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Abstract

The current work deals with modelling longitudinal or repeated non-Gaussian measurements for

a respiratory disease. The analysis of longitudinal data for non-Gaussian binary disease outcome

data can broadly be modeled using three different approaches; the marginal, random effects and

transition models. The marginal type model is used if one is interested in estimating population

averaged effects such as whether a treatment works or not on an average individual. On the

other hand random effects models are important if apart from measuring population averaged

effects a researcher is also interested in subject specific effects. In this case to get marginal effects

from the subject-specific model we integrate out the random effects. Transition models are also

called conditional models as a general term. Thus all the three types of models are important in

understanding the effects of covariates and disease progression and distribution of outcomes in

a population. In the current work the three models have been researched on and fitted to data.

The random effects or subject-specific model is further modified to relax the assumption that the

random effects should be strictly normal. This leads to the so called hierarchical generalized linear

model (HGLM) based on the h-likelihood formulation suggested by Lee and Nelder (1996). The

marginal model was fitted using generalized estimating equations (GEE) using PROC GENMOD

in SAS. The random effects model was fitted using PROC GLIMMIX and PROC NLMIXED

in SAS (generalized linear mixed model). The latter approach was found to be more flexible

except for the need of specifying initial parameter values. The transition model was used to

capture the dependence between outcomes in particular the dependence of the current response

or outcome on the previous response and fitted using PROC GENMOD. The HGLM was fitted

using the GENSTAT software. Longitudinal disease outcome data can provide real and reliable

data to model disease progression in the sense that it can be used to estimate important disease
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parameters such as prevalence, incidence and others such as the force of infection. Problem

associated with longitudinal data include loss of information due to loss to follow up such as

dropout and missing data in general. In some cases cross-sectional data can be used to find the

required estimates but longitudinal data is more efficient but may require more time, effort and

cost to collect. However the successful estimation of a given parameter or function depends on

the availability of the relevant data for it. It is sometimes impossible to estimate a parameter of

interest if the data cannot its estimation.
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Chapter 1

Introduction

Respiratory infection is considered as one of the major public health problems in the developing

countries (Amir et al., 2009). Baqui et al (2007) recognized that the respiratory infection is the

leading cause of morbidity and mortality in many countries. Respiratory infection is an infection

that occurs or is associated with the respiratory system. There are several forms of respiratory

infections such the lower and upper respiratory infections. These are viral diseases that can also

be of different strains or subtypes that can change between years. Some subtypes are contagious

and spread easily between people, while other subtypes are dependent on other factors such

as suitable weather conditions to aid their spread. Rahman and Rahman (1997) indicate that

in developing counties 30% of all patients consultation and 25% of all admission are of acute

respiratory tract infections.

In a longitudinal study individuals outcomes of interest are measured repeatedly through time

(Diggle et al., 2002). This is in contrast to cross-sectional studies, in which a single observation

is measured for each individual at a given time. More generally longitudinal data can be collected

either prospectively, following subjects forward in time or retrospectively, by extracting multiple

measurements overtime on each person from historical records (Diggle et al., 2002). However

the latter might not be reliable because they are not collected in real time. This may introduce

inaccuracy due to recall bias or invalidated records. Longitudinal studies can involve a large

6
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number of repeated measures such as in drug abuse follow up studies (Yang et al, 2007). These

are population based follow up studies. Clinical trials are also by nature prospective studies

which often have time to a clinical outcome as the principal response. Analysis of such data

needs a particular analysis called survival analysis which is not the focus in the current work.

Longitudinal studies are designed to investigate change over time in a characteristic which is

measured repeatedly for each study participant. Longitudinal data require special statistical

methods because the set of observations on one subject tends to be inter-correlated. This

correlation must be taken into account in the analysis in order to draw valid scientific conclusions

or inference. The subjects in a longitudinal study can usually be assumed to be independent

but the observations within a subject are bound to be correlated. Longitudinal studies are also

referred to as repeated measure designs are designs in which the measurement process consists

of repeated measurements on the same experimental unit.

The experimental unit can also include plots in the context of agricultural experiments, a sin-

gle patient in health research or a household in survey studies among many. Repeated measures

analysis employs statistical methods to deal with data or outcomes measured on the same ex-

perimental unit at different times or under different experimental or observational conditions. In

a repeated measurements analysis, one is usually interested in both between-subject and within-

subject effects. Between-subject effects are those whose values change only from subject to

subject and remain the same for all observations on a single subject, for example, the treatment

and gender effects. Within-subject effects are those whose values may differ from measurement

to measurement, for example, Level of CD4 count from one time to the next. Repeated measures

analysis can be applied to both continuous and categorical outcomes. Examples of the latter

include outcomes such as disease status measured or observed over time as in the current anal-

ysis and also in disease surveillance studies. The former type of responses include transformed

responses or outcomes in order to satisfy normality such as log viral loads, square root CD4 lym-

phocytes for HIV infected individual and untransformed variables such as blood pressure, weight

and many more.
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Most often repeated measures analyses for continuous data applies methods based on the

mixed model with special parametric forms on the covariance structure for observations from the

same subject (Laird and Ware, 1982). The current project will however focus on the application

of different approaches of modelling non-Gaussian data namely the generalized linear model

(GLM), generalized estimating equations (GEE), the generalized linear mixed model (GLMM)

and hierarchical generalized linear model (HGLM) for analyzing longitudinal non-Gaussian data

(McCullagh and Nelder, 1989; Liang and Zeger, 1986; Molenberghs and Verbeke, 2005; Lee and

Nelder, 1996 ). The thesis will also consider transition models which allow for the dependence

on already observed outcomes or the history of outcomes. The software of analysis in the current

study is SAS except under the HGLM where GENSTAT will be used. The data to be modelled

in this project (reported in Lee, Nelder and Pawitan, 2006 ) is in the form of a binary response

repeated measurements for individuals exposed or susceptible to infection by a respiratory disease.

At a given measurement occasion the observation gives the infection status of an individual in

the sample. This means the response Y either takes the value 1 (success) or 0 (failure) and in

the case of a disease process as in the current application Y=1 means the respiratory disease

status of an individual is ’infected’ and Y=0 means the respiratory disease status of an individual

is ’not infected’. In Lee et al (2006) the data were analysed using Genstat. Thus the successful

implementation of the methods supported in SAS is one of the achievements of the current work.

Binary disease outcomes over time can be conveniently modeled as Markov chain process with

transition probabilities denoting change from a given disease status to another (in the future)

similar to transition from no use to use of a substance as in drug abuse research studies (Yang

et al., 2007).

This project will focus on different ways or approaches for modelling such inherently correlated

data in the context of a disease process. Thus it is appropriate to assume the type of data used

in the project is from a parent distribution that is non-Gaussian contrary to most applications

which are based on data that satisfy normality. For such correlated data over time there are sev-

eral correlation structures that can be assumed. For example the compound symmetry structure
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assumes the covariance between any two measurements at two different time points on the same

unit is the same and further the same variance for all measurements. However, sometimes the

correlation between observations that are close together in time is likely to be higher than the

correlation for measurements further apart. In this case, the first-order autoregressive correlation

structure also denoted as AR(1) may be more appropriate. This can be extended to a general

p-order AR(p) correlation structure depending on the complexity of the dependence structure. A

more flexible correlation structure is that based on the unstructured model, in which we allow

for different parameters for the variance of each repeated measurement as well as different co-

variance parameters for each pair of repeated measurements. Clearly such a structure is highly

parametric and this may explain why analysts and modellers aim at more parsimonious covariance

structures as much as possible. The major difference between modelling longitudinal or clustered

correlated data compared to independent observations is that the independence assumption under

the classical maximum likelihood estimation is now not attainable.

1.1 Exploratory and Description of the data

The current data was a published data which was reported in Lee et al (2006). In the current

data, 111 patients were followed prospectively for 4 months or time points and in each month an

individual test was conducted to determine if his/her respiratory status as whether infected or not

infected. In each of two centres included in the study the patients were randomly assigned to one

of the two treatment groups receiving either the active treatment or a placebo. Thus the data

is an example of a multi-centre clinical trial where the outcome of interest is binary. Respiratory

infection status indicated as 0 for not infected, 1 for being infected was determined for each of

four visits. For analysis purpose the two treatments are coded as 1 for placebo and 2 for active

treatment. The aim of the current work is to accurately model the resulting respiratory infection

disease data accounting for multiple visits per patient who were randomized into placebo or active

treatment at baseline.
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The model includes both categorical and continuous covariates. The variables centre, treat-

ment, sex, and baseline (baseline respiratory status) are factor variables with two levels each. The

variable age (age at time of entry into the study) is a continuous variable. There were 23 females

and 88 males in the study. The effect of measured covariates was also an important component

in the analysis. Particularly this was a multi-centre study it is important to control for the centre

effect. The incidence of a disease in the context of longitudinal follow up data is defined as

the number or proportions of new cases within a given time interval while the prevalence of the

disease is the proportion of infected individuals at a given time which includes both newly infected

and existing cases. In the current analysis, an incident event for a given individual is defined as

the change from state Y=0 to state Y=1 in a given time interval.

A summary of the number of patients in the study at each time point and the number of

infections at each time point are given in Table 1.1. The marginal sample probabilities showing

infected and uninfected with respiratory disease at each time point are given in Table 1.2. It

should be noted however the proportion in Table 1.2 gives probabilities of being infected and

uninfected estimates calculated at each given time point over all the individuals sampled from

the target population and randomized to that given arm. Thus the estimates in Table 1.1 and

1.2 are in fact cross-sectional estimates. The probabilities in Table 1.2 are calculated assuming

independence between time and individuals. Table 1.2 indicate that the probability of being

infected with respiratory disease is the highest at baseline. The result in Table 1.3 was fitted

using SPSS statistical software. The result indicate that there was no statistically significant

association between time and the status of respiratory disease. It is clear from Figure 1.1 that

the prevalence is not constant over time and is different from zero in the two arms. Figure 1.2

show that 49.1% of individuals who are on placebo and 33.3% of individuals who are on active

treatment are infected with the respiratory disease at visit 1. Figure 1.2 also show that 57.9% of

individuals who are on placebo and 38.9% of individuals who are on active treatment are infected

with the respiratory disease at visit 4. The prevalence is consistently lower in the active treatment

arm at all visits. This is also evident in Table 1.1. Figure 1.3 show that 39.8% males individuals
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Table 1.1: Treatment arm specific number of infected and prevalence of the respiratory infection

at each visit

Placebo arm Active arm

Number infected N Prevalence Number infected N Prevalence

baseline 31 57 54.4 30 54 55.6

visit1 28 57 49.1 18 54 33.3

visit2 35 57 61.4 16 54 29.6

visit3 31 57 54.4 15 54 27.8

visit4 33 57 57.9 21 54 38.9

Table 1.2: The number of being infected and uninfected with respiratory disease at each visits

Infected Probability of being infected uninfected Probability of being uninfected

Baseline 61 0.55 50 0.45

Visit1 46 0.41 65 0.59

Visit2 51 0.46 60 0.54

Visit3 46 0.41 65 0.59

Visit4 54 0.49 57 0.51

and 47.8% females individuals are infected with the respiratory disease at visit 1. Figure 1.3 also

show that 48.9% males individuals and 47.8% females individuals are infected with the respiratory

disease at visit 4. Figure 1.4 show that 53.6% of the individuals in centre 1 and 29.1% of the

individuals in centre 2 are infected with the respiratory disease at visit 1. Figure 1.4 also shows

that 62.5% of the individuals in centre 1 and 34.5% of individuals in centre 2 are infected with

the respiratory disease at visit 4. The observed number of disease cases at a given time are

generally assumed to have a binomial distribution and the time specific estimate of prevalence is

the sample proportion of cases. However as indicated earlier the individual binary observations

are most likely dependent leading to correlated data that must be accounted for.

Analysis using the generalized linear model methodology assuming the outcomes within a patient

are independent is clearly not appropriate because of the inherent correlation of outcomes within

an individual. There are three types of models that will be used to model the current data.
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Table 1.3: Association between time and status of respiratory disease

Value DF Pr>Chisq

Pearson Chi-square 1.706 3 0.636

Likelihood ratio 1.706 3 0.636

Linear-by-linear Association 0.657 1 0.418

N of valid cases 444

Figure 1.1: Proportion of respiratory infection for placebo and active treatments at baseline and

each visits

Figure 1.2: The percentage of infection for placebo and active treatment at four visits

These are marginal, random-effects and transition models. The models will be fitted using SAS

software except under the hierarchical modelling approach where GENSTAT will be used. Marginal

models are appropriate when inference is about the average response in the subpopulation sharing
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Figure 1.3: The percentage of infection for males and females individuals at the four visits

Figure 1.4: The percentage of infections in the two centres at the four visits

or having a common set of covariate values. Marginal models are important in the context of

a clinical trial where estimating the average difference between treatments is generally the most

important goal. Because the response variable is binary the logit link function under the binomial

probability model will be used. More precisely individual observations are best modelled as a

Bernoulli type of responses because it is assumed that the outcome variable of interest is binary.

Thus the data are coded such that a successful outcome (infection) in the experiment is coded

as 1 and a failure (not infected) is coded as 0. The Bernoulli distribution is a special case of the

binomial distribution where number of trials is n=1. The analysis of binary and counts data is
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often faced with the problem of over and under dispersion. The work will also briefly discuss the

problem of dispersion in relation to the modelling approaches being applied in the current work.

1.2 Objective of the Research

The question of interest was whether the active treatment is effective in controlling the incidence

of the disease or not compared to placebo. An additional question of interest was also whether

the evolution of disease status was time dependent and whether this dependence was different

for the two treatments given other measured covariates. The primary objective of this study was

to review and apply advanced statistical methods to analyze correlated non-Gaussian longitudinal

data using both marginal and subject-specific random effects models. The work also includes the

study of transition models to model dependent outcomes. This will enable efficient and correct

estimation of covariate effects on the outcome which in our case is the respiratory disease status.

The work were also considered approaches to deal with non-normal random effects under the

hierarchical generalized linear modelling approach. The application were based on multiple out-

comes of a respiratory disease infection status of individuals monitored over time. The data was

an example of multi-centre clinical trial because the individuals were sample from two centres.

The specific objectives of the study were:

• To review statistical methods used in the analysis of correlated non-Gaussian data.

• To investigate approaches that can be used to construct a dispersion model for data that may

suffer from overdispersion.

• To determines the effect of the active treatment compared to placebo in controlling the inci-

dence of disease using the marginal effects, subject effects and transition models.

• To review the theory and application of hierarchical generalized linear models not necessary

assuming normal subject specific effects.

• Demonstrate the understanding of the above through an application to a disease outcome data.

• Compare the performance of different approaches.



Chapter 2

Marginal models for correlated

longitudinal data

The observed or measured status of a disease (infected or not infected) such as a respiratory

disease in an individual is a binary response outcome. However, clinically such an outcome is

based on a disease threshold or cut off using a biomarker that could well be continuous. In this

work we focus on data derived from repeated observations from the same individual. Thus the

assumption of independent observations cannot be used because observations within an individual

are correlated therefore not independent. The chapter briefly discusses the theory of generalized

linear models (GLMs) for non-Gaussian data by first introducing the exponential family. The

problem of correlated non-Gaussian longitudinal data is then discussed and addressed using the

generalized estimating equations (GEEs) due to Liang and Zeger (1986). The application of this

type of marginal model under different correlation structures to respiratory infection data is done

using the SAS software and the results discussed.

15
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2.1 Generalized linear models

2.1.1 The exponential family of distributions

Generalized linear models (GLMs) are an extension of the classical linear models, so that the

latter form a suitable starting point for our discussion.

Let Y be a random variable from a parent distribution which possibly depends on the parameters

θ and φ. A detailed discussion of generalized linear models can be found in McCullagh and Nelder

(1989). The random variable Y is said to have a distribution from the exponential family if its

probability density function can generally be written in the form:

f(y | θ, φ) = exp
[yθ − ψ(θ)

φ
+ c(y, φ)

]
. (2.1)

The parameter θ is called the natural parameter and φ is called the dispersion or the scale

parameter. The function ψ(.) is called the cumulant function which is helpful in generating the

mean and variance as will be shown below. The mean and variance of Y can be derived by

exploiting the equation ∫
f(y | θ, φ)dy = 1. (2.2)

Taking the first and second derivative with respect to θ from both sides of Eq.(2.2) leads to the

two equations of the form ∫
(y − ψ

′
(θ))f(y | θ, φ)dy = 0, (2.3)

and

∫
[φ−1(y − ψ

′
(θ))2 − ψ

′′
(θ)]f(y | θ, φ)dy = 0. (2.4)

Solving for µ = E(y) and V ar(y) = E[(y − µ)2] in Eq.(2.3) and (2.4) respectively we get the

solutions E(y) = ψ
′
(θ) and V ar(y) = φv(µ) where v(µ) = ψ

′′
(θ).
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Note that in general the mean and variance are dependent, since

V ar(y) = φψ
′′
[ψ

′−1(µ)] = φv(µ) (2.5)

The function v(µ) is called the variance function. The function ψ
′−1(.) which express θ as a

function of µ is the link function and ψ
′
is the inverse link function. There are several distribu-

tions which conform to this structure and for clarification purposes we briefly relate the above

formulation to the Normal, Poisson and Bernoulli distributions which all fall under the exponential

family of distributions.

In the case when Y ∼ N(µ, σ2) then its density function is given by

f(y | θ, φ) =
1√

2πσ2
exp

[ 1

−2σ2
(y − µ)2

]
= exp

[ 1

σ2

(
yµ− µ2

2

)
−

( log(2πσ2)

2

)
− y2

2σ2

]
Which is in the form of an exponential family where the natural parameter is θ = µ, the scale

parameter is φ = σ2, c(y, φ) = − log(2πσ2)
2

− y2

2φ
and ψ(θ) = θ2

2
= µ2

2
. A special property about the

normal distribution is that the variance function v(µ) = 1, therefore V ar(y) = σ2 independent

of µ.

Let Y be Poisson distributed with mean µ. Then the density function of the Poisson distribution

is

f(y) =
µy exp(−µ)

y!

The above density function is also part of the exponential family since it can be written as

f(y) = exp(y log µ− µ− log y!)

Thus the natural parameter is θ = log µ, ψ(θ) = exp(θ) the scale parameter is φ = 1 and

c(y, φ) = log y!. In this case the variance function v(µ) = µ, therefore V ar(y) = µ which

depend on µ. Thus a Poisson random variable is naturally modelled using a log-link function.



18

In the case of the Bernoulli distribution

Y ∼ Bernoulli(π) then the density function is given by:

f(y, θ, φ) = πy(1− π)1−y

= exp[y log π + (1− y) log(1− π)]

= exp[y log
( π

1− π

)
+ log(1− π)]

Which is in the form of an exponential family were the natural parameter is θ = log
(

π
1−π

)
, the

scale parameter is φ = 1 and ψ(θ) = − log(1− π) = log(1 + exp(θ)) since π = exp(θ)
1+exp(θ)

Note that under this model the mean and the variance are given by

E(y) = ψ
′
(θ) = π

and

V ar(y) = φv(µ) = µ(1− µ)

Which depend on µ as with the case of the Poisson distribution. The canonical link function is

here given by the logit link where

θ = log
( µ

1− µ

)
The above comparison shows that the normal distribution possess the unique property that the

variance is independent of the mean contrary to almost all other members of exponential family

of distributions.

2.1.2 The structural component and link function

Let Y1, Y2, ..., YN denote N independent observations from the same exponential family distribu-

tion such that

f(yi | θi, φ) = exp
[yiθi − ψ(θi)

φ
+ c(yi, φ)

]
. (2.6)
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In addition, let xi denote a vector of p known independent variables, covariate or predictor

variable. It is reasonable and practical to assume that the differences between individual mean

can be captured through general relation

g(E(Yi)) = g(µi) = x
′

iβ

where E(Yi) = µi and g is a link function that relate the mean of the response to the linear

predictor x
′
iβ, xi is a vector of the independent variables for the ith observations and β is a vector

of regression parameters to be estimated from data using the maximum likelihood estimation.

In the classical GLM analysis (McCullagh and Nelder, 1989) the outcomes Yi, i = 1, ..., N , are

assumed to be independent and have the probability distribution from the exponential family.

The most commonly used link function is the canonical link function where g(µi) = θi so that

the relation θi = x
′
ijβ holds.

2.2 Maximum likelihood estimation

The likelihood L(β, φ) is given by

L(β, φ) =
N∏

i=1

f(yi | β, φ) =
N∏

i=1

exp
[yiθi − ψ(θi)

φ
+ c(yi, φ)

]
. (2.7)

Estimation of the regression parameters in β is usually done using maximum likelihood estimation.

Assuming that the observations are independent and the log-likelihood is defined by

l(β, φ) =
1

φ

∑
i

[yiθi − ψ(θi)] +
∑

i

c(yi, φ). (2.8)

The maximum likelihood estimator of the parameter vector β is obtained by solving the estimating

equations based on the score equation given below

S(β) =
∑ dµi

dβ
v−1

i (yi − µi(β)) = 0. (2.9)

Note that the estimation of β depends on the density function only through the mean and the

variance functions vi = v(µi). The score equations can be solved numerically using the iterative
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algorithm such as the Newton-Raphson, Fisher scoring and re-weighted least squares (RWLS).

The inference on β is based on a classical maximum likelihood theory such as the asymptotic

properties of the estimate β̂ leading to inference based on the wald- test, Likelihood ratio test or

the score test.

To solve the score equations by the Newton-Raphson method, the iterative equation is given by

β̂(t+1) = β̂(t) − (H(t))−1µ(t) (2.10)

where H(t) is the Hessian matrix while β̂(t) and µ(t) are the vector of regression parameter and the

vector of mean at step t respectively . The Hessian matrix is the square matrix of second-order

partial derivatives of a function. Fisher scoring iterative equation is given by

β̂(t+1) = β̂(t) + (ϑ(t))−1µ(t). (2.11)

where ϑ = X
′
WX is the expected information matrix and W is the diagonal matrix with the

main diagonal elements

wi =
(dµi/dηi)

2

var(Yi)
.

Reweighted least squares iterative equation is given by

β̂(t+1) = (X
′
W (t)X)−1X

′
W tz(t). (2.12)

where z is a linearized form of link function g, evaluated at y. Fisher scoring method is similar to

the Newton-Raphson method but the only difference being how the Hessian matrix is used. Fisher

scoring method uses the expected value of this matrix called expected information, whereas the

Newton-Raphson method uses the matrix itself or the observed information. Once parameters are

estimated there is a need to make inference on them. The Wald test is an asymptotic parametric

statistical test with a great variety of uses. Whenever a relationship within or between data items

can be expressed as a statistical model with parameters to be estimated from a sample, the Wald

test can be used to test hypotheses about the true value of the parameter based on the sample

estimate. In most statistical tests including the Wald test the maximum likelihood estimate β̂

of the parameter(s) of interest β is compared with the proposed value β0, with the assumption

that the difference between the two will be approximately normal. Typically the square of the
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difference is compared to a chi-squared distribution quantile at a given significance level. In the

univariate case, the square of the Wald statistic is defined as

ω =
(β̂ − β0)

2

var(β̂)

Alternatively, the standardized difference can be compared to a normal distribution quantile at a

given level of significance. In this case the test statistic is

z =
β̂ − β0

se(β̂)

Strictly speaking the latter form is what is commonly called the Wald statistic. The likelihood-

ratio test can also be used to test whether an effect on the mean response on the link function scale

exists or not. Usually the Wald test and the likelihood ratio test give very similar conclusions

(as they are asymptotically equivalent). Another alternative is the score test, which have the

advantage that it can be formulated in situations where the variability in the estimate is difficult

to estimate. Under the non-normal data the likelihood ratio test is generalized to the idea of

deviance. The deviance of a model is defined as the likelihood ratio of the saturated model versus

the particular model of interest.

Example

Suppose that yi ∼ B(1, pi) where µi = pi

f(yi) = pyi

i (1− pi)
1−yi

L(µi) =
n∏

i=1

pyi

i (1− pi)
1−yi

l(µi) =
n∑

i=1

[yi log pi + (1− yi) log(1− pi)]

=
n∑

i=1

[
yi log µi + (1− yi) log(1− µi)

]
The saturated log-likelihood is defined as

l(yi) =
n∑

i=1

[yi log yi + (1− yi) log(1− yi)]
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The deviance is

D(yi, µi) = 2 log
L(yi)

L(µi)

= 2[l(yi)− l(µi)]

= 2
∑

i

[
yi log

( yi

µi

)
+ (1− yi) log

( 1− yi

1− µi

)]

Consider two models M1 and M2 where M1 is a subset of M2 with corresponding deviance D(M1)

and D(M2) respectively. Then the change in deviance between M1 and M2 is

4D = D(M1)−D(M2) > 0

which is approximately χ2(k) where k is extra number of parameters in M2. Therefore the

deviance can be used to measure the significance of the additional parameters in M2.

2.3 Logistic regression models for binary response

The aim of this section is to review and apply logistic regression to the binary respiratory infection

data. Let Yij denote the respiratory status of subject i at visit j for i = 1, ..., 111 and j = 1, ..., 4,

This

Yij =

 1 if respiratory status is ’infected’

0 if respiratory status is ’not infected’

Let xij = (xij1, ..., xijp)
′

denote a p × 1 vector of covariates for subject i at visit j. The five

explanatory variables are treatment (xij1), sex (xij2), baseline disease status (xij3), centre (xij4)

and age (xij5) where

xij1 =

 1 if placebo,

2 if active,

xij2 =

 1 if male,

2 if female,
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xij3 =

 1 if infected at baseline,

0 if not infected at baseline,

and

xij4 =

 1 if centre1

2 if centre2

It is noted that all the five covariates treatment, sex, baseline status, centre and age all fall in the

category of baseline covariates. Thus in all the variables we can drop the index j and reduce the

notation to xi1, xi2, xi3 and xi4 respectively. The fifth covariates xi5 is age of an individual at

baseline which is a continuous covariate. The observed disease status of an individual i denoted

by Yi takes value 1 if the individual is infected and zero otherwise. The logistic regression model

is part of a special case of statistical models called generalized linear models (GLMs) under the

assumption that observation Yi are independent and φ = 1. Logistic regression allows one to

model the probability of an outcome of an event as a linear function of a set of variables that

may be continuous or discrete including dichotomous variables. The response variable is binary

therefore a Bernoulli distribution is naturally assumed. The marginal probability of the outcome is

denoted by pi = Pr(Yi = 1). For simplicity, let us assume that the marginal probability depends

on a set of covariates xi = (1, xi1, ..., xip)
′
through regression coefficients β0, β1, ..., βp. Then a

logistic regression model is a function of the form

log
( pi

1− pi

)
= β0 + β1xi1 + ...+ βpxip = ηi

The expression to the right denoted by ηi as earlier stated is called the linear predictor. This

means that for an individual with covariate vector xi.

pi = P (Yi = 1) =
exp(x

′
iβ)

1 + exp(x
′
iβ)

=
exp(ηi)

1 + exp(ηi)
. (2.13)

The interpretation of the parameter βj, j = 1, 2, ..., p is that for every unit increase in xj logit(pi)

increases by βj units conditionally on holding other variables constant where

logit(pi) = log
( pi

1− pi

)
= x

′

ijβ. (2.14)
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The exponential family simplifies the construction of the likelihood and log-likelihood. The log-

likelihood based on a sample of N individuals is

l(β) =
N∑

i=1

[
yi ln

( pi

1− pi

]
+ ln(1− pi)

]
, (2.15)

where the natural parameter θi = ln
(

pi

1−pi

)
which is implicitly a function of β through Eq.(2.13).

The mean and variance of the response variable are given by:

E(Yi) = µi =
eθi

1 + eθi
= pi,

and

σ2
i = var(Yi) =

eθi

1 + eθi
× 1

1 + eθi
= pi(1− pi).

In general, we can write the model for the combined data as

logit(p) = Xβ (2.16)

where X the design or model matrix given by

X =



1 x11 x12 . . . xip

1 x21 x22 . . . x2p

1 x31 x32 . . . x3p

. . . .

. . . .

. . . .

1 xn1 xn2 . . . xnp


and the vector valued parameter β is given by

β =



β0

β1

β2

.

.

.

βp
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The expression logit(p) now is a vector of the form

logit(p) =



logit(p1)

logit(p2)

.

.

.

logit(pN)


corresponding to the N observations Yi, i = 1, 2, ..., N .

2.3.1 Application of Logistic regression to the respiratory infection data

First, a model was fitted assuming the observations within an individual are independent. In the

analysis the reference levels for categorical variables or factor variables were centre two, active

treatment, female category, infected status and time period four for the categorical variables

centre, treatment, sex, baseline status of infection and time. The results from this analysis based

on maximum likelihood estimation and Type 3 analysis effects are shown in Tables 2.1 and 2.2

respectively. The result in Table 2.1 indicates that the covariate effects centre, treatment, age

and baseline disease status are significant while sex and time are not significant at 5% significance

level. The type 3 table of results also give the same conclusion that it is the centre, treatment,

age and baseline disease status effects that are significant at 5% significance level. The result for

the adjusted odds ratio estimates are shown in Table 2.3.

The Table 2.3 results show that the odds of infection for individual in centre 1 was 1.362 times

that of individuals in centre 2. The odds of infection for an individual who received the placebo

treatment was 1.888 times that for individual who received the active treatment. The odds of

infection for a male individual was 1.088 times that for a female individual. The odds of infection

for an individual who is not infected at baseline is 0.399 times that of an individual who is infected

at baseline. The odds of infection at times 1, 2 and 3 are respectively 0.863, 1.085 and 0.851

times that at time 4. It is however clear that the above approach is inferior because it ignores

dependence between observations within an individual.
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Table 2.1: Analysis of maximum likelihood estimates

parameter Estimate Standard Error Pr>Chisq

intercept -1.0904 0.3446 0.0016

Centre 0.3086 0.1189 0.0095

treatment 0.6357 0.1176 < .0001

Sex 0.0839 0.1468 0.5675

Age 0.0189 0.0088 0.0316

Baseline -0.9188 0.1198 < .0001

time1 -0.1470 0.1918 0.4434

time2 0.0820 0.1908 0.6672

time3 -0.1619 0.1921 0.3993

Table 2.2: Type 3 analysis of effects

parameter DF Wald chi-squared Pr>Chisq

Centre 1 6.7315 0.0095

treatment 1 29.2065 < .0001

Sex 1 0.3269 0.5675

Age 1 4.6193 0.0316

Baseline 1 58.8591 < .0001

time 3 2.1688 0.5381

The purpose of assuming independence in the analysis is to show the effect of not properly

accounting for the correlation structure in the analysis of correlated non-Gaussian data such

as the current one. These results will be discussed in relation to estimates obtained when an

appropriate correlation structure is assumed. Lack of not correctly accounting for the inherent

correlation in the data increases type I error for testing the significance of the various effects.
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Table 2.3: The Adjusted odds ratio estimates for logistic regression model

parameter odds ratios 95% Confident Interval

Centre 1.362 1.078 1.719

treatment 1.888 1.499 2.378

Sex 1.088 0.816 1.450

Age 1.019 1.002 1.037

Baseline 0.399 0.315 0.505

time1 0.863 0.593 1.257

time2 1.085 0.747 1.578

time3 0.851 0.584 1.239

2.4 Marginal models for correlated data

Now consider an extension of the cross-sectional scenario defined in section 2.3 to a longitudinal

or clustered data structure where an experimental or study unit is observed repeatedly for a

number of occasions.

Let the observations for individual i be Yij for j = 1, 2, ..., n and i = 1, 2, ..., N . Let Yi denote

the n dimensional vector of observations from individual i assuming each individual contributes

n outcomes. More generally an individual i contributes ni outcomes where the n′is are not

necessarily equal ∀i, i = 1, 2, ..., N .

In a marginal model the regression of the response on explanatory variables is modelled sepa-

rately from within person correlation (Diggle et al., 2002). In the regression model the marginal

expectation denoted as, E(Yij) is modelled as a function of explanatory variables xij1, xij2, ..., xijp.

To state the general marginal model formely, let µij = E(Yij | xij) for i = 1, 2, ..., N and

j = 1, 2, ..., n. Diggle et al.(1994) and later in Diggle et al.(2002) point out that modelling

association among binary responses with a correlated relation has a disadvantage and they rec-
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ommend using the odds ratio instead. The data influences the range of the correlation since the

estimate of the correlation between the jth and kth response for binary data are constrained by

the means, µij = Pr(Yij = 1). Consider

Corr(Yij, Yik) =
Pr(Yij = 1, Yik = 1)− µijµik√

µij(1− µij)µik(1− µik)
(2.17)

This mean Pr(Yij = 1, Yik = 1) is constrained to satisfy (Prentice,1988)

max(0, µij + µik − 1) < Pr(Yij = 1, Yik = 1) < min(µij, µik) (2.18)

The odds ratio defined below appears to be a more natural choice for modeling the association

in binary data as they are not constrained by the means (Liang et al., 1992).

OR(Yij, Yik) =
Pr(Yij = 1, Yik = 1)Pr(Yij = 0, Yik = 0)

Pr(Yij = 1, Yik = 0)Pr(Yij = 0, Yik = 1)

whose values in the range (0,∞), where a value greater than one indicates an association. The

measure is unconstrained on the log-scale which is the most commonly used in logistic regression.

Under GEE the correlations are treated as nuisance parameters and the use of correlations versus

odds ratios usually has little influence on the inference on β, the regression parameters for the

marginal mean model. Liang and Zeger (1986) parameterize association in terms of correlation

and use moment estimation for the unknown correlation. Let g(µij) denote the appropriate link

function corresponding to the mean of the random variables Yij whose realized value is yij. Often

the canonical link function is often a good candidate. The dependence on covariates is achieved

through the model.

g[E(Yij | xij)] = x
′

ijβ (2.19)

where xij are covariates for individual i measured at occasion j and β is a vector of fixed effect

parameters. By marginal expectation we mean the average response over the sub-population that

share common covariate values.

Fitting marginal models can be quite involving because the marginal association parameters are

highly constrained. A marginal model has the following assumptions:
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Firstly the marginal expectation E(Yij) = µij depends on explanatory variables xij through the

relation g(µij) = x
′
ijβ where g is the known link function such as the logit for binary responses,

log-link for count data, identity link for Gaussian data and so on.

Secondly the marginal variance depends on the marginal mean according to the relation

var(Yij) = φv(µij) where v(.) is known as the variance function and φ is a scale or dispersion

parameter which may need to be estimated if its unknown.

Thirdly the correlation between Yij and Yik for j 6= k is a function of the marginal means and

perhaps of additional vector of parameters α that is Corr(Yij, Yik) = ρ(µij, µik, α) where ρ(.)

is a known correlation function. The marginal regression coefficient β have similar interpretation

as coefficients from a cross-sectional analysis. Marginal models can be viewed as an extension

of the generalized linear model (McCullagh and Nelder, 1989) for independent data to correlated

non-Gaussian data. To illustrate its application consider the problem of assessing the dependence

on vitamin A of a respiratory infection in children. Let xij indicate whether or not a child is

vitamin A deficient (1=yes; 0=no) and let µij = E(Yij). Then the marginal model specification

corresponding to the above scenario is given by

logit(µij) = log
( µij

1− µij

)
= β0 + β1xij

and

V ar(Yij) = µij(1− µij)

and

Corr(Yij, Yik) = α, j 6= k.

The interpretation of the transformed regression coefficient θ0 = exp(β0) is that it gives the ratio

of the frequency of infected to uninfected children among the sub population that is not vitamin

A deficient. The parameter θ1 = exp(β1) is the odds of infection among vitamin A deficient

children divided by the odds of infection among children replete with vitamin A. That is exp(β1)

gives the odds ratio of infection comparing vitamin A deficient to vitamin A replete children.

Thus the advantage of the above extension to the GLM regression model is that we are able

to estimate our parameters of interest with more reliable standard errors for interval estimation
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because now dependence between observations within an individual is correctly accounted for. In

addition‘ several covariates can be included in the model and regression coefficients interpreted

conditional on other covariates being fixed as in a Gaussian multiple regression but now on the

logit link transformed scale. The key modification is that we take into account the correlation

between observations. The most popular method of dealing with correlation in marginal models

is the generalized estimating equation approach (Liang and Zeger, 1986; Zeger and Liang, 1986).

2.5 Generalized Estimating Equations Theory

Generalized estimating equations (GEE) were introduced by Liang and Zeger (1986) as a method

of dealing with correlated data in the case of non-Gaussian clustered responses or outcomes such

as in longitudinal studies. The GEE methodology for the analysis of repeated measurements is a

marginal model. The approach is an extension of the quasi-likelihood formulation (Wedderburn,

1974) to longitudinal data analysis. The GEE method is also viewed as semi-parametric in nature

because the estimating equations are derived without full specification of the joint distribution

of within subject or unit observations. However the most important development in the GEE

methodology is that it allows the specification of a working correlation structure among the

observations, Yi1, ..., Yin within an individual or cluster which is not necessarily the true underlying

correlation structure. As in the generalized linear model the GEE method relates the marginal

response

µij = E(yij)

to a linear combination of the covariates as

g(µij) = x
′

ijβ, (2.20)

where yij is the response for subject i at time j, xij is the corresponding p×1 vector of covariates,

β is a p× 1 vector of unknown parameters and g(.) is the link function. The GEE approach also

describes the variance of yij as a function of the mean:

V ar(yij) = v(µij)φ,
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where v(.) is variance function and φ is the unknown scale parameter. In terms of the vector yi

of outcomes, v(.) becomes an ni × ni matrix with v(µij)φ in the diagonal but the GEE method

also allows for correlation between pairs of observations. If the response variable is binary as in

the case of the current analysis the link and variance function are given by

g(µij) = log
( µij

1− µij

)
and

v(µij) = µij(1− µij)

for φ = 1.

In fitting the above model the GEE methodology allows the inclusion of a working correlation

among the observations Yi1, ..., Yin to ensure this structural requirement for the data. Over time

GEEs have become an important method in the analysis of correlated data. These data sets can

arise from longitudinal studies, in which subjects are measured at different points in time, or from

clustered data, in which measurements are taken on subjects who share a common cluster charac-

teristic such as belonging to the same litter, household, region and so on. In this case the cluster

denotes an experimental unit which is repeatedly observed for example a class using a certain

teaching method. The marks scored by students in that class comprise repeated measurements.

The method of generalized estimating equations provides consistent estimates of the regression

parameters, even when the working correlation structure is mis-specified (Liang and Zeger, 1986).

However, the efficiency of a GEE estimate can be affected by the choice of the working correlation

model. The GEE approach has been extended to include methods that combine multiple GEEs

based on different working correlation models, using the empirical likelihood method (Qin and

Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a

mis-specified working correlation model. Such an extension to the exponential family has been

slow because of the inherent difficultly in modelling the dependence structure in a natural way. In

contrast to the classical GLM which assumes independent observations, full likelihood modelling

of repeated measures can still be used but the computations quickly become unmanageable. For
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less than full likelihood approach (Liang and Zeger; 1986) the generalized estimating equation

technique became necessary and it is briefly discussed below.

Liang and Zeger(1986) recognized that the standard GLM estimating equation∑ dµi

dβ
v−1

i (yi − µi) = 0

for independent data is immediately applicable for multivariate outcome data. In their extension,

yi and µi are now vector valued and vi is a variance matrix. Thus the estimating equation

approach involves a specification of the mean vector and the variance matrix. The Generalized

estimating equation approach has some desirable statistical properties that makes it an attractive

method for dealing with correlated data. Note that generalized estimating equations reduce

to GLM estimating equations for ni = 1. Secondly generalized estimating equations are the

maximum likelihood score equation for multivariate Gaussian data or generally if the underlying

distribution can fully be specified.

To formally state the estimating equation, let the vector of measurements on the ith subject be

Yi = (Yi1, ..., Yini
) with the corresponding mean vector be µi = (µi1, ..., µini

) and Vi its covariance

matrix as a function of β. Then an extension of the independence estimating equation to the

correlated data is given by ∑ dµi

dβ
V −1

i (yi − µi(β)) = 0 (2.21)

The aim is to be able to estimate β appropriately taking into account of the correlation between

measurements from the same unit through the covariance matrix Vi.

2.5.1 Working correlation

Let Ri be an ni×ni working correlation matrix that is fully specified by the vector of parameters

α. The covariance matrix of Yi is modeled as

Vi = A
1
2
i Ri(α)A

1
2
i /φ (2.22)
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The variance function matrix A is an ni×ni diagonal matrix with the jth diagonal element given

by v(µij). The working correlation Ri(α) is assumed to depend on a set of parameter α. The

over dispersion parameter φ is assumed to be known or if unknown it is included as one of the

parameters to be estimated from the data using known methods such as the method of moments.

The working correlation structure Ri(α) is not usually known because it depends on unknown

quantities α thus it must be estimated or specified. The unknown quantities α are derived or

estimated in terms of the Pearson residuals given by

êij =
yij − µ̂ij√
v(µ̂ij)

(2.23)

subject to the structure of the assumed correlation matrix. Thus as a bi-product of GEE estimation

R̂i(α̂) is also provided. However it should be noted that Ri(α) is not necessarily the correct

correlation and hence the GEE method also allows for Vi to be estimated empirically which gives

rise to the so called robust or empirical based standard errors.

2.5.2 Covariance and correlation structures

The covariance structure is not the primary interest of analysis but essential for valid inference.

Therefore a lot of effort is usually needed at the beginning of the statistical analysis to assess and

determine the best covariance structure to assume for the cluster. Note that in Eq.(2.22) the

form of the variance function in the diagonal matrix A is obtained based on the quasi-distribution

assumed for the data therefore effort is spared to determine what structure to use for Ri(α).

There are several specific choices of the form of the working correlation structures to use for the

clustered responses. The four commonly used correlation structures are the compound symmetry

(CS), first order autoregressive (AR(1)), Toeplitz (Toep) and the unstructured (UN).

Compound Symmetry (CS) :

The compound symmetry covariance structure assumes non-zero, yet uniform correlations for all

pairs of within-subject variables. A similar terminology used for this type of correlation structure is

the exchangeable correlation structure. Every observation within an individual or cluster is equally

correlated with every other observation from that individual. This choice of covariance structure
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may not be reasonable with multiple measurements collected over time, since the correlation

between two observations Yij and Yik for j 6= k most likely exhibit diminishing correlation as the

time lag between observations Yij and Yik increases. For example if we consider four repeated

measures, the compound symmetry covariance structure is given by

CS =


σ2 σ1 σ1 σ1

σ1 σ2 σ1 σ1

σ1 σ1 σ2 σ1

σ1 σ1 σ1 σ2

 = σ2


1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

 = σ2R(α)

where σ1 is the covariance, σ2 is the variance and ρ = σ1√
σ2σ2

gives the correlation between any

two observations thus here α = ρ.

First order autoregressive (AR(1)) :

The second plausible covariance structure that is relevant for repeated measures in time is the

autoregressive structure a term derived from times series analysis that assumes observations are

related to their own past values or history through one, two, or a higher order autoregressive

(AR) process. A first order autoregressive covariance structure assumes that two observations

taken close to each other in time (or space) within an individual tend to be more correlated

than two observations taken far apart in time from the same individual or observational unit.

The correlation between two measurement that are m time units apart is given by ρm. Since

−1 < ρ < 1 but it is structurally more realistic to assume 0 < ρ < 1 therefore the greater the

power m ≥ 1 the smaller the correlation. In the case of four repeated measurements covariance

structure is

AR(1) = σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 = σ2R(α)
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Once again here α = ρ meaning only one correlation parameter is needed just as in the case of

the CS structure. Note that such a correlation structure also applies to observations repeatedly

measured in space. In this case a measure of separation between two observations is the distance

between the observations, the correlation d distance units apart is ρd. Note that the analogy

can be extended to data correlated in space and time leading to a 2-dim correlation structure. A

2-dim correlation structure also arises in agricultural field trials using the so called row-column

designs with observation correlated both along rows and columns. However this extension is not

the focus of the current project. The decaying correlation structure can be generalized to the

case observations Yij and Yik measured at time tij and tik respectively where now

Corr(Yij, Yik) = ρ|tij−tik|.

Toeplitz (Toep) :

In contrast to the AR(1) structure no assumption of exponential decay is made. The AR(1)

structure depends on the single parameter ρ for a complete specification of the correlation but

the Toeplitz model has as many parameters as there are distances. In the case of four repeated

measurements the Toeplitz covariance structure is

TOEP = σ2


1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1

 = σ2R(α)

In this case the correlation parameter vector is α = (ρ1, ρ2, ρ3)
′

Unstructured (UN) :

The most flexible covariance structure leads to the unstructured pattern of correlations which

assumes unconstrained pair-wise correlations where each correlation is estimated from the data

(the most complex model). No assumption is made about the relative magnitude of the correlation

between any two pairs of observations. All the variances and covariances are different. In the

case of four repeated measurements the covariance structure is given by
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UN =


σ2

1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ2
3 σ34

σ14 σ24 σ34 σ2
4


An analysis that uses an UN covariance matrix will be less powerful than an analysis that uses

a less parametric but more realistic structure. The problem though is knowing aprior what the

realistic or parsimonious structure is. The unstructured type of correlation has an immediate

disadvantage because it increases the number of parameters to estimate in the overall model

hence causing possible non-convergence problems, particularly those associated with boundary

values. A strategy used to reduce the number of parameters is to assume that σ2
i = σ2 ∀i along

the diagonal. So that α is the set of all k pairwise correlation where k = n(n−1)
2

. The advantage

of the UN structure is that the user does not need to labour too much deciding on the structure

to use or not use but with a cost to pay in terms of the size of parameters to estimate. The UN

structure can provide a more preferred fit if the dimension of Ri(α) is not large.

2.5.3 Model Fit Analysis under the QIC statistics

The Quasilikelihood for the Independence model Criterion (QIC) statistic was proposed by Pan

(2001) and further discussed by Hardin and Hilbe (2003) as the analogous to the familiar AIC

(Akaike’s Information Criterion) statistic which was used for the comparison of the models fit

with likelihood-based methods. Since the generalized estimating equations (GEE) method is not

a likelihood-based method, the AIC statistic is not available. QIC statistics can be used for the

selection of an appropriate working correlation structure for a GEE model. The QICu is another

statistic used to select an appropriate model fit using GEE models. The QIC and the related

QICu statistic can be used to compare GEE models (Hoi-Jeong Lim, 2011). Note that the QICu

is an approximation to the QIC that can only be used for variable selection in the model. In

the current application we use the QIC to select the appropriate correlation structure. Because

we were comparing different correlation structures using the same GEE model. Therefore QICu

statistic can not be used in the current application for the selection of a working correlation
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structure. When using QIC or QICu to respectively compare two structures or two models, the

model with the smaller statistic is preferred (Hoi-Jeong Lim, 2011).

2.6 Application of GEE to the respiratory infection data

The aim of this section is to apply and discuss the results from the GEE model to the respiratory

infection data using the different correlation structures. In this application a series of models

relating the logit of the probability of disease over time and measured covariates are fitted. The

model that was first fitted contained all the main effects. Only those terms that were found to

be significant were retained with the suitable correlation structure. The main effect terms that

we considered are age, sex, treatment, baseline outcome, time and centre. The application was

carried out using SAS proc GENMOD which is an inbuilt procedure in SAS capable of fitting

both generalized linear models and their extensions to GEEs allowing for the specification of the

quasi-distribution and the correlation structure for clustered data. The simplest model assumes

the independence correlation and the results are given in Table 2.5. Such an assumption is not

realistic because repeated measurements from the same individual are bound to be correlated.

Note that a model that assumes independence can also be fitted using proc LOGISTIC in SAS.

However, results under the independence structure assumption are internally used to provide

initial estimates in the iterative GEE estimation algorithm. Note these results are similar to

Table 2.1. More realistic correlation structures considered are the unstructured (UN), AR(1)

and the compound symmetry (CS) structures. Parameter estimates derived from the generalized

estimating equations are based on two different types of the standard errors namely the empirical

standard errors and the model based standard errors. Model based standard errors are those

calculated using the assumed correlation (hence covariance matrix) structure while empirical

standard errors are those based on an empirical covariance structure estimated out directly from

the data itself. This is also called the sandwich structure. The results in Table 2.4 shows that

the best correlation structure for the GEE model is unstructured correlation structure because

it has the smallest QIC compared to the AR(1) and compound symmetry correlation structures.

Although QIC suggest the use of unstructured correlation model the difference between the UN
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and CS correlation structures is very small. Under these circumstances one would probably prefer

to take the simplest model that is the CS correlation structure to simplify the fitting process and to

avoid the risk of over fitting. The GEE model results for the three different correlation structures

(UN, CS, AR(1)) showing empirical and model based standard errors are shown in Tables 2.6 and

2.7 respectively. Model based standard errors are calculated assuming the suggested correlation

structure is the correct one for the data thus are different from the empirical standard errors

which are data based. The empirical standard errors attempt to adjust for mis-specification of

the correlation structure and rather let the standard errors be estimated empirically. In some cases

there is a fairly large difference between model based and empirical standard errors. In a way

model based standard errors tend to be too conservative leading to an overestimate of treatment

effects. However the impact is not sifted through into the interpretation of the results. It should

be noted that in comparison to any other assumed correlation structure standard errors under the

independence assumption in Table 2.5 are different from those in Tables 2.6 and 2.7 and are infact

generally much smaller which is why the GEE approach is important in accounting for any inherent

correlation that may exist between observations from the same individual or cluster. This helps

to correct for the inflated type I error when making inference about effect parameters. The score

statistics for Type 3 GEE analysis are given in Table 2.8. The result for the adjusted odds ratio

estimates for the GEE model that are given in Table 2.9 were obtained under the unstructured

correlation structure. Overall there are significant treatment and baseline effects. Centre and

age are both not significant and also there is no significant time effect in the occurrence of the

respiratory infection. The result in Table 2.9 show that the centre estimate is 0.63. This means

the log odds ratio is 0.63 and the odds ratio is 1.88. The reference centre is centre 2 which

means that the odds of infection for an individual from centre 1 is 1.88 ((95%CI=0.95, 3.72),

p-value=0.07) times that of an individual from centre 2. The log odds ratio corresponding to

the treatment estimate is 1.19 which means the odds ratio is 3.29. The reference treatment

is the active therefore this means that the risk of disease for an individual who receives the

placebo treatment is 3.29 ((95%CI=1.70, 6.37), p-value=0.0004) times that of an individual

who receives the active treatment. The log odds ratio corresponding to the sex estimate is 0.13

and odds ratio is 1.14. The reference sex is female which means that the male individuals were

1.14 ((95%CI=0.48, 2.67), p-value=0.77) more likely to be infected with respiratory disease than
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female individuals. For a unit increase in baseline age log(OR) increases by 0.02. This means

that the odds of infection for an individual aged a is 1.02 ((95%CI=0.99, 1.04), p-value=0.19)

that of an individual aged (a + 1). This is an indication of a non-significant age effect on the

probability infection. The baseline estimate is -1.85 and the odds ratio is 0.16. The reference level

is the infected state this mean that the odds of infection for an individual who is not infected at

baseline is 0.16 ((95%CI=0.08, 0.31), p-value< .0001) times that of an individual who is infected

at baseline. This means that an individual who is initially not infected at baseline is at lower

risk of infection. Alternatively one can think of those initially infected at baseline to be more

frail than those not infected. The inclusion of the baseline term in the model helps to correct

for this disparity when interpreting the treatment effect. The odds of infection at time 1 is 0.69

((95%CI=0.42, 1.13), p-value=0.14) times the odds of infection at time 4. The odds of infection

at time 2 is 0.87 ((95%CI=0.53, 1.41), p-value=0.56) times the odds of infection at time 4 and

the odds of infection at time 3 is 0.68 ((95%CI=0.44, 1.06), p-value=0.09) times the odds of

infection at time 4. However there is no evidence of any significant time effect. The results show

that baseline and treatment effect under all the correlation structures are significant regardless of

whether empirical or model based standard errors are used and centre tending to be significant at

5% significant level. The unstructured and compound symmetry correlation structures have their

empirical standard errors slightly closer to the model based standard errors than AR(1) correlation

structure. An important observation is that comparing models that account for correlation (UN,

CS, AR(1)) and those based on the independence assumption (Tables 2.1 and 2.5) we see that age

and centre are significant under the independence assumption but not so under the more realistic

models. This emphasizes the fact and point made earlier that models that do not correctly

account for correlation can lead to very misleading inference and interpretation or conclusion.

However it should be noted that the standard errors in Table 2.5 are at least as large as those in

Table 2.1 for all effects. Thus a model with some correlation gives more realistic standard errors

than a model assuming no correlation at all.
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Table 2.4: QIC goodness of fit statistic for GEE

UN CS AR(1)

QIC 517.0019 517.1191 517.5707

QICu 506.5477 506.3774 506.6944

Table 2.5: Initial parameter estimate assuming the independence structure

parameter DF Estimate Standard Error Pr>Chisq

intercept 1 -0.9730 0.5237 0.0632

Centre 1 0.6171 0.2379 0.0095

treatment 1 1.2714 0.2352 < .0001

Sex 1 0.1679 0.2936 0.5675

Age 1 0.0189 0.0088 0.0316

Baseline 1 -1.8375 0.2395 < .0001

time1 1 -0.3738 0.3124 0.2314

time2 1 -0.1448 0.3108 0.6413

time3 1 -0.3887 0.3127 0.2139

Table 2.6: GEE parameter estimates and empirical standard errors

UN CS AR(1)

parameter Est SE Pr> [z] Est SE Pr> [z] Est SE Pr> [z]

intercept -0.8159 0.7145 0.2535 -0.9476 0.7216 0.1891 -0.8823 0.7219 0.2216

Centre 0.6308 0.3489 0.0706 0.6263 0.3519 0.0751 0.6813 0.3511 0.0523

treatment 1.1900 0.3379 0.0004 1.2237 0.3386 0.0003 1.1717 0.3429 0.0006

Sex 0.1290 0.4354 0.7671 0.1652 0.4376 0.7059 0.1555 0.4419 0.7249

Age 0.0167 0.0128 0.1925 0.0187 0.0130 0.1496 0.0170 0.0129 0.1850

Baseline -1.8485 0.3421 < .0001 -1.8069 0.3450 < .0001 -1.8230 0.3457 < .0001

time1 -0.3780 0.2537 0.1363 -0.3739 0.2522 0.1382 -0.3736 0.2530 0.1397

time2 -0.1450 0.2504 0.5625 -0.1443 0.2493 0.5628 -0.1404 0.2498 0.5740

time3 -0.3878 0.2261 0.0863 -0.3873 0.2254 0.0857 -0.3839 0.2252 0.0883
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Table 2.7: GEE parameter estimates and model based standard errors

UN CS AR(1)

parameter Est SE Pr> [z] Est SE Pr> [z] Est SE Pr> [z]

intercept -0.8159 0.7153 0.2541 -0.9476 0.7066 0.1799 -0.8823 0.6657 0.1851

Centre 0.6308 0.3404 0.0639 0.6263 0.3357 0.0621 0.6813 0.3137 0.0299

treatment 1.1900 0.3338 0.0004 1.2237 0.3283 0.0002 1.1717 0.3083 0.0001

Sex 0.1290 0.4211 0.7594 01652 0.4148 0.6905 0.1555 0.3891 0.6894

Age 0.0167 0.0126 0.1857 0.0187 0.0124 0.1332 0.0170 0.0116 0.1427

Baseline -1.8485 0.3427 <.0001 -1.8230 0.3147 <.0001 -1.8135 0.2952 <.0001

time1 -0.3780 0.2579 0.1427 -0.3739 0.2532 0.1398 -0.3736 0.3009 0.2144

time2 -0.1450 0.2488 0.5599 -0.1443 0.2519 0.5667 -0.1404 0.2834 0.6202

time3 -0.3878 0.2284 0.0895 -0.3873 0.2536 0.1266 -0.3839 0.2406 0.1106

Table 2.8: Score statistics for Type 3 GEE analysis

UN CS AR(1)

Source DF Chi-sq P-value DF Chi-sq P-value DF Chi-sq P-value

Centre 1 2.87 0.0904 1 2.90 0.0884 1 3.42 0.0642

treatment 1 11.22 0.0008 1 12.19 0.0005 1 10.85 0.0010

Sex 1 0.08 0.7717 1 0.14 0.7085 1 0.12 0.7260

Age 1 1.78 0.1826 1 2.27 0.1317 1 1.92 0.1662

Baseline 1 22.59 <.0001 1 22.17 <.0001 1 22.29 <.0001

time 3 4.21 0.2393 3 4.21 0.2398 3 4.21 0.2401
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Table 2.9: The adjusted odds ratio estimates for the GEE model

parameter Estimate odds ratios 95% confident interval

Centre 0.6308 1.8792 0.9484 3.7236

treatment 1.1900 3.2870 1.6952 6.3738

Sex 0.1290 1.1377 0.4846 2.6706

Age 0.0167 1.0168 0.9916 1.0427

Baseline -1.8485 0.1575 0.0805 0.3079

time1 -0.3780 0.6852 0.4167 1.1268

time2 -0.1450 0.8650 0.5295 1.4131

time3 -0.3878 0.6785 0.4356 1.0570



Chapter 3

Transition models

Let Yij denote a repeated or longitudinal observations measured at time tij for i = 1, 2, ..., N

and j = 1, 2, ..., ni in a typical longitudinal study involving N individuals. The transition models

are considered as an extension of linear or generalized linear models to describing the distribution

of each response Yij conditional on past responses Yij−1, ..., Yi1 and covariates xij (Diggle et al.,

2002). The vector of previous outcomes is here called the history at time tij which is denoted by

Hij = (Yij−1, ..., Yi1). Under transition models the past outcomes are also treated as predictor

variables. The transition models are a very specific class of conditional models. In the transition

models, a measurement Yij in a longitudinal sequence is described as a function of previous

outcomes. Diggle et al (2002) describe the case where the longitudinal or repeated observations

are equally spaced as in the current example. Although the current application is also based

on equal spacing and common observation times (tij = tj∀i). Other practical applications may

involve unequal spacing our different observation times (tij 6= tj for some i). Thus transition

models are designed to account for dependence between the repeated outcomes by including

the previous outcomes as predictors of the current response. Thus in the case of a continuous

response the general model can be written as

E[Yij | Hij, xij] = x
′

ijβ + h
′

ijα (3.1)

where β is the vector of fixed effect parameters corresponding to xij the vector of covari-

ates for individual i measured at occasion j. The parameter vector α is generally a q di-

43
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mensional vector of fixed effects measuring dependence on q ≤ j − 1 previous outcomes and

hij = (yij−1, yij−2, ..., yij−q)
′
. Although dependence on the previous observation(s) is here de-

fined for a continuous response such a model is naturally more plausible when dealing with a

binary or categorical responses that exhibit a Markov state dependence property (Feller, 1968)

through time. The order of a transition model is the number of previous measurements at pre-

vious time occasions that are still considered to influence the current outcome Yij. A model is

called pure stationary if the functional form of the dependence is the same regardless of the actual

time and length of time at which it occurs. The model is called stationary if instead dependence

is only the length of time interval separating Yij and Yiq, q ≤ j − 1 given by τq = tij − tiq.

Note that in Eq.(3.1) the vector Hij contains the actual terms hence the order of the transition

model. A transition model of order one means hij = Yij−1, and a model of order q means

hij = (Yij−1, ..., Yij−q) where q = 1, 2, ..., j − 1. The above model formulation can be extended

to non-Gaussian categorical responses but the linear predictor is linked to the marginal or con-

ditional mean via an appropriate link function appropriate to the distribution assumed. In the

case of a binary outcome denoting say the infection status of a child with a childhood disease,

the response Yij takes the value 1 if a child is infected and Yij = 0 if not infected at time

tij. Such a transition model was also used by Mwambi et al.(2011) to model the respiratory

syncytial virus (RSV) infection in a birth cohort of infants in Kilifi, Kenya for unequally spaced

outcomes. Ware et al (1988) focuses on the conditional expectation of Yij given past outcomes,

Yi,j−1, ..., Yi1. In general the modeler specifies a regression model for the conditional expectation

E[Yij | Yij−1, ..., Yi1, xij] or a function of it as an explicit function of xij and the past responses.

As an example consider equally spaced binary outcomes with a logit link regression model as in

the current analysis. Assuming first order dependence implies

log
Pr(Yij = 1 | Hij, xij)

1− Pr(Yij = 1 | Hij, xij)
= x

′

ijβ + αYij−1 (3.2)

where α is now just a real constant. The appealing feature of the transition model in Eq.(3.2) is

that it combines the assumption about the dependence of Yij on xij and the correlation among

repeated Y ’s into a single equation. The correlation between Yij and Yij−1 is accountable for,

through the statistical significant of the regression parameter α. Diggle, Liang and Zeger (1994)

define a transition model as one in which correlation among the discrete responses arise because
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past response explicitly influence the current outcomes. The general form of the transition model

given a link function g(.) can be written as

g(E(yij | yi1, ..., yi,j−1)) = x
′

ijβ +
s∑

r=1

fr(yi1, ..., yi,j−1;α1, ..., αs) (3.3)

where f1, ..., fs are functions of previous observations (linear, nonlinear and combination of both)

and possibly of an unknown parameter vector α = (α1, ..., αs)
′
. The conditional variance of

yij given the past outcomes and known covariates is proportional to a known conditional mean

function:

var(yij | yi1, ..., yi,j−1) = φv(E(yij | yi1, ..., yi,j−1, xij)) (3.4)

where v is a known variance function and φ is an unknown scale parameter. In the current thesis

we consider the case of linear dependence as stated in Eq.(3.2). There is a similarity between

the assumptions underlying transition models and those behind the ante-dependence covariance

structure. However the ante-dependence covariance structure are not the focus in the current

work.

3.1 Transition model for the respiratory infection Data

Consider the generalized linear transition model to the respiratory infection data. We model the

conditional distribution of Yij given the past history in order to assess the dependence structure

on previous outcomes. In the case of the current analysis we first assume that the probability of

current respiratory infection for individual i at the jth visit has a direct dependence on weather or

not an individual was infected at visit j − 1 as well as on explanatory variable xij. First consider

the first order transition model with a logit link given by

logit[Pr(Yij = 1 | Hij)] = x
′

ijβ + αyij−1 (3.5)

where α is a regression measuring the effect of the previous disease status on the current one.

Therefore the chance of respiratory infection at time tij not only depends on explanatory variables

but also on whether or not an individual had infection at previous visit. The parameter θ = exp(α)

is the ratio of odds of infection at time tij among individuals who did to those who did not have
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infection at the prior visit given xij is held constant. It is assumed that the two average individuals

to compare share a common covariate vector xij. Since Yij−1 = 1 if infected and Yij−1 = 0 if not

infected at time tij, the coefficient β is the change in the log odds of infection among individuals

who where free of infection at the previous visit. With a binary response Yij observed at equally

spaced time intervals the 2×2 transition matrix whose element are Pr(Yij = yij | Yij−1 = yij−1)

where each of Yij and Yij−1 may take values 0 or 1 can be used to display the four possible

Markovian types of transitions. The logistic regression Eq.(3.2) above can be used to estimate the

transition probabilities as a function of covariates and previous status. For detailed information

on the theory of first order transition model including their properties we refer the interested

reader to Feller (1968, Vol 1, Pg.372 ). In the current analysis the significance of second order

dependence was also assessed. Such a model is precisely the so called autoregressive model of

order two or AR(2), which can be generalized to AR(q) where q = 1, 2, ..., j − 1. The only

additional structure is that the current models also include covariate/dependence.

3.2 Application to respiratory infection data

There are two distinct approaches of how to implement the transition model to disease outcome

data over time. These are the marginal or population averaged and conditional or individual

specific models. This section is aimed at investigating whether the current infection status for

an average individual is dependent on a previous time status using the methods of generalized

estimating equations (GEE). The purpose of using the GEE method was to explain the dependence

of the response on the measured or observed covariate for clustered data so that we can also

account for the correlation between the responses. Under transition models the previous outcomes

or responses are also included as covariates in the GEE model. These type of models as described

in Chapter 2 fall under the marginal a population averaged models. To achieve this modelling

strategy lagged variables were created to identify the previous status of an individual in relation

to the current disease status over time. Only first and second order lagged dependence were

investigated in the current analysis. This necessitated the creation of two lagged variables based

on the order (one and two ) dependence. The lagged variables were then included as predictor
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variables in addition to the set of covariates in the previous model in Chapter 2. The models

were fitted using SAS proc GENMOD. The result of the first, second and first jointly with second

order dependence models are given in Tables 3.1-3.5. The result for fitting first and second order

models separately shows that treatment and baseline status are still significant while centre and

age are not significant at 5% significance level. Separate conditional models show that Yij is

significantly depends on Yij−1 and not on Yij−2. An interesting observation is that when both

first and second order lag variables were included in the model age is now significant. The first

order lag variable was significant while the second order lag variable was not. From the score

statistics for Type 3 GEE analysis (Table 3.4) we see that the treatment and baseline status

are significant at 5% significance level using first order lag dependence. The first order model

shows that Yij−1 is significant at 5% significance level which indicates that an individual’s current

status is significantly dependent on the immediate past status as it is expected in many respiratory

disease processes (Mwambi et al., 2011), while the second order model shows that Yij−2 is not

significant at 5% level of significance. The result from fitting both first and second order lagged

variables in the same model indicate that Yij−1 is still significant while Yij−2 is not significant

at 5% significance level. Thus we can conclude that only the immediate past information on

infection status is important in explaining the current respiratory status of an individual. It is

important to state that Yij−2 is not significant at 5% level of significance implying that Yij−1

is more informative about the current status than lags of order 2 and higher. However while

age is not significant when lag variables are fitted separately age becomes significant when both

Yij−1 and Yij−2 variables are both included in the same model. It may appear Yij depend on

age indirectly through the presence of Yij−1 and Yij−2 in the model. The results in Table 3.5

for fitting first order model shows that the odds of infection among individual who was free of

infection at previous visit is 2.412 times that of an individual who was infected at previous visit.

The results in Table 3.5 for fitting second order model shows that the odds of infection among

individual who was free of infection at prior two step visit is 0.978 times that of an individual

who was infected at prior two step visit. In the first order model the odds ratio of comparing

placebo and active treatment is 3.114 implying that the odds of infection among individual who

was on placebo is 3.114 times that of an individual who was on active treatment. Since the

reference level for baseline status was the infected state this means that the odds of infection
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for an individual who was not infected and disease free at baseline and previous visit is 0.239

that of an individual that was infected at baseline and previous visit. The odds ratios are higher

for first order than second order dependence, but higher if both first and second order term are

allowed. The disadvantage associated with transition models is that for an order q transition

model we loose information for the first q time occasions or visits. This mean either we condition

on the first q time points or assume some distribution for (yi1, yi2, ..., yiq) which introduces some

uncertainty.

Table 3.1: GEE parameter estimates and empirical standard errors including both first and second

order transition effects

First order model Second order model

parameter Est SE Pr> [z] parameter Est SE Pr> [z]

intercept -2.0716 0.7347 0.0048 intercept -1.7767 0.9240 0.0545

Centre 0.5999 0.3108 0.0536 Centre 0.6238 0.3788 0.0996

treatment 1.1360 0.3039 0.0002 treatment 1.3501 0.3849 0.0005

Sex 0.1975 0.3883 0.6110 Sex 0.2709 0.4627 0.5582

Age 0.0185 0.0116 0.1102 Age 0.0261 0.0144 0.0697

Baseline -1.4331 0.3207 <.0001 baseline -1.6822 0.4295 <.0001

time 0.1381 0.0837 0.0988 time 0.0706 0.1274 0.5795

Yij−1 0.8804 0.2463 0.0004 Yij−2 -0.0227 0.3345 0.9459
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Table 3.2: GEE parameter estimates and model based standard errors including both first and

second order transition effects

First order model Second order model

parameter Est SE Pr> [z] parameter Est SE Pr> [z]

intercept -2.0716 0.7076 0.0034 intercept -1.7767 0.8644 0.0398

Centre 0.5999 0.3111 0.0538 Centre 0.6238 0.3629 0.0856

treatment 1.1360 0.3082 0.0002 treatment 1.3501 0.3589 0.0002

Sex 0.1975 0.3848 0.6077 Sex 0.2709 0.4452 0.5428

Age 0.0185 0.0116 0.1096 Age 0.0261 0.0134 0.0518

Baseline -1.4331 0.3330 <.0001 baseline -1.6822 0.3659 <.0001

time 0.1381 0.0910 0.1289 time 0.0706 0.1229 0.5658

Yij−1 0.8804 0.2531 0.0005 Yij−2 -0.0227 0.2841 0.9364

Table 3.3: GEE parameter estimates and empirical and model based standard errors for first and

second order transition model

Empirical SEs Model based SEs

parameter Est SE Pr> [z] Est SE Pr> [z]

intercept -3.0951 0.8483 0.0003 -3.0951 0.8746 0.0004

Centre 0.4891 0.3022 0.1056 0.4891 0.3037 0.1073

treatment 0.9161 0.3058 0.0027 0.9161 0.2995 0.0022

Sex 0.3014 0.3532 0.3935 0.3014 0.3740 0.4203

Age 0.0239 0.0113 0.0341 0.0239 0.0112 0.0326

Baseline -0.7553 0.3568 0.0343 -0.7553 0.3489 0.0304

time 0.1198 0.1787 0.5027 0.1198 0.1736 0.4903

Yij−1 1.8814 0.2898 <.0001 1.8814 0.3044 <.0001

Yij−2 0.5737 0.3727 0.1237 0.5737 0.3474 0.0986
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Table 3.4: Score statistics for Type 3 GEE analysis for first, second and first and second order

models

1storder 2nd order 1st and 2nd order

source χ2 Pr> χ2 source χ2 Pr> χ2 source χ2 Pr> χ2

Centre 3.20 0.0735 Centre 2.58 0.1084 centre 2.60 0.1071

treatment 13.60 0.0002 treatment 12.39 0.0004 treatment 8.29 0.0040

Sex 0.24 0.6255 Sex 0.34 0.5608 Sex 0.69 0.4048

Age 2.27 0.0999 Age 3.79 0.0515 Age 4.90 0.0269

Baseline 18.33 < .0001 Baseline 18.20 <.0001 Baseline 2.37 0.1233

time 2.51 0.1132 time 0.32 0.5737 time 0.46 0.4988

Yij−1 6.25 0.0124 Yij−2 0.00 0.9547 Yij−1 5.18 0.0228

Yij−2 1.39 0.2381

Table 3.5: Odds ratio estimates for different type of transition models

1storder 2nd order 1st and 2nd order

parameter estimate Odds ratio estimate odds ratio estimate odds ratio

Centre 0.5999 1.822 0.6238 1.866 0.4891 1.631

treatment 1.136 3.114 1.3501 3.858 0.9161 2.500

Sex 0.1975 1.218 0.2709 1.311 0.3014 1.352

Age 0.0185 1.019 0.0261 1.027 0.0239 1.024

Baseline -1.4331 0.239 -1.6822 0.186 -0.7553 0.470

time 0.1381 1.148 0.0706 1.073 0.1198 1.127

Yij−1 0.8804 2.412 1.8814 6.562

Yij−2 -0.0227 0.978 0.5737 1.775



Chapter 4

The subject-specific approach

4.1 Introduction

In this chapter we consider the problem of modelling extra variability for non-normal data. In the

current chapter we also aim to discuss why practical problems may need extra modelling effort

to account for extra-variability. There are two possible approaches that can be used. The first

is by means of incorporating a dispersion parameter to relax the rigid mean to variance function

relationship and secondly by means of random effects terms in the linear predictor. However

the first approach makes the GLM not to conform to a likelihood formulation because the extra

parameter modified distribution no longer has the classical exponential family structure. This

problem was first addressed by Nelder and Pregibon (1987) using the quasi-likelihood formulation

to allow the estimation of the extra dispersion parameter. The second approach is more robust

particularly if faced with correlated data. In the next sub-section the concepts of under and

over-dispersion are demonstrated with reference to binomial model then the link with GLMs dealt

with in sub-section 4.1.2

51
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4.1.1 Under-dispersion and Over-dispersion in the binomial model

In this section first we aim to distinguish between overdispersion and under dispersion. Over-

dispersion means the presence of greater variability (statistical dispersion) in the data than would

be expected based on a given standard probability model for the type of response Y under

consideration. Overdispersion is a very common feature in applied data analysis because in

practice, populations are frequently heterogeneous contrary to the assumptions implicit within

widely used simple parametric models. Over-dispersion occurs when the observed variance is

higher than the variance of a theoretical model such as the variance equal to the mean (µ) in the

case of the Poisson probability model or the variance equal to µ(1−µ) in the case of a Bernoulli

probability model where µ = P (Y = 1).

Under-dispersion occurs when there is less variation in the data than expected. To explain this

concept suppose Y1, ..., Yn are independent Bernoulli outcomes with probabilities p1, ..., pn. Let

X = ΣYi, which gives the total number of successes out of the n trials. It follows that

E[X] =
∑

pi = nθ

where θ =
P

Pi

n
but we can easily show that

V ar(X) = nθ(1− θ)− nσ2
p

where

σ2
p =

1

n
{

n∑
i=1

p2
i −

(
∑n

i pi)
2

n
}.

Thus the important message here is that allowing for heterogeneity in the individual Bernoulli

probabilities produces less than standard binomial variance also known as under-dispersion.

To demonstrate over-dispersion suppose Y1, ..., Ym are independent binomial (n, pi) random vari-

ables and let I be a random variable taking values in (1,2,...,m). Let W = Yi be a random choice

from the Y ′
i s with equal probability P (I = i) = 1

m
. That is the Y ′

i s are equiprobable. Such a



53

process produces a mixture of binomial distributions with marginal probability given by

P (W = y) = E[P (Yi = y) | I]

=
1

m

m∑
i=1

P (Yi = y | I = i)

=
1

m

m∑
i=1

(
n

y

)
py

i (1− pi)
n−y =

1

m

m∑
i=1

B(n, pi)

which does not simplify further. However

E(W ) = E[E(Yi | I)] =
1

m

m∑
i=1

E(Yi) =
n

m

∑
pi = nθ

where θ =
P

pi

m
and

V ar(W ) = E[V ar(YI | I)] + V ar[E(YI | I)]

=
1

m

∑
i

V ar(Yi) +
1

m

∑
i

E2(Yi)−
( ∑

i

E(Yi)

m

)2

=
1

m

∑
i

npi(1− pi) +
1

m

∑
i

(npi)
2 − (nθ)2

= nθ(1− θ) + n(n− 1)σ2
p

where σ2
p is the variance among the pi ’s as defined in the case of sums of Bernoulli trials above.

Here we have greater than standard binomial variation which implies over-dispersion. Extra-

binomial variance is always implied when we sample from a mixture distribution or population.

For example if families in the population have different probabilities pi ’s for an outcome of

interest Yi, then a random sample of families will exhibit values with extra-binomial variance.

A wrong binomial assumption can impact the intended inference negatively by producing wrong

standard errors. In this example a family in the population can also be regarded as a cluster.

Thus a mixture model can be more generally regarded as a model to account for extra cluster

to cluster heterogeneity. The beta-binomial distribution (Skellam, 1948) was one of the earliest

approach to include this extra variability in a likelihood setting.
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4.1.2 The link between over-dispersion and generalized linear models

for binary data

Apart from modelling dispersion and other unobserved effect we need models that can also account

for observed or measured covariates. The random effects model assumes that variability among

clustered binary responses exceeds what would be expected due to the binomial variation alone.

The random effects models were developed to account for this so called extra -binomial variation.

Let Yi1, ..., Yini
represent the ni binomial responses or outcomes from cluster or subject i. The

beta-binomial distribution assumes that

• Conditional on µi the responses Yi1, ..., Yini
are independently distributed as binomial with

common probability of success µi where 0 < µi < 1

• The µi follow a beta distribution with mean µ and variance δµ(1 − µ). It follows that un-

conditionally, the sum of successes Yi =
∑ni

j=1 Yij from a cluster Yi1, ..., Yin has a beta-binomial

distribution with

E(Yi) = niµi

and

V ar(Yi) = niµi(1− µi)[1 + (ni − 1)δ]

The over-dispersion parameter δ is the correlation for each pair of binary response from the same

cluster. The beta distribution has been used to model the incidence of a non-infectious diseases

in households (Griffiths, 1973). The beta distribution can be extended so that an additional

structure including covariate dependence may be imposed on the cluster specific mean µi.

For example µi might be assumed to depend on cluster-level explanatory variables xi though a

logistic function logit(µi) = x
′
iβ. Originally, it was assumed that the beta-binomial distribution

required each response from the same cluster to have a common probability µi. In the regression

set up this required the covariates to be the same for all observations within a cluster such

that xi1 = ... = xin = xi. However the beta-binomial distribution has been extended to allow

the covariate to vary within a cluster (Rosner,1984). His model for clustered data is formally
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equivalent to the following ni logistic regression:

logitPr(Yij = 1 | yi1, ..., yij−1, yij+1, ..., yin, xij) = log
( θi1 + wijθi2

1− θi1 + (ni − 1− wij)θi2

)
+ x

′

ijβ
∗

where wij = yi.− yij, j = 1, ..., n and where, θi1 is the intercept parameter and θi2 characterizes

the association between pairs of responses from the same cluster. β∗ is a regression coefficient

that measures the effect of xij on yij which cannot first be explained by the other responses in the

cluster. The effect of cluster level covariates may often be attributed to the other observations

within the cluster rather than covariates themselves. This class of models are collectively called

conditional models. A special case of such a model are disease state transition models where

Yij, j = 1, ..., n denotes the disease state of an individual i observed at time tij or accassion j

(Diggle et al., 2002). It should be noted that observations from the same cluster are by design

correlated not independent. Thus analysis and modelling of such processes should account for

such inherent correlation otherwise the results from a model assuming independence may be hard

to justify. Infact under the marginal model we noted in the application in chapter 2 that ignoring

the structural correlation tend to worsen type I error leading to inappropriate conclusions.

4.2 Modelling correlated data using random effects

The aim of this section is to discuss the different approaches of modelling correlated data by means

of random effects using the generalized linear mixed model (Breslow and Clayton, 1993). The

current data structure on which application will be based can be described as balanced because

each individual in this data set contains the same number of repeated observations measured at

equal time intervals in all the individuals. The random effects model is most useful when the

objective includes the need to make individual specific inferences rather than population averaged

effects only. Models with subject or cluster specific parameter are different from population

average models because they include terms that are specific to the subject or cluster. The

random effects and population averaged models for correlated binary data describe different type

of effects of the covariate on the response probabilities (Neuhous,1992). In the subject-specific

modelling approach the response or outcome is modelled as a function of covariates and random

effects specific to a subject. As defined in classical design of experimental texts (Milliken and
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Johnson, 2009) a factor in a model is random if its levels consist of a random sample from a

population of all possible levels. Therefore a model is said to be a random effects model if all

the factors in the treatment structure are random effects. A factor in a model is fixed if its levels

are selected by means of a non-random process or consists of the entire population of all possible

levels. Therefore a model is a fixed effects model if all terms in the model are fixed effects. A

model containing both random and fixed effects is therefore called a mixed effects model. Strictly

speaking in our case we are dealing with a mixed effects model. For example consider a clinical

trial to generate data that can be used to compare drugs intended to reduce blood pressure and

the two drugs are administered in nine countries. Suppose in each country a random number of

patients are chosen to receive one of the two drugs. Blood pressure is then measured before and

after the drug in administered. Finally the difference in blood pressure before and after treatment

is obtained for each patient in each country. An appropriate model to consider in this case is

Yijk = µ+ γi + ρj + εijk

for i = 1, 2, j = 1, 2, ..., 9 and k = 1, 2, ..., nij where Yijk is blood pressure reduction, µ is the

overall mean, γi is the drug effect, ρj is the country j effect and εijk is error term for individual

k in country j receiving drug i and nij is the number of patients in country j allocated to drug i.

The factor drug is a fixed effect because we are interested to compare only two drugs. However

the country effect is considered as a random effect because we are not interested to compare only

nine countries. The nine countries are here considered as a random sample from a population of

countries. The estimation of ρj is attainable because we have multiple observation per country.

Note that if the difference within individual was not the outcome of analysis and instead we

modelled the actual blood pressure Yijkl where l = 1 if the measurement is before the drug and

l = 2 after the drug is administered we would need an extra individual specific effect Ujk for

individual k in country j. Such an effect would also be more realistically assumed to be a random

effect because the nij individuals are a random sample from the population in country j. The

estimation of such an effect would rely on the two observations within an individual. Under the

random and mixed effects model the subject, unit or cluster specific effects are accounted for

by parameters which are themselves considered to be random variables. Thus in the case of a

continuous response that is assumed to be Gaussian a linear model including random effects can
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generally be written as

E[Yij | bi, xij] = x
′

ijβ + z
′

ijbi (4.1)

where Yij is the jth observation or response observed or measured from the ith unit or individual at

time tij or occasion j, β is the vector of fixed effects parameters, xij is the vector of covariates for

individual i measured at accasion j, bi denotes a vector of subject specific random effects and zij

is a vector of covariates for the random effects. A commonly used distributional assumption on the

random vector bi is that bi ∼ iid.N(0, D) where D is variance-covariance matrix for the random

effects containing the variance components along the diagonal and covariance parameters in the

off-diagonal. The analysis of such a model involves the estimation of fixed parameters including

both regression and variance components and the inferences on such parameters. This model has

been the subject of analysis by many workers. The model was first analyzed in detail by Laird and

Ware (1982). Other key references include the two books by Verbeke and Molenberghs (2000)

and Diggle et al (2002). In this work the focus is more on non-Gaussian data in particular binomial

distributed outcomes. An example of a random effects linear model is a model which naturally

introduces a correlation between observations from the same individual or cluster through a shared

random parameters for observations from the same cluster. These include the random intercept

and slope models as well as the split-plot design in time models (Milliken and Johnson, 2009). As

stated random effects are usually specified to follow a Gaussian distribution. However the most

important practical criterion of interest in handling any type of the random effects model chosen is

whether the joint likelihood of the outcomes Y and the random effects can be solved analytically.

Three random effects models that are referred to frequently in linear or generalized linear models

are the random intercept, random slope or both random intercept and slope models. The random

intercept model is suitable when there is significant individual to individual variability at baseline

and common slope for all subjects. The difference between the random intercept and random slope

models is that the former allows the level of the response, Yij to vary over the clusters or groups

only after controlling for predictors. Random slope coefficients are added to random intercepts

allowing for the effect of the predictors over time to vary over clusters. The random intercept

model allows the intercept to vary by cluster, each of which is distributed according to a common

specified probability density function. Closed form solutions for parameter estimates is not possible

under the generalized linear mixed model. Methods that are commonly used for estimation include
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the various types of quadrature methods, including adaptive and non-adaptive Gaussian Hermite

quadrature. Quasi-likelihood methods including penalized quasi-likelihood (PQL) and marginal

quasi-likelihood (MQL) are also available. These methods will be used in the current chapter as

estimation methods. As already stated interest in such methods is on subject specific effects.

These helps to identify and control for individuals or units that are outliers compared to average

population effects. If that is the case then the analysis also includes the estimation of the

random effects via for example empirical Bayes estimation and best linear unbiased prediction

(BLUP). Both maximum likelihood (ML) and restricted maximum likelihood estimation (REML)

can be used. The more important point about REML is that, by maximizing the likelihood only

of the residual contrasts, it gives unbiased estimates for the variance parameters, as compared

to the downwardly-biased estimates of ordinary maximum likelihood. The latter is frequently

preferred because it corrects for degrees of freedom used in the estimation of fixed effects when

estimating the variance components which can be as simple as just the measurement variance

and as complex as in multi-level and hierarchical sources of variation. In the current analysis the

emphasis is restricted to the estimation of fixed parameters only including variance components.

As already stated the thesis is methodologically concerned with the analysis based on the inclusion

of random effects in non-Gaussian outcomes to account for individual to individual heterogeneity

as a way of coping with over-dispersion. Models resulting to generalized linear mixed models

(Breslow and Clayton, 1993) including both fixed and random effects accounting for individual to

individual variability will be used. The variance components are the parameters that describe the

variance of the distribution of random effects. Here the individual effects are regarded as random

effects if the individuals included in the analysis constitute a simple random sample from a bigger

population of individuals. In general one can consider a model having q sources of variability each

associated with a variance component. We start by adopting the standard assumption that the

random effects are from a Gaussian distribution with zero mean and variances σ2
s (s = 1, 2, ..., q)

also referred to as a variance components. Here one is interested in testing whether σ2
s = 0 or not,

where s = 1, 2, ..., q. Using the GLM framework (Nelder and wedderburn, 1972; McCullagh and

Nelder, 1989) we assume that conditional on individual specific effects the outcomes or responses

from an individual i are independent and come from a distribution in the exponential family such
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that Eq.(4.1) now is more generally modified to

g(E(Yij | bi)) = x
′

ijβ + z
′

ijbi. (4.2)

where g is the link function associated with the conditional distribution of Yij given bi while

xij and zij are respectively p and q dimensional vectors of covariates associated with fixed and

random effects respectively. Note that Eq.(4.1) is now a special case of Eq.(4.2) with g equal

to identity link function. There are two distinct approaches to follow when making inference

about the random effects model. The first approach is appropriate when we are interested in a

particular subset of regression coefficients, none of which are assumed to vary across subjects.

For example suppose we want to estimate the drug effect in a crossover trial and believe that

only the intercept and not the drug effect does vary across individuals. We can treat the bi as a

nuisance parameter and average them out of the joint distribution of response and the random

effects. This approach is aimed at finding the marginal distribution of the outcome of interest.

This then leads to the marginal likelihood that we use for estimation. The second approach

is appropriate when subject specific coefficients are themselves of interest or if averaging out

the information about random effects discards too much information about important regression

coefficients. One approach here is to regard the bi as if they are an independent sample from the

same distribution and aim to estimate both the fixed effects β and random effects bi under some

specific assumptions. Under this conditional likelihood approach we consider only the longitudinal

information and use information within subjects to estimate β. In general we can assume a

model that allows the analysis to combine both longitudinal and cross-sectional information. The

relative weight given to each source is determined by the variability among bi. When there is

a large variability between subjects the analysis should weight the longitudinal information more

heavily since comparisons within a subject are likely to be less variable and more precise than

comparison among or between subjects. Note that a fundamental assumption of random effects

model is that the variance parameters associated with the bi are independent of the explanatory

variables. If this assumption is incorrect the conditional analysis will still give consistent estimates

of β but the inference on dispersion or variance parameters may be inconsistent. If this is the case

an extension to include the effect of covariates on dispersion may be necessary. This extension

means or requires a model for the dispersion parameter. However this additional complexity is
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not of immediate focus in the current work. However the problem of considering non-normal

distribution for the random effects bi is addressed in Chapter 5. This is an important practical

and valid extension due to Lee and Nelder (1996) because the assumption of normal random

effects can be to restrictive and structurally invalid. In the current work the interest was also to

investigate if the probability of being infected was dependent on time and also whether there was

individual to individual variability on this time dependence.

4.3 Formulation of the generalized linear mixed model

These models are a generalization and extension of the well-known generalized linear model

(GLM) (McCullagh and Nelder,1989) by introducing random effects to the linear predictor. Gen-

eralized linear models, or GLMs, are ubiquitous tools which extend normal based linear regression

models to non-normal data and transformable additive covariate effects (McCullagh and Nelder,

1989, Nelder and Wedderburn,1972) into the linear predictor. To extend GLMs to the case of

longitudinal or clustered data one needs to account for the inherent between subject variability

and within subject correlation of observations. We already discussed an alternative extension to

GLMs to accommodate correlated data. This was through the generalized estimating equations

(GEE) (Liang and Zeger ,1986) approach which leads to the so called marginal models. The

GEE approach was discussed in detail in chapter 2. An alternative way of accounting for corre-

lated data is to define a random effect term which is constant for observations from the same

subject, repeatedly measured experimental unit or cluster but variable between experimental or

observational units. A standard generalized linear model assumes that the expectation of the

response variable Yij can be written as a function of a linear predictor η = x
′
ijβ where x

′
ij and

β are vectors of covariates and fixed effect parameters respectively. Now let bi denote a random

effect parameter to account for individual to individual variability or equivalently interpreted as

an individual effect parameter. Assuming observations are conditionally independent given the

xij’s, β and bi the likelihood of the ni observations Yi1, Yi2, ..., Yini
from the ith individual (or
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cluster) is given by:

Pr(Yi1, Yi2, ..., Yin | x, β, bi) =

ni∏
j=1

Pr(Yij | xij, β, bi) (4.3)

The parameter bi can also be seen as an unobserved random effect due to the ith individual

(or cluster). The structure of dependence among the elements of bi also adds complexity to

the dependence among the Y ′
ijs. That is conditionally on the random effects bi the repeated

measurements Yij could be independent but marginally they are not. Generalized linear mixed

models (GLMMs) are an extension of the generalized linear model (GLM) to longitudinal (or

clustered data in general) that accommodates correlated and over-dispersed data by adding ran-

dom effects to the linear predictor. Non-Gaussian models that are encountered frequently are

models for repeated or longitudinal measured outcomes that nominally have a binomial or poisson

distributions. The generalized linear mixed model conditionally satisfies the exponential family of

distribution structure. For consistency assume the covariate set in zij is a subset of those in xij.

Given bi and xij we postulate that the observations (yi1, ..., yin) are independent with density

function given by

f(yij | bi, β) = exp
[yijθij − α(θij)

φ
+ c(yij, φ)

]
(4.4)

where µij = E(Yij | bi) is modeled through a linear predictor containing a fixed regression

parameter vector β and subject specific parameter vector bi or more precisely

g(µij) = x
′

ijβ + z
′

ijbi (4.5)

We assume a known link function g and known xij and zij which are the vector of covariate

values associated with fixed and random effects respectively. With a natural or canonical link

function the relation g(µij) = θij holds therefore the model becomes

θij = x
′

ijβ + z
′

ijbi

The model is completed by assuming that conditionally on the subject-specific effect bi, the

responses Yij are independent and bi are normally distributed with a mean of zero and a variance

matrix D among the random effects. The function c(yij, φ) may or may not depend on φ and/or

Yij. By inverting the link function it implies the conditional mean and variance of Yij are given
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by

µij = E[Yij | bi] = g−1(x
′

ijβ + z
′

ijbi) (4.6)

and

V ar(Yij | bi) = v(µij)φ (4.7)

where g and v are respectively, the link and the variance functions. The random effects bi, ..., bN

are assumed to be independent (but not necessarily) with a common underlying distribution

which depends on some unknown parameter vector α which contains the variance and covariance

components. The following are some of the most commonly encountered link functions. In all

cases assume ηij is the corresponding linear predictor of the form ηij = x
′
ijβ + z

′
ijbi.

• The linear mixed model for a Gaussian continuous response with identity link is specified

as:

µij = ηij

Yij | µij ∼ N(µij, σ
2
e)

• The binomial model with logit or probit link for dichotomous or binary responses are spec-

ified as

logit(µij) ≡ log
( µij

1− µij

)
= ηij

or

Φ−1(µij) = ηij

and

Yij | µij ∼ Bernoulli(µij)

where Φ−1(.) is the inverse standard normal cumulative distribution function or Probit link

and µij = P (Yij = 1)

• The poisson model for counts with log link is specified as

log(µij) = ηij

Yij | µij ∼ poisson(µij)
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By introducing random effects in the above models we end up with the corresponding specific

GLMM. The dispersion parameter φ stated above accounts for extra variability in a model where

random effects are not included. In such a case φ is known a prior or may require that it be

estimated using methods such as moment estimation. For the Poisson and binomial models,

the model implied variance function may not be consistent with the actual distribution. In this

case quasi-likelihood methods can be used to estimate the dispersion parameter. The problem

of likelihood based estimation of φ has also been addressed by Nelder and pregibon (1987) in

the context of generalized linear models with independent errors. Given the random effects and

covariates the variance of the response is a function of the conditional expectation only. In this

case we can assume φ = 1. Generalized linear mixed model are often written as non-linear models

with an error term (Goldstein, 2003). This is perhaps encouraged by the availability of the popular

powerful penalized quasi-likelihood algorithm to be discuss in section 4.4.3.

4.3.1 Illustration of the generalized linear mixed model with binary and

count response

Consider the case where Yij is a binary response taking value of 0 or 1. A logistic mixed effects

model for Yij is given by the following three-part specification.

(a.) Conditional on a single random effect bi, the Yij are independent and have a bernoulli

distribution with µc
ij = E[Yij | bi] where µc

ij notation is used to emphasize the conditional

expectation. The variance is given by

V ar(Yij | bi) = E[Yij | bi](1− E[Yij | bi]) = µc
ij(1− µc

ij) (4.8)

(b.) The conditional mean of Yij depends upon fixed and random effects via the following linear

predictor.

ηij = x
′

ijβ + z
′

ijbi

= x
′

ijβ + bi

assuming zij = 1 for all i = 1, 2, ..., N and j = 1, 2, ..., ni with

log
[Pr(Yij = 1 | bi)
Pr(Yij = 0 | bi)

]
= x

′

ijβ + bi = ηij (4.9)
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The conditional mean of Yij is related to the linear predictor by a logit link function.

(c.) Suppose a single random effect bi is assumed to have zero mean and variance g2
0. Then from

Eq.(4.9)

µc
ij = Pr(Yij = 1 | bi) =

exp(x
′
ijβ + bi)

1 + exp(x
′
ijβ + bi)

(4.10)

That is µc
ij is a non-linear function of both the fixed and random effects parameters (Goldstein,

2003).

Let µij = E(Yij) then in the case of the Gaussian linear mixed model we observed that

µc
ij = x

′

ijβ + z
′

ijbi

and

µij = x
′

ijβ

While for the binomial model µc
ij is non-linear and hence

µij = E(µc
ij) 6=

exp(x
′
ijβ)

1 + exp(x
′
ijβ)

(4.11)

In otherwords switching from the condition to the marginal mean model is not direct as it is in

the case of the Gaussian model.

Now suppose that Yij is a count. A log-linear mixed effect model for Yij is given by the following

three-part specification.

(a) Conditional on a vector of random effects bi. The Yij are independent and have a Poisson

distribution with

V ar(Yij | bi) = E(Yij | bi) = µc
ij

(b.) The conditional mean of Yij depend upon fixed and random effects via the following linear

predictor:

ηij = x
′

ijβ + z
′

ijbi

where for example we can assume

x
′

ij = z
′

ij = (1, tij)

as in the case of a random intercept and slope model. A log-link implies that

log[E(Yij | bi)] = x
′

ijβ + z
′

ijbi = ηij
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The conditional mean of Yij is related to the linear predictor by a log link function, that is

µc
ij = exp(x

′

ijβ + z
′

ijbi)

(c.) The random effects are assumed to have a bivariate normal distribution with a zero mean

and 2 × 2 covariance matrix D. As shown in Eq.(4.11) in the case of a Binomial (Bernoulli)

linear mixed

µij = E(Yij) = E(µc
ij) 6= exp(x

′

ijβ) (4.12)

Equation Eq.(4.11) and Eq.(4.12) demonstrate that in dealing with random effects in non-

Gaussian probability models some of the nice properties inherent in the normal case do not

directly hold in the non-Gaussian case. Therefore a certain degree of caution is necessary in

interpretation. We need to integrate inverse link function over the random effects space in order

to get the marginal mean.

4.4 Estimation in the generalized linear mixed model

We now briefly describe some possible estimation methods applicable to the GLMM. Most of the

methods rely on maximum or conditional maximum likelihood estimation.

4.4.1 Conditional likelihood Estimation

As an example consider the extension of the logistic regression for binary responses to include

individual variability using the conditional likelihood approach. In particular consider the special

case of the random intercept logistic model for binary data given by

logit[Pr(Yij = 1 | bi)] = β0 + bi0 + x
′

ijβ

and

f(yij) = p
Yij

ij (1− pij)
1−Yij , j = 1, 2, ..., ni

where pij = Pr(Yij = 1 | bi0, xij) is found by inverting the logit link function so that

pij =
exp[β0 + bi0 + x

′
ijβ]

1 + exp[β0 + bi0 + x
′
ijβ]
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and

1− pij =
1

1 + exp[β0 + bi0 + x
′
ijβ]

Here pij is an individual or cluster specific probability of experiencing the event of interest. It

cannot be viewed as an average value.

To simplify the discussion we will write γi = β0 + bi0 and ηi = γi + x
′
ijβ and assume that xij

does not include an intercept term. The density function becomes

f(yij) =
( exp(ηi)

1 + exp(ηi)

)Yij
( 1

1 + exp(ηi)

)1−Yij

The conditional likelihood contribution from individual i is

Li(β) =

ni∏
i=1

f(yij)

=
( exp(ηi)

1 + exp(ηi)

)P
Yij

( 1

1 + exp(ηi)

)ni−
P

Yij

= exp(ηi

∑
Yij) exp(− log(1 + exp(ηi))

ni)

= exp[ηi

∑
Yij − ni log(1 + exp(ηi))]

The joint likelihood function for β and γi is proportional to

N∏
i=1

exp[γi

ni∑
j=1

Yij + (

ni∑
j=1

Yijx
′

ij)β −
ni∑

j=1

log(1 + exp(γi + x
′

ijβ))]

where Yi =
∑ni

j=1 Yij. This approach is just but an approximation to the likelihood and not an

exact result. The approach is similar to the semi-parametric partial likelihood as developed by

Cox (1972) in survival analysis.

4.4.2 Maximum likelihood estimation for estimating fixed parameters

Let

fij(yij | β, α, ψ) = fij(yij | bi, β, φ)f(bi | α)

denote the joint probability density for yij and bi expressed as the product of the conditional

density of yij given bi and the marginal density of bi . The bi will be treated as a sample
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of independent observable variables from a probability distribution. The estimates of β can be

obtained by the maximization of the marginal likelihood, obtained by integrating over the random

effects. The likelihood contribution to the marginal likelihood from the ith subject becomes

fi(yi | β, α, φ) =

∫ ni∏
j=1

fij(yij | bi, β, φ)f(bi | α)dbi (4.13)

from which the overall marginal likelihood from all the N individuals is derived as

L(β, α, φ) =
N∏

i=1

fi(yi | β, α, φ)

=
N∏

i=1

∫ ni∏
j=1

fij(yij | bi, β, φ)f(bi | α)dbi

(4.14)

This is just the same as in the case of marginal distribution of Y obtained by integrating the joint

distribution of Y and b with respect to b. In the special case such of the Gaussian linear model the

integral simplifies to a closed form but in the case of non-Gaussian models closed form integrals

are rarely possible therefore often high dimensional numerical integration methods are required for

its evaluation. The main difficulty in maximizing Eq.(4.14) is due to the presence of N integrals

over the q−dimensional random effects bi. However few special case non-Gaussian problems

yield closed form integrals similar to the case of linear mixed models with continuous outcomes

for example the case of the probit link binomial linear mixed model. Otherwise in general, no

analytic expressions are available for integrals in Eq.(4.14) for non-Gaussian outcomes. Numerical

approximation methods that can be used include those that are based on the approximation of

the integrand, those based on the approximation of the data and those that are based on the

approximation of the integral itself. An extensive overview of these approximations are found in

Tuerlinckx et al (2004), Pinheiro and Bates (2000), and Skrondal and Rabe-Hesketh (2004). In

this chapter we briefly discuss and review each of the methods.

4.4.3 Estimation based on the approximation of the data

This approach is based on the decomposition of the data into the mean and appropriate error

terms using the Taylor series expansion. Note that by inverting the link function the mean of the
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response is a non-linear function of the linear predictor. All methods or versions based on this

approach differ in the order of expansion of the Taylor approximation and the point around which

the non-linear mean is approximated. First consider the decomposition of Yij as

Yij = µij + εij = h(x
′

ijβ + z
′

ijbi) + εij (4.15)

where h = g−1(x
′
ijβ + z

′
ijbi) is the inverse link function. Assume the error terms follow a

distribution with variance equal to V ar(Yij | bi) = φv(µij) where v(.) is the variance function in

the exponential family. Then under the natural or canonical link function it follows that

v(µij) = h
′
(xijβ + zijbi) (4.16)

where the derivative is with respect to µij. For illustration consider binary outcomes with the

logit canonical link function. We then have

µij = P (Yij = 1 | bi) = πij =
exp[x

′
ijβ + z

′
ijbi]

1 + exp[x
′
ijβ + z

′
ijbi]

= h(x
′

ijβ + z
′

ijbi) (4.17)

Note that from Eq.(4.15) εij = Yij − µij. Since µij = πij and Yij = 1 or 0 this implies that

εij = 1 − πij with probability πij and εij = −πijwith probability 1 − πij hence E(εij) = 0 and

V ar(εij) = πij(1− πij). Note that πij is the conditional mean of Yij given bi. Estimation then

proceeds by using a Taylor linear

approximation to h(x
′
ijβ + z

′
ijbi) about θ̂ = (β̂, b̂i)

′
. We consider two of the several versions

based on the approximation of the data.(Molenberghs and Verbeke, 2005, Pg. 269-270).

Penalized Quasi-likelihood (PQL)

We first discuss a linear Taylor expansion of Eq.(4.15) around current estimates β̂ of the fixed

effect and b̂i of random effect assuming canonical or natural link. This gives

Yij ≈ h(x
′

ijβ̂ + z
′

ij b̂i)

+ h
′
(x

′

ijβ̂ + z
′

ij b̂i)x
′

ij(β − β̂)

+ h
′
(x

′

ijβ̂ + z
′

ij b̂i)z
′

ij(bi − b̂i) + εij

= µ̂ij + v(µ̂ij)x
′

ij(β − β̂) + v(µ̂ij)z
′

ij(bi − b̂i) + εij

(4.18)
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where µ̂ij equals its current predictor h(x
′
ijβ̂+z

′
ij b̂i) of the conditional mean E[Yij | bi]. In vector

form this becomes

Yi ≈ µ̂i + V̂iXi(β − β̂) + V̂iZi(bi − b̂i) + εi (4.19)

for appropriate design matrices Xi and Zi and with Vi equal to the diagonal matrix with diagonal

entries equal to v(µ̂ij). Re-ordering terms in the above equation yields

Y ∗
i ≡ ˆV −1

i (Yi − µ̂i) +Xiβ̂ + Zib̂i ≈ Xiβ + Zibi + ε∗i (4.20)

for ε∗i = ˆV −1
i εi, which still have the mean of zero. The modified response Y ∗

i allows us to

approximate the problem as a linear mixed model. The approximate linear mixed model in

Eq.(4.20) is used to obtain updated estimates for β,D, φ using readily available procedures

fitting linear mixed models. The resulting estimates are called the penalized quasi-likelihood

estimates (PQL) because they are obtained by optimizing a quasi-likelihood function which only

involves first and second order conditional moments, augmented with a penalty term on the

random effects. We refer to Breslow and Clayton(1993) and Wolfinger and O’Connell (1993) for

its implementation and programming in SAS for more detail. (Molenberghs and Verbeke, 2005,

Pg. 270).

Marginal Quasi-likelihood (MQL)

This is an alternative approximation method very similar to the PQL method because it is also

based on a linear Taylor expansion of the mean µij of Eq.(4.15) around the current estimates β̂

for the fixed effects but around bi = 0 for random effects. This gives a similar expression as that

derived under PQL method with bi = 0. The current predictor µ̂ij is now of the form h(x
′
ijβ̂)

instead of h(x
′
ijβ̂ + z

′
ij b̂i) as was the case under the PQL method. Re-ordering the terms gives

Y ∗
i ≡ ˆV −1

i (Yi − µ̂i) +Xiβ̂ which also satisfies the approximate linear mixed model.

Y ∗
i ≈ Xiβ̂ + ˆV −1

i (Yi − µ̂i) ≈ Xiβ + Zibi + ε∗i (4.21)

Similar to Eq.(4.20). The resulting estimates are called marginal quasi-likelihood (MQL). They

are obtained by optimizing a quasi-likelihood function which only involve first and second order

moments but now evaluated at the marginal linear predictor x
′
iβ rather than the conditional linear
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predictor x
′
iβ + z

′
ibi. For more information refer to Breslow and Clayton(1993) and Goldstein

(1991). (Molenberghs and Verbeke, 2005, Pg. 270-271).

Comparison of (PQL) and (MQL) methods

The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for

the generalized linear mixed model (GLMM). The essential difference between PQL and MQL

is that the MQL does not incorporate the random effects in the linearization process but both

methods have the same key idea and will ideally have similar properties. The MQL estimation

performs well if the random effects variance is very small. The MQL approach has also commonly

been used for inference in the GLMMs. Both approaches require the computations of the joint

moments of the clustered observations, up to order four. But the derivations of these moments

are not easy. MQL completely ignores the random effect variability in the linearization of the

mean. Both MQL and PQL perform poorly for binary outcomes with few repeated measurements

per cluster while with an increasing number of measurements per subject MQL remains biased

and PQL becomes consistent. Within the PQL and MQL methods, the linear mixed model

approximation can be based on maximum likelihood estimation (ML) or Restricted Maximum

likelihood estimation (REML) resulting in slightly different results. Rodriguez and Goldman (1995)

show that both PQL and MQL may be seriously biased when applied to binary response data.

Their simulations reveal that the fixed effects and variance components suffer from substantial,

if not severe, attenuated bias in certain situations. Breslow and Lin (1995) and Lin and Breslow

(1996) suggest the inclusion of bias correction terms while Kuk (1995) suggested the use of

iterative bootstrap. Goldstein and Rasbash (1996) show that one of the ways to improve the

accuracy of the approximations is to include a second order term in the Taylor series expansion.

They call these methods PQL2 and MQL2. They state that MQL2 performs slightly better than

MQL but PQL2 is substantially better than PQL.
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4.4.4 Estimation based on the approximation of the integrand

When integrands are approximated, the closed form integral expression is obtain so that numerical

maximization of approximated likelihood is feasible. All methods that have been proposed lead

to Laplace-type approximations methods of the function to be integrated. Tierny and Kadane

(1986) use the laplace method that is designed to approximate integrals of the form.

I =

∫
eQ(b)db (4.22)

where Q(b) is a known, unimodal and bounded function of a q−dimensional variable b. Let b̂ be

the value of b that maximizes Q. The second-order Taylor expansion of Q(b) is of the form.

Q(b) ≈ Q(b̂) +
1

2
(b− b̂)

′
Q

′′
(b̂)(b− b̂) (4.23)

where Q
′′
(b̂) equal to the approximated Hessian of Q, that is the matrix of second-order derivative

of Q, evaluated at b̂. When we replace Q(b) in Eq.(4.22) by its approximation in Eq.(4.23) we

get

I ≈ (2π)
q
2 | −Q′′

(b̂) |
−1
2 eQ(b̂)

Note that the integral in Eq.(4.14) is proportional to an integral of the form given by Eq.(4.22)

for functions of Q(b) given by

Q(b) = φ−1

ni∑
j=1

[yij(x
′

ijβ + z
′

ijb)− ψ(x
′

ijβ + z
′

ijb)]−
1

2
b
′
D−1b

such that the Laplace method can be readily applied. It is important to note the mode Q(b̂)

depends on the unknown parameter β, φ,D such that in each iteration of the numerical max-

imization of the likelihood, b̂ will be re-calculated conditionally on the current values for the

estimates of parameters. The approximation will be exact when Q(b) is a quadratic function of

b. Raudenbush et al (2000) extended the above Laplace method by including higher-order terms

in the Taylor expansion of Eq.(4.23) for Q, up to order six.(Molenberghs and Verbeke, 2005, Pg.

268-269).
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4.4.5 Estimation based on the approximation of the integral

As an alternative to the linearization methods, approximations to the integral or numerical integra-

tion are possible. Several of these have been implemented in various software tools for generalized

linear mixed models. Pinheiro and Bates (1995, 2000) suggest the use of adaptive quadrature

rules for the random effects models where the numerical integration is centered around the empir-

ical bayes (EB) estimates of the random effects and the number of the quadrature points is then

selected in terms of desired accuracy. We consider Gaussian and adaptive Gaussian quadrature

designed for the approximation of the integral of the form:∫
f(z)φ(z)dz (4.24)

for a known function f(z) and for φ(z) the density of a univariate or multivariate standard normal

distribution. The first step is to standardize the random effects such that they get the identity

covariance matrix. Precisely let δi be equal to δi = D− 1
2 bi where bi is the vector of random

effects of the model. This transformation implies that δi is normally distributed with mean of

0 and covariance I. The linear predictor becomes θij = x
′
ijβ + z

′
ijD

1
2 δi. Hence the variance

components in D are now in the linear predictor. The likelihood contribution for subject i is now

given by:

fi(yi | β, α, φ) =

∫ ni∏
j=1

fij(yij | bi, β, φ)f(bi, α)dbi

=

∫ ni∏
j=1

fij(yij | δi, β, α, φ)f(δi)dδi

(4.25)

Note that Eq.(4.25) is of the form Eq.(4.24) which means that Gaussian or adaptive Gaussian

quadrature approximation can be applied to estimate parameters for a generalized linear mixed

model.(Molenberghs and Verbeke, 2005, Pg. 273).

The difference between Gaussian and Adaptive Gaussian quadrature methods are shown in the

sketch shown in Figure 4.1 below (Molenberghs and Verbeke, 2005, Pg. 274).

The black triangles indicate the position of the quadrature points, and the rectangles indicate

the contribution of each point to the integral.
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Figure 4.1: Graphical illustration of Gaussian and adaptive Gaussian quadrature of order Q=10

Gaussian Quadrature

In the Gaussian quadrature the integral of
∫
f(z)φ(z)dz is approximated by the weighted sum∫

f(z)φ(z)dz ≈
Q∑

q=1

wqf(zq)

where Q is the order of approximation. The higher Q is the more accurate the approximation

will become. The so called node or quadrature points zq are solutions to the Qth order Hermite

polynomial, while the wq are called the weights. The nodes zq and weights wq are found in the

tabulated form. However Press et al (1992) gives an algorithm to calculate these weights less

restrictively. The main disadvantage of Gaussian quadrature indicated in literature in the case of

univariate integration is that the quadrature points zq are chosen based on φ(z), independent of

function f(z) in the integrand (Pinheiro and Bates, 1995, 2000). Depending on the support of

f(z), the zq will or will not lie in the region of interest.
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Adaptive Gaussian Quadrature

In the Adaptive Gaussian Quadrature, the quadrature points are centered and scaled as if f(z)φ(z)

were a normal distribution with the mean of this distribution being the mode z of ln[f(z)φ(z)],

and variance is equal to. [
− d2

dz2
ln[f(z)φ(z)] |z=ẑ

]−1

Here the new adaptive quadrature points are given by

z+
q = ẑ +

[
− d2

dz2
ln[f(z)φ(z)] |z=ẑ

]− 1
2
zq

with corresponding weights given by

w+
q =

[
− d2

dz2
ln[f(z)φ(z)] |z=ẑ

]− 1
2 φ(z+

q )

φ(zq)
wq

The integral is then approximated by∫
f(z)φ(z) ≈

Q∑
q=1

w+
q f(z+

q ).

In this case the quadrature points are chosen adaptively taking account of the function f(z). Note

that when fitting generalized linear mixed models, an approximation is applied to the likelihood

contribution of each of the N subject or units in the dataset.

In general the higher the order of Q, the better the approximation will be of the N integrals in

the likelihood. The adaptive Gaussian quadrature requires (much) less quadrature points than

classical Gaussian quadrature. The adaptive Gaussian quadrature requires calculation of ẑ for

each unit in the dataset. The function in Eq.(4.24) as well as the quadrature points and weights

depends on the unknown parameters β, α, φ and hence needs to be updated in every step of the

iterative estimation procedure. Note that α is a vector valued parameter containing the unknown

variance and covariance parameters in D. (Molenberghs and Verbeke, 2005, Pg. 275-276).

4.5 Software for fitting generalized linear mixed models

The models can be fitted using a number of available statistical software such as SAS, GenStat,

Stata and a few more. In the current work we focus on SAS applications. SAS PROC GLIMMIX
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is capable of fitting statistical models to data with both random and fixed effects and where

the response is not necessarily normally distributed. As already stated such models are called

generalized linear mixed models (GLMM) in contrasts to linear mixed models (LMM) which

strictly assume normal (Gaussian) outcomes where SAS PROC MIXED can readily be used. PROC

GLIMMIX performs both estimations and statistical inference for generalized linear mixed models.

The model fitting by the GLIMMIX procedure in particular extends the GLM model for longitudinal

data by incorporating the cluster or subject to subject variability through the use of random effects.

This can be accomplished by including random effects in the linear predictor which in effect means

modelling the correlation among the data directly. The GLIMMIX procedure can also fit models for

non-normal data with hierarchical random effects, provided that the random effects have a normal

distribution. GLIMMIX procedure fits generalized linear mixed models based on linearization. The

default estimation method in PROC GLIMMIX for models containing random effects is a technique

known as restricted Pseudo-likelihood (RPL) estimation (Wolfinger and O’Connell, 1993). To

fit GLMMs via Gaussian and adaptive Gaussian quadrature methods in SAS, PROC NLMIXED

is used. SAS PROC NLMIXED allows the user to specify or build the likelihood for the data

directly. PROC NLMIXED selects the number of Quadrature points adaptively by evaluating

the log likelihood function at the starting values of parameters until two successive evaluations

have relative difference less than the value of the QTOL = option. The noad option in PROC

NLMIXED statement request non-adaptive Gaussian quadrature. PROC NLMIXED computes

derivatives of the adaptive Gaussian quadrature approximation and the default method used is

the dual quasi-Newton optimization. The main advantage of NLMIXED is that the user is given

a high degree of flexibility in the way the model is specified and parameterized. This therefore

makes it more appealing to advanced users than other procedures. In the current application

both PROC GLIMMIX and PROC NLMIXED are used.

4.6 Application of GLMM to the respiratory infection data

To understand how to fit GLMMs and compare between models three types of GLMM namely

the random intercept model, random slope model and random intercept and slope model are
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fitted. In the case of the random intercept model the estimated variance component and residual

variance estimate are shown in Table 4.1. The result for fitting the random intercept model using

both the PQL and MQL methods indicates (choosing the unstructured covariance matrix) the

two variance components namely the random intercept and the measurement error variances are

estimated as 3.6627 and 0.5620 with standard errors given by 0.7648 and 0.0438 respectively in

the PQL while under the MQL approximation the estimates are 1.9587 and 0.6593 with standard

errors given by 0.4043 and 0.0511 respectively. We note that the random intercept variance com-

ponent is underestimated under MQL approximation than under the PQL approximation. The

parameter estimates measuring the covariate effects are in Table 4.2. Table 4.3 gives the type III

analysis for fixed effects. The fixed effects parameter estimates and the type III analysis for the

random intercept model for both MQL and PQL methods result indicate that only the treatment

and baseline status were significant and other effects were not significant at 5% significance level.

The result also indicate that the interaction between treatment and time was not significant at

5% significance level. Similar analysis was done for the random slope model and results showing

estimation of variance components are tabulated in Table 4.4. The two variance components

namely the variance of the random slope and the measurement error variance are estimated as

0.5251 and 0.5825 with standard errors given by 0.1173 and 0.0461 respectively under the PQL

approximation. The MQL estimates are 0.2333 and 0.7057 with corresponding standard errors

given by 0.0515 and 0.0549. Again we note that the MQL underestimate the variance component

for the random slope compared to the PQL method. The measurement error variance estimate

under MQL approach is larger compared to the PQL value. The results for the analysis of fixed

effects using the unstructured covariance structure under the random slope model are shown in

Table 4.5. Table 4.6 shows a summary analysis based on a type III analysis in SAS. The results

for fixed effects parameter estimates and the type III analysis for fitting the random slope model

in both MQL and PQL methods indicates that only the treatment and baseline status were sig-

nificant and other effects were not significant at 5% significance level for unstructured covariance

structure. The result for also indicate that the interaction between treatment and time was not

significant at 5% significance level. An attempt was made to model both a random intercept

and slope to the data. This model was fitted without including the interaction between time

and treatment because both PQL and MQL methods were not converged when this interaction
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was included in the model. Convergence was only possible under the UN covariance structure

for the variance components and the MQL approximation when the interaction between time

and treatment was not included in the model. The result are shown in Table 4.7. We note

that while separately the random intercept (Table 4.1) and slope Table 4.4 variance components

were estimated with large values compared to their standard errors the estimate of the variance

component for the slope in Table 4.7 is almost the same size as its standard error. The results

in Table 4.7 also estimate a negative correlation between the random intercept and slope effects.

Nonetheless the estimated magnitude of the covariance is much smaller compared to its standard

error. We also note that much of the individual to individual variability is captured more under

the random intercept than slope. The results for the analysis of fixed effects for the random

slope and intercept model are shown in Table 4.8 and Table 4.9. The result indicate that when

we fit both the random slope and intercept in the same model we find that the MQL method

does converge better than the PQL which does experience non-convergence under a number of

covariance structures. From the unstructured covariance structure specification we note that the

elements of the matrix D = V ar(bi) is estimated as

D̂ =

 1.9397 −0.1148

−0.1148 0.1044


Which indicates a negative correlation of −0.255 between the random intercept and slope.

Table 4.1: Variance component estimates for the random intercept model

PQL MQL

Covariance Structure Estimate Standard error Estimate Standard error

Unstructured UN(1,1) 3.6627 0.7648 1.9587 0.4043

Residual(VC) 0.5620 0.04383 0.6593 0.0511

The results for the fixed effects analysis in Tables 4.8 and 4.9 allowing both a random intercept

and slope also indicate that only the treatment and baseline status were significant and other

effects were not significant at 5% significance level. The summary results in Table 4.10 shows that

the individuals in centre 1 were 1.840 as likely to be infected with respiratory disease compared

to individuals in centre 2 (in terms of odds of infection) but the centre effects was not significant.
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Table 4.2: Parameter estimates, standard errors and p-values for fixed effects under the random

intercept model

PQL MQL

parameter Est SE P-value Est SE P-value

intercept -1.9128 1.0612 0.0743 -1.3743 0.7791 0.0806

Centre 0.8135 0.4779 0.0917 0.6097 0.3498 0.0842

treatment 1.8552 0.6502 0.0046 1.3760 0.5221 0.0088

Sex 0.2416 0.5985 0.6867 0.1394 0.4339 0.7482

Age 0.0233 0.0178 0.1904 0.0165 0.0128 0.1986

Baseline -2.5302 0.4674 <.0001 -1.8280 0.3415 <.0001

time 0.1694 0.1354 0.2117 0.1089 0.1155 0.3464

time*treatment -0.0573 0.1843 0.7561 -0.0372 0.1605 0.8170

Table 4.3: Type III effects for the random intercept model

PQL MQL

Effect F-value P-vale F-value P-value

Centre 2.90 0.0917 3.04 0.0842

treatment 8.14 0.0046 6.94 0.0088

Sex 0.16 0.6867 0.10 0.7482

Age 1.72 0.1904 1.66 0.1986

Baseline 29.31 <.0001 28.66 <.0001

time 2.34 0.1274 1.27 0.2608

time*treatment 0.10 0.7561 0.05 0.8170

Table 4.4: Variance component estimates for the random slope model

PQL MQL

Covariance Structure Estimate Standard error Estimate Standard error

Unstructured UN(1,1) 0.5251 0.1173 0.2333 0.0515

Residual(VC) 0.5825 0.04611 0.7057 0.0549
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Table 4.5: Parameter estimate, standard errors and p-values for fixed effects under the random

slope model

PQL MQL

parameter Est SE P-value Est SE P-value

intercept -0.4779 0.7825 0.5418 -0.9169 0.6624 0.1673

Centre 0.4635 0.3571 0.1952 0.5164 0.2977 0.0837

treatment 1.3102 0.4986 0.0090 1.3245 0.4692 0.0051

Sex -0.0571 0.4459 0.8982 0.0253 0.3684 0.9454

Age 0.0025 0.0135 0.8543 0.0093 0.0109 0.3981

Baseline -2.3666 0.3609 <.0001 -1.9568 0.2971 <.0001

time 0.0337 0.1792 0.8511 0.1074 0.1380 0.4380

time*treatment 0.1252 0.2484 0.6145 -0.0274 0.1916 0.8865

Table 4.6: Type III effects for the random slope model

PQL MQL

Effect F-value P-vale F-value P-value

Centre 1.68 0.1952 3.01 0.0837

treatment 6.90 0.0090 7.97 0.0051

Sex 0.02 0.8982 0.00 0.9454

Age 0.03 0.8543 0.72 0.3981

Baseline 43.00 <.0001 43.38 <.0001

time 0.60 0.4387 0.96 0.3289

time*treatment 0.25 0.6145 0.02 0.8865

The individuals who received placebo treatment were 3.959 as likely to be infected with the

respiratory disease compared to individuals who received the active treatment. Male individuals

were 1.150 as likely to be infected with respiratory disease than female individuals but sex was

not a significant effect.

The odds of infection for an individual who is not infected at baseline is 0.161 times that of an

individual who is infected at baseline. Individual to individual variability was also investigated
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Table 4.7: Variance components estimates for the random intercept and slope model using MQL

approach

Covariance Structure Estimate Standard error

Unstructured UN(1,1) 1.9397 1.0847

UN(2,1) -0.1148 0.3322

UN(2,2) 0.1044 0.1262

Residual(VC) 0.6295 0.0595

Table 4.8: Parameter estimates, standard errors and p-values for the fixed effects under the

random intercept and slope model using the MQL method

parameter Est SE P-value

intercept -1.1697 0.7474 0.1206

Centre 0.5729 0.3496 0.1042

treatment 1.2884 0.3331 0.0001

Sex 0.0985 0.4337 0.8206

Age 0.0137 0.0128 0.2858

Baseline -1.8731 0.3419 <.0001

time 0.0917 0.0846 0.2807

Table 4.9: Type III effects for random intercept and slope model using MQL

Effect F-value P-vale

Centre 2.69 0.1042

treatment 14.96 0.0001

Sex 0.05 0.8206

Age 1.15 0.2858

Baseline 30.02 <.0001

time 1.17 0.2807

using the random intercept and slope. The variance components associated with these effect

were estimated as 1.9397 and 0.1044 (Table 4.7). The corresponding standard errors were 1.0847
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Table 4.10: Odds ratio estimates for the random intercept model

parameters estimate odds ratio

Centre 0.6097 1.840

treatment 1.3760 3.959

Sex 0.1394 1.150

Age 0.0165 1.017

Baseline -1.8280 0.161

time 0.1089 1.115

time*treatment -0.0372 0.963

and 0.1262 indicating that the inherent individual heterogeneity was more at baseline than over

time. In summary the application of PQL and MQL methods were demonstrated using binary

longitudinal outcome data and the application was implemented using the SAS software. The

methods worked well when only one random effect (intercept or slope) was assumed in the model.

When both the intercept and slope were specified the MQL was able to fit both effects but the

PQL does not achieve convergence easily. All the models that converged show that only the

baseline outcome and treatment effects were significant at 5% significance level.

4.6.1 Direct likelihood estimation via NLMIXED

The result for fitting the model using proc NLMIXED Gaussian quadrature and adaptive Gaussian

quadrature assuming a random intercept model are given in Tables 4.11 and 4.12 respectively.

In this particular case the result indicates not much difference in the parameter estimates of the

adaptive Gaussian quadrature and Gaussian quadrature methods. It is important to stress that

each log-likelihood corresponds to the maximum of the approximation to the model likelihood

implying that log-likelihoods corresponding to different estimation procedure or different number

of quadrature points are not necessarily comparable.

This means that difference in log-likelihood values reflect the difference in the quality of numer-

ical approximation and thus higher log-likelihood values do not necessarily correspond to better
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Table 4.11: Solution for the fixed effect model using the Gaussian quadrature method

effect Q=5 Q=10 Q=20 Q=50

Beta0(intercept) -0.5464 (1.5477) -1.5367 (1.4828) -1.4310 (1.4650) -1.4310 (1.4582)

Beta1(Centre) 1.3012 (0.5172) 0.8282 (0.5568) 0.9386 (0.5509) 0.9387 (0.5491)

Beta2(treatment) 1.8685 (0.4934) 2.0904 (0.5713) 2.0105 (0.544) 2.0149 (0.5443)

Beta3(Sex) 0.0604 (0.6629) 0.3154 (0.6902) 0.2844 (0.6779) 0.2819 (0.6790)

Beta4(age) 0.0371 (0.020) 0.0253 (0.0207) 0.0273 (0.0205) 0.0274 (0.0203)

Beta5(Baseline) -3.4251 (0.6947) -2.9060 (0.6008) -2.9242 (0.5897) -2.9237 (0.5866)

Beta6(time) -0.1440 (0.1258) -0.1412 (0.1246) -0.1412 (0.1246) -0.1413 (0.1246)

tau 4.4273 (1.5587) 3.9775 (1.3371) 4.0017 (1.2983) 4.0314 (1.3303)

-2l 432.6 433.4 433.3 433.3

approximation. The standard errors are approximately the same as those obtained using GLIM-

MIX procedure in the random intercept model in Table 4.2. The adaptive Gaussian quadrature

method gives estimates much closer to the quasi-likelihood approximation under GLIMMIX than

the pure Gaussian quadrature approximation.

Table 4.12: Solution for the fixed effect model using the adaptive Gaussian quadrature method

effect Q=5 Q=10 Q=20 Q=50

Beta0(intercept) -1.4174 (1.4323) -1.4301 (1.4563) -1.4309 (1.4581) -1.4310 (1.4582)

Beta1(Centre) 0.9291(0.5385) 0.9381 (0.5483) 0.9387 (0.5491) 0.9387 (0.5491)

Beta2(treatment) 1.9957 (0.5331) 2.0135 (0.5434) 2.0148 (0.5443) 2.0148 (0.5443)

Beta3(Sex) 0.2790(0.6663) 0.2817 (0.6781) 0.2819 (0.6790) 0.2819 (0.6790)

Beta4(Age) 0.0271 (0.020) 0.0274 (0.0203) 0.0274 (0.0203) 0.0274 (0.0203)

Beta5(Baseline) -2.8904 (0.5715) -2.9212 (0.5851) -2.9237 (0.5865) -2.9237 (0.5866)

Beta6(time) -0.1405 (0.1242) -0.1412 (0.1246) -0.1413 (0.1246) -0.1413 (0.1246)

tau 3.8309 (1.2096) 4.0168 (1.3168) 4.0313 (1.3303) 4.0314 (1.3304)

-2l 433.7 433.3 433.3 433.3

The quadrature methods using NLMIXED present a degree of flexibility because the user is able to

specify the likelihood directly. The standard errors under adaptive Gaussian quadrature increase
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as the number of quadrature point increase.



Chapter 5

Hierarchical generalized linear model

When modelling random effects under the linear mixed model (LMM) (Laid and Ware, 1982)

and the generalized linear mixed model (GLMM) (Breslow and clayton, 1993) methodologies

the random effects are commonly assumed to be normal which in a way is a very restrictive

condition. Under the Hierarchical generalized linear models (HGLMs) the random effects are

allowed to come from an arbitrary distribution, in particular the distribution conjugate to that of

the response Y. These models were introduced by Lee and Nelder (1996, 1998). In the HGLM

the response variable in these models is distributed according to a one parameter exponential

family such as binomial, Poisson, exponential and the Gaussian distributions among others. The

HGLM as an extension of LMM and GLMM provides a unified modeling frame work for the

estimation of cluster-specific quantities of interest, covariate effects and components of variance.

This likelihood based approach makes it possible to pool information across clusters to derive more

precise estimates of case specific and cluster specific parameters. The application of HGLMs also

makes it possible to account for correlations in the data and to derive standard errors of estimates

which are more realistic than those obtained by methods ignoring such a correlation. Hierarchical

generalized linear models (HGLMs) are similar to GLMMs apart from two distinctions:

(a.) The random effects can have any distribution conjugate to that of the response, whereas

current GLMMs nearly always have normal random effects.

(b.) They are not as computationally intensive, instead of integrating out the random effects they

are based on a modified form of likelihood known as the hierarchical likelihood or h-likelihood

84
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(Lee and Nelder, 1996).

To introduce the formulation of such a model let Y be the response and u be the (unobserved)

random component. The following distribution assumption are stated .

(a). The conditional (log) likelihood for y given u has the GLM form

l(θ
′
, φ, y | u) =

[yθ
′ − b(θ

′
)]

a(φ)
+ c(y, φ)

where θ
′

denotes the canonical parameter and φ is the dispersion parameter. We write µ
′

for

the conditional mean of y given u, where η
′
= g(µ

′
) and g(.) is the link function for the GLM

describing the conditional distribution of y given u. Thus we use the notation θ
′
to reflect this

conditionality. The linear predictor η
′
takes the form

η
′
= η + v (5.1)

where η = Xβ as for the GLM and v = v(u) for some strictly monotonic function of u.

(b) The distribution of u is assumed appropriately.

The modelling of η
′
in Eq.(5.1) involves not only fixed effects modelling for η but also dispersion

modelling for v, which describes the overdispersion.

5.1 Hierarchical Likelihood

The log of the h-likelihood is given by

h = l(θ
′
, φ, y | v) + l(α, v). (5.2)

where l(α, v) is the logarithm of the density function for v with parameter α, and l(θ
′
, φ, y | v)

is the logarithm of the density function for y | v. The random component v is the scale on
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which the random effect u occurs linearly in the linear predictor. The h-likelihood can be derived

from the density functions of u and y | v. l(α, v) can be derived from the density function of

u with differential element dv(u) and l(θ
′
, φ, y | v(u)) = l(θ

′
, φ, y | v) can be derived from the

logarithm of the density function for y | u, since v is the strictly monotonic function of u. The log

h-likelihood is the logarithm of the joint density function for v and y. We abbreviate the estimates

derived from maximizing the h-likelihood or the maximum h-likelihood estimates as MHLEs and

are obtained by jointly solving
dh

dβ
= 0.

and
dh

dv
= 0.

The MHLEs for random effects are invariant with respect to the transformation of random com-

ponents u. For example estimating equations dh
dv

= 0 and dh
du

= 0 result in the same random

effect estimate. In the current work we focus more on HGLMs which assume the random effects

follow a conjugate distribution to that of Y. To explain the meaning of a conjugate distribution,

suppose conditionally y | u is Poisson with mean

µc = E(y | u) = exp(x
′
β)u

Using the link we have

ηc = log(µc) = x
′
β + v

where v = log(u). If u is gamma distributed v is log-normally distributed and the model becomes

known as the Poisson-Gamma HGLM. If v is normally distributed then u is log-gamma. This is the

Poisson generalized linear model which is now called the Poisson-log-normal HGLM. According

to Lee, Nelder and Pawitan (2006) a gamma distribution for u is a conjugate for y | u and the

resulting model is called a conjugate HGLM. Both Poisson-gamma and Poisson GLMM models

belong to the class of HGLM; where the former is a conjugate HGLM while the latter is not.
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5.2 Properties of Maximum hierarchical likelihood estimate

Consider the hierarchical model

y | v ∼ f1(y | v, β, φ)

v ∼ f2(α, φ)

where f1 and f2 are arbitrary density function of y | v and v respectively. Assume that φ and α

are given and β are parameters of interest. The log-likelihood of the h-likelihood h(β, φ, α, y, v)

has components l(β, φ, y | v) = log f1(y | v, β, φ) and l(α, v) = log f2(v, α). It can also be

written in the form

h = l(β, φ, y | v) + l(α, v) = L+ l(β, φ, α, v | y).

where L is the marginal likelihood of y and

l(β, φ, α, v | y) = log[f1(y | v, β, φ)f2(v, α)/

∫
f1(y | v, β, φ)f2(v, α)dv].

is the logarithm of the density function of v | y.

5.3 Conjugate Hierarchical generalized linear models

Let the response be yij for i = 1, 2, ..., N and j = 1, 2, ..., ni with n = Σni and ui be the

unobserved random components from unit i. Assuming µij = E(Yij) and µ
′
ij = E(Yij | ui) we

consider the canonical link model such that

θ
′
ij = θij + vi, where θ

′
ij = θ(µ

′
ij), θij = θ(µij) and vi = θ(ui). Then given θ(µij) = xT

ijβ were

β = [β0, ..., βk]
T we have

dh

dβk

=
∑
ij

(yij − µ
′
ij)xkij

φ
(5.3)

Assume that the kernel of l(α, v) has the form

∑
i

(a1(α)vi − a2(α)b(vi)) (5.4)
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where a1(.) and a2(.) are some function of dispersion parameter α. Then the kernel of the log

of the h-likelihood becomes

∑
ij

θ
′
y − b(θ

′
)

φ
+

∑
i

(a1(α)v − a2(α)b(v)). (5.5)

Since dh(θ(µ))
dθ

= µ so that db(v)
dv

= u, we have

dh

dvi

=

∑
j(yij − µ

′
ij) + φa1(α)

φ
− a2(α). (5.6)

Thus equating dh
dvi

to 0 gives an estimate of the random effect as

ûi =
yi+ − µ

′
i+ + φa1(α)

φa2(α)
. (5.7)

where yi+ =
∑

j yij and µ
′
i+ =

∑
j µ

′
ij. This shows that in the conjugate HGLMs the MHLE for

the random effects has a simple form on the u-scale.

5.4 Binomial-beta conjugate model

Suppose that the conditional distribution of y given u is the binomial distribution with µ
′
= mπ

′
,

then the conjugate HGLM leads to

θ
′

ij = θij + vi

where θ
′
ij = log[

π
′
ij

1−π
′
ij

], vi = log[ ui

1−ui
] and θij = log[

πij

1−πij
] = Xβ where X and β are the design

matrix and a vector of fixed regression parameter respectively. Now u is assumed to have the

conjugate beta distribution with parameters α1 and α2, so that E(u) = α1

α1+α2
. We have

l(α, v) =
∑

[α1vi − (α1 + α2) log(
1

1− ui

)− logB(α1, α2)]. (5.8)

Here a1(α) = α1 and a2(α) = α1 + α2. By Eq.(5.3) the MHL equation for β becomes

dh

dβk

=
∑
ij

(yij −mijπ
′

ij)xkij = 0. (5.9)
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and by Eq.(5.7) the MHLE for u becomes

ûi =
(yi+ − µ

′
i+ + α1)

(α1 + α2)
. (5.10)

When α1

α2
→ 1 and α1 → ∞, ûi converges to 1

2
and π

′
converges to π so that Eq.(5.9)

gives the ordinary logit regression equations. When both α1 and α2 goes to 0, it implies that

yi+ = µ
′
i+ =

∑
j mijπ

′
ij for all i so that Eq.(5.10) gives a type of intrablock estimating equations.

Since π
′
= πu

[πu+(1−π)(1−u)]
, E(y) = E(mπ

′
) 6= µ = mπ, so the inference on the marginal mean

may not be easy. However within group or cluster comparisons are unaffected because

π
′
ij/(1− π

′
ij)

π
′
ik/(1− π

′
ik)

=
πij/(1− πij)

πik/(1− πik)
.

In general an explicit form of marginal likelihood for binomial-beta models is not available.

5.5 Application of HGLM to the respiratory infection data

using GENSTAT

There are very few statistical software that readily can implement HGLMs. The statistical package

that we know has made advances in the implementation of HGLMs is the GENSTAT software.

We demonstrate how it works with the example of data on respiratory infection. The aim of this

section is to apply and discuss the result from hierarchical generalized linear model (HGLM) using

GENSTAT. In the analysis the reference levels for categorical variables were centre 1, placebo,

male category, non infected status and time one for the categorical variables centre, treatment,

sex, baseline status of infection and time. The parameter estimates results from the mean model

and the odds ratios are shown in Tables 5.1 and 5.2 respectively. The parameter estimates results

from the dispersion model are shown in Table 5.3. The results in Table 5.1 indicate that the

covariate effects treatment and baseline disease status are significant and other covariate effects

are not significant at 5% significance level. Then Table 5.2 shows that the odds of infection for

an individual who receives active treatment is 0.2127 times that of an individual who receives

placebo treatment. The odds of infection for an individual who is infected at baseline is 9.089
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times that of an individual who is not infected at baseline. The dispersion parameters on the log

scale are given in Table 5.3. The estimates on the original scale are φ̂ = exp(−0.2277) = 0.7964

and λ̂ = 0.3376.

Table 5.1: Parameter estimates and standard errors for the mean HGLM model

parameter Estimate Standard Error t-value

intercept -1.300 0.575 -2.26

Centre -0.659 0.380 -1.74

treatment -1.548 0.365 -4.24

Sex -0.262 0.474 -0.55

Age 0.0217 0.0141 1.54

Baseline 2.207 0.373 5.91

time2 0.289 0.317 0.91

time3 -0.015 0.319 -0.05

time4 0.469 0.317 1.48

Table 5.2: The odds ratio estimates for HGLM

parameters estimate odds ratio

Centre -0.659 0.5174

treatment -1.548 0.2127

Sex -0.262 0.7693

Age 0.0217 1.022

Baseline 2.207 9.089

time2 0.289 1.335

time3 -0.015 0.9855

time4 0.469 1.598
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Table 5.3: Parameter estimates on the log scale and standard errors from the dispersion model

for individuals

parameter Estimate Standard Error t-value

phi(φ) -0.2277 0.0726 -3.14

lambda individual -1.086 0.165 -6.56



Chapter 6

Discussion and Conclusion

In the current work a series of models to deal with correlated data namely marginal, transition

and random effects were fitted to correlated longitudinal respiratory disease outcome data. The

data used was a multi-centre trial to compare two types of treatment including the effect of

other covariate. The different types of models investigated can broadly be classified as marginal

models based on the GEE method, transition models which include outcome history into the

linear predictor, conditional or random effects models and lastly the recent hierarchical generalized

linear models proposed by Lee and Nelder (1996). The analysis of the first three methods were

accomplished in SAS but HGLM was fitted in GENSTAT. The results from fitting all the four

different models show a significant dependence of the outcome Y (disease status) only on the

treatment and baseline disease status. No significant effects on the other covariates (sex, age,

centre, time) at 5% significance level were found. The transition model indicate that only the

immediate past history is important in explaining the current respiratory disease status of an

individual. Thus the data exhibit a strong first order markovian structure. However an interesting

finding noted is that when both first and second order dependence on past outcome effects are

included in the transition model age became significant. The results from random effects models

are similar to the results from marginal model. However the interpretation of parameter estimates

cannot be interchangeable. Proc GLIMMIX and NLMIXED in SAS gave similar results although

Proc NLMIXED took much long to converge. This is not surprising because the method is

computationally more intensive. The result show that the status of respiratory disease was not

92
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time dependence. The result from the GLMM show that the treatment does not affect the

linear coefficient of the regression with time. The need to analyse large correlated data using

generalized estimating equations and generalized linear mixed model is becoming necessary and

in high demand in many areas of applications particularly in medical research, environmental

pollution studies, ecology and many more. The results from the GLM and logistic regression

assuming independence are important to consider and discuss. The results from the logistic

regression model indicate that centre and age effects are significant at 5% significance level while

GEE and GLMMs shows non-significance in these effects. The results assuming independence yield

smaller standard errors compared to GEE, GLMM and HGLM models. This is because the simpler

models assuming independence do not take into account the correlation between observations

within an individual which seriously lead to inflated type I error. GEE, GLMM and HGLM models

do take into account the correlation between observations. This is precisely the gain in correctly

modelling the data by accounting for the inherent correlation in the data. The three model types

(GEE, GLMM and HGLM) have capability to hand longitudinal or clustered correlated data.

However the GEEs should be used if interest lies in estimating population averaged effects while

GLMMs and HGLMs are used when interest lies in cluster specific effects and interpretation.

GEEs model the marginal expectation of dependent variable as a function of covariates (Liang

and Zeger, 1986; Zorn et al, 2001). Marginal models assume that the relationship between the

outcome and covariates is the same for all subjects while the random effects model allows this

relationship to differ between subjects (Diggle et al. 2002; Carrier et al, 2002). The random

effects models were relevant to modelling the data set as it took into account of individual to

individual heterogeneity. Significant variability at baseline was detected via a random intercept

model. Under GLMMs and HGLMs one is also interested in differentiating between clusters while

under GEEs this effect is averaged out. The generalized linear mixed model provided a flexible

method for modelling the data. Clearly generalized linear models without modification cannot be

able to handle the longitudinal/repeated measurements or generally clustered data that is why

we used the generalized estimating equation and the generalized linear mixed model as methods

of dealing with correlated data in the case of non-Gaussian responses. The GEE is a method

of extending the generalized linear model to the case of longitudinal correlated data in general.

Its derivation is an extension of the quasi-likelihood approach (Nelder and Pregibon, 1987). The
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extension allows one to model the error distribution through the specification of only the mean

and variance structure of the data. GEEs have the capacity to produce both model and empirical

based standard errors. The latter is better because it allows the standard errors to be data driven.

Under GEEs inference about the mean structure is asymptotically valid even under a mis-specified

correlation structure. The generalized linear mixed model is an alternative way of accounting for

the correlated data by defining a random effect term which is constant for observations from the

same subject or cluster but variable between experimental or observational units. The formulation

of these models are likelihood based therefore better distributional properties. The standard errors

for the generalized linear mixed model are lager than that of the generalized estimating equation.

However the assumptions behind the two modelling approaches are fundamentally different hence

one aught to handle this comparison with caution particularly in the case of non-Gaussian data.

In the case of Gaussian data the switch between the marginal and conditional random effects

models is pretty direct as opposed to the case of the non-Gaussian case. Generalized estimating

equations are most naturally adapted for marginal models, not conditional random effect models

as in the generalized linear mixed model. The GEE may be inefficient when the goal is estimation

of the variance covariance structure. Generalized estimating equations by themselves do not

help to separate out different sources of variation when it is often an advantage to be able to

attribute variation as being associated with difference factors. Thus in summary GEEs are best

suited if one is strictly interested in marginal or population averaged effects while GLMMs are

stronger if one wishes to account for extra variability as a result of unit to unit heterogeneity

or in more complex multi-level structure models such as interventions targeting girls residing in

different households who attend different schools located in different locations within a province.

One clearly sees that this type of data has more than one sources of variability which are best

modeled using the GLMM approach and its extension HGLMs here (advantage over GLMMs).

These are the individual to individual variability and measurement error variance. Finally the study

also considered the problem of modelling respiratory infectious disease and the key lesson here is

that such processes are complex and one first needs to understand the nature of the underlying

disease process which generates the observations. In this particular study we considered data

that is best defined as a respiratory process which denotes a disease process which cannot confer

permanent immunity thus an infected individual immediately becomes susceptible upon recovery.
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To model such disease processes the methods described in the project are adequate subject

to some assumptions about the process being satisfied. In cases where the underlying latent

disease process is not directly observed advanced techniques such hidden Markov models (HMM)

may become necessary in order to adequately link the latent and the observation processes in

parameter estimation. Transition models can however be used to capture and model the actual

disease processes such as infection and recovery depending on how much information about the

process that is contained in the data (Mwambi et al., 2011). However a future area of a research

problem is to consider disease outcome data where some of the disease sub-process are partially

observed.
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APPENDIX

/* SAS code for fitting GEE models/

proc genmod data=sya descending;

class id centre trt sex baseline time;

model status=centre trt sex age baseline time / dist=bin type3;

repeated subject=id(centre) / type=cs modelse ;

run;

/* The SAS code using MQL and PQL/

SAS code (PQL) with random intercept

proc glimmix data=sya methods=RSPL;

class id centre trt sex baseline;

model status (event=’1’) =centre trt sex age baseline time /dist=bin solution;

random intercept /subject=id(centre) type=un;

random residual/ subject=id(centre);

run; MQL is obtained with option ’method=RMPL’

Inclusion of random slope:

random intercept time /subject=id(centre) type=un;

/* GENSTAT code for fitting HGLM/

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit; DISPERSION=*; CONSTANT=estimate;

FACT=3]

centre,trt,sex,age,baseline,time

HGRANDOMMODEL [DISTRIBUTION=beta; LINK=logit] id

HGANALYSE [PRINT=model,fixed,random,dispersionest,monitoring,likelihoodstat; MLAPLACE=0;
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DLAPLACE=0] status; NBINOMIAL=1


