .. ··········•·•• ... • ........ ·•••·••·• .. ·· .... ···•·······••····• •••.•••••.•••••.••••• , 
int MainKalmanLoop (void) 
( 
static firstFilt = 1; 
static first Loop = 1; 
int k; 

rtDouble Ngkf; 
rtDouble Npkf; 
rtUlnt16 DTlndex3; 
bufferTable DTValues3; 
rtDouble ·Fbarkf; 
rtDouble UKay; 
rtDouble -g; 
rtDouble **A; 
rtDouble Fv; 
rtDouble Fp; 

rtDouble kP2 ; 
rtDouble kP4; 
rtDouble kP6; 
rtDouble kH; 
rtDouble gH; 
rtDouble kd; 
rtDouble nAS; 

rtDoubleP; 
rtDoubleT; 
rtDouble Vp; 
rtDouble Vg; 
rtDouble Ng; 
rtOouble mM Mp; 
rtDouble Np; 
rtDouble ·np; 
rtDouble ·ng; 
rtDouble Bed_Mass; 

r counter for dipping nbar·' 
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rtDouble ·"Astar; 
rtDouble ·"Bstar; 

r Temporary storage arrays (used by both identifier and filter) '" 
rtDouble .... tm01; ,.. temporary storage matrix 1 ~ used in matrix computations '" 
rtDouble .... tm02; ,.. temporary storage matrix 2 - used in matrix computations '" 
rtDouble ""tm03; r temporary storage matrix 3 - used in matrix computations '" 
rtDouble "·tm04; r temporary storage matrix 4 - used in matrix computations '" 

if (thisDebug) prinlf("· .... MainKalmanLoop .... · "\01; 

r allocate memory for our local KF data '" 
Fbarkf = dveclor (0.7); 
np = dvector (0,2); 
ng = dvector (0,4); 
Kay = dmatrix (0,10,0,10); 
g = dmatrix (0,10,0,10); 
A = dmatrix (0,10,0,10); 
tm01 = dmatrix (0,10,0,10); 
tm02 = dmatrix (0,10,0,10): 
tm03 = dmatrix (0,10,0,10); 
tm04 = dmatrix (0,10,0,10); 
Astar = dmatrix (0,10,0,10); 
Bstar = sdmatrix (11,6); 

r kinetic constants initialisation (until identifier gives better estimates) '" 
kP2 = xfTyp.kP2Uypical; r propagation pseudo-rate constant for ethylene '" 
r kP4 DEPENDS ON GRADE - SEE BELOW,.. propagation pseudo-rate constant for butene '" 
r kP6 DEPENDS ON GRADE - SEE BELOW r propagation pseudo-rate constant for hexene 0' 
kH = xfTyp.kHLtypical; ,.. transfer rate constant for reaction with H2 '" 
gH = xfTyp.gHLtypical; r hydrogen balance mismatch factor '" 
kd = xfTyp.kdLtypical; r spontaneous deactivation (kds) "f 
nAS = xfTyp.nAS_typical; r activated sites *' 
if (HexeneMode Q) ( 

else ( 

) 

k?4 = xfTyp.kP4LtypicaLhex; 
kP6 = xfTyp.kP6LtypicaLhex; 
) 

kP4 = xfTyp.kP4LtypicaLbut; 
kP6 = xfTyp.kP6Ltypical_but; 

, 
r KALMAN FILTER IS RUN ON EVERY STEP,USING TEMPORARY KINETIC DATA AT THE 
BEGINNING "/ 
Bed_Mass 
Vp 

= DataUne.BEDWEIGHT; r kg polymer '" 
= Bed_Mass' fp.ro; 

Vg = fpVreactor - Vp; 
T = DataUne.REACTEMP; r temperature (OC) "/ 
P = DalaUne.R1PRESSURE; r pressure[bar absj=2070kPag '" 
Ng = P "Vg / (fp.Rgasconst "er + 273.15»: 

if (fi rstFilt) ( 
nbar[NC2] = 0.01 " DataLine.ETH .. Ng; 
nbar[NC4] = 0.01 .. DataLine.BUT" Ng; 
nbar[NC6) = 0.01 .. DataLine.HEX " Ng; 
nbar[NH2) = 0.01 .. DataLine.HYD" Ng; 
nbar[NN2) = 0.01 .. DataLine.NIT" Ng; 
nbar[NAS] = xfTyp.nAS_typical; 

if (HexeneMode Q) 
dvcopy (x_typical_hex,3,x_lypical); 

else 
dvcopy (x_typica'-but,3,x_typjca~; 
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r mMMp = MW * x_typical·' 
mMMp = MW[Orx_typical[O] + MW[1)*x_typical(1) + MW(2)*x_typical[2) ; 

Np = Bed_Mass ' mM Mp; r moles of gas in polymer *' 
r 

if (thisOebug) printf r 'Bed_Mass: %f\tVp: %f\IVg: %f\tT: %f\tP: %f\tNg: %f\tmMMp: %f\1Np: %f\n", 
Bed_Mass,Vp,Vg,T,P,Ng,mMMp,Np); 

"' 
nbartNP2] 
nbartNP4] 
nbar[NP6) 
nbartNG) 
nbartNP) 

= x_typical[O) • Np; r Polymer inventories as C2 *' 
= x_typical[1]* Np; r Polymer inventories as C4 *' 
= x_typical[2] • Np; r Polymer inventories as C6·' 
= Ng; 
=Np; 

firstFilt = 0; 

} else { 
SingleRead ( (rtUlntB *) nbar,63); 
x_typical[O} = nbar[NP2}'(nbartNP2]+nbartNP4]+nbartNP6]); 
x_typical[1) = nbar[NP4)/(nbar(NP2)+nbar(NP4)+nbar(NP6}}; 
x_typical(2) = nbar(NP6]/(nbar(NP2)+nbartNP4)+nbar(NP6]); 
mMMp = MW[O)*x_typical[O] + MW[1]*x_typical{1] + MW[2tx_typical(2] ; 
Np = Bed_Mass/mMMp; 

r 
if (thisOebug) printf ("Bed_Mass: %f\1Vp: %f\tVg: %f\tT: %f\tP: %f\tNg: %f\tmMMp: %f\tNp: %f\n", 

8ed_Mass,Vp,Vg,T,P,Ng,mMMp,Np): 

"' } 

Npkf = nbar(NP); 
Ngkf = nba~NGJ: 

bc.pointergap_GCdeadtime = (inl) fp.GCdeadtime/(fp.dt); 

if ( (int)(bc.buffyointer - bc.poinlergap_GCdeadtime) <: 0) 
OTlndex3 = bc.Nbuffer + (bc.buffyointer - bc.pointergap_GCdeadtime); 

else 
OTlndex3 = (bc.buffJXlinter - bc.pointergap_GCdeadtime); 

if (lhisOebug) printf (,'OTlndex3 is %d\n~,OTlndex3) ; 

r read the dala from the buffer for index OTlndex3 *1 
ChangePIRecord (60,OTlndex3); 
SingleRead «rtUlnt8 *) &OTValues3,60); 

Fbarkf (Fe2l = OTValues3.ETHFLO; 
Fbarkf (FC4] = OTValues3.8UTFlO; 
Fbarkf {FC6] = OTValues3.HEXFlO; 
Fbarld {FH2J = OTValues3.H2FlO; 
Fbarkf [FN2] = OTValues3.N2FlO; 
Fbarkf [FAS] = OTValues3.CATFORTOT; 
Fbarkf [FV] = OTValues3.R 1 VENTFlO; 
Fbarkf [FP] = OTVaJues3.PROORATElmMMp; 
Fv = Fbarkf(FV}; 
Fp = Fbarkf[FP); 

r set to identified values if identifier has run */ 
if (firslldenl != 1) { 

kP2 = xfba~KP2J : 
kP4 = xfbar[KP4}; 
kP6 = xfbar[KP6): 
kH = xfbar(KH] ; 
gH = xfbar(GH]; 
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kd = x1ba~KD); 
nAS :: xfbartNASI]; 

) 
zero_dmatrix (Kay,0,10,0,10); 
Kay)O)[O)=-kP2; 
Kay[1)[1)=-kP4; 
Kay[2]{2]=-kP6; 
Kay[3)[3]=-kH; 
Kay[B)[O]=kP2; 
Kay[7][1]=kP4 ; 
Kay[8)[2]=kPB; 
Kay[9)[O]=-kP2; 
Kay[9)[1]~kP4; 

Kay[9U2]=-kP6; 
Kay[9][3]=-kH; 
Kay[10)[O)=kP2; 
Kay[10)[1)=kP4; 
Kay[10][2]=kP6; 

zero_dmatnx (g,O, 10,0, 10); 
9[3)[3] = -9H; 
9[5)[5] = -kd ; 
9[9)[3] = -9H; 

r set up h (depends on the grade)-' 
if (HexeneModeO) { 

h[2)[2] = -fp.sB; 
h[1)[1) = 0.0; 
h[9)[2] = -fp.sB; 
h[9)[1] = 0.0; 

} else { 

) 

h[2)[2) = 0.0; 
h[1)[1) = -fp.s4; 
h[9)[2) = 0.0; 
h[9)[1) = -fp.s4; 

r Fp*h = tm01'" 
dmsmy (h,11, 11 ,Fp,tm01 ); 
r H + HAS = tm02·' 
dmadd (H, 11,11 ,HAS,tmD2); 
r (Fp/Npkf) • (H+HAS) = tm03·' 
dmsmy (tm02 , 11 , 11 ,(Fp/Npkf),tm03): 
r (Fp'Npkf)" (H+HAS) + Fp·h = tm02 '" 
dmadd (Im03, 11,11 ,tmD1 ,tm02); 
r (Fv/Ngkf) "G = tmD1 "I 
dmsmy (G,11, 11,(Fv'Ngkf),tm01 ); 
r (Fv/Ngkf) • G + 9 = tm03 '" 
dmadd (tmOl ,11,11,9,tm03); 
r (Fv/Ngkf) "G + 9 + (FplNpkf) " (H+HAS) + Fp·h = tmOl "I 
dmadd (Im03,11,11 ,tm02,tm01); 
r nAS·Kay = tm02 "I 
dmsmy (KaY,11 ,1 1 ,nAS,tm02); 
r nAS·Kay + (Fv/Ngkf)" G + 9 + (Fp/Npkf) .. (H+HAS) + Fp·h = A ., 
dmadd (tm01,11 ,11 ,tm02,A); 

PartMalExpKF (A,B,Aslar,Bstar,11 ,8); 

r Show vectors and matrices for debug ·1 
r 
if (thisOebug) { 

printf ("· .. ·Kay···*\n"); 
show_dmatrix (KaY,O,10,O,10); 
printf r· .. ·g .... *\n .. ); 
show_dmatrix (9,0,10,0,10); 
printf r· .. ·A ... ·*\n1; 
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} 
. / 

show_dmatrix (A,0,10,0,10): 
printf ("uuFbarkf"u"\rn; 
show_dvector (Fbarkf,O,7); 
printf r"""Astar·"*\n"); 
show_dmatrix (Astar,O, 10,0, 10); 
printf C'·· .. Bstar ..... \n"); 
show_dmatrix (Bstar,0,10,0,7); 

r Load nhat (measurements) from Dataline for the Kalman Filter '" 
nhat[HNC2] = 0.01 " Oataline.ETH " Ng; 
nhat[HNC4] = 0.01 " Oataline.BUT" Ng; 
nhat[HNC6] = 0.01 " Dataline.HEX " Ng; 
nhat[HNH2] = 0.01 • Dataline.HYD " Ng; 
nhat[HNN2] = 0.01 " Dataline.NIT" Ng; 
nhat[HNG] = Ng; 
nhat[HNP] = Np; 

r Kalman Filter Algorithm '" 
r Kkf=Mkf*Gkf"(Gkf*Mkf"Gkf+Rkf)"'(·l) '" 
dmtranspose (Gkf, 7,11 ,tmOl); 
dmmult (Mkf,ll,ll ,tm01,11 ,7,tm02): 
dmmult (Gkf,7,11 ,tm02,11 ,7,tmOl ); 
dmadd (tmOl,7,7,Rkf,tm02); 
dinverse (tm02,7,tm01) ; 
dmtranspose (Gkf, 7, 11 ,tm02); 
dmmult (tm02, 11 ,7,tmOl ,7,7,tm03); 
dmmult (Mkf,11 ,11 ,tm03,11 ,7,Kkf); 

r KFerror=nhat-Gkf"nbar '" 
dmvmult (Gkf,7,11 ,nbar,11 ,"tmOl ); 
dvsub (nhat,7,"tm01 ,KFerrar) ; 

r Gkf=tm01 
r Mkf*Gkf=tm02 
r Gkf"Mkf"Gkf=tm01 
r GkrMkf*Gkf+Rkf=tm02 
r (Gkf"Mkf"Gkf+Rkf)"'(·1)=tmOl 
rGkf=tm02 
r Gkf"(Gkf"Mkf"Gkf+Rkf)"(-1)=tm03 
,. Mkf"Gkf"(Gkf"Mkf"Gkf+Rkf)"(·1)=Kkf 

r Gkf"nbar-tm01 
r nhat-Gkf*nbar=KFerror 

r nbar=Astar"nbar+Bstar"Fbarkf+Kkf"KFerror '" 

. / 

./ 

. / 

. / 

. / 

. / 

./ 

./ 

./ 

. / 

dmvmult (Kkf,11 ,7,KFerrar,7,"tmOl); r Kkf"KFerror-tmOl '" 
dmvmull (Bstar,11 ,B,Fbarkf,B,"lm02); r Bstar"Fbarkf=tm02 '" 
dvadd (*tm01, 11 ,"lm02,"lm03); r Bstar"Fbarkf+Kkf*KFerror=tm03 '" 
dmvmult (Astar,11 , 11 ,nbar, 11 ,"lmOl ); r Astar"nbar-tm01 '" 
dvadd ("tmOl ,11 ,"tm03,nbar); r Aslar"nbar+Bslar"Fbarkf+Kkf"KFerror-nbar ./ 

r Mkf=Astar"(lkf-Kkf"Gkf)"Mkf"Aslar'+Qkf '" 
dmmult(Kkf,11 ,7,Gkf,7,11 ,tm01) ; r Kkf"Gkf=tm01 ., 
dmsub (lkf,ll ,11 ,tmOl ,tm02); r Ikf-Kkf"Gkf=tm02 '" 
dmmult (tm02, 11 ,11 ,Mkf,11,ll,tm01); r (lkf-Kkf"Gkf)"Mkf=trn01 '" 
dmtranspose (Astar,ll, 11 ,tm02); r Astar'=tm02 '" 
dmmult (tm01,11 , 11 ,tm02, 11,11 ,tm03); r (lkf-Kkf"Gkf)"Mkf"Astar'=tm03 '" 
dmmult (Astar, 11 ,11 ,tm03,11 , 11 ,tmOl); r Astar"(lkf-Kkf"Gkf)"Mkf"Astar'=lm01 '" 
dmadd (trn01,11 ,ll ,Qkf,Mkf); r Astar"(lkf-Kkf"GId)"Mkf"Astar'+Qkf=Mkf . , 

r clip '" 
for (k = 0; k <NKF; k++) 
{ 

} 

if (nbar[k]<nbarmin[k]) 
nbar[k]=nbarminfk] : 

else 
if (nbar[k»nbarmax[k]) 

nbarf\c)=nbarmax[k); 

if (thisDebug) { 
r printf (" .... Kkf· .. ~ .. ); 

show_dmatrix (Kkf,0,10,O,6); 
printf C'····KFerrar· ... "\n"); 
show_dvector (KFerrar,Q,6): 

'" printf C'"unhat"·"*\n"): 
show_dvectar (nhat,O,6): 
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printf (".u·nbaru."\n~); 
show_dvector (nbar,O,lD); 

r printf r· .. ·Mkr .. "\n1; 
show_dmatrix (Mkt,D,10,O,10); 

"' ) 

r free up allocated local KF memory ., 
tree_dvector (Fbarkf,O,7); 
free_dvector (np,O,2); 
free_dvector (ng,O,4); 
free_dmatrix (Kay,O,10,O,10); 
free_dmatrix (g,O,10,O,10): 
free_dmatrix (A,O,10,O, 10); 
free_dmatrix (tm01 ,0,10,0,10); 
free_dmatrix (tm02,0,10,0,10); 
free_dmatrix (tm03,0,10,0,10): 
free_dmalrix (tm04,0,10,0,10): 
free_dmatrix (Astar,0,10,D,10): 
free_dmalrix (8star,O,10,0,7): 

return (0); 
} r end of MainKalmanLoop ., 

r 
r 
r 
r 
r 

UpdaleKalmanData: Parameters estimated by the filter are 
wrilten back to the DataBase. 
Type: External 
Relurn Codes: ° if no errors 

1 if there were errors 

"' "' "' "' "' r ......... _ ............................................ _ ........... h ....... -.. ............ , 

inl UpdaleKalmanDala (void) 
{ 
r updale the BufferControl point . , 
SingleWrite ( (rtUlnt8 .) &bc,59): 

r write nhat 10 Ihe database ., 
SingleWrile ({rtUlntB j nhal,64): 

r write nbar to the DataBase . / 
SingleWrite ( (rtUlnt8 .) nbar,63); 

r write h to the DataBase·' 
SingleWrite «rtUlntB·) ·h,4l): 

r write Mkf 10 the DataBase"' 
SingleWrile { (rtUlnlB .) ·Mkf,56) : 

r write Kkf 10 the DataBase ., 
SingleWrile ( (rtUlnlB .) ·Kkf,65): 

r write KFerror 10 the DataBase "/ 
SingleWrile ( (rtUlntB .) KFerror,66); 

return (0); 
} r end of UpdaleKalmanData ./ 
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r KalmanPlotData: Creates a history table for recording the results ., 
r of the filler, 'nbar' and 'KFerror' as well ., 
r as 'nhal' in the DataBase. VVhen the maximum lines *' 
r are exceeded, values in the table are shifted ., 
r up one place. Presently not used for trending. ., 
r Type: Local . , 
r Return Codes: 0 if no errors . , 
r 1 if there were errors ., 
r· .. ** ............ .. • ........ • ............ ••• .. •••••••• .. • .. * .. **· .... • .. *· .. ** ...... • .......... _ ..................... -., 

int KalmanPlotData (void) 
{ 
nhatHist nhathist, nhatshift, KFerrorhist, KFerrorshift; 
nbarHist nbarhist, nbarshift: 
static int nhatlndex = 0; 
stalic int nbarlndex = 0; 
static int KFerrorlndex = 0; 
struct timeval now; 
int shiftlndex; 

if (thisOebug) printf (" .... KalmanPlotOata ... *\O"); 
now.tv_sec = time(NULL); 

r generate nhat historical data *' 
SingleRead ( (rtUlntB *) &nhalhist, 69); 

nhathist.timestamp 
nhathisl.nC2 
nhathisl.nC4 
nhathisl.nC6 
nhathist.nH2 
nhathist.nN2 
nhalhist.Ng 
nhathist.Np 

= now; 
= nhat(HNC2]; 
= nhal[HNC4]; 
= nhat[HNC6]; 
= nhat[HNH2]; 
= nhat[HNN2]; 
= nhat(HNG); 
= nhal[HNP); 

if (nhal1ndex < MAXKFH1ST) { 
ChangePIRecord (69.nhaUndex); 
SingleWrile ( (rtUlnt8 *) &nhathist, 69); 
nhallndex++; 

} 
else { 

for (shiftlndex = 1; shiftlndex < MAXKFHIST; shiftlndex++) { 
ChangePIRecord (69,shifUndex); 
SingleRead «rtUlntB *) &nhatshift, 69); 
ChangePIRecord (69,shifUndex-1); 
SingleWrite «rtUlnt8 *) &nhatshift, 69); 

} 
ChangePIRecord (69,MAXKFHIST-1); 
SingleWrite ( (rtUlntB *) &nhathist, 69); 

} 

r generate nbar historical data "" 
SingleRead ( (rtUlntB *) &nbarhist, 70); 

nbarhist.timestamp 
nbarhist.nC2 
nbarhist.nC4 
nbarhist.nC6 
nbarhist.nH2 
nbarhist.nN2 
nbarhist.nAS 
nbarhisl.nP2 
nbarhist.nP4 
nbarhist.nP6 
nbarhist.Ng 
nbarhist.Np 

:c: now; 
= nbar[NC2]; 
:c: nbar(NC4): 
:c: nbar(NC6); 
:c: nbar(NH2]; 
= nbar(NN2); 
::: nbar(NAS); 
= nbar(NP2]: 
= nbar[NP4]; 
= nbar[NP6]; 
::: nbar(NG); 
::: nbar(NP); 
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if (nbarlndex < MAXKFHIST) { 
ChangePtRecord (70,nbarlndex); 
SingleWrile ( (rtUlnt8 *) &nbarhist, 70); 
nbarlndex++; 

} 
else { 

for (shiftlndex = 1; shiftlndex < MAXKFHIST; shiftlndex++) { 
ChangePIRecord (70,shiftlndex); 
SingleRead «rtUlnIB *) &nbarshift, 70) ; 
ChangePtRecord (70,shiftlndex-1); 
SingleWrite ( (rtUlntB .) &nbarshift, 70); 

) 

} 
ChangePtRecord (70,MAXKFHIST-1); 
SingleWrite ( (rtUlntB '") &nbarhist, 70); 

r generate KFerror historical data . , 
SingleRead «rtUlntB *) &KFerrorhisl, 71); 

KFerrorhist.timestamp = now; 
KFerrorhist.nC2 = KFerror[HNC2); 
KFerrorhist.nC4 = KFerror[HNC4): 
KFerrorhist.nC6 = KFerror[HNC6}: 
KFerrorhist.nH2 = KFerrorfHNH2); 
KFerrorhist.nN2 = KFerrorfHNN2J; 
KFerrorhist.Ng = KFerrorfHNG); 
KFerrorhist.Np = KFerrortHNPj; 

if (KFerrorlndex < MAXKFHIST) { 
ChangePIRecord (71 ,KFerrorlndex); 
SingleWrite ( (rtUlntB "') &KFerrorhist, 71); 
KFerrorlndex++; 

) 
else { 

for (shiftlndex = 1; shiftlndex < MAXKFHIST; shiftlndex++) ( 
ChangePtRecord (71,shiftlndex); 
SingleRead «rtUlntB *) &KFerrorshift, 71); 
ChangePIRecord (71 ,shiftlndex-1 ); 
SingleWrite «rtUlntB "') &KFerrorshift, 71); 

) 

) 
ChangePIRecord (71 ,MAXKFHIST-1 ); 
SingleWrile ( (rtUlntB "') &KFerrorhist, 71); 

return (0); 
} r end of KalmanPJotData '" 

r PartMatExpKF: Gets the discrete form of A and B (A" and S") .. , 
r for the Kalman filter by using a matrix exponential. '" 
r This is in effect a zero-order hold (ZOH) that anows '" 
r samples to be taken at discrete time intervals "" 
r 'dt'. Uses a truncated Taylor series of eAt to avoid "/ 
r singularity problems. '" 
r Type: Local "/ 
r Relurn Codes: 0 if no errors '" 
r 1 if there were errors (series gets too long and won't truncate) '" 
r"· .... • ...... • ............. • .... _.". .... ,.,.,,· ............... • .. ,.,. ......... •• .. • .... • ... • ...... ·** ........................... __ ... , 

inl PartMalExpKF (double "·a_mal,double "·b_mat,double "'"Astar,double .... Bstar,int rowS, 
int co18) r scan interval ., 

{ 
double "·expmAdUdivA; 
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doub!e "*changemat; 
double UAdt; 
double UtmKF; 
doub!e change = 10000.0; 
intk= 1; 
intj; 
int i; rloop counter *' 
r allocate memory for PartMatExpKF function '" 
expmAdUdivA = dmatrix (0,rowB·1 ,0,rowB·1); 
changemat = dmatrix (D,rowB-1 ,O,rowB·1 ); 
Adt = dmatrix (0,rowB-1 ,0,rowB-1); 
tmKF = dmatrix (0,rowB-1 ,0,rowB·1); 

r dt * Ikf = expmAdUdivA */ 
dmsmy (lkf,rowB,rowB,fp.dt,expmAdLldivA); 

r dt" Ikf = changemat '" 
dmsmy (lkf,rowB,rowB,fp.dt,changemat); 

rA"dt'" 
dmsmy (a_mat,rowB.rowB,fp.dl,Adl); 

while ( (change> TOL) && (k<=MAXEXPIT) ) { 
k = k+1; 

r tmKF = (changemat" Adt) '" 
dmmull (changemat,rowB,rowB,Adt,rowB,rowB,tmKF); 

r changemat = (changemat" Adt)" 111< '" 
dmsmy (tmKF ,rowB,rowB,(1.0/(double)k),changemat); 
change = 0.0; 
for (1 = O;i<rowB;i++) 

for G = O;j<rowB;j++) 
change = change + fabs (changemat{l)OJ); 

dmadd (expmAdUdivA,rowB,fQwB.changemat,expmAdl_ldivA); 
} 

r Astar = expmAdUdivA " A + Ikf *1 
dmmult (expmAdUdivA,rowB,rowB,a_mat,rowB,rowB,tmKF); 
dmadd (tmKF,fQwB,rowB,lkf,Aslar); 

r Bstar = expmAdUdivA "B '" 
dmmult (expmAdUdivA,rowB,rowB,b_mat,rowB,rowB,Bstar); 

r free up allocated memory for PartMatExpKF function "/ 
free_dmatrix (expmAdUdivA,0,rowB-1,O,rowB.1); 
free_dmatrix (changemat,0,rowB·1.0,rowB·1); 
free_dmalrix (Adt,0,rowB-1 ,0,rowB·1); 
free_dmatrix (tmKF ,D, rowB-1 ,0,rowB·1); 

if (k>MAXEXPIT) 
return (1); 

return (0); 

} r end of PartMatExpKF '" 
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r· ........ --_···** .. · .. · ****** .. • ..... ·_** .. ··· .. ······ .... ·· .... ··· .... · .. · ................ ** ........ , 
r PartMatExpldent: Gets the discrete form of A and B (N and B·) ., 
,. for the Identifier by using a matrix exponential. .. , 
r This is in effect a zero-order hold (ZOH) that allows ., 
r samples to be taken at discrete time intervals 'dtident'. ., 
r Uses a truncated Taylor series of e"llo avoid singularity .. , 
,. problems. . , 
r Type: Local ., 
r Return Codes: 0 if no errors . , 
r 1 if there were errors (series gels too long and won'l truncate) . , r···········***······················· .. ·· .. ·-..... ··· .. ·· ................. _ ...... _ .................... , 
int PartMatExpldent (double Uai_mat,double "bLmat,double hAistar,double "'Bistar,int rowB, 

int colB) 

{ 
double ··expmAidtidenUdivAi; 
double "changemal; 
double ··AidMenl; 
double ·*lmID; 
double change::: 10000.0; 
intk= 1; 
intj; 
inl i; r loop counter·' 

r allocate memory for PartMatExpldent fundion ., 
expmAidtidenUdivAi = dmalrix (0,rowB-1 ,O,rowB-1); 
changemat = dmatrix (0,rowB-1 ,0,rowS-1): 
Aidlident = dmatrix (0,rowB-1,O,rowB-1); 
!mlD = dmalrix (0,rowB-1 ,O,rowB-1); 

r dtidenl • Ii ::: expmAidlidenUdivAi ., 
dmsmy (li,rowB,rowB,bc.dtident,expmAidlidenUdivAi); 

r dtident * Ii = changemat ., 
dmsmy (li,rowB,rowB,bc.dtident,changemat): 

r Ai "dtident *' 
dmsmy (aLmat,rowB,rowB,bc.dlident,Aidtident): 

while ( (change> TaL) && (k<=MAXEXPIT) ) { 
k = k+1; 

r tmlD = (changemal • Aidlident) ., 
dmmult (changemal,rowB,rowB,Aidtident,rowB,rowB,tmID); 

r changemat = (changemat· Aidtident)* 11k·' 
dmsmy (ImID,rowB,rowB,(1.0'(double)k).changemal): 
change = 0.0; 
for (i = O;i<rowB;i++) 

for 0 = O;j<rowB:J++) 
change = change + fabs (changemat[ilD]): 

dmadd (expmAidlidenUdivAi.rowB,rowS,changemat,expmAidlident_ldivAi); 
) 

r Aislar = expmAidlidenUdivAi· Ai + li ., 
dmmult (expmAidtidenUdivAi,rowB.rowB,aLmal,rowB,rowB,lmID); 
dmadd (tmID,rowB ,rowB,li.Aistar); 

r Bistar = expmAidtidenUdivAi .. Si ., 
dmmull (expmAidlidenUdivAi, rowB ,rowB, bL mat. rowS ,rowB, Bistar); 

r free up allocated memory for PartMatExpldent function ~, 
free_dmatrix (expmAidUdenUdivAi,O,rowB-1 ,0,rowB-1); 
free_dmatrix (changemat,0,rowB·1.0,rowB-1): 
free_dmatrix (Aidtidenl,O,rowB-1 ,O,rowB-1); 
free_dmalrix (tmID,O,rowB-1,O,rowB-1); 
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if (k:>MAXEXPIT) 
return (1); 

return (0); 

EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 

} r end of PartMatExpldent", 
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KaimanControl.h 

r········ .. · .. · .. ······ .... ······· .. ·············· .. ···•····· .. , 
r sourcesIKalmanControl.h 2000103106 N Narotam "/ 
r "/ 
r Copyright (c) N Narotam 1999, 2000 "/ 
r All Rights Reserved "/ 
r "/ 
r DESCRIPTION "/ 
r Header file - contains general structure and "/ 
r function definitions that are needed by all the "' r other modules "/ 

r COMP1LlTATION CONTROL *' 
r 2000103/30 N Narotam Ver 1.01 conceived "' 
r "/ ,. ............................................................. , 
#include <rtap/database.h> 

r calculation constants *' 
#define DT 20.0 
#define MINPRODRATE 1.4 
#define MAXEXPIT 100 
#define TOL 1.0e-20 r tolerance for convergence *' 
r retumcode constants . , 
#define REACTORBIT 1 
#define NSTOREOBIT 2 
#define GCUPDATEBIT 4 

,. .................................................... , 
r define the size of the data array" 
r·· ...... ········· ..... ······ ..... ···· ..... · ..... •· ..... ·· .. · .. , 
#define NALL 11 
#define MALL 8 
#define ROWlOENT 7 
#define COLI DENT 8 
#define NKF 11 
#define MKF 8 

r····· .. ··················· .. ···· .. · .. ··· .. ····· .. ·· .. ·······., r define the order of the data in the Identifier ., r··········· ... __ · .... · ........ ·· ....... ···--····· ....... · .. ···, 
r define the order of the dala in the identification vector"' 
#define KP2 0 
#define KP4 1 
#define KP6 2 
#define KH 3 
#define GH 4 
#define KO 5 
#define NASI 6 

,. The input vector for the Identifier·' 
#define FC2 0 
#define FC4 1 
#define FC6 2 
#define FH2 3 
#define FN2 4 
#define FAS 5 
#define FV 6 
#define FP 7 

r vector of flow readings corresponding to the last GC update "' 
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#define FR1FC2 0 
#define FR1FC4 1 
#define FR1FC6 2 
#define FR1 FH2 3 
#define FR1FN2 4 
#define FR1FAS 5 
#define FR1FV 6 
#define FR1FP 7 

r vector of flow readings corresponding to the current GC update·' 
#define FR2FC2 0 
#define FR2FC4 1 
#define FR2FC6 2 
#define FR2FH2 3 
#define FR2FN2 4 
#define FR2FAS 5 
#define FR2FV 6 
#define FR2FP 7 

r vector of average readings offlowread1 and flowread2 ., 
#define FRFC2 0 
#define FRFC4 1 
#define FRFC6 2 
#define FRFH2 3 
#define FRFN2 4 
#define FRFAS 5 
#define FRFV 6 
#define FRFP 7 

r nobs (measurable states) ., 
#define ONC2 0 
#define ONC4 1 
#define ONC6 2 
#define ONH2 3 
#define ONN2 4 
#define ONAS 5 
#define ONG 6 
#define ONP 7 

r nobs_tm1 (measurable states) ., 
#define OM1 NC2 0 
#define OM1 NC4 1 
#define OM1 NC6 2 
#define OM1NH2 3 
#define OM 1 NN2 4 
#define OM1NAS 5 
#define OM1NG 6 
#define OM 1 NP 7 

r··· ......................................... _._ ........ _ ....... , 
r define the order of the vectors for the Kalman Filter '" r··············· .. ·• .. ·· ... ········ ......... __ ... ···•·•··• ..... ·, 
r nbar (Predicted states) '" 
#define NC2 0 
#define NC4 1 
#define NC6 2 
#define NH2 3 
#define NN2 4 
#define NAS 5 
#define NP2 6 
#define NP4 7 
#define NP6 8 
#define NG 9 
#define NP 10 

r nha! (measurable states)·' 
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#define HNC2 0 
#define HNC4 1 
#define HNC6 2 
#define HNH2 3 
#define HNN2 4 
#define HNG 5 
#define HNP 6 

r np (Plastic vector) ./ 
#define NNP2 0 
#define NNP4 1 
#define NNP6 2 

r 09 (Gas vector) *' 
#define NNC2 0 
#define NNC4 1 
#define NNC6 2 
#define NNH2 3 
#define NNN2 4 

r Ltypical (fypical gas composition vector) . , 
#define Ve2 0 
#define YC4 1 
#define ye6 2 
#define YH2 3 
#define YN2 4 

r define the history slack sizes *' r····u .............. *u .................... J 
#define MAXIDHIST 360 
#define MAXKFHIST 360 

r application status structure ./ 
typedef struct { 

rtBytes8 env; 
rtlnl16 Debug: 
rtlol16 OnLine; 

} AppSlatus; 

extern int OnLine; 

Iypedef struct { 
rtFloat dt; r basic sampling time interval (20 sec.) */ 
rtFloat GCdeadlime; r time gap between s~mple entering GC and outputs being updated '*' 
rtFloat dt_forced_ idenl; r if GC update not found within this time, force an update '*' 
rtFloat tolerance_cone_change; r for detection of GC update '*1 
rtFloat Rgasconst; r universal gas constant [bar.m3 1 kmol.K] *1 
rtFloat ro; r polymer density[kg/m3polymer] *' 
rtFloat Vreactor; r volume of reactor (276m3) + cycle gas loop (48m3) '*' 
rtFloat s2; r moles C210st from gas per total moles C2+C4+C6 in product */ 
rtFloat s4; r none present in this case (dissolved) *1 
rtFloat s6; r moles C610st from gas per total moles C2+C4+C6 in product *1 

} FixedParam; 

typedef struct { 
rtDouble kP2Ltypical ; 
rtDouble kP4L typical_but; 
rtDouble kP4LtypicaLhex; 
rtDouble kP6LtypicaLbut; 
rtDouble kP6LtypicaLhex; 
rtDouble kHi_typical; 
rtDouble gHUypical; 
rtOouble kdi_typical; 
rtDouble nAS_typical; 

} TypicalData; 
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typedef slrucl { 
rtUlnt32 buffyointer; 
rtUlnt32 pointeriastupdale; 
rtUlnt32 Nstored; 
rtUlnt32 Nstored_criterion; 
rtUlnl32 Nbuffer; 
rtUlnt32 changecounl_criterion; 
rtUlnt32 changecounl; 
rtUlnt32 dtidenl; 
rtU lnl32 poinlergap_GCdeadtime; 

} BufferControl ; 

typedef struct { 
rtDouble ETHFLO; 
rtDouble BUTFLO; 
rtDouble HEXFLO; 
rtDouble H2FLO; 
rtDouble N2FLO; 
rtDouble CATFDRTOT; 
rtDouble R1VENTFLO; 
rtDouble PRODRA TE; 
rtDouble REACTEMP; 
rtDouble R1 PRESSURE; 
rtDouble ETH; 
rtDouble BUT; 
rtDouble HEX; 
rtDouble HYD; 
rtDouble NIT; 
rtDouble ETHANE; 
rtDouble ISO; 
rtDouble C4INERTS; 
rtDouble C6INERTS; 
rtDouble BEDWEIGHT; 
rtDouble SPARE_1; 
rtDouble SPARE_2; 
rtDouble SPARE 3; 

} bufferTable; -

typedef struc! { 
struct timeval timestamp; 
rtDouble kP2i ; 
rtDouble kP4i; 
rtDouble kP6i; 
rtDouble kHi; 
rtDouble gHi; 
rtDouble kdi; 
rtDouble nASi; 

} xfbarHist; 

lypedef slrucl { 
struct limevallimeslamp; 
rtDouble nC2; 
rtDouble nC4; 
rtDouble nC6; 
rtDouble nH2; 
rtDouble nN2; 
rtDouble Ng; 
rtDouble Np; 

} nhalHist; 

typedef slruct { 
struct timeval times lamp; 
rtOouble nC2; 
rtDouble nC4; 
rtDouble nC6; 
rtDouble nH2; 
rtDouble nN2; 
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rtDouble nAS; 
rtDouble nP2; 
rtDouble nP4; 
rtDouble nPG; 
rtDouble Ng; 
rtDouble Np; 

} nbarHist; 

EXTRACTS OF ANSI C SOURCE CODE USED AT POLY 2 
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nrutil.c 

r···** .. · .. •···• .. •• ....... • .. ··**·····**,,· .. • .. •••••·• .... ·· .... ·,,······ .... / 
r 
r 
r 
r 

nrutil.e file for use with KalmanControl 
N Narotam, C van der Merwe - Potitin 
R Thomason, M Mulhol1and - University of Natal 
version 1 March 2000 

"' "' "' "' ,. .. " ......... " ..................................... __ ........ _ ............. / 
#indude <malloc.h> 
#indude <stdio.h> 
#include <stdlib.h> 
#indude <malh.h> 
#indude "nrutilN 

void nrerror(ehar error_textO) 
( 

fprintf(stderr,"Numerical Recipes run-time error. ,,\n1: 
fprintf(stderr, "%s\n" ,error_text); 
fprintf(stderr ," .. ,now exiting to system .. ,\n"); 
exit(1); 

} 

float "vector(int nl,int nh) 
( 

} 

float ·v; 

v=(f1oat ·)malloc({unsigned) (nh-nl+1)·sizeof(f1oat»; 
if (Iv) nrerror("al1ocation failure in vectorQH); 
return v-nl; 

int "ivector{int nl,int nh) 
( 

} 

int "v; 

v=(int ·)malloc«unsigned) (nh-nl+1)·sizeof(jnl»; 
if (Iv) nrerror("allocation failure in ivectorQ"); 
return v-nl; 

double ·dveclor(int nl,inl nh) 
( 

} 

double "v; 

v=(double ")malloc«unsigned) (nh-nl+1)"sizeof(double»; 
if (Iv) nrerror(,al1ocation failure in dveetorQ"); 
return v-nl; 

float "matrix(int nri,inl nrh,int ncl,int nch) 
( 

int I; 
f10al .... m; 

m=(f1oat '**) malloc«unsigned) (nrh-nrl+1 )"sizeof(f1oat*»; 
if (lm) nrerror("allocalion failure 1 in matrixQ"); 
m -= nrl; 

for(i=nrl;i<=nrh;iH ) { 

} 

m[i]=(float·) malloc«unsigned) (nch-ncl+1)·sizeof(f1oat»: 
if (!m[iJ) nrerror("aliocation failure 2 in matrixO"); 
m[ll-= nd; 
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return m; 
) 

float "smatrix(int rn, int n) 
( 
int i; 
float ··a; 
float "p; 

p = malloc(m"n"sizeof(f1oat»; 
a = malloc(m"sizeof(f1oat*»; 

for (i=O;i<m:i++) { 
a[i] ::: p + (i"n): 

) 

return a; 
) 

double '"*sdmalrix(int rn, int n) 
( 
int i; 
double u a; 
double "p; 

p = malloc(m*n"sizeof(double»: 
a = malloc(m*sizeof(double"»; 

for (i=O;i<m:i++) { 
a[iJ ::: p + (iOn); 

) 

return a; 
) 

void zero_dmatrix (double Umatr,int nri,int nrh,int ncl,int nch) 
( 
int i,j; 
for (i=nr1:i<=nrh;i++) 

for (j=ncl;j<=nch;j++) 
malr[ijUl = 0.0; 

) 

void zero_dvector (double ·vec,int nrl,int nrh) 
( 
inl i; 
for (i=nrl;i<=nrh:i++) 

vec~]::: 0.0; 
) 

void zero_matrix (float ··matr,int nrl,int nrh,int ncl,int nch) 
( 
int ij; 
for (i=nrl:i<=nrh;i++) 

for (j=ncl;j<=nch;j++) 
matr[ijUJ = 0.0; 

) 

double "dmatrix(int nrl,int nrh,int ncl,int nch} 

( 
int I; 
double um; 

m=(double •• ) malloc«unsigned) (nrh-nr1+1)·sizeof(double·}); 
if (!m) nrerror("allocation failure 1 in dmatrixO"}; 
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) 

m -= nrt; 

for(i=nrt;i<=nrh;i++) { 

) 
return m; 

m[i]=(double·) maUoc(unsigned) (nch-ncl+1)*sizeof(double»; 
if (lm[i]) nrerrorC'allocation failure 2 in dmatrixO"); 
m[i) -= ncl; 

int "'*imatrix(int ml,int nrh ,in! nel,int neh) 

{ 

) 

int i,*·m; 

m=(int ··)mal1oc«unsigned) (nrh-nrl+1)*sizeof(int*»; 
if (!m) nrerror("allocation failure 1 in imatrixO"); 
m -= nr!; 

for(i=nrl;i<=nrh;i++) { 

) 
return m; 

m[i]=(int '")malloc{(unsigned) (nch-ncl+1)*sizeof(int»; 
if (1m[i) nrerror("allocation failure 2 in imatrixOM); 
m(i1-= ncl; 

float ··submatrix(f1oat "a,int oldrl,int oldrh,int oldcl,in! oldch,int newrl,inl newel) 

{ 

) 

int i,j; 
f10al ··m; 

m=(f1oat *.) malloc«unsigned) (0Idrh-oldrl+1)"sizeof(f1oat,"); 
if (Im) merror("allocation failure in submalrix01; 
m -= newrt; 

for(i=oldrlj=newrJ;i<=oldrh;i++,J++) m[j]=a[ij+oldel-newcl; 

return m; 

void free_vector(f1oat "v,inl nl,in! nh) 

{ 

) 
free«char·) (v+nl»; 

void free_ivector(int "v,inl nl ,inl nh) 

{ 

) 
free«char") (v+nl»; 

void free_dvector(double ·v,int nl,in! nh) 

{ 

) 
free«char") (v+nl»; 

void free_malrix(f1oat ·"m,int nrl,int mh,lnt ncl,int nch) 

{ 
int i; 

for(i=nrh;i>=nrl;i-) free«char") (m(ij+ncl»; 
free«char*) (m+nrl»; 
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} 

void free_dmalrix(double ""m,inl nrl,int nrh,int ncl,in! nch) 

{ 

} 

int i; 

for(i=nrh;i>=nrl;i-) free«char"} (m[i]+ncl»; 
free«char") (m+nrl»; 

void free_imatrix(int bm,int nrl,lnt nrh,int ncl,in! nch) 

{ 

} 

int i; 

for(i=nrh;i>=nr1;i •• ) free«char") (m[iJ+ncl»; 
free«char") (m+nrl»; 

void free_submatrix(f1oat Ub,lnt nrl,int nrh,lnt ncl,int nch) 

{ 

} 
free«char") (b+nrl»; 

float Uconvert_rnatrix(f1oat "a,int nrl,int nrh,ln! ncl,int nch) 

{ 
int ij,nrow,ncol; 
float urn: 

nrow=nrh-nrl+1 ; 
ncol=nch-ncl+1 ; 
m = (float U) malloc«unsigned) (nrow)"sizeof(float"»; 
if (lm) nrerror("allocation failure in convert_matrixO"); 
m -= nr!; 
for(i=Oj=nrl;i<=nrow-1 ;i++ j++) m[j]=a+ncol"i-ncl; 
return m; 

} 

void free_convert_rnatrix(float ··b,in! nrl,int nrh,int ncl,int nch) 

{ 

} 
free«charj (b+nrl»; 

void show Jvector (int ·vect,int nl,int nh) 
{ 
int i; 
for (i=nl ;i<=nh;i++) 

printf{" %d\n",vect[i]); 
} 

void show_dvector (double ·vect,int nl,int nh) 
{ 
int i; 
for (i=nl;i<=nh:i++) 

printf(" %e\n~,vect[iD; 

} 

void show_vector (float ·vect,int nl,int nh) 
{ 
lnt i; 
for (i=nl;i<=nh;i++) 

printf(" %f\n 6 ,vect[i]); 
} 
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void show_matrix (f1oat U matr,int nri,int nrh,int ncl,int nch) 
{ 
int ij; 
for (i=nr1;i<=nrh;i++) 

) 

{ 
for (j=ncl;j<=nch;j++) 

printf("%S.4f M ,matrfiJUl}; 
printf ("\n1; 
) 

void show_dmatrix (double ~·matr , int nri,int nrh,int ncl,int nch) 
{ 
int ij; 
for (i=nri;i<=nrh;i++) 

( 

) 

for (j=ncl;j<=nch;j++) 
printf("%e ",matrfijU]); 

printf ("\n"); 
) 

void show_imatrix (in! Umatr,!nt nri,int nrh,int ncl,int nch) 
{ 
int ij; 
for (i=nrl;i<=nrh;i++) 

( 

) 

for (j=ncl;j<=nch;j++) 
printf("%d ",matrfijUl); 

printf ("\11"); 
) 

void dmcopy( double u a, int a_rows, int a_cols, double . ob) r copy a matrix *' 
{ 
int i, j; 
for (i=O: i<a_rows; i++ ) 

for (j=O; j<a_cols; j++ ) b[iJUl = a[iJUl; 
) 

void dvcopy (double -a,int a_els,double .y) r copy a vector *' 
( 
int i; 
for (i=O;i<a_els;i++) 

y[ij = a[iJ: 

) 

void dmmull ( double ua, int a_rows, int a_cols, 
double ub, int b_rows, int b_cols, double Uy) 

r multiply two matrices a,b result in y, y must not be the same as a or b .• , 
{ 
int ij,k; 
double sum; 

for (i=O; i<a_rows; i++) 
for (j=0; j<b_cols; j++){ 

sum = 0.0; 

) 
) 

for (k=O; k<a_cols; k++) sum +=a[i][kJ*b[klUJ; 
y[iJU]=sum; 

void dmadd (double ··a, int a_rows, int a_cols, double .ob, double **y) 
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r add two matrices a,b, result in y. y can be same as a or b *1 
{ 
int ij; 

for (1=0; i<a_rows; i++) 
for 0=0; j<a_cols; j++){ 

YliIDl=a~IUl+b[i]Dl ; 
} 

} 

void dmsmy (double u a, int a_rows, inl a_cols, double r, double *.y) 
r multiply a by scalar r, result in y. y can be same as a *' 
{ 
int ij; 

for (i=O; i<a_rows; i++) 
for (j=0; j<a_cols; j++){ 

YlilU}=alilUl"r; 
} 

} 

void dmsub (double u a, int a_rows, inl a_cols, double ub, double •• y) 
r subtract two matrices a,b, result in y. y can be same as a or b '" 
{ 
int i,j; 

for (i=O; i<a_rows; i++) 
for(j=O; j<a_cols; j++){ 

Y~I[jJ=a[i]u1-b[i][jJ; 
} 

} 

void dmtranspose (double **a, inl a_rows, int a_cols, double U y) 
r transpose a matrix a, result in y. y must not be same as a °1 
{ 
int ij; 

for (i=O; i<a_rows; i++) 
for (j=0; j<a_cols; j++){ 

yij)[i]=a lilUl; 
} 

} 

void dmvmult( double oOa, inl a_rows, inl a_cols, double Ob, int b_els, double "y) 
r multiply a matrix a by vector b, result in y. y can be same as b */ 
{ 

int i, k; 
double sum; 

for ( i=O; i<a_rows; i++) { 
sum = 0.0; 
for ( k=O; k<a_cols: k++) sum += a[i}[k]Ob[k]; 
y[i]" sum; 

} 
} 

void dvadd( double °a, inl a_els, double *b, double "'y) 
{ 

} 

inl j; 

for (j=O; j<a_els; j++ ) { 
yUl = aUl + bUl; 

} 

void dvsub( double ea, inl a_eIs, double ob, double 0y) 
{ 
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) 

int j; 

for (j=O; j<a_els; j++ ) { 
yUl = am • bm; 

) 

void dvsmy( double "'a, inl 8_els. double r, double .y) 
{ 

) 

inlj; 

for (j=O: j<a_els; j++) ( 
yU) = aUr r; 

) 

void deyes ( inl row, inl col, double ··1 ) 
{ 

inl i,j; 
for (i=O;i<row:i++) { 

} 
} 

for (j=O;j<col;j++) ( 
I[;JU)=O; 
if (i==j) 

l[ijU)=1 .0; 
) 

r matrix inversion routines ./ 

#define TINY 1.0e-20; 

void dludcmp ( double **a, inl n, inl *indx, double *d) 
{ 

inl i,imax,j,k; 
double big,dum,sum,temp; 
double ·w; 

vv = dvector (O,n.1): 
·d=1.0: 
for ([=0; i<n;i++) { 

big=O.O; 

} 

for (j=Oj<n;j++) 
if «temp=fabs(a[iJ[j]»>big) big = temp; 

if (big == 0.0) nrerror ("Singular matrix in routine dludcmp~): 
w[i]=1.0Ibig; 

for (j=O;j<n;j++) { 
for (i=O;i<j;i++) { 

sum=a[iJU1: 

} 
big=O.O; 

for (k=O:k<i;k++) sum·= aP][k}*a[k]Ol: 
a[ilm=sum: 

for (j::j;i<n;i++) { 
sum=a[iJOl; 

} 

for (k=O;k<j;k++) sum -= a~][kra(kJU1; 
a[ilm=sum; 
if «dum=w[i]"rabs(sum»>=big) { 

big: dum; 
imax=i; 

} 

if (j!=imax) { 
for (k=O;k<n;k++) ( 

dum=a[imax][k]; 
a[;max)Ik)=aU][k); 
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) 

) 

aUl!l<]=dum; 
] 
°d=_(Od); 
vvVmax]=vv[j] ; 

) 
indxU]=imax; 
;f (aUlUl==O.O) aUlIJ)=TINY; 
if W=n-1) { 

dum=1 .0/(aUlIJ) ; 
for (i=j+1;i<n;iH) a[im]""" dum; 

) 

free_dvector(vv ,0,n-1); 

void dlubksb (double ua, inl n, inl"indx, double b{] ) 
{ 

) 

int i,ii=O,ip,j; 
double sum; 

for (i=O;i<n;iH) { 
ip=indxVl ; 
sum=b[ip]: 
bPp)=bP); 
if (ii) 

) 

for (j=ii-1 j<=i-1 ;jH) sum -= a(ij[j]"b[j]; 
else if (sum) ii = i+1 ; 
bV)=sum; 

for (i=n-1 ;i>=O;i-) { 
sum=b[i): 

) 

for G=i+1 ;j<n;jH) sum -= aVJUl"b[j]; 
b(iJ=sum/a[ij[ij; 

void dinverse( double ua, inl n, double **y ) 
r Find inverse of 'a' (decomposed in process!) and retum as 'y' '" 
( 

) 

double d, "col; 
int i, j , "indx r integer vector "I; 

indx '" ivector( 0, n-1 ); 
col = dvector( 0, n-1 ); 
dludcmp( a, n, indx, ad); 
for (j=O; j<n; jH ) { 

) 

for ( i=O; i<n; iH) colVl = 0.0; 
colm;:: 1.0; 
dlubksb( a, n, indx, col ); 
for ( i=O; i<n: iH ) y[ilu] = col[i]; 

free_ivector( indx, 0, n-1 ); 
free_dvectar( col, 0, n-1); 
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