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Abstract

Estimating causal effects is essential in the evaluation of a treatment or interven-

tion. It is particularly straightforward for well-designed experiments. However,

when the treatment assignment is complicated by confounders, as in the case of

observational studies, such inferences regarding the treatment effects, require more

sophisticated adjustments. In this thesis, we investigated different matching tech-

niques in terms of how well they balance the treatment groups on the covariates, as

well as their efficiency in estimating treatment effects. We considered the various

algorithm variants of these matching techniques, which include propensity score

matching, Mahalanobis distance matching, and coarsened exact matching. Secondly,

we proposed two new strategies for estimating treatment effects, namely, covariate-

balancing rank-based Mahalanobis distance (CBRMD) and an improved version of

CBRMD (iCBRMD). We evaluated their performance via simulations and some real-

life datasets. Thirdly, we investigated a relatively new optimization-based alterna-

tive, known as entropy balancing, which has been used rarely in the applied biomed-

ical literature. We shared our experiences learned from using entropy balancing in

non-experimental studies, via Monte Carlo simulations and an empirical applica-

tion. We further extended the evaluation of entropy balancing to some standard

measures of causal treatment effects, namely; difference in means, odds ratios, rate

ratios and hazard ratios. We pulled together our evaluations by conducting Monte

Carlo simulations, evaluating both well-established methods and the more recently

proposed methods. These adjustment techniques were evaluated under different

scenarios that align with the practical reality. Finally, we utilized a dataset from a
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recently conducted HIV Incidence Provincial Surveillance System (HIPSS) study, to

apply the considered techniques to a public health issue in South Africa.
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Chapter 1

Introduction

Estimation of causal effects has been the motivation for much research in the social,

demographic and health sciences (He et al., 2016; Pearl et al., 2009; Imbens & Rubin,

2015). In an observational study, a random assignment of units to treatment groups

is not feasible in the investigation of treatment effects. Because randomized experi-

ments are the gold standard for evaluating treatment effects, efforts are being made

to make an observational study structured in order to a resemble simple randomized

experiment.

Though causality has been initially studied from experiments, Rubin and his col-

leagues’ remarkable work in this area built a framework that allows causality to be

studied from observational studies (see Rubin, 2006). The framework, which is re-

ferred to as the counterfactual or potential outcomes model of causality, has been

refined and as a result, a unified framework for the prosecution of causal questions

is now available.

To further understand causality, as suggested by Holland (1986); Dawid (2000); Pearl

et al. (2009), we should distinguish between the following questions:

Associational: ”Do people take aspirin when they have a headache?”

Interventional (effects of causes): ”I have a headache. Will it help if I take aspirin?”
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Counterfactual (causes of effects): ”My headache has gone. Is it because I took as-

pirin?”

Note that the first question is non-causal and it was added to distinguish associa-

tional inference from causal inference.

Classical statistics, like regression, champion solving the first question. For example,

if we observe predictors X and response y and wish to estimate y given X. Com-

monly, we can use the likelihood principle to infer the parameter by embedding the

conditional distribution in a parametric family P (y|X) = Pθ(y|X) . The (Gaussian)

linear regression is a typical example:

Pβ,σ(y|X) ∝ exp−(y −Xβ)2

2σ2
. (1.1)

This type of inference is most useful in making predictions, where the probability

distribution is assumed constant.

As association does not imply causation, the real question is whether we can use

statistics techniques to answer causal questions (the interventional and counterfac-

tual questions)? Except for older statistics literature (Neyman, 1923)which answers

queries of causality in settings of randomized experiments, the statistical theory has

been relatively silent on causality questions.

1.1 The Potential Outcomes Model

The causal language used in the third question asked earlier belongs to the coun-

terfactual or potential outcomes setting. This causal model, which is perhaps the

most widely adopted approach by applied researchers, was utilized in this thesis.

This model is generally attributed to Rubin’s works in the 1970s and 1980s; though

Splawa-Neyman et al. (1990) thinks Neyman first used this language in random-

2



ized experiments. Accordingly, this approach is commonly called the Rubin causal

model, or the Neyman-Rubin causal model.

Rubin (1974) defined the causal effect of a treatment using the potential outcomes.

The potential outcomes language links observational studies to the more general

missing data problem (Rubin, 1976, 1977). The potential outcome model assumes

that a population of interest can be exposed to two alternative groups of a cause. A

distinct set of conditions, which potentially affects an outcome of interest, character-

izes each treatment group, even though each condition can be observed in only one

treatment group, at any point in time. When only two treatment groups are consid-

ered, they are referred to as ’treated’ and ’control’ groups. Throughout this thesis,

we will conform to this convention.

For example, for the causal effect of participation in the school feeding program on

performance (mid-term scores), children who participated in the program have a

theoretical what-if mid-term scores under the ”not participating” state, while chil-

dren who did not participate in the feeding program, have a hypothetical what-if

mid-term scores under the ”participating” state. These ”what-if” potential outcomes

are counterfactual in the sense that they exist hypothetically, but are not observed.

Formalizing this concept, we assume that there is a binary treatment variable Ti, and

Xi = (Xi1, ..., XiK) denote a K− dimensional vector of observed pre-treatment co-

variates associated with unit i. Let Y t
i : t ∈ {0, 1} be the potential outcome variable

value, that is, the value of the outcome variable if Ti = t, also known as a counterfac-

tual outcome. Rubin (2005) stated that the assignment mechanism is the most impor-

tant quantity in observational studies, which can be written as P (T |X, Y 0, Y 1). He

also stated that randomized experiments share a critical property called ignorable,

P (T |X, Y 0, Y 1) = P (T |X, Y ) . (1.2)

3



This assumption implies that it is justifiable to ignore the missing values (unob-

served potential outcomes). The observed outcome Y is then defined as

Y =





Y 1
i , Ti = 1

Y 0
i , Ti = 0 .

(1.3)

In other words, Yi = TiYi(1) + (1− Ti)Yi(0) is observed.

Though a stronger assumption is the strong ignorability of treatment assignment

(Rosenbaum, 1983), also known as strongly ignorable or unconfounded:

P (T |X, Y 0, Y 1) = P (T |X) . (1.4)

Equation (1.4) means that the potential outcomes Yi(1) and Yi(0) are independent

of Ti|Xi. In other words, there are no unmeasured confounders - the treatment as-

signment model has included all relevant covariates. This assumption enables the

treatment assignment to be sufficient for controlling pre-treatment differences be-

tween the treated and control groups.

Another important property is that

0 < P (T |X, Y ) < 1 , and 0 < P (T |X) < 1 . (1.5)

Intuitively, Equation (1.5) means that a subject or unit has a non-zero probability of

being assigned to the treated group. This is called the overlap assumption in the

context of observational studies.

1.2 Aggregate Causal Effects

Equation (1.3) implies that one can never observe the potential outcome under the

treated group for those observed in the control group, and the potential outcome
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under the control group can never be observed for those in the treated group. There-

fore, the calculation of individual-level causal effects is impossible. Attention is usu-

ally focused on the estimation of defined aggregate causal effects. Aggregate causal

effects are usually defined as averages of individual-level effects.

These aggregate effects can be defined for any subset of the population. In many

cases, the average treatment effect (ATE) for the entire population, which is the

broadest possible average effect, is the quantity of interest. This effect can be ex-

pressed mathematically as

δ̂ATE =
1

n

n∑

i=1

(Y 1
i − Y 0

i ) , (1.6)

where n is the total number of subjects or observations. Equation (1.6) is defined

with reference to a well-defined target population. For example, in the school feed-

ing program scenario described in Section 1.2, the population would be all the pri-

mary school children in that community or county under investigation. In this the-

sis, depending on the nature of outcome variables, we also considered other group-

level effects like risk ratios, odds ratios, hazard ratios, i.e. the interest is not just risk

or mean differences, as in Equation (1.6).

One of the variants of the ATE is the average treatment effect among the treated

(ATT). ATT is defined as

δ̂ATT =
1

nt

nt∑

i|Ti=1

(Y 1
i − Y 0

i ), (1.7)

where nt is the number of treated units. It is imperative to note that equations (1.6)

and (1.7) both specify the treatment effect after a specific point in time i.e; time is

constant and there is no reference of a time effect. ATT is a popular estimand in the

medical and health sciences. For example, in determining the effect of intraoperative

blood transfusion in cardiac surgical patients. The ATT of interest would be to with-
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hold blood transfusion for all the patients who currently receive blood. It would not

make sense to estimate the ATE in this case, as it would require contrasting either

withholding blood transfusion for all patients or giving blood to all patients.

In the definitions above, units selection is made before the treatment assignment so

that the estimands in Equations (1.6) and (1.7) are defined for the fixed n units. It

is often more practical for the n units to be viewed as random samples from a large

population. Theoretically, it is more convenient to assume an infinite population, so

that the units are i.i.d. draws. Therefore, we can define the estimands as

δ̂ATE = E(Y 1 − Y 0), or δ̂ATT = E(Y 1 − Y 0|T = 1) . (1.8)

In Equation (1.8), the expectations are taken over the joint distribution of (T, Y 1, Y 0).

In this spirit, we also implicitly assumed the stable unit treatment value assumption

(SUTVA) of Rubin (1980), which loosely refers to the assumption of no interference

between units. In other words, the potential outcomes of one unit, are not affected

by the potential outcome of another unit. While we do not know if the ignorability

assumption (1.2) or strong ignorability (1.3) is correct for an observational study, we

are willing to assume them. The question is how we proceed after assuming these

conditions to make an observational study which resembles a randomized experi-

ment? This shall be discussed extensively in this thesis.

1.3 Some Methods for Adjustment in Observational Studies

Quite several techniques have been developed and utilized to improve our ability to

draw reliable causal inferences from observational studies. Historically, multivari-

ate regression is probably the most straight forward and commonly used approach,

where the response variable is modelled as a function of the treatment status and

relevant background characteristics. Other methods like propensity scoring (includ-

ing matching, stratification and weighting), instrumental variables (Heckman, 1997),
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machine-learning methods (McCaffrey et al., 2004, 2013; Friedman et al., 2010), and

entropy balancing (Hainmueller, 2012) have also joined the repository of available

methods (Zagar et al., 2017). Without loss of generality, we describe the propensity

score (PS) methods for estimating the ATT in the next section.

The Propensity Score

In a seminal paper, Rosenbaum (1983) changed the approach in which observational

researchers can control for observed confounding in estimating causal effects. He

showed that if the strongly ignorable assumption is made, then the difference be-

tween the treated and control groups at each value of a balancing score is an un-

biased estimate of the treatment effect at that value. Consequently, matching, sub-

classification and covariance adjustment on this balancing score (referred to as the

propensity score) can produce unbiased estimates of the average treatment effect.

The propensity score (PS) was defined as the probability of treatment assignment,

given the observed baseline covariates. Let T be treatment assignment indicator, X

be the observed baseline covariates and π be the propensity scores, then it can be

expressed as

π(X) = P (T = 1|X) . (1.9)

To simplify the notation, independence is assumed, so that

P (T1 = t1, ..., Tn = tn) =
n∏

i=1

πtii (1− πi)1−ti . (1.10)

Although logistic regression has become the standard method for estimating the

PS, Lee et al. (2010); Setoguchi et al. (2008) have also estimated the PS using pro-

bit models, discriminant analysis and more recently, bagging or boosting, recursive

partitioning or tree-based methods, random forests and neural network models.
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Propensity Score-adjusted Regression

The PS can be used as a covariate to adjust for the observed covariates in a regression

setting (Rosenbaum, 1983), so that we can use a regression model of the form

E(Y |T,X) = β0 + β1 π(X) + β2 T . (1.11)

After fitting Equation (1.11), the ATT is estimated as

δ̂ATT,reg = β̂2 + β̂1 π(Xt) , (1.12)

where π(Xt) is the mean of the propensity scores for the treated units.

Stratification

Stratification on the PS involves stratifying treated and control units into mutually

exclusive subgroups or strata based on their estimated propensity scores. Their es-

timated propensity score ranks the units, where the units are then stratified into

subclasses, based on previously defined cut-offs of the estimated propensity scores.

Observations, or units with similar propensity scores, are placed into one stratum.

A typical approach is to utilize the quintiles of the estimated propensity scores to

separate the units into five equal-sized groups.

Stratification, with five strata based on the quintiles, has been shown to remove

about 90% of the bias in estimating treatment effect (Austin, 2011; Rosenbaum & Ru-

bin, 1984). In estimating the ATT, subclassification on the propensity scores, can be

done by summing the weighted treatment effect in each stratum, where the weight

of the stratum is the proportion of the treated subjects in the stratum over the treated

subjects in the sample (Williamson et al., 2012). That is,

δ̂ATT,strat =
H∑

h=1

NTh

Nt
δ̂h , (1.13)
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whereH is the number of strata,Nt is the number of treated units, δ̂h is the estimated

treatment effect for the hth stratum, and NTh is the number of observations in the

h−th stratum.

Matching

Matching is a method that samples from a large reservoir of control units to produce

a modest control group in which the distribution of covariates in the treated and

control groups is similar. Propensity scores can be used for matching by sampling

control group units as a match for the treated units, based on the propensity scores

of some distance function between the treatment groups.

The following steps briefly explain propensity score matching: (i) For each treated

unit, select a single control group unit having similar or comparable values of the

estimated propensity scores, (ii) estimate the within-pair treatment effect by taking

the difference in the two outcome groups and (iii) calculate the average within-pair

treatment effect estimate. More details about matching on propensity scores, as well

as the general concept of matching are discussed in Chapter 2.

Weighting

Weighting based on the propensity scores, otherwise called the inverse probabil-

ity weighting (IPW) method, is to weight the treated and control observations to

make them representative of the population of interest. More details about weight-

ing based on propensity scores, as well as the general concept of weighting, are

discussed in Chapter 2.

1.4 Balance Assessment

The aim of pre-processing or adjustment techniques is to adjust the treated and con-

trol groups in such a way that the empirical distribution of the covariates X are as

similar as possible between the two treatment groups. Two groups are said to be
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balanced with respect to X, if they have identical distributions of X.

Balance measures include visualisations like the q-q plots and histograms of con-

tinuous variables, as well as comparisons of high-dimensional distributions like the

Kolmogorov-Smirnov (K-S) statistic. Low-dimensional summaries, such as variance

ratios and differences in means, are presented here.

Due to the measurement of different covariates on very different scales, the differ-

ences in means are usually standardized by dividing them with some pre-adjustment

standard deviation, for which the absolute standardized mean difference (ASMD)

has been used in the literature. ASMD values above 0.1, may be indicative of co-

variate imbalance, as suggested by some authors (Mamdani et al., 2005; Normand

et al., 2001). Some authors (Ho et al., 2011; Imai et al., 2008; McCaffrey et al., 2013)

also suggested that ASMD values above 0.25 are large. The ASMD value for each

covariate Xk (k = 1, 2, ...,K) is

ASMD =

∣∣∣∣
Mt(Xk)−Mc(Xk)√

L

∣∣∣∣ (1.14)

where L = Vt(Xk)+Vc(Xk)
2 or L = Vt(Xk) when ATE or ATT is the estimand, respec-

tively. Mt(Xk) is the mean of the covariate for the treated group and Mc(Xk) is the

mean of the covariate for the control group; Vt(Xk) and Vc(Xk) denote the variance

of the treated and control groups, respectively. Note that the variance formulation

assumes equal variance for the two populations.

The variance ratio (VR), as defined by Stuart (2010), compares the variances between

the treated and control groups, using the formula:

V Rk =
Vt(Xk)

Vc(Xk)
, (1.15)

Covariates with variance ratios close to 1, are judged to be balanced.
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P-values of significance tests that includes information on the sample size (e.g. t-test

and Chi-square test for significant differences in the means and proportions, respec-

tively for the two groups) could also be employed (Ali et al., 2015). Though previous

studies (Austin, 2007; Imai et al., 2008) have argued that such tests do not contribute

to the analysis since balance is inherently an in-sample property, without reference

to any broader population, that should be improved as much as possible, regard-

less of the significance of some test statistic. Furthermore, hypothesis tests can be

misleading as balance measures because they often confuse changes in balance with

changes in statistical power. For matching, randomly discarding observations can

lead to a significant test statistic becoming insignificant despite no systematic im-

provement of balance having occurred.

In this thesis (except in Chapter 6), we utilized only the absolute standardized mean

difference (ASMD) as a measure of balance.

1.5 Research Motivation and Objectives

Estimating average treatment effects is essential in the evaluation of a treatment or

intervention. It is particularly straightforward in experiments but very complicated

in observational studies, since treatment assignment is not random. The complica-

tion comes from the fact that treatment exposure may be associated with background

covariates that are further associated with the potential response, which may sub-

stantially introduce covariates imbalance in these treatment groups. There is thus a

need for methods that adjust for such confounding of the background covariates for

a reliable causal inference to be made from observational data.

While there have been several statistical techniques developed, ranging from simple

to sophisticated methods, for controlling confounding in observational data analy-

ses, there is a great need for guidance and recommendations regarding the optimal
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strategy for making causal inference in specific scenarios.

This study centers around statistical methods for estimating causal treatment effects

in observational studies, as well as their variants. In particular, connections with

other studies are drawn. These include Monte Carlo simulations, extending existing

methodologies and applications to real-world data. The objectives of this thesis, as

outlined in the following points, are to

• review the existing methods for estimating causal treatment effects in observa-

tional studies;

• empirically evaluate some matching methods;

• propose new adjustment techniques and evaluate them, relative to the gold

standard techniques, via Monte Carlo simulations and notable real-life datasets;

• explore some modern weighting techniques via some Monte Carlo simulations

and establish some trade-offs;

• provide general recommendations for the optimal strategies or techniques based

on findings from a series of simulations for different scenarios.

1.6 Main Research Contributions

The main contributions of this research work are that we developed a rank-based

Mahalanobis distance technique, namely, the covariate balancing rank-based Ma-

halanobis distance (CBRMD) method, that can reduce the effect of confounding in

estimating causal treatment effects.

We further improved on the CBRMD methods by introducing a generalized version

of the CBRMD technique, which was built on changing how the rank-based Maha-

lanobis distances were utilized. Our new method has a parameter that is capable of

optimizing the desired cost function (covariate balance and efficiency), for a given
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dataset.

We provided insights into the use of a highly efficient technique known as entropy

balancing. Not many applications of this highly effective method have been utilized

in quasi-experimental research designs, particularly in the medical and health liter-

ature.

In addition to the mentioned contributions, this thesis avails us the opportunity to

thoroughly review the fundamental basis of some of the existing confounder adjust-

ment techniques and offers useful contributions, suggestions and recommendations,

based on our experience in this research work.

1.7 Thesis Layout

The rest of the thesis is organized as follows:

Chapter 2 provides a review of matching and weighting methods that are used in the

causal inference literature. Chapters 3 - 8 are products of journal articles that have

either been published or under review. Chapter 3 is a simulation study evaluating

the different matching methods and algorithms reviewed in Chapter 2. In Chapter 4,

we proposed a new technique for adjusting confounders in the estimation of causal

treatment effects. In Chapter 5, we improved on the proposed method in Chapter

4 and introduced a new version, while providing new insights and some numerical

explorations. In Chapter 6, we studied the entropy balancing technique via Monte

Carlo simulations and an empirical application. In Chapter 7, we extend the exami-

nation of entropy balancing to outcome of different types, estimating some standard

treatment effects. Chapter 8 is an overall comparison of some selected methods that

were discussed in this thesis. Several simulation studies were carried out and we

provided comments on each technique in terms of their strengths and weaknesses.
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Chapter 9 is a further application of the utilized adjustment techniques in Chapter 8,

by evaluating treatment effects from an HIV study conducted in the Kwazulu-Natal

province of South Africa. Chapter 10 gives an overall discussion and conclusion of

the thesis. We provided suggestions for further studies, along with a summary of

the results achieved in this study.
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Chapter 2

Review of Matching and Weighting

Methods

Though in Chapter 1, we discussed several approaches to estimating causal effects in

observational studies, our contributions in this thesis have revolved around match-

ing and weighting methods. Accordingly, in this chapter, a detailed description of

matching and weighting methods, that have been proposed and utilized in the lit-

erature, is provided. We outlined a review of the basic variants of each of these

methods, with a focus to estimate the average treatment effect among the treated

(ATT).

2.1 Matching Methods

In observational studies, matching is a non-parametric method used to control the

confounding influence of pretreatment covariates. Stuart (2010) broadly defined

matching as any technique that aims to equalize (or ”balance”) covariates distribu-

tion in the treated and control groups. Matching methods find control group units

with similar distributions of the observed covariates as that of the treated units. As

a result, control group units that were not selected by the matching algorithm are

discarded. A successfully matched dataset does not require any further controlling

for covariates X and causal effects can be estimated with less model dependence
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and reduced statistical bias.

Matching can be viewed methodologically as a strategic sub-sampling from among

treated and control units. Following the lead of Smith & Todd (2005), all matching

estimators of the ATT can be expressed as some variation of

δ̂ATT,match =
1

nt

∑

i

[(yi|Ti = 1)−
∑

j

wi,j(yj |Tj = 0)], (2.1)

where nt is the number of treated units, i is the index over the treated units, j is the

index over the control units and wi,j represents a set of scaled weights measuring

the distance between each control unit and the treated unit. In this chapter, we will

broadly divide matching methods into raw matching, propensity score matching

and coarsened exact matching methods.

2.1.1 Raw Matching

We refer to the term raw matching as methods that use only the raw covariates and

do not attempt to model the treatment assignment mechanism. Once a distance

metric d based on the raw covariates is selected, a matching algorithm can then be

applied. The very first example is exact matching, which matches identical covariate

values of the treated group with the control group. As required for any matching

method, a distance metric d is specified on the covariates. For exact matching:

d(Xt,Xc) =





0, Xt = Xc

∞, Xt 6= Xc .

(2.2)

Equation (2.2) implies that two units are matched only if they have exactly the same

pre-treatment covariates. While estimating the ATT, exact matching uses weights:

wi =





1
gi
, matched control units

0, unmatched control units,
(2.3)
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where gi is the number of exact matches identified for each treated unit. The in-

herent property of exact matching is often too stringent and may not be realistic in

a high-dimensional covariate space. Thus, the Mahalanobis distance is an alterna-

tive measure that has found usage in matching, for this scenario. In calculating the

Mahalanobis distance, categorical variables could be converted to a series of binary

indicators. Gu & Rosenbaum (1993) showed that the performance of this measure is

not optimal for matching when the covariates are not normally distributed, or in the

presence of a bountiful number of covariates. The Mahalanobis distance between

two units, Xt and Xc is defined as

d(Xt,Xc) = (Xt −Xc)
T Σ−1 (Xt −Xc), (2.4)

where Xt, Xc denote the treated and control group covariates, respectively and Σ

is the covariance matrix of X. Once the distance measure d(.) is selected, a matching

algorithm can then be applied. For Mahalanobis distance matching, the c : 1 nearest

neighbour algorithm estimates the ATT. This algorithm matches each treated unit

to c (c ≥ 1) control units that are closest in terms of d, while the unselected control

units are discarded. It is possible to utilize the nearest neighbour matching with re-

placement, where a control unit can be chosen multiple times as a match, or without

replacement, where the algorithm proceeds greedily and there is an emphasis on

which treated units are matched first.

A more sophisticated algorithm, optimal matching (Rosenbaum, 2012), is also an

option. It involves selecting the overall best match of the data among the candidate

set by minimizing a global distance measure. A good example is genetic matching,

which has an implementation in the R package, Matching (Sekhon, 2011). Genetic

matching involves the introduction of a generalized form of the Mahalanobis dis-

tance by including an additional weight parameter W (Diamond & Sekhon, 2013).

A genetic search algorithm is then used to chooseW in the generalized Mahalanobis

distance, given a specified criterion of covariate imbalance to ensure that the matched
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samples optimize the specified imbalance criterion. Formally,

d(Xt,Xc) =

√
(Xt −Xc)T (Σ−

1
2 )T W Σ−

1
2 (Xt −Xc) . (2.5)

2.1.2 Propensity Score Matching

As mentioned in Section 2.1.1, an alternative to matching based on raw covariates,

is to model the treatment assignment mechanism. Rosenbaum (1983) introduced the

propensity score - a balancing score, which summarizes all of the covariates into one

scalar measure. An estimated propensity score gives the probability of treatment

assignment, given the observed covariates: π = P (T = 1|X). The value of π is com-

monly estimated from a logistic regression model.

In addition to logistic regression, there are several statistical techniques that can be

used to estimate the PS, such as linear and quadratic discriminant analysis, probit

models; although more recently, nonparametric methods such as boosted CART and

generalized boosted models (GBM), recursive partitioning or tree-based methods,

random forests and neural network models Lee et al. (2010); Setoguchi et al. (2008)

have also been used and often showed good performance.

The introduction of propensity scores was motivated by the inherent difficulty of

extending raw matching methods to a high-dimensional covariate space. In light of

this, propensity scores are an essential tool to adjust for covariate imbalance. The PS

is a scalar and can be used for matching using the two standard ways to define the

propensity score distance:

d(Xt,Xc) = |π̂(Xt)− π̂(Xc)| or

d(Xt,Xc) = |logit(π̂(Xt))− logit(π̂(Xc))| .

After the propensity scores are estimated, one can apply either the nearest neighbour

(with or without replacement) or optimal matching algorithms described in Section
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2.1.1. Additionally, for Mahalanobis distance and PS matching, PS calipers can be

used with the nearest neighbour algorithm. Calipers provide a restriction imposed

on the distance between the covariates of the two treatment groups, such that a

control group unit is matched if

d(Xt,Xc) < ξ,

where ξ is the user-specified caliper. Rosenbaum & Rubin (1985) proposed using a

caliper of size a quarter of the propensity scores standard deviation.

Subclassification, which involves stratifying units into mutually exclusive strata,

based on the estimated propensity scores, can also be used for matching (Rosen-

baum & Rubin, 1984). Further, full matching (Hansen, 2004), is a more sophisticated

form of subclassification, which uses all the sample units and creates a series of

matched sets which contain at least one treated unit and at least one control unit.

2.1.3 Coarsened Exact Matching

The earlier mentioned matching techniques are known as ”equal percent bias reduc-

ing” (EPBR) methods. For these methods, improvements in the bound of balance for

one covariate will affect each of the other covariates. They also do not guarantee a

certain level of imbalance reduction for any given dataset. Further, these methods

are associated with a tedious process of continuous matching and re-matching, until

a sufficient level of balance is achieved on all covariates.

Iacus et al. (2012) introduced coarsened exact matching (CEM), which avoid the

shortcomings of EPBR methods. CEM is a special case of Monotonic Imbalance

Bounding (MIB) methods. These methods improve the bounds on the balance of

one covariate in isolation and do not affect the maximum imbalance of each of the

other covariates. Unlike other matching methods, where balance is being checked

continually, CEM inverts the process and thus guarantees that the covariate imbal-

19



ance between the matched groups will not exceed the user’s pre-specified level.

CEM essentially coarsens each variable as reasonably as possible, by subclassifying

them into distinct groups, either by using automated choices of coarsening, using the

Sturges rule (Scott, 2009) or a user-defined coarsening. The ”exact matching” algo-

rithm is then applied to the coarsened data to select matches and prune unmatched

units. In other words, after coarsening, the algorithm creates a set of strata, s ε S,

each with the same coarsened X values. Units in the strata, containing at least one

treated and at least one control unit, are retained, while units in the remaining strata

are removed from the sample.

We use T s and Cs to denote the set of treated and control units, respectively in stra-

tum s; ms
T = #T s as the number of treated units in T s, similarly ms

C = #Cs is the

number of control units in Cs. The number of matched units are mT =
⋃
s ε S ms

T

and mC =
⋃
s ε S ms

C , for the treated and control groups, respectively. The un-

matched units receive zero weight, while to each matched unit i in stratum s, CEM

assigns the following weights:

wi =





1, i ε T s

mCm
s
T

mTm
s
C
, i ε Cs .

(2.6)

2.2 Weighting Methods

We will discuss weighting methods for estimating causal effects in observational

studies in this section. In the sense of non-technicality, the matching methods dis-

cussed in Section 2.1.1 are also weighting methods with discrete weights. The weight-

ing methods discussed in this section produce continuous weights and are inher-

ently different from matching. There are two general weighting approaches in causal

inference. One does not directly make covariate balance its primary objective, i.e. it

focuses on modelling the data to get probabilities, from which weights that reduce
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the imbalance to some considerable extent, can be obtained. The other approach,

also known as automated covariate balancing methods, directly use some minimiza-

tion algorithm to choose weights that perfectly balance the covariates, subject to

some specified constraints.

2.2.1 Propensity Score Weighting

In this thesis, we refer to propensity score weighting, commonly called inverse prob-

ability weighting (IPW) in observational studies literature, as weighting methods

which agree with the first general weighting approach described above. Propen-

sity score weighting (Crump et al., 2009; Hirano & Imbens, 2001; Hirano et al., 2003;

Imbens, 2004) is the continuous counterpart of propensity score matching, which

originates from a survey sampling problem. The idea was formed from the Horvitz-

Thompson weight (Horvitz & Thompson, 1952), which for each sample unit, is the

inverse of the probability of such unit being assigned to the observed group.

In estimating the ATT, the IPW technique weights by the odds of the unit being

assigned to the treatment group of interest. (Imbens, 2004). Formally,

wi =





1, Ti = 1

π(X)
1−π(X) , Ti = 0 ,

(2.7)

where π(X) is the estimated propensity score. Equation (2.7) implies that each unit

is assigned a weight that equals the reciprocal of the probability of receiving the

treatment that the unit received. It is unlikely for the propensity score to be known

in practice, so it is routinely estimated using a parametric model like the logistic

model. Therefore, the success of the IPW largely rests on the correct specification

of the propensity score model. Slight misspecification of the PS model will result in

substantial bias of the estimated treatment effects (Kang & Schafer, 2007). If πi is the
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inclusion probability of the sample Yi, the Horvitz-Thompson estimator is given by

µ̂i =
1

n

n∑

i=1

πi
−1Yi .

In observational studies, the ATT, E(Y 1
i − Y 0

i |T = 1) can be viewed as estimating

two population means over the treated units. Therefore, the IPW estimator for the

ATT, while extending the Horvitz-Thompson estimator, is given as

µ̂ATT,IPW =

∑n
i=1 TiYi∑n
i=1 Ti

−
∑n

i=1(1− Ti)Yi π̂(Xi)/1− π̂(Xi)∑n
i=1(1− Ti) π̂(Xi)/1− π̂(Xi)

(2.8)

2.2.2 Empirical Calibration Weighting

Weighting methods generally seek non-negative weights w, which ensures that the

weighted empirical distributions of the covariates for the treated and control groups

are as close as possible. The standardized difference (Rosenbaum & Rubin, 1985;

Austin & Stuart, 2015) typically measures the distance between these weighted dis-

tributions concerning some covariate function φ:

dsd,φ(.)(Fw(0), Fw(1)) =
EFw(1)[φ(X)]− EFw(0)[φ(X)]

V arFw(0)+Fw(1)φ(X)
, (2.9)

where Fw(t, x) (t= 0 or 1) is the empirical distribution of the covariates for the treated

and control groups.

In the earlier section, the approach was to assert a parametric model and then search

for a balance-maximizing specification, by trying one after the other, which is stress-

ful and error-prone. In other words, specifying a propensity score model which has

a high level of covariate balance, is a cautionary approach. We now turn to empirical

calibration weighting, which we have used as a general term for weighting methods

that seek optimal balance. These methods are built on the notion of achieving effi-

ciency by solely balancing the covariate distributions, without a direct estimation of

the propensity score or outcome regression function. A similar example of this idea

22



applied to matching is the genetic matching of Diamond & Sekhon (2013), which

searches for the matches that achieve the best possible balance.

Formally, empirical calibration weighting (EBCW) seeks weights w, such that the

standardized difference (2.9) is zero or small for some pre-specified functions φk,

k = 1, 2, ...,m. The weights w attempt to solve the equation

∑

i|Ti=1

wiφk(Xi) =
∑

i|Ti=0

wiφk(Xi), k = 1, ...,m . (2.10)

Finally, the resulting weights are normalized by requiring

∑

i|Ti=0

wi = 1 . (2.11)

In general, the class of calibration estimators minimizes the overall distance
∑

iD(wi, vi)

between the final weights to a given vector of design weights, subject to exact bal-

ance (2.10) and the normalization (2.11), where vi is a set of uniform weights.

Though calibration estimators were initially used in survey sampling (Deville &

Särndal, 1992; Tan, 2010), researchers have found the usage thereof in observational

studies (Hainmueller, 2012; Chan et al., 2016; Zubizarreta, 2015). Specific examples

include entropy balancing (Hainmueller, 2012), which considered estimating ATT

with D being the negative Shannon entropy; stable balancing weights (Zubizarreta,

2015), which uses the squared norm of w as the objective function, whilst allowing

for inexact balance and Chan et al. (2016) proved that the empirical calibration esti-

mators for ATT and ATE could achieve the semiparametric efficiency bound. Imai &

Ratkovic (2014) offered a related (but not precisely the same) approach, but it is one

that integrates covariate balancing into the estimation of the propensity score.
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Chapter 3

Evaluation of Subset Matching

Methods: A Simulation Study

This chapter is an extension of Amusa et al. (2019a), which was attached in the Ap-

pendix (10.1). So far, we have introduced and reviewed several techniques to esti-

mate causal effects in observational studies. We focus on matching methods in this

chapter. While many simulation studies have compared the performance of different

matching methods, it cannot be taken for granted that their findings are transferable

to other data scenarios (Franklin et al., 2014). Even though there have been a few no-

table studies that have examined the performance of matching techniques in terms

of how well they balance the groups on the covariates, only a few of them have ex-

tended the evaluation to outcome analyses (Austin, 2014; Jacovidis, 2017; Stone &

Tang, 2013).

In Amusa et al. (2019a), we empirically compared the performance of matching

methods, namely; Mahalanobis distance matching, Propensity score matching and

coarsened exact matching. In this chapter, we build upon the limitation of the pre-

vious study by extending the simulation scenarios, as well as introducing variations

of matching algorithms on the Mahalanobis distance and the propensity score. The

theory of these methods and algorithms have been presented in Chapter 2.
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3.1 Background

There are several matching methods existing in the literature, each employing dif-

ferent distance measures, algorithms and rules for selecting control group units.

Each technique could potentially choose various control group units from the overall

control pool to create the matched group. The matched control group composition

could, therefore, vary considerably depending on the particular matching algorithm

used (Jacovidis, 2017).

Matching techniques have been applied either using covariate (Miksch et al., 2010)

or propensity score matching (Stock et al., 2010; Windt & Glaeske, 2010; Drabik et al.,

2012), with some authors providing evidence for the superiority of propensity score

(PS) matching (Drabik et al., 2012). The causal inference literature has shown that PS

matching is not necessarily the gold standard (Fullerton et al., 2016). Depending on

the scenario considered, other matching techniques can induce a better balance on

the covariates, as well as producing more efficient treatment effect estimates. Fur-

thermore, the performance of PS matching depends on the correct specification of

the propensity score model, choice of covariates and the matching algorithm used.

(Dehejia & Wahba, 2002; King et al., 2011; Rosenbaum & Rubin, 1984).

Accordingly, we evaluate the performance of different matching methods and al-

gorithms via a series of Monte Carlo simulations. We examine covariate balance,

average matched sample size and efficiency of treatment effect estimates. Without

loss of generality, we compared coarsened exact matching, propensity score match-

ing (with and without caliper), Mahalanobis distance matching (with and without

caliper) and full matching (on Mahalanobis distance and propensity score). For the

nearest neighbour matching methods, we assumed a 1:1 pair matching and with-

out replacement. Pair matching selects for each treated unit the control unit with

the smallest distance from that treated unit. By matching without replacement, we

mean that controls can be used as matches for only one treated unit.
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3.2 Simulation Study

We used a data generation scheme derived from previous studies (Lee et al., 2010; Se-

toguchi et al., 2008), where ten randomly generated ten baseline covariates,X1−X10

had standard normal distributions. Some pair of covariates were induced with spec-

ified levels of dependence. X1, X3, X5, X6, X8, X9 were dichotomized. In the course

of this study, we tried many different simulation conditions, but for simplicity sake,

we decided to present three of them, which mostly align with practice reality. The

following scenarios were considered:

Scenario 1 (S1): Not all covariates were confounders i.e., related to both treatment

and outcome. X1, X2, X3, X4 are associated with both treatment and outcome,X5, X6, X7

are predictors of the treatment variable only, while X8, X9, X10 are predictors of the

outcome variable only. The treatment status was generated from a Bernoulli dis-

tribution: Ti ∼ Ber(Pi,trt), where the probability of treatment selection Pi,trt was

determined from

log

(
Pi,trt

1− Pi,trt

)
= α0,trt+α1X1+α2X2+α3X3+α4X4+α5X5+α6X6+α7X7 . (3.1)

The outcome model was simulated linearly as

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi + εi, where

εi ∼ N(0, σ2).

Scenario 2 (S2): Having common covariates affecting both treatment selection and

outcome models, including extraneous variables. The treatment selection model in

Equation (3.1) still holds, while we generated the outcome variable as

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + βtrtTi + εi, where

εi ∼ N(0, σ2).

Scenario 3 (S3): Following the recommendation that model complexity is likely to
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improve estimators that rely on the propensity score (d’Agostino, 1998), we consid-

ered interactions among covariates in both treatment choice and outcome models

as

log

(
Pi,trt

1− Pi,trt

)
= α0,trt + α1X1 + α2X2 + α3X3 + α4X4 + α5X5

+ α6X6 + α7X7 + α2X
2
2 + α4X

2
4 + α7X

2
7 + 0.7 α2X2X4+

0.5 α5X5X7 + 0.7 α2X2X3 + 0.5 α3X3X4 + 0.5 α4X4X5 .

(3.2)

The outcome model was simulated non-linearly as

Yi = eβ1X1+β2X2+β3X3+β4X4+β5X8+β6X9+β7X10 + βtrtTi + εi, where εi ∼ N(0, σ2).

For the three scenarios, the coefficients, α1 − α7 were based on real-life data utilized

in a previous study (Setoguchi et al., 2008), while

β1 = β2 = β3 = log(2), β4 = β5 = β6 = log(1.75) and β7 = log(1.5) to reflect very

high, high, and moderate effect sizes (Austin, 2007, 2014).

By varying the values of α0,trt, we fixed two values of the percentage of subjects

who received the treatment (subsequently referred to as prevalence of treatment)

at 25% and 33%. The chosen treatment prevalence rates 25%, 33% correspond to

r = 3 : 1, 2 : 1, respectively, where r is the ratio of controls to one treated unit. We

also varied sample sizes between n = 500, 800, and 1000. Overall, we generated a

total of 1000 replications of each dataset and matched them with each method.

3.2.1 Performance Measures

We evaluated the performance of the methods in terms of covariate balance, average

size of the matched sample and treatment effect estimates.

For covariate balance, the methods were compared in terms of their ability to induce

balance in the covariates, between treated and control groups. This was achieved

using the absolute standardized mean difference formula of Equation (1.14) for each

covariate. It has been suggested that a standardized mean difference of at most 0.1 is
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quite sufficient at balancing a given covariate between the treatment groups (Austin,

2007; Normand et al., 2001).

In terms of the size of matched samples, the number of successfully matched treated

and control group units was examined for each matching method, relative to the raw

data.

Finally, the ATT estimates were obtained and evaluated according to the absolute

bias and root mean square error (RMSE) of the estimated treatment effects.

Table 3.1: Description of matching strategies and software implementation

Method Label R package R function and parameters

Unmatched data RAW - -
Coarsened exact matching CEM cem cem (with default parameters)
Propensity score matching PS1 MatchIt matchit (NN matching, WOR,)

distance=logit)
Propensity score matching (with PS caliper) PS2 MatchIt matchit (NN matching, WOR,

distance=logit,caliper=0.25 SD)
Mahalanobis distance matching MD1 Matching Match (NN matching, WOR)
Mahalanobis distance matching (with PS caliper) MD2 Matching Match (NN matching, WOR,

caliper=0.25 SD)
Full matching on the PS FUL1 optmatch matchit(optimal full matching,

distance=logit)
Full matching on the Mahalanobis distance FUL2 optmatch matchit(optimal full matching,

distance=Mahalanobis)

Note: NN denotes Nearest neighbour; WOR: without replacement; SD is the standard deviation of
the logit(PS).

3.2.2 Methods

The aim of this chapter is to investigate the comparative performance of several

matching methods used for estimating the ATT. In estimating the ATT, the data

were partitioned into a collection of subclasses or matched sets according to the esti-

mated propensity score or/and Mahalanobis distance of each observation. Discrete

weights for each observation in the simulated dataset were then derived based on

the matched set membership, and the ATT estimates are obtained via weighted lin-
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ear regression of the outcome on treatment assignment. A list of the considered

methods, with references to specific software implementation and the relevant liter-

ature, is given in Table 3.1.

3.3 Results

In this section, we provide results obtained from analyzing the simulated datasets in

each of the considered scenarios. We present the results for each performance mea-

sure under separate subsections. Results for the two considered prevalence rates,

r = 3 : 1, 2 : 1, had similar comparisons among the methods; hence, we report our

findings based on any one of them. As a form of sensitivity analysis, we ran simu-

lations for other treatment prevalence rates, but we do not present the results, as no

qualitative differences were observed in the relative performance of the method.

Covariate Balance

In this section, we evaluate the matching methods in terms of covariate balance by

presenting the results of S1, for sample size n=500 and the two prevalence rates,

25% and 33%. In Figure 3.1, we showed boxplots of the absolute standardized mean

differences (ASMD) of the covariates, averaged across the simulated datasets. The

other simulation conditions produced a similar pattern (results not shown). It is

observable from Figure 3.1 that the original simulated data is substantially imbal-

anced with the ASMD value as high as 0.6. The two prevalence rates produced

comparatively similar results. Full matching on the Mahalanobis distance (FUL2)

performed poorly: not only did it produce ASMD values all above 0.1, but it also

appeared to have similar results with the unmatched data. Though Mahalanobis

distance matching (MD1) performed quite satisfactorily in balancing the covariates,

it did not induce balance on all the covariates, and its performance was sub-optimal

as compared to other methods. PS matching with caliper (PS2) and full matching on

the propensity score (FUL1) had the best performance, with both producing ASMD
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values close to zero on all the covariates. Coarsened exact matching (CEM), Ma-

halanobis distance with PS caliper (MD2) and propensity score matching (PS1) per-

formed excellently.

Figure 3.1: Boxplots of absolute standardized differences in means in Scenario 1 when r =
3:1 (leftpanel) and r=2:1 (right panel)

Sample Size

Figure 3.2 presents the average matched sample size from each of the matching

methods. We presented results for the two considered prevalence rates, under S1

and S3. Findings from both scenarios are similar. As expected, the average num-

ber of matched pairs when the treatment prevalence rate was 33%, is higher than

the average number of matched pairs when the treatment prevalence rate was 25%.

As expected, CEM produced a minimal matched sample size, since the CEM algo-

rithm leads to extreme coarsening of variables and discards any subjects without

exact matches on those coarsened variables. Mahalanobis distance matching with

PS caliper (MD2) resulted in the smallest matched sample size. PS matching with

caliper (PS2), resulted in a smaller matched sample size compared to PS match-

ing without caliper. The number of discarded units depend on the width of the PS
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caliper. Full matching (both on PS and Mahalanobis distance) retained the original

sample size, as expected.

Figure 3.2: Sample size after applying the matching methods for Scenario 1 (left panel) and
Scenario 2 (right panel)

Treatment Effect Estimates

Overall, the increase in sample size did not affect the bias of treatment effect esti-

mates. Full matching on the Mahalanobis distance (FUL2), in most cases, either did

not reduce the bias or slightly increased it. Except for full matching (on the propen-

sity score and Mahalanobis distance), an increase in sample size correspondingly

decreased the RMSE of the different methods, across all the considered scenarios.

For full matching, it is not surprising that increasing sample size did not affect the

RMSE, since theory, as well as results from Figure 3.2, showed that full matching

does not discard sample units and the initial sample size is retained. As expected,

the sample size effect is more substantial for coarsened exact matching (CEM), since

there is the need to have an abundant sample size to make up for the many units

that were discarded from the CEM algorithm. Consequently, the efficiency of the
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outcome estimation for CEM might depend heavily on the sample size.

Results of S1, where a covariate is either related to the treatment or the outcome

or both, are summarized in Figure 3.3. In terms of bias, PS matching with caliper

(PS2), CEM, Mahalanobis distance matching with PS caliper (MD2), full matching

on the PS (FUL1), reduced the absolute bias considerably well, with most of them

producing near-zero bias values. Mahalanobis distance matching (MD1) and FUL2

produced considerable bias. In terms of RMSE, MD2 produced the worst results,

followed by CEM and FUL2. They increased the RMSE relative to the original data.

However, for the sample size (n=1000), CEM outperformed MD1 and FUL2. The

other four methods performed considerably well and produced similar results in

most cases.

Results of S2, where all covariates are included in the treatment assignment model

and the outcome regression model in a linear fashion, are summarized in Figure 3.4.

As compared to S1, results from this scenario produced higher bias and RMSE val-

ues. In terms of bias, PS2, CEM, MD2, FUL1 reduced the absolute bias considerably

well, with most of them producing near-zero bias values. Though MD1 and PS1

also reduced the absolute bias, PS1 produced slightly smaller values. For RMSE,

MD2 produced the worst results, followed by CEM and FUL2. They increased the

RMSE relative to the original data. However, for the sample size (n=1000), CEM

outperformed MD1 and competed favourably with FUL2. The other four methods

performed considerably well and produced similar results.

Results of S3 are summarized in Figure 3.5. It shows the performance of the match-

ing methods when interactions of some covariates, as well as non-linearity in the

outcome model. As compared to S1 and S2, results from this scenario produced

higher bias and RMSE values. This suggests that results introducing model com-

plexities could make or mar the efficiency of estimates if the right model terms are
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not specified. The two methods that depend on the propensity score (PS1 and PS2)

produced similar bias and RMSE values in most cases.

Figure 3.3: Absolute Bias (Panel A: r=3:1, Panel B: r=2:1) and RMSE (Panel C: r=3:1, Panel D:
r=2:1) of the estimated treatment effects, for Scenario 1

3.4 Discussion and Conclusion

This simulation study aimed to evaluate seven matching methods, each selecting a

subset of treated and control units, namely; coarsened exact matching, propensity

score matching (with and without PS caliper), Mahalanobis distance matching (with

and without PS caliper) and full matching (on Mahalanobis distance and propensity

score). The performance assessment of these methods was based on (i) the ability

to induce balance on measured background covariates; (ii) the sample size retained

after matching and (iii) the performance of treatment effect estimates.
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Figure 3.4: Absolute Bias (Panel A: r=3:1, Panel B: r=2:1) and RMSE (Panel C: r=3:1, Panel D:
r=2:1) of the estimated treatment effects, for Scenario 2

Figure 3.5: Absolute Bias (Panel A: r=3:1, Panel B: r=2:1) and RMSE (Panel C: r=3:1, Panel D:
r=2:1) of the estimated treatment effects, for Scenario 3
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Though our findings suggest that no particular technique was overall superior to

others, full matching on the Mahalanobis distance, consistently produced a sub-

optimal performance in covariate balance and treatment effects estimation. In terms

of the size of the matched samples, the average number of matched units was mini-

mal for CEM, given the chosen automated coarsening. In terms of its corresponding

effect on outcome estimation, results from the simulation study revealed that the

choice of degree of coarsening, could make or mar the performance of CEM. If the

elements of the coarsening values are too small, then too many observations may

be discarded, which may then lead to not finding a solution or result in inefficient

outcome estimations. In contrast, if the elements of the coarsening values are set

too high, though more units will be retained, useful information that might produce

better matches may be missed. Furthermore, more covariate imbalances, model de-

pendence and statistical bias, will be introduced (Iacus et al., 2012). However, in

practice, variable coarsening are selected based on the substance of the variable.

When matching by covariates, Austin (2008) recommended using PS calipers to im-

prove the matching. Our simulations provided results supporting this claim for PS

matching; however, using PS calipers with Mahalanobis distance matching, consid-

erably reduced the efficiency of treatment effects. Full matching on the propensity

score performs excellently well; however, full matching on the Mahalanobis distance

is not recommended, as evident from the results of this simulation study. Worthy of

note concerning PS matching, is the correct specification of the PS model. This was

evident in the optimal performance of PS methods in S1, where the PS model is cor-

rectly specified, as compared to S2, where the PS model is most likely incorrect. In

practice, an excellent alternative to distance driven matching methods, may be to es-

timate the propensity score using a more flexible approach than logistic regression,

for example, by using ensemble methods (Lee et al., 2010).
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The inclusion of interaction and squared terms in both the treatment and outcome

model, has been advised in previous studies (de los Angeles Resa & Zubizarreta,

2016; Zagar et al., 2017). However, results from our simulation study showed that

this does not necessarily improve the performance of PS methods, unless the correct

model complexity terms are chosen.

While several simulation studies have compared different matching methods, most

of them were centred on methods that rely on the propensity score. To our knowl-

edge, this simulation study is one of the very few that accommodates different vari-

ations of matching, in terms of the nearest neighbour and optimal algorithm, as well

as the propensity score and Mahalanobis distances.

Efficient estimation of treatment effects is the ultimate goal of causal inference in an

observational study. Therefore, it is essential to note that covariate balance is only

a means to an end - not an end in itself. Accordingly, we align with the thought of

a previous study (de los Angeles Resa & Zubizarreta, 2016), which recommended

that the widely used threshold ASMD value of 0.1 for balancing covariates, should

not be used rigidly. Instead, it should be as flexible as possible, depending on the

available data and sample size after matching, such that a sufficient amount of data

which can ensure accuracy of treatment effect estimates within a reasonable level of

covariate balance, is retained from the matching process. Optimal methods like full

matching, which do not discard observations, do not share this problem.

Our simulation findings are reliable and generalizable because the simulations were

based on traditional study designs that mimic practice reality. However, our simu-

lation results might be limited to the scenarios considered by our simulation data.

Therefore, the results cannot be generalized to settings that have not been evaluated.
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Chapter 4

Tailoring the Mahalanobis

Distance Matching

This chapter is a slight modification of (Amusa et al., 2019b), which was attached in

the Appendix (10.1). In Amusa et al. (2019a); Zagar et al. (2017), as well as Chapter

3, while empirically evaluating the performance of some matching methods, we ob-

served the sub-optimal performance of the Mahalanobis distance matching (MDM),

even when it was used with propensity score calipers. Accordingly, we take an inter-

est in this particular matching technique and redefine how the Mahalanobis distance

can be used for matching, to reduce covariate imbalance and improve the efficiency

of treatment effect estimates.

We provide a basic description of the proposed method in Section 4.2. The perfor-

mance of the proposed method is evaluated through a series of Monte Carlo simu-

lations in Section 4.3, as well as an empirical application in Section 4.5.

4.1 Background

The Mahalanobis metric was the first choice of a distance measure that was uti-

lized for matching (Rubin, 1980). While taking account of the correlations among

variables X, the Mahalanobis distance ensures that a difference of one standard de-
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viation counts the same for each covariate in X. Like the propensity score, it is also

easy to implement. However, the Mahalanobis distance was initially developed for

use with multivariate normal data, and for that data type, it works fine. With non-

normal data, the Mahalanobis distance can exhibit some rather odd behaviour. If a

covariate contains extreme outliers, its variance will be exaggerated, and the Maha-

lanobis distance will tend to ignore that covariate in matching. For binary indicators,

the variance is most massive for events that occur about half the time, and it is small-

est for events with probabilities of occurrence near zero and one. Consequently, the

Mahalanobis distance gives higher weight to binary variables, with probabilities of

occurrence near zero or one, as compared to those with probabilities of occurrence

closer to 0.5.

4.2 Proposed Methodology

In this chapter, we introduce a rank-based Mahalanobis distance matching approach,

namely, the covariate balancing rank-based Mahalanobis distance (CBRMD) method,

to estimate treatment effects in the presence of confounding factors. We show how

to use a modified form of the Mahalanobis distance - the rank-based Mahalanobis

distance, proposed by Rosenbaum (2002), as matching weights that can reduce co-

variate imbalance between treated and control groups, and can efficiently estimate

treatment effects.

Consider a random sample of n = nt + nc, with each i (i = 1, 2, ..., n) belonging to

only one of a binary group Ti, for which the estimation of causal effects is of interest.

The ith unit received the treatment of interest (treated) if Ti = 1, and Ti = 0 if the

treatment was not received (control). Let Xi = (Xi1, ..., XiK) denote a K− dimen-

sional vector of observed pre-treatment covariates associated with unit i.

According to Stuart (2010), matching methods are characterized by four steps:

(i) Utilize a distance measure that can measure closeness in determining whether a
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treated unit is a good match for a control unit.

(ii) Implement a matching method based on the defined distance measure in (i).

(iii) Evaluate the matching quality, and perhaps iterating with Steps (i) and (ii) until

well-matched samples are produced.

(iv) Given the matched samples, treatment effects are estimated and outcome analy-

sis is carried out.

Recall that in conducting Mahalanobis distance matching, the Mahalanobis distance

between covariates of the treated unit Xt and the control unit covariates Xc, can be

defined as

d(Xt,Xc) = (Xt −Xc)
T Σ−1 (Xt −Xc), (4.1)

where Xt, Xc denote the treated and control group covariates, respectively, and Σ

is estimated as the sample covariance matrix of X in the treated group, since ATT is

our estimand of interest. The treated unit Xt is matched with control unit Xc with

the closest d(). In other words, the algorithm matches each treated unit to c(c ≥ 1)

control units that are closest in terms of d(), while the unselected control units are

discarded.

To avoid the rather odd behaviour of the Mahalanobis distance for non-normal and

outliers-present data, we replaced it with a rank-based Mahalanobis distance, de-

fined as follows:

drank(Xt,Xc) = (r(Xt)− r(Xc))
T adjΣ−1 (r(Xt)− r(Xc)), (4.2)

where r(Xt), r(Xc) are the ranks of each of the covariates belonging to the treated

and control groups, respectively. Average ranks are used for ties.

Further, note that adjΣ denotes the adjusted covariance matrix, which adjusts the Σ

(variance-covariance matrix of the ranked covariates) by pre-multiplying and post-

multiplying the covariance matrix of the ranks by a diagonal matrix whose diagonal
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values are the ratios of untied ranks standard deviation to the tied ranks standard

deviations of the covariates. In other words, adjΣ = D Σ D,

D =




Su
St1

. . .

Su
StK



,

where Su is the standard deviation of untied ranks, and StK is the standard devi-

ation of tied ranks for the kth covariate. Adjusting the covariance matrix was to

prevent heavily tied covariates, such as rare binary variables, from having increased

influence due to reduced variance.

From the matrix drank with dimension t× c, the proposed algorithm extracts the con-

trol units and its corresponding rank-based Mahalanobis distance on each row of the

matrix.

Finally, sample weights for the treated units are fixed at unity. For each treated unit,

the control group units that have the smallest rank-based Mahalanobis distance from

the individual treated units, are assigned the maximum weight value of one, while

the remaining control units are down-weighted equally by a constant factor.

If any control unit does not have the smallest rank-based Mahalanobis distance from

any treated unit, the CBRMD procedure does not give it a weight of zero. Instead,

it only down-weights them. When there are ties in the control units that have the

least rank-based Mahalanobis distance from any treated unit, the weight is approxi-

mately equally distributed among them so that every sample unit contributes to the

estimation.

The weights allocation of the ith control unit can be expressed mathematically as
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follows:

wi =





1, i ∈ min
∀c

drank

1
nc
, i /∈ min

∀c
drank,

(4.3)

where nc is the number of control units. The proposed algorithm is described by the

following steps:

Algorithm 1 iCBRMD Algorithm
Step 1: Sort the data in order of the treatment indicator, with corresponding unit
identification number. Rank the data.
Step 2: Compute the rank-based Mahalanobis distances of each of the treated
units with the control group units, using Equation (4.2), and store the distances in
a matrix with t rows and c columns.
Step 3: Create a vector which stores the column number of the control unit that
has the smallest distance with the treated units in each row.
Step 4: Extract a frequency distribution based on Step 3 to identify the number of
times each control unit had the smallest distance. Control units with zero frequen-
cies are down-weighted approximately equally.
Step 5: Treated units have weights that are fixed at 1, while control units have
weights based on Step 4.

Adopting the Neyman-Rubin causal model, let Yi(t), t = 0, 1 be the potential out-

comes and the observed outcome Yi = TiYi(1)+(1−Ti) Yi(0). The average treatment

effect on the Treated (ATT) can be estimated as ATT = δ̂ATT = E(Y 1 − Y 0|T = 1).

The expectations can then be obtained from marginal computations:

E[Y 1 = 1] =
1

nt

nt∑

i=1

wi yi,

E[Y 0 = 1] =
1

nc

nc∑

i=1

wi yi,

where wi denotes the ATT weights induced by CBRMD. For non-linear outcomes,

a model-based approach, which involves incorporating the CBRMD weights by a

weighted regression of the outcome on the treatment status indicator, can be used.
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4.3 Simulation Study

In this section, we study the numerical performance of the CBRMD methodology

via a series of Monte Carlo simulations in two phases: (i) we study the large-sample

properties of the CBRMD technique; (ii) evaluate its effectiveness in balancing co-

variates and efficient estimation of treatment effects. The CBRMD technique is com-

pared to Mahalanobis distance matching, as well as the inverse probability weight-

ing (IPW). The choice of IPW as one of the methods for benchmarking the perfor-

mance of the CBRMD method is due to its familiarity, and its representativeness of

methods that produce continuous weights.

Phase 1: The first phase of simulation follows the Kang & Schafer (2007) design,

which has been used in the causal inference literature to evaluate the performance

of pre-processing techniques. We replicate the Kang and Schafer simulation to study

the large-sample performance of the CBRMD method, relative to the raw data. We

conducted 1000 Monte Carlo simulation runs for sample sizes, 200, 500, 1000, and

2000. In brief, the data generation of the design is as follows:

Yi = 210 + 27.4Xi1 + 13.7(Xi2 + Xi3 + Xi4) + εi, where εi ∼ N(0, 1). Note that the

X ′is are independent, standard normally distributed and the treatment assignment

model was generated with probability πi = 1
1+e−(Xi1+0.5Xi2−0.25Xi3−0.1Xi4)

.

Phase 2: In the second phase, the simulations were made to be as realistic as pos-

sible, by simulating from real-life data. We generated treatment and outcome vari-

ables from the covariates of the Lalonde-PSID data. The data is a hybrid of program

participants (treated units) from the experimental data of LaLonde (1986), while the

control group was drawn from the Panel Study of Income Dynamics (PSID) data.

The dataset comprises ten covariates, including age (age), indicator variables for un-

employment in 1974 (u74) and 1975 (u75), marital status (married), lack of a high

school diploma (nodegree), number of years of education (education), hispanic race

(hispanic), black race (black), and real earnings in 1974 (re74) and 1975 (re75). The
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outcome was the actual earnings in 1978. This data has a reputation of being used

as a benchmark in the causal inference literature. The presence of stark imbalance

motivated our choice of this data. Furthermore, the data will enable us to evaluate

how well the CBRMD method can recover the treatment effect estimates from the

experimental version of the data.

We considered outcomes that have linear, as well as non-linear functions. In spe-

cific terms, we discussed four types of outcomes: continuous (normal distribution),

binary (binomial distribution), count (Poisson distribution), and time-to-event (sur-

vival distribution). The idea is to mirror some outcome variables that are typically

encountered in the applied sciences. For example, household income, presence or

absence of diseases, number of antenatal care visits by pregnant women and time to

remission from cancer, are usually described by the normal, binomial, Poisson, and

survival distributions, respectively.

4.3.1 Data Generation

Like (Iacus et al., 2012), we retain the covariates of the Lalonde-PSID data; we gen-

erate the treatment variable Ti ∼ Bernoulli(πi), where πi is obtained from a logistic

regression model, with coefficients being the ones from fitting such a model to the

real data, as shown in Equation (4.4).

logit(πi) = α0 + α1 age+ α2 edu+ α3 re74 + α4 re75 + α5 married+

α6 black + α7 hispanic+ α8 nodegree+ α9 u74 + α10 u75 .

(4.4)

The outcome variables were generated for each of the following:

• Continuous outcomes: Yi =
∑10

k=1 βkXk + βtrtTi + εi, where εi ∼ N(0, 1) .

• Binary outcomes: Yi ∼ Bernoulli(Pi), where log
(

Pi
1−Pi

)
=
∑10

k=1 βkXk + βtrtTi .

• Count outcomes: Yi ∼ Poisson(ηi), where log(ηi) =
∑10

k=1 βkXk + βtrtTi .
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• Time-to-event outcomes: For time-to-event or duration outcomes, we used a

data-generating process, described by a previous study (Bender et al., 2005).

Survival times ti were generated as ti =
(
−log(Ui)
λeLP

) 1
v , where Ui ∼ Uniform(0, 1),

and the linear predictor, LP =
∑10

k=1 βkXk + βtrtTi. We set v = 2 and λ =

0.000001.

This process generates survival times from a Cox-Weibull distribution. We assumed

that all event times are observed for this chapter.

The model coefficients for the outcome models are set as β0 = 0, β1 = β2 = β3 =

β4 = log(1), β5 = β6 = log(2), β7 = β8 = log(1.75), and β9 = β10 = log(1.5).

4.3.2 Assessing the Performance of Treatment Effect Estimates

While incorporating the weights generated from the CBRMD method, treatment ef-

fect estimates were determined by regressions of the particular outcome types on

the treatment variable. For phase 2 simulations, the performance of treatment effect

estimates was compared to the Mahalanobis distance matching and inverse proba-

bility weighting.

Except for the estimation of the difference in means for continuous outcomes, the

other three treatment effects, namely; odds ratio (binary outcomes), rate ratios (count

outcomes) and hazard ratios (duration outcomes), are not collapsible. Collapsibility

refers to the coincidence of conditional and marginal treatment effects. Thus, for

each of the conditional treatment effects (odds ratios, hazard ratios and rate ratios),

we determined their corresponding marginal treatment effects δ.

For each phase, 1000 datasets were simulated. The performance of estimated treat-

ment effects was assessed by calculating the absolute bias as
∣∣∣¯̂δ − δ

∣∣∣ and RMSE as
√

(
¯̂
δ − δ)2 + var(δ̂), where ¯̂

δ is the mean of the 1000 regression coefficients.
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4.4 Simulation Results

In this section, we present and explain the results obtained from analysing the sim-

ulated datasets. In terms of the large-sample performance of the CBRMD method,

relative to the raw data, Figure 4.1 shows that increasing the sample size decreased

the bias and RMSE of the estimated treatment effects for the CBRMD technique.

Figure 4.1: Assessment of large-sample properties of the CBRMD method, based the Kang
and Schafer design

Table 4.1 shows the absolute bias and RMSE of the estimated treatment effects un-

der the different outcome types considered. Figure 4.2 also supports the findings of

Table 4.1, as it visualizes the deviation of the estimated treatment effects from the

true effect, across the simulated datasets. Across the different types of estimated

treatment effects, in terms of absolute bias and RMSE, there is evidence of a better

performance of the CBRMD method, relative to the raw data.

Across the board, the CBRMD method outperformed MDM alone. For the difference

in means, it resulted in about 97% reduction in both absolute bias and RMSE. For OR,

it further reduced by 52% and 40% in absolute bias and RMSE, respectively. For RR,

it resulted in about 59% reduction in both absolute bias and RMSE. For HR, 89%

reduction in both absolute bias and RMSE was observed. When estimating hazard
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ratios, it was observed that the CBRMD technique outperformed both MDM and

IPW.

Table 4.1: Comparison of the ATT estimates for the different outcome types.

Method Difference in means Odds ratios Rate ratios Hazard ratios

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Unadjusted 21813.29 21814.84 9.26 11.04 7.61 7.61 5.19 5.23
CBRMD 630.12 694.99 4.42 6.61 3.15 3.19 0.56 0.69

IPW 51.15 490.49 4.12 6.96 3.05 3.11 1.97 2.18
MDM 3329.73 3355.56 4.95 6.4 3.57 3.58 2.34 2.39

Note: Bias is measured in the absolute form.

4.5 Case Study: The Lalonde Data

In this section, we illustrate the CBRMD technique in real data setting. We reana-

lyzed the Lalonde-PSID data, whose covariates the simulation datasets were gener-

ated from. This data has a reputation of being used as a benchmark in the causal in-

ference literature. The unique availability of experimental version of the data helps

us to find out how well the application of the iCBRMD technique on the observa-

tional dataset recovers the experimental target.

As a form of validation exercise, we applied CBRMD to the Lalonde dataset that

has been described in the simulation study. Figure 4.3 visualises balance of each

of the ten covariates from the simulation data after applying the adjustment tech-

niques. We superimposed a horizontal line on the panel to denote ASMD of 0.25,

as some authors have suggested that ASMD values that exceed this threshold may

indicate significant imbalance (Ho et al., 2011; Imai et al., 2008; McCaffrey et al.,

2013). The Lalonde-PSID data had ASMD values ranging from 0.114 to 5.446. The

CBRMD method substantially improved the balance on the ten covariates, with av-

erage ASMD values ranging from 0.002 to 0.215. Except for one covariate, IPW con-

siderably reduced the covariate imbalance. MDM did not perform well, as it only

induced sufficient amount of balance on five covariates.
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Figure 4.2: Boxplot of estimated treatment effects for the different outcome types

Figure 4.3: Covariate balance in the Lalonde data
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A simple difference in means of the experimental version of the data yielded an

average of $1794 with a 95% confidence interval of [551, 3038]. Table 4.2 shows

the difference in means estimates and their associated 95% confidence interval from

the adjustment methods. CBRMD and IPW produced statistically significant esti-

mates, Mahalanobis distance matching did not. The difference in means between the

treated group and the reweighted control group from the CBRMD method, yields an

ATT estimate of $2064.5, with a 95% confidence interval of [150, 4803] - an estimate

that is close to the experimental target.

The CBRMD and IPW adjusted estimates suggest that the job training programs sig-

nificantly increased post intervention earnings. This is in agreement with findings

from previous studies (Hainmueller, 2012; Diamond & Sekhon, 2013).

Table 4.2: Causal effect estimation in the Lalonde data

Estimator Difference in means 95% Confidence Interval

Unadjusted -15204.8 (-17468.80, -12940.75)
CBRMD 2064.5 (150, 4803)

IPW 2796.2 (1304, 4964)
MDM -1482.1 (-3266.2, 301.9)

Note: Standard errors of the weighted estimators were boot-
strapped with 2000 replicates

4.6 Discussion and Conclusion

In this chapter, we proposed a new pre-processing technique, which is based on

computations from a rank-based Mahalanobis distance. Through simulations and

an empirical application, we showed the effectiveness of the proposed method in

terms of improvement in covariate balance, and efficient estimation of treatment ef-

fects.

It is noteworthy that the CBRMD method performs better with increasing sample
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size. This was evident from the results obtained from the simulations and the case

study that was carried out in this chapter. Large sample sizes are typical of epidemi-

ological studies and national surveys.

The fact that we considered the estimation of different outcome-specific treatment

effects is also a strength of the study in this chapter. We acknowledge that the Ma-

halanobis distance matching and IPW methods were only used as a benchmark for

evaluating the performance of the CBRMD technique. The combination of CBRMD,

with other pre-processing methods, may be considered in future studies.

When causal effects are of interest in the presence of confounding variables, as in

the case of observational studies, the proposed covariate balancing rank-based Ma-

halanobis Distance (CBRMD) method, is a viable alternative method that can im-

prove covariate balance, bias reduction and efficient estimation of treatment effects.

However, we identified a gap in the utilized approach of obtaining the weights in

the CBRMD technique. Therefore, in the next chapter, we will discuss this gap and

improve on it by modifying the CBRMD technique.
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Chapter 5

Improving the CBRMD Technique

In Chapter 4, we provided a new approach to estimating causal treatment effects,

termed the covariate balancing rank-based Mahalanobis distance (CBRMD) match-

ing technique, which is based on redefining how the Mahalanobis distance can be

used for matching. By allocating equal weights of a constant factor to control units

that could not attain the smallest rank-based Mahalanobis distances from any treated

group, we believe that the CBRMD method does not explicitly create a fair play sce-

nario. Accordingly, this chapter considers improving on the CBRMD method by

providing new insights and numerical explorations. In addition, a web-based Shiny

application written in R statistical language, was developed and deployed online to

demonstrate the implementation of the proposed method.

5.1 Background

The CBRMD methodology is primarily based on weights computed from a rank-

based Mahalanobis distance. In this chapter, we build on the previous proposal

of the CBRMD methodology and introduce a slight modification, by considering a

proper and more explicit definition of down-weighting control units, that do not

have the smallest rank-based Mahalanobis distances from any treated unit. In addi-

tion, unlike the CBRMD, which allocates weights for the control group unit based on

the number of times a control unit has the smallest rank-based Mahalanobis distance
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from the individual treated units, we consider obtaining the control group weights

from the ranked distances in the raw form. They are then raised by a constant factor

λ, within the range (0, 1).

The general framework of the proposed method is explained in Section 5.2. In Sec-

tion 5.3, we used a real-life dataset to study the effect of varying the values of pa-

rameter λ, on the stability of the weights and covariate balance. In Section 5.4, the

comparative performance of the proposed method was performed using the Kang &

Schafer (2007) simulation design. Additionally, a bias-variance trade-off of the dif-

ferent values of parameter λ, was explored using the simulated dataset. We report

on bias and root mean squared error (RMSE). The simulation results are presented

in Section 5.5. We analyzed a case study in Section 5.6.

5.2 Methodology Proposed

The definitions made in Section 4.2 still holds in this new proposal. The central mes-

sage of this chapter is to redefine how the weights are computed from the rank-based

Mahalanobis distances, differently from the CBRMD algorithm described in Section

4.2. In the CBRMD methodology, the control group is allocated weights based on

the frequency distribution of units having the smallest rank-based Mahalanobis dis-

tances, while the remaining control group units, which could not take values of 1,

are uniformly allocated weights by a constant factor, as in Equation (4.3).

By allocating weights of equal values to control group units that did not have the

smallest rank-based Mahalanobis distances, the weights allocation in Equation (4.3)

implies that the algorithm does not take into account the magnitude of the corre-

sponding distances of the remaining control units. This is improved upon by utiliz-

ing the matrix drank in Equation (4.2), as described in the following algorithm:

The above-described methodology, termed as the improved covariate balancing rank-
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Algorithm 2 iCBRMD Algorithm
Step 1: Sort the data in order of the treatment indicator, with corresponding unit
identification number. Rank the data.
Step 2: Compute the rank-based Mahalanobis distances of each treated units with
the control units, using Equation (4.2), and store the distances in a matrix with t
rows and c columns.
Step 3: For each row of matrix drank, the distances are ranked in ascending order
of magnitude.
Step 4: The ranks obtained in Step 2 are raised to a constant factor λ : λ ∈ (0, 1)
as λj−1, where j is the rank of the corresponding control unit.
Step 5: The optimal value of λ that yields the minmax standardized mean differ-
ence on all the covariates is selected.
Step 6: Treated units have weights that are fixed at 1, while control units have
weights based on Step 5.

based Mahalanobis distance matching method (iCBRMD), have weights for the con-

trol group units with j = 1 being the same as that of the CBRMD. This implies that

we are still able to maintain a clear demarcation of control units that have the small-

est distances with each treated unit from others. In other words, for j = 1, λj−1

attains its maximum for any value of λ, but decreases at a constant rate, with in-

creasing values of j.

The proposed methodology can be implemented through a web-based Shiny appli-

cation written in R statistical language, which is being hosted by the RStudio server

at https://amusasuxes.shinyapps.io/iCBRMD/.

5.3 Exploring Parameters of the Proposed Method with Real-

life Data

The Ohio Heart Health Center (OHHC) operators at the Lindner Christ Hospital in

Cincinnati, Ohio carried out an observational study in 1997. In brief, the Lindner

dataset comprises information on 996 patients who received an initial Percutaneous

Coronary Intervention (PCI), received at the health facility at that time. The treated

group are patients who received the PCI with an additional treatment abciximab
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(abcix) - an expensive, high-molecular-weight IIb/IIIa cascade blocker, while the

control group are those who received the PCI alone. Covariates include, an indica-

tor for recent acute myocardial infarction (acutemi), left ventricle ejection fraction

(ejecfrac), height, number of vessels involved in initial PCI (ves1proc), an indicator

for coronary stent insertion (stent), gender (female), diabetic indicator (diabetic) and

an indicator for survival at six months (sixMonthSurvive). Details of this dataset and

its analysis have been published elsewhere (Abdia et al., 2017; Kereiakes et al., 2000).

We apply the proposed methodology to the Lindner dataset provided in the twang

package (McCaffrey et al., 2013) of R software. Specifically, we examined covariate

balance and stability of weights, at different λ values. The aim is to explore the effect

of changing these parameter λ values, on the analysis of interest.

Figure 5.1: Relationship between the adjustment parameter and the variability of the
weights in the Lindner study

We report the coefficient of variation of the weights (Figure 5.1) and the correspond-

ing covariate balance (Table 5.1), from varying the values of parameter λ for the

proposed method. Both Figure 5.1 and Table 5.1 are an indication of the importance
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Table 5.1: Assessment of covariate balance for different levels of weights adjustment in the
Lindner study

Absolute standardized mean difference

Covariates Unadjusted λ = 0.01 λ = 0.1 λ = 0.5 λ = 0.9

stent 0.25 0.08 0.25 0.25 0.25
height 0.00 0.02 0.00 0.00 0.00
female 0.11 0.01 0.11 0.11 0.11

diabetic 0.15 0.08 0.15 0.15 0.15
acutemi 0.37 0.19 0.37 0.37 0.37
ejecfrac 0.18 0.01 0.18 0.18 0.18
veslproc 0.43 0.03 0.43 0.43 0.43
survival 0.19 0.03 0.19 0.19 0.19

of the parameter λ. Figure 5.1, for example, shows how changing λ from 0 to 1 can

vary the coefficient of variation of the weights between 1.25 and 1.67. The optimal

λ value appears to be 0.24 for this dataset. There seems to be an increasing trend

from that optimal point, as well as a turning point at about λ = 0.95. For Table 5.1,

the effect of changing the λ values on the improvement or otherwise of the balance

induced on the covariates, was observed. The least absolute standardized mean dif-

ference (ASMD) values were observed for the covariates at λ = 0.01. However, λ

values of at least 0.1, increased the covariate imbalances and produced high ASMD

values. Further, λ values in this range did not provide substantially different ASMD

values.

It is noteworthy that the λ value which produced the most stable weights (λ = 0.24),

contributed high ASMD values and worsened the covariate imbalances (results not

shown). Indeed, there is a clear trade-off between balance and variability. It is there-

fore essential to explore and regulate this trade-off for a given dataset.

5.4 Simulation Study

We modified the Kang & Schafer (2007) simulation study, which has been described

in Chapter 4 and has been the standard for evaluating the performance of pre-

54



processing techniques in causal inference (Amusa et al., 2019b; Imai & Ratkovic,

2014; Zubizarreta, 2015). We randomly generated 1000 samples, each of which com-

prised sizes of n = 200, 1000. In alignment with practice reality, we assumed that the

treatment assignment model is unknown, by misspecifying the coefficients of the

model terms by assuming πi = 1
1+e−(Xi1+Xi2−Xi3−Xi4)

.

We calculated the absolute bias and root mean square error (RMSE) and assessed

the bias-variance trade-off for a grid of equally spaced λ values, between 0 and 1.

Finally, the stability of the proposed method weights was evaluated relative to the

IPW and CBRMD weights, in terms of the mean coefficient of variation (CV). Ex-

treme or outlying weights were assessed with the mean 95th and 99th percentiles,

calculated across the simulations. Also, for outcome assessments, the performance

of the iCBRMD method was evaluated, relative to the other methods, in terms of

absolute bias and RMSE of the estimated treatment effects.

5.5 Simulation Results

Figure 5.2 show the absolute bias (left panel) and RMSE (right panel) of estimated

treatment effects for n = 200 and n = 1000, respectively. These figures show how

the values of λ can drastically vary the absolute bias and RMSE of estimated treat-

ment effects. Optimal λ values for the absolute bias were observed at 0.85 and 0.43,

for the corresponding sample sizes n =200 and n = 1000, respectively. The RMSEs,

on the other hand, had optimal λ values at 0.99, for both sample sizes. There was

further a trend of increasing λ values, resulting in reduced RMSEs. Irrespective of

the λ values, the proposed method had smaller bias and RMSE values for the larger

sample size (n = 1000).
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Figure 5.2: Absolute bias (left panel) and RMSE (right panel) of the iCBRMD method across
different levels of adjustment from the simulation study

In terms of stability, the CV of weights from the proposed method (at any λ value)

was always lower than the other adjustment techniques. The proposed technique,

with higher values of λ, produced more stable weights in this simulation study.

Aberrant or outlying weights were measured using the 95th and 99th percentiles.

While the IPW method produced less aberrant weights, the CBRMD method had

the lowest 99th percentile value for sample size n = 200, the proposed method pro-

vided massively extreme weights at higher λ values. Smaller λ values, like λ = 0.01,

produced reasonable weights.

Results from Table 5.2 show that the adjustment techniques indicated an overall re-

duction in absolute bias and RMSE, as compared to the unadjusted data. The abso-

lute bias and RMSE of the proposed method, regardless of the values of parameter
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Table 5.2: Weight diagnostics and performance assessment of different methods in the sim-
ulation study

Stability Outcome Assessment

Sample size Method CV P95 P99 Absolute bias RMSE

n=200 Unadjusted - - - 25.00 25.43
IPW 1.73 2.05 6.54 1.72 8.51
PSM - - - 3.08 5.91

CBRMD 1.28 2.95 6.42 0.13 8.15
iCBRMD (λ=0.01) 1.28 2.98 6.46 0.13 8.12
iCBRMD (λ=0.1) 1.00 1001.70 1001.70 0.07 5.19
iCBRMD (λ=0.5) 1.00 200.34 200.34 0.06 5.19
iCBRMD (λ=0.9) 0.99 100.17 100.17 0.06 5.19

n=1000 Unadjusted - - - 24.94 25.03
IPW 1.99 2.14 6.91 0.53 5.14
PSM - - - 3.98 6.11

CBRMD 1.53 2.95 7.53 0.01 4.21
iCBRMD (λ=0.01) 1.53 2.97 7.58 0.01 4.20
iCBRMD (λ=0.1) 1.00 1109.00 1109.00 0.01 2.32
iCBRMD (λ=0.5) 1.00 587.12 587.12 0.01 2.32
iCBRMD (λ=0.9) 1.00 499.05 499.05 0.01 2.32

λ, are smaller than those of the other methods. From Table 5.2, it is worth noting that

even though higher values of λ for the proposed method produced better results in

terms of bias and efficiency. It is pertinent to explore within reason, values of λ that

produced stable and less aberrant weights.

5.6 Case Study: The Lalonde Data

We further applied the proposed iCBRMD method to the Lalonde-PSID data that

was described in Chapter 4. The effectiveness of iCBRMD for reducing selection

bias, was evaluated along with the PSM, IPW, and CBRMD methods. In the causal

inference literature, the primary advice to this point, has been to select the method

that yields the best balance (Harder et al., 2010; Ho et al., 2007; Rubin, 2006). Though

defining the best balance is complex, since it involves trading off balance on multi-

ple covariates. For this case study, we fixed the optimal value of λ that resulted in

the fewest number of large absolute standardized mean differences (ASMD).
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While we superimposed a horizontal line to denote ASMD of 0.25, Figure 5.3 shows

a summary of selection bias (measured by ASMD) before applying the adjustment

techniques and reduction in the covariate imbalance post adjustment. Before any ad-

justment, there was a high degree of covariate imbalance in the original data, with

ASMD values ranging from 0.114 to 5.446. The iCBRMD method substantially im-

proved the balance on the ten covariates, with average ASMD values ranging from

0.001 to 0.220. Except for two covariates, IPW considerably reduced the covariate im-

balance. PSM did not perform well, as it only induced sufficient amount of balance

on three covariates. Both CBRMD and iCBRMD methods performed remarkably

well in reducing covariate imbalances, as they both achieved ASMD values well be-

low the threshold of 25%. Overall, iCBRMD outperformed the other three methods.

Figure 5.3: Assessment of covariate balance

We next is to evaluate the treatment effects. Due to the stark imbalance of the

Lalonde data, they are generally regarded as a tricky adjustment problem (the un-

adjusted difference in mean outcomes is far away from the experimental target at

58



$-15204.8). A simple difference in means of the experimental version of the data

yielded an average of $1794 with a 95% confidence interval of [551, 3038]. Using

weights obtained from the adjustment techniques, we calculated a weighted differ-

ence in means for each of them. For PSM, we calculated a simple difference in means

for the matched data. We performed bootstrapping (2000 samples) to produce 95%

confidence intervals (CIs), which has been shown to account for uncertainty in the

matching procedure (Stuart, 2010). Table 5.3 shows the difference in means esti-

mates and their associated 95% confidence interval from the adjustment methods,

relative to the raw data. The difference in means between the treated group and

the reweighted control group from the iCBRMD method, yielded an ATT estimate

of $1752.2, with a 95% confidence interval of [15, 3876] - an estimate that is close to

the experimental target. Except for PSM, the adjusted estimates suggested that the

job training programs significantly increased postintervention earnings. This is thus

an agreement with findings from previous studies (Hainmueller, 2012; Diamond &

Sekhon, 2013).

Table 5.3: Recovering the Lalonde’s Experiment using its nonexperimental version

Estimator Difference in means 95% Confidence Interval

Unadjusted -15204.8 (-17468.80, -12940.75)
PSM -977.1 (-2797.2, 1061.8)
IPW 2796.2 (1304, 4964)

CBRMD 2064.5 (150, 4803)
iCBRMD 1752.2 (15, 3876)

Note: Standard errors of the weighted estimators were boot-
strapped with 2000 replicates

5.7 Discussion and Conclusion

In this chapter, we propose iCBRMD - a technique for estimating causal effects in

observational studies. It was built on the previous proposal of the CBRMD method-

ology (Amusa et al., 2019a). We have demonstrated numerically, the satisfactory

performance of the proposed iCBRMD method to induce balance on background co-
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variates, as well as demonstrating a striking decrease in the bias and an increase in

efficiency of the estimated treatment effects. The proposed method produced more

balanced data than did the other matching methods considered. It also competed

favourably with the other considered methods in terms of the accuracy of the esti-

mated treatment effects. Both small and large samples produced similar results in

terms of comparison with the other considered methods.

The proposed method further performs better with increasing sample sizes. It has

a particularly interesting parameter that provides insight into the behaviour of less

variable and less aberrant weights that can maximize covariate balance. Our pro-

posal has opened doors to explore the option of λ values within reason, to maximize

the desired objectives of the analysis of a given dataset. If the coefficient of variation

does not increase substantially, then it may be worth tightening the covariate bal-

ance. For outcome analysis, the obtained weights must be assessed for aberrance.

However, achieving sufficient covariate balance is the ultimate goal, hence, if the

optimal value of λ in that regard produces aberrant or outlying weights, it might be

necessary to trim the weights, as was done for PS weighting in previous studies (Lee

et al., 2011; Stürmer et al., 2010).

The PS model specifications were the default, off-the-shelf versions of each of the

methods since that is what most applied researchers would likely do. For exam-

ple, logistic regression with carefully chosen interactions may perform better than

the simple main effects-only model used here. We, therefore, acknowledge that the

propensity score methods could perform better if the PS model specifications were

tweaked; thus, we avoid overstating the superiority of the proposed method over

PS methods. Future work may include the consideration of extensions and appli-

cations of the proposed method to a variety of other settings. Most importantly,

and currently being explored by us, is the automation of selection of the optimal

parameter λ value that can simultaneously produce stable weights that maximizes
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covariate balance, while reducing bias and increase efficiency. Further, It is recom-

mended to extensively study the effect of trimming weights obtained from the pro-

posed method on its performance.

This new proposal does not only serve as an improved version of the CBRMD method,

but can also be regarded as its generalized version, as it allows us to vary parameter

values that optimize the desired cost function (covariate balance and efficiency) that

may be of interest to the analyst.

A major limitation of the method proposed in this chapter, as well as the other meth-

ods investigated in Chapters 3 and 4, is that they cannot directly incorporate co-

variate balance into the weight function applied to the sample units. Methods that

exploit this forehand knowledge about the data typically reweights observations ap-

propriately to achieve balance, but at the same time, keeps the weights as close as

possible to the base weights to prevent loss of information, while retaining efficiency

for the subsequent analysis. We will thus explore one of these methods in the next

chapter.
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Chapter 6

Optimal Balance Weighting

Methods: Entropy Balancing

In the previous chapters, the introduced adjustment techniques require going through

a diagnostic step to ensure that the covariates are sufficiently balanced. Even when

these methods provide adequate covariate balance on many variables, one or two of

them might not be adequately balanced. In this chapter, we introduce entropy bal-

ancing, an adjustment technique, which belongs to the family of empirical calibra-

tion weighting (EBCW) methods discussed in Section 2.2.2. These EBCW methods,

otherwise known an optimization-based methods, have been utilized in the litera-

ture (Li et al., 2018; Chan et al., 2016; Zubizarreta, 2015; Imai & Ratkovic, 2014; Hain-

mueller, 2012). These methods are automated covariate balancing methods, they

have have an inbuilt facility of directly incorporating a balance condition for the

moments (not just the means) of the covariates in the estimation procedure, thereby

ensuring perfect covariate balance. Accordingly, the conventional balance checking

is not necessary for such methods.

6.1 Background

More recently, weighting methods have taken centre stage in efficiently estimat-

ing treatment effects when treatment assignment is confounded with background
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covariates. Though non-technically speaking, the matching methods described in

Chapters 3, 4 and 5 are also weighting methods with discrete weights and can only

produce finite many possible weights. The weighting methods discussed in this

chapter, do not have this constraint and are inherently different from matching.

Weighting is a nonparametric balancing strategy, which applies weights to sample

units to match the distribution of a target population. The literature on weighting

methods which agree with the first general weighting approach described above,

has been dominated by the inverse probability weighting (IPW) method, originating

from survey research (Crump et al., 2009; Hirano & Imbens, 2001; Hirano et al., 2003;

Imbens, 2004). IPW method is the most common weighting adjustment to applied

researchers and practitioners, especially in the medical and health sciences (Austin

& Stuart, 2015).

Despite their popularity and relatively high usage, propensity score (PS) methods,

with specific reference to IPW, rely heavily on the correct specification of the PS

model, as slight misspecification of the PS model will result in a substantial bias of

the estimated treatment effects (Kang & Schafer, 2007). It takes a highly skilled user

to specify what is close to a correct PS model. Consequently, iteratively tweaking

the PS models, until the measured baseline covariates are balanced, can be quite

tedious. Despite this cycle of attempting to fit the correct PS model, achieving a

sufficient level of covariate balance can occasionally be elusive and additional im-

balances may be introduced when using the IPW method.

We present entropy balancing - an optimization-based weighting method, which

shares the spirit of the first general weighting approach described above. Entropy

balancing (Hainmueller, 2012) achieves covariate balance remarkably. Relative to

the other optimization-based weighting methods, we were particularly interested

in entropy balancing, because it is the oldest and more computationally attractive.
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Prior studies (Harvey et al., 2017; Setodji et al., 2017; Amusa et al., 2019d,c) that

compared some EBCW techniques with the IPW method, confirmed the better per-

formance and computational simplicity of the entropy balancing technique.

We aim to provide an intensive exploration of the use of entropy balancing for

health services/outcomes research. Not many applications of this highly effective

method have been utilized in the medical and health literature for balancing in

quasi-experimental research designs. An in-depth search from the Web of Science

Core Collection, excluding methodology-based articles, identified 170 published ar-

ticles that utilized entropy balancing, and only a few of them (26.19%) were in the

medical and health sciences. A majority of the applications of entropy balancing

have been in the social sciences. A few of these applications in the medical and

health literature can be found in Adhikary et al. (2016); Brettschneider et al. (2017);

Grupp et al. (2017); Mattke et al. (2015); Pearson et al. (2014).

Using the IPW method as a benchmark, the performance of entropy balancing was

examined via Monte Carlo simulations, modelling situations typical of the medical

and health sciences. Finally, we illustrate the application of entropy balancing with

an empirical case study, exploring changes in its various parameters, as well as its

effect on achieving balance on the measured baseline covariates, further focusing

also on accuracy and precision in estimating treatment effects.

6.2 Entropy Balancing Technique

The definitions made in Section 4.2 are still applicable here. In this section, while

estimating the average treatment effect among the treated (ATT), we describe the

entropy balancing, for adjusting the inherent non-randomization of treatments that

is characterized by an observational study. The IPW method has been briefly de-

scribed in Section 2.2.1.
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Entropy balancing is a preprocessing method that utilizes a maximum-entropy reweight-

ing scheme to directly incorporate covariate balance in terms of means or/and higher-

order moments into the weight function (Hainmueller, 2012). In other words, it as-

signs a scalar weight to each sample unit such that the reweighted groups satisfy a

set of balance constraints that are imposed on the sample moments of the covariate

distributions. Entropy balancing can, therefore, guarantee perfect covariate balance,

as well as maximum retention of information (Parish et al., 2018). The reweight-

ing scheme belongs to the family of maximum-entropy methods, which has roots in

information theory and applied statistics (Kullback, 1959; Golan, 2018; Ciavolino &

Carpita, 2015; Aria et al., 2018). The weights wi are selected to minimize the relative

entropy:

min
wi

H(ω) = min
wi

∑

i|T=0

wi log(wi/qi) , (6.1)

subject to the constraints:

∑

i|T=0

wi cri (Xi) = mr, for r = 1, . . . , R (6.2)

∑

i|T=0

wi = 1 (6.3)

wi ≥ 0, ∀i, for T = 0. (6.4)

The above optimization problem minimizes the loss functionH(ω) to obtain weights

that satisfy the balance conditions for the user-specified covariate functions cri (Xi) =

mr imposed on the covariate moments of the reweighted control group.

The loss function H(ω) is a distance metric defined by the directed Kullback (1959)

entropy divergence, with estimated weights wi and base weights qi. A vector of uni-

form weights, with qi = 1
nc

is usually set as the base weights. Let Xi = (Xi1, ..., XiK)

denote a K− dimensional vector of observed pre-treatment covariates associated

with unit i. We denote mr = 1
nt

∑
i|T=1 cri (Xi) as the formulation containing the

rth order moment of a given variable X ∈ {X1, ..., Xk} from the treated group,
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while the moment functions are specified for the control group as cri (Xi) = Xr
i or

cri (Xi) = (Xi − E(Xi))
r, with mean E(Xi). Equation (6.2) is the balance constraint

specified in terms of the rth moment to be achieved on all covariates. Equation (6.3)

is the normalization constraint, which ensures that the weights sum to a normalized

constant of one. Equation (6.4) is the non-negativity constraint, because the distance

metric is not defined for negative weight values.

To obtain the entropy balancing weights, we minimized the loss function H(ω) sub-

ject to the constraints given in Equations (6.2) to (6.4). Using the Lagrange multiplier,

the primal optimization problem is given as

min
ω,λ0,λ

Lp =
∑

i|T=0

wi log(wi/qi) +
R∑

r=1

λr


∑

i|T=0

wi cri (Xi)−mr




+ (λ0 − 1)


∑

i|T=0

wi − 1


 ,

(6.5)

where λ0 − 1 is the Lagrange multiplier for the normalization constraint, and λr is

the Lagrange multiplier for the rth balance constraint.

Given that the dimensionality of the system of equations in (6.5) is nc + R + 1, it is

computationally inconvenient. Therefore, we construct the optimization problem as

a dual formulation so that the dimension in (6.5) can be reduced. To do so, we first

obtained the optimal solution for each weight w∗i , by using the Karush-Kuhn-Tucker

(KKT) condition, also known as the first derivative test:

∂Lp

∂wi
= (log(wi/qi) + 1) +

∑

r

λr cri (Xi) + (λ0 − 1) = 0 (6.6)

and
∂Lp

∂λ0
=
∑

i|T=0

wi − 1 = 0. (6.7)
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Equation (6.6) becomes

log(wi/qi) = −1−
∑

r

λr cri (Xi)− (λ0 − 1),

from which it follows that

wi =
qi e

(−
∑

r λr cri (Xi))

eλ0
. (6.8)

Since
∑

i|T=0wi = 1 from (6.7), we have

∑

i|T=0

qie
(−λ0−

∑
r λr cri (Xi)) = 1

eλ0 =
∑

i|T=0

qie
(−

∑
r λr cri (Xi))

λ0 = log


∑

i|T=0

qie
(−∑

r λr cri (Xi))


 . (6.9)

Plugging (6.9) into (6.8), we have the optimal solution for each weight as

w∗i =
qi e

(−
∑R

r=1 λr cri (Xi))

∑
i|T=0 qi e

(−
∑R

r=1 λr cri (Xi))
. (6.10)

Since
∑

i|T=0wi = 1, we next formulate the dual problem as

Ld =
∑

i|T=0

wi log(wi/qi) +

R∑

r=1

λr


∑

i|T=0

wi cri (Xi)−mr


 .

The superscript d indicates it is a dual. We justify its duality by inserting (6.10)

back into (6.5), which eliminates the constraints and leads to an unrestricted dual

problem, as follows:

Ld =
∑

i|T=0

wi log

(
qi e
−∑R

r=1 λr cri (Xi)

qi
∑

i|T=0 qi e
−∑R

r=1 λr cri (Xi)

)
+

R∑

r=1

λr


∑

i|T=0

wi cri (Xi)−mr



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Ld =
∑

i|T=0

wi


−

R∑

r=1

λr cri (Xi)− log(
∑

i|T=0

qi e
−∑R

r=1 λr cri (Xi))




+
R∑

r=1

λr


∑

i|T=0

wi cri (Xi)−mr


 .

It then follows that

Ld = −


log

∑

i|T=0

qie
−∑R

r=1 λr cri (Xi) +
R∑

r=1

λrmr


 . (6.11)

Since duality holds, the dual of a minimization problem will be a maximization

problem. In other words, we minimize −Ld. Thus, we multiply (6.11) by -1 to get

the right hand side of (6.12) as

min
λ
Ld = log


∑

i|T=0

qi e
(−

∑R
r=1 λr cri (Xi))


+

R∑

r=1

λr mr. (6.12)

Equation (6.12) is composed of only two components: the entropy objective func-

tion and a linear combination of the rth order moments with their associated La-

grange multipliers. The solution to the dual problem λ∗ solves the primal problem.

This dual problem is an unconstrained optimization problem, which is much more

tractable than a constrained one. Additionally, the dimension of the problem de-

creases substantially, as nc + R + 1 is reduced to a system of nonlinear equations in

the R Lagrange multipliers. Moreover, if there exists a solution, it will be unique,

since Ld is strictly convex.

A Levenberg-Marquardt scheme is used to find λ∗ for the dual problem in (6.12). Let

ω = [w1, ..., wnc ]
′ and q = [q1, ..., qnc ]

′. The constraints are written in matrix form by
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defining the (R× nc) constraint matrix

C =




c11(X1) c12(X2) · · · c1nc(Xnc)

c21(X1) c22(X2) · · · c2nc(Xnc)

...
...

. . .
...

cR1(X1) cR2(X2) · · · cRnc(Xnc)




and the vector of moments m = (m1, . . . ,mR)′, while λ = (λ1, . . . , λR)′ is a vector of

Lagrange multipliers for the balance constraints.

e−C
′λ =




e−
∑R

r=1 λrcr(X1)

e−
∑R

r=1 λrcr(X2)

...

e−
∑R

r=1 λrcr(Xnc )




The rewritten problem is thus given as

min
λ
Ld = log(q′ e−C

′λ) + m′λ. (6.13)

Equation (6.10) can be rewritten as

w∗i =
(qi e

−C′λ)

(q′ e−C′λ)
. (6.14)

The balance constraints are stated as Cω = m. The gradient is given as ∇λ(Ld) =

∂Ld

∂λ = m − Cω and the Hessian matrix ∇2
λ(Ld) = ∂2Ld

∂λ2
= C[D(ω) − ωω′]C′, where

D(ω) is a nc-dimensional diagonal matrix, with ω in the diagonal. This 2nd-order

information is then utilized in a Newton iteration method as follows:

Initialize λ0 = (CC′)−1m.

Iterate λnew = λold − l (∇2
λ (Ld))−1 (∇λ (Ld)),

where l ∈ (0, 1) is a scalar denoting the step size, which changes at every iteration.
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The step size l quantifies how big a step is taken in the direction of the minimum.The

optimal step size is then selected for each iteration. This iterative algorithm is glob-

ally convergent as long as the problem is feasible.

The ATT weights (Parish et al., 2018) are defined for the entropy balancing as fix-

ing treated units weight at unity and reweighting the control group units using the

algorithm described above.

6.3 Simulation Study

We conducted a set of Monte Carlo simulations to examine the performance of en-

tropy balancing, relative to the IPW method. We made the simulations to be typical

of biomedical studies by considering binary outcomes (Austin et al., 2010; Austin &

Stuart, 2017). Entropy Balancing was performed with the R-package ebal (version

0.1-6) (Hainmueller, 2014).

6.4 Data Generation

Following the simulation structure of previous studies (Lee et al., 2010; Setoguchi

et al., 2008), we generated data from ten covariates that are standard normal dis-

tributed, with an inducement of specified levels of dependence between some pairs

of covariates to be more reflective of practical settings. Six of the covariates were

dichotomised. Figure 6.1 gives the causal structure of the simulations.

As shown in Figure 6.1, the simulation study aligns with practice reality: there are

confounders associated with both treatment and outcome (X1, X2, X3, X4), predic-

tors of the treatment variable only (X5, X6, X7) and predictors of the outcome vari-

able only (X8, X9, X10).

70



Figure 6.1: Data structure of the simulation study, where X1, X3, X5, X6, X8, X9, Y are bi-
nary.

The treatment variable T , was modelled as a logit model of the form

log

(
Pi,trt

1− Pi,trt

)
= α0,trt+α1X1+α2X2+α3X3+α4X4+α5X5+α6X6+α7X7 . (6.15)

The outcome variable Y, was modelled as a logit model of the form

log

(
Pi

1− Pi

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi .

(6.16)

The coefficients α and β were based on real-life data utilized in a previous study

(Setoguchi et al., 2008).

We simulated two potential outcomes, Y 1 and Y 0, for treated and control groups,

respectively. In each simulated dataset, we computed the marginal risk difference

as Ȳ 1
T=1− Ȳ 0

T=1, where Ȳ 1
T=1 and Ȳ 0

T=1 denote the mean potential outcome under the

treated and control groups, respectively, in those units which ultimately belong to

the treated group.

6.4.1 Varying Factors

Our simulations varied, based on two factors, (i) Sample size: n = 500, 2000; (ii)

the proportion of units who received the treatment (prevalence of treatment). The
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value of α0,trt was selected such that the prevalence of treatment was fixed at π =

25%, 33%, 50%, and 67%, corresponding to treated:control units ratio of 1 : 3, 1 : 2,

1 : 1, and 2 : 1, respectively. We developed the following iterative algorithm, which

was used to determine the value of α0,trt that induced targeted prevalence π (Amusa

et al., 2019a):

We varied values of α0,trt within reason (-3 to 3 in this case) and simulated n units.

For all the considered α0,trt values, the corresponding individual values were com-

puted using Equation (6.15), while the treatment variables Ti ∼ Ber(Pi,trt) were

generated, and the mean of each Ti correspond to π. This process was repeated 1000

times to increase the precision of the estimation, while the value of α0,trt which cor-

respond to the desired π was chosen.

Even though there are not many study designs where the proportion of the treated

group is higher than the control group, we included it to satisfy our curiosity. The in-

tercept of the treatment assignment model was modified to ensure that the treatment

variable had the specified target prevalence in the simulated datasets.

6.4.2 Analyses and Performance Assessment of Estimates

For each of the considered scenarios, we simulated 1000 datasets and obtained ATT

weights each for entropy balancing and IPW methods, and further estimated the risk

differences obtained from the weighted regressions of Y on T. The risk difference es-

timates were then averaged over the simulation runs, denoted by δi. The marginal

risk difference, denoted by δ is the true ATT.

We utilized the absolute standardized mean difference (ASMD) to examine covari-

ate balance, while absolute bias and MSE were used to examine the accuracy of

estimated treatment effects. Finally, we calculate the standard errors based on a ro-

bust sandwich-type variance estimator, as well as the 95% confidence interval (CI)
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coverage. CI coverage is defined as the proportion of times the estimated confidence

intervals contain the specified parameter value (Burton et al., 2006). Accordingly, we

calculated the percentage of the 1000 estimated confidence intervals containing the

true risk difference, for the two weighting strategies.

6.5 Results

We present the results for the simulation study according to each of the performance

metrics explained in Section 6.4.2. We emphasise on the results of the entropy bal-

ancing method, using the IPW results as a threshold for gauging the performance of

entropy balancing.

Figure 6.2: Boxplots for the absolute standardized mean difference for covariates. The val-
ues for each covariate were averaged from the simulations.

Some authors suggested that ASMD values above 10% may be indicative of covari-

ate imbalance (Mamdani et al., 2005; Normand et al., 2001). As shown in Figure 6.2,

both entropy balancing and IPW methods performed remarkably well in reducing
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covariate imbalances, as they both achieved ASMD values well below the threshold

of 10%. However, entropy balancing outperformed the IPW method, with marginal

improvements observed for smaller treatment prevalences (25% and 33%), but a sub-

stantial outperformance was evidenced for higher treatment prevalences (50% and

67%). Additionally, entropy balancing produced better balance for large sample size

(n = 2000), with ASMDs achieving a perfect balance (ASMD=0) on almost all of the

covariates, across the rates of treatment prevalence.

Figure 6.3: Absolute Bias (top panel) and MSE (bottom panel) of estimated treatment effects

In terms of bias, Figure 6.3 shows that entropy balancing produced less biased es-

timates across the board. The MSE of the treatment effect estimates is described in

Figure 6.3. Entropy balancing resulted in estimates with substantially lower MSE

values. Furthermore, there was no apparent effect of the prevalence of treatment on

both the bias and MSE.

As shown in Figure 6.4, the two methods produced very similar standard errors.
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Figure 6.4: SE (top panel) and 95% CI coverage (bottom panel) of estimated treatment effects

Superior 95% CI coverages were observed for entropy balancing when the sample

size is relatively large (n = 2000). However, for a relatively smaller sample size (n =

500), entropy balancing produced higher coverage for higher treatment prevalence

(50% and 67%), as shown in Figure 6.4.

6.6 Case study: A Re-analysis of Data on Right Heart Catheter-

ization

We further explored the entropy balancing technique by analyzing observational

data (Murphy & Cluff, 1990) to study the effectiveness of right heart catheteriza-

tion (RHC) for critically ill patients. A few influential studies have also re-analyzed

the data using different adjustment methods (Crump et al., 2009; Hirano & Imbens,

2001; Li et al., 2018; Rosenbaum, 2012). In brief, the dataset comprises information

on 5735 patients, 2184 (38.1%) of were treated with RHC (Ti = 1) within 24 hours
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of admission and 3551 (61.9%) did not receive the RHC treatment (Ti = 0). The

outcome of interest was mortality at 30 days of admission. Full details of this data,

including the variable description and its summary statistics, have been published

elsewhere (Connors et al., 1996; Hirano & Imbens, 2001).

Figure 6.5: Assessment of covariate balance for the various methods. Note: ebal1: entropy
balance on the 1st moment; ebal2: entropy balance on the 2nd moment

6.6.1 Balance Diagnostics

We applied diagnostics for assessing the covariate balance in the data weighted by

entropy balancing (EB), with its performance evaluated relative to IPW. We did not

restrict balance to means only, but also investigted variance and the empirical distri-

bution of continuous covariates. For balance on the means alone, we considered the

ASMD. For balance on higher-order moments, we adopted variance ratios, which

some authors (Rubin, 2001) recognized values close to one as acceptable, and the
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Kolmogorov-Smirnov (KS) statistic, which when close to zero is satisfactory (Ali

et al., 2015). For entropy balancing , we considered the first and second moments on

which covariate balance is desired. We attempted to include constraints up to the

third moments, as well as interactions between pairs of continuous covariates, but

the EB algorithm did not converge.

Figure 6.6: Distribution of weights for the control group units for the RHC dataset. Note:
ebal1: entropy balance on the 1st moment; ebal2: entropy balance on the 2nd moment

Figure 6.5 provides information on the balance on covariates. Before any weighting,

there is a high degree of confounding in the original data. The weighting meth-

ods produced ASMD values that did not exceed the vertical line 0.1 threshold su-

perimposed in Figure 6.5 . Entropy balancing achieved a perfect covariate balance

(ASMD=0) on all the covariates, while there were still noticeably some non-zero

ASMDs after applying IPW. As expected, variance ratios were all virtually 1 when

moment constraints of entropy balancing included the second moment. Even when

moment constraints included only the mean, entropy balancing still achieved vari-
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ance ratios close to 1 about 71.4% of the time. IPW did poorly on variance ratios,

as it increased the values for some covariates, thereby making things worse. As

measured by the KS statistic, both methods performed remarkably well on the em-

pirical distribution of the continuous covariates. However, about 67% of the time,

entropy balancing produced KS values indicative of better balance, when moment

constraints included the second moment; while, when it contained only the first mo-

ment, entropy balancing marginally outperformed IPW about 52% of the time.

Figure 6.7: Assessment of covariate balance for the various methods after weights trimming.
Note: ebal1: entropy balance on the 1st moment; ebal2: entropy balance on the 2nd
moment

6.6.2 Weight Diagnostics

Both methods produced many outlying and highly skewed weights, as shown in

Figure 6.6. Entropy balancing, when moment constraints included the variance,
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produced weights with mean, maximum, standard deviation and skewness equal to

0.76, 18.45, 0.79 and 6.58, respectively. When moment constraints included only the

means, it produced weights with mean, maximum, standard deviation and skew-

ness equal to 0.76, 22.28, 0.87 and 7.21, respectively. IPW produced weights with

mean, maximum, standard deviation, and skewness equal to 0.77, 24.49, 0.92, and

10.48, respectively. Based on these diagnostics, entropy balancing marginally pro-

duced less extreme and outlying weights, even though it might be of interest to trim

them. Accordingly, we trimmed the entropy balancing weights to confirm if they

still produce sufficient covariate balance, and they did. Results are shown in Figure

6.7.

6.6.3 Outcome Analyses

Next, we estimate the average treatment effect for those who received RHC. Along-

side the IPW method, we applied weights to the outcome modelling from entropy

balancing, when moment constraints included the means only, denoted by ebal1, as

well as when it added the variance, denoted by ebal2. Using logistic regression to

regress the occurrence of death at 30 days of admission, we adopted the risk differ-

ence, as suggested by clinical commentators (Cook & Sackett, 1995; Laupacis et al.,

1988; Sackett et al., 1996; Schechtman, 2002), as the estimate of interest. The model

incorporated the weights induced by entropy balancing and IPW. Standard errors of

the weighted estimators were estimated using the sandwich-type variance estima-

tors.

The causal treatment effects estimated using these stated methods are shown in Ta-

ble 6.1. All the considered estimators produced qualitatively similar estimates that

are statistically significant at the 0.01 level, which indicate that applying RHC leads

to a higher mortality rate. These results agree with the substantive conclusions made

in previous studies (Connors et al., 1996; Crump et al., 2009; Li et al., 2018). Both IPW

and entropy balancing methods produced very close standard errors. Estimators
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based on the entropy balancing had smaller confidence interval lengths (0.0731 for

ebal1 and 0.0767 for ebal2) than the corresponding ones based on the IPW (0.0787).

As shown in Table 6.1, trimming the weights for the entropy balancing estimators,

slightly reduced the corresponding length of confidence intervals.

Table 6.1: Causal effect estimation of RHC, using the various methods

Methods Raw entropy balance weights Trimmed entropy balance weights
Estimate CI P-value Estimate CI P-value

Unweighted 0.051 0.025-0.076 < 0.0001 - - -
IPW 0.056 0.017-0.096 0.0051 - - -
ebal1 0.072 0.035-0.108 0.0001 0.057 0.023-0.091 0.001
ebal2 0.057 0.019-0.096 0.0034 0.043 0.006-0.079 0.023

Note: CI: Confidence Interval; ebal1: entropy balance on the 1st moment; ebal2: en-
tropy balance on the 2nd moment

6.7 Discussion and Conclusion

Propensity score weighting methods have conventionally been used to estimate treat-

ment effects in the presence of confounding factors. We used simulations and an

empirical example to highlight our experiences with using entropy balancing, and

its performance relative to the inverse probability weighting method. We are moti-

vated by the under-utilization of the entropy balancing technique in the biomedical

sciences, despite its increased usage and successful application in the social sciences.

We chose a simulation structure that mimics what is common in most biomedical

studies. Our empirical data have also been analyzed by many previous studies rep-

resentative of a clinical application.

Entropy balancing aims to achieve covariate balance between the treatment groups

so that valid estimates of the treatment effect can be obtained. Though both entropy

balancing and IPW methods provided adequate covariate balance, we found that

entropy balancing outperformed IPW in terms of all the considered performance

metrics. Relative to IPW, entropy balancing improved covariate balance as treatment
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prevalence increased. Both methods improved covariate balance for larger sample

sizes. There was also no evidence of treatment prevalence on the bias and MSE of

estimated effects.

The empirical application showed that IPW worsened covariate balance on a few

covariates. This could have been remedied by iteratively tweaking the PS model

until the desired covariate balance is achieved. However, unlike the entropy bal-

ancing method, there is no guarantee that this tedious and exhausting process of

PS model specification will ensure that IPW produces the desired covariate balance.

Both methods produced extreme weights that may require trimming. Accordingly,

it is recommended to extensively study the effect of trimming entropy balancing

weights on its performance, as was done for PS weighting in a previous study (Lee

et al., 2011).

We attempted the following situations which did not allow convergence of the en-

tropy balancing algorithms: (i) smaller sample sizes (less than 300) for treatment

prevalence rates higher than 33%, in the simulations; (ii) including the 3rd moments

in the moment constraints for the case study; (iii) including pairs of interaction of

continuous covariates for the case study. The above findings agree with the cau-

tion given by Hainmueller (2012), in light of potential situations, depending on the

data, that may prevent convergence of the entropy balancing algorithm. Further-

more, even though previous studies like (Zagar et al., 2017) stated that the presence

of interaction effects might improve the performance of the entropy balancing, the

interaction effects are not always feasible for a large number of covariates as we have

experienced with our case study in Scenario III above.

To our knowledge, no previous study had explored entropy balancing using Monte

Carlo simulations with binary outcomes. As with any simulation, our simulation re-

sults might be limited to the factors associated with our simulation data, therefore,
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the results cannot be generalized to settings that have not been evaluated. Another

limitation of entropy balancing is that it does not address unmeasured confounding,

which is still a vexing problem in observational studies.

Overall, we found the entropy balancing technique useful, with excellent perfor-

mance, and one that is frequently less tedious than the inverse probability weight-

ing approach. Entropy balancing merits more widespread adoption for estimating

the effects of treatment, especially in the medical and health sciences, when using

observational data. In this chapter, while we have examined entropy balancing with

an example on binary outcomes, it is imperative to extend the examination to some

other standard estimators of treatment effects in the next chapter.
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Chapter 7

Extending the Examination of

Entropy Balancing

There is an increasing interest in using entropy balancing to estimate marginal or av-

erage treatment effects of different types of outcome (Adhikary et al., 2016; Brettschnei-

der et al., 2017; Grupp et al., 2017; Mattke et al., 2015; Parish et al., 2018; Pearson

et al., 2014). Accordingly, in this chapter, we investigate the performance of entropy

balancing in evaluating treatment effects on continuous, binary, count, and time-

to-event outcomes. Using the IPW method as a benchmark, we used Monte Carlo

simulations to examine the performance of entropy balancing in estimating some

measures of treatment effects. We considered the estimation of difference in means,

odds ratios, rate ratios, and hazard ratios for the continuous, binary, count and time-

to-event outcomes, respectively. We also utilized the average treatment effect among

the treated (ATT) as our estimand of interest. This chapter is based on (Amusa et al.,

2019c).

7.1 Simulation Study

We conducted a broad range of Monte Carlo simulations to evaluate the perfor-

mance of entropy balancing in estimating treatment effects while using the IPW

method as a benchmark. We considered continuous, binary, count and time-to-event
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outcomes.

7.1.1 Data Generation

For the covariates and treatment variable generation, we used the same data gen-

eration scheme of Section 6.4. For each of the units, we generated an outcome Yi

conditional on Ti, and the seven covariates (X1, X2, X3, X4, X8, X9, X10) associated

with Yi. We generated Yi separately for continuous, binary, count, and time-to-event

outcomes.

Continuous Outcomes

While we fixed the true treatment effect at δ = 1, the continuous outcome was gen-

erated as

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi + εi, (7.1)

where εi ∼ N(0, σ2)

Binary Outcomes

We generated a binary outcome as Yi ∼ Bernoulli(Pi) using a logistic model:

log

(
Pi

1− Pi

)
= β0+β1X1+β2X2+β3X3+β4X4+β5X8+β6X9+β7X10+βtrtTi . (7.2)

Count Outcomes

We generated a count outcome as Yi ∼ Poisson(ηi) using a Poisson model (Amusa

et al., 2019b):

log(ηi) = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi . (7.3)
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Time-to-event Outcomes

For time-to-event outcomes, we used a data-generating process described by a pre-

vious study (Bender et al., 2005). Survival times ti are generated as

ti =

(−log(Ui)

λeLP

) 1
v

, (7.4)

where Ui ∼ Uniform(0, 1), and the linear predictor, LP = β1X1 + β2X2 + β3X3 +

β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi. We set v = 2 and λ = 0.000001. This process

generates survival times from a Cox-Weibull distribution. We assumed that all event

times are observed for the current analyses.

7.1.2 Parameter Values for Data Generation

The regression coefficients in the outcome data generation took the values,

β1 = β2 = β3 = log(2), β4 = β5 = β6 = log(1.75) and β7 = log(1.5) to reflect very

high, high, and moderate effect sizes (Austin et al., 2007; Austin, 2014).

For continuous outcomes, the standard deviation values were fixed at σ = 1 and 0.5.

The conditional treatment effect βtrt values were fixed at log (1.5) and log (0.5) for

odds ratios, hazard ratios and rate ratios. The chosen values of βtrt = log (1.5) and

log (0.5) were aimed at reflecting beneficial (βtrt > 0) and adverse (βtrt < 0) treat-

ment effect, respectively. In generating dichotomous outcomes, the β0 value was

set to ensure that the prevalence of the event of interest occurred for approximately

70% of the units. Finally, the above data-generating process has randomly generated

treatment variable, covariates and four different outcomes each of size n units, while

inducing a conditional treatment effect.

A conditional treatment effect is the average effect, at the individual or unit level,

of moving a unit from control to treated group. In contrast, a marginal effect is the

average effect, at the population level, of moving the whole population from control
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to treated group (Greenland, 1987). Since the difference in means is collapsible, the

conditional treatment effect coincides with the true marginal treatment effect. How-

ever, the other three treatment effects are not collapsible (Austin, 2013; Gail et al.,

1984). Thus, for each of the conditional treatment effects (log-odds ratios, log-hazard

ratios, and log-rate ratios), we determined their corresponding true marginal treat-

ment effects. Details of this process of obtaining the true marginal treatment effect

have been explained elsewhere (Austin, 2013, 2014; Austin & Stuart, 2017). The ob-

tained true marginal treatment effect in the treated population from this process is

regarded as the true ATT, for each of the considered treatment effects.

7.1.3 Statistical Analyses in Simulated Datasets

For a given treatment effect associated with each of the type of outcome considered,

we randomly generated 1000 datasets of size 500, using the earlier described data-

generating scheme. Using each of the simulated datasets, we separately estimated

the different treatment effects, while utilizing each of the ATT weights of entropy

balancing and IPW methods. The treatment effects, δ, were estimated from the fol-

lowing generalized linear model

g(E(Y |T )) = β0 + δT, (7.5)

where g was considered as the canonical link function for the normal linear model,

logistic model, Poisson model, and Cox survival model for estimating the difference

in means, odds ratios, hazard ratios, and rate ratios, respectively. We adopted the

robust sandwich-type estimator for estimating the standard errors (Austin & Stuart,

2015; Joffe et al., 2004). We utilized the R-package ebal (Hainmueller, 2014) for im-

plementing entropy balancing.

Let δi denote the ith estimated treatment effect using a given method, whereas δ

is the true ATT. We then determined the following: Bias = 1
1000

∑1000
i=1 (δi − δ), mean

squared error (MSE) = 1
1000

∑1000
i=1 (δi−δ)2 . We also examined precision by averaging
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the model-based standard errors (SE) over the 1000 simulated datasets. Finally, we

examined 95% coverage, which is the proportion of times δ is enclosed in the 95%

confidence interval of δ over the simulated datasets.

7.2 Results

We present the simulation results according to each of the type of estimated treat-

ment effects explained in the earlier section. We focus on the performance of en-

tropy balancing method, using the IPW method as a threshold for evaluating the

results. As a form of sensitivity analysis, we ran simulations for other sample sizes

(n = 300, 1000), but we do not present the results as no qualitative differences were

observed in the relative performance of the methods. However, we present results

of the two standard deviation values (σ = 1, 0.5) assumed while estimating differ-

ence in means, as well as the two different true ATT values, varied each for odds

ratios, hazard ratios, and rates ratios estimation. Altering these parameter values

also did not change the conclusions in all the scenarios, except for when rate ratios

were estimated.

Continuous Outcomes: Difference in Means

Results are summarized in Figures 7.1 and 7.2. In terms of bias, Figure 7.1 shows

that both methods produced estimates with very low (near-zero) bias. However, EB

produced slightly higher biases, except for when the prevalence rate was 10%. For

the MSE, EB outperformed IPW across the board (Figure 7.1). Both methods yielded

very similar SE estimates, with the values decreasing with increasing prevalence

rates (Figure 7.2). Though EB produced superior CI coverages - near perfect in most

cases, both methods achieved reasonably high 95% CI coverages (Figure 7.2).

Binary Outcomes: Odds Ratios

In terms of bias, Figure 7.3 shows that EB consistently produced higher biased es-

timates. For the MSE, EB outperformed IPW across the board, with the values de-
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creasing with increasing prevalence rates (Figure 7.3). Both methods yielded very

similar SE estimates, with the values decreasing with rising prevalence rates (Figure

7.4). Though EB produced superior CI coverages, both techniques achieved reason-

ably high 95% CI coverages (Figure 7.4).

Count Outcomes: Rate Ratios

Figure 7.5 shows that the MSE of both methods increased as the treatment preva-

lence increased from 10% to 40%. When the conditional rate ratio was positive

(βtrt > 0), EB consistently produced estimates with higher bias, higher MSE, and

lower 95% CI coverages. However, for βtrt < 0, EB produced higher bias and MSE

estimates only when the treatment prevalence was 20% or lower (Figure 7.5). The

SE estimates were very similar for both methods, with the values decreasing with

increasing prevalence rates (Figure 7.6). Both methods achieved reasonably high

95% CI coverage. Though EB had lower CI coverages when the conditional rate ra-

tio was positive, it is not clear which of them produced higher coverage when the

conditional rate ratio was negative (Figure 7.6).

Figure 7.1: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and IPW
methods for estimating difference in means.
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Figure 7.2: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for esti-
mating difference in means.

Figure 7.3: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and IPW
methods for estimating odds ratios.
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Figure 7.4: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for esti-
mating odds ratios.

Figure 7.5: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and IPW
methods for estimating rate ratios.
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Figure 7.6: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for esti-
mating rate ratios.

Figure 7.7: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and IPW
methods for estimating hazard ratios.
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Figure 7.8: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for esti-
mating hazard ratios.

Time-to-event Outcomes: Hazard Ratios

Figure 7.7 shows that the bias of both methods are not substantially different, except

for higher prevalence rates (40% and 50%), where EB produced higher bias esti-

mates. For the MSE, EB consistently outperformed IPW (Figure 7.7). As shown in

Figure 7.8, the SE estimates were again very similar between both methods, with the

values decreasing with increasing prevalence rates. Figure 7.8 illustrates that when

the actual hazard ratio = 0.5, EB produced 95% CIs slightly below the nominal cov-

erage rate at prevalence rates higher than 30%. However, EB provided superior CI

coverages overall.

7.3 Discussion and Conclusion

We utilized Monte Carlo simulations to evaluate the performance of entropy balanc-

ing, relative to the IPW method, in estimating some standard measures of treatment

effect. While focusing on entropy balancing, we summarize our findings and where
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necessary, place them in the context of existing literature.

Though both methods performed reasonably well in estimating the various treat-

ment effects considered, we found that on average, entropy balancing outperformed

IPW for all the considered situations. However, a few exceptions were found: (i)

When rate ratios were estimated, entropy balancing tended to produce estimates

with slightly higher biases and mean squared errors. Although they considered

conditional and not marginal treatment effects, a previous study by Austin (2007)

found that conditioning on the propensity score did not substantially introduce bias

into the estimation of rate ratios. (ii) The model-based standard errors for both IPW

and entropy balancing methods were consistently indistinguishable. (iii) In terms of

bias, across all the estimated treatment effects, entropy balancing consistently pro-

duced more biased estimates. Hence, there is an interesting bias-variance trade-off

of the two techniques. However, entropy balancing has the facility to optimize the

bias-variance trade-off by tightening the pre-specified tolerance on covariate balance

(Harvey et al., 2017). Previous studies (Austin, 2007, 2013; Austin & Stuart, 2017) also

support our findings in favour of IPW producing an unbiased estimation of odds ra-

tios and hazard ratios.

A significant strength of this study is in the use of an algorithm which determines the

true marginal treatment effect corresponding to a particular conditional treatment

effect. Many simulation studies estimated average, or marginal treatment effects,

using a conditional model to relate the outcome with the treatment and associated

covariates, even though the estimated effects are not collapsible (i.e. marginal and

conditional treatment effects will not coincide) (Austin, 2013; Gail et al., 1984; Green-

land, 1987). For binary outcomes, even though odds ratios are not collapsible and for

other reasons (Newcombe, 2006), we chose to adopt odds ratios due to its frequent

usage in biomedical research.
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Like the simulation of time-to-event outcomes in Chapter 4, we did not include cen-

soring due to computational simplicity. Allowing the degree of censoring to be an-

other factor in the design of the Monte Carlo simulations would increase the compu-

tational burden of the simulations substantially and increase the number of results

that would require reporting. However, this may warrant future investigations.

To our knowledge, no previous research had studied the performance of entropy bal-

ancing in estimating treatment effects of different types of outcomes, using Monte

Carlo simulations. Like any simulation, our simulation results might be limited to

the scenarios considered by our simulation data. Therefore, the results cannot be

generalized to settings that have not been evaluated.

Overall, we found the entropy balancing technique useful and excellent in perfor-

mance. Entropy balancing merits more widespread adoption for estimating treat-

ment effects of different types, when using observational data.
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Chapter 8

A Comparative Study of the

Different Strategies for Estimating

Causal Treatment Effects

As evident from the previous chapters, quite a number of studies have substan-

tially added to the repository of strategies for controlling confounding in the esti-

mation of treatment effects in observational studies. However, applied practitioners

need guidance to decide on the optimal strategy for any given scenario. To address

this gap, we conducted series of Monte Carlo simulations evaluating both well-

established methods, including the IPW, entropy balancing and the more recently

proposed CBRMD and iCBRMD methods.

8.1 Background

So far, we have introduced and studied several strategies to estimate causal treat-

ment effects in observational studies. Some of these methods are matching meth-

ods, while others are weighting methods. Though matching methods are loosely

referred to as weighting methods, since they produce discrete weights. Continu-

ous weights are obtained from entropy balancing and inverse probability weighting
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(IPW) methods, which belong to the empirical calibration weighting and propensity

score weighting methods, respectively.

With the increasingly high number of statistical methods to be applied on a broader

spectrum of available observational data, there is a need to evaluate the performance

of these methods under different real-world scenarios. Without loss of generality, we

conducted series of Monte Carlo simulations to compare the performance of IPW,

entropy balancing, PSM, CBRMD, and iCBRMD methods. We believe that these five

methods are representative of the different methodological approaches of estimating

causal treatment effects, as mentioned earlier.

8.2 Simulation Study

We used the same data generation scheme and considered the different scenarios

of Section 3.2. We varied the values of α0,trt in Equations (3.1) and (3.2), to ensure

that the percentage of subjects who received the treatment (subsequently referred to

as treatment prevalence) was fixed at 20%, 25%, 33% and 50%. For Scenario 1 (S1)

and Scenario 2 (S2), we varied the sample sizes between n = 300 and 500, while the

sample size was fixed at 1000 for Scenario 3 (S3).

Overall, each scenario was repeated 1000 times, all analysis methods were applied

to the datasets, and the ATT estimates were obtained as the coefficient of the ATT-

weighted linear regressions of Y on T. We reported the absolute bias and root mean

square error (RMSE) of the estimated treatment effects, to evaluate the performance

of the adjustment techniques.

8.3 Results

In this section, results obtained from analyzing the simulated datasets in each of the

considered scenarios are presented. We present the results for each scenario under
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separate subsections. As a form of sensitivity analysis, we ran simulations for other

sample sizes (n = 200, 1000), however, we do not present the results as no qualita-

tive differences were observed in the relative performance of the methods.

For the two PS methods, IPW performed better than PSM in most cases. Further-

more, PSM always performed poorly when the treatment prevalence was as high as

50%. Both CBRMD and iCBRMD methods had relatively higher biases across all the

situations.

Scenario 1

This section presents the results of a situation where there are no noise covariates,

i.e. a covariate is either related to the treatment or the outcome or both. Results are

summarized in Figure 8.1.

Figure 8.1: Absolute Bias (A and B) and RMSE (C and D) of the considered methods evalu-
ated for Scenario 1

The RMSE estimates of CBRMD and iCBRMD methods decreased as the prevalence

of treatment increased. IPW and EB methods produced indistinguishable estimates

with minimal (near zero) bias and outperformed the other two techniques. For the
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RMSE, EB outperformed IPW, followed by PSM (except when treatment prevalence

equaled 50%), iCBRMD and CBRMD. Sample size did not change the pattern of

results.

Figure 8.2: Absolute Bias (A and B) and RMSE (C and D) of the considered methods evalu-
ated for Scenario 2

Scenario 2

In this section, we present the results of a situation that captures what is obtainable

as a first resort in practice, where all covariates are included in the treatment as-

signment model and the outcome regression model in a linear fashion. Results are

summarized in Figure 8.2. EB and IPW produced indistinguishable estimates, with

both methods dominating the other two, in terms of bias. The RMSE estimates of

CBRMD and iCBRMD methods decreased as the prevalence of treatment increased.

For the RMSE, EB outperformed iCBRMD, followed by IPW and CBRMD. Increase

in sample size, did not change the pattern of results.
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Scenario 3

Here, we present the results of a situation where interactions of some covariates, as

well as non-linearity in the outcome model, are introduced. Results are summarized

in Figure 8.3. The results show that the purpose of introducing model complexities

was not achieved, as IPW and PSM produced the highest RMSE estimates across

the board. However, the performance in terms of bias worsened relative only to EB,

while it still maintained smaller bias compared to the other two methods.

Figure 8.3: Absolute Bias (A and B) and RMSE (C and D) of the considered methods evalu-
ated for Scenario 3

8.4 Discussion and Conclusion

We presented a simulation study of some strategies for estimating causal treatment

effects, namely, entropy balancing, IPW, PSM, CBRMD, and iCBRMD. We evaluated

the performance of these methods under different scenarios, based on the perfor-

mance of treatment effect estimates in terms of bias and RMSE.

Relative to the other scenarios, IPW and PSM performed better in terms of RMSE,
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for Scenario 1. This is expected, since the PS model is most likely to be correct, in

Scenario 1. However, entropy balancing produced the lowest estimates, for Scenario

1. In Scenario 2, where the PS model is most likely to be false, IPW performed rela-

tively weaker, with its accuracy in terms of RMSE, being better than only the CBRMD

method. Entropy balancing produced the best results for this scenario. Results of

Scenario 3 suggest that the inclusion of interactions and squared terms in both the

treatment and outcome model, does not necessarily improve the performance of

the PS methods (IPW and PSM), unless the right level of model complexity is cho-

sen. Better estimation techniques for the treatment assignment, like the generalized

boosted models and covariate-balancing propensity scores methods, are capable of

circumventing the shortcomings of the logistic regression in estimating PS models

(Imai et al., 2008; McCaffrey et al., 2004).

Though our findings suggest that no technique was overall superior to others, en-

tropy balancing produced the best estimates in most cases. The reason why PSM

always performed poorly when the treatment prevalence was as high as 50%, is that

some treated group units may not be matched, as expected of pair matching meth-

ods. Pair-matching typically requires a large pool of potential control units - much

larger than the number of treated units (Austin, 2014; Stuart, 2010).

Findings from our simulations are reliable and generalizable, because they were

based on traditional study designs that mimic practice reality. Further, we intro-

duced collinearity in a few pairs of covariates, as against some previous studies,

which unrealistically assume independence.

Certain limitations to the current study require noting. First, only the essential, off-

the-shelf versions of each of the weighting methods were utilized, since that is what

most applied practitioners would likely do. Second, the number of evaluated tech-

niques is not exhaustive, since they were limited to those that had been used tra-
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ditionally, had been proposed in recent literature, or were promising. Thirdly, like

any simulation, our simulation results might be limited to the scenarios considered

by our simulation data. Therefore, the results cannot be generalized to settings that

have not been evaluated. It would be interesting to expand the simulation scenarios

and to accommodate other estimands in future studies.

In summary, this simulation study has laid out criteria for when one method for

estimating causal treatment effects is expected to perform at its best or otherwise,

relative to the other methods. While there is more work, we trust this simulation

study will assist to move us one step closer towards best practices in comparative

effectiveness research, for efficient estimation of causal treatment effects.
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Chapter 9

Evaluating Treatment Effects from

an HIV Study

In this chapter, we further demonstrate the effectiveness of the proposed techniques

developed in this thesis, relative to the other considered methods, by applying them

to data from an HIV study. Though we had examined these methods in the previous

chapters using published datasets in the literature, we extend our examination to

yet another dataset from a real-life study - a novel application of the considered

techniques to a crucial public health issue in South Africa. While it is clear that we

are not comparing the adjustment techniques, as we have already done so in the

previous chapters, we aim to use this study to further illustrate the methods, as well

as solidifying previous findings.

9.1 HIPSS Study

South Africa has the highest number of HIV infected individuals (over seven mil-

lion) in the world, and the KwaZulu-Natal province is the worst hit, with a preva-

lence of 27.9% as at the end of 2015 (Kharsany et al., 2018). Accordingly, numerous

public health initiatives to better control the HIV epidemic, have been implemented.

There is thus a need for studies that monitor, evaluate and inform the programmatic

interventions and policies over time. One such study is the HIV Incidence Provincial
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Surveillance System (HIPSS). HIPSS provides timely, detailed and robust surveil-

lance data to monitor HIV prevalence and incidence trends in Kwazulu-Natal, South

Africa.

The main objective of the HIPSS study was to assess the impact of HIV-related pre-

vention and treatment programmes on HIV prevalence, uptake of antiretroviral ther-

apy (ART), CD4 cell counts and viral suppression, in a real-world non-experimental

setting. The study also aimed to assess household sociodemographic and individual

biological and behavioural characteristics, in association with HIV infection.

The HIPSS study design, source population and recruitment procedures, have been

described previously (Kharsany et al., 2015, 2018). Briefly, HIPSS was a household-

based study conducted in the Vulindlela and the Greater Edendale areas, in the uM-

gungundlovu District of KwaZulu-Natal, South Africa. The study had two cross-

sectional surveys of 10,000 randomly selected individuals, aged 15-49 years, con-

ducted one year apart. For each survey, a multi-stage cluster sampling method was

used to choose enumeration areas, households and individuals. All completed ques-

tionnaires had peripheral blood samples collected and were allocated a unique iden-

tification number, with a linking number to link the household, respondents ques-

tionnaire and laboratory data. The University of Kwazulu-Natal (UKZN) Biomedi-

cal Research Ethics Committee (BF 269/13), the Associate Director of Science of the

Center for Global Health (CGH) and in collaboration with the Provincial Department

of Health (KwaZulu-Natal; HRKM 08/14), approved the HIPSS study protocol and

informed consent.

9.2 Description of Data Collected from the HIPSS Study

We extracted data from the HIPSS study database for the first household survey

comprising a total of 9812 men and women (15-49 years old), enrolled between June
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2014 and June 2015. We were provided with the participants’ information on the

following:

• Demographic and behavioural variables, including gender, current age, mari-

tal status, socioeconomic status, and educational status.

• HIV status variables, including HIV testing history, HIV test results, ART use,

as well as laboratory outcome variables, including CD4 and CD8 cell counts

(cells/mm3) and HIV-1 plasma viral loads (copies/ml).

• Exposure to and treatment for other sexually transmitted infections (STI), namely;

Chlamydia trachomatis, Neisseria gonorrhoea, Mycoplasma genitalium, Trichomonia-

sis vaginalis, herpes simplex virus type 2 (HSV-2) antibodies, syphilis, hepatitis

B, and human papillomavirus (HPV) infection.

• Medical male circumcision (MMC) status (males only).

9.3 Data Analysis

Male circumcision, according to some studies (Liu et al., 2013; Price et al., 2010), re-

duces the bacterial load on the penis, as well as decreasing the relative abundance of

these anaerobic genera, associated with HIV infection. The world health organiza-

tion reports (World Health Organization, July 2018), from three randomized trials,

provided compelling evidence that MMC reduces the risk of heterosexual HIV-1 ac-

quisition in men by approximately 60%. Other studies (Prodger & Kaul, 2017; Tobian

et al., 2014), also produced similar findings.

We next considered the causal effect of male medical circumcision (MMC) on HIV

status. Motivated by the availability of the variable, HIV test outcome, in the data

collected, we illustrated the use of the considered adjustment techniques in estimat-

ing the causal effect mentioned above. The ultimate goal was to estimate the aver-

age treatment effect among those who actually had MMC - the average treatment
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effect among the treated (ATT), using entropy balancing (EB), inverse probability

weighting (IPW), propensity score matching (PSM), covariate balancing rank-based

Mahalanobis distance (CBRMD) and improved CBRMD (iCBRMD) techniques.

We attempted to approximate a randomized experiment by applying the considered

adjustment techniques to provide evidence of a causal effect of MMC on HIV infec-

tion. Limited by the number of variables in the available data, we selected matching

variables, based on their theoretical association with MMC and HIV infection. From

the original 9812 participants, 3507 were retained for subsequent analysis, after re-

stricting the sample only to males, and participants with complete cases on MMC

and HIV status.

Overall, 1237 (35.3%) of participants did MMC, while 2270 (64.7%) did not. A to-

tal of 28.5% of the participants tested HIV positive. The covariates are summarized

for participants who did and did not do MMC, in Table 9.1. Categorical variables

were binary-coded. Absolute standardized mean differences (ASMD), were used to

compare the balance in the measured covariates between those who did and did not

do MMC. Seven of the twelve measured covariates had ASMDs that exceeded 0.1,

which some authors consider as a threshold, indicative of negligible imbalance. The

largest observed ASMDs, were for current age (0.487) and HSV2 (0.340).

For EB, PSM and IPW, the propensity score was estimated from a regression of an

indicator variable denoting MMC status on the twelve covariates (main terms only),

described in Table 9.1, using a logit model. For PSM, we utilized the conventional

nearest available pair-matching algorithm. While we superimposed a vertical line

on Figure 9.1 as a threshold, we computed ASMDs for each of the twelve covari-

ates in the sample that incorporated the weights induced by the five adjustment

techniques. Results show that the five methods resulted in substantial reductions

in imbalance, i.e. all ASMDs were less than 0.10. Of the five techniques, entropy

105



Table 9.1: Characteristics of participants by MMC status in the original sample

Label Variable Description MMC: Yes MMC: No ASMD
(N = 1237) (N = 2270)

current age Participant’s current age (years) 26.1 (8.6) 30.3 (9.5) 0.487
HSV2 Participant has HSV-2 445 (35.9%) 1186 (52.3%) 0.340

chlamydia Participant has chlamydia 82 (6.6%) 105 (4.6%) 0.081
gonorrhoeae Participant has gonorrhoeae 21 (1.7%) 48 (2.1%) 0.032

M genitalium Participant has Mycoplasma genitalium 47 (3.8%) 156 (6.9%) 0.167
T vaginalis Participant has Trichomoniasis vaginalis 31 (2.5%) 124 (5.5%) 0.198
hepatitisB Participant has hepatitis B 34 (2.8%) 130 (5.7%) 0.182
syphilis Participant has syphilis 27 (2.2%) 62 (2.7%) 0.038
degree have a diploma/degree 112 (9.1%) 93 (4.1%) 0.173

high school completed only high school 548 (44.3%) 843 (37.1%) 0.144
married before widowed/divorced/separated 38 (3.1%) 96 (4.2%) 0.067

currently married married/living together with spouse 84 (6.8%) 156 (6.9%) 0.003

Note: Continuous variables are represented as mean (standard deviation), while dichotomous
variables are represented as N (%).

balancing resulted in the best balance (all ASMDs were perfect zeros).

We used a binary logit model to regress the HIV test outcome (+ve or ve) on an indi-

cator variable denoting MMC status. The estimated crude marginal odds ratio was

0.383 (95% CI: [0.321, 0.453]). The model incorporated the weights induced by the

five adjustment techniques. We performed bootstrapping (2000 samples) to produce

95% confidence intervals (CIs), which has been shown to account for uncertainty in

the matching procedure (Stuart, 2010). As shown in Figure 9.2, all the five adjusted

estimates, including the crude estimate, suggest that MMC significantly reduces the

odds of HIV acquisition, among those who ultimately had MMC. When entropy bal-

ancing was used, the estimated marginal odds ratio was 0.667 (95% CI: 0.556 - 0.796),

IPW produced a marginal odds ratio estimate of 0.665 (95% CI: 0.556 - 0.803), while

PSM produced a marginal odds ratio estimate of 0.676 (95% CI: 0.555 - 0.825).

Relative to the unadjusted estimate, the estimated CIs were substantially wider for

CBRMD: odds ratio = 0.637 (95% CI: 0.423 - 0.989). This may indicate that the

CBRMD weights are subject to greater instability in this setting. iCBRMD, with a
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Figure 9.1: Covariate balance assessment

Figure 9.2: Estimated odds ratios of HIV test outcome and associated 95% CI
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marginal odds ratio of 0.588, produced an estimated confidence interval with the

smallest width (95% CI: 0.492 - 0.709), relative to the crude estimate.
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Chapter 10

Discussion and Conclusion

The prime goal of this research work is to explore several topics relating to the

strategies for inferring causal effects in observational studies. The study comprised

both simulations and real-life applications. These ventures are mainly articulated

in Chapters 3 - 9 of this thesis. They are precluded by Chapter 2, which provides a

review of matching and weighting methods. This encompassed formal definitions

and equations or formulas, for the various forms matching and weighting methods.

We used many of the introduced concepts in the later chapters.

A major finding from this study, is that there is no overall best technique for estimat-

ing causal treatment effects, for observational data. Different techniques performed

better in different scenarios. Though entropy balancing has excellent statistical prop-

erties and in many cases was found to outperform the other methods. Our proposed

methods show promise and compete favourably with the other methods.

Our simulation findings were reliable and generalizable, as the simulation studies

in each chapter were either based on traditional study designs that mimic practice

reality, or based on notable existing real-life studies. In the empirical data exam-

ples, three famous datasets were used, namely, the Lalonde-PSID, Lindner, and RHC

datasets. These datasets have been used in previous studies for evaluating methods
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in the causal inference literature. Additionally, we utilized a dataset from a recently

conducted study, which allows us the privilege of a novel application of the con-

sidered techniques to a crucial public health issue in South Africa. Each of these

datasets has its unique properties in terms of size, degree of imbalance and the dis-

tribution of covariates.

Certain limitations require noting: This thesis focused only on the average treatment

effects among the treated (ATT) and did not consider variants of aggregate causal

effects. Our simulation results might be limited to the scenarios considered by our

simulation data. Therefore, the simulation results obtained in each chapter cannot

be generalized to settings that have not been evaluated. The number of assessed

techniques was limited to those that had been used traditionally, had been proposed

in the recent literature, or were, in our opinion, promising.

We acknowledge that we did not provide analytic proofs of our proposed meth-

ods, instead we utilized the law of large numbers to study the methods by Monte

Carlo simulations. Furthermore, our simulations and empirical applications were

based on homogeneous treatment effects. Our findings cannot be extended to het-

erogeneous treatment effects, where the goal of inference is a well defined average

treatment effect, or average treatment effect on the treated. Finally, this thesis did not

address unmeasured confounding, which is still a vexing problem in observational

studies. We do acknowledge the profound influence that unmeasured confounding

can have on estimators based on measured confounding.

The algorithms that execute the proposed methods, as well as the simulation studies,

were developed using R statistical software (R Core Team, 2019). We have attached

some of the R codes in the Appendix (10.1). The implementation of the proposed

methods shall be incorporated into the main R library within a short period to facil-

itate its availability to any interested users. In conclusion, estimating causal effects
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in observational studies is a much broader topic than what we have studied. We

hope that this thesis has embroidered its concept and provided guidelines for mov-

ing forward. We aim to inspire new insights into issues involving causal inference

in observational studies and provide a stimulus for further explorations in future

research.

10.1 Recommendation for Future Studies

The current form of the newly proposed methods in this thesis, like any other meth-

ods, presents several opportunities for further improvements to enhance its general

usage. However, whatever modifications or extensions intended at this stage, shall

be addressed in future research works. For the iCBRMD method, one such task that

comes to mind for the benefit of future studies, is the automation of selection of the

optimal value of parameter λ that produces stable weights that maximizes covariate

balance, while reducing bias and increase efficiency. Work is ongoing in that regard.

For future studies, evaluating the estimators in the presence of heterogeneous treat-

ment effect should be considered. Heterogeneous treatment effects are usually of in-

terest when assessing the efficacy of social programs and medical treatments. Treat-

ment effect heterogeneity examines the degree to which different treatments have a

differential causal impact on each unit. For instance, ascertaining subpopulations for

which treatment is most beneficial (or harmful), is an essential goal of many clinical

trials.

Amongst other things, the major contribution of this thesis was invested on aspects

of the Mahalanobis distance, with the ultimate goal of circumventing its sensitivity

to the various aspects of departure from the underlying assumption of Gaussianity.

Though nonparametric-type approaches like the rank-based variant of the Maha-

lanobis distance utilized in this thesis, is a robust extension, more robust distance

measures beyond the Mahalanobis may also be considered in future studies.

111



In sensu stricto, similarity measures can be conveniently thought of as inverses to

dissimilarity measures. In fact, most kernels (similarity measures) are readily de-

rived as inverses of distances (dissimilarity measures). With the popularity of ker-

nels getting re-ignite since the rise to fame of Deep Neural Networks, it would be of

interest to shift the focus from robust distances in causal inference to robust kernels.

The compendium of kernels for several applications never ceases to increase in size,

and it would be nice to revisit the topics explored in this thesis with some of the

kernels, especially those that are robust to various assumptions.

Another emerging and very active research area is the targeted maximum likelihood

estimation (Van Der Laan & Rubin, 2006). TMLE is a state-of-the-art technique for

making causal inferences, which has gained tremendous popularity of late, espe-

cially in epidemiology and public health. TMLE is a semiparametric doubly-robust

and locally efficient technique that improves the chances of correct model specifi-

cation by allowing for flexible estimation using (nonparametric) machine-learning

methods. It therefore requires weaker assumptions than its competitors. The sta-

tistical properties of TMLE make it a suitable tool for applied researchers aiming to

estimate causal effects.

Observational studies tend to be replete with covariates that are highly correlated or

noisy in the sense of being useless with respect to the response. A natural sequel to

this thesis could concentrate on exploratory variable selection and feature learning

concurrently with matching and causal inference. This would provide a powerful

mechanism for policy making of the highest kind, if realized.

While the methods considered in this thesis can adjust for observed confounding,

unobserved confounding is the Achilles heel of most observational studies. Future

studies can extend our investigations to control for unobserved confounding. The
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implementation of methods, such as sensitivity analysis (Pan & Bai, 2016; Rosen-

baum & Rubin, 1983), can help increase confidence in results from observational

studies.
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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 12, Issue 02, October 2019, 491-35
DOI: 10.1285/i20705948v12n2p491

Examination of Entropy balancing
technique for estimating some standard

measures of treatment effects: a
simulation study

Lateef Amusa∗, Temesgen Zewotir, and Delia North

Department of Statistics, University of Kwazulu-Natal, Westville campus, South Africa

Published: 14 October 2019

In observational studies, propensity score weighting methods are regarded
as the conventional standard for estimating the effects of treatments on out-
comes. We consider entropy balancing, which despite its excellent conceptual
properties, has been under-utilized in the applied studies. Using an extensive
series of Monte Carlo simulations, we evaluated the performance of entropy
balancing, in estimating difference in means, marginal odds ratios, rate ra-
tios, and hazard ratios. The performance of entropy balancing was relatively
compared with that of inverse probability of treatment weighting using the
propensity score. We found that entropy balancing outperformed the IPW
method in estimating difference in means, marginal odds ratios, and haz-
ard ratios, but when estimating marginal rate ratios, IPW performed better.
Entropy balancing produced more biased estimates in many cases. However,
the entropy balancing algorithm is capable of controlling bias by loosening
the tightening of the pre-specified tolerance on covariate balance. We report
findings as to when one technique is better than the other with no proclama-
tion on whether one method is in every case superior to the other. Entropy
balancing merits more widespread adoption in applied studies.

keywords: Entropy balancing, Monte Carlo simulation, Observational stud-
ies, Propensity score weighting, Treatment effect, odds ratios, hazard ratios,
rate ratios.

∗Corresponding author: amusasuxes@gmail.com

c©Università del Salento
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1 Introduction

The evaluation of a treatment or intervention is particularly straightforward in experi-
ments but very complicated in observational studies where treatment assignment is not
random. In observational studies, treatment selection is usually related to the back-
ground covariates and can confound estimated treatment effects.

Estimation of treatment effects in observational studies has conventionally been done
using propensity score (PS) methods (Austin, 2014; Dehejia and Wahba, 2002; Guo et al.,
2006; Guo and Fraser, 2010; Hirshberg and Zubizarreta, 2017). Among the PS methods,
PS weighting (Hirano and Imbens, 2001) received more attention. In particular, the
inverse probability of treatment weighting (IPW) is the most commonly used weighting
method by applied researchers and practitioners, especially in the medical and health
sciences (Austin and Stuart, 2015).

Much recently, entropy balancing – an optimization-based method, has gained the
attention of applied researchers (Adhikary et al., 2016; Brettschneider et al., 2017; Grupp
et al., 2017; Mattke et al., 2015; Pearson et al., 2014). Entropy balancing (Hainmueller,
2012) performs excellently in achieving covariate balance and efficient estimation of
treatment effects. Additionally, entropy balancing (EB) is straightforward to implement.
EB calibrates weights using the control group’s distribution moments as constraints
while optimizing the covariate balance apriori. Consequently, EB obviates the need for
continually specifying the PS model until the desired covariate balance is achieved.

There is an increasing interest in using entropy balancing to estimate marginal or aver-
age treatment effects on outcomes of different types (Adhikary et al., 2016; Brettschneider
et al., 2017; Grupp et al., 2017; Mattke et al., 2015; Parish et al., 2018; Pearson et al.,
2014). Accordingly, we investigate the performance of entropy balancing in estimating
treatment effects on continuous, binary, count, and time-to-event outcomes.

Using the IPW method as a benchmark, the current study used Monte Carlo simula-
tions to examine the performance of entropy balancing in estimating some measures of
treatment effects. We considered the estimation of difference in means, odds ratios, rate
ratios, and hazard ratios for the continuous, binary, count and time-to-event outcomes,
respectively. We also utilized the average treatment effect among the treated (ATT) as
our estimand of interest.

This paper is structured as follows: In the next Section, we describe briefly the method-
ology of the entropy balancing, as well as the inverse probability of treatment weighting.
In Section 3, we describe the Monte Carlo simulation scheme that were used to exam-
ine the performance of the two considered techniques. In particular, we report on bias,
mean squared error (MSE), model-based standard errors, and 95% confidence interval
coverage. The simulation results are presented in Section 4. Finally, in Section 5, we
summarize our findings and gave final remarks.
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2 Methods

We briefly describe the weighting methods that were included in the simulation study.
We consider units or subjects indexed i (i = 1, ..., n). We assume that there is a binary
treatment variable, Ti, and the size of the treated and control group units, respectively,
n1, n0, are known, while Xk denote a K-dimensional column vector of the observed
background covariates.

2.1 Entropy balancing

Entropy balancing is a preprocessing method that can guarantee covariates balance, via
a reweighting scheme that assigns a scalar weight to each sample unit such that the
reweighted groups satisfy a set of balance constraints that are imposed on the sample
moments of the covariate distributions (Hainmueller, 2012). The reweighting scheme
belongs to the family of Maximum Entropy methods, which has roots in information
theory and applied statistics (Kullback, 1959; Golan, 2018; Aria et al., 2018; Ciavolino
and Carpita, 2015; Carpita and Ciavolino, 2017). The weights wi are selected to minimize
the relative entropy:

min
wi

H(w) = min
wi

∑

i|T=0

wi log(wi/qi) (1)

subject to the constraints:

∑

i|T=0

wi cri (Xk) = mr, for r = 1, . . . , R (2)

∑

i|T=0

wi = 1 (3)

wi ≥ 0,∀i, (4)

where qi = 1
n0

is a vector of the base weights, and mr describes a set of R balance con-
straints imposed on the covariate moments of the reweighted control group. mr is the
formulation containing the rth order moment of a given variable Xk from the treated
group, while the moment functions are specified for the control group as cri (Xk) = Xr

k

or cri (Xk) = (Xk−µk)r, with mean µk. Equation (2) is the balance constraint specified
in terms of the rth moment to be achieved on all covariates; (3) is the normalization
constraint, while (4) is the non-negativity constraint.

The minimization problem described above is computed from an unconstrained dual
problem and reduced to a system of non-linear equations with R Lagrange multipliers
(Hainmueller, 2012) of the form:

min
z
Ld = log(q′ e−C

′z) +m′z (5)

where z = (λ1, . . . , λR)′ is a vector (z*) of Lagrange multipliers for the balance con-
straints, rewritten in matrix form as CW = M, with the (R × n0) constraint matrix,
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C = (c1(Xk), . . . , cR(Xk))′, and the vector of moments m = (m1, . . . ,mR)′. The corre-
sponding solution of (5) is:

W ∗ =
Q . exp(−C ′Z)

Q′ exp(−C ′Z)
(6)

An iterative Levenberg-Marquardt algorithm exploits the 2nd order information to solve
the dual problem:

znew = zold − l ∇2
z L

d−1 ∇z L
d (7)

Where l is the step length, ∇z and ∇2
z is the gradient and Hessian, respectively. The

optimal step length is selected for each iteration.

We utilized the ATT weights (Parish et al., 2018), which are defined for the entropy
balancing as fixing treated units’ weight at unity and reweighting the control group units
using the algorithm described above.

2.2 Inverse Probability of Treatment Weighting

The propensity score, defined by e(x) = P (T = 1|X), 0 < e < 1, is the probability of a
subject or unit receiving the treatment of interest given the observed baseline covariates
(Rosenbaum, 1983). In IPW, each unit’s weight equals the reciprocal of the probability
of receiving the treatment that the unit received. We utilized the ATT weights (Austin
and Small, 2014; Austin and Stuart, 2017), which are defined for the IPW as fixing

the treated units’ weight at unity, and the control units as ê(x)
1−ê(x) (Imbens, 2004). We

estimated ê(x) by using a logistic regression model to regress treatment status on the
covariates associated with the treatment.

3 Simulation study

We conducted a series of Monte Carlo simulations to examine the performance of entropy
balancing in estimating treatment effects while using the IPW method as a benchmark.
We considered continuous, binary, count and time-to-event outcomes. All simulations
were done using the R statistical package (R Core Team, 2019).

3.1 Data-generating process

We used a data generation scheme derived from previous studies (Lee et al., 2010; Se-
toguchi et al., 2008). We randomly generated ten baseline covariates, where each of them
(X1 −X10) ∼ N(0, 1). Some pair of covariates were induced with specified levels of de-
pendence. X1, X3, X5, X6, X8, X9 were dichotomized. Figure 1 describes the simulation
design in terms of the causal relationship of the variables.

As shown in Figure 1, the simulation study aligns with practice reality: X1, X2, X3, X4

are associated with both treatment and outcome, X5, X6, X7 are predictors of the treat-
ment variable only, while X8, X9, X10 are predictors of the outcome variable only. The
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Figure 1: Data structure of the simulation study

treatment status was generated from a Bernoulli distribution: Ti ∼ Ber(pi,trt) where
the probability of treatment selection pi,trt was determined from:

log

(
pi,trt

1− pi,trt

)
= α0,trt + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6 + α7X7 (8)

The coefficients, α1, . . . , α7 were based on real-life data utilized in a previous study
(Setoguchi et al., 2008), while α0,trt was selected so that the proportion of units who
received the treatment (subsequently referred to as prevalence of treatment) was fixed
at π = 10%, 20%, 30%, 40%, and 50%. We developed the following iterative algorithm
which was used to determine the value of α0,trt that induced targeted prevalence π
(Amusa et al., 2019a):

(i) We varied values of α0,trt within reason (-3 to 3 in this case), and simulated n
units.

(ii) For all the considered α0,trt values, the corresponding individual pi,trt values were
computed using (5), while the treatment variables Ti ∼ Ber(pi,trt) were generated,
and the mean of each Ti correspond to π.

(iii) Based on the principle of the law of large numbers: the average of the results
obtained from a large number of trials should be close to the expected value, Steps
(i) and (ii) were repeated 1000 times to increase the precision of the estimation,
and the value of α0,trt which correspond to the desired π is chosen.

For each of the units, we generated an outcome Yi conditional on Ti, and the seven
covariates (X1, X2, X3, X4, X8, X9, X10) associated with the outcome. Yi was generated
separately for continuous, binary, count, and time-to-event outcomes.
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3.1.1 Continuous outcomes

While we fixed the true treatment effect at γ = 1, the continuous outcome was generated
as

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi + εi (9)

where εi ∼ N(0, σ2)

3.1.2 Binary outcomes

We generated a binary outcome as Yi ∼ Bernoulli(pi) using a logistic model:

log

(
pi

1− pi

)
= β0 +β1X1 +β2X2 +β3X3 +β4X4 +β5X8 +β6X9 +β7X10 +βtrtTi (10)

3.1.3 Count outcomes

We generated a count outcome as Yi ∼ Poisson(ηi) using a Poisson model (Amusa et al.,
2019b):

log(ηi) = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi (11)

3.1.4 Time-to-event outcomes

For time-to-event outcomes, we used a data-generating process described by a previous
study (Bender et al., 2005). Survival times ti are generated as

ti =

(−log(Ui)

λeLP

) 1
v

(12)

Where Ui ∼ Uniform(0, 1), and the linear predictor, LP = β1X1 + β2X2 + β3X3 +
β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi This process generates survival times from a
Cox-Weibull distribution. We assumed that all event times are observed for the current
analyses.

3.2 Parameter values for data generation

The regression coefficients in the outcome data generation took the values: β1 = β2 =
β3 = log(2), β4 = β5 = β6 = log(1.75), and β7 = log(1.5) to reflect very high, high, and
moderate effect sizes (Austin et al., 2007; Austin, 2014).

For continuous outcomes, the standard deviation values were fixed at σ = 1 and 0.5.
The conditional treatment effect βtrt values were fixed at log (1.5) and log (0.5) for odds
ratios, hazard ratios and rate ratios. The chosen values of βtrt = log (1.5) and log (0.5)
were aimed at reflecting beneficial (βtrt > 0) and adverse (βtrt < 0) treatment effect,
respectively. In generating dichotomous outcomes, the β0 value was set to ensure that
the prevalence of the event of interest occurred for approximately 70% of the units. We
set v = 2 and λ = 0.000001 when generating time-to-event outcomes.
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Finally, the above data-generating process has randomly generated treatment variable,
covariates, and four different outcomes each of size n units, while inducing a conditional
treatment effect.

A conditional treatment effect is the average effect, at the individual or unit level, of
moving a unit from control to treated group. In contrast, a marginal effect is the average
effect, at the population level, of moving the whole population from control to treated
group (Greenland, 1987). Since the difference in means is collapsible, the conditional
treatment effect coincides with the true marginal treatment effect. However, the other
three treatment effects are not collapsible (Austin, 2013; Gail et al., 1984). Thus, for
each of the conditional treatment effects (log-odds ratios, log-hazard ratios, and log-
rate ratios), we determined their corresponding true marginal treatment effects. Details
of this process of obtaining the true marginal treatment effect have been explained
elsewhere (Austin, 2013, 2014; Austin and Stuart, 2017). The obtained true marginal
treatment effect in the treated population from this process is regarded as the true ATT,
for each of the considered effects.

3.3 Statistical analyses in simulated datasets

For a given treatment effect associated with each of the type of outcome considered,
we randomly generated 1000 data sets of size 500 using the earlier described data-
generating scheme. Using each of the simulated datasets, we separately estimated the
different treatment effects, while utilizing each of the ATT weights of entropy balancing
and IPW. The treatment effects, γ, were estimated from the following generalized linear
model:

g(E(Y |T )) = β0 + γT, (13)

Where g was considered as the canonical link function for the normal linear model,
logistic model, Poisson model, and Cox survival model for estimating the difference in
means, odds ratios, hazard ratios, and rate ratios, respectively. We adopted the robust
sandwich estimator for estimating the standard errors (Austin and Stuart, 2015; Joffe
et al., 2004). We utilized the R-package ebal (Hainmueller, 2014) for implementing
entropy balancing.

Let γi denote the ith estimated treatment effect using a given method, whereas γ
is the true ATT. We then determined the following: Bias = 1

1000

∑1000
i=1 (γi − γ), mean

squared error (MSE) = 1
1000

∑1000
i=1 (γi − γ)2 . We also examined precision by averaging

the model-based standard errors (SE) over the 1000 simulated datasets. Finally, we
examined 95% coverage - the proportion of times γ is enclosed in the 95% confidence
interval of γ over the simulated datasets.

4 Results

We present the simulation results according to each of the type of estimated treatment
effects explained in the earlier Section. We focus on the performance of entropy balancing
method, using the IPW method as a threshold for evaluating the results. As a form of
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sensitivity analysis, we ran simulations for other sample sizes (n = 300, 1000), but we
do not present the results as no qualitative differences were observed in the relative
performance of the methods. However, we present results of the two standard deviation
values (σ = 1, 0.5) assumed while estimating difference in means, as well as the two
different true ATT values, varied each for odds ratios, hazard ratios, and rates ratios
estimation. Altering these parameter values also did not change the conclusions in all
the scenarios, except for when rate ratios were estimated.

4.1 Continuous outcomes: Difference in means

Results are summarized in Figures 2 and 3. In terms of bias, Figure 2 shows that both
methods produced estimates with very low (near zero) bias. However, EB produced
slightly higher biases, except for when the prevalence rate was 10%. For the MSE, EB
outperformed IPW across the board (Figure 2). Both methods yielded very similar
SE estimates, with the values decreasing with increasing prevalence rates (Figure 3).
Though EB produced superior CI coverages - near perfect in most cases, both methods
achieved reasonably high 95% CI coverage (Figure 3).

Figure 2: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating difference in means.
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Figure 3: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating difference in means.

Figure 4: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating odds ratios.
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Figure 5: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating odds ratios.

4.2 Binary outcomes: Odds ratios

In terms of bias, Figure 4 shows that EB consistently produced higher biased estimates.
For the MSE, EB outperformed IPW across the board, with the values decreasing with
increasing prevalence rates (Figure 4). Both methods yielded very similar SE estimates,
with the values decreasing with rising prevalence rates (Figure 5). Though EB produced
superior CI coverages, both techniques achieved reasonably high 95% CI coverage (Figure
5).

4.3 Count outcomes: Rate ratios

Figure 6 shows that the MSE of both methods increased as the treatment prevalence
increased from 10% to 40%. When the conditional rate ratio was positive (βtrt > 0),
EB consistently produced estimates with higher bias, higher MSE, and lower 95% CI
coverage. However, for (βtrt < 0), EB produced higher bias and MSE estimates only
when the treatment prevalence was 20% or lower (Figure 6). The SE estimates were very
similar between both methods, with the values decreasing with increasing prevalence
rates (Figure 7). Both methods achieved reasonably high 95% CI coverage. Though EB
had lower CI coverages when the conditional rate ratio was positive, it is not clear which
of them produced higher coverage when the conditional rate ratio was negative (Figure
7).
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4.4 Time-to-event outcomes: Hazard ratios

Figure 8 shows that the bias of both methods are not substantially different, except for
higher prevalence rates (40% and 50%) where EB produced higher bias estimates. For
the MSE, EB consistently outperformed IPW (Figure 8). As shown in Figure 9, the
SE estimates were again very similar between both methods, with the values decreasing
with increasing prevalence rates. Figure 9 illustrates that when the actual hazard ratio
= 0.5, EB produced 95% CIs slightly below the nominal coverage rate at prevalence
rates higher than 30%. However, EB provided superior CI coverages overall.

5 Discussion

Propensity score (PS) methods are the most widely used in estimating average treat-
ment effects in observational studies. While the inverse probability of treatment weight-
ing (IPW) method appears to be the most common implementation of PS methods, we
introduce entropy balancing – a relatively new, but under-utilized weighting method,
despite having nice conceptual properties. This study aims to use Monte Carlo simula-
tions to evaluate the performance of entropy balancing, relative to the traditional IPW,
in estimating some standard measures of treatment effect. While focusing on entropy
balancing, we summarize our findings, and where necessary, place them in the context
of existing literature.

Figure 6: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating hazard ratios.
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Figure 7: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating hazard ratios.

Figure 8: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating rate ratios.
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Figure 9: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating rate ratios.

Though both methods performed reasonably well in estimating the various treatment
effects considered, we found on average that entropy balancing outperformed IPW for
all the considered situations. However, a few exceptions were found: (i) When rate ra-
tios were estimated, entropy balancing tended to produce estimates with slightly higher
biases and mean squared errors. Although they considered conditional and not marginal
treatment effects, a previous study by Austin (2007) found that conditioning on the
propensity score did not substantially introduce bias into the estimation of rate ratios.
(ii) The model-based standard errors for both methods were consistently indistinguish-
able. (iii) In terms of bias, across all the estimated treatment effects, entropy balancing
consistently produced more biased estimates. Hence, there is an interesting bias-variance
trade-off of the two techniques. However, entropy balancing has the facility to optimize
the bias-variance trade-off by tightening the pre-specified tolerance on covariate balance
(Harvey et al., 2017). Previous studies (Austin, 2007, 2013; Austin and Stuart, 2017)
also support our findings in favour of IPW producing an unbiased estimation of odds
ratios and hazard ratios.

A significant strength of this study is in the use of an algorithm which determines
the true marginal treatment effect corresponding to a particular conditional treatment
effect. Many simulation studies estimated average or marginal treatment effects using a
conditional model to relate the outcome with the treatment and associated covariates,
even though the estimated effects are not collapsible (i.e. marginal and conditional
treatment effects will not coincide) (Austin, 2013; Gail et al., 1984; Greenland, 1987).
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For binary outcomes, even though odds ratios are not collapsible and other reasons
(Newcombe, 2006), we chose to adopt odds ratios due to its frequent usage in biomedical
research.

The limitation of this study is that we did not include censoring in our simulation of
time-to-event outcomes. The reason is due to computational simplicity. Allowing the
degree of censoring to be another factor in the design of the Monte Carlo simulations
would increase the computational burden of the simulations substantially and increase
the number of results that would require reporting. However, this may warrant future
investigations.

To our knowledge, no previous research had studied the performance of entropy bal-
ancing in estimating treatment effects of different types of outcomes, using Monte Carlo
simulations. Like any simulation, our simulation results might be limited to the scenar-
ios considered by our simulation data. Therefore, the results cannot be generalized to
settings that have not been evaluated.

6 Conclusion

Overall, we found the entropy balancing technique useful and excellent in performance.
Entropy balancing merits more widespread adoption for estimating treatment effects of
different types when using observational data.
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W., Schellberg, D., Schäfert, R., and Konnopka, A. (2017). Excess costs from func-
tional somatic syndromes in germany—an analysis using entropy balancing. Journal
of psychosomatic research, 97:52–57.

Guo, S., Barth, R., and Gibbons, C. (2006). Propensity score matching strategies for
evaluating substance abuse services for child welfare clients. Children and Youth Ser-
vices Review, 28:357–83.

Guo, S. and Fraser, M. (2010). Propensity score analysis; Statistical methods and applica-
tions. Advanced Quantitative Techniques in the Social Sciences. SAGE Publications.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting
method to produce balanced samples in observational studies. Political Analysis,
20(1):25–46.

Hainmueller, J. (2014). ebal: Entropy reweighting to create balanced samples. R package
version 0.1-6.

Harvey, R. A., Hayden, J. D., Kamble, P. S., Bouchard, J. R., and Huang, J. C. (2017).
A comparison of entropy balance and probability weighting methods to generalize
observational cohorts to a population: a simulation and empirical example. Pharma-
coepidemiology and Drug Safety, 26(4):368–377.

Hirano, K. and Imbens, G. W. (2001). Estimation of causal effects using propensity score
weighting: An application to data on right heart catheterization. Health Services and
Outcomes research methodology, 2(3-4):259–278.

Hirshberg, D. A. and Zubizarreta, J. R. (2017). On two approaches to weighting in
causal inference. Epidemiology, 28(6):812–816.

Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under
exogeneity: A review. Review of Economics and statistics, 86(1):4–29.

Joffe, M. M., Ten Have, T. R., Feldman, H. I., and Kimmel, S. E. (2004). Model selection,
confounder control, and marginal structural models: review and new applications. The
American Statistician, 58(4):272–279.

Kullback, S. (1959). Information theory and statistics. Wiley, New York.

Lee, B., Lessler, J., and Stuart, E. (2010). Improving propensity score weighting using
machine learning. Statistics in Medicine, 29:337–346.

Mattke, S., Han, D., Wilks, A., and Sloss, E. (2015). Medicare home visit program
associated with fewer hospital and nursing home admissions, increased office visits.
Health Affairs, 34(12):2138–2146.

Newcombe, R. G. (2006). A deficiency of the odds ratio as a measure of effect size.
Statistics in Medicine, 25(24):4235–4240.

Parish, W. J., Keyes, V., Beadles, C., and Kandilov, A. (2018). Using entropy balancing
to strengthen an observational cohort study design: lessons learned from an evalua-
tion of a complex multi-state federal demonstration. Health Services and Outcomes



Electronic Journal of Applied Statistical Analysis 507

Research Methodology, 18(1):17–46.

Pearson, J. L., Stanton, C. A., Cha, S., Niaura, R. S., Luta, G., and Graham, A. L.
(2014). E-cigarettes and smoking cessation: insights and cautions from a secondary
analysis of data from a study of online treatment-seeking smokers. Nicotine & Tobacco
Research, 17(10):1219–1227.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rosenbaum, P. (1983). The central role of the propensity score in observational studies
for causal effects. Biometrika, 70:41–55.

Setoguchi, S., Schneeweiss, S., Brookhart, M., Glynn, R., and Cook, E. (2008). Eval-
uating uses of data mining techniques in propensity score estimation: A simulation
study. Pharmacoepidemiology and Drug Safety, 17:546–555.



 

 

© 2019 Lateef Amusa, Temesgen Zewotir and Delia North. This open access article is distributed under a Creative Commons 

Attribution (CC-BY) 3.0 license. 

American Journal of Applied Sciences 

 

 

Original Research Paper 

Evaluation of Subset Matching Methods: Evidence from a 

Monte Carlo Simulation Study 
 

Lateef Amusa, Temesgen Zewotir and Delia North
 

 
Department of Statistics, School of Mathematics, 

Statistics and Computer Science, University of Kwazulu-Natal, Durban, South Africa 

 
Article history 

Received: 20-01-2019 
Revised: 13-02-2019 
Accepted: 11-04-2019 
 
Corresponding Author: 
Lateef Amusa 
Department of Statistics, School 
of Mathematics, Statistics and 
Computer Science, University of 
Kwazulu-Natal, Durban, South 
Africa 
Email: amusasuxes@gmail.com 

Abstract: In the absence or infeasibility of experiments, matching 

methods have increasingly been used in making causal claims using 

observational data. This paper conducts a Monte Carlo simulation 

study, based on a household panel survey, to compare the performance 

of some widely used subset matching methods. The methods include the 

propensity score caliper matching, Mahalanobis distance matching, and 

coarsened exact matching. Comparisons were made in terms of the 

ability to reduce covariate imbalances, as well as effective recovery of 

the real treatment effect. Numerical results from our simulations 

provided evidence of coarsened exact matching outperforming the other 

methods. Our results also showed that, except for the Mahalanobis 

distance matching method, the efficiency of treatment effect estimates 

decreases with an increasing proportion of treated units. 
 
Keywords: Matching, Balance, Monte Carlo Simulation, Observational 

Studies, Propensity Score 
 

Introduction 

Randomized experiments are the gold standard for 

estimating causal effects: They guarantee that the treated 

and control groups are only randomly different from one 

another with respect to the background covariates. Many 

matching methods have been proposed for replicating 

this scenario as much as possible for observed covariates 

with observational data. 
Several methods serve as alternatives to matching, 

including adjusting for background variables in a 

regression model, instrumental variables, structural 

equation models and regression discontinuity designs. 

However, matching methods have been paid more 

attention and widely used because of its intuitiveness and 

more importantly, straightforward diagnostics, by which 

the performance is evaluated. 

Matching is a nonparametric method for taking 

control of the confounding influence of background 

covariates or pretreatment control variables in 

observational or non-experimental data. The main aim 

of matching is to selectively prune observations from 

the data so that a better balance between the treated and 

control groups is achieved with the remaining data, 

which in other words means that the empirical 

distributions of the covariates in the two groups are 

then more similar. Statistical modelling assumptions 

handle any residual imbalance. The primary merit of 

matching is that it significantly reduces model 

dependence (King et al., 2011).  

There are several matching methods existing in the 

literature, and they employ different distance measures, 

algorithms and rules for selecting control group 

members. Each technique could potentially choose 

different control group members from the overall control 

pool to create the matched group. The matched control 

group composition could, therefore, vary considerably 

depending on the particular matching algorithm used 

(Jacovidis, 2017). Matching techniques have been 

applied either using covariate (Miksch et al., 2010) or 

propensity score matching (Stock et al., 2010; Windt and 

Glaeske, 2010; Drabik et al., 2012) with some authors 

providing evidence for the superiority of propensity 

score matching (Drabik et al., 2012). The literature has 

shown that propensity score matching is not necessarily 

the gold standard (Fullerton et al., 2016). Depending on 

the scenario, other matching techniques can induce a 

better balance on the covariates and furthermore, the 

performance of propensity score matching highly 

depends on the correct specification of the propensity 

score model, choice of covariates and the matching 

algorithm used (Dehejia and Wahba, 2002; King et al., 
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2011; Rosenbaum and Rubin, 1984). While many 

simulation studies have compared the performance of 

different matching methods, it cannot be taken for granted 

that their findings are transferrable to another data 

situation (Franklin et al., 2014). Consequently, there is a 

need for extensive research on identifying which matching 

methods perform best in several scenarios. Even though 

there have been a few notable studies that have examined 

the performance of matching techniques in terms of how 

well they balance the groups on the covariates, only a few 

of them have extended the evaluation of the matching 

techniques to the outcome analyses (Jacovidis, 2017; 

Austin, 2014; Stone and Tang, 2013).  

Accordingly, this study aims to compare the 

performance of three (3) matching methods that are 

widely used in applied studies, under systematically 

manipulated conditions. The performance of each 

matching method was evaluated in terms of the ability to 

balance covariates between treated and control groups and 

efficient recovery of the real treatment effect. The 

abundance of subset matching methods and their 

variations is too large to be all compared in one study; 

without loss of generality, we studied the Propensity Score 

Caliper Matching (PSCM), Mahalanobis Distance 

Matching (MDM) and Coarsened Exact Matching (CEM).  

Materials and Methods 

Matching Methods 

In this section, we briefly describe the matching 

methods we focused on in this study, each of which is 

commonly used in the applied literature. For the 

Mahalanobis distance and propensity score matching 

methods, we assumed a 1-1 matching without 

replacement, with the greedy matching algorithm 

being used to define the matched pairs. In matching 

without replacement, an already matched control unit 

is no longer available as a potential match for other 

treated units. In the case of greedy matching, a treated 

unit is chosen randomly, and the nearest control unit 

is then selected for matching to this treated unit 

(Austin, 2009). 

Consider the unit i (i = 1,..., n), where Ti denotes a 

treatment variable coded 1 and 0 for the treated and 

control groups respectively. Let {Yi(t): t Є (0,1)} be the 

potential outcome variable value, also known as a 

counterfactual outcome (Rubin, 1974). This implies that 

Yi = TiYi(1) + (1-Ti)Yi (0) is observed. Let Xi be a vector 

of pretreatment covariates; while, let mT and mC be the 

number of matched treated and control units 

respectively, for the methods. In estimating the average 

treatment effects, the Sample Average Treatment effect 

on the Treated units (SATT) was utilized. SATT = 

1

iiЄT

t

TE
n
∑ , where TEi = Yi (1)-Yi (0). 

Propensity Score Caliper Matching 

Propensity score caliper matching is by far the most 

widely used matching method in the applied literature 

(Amusa, 2018). As the name of this method implies, it 

matches treated and control groups, based on the 

corresponding propensity scores, which weight 

covariates by how well they predict group membership. 

The propensity score was defined by Rosenbaum (1983) 

as the probability of treatment assignment, given the 

observed baseline covariates, stated mathematically as: 
 

( )1| ,
i i i
e P T X= =   (1) 

 

where, it is assumed that, given the X’s, the Ti’s are 

independent: 

 

( ) { }
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Let πt and πc and be the propensity scores for the 

treated and control group respectively, I1 be the set of 

units in the treated group and I0 be the set of units in the 

control group. A neighbourhood C (πc) is defined to 

contain the c units control group (cЄIo) as a match for 

the treated group t (t Є I1), where the absolute difference 

of propensity scores is the smallest among all possible 

pairs of propensity scores between t and c, i.e.: 

 

( ) min || ||,
t t c o

C cЄIπ π π= −   (3) 

 

Once a particular value for c is found to match t, c is 

removed from Io, without replacement. There is a further 

restriction imposed on the distance between πt and πc, 

and as such, c is selected as a match for t, only if the 

absolute difference of propensity scores between the two 

groups meets the following condition: 

 

|| || , ,
t c o

kЄIπ π ξ− <   (4) 

 

where, ξ is a caliper or a pre-specified tolerance for 

matching.  

This procedure is known as propensity score caliper 

matching. A caliper size of a quarter of the estimated 

propensity scores' standard deviation has been suggested 

in the literature (Rosenbaum and Rubin, 1985). 

Mahalanobis Distance Matching 

Similar to PSCM, the Mahalanobis distance 

matching method is built on specific notions of 

between observations of pretreatment covariates. MDM 

is unlike PSM which matches are made based on a 

scalar “Propensity Score”, known as a balancing score; 

MDM matches on covariates by a specified distance, 
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which consequently ensures that covariates have equal 

weights. MDM measures the distance between two 

units, Xt and Xc as: 

 

( ) ( ) ( )1
,

t c t c t c
M X X X X S X X

−′
= − −   (5) 

 

Where Xt, Xc denote the treated group and control group 

covariates respectively; S is the sample covariance 

matrix of X. Once the distance metric d is selected, a 

matching algorithm can then be applied. The procedure 

is known as the Mahalanobis distance matching. 

Coarsened Exact Matching 

The earlier mentioned methods are known as Equal 

Percent Bias Reduction (EBPR) methods, where 

improvements in the bound of balance for one covariate 

will affect each of the other covariates. To avoid this and 

other shortcomings of the EPBR methods, a new 

generalized class of matching methods known as 

Monotonic Imbalance Bounding (MIB), which has 

Coarsened Exact Matching (CEM) as a particular case, 

was introduced (Iacus et al., 2011; 2012). The strength of 

this method lies in the fact that, unlike other matching 

methods where balance is being continually checked until 

it is improved, CEM inverts the process and thus 

guarantees that the covariate imbalances between the 

matched treated and control groups will not be more than 

the user’s pre-chosen level. MIB methods, therefore, 

improve bounds in the balance of one covariate in 

isolation as it will not affect the maximum imbalance of 

each of the other covariates (Iacus et al., 2012).  

The essential thought of CEM is to coarsen each 

variable as reasonably as possible temporarily, through 

automated choices of coarsening using the Sturges rule 

(Scott, 2009), or any user-defined coarsening could be 

used. The automated approach was adopted for this 

study because of its ease and intuition. The exact 

matching algorithm is then applied to the coarsened data 

to determine the matches and to prune unmatched units. 

Finally, the coarsened data are left out, and the original 

values of the matched data are retained. In other words, 

after coarsening, the CEM algorithm creates a set of 

strata, say sЄS, each with same coarsened values of X. 

Units in strata containing at least one treated and one 

control unit are retained, while units in the remaining 

strata are then removed from this sample. 

We denote by Ts and Cs, the treated and control units, 

respectively in stratum s; s

T
m  as the number of matched 

units in Ts; 
s

C
m  is the number of matched units in Cs. The 

number of matched units are, respectively, mT = s

sЄS T
U m  

and mC = s

sЄS C
U m , for the treated and control units. 

Unmatched units receive zero weight, while to each 

matched unit i in stratum s, CEM assigns the weights: 

1,

,

s

s

i SC T

s

T C

iЄT

W m m
iЄC

m m




= 



 (6) 

 

Simulation Scheme 

In this section, we describe the design of the Monte 

Carlo simulations which were used for data generation 

and to compare the performance of the considered 

matching methods. The performance was assessed 

using the following criteria: (a) Quality of matches: 

The ability to induce balance on measured background 

covariates; (b) Absolute bias of estimated treatment 

effects; (c) Root Mean Squared Error (RMSE) of 

estimated treatment effects. 

The data-generating process and analyses were 

conducted with R packages, “MatchIt” (Ho et al., 2011) 

and “Matching” (Sekhon, 2011), in the environment of R 

version 3.4.1 (R Core Team, 2016).  

We replicate previous simulation designs that had 

been used to evaluate matching methods (Iacus et al., 

2012; Jacovidis, 2017; Austin, 2011), with slight 

modifications – the proportion of treated units where 

varied. Data were generated to mimic the Lalonde non-

experimental data described in the next section.  

Data Generation – Covariates Balance  

Data were generated to mimic the structure and 
properties of the famous non-experimental Lalonde-
PSID data. A small portion of the data is a U.S. job 
training program provided to participants for 12-18 
months to help them find a job (Lalonde, 1986). The 
dataset comprises the original Lalonde’s experimental 
treated units and non-experimental control units from the 
Panel Study of Income Dynamics (PSID), which 
includes 185 treated and 2490 control units. The choice 
of this dataset is driven by its importance in the 
evaluation literature since there has been considerable 
knowledge accumulated on evaluating non-experimental 
estimators, using this data. 

The dataset comprises ten covariates: Four 
continuous covariates including age (age), years of 
education (education), real earnings in 1974 (re74) 
and 1975 (re75); as well as six binary covariates 
including marital status (married), black race (black), 
Hispanic race (Hispanic), lack of a high school 
diploma (nodegree) and indicator variables for 
unemployment in 1974 (u74) and 1975 (u75). 

Using the idea of Austin (2011), we related the ten 

covariates with the probability of treatment selection via 

the following logistic regression model: 
 

( ), 0, 1 2 3

4 5 6 7

8 9 10

74

75

74 75

i t t
Logit age education re

re married black hispanic

nodegree u u

π α α α α

α α α α

α α α

= + + +

+ + + +

+ +

  (7) 
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The treatment group membership was regressed on 

the covariates for the study data and was used as 

coefficients (α1, α2,…, α10) above. The intercept α0,t was 

modified such that the proportion of treated units is 

varied at four different levels: 0.17, 0.20, 0.25, 0.33. For 

each unit i, in each of 1000 replications from this 

process, treatment status (denoted by T) was generated 

from a Bernoulli distribution with parameter πi,t, i.e., Ti ~ 

Ber (πi,t), so that the number of pre-match treated and 

control units in the sample varies over replications. 

Data Generation – Recovery of the True Treatment 
Effect  

Next, outcome scores (Y) were generated as follows: 
 

1 2 3

4 5 6 7

8 9 10

1000 74

75

74 75

Y T age education re

re married black hispanic

nodegree u u

β β β

β β β β

β β β ε

= + + +

+ + + +

+ + + +

  (8) 

 
ATT was fixed at 1000 and ε ~ N (0,10) as assumed 

by Iacus et al. (2012). Also, like Jacovidis (2017), the 
covariances between the covariates and outcome variable 
were obtained for the study data and were used to 
calculate the coefficients (β1, β1,…, β10) above. A total 
of 1000 replications of each dataset were generated and 
matched with each method. 

Performance Assessment 

As stated in Section 1, the performance of the matching 
methods were evaluated relative to the unmatched data, 
under two criteria: (i) quality of matches and (ii) recovery of 
the true treatment effect. For each criterion, we varied the 
proportion of units who received the treatment 
(subsequently referred to as proportion of treated) at 17%, 
20%, 25% and 33% levels, which corresponds to treatment-
to-control ratios of 1:5, 1:4, 1:3 and 1:2, respectively.  

Quality of Matches 

In terms of the quality of matches, the methods were 
compared in terms of their ability to induce covariates 
balance between treated and control groups. This was 
achieved using the absolute standardized mean difference 
and percent bias reduction for all the covariates. The 
Absolute Standardized Mean Difference (ASMD), 
according to Rosenbaum and Rubin (1985), is defined as: 
 

( ) ( )

2 2

*100%,

2

ˆ ˆ
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where, 
t
x and 

c
x  denote the sample mean of the treated 

and control units, respectively for the kth covariate; s
2
t 

and s
2
c denote the sample variance of the treated and 

control units, respectively for the kth covariate; ˆ
t
p  and 

ˆ
c
p  denote the mean of the kth dichotomous variable in 

the treated and control units, respectively. 

It has been suggested that a standardized mean 

difference of at most 10% is quite sufficient at balancing 

a given covariate between the treatment groups (Austin, 

2007; Normand et al., 2001). 

Following the convention, the Percent Bias Reduction 

(PBR) for each covariate was also utilized. A threshold 

value of at least 80% is acceptable for judging the 

effectiveness of a matching method in reducing covariate 

imbalances (Cochran and Rubin, 1973; Pan and Bai, 2015). 

The percent bias reduction is defined as follows: 

 

, ,

,

| | | |
*100%,

| |

k beforematching k after matching

k

k beforematching

B B
PBR

B

−

=  (10) 

 

where, Bk,befor matching and Bk,after matching denote the mean 

difference in the kth covariate between the treated and 

control units, before and matching respectively. 

For each of the ten covariates, the absolute 

standardized mean difference and percent bias reduction 

values were averaged across the 1000 simulated datasets. 

Recovery of the True Treatment Effect  

In each of the matched sets, we estimated the SATT 

estimators based on the difference in means between the 

observed outcome in the treated units and the control 

units. The performance of estimated treatment effects 

was assessed by its absolute bias, calculated as ˆ| |γ γ−  

and root mean square error (RMSE), calculated as 

( ) ( )
2

ˆ ˆvarγ γ γ− + , where γ̂   is the mean of the 1000 

estimated treatment effects. 

Results 

In this section, we present results from the simulation 
study. We compared the matching methods in terms of 
covariates balance and the performance of treatment 
effect estimates. 

Covariates Balance 

The covariates balance assessment was varied at 
17%, 20%, 25% and 33% proportions of treated units, as 
shown respectively in Table 1 to 4. As confirmed by the 
balance metrics, the raw data which we simulated from, 
is highly imbalanced - all the covariates have high 
standardized mean difference values - more substantial 
than the recommended 10% threshold value (Austin, 
2007; Normand et al., 2001; Stuart, 2010).  
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Table 1: Balance assessment of covariates for 33% proportion of treated units (treatment-control ratio of 1:2)  

 ASMD    PBR (%) 
 ----------------------------------------------------------------------- -------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM MAH CEM 

Age 0.56 0.06 0.45 0.01 89.84 18.91 97.81 
Education 0.57 0.04 0.24 0.01 92.42 57.78 98.22 
re74 2.01 0.07 1.40 0.06 96.57 30.63 97.17 
re75 2.86 0.09 2.00 0.34 97.00 30.05 88.14 
Black 0.86 0.05 0.55 0.00 94.61 36.49 100.00 
Hispanic 0.14 0.04 0.03 0.00 73.62 76.90 100.00 
Married 0.64 0.04 0.49 0.00 93.16 24.50 100.00 
Nodegree 0.53 0.04 0.25 0.00 92.02 53.35 100.00 
u74 0.66 0.03 0.61 0.00 95.07 8.22 100.00 
u75 0.67 0.03 0.60 0.00  95.56 10.16 100.00 

Note: The presented values are averages from each of the 1000 replications  
 
Table 2: Balance assessment of covariates for 25% proportion of treated units (treatment-control ratio of 1:3)  

 ASMD    PBR (%) 
 -------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM MAH CEM 

Age 0.59 0.06 0.45 0.01 90.52 23.75 97.90 
Education 0.58 0.04 0.22 0.01 92.36 61.95 98.09 
re74 2.16 0.06 1.26 0.05 97.23 41.35 97.57 
re75 3.17 0.08 1.91 0.36 97.62 39.56 88.49 
Black 0.92 0.05 0.45 0.00 94.90 50.89 100.00 
Hispanic 0.14 0.04 0.00 0.00 72.57 99.79 100.00 
Married 0.73 0.04 0.46 0.00 94.35 37.44 100.00 
Nodegree 0.57 0.04 0.26 0.00 92.82 53.79 100.00 
u74 0.73 0.03 0.59 0.00 95.89 19.51 100.00 
u75 0.71 0.03 0.55 0.00 95.37 21.83 100.00 

Note: The presented values are averages from each of the 1000 replications 
 
Table 3: Balance assessment of covariates for 20% proportion of treated units (treatment-control ratio of 1:4)  

 ASMD    PBR (%) 
 ---------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM  MAH  CEM 

Age 0.63 0.06 0.48 0.01 91.01 24.85 97.96 
Education 0.59 0.05 0.22 0.01 91.57 63.41 97.89 
re74 2.29 0.06 1.16 0.05 97.19 49.53 97.71 
re75 3.43 0.08 1.84 0.40 97.55 46.15 88.30 
Black 0.98 0.05 0.48 0.00 94.84 50.69 100.00 
Hispanic 0.14 0.04 0.00 0.00 71.86 100.00 100.00 
Married 0.81 0.04 0.47 0.00 95.03 42.18 100.00 
Nodegree 0.61 0.04 0.27 0.00 92.58 56.00 100.00 
u74 0.79 0.04 0.55 0.00 95.49 30.67 100.00 
u75 0.74 0.04 0.51 0.00 94.92 30.20 100.00 

Note: The presented values are averages from each of the 1000 replications 
 
Table 4: Balance assessment of covariates for 17% proportion of treated units (treatment-control ratio of 1:5)  

 ASMD    PBR (%) 
 ---------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM  MAH  CEM 

Age 0.69 0.06 0.55 0.01 91.51 20.13 98.13 
Education 0.61 0.05 0.21 0.01 91.58 65.77 97.67 
re74 2.46 0.07 1.01 0.06 97.08 58.82 97.51 
re75 3.75 0.10 1.73 0.44 97.45 53.88 88.23 
Black 1.06 0.05 0.53 0.00 95.04 50.36 100.00 
Hispanic 0.14 0.04 0.00 0.00 66.70 100.00 100.00 
Married 0.91 0.04 0.53 0.00 95.25 42.28 100.00 
Nodegree 0.65 0.05 0.26 0.00 92.76 60.16 100.00 
u74 0.85 0.04 0.46 0.00 95.44 45.43 100.00 
u75 0.77 0.04 0.44 0.00 94.77 43.08 100.00 

Note: The presented values are averages from each of the 1000 replications 



Lateef Amusa et al. / American Journal of Applied Sciences 2019, 16 (3): 92.100 

DOI: 10.3844/ajassp.2019.92.100 

 

97 

In terms of the absolute standardized mean 

difference, except for the Mahalanobis distance matching 

method - which resulted in values extremely above the 

10% threshold for almost all covariates, propensity score 

and coarsened exact matching methods had qualitatively 

comparable balance in the measured covariates. This 

pattern was consistent across the proportion of treated 

units. It is however worthy of note that coarsened exact 

matching had absolute standardized mean difference 

values of zero for the six continuous covariates across all 

treatment-control ratios considered. 

In terms of the PBR, the performance of coarsened 
exact matching was excellent - all ten covariates had the 
Cochran and Rubin’s acceptable threshold value of at least 
80% PBR value. Mahalanobis distance matching had the 
worst performance. Propensity score caliper matching also 
had close to such an excellent performance, barring one 
covariate which consistently had PBR values below the 
80% threshold. CEM further consistently had quantitatively 
higher PBR values. This pattern was consistent across the 
considered proportion of treated units. Overall, 
coarsened exact matching performed best in balancing 
covariates between the treated and control groups.  
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Fig. 1: Top panel: Root mean square error of estimated treatment effects; Bottom panel: Absolute bias of estimated treatment effects 
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Table 5: Absolute Bias and Root mean square of the matching methods relative to the unmatched data 

 Proportion of treated: 17% Proportion of treated: 20% Proportion of treated: 25% Proportion of treated: 33% 

 --------------------------------- ---------------------------------- --------------------------------- -------------------------------- 

Method AB RMSE AB RMSE AB RMSE AB RMSE 

Unmatched  524.49 618.07 518.24 600.94 507.63 581.37 498.95 555.44 

PSCM 72.60 246.62 59.46 211.75 55.33 186.13 75.98 161.54 

MAH 218.59 246.14 235.35 260.59 271.01 290.81 371.49 392.15 
CEM 4.33 35.19 2.30 33.16 2.22 29.28 1.80 27.91 

AB means absolute bias  
Note: values were averaged over 1000 Monte Carlo replications 

 

Performance of Treatment Effect Estimates 

The absolute bias (AB) and root mean square error 
(RMSE) of mean difference in outcomes between treated 
and control units of the matched data, across the 
considered proportion of treated units, are reported in 
Table 5 and Fig. 1.  

Relative to the unmatched data, all the three matching 

methods had lower absolute bias and RMSE values. 

Regardless of the proportion of treated units, coarsened 

exact matching (CEM) produced the least absolute bias 

and RMSE values - absolute bias ranged from 1.80 to 

4.33; RMSE ranged from 27.91 to 35.19. Also, the 

absolute bias and RMSE values of CEM reduced as the 

proportion of treated units increased from 17% to 33%. 

The same pattern was, however, not observed for the other 

two methods, while only the RMSE values for propensity 

score caliper matching (PSCM) followed the same pattern. 

Unlike the other methods, Mahalanobis Distance 

Matching (MDM) produced absolute bias and RMSE 

values, which increased as the proportion of treated units 

increased from 17% to 33%. 

Discussion 

In this study, we presented a Monte Carlo simulation 

study of three subset matching methods, namely; 

propensity score caliper matching, Mahalanobis 

distance matching and coarsened exact matching. We 

evaluated the performance of these methods based on 

the ability to induce balance on measured background 

covariates, as well as the performance of treatment effect 

estimates via the assessment of their absolute biases and 

root mean square errors. 

This study revealed that coarsened exact matching is 

the most effective in balancing covariates. As effective 

as CEM appears to be, the choice of coarsening can 

make or mar its performance: If the elements of the 

coarsening values are too small, then too many 

observations may be discarded. It may then lead to 

inefficient solutions in the analysis stage: if they are set 

too high, more observations will be retained, but more 

covariate imbalances, model dependence and statistical 

bias, will be introduced (Iacus et al., 2012). It is fine if 

there is a constant treatment effect (discarding units will 

not change the estimand of interest) but discarding units 

in the case of heterogeneous treatment effects may 

dramatically shift the estimand being estimated.  

In assessing the recovery of the true treatment effect, 

Mahalanobis distance matching was the most biased. 

Mahalanobis distance matching also resulted in the 

highest RMSE across all considered proportions of 

treated units. Overall, coarsened exact matching had the 

least absolute bias and RMSE across all considered 

proportions of treated units.  

Matching based on propensity score methods is by 

far the most widely used in applied studies to date. 

Previous research findings reveal that propensity score 

caliper matching was the best PSM technique (Bai, 

2011). However, it is worthy of note that when the 

sample size is small or violates the statistical 

assumptions, caliper matching will possibly become 

problematic, because it usually ignores the cases when 

they do not have matched pairs or do not meet the 

caliper’s criterion. Thus, it requires larger sample sizes 

to be very effective. Also worthy of note about 

matching on propensity scores is the correct 

specification of the propensity score model. In practice, 

an excellent alternative to distance driven matching 

methods may be to estimate the propensity score using a 

more flexible approach than logistic regression, for 

example, by using ensemble methods (Lee et al., 2010). 

A significant strength of this study is the utilization 
of a real data set that has been used to evaluate the 

performance of matching methods and to provide a 
suitable structure for simulating the 1,000 data sets. It 
has the advantage of simplifying data generation 
procedures and avoiding making arbitrary choices. This 
study has a few limitations: Firstly, we have not 
exhausted all possible matching methods that have been 

described in the literature. Secondly, we assumed a one-
to-one pair matching and therefore did not consider the 
many-to-one or many-to-many matching methods. 
Thirdly, we only assumed matching without 
replacement. Lastly, Optimal matching (Rosenbaum, 
1989) - another alternative to the utilized greedy, nearest 

neighbour matching method, was not considered in this 
study. The results of our simulation study are limited to 
scenarios represented by the simulated data, which are 
typical in the applied social sciences. Parameters of the 
data generation model were based on model coefficients 
of a widely used panel study of income dynamics survey. 
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Conclusion 

In comparison to the other subset matching methods, 

the utilized simulation study has provided sufficient 

evidence for the outperformance of coarsened exact 

matching method to the other considered methods, in 

terms of balancing covariates and efficiency in estimation 

of treatment effects. Future studies should include more 

matching methods; simulations should be expanded to 

consider a broader range of settings, including a non-

linear model and heterogeneous treatment effects. 
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Abstract 
Propensity score methods have dominated the estimation of treatment effects based on observational data and 
particularly in the health and medical sciences. We propose a weighting method based on rank-based Mahalanobis 
distance, namely the covariate balancing rank-based Mahalanobis distance method, to estimate causal effects for 
observational data. Using Monte Carlo simulations, under different data structures and type of outcome variables, 
the proposed method is shown to have better performance, in terms of bias reduction and treatment effect 
estimation. Specifically, under the generalized linear model framework, we simulated datasets based on the 
Lalonde-PSID study, for linear link function; while datasets were simulated based on the Lindner study, for non-
linear link functions. We further apply the proposed method to data extracted from the Nigeria Demographic Health 
Survey (2013), to investigate the effect of educational exposure on ideal family size among married couples in 
Nigeria. The proposed method is a viable alternative method that can improve covariates balance, bias reduction, 
and efficient estimation of treatment effects. 
Keywords: weighting, covariate balance, generalized linear models, monte carlo simulation, treatment effect 
1. Introduction 
A principal objective of health outcomes research is to estimate the causal effect of a treatment or intervention on 
an outcome variable. Inferences made in observational studies, because the treatment assignment is devoid of 
randomization, are not regularly clear and straightforward. 
In recent times, weighting methods have taken centre stage as a pre-processing procedure, which aims at improving 
the balance of background covariates, and efficiently estimating treatment effects. Weighting is a nonparametric 
balancing procedure, which applies weights to sample units to equal the distribution of a target population.   
The literature on weighting methods has been dominated by the inverse probability of treatment weights (IPW), 
which originates from survey research (Crump, Hotz, Imbens, & Mitnik, 2009; Hirano & Imbens, 2001; Hirano, 
Imbens, & Ridder, 2003; Imbens, 2004). The idea of IPW was formed from the Horvitz-Thompson weight (Horvitz 
& Thompson, 1952), which for each sample unit is the inverse of the probability of such unit being assigned to the 
observed group. Despite their popularity, propensity score methods, with specific reference to IPW, rely heavily 
on the correct specification of the propensity score model - slight misspecification of the propensity score model 
will result in a substantial bias of estimated treatment effects (Kang & Schafer, 2007). 
In this paper, we introduce a rank-based Mahalanobis distance weighting approach, namely, the covariate 
balancing rank-based Mahalanobis distance (CBRMD) method, to efficiently estimate treatment effects, in the 
presence of confounding factors. We show how to use a modified Mahalanobis distance, the rank-based 
Mahalanobis distance, proposed by Rosenbaum (Rosenbaum, 2002), as weights that can reduce covariates 
imbalance between treated and control groups, which are used to estimate treatment effects efficiently. In brief, 
we fix weights for the treated group sample units at unity, while those for control group units are obtained as the 
number of times a control unit has the smallest rank based Mahalanobis distance from the individual treated units.  
We illustrate the general framework of the proposed method in the Methodology section. The performance of the 
proposed method is evaluated through a series of Monte Carlo simulations and a case study of data on the effect 
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of educational exposure on the desired family size among married couples in Nigeria. Using the IPW method as a 
benchmark, we study the effectiveness of the proposed technique in balancing covariates, and efficient estimation 
of treatment effects. Our choice of the IPW as a benchmark for evaluating the performance of the proposed method 
is due to its simplicity and familiarity.  
2. Methodology 
Consider a random sample of n= nt + nc units, with each i (i =1, . . ., n), belonging to only one of two groups for 
which estimation of causal effects are of interest, denoted by 𝑇𝑖. The ith unit received the treatment of interest, if 𝑇𝑖 = 1, and  𝑇𝑖 = 0, if it was not received (control group). Let 𝑋𝑖′ denote a K-dimensional vector of observed 
pre-treatment covariates associated with unit 𝑖. Adopting the potential outcomes framework, we let 𝑌𝑖(1) be the 
potential outcome that unit i attains under treated group and 𝑌𝑖(0) the potential outcome under control group 
(Rubin, 1974). The observed outcome can then be represented as 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 - 𝑇𝑖) 𝑌௜(0). We estimate the 
Sample Average Treatment effect on the Treated (SATT) as, SATT = 1𝑛𝑡 ∑ 𝑇𝐸𝑖𝑖Є𝑇 , where 𝑇𝐸𝑖 = 𝑌𝑖(1) - 𝑌𝑖(0). 
The Mahalanobis distance between covariates of the treated unit, 𝑋𝑡 and covariates of the control unit, 𝑋𝑐 can be 
obtained from: 

D2 (𝑋𝑡, 𝑋𝑐) = (𝑿𝑡 −  𝑿𝑐)𝑇∑෡−1 (𝑿𝑡 −  𝑿𝑐)     (1) 
where ∑෡ is the estimated sample covariance of X.  
For multivariate normal covariates, the Mahalanobis distance works fine; but exhibit some rather odd behaviour 
with non-normal data and outliers-present data. Consequently, we replace the Mahalanobis with a rank-based 
Mahalanobis distance, defined by Rosenbaum (Rosenbaum, 2002) as follows: 

rD2 (𝑋𝑡, 𝑋𝑐) =  ൫𝑟(𝑿𝑡) −  𝑟(𝑿𝑐)൯𝑇 𝑎𝑑𝑗 ∑෡−1 ൫𝑟(𝑿𝑡) −  𝑟(𝑿𝑐)൯   (2) 
where, 𝑟(𝑿𝑡) 𝑎𝑛𝑑 𝑟(𝑿𝑐)  are the ranks of each of the covariates belonging to the treated and control groups, 
respectively. Average ranks are used for ties. 
Further, note that 𝑎𝑑𝑗 ∑෡   denotes adjusted covariance matrix, which adjusts the ∑෡ (variance-covariance matrix 
of the ranked covariates) by pre-multiplying and post-multiplying the covariance matrix of the ranks by a diagonal 
matrix whose diagonal values are the ratios of untied ranks’ standard deviation, to the tied ranks’ standard 
deviations of the covariates. In other words, adj ∑෡ is defined as: 

adj ∑෡ = D ∑ D       (3) 
where,  

D =൦ 𝑆𝑢𝑆𝑡1 ⋯⋮ ⋱ ⋮⋯ 𝑆𝑢𝑆𝑡𝐾
൪  

𝑆𝑢 is the standard deviation of untied ranks, and  𝑆𝑡𝐾 is the standard deviation of tied ranks for the kth covariate. 
From the matrix rD2 with dimension t x c, where t is the number of treated units and control units, respectively, 
the proposed algorithm extracts the control units and its corresponding rank-based Mahalanobis distance on each 
row of the matrix.   
Finally, sample weights for treated units are fixed at unity, while those for control group units are given as the 
number of times a control unit has the smallest rank-based Mahalanobis distance from the individual treated units.  
If any control unit does not have the smallest rank-based Mahalanobis distance from any treated unit, the CBRMD 
procedure does not give it a weight of zero. Instead, it only down-weights them. When there are ties in the control 
units that have the least rank-based Mahalanobis distance from any treated unit, the weight is approximately 
equally distributed among them so that every sample unit contributes to the estimation, which in turn improves 
balance, reduces bias, and maximizes efficiency. 
The proposed algorithm is described in the following steps: 
Step 1: Sort the data in order of the treatment indicator, with the corresponding unit identification number. 
Step 2: Compute the rank-based Mahalanobis distances of each treated units with the control group units, using 
Equation (2), and store the distances in a matrix with t rows and c columns. 
Step 3: Create a vector which stores the column number of the control unit that has the smallest distance with the 
treated units in each row. 
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Step 4: Extract a frequency distribution based on Step 3, to identify the number of times each control unit had the 
smallest distance. Control units with zero frequencies are down-weighted approximately equally. 
Step 5: Treated units have weights that are fixed at 1; while control units have weights based on step 4. 
3. Simulations 
3.1 Monte Carlo Simulations - Overview 
In this section, we study the numerical performance of the proposed methodology. We conducted extensive Monte 
Carlo simulations to examine the performance of the proposed method, and compare its performance to that of 
IPW. Performance of the methods was assessed using absolute standardized bias of covariates; absolute biases and 
root mean squared errors (RMSE) of the estimated treatment effects. The data generating process and analyses 
were conducted in the R environment of version 3.4.3. 
Two different phases of simulations were conducted overall. In the first phase, the simulation was made to be as 
realistic as possible by simulating from real-life data, which was achieved by explicitly focusing on two distinct 
scenarios: 
In the first scenario, subsequently referred to as Scenario I, we generated treatment and outcome variables from 
covariates of the Lalonde-PSID data. This data has a reputation of being used as a benchmark in the causal 
inference literature. The data is a hybrid of program participants (treated units) from Lalonde’s (LaLonde, 
1986)experimental data and control group drawn from the Panel Study of Income Dynamics (PSID) data. The 
dataset comprises of ten covariates including age (age), indicator variables for unemployment in 1974 (u74) and 
1975 (u75), marital status (married), lack of a high school diploma (nodegree), number of years of education 
(education), hispanic race (hispanic), black race (black), and real earnings in 1974 (re74) and 1975 (re75). The 
outcome was the real earnings in 1978. Choice of this data will enable us to evaluate how well our proposed 
method can recover the treatment effect estimates from the experimental data. 
For the second scenario, subsequently referred to as Scenario II, we extend our evaluation to non-normal responses. 
We specifically consider three types of outcomes: binary outcomes (Binomial distribution), counts (Poisson 
distribution), and skewed continuous outcomes (Gamma distribution). The idea is to mirror some outcome 
variables that are mostly encountered in medical and health sciences. For example, presence or absence of diseases, 
number of antenatal care visits by pregnant women, and health care costs are usually described by the Binomial, 
Poisson, and Gamma distributions, respectively.  
The simulations were based on the Lindner dataset. Details of this data have been published elsewhere (Abdia, 
Kulasekera, Datta, Boakye, & Kong, 2017). In brief, the Lindner dataset comprises information on 996 patients 
who were receiving an initial Percutaneous Coronary Intervention (PCI) at the Ohio Heart Health, Lindner Christ 
Hospital in 1997. The treatment indicator (abcix), equals 1 when the patient was in PCI treatment with additional 
treatment abciximab (an expensive, high-molecular-weight IIb/IIIa cascade blocker), and 0 when the patient was 
in PCI group. Covariates include, indicator for recent acute myocardial infarction (acutemi); indicator for coronary 
stent insertion (stent); gender (female); height; left ventricle ejection fraction (ejecfrac); number of vessels 
involved in initial PCI (ves1proc); diabetic indicator (diabetic); and an indicator for survival at six months 
(sixMonthSurvive).  
3.2 Monte Carlo Simulations – Data Generation 
For scenarios I and II, like (Austin, 2011; Austin & Stuart, 2017), we assume a linear relationship between log-
odds of treatment assignment and covariates from their respective real data, as shown in Equations (4) and (5).     

Logit (𝜋i) = α0 + α1 age + α2 education + α3re74 + α4 re75 + α5 married + α6 black + α7 hispanic + α8 
nodegree + α9 u74 + α10 u75         (4) 

Logit (𝜋i) = α0 + α1 stent + α2 height + α3female + α4 diabetic + α5 acutemi + α6 ejecfrac + α7 ves1proc 
+ α8 sixMonthSurvive                 (5) 

To ensure varied number of treated and control units, we then generate the treatment variable for individual i, in 
1000 separate runs as Ti ~ Bernoulli (𝜋i). 
In assessing covariates balance, we average the Absolute Standardized Bias (ASB) for each covariate, from the 
1000 runs of the above data generation. ASB is given as: 

ASB= 1ට𝑠2𝑡 +  𝑠2𝑐2  ฬ∑ 𝑥𝑖 𝑇𝑖 𝑤𝑖𝑛𝑖=1  ∑ 𝑇𝑖 𝑤𝑖𝑛𝑖=1 −  ∑ 𝑥𝑖 (1−𝑇𝑖 )𝑤𝑖𝑛𝑖=1∑ (1−𝑇𝑖 )𝑤𝑖𝑛𝑖=1 ฬ         (6) 
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where 𝑠2𝑡 and 𝑠2𝑐 are the sample variances of the covariate in the treated and control group respectively. For 

weighted data, 𝑠2 = ∑ 𝑤𝑖(∑ 𝑤𝑖)2 ∑ 𝑤𝑖 (𝑥𝑖 −  𝑥ത)2, where 𝑥ത = ∑ 𝑥𝑖𝑛 . 

We generate outcome variables differently for the two scenarios. For scenario I, we assume the following linear 
model: 

Y = β0 + γTi + β1age + β2education + β3re74 + β4re75 + β5married + β6black + β7hispanic  + β8nodegree + β9u74 + β10u75 + εi,            εi ~ N (0,10)       (7) 
Following (Diamond & Sekhon, 2013), we set γ = 1000, and β0 , β1 ,…, β10  are coefficients from linearly 
regressing the outcome on the covariates from the real data.  
For scenario II, data are generated from the following generalized linear model 

 g(E(Y/X, Z)) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γT,    (8) 
Where g is chosen to be the canonical link function for Binomial, Poisson, and Gamma distribution, respectively. 
The 𝑋𝑗’s are the 8 covariates from the Lindner dataset. 
Following (Austin, 2011), model coefficients for Equation (8), are set as β0  = 0, β1  = β2  =log(1.1), β3  = β4  =log(1.25), β5  = β6  =log(1.5), and β7  = β8  =log(2). The non-zero coefficients are chosen to reflect low, 
medium, high and very high effect sizes.  
3.2.1 Data Generation – Binary Outcomes (Binomial Distribution) 
For binary outcomes, (8) becomes: 

Logit (P(Yi=1)) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi      (9) 
Equation (9) is the conventional logistic regression model that is usually encountered in clinical and 
epidemiological research. The regression parameter γ is the log-odds ratio for the treatment effect. The model 
assumes that the logit of the probability of outcomes changes with a subject’s change in treatment status. The odds 
ratio is exp (γ) and has been described as a conditional or adjusted treatment effect (Austin, 2010).   The 
logarithmic link function in Equation (9) does not require covariates from a distribution with support over the real 
line. For this reason, covariates from (9) are reduced to only the five binary covariates. Therefore, Equation (9) 
reduces to: 

Logit (P(Yi=1)) = β0 + ∑ 𝛽𝑗5𝑗=1 𝑋𝑗 + γTi    (10) 
Coefficient γ is set to 1, while the estimated treatment effects were transformed to be on the odds ratio scale. 
3.2.2 Data Generation – Count Outcomes (Poisson Distribution) 
For count outcomes, Equation (8) becomes: 

Log (ηi) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi     (11) 
The regression parameter γ is the expected change in log count, as treatment status changes from treated to control. 
The continuous covariates were scaled to have zero mean and unit variance, to permit the possible values of the 
log link function. Coefficient γ is set to 1, while the estimated treatment effects are on the log-rate ratio scale. 
3.2.3 Data Generation – Skewed Continuous Outcomes (Gamma distribution) 
For skewed continuous outcomes, Equation (8) becomes: 

1 /(ηi) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi     (12) 
The regression parameter γ is the expected change in the inverse of outcomes, as treatment status changes from 
treated to control. Coefficient γ is set to 1500, while the estimated treatment effects are on a natural scale. 
3.3 Kang and Schafer Design 
This second phase of simulation follows the Kang and Schafer (Kang & Schafer, 2007) design, which showed that 
misspecification of a propensity score model could adversely affect weighting methods that depend on the 
propensity score. This design has been used in the literature to evaluate the performance of propensity score 
methods when the true propensity score is known, and when it is unknown. Note that the true propensity score was 
unknown in the earlier phase of simulations. Also, this phase of simulations is only introduced for the estimation 
of treatment effects. Though this simulation phase may achieve other objectives, the main aim is to compare the 
proposed method and IPW method, under the case where IPW is expected to perform optimally.  
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We replicate the Kang and Schafer simulation study, using 1000 Monte Carlo simulation runs, for sample sizes, 
200, 1000, and 5000. In brief, the design’s data generation is as follows: 
Yi = 210 + 27.4 Xi1 + 13.7(Xi2 + Xi3 + Xi4) + εi, where   εi ~ N (0,1), the Xi’s are independently standard normally 
distributed, and the true propensity scores are 𝜋i = 11+ 𝑒(−𝑋𝑖1 +0.5𝑋𝑖2− 0.25𝑋𝑖3 − 0.1𝑋𝑖4)  
3.4 Assessing Performance of Treatment Effects  
For each phase, scenario and model, 1000 datasets were simulated. The performance of estimated treatment effects 
was assessed by calculating the mean γത of the 1000 regression coefficients. The bias was calculated as γොത – γ, and 
the root mean square error (RMSE) as  ඥ(γොത − γ )ଶ + 𝑣𝑎𝑟 (γ)෡ . 
4. Results 
4.1 Monte Carlo simulations - Results 
In this subsection, we present and explain the results obtained from analysing the simulated datasets. Figures 1 
and 2 visualises balance of each of the ten covariates after applying the proposed method and IPW. We 
superimposed horizontal lines on each panel to denote ASB of 0.25, as some authors have suggested that ASB 
values that exceed this threshold may indicate significant imbalance(Ho, Imai, King, & Stuart, 2007; Imai, King, 
& Stuart, 2008; McCaffrey et al., 2013). Simulations from the heavily imbalanced Lalonde data, produced datasets 
whose average ASB values ranged from 0.125 to 1.850. Our proposed method substantially improved the balance 
on the ten covariates, with average ASB values ranging from 0.023 to 0.219, while the IPW adjusted data have 
average ASB values ranging from 0.125 to 1.850 and 0.146 to 0.887, respectively. The Lindner data is moderately 
imbalanced, as datasets simulated from it, had average ASB values ranging from 0.052 to 0.428. Both set of 
weights substantially improved the balance, as average ASB values ranging from 0.007 to 0.176 for the proposed 
method, and 0.019 to 0.049 for the IPW adjusted data.  
 

 
Figure 1. Plot of mean absolute standardized bias of covariates in the Lalonde data, under each weighting 

method 
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Figure 2. Plot of mean absolute standardized bias of covariates in the Lindner data, under each weighting method 
 
In the first scenario, where the datasets were simulated from the Lalonde-PSID data and outcome variable is 
assumed normally distributed, there is an excellent performance of the proposed method, in terms of absolute bias 
and RMSE of estimated treatment effects. The proposed technique, as compared to others, has the least absolute 
bias and RMSE, resulting in a 65% reduction in these performance metrics. The extremely high values of the bias 
and RMSE is not surprising, given the high variance of the outcome variable. The average absolute biases and 
RMSEs of the weighting methods are shown in Table 1. 
 
Table 1. Relative performance of the weighting methods under Scenario I 

Method   

 Absolute bias RMSE 
Unweighted 67265.76 67274.98    
Proposed 22908.59    23320.30    
IPW 28584.00  31722.93  

Note: values were averaged over 1000 Monte Carlo replications. 
 
The estimated treatment effects for the weighting methods, under each type of outcome distribution, are reported 
in Figure 3. The lower left panel of the plot shown the treatments for the normally distributed outcomes, lower 
right panel for the binomially distributed outcomes, upper left panel for the Poisson distributed outcomes, and the 
upper right panel for the Gamma distributed outcomes. 
Except for binomially distributed outcomes, the proposed method dominates the others both in terms of absolute 
bias and RMSE, as shown in Table 2. The most substantial outperformance for the proposed method was observed 
for Poisson distributed outcomes, where approximately 75% reduction in both absolute bias and RMSE was 
achieved. IPW method had the least absolute bias and RMSE for binomial outcomes, even though the difference, 
as compared to the other methods was not of considerable importance. For Gamma distributed outcomes, IPW 
method had no reduction in the absolute bias and RMSE, but slightly increased it instead; while the proposed 
method reduced the performance metrics by approximately 16%.  
 
Table 2. Relative performance of the weighting methods under Scenario II 

Method Gamma Poisson Binomial 
 Absolute bias RMSE Absolute bias RMSE Absolute bias RMSE 
Unweighted 1491.92 1494.21 15.95 15.96 1.88 1.95 
Proposed 1255.06 1276.16 3.94 4.09 1.80 1.93 
IPW 1492.27 1494.72 13.15 13.18 1.73 1.82 

Note: values were averaged over 1000 Monte Carlo replications. 
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Having established the performance of the proposed method under situations where the true propensity is unknown, 
Table 3 shows the result from an unusual situation where the correct propensity score model is specified. There is 
a bias-variance trade-off, as the proposed method consistently (over the considered sample sizes) had the least 
absolute bias at the expense of some increase in RMSE. Both weighting methods show an overall reduction in bias 
and RMSE, as compared to the unadjusted data. Also, there is a pattern of improved performance of the proposed 
method and the IPW method, when the sample size increases. This experiment has shown that the performance of 
IPW method (when the correct propensity score model is known) will only be better than the proposed method in 
terms of efficiency and not bias reduction.  
 

 

 

 

 

Figure 3. Boxplot of estimated treatment effects for the weighting methods. 
 
Table 3. Relative performance of the weighting methods under a correct propensity score, based on Kang and 
Schafer (2007) 

Sample size Method Bias RMSE 
200 Unweighted 19.958 20.523 

 Proposed 0.101 7.468 
 IPW 0.421 4.815 

1000 Unweighted 19.979 20.100 
 Proposed 0.061 3.354 
 IPW 0.069 2.344 

5000 Unweighted 20.026 20.051 
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 Proposed 0.007 1.071 
 IPW 0.007 1.565 

10000 Unweighted 19.995 20.007 
 Proposed 0.002 1.122 
  IPW 0.006 0.722 

Note: values were averaged over 1000 Monte Carlo replications 
 
5. Case Study 
In this section, we apply the proposed method to extracted data from the Nigeria Demographic Health Survey of 
2013. The Demographic and Health Survey (DHS) provides cross-sectional data on demographic and health 
indicators, including information on fertility and family planning, knowledge and current use of contraception 
methods, as well as sexually transmitted diseases (NDHS, 2013). Further details of this data can be found 
elsewhere (Amusa, 2018). 
The sample consists of 18842 married respondents aged 15-49, 6373 of whom had at least a secondary school 
education, subsequently regarded as ‘treated’ group, and others 12469 had primary school or no formal education, 
regarded as ‘control’ group. The research question of interest is whether educational exposure causes a higher 
desired number of children (outcome variable). The data set includes information on ten covariates that potentially 
confound the treatment-outcome relationship. Table 4 presents the description of data variables and summary 
statistics, including averages and standard deviations for continuous variables, and percentages for categorical 
variables, as well as the absolute standardized bias as the balance metric. 
 
Table 4. Summary statistics of baseline covariates of the two treatment groups in the case study. For continuous 
variables, the mean (standard deviation) is presented; for binary variables, the frequency (percentage) is presented. 

Label Variable Description Treated Control  
  N = 6373 N = 12469 ASB

Bmi Body Mass Index 25.30 (5.00) 22.64 (4.14) 0.58
Age Age of respondent 32.09 (7.81) 31.99 (8.74) 0.01

Agebirth Age at first birth 28.87 (6.09) 28.94 (7.33) 0.01
Mbirth Interval of marriage to birth (months) 18.41 (19.39) 27.98 (27.57) 0.40
Siblings Number of siblings of respondent 5.39 (2.44) 5.42 (2.80) 0.01

Knowledge Knowledge of any birth control method 6272 (38.20%) 10145 (61.90%) 0.59
Wealth Wealth index (poor = 1) 980 (27.83%) 2541 (72.17%) 1.58

Res Residence type (rural = 1) 3909 (57.74%) 2861 (42.26%) 0.84
Sexhead Sex of household head (male = 1) 5436 (31.82%) 11649 (68.18%) 0.27
Working Respondent is working 5099 (37.39%) 8538 (62.61%) 0.27

Note: ASB denotes absolute standardized bias. 
 
The ASB values, using the >0.25 threshold (as used in the simulation study), suggest that the covariates balance is 
not satisfactory for all seven out of the ten background covariates. The ASB values ranged from 0.01 to 1.58. We 
applied the proposed method using the ten variables. We also implemented the IPW method by estimating 
propensity scores from a linear logit specification of treatment-covariates relationship on all ten covariates. For 
each of the ten covariates, Figure 4 visualises the covariate balance obtained from the different weighting methods 
as measured by the conventional balance statistics – absolute standardized bias. A horizontal line at ASB = 0.25 
was superimposed (as in the simulation study) to denote the balance threshold of the covariates. 
Results from Figure 4 reveal that, though the proposed method maximized the improvement in balance, better than 
the IPW method, they both substantially improved the mean balance compared to the raw data. The proposed 
method has ASB values ranging from as small as zero to 0.062; while the IPW method had values ranging from 
0.003 – 0.060.  
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Figure 1. Plot of mean absolute standardized bias of covariates in the case study data, under each weighting 

method 
 
Table 5 shows the point estimates, p-value, and associated 95% confidence interval from the weighting methods. 
The standard errors used to calculate confidence intervals for the proposed method and IPW are based on the robust 
sandwich variance estimator (Austin & Stuart, 2015; Joffe, Ten Have, Feldman, & Kimmel, 2004). Estimates from 
the weighted estimators were entirely different from the unweighted estimator. All the estimators were negative 
and statistically significant (p<0.05) at the 5% level, which suggests that educational exposure (having at least a 
secondary school education) decreases the expected number of desired children by married couples. The proposed 
weighted estimator produced a confidence interval with a slightly shorter length compared to the IPW estimator.  
 
Table 5. Causal effect estimation of educational exposure on desired family size, using the various methods 

Estimator Point Estimate 95% Confidence Interval (CI)  CI Length P-value
Unweighted -0.444 (-0.4573, -0.4327) 0.0246 <0.0001
Proposed -0.244 (-0.2644, -0.2242) 0.0402 <0.0001
IPW -0.28 (-0.3095, -0.2505) 0.059 <0.0001

Note: Standard errors of the weighted estimators were based on the robust sandwich variance estimators 
 
6. Discussion 
Estimation of causal effects is central to health outcomes. In this study, we have proposed a new weighting method 
which is based on computations from a rank-based Mahalanobis distance. We showed through simulations and an 
empirical application, the effectiveness of the proposed method in terms of improvement in covariates balance, 
bias reduction and efficient estimation of treatment effects.  
The proposed covariate balancing rank-based Mahalanobis distance (CBRMD) method is a novel approach to 
estimating causal effects, in the presence of confounding factors, as the case of observational studies. We have 
been able to demonstrate numerically, the excellent performance of the proposed method, to induce balance on 
background covariates, as well as, a notable reduction in the bias and increased efficiency of the estimated 
treatment effects.  Notably also, is the fact that the CBRMD method performs at its best when the sample size is 
huge - this was evident from the results obtained from the simulations, and the case study from the large sample 
NDHS data, that was done in this study. Large sample sizes are typical of epidemiological studies and national 
surveys.   
There has been overwhelming usage of propensity score weighting methods among applied researchers in various 
disciplines who conduct causal inference in observational studies. We only acknowledge that propensity score 
methods have become more familiar, hence the reason for adoption.  
The commonly used IPW method relies heavily on the correct propensity score model specification. Model 
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misspecification will substantially bias its estimation of treatment effects. However, as shown from the simulations, 
the proposed method still favourably competes with the IPW, under situations where the correct propensity score 
model is specified. An interesting bias-variance trade-off was observed from our simulations when the correct 
propensity score was known, with our proposed method consistently having the least absolute bias but slightly 
trailing the IPW method in terms of efficiency, as measured by root mean squared error. 
One of the major strength of this study is the development of the simulation study based on notable existing real-
life studies. This approach of designing simulations based on real-life studies is increasingly becoming the norm, 
as it allows the researcher to incorporate complex and realistic associations within the data structure. The fact that 
outcome variables from different distributions under the GLM framework were considered is also a strength of 
this study.  
We acknowledge that the IPW method was only used as a benchmark for evaluating the performance of the 
proposed method. Though this study has briefly compared the IPW method under the situation where the correct 
propensity score model is known, future research is required for extensively comparing the two methods under 
varying scenarios before we can recommend one over the other.  For now, evidence from this study can only 
advise researchers and applied practitioners to adopt the proposed method when the correct propensity score model 
is not known. Future researches may consider the combination of CBRMD with other pre-processing methods. We 
are currently exploring these. 
7. Conclusions 
When causal effects are of interest in the presence of confounding variables, as the case of observational studies, 
the proposed covariate balancing rank-based Mahalanobis Distance (CBRMD) method is a viable alternative 
method, that can improve covariates balance, bias reduction and efficient estimation of treatment effects. 
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Appendix B: Selected R codes

Some selected R codes for Chapters 3, 4, 5, and 6

# Chapter 3

# R codes f o r Scenar io 1

rm( l i s t = l s ( ) )

requi re ( cem )

requi re ( MatchIt )

requi re ( Matching )

l i b r a r y ( ggplot2 )

l i b r a r y ( ggpubr )

l i b r a r y (MASS)

ATT=1

sigma<− diag ( 1 0 )

sigma [ 1 , 5 ] = sigma [ 5 , 1 ] = sigma [ 8 , 3 ] = sigma [ 3 , 8 ] = 0 . 2

sigma [ 2 , 6 ] = sigma [ 6 , 2 ] = sigma [ 4 , 9 ] = sigma [ 9 , 4 ] = 0 . 9

MCSim <− 1000

fun=funct ion ( rate , n )

{
s e t . seed ( 1 2 3 4 5 6 )

tmp <− matrix (NA, MCSim, 8 )

s i z e s <− matrix (NA, MCSim, 8 )

colnames ( s i z e s ) <− c (”RAW( n ) ” , ”CEM( n ) ” , ”MAH1( n ) ” , ”MAH2( n ) ” , ”PSC1 ( n ) ” , ”PSC2 ( n ) ” ,

”FULL1( n ) ” , ”FULL2( n ) ” )
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colnames ( tmp ) <− c (”RAW” , ”CEM” , ”MAH1” , ”MAH2” , ”PSC1” , ”PSC2” , ”FULL1” , ”FULL2”)

f o r (MC in 1 :MCSim){
x <− mvrnorm ( n , mu = rep ( 0 , 1 0 ) , Sigma = sigma , empir i ca l=T )

x1<− x [ , 1 ] ; p1=pnorm ( x1 ) ; xx1=rbinom ( n , 1 , p1 )

x2<− x [ , 2 ]

x3<− x [ , 3 ] ; p3=pnorm ( x3 ) ; xx3=rbinom ( n , 1 , p3 )

x4<− x [ , 4 ]

x5<− x [ , 5 ] ; p5=pnorm ( x5 ) ; xx5=rbinom ( n , 1 , p5 )

x6<− x [ , 6 ] ; p6=pnorm ( x6 ) ; xx6=rbinom ( n , 1 , p6 )

x7<− x [ , 7 ]

x8<− x [ , 8 ] ; p8=pnorm ( x8 ) ; xx8=rbinom ( n , 1 , p8 )

x9<− x [ , 9 ] ; p9=pnorm ( x9 ) ; xx9=rbinom ( n , 1 , p9 )

x10<− x [ , 1 0 ]

X=cbind ( xx1 , x2 , xx3 , x4 , xx5 , xx6 , x7 )

b0= r a t e

b1<− 0 . 8 ; b2 <− −0.25; b3<− 0 . 6 ; b4<− −0.4 ; b5<− −0.8; b6<− −0.5 ; b7<− 0 . 7

a1<− log ( 2 ) ; a2<− log ( 2 ) ; a3<− log ( 2 ) ; a4<− log ( 1 . 7 5 ) ; a5<− log ( 1 . 7 5 )

a6<− log ( 1 . 7 5 ) ; a7<− log ( 1 . 5 )

M <− cbind ( rep ( 1 , n ) , xx1 , x2 , xx3 , x4 , xx5 , xx6 , x7 )

mod. c o e f f s <− as . matrix ( c ( b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 ) )

mu = M %∗% mod. c o e f f s

Tr . pred <− exp (mu)/(1+ exp (mu) )

t <− matrix ( nrow=n , ncol =1)

f o r ( i in 1 : n )

t [ i ] = sample ( 0 : 1 , 1 , prob=c(1−Tr . pred [ i ] , Tr . pred [ i ] ) )

dat=data . frame ( t r e a t =t , X)

y <− I (ATT∗ t ) + a1∗xx1+ a2∗x2+ a3∗xx3+ a4∗x4+ a5∗xx5+ a6∗xx6+ a7∗x7+ rnorm ( n , 0 , 1 )

t s u b j e c t s <− which ( t ==1)

c s u b j e c t s <− which ( t ==0)

nt <− length ( t s u b j e c t s )

nc <− length ( c s u b j e c t s )

d a t i 1 <− data . frame ( dat , y )
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cem . mat <− cem(” t r e a t ” , dat )

cem . t r <− which ( cem . mat$groups==”1” & cem . mat$matched==TRUE)

cem . c t <− which ( cem . mat$groups==”0” & cem . mat$matched==TRUE)

cem . idx <− unique ( c ( cem . t r , cem . c t ) )

mah . mat1 <− Match ( Tr=t , X=X , Weight =2 ,M=1 , r e p l a c e=F )

mah . mat2 <− Match ( Tr=t , X=X , Weight =2 , c a l i p e r =0 .25 ,M=1 , r e p l a c e=F )

mah . t r 1 <− mah . mat1$index . t r e a t e d ; mah . t r 2 <− mah . mat2$index . t r e a t e d

mah . c t 1 <− mah . mat1$index . c o n t r o l ; mah . c t 2 <− mah . mat2$index . c o n t r o l

mah . idx1 <− unique ( c (mah . t r1 , mah . c t 1 ) )

mah . idx2 <− unique ( c (mah . t r2 , mah . c t 2 ) )

pscore <− glm ( t r e a t ˜ . , family=binomial , data=dat )

psc . mat1 <− Match ( Tr=t , X= p s c o r e $ f i t t e d ,M=1 , r e p l a c e=F )

psc . mat2 <− Match ( Tr=t , X= p s c o r e $ f i t t e d ,M=1 , r e p l a c e=F , c a l i p e r = 0 . 2 5 )

psc . t r 1 <− psc . mat1$index . t r e a t e d

psc . t r 2 <− psc . mat2$index . t r e a t e d

psc . c t 1 <− psc . mat1$index . c o n t r o l

psc . c t 2 <− psc . mat2$index . c o n t r o l

psc . idx1 <− unique ( c ( psc . t r1 , psc . c t 1 ) )

psc . idx2 <− unique ( c ( psc . t r2 , psc . c t 2 ) )

m. out1 <− matchit ( t r e a t ˜ xx1+x2+xx3+x4+xx5+xx6+x7 , data =dat , method =” f u l l ” )

s1=summary (m. out1 , s tandardize = T )

m1=match . data (m. out1 )

m. out2 <− matchit ( t r e a t ˜ xx1+x2+xx3+x4+xx5+xx6+x7 , data =dat ,

method =” f u l l ” , d i s t a n c e =”mahalanobis ” )

s2=summary (m. out2 , s tandardize = T )

m2=match . data (m. out2 )

nt . cem <− length ( unique ( cem . t r ) ) ; nc . cem <− length ( unique ( cem . c t ) ) ; n . cem=nt . cem+nc . cem

nt . mah1 <− length ( unique (mah . t r 1 ) ) ; nc . mah1 <− length ( unique (mah . c t 1 ) )
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n . mah1=nt . mah1+nc . mah1

nt . mah2 <− length ( unique (mah . t r 2 ) ) ; nc . mah2 <− length ( unique (mah . c t 2 ) )

n . mah2=nt . mah2+nc . mah2

nt . psc1 <− length ( unique ( psc . t r 1 ) ) ; nc . psc1 <− length ( unique ( psc . c t 1 ) )

n . psc1=nt . psc1+nc . psc1

nt . psc2 <− length ( unique ( psc . t r 2 ) ) ; nc . psc2 <− length ( unique ( psc . c t 2 ) )

n . psc2=nt . psc2+nc . psc2

nt . f u l l 1<− s1$nn [ 2 , 1 ] ; nc . f u l l 1 <− s1$nn [ 2 , 2 ] ; n . f u l l 1 =nt . f u l l 1 +nc . f u l l 1

nt . f u l l 2<− s2$nn [ 2 , 1 ] ; nc . f u l l 2 <− s2$nn [ 2 , 2 ] ; n . f u l l 2 =nt . f u l l 2 +nc . f u l l 2

RAW <− mean( y [ t s u b j e c t s ] ) − mean( y [ c s u b j e c t s ] )

CEM <− weighted . mean( y [ cem . t r ] , cem . mat$w [ cem . t r ] ) , weighted . mean( y [ cem . c t ] ,

cem . mat$w [ cem . c t ] )

MAH1 <− mean( y [mah . t r 1 ] ) − mean( y [mah . c t 1 ] )

MAH2 <− mean( y [mah . t r 2 ] ) − mean( y [mah . c t 2 ] )

PSC1 <− mean( y [ psc . t r 1 ] ) − mean( y [ psc . c t 1 ] )

PSC2 <− mean( y [ psc . t r 2 ] ) − mean( y [ psc . c t 2 ] )

FULL1<− lm ( y ˜ t r e a t , weights = weights , data=m1) $ c o e f f i c i e n t s [ 2 ]

FULL2<− lm ( y ˜ t r e a t , weights = weights , data=m2) $ c o e f f i c i e n t s [ 2 ]

tmp [MC, ] <− c (RAW, CEM, MAH1, MAH2, PSC1 , PSC2 , FULL1 , FULL2)

s i z e s [MC, ] <− c ( n , n . cem , n . mah1 , n . mah2 , n . psc1 , n . psc2 , n . f u l l 1 , n . f u l l 2 )

}
re turn ( l i s t (” e s t ”=tmp , ” s i z e ”= s i z e s ) )

}
res1a=fun ( −1 . 4 3 , 6 0 0 ) ; res1b=fun ( −1 . 4 3 , 8 0 0 ) ; r e s 1 c=fun ( −1 .43 ,1000)

res2a=fun ( −0 . 9 4 , 6 0 0 ) ; res2b=fun ( −0 . 9 4 , 8 0 0 ) ; r e s 2 c=fun ( −0 .94 ,1000)

c a t (”\n\nAverage absolute b i a s : \n ”)
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bias1=abs ( colMeans ( r e s 1 a $ e s t )−ATT ) ; b ias2=abs ( colMeans ( r e s 1 b $ e s t )−ATT)

bias3=abs ( colMeans ( r e s 1 c $ e s t )−ATT)

biasA=c ( bias1 , bias2 , b ias3 )

b ias4=abs ( colMeans ( r e s 2 a $ e s t )−ATT ) ; b ias5=abs ( colMeans ( r e s 2 b $ e s t )−ATT)

bias6=abs ( colMeans ( r e s 2 c $ e s t )−ATT)

biasB=c ( bias4 , bias5 , b ias6 )

c a t (”RMSE:\n ”)

mse1= s q r t ( colMeans ( ( res1a$es t−ATT ) ˆ 2 ) ) ; mse2= s q r t ( colMeans ( ( res1b$es t−ATT ) ˆ 2 ) )

mse3= s q r t ( colMeans ( ( r e s 1 c $ e s t−ATT ) ˆ 2 ) )

rmseA=c ( mse1 , mse2 , mse3 )

mse4= s q r t ( colMeans ( ( res2a$es t−ATT ) ˆ 2 ) ) ; mse5= s q r t ( colMeans ( ( res2b$es t−ATT ) ˆ 2 ) )

mse6= s q r t ( colMeans ( ( r e s 2 c $ e s t−ATT ) ˆ 2 ) )

rmseB=c ( mse4 , mse5 , mse6 )

c a t (” Average Matched u n i t s :\n ”)

t t 1 <− colMeans ( r e s 1 c $ s i z e , na . rm=TRUE)

t t 2 <− colMeans ( r e s 2 c $ s i z e , na . rm=TRUE)

tab1 <− matrix ( round ( t t 1 ) , 8 , 1 , byrow=TRUE)

tab1 ; wri te . csv ( tab1 , ” tab1 . csv ”)

tab2 <− matrix ( round ( t t 2 ) , 8 , 1 , byrow=TRUE)

tab2 ; wri te . csv ( tab2 , ” tab2 . csv ”)

df1a=matrix ( c ( biasA ) , 8 )

df1b=matrix ( c ( biasB ) , 8 )

df2a=matrix ( c ( rmseA ) , 8 )

df2b=matrix ( c ( rmseB ) , 8 )

colnames ( df1a )= colnames ( df1b )= colnames ( df2a )= colnames ( df2b )= c (” n=500” ,”n=800” ,”n=1000”)
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par ( mar = c ( 3 , 4 , 4 , 4 . 8 ) ) # l e f t bottom top r i g h t

par ( mfrow=c ( 2 , 2 ) )

barp lo t ( df1a , beside = TRUE, c o l = 1 : 8 , main=”A” , ylab =” b i a s ” )

barp lo t ( df1b , beside = TRUE, c o l = 1 : 8 , main=”B” , ylab =” b i a s ” )

barp lo t ( df2a , beside = TRUE, c o l = 1 : 8 , main=”C” , ylab =”rmse ”)

barp lo t ( df2b , beside = TRUE, c o l = 1 : 8 , main=”D” , ylab =”rmse ” , legend . t e x t = c (”RAW” ,

”CEM” ,”MD1” , ”MD2” , ”PS1 ” , ”PS2 ” , ”FUL1” , ”FUL2 ” ) , args . legend = l i s t ( x =

” t o p r i g h t ” , bty = ’n ’ , i n s e t =c (−0 .4 ,−0 .5 ) , xpd = TRUE) )

# Chapter 4

## Simulat ion from Kang and Shafer ( 2 0 0 7 ) .

rm( l i s t = l s ( ) )

k =4; MCSim=1000; ATT=0

fun=funct ion ( n )

{
s e t . seed ( 1 2 3 4 5 6 )

tmp <− matrix (NA, MCSim, 2 )

colnames ( tmp ) <− c (” Unweighted ” , ”Proposed ”)

l i b r a r y (MASS)

f o r (MC in 1 :MCSim){
smahal=

funct ion ( t , X){
X<−as . matrix (X)

f o r ( j in 1 : k ) X[ , j ]<−rank (X[ , j ] )

n<−dim (X ) [ 1 ]

rownames (X)<−1:n

k<−dim (X ) [ 2 ]

m<−sum( t )

cv<−cov (X)

vuntied<−var ( 1 : n )

rat<−s q r t ( vuntied/diag ( cv ) )

cv<−diag ( r a t )%∗%cv%∗%diag ( r a t )
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out<−matrix (NA,m, n−m)

Xc<−X[ t ==0 ,]

Xt<−X[ t ==1 ,]

rownames ( out)<−rownames (X ) [ t ==1]

colnames ( out)<−rownames (X ) [ t ==0]

l i b r a r y (MASS)

icov<−ginv ( cv )

f o r ( i in 1 :m) {
out [ i ,]<−mahalanobis ( Xc , Xt [ i , ] , icov , inver ted=T)}
out

}
X <− mvrnorm ( n , mu = rep ( 0 , 4 ) , Sigma = diag ( 4 ) )

z=−X [ , 1 ] +X [ , 2 ] −X [ , 3 ] −X [ , 4 ]

prop <− 1 / (1 + exp(−z ) )

t <− rbinom ( n , 1 , prop )

dat=data . frame ( t , X)

dat2=dat [ order (− t ) , ]

d i s t =smahal ( dat2$t , dat2 [ , 2 : length ( dat2 ) ] )

m=sum( t )

min2 = funct ion ( x ){
nn=c ( min ( x ) , which . min ( x ) )

re turn ( nn )

}
gg = apply ( d i s t , 1 , min2 )

# t ( gg )

p=as . vec tor ( t ( gg ) [ , 2 ] )

p2=p+m

d=rep (NA, n )

f o r ( i in 1 : n )

d [ i ]=sum( p2== i )

d=d[− (1 :m) ]
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w1=c ( rep ( 1 ,m) , d )

s i z e =sum( d==0)

w1[ which (w1==0)]=1/ s i z e

w0=rep ( 1 , n )

ps=glm ( t ˜ . , data=dat2 , family=binomial ( l i n k =” l o g i t ” ) )

pred= p r e d i c t ( ps , type=” response ”)

w2= i f e l s e ( dat2$t ==1 ,1 , pred/(1−pred ) )

outcome <− 210 + 27 .4∗X [ , 1 ] + 13 .7∗X [ , 2 ] + 13 .7∗X [ , 3 ] + 13 .7∗X [ , 4 ] + rnorm ( n )

d a t i 1 <− data . frame ( dat , outcome )

d a t i 2= d a t i 1 [ order (− t ) , ] ; d a t i 2 =data . frame (w1, d a t i 2 )

RAW <− summary ( lm ( outcome ˜ t , data=d a t i 1 ) ) $coef [ 2 ]

MAH <− summary ( lm ( outcome ˜ t , weights=w1, data= d a t i 2 ) ) $coef [ 2 ]

tmp [MC, ] <− c (RAW,MAH)

}
re turn ( tmp )

}
res1a=fun ( 2 0 0 ) ; res1b=fun ( 5 0 0 ) ; r e s 1 c=fun ( 1 0 0 0 ) ; res1d=fun ( 2 0 0 0 )

c a t (”\n\nAverage absolute b i a s : \n ”)

b ias1=abs ( colMeans ( res1a )−ATT ) ; b ias2=abs ( colMeans ( res1b )−ATT)

bias3=abs ( colMeans ( r e s 1 c )−ATT; b ias4=abs ( colMeans ( res1d)−ATT)

b i a s=c ( bias1 , bias2 , bias3 , b ias4 )

c a t (”RMSE:\n ”)

mse1= s q r t ( colMeans ( ( res1a−ATT ) ˆ 2 ) ) ; mse2= s q r t ( colMeans ( ( res1b−ATT ) ˆ 2 ) )

mse3= s q r t ( colMeans ( ( res1c−ATT ) ˆ 2 ) ) ; mse4= s q r t ( colMeans ( ( res1d−ATT ) ˆ 2 ) )

rmse=c ( mse1 , mse2 , mse3 , mse4 )
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# Chapter 5

## Obtaining the optimal lamda value f o r a d a t a s e t

rm( l i s t = l s ( ) )

k =4; MCSim=100; n=200

l i b r a r y ( survey )

l i b r a r y ( tableone )

l i b r a r y ( causa lsens )

l i b r a r y ( twang )

l i b r a r y (MASS)

fun=funct ion ( lamda )

{
tmp <− rep (NA,MCSim)

s e t . seed ( 1 2 3 4 5 6 )

f o r (MC in 1 :MCSim)

{
smahal=

funct ion ( t , X){
X<−as . matrix (X)

f o r ( j in 1 : k ) X[ , j ]<−rank (X[ , j ] )

n<−dim (X ) [ 1 ]

rownames (X)<−1:n

k<−dim (X ) [ 2 ]

m<−sum( t )

cv<−cov (X)

vuntied<−var ( 1 : n )

rat<−s q r t ( vuntied/diag ( cv ) )

cv<−diag ( r a t )%∗%cv%∗%diag ( r a t )

out<−matrix (NA,m, n−m)

Xc<−X[ t ==0 ,]

Xt<−X[ t ==1 ,]

rownames ( out)<−rownames (X ) [ t ==1]
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colnames ( out)<−rownames (X ) [ t ==0]

l i b r a r y (MASS)

icov<−ginv ( cv )

f o r ( i in 1 :m) {
out [ i ,]<−mahalanobis ( Xc , Xt [ i , ] , icov , inver ted=T)}
out

}
X <− mvrnorm ( n , mu = rep ( 0 , 4 ) , Sigma = diag ( 4 ) )

x1=X [ , 1 ] ; x2=X [ , 2 ] ; x3=X [ , 3 ] ; x4=X [ , 4 ]

z=−x1 +x2 −x3 −x4

prop <− 1 / (1 + exp(−z ) )

t <− rbinom ( n , 1 , prop )

dat=data . frame ( t , X)

dat2=dat [ order (− t ) , ]

d i s t =smahal ( dat2$t , dat2 [ , 2 : length ( dat2 ) ] )

m=sum( t )

gg2=apply ( d i s t , 1 , rank )

ggg= t ( gg2 )

ggg=lamda ˆ ( ggg−1)

e s t =as . vec tor ( apply ( ggg , 2 , sum ) )

w=c ( rep ( 1 ,m) , e s t )

tmp [MC]<− sd (w)/mean(w)

}
re turn ( tmp )

}
lamda=seq ( 0 , 1 , 0 . 0 1 )

r es=sapply ( lamda , fun )

cv=colMeans ( re s )
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df=data . frame ( lambda=lamda , cv=cv )

minlamda=subset ( df , cv==min ( cv ) ) $lambda

p l o t ( lamda , cv , type=”b ” , ylab =” C o e f f i c i e n t of v a r i a t i o n ”)

a b l i n e ( v=minlamda , l t y =2)

a b l i n e ( h=min ( cv ) , l t y =3)

# Chapter 6

# Covariate balance d i a g n o s t i c s

rm( l i s t = l s ( ) )

l i b r a r y ( c o b a l t )

l i b r a r y ( WeightIt )

l i b r a r y ( survey )

l i b r a r y ( tableone )

l i b r a r y ( ggplot2 )

l i b r a r y (MASS)

l i b r a r y ( ggpubr )

ATT=−0.4

MCSim=1000

k=7

fun=funct ion ( n , ra te , r a t e . y )

{
s e t . seed ( 1 2 3 4 5 6 )

tmp <− matrix (NA, MCSim, 2 )

se <− matrix (NA, MCSim, 2 )

coverage <− matrix (NA, MCSim, 2 )

SB . ebal=matrix (NA, k ,MCSim)

SB . ipw=matrix (NA, k ,MCSim)

colnames ( tmp ) <− c (”EBAL” ,”IPW”)

colnames ( se ) <− c (”EBAL” ,”IPW”)
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colnames ( coverage ) <− c (”EBAL” ,”IPW”)

f o r (MC in 1 :MCSim){

sigma<− diag ( 1 0 )

sigma [ 1 , 5 ] = sigma [ 5 , 1 ] = sigma [ 8 , 3 ] = sigma [ 3 , 8 ] = 0 . 2

sigma [ 2 , 6 ] = sigma [ 6 , 2 ] = sigma [ 4 , 9 ] = sigma [ 9 , 4 ] = 0 . 9

x <− mvrnorm ( n , mu = rep ( 0 , 1 0 ) , Sigma = sigma , empir i ca l=T )

x1<− x [ , 1 ] ; p1=pnorm ( x1 ) ; xx1=rbinom ( n , 1 , p1 )

x2<− x [ , 2 ]

x3<− x [ , 3 ] ; p3=pnorm ( x3 ) ; xx3=rbinom ( n , 1 , p3 )

x4<− x [ , 4 ]

x5<− x [ , 5 ] ; p5=pnorm ( x5 ) ; xx5=rbinom ( n , 1 , p5 )

x6<− x [ , 6 ] ; p6=pnorm ( x6 ) ; xx6=rbinom ( n , 1 , p6 )

x7<− x [ , 7 ]

x8<− x [ , 8 ] ; p8=pnorm ( x8 ) ; xx8=rbinom ( n , 1 , p8 )

x9<− x [ , 9 ] ; p9=pnorm ( x9 ) ; xx9=rbinom ( n , 1 , p9 )

x10<− x [ , 1 0 ]

b0= r a t e ; a0= r a t e . y

#=−1.047 f o r 35%, =0 f o r 50%, =0.7 f o r 67%

b1<− 0 . 8 ; b2 <− −0.25; b3<− 0 . 6 ; b4<− −0.4 ; b5<− −0.8 ; b6<− −0.5; b7<− 0 . 7

a1<− 0 . 3 ; a2<− −0.36; a3<− −0.73; a4<− −0.2 ; a5<− 0 . 7 1 ; a6<− −0.19; a7<− 0 . 2 6

mu=b0 + b1∗xx1 + b2∗x2 + b3∗xx3 + b4∗x4 + b5∗xx5 + b6∗xx6 + b7∗x7

prop <− exp (mu) / (1 + exp (mu) )

t <− rbinom ( n , 1 , prop )

dat=data . frame ( xx1 , x2 , xx3 , x4 , xx5 , xx6 , x7 , t )

w. out1=weight i t ( t ˜ . , estimand=”ATT” , data=dat , method=” ebal ” )

w. ebal=get .w(w. out1 )

w. out2=weight i t ( t ˜ . , estimand=”ATT” , data=dat , method=”ps ”)

w. ipw=get .w(w. out2 )
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b1=bal . tab (w. out1 ) ; b2=bal . tab (w. out2 )

SB . ebal [ ,MC]= b1$Balance [ 1 6 ] [ , 1 ] ; SB . ipw [ ,MC]= b2$Balance [ 1 6 ] [ −1 , 1 ]

mu2=a0+ I (ATT∗ t )+ a1∗xx1+ a2∗x2+ a3∗xx3+ a4∗x4+ a5∗xx8+ a6∗xx9+ a7∗x10

prop2 <− exp (mu2) / (1 + exp (mu2 ) )

y <− rbinom ( n , 1 , prop2 )

w. e b a l c =w. ebal [ t ==0] ; w. ipw c=w. ipw [ t ==0]

y t =y [ t ==1] ; y c=y [ t ==0]

dat2=data . frame ( y ,w. ebal ,w. ipw , dat )

weighteddata1=svydesign ( ids =˜1 , data=dat2 , weights=w. ebal )

weighteddata2=svydesign ( ids =˜1 , data=dat2 , weights=w. ipw )

ebal=summary ( svyglm ( y ˜ t , design=weighteddata1 , family=quasibinomial ) ) $coef [ 2 ]

ipw=summary ( svyglm ( y ˜ t , design=weighteddata2 , family=quasibinomial ) ) $coef [ 2 ]

se . ebal=summary ( svyglm ( y ˜ t , design=weighteddata1 , family=quasibinomial ) ) $coef [ 4 ]

se . ipw=summary ( svyglm ( y ˜ t , design=weighteddata2 , family=quasibinomial ) ) $coef [ 4 ]

c1a= c o n f i n t ( svyglm ( y ˜ t , family=quasibinomial , design=weighteddata1 ) ) [ 2 ]

c2a= c o n f i n t ( svyglm ( y ˜ t , family=quasibinomial , design=weighteddata1 ) ) [ 4 ]

c1b= c o n f i n t ( svyglm ( y ˜ t , family=quasibinomial , design=weighteddata2 ) ) [ 2 ]

c2b= c o n f i n t ( svyglm ( y ˜ t , family=quasibinomial , design=weighteddata2 ) ) [ 4 ]

indx . ebal <− ( c1a <= ATT) & ( c2a >= ATT ) ; cov . ebal = sum( indx . ebal )

indx . ipw <− ( c1b <= ATT) & ( c2b >= ATT ) ; cov . ipw = sum( indx . ipw )

tmp [MC, ] <− c ( ebal , ipw )

se [MC, ] <− c ( se . ebal , se . ipw )

coverage [MC, ] <− c ( cov . ebal , cov . ipw )

}
re turn ( l i s t (”ASMD1”=rowMeans ( SB . ebal ) , ”ASMD2”=rowMeans ( SB . ipw ) , ” e s t ”=tmp , ” se ”=se ,

” coverage”=coverage ) )

}
res1a . ya=fun (300 ,−1.047 ,−2.485)

res1a . yb=fun ( 3 0 0 , −1 . 0 4 7 , 0 . 7 8 5 )
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res1b . ya=fun (1000 ,−1.047 ,−2.485)

res1b . yb=fun ( 1 0 0 0 , −1 . 0 4 7 , 0 . 7 8 5 )

res2a . ya=fun (300 ,0 , −2 .485 )

res2a . yb=fun ( 3 0 0 , 0 , 0 . 7 8 5 )

res2b . ya=fun (1000 ,0 , −2 .485)

res2b . yb=fun ( 1 0 0 0 , 0 , 0 . 7 8 5 )

res3a . ya=fun ( 3 0 0 , 0 . 7 , −2 . 4 8 5 )

res3a . yb=fun ( 3 0 0 , 0 . 7 , 0 . 7 8 5 )

res3b . ya=fun ( 1 0 0 0 , 0 . 7 , −2 . 4 8 5 )

res3b . yb=fun ( 1 0 0 0 , 0 . 7 , 0 . 7 8 5 )

ASMD1a=cbind ( res1a . ya$ASMD1, res1a . ya$ASMD2 ) ; ASMD1b=cbind ( res1b . ya$ASMD1, res1b . ya$ASMD2)

ASMD2a=cbind ( res2a . ya$ASMD1, res2a . ya$ASMD2 ) ; ASMD2b=cbind ( res2b . ya$ASMD1, res2b . ya$ASMD2)

ASMD3a=cbind ( res3a . ya$ASMD1, res3a . ya$ASMD2 ) ; ASMD3b=cbind ( res3b . ya$ASMD1, res3b . ya$ASMD2)

colnames (ASMD1a)= colnames (ASMD1b)= colnames (ASMD2a)= colnames (ASMD2b)=

colnames (ASMD3a)= colnames (ASMD3b)= c (”EBAL” ,”IPW”)

par ( mfrow=c ( 2 , 3 ) )

## boxplots of n=300

boxplot (ASMD1a, ylab =”ASMD” , main=”(A) N=300 , Prevalence =33%”)

boxplot (ASMD2a, ylab =”ASMD” , main=”(B ) N=300 , Prevalence =50%”)

boxplot (ASMD3a, ylab =”ASMD” , main=”(C) N=300 , Prevalence =67%”)

## boxplots of n=1000

boxplot (ASMD1b, ylab =”ASMD” , main=”(D) N=1000 , Prevalence =33%”)

boxplot (ASMD2b, ylab =”ASMD” , main=”(E ) N=1000 , Prevalence =50%”)

boxplot (ASMD3b, ylab =”ASMD” , main=”(F ) N=1000 , Prevalence =67%”)

windows ( )
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