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Abstract 

Housing wealth is well established as one of the most important sources of wealth for 

households and investors. However, owning a home is a fundamental human need, 

making monitoring residential property prices a social endeavour as well as an 

economic one, especially under times of economic uncertainty. Residential property 

prices also have a direct effect on the macroeconomy because of how they influence 

wealth effects where increased consumption by households is experienced through 

gains in households balance sheets due to increased equity. Collecting correct and 

adequate data is vitally important in analysing property market movements and 

developments, particularly given globalization, and the interlinked nature of financial 

markets. Although measuring residential property price developments is an important 

economic and social activity, matching properties over time is extremely difficult 

because the sale of homes is typically infrequent, characteristics vary, and homes are 

uniquely located in space. This thesis focuses on appraising several residential 

property types located throughout South Africa from January 2013 to August 2017, 

investigating different modelling approaches with the aim of developing a residential 

property price index. Various methods exist to create residential property price indices, 

however, hedonic models have proven useful as a quality adjusted approach where 

pure price changes are measured and not simply changes in the composition of 

samples over time. Before fitting any models to appraise homes, an autoencoder was 

built to detect anomalous data, due to human error at the data entry stage. The 

autoencoder identified improbable data resulting in a final data set of 415 200 records, 

once duplicate records were identified and removed. This study first investigated 

generalised linear models as a candidate approach to appraise homes in South Africa 

which showed possible alternatives to the ubiquitous log linear model. Relaxing 

functional form assumptions and considering the nested locational structure of homes, 

hierarchical generalised linear models were considered as the next candidate method. 

Partitioning around the mediods was applied to find additional spatial groupings which 

were treated as random effects along with the suburb. The findings showed that the 

marginal utility of structural attributes was non-linear and smooth functions of 

covariates were an appropriate treatment. Furthermore, the use of random effects 

helped account for the spatial heterogeneity of homes through partial pooling. Finally, 

machine learning algorithms were investigated because of minimal assumptions about 
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the data generating process and the possibility of complex non-linear and interaction 

effects. Random forests, gradient boosted machines and neural networks were 

adopted to fit these appraisal functions. The gradient boosted machines had the best 

goodness of fit, showing non-linear relationships between the structural characteristics 

of homes and listing prices. Partial dependence plots were able to quantify the 

marginal utility over the distributions of different structural characteristics. The results 

show that larger sized homes do not necessarily yield a premium and a diminished 

return is evident, similar to the results of the hierarchical generalised additive models. 

The variable importance plots showed that location was the most important predictor 

followed by the number of bathrooms and the size of a home. The gradient boosted 

machines achieved the lowest out of sample error and were used to develop the 

residential property price index. A chained, dual imputation Fisher index was applied 

to the gradient boosted machines showing nominal and real price developments at a 

country and provincial level. The chained, dual imputation Fisher index provided less 

noisy estimates than a simple median mix adjusted index. Although listing prices were 

used and not transacted prices, the trend was similar to the ABSA Global Property 

Guide. In order to make this research useful to property market participants, a web 

application was developed to show how the proposed methodology can be 

democratised by property portals and real estate agencies. The Listing Price Index 

Calculator was created to easily communicate the results through a front-end 

interface, showing how property portals and real estate agencies can leverage their 

data to aid sellers in determining listing prices to go to market with, help buyers obtain 

an average estimate of the home they wish to purchase and guide property market 

participants on price developments. 

 

KEYWORDS: Generalised Linear Models; Hedonic Regression; Hierarchical 

Generalised Additive Models; Machine Learning; Real Estate Economics; Spatial 

Modelling 
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Chapter One 

Introduction 

Residential property is an important determinant in the cost of living and is perceived 

as a fundamental source of wealth. The collective value of residential property is 

closely tracked by households, investors, banks, governments and other economic 

property establishments (Hill, 2013). Policy makers use property price trends as a 

metric to gauge financial stability in property markets, in conjunction to assessing 

conditions of credit markets (de Haan and Diewert, 2011). Periods of economic 

expansion often correspond with burgeoning house prices. Goodhart and Hofmann 

(2006) conducted a study where a strong correlation between house prices and 

increased economic activity was found for 16 industrialised economies. Empirical 

evidence shows a causal relationship between developments in housing prices and 

the real economy where residential property prices have the propensity to drive 

macroeconomic developments as a leading indicator (Brunauer et al, 2012).  

 

Residential property plays a major role in global economies, Girouard and Blöndal 

(2001) identified housing wealth as a factor in global business cycles. Their research 

showed that consumption spending and household borrowing increased based on 

wealth effects off the back of increased house prices where households were 

influenced to spend based on an increase in their net asset value. This wealth effect 

ameliorates household liquidity constraints which can influence consumption spending 

and aggregate demand. Ando and Modigliani (1963) state that consumers distribute 

increases in expected wealth over time and the marginal propensity to consume from 

that wealth, has a similar magnitude. Although Case et al (2005) found that wealth 

effects from the housing market does not have the same degree of influence as wealth 

effects from the stock market. Housing wealth most often serves as collateral and 

increases in home prices can ameliorate loan repayments resulting in positive spill 

overs and hike consumption spending. Additional spill over effects includes booms in 

housing investment, often resulting in increased employment (Hill, 2013). Higher 

house prices tend to stimulate construction activity and bolster employment and 

income for workers in the housing market (de Haan and Diewert, 2011). Increased 

sales in existing housing stock are experienced under burgeoning house prices, which 

leads to augmented tax revenues from property transfer taxes (Hill, 2013). Regulation 
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plays an important role in home price developments, manifesting in strengthening or 

dampening the effect of the mortgage market through the availability of loans to 

households and investors.  

 

Residential property prices are an input into measuring the aggregate wealth of a 

country, South Africa capitalises the value of residential property on the household 

balance sheet in the set of national accounts. Macroeconomists along with central 

banks measure residential property price inflation to identify bubbles and understand 

how house price inflation relates to recessions (Silver, 2016). The basis of economics 

is to maximize the value of an objective through effective decision making (Greene, 

2003). The purchase or sale of a home can be characterized as a significant financial 

transaction for a household and changes in house prices are likely to influence timing 

and affordability decisions (Els and Von Fintel, 2010). Residential property price 

indexes (RPPI’s) make inter-area comparisons possible which augment household 

and investor purchasing decisions (de Haan and Diewert, 2011). Efficient housing 

markets should reflect full information of the market where this information can be 

analysed and used as a macroeconomic indicator, for use by credit lenders and policy 

makers (Diewert, 2007).  

 

Literature supports the view that measuring residential property price developments is 

of significant economic importance. However, several factors complicate the 

construction of RPPI’s. Constructing price indices for homogenous goods is relatively 

straight forward, however, homes are uniquely located in space with varying sets of 

characteristics, making them heterogenous and much more difficult to measure 

temporal price changes. Moreover, properties maybe subject to depreciation and 

renovations.  

 

1.1. Review of Residential Property Pricing Methodology 

Residential property markets constitute many differentiated or heterogenous 

properties comprising of a myriad of different prices. Market forces are responsible for 

setting the different prices of residential properties which is contingent on each 

individual property’s set of characteristics. Generally, the market will settle on a set of 

prices for the various assortment of residential properties that will clear the market 

through the reconciliation of supply and demand (Day, 2003). Due to the heterogenous 
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nature of residential property, property valuations can be a complex process. The 

valuation of a property is a function of how potential buyers perceive its worth in 

comparison to similar properties in the market. In South Africa, estate agencies use a 

technique known as Comparative Market Analysis (CMA) to derive property valuations 

to mandate properties to market (Private Property, 2019). Estate agencies compile 

CMA’s by comparing similar properties that have sold recently in the same area of 

interest, accounting for various sources of information such as home characteristics, 

time on market, important neighbourhood factors and the initial listing price. CMA’s 

assist in determining how much a prospective buyer will pay for a property, taking 

cognisance of local market conditions and supply and demand forces. 

 

Measuring pure price changes over time requires residential property prices to be 

adjusted for quality changes. Measuring like-with-like properties in successive periods 

is critical to price index measurements, known as quality adjusted indices (Silver, 

2016). Different quality levels such as physical attributes and location must be 

considered and be comparable over time with care taken to avoid misspecification, 

particularly omitted variables. Various methods to measure residential property price 

developments and control for changes in quality are outlined in literature.  

 

1.1.1 Mean or Median Indices 

The simplest measure of residential property price changes is based some measure 

of central tendency, typically the median as home prices are positively skewed (de 

Haan and Diewert, 2011). These are simple to construct as no data on housing 

characteristics is required. However, these indices typically produce noisy estimates 

of price change as changes in the mix of properties from period to period is common. 

Furthermore, simple mean or median price indices will be subject to bias when the 

composition of homes changes over time. The number of homes transacted does not 

necessarily represent the total housing stock resulting in bias which is also systemic 

to other property price index methods. Developing a property price index using listing 

price data certainly provides more homes in the sample design which is the focus of 

this study. A general technique for reducing sample selection bias is post stratification 

of a sample, also known a mix adjustment. Mix adjustment is the simplest way to 

control for changes in the composition of homes and facilitates the creation of price 

indices for different housing segments. Mix adjustment involves separating the sample 
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of homes into homogeneous strata. Firstly, a measure of the change in the mean or 

median for each stratum is calculated, the aggregate mix adjusted residential property 

price index is then constructed as a weighted average of indices for each stratum. For 

𝑀 strata, the aggregate mix adjusted index is given by: 

 

 𝑃0𝑡 = ∑ 𝑤𝑚
0 𝑃𝑚

0𝑡𝑀
𝑖=1 ,  (1.1) 

 

where 𝑃𝑚
0𝑡 is the index for stratum 𝑚, comparing the mean or median price in the 

comparison period 𝑡 with the mean or median price in an earlier base period 0. 𝑤𝑚
0  

relates to the share of properties in each stratum, denoting the weights of stratum 𝑚. 

Using the stock value shares of strata is suitable to track the price change of housing 

stock (Silver, 2016). The choice of granularity for creating the strata is important 

because the effectiveness of the stratification will depend upon the stratification 

variables. Very detailed strata based on both physical and locational attributes 

increases homogeneity and reduces the quality mix problem, however, a trade off 

exists where increasing the number of strata reduces the average number of 

observations per stratum. The detail of the stratification scheme should be constructed 

based on the availability of strata defining characteristics for all sample data.   

 

1.1.2 Repeat Sales 

A well-known set of residential property price indices are the Standard and Poor’s 

Case-Shiller home price indices for the United States which use the repeat sales 

methodology. The repeat sales methodology compares properties that are transacted 

more than once over the sample period. Standard repeat sales indices require data 

on the price, sales date, and address of sold properties, pooling the data over all 

periods in the observation period. By only examining properties that have transacted 

repeatedly over a sample period, quality control is theoretically achieved, however, 

this approach lends itself towards smaller sample sizes (Bourassa, Hoesli and Sun, 

2007). Another drawback is the inability to deal with depreciation and renovations 

which is true for simple mean or median mix adjustment indices too (de Haan and 

Diewert, 2011). The standard repeat sales methodology equation is given by: 

 

 𝑙𝑛(𝑃𝑛
𝑡/𝑃𝑛

𝑠) = ∑ 𝛾𝑡𝐷𝑛
𝑡𝑇

𝑖=0 + 𝜇𝑛
𝑡 ,  
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where the left-hand side of the equation denotes the change in price, determined by 

the difference in transaction times denoted by 𝐷𝑛
𝑡 , a dummy variable indicating the 

period the resale occurs with 𝜇𝑛
𝑡  denoting the error term. The repeat sales index from 

period 0 to period 𝑡 is derived by exponentiating the coefficients 𝛾�̂�. Case and Schiller 

(1987, 1989) propose Weighted Least Squares to correct for heteroskedasticity which 

manifests when two transaction dates are further apart (Shimizu, Nishimura and 

Watanabe, 2016). Two major restrictions to using this approach in this study include 

incomplete address data and an inability to know if properties are repeat listings over 

periods. Furthermore, this approach is inefficient in the sense that property 

characteristics are not included in the modelling. For these reasons, an alternative 

technique is investigated.  

 

1.1.3 Hedonic Pricing 

Hedonic pricing mathematically models residential property prices as a function of 

structural and location characteristics using regression models (Lyons, 2015). In an 

extensive study of real estate literature, Hill (2013) found hedonic models have been 

favoured as a quality adjusted approach over other methods. Hedonic pricing is 

pervasive in the construction of residential property price indices where regression 

models are developed in the price estimation procedure (de Haan and Diewert, 2011: 

Jiang et al, 2015). Hedonic regression has been found useful as a quality adjusted 

methodology where pure price changes are measured and not simply changes in the 

composition of samples in different periods (Shimizu et al, 2010).  Critical to the 

success of developing RRPI’s is accounting for changes in the quality-mix of homes 

over the sample period which translates into measuring price pure changes. A rise in 

average home prices over time may be attributable to a change in the quality-mix and 

not pure price change (Hill, 2013). For example, if more 4-bedroom, larger sized 

homes in a more expensive suburb are transacted in the current period compared to 

the previous period, bias would ensue where the change in average prices would tend 

upwards, unless some degree of quality-mix control is implemented (Silver 2016). 

Hedonic models are an effective way to tackle the quality-mix problem because 

hedonic models unbundle home prices into implicit prices providing estimated 

marginal values to home characteristics. Rosen (1974) states that the price of a 
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product can be measured in terms of its utility bearing characteristics, mathematically 

given by: 

 

𝑃𝑗 = 𝑃(𝒁𝒋) = 𝑃(𝑍𝑗1, 𝑍𝑗2 , … , 𝑍𝑗𝑘),                       

 

where in the case of this study, 𝑃𝑗 is the price of property 𝑗 which is a function of its set 

of 𝒁𝒋 characteristics. This function relates prices of goods to their respective 

characteristics, specifically heterogeneous goods (Day, 2003). Goodman (1978) 

suggests a general form that does not impose uniformity of coefficients over space 

and time given by:   

 

                                                       𝑃𝑛𝑡 = 𝑓𝑛𝑡(𝑍1𝑛 𝑡, … , 𝑍1𝑛 𝑡),                               (1.2)                                                                       

 

which refers to the ⅈ𝑡ℎ characteristic in the 𝑛𝑡ℎ submarket at time 𝑡. This form produces 

hedonic functions for separate markets at different periods. de Haan and Erwin (2011) 

outline Ordinary Least Squares (OLS) as a prominent hedonic pricing technique, which 

estimates the marginal contribution of each property’s set of attributes. The implicit 

price for characteristic 𝑍𝑖 of property 𝑗 is calculated by taking the partial derivative. 

OLS can take the form of the full linear model (1.3) or the logarithmic linear model (1.4) 

given by: 

 

 𝑃𝑛
𝑡 = β0

𝑡 + ∑ β𝑘
𝑡𝑛

𝑘=0 𝑍𝑛𝑘
𝑡 + ϵ𝑛

𝑡 , (1.3) 

 

 ln𝑃𝑛
𝑡 = β0

𝑡 + ∑ β𝑘
𝑡𝑛

𝑘=0 𝑍𝑛𝑘
𝑡 + ϵ𝑛

𝑡 . (1.4) 

 

The assumption that the price 𝑃𝑛
𝑡 of property 𝑛 in period 𝑡 is a function of a fixed number 

of parameters plus 𝜀 𝑛
𝑡  random error. 𝛽0

𝑡 and 𝛽𝑘
𝑡  are the intercept and characteristic 

coefficients to be estimated. Two main approaches exist using this technique. Firstly, 

the time dummy approach where a single OLS is run on the pooled cross-sectional 

data. In this case the characteristic coefficients are fixed over time with a time 

coefficient that varies between periods (de Haan and Erwin, 2011). A disadvantage of 

this approach is the problem of temporal fixity which means adding new periods to the 

data will result in changes to the coefficient estimates, resulting in revisions (Hill 2013). 
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The second main approach is the characteristics approach where separate OLS 

regressions are run for the respective periods allowing the characteristic coefficients 

to vary period to period which is far more reasonable than the fixed time dummy 

approach (de Haan and Erwin, 2011). The characteristics approach is similar to the 

form proposed by Goodman (1978) in equation (1.2) as the coefficients of the 

characteristics are allowed to vary over time. Goodman (1978) states that although no 

theoretical link exists between the functional notation and specified functional form, 

log-linear models are often relied upon in hedonic studies. This approach is supported 

in literature as it often results in residuals with constant variance. The characteristics 

method deals with temporal fixity and is more popular for computing residential price 

indexes used by statistical agencies and government bureaus (Hill, 2013).  

 

Day (2003) developed a hedonic house price function for Glasgow, Scotland where 

the natural logarithm of selling price was regressed on physical and locational property 

attributes. The research showed that along with the physical attributes of the 

properties, spatial effects were statistically significant. Bourassa et al (2007) also 

applied a log linear hedonic model to the Auckland, New Zealand housing market 

where similarly, spatial and physical attributes were statistically significant. A key 

finding was that a dummy locational variable was able to account for spatial 

autocorrelation adequately. Els and Von Fintel (2010) developed pooled log linear and 

quantile regression models to estimate house price growth in the Western Cape, South 

Africa. The researchers found that the parametric assumptions of the log linear model 

were violated and that the explicit functional form was incorrectly specified. This led 

the researchers to develop a quantile regression model where they found the model 

coefficients varied across quantiles, indicating that hedonic prices were sensitive 

across the marginal distribution of characteristics. Du Preez, et al (2013) developed a 

hedonic price function for houses in Walmer, Port Elizabeth South Africa using the 

local constant estimator where the direct estimate of 𝐸(𝑦|𝑥) is derived with a kernel 

function that produces a smooth estimate of the densities. In their case 𝐸(𝑦|𝑥) is the 

expected price of a home 𝑦 conditional on a set of 𝑥 home characteristics. The 

researchers found that this non-parametric technique outperformed OLS. A potential 

problem with transforming property prices to the log scale is that exponentiation of the 

fitted values produces geometric mean (Olivier et al, 2008) or median estimates 
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depending on whether the distribution of lo g(𝑥) is symmetric (Musset, 2006).  In the 

case of this study, lo g(𝑥) would be the natural logarithm listing prices.  

 

Another potential concern is the assumption that property prices are log normal when 

a different distribution family may represent the data generating process better. 

Extending linear modelling to the exponential family of distributions, where fitted 

values are kept on the original scale, can be accomplished by using generalised linear 

models (Mc Cullagh and Nelder, 1989). Bax and Chasomeris (2019) developed a 

hedonic pricing function for apartments in KwaZulu-Natal coastal submarkets using a 

gamma generalised linear model, keeping estimates on the original scale. All the 

parametric assumptions were satisfied, and bootstrapping was used to validate model 

generalisation. However, Rosen (1974) suggests that as the marginal cost of the 

characteristics increase for the seller the hedonic price function is unlikely to be linear. 

This is an important tenet because it informs the modelling approach. The modelling 

approach should not impose explicit functional form such as linearity but rather 

determine the shape of the relationship between listing price and property 

characteristics. Generalised additive models determine the shape of the relationship 

between the response and covariates through non-parametric smoothers which can 

be useful to describe complex relationships (Hastie and Tibshirani, 1986). Pace (1998) 

showed that generalised additive models outperformed parametric log linear and 

polynomial log linear models, accounting for non-linearities effectively, in a study 

estimating residential property prices in Memphis, USA. Hill and Scholz (2018), 

conducted a hedonic pricing study for Sydney Australia also using non-parametric 

smoothers or splines and found that the addition of the geospatial data performed only 

marginally better compared to the inclusion of postcode dummy covariates. Exploiting 

the hierarchical structure of homes to model the spatial heterogeneity thereof can be 

accomplished using hierarchical models (Brunauer et al, 2013). Tan et al (2019) found 

that nested models which exploit a hierarchical structure, outperform non-hierarchical 

linear models when dealing with properties nested at multiple geographic locations in 

a study of Chinese house prices. Homes are nested within a neighbourhood or blocks 

which hierarchical models account for, dealing with the lack of independence and 

avoiding Type 1 errors. Uyar and Brown (2007) support this, showing how hierarchical 

linear models were effective in capturing spatial cross-classification in schools. 
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Statistical learning is a recent development in the field statistics that leverages 

statistics, machine learning and computer science to understand complex data and 

solve contemporary business and scientific questions (James et al, 2013). Supervised 

statistical learning develops models used in predictive tasks where an output is 

estimated as a function of one or more inputs (Kuhn and Johnson, 2018). Supervised 

statistical learning involves developing predictive models on training data that 

generalise to unseen holdout data (Hastie, Tibshirani and Friedman, 2005).  Statistical 

learning has also shown to be effective in developing flexible hedonic price models. In 

a study of Onondada County, New York, USA Yoo et al (2012) compared two tree-

based machine learning algorithms to stepwise OLS. Their findings showed that both 

algorithms resulted in lower prediction errors and that random forests were a useful 

variable selection method. Gradient boosting machines is another example of 

statistical learning where decision trees are grown sequentially using information from 

previous trees. Wezel et al (2005) applied gradient boosting, a nonparametric machine 

learning algorithm, and stepwise OLS to develop hedonic price functions for three 

different data sets. The findings showed that the gradient boosting algorithm achieved 

a reduction in the out-of-sample errors in comparison to the stepwise OLS. In a 

hedonic study of single-family homes in Switzerland between 2005 and 2017, Mayer 

et al (2019) found that gradient boosted machines provided the best accuracy 

compared to other methods such as OLS, robust linear models, mixed effects models, 

random forests and neural networks. However, they found that mixed effects or 

hierarchical models were the next best candidate methodology while neural networks 

showed “erratic” results. 

 

Different hedonic functions are available to map property characteristics to property 

prices with varying degrees of effectiveness and transparency. The estimation of 

hedonic price function is the starting point in developing a hedonic price index where 

index number theory is then applied to the counterfactual predicted values to produce 

the property price index. 

 

1.1.4 South African Methodologies  

Several economic intuitions in South Africa produce property price indices with varying 

methodologies. The Absa Bank house price index is available from as far back as 

1966 and calculates the average house price of residential properties between 80m2 
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– 400m2 in size, which are categorized into three segments valued at less than ZAR4.4 

million (du Toit, 2016). These indices are then weighted by the volume of approved 

loans to compile the final index. First National Bank (FNB) compiles a house price 

index which uses a fixed weighted average approach that is applied to various 

segments of the market based on the size of properties and number of bedrooms 

(Loos, 2016).  Standard Bank prepares a median price index, where the median is 

chosen as the central point of tendency, due to it being a more robust measure (Nhleko 

and Tlatsana, 2009). Absa Bank, Standard Bank and FNB use their own approved 

mortgages to compile their respective RPPI’s. Lightstone Property applies the repeat 

sales methodology in contrast to deriving average or median indices, which they 

consider to be less influential by the mix of transaction properties and adheres to 

international index methodology standards (Lightstone Property, 2017). Lightstone 

create indices using the South African Deeds Office data. A drawback of the current 

implementation of these indices, is they discount certain property types. The United 

Kingdom makes use of a variety of house price index methodologies including median 

mix adjusted methods, repeat sales and hedonic pricing whilst the United States uses 

the well-known Standard and Poor’s Case Shiller index, a repeat sales methodology 

index (Silver, 2016). Hedonic pricing does not appear to feature as a candidate 

methodology used by South African institutions although it appears extensively in 

literature.   

 

1.2 Research Gap and Objectives 

Estimating residential property prices and price inflation is important and well 

established in real estate economic literature. Several South African institutions 

provide residential property price indices. However, hedonic regression does not 

appear to feature as a candidate methodology although it is ubiquitous in literature. 

Furthermore, the price indices produced by South African residential institutions do 

not extend to different property types. The South African studies that have been 

identified, focus on geographic segments of the South African property market and not 

the market in its entirety. No previous South African real estate price studies have 

been identified that investigate the use of hierarchical generalised additive models or 

machine learning models to develop hedonic listing price functions for various property 

types throughout South Africa although hedonic methods have shown to be effective 

in international studies. This study bridges these gaps by developing hedonic pricing 
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functions to estimate property listing prices and price developments for different types 

of homes throughout the South African residential property market, making use of both 

statistical and machine learning approaches. To achieve this objective, generalised 

linear models, hierarchical generalised additive models and several machine learning 

algorithms were investigated. Several generalised linear models were created 

including log linear models acting as baseline comparison to existing literature. 

Hierarchical generalised additive models and machine learning algorithms which relax 

the assumption of explicit function form with hierarchical models accounting for the 

nested structure of homes were constructed and fitted. Amongst all the models 

considered, the model with the lowest out of sample error is then selected and used 

to create a RPPI. Finally, a web application is developed to easily communicate the 

results thereof. The web application allows users to ascertain average home prices 

and price developments, very simply, through a front-end web interface without having 

to trawl through a plethora of property listings.  

 

1.3 The Significance and Contribution of the Study 

The beneficiaries of the research include homeowners wishing to sell their homes, 

potential buyers wanting to obtain an average estimate along with property portals and 

real estate agencies. People wishing to sell their homes are faced with the challenging 

question of what price to list their homes for on the market. They have several 

resources available to help determine this themselves, print material such as real 

estate listing publications or online sources, including real estate agency websites and 

property portals. Online property portals aggregate property listings from real estate 

agencies and disseminate these pooled listings through online user interfaces such as 

smartphone applications and websites. South African examples of property portals 

include Private Property and Property24, and some international examples include 

Zillow, Zoopla and Rightmove. Regardless of the source of information that sellers 

may use, they are faced with the time-consuming task of trawling through a plethora 

of listings in order to gauge what price their homes could fetch on the market. 

Alternatively, interested sellers may seek the help of professional real estate agents 

to value their homes using comparative market analyses.  

 

Similar to estate agents, a hedonic model performs a CMA, however, it does so with 

a mathematical model. Potential buyers may want to compare a property of interest to 
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the average price of properties with the same set of characteristics in the same 

location. Hedonic models make this task possible, enabling potential buyers to obtain 

an understanding of price developments over time through a RPPI. This study 

contributes to the industry by developing hedonic models to appraise residential 

property and measure price developments over time, comparing several statistical 

learning methods and making the results consumable through a practical web 

application or data product. Property portals and real estate agencies are well 

positioned to leverage their extensive market data, developing such models to guide 

sellers in their price setting endeavours, resulting in increased traffic through 

innovative data products such as the one presented in this research. Furthermore, this 

study contributes to the field of applied statistics by showing the importance and 

efficacy of iteratively applying different methods, ranging from parametric, semi-

parametric to non-parametric, including novel machine learning approaches to solve 

contemporary scientific and business problems. 

 

1.4 Thesis Outline 

The rest of this thesis proceeds with the following chapters. Chapter two introduces 

the data of the study and presents the pre-modelling processing steps such as 

cleaning the and augmenting the data. Summary statistics are presented in both 

tabular and graphical form through exploratory data analysis. Chapter three begins the 

modelling of home prices by investigating generalised linear models as candidate 

functions to estimate homes prices, fitting various distributions and link functions. 

Chapter four explores hierarchical generalised additive models to create hedonic price 

functions. Spatial clustering is used to created homogenous groups based on 

distances between suburbs. Chapter five develops and compares two tree-based 

machine learning algorithms and neural networks where 5-fold cross validation is used 

to tune model hyperparameters. Partial dependence and variable importance plots are 

used to understand the effects of the covariates on the response. Chapter six 

discusses index number theory and develops the RPPI using the best candidate 

model. Furthermore, the web application is created and illustrated, showing the 

practical economic value of the study.  Finally, chapter seven provides an overall 

conclusion for this thesis, summarizing the main findings and presents suggestions for 

further research.  
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Chapter Two 

The Data and Exploratory Data Analysis 

Effective data analysis and modelling requires data integrity. Data cleaning and 

preparation is a fundamental component of any statistical analysis and study (de 

Jonge and van der Loo, 2013). The chapter that ensues addresses the data cleaning 

and preparation involved in this research. Furthermore, this chapter explores the data 

and presents important summary statistics. 

 

2.1. Description of the Data 

The data used in this study was obtained from an online property portal, Private 

Property (https://www.privateproperty.co.za/), which aggregates real estate agencies 

listings data throughout South Africa. The period of the data spanned January 2013 to 

August 2017.  The different property types include apartments, houses, townhouses, 

clusters, duplexes and simplexes. The data was enriched by obtaining the spatial 

coordinates of the suburb of each property using a geocoding application 

programming interface. This information is used to inspect spatial dependency. Table 

2.1 provides a description of the data. 

 

Table 2.1. Description of the data 

Variable Description 

Listing Price The advertised price of the property in ZAR 
Size The size of the physical structure of the property in square meters 

Bedrooms The number of bedrooms in the property 
Bathrooms The number of bathrooms in the property 
Property Type The type of property 
Suburb The suburb the property is located 
Province The province the property is located 
Listing Date The advertisement date of the property on the portal 
Latitude The latitude coordinates of the suburb the property is located 

Longitude The longitude coordinates of the suburb the property is located 

 

Adjusting for quality change in residential properties over time is important when 

measuring residential property prices. Changes in property prices should reflect pure 

price changes, not simply changes in the composition of samples at different points in 

time which can be mostly accounted for by measuring key property attributes (Hill, 

2011). Key property attributes cited by de Haan and Erwin (2011) include the size of 
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the property, the location of the property, the type of the property, the age and material 

used in the construction of the property and other physical attributes such as the 

number of bedrooms, bathrooms etc. 

 

The data required considerable cleaning including capturing categorical variables 

correctly and ensuring numeric variables were constrained to the correct data type. 

Missing fields were removed resulting in the removal of observations. Duplicate 

property listings were identified in each period using row wise string matching and 

subsequently removed. The data showed a large spread in the numeric variables of 

interest, shown in Table 2.2. 

 

Table 2.2. Clean data summary statistics 

 Listing Price Size Lot Bedrooms Bathrooms 

Minimum 1 000 2 2 0 0 
1st Quartile 950 000 98 132 2 2 
Median 700 000 200 566 3 2 
Mean 2 461 210 259.8 1 163 3.135 2.252 
3rd Quartile 2 950 000 330 1 014 4 3 
Maximum 200 000 000 85 102 99 999 78 78 

  

The way the data was obtained by the property portal could be subject to incorrect 

data capturing as real estate agents manually populate the information before it is 

disseminated via automatic feeds to the property portal. A risk of incorrect data 

capturing exists and is a fair assumption through the examination of Table 2.2 where 

the maximum and minimum values seem improbable. An autoencoder, which is a deep 

learning neural network, was developed to identify anomalous data points using the 

h2o open-source machine learning stack from Ledell et al (2019). Autoencoders 

generalise the concept of non-linear principal component analysis where the feature 

space is reduced via a bottleneck at the hidden middle layers, learning the non-linear 

representation of the inputs, with the output layer aimed at reproducing the input layer 

given this restricted representation (Hastie et al, 2015). The network is able to learn 

the identity of the data via a non-linear reduced representation of the original data, 

where a high reconstruction error for data points indicates non-matching of the learned 

pattern (Candel et al, 2018). Reasonable lower limits were set on certain variables 
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using the ABSA bank property price index, the oldest price index in South Africa, as a 

guideline (du Toit, 2016). Listing price was set to ≥ ZAR 200 000 and size was set to 

≥ 35 square meters. An example of the architecture of an autoencoder is presented 

in Figure 2.1 where through hidden layers and neurons the identity of the data is 

mapped via non-linear reduction and reconstruction. 

 

 

Figure 2.1. Autoencoder diagram 

Source: Hastie et al (2015) 

 

Linear combinations of the input vector 𝑥 are created from a 𝜌 × 𝑚 matrix of weights 

𝑾 where 𝑚 < 𝑝 and each of the linear combinations are passed through a non-linear 

function σ by means of the vector function ℎ(𝑥)  =  𝜎(𝑾𝑇𝑥). Modelling the output layer 

is then given by 𝑾ℎ(𝑥)  =  𝑾𝜎(𝑾𝑇𝑥). For ⅈ  = 1, … , 𝑁, of the input vectors 𝑥𝑖, 𝑾 is 

estimated via nonconvex optimization (Hastie et al, 2015). This presents a basic 

example of an autoencoder without bias terms which are omitted for simplicity. The 

results of the autoencoder were promising at identifying anomalous data where 

properties with a reconstruction mean squared error ≥ 9.39e-07 were deemed 

anomalous and subsequently discounted as illustrated in Figure 2.2. 
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Figure 2.2. Autoencoder reconstruction error 

 

After accounting for data enriching, cleansing and anomaly detection, the final dataset 

consisted of 415 200 properties.  A summary of the data is presented in Table 2.3 

where the spread of the variables is noticeably reduced and more plausible. 

 

Table 2.3. Final data summary statistics 

 Listing Price Size Bedrooms Bathrooms 

Minimum  200 000  35 1 1 
1st Quartile  958 000 100 2 2 
Median  1 690 000 200 3 2 
Mean  2 159 173  230.7 3.091 2.157 
3rd Quartile         2 799 000  315 4 3 
Maximum 19 700 000  2 080 13 12 
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2.2. Summary Statistics 

Correlation measures the strength and existence of a relationship between two or 

more variables (Keller, 2012).  Table 2.4 details the pairwise Spearman correlation 

coefficients between all numeric variables in the data along with the level of 

significance. The correlation coefficient is the highest between the number of 

bedrooms and bathrooms. Listing price is most highly correlated with size and number 

of bathrooms.  

 

Table 2.4: Correlation matrix 

 Listing Price Size Bathrooms 

Listing Price    
Size 0.69****   
Bathrooms 0.64**** 0.69****  
Bedrooms 0.52**** 0.70**** 0.76**** 

p < .0001 ****; p < .001 ***, p < .01 **, p < .05 * 

 

Understanding the distribution of a response variable is important in statistical studies. 

Choosing the best estimator for a sample distribution is paramount and contingent on 

the statistical properties (Greene, 2003). Figure 2.3 depicts the histograms of listing 

price by property type.  

 



18 
 

 

Figure 2.3: Property type listing price histograms 

 

All property types appear to be positively skewed with long tails at different levels of 

kurtosis.  

 

Parallel plots are useful data exploratory visualizations for high dimensional, 

multivariate data (Heinrich and Weiskopf, 2013). Figure 2.4 depicts a parallel plot of 

the numeric variables grouped by the property type.  
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Figure 2.4: Parallel plot 

 

The parallel plot aims to achieve a graphical summary where different property types 

have different discriminant profiles. The natural logarithm was applied to listing prices 

to aid in visualization. All variables are univariately scaled, so the minimum of each 

variable is zero and the maximum is one. Apartments seem to have more homogeneity 

with respect to listing price, size, bathrooms and bedrooms with houses appearing to 

have greater variability. 

 

Paramount to the problem of property prices over time is the need to compare similar 

properties in successive periods, the concept of like with like comparisons (Silver, 

2016). Residential property sales are typically characterised as infrequent which 

makes measuring price changes challenging (Jiang, Phillips and Yu, 2015). This study 

makes use of listing prices and not transaction prices which increases the sample size 

as more properties are available for sale than get sold. Using the listing price is viewed 

as a valid approach for these reasons (Shimizuet al, 2010). A breakdown of the 

number of property types available for sale in each year of the sample period is 

provided in Table 2.5. 
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Table 2.5: Yearly property type frequency table 

Property Type 2013 2014 2015 2016 2017 

Apartment 11 732 21 025 24 598 35 799 26 181 

Cluster 713 2 573 2 313 3 147 2 053 

Duplex 342 552 548 843 665 

House 18 812 54 851 57 010 79 927 53 810 

Simplex 610 748 696 789 578 

Townhouse 165 2 731 2 937 4 833 3 619 

 

There are no years where data did not exist for different property types. Furthermore, 

houses and apartments account for most of the sample. Properties in 2017 were only 

captured until August. 

 

2.3. Spatial Nature of the Data  

This research analysed property listings throughout South Africa, Figure 2.5 illustrates 

the main municipalities located in South Africa. 
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Figure 2.5: South African municipalities  

 

Prices of adjacent properties are often related which can lead to correlation in the 

residuals of regression models, violating the assumption of independence (Bourassa 

et al, 2007). Spatial autocorrelation or dependency is a challenging problem in real 

estate modelling where correlation manifests in two-dimensional space unlike serial 

correlation which is one dimensional. Bourassa et al (2007) found that the inclusion of 

a submarket dummy variable accounted for spatial autocorrelation and outperformed 

geostatistical and lattice approaches. A similar approach was adopted by Bax and 

Chasomeris (2019) where a fixed location effect was included in the gamma 

generalised linear, accounting for any spatial autocorrelation in the residuals. 

 

Variograms are useful diagnostic informal checks which assist in understanding the 

spatial autocorrelation structure. Variograms display the dissimilarity of observations 
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that vary in space as a function of the distance between them (Ploner, 1999). The sill 

represents spatially autocorrelated sample locations, and the range is where the 

distance flattens out and the sample locations are no longer spatially autocorrelated. 

A variogram will be flat when no correlation or low correlation is present which 

indicates randomness in the structure (Chiles and Delfiner, 1999). The nugget effect 

is an important concept in variograms and describes the variability between 

observations that are closely spaced which could be inherent in the data or due to the 

sampling component (Clark, 2010). Therefore, in the context of this study, a large 

nugget effect could be the product of closely clustered properties with similarly signed 

and order of magnitude residuals that would overestimate the amount of spatial 

dependency. A prevalent test developed by Moran (1948), is a two-dimensional 

specification test for spatial autocorrelation, analogous to a test of univariate time 

series correlation (Anselin, 2006):  

 

𝐼 =
𝑒′𝑊𝑒/𝑆0

(𝑒′𝑒)/𝑛
 ,                 

 

where ⅇ represents the regression model residuals and 𝑤 is the spatial weighting 

matrix and 𝑠0 is a standardization factor that relates to the sum of weights for the non-

zero cross-products.  

 

The spatial dependency of residential properties is an important aspect to consider in 

the development of hedonic regression models, this research makes use of both 

informal and formal checks to ensure the assumptions of independence is accounted 

for. 

 

2.4. Summary 

This chapter presented the essential data cleaning and preparation required to model 

the data. An autoencoder, a deep learning neural network, was built to identify and 

remove anomalous data. Exploratory data analysis was performed, presenting 

important summary statistics and visualisations. Finally, the spatial scope and nature 

of the data was presented with methods on how the assumption of independence will 

be tested both informally and formally in the following chapters. Following from the 

exploratory data analysis, generalised linear models are investigated next the first 
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candidate methods to develop residential property appraisal functions because of the 

ability fit exponential family of distributions which could be appropriate given the 

distribution of listing prices illustrated in the exploratory data analysis. 
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Chapter Three 

Generalised Linear Models 

The chapter that ensues introduces the methodology of generalised linear models to 

expand on the typical log linear hedonic model approach which is pervasive in real 

estate econometric literature. Extending the scope to the exponential family of 

distributions, various linear models with different distributions and link functions are 

compared and measured against different goodness of fit criteria.  

 

3.1 Model Description and Motivation 

Generalised linear models are a natural extension of classical linear models where 

properties such as linearity and computing parameter estimates are similar (Mc 

Cullagh and Nelder, 1989). Generalised linear models are characterised by three 

components. Firstly, a stochastic or random component representing a response 

variable 𝑌, consisting of independent observations (𝑦1, 𝑦2, … , 𝑦𝑛), belonging to a class 

of an exponential family distribution in the form of: 

 

 𝑓(𝑦; 𝜃, ∅) = exp{
𝜃𝑦−𝑏(𝜃)

∅
+ 𝑐(𝑦, ∅)},            

 

where ∅ is a dispersion parameter and 𝑏(. ), 𝑐(. ) are known functions and the range 

of 𝑌 does not depend on 𝜃 or ∅. For a random response variable 𝑌 with distribution of 

form 𝐸(𝑌) = µ. Secondly, a systematic component which consists of a set of 

covariates (𝑥1, 𝑥2, … , 𝑥𝑝) which combine linearly with the coefficients to produce the 

linear predictor 𝜂. Therefore 𝜂 = 𝛽𝑋. Finally, a link function which connects the 

stochastic and systematic components where 𝜂 =  µ.  

 

This generalisation takes the form: 

           

𝜂𝑖 = 𝑔(𝜇𝑖),                                                             

 

where 𝑔(. ) denotes the link function and 𝜂 = 𝜇 through the link function. The link 

function relates the conditional mean to the systematic component, namely the 

covariates (Jones, 2010). This formulation allows for the exponential family of 
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distributions including normal, however, the link function may become any monotonic 

differentiable function, which then then allows extensions to distributions such as 

Poisson, binomial and gamma amongst others (Mc Cullagh and Nelder, 1989). This 

means that generalised linear models are suitable for modelling continuous data as 

well as count and binary data. 

 

Generalised linear models obtain maximum likelihood estimates of parameters 

belonging to an exponential distribution family using the iterative reweighted least 

squares algorithm where the link function makes the systematic effects linear (Nelder 

and Wedderburn, 1972). Maximum likelihood estimates are a vector of parameter 

estimates produced by a model function which makes the observed data probable, 

given the model function (Lindsey, 1997).  

 

The primary goodness of fit measure for generalised linear models is called the 

deviance which is the logarithm of a ratio of likelihoods (Mc Cullagh and Nelder, 1989). 

The analysis of deviance makes model assessment and comparison possible in terms 

of the choice of covariates. Given a set of data, two extreme models are possible. 

Firstly, a null model with one parameter which represents a common 𝜇 for all the 𝑦𝑠. 

Secondly, a complete model where all the 𝑦𝑠 are different, matching the data 

completely. Fitting a model with more than one parameter represents a saturated 

model that can be compared to the null model (Dobson and Barnett, 2008). The fitting 

of 𝑛 parameters is performed by maximizing the likelihood of matching the model to 

the likelihood of the data through the deviance that differs based on the distribution.  

 

For the normal distribution, the deviance is simply the sum of squares just like ordinary 

least squares which means that fitting a normal or log normal distribution, where the 

natural logarithm of the response is taken, is equivalent to fitting a linear or log linear 

ordinary least squares model. For generalised linear models, the saturated model 

should have a lower deviance than the null model, indicating the inclusion of 𝑛 

parameters are a better fit. Guisan and Zimmernam (2000) propose that variance 

reduction in model formulation is generally a desired characteristic of the goodness of 

fit as with generalised linear models, where deviance reduction can be converted to 

an equivalent 𝑅2  statistic: 
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   𝐷2 = (𝑁𝑢𝑙𝑙𝑑ⅇ𝑣ⅈ𝑎𝑛𝑐ⅇ– 𝑅ⅇ𝑠ⅈ𝑑𝑢𝑎𝑙𝑑ⅇ𝑣ⅈ𝑎𝑛𝑐ⅇ)/𝑁𝑢𝑙𝑙𝑑ⅇ𝑣ⅈ𝑎𝑛𝑐ⅇ,           

 

where 𝐷2 is the deviance explained or the amount of deviance accounted for by the 

model. Naturally, this leads to an understanding of the residuals of generalised linear 

models where the deviance residuals are reported as a measure of discrepancy. 

Deviance residuals are calculated as follows: 

 

   𝑠ⅈ𝑔𝑛(yi − �̂�)√di
2.             

 

This formulation shows that deviance residuals are calculated by taking the signed 

square root of the ⅈ𝑡ℎ observation to the total model deviance (Jackson, 2008). One 

can begin to understand the quality of fit that reflects the choice of the link function 

and linear predictor using deviance residuals (Nelder and Wedderburn, 1972). 

McCullagh and Nelder (1989) state that through the appropriate link function and 

linearity of the systematic component, the desired error distribution of the deviance 

residuals can be achieved which should resemble normal theory residual plots, except 

for certain plots in the case of binomial errors. Standardized deviance residuals are 

approximately normal which is preferable to Pearson residuals that tend to reflect any 

skewness of the underlying distribution. Plotting the standardized deviance residuals 

against the fitted values can provide an informal check of the goodness of fit depending 

on the type of generalised linear model, where any curvature could suggest the 

incorrect choice of link function, omitted independent variables or the omission of 

quadratic terms in the independent variables (Davidson and Snell, 1991).   

 

The selection of generalised linear models in this study involved choosing the 

appropriate distribution of  𝑌 and choosing the relationship between 𝜂 and µ. Three 

candidate combinations of model families and link functions were fit to the data, 

specifically, the gamma log model, the normal log model and the log normal identity 

model. 
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3.2 Results and Discussion 

The data was split into two sets, training and validation where 70% of the data was 

used for training and 30% was used for validating the models. This was done to test 

model generalisability on unseen data for the development of future models. The 

holdout data for a given model provides a more robust estimate of the generalisation 

error compared to the training error (Blum, Kalai and Langford, 1999). Partitioning the 

data into training and holdout sets for each year involved writing a function to ensure 

that the splits were random, and that the distribution of the response was similar for 

each split and to the original data. The function ensured that each suburb factor level 

was present in each split. Model performance and generalisation was tested using the 

root mean squared error (RMSE) which is a measure of spread that compares the 

closeness of the model outcomes to the observed data (Gujarati, 2004). A lower 

RMSE is indicative of less variability between model estimates and the observed data. 

The Akaike information criterion (AIC) statistics were also computed. When comparing 

models, the AIC is useful for model selection as it provides an assessment of the 

quality of different models given a set of data (Greene, 2003). A lower AIC is indicative 

of better fit. AIC concomitantly considers goodness of fit using the likelihood function 

whilst penalising model complexity through the number of parameters. Model selection 

was based on a combination of reported statistics namely, deviance explained, holdout 

RMSE, AIC and model fit based on diagnostic residual plots.  Tables 3.1 details the 

results of each yearly model fit. 
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Table 3.1: Comparison of GLM summaries 

Year 
Deviance 
Explained 

Training  
RMSE 

Holdout 
RMSE AIC 

     
Gamma model summary statistics: 
2013 0.89 708 816 719 286 665059 
2014 0.87 762 918 764 730 1689332 
2015 0.87 768 004 772 905 1808202 
2016 0.87 731 159 746 554 2557727 
2017 0.88 723 854 724 390 1779451 
Normal model summary statistics: 
2013 0.83 666 427 704 715 692589 
2014 0.82 724 525 743 688 1748933 
2015 0.83 721 649 743 687 1866417 
2016 0.83 685 171 710 324 2637126 
2017 0.84 682 036 693 513 1835507 
Log normal model summary statistics: 
2013 0.89 709 765 716 993 664303 
2014 0.88 766 117 762 544 1687050 
2015 0.87 767 251 774 243 1805578 
2016 0.88 727 294 741 349 2553572 
2017 0.88 724 097 726 167 1777340 

Notes: The deviance explained figures are rounded to two decimal places, all other 

figures are rounded to the nearest whole number. 

 

Each model produced consistent deviance explained statistics for each year 

respectively, where the gamma and log normal models shared the highest amount of 

deviance explained.  Moreover, the gamma and log normal models appear very similar 

in terms of holdout RMSE and AIC statistics. The AICs produced by the log normal 

models were not directly comparable to the other models as the response variable 

was on the logarithmic scale. The AICs of the log normal models were made 

comparable by subtracting the sum of logarithms of the response variable from the 

likelihood.  Based solely on the AICs the log normal models appear to fit the data the 

best, as they consistently produced the lowest AIC statistics. Considering only the 

holdout RMSE statistics, the normal model outperformed the two other models with 

consistently lower RMSE statistics each year. No evidence of over fitting is present as 

the training and holdout RMSE’s are quite similar, indicating the models generalise to 

unseen data. This suggests model robustness to the introduction of future periods.  
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Discerning the best model based solely on the goodness of fit measures reported 

above is difficult and a graphical examination of the residuals is necessary. The 

goodness of fit residual diagnostic plots for each yearly model are illustrated below in 

Figure 3.1 and Figure 3.2 below beginning with the gamma model, followed by the log 

normal and finally the normal. Figure 1 presents the residuals versus fitted values 

where the y-axis represents the deviance residuals and x-axis represents the linear 

predictor. Figure 3.2 presents the quantile-quantile (Q-Q) plots for normality. The scale 

has been normalised to a scale of [0, 1] for easy comparison of the residuals. 

 

 

Figure 3.1: GLM fitted versus residual plots  
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Figure 3.2: GLM Q-Q plots 

 

The fitted versus residual diagnostic plots for the gamma and log normal models are 

very similar and do not indicate any discernible pattern in the deviance residuals, one 

of the required assumptions, however, the normal log link model shows greater signs 

of heterogeneity at the upper quantiles, violating the assumption of constant variance. 

Although none of the plots are perfectly normal with deviation at the upper at the upper 

and lower quantiles, Schmidt and Finan (2018) provide empirical evidence that linear 

models without normally distributed residuals may still provide valid results, given 

sufficient sample size. The normal log link model appears to fit the data poorly in terms 

of diagnostic plots model. Based on the diagnostic plots the gamma and log normal 

models appear to represent the data better.  
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A possible caveat of using the log normal model for modelling listing prices is that the 

expected values are on the log scale and back transformation is necessary. 

Transforming expected values from the log scale back to the original scale by means 

of exponentiation results in geometric mean estimates and not arithmetic mean 

estimates (Olivier et al, 2008). However, the natural logarithm is monotonic, and the 

back transformed estimates are equivalent to median estimates if the distribution of 

lo g(𝑥) is symmetric (Musset, 2006). An appealing feature of the gamma and normal 

models are that expected values are kept on the original scale where arithmetic mean 

expected values are computed. For this reason, the log normal models are discounted 

from the candidate model selection. The gamma models are chosen over the normal 

models based on the diagnostic plots, lower AICs and lower RMSEs. A discussion of 

the gamma modelling results ensues where listing price was regressed on the physical 

and locational attributes. 

The property type factor variable included 6 levels namely, apartment, cluster, duplex, 

house, simplex and townhouse. The property type apartment was used as the 

reference level, resulting in the other property types being compared to this level. 

Table 3.2 tabulates the beta coefficient estimates for each covariate along with the 

corresponding p-values. To make reporting succinct Table 3.2 discounted the factor 

variable suburb coefficients as there were over 2000 levels present in the data that 

varied between years. The suburb factor variable was used as a control variable to 

account for variability amongst listing prices and to account for the spatial dependency 

in the data.  
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Table 3.2: Gamma model results summary 

Year 2013 2014 2015 2016 2017 

  
 p-

value  

P-
value 

 

p-
value 

 

p-
value 

 

p-
value 

Intercept 9.913 2e-9 11.013 2e-9 10.932 2e-9 11.305 2e-9 11.148 2e-9 
log(Size) 0.664 2e-9 0.626 2e-9 0.558 2e-9 0.479 2e-9 0.512 2e-9 
Bedrooms 0.003 0.313 0.017 2e-9 0.021 2e-9 0.034 2e-9 0.025 2e-9 
Bathrooms 0.111 2e-9 0.096 2e-9 0.112 2e-9 0.117 2e-9 0.112 2e-9 
Cluster 0.090 2e-9 0.136 2e-9 0.146 2e-9 0.187 2e-9 0.187 2e-9 
Duplex 3e-3 0.874 0.025 0.104 0.035 0.024 0.086 2e-9 0.079 2e-9 
House 0.027 3e-4 0.063 2e-9 0.103 2e-9 0.158 2e-9 0.141 2e-9 
Simplex 0.061 4-e5 0.068 5e-7 0.078 2e-9 0.117 2e-9 0.087 2e-9 
Townhouse 0.050 0.064 0.063 2e-9 0.077 2e-9 0.090 2e-9 0.099 2e-9 

Notes: Numbers are rounded to 3 decimal places and scientific notation was adopted 

for brevity. 

 

The coefficients, given by β̂ are expressed as percentage effects. The 

covariateslo g(𝑆ⅈ𝑧ⅇ) and the number of bathrooms were consistently statistically 

significant for each year. The natural logarithm was applied to the size covariate to 

improve linearity. The coefficients can be interpreted as follows: 

1. A 1% increase in size (squared meters), on average increased the listing price 

of a residential property by �̂� × 100 (%) for a given year. 

2. Each additional bedroom, on average increased the listing price of a residential 

property by �̂� × 100 (%) for a given year. 

3. Each additional bathroom, on average increased the listing price of a residential 

property by �̂� × 100  (%) for a given year. 

4. The property types in Table 3.2 are percentage difference comparisons 

between apartments where a property type was �̂� × 100 (%) greater than or 

less than apartments (reference level) depending on the sign in front of the �̂�. 

 

Evident from Table 3.2 is that each additional bathroom, on average, contributes more 

to the listing prices of homes than each additional bedroom.  An appealing feature of 

this parametric framework is the transparency and interpretability of the model 

coefficients. Property market participants are able to make informed decisions about 

renovating their homes by examining the marginal utility of different characteristics. 
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Figure 3.3 facilitates an easy way to assess how the GLM coefficients have changed 

over the observational periods.  

 

 

Figure 3.3: GLM Coefficients 

 

The yearly coefficients show that townhouses have grown almost linearly year on year 

compared to the reference level (apartments). Similarly, for simplexes, duplexes, 

houses, complexes and bedrooms with the exception of 2016 to 2017 where some 

overlap is evident. 

 

Plotting the residuals against individual covariates of the linear predictor should result 

in a null pattern, like the residual versus fitted values plot (Mc Cullagh and Nelder, 

1989). It is for this reason that the natural logarithm was applied to the size covariate. 
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Figure 3.4 illustrates the relationship between the deviance residuals and the natural 

log of the size covariate for each yearly gamma model. 

 

 

Figure 3.4: Gamma model residuals against transformed size covariate 

 

Evident from Figure 3.4 is generally a null pattern, which was achieved by transforming 

the size covariate.  

 

The analysis of deviance presented in Table 3.3 indicates that the residual deviance 

for each yearly gamma model was consistently lower than the null deviance. This 

means that the covariates accounted for greater deviance explained than intercept 

only models and as such, indicates a good fit. 
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Table 3.3: Analysis of deviance 

Year Residual Deviance Null Deviance 

2013 1470.18 13394.60 
2014 4056.69 31487.73 
2015 4448.07 33272.34 
2016 6030.46 45648.77 
2017 4008.25 32260.69 

 

The modelling of spatial data in this study required the assessment of the assumption 

of independence, which was investigated using several plots and by performing 

hypothesis tests.  Variograms quantify the spatial dependence in data by describing 

the spatial variance. The yearly gamma models’ residuals were plotted using spherical 

variograms and are presented in Figure 3.4 where similarities were found between all 

models. The ranges, distances beyond which the data are no longer correlated, are 

quite long which suggests spatial autocorrelation is not an issue in the modelling 

results. The nugget effects as a percentage of the total sills are quite large which could 

indicate some variation at a small scale. 
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Figure 3.5: Gamma model variogram plots 

 

A permutation test for Moran’s I for the given weighting spatial scheme was applied to 

formally test for the presence of spatial autocorrelation where under the null 

hypothesis, the data is randomly dispersed. The Moran’s I statistic or correlation 

coefficient ranges between -1 and 1, where -1 shows perfect negative spatial 

autocorrelation and 1 shows perfect positive spatial autocorrelation. Hundreds of 

permutations were run, 999 in total, for each yearly gamma model. The results of the 

tests are presented in Table 3.4 which indicate a weak negative correlation. Formally, 

at an alpha of 0.05 there is not enough evidence to reject the null hypothesis of no 

spatial autocorrelation for each yearly gamma model. This coincides with the findings 

of Bourassa et al (2007) where the addition of a location dummy variable accounted 

for spatial dependence adequately. 
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Table 3.4: GLM permutation test for Moran’s I 

Year Statistic p-value 

2013 -0.0312 0.999 
2014 -0.0267 0.999 
2015 -0.0129 0.999 
2016 -0.0207 0.999 
2017 -0.0345 0.999 

 

3.3 Summary 

This chapter investigated generalised linear models as an alternative to log linear 

models to develop hedonic price functions to estimate residential property listing prices 

in South Africa from January 2013 to August 2017. The gamma generalised linear 

model provided the best fit and good generalisability whilst keeping the expected 

values on the original scale, which is an appealing alterative to log linear models. The 

spatial dependence of residential properties was effectively accounted for by including 

a suburb factor variable, supported by variograms and Moran’s I tests, showing no 

evidence to reject the null hypothesis of no spatial autocorrelation. This framework 

provides property market participants with the ability to parsimoniously and 

transparently quantify the utility derived over the marginal distribution of the physical 

characteristics of properties. Although linear models are transparent, relaxing 

functional form assumptions using generalised additive models could provide a better 

goodness of fit and are investigated in the next chapter. Furthermore, the hierarchical 

structure of homes is exploited using random effects which is useful to produce smaller 

standard errors around suburbs with smaller sample sizes. 
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Chapter Four 

Hierarchical Generalised Additive Models 

This chapter extends the generalised linear model framework presented in chapter 

three. Relaxing functional form assumptions, hierarchical generalised additive models 

are introduced, treating covariates as smooth functions along with the treatment of the 

longitudes and latitudes as isotropic bivariate smooths. Exploiting the hierarchical 

structure of homes to model the spatial heterogeneity can be accomplished using 

hierarchical models which is considered as an alternative to modelling the geospatial 

data as a bivariate smooth function.  

 

4.1 Model Description and Motivation 

Hastie and Tibshirani (1986) introduced generalised additive models as a flexible 

alternative to linear models, the latter taking the form: 

 

                                              𝜼(𝝁) = Х𝜷,                                             

 

where 𝛽 is 𝑝 < 𝑛 unknown parameters and the matrix Х𝑛×𝑝 = [𝑋1
𝑇 , … , 𝑋𝑛

𝑇]𝑇 is a set of 

known independent variables (the model matrix), and Х𝜷 is the linear structure with  

𝜼(. )  as a smooth function of the mean (Lindsey, 1997). Generalised additive models 

are an extension of generalised linear models, which define smooth functional 

relationships rather than linear functional relationships, where the smoothness may be 

established automatically (Maindonald, 2010; Wood, 2017). Generalised additive 

models can be viewed as semi-parametric generalised linear models, where the linear 

predictor depends on unknown smooth functions, given by:  

 

      𝑔 (𝜇𝑖) =  𝛽0 +  𝑓1 (𝑥1𝑖) + 𝑓2 (𝑥2𝑖) + 𝑓3 (𝑥3𝑖)  + ⋅⋅⋅ + 𝑓𝑘(𝑥𝑘𝑖),          (4.1)         

             

where 𝑔(. )  denotes the link function and 𝜇𝑖  ≡ 𝐸(𝑦i) with 𝑦i belonging to an exponential 

family distribution and  𝑓𝑗(. ) are unknown smooth functions of covariates (Wood, 

2006). Therefore, like generalised linear models, generalised additive models can 

account for different distributions including normal, however, the shape of the 

relationship between the response and covariates is not specified by some explicit 

functional form, but rather described through non-parametric smoothers. This makes 
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generalised additive models’ useful for relationships that exhibit complex shapes, that 

can then be smoothed. Considering a simple model with one smooth function of one 

covariate: 

 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖,      (4.2) 

                   

Expressing 𝑓(𝑥𝑖) so that (4.3) becomes a linear model, is achieved by choosing a 

basis. The basis defines the space of functions of which 𝑓 is an element (Wood, 2006). 

The smoothing term is a spline function of the covariate. The treatment of covariates 

as smoothed functions can be extended to interact with parametric terms, taking the 

form: 

 

𝑦𝑖 = 𝑓(𝑡𝑖)𝑥𝑖,                            

 

where 𝑡𝑖 represents a covariate and 𝑥𝑖 is a factor variable. Each element of the ⅈth row 

of the model matrix for 𝑓(𝑡𝑖), is multiplied by 𝑥𝑖 for each ⅈ. This results in a linear 

regression coefficient for 𝑥𝑖, varying smoothly by 𝑡𝑖. Expanding further on how smooths 

functions are defined and penalised, each smooth function denoted 𝑓𝑗 is delineated by 

a sum 𝐾 simpler, fixed basis functions donated  𝑏𝑗,𝑘, which are then multiplied by 

estimated corresponding coefficients, leading to the expression: 

 

 
𝑓𝑗(𝑥𝑗) = ∑ 𝛽𝑗𝑘𝑏𝑗𝑘(𝑥𝑗)

𝑘

𝑘=1

, 
 

 

where 𝐾 is the basis complexity or size and determines how complex each smoother 

is. Note that overfitting is voided by imposing a smoothing penalty, which prevents 

excess wiggliness, through regulating the basis function coefficients (Pedersen et al, 

2019). Generalised cross validation (GCV) and restricted maximum likelihood (REML) 

are techniques aimed at controlling the wiggliness of the smooths. GCV selects 

asymptotically optimal smoothing parameters, with regards to low prediction error 

(Wood, 2011). However, this procedure comes at the cost of slower convergence of 

smoothing parameters to their optimal values. Furthermore, given finite sample sizes 

Reiss and Ogden (2009) show that GCV is more likely to give variable smoothing 
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parameters, with multiple minima and tend to over fit (smooths are wigglier than they 

should be). In contrast, they show that REML tends to penalise overfit more sternly, 

leading to stronger optima and less variability of smoothing parameters. Based on 

these assertions, the REML procedure is consequently implemented in this study. 

 

One-dimensional smooths models can be extended to two or more dimensions. 

However, isotropic smooths should be used when covariates are on the same unit of 

measurement, and scale invariant smooths should be used when this is not the case 

(Wood, 2006). Isotropic smooths assume that a one-unit change in one variable is 

equivalent to a one-unit change in another variable. Tensor product smooths are more 

appropriate when this is not the case, which generalises to using a lattice of bendy 

strips with different flexibility in different directions. This study consequently uses 

isotropic smooths to model the effects of structural characteristics of properties on 

listing prices. 

 

Extending this framework to a allow smooth functional relationships between 

covariates and a response to vary between groups, pooling the functions towards a 

common shape, can be achieved through a hierarchical generalised linear model 

(HGAM) (Pedersen et al, 2019). Often it is of interest to model between-group 

variability, hierarchical models impose structure where the relationships between the 

covariates and the response may differ between groups. This framework allows the 

intercept or slope, or both, to be subject to grouping. The notation presented in (4.1) 

extends to include random effects, resulting in 

 

                   𝑔 (𝜇𝑖) =  𝛽0 +  𝑓1 (𝑥1𝑖) +  𝑓2 (𝑥2𝑖) + 𝑓3 (𝑥3𝑖)  + ⋅⋅⋅ + 𝑓𝑘(𝑥𝑘𝑖) +  𝑍𝑖𝑏𝑖,         

 

where 𝑍𝑖𝑏𝑖 relates to the random component. What distinguishes hierarchical models 

from classical regression, is the modelling of the variation between groups. In fixed 

effects models, only the error term is random, however hierarchical models, also 

referred to as mixed effects models or multilevel models, introduces additional sources 

of random variation, providing a structure of group specific profiles, called random 

effects. Random effects involve shrinkage, taking data from all the groups to estimate 

the mean and variance of the global distribution of group means, which can lead to 

smaller standard errors around group means (Gelman and Hill, 2007). For groups with 
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small sample sizes, shrinkage is the strongest, where partial pooling by the model 

improves estimates. This allows the researcher to investigate whether such 

relationships differ or hold, across groups. The implementation of HGAMS’s in this 

study are constructed using penalised regression splines, proposed by Wood and 

Augustin (2002), which enjoys several benefits, including lower computational cost, 

model selection and multi-dimensional smooths. 

 

Two modelling approaches are adopted in this study, both of which use HGAM’s, due 

to the spatially clustered nature of properties. The first model, hereafter referred to as 

the coordinates HGAM, attempts to deal with the spatial dependence of listing prices, 

by modelling the suburb latitude and longitude coordinates as an isotropic bivariate 

function using smooths on the sphere, which is analogous to second order thin plate 

splines in two-dimensional space, proposed by Wendelberger (1981). The second 

model, hereafter referred to as the suburb HGAM, does not use the suburb latitude 

and longitude coordinates, but rather treats the suburb as a random effect with varying 

intercepts. Individual suburb variation is likely to be present, with some properties 

having relatively higher prices for their location, and others having relatively lower 

prices. These individual differences can be modelled by assuming different random 

intercepts for each suburb. Treating the suburb variable as a random effect is applied 

to account for variation between suburbs, leveraging partial pooling, and to account 

for the spatial dependency of listing prices. In the case of this research, these random 

effects can be considered an approximated weighted average of the mean of the 

observations in the suburbs and the overall mean of South Africa. The amount of 

information in a given suburb determines the weight as such, for suburbs with little 

information, estimates will tend to equal the global mean and large suburbs will tend 

to be “unpooled”, using fewer effective degrees of freedom. Gelman and Hill (2007)  

Zuur, et al (2009) propose hierarchical models to resolve non-independencies in data, 

making this approach a good candidate to account for the spatial dependency.  

Goodness of fit diagnostic plots for generalised additive models are like generalised 

linear models with respect to distributional assumptions (Augustin et al, 2012). 

However, checking the basis dimensions used for smooth terms is important to ensure 

over smoothing is not present, which can be caused by small basis dimensions. Wood 

(2017) suggests that the exact choice of the basis dimension is not critical, however, 
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it should be large enough to ensure that there are sufficient degrees of freedom to 

represent the underlying data adequately. Though a large basis dimension comes at 

the cost of increased computation, increasing the basis dimension and looking for 

important statistically significant changes as a result thereof, could be a useful method 

for finding a good basis dimension. 

 

Model evaluation is performed by investigating model generalisability to out of sample 

data, comparing several goodness of fit statistics and assessing residual diagnostic 

plots, including variograms to investigate possible spatial autocorrelation, similar to 

how the GLM’s were diagnosed. 

 

4.2 Partitioning Around the Mediods 

Although properties are clustered within suburbs, exploratory analysis may reveal 

additional spatial groupings, which could add predictive power to modelling efforts. To 

investigate this, great circle distance, the shortest distance between points on a 

sphere, was calculated between each suburb for each yearly cross-sectional dataset, 

respectively. The distance matrices were then passed to the partitioning around 

medoids (PAM) algorithm, to find spatially homogeneous groups for each respective 

dataset. Schubert and Rousseeuw (2019) provide a succinct mathematical 

explanation of how PAM works, which is described in the next few sentences along 

with the pseudocode. The total deviation (TD), the absolute error criterion, as the 

objective is given by: 

 

           TD ≔ ∑𝑖=1
𝑘 ∑𝑥𝑗∈𝐶𝑖

          ⅆ(𝑥𝑗,𝑚𝑖)
,         

 

which is the sum of dissimilarities of each data point 𝑥𝑗 ∈ 𝐶ⅈ to the medoid 𝑚𝑖 of its 

cluster. The medoid of set 𝐶 is the object with the smallest sum of dissimilarities to all 

other points in the set given by: 

 

𝑚ⅇ𝑑𝑜ⅈ𝑑(𝐶) ≔ 𝑎𝑟𝑔𝑚ⅈ𝑛
𝑥𝑗∈𝐶

∑𝑥𝑗∈𝐶𝑖

          ⅆ(𝑥𝑖,𝑥𝑗)
, 
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PAM searches for k representative groups amongst the observations and is robust in 

the sense that it minimizes the sum dissimilarities instead of the sum of squares. The 

pseudocode for the PAM algorithm was generated with LaTeX in TeXworks. 

 

Algorithm 1 PAM BUILD: Find Initial Centers 

1: (TD, m1) ← (∞, null); 

2: foreach xi do 

  3: TDj ← 0;      // first medoid 

  4:                 foreach x0 ≠ xj, do TDj ← TDj + d(xo, xj); 

  5:                 if TDj < TD then (TD, m1) ← (TDj, xj);   // smallest distance sum 

6: for i = 1 . . . k − 1 do      // other medoids 

7:        , null); 
  8:        foreach xj ∉{m1, . . . , mi} do 
  9:                    ∆TD ← 0; 

10:    foreach x0 ∉ {m1 , . . . ,mi, xj} do 

11:                             δ ← d(xo, xj) - min0∈1, . . . , mi d(xo, 0) 

12:                             if δ < 0  then ∆TD + δ; 

13:                  if ∆TD < ∆TD∗ then (∆TD∗, x∗) ← (∆TD, xj);  // best reduction in TD 

13:                  (TD mi+1) ← (TD + ∆TD∗, x∗) 

14: return TD, {m1, . . . . , mk} 

_____________________________________________________________________ 

 
Algorithm 2 PAM SWAP: Iterative Improvement  

1: repeat 

2:           (TD∗, m∗, x∗) ← (0, null, null);  

3:                foreach mi ∈ {m1, . . . , mk} do               // each medoid 

4:                            foreach xj  ∉ {m1, . . . , mk} do                 // each non medoid 

5:                                        ∆TD ← 0; 

6:                        foreach xo ∉ {m1, . . . , mk} \ mi do ∆TD ← ∆TD + ∆(xo, mi, xj);  

7:                                        if ∆TD < ∆TD∗ then (∆TD ∗, m∗, x∗) ← (∆TD, mi, xj); 

8:  break loop if ∆ TD∗ ≥ 0;  

9:  swap the roles of medoid m∗ and non-medoid x∗;  // perform best 

swap  

10:  TD ←TD +∆TD∗  

11: return TD, M, C; 

_____________________________________________________________________ 

 

 

4.3 Results and Discussion 

The results of the spatially clustered data are presented in Figure 4.1. Yearly cross-

sectional maps of South Africa are illustrated, revealing the distinct or homogenous 

spatial clusters. 
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Figure 4.1: PAM Spatial clusters 

 

The algorithm consistently split suburbs in the Western Cape province into separate 

spatial clusters whilst combining suburbs in the Limpopo and Mpumalanga provinces. 

The average silhouette method, proposed by Rousseeuw (1987), was used to 

determine the optimal number of clusters which measures how similar a data point is 

to its membership cluster compared to other clusters. Figure 4.2 depicts the optimal 

number of clusters for each yearly dataset. The optimal number of clusters seems to 

be 8 with the exception of 2015 where 7 clusters are optimal. These spatial clusters 
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will be included as random intercepts in the hedonic models, both the coordinates 

HGAM’s and suburb HGAM’s. 

 

 

 

Figure 4.2: PAM silhouette plots 

 

The basis dimensions for the numeric covariates were kept the same for both the 

coordinates HGAM’s and the suburb HGAM’s. An extra penalty was added to each 

model, meaning the smoothing parameter estimation has the ability to remove terms 
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from models. In both approaches, all the covariates were statistically significant, and 

none were penalised out. A comparison of model performance is presented in Table 

4.1. 

 

Table 4.1: Results and comparison of HGAM’s 

HGAM 

(Model) 

Training RMSE  Holdout RMSE  𝐷2 AIC 

Coords Suburb Coords Suburb Coo

rds 

Sub

urb 

Coords Suburb 

2013 821 339 694 324 803 646 708 794 0.83 0.89 673527 664405 

2014 895 816 746 601 885 449 747 555 0.80 0.87 1711345 1687867 

2015 935 486 749 107  922 869 749 161             0.79 0.87 1834995 1806062 

2016 894 052  702 484 900 474 720 593             0.79 0.87 2597570 2553714 

2017 888 836 705 273 880 368 715 071             0.80 0.88 1806229 1777514 

Notes: The deviance explained figures are rounded to two decimal places, all other 

figures are rounded to the nearest whole number. Coords is the coordinates HGAM. 

 

The suburb HGAM’s, which treated the suburb as a random effect, yielded a lower 

holdout RMSE across each yearly model, in comparison to the coordinates HGAM’s. 

Noticeably, the suburb HGAM’s also produced lower AICs and higher deviance 

explained statistics. The suburb HGAM’s outperformed the coordinates HGAM’s, 

based on all goodness of fit statistics. The unexplained spatial heterogeneity was 

modelled effectively by suburb level random effects. This means that the use of partial 

pooling produced better estimates in comparison to treating the spatial coordinates as 

bivariate splines on a sphere. Visualization of the spatial dependency of the suburb 

HGAM’s residuals are presented Figure 4.3, providing a variogram of each model.  
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Figure 4.3: HGAM variogram plots 

 

The distance is calculated using great circle distance, which means that the x-axis 

units can be interpreted in kilometres. The spatial dependency seems to taper off and 

flatten after 1km, which is good sign that most of the spatial dependency has been 

accounted for. The sills are relatively short with long ranges, which suggests that 

spatial autocorrelation is not an issue.  

 

Similar to the GLM’s in chapter two, Moran’s I tests were performed, and the results 

are presented in table 4.2. 
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Table 4.2: HGAM permutation test for Moran’s I 

Year Statistic p-value 

2013 -0.0339 0.999 
2014 -0.0275 0.999 
2015 -0.0105 0.996 
2016 -0.0105 0.995 
2017 -0.0323 0.999 

 

The results of the tests indicate a weak negative correlation. Formally, at an alpha of 

0.05 there is not enough evidence to reject the null hypothesis of no spatial 

autocorrelation for each yearly suburb HGAM. 

 

The suburb HGAMs outperformed the coordinates HGAMs based on the deviance 

explained, AICs and holdout RMSEs. Moreover, the suburb HGAMs account for 

spatial dependency in the data. Based on these criteria, the suburb HGAMs were 

selected as the best model fit and discussed further, in more detail. Examining the 

residual diagnostic plots is an important exercise. Figure 4.4 presents the residuals 

diagnostic plots for the suburb HGAM’s. 
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Figure 4.4: HGAM diagnostic residual plots 

 

No discernible pattern is present in the residual linear predictor plots, indicating that 

the choice of link function and selection of smooths are appropriate. The Q-Q plots of 

the yearly models show some departure from normality at the lower and upper 

quantiles, indicating that the residual distribution is heavy tailed. However, with 

sufficient sample size this does warrant concern Schmidt and Finan (2018), especially 

when the departure is not extreme. 
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Interpreting the smooths requires visualization. The focus of interest is how the 

covariates are related to the response variable which can be visualized by plotting the 

component smooth functions that make up the model. Figure 4.5 present the smooth 

terms visually where smoothed covariates are plotted against the partial residuals on 

the scale of the linear predictor. The y-axes represent the respective partial residuals, 

the residuals after removing the effects of other covariates, and the x-axes represent 

the respective covariates. 

 

 

Figure 4.5 Smooth covariate plots 

 



51 
 

The smooths for each year exhibit non-linear shapes that vary across periods. The 

marginal utility of the number of bathrooms appears to have a positive effect on listing 

prices, compared to the number of bedrooms, which is relatively flat. This suggests 

sellers of homes can command a premium for more bathrooms. The number of 

bathrooms smooths further shows almost linear relationship with the response. The 

size covariate exhibits strong non-linearity where the curves increase steeply, then 

levels off and tapers for larger sized homes. This suggests that the marginal utility 

does not increase in a linear fashion and sellers cannot command a premium based 

purely on size, with evidence that a diminishing return exists. Homeowners wishing to 

determine the listing price that their properties will expeditiously sell for, through the 

reconciliation of supply demand, can be guided by understanding the implicit value of 

each marginal characteristic. The smooth functions presented above enable this 

understanding for each characteristic ceteris paribus. 

 

4.4 Summary 

Residential property prices were modelled as a function of physical and locational 

attributes using HGAMs, a flexible alternative to strictly specified functional form 

models. Treating the suburb as a random effect with varying random intercepts 

outperformed modelling the suburb coordinates as a bivariate smooth, using splines 

on the sphere, whilst accounting for the spatial dependence in the data. Random 

effects for the suburb covariate captured important group level variation, where partial 

pooling was useful to capture between suburb variability, improving predictive power. 

The findings suggest that the hedonic price functions in South Africa are non-linear 

and that smooth functions are appropriate for estimating the relationship between 

listing prices and structural property characteristics. The non-linearities between listing 

prices and property characteristics supports existing economic real estate research 

where the use of flexible models is better at capturing more realistic hedonic price 

functions. The goal of the hedonic models is to produce appraisal functions for 

accurate predictions which is then used to develop the hedonic price index. Given this 

goal, machine learning methods are investigated in the next chapter to investigate 

whether lower out of sample errors can be achieved.   
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Chapter Five 

Machine Learning Methods 

Previous chapters have investigated statistical models to appraise residential 

property, these models are designed for inference about the relationships between 

covariates and a response variable. Machine learning models are not inferential, 

however, they are designed to make accurate predictions with very little or no 

assumptions. This is because statistics mathematically models the data generating 

process to form hypotheses to draw conclusions about a population of interest (Bzdok, 

et al, 2018). Statistics focuses on fitting probabilistic models to compute parameter 

estimates which describes the population or “true” effect that is unlikely due to noise 

whereas machine learning focuses on prediction, using learning algorithms to find 

patterns in data (Bzok, et al 2016). The data used for modelling can help determine 

whether statistical or machine learning methods are more appropriate. Statistics 

typically deals with long data where the number of observations or subjects is greater 

than the input variables. In contrast to wide data, machine learning can be useful as it 

makes very little or no assumptions about the data generating process and can be 

especially effective without controlled experimental design and when large amounts 

of complicated non-linear interactions are present (Bzdok, 2017).  However, this may 

come at the cost of having a machine learning model that is harder to interpret or 

understand but the alternative could be a statistical model with larger uncertainty in 

parameter estimates and less precision. 

Given the large sample size of the data in this study and considering potential non-

linear interactions, two tree based machine learning methods and a multi-layer feed 

forward neural network are investigated in this chapter as hedonic pricing functions to 

appraise residential property in South Africa. This chapter examines gradient boosted 

machines (GBM), random forests (RF) and artificial neural networks (ANN) as the 

candidate methods. 
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5.1 Model Description and Motivation 

 

5.1.1 Gradient Boosted Machines 

Boosting is a technique of improving a learning algorithm which executes repeated 

iterations of a weak learner, in the case of GBM, by constructing decision trees 

sequentially from the residuals (Freund and Schapire, 1996; Friedman, 2001). 

Therefore, each tree is grown using information from previously grown trees. Boosting 

seeks to combine performance of iterations of learners, let ℎ1, ℎ2, … ℎ𝑇 represent a set 

of hypotheses with the composite ensemble hypothesis given by:  

 

 
𝑓(𝑥) = ∑ α𝑡ℎ𝑡(𝑥)

𝑇

𝑖=1

, 
 

 

where 𝛼𝑡 is the coefficient with which the ensemble ℎ𝑡 is combined, 𝛼𝑡 and ℎ𝑡 are 

learned through the boosting procedure (Meir and Ratsch, 2003). The GBM algorithm 

learns slowly by fitting a decision tree to the residuals from the model, then adding this 

new decision tree into the fitted function in order to update the residuals. Importantly, 

previous trees affect the construction of new trees. The output of the boosted model 

is given by: 

 

 
𝑓(𝑥) = ∑ λ𝑓𝑏(𝑥)

𝐵

𝑏=1

, 
 

 

where 𝑓 is improved slowly by fitting more and different shaped trees to the residuals 

of previous trees using a shrinkage parameter λ, the algorithm is defined below by 

Hastie, Tibshirani and Friedman (2009).  
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5.1.2 Random Forests 

Bagging using bootstrapping to generates 𝐵 different training sets, training a model on 

each training set to get 𝑓∗b(x) where averaging is applied over the predictions to 

obtain:  

 

 
𝑓𝑏𝑎𝑔(𝑥) =

1

𝐵
∑ 𝑓∗b(x)

𝐵

𝑏=1

, 
 

 

   

RF employs bagging, however, to decorrelate the trees, at each split in a tree, the 

algorithm only considers a random sample of 𝑚 predictors from the full set of 𝑝 

predictors (Hastie, Tibshirani and Friedman, 2009). This allows for the trees to use 

different predictors and strong predictors will not always appear in the top split, 

meaning the trees will look quite different, reducing the correlation between trees 

which leads to a reduction in variance.  The random forest algorithm in a regression 

setting from Hastie et al (2015) is provided below. 
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5.1.3 Artificial Neural Networks 

Multi-layer feed forward neural networks contain multiple computational (hidden) 

layers, successively feeding forward into one another from the input layer to the output 

layer with the typical architecture assuming all nodes in one layer connect to all nodes 

in the next layer. These computations are not visible to the user which is why they are 

often referred to as hidden layers. A graphical representation explaining the 

architecture of a feed-forward ANN network with two hidden layers and one output 

layer is presented in Figure 5.1 below 
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Figure 5.1.  Example of Feed Forward Artificial Neural Network Architecture 

Source: Aggarawal (2018) 

 

Given some values of an input 𝑥 the neural network computes an output 𝑦, similar to 

most other machine learning algorithms. However, ANN use weights, the parameters 

of a layer, where some transformation at a layer is performed and stored in the 

weights, simply given by: 

 

y = f𝑤(𝑥), 

 

where 𝑤 represents the weights.  Weights are adjusted using the loss function which 

measures distance between the outcome variable and predictions which becomes the 

feedback signal to adjust weights in some direction to lower the loss score. This 

happens using backpropagation, the optimizer. Figure 5.2 shows the process of how 

the loss score is used as a feedback signal to adjust the ANN weights. 
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Figure 5.2.  Feed Forward Artificial Neural Network Process Diagram 

Source: Chollet and Allaire (2018) 

 

Although ensemble, tree-based models often remain better than neural networks for 

smaller data and / or feature sets such as the case of studies with a small set of 

predictor variables (Aggarwal, 2018), this chapter explores the use of ANN’s to fit 

residential property appraisal functions. 

 

5.2 Model Training and Validation 

H2o is highly scalable open-source provider of parallelized machine learning 

algorithms that are distributed in memory making it a fast and efficient machine 

learning platform (LeDell et al, 2019). GBM, RF and ANN are part of the H2o stack 

which can be developed using different programming languages such as R and Python 

or the easy-to-use H2o flow web interface for non-programmers. Gartner (2018), a 

global research and advisory firm, named H2o a leader amongst 16 vendors in their 

“Magic Quadrant for Data Science”. Key reasons for using the H2o implementation of 
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GBM, RF and ANN in this study include the ability to fit exponential families of 

distributions, automatic early stopping based on convergence of a specified metric, 

the ability to tune many other hyperparameters with cross validation and in the case 

of GBM, the use of stochastic GBM which improves generalisation through column 

and row sampling during model training (Click et al, 2016; Friedman, 2002). R or 

Python scripts using the H2o functionality can be embedded into backend on premise 

or cloud systems for deployment purposes. Alternatively, the final model can be 

exported as a Java object and embedded into web applications. This makes the H2o 

implementation of GBM, RF and ANN algorithms portable and interoperable for 

organisations like property portals. 

 

Cross validation is applied to optimise the hyperparameters, with the aim of reducing 

the out of sample error. The RMSE is used to test model fit and generalisability. In 

supervised machine learning problems, model tuning involves finding the optimal 

hyperparameters for a predictive task. Tuning hyperparameters vary the complexity of 

models with the aim of finding the values of the tuning parameters that minimise the 

average prediction error (Hastie, Tibshirani and Friedman, 2001). Searching over a 

high dimensional hyperparameter space to find the optimal combinations thereof can 

result in significant computational cost. This is often a drawback of traditional 

(cartesian) and manual grid searches which can be mitigated by using a random grid 

search which samples uniformly from the set of all possible hyperparameter value 

combinations (Bergstra and Bengio, 2012). This study implements a random grid 

search which allows for early stopping of model building based on convergence of the 

user supplied training error metric. The findings of Bergstra and Bengio (2012) shows 

that a random grid search strategy is able to produce models that are at least as good 

or better than those from manual and traditional grid searches. Zhong et al (2018) 

provide evidence that early stopping is useful in the reduction of the hyperparameter 

search space in neural network architectures. Early stopping is applied in this study 

which stops the algorithm if the RMSE does not improve for 25 training rounds based 

on a moving average of 10000.    

 

Evaluation of model generalisation hyperparameter selection can be achieved using 

𝑘 fold cross validation. This involves splitting the data into 𝑘 roughly equal parts whilst 
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maintaining the original distribution of the response, Table 5.1 illustrates an example 

of 5-fold cross validation. 

 

Table 5.1: 5-Fold cross validation structure 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 
Validation Set Training Set Training Set Training Set Training Set 

 

The procedure involves fitting a model to the training folds and calculating the 

prediction error on the validation fold which is then repeated for folds 𝑘 = 1, 2, … 𝐾 and 

finally, combining the 𝐾 estimates of prediction error (James et al, 2013). Hastie, 

Tibshirani and Friedman (2001) provide a detailed description which is summarised in 

the following sentences. Let: 𝜅 ∶  {1, … , 𝑁} → {1, … , 𝐾} be an indexing function 

indicating which fold observation ⅈ belongs to from the randomised fold splits.  The 

fitted function is denoted by 𝑓−𝑘(𝑥) which is computed with the validation set. This 

provides a measurement of the cross-validation prediction error, given by:   

 

 
CV(f̃) =

1

N
∑ L (yi, f̃ −K(i)(xi))

N

i=1

, 
 

 

 

Extending this framework to include a set of models 𝑓(𝑥, 𝛼) indexed by a tuning 

parameter α is given by:  

 

 
CV(𝑓)  =  

1

𝑁
  ∑ 𝐿 (𝑦𝑖,  𝑓−𝐾(𝑖)(𝑥𝑖, α)) ,

𝑁

𝑖=1

 
 

 

Cross validation can be applied to models with many tuning parameters to search for 

the combination of hyperparameters that produce the lowest prediction error. 𝑘 fold 

cross-validated gradient boosted machines are built on 80% of the data with 20% 

withheld as the final validation set, making the generalisation framework robust (LeDell 

et al, 2019). This study implements 5-fold cross validation where yearly property 

listings from all respective suburbs are randomly blended into the 5-folds, making the 

cross validation spatially mixed based on the distribution of response. 
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Typically, when splitting data into training and validation sets or cross validation folds, 

researchers want validation sets to be independent from training sets, however, spatial 

data often violates this requirement. The random selection of validation data from the 

entire spatial domain will result in dependence between training and validation sets 

because of spatial structure. This leads to overly optimistic error estimates when 

extrapolating outside the spatial structure. Blocking is an approach designed to 

remedy this by forcing testing on spatially distant records (Trachsel and Telford 2016). 

However, if the objective of the model is to interpolate or predict within the same spatial 

structure, random cross validation or random splitting techniques are reasonable 

approaches as the model’s conditions do not change (Roberts et al., 2017). The 

models developed in this study are interpolation models, they aim to use the property 

portals existing data and make predictions on the same spatial structure. Therefore, 

random data splitting and cross validation techniques are employed. 

 

Partial dependence plots (PDP) and variable importance plots (VIP) are developed for 

the method with the lowest holdout RMSE to understand the effect of the covariates 

on the response. PDP are a useful interpretation technique for machine learning 

algorithms which plot the marginal effect of a covariate on the response holding other 

covariates constant (Friedman, 2001; Hastie et al, 2009), whilst VIP show the relative 

importance of predictor X (Greenwell and Boehmke, 2020). 

 

Similar to chapters two and three, variograms and Moran I tests are applied to the 

residuals of the method with the lowest holdout RMSE to test for the presence of 

spatial autocorrelation. 

 

5.3 Results and Discussion 

The results of the 5-fold cross validation yearly machine learning algorithms are 

presented in Table 5.2 showing the goodness of fit measures.  
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Table 5.2: Cross validation model summaries 

 

            

  Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

            

 Year RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 
GBM 2013 668 796 0.81 736 971 0.80 696 821 0.81 688 292 0.82 711 756 0.80 

 2014 716 860 0.83 705 882 0.83 744 746 0.82 710 181 0.82 708 496 0.83 

 2015 700 373 0.83 734 539 0.82 712 935 0.83 706 369 0.83 702 167 0.84 

 2016 664 084 0.84 659 409 0.84 651 150 0.85 665 760 0.84 659 930 0.84 

 2017 670 688 0.84 680 752 0.84 673 863 0.84 686 535 0.84 661 416 0.84 

            

RF 2013 760 832 0.78 783 753 0.76 819 370 0.76 793 293 0.76 781 754 0.76 

 2014 770 309 0.80 812 452 0.78 774 280 0.79 774 803 0.79 777 907 0.79 

 2015 773 291 0.80 778 359 0.80 795 367 0.79 777 530 0.80 781 512 0.80 

 2016 723 671 0.81 732 294 0.81 730 617 0.81 719 279 0.81 734 013 0.80 

 2017 737 617 0.80 769 744 0.80 757 650 0.80 734 927 0.81 758 682 0.80 

            
ANN 2013 749 092 0.78 710 762 0.79 760 460 0.79 723 314 0.79 718 852 0.79 

 2014 1 090 722 0.59 1 100 098 0.59 1 081 611 0.60 1 057 546 0.60 1 091 519 0.59 

 2015 725 386 0.81 746 959 0.81 746 278 0.81 772 433 0.80 763 138 0.80 

 2016 847 486 0.74 835 268 0.74 826 365 0.75 846 515 0.74 1 080 526 0.58 

 2017 721 689 0.81 714 548 0.82 776 842 0.80 761 511 0.8 776 171 0.79 

Notes: The R2  figures are rounded to two decimal places, all other figures are rounded 

to the nearest whole number. 

 

 

The out of sample errors in each fold for the yearly GBM and RF respectively are quite 

consistent with the ANN showing the largest variance, producing the largest out of 

sample errors in 2014 and 2016. However, the GBM slightly outperform the RF. 

Combining the holdout predictions to gauge an unbiased overall average fit is 

presented in Table 5.3. 
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Table 5.3: Combined holdout goodness of fit summaries 

 GBM RF ANN 

       
Year RMSE R2 RMSE R2 RMSE R2 
2013 704 527 0.81 787 800 0.76    732 496 0.79 
2014 717 398 0.82 781 950 0.79 1 081 611 0.60 
2015 711 415 0.83 781 212 0.80    772 433 0.80 
2016 660 072 0.84 727 975 0.81    887 232 0.71 
2017 674 687 0.84 751 724 0.80    750 152 0.80 

  

The holdout errors for the tree-based models are consistent for each yearly model 

respectively with 2016/7 producing the lowest generalisation errors for both GBM and 

RF. However, the GBM produce the lowest holdout errors for each year and are 

examined in further detail as the best method.  Similar to the findings of Mayer et al 

(2019) in their hedonic study of Swedish family homes, GBM produced the lowest out 

of sample error whist neural networks can be quite erratic.  

 

Table 5.4 examines the spatial dependency in the data by applying the Moran’s I test 

to the residuals of the yearly GBM.  

 

Table 5.4: GBM permutation test for Moran’s I 

Year Moran’s I Statistic Moran’s I p-value 

2013 -0.03534 0.999 
2014 -0.01447 0.098 
2015 -0.01114 0.999 
2016 -0.00784 0.992 
2017 -0.01216 0.999 

 

The Moran’s I test shows that GBM account for the spatial dependency. Formally, at 

an alpha of 0.05 there is not enough evidence to reject the null hypothesis of no spatial 

autocorrelation for each yearly GBM. Figure 5.3 presents the scaled variograms of the 

GBM’s. 
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Figure 5.3: GBM Variogram plots 

 

The variograms are calculated using great circle distance, the same as the earlier 

chapters. The sills are relatively short with varying gradients and long ranges, which 

suggests that spatial autocorrelation is not an issue.  

 

A random grid search applied to each yearly GBM allowed for different 

hyperparameters to be selected for different the models. Table 5.5 details the 

hyperparameters chosen in the final models with summary statistics about each 

model. 
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Table 5.5: GBM model summaries 

Year 
number 
of trees 

 
 
 
 
sample 
rate 

 
column 
sample 
rate 
per 
tree 

 
 
 
 
learn 
rate 

min 
depth 

max 
depth 

mean 
depth 

min 
leaves 

max 
leaves 

mean 
leaves 

2014 809 0.6 0.77 0.02 3 19 9.47 4 55 28.19 
2015 809 0.6 0.77 0.02 2 19 9.85 4 58 29.69 
2016 809 0.6 0.77 0.02 3 19 10.74 5 81 39.94 
2017 809 0.6 0.77 0.02 2 19 9.63 4 58 29.33 

 

The number of trees, sample rate, column sample rate per tree and learning rate 

hyperparameters were constant for each yearly model. The difference in model 

complexity is derived from how the individual trees were grown. On average 2016 had 

deeper and larger trees grown, 2016 also experienced the lowest holdout RMSE. The 

deeper trees could be attributed to fact that 2016 had substantially more data than 

other years.  

 

The PDP for each of the numeric covariates are presented next. The implementation 

of PDP in this study summarise the estimated relationship along with the actual 

relationship between the response and covariates by showing a calibration curve. A 

covariate is first grouped into 1% bins where the mean of the predicted outcome and 

response is calculated holding other covariates constant. Figure 5.4 show how the 

mean response and predicted outcome changes with a change in the given numeric 

covariate, namely size, bedrooms and bathrooms. 
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Figure 5.4: Partial dependence calibration plots 

 

The yearly size curves share a similar shape where tapering is evident. The utility 

increases steeply initially but then drop off over the marginal distribution. This suggests 

that on average larger sized properties, greater than ≈ 800 square meters experience 

a diminishing return. The marginal utility of bedrooms is positive up to 5 bedrooms. 

Thereafter, flattening out is evident for properties with an increased number of 

bedrooms. The number of bathrooms PDP shows that the marginal utility for 

bathrooms increases steeply up to ≈ 5 bathrooms where additional bathrooms add 

low to no extra marginal utility. The yearly PDP reveal a diminishing return for larger 

properties, showing that larger homes do not necessarily result in increased prices. 

Applying the characteristics method proposed by de Haan and Erwin (2011) where 

separate cross-sectional models were developed provided value in being able to 

distinguish how the physical characteristics utility curves vary from period to period.  
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Variable importance is calculated and presented in Figure 5.5. Friedman (2002) 

applied variable importance to GBM’s leveraging the work of Breiman (2001a) who 

used randomisation of the out-of-bag observations which are observations held back 

during random forest training and applied before the algorithm has completed. 

 

 

Figure 5.5: Variable importance plots 

 

The suburb a property is located in is the most important predictor of listing price in 

each yearly GBM. This result coincides with previous hedonic studies which highlight 

locational effects as statistically significant. The size of the property and number of 
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bathrooms are consistently deemed the most important physical attributes for each 

yearly model. 

 

5.4 Summary 

This chapter developed and compared yearly hedonic price functions using gradient 

boosted machines, random forests and multilayer artificial neural networks. An open-

source scalable machine learning platform was used to train and tune the 5-fold cross 

validated where the tree-based algorithms generalised well with consistent out of 

sample errors and lower variance, compared to the multilayer artificial neural 

networks. The gradient boosted machines outperformed the random forests and were 

able to account for the spatial dependency adequately in the data by including a 

location categorical variable. Developments in making the results of machine learning 

techniques more transparent has come a long way where the use of partial 

dependence and variable importance plots reveal the relationships and importance of 

covariates on the outcome variable. The partial dependence plots showed that the 

marginal utility for different physical characteristics varied at different quantiles 

showing that, on average, larger sized properties do not necessarily yield higher prices 

and can result in diminished returns. The suburb categorical variable was consistently 

deemed the most important followed by size and the number of bathrooms, reinforcing 

the old adage about the importance of location of a property. The gradient boosted 

machines produced the lowest out of sample errors and will be used as the appraisal 

functions to produce the residential property price index and web application which 

ensues in the following chapter. 
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Chapter Six 

Listing Price Index and Web Application 

Applying index number theory to hedonic models is how property price developments 

are measured. This chapter deals with the construction of a RPPI for listing prices in 

South Africa. The listing price index (LPI) and accompanying web application are 

developed to show how property price developments can be measured and 

democratised to property market participants. 

 

6.1 Hedonic Model Selection 

Different techniques were applied to develop cross sectional hedonic models for each 

year in the observation period. Although the log normal and gamma generalised linear 

models had similar goodness of fit measures, the gamma model was advantageous 

by keeping the fitted values on the original scale. The gamma distribution was 

subsequently used in all model fitting. Relaxing functional form assumptions, 

hierarchical generalised additive models were fitted where penalised regression 

splines and treating the suburb as a random intercept, improved model generalisability 

by lowering the out of sample errors in comparison to treating the spatial coordinates 

as a bivariate smooth. Finally, gradient boosted machines were fitted using 5-fold 

cross validation, further reducing the out of sample errors and outperforming the 

random forests and multilayer artificial neural networks. Table 6.1 summarises the 

performance for the best models of all three methods namely, generalised linear 

models, hierarchical generalised additive models and machine learning methods. 
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Table 6.1: Hedonic model out of sample errors 

 Holdout RMSE (out of sample errors) 

Period Gamma GLM Suburb HGAM GBM 

2013 719 286 708 794 704 527 

2014 764 730 747 555 717 398 

2015 772 905 749 161 711 415 

2016 746 554 720 593 660 072 

2017 724 390 715 071 674 687 

 

Of the three candidate models, gradient boosted machines produced the lowest out of 

sample errors and are used to develop the LPI and web application. 

 

6.2 Index Number Theory 

Price indices are widely used in economics and finance as statistical measures of 

change in a representative set of data points, with several techniques available to 

calculate hedonic price indices. Typically, properties are not transacted frequently, 

making price development measurements difficult. However, hedonic models facilitate 

quality-adjusted price development measurements through the application of index 

number theory (Hill, 2013). The characteristics method calculates the price change of 

a typical home from a reference period to a successive period.  The counterfactual 

question being, what is the price change of a set of average home characteristics from 

a reference period, the first hedonic valuation, to period 𝑡, the second hedonic 

valuation. In a Laspeyres-type form, the characteristics approach to creating a hedonic 

RPPI, takes the average characteristics of properties in a reference period and then 

re-values the same basket of characteristics in successive periods (Silver, 2016). The 

predicted prices of the average characteristics from the reference period, using a 

period 𝑡 hedonic regression (the numerator), is compared to the predicted prices of 

the average characteristics from the reference period, using the reference period 

hedonic regression (the denominator). This results in a constant (reference period) 

quality price index, answering the question of what the estimated price of a property 

with the reference period average characteristics would be, if it were on the market in 

the comparison period 𝑡. A Paasche-type form follows a similar design, except the 

average characteristics for period 𝑡 are used and revalued against the reference period 
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hedonic regression. The Fisher index would involve taking the geometric mean of the 

Laspeyres index and Paasche index, which is considered a better approximation (ILO, 

et al, 2004). Medians instead of means are further suggested, where distributions of 

home characteristics are highly skewed (de Haan and Diewert, 2011). To answer the 

more granular question of what price property ⅈ in the reference period, given its set 

of characteristics, would be in period 𝑡, a different technique is necessary. The 

imputation method achieves this by predicting the reference periods property prices at 

period 𝑡, using the hedonic regression from time 𝑡 (Silver, 2016). An average of these 

counterfactual predictions is taken and compared with the average of the matched 

reference period actual prices. Omitted variable bias is likely, which is why dual 

imputations are recommended (Hill, 2013). The dual imputation method involves 

running a hedonic regression in the reference period, and revaluing each property and 

its set of characteristics, using the hedonic regression for period 𝑡. The average of the 

predicted prices denoted by �̂�𝑖|𝑧𝑖,𝑘0
𝑡  for period 𝑡, conditioned on the quality-mix in the 

reference period, is compared to the average of the predicted prices of the reference 

hedonic regression, denoted by �̂�i|zi,k0
0 . Dual imputation hedonic price indices to some 

extent, offset upwards bias, by using predicted values in the numerator and 

denominator, making it a recommended technique (de Haan, 2004a; de Haan 2009; 

Diewert et al, 2009; Hill and Melser 2008; Hill 2013). Consider a set of properties listed 

for sale or transacted in the reference period. The dual imputation method facilitates 

a matched model methodology, where price comparisons are made with the same 

matched properties in period 𝑡. This results in the measurement of pure price changes 

by controlling for the quality-mix of properties effectively. The problem of quality-mix is 

resolved, by imputing the period 𝑡 prices for properties in the reference period, 

answering the counterfactual question, of what a property in the reference period 

would be valued at, for period 𝑡. An implicit weighting is assigned to each properties 

price change, using the dual imputation method, namely its relative price in the 

reference period. A commensurate weight is given to properties relative prices under 

the imputation method, which is equal to the relative expenditure, an apt measure of 

the relative weight to attach to property price changes (Silver, 2016). Both the 

imputation and characteristics techniques are quite intuitive. The imputation method 

can be thought of as a ratio of average quality adjusted prices of matched homes, 

whilst the characteristics method can be thought of as a ratio of prices of a constant 
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quality bundle of characteristics. Extending price comparisons to multiple periods, 

beyond the bilateral examples discussed so far, is achievable through various 

techniques. In a fixed base scenario, an index is measured as the constant quality 

price changes between each successive period 𝑡 and the reference period.  Periodic 

updating and linking can be beneficial when constructing a residential property price 

index, adjacent period indices use a rolling window, which are rebased each period 

(Hill, 2013). The window in this approach requires only two periods, the current period 

and the period prior to it. The window is then shifted to adjacent periods and chained 

together (Triplett, 2006). A chained index is closer to a theoretical index than a fixed 

version, and may alleviate substitution bias (Balk, 2008). Dual imputation hedonic 

models that are updated via chaining, enjoy the benefit of circumventing revisions, a 

desirable feature in developing price indices. Dual imputations provide a measure of 

constant quality price changes, weighted by their predicted prices in the reference 

period for a Laspeyres-type index and predicted prices in period 𝑡 for a Paasche-type 

index. A Fisher type dual imputation index, the geometric mean of the Laspeyres-type 

and Paasche-type indices, is expressed by: 

 

 

√∏ [(
𝑝𝑡+1,ℎ(𝑧𝑡+1,ℎ)

𝑝𝑡,ℎ(𝑧𝑡+1,ℎ)
)

1/𝐻𝑡+1

]
𝐻𝑡+1
ℎ=1 × ∏ [(

𝑝𝑡+1,ℎ(𝑧𝑡,ℎ)

𝑝𝑡,ℎ(𝑧𝑡,ℎ)
)

1/𝐻𝑡

]
𝐻𝑡
ℎ=1 , 

 

 

where �̂�𝑡+1,ℎ(𝑧𝑡,ℎ) denotes the imputed price in the comparison period for individual 

homes. The LPI developed in this study adopts a chained, dual imputation Fisher index 

for the gradient boosted hedonic models and compared to a simple median mix-

adjusted index and the ABSA global property guide index for South Africa. 

 

6.3 Project Process 

An architectural diagram of the proposed deployment methodology is presented in 

Figure 6.1 which shows the flow of data from different environments in order to provide 

end users with market insights.  
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Figure 6.1: Deployment architecture 

 

Estate agents populate listings into a web form which constrains inputs to the correct 

data type, helping ensure data integrity. These individual listings are persisted to a 

database and ingested into machine learning environment where gradient boosted 

machines are applied to obtain the hedonic models. The hedonic models are then 

consumed by the Listing Price Index Calculator (LPIC), a front-end web application, to 

derive the hedonic prices and index numbers, democratising the insights to property 

market participants. To make the methodology computationally inexpensive, the 

machine learning algorithms can be built daily or monthly depending on how often new 

listing data is persisted to the database. This would only happen for the current years’ 

data and previous models would be serialised or the predictions of those models 

persisted back to the database. This schematic can apply to property portals or 

individual real estate agencies. In the case of this study Microsoft SQL sever was used 

to store and persist data. An SSIS package was developed for the ETL (extract, 

transform and load) process which consisted of 28 comma separated value files. The 

open-source statistical programming language R and Shiny package were used to 

develop the source code for the models and web application. The source code for the 

web application can be found in the appendix. 

 

The practical implementation of this study, resulting in the proposed architecture in 

Figure 6.1 would follow the Cross Industry Standard Process for data Mining (CRISP-
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DM), first proposed and published by a consortium of companies in 1999 (Chapman, 

2000). Figure 6.2 illustrates the stages of CRISP-DM. 

 

 

Figure 6.2: CRISP-DM framework 

Source: Hotz (2022) 

 

The first stage involves understanding the business question or what the business 

wants to achieve. In the case of this research, how Private Property (Pty) Ltd can 

leverage their data to make residential property appraisal easy, given some 

characteristics about the home and provide insights about price developments over 

time to help users of their website make more informed decisions. The data 

understanding stage involves investigating what data is needed and the suitability 

thereof. This would have involved the exploratory data analysis performed in chapter 

two and the ETL process discussed above. The modelling stage asks what modelling 

methods should be applied based on the exploratory data analysis and business 

question, and then applies these models. This stage was illustrated by chapters three, 

four and five where various models were fit to the data. The evaluation stage involves 
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selecting the best model based on the business objectives. In the case of this study, 

the model with the lowest-out of sample error which proved to be gradient boosted 

machines. Finally, the deployment stage which is illustrated in Figure 6.1 would take 

the form of the LPIC where the users can access the results of the model and 

methodology. 

 

6.4 Results and Discussion 

Firstly, a median mix adjusted index is constructed and presented in Table 6.2 using 

equation (1.1). The stratification was done on the property type and size of the 

property. Homes were grouped by property type and the 25th and 75th quantiles were 

calculated, denoting small and large homes respectively while medium sized homes 

fell in between. Further post stratification was not possible due to very low sample 

sizes in each stratum. 

 

Table 6.2 Median mix adjusted index results 

Median Mix 

Adjusted 

Index 

2013-2014 2014-2015 2015-2016 2016-2017 

 11.74 5.52 -2.02 3.01 

Notes: Figures are nominal and stated as percentages 

 

Compared to the figures in Table 6.3 below, the simple median mix adjusted index is 

noisy producing larger yearly changes which is why is not favoured in literature.   

 

Nominal or non-inflationary adjusted annual listing price developments are calculated 

for South Africa and presented in Table 6.3 using the GBM hedonic models.  

 

Table 6.3: Nominal South African LPI results 

Fisher Index 2013-2014 2014-2015 2015-2016 2016-2017 

 7.35 5.48 3.25 3.39 

Notes: Figures are stated as percentages 
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Although listing prices appear to experience growth for each year in the observation 

period, a diminishing return is evident. Yearly inflation rate comparisons are presented 

in Table 6.4 to facilitate an understanding of real listing price developments. 

 

Table 6.4: Annual inflation rate comparisons 

Annual 

Inflation 

2013-2014 2014-2015 2015-2016 2016-2017 

 6.09 4.58 6.34 5.27 

Notes: Figures are stated as percentages 

Source: Inflation rate: South Africa | Statista (2020) 

 

Factoring in the above inflation rates, Table 6.5 provides real listing price 

developments for South Africa over the observation period. 

 

Table 6.5: Inflation adjusted South African LPI results 

Fisher Index 2013-2014 2014-2015 2015-2016 2016-2017 

 1.19 0.86 -2.91 -1.79 

Notes: Figures are stated as percentages 

 

After accounting for inflation, annual listing price developments were lackluster from 

2013 to 2015, showing negative growth in latter periods. 2016 experienced the largest 

contraction in listing prices which was a function of low growth and high inflation.  No 

other South African listing price indices have been identified to compare against the 

one developed in this study. However, Table 6.6 presents the ABSA Global Property 

Guide annual house price changes on transacted properties. 
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Table 6.6: ABSA global property guide annual house price changes 

 Annual House Prices Changes 

Year Nominal Inflation-adjusted 

2014 6.31 0.92 

2015 6.24 1.01 

2016 4.58 -2.33 

2017 3.86 -0.61 

Notes: Figures stated as percentages 

Source: Delmendo (2020)  

 

Although Table 6.6 uses transaction prices and not listing prices and only considers 

houses, similarities can be observed. Table 6.6 shows a contraction for inflation 

adjusted house prices in 2016 and 2017, these results are similar to the finding in this 

study. 

 

Provincial listing price developments over the observation period shows growth 

disparity between the nine South African provinces where prices developments are 

more robust in certain parts of the country. Table 6.7 presents nominal listing price 

developments broken down to a provincial level. 

 

Table 6.7: Provincial LPI results 

Province 2013-2014 2014-2015 2015-2016 2016-2017 

Eastern Cape 1.43 3.54 0.83 1.99 

Free State -0.42 3 -0.49 1.07 

Gauteng 7.59 4.35 1.49 1.6 

KwaZulu-Natal 3.87 4.5 3.32 3.18 

Limpopo 6.34 2.65 -0.19 6.49 

Mpumalanga 5.58 0.1 -0.01 1.54 

North-West 2.16 3.29 2.91 -2.25 

Northern Cape NA NA NA -19.01 

Western Cape 9.57 8.37 6.79 6.83 

Notes: Figures are nominal and stated as percentages 
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Drilling down into provisional price developments, reveals that the Western Cape 

experienced the largest growth in listing prices for each year in the observation period.  

Gauteng showed consistent tapering in listing price developments. The Free State, 

Limpopo, Mpumalanga, North-West and Northern Cape contracted in various periods 

with 2015-2016, on average, experiencing more negative effects provincially. This is 

echoed by examining Table 6.5 where listing price developments were at their lowest 

for 2015-2016 throughout the observation period. 

    

Figure 6.3 displays the nominal provincial price developments using 2013 as the 

reference period and 2017 as the comparison period. This is synonymous with a fixed 

base index where 2013 is the base period. 
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Figure 6.3: Provincial listing price growth 2013-2017 

 

The Western Cape achieved the largest growth in listing prices, outperforming 

Gauteng and KwaZulu-Natal by more than double growth. Limpopo achieved the 

second highest performance. The Northern Cape only had data in 2016 and 2017 

which is why it does not feature in Figure 6.3. 

 

6.5 Listing Price Index Web Application 

Making listing price development insights consumable to households can be achieved 

through the creation of a data product. Data products are products that use data and 

statistical models or machine learning algorithms to democratise insights and add 

value (Sands, 2018). Some examples include Google search and the Netflix movie 
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and Amazon product recommenders. The Listing Price Index Calculator (LPIC) is a 

data product presented in the form of a web application that allows users to easily 

ascertain listing price developments of individual properties and make comparisons at 

a suburban and provincial level. The LPIC presents the application of the methodology 

proposed in this study. Figure 6.4 illustrates an example of a 2-bedroom, 2-bathroom, 

80-square meter flat in KwaZulu-Natal Morningside.   

 

 

Figure 6.4: LPIC example one 

 

The LPIC shows that from 2016 to 2017, a property with the above set of 

characteristics grew by 3.25% whilst properties in the same suburb grew on average 

by 2.6% and properties in KwaZulu-Natal grew 3.18% on average. This indicates that 

on average, this property achieved higher listing price growth relative to the suburb 

and province. The LPIC has a dynamic user interface that allows users to easily update 
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their selection to obtain the information they want. The LPIC facilitates either a fixed 

base or chained approach. A second example is presented in 6.5 for a 6-bedroom, 5-

bathroom, 408-square meter house in Bryanston, Gauteng.  

 

 

Figure 6.5: LPIC example two 

 

In this case, price developments are examined from 2013 to 2017 where a property 

with the above set of characteristics, on average experienced a 17.18% increase in 

listing price whilst properties in Bryanston, on average grew by 24.26% and 16.94% 

on average in Gauteng. This indicates that although the listing price for this particular 

property, on average grew more than properties in Gauteng, it did not keep up with 

the average growth experienced in Bryanston.  
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For property market participants wishing to sell their homes, the LPIC data product 

can be a useful first assessment of what to list their homes for on the market, making 

it a complimentary tool to estate agent valuations. Potential buyers are able to 

ascertain the typical asking price for a home with the desired set of characteristics in 

the suburb of interest. Real estate agents and property portals are well positioned to 

leverage their extensive property market data to develop a similar data product that 

provides property market participants with a simple, data driven to tool to assess and 

understand price developments.  

 

6.6 Summary 

Monitoring residential property price developments is important for various property 

market participants and policy makers, however, controlling for the quality-mix is 

critical to ensure pure price changes are measured and not simply changes in the 

sample composition. Hedonic models are well suited to the counter the quality-mix 

problem, coupled with index number theory, they provide a consistent way to measure 

quality adjusted price changes. This chapter presented how gradient boosted 

machines can be used to construct a listing price index for South African homes from 

January 2013 to August 2017. Although positive nominal growth was experienced, a 

diminishing return was evident. After accounting for inflation, listing price 

developments were lackluster and even negative for latter years. This is congruent to 

real estate publications produced by ABSA. The Western Cape experienced the 

largest growth throughout the observation period. The framework presented was 

developed into a data product, the Listing Price Web Application, in the form of a web 

application, making obtaining listing price developments at a property, suburb and 

provincial level, a simple selection on a user interface. Such an application is an 

example of how real estate agents and property portals can leverage the plethora of 

their available data, to present property market participant with an interactive tool to 

understand listing price developments. Sellers of homes can use data products like 

the Listing Price Web Application to get an understanding of what price to list their 

homes for on the market, making it a data driven solution to compliment real estate 

listing price valuations. 
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Chapter Seven 

Conclusion 

This chapter presents a summary of the study, highlighting the key findings and value 

achieved from the work. The limitations of the research are also addressed.  

 

7.1 Conclusion 

The aim of this study was to apply statistical and machine learning methods to 

appraise residential property and measure price developments through the creation of 

a residential property price index using index number theory. Furthermore, an 

important objective was to create a web application, the Listing Price Index Calculator, 

illustrating how this methodology can be used by property portals and real estate 

agencies to help market participants make informed decisions regarding the sale or 

purchase of a home of interest.  

 

Using hedonic pricing theory, the starting point was appraising different residential 

property types throughout South Africa over from January 2013 to August 2017 in a 

cross-sectional manner. Different models were considered, including generalised 

linear models, hierarchical additive models and machine learning algorithms, namely 

random forests, gradient boosted machines and neural networks. However, due to 

data integrity issues, the data firstly had to be “scrubbed”, removing duplicate property 

entries, missing data and outliers. An autoencoder proved useful to identify anomalous 

data showing a more realistic spread of the data.  

 

Chapters three to five fit hedonic models as appraisal functions to build the residential 

property price index.   

 

Chapter three investigated generalised linear models as a candidate methodology. 

The gamma model showed better overall goodness of fit compared to the normal 

model and had the advantage of keeping estimates on the original scale, unlike the 

log normal model similar to the findings of Bax and Chasomeris (2019).  
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All the covariates were statistically significant and easily interpretable using this 

transparent framework, similar to Bourassa et al (2007) where treating location as a 

fixed effect accounted for the spatial dependence in the data. The findings provide 

useful insights of how the marginal utility of different property characteristics influence 

listing prices ceteris paribus. The marginal utility of bathrooms was consistently higher 

than bedrooms and the growth of townhouses in comparison to apartments was 

positive linear growth over the observation period.  

 

Chapter four implemented hierarchical generalised additive models to investigate 

partial pooling and smooth relationships between property characteristics and listing 

prices where linear functional form was relaxed. An additional spatial covariate was 

introduced through the partitioning around the mediods clustering algorithm which was 

treated as a random effect. The hierarchical structure of homes was modelled through 

random intercepts where partial pooling of the suburb captured important group level 

variation and showed to be more effective than treating the longitude and latitude as 

an isotropic bivariate function using splines on the sphere. The findings suggest that 

the hedonic price functions in South Africa are non-linear and that smooth functions 

are appropriate for estimating the relationship between listing prices and structural 

property characteristics. These findings are congruent to the research of Pace (1998) 

in a study estimating residential property prices in Memphis, USA where smooth 

functions of property characteristics outperformed log linear models. Furthermore, an 

improvement in model performance was experienced when combining random effects 

to model the hierarchical structure of properties, nested at multiple locations, similar 

to the findings of Tan et al (2019) who also demonstrated the effectiveness of this 

approach over non-hierarchical models with explicit functional form. 

 

Chapter five presented a machine learning approach to developing hedonic models 

comparing random forests, gradient boosted machines and neural networks as 

hedonic functions. 5-Fold cross validation was applied with a random grid search to 

search over the hyperparameter space. The gradient boosted machines generalised 

well to the out of sample data and produced the lowest generalisation errors compared 

to the random forests and neural networks. The results of this study are similar to the 

findings of the research done on single family homes in Switzerland by Wezel et al 

(2005) where gradient boosted machines provided the lowest out-of-sample errors in 
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comparison to random forests and neural networks where the latter provided the most 

inconsistent. The partial dependence plots showed that the marginal utility for different 

physical characteristics varied at different quantiles showing that, on average, larger 

sized properties do not necessarily yield higher prices and can result in diminished 

returns. The suburb categorical variable was consistently deemed the most important 

followed by size and the number of bathrooms.  

 

All three-of the best candidate modelling approaches, namely the gamma generalised 

linear models, suburb hierarchical generalised additive models and gradient boosted 

machines accounted for the spatial dependency in the data, however, the gradient 

boosted machines produced the lowest out of sample error overall.  

 

Chapter six applied index number theory using the gradient boosted machines and 

developed a residential property price index, comparing it to a simple median mix-

adjusted index and the ABSA global property guide. The gradient boosted machine 

listing price index showed a similar trend of annual home price changes to the one 

published by ABSA bank in the ABSA global property guide. The findings show the 

greatest contraction for inflation adjusted home prices was experienced from 2015-

2016 as a function of low growth and high inflation which was also in line with the 

ABSA global property guide. Provincial price changes were also measured with the 

Western Cape experiencing the largest growth in listing prices for each year over the 

observation period. The Listing Price Index Calculator presents the application of the 

methodology proposed in this study. For property market participants wishing to sell 

their homes, the Listing Price Index Calculator could be a useful first assessment of 

what to list their homes for on the market, making it a complimentary tool to estate 

agent valuations. Potential buyers are able to ascertain the typical asking price for a 

home with the desired set of characteristics in the suburb of interest.  

 

Real estate agents and property portals are well positioned to leverage their extensive 

property market data to develop a similar data product that provides property market 

participants with a simple, data driven to tool to assess and understand price 

developments.  
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7.2 Limitations and Future Work 

Limitations of this research include not having the property level spatial data (the 

latitude and longitude coordinates) which could have improved the study and 

modelling efforts, facilitating different spatial models and distance measures like 

proximity to schools, central business district etc. This information is considered 

private data and was not provided for the study. Not having this information may have 

cancelled out the neighbourhood effect where large differences of home prices may 

be present in a suburb. Additionally, more property characteristic data could have 

augmented modelling efforts. de Haan and Diewert, (2011) cite the age of a property 

as an important property attribute in hedonic models. Future work could include 

overcoming these limitations and comparing improved models and different models 

taking cognisance of this additional data. 
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Appendix 

# Setup Environment ------------------------------------------------------- 

library(odbc) 

library(DBI) 

library(shiny) 

library(tidyverse) 

library(tm) 

library(h2o) 

library(parallel) 

library(DT) 

library(shinyjs) 

library(shinyWidgets) 

library(shinythemes) 

library(shinycssloaders) 

library(ggrepel) 

require(sf) 

library(raster) 

library(ggspatial)  

library(knitr) 

library(kableExtra) 

setwd("C:/Users/Dane/Documents/gradient-booted-machine-paper") 

options(scipen = 999) 

 

# Build UI --------------------------------------------------------------------- 

ui <- 
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  fluidPage( 

    theme = shinytheme("spacelab"), 

    navbarPage( 

      "", 

      theme = shinytheme("spacelab"), 

      position = "static-top", 

      inverse = FALSE, 

      collapsible = TRUE, 

      fluid = TRUE, 

      tabPanel( 

        title = "Listing Price Index Calculator", 

        sidebarLayout( 

          sidebarPanel( 

            br(), 

            selectInput( 

              inputId = "Province", 

              label = "Province:", 

              choices = "...", 

              selected = "KwaZulu-Natal" 

            ), 

            selectInput( 

              inputId = "Suburb", 

              label = "Suburb:", 

              choices = "...", 
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              selected = "Margate" 

            ), 

            selectInput( 

              inputId = "PropertyType", 

              label = "Property type:", 

              choices = "...", 

              selected = "Apartment" 

            ), 

            sliderInput( 

              inputId = "Size", 

              label = "Size (sqm):", 

              min = 0, 

              max = 0, 

              value = 0, 

              step = 1, 

              round = 0 

            ), 

            sliderInput( 

              inputId = "Bedrooms", 

              label = "Bedrooms:", 

              min = 0, 

              max = 0, 

              value = 0, 

              step = 1, 



98 
 

              round = 0 

            ), 

            sliderInput( 

              inputId = "Bathrooms", 

              label = "Bedrooms:", 

              min = 0, 

              max = 0, 

              value = 0, 

              step = 1, 

              round = 0 

            ), 

            selectInput( 

              inputId = "firstValuation", 

              label = "Base Valuation Period:", 

              choices = "..." 

            ), 

            selectInput( 

              inputId = "secondValuation", 

              label = "Comparison Valuation Period:", 

              choices = "..." 

            ), 

             

          ), 
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          mainPanel(tabsetPanel( 

            tabPanel( 

              icon("cog", lib = "glyphicon"), 

              tableOutput("resultsTable") %>% 

                withSpinner(color = "#0dc5c1") 

            ) 

             

          ), 

           

          br(), 

          tabsetPanel( 

            tabPanel( 

              icon("bar-chart-o"), 

              plotOutput("map", 

                         height = "600px", 

                         width = "600px") %>% 

                withSpinner(color = "#0dc5c1") 

 

            ) 

           ) 

          ) 

           

        ) 
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      ) 

       

    ) 

     

  ) 

 

# Build Server ------------------------------------------------------------ 

server <- function(session, input, output) { 

   

  # Ingest Data ------------------------------------------------------------- 

  connection <- 

    odbc::dbConnect( 

      odbc::odbc(), 

      Driver = "SQL Server", 

      Server = "DESKTOP-DDGOMB4\\SQLEXPRESS", 

      Database = "PhD", 

      trusted_connection = "yes", 

      Port = 1433 

    ) 

   

  appData <- 

    DBI::dbGetQuery(conn = connection, 

                    statement = 

                      "SELECT * FROM [dbo].[tb_spatiallyClusteredData]") %>% 
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    dplyr::rename(Province = ProvinceName, 

                  Size = `[lnSize]`, 

                  Suburb = Area) %>% 

    dplyr::mutate(Suburb = trimws(Suburb, which = "left")) %>% 

    dplyr::rename(Area = ProvinceArea) %>% 

    dplyr::select(-Cluster, -Data) 

   

  # Update UI Dynamically --------------------------------------------------- 

   

  # Evaluation period 1: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear < 2017) %>% 

      dplyr::select(ListingYear) %>% 

      dplyr::distinct(.) %>% 

      dplyr::arrange(ListingYear) 

     

    updateSelectInput( 

      session = session, 

      inputId = "firstValuation", 

      label = "Base Valuation Period:", 

      choices = c(x$ListingYear)[1:length(x$ListingYear)] 

    ) 
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  }) 

   

  # Evaluation period 2: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(!ListingYear <= input$firstValuation) %>% 

      dplyr::select(ListingYear) %>% 

      dplyr::distinct(.) %>% 

      dplyr::arrange(ListingYear) 

     

    updateSelectInput( 

      session = session, 

      inputId = "secondValuation", 

      label = "Comparison Valuation Period:", 

      choices = c(x$ListingYear)[1:length(x$ListingYear)] 

    ) 

     

  }) 

   

  # Province: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear == input$firstValuation) %>% 

      dplyr::select(Province) %>% 
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      dplyr::distinct(.) 

     

    updateSelectInput( 

      session = session, 

      inputId = "Province", 

      label = "Province:", 

      choices = c(x$Province)[1:length(x$Province)] 

    ) 

     

  }) 

   

  # Suburb: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear %in% input$firstValuation & 

                      Province %in% input$Province) %>% 

      dplyr::select(Suburb) %>% 

      dplyr::distinct(.) 

     

    updateSelectInput( 

      session = session, 

      inputId = "Suburb", 

      label = "Suburb:", 

      choices = c(x$Suburb)[1:length(x$Suburb)] 
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    ) 

     

  }) 

   

  # Property type: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear == input$firstValuation) %>% 

      dplyr::select(PropertyType) %>% 

      dplyr::distinct(.) 

     

    updateSelectInput( 

      session = session, 

      inputId = "PropertyType", 

      label = "Property Type:", 

      choices = c(x$PropertyType)[1:length(x$PropertyType)] 

    ) 

     

  }) 

   

  # Size: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear %in% input$firstValuation & 
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                      PropertyType %in% input$PropertyType 

      ) %>% 

      dplyr::mutate(Size = exp(Size)) %>% 

      dplyr::select(Size) %>% 

      dplyr::distinct(.) 

     

    suppressWarnings( 

      updateSliderInput( 

        session = session, 

        inputId = "Size", 

        label = "Size (sqm):", 

        min = min(x$Size), 

        value = median(x$Size), 

        max = max(x$Size), 

        step = 1 

      ) 

    ) 

     

  }) 

   

  # Bedrooms: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear %in% input$firstValuation & 
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                      PropertyType %in% input$PropertyType 

      ) %>% 

      dplyr::select(Bedrooms) %>% 

      dplyr::distinct(.) 

     

    suppressWarnings( 

      updateSliderInput( 

        session = session, 

        inputId = "Bedrooms", 

        label = "Bedrooms:", 

        min = min(x$Bedrooms), 

        value = median(x$Bedrooms), 

        max = max(x$Bedrooms), 

        step = 1 

      ) 

    ) 

     

  }) 

   

  # Bathrooms: 

  observe({ 

    x <- appData %>% 

      dplyr::filter(ListingYear %in% input$firstValuation & 

                      PropertyType %in% input$PropertyType 
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      ) %>% 

      dplyr::select(Bathrooms) %>% 

      dplyr::distinct(.) 

    suppressWarnings( 

      updateSliderInput( 

        session = session, 

        inputId = "Bathrooms", 

        label = "Bathrooms:", 

        min = min(x$Bathrooms), 

        value = median(x$Bathrooms), 

        max = max(x$Bathrooms), 

        step = 1 

      ) 

    ) 

     

  }) 

   

  # h2o Setup --------------------------------------------------------------- 

   

  # Fire up h2o cluster: 

  suppressWarnings( 

    h2o.init( 

      ip = "localhost", 

      nthreads = parallel::detectCores() - 1, 
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      max_mem_size = "12G", 

      min_mem_size = "10G" 

    )) 

   

  # Load h2o learners: 

  h2o2013 <- h2o.loadModel(paste0(getwd(), 

                                  "/", "final_grid_2013_model_10")) 

  h2o2014 <- h2o.loadModel(paste0(getwd(), 

                                  "/", "final_grid_2014_model_10")) 

  h2o2015 <- h2o.loadModel(paste0(getwd(), 

                                  "/", "final_grid_2015_model_10")) 

  h2o2016 <- h2o.loadModel(paste0(getwd(), 

                                  "/", "final_grid_2016_model_10")) 

  h2o2017 <- h2o.loadModel(paste0(getwd(), 

                                  "/", "final_grid_2017_model_10")) 

   

  # Property Predictions ---------------------------------------------------- 

   

  # Base model: 

  baseEvalModel <- 

    reactive({ 

      if (input$firstValuation == 2013) { 

        baseModel <- h2o2013 

      } else { 
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        if (input$firstValuation == 2014) { 

          baseModel <- h2o2014 

        } else { 

          if (input$firstValuation == 2015) { 

            baseModel <- h2o2015 

          } else { 

            baseModel <- h2o2016 

          } 

        } 

      } 

    }) 

   

  # Comparative model: 

  compEvalModel <- 

    reactive({ 

      if (input$secondValuation == 2014) { 

        compModel <- h2o2014 

      } else { 

        if (input$secondValuation == 2015) { 

          compModel <- h2o2015 

        } else { 

          if (input$secondValuation == 2016) { 

            compModel <- h2o2016 

          } else { 
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            compModel <- h2o2017 

          } 

        } 

      } 

    }) 

   

  # Get input data for predictions: 

  h2oData <- 

    reactive({ 

      cbind.data.frame( 

        "Size" = input$Size, 

        "Bedrooms" = input$Bedrooms, 

        "Bathrooms" = input$Bathrooms, 

        "PropertyType" = input$PropertyType, 

        "Province" = input$Province, 

        "Suburb" = input$Suburb 

      ) %>% dplyr::inner_join(., 

                              appData %>% 

                                dplyr::select(Area, Province, Suburb) %>% 

                                dplyr::distinct(), 

                              by = c("Province" = "Province",  

                                     "Suburb" = "Suburb") 
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      ) %>% 

        dplyr::mutate(Size = log(Size)) %>% 

        dplyr::select(-Suburb, -Province) %>% 

        as.h2o() 

    }) 

   

  # Get predictions: 

  fitResults <- 

    reactive({ 

      baseFit <- 

        h2o.predict( 

          baseEvalModel(), 

          newdata = h2oData()) %>% 

        as.data.frame() 

       

      compFit <- 

        h2o.predict( 

          compEvalModel(), 

          newdata = h2oData()) %>% 

        as.data.frame() 

       

      TTR <- (compFit$predict - baseFit$predict) / baseFit$predict 

       

      fitResults <- cbind.data.frame("Base Period" = baseFit$predict, 
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                                     "Comparison Period" = compFit$predict, 

                                     "Price Change" = TTR * 100) 

    }) 

   

  # Build Index ------------------------------------------------------------- 

 

  # Province index: 

   

  # Laspeyres: 

  indexBaseData <- 

    reactive({ 

      appData %>% 

        dplyr::filter(ListingYear == input$firstValuation) %>% 

        as.h2o() 

    }) 

   

  indexBaseDataFrame <- 

    reactive({ 

      appData %>% 

        dplyr::filter(ListingYear == input$firstValuation) %>% 

        as.data.frame() 

    }) 

   

  lspBase <- reactive({ 
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    lspBaseData <- h2o.predict(baseEvalModel(), newdata = indexBaseData()) %>% 

      as.data.frame() %>% 

       dplyr::mutate( 

         Province = indexBaseDataFrame()$Province, 

         Suburb = indexBaseDataFrame()$Suburb 

       ) 

  }) 

   

  lspCF <- reactive({ 

    lspCFData <- h2o.predict(compEvalModel(), newdata = indexBaseData()) %>% 

      as.data.frame() %>% 

      dplyr::mutate( 

        Province = indexBaseDataFrame()$Province, 

        Suburb = indexBaseDataFrame()$Suburb 

      ) 

  }) 

 

  laspeyresProvince <- 

    reactive({ 

      lspBase() %>% 

        as.data.frame() %>% 

        dplyr::mutate_if(is.factor, as.character) %>% 

        dplyr::group_by(Province) %>% 

        dplyr::summarise(meanBase = mean(predict)) %>% 
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        dplyr::inner_join( 

          ., 

          lspCF() %>% 

            as.data.frame() %>% 

            dplyr::mutate_if(is.factor, as.character) %>% 

            dplyr::group_by(Province) %>% 

            dplyr::summarise(meanCF = mean(predict)), 

          by = "Province" 

        ) %>% 

        dplyr::group_by(Province) %>% 

        dplyr::summarise(laspeyresDelta = (meanCF / meanBase))  

    }) 

 

  laspeyresSuburb <- 

    reactive({ 

      lspBase() %>% 

        as.data.frame() %>% 

        dplyr::mutate_if(is.factor, as.character) %>% 

        dplyr::group_by(Suburb) %>% 

        dplyr::summarise(meanBase = mean(predict)) %>% 

        dplyr::inner_join( 

          ., 

          lspCF() %>% 

            as.data.frame() %>% 
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            dplyr::mutate_if(is.factor, as.character) %>% 

            dplyr::group_by(Suburb) %>% 

            dplyr::summarise(meanCF = mean(predict)), 

          by = "Suburb" 

        ) %>% 

        dplyr::group_by(Suburb) %>% 

        dplyr::summarise(laspeyresDelta = (meanCF / meanBase)) 

    }) 

 

  # Paasche: 

  indexCompData <- 

    reactive({ 

      appData %>% 

        dplyr::filter(ListingYear == input$secondValuation) %>% 

        as.h2o() 

    }) 

 

  indexCompDataFrame <- 

    reactive({ 

      appData %>% 

        dplyr::filter(ListingYear == input$secondValuation) %>% 

        as.data.frame() 

    }) 
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  pscBase <- reactive({ 

    pscBaseData <- h2o.predict(baseEvalModel(), newdata = indexCompData()) %>% 

      as.data.frame() %>% 

      dplyr::mutate( 

        Province = indexCompDataFrame()$Province, 

        Suburb = indexCompDataFrame()$Suburb 

      ) 

  }) 

 

  pscCF <- reactive({ 

    pscCFData <- h2o.predict(compEvalModel(), newdata = indexCompData()) %>% 

      as.data.frame() %>% 

      dplyr::mutate( 

        Province = indexCompDataFrame()$Province, 

        Suburb = indexCompDataFrame()$Suburb 

      ) 

  }) 

 

  paascheProvince <- 

    reactive({ 

      pscBase() %>% 

        as.data.frame() %>% 

        dplyr::mutate_if(is.factor, as.character) %>% 

        dplyr::group_by(Province) %>% 
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        dplyr::summarise(meanBase = mean(predict)) %>% 

        dplyr::inner_join( 

          ., 

          pscCF() %>% 

            as.data.frame() %>% 

            dplyr::mutate_if(is.factor, as.character) %>% 

            dplyr::group_by(Province) %>% 

            dplyr::summarise(meanCF = mean(predict)), 

          by = "Province" 

        ) %>% 

        dplyr::group_by(Province) %>% 

        dplyr::summarise(paascheDelta = (meanCF / meanBase))  

    }) 

 

  paascheSuburb <- 

    reactive({ 

      pscBase() %>% 

        as.data.frame() %>% 

        dplyr::mutate_if(is.factor, as.character) %>% 

        dplyr::group_by(Suburb) %>% 

        dplyr::summarise(meanBase = mean(predict)) %>% 

        dplyr::inner_join( 

          ., 

          pscCF() %>% 
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            as.data.frame() %>% 

            dplyr::mutate_if(is.factor, as.character) %>% 

            dplyr::group_by(Suburb) %>% 

            dplyr::summarise(meanCF = mean(predict)), 

          by = "Suburb" 

        ) %>% 

        dplyr::group_by(Suburb) %>% 

        dplyr::summarise(paascheDelta = (meanCF / meanBase)) 

    }) 

 

  # Geometric mean function: 

  getGeomMean = function(x, na.rm = TRUE) { 

    gm <- exp(sum(log(x[x > 0]), na.rm = na.rm) / length(x)) 

    return(gm) 

  } 

 

  # Fisher province: 

  fisherProvince <- 

    reactive({ 

    laspeyresProvince() %>% 

    dplyr::inner_join(., 

                      paascheProvince(), 

                      by = "Province") %>% 

    dplyr::group_by(Province) %>% 
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    dplyr::summarise( 

      Fisher = (getGeomMean(c(laspeyresDelta, paascheDelta))-1)*100 

    ) 

  }) 

 

  # Fisher suburb: 

  fisherSuburb <- 

    reactive({ 

      laspeyresSuburb() %>% 

        dplyr::inner_join(., 

                          paascheSuburb(), 

                          by = "Suburb") %>% 

        dplyr::mutate_if(is.factor, as.character) %>% 

        dplyr::group_by(Suburb) %>% 

        dplyr::summarise( 

          Fisher = (getGeomMean(c(laspeyresDelta, paascheDelta))-1)*100 

        ) %>% 

        dplyr::filter( 

          Suburb == input$Suburb 

        ) 

    }) 

   

  # Render Table ------------------------------------------------------------ 

  output$resultsTable <- 
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    function() { 

      fitResults() %>% 

        dplyr::mutate( 

          `Base Period` = paste("ZAR", 

                                format(round(`Base Period`, 0L), 

                                       big.mark = " ", 

                                       nsmall = 2L)), 

          `Comparison Period` = paste("ZAR", 

                                      format(round(`Comparison Period`, 0L), 

                                             nsmall = 2L, 

                                             big.mark = " ")), 

          `Price Change` = paste(format(round(`Price Change`, 2L), 

                                        nsmall = 2L), 

                                 " %"), 

          `Suburb Growth` = paste(format(round(fisherSuburb()$Fisher, 2L)), " %") 

        ) %>% 

        knitr::kable(format.args = list(big.mark = " "), 

                     format = "html") %>% 

        kable_styling(bootstrap_options = c("striped", 

                                            "hover", 

                                            "condensed", 

                                            "responsive", 

                                            full_width = FALSE, 

                                            position = "left")) 
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    } 

 

  # Build Map --------------------------------------------------------------- 

   

  # Map data: 

  suppressWarnings( 

    saData <- shapefile("C:/Users/Dane/Desktop/Shapefiles/SOU.shp")) 

 

  saData$id <- row.names(saData) 

 

  saFort <- fortify(saData) %>% 

    dplyr::filter(long < 35) 

 

  sa <- left_join(saFort, saData@data, by = "id") 

 

  centroids <- 

    sa %>% 

    dplyr::group_by(ADM1) %>% 

    dplyr::summarise(lon = mean(long), 

                     lat = mean(lat)) %>% 

    dplyr::rename(Province = ADM1) 

 

  multiPolygonFile <- readRDS("/Users/Dane/Downloads/gadm36_ZAF_2_sf.rds") 
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  plotData <- multiPolygonFile %>% 

    dplyr::select(NAME_1, geometry) 

 

  # Build map: 

  polyMmap <- 

    ggplot(plotData) + 

    geom_sf(data = plotData, 

            aes(fill = NAME_1), 

            col = sf.colors(52, categorical = TRUE), 

            alpha = 0.7) + 

    theme_classic(base_size = 16) + 

    theme(plot.title = element_text(hjust = 0.5), 

          legend.title = element_text(color = "black", size = 10), 

          legend.text = element_text(color = "black", size = 10), 

          axis.title.x = element_blank(), 

          axis.text.x = element_blank(), 

          axis.ticks.x = element_blank(), 

          axis.title.y = element_blank(), 

          axis.text.y = element_blank(), 

          axis.ticks.y = element_blank()) + 

    labs(fill = "Province") 

 

  # Render Map -------------------------------------------------------------- 

  output$map <- 
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    renderPlot({ 

 

      polyMmap + 

        geom_label_repel( 

          data = centroids %>% 

            dplyr::mutate_if(is.factor, as.character) %>% 

            dplyr::inner_join( 

              ., 

              fisherProvince() %>% 

                dplyr::mutate_if(is.factor, as.character) %>% 

                dplyr::mutate(Fisher = round(Fisher, digits = 2)), 

              by = "Province" 

            ), 

          aes( 

            x = lon, 

            y = lat, 

            label = Fisher, 

            fill = factor(Province) 

          ), 

          color = "black", 

          size = 5, 

        ) + 

        labs(fill = "Province") + 
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        guides( 

          fill = guide_legend( 

            override.aes = aes(label = "") 

          ) 

        ) + 

        theme_classic(base_size = 16) + 

        theme(legend.position = "bottom", 

          legend.title = element_text(color = "black", size = 10), 

          legend.text = element_text(color = "black", size = 10), 

          axis.title.x = element_blank(),  

          axis.line.x = element_blank(), 

          axis.text.x = element_blank(), 

          axis.ticks.x = element_blank(), 

          axis.title.y = element_blank(), 

          axis.line.y = element_blank(), 

          axis.text.y = element_blank(), 

          axis.ticks.y = element_blank(), 

          axis.line = element_blank()) 

    }) 

 

} 

 

# Build Application ------------------------------------------------------- 

shinyApp(ui = ui, server = server) 
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# END --------------------------------------------------------------------- 

 

 




