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Abstract

Possible Models Diagrams (PMDs) are simple graphs which may be used to represent
propositional expressions. Technically, these graphs are hypercubes in which the vertices are
partitioned into two sets: one representing the possible models in which the propositional
expression turns out to be true, and the other representing the possible models in which the
propositional expression turns out to be false. PMDs can be used to define boolean operators, to
analyse whether a propositional expression is tautological, contingent or inconsistent, and to

determine the validity of propositional sequents.

This dissertation describes both theoretical and pedagogical aspects of PMDs, and places this
new approach within the context of a course on logic for first year computer science students. In
this course, various forms of logical representation are taught and the ability to translate
between those representations is emphasised. An extensive comparison is made between PMDs
and other methods of teaching propositional logic. In particular, qualitative and quantitative
evidence is given to show that students perform better when using PMDs than they do when using
truth tables. The advantage of PMDs for the purpose of teaching is that they are iconic: that is,
they are symbolic pictures which combine the expressive power of symbolism with the

memorability of visual images.
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Symbols and Abbreviations

Although each of the abbreviations and symbols in the following table are defined in the text,

they are all collected here for ease of reference.

Symbol Meaning
PMD Possible Models Diagram
wif Well-Formed Formula
FOPL | First-Order Predicate Logic
= Material Implication
v Disjunction
& Conjunction
~ Negation
Entailment
| Existential Quantifier (“there exists”)
v Universal Quantifier (“for all”)
=def Is defined to be
. Is isomorphic to (with respect to graphs)




Chapter 1: Introduction

1.1 Historical Context

Most university courses in Computer Science include some component introducing the student to
formal logic, and the University of Natal in Pietermaritzburg has been no exception. One quarter
of the first year Computer Science course was devoted to “Discrete Structures” — a module which
included set theory, propositional and predicate logic as well as an introduction to grammars and
finite automata. In recent years it has been noticed that students found this module particularly

difficult.

At a departmental meeting during 1992, it was decided to reduce the scope of the Discrete
Structures module by dropping the section on grammars and automata, thus allowing an extension

of the logic component. The motivation for this change was the department’s fourfold belief

that:

A firm foundation in logical thinking is the basis of many concepts and skills in

computer science. Not only is formal logic central to the operation of a computer (and

hence to understanding the operation of computers), but being able to reason logically
should enable students to cope more easily with other areas of study in their computer
science degree.

e Changing social patterns in South Africa has lead to an increasing number of
educationally disadvantaged students enrolling for university degrees. This heightens
the need to explicitly address the process of logical reasoning, rather than hoping that
students will either commence their studies with the necessary skills or magically pick
them up by osmosis from existing courses.

e An extended module on logic was seen as a good foundation for any academic pursuit and
the Department saw this as a contribution to the broader task of educating critical
thinkers in the Science Faculty.

¢ Students would be more intellectually mature when facing the section on grammars and

automata in second year. In addition, that section was not seen as essential for those

students who were not majoring in computer science.

A detailed description of the new module is given in the Appendix and discussed in Chapter 6.
This module is taught over one semester through 26 lecture periods and 13 tutorial Periods. The
course covers topics common to most first courses on logic in computer science degrees, and also
includes a sizable section (about 17% of the course) on informal and inductive logics. Roughly
half the course addresses the standard topics of propositional and predicate logics and then a

final section provides a brief exposure to other forms of logic such as fuzzy logic and modal logic.



In the process of designing this module, the author developed a novel method of teaching
propositional logic which uses simple graphs. These graphs, known as “Possible Models
Diagrams” (PMDs), may be viewed as an alternative to Truth Tables. This approach has been
used and refined over the past three years and this dissertation is written as a retrospective
analysis of the effectiveness of the PMD approach. The dissertation describes the use of PMDs
and draws together a variety of qualitative and quantitative data to show that the approach is
an effective method of teaching propositional logic to computer science students. The idea behind
these diagrams was inspired by a talk given by Prof. J. Heidema in 1992, although the context in
which he used them was much different than the didactical application described here (see

[BRINS7]).

This research is inter-disciplinary, with roots in both logic and in education. It is hoped that the
level of detail on the logical issues is sufficient for readers who come from a background in
education, and that the level of detail on educational issues is sufficient for readers who come

from a background in logic.

1.2 Objectives

The objectives of this dissertation are thus:

1. To describe the use of PMDs and to show the theoretical soundness of this method of

representing propositional expressions;

2. To appraise the pedagogical soundness of PMDs by comparing students’ competence
in propositional logic when using Possible Models Diagrams with their competence

when using truth tables.

3. To place the teaching of PMDs in the context of a course on logic for computer science

students.

4. To compare the PMD approach with previous methods of teaching propositional

logic in order to situate this approach within a historical context.

1.3 Outline of Dissertation

Chapters 2 and 3 form an extended literature survey covering the range of approaches to the
teaching of logic and the types of difficulties which are encountered when teaching logic.
Chapter 2 sketches the historical development of logic from Aristotle to First-Order Predicate
Logic (FOPL) and the accompanying development of techniques for teaching logic. The central
focus is on the variety of proof techniques which have been developed over the past century and
a detailed comparison is made of twelve different systems. The later introduction of PMDs can

then be seen in the context of these other approaches.



Chapter 3 discusses some typical mistakes made by neophyte logicians which indicate common
misconceptions and difficulties with learning logic. These observations provide motivation for
improving our teaching methods, and also indicate some directions which such improvements
may take. In particular, the problems arising from a truth functional definition of material
implication are described and a large number of suggestions for avoiding or overcoming these
problems are compared. In the context of the problems with material implication, an approach

based on set theory is foreshadowed.

PMDs are first introduced in Chapter 4. This chapter grounds PMDs in graph theory and boolean
algebra. Any propositional expression can be represented as a boolean function, and any boolean
function can be represented as an induced subgraph of a hypercube. A PMD is just such a graph,
drawn in an appropriate form. Algorithms for constructing these induced subgraphs are given as
well as a method for using PMDs to ascertain the validity of propositional sequents. PMDs are
shown to be informationally equivalent to truth tables. This chapter is a slightly modified

version of a paper to appear in the journal of Mathematical and Computer Modeling.

Chapter 5 re-presents some of the material of Chapter 4, but in a friendlier and less theoretical
style. This chapter shows the way in which PMDs are introduced to students: instead of the
graph theory foundation of the previous chapter, the concepts required for PMDs are drawn from
set theory. The logical connectives of propositional calculus are defined and the procedures for
building and using PMDs are described. The method of proving propositional sequents, and the
equivalence of PMDs and truth tables are again covered, but this time from a didactical rather
than theoretical perspective. This chapter is a slightly modified version of a paper presented at
the ACM'’s 24th SIGCSE Technical Symposium on Computer Science Education.

PMDs provide just one more tool for teaching logic, and it is important to understand how such a
tool can be effectively integrated into the whole tool kit. Chapter 6 seeks to do this by describing
the role of PMDs in a logic course for first year computer science students. The course content is
outlined and teaching methods and underlying philosophy are described. This course presents
students with a variety of types of logic (inductive, propositional, predicate, modal, fuzzy,
multi-valued and probabilistic) and a variety of representational tools (eg English, sets, truth
tables, PMDs, and a natural deduction system). The importance of using multiple representations

is justified and the significance of being able to translate between representations is emphasised.

In Chapter 7, student responses to this logic course (in particular to PMDs) are analysed. The
reader will be aware by now that this research has been theoretical and qualitative rather than
quantitative. The PMD approach arose in the midst of teaching logic in a computer science
department and as yet no controlled experiments have been conducted to determine the
pedagogical effectiveness of PMDs. Nevertheless, data has been recorded over the past three

years in the form of student answers to class tests, assignments and exams. This data is



summarised in Chapter 7 and statistical analysis has been applied to the extent that it is
meaningful. The analysis seeks to establish whether students prefer to use PMDs or truth tables,
and also compares their ability to solve problems using PMDs and truth tables. This chapter also
contains a selection of actual student responses which provide good examples for qualitative
analysis. This qualitative data provides a rich source of insight into student difficulties and
misconceptions, and has been invaluable for the devélopment and improvement of teaching

methods.

In addition to the data extracted from assessment of students, Chapter 7 also discusses the
students’ assessment of the logic course, based on responses to course evaluation questionnaires.
These responses paint a general picture of students who are satisfied with both the knowledge
they have acquired and the means by which that knowledge was imparted.

Overall conclusions are brought together in Chapter 8 in two sections: technical conclusions
regarding the theoretical soundness of PMDs as a tool for propositional logic; and pedagogical

conclusions regarding the effectiveness of PMDs as a tool for teaching propositional logic.

A lengthy Appendix gives a more detailed description of the complete logic course which was
outlined in Chapter 6. This Appendix is a copy of the notes which are distributed to students at

the beginning of the course.

1.4 Citation Style

In parts of this dissertation I have tried to indicate the historical flow of ideas in logic and
have chosen a style of citation to emphasise this flow. The teaching of logic has changed
drastically over the last hundred years and I want to present the PMD approach in the light of
these changes. The citation style used throughout this dissertation was chosen because it makes
it convenient to indicate original publication dates. Thus, a citation such as [HILB28 p125] refers
to work by Hilbert and Ackermann which was first published in German in 1928, though this
may not have been the edition available to me. The Bibliography indicates that the actual
edition being referenced by [HILB28] is the 1950 English translation and the cited page number
(“p125” in this example) refers to that edition rather than the original German edition. The
year of publication indicated in the citation can be assumed to be in the 20th century, unless

otherwise indicated.

In addition to the normal citation of books and journals, the dissertation also cites various

electronic sources. In particular I have received assistance from the Internet sci.logic newsgroup



and the logic-1 distribution list! (an international group of people interested in the education of

logic). I cite such sources in footnotes and where possible provide the source’s e-mail address.

1 One can become part of this interest group by sending the message “SUBSCRIBE LOGIC-L” to
the address <listserv@bucknell.edu>.



Chapter 2: Historical Background to
Logical Methods

2.1 Historical Trends in the Teaching of Logic

Between Aristotle and the late nineteenth century, formal logic meant categorical syllogisms.
This is reflected in textbooks on elementary logic up until the rise of mathematical logic which

started to find its way into textbooks after 1920.

Around the turn of the century books such as [SIGW1873, KEYN1884, FOWL1895, WELT1896,
READ1898, CREI1898, MELL04, RUSS06, JOSE06, WELT11, RUSS14, and WELT20] promoted a
common syllabus covering the basic laws of thought, definitions and classifications, types of
propositions (categorical, hypothetical and disjunctive), lists of common logical fallacies, and
the standard syllogistic forms. Quite a few make use of either Euler’s Circles or Venn Diagrams
(see Section 2.3.6) to help explain categorical statements and valid forms of categorical
inference. Most also have a section on inductive forms of reasoning, including generalisation,
causation, the role of observation and hypotheses in science. Some also discuss the use of

probability and statistics.

The use of Venn Diagrams as an aid to understanding valid forms of inference is noteworthy, since
the approach taken by this thesis revives that technique in part. The earlier Euler Circles
provided different diagrams for each of the four forms of categorical proposition, but Venn
proposed that a single diagram could be used to represent all four and more [VENN1881].
Whereas Venn Diagrams have been used in recent primary and secondary school syllabi as a way
of describing set theory, their original purpose was to represent categorical relationships. In the
following chapters it will be seen that Venn Diagrams serve an excellent role in linking logic to

set theory so that students who know set theory can more readily learn the concepts of formal

logic.

Through the second half of the nineteenth century and early decades of the twentieth century
. many advances were being made by Peirce [HART74], Shroder (and even earlier by Boole
[BOOL1854]), Peano, Frege, Russell and Whitehead [WHIT10], Hilbert [HILB28] and others, but
these were not immediately incorporated into standard courses on logic. The change from
Classical logic to Modern mathematical logic took some time and even as late as 1956 some
authors resisted the changel. Nevertheless, the importance of syllogisms gradually gave way to

the more comprehensive mathematical logic.

11 refer here to a remarkable book whose third edition in 1956 still refused to drop the Classical
approach. The Jesuit author sought to defend Scholasticism against the scourge of modern heresy
JoOYC56].



Many books published during this period gave equal attention to the Classical and the Modern
[STEB30, EATO31, STEB43, WERK48] but in 1928 Hilbert and Ackermann published “Principles
of Mathematical Logic” [HILB28], a German textbook in which Classical Logic took a back-seat.
They described a sentential calculus (what we now call “propositional calculus”) and a
functional calculus (which later editions renamed “predicate calculus”). Their approach was
axiomatic, allowing the truth of an expression to be established by rewriting the expression in a
normal form, rather than employing truth tables. Aristotelian logic was shown to be a subset of

this new mathematical logic.

From 1930 to 1950 the topics included in logic textbooks (and by implication in university logic
courses) varied considerably, but over these decades a new syllabus was gradually assembled to
replace the Aristotelian syllabus. This new syllabus largely ignores inductive reasoning and
instead focuses on the elements of deductive inference —

o Definitions of logical connectives for negation, conjunction, disjunction and material

implication (usually by truth table);

. Definition of well-formed formulae (wffs) based on those connectives;

o The conversion of natural language statements into symbolic form;

o The use of truth tables to classify wifs as either tautological, contingent or
inconsistent;

] Some method (see Section 2.3) whereby the validity or derivability of
propositional sequents may be established;

J Proof, or at least some discussion, of the consistency and completeness of the

propositional calculus;

. The syntax and semantics of predicates and quantifiers;

o Extending the sequent validation technique to include predicates and quantifiers;

o The role of interpretations in the validation of predicate sequents; and

° Proof, or at least some discussion, of the consistency and completeness of the

predicate calculus.

The topics included in this list constitute what is called First Order Predicate Logic (FOPL).
This syllabus has continued to be fairly standard up to the present time (see for example the
recommendations of the Association of Symbolic Logic in [ASL94]), though other topics such as
identity, modal logic, and normal forms are often also included in a first course in logic at
university level. There are, however, two points on which there is considerable divergence of
opinion: which symbols should be used for the logical connectives, and which method should be

used for proving or deriving sequents.



2.2 Choice of Symbolism

Virtually all authors now use an infix notation rather than the earlier prefix notation of
Lukasiewicz2. However, the choice of which symbols to use has not been standardised. Table 2.1
shows the range of symbols commonly used. The first symbol listed for each operator is the one
used throughout this dissertation: even when referring to other sources I will convert their

notation into my standardised form except in situations where the notational difference is

significant.
Table 2.1 — Symbols Used for Logical Operators
Concept Variety of Symbols Used
Negation ~, =,
Conjunction &,. N
Disjunction v, +
Material implication =,—2,D
Bi-conditional o, =, ~
Existential quantifier (3x), (Ex)
Universal quantifier (Vx), (%)

Although many of these differences are purely cosmetic, seeing a variety of symbols in different
textbooks is nonetheless confusing to students. Some symbols encourage an intuitive meaning (eg
“&” is an obvious symbol for conjunction, and the quantifiers “3” and “V” connote “Exists” and

“All”) while others seem arbitrary and may even obscure the intended meaning.

The use of the horseshoe symbol “>” is particularly problematic. When one writes PoQ, it could
easily be assumed by someone familiar with set notation that Q is claimed to be a subset of P.
This is not only incorrect, but in fact the reverse of what is intended: P5Q means that whenever P
is true, Q is also true, whereas the assumed set expression QcP means that whenever Q is true, P
is true. Historically, the horseshoe predated the set notation. In 1891 Peano used the notation “b
C a” to represent “b is a consequence of a” and its inverted form “a 3 b” to indicate material

implication3. This “D ” was turned into “>” by later writers. Although it seems commonly

2 [PRIOS5] is the most recent book I have located which uses Lukasiewicz’s notation. The main
advantage of a prefix notation is that parentheses are not required. This syntactic simplification
is what makes Lukasiewicz’s notation appropriate for the games of “WFF ‘N PROOF” (first
invented by L.E.Allen in 1956 and still marketed by WFF ‘N PROOF Publishers, 1490 South
Boulevard, Ann Arbor, MI 48104-4699, USA). It has also been reported that blind students find
prefix notation easier to work with (Ron Barnett <rbarnett@grits.valdosta.peachnet.edu> (pers.
comm.)), presumably because an expression can be parsed without backtracking.

3 Randall Dipert <dipert@cs.fredonia.edu> (author of articles on the history of logical notation
in both the Encyclopedia Britannica and the Routledge Encyclopedia of Philosophy) and Martin
Huehne <huehne@brouwer.informatik.uni-dortmund.de> pers. comm.



accepted that this was the origin of the horseshoe symbol, Quine claims that the horseshoe was
used in 1816 by Gergonne [QUIN40], and this is supported by [KNEA62 p350].

Quine initially used the “>”, but changed to “—” in 1982 because it “is now widely used and is
more suggestive” [QUINSO0 p26]. The arrow (either “=" or “—") appeared in [HILB28], though I

have not been able to establish whether that was the original source.

Avoiding student confusion is more important in this dissertation than the claim of historical
precedence, and since the method of teaching logic used here is founded on set theory, the “>”

symbol will be dropped in favour of the arrow.

2.3 Methods for Proving or Deriving Sequents

Once logical statements have been written in some symbolic notation, a method is required
whereby the relationships between logical expressions may be established. Most importantly,
we wish to know how to establish whether one expression logically follows from another. The
usual way to write this is as a sequent of the form A1,A3,..,AnF Cor A1,A,..., AnF C, which
are both claims that the assumptions A1,A2,...,An entail the conclusion C. The first expression,
A1,A2,...,AnF C, is a syntactic claim that in some appropriately defined formal system, the wif
C can be derived from the hypotheses A1,A2,...,An, whereas the second, A1,A2,..,AnF C, is a
semantic claim that it is valid to deduce the conclusion C from the assumptions Aj,A),...,An.
There is both an important distinction and an important connection between these which is

described in the following section.

A sequent (in either the syntactic or semantic sense) is a claim of a certain relationship between
the wifs on the left of the entailment sign and the single wff on the right. Different systems of
logic propose different approaches to substantiating such a claim, and the purpose of this section
is to describe and compare these varied approaches. We shall begin with a purely syntactic
approach which lays a precise and formal foundation for the rest of the discussion, and then
cover several semantic approaches which are much more suited to an introductory course in logic.
In each case the approach is illustrated with an example: the sequent P, ~(P&Q) } ~Q (or P,
~(P&Q) F ~Q, as appropriate). A full comparison would require many more examples, but the
purpose here is to illustrate the methods rather than to criticise them and so a single example

will suffice.

2.3.1 Axiomatic Derivations

In an axiomatic system, a set of symbols is defined, along with formation rules which define how
those symbols may be combined (ie rules which generate well-formed formulae). Certain wifs are
then defined to be axioms, and certain syntactic operations are defined as rules of inference. A

theorem is any wff which is either an axiom or which can be derived from other theorems by
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means of the rules of inference. In axiomatic systems we are not directly concemed with either

truth or validity, but rather derivability.

This approach to logic was pioneered by Frege, Russell, Whitehead, Hilbert and Bernays
[KNEA62 pp524-538]. Significant work was also done by von Neumann and Church [CHUR44]. It
is the most mathematically precise of all the methods discussed here, but also the most
cumbersome. Derivations of theorems would be impossibly long if it were not for various meta-
theorems which allow useful theorems to be proved without the need to construct the complete
derivation. Axiomatic systems dictate mechanical manipulation of meaningless symbols, and
require extremely abstract reasoning skills. For this reason, they are difficult to teach to students
who are learning logic for the first time, and hence rarely used in introductory textbooks, though
they do feature in higher level mathematical textbooks. Recent books which follow an

axiomatic approach include [SHOE67, MASS70, HAMI78 and DOWS86].

In Massey’s system [MASS70], wifs consist of sentential variables, parentheses and the operators
~ and =. There are three Axioms —

Axiom1l: P=(Q=P)

Axiom2: (P=(Q=R))=((P=Q)=(P=R))

Axiom3: (~P=~Q)=(Q=P)
and two Rules of Inference —

Rule 1: From A and A=B one may infer B (modus ponens)

Rule 2: From A, one may infer the result of substituting a wff B for a sentential

variable ¢ throughout A (substitution)

This system is similar to that in [CHUR44] and [HAMI78]. The set of axioms and rules is kept as
small as possible in order to simplify the meta-theoretical analysis, while still being powerful
enough to generate all tautologies of propositional logic?. Although this system only allows the
two operators ~ and =, other operators may be introduced as abbreviations for wifs containing
only these two operators. For instance, the wff A&B may be thought of as an abbreviation for
~(B=>~(B=>A)) — a truth table (see the following Section) will show that these two expressions
are equivalent. Thus, the wff ~(P&Q) in the example sequent needs to be rendered as

~~(Q=>~(Q=P)) in Massey’s system.

In such a system, the concept of a sequent is secondary: the primary concept is the derivability of
theorems. A sequent in the form A1,A2,...,ApnF C claims that if the wifs A1,A2,...,An are
hypothesised in addition to the Axioms, then the wif C is derivable. The Deduction Theorem is
a meta-theorem which asserts that the claim A1,A3,...,Apk C is provable if and only if
A1,Ag,...,An-1F Apn=C is provable [MASS70 p144, HAMI78 p32]. Repeated applications of this

4 Tn 1917, Nicod showed that one axiom and one inference rule is sufficient [KNEA62 p526].
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meta-theorem yield the sequent F A1=(A2=(.. =(An=0)...)). In other words, the sequent
A1,A2,...,An b C is provable exactly when the corresponding conditional A1=(A2=(...
=(An=C)...)) can be derived from the Axioms and Inference Rules with no extra assumptions (ie

when A1=(A2=(... =(Apn=C)...)) is a theorem).

The example sequent P, ~(P&Q) F -Q can be represented in Massey’s system as P,
~~(Q=~(Q=>P)) F ~Q and this may be translated into the corresponding conditional
P=(~~(Q=~(Q=P))=~Q). If we could show that the latter was a theorem of the axiomatic
system, then we could say that the original sequent was provable. A derivation of this wff would
be very long and difficult to construct, and nobody in their right mind would attempt it. Instead
of taking the direct approach, it is better to take a look at the whole system and prove some
further meta-theorems first. For instance, we could prove the principle of Double Negation: that
any wff ~~P is a theorem if and only if P is also a theorem [MASS70 p148]. We could prove that
it is possible to add an assumption to a sequent without changing its provability: that if
A1,A2,..,Aqk Cis provable, then so is A1,A2,....An, Ans+1F C. We could prove the principle of
reductio ad absurdum: that if A1,Ag,...,Aq b C is provable and also A1,Aj,...,AqF ~C then so is
A1,A2,...,An.1F ~A;, [MASS70 p 151]. Having proved such meta-theorems, we could proceed to

prove the sequent P, ~~(Q=>~(Q=P)) I ~Qas in Figure 2.1.

(1) F P=(Q=P) Axiom 1

2) b (P=(Q=P)=(Q=(P=(Q=P))) Substitute P=>(Q=sP) for P in (1)
(3) F Q=({P=(Q=P)) Modus ponens from (1) and (2)
(4) QF P=(Q=P) Deduction Theorem from (3)

(5 PQF Q=P Deduction Theorem from (4)

(6) PQ~~(Q=>~(Q=P)} Q=P Adding an assumption to (5)

(7) ~~(Q=~(Q=P) | Q=~(Q=P) Double Negation

(8) P,~~(Q=~(Q=P))} Q=~(Q=P) Adding an assumption to (7)

(9) P,Q~~(Q=~(Q=P))} Q=~(Q=P) Adding an assumption to (8)
(10) P,Q~~(Q=~(Q=P))} ~(Q=P) Modus Ponens from (9)

(11) P,~~(Q=~(Q=P))} ~Q Reductio ad absurdum from (6) and (10)

Figure 2.1 — Proof of P~(P&Q)} ~Q in an Axiomatic System

Although this takes only eleven lines, it must be remembered that this is not a complete
derivation in the sense defined in the first paragraph of this section. The various meta-theorems
assure us that such a derivation is possible, but the complete derivation would be very much

longer. For instance, a full justification of line (7) alone would require at least fourteen lines.

Although the discussion above focuses on an axiomatic system for propositional calculus, axioms
can be added for quantification in such a way that the system can generate all logically valid
wffs (in a sense which can be made precise) of FOPL [HAMI78 p71, MASS70 p414].
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Everything so far has been defined syntactically, without regard to the meaning of the symbols.
Nevertheless the symbols, formation rules, axioms and inference rules have all been carefully
chosen so that the resulting theorems can be interpreted in a meaningful way. Prior to
interpretation, an axiomatic system is no more than a syntactic game; after being appropriately

interpreted the theorems are seen to be exactly the tautologies of propositional logic.

2.3.2 Truth Tables

Truth tables are the standard method of assigning truth values to propositional wffs, that is, of

adding semantics to the syntactic system described above.

First, we view the symbols (such as P and Q) as propositional variables which represent certain
propositions: for instance P may represent the claim that “All swans are white”, Q may
represent the claim that “The temperature is 15 degrees”. Each such variable may be either true

or false.

Second, we construct tables of truth values in which columns indicate the truth (T) or falsity (F)
of one or more propositional wffs, and rows indicate each of the possible assignments of truth
values to the propositional variables. Truth tables are used to define primitive logical operators
and also to analyse compound wffs which are formed by combining a number of those primitive

operators. Figure 2.2 shows the truth table which is the standard definition of conjunction.

P 0| P&0
T T T
T F F
F T F
F F F

Figure 2.2 — Truth Table Definition of Conjunction

In some situations, especially when constructing or analysing computer logic circuits, the symbols
“1* and ‘0’ are used instead of ‘T” and ‘F’ respectively. In such cases, truth tables are sometimes

drawn in a form corresponding to a Karnaugh Map (see Section 2.3.6.5) as shown in Figure 2.3.

& 0 1
0 0 0
1 0 1

Figure 2.3 — Alternate Truth Table Definition of Conjunction

Once the concept of truth has been introduced, we can designate each propositional wif as either
tautologous (those which are always true), contingent (those which are sometimes true and
sometimes false) or inconsistent (those which are always false). For instance, the wif
P=(~(P&Q) = ~Q) is shown to be a tautology by the truth table in Figure 2.4 since the values

under the main operator (the left-most =») indicate the wff to be true in all four rows.
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P Q P = (~(P&Q) = ~0)
1 ol ag TT F TTT T FT
2T F TT T TFF T TF
3F T FT T FFT F FT
4F F FT T FFF T TF

Ficure 2.4 — Truth Table for P=(~(P&Q) = ~Q)

We may also introduce the concepts of a sequent and sequent validity. The sequent
A1,As,...,AnF C claims that the assumptions (or premises) A1,A2,...,An logically necessitate
the conclusion C. (Notice the use of the semantic entailment sign F rather than the syntactic sign

} used previously.) Such a claim is said to be valid if it is impossible for all the assumptions to

be true unless the conclusion is also true.

Truth tables may be used both to prove and to disprove the validity of propositional sequents,
and this may be done in two ways. Given the general sequent A1,A2,...,An F C we may constructa
truth table with columns for each of A1,A2,...,Ap and C. The sequent is valid if and only if, for
every assignment of truth values to its variables for which all of A1,A2,...,An take the value
“true”, C takes the value “true” also. [LEMM65 p75, HAMI78 p23, GALT90 p47, ALLE92 p38]

Thus, the sequent P, ~(P&Q) F ~Q may be analysed by truth table shown in Figure 2.5.

P _0Q P ~ (P&Q) ~Q
iT T T F T F
2T F T T F T
3 F T F T F F
4 F F F T F T
Figure 2.5 — Validation of P, ~(P& by Truth Table

The wff ~(P&Q) has two columns of truth values under it. This reflects a two stage evaluation:
truth values for P&Q are calculated first; and then those values are negated to give the final
truth values for ~(P&Q). Notice that row 2 is the only row in which both premises are true, and

in that row the conclusion is also true. Hence the sequent is shown to be valid.

Alternatively, Lemmon proves a meta-theorem to the effect that A1,A2,...,ApF C is valid
precisely when the corresponding conditional A1=(A2=(... =(Ap=C)...)) is a tautology, and
this of course may be confirmed by checking the truth table of Aj=(A2=(... :(An:;)...))
[LEMMBS65 p76]. (This meta-theorem relates closely to the Deduction Theorem mentioned earlier.)
Using this meta-theorem, we can translate the sequent P, ~(P&Q) .. ~Q into the corresponding
conditional P=(~(P&Q) = ~Q) and construct a truth table for that wff. Figure 2.4 shows this wff
to be true in all four rows. Hence the wff is a tautology and by the meta-theorem above, the

original sequent is valid.
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The advantage of these methods is that they are mechanical and guaranteed to work. However,
for sequents containing many variables they become cumbersome and they are not applicable to

sequents containing quantifiers.

2 3.2.1 Relationship Between Syntactic Entailment and Semantic Entailment
In Section 2.3.1 syntactic entailment, A1,As,...,AnF C, was defined to mean that if the wifs

A1,A,..,An are hypothesised in addition to the Axioms, then the wif C is derivable. In Section
2372 semantic entailment, A1,A2,...,An F C, was defined to mean that the assumptions
A1,A2,...,Ap logically necessitate the conclusion C. In both cases we have seen that the sequent
may be proved by reference to the corresponding conditional A1=(A2=(... =(Ap=C)...)). In the
syntactic view, the important characteristic of the wif A1=(A2=(... =(Ap=C)...)) is whether
or not it is a theorem, whereas in the semantic view, the important characteristic is whether or

not it is a tautology.

Two important meta-theorems indicate the relationship between these concepts: the Validity
Theorem asserts that every theorem is a tautology, and the Completeness Theorem asserts the
converse, that every tautology is a theorem. Given an appropriately defined syntactic system,
and an appropriate allocation of semantics, these meta-theorems amount to an equivalence
between the two approaches. In view of this, and since the technical distinction between
syntactic and semantic approaches is not an important one in an introductory logic course, I will
avoid any future mention of the distinction in this dissertation. Instead of using either } orF , I
will use the more neutral symbol ... In the context of an introductory logic course, this has the
advantage of making use of a symbol with which the students are already familiar, and has the

added advantage that it is much easier for my word processor!
2.3.3 Natural deduction

Whereas in the axiomatic methods valid formulae are derived from a sequence of axioms by
means of a few forms of inference, in a natural deduction system assumptions are proposed from
which a sequence of logical deductions are made. The aim of this is to produce “proofs” which

more closely mirror the natural sequence of human deduction.

There are a number of natural deduction systems and these may be categorised into two groups
which I shall exemplify using the system of Paulson [PAUL87] and Lemmon [LEMM65]
respectively. The key distinction between these two categories is that whereas Lemmon’s proofs

are strictly linear, Paulson’s are tree-structured. -

Both of these types of system apply to the whole of FOPL. Every sequent which can be proved by
these natural deduction systems is necessarily valid, and every valid sequent of FOPL can be
proved within both systems. However, such natural deduction systems are unable, in general, to

disprove an invalid sequent.
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2.3.3.1 Lemmon

In Lemmon’s system, each line of a proof must be justified by one of fourteen rules of derivation. In
the proof of P, ~(P&Q) .. ~Q shown in Figure 2.6, the four columns list not only the wif being
derived (third column), but also a line number (second column), the rule of derivation used to
deduce this wif (fourth column), and a list of line numbers indicating the assumptions upon which

the wff depends (first column).

1 (1 P A (Assumption)

2 (2 ~(P&Q) A

3 3) Q A

1,3 (4) P&Q 1,3 &I  (Conjunction-introduction)
1,23 (5) (P&Q)&~(P&Q) 4,2 &I

1,2 (6) ~Q 3,5 RAA (Reductio ad absurdum)
Figure 2.6 — Validation of P~(Pé& i

Various books [eg ALLE92, POSP74] and computer programs (eg LemmonAid and Deriver Plus)
have been written to use Lemmon'’s system, but it is just one system of many in this category. Other
authors [eg COPI61, MATE65, GUTT71, MCCAS81, GALT90] have adopted or invented systems
which are similar in that they require a series of wffs in a proof to be listed one per line, along
with a justification for each wff based on previous lines. Such systems vary in two main ways:

the set of prescribed derivation rules; and the method of keeping track of assumptions.

One of the main benefits of Lemmon’s system over other natural deduction systems is the explicit
tracking of assumptions. Many other systems simply indicate when an assumption is discharged,
but Lemmon (and [MATE65]) requires that a list of assumptions be maintained constantly.
Because of this, at any point in the proof it is clear what has been proved so far. So in line 6 of
Figure 2.6 it is clear that we have proved the sequent, since the wff ~Q has been derived based on

the assumptions 1 (ie P) and 2 (ie ~(P&Q)).

There is a notable similarity between the structure of the Lemmon-style proof and the axiomatic
proof in Section 2.5. However, in Lemmon, reductio ad absurdum is a primitive inference rule
whose legitimacy is based on intuition. In contrast, reductio ad absurdum has no place inside
Massey’s axiomatic system, but is a meta-theorem. Any proof in Massey’s system which uses
reductio ad absurdum is actually an abbreviation for a longer (much longer!) derivation from the

axioms.

2.3.3.2 Paulson

Paulson’s system is based on the approach of Gentzen [GENT35] (see also [KNEA62 p538]).
Paulson allows rules of assumption, contradiction, and both introduction and elimination rules for
each of conjunction, disjunction, implication, negation, universal quantifier and existential

quantifier. In this system, the sequent P, ~(P&Q) . ~Q can be proved as shown in Figure 2.7. Note



16

that apart from lines of assumption, each line is inferred from one or more previous lines. (The

symbol A indicates a contradiction.)

P..P (Assumption) Q..Q (Assumption)

P,Q..P&Q (&-introduction) ~(P&Q) .. ~(P&Q) (Assumption)

P,Q,~(P&Q)..A (~-elimination)

P,~(P&Q)..~Q (~-introduction)

Figure 2.7 — Validation of P.~(P&Q)..~QOin a Gentzen-style Natural Deduction System

Gentzen proved that in such a system, every proof can be written in a normal form such that any
derived formula appears only once. In a certain sense, these proofs are as direct as possible, with
no sidetracks (ie inferences which do not lead towards the final conclusion). This may be seen as
an advantage over a Lemmon-style system which does allow unnecessary sidetracks. However,
Gentzen notes that natural human reasoning is necessarily linear [GENT35 p76] and so the

linearity of Lemmon perhaps makes it more “natural”.
2.3.4 Resolution

The method of resolution relies on three principles: first, that if the negation of a required
conclusion is inconsistent with the premises, then it is legitimate to claim that the conclusion is
entailed in the premises; secondly, that every wiff may be expressed in conjunctive normal form
(that is, a conjunction whose conjuncts are each elementary disjunctions); and thirdly, that if a
term and its negation appear in separate clauses, they may be eliminated. (The sense of the

terms “inconsistent”, “conjunctive normal form” and “clause” are exemplified in Figure 2.8.)

This third principle is the Resolution Rule, which is the only rule of inference ever used in this
system (excepting the various rules of equivalence which must be used to convert the original

sequent into conjunctive normal form). The Resolution Rule allows the following inference —

LvK1vKov...vKy
~LvMvMav...vMm

- K1vKav...vKgvM1vMav...vMpy

Applying these principles to the example P,~(P&Q)..~Q we can construct the proof by resolution
as shown in Figure 2.8.
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Step 1: We wish to establish whether the two premises P and ~(P&Q) and the
negation of the conclusion ~Q are mutually satisfiable. In other words, is
P&~(P&Q)&Q satisfiable (in the sense exemplified below)?

Step 2: Convert this wif into conjunctive normal form, then list the conjuncts as a
set of clauses . So P&~(P&Q)&Q becomes (P)&(~Pv~Q)&(Q), which may be

written as —
Ci: P
Cp:  ~Pv~Q
C3: Q

Step 3: Progressive simplification is now performed using the Resolution Rule.
Cs: ~Q  (From Cj and Cp, since one contains the term P and the other
contains the term ~P)
cs: O (From C3 and Cy, since one contains the term Q and the other
contains the term ~Q)
After two applications of the Resolution Rule, we are left with the empty clause
(0), indicating that the original clauses (C1,C2,C3) are unsatisfiable. Hence the
wif P&~(P&Q)&Q is unsatisfiable and so the sequent P,~(P&Q) ... ~Q must be

valid.

Figure 2.8 — Validation of P.~(P&Q)..~Q by Resolution

This method is far from straight-forward for humans, yet ideally suited to computers and hence
Resolution forms the basis of much computational logic and automated theorem proving.
Although the example above is very simple, the method can be applied to any sequent of FOPL.
See [EISI93] for a detailed exposition. Various computing textbooks present this method, for
instance [ROBI79, MANNB85, DOWS86, GALT90, and AHO92]. Given its importance in
automated theorem proving and artificial intelligence, it is appropriate to teach Resolution to
Computer Science students, though because of its unnaturalness it is perhaps best to teach it in

some course subsequent to a first introduction to logic.
2.3.5 Semantic tableaux

The early work on semantic tableaux was carried out by Beth [BETH59] and Smullyan [SMUL68]
though they cite similar techniques by Hintikka (1955) and Schiitte (1956). Some authors call
this type of system “truth trees”, eg [JEFF67].

A semantic tableau attempts to establish whether the premises of a sequent are consistent with
the negation of the conclusion. If it is found to be so, then the original conclusion is not
necessitated by the premises and so the sequent is invalid. Conversely, if the negation of the
conclusion is found to be inconsistent with the premises then the sequent is valid. The method is a

diagrammatic version of the Resolution strategy described above.
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In the system described in {JEFF67], the premises are written one after the other, followed by the
negation of the conclusion. Compound wffs are processed one at a time in a tree-like structure
according to eight patterns (two for each connective &,v,=, and ). Whenever a path through
the tree contains some wff as well as the negation of that same wff, the path is closed (marked
with an “x”). The sequent is valid if and only if all paths through the final tree are closed. (Any
unclosed path in the final tree indicates a set of variable assignments which satisfy the initial

set of wffs, which shows that the negation of the conclusion is not inconsistent with the

premises.)

The sequent P,~(P&Q)..~Q is shown to be valid by the semantic tableau in Figure 2.9. Lines 1 and
2 list the two premises and line 3 shows the negation of the conclusion®. We now look for any
compound wff which has yet to be processed, and in this case we find only ~(P&Q). This pattern
is processed by forming two new branches at the bottom of the tree and writing ~P after one
branch and ~Q after the other (that is, line 4). Having done this, we place a tick at line 2 to
indicate that the wff has been processed. Now we see that one path through the tree gives the
sequence P, ~(P&Q), Q and ~P. Since this path contains a contradiction (both P and ~P) we close
the path by placing an “x” at the bottom. Another path through the tree gives the sequence P,
~(P&Q), Q and ~Q. This also contains a contradiction (Q and ~Q) and is likewise closed. The
process stops here because all paths through the tree have been closed (apart from the fact that
there are no more compound wffs to be processed).The fact that there are no open paths through
the completed tree indicates that the wffs at lines 1,2 and 3 are inconsistent, and hence that the

sequent is valid.
@) P

@ v ~P&Q

3) Q
4) ~P ~Q
X X
Figure 2.9 — Validation of P.~ S~ mantic Tableau

As Reeves and Clarke point out, the proofs which result from semantic tableaux are not a natural
sequence of easily justifiable steps [REEV90 p89]. It is meaningless to pick some point in the
middle of the proof and ask “what has been proved so far?” Even given a completed proof, it is
impossible to translate the tableau into a natural English explanation. Nevertheless, the system

is easy to learn (primarily because it is mechanical) and may be extended to encompass all FOPL.

5 In this system double negations are erased immediately.



19

Apart from sources mentioned above, other textbooks of logic which present semantic tableaux
include [GUTT71, BELL77, and FISHS88]. [ROBI79] presents an approach which combines

Gentzen's style of natural deduction (see Section 2.3.3.2) with semantic tableaux.

2.3.6 Diagrammatic methods

Since this research presents a diagrammatic method for establishing the validity of
propositional sequents, it is useful to describe other types of diagrammatic approaches to logic.
We shall see, however, that none of these other diagrammatic tools are directly applicable to

the analysis of propositional sequents.

2.3.6.1 Euler's Circles

When dealing with categorical statements, it is useful to illustrate relationships between

categories with some diagram. This idea may have been initiated by Leibniz, but was
popularised by Euler in 1761 [KNEA62 p349]. Euler’s Circles were an early method of
representing categorical relationships diagrammatically. The four types of categorical

statement are represented by the four separate diagrams shown in Figure 2.10.

b
Everyaisb @
Noaisb @ @
Some aisb (6)
Some ais notb
Figure 2.10 — Euler Cizrcles for egorical m

Underlying these Circles are the traditional assumptions that no category is empty and that

“some” means “at least one, but not all”. Modern logic tends not to make these assumptions.

Since Euler’s Circles are intended for the analysis of categorical statements, it is difficult to use
them to represent the example sequent P,~(P&Q)..~Q. Rather than force an unnatural

correspondence between our modern notation and the structure of Euler’s Circles, we shall omit

the example.

Textbooks of logic which use Euler Circles include [WELT11] and (JOYC56].
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2.3.6.2 Venn Diagrams

Rather than use separate diagrams for each type of categorical statement, Venn combined all

cases into one diagram [VENN1881]. Thus, two interlocking circles can represent any categorical
relationship between two categories. The system can even be extended to relationships between
more than two categories: three overlapping circles may easily be drawn; four with some
difficulty; larger numbers are impractical. By marking different areas of the diagram (perhaps
by shading), Venn’s approach is flexible enough to diagram not only categorical statements, but
other logical expressions as well. Venn Diagrams are frequently used to teach set concepts, and
set terminology is often used to explain how logical expressions are represented on a Venn

Diagram.

Propositional expressions are not immediately amenable to representation on a Venn Diagram
since propositions are not the same as categories. Nevertheless, with a slight shift in
interpretation we can proceed as follows. Instead of thinking of a proposition P as meaning “Pis
true”, think of it as meaning “the collection of P-things” or “those things which satisfy P”. Then
the propositional expression ~(P&Q) can be thought of as meaning “it is not the case that there
are things satisfying both P and Q”. Alternately, one could interpret P as the set of all possible
worlds in which P is true.

An analysis of the sequent P,~(P&Q)..~Q is shown in Figure 2.11. In this Figure, U represents the
universe of discourse, shading is used to show the regions which represent the two premises P and
~(P&Q), and the intersection of those two regions is doubly shaded. Thus the combined premises
are represented by the left lobe of the circle labeled “P”. After drawing such a diagram to
represent the premises of a sequent, one can then consider the conclusion. In this case, we see that
the left lobe of the circle P is completely outside the circle Q. Hence any situation which
satisfies the premises must also satisfy ~Q. Another way of expressing this is to say that the
region representing the premises is a subset of the region representing the conclusion. Thus we find

that P,~(P&Q)..~Q is valid.

’/ ~
// U N Region representing P

L/ 7] Region representing ~(P&Q)

Area representing the
A intersection of the two

shaded regions. That is,
P&~(P&Q).

It has been noted that Euler’s Circles assume that no category is empty and that “some” means
“at least one, but not all”. Venn Diagrams may be viewed with these assumptions, but may also

be interpreted in the modern way, since any region of a Venn Diagram may be empty.
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Venn Diagrams are much more common than Euler Circles and have featured in manv textbooks
over the last 110 years, including [KEYN1884, CARR1896, MELL04, QUIN50, PRIO55, KINEE63,
KORF74, POSP76, HOCU79, GEAC76, THEWS83, DAVI86, and AHO92]. Venn Diagrams are
convenient for simple examples and provide a very clear visual tool for teaching basic logical
principles. They can be used to assist in the analysis of propositional expressions (provided there
are fewer than five variables) and those expressions of predicate logic which permit a

categorical interpretation. However, they are not useful for more complex expressions of FOPL.

2.3.6.3 Carroll Diagrams
Lewis Carroll also devised a method of diagramming logical statements [CARR1896]. This

method is similar to both Venn Diagrams and to Karnaugh Maps (see Section 2.3.6.5). Carroll
himself provides a comparison of various methods of solving categorical syllogisms in

[CARR1896 pp246-249].

A Carroll Diagram for two variables is simply a square split into four quarters as shown in Figure
2.12a. The North Half (to use Carroll’s terminology) is assigned to the first variable x; the
South Half to not-x; the West Half to y; and the East Half to not-y. These four Cells play the
same role as the four areas in a Venn Diagram (Figure 2.11). When any Cell in a Carroll Diagram
is known to be empty, it is marked with a ‘O’; when it is known that a particular Cell contains at
least one Thing, it is marked with an ‘I". The Carroll Diagram for three variables is shown in
Figure 2.12b, and Carroll describes an ad-hoc scheme for constructing diagrams with up to ten

variables in [CARR1896 pp244-246].

Xy xv'
. m o
Xy Xy xy |xy
m |m
Xy | xy
. m m
Xy x'y' xr x| U
o o

(a) (b)

Figure 2.12 — Carroll Diagrams for Two and Three Variables

The procedure for analysing arguments using Carroll Diagrams is roughly the same as for Venn
Diagrams. When applied to non-categorical expressions, the method is as uncomfortable as it is

for Venn Diagrams and we shall not attempt it here.

Carroll Diagrams are rarely seen any more, though they are used in [GEAC76].



2.3.6.4 Lambert Lines
Inspired by J.H.Lambert (1728-1777), Binkley® has developed a method of diagramming

syllogistic logic which is similar to Venn Diagrams. The key novelty of Binkley’s method is
that the diagrams can easily be typed using the standard 7-bit ASCII character set and thus can

be readily stored and transmitted via computer networks.

Binkley uses horizontal lines to indicate that there is at least one thing which meets a certain
condition”; a row of full-stops to indicate that they may or may not be anything meeting a
certain condition; and an empty space to indicate that it is known that there are no things which
met a certain condition. Using this notation, the four types of categorical proposition may be

represented in Lambert Lines as shown in Figure 2.13.

All a are b a: =s=s====,.....

b: ==s==========
No a are b a: ======

b: ======
Some a are b a: ===, ...,
Some a are not b a: ...... ===

b: ======

Figure 2.13 — Lambert Lines for Categorical Statements

Once again we note that the sequent being used as an example is not expressed in the form of a
categorical syllogism and so does not fall within the intention of Lambert Lines. The example

could be forced into the required mould, but this is somewhat artificial.

In summary, the diagrams of Euler, Venn, Carroll and Binkley are very useful for representing
and analysing categorical statements (which was the purpose of their design) but not for

representing more complex logical expressions.

2.3.6.5 Karnaugh Maps

Karnaugh maps are commonly used as an aid in the design of digital circuits. A brief introduction

to boolean algebra is required before the role of Karnaugh maps can be appreciated —

A boolean expression is an algebraic expression in which the variables may take only the values
0 or 1, and in which the algebraic operations are negation (indicated by a prime), disjunction

(indicated by addition) and conjunction (indicated by multiplication). For instance, the

6 Robert Binkley <rbinkley@julian.uwo.ca> (pers. comm.), who lectures at the University of
Western Ontario, Canada.
7 In fact there are two different types of horizontal line: one for the traditional interpretation
that categories are never empty, and one for the modern interpretation in which such an
assumption is unnecessary.
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propositional wif (P&Q)v(P&~Q) may be written as the boolean expression P.Q+P.Q’. Boolean
expressions may be manipulated algebraically: eg P.Q+P.Q’=P(Q+Q’)=P(1)=P. This example
shows four different boolean expressions which are equivalent, although the last (P) is clearly

the simplest.

An important task in digital circuit design is to minimise a boolean expression: that is, to find
the simplest equivalent boolean expression. Thus P.Q+P.Q’ may be minimised to P. A Karnaugh
map is a rectangular grid which is a useful tool for this task of minimalisation. Up to four
variables may be represented in just one rectangular grid, but more than four variables require
multiple grids and are not easy to visualise. Once a Karnaugh map has been constructed for a
boolean expression, it is easy to rewrite the expression as a sum-of-products (Disjunctive Normal

Form) and to construct the corresponding digital circuit.

A Karnaugh map shares some similarities with Carroll diagrams; in fact the two are identical
for expressions with only two distinct variables. While such diagrams are very useful for the
task of minimalising a single boolean expression, they offer little help for the task of analysing
propositional sequents. A propositional sequent (eg P, ~(P&Q) .. ~Q) would have to be converted
into its corresponding conditional (eg P=(~(P&Q)=>~Q)), then expressed using only negation,
disjunction and conjunction (eg ~Pv((P&Q)v~Q))), and then translated into algebraic notation (eg
P’+P.Q+Q’) before it could be displayed on a Karnaugh map. The Karnaugh map would show
whether or not there was a simpler expression equivalent to the original sequent. In the case of a

valid sequent, the Karnaugh map would show that the simplest equivalent expression was 1.

Many textbooks for computer science describe Karnaugh maps [eg KORF74, BART60, THEWS83,
DOWS86 and AHO92], but always in the context of minimalisation of boolean expressions rather

than the context of propositional calculus.

2.3.6.6 Possible Worlds Diagrams
Bradley and Swartz introduced what they call “worlds-diagrams” in [BRAD79]. The status of a

propositional expression in all possible worlds can be represented by a series of rectangular
diagrams. An expression containing just one variable requires three diagrams; an expression with
two distinct variables requires fifteen diagrams; an expression with five distinct variables
requires 4,294,967,295 diagrams! Worlds-diagrams help students to understand the complete
range of possible worlds to which a wff may applied, and illustrate the basic logical operations
(such as conjunction, disjunction, negation, implication, quantification, necessity, and possibility)
within those worlds. They have some advantages when working with modal operators, but are
more cumbersome than truth tables for truth-functional logic, and are not practically useful when

analysing compound expressions of FOPL.
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Chapter 3: Typical Student
Difficulties with Formal Logic

3.1 Introduction

Logic of any sort is not always natural to the uninitiated, but formal symbolic logic is the least
intuitive and hence the most difficult to learn. Various forms of induction and informal logic flow -
naturally from people’s experiences and teaching such forms of logic is largely a process of
refining the students’ pre-existing reasoning skills. However, when a rigid symbolism is
introduced, coupled with equally rigid rules for manipulating that symbolism, the student is
faced with a form of reasoning which can seem totally unlike their natural forms of inference and
even contrary to that reasoning. (See [GILHS88] for a well-balanced review of research into the

extent to which people use logic in their normal thought patterns, especially Chapter 5.)

The very possibility of teaching reasoning skills has been doubted by many. See [NISB87] for a
synopsis of the views of Thorndike (that problem solving is domain-specific and that logical
principles taught in one domain are not transferable) and Piaget (that the learning of inferential
rules depends on spontaneous cognitive development resulting from active self-discovery rather
than on explicit instruction). Under these views, formal training in logic can never be effective
and it would be difficult to make any claims about which methods of teaching logic are better

than others.

Fortunately there is evidence to the contrary. Nisbett et. al. argue that rules of logical inference
can be taught to the extent that they correspond with pre-existing pragmatic reasoning schemas
[NISB87]. These conclusions are based on results reported in [CHENS85] and [CHENS86] and some
other unpublished data.

In this dissertation I accept as a basic assumption that logic can be taught. Such an assumption is
well justified in [NICK85]. However, it is clear that logic is not easily taught and therefore the
search for effective methods of teaching logic is meaningful. This chapter examines some of the
difficulties which students encounter when trying to learn a system of formal logic, and suggests

ways in which these difficulties may be either avoided or overcome.

3.2 Difficulties with Rigid, Structured. Abstract Thinking

Mathematics, logic and computer science all require the ability to reason with formal rules. The
~ concepts and procedures required in mathematical proofs, numerical calculations, manipulation
of symbolic logical expressions, and computer programming are typically rigid, highly structured
and abstract. Students must develop the ability to set aside intuitions and force themselves to

adhere to the rules. Perhaps this is most clear in the case of debugging a computer program.
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When a program fails to run as intended by the programmer, the programmer attempts to step
through the program to discover the point at which the computer acted differently from the
programmer’s intention. This process of locating a bug requires that programmers put themselves

in the place of the computer and follow exactly the rules by which the computer operates.

This ability to “think like a computer” is difficult for first year computer science students,
perhaps because many may not have passed from Piaget’s Concrete Operations stage to the
Formal Operations stage (see [NICK85 p32] and further discussion in Section 6.5.6). Thus, they
may be able to understand and use concrete procedures, but not abstract ones. This difficulty
affects not only students’ ability to learn computer programming but also their ability to learn
formal logic. When teaching the course on logic described in Chapter 6 and the Appendix, I have
consistently found that the more formal sections (especially the introduction of axiomatic

systems) always cause students the most trauma.

Students also find it difficult to take a logical problem described in English, extract the
significant logical features and translate them into symbolic form. The relationship between
expressions and operations in an informally described logical problem and equivalent expressions
and operations in a formal system is not at all trivial. Notwithstanding the comments in the
previous paragraph, the actual formal manipulation of logical expressions is often much easier

for the students than the initial task of formulating the problem appropriately.

One should not imagine that a student who has mastered certain formal techniques for the
manipulation of logical expressions will necessarily be able to apply those techniques to a real-
world problem. Even when a student has learnt to think in a rigid, structured and abstract way,
the connection between the formal and the practical is not automatically apparent. Section 6.5

describes a number of educational principles which seek to address these difficulties.

3.3 Difficulties with the Truth-Functional Definition of
Material Implication

Material implication is an attempt to capture the essence of conditional statements: that is (in
English at least), statements of the form “if ... then ...”. However, statements of this form have a
variety of intentions, not all of which are truth-functional. Thus, no truth-functional definition
of implication will be able to capture fully the diversity of meanings in conditional statements.
Nevertheless, the truth table in Figure 3.1 represents the commonly accepted truth-function for

material implication.
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P 0 P=Q
T T T
T F F
F T T
F F T

Figure 3.1 — Truth Table for Material Implication

Students’ inability to apply this definition springs from two sources: first, people tend to reason
incorrectly about conditional statements; and second, the above truth table violates their
intuition about conditional statements with false antecedents. The following sections expand on

these problems and examine a variety of proposed solutions.
3.3.1 O’Brien and Shapiro

In a series of studies, O'Brien found that less than 10% of the subjects reasoned correctly about
conditional statements [OBRI72, OBRI73, SHAP73]. Subjects for these studies included late
high-school students, college students and medical students.

O’Brien identified four forms of reasoning relative to conditional statements, the first two valid
and the latter two invalid:

1. Modus ponens: P=Q,P . Q

2 Contrapositive (modus tollendo tollens in this thesis): P=Q, ~Q .. ~P

3. Inverse (denying the antecedent): P=Q, ~P ... ~Q

4 Converse (affirming the consequent): P=Q, Q .. P

These four forms are listed in order of increasing difficulty. That is, when subjects were presented
with English examples of each of the four forms, they showed significantly higher error rates
for the second form when compared with the first form, for the third form when compared with

the second form, and for the fourth form when compared with the third form.

From each subject’s responses, O’Brien and Shapiro attempted to infer the subject’s mental model
of a conditional statement. The majority of subjects seemed to equate P=Q with
(P&Q)v(~P&~Q). A large group seemed to think that P=Q, P . Q and P=Q, Q .. P were valid
forms and that all other forms were undecideable. Both of these interpretations were more

common that the correct interpretation.
3.3.2 Wason’s Four-Card Selection Problem

Since 1966 many variations of Wason’s Four-Card Selection Problem have been used to

substantiate the claim that the majority or people reason incorrectly about conditional
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statements [GILH88 pp113-123, EVANS2 Chapter 9]. In Wason’s original experiment, the subjects

were presented with four cards lying on a table, showing values similar to Figure 3.2.

E K Z 7

Figure 3.2 — The Original Four-Card Selection Problem

The task required of the subjects was to indicate which cards they must turn over in order to test
the claim that “If a card has a vowel on one side then it has an even number on the other side”.
The correct answer is to choose those cards which have the potential of falsifying the claim,
that is the card showing ‘E’ and the card showing ‘7’. This is clear if one views the claim in the
form P=Q (where P stands for “this card has a vowel on one side” and Q for “this card has an
even number on one side”), and considers the combinations of truth values for P and Q for which
P=Q is false. However, only between 4% and 10% of subjects choose this combination. By far the
majority of subjects chose the ‘E” and the ‘4".

The experiment has been repeated by many researchers, with a wide variety of subjects
(including members of MENSA [WASO83 pp54-56]), and innumerable variations in experimental
design, but the results remain consistent. The task seems simple enough, but the vast majority of

people do not solve it correctly.

It is not required here to discuss the various attempts to explain these results, but simply to
indicate that conditional statements are difficult for most people to master. It has been claimed
that incorrect answers to this task arise from faulty internal truth tables, and that if subjects
were first made aware of the correct truth table for material implication then the mistakes
would be avoided. However, Wason denies this, claiming that the common mistakes in subjects’

mental truth tables do not explain why they would choose ‘4’ rather than ‘7', and adds that —

Our experience suggests that a lecture on truth tables, an awareness of the
possibilities which could occur on the other side of the cards, or exposure to

conditional sentences in a more familiar form, would not be helpful. [WASO83 p48]!

3.3.3 Teaching Experience

My own experience with teaching symbolic logic is that when students encounter the truth-

functional definition of material implication (Figure 3.1), they aécept the first and second lines

1 This comment highlights the role of transfer: even when subjects have learnt propositional
calculus, they fail to transfer that knowledge to this selection task. See further comments on the
importance of transfer in Section 6.5.3.
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of the truth table, but react strongly against the third and fourth. Not only do they seem
confused, but they actively argue against them. This experience is common to all teachers of logic

with whom I have communicated.

To the student, it seems ludicrous to suggest that when a statement of the form “if ...then ...” has
a false antecedent, then the overall statement should be considered to be true. The truth table for

material implication is not at all self-evident and must be accompanied by some explanation.
3.3.4 Approaches to Explaining Material Implication

Given the difficulties students encounter with conditional statements, and with understanding
the definition of material implication as a truth function, it is interesting to compare the
methods used to justify this definition. There are many approaches to this: some indicate a
primary concern with technical precision while others show varying degrees of concern for

avoiding or alleviating student distress.

3.3.4.1 Definition by Truth Table
Most commonly, material implication is defined by truth table (Figure 3.1) or some verbal

equivalent such as “X—Y is always true if X is false and also if Y is true” [HILB28 p4] or “A

conditional sentence is false if the antecedent is true and the consequent is false; otherwise it is

true” [SUPP57 p6].

This definition is justified by the authors in various ways, though frequently no justification is
given at all [HILB28, COOL42, WERK48, BELL77, ROBI79, MANNS852, PAULS7, REEV90].
Quine claims that the given truth table “constitutes the nearest truth-functional approximation
to the conditional of ordinary discourse” [QUIN40 p15] and adds that this definition dates back
to Philo of Megara3; [AHO92], [DOWS86] and [BASS53] take the same approach, admitting
that this truth function does not always match English usage. Suppes takes a bold approach and
simply states that in maths and logic this is the way it is done! [SUPP57]

Shoenfield defines material implication as a function rather than as a truth table, though the
effect is the same. He claims that this definition follows the “mathematical meaning of if ...

then” [SHOE67 p11].

2 Manna and Waldinger have the added novelty of defining a truth table for “if ... then ... else”!
[MANNSS, p13] -

3 Peirce provides a summary of the debate between Philo and Diodorus on whether hypothetical
propositions (ie conditionals) are at all different from categorical propositions. Philo claims
(and Peirce agrees) that the forms “If P then Q” and “Every P is Q” are identical, but Diodorus
(supported by Peirce’s contemporary Shroder) claims they have different meanings. [HART74,
paragraph 3.439ff, written in 1896]
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A variant on the truth table approach, shown in Figure 3.3, starts by showing that sixteen
distinct truth tables may be constructed for two variables. After columns 1 (tautology), 16
(inconsistency), 2 (disjunction), 8 (conjunction) are discussed and named, the author draws the
reader’s attention to column 5 and says in effect “this is an interesting and useful column so let’s
give it a name as well”. This approach is taken by [JEFF67 p49] and [KORF74 p254]. Jeffrey also
comments “Except in odd cases the truth conditions for the indicative English conditional are

accurately given by the usual truth table [ie Column 5 in Figure 3.3]” [JEFF67 pviii].

PQ| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TT| T T T T T T T T F F F F F F F F

TF| T T T T F F F F T T T T F F F F

FT| T T F F T T F F T T F F T T F F

FF| T F T F T F T F T F T F T F T F
Fi .3 — Sixteen Possible T Tabl

3.3.4.2 Definition in Terms of Other Operators

Other authors define material implication as an abbreviation of some other boolean expression.
The normal form of this definition is (P=0Q) =def (~PvQ) [WHIT10, STEB30, STEB43, EATO31]
while others use (P=Q) =def ~(P&~Q) [QUIN41, COPI61, MITC62, CARN64, KIRW7S,

HOCU79]. Virtually all books show these equivalences at some point. Several texts explicitly
note that the two definitions are interchangeable, and Ambrose and Lazerowitz make a major
point of showing that not only can material implication be defined in terms of negation and
conjunction, but one could equally well define material implication as the primitive operation
and then define disjunction and conjunction in terms of negation and material implication4
[AMBRA48]. They prefer the definition (P=Q) =def ~(P&~Q) over (P=Q) =def (~PvQ), saying
that while the first makes good English sense, the second looks problematic, even though the

two are provably equivalent [AMBR48 p75].

When Davis introduces the horseshoe operator he defines it to be equivalent to both ~(P&~Q)
and (~PvQ). Long before this, however, he discusses non-truth-functional conditional statements
(using the symbols = and —) and presents the idea of material implication in syllogistic

arguments. [DAVI86]

Like the explicit definition by truth table, this form of definition is sometimes not accompanied
by any justification [WHIT10, STEB30]. In her later work, Stebbing notes that what ~PvQ
defines is material implication, which is not necessarily the same as the English “if ... then ...”

structure [STEB43 p139].

4 There is at least one book which actually takes this approach: [BELL77].



3.3.4.3 Definitions Relying on Examples

Several authors use selected examples (either in mathematics, science or conversational English)

to justify their definition of material implication. Rosser uses some verbal trickery to show that
English phrases of the form “if A then B” are the same as “we cannot have both ‘A’ true and ‘B’

false” [ROSS53, p15]. He also cites a number of mathematical examples.

Massey uses the example that “If my memory is correct, then I owe you a dollar” means the same
as “Either it is false that my memory is correct or else I owe you a dollar”, and using this

example shows that P=Q is simply an abbreviation for ~PvQ [MASS70 p52].
[GUTT71], [KELL90], [SAIN91] and [PRIO55] all take similar approaches.

Hermes claims that the structure ~(P&Q) occurs frequently in mathematics and that
mathematicians express this as “if P then Q”. With this as justification, he defines the two to be
equivalent [HERM73]. Hamilton, writing specifically for mathematicians, justifies his truth
table definition with the example “if n>2 then n2>4” which, he says, is still a true statement

even when n happens to be less than two [HAMI7S8 p5].

Quine draws on an English example to convince the reader of his claim that “if P then Q" is
equivalent to ~(P&~Q), though he does this without explicitly constructing truth tables
[QUIN41 p20]. In a later work, Quine writes —

An affirmation of the form “if P then Q” is commonly felt less as an affirmation of a
conditional than as a conditional affirmation of the consequent. If, after we have
made such an affirmation, the antecedent turns out true, then we consider ourselves
committed to the consequent, and are ready to acknowledge error if it proves false. If
on the other hand the antecedent turns out to have been false, our conditional

affirmation is as if it had never been made. [QUIN50 p21]

Consequently, he claims that the choice of declaring a conditional to be true whenever the
antecedent is false is arbitrary. Kneebone, who relies on truth tables to define material

implication rather than examples, makes a similar point —

The truth-values that are to be ascribed to ¢—¢ in cases in which ¢ is false are
unimportant, since we do not draw conclusions from premises unless these are known
to be true, or at least assumed to be true for the sake of the argument; but it greatly
simplifies the formal logic of propositions if we define the truth-value of ¢—¢ in
all cases, taking it as T whenever ¢ has the truth-value F (compare with such
conventional definitions in mathematics as a¥=1 and 0!=1). [KNEE63 p31, emphasis

mine]
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Mendelson also claims that the truth-functional definition is simply a convention, though it is

also justified by the desire that (P&Q)=>P should be a tautology [MEND64 p13].

Korfhage uses a pedagogically fascinating, though technically misguided analogy with
computer programming to show why a conditional should be treated as true if the antecedent is
false. He writes that given P=Q, where P is known to be false, it is true that we can’t deduce
anything about Q, however, we don’t want the argument to stop there. Compare this with a
FORTRAN program containing the statement “IF ALPHA .GT. X+7 GOTO 13”. Even if “ALPHA .GT.
X+7” is false, the overall statement is a good piece of FORTRAN and we want the program to
continue running. Hence, so as not to disrupt an argument, we assign P=Q the value true whenever

P is false. [KORF74]

This approach may appeal to students who already understand the FORTRAN “if” statement.
However, there is some evidence that children who have been taught the “if...then...else”
programming construct misconstrue conditional statements as bi-conditionals [SEID89]. That is,
after being exposed to the program language interpretation of an “if” statement, they infer an
incorrect truth table for material implication. Korfhage’s approach is technically misguided
since it confuses a form of conditional in which the antecedent and consequent are causally
connected (“if the condition ALPHA .GT. X+7 is true then the next thing to do is execute the
instruction at line 13”) with the truth functional form which requires no causal connectivity.

The method of choosing or contriving an example which fits the author’s intention is rather
artificial. A more sophisticated approach is to note that the English “if ... then ...” structure is
used in a variety of senses and that since we need to use symbolic operators unambiguously, we
must choose just one of those senses. According to Church, “we select the one use of the words “if ...

then’ ... in which they may be construed as denoting a relation between truth-values” [CHUR44
p38].

Reichenbach, who uses a truth table to define the horseshoe operator, makes a useful distinction

between adjunctive implication and connective implication.

It recently happened in Los Angeles that, while the screen of a movie theatre was
showing a blasting of lumber jammed in a river, an earthquake shook the theatre.
The implication “the blasting of lumber on the screen implied the shaking of the
theatre” was then true in the adjunctive sense whereas it was false in the connective
interpretation. ... We realise that the word “implies” here has not the same
meaning as in conversational language; the implication in this case simply adjoins
one statement to the other without connecting the statements. Adjunctive

implication has a wider meaning than connective implication; if a connective
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implication holds, there also exists an adjunctive implication, but not vice versa.

[REIC47 pp29,30]

Copi’s “Introduction to Logic” has the most extensive variant of this approach. After explaining
how we choose one of the two senses of the English “or” (the inclusive rather than exclusive
sense), he lists four senses of implication and then chooses the one which can be written
symbolically as ~(P&~Q). Choosing this interpretation over the other three is not arbitrary.
Rather, he shows that this definition specifies the common ground between the four senses.

[COPI61 pp245-252]

Galton argues that the truth table definition is the minimal truth-functional definition which

will apply to all conditional statements.

Even though — may not capture everything that is implied by “if ... then ...”, at
least we can say that a statement of the form A—B will be true whenever (if not
more often than) “if A then B” is true, so that the English inference with statements
of this form amongst its premises will be valid so long as the propositional calculus
translation is. [GALT90 p57]

Georgacarakos and Smith devote many pages to this same point [GEOR79 p53{f].

3.3.4.4 Avoiding any Truth-Functional Definition
Another way to tackle the problematic definition of material implication is to avoid explicit

definition altogether [FITC52, LEMM65, POSP74]. Fitch uses a natural deduction system in

which conditional expressions may be manipulated by Modus Ponens and Distribution’. No
mention is made of truth tables and (~PvQ)=(P=Q) is left as an exercise for the reader [FITC52].
Lemmon follows a similar path using the symbol = in proofs long before defining it as a truth
function. He uses a natural deduction system with ten Rules of Derivation to prove that P=Q,
~PvQ and ~(P&~Q) are all interderivable. When he eventually gets around to discussing truth
tables, it is then clear that P=Q should be defined to have the same truth table as both ~PvQ
and ~(P&~Q). Even so, he admits that the truth table definition of material implication “seems
rather arbitrary” [LEMM65 pp67-68].

3.3.4.5 Using Peirce’s Notation®

Another approach relates material implication to the mathematical concept of less-than-or-

equal-to. This is inspired by Peirce, who used a modified “<” sign to stand for material
implication in 1885 [HART74 paragraph 3.373]. The implication P=>Q can be explained by

showing that the truth of Q is at least as certain as the truth of P, because Q must be true

5 The rule of Distribution may be symbolised as P=(Q=R) .. (P=Q)=(P=R).
6 Suggested by John Sowa <sowa@turing.pacss.binghamton.edu> pers.comm.
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whenever P is true, but Q can also be true on other grounds independent of P. If the value “true” is
interpreted to be greater than the value “false”, then the truth table for material implication

will be identical to the truth table for less-than-or-equal-to.

This explanation may be especially useful for computer science students since they will already

have a mental correspondence between “true” and “false” and the binary values 0 and 1.

3.3.4.6 Definition Based on the Idea of Contracts
In [NISB87], Nisbett et.al. claim that an effective way to teach conditional logic is to draw on

pre-existing concepts rather than to define an entirely new concept. The pre-existing concepts

they suggest are those of permission and gbligation, both of which are forms of contract.

The statement “In order to do some action P you must have permission Q” follows precisely the
same truth-function as P=Q. A contract of permission is violated only when the action P is
performed without the required permission Q. If P is performed with permission Q, or if P is not

performed at all, then the permission contract stands unviolated.

The statement “If you perform some action P then you are obligated to do Q” follows the same
pattern. Such an obligation is violated only when P occurs but not Q, and hence an obligation

schema behaves the same as material implication.

Note that permission and obligation are not presented simply as examples as described in Section
3.3.4.3. Rather, the aim is to proffer these to students as inference schema with which they are
already well acquainted, and to indicate that processing conditional statements should be

undertaken using those same schema.

3.3.4.7 Definition Based on Set Concepts
As can be seen in Chapter 5 and more expansively in the Appendix (pp A27ff), my own approach

is quite different than any of those described above. If one can assume that students have an
understanding of the basic concepts of set theory, then those concepts can be matched with
parallel concepts in boolean logic. Negation can be explainéd as the logical counterpart to set
complementation; disjunction as the counterpart to union; conjunction as the counterpart to
intersection; material implication as the counterpart to the subset relation; and the bi-

conditional as the counterpart to set equivalence.

The soundness of this as a teaching approach is indicated by these inter-related features:
s Since students already have a groﬁ.nding in set theory, the approach defines new
concepts in terms of familiar concepts;
¢ The visual model of set structures given by Venn Diagrams can immediately be

transferred as a tool to aid understanding of logical expressions;
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* By grounding the definitions of logical operations in set theory rather than by
attempting to symbolise English statements, ambiguity is avoided”. For instance, the
confusion about whether “or” is inclusive or exclusive disappears since a Venn Diagram
makes it clear that union (and hence disjunction) is inclusive; and

* The definition of material implication is no longer “arbitrary”, as some of the authors
quoted above apologetically assert. The subset relationship PcQ unambiguously
disallows the situation where membership of P is true but membership of Q is false, and
allows the other three possible situations. And so the definition of the logical

counterpart P=>Q follows inexorably.

3.4 Difficulties with the Truth-Functional Definition of
Disjunction

Errors in conditional reasoning have elicited much research and speculation, but it is not the only
aspect of natural human reasoning which fails to fit nicely into a truth-functional model.
Disjunctive reasoning has also been studied in this regard, and it is clear that the truth-

functional definition given in Figure 3.4 does not always match people’s intuitions.

P 0 P v O
T T T
T F T
F T T
F F F

Figure 3.4 — Truth Table for Disjunction

See [NEWS83 and EVANS2] for a summary of research into linguistic and conceptual factors
related to difficulties with disjunctive reasoning. These references also describe Wason’s THOG
task, which is in some ways the disjunctive equivalent to the Four Card Selection Problem

described above in Section 3.4.2.

The key difficulty with a truth-functional approach to disjunction is that in English the word
“or” should sometimes be taken as inclusive but at other times as exclusive. For example, if
entrance to a movie is restricted to people who are “either over eighteen or accompanied by their
parents”, then one would expect to be allowed in when one condition is met, when the other
condition is met, and when both conditions are met. That is, the disjunction is naturally taken to
be inclusive. On the other hand, in the sentence “A party must either poll more then five percent
of the vote, or lose their deposit”, the disjunction is naturally taken to be exclusive: one would be

surprised if a party both polled more than five percent and yet still lost their deposit.

7 Certainly, the ambiguity of English still needs to be addressed and translating from English to
symbolic expressions and vice versa is an important skill, but these can be left until after the
student is clear about the definitions of the symbols.
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In teaching formal logic it is not difficult to avoid confusion on this point. Once the concepts of
inclusive and exclusive disjunction are identified, it is reasonable to explain that while in
English the two concepts are both expressed by the word “or”, in formal logic the two must be
kept separate. We then define the “v” operator to be inclusive8, and show that if we need an
exclusive-or we could either invent a different symbol or explicitly write (PvQ)&~(P&Q). The
choice of making the basic disjunction inclusive rather than exclusive can be justified by reference
to the set interpretation suggested in Section 3.3.4.7: that is, to see disjunction as the

correspondent to set union, which is clearly inclusive.

3.5 Difficulties with the Truth-Functional Definition of
Conjunction

Even a truth-functional definition of conjunction is not free of problems. Truth-functional
conjunction is commutative (P&Q = Q&P), whereas this is not always the case in English. For
instance the proposition “She got pregnant and married” is not equivalent to “She got married
and pregnant”, and “He took off his shoes and went to bed” is not the same as “He went to bed

and took off his shoes.”

In such examples, the connective “and” carries the sense of “and then”. If we distinguish such a
time dependent conjunction from the normal conjunction which is independent of time, then the
difficulty is minimised. The truth-functional definition of conjunction does accurately represent

the latter.

8 The symbol “v” comes from the Latin “vel”, which is always inclusive.
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Chapter 4: The Theoretical Basis of
Possible Models Diagrams

4.1 Preface

Having described various existing approaches to the teaching of propositional logic, we now
introduce a new approach. The approach involves the representation of propositional wffs by
the construction of simple graphs called Possible Models Diagrams (PMDs). This chapter defines
PMDs in a theoretical manner which is not the most useful approach for teaching. The task of

presenting PMDs in a form suitable for students in an introductory logic course is left to Chapter 5.

This chapter was originally written as a paper to appear as “Visualising Boolean Operations on
a Hypercube” in the journal of Mathematical and Computer Modeling [CLAR94]. Some small

changes have been made to adapt the original paper to this dissertation.

4.2 Introduction

Although it is known that every boolean function can be represented as a subgraph of a
hypercube [HARAS89], the implications of this fact have been little explored. That is, how does
one construct such graphs and what does one do with them once they have been constructed?
Representing boolean functions as graphs may provide an alternate scheme for automated
propositional theorem proving, has been used to define concurrent processing [GUPT93] and has

useful pedagogical implications [CLAR93, see Chapter 5].

This paper explains how propositional expressions can be represented by graphs which I call
Possible Models Diagrams, and defines procedures for combining such graphs according to the

standard boolean operators.

4.3 Any Boolean Function can be Represented by a Graph

The hypercube, or n-cube Qp, is a graph of order 2™ whose vertices are represented by n-tuples
<xX1,X2,...Xn> where xj€ {0,1}, and whose edges connect vertices which differ in exactly one term.
Figure 4.1 shows Q3, where each vertex is labeled with an abbreviated triple showing the
values of x1,x2,x3 respectively (eg we write the label “101” as an abbreviation for the triple

<1,0,1>).
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101

111

O
110

Figure 4.1 — The 3-cube Q3

10003

For every boolean function there is an equivalent function in the disjunctive form:

£(x1,%2,--Xn) = EM-1X1X2---Xn + EM-2X1X2..Xn-1Xn" + EM-3X1X2...Xp-1"Xn" + -..

o + €1X1'X2”...Xn-1"Xn + €0X1'X2 ... X" (4.3.1)
where g€ (0,1} for i=1,2,...,m and m=2" [compare with HARA89].

Harary has shown that if a boolean function of n variables is written in this form, then the terms
of the disjunction which have €;j=1 can be used to select a subset S of the vertices of Qp. The

subgraph induced by S can then be seen as a representation of the original boolean function.

For example, the function:
f(x1,%2,X3)=x1%x2X3 + X2'x3 (4.3.2)
could be re-written as:
f(x1,x2,x3)=1.x1x2x3 + 0.x1x2x3" + 1.x1x2'x3 + 0.x1"xax3 + 0.x1x2'x3" + 0.X1’X2X3’
+ 1.x1"x2'x3 + 0.x1"x2"x3’ (4.3.3)
and hence represented as the induced subgraph of Q3 whose vertices are 111, 101, and 001 as in

Figure 4.2.
001 101 111

O O O
Figure 4.2 — An Induced Subgraph of a Boolean Function

Perhaps we can more clearly illustrate the relationship between Q3 and the subgraph
representing (4.3.3) by leaving those vertices corresponding to terms with £;=0 open, while

darkening the vertices for terms with €;=1, as shown in Figure 4.3.
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101

111

O
110

1000

Figure 4.3 — A More Visually Expressive Representation

Given such an induced subgraph, the boolean function can easily be retrieved: simply form a
disjunction whose disjuncts are given by the vertices in the subgraph (in any order). If the
subgraph is identical to Qp then the function must be tautologous; if the subgraph is empty then

the function must be inconsistent; in other cases the function must be contingent.

However, given an arbitrary boolean function, it would seem from Harary’s approach [HARA89]
that one must first do substantial algebraic manipulation to find an equivalent function in the
form of (4.3.1) before the subset S (and hence the subgraph induced by S) can be determined. This
paper will describe another procedure for constructing this induced subgraph, and such a

procedure can actually be used as a method for finding an equivalent function in the form of

(4.3.1).

4.4 Any Propositional Formula Can be Expressed as a
Boolean Function

It is implied by (4.3.1) that all boolean functions can be expressed using only the operators
negation, conjunction and disjunction. Nevertheless, there are other boolean operators (such as
material implication and the bi-conditional) which play an important part in many systems of
logic and many logical formulae are more naturally expressed using such operators. In order to
broaden the applicability of hypercubes to propositional logic, we will also want to incorporate

these operators.

Definition 4.1 [compare with LEMMS65 p44]
A well-formed formula (wff) of propositional logic is defined recursively as —
i)  Any propositional variable on its own is a wff.
ii) If o is a wff then so is ~a.
iii) If oo and B are wffs then so are (0&p), (avB), (0=B) and (a<=>p).

iv) No expression is a wff except in virtue of i), ii), and iii).
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Several notes should be made about this definition:

* Whereas truth values in propositional logic are normally designated as True and False,
there is a one-to-one correspondence between these values and the 1 and 0 of boolean
algebra.

* In accordance with the usual truth-table definitions of the operators ~ (negation), &
‘(conjunction), v (disjunction), = (material implication), and < (bi-conditional), each
wif with n distinct propositional variables V1,V3,...,,Vy defines a function from
V1xVax...xVp into {0,1}.

» All the logical connectives (apart from negation) are formally defined as dyadic
operators. However, the propositional conjunction operator is associative and hence the
wif (V1&(V2&V3)) can be written as the unbracketed product V1V2V3 in boolean
algebra. Likewise, nested propositional disjunctions may be written as an unbracketed
sum in boolean algebra.

¢ Although this definition employs operators other than negation, disjunction and
conjunction, such operators may still be defined as boolean functions in the form (1). For
instance the material implication operator = can be defined as the function —

Implies(x1,x2) = x1" + x2 = 1.x1x2 + 0.x3x2" + L.x1'x2 + 1x1'x2” (4.4.1)

Given Definition 4.1, any wif containing n distinct propositional variables may be expressed
equivalently as a boolean function of n variables, requiring only negation, disjunction and

conjunction.

4.5 Constructing the Graph of a Propositional wff

Since all propositional wffs have an equivalent boolean function, and every boolean function can
be expressed in the form (4.3.1), and every function in the form of (4.3.1) can be represented by an
induced subgraph of a hypercube, it follows that every propositional wff may be represented as
an induced subgraph of a hypercube. In this section I describe two procedures for constructing such
a graph: the first is most useful as a visual procedure, while the second is more useful if the task

is to be computerised.
4.5.1 Hypercubes are Better Drawn Hierarchically

Throughout the rest of this paper I will use n to denote the number of distinct propositional
variables in a particular wff, thus allowing the wff to be shown as a subgraph of a hypercube of
degree n. These hypercubes will be drawn hierarchically rather than in the usual form with no
line-crossings: that is, instead of drawing Q3 as in Figure 4.1, I will draw it as shown in Figure

4.4.



Figure 4.4 — Preferred Diagram for

In these hierarchically-drawn hypercubes, vertices are arranged into n+1 rows (Rg,R1,...,.Rp)

) vertices whose n-tuple contains exactly i zeros. Thus, the top row
I

n
such that R; contains those (

always contains the single n-tuple <1,1,...,1> and the bottom row always contains just <0,0,...,0>.
Within any row, the vertices are arranged from left to right in decreasing order of magnitude
(when the vertices’ labels are considered as binary numbers). The reason for this preference is
that it allows hypercubes of any size to be constructed and labeled in a consistent manner, and

that it allows labels to be assumed rather than explicitly written.

A hypercube drawn in this manner, with the possibility that some vertices are darkened and
others left open, I call a Possible Models Diagram (PMD), for reasons which will later be clear.
A PMD is a graph GzQp (ie a graph isomorphic to a hypercube) whose vertex set V is
partitioned into two sets, T(G) (the darkened vertices) and F(G) (the vertices left open).

A PMD may also be interpreted as a Hasse diagram: that is, the hierarchical structure may be
seen as a partial ordering of possible models. Brink and Heidema have applied this type of

ordering to the verisimilitude of scientific theories [BRINS7].

4.5.2 Each Propositional Operation Corresponds to a Visual
Manipulation of Hypercubes

Following Definition 4.1, we can form induced subgraphs of Q, as follows —

i) Every propositional variable on its own can be represented as a subgraph containing
exactly half the vertices of Qn, namely, those vertices for which that propositional
variable is True (ie 1). In other words, a propositional variable V; can be represented by a
PMD X in which T(X)={<V1,V3,...,Vh> | V;=1}. For example, in a system with two
propositional variables, the propositional variable V1 may be represented by the induced

subgraph shown in Figure 4.5a, or more clearly by the PMD in Figure 4.5b.
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11
10 11
o0——o0 10 01
00
Figure 4.5a. Induced Figure 4.5b. Possible Models
Subgraph for Vi in a System  Diagram for Vj in a System
of Two Variables of Two Variables
Negation: if the wiff o is represented by the PMD A, then the wif ~o can be formed by
reversing the open and darkened vertices of A. That is, by constructing the PMD X with
T(X)=F(A).

If the wffs o and P are represented by the PMDs A and B respectively, then the PMDs for

(avB), (0&P), (a=P) and (0e=>P) can be constructed using the following visual operations —

Disjunction: form the PMD for (ovf) by overlaying A onto B. That is, form a PMD X with
T(X)=T(A)UT(B).

Conjunction: form the PMD for (0:&f) by matching-the-dots from A and B. That is, form a
PMD X with T(X)=T(A)NT(B).

Material implication: form the PMD for (a=>B) by reversing A and overlaying onto B. That

 is, form a PMD X with T(X)=F(A)JUT(B).

Bi-conditional: form the PMD for (0:¢=f) by finding vertices in A and B which have equal
value. That is, form a PMD X with T(X)=(T(A)"T(B))U(F(A)NF(B)).

4.5.3 Constructing a PMD (Algorithm 1)

Given a wff containing # distinct propositional variables, a PMD for that wff may be constructed

by hand as follows —



e Draw an appropriate PMD underneath every propositional
variable in the wff
* While (there is an operator for which no PMD has yet been
constructed but whose operand(s) have PMDs already) do
e Merge the PMD:s of the operand(s) using the
appropriate visual operation defined above
end while

e The graph which was drawn last is the PMD for the wff

For example, consider the wff P=(PvQ). Since the wff contains two distinct propositional
variables, we can represent it as an induced subgraph of Q2 and this subgraph can be constructed

as a PMD as shown in Figure 4.6.
P =(PvQ)

S OO
&
<

Figure 4.6 — ing the PMD for a wff

Note: ¢ When using this algorithm by hand, the vertices need not be labeled: the labels are

assumed to follow the convention described earlier.
e The final PMD in Figure 4.6 has all vertices darkened, implying that the wff

P=(PvQ) is tautologous.

One can now see the purpose of the nomenclature: a Possible Models Diagram is a graph G which
has one vertex for each possible model of n variables; and darkened vertices (those belonging to
T(G)) indicate all those models in which the wff is True. Even though many wffs may have the
same PMD, any two wffs with the same PMD will be truth-functionally equivalent. That is,
each possible PMD represents a truth-functional equivalence class of wffs.

4.5.4 Constructing a PMD (Algorithm 2)

If the construction of PMDs were to be computerised, then the following recursive algorithm may

be used —
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* Parse the wff and build a binary tree with operators as nodes and
propositional variables as leaves

¢ To construct a PMD for the root node —

e If this node’s operator is not Negation then

e Construct a PMD for the left subtree
end if
¢ Construct a PMD for the right subtree
* Merge the two subtree PMDs in accordance with the

operation defined above for this node’s operator

This algorithm is simply a left-to-right depth-first traversal of the binary tree which reflects
the structure of the wiff.

4.6 A Comparison of Possible Models Diagrams and Truth
Tables

There is, of course, a strong similarity between PMDs and Truth Tables. Both indicate the value
of a propositional expression for every possible model: whereas a PMD has 21 vertices, the

corresponding truth table has 2" rows. Either could be used to define the boolean operators. Once

a PMD has been constructed, it is a trivial matter to copy the information into a truth table, and

vice-versa.

There are, however, two points in the favour of PMDs. One is that the visual nature of PMDs
gives some pedagogical advantage over truth tables [CLAR93, see Chapter 5]. The second relates
to the way sequents of propositional logic can be analysed by PMDs, as described in the following

section.

4.6.1 PMDs can be used to Prove the Validity of Propositional
Sequents

If A1,A2,A3,...,Am and B are propositional wffs, then A1,A2,A3,...,Am . B is a propositional
sequent claiming that the assumptions Aq,A,A3,..., Ay, entail the conclusion B. The validity of
such a claim may be established by showing that the corresponding conditional
(A1=(A2=>(A3=...(Am=B)...))) is a tautology. As we have discussed, a wff may be shown to be
tautologous by hand-constructing either a PMD or truth table, but this may be cumbersome for

complex sequents.

An alternate way to check the validity of a sequent is to compare the models for which the left-
hand side is true with the models for which the right-hand side is true. If the assumptions are
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to entail the conclusion, then every model which satisfies the assumptions must also satisfy the
conclusion. In other words, the models which satisfy the conjunction! of the assumptions must be

a subset of the models which satisfy the conclusion.

In terms of PMDs, a sequent A1,A2,A3,...,Ay . B may be analysed as follows. First construct a
PMD L for the wff A1&(A2&(A3&...&Ap)))) and a separate PMD R for the conclusion B. The
sequent is valid if and only if T(L)ST(R).

For example, suppose we want to test whether the sequent P, ~(P&Q) .. ~Q is valid. First,
construct a PMD for the conjunction of the assumptions and a separate diagram for the conclusion

(see Figure 4.7).
P, ~(P & Q) ~Q
S OO &
& @

Figure 4.7 — Example of Proving Sequent Validity

In this example, T(L)={<1,0>} and T(R)={<1,0>,<0,0>}. Since T(L)cT(R), the sequent P, ~(P&Q)
.. ~Q must be valid.

This form of sequent validation could also be carried out using truth tables, but once again it is
hoped that the visual effect of the PMDs makes it somewhat easier. The same thing could also
be achieved using boolean functions in this way — find a function in the form of (4.3.1) which is
isomorphic to the conjunction of the assumptions; find another function in the form of (4.3.1)
which is isomorphic to the conclusion; then the sequent is valid if and only if the first function is

subsumed by the second.
4.7 Conclusion

Every propositional wif can be expressed as a boolean function, and hence as an induced subgraph
of a hypercube. A Possible Models Diagram is a hypercube in which vertices may be darkened to
indicate this induced subgraph. Given any wff, there is a straight-forward procedure for

constructing that wff’s PMD and this procedure can be executed either by hand or by computer.

PMDs can be used just as readily as truth tables to establish whether a wff is tautologous,
contingent or inconsistent. Furthermore, PMDs may be used to prove the validity of any

propositional sequent.

1 The commas between assumptions on the left-hand side of the sequent are taken as implicit
conjunctions.
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Chapter 5: Presenting Possible
Models Diagrams to Students

5.1 Preface

This chapter was presented at the ACM’s 24th SIGCSE Technical Symposium on Computer
Science Education and later published as “Possible Models Diagrams: a visual alternative to
truth tables” in the SIGCSE Bulletin, Volume 25, Number 1, March 1993 [CLLAR93]. Some small

changes have been made to adapt the original paper to this dissertation.

Although the content of this paper covers some of the same ground as the previous chapter, it
presents the ideas in a form which is more appropriate to teaching than the previous technical
approach. Whereas the previous Chapter drew a parallel between PMDs and boolean functions,
this Chapter emphasises the parallel between PMDs and set theory.

5.2 Introduction

It is standard practice to introduce university students to truth tables quite early in computer
science courses. Truth tables provide a convenient way to teach boolean logic, which forms the
basis of the digital computer. Truth tables also introduce propositional logic concepts and are

often presented along with some formal proof structure and associated rules of derivation.

Later, the limitations of propositional calculus lead to the need for predicate calculus and here
truth tables must be put aside. Nevertheless, the concepts described by truth tables form

essential groundwork for any career in either logic or computing.

Regardless of the fact that truth tables are virtually universally standard, they aren’t so
sacrosanct as to make alternatives unthinkable. Indeed truth tables do present some teaching
problems which allow for some improvement. In particular, the truth table definition of
material implication (and disjunction to a lesser extent) always confuses students. The fact that
an implication should be considered true when the antecedent is false is neither intuitive nor
easily remembered. (See Chapter 3.) In the interest of improved teaching, this paper presents an
alternative which is at least as expressive as truth tables, yet more intuitive to the novice and

more easily remembered by the student.

Section 5.3 presents a student’s-eye-view of Possible Models Diagrams (PMD), and then Section
5.4 supports the logical soundness of the approach.



5.3 Possible Models Diagrams: a Student Guide

Suppose P and Q represent two propositions. Then there are four possible states of the world: the
state in which both P and Q are true; the state where P is true but Q is false; the state where P is
false but Q true; and the state where both P and Q are false. We could show this situation in a

simple graph shown in Figure 5.1. )
Pis true, Q1s true

Pis true, Pisfalse,
Qisfalse QJis true

Pisfalse,Qisfalse
Figure 5.1 — The Four Possible Models of P and Q

Each of these possible situations is called a model (or an interpretation) of P and Q and hence the
graph is called a Possible Models Diagram (PMD). We show that some expression of
propositional logic is true for a particular model by filling in the corresponding node of the
graph. Thus the simple propositions P and Q are represented by the PMDs shown in Figure 5.2a
and Figure 5.2b respectively.

T TT
TF€ P >FT TF{ Q ¥»FT
FF FF
Figure 5.2a — PMD for P Figure 5.2b —PMD for Q

5.3.1 Combining Rules

We have seen that Possible Models Diagrams are an easy way of visualising simple propositions

and now show a number of ways of combining these diagrams to represent compound statements.

5.3.1.1 Overlaying two diagrams has the same effect as disjunction (Figure 5.3). Note the

similarity between overlaying and the set union operation.

T P T
TF@FT or TF@FT becomes TF FT
FF FF

FF
Figure 5.3 — Overlay — the Visual Operation for Disjunction

5.3.1.2 Finding the corners which match on two diagrams has the same effect as conjunction

(Figure 5.4). Note the similarity with the set intersection operation.
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T T T
TF@ FT and TF@FT becomes TI-‘ FT
FF FF FF

Figure 5.4 — Match — the Visual Operation for Conjunction

5.3.1.3 Reversing each corner of a diagram is the same as negation (Figure 5.5). Note the

similarity with set complementation.

TT T
not TF FT becomes TF 6 FT
FF FF
Fi 5.5 — Reverse — the Visual Operation for Negation

5.3.1.4 How do we capture the idea of a subset in propositional logic? Suppose that some set P is
a subset of another set Q: we use the notation PcQ to mean that “every element of P is
also an element of Q”. Now suppose we examine various possible entities in the universe
and see whether or not they confirm such a conditional claim. We find three situations
which are consistent with the subset claim (x7 such that x;e P and x1€ Q, x2 such that
x2¢ P and xpe Q, and x3 such that x3¢ P and x3¢ Q) and one situation which is inconsistent
with the subset claim (x4 such that x4& P and x4¢ Q). The entity x4 could not be positioned
anywhere on a Venn Diagram showing PcQ.

These four situations may be related to the four possible models in a PMD: x3 is the
counterpart to the top node of the PMD (in which P is true and Q is also true), xp is the
counterpart to the right node of the PMD (in which P is false but Q is true), x3 is the
counterpart to the bottom node of the PMD (in which P is false and Q is also false), and x4
is the counterpart to the left node of the PMD (in which P is true but Q is false). The first
three nodes should be darkened to indicate that the material implication P=Q is
supported by those models, but the fourth should be left open to indicate that material
implication cannot be true in that modell. This is shown in Figure 5.6.

1 1t has been suggested to me that I am attempting to define an equivalence between sets and
propositional logic which is logically mistaken. A collection of entities forming a set P cannot be
equated with a proposition P. A proposition is a claim that some atomic assertion is true,
whereas set membership is a predicate applying to a number of entities. A claim that xeP is
more accurately translated into the logical statement P(x) — a statement of predicate logic
rather than propositional logic. This criticism is seen to apply especially to conditional
statements. The set expression PcQ claims a certain relationship between categories (“All P’s
are Q’s”), which, in modern logic, must be rendered as the predicate expression (Vx)P(x)=Q(x),
not as the propositional expression P=Q.

I agree that as a technical point of logic, such an equivalence would be erroneous, but such an
equivalence is not what I am claiming. Rather, I am attempting to take the students’ pre-existing



TT 7T 7T
if r¢_ ¢ >Fr then TF rr becomes TF FT
FF FF FF

Figure 5.6 — Reverse-and-overlay — the Visual Operation for Material Implication

Two things to note about the operation in Figure 5.6 —
i) It is easy to remember that material implication has the diagram{t' because the

three dots resemble an arrow pointing to the right.
ii) When combining two diagrams as above, the visual procedure is to reverse the first

diagram and overlay it on the second?
5.3.2 More Complex Expressions

Set equivalence P=Q is reflected in propositional logic by the bi-conditional: P<=>Q is defined as
(P=Q)&(Q=P). This can be diagrammed by appropriafe combinations of the previous

operations, as shown in Figure 5.7.

(P = Q) & (Q = P)

S 5 &S

<:'. ‘\:> — Reverse and overlay
<> — Match

Figure 5.7 — Visual Operations for the Bi-conditional

The final outcome is intuitively sensible, since it shows those models in which the truth of P is

exactly the same as the truth of Q.

notions of set operations as the foundation on which to build similar concepts in logic. An
informal account of set theory would equate the symbolic expression PcQ with descriptions such
as “the set P is completely inside the set Q” and “anything in the set P must also be in the set Q”
and “membership of P implies membership of Q”. Thus, the notion of a subset follows the same
reasoning schema as the notion of material implication.

Rather than claiming that set expressions can be expressed equivalently as propositional
expressions, I am claiming that set operators invoke the same reasoning schema as propositional
operators.

Perhaps an alternate way to dismiss this criticism is to take an approach suggested in Section
2.3.6.2. If P represents some proposition, then there is a natural correspondence between the truth
of P and membership of the set of all possible worlds in which the proposition is true.

2 To the student, the procedure “reverse and overlay” is an easy habit to learn and it is only later
that they discover that P=Q is logically equivalent to ~PvQ. Some teachers may prefer to use
this equivalence as a definition of material implication, in the same way that [COPI61] uses
~(P&~Q) as a definition. I find that students rebel against this use of fiat, but are more ready to
accept the parallel between material implication and subset.
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In fact a PMD can be constructed using the three basic combining rules (reverse, overlay and

match) for any well-formed formulae which uses only two propositional variables. Figures 5.8a,

5.8b and 5.8c show three examples.
P = (PvQ P= ~Q PvQ &~ ®vQ)
S B O O SE SO
> % > &
< v @

Fig 5.8a — PMD for P=(PvQ) Fig5.8b — PMD for P=>~Q Fig 5.8¢ — PMD for (PvQ)&~(PvQ)

Every wif falls into one of three categories —
i) Tautology — a wff whose PMD has every corner filled in (eg Figure 5.8a). ie a wff
which is true however you interpret it.

ii)  Contingent — a wiff whose PMD has some corners filled in but not all (eg Figure 5.8b).
ie a wif which is sometimes true and sometimes false.

iii) Inconsistent — a wff whose PMD has no corner filled in (eg Figure 5.8¢c). ie a wff

which is always false.
5.3.3 Generalising to Three Propositional Variables

If there are three propositional variables (say P,QR) in a wif, there will be eight possible
models. These are best visualised as the corners of a cube whose opposing faces represent P and
~P, Q and ~Q, R and ~R respectively3. However, this can be shown diagrammatically as a two-

dimensional graph (Figure 5.9).

TIT Each triple represents
the truth values of
P,Q and R respectively
TTF FIT
TFF FFT
FFF

Figure 59 — AP

The combining rules (reverse, overlay and match) can all be used as before.

3 In teaching this section a real cube is a useful visual aid (see section 6.4.2).
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5.3.4 Provable Sequents

After showing how complex statements may be represented as symbolic propositional formulae, a
course in logic is then likely to proceed to the concept of a structured argument. We first describe a
sequent in some form like A1,A2,A3,...,Aq . B (neaning “the pfemises A1,A,Aj,..., Ap entail the
conclusion B”). We then describe a range of derivation rules which allow one to proceed logically

from one statement to the next in a proof of the sequent.

In any propositional calculus, a sequent A1,A2,A3,...,Ap . B may be shown to be valid (and hence
provable, according to the Completeness Theorem) by showing that
(A1=(A2=(A3=...(An=>B)...))) is a tautology, however, this is rather cumbersome in general.

PMDs provide an alternate way to check whether a sequent is valid.

Suppose we want to test whether the sequent P, ~(P&Q) .. ~Q is valid. First, construct a PMD for
the wffs on the left-hand side (the comma is treated as an implicit conjunction) and a separate

diagram for the right-hand side (Figure 5.10).
P, ~P&Q ~Q
S & S &
<& <
<

O

Figure 5.10 — Validation of the Sequent P, ~(P&Q) .. ~Q by PMD

Now apply this simple rule: a sequent is valid if and only if the diagram for the premises is a
subset of the diagram for the conclusion.4 In the example above, the possible models represented

by '<> are a subset of those represented by 'Q and hence the sequent is valid.

The reader may like to compare this method of validating the sequent P, ~(P&Q) .. ~Q with
those described in Section 2.3.

5.4 Possible Models Diagrams: Logical Soundness

5.4.1 Possible Models Diagrams are Really Sets

In order to see that PMDs are a sound way of representing wiffs, one should first ignore the lines

connecting the graph and simply think of the set of nodes as the set of all possible models of n

4 At least, that is a simplified statement of the rule which is easily remembered by students.
The fully stated rule is “A sequent is valid if and only if the set of models indicated by the PMD
for the conjunction of the premises is a subset of the models indicated by the PMD for the
conclusion.”
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propositions, Up = {<x1,X2,...Xn> | Xj€ [T ,F} for i=1,2,...,n}. The lines link elements of this set in a

certain way, but this is only important for the visual effect.

For n=2, we get the set of all possible models of two propositions Uz =
{<T,T>,<T,F>,<F,T><F,F>}]. Now we need only to equate the first proposition with the set

{<x1,x2>€ Uz | x1=T} and the second proposition with the set {<x1,x2>€ U | x2=T}.

Suppose W is the set representing some wff. Then the reverse operation is simply ~W =
(<x1,xp>e Uz | <x1,xp>¢ W}. If V is a set representing some other wff, then overlay corresponds
to VYW = {<x1,x2>eUj | <x3,x2>€V or <x1,x2>€ W} and match corresponds to V&W =

{<x1,x9>€eUp | <x1,x2>e V and <x1,x2>€ W}.

Thus, the operations defined on PMDs correspond to exactly those primitive logical operations
we expect.

5.4.2 Converting Between Truth Tables and Possible Models
Diagrams

Whereas a PMD represents all possible models as nodes on-a graph, a truth table represents them
as lines in a table. Given a PMD, it is simple to construct an equivalent truth table: for each node
in the diagram, if the node is filled-in, place a T in the corresponding row of the table, otherwise
place an F in the corresponding row of the truth table. Converting in the opposite direction is

equally trivial. An example is shown in Figure 5.11.

P Q P&Q
P
TT T
TI-‘FT . = T F F
o g FT F
F F B

Figure 5.11 — Translating Between a PMD and a Truth Table

5.4.3 Generalising to More than Two Propositional Variables

Given that a PMD is just a way of visualising the set of possible'models (Section 5.4.1), it should
be clear that such diagrams can be formed for wffs containing any number of propositional
variables. In general, if a wff contains n distinct propositional variables, then its PMD will

have 2™ nodes (just as the corresponding truth table will have 2™ rows).

In teaching situations it is rare to set a truth table problem with more than three or possibly four
variables, and the same would apply to PMDs. Both methods generalise in theory, but in
practice we would rarely use either method for cases where the number of variables is larger

than four.
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5.4.4 The Rule for Sequent Validity

In Section 5.3.4 we saw the rule “a sequent is valid if and only if the diagram for the premises is
a subset of the diagram for the conclusion.” This can be justified by again thinking in terms of sets

(however, the justification in Section 4.6.1 is probably simpler).

Suppose the conjunction of premises forms the wff X, represented by a PMD whose nodes form the
set X’cUp, and suppose the conclusion Y gives rise to a Diagram whose nodes form the set Y'cUp.

If X'CY’ then every possible model of the premises is also a model of the conclusion.

Now if every possible model for which some condition X is true is also a model for which Y is
true, then X is a sufficient condition for Y. Hence X=>Y is necessarily true in all models (ie it is a
tautology). Further, whenever X=Y is a tautology, X ... Y is provable (by the Completeness and
Deduction Theorems) and so from the fact that one PMD is a subset of a second, we can deduce

that the wff represented by the second is derivable from the wif represented by the first.

Conversely, if Y can be derived from X (ieX .. Yisa valid sequent), then it must be that X=>Y isa
tautology. This is the case exactly when ~XvY is also a tautology. Now according to our set
intérpretation (Section 5.4.1), this is the same as saying that the set {<xj,x2,...xn>€Up |
<X1,X2,...Xn>€ X’ Or <X1,X2,...Xn>€ Y’} is equivalent to Up. But this equivalence is only possible

when X'cY’.
5.6 Conclusion

Although truth tables are the standard way of introducing boolean logic, a more visual teaching
tool has some advantages. This paper has presented the Possible Models Diagrams as such a
visual tool. PMDs are simple to learn and manipulate and more hence more enjoyable and

memorable for students. (Chapter 7 seeks to substantiate these claims.)

None of the theoretical basis is lost by using Possible Models Diagrams rather than truth tables:
they can both be used to define basic logical operations and to test whether a wff is tautologous,
contingent or inconsistent. Furthermore, Possible Models Diagrams can also be used for a task

which is difficult for truth tables, namely to checking the validity of a sequent.
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Chapter 6: Positioning Possible
Models Diagrams in a Computer
Science Logic Course

6.1 Introduction

The two preceding chapters build a foundation for PMDs in graph theory, boolean algebra and
set theory, and indicate how this approach may be presented to students. This chapter seeks to
deal more fully with the question of how PMDs may be integrated into a complete course on
introductory logic. This is an essential prelude to Chapter 7 since any evaluation of the PMD
approach must be seen in a broader context. This broader context should include the knowledge
which students are expected to have before encountering PMDs, the methods of teaching used,
and the ways in which ability to use PMDs is applied in later topics.

As discussed in Chapter 1, the PMD approach to teaching propositional logic was developed as
part of a first year university course on logic for computer science students in which there was an

increasing number of educationally disadvantaged students. This logic course is now described in

more detail.

6.2 Outline of Course Content

At the University of Natal, Pietermaritzburg, the Computer Science 1 course is comprised of four
sections: Pascal programming, computer systems and architecture, software packages on personal
computers, and introduction to logic. The introduction to logic component is 25% of the complete
Computer Science 1 course in terms of duration and assessment. It is presented in the second

semester and consists of the following topics! (in the order of presentation):

6.2.1 Basic concepts

7

The purpose of logic is discussed, and the basic terminology of “propositions”, “arguments”,
“truth”, “validity” and “soundness” is introduced. Common forms of fallacious reasoning are

described and examples presented. (8% of course time)
6.2.2 Inductive logic

Principles and examples are discussed for each of the main types of inductive reasoning:
generalisation, causality (including Mills’ Methods), hypothesis formation and refutation

(including an explicit description of abduction), and reasoning by analogy. (17% of course time)

1 For more detailed notes about the content of this module, see the Appendix.



6.2.3 Axiomatic systems

A brief introduction to systems in which mechanical manipulation of symbols allows “theorems”

to be derived from “axioms”. (2% of course time)

6.2.4 Set theory

An introduction to set terminology (membership, union, intersection, subset, cardinality etc) and
symbolism. Venn Diagrams are used to prove important set identities. Some logical paradoxes
relating to sets are examined (primarily Russell’s Paradox) since these provide good examples of
important forms of reasoning and also encourage students to think critically about formal

systems. (8% of course time)
6.2.5 Propositional Logic

The propositional connectives are defined in terms of their set counterparts. The representation
of well-formed formulae as PMDs and the use of PMDs to categorise well-formed formulae as
either tautologous, contingent or inconsistent is demonstrated. Truth Tables are shown to be
another way to represent the same information as recorded in a PMD. The usefulness of normal
forms for computational logic is discussed. Arguments expressed in English are converted to
symbolic form and proved using a natural deduction system. Various meta-theorems about the
natural deduction system are proved and the issues of consistency and completeness are briefly

described. (33% of course time)
6.2.6 Predicate Logic

Predicates and quantifiers are introduced and the natural deduction system is extended to
accommodate them. The use of “interpretations” is discussed in the context of disproving
predicate sequents, and again the issues of consistency and completeness are briefly described.

The introduction of an identity predicate is also briefly discussed. (17% of course time)

6.2.6.1 Variations to Lemmon
In both the section on Propositional Logic and on Predicate Logic I have employed the natural

deduction system of Lemmon [LEMM65]. Lemmon’s fourteen rules of derivation are used as

originally formulated, but I use a slightly different notation.

Whereas Lemmon allows brackets to be dropped when there is not ambiguity, I require all
brackets to be written, so that &,v,= and < are all explicitly dyadic. Where Lemmon would
allow A&(BvCvD) as an abbreviation for either A&(Bv(CvD)) or A&((BvC)vD), I require that
such formulae be written in full. This is an relatively unimportant modification, but if students
are later required to write computer programs which parse boolean expressions, then the notation

will reflect the structure of the resulting binary parse tree.
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Secondly, whereas Lemmon uses the notation (x) to indicate that the variable x is universally
quantified, I use the notation (V¥ x). This introduces a redundant symbol, but that symbol is

common in other systems [eg HAMI78, ROBI79, MCCAS81, PAULS7, LU89 and GRIE93] and forms a

nice symmetry with the existential quantifier (3x).

Thirdly, whereas Lemmon denotes predicates by an upper-case letter followed by a series of
variables written in lower case (eg Fxyz), I make greater use of parentheses and commas (eg
F(x,y,z)). This makes the notation similar to most computer programming languages, where the
predicate is implemented as a separate module of code (a function) and the variables are
parameters being passed to that function. Separating the symbols by parentheses and commas
allows both the function name and parameter names to be longer than one letter without causing
confusion. Thus, one could write the three-place predicate “between(Durban, Pietermaritzburg,
Johannesburg)”, where Lemmon would be forced to define single-letter names and then write
something like “Bxyz”. As a consequence of this change in notation, predicate wifs in my system
are often longer than the equivalent in Lemmon’s, and more care needs to be taken to match

parentheses. However, for computer science students this is quite appropriate.

While I have strictly adhered to Lemmon'’s fourteen rules of derivation, I am impressed by the

modifications suggested by Allen and Hand [ALLE92 ppxi-xiv] and would adopt them in future.
6.2.7 Other Forms of Logic

Modal, multi-valued, probabilistic (including Bayes Theorem and Certainty Factors) and fuzzy
logics all receive brief treatments. (17% of course time)

6.3 Relevance of Logic to Computer Science

This course is a much broader introduction to logic than is typical in computer science syllabi.
Nevertheless, every effort is made to relate each section of the course to applications in
computing. Underlying the whole course is the notion that a computer is a machine which
rigidly adheres to a highly structured form of logic and that understanding “rigid adherence to
logical structures” is an important skill if one is to understand computing. More specifically,
many sections of this course lay the groundwork for later topics in computing, as summarised in
Table 6.1. In addition, examples throughout the course frequently relate to computing topics.
However, one can see from responses to the Course Evaluation Questionnaire (see Tables 7.12 and
7.13) that some students continue to feel that the course is not directly relevant to their

aspirations as computer scientists.
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Topics covered in the logic course

Some areas in computing which apply these topics

Causation

Hypothesis formation and testing
Analogical thinking

Abduction

Axiomatic systems

Set theory

Two-valued logic

Truth tables and PMDs

Normal forms of logical expressions

Propositional and predicate logic as a
whole, and the concepts of consistency

and completeness

Predicates

Translating English into symbolic
notation

Natural deduction system

Sequent Introduction with substitution

Free and bound variables

Modal, multi-valued, probabilistic
and fuzzy logics

Locating and rectifying computer bugs
Locating and rectifying computer bugs
Case-Based Reasoning ,
Techniques in Knowledge-Based Systems for
classification and diagnosis
Computers process patterns of high and low voltage
which are inherently meaningless but imputed with
meaning by humans
Various programming languages data structures and
operations for sets (eg Pascal, Lisp)
Grammars, automata and theory of computability
Paradoxes of set theory relate to meta-theory
regarding the limits of formal systems
Boolean data types
Digital logic and circuit design
Boolean algebra, gate networks and circuit design
Boolean expressions in high-level programming
languages
Resolution
Automated theorem proving
Programming in Prolog
Formal program verification

- Program specification in Z

— Assertions

- Pre- and post-conditions

- Calculus of weakest pre-conditions
Boolean functions with parameter passing
Writing detailed specifications, pseudo-code and
programs from English requirements specifications
Ability to follow rigid syntax, which is nearly
always required by computing systems
The use of sub-programs with parameters
Constants and variables in third-generation
languages
Instantiation of variables in Prolog
Techniques in Knowledge-Based Systems and
Artificial Intelligence
Reasoning under uncertainty
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6.4 Teaching Methods

6.4.1 Lectures and Tutorials

At the beginning of this course students are given 71 pages of notes, which are reproduced in the
Appendix. The class is told that these notes are to be the main source of information for the
course, rather than the lectures. Each week some section of these notes are designated as required
reading. At the beginning of the first lecture of the week, the whole class is required to answer a
brief quiz consisting of three or four short answer questions and up to eight true/false questions.
These are marked immediately and the answers are discussed during the lecture period. The
marks for these quizzes are recorded and constitute a small percentage of the students’ final

grades.

After the quiz, the class is asked to indicate which sections of the reading were not completely
clear and these topics are listed on the board. The remaining time in that lecture period and in
the following lecture period is then allocated to clarifying and expanding on those topics. A copy
of the course notes on overhead transparencies is often used to reinforce and expound on what the
class has already read. Examples selected from the course notes are discussed in finer detail and

further examples are invented by both the lecturer and the class.

During the weekly tutorial period, the class primarily works on exercises taken from the course
notes, though there will also be further discussions and explanations by the lecturer. The
difference between a “lecture” and a “tutorial” is minimised in this course, so that a “lecture”

will certainly include discussion and exercises, and a “tutorial” may contain some lecturing.

6.4.2 Teaching Aids

We also make use of a computer program called LemmonAid? during the sections on propositional
and predicate logic. LemmonAid is a proof validator for the natural deduction system described
in [LEMMS65]. This program is introduced in the tutorial periods and the class is given a variety
of exercises to be completed in their own time. Student responses to this software have been very

favorable (see Section 7.5).

A 30cm transparent perspex cube was especially constructed to demonstrate the idea of a PMD for
three variables (Figure 6.2). This cube has black tape around the edges and red labels
P,~P,Q,~Q,R,~Q on respective faces. Black markers made from table-tennis balls can be attached
to any vertex. When held at the correct angle, the class can see how this cube matches the

diagram in Figure 5.9. A propositional wif can be written on the board and then represented on

2 LemmonAid was written by John Slaney <John.Slaney@arp.anu.edu.au> at the Australian
National University in Canberra. He is quite willing to make the software available to other
universities.
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the cube by attaching markers to appropriate vertices. Conversely, the lecturer can attach

markers in some arrangement and then ask the class to write down a wff which expresses that

arrangement.

Figure 6.2 — The Author Holding a Perspex Model of a PMD for Three Variables

6.4.3 Assessment Techniques

Students are assessed in four different ways:
e One half of the final three-hour exam;
o Two 45 minute tests;
* A written assignment; and

» The average mark for the weekly quizzes.

In accordance with university policy, the final exam constitutes the major proportion (two
thirds) of their final grade, although I would prefer to place more weight on the other forms of

assessment.

At the end of the course, the class is given a Course Assessment Questionnaire which enables
them to comment on both the course content and the teaching style. This Questionnaire is

discussed in Section 7.5.
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6.5 Educational Principles Underlying this Course

6.5.1 Interaction in a Social Context

The teaching style of this course has moved away from the traditional lecture style in which
the students’ role is simply to listen. “Lectures” are interactive periods in which there is
opportunity for students to ask questions, times when students learn by working through
examples, questions asked by the lecturer in order to gauge the class’s understanding, along with
some instruction by the lecturer. The class is empowered to choose which topics need further

attention, although the syllabus is still ultimately controlled by the lecturer.

The interactive style stresses the active role of the student in learning and, from the outset, the

class is informed that learning is primarily their responsibility rather than the teacher’s.

It is the view of Vygotksy [VYGO35] and his followers that learning is a socially mediated
processes. The use of an interactive style which makes frequent use of question-asking,

emphasises the role of the classroom as a social context in which learning may occur.

Vygotsky used the phrase “the zone of proximal development” to indicate “the distance between
the actual development level as determined by independent problem solving and the level of
potential development as determined through problem solving under adult guidance or in
collaboration with more capable peers” [VYGO35, p86]. In other words, tasks in the zone of
proximal development are those which are currently beyond the student’s ability, but which the
student could perform with assistance from a teacher. “The zone of proximal development
defines those functions that have not yet matured but are in the process of maturation, functions

that will mature tomorrow but are currently in embryonic state” [VYGO35, p86].

Interaction between students and teacher (especially question-asking by the teacher) allows the
teacher to monitor and respond to the students’ zone of proximal development. In order to enhance
learning, the teacher should first establish what is already known by the students, and what
the students could perform or learn independently. The teacher can then pitch further instruction
at a level just beyond the students’ unaided capabilities. (A more detailed analysis of the role of
question-asking is given in [GAVES5].) In traditional, non-interactive lecturing, it is inevitable
that the instruction is pitched beneath the zone of proximal development (in which case the
students become bored) or beyond it (in which case the students cannot absorb the material being

presented).

This form of interactive teaching is most suited to small groups of students, or to groups in which
all students are progressing at a similar pace. It is made more difficult by having a large group

(the courses described here typically have a class-size of about 50), and by having students of
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diverse abilities and backgrounds (the classes at the University of Natal have a mixture of
races, fluency in English, and educational background). Nevertheless, it has still been possible to
engage such large, diverse groups and to instill an atmosphere of co-operation, enthusiasm and

enjoyment.
6.5.2 Multiple Learning Modalities
In designing an introductory logic course, Utzinger writes:

The material that is presented should reach the student in as many modes as
possible. ie he should hear it, see it, write it, say it, feel it and if possible smell it,

preferably at the same time. [UTZI82 p10]

Although Utzinger’s logic course was primarily designed for learning-disabled students, he is
sure that such principles “would also benefit the ‘normal’ student as well” [UTZIS2 p9].

Wittrock points out that “a variety of teaching methods will be needed by each student,

depending on his background and its relationship to the subject matter” [WITT74 p182].

In this logic course, students may learn through reading (the course notes, other available
textbooks, overhead transparencies, worked examples on the board), listening (to the lecturer
and to other students), watching (the PMD cube described in Section 6.4.2), working on examples
(in class time as well as in their own time, on paper as well as with the LemmonAid software),

and individual discussions with the lecturer.

When working through examples during class time, problem solving strategies are discussed just
as much as technical details. In this way it is hoped that students can learn in an apprenticeship
style. In part this means that by hearing the lecturer verbalise his strategies (including
mistakes and ideas which lead to dead-ends), they will not only learn the right answer, but also
learn a way of thinking about logical problems. A good description of the principles and
intentions of “cognitive apprenticeship” is given in [COLL85].

6.5.3 Encouraging Transfer of Knowledge

Utzinger claims that translating between English and symbolic notation is much harder for
students than learning to understand basic logical principles [UTZI82]. That is, learning the
symbolic techniques is easier than applying those techniques appropriately. This comment
emphasises the importance of transfer. That is, the importance of students being able to take the
principles taught in a logic course and transfer them to other situations. If students can solve
problems within some symbolic system but cannot (or do not) make use of the same principles in

their everyday experience, then it is unclear what exactly they have learnt, and it is doubtful
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that the teaching of the symbolic system has been of any real use. Various authors have

commented on the low amount of transfer of logical principles [eg GROS90 and NISB87].

The choice of Lemmon’s natural deduction system is primarily based on an intuition that a formal
method which reflects natural human reasoning schema will promote transfer more readily than
a method which differs from those schema. [NISB87] supports such an intuition. Methods such as
resolution and semantic tableaux may be easier to teach, but they are quite remote from normal
human reasoning (see Section 2.3). That these methods are easy to automate by computer
emphasises the fact that they are mechanical procedures. Mechanical procedures are inherently
specific to one system and not transferable to other notations or domains. In contrast, a natural
deduction system requires much thought and creativity, and hopefully teaches the student about

underlying principles rather than about mechanisms only.

Both truth tables and PMDs are essentially mechanical and in teaching them there is always
the risk that students will learn the mechanisms but not the underlying concepts. To avoid this it
is crucial to emphasise to students that they must interpret what they are doing and translate

the results into English, rather than just following the procedures blindly.

It has not been the task of this research to evaluate the degree to which knowledge of formal
logic is transferred to other situations. However, Section 8.3 suggests this as an important avenue

for future research.
6.5.4 Appropriate Choice of Knowledge Representation

The underlying problem-solving strategy presented throughout this logic course follows three
basic steps —

1. Translate the task from English into some symbolic notation

2. Solve the symbolic task using well-defined symbolic operations

3. Translate the solution back into English

This strategy has wide applicability, but for any particular task an appropriate system of
symbolic representation and manipulation must be chosen. Knowledge can be represented in a
variety of forms and both computer scientists [eg BROW75] and educationalists [eg BRUN67 and
LARKS?7] are aware of the importance of choosing an appropriate knowledge representation.
Indeed, the search for appropriate representations is one of the central issues in computing. An
appropriate knowledge representation makes learning and retention easier, simplifies problem
solving, and enhances the ability to transfer the knowledge to other situations. However, it is
rarely the case that one representation of some piece of knowledge is always the most

appropriate. Rather, different representations suit different purposes.
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For this reason, there are a variety of logic notations and a variety of proof techniques, just as
there are a variety of programming languages. In Chapter 2 we noted a large variety of
approaches to teaching logic, each with its own advantages and disadvantages. The course under
discussion emphasises that there is no one supreme form of logic, but rather that different forms
of logic (inductive and deductive, propositional and predicate, as well as modal, probabilistic,

multi-valued and fuzzy logics) suit different purposes.

In order to discuss the relative merits of different representations, we will examine two ways of
characterising representations: one given by Larkin and Simon in [LARK87] and the other by
Bruner in [BRUN67].

First, the concepts of informational and computational equivalence are suggested by Herbert

Simon —

Two representations are informationally equivalent if all the information in the
one is also inferable from the other, and vice versa. ... Two representations are

mputationall ival if they are informationally equivalent and, in
addition, any inference that can be drawn easily and quickly from the information
given explicitly in the one can also be drawn easily and quickly from the

information given explicitly in the other, and vice versa. [LARKS7 p67]

With these definitions one can see that many of the techniques described in Section 2.3 are
informationally equivalent to each other, but typically not computationally equivalent. PMDs
and truth tables are informationally equivalent, but the suggestion of this thesis is that they are

not computationally equivalent.

In [LARKS87], Larkin and Simon present a computational account of problem solving using
sentential descriptions of a problem on the one hand and diagrammatic representations on the
other. The term “sentential” does not imply “English sentences” but rather a sequence of symbolic
expressions derived from the English description of a problem. In the examples they discuss, the
two forms of representation are informationally equivalent and the main point of the paper is to
evaluate the relative computational power of the two representations. They split problem
solving into the tasks of search, recognition and inference and conclude that a diagrammatic
representation reduces the need for search and improves the efficiency of recognition, but has

little effect on inference processes.

Larkin and Simon claim that an appropriately constructed diagfam requires less labeling than
an informationally equivalent sentential representation. If the labeling is implicit in the
structure of the diagram, then it can still be retrieved when required, but need not require

cognitive attention otherwise. Further, they claim that a w_al_emam_em arises from
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the use of a diagram: that is, a problem solver can perceive important information about a

problem more readily from a diagram than from a sentential representation.

The point has been made before that labels may be omitted from PMDs without loss of
information. The necessary operations of reverse, match and overlay can be carried out without
requiring the confusion of labels, but the labels can be inferred whenever necessary. By contrast,
labels cannot be omitted from a truth table: even when the arrangement of rows follows some

convention, the processing of connectives requires continue referral to the labels.

(It should be noted that research by Markovits [MARKS86] among school children indicates the
opposite of Larkin and Simon’s thesis. Markovits presented one group of subjects with verbal
instructions about a conditional reasoning task, and another group with both verbal instructions
as well as pertinent hand-drawn pictures. He found that the second group’s performance was
markedly inferior to the first group’s. I think this study can be discounted on the grounds that the
drawings were too specific (they were simple drawings of cats etc) and made the subjects think of
just one specific situation instead of being general diagrams which may have encouraged the

abstraction of underlying principles.)

Second, Jerome Bruner proposes that knowledge representations are characterised by their mode,
their economy and their effective power [BRUN67 p44]. The mode of a representation is either
enactive (ie a set of actions), iconic (ie a set of summary images that stand for concepts without
fully defining them), or symbolic (the use of arbitrarily assigned symbols along with rules for
manipulating those symbols) [BRUN67 pp10-11]. In defining economy, Bruner writes “The more
items of information one must carry to understand something or deal with a problem, the more
successive steps one must take in processing that information to achieve a conclusion, and the less
the economy” [BRUN67 p45]. The effective power of a representation is the degree to which the
representation’s theoretic capabilities are actually put to work by the learner. “The power of a
representation can also be described as its capacity, in the hands of a learner, to connect matters
that, on the surface, seem quite separate” [BRUN67 p48] — that is, the transferability of the
knowledge. It may seem that effective power is a function of the learner rather than a
characteristic of the representation, but in reality it is dependent on both. Some students will be
able to transfer knowledge more effectively than other students, and some forms of

representation will enhance the process of transfer more than others.

Regarding mode, PMDs are primarily iconic: the visual patterns of the basic PMDs for P, Q, ~P,
PvQ, P&Q, and P=Q are iconic repi‘esentations of the underlying concepts. In addition, PMDs are
partly enactive since the operations reverse, overlay and match are procedural actions which

manipulate the icons. In contrast, truth tables are purely symbolic.
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Regarding economy, it was earlier claimed that the information required to establish whether
or not a sequent is valid is more readily extracted from a set of PMDs than from a truth table
because visual information is more quickly. processed than symbolic information. To use Larkin
and Simon’s phrase, PMDs are more perceptually enhanced than truth tables. We have also seen
that labeling information need not be carried around with each diagram. Such observations

suggest that PMDs are a more economical representation that truth tables.

Regarding transferability, more research will be required before any judgment can be made

concerning the effective power of PMDs.

It is perhaps the iconic nature of PMDs which most distinguishes them from other
representations. In terms of Simon’s definitions, PMDs and truth tables are informationally
equivalent. However, since they are iconic, PMDs require a simpler form of pattern matching
than any purely symbolic representation would require. That is, PMDs make the recognition

phase of problem solving much easier.

The iconic nature of PMDs should not be confused with the debate surrounding mental imagery.
Much has been written about how problem solving is enhanced by the use of pictorial
representations, that is, visual images such as diagrams, photos, maps and internal mental
pictures. The diagrams in [LARK87] and [MARKS6] are of this type. The computer software
Hyperproof (by Barwise and Etchemendy) and Tarski’s World both use pictures of blocks to
assist in logical proof construction, and various authors have undertaken research into the
effectiveness of this graphical approach [STEN92, BARW93, COX93, OBER94]. Much has also
been written on the question of how such pictures are actually represented in the brain: whether
cognition relies on an inherently imagistic representation or whether the mind uses some
propositional (ie language-like or sentential) representation which gives the illusion of visual

ixnages. See [DENI89] for a detailed analysis of this debate, or [GARDS5] for a summary.

Such research lends support to the claim that the visual aspect of PMDs may assist in solving
problems in propositional logic. However, PMDs are not visual images in the sense that they
look like an actual real-world situation. Rather, than being realistic visual images, icons (and
hence PMDs) are symbolic visual images. They assist memory and problem solving not just in that
they are visual, but also in that they act as symbols which represent more information than is

explicitly depicted in their visual form.
6.5.5 The Role of Multiple Representations

A major problem when using any representation to teach an abstract concept is that the student
may learn the representation but not the underlying concept. As a trivial example, parents may
use apples to teach their children that 2+3=5 — “Here are two apples, here are three more, how

many have we got when we put them all together?” But whereas the parent imagines the child
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will learn about numbers, addition and equality, the child may well think that the lesson is

about apples.

When given an example of a concept, students will not necessarily abstract from the example
that feature which the teacher intends. For instance, when told that affirming the consequent is
a logical fallacy, they may falsely infer that all logical fallacies involve conditional
statements. However, if several examples of the category or concept are described, the student is
more likely to abstract that feature which is common to all the examples: that is, the underlying
characteristic which defines the category. Students can be assisted in this process if the
examples are chosen to be as diverse as possible so that they have no feature in common apart

from the feature which the teacher is attempting to convey.

This principle applies not only to the choices of examples in a categorisation task but also to the
choices of representations in any abstract learning task. If only one representation is used,
students are quite likely to focus on the representation rather than the underlying concept. They
may learn how to use the procedures defined for that representation and may learn how to solve
problems within that representational structure, but they may not have learnt the concepts
underlying that structure and may be unable to solve conceptually equivalent problems outside

that structure. This could be the case regardless of the quality of the representation.

To avoid this, it is helpful to make use of multiple representations. A child should not only be
taught that 2+3=5 using apples and oranges and fingers and days, but also using the symbolic
form of an arithmetic equation, as well as in unary notation® and binary notation. Someone who
can manipulate all of these different representations is more likely to have grasped the
underlying concepts of numbers, addition and equality. It is even more certain that someone will
abstract the underlying concept if they are taught to translate between the various
representations: matching the number of apples against fingers, making a notch on a tree as each
day passes, converting from decimal to binary, using the ten fingers as binary digits to count up to
1024 etc.

Similarly, when teaching computer science students about circular buffers, they may first learn
‘how to implement them using an array. But if the lesson stops there, they will have learnt
something more about arrays, but probably little about circular buffers. They should then learn
how to implement a circular buffer using a linked list. In this way they will have seen that a
circular buffer is a general concept which is independent of its instantiation in any particular

implementation.

3 That is, what may be called “caveman addition” - | [+l 1 [=11111.
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In the same way, when teaching logic it is extremely advantageous to teach using more than one
representation, and to show how problems and techniques in one representation may be

translated into another. (See [PETE94] for some other aspects of multiple representations.)

In this course, various forms of logic are presented, and even when dealing with propositional
logic, students are presented with a number of different ways of representing logical expressions
and inferences. These include English, set theory, PMDs, truth tables and Lemmon’s natural
deduction system. The course drills the students in each of these representations, so that they
become familiar with the different notations, familiar with the operations allowed within

each system, and familiar with the advantages and disadvantages of each representation.

It is hoped that by dealing with this variety of representations, the student will be able to
abstract the underlying principles more readily than if they were exposed to any one of the
representations. For instance, the concept of a conditional statement is dealt with in each
representation as follows:
e English — for instance we note that “Whenever it rains the grass grows” and “If it rains
then the grass will grow” are expressions of the same proposition.
e Set theory — the subset relation ACB means that whenever something is an element of
A then it is also an element of B.
¢ PMDs — material implication is defined by the reverse-and-overlay operation.
e Truth tables — material implication is defined as a particular configuration of T's and
F’s.
e Natural deduction — the rules MPP (modus ponendo ponens), MTT (modus tollendo
tollens) and CP (Conditional Proof) define how material implication can be introduced

and eliminated.

Further, the course consistently prompts the students to translate between these representations.
Examples and exercises frequently state some proﬁositional expression in one form and require the
student to write the same expression in another form (eg to take an argument written in English
and to represent it as a propositional sequent). Other questions require the student to prove a
propositional sequent in several different ways (eg by a natural deduction proof, by constructing a
truth table and by constructing a PMD).

By seeing the same concepts in this variety of representations and by being able to translate
between the different representations, students are encouraged not just to learn the individual
notational systems and their associated operations, but also to understand the underlying

principles of which these representations are but instantiations.
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6.5.6 Piagetian Principles of Cognitive Development

It should be noted that much of what is written above differs from a Piagetian analysis.
Although the stages of cognitive development suggested by Piaget are a basis for much
educational theory for children, they fall short of giving a complete picture, especially for older

students.

The Piagetian school plots the development of children through three main stages, the last of
which may be further split into two finer divisions [NICK85] —
e Sensori-motor stage (0 to 2 years)
¢ Pre-operational stage (2 to 7 years)
e Operational stage (7 to 16 years)
¢ Concrete Operations stage

¢ Formal Operations stage

In the Concrete Operations stage, a student is able to deal effectively with concrete concepts and
operations, but not with abstract ones. Because of this, learning is domain-restricted and little
transfer can occur. Only in the Formal Operations stage can abstract concepts be learnt and
transferred to domains which differ from those in which the concepts were first learnt. For
instance, in the Concrete Operations stage, a student may be able to find the union of two finite
sets, but not be able to draw a Venn Diagram to represent “some a are b”; a student may be able to
construct truth tables involving material implication, but not be able to give a specific example

of the fallacy of denying the antecedent?.

Much of this course in introductory logic requires abstract thinking, even though many concrete
examples are used. Since Piaget’s stages suggest that the Formal Operations stage should be
reached by the age of sixteen, we could assume that university students undertaking this course
are capable of learning abstract logical concepts. However, various studies have indicated that
a significant percentage of university-aged students have not passed the Concrete Operations
stage [NICKS85 p 32]. Such students (according to Piaget) will be able to follow and reproduce the

examples, but cannot be expected to learn the abstract concepts underlying those examples.

Vygotsky’s analysis is at odds with Piaget’s on this issue. Piaget suggests that there is no point
in presenting information to a person who has not yet reached the stage at which they can
assimilate that information. If a student is still in the Concrete Operations stage then teaching
must occur through concrete examples and there should be no expectation that abstract learning
will occur. In contrast, Vygotsky’s model of the zone of proximal development suggests that

teaching should always occur in an area beyond the student’s current capacity. For Vygotksy, it is

4 These examples come from Thornton (1980) quoted in [NICKSS p31].
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entirely appropriate to present abstract concepts to students who may only be in the Concrete

Operations stage; for how else will they move into the Formal Operations stage?

One of the advantages of using more than one representation is that it promotes abstract
learning. If just one representation were taught, then it could be seen by the student as a set of
concrete operations to be learnt without any need to look deeper. But if students are exposed to
several representational systems they are challenged to grapple with the question of how these
systems can represent the same concept when they seem so different. Translating between the
representations can be used to prove to the students that the representations are in fact
equivalent and leads them to see that the various concrete operations in those different systems

share a common yet abstract essence.
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Chapter 7: Analysis of Student
Responses to Possible Models
Diagrams

7.1 Introduction

In the beginning, the research associated with the development of PMDs was of a technical
nature, concentrating on the verification of the theoretical correctness of the approach. It was
only after the method had been used for two years that consideration was given to the didactical
effectiveness of PMDs and the data collected during that early period lacked systematic
structure. During the second semester of both 1992 and 1993, the module on logic in the first year
computer science course was taught using both truth tables and PMDs (in the manner detailed in
the Appendix). During these modules, results from a number of assignments, tests and exams were
recorded, but unfortunately some of the original data sources are no longer available. Thus,

actual student responses are shown for some of the assessments, while for others there is only

summary data.

For comparisons to be made, it would be ideal to teach the same course to two similar groups using
PMDs with one group and truth tables with the other. Although this has not been possible, it
was possible to teach a short course in which boolean algebra was presented using gates and truth
tables. This course was taught during the first semester of 1994 as part of a computer architecture
module, to students who would do the full logic course in the following semester. The results of
student assessment from this course give some indication of how well students who have never

encountered PMDs understand boolean concepts.

In addition, at the end of the 1992 and 1993 logic modules a course evaluation questionnaire was
completed to provide students with an opportunity to comment on both the course content and
teaching style. These two forms of assessment (assessment of students and assessment by students)

provide the basic data for this chapter.

The data discussed here is typically unstructured and the data collection unsystematic, leading
to many uncontrolled variables. Although it is difficult to quantify the data’s significance,
statistical analysis has been applied to the extent that it is meaningful. Of equal importance is
the qualitative aspect of the data. Since the data comes from actual student responses, it has
been an invaluable source of assistance in the development and improvement of the teaching
methods. The qualitative richness of the data has highlighted various student difficulties and

misconceptions, and this has made me better able to address those difficulties.
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7.2 Assessment of Students’ Competence in Propositional
Logic

7.2.1 What Types of Questions should be Asked?

There are three basic concepts related to PMDs (or truth tables) which may be assessed:
e Constructing a PMD (or truth table) for a boolean expression in order to establish
whether it is tautologous, contingent or inconsistent;
o Translating between English, truth tables and PMDs; and
e Using PMDs (or truth tables) to establish the validity of a propositional sequent.

7.2.1.1 PMD Orientation

Before any of these concepts can be tested, there is one other question which students should
always be asked. It has been noted before that PMDs are generally drawn with unlabeled
vertices, and that the ordering of vertices is implicit. Since a common mistake made by students

is to order vertices incorrectly, it is essential to require students to draw a labeled PMD before

attempting other questions. Very few students have any trouble labeling a PMD with two
variables, but a substantial number (approximately' 15%) mislabel PMDs with three variables.
A complete categorisation of the types of orientation errors is described below, with examples

selected from a variety of student responses to exams and assignments.

Consider the following student responses to the task “Draw a fully labeled diagram showing all
possible models of three variables, P, Q and R”.

TTT Each triple represents
the truth values of
P,Q and R respectively
TTF FIT
TFF FFT
FFF

Ficure 7.1 — A Correctly Labeled PMD for Three Variables

Figure 7.1 shows the correct answer, complete with a brief note explaining the labeling
convention. Notice that if this graph is visualised as a cube (which students are encouraged to
do), then the cube has a face on which each corner has P with the value “T” and an opposing face
on which each corner has P with the value “F” and that there are similar faces for Q, ~Q, R and
~R.

The following Figures show a variety of incorrect student responses to the same task.
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tLa d

In Figure 7.2, the student has indicated the three faces for P, Q and R, but has not labeled the
vertices. This raises one of the unfortunate short-comings of written exams as a form of
assessment. It may well be that the student mis-understood what was required by the question

and if asked to expand or clarify her answer she may have been able to give the correct answer.

igure 7.3 — — - ientati

Figure 7.3 shows another student’s response to the same question. In this case the labels indicate
a distinct P-face, Q-face and R-face, but the orientation of the imagined cube differs from the
convention. As long as it is used consistently, this is a reasonable alternative. However, the
convention is important in that it allows anyone familiar with PMDs to read unlabeled
diagrams without ambiguity and since the convention has been violated, this answer would only

gain half marks.

Requiring the student to draw a fully labeled diagram alerts the marker to the student’s non-
standard orientation. The marker can then interpret answers to other questions with this
orientation in mind. If students were not required to initially draw a labeled PMD, then with
later questions it would be impossible for the marker to differentiate between logically flawed
answers and answers which are incorrect but understandable when viewed from an alternate

orientation.



FFT

TFF FFF

Figure 7.4 — Incorrect — Non-standard Orientation

Figure 7.4 shows another example of non-standard orientation. It is clear from the way the
diagram is drawn that the student is visualising a cube. Only one student (out of roughly 100

students who have been exposed to this course) drew the graph in this way.
TTT

FTT

=

FFE

Ficure 7.5 — Incorrect — Various Incorrect Labels

VY

Figure 7.6 — Correctly Labeled Faces

Figure 7.5 has one label repeated (TTF) and two labels have exchanged position (FFT and FTT). I
believe this student had grasped the concept of separate faces for P, Q and R (since in an earlier

assessment he had correctly drawn Figure 7.6) but became confused in the translation to a labeled

graph.
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Figure 7.7 — Incorrect — aren r

The comment was made earlier that Figure 7.3 is not so much a mistake of logic as a mistake of
communication. But Figure 7.7 is fundamentally flawed as it has neither a P, Q nor R face. The

student has listed all the correct labels, but all except two are in the wrong position.

The visual rules for manipulating PMDs are such that even the confused labeling of Figure 7.7
would work, if it were used consistently. This remains true for any labeling pattern as long as all
eight triples TTT, TTF, TFT, FTT, TFF, FTF, FFT and FFF are used. However, unless some clear
order is maintained the confusion will make the possibility of consistency very unlikely.

7.2.2 Class Test 1992

The Mid-semester Test in 1992 included the following questions:

1. Draw a fully labeled diagram showing all possible models of two variables, P
and Q.

2. For each of the models shown in 1, write English interpretations of P and Q
which fit the model.

3. Draw a separate fully labeled diagram showing all possible models of three
variables, P, Q and R.

4. Draw either a possible models diagram or a truth table for each of the
following wifs. Classify each wif as either contingent, tautologous or
inconsistent.

i) (P=Q)=(Qv~P)
ii) ~(PvQ)&(PvQ)
iii) (P&~R)=Q

The results of fifty students’ answers to Question 4 allow a comparison of PMDs with truth
tables. The percentages of correct and incorrect results are shown in Table 7.11. Note that in this

question students could choose whichever method they preferred.

1 In all the Tables in this chapter I have specified the number of students who sat for the
exam/test or submitted an assignment, and then shown the percentage of students falling into
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le 7.1 — Class Test 1992 ion 4
n=50 (P=Q)=(Qv~P) ~(PvQ)&(PvQ) (P&~R)=Q
PMD Correct 80 78 30
Incorrect 10 10 22
Truth Correct 6 10 12
Table Incorrect 4 2 32

From these results it can be seen that when dealing with boolean expression containing two
variables, 89% of the students chose to use PMDs rather than truth tables. The odds of answering
the question correctly using PMDs was 7.90, compared to 2.67 for truth tables2.

When faced with an expression containing three propositional variables, a larger proportion
opted to use truth tables, but the majority (52%) still used PMDs. Once again, the odds of giving a
correct answer using PMDs (1.36) was much higher than that for truth tables (0.38). (Note that
4% did not even attempt this three-variable question.)

The overall sample size here (and in the cases which follow) is relatively small, however, a
more important restriction on any statistical analysis is the low numbers of responses in some
categories. For instance, only one student submitted an incorrect truth table for ~(PvQ)&(PvQ).
Nevertheless, we can calculate the odds of getting a correct answer with one method as compared

to the other, and we can apply a %2 test to determine whether the difference is significant.

If the three questions are analysed separately, the first two show an Odds Ratio in favour of
PMDs, but the cohort sizes are too small for this to be judged significant. In the third case the
choice between PMDs and truth tables was more evenly balanced. In this case, the Odds Ratio is
3.64 indicating that a student choosing to use PMDs was 3.64 times more likely to give a correct
answer than a student choosing to use truth tables. The Mantel-Haenszel Summary Chi Square
value is 4.39, with a P value of 0.036 (which is within the standard 0.05 significance level). In
summary, although there is no significant difference indicated between the choice of PMDs and

appropriate categories. However, the percentages in the table occasionally add up to less than
100 since not all students attempted all questions. It cannot be assumed that failure to attempt a
question means the students was incapable of answering that question: it may be that time
restrictions made them choose to concentrate on other areas of the assessment instead. There are
also tables where rounding errors lead to totals of slightly over 100.

2 The “odds” of some event is the number of times that event occurs (or is expected to occur)
divided by the number of times it does not occur (or is not expected to occur). Thus if 15 students
correctly construct a PMD for (P&~R)=>Q, and 11 students attempt to but fail, then the odds of
succeeding is 15:11 or 1.36. I originally quantified such comparisons as error rates: an error rate of
11 out of 26, or 42% in the previous example. However, the odds measurement is a more useful
figure for some of the other statistical tests. The term “Odds Ratio” refers to a comparison of the
odds for two different methods.
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truth tables for wffs with two propositional variables, there is a significant difference for the

wif which had three variables.

In order to increase the sample size, the three questions may be combined. When this is done, the
Mantel-Haenszel Weighted Odds Ratio is 3.39 in favour of PMDs. The Mantel-Haenszel
Summary Chi Square value is 5.38, with a P value of 0.020 (which is well within the standard

0.05 significance level).

This analysis, based on the Odds Ratio and the xz test, relies on the assumption that the choice
of method (ie PMD or truth table) is random. This assumption would be justified if we could be
assured that the quality of students choosing one method was the same as the quality of students
choosing the other. But what if the better students chose one method and poorer students the
other? In similar situations in later sections a Logistic Model can be build to allow for this, but in

the current instance the raw data necessary for such analysis is no longer available.
7.2.3 Final Exam 1992

The Final Exam in 1992 included the following question:

For each of the following wffs construct both a possible models diagram and a truth
table. State whether the wifs are tautologous, contingent or inconsistent. (Please
indicate whether you constructed the possible models diagram first or the truth table
first.)

1. P=((~Qv~P)=P)

2. ((PvQ&R)=~Q

In this question, both a PMD and a truth table must be constructed. However, the task of
translating between one and the other is reasonably trivial (see Section 5.4.2) and so it may be
assumed that a student would first construct the one which they consider easiest and then

construct the other by translating the first. The results are summarised in Table 7.2.



Table 7.2 — Final Exam 1992

n=55 P=((~Qv~P)=P) (PvQ)&R)=~ Q

PMD first |PMD Correct 62 45
Incorrect 24 18

Truth Correct 51 35

Table Incorrect 27 22

TT first Truth Correct 11 20
Table Incorrect 4 11

PMD Correct 15 15

Incorrect 0 15

With both two- and three-variable expressions the majority of students preferred to construct
the PMD before the truth table (75% for two-variables and 67% for three-variables). The odds
of success for those opting to construct PMD first was 2.55 compared with 1.76 for those opting for
truth table first. Once again a small proportion (5%) did not attempt the harder three-variable

question.

The structural complexity of this data make it difficult to analyse in any more detail and no
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meaningful conclusions can be drawn. If we were to simply focus on the method they chose to use

first and compare the odds of success, the difference is insignificant.

7.2.4 Class Test 1993

The Mid-semester Test in 1993 included the following questions:

1. Draw a fully labeled diagram showing all possible models of three variables
PQandR.
2. Construct both a PMD and a Truth Table for the wff
~(P v (P = (Q&P))). Is this wif tautologous, contingent or inconsistent?
3. Construct either a PMD or a Truth Table for the wff
(Qv~R) & (Q=P). Is this wif fautologous, contingent or inconsistent?

The results for Question 2 (where both PMD and truth table were required) are summarised in

Table 7.3. As with previous results, the odds of success for PMDs (5.00) is higher than for truth

tables (1.56).




Table 7.3 — Class Te. ion 2
n=42 ~(P v (P = (Q&P)))
PMD Correct 83
Incorrect || 17
Truth Correct ——" 60
Table Incorrect “ 38

The results for Question 3 (in which students could choose which to construct) are summarised in
Table 7.4.

Table 7.4 — Class Test 1993 Question 3

n=41 (Qv~R) & (Q=P)
PMD Correct 27
Incorrect 17
Truth .| Correct 24
Table Incorrect 32

These results indicate that for an expression with three-variables, more students (56%) prefer to
use a truth table, but those who do so are less likely to do so correctly (odds of 0.77) compared
with those who use a PMD (1.57). )

If the two questions are analysed separately, Question 2 shows an Odds Ratio of 3.2 in favour of
PMDs, and the Mantel-Haenszel Chi Square value is 5.11, with a P value of 0.023 (which is
within the standard 0.05 significance level). In the case of Question 3 the Odds Ratio is 3.64 in
favour of PMDs, but the Mantel-Haenszel Chi Square value of 1.23 is not significant.

When the two questions are combined, the Mantel-Haenszel Weighted Odds Ratio is 2.68 in
favour of PMDs and the Mantel-Haenszel Summary Chi Square value is 5.16, with a P value of
0.023 (which is well within the standard 0.05 significance level).

7.2.5 Assignment 1993

During the 1993 module, students were required to hand in a written assignment which included

the following questions:
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1. At the bottom of page 48 of the Course Notes [see Appendix, page A-48], four
different ways of proving a propositional sequent are described (note that
method ii is actually two methods — PMD and Truth Table). Prove both of the
following sequents by each of the four methods. In both cases, state which of the
four methods seemed easiest to you.

i) ~PvQ~Q=P ..Q
ii) P=(Q=R),~R .. P=~Q
2. Show that the following argument is invalid —

If Alice wins first prize, then Bob wins second prize and if Bob wins
second prize then Carol is disappointed. Either Alice wins first

prize or Carol is disappointed. Therefore Bob does not win second

prize.

The results of the analysis of answers to Question 1, categorised into the four methods are

summarised in Table 7.5.

In the two-variable case, the odds of getting the answer correct with each of the four methods
are 0.48, 2.45, 2.45 and 17.50 respectively. In the three-variable case, the odds are 4.43, 1.11, 1.31
and 3.38 respectively. It is difficult to infer anything from these figures regarding the deductive
proof method in general, since the difficulty of constructing such proofs is very dependent on the
semantic content of the sequent. In contrast, the construction of truth tables and PMDs is a
mechanical procedure for which the complexity depends solely on the number of distinct

variables and the number of operators.

n=38 I ~PvQ ~Q=P .. Q |  P=(Q=R),~R .. P5~Q
Deductive Correct 32 ’_ 82
proof Incorrect 66 18
Tautology Correct 71 53
by TT Incorrect 29 47
Tautology Correct 71 55
by PMD Incorrect 29 42
PMD Correct 92 71
subset Incorrect 5 21

McNemar’s Test was used to analyse this data further. McNemar’s Test applies to one pair of
methods, and so in this situation it must be repeated for each possible pairing of the four
methods. For each of these pairings, the number of students getting the answer correct with one

method but incorrect with the other method was counted. Let r1 be the number of students who
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answered the first correctly, but the second incorrectly, and let r; be the number of students who
answered the second correctly, but the first incorrectly. If the two methods were equally

difficult, we would expect r1 to be the same as r). But if —

i 7'1 1_2

rtr, 2
||||. 1
\'f 4.n

> 3 84 (the xz threshold for the 0.05 significance level),

then the method corresponding to the greater of r1 and r must be significantly better than the

other.

In the two-variable case, McNemar’s Test shows that the deductive proof method is
significantly worse than all the others, and that the PMD subset method is significantly better
than all the others. In the three-variable case, the deductive proof method is shown to be
significantly better than both truth table and PMD tautology methods, and the PMD subset
method is significantly better than the truth table method.

Fifteen of the 38 students commented on which method they found easiest and the frequencies of
these preferences are recorded in Table 7.6. One can see from this table the pattern noted
previously: namely that while PMDs are preferred for expressions with two variables, they are
not so popular for expressions with three variables. One point of interest is that two students

who declared that truth tables were easiest nevertheless constructed incorrect truth tables.

If more than three variables were required it would be expected that virtually all students (and
practiced logicians as well) would prefer to build some type of deductive proof rather than any

of the other methods.

T 7.6 — Assi nt 199 estion 1 Prefer
n=15 - ~PvQ,~Q=P .. Q P=(Q=R), ~R .. P=~Q
Deductive proof 7 40
Truth table 33 47
PMD 27 7
PMD subset 33 7

Question 2 required the student to first translate the argument from English into a propositional
sequent, and then to use one of the methods from Question 1 to disprove it. Of the 35 students who
attempted this question, 20% did not correctly express the task in symbolic notation — ie they
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did not solve the translation phase. Table 7.7 shows which of the four methods of proving

validity were used by students in order to answer Question 2.3

Table 7.7 — Assignment 1993 Question 2

n=32 | Alice, Bob and Carol
Deductive Correct N.A4
proof Incorrect 16
Tautology Correct 44
by TT Incorrect 9
Tautology Correct 16
by PMD Incorrect 0
PMD Correct 16
subset Incorrect 0

The majority of students chose to test the sequent by truth table, which is what we now expect
since the expression has three variables. But note again that those who use either of the
methods involving PMDs have a lower error rate (in this case 0%). The fact that most students

answered this question correctly places a severe limit on the significance of any statistical

analysis.

A Logistic Model was constructed to correlate the quality of the students with the probability of
solving the problem correctly using the various methods. The total mark for the assignment
(towards which this question contributed 10%) was used as an indicator of student quality. This
mark by itself was not significantly correlated to the ability to solve this question correctly (the
model gave a deviance of 2.10 with one degree of freedom, whereas a result of greater than 3.84 is
required for significance at the 0.05 level). Similarly, the method chosen to solve the problem
was not a significant predictor of success® (the model gave a deviance of 3.78 with two degrees of

freedom, whereas a result of greater than 5.99 is required for significance at the 0.05 level).

The Logistic Model provides one other useful piece of information. In an earlier section I raised
the question of whether the quality of student might effect the choice of method. The model

here indicates that when interaction between student quality and choice of method is allowed,

3 The value of n=32 for the results shown in Table 7.7 does not exactly match the 28 students who
correctly translated the English into symbolic notation. The reason for this is that some students
who correctly translated the argument did not attempt to invalidate it, and some students who
mis-translated the argument nevertheless proceeded to correctly invalidate the sequent they
had (mis-)constructed.

4 Since it is impossible to construct a proof by natural deduction of the invalidity of a sequent,
any attempt to do so was automatically marked as incorrect.

5 A perfect prediction could be made in this question if the method chosen was the construction of
a deductive proof. But this is only the case trivially since any attempt at such a proof is
guaranteed to fail, and so that method was not included in the Logistic Model.



81

the correlation with success has a deviance of 0.0001. That is, this data gives no evidence at all

that the effect of choice of method depends on student quality.
7.2.6 Final Exam 1993

The Final Exam in 1993 included the following questions:

1. Draw a fully labeled Possible Models Diagram for two variables and a

separate fully labeled Possible Models Diagram for three variables

2. Describe the four ways by which a propositional sequent may be proved valid.

3.  Use each of the above four methods to prove the sequent Pv(~P=Q), ~Q .. P
4. Convert the following argument into propositional logic notation. Show
whether the argument is valid or invalid.

It is a well established principle that if you have well-designed
software and well-designed hardware, then you will get an efficient
computing system. One can also assume that if software is not well-
designed then the computing system will not be efficient. Therefore,

whenever you have well-designed hardware it implies that the

software is also well-designed.

5 Show whether the following wffs are equivalent using either Possible Models
Diagrams or Truth Tables.
¢ ~(PvQ)=~-P&~Q
s P=(QvR) = (P=Q)vR

The results of the analysis of answers to Question 3 are summarised in Table 7.8. The high error

rate seems to indicate that students found this to be a difficult question.
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Table 7.8 — Ex i

n=45 | Pv(~P=Q),~Q .. P
Deductive | Correct 56
proof Incorrect 36
Tautology | Correct 53
by TT Incorrect 38
Tautology Correct 58
by PMD Incorrect || 27
PMD Correct ll 56
subset Incorrect “ 18

The odds of success using the four methods are 1.56, 1.41, 2.17 and 3.13 respectively, showing
(among other things) that using the PMD subset method is 2.22 times more likely to be applied
correctly than the truth table method.

When McNemar's Test was applied to the data from Question 3, the PMD methods consistently
performed better than the other methods, but not to the required level of sighiﬁcance. One
problem with applying McNemar’s Test to this data is that sixteen of the 45 students did not
attempt to use all four methods. Since we can not assume that failure to use a method implies

inability to use that method, a lot of potential pairwise comparisons were lost.

Question 4 required the student to first translate the argument from English into a propositional
sequent, and then to use one of the methods from Question 2 to disprove it. Of 43 students who
attempted this question, all but two correctly handled the translation phase. Five students who
did perform the translation correctly did not attempt any form of disproof. Table 7.9 shows

which of the four methods of proving validity were used by the remaining 38 students.
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T 79 —Exam1 estion
n=38 Hardware/Software

Deductive Correct N.A.6
proof Incorrect 16
Tautology Correct 21
by TT Incorrect _ 24
Tautology Correct 13
by PMD _____Incorrect 5
PMD Correct 16
subset Incorrect 5

In this examination the students showed a distinct preference for PMDs, even when the
propositional expression contained three variables (both here and in Question 5). The odds of
getting the answer correct using the four methods was zero for deductive proof, 0.89 for tautology
by truth table, 2.50 for tautology by PMD and 3.00 for the PMD subset technique. The differences

between these odds are not significant.

If one combines the two PMD methods, then the Odds Ratio of 3.09 shows that students choosing
to use PMDs are much more likely to answer correctly than students choosing to use truth tables.
Applying a X2 test to establish the significance of this difference is not valid in this case due to
the small number of students who used PMDs incorrectly.

A Logistic Model for the results of Question 4 (similar to that described for Assignment 1993
Question 2) revealed that neither student quality, choice of method, nor the interaction of the

two were significant predictors of success.

Question 5 required the students to analyse four different wffs. Since the question allowed
students to choose whichever method they preferred, the results shown in Table 7.10 may be used

to compare their preferences.

6 Since it is impossible to construct a proof by natural deduction of the invalidity of a sequent,
any attempt to do so was automatically marked as incorrect.



Table 7.10 — Exam 1 esti
n=46 ~(PvQ) ~P & ~Q P=(QvVR) (P=Q)vR
PMD Correct 76 80 57 57
Incorrect 13 9 9 9
Truth Correct 11 11 30 30
Table Incorrect 0 0 2 2

Although students had to construct truth tables or PMDs for all four of these wifs, the question
clearly consisted of two parts: a comparison of the wifs ~(PvQ) and ~P&~Q); and a comparison of
the wffs P=(QvR) and (P=Q)vR. In answering the first part, there were two students who
constructed an incorrect PMD for ~(PvQ) but a correct one for ~P&~Q. In all other cases, students
either analysed both wifs correctly or both incorrectly. One notable feature of this question was
that three students gave incorrect answers to the two-variable expression yet gave the correct

answer for the supposedly harder three-variable expression.

In both two- and three-variable cases, the majority of students chose to use PMDs rather than
truth tables, though the difference was less in the three-variable case. The error rate for those
who chose PMDs was 13%, notably higher than the error rate for truth tables (5%). An analysis
of the Odds Ratios is again difficult because some of the cohort sizes are so small (including zero
in some cases). When all four columns in Table 7.10 are analysed together, the Mantel-Haenszel
Weighted Odds Ratio is 0.32 (ie those who used PMDs had 0.32 times the probability of
succeeding than those who chose to use truth tables). However, the Mantel-Haenszel Summary
Chi Square value of 1.27 has a P value of 0.26, indicating that this measure has little

significance.

In order to allow for differences in student quality, we again constructed Logistic Models: one for
the two-variable cases and another for the three-variable cases. The two-variable model
showed that student quality is a good predictor of success (the deviance of 9.38 with one degree of
freedom well exceeds the 0.05 significance threshold of 3.84), but choice of method is not a good
predictor of success (the probability of success favoured the PMD method, but with a deviance of
only 1.52), nor is the interaction between student quality and choice of method significant

(deviance 0.0002).

The three-variable model showed that neither student quality nor choice of method were
significant predictors of success (deviances of 1.33 and 1.75 respectively). However, the
interaction between student quality and choice of method was significant (deviance of 6.44). In
this case, the odds favoured the PMD method and showed that as student quality increased, the
probability of succeeding using PMDs increased at a faster rate than the probability of
succeeding using truth tables. In other words, students of poorer quality performed equally as



85

poorly (or nearly so) with both methods, whereas better students were more likely to answer

correctly if they used PMDs.
7.2.7 Truth Tables Only (1994)

During the first semester of 1994, a four week course in boolean algebra and logic circuits was
taught. In this module PMDs were never mentioned but truth tables were used extensively. Since
the emphasis in this course was algebraic rather than propositional, the notation here differs
from that used in the rest of this thesis. The symbols 0 and 1 are used instead of T and F;
disjunction is indicated by addition (“+”); conjunction by multiplication (“.” or simply
concatenation); and negation by either an overbar (eg FB) or a prime (eg (x+y)"). There is no
reason to believe that this notation is any harder or easier to master than the notation used by

students in the courses discussed previously.

A class test at the end of this section included the following questions —

1. Draw truth tables to show whether or not the following expressions are
equivalent —
iy A+B=A.B
i) (c+y)(xty) = X%

2. Draw a truth table for the expression x(y+z')+x'yz.

These questions require the student to construct a total of five truth tables: four for wifs with two
variables and one for a wff with three variables. In the context of boolean algebra and logic
circuits, it is not appropriate to introduce material implication, and so these questions only
involve the operators negation, conjunction and disjunction. The results of the analysis of answers
to these questions are summarised in Table 7.11.

Table 7.11 — Truth Tables Only (1994)

n=5¢ | A+B A.B (x+y)' (x+V) xyx’ X(y+2z')+x'yz
Correct 85 89 72 74 56
Incorrect 13 9 20 22 37

The low success rate for the wif containing three variables indicates that students find truth
tables for such wffs more difficult than truth tables for wffs with only two variables. This is
consistent with what we have noted before about such wffs, and applies to both truth tables and
PMDs.

As with Question 5 in the 1993 Final Exam, Question 1 required pairs of wffs to be compared. In
answering Question 5 in the 1993 Final Exam, it was noted that very few students would analyse
one wff correctly but the other incorrectly. However, in Question 1 in 1994, 13 students (24%)
made this type of mistake.
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The wifs A+B and A.B correspond to the wffs ~(PvQ) and ~P&~Q which featured in
Question 5 of the Final Exam of 1993. The wff (x+y)’(x+y) corresponds to ~(PvQ)&(PvQ) which
featured in Question 4 of the Class Test of 1992. Because of this, a comparison of students’ answers
to these questions in 1992, 1993 and 1994 may suggest whether teaching both PMDs and truth
tables yields any improvement over teaching just truth tables. In the first place we will ignore
the PMD results and simply ask “Does a course which includes both truth tables and PMDs make
students more capable of constructing truth tables when compared to students in a course which

only covers truth tables?”

The success rates for construction of truth tables for A+B and A. B in 1994 (from Table 7.11)
could be compared with the success rates for construction of truth tables for ~(PvQ) and ~P&~Q in
1993 (from Table 7.10). However, the entries of zero in Table 7.10 mean that no Odds Ratio can be
calculated, and the Mantel-Haenszel Summary Chi Square figure shows that there is no

significant difference between the data for the two years.

A similar comparison could be made between the success rates for construction of a truth table for
(x+y) (x+y) in 1994 (from Table 7.11) and for ~(PvQ)&(PvQ) in 1992 (from Table 7.1). The Odds
Ratio is 0.71 (in favour of the 1992 results) but the Fisher Exact test shows this to be insignificant
(two-tailed P-value of 1.0).

When the figures from the previous two paragraphs are combined, the Mantel-Haenszel
Weighted Odds Ratio is 0.35 in favour of the courses in which PMDs were taught, however, this
is also indicated to be insignificant by the low Mantel-Haenszel Summary Chi Square figure
(0.38).

Thus, the data leans towards an affirmative answer to the question “Does a course which
includes both truth tables and PMDs make students more capable of constructing truth tables
when compared to students in a course which only covers truth tables?”, but not to a sufficiently
significant extent. We could look at the data from a slightly different angle and ask “Does a
course which includes both truth tables PMDs make students more capable of correctly analysing
wffs when compared to students in a course which only covers truth tables?” This perspective
treats the 1994 results as a baseline (when truth tables were the only tool available), and allows

the comparison with previous years to include the PMD data.

However, even taking this broader perspective yields unconvincing results. In each case where
1994 results are compared with 1992 or 1993 results, the Odds Ratio favours the courses which
taught PMDs, but not to a significant degree. When all the data is combined the Mantel-
Haenszel Weighted Odds Ratio is 0.72 (in favour of the pre-1994 courses), but the Mantel-
Haenszel Summary Chi Square value of 0.58 (with a P value of 0.44) shows that the difference
between the 1994 data and the earlier data is not significant.
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7.3 Discussion of Quantitative Analysis

7.3.1 Summary of Statistically Significant Results

The variety in the structure of the available data has required that a number of different
statistical methods must be used. Despite this, a clear general picture emerges in which the

teaching of PMDs is shown to be beneficial with respect to the following:

o In the Class Test of 1992, the answers to Question 4 were more likely to be correct when
the student used PMDs rather than truth tables. Although the advantage was
insignificant for the simple two-variable cases, it was significant when the wif

contained three distinct variables.

e In the Class Test of 1993, students were able to analyse two- and three-variable wif
more reliably with PMDs than truth tables. The overall advantage was statistically

significant, although not for the three-variable case.

¢ In the Assignment of 1993, students who used the PMD subset method to check the
validity of a seéquent in Question 1 performed better than students using the other
methods. The difference was significant for both two- and three-variable cases.

Student’s ability in Question 2 showed no significant difference between the methods.

e In the Final Exam of 1993, the results of Questions 3 and 4 favour PMDs, whereas the
results of Question 5 favour truth tables. However, in all three questions the difference

was not significant.

e In 1994 the students learnt truth tables but not PMDs. If their results are compared with
those of previous students who have learnt both methods, we find that exposure to
PMDs increases the ability to correctly analyse two-variable wifs. Here again the

difference is not significant.

In summary, there is reasonable evidence to suggest that students perform better when using
PMD:s than when using truth tables. In some cases there is statistically significant data in favour
of this assertion, and in no case has there been statistically significant data to the contrary.
Furthermore, there is a strong tendency among students to use PMDs rather than truth tables for
situations involving two distinct propositional variables when given the choice, although this

tendency is reduced when the number of propositional variables increases to three.

Further study may clarify why individual students prefer one method over the other. It may be
conjectured that, when given a choice, students will use the method they find easiest. At least
some of the data (the low error rates in Table 7.10 for instance) may be explained by

hypothesising that students have learnt which method suits them and hence have chosen the
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method they can work with correctly. Perhaps if students were made aware of the fact that the
odds of giving a correct answer is higher when using PMDs, an even greater proportion may
choose to use them rather than truth tables. It is perhaps also the case that some students avoid

using PMDs for the three-variable problems because of a difficulty with three-dimensional

visualisation.

Even though there are indications that students prefer PMDs over truth tables and that those

using PMDs are more likely to give correct answers, there are reasons to treat these results with

caution.
7.3.2 Reasons to Doubt the Reliability of these Results

Various comments have been made already about the unsystematic way in which the data was
gathered. The history of this research gives rise to a number of issues which may have biased

the results and their subsequent analysis.

¢ Many of the cohort sizes were too small to allow any convincing conclusions to be drawn.

In several cases, the original data was no longer available. This forced the statistical
analysis to be based on summary data and limited the range of statistical tools which
could be used.

¢ The data was based on questions which were designed for assessment of student ability

rather than assessment of PMDs or of teaching methods.

e The research and analysis has been carried out by the same person that invented the
PMD approach and who taught all the courses. Significant bias towards PMDs may
have been introduced by the lecturer’s enthusiasm for the PMD approach.

e In many cases it is not clear which variable is being measured by the statistical tests.
Although the intended variable under study is the students’ ability using various
logical methods, students’ overall ability and the students’ preferences may have
interfered. In some cases a Logistical Model was used to allow for such variables, but

this was not always possible.

¢ Whereas the logic courses in 1992 and 1993 were full thirteen week modules, the 1994
course (in which only truth tables were taught) lasted only four weeks.

7.4 Some Qualitative Analysis

When working with truth tables, at least three students drew the PMD for material implication
in the corner of the page. It can safely be assumed that this doodle is a memory-aid to help them

deal with material implication correctly in the truth table. One student also doodled the PMDs
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for disjunction and conjunction in the margin next to answers to truth table questions. Incidents
such as these add weight to the assertion that teaching PMDs is of more benefit to students with
respect to their ability to solve problems in propositional logic than just teaching truth tables.

There is a variety of such qualitative data which deserves discussion, most of which involve
observations of mistakes made by students. By noting such mistakes, one can attempt to infer
what misconception in the student’s mind led to that mistake. A categorisation of the common
logical and procedural mistakes indicates which aspects of teaching should be stressed or

improved. From the various assessments of students described above, the following

categorisation can be proposed.

First, there are several recurring errors which led to incorrect truth tables and/or PMDs, but
which were neither errors computing truth table values nor errors manipulating PMDs. In each of
the tests and assignments whose results are described above, betweén 25% and 50% of the
mistakes related to framing the answer to the question incorrectly. For instance, when asked to
prove the sequent Pv(~P=Q), ~Q .. P, a student could convert this sequent to the corresponding
conditional (Pv(~P=Q))=>(~Q = P) and show that expression to be tautologous using either
truth table or PMD. Many students made mistakes in the conversion phase, before either truth
table or PMD was used. This perhaps indicates a need to place a greater emphasis on this

conversion process in future courses.

As with any mental procedure there is also a trivial-slip-up factor included in the error rates.
Up to 10% of errors with both truth tables and PMDs could be accounted for by one-off accidents
caused by exam pressures rather than misconceptions. Such accidents are indicated when a

student makes a mistake but fails to repeat the mistake in similar situations. Another 10% of the

errors were too confusing to interpret.

The errors remaining after discounting the above, are described below in roughly decreasing order
of frequency.
7.4.1 Typical Errors with Truth Tables

1. T=F: When the antecedent is true and the consequent false, the overall value of a
material implication is defined to be false. But students may mistakenly say that such a
case yields true. This is perhaps the most disturbing mistake since this case signifies the

very essence of material implication.

Consider Figure 7.8 for example, which shows a student’s answer to Question 3 in the 1993
Final Exam. Values in this truth table are all correct except for those indicated by an
asterisk (*). On the fourth row there are two instances where the student has mistakenly

indicated that T=F yields the value T. (The first asterisk on that row of the truth table
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follows on from these two other mistakes and is not in itself a mistake.) The student has
used different colours to indicate the order in which the operators were processed, and in

this she is quite correct. Her only mistake is in the processing of material implication.

PO (P v (~P = Q)) = (~0 = P)

T T TT F T T T F T T

T F TT F F*F T T T T

FT FT T T T T F F* F

FF FT*T T*F T T T*F
Figure 7.8 — Incorrect — T=F Yijelds the Value T

Another student constructed the truth table in Figure 7.9 while answering Question 3 in the
1993 Final Exam. Once again asterisks indicate values in the table which are incorrect. In
the fourth row, the first error suggests that the student believes that T=F yields T. (The
second mistake in the fourth row is simply a consequence of the first.) In this case, the
student did not construct any other truth tables in this exam and we cannot discount the

possibility that this mistake was accidental.

PO | ~P | ~P=0Q | Pv(~P=0Q)
T T F F* T
T F F T
F T T T
FF T T* T*

Figure 7.9 — Incorrect — T=F Yields the Value T

Yet another student seems to have made this same error in his answer to Question 3 in the
1993 Final Exam. The truth table shown in Figure 7.10 shows three values in the fourth row
to be incorrect. These could be accounted for by the hypothesis that the student thought
that T=F yields and overall value of T. (In this case it may also be that the student filled
the whole table with T’s for a laugh.)

PQ |(Pv (~P = Q) = (~0 = P)
TT T T T T
T F T T Gy
F T T T T T
FF T* T T T*
Figure 7.10 — — T=F Yi T
28 F=T: When the antecedent is false and the consequent true, the overall value of a

material implication is defined to be true. But students may incorrectly judge this to be

false.
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The example previously shown in Figure 7.9 shows this mistake in the first row. Two other
students constructed exactly the same truth table for ~P=Q. It may be that these students
have internalised an incorrect truth table as a definition of material implication in which
the rows T=F and F=T have been reversed (Figure 7.11b rather than the correct 7.11a). At
least two other students who sat for the 1993 Final Exam exhibited errors which could be
accounted for by this hypothesis.

P Q P=0Q PO P=0
T T T Vi
T F F T
F T T F
FF T T
7.11la 7.11b

Figure 7.11 — Correct (a) and Incorrect (b) Truth Tables Defining Material Implication

F=F: When both antecedent and consequent are false, the overall value of a material

implication is defined to be true. But students may incorrectly judge this to be false.

The example given previously in Figure 7.8 also shows this mistake. The errors in the
second and third rows of the truth table can be explained by hypothesising that the
student believes that F=F yields an overall value of F. In answer to Question 4 in the same

exam this student consistently showed this same mistake.

Confusing columns: When filling in a truth table, it is important to fill in columns in the
correct order so that the boolean operators are processed in the correct precedence sequence.
But some students become confused about which columns are being applied to which

operator. For instance, consider the incorrect truth table in Figure 7.12.

PQ P =(~P v Q)

123456
T T TFFTTT
T F TF FT F F.
FT FTTFTT
FF FTTFTTF

Figure 7.12 — Incorrect Truth Table for P=(~PvQ)

The numbers 1,2,3,4,5 and 6 will be used to refer to the columns of this truth table in order to
discuss the order in which they should be filled them in. Columns 1,4 and 6 are simply
repeats of the columns representing P and Q on the left hand side. These columns should be
filled in first (in any order) or they may be left out completely by confident students. After

that, it is crucial that the remaining columns be filled out in correct order: column 3 based



92

on the values in column 4; then column 5 based on columns 3 and 6; and finally column 2

based on columns 1 and 5.

In Figure 7.12, however, the order of calculation is incorrect. Everything is correct up until
the values for column 2 are to be calculated. But instead of determining the truth values for
column 2 on columns 1 and 5, the calculation is mistakenly based on columns 1 and 3. In this
case three of the entries in column 2 remain correct, but a “F” is entered in the first row

instead of the correct “T”.

The example in Figure 7.12 is an invented one. It would be unusual for a student to make
this type of mistake in such a simple wff, but for a longer expression, with more than two
variables, the truth table may become large and cluttered, and students may easily become
confused about the order of computation. Though I have noticed this error on several

occasions, I could not locate an actual example to reproduce here.

Students seem aware of this confusion and use various strategies to avoid it. One strategy is
to use different colours for different columns: maybe pencil for the initial columns (1,4 and 6
in the example above); black pen for intermediate connectives (columns 3 and 5) and red
pen for the main connective (column 2). A similar strategy is to highlight the more
important columns (that is those which are calculated later) by drawing circles or squares
around individual values. Many students will indicate the main connective (ie the final
outcome of the truth analysis) by encircling the whole column or at least pointing to it
with an arrow. Yet another strategy is to offset the values in each row as exemplified by

the student’s truth table in Figure 7.13.

PQ |(Pv (~P = Q)) = (~Q = P)
T T T T T T T
F F
T T
T
T
T F T T F F T
F T
T T
T
T
FT F F T T F
T F
T T
T
T
FF F F F F F
T T
F F
F
T

Figure 7.13 — Use of Offsetting to Highlight Order of Operations
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An associated error is for a student to construct correct truth tables, but indicate the wrong
column as the main connective. This may have happened, for instance, with a student who
constructed correct truth tables for the wifs ~(PvQ) and ~P&~Q, but who then declared

that the two wffs were not equivalent.

5.  T&F: When either conjunct is false, the overall conjunction is also false. But this may be

incorrectly judged to be true.

6. Incorrect rows: A truth table for an expression with n variables should have 2™ rows which
are normally ordered systematically. But some of these rows may be missing, repeated or

the order of rows may be confused.

For instance, one student constructed a truth table with sixteen rows (half of which were
repeated) for a wff with only three variables. Another student made a similar mistake by

constructing a truth table with eight rows for a wff with only two variables.

The ordering of rows is in one sense irrelevant since a truth table may be filled in correctly
with the rows in any order. However, if students who do not adhere to a standard order are
more likely to leave out a row or to repeat a row. Furthermore, it is difficult to compare
truth tables whose rows are not in the same order. In 1994 (when only truth tables were
taught) 30% of the group did not use the standard order of rows in Question 3 (see section
7.2.7).

7.4.2 Typical Errors with PMDs

1. Orientation: As discussed above (Section 7.2.1.1), it is important that the implicit labeling
of a PMD is agreed upon by all. But students may use an alternate orientation to the

convention.

2. Two variables instead of three: If a boolean expression contains three distinct variables,
then it is necessary to use a three-variable PMD. But some students do not recognise this
and try to use a two-variable PMD. Figure 7.14 shows an example from the 1993 Final
Exam, Question 5. This example shows the additional error of forming a disjunction by the
match operation instead of the overlay operation, but this is a rare mistake (the only

occurrence [ have noticed).
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P=(QvR)

Figure 7.14 — In for P=(0OvR

Diagram for Q: In a two-variable PMD, the second propositional variable (say Q) is
represented by Figure 7.16a. But some students mistakenly draw the diagram in Figure
7.16b. Two students had previously drawn a correctly labeled two-variable PMD (Figure
7.15), and yet represented Q by Figure 7.16b.

TT
TF FT
FF
i — rr 1 1
Figure 7.16a — Correct PMD for Q Figure 7.16b — Incorrect PMD for |

Material implication: When two PMDs are to be combined by the operator “=", the correct
procedure is to reverse the first diagram and overlay it on the second. But students may not
perform this procedure correctly. The fact that this error occurs far less than the
corresponding errors with truth tables is one of the strong points in favour of teaching

PMDs.

An example from the 1993 Final Exam (Question 5) is given in Figure 7.17. The student has
constructed PMDs for two different wiffs and concludes incorrectly that they are not
equivalent. In both cases the student has constructed the PMDs correctly except for the step

where the = sign is processed. It is probable that the student performed a “reverse and
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match” operation instead of the correct “reverse-and-overlay”. This explanation is
consistent with both examples. This student had correctly used reverse-and-overlay for

material implication in earlier two-variable questions in the same exam.

P = (Q v R (P = Q) v R

YR LL
Vg

Figure 7.17 — Incorrect use of Material Implication

Another example of a mistake in processing a material implication is shown in Figure 7.18.
This example is taken from Question 3 in the 1993 Final Exam. The student has constructed
the PMD correctly except for the step where the PMD for ~P is combined with the PMD for
Q. In other questions in the same exam this student did use the correct reverse-and-overlay
procedure. It is possible that the student was confused by the need to reverse a PMD which
was already a reversal of the basic PMD for P (ie a confusion regarding double negation,

rather than a confusion regarding material implication).

P v (~P= Q)

& o

Figure 7.18 — Incorrect use of Material Implication

Negation: When a PMD is to be negated, the correct procedure is to reverse each corner of
the diagram. But some students seem to reflect the diagram instead. For instance, consider

the PMD in Figure 7.19 which was constructed for the wif ~(PvQ) by a student.
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Figure 7.19 — Incorrect use of Negation

Although the first three diagrams are correct, the fourth diagram is not the negation of
the third. It seems that the student has mentally either turned the third diagram upside-
down or has reflected the diagram about the horizontal axis. This is a reasonably common
error when students first encounter negation of PMDs. Perhaps the term “reverse” is
ambiguous. Although a number of students have misinterpreted the reverse procedure in
this way when they are first taught, the mistake is usually quickly corrected by
emphasising that “reverse” means “reverse each corner”. The situation in Figure 7.19 is the

only case I have seen in which the mistake has persisted. .

Conjunction: When two PMDs are to be combined by the operator “&”, the correct procedure

is to match-the-dots of the two diagrams. But students may not perform this correctly.

Missed a diagram: Constructing a PMD for an expression requires a number of subordinate
PMD:s to be drawn. But one or more of these may be missed. Related to this is the possible
mistake of processing operators in the wrong order, though no example of this has been
observed. These two mistakes are most likely to occur when students do not line up the

diagrams under the symbols.

In an otherwise very good answer to Question 4 of the 1993 Final Exam, one student
constructed the PMDs shown in Figure 7.20. She added notes to the diagrams to indicate
exactly which operations were being used and added further emphasis by repeating some
PMDs unnecessarily. However, she failed to draw any PMDs for the clause “&(~5=~E)”.
Given this student’s overall ability and the quality of her answers to other questions in

this exam, [ would understand this error as a minor oversight.

This error raises the question of whether the method of processing PMDs promotes such
mistakes. The very low frequency of such errors (only three throughout the available
data) indicates that this is not the case. This type of error certainly occurs less frequently
than the corresponding error with truth tables (number 4 in Section 7.4.1).
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(S & H) = E) & (~5 =-~E) H= S

% N/

\ / gt Rev. & overlay
dots
Reverse
& overlay

. 4
«}—— is notasubset of =1

Figure 7.20 — Incorrect — Missing Diagrams

Another example of this error comes from Question 1 in the Assignment of 1993 and is
shown in Figure 7.21. In the right half of Figure 7.21 the student has (quite appropriately)
left out the diagrams for R, P and Q. However, in the left half, although a diagram has
been constructed for Q=R, none was constructed for P=(Q=R), and so the final diagram

represents (Q=R)=(~R=(P=~Q)) rather than (P=(Q=R))=(~R=(P=~Q)).

(P= (Q= R) =» (~R=(P=~Q))

Figure 7.21 — Incorrect — Missing Diagrams
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7.5 Student Opinions of the PMD Approach

At the end of the logic courses in both 1992 and 1993, students were requested to complete a course
evaluation questionnaire. The University of Natal has no policy on such course and lecturer
assessment, and this questionnaire was developed over several years by myself in consultation
with other academic staff. The 1992 questionnaire is shown in Figure 7.22. This was
administered after the lectures had been completed but before the final exam. The questionnaire
contains three sections: The Subject Content, The Lecturer, and Student Information. The 1993
questionnaire differed from the 1992 questionnaire in only two places: Question 7 was slightly
modified to read “The logic assignment was a waste of time”; and Question 21 was completely
changed to read “Having a weekly quiz followed by discussion of readings promotes learning

more than the usual lecturing approach”.

Data from these questionnaires was collated in order to give an indication of the students’

satisfaction with the course. The following procedure was used —

o For each positively-phrased question, the “average” response was calculated.

. For each negatively-phrased question the responses were first inverted (on the
assumption that a response of “5” to a negatively-phrased question can be treated as
a response of “1” to a positively-phrased question) and then the average was
calculated.

o Careful note was taken of any question which rated significantly less than the
others, and goals were set to improve that aspect of the course.

. The overall average for all responses to Questions 1 to 11 was calculated and
converted to a percentage to provide an estimate of overall student satisfaction with
the Subject Content.

o In a similar way, the overall average for all responses to Questions 13 to 22 was
calculated and converted to a percentage to provide an estimate of overall student
satisfaction with the Lecturer. _

. All written comments (Questions 12 and 23) were noted and recurring comments were
closely examined to see whether they indicated areas of the course or details

regarding the lecturer which could be improved.

While this procedure provides a very rough guide to student satisfaction, it was considered to be
sufficient to assist the lecturer in improving both his lecturing style and the course. It also allows
some comparison between courses taught by the same lecturer. Tables 7.12 to 7.15 show the results

of those aspects of this evaluation procedure which are relevant to course content.



99

Course and Lecturer Evaluation

Logic Component of Computer Science 1

Indicate the strength of your agreement or disagreement with the statements below by circling
the appropriate digit. Use the following scale — 0 - Inappropriate or do not know

1 - Disagree strongly

2 - Disagree

3 - Neutral

4 - Agree

5 - Agree strongly
The Subject Content
1. The aims of the subject were made clear tome.............cocciiiiiiiiiiiiiiiinennn, 0-12345
2. These aims were achieved......cocccoviniiiiiii i ceeee s irieeeee s s s 0-12345
3. This subject was relevant to my course and Career ...............cccoeveerreciinnenaannnn 0-12345
4. The method of assessment did not properly test my abilities...............cccuniniis 0-12345
5. I found the subject matter very difficult................oooiviiiiinnnn 0-12345
6. The printed notes were useful........ccccooeeeiiiiiiiiiiii e, 0-12345
7. The predicate logic assignment was a waste of time..............cccoceveininnnneninn, 0-12345
8. This subject expected toomuch of Me........coiiveiiiiiiiiiii e 0-12345
9. The tutorial exercises did not teach me anything..........c.ccoeviiniiieeiiiininnnianninn. 0-12345
10. The LemmonAid software was very helpful ..........cccccoeieiinins 0-12345
11. Overall, I found the course beneficial..........ccceeiiiiriiiiiiiii i ceeeiiaes 0-12345

12. Any general comments, or suggestions about the subject matter?

The Lecturer

13. The lecturer spoke clearly......ccoummmieiiiiieiiicicic e 0-12345
14. Individual lectures were very disorganised ..........cccceivninineiciinininiiiiicniine, 0-12345
15. The lecturer lacked enthusiasm for the subject............coevevenniiniiriinniniinn, 0-12345
16. The subject matter was developed logically throughout the course................... 0-12345
17. The lecturer responded well to questions during lectures..............coccvvvviiinnnnnen. 0-12345
18. The lecturer wrote legibly on the chalkboard ............ccccceveiiiciiiieriemeeeeerennenann 0-12345
19. The lecturer showed inadequate knowledge of this subject...........ccccouvnrucnncne. 0-12345
20. The lecturer was helpful when I asked for assistance outside class time........... 0-12345
21. Good use was made of visual aidS..........cccovruiiiiiiiiiiinniii 0-12345
22. Overall, the lecturer was very good ........c...cccvviviiiiiinicnenn e 0-12345

23. Any general comments about the lecturer?

Student Information

24. 1 attended all the leCtures........cccoiiriimiiiiiiiicricniee oo e 0-12345
25. I attended all the tutorials.........ccccooviiiiiiiriiiiiiiiiiiiii s 0-12345
26. On average, Ispent the following number of hours each week

(outside lectures) on thisS COUTISE........cciviiviimiiiiiiiiiinii e errr e eeseenneas

Figure 7.22 — 1992 Course Evaluation Questionnaire



100

Table 7.12 — _ t the Subj tion 12, 19

n=37 Positive Comments

Negative Comments

Interesting (5)7

It was an astounding experience to learn all the
different implications that a single sentence
could contain

Very exciting — especially Predicate Logic

Tutorials were not really beneficial

Tutor not familiar enough with the work
Insufficient time in tutorials. Better to be given
the tutorial work beforehand

Not relevant enough to computer science (5)
Very intense and involved

Class tests did not properly test my abilities at
constructing proofs

More practical assessment are needed

Too difficult (2)

Make more books available at the library
More extensive course notes required (2)

Not enough examples in the course notes
Heavy workload

Should leave out Inductive Logic

7 Where more than one student made the same or very similar responses, the number of such
students is shown in brackets following the comment.
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jion 12, 1993)

Negative Comments

Helpful and beneficial

The notes are useful as they give us a general
good outline of the course

Very new approach to the world which made it
interesting

After the first section [Induction], as things
became more mathematical it got easier for me
Enjoyable — I should have got more involved in
the discussions

Interesting

Very good

Quite theoretical and in a way abstract. We
could apply it to everyday life — but we don’t
— haven’t applied it so rigorously. Therefore a
bit boring to keep up with. No wonderful new
discoveries or exciting concepts.

The subject was not difficult, but difficult to
grasp

Spend more time on proofs, especially the
harder aspects (2)

Very confusing and hard to grasp

Could not quite make the connection between it
and computer science (3), but it helped in my
growth analysis experiments

More tutorial time would be beneficial
Discussions may come up with even better
improvements. If it can be arranged somehow
that every student must have a contribution in
these discussions

The section on Induction is not relevant to
computer science, and it was difficult

Not interesting

Predicate and Propositional logic difficult —
should spent more time on examples as a class
rather than in LemmonAid

During the end of the course I feel practicals
should be stopped as students do not have time
to study for exams

Hard to adapt to at first
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Table 7.14 — Averages of Responses to Course Evaluation Questionnaire

Question 1992 1993
1 | The aims were clear 3.7 3.6
2 | The aims were achieved 3.5 3.4
3 | Subject was relevant 3.2 35
4 | Assessment was appropriate 2.5 2.6
5 | Subject was very difficult 2.9 2.8
6 | Printed notes were useful 3.7 4.7
7 | Assignment was a waste of time 2.4 1.9
8 | Subject expected too much 3.4 2.0
9 | Tutorials didn’t teach anything 1.9 2.0
10 | LemmonAid was useful 3.7 4.3
11 | Beneficial course overall 3.8 3.9
7.15— i urse Week r
1992 1993

Less than 1 hour 37 32

Between 1 and 2 hours 23 25

Between 2 and three hours 17 29

Between 3 and 4 hours 7 0

Over 4 hours 17 14

The most useful results are those instances where the questions were answered differently from
one year to the next. During this time I had refined the PMD approach, produced better written
notes, introduced the weekly quiz and attempted to improve the course in response to the issues
criticised by students in the first questionnaire. Table 7.14 shows five questions whose average
response for the two years differ by more than 0.2. In each case the change was positive. The

following discussion addresses these seven questions in turn.

Question 3 — On the issue of relevance to course and career, students often fail to see how this
course is relevant to computer science. However, I have attempted to include many more
examples of logic in computing and this may have lead to the improvement from 3.2 in 1992 to
3.5 in 1993.

Question 6 — The Course Notes given to students in 1992 were completely different to those in
1993. The latter are shown in the Appendix, while the former were very brief and did not
describe PMDs at all. As expected, the students in 1993 endorsed the Course Notes to a much
higher degree (4.7) than the 1992 students (3.7).
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Question 7 — The 1993 Assignment was much broader than the one in 1992, which focused
purely on predicate logic. The students seem to have appreciated this change.

Question 8 — In both years, the students generally accepted that the course was pitched at an
appropriate level as shown by both Questions 5 (“difficulty”) and 8 (“too much was
expected”). In my perception, the weekly quiz added to the amount of work because it meant
that students had to read and think prior to the first lecture every week. However, the
students in 1993 showed an even stronger inclination (4.0) to deny that “This subject expected
too much of me” than the 1992 students who did not have weekly quizzes (3.6).

Question 10 — In 1992, the LemmonAid software was described verbally to the students but its
use was optional. Based on a positive response by those who did make use of LemmonAid in
1992, several tutorial sessions were devoted to LemmonAid in 1993 and students were
encouraged to use the program to assist with the Assignment. The software appears to be a

friendly tool which increases the students’ confidence with propositional and predicate logic

proofs.

The student response to Question 21 in 1993 was also encouraging. This question proposed that
“Having a weekly quiz followed by discussion of readings promotes learning more than the usual
lecturing approach”. I was most interested in the students’ responses to this question because I
hoped that the new approach (weekly readings from good course notes, followed by a quiz and
tutorial-style discussion and exercises on areas which the students identified as unclear) would
be well received. The rating of 4.4 indicates quite strongly that students preferred this approach
over the more traditional style of lecturing. Not only was the average response high, but only

one student disagreed with the statement.

In 1992 the rough metrics described above indicate satisfaction with the course at 72%; in 1993,
the figure was 77%. These figures mean very little on their own, but allow useful comparison
between this course in logic and other courses I have taught. From similar questionnaires for
other courses, I have come to expect satisfaction ratings of between 66 and 78 percent for the
course content. I do not want to make any major point by quoting these statistics except that they
(along with the student comments listed in Tables 7.12 and 7.13) support my personal feeling that
students finish this logic course quite pleased with both the knowledge they have acquired and
the means by which that knowledge was imparted.
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Chapter 8: Conclusion

8.1 Technical Conclusions

This dissertation has presented the use of Possible Models Diagrams as a tool for analysing
formulae and sequents of propositional logic. A PMD for n variables is graph G which is
isomorphic to the hypercube Qp, whose vertices are n-tuples indicating the assignment of truth

values to the n variables. The vertex set is partitioned into the two sets T(G) (the darkened

vertices) and F(G) (the vertices left open).

Every propositional wif can be expressed as an induced subgraph of a hypercube [HARA89] and
one way to represent this induced graph is in the form of a PMD. Every propositional wif can be
expressed as a PMD in which the set T(G) indicates those possible models for which the wff
turns out to be true. Compound PMDs may be constructed from simpler PMDs using the operations
reverse, overlay and match and there exist simple algorithms for applying these operations

either by hand or by computer.

Once a PMD has been constructed for a wif, it is easy to determine whether the wif is
tautologous, contingent or inconsistent. Informally, one only has to see whether all the nodes of
the PMD are darkened, whether only some are darkened or whether none are darkened
respectively. More formally, if the PMD G is such that F(G) is empty, then the corresponding wif
is tautologous; if T(G) is empty then the wff is inconsistent; if neither T(G) nor F(G) are empty,
then the wif is contingent.

Apart from analysing individual wffs, PMDs may be used to analyse sequents. A propositional
sequent A1,A2,...,Ap .. C is valid if and only if the PMD for the conjunction of the premises (say
L) and the PMD for the conclusion (say R) are so related that T(L)CT(R).

PMDs have the same expressive power as truth tables, that is, they are informationally
equivalent in Simon'’s sense. It is not possible to generalise the PMD approach (nor truth tables)

to include predicates and quantifiers.

Whereas this research has examined the use of PMDs for teaching basic propositional logic, this
is by no means the only area in which they can be applied. Gupta and Pratt have use the same
fundamental idea as the basis for defining concurrent processing [GUPT93]. Brink and Heidema
have used the partial ordering implicit in PMDs as a way of analysing the verisimilitude of

theories [BRINS7].
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8.2 Pedagogical Conclusions

Although PMDs and truth tables are informationally equivalent, they are not computationally
equivalent (in Simon'’s sense). When used for human problem solving, certain information can be
more readily retrieved from a PMD than from a truth table. This is because they are more visual
and imagistic than truth tables, because labeling is implicit, and because they are iconic rather

than purely symbolic (in Bruner’s sense).

Although PMDs are defined in terms of graphs and boolean algebra, it is easier to introduce
PMDs to students using the basic concepts of set theory. Student’s pre-existing knowledge of set
concepts such as complementation, union, intersection and subset can be used as the basis for
teaching the logical concepts of negation, disjunction, conjunction and material implication
respectively. Linking disjunction to set intersection settles the question of why disjunction is
defined to be inclusive rather than exclusive. Linking material implication to the subset relation

avoids the typical student opposition to a truth-functional definition of material implication.

Three simple visual operations allow a PMD to be built for any propositional wff — the action of
overlaying two PMDs corresponds to forming a disjunction, matching the dots of two PMDs
corresponds to forming a conjunction, and reversing the dots of a PMD corresponds to negation.

Material implication is acheived by a combination of the reverse and overlay operations.

With all forms of symbolic logic, including the PMD approach, there is a threat that
mechanical learning may overshadow concept learning. In order to avoid this threat, students
should be presented with a multiplicity of logical representations and should become
experienced in translating between those representations. In this way students are encouraged to
learn not just the mechanical processes required by any one representational system, but also to
learn the abstract concepts underlying those representations and processes. Given the body of
evidence indicating the difficulty of transferring formal concepts to practical applications, it is
especially important that students be given exercises requiring translation between informal

English descriptions of logical problems and symbolic notation.

A course on logic for first-year computer science students has been designed and taught for several
years based on these ideas. Various forms of logic (informal, inductive, propositional, predicate,
fuzzy, probabilistic, multi-valued and modal) and various logical tools (truth tables, PMDs, and
a natural deduction system) are all presented in this course. PMDs have been found to fit well in

such a course.

The available quantitative data drawn from assessment of students over three years suggests
that when PMDs are used the odds of giving correct answers is greater than the corresponding
odds when truth tables are used. There is a strong tendency among students to use PMDs rather

than truth tables for situations involving two distinct propositional variables when given the
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choice, although this preference is reduced when the number of propositional variables increases

to three.

In addition, a variety of qualitative data suggests that student difficulties with truth tables are
alleviated by the use of PMDs. In particular, it has been noted that material implication is a
difficult concept to master and that when students use truth tables the majority of their mistakes
involve material implication. However, relatively few errors involving material implication
are made when students use PMDs. Furthermore, a number of students draw the PMD icon for

material implication to help them fill in truth tables correctly.
In course assessment surveys, students evaluate the PMD approach positively.

8.3 Future Research Directions

The topic of transfer has been raised a number of times throughout this dissertation. One would
hope that a course in formal logic equips students to apply logical principles in less formal
situations. However, the extent to which this occurs, if it occurs at all, is still an open question.

Further research with PMDs is likely to focus on whether they assist in this task of transfer.

A study has been commenced in which students are asked to judge the veracity of conjunctions,
disjunctions and conditional statements (all presented in English), given certain assurances about
the veracity of the components of those statements. The statements are designed to enable the
students’ internal “truth table” to be inferred from their answers. The same questions will be
asked at the commencement of the course and at its completion in order to ascertain whether the

students’ internal “truth tables” are altered by the course.

The changing shape of South African culture and scholarship also provides fertile ground for
cross-cultural studies. Are there cultural differences in the perception of logic? The bi-lingual
studies which Zepp has undertaken with Cantonese, Sesotho and English speakers [ZEPP82 and
ZEPP87] could be extended to include Zulu speakers. Would the visual nature of PMDs assist
black African students to learn symbolic logic?
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Preface - Whyv study logic?

Logic is the study of right reasoning. It is the process of putting together reasons for believing
something. Colloquially we use terms such as “logical”, “rational”, “reasonable” etc very
loosely, but in these notes we will establish an exact formal basis for logic.

There are a variety of reasons for believing things, including:
- being told by parents or some authority figure (“medical authorities warn that smoking
15 a health hazard”)
- peer pressure, fear, compulsion
- ignorance
- personal observation (“I saw the man kill her”)
- reasoning about observations (“all people die”)
- reasoning about other beliefs (“I believe that 5+3=8, and so I can reason that I should also

believe that 8-3=5")

Only the last two of these fall within the scope of logic, however, there is not just one way of
doing logic. Indeed there are a wide variety of logics - from informal logic whose general
principles apply to everyday reasoning, to rigidly structured logic relevant particularly to
computer science. Right reasoning is a basic foundation for all academic pursuits, maybe
especially for science, and maybe even more especially for computer science. The computer is a
machine which rigidly adheres to highly structured logic and those who wish to understand
computers must be able to think in the same rigidly logical way.

These notes were written primarily as part of the Computer Science 1 syllabus at Natal
University (Pietermaritzburg). They serve as an introduction to the whole field of logic, not just
“computer logic” - an introduction which should serve the student throughout their academic
endeavours and hopefully the rest of their lives. Nevertheless, the emphasis of these notes is on
the kind of formalism most suited to computer science: boolean operations, propositional and
predicate calculi, and various forms of numerically-based logic.
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Section 1 - Some [Basic
Conceots

Arguments

eg Thembi expects her income to rise by 10% next year but then realises
that prices of goods and services will also probably increase by about
10%. She also knows that having a higher income may put her in a
higher tax bracket and so infers that next year she will actually be
worse financially off than this year.

Thembi has started with some premises and has derived a conclusion - this process is call an
inference. We can describe this process in various ways:

- a conclusion is inferred from some premises

- a conclusion follows from the premises

- the premises imply a conclusion

- the premises lead to a conclusion

- the premises entail a conclusion

In logic, an argument is an inference (or a series of inferences) which has been written down in a
structured form. (This is much different from the use of the word “argument” in normal English.)
An argument is an ordered list of logically connected reasons for believing something. An
argument is a proposed proof of some conclusion.

There are many ways to try to convince someone to believe something which are not technically
arguments. For instance, “Drink Extra-Lite Beer! It's the beer of champions!” is a form of
persuasion, but not an “ordered list of logically connected reasons for believing something.”

Propositions

Each statement in an argument represents a proposition. The argument below contains three
propositions -

1. Whenever it rains the grass grows

2. It is raining heavily today

3. Therefore, the grass must be growing

One proposition may be expressed in different ways: for instance, the statement “If it rains then
the grass will grow” represents the same proposition as statement 1. above. Similarly, several
statements in different languages may all express the same proposition.

Propositions are claims about certain facts. Propositions may be affirmed or denied, which
makes them different from questions, commands and exclamations. eg “How are you?”, “Pass the
salt” and “Hallelujah!” are not propositions.

Both premises and conclusions are propositions. In fact, one proposition may be a conclusion in one
context and a premise in another.

Exercise Which propositions are premises and which are conclusions in the following
argument? '

1. In a legal Pascal program, each BEGIN must have a matching END

2. This program has 5 BEGINs and 4 ENDs

3. This is not a legal Pascal program

4. Tllegal programs will not compile successfully

5. This program will not compile
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“Truth”

The words “true” and “false” are also used very loosely, and will need to tightened up in order to
reason logically. Every proposition can either be true or false: these are the only possible truth
values and there is no possibility that any one proposition can be both true and false. This is a
basic presumption we will make for most of these notes, and it is best expressed as two Laws -

Definition: Laws of Rational Thought
1. The Law of Non-Contradiction - no proposition can be both true and false

simultaneously.
2. The Law of Excluded Middle - a proposition must be either true or false, there is no

middle Eound.

Two justifications can be distinguished for a proposition’s truth value -

1. Empirical truth - a proposition is true if it accurately describes reality. This is the
realm of science; of observation. The proposition “It is raining” is true if you go outside
and discover that it is actually raining, otherwise it is false.

2. Necessary (or logical) truth - the truth or falsity of some propositions can be
determined without any need for observational data. eg “Either it is raining or it is not

raining” is always true.

Although propositions are either true or false, it doesn’t make sense to say that an argument is
true or false. Rather, we are concerned about whether the conclusion really does follow from the
premises. If so, we say that the argument is valid, otherwise it is invalid.

finition: Validi
An argument is valid whenever the propositions are related in such a way that it is
absolutely impossible for the premises to be true unless the conclusion is also true. If it is

possible for the premises to all be true but the conclusion false, then the argument is invalid.

Note that the validity of an argument does not require that the premises be true. For instance
the raining/grass growing example above is valid, even if it is not raining. A valid argument
may proceed from premises which are false and lead to a conclusion which is false! Clearly we

need a further way of classifying arguments ...

An argument is s_gu_mi whenever it is valid and all the premises are true. Otherwise it is

unsound. ~
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Fallacies

Although these notes are about principles of right reasoning, it is useful to start with an
examination of bad reasoning. Fallacies, or invalid forms of reasoning, fall into three categories:
psychological, material and logical. Typical examples of these (certainly not a complete list)
are described below.

1. Psychological fallacies

- mislead the audience by taking advantage of psychological factors.

Ad hominem
A personal attack which seeks to discredit the source of an argument rather than address

the argument itself. May include name calling and character assassination. The attack
may or may not be accurate, but nevertheless is irrelevant to the validity or invalidity of

the argument.
Appeal to the supporters of the argument

“Seientists all agree that ...”, “Everybody knows that ..", “Intelligent people have
always believed that ...”.

Argument from ignorance
From the inability to prove something, it is not valid to infer that the opposite must be

true. eg “There is no proof for the existence of God; therefore he does not exist.”

Appeal to emotions

The use of threats to induce compliance by fear; the use of emotive words; an appeal to
sympathy (eg in a court room).

2. Material fallacies

- occur when conclusions are based on faulty material (ie premises)

Inconsistent premises
Given a set of premises, there may be a valid argument which leads to some conclusion, yet

the argument is unsound because there is something wrong with the premises. Not only
might one premise be false, but they might be incompatible (inconsistent) with each other.

Exercise: What is wrong with the following argument?

Bigdorp is 20km north of Littledorp and Littledorp is 20km west of Bergville. There is a
straight road that starts at Bigdorp and goes through Bergville to Dorpville. Dorpville is
north-east of Bergville. Therefore, Littledorp is closer to Bergville than to Dorpville.

Black-or-white fallacy

Assuming that there are only two opposing choices when there are actually other
possibilities. eg “Either a person is good or they are bad”, “Either we increase our sales or
we will go bankrupt”, “Either you win or you lose”.

Hasty generalisation
Making a general principle from limited experience (eg picking one white ball out of a hat

and deducing that they all must be white), or from unrepresentative data (eg carrying out
some research in an old-people’s home and inferring that all humans have difficulty
hearing).
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Post-hoc reasoning

Given that event A occurs immediately before event B, it is fallacious to conclude that A
caused B. eg Themba had a cold but it went away the day after he started taking
Sniffleless Medicine. Nevertheless, he would not be justified in concluding that taking
Sniffleless cured the cold. (Because of Hasty Generalisation, he would be even less
justified to conclude that “Sniffleless cures colds”.)

Begging the question (petitio principii)
This occurs when the proposition to be proved is somehow assumed to start with.
eg  Thembi - “That man is insane!”
Themba - “How do you know?”
Thembi - “Look, I can prove it - he’s a complete lunatic, therefore he

must be insane!”

3. Logical fallacies

- misusing the rules of inference

Definition: Conditional -
Propositions of the form “if X then Y” are called conditionals. X is called the antecedent and
Y is called the consequent. ~

Affirming the consequent
The following (invalid) argument affirms the consequent and falsely infers the antecedent

If a word is a Zulu verb then it ends with an ‘a’
The word ‘ilanga’ ends in ‘a’
Therefore ‘ilanga’ is a Zulu verb

Denying the antecedent
The following (invalid) argument denies the antecedent and falsely infers the consequent -

If it rains then the grass will grow
It is not raining
Therefore the grass is not growing
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

Exercises
1. For each of the following arguments,

i)  Write down the premises and and the conclusion.
ii) Write down any unstated premises or conclusions.
iii) Is the argument sound? Is it valid?

iv) Name any fallacy you can see.

All unicorns have four feet. Eugene is a unicorn. Therefore Eugene has four legs.

The ratio of the circumference of a circle to its diameter is 22/7. Hence any circle
with a diameter of 3.5cm will have a circumference of 1icm.

Any gork that you can show me is guaranteed to have a snozzle. This minjent is
obviously not a gork since it isn't snozzled.

By definition, a Communist is committed to the redistribution of wealth. Now Chris
Hani has clearly stated his belief that land and money needs to be taken from the
rich and given to the poor and so he must be a Communist.

All medical researchers agree that smoking increases the chance of contracting lung
cancer. The only people who disagree are the tobacco companies and it would be
foolish to believe them! -

If Charles Babbage invented the QuickSort algorithm, he would be a famous
computer scientist. Charles Babbage is a famous computer scientist. Therefore he
must have invented QuickSort.

Don’t touch that!!! It's hot!
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1.8 All the evidence goes to show that what we regard as our mental life is bound up

with brain structures and organised bodily energy. Therefore it is rational to suppose
that mental life ceases when bodily life ceases. (Bertrand Russell)

1.9 If God exists then the grounding reality itself is not ultimately groundless. Why?
Because God is then the primal ground of all reality. (Hans Kiing)

1.10  As for Federal supervision of elections in the South, I whole-heartedly support the
Administration’s referee proposal. I believe it is far superior to the well-intentioned
but less effective recommendation of the Civil Rights Commission, because the
referee proposal will deal not only with registrations, but also with voting itself.
After all, what good does it do to be able to register if you cannot vote? (Richard
Nixon)

1.11  All governments restrain and rule people; therefore, all governments are
totalitarian and authoritarian to some extent or another. (Totalitarianism refers to
a centralized form of government in which those in control grant neither recognition
nor tolerance to parties differing in opinion. Authoritarianism is a system of
governing that calls for unquestioning submission to authority.) (Robert Ringer)

2. Benno Torelli, genial host at Hamtramck’s most exclusive nightclub was shot and killed
by a racketeer gang because he fell behind in his protection payments. After considerable
effort on the part of the police, five men were brought before the Court where they were
asked what they had to say for themselves. Each of the men made three statements: two

true and one false -
Lefty:  “I didn’t do it I never owned a revolver. Spike did it.”
Red: “I did not kill Torelli. I never owned a revolver. The other guys are all
passing the buck.”

Dopey: “Iam innocent. I never saw Butch before. Spike is guilty.”
Spike:  “I am innocent. Butch is the guilty man. Lefty lied when he said 1did it.”
Butch:  “I did not kill Torelli. Red is the guilty man. Dopey and I are old pals.”

On the basis of these statements, who did it?

3. In a certain area of the deepest, darkest jungle in the Amazon there are two tribes.
Members of one tribe invariably tell the truth, while the other tribe always lies. A
certain tourist became lost in the jungle and, near to death, comes to a fork in the track.
At the fork there happens to be a native but the tourist does not know which she is from.

i) If the tourist could ask two questions, how could he find out from the native which
path to take to civilisation? (This is easy!)

ii) Unfortunately, the tourist is so weak he only has enough strength to ask one question.
Can you think of a single question such that after the native replies, the tourist will
know which of the two paths to take?
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Section 2 = Induction

Induction is the process by which general conclusions are infered from particular instances. To
induce something is to form a general principle based on limited experience. Most inductive
arguments rely on four principles: generalisation, causal reasoning, hypothesis formation and
refutation, and reasoning by analogy. These are the ways in which most of our everyday learning
and reasoning works. We could not survive without making such inferences, however, we will see
that all forms of induction are technically invalid.

1. Generalisation

In order to make sense of the world we notice similarities and differences between objects and
events and we use these similarities and differences to define categories.

eg; From my experience that every dog I've met barks, I conclude that all dogs bark.
egy The water we've tested boils at 100°C, so we conclude that all water boils at 100°C.
eg3 The sun has risen on every day I can remember, so it will always rise each day.

Basic Principle of Generalisation
Some Xis Y
Al XisY

But what about - Some students pass exams
.. All students pass exams

In an inference based on Generalisation, it is possible for the premise to be true but the conclusion
false, and hence this form of reasoning is invalid. We could change to principle to make it valid

I Exten inci neralisation
Some Xis Y
NoXisnotY
s AILXisY

...but normally it is not possible to establish the second premise. Nevertheless, it is clear that
some generalisations are more reliable than others; given that a generalisation cannot be 100%
guaranteed, how can we judge its reliability in order to avoid the fallacy of Hasty
Generalisation?

i) Were a sufficient number of
samples tested? All cases

ii) Were the samples representative
of the whole population?

i) What constitutes “a sufficient number of samples”?

- Depends on your prior knowledge of the situation. For instance you would probably only
need one sample to determine that “This whole bucket of milk is sour” but a large number
of samples to determine that “All police cars are yellow”.

- If all cases in the population are very similar, a small sample size is acceptable, but if
there is a lot of variation in the population then many samples should be tested.
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- Statistical analysis can make allowance for sample size to some extent but in general
the question “how many observations are needed in order to make a reliable
generalisation?” is unanswered.

ii) What constitutes “a representative sample”?
- If the population is diverse, choose samples which mirror the diversity.
eg] When selecting balls from a hat, shake the hat and choose balls from different
places in the hat
eg2 When researching whether police cars are yellow, examine police cars from
different countries, road patrols, riot squads, drug prosecution etc
- Look for counter-examples.
- Again, in general the question remains unanswered.

Lastly, make generalisations which are as specific as possible. eg “South African police cars are
yellow” is more likely to be reliable than “All police cars are yellow”.

2. Causality

Much of our reasoning about the world is not just a matter of generalisation (eg all dogs bark) but
about relationships of cause and effect (eg smoking causes lung cancer; the effect of not studying is
to fail). How can we make inferences about causal relationships without falling into the Fallacy
of Post Hoc Reasoning? What sort of evidence is needed to support the claim that A causes B?

The question “what causes X to occur” can be split into two parts:
i) What factors must be present in order for X to occur?
ii) What factors invariably result in X occurring?

For instance, oxygen must be present in order for wood to burn, however, wood will not invariably
burn in the presence of oxygen. If wood is made hot enough in the presence of oxygen then it will
invariably burn.

Definition: Necessary and Sufficient Conditions

A necessary condition for the occurrence of a specified event is a circumstance in whose
absence the event cannot occur.

A sufficient condition for the occurrence of a specified event is a circumstance in whose
presence the event must occur.

The word “cause” sometimes means “necessary condition” and sometimes “sufficient condition”.
Often a cause is some circumstance (or set or circumstances) which is both a necessary and
sufficient condition.

Consider any proposition in the form “if P then Q”. Such a proposition could be phrased
equivalently as “Q only if P” or “P is a sufficient condition for Q" or “Q is a necessary condition
for P”. If P is both a necessary and sufficient condition for Q, we often write “P if and only if Q" or
simply “P iff Q”.

Exercises

1. Is oxygen a necessary or a sufficient condition for fire, or both, or neither?

2. Is drowning a necessary or a sufficient condition for a person dying, or both, or neither?
3. Is validity a necessary or sufficient condition for soundness, or both, or neither?

4. Is soundness a necessary or sufficient condition for validity, or both, or neither?

Mills’ Methods

John Stuart Mills formulated five methods of establishing whether events were causally
related. Some of these principles were known before his 19th century formulation, but his name
has become attached to them anyway.
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1. The Method of Agreement
Suppose we have studied the circumstances under which an event E occurs and find the
following--

Events prior to E on
six separate occasions
ABCD
ABFGH

ACI]
ACIJK
ABFGH
ABCDF

It would seem likely that A is the cause of E, since A is the only point of agreement between the
six cases.

Definition: Meth f ement
If one (and only one) relevant circumstance is common to all cases in which an event occurs,
then this circumstance is the cause of the effect (or at least is related to the cause).

Exercises
1. Thembi has had a stomach ache for the last five days and thinks that it has something
to do with the breakfast she eats.
Monday - Banana, milk, sugar, egg, coffee
Tuesday - Tea, milk, toast, banana, butter
Wednesday - Fish, egg, toast, butter, banana
Thursday - Meusli, milk, banana, orange juice
Friday - Banana, orange juice, toast, butter, milk
2. Lightning always occurs before thunder. Is it accurate to infer by the Method of
Agreement that lightning causes thunder?

Clearly, the Method of Agreement is not 100% reliable. How can you be sure that you have taken
into account all relevant circumstances? Consider the following example - Themba has been
drunk for the last 3 nights. On Monday he drank Scotch and soda; on Tuesday he drank Whiskey
and soda; and last night he drank Vodka and soda. What causes his drunkenness?

2. The Method of Difference
Again, suppose we have studied the circumstances under which an event E occurs and find the
following -

Relevant Circumstances Effect
ABCDF E occurs
BCDEF E does not occur

It seems that when A is present (along with other factors) E occurs, but when A is absent and
everything else is the same, E does not occur.

D E. .I. N ll ” i ED_._E_E — - —

If two situations are alike in all relevant respects except one, and the effect occurs in one
instance but not the other, then the one difference is the cause of the effect (or at least is
related to the cause).
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3. Joint Method of Agreement and Difference
This is simply a combination of the two previous methods.

Relevant Circumstances Effect
ABC E occurs
ACDEF E occurs
CDF E doesn’t occur
BC E doesn’t occur

Once more, A looks like the cause of E.

4. Method of Concomitant Variation

Often causation is more complex than events either happening or not happening: we may need to
take into account the degree or extent to which something occurs. For instance, it is not drinking
vodka which makes one drunk, it is drinking too much vodka. The degree of drunkenness varies
in proportion to the amount consumed.

Relevant Circumstances Effect
ABC E
ATBC ET
AlBC El
[ Definition: Method of Concomitant Variation

When one circumstance varies in a regular manner whenever some other circumstance varies,
then the two must be causally connected.

Note that this principle does not establish which event is the cause and which is the effect, or
whether both are caused by some third factor.

Note also that the direction of variation does not matter (both increasing, both decreasing, or
one increasing while the other decreases), as long as it is a consistent variation.

5. Method of Residues

We also want to account for events which have a number of joint causes. Suppose circumstances
A,B and C consistently give rise to some event E and suppose that we know A is a cause of part of
E. Then either B or C (or both) probably cause the rest of E.

Where part of an effect remains unexplained by known causal circumstances, then
additional circumstances must be sought to account for the unexplained portion of the effect.

eg A person drives a truck full of sand onto a weighing platform and the scale registers 5.4
tonnes. We know that the truck on its own causes the scale to register 1.2 tonnes and hence
may infer that the driver and the sand must account for the other 4.2 tonnes.

3. Hypothesis formation and refutation

The Principle of Generalisation and Mills’ Methods for studying causation all depend on
observations. But many of our explanations of why things happen as they do require more than
observation. An essential principle in both science and everyday life is the development of
hypotheses to explain observed phenomena.

To hypothesise is to form an explanation for something. A hypothesis (or theory) proposes some
unobserved phenomena to account for some observed phenomena.
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eg We observe many objects falling to the ground and could form a generalisation such as “all
objects fall to the ground unless some force intervenes”. However, this generalisation does not
explain why this should be the case. We need to go beyond the observations and propose
that objects fall because of a force of attraction between objects (which we call gravity)
whose strength is proportional to the mass of the two objects and the square of the distance
between them. No-one has observed gravity, but the hypothesis of gravity is used to explain
the observations of falling objects.

Abduction

Hypotheses are formed using the Principle of Abduction.

Definition: Principle of Abduction

Dis true (D for “data”)
H would explain D (H for “hypothesis”)
- His true

This is an important and common principle, yet we cannot guarantee its conclusions. It is possible
for the premises to be true but the conclusion false and hence this form of argument is not
logically valid. In fact abduction is a form of the Fallacy of Affirming the Consequent (D, if H
then D ... H).

Consider the following example - Themba’s girlfriend Alice has dumped him. Now, if Alice had
discovered that Themba was married that would explain why she dumped him. But we cannot
immediately infer that it must be the case that Alice discovered that Themba is married: she
could equally well have left him for any number of other reasons.

Justification of a Hypothesis

Abduction may not be 100% reliable, but nevertheless some hypotheses are more reliable than
others. How does one judge between hypotheses and decide which is most reasonable?

There should be many observations which are consistent with the hypothesis.
There should be a wide variety of observations which are consistent with the hypothesis.
There should be no observations which contradict the hypothesis’.
The hypothesis should explain rather than just imply the data.
eg The hypothesis “unsupported objects fall to the ground” certainly implies that if
you let go of your pen it will fall, but it does nothing to explain why.
5. The hypothesis should be internally consistent
eg “Irobbed Mrs Smith because she owed me money and furthermore I was in Durban at
the time so how could I have done it?” is not a very good explanation.
6. The hypothesis should be the simplest of all available hypotheses; the one which requires
the least number of assumptions (often called Ockham’s Razor or the Law of Parsimony).
7. Falsifiability - it must be possible to test the hypothesis; it must be clear what sort of
observation would prove the hypothesis to be false.
8. The hypothesis should be able to generate predictions.

Ll e S

1 At this stage we use the term “contradict” to mean that it is impossible for both the
observation and the hypothesis to both be true. Later we will need to be more precise in our use of
this word.
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The Hypothetico-Deductive Method

Points 7 and 8 above are linked together in a process which forms the basis of scientific
discovery.

Forma Use logical deduction to
Hypothesis — 2P makea predictionbased ———) Testthe

N on the hypothesis s cut
The hypothesis is confirmed
(though not proved) Correct
Thinkagain! (Can
the old hypothesis ——— Reject the hypothesis §—
bernodified?) Incorrect

Notice that this process is infinite: experiments may confirm a hypotheéis but can never make it
100% guaranteed. However, just one solid fact which is inconsistent with the hypothesis is
enough to falsify (disprove) it.

This process is also relevant to the task of debugging computer programs. At university, most
programs are small enough that they can be exhaustively tested, but in the real world software
is typically so complex that it is impossible in practice to ever guarantee that a system does
what it was designed to do. There are mathematical (ie deductive) techniques to prove that a
program is correct, but these cannot be applied in practice to any program over a couple of pages
in length. In practice, checking that a program works correctly is an inductive process.

One starts with the hypothesis that the program is working as it was designed to and from that
hypothesis predicts how the program will react to particular input. The program is then run
using that input and the program’s behaviour is compared to the predicted behaviour. If the
prediction was correct then our confidence in the program increases, but it does not guarantee that
the program is without fault. In order to reach such certainty, every possible input must be
tested, and if the actual behaviour ever differs from the designed behaviour then we know that
there is still a bug to be fixed. The task of testing every possibility is generally unfeasible, and
so we must make do with some limited number of tests. It would take a huge number of tests
(possibly infinite!) to show that a program is 100% correct, but only one failed test to show that
the program is faulty.

The choice of tests then becomes crucial. It is totally inadequate to only test a computer program
with input which you know will work. In the task of checking and debugging a program the
tester must be ruthlessly committed to finding errors. Tests must be designed to push the program
to its limits. The purpose of the hypothetico-deductive method is to continually try to falsify
the hypothesis by running tests which will uncover counter-examples to the hypothesis.

4. Analogy

Consider the following two stories -

Story 1 - A large army plans to besiege a city on a hill. The army is so large that coordinating
transportation of supplies and troop movements along the narrow roads is a major problem. If the
whole army approaches the city together the logistic difficulties will probably cause their
attack to be ineffective. But sending a smaller force would be too weak to win the ensuing battle.
The General in charge decides to split the army into three parties which will approach the city
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from three different directions simultaneously. This will decrease the logistics difficulties as
well as allowing the army to attack the city at three separate points.

Story 2 - A doctor is puzzling over how to treat a patient with a brain tumour. X-ray therapy is
certainly the best option, but if a large beam of x-rays is directed at the tumour, intervening
brain cells will also be damaged. However, if a lower-intensity beam is used the tumour will not
be destroyed.

Being a clever doctor-who remembered her military history, she reasoned that three separate
low intensity beams directed at the tumour from different directions would destroy the tumour
yet not damage the brain tissue. This is an example of reasoning by analogy: the doctor drew a
principle from one setting and applied it in a different setting.

Analogy is not always used as a method of argumentation: “My wife’s smile is like a ray of
sunshine” is meant to be descriptive, not a proof of some conclusion. But it is often the case that
we argue by analogy, indeed most of our everyday inferences are based on analogy.

eg1 When we say “I'm going to buy another pair of Nike takkies because the last pair I
bought were excellent”, we are reasoning by analogy. We are in effect saying that one
pair of Nikes is similar to another and so if one is excellent, so will another.

egy When we rent a car for the first time we may recall our previous experience of buying
a car and renting a house. These previous experiences help us to know how to deal
with the new experience.

eg3 The use of precedents in court cases.

egs When the kettle broke, the problem was a loose wire in the plug. Now that my
computer isn’t working, I wonder whether it also might be a problem with the plug.

A is like B
A has some property or quality x
. B also has x

Reasoning by analogy is probably the weakest form of induction. It is certainly not logically
valid, but we can again ask what makes a conclusion based on analogy reasonable.

Exercise
Which of the following arguments is most reasonable? Why?

1.  The first glass of wine from a bottle is like the second glass
I enjoyed the first glass
. I will enjoy the second glass

2. 1981 Nederburg Pinotage is like 1985 Delair Cabernet
I enjoyed 1981 Nederburg Pinotage
.. I will enjoy 1985 Delair Cabernet

What do we mean by “A is like B”?

i) There are a number of similarities between A and B which are relevant to the

conclusion
ii) There are no differences between A and B which would be relevant to the conclusion.

eg Medical research often experiments on animals and then applies the results to humans. Is
this logically reasonable? Suppose drug D has a certain effect on a guinea pig. Is a guinea pig
similar enough to a human to make an argument by analogy reasonable?
Similarities - both mammals and hence both have warm blood, heart, lungs, kidneys,
liver, nervous system
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Differences - size (but maybe this will only affect dosage)
- guinea pig is herbivorous (certainly relevant if the drug has to do with
digestion)
- guinea pig can’t speak
- plus many others

Judging the Reliability of Conclusions

1.

The more cases which fit the analogy, the more reliable the conclusion. This in effect changes
the basic Principle to -

A1,Ap,Az3... are all like B

A1,Az,A3... all have some property or quality x

.. Balso has x

The cases A1,A2,A3... should be as dissimilar as possible.
eg Situation 1 - Drug D has been tried on 10 guinea pigs
Situation 2 - Drug D has been tried on 10 animals including guinea pigs, monkeys and
dogs.
Conclusions about the effect of the drug on humans would be more trustworthy if based
on the second situation than on the first.

The strength of the analogy, taking account of both the similarities between Aj,A2,A3... and
B, and the differences.

The strength of the conclusion relative to the premises. The more specific the conclusion, the

less reliable it becomes.
eg My friend and I have similar handwriting
My friend fits 800 words to a page
The conclusion “.-. I could fit up to 800 words to a page” is more reliable than ... T will fit
exactly 800 words to a page”

Relevance of the analogy - are the areas of similarity somehow connected to the property
being concluded? Any two objects have some similarities, but the similarities may have no
relevance to the argument.

Summa nd Conclusion

1.

Inductive logic includes various methods of reasoning which allow us to infer conclusions
based on observations to some degree of probability.

None of the forms of induction we have examined (generalisation, causation, hypotheses and
analogy) can guarantee their conclusions since they are not logically valid. Nevertheless
they constitute the bulk of human reasoning.

If not used correctly, induction can result in fallacies such as hasty generalisation, post hoc
reasoning and affirming the consequent.

Each of these forms of reasoning can be implemented on computer (although not as easily as
the deductive methods in the next section): programs which diagnose medical or mechanical
faults often use abduction; of growing interest in computer science is the field of Case-Based
Reasoning which is a form of reasoning by analogy. Thus computers can not only do maths and
formal deduction with guaranteed accuracy, but can also reason about uncertainty.
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Section 3 - Axiomatic Svstems

An axiom is a way of stating a symbolic definition. Axioms normally express some self-evident,
uncontroversial truth. It is common in maths and logic to propose a set of axioms as the
foundation on which to build a deductive system. For instance set theory, arithmetic and
geometry are all axiomatic systems.

We try to make the set of axioms as small and as simple as possible and then derive everything
else we need from the axioms. Anything which can be derived from the axioms is called a
theorem. Theorems cannot be called true or false; we can only claim that they are derivable from
the axioms.

Axioms and theorems are technically meaningless string of symbols. An axiomatic system defines
“legal” ways in which those symbols can be manipulated. Within the system, the symbols have
no meaning; it is only from outside the system that we interpret the symbols in some meaningful
way. (This may be compared to something like Morse Code: a meaningless sequence of dots and
dashes becomes meaningful when someone defines an appropriate interpretation.)

Example (Suggested by Douglas Hofstadter in “Gédel, Escher, Bach™)
Consider an axiomatic system which contains only the symbols p, q and -. The rules defining how
these symbols can be manipulated are as follows -

1. If x represents any string of hyphens, then xp-qx- is an axiom.
eg -p-q— is an axiom
-—--p-q---— is an axiom
2. Suppose x, y and z all represent strings of hyphens.
If xpyqz is a theorem then so is xpy-qz-.

(Note that by definition, any axiom is also a theorem.)

What sort of theorems can be derived in this system?

Ty: -p-q-- from Rule 1
Ta: -p--q--- from T7 and Rule 2
Ts: -p--—-q---- from T7 and Rule 2
etc
Exercises
1. Are the following strings theorems?
i) --p-g--
i) ---p----qe----
iii) --g-
iv) --p--p-q-----
v) -p—q-
2. Is there some general decision procedure which will tell us easily whether some string is a
theorem or not?
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But what does a string like --p-q--- mean? Technically, nothing; these are just strings of
meaningless symbols. However, maybe from outside the system we can give the symbols some
meaning.

i)  We could interpret - as representing “apple”, p as representing “horse” and q as
representing “happy”. Then --p-q--—- means “apple apple horse apple happy apple
apple apple”. But this interpretation isn’t very satisfying since theorems make no
more sense than non-theorems.

ii) What if - represents “1”, -- represents “2”, etc, p represents “plus” and q represents
“equals”? Under this interpretation --p-q--— means “2 plus 1 equals 3”. Under this
interpretation, every theorem corresponds to some valid arithmetic expression.

iii) But don’t think that ii) is the only meaningful interpretation of the system: there
may be an number of others. For instance, p might mean “equals” and q might mean

“taken from".

Computers and Logic

Computers work in much the same way - they manipulate patterns of high and low voltage
which, to the computer, have absolutely no meaning. The voltages do not even “mean” 0 and 1!
But we interpret a low voltage as 0 and a high voltage as 1; then we interpret strings of 0’s and
1’s as binary numbers; then we create something like the ASCII code to arbitrarily assign bit-
patterns to A, B, +, $, a, b etc. Furthermore we program the computer to display certain pixel
patterns on a VDU in ways which we then interpret to mean letters, numbers etc.

This may seem a trivial point, but only because we have become so used to this way of
interpreting the computer’s behaviour. A computer is purely a syntactic processor which
manipulates symbols according to axiomatically defined procedures. Computers are strictly
logical, and logic itself can be expressed as an axiomatic system (see the end of Section 5).

Exercise
Suppose x and y represent some combinations of the letters “M”, “I” and “U" (eg “MIIU", or
“MMMIMU?”, or “UI”. Note that “” is a valid combination of zerg letters.).

Axiomrule1 - The string of letters “MI” is a theorem

Axiom rule 2 - If some string “xI” is a theorem then “xIU” is also a theorem (eg since MI
is a theorem, so is MIU )

Axiom rule 3 - If “Mx” is a theorem then “Mxx” is also a theorem

Axiom rule 4 - If “xIIly” is a theorem then “xUy"” is also a theorem

Axiom rule 5 - If “xUUy” is a theorem then “xy” is also a theorem

Either derive the following theorems or prove that they cannot be derived -
i) MIIII
ii) MIIMUU
iii) MUIUIU
iv) MIIIII
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Section 4 - Seis

Definitions

By a “set” we mean a collection of any sort (eg the collection of all university students; a pair of
shoes; a bouquet of flowers; a flock of sheep; the three primary colours ...). It is not necessary for
the members/ elements of a set to have anything in common, though interesting sets are those
whose elements are somehow related to each other. The terms class, aggregate and ion are
synonymous with “set”.

Set membership
If p is an element of a set A then we write pe A, otherwise pe A.

Well defined
A membership condition (also called a predicate) is some rule which specifies which objects are

members of a particular set. A set is said to be well defined if it has a membership condition.

L]
eg PR ={x | xis prime and x < 24} is well defined
F = {all famous people} is not well defined

Enumeration
An alternate way to define a set is by enumerating (ie listing) all its members.

eg PR =1{235711,13,17,19,23}

Cardinality

| A| denotes the number of distinguishable elements in a set A. A set is said to be “finite” if it's
cardinality is finite, otherwise it is “infinite”.

eg N ={0,1,234, ..} is the infinite set of natural numbers.

Sets of sets

Sets may contain other sets, eg A = {a, {a,b}, ¢, {b,c}, {d}, d}. Note that d is not the same as {d}. In
the above example, de A, de{d} and (d}je A. Al =6.

It is also possible (though unusual) for a set to be a member of itself. For instance, consider the set
S ={A | |AI>7}, that is the set of all sets with more than seven elements. Now IS1 is certainly
larger than 7 (in fact it is probably infinite) and hence SeS.

AcB (read as “A is a subset of B”) iff for every ac A it is also true that ae B. The subset relation
is reflexive (ie AGA) and trapsitive (ie if AcB and BC then AcC). If ACB then |AI<IBI.

Equivalence
A=B (“A is equivalent to B”) iff AcB and BcA. That is, two sets are equivalent iff they contain

exactly the same elements. From this definition we can see that duplicates are not significant
and are therefore omitted. You will see for instance that the following sets are equivalent -
{aabaaacal, {abc} and (cecbb,al

(Because I'm lazy I often use = and = interchangeably.)

Proper subset
AcB iff AcB and A=B. This relation is transitive but not reflexive.

Universal set

The universal set (normally called U or E) includes every object under discussion.
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Empty set
@ (sometimes written {}) is the empty (or null) set which contains no elements at all. |@|=0.

If you look closely at the previous definitions, you'll see that for any set A, DcA. Don’t confuse
this with e A, which is not always true.

Power set
For any set A, we can derive the power set p(A)=2A={x|xcA}. Note that according to this
defintion, the empty set and the set A itself are both members of p(A). If A is finite and |Al=n

then 24| =20,

Intersection
AnB={x|xe A and xe B}

Notice that ANB=BNA (Commutativity)
AnA=A
AND =0
ANU=A
(ANB)NC = An(BNC) (Associativity)
AcBiff AmB=A

Disjoint
A and B are disjoint iff ANB=@. A collection of sets are said to be disjoint iff every pair of sets in
the collection are disjoint.

Union
AUB = {x | xe A or xeB}

Notice that AUB=BUA (Commutativity)
Aud=A
AUA=A
(AUB)UC = AU(BUC) (Associativity)

Complement
X={x Ix¢ A} (may also be written as ~A)

Occasionally it is useful to define a relative complement between two sets. A\B is read “A
without B” or “A except for B” and is defined as A\B = {x |xe A and xe B}. With this definition it

is clear that Z=U\A.

Notice that if AcB then A\B=J.

Exercises
1. Enumerate all the elements of the following sets (in all cases the universe of
discourse is the set of integers).
i) {n | 4<n<9}
ii) (n? | 4<n<9}
iii) {n? | 4<n<9}
iv) {p | pis prime}
v) (x3+1 ) -2<x<2}
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Exerci onti

2. Let the universe U be all the non-negative integers less than 10 and let
A={1236},B={n | nis odd} and C = {n | n is not divisible by 3}. Represent this
situation with a Venn Diagram and list the elements in the following sets -

i) ~C

ii) AuUB
iii) ~AUB
iv) ~(AuB)
V) AUA
vi)  AnA

vii)  AN(BNC)

viii) (AnB)NC

ix)  Au(BNQC)

X) (AUB)NC
3. Let C be the set of airplanes that made a landing on the moon between 1850 and
1900. Let D be the set of refrigerators sold to South African citizens who live
within 100km of the North Pole. Are these sets equivalent? Disjoint?
If A = (R,G,B}, list 24 What is 12417
Imagine a simple colour computer monitor where each pixel contains three sub-
pixels (a red, a green and a blue) which each may be either on or off at any
particular time. How many different colours could be displayed on such a screen?
6. Let A be the set of positive integers and B the set of positive real numbers. What

is the cardinality of these sets. Does A contain the same number of elements as B?

A

Various set identities
AN(BUQ) = (AnB)J(ANC) (Distributive Laws)
AU(BNC) = (AUB)N(AUC)

~(AUB) = ~An~B (de Morgan’s Laws)
~(ANB) = ~Au-B

~@=U
~U=0
Au~A=U
ANn~A =0

lAUBI = Al + |BI - |lAnBI

Ordered pairs

An ordered pair consists of two objects in a definite fixed order and is denoted by <x,y>. Note
that order is important: <x,y>#<y,x>. If P=<x,y> and Q=<u,v> then P=Q iff x=u and y=v. (You
should already be familiar with this conicept since it is used in Cartesian Geometry, except that
round brackets are used instead of angle brackets.)

We can talk about ordered triples, quadruples etc in the same way. The general n-tuple is
written <x1,X2,...Xp>.

Cartesian product

If A and B are sets then AxB = {<x,y> | x€A and yeB}. AxB is normally read “A cross B” and
hence the Cartesian Product is often called the cross product.

Notice that Ax@Z=OxA=C
AxB # BxA unless A=B ( not commutative)
Ax(BxC) # (AxB)xC  (not associative)
IAl.1Bl = |AxBI
Ax(BUC) = (AxB)u(AxC)
Ax(BNC) = (AxB)n(AXC)



Reasons for Believing - Sets A-25

Exercises ‘
1. Draw Venn Diagrams to illustrate each of the set identities listed above.

2. A Venn Diagram with three circles has 8 (why does this number keep coming up?)
separate regions. Find a set expression to define each region.

3. Draw Venn Diagrams to represent the five possible arrangements of two sets. (Two

overlapping circles can be used to represent all five in one diagram, but the task

here is to represent each possibility separately.)

If A = {R,G,B} and C = {-1,1)}, list the elements of AxC. What is | AxC|?

In a class of 20 students, each student is marked out of 100. If C is the set of students

and M is the set of possible marks, what does CxM represent? What is |CxM 1?

6. (Difficult) All educated people now realise that pprills, squearths and glops
have all proved to be simply forms of nuph. It is also well established that
squearths are both glops and nuphs. However, there is a complication. Recent
work has established that there are glops which are neither squearths, gdynxs
nor pprills. Further there are squearths which are neither gdynxs nor yet pprills.

Admittedly some pprills are glops as are all squearths and even some gdynxs
as well. Now that we know more about gdynxs, that some are squearths, some
glops and some, unfortunately, both pprills and squearths, there are certain urgent
questions that can be answered definitively.

i) Can the universe contain such an unfortunate creature that, to be truthful, it
must admit that it is a pprill, a nuph, a squearth, a glop and also a gdynx?

ii) Consider those gdynxs which are not nuphs, can they possibly be glops?

iii) If a pprill is a squearth, is it also a glop and can it possibly be a gdynx?

What is the status of set theory?

These basic concepts seem to be the most simple and uncontroversial mathematical concepts
possible. However, three important points need to be noted:

i) Far from being simple, set theory forms the theoretical basis for virtually all maths,
logic and computing.

ii) Set theory can be expressed as an axiomatic system. There is much controversy over the
best collection of axioms, but the nine Zermelo-Fraenkel Axioms are the most commonly
used.

iii) Although the individual concepts relating to sets seem indisputably true, when
combined they give rise to some surprisingly troublesome results, such as the following -

U1

Russell’s Paradox

In 1901, Bertrand Russell presented the following paradox to show that some difficulties exist
with these “simple” set concepts.

Assume U is the universal set which contains absolutely everything and consider the following
sets:

V={xeU | xex}

W=~V={xeU | xex}

The crucial question now is whether or not We W.
Case 1 - suppose We W. Then by definition, We {xe U | xex} and hence We W (which is a
contradiction).
Case 2 - suppose We W. Then We V, which means that We {xe U_| xex}, and hence WeW
(another contradiction).

In summary, if We W then We W and if We W then We W! Since both possibilities lead to
contradictions it must be that our original assumption was wrong. Thus, the conclusion from
Russell’s Paradox is that there cannot be a truly universal set.
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Berry’s Paradox

Consider the set Q = {Integers not nameable in fewer than nineteen syllables}. eg 1,362,795€ Q
since it takes 20 syllables to pronounce. Now consider the smallest number in Q. Maybe this
number is 111,777, but whatever it is just call it ot.

By definition o€ Q, but it can be uniquely identified in 18 syllables (“the least integer not
nameable in fewer than nineteen syllables”) and hence is not a member of Q!

This is a bit more serious than Russell’s Paradox because it points out a problem with the way we
choose objects out of a set and give them names. There are deeper difficulties too which show
that there is something not quite right about set theory, but nobody is quite sure where the
problem lies. For interesting reading on this, see “Infinity and the Mind” by R. Bucker (pub.

Birkhausser, 1982).
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Section 5 - Provositional

Logie

There are various ways to formalise logic: syllogistic logic, propositional logic, predicate logic,
modal logic, fuzzy logic .... These vary in their complexity and their range of usefulness. In
Propositional Logic, every proposition is seen as an atomistic claim with no internal structure.
For instance the propositions “some people are tall” and “there are no unicorns” will both be
treated the same. The simplicity of this assumption makes it easy to learn, but restricts its

usefulness.

Any proposition may be represented by a symbol called a propositional variable eg C may
represent the proposition “Cheese is always yellow”. A simple statement is one which contains

only one proposition, whereas a compound statement contains a number of propositional

variables combined with the following connectives -

———————

Technical Name Common Name Symbol
Negation not ~(or =)
Cornjunction and & (or A)
Disjunction oF -
Material S
Implication implies = (or>)
Bi-conditional iff =

Set Theory and Propositional Logic

One of the characteristics which makes propositional logic easy to understand is that it closely

parallels set theory.

English

Set Theory

Propositional Logic

1. “It is raining today”

Membership. Let R be the set

of rainy days. The statement
claims that todayeR .

A single proposition
represented by a variable,
say R. The statement claims
that R is true.

2. “It is not raining today”

Complementation. todaye R

Negation. The statement
claims that R is false. In

other words ~R is true.

3. “It is either raining today
or I am blind”

Union. If B is the set of blind
people, then the statement
expresses RUB.

Disjunction. The statement is

a combination of two
propositions connected by the
word “or”. This would be
written as RvB where “v”
comes from the Latin word
“vel”.

4. “It is rainy and cold today”

Intersection. If C is the set of
cold days then the statement
claims that todaye RNC.

Conjunction. The statement is

a combination of two
propositions connected by the
word “and”. This would be
written as R&C.

5. “If it is raining today
then the grass will grow”

Subset. If G is the set of
situations in which grass
grows, then the statement
says RcG.

Material Implication. The

antecedent R implies the
consequent G - written as
R=G.
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6. “All people with <50% | Equivalence. If L is the set of | Bi-conditional. L is true iff F
will fail and the only people with low marks and F | is true. This is written as
way to fail is to get is the set of people who fail, | L&F.
<50%" then this statement claims

that L=F.

Well-formed Formulae

A sentence in propositional logic is any string of brackets, variables and connectives.
eg S&(RvT)
P
A&vV)F

Notice that not all sentences are sensible, so we need some way of defining the set of sensible
sentences -

Definition: Well-Formed Formulae

A well-formed formulal (wff) is a sentence which meets the following restrictions -
i) Any propositional variable on its own is a wff; and
ii) If A and B are wffs then so are ~A, (A&B), (AvB), (A=B) and (A=B).

By convention, it is permissible to omit the outermost pair of brackets. eg one could write
P=(Q&R) rather than (P=(Q&R)). However, all other brackets are important to avoid
ambiguity.

Think about the two ways in which the sentence P=Qv~A could be interpreted.
Which one most suits the statement “If your car won't start, either catch a lift with a
friend or don’t go to university at all”.

From this simple recursive definition, an infinite number of wffs may be generated2. Notice that
the definition requires that the operators &,v,= and < always have exactly two operands.
Thus, a sentence like (P&Q&R) is not a wif: you must write either (P&(Qé&R)) or ((P&Q)&R).

1 Don’t be confused by the different spellings “formula” and “formulae” - the latter is simply the
lural of the former.
This parallels the way in which “grammars” are used to define computer languages. For
instance the Pascal grammar is a set of recursive rules from which an infinite variety of Pascal
programs may be derived.
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Exercises: wifs
1. Which of the following sentences are wffs?
i)  ~~~~P
ii) P~Q
iii) (P,QR)
iv) (~(A)&B)
v) ~((A)&B)
vi) (AvBvQ)
vii) [{xIxeA}
viii) (A=B)e=(B=A
ix) (P=(Q=(~R=((S&T)=P))))
2. Represent the following as propositional formulae -
i)  Mandy has blue eyes
ii) Bob is a football player and goes to the gym
iii) Mandy wants to be fit but never goes to the gym
iv) If Bob met Mandy they would fall in love or I'll eat my hat
v)  Bob met Mandy and they didnt fall in love
vi) Blued eyed boys are attractive
vii) If I meet a blue-eyed girl, I am attracted to her and if I'm attracted to
someone, thev always turn out to be a blue-eyed girl.

Possible Models Diagrams

The important question which propositional logic seeks to answer is “under what circumstances
is a wff true and under what circumstances is it false?”” eg When is the wff (P&Q)=>(QvP) true?
Suppose P represents “1+1=3" (which turns out to be false) and Q represents “The Lecturer’s name
is Matthew” (which is true). Under those circumstances (P&Q) is false, but (QvP) is true. What
about the truth of the wff as a whole? Is (P&Q)=>(QvP) true or false? Furthermore, in different
circumstances, when P and Q are interpreted differently, will (P&Q)=>(QvP) be true or false?

On the surface it would seem to be difficult to say much about (P&Q)=(QvP) in_general since
there are an infinite number of ways to interpret (P&Q)=(QvP) since P and Q could represent
any two propositions. However, although there are an infinite number of interpretations of P and
Q, they may be grouped into four categories. Regardless of how you interpret P, the proposition
will either turn out to be true or it will turn out to be false; and likewise for Q. Hence there are
four possible states of the world: the state in which both P and Q are true; the state where P is
true but Q is false; the state where P is false but Q true; and the state where both P and Q are
false. We could show these situations in a simple diagram -

T,T

TF F.T

F.F
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Each of these possible situations is called a model of P and Q and hence the picture is called a

Possible Models Diagram (PMD). We show that some expression is true for a particular model by
filling in the corresponding comner of the PMD. Thus the propositions P and Q can be represented

by the PMDs -

TT TT
TFre P >FT TF FT
FF FF

Combining Rules

Not only are Possible Models Diagrams an easy way of visualising simple statements, they can
also be combined in various ways to represent compound statements.

1. Negation
If P is true then ~P must be false; and conversely if P is false then ~P must be true. In other words

any model which satisfies P does not satisfy ~P, and no model which does not satisfy P does
satisfy ~P. Hence to form a PMD for ~P we take the PMD for P and reverse each corner: if the
corner is filled in, rub it out; if it is blank, then fill it in.

T iy
not rm becomes T 6 FT
133 FF

(Note the similarity with set complementation.)

Exercise. Negali
Suppose some wff o has the PMD ¢ Draw the PMD for the wif ~a.

2. Conjunction

P&Q is a wff claiming that both P is true and also Q is true. So a PMD for P&Q will have to

combine the diagram for P with the diagram for Q by matching-the-dots from two diagrams - if
both original diagrams have a dot in a particular corner then the diagram of their conjunction

will also have a dot in that corner.

T TT
(¢ > and <> becomes Gy
FF FF

(Note the similarity with the set intersection operation.)

Exercize: Conunch
Construct a PMD for the conjunction .:. & ‘:’
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3. Disjunction
The wff PvQ is true whenever either P is true or Q is true or both are true. To form a PMD from

the disjunction of two other PMDs, simply overlay the two original diagrams.

TT TT TT
TF rr OY TF@PT becomes TF @ FT
FF FF FF

(Note the similarity between overlaying and the set union operationl.)

In English we sometimes use “or” inclusively (eg “you can ride the roller-coaster if you're over 15
or accompanied by an adult”) but other times exclusively (eg “either you eat your vegies or you
won't get any pudding”). In logic disjunction is always inclusive.

Construct a PMD for the disjunction Q v .b

4. Material Implication

Remembering that the conditional is an attempt to capture the same concept as subset. So in order
to form a PMD for P=Q, we first consider the analogous situation in set theory -

U

If PcQ, could there be a situation where xe P and xe Q?
Could there be a situation where x¢ P and xe Q?
Could there be a situation where x¢ P and xe Q?
Could there be a situation where xe P and xe Q?

xe P and x¢ Q is the only possible situation which disproves that P€Q. By analogy, in
propositional logic, P and ~Q is the only model for which P=+Q is false. Thus -

T PP T
if = rr then TF@FT becomes m&=drr
FF FF FF

Two things to note about this diagram -

i) It is easy to remember that = has the diagram <:‘ because the three dots look like an
arrow pointing to the right.

ii) When combining two diagrams as above, the visual procedure is to reverse the first
diagram and overlay it on the second.

1 Take care not to confuse the terms “disjunct” and “disjoint”. A disjunction is a logical concept
which bears no relation to the concept of disjoint sets.
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Exercise: Implication
Construct a PMD for the conditional %C“

5. Bi-conditional
The bi-conditional P& Q is defined as (P=Q)&(Q="P) and thus can be diagrammed by
appropriate combinations of the previous operations -

(if.lgthen Q) and (if Q then P)

} reverse and overlay

o @
%

} match-the-dots

The final outcome is intuitively sensible, since it shows those models in which the truth of P is
exactly the same as the truth of Q.

Construct a PMD for (P=Q)=(PvQ).

This is a bit time consuming because the definition of < makes the wff very long and
there will be a lot of intermediate PMDs before you get to the final one. Can you think
of a shortcut which would allow you to construct a diagram for <> without needing to
deal with such a long expression? That is, given two expressions (let’s call them o and
B) what visual procedure would vou use to form a diagram for o=f?

PMDs for longer wifs

Any wif which uses only two propositional variables can be represented by a PMD, and this
diagram can be formed using the simple combining rules (reverse, overlay and match-the-dots)
described above.

r < ;
& © S O

< < 00

1. Draw a PMD for the wff mentioned at the beginning of this section -
(P&Q)=(QvP)

2. For each of the following wffs, try to find an interpretation which you consider
makes the wiff false and another which makes it true -
i) P&Q
ii) P=Q
iii) (P&~Q)=2R
iv) (P&~Q)=P
v) P&~P
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Truth categories for wffs

Definit
Every wif falls into one of three categories - '
i) Tautology - a wiff which is true regardless of how you interpret it. In

propositional logic this means any wif whose possible models diagram has
every corner filled in. (eg] above)

ii) Contingent - a wif which is sometimes true and sometimes false. In
propositiorial logic, a wff whose p'ossible models diagram has some comners
filled in but not all. (eg2)

iii) Inconsistent - a wif which is always false, regardless of what interpretation is
given to it. In propositional logic, a wff whose possible models diagram has no

corner filled in. (eg3) (Sometimes also called a contradiction.)

In English, to say that something is a tautology is normally a criticism. If halfway through an
argument someone claims that “all bachelors are male” we may say “of course, but that’s just a
tautology”. ie It is just part of the definition of “bachelor” to be male; it is true, but trivial; to
talk about a male bachelor is just to repeat oneself; the word “male” adds no information since
bachelors are necessarily male. Tautologies are the most useful category in logic because they are
necessarily true rather than empirically true. For instance it is necessarily true that Pv~P, since
there is no conceivable interpretation of P for which Pv~P would be false.

Draw PMDs to show that each of the following are tautologous -
i) ~(P&~P) The Law of Non-Contradiction
ii) Pv~P Law of Excluded Middle
iii) P=(QvP)
iv) (P&Q)=P
v) (P&Q)=Q

The term “contingent” indicates that the truth of the wff depends on the interpretation. Since
the wif is true in some models yet false in others, if you want to know whether it is true in a
particular situation you must hire a scientist to undertake an empirical study.

1. Draw PMDs for each of the following wffs and classify them as tautologous,
contingent or inconsistent -
i)  ~(P=(P&Q))
it) (PvQ)&~P
iii) (PvQ)=(P&Q)
iv) (P&~Q)=Q
'v) (Pv~P)=(P&~P)
vi) ~(~Pv(PvQ))
2. For the PMD in part iii) above, write down 4 interpretations of P and Q, one for
each of the four possible models.
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Handling more than two propositional variables

If there are three propositional variables in a wff (say P,Q and R), there will be eight possible
models. These are best pictured as the corners of a cube, but this can be shown diagramatically as
the following graph (in which each triple shows the truth values of P, Q and R respectively) -

TTT

TTF FIT
TFF FFT

FFF

The positioning of the corners in this .diagram is important. Notice that there are four rows - in
the top row all variables are true, in the second row two are true and one false, in the third row
two are false and one is true and in the bottom row all are false. The combining rules (reverse,
overlay and match-the-dots) can all be used with this diagram as before.

Using truth tables (see below), a wff with three propositional variables would require eight
rows. In general, if a wff contains n different propositional variables then there will be 27
possible models. Hence, the wff’s PMD would have 2™ nodes and its truth table would have 2"
rows. It is rare to use either PMDs or truth tables for wffs with more than threé variables.

Exercises: variabl
Draw PMDs for each of the following wffs and classify them as tautologous,
contingent or inconsistent -

i) (P&Q)=R

ii) (P&(QVR))=((P&Q)v(P&R))

iii) ((P&Q)=>R)v~P

Equivalence of wft
Definition: Equivalence

Two wifs are equivalent iff they are true under exactly the same circumstances. ie
A=B whenever the PMDs for A and B are identical.

For instance (PoQ) = (P=Q)&(Q=P)) - in fact we have used this as the definition of the bi-
conditional.

If A=B then A<B will be a tautology.

Of course one could list an infinite number of equivalences, but some of the more common are -

de Morgan’s Laws ~(P&Q) = ~Pv~Q
~(PvQ) = ~P&~Q
Commutation PvQ=QvP
P&Q = Q&P
Association Pv(QvR) = (PvQ)vR
P&(Q&R) = (P&Q) &R
Distribution P&(QvR) = (P&Q)v(P&R)
Pv(Q&R) = (PvQ)&(PvR)
Double Negation = ~~P '
Transposition P=Q=~Q=~P
Exportation (P&Q)=R = P=(Q=R)
Material Equivalence PeQ = (P&Q)v(~P&~Q)

Material Implication P=Q=~PvQ
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Exercises: ival

1. Convince yourself that each of the pairs of wifs listed above are indeed
equivalent.

2. We have said that the “v” connective represents inclusive-or. Find a wiff (using
some combination of the five connectives) which expresses the concept of
exclusive-or.

3.1) Show how the connective = can always be replaced by some combination of ~
and v.

ii) Similarly, show how the connective = can always be replaced by some
combination of ~ and &.

iii) Would it be possible to create a form of propositional logic which only uses the
three connectives ~, & and v instead of all five which we use? If so, would it be
useful?

Paradoxes of Material Implication

Special mention needs to be made about the last in the list of equivalences above. P=Q is
equivalent to ~PvQ because of the way we derived the concept of implication from the subset
concept, and it is this equivalence which justifies our use of “reverse and overlay” as the visual
procedure for material implication.

There are some counter-intuitive aspects to this definition however. For instance, if you draw a
PMD for the wff P=(Q=P), you will see that it is a tautology. This is a strange wif since it
claims that if P is true then anything implies P - eg “The earth is round, therefore if the moon is
make of cheese then the earth is round”!

Or consider the wff ~P=(P=>Q) which claims that if P is false, then if P were true anything else
would also be true - eg “Since computers don’t have emotions, if computers did have emotions
then Durban would be in Namibia”. But this wff too is a tautology.

These two wifs are called paradoxes - there is nothing actually illogical or contradictory about
them, it’s just that they don’t match our intuitions. These paradoxes occur because our definition
of material implication does not exactly fit the way we often use the words “if ... then ..”. In
particular, the confusion arises because the conditional P=Q is defined to be true in the models
where P is false.

Substitution

In logic we study the form of propositions and arguments without being concerned by what they.
represent. Hence, we expect that the actual choice of variables names is immaterial. eg we
expect P=Q to act the same as A=B. We don’t care what symbol is used and we don’t care what
proposition the symbol represents.

Definition: Substitati A
i) Let E be a wff containing the propositional variables p1,p2,..-Pn
ii) Let E* be obtained from E by substituting propositional variables q1,92,...qn
simultaneously throughout E for p1,p2,...pn respectively
iii) Then E*is called asnb_snmngn_ms_tange of E and E=E*

eg Suppose we have the wif (P&Q)=R
where P represents “the sun is shining
Q represents “there is no wind”
R represents “today is Friday”
Now substitute A and B for Qand R
where A represents “exams are in 9 weeks”
B represents “50 students are worried”
Then (P&Q)=R = (P&A)=>B (ie their PMDs will look exactly the same).
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We shall have need later to extend this definition of substitution to allow a variable to be
replaced not only by another variable, but by a whole wff. But this simplified form of
substitution is all we require at present.

Truth Tables

Although PMDs are a useful visual technique for learning about logic, the standard way of
describing wffs is the truth table. Truth tables show in tabular form the same information as a
PMD and it is easy to convert from one to the other. Whereas the PMD represents the four
possible models as corners of a square, the truth table represents them as separate lines in a
table. Filling in a corner is equivalent to writing “T” in the appropriate row of the table.

eg Compare the PMD and the truth table for the wif P&Q -

PQ | P&O
7T TT T
T F F
'rrr'r H FT F
F F F
FF

Truth tables are often written using 1’s and 0’s rather than T’s and F’s. This is especially true
when truth tables are used in computing because it emphasises that boolean values can be used
for both logic and arithmetic. In computer architecture courses you see electronic gates which act
both as logical connectives and as mathematical operators. The electronic components of a
computer work by differentiating voltage levels and this differentiation can readily be
interpreted as either a boolean truth value or a binary digit. Not only are T’s and F’s replaced by
1’s and 0s, but the truth table is often shown more like a multiplication table, to emphasise the
dual roles as both numerical digits and logical values. eg -

& 01
0 00
1 01

(See the later section on multi-valued logics which shows how truth values can be manipulated
mathematically.)

Exercises: T T

1. Draw truth tables for each of the five logical connectives.

2. Select a variety of wifs from previous exercises and convert the PMDs you have
drawn into truth tables.

3. Select a variety of wifs from previous exercises and construct truth tables directly
(ie without drawing PMDs first).

Exercise - Shortcuts
Drawing a PMD for a long wff requires a lot of intermediate diagrams, but now that
you are familiar with the five logical connectives, you should start taking shortcuts.
For instance, building a PMD for the wif ((Pv~Q)&Q)=P would normally take eight
diagrams, but instead, ask yourself questions like the following -

i) IfPis true and Q is true, what is (Pv~Q)?

ii) Now if (Pv~Q) is true and Q is true, what is (Pv~Q)&Q)?

iii) If (Pv~Q)&Q) is true and P is true, what is (Pv~Q)&Q)=P?
By asking such questions, you should be able to fill in the PMD for ((Pv~Q)&Q)=P
directly, without the need for any intermediate diagrams.
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Normal Forms

We have seen that different wffs may be logically equivalent, and we are quite justified in using
whichever form of a wff that we find most useful. For instance, since P=Q and ~PvQ and
~(P&~Q) are all equivalent, we may chose to use whichever one suits our purpose. Usually we
chose the form which makes the wif easy to read for humans, but this may not be ideal for
processing by computer.

Definition: Normal forms
1. An atom is either a propositional variable or a negated propositional variable.

2. An elementary disjunction is some wff of the form (A1vAjv...Ay) where
Aq,A3,...Ap are all atoms.
3. An elementary conjunction is some wff of the form (A1&A2&...Ap) where

A1,Aj,...Ap are all atoms.

eg P, Q, ~Q, and ~R are all atoms
(Pv~Pv~QvQ) is an elementary disjunction
(~R&~R&R&P&Q) is an elementary conjunction

Notice that when writing these normal forms, we actually violate our definition of a wff since
we allow conjunctions and disjunctions with more than two components. Technically we should
write (A1&(A2&...(Ap-1&Ap)...) instead of (A1&Ap&...Ap).

In the minimal case where n=1, a single atom also counts as both an elementary disjunction and an
elementary conjunction.

Definition: Norm;

4. A wif is in conjunctive normal form (CNF) if it is a conjunction of elementary
disjunctions. ie in the form (D1&D2é&...Dp) where D1,D3,...Dp, are all
elementary disjunctions.

5. A wffis in disjunctive normal form (DNF) if it is a disjunction of elementary
conjunctions. ie in the form (C1vCpv...Cp) where C1,C»,...Cy, are all elementary

conjunctions.

Given any wiff it is possible to write an equivalent wff in conjunctive normal form and also
possible to write another equivalent wff in disjunctive normal form. Not only is this possible, but
there is a mechanical procedure for converting any wff into either of these desired forms. These
two normal forms make the wff more difficult to read, but they have several advantages.

Consider the elementary disjunction (PvQv~P). Being a disjunction, such a wff will be true
whenever any of its disjuncts are true. But notice that this wff contains both the atom P and also
the atom ~P. One of these must always be true, and hence the wff overall will always be true. In
fact this observation gives us a general rule - an elementary disjunction is tautologous iff it
includes some propositional variable and also the negation of that variable.

The converse holds for elementary conjunctions. For instance, the wff (P&Q&~P) contains both P
and ~P (one of which must be false), and so it will always be false. In general - an elementary
conjunction is inconsistent iff it includes some propositional variable and also the negation of
that variable.

Furthermore, a wff in CNF will be tautologous iff all of its elementary disjunctions are
tautologous, ie iff all of its elementary disjunctions include some propositional variable and also
the negation of that variable. Conversely, a wff in DNF will be inconsistent iff all of its
elementary conjunctions are inconsistent, ie iff all of its elementary conjunctions include some
propositional variable and also the negation of that variable.
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Re-writing a wif in DNF and CNF make it possible to test the wff without needing to draw up
either a truth table or a PMD. For simple wffs this is clearly not needed, but for a long wff with
many propositional variables, using these normal forms is much quicker that PMDs or truth
tables. A large proportion of computer-based logic relies on these normal forms.

Exercises - Normal forms
1. Specify whether the following wffs are in CNF or DNF or both or neither -
i)  (PvQ)&(Pv~P)&(RvS)
ii) PvQ -
iii) Pv(Q&~Q)
iv) (PvQ)&~(QvR)
v) ~R
vi) (P&QV(R&(S&~F)))
2. Which of the following wifs are tautologous?
i) (PvQvR)&(Pv~Qv~R)&(~PvQ)
ii) (Pv~QvQ)&P&(Rv~Q)&(~PvP)
iii) (~PvQvP)&(Rv~SvIvPv~R)&(Qv~Q)
3. Which of the following wffs are inconsistent?
i) (Q&R&R)v~RvRv(P&~P)
ii) Pv~Pv(Q&R&S)
iii) (~P&Q&P)v(R&~S&T&P&~R)v(Q&~Q)

Entailment

An argument consists of a set of proposmons (called its premises or assumptions) from which

certain other propositions are said to follow. The final proposition in the argument is called the
conclusion. The chief concern in the study of formal logic is the validity of an argument; that is,

whether the conclusion really does follow from the premises.

Definition: Entailment
[|A..B (read “A entails B”) is called a sequent. It claims that there is a valid argument

that starts with A as premise and ends with B as conclusion (ie B is a consequence of
A).

More generally, the sequent Aj,A3,...Ap .. B claims there is a valid argument starting
|{ with the set of premises {A1,A2,...Ap} and ending with the conclusion B.

Saying that A=B is the same as saying that A and B are inter-derivable (that is A .. B and also
B.. A).

We will be following a very strict notational format in writing down arguments - strict in both
the physical layout and the logical rules which allow us to move from one proposition to the
next. The following is a fully worked example to give you a flavour of this notation.

Parliamentary example

“If Parliament sits longer, more questions are raised. Either Parliament sits
longer or the evasion of questions will widen the credibility gap. Now if it is
true that the evasion of questions carries with it an increase in public
relations effort, then it is also true that any widening of the credibility gap
will make propaganda ineffective. Now certainly either propaganda is
remaining effective or public relations efforts are not increasing. Coupling this
with the known fact that the combination of Parliament not sitting longer and
there being no increase in the number of questions raised will force any
lessening of credibility to cause an increased effort in public relations, and
bearing in mind that no more questions are being raised, it follows that either
the credibility gap is not widened, or questions are not being evaded.”
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Analysing this in English is too ghastly to contemplate, but if we can codify each claim in
propositional terms, we may have a better chance of proving or disproving the supposed
conclusion.

To start with, we will ignore a lot of superfluous phrases (like “now certainly” and “coupling
this with the known fact”) and assign propositional variables to all the key phrases -

P = “Parliament sits longer”

Q = “more questions are raised”

E = “questions are being evaded”

C = “the credibility gap widens”

R = “public relations efforts increase”

I = “propaganda is ineffective”

We can then state each claim in the argument as a wff -
P=Q

Pv(E=C)

(E=R)=(C=I)

~Iv~R

(~P&~Q)=(C=R)

~Q

oG N

and the final conclusion as the wif -
7. ~Cv~E

We could put these together into one loooong wif in the form (((((1&2)&3)&4)&5)&6)=7 and
then check whether this is a tautology by constructing a PMD (or truth table). But this would be
daunting since the wff would be very long and the PMD would have 64 nodes. Instead, we want to
see whether we can construct an argument, starting with the premises 1 to 6 and ending with the
conclusion 7. That is, we want to piece together a series of deductions to show that propositions 1
to 6 entail 7. We write this assertion as the sequent 1,2,34,5,6 .. 7.

je P=Q, Pv(E=C), (ER)=(C=I), ~Iv~R, (~P&~Q)=(C=R), ~Q .. ~Cv~E

Now we need some procedure for writing down an argument in some formal way. This must
include a set of rules which will allow each step of the argument to follow logically from
previous steps. Such an argument, which starts with the six premises and finishes with the
required conclusion, is shown below. Don’t be too scared by the details of this formal argument -
the main point is to see what is meant by logical entailment. After working through the sections
which follow, you should be able to come back and fully understand this example.
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1 (1) P=Q A
2 (2) Pv(E=CQ) A

3 (3) (E=R)=(C=I) A

4 (4) ~Iv~R A

5 (5) (~P&~Q)=(C=R) A

6 (6) -Q A

16 (7) ~P 1,6 MTT

1,6 (8) ~P&-~Q 6,7 &I

1,56 (9) C=R 5,8 MPP

10 (10) ~(E=C) A

1,6,10 (11) ~P&~(E=CQ) 7,10 &I

1,6,10 (12) ~(Pv(E=CQ)) 11 SI (de Morgan)!
1,2,6,10 (13) (Pv(E=Q)) & ~(Pv(E=C)) 2,12 &I

1,2,6 (14) E=C 10,13 RAA

15 (15) E A

1,2,6,15 (16) C 14,15 MPP
1,2,5,6,15 (17) R 9,16 MPP

1,2,5,6 (18) E=R 15,17 CP
1,2,3,5,6 (19) C=I 3,18 MPP

20 (200 ~I A

1,2,35620 (21) ~C 19,20 MTT
1,2,35620 (22) ~Cv~E 21 vl

23 (23) ~R A

1,2,5,6,23 (24) ~E 18,23 MTT
1,2,5,6,23 (25) ~Cv~E 24 vI

1,2,3,4,5,6 (26) ~Cv~E 4, (20,22), (23,25) vE

Notice that the step by step deductions appear in the third column, alongside a line number. The
right-hand column gives the reason for believing that line (one of the 10 Rules of Derivation
described below). The left-hand column indicates the list of assumptions upon which each line
depends. All of our proofs will have these four columns.

Having constructed an argument like the one above, we can happily say that we have proved
the sequent. In other words, the English argument is valid; if premises 1 to 6 are true then the
conclusion must also be true; the premises do entail the conclusion. If someone wants to deny the
conclusion, they will not be able to do it on logical grounds; their only option will be to show that
one or more of the premises are false.

Rules of Derivation

In order to refute an informal argument, various strategies may be used:
- claim the speaker has made an incorrect assumption
- claim the speaker has made an invalid deduction from the available evidence
- provide a counter-example
- questions the speaker’s authority
- question the speaker’s motives or integrity
- find photos of the speaker in the middle of a juicy sex scene etc etc

In formal logic we are primarily interested in the second of these strategies. The first and third
may also interest us but the rest are irrelevant. In the light of the first two strategies it will be
important to keep a clear distinction between propositions in an argument which have been
assumed and those which have been deduced from the assumptions. Further, it will be important
to keep track of which deductions are based on which assumptions.

1 I've actually cheated a bit here by assuming de Morgan’s law. To properly show that line 12
follows from line 11 would take about another 13 lines.
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In the light of the second strategy, it would be useful if we could agree on a set of valid forms of
deduction. If each step of the argument faithfully adheres to these agreed forms, then it will be
difficult for anyone to deny the validity of the overall argument. The following 10 Rules of
Derivation are defined with two aims -
i)  to be simple and concise so that all the forms of deduction are obviously true to our
intuitions
ii) though simple, the rules should be powerful enough so that any valid argument
which can be expressed in propositional logic can be proved using these rules

1. Rule of Assumption (A)

Definition: A
Any proposition may be introduced at any stage of the proof as an assumption.

Initially, this seems like a very generous rule, but one should note that it is not the logicians
duty to check out the truth of any of the assumptions: we are just concerned with what logically
follows from an assumption given that it is true.

2. Modus Ponendo Ponens (MPP)

The Latin name modus ponendo ponens (sometimes refered to as simply modus ponens) means “the
mode of reasoning which affirms something positive and deduces something positive”.

Definition: MPP
Given A and A=>B, we may derive B as conclusion. B depends on any assumptions on
which either A or A=B depend. In other words, if a conditional holds and also its

antecedent, then it’s consequent also holds.

eg1 P,P=Q .. Qis avalid sequent as proved by the following argument -

1 (1) P=Q A
2 2) P A
1,2 (3) Q 1,2 MPP
Column 1 shows the list of assumptions on which each line depends
Column 2 is simply a line number
Column 3 shows the wffs being assumed and deduced.
Column 4 is a justification which explains the reason for believing each line. This justification

will includes the name of the Rule being used along with the line numbers of previous lines
which are used as premises for that Rule.

Notice that the final line shows the conclusion which is the right-hand side of the sequent and
that the assumption upon which the last line rest are exactly the wifs which are listed on the
left-hand side of the sequent. This should always be the case; in fact that is what we mean by
saying that the sequent is proved by the argument.

eg2 P=Q Q=R,P..R

1 (1) P=Q A
2 (2) Q=R A
3 (3)P A
13 4) Q 1,3 MPP

123 (5) R 2,4 MPP
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Beware of the Fallacy of Affirming the Consequent. You may be tempted to represent the
argument “Communists believe in redistribution of wealth, Mr X believes in redistribution of
wealth, so he must be a Communist” by the sequent C=R, R .. C. But this is not a valid use of
MFP.

3. Modus Tollendo Tollens (MTT)

The Latin name modus tollendo tollens (sometimes refered to as simply modus tollens) means
“the mode of reasoning which starts with something negative and deduces something negative”.

Definition: MTT
Given ~B and A=sB, we may derive ~A as conclusion. ~A depends on any assumptions

on which either ~B or A=B depend. In other words, if a conditional holds and its
consequent is denied then the antecedent can also be denied.

eg1 “If de Klerk were the President of the USA then he would have to be a US citizen.
But de Klerk is not a US citizen, hence he cannot be the US President.”

Using the dictionary - P = “de Klerk is President of the USA”
C = “de Klerk is a US citizen”

we can represent this argument as the sequent ~P=C, ~C .. ~P

and can prove it to be valid as follows -

1 (1) P=C A
2 2) ~C A
1,2 (3) ~P 1,2 MIT
egy P=(Q=R),P,~R .. ~Q
1 (1) P=(Q=R) A
2 2) P A
3 3) ~R A
1,2 (4) Q=R 1,2 MPP
1,2,3 (5) ~Q 43MTT

Beware of the Fallacy of Denying the Antecedent. You may be tempted to represent the argument
“If the program has a syntax error then it will not give the correct solution. The program has no
syntax errors. Therefore, the program will give the correct solution.” by the sequent S=~C, ~5..
C. But this is not a valid use of MTT.

4. Double Negation (DN)

Defnition. DN

Given A we may derive ~~A and vice-versa. The conclusion depends on the same
assumptions as the premise.

eg] P .. ~~P, by the following proof -

1 ()P A
1 (2) ~~P 1 DN
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egy ~P=Q ~Q.. P
1 (1) ~P=Q . A
2 (2) ~Q A
1,2 (3) ~~P 12MTT
1,2 (4) P 3 DN

5. Conditional Proof (CP)

Definition: CP
Given a proof of B from A as assumption, we may derive A=B as conclusion based on
the remaining assumptions (if any).

In other words, if you could prove P ... Q then you could equally well prove .. P=Q. CP is one of
only two Rules which reduces the number of assumptions (RAA is the other one).

eg P=Q .. ~Q=~P

1 (1) P=Q A

2 (2) ~Q A

12 (3) ~P 1,2 MTT
1 (4) ~Q=~P 2,3CP

Exercises: Proofs

Construct proofs for each of the following sequents -
i) P=-~Q,Q .. ~P
ii) ~Q=~P .. P=Q
1ii) P=Q,R=~Q .. P=~R

6. &-introduction (&l)

Given A and B separately, we may derive A&B as conclusion. The conclusion rests on
all assumptions on which either A or B depend.

eg1 P.Q .. P&Q
1 (1) P A
2 (2 Q A
12 (3) P&Q 12 &I

7. &-Elimination (&E)

Defmition. &F

Given A&B, we may derive either A or B as conclusion. The conclusion depends on the
same assumptions as the premise.

eg P&Q .. Q&P
1 (1) P&Q A
1 (2) P 1 &E
! 3) Q 1 &E
1 (3) Q&P 3,2&1
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Exercises: Proofs
Construct proofs for each of the following sequents -
i) P,PeQ . Q
ii) P&(Q&R) .. (P&Q)&R
iii) (P&Q)=R .. P=(Q=R)
iv) P=(Q=R) .. (P&Q)=R
(Note that proving sequent iii is not the same as proving sequent
iv; both must be proved separately.)

8. v-Introduction (vl)

Definition: vl
Given either A or B separately, we may derive AvB as conclusion. The conclusion
depends on the same assumptions as the premise.

eg “Charles I was beheaded. Therefore, either Charles I was beheaded or he was sent to
the electric chair.” - a very dull conclusion, but nevertheless quite valid.

9. v-Elimination (VE)

finition: v
Given AvB, together with a proof of C from A as assumption and a proof of C from B as
assumption, we may derive C as conclusion. C depends on any assumption on which
AvB depends, or on which C depends in its derivation from A (apart from A), or on
which C depends in its derivation from B (apart from B).

In other words, if you can prove P . R and can also prove Q .- R then you have also proved PvQ ..
R. This is the most confusing of the 10 Rules. Proofs using vE will always have the following
structure (where <Assl>,<Ass2>, and <Ass3> represent lists of auxiliary assumptions) -

<Assl> (10) AvB

?
11 (11) A A
11, <Ass2> (19) C ?
20 (20) B A
20, <Ass3> (29) C ?
<Ass1>,<Ass2>,<Ass3> (30) C 10,(11,19),(20,29) vE

Notice that the conclusion C is written three times: once as a deduction from A (and possibly
some other assumptions), once as a deduction from B (and possibly some other assumptions), and
then the final time in the vE step. This will always be the case. It would be wrong to stop the
proof at line 19, because although we have reached the required conclusion, it is not based on the

required assumptions.

The lines quoted as justification for VE are firstly the original disjunction (10), secondly the first
subproof from A to C (11 to 19), and thirdly the second subproof from B to C (20 to 29).
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eg PvQ..QvP
1 (1) PvQ A
2 2) P A
2 (3) QvP 2 vl
4 - (4) Q A
4 (5) QvP 4 vl
1 (6) QvP 1,(2,3),(4,5) VvE

Exercise: VE Proof
1. Construct a proof for the sequent Q=R .. (PvQ)=(PvR)
2. Construct a proof for the sequent (P=Q)&(R=S), PvR .. QvS

10. Reductio ad Absurdum (RAA)

If you ever reach a contradiction, you may be quite sure that at least one of your assumptions is
false. From now on we will use a more exact definition of “contradiction” than previously. A
contradiction is any wff of the form a&~a; that is, a conjunction in which the second conjunct is
the negation of the first. Thus we may describe the Rule whose Latin name means “to reduce to
absurdity” -

Given a proof of (B&~B) from A as assumption, we may derive ~A as conclusion based
on the remaining assumptions (if any).

eg P=Q P=~Q..-P

1 (1) P=Q A

2 (2) P=>-Q A

3 (3) P A

13 (4) Q 1,3 MPP
23 (5) ~Q 2,3 MPP
12,3 (6) Q&~Q 4,5 &I
12 (7) ~P 3,6 RAA

The contradiction at line 6 shows that assumptions 1,2 and 3 are inconsistent: they cannot all be
true. RAA allows us to reject any one of those assumptions: in this case we have chosen to reject 3,
but we could have written either of the following as line 7 -

2,3 (7) ~(P=Q) 1,6 RAA
1,3 (7) ~(P=~Q) 2,6 RAA
Exercises: RAA Proofs

Construct proofs for the sequents -
i) P=Q .. (P=~-Q)=~P
ii) P, ~(P&Q) .. ~Q

Other forms of deduction

There are many other common forms of valid deduction, but these can all be proved using the 10
rules above. For instance -

Hypothetical Syllogism P=Q Q=R .. P=R

Constructive Dilemma (P=Q)&(R=S), PVvR .. Qv5
Destructive Dilemma (P=2Q)&(R=S), ~Qv~S .. ~Pv~R
Modus Ponendo Tollens ~(P&Q),P .. ~Q

Modus Tollendo Ponens PvQ,~P .. Q

Resolution PvQ, ~PvR .. QvR
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Exercises
1. Examine the proof of Russell’s Paradox. On which of the Rules of Derivation does
it rely?

2. Consider the following argument -
“University students will either study or they will party. If they study they are
assured of passing and once they have passed they will graduate. However, if
they party they will surely fail. Those students who fail eventually drop out of
university. So it is clear that all students eventually leave university.”

i) List the Rules of Derivation which are used in the argument.

ii)  Is the argument valid?

iii) Isitsound?

iv) Create a dictionary to represent the propositions in the argument.

v) Express the argument as a series of propositional wffs (you may also need to
introduce an extra premise which is assumed but unstated in the English
argument).

vi) Construct a formal proof which mirrors the English argument.

3. Review the parliamentary argument on page 39 and check that each line uses the

Rules of Derivation correctly.

Sequent Introduction (Sl

Proving sequents using only the 10 allowed Rules is tedious work and in order to save time, brain
cells and ink, I now introduce a short cut. Suppose half way through a proof we want to use one of
the sequents which we have already proved. Of course we could copy each line from the previous
proof (in effect reproving the result), but it is more sensible to simply cite the other proof and
carry on. Citing a previous proof is called sequent introduction and must conform to the following
pattern -

Definition: SI
If A1,Ap,...Ap - Bis a proven sequent and the wifs A1,A2,..Ap have all been established,
then we may derive B as conclusion. The assumptions on which B depends will be all the

assumptions on which Ay,A,...An depend.

For example, suppose we want to prove the principle of modus tollendo ponens. Although this
looks like a fairly straight-forward sequent, a full proof is actually quite lengthy, and so we
will do the proof in three parts.

1. We first prove the sequent PvQ .. ~(~P&~Q)

1 (1) PvQ A

2 2) P A Start of 1st vE subproof
3 (3) ~P&~Q A Start of RAA

3 4) -~P 3 &E

23 (5) P&~P 24 &I

2 (6) ~(~P&~Q) 35RAA End of 1st vE subproof
7 (7) Q A Start of 2nd vE subproof
3 8) ~Q 3 &E

3,7 (99 Q&~Q 7,8 &I

7 (10) ~(~P&~Q) 79 RAA End of 2nd vE subproof
1 (11) ~(~P&~Q) 1,(2,6),(7,10) vE
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2. Then we prove ~(~P&~Q) .. ~P=Q

1 (1) ~(~P&~Q) A
2 (2)y ~P A Start of CP
3 3) ~Q A Start of RAA
23 (4) ~P&~Q 2,3 &I
1,23 (5) (~P&~Q)&~(~P&~Q) 4,1 &I
1,2 (6) ~~Q 35 RAA
1,2 (7) Q 6 DN
1 (8) ~P=Q 2,7CP
3. If we make use of these two previously proved sequents then the final proof of PvQ, ~P
~. Q becomes short -
1 (1) PvQ A
1 (2) ~(~P&~Q) 1SIPvQ .. ~(~P&~Q)
1 (3) ~P=Q 28I ~(~P&~Q) .. ~P=Q
4 (4) ~P A
14 (5) Q 3,4 MPP

This simple form of sequent introduction is useful, but what happens if you have proved the
sequent P . Q= P but in the proof you are working on you require (A&B) .. Q = (A&B)? The two
have the same logical form and hence a proof for the first can easily be turned into a proof for
the second by replacing every occurrence of P with (A&B). So let’s extend Sequent Introduction -

Definifion. S {1 Tuchi h Substituti
If A1,A2,...An .. Bis a proven sequent and A'1,A’2,...A’ . B’ is a substitution instance of
A1,Ay,...Ap . B, and A’1,A’2,...A’y have all been established, then we may derive B’ as
conclusion. The assumptions on which B’ depend are all the assumptions on which
A’1,A%,...A’n depend.

Meta-Theorems about Derivations

1. If A1,Ap,...Aq..B is a derivable sequent then so is Aj,A2,...Ap1." An=B.
Proof: The assumption that Aj,Az,...Ap..Bis a derivable sequent means that there is
some argument in the form -

1 1) Aq A
2 (2) A A
n (n) Ap A
1,2,..n (x) B ?7?

Given such a proof, we can always add the next line -
1,2,.n-1  (x+1) Ap=B nxCP
which constitutes a proof of A1,A3,...An-1--Apn=B.

2. The converse of 1. is also true: If A1,A2,...An.1--An=B is a derivable sequent then so is
A1,A2,...Ap .. B.
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Proof: The assumption that A{,A3,...An-1..An=B is a derivable sequent means that
there is some argument in the form -

1 1) A1 A
2 2) Az A
n-1 (n-1) Ant A

1,2,..n-1 (x) An=B ?2??

Given such a proof, we can always add the two lines -
x+1 (x+1) Ap A
1,2,..n-1,x+1 (x+2) B x, x+1 MPP
which constitutes a proof of A1,A2,...An..B.

3. By repeated applications of 1. and 2. one can see that A1,A2,...Apn.. B can be proved iff
s (A1=(A2=>(A3...(Apn=B)...) can be proved.

4. .. A iff A is a tautology.

5. Proving A1,Ajp,...An..B is precisely the same as showing that
(A1=>(A2=(A3...(Ap=B)...) is a tautology. (By combining 3. and 4.)

Comparison of Arguments, Truth Tables and Possible
Models Diagrams

1.  The sequent A1,A2,...Aq .. B may be proved in three ways -
i) construct an argument which assumes A1,A2,...An and deduces B using the 10
Rules of Derivation;
ii) show that (A1=>(A2=>(A3..(An=>B)..) is a tautology (either by truth table or
PMD);
iii) show that the PMD for (A1&(A2&(A3...(Ap-1&Ap)...) is a subset of the PMD for
B.

1. We have already constructed formal arguments which prove the following sequents -

i) Q=R .. (PvQ)=(PVR)

ii) P=QP=~Q..~P

iii) P=Q .. P=~Q)=~P

iv) P, ~(P&Q) .. ~Q

Now re-prove each of these by the other two methods.
2. Show that the following arguments are invalid -

i)  If Alice wins first prize, then Bob wins second prize and if Bob wins second prize
then Carol is disappointed. Either Alice wins first prize or Carol is
disappointed. Therefore Bob does not win second prize.

ii) If the seed catalogue is correct, then if the seeds are planted in April, then the
flowers bloom in July. The flowers did bloom in July. Therefore, if the seeds
catalogue is correct, then the seeds must have been planted in April.

2.  An argument may prove a sequent but cannot be used to disprove it. Truth tables and
PMDs may be used for both.

3. Truth tables and PMDs are easy to handle if there is a small number of propositional
variables, but it is generally easier to construct an argument if there are more than
three.
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4.  Truth tables and PMDs are only useful for propositional logic, whereas the argument
structure and 10 Rules of Derivation work for both propositional and predicate logic.

5. PMDs have more visual appeal that truth tables, but truth tables are more standard in
computer science.

Consistency and Completeness

There are two important questions to ask about our 10 Rules of Derivation:
1. Are the Rules safe? ie can we guarantee that all the sequents we can prove are reliable?
2. Are the Rules powerful enough, or might there be some valid sequents which we cannot
prove?

More formally, we need to judge this system of logic on the basis of the following two criteria -

Definition te
If every sequent provable by a system of logic is necessarily true (ie tautologous), then
the system is said to be consistent.

D : Compl
If every necessary truth which can be represented in a system of logic can be proved to
be valid in that system, then the system is said to be complete.

Propositional logic based on the 10 Rules of Derivation form a system which is both consistent
and complete.l

Axiomatic Basis for Propositional Logic

There is always a trade off between the number of Rules of Derivation and the complexity of
proofs. If one allows more Rules, then proofs become shorter; but the more Rules there are, the
more difficult it becomes to be sure that the system is complete and consistent. Our system of 10
Rules is a compromise: bigger than necessary, but not too big to become cumbersome.

Bertrand Russell and Alfred North Whitehead defined a much smaller system which still
encapsulates everything that our system can do. This system can be defined axiomatically as
follows -

1. We allow any letter to be used as a propositional variable; the symbols (,),v, &, ~ and =
(all defined as expected); and the formation of wifs as previously defined.
2. The following wffs are axioms -
Al:  (PvQ)=P
A2:  Q=(PvQ)
A3: (PvQ)=(QVP)
Ad: (Q=R)=((PvQ)=(PVvR))
3. The Rule of Uniform Substitution: if you select any variable in a theorem and replace
every occurrence of that variable with any wif, then the resulting wff is also a theorem.
4. Modus Ponens: if o and P represent any two wifs and (a=f) and o are both theorems then

sois p.

1 These two concepts are also important guides to judging computing systems (eg evaluating a
CPU chip design, or a new hardware architecture, or a new programming language).
- Completeness: will the system be able to compute everything which is computable? (A
question which is answered in the CS2 Theory of Computing module.)
- Consistency: can you guarantee that the system will be error-free?
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Secfion 6 - Predicale Logic

Inadequacies of Propositional Logic

Propositional logic treats all propositions as atomic (ie indivisible, without any internal
structure). For many statements and arguments this is inadequate. For instance it seems like an
oversimplification to represent the sentence “Every person in this room is awake” by just a single
propositional variable P. We could write a long wiff such as P&(Q&(R&(S5&(......))) to represent
“Peter is awake and Themba is awake and Sue is awake ...” but that still doesn’t seem to capture
the meaning of the original statement. So an argument like “Every person in this room is awake.
Matthew Clarke is in this room. Therefore Matthew Clarke is awake.”, which is clearly valid,
is not provable (nor even expressible) in propositional logic.

To overcome such shortcomings we introduce new notation to express properties and relations,
notation to represent variables, notation to represent the quantities “all” and “some”, and
finally four new Rules of Derivation.

Predicates

We introduce predicates to represent claims that the subject of a proposition has some property
(or characteristic). For instance, suppose we want to represent the claims -

1. “John is a bachelor”; and

2. “Peter is a bachelor”.

If we let B be a predicate symbolising “bachelor” we can rewrite 1. as B(John) and 2. as B(Peter).

We can also say that for any xe {John, Peter), it is true that B(x). The x here is a variable which
does not evaluate to true or false, but merely represents an object. Since x may represent any
number of things, we don’t even want to say that B(x) is either true or false. However, when we
consider an actual object, say John, then B(John) must be either true or false.

“Bachelor” is an example of a one-place predicate (representing a property of an object), but we
can also make use of multi-place predicates (representing relationships between objects). For
instance, if we let j; represent Jack, jo represent Jill, and let T be the predicate “taller than”,
then T(j1,jz) means “Jack is taller than Jill”. Note that the order of objects is important in multi-
place predicates: T(j1,j2)is not the same as T(jz,j1)-

In propositional logic we could use upper and lower case letters interchangeably, but now we must
be more careful. We will always use capitals to represent predicates; x,y,z as variables; and
other lower case letters (normally a,b,c) as proper names representing particular objects.

Quantification
Universal Quantification

Suppose we wish to represent the proposition “all people are mad”. Letting M be the predicate
“mad”, we could write M(x), but this is simply a claim about some object x. To apply this to all

possible x’s, we write (¥ x)M(x). (In some logics, this may just be written (x)Mx1.)

1 The notation (x)Mx is used by Lemmon for instance (and hence in the LemmonAid software).
Although it makes wifs longer and the proliferation of brackets may be confusing, I have chosen

to use the more verbose notation (V¥ x)M(x) for two reasons. Firstly, it is good to be familiar with

the V symbol because it is so widely used. Second, using extra brackets complies with standard
computing notation (eg Prolog) where the predicates are seen as functions and the variables as
parameters.
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Defmition. Uni L Ouantif
The symbol “V ” is the universal quantifier and is read “for all”.

Thus, (V' x)M(x) can be read as any of the following -
For every x in the universe, x is mad
For all x, x is mad
Everything is mad

If we want to make this a bit less universal, so that it applies only to humans, we could introduce

another predicate H for “human” and write (V x)(H(x)=M(x)). This can be read “for all x, if x is
human then x is mad”, or in short “every human is mad”. Note that this is not the same as the

wif (¥ x)(H(x)&M(x)) - this claims that everything in the universe is both human and mad.

As another example, we could symbolise the fact that being taller than someone is non-reflexive
by the expression (Vv UVY )T (x,y)=~T(y,x))

To symbolically represent “All romans were either loyal to Caesar or hated him” we could write

(V¥ x)(Roman(x) = (loyal_to(x,Caesar) v hates(x,Caesar)))

though we will more typically use only single letters and write -
(VX)(R(x) = (L(x,) v H(x,)))

It is often useful to think of a universally quantified wff as an infinite conjunction. For instance if
all the elements of the universal set were labelled aj,az,a3,... then (V¥ x)P(x) is equivalent to
P(a1)&P(a2)&P(a3)& ...

xercise: i ificati

Express the sentence “Every person in this room is awake” as a predicate wif.

Existential Quantification

Using universal quantification we could represent claims such as “all unicorns are alcoholics”,
but this seems to miss out on the important fact that, unfortunately, there are no unicorns. To
rectify this we introduce the existential quantifier.

Definition: Exd a1 O T
“ The symbol “3” is the existential quantifier and is read “there exists”.

eg If A is a predicate meaning “asleep in class” then (3x)A(x) means “there is at least
one x such that x is asleep in class”, or more loosely “something (somebody?) is asleep
in class”.

It is often useful to think of an existentially quantified wff as an infinite disjunction. For instance
if all the elements of the universal set were labelled aj,az,a3,... then (3x)P(x) is equivalent to
P(a1)vP(az)vP(a3g)v ...

Ererciscs Existential T

1. Using the same predicates as the previous exercise, express the sentence “At least
one person in this room is awake” as a predicate wif.

2. Express the proposition “There is at least one honest politician” as a predicate
wif.

3. Express the proposition “There are no unicorns” as a predicate wif.
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xercises: Representing English in predicate notation
For each of the following sentences, devise a dictionary of predicates and then express
the sentence as a wff of predicate logic -
i)  People are either male or female
ii) No woman is both a doctor and a school student
iii) Only men are whisky drinkers
iv) All birds fly
v)  No bird flies
vi) Not all birds fly
vii) Tweety is a bird who doesn’t fly
viii) Every bit is either on or off
ix) Either every bit is on or every bit is off
x)  Some computers are faster than others
xi) A garfinkel cannot be snerked, but if it is transfixed, it snerks all its
transfixers.

Free and Bound Variables

Consider - 1. S(x) = 3yY)T(xy)
2. (3Ax)(P(x) & Fy)T(x,y))
3. (APx) & @y)T(x,y)

In 1. only the variable y has a quantifier. We say thaty is a bound variable and that x is a free
variable. We could interpret this expression in one and only one way, regardless of whether we
used parentheses to indicate which y-values were quantified by (Jy).

However, in 2. the parenthesis following (Jy) is absolutely essential: 2. is not the same as 3.
Without the parenthesis we are not saying that the x satisfying P(x) is necessarily the same x
that satisfies T(x,y). In 3. the first x is bound, but the second is free.

In an expression (V x)(...) or (3x)(...), the portion of the expression to which the (V x) or (3x)
applies is called the scope of the quantifier. Scope is indicated by parentheses except where it is
obvious anyway. A variable is said to be bound by a quantifier which specifies that same
variable if it lies within the scope of that quantifier. A variable which is not bound by any

quantifier is said to be free.

The concept of free and bound variables should be familiar to you from maths. In the formula -

3x2y.dx
J1
you may set y to any value you like and then evaluate the integral by varying x from 1 to 2. The
variable x is bound by the integration operator, but y is free to be set outside the scope of the
integral.

The terms free and bound are quite common in various areas of computer science as well as in many
logic textbooks, but in this presentation of predicate logic we tend to avoid the confusion by using
proper names (a,b,c) when we want free variables and variables (x,y,z) when we want bound
variables. In terms more appropriate to computer programming, a proper name parallels the
concept of a Pascal constant while a variable parallels a Pascal variable.
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Exercises: Free and bound variables

Write down each variable in the following wffs and state whether they are free or
bound. Also indicate the scope of each quantifier -

i)  (YVxGxy)

ii)  (Vx)@yNG(x,y)vP(x))

iii)  (Vx)(3y)G(x,y)vP(x)

iv)  (Vy)G(xy)v(Iy)P(x)

v)  (@x)HX)= (Y v)K(y,x)&H(a))

Alternate Representations of English Statements

In many cases an English statement may be represented logically in more than one way. For
instance, “No man is an island unto himself” may be represented by either of the following wifs
(and certainly others as well) -

1) ~@Ex)ME)&I(x))

ii) (Vx)(M(x)=~I(x))

This can occur for one of two reasons: the alternate wffs may be logically equivalent or the
English statement may be ambiguous.

1. Equivalence

As defined already in the section on propositional logic, two wifs are equivalent iff they are true
under exactly the same circumstances. In propositional logic we could test this by constructing
either a truth table or a PMD. That can also be of some use with predicate wffs, but truth tables
cannot take account of quantification.

Apart from the equivalences we have already examined, there are only four extra ones which
need to be learnt. These equivalences allow us to interchange universal and existential

quantifiers -

) (YW = ~(3x)~W(x)
i) (YO-W(x) = ~@x)W(x)
iii) @x)W(x) = ~(Vx)~W(x)
iv) @x)~W(x) = ~(Vx)W(x)

Each of these make intuitive sense (and later on we will be able to prove them conclusively). For
instance the second equivalence shows that “everything in the universe is not a unicorn” is
exactly the same as “it is not the case that there exists a unicorn”. In each case, W(x) need not be
simply a predicate, but could be any expression which contains the variable x.
eg Using the first equivalence, (Vx)H(x)=(V y)L(x,y)) is logically
equivalent to ~(3x)~(H(x)=>(Vy)L(x,y))

Furthermore, if the two expressions W1(x) and W2(x) can be shown to be equivalent, then
(Y x)W1(x) = (Vx)W2(x) and Ex)W1(x) = (3)W2(x).
eg if W1(x) is ~(P(x)&Q(x)) and Wa(x) is ~P(x)v~Q(x),
we can show that W1(x) = W3(x) by a truth table or PMD test
and hence can conclude that (V' x)~(P(x)&Q(x)) = (V x)(~P(x)v~Q(x)).

2. Ambiguity

All natural languages (such as English) contain ambiguities. For instance, the sentence “1 love
her cooking” can be interpreted in at least three separate ways (some people can see six ways).
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As a simpler example, consider the sentence “Every boy loves a certain girl”. This could mean
that there is one (very fortunate) girl who is loved by every boy, in which case we could use the
wif -

@XNG)&(V y)(B(y)=L(y.x))

But maybe the sentence is supposed to mean that for every boy you can find some girl whom he
loves -

(VY y)(B(y)=(3x)(G(x)&L(y,x)))

These two wifs are not logically equivalent. They reflect the fact that the original English
sentence is ambiguous: it is open to different understandings.

Exercise: Alternat. resentati
At the beginning of this section we proposed that “No man is an island unto himself”
may be represented by either of the following wffs -
i) ~@x)M)&I(x))
ii) (Vx)M(x)=~I(x))
Are these two wifs logically equivalent or is the original sentence ambiguous?

Rules of Derivation

All 10 Rules of Derivation from the propositional calculus carry over into the predicate calculus
without modification. In addition, there are four rules governing the use of quantifiers.

11. Universal Elimination (UE)

If we know that for every object in the universe, some property holds, then for any particular
object, that property must hold. eg Since all triangles have an angle sum of 180°, any actual
triangle you care to chose will have an angle sum of 180°.

Definition: UE

Let x be a bound variable, F(x) be some expression (possibly just a single predicate but
maybe a combination of predicates, propositional variables and connectives) and a be

a free variable. Then given (V x)F(x) we may derive F(a) as conclusion by replacing
all occurrences of x in F(x) with a. The conclusion depends on the same assumptions as

the premise.

eg  Pascal is a programming language. All programming languages have loop
structures. Therefore Pascal has a loop structure.
Dictionary - P(x) means x is a programming language
L(x) means x has a loop structure
s stands for Pascal

Then we need to prove the sequent P(s), (VX)(P)=L(x)) . L(s)

1 (1) P(s) A

2 2) (Vx)(P(x)=L(x)) A

2 (3) P(s)=L(s) 2UE
1,2 (4) L(s) 3,1 MPP

If you think of a universally quantified expression as an infinite conjunction, then this rule is
similar to &E. From P(a)&P(b)&P(c)& ... we can deduce any one of the conjuncts, say P(c).

Beware of negated quantifiers. From (V x)~P(x) you can derive ~P(a) by UE, but from ~(V x)P(x)
it is pot legal to derive ~P(a). (This would be the same as deducing ~Q from the premise
~(Q&R).) Predicate wffs with negation signs at the front are difficult to handle (they normally
require RAA proofs) and we generally try to avoid them. ;
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12. Universal Introduction (Ul)

By comparison with &I, if we could be sure that P(a), P(b), P(c) etc were all true (ie if P holds for

each object in the universe) then we could deduce (¥ x)P(x). Unfortunately this is rarely possible
since the number of objects in the universe is infinite!

But compare this situation to proofs in geometry - suppose we wanted to prove that all triangles
had an angle sum of 180°. Rather than try to prove this for each triangle in the universe, we
would say “let ABC be any triangle, then .."”. That is, we pick an arbitrary triangle which
represents all triangles, prove the result for that triangle and deduce that it must be true for all
triangles.

Definition: UL
Let F(a) be a wif containing the free variable a; let xbe a bound variable not occurring
in F(a); and let F(x) be formed by replacing all occurrences of a in F(a) with x. Then
given F(a), we may derive (V x)F(x) as conclusion, provided that a does not occur in
any assumption on which F(a) rests. The conclusion depends on the same assumptions
as the premise.

eg (VX)(HX)=G(x)) - (VxHX)=(Vy)G(y)

1 (1) (YOHE=GX) A

1 (2) H(a)=G(a) 1UE

3 (3) (Vx)H(Kx) A

3 (4) H(a) 3UE
1,3 (5 Ga) 2,4 MPP
13 (6) (V¥)GK) 5Ul

1 (7) (Yx)H(x)=(Vy)G(y) 3,6CP

In summary, if an arbitrary proper name (in this case “a”) can be shown to have some property,
then UI allows us to conclude that everything in the universe has that property. We must be
very careful about our choice of the proper name in order to guarantee that it is really arbitrary.
If “a” occurs in any of the assumptions upon which F(a) depends, then we cannot conclude

(¥ x)F(x).

We must also take care about which bound variable to use. Having derived the wiff
F(a)=(V¥ x)G(x), we cannot use UI to deduce (¥ x)(F(x)=(V x)G(x)) - this isnt even a wff since x is
quantified twice within the same scope. We could, however, deduce (V y)(F(y)=(¥ x)G(x)).

If these restrictions where not imposed, then we could prove the following -

1 (1) F(a) A
1 (2) (Yx)F(x) 1Ul

This sequent is plainly ludicrous. It is equivalent to the argument “Let a be an arbitrary number
which is odd. Therefore all numbers are odd.”

13. Existential Introduction (El)
If we know that F(a) is true for any one object a (it doesn’t even have to be an arbitrary object)

then we can certainly conclude F(a)vE(b)vF(c)... by repeated uses of vI. Similarly we could
conclude (3x)F(x).
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Defmition. EI
Let x be a bound variable, F(x) be some expression (possibly just a single predicate but
maybe a combination of predicates, propositional variables and connectives) and a be
a free variable. Then given F(a) we may derive (3x)F(x) as conclusion by replacing all
occurrences of a in F(a) with x. The conclusion depends on the same assumptions as the
premise.

eg  (VXF(x) .~ @F(x)

1 (1) (Vx)F(x) A
1 (2) Fa) 1UE
1 (3) (AxF(X) 2 EI

14. Existential Elimination (EE)

If something has a certain property, and if it can be shown that some conclusion C follows from
the assumption that an arbitrary object has that property, then we know that C must hold. In
other words, if something has the property F, and no matter which has it then C holds, then C
holds anyway.

Definition: EE

Let F(a) be a wif containing the free variable a; let x be a bound variable not occurring
in F(a); and let F(x) be formed by replacing all occurrences of a in F(a) with x. Then
given (Ix)F(x) together with a proof of some wff C from F(a) as assumption, we may
derive C as conclusion, provided that a does not occur in C or in any assumption used to
derive C from F(a) (apart from F(a) itself). The conclusion depends on any assumptions
on which (3x)F(x) depends or which are used to derive C from F(a) (apart from F(a)).

This rule is similar to vE. With vE we start with a disjunction AvB; assume A and prove C;
assume B and prove C; then conclude C. With EE we start with an infinite disjunction, and rather
than have an infinite number of subproofs (one for each disjunct), we just do one subproof using a
typical disjunct. An EE proof will always have the following structure (where <Assl> and
<Ass2> represent lists of auxiliary assumptions)-

<Assl> .(10) (3x)F(x) ?

11 (11) F(a) A The typical disjunct
11, <Ass2> (19) C ?
<Assl>,<Ass2> (20) C 10,(11,19) EE

eg (Vx)(F(x)=G(x)), (@x)F(x) .. @x)G(x)

1 (1) (YX)(EFE)=G(x)) A

2 (2) @X)F(X) A

1 (3) Fa)=G(a) 1UE

4 (4) F(a) A

14 (5) G(a) 3,4 MPP
14 (6) @x)G(x) 5El

12 (7) @x)G(x) 2, (4,6) EE

Beware of the following restriction: in order to apply EE to remove an arbitrary name “a”, the
“a” must not appear in either the conclusion C or in any assumption used to conclude C (apart from
the typical disjunct of course).
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Exercise: Restrictions on proofs using quantifiers
What is wrong with the following ”prodf” of (Ax)F(x) - (Vx)F(x)? Think about what
the sequent would mean if the proof were valid.

1 (1) @XF(x) A
2 (2) F(a) A

1 (3) F(a) 1,2,2) EE
1 (4) (YXF(x) 3UI

Exercise; Predicate proof

1. Prove the equivalence of (V' x)F(x) and ~(3x)~F(x). This requires you to construct a

proof for (¥ x)F(x) .. ~(3x)~F(x) and a separate proof for ~(3x)~F(x) .. (V¥ x)F(x).

(Both can be done with RAA style arguments in less than 10 lines.)

Prove that (Vx)P(x) & (Vy)Q(y) = (Vx)(P(x) & Q(x)).

Prove that (Ix)P(x) v 3x)Q(x) = @x)(P(x) v Q(x)).

4. Prove the sequent (V x)(F(x)=P) .. @x)F(x)=P. This is a somewhat surprising
sequent and what’s more surprising is that the two wifs are actually equivalent!
Can you think of an interpretation which makes this equivalence clear?

5. Using the predicates C(x), W(x) and D(x), convert the following statements into
predicate wifs and construct an argument to prove the conclusion.

“Computer programs are either well-written or difficult to
maintain. Computer programs are not all well-written.
Therefore, there are some computer programs which are
difficult to maintain.”

Rl

Sequent Introduction

Sequent introduction can be used in predicate arguments as it was in propositional arguments, but
now the notion of a substitution instance is slightly more complicated.

In an earlier exercise we proved the sequent P=Q, R=~Q .. P=~R. This sequent makes a general
claim which is valid for any interpretation of P, Q and R. (One interpretation might be P -
husband, Q - married, R - bachelor. ) We will use this sequent in the following example.

Suppose we want to prove the validity of the following Argument -
Some girls like all boys
No girl likes any male chauvinist
». No boy is a male chauvinist

As usual, we first define a dictionary -
G(x) means x is a girl
B(x) means that x is a boy
L(x,y) means that x likes y
M(x) means that x is a male chauvinist
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With this dictionary the argument can be expressed as the sequent -
@X)(G&(Y Y)BY)=Lxy)), (Vx)(G)=(Y ) M(y)=~Lxy) = (¥ x)(BE)=~M(x))

1 (1) @xNGX)&(Vy)B(y)=L(xy))) A First premise
(2) G(a)&(Vy)B(y)=L(ay)) A Typical disjunct. a is free

but y is still bound

2 3) G(a) 2 &E

2 (4) (Yy)B(y)=L@y)) 2 &E

2 (5) B(b)=>L(ab) 4UE Note that we use a
different proper name

6 (6) (YXG)=>(Vy)M(y)=~L(xy)) A Second premise

6 (7)) Ga=(Vy)M(y)=~L(ay)) 6 UE

26 (8) (Vy)M(y)=~L(ay)) 7.3 MPP

2,6 (9) M(b)=~L(ab) 8 UE

2,6 (10) B(b)=~M(b) 5,9 SI P=Q, R=~Q .. P=>~R

2,6 (11) (Vx)(B(x)=>~M(x)) 10 Ul Note that “b” does not
occur in either assumption
20r6

1,6 (12) (Vx)(B(x)=~M(x)) 1,2,11) EE  Note that “a” does not

appear in lines 11 or 6.

At line 10 we have used sequent introduction with substitution (see definition in the
Propositional Logic section). The original sequent was P=Q, R=~Q .. P=>~R, but we have
substituted B(b) for P, L(ab) for Q, and M(b) for R. Thus, “B(b)=>L(a,b), M(b)=~L(ab) ..
B(b)=~M(b)" is a substitution instance of “P=2Q, R=~Q .. P=~R” and whatever proof was used
to establish the second could be modified to establish the first simply by making the
appropriate substitutions. There is no trickery here, we are just saving time and ink.

Exercise: rical Syllogisms
A categorical syllogism is a three-line argument where each line is in one of the
following forms -
All X are Y
Some X are Y
NoXisY
Some X are not Y
Express each of these four forms as predicate wifs.
2. Prove or disprove the following syllogisms -
i) All artists are extroverts
Some artists are poor people
.. Some poor people are extroverts
ii) All successful business managers work long hours
No one who works long hours has time for their family
. No successful business manager has time for their family
iii) Some university courses are not computer science courses since some
university courses are not fun whereas all computer science courses are
fun.

Consistency and Completeness

In propositional logic we could test whether a wiff was tautologous by examining its truth table
or its PMD. This was the foundation on whose basis we established an equivalence between
derivable sequents and tautological wffs. Thus we claimed that propositional logic is both
complete and consistent. However, truth tables and PMDs do not work with wffs which contain
predicates. If we want to determine whether predicate logic is complete and/or consistent then
so we must re-examine our definition of tautology.

p—
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We want to show that -
i) If a predicate sequent can be proved using the 14 Rules of Derivation then the sequent

is necessarily valid (Consistency); and
ii) For any valid deduction which can be expressed as a predicate sequent, there exists a
formal argument which proves that sequent (Completeness).

Recall that truth tables and PMDs examine the truth of a wif in each possible model. In some
parallel way we need to examine the validity of a predicate sequent under any possible model.

Interpretations

Any particular wff may be interpreted in different ways.
eg1 (Vx)(F(x)v~F(x)) may mean “everything in the universe is either a football player or
not a football player”, or it may mean “everything in the universe is either green or
not green”.
egy (Ix)(P(x)&~P(x)) may mean “there exists something which is both a pig and not a
pig” etc.

Notice that for egy, any interpretation you invent will be true, but for egp, every interpretation
will be false. This is the case regardless of what constitutes the universe: in any imaginable
universe eg] will always be true and egy false. (eg Even if you dream about a universe in which
there are only computers and computer sales-people, and in which all sales-people wear red

shoes, however you interpret the predicate F, (Vx)(F(x)v~F(x)) will turn out to be true.)
=__—='§= 1

Definition: Inte

1. To create an interpretation of a wff (or sequent), one must define a universe of
discourse and assign a meaning to each predicate and variable in the wif (or
sequent).

2. If a wif is true under all interpretations in all non-empty universes, we say the
wif is tautological (or necessarily true).

3. A sequent is valid if, under every interpretation in every non-empty universe,
when the premises are true the conclusion is also true. ~ j|

Consequently, if you can find any interpretation of a sequent which is not true, then the sequent is
not valid. Note that to prove a sequent, you must construct a formal argument (since you cannot
test each of the infinite number of possible interpretations) but to disprove a sequent, you just
need to find one counter-example.

With this understanding of truth, validity and tautology, it can be shown that predicate logic is
both consistent and complete.

1. Find an interpretation which will show the following sequents to be invalid -
i)  @xFX) - (YXF(x)
ii) (Yx)(Fx)=G(x)), @x)G(x) - 3Fx)F(x)
iii) @AXEX)&Gx)), (Vx)(FEVG(X)) -~ (VY x)G(x)
2. Prove or disprove the following sequents -
) -~ (VYEE)=EXEF(X)
i) - @NEG)=(YXFX)
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Identity

Consider the simply deduction -
Only Smith and the guard knew the password.
Someone who knew the password stole the gun.
~. Either Smith or the guard stole the gun.

This is clearly a valid argument, but try as you might you won't be able to proof it with the
symbolism we have used so far: the quantities “all” and “some” are inadequate for handling
this. We need some way of representing the claim that two things (say Smith and the person
who stole the gun) are identical. So let us introduce a predicate I(x,y) to mean “x is identical to
y”. Such a predicate is immensely useful: in fact it is all we need to be able to express any natural
number.

For instance, (3x)H(x) may represent the claim “there is at least one human”, but to represent
“there are at least two humans” requires Identity. The wff (Ix)H(x)&(3y)H(y) is inadequate
since x and y may represent the same object. (3x)(3y)(H(x)&H(y)) fails for the same reason. But
using Identity we can write -
(3x)Fy)(H(x)&H(y)) &~1(x,y))
(“there is an x and a y which are both human and are not identical”)

By common convention, we tend to write (x=y) instead of I(x,y) and hence “there is at least two”

is written -
(3)@y)(H(x)&H(y))&~(x=y))

Similarly, “there is exactly one” could be written -
@x)(H(x)&~(3y)(H(y)&~(x=y))
(“there is at least one human, but there is no other human which is different than the first”)

With this new notation, we can represent the stolen gun argument as -
(V x)(K(x)=((x=s)v(x=g)), (@x)(K(x)&S(x)) - S(s)v5(g)
where K(x) means “x knows the password”
S(x) means “x stole the gun”
s stands for Smith
g stands for the guard

Having introduced this new notation it is then necessary to define two extra rules governing the
introduction and elimination of identity (=I and =E). The proof of the stolen gun argument would
then be straight-forward, but we will not bother with these details.

Using Identity, express the following statements -
i)  There are exactly two humans
ii) There are at least three different data types in Pascal
iii) There is more than one way to skin a cat
iv) There are two sides to every coin
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Conclusion

Formalising logic as a system of propositions, logical connectives, predicates and variables may
be viewed in two ways. First, it provides a systematic way of codifying human reasoning.
Second, its formality is so rigidly defined that the whole system can be expressed and processed
by computer. Thus, formal logic may be used as a bridge between human reasoning in natural
language and automated reasoning by computer.

Computer programs have been written to construct truth tables and to check the validity of a
proof. Unfortunately, the task of constructing proofs requires a certain degree of imagination and
cannot be reduced to a mechanical procedure. Programs do exists which automate the proving of
sequents, but all such programs are necessarily only partially successful. It is possible to keep
generating longer and longer proofs in the hope of finding one which deduces the required
sequent: first generate all one-line arguments, then all two-line arguments etc. Eventually a
computer may be able to generate all arguments up to 100 lines in length and check whether any
of them prove the desired sequent. Eventually the computer might be successful in finding a
proof, but what happens if no such proof exists because the sequent is invalid? The computer will
not be able to know whether the sequent is invalid or if there is still a proof which it hasn’t yet

found.
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Section 7 - Other Ferms of Loglc

Propositional logic could not express all that we needed for logic, so we added predicates and
quantifiers. Even then we could not express everything about quantities without introducing a
special Identity predicate. It is still the case, however, that predicate notation is inadequate
for expressing all of logic.

We turn now to four other approaches which each make some types of argument easier to express
and validate.

Modal Logics

Modal logic is an attempt to capture the notions of necessity and possibility. Rather than say
that every proposition must be either true or false, modal logic allows us to say “P must be true”

and “Q may be true”.

A sentence is necessarily true if it is true in all possible worlds and a sentence is possible if it is
true in at least one possible world. The concept of a possible world is roughly the same as an
interpretation in a non-empty universe. There are some imaginable universes, however, which
are not possible worlds - for instance I can imagine a universe in which “I am alive” and “I am not
alive” are simultaneously true (maybe in some nightmare!) but such a universe is not possible
because it violates logic (in this case the Law of Non-Contradiction).

Definition: Modal Operators
i) [0 W means that the wff W is necessarily true (it must be true, it is true in
all possible worlds)
ii) ©W means that the wif W is possibly true (it may be true, there is at least
one possible world in which W is true)

These two operators are clearly inter-related -
iy Ow=-~o~-w
iiy ow=--w

The following wffs are also fairly obvious -
iii) Ow=w (Axiom of Necessity - if something has to be true, then it is true)
iv) W=>0W  (Axiom of Possibility - if something is true, then it is possible
that it could be true)
v) Ow=0W (Combining iii and iv)

What about © W= W? This claims that because something could be true, it has to be true. But
this is clearly invalid - for instance my name is Matthew and hence it is possible that my name
is Matthew (by iv), but it doesn’t follow that my name has to be Matthew (since in another
possible world I may be called some other name).

Examples of Modal Logic

There is not just one “modal logic”, but a variety of modal logics which each interpret the two
operators ¢ and O differently.
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1. Temporal Logic

finition: Temporal logi 1

[ is interpreted to mean “always true at every time in the future”
< is interpreted to mean “may be true at some time in the future”

egl “If you are dead than you will always remain dead” - if we let the symbol D represent
being dead, then this sentence could be written as the modal wff -

D=>D D

egy The opposite of eg] might be “It is conceivable that someone might come back from the
dead”, which could be written as -

D&<SD

eg3 “There may be a rainy day in the future.” In the universe of all days, where R(x) means
“x is a day in which it rains”, we can write -

o (AR(X)

2. Physical Logic

Definition: Phvsical logi
[ is interpreted to mean “in the real universe the laws of physics require that ...”
o is interpreted to mean “in the real universe it could happen that ..."

eg1 “It is not possible to win a lottery unless you buy a ticket.” Let B represent buying a
lottery ticket and W represent winning the lottery. Then we can write -

~B=2~OW

As with our previous systems, one statement may be represented equally well by several
different wffs. For instance the last example could easily be written ~B=LJ ~W

egy “It is impossible to travel faster than light.” Let S(x,y) mean that object x is travelling
at speed y; G(x,y) mean that x>y; and c stand for the speed of light. Then we can write -

~0 (@x)Ay)S(x,y)&G(y.c))
3. Epistemic Logic

Definition: Epistemic logic - ie the logic related to knowledge
O is interpreted to mean “it is commonly known that...”
is interpreted to mean “The person t knows that...”
© is interpreted to mean “it is commonly thought that ... may be true”
is interpreted to mean “The person t thinks that ... may be true”

eg1 “Everyone knows that Themba is a boy.” Let B(x) mean that x is a boy; and let t stand
for Themba. Then this sentence could be written as the modal wff -

O s

egs “Sue thought that maybe Themba didn’t know she was rich.” Let R(x) mean that x is
rich; let s stand for Sue; and let t stand for Themba. Then this sentence could be written

as the modal wff -
& -[Re)
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4. Other forms

A number of other forms of modal logic exist such as Moral Logic (“it is morally imperative
that...”) and Action Logic (“after a particular action it will certainly be true that ...”).

Exercises: Modal Logics
For each of the following sentences, choose which type of modal logic is most

applicable and represent the sentence as a modal wff.
i)  There will never be a day when everybody agrees completely, but there is
still hope that one day we will live in peace.
ii) Themba did not realise that his wife was ugly.
iii) The boiling point of any substance must be higher than its freezing point.

Arguments with modal wifs

Various systems have been proposed to take wifs like those above and include them in formal
arguments.

1. System T

Take all of predicate logic and add -
-OW = ~~W
- A .. Bis a valid sequent iff (A=B) is a tautology
-P=P is a tautology
-(P=2Q)=(P=Q) is a tautology

-IfPisa tautologz thensois P

(Note that the last addition is not the same as saying that P=P is a tautology. If P is always
true then P is true; but just because P happens to be true does not mean that P is true.)

2. System Sy

Take all of System T and add -
-P=>P is a tautology

R stem
Take all of System T and add -

- OP=>¢P is a tautology

Both S4 and Ss are based on T, but P=P can be derived from ¢ P= 0P and hence Ss is a
more powerful system than Sg.
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Multi-Valued Logics

One of the first assumptions of propositional and predicate logic is that every wif must be either
true or false - there is no middle ground. (This is stated explicitly by the Law of Excluded
Middle.) But is this always the case? Consider the following sentences -

i) My mother’s phone number is 971 333

ii) The population of South Africa right now is exactly 37,659,051

iii) Professor Finnie is tall

In the first example, the reader probably doesn’t know whether the claim is true or false, but we
could still say that regardless of whether we know the truth of a sentence, it still must be either
true or false. However, nobody will ever know whether the second sentence is true or false - it is
physically impossible to ever find out. Do we still want to claim that a sentence must be either
true or false when it is impossible in principle to ever be able to tell which?

The third example is more problematic since the predicate “tall” is vague. Even if we knew Prof.
Finnie’s exact height there will be disagreement about whether the claim is true or false.

Three-Valued Logic
Instead of restricting truth values to T and F, a three-valued logic also has a third, intermediate

value. This third value is represented by I, which may mean “unknown”, or “possibly true” etc.

To build a solid basis for logic with three values, we first need to show how the logical
connectives ~,&,v,=> are defined for those values. That is, the truth tables for two-valued logic
will have to be modified. While constructing these tables, it is useful to think of I as “not yet
known”, however, we will see that this leads to some trouble.

AB A&B
TT T
TI . I
A | ~A TF F
T| F IT I
I I 11 I
F T IF F
FT F
FlI F
FF F

Construct similar truth tables for AvB and A=B.

Using truth table definitions based on the “not yet known” interpretation of I leads to the
following problems. The wff Pv~P has always been treated as tautologous: it is true regardless of
the truth of P. We would hope that even if the truth of A was I, then the wif overall should be
true. But the truth table definition states that if A is I and B is also I then AvB is I as well. That
is, there is a condition under which Pv~P is not true.

Similarly, P=P has always been tautologous before, but according to the “not yet known” truth
table, when P is I the overall wif is also I.

These anomalies arise because we aren’t clear about exactly what the intermediate value I
means. It would appear that “not yet known” is not a good choice. We could alter the definitions
to correct such anomalies, but any change would bring new problems. Nevertheless it is common to
make one adjustment - in the table for implication, if A is I and B is I then we define A=B to be
T. This alteration simplifies the mathematical analysis in the next section, but has the
unfortunate side effect that A=>B is no longer equivalent to ~AvB.
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More than three values

The concept of creating an intermediate value can be generalised to allow any number of truth
values between T and F.

Definition: Multi-valued 1
Suppose we allow M different truth values numbered from 1 (absolutely false) to M
(absolutely true). These numbers represent varying degrees of assertability.

Pick some number S between 1 and M so that truth values from 1 to S mean “false to
some extent” and those from S+1 to M mean “true to some extent”. For any
propositional wif we want to be able to calculate its truth value and if the value is <S
we will deny the wff, but if it is >S we will assert the wif.

eg With M=5 and S=2 the truth values might be -
1 - Definitely not
2 - Maybe not
3 - Most likely
4 - Almost certainly
5 - Definitely

What would a truth table look like for negation in a five-valued logic?
A | ~A

b W=
=N W0

In general, if V(P) is the truth value of some wff P in a M-valued logic, then negation is defined
by the mathematical expression -
V(~P) = M-V(P)+1

The truth of P&Q will be the same as the truth of its most doubtful conjunct. Hence -
V(P&Q) = min(V(P), V(Q))

Similarly we can write mathematical expressions for the other connectives -
V(PvQ) = max(V(P), V(Q))
V(P=Q) = min(M, V(Q)-V(P)+M)

Study the mathematical expressions for calculating truth values in multi-valued
logics. Show that when M=2, these calculations give exactly the same answers as
standard truth tables.

Probabilistic Logics

The probability of some hypothesis H being true can be expressed as a real number between 0 and
1. This is actually just an extension of the concept of multi-valued logic. Instead of having a
finite number of truth values from 1 to M, we have an infinite number of truth values between 0
and 1.

In many computing applications (especially expert systems which try to cope with uncertain
data) such probabilities are used to express the degree to which some proposition is believed to
be true.
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Definition: Probabilist ™
Negation P(~H) = 1-P(H)
Conjunction P(A&B) = P(A).P(B)
Disjunction P(AvB) = P(A)+P(B)-P(A).P(B)

The expression for disjunction may be confusing, but think of it in set terms. Suppose A and B are
overlapping sets and we are counting the number of elements in their union. Then we will add the
number in A and the number in B, but this will have counted those in the intersection twice, so we
then subtract the number in the intersection of A and B.

eg If the proposition “Themba was awake at 3am this morning” is believed with
certainty 0.85, we may write P(A(t)) = 0.85 (where A(x) is the predicate “was awake
at 3am”). Then we could decide how much to believe the proposition “Everybody was
asleep at 3am this morning”?
First we write the proposition as the wff (¥ x)~A(x) which we note is in direct
contradiction to the other proposition A(t): the two claims are mutually exclusive.

Hence P((V x)~A(x)) = P(~A(t)) = 1-P(A(t)) = 0.15

Exergises: Pr ilistic conn
Suppose “Themba is married” (M) is believed to the degree of 0.5 and that he has
“never loved an ugly girl” (U) to the degree of 0.9.

i) What is our degree of believe in (M&U)?

ii) What is our degree of believe in (MvU)?

Bayes Theorem

One commonly used piece of probability theory is a theorem which helps us to calculate the
probability of some hypothesis H given some knowledge about related events.

P(Hle) = P(el H).P(H)
P(e)

Definition: Ba

This equation can be seen as updating the belief in H given some new evidence e. Suppose that H
is “my house has just been burgled” and that police statistics show that one in every 100 houses
are burgled in your area every night. ie P(F)=0.01. If your friend Themba rings and says that
your house is being burgled, should you believe him? How will our belief in H change?

Suppose P(Themba rings | burglary actually occurred) = 0.9 but that P(Themba rings | no burglary
has occurred) = 0.35 (since Themba likes playing practical jokes). Suppose also that we calculate
(or reason) from other sources that P(Themba rings) = 0.4.

Then P(Burglary occurred | Themba rings) = (0.9%0.01) / 0.4 = 0.0225. ie this new evidence
increases your belief in H from 0.01 to 0.0225.

Certainty Factors

A certainty factor is a real number between -1 and 1: negative numbers indicate degree
of disbelief in some proposition; 0 means no evidence is available for or against the
proposition; positive numbers indicate degree of belief.

-1 0 +1

Total disbelief No evidence Total belief
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eg Themba phones and says that the burglar alarm on your house has gone off. Not quite
knowing whether to trust Themba, you ring another neighbour Mrs Govender and she
confirms that she can hear your alarm. .

You reason as follows -
1. If Themba says the alarm went off, you would believe it with certainty CF1=0.5.
2. If Mrs Govender says she hears something, you would believe it with certainty
CF2=0.9.
3. Given both 1 and 2, you then combine the two CFs to calculate a CF for your belief
that the alarm sounded -
CF3=CF1+CF3 - CF1.CF2 = 0.95

When two rules support the same conclusion, the certainty factors are combined using
the formula -

{ CF1+CF2-CF1.CFp  if CFq and CF2 20
CF3= | CF1+CFp+CF1.CF2  if CFy and CF2 <0

{ ___CFj+CEFp  otherwise

{ 1-min(|CF11,ICF21)

4. If the alarm sounds then you believe there is a burglary with certainty CF4=0.99.
Given that you believe the alarm has sounded with certainty CF3=0.95, to what
extent do you believe there has been a burglary?

CF5=CF3.CF4 = 0.94

When the hypothesis supported by one rule becomes evidence for a second rule, the
certainty factors are combined using the formula -

CF5= { CF3.CFg if CF3>0
{0 CF3 <0

It is also possible to handle conjunctions and disjunctions in a system which uses certainty factors.
This would involve calculations using min and max similar to those described in the section
above on multi-valued logics. All of these formulae for combining certainty factors can be
expressed in terms of Bayes Theorem. ‘

Fu Logi

Fuzzy logic is another form of multi-valued logic designed to capture vague terms such as large
profit, high pressure, tall, very, a few, most etc. It would be possible to give strict definitions of
such terms (eg define “tall” to mean “at least 180cm”), but this seems artificial and loses the
flexibility inherent in everyday conversation. We want such terms to be fuzzy rather than exact.

Fuzzy Sets

In set theory an object is either a member of a set or it is not.” For fuzzy sets this boolean
characterisation is replaced with a measure of the degree of membership ranging from 0 (not a
member) to 1 (completely or definitely a member).

Let the universe be the set U and let A be a fuzzy subset of U. Define a membership function A(x)
which gives a value between 0 and 1 for each xe U.
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eg U={123,..10} and L = large numbers
Member of L is not simply true or false, but rather is defined by the function -

{ 0 if x<5
{ 02 if x=6
Lix)= { 05 if x=7
{ 0.8 if x=8
{ 1 if x=9

Fuzzy set membership is often shown as a graph, which in this case looks like -

1
Lix)
Degree of
membership

123 456789 10
xel

Various facts
i) A fuzzy set is empty (A=D) iff A(x)=0 for all xeU.
ii) As=B iff A(x)=B(x) for all xeU.
iii) AgB iff A(x)SB(x) for all xeU.

iv) 1AlI=), AKX
xeU
v)  If A(x) is the membership function for a fuzzy set A then the membership function
for ~A is 1-A(x).
vi) The membership function for ANB is min(A(x), B(x)).
vii) The membership function for AUB is max(A(x), B(x)).

Any fuzzy set can be compressed into a normal set by declaring a threshold. For instance, a
computer program may manipulate a variety of fuzzy sets, but often the user does not want output
in the form of a fuzzy value. That is they do not want to see “8 is a large number” expressed as a
degree of membership of (0.8) as output, they simply want to see YES or NO.

Define the set Large = {x | L(x) 2 0.75). By setting the number 0.75 as a threshold, it now becomes
true that 8¢ Large.

Definifion: o-C
In general an o-cut is a (normal) set whose elements are all those objects whose degree
of membership of the fuzzy set is at least as great as the threshold .

Ag={x | xeU and A(x)2ct }

Fuzzy Logical Connectives
Can we define the traditional logical connectives as fuzzy operations?

0 if x<150

Suppose Tall(x) = x=150 if 150<x<180
30

1 if x>180

—— gt i,
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What is the truth value of a proposition like “Rob is tall”?

V(“Rob is tall”) = Tall(Rob’s height) = Tall(175) = 0.71

V(“Bart Simpson is tall”) = Tall(Bart’s height) = Tall(120) = 0
Negation: V(“Rob is not tall”) = V(~"Rob is tall") = 1-V(“Rob is tall”) = 0.29
Conjunction: ~ V(“Rob and Bart are both tall”) = min(V(“Rob is tall”), V(“Bart is tall”)) = 0
Disjunction:  V(Either Rob or Bart is tall”) = max(V(“Rob is tall”), V(“Bart is tall”)) = 0.71
Implication:  V(“If Rob is tall then Bart is tall”) = min(1, V(“Bart is tall”)-V(“Rob is

tall”)+1)
= min(1, 0.29) =0.29

Fuzzy Quantification

Y

Not only are predicates (such as “tall”) fuzzy, but also quantifiers (such as “most”, “many”, “a
few” etc) can be fuzzy.

eg Express the fuzzy statement “Most of my friends are honest.”
Let Friends = {Themba, Sue, Fred}.

Define a fuzzy predicate for honesty, and suppose that honest(Themba)=0.1,
honest(Sue)=0.6 and honest(Fred)=0.8.

A fuzzy function can be defined for any quantifier if we can first calculate the ratio -

r = me criteri
the total number of objects
In our example we could calculate the expected honesty of my friends as the average -
Z honest{x)
x € Friends _ (0.1+06+08) _05
|Friends! 3 '

Given such a ratio, we could define define the quantifier “all” very strictly -

Allir) = { 0 ifr<l
{1 if r=1

But the quantifier “most” can be defined more loosely -
if r<0.3

r-0.6 if 0.3<r<0.8
if r20.8

=N O

{
Most(r) = {
{

With these definitions, V(“Most of my friends are honest”) = Most(0.5) = 0.4
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