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Abstract
Good feature maps are crucial for machine learning kernel methods for effective map-
ping of non-linearly separable input data into a higher dimension feature space, thus
allowing the data to be linearly separable in feature space. Recent works have pro-
posed automating the task of quantum feature map circuit design with methods such
as variational ansatz parameter optimization and genetic algorithms. A problem com-
monly faced by genetic algorithm methods is the high cost of computing the genetic
cost function. To mitigate this, this work investigates the suitability of two metrics
as alternatives to test set classification accuracy. Accuracy has been applied success-
fully as a genetic algorithm cost function for quantum feature map design in previous
work. The first metric is kernel-target alignment, which has previously been used
as a training metric in quantum feature map design by variational ansatz training.
Kernel-target alignment is a faster metric to evaluate than test set accuracy and does
not require any data points to be reserved from the training set for its evaluation. The
second metric is an estimation of kernel-target alignment which further accelerates
the genetic fitness evaluation by an adjustable constant factor. The second aim of
this work is to address the issue of the limited gate parameter choice available to the
genetic algorithm. This is done by training the parameters of the quantum feature
map circuits output in the final generation of the genetic algorithm using COBYLA
to improve either kernel-target alignment or root mean squared error. This hybrid
approach is intended to complement the genetic algorithm structure optimization
approach by improving the feature maps without increasing their size. Eight new
approaches are compared to the accuracy optimization approach across nine varied
binary classification problems from the UCI machine learning repository, demonstrat-
ing that kernel-target alignment and its approximation produce feature map circuits
enabling comparable accuracy to the original approach, with larger margins on train-
ing data that improve further with variational training.
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Chapter 1

Introduction

The work reported in this thesis aimed to advance methods for designing quantum

feature map circuits for use with the Quantum Support Vector Machine (QSVM)

classification algorithm. The focus of the investigation was automated feature map

design, since manual feature map design may be disadvantaged by relying on humans

dealing with the unintuitive nature of quantum physics. Automated feature map

design may be more able to make effective use of quantum resources while staying

within the limitations of presently available quantum hardware.

The primary content of this work is a paper that was submitted to the Springer Na-

ture journal Quantum Machine Intelligence (https://www.springer.com/journal/

42484). This chapter provides the context and background to that paper. This chap-

ter thus begins with an overview of quantum computing aimed at computer scientists

who may not be familiar with the field. It then provides a brief overview of the ma-

chine learning techniques that are studied in this work. A third section discusses the

important classical machine learning techniques central to the thesis. The remaining

sections describe the prior art, the methods used, and the main contributions of this

thesis.
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1.1 Introduction to Quantum Computing

Quantum computing is a young discipline at the intersection of computer science and

physics, which uses principles of quantum mechanics to aim to achieve computational

power that is currently infeasible using classical techniques. It is broadly divided

into two subfields: the development of quantum hardware and the development of

quantum algorithms.

Unlike classical computers, which use bits to store and manipulate information,

quantum computers make use of quantum bits (qubits), which can exist in a super-

position of the states 0 and 1 simultaneously. Quantum computers can also make use

of quantum entanglement. Briefly, superposition refers to the ability of a quantum

state to be in a combination of multiple classical states at a single point in time, until

it is measured. Entanglement between two quantum states refers to the phenomenon

where measurements performed on one of the states will affect the outcome of future

measurements performed on the other.

Although superposition can be efficiently simulated by a classical computer us-

ing pseudo-random number generation for any number of independent qubits, the

combination of superposition and entanglement cannot be simulated classically for

large numbers of qubits. These properties, in combination, enable quantum comput-

ers to operate on vast amounts of information at a time and perform certain types

of computations significantly faster than classical computers. With enough qubits,

these machines are, in theory, also able to perform computations that no classical

computer that could feasibly be constructed could perform. Some well-known exam-

ples of such computations include Shor’s algorithm for factorization [29] and Grover’s

search algorithm [13]. They have been shown theoretically to outperform all known

classical algorithms for solving the same tasks [13, 29].

Quantum computing has the potential to revolutionize various industries by solv-

ing problems that are currently intractable for classical computers or require vast

computing resources. These include:

1. Drug Discovery: modeling complex molecules and biochemical reactions, help-
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ing in the discovery and testing of new drugs.

2. Climate Modeling: modeling complex environmental systems, provide more ac-

curacy climate predictions, and help address issues like global warming.

3. Cryptography: breaking existing encryption methods based on the assumed

difficulty of factorizing large numbers, such as RSA encryption.

4. Supply Chain and Logistics: optimizing routes and solving complex logistics

problems more efficiently.

5. Finacial Modeling: enhancing risk modeling, and performing complex financial

simulations more accurately.

6. Artificial Intelligence: potentially speeding up machine learning algorithms, in-

cluding any new quantum machine learning algorithms that would be inefficient

to run on a classical computer.

7. Material Science: helping in the discovery of new materials by simulating their

properties.

Work is ongoing in exploring and evaluating using quantum computing to solve some

of these problems. However, realizing the full potential of quantum computers in

solving these problems depends on overcoming significant technical challenges to build

practical, large-scale quantum computers.

The rest of this section will explain the fundamental principles of quantum com-

puting and quantum algorithms. Some familiarity with basic linear algebra operations

such as matrix multiplication and transposition is assumed.

1.1.1 Quantum Information and Qubits

The qubit is the basic unit of information manipulated by quantum algorithms. We

focus on the concept of a qubit as a mathematical formalism. Quantum algorithms

are often defined in terms of operations performed on an abstraction of a qubit called

a logical qubit. A physical quantum hardware device is composed of multiple physical
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qubits. These physical qubits are subject to noise due to unwanted interactions with

their surroundings. A logical qubit is a mathematical model of an ideal physical qubit

(one not affected by noise). Henceforth we will concentrate our attention on logical

qubits as they are used throughout this work.

Representation of State in Classical and Quantum Computing

In classical computing, the minimum unit of information is a bit (binary digit). Bits

serve as the basic building block for classical information storage and processing.

A single bit can be in one of two states, commonly named 0 and 1. The state of a

sequence of bits can be represented as the concatenation of the state of each individual

bit in the sequence. For the case of two bits, there are 4 possible states the sequence

can be in, namely 00, 01, 10, and 11. In general, a sequence of n bits can be in any

one of a total of 2n possible states, as each bit in the sequence can independently

be in one of two states. Thus, an n bit sequence represents 2n distinct information

states.

Much like classical bits, the state of a qubit or group of qubits can also be precisely

described. While a bit can be in state 0 or 1, the state of a single qubit is more complex

in that a qubit can exist in a combination of multiple states simultaneously, thanks

to quantum superposition. This means it requires more information to fully describe

the state of a single qubit than it does a single bit. At the time of measurement, a

qubit in superposition collapses into a simple classical bit that is either in state 0 or

state 1.

1.1.2 Single Qubits

A single qubit state is described mathematically using a 2-element column vector of

complex numbers called probability amplitudes (not to be confused with probabilities,

which are real-valued). This vector of probability amplitudes is commonly called a

state vector. The two probability amplitudes correspond to the 0 and 1 state of the

qubit, respectively, describing numerically the nature of the superposition between
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these states. We can relate the values of the probability amplitudes describing a qubit

state to the probabilities of that qubit collapsing to a 0 or a 1 state respectively when

measured. For example, given a single qubit described by the pair of probability

amplitudes (↵, �), we have:

P (0) = |↵|2, and P (1) = |�|2,

where P (0) and P (1) are the probabilities of the qubit collapsing into the respective

state. A measured qubit is much like a bit and collapses to a single state at a

time. This behavior naturally implies a normalization condition on the probability

amplitudes (by the nature of complementary probabilities) as follows:

P (0) + P (1) = 1 =) |↵|2 + |�|2 = 1

Quantum states are most often denoted using Dirac notation, also known as bra-

ket notation. The notation | i (pronounced “ket psi”) refers to a quantum state  , a

column vector, while the notation h | (pronounced “bra psi”) refers to the conjugate

transpose of | i, a row vector. The notation h�| i refers to the inner product (or

dot product) of the states � and  ; the operation is computing the single scalar

resulting from the standard matrix product h�| | i, but omitting one vertical bar and

multiplication symbol for brevity.

For a single qubit state, it is conventional notation for the kets |0i and |1i to

represent the quantum states (1, 0)T and (0, 1)T respectively. These two states can

be seen as the quantum versions of the classical 0 and 1 states; they do not make use

of superposition as only one probability amplitude is nonzero. Any arbitrary single

qubit state | i = (↵, �)T can be written in terms of these kets as | i = ↵ |0i+ � |1i.

The state space of a single qubit can be represented graphically using a diagram

known as a Bloch sphere. This is a three dimensional unit sphere where each point

on the sphere surface represents a valid qubit state. An arbitrary qubit state | i =

↵ |0i+� |1i can be mapped to the Bloch sphere by writing it in the form cos(✓/2) |0i+

ei�sin(✓/2) |1i , where ✓ = 2arccos(|↵|) and � = arg((�↵⇤)/(|↵||�|)). � and ✓ uniquely
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define coordinates on the unit Bloch sphere as polar coordinates.

Single Qubit Gates

We have so far discussed how the quantum information of a qubit is represented using

quantum mechanical concepts. Here we describe how to perform computations with

that information by manipulating a qubit state. Quantum states can be manipulated

by applying quantum gates. A quantum gate is a matrix that a state vector can be

multiplied by to produce a new valid state vector. Due to the normalization condition

on state vector entries (the sum of the square magnitudes of the elements must equal

1), valid quantum gate matrices are restricted to unitary matrices, as multiplying a

state vector by a unitary matrix produces a new state that obeys the state vector

amplitudes normalization condition. A unitary matrix is a complex-valued square

matrix that has an inverse equal to its conjugate transpose. The conjugate transpose

is calculated by taking the element-wise conjugate of the transpose of a matrix, and

is indicated with the dagger (†) notation. The inverse of a unitary matrix is therefore

also unitary. An interesting effect of this property is that all quantum computations

are fully reversible before measurement (in the absence of noise).

Quantum gates can broadly be divided into two types: single qubit gates and

multi-qubit gates. Single qubit gates are used to change the state of a single qubit,

while multi-qubit gates are necessary to create entanglement between different qubits.

Below, we define four commonly used single qubit gates. We also demonstrate the

effects of applying them on an arbitrary single qubit quantum state | i = ↵ |0i+� |1i.

For each of the following gates G, we can verify by inspection that G = G† due to

their small sizes, although this is not true of quantum gates in general. In general, we

know quantum gates to be unitary. A matrix M is defined to be unitary if and only

if its inverse is its conjugate transpose, i.e., MM † = M †M = I. From G = G† and

GG† = I, we have GG = I and know that each of these 4 gates is its own inverse.

Practically, this means that their effects on a qubit can be reversed by applying them

a second time.

14



1. The Hadamard (H) gate:

H =
1p
2

0

@1 1

1 �1

1

A .

Application of the Hadamard gate to | i leads to:

H | i = 1p
2

0

@1 1

1 �1

1

A

0

@↵

�

1

A =
1p
2

0

@↵ + �

↵� �

1

A .

An interesting effect occurs when | i is in the |0i state or |1i state. In these

cases, we have H |0i = 1p
2

0

@1

1

1

A and H |1i = 1p
2

0

@ 1

�1

1

A.

These two states created by the action of the H gate have equal probabilities

of collapsing to 0 and 1 at measurement, as the square magnitudes of the state

vector probability amplitudes are the same. This can be verified by multiplying

the external constant into the state vectors and taking the square magnitudes

of the probability amplitudes to get probabilities. Due to this behavior, the H

gate is often said to produce an equal superposition of |0i and |1i when acting

on a |0i or |1i state as input. This is a useful operation in many algorithms,

since most quantum programs are written with the assumption that the initial

state of their N qubits will be |0i⌦N .

2. The Pauli-X gate:

X =

0

@0 1

1 0

1

A .

Application of the X gate to | i leads to:

X | i =

0

@0 1

1 0

1

A

0

@↵

�

1

A =

0

@�

↵

1

A .
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As seen above, this gate swaps the |0i and |1i components of the qubit’s state

vector. When the qubit is in a classical state (|0i or |1i), this can be seen as a

logical NOT gate operating on a single bit in classical computing. This gate is

often also called a quantum NOT gate for this reason.

3. The Pauli-Y Gate:

Y =

0

@0 �i

i 0

1

A .

Application of the Y gate to | i leads to:

Y | i =

0

@0 �i

i 0

1

A

0

@↵

�

1

A =

0

@��i

↵i

1

A .

4. The Pauli-Z Gate:

Z =

0

@1 0

0 �1

1

A .

Application of the Z gate to | i leads to:

Z | i =

0

@1 0

0 �1

1

A

0

@↵

�

1

A =

0

@ ↵

��

1

A .

The quantum gates shown above are all constant; their matrices contain only

constant entries. Gates defined to make use of unknowns are called parameterized

quantum gates and can be used much like classical neural network parameters; they

can be trained by an optimizer to minimize some cost value or used to input data into

a circuit to operate on. Below, we show three commonly used parameterized gates

which are each defined in terms of one free parameter. The gates are named the Rx,

Ry, and Rz gates, and they are so named because they are written in terms of the
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Pauli X, Y , and Z gates respectively.

Rx(✓) = cos(✓/2)I � isin(✓/2)X =

0

@ cos(✓/2) �isin(✓/2)

�isin(✓/2) cos(✓/2)

1

A

Ry(✓) = cos(✓/2)I � isin(✓/2)Y =

0

@cos(✓/2) �sin(✓/2)

sin(✓/2) cos(✓/2)

1

A

Rz(✓) = cos(✓/2)I� isin(✓/2)Z =

0

@cos(✓/2)� isin(✓/2) 0

0 cos(✓/2) + isin(✓/2)

1

A

1.1.3 Multiple Qubits

This description of a qubit can be generalized to describe a sequence of qubits with

some work. In contrast to classical bits, the state of an arbitrary system of n qubits

cannot in general be fully described by the simple concatenation of the descriptions

of the n individual qubits due to the phenomenon of quantum entanglement.

Where a single qubit can be in a superposition of 0 and 1 (the possible states of

a bit), a sequence of qubits can be in a superposition of all 2n possible states of a

sequence of classical bits at the same time. This superposition can be described by a

column vector of 2n probability amplitudes, where each amplitude corresponds to one

of the bit sequences that could be read off the qubit sequence after measuring each

qubit. Like the single qubit case, the square magnitudes of the probability amplitudes

represent the probabilities of measuring the corresponding bit values across the qubit

sequence. The probability amplitudes still obey the same normalization condition

in that their square magnitudes must sum to 1. An important observation of these

definitions is that an arbitrary noise-free quantum state can be exactly described

using classical information (although at a space cost exponential in the number of

qubits in the state). The space of valid quantum states for a quantum system forms

a complex vector space with an inner product operation, called a Hilbert space. The

dimensionality of the Hilbert space is the number of probability amplitudes

When working with state vectors, it is convenient to use the convention that
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the probability amplitudes are ordered such that their zero-based index written as

a binary number is the state that their probability is associated with measuring.

In other words, for a state vector ~x = (x0, x1, x2, x3)T describing 2 qubits, we have

P (00) = |x0|2, P (01) = |x1|2, P (10) = |x2|2, and P (11) = |x3|2.

The Tensor Product

In classical computing, two separate bit sequences can be combined into a larger

classical state through concatenation. The analogous operation for combining two

quantum states into a larger composite state is the tensor product operation (written

⌦). It is also called the Kronecker product.

The tensor product is defined between two matrices of arbitrary dimensions, Mp⇥q

and Nr⇥s, by the following equation:

M ⌦N =

2

6664

m11N · · · m1qN
... . . . ...

mp1N · · · mpqN

3

7775
.

This operation can be visualized as placing a copy of the matrix N at each element

in M , multiplying the elements of M into the copies of N , and then “unpacking” the

nested matrix elements into a single, larger matrix. This larger matrix is of dimensions

pr⇥qs; its dimensions are the products of the corresponding dimensions of the original

matrices.

Multi-Qubit States

For the purpose of combining quantum states, we view them as matrices composed of

a single column. A straightforward application of the tensor product operation can

combine quantum states of any number of qubits into a single composite state that

describes the entire combined system. For example, applying the tensor product to

18



two arbitrary single-qubit states |�i = ↵ |0i+ � |1i and | i = � |0i+ ⇢ |1i resolves to

|�i ⌦ | i =

0

@↵

�

1

A⌦

0

@�

⇢

1

A =

0

BBBBBB@

↵

0

@�

⇢

1

A

�

0

@�

⇢

1

A

1

CCCCCCA
=

0

BBBBBB@

↵�

↵⇢

��

�⇢

1

CCCCCCA

The resulting state is now described by four probability amplitudes instead of two.

In general, the size of the resulting state is the product of the sizes of the operand

states. The tensor product operation preserves the convention that the index of

a probability amplitude in binary is also the sequence of bits it is associated with

measuring. We verify this convention preservation for the provided example. The

convention would state that in the above example, the probabilities of measuring 00,

01, 10, and 11 on the pair of qubits are given by

|↵�|2 = |↵|2|�|2(as probability amplitudes are complex numbers)

|↵⇢|2 = |↵|2|⇢|2

|��|2 = |�|2|�|2

|�⇢|2 = |�|2|⇢|2

respectively. It is important to note that the tensor product operation does not modify

the information in the operand states, it only creates a combined state representa-

tion. This means that the measurement outcomes for each qubit are independent

events; P (A
T

B) = P (A)P (B) where A and B are the measurement outcomes for

the two qubits. We can easily observe the convention probabilities are correct for the

example case by referring to the probability amplitudes of the original state vectors

for the qubits, as they show that the expressions derived by the convention reflect the

expected result for probabilities of independent events.
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Additionally, the sum of these probabilities is given by

|↵|2|�|2 + |↵|2|⇢|2 + |�|2|�|2 + |�|2|⇢|2 = |↵|2(|�|2 + |⇢|2) + |�|2(|�|2 + |⇢|2)

= |↵|2(1) + |�|2(1)

= 1,

confirming that the normalization condition on the amplitudes is preserved in the

example.

Although we only demonstrate combining single-qubit states, the tensor product

operation can be applied to combine two quantum states of any number of qubits

in general, while preserving state vector index numbering conventions as well as the

normalization condition on state probability amplitudes.

Tensor Product Notational Conventions

In braket notation, a sequence of kets | i |�i indicates an implicit tensor product of

quantum states; | i |�i = | i ⌦ |�i. Another common notational convention is that

a state | i⌦N represents a tensor product of N repetitions of | i.

Computational Basis States

By convention, kets with numeric names (for example |0i, |1i, |2i, |3i, |4i, etc.)

represent the states that a sequence of qubits can collapse to after measurement.

They are essentially the quantum versions of classical states in that they do not

represent a superposition. The binary form of the number inside the ket gives the

classical bit values that each qubit takes when the qubit system is in this state. The

exact number of qubits in a state with a numeric name is context dependent, in

exactly the same way that the exact number of bits in a classical representation of a

number in binary is context dependent. For example, the number 3 in a 2-bit binary

representation is simply 11, while it can represented with more bits by prepending 0’s

onto the 2 bit representation. In the same way, the state |3i represents a set of at least

two qubits that are in the one state, followed by some context-dependent number of
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qubits in the zero state. These classical states are also called the computational basis

states. They form a basis for the space of quantum states since any quantum state

can be formed with a linear combination of computational basis states using complex

coefficients.

This convention is also sometimes used when the ket name is numeric when in-

terpreted as a binary number; |101i and |5i typically represent the same three-qubit

state.

We show an example for decomposing an arbitrary two qubit state | i = (a, b, c, d)T ,

a, b, c, d 2 C into a weighted sum of computational basis states:

| i = (a, b, c, d)T

= (a, 0, 0, 0)T + (0, b, 0, 0)T + (0, 0, c, 0)T + (0, 0, 0, d)T

= a(1, 0, 0, 0)T + b(0, 1, 0, 0)T + c(0, 0, 1, 0)T + d(0, 0, 0, 1)T

= a |0i+ b |1i+ c |2i+ d |3i .

In summary, each computational basis state corresponds to a unique index (and

therefore probability amplitude) in the state vector, and any quantum state can be

exactly described as a sum of computational basis states weighted by their corre-

sponding amplitude in the state vector.

Multi-Qubit Gates

The tensor product operation can also be used to construct gates that operate on

multi-qubit states. To apply a single qubit gate to a qubit that is part of a multi-

qubit state, we can transform it into a multi-qubit form using the tensor product

operation.

Suppose we have two single qubit states, | i and |�i, that form a composite two

qubit state, | i ⌦ |�i. We can apply single qubit gates A and B to each qubit in the

state independently by taking the tensor product of their 2 ⇥ 2 matrices to form a

4 ⇥ 4 matrix which acts equivalently on the 2 qubit state as the single qubit gates

would on the independent single qubit gates. This fact is stated by the following
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equation:

(A | i)⌦ (B |�i) = (A⌦ B)(| i ⌦ |�i).

In general, the equation holds if A and B are valid gates for acting on quantum

states | i and |�i respectively, regardless of the number of qubits in states | i and

|�i. This principle serves to relate the application of single and multi-qubit gates on

larger n qubit quantum states.

Multi-qubit gates may also be defined from scratch without needing to combine

single qubit gates, so long as they are unitary matrices. One such gate of importance

in quantum computing is the controlled-X gate, which operates on two qubits. This

name is commonly abbreviated as CX or CNOT. It is a gate that can be used to

create entanglement between two qubits and is defined as below:

CNOT =

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CCCCCCA
.

We show the application of the CNOT gate to an arbitrary two-qubit state | i =

a |0i+ b |1i+ c |2i+ d |3i below.

CNOT | i =

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CCCCCCA

0

BBBBBB@

a

b

c

d

1

CCCCCCA
=

0

BBBBBB@

a

b

d

c

1

CCCCCCA
.

By inspection, it can be seen that the probability amplitudes of the |0i and |1i

components of the state are unaffected. These probability amplitudes correspond

to the probabilities of measuring 00 and 01 on the qubit pair respectively. The

amplitudes for the |2i and |3i components, which correspond to measurements of 10

and 11, are swapped.
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Note that the 0 and 1 measurement probabilities for the first qubit have not

changed after the CNOT application: for each qubit, the probability of measuring

it in the 0 or 1 state is just the probability of measuring the set of qubits to be in

one of the basis states in which that qubit is a 0 or a 1, respectively. Therefore, for

the first qubit, the probability of measuring a 0 is P (00) + P (01) = |a|2 + |b|2, both

before and after applying the CNOT. The probability of measuring a 1 before the

CNOT application is Pi(10) + Pi(11) = |c|2 + |d|2 and Pf (10) + Pf (11) = |d|2 + |c|2

afterwards, which are equal.

On the second qubit however, the probability of measuring a 0 before the applica-

tion of the CNOT is Pi(00) + Pi(10) = |a|2 + |c|2 and the probability of measuring a

0 after the application is Pf (00)+Pf (10) = |a|2 + |d|2, which is clearly not in general

equal to the previous probability.

If we examine the cases where | i is a system where the first qubit is in a

fully classical state (|0i or |1i) and the second qubit is in an arbitrary state (here

represented as ↵ |0i + � |1i), we can demonstrate the reasoning behind the gates

name. Mathematically, these states are computed as CNOT(|0i⌦ (↵ |0i+� |1i)) and

CNOT(|1i ⌦ (↵ |0i+ � |1i)), which we perform below:

Case 1, the first qubit is |0i:

CNOT(|0i ⌦ (↵ |0i+ � |1i)) =CNOT([1, 0]T ⌦ [↵, �]T )

=CNOT[↵, �, 0, 0]T

=[↵, �, 0, 0]T

=[1, 0]T ⌦ [↵, �]T

= |0i ⌦ (↵ |0i+ � |1i).
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Case 2, the first qubit is |1i:

CNOT(|1i ⌦ (↵ |0i+ � |1i)) =CNOT([0, 1]T ⌦ [↵, �]T )

=CNOT[0, 0,↵, �]T

=[0, 0, �,↵]T

=[0, 1]T ⌦ [�,↵]T

= |1i ⌦ (� |0i+ ↵ |1i).

In both cases, we resolve the CNOT gate application using the rule we developed

just prior from applying CNOT to an arbitrary 2 qubit state. By analyzing the states

resulting in each case, we can see that the CNOT gate has no effect if the first qubit

is in the |0i state, but has the effect of an X gate applied to the second qubit if the

first qubit is in the |1i state. It is for this reason that the gate is called a controlled-X

gate; the state of the first qubit controls the application of an X gate to the second

qubit. Additionally, the first qubit is called the control qubit and the second qubit is

called the target qubit.

Universal Gate Sets

According to the Solovay-Kitaev theorem [9], there exist sets of single qubit gates

that can be used to approximate any single-qubit quantum gate efficiently. With the

addition of the CNOT gate, any multi-qubit gate can be approximated. Such a set,

including the CNOT gate, is called a universal gate set. An example of a universal

gate set using only gates defined in our work is the set of single qubit parameterised

gates Rx, Ry, Rz, grouped together with the CNOT gate. Proving the existence of

efficient universal gate sets is an important theoretical result, as it implies that real

hardware need only reliably implement some finite number of gates to access the full

power of quantum computation.
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1.1.4 Quantum Circuit Diagrams and Bell States

A quantum program is a sequence of single and multi-qubit gates that can be applied

to a collection of qubits to manipulate their quantum state. Quantum programs

are typically visualized using quantum circuit diagrams. A quantum circuit diagram

is the quantum analogue of a logic gate circuit diagram in classical computing. A

quantum circuit diagram describes a quantum program visually by specifying the

initial states of the qubits, the ordered sequence of quantum gates that are applied

to them, and finally the measurements that are performed on the resulting state.

Component Interpretation
Empty wire, connects components

H Hadamard Gate

X X Gate

Y Y Gate

Z Z Gate

CNOT gate

Measurement operation

Figure 1-1: A table showing some common components of quantum circuit diagrams.
An empty wire is mathematically equivalent to applying an identity gate. Note that
the identity matrix I is unitary and a valid quantum operation. In the CNOT gate
diagram, the control qubit is the wire with the small dot end and the target is the
wire with the circled plus end (�).

Figure 1-1 shows some of the commonly used components of quantum circuit

diagrams and explains their meanings. These components can be joined together

with wires to describe full or partial quantum programs.

In Figure 1-2, we show an example of a quantum circuit diagram that creates a Bell
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|0i H

|0i

Figure 1-2: A quantum circuit diagram showing the construction of the Bell state
CNOT(H |0i ⌦ |0i) = 1/

p
2(|00i + |11i), followed by measurement of both qubits.

The initial state of each qubit in the system is specified by the kets on the left side
of the diagram. The flow of time is represented by moving from left to right along
the lines, which are called wires (gates are applied to qubits in left-to-right order).
Quantum gate matrices are represented as matrix names in boxes, where the boxes are
positioned on the wires of the qubits that they operate on. The order of application
of the gates to the qubits is leftmost first.

state, which is a maximally entangled two-qubit state. This state demonstrates an

ability not replicable on a classical computer. We can explain this ability by evaluating

the circuit manually. According to the quantum circuit diagram, the first gate to be

evaluated is the Hadamard gate on the first qubit. The state of the second qubit is not

altered at this point in time. It leaves the pair of qubits in the state 1p
2
(|0i+ |1i)⌦ |0i.

Take note of the fact that matrix multiplication and the tensor products operation

are both distributive. Therefore, applying the CNOT gate to this state gives us
1p
2
(CNOT(|0i ⌦ |0i) + CNOT(|1i ⌦ |1i)). In general, due to this same principle, the

result of applying a quantum gate to a superposition of states is equivalent to forming

a superposition of the results of applying the same gate to each state individually.

This observation is known as quantum parallelism, but it is not as powerful an effect

as it might at first seem due to the fact that quantum superposition states collapse

into a single classical state on measurement. We can evaluate the CNOT gates by

our previously established understanding of their behavior when processing classical

inputs. This gives the state 1p
2
(|0i ⌦ |0i+ |1i ⌦ |1i.

When measurement is performed on either one of the qubits, the state of that
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qubit collapses to a simple zero or one. However, due to the nature of the super-

position the pair of qubits is in, it is impossible for the qubits to measure different

values. This behavior demonstrates an unintuitive quantum principle that can not

be reproduced classically. Especially surprising is when we consider that there is no

explicit limit on the physical distance between the two qubits at the time of mea-

surement; even if the qubits were separated by a great distance (for example, on the

order of light years), measuring the value of one of them would cause the other to

leave superposition and collapse to a known value instantaneously. As a result, this

correlation of measurement outcomes cannot be explained by local physical theories.

1.1.5 The Deutsch-Jozsa Algorithm

We now have the tools to examine a quantum algorithm. In this section we will explain

the Deutsch-Jozsa algorithm [11]. This is an early example of a simple quantum

algorithm demonstrating a provable advantage over classical computing.

The problem solved by the Deutsch-Jozsa algorithm can be stated as follows:

Suppose f is a black-box function which maps an n-bit binary string to a single bit,

0 or 1. We state this mathematically as f : {0, 1}n ! {0, 1}. It is known that f is

either a constant function (the output is always the same, regardless of the input) or

a balanced function (the output is 0 for exactly half of the 2n possible input states

and 1 for the other half). How do we determine whether the function is constant or

balanced with as few evaluations as possible?

On a classical computer, we must perform at least 2 evaluations of the function in

the best case to know the solution; if we evaluate the function for 2 different inputs

and get different values, we know the function is not constant and must therefore be

balanced. In the worst case, however, we must perform up to 2n�1 + 1 evaluations.

This is because a balanced function may appear to be constant when evaluating up

to half of the possible inputs. One additional evaluation is then enough to determine

whether the function is constant or balanced.

On a quantum computer, we can use the Deutsch-Jozsa algorithm to determine

whether the function is constant or balanced with a single evaluation of f . To execute
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the algorithm, we require a quantum implementation of f , which we represent as a

unitary matrix Uf . Uf must be implemented such that

Uf |xi ⌦ |yi = |xi ⌦ |y � f(x)i ,

where |xi is an n qubit state encoding the input to f , |yi is an additional single qubit

state, and � is the addition modulo 2 operator. Note that the exact implementation

of Uf depends on f , since f is a black-box function.

To implement the Deutsch-Jozsa algorithm for a function taking n bit strings as

input, we first construct an initial n + 1 qubit state | 0i = |0i⌦n ⌦ |1i. On a real

device, the initial state is typically |0i⌦n+1, meaning we can achieve this by simply

applying a single X gate on the last of our qubits. The second step is to apply a

Hadamard gate to each qubit. This creates the state

| 1i = H⌦n+1 | 0i = (H |0i)⌦n ⌦H |1i

Evaluating the Hadamard gate applications, we get

| 1i =
 

1p
2n

2n�1X

x=0

|xi
!

⌦ 1p
2
(|0i � |1i). (1.1)

At this point, the first n qubits are in an equal superposition of all the possible

values of n classical bits. Next we carry out the third step, which is to apply Uf to

the n+ 1 qubits. This gives

| 2i =
1p
2n+1

Uf

2n�1X

x=0

(|xi ⌦ (|0i � |1i)) = 1p
2n+1

2n�1X

x=0

Uf (|xi ⌦ (|0i � |1i))

=
1p
2n+1

2n�1X

x=0

(Uf |xi ⌦ |0i � Uf |xi ⌦ |1i).

By the definition of Uf , this gives us
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| 2i =
1p
2n+1

2n�1X

x=0

(|xi ⌦ |f(x)i � |xi ⌦ |1� f(x)i)

=
1p
2n+1

2n�1X

x=0

(|xi ⌦ (|f(x)i � |1� f(x)i)).

For each particular value of x, f(x) is either 0 or 1. In the case that f(x) is 0, we

have

| 2i =
1p
2n+1

2n�1X

x=0

(|xi ⌦ (|0i � |1i)).

In the case that f(x) is 1, we have

| 2i =
1p
2n+1

2n�1X

x=0

(|xi ⌦ (|1i � |0i)).

From these two observations, we can conclude that

| 2i =
1p
2n+1

2n�1X

x=0

((�1)f(x) |xi ⌦ (|0i � |1i)).

We can separate the state as

| 2i = | 3i ⌦ | 4i ,

where

| 3i =
1p
2n

2n�1X

x=0

(�1)f(x) |xi,

and

| 4i =
1p
2
(|0i � |1i).

Comparing these components to the state before applying Uf (refer to equation

1.1), we can see that total effect of Uf was adding a conditional negation to the
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amplitudes of each basis state; each basis state |xi for which f(x) = 0 experiences no

change in its corresponding amplitude, but each basis state for which f(x) = 1 has

its amplitude made negative. If f is constant, either all terms or no terms will have

the negation applied. If f is balanced, exactly half the terms will have the negation

applied and half will not.

The fourth step is to apply a layer of Hadamard gates to the first n qubits, which

are in state | 3i. Before this step, it is useful to observe the effect of applying a

Hadamard gate layer to a single qubit in the 0 or 1 state, and then to an arbitrary n

qubit computational basis state |xi.

When applying the Hadamard gate to a single qubit not in superposition, we get

H |0i = 1p
2
(|0i+ |1i) or H |1i = 1p

2
(|0i � |1i),

depending on whether the qubit has a value of 0 or 1. In the case of the n qubit state

|xi, we have

H⌦n |xi = ⌦n�1
i=0 H |xii

where xi is the bit on qubit i.

Looking at a 3 qubit example with x = 011, we get

H⌦3 |xi = H |0i ⌦H |1i ⌦H |1i

=
1p
23

((|0i+ |1i)⌦ (|0i � |1i)⌦ (|0i � |1i))

=
1p
23

(|000i � |001i � |010i+ |011i+ |100i � |101i � |110i+ |111i) .

We can see that in general (including for cases using more qubits and an arbitrary

basis state for x), the result is a summation over all n bit basis states. The number

of negative coefficients in the components multiplied to produce the basis state |yi in

the summation above is just the number of corresponding bits that both equal 1 in x

and y, since each such bit means that a negated |1i was used in the construction of
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y. We can represent this total mathematically as the dot product of the bits of x and

y, which we denote x · y. This quantity is important because it allows us to express

the effect of a layer of Hadamard gates on a computational basis state |xi as

H⌦n |xi = 1p
2n

2n�1X

y=0

(�1)x·y |yi .

We are now ready to carry out step 4 and apply a layer of Hadamard gates to | 3i

to create a final state | 5i using the identity developed above:

| 5i = H⌦n | 3i = H⌦n 1p
2n

2n�1X

x=0

(�1)f(x) |xi

=
1p
2n

2n�1X

x=0

(�1)f(x)H⌦n |xi = 1p
2n

2n�1X

x=0

 
(�1)f(x)

1p
2n

2n�1X

y=0

(�1)x·y |yi
!

=
1

2n

2n�1X

y=0

2n�1X

x=0

�
(�1)f(x)(�1)x·y |yi

�
=

2n�1X

y=0

 
1

2n

2n�1X

x=0

(�1)f(x)(�1)x·y
!
|yi .

In this form, we can see that the probability amplitude ↵y of any particular basis

state |yi in state | 5i is simply

↵y =
1

2n

2n�1X

x=0

(�1)f(x)(�1)x·y.

Consider the case where |yi = |0i. For this state, we can further simplify to

↵0 =
1

2n

2n�1X

x=0

(�1)f(x).

We know f is either constant or balanced. If f is constant, this simplifies to either

↵0 =
1

2n

2n�1X

x=0

1 = (
1

2n
)(2n)(1) = 1.
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|0i H

Uf

H

|0i H H

|0i H H

|0i X H

Figure 1-3: This circuit diagram shows the Deutsch-Jozsa algorithm being executed
for a function f that takes 3-bit inputs. The X gate on the last qubit initializes it to
the single-qubit |1i state. It can be omitted if the last qubit starts in the |1i state.

or

↵0 =
1

2n

2n�1X

x=0

�1 = (
1

2n
)(2n)(�1) = �1.

depending on whether f(x) = 0 or f(x) = 1. In both cases, the probability of

measuring all qubits to be zero is then P (|0i) = |↵0|2 = |1|2 or | � 1|2 = 1. This

proves that if f is constant, we will definitely measure the 0 state on all qubits.

If f is balanced, then f(x) = 0 for half of the values of x and f(x) = 1 for the

other half, and the expression instead simplifies to:

↵0 =
1

2n

2n�1X

x=0

(�1)f(x) =
1

2n
�
(2n�1)(�1) + (2n�1)(1)

�
= 0,

and the probability of measuring all qubits to be 0 is P (|0i) = |↵0|2 = |0|0 = 0. This

proves that if f is balanced, we cannot measure 0 on all qubits.

If we prepare state | 5i and measure it to find all qubits are 0, f cannot be

balanced and must therefore be constant. If we measure all qubits and find that some

are not zero, we can then conclude that f cannot be constant and must therefore be

balanced.

In summary, constructing the state | 5i requires only one evaluation of f through

the Uf unitary to determine if f is balanced or constant, whereas the best classical
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solution requires 2n/2 + 1 evaluations of f , a value that scales exponentially with

the problem size n. This proves that the quantum algorithm achieves an exponential

speedup over the classical algorithm. Figure 1-3 shows the quantum circuit diagram

of the entire algorithm for the case of a function operating on three bits.

1.1.6 Real Quantum Hardware

Unlike the logical qubit abstraction we have been working with so far, real physical

qubits are subject to unwanted interactions with their surrounding environment, and

applying quantum gates is not entirely precise due to engineering challenges. The um-

brella term “noise” is used to refer to any effect on quantum hardware that causes an

unwanted influence on a quantum state. The two major types of noise affecting quan-

tum hardware are dissipation and decoherence. Dissipation refers to noise induced by

the quantum system losing energy due to the surrounding environment. The energy

loss to the environment leads to a change in the energy state of the qubits, directly

changing the information encoded in the energy states. This can cause a qubit in

the excited state (|1i) transitioning to the ground state (|0i), but not the reverse

transition. Decoherence refers to the decay of a system’s quantum properties due

to unintended interactions with the environment, which can happen without directly

causing a loss of energy. Both types of noise have increasing cumulative influence on

the quantum state with time. This limit the achievable length of useful programs.

As a general rule, the higher the number of gates applied in a circuit, the more the

computation will be affected by noise. This is especially true of multi-qubit gates

like CNOT. The presence of noise in a hardware device often makes it unsuitable for

running algorithms. For the Deutsch-Jozsa algorithm, even a small unintended mod-

ification to a single qubit after producing the final state could allow us to measure

non-zero values and wrongly conclude that a constant function is balanced.

The current era of quantum devices is known as the Noisy Intermediate-Scale

Quantum (NISQ) era [23]. These are devices with low qubit counts (up to a few

thousand), limited entanglement connectivity for superconducting qubits (meaning

multi-qubit gates cannot be directly applied between arbitrarily positioned qubits),
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and relatively high error rates. Although ion trap qubits achieve better entanglement

connectivity, they cannot apply more than one two-qubit gate in a single time step.

Computing with future machines that have more qubits and lower error rates, com-

bined with techniques to account for noise, is referred to as fault-tolerant quantum

computing (FTQC).

There are two main proposals for dealing with noise in quantum hardware: Quan-

tum error correction (QEC) [26], and quantum error mitigation [5]. Quantum error

correction involves bringing additional qubits into the computation in such a way that

errors can be detected and corrected without interrupting the computation. QEC will

require the use of many additional qubits to achieve noise resistance, making it un-

suitable for use on currently available devices. However, it could be suitable for future

devices with greater qubit counts and lower gate error rates. Quantum error mitiga-

tion refers to methods that minimize the negative effects of noise rather than trying

to correct for it. This can be done by modeling the effects of noise with a particular

device and post-processing measurements to try to account for them. An example of

error mitigation is zero-noise extrapolation [12], where computations are performed

at multiple adjustable noise levels and the results without noise are extrapolated.

These are notably less effective at dealing with noise than error correction, but are

important for implementing practical algorithms on NISQ devices.

The other major area of our work is quantum machine learning. The following

section gives an overview of pertinent concepts.

1.2 Machine Learning

Machine learning is a branch of artificial intelligence that studies algorithms designed

to create models of functions from data. When successfully applied, this allows com-

puters to be used to perform tasks that are difficult to explicitly program solutions

for, such as understanding the nuances of human language in natural language pro-

cessing [17] or making sense of image data in computer vision [14] tasks.

These algorithms can broadly be separated into three categories: supervised learn-
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ing, unsupervised learning, and reinforcement learning. Supervised learning algo-

rithms make use of prelabelled training data, while unsupervised algorithms attempt

to uncover the underlying structure of a dataset without the explicit guidance of

labels [1]. In reinforcement learning, agents learn behavior by interacting with an

environment that provides rewards and punishments to guide them.

An industry trend in recent years is a rapidly increasing scale of AI models, partic-

ularly in the domain of language modeling [33]. These large models are termed Large

Language Models (LLMs) due to their size being a defining characteristic. LLMs are

expensive and slow to train and require vast computational resources to make train-

ing feasible. An interesting question to consider is whether or not the computational

power of future quantum computers could be used to alleviate this problem.

The field of Quantum Machine Learning (QML) lies at the intersection of quantum

computing and machine learning. The term “quantum machine learning” can refer to

either the application of classical machine learning algorithms to quantum data (to

be specific, classical data generated from a quantum source), or the application of

quantum algorithms to machine learning tasks on either quantum or classical data.

Quantum algorithms are expected to have a clear advantage over classical algorithms

when operating on quantum data due to the fact that they can in principle operate

directly on quantum states without collapsing them and losing much of the infor-

mation they contain. However, it is not yet clear whether quantum algorithms can

provide a significant practical advantage over classical algorithms when working with

machine learning tasks on classical data. This question is a high priority research

focus in the field of QML, but is difficult to answer.

Another interesting research question is whether a quantum algorithm can be

designed that performs better on some useful machine learning task than any known

classical algorithms. Although provably faster quantum machine learning algorithms

have been discovered [18], they are not necessarily of practical relevance. Note that

in order to provide a true quantum advantage over classical algorithms the quantum

algorithm must be computationally hard to simulate on classical computers, or else

it merely constitutes a new quantum-inspired classical algorithm.
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1.2.1 Classification Tasks and Generalization

One class of supervised learning tasks is classification. In classification tasks, a model

is required to learn a function that maps an input data point to a label from a set of

class labels by determining a mapping based on labeled training data. An example

of a classification problem is the task of determining whether or not an input image

contains a human face in it. Mathematically, this can be formulated as the task of

modeling a function that maps an image data array to one of two labels, corresponding

to the classes “face” and “no face”. We know that every image either does or does

not contain a human face by necessity, and therefore this function does exist in the

mathematical sense. In this classification task, the goal of a model is to learn a

computable implementation of an approximation of this abstract function through a

training process. A supervised machine learning classifier model would be trained to

perform this task using labeled example inputs that pair images with their known-

correct labels. In mathematical terms, the labeled training data contains a subset of

the domain of the function being modeled, as well as the image of that subset in the

function’s range. A single sample in the training data is typically represented as a

real-valued sequence of feature values. A feature value is a number that corresponds

to some real-world descriptor that should be relevant to solving the problem. In the

case of image classification, the numeric pixel intensity values for each color channel

in an image are typically used as feature values. Note that a trivial model can often

be defined that perfectly approximates a target function’s operation on training data;

it must simply record the entire training set and look up correct labels when queried

for an output. However, such a model would not be useful as it would be highly

unlikely to correctly approximate the true function when queried for the labels of

points not included in the training data.

This introduces a concept of great importance in supervised classification tasks:

the concept of generalization. The term generalization refers to the ability of a model

to maintain the accuracy of its approximation of the true labeling function when

applied to data not seen during its training. A classifier is said to generalize well
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when it accurately approximates the true labeling function on unseen data. For

supervised classifiers, this can be quantified by comparing the accuracy of the model

on the training data with the accuracy of the model on a reserved set of test data

points with known labels that are not given to the model during training. In practice,

good generalization is a requirement for a trained model to be useful.

A popular algorithm for supervised classification tasks is the Support Vector Ma-

chine (SVM) [4] due to its empirically good performance, theoretical relations to

other learning models [16, 28] and theoretical results regarding its generalization

ability [32, 31].

1.2.2 Support Vector Machine

The SVM algorithm is a supervised machine learning algorithm for solving classifica-

tion tasks. It can be seen as a higher-dimensional generalization of the idea of drawing

a straight line to separate two clusters of points on a Cartesian plane; it makes use of

a hyperplane to linearly separate two clusters of points in an arbitrary-dimensioned

space of feature values. The SVM training process partitions the coordinate space

into two disjoint subsets; the goal of the SVM training process is to find an optimal

vector w and optimal scalar b such that the sign of w ·x+b is the same for all points x

that belong to the same class. This forms a simple classification rule for any point x

in the space; the equation w · x+ b = 0 defines a hyperplane in the space, and taking

the sign of w ·x+ b acts as a prediction rule assigning every point in the space to one

of the two classes.

A hyperplane is a defined by a simple linear equation, which has the downside

that it is unable to learn nonlinear classification rules, which may be required to

model many interesting functions. However, there is the benefit that the training

algorithm can select an optimal hyperplane in the cases where the training data is

linearly separable. This optimality is with respect to a margin metric. The margin

of a data point is defined as its distance from the hyperplane in coordinate space,

where greater values for the margin intuitively correspond to higher confidence in the

prediction being made. The margin metric is also defined for a choice of hyperplane
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in the context of some dataset; the margin of a candidate hyperplane is the minimum

of the margins of the points in that dataset. The SVM training algorithm achieves an

optimal margin for linearly separable data in that it picks the choice of hyperplane

that maximizes the minimum of the margins of the points in the training data. Larger

margin sizes have been shown theoretically to correlate with better generalization

ability [32, 31].

The downside of using a linear classification rule is overcome in practice by first

applying a non-linear transformation function to put the data points into a higher

dimensional space before applying the hyperplane separation. This transformation

function is commonly called a feature map. Adding non-linearity and increasing the

dimensionality of the data points makes them easier to linearly separate in the higher

dimensional space as shown in Figure 1 of chapter 2, greatly improving the class of

functions the SVM algorithm is capable of modeling while maintaining the margin

optimality benefit.

Another strength of the SVM algorithm is the fact that the hyperplane optimiza-

tion problem has a dual formulation which casts the problem in terms of the inner

products between points rather than their distances from the hyperplane [4]. This al-

lows for the use of complex feature map functions that are hard to explicitly compute,

so long as the inner products of points in the higher dimensional mapped space can

be efficiently computed. For a feature map function �(x) performing some non-linear

mapping of a data point to a higher dimensional space, the function

(xi, xj) = h�(xi),�(xj)i

can be defined to map to the inner product of two data points in the higher di-

mensional space. Such a function  is called a kernel function. This removal of

the explicit need for a feature map function is known as the “kernel trick”, and it

allows the SVM algorithm to access complex feature maps indirectly through their

corresponding kernel functions for greater expressivity.
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1.2.3 Quantum Support Vector Machine

A parameterized quantum circuit (a quantum circuit making use of parameterized

gates) can be made to operate as a feature map function. This is achieved by sub-

stituting the feature values of data points into the parameters of the parameterized

gates. Executing the resulting circuit maps the input data point to a quantum state

in a high dimensional Hilbert space. The quantum circuit used to perform the map-

ping is called a feature map circuit. This feature map cannot be directly used with

the SVM algorithm since the mapped data is still in the form of a quantum state.

However, any feature map circuit can easily have a kernel circuit defined by con-

struction, which instead operates on two data points and allows computing the inner

product of the mapped quantum states on the quantum device. This kernel circuit

can be used as a kernel function in the SVM algorithm, thanks to the kernel trick. In

the quantum machine learning literature, kernel circuits are also referred to as Quan-

tum Embedding Kernels (QEKs) and the practice of using them to evaluate kernels

is called Quantum Kernel Estimation (QKE). When using a quantum kernel with

the SVM algorithm, the resulting algorithm constitutes a hybrid quantum-classical

machine learning algorithm known as a Quantum-Enhanced Support Vector Machine

(QSVM) [25, 27]. The choice of feature map circuit is both important and data-

dependent; a good choice of feature map must make data linearly separable in the

higher dimensional space.

Note that the potential advantage of the QSVM algorithm is in using quantum

hardware to access kernels that cannot be efficiently estimated classically, since if

some well-performing quantum kernel can be efficiently estimated classically, there is

no requirement to use a quantum device.

The research in this work deals with improving existing methods for the automated

design and optimization of feature map circuits for use with the QSVM algorithm.
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1.3 Ancillary Optimization Methods

Understanding the experiments performed in this work requires understanding some

classical techniques used in quantum circuit design and optimization, which are de-

tailed below. While they are not the focus of the work’s contributions, they are used

in the experimental setup.

1.3.1 Parameterized Quantum Circuit Optimization

A common paradigm in NISQ algorithm development is the optimization of the pa-

rameters of parameterized quantum circuits (PQCs) to be fit for some purpose. The

structure and placement of parameters in the PQC is generally dependent on the

task that it will be trained to perform. For this reason, PQCs are often also called

ansätze (the plural form of ansatz ). “Ansatz” is a German word which in scientific

fields refers to an assumption made about how to find the solution to a problem, often

in the context of making an approximation, model, or theory.

While circuits running on real devices can only directly convey outputs through

measurements, these measurements can be used as a basis upon which to develop more

complex outputs. The form of the complex outputs can often be problem-dependent.

For example, repeatedly executing a circuit and measuring the produced state can

provide an empirical estimate of the probabilities that the state collapses to any of

its possible basis states. In a machine learning classification task, these probabilities

could be interpreted as membership probability predictions for classes.

Outputs produced by PQCs can be optimized through the use of classical opti-

mization algorithms in a hybrid quantum-classical optimization loop as follows:

1. A classical device sets some initial parameters for a PQC.

2. The quantum device executes the PQC and returns information about the mea-

surements made on the produced state to the classical device.

3. The classical device interprets these measurements to produce a problem-dependent

metric value, which is given to a classical optimization algorithm. If the opti-
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Figure 1-4: A flow diagram demonstrating the PQC optimization process.

mizer deems that the metric value has converged or reached alternate stopping

conditions, the optimization loop ends.

4. If the metric has not converged, the optimizer suggests new values for the PQC

parameters and the algorithm continues from step 2.

An interesting observation is that the process of PQC optimization is very similar

to classical neural network training; in both PQC optimization and neural network

training, a parameterized model of fixed structure is defined which is believed to be

of general enough form to implement a desired computation. Then, the model has

its trainable parameters iteratively updated by a classical optimization algorithm to

improve some output metric.

1.3.2 Genetic Algorithms

Genetic algorithms are a widely-studied class of algorithms that can be applied to a

wide variety of combinatorial optimization problems [6]. They are a type of nature-
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inspired algorithm that mimic the natural process of evolution with digital analogues

of genetic information, reproduction, random mutation, and natural selection.

The concept of genetic information is mimicked by representing solutions to the

target problem as encoded data. This encoded data is often in the form of a bi-

nary string. Genetic algorithms are initialized with a collection of solutions called

a population. In principle these can be derived from any source, such as another

optimization process or simple random sampling. A decoding function mapping from

the chosen representation to problem solutions must be defined on a per-problem

basis. An objective function to optimize must also be defined. Applying the decod-

ing to individuals in the population allows evaluating the objective function for each

individual.

The solution representations undergo unary and binary genetic operations which

produce a new population of solutions. These operations model mutation and re-

production respectively. The new population is referred to as the next generation of

solutions. For binary strings, mutation of a solution is typically performed by flipping

some bits in its bit string and reproduction is typically performed by concatenating

subsequences of the two parent solutions. Solutions are typically selected for under-

going genetic operations with probability proportionate to their objective values. As

a result, the genetic information of well-performing solutions is more likely to be used

in the construction of the new population. This mimics the effects of natural selection

and biases the generation of the new population towards producing better-performing

solutions than the parent generation. Although binary strings are typically used to

represent solutions, an alternate representation tailored to a problem can also be

defined, so long as genetic operators can be implemented for it.

The process of decoding solution representations, evaluating solutions, ranking

solutions by objective values, and producing new solutions through reproduction and

mutation is performed iteratively until a predefined stopping condition is met. There

are many variations of genetic algorithms due to the open-ended nature of imple-

menting evolution-inspired genetic operations and representing solutions [6].

Genetic algorithms have previously been applied to the problem of quantum circuit
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design [2, 3, 7, 19, 24].

Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [10] is a variation of the

genetic algorithm which customizes the genetic selection and fitness evaluation oper-

ations to optimize multiple fitness functions simultaneously. This is done by prefer-

entially selecting non-dominated solutions as parents when creating new individuals.

While non-domination is defined for problems with an arbitrary number of objective

functions, we define it here for only the case of two objective functions as our work

does not require more.

In a minimization problem with two fitness functions, a solution s with fitness

values (a, b) is considered non-dominated with respect to another set of n solutions

with fitness values {(fi, gi)|i 2 {1, 2, . . . , n}} if and only if

8i 2 {1, 2, . . . , n}, (fi < a) =) (gi > b),

i.e. if and only if there are no solutions in the set with all fitness values superior to

the corresponding fitness values of s.

NSGA-II also makes use of elitism to guarantee the preservation of the solutions

that best optimize at least one of the individual fitness functions. The metric of

crowding distance is used in the selection process to promote diversity in the achieved

fitness values. This can help avoid early convergence in a local minimum.

NSGA-II has been applied to quantum circuit design in previous works due to

the fact that multi-objective optimization allows minimizing circuit sizes (for NISQ

suitability) in addition to creating circuits that perform well at a task [2].

1.4 Prior Works

The experiments in our work build mainly off of two prior works to do with QSVM

feature map circuit design and optimization. The first work, Automatic Design of
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Quantum Feature Maps [2], details and implements a genetic algorithm which auto-

mates the design of feature map circuits tailored to a specific dataset. We reproduce

this system as a baseline for comparison. The second work, Training Quantum Embed-

ding Kernels on Near-Term Quantum Computers [15], investigates using the metric

of kernel-target alignment to optimize feature map circuits containing trainable pa-

rameters in addition to the usual data embedding parameters of a feature map circuit.

Kernel-target alignment is a metric that measures the degree of agreement between

the kernel function outputs for each pair of data points in a training data set and

a hypothetical ideal kernel output for that pair. We use this same technique with

multiple metrics (including kernel-target alignment) to optimize the circuits produced

by our genetic algorithm implementation.

1.4.1 Automatic Design of Quantum Feature Maps

Automatic design of quantum feature maps [2] implemented an NSGA-II genetic

algorithm for automatically designing quantum feature map circuits for QSVM clas-

sification. Given a target dataset, NSGA-II is used to pick a feature map circuit

that simultaneously minimizes the number of gates used and maximizes classification

accuracy when used in a QSVM classifier on that target dataset.

Before running the genetic optimization algorithm, parameters M and N must be

selected. These designate the maximum number of qubits and maximum number of

gate layers in generated circuits respectively, and they are fixed for the duration of

the optimization.

For the purposes of applying genetic operations, the work encodes feature map

circuits as a concatenation of encodings of the MN potential gates in the circuit. The

encoding of a single gate is a string of 5 bits, which are interpreted independently as

shown in Table 1.1. This means each solution is a binary string of length 5MN . When

decoding the bit strings, the groups of 5 bits are decoded sequentially to fill in the

gates for each qubit in each layer of the feature map sequentially. Stated explicitly,

for each consecutive group of 5 gate bits, the ith gate description will be applied

to qubit i mod M and will encode feature i mod N if it performs a parameterized
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Bits Gate
000 H
001 CNOT
010 I
011 Rx

100 Rz

101 I
110 I
111 Ry

Bits Parameter
00 ⇡
01 ⇡/2
10 ⇡/4
11 ⇡/8

Table 1.1: When decoding a 5 bit sequence that encodes a single gate, the first 3 bits
of the sequence determine which type of gate the sequence decodes to, according to
the left side of the table. H, CNOT, and I gates refer to the Hadamard, controlled not,
and identity gates respectively. The Rx, Ry, and Rz gates are parameterized gates de-
fined by the equations Rx(✓) = cos(✓/2)I� isin(✓/2)X Ry(✓) = cos(✓/2)I� isin(✓/2)Y
and Rz(✓) = cos(✓/2)I � isin(✓/2)Z In the case of the first 3 bits selecting a param-
eterized gate, the last 2 bits select a proportionality parameter from the right side
of the table. Input data features are multiplicatively scaled by this proportionality
parameter before being substituted into the parameterized gate. If the multi-qubit
CNOT gate is selected to be applied to qubit i, it will use qubit i as the control and
qubit i + 1 as the target qubit, with addition being modulo the number of qubits in
the feature map circuit.

rotation.

While accuracy maximization was performed directly on the measured accuracy

metrics for each feature map, size minimization was instead performed on a proxy

size metric with importance weighted to scale with accuracy. Before weighting, the

size metric SM is computed as

SM =
Nlocal + 2NCNOT

M
,

where Nlocal is the number of single qubit gates in the circuit and NCNOT is the number

of multi qubit CNOT gates. With accuracy weighting, the weighted size metric WS

is computed as

WS = SM + SM · accuracy2.

According to the authors, this weighting shifts the focus towards decreasing circuit
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size once good classification accuracy has been achieved.

The work found that the approach was suitable for designing high accuracy feature

map circuits with a low number of gates that make little use of entanglement [2].

1.4.2 Training Quantum Embedding Kernels on Near-Term

Quantum Computers

Hubregtsen et al. [15] apply parameterized quantum circuit optimization to the task

of optimizing existing feature map circuits for a target dataset. In contrast to the

previous work [2], this approach does not automate the selection of the gates used

in the circuit or the circuit size. The only parts of the feature map circuit that

are modified are the values of its trainable parameters. The trainable parameter

values were optimized using a Stochastic Gradient Ascent optimization algorithm to

maximize the kernel-target alignment of the corresponding kernel functions. Given a

set of training data points {x1, x2, . . . , xn} and labels {y1, y2, . . . , yn} where 8i, yi 2

{�1, 1}, and a kernel function (xi, xj), the kernel-target alignment of  on the data

set is defined by the equation

KTA =
hK,OiFp

hK,KiF hO,OiF
,

where O and K are n⇥ n matrices with Oij = yiyj, Kij = (xi, xj), and h·, ·iF is the

Frobenius inner product between matrices. This maximization of kernel-target align-

ment was performed to improve the suitability of feature maps for target datasets,

as increased kernel-target alignment has previously been shown to correlate with im-

proved classification ability by Cristianini et al. [8] .

The work made use of both classical noise-free simulations of quantum comput-

ers and real NISQ computers to run their experiments. The authors reported im-

provements in classification accuracy after training feature map circuits to maximize

kernel-target alignment for the target dataset [15].

While the previous works demonstrate that quantum feature maps can be designed

and optimized with automated methods, they do not answer the question of whether
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designing the circuit structure with an automated algorithm can be effectively applied

in tandem with feature map parameter optimization. This would potentially allow for

maximizing the performance of the small feature map circuits suitable for execution

on NISQ devices.

Another issue with the proposed methods for automating the structural design of

feature map circuits is that they make use of genetic algorithms with fitness functions

that are slow to evaluate. This is compounded by the fact that genetic algorithms

are a population-based algorithm which may need to evaluate many generations of

solutions, meaning the evaluation speed of the cost function is very often the limiting

factor to how fast they run.

In this work, we intend to investigate whether making use of a hybrid approach

incorporating both genetic algorithms and feature map parameter optimization will

demonstrate the benefits of both algorithms simultaneously. We also aim to investi-

gate alternative fitness functions for genetic algorithm based feature map design to

improve the running time of the algorithm without degrading the performance of the

generated feature map circuits.

1.5 Methods

In this work, we set out to investigate potential improvements that could be made to

the genetic algorithm for quantum feature map design defined in [2]. Our investiga-

tion focused on the use of alternative metrics to accuracy in the genetic algorithm, as

well as performing parameter optimization on the circuits generated by the original

approach. In particular, we use the COBYLA [22] classical optimizer to optimize

circuit parameters.

The experimental core of the work involves evaluating the performance of nine

variations and extensions of the algorithm in the original work, including a repro-

duction of the original algorithm itself. Our first three variations are determined by

the metric maximized by the genetic algorithm: in the original work this was classi-

fication accuracy, but we also use kernel-target alignment and an approximation of
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kernel-target alignment that is faster to compute.

These three variations form the base for an additional six variations for compari-

son; we form two additional variations for each of the three base variations by further

optimizing the proportionality parameters of the feature map circuits output by ge-

netic algorithm to either minimize the root mean squared error (RMSE) of the SVM

decision function output or maximize kernel-target alignment. We use a modified

formulation of the error calculation for RMSE as the SVM decision function has no

fixed optimal target value.

The nine variations are evaluated over nine datasets to determine the classification

accuracies and margin sizes achieved by the produced circuits in each case. This data

is used to determine whether each approach is effective, as well as the effectiveness of

each approach relative to the others. The code for running the experiments is made

available on GitHub [20].

RMSE Calculation

In our RMSE calculations, we calculate the error for a decision function output a and

training label b using the following rule:

error(a, b) =

8
>>>>><

>>>>>:

(b� a), if b = 1 and a < b,

(a� b), if b = �1 and a > b,

0, otherwise.

This choice of error function means that the decision function is penalized for distance

from the class label, unless it exceeds the magnitude of the class label while still

making a correct classification, in which case the error is 0.

The RMSE is calculated over a dataset by taking the root of the mean of the

squares of the errors of the SVM decision function outputs relative to the known

class labels.
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Kernel-Target Alignment Approximation

Our kernel-target alignment approximation for a feature map circuit and dataset

is simply calculated by averaging the kernel-target alignment of the feature map

circuit over some number of disjoint subsets k of the dataset. In Chapter 2, we prove

mathematically that this results in a constant factor reduction of k in the number of

kernel evaluations required to compute the metric.

1.6 Contributions

This work makes three main contributions:

1. Experimentally verifying the effectiveness of kernel-target alignment as a metric

for genetic algorithm based quantum feature map design.

2. Proposing an approximation of kernel-target alignment that requires fewer quan-

tum kernel evaluations to compute, and experimentally demonstrating its effec-

tiveness in genetic algorithm based quantum feature map design.

3. Demonstrating the synergistic effectiveness of applying both genetic feature

map circuit design and feature map circuit parameter optimization in the task

of automating quantum feature map circuit design.

With regards to the first contribution, our findings showed that using kernel-target

alignment as a replacement for accuracy in the design of quantum feature maps by

genetic algorithm does produce feature maps that are effective for classifying the

target datasets with accuracy comparable to the original approach and larger margin

sizes. However, the circuits produced by this approach are notably larger than those

produced when using accuracy as the metric to maximize. We hypothesize that this

could be due to the fact that the limiting value of kernel-target alignment is harder to

achieve than the limiting value of accuracy, meaning the genetic optimization spends

less time trying to minimize the circuit size than when accuracy is used as the metric

to maximize.
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Our kernel-target alignment approximation in the second contribution performs

similarly to kernel-target alignment in the genetic algorithm feature map generation

task, while requiring fewer kernel evaluations to compute. Like un-approximated

kernel-target alignment, it also achieves similar accuracy to and larger margin sizes

than the original approach when used as the metric to maximize in the genetic opti-

mization process.

Our third contribution shows that further optimizing the proportionality param-

eters of the circuits generated by the genetic algorithm using classical optimizers

noticeably improves the margin sizes achieved by the circuits. This also implies that

the choice of circuit parameter values made by the genetic algorithm is not optimal

and could be improved.

1.7 Research Outputs

The paper in chapter 2 was uploaded to arXiv.org (https://arxiv.org/abs/2302.

02980 [21]) and has been submitted to the Springer Nature journal Quantum Machine

Intelligence (https://www.springer.com/journal/42484).

The experiment and graphing code developed during this work has been made

publicly available on GitHub [20].

1.8 Thesis Outline

The second chapter presents the main output of the work where the above contribu-

tions are demonstrated, and is based on the publication uploaded to arXiv.org [21].

The paper contains an introduction section framing the problem, followed by a meth-

ods section explaining the technical details of the algorithms and techniques used in

the work. The third chapter concludes the thesis and proposes ideas for further study.
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Chapter 2

Hybrid Genetic Optimisation for

Quantum Feature Map Design
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Abstract

Kernel methods are an import class of techniques in machine learning. To
be e↵ective, good feature maps are crucial for mapping non-linearly sepa-
rable input data into a higher dimensional (feature) space, thus allowing
the data to be linearly separable in feature space. Previous work has
shown that quantum feature map design can be automated for a given
dataset using NSGA-II, a genetic algorithm, while both minimizing cir-
cuit size and maximizing classification accuracy. However, the evaluation
of the accuracy achieved by a candidate feature map is costly. In this
work, we demonstrate the suitability of kernel-target alignment as a sub-
stitute for accuracy in genetic algorithm-based quantum feature map
design. Kernel-target alignment is faster to evaluate than accuracy and
does not require some data points to be reserved for its evaluation. To fur-
ther accelerate the evaluation of genetic fitness, we provide a method to
approximate kernel-target alignment. To improve kernel-target alignment
and root mean squared error, the final trainable parameters of the gen-
erated circuits are further trained using COBYLA to determine whether
a hybrid approach applying conventional circuit parameter training
can easily complement the genetic structure optimization approach. A
total of eight new approaches are compared to the original across nine
varied binary classification problems from the UCI machine learning
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repository, showing that kernel-target alignment and its approxima-
tion produce feature map circuits enabling comparable accuracy to the
previous work but with larger margins on training data (in excess
of 20% larger) that improve further with circuit parameter training.

Keywords: Quantum Computing, Machine Learning, SVM, QSVM, Genetic
algorithm, NSGA-II, Kernel-target alignment

1 Introduction

Quantum computers leverage quantum properties such as entanglement, and
promise the potential of a speed advantage over classical algorithms when
applied to specialized problems. Some algorithms such as Shor’s algorithm
for factorization (Shor, 1997) and Grover’s search algorithm (Grover, 1996)
have been shown theoretically to outperform all known classical algorithms
applied to the same tasks. Quantum algorithm design is made di�cult by the
unintuitive nature of quantum entanglement which must be used e↵ectively
to achieve an advantage over classical algorithms. Quantum machine learning
seeks to apply quantum computation to machine learning tasks to achieve a
quantum advantage over classical machine learning.

Quantum machine learning and classical machine learning show promise for
automating many practical tasks that would otherwise require human intelli-
gence, including disease diagnosis (Myszczynska et al, 2020), natural language
processing (Khurana et al, 2022), and image classification (Horak and Sab-
latnig, 2019). Machine learning algorithms are designed to learn functions
from data (Goodfellow et al, 2016). These algorithms can be separated into
three categories: supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning algorithms make use of prelabeled training data
while unsupervised learning algorithms do not (Alloghani et al, 2020). In rein-
forcement learning, agents learn behaviour by interacting with an environment
that provides rewards and punishments to guide them.

Kernel methods are an important class of techniques in both classical and
quantum machine learning. The Support Vector Machine (SVM) (Boser et al,
1996) is an important classical supervised kernel method, due to its theoretical
relations to other learning models (Jacot et al, 2018; Schuld, 2021) and results
regarding its generalisation ability (Vapnik, 1998; Vapnik and Chervonenkis,
2015). It is built around an optimization algorithm for finding an optimal
linear hyperplane that separates data points into two classes. The hyperplane is
selected to maximize the minimum margin of any point in the training dataset,
where the margin of a point is defined as the distance of the point from the
separating hyperplane. Larger margin sizes have been theoretically linked to
improved generalisation performance (Vapnik, 1998; Vapnik and Chervonenkis,
2015). Non-linear decision boundaries can be achieved by mapping non-linear
data to a higher dimensional feature space. The mapping function used is called
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a feature map, and the range of a feature map is called a feature space. By use
of a technique known as the “kernel trick”, the decision boundary optimization
problem can be reformulated in terms of a kernel function that computes the
similarity of a pair of data points in the feature space (Boser et al, 1996). This
obviates the need to explicitly compute feature map outputs for data points,
so long as the corresponding kernel function can be computed.

The feature map must be carefully selected for e↵ective separation of the
data. For any kernel function and labelled training set combination, a quan-
tity known as the kernel-target alignment of the kernel can be calculated. This
indicates the degree of agreement between the kernel function and a hypo-
thetical oracle kernel induced by the training labels that is well suited to the
training data (Cristianini et al, 2001). A high kernel-target alignment has been
shown in other works to correlate with improved classification performance
(Cristianini et al, 2001) and it has been proposed for use as a metric for select-
ing suitable kernels for a dataset in classification problems (Cristianini et al,
2001; Hubregtsen et al, 2022).

The QSVM algorithm enhances the SVM algorithm by implementing the
feature map function as a quantum circuit (see section 2.1.2). While quan-
tum feature map circuits are parameterized in the feature values of a single
data point, they can also contain additional trainable parameters which can be
optimized to improve the suitability of the kernel circuit for a specific dataset
(Hubregtsen et al, 2022). A quantum circuit containing trainable parameters is
called an ansatz. Prior work has used classical optimizers on trainable param-
eterized quantum kernels to maximize their kernel-target alignment, which
resulted in positive e↵ects on the classification accuracy of the resulting SVM
models (Hubregtsen et al, 2022).

Quantum feature map circuits of fixed structure that make use of train-
able parameter values are reported in Hubregtsen et al (2022) . The trainable
parameter values are optimized using Stochastic Gradient Ascent to maximize
the kernel-target alignment of the corresponding kernel functions. This was
performed to test whether kernel-target alignment optimization could improve
the performance of a fixed-structure quantum feature map on a given dataset.
Increased kernel-target alignment had previously been shown in Cristianini
et al (2001) to correlate with improved classification ability. The technique
described can be applied either to tailor an existing feature map to a dataset or
to fully generate a feature map for a dataset from a feature map ansatz that has
a predetermined circuit structure and parameter placement. The work made
use of both classical noise-free simulations of quantum computers and real
NISQ computers to run quantum circuits, reporting improvements in classifi-
cation accuracy after kernel-target alignment maximization (Hubregtsen et al,
2022).

A second model training metric applicable to quantum kernel classifiers
is a classifier’s root mean squared error (RMSE). This is often optimized to
train parameterized models for classification tasks. It can be better suited to
training than direct evaluation of accuracy since it accounts for the magnitudes
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of misclassification errors rather than simply the number of errors that occur.
Accuracy can be too insensitive to circuit parameter changes to show when a
circuit has slightly improved if a data set is not su�ciently large.

Another approach to optimizing the choice of kernel circuit for a dataset is
to optimize the selection of circuit gates used in the feature map in addition
to the values of trainable circuit parameters. This approach has been applied
to optimizing circuits applied to other problems (Ostaszewski et al, 2021).
Genetically inspired algorithms have also been applied to circuit structure
optimization since they are capable of combinatorial optimization (Lukac and
Perkowski, 2002; Bautu and Bautu, 2007; Rasconi and Oddi, 2019).

Altares-López et al (2021) detailed the implementation of a genetic algo-
rithm for automated feature map circuit design for use with QSVM classifiers
that both maximizes classification accuracy and minimizes circuit size. The
optimization was performed using a variation of genetic algorithm named
NSGA-II (Deb et al, 2002) which customizes the usual genetic selection and fit-
ness evaluation operations of the genetic algorithm (as outlined in section 2.3)
to evaluate multiple fitness functions and preferentially select non-dominated
solutions for crossover.

In a minimization problem with two fitness functions, a solution s with
fitness values (a, b) is considered non-dominated with respect to another set of
n solutions with fitness values {(fi, gi)|i 2 {1, 2, ..., n}} if and only if

8i 2 {1, 2, ..., n}, (fi < a) =) (gi > b)

, i.e. if and only if there are no solutions in the set with all fitness values
superior to the corresponding fitness values of s. NSGA-II also makes use of
elitism to guarantee the preservation of the solutions that best optimize at
least 1 of the individual fitness functions.

In order to apply a genetic algorithm to quantum feature map design,
the work also defined a binary string representation for encoding feature map
circuits. The encoding strategy can be found in Altares-López et al (2021) and
is summarised here.

Each circuit gate is encoded in a sequence of 5 bits, the first three of
which encode the type of gate applied and the last two of which encode a
proportionality parameter for use in the case that a parameterised rotation
gate was selected by the first three bits. The mapping of bits to gates and
proportionality parameters is shown in Table 1.

Hyperparameters M and N which designate the maximum number of
qubits and maximum number of gate layers respectively must be chosen before
applying the genetic algorithm and are fixed for the duration of the genetic
optimization. A single solution is represented as a bit string of length 5MN ,
which holds the concatenation of the encodings of the individual gates in the
feature map.

The gates in the encoding are applied successively with the target qubit
and feature value to potentially encode being selected in a round-robin fashion.
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Bits Gate
000 H
001 CNOT
010 I
011 Rx
100 Rz
101 I
110 I
111 Ry

Bits Parameter
00 ⇡
01 ⇡/2
10 ⇡/4
11 ⇡/8

Table 1: Mapping used on each consecutive 5-bit sequence of bits encoding
a feature map gate to determine the gate type and a proportionality parame-
ter value used in the case of parameterised gates. The available gates for the
encoding to select from are Hadamard (H), CNOT, identity (I), and parame-
terised rotations around the X, Y, and Z axis of the Bloch sphere which are
used to encode data point feature values into the circuit. We define the Rx(✓)
gate as

cos(✓/2)I� isin(✓/2)X,

the Ry(✓) gate as
cos(✓/2)I� isin(✓/2)Y,

and the Rz(✓) gate as
cos(✓/2)I� isin(✓/2)Z.

If a parameterised rotation gate Ra around axis a is selected, the parameter
selected by the last two of the five gate bits will be used to selected a propor-
tionality parameter p . When the gate Ra is applied to encode a feature value
xi, the gate applied will be Ra(pxi). In the case of a CNOT gate being selected
and this gate being applied to qubit i, qubit i will be used as the control qubit
and qubit (i+ 1) mod M will be used as the target qubit.

Stated explicitly, for each consecutive group of 5 gate bits, the ith gate descrip-
tion will be applied to qubit i mod M and will encode feature i mod N if
it performs a parameterised rotation. This encoding strategy was selected for
simplicity, although other strategies could also feasibly be attempted.

Two fitness functions were optimized in the work: accuracy on a test set
was maximized and a weighted size metric was simultaneously minimized. The
unweighted size metric SM was calculated in terms of the number of qubits M ,
the number of single qubit gates Nlocal, and the number of entangling gates
NCNOT, by the expression

SM =
Nlocal + 2NCNOT

M
.

The weighted size metric WS supplied to the genetic algorithm was given by
the expression

WS = SM+ SM · accuracy2.
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The work was able to demonstrate the e↵ectiveness of using NSGA-II
with the devised feature map binary string encoding strategy, accuracy maxi-
mization, and weighted size minimization to automatically produce quantum
feature map circuits for QSVM classification using only a dataset and a few
hyperparameters as input. The generated circuits were also experimentally
shown to generalise to unseen data. In addition to using few qubits and quan-
tum gates, the circuits produced by the approach were observed to make little
to no use of entanglement, meaning they could be e�ciently simulated classi-
cally and the approach could constitute a quantum-inspired classical machine
learning algorithm.

Some attempts have been made to enhance the genetic optimization and
compare the approach to others. The work done in Chen and Chern (2022)
is based on the algorithm put forward in Altares-López et al (2021). They
used a modified encoding scheme which encoded the proportionality parameter
values using three bits instead of only two, doubling the number of encod-
able parameter values. A restricted choice of parameter values was one of the
potential limitations of the algorithm designed in Altares-López et al (2021).
The algorithm was also further modified to optimize gate cost and classifica-
tion accuracy in a single objective expression, using a single objective genetic
algorithm instead of a multi-objective genetic algorithm such as NSGA-II.
Notably, this introduced a new hyperparameter used to weight the focus of
the optimization between circuit size and accuracy, which is not done with
NSGA-II.

The feature map generated by the genetic algorithm was compared with
two other choices of ansatz: a hardware e�cient ansatz proposed in Kandala
et al (2017), and a unitary decomposition ansatz proposed in Shende et al
(2006). Each ansatz was trained with COBYLA (Powell, 1994), directly eval-
uating classification accuracy as a cost function. It was found that the feature
map circuits generated by the genetic algorithm variation used in the work
performed similarly to the hardware e�cient ansatz, depending on the circuit
depth hyperparameter selected when generating the hardware e�cient ansatz.
However, both were beaten by the unitary decomposition ansatz in accuracy,
which achieved the highest accuracy at the cost of having a large, fixed size.

Our work investigates kernel-target alignment as a metric for automat-
ing quantum feature map design for the Quantum-Enhanced Support Vector
Machine (QSVM) algorithm (Schuld and Killoran, 2019; Rebentrost et al,
2013). Our work has two goals: investigate the suitability of using alternative
cost functions to accuracy in the genetic optimization process described in
Altares-López et al (2021) and secondly, investigate whether the problem of
limited circuit parameter choices in the genetic algorithm can be addressed by
a hybrid process of genetic and circuit parameter training.

We address the first goal by evaluating two alternative cost functions to
the accuracy metric in Altares-López et al (2021) : firstly, kernel-target align-
ment for the genetic optimization step and secondly, a heuristic estimation
of the kernel-target alignment performing a fraction of the kernel evaluations.



58 Hybrid Genetic Optimisation for Quantum Feature Map Design

For the second goal, a hybrid method involving further optimising the final
choice of trainable circuit parameter values after the genetic algorithm termi-
nates for each of the above approaches is evaluated. This final optimization
uses COBYLA (Powell, 1994) to maximize either kernel-target alignment or
RMSE. The new approaches are compared to the original across several binary
classification problems of varying di�culties. We show that even though the
kernel-target alignment metric is less computationally expensive to compute
in terms of quantum kernel evaluations and avoids the training of an SVM
classifier, the performance of the constructed classifiers is comparable to the
original approach and often achieves a better margin distribution on training
data. It has been demonstrated Theoretically that increased margin sizes indi-
cates better generalisation ability (Vapnik, 1998; Vapnik and Chervonenkis,
2015). The kernel-target alignment approximation heuristic is shown to per-
form marginally worse than exact kernel-target alignment optimization but
at a fraction of the computational cost. The hybrid approaches are shown to
improve margin sizes over the original. The original approach is also shown
to sometimes overfit to the test data used to evaluate its accuracy metric,
particularly on di�cult problems.

In the following section, we give a more detailed explanation of the back-
ground topics involved in understanding this work and related works, and
explain our experimental setup. This is followed by a section covering our
findings and interpretations. In the final section we give an overview of the
contributions made and suggest ideas for further research.

2 Methods

2.1 Binary classifiers using quantum kernels

2.1.1 Support Vector Machine (SVM)

The SVM algorithm is a classical supervised machine learning algorithm for
binary classification problems that works by finding an optimal separating
hyperplane between two classes of data points. The SVM algorithm is appli-
cable when the data points can be represented by real-valued feature vectors.
For simplifying definitions, the class labels are usually replaced with positive
and negative one.

The margin of a single data point is defined as the distance from the data
point to the SVM’s chosen hyperplane. The margin of an SVM classifier refers
to the minimum of the margins of the data points. The data points with
minimum margin are known as the support vectors. The hyperplane chosen
by the SVM is optimal in the respect that it maximises the minimum of the
margins of the training set data points by solving a quadratic programming
optimization problem.

The SVM algorithm is also capable of classifying datasets with classes that
are not linearly separable. This can be achieved by first mapping the data
points to a higher dimensional space in such a way that they become linearly
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Points not separable by a
line in 2D space

Points now separable by
a plane in 3D space

Feature map
function φ

Fig. 1: An example illustrating how a feature map function could be used to
make non-linearly separable points linearly separable in a higher dimensional
space. In this case, the feature map could be implemented as a function that
adds a third dimension to the points with decreasing value as distance from
the central region of the points increases.

separable in the higher dimensional space (see Figure 1 for an illustration). A
function used to perform this mapping is called a feature map and the range
of the function is called the feature space. The choice of feature map must be
suited to the dataset in order to classify it well, since it determines whether
the data will become linearly separable after transformation.

A feature map �(x) that maps a point into feature space has a correspond-
ing kernel function

(xi, xj) = h�(xi),�(xj)i
which computes the inner product of a pair of data points in the feature
space. The margin optimization problem can be equivalently reformulated as
a dual problem in terms of the kernel function (Boser et al, 1996), which can
sometimes avoid the explicit computation of the feature map. This advantage
is often referred to as the “kernel trick”. Seeing that in many cases where
a feature map can not be e�ciently computed but the corresponding kernel
function can be, the dual formulation of the problem increases the number of
potential feature maps that can be applied to a dataset.

In the dual form of the SVM, the classifier output for a given class is deter-
mined using a coe�cient sequence ↵ = {↵1,↵2, ...,↵n} and o↵set sequence
b = {b1, b2, ..., bn} chosen by the SVM algorithm during the hyperplane opti-
mization. The decision function df outputs an indication of the distance of its
input point from the hyperplane after mapping into feature space. It is defined
in terms of the kernel function , the training samples {x1, x2, ..., xn}, the ↵
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coe�cients, and the b o↵sets as follows

df(x) =
nX

i=1

(↵i(x, xi) + bi).

The sign of df(x) is used to determine the predicted class of the argument
point x:

Class(x) = sign(df(x)).

2.1.2 Quantum-enhanced Support Vector Machine

The Quantum-enhanced Support Vector Machine (QSVM) algorithm extends
the SVM algorithm by performing the kernel computation on a quantum com-
puter (Schuld and Killoran, 2019; Rebentrost et al, 2013). A quantum circuit
parameterised in the values of a single data point is used as a feature map
to map the data points to a high dimensional quantum state in a quantum
Hilbert space.

For a quantum feature map encoding data points into q qubits, the dimen-
sionality of the feature Hilbert space is 2q. Although a quantum computer
can e�ciently compute the quantum state feature space representation of data
point, in general the quantum state cannot be e�ciently represented classically
due to the exponentially increasing dimensionality of the feature space. To
work around this classical limitation, the kernel function is computed directly
on the quantum computer and the kernel-based formulation of the SVM is
used. The kernel computation for a pair of data points can be e�ciently per-
formed by measuring the overlap of their corresponding states in the quantum
feature space.

To train a QSVM model, the Gram matrix Kn⇥n of the training points
must be computed. For n training points {x1, x2, ..., xn} and a quantum
kernel function , the Gram matrix is defined by Kij = (xi, xj) where
i, j 2 {1, 2, ..., n}. In the case of a noise free quantum computer or simula-
tor being used to execute , the symmetric property (xi, xj) = (xj , xi) and
the property that (xi, xi) = 1 can be used to reduce the number of required
evaluations.

Assuming the stated properties, the n main diagonal entries of K (K11,
K22, ..., Knn) do not require kernel evaluations, since Kii = (xi, xi) = 1. For
the remaining n

2 � n entries Kij which are not on the main diagonal, there is
a symmetric entry Kji with the same value, since

Kij = (xi, xj) = (xj , xi) = Kji

. This means that only half of the entries need to be explicitly computed by
kernel evaluations. In e↵ect, only n2�n

2
kernel evaluations must be performed to

construct K. In the case of a NISQ computer, this technique could potentially
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be applied if measures were taken to mitigate noise and correct the kernel
matrix such as in Hubregtsen et al (2022).

Since the only di↵erence between the SVM and QSVM algorithms is how
the kernel computation is performed, the potential advantage of the QSVM
algorithm lies in enabling the computation of kernel functions that are hard
to estimate classically (Liu et al, 2021). While examples of such kernels have
been discovered (Liu et al, 2021) for artificial datasets, it is an open question
how best to design quantum feature maps to achieve a useful kernel with a
quantum speed advantage.

2.2 Kernel quality metrics

2.2.1 Kernel-target alignment

Kernel-target alignment is a heuristic for kernel quality that measures the
degree of similarity between two kernels, or the degree of agreement between
a kernel and a dataset (Cristianini et al, 2001). It is calculated using a matrix
inner product between the Gram matrix constructed from the training samples
and an oracle matrix constructed from the training labels, where the oracle
matrix acts as a stand-in for the Gram matrix of a hypothetical kernel which
is very well-suited to the data.

For a set of training points {x1, x2, ..., xn} with corresponding labels {y1, y2,
..., yn} with 8i, yi 2 {�1, 1}, a kernel function (xi, xj), and with the Frobenius
inner product for matrices defined as

hA,BiF =
X

i,j

AijBij ,

the kernel-target alignment can be computed as follows (Cristianini et al, 2001)

1. Compute the Gram matrix Kn⇥n using the kernel function and training
points by the rule

Kij = (xi, xj).

2. Compute the oracle matrix On⇥n using the training labels by the rule

Oij = yiyj .

3. Compute the kernel-target alignment KTA using the Frobenius inner
product as

KTA =
hK,OiFp

hK,KiF hO,OiF
.

A high kernel-target alignment has been shown in other works to correlate
with improved classification performance (Cristianini et al, 2001) and it has
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been proposed for use as a metric for selecting applicable kernels for a dataset
in classification problems (Cristianini et al, 2001; Hubregtsen et al, 2022).

2.2.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) is a common metric for measuring the error
of a model. It is calculated as the square root of the mean of the squared errors
of a classifier’s predictions on each training set data point. In this work, the
RMSE of a classifier is calculated using the errors of the decision function on
training data with an adjustment to the error calculation. The adjustment is
to account for there not being a definitively correct output of the SVM decision
function for a given sample and label pair. The error is measured relative to a
positive target decision function output m, which we set to one in this work.

We calculate the error for a decision function output a and training label
b using the following rule:

error(a, b) =

8
><

>:

(m� a) if b = 1 and a < m

(a�m) if b = �1 and a > �m

0 otherwise

This choice of error function means that only points not classified to the desired
degree of confidence m contribute to the error calculation, and the errors of
the considered points increase with distance from the target output.

For a set of training points {x1, x2, ..., xn} with corresponding labels {y1, y2,
..., yn} with 8i, yi 2 {�1, 1}, the RMSE is calculated in terms of this adjusted
error function and the decision function df by the following rule

RMSE =

rPn
i=1

error(df(xi), yi)2

n

2.3 Overview of genetic algorithms

Genetic algorithms are flexible metaheuristic algorithms inspired by the real-
world evolutionary principles of natural selection, genetic inheritance, and
random mutation. They are a popular choice of algorithm for optimizing com-
plex objective functions in cases where algorithms known to produce a global
optimum are unknown or infeasible.

Implementing a genetic algorithm first requires designing a solution rep-
resentation on which genetic operations can be performed. The solution
representation often (but not always) takes the form of a binary string, which
is mapped by a problem-specific decoding function to a usable solution. A
genetic algorithm manages a set of these solution representations, which is
called a population. The initial population can be a set of randomly generated
solutions or chosen according to a problem-specific heuristic.

The optimization process is iterative and typically repeats until a suitable
solution is found, a desired number of iterations has passed, or the rate of
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improvement of the solutions becomes low. Each iteration, genetically inspired
operations are applied to the population to create a new replacement popu-
lation. The population creation process involves fitness evaluation, selection,
crossover, and mutation operations.

Fitness evaluation is performed by decoding a solution representation into a
solution, then evaluating a numeric score of its suitability for the problem. This
is performed for the entire population, after which point a selection operation
is applied to select some solutions for crossover and mutation. It is important
that better solutions are more likely to be selected for crossover, since this is
the main mechanism driving improvement between generations. The solutions
selected for crossover are referred to as “parents”.

The crossover operation is performed between two parent solutions to
produce one or more new solutions, called child solutions. This is usually
performed by taking a simple combination of the solution representations of
the parents. In the case of a binary string solution representation, a simple
crossover can be performed by combining two non-overlapping subsequences of
the parents, taking a random number of bits from the first and the remainder
from the corresponding positions in the second. A mutation operation can be
applied to a child solution by randomly editing its representation by a small
amount. This simulates the random mutation which occurs in real life and
a↵ects the diversity of available genetic material in the population.

A strategy often employed when determining which individuals will make
up the next generation is to preserve the best performing of the solutions
among the current generation and the newly created children. This is known
as elitism and ensures that solutions can survive through multiple generations
and potentially indefinitely, so long as they continue to outperform newer
ones. This helps prevent regression of the achieved fitness due to chance as
generations pass.

The general idea for a genetic algorithm is flexible enough that many vari-
ations and extensions of the discussed components have also been studied
(Chahar et al, 2021).

2.4 Experiments

The algorithm for automated feature map design described in Altares-López
et al (2021) was reimplemented using the Julia programming language (Bezan-
son et al, 2017), the Yao quantum simulator framework (Luo et al, 2020), and
the pymoo (Blank and Deb, 2020) implementation of NSGA-II. All exper-
iments were run with the maximum qubit count and feature map depth
hyperparameters set to 6. The genetic algorithm population size was set to
100, with 15 new individuals being produced every generation. 30% of the new
individuals were produced by crossover; the rest were chosen randomly from
the parents. In each generation, 70% of the population underwent mutation.
When mutation occured, 20% of the bits in the mutated solution were flipped.
All experiments were run using a noise free quantum simulator provided by
Yao.
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Dataset Class -1 Class 1
Features
(PCA)

Train Test Validation

Moons Top left Bottom right 2 (N/A) 210 90 500
Cancer Benign Malignant 30 (10) 210 90 124
Iris Versicolor Virginica 4 (N/A) 42 18 40

Digits Eight Nine 64 (10) 140 60 148
Circles Outer Inner 2 (N/A) 210 90 500
Random Red Blue 2 (N/A) 210 90 N/A
Voice Acceptable Unacceptable 309 (10) 28 12 44
SUSY Background Signal 18 (10) 210 90 500

SUSY reduced Background Signal 8 (N/A) 210 90 500

Table 2: Table showing the characteristics of the datasets and sample splits
used. Not all points in the base datasets were used to ensure the sample split
remained balanced in each of the sample sets. Other considerations in deter-
mining the data splits were experiment runtime while maintaining a su�ciently
large ratio of test points to train points and a su�ciently large number of val-
idation points. All datasets with more than 10 feature values were reduced to
10 features using Principle Component Analysis (PCA). The moons, circles,
and random datasets are artificial, with the moons and circles datasets being
generated with Scikit-learn (Pedregosa et al, 2011). The rest of the datasets
are sourced from the UCI Machine Learning Repository (Dua and Gra↵, 2017)
either directly or indirectly through Scikit-learn (Pedregosa et al, 2011).

Three configurations of the original algorithm were run on nine di↵erent
datasets of varying di�culty (see Table 2) to compare their e↵ectiveness. The
first configuration maximized accuracy on a test set and minimized weighted
size, as in the original work (Altares-López et al, 2021). The second configura-
tion maximized kernel-target alignment on the training data, ignoring the test
data, and minimized the unweighted size metric also defined in Altares-López
et al (2021). The third configuration maximized an approximation of kernel-
target alignment on the training data, and minimized the same unweighted
size metric.

Before performing the genetic optimization the datasets are split into three
disjoint subsets, namely training data, testing data, and validation data. The
training data is used to evaluate kernel-target alignment and its approxima-
tion, as well as train the QSVM model for a given feature map circuit. The
testing data is only used to evaluate the accuracy metric in the first approach.
The validation data is used to determine the generalisation ability of the gen-
erated models, and must be separate from the testing data since the first
approach can indirectly access the testing data through the accuracy metric
and potentially overfit to it.

In order to calculate the kernel-target alignment approximation for n train-
ing points, the n points are divided into a disjoint complementary subsets
of size roughly n/a. The number of subsets a can be adjusted based on the
number of training points to balance speed and precision. The kernel target
alignment is calculated on each of the subsets in turn, then averaged.
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Assuming the properties of the kernel function are not used to accelerate
the Gram matrix computation, n2 kernel evaluations are required to compute
the exact kernel-target alignment, and only

a(n/a)2 = (n2)/a

evaluations are required to compute the approximation, giving a factor a

speedup. If the kernel properties are used, then

(n2 � n)/2 = n
2
/2� n/2

kernel evaluations are required to compute the exact kernel-target alignment.
Therefore, the number of kernel evaluations required when evaluating the
kernel-target alignment approximation can be derived as

a(
(na )

2 � n
a

2
) =

n
2

2a
� n

2
,

meaning the factor speedup by evaluating the approximation is larger than a,
but should approach a as n increases. In this work, we use a value of a = 5 in
all experiments involving the kernel-target alignment approximation.

After the genetic optimization in each configuration completes, we attempt
further improvement by further optimizing just the proportionality parameters
encoded in the last two bits of the gate representation using an implementa-
tion of COBYLA (Powell, 1994) provided by the NLopt optimization library
(Johnson, 2011). This allows the parameter values to not be restricted to one
of only four possibilities. This optimization aims to either minimize RMSE or
maximize kernel-target alignment using the training set to evaluate the met-
rics. The COBYLA optimizer is allowed one hundred evaluations of the cost
function to perform the optimization. A flow diagram outlining the algorithmic
process can be seen in Figure 2.

The COBYLA cost functions for RMSE and kernel-target alignment both
require computing a Gram matrix each evaluation, meaning the number of

kernel evaluations performed is 100(n2�n)
2

. This can be contrasted with the
genetic optimization of accuracy or kernel-target alignment, where at least as
many kernel evaluations are performed to evaluate the fitness of just the first
generation of 100 solutions in the genetic algorithm. In the subsequent 1199
generations 15 ⇥ 1199 = 17985 more Gram matrix evaluations are performed
for a total of 18085, meaning the final parameter training for the entire output
population requires roughly 55% percent of the number of kernel evaluations
performed in the genetic optimization in the cases of genetically optimizing
accuracy or the exact kernel-target alignment.

We name the three base approaches 1, 2, and 3, respectively. Each approach
has two additional sub-approaches defined for further training of RMSE or
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NSGA-II operations

Randomly generate
initial population of

solutions

Evaluate size metric (unweighted
or weighted) and chosen genetic
training metric (accuracy, kernel-
target alignment, or kernel-target

alignment approximation) for each
new solution in the population

Produce new solutions using
crossover and mutation

operators

Select parent solutions
using non-domination and
crowding distance metrics

Yes

No

No

Train parameters of final
population with COBYLA to
optimize parameter training

metric (RMSE or kernel-
target alignment)

Final solutions
ready

Reached genetic
algorithm termination

point?

Yes
Performing hybrid

variational parameter
training?

Fig. 2: A flow diagram outlining the algorithm followed to genetically train
quantum feature map circuits. The diagram also shows how a hybrid method
involving circuit parameter training can be performed after genetic optimiza-
tion.

kernel-target alignment, for a total of nine approaches. The RMSE and kernel-
target alignment variations are named with a .1 and .2 su�x respectively.
We graph the classification accuracies, average margins, ROC curves, feature
map circuits, and confusion matrices of the best models produced by each
approach, where the best model of a population is taken to be the one achieving
the highest validation set accuracy. For two dimensional datasets, decision
boundaries are also graphed.

The code implementing the experiments and result graphing can be found
on GitHub (Pellow-Jarman, 2022).
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3 Results

As in the original work by Altares-López et al (2021), the feature map circuits
produced by each of the approaches tend to make little to no use of entangling
gates (see Figure 3). However, the circuits produced by optimizing the kernel-
target alignment based metrics tend to produce significantly larger circuits
overall (see Figure 3). This could be explained by the fact that the weighted
size metric in the genetic optimization was replaced with an unweighted size
metric in those approaches due to the weighted size metric depending on the
test set accuracy, which was not evaluated. The optimization of the circuit
size did not converge in the allocated 1200 generations in approaches 2 and
3, which can be inferred from the presence of redundant gates. This could
possibly be addressed by allowing more generations to pass or using a size
metric weighted in kernel-target alignment instead of accuracy, similarly to the
original approach. Another possible explanation for the larger circuit size is
that a circuit achieving perfect accuracy may still be able to improve its kernel-
target alignment; in the accuracy maximization case, the genetic algorithm is
able to shift focus to minimizing circuit size after achieving 100% accuracy, but
the same cannot be done as easily when maximizing kernel-target alignment
since its limiting value of one is more di�cult to achieve. Additionally, the
high mutation rate of 70% could be reduced to attempt to reach convergence
in the allocated 1200 generations.

Our experiments show that substituting kernel-target alignment or approx-
imated kernel-target alignment for accuracy in the genetic optimization process
produces feature map circuits with accuracy comparable to the original
approach across all datasets (see Figures 4 and 6 for example). Further opti-
mizing the final population’s trainable parameters using COBYLA was often
able to improve the average margin sizes of the classifiers (see Figure 5) on
training data and sometimes able to improve validation set classification accu-
racy (see Figures 4 and 9), showing that a hybrid approach performing further
optimization of the final populations parameter values is worth attempting
despite the computational cost if improving accuracy is important. Training
the parameters of a single solution for 100 cost evaluations requires only half
a percent of the kernel evaluations as the genetic optimization process, so a
smaller subset of the final solutions could be trained at a much lower cost.
Additionally, the untrained parameters encoded in the solution binary strings
are not lost if further training is performed and can still be used if they happen
to perform better than the trained ones.

The results demonstrate that on di�cult datasets such as the SUSY, SUSY
reduced features, Voice, and Random datasets, the original approach’s models
can overfit to the testing data used to evaluate the accuracy metric (see Figure
7). This is likely due to the fact that test set accuracy is directly optimized
in the genetic algorithm without regard to training set accuracy. Since the
kernel-target alignment approaches make use of only the training data during
the genetic optimization they do not su↵er from the same drawback, although
they do not show improvement on validation data for the di�cult problems.
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|0i Ry(3.1416 ⇤ x0)

|0i Ry(3.1416 ⇤ x0)

|0i Rx(1.5708 ⇤ x1)

|0i Rz(3.1416 ⇤ x0)

(a) Approach 1 - Accuracy, Weighted size

|0i Rz(0.3927 ⇤ x0)

|0i Rz(1.5708 ⇤ x1)

|0i Ry(0.3927 ⇤ x0) H

|0i H H H Rx(3.1416 ⇤ x1)

|0i Ry(3.1416 ⇤ x0) Ry(1.5708 ⇤ x0) Rz(3.1416 ⇤ x0) Rz(3.1416 ⇤ x0)

|0i Rz(0.7854 ⇤ x1) Ry(0.3927 ⇤ x1) Ry(1.5708 ⇤ x1)

(b) Approach 2 - Kernel-target alignment, Unweighted size

|0i Ry(3.1416 ⇤ x0) Ry(3.1416 ⇤ x0) Ry(0.7854 ⇤ x0) Rz(1.5708 ⇤ x0) Rz(3.1416 ⇤ x0)

|0i Rz(3.1416 ⇤ x1) H Rx(1.5708 ⇤ x1)

|0i Ry(0.7854 ⇤ x0) Ry(1.5708 ⇤ x0)

|0i H Rz(0.7854 ⇤ x1) Rx(0.7854 ⇤ x1) Ry(0.7854 ⇤ x1)

|0i Rz(1.5708 ⇤ x0) Rx(1.5708 ⇤ x0)

|0i H

(c) Approach 3 - Kernel-target alignment approximation, Unweighted size

Fig. 3: The circuits with highest validation set accuracy produced by the
three base genetic approaches when creating quantum feature maps for the
Moons dataset. (a) shows the best produced circuit when training to maxi-
mize accuracy and minimize weighted size as in the original work, (b) shows
the best circuit when training to maximize the exact kernel-target alignment
and minimize unweighted size, and (c) shows the best circuit when training
to maximize the approximation of the kernel-target alignment and minimize
unweighted size. Circuits (b) and (c) are significantly larger. Unused gate lay-
ers and qubits are omitted from the diagrams.
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Fig. 4: A graph showing the classification accuracies of the best models pro-
duced by various approaches of quantum feature map design on the Moons
dataset, compared with a classical RBF kernel for reference. All approaches
can be seen to achieve comparable accuracy across the di↵erent subsets.

Fig. 5: A graph showing the mean margin of the Moons training set points for
the best classifiers produced by each approach, with errors bars showing stan-
dard deviation. Circuit parameter training and genetic training of kernel-target
alignment are both shown to increase the mean margin size. The approach
numbering corresponds to the numbering used in Figure 4.

.
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Fig. 6: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Moons dataset. All
of the produced models are shown to perform similarly on the dataset.

Fig. 7: A graph showing the classification accuracies of the best models pro-
duced by various approaches of quantum feature map design on the Voice
dataset, compared with a classical RBF kernel for reference. Genetic accuracy
maximization is shown to overfit to the testing data used to evaluate the accu-
racy metric, justifying the necessity of a separate validation set.
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Fig. 8: A graph showing the mean margin of the Random training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation. The approach numbering corresponds to that in Figure 4.

This problem could possibly be avoided by shu✏ing the training and testing
data each generation, although this would make the accuracy metric depend on
the generation at which the accuracy was evaluated and could prevent caching
of solution fitnesses in the genetic algorithm. A second possible solution is to
average the accuracy over subsets of the data. Given a dataset of n points,
this can be performed while requiring at most n2�n

2
kernel evaluations in the

worst case, since the Gram matrix for the entire dataset can be computed once
and used as a cache to look up the kernel output for any pair of points when
creating models with arbitrary choices of training and testing subsets.

The margins of classifiers trained with the second and third approach
tended to be larger than those trained with the first (see Figures 5 and 8, as
well as Table 3). This could be due to the fact that the kernel-target align-
ment metric and its approximation are evaluated on the training subset as
opposed to accuracy which is evaluated on the testing subset, leading to the for-
mer two approaches having higher confidence on the training subset. In either
case, increased margin size is an indicator of improved generalisation ability
according to theoretical works (Vapnik, 1998; Vapnik and Chervonenkis, 2015)
showing that margin size bounds VC dimension, and VC dimension bounds
expected generalisation error. Further parameter training on the final gener-
ation also tended to show some improvements in margin sizes, even on easier
datasets such as the Moons and Circles datasets where there was not much
e↵ect on overall classification accuracy. This improvement in margin can be
seen visually in the decision boundary graphs of the classifiers (see Figure 9).
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Fig. 9: Decision boundaries of the best classifiers for approaches 2 and 2.1
on the Moons validation data. Further parameter training on training data
to minimize RMSE after genetically designing the feature maps to maximize
kernel-target alignment is shown to improve classification ability on validation
data.

Approach Average margin Absolute Change Percentage Change
1-Accuracy (Original work) 0.838 N/A N/A
Accuracy, RMSE training 0.993 +0.154 +18.42%
Accuracy, KTA training 0.971 +0.133 +15.87%

2-Alignment 1.043 +0.205 +24.46%
Alignment, RMSE training 1.016 -0.028 -2.66%
Alignment, KTA training 1.090 +0.047 +4.49%

3-Approximation 1.065 0.226 +26.99%
Approximation, RMSE training 1.145 +0.080 +7.54%
Approximation, KTA training 1.124 +0.059 +5.59%

Table 3: Table showing the average margin size of the best classifier produced
by each approach, averaged across the nine datasets with equal weighting given
to each dataset. For this purpose, the best classifier is defined as the classi-
fier achieving the highest validation set accuracy for the target dataset. The
improvement columns for the base approaches (2 and 3) show how genetic
optimization of kernel-target alignment and its approximation improve on the
margins achieved in the original work. For the hybrid approaches (with addi-
tional RMSE and KTA parameter training), the columns show change relative
to the base approaches.

4 Conclusion

In this paper, we compared our implementation of the approach defined in
Altares-López et al (2021) with adjustments to the genetic algorithm cost
functions. These adjustments were aimed at investigating the suitability of
kernel-target alignment as an alternative metric to test set accuracy and at
reducing the number of kernel evaluations required by the approach. The new
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approaches were shown to still be e↵ective at designing accurate classifiers with
fewer kernel evaluations, although at the cost of increased circuit size. They
were also shown to often produce classifiers with better margins on training
data. We also put forward a hybrid approach extending the original work by
applying COBYLA (Powell, 1994) to further optimize the trainable parame-
ters of the produced quantum feature map circuits after the termination of
the genetic algorithm to attempt further improvement, at a lower additional
computational cost than the genetic algorithm’s base cost. This parameter
training was also shown to be capable of improving margin sizes and sometimes
accuracy without increasing the circuit gate cost.

There is still more work to be done in accelerating the genetic algorithm
while keeping gate costs low. A potential avenue to achieving this goal is the use
of a multi-phase genetic algorithm in which the cost function is initially easy
to evaluate but increases in precision after a set number of generations passes.
For example, the a parameter of the kernel-target alignment approximation
could be made to decrease as generations pass for the approximation to become
more accurate at the cost of more kernel evaluations, or the cost function could
be switched from kernel-target alignment to classification accuracy to reduce
gate cost once a predetermined kernel-target alignment has been achieved.

The original approach could also further be extended to have the gate
encoding for parameterised gates select a classical data encoding function such
as those used in Suzuki et al (2020) to introduce classical nonlinearity to
the encoding, potentially allowing for even lower gate cost or higher accuracy
circuits to be produced.
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A Appendix

For Figures 10 - 18, we show the accuracy of the best produced kernels on each
dataset, with the classical RBF kernel also shown for comparison. These figures
show that the newly proposed approaches achieve comparable classification
accuracy to the original approach, despite not directly evaluating classifica-
tion accuracy during training. The graphs for the di�cult problems (Random,
Voice, SUSY, SUSY reduced features) show that the original approach has a
tendency to overfit to the testing data used to evaluate the accuracy metric,
and that a separate validation set must be reserved to estimate the generalisa-
tion of its models. The approaches based on maximizing the approximation of
kernel-target alignment are also seen to overfit to training data in these cases
more than the other approaches do.

Figures 19 - 27 show the margins of the same best produced kernels on the
training data from each dataset. The approaches based on maximizing kernel-
target alignment and its approximation tend to have larger average margin
sizes, and final parameter training for RMSE and kernel-target alignment also
tends to increase the margin sizes. The exception to the trend was the Iris
dataset, which was also the second smallest dataset with only 42 training set
points.

Figures 28 - 36 show the ROC curves of the best produced models for each
dataset. Across the datasets, the curves are mostly similar when comparing
approaches.

Figures 37 - 39 show the decision boundaries resulting from the best fea-
ture map produced by each approach, for the datasets with two dimensional
feature vectors. These can be inspected to see the improvements made by
parameter training as well as the complexity of the decision rules produced by
each approach.
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Fig. 10: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Moons
dataset, compared with a classical RBF kernel for reference.

Fig. 11: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Cancer
dataset, compared with a classical RBF kernel for reference.
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Fig. 12: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Iris
dataset, compared with a classical RBF kernel for reference.

Fig. 13: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Digits
dataset, compared with a classical RBF kernel for reference.
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Fig. 14: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Circles
dataset, compared with a classical RBF kernel for reference.

Fig. 15: A graph showing the classification accuracies of the best models pro-
duced by various approaches of quantum feature map design on the Random
dataset, compared with a classical RBF kernel for reference. In the case of this
dataset, the validation set is the union of the training and testing points. This
gives an idea of the extent to which the approach was able to memorize all the
points.
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Fig. 16: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the Voice
dataset, compared with a classical RBF kernel for reference.

Fig. 17: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the SUSY
dataset, compared with a classical RBF kernel for reference.
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Fig. 18: A graph showing the classification accuracies of the best models
produced by various approaches of quantum feature map design on the SUSY
reduced features dataset, compared with a classical RBF kernel for reference.

Fig. 19: A graph showing the mean margin of the Moons training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.
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Fig. 20: A graph showing the mean margin of the Cancer training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.

Fig. 21: A graph showing the mean margin of the Iris training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.
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Fig. 22: A graph showing the mean margin of the Digits training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.

Fig. 23: A graph showing the mean margin of the Circles training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.
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Fig. 24: A graph showing the mean margin of the Random training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.

Fig. 25: A graph showing the mean margin of the Voice training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.
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Fig. 26: A graph showing the mean margin of the SUSY training set points
for the best classifiers produced by each approach, with errors bars showing
standard deviation.

Fig. 27: A graph showing the mean margin of the SUSY reduced features
training set points for the best classifiers produced by each approach, with
errors bars showing standard deviation.
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Fig. 28: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Moons dataset.

Fig. 29: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Cancer dataset.
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Fig. 30: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Iris dataset.

Fig. 31: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Digits dataset.
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Fig. 32: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Circles dataset.

Fig. 33: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Random dataset.
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Fig. 34: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the Voice dataset.

Fig. 35: A graph showing the ROC curves of the best models produced by
various approaches of quantum feature map design on the SUSY dataset.
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Fig. 36: A graph showing the ROC curves of the best models produced by var-
ious approaches of quantum feature map design on the SUSY reduced features
dataset.



92 Hybrid Genetic Optimisation for Quantum Feature Map Design

Fig. 37: Decision boundaries for each approach on the Moons validation data.
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Fig. 38: Decision boundaries for each approach on the Circles validation data.
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Fig. 39: Decision boundaries for each approach on the Random validation
data. In the case of the Random dataset, the validation data does not consist
of unseen randomly generated points as would be the case in other datasets.
Under the assumption that the models cannot generalise to new pseudorandom
data, the validation dataset instead shows the concatenation of the training
and testing points to give an idea of the di↵erent approaches’ capacity for
memorizing a random assignment of labels to random points.



Chapter 3

Conclusion

3.1 Summary of the Work and Key Findings

In this thesis, we set out to investigate and improve algorithms for the automated

design of quantum feature map circuits for use with the QSVM algorithm, attempting

to find ways to make them faster and produce better performing circuits.

Chapter 1 provided the context and background to the work. It began with an

introduction to the subject of quantum computing. This introduction covered the

fundamental principles of quantum computing, including quantum information, op-

erating on quantum states, quantum circuit diagrams as a language for quantum

algorithms, a walk-through of a real quantum algorithm that demonstrates a prov-

able advantage over any classical method, and the challenges of running quantum

algorithms on current quantum hardware.

The introduction also reviewed material relevant to machine learning and included

discussions on classification tasks, the importance of generalization, the classical Sup-

port Vector Machine (SVM) algorithm and the significance of margins. The central

concepts of this work relate to the field of quantum machine learning. We gave

an overview of relevant techniques used in this work that included: the quantum

extension of the SVM algorithm, the Quantum-enhanced Support Vector Machine

(QSVM), the optimization of Parameterized Quantum Circuits (PQCs) to improve

their suitability for a given task, and noted the similarity of this process to classical
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neural network training. The background concluded with a discussion on the use of

genetic algorithms for solving combinatorial optimization problems.

This was followed with accounts of the major prior works this thesis built on:

1. Automatic Design of Quantum Feature Maps [2], in which the authors

devised and tested a multi-objective genetic algorithm for automatically gen-

erating efficient quantum feature maps for a target dataset by simultaneously

maximizing achieved accuracy and minimizing circuit size in the generated fea-

ture map circuits.

2. Training Quantum Embedding Kernels on Near-Term Quantum Com-

puters [15], in which the authors applied PQC optimization to quantum feature

map circuits to maximize kernel-target alignment, improving the suitability of

feature map circuits for a target dataset without modifying their structure.

Next the methods used in our own work were detailed, which can be summarized

as testing nine variations of the genetic algorithm defined in [2] across nine datasets.

Eight of the variations were new, while one was a reproduction of the original ap-

proach. The eight new variations were derived by replacing accuracy maximization in

the genetic algorithm with either kernel-target alignment or an approximation of it,

and by following up the genetic optimization configurations with an additional step

of circuit parameter optimization aimed at either maximizing kernel-target alignment

or minimizing root mean squared error.

We then detailed the main contributions of our work, which we restate briefly

here:

1. Experimentally verifying the effectiveness of kernel-target alignment as a metric

for genetic algorithm based quantum feature map design, showing it produces

circuits achieving similar accuracy to the original approach while being faster

to evaluate and, notably, achieves larger margin sizes.

2. Proposing an approximation of kernel-target alignment that requires fewer quan-

tum kernel evaluations to compute, and experimentally demonstrating its effec-
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tiveness in genetic algorithm based quantum feature map design. This effective-

ness includes the advantage of larger margin sizes seen when fully evaluating

kernel-target alignment.

3. Experimentally demonstrating the synergistic effectiveness of applying both ge-

netic feature map circuit design and feature map circuit parameter optimization

in the task of automating quantum feature map circuit design.

The second chapter of the work is a reprint of the main output of the work: a

journal article which provides experimental justification for the contribution claims

made in this thesis.

3.2 Implications and Significance

The research outputs detailed in this thesis have several implications for the ongoing

development of quantum feature map design. Firstly, we demonstrate that genetic

algorithm based approaches can generate effective feature maps even when the metric

maximized is relatively fast to evaluate. This opens the door for testing other metrics

that are efficient to evaluate while still producing effective feature maps. Furthermore,

the results provide further evidence of the effectiveness of optimizing metrics based

on kernel-target alignment in particular.

In addition, our results show that a hybrid approach combining genetic algorithm

optimization and circuit parameter optimization has performance advantages over

just using a genetic algorithm. This is an encouraging sign for the potential of hybrid

optimization methods in automatically designing quantum circuits for other tasks.

3.3 Future Work

There remains considerable scope for further research. Potential ideas for future work

include:
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1. Modifying the genetic algorithm to be better able to select proportionality pa-

rameters. This could be done by encoding the proportionality parameters of

gates using continuous values instead of a bit sequence selecting from one of

four fixed values. This would also require modifying the genetic crossover and

mutation operations, but could potentially make the application of a classical

optimizer for feature map circuit parameter optimization unnecessary.

2. Using metric approximations that dynamically trade off execution speed and

accuracy of approximation. An inaccurate approximation of a metric may still

be as useful as the metric itself in the early stages of the genetic optimization

process. An approximation metric could be devised that gradually increases the

accuracy of its approximation throughout the optimization process to improve

run time, potentially without affecting the quality of the final result.

3. Optimizing multiple genetic algorithm metrics could be done in sequential phases.

This might solve the problem encountered in our work (kernel-target alignment

producing larger circuits than accuracy) while still maintaining some speed ad-

vantage. This idea, like the previous one, would involve the initial phase of

the genetic optimization being accelerated with a metric that is fast to compute

like approximated kernel-target alignment. After a set number of iterations, the

genetic algorithm can switch to maximizing accuracy as a metric in an attempt

to produce the smaller circuits observed when using accuracy.

4. The genetic algorithm could be modified to select nonlinear classical functions

to apply to feature values before substituting them into the feature map cir-

cuit. Such functions have previously been shown to change the effectiveness of

feature maps [30]. This could greatly increase the expressive power of a fea-

ture map without changing the quantum resources required to perform a single

kernel estimation. Selecting a classical function can be cast as a combinato-

rial optimization problem, meaning a genetic algorithm would be well suited to

performing this task.
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3.4 Closing Thoughts

This thesis has contributed to the rapidly evolving field of quantum machine learn-

ing in general and automated quantum feature map design in particular. As the

capabilities of real quantum hardware continue to improve, we move slowly toward

a future where quantum-enhanced algorithms may redefine what is computationally

possible. The approaches detailed in this work and its successors may one day be

used to help harness the potential of powerful quantum machines to solve complex

machine learning tasks.
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