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Abstract 

Land degradation is a major environmental problem facing South Africa and many other countries 

around the world. For proper management and adoption of best rehabilitation strategies, a 

compendious regional-scale assessment approach is needed to attain the full extent of the 

impairment. The aim of this study was to assess the spatial extent of land degradation with the use 

of GIS and remote sensing techniques in the eThekwini Metropolitan Area (EMA), KwaZulu-

Natal, South Africa. The first objective was to review the status of land degradation in South 

Africa, as well as tracking of emerging trends in remote sensing and Geographic Information 

Systems research. Historically, in South Africa, land degradation has been associated with poverty 

and rurality. While conducting studies was also a challenge, demanding high human and economic 

resources. Although these studies were accurate and invaluable, most of them were too localized 

and highly difficult to replicate. The introduction of remote sensing has bought a new dimension 

with a timely spatial mapping of land degradation at regional scales. As a result, there thus been a 

sharp increase in remote sensing-based land degradation studies, this is also accompanied by the 

recent improvements in capabilities of remote sensors and associated GIS platforms. However, 

there is still a challenge of accessibility, especially for financial constricted regions such as the 

sub-Sahara of Africa. Most of the cutting-edge remote sensing data such as the hyperspectral and 

high spatial resolution imagery are highly expensive and therefore inaccessible to those not 

affording. However, the use of new-age medium resolution sensors is a potential solution.  The 

second objection of this study was to detect and map the spatial distribution of land degradation in 

the EMA through use of Sentinel-2 derived vegetation indices (VIs) in conjunction with a 

hierarchical clustering algorithm. Data from Sentinel-2 was used to derive VIs used in this study, 

these are namely; NDVI, RVI, SAVI; and SARVI. The framework using Ward’s hierarchical 

clustering performed relatively good to produce 6 clusters that achieved an overall classification 

accuracy (OA) of 88.81% when mapping land-cover including land degradation. In this regard, 

land degradation achieved the highest classification accuracy of up to 100%, while water achieved 

the lowest at 63.33%. Although there was quite a significant difference in accuracies between 

different land-cover classes, overall, the results were still reasonably good with an error rate of 

0.14 and Kappa Coefficient of 0.86. The results from this study, therefore, suggest that Ward’s 

unsupervised clustering approach is a suitable tool for mapping of complex land-cover classes, 

particularly land degradation.   
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1     General Introduction 

1.1 Introduction  

Most developing countries primarily depend on the natural environment for provision of 

livelihoods; these are countries that largely practice subsistence agriculture, fishing, and forestry 

(Blum, 2005; Lambin et al., 2001; Wessels, Prince, Frost, & Van Zyl, 2004). In addition to that, 

they also depend on land for residential purposes which are usually manifested through housing 

developments. However, due to increased demands, augmented pressure has been put on the 

environment leading to inevitable exploitation and accelerated land degradation. The problem of 

land degradation is well documented and is recognized as a major environmental problem; 

threatening food security, water resources and biodiversity (Wessels, Prince, Carroll, & Malherbe, 

2007). Many researchers have labelled land degradation as one of the most critical environmental 

issues, affecting over 250 million people around the world (Aggarwal et al., 2010; M. T. Hoffman 

& Todd, 2000; T. Hoffman, Todd S., Ntoshona Z., and Turner S, 1999; UNCCD, 2014). It is 

estimated that up to 22 percent of all global cropland, pastures, and forests have been lost since 

the turn of the century (Oldeman, Hakkeling, & Sombroek, 2017; Pimentel, 2006).  

One of the most cited factors of land degradation is land-cover change (Hudson & Alcántara-

Ayala, 2006). The accelerated conversion of natural land for human use is mostly related to 

agricultural and residential purposes. Subsistence farming is a popular practice among developing 

countries and is linked with rural areas, usually without sustainable conservation techniques, thus 

leading to accelerated soil erosion (Jacobus Johannes Le Roux, Newby, & Sumner, 2007). As a 

result, land degradation is regarded as one of the most serious environmental problems in South 

Africa. In the South African context, the problem of land degradation has been well documented 

and various efforts have been instigated by both the public and private sectors to address this 

problem (M. T. Hoffman & Todd, 2000; T. Hoffman, Todd S., Ntoshona Z., and Turner S, 1999; 

Wessels et al., 2004; Wessels, Prince, Malherbe, et al., 2007). However, one of the major setbacks 

to these efforts is the lack of aggregation and limited explicit information on its spatial distribution 

(Jacobus Johannes Le Roux et al., 2007). In order to successfully combat this problem, it is 

imperative to have full knowledge of its spatial extent and severity (Seutloali, Beckedahl, Dube, 

& Sibanda, 2016).  
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In order to make informed decisions and formulate suitable strategies, there must be reliable and 

up to date information displaying the extent of land degradation (Bartlett & Smith, 2004). In the 

past, most land degradation studies adopted the traditional assessment strategies such as the 

Universal Soil Loss Equation (USLE) and its modified versions for soil erosion estimation, while 

others used methods such as field observations and community surveys (Wessels et al., 2004). 

Even though these types of approaches can be very accurate, they also comprise of shortcomings 

such as being very localized, time-consuming and tedious (K. Lee & Lunetta, 1996; Meyer & 

Turner, 1994; J. O. Odindi, Adam, Ngubane, Mutanga, & Slotow, 2014). However, the use of 

satellite remote sensing data and the advancement of Geographical Information Systems (GIS) has 

made it easier to conduct land degradation assessment studies at regional to large scales, with 

acceptable levels of accuracy in an efficient manner. 

A substantial number of studies have successfully used remotely sensed imagery for mapping of 

land surface features across different disciplines (Bangamwabo, 2009; Boardman & Lorentz, 2000; 

J. Odindi, Mutanga, Abdel-Rahman, Adam, & Bangamwabo, 2017; Peerbhay, Mutanga, Lottering, 

& Ismail, 2016). Traditionally, most remote sensing studies were based on the mapping of changes 

in land-use and mainly focused on urbanization, vegetation and ecological studies (Luleva, Van 

Der Werff, Van Der Meer, & Jetten, 2012). The adoption of this approach for land degradation 

studies has been relatively recent (Sobrino & Raissouni, 2000). The open-access imagery from 

providers such as Sentinel and Landsat has proven to be highly beneficial for the earth mapping 

community. As a result, there is now a significant amount of successful studies adopting remote 

sensing datasets. For example, a study by Phinzi and Ngetar (2017) successfully mapped soil 

erosion distribution in rural Limpopo using Landsat-8 while Makaya, Mutanga, Kiala, Dube, and 

Seutloali (2019) used Sentinel-2 for mapping gullies in rural KwaZulu-Natal. 

The success of remote sensing has also been aided by the recent advancements in GIS, these 

include the adoption of newer techniques such as the unsupervised machine learning algorithms. 

Owing to that, numerous studies have thus used machine learning techniques for various earth 

mapping purposes, these include a study by E. M. Adam and Mutanga (2012) who used random 

forest to estimate high-density biomass. While Makaya et al. (2019) also successfully used Support 

Vector Machines to map gully erosion. The number of studies utilizing these approaches has 

exponentially increased, while the conjunction of GIS with programming languages such as r and 
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python has opened up endless possibilities. These include the adoption of Ward’s hierarchical 

clustering algorithm which can be used as an unsupervised mapping approach. This algorithm has 

been successful used in other disciples, such as life sciences and economics but has not been used 

for remote sensing purposes and thus requires further investigation. 

The recent advancements in satellite remote sensing and GIS have highly improved the field of 

earth observation research. However, there is still a shortage of studies mapping the spatial 

distribution of land degradation at regional scales across South Africa. Nonetheless, the adoption 

and improvements of the latest approaches have yielded impressive results and also demonstrate 

high potential success for future studies. 

1.2 Research Problem 

Durban is the South Africa’s third largest city with regional economic importance. The metro is 

no exception and is also facing a challenges of land degradation. The metropolitan municipality is 

located on an ecologically sensitive area as it falls within the biodiversity rich Maputaland-

Pondoland Albany (MPA). MPA has a total of nine vegetation types while most of it lies in on the 

KwaZulu-Natal Sandstone Sour-veld (KZNSS), which is classified as a savanna type vegetation 

endemic to KZN (CEPF, 2015; Boon, 2016). This region is highly species rich and has more than 

7000 species of vascular vegetation plants of which 25% of them are endemic to the region (Van 

Wyk and Smith, 2001). Although the metro sits on a highly sensitive biodiversity region, it 

however, has sadly experienced major land-use modifications over the past decades. These 

activities have been rapid and thus resulted into severe land degradation in the region. Although 

the problem of land degradation is highly recognized and has received extensive coverage in South 

Africa over the years. There is still a deficit in coverage and understanding of the true intensity at 

regional scales. It is, therefore, highly important to continuously improve our knowledge though 

development and adoption of the new techniques remote sensing and unsupervised learning 

approaches. 

 

1.3 Aim and Objectives 

The aim of this study is to assess the spatial distribution of land degradation in the eThekwini 

Metropolitan Area with the use of remote sensing techniques, and also investigate and contribute 
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to new emerging trends in GIS and Remote Sensing. This will be achieved through the following 

objectives: 

(1) To review the status of land degradation in South Africa as well as the tracking of emerging 

trends in remote sensing and GIS research. 

(2) To test Sentinel-2 derived vegetation indices in the mapping of spatial distribution and 

analysis of land degradation in the EMA using the hierarchical clustering algorithm and 

discussion of the distribution of land degradation across the EMA. 

Key research questions: 

1. What are the emerging trends in mapping land degradation using remote sensing and GIS? 

2. Can the hierarchical algorithm effectively detect land degradation? 

3. How is land degradation distributed across the EMA area? 

 

1.4 General Structure of the Thesis 

This thesis is made up of four chapters, the first chapter is made of the general introduction and 

includes the main aim and objectives. The second and third chapters are comprised of two 

publishable stand-alone research papers. Then lastly, the fourth chapter is a brief summary of the 

study and is made up of the synthesis and conclusions. Below is a brief summary of chapters two 

and three. 

Chapter two is the first publishable research paper which reviews the status of land degradation in 

South Africa. This includes land degradation spatial trends and the main contributing factors to 

this phenomenon. This followed by a special focus on the emerging trends in remote sensing and 

GIS. These include the adoption of newer freely available remote sensing data providers and the 

use of machine learning algorithms for remote sensing and GIS purposes.  

Chapter three makes up the second publishable research paper, this chapter focuses on spatially 

mapping land degradation in EMA. This is done with the use of sentinel-2 derived indices in 

conjunction with an unsupervised machine learning approach, the Wards hierarchical clustering 
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algorithm. The choice of this technique was partly done to assess the potential of this clustering 

approach for purposes of land degradation mapping.  
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2 Chapter Two: A Review of the status of land degradation in South 

Africa as well as tracking emerging trends in remote sensing and 

GIS research 

Abstract 

Land degradation is one of the major environmental problems facing South Africa and many other 

countries around the world. This is also demonstrated by the wide range of research studies for 

monitoring, assessing and managing this phenomenon. Previous literature has evidenced that the 

process of mapping and rehabilitating affected areas is still a challenge for most sub-Saharan 

African countries. However, the use of remotely sensed satellite imagery data has proven to be 

highly important in improving the knowledge base of this challenge. As a result, there has been a 

sharp increase in remote sensing-based land degradation studies across the world, this is also 

accompanied by the recent improvements in capabilities of remote sensing data by providers and 

computer technologies, specifically GIS. This increase has occurred even though there is still a 

challenge of accessibility, especially for financially constricted regions such as sub-Saharan 

Africa. Most of the cutting-edge remote sensing data such as hyperspectral and high spatial 

resolution imagery are highly expensive and therefore inaccessible to financially constrained 

regions. The studies of land degradation assessment have thus been limited to the freely available 

medium to high spectral and spatial resolution data sources. Remote sensing data providers such 

as Landsat and Sentinel have demonstrated high potential and proved to be suitable for mapping 

the complex spectral characteristics of land degradation such as soil erosion. These studies have 

also benefited from the adoption of advanced classification approaches such as the SVMs and FR 

algorithms, which also improved the detection and mapping of land degradation features. 

However, the overall trends from the latest scientific studies revealed that although there still is a 

challenge in mapping land degradation features, the utilization coupled with the latest 

improvements of free and readily available data from providers such as Landsat and Sentinel has 

proven to be highly significant.  

Keywords: Land degradation, Remote Sensing, Geographic Information Systems, Vegetation 

Indices, Hierarchical clustering. 
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2.1      Introduction 

The land is one of the most important natural resources and is responsible for the survival and 

sustenance of many terrestrial and aquatic ecosystems (FAO, 1999). For millenniums, the land has 

been the backbone of human livelihoods through the provision of food, shelter and numerous other 

essentials. Although its importance has never been in doubt, human activities have altered and 

degraded the environment resulting in negative effects, which may also boomerang to endanger 

humans themselves. These impacts have been highly exponential, coupled with the exponential 

human population growth and increasing resource demand in the 20th and 21st centuries 

(Bongaarts, 2009; Parry, Rosenzweig, Iglesias, Livermore, & Fischer, 2004; Steffen et al., 2011).  

Land degradation has had numerous definitions from different individuals and organizations. This 

is partly due to the nature of this phenomenon itself as it has no single-readily identifiable feature. 

The United Nations Convention to Combat Desertification (UNCCD) defines land degradation as 

“any reduction or loss in the biological or economic productive capacity of the land resource base. 

It is generally caused by human activities, exacerbated by natural processes, and often magnified 

by and closely intertwined with climate change and biodiversity loss” (UNCCD, 2014).  

The occurrence and impacts of land degradation are well known as they have been widely 

documented, with literature extending from multiple global organizations to academic publications 

around the world. This phenomenon has a global prevalence, with most severe cases having been 

reported in underdeveloped and developing regions from literature (FAO, 1999; M. T. Hoffman 

& Todd, 2000; UNCCD, 2014). These regions are traditionally more prone and vulnerable to this 

phenomenon, largely due to their direct dependence on land for the provision of food and shelter. 

This is true for most developing countries including South Africa, where it has been reported that 

most land degradation is located in rural areas and is coupled by numerous social issues that are 

prevalent in these regions (M. T. Hoffman & Todd, 2000; T. Hoffman, Todd S., Ntoshona Z., and 

Turner S, 1999; Palmer, 2002).  

Poor rural communities have the least adaptive capacity, mostly due to their lack of knowledge 

and resources, which makes them more vulnerable to environmental impacts of land (IPCC, 2001).  

The most common forms of land degradation in these regions are associated with soil erosion 

processes including sheet, rill and gully erosion. These have been strongly linked to rapid 

population growth; poor agricultural and land management activities, while they also co-exist with 
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natural factors such as climate change, making this a complex process (Jacobus Johannes Le Roux 

et al., 2007; Meyer & Turner, 1994; Poesen, Nachtergaele, Verstraeten, & Valentin, 2003; Prosser 

et al., 2001).  

The impact of land degradation has challenged and threatened the lives of millions of people 

around the world, partly due to its complex nature. It is important to note that this impact has been 

very dynamic and there is no universal global solution to it. In order to combat land degradation, 

it is essential to attain a better understanding of its spatial trends and extents. Traditionally, tedious 

methods involving the collection of field data at high financial and human resource costs made the 

implementation of land degradation assessment studies a challenge. Although such studies were 

relatively accurate, they are difficult to replicate and are limited to small localized scales (J. Odindi 

et al., 2017).  

There is now enough evidence from previous literature showing that such studies cannot provide 

an adequate assessment of land degradation, especially due to some areas being inaccessible, 

particularly remote mountainous areas that are hard to reach (Mehner, 2004; J. O. Odindi et al., 

2014). The introduction of remotely sensed data in combination with Geographic Information 

Systems (GIS) provide a convenient alternative, which is both cheaper and timely. This method 

also has a far wider reach, making it possible to map and assess land degradation at regional to 

global scales. There has since been a large number of land degradation studies utilizing remote 

sensing techniques around the world (Khaledian, Kiani, Ebrahimi, Brevik, & Aitkenhead‐

Peterson, 2017; Maitima et al., 2009; Metternicht, Zinck, Blanco, & del Valle, 2010; Symeonakis, 

Karathanasis, Koukoulas, & Panagopoulos, 2016); including South Africa (Bangamwabo, 2009; 

Graw et al., 2017; Kakembo, 2001; Jacobus J Le Roux & Sumner, 2013; Makaya et al., 2019; 

Mbambo & Archer, 2007; Phinzi & Ngetar, 2017).  

This paper serves to review the historical and current trends in land degradation mapping through 

remote sensing techniques. This will be achieved through a review of the state of land degradation 

in South Africa with special attention to remote sensing techniques through analysis of previous 

and current literature. Firstly, this paper will assess the national trends in the distribution of land 

degradation within South Africa, including key drivers of this phenomenon in this region. 

Secondly, the study will compare the use and performance of two medium resolution image 

providers, namely Sentinel-2 MSI and Landsat 8 OLI. The study then goes on to further highlight 
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current trends in GIS with a discussion of emerging trends in image processing and analysis. This 

includes a focus on the hierarchical clustering algorithm and object-orientated techniques that have 

not been previously extensively used nor reviewed for properties of land degradation mapping in 

South Africa. 

 

2.2     Land Degradation in South Africa 

Land degradation is a global threat, affecting millions of people around the world. With most 

severe cases being reported in developing countries, South Africa is no exception since it has one 

of the highest rates of land degradation (M. T. Hoffman & Todd, 2000; T. Hoffman, Todd S., 

Ntoshona Z., and Turner S, 1999; Wessels et al., 2004). The problem of land degradation in South 

Africa is well recognized, this is demonstrated by the considerable amount of research that has 

taken place during the last few decades. This is also reaffirmed by the country’s commitment to 

strategies of combating this challenge, these include taking part and being in the forefront of global 

efforts such as the United Nations Conference on Desertification (UNCD) and participation in the 

United Nations Convention to Combat Desertification (UNCCD) (M. T. Hoffman & Todd, 2000). 

According to T. Hoffman, Todd S., Ntoshona Z., and Turner S (1999), more than 90% of South 

Africa’s land area has been classified as affected drylands by UNCCD. Although there is a 

presence of different forms of land degradation, Critchley and Netshikovhela (1998) recognized 

soil erosion as one of the greatest threats. According to previous research, up to 70% of the 

country’s total land area is affected by soil erosion at varying intensities (Abbas, 2007; Critchley 

& Netshikovhela, 1998; Garland, Hoffman, & Todd, 2000).  This is in agreement with findings by 

Jacobus Johannes Le Roux et al. (2007) who reported that 50% (61 million ha) of South African 

land has a moderate to severe soil erosion potential, while 20% (26 million ha) is classified as 

having a moderate to severe rate of soil erosion risk.  

According to numerous studies, the problem of land degradation in South Africa is highly biased, 

with most degradation and severe cases reported in areas mainly associated with poverty and 

rurality (M. T. Hoffman & Todd, 2000; T. Hoffman, Todd S., Ntoshona Z., and Turner S, 1999; 

Wessels et al., 2004). This has resulted in land degradation problems being labeled as spatially, 

geographically and socially biased. T. Hoffman, Todd S., Ntoshona Z., and Turner S (1999) states 
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that most land degradation in South Africa occurs in crowded communal lands, where about 80% 

of the total population share only 13% of the total land surface. This may somewhat be predictable 

since these areas were previously neglected by the government and thus have one of the highest 

poverty and unemployment rates. In most cases rural communities tend to depend primarily on 

land for food and income, this is usually through subsistence agricultural practices.    

A number of studies by M. T. Hoffman and Todd (2000), and Palmer (2002) have reported that 

much of land degradation in South Africa is located in the Eastern Cape, KwaZulu-Natal and 

Limpopo Provinces; which are predominantly rural (Hoffman, 2000; Phinzi, 2017;Sepuru, 2018). 

This trend has therefore been attributed to the high population densities, extensive overgrazing, 

high levels of poverty and communal land tenure practices in these regions. The problem may 

worsen in the future, this is mainly due to the exponential growth of the human population, changes 

in land-use and land-cover and the inevitable impact of climate change. These three factors have 

been the driving forces of global land degradation, with population growth being labeled as the 

driving force for both changes in land-use and climate.  

 

2.2.1    Population Growth 

Population growth is often labeled as the key driver of global change, as it is the primary trigger 

for most changes in the earth’s main systems (Steffen et al., 2011). The increase in the global 

population has put pressure on the earth’s finite resources. This has resulted in increased demand 

for food, fuel, and energy, shelter and water that has to be satisfied by the earth’s finite resources 

(Parry et al., 2004; Steffen et al., 2011; Steffen et al., 2006).  

Much of the global population growth took place in the twentieth century, from an estimated 2 

billion in 1930 to approximately 6.5 billion in 2005 (Cohen, 1995). What is even more concerning, 

is the continuous exponentially increasing rate as the global human population is projected to reach 

9.2 billion by 2050 (Bongaarts, 2009). South Africa is no exception to the threat of the population 

boom, as South Africa’s population has been increasing at its fastest rate in recorded history. It is 

estimated that the country’s population has been growing by an average of approximately two-

thirds of a million for the past decade and a half (StatsSA, 2018).  The country’s population grew 

from 45.8 million in 2002 to 56.5 million in 2017 (StatsSA, 2018). As a result, South Africa is 
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experiencing a long-term high urbanization rate, which is due to both natural growth and also a 

high rural to urban migration rate. This trend puts enormous pressure on urban infrastructure and 

resources (DEA, 2017).  

2.2.2    Land-Use Change 

 Land-use change is regarded as the single most significant causal factor of environmental change 

leading to land degradation. The impact of land-use change is well documented and is highly linked 

to land degradation. Global change studies gained much popularity during the late 1990s and early 

2000s and have confirmed the negative impacts of changing land-use on the environment (Abbas, 

2007; Lu, Mausel, Brondizio, & Moran, 2004; Turner et al., 2015; Warburton, Schulze, & Jewitt, 

2012; Xulu, 2014). A study by Meyer and Turner (1994) highlighted changes such as 

intensification of urban (increase in magnitude through modification of new areas for purposes of 

urbanization) areas as the major cause of land-cover changes, demonstrating how humans are 

central and contribute significantly to land degradation.  

Agriculture has often also been cited among the most significant causes of land-cover changes 

(Houghton, 1994; Kumar, Denis, Singh, Szabó, & Suryavanshi, 2018; Van Vliet et al., 2012). The 

demand for food to feed the growing global population has led to extensive global agricultural 

intensification (increase in magnitude of both total areas modified and productivity per acre). As 

a result, millions of hectares of rangeland, forests, and wetlands have been lost. This has led to a 

loss of many ecological ecosystems and biodiversity hot-spots, through such impacts humans have 

changed the environment and altered the systems that drive it (Maitima et al., 2009).  According to 

the Food and Agricultural Organisation (2016), agriculture occupies about 1.5 billion ha of arable 

land, which equals approximately 11% of the global land surface. Although the impact of 

agriculture is labeled as the most significant, it is not the only land-cover change factor; the 

development of new residential and industrial areas has also significantly contributed.  

Pacione (2013) defines urbanization as the increase in the proportion of the total population that 

lives in urban areas. According to this definition, urbanization is not only viewed as the increasing 

total number of the urban population, but it is also described by its proportion to the total 

population. Traditionally, South Africa’s urbanization was historically shaped by policies to 

control the movement of people to urban areas (Todes, Kok, Wentzel, Van Zyl, & Cross, 2010). 

The proportion of the urban population in South Africa is growing, due to both natural growth and 
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rural to urban migration. Although urbanization is usually described by population size, it is 

characterized as an economic base, lifestyle, employment opportunities and infrastructure that 

make these areas so desirable (Lambin et al., 2001) In order to cater for the growing population, 

urban areas are therefore associated with intensification of residential settlements and 

industrialization. This, in turn, influences the outward expansion of these areas, leading to excessive 

land-cover changes and in-turn land degradation (Cakir et al., 2008). 

 

2.3   Mapping of Land Degradation 

There is no universal method of mapping land degradation, as a result, various researchers have 

adopted different techniques for basement mapping of land degradation around the world (Jacobus 

J Le Roux & Sumner, 2013). There are different techniques used for monitoring and management, 

choice of the technique might depend on factors such as financial costs, availability of skill and 

knowledge; the purpose of study, availability of required tools or resources. The most commonly 

used techniques can be categorized as traditional field surveys and modern remote sensing 

techniques. 

2.3.1 Traditional Methods of estimating Land Degradation 

Traditionally, field surveys were used for land degradation studies, but with the advancement of 

technology, their content reduced in light of the newer techniques that make use of air-borne 

photography and later, remotely sensed satellite images. The traditional techniques relied heavily 

on intensive fieldwork with ancillary data analysis, visual observation and estimation of features 

that were highly labor-intensive (K. Lee & Lunetta, 1996). This is sometimes not applicable, 

especially since it becomes time-consuming and usually costly, on top of that some areas might be 

remote and therefore not be accessible. One of the most popular traditional techniques is the 

Universal Soil Loss Equation and its revised version the Revised Universal Soil Loss Equation, 

which were developed by Wischmeier (1965) and Wischmeier (1978), respectively.  

RUSLE is an empirical model that uses field-collected data. It is an improved version of the USLE 

model, comprising of some adjustments its parameters. Although improved, since it is based on 

the old USLE which was originally designed for evaluating sheet and rill erosion on short slopes; 

it is therefore still limited to six factors, namely: rainfall erosivity (R); soil erodibility (K); slope 
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length (L); slope steepness (S); soil use and management (C); and support practices (P). This 

limitation makes them unreliable when used on larger scales. This is because the model might 

leave out many processes that occur on larger scales but are negligible on smaller ones. This results 

in changes in the model’s empirical relationships, making its results invalid (Jahun, Ibrahim, 

Dlamini, & Musa, 2015; Meyer & Turner, 1994; Anton Vrieling, 2006). Another limitation is the 

fact that the model in its original form does not provide any spatial distribution of soil erosion, but 

rather only absolute soil loss values. However, this weakness can be eliminated with the use of 

GIS and RS (Fistikoglu & Harmancioglu, 2002).  

2.3.2 The use of Remote Sensing and GIS in estimating land degradation   

The development of remote sensing and GIS is admired for its practicality and efficiency and has 

been adopted for various earth mapping purposes. This is due to the wide coverage and 

repeatability offered by remote sensing, providing a means for change detection of land features 

at larger scales (Shaikh, Green, & Cross, 2001). Although remote sensing has gained so much 

popularity, it is important to note that these techniques still have their own advantages and 

disadvantages (Phiri & Morgenroth, 2017). 

 

The use of remotely sensed data has brought about an ability to map the entire planet in an efficient 

manner. The temporal aspect of the sensors has also made it possible to detect surface changes in 

a timely manner (Mansour, Mutanga, Adam, & Abdel-Rahman, 2016). Over the past few decades, 

this approach has gained wide acceptance across different research domains as the tool of choice 

for observing and understanding the changing and dynamic nature of earth at different spatial 

scales (Xulu, 2014). The frequency of remotely sensed imagery in conjunction with relatively high 

spatial and spectral resolutions makes them highly suitable for capturing of earth features at 

intervals that probably match the pace of land-use or environmental change (Phiri & Morgenroth, 

2017). Remote sensing has thus been the prevailing tool for the indication of “what’s happening 

where” and “how much”; while also helping for studying historical trends through the long 

imagery archive extending back to 1972 (Turner et al., 2015; Xulu, 2014). 

Over the years, improvements in remote sensors coupled with new technological advancements, 

particular in computer science and GIS, have led to improved earth observing capabilities, 
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including mapping of spatially distributed phenomena such as land degradation (Makaya et al., 

2019; Mansour et al., 2016; Phinzi & Ngetar, 2017). Through maximization of sensor’s spectral, 

spatial and temporal resolutions, it is now possible to map land degradation with less expert 

knowledge in a timely and cost-effective manner; especially mapping of remote environments 

where intensive methods are not feasible (Seutloali et al., 2016; Wilkie, Finn, & Finn, 1996). There 

are numerous studies that used remotely sensed imagery to detect and map land degradation 

processes such as soil erosion, desertification, deforestation and flooding around the world. In 

South Africa, remote sensing has received extensive use for mapping of land-use and assessment 

of the spatial distribution of land degradation (Wessels et al., 2004; Wessels, Prince, Malherbe, et 

al., 2007). 

A significant quantity of research has focused on mapping the spread, intensity, and causes of land 

degradation around the country. Studies by Botha and Fouche (2000); Wessels et al. (2004); 

Jacobus J Le Roux and Sumner (2013); Phinzi and Ngetar (2017), have all successfully used 

remote sensing approaches in the assessment of land degradation and soil erosion in particular. 

Wessels et al. (2004), derived NDVI from a 1 km Advanced Very High-Resolution Radiometer 

(AVHRR) to assess the effect of human-induced land degradation in homelands of northern South 

Africa. This study was successful in determining human impacts on ecosystem functioning; 

however, the use of a 1 km spatial resolution sensor was deemed too coarse in extracting soil 

erosion characteristics.  

Mbambo and Archer (2007) used Landsat 5 TM and Landsat 7 ETM for assessment of land 

degradation in a large catchment in Zimbabwe, and they were able to classify and categorize it into 

five levels of susceptibility. While, Taruvinga (2009) successfully used Landsat TM derived 

vegetation indices for mapping of gully erosion in KZN and concluded that Landsat TM has the 

greatest potential in gully mapping in South Africa. In this study, they compared the accuracy of 

Landsat imagery with that of a higher spatial resolution SPOT 5 image. In a similar study, Phinzi 

and Ngetar (2017) used Landsat8 OLI derived vegetation indices for mapping of soil erosion 

distribution; they achieved acceptable levels of accuracy with all overall classification accuracies 

above 80%. While a study by Floras and Sgouras (1999), achieved an overall classification 

accuracy of 83.94% for identifying eroded areas, land-cover and sloping using Landsat TM 

through the Gaussian maximum likelihood classifier. 
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Another important factor of the Landsat8 OLI is the availability of the higher spatial resolution 15 

m panchromatic band. This is a crucial factor since a coarser spatial resolution may fail to 

effectively represent erosion features. There are a number of high spatial resolution imagery 

providers, which have gained extensive use. These include WorldView-2, SPOT, QuickBird, and 

IKONOS, due to their higher spatial resolution, the use of an object-oriented approach is possible 

(Mayr, Rutzinger, Bremer, & Geitner, 2016). The use of higher spatial resolution imagery 

improves the classification since it can detect and map soil erosion features better. Mapping of 

land degradation features such as gullies is sometimes limited by the use of coarse resolution 

imagery. Bocco and Valenzuela (1993) and Dwivedi, Kumar, and Tewari (1997) found the higher 

resolution SPOT-5 imagery to be better at classifying soil erosion in comparison to Landsat, 

however, it is also important to point out that they found the higher spectral resolution of Landsat 

to be better suited for classifying surrounding land-cover and land-use over SPOT (Bocco & 

Valenzuela, 1993; Servenay & Prat, 2003).  

Apart from sensor capability, another key factor that separates the image data providers is their 

accessibility. Although the higher spatial resolution images are more desirable than those offered 

by the moderate resolution Landsat platform, they are not easily accessible due to their high 

acquisition costs, while in contrast, Landsat imagery is freely available. According to Anton 

Vrieling (2006), despite its limitations, the Landsat TM has the greatest potential of mapping gully 

erosion, due to its ability to discriminate eroded areas from surrounding land-cover. While Hansen 

and Loveland (2012) and Turner et al. (2015) hails its importance and nature of constant 

improvements through the launch of new sensors.  

In addition to Landsat, the recently launched Sentinel-2 MSI has received overwhelming 

acceptance, with a number of studies pointing to its high potential in land degradation research.  

This is highly due to it serving to bridge the gap between the high spatial resolution data sources 

and the medium-resolution Landsat. One of its most important attributes is its free availability 

coupled with its relatively higher spatial and spectral resolutions in comparison to the Landsat’s 

latest offering as seen in Table 2.1.  A number of studies have proved Sentinel-2 to be highly 

capable of mapping most land degradation features. Makaya et al. (2019) achieved an overall 

classification and gully classification accuracy of 94% and 77%, respectively, using Sentinel-2 

MSI in Okhombe Valley in the KZN province of South Africa. Several comparison studies with 
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Landsat8 OLI have demonstrated Sentinel-2 MSI to be more superior (Forkuor, Dimobe, Serme, 

& Tondoh, 2018; Sibanda, Mutanga, & Rouget, 2016a). Table 2.2 provides a summary of some 

studies that have utilized remote sensing techniques for land degradation mapping in the sub-

Saharan Africa region. 

The launch of the freely available Sentinel-2 in 2015 brings great opportunities for the remote 

sensing research community, while the longevity and constant improvements of Landsat are some 

of the reasons why it still appeals better to most land-cover mapping researchers.
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Table 2. 1: Comparison of different satellite imagery providers.  

SPOT5 HRG Landsat8 OLI  WorldView-2 (at Nadir) Sentinel-2 MSI 

    Band 1  30m Coastal/Aerosol Band 1 0.46m Panchromatic Band 1  60m Coastal/aerosol 

    Band 2 30m Blue Band 2 
1.84m 

Coastal/Aerosol 
Band 2 10m Blue 

Band 1 10m Green Band 3 30m Green Band 3 1.84m Blue  Band 3 10m Green 

Band 2 10m Red  Band 4 30m Red Band 4 1.84m Green  Band 4 10m Red 

Band 3 10m NIR Band 5 30m RIR Band 5 1.84m Yellow Band 5 20m Veg red edge 

Band 4 20m SWIR Band 6 30m SWIR-1 Band 6 1.84m Red Band 6 20m Veg red edge 

    Band 7 30m SWIR-2 Band 7 1.84m Red-Edge Band 7 20m Veg red edge 

Band 5 2.5m Panchromatic Band 8 15m Panchromatic Band 8 1.84m NIR-1 Band 8 10m RIR 

    Band 9 30m Cirrus Band 9 1.84m NIR-2 Band 8A 20m Narrow NIR 

    Band 10 100m TIR-1     Band 9 60m Water Vapor 

    Band 11 100m TIR-2     Band 10 60m SWIR- Cirrus 

            Band 11 60m SWIR 

          Band 12 60m SWIR 

Swat Width 60 Km Swat Width 185 Km  Swat Width 16.4 Km  Swat Width 290 Km 

Revisit 16 days Revisit 26 days Revisit 1.1 days Revisit 5 days 

Cost  Moderate Cost Free Cost High Cost Free 
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Table 2. 2: Summary of remote sensing applications in land degradation mapping in Africa.

Study Application Sensor and Methodology Results Reference 

The study compared and explored the 

synergistic use of Landsat8 and Sentinel-

2 in land-cover mapping 

Landsat8 and Sentinel-2 

Used RF, SGB, and SVMs. 

All Classification overall accuracies were above 

90%, except for SGB on Landsat8. While 

Sentinel-2 outperformed L-8. 

(Forkuor et al., 2018) 

The study tested the ability of landsat8 and 

sentinel-2 in mapping eroded areas across 

wet and dry seasons. 

Landsat8 and Sentinel-2 

Used Discriminant Analysis 

(DA). Classification ensemble 

OAs ranging between 80% to 81.90% for S-2 

and 75.71%–80.95% for L8 were derived for the 

wet and dry season, respectively. 

(Sepuru & Dube, 2018) 

The study evaluates the potential of 

Sentinel-2 in mapping the spatial 

distribution of gullies. 

Sentinel-2 

Uses semi-automatic 

Support Vector Machine 

algorithm (SVM). 

 OA land-cover classification of 94% and OA 

classification of 77% for gullies. 

(Makaya et al., 2019) 

Assessing rangeland degradation using 

WorldView-2 imagery in Okhombe, KZN. 

WorldView-2 

Used Random Forest Algorithm  

Achieved OA of 82.6% which increased to 90% 

when using a subset of vegetation indices. 

(Mansour, Mutanga, & 

Everson, 2012) 

Using multispectral remote sensing 

imagery for mapping of grassland 

degradation in Cathedral Peak. 

SPOT-5 

Used Random Forest Algorithm 

OA of 75.3% and improved to 88.6% with the 

integration of multispectral data and soil-related 

variables.  

(Mansour et al., 2016) 

Mapping of soil erosion in the Eastern 

Cape with the use of Landsat8 imagery 

derived indices. 

Landsat8 

Used ArcMap for selecting 

Index soil erosion thresholds   

SAVI at 83% was more accurate in comparison to 

81% by NDVI and SARVI. While Kappa 

statistics was at 64%, 60%, and 59% respectively. 

(Phinzi & Ngetar, 

2017) 
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2.3.2.1    Soils Spectral Characteristics  

The complexity of mapping land degradation features with the use of remote sensing largely 

depends on the spectral characteristics of the target features themselves (King, Baghdadi, Lecomte, 

& Cerdan, 2005). Soil erosion is one of the major problems of land degradation in South Africa. 

There is a direct correlation between soil erosion and the spectral reflectance values, this 

distinction allows for the detection and mapping of soil erosion features and their intensity (King 

et al., 2005; Price, 1993). It is, therefore, highly important to understand the spectral characteristics 

of soil erosion features and their surroundings.  

The spectral signatures of bare soil characterizing soil erosion and its levels of severity are highly 

influenced by features such as mineral composition, soil texture, soil moisture and organic matter 

content (Barnes & Baker, 2000; Sujatha, Dwivedi, Sreenivas, & Venkataratnam, 2000). Soil 

particle size influences the porosity, which directly affects both soil moisture and color. The 

differences in spectral curves of sandy and clay soils relate directly to soil texture. Sandy soils 

have larger particles and are usually drier, which results in a strong reflectance across the visible 

and NIR portions of the spectrum in comparison to clay (S. A. Bowers & S. J. Smith, 1972; Hoffer 

& Johannsen, 1969). Clay, on the other hand, is fine and smooth and it absorbs most of the 

incoming light. Since texture largely influences soil moisture, clay soils are able to retain most of 

its moisture and are thus usually wetter. If the soil moisture content increases, the soil's spectral 

reflectance will decrease and become similar to that of water. According to studies by S. Bowers 

and S. Smith (1972) and Matinfar, Alavipanah, and Sarmadian (2006), soil moisture has the 

highest effect on the spectral reflectance of soil. 

Another important characteristic of soil moisture is the presence of absorption bands around 1.4 

μm and 1.9 μm of which dry soils do not have (S. Bowers & S. Smith, 1972). The last factor 

influencing the soil spectral signatures is the presence of minerals and organic matter. The presence 

of organic matter highly influences soil color. An increase in organic matter content will decrease 

the spectral reflectance of soil, as the soils will appear darker (Stoner & Baumgardner, 1981). 

Organic matter is controlled by plants decomposition content and is usually a good indicator of 

land degradation. The removal of organic content leads to increased soil albedo, resulting in high 

spectral reflectance (Taruvinga, 2009). 
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As discussed in the preceding paragraphs, the distinction of soil features from its surroundings; 

including vegetation cover, built-up areas, cultivated areas, and water bodies; largely depends on 

the spectral heterogeneity of soil erosion features due to the highly complex spectral properties of 

the surroundings (Alejandro & Omasa, 2007). Soil usually does not occur in isolation; it is thus 

highly important to understand the characteristics of its spectral signatures both in isolation and 

also relative to its surroundings. According to Wegmuller, Strozzi, Farr, and Werner (2000) and A 

Vrieling, Rodrigues, Bartholomeus, and Sterk (2007), vegetation and moisture change are a major 

cause of spectral decorrelation when mapping soil erosion. In order to attain accurate soil mapping 

estimates, it is therefore important to capture soil’s distinction in both isolation and relative to its 

surrounding environment.  

  

2.3.2.2 The Use of Image Spectral Indices in Soil Erosion Mapping  

Vegetative spectral indices utilize the correlation between the land-cover features and the spectral 

reflectance values for purposes of detection and mapping. This method has been used for more 

than four decades as one of the primary remote sensing methods for quick and simple land-cover 

mapping (King et al., 2005). Spectral indices rely on the spectral heterogeneity of the land-cover 

features for mapping. For example, using the spectral contrast between vegetation and bare soil to 

detect soil erosion. This is usually done through the use of the linear relationship between the 

visible red and infrared bands.  

The combination of the visible red and NIR bands results in a distinct separation of vegetation 

from other surfaces. This is because vegetation reflects very low in the visible red band, while in 

contrast, it reflects very high in the NIR band. Spectral indices can thus be used as an indicator of 

the presence or lack of vegetation biomass. Some studies have used the assumption of lack of 

vegetation or bareness as an indicator of soil erosion (Phinzi & Ngetar, 2017). These studies have 

used different indices that are suitable for an accurate representation of vegetation on the ground 

(Vaidyanathan, Sharma, Sinha, & Dikshit, 2002). 

The spectral indices have been utilized in numerous studies around the globe for various purposes 

including land-use and land-cover change studies such as Pickup and Nelson (1984); Price (1993); 

Zha, Gao, and Ni (2003); Sinha, Verma, and Ayele (2016) and Rasul et al. (2018). While they have 
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also been used for land degradation and soil erosion mapping in particular by Phinzi and Ngetar 

(2017); (Taruvinga, 2009) in South Africa. Two of the earliest and most popular spectral indices 

are the Ratio Vegetation Index (RVI) and Normalized Difference Vegetation Index (NDVI), which 

have received extensive use around the world for decades. Many studies have preferably used 

NDVI for mapping of land-use change. For example, Marsh, Walsh, Lee, Beck, and Hutchinson 

(1992) successfully used NDVI derived from SPOT and AVHRR for mapping of land-cover 

dynamics in the West African Sahel and achieved good temporal assessment of semi-arid 

vegetation dynamics. Tappan, Tyler, Wehde, and Moore (1992) also studied a series of three NDVI 

images from AVHRR data for monitoring seasonal vegetation conditions of the Sahel and Sudan 

rangeland and found them to be particularly valuable in differentiating seasonal fluctuations from 

long term production characteristics.  

Other studies include Ray, Farr, Blom, and Crippen (1993) who studied land degradation after 

abandonment using NDVI from Airborne Synthetic Aperture Radar and airborne visible/infra-red 

spectrometer images and found out that abandoned land supported less vegetation in comparison 

to occupied land. Some studies have also proven that the use of NDVI goes beyond quantifying 

biomass. For example, Kawamura et al. (2005) used NDVI for monitoring of forage quantity and 

quality in inner Mongolia and concluded that NDVI can reliably detect phenology and forage 

quality of grassland steppe areas. The extensive use of NDVI is also found in South Africa, where 

there is a number of successful studies.  

Studies by Wessels et al. (2004); Wessels, Prince, Malherbe, et al. (2007), are some of the most 

referenced land degradation studies in South Africa, these studies successfully used the NDVI for 

mapping of land degradation features in the semi-arid parts of the country. In the first study, 

Wessels et al. (2004) used NDVI to assess human-induced effects of land degradation in the former 

homelands of northern South Africa; while in the second study Wessels, Prince, Malherbe, et al. 

(2007) used NDVI to distinguish human-induced land degradation from that of rainfall variability. 

Although there are only a few land degradation mapping studies that have used NDVI in South 

Africa, the index has been used extensively for other land-cover mapping purposes.  

It is important to note that with all its success and popularity, NDVI also has its own shortfalls, 

some arising from its high sensitivity to both soil background and atmospheric effects. As a result, 

there are numerous modified versions including the Soil Adjusted Vegetation Index (SAVI) and 
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Soil and Atmospheric Resistance Vegetation Index (SARVI). A study by Taruvinga (2009) used 

NDVI in combination with SAVI and SARVI derived from Landsat TM images for mapping of 

gully erosion in KZN. While Phinzi and Ngetar (2017) in a similar study used Landsat8 OLI for 

mapping of soil erosion in the Eastern Cape, where SAVI was found to be more accurate in 

comparison to NDVI and SARVI. Huete and Liu (1994) used NDVI, SAVI and SARVI indices 

for error and sensitivity analysis and found both SAVI and SARVI outperformed NDVI, while the 

SARVI produced the best results. 

There have also been numerous other modifications proposed and used by numerous researchers. 

A study by Price (1993) found a strong correlation between the NIR band and soil erosion using 

Landsat TM in the Pinyon-Jupiler woodlands. While Pickup and Nelson (1984) successfully used 

band ratios green/NIR and red/NIR from Landsat MSS to map different levels of soil erosion in 

arid rangelands of Australia. 

2.3.3 Current and Possible Future Trends in Land Degradation Mapping 

Over the past decades, significant developments have been achieved in both computer-aided image 

analysis algorithms and earth mapping satellite sensors. As a result, current satellite sensors are 

capable of mapping large surfaces of the earth with high accuracy using high spatial, spectral and 

temporal resolutions. While with the latest developments in computer and GIS capability, 

researchers are now able to detect and map earth features with a high degree of precision and 

accuracy. However, there is still a lot of potential and aspects that have yet to be elucidated in the 

mapping of land degradation using RS. 

2.3.3.1 Recent Improvements in Remote Sensors  

Recent improvements in remote sensor capabilities have been grasped with the developments of a 

number of satellite sensors comprising of higher spatial, spectral and temporal resolutions. Due to 

such high capability features, fine spatial and hyperspectral imagery has been effectively used in 

various remote sensing applications including land-cover mapping. The discrimination of 

degraded areas has long been challenging, largely due to the complexities arising from similarities 

in spectral characteristics of bare soil and those of mixed areas comprising of vegetation and water 

surfaces. However, the development of the newer superior sensors has brought about the new 

potential for mapping these features with high accuracy. 
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It is, worth noting that although the use of such sensors has increased and their importance is also 

invaluable, their adoption in resource-scarce regions such as sub-Saharan Africa remains hindered, 

due to their high cost which repels their accessibility (J. O. Odindi et al., 2014). There is still a 

shortage in the utilization of higher resolution sensors. As a result, there is still a need for a robust 

hyperspectral and high spatial resolution research in the assessment of land degradation in South 

Africa. 

A large number of studies have utilized free and readily available satellite imagery from providers 

such as Landsat and Sentinel, who provide reasonably high-resolution multispectral images. This 

trend is also expected to continue in the near future since these image providers have also been 

constantly improving their offerings. This is reaffirmed with the launch of Landsat8 OLI back in 

2013 and the launch of Sentinel-2 MSI in June 2015. Numerous studies have been conducted in 

the sub-Saharan Africa region with these sensors and have achieved a high success rate (Makaya 

et al., 2019; Matongera, 2016; Phinzi & Ngetar, 2017). A number of studies have also focused on 

the comparative assessment of these two sensors with the Sentinel-2 MSI proving to be superior 

to Landsat8 OLI in the mapping of both urban and land degradation features (Forkuor et al., 2018; 

Pesaresi et al., 2016; Sibanda, Mutanga, & Rouget, 2016b). These studies suggest that the use of 

Sentinel-2 MSI provides great potential for mapping of land-cover features and might prove to be 

highly important for future studies.  

2.3.3.2 Emerging Trends in Remote Sensing  

There is a common belief that the quality of imagery used is more important than the method of 

the algorithm used in classification results. However, the image classification approaches are also 

highly important and can also dictate the classification outcome. A large number of recent studies 

are drifting away from the traditional supervised and unsupervised classification approaches such 

as the Maximum Likelihood Classification and ISO cluster unsupervised classification to newer 

and more logical and accurate approaches. These include the robust machine learning algorithms 

such as Support Vector Machine (SVM) and Random Forest (RF) (EM Adam, Mutanga, Rugege, 

& Ismail, 2012; Adelabu & Dube, 2015; Makaya et al., 2019; J. O. Odindi et al., 2014).  

EM Adam et al. (2012) successfully used RF techniques to estimate high-density biomass from 

WorldView-2 imagery. J. O. Odindi et al. (2014) also used RF for mapping of bracken fern plant 

using WorldView-2 and SPOT-5 imagery and achieved overall accuracies (OA) of 91.67 and 
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82.33%, respectively. In another study, Adelabu and Dube (2015) used RF to discriminate tree 

species from QuickBird imagery and produced an OA of 79.86 and 88.78 for resampled and actual 

images, respectively. Makaya et al. (2019) also used SVM for mapping the spatial distribution of 

gullies. While Elhadi Adam, Mutanga, Odindi, and Abdel-Rahman (2014) used both RF and SVMs 

to evaluate the performance of Rapid Eye bands, where RF achieved a comparably higher accuracy 

of 93.07%, while achieved SVMs 91.8% with the Kappa coefficients also coming out the same at 

0.92.  

Other popular unsupervised learning algorithms include cluster analysis, which have been used for 

various data manipulation purposes including; classification, interactive user-interface, storage 

and retrieval; and pattern recognition of complex datasets (Giraldo, Delicado, & Mateu, 2012; 

Kraskov, Stögbauer, Adrsejak, & Grassberger, 2003; Meyer & Turner, 1994; Murtagh & 

Contreras, 2012; Zhao & Karypis, 2002; Zhao, Karypis, & Fayyad, 2005). This approach is used 

for grouping of data into homogenous clusters, such that data within one cluster share similar 

characteristics (Anderberg, 2014). The approach is also suited for separating spatial data into 

multiple classes of similar characteristics. In the case of imagery data, this method can be used to 

classify and merge pixels that have the highest probability of being members of the same class (S. 

Lee & Crawford, 2005). Two of the most popular clustering methods are the hierarchical clustering 

and partitional clustering methods, which have received widespread use across different 

disciplines.  

The hierarchical clustering method is a bottom-up agglomerative approach, where initially each 

individual data point is assigned to its own cluster and the two closest clusters are iteratively 

clustered together until all data belong to the same cluster (Giraldo et al., 2012; Kraskov et al., 

2003; Zhao & Karypis, 2002; Zhao et al., 2005). While in contrast, the partitional algorithm 

methods adopt a top to the bottom approach where there is a single cluster containing all data 

points, the cluster is then partitioned into a certain number of smaller clusters (Zhao et al., 2005).   

Hierarchical clustering is useful for analyzing and grouping of data, especially when working with 

categorical data where similarity measures can be defined accordingly. However, this approach 

also has a number of limitations such as the selection and merging of wrong clusters, due to factors 

such as distance and interconnectivity (Karypis, Han, & Kumar, 1999). While it also has 

challenges when dealing with clustered data such as images, as it has difficulties in the selection 
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of a correct distance matric to use. It also does not define any probabilities related to the data used, 

therefore making it hard to establish the quality of the cluster and to compare it with other models 

(Heller, 2005). The clustering algorithms have found limited use in the remote sensing and land-

cover classification space, but their successful use in disciplines such as life and physical sciences 

demonstrate high potential in complex data classification (Arbeitman et al., 2002; J.-G. Lee, Han, 

Li, & Gonzalez, 2008; Sanges, Cordero, & Calogero, 2007; Sasson et al., 2003). 

The adoption of some of these approaches has not been widely accepted by the remote sensing 

community, due to different factors such as lack of appropriate software and overall complex 

workaround (Waske et al., 2012). While recently, development and application of various 

algorithms have been on the rise and in combination with the adoption of newer satellite image 

sensors their adoption may produce more accurate land-use maps. The development of high spatial 

and spectral images has also brought more possibilities and an increased potential in the adoption 

of methods that were not feasible in the past, such as the object-based image analysis.  

Over the past two decades, the object-based image analysis has been recognized as an emerging 

approach in the analysis of high spatial resolution images. The unique features of this approach 

take advantage of features such as shape, texture and contextual features to improve the delineation 

of the target (Chen, Weng, Hay, & He, 2018). Some latest development proposals for this approach 

also seek to maximize mapping through the representation of target features in a three-dimensional 

(3D) format with the development of Geographic Object-Based Image Analysis. A successful 

development of such an approach could be a highly important breakthrough, especially in the 

mapping of urban areas, which usually comprise of 3D structures. This can also aid in explicit 

mapping tree species and gullies, which are sometimes not suitably represented in two-dimensional 

images. The generation of land-cover maps in 3D would be a more accurate representation of the 

real world. According to Wang (2013), 3D image scenes can be achieved with the constant 

improvements in computer technology coupled with the fusion of LiDAR and optical data.  

 

2.4 Lessons Learnt  

One of the most notable takings from literature is the utmost severity of land degradation in South 

Africa. This had emerged as a serious environmental problem, while the lack of information with 
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regards to its spatial extent remains a key limitation. Therefore, there is an urgent need to improve 

knowledge through regional land degradation mapping and assessment studies, such as those 

carried out with GIS and remote sensing techniques. However, this review has also demonstrated 

the country’s extensive quantity of remote sensing research, the adoption of latest techniques has 

been highly useful and is ministered by the recent advancements in computer and image sensor 

technologies. Furthermore, the adoption of the latest imagery from sensors such as Sentinel-2 and 

Landsat-8 is now coupled with the use of new-age machine learning techniques such as RF and 

SVMs, which have highly improved detection and mapping of land degradation features, 

producing results of high accuracy.  

The study also finds that despite the introduction of fine spatial and hyperspectral imagery, in the 

context of a resource-scarce country such as South Africa, it is the cheap, free and readily available 

imagery data providers that have and are still expected to play an important role. It is therefore 

expected that the adoption of newer superior sensors such as Sentinel-3 MSI and Landsat8 OLI, 

in conjunction with improved classification algorithms, will highly improve the country’s potential 

for future land degradation studies.  

Lastly, the review also discovered that the adoption of techniques such as the hierarchical 

clustering algorithm and object-orientated approaches, which were previously lacking is now 

possible with the latest advancements in image sensors and computer technology. Therefore, there 

is a need to continuously improve our knowledge, especially through the improvement of already 

existing approaches and adoption of the latest techniques, including those that were previously not 

explored. 

2.5 Conclusion 

According to literature, there has been a drastic increase in the amount of research content on land 

degradation using remote sensing methods. The use of remotely sensed imagery has proven to be 

highly efficient, by virtue of both its user convenience and superior accurate results. The past two 

decades had a significant improvement in the development and use of various remote sensing 

techniques around the world. The improvements in sensor technology have led to the availability 

of higher spatial and spectral capabilities, which provide more accurate and reliable land 

degradation mapping estimates. However, although such sensors have a highly recognized 

potential and capacity, they are still not readily available to most African countries due to their 
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high costs. It is, therefore, the freely and readily available medium resolution multispectral sensors 

such as Landsat and Sentinel that have the highest potential in this region. This is more so with the 

constant update and launching of improved sensor versions from these imagery providers. 

Literature has demonstrated how the improvements in these sensors have led to more accurate 

detection and mapping of land degradation features. The inclusion of the red-edge bands in the 

Sentinel-2 MSI has improved the discrimination of land degradation features from other land-

cover features. It is also notable that even though these sensors have accurately detected and 

mapped land degradation features, they still have some limitations. This is primarily due to their 

spatial resolutions sometimes deemed too coarse for mapping of some land degradation features 

such as rill and gully erosion, especially when used at local scales for qualitative purposes. The 

classification of land degradation features is still a challenge, but literature proves that the constant 

improvements of offerings by the remotely sensed data providers, coupled with the adoption of 

new classification approaches such as machine learning algorithms have played an important role 

in the advancement of land degradation research, especially within the resource-constrained sub-

Saharan Africa region. It is also highly important to continuously improve and adopt the latest 

techniques, approaches such as hierarchical clustering and object-based image classification, 

which now have high potential especially with the rapid advancements in GIS and imagery sensor 

technologies. 
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3 Chapter Three: Mapping of Land Degradation using 

Unsupervised Learning Approaches in the eThekwini 

Metropolitan Area 

Abstract 

This study seeks to automatically map land degradation with the use of remotely sensed imagery 

through unsupervised clustering in a complex urban environment in the eThekwini Metropolitan 

Area, KwaZulu-Natal, South Africa. Data from Sentinel-2 Multispectral Instrument was used to 

derive vegetation indices used in this study, these were namely; Normalized Difference Vegetation 

Index, Ratio Vegetation Index, Soil Adjusted Vegetation Index; and Soil and Atmospheric 

Resistance Vegetation Index.  The framework using Ward’s hierarchical clustering performed 

relatively well to produce 6 clusters that achieved an overall classification accuracy (OA) of 

88.81% when mapping land-cover including land degradation. In this regard, land degradation 

achieved the highest classification accuracy of up to 100%, while water achieved the lowest at 

63.33%. Although there was quite a significant difference in accuracy between different land-

cover classes, overall the results were still reasonably good with an error rate of 0.14 and Kappa 

Coefficient of 0.86. The results from this study, therefore, suggest that Ward’s unsupervised 

clustering approach is suitable for mapping of complex land-cover classes and land degradation in 

particular.   

Keywords: Land degradation, Sentinel-2, Hierarchical Clustering, vegetation indices. 
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3.1 Introduction 

The distribution of land degradation in Southern Africa is alarming, with South Africa being 

reported as one of the most susceptible regions to soil erosion in the world (Wessels et al., 2004). 

Land degradation is a threat to biodiversity, as it disturbs ecosystem functioning and also causes 

great implications to an already scarce water resource. It has also led to the destruction of large 

portions of natural biomes, which in turn threatens food security through the loss of fertile soil, 

whilst also leading to a reduction of water reserves through sedimentation (J. Le Roux, 2011; 

Onyando, Kisoyan, & Chemelil, 2005; Peng, Xu, Cai, & Xiao, 2011). This is a similar case with 

the eThekwini Metropolitan Area (EMA), where most of the natural veld biome has been lost, 

largely due to human activities (Onyango, 2014). The region is experiencing rapid fragmentation, 

mainly from pressures of land-cover changes arising from high urbanization rates and other factors 

such as the inevitable and often uncontrollable effects of climate change, which results in further 

dynamism and uncertainty (Warburton, Schulze, & Jewitt, 2010). There have been a number of 

strategies implemented to combat degradation, such as the Durban Metro Open Space System 

(D’MOSS) aimed to protect and manage all land significant to biodiversity and supply of 

ecosystem services to EMA (Boon et al., 2016; Davids, Rouget, Boon, & Roberts, 2016).  

It is therefore important to obtain information and better our understanding of the extent of land 

degradation in this region, in order to adopt the best management and rehabilitation strategies. 

Traditionally, field surveys were used for such studies, these techniques relied heavily on intensive 

fieldwork with ancillary data analysis, visual observation and estimation of features which were 

highly labor-intensive (K. Lee & Lunetta, 1996). Remote sensing has emerged as a highly reliable 

approach for detecting and mapping of land degradation features. This technology provides up to 

date spatial data, which is necessary for showcasing the spread and intensity of this phenomenon 

at a regional scale (Senanayake, Welivitiya, & Nadeeka, 2013). Recently, many studies have 

focused on exploiting newly launched open access multispectral data such as Landsat-8 and 

Sentinel-2, particularly from regions with constrained financial resources (Forkuor et al., 2018; 

Makaya et al., 2019; Phinzi & Ngetar, 2017; Sepuru & Dube, 2018). 

In this context, Makaya et al. (2019) used Sentinel-2 imagery to map the spatial distribution of 

gullies in Okhombe, a village in KwaZulu-Natal, achieving an overall accuracy (OA) of 94% using 

a Support Vector Machine algorithm and a 77% class accuracy for gullies. Sepuru and Dube (2018) 
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also successfully used Sentinel-2 and Landsat-8 in mapping eroded soils in the Limpopo Province 

using a combination of spectral bands and vegetation indices (VIs). Results from this study 

indicated that Sentinel-2 had superior capabilities in the mapping of soil erosion features compared 

to Landsat-8. Similarly, Forkuor et al. (2018) used three machine-learning algorithms (random 

forest, stochastic gradient boosting, and support vector machines) to compare Sentinel-2 and 

Landsat-8 in mapping land-use and land-cover in rural Burkina Faso. They found the classification 

of Sentinel-2 to be more accurate in comparison to that of Landsat-8. The OA from all Sentinel-2 

bands and that from Sentinel-2 bands shared with Landsat-8 produced 5% and 4% improvements 

in land-use and land-cover mapping respectively in comparison to Landsat-8. They also noted that 

classification from Sentinel-2 red-edge bands alone was up to 3% superior to that of Landsat-8 and 

was comparable to the other Sentinel-2 bands. Sibanda et al. (2016a) also compared the utility of 

these two sensors using discriminant analysis and found Sentinel-2 to have improved spectral 

capabilities in mapping rangeland management practices. In a subsequent study, Sibanda et al. 

(2016b) found the performance of Sentinel-2 (red-edge, Near-Infrared and Short Wave Infrared) 

to be comparable to that of a Hyperspectral Infrared Imager (red-edge, NIR, and SWIR) in 

assessing and monitoring of rangeland management practices.   

The performance of Sentinel-2 has demonstrated improved capabilities in the detection and 

mapping of heterogeneous land-cover classes, especially with the addition of the three vegetation-

red-edge bands. While this sensor also comprises reasonably fine spatial bands, with resolutions 

of up to 10 m for the visible region of the electromagnetic spectrum, Makaya et al. (2019) also 

noted that the visible region, SWIR, and red-edge make Sentinel-2 highly suitable for mapping of 

land degradation features such as gullies using the Support Vector Machine (SVM) algorithm. 

Additionally, Sepuru and Dube (2018) mentioned NIR, red-edge, and SWIR as the most optimal 

bands for detecting degraded soils amongst other land-covers using discriminant analysis. The use 

of VIs derived from such remotely sensed imagery has also gained substantial success and 

popularity. There is a substantial number of studies which have adopted this technique in the 

southern African region for land degradation mapping. These include studies by Wessels et al. 

(2004); (Wessels, Prince, Carroll, et al., 2007); and newer studies by Phinzi and Ngetar (2017); 

(Seutloali et al., 2016; Taruvinga, 2009); which utilized Landsat-8 and Landsat-7, respectively. To 

the best of our knowledge, there are currently no studies that have utilized Sentinel-2 derived VIs 

for mapping land degradation in southern Africa using an unsupervised approach.  
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Unsupervised mapping approaches require no training data information, thus demanding less 

human interference, reducing human error and saving time (Le Hegarat-Mascle, Bloch, & Vidal-

Madjar, 1997; Zhong, Zhang, Huang, & Li, 2006). Such approaches have yielded major success 

from recent studies using remotely sensed datasets (Lottering, Mutanga, & Peerbhay, 2018; 

Makaya et al., 2019; Peerbhay, Mutanga, Lottering, Agjee, & Ismail, 2019; Peerbhay et al., 2016). 

This study adopts the Ward’s hierarchical clustering algorithm which has previously not been 

explored for purposes of mapping land degradation using remote sensing. Whereas, it has found 

success in disciples such as life and health sciences where Seo and Shneiderman (2002) used it for 

the identification of co-regulated genes. It has also been adopted in marketing and finance for 

many decades as Srivastava, Leone, and Shocker (1981) successfully used it for market structure 

analysis through product usage. While it has also been used for image analysis and segmentation 

(S. Lee & Crawford, 2005). 

The main objective of this study was therefore twofold; firstly, to automatically detect the spatial 

distribution of land degradation in the study area using Sentinel-2 derived VIs and a combination 

of VIs and image spectral bands; and secondly, to assess the potential of Ward’s hierarchical 

clustering algorithm for purposes of detecting and mapping land degradation from complex land-

cover classes. 

 

3.2 Methodology  

3.2.1  Study Area  

The study was conducted in the eThekwini Metropolitan Area (EMA), located on the eastern 

shoreline of the KwaZulu-Natal (KZN) Province in South Africa (Figure 3.1). EMA lies between 

29° 55' 23.46" to 29° 47' 33.64" south latitudes, and between 30° 37‘39.07" to 30° 47' 30.45" east 

longitudes. EMA is South Africa’s third-largest urban region with an estimated total population of 

3.7 million (StatsSA, 2018). The Metro covers an area of 2297 km2 which gives it a moderate 

population density of 1611.8 people/Km2 (Breetzke, 2009). Although EMA is dominated by urban 

areas, it also falls within a global biodiversity hotspot. The city of Durban is located within the 

MPA Hotspot and lies on the KZNSS, which is classified as a savanna type vegetation endemic to 

KZN (Boon et al., 2016; CEPF, 2005). This region is highly species-rich and has more than 7000 
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species of vascular vegetation plants of which 25% of them are endemic to the region (Van Wyk 

& Smith, 2001).  

 

 

Figure 3.1: The map of South Africa (A), KwaZulu-Natal showing location of the study area (B)  

and study area (C). 

3.2.2 Field verification data 

It is highly essential to qualitatively assess the accuracy of remote sensing classification results. 

This is helpful for both the producer and the user of the map, as it evaluates and shows how the 

source of data and model choice affects the result. One of the most popular accepted methods for 

this process includes the use of unbiased ground reference samples. In this study, a total of 268 

polygon ground samples were created using the “Training sample manager tool” in ArcMap10.4. 

These samples were spread across all major land-cover classes within the boundary of the study 

area. These samples were then converted to keyhole makeup language (kml) format and imported 

into Google Earth Pro for purposes of ground-truthing, where the date was set to April 2016 in 
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order to match the date of image acquisition. Since most land degradation features are small, most 

ground reference samples sat on non-land degradation features. To cater to that, if close enough, 

random points were then assigned to the closest adjacent land degradation features on Google 

Earth Pro, using a method similar to that of Phinzi and Ngetar (2017). Out of the 268 samples 

created only 55 samples were assigned to land degradation, with the rest being assigned to the 

remaining identified major land-cover classes of the study area. 

3.2.3 Image Acquisition and Pre-processing 

For this study, two image scenes of the Sentinel-2 sensor covering the entire study area were 

sourced from the United States Geological Survey’s (USGS) Earth Observation and Science 

(EROS) website (http://earthexplorer.usgs.gov/). The study area covered the entire boundary of 

EMA and the Sentinel-2 sensor used in this study consist of a single Multispectral Instrument with 

13 spectral bands in the visible, near-infrared (NIR) and short wave infrared spectral range 

(SWIR). The sensor has a swath width of 290 km and a revisit time of 5 days. Please refer to Table 

3.1 for image and sensor details and specifications.  

The images were then individually rectified for preprocessing through radiometric correction. This 

process was carried out with the use of Sentinel Application Platform version 5.0 (SNAP) software 

that has a Sen2Cor atmospheric correction toolbox, which is an external plugin algorithm. After 

completion of the radiometric correction, the image scenes then went through a process of 

resampling, where the band’s variable spatial resolution were all resampled to10 m. This was then 

followed by a process of sub-setting and mosaicking the image, which was done with the use of 

ArcMap 10.4. This was required in order to merge the different scenes into a single image that was 

then clipped to the boundaries of the study area. 

 

 

 

 

 

 

http://earthexplorer.usgs.gov/
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Table 3.1: Sentinel-2A Satellite Sensor Specifications 

Sentinel-2A MSI bands Spatial Resolution Central wavelength (nm) 

Band 1  60m Coastal/aerosol 
442.2 

Band 2 10m Blue 492.4 

Band 3 10m Green 559.8 

Band 4 10m Red 664.6 

Band 5 20m Veg red edge 
704.1 

Band 6 20m Veg red edge 
740.5 

Band 7 20m Veg red edge 
782.8 

Band 8 10m RIR 
832.8 

Band 8A 20m Narrow NIR 
864.7 

Band 9 60m Water Vapor 
945.1 

Band 10 60m SWIR- Cirrus 
1373.5 

Band 11 60m SWIR 
1610.4 

Band 12 60m SWIR 
2185.7 

Swat Width 290 Km 

 

3.2.4 Spectral Vegetation Indices  

The use of VIs forms a major part of this study, with the adoption of a combination of Ratio 

Vegetation Index (RVI), Normalized Difference Vegetation Index, Soil Adjusted Vegetation 

Index; and Soil and Atmospheric Resistance Vegetation Index for mapping of land degradation 

within the study area. These VIs were combined to produce a weighted average, where each VI 

contributed a quarter to the overall output. The use of VIs requires extensive use of the red and 

near-infrared bands, which are probably the two most important bands in the calculation of VIs. 

This study uses the assumption that areas that lack vegetation cover and comprise of bare surfaces 

are eroded areas. All processing of VIs in this study was carried out with the use of the ArcGIS, 

where a Sentinel-2 image of the study area was used to derive the VIs through a raster calculation 

tool in ArcMap 10.4.The extraction of index values was then carried out for land degradation and 

all other major land-cover classes identified in the study area, these were namely; water, forests, 

grasslands, suburban (built-up) and industrial (built-up) areas. The RVI is one of the earliest 
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successful VIs, developed in the early 1970s by Pearson and Miller (1972). It is one of the simplest 

VIs to effectively enhance the contrast between the ground and the vegetation cover and is not 

highly affected by the sun's illumination. However, it is highly sensitive to ground optical 

conditions (Baret & Guyot, 1991).  RVI is simply expressed as a ratio of the visible red and the 

NIR spectral bands as illustrated in Table 3.2. The second VI used in this study is the NDVI, which 

is the most commonly used VI and is formulated as illustrated in Table 3.2. The success and 

importance of NDVI is invaluable and well documented, however, due to its high sensitivity to 

atmospheric effects and other non-vegetative surfaces, there have thus been various modifications 

and development of newer improved indices (Govaerts & Verhulst, 2010). SAVI and SARVI are 

two of the most widely used VIs in vegetation and soil research and were mainly developed to 

cater to the shortcomings of NDVI. The SAVI successfully describes the soil-vegetation system, 

and its formula is very similar to that of NDVI with only a minor addition and was proposed by 

Huete (1988) as seen in Table 3.2. The SARVI was then later developed by Huete and Liu (1994) 

and generally uses the traditional combination of visible red and NIR bands with an introduction 

of a visible blue band B and 𝜸 which is a constant that stabilizes the index for atmospheric aerosol 

content. 

3.2.5 Use of the Ward’s hierarchical clustering algorithm 

The ward’s hierarchical clustering algorithm is a useful tool used for analysis and grouping of data. 

This approach is used in this study as an unsupervised mapping approach where similar data is 

grouped together into clusters (Zhao et al., 2005). Initially, a single dataset containing all data 

points is partitioned into a certain number of clusters  (Zhao et al., 2005). The number of data 

points is the sample of field land-cover data which is divided classes, in this approach each cluster 

is a representative of a particular land-cover class.  

There were 268 points representing six major land-cover classes identified in the study area, each 

data point was represented by four spectral values to represent four VIs. These were uploaded to 

the model (hierarchical clustering algorithm) to produce results of individual and various 

combinations of these VIs. For purposes of comparison, a second dataset was also tested. This 

dataset included a combination of VIs and six Sentinel-2 bands.  
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Table 3.2: Comparison of different vegetation indices used for land-cover and soil erosion 

mapping 

 ABBV Full Name Equation Accuracy References 

1 EVI Enhanced Vegetation 

Index 
2.5

𝑁𝐼𝑅 − 𝑅

(𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 ∗ 𝐵 + 1)
 

R2= 0.74;  

R2= 0.72 

(Kawamura et 

al., 2005; 

Matsushita, 

Yang, Chen, 

Onda, & Qiu, 

2007) 

2 RVI Ratio Vegetation Index 𝑁𝐼𝑅

𝑅𝐸𝐷
 

R2= 75;  

K= 63% 

(Kaufman & 

Tanre, 1992; 

Stenberg, 

Rautiainen, 

Manninen, 

Voipio, & 

Smolander, 

2004) 

3 NDVI Normalised Difference 

Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

R2= 0.77-

0.83; OA= 

81% 

(Kawamura et 

al., 2005; Meyer 

& Turner, 1994; 

Phinzi & Ngetar, 

2017) 

4 ARVI Atmospherically 

Resistant Vegetation 

Index 

 
𝑁𝐼𝑅 − [𝑅 − 𝜸(𝑩 − 𝑹)]

𝑁𝐼𝑅 + [𝑅 − 𝜸(𝑩 − 𝑹)]
 

R2= 0.74 – 

089 

(Eastwood, 

Yates, Thomson, 

& Fuller, 1997) 

5 SAVI Soil Adjusted 

Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
(𝟏 + 𝑳) ∗ 

OA= 83%;  

K= 60% 

(Huete, 1988; 

Phinzi & Ngetar, 

2017) 

6 SARVI Soil and 

Atmospherically 

Resistance Vegetation 

Index 

(1 + 𝑳) ∗ (𝑁𝐼𝑅 − 𝑅𝑅𝐵)

(𝑁𝐼𝑅 + 𝑅𝑅𝐵 + 𝑳)

∗∗

 
OA= 81%;  

K= 59% 

(Phinzi & 

Ngetar, 2017) 

 

3.2.6 Accuracy assessment  

A confusion matrix was created for testing the model classification output for Sentinel-2 derived 

VIs and a combination of both VIs and image spectral bands. The confusion matrix included four 
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levels of accuracy, namely the producer’s accuracy, user’s accuracy, overall accuracy, and the 

kappa statistic. The confusion matrix was chosen for this study because of its simplicity and its 

ability to examine the relationship between ground reference data and the corresponding model 

output results. The confusion matrix is one of the most popular methods used for accuracy 

assessment and is widely used for image classification accuracy (Lillesand, Kiefer, & Chipman, 

2015; Phinzi & Ngetar, 2017; Taruvinga, 2009). The study then adopts the Kappa coefficient 

which includes overall statistic agreement of the error matrix when assessing classification 

accuracy output (Lu & Weng, 2007). The Kappa coefficient is a reliable measure of the difference 

between the actual agreement and the chance agreement (Congalton, 1991; Taruvinga, 2009). 

 

3.3 Results 

3.3.1 Ward’s Hierarchical Clustering using Sentinel-2 Vegetation Indices 

The Ward’s hierarchical clustering algorithm produced a dendrogram that visually represents the 

decisions used to allocate sample pixels to their resultant clusters. The dendrogram represents a 

hierarchy of clusters from a single cluster at the top to the desired number of clusters. As illustrated 

from Figure 3.2, the dendrogram tree was cut at six clusters in order to complement the number of 

classes based on the similarity of pixels. Each of the six resultant clusters highly resembles a land-

cover class that may make up its majority.   

  



38 

 

 

Figure 3.2: Dendrogram representing a hierarchy of clusters and a cut-off line (in red) at six 

clusters   

Figure 3.3 shows the alignment of land-cover pixel similarities with the 6 unsupervised clusters 

derived from VIs using Wards clustering. For instance, 238 out of 268 data points were correctly 

assigned to each of the respective classes. 

 

Figure 3.3: Land-cover classes in the study area as modelled by the hierarchical clustering 

algorithm. 
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3.3.2 Vegetation Indices Confusion Matrix  

The use of the Sentinel-2 derived VIs as an independent test dataset produced a high OA of 88.81% 

and a Kappa coefficient of 0.86. This dataset also produced the highest accuracy when classifying 

degraded areas, achieving a prodigious producer’s accuracy of 100% and a user’s accuracy of 

94.83%. The high producer’s accuracy indicates the algorithm’s impressive ability to correctly 

classify degraded areas when using the VIs, this can also be used as a measure of the error of 

omission. While the high user’s accuracy indicates that there were only a few non-degraded areas 

identified as degraded, which represents the algorithms low error of commission.   

 

 

 

 

Table 3.3: Classification accuracies derived using vegetation indices as an independent dataset 

Land-Cover Name Producer Accuracy (%) User Accuracy (%) 

Waters  63.33 100.00 

Degraded 100.00 94.83 

Forests 93.55 90.63 

Grassland 82.50 80.49 

Suburban 87.50 94.59 

Industrial 92.68 77.55 

Overall Accuracy (%)  88.81 Kappa                           0.86 

 

As shown in Table 3.3, out of all six clusters, the land degradation class achieved the highest land-

cover/cluster correlation. All degraded areas were found in cluster 2, where they made up 94.8% 

of the cluster, while the remaining 5.2% was made up of the industrial land-cover class. The rest 

of the landuse classes were also highly correlated with the clusters, however, there was some 

notable mixing in clusters 4, 5 and 6 as shown in Table 3.3.  
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3.3.3 Ward’s Hierarchical Clustering using Sentinel-2 Spectral Bands Combined 

with Vegetation Indices 

The use of the VIs in combination with Sentinel-2 bands produced a classification performance 

with an OA of 79.47% and a Kappa coefficient of 0.752. Although such numbers might indicate a 

relatively good classification accuracy, however, the classification results of degraded areas were 

second-lowest out of all land-cover classes, narrowly bettering that of industrial areas. Degraded 

areas registered a very weak classification, achieving a modest producer’s accuracy of 56.36%, 

while the user’s accuracy was significantly higher at 79.48%. Forests achieved the highest 

classification accuracy with producer’s and user’s accuracies both commanding 96.77%.  

Table 3.4: Classification accuracies derived using a combination of bands and vegetation indices  

Land-Cover Name Producer Accuracy (%) User Accuracy (%) 

Waters  100.00 71.43 

Degraded 56.36 79.49 

Forests 96.77 96.77 

Grassland 80.00 96.97 

Suburban 100.00 78.43 

Industrial 48.78 48.78 

Overall Accuracy (%)  79.47 Kappa                            0.752 

 

As illustrated in Table 3.3 and Table 3.4, the use of VIs as an independent test dataset achieved 

superior classification results in comparison to the combination of spectral bands and VIs. For 

instance, the analysis of VIs yielded a high OA of 88.81% in comparison to 79.47% obtained when 

using the combination of spectral bands and VIs. The analysis of VIs also produced the highest 

classification accuracy for degraded areas; while in contrast, the combination of bands and VIs 

produced a lower accuracy, which was the second-lowest out of all six land-cover classes. For this 

reason, the results from the analysis of VIs independently was then selected as the best method to 

automatically detect and map land degradation using Wards Hierarchical Clustering in this study. 

These were then selected for further analysis and derivation of classification maps in the following 

section. 

3.3.4 Analysis of Classification Map Derived from Selected Best Method 

Figure 3.4 illustrates the derived classification maps, while Table 3.3 details the classification 

results obtained from the use of VIs as an independent test dataset. Figure 3.3(A) showcases the 



41 

 

spatial distribution of land-cover in EMA, while Figure 3.3(B) shows the distribution of mapped 

degraded areas.  

 

 

Figure 3.4: Sentinel-2 vegetation indices derived classification maps of EMA showing (A) spatial 

distribution of major land-covers, and (B) showing the distribution of land degradation. 
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Table 3.5: Cluster make-up detailing the percentages of contributing classes and number of data points per cluster 

Cluster 1 Cluster 2 Cluster 3 

Examples [7.1%] 19 Examples [21.6%] 58 Examples [13.8%] 37 

Class name  

% of 

Class 

% of 

Cluster Class name  

% of 

Class 

% of 

Cluster Class name  

% of 

Class 

% of 

Cluster 

Water 63 100 Degraded  100 94.8 Residential  87.5 94.6 

Grassland  0 0 Industrial 7.3 5.2 Grassland  2.5 2.7 

Residential 0 0 Residential 0 0 Forests  1.7 2.7 

Industrial 0 0 Grassland 0 0 Industrial 0 0 

Degraded  0 0 Residential 0 0 Degraded  0 0 

Forests  0 0 Forests  0 0 Forests  0 0 

Cluster 4 Cluster 5 Cluster 6 

Examples [18.3%] 49 Examples [15.3%] 41 Examples [23.9%] 64 

Class name  

% of 

Class 

% of 

Cluster Class name  

% of 

Class 

% of 

Cluster Class name  

% of 

Class 

% of 

Cluster 

Industrial 92.7 77.6 Grassland  82.5 80.5 Forests  93.5 90.6 

Water 36.7 22.4 Residential 12.5 12.2 Grassland  15 9.4 

Residential 0 0 Forests  4.8 7.3 Residential 0 0 

Grassland 0 0 Industrial 0 0 Industrial 0 0 

Degraded  0 0 Degraded  0 0 Degraded  0 0 

Forests  0 0 water  0 0 Water 0 0 
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From Figure 3.4(B) it can be observed that most degradation is located in the inner western 

part of the EMA away from the coast. Extensive levels of land degradation can be observed 

from both south-west and north-west, even stretching towards far-west.  It is also visible from 

Figure 3.4(A) that most land degradation occurs on the outskirts away from the city and 

prominent affluent suburbs. In addition, most detected degradation is located near or mixed 

with residential areas, these are mostly township areas in the south-west and rural areas on the 

north-western part of the metro. This is also indicative of degradation caused by anthropogenic 

activities in these areas. 

There’s also evidence of land degradation located adjacent industrial areas. As seen in Table 

3.5, about 7.3% of all industrial areas were included into one cluster with the degraded areas. 

While 100% of degraded areas were found to be within one cluster. This is indicative of a good 

detection of the degraded areas by the Wards Hierarchical Clustering algorithm, even though 

it also classified minor parts of industrial areas as degradation. It was rather industrial areas 

that had higher levels of classification error, 77.6% of all industrial areas were actually 

industrial areas with the remaining 22.4% being actually water bodies. This was also visually 

observable in Figure 3.4(A), where most of the peninsula was classified as water, while it was 

actually a harbor, which is an industrial area. 

 

3.4 Discussion  

 

The main objective of this paper was to automatically detect the spatial distribution of land 

degradation in the study area using Sentinel-2 derived VIs and a combination of VIs and image 

spectral bands; and to also assess the potential of Ward’s hierarchical clustering algorithm as a 

mapping tool. 

In this paper, the description of land degradation included all exposed and bare land types 

located within the EMA, which is one of the most actively changing regions in southern Africa. 

The results from this study demonstrate the success of the Ward’s hierarchical clustering 

approach to produce reliable levels of accuracies for mapping land degradation in a complex 

environment. The use of Sentinel-2 derived vegetation indices and bands performed reasonably 

well and demonstrated high capabilities to detect and map land degradation from other land-

cover classes.  
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3.4.1  Distribution of Land Degradation in the EMA  

The distribution of land-use and their changes often plays a major role in the occurrence and 

distribution of land degradation. In this study, it was discovered that most land degradation in 

EMA occurs on the outskirts of the metro. The high degradation intensification in the EMA 

peripheries is also directly linked to the intensification of land transformation in these areas. 

This is a typical phenomenon and has been reported in different parts of the world. According 

to Jensen and Cowen (1999) land-use change is a direct cause of habitat fragmentation and land 

degradation on urban peripheries. In the EMA there are a number of reasons which might have 

led to this outcome, some are typical of developing cities while some are uniquely South 

African. 

Traditionally, the townships; located in these areas are often characterized by high population 

densities accompanied by a lack of resources (Crankshaw & Parnell, 1996). The demand for 

new settlements in these areas thus creates a rapid transformation of green spaces into 

impervious surfaces and is often associated with land degradation (Onyango, 2014). The high 

population growth of EMA has thus expanded the human settlements beyond historical extents, 

this can also be illustrated by the government's efforts such as housing provision initiatives like 

the Reconstruction and Development Programme (RDP). It has also been reported that the RDP 

has led to land degradation in many urban areas, creating a steady decline in green spaces 

((McConnachie & Shackleton, 2010; Pillay & Sebake, 2008) . The results from this study are 

thus in line with findings from other similar studies, which point land degradation 

intensification with urban outskirts and rurality (Crankshaw & Parnell, 1996; M. T. Hoffman 

& Todd, 2000; T. Hoffman, Todd S., Ntoshona Z., and Turner S, 1999; McConnachie & 

Shackleton, 2010; Onyango, 2014; Pillay & Sebake, 2008). 

3.4.2  Mapping Land Degradation using Sentinel-2 and Vegetation Indices  

The use of VIs as an independent dataset produced a high OA of 88.81% and a Kappa 

coefficient of 0.86. While the combination of spectral bands and VIs yielded a relatively 

weaker OA at 79% and a Kappa coefficient of 0.75. Such a significant difference between 

accuracies can be an outcome of different factors. Factors such as the bands inabilities to 

discriminate these land cover classes, since different bands are more diverse in comparison to 

VIs, or simply the model’s difficulties in dealing with highly diverse spectral bands. However; 

in this study, it was notable that the algorithm had difficulties in discriminating degraded areas 

from built-up areas when using Sentinel-2 bands. This was especially notable in the visible 
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range of the electromagnetic spectrum, where both the degraded and built-up industrial areas 

had a higher average reflectance in comparison to other land-cover classes. Nonetheless, both 

sets of results were reasonably good, denoting a successful classification. 

A high OA demonstrates a good classification accuracy; however, it can also be misleading 

since most of the study area is made up of non-land degradation land-cover classes. However, 

from the confusion matrix, land degradation also achieved the highest classification accuracy 

when using VIs, which showed the algorithm’s ability to detect degradation from their 

surroundings. Since land degradation does not occur in isolation, it was imperative to map them 

with other major land-cover classes that are found in the study area. These results represent a 

relatively high accuracy classification, especially when comparing them to other similar studies 

that have used VIs to map land degradation in South Africa. A study by Taruvinga (2009) 

produced Kappa statistics of between 50% and 56% using similar VIs to map land degradation 

in KZN. While Phinzi and Ngetar (2017) achieved OA range of 59% to 83% with Kappa 

statistics ranging from 59% to 64% also using similar VIs in the Eastern Cape. The results from 

the aforementioned studies are moderate to moderately high. This makes the results from this 

study imposing, especially since the study area comprised of a highly complex environment, 

while, the algorithm was still able to map them into reasonably high accuracy levels.  

The algorithm was able to detect and classify all six major land-cover classes into six 

corresponding clusters. This also demonstrated the ability to detect and map land degradation 

by the Sentinel-2 sensor. The sensor comprises of recently improved spatial and spectral 

resolutions. It has thus received quite a substantial amount of success and praise for its ability 

to discriminate degraded areas from other land-cover classes (Makaya et al., 2019; Sepuru & 

Dube, 2018). This is highly attributed to its bands located at the near infra-red and red-edge 

portions of the electromagnetic spectrum, in addition to its reasonably high spatial resolutions 

of up to 10m (Forkuor et al., 2018; Sibanda et al., 2016a, 2016b). 

3.4.3  Ward’s Hierarchical Clustering Algorithm and Unsupervised Mapping 

These results also demonstrate a high potential of Ward’s hierarchical clustering algorithm in 

land-cover mapping, particularly land degradation areas. Although it has previously not been 

extensively tested for purposes of image classification, Ward’s hierarchical clustering 

algorithm has shown the potential to discriminate between complex land-cover classes using 

spectral information. In addition to that, the algorithm is very repeatable since it is easy to use 

and is also supported by numerous data handling platforms. The algorithm’s classification 



46 

 

success can also be illustrated by its extensive adoption in other research areas, these include 

disciples such as life and health sciences, image (object) segmentation and; marketing and 

finance management (S. Lee & Crawford, 2005; Punj & Stewart, 1983; Zhao & Karypis, 2003). 

Results from this study are also in line with those found in other studies that adopted 

unsupervised learning for land-cover mapping. A study by Forkuor et al. (2018) achieved a 

high classification performance with OAs of between 88.9 and 94.3 and Kappa coefficients 

range of 0.87 and 0.93 for land-cover mapping using RS, SVM and Stochastic Gradient 

Boosting in Burkina Faso. Peerbhay et al. (2016) also successfully used RF for mapping of 

bugweed in forests, open spaces and riparian zones to accuracies of 91.33%, 85.08 and 67.90%, 

respectively. In a separate study, Peerbhay et al. (2019) yielded an improved OA of 83% for 

mapping of riparian bugweed using AISA Eagle hyperspectral data (393 nm–994 nm) in 

combination with height derived from LiDAR on RF and Anselin Local Moran’s I clustering. 

Although the results from this study show good potential, it is worth saying that one of the 

major shortfalls of the algorithm in this study was the poor ability to discriminate degraded 

areas from built-up areas when using Sentinel-2 bands as an independent dataset or in 

combination with VIs. This was especially notable in the visible range of the electromagnetic 

spectrum, where both the degraded and built-up industrial areas have a higher average 

reflectance in comparison to other land-cover classes. Nonetheless, this study has demonstrated 

the algorithm’s good qualities to detect and discriminate complex land-cover classes, the use 

of VIs showed great abilities especially when detecting degraded areas. The Ward’s 

hierarchical clustering algorithm can, therefore, provide a suitable alternative method for 

mapping land degradation and other land-cover classes especially when coupled with Sentinel-

2 derived VIs.   

 

3.5 Conclusions  

The main aim of this study was to detect and map land degradation from complex land-cover 

classes in an urban environment, using Sentinel-2 VIs and Ward’s hierarchical clustering 

algorithm. The results have demonstrated successful mapping of land degradation and also 

confirmed the abilities of the Sentinel-2 sensor for purposes of detecting and mapping of land 

degradation from diverse land-cover classes. The study achieved an OA of 88% while land 

degradation achieved a high classification accuracy of up to 100%.  The use of VIs produced 

the best classification performance with the highest accuracy, however; the use of Sentinel-2 
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bands as an independent test dataset produced a relatively weaker performance. The study 

further demonstrated the potential of Ward’s hierarchical clustering algorithm as a tool for 

mapping land degradation features from remotely sensed imagery. Despite achieving a good 

overall performance, the algorithm had challenges with discriminating between degraded areas 

and industrial areas when using the bands in the visible range of the electromagnetic spectrum. 

Nonetheless, the findings from this study clearly confirm Ward’s hierarchical clustering 

algorithm as a suitable remote sensing mapping tool with great potential. 
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4 Chapter Four 

This chapter serves to review and evaluate the success of the study in fulfilling the aim and 

objectives established in the first chapter. This chapter also includes the conclusions and 

recommendations pertaining to this study. 

4.1 Aim and Review of objectives 

The main aim of this study was to assess the state of land degradation in South Africa with a 

focus on the eThekwini Metropolitan Area as a study area. Two objectives were established in 

order to fulfill this aim. 

Objective One:  

To review the status of land degradation in South Africa as well as tracking emerging 

trends in remote sensing and GIS research. 

Evidence from previous literature shows land degradation as a major problem facing the 

Southern African region. One of the most cited limitations has been the lack of detailed 

information with regards to the location of land degradation at regional scales. This, in turn, 

creates a major hindrance in terms of planning and implementation of management and 

rehabilitation measures. The study critically reviewed the state of land degradation in South 

Africa, discussing the country’s land degradation patterns and highlighting some of the major 

causal factors. In addition to that, the study reviewed some of the current and emerging trends 

in land degradation research. Remote sensing has emerged as a highly reliable tool and has 

been adopted by researchers in numerous disciples for various purposes including land 

degradation research. The open availability of medium resolution imagery from providers such 

as Landsat and Sentinel has also highly contributed to remote sensing popularity, this is 

particularly true even in resource-constrained regions such as South Africa. Additionally, the 

review also found the recent advancements in Geographic Information Systems and computer 

sciences as another key factor contributing to land degradation research. This is evidenced by 

the rapid development and adoption of machine learning languages for purposes of remote 

sensing and GIS. This has also highly improved the accuracy of land degradation mapping 

studies.  
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Objective Two:  

Use of Sentinel-2 derived vegetation indices to map the spatial distribution of land 

degradation in the EMA through the use of the wards hierarchical clustering algorithm.  

For successful implementation of suitable environmental management and rehabilitation 

strategies, there is a need for detailed information on the state of the environment, explicitly 

displaying the spatial extent of land degradation at regional scales. The aim of this study was 

to detect and map land degradation features in the EMA using Sentinel-2 derived spectral 

signatures and vegetation indices through the Ward’s hierarchical clustering algorithm. 

Furthermore, this was to aid in testing and evaluation of the algorithm’s capabilities for land 

degradation mapping. The two sets of data used in this study both produced positive results. 

However, the use of VIs as an independent test dataset produced superior results with an overall 

classification accuracy of 88.81%. In that regard, out of six land-cover classes, the degraded 

areas also achieved the highest classification accuracy of up to 100%. The use of a combination 

of VIs and spectral bands produced a relatively lower classification accuracy with an OA of 

79.48. Although the OA might seem to represent a relatively good classification, the 

classification of degraded areas had the second-lowest accuracy at between 56.36 and 79.49%. 

One of the identified factors which contributed to such a significant difference in results from 

the two datasets was the model’s poor ability to discriminate degraded and built-up areas. The 

spectral signatures of degraded and built-up areas are fairly similar in the mid-infrared region 

of the electromagnetic spectrum, the introduction of these bands, therefore, resulted in a mixed 

classification of these particular land-cover classes. With regard to the spread of degraded areas 

in the study area, their distribution was more severe in the rural areas and townships away from 

the CBD of the EMA. It was also attributed to the rapid transformation of green spaces for 

residential purposes, this is due to the high demand for human settlement leading to the 

expansion of the surrounding townships beyond original extents. Overall, the use of Sentinel-

2 derived indices and spectral indices demonstrated its ability to detect and map land 

degradation features, while the results also confirm the Ward’s hierarchical clustering 

algorithm as a suitable earth mapping tool with great potential. 

4.2 Conclusion 

The primary aim of this study was to assess the spatial extent of land degradation with the use 

of a Sentinel-2 remotely sensed dataset, through an unsupervised machine learning approach, 

Ward’s hierarchical clustering algorithm in the eThekwini Metropolitan Area. Findings from 
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this study have revealed the state of land degradation in South Africa. This study was able to 

adequately determine the spatial extent of land degradation in the EMA despite some 

difficulties in spectral discrimination, the Ward’s hierarchical clustering algorithm produced a 

relatively high accuracy classification. The conclusions below are thus a consolidation of the 

study’s findings which are presented in this thesis and responds to the research questions posed 

in Chapter 1. 

What are the emerging trends in mapping land degradation using remote sensing and 

GIS? 

The recent advancements in remote sensing and GIS have highly improved the potential of 

land degradation studies. These have led to improvements in results accompanied by an easy 

and convenient workaround. This study and numerous others have successfully used new-

generation medium resolution sensors and achieved high accuracy results for various earth 

mapping purposes including land degradation. The improvements in results are also fueled by 

the adoption of unsupervised machine learning approaches such as RF and SVM.  

Can the hierarchical algorithm effectively detect land degradation? 

This study adopted Ward’s hierarchical clustering algorithm approach, which has previously 

not been used for purposes of remote sensing land degradation mapping. This algorithm can 

provide a suitable alternative unsupervised mapping approach that is quick and easy to use. 

The best results from this study achieved an OA of 88.88 and Kappa coefficient of 0.86, which 

denote a highly accurate classification. Such results demonstrate great potential for the 

hierarchical clustering algorithm in the mapping of earth surface features. Even though the 

algorithm has some limitations, especially when discriminating between features of bright 

spectral signatures. Overall, it was able to map all land-cover classes identified in the study 

areas with acceptable results. 

What is the Distribution of Land Degradation Across the Study Area? 

Land degradation is distributed across the entire study area, with some areas having more 

severity than others. The study discovered that the highest land degradation intensification is 

located in the peripheries of the metro, particularly in townships and rural areas away from the 

central district and suburbs. This is a typical scenario since townships are usually the most 

susceptible to such phenomenon, largely due to their lack of resources and rapid 

transformation. 
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