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Abstract 

Background 

Antiretroviral drug therapy has been shown to reduce the death of HIV-1 infected individuals. 

However, the emergence of HIV-1 drug resistance has hindered the success of HIV-1 treatment. 

Genotyping tests mainly concentrate on the polymerase domain of HIV-1 RT leaving the rest 

understudied. Recently, data from HIV-1 C suggested that drug resistance could be caused by 

mutations in the connection and RNase H domains either alone or in combination with mutations 

in the polymerase region. Here, the phenotypic effects of the specific RNase H domain mutations 

in HIV-1 subtype C on RTIs were investigated. The predictions of HIV-1 subtype C reverse 

transcriptase C-terminal domain mutations on reverse transcriptase inhibitors were also investigated. 

Material and methods  

Viral RNA was extracted from 500µl of plasma using the Viral RNA extraction kit 

(Qiagen,Germany) according to the manafacturer’s instructions, and stored at -80oC until 

utilisation. The RNA was amplified using the Superscript III One-step RT-PCR system with 

Platinum Taq DNA polymerase (Invitrogen, Life Technologies Corporation, Carlsbad, CA, 

California). The HIV-1 RT amplicon was cloned into a TOPO vector using the TOPO TA cloning 

kit (Invitrogen, Life Technologies). Viral mutants were constructed using site-directed 

mutagenesis, introducing D67N in the polymerase domain and E529D, L517I, T470S, and T470P 

mutations in the RNase H domain. Viral replication capacity and drug susceptibilities were 

determined using the single cycle luciferase assay in TZM-bl cells.  

To identify the HIV-1 connection domain (CN) mutations associated with  drug resistance, HIV-

1 subtype C sequences were downloaded from the Los Alamos and Stanford HIV- drug resistance 
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databases from drug naïve and treated-experienced patients. The presence of connection domain 

(CN) mutations were identified using REGA HIV-1 subtyping tools (Universiteit Leuven, 

Belgium). Bayesian Network (BN) analysis (B-course) was used to determine the association of 

connection domain (CN) mutations (condon 320-440) with other TAMS. The effect of RNase H 

domain mutations on the structure of reverse transcriptase was determined using Swiss Model and 

viewed in Chimera.  

Results  

The replication capacities of T470S, T470P, L517I, E529D RNase H domain mutations were lower 

than the HIV-1 subtype C wild type in the absence of drugs. The D67N mutation alone had a lower 

replication capacity compared with the wild-type. Combination of L517I and D67N showed a 

further decrease in replication capacity compared to the wild type in the absence of drugs. E529D 

mutation replication capacity was assessed in TZM-bl cell line in both HIV-1 subtype B and C. 

Although not statistically significant, both competent subtype B and C E529D mutant had a 

decreased growth and infectivity rate compared to their respective wildtypes. The RNase H domain 

mutation T470S showed a moderate level of resistance to NVP (10.2X), ETR (8.75X), d4T (5X) 

and no resistance to AZT and EFV. Interestingly, T470P showed a moderate level of resistance to 

NVP (6X) and no resistance to ETR and d4T, as well as EFV. It did however  show a 5-fold change 

to AZT when compared to the wild-type virus.  As expected, the thymidine analog mutation, 

D67N, showed a high level of resistance to AZT (103.3X), moderate level of resistance to d4T 

(6.2X) and low level of resistance to ETR (3.2X) and no resistance to NVP and EFV. The RNase 

H domain L517I mutation showed moderate level of resistance to AZT (5.2X), d4T (6.0X) and 

NVP (10.79X), and low level of resistance to ETR (3.50X). L517I mutation caused 

hypersusceptibility to EFV. The combination of RNase H and TAM (L517I+D67N) showed high 
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level of resistance to AZT (157.3X), moderate level of resistance to NVP (11.3X), low level of 

resistance to d4T (3.9X) and no resistance to ETR and EFV. Subtype C E529D mutation conferred 

up to 2-fold stavudine (d4T), 3-fold zidovudine (AZT) and nevirapine (NVP) resistance, 

respectively. These findings demonstrate that RNase H mutation E529D can confer mild resistance 

to nucleotide (AZT and d4T) and non-nucleotide (NVP) reverse transcriptase inhibitors.  

New connection domain mutations identified were: D324G/N/P, T338S, I341F/L/V, M357R, 

E370D, M377T/L, A376S, I434M/L, A437V/I. E370D and A437V/I were directly associated with 

treatment in the BN, while N348I was only indirectly associated with treatment. 

Discussion and Conclusions 

Overall, the RNase H domain mutations impaired replication capacity in the absence of drugs, 

suggesting that they are acquired at a fitness cost (as withmost drug resistance mutations). While 

T470S decreased drug susceptibility to ETR, it was shown to be  hypersusceptible to EFV. 

Interestingly, T470S is very common in subtype C RTI treated patients and could indicate that a 

switch to the newer NNRTI might not be as beneficial as expected. The phenotypic data also 

suggests that the resistance pathways for T470S and T470P could be different; however further 

studies are required to investigate their mechanism of resistance.  

The L517I mutation alone only minimally decreased drug susceptibility to both NRTI and 

NNRTIs. However it futher decreased drug susceptibility to the NRTIs when in combination with 

D67N,  compared to D67N alone. D67N is known to affect the NRTIs, and the combined effect of 

D67N and L517I on NVP, a NNRTI, was surprising. The decreased replication capacity in the 

L517I  indicated that it has additive effect in fitness loss of the viral. Further site-directed 

mutagenesis studies are needed to understand the effect of these RNase H mutations alone and in 
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combination with other polymerase domain mutations or with connection domain mutations on 

nucleoside reverse transcriptase inhibitors. 

Structural analysis showed that the T470S/P mutations cause an inward movement of the RNase 

H active site amino acids residues, which may have an affect on RNase H activity. There was no 

interaction between L517I and E529D with the RNase H active site amino acid residues observed. 

The observed interaction was between the amino acids that form part of the RNase H primer grip 

and these RNase H mutations. New HIV-1 subtype C connection domain mutations were identified 

and phenotypic studies are required to investigate their role in HIV-1 drug resistance.  

In conclusion, this is the first study to show that T470S/P, L517I and E529D in HIV-1 subtype C 

affect NNRTI drug susceptibility. This provides further support for the monitoring of C-terminal 

domain mutations in relation to NNRTI, as well as NRTI drug resistance. In addition, these 

mutations need to be taken into account when designing  newer NNRTI with the ability to retain 

activity against these mutants. 
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Chapter 1 

Introduction and Literature review 

1.1. Introduction 

HIV-1 was first reported in 1981; initially it was associated with homosexuals, and later with drug 

users and finally with blood transfusion (CDC, 1981, 5th June; Heimer et al., 1992; Masur et al., 

1981). The HIV-1 virus was first identified as lymphadenopathy associated virus (LAV), a T 

lymphotropic virus, in 1983 by Barre-Sinoussi and Montagnier (Barré-Sinoussi et al., 1983; Gallo 

et al., 1983). In addition, Gallo and his group claimed that this virus was similar in shape to other 

human T lymphotrophic viruses (HTLVs) hence they named the virus as HTLV-III (Gallo et al., 

1983). At the same time HTLV-III was reported to have been found in the tissue of AIDS patients 

in 1983 (Gallo et al., 1983; Gelmann et al., 1983). Soon after the isolation of HIV-1, CD4+ T cells 

were identified as the main target for HIV-1, these cells are critical to the immune system leading 

to the Acquired Immnodeficiency Syndrome (AIDS) (Hahn et al., 1984; Shaw et al., 1984). 

The development of HIV-1 antiretroviral drugs has transformed HIV-1 from being a lethal 

infection into a controllable chronic infection (Ring et al., 1993; Tsibris and Hirsch, 2010). The 

first drug that was discovered to control HIV-1 replication was zidovudine (AZT) (Fischl et al., 

1987; Ring et al., 1993). Since then, more than 25 HIV-1 antiretroviral drugs have been approved 

by the FDA. Despite these efforts, AIDS is still one of the leading health emergencies in the world, 

due to the development of HIV-1 drug resistance mutations (Schmit et al., 1996; Shafer et al., 

1995).  
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The latest global report on the AIDS epidemic conducted by UNAIDS in 2016, showed that there 

are approximately 36.7 million of people living with HIV-1 globally;70% of them are in Sub-

saharan Africa (UNAIDS, 2016). Furthermore, more than 18.2 million people with HIV-1 are 

enrolled on antiretroviral therapy globally (UNAIDS, 2016). In South Africa, 7 million people are 

HIV-1 infected with more than 3 million people (approximately 48%) receiving antiretroviral 

drugs (UNAIDS, 2016).  

The introduction of HIV-1 antiretroviral therapy has reduced the number of deaths due to HIV-1 

infection and AIDS, however the emergence of HIV-1 drug resistance mutations has hindered the 

success of these drugs (Mas et al., 2002). HIV-1 drug resistance mutations are caused by non-

adherence, insufficient drug level and transmission of the HIV-1 resistance strain. Therefore, the 

genotyping and phenotyping tests has been developed to detect HIV-1 drug resistance mutations. 

The standard genotyping test target the polymerase region of RT, leaving other parts of the 

untested. Drug resistance mutations have recently been identified in patients failing their first 

regimen in HIV-1 C in the C-terminus region of RT (Ngcapu et al., 2017). The current study 

therefore investigated the phenotypic effect of HIV-1 subtype C reverse transcriptase C- terminal 

domain mutations on the susceptibility to reverse transcriptase inhibitors.  
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1.2. Literature review 

1.2.1. The Human Immunodeficiency Virus-1 

 

Human immunodeficiency virus -1 (HIV-1) is a lentivirus that belongs to the family Retroviridae 

and contains a RNA genome. This virus was first identified as the causative agent for the acquired 

immunodeficiency syndrome over 35 years (Barré-Sinoussi et al., 1983; Gallo et al., 1984; Popovic 

et al., 1984; Schupbach et al., 1984). HIV-1infects CD4+ T cell population of  immune cells and 

is transmitted through sexual contact either homosexual or heterosexual. Other HIV-1 infections 

also occur through transfer of infected blood through needlestick or sharing needles among drug 

users. Untreated HIV-1 infection leads to depletion of CD4+ T lymphocytes leading to fatal 

immunodeficiency. There is no cure for HIV-1 infection and no successful vaccine that can prevent 

infection.  

Human immunodeficiency virus-1 genome consists of nine genes which encode 19 proteins. These 

genes are gag, pol, env, tat, rev, nef, vif, vpr, and vpu (Freed, 1998; Freed, 2001). In addition, the 

HIV-1 genome has several open reading frames and has a refined system of differential RNA 

splicing to acquire nine different gene products which encodes 15 different proteins from its 9.2kb 

genome (Gibbs et al., 2003). The regulatory proteins of HIV are Tat and Rev which plays a role in 

viral infectivity. HIV also consist of accessory proteins Nef, Vif and Vpr that confer the ability on 

HIV to infect cells and produce new viral copies thereby causing the disease (Baur, 2004). The 

three primary HIV-1 translation products are initially made as polyprotein precursors, which are 

consequently processed by viral or cellular proteases into mature proteins (Figure 1.2).  



  

4 
 

The structure of HIV-1 is simply a spherical particle with a diameter between 100 and 180nm, and 

it is covered by a cell-derived lipid membrane containing surface proteins (Freed, 1998; McGovern 

et al., 2002). It has two copies of positive single stranded RNA that codes for nine genes, which is 

located inside the nucleocapsid, p7 (Freed, 1998). In addition, the membrane proteins situated on 

the surface are gp140 and gp41 and are called surface proteins (Chan et al., 1997). Some HIV-1 

membrane proteins are captured from the host cell during viral budding and they give support. The 

matrix (MA) is located underneath the membrane proteins, consisting of trimers of matrix proteins 

(p17) (Figure 1.1). 

 

Figure 1.1. Schematic presentation of HIV-1 virion indicating the approximate location of Gag 

proteins, matrix, the Env glycoproteins, and the Pol-encoded enzymes IN, RT, and PR (Freed, 

1998). 
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The matrix protein which is also known as p17, is the product of HIV gag gene. Env protein is 

located on the surface of the virus containing of three subunits called glycoproteins (gp41, gp120 

and gp160) which assist the virus in attaching on the cell membrane (Chan et al., 1997) (Figure 

1.1). The glycoprotein complex (gp160), cleaved by the cellular proteases to form glycoproteins 

(gp120 and gp41) (Chan et al., 1997; Huang and Jeang 1995). These glycoproteins fuse with the 

host cells and initiate HIV-1 replication (Chan et al., 1997) (Figure 1.2). They also promote the 

fusion of the infected cells with neighbouring uninfected cells forming syncytia (Chan and Kim, 

1998). In addition, Env glycoproteins are the main target for entry and fusion inhibitors and some 

of these drugs are used in HIV-1 treatment e.g maraviroc (Figure 1.2).  

Furthermore, HIV-1 gag gene encodes proteins for the infrastructure of the conical capsid that can 

be sliced by viral protease into structural proteins called, matrix (p17), nucleocapsid (p6 and p7) 

and capsid (p24) (Gibbs et al., 2003; Wainberg et al., 1988). Nucleocapsid protects the RNA from 

degradation by nucleases, whereas the viral protein p17 provides a protective matrix for the virion 

particles. Gag protein is one of the most important genes found in retroviruses and is required for 

assembly of viral proteins (Freed, 1998). Gag is made up of 1500 nucleotides and encodes four 

separate proteins which are building blocks of the viral core. It has diverse functions in the life 

cycle of the virus, including viral assembly (Goepfert et al., 2008) (Figure 1.1). In addition, Gag 

protein consists of a subunit called p24, which is a component of the virus that is relatively highly 

conserved. Immune response against p24 may give strong protection since the virus can only avoid 

these responses at significant fitness cost (Goepfert et al., 2008; Goulder and Watkins, 2008).  

The HIV-1 Gag and Pol (Polymerase) proteins are located next to each other in the HIV-1 genome. 

The pol gene, which is translated as a combined gag-pol reading frame encodes for reverse 

transcriptase and integrase (Freed, 1998). The Pol reading frame codes for the polyprotein Pr160, 
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which consequently contains the four enzymes which are essential in viral replication: integrase 

(IN), protease (PR) and reverse transcriptase (RT) and RNase H (Freed, 2001; Miller et al., 1989) 

(Figure 1.2).  

The regulatory protein, Tat ( trans-activator of transcription) consists of 86 to 101 amino acids 

depending on the virus subtype. HIV-1 Tat protein accelerate the production of more HIV-1 virions 

(Henderson and Percipalle, 1997; Hiscott et al., 2001). HIV-1 strains that do not have Tat protein 

in their genome do not replicate. HIV-1 Tat protein induces chromatin remodeling and recruits 

elongation-competent transcriptional complexes on the viral LTR (Zheng et al., 2005). In addition, 

Tat inhibits LFA-1 mediated Ca2+ influx through the binding of the L-type Ca2+  channel and 

impairs NK cell cytotoxicity (Majumder et al, 2009). 

Rev consist of 116 amino acids including nuclear localization sequence (NLS) and nuclear export 

sequence (NES) (Zheng et al., 2005). Rev regulates the expression of HIV proteins by controlling 

the export rate of mRNA (Pollard and Malim, 1998; Zheng et al., 2005) (Figure 1.2). It is also 

involved in shuttling RNA from the nucleus and the cytoplasm by binding to RRE RNA (Pollard 

and Malim, 1998). Vif disrupt the antiviral activity of APOBEC3G by targeting it for 

ubiquitination and cellular degradation. APOBEC3G is a cytidine deaminase enzyme that mutates 

viral nucleic acid (Zheng et al., 2005). 

Negative factor (Nef) is an accessory protein which is synthesized early in the HIV life cycle and 

is important in disease progression (Collins et al., 1998; Lichterfeld et al., 2004). Nef influences 

the host’s cellular machinery and thus allows infection, survival or replication of the pathogen 

(Page et al., 1997; Stumptner-Cuvelette et al., 2001). It also promotes the survival of infected cell 

by downregulating CD4+ T cells and HLA and allows infections by manipulating the host cellular 
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system by down modulating the expression of Major Histocompatibility complex-1 (MHC-1) and 

CD4+ T cells (Chaudhuri et al., 2007; Cohen et al., 1999). A more recent study reported that HIV-

1 Nef protein is proposed to function as a viral suppressor of RNAi (Aqil et al., 2013).  

HIV-1 Vpu protein is an accessory protein which consist of 81 amino acids (Deora and Ratner, 

2001)(Figure 1.2). Vpu protein promotes the release of new virus particles from the infected cells. 

In addition, Vpu also plays a role in envelope maturation and downregulates CD4+ T cells (Pollard 

and Malim, 1998). It also contributes to HIV-1 induced CD4+ T cell receptor downregulation by 

mediating the proteosomal degradation of newly synthesized CD4 molecules in the endoplasmic 

reticulum. 

Viral protein R (Vpr) is an accessory protein which  consist of 96 amino acids and is found in HIV-

1, HIV-2 and SIV (Bukrinsky and Adzhubei, 1999) (Figure 1.2). Vpr transport viral DNA into the 

nucleus as a component of pre-integration complex and also plays a role in cell cycle progression. 

It also regulates the apoptosis and transactivation of HIV LTR as well as host cell genes (Gibbs et 

al., 1995; Trono, 1995; Vodicka et al., 1998). Furthermore, Vpr dysr egulates the immune system 

by disarming both adaptive and innate immune response, and it also affects of signal transduction 

(Goh et al., 1998; Le Rouzic and Benichou, 2005). It is normally found in sera and cerebrospinal 

fluid of AIDS patients indicating that it may exert biological functions in varied manners. 

Moreover, studies conducted in monkeys showed that vpr deletion in SIV results in low viral loads 

with rare progression to AIDS, suggesting a major role of vpr gene in disease progression in HIV 

infection (Gibbs et al., 1995; Hadian et al., 2009). 
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Figure 1.2. The organization of HIV-1 viral genome. (https://www.hivbook.com/tag/structure-of-

hiv-1/). 

 

1.2.2.  HIV-1 replication 

The HIV-1 life cycles begins when the gp120 of the envelope protein binds to CD4 T cell receptor 

and subsequently interacts with other coreceptors such CCR5 (chemokine receptor 5) and CXCR5 

(C-X-C chemokine receptor type 4) (Chan and Kim, 1998; Freed, 1998; Freed, 2001). In addition, 

a subsequent conformational switch also permits the interaction with chemokine co-receptors 

CXCR4 and CCR5 on the cell surface, promoting the fusion of viral and cell membranes (Alkhatib, 

2009; Berger et al., 1999; Bleul et al., 1997). Transmembrane gp41, induces the membrane fusion 

reaction that occurs between the lipid bilayer of the virion and the host cell plasma membrane. 

Consequently, the fusion results to the injection of the HIV RNA and various enzymes, including 

reverse transcriptase, integrase, ribonuclease and protease into host cells (Chen et al., 2002; Chen 

et al., 1998; Wyatt  et al., 1998). Immediately after the release of the viral RNA into the host cell’s 

cytoplasm, the genomic RNA is reverse transcribed into a linear, integration competent double-

stranded DNA molecule (Figure 1.3). Furthermore, a ribonuclease enzyme (RNase H) cleaves the 
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ssRNA during the cDNA synthesis and simultaneously removes the polypurine tract. DNA 

polymerase facilitates the replication of cDNA into double stranded DNA (Freed, 2001). The 

microtubes then transport the viral DNA into the host cell’s nucleus where the viral DNA is 

integrated into the host genome (Hiscott et al., 2001; Pollard and Malim, 1998) (Figure 1.3). 

The integration of viral DNA into the host genome is catalyzed by integrase and enhanced by a 

viral nucleic acid called chaperone protein NC, which also protects viral DNA from degradation. 

After integration, the viral DNA is then transcribed into mRNA using the host cell machinery 

(Hiscott et al., 2001; Pollard and Malim, 1998) (Figure 1.3). Here, the integrated HIV-1 provirus 

acts as template for the transcription of viral messengers and genomic RNA, by the cellular RNA 

polymerase II. The viral promoter in the U3 part of the 5’-LTR requires activation by cellular 

transcription. After the transcription of mRNA, it is spliced and exported from the nucleus into the 

cytoplasm. The full length HIV-1 transcripts are transported to the cytoplasm either unspliced 

(genomic RNA, which also serves as the Gag and Gag-Pol mRNA), partially spliced (encoding 

Vif, Vpr, Vpu and Env) or full spliced (encoding Tat, Rev, Nef) (Hiscott et al., 2001; Pollard and 

Malim, 1998). The viral Rev protein links the incompleted spliced and unspliced viral RNA to the 

export machinery allowing unspliced RNA to exit the nucleus. In the cytoplasm, mRNA is then 

translated into viral protein and the enzymatic polyprotein precursors Gag and Gag-Pol, and these 

proteins are transported in different pathways to the plasma membrane (Anderson and Lever, 2006; 

Bell and Lever, 2013; Jacks et al., 1988). The immature virion buds off the host cell and acquires 

a phospholipid envelope. After budding, the viral protease is auto-activated and cleaves both Gag 

and Gag-pol precusors into functional individual proteins (Freed, 2001; Wyatt  et al., 1998; Zack 

et al., 1990). 
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Figure 1.3. Steps in the HIV-1 replication cycle. Fusion of the HIV cell to the host cell surface. 2. HIV RNA, reverse 

transcriptase, integrase, and other viral proteins enter the host cell.3 Viral DNA is formed by reverse transcription. 

4.Viral DNA is transported across the nucleus and integrates into the host DNA. 5.New viral RNA is used as genomic 

RNA and to make viral proteins. 6.New viral RNA and proteins move to cell surface and a new, immature, HIV virus 

forms. 7.The virus matures by protease releasing individual HIV proteins.( Source modified from : National Institute 

of Allergies and Infectious Diseases, Biology of HIV). 

 

1.2.3. HIV-1 Reverse Transcription 

Reverse transcription is an essential step in retroviral replication, it is facilitated by enzyme known 

as reverse transcriptase, which converts viral RNA into double stranded RNA (Baltimore, 1970b; 
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Menendez-Arias and Berkhout, 2008; Mizutani et al., 1970; Shafer et al., 2007). Once the viral 

capsid enters the host cell, reverse transcriptase initiates the process of reverse transcription. The 

viral capsid releases the single stranded (+) RNA genome from the attached viral protein and 

copies it into a complementary DNA (cDNA) molecule (Hu and Kuritzkes, 2011; Telesnitsky and 

Goff, 1997). Since reverse transcription is extremely error-prone, the mutations that  occur during 

this process may cause drug resistance or allow the virus to evade the body’s immune system 

(Freed, 2001; Zack et al., 1990) (Figure 1.4). Subsequently, HIV-1 reverse transcriptase derived 

from the Gag-Pol polyprotein is cleaved by viral proteases. The RT enzyme is a heterodimer and 

is composed of two subunits, which is p66 and p51(Beilhartz and Götte, 2010). The larger subunit, 

consists of 560 amino acids while the smaller unit is made up of 440 amino acids. The p66 subunit 

has enzymatic activity, while p51 gives the structural support to p66. Moreover, the p66 subunit 

has three domains, which are: polymerase, RNase H and the connection domain. The connection 

domain connects the polymerase and RNase H domain (Ehteshami and Gotte, 2008; Hu and 

Kuritzkes, 2011; Shafer et al., 2007).  Furthermore, the reverse transcriptase has RNA-dependent 

DNA polymerase, ribonuclease H and DNA-dependent DNA polymerase activities (Tu et al., 

2010). Ribonuclease activity degrades the viral RNA during the synthesis of cDNA and 

polymerase facilitates the conversion of RNA into DNA (Götte, 2007). 

Briefly, a specific cellular tRNA acts as a primer and hybridizes to a complementary part of the 

virus RNA genome called the primer binding site (PBS) (Beilhartz and Götte, 2010). In addition, 

the second strand DNA binds to the U5 (non-coding region) and R region (a direct repeat found at 

both ends of the RNA molecules) of the viral RNA synthesis would be primed by the polypurine 

tract (PPT), which is generated through the RNase H activity of RT (Beilhartz and Götte, 2010). 

Moreover, the DNA segment is extended from tRNA based on the sequence of the retroviral 
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genomic RNA. The viral R and U5 sequence are removed by RNase H  and DNA hybridizes with 

the remaining R sequences at the 3’end (Hu and Kuritzkes, 2011; Sarafianos et al., 2002). 

Extension of the DNA strand from the 3’end occurs with removal of tRNA and PPT by RNase H 

(Figure 1.4). In addition, a second DNA strand is extended from the viral RNA and the PBS region 

of the second strand hybridizes with the PBS region of the first strand, resulting into extension of 

both DNA strands (Hu and Kuritzkes, 2011). Once the newly synthesized DNA strand is initiated 

from the viral RNA, another strand jump occurs where the PBS from the second strand hybridizes 

with the complementary PBS on the first strand. Both synthesized strands are extended further and 

can be incorporated into the hosts genome by the enzyme integrase. 

1.2.3.1. RNase H 

RNase H belongs to the polynucleotidyl transferase superfamily. They are characterized by their 

catalytic sites that contain a central core composed of four highly conserved amino acids that are 

coordinated by two divalent Mg2+ cations (Esposito et al., 2007; Freed, 2001). The divalent metal 

ions are important for enzyme activity and they are observed in close proximity to the active site 

residues (De Clercq, 2002; Esnouf et al., 1995b; Esposito et al., 2007). RNase H is an endonuclease 

that specifically degrades the RNA portion of the RNA/DNA hybrid. Specifically, it degrades the 

(+) strand of the RNA genome while removing the (-) strand tRNA and polypurine tract (PPT) 

(Beilhartz and Götte, 2010). Consequently, RNase H activity can occur in two different modes, 

polymerase dependent and independent modes (Beilhartz and Götte, 2010; Ehteshami and Gotte, 

2008) (Figure 1.5). The polymerase dependent mode is when the 3’end of the primer is bound to 

the polymerase site while the independent mode has no interaction between the 3’end the 

polymerase site (Beilhartz and Götte, 2010; Ehteshami et al., 2008a). Furthermore, polymerase 

dependent binding can occur in two distinct positions that are pre- and post-translocation. Pre- 
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translocation is where the N-site is occupied by the 3’ primer terminus while the incoming 

nucleotides are blocked by the primer terminus and post translocation is when the 3’primer 

terminus occupies the P site leaving the N site unoccupied (Beilhartz and Götte, 2010). RNase H 

cleavage can occur at multiple positions on the template, which generate shorter fragments. In 

summary, the RNase H active site plays a role in tRNA removal which serve as a primer in (-) 

DNA synthesis and removal of polypurine tract (PPT) that serves as primer in (+) DNA synthesis 

(Ehteshami and Gotte, 2008; Ehteshami et al., 2008b; Hu and Kuritzkes, 2011). 

HIV-1 drug resistance mutations that occurred in the polymerase domain may affect the RNase H 

activity and polymerization efficiency. Recent studies report that W153L alone or in combination 

with K65R, M184I, K101E, K103N, E138K and Y181C impair enzyme processivity and 

polymerization efficiency (Guo et al., 2014; Sluis-Cremer, 2014; Tambuyzer et al., 2011; Xu et 

al., 2013). Similarly, recent biochemical studies report that the presence of N348I or 

M184V/N348I mutations decreased the replication capacity of viruses with E138K (Tambuyzer et 

al., 2011; Xu et al., 2013). Furthermore, M230L mutation cause resistance to EFV, NVP, ETR and 

was shown to be deficient in minus-strand DNA synthesis, both DNA-and RNA- dependent 

polymerase activities and RNase H activity (Xu et al., 2010). 
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Figure 1.4. HIV-1 Reverse transcription steps.A.The RNA genome of retrovirus (light) with a tRNA primer base 

paired near the 5’ end. B reverse transcription is initiated by RT generating (-) DNA (dark blue) and the RNAse H  

activity of RT has degraded the RNA template (dashed line). C. Minus-strand transfer has occurred between the R 

sequences at both ends of the genome, allowing (-) DNA synthesis to continue. D. followed by degradation of 

tRNA. A polypurine tract (PPT) next to U3 is resistant to RNase H cleavage and serves as the primer for the 

synthesis of plus-strand. E. (+) DNA strand synthesis continues until the first 18 nucleotides of the tRNA ar copied 

allowing the cleavage of RNA to remove the tRNA primer. The removal of the tRNA primer sets the stage for the 

second (+) transfer and the extension of the plus and minus strands leads to the synthesis of the complete double-

stranded linear viral DNA. ( Hu and Hughes, 2012). 
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Figure 1.5 . RNase H activity with two modes. Polymerase-dependent mode is when the polymerase active site is in 

contact with the 3’primer terminus and polymerase independent mode is when the polymerase active site is not 

occupied by 3’end of the primer and RNase H cuts independently (Delviks-Frankenberry et al 2010). 
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1.3. HIV-1 antiretroviral drugs/inhibitors 

The HIV-1 life cycle has several steps, which provides potential opportunities to develop 

therapeutic intenvention (De Clercq, 2002; Esnouf et al., 1995b). Of the 25 HIV-1 drugs inhibitors 

that are approved by the FDA, currently 12 of those drugs target reverse transcription. The reverse 

transcription step is the most critical step of the HIV-1 replication and lasts for 10 hours of 

infection (Freed, 2001; Hu and Hughes, 2012 ). Reverse Transcriptase Inhibitors (RTIs)  inhibit 

the polymerase activity of reverse transcription (Antikainen and Martin, 2005; Beilhartz and Götte, 

2010). There are two classes of RTIs, the first are the nucleoside RTIs (NRTIs) which are: AZT, 

ddI, ZAL, d4T,3TC,ABC,  FTC and TFV. They are all analogs of native nucleoside and nucleotide 

substrates (Arts and Hazuda, 2012; Jiang et al., 2011). For example, AZT is a thymidine analogue 

with an azido group instead of a hydroxyl group at the 3’ position of the ribose. The second class 

are the non-nucleoside reverse transcriptase inhibitors (NNRTIs), which are: DLV, EFV, ETR, 

NVP and RPV. The proviral DNA integration step is also targeted by approved HIV-1 drug 

inhibitors.  

1.3.1. HIV-1 antiretroviral regimens used in South Africa 
 

There are different HIV-1 antiretroviral drugs available in Southern Africa that are used in 

suppressing HIV-1 replication (Meintjes et al., 2017; Menendez-Arias, 2002). In South Africa, the 

first line regimen of HIV-1 treatment has three options including TDF+emtracitabine (FTC) or 

3TC + efavirenz (EFV), second option is TDF+emtracitabine (FTC) or 3TC +dolutegravir (DTG) 

and third option is TDF +emtracitabine (FTC) or (3TC) + rilpivirine (RPV) (Table 1.1). These 

options are used when the first line regimen fail to suppress HIV-1 replication as indicated by high 

viral loads and low CD4 counts. The genotyping test for HIV-1 drug resistance is performed and 
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hence switched to second line regimen which include; TDF+3TC or AZT +3TC and Ritonavir 

boosted or it can include Lopinavir/r or aluvir. Recently, third line regimen has been introduced in 

the events that second line fails. 

 

Table 1.1. Dosage of the HIV-1 antiretroviral regimens available in Southern Africa (Meintjies et al 2017) 

 

1.3.2. Mechanism of nucleoside and non-nucleoside reverse transcriptase 

inhibitors 

Non nucleoside reverse transcriptase inhibitors (NNRTI) interact with reverse transcriptase of 

HIV-1 by binding to a single site on the p66 subunit, which is termed the NNRTI binding pocket 

(NNRTI-BP) (Esposito et al., 2007; Hsiou et al., 1996; Roquebert et al., 2007; Schultz and 
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Champoux, 2008). Previous studies have reported that NNRTI binding to the  HIV-1 RT causes 

both short and long range distortions of the HIV-1 structure (Hsiou et al., 1996). Short range 

distortions include conformational changes of the amino acid residues or structural elements that 

form the NNRTI-BP. Similarly, the long range distortions involve a hinging movement of the p66 

thumb subdomain that results in the displacement of the p66 thumb subdomain. This  results in the 

displacement of the p66 connection and RNase H domains and p51 relative to the polymerase 

active site (de Bethune, 2010). Nucleoside Reverse Transcriptase Inhibitors (NRTIs) are analogues 

of naturally occurring dNTPs, which lack a 3’-hydroxyl group on the ribose sugar/pseudosugar 

(Schultz and Champoux, 2008; Sluis-Cremer et al., 2007). In order for NRTIs to perform their 

antiviral activity, they must be metabolically converted by host-cell kinases to their corresponding 

triphosphate form (de Bethune, 2010; Menendez-Arias, 2008; Menendez-Arias et al., 2011). These 

RT inhibitors compete with cellular triphosphates, which are natural  substrates for the viral reverse 

transcriptase. They are also known as competitive inhibitors since they compete with viral RT, 

hence they act as chain terminators of nascent viral DNA synthesis (Arion and Parniak, 1999).  

 

1.3.3. HIV-1 drug resistance mutations 

The emergence of  HIV-1 drug resistance mutations decrease the ability of antiviral drugs in inhibit 

viral replication, this has delayed the fight against AIDS. Some drug resistance mutations may be 

good for the virus, since they can assist virus to escape the immune system pressure thereby 

providing it with survival strategies. Similarly, almost all drug resistance mutations are harmful to 

the virus because they make the virus to create stops or changes in the structure of 

proteins/enzymes that are essential for viral replication. These changes in the protein structure may 

develop a viral strains that has better replicative capacity than the wild-type virus. Nonetheless, 
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antiretroviral drugs are proven to be effective agents in inhibiting the replication wild type strains 

of the HIV-1 virus. Once the resistance viral strain is harboured in the system the antiretroviral 

drug fail to inhibit the viral replication with resultant treatment failure.  

Previous studies have reported on HIV-1 drug resistance mutations that are located in the first 300 

amino acids of RT but not on the C- terminus of the RT (Esposito et al., 2007; Menendez-Arias, 

2008; Michels et al., 2010; Pillay et al., 2008) (Figure 1.6). Nucleoside reverse transcriptase 

inhibitors acquire  resistance mutations via different mechanisms. Most NRTI resistance mutations  

occur at or close to the drug-binding sites of the RT gene, resulting in increased discrimination by 

the RT. The second mechanism is via pyrophosphorolysis where the NRTI that terminates the 

chain extension is removed and enables the resumption of DNA synthesis (Julias et al., 2004; Kisic 

et al., 2008; Marconi et al., 2008)(Figure 1.6).  

Zidovudine and stavudine enhance mutations by pyrophosphrolysis and these mutations 

commonly involved in excision of the terminating inhibitors are know as the thymidine analogue 

mutations (TAMS) (Hachiya et al., 2008b; Menendez-Arias, 2002, 2008, 2011). 

Pyrophosphorolysis is the primary mechanism of resistance to AZT and d4T, however it has been 

reported that these mutations confer reduced susceptibility to all NRTIs. Mutations conferred by 

the AZT and d4T are also known as thymidine analogue mutations (TAMs). Briefly, TAMS 

(M41L, D67N, K70R, L210W, T215F/Y and K219E/Q) are defined as non-polymorphic 

mutations selected by the thymidine analogues AZT and d4T (Bocket et al., 2004; Cases-González 

et al., 2007). The TAM mutational pathway occurs in two distinct but overlapping pathways: 

TAM-1 and TAM-2 (Cozzi-Lepri et al., 2005; Cunha et al., 2012; Novitsky et al., 2007). TAM-1 

mutations (M41L, L210W, T215Y) interacts with the purine ring of the adenosine triphosphate, 

while TAM-2 mutations (D67N, K70R, and K219Q) have a larger effect on the proper orientation 



  

20 
 

of the PPi during the nucleophilic attack required for the excision reactions (Cunha et al., 2012; 

Mbisa et al., 2011; Menendez-Arias, 2008). TAM-1 mutations have a greater negative impact on 

virological responses to ABC, ddI or TDF containing regiment than TAM-2 mutations (Bocket et 

al., 2004).  

Other NRTI-resistance associated mutations increase the ability of the enzyme to discriminate 

against the triphosphate derivate of the NRTI (Delviks-Frankenberry et al., 2010; Nikolenko et al., 

2010; Radzio and Sluis-Cremer, 2008). For example, the M184V mutation has been shown to  

decrease the catalytic efficiency of incorporation of lamivudine-triphosphate (Ehteshami et al., 

2008b; Götte, 2007; Gotte et al., 2000; Julias et al., 2004). These drug resistance mutations may 

affect the replication capacity of the virus and therefore influence how rapidly they become the 

dominant population in the quasispecies (Garcia-Lema et al., 2005; Santos and Soares, 2010).  

Previously studies have shown that mutations which confer high level of  resistance have a minimal 

effect on enzymatic activity, and hence viral fitness, emerges rapidly (Ilina et al., 2012; Schultz 

and Champoux, 2008).  

Non-Nucleoside Reverse Transcriptase inhibitors (NNRTIs) bind to amino acids located in a 

hydrophobic binding pocket within the reverse transcriptase (Hsiou et al., 2001; Tachedjian et al., 

2001; Wang et al., 2004). Furhermore, this  binding pocket is not part of the RT enzyme binding 

site, therefore the mechanism of resistance to NNRTI is straightforward. In addition, hydrophobic 

binding pocket does not exist in the absence of the drug, NNRTI open the pocket and blocks 

enzyme movement during the process of reverse transcription (Figure 1.6). Figure 1.6 illustrate 

that binding of NNRTI halt the DNA synthesis since the enzyme is not moving. Therefore, NNRTI 

mutations resistance involve amino acids that form hydrophobic binding pockets, these includes 
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L100I, Y181C, G190S/A and M230L (Bacheler et al., 2000; Gulick et al., 2004; Reuman et al., 

2010; Richman et al., 1991; Shahriar et al., 2009).  

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Mechanism of NNRTI drug resistance. In the case of drug sensitive virus, NNRTI bind to the 

hydrophobic pocket near the reverse transcriptase active site and block DNA polymerization, drug resistant virus 

NNRTI binding blocked and normal DNA polymerization  (Nikolenko et al 2010). 

 

1.4. HIV-1 RT Connection and RNase H domain mutations 

As mentioned above, most HIV-1 drugs target RT, with well characterized RT mutations occur in 

the N terminal domain of RT while the C-terminal domain mutations are not well characterized. 

In addition, most of the HIV-1 drug resistance mutations have been well studied in subtype B, 

while non-B -subtypes remain understudied (Santos et al., 2008; Santos and Soares, 2010). 

Mutations implicated in RTI resistance in the CN and RNase H domains are shown in Table 1.1. 

E312Q, Q334D, G335C/D, N348I, M357R R358K, G359S, A360I/T/V, V365I, K366R, T369V, 

A371V, A376S, T377M, K390R, E399D, A400T, A435L, S468A,T470S, L484I, I506R, A508S, 

Q509L, L517I, Q524E, K527N, E529D, K530R and Q547K have a higher prevalence in ARV 

treated patients (Barral et al., 2016; Maiga et al., 2012; Ngcapu et al., 2017a; Saeng-aroona et al., 
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2010; Santos et al., 2008; Schuckmann et al., 2010; von Wyl et al., 2010). In addition, N348I, 

A360V/T, T377M in the connection domain and D488E in RNase H were found to be selected 

independently of TAMS (Lengruber et al., 2011; Santos et al., 2008).  

1.4.1. Effect of connection and RNase H mutations on drug susceptibility 

Previous phenotypic studies have shown that N348I, T369V and A371V have reduced 

susceptibility to AZT in the presence of TAM-1 and/or TAM-2 pathway mutations, and also confer 

resistance to NVP (Gupta et al., 2011; Yap et al., 2007). Likewise, D488E and Q547K caused 

TAM-specific enhancement resistance to AZT while G359S replaced a AZT hypersusceptibility 

phenotype when combined with A371V (Delviks-Frankenberry et al., 2010; Lengruber et al., 

2011). The G333D/E connection domain mutation causes resistance to both AZT and 3TC in 

subtype B viruses (Gallego et al., 2002). In contrast, this mutation has been reported in subtype C 

infected treatment naïve patients.  

1.4.2. Connection domain mutations and TAMS 

Connection domain (CN) mutation, N348I is observed with and without TAMs while A360V 

mutations appears to be associated with TAMs  (Delviks-Frankenberry et al., 2008). Likewise, 

A360V mutation compensates for a TAM-mediated deficit in viral fitness and therefore appears 

later, after the emergence of TAMs. On the other hand, N348I mutation is able to recruit PPi as a 

substrate for the excision reaction and appears early, independent of TAMs (Nikolenko et al., 2005; 

Schuckmann et al., 2010; von Wyl et al., 2010). In addition, N348I together with M184V 

compensate for reduced NNRTI drug susceptibility observed in the single N348I mutant, with 

marginally improved replicative capacity (Gupta et al., 2011; Yap et al., 2007). Recently, studies 
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reported low viral replication capacity in viruses containing both E138K and N348I, while N348I 

enhanced resistance to ETR and RPV (Xu et al., 2014a) (Table 1.1). 

1.4.3. HIV-1 Connection domain mutations and RNase H 

Previous studies show that CN domain mutations are associated with high AZT resistance 

suggesting that C-terminus domain mutations should be considered in genotypic and phenotypic 

drug resistance testing (Julias et al., 2004; Julias et al., 2003; Nikolenko et al., 2007; Nikolenko et 

al., 2005). Several CN domain mutations are associated with RT template switching suggesting 

that they can change the predicted balance between nucleotide excision and RT template RNA 

degradation. The CN domain plays a role in positioning the incoming nucleic acid suggesting that 

CN  mutations might affect the RNase H primer grip, resulting in inefficient and unspecific 

template cleavage (Nikolenko et al., 2007). 

1.4.4. HIV-1 RNase H mutations and TAMs 

Previous studies report that RNase H domain mutations can significantly contribute to drug 

resistance in combination with NRTI-resistance mutations in RT (Nikolenko et al., 2005). For 

instance, Q509L was shown to increase resistance to AZT in combination with the TAMs: D67N, 

K70R and T215F (Brehm et al., 2007). Brehm et al (2008) showed that RNase H mutations 

increased the AZT-monophosphate excision activity of RT on RNA/DNA template/primers (T/Ps) 

but not DNA/DNA T/Ps. Furthermore, Nikolenko et al (2005) proved that H539N and D549N 

RNase H mutations significantly increase AZT resistance alone and in combination with TAMs 

(Nikolenko et al., 2005; Roquebert and Marcelin, 2008). The latter findings provide evidence that 

RNase H domain mutations affects HIV-1 drug resistance, nonetheless more investigations are 

required to understand how they confer resistances in all the subtypes. 
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1.4.5. Connection domain and RNase H mutations in non-B subtypes 

There are limited studies on non-B subtypes, however a recent study reported D404N as a novel 

NRTI and NNRTI-associated mutation found in HIV-1 sybtype CRF08_BC treated isolates 

(Zhang et al., 2015b). The study show that D404N mutation conferred low-level resistance to NVP, 

EFV, RPV and AZT. In addition, Brazilian studies where HIV-1 subtype C is dominant, 

characterized some CN domain mutations: N348I (14%), M357R (5.9%), T369I/V (2%), A371V 

(12%), A376S (5%), A400T (10%) (Barral et al., 2016; Delviks-Frankenberry et al., 2008; Ngcapu 

et al., 2017a; Santos et al., 2008) (Table 1.1). Some of the CN domain mutations were characterized 

in HIV-1 subtype CRF02_AG were G333D/E, G335C/D, N348I, A360I/V, V365I, A371V, A376S 

and E399G (Maiga et al., 2012). 

The Brazilian HIV-1C cohort identified two novel C-terminus mutations M357R and E529D 

(Barral et al., 2016). Previous data from South African HIV-1 subtype C cohort identified RNase 

H mutations: E438GKR, L517ISV, K527GENQR, E529DK and Q547HKR as treatment-related 

mutations (Ngcapu et al., 2017a). Interestingly, the E529D RNase H mutation was found in isolates 

that did not develop any classical NRTI mutations suggesting that E529D could be a primary/novel 

NRTI drug resistance mutation in HIV-1 subtype C (Ngcapu, 2012; Ngcapu et al., 2017a) (Table 

1.2). 

 

 

 

 

 



  

25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. CN and RNase domain mutations from different HIV-1 subtypes 
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CN and  

RNase H mutation 

 

HIV-1 subtype Primary or compensary 

mutation 

References 

I326V B Primary (Santos et al., 2008) 

G333D/E B and CRF02_AG Primary and Secondary  (Gallego et al., 2002; Kemp et al., 1998; Maiga et al., 2012) 

Q334D B and C Secondary mutation (Delviks-Frankenberry et al., 2013; Hachiya et al., 2008a; Hachiya et al., 2009) 

G335C/D B and CRF01_AE Primary (Hachiya et al., 2009; Maiga et al., 2012; Nikolenko et al., 2007; Tanuma et al., 2010) 

N348I B, CRF01_AE and 

CRF02_AG 

Primary and  Secondary (Gupta et al., 2011; Maiga et al., 2012; McCormick et al., 2011; Nikolenko et al., 2007; Tanuma et al., 

2010; von Wyl et al., 2010; Yap et al., 2007) 

R356K B Primary (Maiga et al., 2012; Santos et al., 2008; von Wyl et al., 2010) 

M357R C Primary (Barral et al., 2016) 

R358K B Primary  (Lengruber et al., 2011; Santos et al., 2008; von Wyl et al., 2010) 

G359S B Primary (Lengruber et al., 2011; Santos et al., 2008) 

A360T/V B, C and CRF02_AG Secondary (Brehm et al., 2007; Brehm et al., 2012a; Kemp et al., 1998; Maiga et al., 2012; Nikolenko et al., 2007; 

Santos et al., 2008; von Wyl et al., 2010; Yap et al., 2007) 

V365I B and CRF02_AG Secondary (Brehm et al., 2007; Hachiya et al., 2009; Kemp et al., 1998; Maiga et al., 2012; Nikolenko et al., 2007; 

Yap et al., 2007) 

K366R B Primary (Santos et al., 2008)Santos et al 2008 

T369I/V B and C Primary and Secondary (Gupta et al., 2011; Santos et al., 2008; Santos et al., 2011 ) 

A371V B, C and CRF02_AG Primary 

And Secondary 

(Brehm et al., 2007; Delviks-Frankenberry et al., 2013; Hachiya et al., 2009; Lengruber et al., 2011; Maiga 

et al., 2012; Santos et al., 2008; Santos et al., 2011 ; Tanuma et al., 2010; von Wyl et al., 2010) 

A376S B,C, CRF01_AE and 

CRF02_AG 

Secondary (Brehm et al., 2007; Delviks-Frankenberry et al., 2013; Hachiya et al., 2009; Maiga et al., 2012; Nikolenko 

et al., 2007; Paredes et al., 2011; Santos et al., 2011 ; Tanuma et al., 2010) 

T377M B Primary (Lengruber et al., 2011) 

K390R B Primary (Santos et al., 2008) 

E399D B and CRF02_AG Primary (Maiga et al., 2012; Michels et al., 2010) 

A400T B and C, CRF_AE Primary and Secondary (Delviks-Frankenberry et al., 2013; Lengruber et al., 2011; Santos et al., 2008; Tanuma et al., 2010) 

D404N CRF01_BC Primary (Zhang et al., 2015b) 

A435L C Primary (Ngcapu et al., 2017a) 

K451R B Primary (Lengruber et al., 2011) 

Q457K B Primary (Dau et al., 2010; Santos et al., 2008; Santos et al., 2011 ) 

S468A C Primary (Ngcapu et al., 2017a) 

L469T/I/M/H B Primary (Roquebert et al., 2007) 

T470S B and C Primary (Ngcapu et al., 2017a; Roquebert et al., 2007) 

T470P B Primary (Roquebert et al., 2007) 

L484I C Primary (Ngcapu et al., 2017a) 

D488E B and C Primary (Lengruber et al., 2011; Santos et al., 2011 ) 

I506G B Primary (Santos et al., 2008; Santos et al., 2011 ) 

A508S C Primary (Ngcapu et al., 2017a) 

Q509L B Primary and secondary (Brehm et al., 2007; Hachiya et al., 2009) 

K512R B Primary (Lengruber et al., 2011) 

L517I C Primary (Ngcapu et al., 2017a) 

Q524E C Primary (Ngcapu et al., 2017a) 

K527N B Primary (Santos et al., 2008) 

E529D C Primary (Barral et al., 2016; Ngcapu et al., 2017a) 

K530R B Primary  (Santos et al., 2008) 

H539N B Primary and Secondary (Nikolenko et al., 2005) 

Q547K B Primary  (Santos et al., 2011 ) 

D549N B Primary and Secondary (Nikolenko et al., 2005) 

A55T/L/K B Primary (Roquebert et al., 2007) 

K558R/G/E B  Primary (Roquebert et al., 2007) 
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1.5. Principles of laboratory techniques 

1.5.1. Site directed mutagenesis 

Site directed mutagenesis (SDM) is a molecular biology technique used to make specific and 

intentional changes to the DNA sequence of a gene and any gene product (Antikainen and Martin, 

2005; Ling and B.H., 1997; Shortle et al., 1981). It is also known as site-specific mutagenesis or 

oligonucleotide-directed mutagenesis since one nucleotide can move to a specific site and change 

the amino acid sequence. This technique is used to investigate the structure and biological activity 

of DNA, RNA and protein molecules and for protein engineering. It is a very important laboratory 

technique for introducing a mutation into DNA sequence. Previous study has attempted SDM 

using radiation or chemical mutagens, however the early attempts were non-specific, generating 

random mutations (Shortle et al., 1981). The present SDM techinique used is the QuickChange 

(Stratagene; USA;La Jolla), where they developed their own mutagenesis kit and primer design 

tool. 

Site directed mutagenesis requires the synthesis of a short DNA primer containing the desired 

mutation. This primer is complimentary to the template DNA around the mutation site so that it 

can hybridize with the DNA of the gene of interest. The introduced mutation may be a single or 

multiple base change (point mutation), deletion or insertion (Zheng et al., 2004). DNA polymerase 

is used to extend the single stranded primer and Dpn I digests  the methylated parental DNA strand. 

The PCR products are directly transformed into host cells for example XL10 gold competent cell, 

colonies are picked and screened using restriction digestion. Introduction of the desired mutation 

is confirmed by DNA sequencing (Edelheit et al., 2009). In this study, the QuickChange Site 

directed mutagenesis from Stratagene (USA, La Jolla) was used, and was implemented according 

to the manafacturer’s guidelines.  
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1.5.2. Phenotypic drug susceptibility assay  

Phenotypic resistance assays assess the susceptibility of clinical HIV isolates to antiretroviral 

drugs (Haubrich, 2004). It measures the amount of drugs required to suppress 50% of the viral 

growth, known as the IC50 (Pattery et al., 2012; Petropoulos et al., 2000). The drug susceptibility 

is presented as the IC50 of the patient’s virus compared to that of the reference/wild type virus. The 

ratio of these IC50 is called the fold change.  

There are numerous drug susceptibility assays that have been developed. Older phenotypic drug 

susceptibility assays had several limitations; they required fresh healthy donor PBMCs and were 

labour intensive and time-consuming (Japour et al., 1993). It consisted of two steps: the first 

involved the co-cultivation of HIV-1 infected PBMC with seronegative PHA stimulated PBMCs 

to obtain a HIV-1 stock. Secondly, the virus stock was titrated for viral infectivity using serial 

dilutions of the drug in donor PBMCs (Japour et al., 1993; Kellam and Larder, 1994). This assay 

took a minimum of two weeks to complete and measured real time drug susceptibility.   

The recombinant virus assay is based on direct amplification of the patient’s RNA from plasma 

and inserting it into a deleted backbone vector (Petropoulos et al., 2000). In this assay, drug 

susceptibility of protease and RT inhibitors is measured using a reporter gene, such a luciferase 

indicator gene and  GFP reporter gene. Since the vectors are replicative defective,  luciferase 

activity can be measured following a single round of replication once the luciferase is incorporated 

in the vector, indicating in infectivity (Petropoulos et al., 2000; Puertas et al., 2012). More recently, 

studies have used TZM-bl reporter cell lines that contain luciferase (Hertogs et al., 1998; 

Petropoulos et al., 2000).  This assay also has the capacity to incorporate multiple cycles of 
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infection (Puertas et al., 2012). Furthermore, in comparison with other traditional phenotypic drug 

susceptibility assays, it is rapid and affordable.  

There are currently two commercially available phenotypic drug susceptibility assays; 

Antivirogram (Monogram) and PhenoSense (Virologic). The PhenoSense assay is a single-cycle  

assays that uses luciferase as a reporter gene (De Luca, 2006). The Antivirogram phenotypic drug 

susceptibility assay is another commercial assay used to determine drug susceptibility (Monogram 

Bioscience). Similarly, this assay also uses a  resistant test vector with deleted proteins (PR and 

RT). The deleted proteins are replaced by the patients’ derived genes. In this assay, the 

recombinant viruses are produced by nucleofection. The Antivirogram and PhenoSense assays 

both use polymerase chain reaction (PCR) to amplify the patients’ proteins (PR or RT) from the 

patients’ plasma. Furthermore a standardized virus inoculum infects 293 T cells in PhenoSense 

assay, while MT4 cells are infected in the Antivirogram. In PhenoSense assay, virus production is 

monitored by a luciferase gene that emits light in proportion with to the number of virions after 

single round of HIV-1 replication (Zhang et al., 2004; Zhang et al., 2005). In contrast, the 

Antivirogram assay measures the intensity of a tetrazolium dye that produces color when reduced 

by mitochondrial enzyme in proportion with viable cells (MTT assay).   

A recent study by Weng et al (2016), developed a new phenotypic assay where two reporter genes 

were used Zsgreen and luciferase. In their protocol PR and the part of RT amplified from a patient 

isolate was packaged into a modified lentivirus carrying  dual reporter genes Zsgreen and luciferase 

(Weng et al., 2016). The half replacement with presence of the ZsGreen reporter, decreased the 

cost of the Bright-Glo luciferase reagent, making the assay cheaper when larger samples are used 

(Weng et al., 2016). In this study, the phenotypic assay that was used was derived from the 

neutralization assay developed by Montefiori et al, (2009); briefly a TZM-bl cell line with the 
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luciferase gene was  and the expression of luciferase was determine by the Bright-Glo reagent and 

measured on a  Glomax luminometer (Montefiori, 2009). 

1.5.3. 3D homology modelling 

Homology modelling is also known as the comparative modelling of proteins; this refers to the 

construction of an atomic-resolution model of the target protein from its amino acid sequence and 

experimental three dimensional structure of a related homologous protein. It is also a fast tool for 

drug discovery and is used to get a rough idea where the alpha carbons of the key residues sit in 

the folded protein (Martz, 2001). The structure of proteins are usually determined using the X-ray 

diffraction and NMR distance measurement, X-ray diffraction is time-consuming while NMR 

looks at isolated proteins rather than protein complexes and is also time consuming (Cavasotto and 

Phatak, 2009; Chandonia and Brenner, 2005). Due to the complication of the above techniques, 

more methods were developed which are fast and easy to performed.  

Homology modelling was used in structural biology to generate a reliable 3D model of a protein. 

There are steps that are followed in other to created a good 3D model structure. Firstly, identifying 

the template; single or multiple  sequence alignment. Secondly, model building for the target based 

on the 3D structure of the template. Thirdly, model refinement and anlysis of alignment, gap 

deletion and additions. The last step in generation of the model is to do the model validation. There 

are several computer based software that are used to build the model. These are Swiss Model, 

Modeller, Modbase, 3D Crunch, PrisM, Composer and Concen (Cavasotto and Phatak, 2009; Li 

et al., 1997; Sali and Blundell, 1993; Sutcliffe et al., 1987; Yang and Honig, 1999). Modeller 

combines the sequences and structure into a complete alignment which can be examined using 

molecular graphics programms and edited (Floudas et al., 2006; Sali and Blundell, 1993). 



  

31 
 

SwissModel, which is accessible on a webserver, accepts the sequence to be modelled and then 

delivers the model by electronic mail. It follows the standardized protocol of homology 

identification, sequence alignment, determining the core backbone and modelling loops and side 

chains (Hillisch et al., 2004). In addition, PriSM uses an alignment to build a composite template 

by selecting each secondary structure from the the most appropriate template. This method can be 

used for loop modelling and side chain dihedrals which are derived from either template or 

predicted structure based on main chain torsion angles and neutral network algorithm (Yang and 

Honig, 1999). Simarly, COMPOSER uses a  multiple template structure  for building homology 

models. CONCEN creates models by developing distance restraints from the template structure 

and the sequence alignment of the target and template for atoms. The atoms include all backbone 

atoms and side-chain atoms of the same chemical type and hybridization state (Bower et al., 1997; 

Sutcliffe et al., 1987). 

In this study, Swiss Model has been used to build the protein structures shown because it is 

accessible and easily to used. The structures were viewed in Chimera. Chimera is a highly 

extensible program for interactive visualization and analysis of molecular structure and related 

data, including density maps.  

1.5.4. Bayesian Network analysis 

A Bayesian Network (BN) is a graphical model that describes statistical correlation between 

multiple variables that hold in the domain (Deforche et al., 2008). The model encodes 

dependencies among all variables, and can be used to understand casual relationships and hence 

can be used to gain understanding about the problem domain and predict the consequences of 

intervention (Hackerman, 1996). A BN is learned from data by searching for the most credible 

network structure that explains casual and cause-effective relationships from data using a 
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minimum number of arcs (Deforche et al., 2006). Furthermore, it can elucidate a role for mutations 

selected during treatment, to identify resistance pathways and to investigate influences of 

background polymorphic positions (Deforche et al., 2007; Theys et al., 2010). Previous studies 

have shown that the association between mutations may reflect epistatic fitness interactions 

between mutations and therefore can be used to model a fitness landscape (Deforche et al., 2008; 

Theys et al., 2010). In addition, the directed acyclic structures of a BN are also capable of 

representing relationships between the variables through direct conditional or unconditional 

dependencies (Deforche et al., 2008; Myllymaki et al., 2002). Dependencies are represented by 

the presence of an arc from one variable to another, showing dependencies between all variables 

in the data (Myllymaki et al., 2002). 

After the most credible BN network structure has been found, assessments of the network 

robustness are searched using bootstrapping (Deforche et al., 2008; Deforche et al., 2008c). One 

hundred replicates of non-parametric bootstraps are performed to derive network robustness by 

the presence or absence of a particular arc (Deforche et al., 2006). The existence and thickness of 

arcs showing a direct influence amongst the corresponding variables are relative to bootstrap 

values and their importances are colored according to the arc weight. For example, black arc 

weighed ≥ 109, purple weighed ≥ 106, green weighed ≥ 103, and blue weighed ≥ 103 while grey 

weighed ≥ 1 (Myllymaki et al., 2002; Pearl, 1988). The black arc indicates direct influence between 

resistance mutations, while associations between background polymorphisms are shown in green 

arcs and the blue arcs indicate an influence from background polymorphisms on drug resistance 

associated mutations.  
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1.6. Rationale of the study 

HIV-1 reverse transcriptase enzyme is a multifunctional enzyme that contains RNA and DNA 

dependent polymerase activity, together with RNase H activity (Baltimore, 1970b; Delviks-

Frankenberry et al., 2010; Ilina et al., 2012; Telesnitsky and Goff, 1997). It is composed of two 

subunits, a p51 subunit 440 amino acids long (the polymerase domain) and a p66 subunit which in 

addition to the polymerase domain has an another 120 amino acids on the C-terminal end (the 

RNase H domain). Most studies on reverse transcriptase inhibitor drug resistance mutations focus 

on the N-terminal domain of RT (Brehm et al., 2007), while the C-terminal domain has not been 

fully characterized in the context of drug resistance mutations. Subtype B studies noted that 

mutations in the CN and RNase H domains are associated with high-level resistance to the NRTI 

(Brehm et al., 2007). Recently, our group has shown that isolates that did not develop any of the 

classical NRTI mutations in the RT domain harbored RNase H T470S, L517ISV and E529D 

mutations in RNase H. Additionally, BN analysis also suggested that E529D was a primary 

resistance mutation (Ngcapu, 2012). We therefore investigated the phenotypic effects of mutations 

in the connection and RNase H region of patient viral isolates, on susceptibility to NRTI and 

NNRTIs. In this study, we investigated the effect of E529D and T470S/P on N/NRTI 

susceptibility. We also identified novel mutations in CN domain and test their effect on N/NRTI 

susceptibility. Because the TAMs have also been implicated in CN and RNase H resistance, the 

effect of connection and RNase H mutations, in conjuction with TAMs, was also investigated. 

Secondly, BN was used to predict the possible pathway of HIV-1 subtype C reverse transcriptase 

mutations occurred concurrent with C-terminal mutations. 
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1.6.1. Hypothesis 

We therefore hypothesized the following: 

1. The E529D and T470S/P mutations in RNase H are primary drug resistance mutations in HIV-

1 subtype C. 

2. HIV-1 Connection and RNase H domains mutations, in combination with RT mutations affect 

viral fitness and drug susceptibility in HIV-1 subtype C. 

3. Connection and RNase H domains mutations of HIV-1 subtype C affect the 3D conformation 

of the RT. 

1.6.2. Specific Aims 

1. To determine if the E529D  mutation in RNase H is a primary drug resistance mutation in 

HIV-1 subtype C using site directed mutagenesis. 

2. To identify novel resistance mutations in the connection domain and test the effect of these 

mutations on drug susceptibility and viral fitness. 

3. To determine the effect of RNase H domain mutations in combination  with the D67N 

thymidine analogue mutation (TAM) on drug susceptibility and viral fitness. 

4. To perform 3D homology modeling of RNase H mutants. 
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Chapter 2 

Minimal phenotypic effects of RNase H domain mutations 

in HIV-1 subtype C on reverse transcriptase inhibitors  

2.1. Introduction 

HIV-1 reverse transcriptase (RT) catalyses the conversion of viral single stranded RNA into double 

stranded DNA that integrates into the host genome (Baltimore, 1970a; Rhee et al., 2005; Spence 

et al., 1995b). In addition to RNA and DNA dependent polymerase activity, RT also has 

ribonuclease H (RNase H) activity, where RNase H removes the tRNA primer and polypurine tract 

(PPT) during reverse transcription (Beilhartz and Götte, 2010; Menendez-Arias and Berkhout, 

2008). The native structure of HIV-1 RT consists of 66 kDa (p66) and 51 kDa (p51). The p66 

subunit consists of the polymerase and RNase H domains linked by the connection domain 

(Baltimore, 1970a; Ilina et al., 2012; Sarafianos et al., 2009; Schultz and Champoux, 2008); the 

p51 subunit is catalytically inactive but plays a structural role (Schultz and Champoux 2008; 

Beilhartz and Götte 2010). Over half of the currently available FDA-approved drugs against HIV 

infection target the DNA polymerase activity of the RT enzyme, called the RT inhibitors (Ilina et 

al., 2012). These RT inhibitors are further classified into nucleoside and non-nucleoside RT 

inhibitors (NRTIs and NNRTIs) (Ilina et al., 2012; Pennings, 2013; Rhee et al., 2005), based on 

the way in which they inhibit HIV-1 replication. Nucleotide Reverse Transcriptase Inhibitors bind 
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at the nucleotide binding site and upon incorporation, inhibit the elongation of the viral DNA chain 

due to the absence of the 3’OH group, resulting in termination of DNA synthesis (Ilina et al., 2012; 

Iyidogan and Anderson, 2014). Non-Nucleotide Reverse Transcriptase Inhibitors are non-

competitive inhibitors that induce a conformational change around the active site upon binding to 

the hydrophobic NNRTI binding pocket (NBP), where they block the chemical reaction step of 

DNA polymerization (Rittinger et al., 1995; Spence et al., 1995a; Xia et al., 2007). Moreover, 

NNRTIs distort the catalytic site shifting the three key aspartic acids at positions 110, 185 and 186 

and restrict the flexibility of a key loop between positions 183 and 186. Mutations clustered around 

the hydrophobic site are associated with decrease susceptibility to the NNRTIs (Das and Arnold, 

2013b; Delviks-Frankenberry et al., 2010; Esnouf et al., 1995a; Tambuyzer et al., 2009).  

In spite of the successful use of the RTIs, the development of resistance has created a major hurdle 

in the long term use of these drugs (Paredes et al., 2011). Previous studies have identified two 

mechanisms of NRTI drug resistance. The first mechanism involves discriminatory mutations that 

weaken the binding affinity of the NRTI, allowing the dNTPs to bind, while the second mechanism 

involves nucleotide excision, resulting in the reversal of polymerization and restoration of DNA 

synthesis (Arion et al., 1998; Iyidogan and Anderson, 2014; Meyer et al., 1998). Previous studies 

reported that mutations in the RT CN and RNase H domains modulate HIV-1 susceptibility to RT 

inhibitors by 10 to 50 fold (Delviks-Frankenberry et al., 2008; Ehteshami et al., 2008a; Hachiya et 

al., 2008a; Nikolenko et al., 2007; Yap et al., 2007; Zelina et al., 2008).  

Key studies have reported that RNase H mutations also dramatically increase resistance in the 

presence of the TAMS (Brehm et al., 2007; Brehm et al., 2012b). While H539N and D549N 

RNase H mutations increased AZT resistance 180-fold and reduced d4T susceptibility by 10- 

fold, when found together with D67N-K70 -T215Y-K219Q, AZT and d4T resistance increased 
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by 1,250-fold and 12,5 fold respectively (Brehm et al., 2007; Nikolenko et al., 2010; Nikolenko 

et al., 2005). 

Most drug resistance studies have been performed in HIV-1 subtype B isolates, with limited data 

from subtype C, particularly for RNase H. Recently, two novel mutations in connection and RNase 

H (M357R and E529D respectively) were identified in a HIV-1 subtype C Brazilian cohort (Barral 

et al., 2016). Previous data from our group identified E529D and to a lesser extent L517I,  as 

treatment-related RNase H mutations from a local subtype C cohort (Ngcapu et al., 2017b). The 

current study investigated the phenotypic effects of these RNase H mutations in the context of 

HIV-1 subtype C. 

2.2. Material and methods 

2.2.1. Antiretroviral drugs and cell lines 

All antiretroviral drugs, including zidovudine (AZT), stavudine (d4T), nevaripine (NVP), 

etravirine (ETR) and efavirenz (EFV) as well as a pNL4.3 infectious molecular clone, were 

obtained from the NIH AIDS research and reference reagents program 

(https://www.aidsreagent.org/index.cfm). The HEK293T cell line was obtained from the 

American Type Culture Collection (ATCC). The TZM-bl cell line was a gift from Eric Hunter, 

Emory University, Atlanta, USA (Center for AIDS Research). The pNL4.3 RT deleted backbone 

was a gift from Mark and Zabrina Brumme (Simon Fraser University, British Columbia, Canada). 

TZM-bl and 293T cell lines were maintained in Dulbecco's Modified Eagle's Medium with L-

glutamine, sodium pyruvate, glucose, pyridoxine and 25 mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) (Gibco BRL Life Technologies) containing 10% heat-inactivated 

fetal bovine serum (FBS) and 50 μg gentamicin/ml in vented T-75 culture flasks (Corning Costar). 
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Cells were incubated at 37°C in a humidified 5% CO2. Unless otherwise specified, all incubations 

were carried out under these conditions. Cell monolayers were split 1:10 at confluence by 

treatment with 0.25% trypsin, 1 mM Ethylenediaminetetraacetic acid (EDTA) (Invitrogen) as 

described (Montefiori, 2009). 

2.2.2. Construction of the RTsubCWT recombinant plasmid 

A wild-type recombinant plasmid carrying the whole RT gene from a subtype C wild-type virus 

isolated from a stored plasma sample (PKE4N) was constructed. The sample was obtained from a 

patient enrolled in the Tropism study (BREC310807/41 hs), where samples were collected with 

informed consent from patients attending the ARV clinic at King Edward VIII Hospital, KwaZulu-

Natal, South Africa. This sample was chosen because the RT sequence most closely matched the 

subtype C RT consensus sequence. Ethics approval to use this sample was obtained from the 

UKZN Biomedical Ethics Committee (BREC approval number: BE017/14). 

Viral RNA was extractred using the Qiagen Viral RNA Mini kit (Qiagen, Netherlands), according 

to the manufacturer’s instructions. The RNA was amplified using the Superscript III One-step RT-

PCR  system with Platinum Taq DNA polymerase (Invitrogen, Life Technologies Corporation, 

Carlsbad, CA, California) and the following primers: Forward primer: 5’ 

TCCCTCAGATCACTATTTGGCA 3’ and reverse primer: 

5’CAGTCTACTTGTCCATGCATGGCTTC 3’. A second round of PCR was performed using the 

Q5 High fidelity DNA polymerase (New England Biolabs; Ipswich, MA) and the following 

primers:P66_chimericrecomb_F:  

5’CTGCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATA

ATTGGAAGAAATCTGTTGACTCAGATTGGCTGCACTTTAAATTTT 3’ and  
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P66_chimericrecomb_R: 

5’TTGCTACTACAGGTGGTAGGTTAAAATCACTAGCCATTGCTCTCCAATTACTGTGA

TATTTCTCATGTTCTTCTTGGGCCTTATCTATTCCATCTAAAAAT3’. The PCR reaction 

was performed as follows: 98oC for 3 minutes, followed by 18 cycles of 98oC for 10 seconds, 55  

oC for 30 seconds and 72oC for 5 minutes.The presence of the 2000bp RT PCR product was 

confirmed by running 5µl of each product on a 1% agarose gel. Products were purified using the 

QIAquick gel extraction kit (Qiagen, Netherlands) as per the manufacturer’s instructions. The 

purified DNA was then sequenced using the Big Dye terminator sequencing kit v3.1 (Applied 

Biosystems, Foster City; CA) and run on an ABI Prism 3130 XL automated DNA sequencer 

(Applied Biosystems, Foster City; CA). The sequences were analyzed using Sequencher v5.4.6 

(Gene Codes Corporation, Ann Arbor, MI, USA). 

The RT amplicon  was cloned into a TOPO vector using the TOPO TA cloning kit version 2.1 

(Invitrogen, Carlsbad) according to the manufacturer’s instructions. Colonies were screened for 

the insert using colony PCR and verified by restriction digest with Eco R1 (New England Biolab, 

Ipswich, MA). The DNA from positive clones was extracted using the GeneJet plasmid miniprep 

kit (Thermo scientific, Lithuania, EU).  

2.2.3. Construction of viral mutants (RTsubCmut) using site-directed 

mutagenesis 

The following individual mutations: D67N, T470S, T470P, L517I, E529D and L517I+D67N 

combination were introduced into the TOPO plasmid containing the RT amplified product 

(RTsubCWT), using the Quick-Change II XL site directed mutagenesis kit (Stratagene, La Jolla, 

CA). Briefly, two complimentary oligonucleotides containing the desired mutations were designed 
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using the QuickChange mutagenic primer designer tool and are shown in Table 

2.1(https://www.chem.agilent.com/store/primerDesignProgram.jsp). The underlined codon 

denotes the single nucleotide substitutions that were introduced into the plasmid. The control and 

sample reactions were prepared as follows: 5µl of 10x reaction buffer, 2µl (10 ng) of pWhitescript 

4.5 kb control plasmid and 2 µl for Plasmid DNA (TOPO+ RT), 1µl of oligonucleotide primer 

(anti-sense) and 1 µl oligonucleotide primer (sense), 1 µl of dNTPs, 1µl of PfuUltra HF DNA 

polymerase was added. Finally, distilled water was added to a final volume of 50µl. Each reaction 

was cycled using the following PCR conditions: 95 oC for 1 minute; 95 oC for 50 seconds; 60 oC 

for 30 seconds; 68 oC for 5 minutes for 18 cycles. Following 68 oC for 7 minutes and the PCR 

product was placed on ice for 2 minutes to cool the reaction. The amplification products were 

digested with 1µl Dpn I restriction enzyme for 1 hour at 37 oC. Following the digestion of parental 

DNA strand, 1 µl  Dpn 1-treated DNA was transformed from each control and sample reaction 

into separate 50 µl aliquots of XL1- Gold ultracompetent cells according to the manufacturer’s 

recommendations. The transformation of PCR products were done according to the manufacturer’s 

recommendations.  Table 2.1 shows the mutagenic primers that were used for the SDM reaction. 

The underlined codon denotes the single nucleotide substitutions that were introduced into the 

plasmid.  Briefly, the positive clones were picked and cultured in the LB broth media with 

ampicilin overnight.  Following the overnight incubation,  DNA isolation was performed by 

GeneJet plasmid miniprep kit and confirmed by enzyme restriction digestion (Thermo Fisher 

Scientific, Inc). Positive clones were confirmed for the presence of the mutation by DNA 

sequencing. The sequencing reaction  was perfomed using 0.4µl Pre-mixed Big-Dye terminator 

v3.1 (Applied Biosystems), 2µl 5x sequencing buffer,  4.6µl sterile DNase free water, 1µl DNA 

(20ng/µl) and 2µl of 3.2 pmol primers were added to the reaction. The final volume of the 
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sequencing reaction was 10µl. The reaction was placed in the thermocycler using the following 

cycling conditions: 96 oC  for 1 minute; 96 oC for 10 seconds; 50 oC for 5 seconds; 60 oC for 4 

minutes, sequencing reaction was done for 25 cycle. The sequences were run on a 3130XL 

automated DNA sequencer (Applied Biosystems). 

Table 2.1. Primer sequences for the SDM 

 

2.2.4. Co-transfection  

The co-transfection was performed as previously described by Xu et al 2014. Briefly, 16 µg of 

pNL4.3ΔRT and 7.5µg of the different RTsubCmut recombinant plasmids (D67N, T470S, T470P, 

L517I, L517+D67N, E529D) were cotransfected into HEK293 T cells using Fugene 6 (Invitrogen) 

according to the manufacturer’s protocol. The pNL4.3 laboratory strain and RTsubCWT were used 

as controls. Cultures were incubated at 37oC, 5% CO2, and harvested after 48 hours. Supernatants 

were clarified by centrifugation at 1700 rpm for 10 minutes followed by filtration through a 
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0.45µm pore-size filter and stored at -80oC. The presence of the introduced mutations was 

confirmed by sequencing. 

The TCID50 of the viruses were tested by infecting TZM-bl cells using a 10-fold dilution of each 

virus stock and was incubated at 37oC, 5% CO2. After 48 hours, 100µl of culture was removed 

from the plates and replaced with 100µl of Bright-Glo luciferase reagent (Promega; Madison; WI; 

USA). After a two minute incubation at room temperature, 150µl of the mixture was transferred 

into a black plate (Costar; Corning Incorporated). The relative luminescence units (RLU) were 

measured using the Glomax luminometer (Modulus microplates). A standard amount of virus 

(50000 RLU; MOI=0.05) was used in the replication and drug susceptibility assays. 

 

2.2.5. Replication capacity  

The replication capacity of the recombinant viruses (RTsubCmut) and RTsubCWT were evaluated 

in duplicate (and on repeated on a different day) in a non-competitive infectivity assay using TZM-

bl cells (Asahchop et al., 2011; Azijn et al., 2010a). Briefly, 50µl of the titred viral stocks 

(MOI=0.05) were added in duplicate in 96-well flat bottom plates containing 10000 TZM bl 

cells/well in 100 µl of Dulbecco modified Eagle medium (DMEM; Invitrogen; Carlsband; CA) 

supplemented with 10% fetal bovine serum (Gibco), 1% gentamicin, 1% L-glutamine and HEPES. 

Viruses and TZM- bl cells were incubated at 37oC in 5% CO2 for 48 hours, after which 100µl of 

culture was removed from the plates and the luciferase activity was measured as described in 2.2.3 

above. The level of viral replication was expressed as a percentage of the RLUs with reference to 

the respective wild type virus. 
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2.2.6. Single cycle drug susceptibility assay 

The phenotypic effect of the RNase H mutations (T470S, T470P, L517I, E529D) and RT D67N  

on AZT, d4T, NVP, ETR and EFV drug susceptibility was measured using TZM-bl cells as 

decribed previously (Asahchop et al., 2013; Schader et al., 2012; Xu et al., 2014b; Xu et al., 2010). 

These drugs were selected because the drug resistance mutations that were discovered in patients 

which were administering were two NRTI either stavudine (d4T) or Zidovudine (AZT) plus 

lamivudine (3TC) and NNRTI, either efavirenz (EFV) or Nevirapine. Efavirenz was given to those 

patients previously took NVP during the onset of labor pains during delivery, preventing mother 

to child transmission of HIV-1. While ETR is the new generation of NNRTI, were chosen because 

we wanted to check whether these mutations were not associated with the newer drugs. However, 

d4T was faced out due to its toxicity and the new first line regimen was introduced. The current 

ARV regimen for a treatment-naive patient generally consists of two NRTIs, usually 

abacavir/lamivudine (ABC/3TC) or either tenofovir alafenamide/emtricitabine (TAF/FTC) or 

tenofovir disoproxil fumarate (TDF)/FTC, plus a drug from one of three drug classes: an INSTI, 

an NNRTI (EFV), or a boosted PI. 

All assays were performed in duplicate and repeated on a different day. In short, the RTIs were 

serially diluted (1 in 10 dilution) in 96-well plates in 100µl of DMEM media supplemented as 

described above (2.2.5). Wild type or mutant virus (50µl) (MOI= 0.05) was added immediately 

after dilution of the drug. After a one hour incubation, the TZM-bl cells (10,000 cells per well) 

were added and incubated for 48 hrs. The luciferase activity was measured as described in section 

2.2.5 above. Percent inhibition of each drug was calculated as follows: (% inhibition = 1 - RLU(virus 

test) - RLU(cell control)/RLU(virus control) - RLU (cell control) x100). The 50% effective concentration (EC50) 

was calculated using GraphPad Prism v5 (GraphPad Software, San Diego, CA). Drug 
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susceptibility was expressed as the fold change in EC50 of mutant virus compared with the wild 

type virus. Drug resistance levels were described as: moderate-level resistance (4- to 20-fold 

change), low-level resistance (2-to 4-fold change) and susceptible (0- to 2-fold change). This 

method has been previously used to describe NRTI and NNRTI drug resistance levels (Basson et 

al., 2015; Wu et al., 2012; Zhang et al., 2015a). 

 

2.3. Results 

2.3.1. Effects on viral replication capacity 

2.3.1.1. T470S and T470P cause similar decrease in replication capacity  

 In Figure 2.1, the replication capacity of both T470S and T470P RNase H were compared to 

RTsubCWT. The effect on replication capacity was assesed by infecting TZM-bl cell with the 

mutant (T470S and T470P) and wild-type viruses. The results show that the replication capacity 

of the T470P mutant (39948.0 RLUs) was lower than the T470S mutant virus (83581.1 RLUs), 

although this difference was not significant. Both had replication capacities lower than the wild 

type C virus; however only the T470P mutant significantly affected replication (p=0.0249), while 

the T470S mutant was not significantly different to the wild-type (p=0.0765). 



  

45 
 

 

Figure 2.1. Replication capacity measured in RLUs of the T470S and T470P mutants generated. Relative luminescence 

units were shown in y- axis and the mutant virusere were shown in x-axis. All mutants had a lower replication capacity 

than the WT virus (104659 RLU). T470P had the lowest replication capacity (39948 RLU), and the T470S (83581 

RLU). 

 

2.3.1.2. E529D impairs replication capacity  

Figure 2.2 shows that the replication capacity of the competent E529D mutants in both subtype B 

and C was significantly reduced compared to the wild-type viruses, with subtype C E529D mutant 

showing the lowest replication capacity among the competent mutants. The relative luminescence 

units (RLUs) of subtype C E529D mutant virus were lower compared to the RTsubCWT virus 

(65736.6 versus 70651 RLUs, p<0.0001). Similarly, the subtype B E529D mutant virus had a 

lower RLUs compared to the subtype B wildtype virus (138664 versus 239782 RLUs, p=0.002). 

There was as significant difference in RLUs of wild-type viruses, with subtype B virus showing 

the highest RLUs (239782) compare to 138664 RLUs found in subtype C virus (p=0.0001). 

Mutation E529D significantly reduced the replication capacity of the subtype C mutant virus 
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compared to subtype B mutant virus (70651 versus 138664 RLUs, p=0.0014). There were 

significant differences between the wild types (both subtype B and C) and the RNase H E529D. 

 

 

 

Figure 2.2. Replication capacity of HIV-1 viral mutants generated by site directed mutagenesis. The RC of RTSubB 

(NL4.3) wild type and mutant virus (RTSubB(E529D) was compared (p=0.0002). RTsubC wild type and RTSubC 

(E529D) (65736.6 RLU) mutant in the absence of drug. The Relative Luminiscence Units (RLU) are shown on the y-

axis and viral mutants  on the x-axis. Luciferase activity was measured at 48h post infection as an indication of viral 

replication. 

 

2.3.1.3. L517I+D67N double mutant rescues the impaired viral replication capacity caused 

by D67N. 

As shown in figure 2.3, the replication capacity of the virus containing the L517I viral mutant was 

39831.60 RLU compared to RTSub-C wildtype virus (106659 RLU), and L517I+D67N viral 

mutant (10070 RLU) compared to the  RTsubCWT (106659 RLU). The D67N viral mutant had a 
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more marked effect on replication capacity (51673.1 RLU). The replication capacity of the double 

mutation, L517I+D67N (10070 RLU,) was lower than the D67N single mutant, suggesting that it 

has additive effect on the fitness loss caused by D67N. There was significant difference in 

replication of wild type and L517I viral mutant (p=0.0003) also significant difference between the 

TAM (D67N) and L517I (p=0.0004). 

 

Figure 2.3. Replication capacity (RLU) of the L517I and D67N mutants alone and in combination. Viral mutants were 

shown on the x-axis and the replication capacity in RLUs were shown on the y-axis. All mutants had lower replication 

capacities than the wildtype virus: D67N was 51673.1 RLU, L517I was 39831.60 RLU and L517I+D67N  was 10070 

RLU, compared to HIV-1RTSubC wild type virus (106659 RLU).  
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2.3.2. Effect on drug susceptibility 

2.3.2.1. Minimal reduction in drug susceptibility induced by T470S and T470P viral 

mutants 

Figure 2.4 showed  the phenotypic drug susceptibility analysis of T470S/P viral mutants. Drug 

susceptibilities were tested for d4T, AZT, ETR, EFV and NVP. The viral mutant with T470S had 

no effect on AZT (1-fold) and EFV (0.067-fold) susceptibility; however there was moderate 

resistance to NVP (10-fold), d4T (5-fold) and ETR (9-fold). Interestingly, in viruses with T470P, 

there was moderate resistance to AZT (5.09-fold) and NVP (6-fold); no effect was seen EFV, d4T 

and ETR (Figure 2.4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Phenotypic drug susceptibility profile  from T470S and T470P subtype C viral mutants to the NRTIs:The 

fold changes for T470S viral mutant for AZT (1X), d4T (5X); and NNRTIs: NVP (10X), EFV (0.067X) and   ETR 
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(9X). The The fold changes of the T470P viral mutants for AZT (5X), d4T (1.06X), and NNRTIs: NVP (6X), EFV 

(0.86X) and ETR (1X). The fold changes in IC50 for virus mutants compared with WT are shown. The fold changes 

are shown on the x-axis and mutant viruses and drugs are shown on the y-axis, the bar graphs indicated the level of 

resistance for each drug. 

 

2.3.2.2. D67N, L517I and the L517I+D67N double mutation decreases drug susceptibility to 

RTIs 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Phenotypic drug susceptibility profile  from D67N, L517I and L517I+D67N  subtype C viral mutants to 

the RTIs. The fold changes for D67N viral mutant for AZT (103X), d4T (6.2X); and NNRTIs: NVP (1.3X), EFV 

(0.056X) and   ETR (3.2X). The fold changes of the L517I viral mutant for AZT (5.2X), d4T (6X), and NNRTIs: NVP 

(10.79X), EFV (0.05X) and ETR (3.5X). The fold changes of the L517I+D67N viral mutant for AZT (157X), d4T 

(3.9X), and NNRTIs: NVP (11.30X), EFV (0.155X) and ETR (0.65X) The fold changes in IC50 for virus mutants 

compared with WT are shown. The fold changes are shown on the x-axis and mutant viruses and drugs are shown on 

the y-axis, the bar graphs indicated the level of resistance for each drug. 
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Figure 2.5 showed that the D67N mutation conferred low level resistance to ETR (3.29-fold 

change in EC50), d4T (6.2-fold) and high level resistance to AZT (103-fold) but did not affect the 

susceptibility to NVP (1.03-fold) and EFV (0.056-fold) more sensitive. Viral mutants with the 

L517I RNase H mutation showed low level resistance to ETR (3.5-fold) and moderate resistance 

to NVP (10.79-fold), d4T (6-fold), AZT (5.2-fold) and EFV (0.05X) was more sensitive. Mutants 

with the L517I+D67N double mutant showed high level resistance to AZT (151.3-fold), but 

moderate resistance to d4T (3.9-fold). The resistance to NVP increase marginaly to 11.3-fold; 

however there was more sensitive ETR (0.65-fold) and EFV (0.155-fold). The RNase H viral 

mutants exhibit greater phenotypic susceptibility to the NNRTI, EFV and ETR.  

  

2.3.2.3. E529D has aminimal effect on drug susceptibility 

Figure 2.6 shows that the subtype C E529D mutation had a minimal effect on drug susceptibility, 

conferring low level resistance to d4T (2-fold), AZT (3-fold) and NVP (3-fold). The subtype B 

E529D mutant gave a similar results, with low level resistance to d4T (5-fold), AZT (3-fold) and 

NVP (2-fold). 
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Figure 2.6. Phenotypic drug susceptibility profile  from E529D subtype B and subtype C viral mutants. The fold 

changes for E529D subtype B viral mutant  to the NRTIs: AZT (3-fold ), d4T (5X); and NNRTIs: NVP (2-fold).  The 

fold changes for E529D subtype C viral mutant to the NRTIs: AZT (3-fold ), d4T (2X); and NNRTIs: NVP (3-fold). 

The fold changes in IC50 for virus mutants compared with WT are shown. 
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2.4. Discussion 

The role and effects of HIV-1 subtype C RNase H domain mutations in contributing to HIV-1 

treatment failure have not been fully characterized. It has been described, to some extent, in HIV-

1 subtype B sequences from developed countries (Ehteshami and Gotte, 2008; Nikolenko et al., 

2007; Nikolenko et al., 2004; Palaniappan et al., 1997; Roquebert et al., 2007; Santos et al., 2008). 

Our group previously identified several HIV-1 subtype C RNase H mutations that could be 

involved in drug resistance by comparing naïve and treated sequences (Ngcapu, 2012; Ngcapu et 

al., 2017b). They identified an increase in frequency in the treated group for E438GKR (6.72% vs 

0%), T470S (39.3% vs 26.1%), L517I (14.3% vs 4.6%), K527GENQR (41.04% vs 26.12%), 

E529D (20.5% vs 2.3%) and Q547HKR (5.22% vs 0%). While the E529D mutation was the only 

mutation that remained significant (p<0.05) after correction for multiple comparisons, direct links 

were also seen in their BN analysis connecting E529D and L517I with exposure to treatment. This 

suggested that these two mutations could possibly cause resistance on their own, without the 

presence of the well-known mutations in the polymerase domain, in particular the TAMs. In this 

study, we found that they decreased replication capacity and minimally affected drug susceptibility 

to both the NRTIs and NNRTIs.  

The effect of T470S on replication capacity and drug resistance was compared to the already 

described T470P mutation (Roquebert and Marcelin, 2008; Roquebert et al., 2007b). Only T470S 

and not T470P was found in the Bayesian network by Ngcapu et al (2017), although it did not 

show a direct connection to treatment exposure. This study found that T470S showed a similar 

replication capacity to T470P, although their overall replication capacities were lower than the 
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wild type virus. This reduction in replication capacity could be as a result of impaired RNase H 

activity, although this was not tested in this study (Pingen et al., 2014). 

The RNase H mutation T470P, a mutation known to be associated with NRTI drug resistance, 

decreased susceptibility to AZT by 5-fold. It was also shown that it affects NVP susceptibility (6-

fold), which has not been previously shown. Although the T470S viral mutant showed no 

resistance to AZT, it caused minimal resistance to d4T (5-fold). It had a more marked reduction in 

NNRTI susceptibility, including NVP (10-fold) and ETR (9-fold).  This is the first report that this 

variant is also associated with drug resistance. It is important to note that ETR is a next generation 

NNRTI that is meant to suppress viral replication in isolates that are already resistant to NVP 

(Azijn et al., 2010b) and could have implications for future therapy options for these patients. 

However, T470S was hyper susceptible to EFV. Efavirenz hypersusceptibility has also been 

associated with mutations at position 215, 208 and 118 (Haubrich et al., 2002; Whitcomb et al., 

2002). 

Codon 470 is close to the RNase H primer grip (codon 473 to 476; 501 and 505) and active site 

(D443, E473, D478, D549). Mutations in the primer grip and active site may reduce RNase H 

activity by indirectly modifying the interaction between the C-terminal of RT and its nucleic acid 

substrate (Julias et al., 2003; Nikolenko et al., 2005; Roquebert et al., 2007). It is possible that 

T470S has a different mechanism of drug resistance to the P variant, as it appears to affect NNRTI 

susceptibility more than the NRTIs. The NNRTIs bind to the NNRTI hydrophobic binding pocket 

located near the RT active site, suggesting that T470 indirectly changes the conformation of the 

binding pocket (Nikolenko et al., 2010; Nikolenko et al., 2005; Schultz and Champoux, 2008). 

Further analysis and understanding of the mechanism of resistance of both variants warrants 

further investigation.  
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Single mutants, D67N and L517I  reduced  the viral replication capacity in the absence of drugs 

when compared with wild type virus. The reduced replication capacity shown by D67N is  

consistent with a previous study that showed  that this mutation comes at a fitness cost (Garcia-

Lerma et al., 2004). The D67N+L517I double mutant was further reduce  replication capacity 

when compared with single mutant suggesting that the L517I mutation may have the additive 

effect for the fitness loss of the D67N mutation. Other studies have suggested that additional 

mutations can modify viral fitness and also emerge under the selective pressure of drug treatment 

(Buckheit  Jr, 2005). It was also previously suggested that some drug resistant viruses isolated 

during primary infection possess unique adaptive changes that allows for both increased viral 

replication capacity and resistance to one or more classes of antiretroviral drugs (Simon et al., 

2003). 

Previous studies have associated the D67N mutation with low level resistance to AZT (1-fold) and 

d4T (1.2-fold change) (Garcia-Lerma et al 2004) in the absence of additional TAMs. In the same 

study, the virus containing D67N and K219Q/E caused resistance to AZT (5.8-fold).  In contrast, 

this study showed high level resistances to AZT (100-fold) and moderate resistance to d4T (10-

fold) in the D67N single mutants. The presence of the L517I mutation increased resistance to AZT 

(157.3-fold), suggesting a role similar to that of the TAMs. This is in agreement with the study 

shown by Brehm et al (2007) showing that RNase H mutation (Q509L) causes a 1.3-fold change 

to AZT susceptibility; however when combined with the TAMs, AZT resistance increased up 50-

fold. Like 470S, increased susceptibility to EFV was observed in D67N, L517I and L517I+D67N 

viral mutants.  

The current study  showed that the newly described E529D mutation conferred low-level resistance 

to AZT, d4T and NVP in both subtype B and C recombinant viruses (Barral et al., 2016). Previous 
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studies have suggested that fold changes above 2 can be regarded as resistance associated 

mutations, supporting the role of E529D in the development of drug resistance (Basson et al., 2015; 

Wu et al., 2012; Zhang et al., 2015b). Similar fold changes were observed for other RNase H 

mutations, D549N and H539N that conferred 2.4-fold and 4-fold resistance to d4T when in 

combination with thymidine analog mutations, respectively.  These mutations also influenced 

resistance to NVP, which binds to RT with a lower affinity (Armstrong et al., 2011b; Nikolenko 

et al., 2005). While these mutations did not cause resistance to EFV, a second generation NNRTI, 

they did influence resistance to NVP, which binds to RT with a lower affinity (Armstrong et al., 

2011a; Nikolenko et al., 2005). As only low-level resistance was observed, it is possible that this 

mutation acts in combination with other polymerase mutations and is not a primary resistance 

mutation. It is also important to point out that E529D was found in 21% of treated HIV-1 subtype 

C infected patients from Brazil (Barral et al.,2016) and in 20.5% of the South African subtype C 

treated isolates (Ngcapu et al., 2017a) thus the selection of E529D may depend on the balance 

between the level of drug resistance and the impact of the mutation on the viral fitness.  

 

Taken together, this study was able to directly link the presence of RNase H mutations (E529D, 

L517I, T470S/P) with antiretroviral drug resistance. In this study we did not study the mechanism 

of how RNase H mutations caused mutations; however other studies that have investigated this 

have shown that RNase H mutations allow more time for NRTI excision (Nikolenko et al., 2005). 

As the mutations investigated in this study have largely been found to affect the NNRTIs, this 

suggests that RNase H mutations allow the NNRTIs to dissociate from the binding pocket allowing 

normal polymerization to continue. The way in which this occurs needs to be further investigated. 

In conclusion, the results from this study strongly support the inclusion of the C-terminal of the 

RT gene in genotyping tests; however larger association studies and more drug susceptibility 

assays are required to further investigate the effects of these mutations. 
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Chapter 3 

Identification of connection domains mutations of the HIV-1 C 

and their association with thymidine analog mutations using a 

Bayesian Network 

3.1. Introduction 

As stated in the previous chapter, HIV-1 RT C-terminal domain mutations have been implicated 

in NRTI and NNRTI drug resistance (Brehm et al., 2007; Dau et al., 2010; Santos et al., 2008; 

Schuckmann et al., 2010). In 2008, Santos and colleagues identified connection domain mutations 

in 510 thumb and CN sequences from public sequence databases and correlated this with their 

treatment status. These mutations, R358K, G359S, A360V, K366R, A371V, K390R and A400T, 

were associated with AZT monotherapy failure. In another study, 345 treatment experienced  

patients enrolled in the OPTIMA trial treated with ABC, d4T, TNF or AZT harboured the 

following CN mutations: G333D/E, G335D, N348I, V365I, A371V, A376S (Dau et al., 2010).  

The G333D/E mutation has been found in patients treated with AZT-3TC dual therapy in subtype 

B (Kemp et al., 1998; Menendez-Arias et al., 2011). It has been established that G333D allows the 

enzyme to effectively discriminate between the normal substrate dCTP and the 3TC-TP inhibitor, 

restoring ATP-mediated excision of AZT-MP in the presence of M184V (Kemp et al., 1998; 

Larder and Kemp, 1989; Zelina et al., 2008).  

The association of CN domain mutations with the TAMS has also been confirmed in vitro, where 

they showed that CN mutations (G335C/D, N348I, A360I/V, V365I and A376S), caused up to a 
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20-fold change to AZT susceptibility (Delviks-Frankenberry et al., 2008; Ehteshami et al., 2008a; 

Gupta et al., 2011; Hachiya et al., 2008a; Michels et al., 2010; Muniz et al., 2014; von Wyl et al., 

2010; Yap et al., 2007). In addition, a previous study showed that double mutations in the CN 

domain (T369I and N348I) was associated with reduced ETR susceptibility (1.7X) in the presence 

of K101P or K103R/V179D; these mutations also reduced replication capacity (Gupta et al., 2011).  

Some CN domain mutations have also been characterized in other non-B subtypes, although these 

studies are fewer that subtype B studies (Ehteshami et al., 2008a; Santos et al., 2011 ). The CN 

domain mutation, A400T was reported in CRF01_AE in patients failing AZT and harboring 

TAMS (Delviks-Frankenberry et al., 2009). Similarly, N348I and E399D were observed in a 

cohort of CRF01_AE patients failing d4T, 3TC and NVP (Delviks-Frankenberry et al., 2013; 

Saeng-aroona et al., 2010). Interestingly, known CN domain resistance mutations also occur as 

naturally occurring polymorphisms in non-B subtypes. In a HIV-1 subtype CRF02_AG infected 

treatment naïve cohort from Mali and West Africa, CN polymorphisms identified were: G335D 

(76%), A371V (63%), and E399D (11%) (Haidara et al., 2010; Maiga et al., 2012). Studies from 

subtype C have shown that both B and C CN mutants exhibit similar levels of AZT resistance; 

these mutations are Q334D, G335D, N348I, A371V, A376S and A400T (Delviks-Frankenberry et 

al., 2013; Muniz et al., 2014). It was also reported that HIV-1 subtype C CN mutations enhance 

resistance to other NRTI and NNRTI in the context of the TAMS (Delviks-Frankenberry et al., 

2008).  

 Furthermore, a study from Southern Brazil showed that T369I and A376S, also known to cause 

resistance to the NNRTIs in subtype B, occurred in 10% of subtype C infected treatment naïve 

patients, suggesting that drug therapy is compromised in patients containing these mutations 
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(Santos et al., 2011 ). Evidence from in vitro experiments in non-B subtypes confirmed that N348I 

and A376S together with the TAMS caused NRTI resistance (Tanuma et al., 2010).    

In the current study, the frequencies of HIV-1 connection domain in subtype C infected RTI treated 

patients were determined and the dependency of these mutations on exposure to RTI treatment 

was investigated using a BN. 

3.2. Material and Methods 

3.2.1. Identification of HIV-1 connection domain mutations. 

One thousand and two HIV-1 RT subtype C sequences with connection and RNase H domains 

were retrieved from the Los Alamos (http://hiv-web.lanl.gov) and Stanford HIV drug resistance 

databases (http://hivdb.stanford.edu). Seven hundred and fifty three (753) of these sequences were 

from patients not on antiretroviral drugs therapy and 249 were on antiretroviral therapy. Duplicate 

sequences were checked using the Elimidupes tool at the Los Alamos database, and sequences 

were aligned by codon alignment (ClustalW). 

3.2.2. Frequency of the HIV-1 RT connection  domain mutations. 

Naïve and treated sequences were analysed using the REGADB sequence analysis tools 

(http://regatools.med.kuleuven.be/sequencetool/sequencetool.wt). The frequency of the 

connection domain mutations was calculated in excel. Statistically significant differences between 

the frequencies of mutations in the naïve versus treated group were calculated using the 

Fischer’exact test in GraphPad Prism v5.1 and adjusted for multiple comparisons using the 

Bonferroni test. A p-value of <0.05 was considered significant.  

http://hivdb.stanford.edu/
http://regatools.med.kuleuven.be/sequencetool/sequencetool.wt
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3.2.3. Bayesian Network analysis 

The BN was constructed using b-course (b-course.hiit.fi/obc/). Briefly, the dataset was saved as a 

text delimited file and uploaded. The dataset was analysed using the Dependency model; this 

model is used to find the dependencies between all variables in the data. Due to the large amount 

of computational power required for the analysis, the number of variable that could be analysed 

was limited. Therefore only CN mutations that were statistically significantly higher in the treated 

group, or showed a >5% difference between the naïve and treated patients, were included in the 

analysis. The association between the TAMS and CN domain mutations were investigated in the 

network. 

3.3. Results 

3.3.1. Characterization and identification of drug resistance–associated 

mutations in HIV-1 RT connection domain and their correlation with 

thymidine analogue mutations. 

As shown in Figure 3.2, the following mutations had a higher frequency in sequences from treated 

vs naive isolates: D324E, S338T, I341V, N348I, M357R, T359N/S/H/G/A, A360P/S/T, K366R, 

E370D/K, A376 I/S/T/V, M377V/RQK/M/L/I, V380I,T400A/I/M/R/V, I434L/M and A437I/V. 

These did not remain significant after Bonferroni correction. Table 3.1 shows the percentage 

differences between the naïve and treated patients including the p-values. Mutations were 

considered for the BN analysis if the difference was ≥5%, or were known to be associated with 

resistance.   
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Table 3.1. Frequency (%) of CN mutations domain from HIV-1 subtype C infected patients (250) 

receiving antiretroviral therapy.The following mutations were identified D324G/N/P, T338S, N348I, 

M357R, G359N/S/H/G/A, A360P/S/T,K366R,, E370D/K, M377A/G/I, V380I and T400A. 

The associations between the presence of natural polymorphism, the emergence of CN mutations 

and HIV-1 treatment experience were explored using the BN. Figure 3.3 shows that some of the 

known CN mutations did not show a relationship with treatment experience (eRTI) although a 

direct robust interaction was observed between treatment experience and some of the TAMS: 

K70E/R and M41L. The E370D, M377T/L, A437V/I and A400T mutations were the only CN 

mutatons to be directly associated with treatment experience. N348I was only connected to 

treatment exposure via the M41L TAM. K70E showed a strong association with T359N and 

A437V/I. Furthermore, there was a moderate association (bootstrap support of 60%) between 

A437V/I and the following mutations: M357R, M377T/L and I/I434M. Similarly, 65% bootstrap 

support was found for as M357R and T400A K366R and M41L as well A376S and T215F.  
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The HIV-1 subtype C connection domain sequences from different regions were aligned to 

discriminate the wild type and drug resistance mutations. Figure 3.1 show the consensus sequences 

of HIV-1 CN domain from  different regions where HIV-1 subtype C is dominant. From the HIV-

1 CN mutations analysed: D324E some in India have it as wild type.  H334Q  is the wild type wild 

in India and I341V is wild type  in India and Zimbabwe. In Ethopia,  M357R  is wild type where 

as in Brazil is reported as drug resistant mutation. In Botswana, A376S/T is in wild type while in 

other subtype C are drug resistance mutations.  In addition, in other Brazilians K366R and V380I 

are seen in treated naïve individuals. 

 

 

 

 

 

 

Figure 3.1. Comparison of HIV_1 RT protein sequences of subtype C from diferent regions. There were sequences 

from Brazil (2), Botswana (5), India (5), Ethiopia (1), Israel (1), South Africa (5), Tanzania (4), Zambia (2) and Kenya 

(1) were collected from Los Alamos HIV database.  
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Figure 3.2. Annotated Bayesian Network (BN) showing dependencies in emergence of resistance mutations, based on 

500 bootstrap showing graphically the learned associations between nodes denoting amino acids of treatment 

experienced.An arrow represents a direct dependence. 

 

3.4. Discussion 

The role and the effects of CN domain mutations in contributing to HIV-1 treatment failure have 

not been fully investigated, particularly in the context of subtype C. Although a recent study has 

been published including HIV-1 subtype C data from Brazil (Barral et al., 2016; Delviks-

Frankenberry et al., 2013). Most available data that describes CN domain mutations are from 

subtype B sequences from developed countries, and are largely located between codon 320-400 in 

RT; the remaining portion has not been well characterized (Lengruber et al., 2011). In this study, 

treatment related mutations were identified by comparing downloaded HIV-1 CN domain 
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mutations in subtype C RTI treatment experienced sequences to those from subtype C treatment 

naïve sequences.  

In the CN domain, the following mutations were increased in the treated group: D324E, S338T, 

I341V, N348I, M357R; T359N, A360PST, K366R, E370DK, A376S, M377TL, V380I, 

T400AMRV, I434LM and A437IV. Many of these mutations have already been described in HIV-

1 subtype B, and to a lesser extent in non-B subtypes (Saeng-aroona et al., 2010; Santos et al., 

2008; Santos et al., 2011 ; Tanuma et al., 2010). M357R, A360T/V and K366R were identified in 

subtype B isolates from Brazil (Barral et al., 2016; Delviks-Frankenberry et al., 2010; Santos et 

al., 2008). N348I and A376S were dentified in subtype B isolates from the OPTIMA study (Brehm 

et al., 2012a; Dau et al., 2010; Paredes et al., 2011). While T400AMRV has been reported to 

contribute to AZT resistance in HIV-1 subtype CRF_AE, this study found to occurred in 11.40 % 

of the naïve and treated groups (Delviks-Frankenberry et al., 2013; Delviks-Frankenberry et al., 

2009). Therefore those that have not been previously described to our knowledge are: D324E, 

S338T, I341V, T359N, E370DK, M377TL, V380I, I434LM and A437IV. 

Interestingly, other known mutations such as G335D, Q334D, A360V/I, V365I and A371V, were 

not associated with treatment in this study (Delviks-Frankenberry et al., 2013; Radzio et al., 2010; 

Santos et al., 2008). Differences seen with the Brazilian study could be because they obtained their 

subtype C sequences from isolates from Brazil, as well as sequences from the Los Alamas database 

(Barral et al., 2016). Brazillian (and Indian) subtype C isolates are known to be different to subtype 

C isolates from other parts of the world, especially Sub-saharan Africa (Bello et al., 2008; de 

Oliveira et al., 2010; Novitsky et al., 2010).  
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The resistance pathways to NRTI were further investigated using BN learning (b-course) where 

the presence of CN domain mutations were directly or indirectly associated with NRTI treatment. 

The BN analysis show that there was a strong association between E370D, M377T, and A437I 

(with a lower bootstrap support) with RTI treatment. This suggests that these mutations could 

cause resistance without concomitant mutations in the polymerase domain. Similar results have 

been shown for mutations in RNase H (Ngcapu et al,  2107). Their role would still need to be 

confirmed using in vitro assays. 

In the network, A437I  was also associated with other CN mutations, some of which resulted in a 

“dead end”, such as D324E and I434M. Others appeared to go via a pathway of mutations to 

resistance, such as via M377T/L before the link to treatment exposure and  via M357R to T400A 

before linking to treament exposure.The M41L and K70E mutations were the only TAMs directly 

associated with HIV-1 treatment in the network. The other TAMS were connected via various 

pathways to treatment exposure: eRT> K70E>K219E> D67N and eRT>M41L>T215F). There 

were also associations between the TAMs and CN mutations: M41L and K366R; T215F and 

A376S; K70E and A437I and M357R; K70E and M357R. This suggests that CN mutations are 

also involved in the stepwise accumulation of mutations in the development of resistance to the 

thymidine analogues. None of these interactions have been described before and requires further 

investigation, including phenotypic studies.  

Previous studies have reported that N348I acquisition in HIV-1 RT occurs early in therapy before 

the acquisition of TAMS, allowing the virus to select both TAMS and other mutations that are 

antagonistic to toward TAMS (Radzio et al., 2010). In contrast, the current Bayesian netwok 

analysis showed that N348I is not directly associated with treatment exposure in subtype C, but is 

connected via the M41L TAM. A previous study by von Wyl et al (2010) reported a pathway 
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between M184V and N348I which was restricted to exposure to both 3TC and AZT. The study 

speculated that the emergence of selected mutations follows a hierarchical order after drug:  

L74V>M41L>A371V>N348I (von Wyl et al., 2010). Presently, there is no study that has further 

investigated the interaction of M41L and N348I;  however there are studies that have investigated 

the effect of TAMS and A371V in subtype B (Brehm et al., 2007; Nikolenko et al., 2007), where 

they found that the level of resistance to AZT increases from 11-fold to as much as 536-fold over 

wild type RT. It has been reported that  N348I CN domain mutation reduce replication capacity in 

subtype B (Gupta et al., 2011), and increases resistance to AZT through both RNase H dependent 

and independent mechanisms.  

In conclusion, this study identified novel HIV-1 subtype C connection domain mutations that are 

strongly associated with the TAMs. A limitation of the study is that the number of variables that 

could be analyzed simultenously were limited and therefore some interactions may have been 

missed.  

 

 

 



  

66 
 

Chapter 4 

The effects of HIV-1 C  RNase H domain mutations on reverse transcriptase 

structure 

4.1. Introduction 

Biochemical studies have demonstrated that C–terminal domain mutations in HIV-1 RT indirectly 

increases AZT resistance by decreasing the secondary RNase H cleavages. In addition previous 

studies reported that mutations in the RNase H domain affect the initiation of DNA synthesis and 

specificity of RNase H cleavage demonstrating the interdependence of polymerase and RNase H 

activities during reverse transcription (Cristofaro et al., 2002; Julias et al., 2002; Mizrahi et al., 

1994). It was previously reported using molecular modelling studies, that N348I decreases RNase 

H activity via an altered interaction with the RNA template (Radzio and Sluis-Cremer, 2011). In 

addition, it has been shown that any alteration in the structure of the RT enzyme may affect the 

binding affinity of the substrate, resulting in incorrect reverse transcription (Das and Arnold, 

2013b).  

The knowledge of the 3D structure of proteins, therefore, provides invaluable insights into the 

molecular basis of their functions. Previously, the 3D structure of a protein had to be determined 

experimentally, and this was done using X-ray crystallography or NMR spectroscopy; however 

these methods are very time consuming (Floudas et al., 2006). Homology modelling is therefore a 

useful tool for identifying where the alpha carbons of the key residues sit in the folded protein 

(Martz, 2001) and can provide information on the structure–function relationship of the protein 

(Vyas et al., 2012). Here, we investigate the structural effects caused by RNase H domain 
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mutations by comparing molecular models of the HIV-1 RT wild type and the mutants and how 

the the RNase H active site affected. 

4.2. Material and Methods 

4.2.1. 3D Homology Modelling using Swissmodel 

To investigate the structural changes induced by RNase H domain mutations,  3D homology 

models of the HIV-1 subtype C mutants were constructed. Sequence from a single patient (pKE4N) 

from King Edward Hospital was used to introduce the RNase H mutations (T470/P, L517I and 

E529D). Amino acid sequences were uploaded onto the  SWISS-MODEL server 

(http://swissmodel.expasy.org/). A template of HIV-1 group M subtype B (3lam.1.B.pdb) was 

searched, the best matched query sequence with the highest percentage identity was used to build 

models. The model of the RNase H wildtype C sequence and with E529D as well were compared. 

The template was selected and the built-in algorithm on the SWISS MODEL server was used. 

Structures were viewed and analysed in Chimera v1.12 as described below (Pettersen et al., 2004). 

4.2.2. Visualization using Chimera (v1.8.1)  

Modelled structures of the wild type and mutant sequences containing the investigated mutations 

(T470S, T470P, L517I and E529D) were superimposed in Chimera. Firstly, the atomic structure 

of the mutated residues from the RNase H mutations model were visualized and compared to the 

unmutated model or wild type. Secondly, to understand the conformational changes that occurs 

between the RNase H mutations residues, the distance between the residues of each protein chain 

was measured. The distance between residues in the direct vicinity (>10Å) of RNase H mutation 

were measured for all the mutations. The flexibility of the protein sidechains in the wildtype and 

http://swissmodel.expasy.org/
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mutant structures were evaluated, as well as the affect on the neighbouring known RNase H 

mutations and RNase H active site.  

4.3. Results  

In figure 4.1, the three main domains of reverse transcriptase are shown: polymerase domain 

(blue), connection domain (green) and RNase H (cynan). The two subunits of the HIV-1 RT (p66 

and p51) are also shown. The wild type residues where the  RNase H domain  mutations occurred   

were shown in black.  

 

Figure 4.1. The structural model of HIV-1 RT (3lam.1.B.pdb) showing the two subunits (p66 and p51). Red represents 

the p51 and p66 was shown: polymerase domain (blue), connection domain (green), and RNase H (cynan). The amino 

acid residues where mutations occurred were shown,D67N (green), T470S/P (yellow), L517 (blue), E529D (Magenta). 
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4.3.1. Structural changes caused by the T470S and T470P mutations 

Figure 4.2 shows the superimposed structures of the modelled mutant and wild type RNase H 

domain sequences. There was a slight change in T470S when compared with the wild type  T470 

causing a slight movement in the neighbouring amino acid residues. No significant changes 

identified in the presence of the T470S and T470P except the change observed in K451 . 

A      B 

 

Figure 4.2. The superimposed structure of  RNase H domain showing  mutations T470S and T470P. The wild type 

structure is shown in brown and mutant structure shown in blue.A)T470S and B) T470P are shown.The amino acid 

residues located near these mutations  were K451, T468 and L469 (at the distance less than 10 Å). 

 

No structural changes between the wild type (T470) and mutant amino acid residue (T470P) 

observed (Figure 4.2B). The amino acids residues located near the T470S and T470P in a distance 

less that 10 Å were identified (Table 4.1). These were K451, L452, T468, L469, D471 and T472; 

some of these amino acid residues were known HIV-1 subtype B (K451) and C (T468, L469) 

RNase H domain mutations. The distances between the RNase H active site and the T470S/P 

mutations were measured (Table 4.2). These mutations were located far away from the RNase H 

active site.  
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Table 4.1.  Distances between the RNase H mutations (T470S/P) and the nearby amino acids residues.  

 

 

 

Figure 4.3. The superimposed structures  of RNase H domain showing T470S and T470P  mutations and RNase H 

active sites amino acids.The wild type structure is shown in brown and the mutant structure shown in blue. A. Showing 

the effect caused by T470S on the RNase H active site amino acids, D443, E478, D498 and D549 and B. show the 

effect caused by the T470P on the RNase H active site residues. 

 

 

 

A 
B
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Table 4.2. Distances between the RNase H active site amino acid residues and the RNase H domain  mutations (T470S/P) 

 

The changes in distance between the T470S and and D443 was slightly decreased by 0.043 Å, 

while the distance between T470P and D443 further decreased by 0.121 Å. The changes in 

distances between these amino acids were not significant. The changes in distance between the 

T470S and E478 RNase H active site amino acid was 0.8236 Å while changes in distance in T470P 

and E478 was 0.951. The decrease in distance was pulling the binding pocket inward hence 

decreasing the active site. The RNase H active site amino acids D498 and D549 was located far 

away. The RNase H active site  was compressed by the presence of RNase H domain mutations. 

The conformational changes in the active sites that affects with small movements which may affect 

resulting in improper binding of substrate.  

 

 



  

72 
 

 

4.3.2. Structural changes caused by the L517I and D67N double mutation 

 

A  B 

Figure 4.4. The superimposed structure of  of HIV-1 RNase H domain  showing the L517I mutation. A) L517 is shown 

in blue and I517 shown in brown, the neighbouring amino acid was also shown in brown with blue side chain. K476 

forms part of  RNase H primer grip located near the L517I and it was identified in a distance less 10 Å B) L517 shown 

in blue  and I517 in brown, Rnase H active site amino acid residues were also shown. No changes observed in the 

RNase H active site amino acid in the presence of L517I. 

 

Table 4.3. The distances between the TAM (D67N)  and RNase H mutation (L517I). 
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Figure 4.4 (A and B) showed the amino acid residues located near the L517I  in less 10 Å distance. 

The amino acids residues located around the L517I mutation  were identified. These amino acids 

were T472, K476, L479, Q480, T483, S515, E516, V518, N519, Q520, I521 and I522. There were 

no known mutations identified around L517I in both HIV-1 subtype B and C. However it was 

located  near the RNase H primer grip (K476) in a distance of 4.470Å. Table 4.3 showed the 

distances between the D67N and L517I which illustrating the structural effects caused by the 

presence of both polymerase and RNase H domain mutations. The distances between the 67N 

(mutant) and the L517 (wild type) was 63.093Å and distance between the D67 (wild type) and 

517I (mutant) was 66.201Å. This suggests that polymerase domain and RNase H domain 

mutations may have a long range effect on the structure of RT. In addition,the distance between 

the  I517 (mutant) and N67 (mutant) reduced to 64.782Å which pulls the RT structure inward.  The 

distance between the I517 (mutant)  and D67 (wild type) was 66.162 Å, are located far away from 

each other. This results suggest that  D67N L517I  mutations could affect the structure of RT by 

influencing the RT affinity.   

4.3.3. Structural changes caused by the E529D mutation 

In figure 4.5, the RNase H domain mutation (depicted in brown) and the wild type (depicted in 

blue) were shown. The D529 amino acid residue  shifts the E529 slightly away from its original 

position. The amino acid residues located near  E529D mutation were identified in  a distance less 

than 10 Å. It was identified that E529D mutation  was located near E430, L491, E492, K527, 

K528, K530 and V531 (Table 4.3) (Fig 4.5 A). The E529D mutation  was identified to be  located 

near the identified HIV-1 subtype B and C RNase H mutations L491P (4.160 Å, K527N (8.750Å), 

K530R (4.843Å) (Ngcapu et al., 2017a). One hydrogen bond was identified between the L491 and 

D529 and the distance is 3.011Å. In Figure 4.5 B show the E529D mutation and  RNase H active 
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site amino acid residues, however no changes observed in these amino acid. This suggested that 

E529D mutation has no effect on the position of the RNase H active site amino acid residues.  

A       B 

Figure 4.5. The superimposed structure of RNase H domain showing E529D mutation. A. E529 is the wild type amino acid 

residues depicted in blue  and D529 is the mutant amino acid depicted in brown, L491, K527 and K530 are amino acids 

located near E529D. B. RNase H active site amino acid residues, D443, E478, D498, D549 were shown. 
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Table 4.4. Distances between the nearby amino acids residues and E529D RNase H domain mutation. 

  

 

 

 

 

Zones at the distance 

of >5% 

E529 (Distances 

in Å) 

D529 (Distances 

in Å) 

Differences between the E529 

and D529 

E430 10.089 9.802 0.287 

L491 4.830 4.160 0.67 

E492 6.713 5.569 1.144 

K527 10.756 8.750 2.006 

K528 8.201 5.520 2.681 

K530 7.669 4.843 2.826 

V531 8.645 8.529 0.116 
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4.4. Discussion  

The structures represent structural effects caused by the  RNase H domain mutations on the RNase 

H active site. The information obtained from these structural analysis will provide a basis on how 

RNase H domain mutations affects structure and critical function of reverse transcriptase. RNase 

H domain mutations were located far away from the RNase H active site residues, however the 

distances between the RNase H domain mutations and the RNase H active sites were changed. The 

changes in distances in the RNase H domain mutations and RNase H active site residues reduces 

the binding pocket of the substrate suggesting that these mutations affect the RNase H activity. 

However, these mutations affect position of the RNase active site amino acid residues, suggesting 

that RNase H domain mutations may have a long range effect which will affect the RNase H 

activity. Previous studies reported that the changes in the orientation of the active site may affect 

the binding of RNase H to the template, thereby affecting RNase H activity (Das et al., 2008; Davis 

et al., 2011). Furthermore previous studies have reported that despite the NNRTI binding site being 

located on the palm domain of the HIV-1 RT polymerase domain approximately 10-15Å from the 

polymerase active site, C- terminal domain mutations increase resistance to both NRTIs and 

NNRTIs (Delviks-Frankenberry et al., 2008; Delviks-Frankenberry et al., 2010; Nikolenko et al., 

2004). It has been previously shown that RNase H domain mutations cause resistance by reducing 

template degradation and enhance AZT excision and increase template switching frequency. The 

mutation in the polymerase domain of the RT may interfere with RNase H activity through the 

long range effect, influencing the structure of the RNA:DNA hybrid substrate (Hang et al., 2007). 

This study showed that  L517I together with D67N mutation may affect the structure of the RT 

which may affect the positions of the amino acids in the polymerase active site and NNRTI binding 

pocket.  
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The current study showed that the T470S/P RNase H domain mutations affect the RNase H active 

sites by reducing its size which affect RNase H activity, however further experimentation is 

required to investigate this speculation. Further site directed mutatgenesis studies are require to 

confirm this speculation. These results are in agreement with previous study shown that AZT drug 

resistance mutations in HIV-1 RT can induce long range conformational changes (Ren et al., 

1998). Even though the distances between the RNase H mutations and RNase H actives sites were 

far apart from each, it may still cause conformational changes to RT. These results show that long 

range effect could represents a common mechanism for generating drug resistance in other 

systems.  

 

The study indicates that the RNase H domain mutations may cause HIV-1 drug resistance in 

combination with polymerase domain and the mutations that occurred near the RNase H catalytic 

site. We investigated this possibility by identifying all the amino acid residues around the RNase 

H domain mutations. The structural analysis indicated that T470S was located closely to the 

published HIV-1 subtype B and C RNase H domain mutations K451, T468 and L469, suggesting 

that T470S may occur concurrently with these mutations. Previous studies showed that K451, 

T468, L469 are primary RNase H domain mutations (Lengruber et al., 2011; Ngcapu et al., 2017a; 

Roquebert et al., 2007). However these amino acids residues were also observed near T470P 

mutation more further apart compared to the T470S, the distances were located in less than 10 Å. 

In addition T470S/P mutations were located far away from the RNase H active site, however the 

superimposed images indicated that there is a shift in the RNase H active site of mutant. These 

findings suggest that these RNase H domain mutations (T470S/P) conferred HIV-1  drug resistance 

in combination with the previous identified mutations from other HIV-1 subtypes. Further 

functional studies are required to confirmed these structural findings.   
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The structural effect of L517I mutation was located far away from the DNA polymerase region 

and NNRTI binding pocket. Therefore the amino acids residues located in a distance less than 10Å 

were identified, analysing any known mutations that may occur concurrently with RNase H 

domain mutations. Among these amino acid residues not known mutations were observed near 

L517I mutation. However, L517I mutation was located near the K476 which form part in RNase 

H primer grip. Previous studies reported that mutations within the RNase H primer grip region of 

the HIV-1 RT affect the RNase H activity and RNase H primer grip mutations enhances AZT 

resistance (Delviks-Frankenberry et al., 2007; Palaniappan et al., 1997). In addition, mutations in 

the RNase H primer grip decrease efficiency and accuracy of plus strand DNA strand, hence the 

RNase H primer grip alteration modifies cleavage specificity (Mbisa et al., 2005; Rausch  et al., 

2002). Furthermore, HIV-1 RNase H and DNA polymerase activities depend on proper positioning 

of the RT on the primer template. Hence the alteration within RT results in improper primer 

positioning causing the failure of the RT to perform DNA synthesis or RNase cleavage (Mbisa et 

al., 2005; Palaniappan et al., 1997). In addition, RNase H primer grip mutations may influence 

both polymerase and RNase H activities by changing RT affinity for template primer complex, 

and also they may affect the enzyme processing (Delviks-Frankenberry et al., 2007). These results 

shown  that L517I may reduce the RT affinity for the template-primer complex since it occurred 

near the amino acid that form RNase H primer grip. This study  may suggest that that L517I and 

K476 may affect the RNase H  activity. More phenotypic studies may be required to investigate 

combination of L517I and K476 which form part of the RNase primer grip amino acid residue.  
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In conclusion, the T470S and T470P mutations alter the orientation of the RNase H active site 

amino acids which may affect the RNase H activity, however further experimentation are required 

to investigate these findings. RNase H domain mutations may also affect the functioning of RTI 

by altering the polymerase domain active site (Das and Arnold, 2013a; Das et al., 2016). New 

classes of  HIV-1 drugs that target RNase H domain may be required in HIV-1 treatment in 

combination with the RT inhibitors. At present, there are no licenced RNase H inhibitors. The 

understanding of the structural changes caused by drug resistance mutations provide information 

on improve the HIV drugs on clinical management of HIV-1. 
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Chapter 5 

General discussion and conclusion 

 
In the study by Ngcapu et al (2017), their BN anaylsis suggested that certain mutations in the 

RNase H domain were related to drug resistance in HIV-1 subtype C. Of particular interest were 

the T470P/S, L517I and E529D mutations. The T470P mutation was already known as a resistance 

associated mutation in HIV-1 subtype B (Roquebert et al., 2007). However, it was the first time 

that the T470S mutation was described to be involved in RTI drug resistance. In addition, the 

E529D and L517I mutations were identified as potential “primary” drug resistance mutations. In 

this study, the effect of these mutations on replication capacity and drug susceptibility were 

investigated in order to confirm their role in ARV drug resistance. The study was further extended 

by identifying novel connection domain mutations and investigating their interactions using a BN. 

 

All RNase H mutations lowered the replication capacity when compared to the wildtype subtype 

C virus, suggesting that that these mutations come at a fitness cost, and are only beneficial when 

ARVs are present. These findings are in agreement with previous studies that have shown that 

resistance mutations are often associated with decreased replication capacity in the absence of 

drugs (Asahchop et al., 2011; Back et al., 1996; De Luca, 2006; Deeks et al., 2005; Hu and 

Kuritzkes, 2011; Xu et al., 2014a). A decrease in RC has also been associated with decreased RT 

processivity (Chunduri et al., 2011; Nicastri et al., 2003).  

 

 



  

81 
 

In this study, the effect of L517I lowered RC further when in combination with D67N, therefore, 

suggesting that L517I mutation may have  additive effect for the fitness loss of D67N viral mutant 

in the absence of drugs. Previous studies showed that the reduction in replication capacity from 

polymerase mutation together with the RNase H mutation was associated with significantly greater 

AZT resistance (Brehm et al., 2007; Nikolenko et al., 2005). The authors have argued that the 

additional mutations serve to impair the viral replication capacity emerge under the selective 

pressure of drug treatment (Buckheit  Jr, 2005; Joly et al., 2004).  

 

Our study clearly showed that T470S/P, L517I and E529D caused a reduction in drug 

susceptibility. Although this effect was minimal, with a range in fold change from 2X to 157.3X,  

there have been other studies that have shown a similar effect in vivo (Little et al., 1999; Sutherland 

et al., 2015). These studies demonstrated reduced ARV susceptibility of more than a 2.5 to 10 fold 

change. In a recent study, mutations in Gag reduced drug susceptibility to PIs by 4.7 to 9.6 fold 

(Sutherland et al., 2015).  

 

It is also possible that the minimal effect seen is because the RNase H mutations has the reduced 

replication capacity and have a greater effect on drug susceptibility when in combination with 

mutations in other regions of the virus, such as the connection and polymerase domain. Previous 

studies have shown that RNase H mutations in combination with the TAMs cause a marked 

decrease in drug susceptibility (Brehm et al., 2007; Nikolenko et al., 2005). Nikolenko et al (2005) 

showed a 1250-fold  increase in resistance to AZT when D549N occured in combination with 

TAMs (Nikolenko et al., 2005). In this study, the double mutant showed a 157.30-fold, compared 

to a 103.3 fold change in D67N alone, and supports the role for L517I as having the additive effect 
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on the fitness loss. The greater resistance illustrate the trade-off between replication capacity and 

resistance. 

 

New connection domain mutations identified using a Bayesian Network 

The study also investigated the CN domain mutations seen in HIV-1 subtype C treated isolates. 

To our knowledge, there is only one other study that has described mutations in the connection 

region specific to HIV-1 subtype C (Barral et al., 2016). In our study, in addition to identifying 

mutations that were increased in frequency in treated isolates, the association of these mutations 

was determined using a BN. This method has been used successfully to identify novel mutations 

and pathways to resistance in HIV-1 (Deforche et al., 2008; Ngcapu et al., 2017a). Interestingly,  

some of HIV-1 subtype C CN mutations identified as treatment related mutations were similar to 

those CN mutations in other HIV-1 subtypes (Delviks-Frankenberry et al., 2013; Santos et al., 

2008). In agreement with the study by Barral et al (2016), the M357R mutation was identifed. 

However, there was no association with resistance found with the D404N mutations seen in the 

CRF08_BC strain from China (Zhang et al., 2015b). New CN domain mutations in HIV-1 subtype 

C, which have also not previously been reported in subtype B,  were identified including D324E, 

S338T, I341V, K366R, E370D/K, M377V, V380I, I434L/M and A437I/V.  

  

In the BN, some CN mutations were directly associated with HIV-1 treatment (E370D, M377T 

and A437I), while others were indirectly associated (D324E, N348I, M357R, T359N, K366R, 

A376S, I434M). Interestingly, a known HIV-1 CN mutation N348I was linked to M41L and not 

directly to exposure to treatment. This is similar to a study by von Wyl et al (2010) where N348I 

was indirectly associated with ddI exposure and required the development of a number of TAMs 
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(L74V and M41L) and an additional CN domain mutation (A371V) before it emerged. The 

connections were also among the TAMs involved in the TAM 1 pathway, which suggests that this 

may not be a pathway commonly seen in subtype C isolates.  

 

The BN also showed some strong associations between the M41L, K70E, 215F and N348I, T359N, 

K366R, A376S, A437V.  TAMS, such as T215I/F, have also been shown to come at a fitness cost 

(Brehm et al., 2007). This supports the role of CN domain mutations as compensatory mutations, 

compensating for the loss of fitness caused by the TAMS; however this requires further 

investigation using phenotypic assays. 

The overall effects of the RNase H domain mutations were investigated using homology 

modelling. Here, the RNase H domain mutations were shown to affect the position of the RNase 

H active site. These changes may also affect the binding of the NNRTIs at the polymerase active 

site, despite these mutations being quite far  away from the it (Das et al., 2014). Hang et al (2007) 

showed that the NNRTI binding site, which is located in the palm domain of HIV-1 RT, 10-15Å 

from the polymerase active site, affects the binding of the substrate.  Previously, it has show that 

NNRTI binding induces an additional hinge movement of the p66 thumb to adopt a configuration 

that is even more extended than the DNA–bound RT structure (Das et al., 2008; Hsiou et al., 1996). 

The study also showed that L517I mutation is located near the RNase H primer grip suggesting 

that it will affect the RNase H activity. Furthermore, E529D mutation was located near the L491S, 

K527N and K530R which are known RNase H mutations suggesting that it may increase the effect 

these mutations by altering the RNase H active site. It has been shown further that HIV-1 RT 

conformational changes and enhanced RNase H interactions of RNA/DNA facilitate RNase H 

cleavage (Das et al., 2014). Understanding the effects of structural changes caused by drug 
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resistance mutations may provide ideas in developing new HIV-1 drugs targeting different proteins 

in HIV-1.  

In conclusion, this is the first study to show that T470S, L517I and E529D in the RNase H domain 

can affect drug susceptibility. In addition, this study has identified novel connection domain 

mutations in HIV-1 subtype C. Since these regions are not included in routine genotyping tests for 

HIV-1 drug resistance, it is recommended that newer genotype tests are developed that include the 

N-terminal half of RT, and that revised resistance-associated mutation lists include the RNase H 

mutations. In addition, these mutations need to be taken into account when developing next 

generation RTIs, as well as the newer classes of RNaseH inhibitors. More information on the 

structural implications of these mutations will facilitate drug design strategies. A limitation of the 

study is that while information about the single mutants were obtained, not all combinations of 

mutations were tested to fully understand the implications of these mutations in the context of the 

TAMS. 
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