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ABSTRACT 

The problem of antibiotic resistance has been deemed as a ‘serious threat’ by the World Health 

Organization and continues to be a cause for concern, worldwide. Antibiotics have played a 

critical, yet remarkable role in the clinical management of bacterial diseases and have had an 

astounding effect on human mortality. However, the effectiveness and wide availability led to 

the misuse and overuse of antibiotics, giving rise to antibiotic resistant bacteria (ARB). 

Enterococci are a group of clinically significant bacteria that have gained much attention as a 

result of their antibiotic resistance. Wastewater treatment plants (WWTPs) have been 

implicated as the leading reservoir for ARB and antibiotic resistance genes (ARGs). The main 

objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential 

reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Using membrane 

filtration technique, Enterococcus selective agar and selected antibiotics, ARE were 

enumerated in samples (influent, activated sludge, before chlorination and final effluent) 

collected from two WWTPs, as well as from upstream and downstream of the receiving surface 

water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving 

surface water were identified by biochemical and PCR-based methods, and their antibiotic 

resistance profiles determined. Molecular detection and quantification of selected tetracycline 

resistance genes was conducted by conventional PCR and droplet digital PCR (ddPCR), 

respectively, on the metagenomic DNA isolated from the water samples. The highest count of 

tetracycline resistant Enterococci was obtained at both WWTPs with 618000 CFU/100ml and 

735000 CFU/100ml in the influent samples for WWTP1 and WWTP2, respectively. These 

values were significantly decreased by up to 99% in the final effluent samples of both WWTPs. 
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Antibiotic resistant Enterococci also decreased from upstream to downstream samples in the 

receiving water bodies of both WWTPs. Two hundred selected isolates were identified as E. 

faecalis at 34.5 %, followed by E. faecium and E. hirea at 26% and 25.5%, respectively. The 

antibiotic susceptibility testing revealed that 83% of the identified Enterococci isolates (n=200) 

were multidrug resistant. Multidrug resistance pose a serious threat to public health in 

effectively treating infectious diseases, often resulting in limited and extended treatment 

options. This problem is often associated with Enterococci gaining tetracycline resistance. 

Tetracycline is listed as an essential medicine by the World Health Organization and is used as 

first line therapy for many diseases. Five tetracycline resistance genes (tet K, tet L, tet M, tet 

O, tet S) were detected in the selected isolates by means of a multiplex PCR, with tet M being 

the most prevalent at 49%. Absolute quantification of selected tetracycline resistance genes 

from metagenomic DNA samples (influent and final effluent) using ddPCR showed that both 

WWTPs removed more than 82% of tet M and tet O genes during the treatment process. 

Findings from this study validates the high efficiency of both WWTPs in removing ARE and 

tetracycline resistance genes in wastewater influent during the treatment process. Despite this 

high efficiency during the treatment process, as well as the observed decrease from upstream 

to downstream of the receiving rivers, the presence of ARE and tetracycline resistance genes 

in the final treated effluent is a cause for concern. To prevent WWTPs from being a leading 

reservoir for ARB and ARGs, it is recommended that stringent treatment processes as well as 

tertiary treatment is followed in order to discharge final effluent that contains low levels of 

ARB and ARGs into the environment.
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

 

Antibiotics, a class of antimicrobial agents that are capable of killing or inhibiting the growth 

of bacteria, have been deemed a triumphant pharmaceutical agent in human and animal therapy 

(Bouki et al., 2013). They are generally used as treatment agents against infections in humans 

and animals and as growth promoters in animal farming (Jury et al., 2010). However, due to 

factors such as over-use, misuse, lack of education and bacterial evolution, antibiotic resistance 

has become a major problem in the clinical world. The World Health Organization (WHO) 

recently regarded the problem of antibiotic resistance as being “so serious that it threatens the 

achievements of modern medicine” (WHO, 2014b). Some localities have been described as 

reservoirs for antibiotic resistance as they provide environments that are conducive for the 

growth, spread and prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance 

genes (ARGs).  

Major hotspots that are considered reservoirs of ARB and ARGs are hospitals and clinical 

settings, the gastrointestinal tract (GIT) of humans and animals, some food sources and 

wastewater treatment plants (WWTPs). Antibiotic resistant bacteria found in hospital settings 

are of particular concern as these microorganisms are usually multidrug resistant (Mulvey and 

Simor, 2009). The high prevalence of ARB in hospitals usually occurs as a result of high 

antibiotic selective pressure. Other reasons may involve the spread of resistant bacteria from 

patients that were infected with a resistant organism prior to admission to hospital. It may also 

be due to the easy route of contamination in surgical operations as well as the frequent spread 

of infections among patients as a result of inappropriate hygiene practices (Mulvey and Simor, 

2009). The GIT of humans and animals are known to be a major reservoir of ARB, as the GIT 

http://www.cmaj.ca/search?author1=Michael+R.+Mulvey+PhD&sortspec=date&submit=Submit
http://www.cmaj.ca/search?author1=Andrew+E.+Simor+MD&sortspec=date&submit=Submit
http://www.cmaj.ca/search?author1=Michael+R.+Mulvey+PhD&sortspec=date&submit=Submit
http://www.cmaj.ca/search?author1=Andrew+E.+Simor+MD&sortspec=date&submit=Submit
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of most mammals inhabits a vast number of commensal bacteria (Silva et al., 2011). This 

symbiotic relationship between the bacteria and their host, allows one organism to benefit while 

the other is unaffected. Invasion of the host’s intestine by bacteria causes the immune system 

of the host to screen pathogenic microorganisms from commensal microorganisms and 

eliminate the pathogenic microorganisms. Commensal microorganisms are commonly 

involved in host nutrition and health, promoting nutrient delivery, inhibiting pathogen 

colonization and sustaining intestinal immune system homeostasis (Silva et al., 2011). The GIT 

is considered to be a major reservoir of ARB as it provides an optimal environment for the 

spread of ARB and ARGs. This is as a result of the high bacterial populations present, thus 

allowing for horizontal gene transfer to easily and frequently take place (Huddleston, 2014). 

Factors that favour the spread of ARB and ARGs within the GIT are high cell density and 

antibiotic selective pressure. Many studies have shown that WWTPs are the leading reservoir 

for ARB and ARGs (Gallert et al., 2005; Kümmerer, 2009; Martínez, 2009). High levels of 

antibiotics enter WWTPs as a result of incomplete metabolism by humans or direct disposal of 

antibiotics (Nagulapally et al., 2009). Several studies have shown the presence of ARB and 

ARGs in wastewater, even in final treated effluent, despite conventional treatment processes 

followed by most WWTPs (Adams et al., 2002; Davies, 2012).  

 

One clinically important organism that has gained much attention for its intrinsic and acquired 

antibiotic resistance are the Enterococci (Hollenbeck and Rice, 2012), which are a group of 

Gram positive, facultative anaerobic bacteria. They are cocci (spherical) in shape; occur as 

single cells, in pairs or as short chains (Ciftci et al., 2009).  These organisms are non-spore 

forming, yet are tolerant to a wide range of environmental conditions such as, extreme 

temperature ranging from 10-45 °C, extreme pH ranging from 4.5-10.0 and high sodium 

chloride concentrations (Fisher and Phillips, 2009). The predominant species of Enterococci 
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cultured from humans, resulting in more than 90% of clinical infections, are Enterococcus 

faecalis and Enterococcus faecium. Enterococcus avium, Enterococcus gallinarum, 

Enterococcus casseliflavus, Enterococcus durans, Enterococcus raffinosus and Enterococcus 

mundtii are other enterococcal species that lead to human infections, including bacteraemia, 

urinary tract infections, peritonitis and surgical site infections (de Perio et al., 2006). In western 

countries, Enterococci have been found to be the second most common cause of nosocomial 

urinary tract infections and the third most common cause of nosocomial bacteraemia (Praharaj 

et al., 2013). Studies have shown that Enterococci are the third most commonly isolated 

nosocomial pathogen, accounting for 12% of all hospital infections (Hidron et al., 2008). With 

increasing antibiotic resistance, Enterococci are recognized as harmful nosocomial pathogens 

that can be difficult to treat (Fraser, 2016). A key reason associated with the longevity of 

Enterococcus in hospital settings, as well as the high incidence of enterococcal infections in 

humans, is due to their inherent ability to acquire antibiotic resistance (intrinsic resistance) to 

many commonly used antibiotics, as well as their ability to develop resistance to currently used 

antibiotics. They are able to acquire this resistance by means of mutation or via transfer of 

plasmids and transposons (Clevel, 1990). Enterococci are also commonly found in the 

intestinal microbiota of humans and animals and are widely distributed in food products (Klein, 

2003). 

This chapter provides an overview of the major hotspots for ARB, particularly antibiotic 

resistant Enterococci (ARE), and the associated ARGs. Wastewater treatment plants being 

indicated as hotspots of ARE and ARGs, and the prevalence of ARE and associated ARGs in 

treated effluent are highlighted. Finally, common treatment processes for efficient removal of 

ARB and ARGs, as well as the fate of ARE during wastewater treatment processes are 

discussed.  
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1.1. Major hotspots for antibiotic resistant Enterococci (ARE) and antibiotic 

resistance genes (ARGs) 

 Hospitals and clinical settings  

Enterococci are commonly associated with nosocomial infections and are most common in 

intensive care units (Olawale et al., 2011). Hospital effluent consist of both medical and non-

medical related waste, including those from the emergency, operating, research, 

pharmaceutical, kitchen and laundry activities (Majlesinasr, 1998). Hospital effluents consist 

of pathogens, medicine, antibiotics, chemicals, pharmaceutical runoff and organic matter 

(Radha, 2009). Such an environment provides organisms with optimal conditions to grow and 

thrive in. The resulting high bacterial load allows for easy transmission of genes between 

bacteria.  

One common pathogen resident to hospital settings are Enterococci, which are commonly 

found in the gastrointestinal tract (GIT) of humans and animals and are the major cause of 

hospital-acquired infections (Shankar et al., 2002). These infections include bacteraemia, 

urinary tract infections, endocarditis and wound infections (Sava et al., 2010). Treatment of 

infection caused by these bacteria are complex as they have intrinsic resistance and can easily 

acquire resistance to many antibiotics (Mohanty et al., 2006). Resistance to high levels of 

aminoglycosides, beta lactams, glycopeptides and vancomycin pose a challenge to effective 

treatment of infections (Oberoi et al., 2010).   The selective pressure of antibiotics in a hospital 

setting may be the main reason for the selection of ARE.  

Vancomycin resistant Enterococci (VRE) are common in hospitals and lead to many cases of 

colonization and infection of patients (Mutters et al., 2013).  Infections caused by VRE are 

problematic within a hospital, especially in patients that are immunosuppressed (Neely and 

Maley, 2000).  Vancomycin resistance occurs by the modification of the bacterial cell-wall to 
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prevent binding of glycopeptides. Acquisition of clinically relevant, plasmid-associated genes, 

vanA or vanB encodes for vancomycin resistance in Enterococci (Leclercq and Courvalin, 

1997).  Nosocomial infections may be attributed to contamination of VRE or contact with 

contaminated medical equipment (Bonten et al., 1996).   

The spread of VRE is difficult to control in hospital settings and can easily cause outbreaks. 

An example of one such outbreak occurred in 1997, through an electric ear-probe thermometer 

(Porwancher et al., 1997). In another incident, 34 patients, hospitalized in the hematology-

oncology children’s wards, were infected with VRE. Tests showed the origin of a single 

outbreak strain, on a video game console in one of the affected wards (Drews et al., 2008). The 

transfer of ARB between people and the surrounding environment within a hospital is largely 

due to the ability of the organism to thrive on a specific environmental surface. Antibiotic 

resistant Enterococci have the ability to survive on a number of surfaces, such as glass and 

countertops (Bonilla et al., 1996; Neely and Maley, 2000), bed rails and stethoscopes (Noskin 

et al., 1995; Neely and Maley, 2000). Neely and Maley (2000), reported that Enterococci as 

well as VRE, were able to survive on different types of fabrics. Additionally, they reported that 

the privacy drapes (made of polyester), which were touched by both staff and patients, housed 

Enterococci for days to months, proposing that it could be a reservoir for ARE (Neely and 

Maley, 2000).  

 Gastrointestinal tract of mammals  

Various microbial communities are natural inhabitants of humans and animals. These microbial 

communities colonize various parts of the body, including the skin, oral cavity, upper 

respiratory tract, vagina and GIT (Lebreton et al., 2014). Unique physicochemical and 

histological characteristics featured by each body part, offers a selective environment for 
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various microorganisms to adapt and inhabit. The GIT contains the greatest number and largest 

diversity of microorganisms (Ley et al., 2006), with the human colon containing approximately 

1012 different bacteria per gram of content (Sartor, 2008). The GIT is known to act as a reservoir 

for the transfer and spread of antibiotic resistance (Patel, 2003).    

Bacteria belonging to the genus Enterococci are natural residents of the GIT of mammals and 

more than 90% of healthy humans are hosts to Enterococci. These bacteria are part of the 

commensal flora of humans and animals, and have been associated with hospital acquired 

infections, such as endocarditis, bacteremia and neonatal infections, since the 1970s 

(Gunasekera and Perera, 2007). Other infections caused by Enterococci are urinary tract 

infections, surgical wound infections, neonatal sepsis and meningitis (Fisher and Phillips, 

2009).  Enterococci are predominant in the small and large intestine of humans, yet constitute 

a mere 1% of the gut microflora (Eckburg et al., 2005; Hayashi et al., 2005). They are also 

found in human and animal feces, oral cavity and sometimes in the stomach (Smyth et al., 

1987; Bik et al., 2005).  Enterococci form part of the normal intestinal flora of humans with 

values up to 108 CFU/g in stool (Noble, 1978; Huycke et al., 1998), with E. faecalis and E. 

faecium as the common species found in human feces (Tannock and Cook, 2002).  Layton et 

al. (2010) reported large quantities of Enterococci species in human feces with the most 

common also being E. faecalis and E. faecium. Along with human adults, colonization of the 

GIT of newborn babies also occurs either during or soon after birth (Mackie et al., 1999). 

Enterococci are commonly among the first microorganisms to colonize the gut of an infant as 

early as the first day of life (Orrhage and Nord, 1999; Fanaro et al., 2003).  These bacteria are 

transferred from breast milk, vaginal and gastrointestinal flora, or the environment. The GIT 

of animals is one of the greatest reservoirs for Enterococci (Gilmore et al., 2013).  The most 

common species isolated from pigs, cats and dogs were E. faecalis and E. faecium (Devriese 
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et al., 1992; Devriese et al., 1994).  Other animals that have shown to be inhabited by 

Enterococci in their GIT include wild boars and fish (Almeida et al., 2011),  wild rabbits (Silva  

et al., 2010), wild geese (Han et al., 2011) and cattle (Bekele  and Ashenafi, 2010).   

Antibiotic resistance occurs within bacterial populations via genetic mutation, expression of 

resistance genes or horizontal gene transfer. The GIT serves as a reservoir for ARB, as it 

encompasses factors that enable the emergence and transfer of resistance genes. These factors 

are attributable to the high cell density within the GIT as well as increased exposure to 

antibiotics (Huddleston, 2014).  Bacterial biofilms found in the GIT provide suitable 

environments for horizontal gene transfer as they provide a high cell density for easy transfer 

of genes as well as provide physical protection to the cells against adverse conditions. The 

biofilms encompass many bacterial species with high antibiotic resistance in comparison to 

their free-living counterparts (Anwar et al., 1990; Mills et al., 2013). Exposure of 

microorganisms to antibiotics, within the GIT, will increase their resistance to the antibiotic. 

This was proven in a study comparing the metagenomes of various individuals, which showed 

that the ARGs that were more predominant in all the metagenomes were for those antibiotics 

that were used over a longer period of time in treatment as well as those used in livestock; as 

compared to those antibiotics that were more recently used for treatment and not at all in 

animals (Forslund et al., 2013).  The ARGs most common in the human gut microbiome are 

the genes for antibiotics that are generally used in livestock (Forslund et al., 2013).  This 

demonstrates that antibiotics used in animal husbandry results in an increased antibiotic 

resistance in humans via human consumption of the animal (Schjorring and Krogfelt, 2011).  

Antibiotic resistance genes may also be transferred from an animal source to bacteria within 

the human gut, when the animal is consumed by humans (Lester et al., 2006). This was shown 

in an in vivo study where isolates of E. faecium, obtained from an animal, were able to transfer 

a vancomycin resistance gene (vanA) to another E. faecium isolate within the intestines of 
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certain humans (Lester et al., 2006). Microorganisms can therefore be exposed to antibiotics, 

and its subsequent effect is that it can enter the human GIT through consumption of 

undercooked meat.  These bacteria readily colonize the large intestine of mammals and thus 

serve as a source of ARGs. A study conducted by Ghosh et al. (2013) detected resistance genes 

against 53 different antibiotics in the gut of 275 individuals. The study further showed that the 

resistance genes possibly occurred as mobile genetic elements, with 97% of the metagenomes 

containing resistance genes of tetracycline and 95% to bacitracin (Ghosh et al., 2013). In 

another study, an analysis of the metagenome of the gut from 162 people, showed the presence 

of 1093 ARGs (Sommer et al., 2009).   

Enterococci are lactic acid bacteria and exist in the gut of mammals by converting 

carbohydrates into lactic acid (Carr et al., 2002). The GIT of humans and animals house many 

different types of lactic acid and non-lactic acid bacteria. In comparison to the environment 

(soil and aquatic environments), the GIT is a greater reservoir for ARGs (Sommer et al., 2009; 

Hu et al., 2013).  Enterococci found in the GIT can result in infections through the fecal-oral 

route, by nosocomial infections or by contamination of food sources.  The GIT is reservoir to 

a large diversity and density of ARB as well as ARGs that are primarily transferred through 

horizontal gene transfer.  

 Food sources  

Enterococci have also been established in large numbers, in raw and preserved food, food of 

animal origin as well as vegetables (Giraffa, 2002). The presence of Enterococci in food is 

generally an indicator of low sanitary levels and food contamination; however, these sought 

after bacteria are also used as starter-cultures in the food industry as a result of their ability to 

produce lipase, protease and volatile compounds ensuring organoleptic features in some kinds 

of food (Giraffa, 2002; Furlaneto-Maia et al., 2014). They are also valuable for their probiotic 
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characteristics and bacteriocin production. Due to the ubiquitous nature of Enterococcus on 

raw meat and in dairy products, their ability to render an environment acidic and their 

thermotolerance, they have become valuable additives in fermented foods such as cheese and 

sausages (Giraffa, 2002). Their staggering ability to withstand pasteurization and high acid and 

salt concentrations, enable Enterococcus spp. to resist the technological processes involved in 

the manufacturing of certain food products. It is due to this characteristic that they are able to 

contaminate products as well as be used as starter-cultures in fermented foods (Foulquié-

Moreno et al., 2006).  Enterococcus faecium and E. faecalis are the two most common species 

isolated from food (Giraffa, 2002; Foulquié Moreno et al., 2006). In studies conducted by 

Hayes et al. (2003) and Gomes et al. (2008), Enterococcus spp. have been isolated from foods, 

such as raw and pasteurized milk, raw meat products, cheeses and vegetables, with 

contamination rates ranging from 52.5% to 99%. Countries such as Greece, Italy, Spain and 

Portugal often use Enterococci in the production of cheeses (Foulquie-Moreno et al., 2006).  

The bacteria assist in the ripening and aroma enhancement in the cheeses, caused by their 

proteolytic and esterolytic properties and the production of other compounds (Foulquie-

Moreno et al., 2006).   

 

A major problem associated with contamination of food products by the bacteria is spoilage. 

Due to the ability of Enterococci to withstand high temperatures and levels of salinity, studies 

have shown that salted, fermented meats as well as cooked, processed meats were readily 

contaminated by Enterococci (Teuber et al., 1996; Franz et al., 1999; Teuber et al., 1999). Both 

E. faecalis and E. faecium are common species of Enterococci involved in food spoilage. They 

have been shown to be able to withstand cooking at temperatures as high as 68 ºC for 30 min 
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(Gordon and Ahmad, 1991). Enterococci are therefore the cause of raw and processed food 

spoilage and are unavoidable even with present applied food technologies.  

 

Despite the high prevalence of Enterococci in various food sources, the major problem is that 

these food sources may serve as a potential reservoir for ARE.  The problem associated with 

utilizing Enterococci spp. in the production of certain foods, is that antibiotic resistance is 

increased as resistance genes in these bacteria can easily be transferred by means of mobile 

genetic elements (Hasman et al., 2005). The exceptional ability of E. faecalis to acquire and 

transfer ARGs, make them troublesome in their use for food production (Çitak et al., 2004).  

The high levels of antibiotic resistance in Enterococci, as well as the extensive findings of the 

bacteria in food products, are major contributors to food sources serving as hotspots for ARE. 

Antibiotic resistant Enterococci have been found in meat, dairy and processed foods (Chajęcka-

Wierzchowska et al., 2012). Studies have shown E. faecalis and E. faecium, isolated from 

cheese, to be resistant to multiple antibiotics such as penicillin, tetracycline, chloramphenicol, 

erythromycin, gentamicin, lincomycin, rifampicin, fusidic acid and vancomycin (Teuber et al., 

1999). A recent study conducted by Furlaneto-Maia et al. (2014) showed resistant phenotypes 

of Enterococci spp., isolated from soft cheese in South Brazil. These phenotypes were resistant 

to many classes of antibiotics that are commonly used in human treatment. This study identified 

the presence of a food-strain Enterococci containing multiple antibiotic resistance. All the 

isolates that were resistant to vancomycin were resistant to other clinically important antibiotics 

such as erythromycin, tetracycline, amikacin, norfloxacin, cephalothin and nalidixic acid, 

therefore leaving few therapeutic options (Furlaneto-Maia et al., 2014). The spread of VRE in 

food samples was explained by Riboldi et al. (2009) to be a result of the widespread use of the 

antibiotics in agriculture as animal growth promoters. The increase of ARE in food sources 
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pose a danger to the society as there could also be a possible connection between the 

nosocomial Enterococci and those found in food (Donabedian et al., 2003).  

 

Dairy products, that are not free of ARE before consumption, act as a reservoir for ARB 

creating a direct connection between animal indigenous microflora and the human GIT (Witte, 

1998).  There is also a connection between antibiotics used in human treatment and animal 

husbandary. This may lead to the emergence of resistant strains in various animal products 

(Van den Bogaard and Stobberingh, 2000). Foods contaminated with ARE can be directly 

transferred to humans upon consumption of the contaminated food. The ARE can survive the 

gastric passage and subsequently enter the environment via the human feces.         

 

 Wastewater treatment plants  

Coliforms and Enterococci are common indicators of fecal contamination and antibiotic 

resistance in wastewater (Rizzo et al., 2014). Wastewater treatment plants have been reported 

to be major reservoirs of ARB and ARGs. Wastewater contains both ARB and antibiotic 

residues, which may increase antibiotic resistance in WWTPs under favourable conditions 

(Martínez, 2009).  Since its discovery, antibiotics have been widely used in the clinical, 

veterinary, agricultural and farming settings. Antibiotics are commonly used to treat human 

and animal infections, it is used as fodder additives in the poultry industry and it is sometimes 

used in animal husbandary (Kummerer, 2009). Due to the vast use of antibiotics by humans 

and animals, most antibiotics and antibiotic residues enter WWTPs as a result of incomplete 

metabolism through human excretion. Improper disposal of unused antibiotics also increase 

the quantity of antibiotics in WWTPs. The high levels of antibiotics that enter the WWTP may 

provide a selective pressure for ARB, which may be a major contributing factor that makes 
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WWTPs such major reservoirs of ARB and ARGs. Raw wastewater, that predominantly 

consists of hospital effluent, most commonly contain ARE (Rizzo et al., 2014).  

 

The treatment process, followed by WWTPs, involves three main stages comprising of a 

physical, biological and chemical stage (Bouki et al., 2013).  As a result of the treatment 

processes, a considerable reduction in bacterial population and ARB occurs (Huang et al., 

2012). Studies have reported that WWTPs may offer favourable conditions for the increase in 

ARB and therefore also in ARGs (Guardabassi and Dalsgaard, 2002; Huang et al., 2012). 

Variations in the design of WWTPs and operation procedures may have an influence on the 

presence and spread of ARB and ARGs (Guardabassi and Dalsgaard, 2002).   It has been noted 

that WWTPs are capable of transferring 109 - 1012 CFU/ml (each day) of ARB from final 

effluent into the environment (Novo and Manaia, 2010).  This large discharge of ARB into the 

environment highlights the major role WWTPs play in ARB dissemination. Various 

environmental conditions may also impact the proliferation of ARB and transfer of ARGs in 

WWTPs (Davies, 2012).  

 

1.2. Overview of the general processes involved in a wastewater treatment plant  

Wastewater treatment plants are equipped to purify and disinfect polluted effluent of domestic, 

clinical, agricultural and industrial settings. Three major stages involved in wastewater 

treatment processes that decontaminate waste effluent include primary, secondary and tertiary 

treatments. A combination of physical, chemical and biological systems are included in the 

various processes (Figure 1.1).     
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 Primary treatment process 

The initial treatment process is regarded as the pre-treatment process. This is a physical process 

that begins with screening, which allows for the removal of large objects and pollutants 

(Hendricks and Pool, 2012). This process is important in preventing the large debris from 

damaging or clogging pumps and tanks further down the treatment process (Abdel-Raouf et 

al., 2012). Screening devices are generally wire mesh, perforated plates, grating or metal bars. 

Most large-scale plants utilize automated mechanical screens that vary in size (Tchobanoglous 

and Burton, 1991). The solids collected from the screening process are later disposed off in 

landfills or via incineration (Tchobanoglous and Burton, 1991).  This step in the treatment 

process may also have a grit channel, which adjusts the velocity of influent to allow material 

like sand, stones, grit and other smaller objects to settle to the bottom. A procedure called ‘flow 

equalization’ is used to increase the effectiveness of secondary treatment processes and 

clarifiers by ensuring uniform flow conditions, pollutant levels and temperature.  Flow 

equalization may be used prior to discharge into lakes and rivers or prior to advanced 

wastewater treatment processes. Equalization basins may also be used to briefly hold influent 

during plant maintenance and to dilute influent of high toxicity before it enters secondary 

treatment and inhibits the biological processes (EPA, 2004). 

Once screening is completed, primary sedimentation takes place. This step is utilized to remove 

dissolved organic, inorganic and suspended material.  Suspended solids are then removed by 

means of sedimentation, filtration, chemical coagulation or settling. In primary sedimentation 

tanks (clarifier), suspended solids slowly sink to the bottom and form a mass called ‘primary 

sludge.’ Primary sludge is then removed from the primary sedimentation tanks by utilizing 

mechanical equipment. Primary sludge may be removed continuously or periodically, 

depending on the individual treatment plants (EPA, 2004). 
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 Secondary treatment process 

The next stage in the treatment process is the secondary treatment.  This stage utilizes biological 

treatment that allows for removal of most of the organic material.  Secondary treatment is 

achieved by the attached growth process and the suspended growth process. In the attached 

growth process, microorganisms (bacteria, algae and fungi) proliferate on the surface of stone 

media (EPA, 2004). The wastewater is passed over the media, along with oxygen, to allow for 

increased microbial growth. This process involves the use of trickling filters, rotating biological 

contactors and biotowers (EPA, 2004). The media bed, commonly made of stones, rocks or 

plastic, enables microorganisms to attach and grow on it. The treatment is effective as the 

microorganisms utilize the oxygen and organic matter as food sources, thus removing the 

organic pollutants. Thereafter, the water is transferred into a secondary treatment tank to allow 

any biomass, which may have passed into the water from the media beds, to settle to the bottom 

of the tank.  In the suspended growth process, removal of biodegradable organic matter and 

organic nitrogen-containing matter occurs by transforming ammonia nitrogen to nitrate.  Here, 

microorganisms are suspended in aerated water and activated sludge (Hendricks and Pool, 

2012). In this process, a rich aerobic environment is created to increase the rate of microbial 

breakdown of organic matter.   The improved growth conditions allow for increased microbial 

growth. The excess biomass then settles to the bottom of a secondary treatment tank before the 

water is treated further. The biomass can be reused as activated sludge for the next round of 

treatment. Suspended growth processes is more advantageous than the attached growth 

processes as it uses smaller units and therefore requires less space, it also produces less odours 

and is free of flies when operated optimally. However, activated sludge processes are generally 

more expensive than attached growth processes due to higher energy needed to run the aeration 

systems (Vilanova et al., 2011). 
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 Tertiary treatment process    

 

The final stage in the treatment of wastewater is the tertiary treatment. This stage of treatment 

is to improve the final effluent quality before it is discharged into receiving rivers and lakes.  

The tertiary stage involves chemical treatment process, such as chemical precipitation, 

adsorption and disinfection (Tchobanoglous and Burton, 1991). In chemical precipitation, the 

flocculation of fine solids occur before sedimentation takes place in order to improve removal 

of suspended solids and phosphorus. Chemical coagulants that are commonly used in 

wastewater treatment include alum, ferric chloride, ferric sulfate, ferrous sulfate and lime 

(Tchobanoglous and Burton, 1991). Adsorption is a process that uses a solid object (usually 

activated carbon) in the normal biological treatment in order to remove any remaining 

dissolved organic matter (Tchobanoglous and Burton, 1991). Activated carbon exists in the 

granular and powdered form and is either filled in a fixed-bed column through which the 

wastewater runs, or it is added directly to the wastewater in a basin. Powdered activated carbon 

is then left to settle to the bottom of the basin and removed by addition of a polyelectrolyte 

coagulant or is filtered (Tchobanoglous and Burton, 1991). The disinfection process removes 

disease causing microorganisms from the wastewater.  This process may include physical 

agents (heat and light), mechanical agents (screening, filtration and sedimentation), radiation 

(gamma rays) and chemical agents (chlorine, soap and detergents) (Qasim, 1999). Disinfectants 

act by damaging the cell wall of microorganisms, changing cell permeability and inhibiting 

enzyme activity. When using chlorine as the disinfectant, prior to discharge of the final effluent 

into receiving water bodies, a process of dechlorination may take place. The step of 

dechlorination is not practiced by all WWTP however, it is often a priority in food and beverage 

producing industries in order to prevent the undesirable chlorine taste. Dechlorination removes 

free chlorine present in effluent from the chlorinated wastewater. This is done to prevent 
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chlorine compounds from reacting with any organic compounds in the effluent and producing 

toxic products that may have adverse effects on the environment.  This process is achieved by 

the use of activated carbon, or by the addition of reducing agents such as sulphur dioxide, 

sodium sulfite or sodium metabisulfite (Qasim, 1999).  

The removal of ARE and ARGs in wastewater is of primary concern before release of treated 

effluent into the environment to prevent subsequent detriment to the human population at large. 

The primary and secondary treatments in the WWTP are inadequate in removing more than 

90% of pathogens and ARB in raw wastewater (Sobsey et al., 1998). Even secondary treated 

effluents sometimes contain high bacterial loads. Therefore, tertiary treatment (disinfection) is 

a fundamental barrier in removing pathogens and ARB in treated effluents. The disinfection 

process in wastewater treatment is essential to control pathogens and ARB in treated 

wastewater and receiving water bodies (Bouki et al., 2013).   

The most popular form of disinfection in WWTPs is chlorination. This is the preferred choice 

of disinfection due to it being a well-established technology, is economically practical, allows 

for simple application and is mass produced and easily available (Bouki et al., 2013). Also, 

residual chlorine, present in the final effluent, enables prolonged disinfection even after the 

initial chlorination step (EPA, 1999). Chlorine is able to remove unpleasant odours, dosage 

levels can easily be altered and is able to oxidize some organic and inorganic matter (EPA, 

1999).  As a disinfectant, chlorine is efficient in eliminating many bacteria; however it has 

lower efficiency against bacterial spores, viruses and protozoan cysts (Davies et al., 2009; 

Maier et al., 2009). The process of chlorination however, does not always completely remove 

bacteria and many bacteria, which are carried in the wastewater, develop resistance 

mechanisms and persist in the final treated effluents (Maier et al., 2009). This then leads to the 

release of ARBs into the environment and may have detrimental impacts on public health. 
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Chlorination often results in the production of chlorinated compounds as possible toxic by-

products which may even be carcinogenic to humans (Sobsey et al., 1998).  Also, treated 

effluents that have been chlorinated, often have to undergo dechlorination before being 

discharged into the environment (Sobsey et al., 1998). Other limitations associated with 

chlorination are that chlorine is a toxic, corrosive compound and therefore requires high safety 

regulations when handling, transporting and storing. The ability of chlorine to oxidize certain 

organic material may create more toxic compounds such as trihalomethane (EPA, 1999).  

The process of chlorination occurs by chlorine (in the gaseous, liquid or solid phase) being 

added to the wastewater. This then triggers hydrolysis and ionization that result in the 

production of hypochlorous acid and hypochlorite ions. The hypochlorite ions bond with 

ammonia in the wastewater to form monochloramine (combined chlorine) and dichloramine 

(EPA, 1999). Optimal disinfection is achieved by allowing for proper mixing to enable the 

reaction between the free chlorine and the ammonia. This prevents extended periods of chlorine 

exposure and formation of chlorine by-products (EPA, 1999). Another factor that improves 

disinfection is contact time. Contact chambers should be constructed to have round edges to 

minimize dead flow areas. This would enable for substantial contact time between the bacteria 

and chlorine, thus utilizing a minimum chlorine concentration and shorter contact time (EPA, 

1999).        

Several factors affect the success of ARB and ARG removal. Cell structure, bacterial molecular 

characteristics and the design of the WWTP all have an effect on the efficiency of ARB and 

ARG removal (Batt et al., 2006). Independent uses of chemical or biological processes are not 

proficient in eliminating ARB during treatment, but rather require a combination of these 

processes (Garcia et al., 1995; Adams et al., 2002). A study conducted by Guardabassi et al. 

(2002) showed that tertiary treatment had a major reduction in the number of bacteria that were 
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multi-drug resistant. Earlier studies, however, have shown the opposite where tertiary treatment 

resulted in an increase in multi-drug resistant bacteria in the final effluent (Morozzi et al., 1988; 

Andersen, 1993). Contrary to these studies that show a reduction in the number of ARB after 

chlorination, Shi et al. (2013) reported that chlorination increased expression of ARGs in 

bacterial communities. Such findings were also reported in other studies, which showed that 

chlorination resulted in certain bacteria becoming more resistant to certain antibiotics by 

inducing a stress tolerance (Armstrong et al., 1982; Shrivastava et al., 2004). The increase in 

antibiotic resistance, following chlorination, can be attributed to an increased expression of 

bacterial efflux pumps that allow the bacterial cell to expel antibiotics within the cell (Xi et al., 

2009).  

Other studies have shown that chlorination induced the development of antibiotic resistance 

(Rutala et al., 1997; Fraise, 2002). It was suggested that bacteria that were able to withstand 

the stress of disinfection, were more antibiotic resistant (Armstrong et al., 1982). However, it 

was later shown that a major aspect that affects the efficiency of removal in the tertiary step is 

chlorine dosage (Huang et al., 2011).  This was verified in a study that showed that different 

concentrations of sodium hypochlorite (8.0 to 30.0 mg/liter), used in the disinfection stage, 

resulted in varying levels of reduction in Enterococci populations (Tree  et al., 2003). After 5 

to 15 minutes of exposure to sodium hypochlorite, depending on the concentration, Enterococci 

decreased by nearly 5 orders (Tree et al., 2003). The chlorine dosage depends on chlorine 

demand, discharge requirements and wastewater characteristics (EPA, 1999).   

The many benefits associated with the use of chlorine as the disinfection process in wastewater 

treatment, has rendered this chemical a common choice in most WWTPs. However, the 

production of toxic by-products and hazardous characteristics it poses to the environment, 
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human and animal health has resulted in the use of other modes of disinfection processes such 

as UV radiation,  advanced oxidation processes and microfiltration. 

 

 

Figure 1.1: The general overview of treatment processes involved in a wastewater treatment 

plant (Naidoo and Olaniran, 2014) 

 

The size of ARB populations and ARGs usually decrease during the various wastewater 

treatment processes (Wagner and Loy, 2002; Guardabassi et al., 2002; Huang et al., 2012). 

However, many other studies have shown the contrary; with WWTPs enhancing the 

proliferation of ARB (Guardabassi and Dalsgaard, 2002; Schwartz et al., 2003). Ultimately, 

the fate of ARB and ARGs, at every treatment stage within the WWTP, are dependent on 
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different treatment operations and plant designs (Batt et al., 2006; Kim et al., 2006). Activated 

sludge, utilized during the secondary treatment stage, usually contain high levels of ARB (Ge 

et al., 2012).  The tertiary stage is therefore important in reducing the high ARB load (Ge et 

al., 2012). Studies have revealed that the biological treatment stage may positively affect the 

spread of ARB and ARGs (Auerbach et al., 2007; Kim et al., 2007; Luczkiewicz et al., 2010). 

Duong et al., (2008) reported that the biological treatment process reduced 99% of ARB. 

Several studies reported a decrease in ARB and ARGs, from the raw influent to the final 

effluent samples, achieved by the chlorination disinfection step (Shrivastava et al., 2004; 

McKinney et al., 2009; Templeton et al., 2009). Chemical or biological processes alone are not 

effective in the removal of ARB, however a combination is more effective (Garcia et al., 1995; 

Adams et al., 2002).  

 

1.3. Prevalence of ARB and ARGs in wastewater treatment plants 

The main aim of WWTPs is to treat wastewater to a standard that is safe enough to discharge 

into the environment or reuse for other purposes. These facilities should be equipped to produce 

an end product that is free of physical, biological and chemically toxic material. It is 

conventional practice for WWTPs to reduce the total load of bacteria in the final effluent 

(Zhang and Farahbakhsh, 2007). The three stages involved in wastewater treatment (primary, 

secondary and tertiary) have a significant effect on the diversity and density of the bacterial 

populations present in the wastewater (Wagner and Loy, 2002). Studies have shown that the 

treatment process, generally, reduces the bacterial load present as well as the populations of 

ARB (Guardabassi et al., 2002; Huang et al., 2012). The treatment process however, lacks 

efficiency in total removal of ARB and ARGs (Munir et al., 2011). The presence, proliferation 

and persistence of ARB and their resistance genes in wastewater may be attributed to the fact 
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that WWTPs serve as reservoirs for antibiotic resistance (LaPara and Burch, 2012). Ferreira da 

Silva et al. (2006) found E. hirae, E. faecium and E. faecalis as the three prevalent species in 

raw wastewater in a WWTP in Portugal. Following treatment by the WWTP, the number of E. 

hirae decreased, the number of E. faecalis remained the same as in the raw wastewater, while 

the number of E. faecium increased. Enterococcus faecalis and E. faecium were resistant to 

ciprofloxacin, erythromycin and tetracycline. These resistant Enterococci were not completely 

removed during the treatment process, instead a noted increase in resistance to ciprofloxacin 

was noted in the final effluent (Ferreira da Silva et al., 2006). Possible reasons for WWTPs 

being able to support or increase antibiotic resistance could be as a result of horizontal gene 

transfer, improved survival of the bacterial population as well as elevated levels of antibiotics 

in treated effluent (Ferreira da Silva et al., 2006; Li et al., 2009). The elevated use of antibiotics 

for various activities is a major factor in the increase of antibiotic resistance. A survey 

conducted between 2000 and 2010, revealed an increase of 36% in the global consumption of 

antibiotics (Van Boeckel et al., 2014). 

 Due to WWTPs not being able to completely remove ARB and ARGs during the treatment 

process and as a result of the activated sludge containing high levels of antibiotics, an increased 

selective pressure is created that allows for proliferation of ARB. The presence of antibiotic 

residues, high microbial diversity and presence of gut-associated ARB provide a favourable 

environment for ARB proliferation and ARG dissemination in activated sludge (Rizzo et al., 

2013). Activated sludge tanks, bioreactors and trickling filters accumulate bacteria, such as 

Enterococci, by providing conditions that encourage their proliferation to enhance the 

biological treatment process. A study conducted by Sahlström et al. (2009) discovered the 

presence of VRE in 77 sludge samples. This study revealed widespread presence of VRE in 

activated sludge obtained from WWTPs. It further revealed the risks associated with antibiotic 
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resistance being extended if these sludge samples were used as fertilizers in farms. Activated 

sludge from WWTPs may therefore facilitate the spread of ARE into the environment. This 

may thus act as a reservoir for ARE as it provides conditions suitable for their survival and 

gene transfer (Iversen et al., 2004; Vilanova et al., 2004).  Following this phase in the treatment 

plant, ARE are able to escape the WWTP and  infect humans and animals via water 

contamination or the food chain (Iversen et al., 2004;  Hayes et al., 2003; Guardabassi and 

Dalsgaard, 2004). Studies have shown the presence of ARE in the environment caused by its 

release from an antibiotic resistant hotspot. One such study showed high prevalence of ARE in 

two recreational beaches in Brazil. This study showed that the beaches contained a high rate of 

ARE as a result of domestic wastewater being discharged onto the beaches (Oliveira and Pinata, 

2008). In another study, VRE was detected in marine environments as a result of fecal waste 

(Whitman et al., 2003). Resistance to vancomycin by Enterococcus is a predominant factor 

that has been reported in many studies. Resistance to vancomycin constitute 34% of the 55% 

of the total antimicrobial resistance among Enterococci spp. recovered from marine outfalls in 

Brazil (Carvalho et al., 2014). A study in Sweden also showed the presence of VRE, with a 

value of 19% in treated wastewater and 36% in treated clinical wastewater (Iversen et al., 

2002). These studies all highlight the fact that environments containing or contaminated by 

wastewater, serve as hotspots of ARE. These environments generally contain high loads of 

organic matter that assist in the transport, transfer and spread of ARGs or plasmids (Carvalho 

et al., 2014). Plasmids are common in Enterococci and are liable for much of the horizontal 

gene transfer. It was found that many resistance profiles were related to plasmids in 

Enterococci (McBride et al., 2007).     
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1.4. Factors influencing ARB and ARG concentration in treated wastewater effluent 

Wastewater treatment plants have been reported as major reservoirs of ARB and ARGs in many 

recent studies (Gallert et al., 2005; Ferreira da Silva et al., 2006; Kümmerer, 2009; Servais and 

Passerat, 2009). However, various contributing factors may influence ARB and ARG 

concentration in treated effluent. The use of physical, biological and chemical processes, are 

implemented in WWTPs to ensure that their objective of a safe, pathogen-free effluent is 

achieved (Hong et al., 2013).  Influent received from human, hospital, industrial and veterinary 

sources are known to harbor high levels of antibiotics and ARB (Wright, 2010; Grassi et al., 

2013). The treatment processes involved in WWTPs are not sufficiently well designed to 

decrease ARB and ARGs, which may potentially encourage the spread of antibiotic resistance 

in the environment (Hong et al., 2013; Lupo et al., 2012).  Factors that commonly affect ARB 

and ARG concentration in WWTPs are discussed below:  

 Source of influent 

An increased number of ARB in the raw influent has an increased effect on the number of ARB 

present in the final effluent. This primarily has to do with the type of influent that a plant 

receives (Novo and Manaia, 2010).  Common types of influent are typically received from 

domestic, hospital, industrial, agricultural, pharmaceutical and veterinary sources (Figure 1.2) 

(Wright, 2010; Grassi et al., 2013). Hospitals are one of the greatest platforms for antibiotic 

usage and therefore assist in the spread of antibiotic resistance (Stalder et al., 2014). It was 

reported, in the United States, that more than 10 million kilograms of antibiotics were used, for 

non-therapeutic use, in poultry, cattle and swine production (UCS, 2001). This widespread use 

of antibiotics for human and animal purposes generally result in large amounts of the antibiotics 

being deposited into WWTPs.  Antibiotics enter WWTPs via incomplete-metabolism through 

human excretion.  Antibiotic residues are commonly found in the environment by means of 
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human and animal waste (Figure 1.2). These drugs enter the environment via feces and urine, 

unused antibiotics that are flushed down toilets, improper disposal of medical waste from 

clinical settings and septic tanks that leak into soil and ground water. Once in the environment, 

these residues may be degraded or enter rivers, sediment or soil from WWTPs. Antibiotics used 

in animal husbandary may be found in soil via animal waste.  

Raw influent received from hospital settings generally contain greater loads of ARB (Baquero 

et al., 2008). One study assessed the role of hospital activities in the spread of antibiotic 

resistance by analyzing integrons and gene cassettes in hospital wastewater (Stalder et al., 

2014).  It was reported that hospital wastewater contained large quantities of integrons and that 

the gene cassette diversity and gene cassette arrays were very similar to that found in the sludge 

(Stalder et al., 2014). Various cases of ARGs were reported in hospital effluents, including 

vanA genes (Schwartz et al., 2003), mecA genes encoding methicillin resistance in 

Staphylococci (Heuer et al., 2002) and genes encoding gentamicin resistance in Acinetobacter, 

Pseudomonas and Enterobacteriaceae (Heuer et al., 2002).  The high presence of antibiotics, 

ARB and ARGs are factors that contribute to hospitals being the greatest reservoirs of antibiotic 

resistance dissemination into WWTPs.  



25 

 

 

Figure 1.2: Common sources of influent received by wastewater treatment plants (Stalder et 

al., 2012) 

 Treatment methods in WWTPs 

The different forms of biological treatments and hydraulic retention time affect the removal 

efficiency of ARB and ARGs. Increased hydraulic retention time support increased transfer of 

ARGs (Tchobanoglous et al., 2003).  Hydraulic retention time refers to the ratio of the volume 

of waste to the flow rate. The hydraulic retention time can be increased by reducing the 

hydraulic loading rate. Kim et al. (2007) studied the prevalence of tetracycline resistant bacteria 

with regards to activated sludge organic loading rate and the bacterial growth rate. The study 

showed that tetracycline resistance increased by increasing the organic loading and growth rate 

(sludge retention time) (Kim et al., 2007). Different treatment processes also affect the 

prevalence of ARB and ARGs in wastewater. Such processes include activated sludge, 

membrane biological reactor and rotatory biological contractors. Of the different processes, the 
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membrane biological reactor removed the greatest quantities of ARB and ARGs (Munir et al., 

2011). Various environmental factors also play a role in affecting ARB dissemination in 

WWTPs. Extreme temperatures, light, salinity and low nutrient levels may affect bacteria by 

causing nonculturable to remain viable and transfer genes (Arana and Barcina, 2008). 

Therefore, adverse environments may not harm the bacteria, but merely induce a viable but 

nonculturable state. Also, environmental factors regarding predation may also have an effect. 

Predation by protozoa is able to reduce bacterial spread and therefore ARB and ARGs (Matz 

and Kjelleberg, 2005; Pernthaler, 2005).    

1.5. Alternative tertiary treatment solutions for significant reduction in levels of ARB 

and ARGs in treated wastewater effluent 

The final barrier for ARB and ARGs dissemination into the environment, from WWTPs, should 

be the disinfection stage of the treatment regime. The conventional tertiary process of 

chlorination has fallen short of being efficient in removing ARB and ARGs during the 

treatment process (Karumathil et al., 2014). It is therefore necessary to find alternative 

disinfection processes that do not pose a risk to the environment, human and animal health.  

Such alternatives include ultraviolet (UV) radiation, advanced oxidation processes and 

microfiltration (Hijnen et al., 2005; Breazeal et al., 2013; Rizzo et al., 2014).  

 Ultraviolet disinfection 

Contrary to chemical disinfection, many WWTPs have adopted UV radiation as an alternative. 

The implementation of UV light for disinfection has become popular, with many treatment 

plants switching from chlorination as a disinfection process to UV technology (Das, 2001). UV 

radiation is a physical process that operates by exposing wastewater to a UV source (usually 

mercury arc lamps) before the final effluent can be released into receiving water bodies. This 
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non-ionizing radiation agent penetrates the bacterial cell wall, mutates its DNA (mainly by 

pyrimidine dimerization) and inhibits bacterial proliferation (Dodd, 2012; Biswal et al., 

2014).   DNA mutation induces expression of the DNA repair system and in the case of 

pathogenicity and antibiotic resistance; it induces the integrase recombination genes 

(Courcelle et al., 2001; Quiroz et al., 2011). With regards to pathogenicity, expression of the 

gene classes may result in deletion of some pathogenicity islands, thus causing the strain to be 

non-pathogenic rather than killing off the bacterial cell (Soto et al., 2006; Almagro-Moreno et 

al., 2010; Frigon et al., 2013). Processes similar to this may also occur with ARGs as they are 

sometimes clustered in integrons containing integrase recombination genes (Biswal et al., 

2014). Some bacteria, that may possibly be resistant to antibiotics, are able to become 

reactivated and survive the disinfection step by utilizing mechanisms of photoreactivation 

(Masschelein, 2002). This occurs by the pyrimidine dimers (formed during exposure to UV 

light), forming a complex with photoreactivating enzymes that assist in photolysis to repair the 

original monomer (Masschelein, 2002).  

The physical and chemical quality of the wastewater that determines the success of UV 

radiation. An increased concentration of particulate components in the wastewater may result 

in decreased efficiency of the treatment step. The benefits of using this form of disinfection is 

that UV radiation is a faster process, cost effective, does not create toxic by-products and it 

does not result in prolonged residual content in the water (Das, 2001). Limitations of UV 

disinfection are that it is not always effective against retroviruses and rotaviruses, monitoring 

its efficiency are complex and there is no residual protection. Also, turbidity and the presence 

of total suspended solids can decrease its efficiency (Darby et al., 1995).  

UV disinfection is able to alter the DNA of ARB and potentially decrease ARGs (Dodd, 2012). 

Another study however, disproved this by showing that UV radiation used in WWTPs was able 
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to reduce ARB but not ARGs (McKinney and Pruden, 2012). An added advantage of UV 

disinfection would be its ability to thwart the progression of horizontal gene transfer to bacteria 

downstream of a receiving water body in order to prevent transfer of ARGs. 

McKinney and Pruden (2012) reported on the ability of UV disinfection to damage various 

resistance genes, intra- and extra-cellular, in methicillin-resistant Staphylococcus aureus 

(MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and 

Pseudomonas aeruginosa. The study revealed that MRSA and VRE (both Gram positive) 

exerted increased resistance to UV disinfection compared to E. coli and P. aeruginosa (both 

Gram negative). The increased resistance to UV radiation may be attributed to their reduced 

genome size, where a lower potential for pyrimidine dimmers are formed due to the small size. 

They also reported that damage to ARGs require increased UV doses compared to ARB. The 

study concluded that thymine dimers are not solely responsible for ARB destruction and UV 

disinfection may not be the best tool for ARG removal (McKinney and Pruden, 2012).  UV 

radiation is also known to have an effect on the conjugative transfer of ARGs between bacteria. 

Low doses of UV had shown to possess little effect on the rate of conjugative transfer and 

merely decreased bacterial populations without affecting cellular structure (Guo et al., 2015).     

Cell permeability was barely affected, thus decreasing the ability of bacterial pilus to be 

inserted into other bacteria, reducing the chance of ARG transfer (Guo et al., 2015).     

 Advanced oxidation processes  

A successful form of disinfection of wastewater is the advanced oxidation processes (AOP) 

(Zapata et al., 2010). Heterogeneous photocatalysis with TiO2
 (titanium dioxide) is among the 

AOPs, that has gained much attention as a disinfection process (Dunlop et al., 2011; Robertson 

et al., 2012). This form of disinfection does not produce toxic by-products, it is cost effective 

as it can utilize solar power to operate and it is effective against most bacteria, viruses and 
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protozoa (McCullagh et al., 2007; Malato et al., 2009). Additionally, TiO2 is popular as a 

semiconductor as it is widely available and stable. UV-titanium dioxide photocatalysis is a 

form of AOP that has shown to be highly effective against most microorganisms (McCullagh 

et al., 2007). This functions by TiO2 particles being exposed to near UV radiation that then 

produce charge carriers.  These carriers move to the surface of semiconductors, react with 

hydroxyl groups and dissolved oxygen and produce reactive oxygen species such as peroxides 

and superoxide radicals (McCullagh et al., 2007). Microbial inactivation, resulting from 

photocatalytic processes, is due to the interaction of reactive oxygen species with components 

of the bacterial cell surface (McCullagh et al., 2007). Photogenerated holes move to the 

titanium particle-solution interface and produces hydroxyl radicals by oxidising hydroxyl ions 

or water.  Additional reactive oxygen species are produced from the reduction of dissolved 

oxygen such as hydrogen peroxide, hydroperoxyl radical and superoxide radical anion 

(McCullagh et al., 2007). A recent study reported that cell wall modification, induced by 

radicals, was primarily responsible for the increased biocidal effect of TiO2-based 

nanomaterials (Kubacka et al., 2014).  

The spread of ARGs in WWTPs during the AOP may occur when stressed bacterial cells 

replicate and transfer their genes in order to survive and maintain their populations. One study 

has determined that high antibiotic use lead to the enhancement of multidrug resistance via 

radical induced mutation (Kohanski et al., 2010). Another study showed that excessive 

proliferation and genetic transfer had occurred by a bacterial population that was under great 

environmental stress and virtually inactive (McMahon et al., 2007). The survival mechanism 

supposedly occurs to enable stressed organisms preserve their species by rapidly replicating 

and transferring genetic material (McMahon et al., 2007). The increase in the transfer of ARGs 

occur if the treatment process is not followed fully, preventing complete inactivation of 
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microorganisms before release into the environment. Ensuring appropriate treatment time will 

prevent the spread and release of ARGs into rivers and lakes (Dunlopa et al., 2015). 

 Microfiltration  

Membrane technologies, which include microfiltration, ultrafiltration, nanofiltration, and 

reverse osmosis is another type of disinfection utilized by WWTPs. This technology is a 

physical process that filters out microorganisms. Reactive chemicals are not required, no toxic 

by-products are formed in this disinfection process and it is efficient against bacteria, viruses, 

algae and protozoans. Limitations to this technology is the high cost, its concentrated backwash 

can result in microbial contamination and handling risks associated with cleaning of the 

membranes. The most popular membrane technology employed by WWTPs is microfiltration. 

This disinfection process operates by passing the wastewater through membrane fibres, which 

are cylinders that contain numerous microscopic pores. The membrane pore sizes of 

microfilters range from 0.1-10 m in diameter (Jacangelo and Buckley, 1996).  Liu et al. (2014) 

reported that nanofiltration had the ability to adequately remove antibiotics from treated 

effluent, however required an advanced oxidation processes to further remove residual 

antibiotics. Microfiltration and ultrafiltration function by being connected to bioreactors. 

However, due to the small size of antibiotics, the microfilter and ultrafilter are unable to remove 

these minute particles. Therefore, nanofiltration is used as it allows for better removal of 

antibiotics (Clara et al., 2005). The organic fouling that commonly occurs on the membrane, 

form an added barrier in the removal of antibiotics (Hong et al., 2013). This type of filtration 

causes an increased retention time for antibiotics, therefore causing an increased reaction time 

for degradation and hydrolysis of the antibiotics via biological processes (Hong et al., 2013).   
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Membrane pore size is known to affect the success potential in the removal of ARGs. Analysis 

conducted by Breazeal et al. (2013), showed that as pore sizes decrease, the ARGs removal 

increases. The presence of colloids, found in wastewater, influences the removal of ARGs by 

attaching the ARGs to its surface. The study showed that the colloidal material significantly 

assisted in removal of blaTEM and vanA at a pore size of 10 kDa (Breazeal et al., 2013). The 

study concluded that membrane treatment shows great success in removing ARGs in treated 

effluents with membrane sizes of 10 kDa and smaller (Breazeal et al., 2013).  

1.6. Scope of the present study 

Water is fundamental for the existence of all life forms (Russo et al., 2014). It is a basic human 

right for every individual to have access to safe, affordable and sufficient water. However, due 

to the growing population, increasing demands and recent droughts, countries like South Africa 

lack access to clean and fresh water (Eyewitness News, 2015; Biowatch, 2016). In order to 

meet the growing demand for fresh water, appropriately treated wastewater is reused. The final 

treated effluent is usually discharged into receiving water bodies to be reused by municipal 

authorities for further treatment and distributed to households and industries (Hong et al., 

2013). It is therefore imperative that WWTPs follow strict treatment practices in order to 

prevent a negative impact that sewage contamination may have on the environment during 

discharge into receiving rivers and lakes (Jhansi and Mishra, 2013). The treatment of many 

bacterial infections and the increased developments in agricultural practices are owed to the 

use of antibiotics (Bouki et al., 2013). However, due to the misuse and overuse of antibiotics, 

the world is rapidly heading to a post-antibiotic era, as a result of antibiotic resistance. 

Wastewater treatment plants have been implicated as hot spots for antibiotic resistant 

Enterococci (ARE) and antibiotic resistance genes, which results in the discharge of poor 

quality effluent into the receiving water bodies (Martínez, 2009; Mema, 2010). Enterococci are 
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problematic as they have a high tendency to acquire and spread antibiotic resistance. The 

presence of ARE therefore needs to be monitored and controlled. This is highly important to 

ensure prevention of severe enterococcal infections and increase in its multidrug resistance. 

This study therefore aimed at assessing the efficiency of two wastewater treatment plants, in 

Durban, in removing antibiotic resistant Enterococci during the treatment process and to 

establish their influence on receiving water bodies. The antibiotic resistance patterns, detection 

of specific tetracycline resistance genes and genetic finger-printing profile of Enterococci sp., 

recovered from the final effluent and receiving river samples, was evaluated. Furthermore, the 

efficiency of the WWTPs for the removal of selected tetracycline resistance genes was 

determined.   

1.7. Hypotheses 

It is hypothesized that wastewater treatment plants in Durban, South Africa, are reservoirs for 

antibiotic resistant Enterococci and tetracycline resistance genes. It is further hypothesized that 

the final effluent, discharged into receiving water bodies, negatively impact the environment 

by increasing the prevalence of antibiotic resistant Enterococci. 
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1.8. Objectives 

 To determine the efficiency of the wastewater treatment plants in removing 

antibiotic resistant Enterococci during the treatment process and to identify 

predominant Enterococci species. 

 To establish the antibiotic resistance profile of selected Enterococci isolates. 

 To establish the genetic diversity of the Enterococci isolates recovered from 

treated effluent and receiving surface water. 

 To determine the efficiency of the treatment process for the removal of 

tetracycline resistance genes from the influent. 

 

1.9. Aims 

 To determine the incidence of antibiotic resistant Enterococci (ARE) in 4 pre-

determined sampling sites of two wastewater treatment plants in Durban as well 

as upstream and downstream of their receiving water bodies. 

 To determine the percentage removal of ARE during the treatment process. 

 To identify selected Enterococci using standard biochemical tests as well as 

PCR-amplification using genus and species specific primers. 

 To determine the antibiotic resistance/susceptibility profile of selected 

Enterococci using the Kirby-Bauer disc diffusion method. 

 To quantify various tetracycline resistance genes in the influent and final 

effluent using droplet digital PCR assays. 
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 To conduct genetic fingerprinting of Enterococci using the Random Amplified 

Polymorphic DNA (RAPD) technique. 

 

1.10. Experimental Design 

In order to achieve the stated objectives, the present study was divided into four main 

chapters as described below. 

Chapter One 

Introduction and Literature Review 

This chapter summarized the major hotspots for ARE and ARGs, with particular focus on 

WWTPs. Common treatment processes for ARB and ARG removal as well as the fate of 

ARE during wastewater treatment processes were also discussed. 

Chapter Two 

This chapter focuses on the monthly enumeration of the total and antibiotic resistant 

Enterococci at four sampling points within the two wastewater treatment plants (raw 

influent, activated sludge, before chlorination and final effluent) as well as upstream and 

downstream of the receiving water bodies. The prevalence and removal of ARE during the 

treatment process and the subsequent effect on the environment was also discussed. 

Additionally, the identification to the genus and species level, of selected ARE, was 

determined. 

Chapter Three 

This chapter investigates the antibiotic resistance profile as well as presence of multidrug 

resistant Enterococci obtained from the final effluent and upstream and downstream of the 
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receiving water bodies. The detection of selected tetracycline resistance genes from 

selected isolates is also examined in this chapter. Furthermore, selected tetracycline 

resistance genes were quantified from metagenomic DNA, of the influent and final effluent 

samples, using the droplet digital PCR technique in order to establish the efficiency of the 

WWTPs in removing these genes. 

Chapter Four 

This chapter provides a summary of the main findings reported within the different chapters 

of the study. It also highlights possible limitations and probable future studies in line with 

the current study.  
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CHAPTER TWO 

PREVALENCE AND FATE OF ANTIBIOTIC RESISTANT ENTEROCOCCI IN 

WASTEWATER EFFLUENTS AND RECEIVING RIVERS 

 

2.1. Introduction 

Water is a vital commodity for the existence of all life forms and acts as the core of sustainable 

and socio-economic development, and is fundamental in the control of diseases, improvement 

of global health and increase in the standard of living (Russo et al., 2014).  It serves as a key 

component in the production and manufacturing of industries and provides an assortment of 

uses and services to human beings. This indispensable resource is crucial for survival and 

population advances (WHO/UNICEF, 2013). However, as a result of water scarcity, many 

regions including Africa are water stressed areas (Jimenez, 2008). Due to the growing 

population, increasing demands and recent droughts, countries such as South Africa are facing 

major difficulties in meeting mandates for clean, fresh water.  Recently, national government 

has declared three South African provinces (North West, Limpopo and KwaZulu-Natal) as 

disaster zones in terms of water crisis (Eyewitness News, 2015). Globally, 750 million people 

lack access to safe drinking water with almost 2 million children below the age of 5, dying 

annually from water related diseases (Eliasson, 2015). It is a basic human right for every 

individual to have access to safe, affordable and sufficient water that is free from 

microorganisms, chemical contaminants and radiological hazards (WHO, 2015a; UN, 2015). 

According to the South African constitution pertaining to environmental rights; Section 24 (a) 

states that: “Every human has the right to an environment that is not harmful to human health 

or well-being.” It also states in Section 24 (b) that: “Everyone has the right to have the 

http://www.nature.com/nature/foxtrot/svc/authoremailform?doi=10.1038/517006a&file=/news/the-rising-pressure-of-global-water-shortages-1.16622&title=The+rising+pressure+of+global+water+shortages&author=Jan+Eliasson
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environment protected”. The right to protect our water resources is one of great responsibility 

as this resource must be safeguarded in order to preserve its value (Hendricks and Pool, 2012). 

Furthermore, it is a responsibility to ensure that proper means are put into place in order to 

distribute clean, safe drinking water. 

 

In order to meet the growing demand of fresh water, a good solution would be to reuse water. 

The reuse of appropriately treated wastewater, defined as ‘reclaimed water’, is an alternative 

that many countries such as South Africa are undertaking. Guidelines according to the U.S. 

Environmental Protection Agency (EPA, 1999) stipulated that wastewater treatment plants 

(WWTPs) should perform secondary and/or tertiary treatment processes to obtain reclaimed 

water that is suitable for reuse, with a reduction in the organic and inorganic load according to 

results obtained from biochemical oxygen demand (BOD) and chemical oxygen demand 

(COD) tests amongst others (Asano et al., 2007; Hong et al., 2013).  

Wastewater treatment plants operate by conducting primary (physical treatment), secondary 

(biological treatment) and optionally tertiary (chemical) treatment processes. Conventionally, 

WWTPs proceed by removing large particles and suspended solids from the raw influent. This 

is followed by biological treatment utilizing activated sludge, which is then transferred to a 

secondary clarifier for further removal of suspended particles and organic matter. The final 

process may include post-treatment operations such as disinfection (EPA, 2004). The final 

treated effluent is usually then discharged into receiving water bodies to be reused by municipal 

authorities for further treatment and distribution to households and industries (Hong et al., 

2013). It is therefore imperative that WWTPs follow strict and appropriate treatment practices 

in order to prevent a negative impact that sewage contamination may have on the environment 

during discharge into receiving rivers and lakes (Jhansi and Mishra, 2013). Developed  
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countries follow proper wastewater treatment protocols, which are lacking in many developing 

countries where access to safe drinking water and adequate sanitation are rare. This is 

disturbing as many communities of these countries, rely on treated effluent-treating river water 

for domestic and agricultural purposes (Mpenyana-Monyatsi et al., 2012). Despite the stringent 

processes WWTPs should follow in order to effectively remove the load of enteric 

microorganisms; machinery malfunction and personnel short-comings, may result in WWTPs 

being regarded as reservoirs for these enteric microorganisms. Wastewater treatment plants 

have therefore been implicated as hot spots for antibiotic resistant bacteria (ARB) and antibiotic 

resistance genes (ARGs), resulting in the discharge of poor quality effluent into the receiving 

water bodies (Martínez, 2009; Mema, 2010). 

Current guidelines regulating the quality of reclaimed water and treated wastewater that is 

discharged into receiving bodies do not include contaminating substances such as antibiotics, 

ARB and ARGs. Meanwhile, the concentration of residual antibiotics in wastewater is related 

to the prevalence of ARB and ARGs (Zhang et al., 2009b). Many countries, including South 

Africa, have conducted studies pertaining to the prevalence and removal of bacteria in raw 

influent and treated final effluent (Ternes, 1998; Olańczuk-Neyman et al., 2001; Jhansi and 

Mishra, 2013; Samie and Ntekele, 2014; Naidoo and Olaniran, 2014; Osuolale and Okoh, 

2015).  These studies have shown that although WWTPs are able to remove a large amount of 

these bacteria during the treatment process, there is not always complete eradication in the final 

treated effluent. Due to variable mixtures of bacteria, abundant nutrients and antimicrobial 

agents, municipal wastewater is considered favourable for both the survival and the transfer of 

bacterial resistance. Extensive use of antibiotics for medical and animal husbandry purposes 

allows for their frequent entry into WWTPs, allowing for an increased selective pressure to be 

exerted on bacteria (Klare et al., 1995). This promotes the presence and proliferation of ARB 
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populations and thus increases the presence and transfer of ARGs between bacteria. However, 

it has generally been noted that the treatment allows a large reduction in bacterial prevalence 

and total number of ARB (Guardabassi et al., 2002; Huang et al., 2012). 

Enterococci are Gram-positive, non-spore-forming microorganisms that belong to the lactic 

acid bacteria group. Despite Enterococci generally being non-pathogenic, they can become 

opportunistic pathogens if the commensal relationship with the host is disturbed (Fernandes 

and Dhanashree, 2013). Enterococci are among the predominant bacterial flora in the 

mammalian gastrointestinal tract. These bacteria have however, resulted in the second leading 

cause of nosocomial urinary tract infections and the third leading cause of nosocomial 

bacteraemia and are the cause of a variety of diseases including surgical wounds and 

bloodstream infections and endocarditis (Spencer, 1996; Cheng et al., 2012). A highly 

problematic attribute of Enterococci is its high tendency to acquire and spread antibiotic 

resistance. These bacteria have gained resistance to a wide range of antibiotics including 

chloramphenicol, erythromycin, tetracycline, fluoroquinolones and vancomycin (Medeiros et 

al., 2014). Multidrug resistance disrupts treatment of enterococcal infections and the 

therapeutic spectrum of these cases are limited (Oberoi and Aggarwal, 2010). Previous studies 

have shown the presence of antibiotic resistant Enterococci (ARE) in health care units, 

wastewater effluents and in food (Sherperd and Gilmore, 2002; Rizzo et al., 2013; Varela et 

al., 2013).  The presence of ARE therefore needs to be monitored and controlled. This is highly 

important to ensure prevention of severe enterococcal infections and increase in its multidrug 

resistance. The primary aim of this chapter was to investigate the efficiency of the WWTPs in 

removing ARE during the treatment process, to establish their influence on receiving water 

bodies and to identify important species.  
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2.2. Materials and Methods 

 Sampling site and sample collection 

Two wastewater treatment plants (WWTPs), differing in the types of influent they receive, 

were sampled within Durban, South Africa. WWTP1 received a Greendrop score of 86% for 

the year 2011 by the eThekwini Municipality and is one of the five largest WWTPs in Durban 

with an overall inflow of approximately 45 000 m3 per day (DWA, 2011). It has a carrying 

volume of approximately 70 Ml/day. Majority of the influent received by the plant originates 

from domestic wastewater. Small quantities of wastewater received by the plant originate from 

industrial practices. During the tertiary treatment, the water is treated with chlorine. The 

influent received from WWTP2 are derived from domestic and hospital waste. This WWTP 

attained a Greendrop score of 99.4% for year 2011 also by the eThekwini Municipality and has 

a treatment capacity of 25 Ml/day (DWA, 2011).   The technology used by both plants involves 

activated sludge and mechanical aeration as well as anaerobic digestion and belt press 

dewatering.  Following tertiary treatment, the treated effluent of both WWTPs are released into 

major rivers in the Durban area. These rivers are widely used by many local inhabitants for 

domestic, agricultural and recreational activities.  The receiving river of treated effluent from 

WWTP1 (RR1) has a catchment size of 441km2, while the river length is 225 km from source 

to mouth. This river as well as its catchment area has various uses and includes conserved 

natural areas to highly urbanized and industrial areas (RHP, 2011). The second receiving river 

(RR2) of treated effluent from WWTP2 is 28 km long and empties into the Indian Ocean north 

of Durban. A lagoon is positioned at the river mouth, which is surrounded by a local 

conservancy. This area includes a 26 hectares Lagoon Nature Reserve (Kibirige et al., 2006).  

Samples were collected monthly for a period of 4 months (June to September 2014) from four 

pre-determined sampling sites within the plants i.e. raw influent, activated sludge, secondary 
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effluent (prior to disinfection) and final effluent (after chlorination). Upstream and downstream 

of the respective receiving rivers were also sampled at approximately 500 m from the discharge 

point of the WWTPs. All samples were collected approximately at 20-30 cm below the water 

surface in 5L containers that were disinfected with 70% (v/v) alcohol and rinsed with water at 

the respective sampling points prior to collection. Samples were maintained on ice and 

transported to the Department of Microbiology at the University of KwaZulu-Natal (Westville 

Campus) and stored at 4 ºC until processed. The collected water samples were processed within 

24 h of collection (Gao et al., 2012). 

 

 Determination of pH and temperature 

The physical parameters, measured for all samples were temperature and pH.  Temperature 

was measured on-site, immediately after collecting samples, using a standard mercury 

thermometer. The pH readings were conducted using a laboratory pH probe (Beckman 320 

pH meter). 
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Figure 2. 1: Depictions of noteworthy observations of surrounding sampling points during the sampling period. A- Major construction and pedestrian 

traffic observed at ‘after chlorination’ point of WWTP2. B- Vegetable farm along sampling point of RR2. C- Free-running poultry at river bank of RR1. 

D- Small scale livestock farm alongside river bank of RR2. E- Local inhabitants and pedestrians engaging in recreational activity (canoeing), fishing 

and washing at river bank of RR1. F- Fisherman and local inhabitant engaging in domestic activity at river bank of RR1.   

A 

F E D 

C B 
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 Enumeration of antibiotic resistant Enterococci  

2.2.3.1 Membrane filtration and plating 

Bacteriological analyses were performed using the membrane filtration method (Myers and 

Sylvester, 1997). The sample containers were shaken, prior to filtration, in order to evenly 

distribute the bacteria within the samples. Appropriate volume of serially diluted water samples 

were filtered through 0.45 µm pore size cellulose nitrate filters (Millipore, South Africa). 

Filters were placed on Enterococcus Selective Agar (Sigma-Aldrich, US), with and without 

antibiotics, and incubated at 37 °C for 48 h (Luczkiewicz et al., 2010). Presumptive 

Enterococci population was enumerated and expressed as colony forming units per hundred 

millilitres (CFU/100ml). The following concentrations of the various antibiotics were used as 

described by the Clinical and Laboratory Standards Institute (CLSI, 2007) for Enterococci: 

ampicillin (16 µg/ml), erythromycin (8 µg/ml), tetracycline (16 µg/ml), ciprofloxacin (4 µg/ml) 

and vancomycin (32 µg/ml). The chosen antibiotics are currently used in medical treatment of 

bacterial infections and have been commonly researched in recent studies (Luczkiewicz et al., 

2010; Czekalski et al., 2012; Marti et al., 2013). Tests were conducted in duplicate. 

 

2.2.3.2 Data analysis 

The percentage prevalence of antibiotic resistant Enterococci (ARE) was calculated using the 

formula:           
𝐴

𝐵
× 100 (Eq. 1), 

Where A is the number of Enterococci isolates resistant to an antibiotic and B is the total 

number of Enterococci present in the wastewater sample (Tao et al., 2010).  

The efficiency of ARE removal by the WWTPs was calculated using the formula: 

𝐴−𝐵

𝐴
 × 100 (Eq.2), 

Where A is the number of ARE present in the influent wastewater sample and B is the number 

of ARE present in the final treated effluent wastewater sample (Tao et al., 2010). 
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 Identification of presumptive Enterococci species  

Two hundred of the Enterococci isolates recovered from the final effluent and receiving river 

water were purified on nutrient agar. Presumptive identification of the isolates at genus level 

were conducted by means of biochemical analysis, while confirmation at the genus and species 

level was conducted by means of Polymerase Chain Reaction (PCR) analysis.  

2.2.4.1 Biochemical analysis 

 

Characterization of presumptive Enterococci included a catalase test, growth on Bile Esculin 

Agar (BEA) and aesculin degradation as well as growth at 45 °C in Tryptone Soy Broth and 

growth in the presence of 6.5% NaCl (Ferreira de Silva et al., 2006). All tests were conducted 

in duplicate. 

2.2.4.2 Molecular identification via PCR assays  

 

Presumptive Enterococci were subjected to multiplex PCR for further identification to the 

genus and species level using primers listed in Table 2.1 (Deasy et al., 2000; Jackson et al., 

2004). DNA was isolated using the boiling method (Tao et al., 2010) and used as template for 

PCR. PCR amplification was conducted using a T100™ Thermal Cycler (Bio-Rad, USA). The 

PCR reactions contained a final volume of 22.5 µl, comprising of 2 groups each containing 20 

µl mastermix. The first group selected for E. faecalis and E. faecium. The second group selected 

for E. hirea. The base mastermix was made up of 3 mM MgCl2, 0.2 mM dNTP’s, 1 × PCR 

buffer, 3.5 U Taq, 1.25 µl (16 mM) of each genus specific primer, 1.25 µl (16 mM) of each 

species specific primer with exception of 2.5 µl (16 mM) of E. faecalis primer. The following 

PCR protocol was used for both groups: initial denaturation at 95°C for 4 min, 30 cycles of 

denaturation at 95°C for 30 s, annealing at 55°C for 1 min, elongation at 72°C for 1 min and 
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final extension at 72°C for 7 min. The resulting PCR products were validated by conducting a 

2% agarose gel electrophoresis at 60 V for 90 min in 1% TAE buffer, stained with ethidium 

bromide (0.5 μg/ml) and visualized using G: BOX imaging system (Syngene). 

 

Table 2.1: Genus and species specific primers used in PCR assays for Enterococcus 

identification (Deasy et al., 2000; Jackson et al., 2004) 

Target Primer 

name 

Sequence 5'  3' Product 

size 

(bp) 

PCR 

group 

Annealing 

temperature 

(°C) 

Enterococci E1 

E2 

TCA ACC GGG GAG GGT 

ATT ACT AGC GAT TCC GG 

 

733  55 

E. faecalis FL1 

FL2 

ACTTATGTGACTAACTTAACC 

TAATGGTGAATCTTGGTTTGG 

 

360 1 55 

E. faecium  FM1 

FM2 

GAAAAAACAATAGAAGAATTAT 

TGCTTTTTTGAATTCTTCTTTA 

215 1 55 

E. hirae  HI1 

HI2 

CTTTCTGATATGGATGCTGTC 

TAAATTCTTCCTTAAATGTTG 

187 2 55 

 

 

2.3. Results 

 pH and temperature profiles of the water samples 

The temperature and pH levels obtained for the various samples during the sampling period are 

shown in Table 2.2. The temperature at both WWTPs during the sampling duration ranged 

between 22-25 ºC, 20-26 ºC, 18-25 ºC, and 17-25 ºC for influent, activated sludge, before 

chlorination and after chlorination samples, respectively. The temperature obtained for both 

receiving river samples were similar to the wastewater samples, with temperatures ranging 

between 15-23 ºC for upstream river samples and 17-24 ºC for downstream river samples. 
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Varying pH levels were noted for all samples during the sampling period with the minimum 

pH value of 6.43 and maximum of 7.65. Sludge samples however showed a slightly more acidic 

pH (4.94) in June 2014 for WWTP2 and in August for WWTP1, with pH values of 4.94 and 

4.92 obtained respectively (Table 2.2).  

Table 2.2: pH and temperature profiles of the wastewater samples from June to September 

2014 

 

Month Sampling 

Point 

WWTP1 WWTP2 

  
Temperature (°C) pH Temperature (°C) pH 

June 2014 Influent 22  7.51  23  6.73  

AS 23 6.43  23  4.94  

BC 18  7.33  21  6.51  

AC 17 7.25  19  6.43  

US 16 7.51  16  7.10  

DS 17 7.17  18  6.79  

July 2014 Influent 22  7.28  22  7.23  

AS 22 6.00  20  6.89  

BC 18 7.10 20  7.24  

AC 17 7.15  18 7.25  

US 17 7.15  15 7.59  

DS 17 7.38  17  7.62  

August 2014 Influent 25  7.13  23  7.41 

AS 23  7.03  23  5.25 

BC 21  7.36  22  6.83  

AC 21  7.37  22  7.19  

US 21  7.27  20  7.65  

DS 21  7.32  18  7.50 

September 

2014 

Influent 24  7.12  24  6.98  

AS 24  4.92  26  5.34  

BC 23  7.07  25 6.89  

AC 22  7.16  25 7.09  

US 23  7.33  20  7.17  

DS 24  7.62  24  7.35  

 

 

AS= Activated sludge; BC= Before Chlorination; AC= After Chlorination; US= Upstream River; DS= Downstream 

River 

 

Formatted ...

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...



47 

 

 

 Profiles of antibiotic resistant Enterococci 

The average CFU/100ml of Enterococci obtained on Enterococcus Selective Agar with or 

without antibiotic used in the estimation of the prevalence of antibiotic resistant Enterococci 

(ARE) in WWTP1 and WWTP2, are presented in Table 2.3. The highest average ARE counts 

(in CFU/100ml) obtained for WWTP1 was for the influent and activated sludge samples and 

ranged from 42700 - 618000 CFU/100ml and 90500 - 871000 CFU/100ml, respectively (Table 

2.3). A decrease in average CFU/100ml can be noted from samples before chlorination to the 

after chlorination samples. These values ranged from 700 - 8700 CFU/100ml (before 

chlorination) to 0 - 80 CFU/100ml (after chlorination). Low values were obtained upstream 

and downstream of the receiving river with values ranging from 0 - 200 CFU/100ml and 0 - 

100 CFU/100ml respectively. A decrease in average CFU/100ml values can be observed from 

the upstream to the downstream river samples. Tetracycline resistant Enterococci were noted 

as being the highest in comparison to the population of Enterococci resistant to the other four 

antibiotics tested, with ampicillin resistant Enterococci being the lowest. Similar results can be 

noted in the average CFU/100ml values obtained in WWTP2 as depicted in Table 2.3, showing 

that the influent and activated sludge samples also had the highest ARE counts. The average 

CFU/100ml values for the influent ranged from 38000 - 735000 CFU/100ml, while that for 

activated sludge was greater and ranged from 235000 - 2370000 CFU/100ml. A decrease in 

ARE from the before chlorination to the after chlorination can also be seen in WWTP2. As for 

WWTP1, low ARE values for WWTP2 were also obtained in the upstream and downstream 

river samples with values ranging from 10 to 700 CFU/100ml and 0 to 30 CFU/100ml, 

respectively (Table 2.3).  
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Table 2.3: Average antibiotic resistant Enterococci (CFU/ 100ml) at various sampling points during the sampling period in both WWTPs 

 Antibiotic Influent Sludge Before 

Chlorination 

After  

Chlorination 

Upstream River Downstream River 

 
 

Average (CFU/100ml) ± SD 

 (Range) 

WWTP1 

Control 3790000 ± 3.6 

(3200000-4000000) 

4316000 ± 28 

(75000-7200000) 

35400 ± 0.3 

(3500-66000) 

700 ± 0.0 

(0-2900) 

1100 ± 0.0 

(510-1800) 

1100 ± 0.0 

(1020-1600) 

Ampicillin 42700 ± 0.2 

(6000-63000) 

90500 ± 1.1 

(0-272000) 

1600 ± 0 

(13-4350) 

70 ± 0.0 

(0-300) 

30 ± 0.0 

(1-55) 

0 

 

Erythromycin 393000 ± 1.8 

(213000-630000) 

394000 ± 4.3 

(3000-1070000) 

5600 ± 0.1 

(173-14650) 

40 ± 0.0 

(0-200) 

100 ± 0.0 

(13-152) 

52 ± 0.0 

(57-91) 

Ciprofloxacin 135000 ± 0.4 

(80000-168000) 

104000 ± 0.7 

(2000-166000) 

2500 ± 0 

(68-7250) 

0 0 0 

 

Tetracycline 618000 ± 3.8 

(189000-1170000) 

871000 ± 10.8 

(0-2590000) 

8700 ± 0.1 

(243-16800) 

80 ± 0.0 

(0-300) 

200 ± 0.0 

(78-254) 

100 ± 0.0 

(98-130) 

Vancomycin 351000 ± 2.8 

(1900-720000) 

186000 ± 2.8 

(0-630000) 

700 ± 0 

(62-1550) 

0 100 ± 0.0 

(0-159) 

100 ± 0.0 

(83-112) 

 

WWTP2 

Control 3500000 ± 5.1 

(2930000-4250000) 

31370000 ± 247.3 

(3250000-59800000) 

2000 ± 0.0 

(1400-2700) 

100 ± 0.0 

(0-400) 

3200 ± 0.0 

(3000-3600) 

400 ± 0.0 

(0-10200) 

Ampicillin 38000 ± 0.1 

(21800-54000) 

235000 ± 1.9 

(26000-450000) 

50 ± 0.0 

(30-80) 

0 10 ± 0.0 

(0-45) 

0 

Erythromycin 318000 ± 0.7 

(222000-418000) 

1058000 ± 8.4 

(257000-2190000) 

100 ± 0.0 

(100-400) 

0 45 ± 0.0 

(19-97) 

0 

Ciprofloxacin 75000 ±  0.6 

(17000-145000) 

353000 ± 4.9 

(23000-1140000) 

80 ± 0.0 

(40-100) 

0 20 ± 0.0 

(0-60) 

0 

Tetracycline 735000 ± 2.3 

(527000-1090000) 

2370000 ± 24.1 

(383000-5960000) 

400 ± 0.0 

(350-600) 

20 ± 0.0 

(0-70) 

200 ± 0.0 

(70-600) 

30 ± 0.0 

(0-55) 

Vancomycin 214000 ± 1.4 

(4500-324000) 

1930000 ± 24.5 

(89000-5760000) 

100 ± 0.0 

(30-300) 

0 700 ± 0.0 

(700-1300) 

0 
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2.3.2.1 Prevalence of antibiotic resistant Enterococci  

High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 

40% (Figure 2.2 A and B). Variable trends, of the ARE prevalence, were observed over the 

sampling period for both WWTPs. The influent and activated sludge samples contained the 

greatest prevalence of ARE with lower values observed in the before and after chlorination 

samples (Figure 2.2 A and B). Despite the final effluent showing a reduced ARE prevalence 

(after chlorination), higher levels of ARE were detected in the receiving river samples (RR1 

and RR2) throughout the sampling period. Generally, a lower ARE prevalence from upstream 

to downstream of both river samples can be seen in Figure 2.2 (A and B). This shows that the 

final effluent from the WWTPs reduced the ARE prevalence in the respective receiving rivers. 

Generally, high prevalence of tetracycline resistant Enterococci were observed throughout the 

4 month sampling period across all sampling points. The highest tetracycline resistant 

Enterococci values can be seen in the influent sample for WWTP1 and WWTP2 for September 

2014 (29.55% and 25.65%, respectively), it can also be seen in the activated sludge samples of 

WWTP1 in July 2014 (35.97%) as well as for the before chlorination sample in WWTP1 for 

July 2014 (39.67%). This high prevalence was closely followed by high erythromycin resistant 

Enterococci, with prevalence being the highest in the before chlorination samples in WWTP1 

for July and August 2014 (22.11% and 22.12%, respectively) and in WWTP2 for July 2014 

(15.92%) as well as for the influent samples of WWTP1 in July 2014 (15.75%). High 

prevalence of vancomycin resistant Enterococci can be noted across all months in the upstream 

and downstream samples of both RR1 and RR2. This high resistance can be seen in RR2, in 

the upstream river samples with prevalence values of 33.2%, 29.11%, 21.78% and 6.68% 

obtained in June, July, August and September, respectively. These values were the highest 

ARE values obtained for the whole sampling period in the upstream river samples of RR2. 
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Vancomycin resistant Enterococci were also high in the downstream river samples of RR2 in 

June 2014 (10.50%) and September 2014 (8.28%). High prevalence was also observed in 

downstream river samples of RR1 from June to Sept 2014 with values of 6.97%, 8.01%, 

10.25% and 9.52%, respectively. With the increased ARE prevalence observed for the after 

chlorination point of WWTP2 in August 2014, the prevalence of vancomycin resistance was 

also notably high at 4.88%. Resistance to vancomycin was also observed to be the highest for 

influent of WWTP1 in June 2014 (18%) and activated sludge for September 2014 of WWTP2 

(20.14%). Vancomycin resistant Enterococci also showed to be second and third highest in 

most samples from influent, activated sludge and before chlorination. The ARE prevalence in 

the after chlorination samples were low to nothing in June and July 2014 for WWTP1, but 

higher in August and September 2014. A notable decrease in ARE prevalence can be seen 

before chlorination to after chlorination. Similar results of ARE prevalence were obtained for 

WWTP2.  
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Figure 2.2: Prevalence of antibiotic resistant Enterococci at (A) WWTP1 and (B) WWTP2 
 

AS= Activated sludge; BC= Before Chlorination; AC= After Chlorination 

2.3.2.2 Removal of antibiotic resistant Enterococci  

Figure 2.3 represents the average ARE removal percentage for both WWTP1 and WWTP2. The 

percentage removal for both WWTP1 and WWTP2 were all above 99%. Up to 100% removal of 

ciprofloxacin resistant Enterococci was obtained for WWTP1, with the other ARE having a 

removal value of 99.83% to 99.99%. A 100% removal of erythromycin, tetracycline and 

vancomycin resistant Enterococci was also obtained in WWTP2, with the remaining ARE having 

a value of 99.99% removal.  

 

 

Figure 2.3: Removal of antibiotic resistant Enterococci after the treatment process at both 

WWTPs 
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 Species distribution of the Enterococci isolates 

Following a negative catalase test, isolates were tested for their ability to grow on bile easulin agar, 

producing a blackening halo, while also being able to degrade easculin. These isolates also tested 

positive for their ability to grow at elevated temperatures (45 ºC) as well as at high salt 

concentrations (6.5% NaCl). Isolates that passed these biochemical tests were then confirmed as 

Enterococci at the genus and species level utilizing multiplex PCR amplification. Figure 2.4 shows 

the PCR products of the genus and species on a 1.5 % agarose gel. The Enterococci genus amplicon 

product was 733 bp, while E. faecalis was 360 bp, E. faecium was 215 bp and E. hirea was 187 

bp. Lane 1 represents a 100 bp ladder, Lane 2, 3 and 4 shows the positive controls of E. faecalis, 

E. faecium and E. hirae, respectively. While lane 6 to 13 shows representative isolates, with lane 

14 containing a negative control. Table 2.4 highlights that E. faecalis was the most abundant 

species at 34.5% of the total isolates identified, followed by E. feacium and E. hirea at 26% and 

25.5%, respectively.  The remaining 14% confirmed as Enterococci isolates, but were not 

identified as being E. faecalis, E. faecium or E. hirea.  
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Figure 2.4: PCR detection of genus and species specific genes of Enterococci. Genus-specific 

bands are indicated at 733 bp and species-specific bands are indicated at 360, 215 and 187 bp. 

Lane 1: 100 bp ladder; Lane 2- 4: positive controls of E. faecalis, E. faecium and E. hirae; Lane 

6-7: E. faecalis; Lane 9-10: E. faecium; Lane 12-13: E. hirae; Lane 14: negative control 

 

Table 2.4: Distribution of Enterococci species identified in this study  

 

 

 

 

 

Species  Total  Total (%)  

E.  faecalis  69/200  34.5  

E. faecium  52/200  26.0  

E. hirea  51/200  25.5  

Enterococcus spp.  28/200  14.0  

  1       2      3      4      5       6      7       8       9     10     11     12     13      14   

733 bp 

360 bp 

215 bp 

187 bp 
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2.4. Discussion 

Following the era of the antibiotic discovery, humans have become dependent on these miracle 

drugs for the control of infectious disease and in animal husbandry. In a study conducted in 2002, 

it was shown that the approximate global quantity of antibiotics consumed was between 100 

million to 200 million kilograms (Wise, 2002). Large quantities of these antibiotics enter WWTPs 

from improper disposal, land run-off or from human faeces as a result of the antibiotics not being 

fully metabolized in the body (Hong et al., 2013). Conventionally, wastewater in WWTPs is 

initially screened for large objects and suspended particles followed by biological treatment using 

activated sludge. Subsequently the water is then transferred into secondary clarifiers for further 

removal of suspended particles and organic matter. This step is sometimes followed by a tertiary 

step (disinfection) before being discharged into receiving water bodies or reused for agricultural 

purposes (Hong et al., 2013). With many countries opting for reuse of wastewater as reclaimed 

water, it is necessary that wastewater is treated in an appropriate and efficient manner. One 

contaminant that often goes by unnoticed are ARB. The present study analysed the efficiency of 

two WWTPs that discharge their final treated effluent into two major rivers in Durban which are 

commonly used and further processed by local municipalities as a supply of drinking water to 

houses and industries and are also used by local inhabitants directly as a water source. The 

prevalence of Enterococci and antibiotic resistant Enterococci (ARE) was investigated in this 

study with particular focus on Enterococci resistant to ampicillin, erythromycin, tetracycline, 

ciprofloxacin and vancomycin. These antibiotics were selected as they are currently used in the 

treatment of many enterococcal infections (Gavaldà et al., 2007; Kristich et al., 2014). Urinary 

tract and soft-tissue infections are commonly treated with ampicillin or vancomycin in severe cases 
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(Cunha, 2006; Baddour et al., 2015). Ciprofloxacin are used with much success for urinary tract 

infections and erythromycin has shown to be effective in supressing symptoms in endocarditis. 

Also, intravenous ampicillin may be used as a cure for enterococcal meningitis, while vancomycin, 

aminoglycosides, ciprofloxacin and erythromycin in the treatment of this disease (Dhanalakshmi 

et al., 2015).    

Enterococci are commonly found in the intestine of most mammals. They can also be found in 

many aquatic environments, as they are able to survive and propagate in adverse environments of 

extreme pH, temperature and sodium chloride concentrations (Feuerpfeil et al., 1999).  This genera 

of bacteria are nosocomial pathogens that cause a variety of diseases including urinary tract 

infections, endocarditis and bacteremia (Spencer, 1996). Nosocomial infections are problematic 

as they lead to functional disability and emotional stress and may reduce the quality of life (WHO, 

2002). Such infections are one of the leading causes of death (Ponce-de-Leon, 1991).  High 

hospitalization expenses resulting from increased length of stay is another major problem as well 

as loss of work (Kirkland et al., 1999).  Extensive antimicrobial agents are used to treat patients. 

By means of selection and exchange of genetic resistance, multidrug resistant bacteria are on the 

rise. Resistances to antibiotics used to treat bacterial infections, particularity enterococcal 

infections, are a major problem as many of these antibiotics are obsolete and can no longer be used 

in effective treatment. Many hotspots for these resistant bacteria have been identified, with 

WWTPs being of particular concern as the final effluents are discharged into receiving water 

bodies and thus impacts the environment. The final effluent from WWTPs have to be of a high 

quality as WWTPs have to comply with the National Water Act (1998) of South Africa for 

discharge of the final effluent into a surface water source or the ocean directly (DWAF, 2004). It 

is therefore imperative that WWTPs are efficient in their treatment process, ensuring that water of 
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high quality is released back into the environment and prevents the spread of antibiotic resistance. 

In addition to the selective pressure of high antibiotic concentrations and its constituents being 

present in wastewater, large microbial populations and the high nutrient levels from faecal matter, 

may contribute to the final effluent being a carrier of ARB and thus a contaminating factor of ARB 

to water bodies (Salyers et al., 2004).  

In the present study, temperature and pH measurements were conducted at the four pre-determined 

sampling points within the WWTPs and upstream and downstream of their receiving rivers. 

According to the Government Gazette of South Africa (1984), the standards of wastewater or the 

final effluent arising in the catchment area draining water to any river, state that temperature levels 

should not exceed 25 ºC and pH levels should be between 5.5 and 7.5.  Enterococci, however, are 

able to grow at temperatures ranging from 5 to 50 ºC and also have the ability to grow in a range 

of pH levels from 4.6 to 9.9 (Fisher and Phillips, 2009; Van den Berghe et al.,2006).  These bacteria 

are able to withstand such varying temperatures and pH levels due to their specialized physical 

characteristics. Enterococcus faecalis has the capability of tolerating extreme pH levels as a result 

of its durable and impermeable membrane (Fisher and Phillips, 2009; Nakajo et al., 2005). The 

measured temperature values obtained for all the water samples during the sampling periods fall 

within the standards stipulated in the Government Gazette (1984), indicating that the treated 

effluent do not pose any danger to the homeostatic balance of the receiving rivers (Jaji et al., 2007).    

The pH levels obtained for most of the samples during the sampling period, ranging from 6.43 to 

7.65 were also in accordance with the Government Gazette (1984). Most of the pH values, also 

complied with the World Health Organization standard of 7.0 to 8.5 (WHO, 1989). The values 

obtained were also similar to values obtained by Igbinosa and Okoh (2009). The pH is an important 
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water quality factor as it establishes if the water can be used for other purposes. It is also important 

that pH levels for the final effluent are within the stipulated guidelines when being released into 

the environment as aquatic and plant life may not survive under extreme alkaline or acidic pH 

values. The pH protection limits for fisheries and aquatic life, recommended by the EU, range from 

6.0 to 9.0 (Chapman, 1996).  

Enterococci are hardy organisms and have the ability to withstand harsh environmental parameters 

(extreme temperature, pH and salinity levels) and are therefore able to persist in the environment 

(Leclercq et al., 2013). Generally a decrease in the population number of Enterococci are observed 

when Enterococci are released from the gastrointestinal tract of warm-blooded animals into new 

environments such as water systems that poses many stress factors (Muruleedhara et al., 2012).  

Environmental factors such as sunlight have been known to have an adverse effect on bacterial 

populations (Downes and Blunt, 1877). Sunlight is known to damage microbial DNA or lead to 

microbial inactivation by means of direct absorption of ultraviolet light or by means of indirect 

formation of endogenous and exogenous reactive oxygen species (Muruleedhara et al., 2012).  Due 

to this stress factor, it is would be expected that bacteria found in open-air wastewater tanks, 

exposed to large amounts of sunlight, would not be found in large numbers as a result of poor 

survival and propagation.  

In the present study, ARE prevalence as high as 40% was obtained for both WWTPs.  The 

prevalence of ARE was highest in the influent and activated sludge samples possibly as a result of 

high microbial load and optimal growth conditions for the bacteria. Generally biological reactors 

such as activated sludge tanks are rich in bacteria and favour their proliferation (Jury et al., 2010).  

A reduction in ARE prevalence in treated effluent, following the disinfection step, showed the 
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effectiveness of the chlorination used by these WWTPs in removing the ARE. The ARE population 

in the upstream river samples of both RR1 and RR2 are higher than that in the downstream 

samples, possibly due to the positive effect of the final effluent discharge from both plants on the 

receiving rivers. The observed higher prevalence of ARE in the upstream river samples of RR2 

than in RR1 may be due to a medium scale vegetable farm operating along the sampling point as 

well as a small scale livestock farm, as can be seen in Figure 2. 1 (B and D).  This is because 

manure and antibiotic runoff from these farms may have lead to the increase in ARE prevalence. 

Up to 90% of an antibiotic dose can be passed in an animal’s urine and up to 75% in their faeces 

(Sarmah et al., 2006) and these antibiotics can seep into groundwater. Animal waste and manure 

which is used as fertilizer can also be a contributing factor to the spread of antibiotic resistance 

genes (ARGs) and contamination of soil and groundwater. Use of antibiotics for agricultural 

purposes has shown to be linked to ARB prevalence in surface water in the United States and 

Mexico (Sarmah et al., 2006).  A contributing factor to the higher ARE prevalence in the upstream 

river samples of RR1 as compared to the downstream river samples, may be due to the increased 

anthropogenic activity present at this sampling point. As can be seen in Figure 2. 1 (C, E and F), 

free-running poultry were present along the river bank as well as local inhabitants, fisherman and 

pedestrians engaging in recreational and domestic activities.  

The lowest resistance observed against ampicillin for all samples, across all months, in this study 

is unusual as ampicillin are first line antibiotics and are most commonly used in the treatment of 

bacterial infections. However, the high level of susceptibility towards this antibiotic was in 

accordance with a previous study that revealed high susceptibility of environmental Enterococci 

towards beta-lactams (Ferreira da Silva et al., 2006). These observations were consistent with 

many other studies testing Enterococci in animal and food products and in clinical isolates (Peters 
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et al., 2003; Fluit et al., 2000).  In the present study, the higher level of resistance towards 

tetracycline obtained in WWTP2 than in WWTP1 may be attributed to the hospital influent 

received by WWTP2. This is in accordance with previous studies reporting higher tetracycline 

resistance in clinical isolates (Fluit et al., 2000; Mondino et al., 2003). From the results obtained, 

resistance to erythromycin was second highest. Enterococcal resistance to macrolides, such as 

erythromycin, is alarming due to the increasing prevalence of resistance phenotypes (Ferreira da 

Silva et al., 2006).      

The nosocomial infections caused by Enterococci, such as urinary tract and surgical wound 

infections, bacteremia and endocarditis are often treated by the glycopeptide antibiotics, 

specifically vancomycin (Spencer, 1996).  Resistance to this antibiotic is problematic in the 

therapy of these infections (Schwartz et al., 2003). In a study conducted in Sweden, 60% of raw 

wastewater contained vancomycin resistant Enterococci (VRE) with 19% of final effluent 

containing VRE and low levels found in surface water (Iversen et al., 2002). In the present study 

a high VRE prevalence can be noted across all months in the upstream and downstream river 

samples of RR1 and RR2. These values were the highest ARE values obtained for the whole 

sampling period in the upstream river samples of RR2. Increased ARE prevalence was observed 

for the after chlorination point of WWTP2 in August 2014, where vancomycin resistance was also 

notably high. Vancomycin resistant Enterococci also showed to be second and third highest in 

most samples from influent, activated sludge and before chlorination. High resistance to 

vancomycin, frequently noted in WWTP2 is not surprising as this WWTP received a portion of its 

waste from hospital settings. It has been shown that hospital waste contains VRE (Novais et al., 

2005). The concentration of this antibiotic in hospital waste is presumably higher than in domestic 

or industrial waste, which mainly is received in WWTP1 (Jury et al., 2010).   
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 Many classes of antibiotics have been reported in wastewater since the late 1990s including 

sulfonamides, trimethoprim, β-lactams, fluoroquinolones, macrolides and tetracyclines (Ghosh et 

al., 2016; Sinthuchai et al., 2016). It is therefore not surprising that bacteria resistant to these 

antibiotics are still prevalent, as shown in the present study. The observed high reduction in ARE 

(up to 99%) observed for both WWTPs corroborates a previous study conducted by Ferreira da 

Silva et al. (2006). They studied a similar WWTP to WWTP1 in which the plant received mostly 

domestic sewage and some industrial effluents and followed the activated sludge process. Both 

WWTPs have been awarded high green drop statuses for the year 2011. This was as a result of 

stringent treatment processes followed by the plants as well as maintenance upgrades. This is 

evident from the high removal percentages of ARE in both WWTPs. The high removal rate of 

ARE in the WWTPs may have been because of the recent upgrades at WWTP1 and the stringent 

treatment processes followed by both WWTPs that allowed them to achieve such high Greendrop 

scores in 2011. The decline in ARE from influent to final effluent samples are in accordance with 

other studies that showed such a decline following treatment (Garcia et al., 2007).  

A bile-esculin positive test is one in which the organism is able to turn the agar from a pale yellow 

to a dark brown to black colour following at least 48 h incubation (Chuard and Reller, 1998). This 

test is commonly used for presumptive identification of group D Streptococci and Enterococci as 

not many bacteria can hydrolyze esculin in the presence of bile. The ability of these organisms to 

withstand environments of high salinity and temperature levels were also used as an important 

biochemical test. Following PCR amplification E. faecalis was the most abundant species 

identified at 34.5% of the total isolates, followed by E. faecium and E. hirea at 26% and 25.5%, 

respectively.  The remaining 14% were confirmed to belong to the genus Enterococci. The 

prevalence of E. faecium and E. hirea were each shown to be at less than 35% in wastewater 
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effluent, with E. faecalis at less than 20%. The prevalence of specific enterococcal species are 

dependent on season and climatic variability (Byappanahalli et al., 2012). Enterococcus faecalis 

is commonly related to causing urinary tract, neonatal and central nervous system infections, 

endocarditis and bacteremia (Sievert et al., 2013; Mikalsen et al., 2015). Enterococcus faecalis 

and E. faecium are predominantly found in human and animal faeces and sewage (Manero et al. 

2002; Abamecha et al., 2015). This accounts for the high prevalence of these species found in the 

study. A study conducted by Bonjoch et al. (2011) showed that certain Enterococci species were 

most prevalent, in aquatic environments, during the winter. One such species is E. hirea, which 

could be why such high numbers of E. hirea was identified in this study as the study was conducted 

mainly during winter (Leclercq et al., 2013). Enterococcus faecalis, E. faecium, E. durans and E. 

hirae are used as sewage contamination and water quality indicators as well as indicators of the 

presence of disease causing pathogens that are found in the gastrointestinal tract of most mammals 

(Kaltenthaler and Pinfold, 1995; Byappanahalli et al., 2012).  

 

2.5. Conclusion 

This chapter investigated the efficiency of two WWTPs (within Durban, South Africa), in 

removing ARE during the treatment process, by evaluating the prevalence and removal of ARE at 

stipulated sites within the WWTPs. The influence of final effluent on the environment was also 

studied by analysing the ARE prevalence upstream and downstream of the receiving water bodies. 

Additionally, the identity of predominant Enterococci species was determined by conducting 

standard biochemical tests and PCR assays. 
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Previous studies, conducted in South Africa, have shown WWTPs to be reservoirs for ARE 

(Olaniran et al., 2012; Iweriebor et al., 2015). However, the results of this study show that WWTPs 

cannot be generalized as being such reservoirs. The temperature and pH levels of the water samples 

were satisfactory and within the specified standards of the Government Gazette. Both WWTPs 

were efficient in removing ARE during the treatment process by more than 99% (with no final 

effluent sample exceeding 80 CFU/100ml of ARE). This therefore shows that final effluent 

discharged from the WWTPs do not contribute to an increase in ARE in the environment. This is 

evident by the decrease in ARE prevalence from upstream to downstream of the receiving water 

bodies as a result of the dilution effect of the final effluent on the upstream water. The three species 

identified, are commonly found in faecal matter and aquatic environments. They are important 

indicators of water quality and disease causing pathogens. Enterococcus faecalis, was the 

predominant species identified, and is known to cause many human infections. It is therefore 

imperative that frequent monitoring of WWTP processes be conducted in order to maintain 

adequate final effluent and environmental water quality as well as to avert the spread of ARE.  
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CHAPTER THREE 

ANTIBIOTIC RESISTANCE PROFILES OF ENTEROCOCCI SP. RECOVERED 

FROM TREATED EFFLUENT AND RECEIVING SURFACE WATER, AND FATE 

OF TETRACYCLINE RESISTANCE GENES DURING THE WASTEWATER 

TREATMENT PROCESS 

 

3.1. Introduction 

The introduction of antibiotics in the 1940’s have saved countless lives’ and revolutionized the 

medical, agricultural, social and economic world. This miracle drug has been used in the treatment 

and eradication against many deadly bacterial infections and has also allowed for great advances 

in agricultural practices (Bouki et al., 2013). Antibiotics have evolved in their role as a mere 

treatment option against infections to an infection preventative and as a protective measure in 

patients suffering from cancer and immuno-deficiencies (Gelband et al., 2015). The invaluable 

applications of antibiotics has resulted in its widespread use and increased consumption (Aminov, 

2009). A major problem associated with their over-use and misuse is the development of antibiotic 

resistance which continues to be a catastrophic crisis worldwide, since the ineffectiveness of 

antibiotics is highly problematic in controlling infectious diseases, thus increasing the death rate. 

This major problem was recently acknowledged and highlighted in a report by the World Health 

Organization (2014b) in which it was stated that antibiotic resistance is no longer a prediction for 

the future but is a current problem worldwide and that antibiotic resistance affects the effective 

treatment of common infections in the community and hospitals. It was further reported that 

without immediate action, the world is headed to a post-antibiotic era. The problem of antibiotic 

resistance is further compounded by the rapid spread of antibiotic resistance genes (ARGs) 
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amongst bacteria (Wang and Schaffner, 2011).  The spread of ARGs have often been found in 

environments such as wastewater, surface water, drinking water, soil and sediment (Brooks et al., 

2007; Munir et al., 2011).   

Wastewater and natural aquatic environments commonly inhabit ARB, ARGs and multidrug 

resistant bacteria. Anthropogenic and agricultural practices are major contributors to the spread of 

ARGs in the environment (Pei et al., 2006). Antibiotic resistance may be intrinsic or acquired in 

bacteria. Extra-chromosomal elements that carry genes conferring antibiotic resistance have an 

enhanced ability to transfer ARGs via conjugation that lead to multidrug resistant bacterial 

infections in humans (Clewell, 2014). The increased spread of resistance in the environment is 

often due to the transfer of ARGs via horizontal gene transfer (HGT) by transduction, 

transformation or conjugation (Burmeister, 2015). Transferable ARGs are found on plasmids, 

integrons and transposons. These vectors transport the genes between bacteria of the same species 

and between bacteria of other genera or species. Bacterial procurement of ARGs from resistant 

donors can convert a previously susceptible bacteria to be antibiotic resistant (Burmeister, 2015).      

 Large quantities of ARGs have been reported in agricultural settings as well as in wastewater 

treatment plants (WWTPs) and their treated effluents (Schwartz et al., 2003; da Costa et al., 2006; 

Pruden et al., 2006; Iweriebor et al., 2015; Yuan et al., 2015; Karkman et al., 2016). Wastewater 

received from clinical settings are major reservoirs of antibiotics, ARB and ARGs that may then 

be transferred into the environment. Not all WWTPs are designed to completely or efficiently 

remove ARB and ARGs. The combination of gut-associated resistant bacteria, antibiotic residues, 

high nutrient levels and the large microbial consortium found in the activated sludge shows that 

the secondary treatment process in a WWTP provides a favourable setting for the transfer of ARGs 
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(Michael et al., 2013). This elevated transfer of mobile genetic elements between bacteria in 

activated sludge have been shown in many studies (Zhang et al., 2009a; Colomer-Lluch et al., 

2011). The fate of ARGs in the environment rests on the ability of the bacterial host to survive and 

propagate in the environment following discharge from the WWTP (Proia et al., 2015).   

One bacterial group of particular importance with regards to antibiotic resistance are the 

Enterococci. The commensal nature of Enterococci make them important microorganisms in the 

intestine of most mammals. These organisms are however, the cause of many nosocomial 

infections (Gunasekera and Perera, 2007). Research has shown that Enterococci is the second most 

frequent cause of hospital acquired infections globally (Karki et al., 2015). Enterococci are among 

the leading causes of nosocomial infections of the urinary tract, surgical wounds, bloodstream and 

endocarditis, amongst others (Hidron et al., 2008). This group of bacteria could possibly obtain 

resistance to most clinically useful antibiotics (Hollenbeck and Rice, 2012). Due to Enterococci 

being infamously known for their ease in acquiring antibiotic resistance, they play an important 

role in the spread of resistance at the intra-and inter- specific levels. Antibiotic resistant 

Enterococci (ARE) may flourish in various environments such as the gastrointestinal tract of most 

mammals, food sources, clinical settings and WWTPs. From these respective hotspots, ARE can 

easily spread to humans directly via drinking water sources or indirectly via consumption of 

infected meat and vegetables (Leclercq, 2009; Marshall and Levy, 2011; Getachew et al., 2013). 

The perpetual nature of these ubiquitous organisms, in the environment, are worrisome as they can 

outlast other organisms, such as fecal coliforms, and thus have an increased likelihood of re-

infecting humans and animals (Kuhn et al., 2000). Due to the vast acquisition of resistance to 

penicillin, vancomycin and high level aminoglycoside, the treatment of enterococcal infections 
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pose a difficult challenge (Mohanty et al., 2006). Multidrug resistance hinders treatment of 

enterococcal infections thus limiting therapeutic options (Oberoi and Aggarwal, 2010).  

Resistance to tetracyclines is frequently found in bacteria isolated from environmental samples 

(Billington et al., 2002). A study conducted by Esiobu et al. (2002) found that almost 89% of 

bacteria they isolated from soil and water samples were resistant to tetracycline. Tetracyclines are 

broad-spectrum antibiotics and are active against many Gram negative and Gram positive bacteria. 

They are also used in the prevention of malaria and as livestock growth promoters (Chee-Sandford 

et al., 2009). The widespread use of this antibiotics have lead to the high prevalence of tetracycline 

resistant bacteria. It was reported that approximately 5 million kilograms of tetracycline was used 

in the U.S per year just in agricultural settings (FDA, 2014). Wastewater treatment plants have 

also shown to contain high levels and diversity of tetracycline resistance genes and can therefore 

easily be transferred into the environment through discharge of the treated effluent into receiving 

water bodies (Pruden et al., 2006; Auerbach et al., 2007). Enterococcus faecalis are able to transfer 

tetracycline resistance genes by 10- to 100- fold greater than it can most other ARGs (Torres et 

al., 1991).  

Special techniques and tests are used to quantify the concentrations and prevalence of ARGs in 

various samples. One such technique is Real-Time PCR (RT-PCR), which is most traditionally 

used for absolute or relative quantification of deoxyribonucleic acid (DNA) copies in a sample. 

This technique utilizes a thermocycler, enzyme polymerase, specific oligonucleotides, DNA, 

intercalating dye and MgCl2. The amplified products is detected and quantified by measuring the 

fluorescence intensity during the PCR cycles, which is a proportional value to the concentration 

of the DNA product (Ahrberg et al., 2016). Absolute quantification, using RT-PCR, is not always 
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a favourable technique, as it is very labour-intensive, consistent standards and reference controls 

are needed in every run (Wong and Medrano, 2005). Droplet digital PCR (ddPCR), a novel 

method, of directly quantifying DNA copies in different samples, to ensure more accurate 

quantification results of ARGs in the environment, has been developed (Jones et al., 2014). Droplet 

digital PCR allows for determination of absolute quantification of target DNA without the need 

for a standard curve of the reference. DNA is split into approximately 20 000 droplets allowing 

for amplification to occur in each droplet and uses fluorescence probes (Hindson et al., 2011). This 

technique allows for quantification of very low DNA concentrations in a highly accurate and 

precise manner (Norton et al., 2013). Droplet digital PCR is now the preferred method to qPCR 

(Miotke et al., 2014). 

The aims of this chapter was to assess the antibiotic resistance patterns of Enterococci sp. 

recovered from the final effluent and receiving river samples, to detect the presence of specific 

tetracycline resistance genes in the isolates and determine the genetic finger-printing profile of the 

isolates. Furthermore, the efficiency of the WWTPs for the removal of selected tetracycline 

resistance genes was determined.   

 

3.2. Materials and Methods 

 Antibiotic susceptibility testing  

The antibiotic susceptibility pattern of 200 Enterococci sp. recovered from the final treated 

wastewater effluent of the two WWTPs and the receiving rivers in Durban, South Africa, were 

conducted using the Kirby-Bauer disc-diffusion method as described by the Clinical and 

Laboratory Standards Institute (CLSI, 2007). The antibiotics used for this test represent antibiotics 
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from different classes. The bacterial inoculum used for the antibiotic susceptibility test was 

prepared by growing the Enterococci isolates in nutrient broth for 24 h and then standardized to 

obtain a turbidity of 0.08 to 0.10 at 625nm (CLSI, 2006). The antimicrobial discs shown in Table 

3.1, were impregnated on Meuller-Hinton agar, 25 mm apart once the plates were swabbed with 

the standardized inoculum and allowed to air dry. Plates were then incubated at 37 °C for 48 h. 

Isolates were categorized as susceptible (S), intermediate (I) or resistant (R) to each antibiotic 

based on the zone diameter analysis (CLSI, 2007). The inhibition zone diameters were measured 

to the nearest millimeter and recorded. Tests were conducted in two replicates. MAR index was 

calculated using the following formula (Blasco et al., 2008): 

MAR = 
𝑎

𝑏
 (Eq. 3), 

Where a is the number of antibiotics to which the isolate was resistant to; b is the total number of 

antibiotics against which individual isolate was tested. 

 

Table 3.1: Concentrations of antibiotic discs used in Kirby Bauer Disk Diffusion test 

Antibiotic Class Antibiotic Antibiotic 

abbreviation 

Concentration (µg) 

β-lactams Ampicillin AMP 10 

Glycopeptides Vancomycin VAN 30 

Aminoglycosides Gentamicin GEN 10 

Aminoglycosides Gentamicin GEN 120 

Macrolides Erythromycin ERY 15 

Sulfonamides Trimethoprim-

sulfamethoxazole 

SXT 1.25/23.75 

Quinolones Ciprofloxacin CIP 5 

Tetracycline Tetracycline TET 30 

Phenicol Chloramphenicol CHL 30 

Ansamycin Rifampicin RIF 5 
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 Detection of tetracycline resistance genes 

The presence of tetracycline resistance genes were determined in selected Enterococci isolates via 

multiplex PCR using a T100™ Thermal Cycler (Bio-Rad, USA). The five targeted tetracycline 

resistance genes were tet K, tet L, tet M, tet O and tet S. The primers listed in table 3.2 were used 

for PCR amplification of the target genes. The 50 µl reaction mixes was made up of 1 × PCR 

buffer, 3 mM MgCl2, 300 µM dNTP’s,  2.5 U Taq, 0.5 µg (2µl) DNA, specific primers for tet K 

(0.25 µM), tet L (0.2 µM), tet M (0.1 µM), tet O (0.15 µM) and tet S (0.1 µM) (Adapted from Ng 

et al., 2001). The following PCR protocol was used: initial denaturation at 94°C for 5 min, 35 

cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min, elongation at 72°C for 1.5 

min and final extension at 72°C for 7 min. The resulting PCR products were validated by 

conducting a 1.5% agarose gel electrophoresis run at 90 V for 90 min. Thereafter, products were 

visualized using the G: BOX imaging system (Syngene) after staining in ethidium bromide (0.5 

µg/ml).  
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Table 3.2: Primer sequence and product size of various tetracycline resistance genes  

(Ng et al., 2001) 

Primer name Sequence 5'  3' Product size (bp) 

tet(K)F TCG ATA GGA ACA GCA GTA  169 

tet(K)R CAG CAG ATC CTA CTC CTT  

tet(L) F TCG TTA GCG TGC TGT CAT TC 267 

tet(L)R GTA TCC CAC CAA TGT AGC CG  

tet(M)F  GTG GAC AAA GGT ACA ACG AG 406 

tet(M)R CGG TAA AGT TCG TCA CAC AC  

tet(O)F  AAC TTA GGC ATT CTG GCT CAC 515 

tet(O)R TCC CAC TGT TCC ATA TCG TCA  

tet(S) F CAT AGA CAA GCC GTT GAC C 667 

tet(S)R ATG TTT TTG GAA CGC CAG AG  

 

 

 Genetic fingerprinting 

Randomly amplified polymorphic DNA (RAPD)-PCR was conducted for strain typing of the 

Enterococci isolates. DNA was isolated from the isolates using the boiling method (Tao et al., 

2010) and used as template in the PCR assay. PCR amplification was conducted using a T100™ 

Thermal Cycler (Bio-Rad, USA). Each 25 µl reaction consisted of 2.5 µl (10×) PCR buffer, 1.5 

mM MgCl2, 200 µM of each dNTP, 0.8 µM primer M13R2 (5´-

GGAAACAGCTATGACCATGA-3´), 1 U Taq and 2 µl DNA. PCR conditions included initial 

denaturation at 94 ºC for 5 min, 40 cycles of denaturation at 94 ºC for 30 s, annealing at 38 ºC for 

1 min and elongation at 72 ºC for 1.5 min, a final elongation was conducted at 72 ºC for 5 min  
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(Martın et al., 2009). PCR amplified products were subjected to gel electrophoresis in a 1.5% 

agarose gels which was run at 100 V for 120 min. Thereafter, products were visualized using the 

G: BOX imaging system (Syngene) after staining in ethidium bromide (0.5 µg/ml). DNA ladders 

of 1 kb was used as the molecular weight marker and normalization gel standards for RAPD 

profiles.  Conversion, normalization and further analysis of RAPD patterns were done using the 

Bionumerics 6 software (Applied Maths). The dendrogram was drawn using the clustering 

(UPGMA) and tree building feature in the same software.  

 Absolute quantification of selected tetracycline resistance genes   

Influent and final treated wastewater effluent of the two WWTPs was used for this section of the 

study. Samples from the first and third month of the sampling period (June and August 2014) were 

used in this phase of the study. DNA isolation was conducted within 48 h of sample collection.  

3.2.4.1. DNA Isolation 

 

Five hundred millilitres of water sample, was vigorously agitated to evenly distribute bacterial 

populations, and pre-filtered to remove larger debris and particles prior to DNA isolation. Genomic 

DNA was isolated using the PowerWater DNA Isolation Kit (MO BIO, Laboratories, Inc). DNA 

concentrations were determined spectrophotometrically using a NanoDrop spectrometer. Isolated 

DNA was then stored at -80 ºC until further use.   

3.2.4.2. Droplet digital PCR and quantification assay 

 

The tetracycline resistance genes quantified in the wastewater samples were the tet L, tet M and 

tet O using primers shown in Table 3.2. Droplet digital PCR assays were performed using the Bio-

Rad QX200 Droplet Digital PCR System. This system partitioned samples into 20,000 droplets 

(QX200 Droplet Generator, Bio-Rad). PCR amplification was carried out within each droplet 
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using the C1000 Touch™ thermal cycler (Bio-Rad, USA). The PCR amplification reaction mixture 

contained 1 × QX200 ddPCR EvaGreen Supermix (Bio-Rad), 100 nM forward and reverse primer, 

0.5 ng DNA, and RNase-/DNase-free water. The following PCR conditions were followed: initial 

denaturation for 5 min at 95 ºC, 40 cycles of denaturation for 30 s at 95 ºC, annealing for 1 min at 

60 ºC, signal stabilization for 5 min at 4 ºC and 5 min at 90 ºC. A ramp rate of 2 ºC /sec was used. 

Following PCR, droplets were streamed in single file on a QX200 Droplet Reader (Bio-Rad), 

which counted the fluorescent positive and negative droplets in order to calculate target DNA 

concentration. The QuantaSoft™ software was used to measure the number of positive and 

negative droplets for each sample. The software then fit the fraction of positive droplets to a 

Poisson algorithm in order to determine the starting concentration of the target DNA molecule in 

units of copies/µl input. The assay experiments were conducted in two replicates. The removal 

efficiency values were calculated using the formula: 

𝐴−𝐵

𝐴
 × 100 (Eq. 4),  

Where A is the concentration (copies/µl) in the influent wastewater sample and B is the 

concentration (copies/µl) in the final treated effluent wastewater sample.  
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3.3. Results 

 Antibiotic susceptibility profile of the Enterococci isolates 

The antibiotic resistance profiles of 200 Enterococci isolates obtained from before and after 

chlorination points, and upstream and downstream of the receiving rivers are shown in Table 3.3. 

More than 13 % and 6 % of the isolates showed resistance to all ten antibiotics tested in WWTP1 

and WWTP2, respectively. Enterococci isolated from WWTP1 showed greater overall antibiotic 

resistance than those from WWTP2. In WWTP1, the isolates showed high resistance to 

trimethoprim-sulfamethoxazole (84%), gentamicin (81%) and tetracycline (80%). Similarly, 

isolates from WWTP2 showed high levels of resistance to gentamicin (74%), tetracycline (77%) 

and trimethoprim-sulfamethoxazole (69%).  These high levels of resistance was followed by 69% 

and 63% of the isolates being resistant to rifampicin in WWTP1 and WWTP2, respectively. 

Resistance to ciprofloxacin was found in more than 31% of the isolates, while more than 45% of 

the isolates were resistant to erythromycin. Resistance to the remaining antibiotics were found to 

be less than 30% each. Fewer isolates showed resistance to high-level gentamicin (120 µg), 

vancomycin and chloramphenicol. A large number of the isolates (83 %) displayed multidrug 

resistance.  

The antibiotic resistance patterns of the Enterococci isolates, evident in Figure 3.1, show nine 

different resistance patterns.  Resistance to only one antibiotic was seen in 6.5 % of the isolates 

(Figure 3.1 A), while 9% were resistant to two antibiotics (Figure 3.1 B). A higher percentage of 

isolates showed resistance to three (17%), four (19%), five (19.5%) and six (14.5%) antibiotics 

(Figure 3.1 C-F). A lower proportion of isolates showed resistance to seven (9.5%) and eight 



76 

 

(2.5%) antibiotics, with only 0.5% being resistant to all nine antibiotics, as seen in Figure 3.1 (G-

I). Four Enterococci isolates were susceptible to all the antibiotics tested.   
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Table 3.3: Antibiotic resistance profile of Enterococci species isolated from both WWTPs and their receiving rivers (n=200)  

No. of Isolates (%)  

 WWTP1 WWTP2  

Antibiotic BC  

(n=31) 

AC 

(n=16) 

US 

(n=26) 

DS 

(n=29) 

Total 

(n=102) 

BC 

 (n=31) 

AC 

(n=18) 

US 

(n=25) 

DS 

(n=24) 

Total 

(n=98) 

Overall 

Total 

(n=200) 

VAN 5 (16) 0 (0) 6 (23) 4 (14) 15 (15) 0 (0) 1 (6) 3 (12) 5 (21) 9 (9) 

 

24 (12) 

GEN (10) 25 (81) 12 (75) 17 (65) 29 (100) 83 (81) 19 (61) 17 (94) 16 (24) 21 (88) 73 (74) 156 (78) 

*GEN (120) 11 (35) 0 (0) 1 (4) 4 (14) 16 (16) 2 (6) 3 (17) 0 (0) 1 (4) 6 (6) 22 (11) 

ERY 19 (61) 4 (25) 11 (42) 14 (48) 48 (47) 12 (39) 11 (61) 14 (56) 7 (29) 44 (45) 92 (46) 

SXT 25 (81) 14 (88) 21 (81) 26 (90) 86 (84) 21 (68) 14 (78) 14 (56) 19 (79) 68 (69) 154 (77) 

CIP 16 (52) 6 (38) 12 (46) 12 (41) 46 (45) 7 (23) 11 (61) 5 (20) 7 (29) 30 (31) 76 (38) 

TET 22 (71) 15 (94) 22 (85) 23 (79) 82 (80) 24 (77) 13 (72) 21 (84) 17 (71) 75 (77) 157 (79) 

CHL 4 (13) 0 (0) 3 (12) 6 (21) 13 (13) 5 (16) 1 (6) 3 (12) 0 (0) 9 (9) 22 (11) 

 

RIF 21 (68) 11 (69) 18 (69) 20 (69) 70 (69) 22 (71) 13 (72) 12 (48) 15 (63) 62 (63) 132 (66) 

AMP 6 (19) 4 (25) 6 (23) 9 (31) 25 (25) 5 (16) 8 (44) 1 (4) 3 (13) 17 (17) 42 (21) 

 

VAN: Vancomycin; GEN: Gentamicin; ERY: Erythromycin; SXT: Trimethoprim-Sulfamethoxazole; CIP: Ciprofloxacin; TET: Tetracycline; CHL: Chloramphenicol; 

RIF: Rifampicin; AMP: Ampicillin; * High level gentamicin resistance; BC: Before Chlorination; AC: After Chlorination; US: Upstream River; DS: Downstream River 
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Figure 3.1: Antibiotic resistance patterns of Enterococci species showing nine antibiotic resistance patterns  
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 Detection of tetracycline resistance genes 

Five tetracycline resistance genes were detected from 151 tetracycline resistant Enterococci 

isolates. The correct PCR product sizes of tet S, tet O, tet M, tet L and tet K genes were detected 

at 667 bp, 515bp, 406 bp, 267 bp and 169 bp, respectively (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Amplicons from multiplex PCR assays of tetracycline resistance genes in selected 

Enterococci isolates. Lane1: 100 bp ladder; Lane 2: positive controls of tet S, tet O, tet M, tet L 

and tet K; Lane 3-4: tet O; Lane 5-6: tet L and tet K; Lane 7-8: tet S, tet M and tet L; Lane 9: 

negative control 

 

The prevalence of the various tetracycline genes tested in the 151 tetracycline resistant Enterococci 

isolates is depicted in Figure 3.3. The tet M gene was the most prevalent gene found in 49 % of 

the isolates. The second highest was the tet L gene, found in 32 % of the isolates and the third most 

prevalent gene was the tet K genes (12 %). Only 3 % of the isolates showed to harbour the tet O 

gene and 4 % contained the tet S genes. The combinations of tetracycline resistance genes detected 

in the isolates can be seen in Table 3.4. Sixteen different combinations of one, two, three or four 

tetracycline resistance genes can be noted in Table 3.4.  Combinations of one to four genes were 

1       2       3      4       5      6      7      8      9 

1      2       3      4       5      6     7       8      9  

667 bp 

406 bp 

515 bp 

267 bp 

169 bp 
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detected in the isolates, with the tet L/tet M combination being most prevalent (58 isolates). This 

was followed by isolates containing the tet M gene (43 isolates) and combination of tet K/tet L/tet 

M genes (21 isolates).  The remaining 13 phenotypes were each under 10 isolates. None of the 

isolates had a combination of all five genes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Distribution of tetracycline resistance genes among tetracycline resistant Enterococci 

isolates  
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Table 3.4: Combinations of tetracycline resistance genes detected in Enterococci species 
  

No. of Isolates 
  

Gene Profile No. of 

Genes 

E. faecalis E. faecium E. hirea Enterococci 

spp. 

Total 

(n=151) 

tet L 1 0 1 0 1 2 

tet M 1 17 10 12 4 43 

tet O 1 1 1 0 0 2 

tet K,L 2 0 1 0 1 2 

tet K,M 2 6 0 0 0 6 

tet L,M 2 17 19 18 4 58 

tet M,O 2 2 0 1 0 3 

tet O,S 2 0 0 0 1 1 

tet M,S 2 0 1 0 0 1 

tet K,L,M 3 14 4 1 2 21 

tet K,M,O 3 1 0 0 0 1 

tet K,M,S 3 3 0 0 0 3 

tet L,M,O 3 1 0 0 0 1 

tet L,M,S 3 0 3 2 0 5 

tet K,L,M,O 4 1 0 0 0 1 

tet K,L,O,S 4 0 0 0 1 1 

 

 Genetic fingerprint of Enterococci isolates 

Patterns of the RAPD-PCR obtained for the 200 isolates, using the primer M13R2 showing 14 

different clusters, is shown in Figure 3.4. The first cluster consisted of 11 isolates. Majority of 

these isolates were E. faecium and contained a combination of both tet L and tet M genes. Most of 

the isolates (91%) in cluster 1 were resistant to gentamicin (10 µg) and trimethoprim-

sulfamethoxazole while, 82% of them are resistant to erythromycin and tetracycline. Also, 91% of 

the isolates, in this cluster, were susceptible to vancomycin. Cluster 2 contains 21 isolates that 

consisted mainly of E. faecalis. Seventy one percent of the isolates in this cluster possessed one or 

more tetracycline resistance genes. Cluster 2 contains isolates that were highly susceptible to 

ampicillin, gentamicin (120 µg), vancomycin and chloramphenicol at 90%, 86%, 81% and 76%, 

respectively. Cluster 3 consists of 9 isolates. Majority of these isolates belonged to E. faecalis. All 
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isolates (100 %) in this cluster were susceptible to vancomycin while, 89% and 78 % of the isolates 

were susceptible to gentamicin (120 µg) and ampicillin, respectively. The isolates in this cluster 

also showed 100% resistance to rifampicin with 78% containing resistance to trimethoprim-

sulfamethoxazole and gentamicin (10 µg). Cluster 4 encompasses 19 isolates with majority of the 

isolates being E. faecalis. Fifty six percent and 16 % of the isolates contained the tet M and tet O 

gene, respectively. This cluster had the highest number of isolates containing the tet O gene. 

Majority of the isolates in this cluster were susceptible to ampicillin (95%) and vancomycin (84%) 

while, 68 % of the isolates were resistant to trimethoprim-sulfamethoxazole and gentamicin, and 

63 % were resistant to tetracycline. This cluster showed lower levels of antibiotic resistance, 

overall. Cluster 5 consisted of 16 isolates with majority of them being E. faecalis. Eighty one 

percent of the isolates contained the tet M gene and 50% contained the tet L gene. The isolates 

were resistant to trimethoprim-sulfamethoxazole (94%), tetracycline (88%), rifampicin (81%) and 

gentamicin-10 µg (75%). The isolates in this cluster contained 100% susceptibility to gentamicin 

(120 µg).Cluster 6 consists of 9 isolates with most being E. hirea. In this cluster, 78% of the 

isolates contained the tet M gene and majority of the isolates were susceptibility to vancomycin 

and ampicillin. Also, all the isolates were resistant to gentamicin (10 µg) and trimethoprim-

sulfamethoxazole and 89 % were resistant to tetracycline. Cluster 7 consisted of 17 isolates, mainly 

being E. faecalis (71%). As with cluster 6, cluster 7 contains isolates that were also most 

susceptible to vancomycin, gentamicin (120 µg) and ampicillin, but also susceptible to 

trimethoprim-sulfamethoxazole. The isolates from cluster 7 were highly resistant to tetracycline 

(82%). Cluster 8 consists of 16 isolates with majority of it being E. hirea. Most of these isolates 

contained a MAR index of 0.4 and 0.5, and showed to contain the combination of both tet L and 

tet M genes. This cluster showed high susceptibility to vancomycin, gentamicin (120 µg) and 
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ampicillin. Ninety four percent of the isolates were resistant to trimethoprim-sulfamethoxazole, 

tetracycline (88%) and gentamicin-10 µg (81%). Cluster 9 consisted of 12 isolates with 83% being 

E. faecium. Majority of these isolates showed susceptibility to vancomycin (92%) and 

chloramphenicol (83%). High resistance was observed to trimethoprim-sulfamethoxazole (83%), 

gentamicin- 10 µg (67%) and tetracycline (67%). Sixty five percent of the isolates in cluster 10 

were all E. hirea. Majority of the isolates in this cluster contained the tet M and tet M/ tet L 

combination genes. These isolates were highly resistant to gentamicin (10 µg) and trimethoprim-

sulfamethoxazole at 96% and 83% respectively. Susceptibility was shown to vancomycin (91%), 

gentamicin- 120 µg (74%), ampicillin (74%) and chloramphenicol (70%). Cluster 11 consists of 

17 isolates. Most of these isolates were E. faecalis and contained an MAR index of 0.6. Eighty 

eight percent of the isolates contained tetracycline resistance gene, with majority of them 

containing either tet M gene or a combination of tet L and tet M genes. This cluster showed the 

highest susceptibility to vancomycin, gentamicin (120 µg) and ampicillin, with the highest 

resistance to gentamicin- 10 µg (94%), tetracycline (94%) and erythromycin (65%). The twelfth 

cluster consisted of 7 isolates with 71% being E. hirea. All isolates in this cluster contained the tet 

L or tet M gene or a combination of the two genes. All the isolates were also susceptible to 

vancomycin, gentamicin (120 µg) and ampicillin and resistant to trimethoprim-sulfamethoxazole 

and tetracycline. Cluster 13 consists mostly of E. hirea (53%) and have an MAR index of 0.3. Fifty 

three percent of the isolates contain a combination of the tet L and tet M genes. This cluster shows 

high resistance to both gentamicin (10 µg) and rifampicin at 87%. The final cluster, consists of 

88% E. faecium with no isolate showing any susceptibility to erythromycin or gentamicin (10 µg). 

High resistance was observed for trimethoprim-sulfamethoxazole (88%).
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Figure 3.4: RAPD band patterns and corresponding dendrogram of 200 Enterococci isolates separated into 14 clusters 
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 Absolute quantification of selected tetracycline resistance genes   

The concentrations of the tetracycline resistance genes (copies/µl) at the two sampling points, 

obtained from the droplet digital PCR assays, are shown in Table 3.5. The concentrations 

decreased from influent to final effluent samples for both WWTPs for both sampling months, 

showing a high removal efficiency of all three tetracycline resistance genes. A decrease of 1141 

copies/µl and 2112.9 copies/µl of the tet O gene in August 2014 was observed in WWTP1 and 

WWTP2, respectively. A greater decrease in tetracycline resistance genes is noted in August 

than June 2014. Influent concentrations were higher in all samples in WWTP2 compared to 

WWTP1. The concentrations ranged from 23 to 93 copies/µl for the influent samples, while 

the range for final fluent was as low as 1.3 to 13.35 copies/µl. Quantification of the tet O genes 

was highest, with values for influent ranging from 576 to 2116.5 copies/µl, while higher 

concentrations of this gene was also found in the final effluent samples ranging between 3.6 to 

102.8 copies/µl. The high concentration of the tet O gene was followed by the tet M gene, with 

the tet L showing the lowest concentrations. 

Figure 3.5 shows that both WWTPs were very efficient in their removal of the various 

tetracycline resistance genes. These values were all greater than 82 % except for the tet L gene 

in WWTP1 (June 2014) with only 42% removal. The removal efficiency for the month of 

August 2014 was higher in both plants. With values exceeding 98%, WWTP2 showed to have 

a far greater removal efficiency than WWTP1. For WWTP1 the tet L, tet M and tet O genes 

showed a higher removal efficiency in August 2014. The removal efficiency for WWTP2 for 

tet L was higher in June 2014, while that for tet M and tet O was in August.   
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Table 3.5: Absolute quantification concentrations of tet L, tet M and tet O in influent and final 

effluent samples for June and August 2014 

  WWTP1 WWTP2 

  Influent AC Influent AC 

  

Conc (copies/µl) ± SD 

 

June 

2014 

tet L 23.05 ± 3.29 13.35  ± 0.87 93.5  ± 6.47 1.3  ± 0 

tet M 137  ± 35.80 24.2  ± 0.69 521.5  ± 38.68 7.3  ± 0.46 

tet O 576  ± 5.77 102.8  ± 3.70 1267.5  ± 28.29 15.65  ± 0.17 
 

     

August 

2014 

tet L 38.95  ± 0.87 3.45  ± 0.17 68.6  ± 2.77 1.31  ± 0.08 

tet M 192.5  ± 15.59 12.15  ± 0.29 339.5  ± 15.59 1.085  ± 0.13 

tet O 1201.5  ± 71.01 60.5  ± 0.35 2116.5  ± 76.79 3.6  ± 0.23 
 

     AC: After Chlorination  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Removal of tet L, tet M and tet O during the treatment process at both WWTPs 
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3.4. Discussion 

 

Antibiotics are used in the treatment and prevention of infectious disease by killing or 

inhibiting the growth of certain bacteria. Global antibiotic consumption increased by 36% 

between the years 2000-2010 (Van Boeckel et al., 2014). The five fast growing countries under 

the association name ‘BRICS’(Brazil, Russia, India, China and South Africa) have been 

reported to have the greatest spike in antibiotic use from 2000-2010. These countries held more 

than three-quarters of the total increase in global consumption (76%) despite the fact that they 

only accounted for one-third of the world’s population increase (Van Boeckel et al., 2014). 

Bacteria capable of naturally producing antibiotics are intrinsically resistant to the antibiotics 

they synthesize, while non-antibiotic producers survive by acquiring antibiotic resistance. 

Bacteria gain such a selective advantage by altering membrane permeability, preventing 

transport carriers, modifying the target’s binding sites and obtaining the ability to degrade the 

antimicrobial agent (Jury et al., 2010). Antibiotic resistance amongst Enterococci are clinically 

important as this contributes to untreatable serious infections and colonization (Goel et al., 

2016).  

 

The ten antibiotics chosen for the antibiotic susceptibility test were based on their clinical 

significance and as they are commonly reported in literature. These antibiotics are commonly 

used alone or in combination with each other in enterococcal infections. The antibiotic 

susceptibility profile obtained in the present study showed that every Enterococci isolate 

displayed resistance to at least one antibiotic tested. This genera of bacteria are intrinsically 

resistant to some commonly used antibiotics and have a high rate of antibiotic resistance 

acquisition. Intrinsic resistance to β-lactams, such as ampicillin is a characteristic of 

javascript:void(0);
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Enterococci (Arias et al., 2010). Ampicillin is the preferred drug in enterococcal infections. It 

is therefore expected for this microorganism to show a high level of resistance to this antibiotic. 

However, from the results obtained in the study, most of the isolates were susceptible to 

ampicillin, with only 21% of the isolates showing resistance. This was in accordance with 

another study that also found low level of ampicillin resistance in Enterococci isolated from 

wastewater (Leclercq et al., 2013). Resistance to ampicillin in Enterococci are generalized as 

being non-transferable as it is commonly linked to mutations in the chromosomal genes. While, 

resistance to other antibiotics such as macrolides and tetracyclines are easily transferred by 

mobile genetic elements (Petsaris et al., 2005; Hegstad et al., 2010). The low level of resistance 

to this antibiotic is therefore promising for its confirmed use in the treatment of E. faecalis 

infections.  

 

The introduction of clinically useful antibiotics (in large amounts) such as tetracycline, 

chloramphenicol and erythromycin, resulted in Enterococci quickly gaining resistance to them 

(Kristich et al., 2014). High tetracycline and erythromycin resistance among the Enterococci 

isolates tested in this study corroborates the findings observed in recent studies (Ayeni et al., 

2016). Resistance to low-level gentamicin was very high, however this was expected as 

Enterococci contain intrinsic resistance to low level concentrations of gentamicin. To further 

check the severity of resistance to this antibiotic, high level gentamicin (120 µg) was tested 

and this resulted in low resistance (12%). High resistance was also observed for trimethoprim-

sulfamethoxazole and rifampicin. Two classes of antibiotics, tetracyclines and sulfonamides, 

have prophylactic, agricultural and clinical applications and have been known to be found in 

sludge and wastewater at WWTPs (Ding et al., 2011). This is possibly why high tetracycline 

(79%) and sulfonamide (78%) resistance was observed among the Enterococci isolates tested 

in this study. This also correlates with other studies that found high levels of tetracycline and 
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sulfonamide resistant bacteria and resistance genes in wastewater samples (Reinthaler et al., 

2003).  

 

Based on MAR indices, it was noted that most isolates were resistant to 4 or 5 classes of 

antibiotics, with a large number having resistance to 6 or 2 different classes of antibiotics. This 

result revealed that 83% of the isolates were multidrug resistant, which is a cause for concern 

as this would pose a serious threat to public health. South Africa, as with many other countries, 

continually face the heavy burden of infectious disease. This problem is heightened by the 

notorious existence of multidrug resistant bacteria. Previous studies have shown that WWTPs 

in South Africa house large levels of multidrug resistant Enterococci (Iweriebor et al., 2015). 

Due to multidrug resistance, microorganisms fail to respond to first line antibiotics and results 

in extended treatment which adds to increased hospital stay, health care costs and contributes 

to severe side effects from alternative treatment (Tanwar et al., 2014).  

 

Tetracyclines are a common drug of choice in many bacterial infections and have been 

extensively used for decades due to its broad-spectrum activity in human and animal infections. 

It is also used for its countless applications in agricultural practices such as feed additives for 

growth promotion (Chopra and Roberts, 2001).  Multidrug resistant bacteria are commonly 

resistant to tetracycline (Levy et al., 1999). Tetracycline resistant Enterococci were found to 

be the most prevalent (overall) among the 200 Enterococci isolates obtained from the 

secondary and final effluent and receiving river samples. Because of its clinical importance and 

observed high prevalence in this study, PCR detection of five tetracycline resistance genes were 

conducted to determine the mode of tetracycline resistance in these isolates. According to the 

presence of individual or combination genes, the mechanism of resistance is often associated 
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with tetracycline binding to the bacterial ribosomes, subsequently reducing the ribosome-tRNA 

interaction and preventing protein synthesis or an efflux protein which transports the antibiotic 

out of the cell (Schnappinger and Hillen, 1996; Guillaume et al., 2004). Resistance genes 

associated with an efflux mechanism are the tet K and tet L genes. Bacteria that confer 

resistance to tetracycline by ribosomal protection contain the tet M, tet O and/or tet S genes. 

The tet M is known to be the most prevalent in Enterococci and this was seen in the present 

study in which 49% of the isolates contained this gene (Poeta et al., 

2006; Jackson et al., 2010). Previous reports stated that tet M can be found either 

chromosomally or on plamsids, while the tet K gene has only been found on plasmids (Warsa 

et al., 1996). This may be the reason why some isolates carry both genes, while others carry 

only one.  From the results obtained, the tet L gene was found in 32 % of the isolates (second 

highest tetracycline resistant gene detected). This was in accordance with previous studies, 

where the tet L gene was frequently detected tetracycline efflux gene in Enterococci (Platteeuw 

et al. 1995; Jackson et al., 2010). Combinations of tetracycline resistant genes are common, as 

Enterococci are able to confer resistance by both the efflux mechanism and ribosomal 

protection (Jackson et al., 2010). Combinations of one to four genes were detected in the 

isolates, with the tet L/tet M combination being most prevalent. This high combination 

corroborates with a previous study that also reported a high level of the tet L/tet M combination 

(Huys et al., 2004). This may suggest that a greater level of tetracycline resistance is achieved 

when an organism has both the efflux mechanism and ribosomal protection mechanism (Huys 

et al., 2004). This effect has also been reported in methicillin-resistant Staphylococcus aureus 

that contained a combination of tetracycline resistant genes, resulting in a greater level of 

resistance to the antibiotic (Trzcinski et al., 2000).   
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The RAPD-PCR method allowed for the Enterococci isolates to be distinguished from each 

other by means of the positions of the amplified DNA fragments following PCR. 

Differentiation of the isolates were obtained by the presence or absence of the DNA fragments. 

Isolates were clustered into groups based on the differences in the individual patterns by 

separating isolates based on how related they are from each other. This method was used in the 

genotypic typing of the isolates in order to cluster then according to their phenotypic attributes. 

This allowed for the determination of isolates that shared any clonal relationships. Clustering 

analysis revealed 14 different genetic diversity groups of the Enterococci isolates. The clusters 

contained many sub-clusters showing that there were many polymorphisms amongst the 

isolates in each group. The RAPD analysis grouped majority of E. faecalis in 6 clusters, 

followed by E. hirae in 5 clusters and finally E. faecium in 3 clusters. These findings show that 

the environmental Enterococci isolates were genetically and phenotypically diverse. The 

clusters showed specific Enterococci species, antibiotic resistance profiles and MAR indices. 

This categorizing revealed the transfer of particular ARGs and subsequent resistance patterns 

between specific species. Additionally, the transmission of tetracycline resistance genes or 

combinations of it between specific species were noted in the different clusters.  

New global emerging pollutants that have recently been reported as a threat to public health 

are antibiotics, ARB and ARGs (WHO, 2014b; Gao et al., 2012). A potential reservoir that 

promotes the prevalence and spread of antibiotic resistance are WWTPs. In this study, the 

concentrations of 3 tetracycline resistance genes in influent and final treated effluent samples 

were quantified in order to determine the efficiency of the WWTPs in removing these genes 

from the received influent. Tetracycline was listed as an essential medicine by the World Health 

Organization (2014b), mainly due to its broad-spectrum antimicrobial activity against a wide 

range of Gram-positive and Gram-negative bacteria. Tetracycline is used as first-line therapy 
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for many diseases, including rickettsia, cholera and pneumonia and they are favourable 

antimicrobial agents due to the absence of major adverse side effects. 

From previous studies, tetracycline resistance genes have been found in many WWTP samples 

(Martinez, 2009; Ding et al., 2011). The high prevalence of these genes may be linked to the 

prolonged clinical application of tetracycline (Pruden et al., 2006). Despite high concentrations 

of these genes being found in influent samples, many treatment plants have shown poor 

efficiency in the removal and are influenced by operating conditions (Reinthaler et al., 2003; 

Novo and Manaia, 2010). The present study, however, shows contrasting results in which both 

WWTPs had a removal efficiency of more than 82% in most cases. The tet O gene which is 

usually found in Gram-positive bacteria (Luna and Roberts, 1998) was found at high 

concentrations in the present study (576 to 2116.5 copies/µl). From previous studies, it has 

been shown that a significant reduction in tet O genes have been observed in WWTPs that 

conduct an activated sludge treatment process (Gao et al., 2012). This is in accordance with 

the present study, that also utilizes activated sludge, as a reduction of 94.6% and 99.8% of tet 

O was obtained in WWTP1 and WWTP2 (August 2014), respectively. The tet O gene is a 

ribosomal protection gene. It has been described in Streptococcus mutans, S. milleri, group B 

Streptococcus species, and Enterococcus faecalis (Zilhao et al., 1988).  

Results obtained in this study revealed that the concentrations, of the tetracycline resistance 

genes, decreased from influent to final effluent samples for both WWTPs at both sampling 

times. Concentrations were higher in all samples in WWTP2 compared to WWTP1, which may 

be attributed to WWTP2 receiving both domestic and hospital influent, while WWTP1 receives 

domestic and industrial influent. Clinical isolates are known to possess higher tetracycline 

resistance (Mondino et al., 2003). The treatment process of both WWTPs utilize activated 

sludge, mechanical aeration, anaerobic digestion, belt press and chlorine tertiary treatment. 
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Therefore, the elevated concentrations observed in WWTP2 may be attributed to its influent 

source. The tet M concentrations were much higher than the tet L genes found in influent. The 

tet O genes were found to be most prevalent, having the highest concentrations compared to 

the other two genes. Both WWTPs were very efficient in their removal of the various 

tetracycline resistance genes, with high removal efficiency of all 3 genes. These high levels of 

removal may be due to the secondary treatment process and not entirely to tertiary treatment. 

Studies have shown a significant reduction in ARGs during the secondary treatment stage, 

while the tertiary stages (chlorination) did not have much effect on the removal efficiency 

(Munir et al., 2011; Gao et al., 2012).  

 

3.5. Conclusion 

This chapter studied the antibiotic resistance profile of the Enterococci isolates and established 

the genetic diversity of isolates that were recovered from the final effluent and receiving surface 

water. In addition, concentration of selected tetracycline resistance genes were evaluated in 

order to investigate the efficiency of the treatment process for the removal of these genes from 

the influent. The results revealed that WWTPs and surface waters are substantial contributors 

to the high prevalence of multidrug resistant Enterococci. Additionally, Enterococci isolates 

have shown high levels of resistance to the popular drug of choice (tetracycline) and possess 

one or more tetracycline resistance genes. Despite WWTPs housing many tetracycline resistant 

bacteria, the treatment processes were efficient in removing extensive quantities of selected 

tetracycline resistance genes.  
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CHAPTER FOUR 

GENERAL DISCUSSION AND CONCLUSION 

4.1.   Research in perspective 

Enterococci are a complex group of bacteria and common inhabitants of the gastrointestinal 

tracts, skin and oral cavities of most mammals. They are also residents of different 

environments including water, soil and some food sources (Daniel et al., 2015). Due to their 

ability to survive in a wide range of temperature and pH levels, it is usually challenging to 

control the spread of pathogenic Enterococci species, which may cause serious infections in 

both humans and animals. An additional problem, is its superior ability to easily acquire 

resistance to antibiotics (Daniel et al., 2015). Wastewater treatment plants (WWTPs) are 

implicated as the leading reservoir for antibiotic resistant bacteria (ARB) and antibiotic 

resistance genes (ARGs) (Munck et al., 2015). The release of ARGs from WWTPs into the 

environment are worrisome, as this promotes the spread and transmission of antibiotic 

resistance among bacteria. Antibiotic resistant bacteria and ARGs have frequently been 

reported in numerous environmental sources (Knapp et al., 2010; Korzeniewska et al., 2013; 

Odjadjare and Olaniran, 2015). Studies, conducted in South Africa, have shown that treated 

effluent released from WWTPs negatively impact the environment by discharging substantial 

amounts of both ARB and ARGs into receiving surface bodies (Odjadjare and Olaniran, 2015; 

Iweriebor et al., 2015; Pillay and Olaniran, 2016).   Their release into the environment may 

pose serious health threats to communities that rely on the river water for domestic and 

recreational purposes (Odjadjare and Olaniran, 2015).  

The temperature and pH profiles of all the water samples (within the WWTPs and receiving 

rivers) tested in this study, ranged between 15-26 ºC and 4.92-7.65, respectively. These values 

were within the temperature and pH growth range for Enterococci (temperature: 5 to 50 ºC and 
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pH: 4.6 to 9.9), thus promoting survival and proliferation of the organisms (Fisher and Phillips, 

2009; Van den Berghe et al., 2006). This was evident by consistent presence of Enterococci in 

all samples from both WWTPs and the receiving rivers. Antibiotic resistant Enterococci (ARE) 

were enumerated in all water samples obtained during the study period in order to determine 

the efficiency of the WWTPs in removing these organisms. Wastewater treatment plants serve 

as an important interface between society and the environment. They contain bacteria, organic 

and inorganic material as well as antibiotics from household and clinical settings, possibly 

acting as a breeding ground for ARB and ARGs (Martinez, 2009). A comparison of values 

obtained in samples before chlorination and after chlorination (final treated effluent) were 

conducted in order to determine the effect of the chlorination process. A great decrease in 

average CFU/100ml was noted from samples before chlorination to the ones after chlorination. 

The values for WWTP1 ranged from 700 - 8700 CFU/100ml (before chlorination) to 0 - 80 

CFU/100ml (after chlorination), with similar values obtained for WWTP2. This showed that 

the chlorination step was effective in reducing the ARE prevalence. An additional comparison 

was also made between the final effluent values to the upstream and downstream river sample 

counts to determine the effect of the treated effluent discharge on the environment. A decrease 

in average CFU/100ml values was observed from the upstream to the downstream of the river 

samples. Lower values were obtained upstream and downstream of the first receiving river with 

values ranging from 0 - 200 CFU/100ml and 0 - 100 CFU/100ml, respectively. Due the 

increased stress of water shortage, reclaimed water has become a popular solution for 

agricultural, industrial and domestic uses (Mosteo et al., 2013). This alternative is only viable 

if WWTPs are effective in the removal of pathogens from treated effluent. Tertiary treatment, 

followed by most WWTPs, are generally able to minimize the spread of pathogens to receiving 

environments (Mosteo et al., 2013). It is therefore important to decipher how efficient the 

treatment process is in removing ARB, as these organisms pose a public health threat.  

95 
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Higher prevalence of tetracycline resistant Enterococci was obtained in WWTP2 than in 

WWTP1, possibly due to the hospital influent received by WWTP2. High levels of 

erythromycin resistant Enterococci obtained in the influent and activated sludge samples of 

both WWTPs, is in accordance with another study, conducted in South Africa during the same 

sampling period as the present study (Iweriebor et al., 2015). Iweriebor et al. (2015) reported 

high levels of tetracycline and erythromycin resistant Enterococci in wastewater received from 

both hospital and domestic sources, with a higher level of resistance obtained in wastewater 

received from hospitals. Also, higher resistance to vancomycin was frequently observed in the 

Enterococci recovered from samples, collected from WWTP2, probably because it received a 

portion of its waste from hospital settings. It has been shown that hospital waste contains VRE 

(Novais et al., 2005). Of the 200 Enterococci isolates identified in this study, 34.5%, 26% and 

25.5% were E. faecalis, E. faecium and E. hirea, respectively. These results are in accordance 

with other studies where, E. faecalis and E. faecium were reported to be predominantly found 

in human and animal faeces and sewage (Manero et al., 2002; Byappanahalli et al., 2012). 

The antibiotic susceptibility profile revealed that most of the 200 Enterococci isolates were 

resistant to 4 or 5 classes of antibiotics, with a large number having resistance to 6 different 

classes of antibiotics. In agreement with other reports (Reinthaler et al., 2003; Ayeni et al., 

2016), high level of resistance against tetracycline, erythromycin and sulfonamide was 

observed among the Enterococci isolates in this study. An alarmingly high number of multidrug 

resistant Enterococci (83%) was found in the study, which could pose a serious threat to public 

health. 

Detection of tetracycline resistance genes among the resistant phenotypes of Enterococci, 

revealed tet M gene to be the dominant (49%) of the five tetracycline resistance genes detected. 

This is not surprising since this gene enable tetracycline resistance by ribosomal protection 
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(Poeta et al., 2006; Jackson et al., 2010). Combinations of one to four genes were detected in 

the isolates, with tet L/tet M combination being the most prevalent. This high combination 

corroborates a previous study that also reported a high level of the tet L/tet M combination 

(Huys et al., 2004).  

The RAPD-PCR method, conducted in this study, allowed for the determination of genetic 

diversity among the Enterococci isolates. From the observed differences in the individual 

banding patterns, isolates were separated based on how related they were to each other. This 

resulted in the clustering of 14 different groups. The clusters showed groupings according to 

specific Enterococci species, antibiotic resistance profiles and MAR indices, indicating a 

common linkage. This denotes a relationship between the isolates and possibly a common 

ancestral linkage. This relationship could possibly be a result of transfer of particular ARGs.    

The presence of ARGs in treated effluents are critical in its transfer between bacteria in the 

environment (Rizzo et al., 2013). Final treated effluent discharged into the environment, has 

shown to increase the loads of ARGs in river sediments downstream of the WWTPs (Pruden, 

et al., 2012; Marti et al., 2013). In this study, the concentrations of 3 tetracycline resistance 

genes (tet L, tet M and tet O) in influent and treated final effluent samples were quantified, 

using the droplet digital PCR technique, in order to determine the efficiency of the WWTPs in 

removing these genes from the received influent. Contrary to many studies (Pruden, et al., 

2012; Marti et al., 2013), the results of the present study revealed efficient removal of the three 

tetracycline resistance genes with a removal efficiency of more than 82%, except for the tet L 

gene in WWTP1 (June 2014) with only 42% removal. The tet O gene was found to be most 

prevalent, having the highest concentrations (in both influent and final effluent samples) 

compared to the other two genes. The removal efficiency for the month of August 2014 was 

higher at both WWTPs with over 98% removal observed at WWTP2.  
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The overall findings of this study reveal the dire need for responsible antibiotic use and 

prevention of its misuse. The magnitude of multidrug resistant bacteria in WWTPs and 

subsequently in the environment, are cause for concern. This study highlights the need to 

prevent an increase in VRE and resistance towards broad spectrum antibiotics, such as 

tetracycline, trimethoprim-sulfamethoxazole and gentamicin. This can be achieved by 

responsible clinical and agricultural use of broad spectrum antibiotics, implementing prudent 

vancomycin use, preventing and controlling nosocomial transmission of VRE, improved 

surveillance of antibiotic resistant infections and implementing regulations to prevent 

inappropriate disposal of antibiotics into sewage systems. Despite the high presence of ARE 

and tetracycline resistance genes in wastewater influent, the WWTPs proved to be efficient in 

their treatment process and removal of these organisms and the resistance genes. Regardless of 

the high removal rate of ARE and tetracycline resistance genes during the treatment process, 

as well as the decrease observed from upstream to downstream of the receiving rivers, their 

presence in the final treated effluent is a cause for concern. It is therefore important that 

continuous monitoring of WWTPs be conducted, to ensure the efficiency of the WWTPs in 

their treatment process, to safeguard public health. 

4.2. Potential for future development of the study 

With the world currently in the crux of life-threatening bacterial infections such as meningitis, 

pneumonia, tuberculosis, cholera and diarrheal illnesses, it is imperative that viable options are 

present in curbing disastrous epidemics. The recent tuberculosis, meningococcal and cholera 

outbreaks resulted in thousands of deaths across the world (WHO, 2014a; WHO, 2015b,c). 

Another disquieting outbreak was one that transpired in South African hospitals by 

vancomycin-resistant Enterococci (VRE) (SASCM, 2012). In order to prevent such 

catastrophe, antibiotics are highly relied upon in treating and eliminating deadly bacterial 

http://www.medicinenet.com/pneumonia_facts/article.htm
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diseases. However, as a result of antibiotic resistance, many bacterial infections become 

difficult to control. An antibiotic resistance analysis in South Africa, identified an increasing 

number of multidrug resistant bacterial outbreaks and thus identified an urgent need for action 

(Winters and Gellband, 2011). It is therefore necessary for future work to conduct testing of 

ARE to a broader range of antibiotics, including streptomycin, penicillin, daptomycin, 

tobramycin, amikacin, ceftriaxone, imipenem, linezolid, tigecycline and telavancin, in order to 

further examine the extent of multidrug resistance among these Enterococci isolates.  

Wastewater treatment plants have been deemed as one of the leading reservoirs of ARB and 

ARGs that may be disseminated into the environment (Rizzo et al., 2013). These hotspots are 

considered to be crucial in horizontal gene transfer, allowing for the spread of ARGs (Rizzo et 

al., 2013). This is because WWTPs provide a selective pressure for ARB and ARGs, in terms 

of high bacterial populations, biofilms and the presence of chemical compounds, antibiotics 

and organic matter (Martinez, 2009). The distinctive environment may therefore result in the 

spread of antibiotic resistance. The present study focused on the detection and quantification 

of only selected tetracycline resistance genes. It would be of interest for future work to detect 

additional ARGs and to quantify them from metagenomic DNA obtained from the wastewater, 

in order to have a comprehensive understanding of the prevalence of ARGs and the efficiency 

of these WWTPs in removing them. 

The removal of ARE and ARGs in wastewater is highly important and necessary before the 

release of treated effluent into the environment. Biological treatment processes alone are not 

effective in the removal of ARB (Adams et al., 2002). The disinfection process in wastewater 

treatment is essential to control pathogens and ARB in treated wastewater and receiving water 

bodies (Ge et al., 2012; Bouki et al., 2013). Chlorination is the most popular form of 

disinfection in WWTPs as it is a well-established technology, inexpensive, requires simple 
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application and is readily available (Bouki et al., 2013). It has however, been reported that 

chlorination has fallen short of being efficient in removing ARB and ARGs during the 

treatment process (Karumathil et al., 2014). It is therefore essential to study alternative 

disinfection processes that do not pose a risk to the environment, human and animal health.  

Such alternatives include ultraviolet (UV) radiation, advanced oxidation processes and 

microfiltration (Hijnen et al., 2005; Breazeal et al., 2013; Rizzo et al., 2014).  Many studies, 

including the present study, conducted analysis at WWTPs that utilized chlorination in the 

tertiary treatment step (Samie et al., 2009; Odjadjare and Olaniran, 2015; Pillay and Olaniran, 

2016).  It would be interesting for future studies to analyse the removal efficiency of ARB and 

ARGs in WWTPs that utilizes a tertiary treatment step that does not involve chlorination to 

ascertain the best disinfection process for effective removal of ARB and ARGs. 

Enterococci are commonly responsible for antibiotic resistant hospital-acquired infections, 

such as bacteraemia, urinary tract infections, endocarditis and wound infections (Sava et al., 

2010). These pathogens are often associated with nosocomial infections and are able to survive 

in adverse conditions due to their increased ability to acquire and share extra-chromosomal 

elements encoding virulence traits or antibiotic resistance (Mundy et al., 2000; Olawale et al., 

2011). Enterococci associated with nosocomial infections are known to contain many virulence 

genes, including cylA, gelE, esp, asa1 and hyl which code for haemolytic cytolysin, gelatinase, 

enterococcal surface protein, aggregation substance and glycoside-hydrolase, respectively. The 

prevalence of these genes in enterococcal isolates has been found in aquatic environments 

(Creti et al., 2004). Future work on the Enterococci isolates can evaluate the prevalence of 

selected virulence genes to assess the pathogenic potential of environmental strains. 
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