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Abstract

Statistical and machine learning methods have been applied in broad domains

including the medical field. These methods have a massive impact on healthcare by

providing the support for decision making to the specialist in diagnosis and

prognosis of patient disease status and disease progression. Non-communicable

diseases (NCDs) remain a major challenge the world over in the 21st century,

especially in developing countries where resources are limited. Recent global public

health research shows an epidemiological paradigm shift from infection to

non-communicable diseases, which include cancer.

Cancer is considered the most devastating among all NCDs and is ranked second to

malaria as the leading causes of death in the developing countries. Cancer occurs in

many different types affecting all community members, where the general

mechanism of cancer disease etiology is uncontrolled cells proliferation that leads

to a malignant or cancerous tumor, and abnormalities at the molecular level.

However, earlier detection and accurate diagnosis of cancer symptoms increase the

probability of curing the condition, which has become the best strategy for fighting

the disease. In the past few years, a vast amount of cancer data have been generated

through new high throughput technologies. Traditional clinical and experimental

approaches lack the capacity to handle such a massive scale of data. Therefore,

computational methods have been introduced to biomedical investigations,

including genes/biomarkers selection of cancer types and stages of the disease.

Many computational tools have been developed based on different statistical and

machine learning strategies and data science approaches.

We used statistical, machine and deep learning methods for cancer types, subtypes,
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Abstract

and survival prediction in this work. First, we developed a hybrid (DNA mutation

and RNA expression) signature and assessed its predictive properties for colorectal

cancer (CRC) patients’ mutation status and survival. In addition, we proposed a

stacking ensemble deep learning approach to evaluate and compare its predictive

performance for cancer types (as a multi-class classification problem) with the

different standard machine and deep learning methods. Finally, we assessed the

predictive performance of the Cox proportional hazard and random survival

forests methods based on a signature obtained using three gene mutations (KRAS,

BRAF, and TP53). However, the most significant limitation lies in the sample size

being small, and there is a lack of using independent data for validation. Also, we

did not consider different features such as methylation and mutation data.

Moreover, it is unfortunate that the study did not include detailed simulation

studies to compare the traditional statistical and machine learning methods.

Overall, the most prominent finding to emerge from this investigation is that

combining different data sources leads to more robust statistical significance. Also,

the stacking approach is more reliable and promising compared to a single machine

or deep learning. Furthermore, the RSF is a proper and striking method for survival

analysis since it does not depend on any model assumptions.
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Chapter 1

Background

Statistical, machine and deep learning methods have been applied in broad

domains, including the medical field. These methods have a massive impact on

healthcare by providing the support for decision making to the specialist in

diagnosis and prognosis of patient status and disease progression (Kononenko,

2001; Magoulas & Prentza, 1999). Non-communicable diseases (NCDs) remain a

challenge confronting the world in the 21st century, especially in the developing

countries where resources are limited (Organization et al., 2014). In a recent report

by WHO, it is reported that 71% of total global deaths are caused by NCDs

(Organization et al., 2018, 2020), with the very high socio-economic cost. Recent

global public health studies exhibit an epidemiological paradigm transfer from

infection to non-communicable diseases, which include cancer (Alwan et al., 2011).

Cancer diseases are deemed the most destructive among all NCDs, and they are

rated second to malaria as the main cause of death in developing nations (Jemal

et al., 2011; Torre et al., 2015; Bray et al., 2018; Moten et al., 2014; Organization & for

International Tobacco Control, 2008). In 2015, 8.8 million deaths were caused by

cancer diseases globally. WHO estimated that by 2020 15 million new cases will be

added to the cancer burden (Olsen, 2015; Morhason-Bello et al., 2013). Cancer

diseases occur in many different types affecting all members of the community

(men, women, children, and the elderly), where the general mechanism of cancer
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disease etiology is uncontrolled cells proliferation that lead to a malignant or

cancerous tumor such as breast, lung, and colorectal cancer, and abnormalities at

the molecular level such as leukemia (Olsen, 2015; Morhason-Bello et al., 2013).

There are several risk factors associated with cancer diseases, including tobacco,

alcohol, obesity, and others (Halpin et al., 2010). However, earlier detection and

accurate diagnosis of cancer symptoms increase the probability of curing the

condition, and this has become the best strategy in fighting the disease.

In the past few years, a vast amount of cancer data have been generated through

new high throughput microarray technology. Traditional clinical approaches were

limited in data generation and lacked the capacity to handle such a massive scale of

data. Therefore, computational methods have been introduced to biomedical

investigations which include genes/biomarkers selection of cancer types and stages

of the disease. Many computational and analysis tools have been developed based

on different statistical and machine learning strategies and data science approaches.

These tools have been applied in a broad range of biomedical investigations and

have profoundly impacted disease diagnoses and prognoses. This has led to an

increased capacity to select the best genes/biomarkers that accurately aid disease

classification and prediction which in turn assist clinicians in choosing the suitable

therapy strategies for cancer patients (Abusamra, 2013).

1.1 Cancer

Cancer is a disease that can happen in any part or organ in the human body where

the cell growth is uncontrollable and can grow in different organs or parts of the

body. However, cancer is among the most main causes of mortality and is also

considered a significant disease burden worldwide (WHO, 2021a; Mohammed,

2018). The WHO predicted approximately 10 million deaths and 19.3 million new

cancer cases in 2020. Therefore, in various countries, cancer is continuing to be a

leading cause of death, and it exceeded the mortality caused by stroke and
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coronary heart disease (Sung et al., 2021).

Scientists in the united states and worldwide put a lot of effort in the techniques that

prevent, diagnosis, and treat cancer to improve survival of the patients. However,

more research is needed for the success of immunotherapy and precision medicine.

These researches use the techniques and tools that analyze the big data to come up

with an accurate decision regarding the cancer disease (ACS, 2019).

Cancer detection relies on many methods, such as physical exams, laboratory tests,

imaging tests, etc. A lot of research has been done on cancer classification. These

researches used molecular-level investigation to provide an accurate and systematic

diagnosis for various cancer types. Great insight regarding the cancer classification

problem can be provided by genes data that determine their characteristics. The gene

data include gene expression, which is used in cancer prediction, diagnosis, and

drug discovery which are very important for cancer therapy. Also, this gene data

can provide insight into the function of the genes and the interaction between them

in a different situation by observing the behavior of gene-gene expression data under

various conditions (Tarek et al., 2017).

1.2 High-dimensional Data

In high-dimensional data the number of the cases or the instances n is much less

than the features or covariates p, that is, n < p. Most of the classical statistical

inference research can be implemented when there is a small number of covariates

"features" (Bühlmann & Van De Geer, 2011). With the recent explosion in data

storage and computational tools, the high-dimensional data problem uprising has

crucially occupied common statistical research (Ayesha et al., 2020). Recently,

transcriptomics, epigenomics, and genomics studies have depended on high

throughput sequencing (HTS) technologies. The HTS technologies involve parallel

sequencing multiple DNA molecules, which enable the simultaneous sequencing of

large amount of DNA molecules (Churko et al., 2013). Also, gene expression is

controlled dynamically, where the differences in the transcription and translation
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can cause a major functional changes within the cell. The mutation in the DNA

sequence transcription and translation can compromise the function of the cell and

cause various disease pathologies. Microarray and RNASeq are the most famous

technologies that produce a massive amount of gene expression data.

1.3 Genomic Data

Genomic data grew exponentially over the last decade (Cerami et al., 2012; Chin

et al., 2011b). It stands for the genome and the complete set of DNA information of

an individual. This data stores the genomes of living things in the bioinformatics

field (Mulder et al., 2017). A large amount of storage is required for the

high-dimensional genomic data, and also purposely-built algorithms are needed to

analyze them. The study of the genome helps to know the gene’s interaction with

each other and the environment. Moreover, it also allows us to understand the form

of particular diseases, such as cancer, diabetes, and heart disease. Therefore, it is

considered to be a new way to diagnose, treat, and prevent disease (Chin et al.,

2011a).

1.4 Genetic Information

The human cells, excluding the red cells, have a nucleus. The nucleus has

chromosomes that hold an individual’s genetic information. The chromosomes

arise from deoxyribonucleic acid (DNA) and proteins and contain hundreds to

thousands of genes. These genes are organized in a specific sequence and location

(Locus). The normal human cells nucleus carry 23 pairs of chromosomes, these

pairs one chromosome from the mother, and one from the father makes a total of 46

chromosomes. Moreover, the unit that carries the genetic information is the DNA,

whereas the protein components provide different functions (Wang, 2016; Datta &

Nettleton, 2014; Ziegler et al., 2010). DNA is a group of molecules that carry and

transmit all the essential genetic instructions to build and maintain an organism.
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There are two strands in the DNA that have a linear backbone of alternating sugar

(deoxyribose) and phosphate residues. The deoxyribose has five carbon atoms that

are sequentially numbered from 1 to 5. The DNA sequence has four bases that are

known as nitrogenous bases. These four bases are thymine (T) and cytosine (C)

being pyrimidines, and adenine (A) and guanine (G) being purines. Each base with

a unit of one sugar is called a nucleoside. Each nucleoside with a phosphate group

tied to the carbon atom 5 or 3 makes one nucleotide (Wang, 2016; Ziegler et al.,

2010). Moreover, the two strands of the DNA molecule are linked by a hydrogen

bond between two opposing bases of the two strands. In addition to the DNA in

chromosomes, another genetic information carrier is called ribonucleic acid (RNA)

in the nucleus and the surrounding plasma of the cell. The RNA is created similarly

to the DNA, with four main differences, which include that, it is contained only a

single strand. In contrast, the single strand has the sugar component composed of

ribose instead of deoxyribose. Lastly, RNA has uracil (U) as an alternative to

thymine.

1.5 Transcriptome Analysis

The transcriptome can be defined as a set of messenger RNA (mRNA) molecules

expressed by an organism under specific conditions (Lowe et al., 2017). Studying

the transcriptome helps us interpret the functional and structural elements of the

genome and comprehend human biology and diseases (Nguyen, 2020).

The whole transcriptome studies began in early 1990, consequently the

technological advances made the transcriptomics a widespread in the biological

science in the late 1990. The transcriptomics offers essential insights on gene

structure, expression, and regulation and has been widely studied in the biological

sciences. There are two crucial modern techniques for transcriptome analysis. These

two techniques are DNA microarray and RNA sequencing technology. The DNA

microarray quantifies a set of sequences that are predetermined. The RNA

sequencing (RNASeq) technology capture all sequences through a high-throughput
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sequencing (Lowe et al., 2017; Wang et al., 2019a). The RNASeq is considered to be

the preferred and dominant transcriptomics technique in the recent years

(Marco-Puche et al., 2019; Wang et al., 2009b).

Microarray has several benefits, these benefits include facilitating the analysis of a

huge amount of genes from multiple samples and assess the incidence of a

particular marker in tumors (Govindarajan et al., 2012). The technology that

measures the DNA or uses it as a detection scheme is the microarray technology

(gene chip, DNA chip, or biochip). Typically, a gene or a known DNA sequence is

arranged in an order in the DNA microarray, based on the principle of

hybridization between the nucleic acid strands. The microarray technology

principle produces several copies of the mRNAs corresponding to a particular gene

through transcription. After that, the mRNAs create the corresponding protein by a

process called translation. The mRNA is then converted into cDNA form, whereas

the cDNA is labelled by fluorochrome dyes Cy3 (green) and Cy5 (red). The

unknown DNA molecules are cut into fragments by restriction endonucleases; and

fluorescent markers are attached to these DNA fragments. These are then allowed

to react with probes of the DNA chip. Then the target DNA fragments along with

complementary sequences bind to the DNA probes. The remaining DNA fragments

are washed away. After that, a comparison of the two fluorescence intensities can

be made to identify the genes that are differentially expressed between two samples

(Jaluria et al., 2007). Also see Figure 1.1 as shown by Sagar Aryal (Aryal, 2018). The

DNA microarray technology has two different types, these types are cDNA-based

microarrays and oligonucleotide based microarrays.
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Figure 1.1: Microarray analysis steps [Image Source: BioNinja]

The RNASeq technique utilizes next-generation sequencing (NGS) to examine the

entire transcriptome (Wong, 2017; Kulski, 2016; Wang, 2016; Harbers & Kahl, 2011;

Kwon & Ricke, 2011). RNASeq provides an accurate measurement of level of

transcripts and it is a high- throughput alternative to the traditional RNA/cDNA

cloning and sequencing approaches (Wang et al., 2009b). The RNASeq technology

procedure steps are shown by the RNA-Seq Bolg (https://www.rna-seqblog.

com/introduction-to-rna-sequencing-and-analysis/experiment/)

in Figure 1.2.
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Figure 1.2: The RNASeq technology workflow steps [Image Source: RNASeq]

More recently, literature show that RNASeq data is better than microarray data in

terms of high quality, accurate estimates, producing millions of sequencing reads,

but it should be acknowledged that the two types of data follow different

methodologies, referenced from Castillo et al. (2019); Rai et al. (2018); Zhang et al.

(2015). Even though RNASeq techniques are expensive, they are better than

microarrays because they allow the detection of single nucleotide variation, and

they do not require knowledge of genomic sequence. Also, they provide

isoform-level expression measurements, quantitative expression levels, and other

broader dynamic ranges than microarrays, referenced from Castillo et al. (2019).

Moreover, RNA-Seq allows the identification of novel transcripts, reduces the

background signal, and enhances specificity and sensitivity as reported in Dong

et al. (2016).
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1.6 The Transcriptomic Data Notations

The evolution of transcriptome technologies allows to massively produce thousand

of genes or transcripts expression levels simultaneously with meager cost (Lowe

et al., 2017). However, understating and interpreting the results of this massive data

is needed and important. Here, we present the notation and the shape of the

transcriptome data.

The gene expression data is stored into a matrix G with dimension p × n, where

the p represents the number of genes/covariates (variables or features) and n is the

number of the samples/patients or tissue (observation). The indexes of the genes

and samples are symbolized by i and j, respectively. However, gij embodies the

expression level for gene i in sample j (i = 1, 2, 3, . . . , p and j = 1, 2, 3, . . . , n). The

matrix shape of the gene expression is shown in Figure 1.3 below




SAMANN1 SAMANN2 SAMANN3 . . . SAMANNn

GANN1 g11 g12 g13 . . . g1n

GANN1 g21 g22 g23 . . . g2n

GANN1 g31 g32 g33 . . . g3n
...

...
...

...
. . .

...

GANN1 gp1 gp2 gp3 . . . gpn




Figure 1.3: The gene expression matrix. GANN: Gene Annotation, SAMANN: Sample
Annotation.

1.7 Differential Gene Expression (DGE) Analysis

The differential gene expression is the process of defining the genes that show

differences in the expression levels between specific conditions (Crow et al., 2019).

Usually, we use statistical testing to determine whether an observed difference in

the expression levels of a gene is significant. There are many statistical methods
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such as t-test (Kim, 2015), limma (Smyth, 2004), edgeR (Robinson et al., 2010) and

DESeq based on negative binomial distributions (NBD) (Anders & Huber, 2010),

among others.

1.7.1 Hypothesis Testing Procedure

The statistical inference aims to draw conclusions about a population using data

collected from a sample of that population. However, hypothesis testing is a way to

evaluate the strength of evidence found in a sample for making general conclusions

about the population (Banerjee et al., 2009; Browner et al., 2001). Testing hypotheses

begins with stating the research question into null and alternative hypotheses, H0

and (H1 or Ha), respectively (Paiva, 2010; Browner et al., 2001).

Consider the case where we are looking for differentially expressed genes between

two or more different tumor types (or conditions). Suppose that µk
i is the mean of the

expression levels in condition k in gene i, where k = 1, 2, . . . , c and i = 1, 2, . . . , p.

These hypotheses in the differential gene expression analysis can be stated as:

H0 : The mean expression levels between the conditions are equal

versus

Ha : At least two mean expression levels are not equal

that is

H0 : µ
1
i = µ2

i = . . . = µc
i

versus

Ha : At least µk
i ̸= µl

i, for k ̸= l

Thereafter, we set the significance level α, which represents the probability of

rejecting the H0 when H0 in fact true (Massey & Miller, 2006). Subsequently, we fit

the model in order to estimate the parameters that are associated with gi for each

condition. Finally, we compute the test statistic values for each gene gi and their

corresponding p-values, which we use to compare with the significant level α in

order to determine whether to reject or fail to reject H0 (Massey & Miller, 2006). In
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the case that the p-value is less than α we reject the null hypothesis H0, and we

conclude that there are statistical differences in the mean expression levels between

the conditions in gene gi, and this conclusion is said to be statistically significant.

There are two types of errors that can occur during the hypothesis testing process

(Paiva, 2010). Thus, there is a chance to make mistakes; however, the possible

outcomes are given in Table 1.1 below:

Table 1.1: Four outcomes for making a decision. The decision can be either correct (correctly
reject or fail to reject null) or wrong (incorrectly reject or fail to reject null)

Actual Situation (Truth)

Test Statistic (Decision) H0 is True H0 is False

Fail to reject H0 Correct Decision (1− α) Type II error (β)

Reject H0 Type I error (α) Correct Decision (1− β)

1.7.1.1 Type I Error

Type I error is also known as "false positive", and it is defined as the error when a

null hypothesis is rejected while it is actually true.

1.7.1.2 Type II Error

Type II error is also known as a "false negative", is the error of failing to reject a null

hypothesis while it is actually false.

Moreover, to explain the Type I and Type II error, let us consider the following

example in our case (the gene expression data), the mean expression levels of gene

gi across the conditions are equals ( not differentially expressed) but the test statistic

results show that this gene gi is differentially expressed (the mean expression levels

of the conditions are not equals), this is the case of Type I error. On the other other

hand given the gene expression levels for gene gi are differentially expressed

between the conditions but the test statistic results show that the p-value is larger

than α we have a case of Type II error. Although Type I and Type II errors cannot be
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completely prevented, test statistics use the significance level α to control the

likelihood of creating Type I errors.

1.7.1.3 Multiple Testing

Performing a single statistical test for each gene has numerous drawbacks. The most

notable is that it involves a considerable number of hypothesis tests, which might

result in a high number of erroneously significant findings. Since we are dealing

with genomics data containing lots of genes (features), sometimes tens to hundreds

of thousands, this leads to lots of hypothesis tests. For instance, in general, when

performing N hypothesis tests, the probability of finding at least one Type I error

(false positive) is calculated by equation (1.1) (Herzog et al., 2019):

P (finding at least 1 error in the N tests)

= 1− P (Not finding an error in the N tests)

= 1− (1− α)N .

(1.1)

Therefore, the proportion of finding at least one error in the N hypothesis test is

around 1−(1−α)N (also known as family-wise error rate or (FWER)) (Pan, 2013), this

more likely produces false positive when the number of hypothesis tests increases

(Herzog et al., 2019). Hence, that would be a major issue in the genomics studies,

which require tens to hundreds of thousands of hypothesis tests.

There are various methods, such as Bonferroni adjustment and

Benjamini-Hochberg adjustment, among others that deal with the multiple testing

problem to adjust the α in the genomics studies in order to ensure that the

probability of finding at least one significant findings by chance is still smaller than

the significance level α.

Bonferroni Adjustment: it is also known as Bonferroni correction, which controls
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the FWER in the case of the multiple hypothesis testing (Herzog et al., 2019;

Vickerstaff et al., 2019; Pan, 2013; Bland & Altman, 1995). This method is one-step

procedure, which implies that for each test the p-value must equal to its α divided

by the number of tests performed as given in equation (1.2) below:

Adjusted α =
α

number of hypothesis tests
. (1.2)

Benjamini-Hochberg (BH) Adjustment: This test controls the false discovery rate

(FDR) (Benjamini & Yekutieli, 2001; Benjamini & Hochberg, 1995). The BH procedure

will decrease the number of false positives as follow (Benjamini & Yekutieli, 2001):

1. Calculate the p-values corresponding to all hypothesis tests and put them in

ascending order.

2. Assign ranks to the p-values, starting from 1 for the smallest p-value, 2 for the

second smallest p-value, etc.

3. Calculate the Benjamini-Hochberg critical value using the equation i
m × Q,

where i is the rank of the p-value, m is the total number of hypothesis tests,

and Q is the percentage of the desired false discovery rate.

4. Compare the p-values to the critical BH from step 3.

5. Find the largest p-value that is smaller than the critical value.

6. Finally, the p-values that are smaller than this p-value in step 5, are considered

significant.

1.7.2 Differential Gene Expression Data Modeling

An important step of the statistical test in the genomics data is choosing the

probabilistic model. RNASeq and Microarray technologies produce different forms

of gene expression data. The data that is created using RNASeq is discrete, while

13



1.7. Differential Gene Expression (DGE) Analysis

the data that is produced using microarray is continuous as explained in Zararsız

et al. (2017). What is typical between the two technologies is that both NGS and

microarray technologies usually produce big datasets that have small number of

cases (small sample size), and each case has a large number of genes. Differential

expression analysis has been used to find the most relevant genes that highly

distinguish between two or more conditions using data produced by these

technologies. Hence, for the microarray, several methods have been developed for

this purpose, including limma (Smyth, 2004), which is based on the normal

distribution. Unfortunately, due to the type of data produced by the RNASeq

technology, this method is not appropriate for the RNASeq data. In general, the

microarray is commonly assumed to follow the normal distribution. However,

RNASeq data is modeled using Poisson and NBD (Wang et al., 2010; Di et al., 2011;

Auer & Doerge, 2011), which are considered as the most suitable for modeling

count type data.

The Poisson distribution does not consider the biological variation in the data due

to it is assumptions which assume that the mean and the variance are equals

(Robinson & Smyth, 2007). However, this is not the case in the RNASeq data, where

the low expressed genes have higher variance than high expressed genes. Hence, to

account for this issue, the NBD is used to replace Poisson for modeling this kind of

data. The NBD is a discrete probability distribution that models the number of

successes in a sequence of independent and identically distributed Bernoulli trials

before a specified number of failures. In addition, it has two parameters, the mean

and variance. The RNA-seq data can also be transformed using a simple logarithm,

the regularized logarithm (Love et al., 2014), or a more complex variance stabilizing

transformation (Anders & Huber, 2010). There are several transformation methods

including voom and limma-trend that allow RNASeq to use many methods

developed for microarray that are not available for RNA-seq (Law et al., 2014).

Many statistical software have been used for the differentially expressed genes

detection based on the distributional assumption of RNA-seq count data, including
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DEGseq, DEGseq2, edgeR, and limma. Before performing statistical analysis, it is

essential to consider normalization, which has a huge impact on the differential

expression analysis result (Dillies et al., 2013; Bullard et al., 2010). Hence, it is

designed to identify and correct the presented technical biases resulting from the

library preparation protocols and sequencing platforms.

1.8 Statistical Learning

Statistical learning plays a crucial role in many areas of science, finance, industry,

medical among others (Vapnik, 2013; Friedman et al., 2001). It encompasses a diverse

range of methods for understanding data. These methods can be either supervised

or unsupervised. The most common approach is supervised learning which aims to

build a model that predicts or estimates output based on given inputs (Liu, 2011;

Cunningham et al., 2008). In contrast, in the unsupervised learning, there are inputs

but no given outputs; the goal is to learn the pattern and structure from data (James

et al., 2013a).

1.8.1 Supervised Learning

A supervised learning approach is a method that learns a function mapping (f) of

inputs variables G to particular outputs variable Y , using labelled observations

which are commonly known as training set (Cunningham et al., 2008). Thereafter, it

uses this mapping function to predict the outputs for new data, which is called

testing set. Consequently, the idea behind supervised learning is to use a learner

(method) to learn from historical data (training set) to identify the new observations

in the testing set with the highest possible accuracy. However, the goal of classifiers

(learners) is to define rules from the existing historical data and then use them to

classify and predict unseen data (Learned-Miller, 2014; James et al., 2013a;

Friedman et al., 2001). Consider that the training set contains n samples pairs

(G1, y1), (G2, y2), . . . , (Gn, yn), where the Gi is the set of gene expression levels

measurements of a single observation data point in our case, and yi is the class label
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which is a cancer type, sub-types, or normal vs tumor samples among others in our

case. In contrast, the test set is another data with m samples with unknown class

labels (Gn+1, yn+1), (Gn+2, yn+2), . . . , (Gn+m, yn+m), in this case the class

yn+1, yn+2, . . . , yn+m are unknown. As mentioned previously, the aim of the

supervised learning is to perform correct classifications of the outcomes for the

testing set based on the trained model from the training set. The supervised learning

has two tasks the classification when the output type is categorical, and the regression

when the output type is continuous (Friedman et al., 2001). The popular approach

for calculating the accuracy of estimated function (f̂) is the training error rate as

given below (James et al., 2013a):

1

n

n∑

i=1

I(yi ̸= ŷi), (1.3)

where ŷi is the predicted class label for the ith observation using f̂ , while I is an

indicator variable that equals 1 if yi ̸= ŷi and 0 if yi = ŷi, therefore this equation

calculates the fraction of incorrect classifications. Moreover, the test error rate can be

calculated by (James et al., 2013a):

1

m

m∑

i=1

I(yn+i ̸= ŷn+i), (1.4)

where ŷn+i is the predicted class label that results from applying the classifier to the

test observation.

There are different types of supervised models, including k-nearest neighbor

(kNN), logistic regression, naive Bayes (NB), support vector machines (SVM),

neural networks (NNs), linear discriminant analysis (LDA), Poisson linear

discriminant analysis (PLDA), and negative binomial linear discriminant analysis

(NBLDA) among others.
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1.8.2 Unsupervised Learning

Unsupervised learning depicts the situation for every observation in the data that

does not contain related label information. The aim here is to directly infer the

labels (James et al., 2013a; Friedman et al., 2001). Unsupervised learning is

implemented in various ways, including data reduction, compression,

visualization, density estimation, clustering, and preprocessing (Biehl, 2019). There

are various types of unsupervised models, these models include independent

component analysis (ICA), singular value decomposition (SVD), principal

component analysis (PCA), K-means clustering, and hierarchical clustering among

others.

1.9 Machine Learning (ML)

Machine learning is a subgroup of artificial intelligence (AI) algorithms that are

designed to simulate the way that humans learn and getting experience to become

more accurate at predicting outcomes (Zhang, 2020; El Naqa & Murphy, 2015;

Wang et al., 2009a). ML and statistical learning methods are very closely associated

fields. Machine Learning is considered as a method of statistical learning, and also

allows for supervised and unsupervised learning. ML seeks to investigate

computer-assisted self-improvement strategies for acquiring new information and

abilities to identify current knowledge and constantly to improve performance and

achievement (Wang et al., 2009a). Moreover, Machine learning algorithms are based

on mathematical models and are associated with computational statistics, which

primarily emphasizes making predictions using computers. Nowadays, ML is

capable of analyzing large amounts of complex data and identifying patterns as a

result of technological developments. It creates a model from training data and

allows researchers to make predictions for new or unknown data using the same

model. ML has also made significant contributions to bioinformatics, cancer

detection, medication development, traffic pattern analysis, pattern recognition,
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computer vision, spacecraft engineering, finance, entertainment, and computational

biology (biomedical and medical applications), among others (Leung et al., 2015;

El Naqa & Murphy, 2015; Wang et al., 2009a). However, it is hard to train ML model

as data becomes more complicated and extensive, yet the improvement in the

machine learning algorithms has allowed many issues to be solved.

1.10 Classification

The practice of classifying or separating data instances into distinct groups is

known as classification. A classification is a form of supervised learning in which

data components are assigned to a certain class. It is the process of predicting the

class of a given set of data, with the classes being referred to as targets, labels, or

categories. Supervised machine learning includes several different types of

classification tasks, such as binary and multi-class classification. The binary

classification aims to predict one of two outcomes (classes), while the multi-class

classification involves predicting one of more than two outcomes (classes). In

general, a n-labels classifier may classify n possible outcomes. However, in some

cases, the binary classifier can be used as a multi-class classifier (this is called as one

versus all (OVA) or one versus rest (OVR) approach. The idea behind this approach is

to build a model for each class against the rest; thus, the number of obtained

models is equivalent to the number of the classes, and then select the model that

gives the highest probability and assigns that class to the given sample. In this

thesis, we deal with binary and multi-class classification problems.

1.11 Deep Learning (DL)

Deep learning is a novel machine learning approach with outstanding performance

in unstructured data compared to traditional machine learning methods. It has

algorithms and models that can discover characteristics from data at various levels

in a step-by-step manner (Mathew et al., 2020). The growth in data accessibility and
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the improvement in the hardware power and storage capacity make deep learning

even more popular, especially the transfer learning which uses pre-trained neural

networks that are trained on a massive amount of data (Bengio et al., 2017). Neural

networks are algorithms meant to identify patterns and are roughly modeled to

emulate how the human brain works (Hurwitz & Kirsch, 2018). A neural network

contains three or more layers including, an input layer, one or many hidden layers,

and an output layer.

The DL is similar to a traditional neural network except that it has many more

hidden layers. Its hidden layers will increase as the problem becomes more

complicated (Hurwitz & Kirsch, 2018). The DL has been applied widely in many

areas such as automatic speech recognition, image recognition, natural language

processing, computer vision, drug discovery and toxicology, customer relationship

management, recommendation systems, high-dimensional time series data, and

bioinformatics (Heaton, 2020; Sk et al., 2017; Hordri et al., 2016; Najafabadi et al.,

2015; Deng & Yu, 2014). The differences between artificial intelligence, machine

learning, and deep learning are shown in Figure 1.4.
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Figure 1.4: The difference between AI, ML, and DL [Image Source: Differences of AI, ML,
and DL]

1.12 Re-sampling Methods

Resampling approaches are a collection of methods for repeating, drawing different

samples from a training set, and refitting a model of concern on a test set to get

more information such as accuracy, sensitivity, specificity, among others about the

fitted model (James et al., 2013b). However, in current statistics and machine

learning, resampling approaches are an essential tool. There are two primary

resampling techniques, namely validation set, K-fold cross-validation (CV), and

Bootstrap.

1.12.1 Validation Set

In general, the idea behind the validation set method is that the data is divided

into training and validation (hold-out) sets. After that, we fit the model of concern
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using the training set, and then the trained model is used to predict the outcomes

of the sample in the validation set. The validation set technique is attractive due its

simplicity and ease of implementation but it has two significant drawbacks in terms

of the quality and amount of data seen in the training and validation sets. The first

disadvantage is that the error rate is determined by which observations are included

in the training and validation sets. Secondly, the fitted model is trained on a subset

of the data (training set), and the model performs poorly on the training set with

fewer samples. It also may suffer the problem of the error rate being overestimated

or greater than that obtained when the model is fitted to the entire dataset. For these

reasons the approach has been extended to counter some of these shortcomings.

1.12.2 K-Fold Cross-Validation (CV)

The CV is typically used for model assessment by estimating the error rate of a

particular model, i.e., CV helps examine the capacity of prediction models to

generalize and avoid over-fitting (Friedman et al., 2001; Hart et al., 2000). In

addition, it is considered as one of the most commonly used data resampling

approaches for estimating the actual prediction error of models and tuning model

parameters (Berrar, 2019). In K-fold cross-validation we randomly divide the data

into approximately K equal-sized subsets (Friedman et al., 2001). Thus, we fit the

model using a part of the available data and use a different subset to validate that

model’s performance. In other words, the K − 1 parts are used to train the model,

and the last part is used as a test set. In practice, the most common number of folds

is 5 or 10 depending on the amount of the available data (Friedman et al., 2001).

This procedure is iterated until each of the K-folds act as a test set. Finally, the error

rate is calculated by averaging the estimation obtained from each of the K-folds.

Consider k : {1, . . . , N} 7→ {1, . . . ,K} be the indexing function that identifies the

subset in which an observation i is assigned randomly. The f̂−k(x) is the fitted

function that is computed using the kth subset of the data removed that is

considered as the test set. Therefore, the cross-validation estimate of prediction
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error is given by:

CV (f̂) =
1

N

N∑

i=1

L(yi, f̂
−k(i)(xi)) , (1.5)

where L is the loss function.

When the K = N then it is called leave-one-out cross-validation. In this case, the

model is fitted using the whole data except the ith case where i = 1, 2, 3, . . . , N .

However, the process is repeated N times until each case acts as a test set.

Overall, when there are a group of models indexed by a tuning parameter α, the

K-fold cross-validation can be used to estimate the CV (f̂ , α) for each model by

CV (f̂ , α) =
1

N

N∑

i=1

L(yi, f̂
−k(i)(xi, α)). (1.6)

The equation (1.6) above, gives an estimate of the test error curve, then we choose

α = α̂ that minimizes the test error curve. Finally, we fit the selected model f(x, α̂)

to the entire data.

In the classification problem with a large number of variables such as genomics data,

Friedman et al. (Friedman et al., 2001) shows the correct strategy of doing K-fold

cross-validation as follows:

1. Divide the samples into K cross-validation folds (groups) at random.

2. For each fold k = 1, 2, . . . ,K

(a) Find a subset of “good” predictors that show fairly strong (univariate)

correlation with the class labels, using all samples except those in fold k.

(b) Using just this subset of predictors, build a multivariate classifier, using

all samples except those in fold k.

(c) Use the classifier to predict the class labels for the samples in fold k.
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1.12.3 Bootstrap

A bootstrap method is a resampling approach that uses sampling with replacement

for statistical inference (Dixon, 2006). Assume we want to fit a model on a training

set of n samples pairs as indicated before (G1, y1), (G2, y2), . . . , (Gn, yn). Thus, the

idea behind the bootstrap approach is to draw a sample with replacement

randomly. Each bootstrap has the same size as the original sample of size n and this

is repeated B times (B bootstrap datasets). Each of these bootstrap samples is used

as the training set (Chernick et al., 2011; Friedman et al., 2001). Then, use these B

bootstrap datasets to refit the model and measure its performance over the B

replications. The prediction error is estimated by

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (1.7)

1.13 The Curse of Dimensionality

The curse of dimensionality was initially introduced by Richard Bellman (Kuo &

Sloan, 2005; Bellman, 1966). Unfortunately, in real-life data such as genomics data,

the number of the variables could be exceedingly high in terms of multiples of

thousands or more, while the number of samples is only a hundred. Thus, in this

situation, the curse of dimensionality becomes real and leads to an exponential

increase in computational effort, large waste of space, and poor visualization

capabilities (Venkat, 2018). The curse of dimensionality states that the error rises as

the number of variables increases. Thus, most of the methods are harder to design.

However, several techniques have been invented to reduce the effects of

high-dimensional data, and these methods are known as features selection or

reduction.
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1.14 Variable (Feature) Selection

Feature selection is a preprocessing method for identifying a subset of variables

(covariates) that improves comprehension and prediction performance (Li et al.,

2017; Jović et al., 2015). The feature selection methods have been proved to be

valuable and efficient for data preparation by choosing the most informative

characteristics and removing unnecessary and redundant features, particularly for

high-dimensional data (Li et al., 2017; Guyon et al., 2008; Saeys et al., 2007; Guyon

& Elisseeff, 2003; Kira & Rendell, 1992). At the same time, feature selection is being

used for both supervised and unsupervised learning. In this work, we will focus on

supervised learning (classification), where the class labels are known. However, the

feature selection aims to get a better understanding of the underlying processes

that created the data. Therefore, it can enhance model performance and prevent

overfitting problems. Also, it can help in developing more efficient and

cost-effective models (Saeys et al., 2007).

There are three standard types of feature selection approaches based on how a

combination is made between the feature selection methods and the classification

models. These types include filters, wrappers, and embedded approaches.

1.14.1 Filter Approach

The filter approach evaluates the relevance of the variables based on the intrinsic

characteristics of data using statistical measures. However, the selection of the

features is independent of the classification model that is utilized (Guyon et al.,

2008; Sánchez-Maroño et al., 2007). Typically, it calculates a score for all the

variables and then ranks them (Lazar et al., 2012). The filter approach can select

predictors by either choosing predictors that pass a given threshold or keeping the

number of features that one desires. The filter methods contains parametric

methods such as t-test, chi-square test among others, or non-parametric methods

including Wilcoxon sum-rank statistics among others. The most notable benefit of

filter methods is that their calculation is quick and straightforward, making them
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ideal for use as an initial processing step in a high-dimensional dataset.

1.14.2 Wrappers Approach

The wrappers methods select the features based on the classification model

performance. They aim to find the most optimal features that give the best possible

performance with a particular learning algorithm (Guyon et al., 2008; Kohavi &

John, 1997). However, the wrappers methods search iteratively uses a machine

learning method for a subset of features and then evaluate them based on the

model performance measures such as accuracy, sensitivity, specificity, . . . , etc

(Mlambo et al., 2016; Lazar et al., 2012). These approaches are known as greedy

algorithms because they seek to discover the best possible combination of

characteristics that result in the best possible model performance; thus, they are

computationally costly. Moreover, they have a high possibility of overfitting since

they contain training of machine learning models with different combinations of

features. Wrapper techniques are typically more accurate compared to the filter

methods (Mlambo et al., 2016; Inza et al., 2004). Wrappers methods include

Recursive Feature Elimination (RFE), Genetic Algorithm (GA) among others.

1.14.3 Embedded Approach

The embedded methods are selection methods integrated as a part of the learning

model (Jović et al., 2015; Guyon et al., 2008). These methods select the subset of

features during the building of the model in order to reduce the computational

time. Embedded methods combine both filter and wrapper methods (AlNuaimi

et al., 2020). The most Common embedded methods are the tree algorithms such as

Random Forest, ExtraTree, and regressions or classification combined with LASSO

regularization.
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1.15 Ensemble Approach

Ensemble methods are statistical and computational learning approaches that

combine several classifiers typically by weighted or unweighted voting of their

predictions to obtain more reliable and more accurate predictions in supervised

and unsupervised learning problems (Way et al., 2012; Dietterich, 2000). Ensemble

methods have been widely used in computational biology due to the unique

characteristics in handling high-dimensional and complex data structures (Yang

et al., 2010). Moreover, the ensemble learning has become a prominent machine

learning technique in the last 20 years (Zhou, 2019). It has been an active area of

research for constructing a good combination of models in supervised learning.

However, the most critical finding is that ensembles are frequently more accurate

than the base learners that comprise them.

Many methods for constructing ensembles have been developed. Ensemble

methods are categorized into Sequential, Parallel, homogeneous, and

heterogeneous. The most popular methods include boosting, bagging which part of

the homogeneous ensemble, and stacking which falls in the heterogeneous

ensemble methods. Ensemble techniques are particularly well suited to regression

and classification, where they minimize bias and variance while increasing model

accuracy (Dong et al., 2020; Sagi & Rokach, 2018).

1.15.1 Stacking Ensemble

Stacking (also known as stacked generalizations) is a type of ensemble learning

where a varied group of models (heterogeneous models) are used as base learners

and their prediction is combined by a meta classifier on the top layer

(Chatzimparmpas et al., 2020; Sagi & Rokach, 2018; Wolpert, 1992). Noteworthy,

stacking minimize the bias and the generalization error compared to single

classifiers by combining different heterogeneous classifiers (Chatzimparmpas et al.,

2020). It’s structure is shown in Figure 1.5.
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Figure 1.5: The general architecture for stacked generalization model.

The outputs obtained by the set of n base learners, combined with the labels of the

input data, are utilized to train the meta-model that can anticipate the final

predictions for unseen input. The meta-model seeks to learn from the knowledge

that is obtained by the base learners, and it may be able to understand and exploit

patterns and regularities in their output.

1.16 Imbalanced Data Problem

An imbalanced classification problem is defined as a classification problem where

the distribution of instances across different classes is biased or skewed. The class

with the fewer instances are known as the minority class, while the class that

contains the higher number of instances is called majority class. In large application

domains, such as medical diagnostics, the minority classes with fewer instances

generally contain the critical data (Zhao et al., 2021). However, most of the

traditional classification methods fail to deal with imbalanced data due to their
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assumption of an equal distribution of classes, thus, it results in models that have

poor predictive performance, specifically for the minority class (Kotsiantis et al.,

2006). Many methods have been proposed for the class-imbalance problem

including many different forms of resampling techniques such as random

over-sampling and random under-sampling.

1.16.1 Over-sampling Technique

Over-sampling also known as up-sampling, is the method that tend to balance the

classes by adding observations to the minority class in order to reduce the skew in

the class distribution (Hoens & Chawla, 2013; Chawla, 2009; Kotsiantis et al., 2006;

Chawla et al., 2002).

1.16.2 Under-sampling Technique

Under-sampling also known as down-sampling, aims to balance the class

imbalance through eliminating and removing observation that belong to the

majority class (Hoens & Chawla, 2013; Chawla, 2009; Kotsiantis et al., 2006; Chawla

et al., 2002).

Overall, here we employed synthetic minority oversampling technique (SMOTE)

and down-sampling methods for handling class imbalanced data problem.

1.17 Survival Analysis

Generally, we use logistic regression to study the association of the risk factors with

presence or absence of a disease. However, sometimes we might be interested to

know how the risk factors affect time to disease or any other event of interest. Thus,

in this case the logistics regression fail. Survival analysis is an alternative technique

used to analyze data in which the time until the event is of interest.

Censored Data: In survival analysis is an approach for analyzing data when the

variable of interest is time until an event occurs. The biggest challenge in survival
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analysis is that some observations will not experience the event by the end of

follow up such due to end of study, loss to follow-up or withdrawal from the study.

Therefore, we do not know the exact event time; this is known as censored data (or

called censoring). In this case, our variable of interest is yi = {ti, δi}, where ti refers

to as failure time, survival time, time-to-event, or follow-up-time, while δi shows

whether the event is observed or not, 1 indicates that the event has been observed

and 0 indicates that the observation has been censored. There are three main types

of censoring, right, left, and interval. The right-censored time can be defined as the

observation that where the observed time is less than the true event time. In

contrast, the left-censored time is defined as the observations where the event was

experienced before enrolment. On the other hand, when a random variable is not

observed exactly i.e., lie within an interval in this case it is called interval censoring.

Survival and Hazard Functions: Survival and hazard functions play prominent

roles in survival analysis. The survival function S(t) is the probability that a patient

survives longer than time t. While the hazard function h(t) is the rate of failure

(risk) at time t, given survival up to time t. Several techniques have been used for

estimating survival function or survival curve such as Kaplan-Meier (KM) method

(Ranstam & Cook, 2017).

1.18 Missing Data

Missing data (or missing values) normally occurs in the gene expression obtained

through high-throughput sequencing technologies, therefore, that may lead to

inaccurate findings (Farswan et al., 2020). Missing values can be defined as values

of a variable of interest that are not observed (Kang, 2013). The impact missing data

on the research can be severe and affect the statistical conclusions that can be

drawn from data. The missing data result in several challenges including, reduction

statistical power, cause bias in the estimation of parameters, reduction in the

representation of the samples, and may complicate the statistical analysis in the
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studies. Thus, missing values can lead to invalid conclusion (Dong & Peng, 2013).

The missing data can occurs in different mechanisms, these mechanisms are

missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR) (Rubin, 1976). Rubin (Rubin, 1976) developed the theory of

missing data, each data point has some likelihood of being missing. The process

that controls these probabilities is called the missing data mechanism or response

mechanism. The model for the process is called the missing data model or response

model. In the case all data points having same probability of being missing, then

the data are said to be missing completely at random (MCAR). While, in the case

that the data points having same probability of being missing only within groups

identified by the observed data, then the data are missing at random (MAR).

Consequently, the case of missing not at random (MNAR), occurs when the

probability of being missing is neither MCAR nor MAR holds.

1.19 Imputation Techniques

Various missing data handling approaches are used to handle missing data such as

complete case analysis (listwise deletion), available case analysis (pairwise

deletion), mean imputation, single imputation, stochastic imputation, and multiple

imputation (MI) among others. MI is widely used to handle missing data (Huque

et al., 2018; Molenberghs & Kenward, 2007). MI is typically an iterative form of

stochastic imputation that provides uncertainty about the missing data by

generating various plausible imputed datasets and properly combining results

obtained using the Rubin’s rules for inference, where the standard errors used

accounts for the variation within and between imputations (Carpenter & Kenward,

2012; White et al., 2011).
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1.20 Evaluation Metrics

The methods performance evaluation is crucial in the statistical, machine, and deep

learning fields to know the best model that fits the data and has achieved better

performance. There are several metrics such as accuracy, sensitivity, specificity,

precision, and area under the curve (AUC). Using different metrics is necessary

since the model might have good results in some metrics and poor performance in

others metrics.

Most of the evaluation measures are calculated using the confusion matrix (CM)

which is a table of 4 different combination having true and predicted condition (see

Figure 1.2). CM 2 by 2 matrix, which report numbers of false positives, false

negatives, true positives, and true negatives.

Table 1.2: Structure of the confusion matrix for binary classification

True Condition

Predicted Condition Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

1. Accuracy defined as the percentage of correctly classified instances and is

calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100. (1.8)

2. Kappa (Cohen’s k-coefficient) is a measure of degree of agreement between

the predictions and the true classes:

Kappa =
Accuracy − Random Accuracy

1− Random Accuracy
. (1.9)
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Random Accuracy =
(TN + FP )× (TN + FN) + (FN + TP )× (FP + TP )

(TP + TN + FP + FN)2
.

(1.10)

3. Specificity is the proportion of cases predicted to be negative given they are

true negatives:

Specificity =
TN

(TN + FP )
. (1.11)

4. Sensitivity is the proportion of cases predicted to be positive given they are

truly positive:

Sensitivity =
TP

(TP + FN)
. (1.12)

5. Balanced Error Rate (BER) is the average of the errors (wrongly classified) in

each class:

BER =
1

2

(
FP

(TN + FP )
+

FN

(FN + TP )

)
. (1.13)

6. Receiver Operating Characteristic Curve (ROC) is an important measure for

evaluating the accuracy of a statistical, machine, and deep learning models.

ROC is a probability curve that indicates the models capability in

distinguishing between classes. It is a plot of true positive rate (TPR) against

false positive rate (FPR).

7. Area Under the Curve (AUC): is an essential measure that indicates the model

prediction reliability.

AUC =
1

2

(
TP

(TP + FN)
+

TN

(TN + FP )

)
. (1.14)

The AUC is between 0 and 1.

8. Precision is the ratio of accurate positive predictions to the total number of

positive predictions:

Precision =
TP

TP + FP
. (1.15)
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9. Recall is the ratio of accurate positive predictions to all predicted results:

Recall =
TP

TP + FN
. (1.16)

10. F1 Score is the harmonic mean of precision and recall.

F1Score =
2 ∗ (precision ∗ recall)
precision+ recall

. (1.17)

1.21 Problem Statement

The computational methods are still faced with methodological challenges

including how to deal with high-dimensionality characterized by a large number of

genes or probes and much smaller number of samples requiring the need for

dimension reduction (Hasan & Adnan, 2012). In addition, recent technological

advances have also led to next generation sequence data which contains a large

number of biomarkers and genes associated or not associated to a given disease.

Prognosis and predictive models are indispensable tools in the early diagnosis and

treatment of a patient with cancer. Gene expression data have the potential to

supplement thousands of genes for cancer samples. This allows massively parallel

gene expression analysis of human tumors, which made a great excitement in the

scientist society (Weigelt et al., 2010; Colombo et al., 2011). Thus there is an urgent

need for developing an integrated approach to gene selection in cancer survival

studies that jointly utilize both sources of information namely the microarray and

RNASeq technologies. Under the classification problem several parametric,

non-parametric and semi-parametric statistical methods have been proposed

within the last decade, but none has been unanimously accepted as the gold

standard. Consequently, in this case, the statistical methods fail to deal when the

number of variables p is larger than samples size n (high-dimensional data) to come

up with perfect results. In addition, statistical methods rely on many rigid

assumptions about the relationships between the inputs and the outcome.
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Therefore, due to these two disadvantages, the statistical methods are not very

suitable for high-dimensional data. Thus, this makes the machine learning and

deep learning methods’ predictive power strong and reduces human efforts

drastically. In addition, there is a growing interest to investigate ways or methods

for homogeneous integration of sequencing and gene expression data which may

contribute to the more reliable diagnosis.

1.22 Study Justification

The world is experiencing a burden of non-communicable diseases, including

cancer. This study aimed to use gene expression data for cancer prediction and to

identify the genes that may help in early detection of cancer. A good understanding

of cancer nature and predictors that discriminate between the cancerous and

normal patient to improve screening, early detection, management, and inform

clinical decisions towards improving patient care.

The study focused on cancer diagnosis using gene expression data, which may help

in early detection, reduces incidence, increases patient survival, and decreases the

impact of cancer-related consequences. Also, analysis of such data leads and

supports the physician in learning about the genes, proteins, and other related and

unique factors to the patient and tumors. Consequently, this helps to specify the

best and most effective treatment and dosage. Cancer patients may, therefore,

receive specific therapy based on their gene profile, which leads to improved lives

and lowers their hazard of death.

Furthermore, the joint analysis of microarray and RNASeq data in this study may

increase research to attain more robust statistical significant results for identifying

more reliable biomarkers that may improve patients’ survival and quality of life.

This study applied relevant machine and deep learning compared to statistical

methods that might fail in high-dimensional data. The methods applied in this

work provide a profound foundation for applying artificial intelligence in cancer

classification.
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1.23 Study Objectives

The broad aims of the project are to:

1. To compare ML and DL with the statistical methods.

2. To integrate microarray and RNASeq gene expression data.

3. Identify which methods (including a combination of methods) are a state of the

art (baseline method) in discriminating cancer types and sub-types and stages

of disease.

4. To determine the genes that are predictors of survival of cancer patients and to

examine the influence of sex, age at diagnosis, stages and the molecular sub-

types among other clinical information.

1.24 Methodological Approach

Many statistical and machine learning methods have been applied in order to get

most relevant genes/ biomarkers for diagnosis and prognosis from omics data. The

methodology we will follow is first is to collect or download the gene expression

and sequence dataset from the gene expression omnibus (GEO) or the cancer

genome atlas (TCGA) respectively. Thereafter, integrate both types of data. Then

apply preprocessing such as normalization, transformation, informative genes

selection, etc. for the each and the integrated data. Furthermore, we use data

reduction methods such as LASSO, and the convolutional neural network (CNN)

which are among the recent in deep learning to extract the most suitable features

that make the data ready for analysis. In addition, we suggest combining of the

feature selection methods (hybrid approach) as a powerful tool that may give

accurate and better result than a single approach. Thereafter, assessing our feature

selection approach based on classification or predication for the cancer disease

clinical stages using a classification model such as multivariate support vector
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machine, artificial neural network, naive Bayes, bagging trees, random forest,

k-nearest neighbour, and 1D-CNN.

1.25 Contribution to Knowledge

The main contribution to knowledge will be the development of integrated or

hybrid models for gene expression data with mutational assessment capacity to

predict clinical outcomes. Model combination has proved a powerful tool in other

fields of applications where high-dimensional data is prevalent such is in finance.

Through this approach the researchers will be able to expand model capabilities

beyond gene expression analysis into DNA sequence analysis and single cell

RNASeq which is still an active area of research.

The rest of the thesis is organized as follows: Chapter 2 - 4 presents background,

methods, results, and discussion based on each paper/manuscript; Lastly, Chapter

5 focus on the general discussion, conclusion, and recommendations.
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Chapter 2

Paper I: Colorectal Cancer

Classification and Survival

Analysis Based on an Integrated

RNA and DNA Molecular

Signature

This chapter addresses the following objectives:

1. Use of the feature selection techniques to select genes from data sets on the

microarray platform.

2. Compare the classification, predictive and prognostic properties of the genes

from the microarray platform with genes obtained from matched samples from

the RNASeq platform.

3. Compare the classification, predictive and prognostic properties of the genes

from the combined hybrid list of genes from both platforms.

4. Use survival analysis methods (traditional and modern) to check the effect of
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the genes on the cancer patients.

2.1 Abstract

Background: Colorectal cancer (CRC) is the third most common cancer among

women and men in the USA, and recent studies have shown an increasing

incidence in less developed regions, including Sub-Saharan Africa (SSA). We

developed a hybrid (DNA mutation and RNA expression) signature and assessed

its predictive properties for the mutation status and survival of CRC patients.

Methods: Publicly-available microarray and RNASeq data from 54 matched

formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip

and RNASeq platforms, were used to obtain differentially expressed genes between

mutant and wild-type samples. We applied the support-vector machines, artificial

neural networks, random forests, k-nearest neighbor, naïve Bayes, negative

binomial linear discriminant analysis, and the Poisson linear discriminant analysis

algorithms for classification. Cox proportional hazards model was used for survival

analysis.

Results: Compared to the genelist from each of the individual platforms, the hybrid

genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation

status, across all the classifiers and is prognostic for survival in patients with CRC.

NBLDA method was the best performer on the RNASeq data, while the SVM

method was the most suitable classifier for CRC across the two data types. Nine

genes were found to be predictive of survival.

Conclusion: This signature could be useful in clinical practice, especially for

colorectal cancer diagnosis and therapy. Future studies should determine the

effectiveness of integration in cancer survival analysis and the application on

unbalanced data, where the classes are of different sizes, as well as on data with

multiple classes.
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2.2 Introduction

Colorectal cancer (CRC) is one of the major emerging causes of mortality and

morbidity around the world (Gandomani et al., 2017). CRC is also the third leading

cause of death among men and women (Siegel et al., 2019; WCRF, 2019; Omolo

et al., 2016; Mármol et al., 2017; Granados-Romero et al., 2017). According to the

World Health Organization (WHO), there were about 1.80 million new cases and

862,000 deaths in the year 2018 (WHO, 2019). Furthermore, in 2019, CRC was

reported to be the third most prevalent cancer among men and women and an

estimated 101,420 and 44,180 new cases of colon and rectal cancer, respectively, and

51,020 deaths in the USA alone (Siegel et al., 2019; DeSantis et al., 2019; Society,

2015).

Although the incidence rates of CRC are lower in developing countries than in

developed countries, recent studies have shown an increase in the incidence rates

in SubSaharan Africa (May & Anandasabapathy, 2019). Many cancer types that are

relatively curable in developed countries are detected only at advanced stages in

developing countries, due to late or inaccurate diagnoses (Organization, 2002).

Cancer tumor classification based on morphological characteristics alone has been

shown to have serious limitations in some studies (Golub et al., 1999). Physicians

aim to diagnose CRC as early as possible to design optimal treatment strategies that

are patient-specific. Therefore, using genetic mutation and features of the tumor

would most probably lead to better understanding and early detection of the

disease and lead to finding suitable and targeted strategies (Wang et al., 2012).

Previously, most of the cancer classification research was based on clinical features

of the tumors, which lacked the accurate diagnostic ability, hence the need to

develop new methods that will better address this critical problem (Golub et al.,

1999; Tan & Gilbert, 2003). Recently, DNA microarray technology has greatly

improved the classification of diseases into sub-types, particularly cancer. This
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technology allows the processing of thousands of genes simultaneously, hence

providing critical information about a disease (Vanitha et al., 2015; Lusa et al.,

2010). Microarray gene expression data have been used widely for cancer detection,

prediction, and diagnosis (Rajeswari & Reena, 2011). In the last decade,

next-generation sequencing (NGS) technology has emerged as an advancement in

cancer and other disease research, based on RNA sequencing methodology. NGS

platforms that are most common include Illumina, SOLiD, Ion Torrent

semiconductor sequencing, and single-molecule real-time sequencing (Datta &

Nettleton, 2014).

NGS technology has been the most attractive, and its application dramatically

improved over the last few years. This technology is high-throughput and has

become popular in the detection and analysis of differentially expressed genes

(Datta & Nettleton, 2014; Rai et al., 2018). More recently, RNASeq data has been

shown to be better than microarray data in terms of quality and accuracy in

estimating transcript abundance. However, the two methodologies are different in

design and implementation (Rai et al., 2018; Castillo et al., 2019; Zhang et al., 2015).

Although RNASeq experiments are expensive, in contrast, they have many

advantages over microarrays. RNASeq allows detecting the variation of a single

nucleotide, does not require genomic sequence knowledge, provides quantitative

expression levels, provides isoform-level expression measurements, and offers a

broader dynamic range than microarrays (Castillo et al., 2019). Moreover, RNASeq

allows the detection of novel transcripts, low background signal, and increased

specificity and sensitivity (Dong et al., 2016). However, our view is that integrated

use of data from both technologies may be the best approach, given the available

information from both technologies.

Microarray and RNASeq technologies produce gene expression data in different

forms. The structure of gene expression produced using microarrays is continuous
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data, while RNASeq provides a discrete Type of data (Zararsız et al., 2017). What is

common between the two technologies is that both generate big datasets consisting

of a few sample sizes, where each sample has a large number of genes. Many areas

of research, such as clinical, medical, biological, and agriculture, apply the RNASeq

technology (Kulski, 2016; Wang et al., 2019b).

Many statistical and machine learning methods have been used to analyze and

extract information from massive amounts of gene expression data. These methods

include the Poisson linear discriminant analysis (PLDA), negative binomial linear

discriminant analysis (NBLDA), support vector machines (SVM), artificial neural

networks (ANN), linear discriminant analysis (LDA), and random forests (RF).

These methods have been used and examined in many studies based on RNASeq

and microarray data. For example, Aziz et al. (Aziz et al., 2018) assessed the ANN

performance based on microarray data using six hybrid feature selection methods.

Five gene expression datasets were used for evaluating these methods and for

understanding how these methods can improve the performance of ANN.

Statistical hypothesis tests were used to check the differences between these

methods. They showed that the combination of independent component analysis

(ICA) and genetic bee colony algorithm had superior performance. Salem et al.

(Salem et al., 2017) proposed a new methodology for gene expression data analysis.

They combined information gain (IG) and standard genetic algorithm (SGA) for

feature selection and reduction, respectively. Their approach was tested on seven

cancer datasets and then compared with the most recent approaches. Their results

show that the proposed approach outperformed the most recent approaches. Jain et

al. (Jain et al., 2018) presented a two-phase hybrid method for cancer classification

using eleven microarray datasets for different cancer types. They combined

correlation-based feature selection (CFS) and improved-binary particle swarm

optimization (IBPSO). Naive Bayes with 10-fold cross-validation was used for
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assessment. Results indicated that their approach had better performance in terms

of accuracy and the number of selected genes.

Anders and Huber (Anders & Huber, 2010) conducted differential expression

analysis based on the negative binomial distribution, with variance and mean

linked by local regression, for count data. Their proposed method controls the Type

I error and gives good detection power. Zararsiz et al. (Zararsız et al., 2017)

presented a comprehensive simulation study on RNASeq classification using

PLDA, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression

trees (CART), and RF. Their simulation results were applied and compared to two

miRNA and two mRNA real experimental datasets. They found that the

power-transformed PLDA, RF, and SVM were the best in classification

performance.

Due to the small number of samples for gene expression data, combining

independent datasets is novel in order to increase sample size and statistical power.

Taminau et al. (Taminau et al., 2014) worked on the integration of gene expression

analysis using two approaches based on merging and meta-analysis. They used six

gene expression datasets. Results showed that both meta-analysis and merging did

well, but merging was able to detect more differentially expressed genes than

meta-analysis.

Recently, combining two different gene expression data sources has been shown to

improve classification accuracy as opposed to using only one source. Castillo and

co-workers (Castillo et al., 2019) introduced the integration of multiple microarrays

and RNASeq platforms. They first carried out a differential expression analysis,

then applied the minimum-redundancy maximum-relevance (mRMR) feature

selection approach for further reduction of the gene-list. The top 10 genes were

selected and evaluated using four classification methods: k-nearest neighbor

42



2.3. Materials and Methods

(KNN), naive Bayes (NB), RF, and SVM. Their results showed the highest accuracy

and f1-score for the KNN. In this study, we combined RNASeq and DNA

expression data from colorectal cancer patients. We obtained a hybrid gene-list

from the RNASeq and microarray datasets and assessed its classification

performance based on the PLDA, NBLDA, SVM, RF, ANN, KNN, and NB

algorithms.

The paper is structured as follows. Section 2.3 discusses the methods and the

datasets used in the study. Section 2.4 shows the classification results of the

microarray, RNASeq, hybrid gene lists, and survival analysis. Discussion and

conclusions are presented in Sections 2.5 and 2.6, respectively.

2.3 Materials and Methods

2.3.1 Datasets

We used publicly available microarray and RNASeq data that is also reported in

Omolo et al. (Omolo et al., 2016). The data consists of 54 matched formalin-fixed

paraffin-embedded (FFPE) samples from colorectal cancer patients and is available

in the gene expression omnibus (GEO) repository under the accession numbers

GSE86562 and GSE86559 for RNASeq and microarray data, respectively. The

microarray gene expression data consists of 60, 607 genes on 54 colorectal patients.

We used the KRAS mutation status as a class variable. As a first step, the

Affymetrix microarray data were log2-transformed and quantile-normalized, and

genes with more than 50% missing values were filtered out. After that, we

performed class comparison using the two-sample t-test at the 0.005 significant

level threshold, which yielded 165 differentially expressed genes.

The RNASeq dataset contained 57, 905 genes from the same colorectal cancer

patients used to generate the microarray data. This data is in the form of counts,
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i.e., discrete. For this data, first, filtration was done to remove the genes with more

than 50% of zeros across the samples, using the counts per million (CPM) method

(Lai, 2010). We retained genes whose CPM values are greater than 0.5. Thus, the

dimension reduced to 17, 473 genes. We performed differential expression analysis

using the DESeq2 package in R. This step reduced the genes to 282 genes using the

0.005 significance threshold level. The differential expression analysis tool in

DESeq2 uses a generalized linear model (GLM) of the following form:

gij ∼ NB(µij , αi), µij = sjqij , log2(qij) = xj.βi, (2.1)

where gij is the counts for gene i in sample j. These counts are modeled using a

negative binomial distribution with fitted mean µij and a gene-specific dispersion

parameter αi. The fitted mean is decomposed into a sample-specific size factor sj

and a parameter qij proportional to the expected true concentration of fragments

for sample j. The xj. is the feature or vector of features associated with sample j.

The coefficients βj represent the log2-fold changes for gene i for each column of the

model or design matrix XXX . Note that the model can be generalized to use a sample-

and gene-dependent normalization factors sij .

The dispersion parameter αi defines the relationship between the variance of the

observed count and its mean value. That is, how far we expect the observed count to

be from the mean value, which depends both on the size factor sj and the covariate-

dependent part qij as defined above. Thus, the variance function is given by:

V ar(gij) = E[(gij − µij)
2] = µij + αiµ

2
ij . (2.2)

The steps performed by the DESeq function in DESeq2 package are the estimation

of sj , and αi, and fitting negative binomial GLM for βi and Wald statistics by

nbinomWaldTest.
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We computed counts per million as:

CPMi =
gi
N

∗ 106, (2.3)

where gi denotes the counts observed from a gene of interest i, and N is the number

of sequenced fragments.

RNASeq and microarray data integration may help improve cancer classification

accuracy. Several studies have addressed the classification problem using RNASeq,

microarray, or a combination of both, based on heterogeneous samples (Castillo

et al., 2019, 2017; Gomez-Cabrero et al., 2014). Our study aimed to integrate

homogeneous samples from the RNASeq and microarray platforms. In this regard,

we obtained the differentially expressed genes from the two platforms based on the

same set of samples. After that, we used the database for annotation, visualization,

and integrated discovery (DAVID) (Huang et al., 2007) and catalogue of somatic

mutations in cancer (COSMIC) tools, to annotate the RNASeq transcripts list. The

microarray genes symbol names were obtained from the dataset in (Omolo et al.,

2016). We then obtained the intersection, complement of the intersection, and union

between the two annotated lists.

Integration was done using the intersection, complement of the intersection, and

the union of the two lists of genes. Due to the different nature of the two datasets,

RNASeq was log2 transformed and quantile-normalized to make both types of data

consistent with each other. Subsequently, the integration was done based on

binding the two gene-lists from the RNASeq and microarray datasets. To transform

the RNASeq data, we let:

Transformed Data = log2(G+ 1), (2.4)

where G is the RNASeq counts data matrix, and G + 1 is the RNASeq counts data
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matrix with all zero counts changed to one.

Quantile normalization ensures that probe intensities of each array in a set of arrays

have the same distribution. A quantile-quantile plot would help to confirm if two

probe vectors have the same distribution (quantiles lie on the diagonal line) or not.

This approach can be extended to n-dimensional data. Let qk = (qkn, . . . , qkn)
′
, k =

1, . . . , P , be the vector of the kth quantiles for all n arrays, and d = ( 1√
n
, . . . , 1√

n
)
′

be the unit diagonal. To transform from the quantiles so that they all lie along the

diagonal, we projected q on to d as below (Bolstad et al., 2003):

Projdqk = (
1

n

n∑

j=1

q1j , . . . ,
1

n

n∑

j=1

qPj). (2.5)

2.3.2 Data Integration

Here, we used homogeneous data from matched-pair samples from microarray and

RNASeq technologies. Using a set-theoretic approach of taking the intersection, the

complement of the intersection, or union, we obtained four lists of genes from the

two platforms at the 0.005 significance level. The intersection between the two lists

was 23 genes, with 401 genes being the complement of the intersection. The steps

followed in this study are as shown at Figure 2.1.

Figure 2.1: Flow-chart of the analysis.

Moreover, the specific steps/methods and packages that have been used in this
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study explained in detail in Figure 2.2 below.

Figure 2.2: Illustrate the steps/methods and packages that used in the study.

2.3.3 Classification Methods

Several methods have been developed for classification and their performance

evaluated in both microarray and RNASeq platforms. Below, we briefly describe

seven classification methods and how to evaluate their performances based on the

integration of the two platforms.

2.3.3.1 Poisson Linear Discriminant Analysis

The PLDA classifier was proposed by Witten (Witten, 2011). Witten used the

Poisson log-linear model and developed an analog of diagonal linear discriminant
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analysis for sequence data.

Let G denote a n × p matrix of read counts data, where n denotes the number of

observations (samples), and p the number of genes. Let Gij be the counts or reads

for gene j in sample i; it is reasonable to assume that:

Gij ∼ Poisson(µij), (2.6)

where µij = sigj . To avoid identifiability issues, one can require
∑n

i=1 si = 1, where

si is the number of counts per sample i, and gj is the number of counts per gene j.

Suppose that we have K different classes of samples. Then we can write

Gij |yi = K ∼ Poisson(µijdkj), (2.7)

where yi denotes the class of the ith sample (yi=1, 2, 3, . . . ,K) and dkj denotes a

measure of the level of the ith gene to be differentially expressed in class k.

Let gi = (gi1, gi2, . . . , gip)
′

indicate the entries of row i in the G matrix, which are the

gene expression levels of sample i. Let, G.j =
∑n

i=1Gij , Gi. =
∑p

j=1Gij and

G.. =
∑

i,j Gij denote the column, row, and the overall totals, respectively. The

maximum likelihood estimate (MLE) for µij assuming independence is µ̂ij =
Gi.G.j

G..
,

and
∑n

i=1 ŝi = 1 yields the estimates ŝi =
Gi.
G..

and ĝj = G.j.. ŝi is the estimate of the

size factor for sample i. Maximum likelihood estimation provides the estimate of

dkj as d̂kj =
Gckj∑
i∈ck

µ̂ij
, where ck denotes the class of an observation.

If d̂kj > 1, then the jth gene is over-expressed relative to the baseline in the kth class,

and if d̂kj < 1 , then the jth gene is under-expressed relative to the baseline in the

kth class. If Gckj = 0 (an event that is not unlikely if the true mean for jth gene is

small), then the maximum likelihood estimates for dkj equals zero.
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Assume that we want to classify a new observation g∗ = (G∗
1, . . . , G

∗
p, and let y∗

indicate the unknown class label. By Bayes rule,

P (y∗ = k|g∗) ∝ fk(g
∗)πk, (2.8)

where fk is the density of a sample in class k and πk is the prior probability that an

observation belongs to class k. Then, if fk is a normal density with a class-specific

mean and common covariance, PLDA classifies a new sample to class k, which

maximizes equation (2.8). Consequently, the discriminant score of PLDA is

log Pr(y∗ = k|g∗) ≈
P∑

j=1

G∗
j log dkj −

P∑

j=1

s∗ λj dkj + log πk + C. (2.9)

PLDA is implemented using the R package MLSeq.

2.3.3.2 Negative Binomial Linear Discriminant Analysis

Recently, Dong et al. (Dong et al., 2016) proposed NBLDA for RNASeq data

analysis. NBLDA and Poisson linear discriminant analysis (PLDA) were considered

the most suitable classifiers for RNASeq data due to the discrete nature of data

(Dong et al., 2016; Witten, 2011).

Let Gij denote the number of reads in sample i, and gene j, i = 1, 2, 3, . . . , n and,

j = 1, 2, 3, . . . , p. Then Gij is assumed to follow the negative binomial distribution

Gij ∼ NB(µij , ϕj), µij = siλj , (2.10)

where si is the size factor, used to scale gene counts for the ith sample due to

different sequencing depth, λj is the total number of reads per gene, and ϕj ≥ 0 is

the dispersion parameter. The mean and variance of the negative binomial

distribution are given by:
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E(Gij) = µij and V (Gij) = µij + µ2
ijϕj . (2.11)

Suppose that we have M classes. Let Cm be an indicator variable such that Cm ∈

1, 2, 3, . . . ,M . Then, the model for RNASeq data is

(Gij |yi = m) ∼ NB(µijdm,j , ϕj), (2.12)

where dmj denotes the differences among the M classes, and

yi = m,m ∈ 1, 2, 3, . . . ,M denotes the class of samples i. The assumption is that all

the genes are independent.

Let g∗ = (G∗
1, . . . , G

∗
p) be a new sample whose class is to be predicted, s∗ is the size

factor, and y∗i the class label value. By Bayes’ rule, we have

Pr(y∗ = m|g∗) ∝ fm(g∗)πm, (2.13)

where fm is the pdf of the sample in class m, and πm is the prior probability that a

sample comes from class m. The pdf of Gij = gij in equation (2.12) is

Pr(Gij = gij |yi = m) =
Γ(gij+ϕ−1

j )

g2ijΓ(ϕ
−1
j )

(
siλjdmjϕj

1+siλjdmjϕj

)gij ( 1
1+siλjdmjϕj

)ϕ−1
j

. (2.14)

Thus, the discriminant score for NBLDA can be constructed from equations (2.13)

and (2.14) as

log Pr(y∗ = m|g∗) =
P∑

j=1

G∗
j [log dmj − log(1 + siλjdmjϕj)]

−
P∑

j=1

ϕ−1
j log(1 + siλjdmjϕj) + log πm + C,

(2.15)

where C is a constant independent of m. The class m, which maximizes the score in
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equation (2.15) will be assigned to the new sample g∗. NBLDA is implemented using

the R package MLSeq.

2.3.3.3 Support Vector Machines

The SVM method was first proposed by Boser, Guyon, and Vapnik (Boser et al.,

1992) at the Computational Learning Theory (COLT92) ACM Conference in 1992.

The method is based on the idea of a hyperplane that lies furthermost from both

classes. This plane is known as the optimal (maximum) margin hyperplane. The

hyperplane is completely determined by a sub-set of the samples known as the

support vectors (Moguerza & Muñoz, 2006). SVM has the ability to handle

problems where the data are not linearly separable by transforming the data using

mapping kernel functions such as the radial basis function (RBF) kernel,

polynomial function, and the linear function (Stephens & Diesing, 2014). In

addition, SVM can handle high-dimensional data, which is an essential advantage

in dealing with genetic data from cancer studies. This attribute makes SVM widely

appealing and applicable to real-life data analysis problems such as handwritten

character recognition, human face recognition, radar target identification, speech

identification, and, quite recently, to gene expression data analysis (Brown et al.,

1999; Chu & Wang, 2003).

Suppose we have n samples and p genes. Further, assume samples belong to two

distinct outcome classes represented by +1 or −1 and a feature vector gi such that

(gi, yi) ∈ G × Y, i = 1, 2, . . . , n, where gi = (gi1, gi2, . . . , gip)
′

is the sample profile

(vector) and yi ∈ +1,−1 is the outcome class dichotomy. The goal is to classify the

samples into one of the two classes by training the SVM which maps the input data

(using a suitable kernel function) onto a high-dimensional space (feature space)

{(Φ(gi), yi)}ni=1. This is achieved by constructing an optimal separating hyperplane

that lies furthest from both classes.

The general form of a separating hyperplane in the space of the mapped data is
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defined by

WTΦ(g) + b = 0. (2.16)

Here, W = (W1,W2, . . . ,Wn)
′

is the weight vector. We can rescale the W and b such

that the following equation determines the point in each class that is nearest to the

hyperplane defined by the equation:

|WTΦ(g) + b| = 1. (2.17)

Therefore, it should follow that for each sample i, i ∈ 1, 2, . . . , n,

WTΦ(g) + b =





≥ 1, if yi = +1.

≤ −1, if yi = −1.

. (2.18)

After the rescaling, the distance from the nearest point in each class to the

hyperplane becomes 1
∥W∥ . Thus, the distance between the two classes is 2

∥W∥ , which

is called the margin. The solution of the following optimization problem is obtained

to maximize the margin:

min
W,b

∥W∥2 subject to yi(WTϕ(gi) + b) ≥ 1, i = 1, 2, . . . , n. (2.19)

The square of the norm of W is considered to make the problem quadratic. Suppose

W∗ and b∗ are the solutions to the optimization problem 2.19 above. Then this

solution determines the hyperplane in the feature space where (W∗)TΦ(g) + b∗ = 0.

The points Φ(gi) that satisfy the qualities yi((W∗)TΦ(gi) + b∗) = 1 are called support

vectors (Moguerza & Muñoz, 2006). The SVM method is implemented using the R

package kernlab (Karatzoglou et al., 2019).

2.3.3.4 Random Forests

Random forests were first introduced in 2001 (Hastie et al., 2001; Breiman, 2001b).

They are an extension of classification and regression trees, and also an
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improvement over bagged trees by further modification using a random small

tweak to de-correlate the trees. Growing random forests leads to an improvement

in prediction accuracy compared to single or bagged trees (Qi, 2012).

We build a number of forests of decision trees on bootstrapped training samples

from the original data. A tree is obtained by recursively splitting the genes such

that at each node of the tree, a candidate gene for splitting is obtained from a

random sample of size v. A typical choice for v is such that v =
√
p, where p is the

number of candidate genes for splitting.

We then grew the trees to maximum depth. Therefore, the two-step randomization

process helps to de-correlate the trees (Chen & Ishwaran, 2012). To determine the

prediction for an unknown sample, an average over all the trees is taken for a

regression problem and a majority vote for a classification problem (Hastie et al.,

2001; Pappu & Pardalos, 2014; Xu et al., 2012). Random Forest Algorithm for

Regression or Classification (Hastie et al., 2001) can be implemented as follows

1. For b = 1 to B (# random-forest trees):

(a) Draw a bootstrap sample of size N from the training data.

(b) Grow a random-forest tree, Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size, nmin, is reached.

(c) Select v genes at random from the p genes.

(d) Pick the best gene to split on among the v based on an impurity measure.

(e) Using the selected gene, split the node into two daughter nodes.

2. To predict a new sample x : let Ĉb(x) be the class prediction of the b-th random-

forest tree. Then ĈB
rf (x) = majority vote {Ĉb(x)}Bb=1.

RF is implemented using the R package randomForest (RColorBrewer & Liaw, 2018).
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2.3.3.5 Artificial Neural Networks

Artificial neural networks (ANN) are multi-layered models that are constructed

from three layers, each layer consisting of nodes called neurons (Dwivedi, 2018).

The input layer contains nodes whose number is based on the input features. The

output layer contains nodes equal to the number of classes, and finally, the hidden

layer contains nodes determined by the level of tuning required. The inputs are

weighted by multiplying each input by weight as a measure of its contribution. The

layers are connected together via connection weights. These weights are

determined through stages of model fitting. The hidden nodes receive the sum

weighted from the input layer plus some bias. This summation is passed onto the

transform function (activation function) to generate the results. These results are

called outputs and interpreted as a class probability in our case.

There are many types of architecture of ANN. Neural networks are used widely in

different fields, such as prediction in time series models, economic modeling, and

medical applications (Stephens & Diesing, 2014). Also, ANN can be applied to the

classification problem using microarray gene expression data (Dwivedi, 2018). In

this paper, we apply the method to both microarray and RNA Sequencing gene

expression data.

Consider the simplest multi-layered network with one hidden layer. Assume we

have gene expression data where denotes the number of genes. Then the input

layer receives the gene expression levels for a sample, each multiplied by the

corresponding weight, W (1)
ij gi, as shown in equation (2.20), below:

bi =
n∑

j=0

W
(1)
ij gi i = 1, 2, . . . ,m, (2.20)

where g = (g0, g1, g2, . . . , gn)
′

is a vector of input features and g0 = 1 is a constant

input feature that with weight Wi0. The quantities, bi, are called activations, and the

parameters W
(1)
ij are the weights. Note that alternatively bi can be viewed as a
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summary of the n genes from sample i. The ”(1)” superscript indicates that this is

the first layer of the network. Each of the activations is then transformed by a

nonlinear activation function , typically a sigmoid, as in equation (2.21) below:

zi = f(bi) =
1

1 + exp(−bi)
. (2.21)

The quantities zi are interpreted as the output of hidden units, so-called because they

do not have values specified by the problem (as is the case for input units) or target

values used in training (as is the case for output units).

In the second layer, the outputs of the hidden units are linearly combined to give the

activations:

ak =
m∑

i=0

W
(2)
ik zi k = 1, 2, . . . ,K. (2.22)

Again, z0 = 1 corresponds to the bias. Weights W
(2)
ik parameterize the

transformations in the second layer of the neural network. The output units are

transformed using an activation function. Again, a sigmoid function may be used

as shown below:

yk = f(ak) =
1

1 + exp(−ak)
. (2.23)

These equations may be combined to give the overall equation describing the

forward propagation through the network, and describes how an output vector is

computed from an input vector, given the weight matrices as:

yk = f




m∑

i=0

W
(2)
ik f




n∑

j=0

W
(1)
ik gi




 . (2.24)

ANN is implemented using the R package nnet (Ripley et al., 2016).
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2.3.3.6 Naïve Bayes

The Naive Bayes classifier uses probability theory to find the most likely of the

possible classes in a classification problem. The NB classifier relies on two

assumptions, namely, that each attribute is conditionally independent of the other

attributes given the class and that all the attributes have an influence on the class

(De Campos et al., 2011). The popularity of this classifier is mainly due to its

simplicity, yet exhibiting a surprisingly competitive predictive accuracy. The NB

classifier has previously been applied in many fields, including microarray gene

expression data (Stephens & Diesing, 2014; Dwivedi, 2018).

Consider an n × p gene expression data matrix, where n is the number of the

samples, and p is the number of the genes (features). Let gkj , j = 1, 2, . . . , p, denote

the jth gene on the kth sample. Let Ci be the ith class, i = 1, 2, 3, . . . , L. The Naive

Bayes classifier uses the maximum a posteriori (MAP) classification rule to classify

these samples. The probability of the kth sample gene information vector,

Gk = (gk1, gk2, . . . , gkp)
′
, is calculated, and then the sample is assigned the class

with the largest probability from L conditional probabilities.

Let P (C1|Gk), P (C2|Gk), . . . , P (CL|Gk) denote the set of L conditional

probabilities. The NB classification depends on the Bayes rule, which states that a

posterior probability:

P (Ci |Gk) =
P (Gk |Ci)P (Ci)

P (Gk
∝ P (Gk |Ci)P (Ci), k = 1, 2, . . . , n, (2.25)

where P (Gk) is considered a common normalizing factor for all the L probabilities.

The NB classification assumes that all input features are conditionally independent,

that is,
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P (gk1, gk2, . . . , gkp |Ci) = P (gk1 | gk2, . . . , gkp, Ci)P (gk2, . . . , gkp |Ci)

= P (gk1 |Ci)P (gk2, . . . , gkp |Ci)

= P (gk1 |Ci)P (gk2 |Ci) . . . P (gkp |Ci).

(2.26)

Ultimately, NB classifies a new sample, G∗, according to the model with MAP

probability given the sample, as

Class(G∗)MAP = argmax(P (Ci |G∗)). (2.27)

NB is implemented using the R package naivebayes.

2.3.3.7 k-Nearest Neighbors

The k-nearest neighbor classifiers (KNN) are known to be the most useful

instance-based learners. KNN is a non-parametric model (Ripley et al., 2016). If the

classification is based on Euclidean distance in a feature space, then k determines

the number of neighbors to be used. In the testing set, the new sample is assigned

to the class that is most likely among the k neighbors. Then the number of

neighbors can be tuned to choose the optimal fitted model parameters (Stephens &

Diesing, 2014; Dwivedi, 2018; Yao & Ruzzo, 2006).

The KNN uses the Euclidean distance measure to find the closest samples for the

new sample. Suppose we have two samples, each one with n genes. Denote the two

samples as S1 = (g11, g12, . . . , g1n)
′

and S2 = (g21, g22, . . . , g2n)
′
. Then the Euclidean

distance is calculated as the square root of the sum of the squared differences in their

corresponding values. Using the Euclidean distance formula, the distance between

two points, dist(S1, S2) , is given as:

dist(S1, S2) =

√√√√
n∑

j=1

(g1j − g2j)2, (2.28)
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where a large dist(S1, S2) means the two samples belong to different classes, and

values near zero suggest that the samples are homogeneous. KNN is implemented

using the R package caret.

2.4 Results

The analysis of RNASeq data using the integrated list of genes was performed

using R statistical software. Assessment of the methods was done using 10-fold

cross-validation. Here, the 54 CRC samples were divided into 10-folds randomly,

with each fold consisting of about 5 - 6 samples. After that, we used a nine-folds for

model-building and one-fold for the testing and validation. Thus, this process was

self-iterated ten times, and the average of the ten iterations used to obtain the

model performance measures. Several performance measures exist in the literature

that can assess classification based on microarray and RNASeq gene expression

data. The metrics include accuracy, sensitivity, specificity, kappa coefficient, AUC,

and balanced error rate (BER) (Tharwat, 2020; Mohammed et al., 2018).

Table 2.1 below provides the number of genes obtained through the intersection,

complement of intersection, and union of the gene-lists from differential expression

analysis (RNASeq: GSE86562, Microarray: GSE86559). There were 165 and 282 total

DEGs in the GSE86559 and GSE86562 datasets, respectively. We obtained 23 genes

through the intersection, 142 from a complement of GSE86559, 259 a complement

of GSE86562, and 424 from a union (see Table 2.1).

Table 2.1: The number of genes obtained through the intersection, the complement of
intersection, and union of the gene-lists from differential expression analysis
(RNASeq: GSE86562, Microarray: GSE86559).

Dataset Total of DEGs Intersection Complement of Intersection Union

GSE86559 165
23

142
424

GSE86562 282 259

The 23 genes obtained from the intersection of the RNASeq and microarray gene
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expression data, their official gene symbols, and names are in Table 2.2.

Table 2.2: The official gene symbols and the corresponding gene names.

Ensemble Gene ID Official Gene Symbol Name

ENSG00000108511 HOXB6 homeobox B6(HOXB6)

ENSG00000169247 SH3TC2 SH3 domain and tetratricopeptide repeats 2(SH3TC2)

ENSG00000120068 HOXB8 homeobox B8(HOXB8)

ENSG00000025293 PHF20 PHD finger protein 20(PHF20)

ENSG00000136997 MYC v-myc avian myelocytomatosis viral oncogene homolog (MYC)

ENSG00000143882 ATP6V1C2 ATPase H+ transporting V1 subunit C2(ATP6V1C2)

ENSG00000003096 KLHL13 kelch like family member 13(KLHL13)

ENSG00000131746 TNS4 tensin 4(TNS4)

ENSG00000196532 HIST1H3C histone cluster 1 H3 family member c(HIST1H3C)

ENSG00000233101 HOXB-AS3 HOXB cluster antisense RNA 3(HOXB-AS3)

ENSG00000204104 TRAF3IP1 TRAF3 interacting protein 1(TRAF3IP1)

ENSG00000126003 PLAGL2 PLAG1 like zinc finger 2(PLAGL2)

ENSG00000120875 DUSP4 dual specificity phosphatase 4(DUSP4)

ENSG00000164070 HSPA4L heat shock protein family A (Hsp70) member 4 like (HSPA4L)

ENSG00000111057 KRT18 keratin 18(KRT18)

ENSG00000260807 LMF1 lipase maturation factor 1(LMF1)

ENSG00000174136 RGMB repulsive guidance molecule family member b(RGMB)

ENSG00000197818 SLC9A8 solute carrier family 9 member A8(SLC9A8)

ENSG00000187372 PCDHB13 protocadherin beta 13(PCDHB13)

ENSG00000140526 ABHD2 abhydrolase domain containing 2(ABHD2)

ENSG00000166068 SPRED1 sprouty related EVH1 domain containing 1(SPRED1)

ENSG00000182742 HOXB4 homeobox B4(HOXB4)

ENSG00000101193 GID8 GID complex subunit 8 homolog (GID8)

We performed an exploratory analysis of the RNASeq data. Fig 2.3 shows the most

meaningful changes at the 0.005 significance level among the genes between the two

conditions, based on the volcano plot (Li, 2012). The volcano plot shows the genes

with smaller p-values (higher -log10 values) in red.
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Figure 2.3: Volcano plot of the RNASeq dataset shows the 282 differentially expressed genes
in red points (α = 0.005).

Fig 2.4 illustrates the estimated dispersion of the RNASeq data using DESeq2

package, with each gene having a gene-specific dispersion parameter. Good

estimates of dispersion parameters lead to accurate detection of differentially

expressed genes. Underestimating the dispersion parameters might lead to false

positives (i.e., declaring genes to be differentially expressed when they are not truly

differentially-expressed). On the other hand, overestimating the dispersion

parameters might lead to false negatives (Landau & Liu, 2013).
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Figure 2.4: Dispersion for the RNASeq data.

Tables 2.3 – 2.6 show the performance of the gene-lists in predicting mutation status,

based on seven methods (algorithms), at the 0.005 significance level: the 282 gene-

list (Table 2.3); the 23 gene-list (Table 2.4); the 424 gene-list (Table 2.5); and the 401

gene-list (Table 2.6). It is apparent from Table 2.3, compared to Table 2.4 below, that

NB, ANN, KNN, and PLDA were improved in the common 23 genes in terms of all

performance measures, while RF and NBLDA had the same performance. SVM had

a better result on the full list of 282 genes. Therefore, in general, four methods out

of seven were improved on the 23 gene-list compared to the 282 genes-list. From Fig

2.5 (a and b), we notice NBLDA works very well in both lists of genes.
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Table 2.3: Performance of the classification methods for the 282 gene-list, on the RNASeq
dataset (α = 0.005).

Metric
Methods

SVM NB RF ANN KNN NBLDA PLDA

Accuracy (95% CI)
0.80

(0.66, 0.89)

0.76

(0.62, 0.87)

0.83

(0.71, 0.92)

0.72

(0.58, 0.84)

0.72

(0.58, 0.84)

0.89

(0.77, 0.96)

0.80

(0.66, 0.89)

Sensitivity (95% CI)
0.89

(0.71, 0.98)

0.59

(0.39, 0.78)

0.78

(0.58, 0.91)

0.78

(0.58, 0.91)

0.67

(0.46, 0.83)

0.81

(0.62, 0.94)

0.81

(0.62, 0.94)

Specificity (95% CI)
0.70

(0.50, 0.86)

0.93

(0.76, 0.99)

0.89

(0.71, 0.98)

0.67

0.46, 0.83)

0.78

(0.58, 0.91)

0.96

(0.81, 1.00)

0.78

(0.58, 0.91)

Kappa (95% CI)
0.59

(0.38, 0.80)

0.52

(0.30, 0.73)

0.67

(0.47, 0.86)

0.44

(0.21, 0.68)

0.44

(0.21, 0.68)

0.78

(0.61, 0.94)

0.59

(0.38, 0.81)

AUC 0.86 0.77 0.87 0.72 0.78 0.94 0.80

BER 0.19 0.21 0.16 0.28 0.28 0.10 0.20

Table 2.4: Performance of the classification methods for the 23 gene-list, on the RNASeq
dataset (α = 0.005).

Metric
Methods

SVM NB RF ANN KNN NBLDA PLDA

Accuracy (95% CI)
0.78

(0.64, 0.88)

0.80

(0.66, 0.89)

0.83

(0.71, 0.92)

0.80

(0.66, 0.89)

0.76

(0.62, 0.87)

0.89

(0.77, 0.96)

0.87

(0.75, 0.95)

Sensitivity (95% CI)
0.81

(0.62, 0.94)

0.70

(0.50, 0.86)

0.78

(0.58, 0.91)

0.81

(0.62, 0.94)

0.70

(0.50, 0.86)

0.85

(0.66, 0.96)

0.85

(0.66, 0.96)

Specificity (95% CI)
0.74

(0.54, 0.89)

0.89

(0.71, 0.98)

0.89

(0.71, 0.98)

0.78

(0.58, 0.91)

0.81

(0.62, 0.94)

0.93

(0.76, 0.99)

0.89

(0.71, 0.98)

Kappa (95% CI)
0.56

(0.33, 0.78)

0.59

(0.38, 0.80)

0.67

(0.47, 0.86)

0.59

(0.38, 0.81)

0.52

(0.29, 0.75)

0.78

(0.61, 0.94)

0.74

(0.56, 0.92)

AUC 0.80 0.82 0.91 0.84 0.78 0.89 0.91

BER 0.22 0.19 0.16 0.20 0.24 0.11 0.13
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Table 2.5: Performance of the classification methods for the 424 gene-list, on the combined
RNASeq and microarray datasets (α = 0.005).

Metric
Methods

SVM NB RF ANN KNN

Accuracy (95% CI) 0.98 (0.90, 1.00) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.98 (0.90, 1.00) 0.83 (0.71, 0.92)

Sensitivity (95% CI) 1.00 (0.87, 1.00) 0.89 (0.71, 0.98) 0.89 (0.71, 0.98) 1.00 (0.87, 1.00) 0.74 (0.54, 0.89)

Specificity (95% CI) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.93 (0.76, 0.99)

Kappa (95% CI) 0.96 (0.89, 1.00) 0.85 (0.71, 0.99) 0.85 (0.71, 0.99) 0.96 (0.89, 1.00) 0.67 (0.47, 0.86)

AUC 1.00 0.94 0.96 1.00 0.89

BER 0.02 0.07 0.07 0.02 0.15

Table 2.6: Performance of the classification methods for the 401 gene-list, on the RNASeq
dataset (α = 0.005).

Metric
Methods

SVM NB RF ANN KNN

Accuracy (95% CI) 0.98 (0.90, 1.00) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.96 (0.87, 1.00) 0.83 (0.71, 0.92)

Sensitivity (95% CI) 1.00 (0.87, 1.00) 0.89 (0.71, 0.98) 0.89 (0.71, 0.98) 0.96 (0.81, 1.00) 0.74 (0.54, 0.89)

Specificity (95% CI) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.93 (0.76, 0.99)

Kappa (95% CI) 0.96 (0.89, 1.00) 0.85 (0.71, 0.99) 0.85 (0.71, 0.99) 0.93 (0.83, 1.00) 0.67 (0.47, 0.86)

AUC 1.00 0.91 0.96 1.00 0.89

BER 0.02 0.07 0.07 0.04 0.15

Table 2.5 presents the integration results using the union approach, and it is clear

that SVM, NB, RF, ANN, and KNN methods were improved compared to the case of

282 differentially expressed genes. Fig 2.5 (a and c) confirm these results. Moreover,

SVM and ANN had a higher accuracy than the other methods.
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Figure 2.5: ROC curves based on the (a) 282 gene-list for the RNASeq data, (b) 23 gene-list
for the RNASeq data, (c) 424 gene-list for the RNASeq and microarray datasets,
and (d) 401 gene-list for the RNASeq and microarray datasets, under (α = 0.005).

As can be seen from Table 2.6 above, the methods performed better for the gene-list

of 401 genes, compared to the 282 gene-list. Furthermore, Fig 2.5 (d) confirm these

results.

We compared our gene-list of 23 genes with the 18-gene RAS signature (DUSP4,

DUSP6, ELF1, ETV4, ETV5, FXYD5, KANK1, LGALS3, LZTS1, MAP2K3, PHLDA1,

PROS1, S100A6, SERPINB1, SLCO4A, SPRY2, TRIB2, and ZFP106) as reported by

Dry et al. (Dry et al., 2010) and found only one overlapping gene (DUSP4). It turned

out that this was also the most predictive of the seven genes (DUSP4, DUSP6,

ETV4, ETV5, PHLDA1, SERPINB1, and TRIB2) that were discussed in Omolo et al.

(2016) (Omolo et al., 2016).
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We performed an additional analysis to assess whether the 23 gene-list was

predictive of overall survival (OS). We used the mutation status as a group variable

and vital status (dead or alive) as the censoring variable in this analysis. Overall,

there were 20 deaths out of the 54 samples. The results showed that the median OS

was 1692 days for the 54 samples. We used the Kaplan-Meier curves to graphically

compare survival probabilities (Fig 2.6) between the two mutation groups

(RAS-mutant vs. wild-type), and the log-rank test using the RAS mutation status as

the group variable. There was no significant difference in OS between the two

groups (log-rank = 1.8, p-value = 0.2). We then applied the Cox proportional

hazards (CPH) model was to assess the significance of the 23 genes and RAS

mutation status. The results show that 9 of 23 genes were significantly associated

with OS, including SPRED1, KLHL13, HOXB4, LMF1, HSPA4L at the 0.05 level,

and ATP6V1C2, PLAGL2, MYC, SLC9A8 at the 0.1 level (LRT = 56.85, p-value =

0.0002) as can be seen in Table 2.7.
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Figure 2.6: Kaplan-Meier curves for overall survival (in days).

We further performed an analysis of the top nine genes using gradient boosted

trees and Shapley additive explanations (SHAP) methods to identify the top-K

genes (1 < K < 9) (Lundberg & Lee, 2017). The SHAP approach determined the

order of importance of our nine genes. SHAP values gave the importance of a gene

by comparing what a model predicts with and without the gene. A SHAP value of

0 means that the gene does not affect the prediction, as shown in Fig 2.7. The

vertical axis showed the gene names, arranged in the order of importance, from top

to bottom while the adjacent value next to the gene name is the mean SHAP value.

The horizontal axis showed the SHAP value, which indicated how much the

change was in log-odds. From the log-odds, one can obtain the probability of

success. The gradient color indicated the original value for that gene.
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Genes pushing the prediction higher were colored blue, while those pushing the

prediction lower were colored yellow. Each point represented a row from the

original dataset.

Figure 2.7: Genes in ascending order of importance (Note: dots represent SHAP values of
specific features).
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Table 2.7: Cox proportional hazards model for overall survival, using the 23 genes and RAS
mutation status (class) as covariates.

Covariate Coef Hazard ratio (HR) SE(Coef) Z-score P-value

Class 2.23E+00 9.34E+00 1.41E+00 1.589 0.112

ATP6V1C2 4.72E-03 1.01E+00 2.66E-03 1.779 0.0752 .

HOXB-AS3 7.96E-05 1.00E+00 1.30E-03 0.061 0.951

KRT18 -3.27E-05 1.00E+00 8.73E-05 -0.374 0.7084

RGMB 7.48E-04 1.00E+00 1.13E-03 0.662 0.5079

PLAGL2 -3.28E-03 9.97E-01 1.89E-03 -1.737 0.0824 .

DUSP4 2.12E-03 1.00E+00 2.24E-03 0.946 0.3441

SPRED1 1.50E-03 1.00E+00 7.61E-04 1.969 0.0489 *

SH3TC2 6.92E-04 1.00E+00 4.42E-04 1.564 0.1178

HOXB8 -1.04E-02 9.90E-01 7.21E-03 -1.444 0.1488

ABHD2 4.67E-04 1.00E+00 4.34E-04 1.078 0.2812

TNS4 -5.58E-04 9.99E-01 3.74E-04 -1.491 0.1358

HIST1H3C -4.67E-03 9.95E-01 3.20E-03 -1.458 0.1449

KLHL13 8.28E-03 1.01E+00 3.24E-03 2.559 0.0105 *

MYC 1.21E-03 1.00E+00 7.16E-04 1.689 0.0911 .

HOXB4 9.10E-03 1.01E+00 3.60E-03 2.529 0.0114 *

HOXB6 -2.78E-04 1.00E+00 4.18E-03 -0.067 0.9469

PHF20 1.47E-03 1.00E+00 1.78E-03 0.825 0.4094

LMF1 3.19E-03 1.00E+00 1.43E-03 2.224 0.0262 *

SLC9A8 -4.98E-03 9.95E-01 2.56E-03 -1.946 0.0517 .

GID8 2.16E-03 1.00E+00 2.61E-03 0.828 0.4079

HSPA4L -6.94E-03 9.93E-01 2.78E-03 -2.497 0.0125 *

PCDHB13 -3.90E-03 9.96E-01 4.09E-03 -0.953 0.3406

TRAF3IP1 -7.63E-03 9.92E-01 4.86E-03 -1.571 0.1163

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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2.5 Discussion

The development of molecular signatures is a significant step towards

understanding the molecular mechanisms of tumorigenesis, which could help with

accurate prognosis and diagnosis and thus allow physicians to prescribe suitable

patient-specific therapies.

Several studies have done cancer classification using either microarray or RNASeq

data only, and few have shown integration of both types of data, based on

heterogeneous datasets. To the best of our knowledge, no cancer classification

study has employed the integration of a homogeneous datasets approach. In this

study, we integrated homogeneous microarray and RNASeq datasets and assessed

whether such an approach could improve the classification accuracy using seven

methods, namely, SVM with radial basis function kernel, NB, RF, ANN, KNN,

NBLDA, and PLDA. We implemented the classification of the mutation status of

CRC samples, using gene-lists obtained through the intersection, the complement

of an intersection, and the union of differentially-expressed genes from microarray

and RNASeq datasets.

CRC is the third most common cancer and one of the leading causes of death

around the world. The findings suggest that combining two homogeneous datasets

from different technologies could lead to an increase in CRC classification accuracy.

Castillo et al. (Castillo et al., 2019) reported that combining heterogeneous datasets

from different platforms can improve the performance of a classifier, using multiple

datasets. They used data from different technologies and platforms to obtain a

larger sample size due to the lack of enough RNASeq samples. Our proposed

approach is different from Castillo et al. (Castillo et al., 2019), in that we used

homogeneous datasets and a balanced binary class problem. We used the 0.005

significance level to obtained the differentially expressed genes, which is restrictive

enough to control the false positive rate.
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A comparison of the performance of the classification methods for each gene-list

revealed that SVM yielded the highest mean accuracy (0.885), followed by RF

(0.880), ANN(0.865), NB(0.855), and KNN(0.785) across the four gene-lists.

However, NBLDA performed better than PLDA as a classifier when the analysis

was restricted to RNASeq (count) data. Castillo et al. (Castillo et al., 2019) also

showed that SVM performed second to KNN. Statnikov et al. (Statnikov et al., 2013)

performed a comparison of 18 classification methods on five feature selection

methods, using eight datasets and showed that RF had the highest accuracy (0.954).

Our classification results using the integrated list of genes outperformed Mamatjan

et al. (Mamatjan et al., 2017), where they used RNASeq data for tumor

classification. Their results showed that mRNA signatures and DNA methylation

signatures as single platforms achieved 95% and 88% accuracy of histological

diagnosis, respectively. Moreover, the PLAGL2 gene, as one of our predictive genes,

also has been one of the most common predictive genes in Rashid et al. (Rashid

et al., 2019). Furthermore, our work integrated RNA and DNA signature for

classification and survival analysis with very high metrics compared to Popovici et

al. (Popovici et al., 2012). In this study (Popovici et al., 2012), the authors developed

a classifier using 64 genes for detecting BRAF mutant tumors for colon cancer. Also,

they found DUSP4 to be one of the top 50 differently expressed genes.

Survival analysis results showed that 9 of 23 genes were prognostic for overall

survival for CRC patients. Upon subjecting the nine genes to the Shapley additive

explanations (SHAP) method to rank the genes in order of importance, the top-5

genes to emerge were ATP6V1C2, MYC, LMF1, HSPA4L, and PLAGL2.

Our findings are consistent with other published molecular signatures from

previous studies (Zumwalt et al., 2016; He et al., 2018; Liu et al., 2019). Zumwalt et

al. (Zumwalt et al., 2016) showed that ATP6V1C2 expression successfully
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distinguished between cancerous and non-cancerous samples in CRC. He et al. (He

et al., 2018) reported that the expression of c-Myc, which was one of the three

related human genes encoded under MYC genes family, was observed in many

human cancers and was elevated in up to 70 − 80% in CRC. Liu et al. (Liu et al.,

2019) [66] identified ten lncRNAs related to crucial outcomes in CRC, and one of

these was LMF1. Zhang et al. (Zhang et al., 2018) obtained 34 genes using minimal

redundancy maximal relevance (mRMR) and incremental feature selection (IFS)

methods. They found that the HSPA4L gene was the most highly expressed in CRC

patients with chromosomal instability (CIN) mechanism. Zheng et al. (Zheng et al.,

2010) reported that the PLAGL2 gene was vital in increasing the effect on

glioblastoma and colorectal cancer. Su et al. (Su et al., 2018) reported that PLAGL2

served as an oncogenic function in multiple human malignancies, including

colorectal cancer (CRC).

This study was limited by the available number of homogeneous RNASeq and

microarray datasets. Only one matched-pair set of 54 CRC samples was analyzed.

Future studies should extend the approach to more than one cancer type and

multiple datasets. However, the number of samples in each dataset (n = 54)

ensured that the training and validation sets were large enough for the magnitude

and statistical significance of the classification accuracies.

2.6 Conclusion

In summary, data integration by taking the intersection of the individual gene-lists

from the two data types improved the classification accuracy of CRC. However,

laboratory experiments should be conducted on this 23-gene signature to further

assess its clinical significance in CRC research. NBLDA method was the best

performer on the RNASeq data. Results suggest that the SVM method was the most

suitable classifier for CRC across the two data types and had high accuracy before

and after the integration. Future studies should determine the effectiveness of
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integration in cancer survival analysis and the application on unbalanced data

(where the classes are of different sizes) as well as on data with multiple classes.
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Chapter 3

Paper II: A Stacking Ensemble

Deep Learning Approach to Cancer

Type Classification Based on

TCGA Data

This chapter addresses the following objective:

• Develop and apply stacking ensemble approach based on deep learning

methods to predict different cancer types.

3.1 Abstract

Cancer tumor classification based on morphological characteristics alone has been

shown to have serious limitations. Breast, lung, colorectal, thyroid, and ovarian are

the most commonly diagnosed cancers among women. Precise classification of

cancers into their types is considered a vital problem for cancer diagnosis and

therapy. In this paper, we proposed a stacking ensemble deep learning model based

on one-dimensional convolutional neural network (1D-CNN) to perform a

multi-class classification on the five common cancers among women based on
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RNASeq data. The RNASeq gene expression data was downloaded from

Pan-Cancer Atlas using GDCquery function of the TCGAbiolinks package in the R

software. We used least absolute shrinkage and selection operator (LASSO) as

feature selection method. We compared the results of the new proposed model with

and without LASSO with the results of the single 1D-CNN and machine learning

methods which include support vector machines with radial basis function, linear,

and polynomial kernels; artificial neural networks; k-nearest neighbors; bagging

trees. The results show that the proposed model with and without LASSO has a

better performance compared to other classifiers. Also, the results show that the

machine learning methods (SVM-R, SVM-L, SVM-P, ANN, KNN, and bagging

trees) with under-sampling have better performance than with over-sampling

techniques. This is supported by the statistical significance test of accuracy where

the p-values for differences between the SVM-R and SVM-P, SVM-R and ANN,

SVM-R and KNN are found to be p = 0.003, p ≤ 0.001, and p ≤ 0.001, respectively.

Also, SVM-L had a significant difference compared to ANN p = 0.009. Moreover,

SVM-P and ANN, SVM-P and KNN are found to be significantly different with

p-values p ≤ 0.001 and p ≤ 0.001, respectively. In addition, ANN and bagging trees,

ANN and KNN were found to be significantly different with p-values p ≤ 0.001

and p = 0.004, respectively. Thus, the proposed model can help in the early

detection and diagnosis of cancer in women, and hence aid in designing early

treatment strategies to improve survival.

3.2 Background

Recent global public health research shows an epidemiological paradigm shift from

infectious to non-communicable diseases, the latter including different types of

cancers. The incidence and prevalence of cancer are on the increase worldwide,

both in the developing and developed countries (Olsen, 2015; Morhason-Bello et al.,

2013). The global cancer statistics estimated about 19.3 million new cancer cases in

2020 alone, and close to 10 million deaths of 36 cancers in 185 countries (Sung et al.,
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2021). Breast cancer (with estimated 2.3 million new cases) is the most common

diagnosed among women, followed by lung, colorectal, thyroid, and ovarian

cancers. Moreover, the most leading cause of death is the lung cancer (with

estimated 1.8 million deaths). The cancer burden is expected to increase to 28.4

million cases by 2040 (Sung et al., 2021).

Cancer tumor classification based on morphological characteristics alone has

serious limitations in differentiating among cancer tumors and may cause a strong

bias in identifying the tumor by experts (Golub et al., 1999; Mohammed et al., 2018;

Tan & Gilbert, 2003). Recently, RNASeq gene expression data (Datta & Nettleton,

2014; Rai et al., 2018) has emerged as the preferred technology for the simultaneous

quantification of gene expression compared to the DNA microarray (Koch et al.,

2018; Zhao et al., 2016). The classification of cancer using gene expression data from

RNASeq technology provides the opportunity to discriminate healthy and diseased

samples or among different types and subtypes of cancer more accurately

(García-Díaz et al., 2020). RNASeq gene expression data have had a profound

impact on disease diagnoses and prognoses through accurate disease classification,

which has helped clinicians to choose the appropriate treatment plans for patients

(Abusamra, 2013). There exists striking disparities in the global cancers among

women (Sung et al., 2021; Torre et al., 2017). Correct classification of these cancers is

among the essential strategies to inform clinical decisions and reduce morbidity

and mortality from cancers among women.

Although the use of gene expression data from RNASeq technology has improved

cancer classification, it has its own limitations due to it being characterized by small

samples sizes, with each sample having a large number of genes (the curse of

dimensionality) (Yang & Naiman, 2014; Lusa et al., 2010). In addition, the samples

also contain several genes that are uninformative and degrade the classification

performance (García-Díaz et al., 2020; Vanitha et al., 2015). As a way to mitigate this
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problem, it has been suggested to first perform filtration and feature selection

through methods such as the two-sample t-test at a given stringent significance

threshold before going further with model building (Haury et al., 2011). This

procedure ensures that only informative and sufficiently differentially expressed

genes between the outcome classes are used in building the classifiers. This process

of feature selection motivates the evaluation of methods for the classification of

different cancer tumors and disease stages, to improve early detection and the

design of targeted treatment strategies that may reduce mortality. The two-sample

t-test as a method for feature selection is easy to use but comes with the problem of

multiple testing that the user has to deal with. Other methods or approaches that

are model based, such as regularized regression methods, have recently become

popularly used.

There are many supervised and unsupervised machine learning as well as deep

learning methods developed for cancer classification using gene expression data.

Several studies reported a higher predictive performance of the machine learning

methods on the multi-class cancer classification problem (García-Díaz et al., 2020;

Castillo et al., 2019; Ramaswamy et al., 2001; Nawaz et al., 2018). These studies,

however, differ in the methods used for feature (gene) selection. In particular,

Castillo et al. (Castillo et al., 2019) used differential expression analysis and

minimum-redundancy maximum-relevance method for feature selection in the

microarray and RNASeq data. García-Díaz et al. (García-Díaz et al., 2020) applied a

grouping genetic algorithm for feature selection in five different cancers using

RNASeq data.

Ramaswamy et al. (Ramaswamy et al., 2001), on the other hand, used support

vector machines (SVM) and a recursive feature elimination method to remove the

uninformative genes. These studies concentrated on the application of machine

learning methods on a multi-class classification problem. Several methods
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developed by other authors for multi-class cancer classification are reported to have

a higher predictive performance compared to existing methods (Piao et al., 2017).

Lee et al. (Lee et al., 2019) proposed a new ensemble classifier called cancer

predictor using an ensemble model (CPEM), for classification of over 31 different

cancer tumors downloaded from TCGA repository. In addition, they assessed

different input features such as mutation profiles, mutations rates, mutation

spectra, and signature. Thereafter, they investigated different machine learning and

feature selection models in order to find the best model which achieved 84% of

accuracy using 10 folds cross-validation. Furthermore, they used the six most

common cancers out of 31 types and the model achieved 94% of classification

accuracy. However, some of the statistical methods achieved results that are better

than machine learning algorithms. Tabares-Soto et al. (Tabares-Soto et al., 2020)

compared machine learning and deep learning methods in classifying 11 different

tumor classes using microarray gene expression data. They implemented eight

supervised machine learning methods including KNN, support vector classifier

(SVC), logistics regression (LR), linear discriminant analysis (LDA), naïve Bayesian

classifier (NB), multi-layer perceptron (MLP), decision trees, and random forest

(RF) as well as one unsupervised method such as k-means. In addition, they

applied two deep neuronal networks (DNN) methods. Their results showed that

the deep learning methods outperformed the other machine learning methods.

In this study, we propose a stacking ensemble deep learning model that uses five

1D-CNN as base models. The results of these models are combined using NN,

which is used as a meta model to classify the most common types of cancers among

women using RNASeq data. We compared the performance of our new proposed

model when using the full list of genes as input with its performance when using a

reduced selection of genes using LASSO. Also, we consider comparing the

performance of our current proposed model with other machine learning methods

since there are limited studies that compare the performance of deep learning and
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machine learning methods to classify different types of cancer. LASSO is used as a

feature selection technique, since it has been shown to improve prediction accuracy,

especially when there is a small number of observations and a large number of

features (Fonti & Belitser, 2017). Findings from this study might help in the early

detection and accurate classification of these cancer types and contribute to efforts

of finding therapies that may increase survival for women at risk.

3.3 Material and methods

In this paper, we downloaded the RNASeq gene expression data from Pan-Cancer

Atlas (https://portal.gdc.cancer.gov/), using R statistical software version 3.6.3 via

the TCGAbiolinks package (Chang et al., 2013; Colaprico et al., 2016; R Core Team,

2020). The data contains 2166 samples from the top five common cancers between

women. We applied eight multi-class classification methods to find the best

classifier that discriminates among five common cancers among women. The

machine learning methods were implemented in the R software, while the deep

learning method (1D-CNN) was implemented using TensorFlow with Keras.

3.3.1 Datasets

We used only five cancer tumors (normal cases were excluded) from RNASeq gene

expression datasets. The cancer tumors were breast, colon adenocarcinoma,

ovarian, lung adenocarcinoma, and thyroid cancer. The datasets were downloaded

from Pan-Cancer Atlas using GDCquery function of the TCGAbiolinks package in R

(Colaprico et al., 2016). GDCquery function has many parameters, to define the

function known by the following names: project, legacy, data.category, data.type,

platform, file.type, experimental.strategy, and sample.type. The project parameter

indicates a list of the data that should be downloaded. In our case, we passed the

five project codes corresponding to our five types of cancer, which are

TCGA-BRCA, TCGA-COAD, TCGA-OV, TCGA-LUAD, and TCGA-THCA. We set

the legacy to “true”, which helps the query to search only in the legacy repository
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for the unmodified stored data in the TCGA data portal.

“Gene expression” and “Gene expression quantification” are passed to the

data.category and data.type arguments, respectively, to filter the data files to be

downloaded. The platform “Illumina HiSeq” was used to download the data. We

used “results” for file.type argument to filter the legacy database, and “RNA-Seq”

was chosen as experimental.strategy argument to produce the expression profiles.

Moreover, we selected the tumor samples to be downloaded using the “Primary

solid Tumor” value as sample.type argument. The downloaded data in a matrix

form included five types of cancer, where the columns represent the samples and

the rows containing the genes, i.e. features (equivalently covariates). The datasets

were combined to give 2166 tumor samples obtained from all the five cancers, with

19, 947 common genes. Due to the curse of high-dimensionality, we performed

filtration and feature selection to reduce the high number of genes in order to

exclude irrelevant and noisy ones that could affect the performance of the methods.

Thus, we applied normalization, transformation, and filtration steps to the data to

select the informative genes that potentially could contribute positively to the

classification accuracy. Table 3.1 below shows a summary of the downloaded data

including the training and testing fractions for each cancer tumor.

Table 3.1: Number of samples in each class used in the classification.

Cancer tumor Number of samples (%) Training (≈ 70%) Testing (≈ 30%)

Breast (BRCA) 1082 (50) 753 329

Colon adenocarcinoma (COAD) 135 (6) 99 36

Lung adenocarcinoma (LUAD) 275 (13) 189 86

Ovarian (OV) 304 (14) 217 87

Thyroid (THCA) 370 (17) 259 111

Total 2166 1517 649
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Figure 3.1: Array-array intensity correlation (AAIC) matrix defines the Pearson correlation
coefficients among the samples.

3.3.2 Data pre-processing

We used TCGAanalyze_Preprocessing function in TCGAbiolinks package (Colaprico

et al., 2016), which utilizes an array-array intensity correlation (AAIC) approach to

obtain a N × N square symmetric matrix of Spearman correlations among the

samples. The AAIC enabled us to find samples with low correlation considered as

possible outliers (Fig 3.1). After that, we performed gene normalization through

TCGAanalyze_Normalization function, which calls the sub-routines

newSeqExpressionSet, withinLaneNormalization, betweenLaneNormalization, and

counts from EDASeq package to adjust the GC-content effect or other gene level

effects, distributional differences between lanes, and global-scaling and

full-quantile normalization (Bullard et al., 2010). TCGAanalyze_Filtering was used

for filtering out the irrelevant genes and returned the genes with the mean intensity

across the samples higher than 0.25, which was the threshold defined quantile
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mean. After applying this process, we found 14, 899 genes to be informative

meaning 5048 genes were rendered irrelevant. For further reduction and precise

differential gene expression analysis, we used DESeq package in R (Anders &

Huber, 2010; Love et al., 2019; Dündar et al., 2015). DESeq analyses the gene

expression based on the negative binomial distribution and a shrinkage estimator

for the distribution’s variance. After using DESeq package, 12, 649 genes out of the

14, 899 post initial filtering were found to be differentially expressed meaning a

further 2250 genes were removed.

3.3.3 Feature selection using LASSO regression

The RNASeq gene expression data after preprocessing had 12, 649 dimensions or

features, which was still huge given that the number of samples was 2166.

Therefore, LASSO regression was used to decrease the number of genes or features

that enabled us to effectively analyze the data. LASSO is a method that performs

regularization and feature selection through a shrinkage (regularization) process.

LASSO penalizes the regression coefficients with L1-norm whereby some

coefficients are shrunk to zero. After that, the coefficients of the regression variables

having significantly non-zero values are selected and used in the model (Fonti &

Belitser, 2017).

In the case of the multinomial response with K > 2 levels, assume that ℓ(gi) =

Pr(C = ci | gi), where ci ∈ 1, 2, 3, . . . ,K is the ith response. The log-likelihood of

the multinomial model under LASSO model can be written in a generalized form as

(Friedman et al., 2010)

max
{β0ℓ,βℓ}ssK1 ∈RK(p+1)

[
1

N

N∑

i=1

log pci(gi)− λ

K∑

ℓ=1

Pα(βℓ)

]
, (3.1)

which can be maximized as a penalized log-likelihood. The outcomes in the data can

be denoted in the form of a matrixYYY of dimension N×K, with elements yiℓ = I(ci =

ℓ). Thus, the terms in the regularized log-likelihood in Eq. 3.1 can be written in more
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explicit form

ℓ({β0ℓ, βℓ}K1 ) =
1

N

N∑

i=1

[
K∑

ℓ=1

yiℓ(β0ℓ + gTi βℓ)− log

(
K∑

ℓ=1

eβ0ℓ+gTi βℓ

)]
, (3.2)

Pα(β) = (1− α)
1

2
∥β∥2L2

+ α∥β∥L1 (3.3)

=

p∑

j=1

[
1

2
(1− α)β2

j + α|βj |
]
, (3.4)

Pα is the penalty part, where gi is the gene expression levels for sample i, βℓ is the

vector of the regression coefficients, yiℓ is the class response value in sample i.

When α = 0 in Eq. 3.3 we obtain the ridge regression penalty, whereas α = 1 leads

to LASSO regression penalty. We chose LASSO regression because it uses the sum

of the absolute values of the model parameters, restricted to be less than a fixed

value as the penalty. LASSO, with tenfold cross-validation returned 173 genes

(Supplementary File 5.4). These genes were obtained when lambda (λ) value gave a

minimal deviance associated with the response variable, and so were used for the

classification. The cross-validated multinomial deviance is a function of log(λ), and

when log(λ) is equal to −1, it is an indication that λ and multinomial deviance are

both big. As λ decreases and becomes very small, the multinomial deviance also

becomes small and almost flat, indicating that the attained model is a good fit.

There are many advantages of the LASSO method, which include removing those

variables with zero coefficients that lead to reduced variance without an intrinsic

increase in bias. The method also minimizes over-fitting by excluding irrelevant

variables that are not related to the outcome variable. The LASSO method naturally

also deals with the multiple testing problem, by penalizing irrelevant features,

whose contribution is shrunk to zero. This leads to an improved classification and

prediction accuracy (Fonti & Belitser, 2017; Pereira et al., 2016). In our case, LASSO

was implemented using glmnet package in R (Hastie et al., 2016).
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3.3.4 Data partitioning

We used tenfold cross-validation to evaluate the different prediction methods using

70% of the dataset. In the tenfold cross-validation, the dataset is divided into ten

parts, where one part is removed to represent the validation set, and the remaining

nine parts combined to represent the training set. Thus, this process is repeated ten

times by removing one part each time to have a different part of the data for

validation (Hu et al., 2006). We left aside 30% of the entire dataset, which served as

an independent testing set for the final evaluation.

3.3.5 The classification models

We performed classification on the different cancers as a multi-classification

problem using gene expression levels as covariates. Eight classification methods

were used: the new proposed stacking ensemble deep learning model;

one-dimensional convolutional neural network (1D-CNN); support vector

machines (SVM) with radial basis function, linear, and polynomial kernels; artificial

neural networks (ANN); K-nearest neighbors (kNN); and bagging trees.

Support vector machines (SVM) (Boser et al., 1992), is a well-known machine

learning method that has been used widely in many fields, including gene

expression data analysis (Brown et al., 1999; Chu & Wang, 2003). SVM aims to find

an optimal hyperplane that separates the data into two different classes for the

binary classification problem, determined by a subset of samples known as support

vectors (Munoz et al., 2003). SVM can handle non-linearly separable problems by

transforming the data using mapping kernel functions. These functions include

radial basis, polynomial, and linear functions (Stephens & Diesing, 2014). The SVM

is implemented using kernlab package in R statistical software (Karatzoglou et al.,

2019). Suppose we have n samples and p genes. Furthermore, assume samples

belong to two linearly separable classes represented by +1 or −1, and suppose gi is

the features vector. Then we let, (gi,yi) ∈ G × Y, i = 1, 2, 3, . . . , n , where
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yi ∈ +1,−1 is the target variable dichotomy in the p dimensional space. The aim is

to classify the sample into one of the two classes and by extension find an SVM

classifier that generalizes to a multi-class problem. There are many hyperplanes

that discriminate the two classes, but the goal is achieved by finding an optimal

separating hyperplane that lies furthest from the both classes. The separating

hyperplane can be defined by

w ∗ g + b = 0, (3.5)

where w is the weight vector, b is the bias, and |b|
∥w∥ is the perpendicular distance to the

hyperplane. We can rescale the w and b such that the following equation determines

the point in each class that is nearest to the hyperplane defined by the equation

w ∗ g + b = 1. (3.6)

Therefore, a separating hyperplane for the two classes should follow

w ∗ g + b = +1 when yi = +1. (3.7)

w ∗ g + b = −1 when yi = −1. (3.8)

After the rescaling, the distance from the nearest point in each class to the

hyperplane becomes 1
|w| . Consequently, the distance between the two classes is 2

∥w∥ ,

which is called the margin. The solution of the following optimization problem is

obtained by maximizing the margin:

min
w,b

1

2
∥w∥2 subject to yi(w ∗ g + b) ≥ 1, i = 1, 2, 3, . . . , n. (3.9)

For the multi-class problem there are many types of extensions that can be used

such as one-vs-one, one-vsall (one-vs-rest), decision directed acyclic graph based

approach, multi-class objective function, and errorcorrecting output code based
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approach. These approaches use the same binary classification principle, where the

multi-class problem is decomposed into multiple binary problems. In the

one-vs-one multi-class classification problem the SVM classifier produces all

possible pairs of binary classifications. Suppose we have k classes where k > 2,

then, k(k−1)
2 binary classifiers are produced in the training step of the algorithm.

Consequently, a sample in the test dataset is assigned the class label that is voted

the most by the
(
k
2

)
binary classifiers from the trained one-vs-one SVM. In our case

we use the one-vs-one multi-class classifier.

Artificial neural networks (ANN) is a computational method constructed from

many layers, each layer consisting of nodes called neurons (Dwivedi, 2018). The

data flows from the input layer to the output layer through the hidden layers (Lek

& Park, 2008). The nodes between the input through the hidden layers to the output

layers are connected by appropriately defined weights or weight functions. The

number of input and output layers depends on the number of covariates in the

dataset as well as a number of classes in the outcome variable (Lek & Park, 2008).

The inputs are weighted by multiplying every one of them by a weight which is a

measure of its contribution. Therefore, the hidden layer receives the weighted

inputs and produce outputs using an activation function(s) (Stephens & Diesing,

2014; Dwivedi, 2018). ANN can be implemented using the R package nnet (Ripley

et al., 2016).

Specifically suppose we have gene expression data with p genes. The input layer

receives the p genes and multiplies them by weights as follow

bi =
P∑

j=0

w
(1)
ij gi i = 1, 2, 3, . . . , n, (3.10)

where g is a vector of input features and g0 = 1 is a constant input feature with

weight wi0. The bi are called activations, and the parameters w
(1)
ij are the weights.

The subscripts (1) refer to the first layer of the network. Then the activations are
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transformed by a nonlinear activation function f , usually a sigmoid function as

given in the following equation

zi = f(bi) =
1

1 + exp(−bi)
. (3.11)

In the second layer, the outputs of the hidden units are linearly combined to give the

activations

hk =
n∑

i=0

w
(2)
ik zi k = 1, 2, 3, . . . ,K, (3.12)

where the w
(2)
ik are the weight parameters for the transformation in the second layer

of the neural network. The outputs are transformed using an activation function

such as the sigmoid function

yk = f(hk) =
1

1 + exp(−hk)
. (3.13)

K-nearest neighbors (kNN) is a non-parametric method used for classification and

regression (Yao & Ruzzo, 2006). The idea behind kNN lies in finding the most

nearest neighbors of the new sample, and this is based on the similarity and

distance metric (Cunningham & Delany, 2020). In kNN, k-neighbors determine the

class of a new instance; therefore, the new sample is assigned the class that is most

likely among the k-neighbors (Stephens & Diesing, 2014; Dwivedi, 2018). In general,

kNN has two phases; the first is finding the nearest neighbors, and the second is

assigning the class of a new sample using those neighbors by the majority vote rule.

kNN is implemented using R package caret (Kuhn et al., 2020).

Suppose we have two samples s1, s2 each with p genes. Since kNN uses the

Euclidean distance measure to find the closest sample for a new sample, the

distance between the two samples can be calculated as
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dist(s1, s2) =

√√√√
P∑

j=1

(g1j − g2j)2. (3.14)

A new sample is allocated the class that most of its neighbors fall, that is, model

class of its neighbors.

Bagging trees or bootstrap aggregation method is appealing because its ability to

reduce the variance associated with a prediction and hence, improve the prediction

accuracy (Sutton, 2005). The method splits the data into many bootstrap samples,

thereafter, train the model for each bootstrap. Then, the overall prediction obtained

by averaging and voting for regression and classification, respectively.

Convolution Neural Networks (CNNs) are deep learning architectures that have

multi-layers between the input and output and are designed for image analysis and

classification (Bengio, 2009; Schmidhuber, 2015; Elbashir et al., 2019). Deep learning

is applied successfully in many areas including medical image analysis, computer

vision, drug design, and bioinformatics and yield performance that sometimes

surpass expert personals’ performance (Ciregan et al., 2012). CNNs are a

regularized version of fully connected networks (multilayer perceptrons), in which

each neuron in one layer is connected to all the neurons in the layer that follows it.

The connectivity between the neurons is inspired by the biological process and

resembles the arrangement of the animal visual cortex. In contrast to other image

classification and analysis algorithms, CNNs use little pre-processing by learning

the filters that capture temporal and special dependencies in an image instead of

hand-engineering them. A sequence of stacked layers (convolutional layer, pooling

layer, and fully-connected layer) makes the architecture of CNNs and in each layer,

a differentiable function is used to transform one volume of activations to the layer

that follows it. The major building blocks in CNNs are the convolutional layers,

which apply filters on an input image to create a feature map. To get a good

classification performance, CNNs normally decrease the features of the image into
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an easier processed arrangement without dropping essential features. The pooling

layers use max pooling or average pooling to reduce the dimension of the image’s

features. The fully connected layer is an important component in the CNNs

architecture that derives the final classification results.

The input to the CNNs is a tensor of order 3 that represents an image having m rows

and n columns with 3 color channels (RGB). The tensor encodes the pixel intensities

of the image and produces the input features that go through the convolutional,

pooling, and the fully connected layers sequentially. In the convolutional layer, a

filter of size f by f and stride = s are applied and the result is 3× (m− f +1)× (n−

f +1) hidden feature neurons if a stride of 1 is used and the pooling layer result will

be 3× (m− r + 1)/2× (n− r + 1)/2 hidden features neurons when applied to 2× 2

regions. The convolution operation generates the features map by multiplying the

element of the input array by the element of the filter element wise and summing up

the result to generate on pixel of the features map. Sliding the filter across the matrix

and repeating the multiplication and summing up operations will generate the rest

of features map pixels. The mathematical equation of this convolution operation is

given as follows

O(i, j) =

f∑

k=1

(
f∑

l=1

input(i+ k − 1, j + l − 1) kernel(k, l)

)
, (3.15)

where i = 1, 2, . . . ,m− f + 1, j = 1, 2, . . . , n− f + 1.

1D-CNN is a simple CNN architecture that has only one convolutional layer. The

simple design of this model leads to reduced number of parameters that can be

adjusted during the training process therefore, it is highly needed in the genomic

studies where it is difficult to collect large data to train a deep learning model that

has very large number of parameters (Mostavi et al., 2020). The one dimensional

that we used in this study was constructed by Mostavi et al. (Mostavi et al., 2020)

for predicting cancer tumor based on gene expression data. The architecture of the
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model when using LASSO as a feature selection technique is shown in Fig. 3.2.

Figure 3.2: Illustrates the architecture of the 1D-CNN model. The upper panel presents the
1D-CNN without LASSO, while the lower panel shows the usage of LASSO as s
feature selection technique for the 1D-CNN where it gives an input vector with
173 genes.

3.3.6 Regularization with early stopping

We applied 1D-CNN with early stopping regularization to avoid over-fitting. The

over-fitting is usually caused by training the model too much, making it pick up the

noise as an essential part of the data instead of relying only on the training data.

Such noise is normally unique to each training data. It can lead to high variance in

the model estimates. On the other hand, too little training can result in under-fitting

or high bias. Therefore, the variance and the bias have a negative relationship

meaning that if the bias increases for fixed mean square error, then the variance will

decrease and vice versa and that is known as the bias-variance tradeoff (Friedman

et al., 2001; Yang et al., 2020). To avoid over-fitting, we can use a model with fewer

parameters or obtaining more data. A model with fewer parameters can cause high
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bias. Since obtaining more data is not easy in the medical field, then a model with

fewer parameters seems to be the alternative, but modern approaches in deep

learning repeatedly show the benefits of using models with a large number of

parameters (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014). Therefore,

finding a way of adjusting the variance by minimizing noisy data can help solve the

over-fitting problem. Since too much training can result in over-fitting, whereas too

little training can result in under-fitting then the model can be regularized using the

early stopping mechanism. We can implement the early stopping mechanism in the

training procedure to make the architectures better fit the training data with each

epoch and determining the number of epochs that can be run before the pre-trained

model begin to overfit.

3.3.7 Stacking ensemble

Ensemble learning is the process of improving classifiers performance by

combining the contribution of the trained sub-models to solve same classification

problem (Mohammed et al., 2018). Overall, each base learner votes and the final

prediction is gained by the meta-learner, which is a model that learn to correct the

prediction of the base-learners. Therefore, the ensemble approach results in

prediction accuracy that is better than the single learners. Generalizability of an

ensemble usually reduces the variance in the prediction, and thus ensure the most

stable and best possible prediction is made. The meta model takes the output of the

sub-models (baselearners) as input and then learns to merge the input prediction to

make the final prediction which is better than each of the base-classifiers. Fig. 3.3

shows our proposed stacking ensemble deep learning model.
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Figure 3.3: Stacking ensemble deep learning model architecture in which five 1D-CNN
models are used as base models and the results of these models are combined
using NN, which is used as a meta model. The NN has one hidden layer and an
output layer that is activated using softmax function.

3.3.8 Performance evaluation

We used different performance metrics to evaluate the performance of the

classification methods. These metrics are namely accuracy, kappa, specificity,

sensitivity, the area under the curve (AUC), precision, F-measure, and ROC curve.

The accuracy measures the percentage of correctly classified cases but is not

sufficient for measuring the performance of the classifier, especially if we have

unbalanced data (which is the case with cancer data that we are dealing with).

Sensitivity measures the percentage of the cases that are correctly classified as

having cancer among those samples that are truly cancerous. Therefore, it measures

the fraction of the correctly predicted cancer cases. Specificity measures the

percentage of cases that do not have cancer, which are correctly identified to be so.

In other words, it measures the true negative rate. Precision is the percentage of
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cases among those classified as positive that are truly positive, i.e., having cancer,

and sometimes this measure is called the positive predicted value. F-measure is a

measure that balances between precision and sensitivity.

We also compared the predictive performance of the methods using the receiver

operating characteristic (ROC) curve plots. These figures were plotted using

MultiROC package in R (Wei et al., 2018). MultiROC calculates and visualizes ROC

curve for multi-class using micro-averaging and macro-averaging approaches.

Micro-averaging ROC-AUC converts the multi-class classification into binary

classification by stacking all groups together. Macro-averaging ROC-AUC uses one

versus the rest approach by averaging all group’s results and linear interpolation

used between the points of the ROC. Confidence intervals for kappa statistics were

computed using vcd package.

3.3.9 Methods to adjust for class imbalances

Imbalanced class sizes may lead to poor predictive performance particularly for the

classes with small samples (Table 3.1 ). In order to handle the class imbalance and

hence improve the models’ performances we used the synthetic minority

over-sampling technique (SMOTE) and under-sampling (DOWN) methods.

SMOTE has been used widely in various fields such as bioinformatics for

addressing the class imbalance in the outcome (Xiao et al., 2011; Batuwita & Palade,

2009). SMOTE is a data augmentation method that add new data to the minority

class that are synthesized from the existing data instead of duplicating the data,

because the duplication will not provide any new information to the model.

SMOTE works by first selecting randomly a class instance a from the minority class

then it chooses randomly one of the k nearest neighbors b to create the synthetic

instances as a convex combination of a and b and finally, it forms a line segment in

the feature space by connecting a and b.
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We synthesized the minority class from existing samples by selecting randomly the

closest k minority nearest neighbors to balance the class (Chawla et al., 2002;

Chawla, 2009; Johnson & Khoshgoftaar, 2019). This statistical technique increases

and generates the samples to reach the highest majority class and it makes the

samples more general. SMOTE is implemented using caret package in R by

adjusting the sampling method in the train control parameter to be ‘SMOTE’.

Under-sampling technique (DOWN) tends to produce a new balanced subset of the

original dataset by randomly removing instances usually from the majority class

observations (Galar et al., 2011; Rok & Lara, 2013). DOWN is implemented using

caret package in R by adjusting the sampling method in the train control parameter

to be ‘DOWN’.

3.3.10 Statistical significance test

There are many different techniques that can used for comparing the accuracies of

the machine learning models. In this work, we used the resamples method in R to

analyze and visualize the estimated performance of the models. We used the

summary function to compute summary statistics across each model/metric

combination. Diff function in R is used to estimate the differences between the

methods. The diff function performs a pairwise comparisons to compute the

differences between pairs of consecutive elements using Bonferroni correction as an

adjustment method. Bonferroni test is a type of multiple testing method used in

statistical analysis to reduce the instance of a false positive and prevent the data

from appearing incorrectly to be statistically significant (Trawiński et al., 2012;

Wang et al., 2017).

3.4 Results

We found that the performance of the machine learning methods when LASSO as

feature selection technique used is by far better than when it is not used. The
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performance of the methods in terms of overall statistics are summarized in Table

3.2 based on the under-sampling technique. Table 3.3 shows the results of methods

in terms of per-class statistics for under-sampling technique. The receiver operating

characteristic (ROC) curve plots comparing the machine learning classification

methods in this study are shown in, Figs. 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 based on

under-sampling method. The predictive performance of the under-sampling

technique outperformed the over-sampling technique. Results for the

over-sampling technique are available in the Supplementary File 5.4.

3.4.1 The overall predictive performance of the machine learning

methods based on the under-sampling technique

The accuracy, precision, sensitivity, and F1-Score performance measures for the

overall multi-class classification problem based on the under-sampling technique

(DOWN) are presented in Table 3.2. These results show that bagging trees method

achieved the best performance measure compared to the other methods where it

yields an accuracy, sensitivity, AUC, and F1-score of 99.2%, 99.4%, 99.54%, and

99.5%, respectively. However, SVM-P and bagging trees have the same precision,

and they have a close results in the other performance measures. Consequently,

ANN method obtained the worst performance with an accuracy of 80.7%.

Table 3.2: The overall predictive performance of the machine learning methods based on
under-sampling.

Methods
Performance Measures

ACC (95% CI) Kappa (95% CI) F1-Score Precision Sensitivity AUC

SVM-R 95.84 (94.00, 97.24) 93.81 (91.55, 96.07) 98.64 99.39 97.90 98.04

SVM-L 96.76 (95.10, 97.99) 95.14 (92.74, 97.18) 97.48 100.0 95.08 98.56

SVM-P 98.92 (97.79, 99.57) 98.40 (97.89, 99.74) 99.24 99.69 98.79 99.50

ANN 80.74 (77.49, 83.71) 72.15 (70.39, 79.59) 87.46 84.80 90.29 83.84

kNN 93.07 (90.83, 94.90) 89.97 (87.18, 92.75) 95.91 92.70 99.34 94.94

Bagging trees 99.20 (98.21, 99.75) 98.86 (97.86, 99.85) 99.54 99.69 99.39 99.54

Note: SVM-R, Support Vector Machine with Radial-basis function (RBF) kernel; SVM-L, Support Vector Machine with Linear Kernel; SVM-P, Support Vector Machine with Polynomial

Kernel; ANN, Artificial Neural Networks; kNN, K-nearest Neighbors; Bagging trees; ACC, Accuracy; CI, Confidence Interval; Kappa, Kappa Statistics; AUC, Area Under the Curve.
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3.4.2 Predictive performance of the machine learning methods per cancer

tumor based on the under-sampling

The accuracy, precision, sensitivity, and F1-Score performance measures based on

perclass statistics using the under-sampling technique method (DOWN) are

presented in Table 3.3. Bagging trees outperforms the other methods in classifying

most of the five cancer tumors in most of the performance measures, followed by

SVM-P method. While the ANN shows the lowest performance measures. These

results were confirmed using the ROC curves which are depicted in Figs. 3.4, 3.5,

3.6, 3.7, 3.8, and 3.9. Bagging trees was able to highly correctly classify the ovarian

cancer with 100% in terms of accuracy, sensitivity, specificity, F1-Score, and

precision. While SVM-L and SVM-P can sensitively classify the thyroid cancer with

a 100% of accuracy, sensitivity, specificity, F1-Score, and precision. Also, SVM-R

shows performance that is close to SVM-L and SVM-P to classify the thyroid cancer.
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Table 3.3: Predictive performance of the machine learning methods per-class statistics
based on undersampling.

Performance

Measures

Methods

Class SVM-R SVM-L SVM-P ANN kNN Bagging trees

Accuracy

BRCA 98.6 97.3 99.2 87.7 96.0 99.5

COAD 95.8 98.6 98.6 90.2 94.7 98.5

LUAD 97.7 99.6 98.0 82.8 90.6 98.7

OV 90.7 88.5 98.9 93.4 98.5 100

THCA 97.8 100 100 82.5 99.1 99.6

Sensitivity

BRCA 99.4 100 99.7 84.8 92.7 99.7

COAD 91.7 97.2 97.2 86.1 94.4 97.2

LUAD 98.8 100 96.5 68.6 81.4 97.7

OV 81.6 77.0 97.7 92.0 98.9 100

THCA 95.5 100 100 67.6 98.2 99.1

Specificity

BRCA 97.8 94.7 98.8 90.6 99.4 99.4

COAD 100 100 100 94.3 94.9 99.8

LUAD 96.6 99.3 99.5 97.0 99.8 99.6

OV 99.8 100 100 94.8 98.0 100

THCA 100 100 100 97.4 100 100

F1-Score

BRCA 98.6 97.5 99.2 87.5 95.9 99.5

COAD 95.7 98.6 98.6 60.8 67.3 97.2

LUAD 89.5 97.7 96.5 72.8 89.2 97.7

OV 89.3 87.0 98.8 81.6 93.5 100

THCA 97.7 100 100 75.0 99.1 99.6

Precision

BRCA 97.9 95.1 98.8 90.3 99.4 99.4

COAD 100 100 100 47.0 52.3 97.2

LUAD 81.7 95.6 96.5 77.6 98.6 97.7

OV 98.6 100 100 73.4 88.7 100

THCA 100 100 100 84.3 100 100

Note: SVM-R, Support Vector Machine with Radial-basis function (RBF) kernel; SVM-L, Support Vector

Machine with Linear Kernel; SVM-P, Support Vector Machine with Polynomial Kernel; ANN, Artificial

Neural Networks; kNN, K-nearest Neighbors.
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Figure 3.4: Multi-class ROC curves visualization for the SVMR model based on under-
sampling technique.

Figure 3.5: Multi-class ROC curves visualization for the SVML model based on under-
sampling technique.
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Figure 3.6: Multi-class ROC curves visualization for the SVMP model based on under-
sampling technique.

Figure 3.7: Multi-class ROC curves visualization for the ANN model based on under-
sampling technique.
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Figure 3.8: Multi-class ROC curves visualization for the KNN model based on under-
sampling technique.

Figure 3.9: Multi-class ROC curves visualization for the bagging trees model based on
under-sampling technique.
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3.4.3 Predictive performance of the one-dimensional convolutional

neural network model

The results that are presented in Table 3.4 show that the 1D-CNN model has a high

performance when applied on the genes that are selected using LASSO (173 genes)

where it achieved an average classification accuracy of 99.22%. These results also

showed that the 1D-CNN outperformed the results of the machine learning

methods that are presented in Table 3.2. It can be noted from the overlapped

confusion matrix of the multiclass classification that the deep learning model

classified the five categories of the cancers types using the 173 genes better than

classifying these categories using the full list of genes (14, 899). The resulting

precision, recall, and F1-score values are 99.32%, 99.09%, and 99.19%, respectively.

Table 3.4: The performance of the 1D-CNN model using early stopping regularization.

All (14, 899 Genes)

Performance Measures
Folds

Overall
1 2 3 4 5 6 7 8 9 10

Accuracy 99.54 98.16 95.85 97.24 97.24 97.24 99.54 96.30 99.54 100 98.06

Precision 99.47 96.07 93.50 96.72 96.92 95.11 99.82 94.16 99.38 100 97.12

Recall 99.26 98.20 96.56 95.22 96.82 96.06 99.26 94.94 99.81 100 97.61

F1-Score 99.36 97.03 94.87 95.94 96.78 95.48 99.53 94.54 99.59 100 97.31

Reduced (173 Genes)

Accuracy 98.62 99.54 99.08 98.62 99.54 100 99.07 99.54 98.61 99.54 99.22

Precision 99.46 99.31 99.10 98.99 99.82 100 98.48 99.29 98.92 99.82 99.32

Recall 97.97 99.82 99.10 98.39 99.29 100 98.72 99.81 98.52 99.26 99.09

F1-Score 98.68 99.56 99.10 98.65 99.54 100 98.57 99.54 98.69 99.53 99.19

Figures 3.10, 3.11, 3.12, and 3.13 show F1-measure and accuracy for training and

validation when training our model using the full list of genes and the reduced

genes with the early stopping approach. These figures indicate that the model can

generalize very well since they become stable when the F1-measure and the

accuracy are more than 99%. Figures 3.14 and 3.15 show the losses when using the

full list of genes and the LASSO selected genes, respectively.
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Figure 3.10: Training and validation F1 measure for the full list of genes with early stopping.

Figure 3.11: Training and validation accuracy for the full list of genes with early stopping.
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Figure 3.12: Training and validation F1 measure for reduced genes with early stopping.

Figure 3.13: Training and validation accuracy for reduced genes with early stopping.
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Figure 3.14: Training and validation loss for the full list of genes with early stopping.

Figure 3.15: Training and validation loss for reduced genes with early stopping.
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Figure 3.16: 10-folds overlapped confusion matrix (CM) for all 14, 899 genes.

Figure 3.17: 10-folds overlapped confusion matrix (CM) for the reduced 173 genes.
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The multi-class classification performance of the 1D-CNN model has been

evaluated for each fold, and the average classification performance of the model is

calculated. The overlapped confusion matrix (CM) is shown in Figs. 3.16 and 3.17

for all and reduced lists of genes, respectively. The overlapped CM is created using

the sum of the ten separated confusion matrices. Thus, it is aimed to obtain an idea

about the general perforations of the model.

Although we are using RNAseq data with a high number of genes, deep learning

method outperformed the machine learning methods noting that a rigorous

preprocessing step including a model-based approach using LASSO regression was

applied to reduce the number of genes to be less than the number of observations.

The results that are presented in Table 3.5 below show that our proposed model has

a high performance when applied on the genes that are selected using LASSO (173

genes) where it achieved an average precision, recall, and F1-Score of 99.55%,

99.29%, and 99.42% respectively. While the classification accuracy is 99.45% which

is lower compared to accuracy of the full genes. These results also showed that our

proposed model outperformed the results of the single 1D-CNN model and

machine learning that are presented in Tables 3.2 and 3.4. In addition, Figs. 3.18 and

3.19 which is the overlapped confusion show that our proposed model has a better

classification performance compared compared to the single 1D-CNN. Overall, our

proposed model performance without using LASSO as a feature selection method

is comparable to the performance with LASSO.
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Table 3.5: The performance of the 1D-CNN model using early stopping regularization.

All (14, 899 Genes)

Performance Measures
Folds

Overall
1 2 3 4 5 6 7 8 9 10

Accuracy 99.45 99.26 99.63 99.08 99.63 99.45 99.63 99.45 99.63 99.63 99.48

Precision 99.23 99.15 99.57 98.57 99.57 99.23 99.57 99.23 99.57 99.57 99.33

Recall 98.88 98.53 99.57 98.12 99.57 99.50 99.57 98.88 99.57 99.57 99.18

F1-Score 99.05 98.83 99.57 98.31 99.57 99.36 99.57 99.05 99.57 99.57 99.25

Reduced (173 Genes)

Accuracy 99.45 99.26 99.26 99.26 99.45 99.45 99.45 99.63 99.82 99.45 99.45

Precision 99.58 99.31 99.13 99.31 99.58 99.60 99.58 99.65 99.93 99.79 99.55

Recall 99.19 99.12 99.31 99.12 99.19 99.38 99.19 99.47 99.72 99.19 99.29

F1-Score 99.38 99.22 99.22 99.22 99.38 99.49 99.38 99.56 99.82 99.49 99.42

Figure 3.18: 10-folds stacking ensemble deep learning model overlapped confusion matrix
(CM) for all 14, 899 genes.
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Figure 3.19: 10-folds stacking ensemble deep learning model overlapped confusion matrix
(CM) for the reduced 173 genes.

A comparison of the methods was statistically conducted using the pairwise

analysis test which produced pairwise statistical significance table of scores where

the lower diagonal of the table shows p-values for the null hypothesis (distributions

are the same), smaller p-value is indicative of a better model. The upper diagonal of

the table presents the estimated differences in mean accuracy and kappa coefficient

between the distributions. From Table 3.6 (under-sampling technique) we can see

clearly of the fifteen pairwise comparisons of the six machine learning methods,

there are nine comparisons showing statistically significant differences in terms of

accuracy at the 0.05 level of significance. These differences are SVMR differed

statistically to SVMP p = 0.003, ANN p ≤ 0.001, and KNN p ≤ 0.001. While SVML

differed statistically to ANN p = 0.009, and SVMP differed statistically to ANN

p ≤ 0.001 and KNN p ≤ 0.001. Moreover, ANN differed statistically to bagging

trees p ≤ 0.001, as well as KNN differed statistically to bagging trees p = 0.004.
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Table 3.6: Pairwise statistical analysis test p-values and the estimated differences for the
machine learning models (under-sampling technique).

Accuracy

SVMR SVML SVMP ANN KNN Bagging trees

SVMR 0.015 -0.015 0.138 0.038 -0.003

SVML 1.00 -0.030 0.123 0.022 -0.019

SVMP 0.003 0.347 0.153 0.052 0.011

ANN <0.001 0.009 <0.001 -0.101 -0.142

KNN <0.001 1.00 <0.001 0.008 -0.041

Bagging 1.00 1.00 0.250 <0.001 0.004

Kappa

SVMR SVML SVMP ANN KNN Bagging trees

SVMR 0.024 -0.021 0.194 0.054 -0.005

SVML 1.00 -0.045 0.170 0.030 -0.029

SVMP 0.003 0.386 0.215 0.075 0.016

ANN <0.001 0.010 <0.001 -0.140 -0.199

KNN <0.001 1.00 <0.001 0.006 -0.059

Bagging 1.00 1.00 0.250 <0.001 0.004

3.5 Discussion

We applied a novel stacking ensemble deep learning model to classify five common

cancers among women: breast, colon adenocarcinoma, lung adenocarcinoma,

ovarian, and thyroid cancers. The performance of the current proposed model is

compared with the single 1D-CNN and machine learning methods that are mostly

used in cancer types classification. We showed that the best machine learning

average results were obtained using 173 genes based on the under-sampling

108



3.5. Discussion

technique, while our proposed model has the highest performance based on the

early stopping regularization. The improvement in accuracy was achieved by

optimizing several parameters. We used LASSO as a feature selection technique

with our proposed model to explore the integration of features selection method

with a deep learning approach because features selection in deep learning is still

unexplored area due to the black box nature of the deep learning methods. The

results of the proposed model without using LASSO as a feature selection

technique is comparable to the results with LASSO. This indicates that the 1D-CNN

performs features selection through its layers. Bagging trees obtained excellent

results, with a maximum accuracy of 99.2% among the machine learning models

based on the under-sampling technique. In contrast, ANN showed the least

accuracy of 80.7% for classifying the most common cancers among females. The

SVM-P method showed performances that was close to the bagging trees method

with an accuracy of 98.9% when we used the under-sampling technique. Overall,

our results showed that SVM-R, SVM-L, SVM-P, ANN, KNN, and bagging trees

were improved in performance if under-sampling is applied compared to

over-sampling. We conclude that our proposed model is the best methods for the

test dataset in this study. However, bagging trees is the best model among the

machine learning models.

Overall, our proposed model surpassed the single 1D-CNN and the machine

learning methods in the classification of common cancers among women. These

findings are different from those reported in other studies (García-Díaz et al., 2020;

Castillo et al., 2019; Ramaswamy et al., 2001). These differences can be explained by

variations in the type of cancers studied and the methods used for feature/ gene

selection. A study by Yang and Naiman (Yang & Naiman, 2014) introduced and

validated a gene selection approach using machine learning methods but did not

assess the performance of the machines. Our findings demonstrated that, our

proposed model can achieve a higher performance on cancer tumor classification
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using gene expression data. Both deep and machine learning methods and a

combination of both can assist in predicting or detecting cancer susceptibility in the

early stages and therefore, aid in designing early treatment strategies, and in turn

increase survival of the high-risk women.

Because of the large number of genes in the gene expression data, we used LASSO

regression as a rigorous feature selection method that reduced the dimensionality

of the data sets (Fonti & Belitser, 2017; Ogutu et al., 2012). This process enabled us

to retain the most important features (genes) for classification and prediction. In

order to avoid over-fitting and the bias in the skewed class distribution we used

over and under-sampling imbalance handling techniques, which improve the

machine learning performance. In general, our results show that under-sampling

technique improved the methods performance, and this is confirmed in previous

studies (Galar et al., 2011; Rok & Lara, 2013; Van Hulse et al., 2007).

There were statistically significant differences (p < 0.05) between the machine

learning methods, which demonstrates that the performance of the machines on

cancer classification is not the same. However, deep learning methods

outperformed the machine learning methods in cancer classification, which is

similar to a previous study (Tabares-Soto et al., 2020). Overall, the accuracy of our

proposed model on the full features and on the features that are selected using

LASSO are 99.48% and 99.45%, respectively, which are 5.05% and 5.02% higher

than accuracy obtained by (Tabares-Soto et al., 2020) which is 94.43%. We note that

Tabares-Soto et al. (Tabares-Soto et al., 2020) used microarray gene expression data,

focusing on 11 type of cancers for both males and females, compared to RNASeq

data used in this study to classify five common cancers among females. This study

also did not consider class imbalance handling methods as applied in the current

study and had 12-times lower sample size (n = 174) than in our study (n = 2166).

With larger sample size, more samples are available to train the models. These
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issues were, therefore, likely to affect the reliability of findings and potentially

affecting the performance of the methods. Our study was limited to the gene

expression profiles from RNASeq data. However, Lee and co-workers (Lee et al.,

2019) used several features such as mutation profiles and mutations rates. They

evaluated different machine learning and feature selection methods using RNASeq

data from 31 cancer types. The highest accuracy they obtained was 84%. Thereafter,

they reduced the number of cancers to the six most common types and obtained an

accuracy of 94%, which is low compared to our proposed deep learning model.

Our proposed model has a very high achievement in classifying the five common

cancers among women and that may potentially improve the multi-class

identification (Ramaswamy et al., 2001). In addition, this study is first of its kind to

classify cancer tumors using RNAseq data. However, multi-class cancer

classification using gene expression is not a substitute to the traditional diagnosis

(Ramaswamy et al., 2001), but advances in classification algorithms or methods

may provide a more accurate and biologically meaningful classifications and

inform future studies. Moreover, a more pressing classification problem may be

that of discriminating between cancer sub-types within the same type than between

cancer types. However, we postulate that the methods covered in this paper are

directly applicable to this problem.

3.6 Conclusion

In this work, we proposed a stacking ensemble deep learning model as a

multi-class classifier to classify five most common cancers among women, that is,

breast, colon adenocarcinoma, lung adenocarcinoma, ovarian, and thyroid cancer,

using RNASeq gene expression datasets for each cancer tumor. Tumor classification

using RNASeq data is more accurate and available compared to microarray data.

We used LASSO as a feature selection method and compared the performance of

our proposed method with a stand alone deep learning and machine learning
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methods. We conclude that our proposed model achieved the highest performance

compared to the single 1D-CNN and the machine learning methods. Our proposed

model is, therefore, capable of correctly classifying all the observed positive cancer

cases. The proposed model can help improve the detection and diagnosis of cancer

susceptibility among women in the early stages, inform decision on early

intervention, and hence improve survival. Future research should consider the

potential effects of using many feature types such as methylations, mutations,

proteins, Single nucleotide polymorphisms (SNPs), etc, to be integrated with

RNASeq data. Future work will also consider improvements on the stacking

ensemble problem including statistical properties to improve inference.
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Chapter 4

Paper III: Predictors of Colorectal

Cancer Survival using Cox

Regression and Random Survival

Forests Models Based on Gene

Expression Data

This chapter addresses the following objective:

• Determine the predictors and genes of CRC using Cox PH and RSF models,

including handling missing values in the dataset.

4.1 Abstract

Understanding and identifying the markers and clinical information that are

associated with colorectal cancer (CRC) patient survival is needed for early

detection and diagnosis. In this work, we aimed to build a simple model using Cox

proportional hazards (PH) and random survival forest (RSF) and find a robust

signature for predicting CRC overall survival. We used stepwise regression to
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develop Cox PH model to analyse 54 common differentially expressed genes from

three mutations. RSF is applied using log-rank and log-rank-score based on 5000

survival trees, and therefore, variables important obtained to find the genes that are

most influential for CRC survival. We compared the predictive performance of the

Cox PH model and RSF for early CRC detection and diagnosis. The results indicate

that SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX genes were significantly

associated with the CRC overall survival. In addition, age, sex, and stages are also

affecting the CRC overall survival. The RSF model using log-rank is better than

log-rank-score, while log-rank-score needed more trees to stabilize. Overall, the

imputation of missing values enhanced the model’s predictive performance. In

addition, Cox PH predictive performance was better than RSF.

4.2 Introduction

Colorectal cancer (CRC) is the second leading cause of mortality in women and

third in men (Favoriti et al., 2016). The American cancer society estimate, about 1 in

23 men and 1 in 25 women develop colorectal cancer in their lifetime (Society,

2020). Globally, there were about 19.3 million new cancer cases in 2020 alone, while

close to 10 million deaths were recorded due to cancer (Sung et al., 2021). CRC

represents 9.4% of cancer deaths and 10% of newly diagnosed cancer cases (Sung

et al., 2021). The incidence and mortality in males are 10.6% and 9.3%, respectively,

while the incidence and mortality in females are 9.4% and 9.5%, respectively (Sung

et al., 2021). Early detection of CRC can reduce mortality due improved

chemotherapy regimens and surgical techniques (Dai et al., 2020; Bray et al., 2018;

Stintzing, 2014). The prognosis and survival of early intervention with CRC

patients are linked with tumor staging, where early diagnosis of the tumor is more

likely to be curable (Bian et al., 2019). The 5-year relative survival rates for patients

with localized CRC was 91% in the USA between 2010 and 2016 (ACS, 2021).

However, the 5-year relative survival rates of CRC cases at regional and distant

stages are 72% and 14%, respectively (ACS, 2021). The main characteristics of the
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CRC are that it has high inter-patient and intra-tumor heterogeneity. Other factors

such as environment, lifestyle, and diet can lead to further heterogeneity in the

CRC occurrence and progression (Molinari et al., 2018; Bramsen et al., 2017; Ogino

et al., 2018). This heterogeneity leads to variations in response to treatment between

individuals. Determining the molecular markers is clinically essential to help detect

and precisely predict the prognosis of patients with CRC.

Researchers have developed many methods to determine the prognostic molecular

markers to early detect and predict the prognosis of patients with CRC. These

methods include univariate and multivariate Cox proportional hazard models,

elastic net estimation, and random forests for survival prediction (Dai et al., 2020;

Bian et al., 2019; Aziz et al., 2016; Pan et al., 2019; Martinez-Romero et al., 2018; Yan

et al., 2012). Previous studies such as, Abdul Aziz et al. (Aziz et al., 2016) analyzed

the CRC death using the Cox proportional hazard model, and they reported a 19

gene signature that could predict the survival of CRC patients with Dukes’ B and C

stages. In their work, Abdul Aziz et al. used SAM, limma, and t-test to identify the

most significant genes based on microarray gene expression data. Dai et al. (Dai

et al., 2020) conducted a survival analysis using univariate and multivariate Cox

models based on three microarray datasets from GEO and one dataset from the

TCGA database. They used the DEGs from each of the three microarray datasets,

and they identified 105 mutual DEGs based on the intersection of the three DEGs

lists. They conducted a protein-protein interaction network (PPI) of the DEGs, and

they identified hub genes. To investigate the 44 hub genes’ prognostic values in

CRC, they conducted a survival analysis using the sample splitting and Cox

regression models based on the TCGA dataset. Their results showed that two

down-regulated and two up-regulated hub genes were significantly associated with

the CRC patients’ overall survival. Bian et al. (Bian et al., 2019) analyzed data from

four microarray datasets and identified DEGs from each of them. They identified

the common genes across the four datasets, and this way, they obtained 53 genes.
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Then they utilized PPI, which identified ten essential genes according to their

degree value, betweenness centrality, and closeness centrality. They used gene

expression profiling interactive analysis (GEPIA) to apply survival analysis using

the log-rank test based on the expression levels. Their results showed that four low

expressed genes out of the ten genes were significantly related to unfavorable

prognosis in the patients with CRC. Martinez-Romero et al. (Martinez-Romero

et al., 2018) identified a new set of gene markers associated with CRC to predict

tumor progression and evolution towards inferior survival stages based on an

integrated gene expression dataset of 1273 CRC samples. They compared the early

and late stages of CRC using limma to identify the genes (2707 DEGs) that had a

significant effect on CRC tumor progression. Then, they applied Kaplan-Meier to

rank the genes based on the non-parametric log-rank test. Their results identified

429 essential genes in which overexpression is related to low survival rate and 336

crucial genes in which repression is associated with inferior survival. They

validated the top 5 genes using an external cohort study and presented a good

separation of the CRC samples into two low and high-risk groups.

A study by Pan et al. (Pan et al., 2019) proposed a predictive model based on

RNASeq gene expression data. Their model uses the differentially expressed genes

(DEGs) profiles. These profiles were obtained using the univariates and

multivariate Cox regression, which was used to compare TNM stages to assess

their predictive survival accuracy. Their results showed that 10 DEGs had a

significant effect on CRC survival. Yan et al. (Yan et al., 2012) implemented random

forests to identify biomarkers associated with survival in CRC based on a set of

oligonucleotide microarray data. Their results showed that four genes had the

potential to predict CRC survival.

To the best of our knowledge, RSF has not been used with gene expression data in

the previous studies to predict CRC survival. The gene expression data is

characterized by the problem of the curse of dimensionality and collinearity. To
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overcome this problem, the CRC survival is predicted based on selecting the

differentially expressed genes (DEGs) in colorectal cancer that was based on the

three-mutation status (KRAS, BRAF, and TP53) where they serve as a predictive

biomarker of response to treatment in CRC. We assume that complex interaction

between multiple DEGs contributes to prognostic survival differences between

wild-type and mutant patients with CRC.

We developed and compared Cox proportional hazard (Cox PH) model and

random survival forests (RSF) in predicting CRC survival and associated

biomarkers using a public genome database from Gene Expression Omnibus

(GEO). The aim was to assess the CRC survival predictors accounting for missing

data based on the gene expression data. We selected 54 common differentially

expressed genes from three mutations (KRAS, BRAF, and TP53), using the complete

case samples, and performed analysis using Cox PH and RSF models before and

after imputation.

4.3 Materials and Methods

4.3.1 Dataset

The dataset with accession number GSE39582 (Marisa et al., 2013), was

downloaded from Gene Expression Omnibus (GEO) public database

(https://www.ncbi.nlm.nih.gov/geo/) using the BRB-ArrayTools software

(https://brb.nci.nih.gov/BRB-ArrayTools/). This dataset has 54675 probes taken

from 566 samples with colon cancer and 19 non-tumor samples. Usually, the gene

expression data includes noisy and or irrelevant genes. Therefore, performing data

cleaning and feature (genes) selection are essential steps that should be applied

before modeling the data. A pre-processing step was applied to prepare the dataset

for modeling. These pre-processing steps are log2 transformation, quantile

normalization, gene filtration, and differentially expressed genes analysis using a

two samples t-test. Filtration is a process in data cleaning used to eliminate
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insufficiently expressed probes and those with excessive missing expression levels

across the samples (Simon et al., 2007; Chaba, 2016; Bolstad et al., 2003; Mohammed

et al., 2018). On the other hand, quantile normalization and log2-transformed steps

to eliminate the variation between samples. BRB-ArrayTools is used to implement

the filtration and normalization of the dataset. The two-sample t-test, with the 0.001

significance level threshold, was used for gene selection to provide informative

genes for building survival models. The overall procedures that we followed in our

analysis are summarized in Figure 4.1.

Figure 4.1: Flow-chart of the procedure followed in the pre-processing and analysis of the
dataset.

4.3.2 Statistical Analysis

We analyzed the gene expression data using the R version (R-4.0.4). Summary

statistics of the gene expressions are depicted in the supplementary file (see

Appendix 5.4). These statistics include the minimum, maximum, means, and

standard deviations of the expression levels. We used frequency and percentages
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for the categorical data representing the clinical information, as shown in 4.1. The

statistical analysis was conducted in three phases; the first phase is the complete

case analysis, followed by imputation of missing values in the outcome based on

the covariates and an appropriate imputation model. Then we applied survival

analysis on the complete case and imputed datasets. The survival analysis results

on these two datasets were compared to evaluate the precision of estimates. Two

separate models were fitted before and after imputations; the first is the Cox

regression model, while the second is the random survival forests with log-rank

and log-rank-score split rules. The missing values were assumed to be missing at

random (MAR), where the probability of data being missing does not depend on

the unobserved data, conditional on the observed data (Pedersen et al., 2017;

Rezvan et al., 2015; Mboya et al., 2020, 2021); consequently, the genes and other

covariates in the dataset were used to predict missingness.

4.3.2.1 Complete case analysis

The filtration step resulted in 18865 out of 54675 probes. These 18865 probes were

used for further reduction analysis using a t-test. To find the differentially

expressed genes (DEGs) that discriminate between the mutant and wild-type

mutation, we used the three mutation types, KRAS, BRAF, and TP53. We created

three different datasets using the 18865 probes with each of the three mutation

types based on these three mutation types. First, we removed the samples with

missing values for each of the three datasets according to their clinical outcome.

Then, we calculated the correlation matrix for the gene expression data and filtered

out one gene from every two genes that show a correlation coefficient greater than

0.6. Subsequently, we extracted three DEGs lists from all three datasets using a

two-sample t-test based on 0.001 thresholds. Ultimately, from the three lists of

DEGs, there were 54 common genes (see Appendix 5.4). Also, we used the common

samples across the three datasets to produce the complete cases in one dataset. The

samples with missing or zero values in the event status and time variables were
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removed. We then converted the five TNM stages into a new categorical variable

with two stages (Early and Late), where stages four and five were combined to give

the late category. Finally, we used the obtained data for finding the most significant

gene markers that may predict survival for CRC patients. Table 4.2 provides a

concise summary of the pre-processed data.

120



4.3. Materials and Methods

Table 4.1: Clinical characteristics of colorectal cancer patients (N=307).

Variable Frequency (n) Percentage (%)

Age at diagnosis in years: Mean (SD*) 66.8 (13.2)

KRAS Mutation

Mutant 123 40

WildType 184 60

BRAF Mutation

Mutant 25 8

WildType 282 92

TP53 Mutation

Mutant 166 54

WildType 141 46

Tumor Location

Proximal 124 40

Distal 183 60

Cancer stage

Early 156 51

Late 151 49

Sex

Female 137 45

Male 170 55

Molecular subtype

C1 65 21

C2 49 16

C3 43 14

C4 29 9

C5 29 9

C6 36 12

∗SD: Standard deviation.
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Table 4.2: Summary of the filtered datasets and the pre-processing steps.

Dataset

(GSE39582)∗

Number of

samples

Complete

cases

Common

samples

Total number

of genes

After

filtration

Uncorrelated

genes

DEGs

(t-test)

Common

genes

Clinical outcomes

KRAS

585

545

307 54675 18865 13827

711

54BRAF 512 2388

TP53 351 629

∗ Three datasets with the same covariates and different clinical outcome.

4.3.2.2 Multiple imputations of the missing values

To compensate for the missing data, we used the R package “mice (Multivariate

Imputation by Chained Equations)”, which impute the missing values in the

covariates. The mice package takes care of uncertainty related to missing values

(Mboya et al., 2020, 2021; Jakobsen et al., 2017). It assumes that the missing values

are missing at random (MAR) see Figure 4.2, where the probability of missing data

does not depend on the unobserved data, conditional on the observed data

(Pedersen et al., 2017; Rezvan et al., 2015; Mboya et al., 2020, 2021). The mice

package uses the genes and other covariates in the dataset to predict missingness.

The missingness pattern in the data is assumed to be non-monotone. In this pattern,

some subject values can be observed again after missing values happen (Mboya

et al., 2020, 2021; Jakobsen et al., 2017). For this missing data pattern, it is

recommended to use the chained equations (fully conditional specification (FCS))

(Azur et al., 2011), or the Markov Chain Monte Carlo (MCMC) method to impute

missing values (Jakobsen et al., 2017).

We used FCS to handle the missing values in our dataset implemented in the mice

package in R using a random forest model. The FCS is considered a powerful and

statistically valid method for creating imputations in both categorical and

continuous variables (Azur et al., 2011). We generated 5 imputed datasets using

random forest (rf) imputations after 100 iterations (imputation cycles). We used

1051991 as a random seed to replicate imputation results each time a multiple

imputation analysis was performed. In addition, we followed the procedures
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indicated by the work of Sterne et al. (Sterne et al., 2009) for reporting and analysis

of missing data. KRAS, BRAF, TP53, and the event status were imputed as binary,

while time and age imputed as numeric variables. The rest of the variables did not

contain any missing values, and were used as auxiliary variables in the imputation

model. Overall, firstly we performed a complete case analysis using Cox PH and

random survival forests models. Thereafter, we compared the final models from

this analysis to those from the multiply imputed dataset.

Figure 4.2: Proportion and patterns of missing values in the clinical characteristics available
in the GSE39582 dataset.

4.3.3 Experimental setup

To evaluate the different methods, the resulting dataset was divided into training set

(80%) and testing set (20%). The training set was then divided into 10 subsets to train

the methods using 10-fold cross validation approach to avoid overfitting. In the 10-

fold cross-validation approach the integrated brier scores (IBS) is calculated on each

fold left-out while the model is trained on the other 9 folds. Finally, the trained model
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is tested on the testing set. The model performance was measured using prediction

error curve (pec).

4.3.4 Statistical methods

4.3.4.1 Cox Proportional Hazard Model (Cox PH)

Cox proportional hazard model is the most widely used statistical model for

modeling time to event data (Bradburn et al., 2003). The Cox PH evaluates the

association of the survival time of patients and one or more predictors/genes

variables. The Cox PH model relates the effect of predictors which include genes in

our case to the rate or hazard of occurrence of an event such time to infection,

death, recurrence of a condition at a certain point of time , this rate is generally

referred as the hazard rate (Ajagbe et al., 2014; Kleinbaum & Klein, 2010). In order

to estimate the association of the gene expression levels and the survival time,

consider n cancer samples say from sample i = 1, 2, . . . , n and

gi = (gi1, gi2, gi3, . . . , gip) is a vector of p genes expression level. The ith patient

survival data can be represented by (Ti, δi, gi1, gi2, gi3, . . . , gip), where i = 1, 2, . . . , n;

Ti and δi indicate the survival time and the censor status respectively. The Cox PH

model is mathematically represented as follow

hi(t) = h0(t)e
βββ
′
gggi , (4.1)

where the elements of the vector β
′

β
′

β
′

represent the regression coefficients and the

elements of the vector gi are the covariates (genes). The baseline hazard function

h0(t) is unspecified and non-parametric function of an individual with all

expression levels equal to zero (Aziz et al., 2016; Myte, 2013). The model has a

parametric part specified by the linear predictor and assumed to be proportional to

the non-parametric baseline hazard. This means that for two individuals, i and j,

the hazard ratio is
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hi(t)

hj(t)
=

eβ
′
gi

eβ
′gj

. (4.2)

The hazard ratio is assumed to be independent of time t. The maximum partial

likelihood method used to estimate the Cox PH model parameters is given by

L(β) =
∏

r∈E

eβ
T gr

∑
j∈Rr

eβ
T gj

, (4.3)

where E indicates the indices of the events (e.g., deaths) and Rr represents the

vector of indices of the individuals at risk at time tr − 0. The results of the Cox PH

model are easy to interpret, however, there are key assumptions needed such as

linearity and proportional hazards. We used survival and survminer packages to

implement Cox PH model in R.

Moreover, we performed the stepwise regression for developing the Cox PH model

at a 5% threshold level to find a simple model that shows the essential genes

(markers) and clinical covariates correlated with the CRC. At each time, we remove

the genes/ covariates that are not significant at α = 0.05 level of significance.

Thereafter, we tested for the PH assumption, and the integrative analysis of the

CRC data showed five genes (markers) that passed the PH assumption test.

Thereafter, we used the five genes and the other clinical information to fit the Cox

PH model.

4.3.4.2 Random Survival Forests (RSF)

Random survival forests are an ensemble of trees and a non-parametric method

constructed by bagging of classification trees for right censored data (Ishwaran

et al., 2008; Wang & Li, 2017). The RSF are an extension of the random forests

method proposed by Breiman et al. (Breiman, 2001a). The RSF works on

high-dimensional data where the number of covariates exceeds the number of the

observations, also it can handle data that consist of complex and non-linear
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relationships between the dependant and the independent variables and when the

covariates violate the proportional hazard assumption (Shu, 2019). There are

several advantageous of using the RSF method, such as, it is not based on any

model assumption compared to Cox PH model. It seeks to find a model that best

represent the data in the case of limited survival data, in addition, it can handle

high-dimensional data unlike Cox PH, and it is robust to outliers in the explanatory

variables (Wang & Li, 2017). RSF employ two steps of randomizations which are to

grow the tree a bootstrap sample is randomly drawn and for splitting at each node

of the tree, a random subset of covariates is selected. The two steps of the

randomization help in decorrelate the tree (Mohammed et al., 2018; Wang & Li,

2017). The RSF implemented using the randomForestSRC package in R (Ishwaran

et al., 2021).

Random Survival Forests Algorithm We used the RSF algorithm that was

introduced in the work of Ishwaran et al. (Ishwaran et al., 2008) as shown below:

1. For i in 1 : ntrees

(a) Draw bootstrap samples from the original total number of samples. For

each bootstrap exclude approximately 37% of the samples as out-of-bag

(OOB) samples.

(b) Build a survival tree for every bootstrap samples by recursively repeating

the following steps for each node in a tree.

i. Randomly select v genes at random from the p genes (v =
√
p).

ii. To split the node, pick the best gene among the v genes, that

maximizes survival differences between daughter nodes. We used

log-rank and log-rank-score splitting rules as measures of survival

differences.

iii. Produce the tree to full size under the constraint that a terminal node

should have no less than d0 > 0 unique deaths.
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iv. Calculate a cumulative hazard function (CHF) for every tree. Average

the CHF for all the ntrees trees to find the ensemble CHF.

v. Calculate the OOB prediction error for the ensemble CHF, using OOB

samples.

Once the survival tree is built, the ends of the tree are called the terminal nodes.

Assume, the terminal node is h and tn,h is the individual’s death time at node h,

dn,h is the number of deaths, and Mn,h is the number of individuals at risk at time

tn,h. Therefore, the cumulative hazard function (CHF) can be estimated using the

Nelson-Aalen estimator (Nelson, 1972) as follows

Ĥh(t) =
∑

tn,h≤t

dn,h
Mn,h

. (4.4)

The CHF will be calculated for all the terminal nodes. The CHF for new observation

i given a vector of genes as a covariate gi, can be calculated for one tree as follows

Ĥh(t|gi) = Ĥh(t), for gi ∈ h. (4.5)

To compute an ensemble CHF, the average of the ntrees trees is calculated, and the

bootstrap ensemble CHF for an observation i is

Ĥe(t|gi) =
1

ntrees

ntrees∑

b=1

Ĥb(t|gi). (4.6)

Let,

Ii,b =





1, if i is an OBB observation for ntrees training sample.

0, Otherwise.
, (4.7)

then the OOB ensemble CHF for an observation i is given by

Ĥ∗
e (t|gi) =

∑ntrees
b=1 Ii,bĤ

∗
b (t|gi)∑ntrees

b=1 Ii,b
, (4.8)
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therefore, Ĥ∗
e (t|gi) is an average over the training samples where i is an OOB

observation.

Log-rank split rule

The log-rank split-rule is a measure of a node separation which helps in determining

the best split for that node (Ciampi et al., 1987). Let h be a node of a tree, and let there

are be n individuals with this node. Suppose (T1, σ1), (T2, σ2), . . . , (Tn, σn) are the

survival outcomes corresponding to the n individuals. Thus, the best split at node h

on covariate x at split point c, is the one that maximize the log-rank statistic between

the two daughter nodes (Ishwaran et al., 2008) given as follow

L(x, c) =

∑N
i=1

(
di1 − Yi1

di
Yi

)

√∑N
i=1

Yi1
Yi

(
1− Yi1

Yi

)(
Yi−di
Yi−1

)
di

. (4.9)

The aim is to maximize the log-rank statistic by finding values of x and c that

maximize L(x, c). Specifically, we are looking to find a predictor x∗ and c∗ such that

|L(x∗, c∗)| ≥ |L(x, c)| for every x and c. This process is repeated at every node until

the terminal node is reach.

Log-rank-score split rule

The log-rank-score split rule is a version of the log-rank-score split rule (Nasejje

et al., 2017). Consider r = (r1, r2, . . . , rn) as a vector that ranks the survival times

(T, δ) = ((T1, δ1), (T2, δ2), . . . , (Tn, δn)) (Nasejje et al., 2017; Hothorn & Lausen,

2003). Assume a = a(T, δ) = (a1(r), a2(r), . . . , an(r)) indicates the ranked score

vector. Let the ranked vector r order the genes variables in such a way that

g1 < g2 < . . . < gn. Therefore, the log rank score for an observation at Ti is given by

ai = ai(T, δ) = δi −
γi(T )∑

j=1

δi

(n− γi(T ) + 1)
′ , (4.10)

where, γi(T ) =
∑n

i=1 χ{Ti ≤ Tj} is the number of individuals who died or were

censored before or at time Tj .
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4.3.5 Performance evaluation

We used integrated brier scores (IBS) measure (Graf et al., 1999) to assess and

compare the accuracy of the predictive performance of all the models in this study.

The IBS represent the average squared differences between the observed survival

status and the predicted survival probability at time t. However, the value of the

IBS is always between 0 and 1, the value of 0 represent the best possible IBS value.

We can calculate the brier scores (BS) measure using the test sample of size ntest as

follows

BS(t) =
1

ntest

ntest∑

i=1

{
[0− Ŝ(t|x)]2 I(ti ≤ t, δi = 1)

Ĝ(ti|x)
+ [1− Ŝ(t|x)]2 I(ti > t)

Ĝ(t|x)

}
, (4.11)

where Ĝ(t|x) ≈ P (C > t|X = x) is the Kaplan-Meier estimate for the conditional

survival function of the censoring times. Therefore, the IBS is calculated as below

IBS =

∫ max(t)

0
BS(t) dt, (4.12)

where max(t) is maximal time for estimating the prediction error curves.

4.4 Results

4.4.1 Cox proportional hazards analysis

The results of the survival problem based on gene expression data were obtained

using R. We used the Cox PH model based on the selected covariates that satisfy

the Cox PH assumptions. We tested the Cox PH assumptions using the Schoenfeld

residual test implemented by the function cox.zhp. The Cox PH model assumes the

regression parameters are constant over time. Therefore, the hazard ratios for any

two individuals are constant over time. However, the covariates that do not satisfy

the Cox PH assumptions do not meet the criteria to be entered in our final Cox PH
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model. As a first step, we fitted the Cox PH model for all the covariates (genes and

clinical variables) in our dataset and then obtained the Cox PH assumption using

the Schoenfeld residuals Table 4.3. The genes and variables in violation of the Cox

PH assumption (p < 0.05) were DUSP4, SYTL1, and molecular subtype.

Table 4.3: Testing the proportional hazard assumption using scaled Schoenfeld residuals.

Probeset ID (Symbol) χ2∗ (df) p-value

204014_at (DUSP4) 10.219 (1) 0.0014

212947_at (SLC9A8) 1.345 (1) 0.2462

218611_at (IER5) 2.045 (1) 0.1527

219973_at (ARSJ) 3.601 (1) 0.0577

221522_at (ANKRD27) 1.583 (1) 0.2083

221605_s_at (PIPOX) 1.651 (1) 0.1988

227134_at (SYTL1) 4.699 (1) 0.0302

Age at diagnosis (years) 2.589 (1) 0.1076

Molecular subtype 15.824 (5) 0.0074

Disease stages 1.173 (1) 0.2787

Sex 0.378 (1) 0.5388

Tumor location 0.951 (1) 0.3294

∗ Chi-square statistic.

From the Cox PH model in Table 4.3, three variables violated the Cox PH

assumption, and therefore, these genes and molecular subtype were not included in

the final Cox PH model. We fitted the Cox PH model on the genes and variables

that did not violate the Cox PH assumptions before and after imputation. The

results from this analysis are shown in Table 4.4. Results before imputation of

missing values indicated that 218611_at (IER5) (HR=9.51, 95%CI 1.30, 69.58),

221522_at (ANKRD27) (HR=34.89, 95%CI 1.91, 635.90), and late disease stage

(HR=1.97, 95%CI 1.33, 2.93) were associated with higher hazards of death.

However, we note that two confidence intervals for IER5 and ANKRD27 are quite

wide; therefore, they should be interpreted caution. For every year increase, the

hazards of death increased by 1.03 (95%CI 1.01, 1.05). Significantly lower hazards
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were observed in 212947_at (SLC9A8) (HR=0.09, 95%CI 0.02, 0.49), 219973_at

(ARSJ) (HR=0.23, 95%CI 0.09, 0.58), and 221605_s_at (PIPOX) (HR=0.43, 95%CI

0.22, 0.85) differentially expressed genes.

After imputation of missing values, the Cox PH model showed that sex was a

significant predictor of males having higher death hazards (HR=1.40, 95%CI 1.05,

1.88) than females. Also, the disease stage covariate was a significant predictor where

those with late disease stage had higher death hazards (HR=1.96, 95%CI 1.47, 2.63)

than early cases. Moreover, the results illustrated that 219973_at (ARSJ) (HR=0.44,

95%CI 0.22, 0.89), 221605_s_at (PIPOX) (HR=0.49, 95%CI 0.28, 0.83) were related

with lower hazards of death. For every year increase, the hazards of death

increased by 1.03 (95%CI 1.01, 1.04). Significantly higher hazards were detected

with gene 218611_at (IER5) (HR=6.48, 95%CI 1.37, 30.53) gene.

Table 4.4: Multivariable Cox PH results for predictors of colorectal cancer survival among
adults aged 24 years and above.

Probeset ID (Symbol) / Variables
Before imputation (N=307) After imputation (N=566)

HR∗ (SE) 95%CI P-value HR∗ (SE) 95%CI P-value

212947_at (SLC9A8) 0.09 (0.84) (0.02, 0.49) 0.005** 0.30 (0.66) (0.08, 1.07) 0.066

218611_at (IER5) 9.51 (1.02) (1.30, 69.58) 0.027* 6.48 (0.79) (1.37, 30.53) 0.019*

219973_at (ARSJ) 0.23 (0.48) (0.09, 0.58) 0.002** 0.44 (0.36) (0.22, 0.89) 0.024*

221522_at (ANKRD27) 34.89 (1.48) (1.91, 635.90) 0.016* 2.49 (1.06) (0.31, 19.95) 0.393

221605_s_at (PIPOX) 0.43 (0.34) (0.22, 0.85) 0.014* 0.49 (0.27) (0.28, 0.83) 0.009**

Age diagnosis (years) 1.03 (0.01) (1.01, 1.05) 0.001*** 1.03 (0.01) (1.01, 1.04) <0.000***

Sex

Female 1.00 1.00

Male 1.23 (0.20) (0.84, 1.81) 0.281 1.40 (0.15) (1.05, 1.88) 0.024

Stages

Early 1.00 1.00

Late 1.97 (0.20) (1.33, 2.93) 0.001*** 1.96 (0.15) (1.47, 2.63) <0.000***

Tumor location

Proximal 1.00 1.00

Distal 1.06 (0.21) (0.71, 1.58) 0.783 0.86 (0.16) (0.63, 1.18) 0.356

HR: Hazard ratio, adjusted for 212947_at, 218611_at, 219973_at, 221522_at, 221605_s_at, age at first diagnosis, sex, disease stage, and

tumor location.
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4.4.2 Random survival forests analysis

We fitted two random survival forests models, including survival trees built using

log-rank and the log-rank-score split rules on the datasets before and after

imputation. These two models were built using the 54 genes and the other clinical

information as covariates. The characteristics of the two fitted models are

summarized in Table 4.5 below.

Table 4.5: Random survival forests results before and after imputation using log-rank and
log-rank-score split rules.

Before imputation (N=246)* After imputation (N=453)*

Log-rank Log-rank-score Log-rank Log-rank-score

Number of deaths 88 88 157 157

Number of trees 5000 5000 5000 5000

Forest terminal node size 15 15 15 15

Average no. of terminal nodes 13.58 11.92 25.34 22.14

No. of variables tried at each split 8 8 8 8

Total no. of variables 62 62 62 62

Resampling used to grow trees swor swor swor swor

Resample size used to grow trees 155 155 286 286

Analysis RSF RSF RSF RSF

Family surv surv surv surv

Splitting rule log-rank log-rank-score log-rank log-rank-score

Number of random split points 10 10 10 10

Error rate 41.26% 49.05% 33.22% 43.01%

∗ Analysis performed using the 80% training set.

Permutation importance measure used to identify the most important genes/

clinical variables associated with the survival of the colon patients (Ehrlinger, 2016;

Taylor, 2011; Nasejje & Mwambi, 2017). We fitted a random survival forest model

before imputation and after imputation with 5000 survival trees built using

log-rank and log-rank-score and their results presented in Figures 4.3 and 4.4.
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Figure 4.3: The prediction error rate for the random survival forests of 5000 trees before
imputation and the log-rank and log-rank-score in the left and right panel used
80% training dataset.

Table 4.5 and Figure 4.3 show that the log-rank split-rule is more stable than the

log-rank-score split-rule. Moreover, we fitted the model with 1000, 2000, and 3000

survival trees and noticed that the log-rank-score spilt-rule needs more survival trees

to stabilize. In addition, the error rate for the forest built with survival trees based

on the log-rank and log-rank-score split-rules are 41.26 and 49.05, respectively. These

error rates of the RSF before imputation are much higher than the error rates for RSF

built after imputation, as shown in Table 4.5. This result indicates that the imputation

can improve the performance of RSF.
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Figure 4.4: The prediction error rate for random survival forests of 5000 trees after
imputation and the log-rank and log-rank-score in the left and right panel,
respectively, using 80% training dataset.

The genes/ covariates associated with CRC ranked using RSF according to their

importance before and after imputation based on the log-rank, and log-rank-score

split-rules are presented in Figures 4.5 and 4.6. Using RSF allows all 54 genes and

other covariates regardless of their satisfying the Cox PH assumption. However, this

is a very important characteristic of the RSF, as explained in the model building

stage. The selection of the genes/ covariates in the model does not need to satisfy

the too restrictive Cox PH assumption. RSF is purely non-parametric; hence there is

no requirement of the Cox PH assumption being satisfied a prior.
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Figure 4.5: The rank of most predictive genes and clinical variables for colorectal cancer
patients’ survival before the imputation is based on how they influence the
survival outcome. The variables importance is built using log-rank and log-rank-
score split-rules in the left and right panel, respectively.

We implemented RSF with 5000 survival trees built using two split-rules before and

after imputation. The RSF identified the most important genes/ covariates that

explain the survival of CRC patients by calculating the measure of the permutation

importance as a variable’s importance (Ishwaran et al., 2008; Taylor, 2011). For the

RSF before imputation see (Figure 4.5), the top 20 genes/ covariates that are most

important and strongly associated with the CRC obtained using the log-rank

split-rule are age, SLC28A3, stages, TNFSF9, EGLN3, molecular subtype, CTSV,

ANKRD27, POLR3B, CTSA, SYTL1, MYRF, RPS27L, L3MBTL1, PIPOX, ADPRM,

SLC6A4, LDLRAD3, MSRA, and SCAND1. While the top 20 genes/ covariates that

were identified by RSF using logrank-score are POLR3B, L3MBTL1, CTSV, EGLN3,

SYTL1, age, molecular subtype, LDLRAD3, MAP7D2, SLC28A3, ANKRD27, stages,

SLC6A4, CTSA, CABLES2, TNFSF9, GIF, SCAND1, PTP4A3, and MSRA.

135



4.4. Results

However, for the RSF after imputation (Figure 4.6), the top 20 genes/ covariates

strongly related to CRC identified using RSF with log-rank split-rule are age, stages,

molecular subtype, PIPOX, ADPRM, CLCN2, RPS27L, IER5, POLR3B, SLC6A4, KRAS,

SGMS2, DUSP4, SLC28A3, SLC9A8, ACOT8, SYTL1, CABLES2, SCAND1, and

MAP7D2. Although the RSF with logrank-score obtains a top 20 genes/ covariates

strongly relevant to CRC, these genes/ covariates are molecular subtypes, POLR3B,

CLCN2, IER5, SLC9A8, MAP7D2, CABLES2, SYTL1, stages, KRAS, SLC6A4,

LDLRAD3, CTSA, SCAND1, PIPOX, ARSJ, PHACTR3, SLC28A3, SGMS2, and CTSV.

The RSF with log-rank split-rule after imputation performed better in terms of the

error rate. Age and disease stage were the most important covariates that affecting

CRC. However, the PIPOX, IER5, and SLC9A8 were among the most important

genes strongly associated with CRC. These results agree with the results achieved

from fitting the Cox PH model presented in Table 4.4. As far as significant effects

are concerned, the most striking result to emerge was that the RSF model did pick

other genes and covariates as substantial, e.g., molecular subtype and DUSP4 which

could not be included in the Cox PH model because of not satisfying the Cox PH

assumption.
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Figure 4.6: The rank of most predictive genes and clinical variables for colorectal cancer
patients’ survival after the imputation is based on how they influence the
survival outcome. The variables importance is built using log-rank and log-rank-
score split-rules in the left and right panel, respectively.

4.4.3 Predictive performance

We assessed the predictive performance of the models using the integrated brier

scores measure in R using the pec package (Gerds, 2020; R Core Team, 2021). The

model with lower prediction error rates is therefore considered useful (Taylor, 2011;

Chen et al., 2011). Figures 4.7 and 4.8 show the prediction error curve of the RSF

(log-rank and log-rank score) and Cox PH models before and after imputation.

These prediction curves show that Cox PH outperformed RSF with log-rank and

log-rank score split rules. The Cox PH model before and after imputation had

similar prediction errors, while RSF models under the two split-rules (log-rank and

log-rank-score, respectively) after imputation had lower prediction error rates

compared to before imputation as can be seen (Figure 4.8). Their predictive

performance exhibited that the log-rank split-rule is better than the log-rank-score
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split-rule. Moreover, we noticed that the Cox PH model showed good predictive

performance compared to the two RSF under the two split-rules before and after

imputation models. Thus it is safer to say that if all covariates satisfy the Cox PH

assumption, the Cox PH model can be used (Nasejje & Mwambi, 2017).

Figure 4.7: RSF with (log-rank and log-rank score) and Cox PH prediction error curve using
20% test set. The complete case and imputed dataset plots are in the left and right
panel, respectively.
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Figure 4.8: RSF with (log-rank and log-rank score) and Cox PH boxplot prediction error
using 20% testing set together with the complete case dataset and the imputed
data.

Although the Cox PH model before and after imputation had better performance in

terms of the prediction error rate, we can still not use it in the event of a violation of

the proportionality of hazards assumption. Thus, in the presence of the

non-proportional hazards genes/ covariates, using RSF is an appealing option in

the analysis of survival data, especially for high dimensional genomics data.

Genomics data are usually presented in a matrix, with the columns indicating the

samples and the rows showing a genomic feature such as genes (Zang et al., 2016).

Table 4.6 shows a comparison of the model performance using the integrated brier

scores. We can notice that the prediction error estimates are lower for RSF, especially

in the case of using the log-rank as a split rule. In addition, RSF models perform

substantially better than Kaplan-Meier and Cox PH models.
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Table 4.6: Comparison of the models using the integrated brier scores.

Methods Before Imputation After Imputation

Kaplan Meier 0.199 0.201

RSF (Log-rank) 0.192 0.198

RSF (Log-rank score) 0.198 0.202

Cox PH 0.228 0.212

4.5 Discussion

Cancer incidence and mortality are rapidly growing worldwide, exerting big

physical, emotional, and financial problems on individual, families, communities,

and health systems levels. Cancer is the first or second leading cause of death in 112

countries and is considered the third or fourth in 23 countries (Sung et al., 2021).

According to estimates from the World Health Organization (WHO), cancer is the

leading cause of death around the world and accounting for nearly 10 million

deaths in 2020. Moreover, WHO reported that CRC is the third common new cases,

and it is also the second leading cause of death worldwide since 2020 (WHO,

2021b). The study aimed to determine the association between the genes and

clinical covariates with CRC survival in the presence of missing values data. We

also compared the predictive performance of the Cox PH and RSF models. The

study provides essential information for CRC early detection and diagnosis.

The traditional regression-based methods to analyse survival data usually suffer

from many problems such as restrictive assumptions including the proportionality,

multicollinearity, curse of dimensionality, and lack of ability to rank the predictive

performance. However, RSF models are frequently becoming a successful

alternative for the analysis of the time to event data. In particular, the RSF is viewed

as an appropriate analysing model for survival data, especially when the

proportional hazards assumption is violated (Nasejje et al., 2017; Gerds et al., 2013).
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When it comes to CRC survival analysis the gene expression and clinical

information are utilized as covariates. The gene expression data contains many

genes and most of these genes do not discriminate between normal cells and

tumors. Therefore, we select the genes in which the change or difference in read

counts between two conditions of experiment is statistically significant and such

genes are known as the differentially expressed genes. In this study, the

differentially expressed genes were obtained using three mutations based on the

complete cases. The preliminary analysis showed that 54 potentially differentially

expressed genes could be correlated with CRC survival and important for

understanding the initiation and progression of CRC. The differentially expressed

genes together with the clinical data were used to compare the predictive

performance of the Cox PH model and RSF model before and after imputation on

the CRC gene expression data.

We used stepwise regression for developing the Cox PH model at a 5% threshold

level to get a simple model capturing the association between the top genes and

CRC patient survival. Only five genes did not violate the Cox PH assumption in the

final Cox PH model. The results show that the error rates of the RSF before

imputation are much higher than the error rates for RSF built after imputation.

Thus, the imputation can improve the performance of RSF. Although the Cox PH

model had a better performance than RSF, the results from the current study

demonstrate that the random survival forests models are more flexible than the

models based on the Cox PH assumption as a prerequisite for variable inclusion in

the model.

After imputation, the Cox PH model indicated SLC9A8 and ANKRD27 genes were

no longer significant predictors of CRC survival. This because it is expected that the

number of observations to increase, hence, statistical power to detect an effect. The

variables that were not statistically significant before imputation may now be seen

as statistically significant and vice versa. Therefore, this might affect the statistical
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power of some variables after imputation. Overall, the most prominent finding to

emerge from the analysis based on Cox PH is that for one year increase in age, the

hazards of death increase by 1.03, also the males are the most exposed to the

hazards of death compared to females. Thus, this study supports evidence from

previous observations (van Eeghen et al., 2015; Jiang et al., 2016; Chandrasinghe

et al., 2017; White et al., 2018; Abancens et al., 2020).

The results of the RSF using both split-rules before and after imputation identified

other genes/ covariates such as molecular subtype, SLC6A4, KRAS, SGMS2, DUSP4,

and SLC28A3. These genes/ covariates show up as important in explaining CRC

survival rates. However, these genes/ covariates did not appear very strongly

associated with CRC survival in the Cox PH model. Thus, one interesting finding to

note is that RSF models give additional information about variable importance.

Furthermore, the results from the two RSF models before and after imputation

show that age, stages, molecular subtype, SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX

greatly affected the CRC mortality rates. These are ranked in the top 20 variables

important in the two RSF models and agree with the Cox PH model results.

Contrary to expectations, the RSF model did not pick sex as an important variable,

while it is significant in the Cox PH model.

The Cox PH model had a better predictive performance in the presence of only

those covariates that satisfy the Cox PH assumption compared to the RSF models.

This result provides further support for the hypothesis that the Cox PH model

works best under this assumption. In contrast, the out-of-bag error rate for the RSF

with (log-rank and log-rank-score) before imputation is higher than that after

imputation. This result implies that the imputation of missing values is a critical

step and enormously improves the model’s performance.
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The most striking result to emerge from the analysis of the RSF is that log-rank has

a better performance compared to the log-rank-score split-rule (Nasejje & Mwambi,

2017). However, with more survival trees the log-rank-score seems to be stabilize

compared to a smaller number of survival trees.

We presented the development and validation of a robust five-gene signature

(SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX), which predicted overall survival

(OS) for CRC patients. This gene signature was captured using Cox PH and RSF

models based on two different scenarios. However, our study results successfully

confirmed genes (markers) associated with CRC directly and identified new

markers to enrich the field’s literature further. Furthermore, the results support

previous studies such as Mohammed et al. (Mohammed et al., 2021), where age,

sex, and stages were also shown to be related to CRC survival.

4.6 Conclusion

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide

annually, making CRC the fourth common cause of death from cancer. However,

the incidence of CRC has been steadily growing around the world, especially in

developing countries. Therefore, the recent advances in technologies such as

microarrays allowed for early detection screening using the individual’s gene

expression profiles.

The present study was designed to identify the genes prognosis of CRC. We

developed a robust gene marker associated with the CRC overall survival based on

gene expression data generated from microarray, using Cox PH and RSF models

before and after missing data imputation. The most prominent finding to emerge

from this study is that the Cox PH model identified five genes (SLC9A8, IER5,

ARSJ, ANKRD27, and PIPOX) related to CRC overall survival in addition to age, sex

(after imputation), and clinical stages. The RSF model further confirmed these

results and had five additional gene markers predicting CRC survival. In addition,
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imputation improved the model’s performance, and the current findings support

the relevance of the missing data imputation. In summary, we recommend using a

random survival forests model for survival data, especially in the high dimensional

data where many genes might violate the Cox PH assumption.
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Chapter 5

General discussion, conclusion,

and recommendations

5.1 Discussion of the Main Findings

Non-communicable diseases (NCDs) are a major cause of mortality in developed

and developing countries. Among these, cancer which has been documented in the

literature to be the first or second leading cause of non-communicable disease

mortality before 70 years in 112 of 185 countries. It ranks third in some countries

and fourth in other countries (Sung et al., 2021). The burden of cancer incidence

and mortality is on the rise in developed and developing countries. The main

objective of this study was to integrate a different list of features from both

microarray and RNASeq platforms. Also, to propose a model that can predict

cancer types and sub-types with high confidence predictions. Moreover, to compare

traditional survival models and machine learning models such as RSF.

In Chapter 2, we used CRC gene expression data from both microarray and

RNASeq platforms. The DEGs identified from both platforms are based on mutant

in comparison to the wild-type mutation status. So, integration is done by

combining the different DEGs of the two platforms using intersection, union, and

the complement of intersection. Then, we used the combined list of genes to
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perform a classification analysis based on the mutation status using statistical and

machine learning methods. The methods used are SVM, NB, RF, ANN, KNN,

NBLDA, and PLDA. We observed that although microarray and RNASeq platforms

might appear different in their data generation, using these gene lists increases the

results’ reliability. In addition, NBLDA to be the best method when dealing read

count RNASeq data. Aslo, survival analysis of the common genes was performed

using Cox PH model, which identified 9 genes as prognostic for overall survival in

CRC. The important top 5 hub genes that are identified are ATP6V1C2, MYC, LMF1,

HSPA4L, and PLAGL2. Although it is evident that the two platforms do not produce

the same information, and the RNASeq platform is considered a replacement for

the microarray platform. However, there are a tremendous amount of microarray

data that should not be ignored. We conclude that merging data from the two

platforms leads to larger data which might help research to obtain more robust

statistical significance.

In Chapter 3, we used RNASeq data downloaded from the TCGA database for five

common cancers among women. To find an accurate model that predicts cancers

types, a stacking ensemble method based on a deep learning model (1D-CNN) is

proposed. The stacking approach combines prediction from the base layer classifier

to improve the general prediction result. We compared the performance of the

proposed stacking ensemble method with the single 1D-CNN as well as with

machine learning methods, which include SVM, ANN, KNN, and bagging trees.

The results show that the proposed stacking ensemble model to be more promising

compared to the single 1-DCNN and machine learning methods. Also,

under-sampling is better compared to over-sampling approach. Although the

stacking ensemble learning gains accurate prediction, it still has a high

computational cost as it demands the training of many similar models. As such

high performance computing may be necessary in order to achieve quick results.

Overall, we conclude that the stacking ensemble approach will be more reliable

than single deep or machine learning models.
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5.1. Discussion of the Main Findings

In Chapter 4, we used 54 DEGs based on microarray gene expression data

download from GEO. We compared traditional and modern survival analysis

methods and to find the most predictive genes associated with CRC overall

survival. In addition, we compared the performance of the survival methods using

the complete cases and imputed data. One interesting finding is that imputation

enhances the performance of the methods. In addition, this study found that the

RSF model outperformed the Cox PH model possibly because the RSF does not

depend on any model assumptions, unlike Cox PH. However further research is

required on this aspect including the use of simulation studies which were not the

focus of the current work. Moreover, the log-rank split rule is better than the

log-rank-score. Overall, the most striking result obtained in this study is that the

models identified five genes namely SLC9A8, IER5, ARSJ, ANKRD27, PIPOX, sex

(after imputation), and clinical stages to be associated to CRC overall survival. This

new understanding should help to improve predictions of the impact of these

genes/ covariates on CRC.

The NGS technologies have profoundly changed the understanding of diseases

such as HIV, TB, and malaria through the gene expression data produced with a

higher resolution (Shityakov et al., 2015; Devadas et al., 2016; Tran et al., 2021; Read

et al., 2019; Alam et al., 2019; Gebremicael et al., 2019). Therefore, it is possible to

hypothesize that the approaches in this study can be implemented and replicated in

similar studies of different kinds of diseases. Hence, these approaches will help

understand and identify biomarkers that may affect the disease progression and

reduce death due to these diseases.

Prior studies that have noted the importance of accurate prediction of cancers early

and understanding the genomics characteristics that help improve the treatment

policies, such as (Ramirez et al., 2020) used graph CNN (GCNN) to predict tumor

and normal samples using gene expression data. Their approach achieved an

accuracy between 89.9-94.7%, which is lower than our result in chapter 3. In our

study, we have used statistical procedures for gene selection, such as LASSO.
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5.2. Study Strengths and Limitations

Moreover, we used survival analysis, which identified genes that might help

increase the patients’ lifestyle and survival rate.

5.2 Study Strengths and Limitations

5.2.1 Study Strengths

We have focused on microarray and RNASeq platforms that provide information

about the transcriptome. Moreover, we dealt with the binary and multi-class

problems based on gene expression data. In addition, we controlled the imbalanced

data problem using resampling techniques, and also we solved the problem of

missing data using the multiple imputations technique. Overall, we integrated

different sources of data and proposed a new model that provides high

performance compared to machine learning methods. Our study identified several

genes that are related to different cancers as discussed in chapters 2, 3, and 4. The

findings reported here shed new light on the importance of using different data

sources, and also on the cancer types and sub-types prediction.

5.2.2 Study Limitations

The major limitation of this study is the small sample size. Also, we did not use of

different types of features such as methylation and mutation data, among others.

Finally, the study did not evaluate the use of pathways analysis methods, also there

is a lack for independent data for validation. It is also proposed that future should

consider detailed simulation studies to compare classical statistical models and

machine learning methods such as Random Survival Forests and their extensions.

5.3 Conclusion

This thesis has discussed the importance of combining different data sources that

proved to strengthen the model performance, compared to a single platform. The

stacking approach has promising results compared to single deep and machine
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5.4. Recommendations and Future Research

learning methods. This thesis has provided a deeper insight into CRC prediction.

Thus, we hope to help the physician in the early detection of CRC, therefore

improving the patient’s life. Also, the study helps identify a set of genes that will

help in determining the tumor types that respond best to a particular therapy. We

hope this set of genes will contribute to the knowledge and improve the efficiency,

effectiveness, and safety of cancer patients’ lives. Finally, combining different

methods using stacking approach gains higher prediction performance compare to

the single methods.

5.4 Recommendations and Future Research

Considerably more work will need to be done to determine the usefulness of the

identified genes in designing therapies for cancer patients. A greater focus on

merging different gene expression platforms could produce interesting findings for

finding valuable gene markers. Future research should consider integrating more

than two platforms, such as microarray, RNASeq, and single-cell RNA sequencing

(scRNA-seq).
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Appendices

Appendix A: The significant genes returned using LASSO

with 10-folds cross-validation

Table 1: The 173 significant genes that were returned using LASSO with 10-folds cross-
validation.

baseMean
log2Fold

Change
lfcSE stat pvalue padj

ACSL4 3370.81 0.86896 0.0476 18.2555 1.87E-74 5.87E-74

ADAM28 528.011 -0.6334 0.07523 -8.4205 3.75E-17 5.89E-17

ADAM8 1711.32 -1.6217 0.06691 -24.236 9.37E-130 4.72E-129

AFF1 6892.33 1.91525 0.03596 53.2632 0 0

ALPK3 806.889 1.03086 0.06688 15.4126 1.35E-53 3.41E-53

ANKS4B 185.576 -4.4648 0.3449 -12.945 2.50E-38 5.34E-38

ANXA6 9806.23 -0.8436 0.04146 -20.347 4.90E-92 1.80E-91

AQP3 5437.67 -4.0455 0.10407 -38.875 0 0

AQP4 906.546 4.21352 0.14895 28.2886 4.77E-176 3.38E-175

ATF1 1520.23 0.63084 0.0224 28.1681 1.44E-174 1.01E-173

ATP2B4 11058.4 -0.1707 0.04502 -3.791 0.00015007 0.00018147

ATP6V0C 11556.3 -0.2019 0.02699 -7.4806 7.40E-14 1.10E-13

BDH2 2407.05 2.14255 0.04332 49.4594 0 0

C11orf41 550.413 -2.9532 0.09899 -29.835 1.39E-195 1.13E-194
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C18orf45 1239.63 -2.9454 0.03854 -76.428 0 0

C1orf186 549.158 -1.0929 0.12461 -8.7706 1.78E-18 2.86E-18

C1orf190 113.125 3.35189 0.06494 51.6182 0 0

C2orf89 603.527 2.286 0.08833 25.8802 1.11E-147 6.40E-147

C5orf53 849.576 1.31961 0.03811 34.6256 1.04E-262 1.29E-261

C6orf138 223.422 4.66633 0.09545 48.8861 0 0

C6orf222 123.793 -1.3166 0.22378 -5.8834 4.02E-09 5.43E-09

C9orf167 1440.81 2.15425 0.04608 46.753 0 0

C9orf91 1988.46 -1.8341 0.03453 -53.118 0 0

CCDC109A 1907.7 -0.1384 0.03195 -4.331 1.48E-05 1.84E-05

CCL13 213.252 1.6253 0.12751 12.7464 3.27E-37 6.87E-37

CCNJL 633.306 1.36706 0.06965 19.6283 8.87E-86 3.08E-85

CDH26 72.9319 -0.8001 0.10072 -7.9431 1.97E-15 3.00E-15

CDX1 673.477 -1.5722 0.0964 -16.309 8.51E-60 2.30E-59

CEACAM6 28629.9 -3.6857 0.14666 -25.131 2.27E-139 1.23E-138

CFL2 1388.26 1.19518 0.0398 30.0259 4.51E-198 3.73E-197

CHRAC1 2544.38 0.15682 0.03415 4.59235 4.38E-06 5.52E-06

CHSY1 3327.68 -1.3737 0.0392 -35.046 4.43E-269 5.71E-268

CLDN3 11251.4 1.37722 0.06213 22.1666 7.22E-109 3.09E-108

CPNE8 456.31 0.57156 0.05593 10.219 1.63E-24 2.90E-24

CTSB 111838 3.01424 0.04021 74.9717 0 0

CTSK 7158.98 -2.5965 0.07718 -33.639 4.45E-248 5.05E-247

CTU1 275.536 0.30631 0.04339 7.05937 1.67E-12 2.42E-12

CXCL17 3781.26 -0.7251 0.14759 -4.9128 8.98E-07 1.15E-06

CYP2C18 63.4312 -4.0536 0.26513 -15.289 9.07E-53 2.27E-52

DCBLD2 4066.26 2.03321 0.05135 39.5971 0 0

DFNA5 605.619 1.6637 0.0525 31.6899 2.14E-220 2.07E-219

DIRAS1 474.766 -2.5309 0.09457 -26.761 9.16E-158 5.69E-157

DOCK3 714.113 4.56055 0.09507 47.9697 0 0
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DPY19L1 2490.91 0.73826 0.04509 16.3721 3.03E-60 8.24E-60

DVL3 6057.44 -0.4287 0.0273 -15.702 1.46E-55 3.79E-55

EFS 1994.72 -1.8672 0.0705 -26.485 1.42E-154 8.63E-154

EMX2 1161.03 -1.1471 0.12748 -8.998 2.30E-19 3.75E-19

ENO1 57304.3 -0.3479 0.04262 -8.1623 3.29E-16 5.08E-16

EPHA2 2478.12 2.20884 0.05574 39.6304 0 0

ERO1L 3225.93 -0.3541 0.04669 -7.5841 3.35E-14 5.00E-14

ERRFI1 7027.42 0.95015 0.06015 15.7957 3.33E-56 8.70E-56

F2RL2 946.889 -4.1363 0.09586 -43.152 0 0

FAM115C 640.22 -1.7596 0.05678 -30.989 7.61E-211 6.82E-210

FAM126A 1043.82 -0.6537 0.05516 -11.849 2.17E-32 4.30E-32

FAM49A 457.997 2.93101 0.05577 52.5511 0 0

FOXE1 2538.15 11.0891 0.20785 53.3515 0 0

FUT4 749.106 -0.3538 0.04268 -8.2898 1.13E-16 1.77E-16

FYN 3259.73 2.47148 0.05261 46.9818 0 0

FZD5 1539.99 2.10413 0.05529 38.0591 0 0

GALNT12 1395.26 3.90386 0.07389 52.8336 0 0

GAS2L1 1933.06 -0.8869 0.03449 -25.712 8.53E-146 4.82E-145

GGCX 2233.96 -0.2142 0.03163 -6.77 1.29E-11 1.83E-11

GJD3 218.919 0.76789 0.06063 12.665 9.24E-37 1.93E-36

GMDS 1379.91 -1.0039 0.04837 -20.755 1.11E-95 4.22E-95

GPR35 419.506 -0.7246 0.06243 -11.608 3.77E-31 7.36E-31

GREM1 2587.79 -2.7903 0.10787 -25.868 1.52E-147 8.73E-147

GTF3C3 1987.34 -0.3592 0.02385 -15.062 2.89E-51 7.13E-51

GULP1 640.82 0.34179 0.07153 4.77814 1.77E-06 2.25E-06

HMG20B 5489.95 -0.8186 0.02685 -30.484 4.31E-204 3.71E-203

HMGB3 5577.2 -1.6441 0.06003 -27.388 3.86E-165 2.52E-164

HNF1A 245.61 -1.1339 0.07841 -14.461 2.14E-47 5.07E-47

HNF4G 277.795 -6.2544 0.13349 -46.852 0 0
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HOXA13 77.3845 -2.3855 0.20455 -11.662 1.99E-31 3.89E-31

HOXC8 167.777 -5.4351 0.0949 -57.275 0 0

HOXC9 218.878 -5.1496 0.09837 -52.347 0 0

IER5L 2059.74 0.28554 0.05433 5.25538 1.48E-07 1.93E-07

IGF2BP1 142.698 -2.2957 0.18221 -12.6 2.12E-36 4.41E-36

IL22RA1 266.713 2.25289 0.09592 23.4876 5.46E-122 2.56E-121

IPPK 1053.05 -1.0976 0.03032 -36.207 4.81E-287 6.90E-286

IQCA1 828.264 3.48015 0.08491 40.9859 0 0

IRAK3 760.228 -0.8446 0.07413 -11.394 4.46E-30 8.57E-30

IRX5 1464.78 -7.411 0.08945 -82.853 0 0

ISCU 5100.68 1.90679 0.02875 66.3119 0 0

ITGB3 1998.06 4.17437 0.08147 51.2376 0 0

KCNJ15 2194.64 6.55889 0.08335 78.6886 0 0

KLF3 4155.05 0.39248 0.02462 15.9413 3.27E-57 8.63E-57

KLHL14 1062.48 5.21229 0.10642 48.9801 0 0

LILRB3 177.152 -0.478 0.06915 -6.9133 4.74E-12 6.78E-12

LMO7 6171.05 2.30817 0.04991 46.2485 0 0

LOC84740 930.367 -4.7457 0.15509 -30.6 1.21E-205 1.05E-204

LPCAT1 8849.05 -1.1973 0.04956 -24.157 6.28E-129 3.14E-128

MAFK 2562.79 0.24663 0.03922 6.28828 3.21E-10 4.44E-10

MAPKAPK3 3705.76 1.74455 0.03236 53.9119 0 0

MEIS1 2136.62 -1.7935 0.05538 -32.387 4.14E-230 4.25E-229

MUC4 1639.02 -0.5678 0.15128 -3.7534 0.000174446 0.000210365

NBPF10 2075.07 -1.1899 0.05655 -21.041 2.74E-98 1.07E-97

NIN 2548.78 -0.8453 0.03187 -26.528 4.66E-155 2.83E-154

NUDT16P1 458.128 1.45315 0.06586 22.0633 7.11E-108 3.02E-107

NYNRIN 2599.49 1.2127 0.05817 20.8465 1.64E-96 6.29E-96

OGFRL1 1005.35 -1.5405 0.05503 -27.992 2.02E-172 1.39E-171

OSBPL3 1900.07 1.40025 0.0519 26.9776 2.70E-160 1.71E-159
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PABPC3 1407.18 -0.9747 0.04857 -20.067 1.43E-89 5.15E-89

PADI2 2795.44 -4.4786 0.09602 -46.642 0 0

PAPLN 1439.99 2.47032 0.0647 38.1831 0 0

PCDP1 155.199 1.20581 0.13261 9.093 9.63E-20 1.58E-19

PIK3R1 5504.79 -0.687 0.05038 -13.637 2.43E-42 5.44E-42

PITPNM1 3075.04 1.17408 0.04443 26.4284 6.46E-154 3.89E-153

PNRC1 6180.57 0.64155 0.03687 17.4 8.25E-68 2.43E-67

POF1B 1116.43 -3.0652 0.12466 -24.588 1.70E-133 8.85E-133

POSTN 36945.3 -3.1331 0.09535 -32.86 8.24E-237 8.75E-236

PPP2R4 10291.5 -0.539 0.02472 -21.806 2.03E-105 8.42E-105

PPP4R1 4565.9 0.19383 0.0274 7.07291 1.52E-12 2.19E-12

PRIMA1 426.151 -1.4497 0.10554 -13.737 6.11E-43 1.38E-42

PROX1 94.9841 1.67423 0.10665 15.6988 1.54E-55 3.99E-55

PRR7 356.667 -0.7432 0.06295 -11.807 3.59E-32 7.08E-32

PRSS3 347.489 1.20214 0.168 7.15547 8.34E-13 1.21E-12

PSME4 5848.39 -0.896 0.03328 -26.926 1.08E-159 6.81E-159

PTGS1 3620.61 -1.3029 0.05834 -22.333 1.77E-110 7.69E-110

RAB11FIP5 2452.82 -0.6883 0.03307 -20.812 3.35E-96 1.28E-95

RAB3IP 1843.85 -0.4525 0.04814 -9.399 5.51E-21 9.25E-21

RBM14 3005.43 -0.1571 0.01623 -9.6794 3.69E-22 6.32E-22

RBMXL1 1757.42 -0.1196 0.02259 -5.2947 1.19E-07 1.56E-07

REP15 67.4638 0.57378 0.06699 8.56567 1.07E-17 1.71E-17

RHOF 1401.89 1.75816 0.07418 23.7008 3.54E-124 1.69E-123

RHOU 3104.79 2.1605 0.06005 35.9766 1.94E-283 2.71E-282

ROS1 587.327 -1.0717 0.22531 -4.7565 1.97E-06 2.51E-06

RTN4RL1 820.116 -4.1761 0.09025 -46.273 0 0

SEL1L3 5779.97 2.04867 0.06482 31.6048 3.17E-219 3.04E-218

SFTA2 860.678 4.31509 0.18356 23.5073 3.43E-122 1.61E-121

SFTPA2 26597.7 4.01867 0.15964 25.1727 7.98E-140 4.34E-139
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SFTPB 58184.4 10.7305 0.18489 58.0387 0 0

SGPP2 505.305 1.69707 0.0884 19.198 3.85E-82 1.29E-81

SH3TC2 137.14 -0.3047 0.08531 -3.5711 0.000355476 0.000424991

SHOX2 137.388 -2.6585 0.08671 -30.659 2.01E-206 1.75E-205

SLC16A3 4475.32 0.2324 0.06165 3.76938 0.000163654 0.000197543

SLC5A6 3718.44 -3.0248 0.0499 -60.621 0 0

SNRPN 7199.12 2.20516 0.05457 40.4128 0 0

SNTB1 2940.19 2.87747 0.0581 49.5222 0 0

SOX17 1447.5 0.32306 0.05814 5.55664 2.75E-08 3.64E-08

SOX2 328.115 -5.2739 0.18675 -28.241 1.86E-175 1.31E-174

SPRR3 50.4587 -3.0802 0.2934 -10.498 8.83E-26 1.59E-25

SRL 342.905 5.44947 0.07675 71.0073 0 0

STAMBPL1 350.138 -0.6987 0.05128 -13.624 2.87E-42 6.43E-42

STARD3NL 1970.17 0.60911 0.02799 21.7602 5.53E-105 2.29E-104

STK17A 1733.47 -0.4008 0.041 -9.7763 1.42E-22 2.46E-22

STK33 306.893 4.99973 0.10542 47.4282 0 0

TBX4 73.5169 -3.1685 0.15579 -20.339 5.82E-92 2.13E-91

TBX5 141.449 -2.4714 0.10744 -23.003 4.34E-117 1.97E-116

TFAP2A 3570.45 -7.265 0.07658 -94.868 0 0

TFPI 2180.11 -0.8757 0.07368 -11.886 1.41E-32 2.79E-32

TG 122733 14.6101 0.09508 153.656 0 0

TMEM125 1976.24 0.60393 0.0452 13.3617 1.01E-40 2.23E-40

TMEM189.UBE2V1106.474 -0.9133 0.18485 -4.9407 7.78E-07 1.00E-06

TMPRSS4 3172.42 3.24068 0.13923 23.2751 7.92E-120 3.68E-119

TMUB1 2457.84 0.38033 0.02643 14.3878 6.17E-47 1.45E-46

TNFSF10 8460.82 -2.8268 0.07024 -40.246 0 0

TP53I3 1034.62 0.86222 0.04468 19.2996 5.41E-83 1.83E-82

TRPS1 14055.4 -4.6335 0.05918 -78.295 0 0

TSHR 5366.57 10.606 0.10119 104.809 0 0
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TSHZ2 342.181 -1.2576 0.07492 -16.785 3.12E-63 8.76E-63

TSPAN3 15911.8 1.43967 0.03965 36.3094 1.15E-288 1.67E-287

TXNRD1 6856.62 -0.6134 0.04865 -12.61 1.87E-36 3.89E-36

UAP1 4251.85 -1.5417 0.03362 -45.86 0 0

UBAP1 3893.18 -0.0895 0.02371 -3.7774 0.000158448 0.000191353

VANGL1 2792.57 -1.1929 0.03663 -32.563 1.37E-232 1.43E-231

VSTM2L 1170.07 1.22453 0.11733 10.4363 1.69E-25 3.04E-25

WT1 1797.4 -4.7802 0.1424 -33.569 4.83E-247 5.48E-246

XAGE1D 1129.49 -4.7626 0.30729 -15.499 3.53E-54 9.00E-54

ZDHHC7 3272.22 -0.1507 0.02559 -5.8885 3.90E-09 5.27E-09

ZNF280B 198.397 2.01472 0.0844 23.8724 5.93E-126 2.89E-125

ZNF628 562.854 0.27863 0.0287 9.70931 2.75E-22 4.73E-22

ZNF771 256.77 -0.2152 0.04531 -4.7499 2.04E-06 2.59E-06

ZNF90 1110.07 1.3678 0.06389 21.4085 1.11E-101 4.47E-101

187



Appendix B

Appendix B: Oversampling Results

The overall predictive performance of the machine learning methods

based on the oversampling

Table 2: The overall predictive performance of the machine learning methods based on the
oversampling.

Methods
Performance Measures

ACC (95% CI) Kappa (95% CI) F1-Score Precision Sensitivity AUC

SVM-R 93.1 (90.8, 94.9) 89.6 (86.8, 92.5) 97.6 99.4 95.9 97.2

SVM-L 82.4 (79.3, 85.3) 71.9 (67.5, 76.3) 88.1 100.0 78.7 92.0

SVM-P 84.0 (80.9, 86.7) 75.8 (71.9, 79.6) 94.7 100.0 89.9 90.9

ANN 86.3 (83.4, 88.8) 80.4 (76.8, 84.1) 92.1 86.9 97.9 89.7

kNN 92.0 (89.6, 94.0) 88.4 (85.4, 91.3) 96.0 93.6 98.4 96.3

Bagging 98.0 (96.6, 98.9) 97.0 (95.4, 98.6) 98.1 100 96.2 99.4

Note: SVM-R, Support Vector Machine with Radial-basis function (RBF) kernel; SVM-L, Support Vector

Machine with Linear Kernel; SVM-P, Support Vector Machine with Polynomial Kernel; ANN, Artificial Neural

Networks; kNN, K-nearest Neighbors; ACC, Accuracy; CI, Confidence Interval; Kappa, Kappa Statistics; AUC,

Area Under the Curve.
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Predictive performance of the machine learning methods per cancer type

based on the oversampling

Table 3: Predictive performance of the machine learning methods per-class statistics based
on the oversampling.

Performance

Measures

Methods

Class SVM-R SVM-L SVM-P ANN kNN Bagging trees

Accuracy

BRCA 97.5 86.1 94.2 92.5 96.0 98.0

COAD 93.1 97.5 94.9 90.9 93.7 95.8

LUAD 97.9 82.2 89.8 80.1 86.0 97.1

OV 82.7 52.3 50.6 93.2 98.0 97.1

THCA 96.0 99.6 99.6 98.9 99.1 100.0

Sensitivity

BRCA 99.4 100.0 100.0 86.9 93.6 100.0

COAD 86.1 97.2 100.0 88.9 94.4 91.7

LUAD 100.0 66.3 80.2 61.6 72.1 94.2

OV 66.7 4.6 01.1 90.8 96.6 94.3

THCA 91.9 99.1 99.1 99.1 98.2 100.0

Specificity

BRCA 95.6 72.2 88.4 98.1 98.4 95.9

COAD 100.0 97.7 89.7 93.0 93.0 100.0

LUAD 95.7 98.0 99.3 98.6 99.8 100.0

OV 98.8 100.8 100.0 95.6 99.5 100.0

THCA 100.0 100.0 100.0 98.7 100.0 100.0

F1-Score

BRCA 97.6 88.1 94.7 92.1 96.0 98.1

COAD 92.5 82.4 53.3 57.7 60.2 95.7

LUAD 87.8 74.0 86.8 72.1 83.2 97.0

OV 76.3 08.8 02.3 82.7 96.6 97.0

THCA 95.8 99.6 99.6 96.5 99.1 100.0

Precision

BRCA 95.9 78.7 89.9 98.0 98.4 96.2

COAD 100.0 71.4 36.4 42.7 44.2 100.0

LUAD 78.2 83.8 94.5 86.9 98.4 100.0

OV 89.2 100.1 100.0 76.0 96.6 100.0

THCA 100.0 100.0 100.0 94.0 100.0 100.0

Note: SVM-R, Support Vector Machine with Radial-basis function (RBF) kernel; SVM-L, Support Vector

Machine with Linear Kernel; SVM-P, Support Vector Machine with Polynomial Kernel; ANN, Artificial

Neural Networks; kNN, K-nearest Neighbors.
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Figure 1: Multi-class Precision Recall Curves visualization for SVMR model based on over-
sampling technique.

Figure 2: Multi-class Precision Recall Curves visualization for SVMRL model based on over-
sampling technique.

190



Appendix B

Figure 3: Multi-class Precision Recall Curves visualization for SVMP model based on over-
sampling technique.

Figure 4: Multi-class Precision Recall Curves visualization for ANN model based on over-
sampling technique.
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Figure 5: Multi-class Precision Recall Curves visualization for KNN model based on over-
sampling technique.

Figure 6: Multi-class Precision Recall Curves visualization for bagging trees model based on
over-sampling technique.
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Statistical Significance Test

Table 4: Predictive performance of the machine learning methods per-class statistics based
on the oversampling.

Accuracy

SVMR SVML SVMP ANN KNN Bagging

SVMR 0.120 0.109 0.090 -0.008 -0.054

SVML 0.001 -0.011 -0.030 -0.128 -0.174

SVMP 0.001 1.00 -0.019 -0.117 -0.163

ANN 0.002 1.00 1.00 -0.098 -0.144

KNN 1.00 <0.001 <0.001 0.004 -0.045

Bagging 0.077 <0.001 <0.001 <0.001 <0.001

Kappa

SVMR SVML SVMP ANN KNN Bagging

SVMR 0.193 0.162 0.135 -0.013 -0.079

SVML <0.001 -0.030 -0.057 -0.206 -0.272

SVMP <0.001 1.00 -0.027 -0.175 -0.241

ANN 0.002 1.00 1.00 -0.148 -0.214

KNN 1.00 <0.001 <0.001 0.004 -0.066

Bagging 0.076 <0.001 <0.001 <0.001 <0.001
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Figure 7: Compares both the mean estimated accuracy and kappa statistic as well as the 95%
confidence interval for the methods based on the over-sampling technique.

Figure 8: Compares both the mean estimated accuracy and kappa statistic as well as the 95%
confidence interval for the methods based on the under-sampling technique.
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Appendix C: Summary statistics of the 54 genes

Table 5: Summary statistics of the 54 genes selected for survival analysis (N = 307).

Probeset ID* Gene Symbol Min Max Mean (SD)

200661_at CTSA 3.085296 3.537954 3.32 (0.09)

202949_s_at FHL2 3.043399 3.51561 3.33 (0.08)

203725_at GADD45A 2.841759 3.425452 3.10 (0.10)

204014_at DUSP4 1.611363 3.343607 2.49 (0.36)

204073_s_at MYRF 1.931487 3.118863 2.63 (0.25)

204653_at TFAP2A 1.651537 3.271069 2.30 (0.34)

205767_at EREG 1.330575 3.480803 2.71 (0.51)

206034_at SERPINB8 2.2372 2.910791 2.57 (0.12)

206574_s_at PTP4A3 2.234643 3.305859 2.77 (0.22)

206907_at TNFSF9 1.82003 3.094666 2.34 (0.24)

207033_at GIF 1.443817 3.342563 1.91 (0.30)

207267_s_at RIPPLY3 1.415345 2.595129 1.84 (0.20)

207519_at SLC6A4 1.860941 2.825926 2.20 (0.19)

209016_s_at KRT7 1.894892 3.590677 2.42 (0.25)

210074_at CTSV 2.406115 3.301904 2.87 (0.18)

210306_at L3MBTL1 1.533169 2.845164 2.12 (0.25)

212947_at SLC9A8 1.970226 2.87913 2.53 (0.13)

213499_at CLCN2 2.205234 3.07652 2.58 (0.13)

218056_at BFAR 2.900836 3.240013 3.08 (0.06)

218611_at IER5 2.846535 3.438737 3.10 (0.11)

218641_at C11orf95 2.273865 3.221723 2.87 (0.16)

219232_s_at EGLN3 1.995892 3.25081 2.63 (0.23)

219281_at MSRA 2.463159 3.096048 2.85 (0.10)

219459_at POLR3B 2.164917 3.010461 2.75 (0.11)

219973_at ARSJ 1.477639 2.882906 2.17 (0.25)
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220363_s_at ELMO2 2.207412 2.797861 2.52 (0.11)

220606_s_at ADPRM 2.198647 2.884304 2.53 (0.13)

220668_s_at DNMT3B 2.078965 2.929752 2.52 (0.15)

220736_at SLC19A3 1.541837 3.07391 2.13 (0.32)

221522_at ANKRD27 2.839777 3.303317 3.08 (0.08)

221605_s_at PIPOX 1.599295 3.263056 2.21 (0.32)

224368_s_at NDRG3 2.274761 3.136462 2.80 (0.16)

224916_at TMEM173 2.209758 3.181648 2.79 (0.15)

225923_at VAPB 2.391236 3.181648 2.80 (0.15)

226004_at CABLES2 2.359722 3.15781 2.80 (0.13)

227134_at SYTL1 1.970423 3.184009 2.67 (0.22)

227949_at PHACTR3 1.159216 2.99362 1.86 (0.37)

228262_at MAP7D2 1.340846 3.273704 2.27 (0.50)

229522_at SDR42E1 2.066187 2.872696 2.53 (0.16)

230084_at SLC30A2 1.996567 2.894033 2.32 (0.16)

232277_at SLC28A3 1.367166 2.942343 2.07 (0.39)

232652_x_at SCAND1 2.865234 3.359162 3.09 (0.10)

232884_s_at ZNF853 1.813342 2.785865 2.15 (0.18)

233979_s_at ESPN 1.901582 2.90773 2.39 (0.20)

234725_s_at SEMA4B 2.722612 3.327446 3.08 (0.11)

234728_s_at DHX35 1.992349 2.876806 2.47 (0.16)

234985_at LDLRAD3 1.974432 3.167782 2.74 (0.21)

235515_at SYNE4 1.868786 3.038119 2.57 (0.28)

235798_at TMEM170B 1.180868 2.532567 1.82 (0.27)

236514_at ACOT8 1.741381 3.000081 2.36 (0.25)

238824_at RPS29 1.95044 2.952403 2.44 (0.14)

238935_at RPS27L 1.804659 3.16445 2.60 (0.19)

242963_at SGMS2 1.550172 2.834302 2.23 (0.22)

32502_at GDPD5 2.424871 3.357056 2.86 (0.15)
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Appendix D: Published Papers
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� Abstract: Background: Colorectal cancer (CRC) is the third most common cancer among women 
and men in the USA, and recent studies have shown an increasing incidence in less developed 
regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA 
expression) signature and assessed its predictive properties for the mutation status and survival of 
CRC patients.  

Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed 
paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were 
used to obtain differentially expressed genes between mutant and wild-type samples. We applied 
the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve 
Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis 
algorithms for classification. Cox proportional hazards model was used for survival analysis. 

Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had 
the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers 
and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the 
RNASeq data, while the SVM method was the most suitable classifier for CRC across the two data 
types. Nine genes were found to be predictive of survival. 

Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer 
diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer 
survival analysis and the application on unbalanced data, where the classes are of different sizes, 
as well as on data with multiple classes. 
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1. INTRODUCTION 

Colorectal cancer (CRC) is one of the major emerging 
causes of mortality and morbidity around the world [1]. CRC 
is also the third leading cause of death among men and 
women [2-6]. According to the World Health Organization 
(WHO), there were about 1.80 million new cases and 
862,000 deaths in the year 2018 [7]. Furthermore, in 2019, 
CRC was reported to be the third most prevalent cancer 
among men and women and an estimated 101,420 and 
44,180 new cases of colon and rectal cancer, respectively, 
and 51,020 deaths in the USA alone [2, 8, 9]. 

Although the incidence rates of CRC are lower in 
developing countries than in developed countries, recent  
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Statistics, and Computer Science, University of KwaZulu-Natal, 
Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa;  
E-mail: mohanadadam32@gmail.com 

studies have shown an increase in the incidence rates in Sub-
Saharan Africa [10]. Many cancer types that are relatively 
curable in developed countries are detected only at advanced 
stages in developing countries, due to late or inaccurate 
diagnoses [11]. Cancer tumor classification based on 
morphological characteristics alone has been shown to have 
serious limitations in some studies [12]. Physicians aim to 
diagnose CRC as early as possible to design optimal 
treatment strategies that are patient-specific. Therefore, using 
genetic mutation and features of the tumor would most 
probably lead to better understanding and early detection of 
the disease and lead to finding suitable and targeted 
strategies [13]. 

Previously, most of the cancer classification research was 
based on clinical features of the tumors, which lacked the 
accurate diagnostic ability, hence the need to develop new 
methods that will better address this critical problem [12, 
14]. Recently, DNA microarray technology has greatly 
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improved the classification of diseases into sub-types, 
particularly cancer. This technology allows the processing of 
thousands of genes simultaneously, hence providing critical 
information about a disease [15, 16]. Microarray gene 
expression data have been used widely for cancer detection, 
prediction, and diagnosis [17]. In the last decade, next-
generation sequencing (NGS) technology has emerged as an 
advancement in cancer and other disease research, based on 
RNA sequencing methodology. NGS platforms that are most 
common include Illumina, SOLiD, Ion Torrent semi-
conductor sequencing, and single-molecule real-time sequen-
cing [18]. 

NGS technology has been the most attractive, and its 
application dramatically improved over the last few years. 
This technology is high-throughput and has become popular 
in the detection and analysis of differentially expressed 
genes [18, 19]. More recently, RNASeq data has been shown 
to be better than microarray data in terms of quality and 
accuracy in estimating transcript abundance. However, the 
two methodologies are different in design and imple-
mentation [19-21]. Although RNASeq experiments are 
expensive, in contrast, they have many advantages over 
microarrays. RNASeq allows detecting the variation of a 
single nucleotide, does not require genomic sequence 
knowledge, provides quantitative expression levels, provides 
isoform-level expression measurements, and offers a broader 
dynamic range than microarrays [20]. Moreover, RNASeq 
allows the detection of novel transcripts, low background 
signal, and increased specificity and sensitivity [22]. 
However, our view is that integrated use of data from both 
technologies may be the best approach, given the available 
information from both technologies. 

Microarray and RNASeq technologies produce gene 
expression data in different forms. The structure of gene 
expression produced using microarrays is continuous data, 
while RNASeq provides a discrete Type of data [23]. What 
is common between the two technologies is that both 
generate big datasets consisting of a few sample sizes, where 
each sample has a large number of genes. Many areas of 
research, such as clinical, medical, biological, and 
agriculture, apply the RNASeq technology [24, 25]. 

Many statistical and machine learning methods have been 
used to analyze and extract information from massive 
amounts of gene expression data. These methods include the 
Poisson linear discriminant analysis (PLDA), negative 
binomial linear discriminant analysis (NBLDA), support 
vector machines (SVM), artificial neural networks (ANN), 
linear discriminant analysis (LDA), and random forests (RF). 

These methods have been used and examined in many 
studies based on RNASeq and microarray data. For example, 
Aziz et al. [26] assessed the ANN performance based on 
microarray data using six hybrid feature selection methods. 
Five gene expression datasets were used for evaluating these 
methods and for understanding how these methods can 
improve the performance of ANN. Statistical hypothesis 
tests were used to check the differences between these 
methods. They showed that the combination of independent 
component analysis (ICA) and genetic bee colony algorithm 
had superior performance. Salem et al. [27] proposed a new 

methodology for gene expression data analysis. They 
combined information gain (IG) and standard genetic 
algorithm (SGA) for feature selection and reduction, 
respectively. Their approach was tested on seven cancer 
datasets and then compared with the most recent approaches. 
Their results show that the proposed approach outperformed 
the most recent approaches. Jain et al. [28] presented a two-
phase hybrid method for cancer classification using eleven 
microarray datasets for different cancer types. They 
combined correlation-based feature selection (CFS) and 
improved-binary particle swarm optimization (IBPSO). 
Naive Bayes with 10-fold cross-validation was used for 
assessment. Results indicated that their approach had better 
performance in terms of accuracy and the number of selected 
genes. 

Anders and Huber [29] conducted differential expression 
analysis based on the negative binomial distribution, with 
variance and mean linked by local regression, for count data. 
Their proposed method controls the type I error and gives 
good detection power. Zararsiz et al. [23] presented a 
comprehensive simulation study on RNASeq classification 
using PLDA, NBLDA, single SVM, bagging SVM 
(bagSVM), classification and regression trees (CART), and 
RF. Their simulation results were applied and compared to 
two miRNA and two mRNA real experimental datasets. 
They found that the power-transformed PLDA, RF, and 
SVM were the best in classification performance. 

Due to the small number of samples for gene expression 
data, combining independent datasets is novel in order to 
increase sample size and statistical power. Taminau et al. 
[30] worked on the integration of gene expression analysis 
using two approaches based on merging and meta-analysis. 
They used six gene expression datasets. Results showed that 
both meta-analysis and merging did well, but merging was 
able to detect more differentially expressed genes than meta-
analysis. 

Recently, combining two different gene expression data 
sources has been shown to improve classification accuracy 
as opposed to using only one source. Castillo and co-workers 
[20] introduced the integration of multiple microarrays and 
RNASeq platforms. They first carried out a differential 
expression analysis, then applied the minimum-redundancy 
maximum-relevance (mRMR) feature selection approach for 
further reduction of the gene-list. The top 10 genes were 
selected and evaluated using four classification methods: k-
nearest neighbor (KNN), naive Bayes (NB), RF, and SVM. 
Their results showed the highest accuracy and f1-score for 
the KNN. In this study, we combined RNASeq and DNA 
expression data from colorectal cancer patients. We obtained 
a hybrid gene-list from the RNASeq and microarray  
datasets and assessed its classification performance based  
on the PLDA, NBLDA, SVM, RF, ANN, KNN, and NB 
algorithms. 

The paper is structured as follows. Section 2 discusses 
the methods and the datasets used in the study. Section 3 
shows the classification results of the microarray, RNASeq, 
hybrid gene lists, and survival analysis. Discussion and 
conclusions are presented in Sections 4 and 5, respectively. 
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2. MATERIALS AND METHODS 

2.1. Datasets 

We used publicly available microarray and RNASeq data 
that is also reported in Omolo et al. [4]. The data consists of 
54 matched formalin-fixed paraffin-embedded (FFPE) 
samples from colorectal cancer patients and is available in 
the gene expression omnibus (GEO) repository under the 
accession numbers GSE86562 and GSE86559 for RNASeq 
and microarray data, respectively. The microarray gene 
expression data consists of 60,607 genes on 54 colorectal 
patients. We used the KRAS mutation status as a class 
variable. As a first step, the Affymetrix microarray data were 
log2-transformed and quantile-normalized, and genes with 
more than 50% missing values were filtered out. After that, 
we performed class comparison using the two-sample t-test 
at the 0.005 significant level threshold, which yielded 165 
differentially expressed genes. 

The RNASeq dataset contained 57,905 genes from the 
same colorectal cancer patients used to generate the 
microarray data. This data is in the form of counts, i.e., 
discrete. For this data, first, filtration was done to remove the 
genes with more than 50% of zeros across the samples, using 
the counts per million (CPM) method [31]. We retained 
genes whose CPM values are greater than 0.5. Thus, the 
dimension reduced to 17,473 genes. We performed 
differential expression analysis using the DESeq2 package in 
R. This step reduced the genes to 282 genes using the 0.005 
significance threshold level. The differential expression 
analysis tool in DESeq2 uses a generalized linear model 
(GLM) of the following form: 

���� � �� ��� ���  
���� � ������� 
��������� � ����� ��    (1) 

where ��� is the counts for gene � in sample �. These counts 
are modeled using a negative binomial distribution with 
fitted mean ��� and a gene-specific dispersion parameter ��. 
The fitted mean is decomposed into a sample-specific size 
factor �� and a parameter ��� proportional to the expected 
true concentration of fragments for sample �. The 
coefficients �� represent the log2-fold changes for gene � for 
each column of the model or design matrix X. Note that the 
model can be generalized to use a sample- and gene-
dependent normalization factors ���. 

The dispersion parameter �� defines the relationship 
between the variance of the observed count and its mean 
value. That is, how far we expect the observed count to be 
from the mean value, which depends both on the size factor 
�� and the covariate-dependent part ��� as defined above. 
Thus, the variance function is given by: 

�������� � ������ � ����
�� � ��� � �����

�    (2) 

The steps performed by the DESeq function in DESeq2 
package are the estimation of ��, and ��, and fitting negative 
binomial GLM for �� and Wald statistics by 
nbinomWaldTest. 

We computed counts per million as: 
���� �

��

�
� ����        (3) 

where �� denotes the counts observed from a gene of interest 
i, and N is the number of sequenced fragments. 

RNASeq and microarray data integration may help 
improve cancer classification accuracy. Several studies have 
addressed the classification problem using RNASeq, 
microarray, or a combination of both, based on hetero-
geneous samples [20, 32, 33]. Our study aimed to integrate 
homogeneous samples from the RNASeq and microarray 
platforms. In this regard, we obtained the differentially 
expressed genes from the two platforms based on the same 
set of samples. After that, we used the database for 
annotation, visualization, and integrated discovery (DAVID) 
[34] and catalogue of somatic mutations in cancer 
(COSMIC) tools, to annotate the RNASeq transcripts list. 
The microarray genes symbol names were obtained from the 
dataset in [4]. We then obtained the intersection, 
complement of the intersection, and union between the two 
annotated lists. 

Integration was done using the intersection, complement 
of the intersection, and the union of the two lists of genes. 
Due to the different nature of the two datasets, RNASeq was 
log2 transformed and quantile-normalized to make both 
types of data consistent with each other. Subsequently, the 
integration was done based on binding the two gene-lists 
from the RNASeq and microarray datasets. To transform the 
RNASeq data, we let: 

������	�
������� � ������ � ���    (4) 

where G is the RNASeq counts data matrix, and G + 1 is the 
RNASeq counts data matrix with all zero counts changed to 
one. 

Quantile normalization ensures that probe intensities of 
each array in a set of arrays have the same distribution. A 
quantile-quantile plot would help to confirm if two probe 
vectors have the same distribution (quantiles lie on the 
diagonal line) or not. This approach can be extended to n-
dimensional data. Let �� � ������ � ����

�, k= 1, …, P, be 
the vector of the kth quantiles for all n arrays, and � �
�
�

�
�� �

�

�
�� be the unit diagonal. To transform from the 

quantiles so that they all lie along the diagonal, we projected 
� on to � as below [35]: 

������� � �
�

�

�
��� ��� �� �

�

�

�
��� ����   (5) 

2.2. Data Integration 

Here, we used homogeneous data from matched-pair 
samples from microarray and RNASeq technologies. Using a 
set-theoretic approach of taking the intersection, the 
complement of the intersection, or union, we obtained four 
lists of genes from the two platforms at the 0.005 
significance level. The intersection between the two lists was 
23 genes, with 401 genes being the complement of the 
intersection. The steps followed in this study are as shown at 
Fig. (1). 

2.3. Classification Methods 

Several methods have been developed for classification 
and their performance evaluated in both microarray and 
RNASeq platforms. Below, we briefly describe seven 
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classification methods and how to evaluate their 
performances based on the integration of the two platforms. 

2.3.1. Poisson Linear Discriminant Analysis 

The PLDA classifier was proposed by Witten [36]. 
Witten used the Poisson log-linear model and developed an 
analog of diagonal linear discriminant analysis for sequence 
data. 

Let � denote a � � � matrix of read counts data, where � 
denotes the number of observations (samples), and � the 
number of genes. Let ��� be the counts or reads for gene � in 
sample �; it is reasonable to assume that: 

��� � �������������     (6) 

where ��� � ����. To avoid identifiability issues, one can 
require �

��� �� � �, where �� is the number of counts per 
sample �, and �� is the number of counts per gene �. 

Suppose that we have � different classes of samples. 
Then we can write: 

������ � � � ����������������    (7) 

where �� denotes the class of the �
th sample 

(�� � �� ����� ��) and ��� denotes a measure of the level of 
the �th gene to be differentially expressed in class �. 

Let �� � ���������� �����
� indicate the entries of row � 

in the � matrix, which are the gene expression levels of 
sample �. Let, ��� � �

��� ���, ��� �
�

��� ���, and 
��� � ��� ��� denote the column, row, and the overall 
totals, respectively. The maximum likelihood estimate 
(MLE) for ��� assuming independence is ��

��
�

������

���
, and 

�
��� ��� � � yields the estimates ��� �

���

���
 and ��

�
� ����. 

��� is the estimate of the size factor for sample �. Maximum 
likelihood estimation provides the estimate of ��� as 

���� �
����

����
����

, where �� denotes the class of an 

observation.

If ���� � �, then the �th gene is overexpressed relative to 
the baseline in the �th class, and if ���� � �, then the �th gene 
is under expressed relative to the baseline in the �th class. If 
���� � � (an event that is not unlikely if the true mean for �th 
gene is small), then the maximum likelihood estimates for 
��� equals zero. 

Assume that we want to classify a new observation 
�� � ���

��� ���
��, and let �� indicate the unknown class 

label. By Bayes rule, 

���� � ����� � ����
���� �      (8) 

where �� is the density of a sample in class � and �� is the 
prior probability that an observation belongs to class �. 
Then, if �� is a normal density with a class-specific mean 
and common covariance, PLDA classifies a new sample to 
class �, which maximizes equation (8). Consequently, the 
discriminant score of PLDA is: 

��������� � ����� �

�
��� ��

�������� �
�
��� ������� � ������ � �    (9) 

PLDA is implemented using the R package MLSeq. 

2.3.2. Negative Binomial Linear Discriminant Analysis 

Recently, Dong et al. [22] proposed NBLDA for 
RNASeq data analysis. NBLDA and Poisson linear 
discriminant analysis (PLDA) were considered the most 
suitable classifiers for RNASeq data due to the discrete 
nature of data [22, 36]. 

Let ��� denote the number of reads in sample �, and gene 
�, � � �� �� ��� � � and, � � �� �� ��� � �. Then ��� is assumed 
to follow the negative binomial distribution: 

��� � ������ ����� ��� � ���� �     (10) 

where �� is the size factor, used to scale gene counts for the 
�

th sample due to different sequencing depth, �� is the total 
number of reads per gene, and �� � � is the dispersion 
parameter. The mean and variance of the negative binomial 
distribution are given by: 

� ��� � ����  

������ �� ��� � ���
� �� ��     (11) 

Suppose that we have � classes. Let �� be an indicator 
variable such that �� � �������� ���. Then, the model for 
RNASeq data is: 

������� � �� � ���������� �����   (12) 

where ��� denotes the differences among the � classes, and 
�� � ��� � �������� ��� denotes the class of samples �. 
The assumption is that all the genes are independent. 

Fig. (1). Flow-chart of the analysis.  
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Let �� � ���
��� ���

�� be a new sample whose class is to 
be predicted, �� is the size factor, and ��

� the class label 
value. By Bayes' rule, we have: 

����� � ������� � ����
�������    (13) 

where �� is the ��� of the sample in class �, and �� is the 
prior probability that a sample comes from class �. The ��� 
of ��� � ��� in equation (12) is: 

������� � ������ � �� �

��������
���

���
� �����

���
�

���������

�����������
�����

�

�����������
���
��

    (14) 

Thus, the discriminant score for NBLDA can be 
constructed from (13) and (14) as: 

��������� � ������� � �
��� ��

��������� �

������ � ����������� �
�
��� ��

�������� � ���������� �

������ � ��             (15) 

where � is a constant independent of �. The class �, which 
maximizes the score in equation (15) will be assigned to the 
new sample ����. NBLDA is implemented using the R 
package MLSeq. 

2.3.3. Support Vector Machines 

The SVM method was first proposed by Boser, Guyon, 
and Vapnik [37] at the Computational Learning Theory 
(COLT92) ACM Conference in 1992. The method is based 
on the idea of a hyperplane that lies furthermost from both 
classes. This plane is known as the optimal (maximum) 
margin hyperplane. The hyperplane is completely deter-
mined by a sub-set of the samples known as the support 
vectors [38]. SVM has the ability to handle problems where 
the data are not linearly separable by transforming the data 
using mapping kernel functions such as the radial basis 
function (RBF) kernel, polynomial function, and the linear 
function [39]. In addition, SVM can handle high dimensional 
data, which is an essential advantage in dealing with genetic 
data from cancer studies. This attribute makes SVM widely 
appealing and applicable to real-life data analysis problems 
such as handwritten character recognition, human face 
recognition, radar target identification, speech identification, 
and, quite recently, to gene expression data analysis [40, 41]. 

Suppose we have � samples and � genes. Further, 
assume samples belong to two distinct outcome classes 
represented by �� or �� and a feature vector �� such that 
��� � ��� � ���� � ����� �, where �� � ���������� �����

� is 
the sample profile (vector) and �� � ������� is the outcome 
class dichotomy. The goal is to classify the samples into one 
of the two classes by training the SVM which maps the input 
data (using a suitable kernel function) onto a high-
dimensional space (feature space) �������� �������

� . This is 
achieved by constructing an optimal separating hyperplane 
that lies furthest from both classes. 

The general form of a separating hyperplane in the space 
of the mapped data is defined by: 

������ � � � �       (16) 

Here, � � �������� ����
� is the weight vector. We can 

rescale the � and � such that the following equation 
determines the point in each class that is nearest to the 
hyperplane defined by the equation: 

������� � �� � �       (17) 

Therefore, it should follow that for each sample �, 
� � ������ � ��, 

��� �� � � � �� ����� � ��� � ������ � ���  (18) 

After the rescaling, the distance from the nearest point in 
each class to the hyperplane becomes �

���
. Thus, the distance 

between the two classes is �

���
, which is called the margin. 

The solution of the following optimization problem is 
obtained to maximize the margin: 

���
���

����� 

����������� 

����
������ � �� � �� � � ����� � ���  (19) 

The square of the norm of � is considered to make the 
problem quadratic. Suppose �� and �� are the solutions to 
the optimization problem (19) above. Then this solution 
determines the hyperplane in the feature space where 
��������� � �� � �. The points ����� that satisfy the 
qualities �����

��������� � �
�� � � are called support 

vectors [38]. The SVM method is implemented using the R 
package kernlab [42]. 

2.3.4. Random Forests 

Random forests were first introduced in 2001 [43, 44]. 
They are an extension of classification and regression trees, 
and also an improvement over bagged trees by further 
modification using a random small tweak to de-correlate the 
trees. Growing random forests leads to an improvement in 
prediction accuracy compared to single or bagged trees [45]. 

We build a number of forests of decision trees on 
bootstrapped training samples from the original data. A tree 
is obtained by recursively splitting the genes such that at 
each node of the tree, a candidate gene for splitting is 
obtained from a random sample of size �. A typical choice 
for � is such that � � �, where � is the number of 
candidate genes for splitting. 

We then grew the trees to maximum depth. Therefore, 
the two-step randomization process helps to de-correlate the 
trees [46]. To determine the prediction for an unknown 
sample, an average over all the trees is taken for a regression 
problem and a majority vote for a classification problem [43, 
47, 48]. Random Forest Algorithm for Regression or 
Classification [43] can be implemented as follows 

1. For � � � to � (# random-forest trees): 

• Draw a bootstrap sample of size � from the 
training data. 

• Grow a random-forest tree, �� to the 
bootstrapped data, by recursively repeating the 
following steps for each terminal node of the 
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tree, until the minimum node size, ����, is 
reached. 

• Select � genes at random from the � genes. 

• Pick the best gene to split on among the � based 
on an impurity measure. 

• Using the selected gene, split the node into two 
daughter nodes. 

2. To predict a new sample �: Let ������ be the class 
prediction of the �-th random-forest tree. Then ����

�
��� �

���������	��������������
�  

RF is implemented using the R package randomForest 
[49]. 

2.3.5. Artificial Neural Networks 

Artificial neural networks (ANN) are multi-layered 
models that are constructed from three layers, each layer 
consisting of nodes called neurons [50]. The input layer 
contains nodes whose number is based on the input features. 
The output layer contains nodes equal to the number of 
classes, and finally, the hidden layer contains nodes 
determined by the level of tuning required. The inputs are 
weighted by multiplying each input by weight as a measure 
of its contribution. The layers are connected together via 
connection weights. These weights are determined through 
stages of model fitting. The hidden nodes receive the sum 
weighted from the input layer plus some bias. This 
summation is passed onto the transform function (activation 
function) to generate the results. These results are called 
outputs and interpreted as a class probability in our case. 

There are many types of architecture of ANN. Neural 
networks are used widely in different fields, such as 
prediction in time series models, economic modeling, and 
medical applications [39]. Also, ANN can be applied to the 
classification problem using microarray gene expression data 
[50]. In this paper, we apply the method to both microarray 
and RNA Sequencing gene expression data. 

Consider the simplest multi-layered network with one 
hidden layer. Assume we have gene expression data where � 
denotes the number of genes. Then the input layer receives 
the � gene expression levels for a sample, each multiplied by 
the corresponding weight, �

��

���
��, as shown in equation (20), 

below: 

�� �
�
��� �

��

���
�� �� � ����� ���   (20) 

where � � ����������� ����
� is a vector of input features 

and �� � � is a constant input feature that with weight ���. 
The quantities, ��, are called activations, and the parameters 
�
��

��� are the weights. Note that alternatively �� can be 
viewed as a summary of the � genes from sample �. The 
superscript ����� indicates that this is the first layer of the 
network. Each of the activations is then transformed by a 
nonlinear activation function �, typically a sigmoid, as in 
equation (21) below: 

�� � ����� �
�

�����������
      (21) 

The quantities �� are interpreted as the output of hidden 
units, so-called because they do not have values specified by 
the problem (as is the case for input units) or target values 
used in training (as is the case for output units). 

In the second layer, the outputs of the hidden units are 
linearly combined to give the activations: 

�� �
�
��� �

��

���
�� �� � ����� ��    (22) 

Again, �� � � corresponds to the bias. Weights �
��

��� 
parameterize the transformations in the second layer of the 
neural network. The output units are transformed using an 
activation function. Again, a sigmoid function may be used 
as shown below: 

�� � ����� �
�

�����������
     (23) 

These equations may be combined to give the overall 
equation describing the forward propagation through the 
network, and describes how an output vector is computed 
from an input vector, given the weight matrices as: 

�� � �� �
��� �

��

���
�� �

��� �
��

���
����   (24) 

ANN is implemented using the R package nnet [51]. 

2.3.6. Naïve Bayes 

The Naive Bayes classifier uses probability theory to find 
the most likely of the possible classes in a classification 
problem. The NB classifier relies on two assumptions, 
namely, that each attribute is conditionally independent of 
the other attributes given the class and that all the attributes 
have an influence on the class [52]. The popularity of this 
classifier is mainly due to its simplicity, yet exhibiting a 
surprisingly competitive predictive accuracy. The NB classi-
fier has previously been applied in many fields, including 
microarray gene expression data [39, 50]. 

Consider an � � � gene expression data matrix, where � 
is the number of the samples, and � is the number of the 
genes (features). Let ��� � � � ����� � �, denote the �th gene 
on the �th sample. Let �� be the �th class, � � �� �� ��� � �. 
The Naive Bayes classifier uses the maximum a posteriori 
(MAP) classification rule to classify these samples. The 
probability of the �th sample gene information vector, 
�� � ���������� �����

�, is calculated, and then the sample 
is assigned the class with the largest probability from � 
conditional probabilities. 

Let ������������������� ��������� denote the set of � 
conditional probabilities. The NB classification depends on 
the Bayes rule, which states that a posterior probability: 

� �� �
� �� � ��

� ��
� � �� � �� � � � ����� � �  (25) 

where ����� is considered a common normalizing factor for 
all the � probabilities. 

The NB classification assumes that all input features are 
conditionally independent, that is, 
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���������������� �������� ���

������������������������������       (26) 

Ultimately, NB classifies a new sample, ��, according to 
the model with MAP probability given the sample, as: 

������������ � �������������
���   (27) 

NB is implemented using the R package naivebayes. 

2.3.7. k-Nearest Neighbors 

The k-nearest neighbor classifiers (KNN) are known to 
be the most useful instance-based learners. KNN is a non-
parametric model [51]. If the classification is based on 
Euclidean distance in a feature space, then k determines the 
number of neighbors to be used. In the testing set, the new 
sample is assigned to the class that is most likely among the 
k neighbors. Then the number of neighbors can be tuned to 
choose the optimal fitted model parameters [39, 50]. 

The KNN uses the Euclidean distance measure to find the 
closest samples for the new sample. Suppose we have two 
samples, each one with � genes. Denote the two samples as 
�� � ���������� �����

� and �� � ���������� �����
�. Then 

the Euclidean distance is calculated as the square root of the 
sum of the squared differences in their corresponding values. 
Using the Euclidean distance formula, the distance between 
two points, �������� ���, is given as: 

�������� ��� �
�
��� ���� � ����

�   (28) 

where a large �������� ��� means the two samples belong to 
different classes, and values near zero suggest that the 
samples are homogeneous. KNN is implemented using the R 
package caret. 

3. RESULTS 

The analysis of RNASeq data using the integrated list of 
genes was performed using R statistical software. 
Assessment of the methods was done using 10-fold cross-
validation. Here, the 54 CRC samples were divided into 10-
folds randomly, with each fold consisting of about 5 - 6 
samples. After that, we used a nine-folds for model-building 
and one-fold for the testing and validation. Thus, this process 

was self-iterated ten times, and the average of the ten 
iterations used to obtain the model performance measures. 
Several performance measures exist in the literature that can 
assess classification based on microarray and RNASeq gene 
expression data. The metrics include accuracy, sensitivity, 
specificity, kappa coefficient, AUC, and balanced error rate 
(BER) [54, 55]. 

Table 1 provides the number of genes obtained through 
the intersection, complement of the intersection, and union 
of the gene-lists from differential expression analysis 
(RNASeq: GSE86562, Microarray: GSE86559). There were 
165 and 282 total DEGs in the GSE86559 and GSE86562 
datasets, respectively. We obtained 23 genes through the 
intersection, 142 from a complement of GSE86559, 259 a 
complement of GSE86562, and 424 from a union (Table 1). 

The 23 genes obtained from the intersection of the 
RNASeq and microarray gene expression data, their official 
gene symbols, and names are in Table 2. 

We performed an exploratory analysis of the RNASeq 
data. Fig. (2) shows the most meaningful changes at the 
0.005 significance level among the genes between the two 
conditions, based on the volcano plot [56]. The volcano plot 
shows the genes with smaller p-values (higher ������ 
values) in red. 

Fig. (3) illustrates the estimated dispersion of the 
RNASeq data using the DESeq2 package, with each gene 
having a gene-specific dispersion parameter. Good estimates 
of dispersion parameters lead to accurate detection of 
differen-tially expressed genes. Underestimating the 
dispersion parameters might lead to false positives (i.e., 
declaring genes to be differentially expressed when they are 
not truly differentially-expressed). On the other hand, 
overestimating the dispersion parameters might lead to false 
negatives [57]. 

Tables 3-6 show the performance of the gene-lists in 
predicting mutation status, based on seven methods 
(algorithms), at the 0.005 significance level: the 282 gene-
list (Table 3); the 23 gene-list (Table 4); the 424 gene-list 
(Table 5); and the 401 gene-list (Table 6). 

It is apparent from Table 3, compared to Table 4 below 
that NB, ANN, KNN, and PLDA were improved in the 
common 23 genes in terms of all performance measures, 
while RF and NBLDA had the same performance. SVM had 
a better result on the full list of 282 genes. Therefore, in 
general, four methods out of seven were improved on the 23 
gene-list compared to the 282 genes-list. From Fig. (4a and 
b), we notice NBLDA works very well in both lists of genes. 

Table 1. The number of genes obtained through the intersection, the complement of the intersection, and union of the gene-lists 

from differential expression analysis (RNASeq: GSE86562, Microarray: GSE86559). 

Dataset Total of DEGs Intersection Complement of Intersection Union 

GSE86559 165 
23 

142 
424 

GSE86562 282 259 
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Table 2. The official gene symbols and the corresponding gene names. 

Ensemble Gene ID Official Gene Symbol Name 

ENSG00000108511  HOXB6  Homeobox B6(HOXB6) 

ENSG00000169247  SH3TC2  SH3 domain and tetratricopeptide repeats 2(SH3TC2) 

ENSG00000120068  HOXB8  Homeobox B8(HOXB8) 

ENSG00000025293  PHF20  PHD finger protein 20(PHF20) 

ENSG00000136997  MYC  v-myc avian myelocytomatosis viral oncogene homolog (MYC) 

ENSG00000143882  ATP6V1C2  ATPase H+ transporting V1 subunit C2(ATP6V1C2) 

ENSG00000003096  KLHL13  Kelch like family member 13(KLHL13) 

ENSG00000131746  TNS4  Tensin 4(TNS4) 

ENSG00000196532  HIST1H3C  Histone cluster 1 H3 family member c(HIST1H3C) 

ENSG00000233101  HOXB-AS3  HOXB cluster antisense RNA 3(HOXB-AS3) 

ENSG00000204104  TRAF3IP1  TRAF3 interacting protein 1(TRAF3IP1) 

ENSG00000126003  PLAGL2  PLAG1 like zinc finger 2(PLAGL2) 

ENSG00000120875  DUSP4  Dual specificity phosphatase 4(DUSP4) 

ENSG00000164070  HSPA4L  Heat shock protein family A (Hsp70) member 4 like (HSPA4L) 

ENSG00000111057  KRT18  Keratin 18(KRT18) 

ENSG00000260807  LMF1  Lipase maturation factor 1(LMF1) 

ENSG00000174136  RGMB  Repulsive guidance molecule family member b(RGMB) 

ENSG00000197818  SLC9A8  Solute carrier family 9 member A8(SLC9A8) 

ENSG00000187372  PCDHB13  Protocadherin beta 13(PCDHB13) 

ENSG00000140526  ABHD2  Abhydrolase domain containing 2(ABHD2) 

ENSG00000166068  SPRED1  Sprouty related EVH1 domain containing 1(SPRED1) 

ENSG00000182742  HOXB4  Homeobox B4(HOXB4) 

ENSG00000101193  GID8  GID complex subunit 8 homolog (GID8) 

 

 
Fig. (2). Volcano plot of the RNASeq dataset shows the 282 differentially expressed genes in red points (α = 0:005). 
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Fig. (3). Dispersion for the RNASeq data. 

 

Table 3. Performance of the classification methods for the 282 gene-list, on the RNASeq dataset (� � �����).

Metric 
Methods 

SVM NB RF ANN KNN NBLDA PLDA 

Accuracy  

(95% CI) 

0.80  

(0.66, 0.89) 

0.76  

(0.62, 0.87) 

0.83  

(0.71, 0.92) 

0.72 

(0.58, 0.84) 

0.72  

(0.58, 0.84) 

0.89 

(0.77, 0.96) 

0.80  

(0.66, 0.89) 

Sensitivity 

(95% CI) 

0.89  

(0.71, 0.98) 

0.59 

(0.39, 0.78) 

0.78 

(0.58, 0.91) 

0.78 

(0.58, 0.91) 

0.67  

(0.46, 0.83) 

0.81 

(0.62, 0.94) 

0.81  

(0.62, 0.94) 

Specificity 

(95% CI) 

0.70  

(0.50, 0.86) 

0.93  

(0.76, 0.99) 

0.89  

(0.71, 0.98) 

0.67 

0.46, 0.83) 

0.78  

(0.58, 0.91) 

0.96 

(0.81, 1.00) 

0.78  

(0.58, 0.91) 

Kappa  

(95% CI)

0.59  

(0.38, 0.80) 

0.52  

(0.30, 0.73) 

0.67  

(0.47, 0.86) 

0.44 

(0.21, 0.68) 

0.44  

(0.21, 0.68) 

0.78 

(0.61, 0.94) 

0.59  

(0.38, 0.81) 

AUC 0.86 0.77 0.87 0.72 0.78 0.94 0.80 

BER 0.19 0.21 0.16 0.28 0.28 0.10 0.20 
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Table 4. Performance of the classification methods for the 23 gene-list, on the RNASeq dataset (� � �����). 

Metric 
Methods 

SVM NB RF ANN KNN NBLDA PLDA 

Accuracy  

(95% CI) 

0.78  

(0.64, 0.88) 

0.80  

(0.66, 0.89) 

0.83  

(0.71, 0.92) 

0.80  

(0.66, 0.89) 

0.76  

(0.62, 0.87) 

0.89  

(0.77, 0.96) 

0.87  

(0.75, 0.95) 

Sensitivity 

(95% CI) 

0.81  

(0.62, 0.94) 

0.70  

(0.50, 0.86) 

0.78  

(0.58, 0.91) 

0.81  

(0.62, 0.94) 

0.70  

(0.50, 0.86) 

0.85  

(0.66, 0.96) 

0.85  

(0.66, 0.96) 

Specificity 

(95% CI) 

0.74  

(0.54, 0.89) 

0.89  

(0.71, 0.98) 

0.89  

(0.71, 0.98) 

0.78  

(0.58, 0.91) 

0.81  

(0.62, 0.94) 

0.93  

(0.76, 0.99) 

0.89  

(0.71, 0.98) 

Kappa  

(95% CI) 

0.56  

(0.33, 0.78) 

0.59  

(0.38, 0.80) 

0.67  

(0.47, 0.86) 

0.59  

(0.38, 0.81) 

0.52  

(0.29, 0.75) 

0.78  

(0.61, 0.94) 

0.74  

(0.56, 0.92) 

AUC 0.80 0.82 0.91 0.84 0.78 0.89 0.91 

BER 0.22 0.19 0.16 0.20 0.24 0.11 0.13 

 

Table 5. Performance of the classification methods for the 424 gene-list, on the combined RNASeq and microarray datasets 

(� � �����). 

Metric 

Methods 

SVM NB RF ANN KNN 

Accuracy (95% CI) 0.98 (0.90, 1.00) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.98 (0.90, 1.00) 0.83 (0.71, 0.92) 

Sensitivity (95% CI) 1.00 (0.87, 1.00) 0.89 (0.71, 0.98) 0.89 (0.71, 0.98) 1.00 (0.87, 1.00) 0.74 (0.54, 0.89) 

Specificity (95% CI) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.93 (0.76, 0.99) 

Kappa (95% CI) 0.96 (0.89, 1.00) 0.85 (0.71, 0.99) 0.85 (0.71, 0.99) 0.96 (0.89, 1.00) 0.67 (0.47, 0.86) 

AUC 1.00 0.94 0.96 1.00 0.89 

BER 0.02 0.07 0.07 0.02 0.15 

 

Table 6. Performance of the methods for the 401 gene-list, on the RNASeq dataset (� � �����). 

Metric 
Methods 

SVM NB RF ANN KNN 

Accuracy (95% CI) 0.98 (0.90, 1.00) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.96 (0.87, 1.00) 0.83 (0.71, 0.92) 

Sensitivity (95% CI) 1.00 (0.87, 1.00) 0.89 (0.71, 0.98) 0.89 (0.71, 0.98) 0.96 (0.81, 1.00) 0.74 (0.54, 0.89) 

Specificity (95% CI) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.96 (0.81, 1.00) 0.93 (0.76, 0.99) 

Kappa (95% CI) 0.96 (0.89, 1.00) 0.85 (0.71, 0.99) 0.85 (0.71, 0.99) 0.93 (0.83, 1.00) 0.67 (0.47, 0.86) 

AUC 1.00 0.91 0.96 1.00 0.89 

BER 0.02 0.07 0.07 0.04 0.15 

 
Table 5 presents the integration results using the union 

approach, and it is clear that SVM, NB, RF, ANN, and KNN 
methods were improved compared to the case of 282 
differentially expressed genes. Fig. (4a and c) confirm these 
results. Moreover, SVM and ANN had a higher accuracy 
than the other methods. 

As can be seen from Table 6 above, the methods 
performed better for the gene-list of 401 genes, compared to 
the 282 gene-list. Furthermore, Fig. (4d) confirm these 
results. 
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We compared our gene-list of 23 genes with the 18-gene 
RAS signature (DUSP4, DUSP6, ELF1, ETV4, ETV5, 
FXYD5, KANK1, LGALS3, LZTS1, MAP2K3, PHLDA1, 
PROS1, S100A6, SERPINB1, SLCO4A, SPRY2, TRIB2, 
and ZFP106) as reported by Dry et al. [58] and found only 
one overlapping gene (DUSP4). It turned out that this was 
also the most predictive of the seven genes (DUSP4, 
DUSP6, ETV4, ETV5, PHLDA1, SERPINB1, and TRIB2) 
that were discussed in Omolo et al. (2016) [4]. 

We performed an additional analysis to assess whether 
the 23 gene-list was predictive of overall survival (OS). We 
used the mutation status as a group variable and vital status 
(dead or alive) as the censoring variable in this analysis. 
Overall, there were 20 deaths out of the 54 samples. The 
results shows that the median OS was 1692 days for the 54 
samples. We used the Kaplan-Meier curves to graphically 
compare survival probabilities (Fig. 5) between the two 
mutation groups (RAS-mutant vs. wild-type), and the log-
rank test using the RAS mutation status as the group 
variable. There no significant difference in OS between the 

two groups (log-rank = 1.8, p-value = 0.2). We then applied 
the Cox proportional hazards (CPH) model was to assess the 
significance of the 23 genes and RAS mutation status. The 
results show that 9 of 23 genes were significantly associated 
with OS, including SPRED1, KLHL13, HOXB4, LMF1, 
HSPA4L at the 0.05 level, and ATP6V1C2, PLAGL2, MYC, 
SLC9A8 at the 0.1 level (LRT = 56.85, p-value = 0.0002) as 
can be seen in Table 7. 

We further performed an analysis of the top nine genes 
using gradient boosted trees and Shapley additive 
explanations (SHAP) methods to identify the top-K genes (1 
< K < 9) [59]. The SHAP approach determined the order of 
importance of our nine genes. SHAP values give the 
importance of a gene by comparing what a model predicts 
with and without the gene. A SHAP value of 0 means that 
the gene does not affect the prediction, as shown in Fig. (6). 
The vertical axis shows the gene names, arranged in the 
order of importance, from top to bottom while the adjacent 
value next to the gene name is the mean SHAP value. The 
horizontal axis shows the SHAP value, which indicates how 

 
Fig. (4). ROC curves based on the (a) 282 gene-list for the RNASeq data, (b) 23 gene-list for the RNASeq data, (c) 424 gene-list for the 
RNASeq and microarray datasets, and (d) 401 gene-list for the RNASeq and microarray datasets, under (α = 0:005). 
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much the change was in log-odds. From the log-odds, one 
can obtain the probability of success. The gradient color 
indicated the original value for that gene. Genes pushing the 
prediction higher are colored blue, while those pushing the 
prediction lower are colored yellow. Each point represents a 
row from the original dataset. 

4. DISCUSSION 

The development of molecular signatures is a significant 
step towards understanding the molecular mechanisms of 
tumor genesis, which could help with accurate prognosis and 
diagnosis and thus allow physicians to prescribe suitable 
patient-specific therapies. 

Several studies have done cancer classification using 
either microarray or RNASeq data only, and few have shown 
integration of both types of data, based on heterogeneous 
datasets. To the best of our knowledge, no cancer 
classification study has employed the integration of a 
homogeneous datasets approach. In this study, we integrated 
homogeneous microarray and RNASeq datasets and assessed 
whether such an approach could improve the classification 
accuracy using seven methods, namely, SVM with radial 
basis function kernel, NB, RF, ANN, KNN, NBLDA, and 
PLDA. We implemented the classification of the mutation 
status of CRC samples, using gene-lists obtained through the 
intersection, the complement of an intersection, and the 
union of differentially-expressed genes from microarray and 
RNASeq datasets. 

 
Fig. (5). Kaplan-Meier curves for overall survival (in months). 
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Fig. (6). Genes in ascending order of importance (Note: dots represent SHAP values of specific features). 

������ ���

������ ���

������ ���

���	�� �	�

���
�� �
�

������ ���

������ ���

������ ���

������ ���SLC9A8

HOXB4

KLHL13

SPRED1

PLAGL2

HSPA4L

LMF1

MYC

ATP6V1C2

-0.4 0.0 0.4
SHAP value (impact on model output)

 Low High Feature value  



596    Current Bioinformatics, 2021, Vol. 16, No. 4      Mohammed et al. 

Table 7. Cox proportional hazards model for overall survival, using the 23 genes and RAS mutation status (class) as 

covariates. 

Covariate Coef Hazard Ratio (HR) SE(Coef) Z-score P-value 

Class  2.23E+00  9.34E+00  1.41E+00  1.589  0.112 

ATP6V1C2  4.72E-03  1.01E+00  2.66E-03  1.779  0.0752 . 

HOXB-AS3  7.96E-05  1.00E+00  1.30E-03  0.061  0.951 

KRT18  -3.27E-05  1.00E+00  8.73E-05  -0.374  0.7084 

RGMB  7.48E-04  1.00E+00  1.13E-03  0.662  0.5079 

PLAGL2  -3.28E-03  9.97E-01  1.89E-03  -1.737  0.0824 . 

DUSP4  2.12E-03  1.00E+00  2.24E-03  0.946  0.3441 

SPRED1  1.50E-03  1.00E+00  7.61E-04  1.969  0.0489 * 

SH3TC2  6.92E-04  1.00E+00  4.42E-04  1.564  0.1178 

HOXB8  -1.04E-02  9.90E-01  7.21E-03  -1.444  0.1488 

ABHD2  4.67E-04  1.00E+00  4.34E-04  1.078  0.2812 

TNS4  -5.58E-04  9.99E-01  3.74E-04  -1.491  0.1358 

HIST1H3C  -4.67E-03  9.95E-01  3.20E-03  -1.458  0.1449 

KLHL13  8.28E-03  1.01E+00  3.24E-03  2.559  0.0105 * 

MYC  1.21E-03  1.00E+00  7.16E-04  1.689  0.0911 . 

HOXB4  9.10E-03  1.01E+00  3.60E-03  2.529  0.0114 * 

HOXB6  -2.78E-04  1.00E+00  4.18E-03  -0.067  0.9469 

PHF20  1.47E-03  1.00E+00  1.78E-03  0.825  0.4094 

LMF1  3.19E-03  1.00E+00  1.43E-03  2.224  0.0262 * 

SLC9A8  -4.98E-03  9.95E-01  2.56E-03  -1.946  0.0517 . 

GID8  2.16E-03  1.00E+00  2.61E-03  0.828  0.4079 

HSPA4L  -6.94E-03  9.93E-01  2.78E-03  -2.497  0.0125 * 

PCDHB13  -3.90E-03  9.96E-01  4.09E-03  -0.953  0.3406 

TRAF3IP1  -7.63E-03  9.92E-01  4.86E-03  -1.571  0.1163 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

CRC is the third most common cancer and one of the 
leading causes of death around the world. The findings 
suggest that combining two homogeneous datasets from 
different technologies could lead to an increase in CRC 
classification accuracy. Castillo et al. [20] reported that 
combining heterogeneous datasets from different platforms 
can improve the performance of a classifier, using multiple 
datasets. They used data from different technologies and 
platforms to obtain a larger sample size due to the lack of 
enough RNASeq samples. Our proposed approach is 
different from Castillo et al. [20], in that we used homo-
geneous datasets and a balanced binary class problem. We 
used the 0.005 significance level to obtain the differentially 
expressed genes, which is restrictive enough to control the 
false positive rate. 

A comparison of the performance of the classification 
methods for each gene-list revealed that SVM yielded the 
highest mean accuracy (0.885), followed by RF (0.880), 

ANN(0.865), NB(0.855), and KNN(0.785) across the four 
gene-lists. However, NBLDA performed better than PLDA 
as a classifier when the analysis was restricted to RNASeq 
(count) data. Castillo et al. [20] also showed that SVM 
performed second to KNN. Statnikov et al. [60] performed a 
comparison of 18 classification methods on five feature 
selection methods, using eight datasets and showed that RF 
had the highest accuracy (0.954). Our classification results 
using the integrated list of genes outperformed Mamatjan et 
al. [61], where they used RNASeq data for tumor 
classification. Their results showed that mRNA signatures 
and DNA methylation signatures as single platforms 
achieved 95% and 88% accuracy of histological diagnosis, 
respectively. Moreover, the PLAGL2 gene, as one of our 
predictive genes, also has been one of the most common 
predictive genes in Rashid et al. [62]. Furthermore, our work 
integrated RNA and DNA signature for classification and 
survival analysis with very high metrics compared to 
Popovici et al. [63]. In this study [63], the authors developed 
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a classifier using 64 genes for detecting BRAF mutant 
tumors for colon cancer. Also, they found DUSP4 to be one 
of the top 50 differently expressed genes. 

Survival analysis results showed that 9 of 23 genes were 
prognostic for overall survival for CRC patients. Upon 
subjecting the nine genes to the Shapley additive 
explanations (SHAP) method to rank the genes in order of 
importance, the top-5 genes to emerge were ATP6V1C2, 
MYC, LMF1, HSPA4L, and PLAGL2. 

Our findings are consistent with other published 
molecular signatures from previous studies [64, 65, 66]. 
Zumwalt et al. [64] showed that ATP6V1C2 expression 
successfully distinguished between cancerous and non-
cancerous samples in CRC. He et al. [65] reported that the 
expression of c-Myc, which was one of the three related 
human genes encoded under MYC genes family, was 
observed in many human cancers and was elevated in up to 
70 - 80% in CRC. Liu et al. [66] identified ten lncRNAs 
related to crucial outcomes in CRC, and one of these was 
LMF1. Zhang et al. [67] obtained 34 genes using minimal 
redundancy maximal relevance (mRMR) and incremental 
feature selection (IFS) methods. They found that the 
HSPA4L gene was the most highly expressed in CRC 
patients with chromosomal instability (CIN) mechanism. 
Zheng et al. [68] reported that the PLAGL2 gene was vital in 
increasing the effect on glioblastoma and colorectal cancer. 
Su et al. [69] reported that PLAGL2 served as an oncogenic 
function in multiple human malignancies, including 
colorectal cancer (CRC). 

This study was limited by the available number of 
homogeneous RNASeq and microarray datasets. Only one 
matched-pair set of 54 CRC samples was analyzed. Future 
studies should extend the approach to more than one cancer 
type and multiple datasets. However, the number of samples 
in each dataset (n = 54) ensured that the training and 
validation sets were large enough for the magnitude and 
statistical significance of the classification accuracies. 

CONCLUSION 

In summary, data integration by taking the intersection of 
the individual gene-lists from the two data types improved 
the classification accuracy of CRC. However, laboratory 
experiments should be conducted on this 23-gene signature 
to further assess its clinical significance in CRC research. 
NBLDA method was the best performer on the RNASeq 
data. Results suggest that the SVM method was the most 
suitable classifier for CRC across the two data types and had 
high accuracy before and after the integration. Future studies 
should determine the effectiveness of integration in cancer 
survival analysis and the application on unbalanced data 
(where the classes are of different sizes) as well as on data 
with multiple classes. 

LIST OF ABBREVIATIONS 

CRC = Colorectal Cancer 

SSA = Sub-Saharan Africa 

EGFRi = Anti-epithelial Growth Factor Receptor 
Inhibitor 

FFPE = Formalin-Fixed Paraffin-Embedded 

AUC = Area Under the ROC Curve 

WHO = World Health Organization 

NGS = Next-Generation Sequencing 

PLDA = Poison Linear Discriminant Analysis 

NBLDA = Negative Binomial Linear Discriminant 
Analysis 

SVM = Support Vector Machines 

ANN = Artificial Neural Networks 

LDA = Linear Discriminant Analysis 

RF = Random Forests 

NB = Naive Bayes 

KNN = k-Nearest Neighbors 

IG = Information Gain 

SGA = Standard Genetic Algorithm 

CFS = Correlation-based Feature Selection 

IBPSO = Improved-Binary Particle Swarm 
Optimization 

bagSVM = Bagging SVM 

CART = Classification and Regression Trees 

mRMR = Minimum-redundancy Maximum-
Relevance 

GEO = Gene Expression Omnibus 

CPM = Counts Per Million 

GLM = Generalized Linear Model 

DAVID = Database for Annotation, Visualization, 
and Integrated Discovery 

COSMIC = Catalogue of Somatic Mutations in 
Cancer 

MLE = Maximum Likelihood Estimate 

RBF = Radial Basis Function 

MAP = Maximum a Posteriori 

BER = Balanced Error Rate 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

RA = Random Accuracy 

OS = Overall Survival 

CPH = Cox Proportional Hazards 

SHAP = Shapley Additive Explanations 

IFS = Incremental Feature Selection 
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CIN = Chromosomal Instability 

HR = Hazard Ratio 
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A stacking ensemble deep 
learning approach to cancer type 
classification based on TCGA data
Mohanad Mohammed1*, Henry Mwambi1, Innocent B. Mboya1,4, Murtada K. Elbashir5,6 & 
Bernard Omolo1,2,3

Cancer tumor classification based on morphological characteristics alone has been shown to have 
serious limitations. Breast, lung, colorectal, thyroid, and ovarian are the most commonly diagnosed 
cancers among women. Precise classification of cancers into their types is considered a vital problem 
for cancer diagnosis and therapy. In this paper, we proposed a stacking ensemble deep learning 
model based on one-dimensional convolutional neural network (1D-CNN) to perform a multi-class 
classification on the five common cancers among women based on RNASeq data. The RNASeq 
gene expression data was downloaded from Pan-Cancer Atlas using GDCquery function of the 
TCGAbiolinks package in the R software. We used least absolute shrinkage and selection operator 
(LASSO) as feature selection method. We compared the results of the new proposed model with and 
without LASSO with the results of the single 1D-CNN and machine learning methods which include 
support vector machines with radial basis function, linear, and polynomial kernels; artificial neural 
networks; k-nearest neighbors; bagging trees. The results show that the proposed model with and 
without LASSO has a better performance compared to other classifiers. Also, the results show that 
the machine learning methods (SVM-R, SVM-L, SVM-P, ANN, KNN, and bagging trees) with under-
sampling have better performance than with over-sampling techniques. This is supported by the 
statistical significance test of accuracy where the p-values for differences between the SVM-R and 
SVM-P, SVM-R and ANN, SVM-R and KNN are found to be p = 0.003, p =  < 0.001, and p =  < 0.001, 
respectively. Also, SVM-L had a significant difference compared to ANN p = 0.009. Moreover, 
SVM-P and ANN, SVM-P and KNN are found to be significantly different with p-values p =  < 0.001 
and p =  < 0.001, respectively. In addition, ANN and bagging trees, ANN and KNN were found to be 
significantly different with p-values p =  < 0.001 and p = 0.004, respectively. Thus, the proposed model 
can help in the early detection and diagnosis of cancer in women, and hence aid in designing early 
treatment strategies to improve survival.

Recent global public health research shows an epidemiological paradigm shift from infectious to non-commu-
nicable diseases, the latter including different types of cancers. The incidence and prevalence of cancer are on 
the increase worldwide, both in the developing and developed  countries1,2. The global cancer statistics estimated 
about 19.3 million new cancer cases in 2020 alone, and close to 10 million deaths of 36 cancers in 185  countries3. 
Breast cancer (with estimated 2.3 million new cases) is the most common diagnosed among women, followed 
by lung, colorectal, thyroid, and ovarian cancers. Moreover, the most leading cause of death is the lung cancer 
(with estimated 1.8 million deaths). The cancer burden is expected to increase to 28.4 million cases by  20403.

Cancer tumor classification based on morphological characteristics alone has serious limitations in differ-
entiating among cancer tumors and may cause a strong bias in identifying the tumor by  experts4–6. Recently, 
RNASeq gene expression  data7,8 has emerged as the preferred technology for the simultaneous quantification 
of gene expression compared to the DNA  microarray9,10. The classification of cancer using gene expression data 
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from RNASeq technology provides the opportunity to discriminate healthy and diseased samples or among 
different types and subtypes of cancer more  accurately11. RNASeq gene expression data have had a profound 
impact on disease diagnoses and prognoses through accurate disease classification, which has helped clinicians 
to choose the appropriate treatment plans for  patients12. There exists striking disparities in the global cancers 
among  women3,13. Correct classification of these cancers is among the essential strategies to inform clinical 
decisions and reduce morbidity and mortality from cancers among women.

Although the use of gene expression data from RNASeq technology has improved cancer classification, it 
has its own limitations due to it being characterized by small samples sizes, with each sample having a large 
number of genes (the curse of dimensionality)14,15. In addition, the samples also contain several genes that are 
uninformative and degrade the classification  performance11,16. As a way to mitigate this problem, it has been sug-
gested to first perform filtration and feature selection through methods such as the two-sample t-test at a given 
stringent significance threshold before going further with model  building17. This procedure ensures that only 
informative and sufficiently differentially expressed genes between the outcome classes are used in building the 
classifiers. This process of feature selection motivates the evaluation of methods for the classification of different 
cancer tumors and disease stages, to improve early detection and the design of targeted treatment strategies that 
may reduce mortality. The two-sample t-test as a method for feature selection is easy to use but comes with the 
problem of multiple testing that the user has to deal with. Other methods or approaches that are model based, 
such as regularized regression methods, have recently become popularly used.

There are many supervised and unsupervised machine learning as well as deep learning methods developed 
for cancer classification using gene expression data. Several studies reported a higher predictive performance of 
the machine learning methods on the multi-class cancer classification  problem11,18–20. These studies, however, 
differ in the methods used for feature (gene) selection. In particular, Castillo et al.18 used differential expression 
analysis and minimum-redundancy maximum-relevance method for feature selection in the microarray and 
RNASeq data. García-Díaz et al.11 applied a grouping genetic algorithm for feature selection in five different 
cancers using RNASeq data.

Ramaswamy et al.19, on the other hand, used support vector machines (SVM) and a recursive feature elimi-
nation method to remove the uninformative genes. These studies concentrated on the application of machine 
learning methods on a multi-class classification problem. Several methods developed by other authors for multi-
class cancer classification are reported to have a higher predictive performance compared to existing  methods21. 
Lee et al.22 proposed a new ensemble classifier called cancer predictor using an ensemble model (CPEM), for 
classification of over 31 different cancer tumors downloaded from TCGA repository. In addition, they assessed 
different input features such as mutation profiles, mutations rates, mutation spectra, and signature. Thereafter, 
they investigated different machine learning and feature selection models in order to find the best model which 
achieved 84% of accuracy using 10 folds cross-validation. Furthermore, they used the six most common cancers 
out of 31 types and the model achieved 94% of classification accuracy. However, some of the statistical methods 
achieved results that are better than machine learning algorithms.

Tabares-Soto et al.23 compared machine learning and deep learning methods in classifying 11 different tumor 
classes using microarray gene expression data. They implemented eight supervised machine learning methods 
including KNN, support vector classifier (SVC), logistics regression (LR), linear discriminant analysis (LDA), 
naïve Bayesian classifier (NB), multi-layer perceptron (MLP), decision trees, and random forest (RF) as well as 
one unsupervised method such as k-means. In addition, they applied two deep neuronal networks (DNN) meth-
ods. Their results showed that the deep learning methods outperformed the other machine learning methods.

In this study, we propose a stacking ensemble deep learning model that uses five 1D-CNN as base models. 
The results of these models are combined using NN, which is used as a meta model to classify the most com-
mon types of cancers among women using RNASeq data. We compared the performance of our new proposed 
model when using the full list of genes as input with its performance when using a reduced selection of genes 
using LASSO. Also, we consider comparing the performance of our current proposed model with other machine 
learning methods since there are limited studies that compare the performance of deep learning and machine 
learning methods to classify different types of cancer. LASSO is used as a feature selection technique, since it 
has been shown to improve prediction accuracy, especially when there is a small number of observations and a 
large number of  features24. Findings from this study might help in the early detection and accurate classification 
of these cancer types and contribute to efforts of finding therapies that may increase survival for women at risk.

Material and methods
In this paper, we downloaded the RNASeq gene expression data from Pan-Cancer Atlas (https:// portal. gdc. 
cancer. gov/), using R statistical software version 3.6.3 via the TCGAbiolinks  package25–27. The data contains 2166 
samples from the top five common cancers between women. We applied eight multi-class classification methods 
to find the best classifier that discriminates among five common cancers among women. The machine learning 
methods were implemented in the R software, while the deep learning method (1D-CNN) was implemented 
using TensorFlow with Keras.

Datasets. We used only five cancer tumors (normal cases were excluded) from RNASeq gene expression 
datasets. The cancer tumors were breast, colon adenocarcinoma, ovarian, lung adenocarcinoma, and thyroid 
cancer. The datasets were downloaded from Pan-Cancer Atlas using GDCquery function of the TCGAbiolinks 
package in R26. GDCquery function has many parameters, to define the function known by the following names: 
project, legacy, data.category, data.type, platform, file.type, experimental.strategy, and sample.type. The project 
parameter indicates a list of the data that should be downloaded. In our case, we passed the five project codes 
corresponding to our five types of cancer, which are TCGA-BRCA, TCGA-COAD, TCGA-OV, TCGA-LUAD, 
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and TCGA-THCA. We set the legacy to “true”, which helps the query to search only in the legacy repository for 
the unmodified stored data in the TCGA data portal.

“Gene expression” and “Gene expression quantification” are passed to the data.category and data.type argu-
ments, respectively, to filter the data files to be downloaded. The platform “Illumina HiSeq” was used to download 
the data. We used “results” for file.type argument to filter the legacy database, and “RNA-Seq” was chosen as 
experimental.strategy argument to produce the expression profiles. Moreover, we selected the tumor samples 
to be downloaded using the “Primary solid Tumor” value as sample.type argument. The downloaded data in a 
matrix form included five types of cancer, where the columns represent the samples and the rows containing the 
genes, i.e. features (equivalently covariates). The datasets were combined to give 2166 tumor samples obtained 
from all the five cancers, with 19,947 common genes. Due to the curse of high dimensionality, we performed 
filtration and feature selection to reduce the high number of genes in order to exclude irrelevant and noisy ones 
that could affect the performance of the methods. Thus, we applied normalization, transformation, and filtration 
steps to the data to select the informative genes that potentially could contribute positively to the classification 
accuracy. Table 1 below shows a summary of the downloaded data including the training and testing fractions 
for each cancer tumor.

Data pre-processing. We used TCGAanalyze_Preprocessing function in TCGAbiolinks  package26, which 
utilizes an array-array intensity correlation (AAIC) approach to obtain a N × N square symmetric matrix of 
Spearman correlations among the samples. The AAIC enabled us to find samples with low correlation considered 
as possible outliers (Fig. 1). After that, we performed gene normalization through TCGAanalyze_Normalization 

Table 1.  Number of samples in each class used in the classification.

Cancer tumor Number of samples (%) Training ( ≈ 70%) Testing ( ≈ 30%)

Breast (BRCA) 1082 (50) 753 329

Colon adenocarcinoma (COAD) 135 (6) 99 36

Lung adenocarcinoma (LUAD) 275 (13) 189 86

Ovarian (OV) 304 (14) 217 87

Thyroid (THCA) 370 (17) 259 111

Total 2166 1517 649

Figure 1.  Array-array intensity correlation (AAIC) matrix defines the Pearson correlation coefficients among 
the samples.
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function, which calls the sub-routines newSeqExpressionSet, withinLaneNormalization, betweenLaneNormali-
zation, and counts from EDASeq package to adjust the GC-content effect or other gene level effects, distribu-
tional differences between lanes, and global-scaling and full-quantile  normalization28. TCGAanalyze_Filtering 
was used for filtering out the irrelevant genes and returned the genes with the mean intensity across the samples 
higher than 0.25, which was the threshold defined quantile mean. After applying this process, we found 14,899 
genes to be informative meaning 5048 genes were rendered irrelevant. For further reduction and precise differ-
ential gene expression analysis, we used DESeq package in R29–31. DESeq analyses the gene expression based on 
the negative binomial distribution and a shrinkage estimator for the distribution’s variance. After using DESeq 
package, 12,649 genes out of the 14,899 post initial filtering were found to be differentially expressed meaning a 
further 2250 genes were removed.

Feature selection using LASSO regression. The RNASeq gene expression data after preprocessing had 
12,649 dimensions or features, which was still huge given that the number of samples was 2166. Therefore, 
LASSO regression was used to decrease the number of genes or features that enabled us to effectively analyze the 
data. LASSO is a method that performs regularization and feature selection through a shrinkage (regularization) 
process. LASSO penalizes the regression coefficients with L1-norm whereby some coefficients are shrunk to zero. 
After that, the coefficients of the regression variables having significantly non-zero values are selected and used 
in the  model24.

In the case of the multinomial response with K > 2 levels, assume that pℓ
(

gi
)

= Pr
(

C = ci|gi
)

 , where 
ci ∈ {1, 2, 3, . . . ,K} is the ith response. The log-likelihood of the multinomial model under LASSO model can 
be written in a generalized form  as32

which can be maximized as a penalized log-likelihood.
The outcomes in the data can be denoted in the form of a matrix Y of dimension N × K  , with elements 

yiℓ = I(ci = ℓ) . Thus, the terms in the regularized log-likelihood in Eq. (1) can be written in more explicit form

Pα is the penalty part, where gi is the gene expression levels for sample i , βℓ is the vector of the regression 
coefficients, yiℓ is the class response value in sample i . When α = 0 in Eq. (3) we obtain the ridge regression 
penalty, whereas α = 1 leads to LASSO regression penalty.

We chose LASSO regression because it uses the sum of the absolute values of the model parameters, restricted 
to be less than a fixed value as the penalty. LASSO, with tenfold cross-validation returned 173 genes (Supple-
mentary File 1). These genes were obtained when lambda (λ) value gave a minimal deviance associated with the 
response variable, and so were used for the classification. The cross-validated multinomial deviance is a function 
of log(λ), and when log(λ) is equal to  − 1, it is an indication that λ and multinomial deviance are both big. As 
λ decreases and becomes very small, the multinomial deviance also becomes small and almost flat, indicating 
that the attained model is a good fit.

There are many advantages of the LASSO method, which include removing those variables with zero coef-
ficients that lead to reduced variance without an intrinsic increase in bias. The method also minimizes over-fitting 
by excluding irrelevant variables that are not related to the outcome variable. The LASSO method naturally also 
deals with the multiple testing problem, by penalizing irrelevant features, whose contribution is shrunk to zero. 
This leads to an improved classification and prediction  accuracy24,33. In our case, LASSO was implemented using 
glmnet package in R34.

Data partitioning. We used tenfold cross-validation to evaluate the different prediction methods using 70% 
of the dataset. In the tenfold cross-validation, the dataset is divided into ten parts, where one part is removed 
to represent the validation set, and the remaining nine parts combined to represent the training set. Thus, this 
process is repeated ten times by removing one part each time to have a different part of the data for  validation35. 
We left aside 30% of the entire dataset, which served as an independent testing set for the final evaluation.

The classification models. We performed classification on the different cancers as a multi-classification 
problem using gene expression levels as covariates. Eight classification methods were used: the new proposed 
stacking ensemble deep learning model; one-dimensional convolutional neural network (1D-CNN); support 
vector machines (SVM) with radial basis function, linear, and polynomial kernels; artificial neural networks 
(ANN); K-nearest neighbors (kNN); and bagging trees.
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Support vector machines (SVM)36, is a well-known machine learning method that has been used widely in 
many fields, including gene expression data  analysis37,38. SVM aims to find an optimal hyperplane that sepa-
rates the data into two different classes for the binary classification problem, determined by a subset of samples 
known as support  vectors39. SVM can handle non-linearly separable problems by transforming the data using 
mapping kernel functions. These functions include radial basis, polynomial, and linear  functions40. The SVM is 
implemented using kernlab package in R statistical  software41.

Suppose we have n samples and p genes. Furthermore, assume samples belong to two linearly separable classes 
represented by + 1 or − 1, and suppose g i is the features vector. Then we let, 

(

g i , yi
)

∈ G × Y , i = 1, 2, 3, . . . , n , 
where yi ∈ {+1,−1} is the target variable dichotomy in the p dimensional space. The aim is to classify the sample 
into one of the two classes and by extension find an SVM classifier that generalizes to a multi-class problem. 
There are many hyperplanes that discriminate the two classes, but the goal is achieved by finding an optimal 
separating hyperplane that lies furthest from the both classes.

The separating hyperplane can be defined by

where w is the weight vector, b  is the bias, and |b|/�w� is the perpendicular distance to the hyperplane. We can 
rescale the w and b such that the following equation determines the point in each class that is nearest to the 
hyperplane defined by the equation

Therefore, a separating hyperplane for the two classes should follow

After the rescaling, the distance from the nearest point in each class to the hyperplane becomes 1/‖w‖ . Con-
sequently, the distance between the two classes is 2/‖w‖ , which is called the margin. The solution of the following 
optimization problem is obtained by maximizing the margin:

For the multi-class problem there are many types of extensions that can be used such as one-vs-one, one-vs-
all (one-vs-rest), decision directed acyclic graph based approach, multi-class objective function, and error-
correcting output code based approach. These approaches use the same binary classification principle, where the 
multi-class problem is decomposed into multiple binary problems. In the one-vs-one multi-class classification 
problem the SVM classifier produces all possible pairs of binary classifications. Suppose we have k classes where 
k > 2 , then, k(k−1)

2  binary classifiers are produced in the training step of the algorithm. Consequently, a sample 

in the test dataset is assigned the class label that is voted the most by the 
(

k
2

)

 binary classifiers from the trained 

one-vs-one SVM. In our case we use the one-vs-one multi-class classifier.
Artificial neural networks (ANN) is a computational method constructed from many layers, each layer 

consisting of nodes called  neurons42. The data flows from the input layer to the output layer through the hidden 
 layers43. The nodes between the input through the hidden layers to the output layers are connected by appro-
priately defined weights or weight functions. The number of input and output layers depends on the number 
of covariates in the dataset as well as a number of classes in the outcome  variable43. The inputs are weighted by 
multiplying every one of them by a weight which is a measure of its contribution. Therefore, the hidden layer 
receives the weighted inputs and produce outputs using an activation function(s)40,42. ANN can be implemented 
using the R package nnet44.

Specifically suppose we have gene expression data with p genes. The input layer receives the p genes and 
multiplies them by weights as follow

where g  is a vector of input features and g0 = 1 is a constant input feature with weight wi0 . The bi are called 
activations, and the parameters w(1)

ij  are the weights. The subscripts (1) refer to the first layer of the network. 
Then the activations are transformed by a nonlinear activation function f  , usually a sigmoid function as given 
in the following equation

In the second layer, the outputs of the hidden units are linearly combined to give the activations

(5)w ∗ g + b = 0.
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where the w(2)
ik  are the weight parameters for the transformation in the second layer of the neural network. The 

outputs are transformed using an activation function such as the sigmoid function

K-nearest neighbors (kNN) is a non-parametric method used for classification and  regression45. The idea 
behind kNN lies in finding the most nearest neighbors of the new sample, and this is based on the similarity 
and distance  metric46. In kNN, k-neighbors determine the class of a new instance; therefore, the new sample 
is assigned the class that is most likely among the k-neighbors40,42. In general, kNN has two phases; the first is 
finding the nearest neighbors, and the second is assigning the class of a new sample using those neighbors by 
the majority vote rule. kNN is implemented using R package caret47.

Suppose we have two samples s1, s2 each with p genes. Since kNN uses the Euclidean distance measure to find 
the closest sample for a new sample, the distance between the two samples can be calculated as

A new sample is allocated the class that most of its neighbors fall, that is, model class of its neighbors.
Bagging trees or bootstrap aggregation method is appealing because its ability to reduce the variance associ-

ated with a prediction and hence, improve the prediction  accuracy48. The method splits the data into many boot-
strap samples, thereafter, train the model for each bootstrap. Then, the overall prediction obtained by averaging 
and voting for regression and classification, respectively.

Convolution Neural Networks (CNNs) are deep learning architectures that have multi-layers between the 
input and output and are designed for image analysis and  classification49–51. Deep learning is applied success-
fully in many areas including medical image analysis, computer vision, drug design, and bioinformatics and 
yield performance that sometimes surpass expert personals’  performance52. CNNs are a regularized version of 
fully connected networks (multilayer perceptrons), in which each neuron in one layer is connected to all the 
neurons in the layer that follows it. The connectivity between the neurons is inspired by the biological process 
and resembles the arrangement of the animal visual cortex. In contrast to other image classification and analysis 
algorithms, CNNs use little pre-processing by learning the filters that capture temporal and special dependencies 
in an image instead of hand-engineering them. A sequence of stacked layers (convolutional layer, pooling layer, 
and fully-connected layer) makes the architecture of CNNs and in each layer, a differentiable function is used 
to transform one volume of activations to the layer that follows it. The major building blocks in CNNs are the 
convolutional layers, which apply filters on an input image to create a feature map. To get a good classification 
performance, CNNs normally decrease the features of the image into an easier processed arrangement without 
dropping essential features. The pooling layers use max pooling or average pooling to reduce the dimension of 
the image’s features. The fully connected layer is an important component in the CNNs architecture that derives 
the final classification results.

The input to the CNNs is a tensor of order 3 that represents an image having m rows and n columns with 3 
color channels (RGB). The tensor encodes the pixel intensities of the image and produces the input features that 
go through the convolutional, pooling, and the fully connected layers sequentially. In the convolutional layer, a 
filter of size f by f and stride = s are applied and the result is 3 × (m − f + 1) × (n − f + 1) hidden feature neurons if a 
stride of 1 is used and the pooling layer result will be 3 × (m − r + 1)/2 × (n − r + 1)/2 hidden features neurons when 
applied to 2 × 2 regions. The convolution operation generates the features map by multiplying the element of the 
input array by the element of the filter element wise and summing up the result to generate on pixel of the features 
map. Sliding the filter across the matrix and repeating the multiplication and summing up operations will gener-
ate the rest of features map pixels. The mathematical equation of this convolution operation is given as follows

where i = 1, 2, . . .m− f + 1 , j = 1, 2, . . . ..n− f + 1.
1D-CNN is a simple CNN architecture that has only one convolutional layer. The simple design of this model 

leads to reduced number of parameters that can be adjusted during the training process therefore, it is highly 
needed in the genomic studies where it is difficult to collect large data to train a deep learning model that has 
very large number of  parameters53. The one dimensional that we used in this study was constructed by Mostavi 
et al.53 for predicting cancer tumor based on gene expression data. The architecture of the model when using 
LASSO as a feature selection technique is shown in Fig. 2.

Regularization with early stopping. We applied 1D-CNN with early stopping regularization to avoid 
over-fitting. The over-fitting is usually caused by training the model too much, making it pick up the noise as 
an essential part of the data instead of relying only on the training data. Such noise is normally unique to each 
training data. It can lead to high variance in the model estimates. On the other hand, too little training can result 
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in under-fitting or high bias. Therefore, the variance and the bias have a negative relationship meaning that if the 
bias increases for fixed mean square error, then the variance will decrease and vice versa and that is known as the 
bias-variance  tradeoff54,55. To avoid over-fitting, we can use a model with fewer parameters or obtaining more 
data. A model with fewer parameters can cause high bias. Since obtaining more data is not easy in the medical 
field, then a model with fewer parameters seems to be the alternative, but modern approaches in deep learning 
repeatedly show the benefits of using models with a large number of  parameters56,57. Therefore, finding a way of 
adjusting the variance by minimizing noisy data can help solve the over-fitting problem. Since too much training 
can result in over-fitting, whereas too little training can result in under-fitting then the model can be regularized 
using the early stopping mechanism. We can implement the early stopping mechanism in the training procedure 
to make the architectures better fit the training data with each epoch and determining the number of epochs that 
can be run before the pre-trained model begin to overfit.

Stacking ensemble. Ensemble learning is the process of improving classifiers performance by combining 
the contribution of the trained sub-models to solve same classification  problem5. Overall, each base learner 
votes and the final prediction is gained by the meta-learner, which is a model that learn to correct the predic-
tion of the base-learners. Therefore, the ensemble approach results in prediction accuracy that is better than the 
single learners. Generalizability of an ensemble usually reduces the variance in the prediction, and thus ensure 
the most stable and best possible prediction is made. The meta model takes the output of the sub-models (base-
learners) as input and then learns to merge the input prediction to make the final prediction which is better than 
each of the base-classifiers. Figure 3 shows our proposed stacking ensemble deep learning model.

Performance evaluation. We used different performance metrics to evaluate the performance of the clas-
sification methods. These metrics are namely accuracy, kappa, specificity, sensitivity, the area under the curve 
(AUC), precision, F-measure, and ROC curve. The accuracy measures the percentage of correctly classified cases 
but is not sufficient for measuring the performance of the classifier, especially if we have unbalanced data (which 
is the case with cancer data that we are dealing with). Sensitivity measures the percentage of the cases that are 
correctly classified as having cancer among those samples that are truly cancerous. Therefore, it measures the 
fraction of the correctly predicted cancer cases. Specificity measures the percentage of cases that do not have 
cancer, which are correctly identified to be so. In other words, it measures the true negative rate. Precision is the 
percentage of cases among those classified as positive that are truly positive, i.e., having cancer, and sometimes 
this measure is called the positive predicted value. F-measure is a measure that balances between precision and 
sensitivity.

We also compared the predictive performance of the methods using the receiver operating characteristic 
(ROC) curve plots. These figures were plotted using MultiROC package in R58. MultiROC calculates and visualizes 
ROC curve for multi-class using micro-averaging and macro-averaging approaches. Micro-averaging ROC-AUC 
converts the multi-class classification into binary classification by stacking all groups together. Macro-averaging 

Figure 2.  Illustrates the architecture of the 1D-CNN model. The upper panel presents the 1D-CNN without 
LASSO, while the lower panel shows the usage of LASSO as s feature selection technique for the 1D-CNN where 
it gives an input vector with 173 genes.
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ROC-AUC uses one versus the rest approach by averaging all group’s results and linear interpolation used 
between the points of the ROC. Confidence intervals for kappa statistics were computed using vcd package.

Methods to adjust for class imbalances. Imbalanced class sizes may lead to poor predictive perfor-
mance particularly for the classes with small samples (Table  1). In order to handle the class imbalance and 
hence improve the models’ performances we used the synthetic minority over-sampling technique (SMOTE) 
and under-sampling (DOWN) methods. SMOTE has been used widely in various fields such as bioinformatics 
for addressing the class imbalance in the  outcome59,60. SMOTE is a data augmentation method that add new 
data to the minority class that are synthesized from the existing data instead of duplicating the data, because 
the duplication will not provide any new information to the model. SMOTE works by first selecting randomly a 
class instance a from the minority class then it chooses randomly one of the k nearest neighbors b to create the 
synthetic instances as a convex combination of a and b and finally, it forms a line segment in the feature space 
by connecting a and b.

We synthesized the minority class from existing samples by selecting randomly the closest k minority nearest 
neighbors to balance the  class61–63. This statistical technique increases and generates the samples to reach the 
highest majority class and it makes the samples more general. SMOTE is implemented using caret package in R 
by adjusting the sampling method in the train control parameter to be ‘SMOTE’.

Under-sampling technique (DOWN) tends to produce a new balanced subset of the original dataset by ran-
domly removing instances usually from the majority class  observations64,65. DOWN is implemented using caret 
package in R by adjusting the sampling method in the train control parameter to be ‘DOWN’.

Statistical significance test. There are many different techniques that can used for comparing the accura-
cies of the machine learning models. In this work, we used the resamples method in R to analyze and visualize 
the estimated performance of the models. We used the summary function to compute summary statistics across 
each model/metric combination. Diff function in R is used to estimate the differences between the methods. The 
diff function performs a pairwise comparisons to compute the differences between pairs of consecutive elements 
using Bonferroni correction as an adjustment method. Bonferroni test is a type of multiple testing method used 
in statistical analysis to reduce the instance of a false positive and prevent the data from appearing incorrectly to 
be statistically  significant66,67.

Results
We found that the performance of the machine learning methods when LASSO as feature selection technique 
used is by far better than when it is not used. The performance of the methods in terms of overall statistics are 
summarized in Table 2 based on the under-sampling technique. Table 3 shows the results of methods in terms 
of per-class statistics for under-sampling technique. The receiver operating characteristic (ROC) curve plots 

Figure 3.  Stacking ensemble deep learning model architecture in which five 1D-CNN models are used as base 
models and the results of these models are combined using NN, which is used as a meta model. The NN has one 
hidden layer and an output layer that is activated using softmax function.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15626  | https://doi.org/10.1038/s41598-021-95128-x

www.nature.com/scientificreports/

comparing the machine learning classification methods in this study are shown in, Figs. 4, 5, 6, 7, 8 and 9 based 
on under-sampling method. The predictive performance of the under-sampling technique outperformed the 
over-sampling technique. Results for the over-sampling technique are available in the Supplementary File 2.

The overall predictive performance of the machine learning methods based on the under-sam-
pling technique. The accuracy, precision, sensitivity, and F1-Score performance measures for the overall 
multi-class classification problem based on the under-sampling technique (DOWN) are presented in Table 2. 
These results show that bagging trees method achieved the best performance measure compared to the other 

Table 2.  The overall predictive performance of the machine learning methods based on under-sampling. 
SVM-R support vector machine with radial-basis function (RBF) kernel, SVM-L support vector machine with 
linear kernel, SVM-P support vector machine with polynomial kernel, ANN Artificial Neural Networks, kNN 
K-nearest neighbors, Bagging trees; ACC  accuracy, CI confidence interval, Kappa kappa statistics, AUC  area 
under the curve.

Methods

Performance measures

ACC (95% CI) Kappa (95% CI) F1-Score Precision Sensitivity AUC 

SVM-R 95.84 (94.00, 97.24) 93.81 (91.55, 96.07) 98.64 99.39 97.90 98.04

SVM-L 96.76 (95.10, 97.99) 95.14 (92.74, 97.18) 97.48 100.0 95.08 98.56

SVM-P 98.92 (97.79, 99.57) 98.40 (97.89, 99.74) 99.24 99.69 98.79 99.50

ANN 80.74 (77.49, 83.71) 72.15 (70.39, 79.59) 87.46 84.80 90.29 83.84

kNN 93.07 (90.83, 94.90) 89.97 (87.18, 92.75) 95.91 92.70 99.34 94.94

Bagging trees 99.20 (98.21, 99.75) 98.86 (97.86, 99.85) 99.54 99.69 99.39 99.54

Table 3.  Predictive performance of the machine learning methods per-class statistics based on under-
sampling. SVM-R support vector machine with radial-basis function (RBF) kernel, SVM-L support vector 
machine with linear kernel, SVM-P support vector machine with polynomial kernel, ANN Artificial Neural 
Networks, kNN K-nearest neighbors, Bagging trees, ACC  Accuracy, CI confidence interval, Kappa kappa 
statistics AUC  area under the curve.

Performance measures

Methods

Class SVM-R SVM-L SVM-P ANN kNN Bagging trees

Accuracy

BRCA 98.6 97.3 99.2 87.7 96.0 99.5

COAD 95.8 98.6 98.6 90.2 94.7 98.5

LUAD 97.7 99.6 98.0 82.8 90.6 98.7

OV 90.7 88.5 98.9 93.4 98.5 100

THCA 97.8 100 100 82.5 99.1 99.6

Sensitivity

BRCA 99.4 100 99.7 84.8 92.7 99.7

COAD 91.7 97.2 97.2 86.1 94.4 97.2

LUAD 98.8 100 96.5 68.6 81.4 97.7

OV 81.6 77.0 97.7 92.0 98.9 100

THCA 95.5 100 100 67.6 98.2 99.1

Specificity

BRCA 97.8 94.7 98.8 90.6 99.4 99.4

COAD 100 100 100 94.3 94.9 99.8

LUAD 96.6 99.3 99.5 97.0 99.8 99.6

OV 99.8 100 100 94.8 98.0 100

THCA 100 100 100 97.4 100 100

F1-score

BRCA 98.6 97.5 99.2 87.5 95.9 99.5

COAD 95.7 98.6 98.6 60.8 67.3 97.2

LUAD 89.5 97.7 96.5 72.8 89.2 97.7

OV 89.3 87.0 98.8 81.6 93.5 100

THCA 97.7 100 100 75.0 99.1 99.6

Precision

BRCA 97.9 95.1 98.8 90.3 99.4 99.4

COAD 100 100 100 47.0 52.3 97.2

LUAD 81.7 95.6 96.5 77.6 98.6 97.7

OV 98.6 100 100 73.4 88.7 100

THCA 100 100 100 84.3 100 100
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Figure 4.  Multi-class ROC curves visualization for the SVMR model based on under-sampling technique.

Figure 5.  Multi-class ROC curves visualization for the SVML model based on under-sampling technique.
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Figure 6.  Multi-class ROC curves visualization for the SVMP model based on under-sampling technique.

Figure 7.  Multi-class ROC curves visualization for the ANN model based on under-sampling technique.
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Figure 8.  Multi-class ROC curves visualization for the KNN model based on under-sampling technique.

Figure 9.  Multi-class ROC curves visualization for the bagging trees model based on under-sampling 
technique. 
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methods where it yields an accuracy, sensitivity, AUC, and F1-score of 99.2%, 99.4%, 99.54, and 99.5%, respec-
tively. However, SVM-P and bagging trees have the same precision, and they have a close results in the other per-
formance measures. Consequently, ANN method obtained the worst performance with an accuracy of 80.7%.

Predictive performance of the machine learning methods per cancer tumor based on the 
under-sampling. The accuracy, precision, sensitivity, and F1-Score performance measures based on per-
class statistics using the under-sampling technique method (DOWN) are presented in Table 3. Bagging trees 
outperforms the other methods in classifying most of the five cancer tumors in most of the performance meas-
ures, followed by SVM-P method. While the ANN shows the lowest performance measures. These results were 
confirmed using the ROC curves which are depicted in Figs. 4, 5, 6, 7, 8, and 9. Bagging trees was able to highly 
correctly classify the ovarian cancer with 100% in terms of accuracy, sensitivity, specificity, F1-Score, and preci-
sion. While SVM-L and SVM-P can sensitively classify the thyroid cancer with a 100% of accuracy, sensitivity, 
specificity, F1-Score, and precision. Also, SVM-R shows performance that is close to SVM-L and SVM-P to 
classify the thyroid cancer.

Predictive performance of the one-dimensional convolutional neural network model. The 
results that are presented in Table 4 show that the 1D-CNN model has a high performance when applied on the 
genes that are selected using LASSO (173 genes) where it achieved an average classification accuracy of 99.22%. 
These results also showed that the 1D-CNN outperformed the results of the machine learning methods that are 
presented in Table 2. It can be noted from the overlapped confusion matrix of the multiclass classification that 
the deep learning model classified the five categories of the cancers types using the 173 genes better than clas-
sifying these categories using the full list of genes (14,899). The resulting precision, recall, and F1-score values 
are 99.32%, 99.09%, and 99.19%, respectively.

Figures 10, 11, 12 and 13 show F1-measure and accuracy for training and validation when training our model 
using the full list of genes and the reduced genes with the early stopping approach. These figures indicate that 
the model can generalize very well since they become stable when the F1-measure and the accuracy are more 
than 99%. Figures 14 and 15 show the losses when using the full list of genes and the LASSO selected genes, 
respectively.

The multi-class classification performance of the 1D-CNN model has been evaluated for each fold, and the 
average classification performance of the model is calculated. The overlapped confusion matrix (CM) is shown in 
Figs. 16 and 17 for all and reduced lists of genes, respectively. The overlapped CM is created using the sum of the 
ten separated confusion matrices. Thus, it is aimed to obtain an idea about the general perforations of the model.

Although we are using RNAseq data with a high number of genes, deep learning method outperformed the 
machine learning methods noting that a rigorous preprocessing step including a model-based approach using 
LASSO regression was applied to reduce the number of genes to be less than the number of observations.

The results that are presented in Table 5 below show that our proposed model has a high performance when 
applied on the genes that are selected using LASSO (173 genes) where it achieved an average precision, recall, 
and F1-Score of 99.55, 99.29, and 99.42 respectively. While the classification accuracy is 99.45% which is lower 
compared to accuracy of the full genes. These results also showed that our proposed model outperformed the 
results of the single 1D-CNN model and machine learning that are presented in Tables 2 and 4. In addition, 
Figs. 18 and 19 which is the overlapped confusion show that our proposed model has a better classification per-
formance compared compared to the single 1D-CNN. Overall, our proposed model performance without using 
LASSO as a feature selection method is comparable to the performance with LASSO.

A comparison of the methods was statistically conducted using the pairwise analysis test which produced 
pairwise statistical significance table of scores where the lower diagonal of the table shows p-values for the null 
hypothesis (distributions are the same), smaller p-value is indicative of a better model. The upper diagonal of 
the table presents the estimated differences in mean accuracy and kappa coefficient between the distributions. 
From Table 6 (under-sampling technique) we can see clearly of the fifteen pairwise comparisons of the six 

Table 4.  The performance of the 1D-CNN model using early stopping regularization.

Performance measures

Folds

Overall1 2 3 4 5 6 7 8 9 10

All (14,899 genes)

Accuracy 99.54 98.16 95.85 97.24 97.24 97.24 99.54 96.30 99.54 100 98.06

Precision 99.47 96.07 93.50 96.72 96.92 95.11 99.82 94.16 99.38 100 97.12

Recall 99.26 98.20 96.56 95.22 96.82 96.06 99.26 94.94 99.81 100 97.61

F1-score 99.36 97.03 94.87 95.94 96.78 95.48 99.53 94.54 99.59 100 97.31

Reduced (173 genes)

Accuracy 98.62 99.54 99.08 98.62 99.54 100 99.07 99.54 98.61 99.54 99.22

Precision 99.46 99.31 99.10 98.99 99.82 100 98.48 99.29 98.92 99.82 99.32

Recall 97.97 99.82 99.10 98.39 99.29 100 98.72 99.81 98.52 99.26 99.09

F1-score 98.68 99.56 99.10 98.65 99.54 100 98.57 99.54 98.69 99.53 99.19
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machine learning methods, there are nine comparisons showing statistically significant differences in terms of 
accuracy at the 0.05 level of significance. These differences are SVMR differed statistically to SVMP p = 0.003, 
ANN p =  < 0.001, and KNN p =  < 0.001. While SVML differed statistically to ANN p = 0.009, and SVMP differed 
statistically to ANN p =  < 0.001 and KNN p =  < 0.001. Moreover, ANN differed statistically to bagging trees 
p =  < 0.001, as well as KNN differed statistically to bagging trees p = 0.004.

Figure 10.  Training and validation F1 measure for the full list of genes with early stopping.

Figure 11.  Training and validation accuracy for the full list of genes with early stopping.
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Discussion
We applied a novel stacking ensemble deep learning model to classify five common cancers among women: 
breast, colon adenocarcinoma, lung adenocarcinoma, ovarian, and thyroid cancers. The performance of the 
current proposed model is compared with the single 1D-CNN and machine learning methods that are mostly 
used in cancer types classification. We showed that the best machine learning average results were obtained 
using 173 genes based on the under-sampling technique, while our proposed model has the highest performance 

Figure 12.  Training and validation F1 measure for reduced genes with early stopping.

Figure 13.  Training and validation accuracy for reduced genes with early stopping.



16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15626  | https://doi.org/10.1038/s41598-021-95128-x

www.nature.com/scientificreports/

based on the early stopping regularization. The improvement in accuracy was achieved by optimizing several 
parameters. We used LASSO as a feature selection technique with our proposed model to explore the integration 
of features selection method with a deep learning approach because features selection in deep learning is still 
unexplored area due to the black box nature of the deep learning methods. The results of the proposed model 
without using LASSO as a feature selection technique is comparable to the results with LASSO. This indicates 
that the 1D-CNN performs features selection through its layers. Bagging trees obtained excellent results, with a 

Figure 14.  Training and validation loss for the full list of genes with early stopping.

Figure 15.  Training and validation loss for reduced genes with early stopping.
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maximum accuracy of 99.2% among the machine learning models based on the under-sampling technique. In 
contrast, ANN showed the least accuracy of 80.7% for classifying the most common cancers among females. The 
SVM-P method showed performances that was close to the bagging trees method with an accuracy of 98.9% when 
we used the under-sampling technique. Overall, our results showed that SVM-R, SVM-L, SVM-P, ANN, KNN, 
and bagging trees were improved in performance if under-sampling is applied compared to over-sampling. We 
conclude that our proposed model is the best methods for the test dataset in this study. However, bagging trees 
is the best model among the machine learning models.

Overall, our proposed model surpassed the single 1D-CNN and the machine learning methods in the classifi-
cation of common cancers among women. These findings are different from those reported in other  studies11,18,19. 
These differences can be explained by variations in the type of cancers studied and the methods used for feature/
gene selection. A study by Yang and  Naiman14 introduced and validated a gene selection approach using machine 
learning methods but did not assess the performance of the machines. Our findings demonstrated that, our 

Figure 16.  10-folds overlapped confusion matrix (CM) for all 14,899 genes.

Figure 17.  10-folds overlapped confusion matrix (CM) for the reduced 173 genes.
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Table 5.  The performance of the new proposed model using early stopping regularization.

Performance measures

Folds

Overall1 2 3 4 5 6 7 8 9 10

All (14,899 genes)

Accuracy 99.45 99.26 99.63 99.08 99.63 99.45 99.63 99.45 99.63 99.63 99.48

Precision 99.23 99.15 99.57 98.57 99.57 99.23 99.57 99.23 99.57 99.57 99.33

Recall 98.88 98.53 99.57 98.12 99.57 99.50 99.57 98.88 99.57 99.57 99.18

F1-score 99.05 98.83 99.57 98.31 99.57 99.36 99.57 99.05 99.57 99.57 99.25

Reduced (173 genes)

Accuracy 99.45 99.26 99.26 99.26 99.45 99.45 99.45 99.63 99.82 99.45 99.45

Precision 99.58 99.31 99.13 99.31 99.58 99.60 99.58 99.65 99.93 99.79 99.55

Recall 99.19 99.12 99.31 99.12 99.19 99.38 99.19 99.47 99.72 99.19 99.29

F1-score 99.38 99.22 99.22 99.22 99.38 99.49 99.38 99.56 99.82 99.49 99.42

Figure 18.  10-folds stacking ensemble deep learning model overlapped confusion matrix (CM) for all 14,899 
genes.

Figure 19.  10-folds stacking ensemble deep learning model overlapped confusion matrix (CM) for the reduced 
173 genes.
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proposed model can achieve a higher performance on cancer tumor classification using gene expression data. 
Both deep and machine learning methods and a combination of both can assist in predicting or detecting cancer 
susceptibility in the early stages and therefore, aid in designing early treatment strategies, and in turn increase 
survival of the high-risk women.

Because of the large number of genes in the gene expression data, we used LASSO regression as a rigorous 
feature selection method that reduced the dimensionality of the data  sets24,68. This process enabled us to retain 
the most important features (genes) for classification and prediction. In order to avoid over-fitting and the bias in 
the skewed class distribution we used over and under-sampling imbalance handling techniques, which improve 
the machine learning performance. In general, our results show that under-sampling technique improved the 
methods performance, and this is confirmed in previous  studies64,65,69.

There were statistically significant differences (p < 0.05) between the machine learning methods, which dem-
onstrates that the performance of the machines on cancer classification is not the same. However, deep learning 
methods outperformed the machine learning methods in cancer classification, which is similar to a previous 
 study23. Overall, the accuracy of our proposed model on the full features and on the features that are selected 
using LASSO are 99.48% and 99.45, respectively, which are 5.05% and 5.02% higher than accuracy obtained  by23 
which is 94.43%. We note that Tabares-Soto et al.24 used microarray gene expression data, focusing on 11 type of 
cancers for both males and females, compared to RNASeq data used in this study to classify five common cancers 
among females. This study also did not consider class imbalance handling methods as applied in the current 
study and had 12-times lower sample size (n = 174) than in our study (n = 2166). With larger sample size, more 
samples are available to train the models. These issues were, therefore, likely to affect the reliability of findings 
and potentially affecting the performance of the methods. Our study was limited to the gene expression profiles 
from RNASeq data. However, Lee and co-workers22 used several features such as mutation profiles and muta-
tions rates. They evaluated different machine learning and feature selection methods using RNASeq data from 
31 cancer types. The highest accuracy they obtained was 84%. Thereafter, they reduced the number of cancers 
to the six most common types and obtained an accuracy of 94%, which is low compared to our proposed deep 
learning model.

Our proposed model has a very high achievement in classifying the five common cancers among women and 
that may potentially improve the multi-class  identification19. In addition, this study is first of its kind to clas-
sify cancer tumors using RNAseq data. However, multi-class cancer classification using gene expression is not 
a substitute to the traditional  diagnosis19, but advances in classification algorithms or methods may provide a 
more accurate and biologically meaningful classifications and inform future studies. Moreover, a more pressing 
classification problem may be that of discriminating between cancer sub-types within the same type than between 
cancer types. However, we postulate that the methods covered in this paper are directly applicable to this problem.

Conclusion
In this work, we proposed a stacking ensemble deep learning model as a multi-class classifier to classify five 
most common cancers among women, that is, breast, colon adenocarcinoma, lung adenocarcinoma, ovarian, 
and thyroid cancer, using RNASeq gene expression datasets for each cancer tumor. Tumor classification using 
RNASeq data is more accurate and available compared to microarray data. We used LASSO as a feature selec-
tion method and compared the performance of our proposed method with a stand alone deep learning and 
machine learning methods. We conclude that our proposed model achieved the highest performance compared 
to the single 1D-CNN and the machine learning methods. Our proposed model is, therefore, capable of cor-
rectly classifying all the observed positive cancer cases. The proposed model can help improve the detection and 
diagnosis of cancer susceptibility among women in the early stages, inform decision on early intervention, and 
hence improve survival. Future research should consider the potential effects of using many feature types such as 

Table 6.  Pairwise statistical analysis test p-values and the estimated differences for the machine learning 
models (under-sampling technique).

SVMR SVML SVMP ANN KNN Bagging trees

Accuracy

SVMR 0.015  − 0.015 0.138 0.038  − 0.003

SVML 1.00  − 0.030 0.123 0.022  − 0.019

SVMP 0.003 0.347 0.153 0.052 0.011

ANN  < 0.001 0.009  < 0.001  − 0.101  − 0.142

KNN  < 0.001 1.00  < 0.001 0.008  − 0.041

Bagging trees 1.00 1.00 0.250  < 0.001 0.004

Kappa

SVMR 0.024  − 0.021 0.194 0.054  − 0.005

SVML 1.00  − 0.045 0.170 0.030  − 0.029

SVMP 0.003 0.386 0.215 0.075 0.016

ANN  < 0.001 0.010  < 0.001  − 0.140  − 0.199

KNN  < 0.001 1.00  < 0.001 0.006  − 0.059

Bagging trees 1.00 1.00 0.250  < 0.001 0.004
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methylations and mutations, to be integrated with RNASeq data. Future work will also consider improvements 
on the stacking ensemble problem including statistical properties to improve inference.

Data availability
The datasets are publicly available on The Cancer Genome Atlas (TCGA) repository.
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Abstract

Understanding and identifying the markers and clinical information that are associated with

colorectal cancer (CRC) patient survival is needed for early detection and diagnosis. In this

work, we aimed to build a simple model using Cox proportional hazards (PH) and random

survival forest (RSF) and find a robust signature for predicting CRC overall survival. We

used stepwise regression to develop Cox PH model to analyse 54 common differentially

expressed genes from three mutations. RSF is applied using log-rank and log-rank-score

based on 5000 survival trees, and therefore, variables important obtained to find the genes

that are most influential for CRC survival. We compared the predictive performance of the

Cox PH model and RSF for early CRC detection and diagnosis. The results indicate that

SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX genes were significantly associated with the

CRC overall survival. In addition, age, sex, and stages are also affecting the CRC overall

survival. The RSF model using log-rank is better than log-rank-score, while log-rank-score

needed more trees to stabilize. Overall, the imputation of missing values enhanced the mod-

el’s predictive performance. In addition, Cox PH predictive performance was better than

RSF.

Introduction

Colorectal cancer (CRC) is the second leading cause of mortality in women and third in men

[1]. The American cancer society estimate, about 1 in 23 men and 1 in 25 women develop colo-

rectal cancer in their lifetime [2]. Globally, there were about 19.3 million new cancer cases in

2020 alone, while close to 10 million deaths were recorded due to cancer [3]. CRC represents

9.4% of cancer deaths and 10% of newly diagnosed cancer cases [3]. The incidence and mortal-

ity in males are 10.6% and 9.3%, respectively, while the incidence and mortality in females are

9.4% and 9.5%, respectively [3]. Early detection of CRC can reduce mortality due improved
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chemotherapy regimens and surgical techniques [4–6]. The prognosis and survival of early

intervention with CRC patients are linked with tumor staging, where early diagnosis of the

tumor is more likely to be curable [7]. The 5-year relative survival rates for patients with local-

ized CRC was 91% in the USA between 2010 and 2016 [8]. However, the 5-year relative sur-

vival rates of CRC cases at regional and distant stages are 72% and 14%, respectively [8]. The

main characteristics of the CRC are that it has high inter-patient and intra-tumor heterogene-

ity. Other factors such as environment, lifestyle, and diet can lead to further heterogeneity in

the CRC occurrence and progression [9–11]. This heterogeneity leads to variations in response

to treatment between individuals. Determining the molecular markers is clinically essential to

help detect and precisely predict the prognosis of patients with CRC.

Researchers have developed many methods to determine the prognostic molecular markers

to early detect and predict the prognosis of patients with CRC. These methods include univari-

ate and multivariate Cox proportional hazard models, elastic net estimation, and random for-

ests for survival prediction [4, 7, 12–15]. Previous studies such as, Abdul Aziz et al. [12]

analyzed the CRC death using the Cox proportional hazard model, and they reported a 19

gene signature that could predict the survival of CRC patients with Dukes’ B and C stages. In

their work, Abdul Aziz et al. used SAM, limma, and t-test to identify the most significant genes

based on microarray gene expression data. Dai et al. [4] conducted a survival analysis using

univariate and multivariate Cox models based on three microarray datasets from GEO and

one dataset from the TCGA database. They used the DEGs from each of the three microarray

datasets, and they identified 105 mutual DEGs based on the intersection of the three DEGs

lists. They conducted a protein-protein interaction network (PPI) of the DEGs, and they iden-

tified hub genes. To investigate the 44 hub genes’ prognostic values in CRC, they conducted a

survival analysis using the sample splitting and Cox regression models based on the TCGA

dataset. Their results showed that two down-regulated and two up-regulated hub genes were

significantly associated with the CRC patients’ overall survival.

Bian et al. [7] analyzed data from four microarray datasets and identified DEGs from each

of them. They identified the common genes across the four datasets, and this way, they

obtained 53 genes. Then they utilized PPI, which identified ten essential genes according to

their degree value, betweenness centrality, and closeness centrality. They used gene expression

profiling interactive analysis (GEPIA) to apply survival analysis using the log-rank test based

on the expression levels. Their results showed that four low expressed genes out of the ten

genes were significantly related to unfavorable prognosis in the patients with CRC. Martinez-

Romero et al. [14] identified a new set of gene markers associated with CRC to predict tumor

progression and evolution towards inferior survival stages based on an integrated gene expres-

sion dataset of 1273 CRC samples. They compared the early and late stages of CRC using

limma to identify the genes (2707 DEGs) that had a significant effect on CRC tumor progres-

sion. Then, they applied Kaplan-Meier to rank the genes based on the non-parametric log-

rank test. Their results identified 429 essential genes in which overexpression is related to low

survival rate and 336 crucial genes in which repression is associated with inferior survival.

They validated the top 5 genes using an external cohort study and presented a good separation

of the CRC samples into two low and high-risk groups.

A study by Pan et al. [13] proposed a predictive model based on RNASeq gene expression

data. Their model uses the differentially expressed genes (DEGs) profiles. These profiles were

obtained using the univariates and multivariate Cox regression, which was used to compare

TNM stages to assess their predictive survival accuracy. Their results showed that 10 DEGs

had a significant effect on CRC survival. Yan et al. [15] implemented random forests to iden-

tify biomarkers associated with survival in CRC based on a set of oligonucleotide microarray

data. Their results showed that four genes had the potential to predict CRC survival.
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To the best of our knowledge, RSF has not been used with gene expression data in the previ-

ous studies to predict CRC survival. The gene expression data is characterized by the problem

of the curse of dimensionality and collinearity. To overcome this problem, the CRC survival is

predicted based on selecting the differentially expressed genes (DEGs) in colorectal cancer that

was based on the three-mutation status (KRAS, BRAF, and TP53) where they serve as a predic-

tive biomarker of response to treatment in CRC. We assume that complex interaction between

multiple DEGs contributes to prognostic survival differences between wild-type and mutant

patients with CRC.

We developed and compared Cox proportional hazard (Cox PH) model and random sur-

vival forests (RSF) in predicting CRC survival and associated biomarkers using a public

genome database from Gene Expression Omnibus (GEO). The aim was to assess the CRC sur-

vival predictors accounting for missing data based on the gene expression data. We selected 54

common differentially expressed genes from three mutations (KRAS, BRAF, and TP53), using

the complete case samples, and performed analysis using Cox PH and RSF models before and

after imputation.

Materials and methods

Dataset

The dataset with accession number GSE39582 [16], was downloaded from Gene Expression

Omnibus (GEO) public database (https://www.ncbi.nlm.nih.gov/geo/) using the BRB-Array-

Tools software (https://brb.nci.nih.gov/BRB-ArrayTools/). This dataset has 54675 probes

taken from 566 samples with colon cancer and 19 non-tumor samples. Usually, the gene

expression data includes noisy and or irrelevant genes. Therefore, performing data cleaning

and feature (genes) selection are essential steps that should be applied before modeling the

data. A pre-processing step was applied to prepare the dataset for modeling. These pre-pro-

cessing steps are log2 transformation, quantile normalization, gene filtration, and differentially

expressed genes analysis using a two samples t-test. Filtration is a process in data cleaning used

to eliminate insufficiently expressed probes and those with excessive missing expression levels

across the samples [17–20]. On the other hand, quantile normalization and log2-transformed

steps to eliminate the variation between samples. BRB-ArrayTools is used to implement the fil-

tration and normalization of the dataset. The two-sample t-test, with the 0.001 significance

level threshold, was used for gene selection to provide informative genes for building survival

models. The overall procedures that we followed in our analysis are summarized in Fig 1.

Statistical analysis

We analyzed the gene expression data using the R version (R-4.0.4). Summary statistics of the

gene expressions are depicted in the supplementary file (see S1 Appendix). These statistics

include the minimum, maximum, means, and standard deviations of the expression levels. We

used frequency and percentages for the categorical data representing the clinical information,

as shown in Table 1. The statistical analysis was conducted in three phases; the first phase is

the complete case analysis, followed by imputation of missing values in the outcome based on

the covariates and an appropriate imputation model. Then we applied survival analysis on the

complete case and imputed datasets. The survival analysis results on these two datasets were

compared to evaluate the precision of estimates. Two separate models were fitted before and

after imputations; the first is the Cox regression model, while the second is the random sur-

vival forests with log-rank and log-rank-score split rules. The missing values were assumed to

be missing at random (MAR), where the probability of data being missing does not depend on
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the unobserved data, conditional on the observed data [21–24]; consequently, the genes and

other covariates in the dataset were used to predict missingness.

Complete case analysis. The filtration step resulted in 18865 out of 54675 probes. These

18865 probes were used for further reduction analysis using a t-test. To find the differentially

expressed genes (DEGs) that discriminate between the mutant and wild-type mutation, we

used the three mutation types, KRAS, BRAF, and TP53. We created three different datasets

using the 18865 probes with each of the three mutation types based on these three mutation

types. First, we removed the samples with missing values for each of the three datasets accord-

ing to their clinical outcome. Then, we calculated the correlation matrix for the gene expres-

sion data and filtered out one gene from every two genes that show a correlation coefficient

greater than 0.6. Subsequently, we extracted three DEGs lists from all three datasets using a

two-sample t-test based on 0.001 thresholds. Ultimately, from the three lists of DEGs, there

were 54 common genes (see S1 Appendix). Also, we used the common samples across the

three datasets to produce the complete cases in one dataset. The samples with missing or zero

values in the event status and time variables were removed. We then converted the five TNM

stages into a new categorical variable with two stages (Early and Late), where stages four and

five were combined to give the late category. Finally, we used the obtained data for finding the

most significant gene markers that may predict survival for CRC patients. Table 2 provides a

concise summary of the pre-processed data.

Multiple imputations of the missing values. To compensate for the missing data, we

used the R package “mice (Multivariate Imputation by Chained Equations)”, which impute the

missing values in the covariates. The mice package takes care of uncertainty related to missing

Fig 1. Flow-chart of the procedure followed in the pre-processing and analysis of the dataset.

https://doi.org/10.1371/journal.pone.0261625.g001
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values [23–25]. It assumes that the missing values are missing at random (MAR) see (Fig 2),

where the probability of missing data does not depend on the unobserved data, conditional on

the observed data [21–24]. The mice package uses the genes and other covariates in the dataset

to predict missingness. The missingness pattern in the data is assumed to be non-monotone.

In this pattern, some subject values can be observed again after missing values happen [23–

25]. For this missing data pattern, it is recommended to use the chained equations (fully condi-

tional specification (FCS)) [26], or the Markov Chain Monte Carlo (MCMC) method to

impute missing values [25].

Table 1. Clinical characteristics of colorectal cancer patients (N = 307).

Variable Frequency (n) Percentage (%)

Age at diagnosis in years: Mean (SD�) 66.8 (13.2)

KRAS Mutation

Mutant 123 40

WildType 184 60

BRAF Mutation

Mutant 25 8

WildType 282 92

TP53 Mutation

Mutant 166 54

WildType 141 46

Tumor Location

Proximal 124 40

Distal 183 60

Cancer stage

Early 156 51

Late 151 49

Sex

Female 137 45

Male 170 55

Molecular subtype

C1 65 21

C2 49 16

C3 43 14

C4 29 9

C5 29 9

C6 36 12

�SD: Standard deviation

https://doi.org/10.1371/journal.pone.0261625.t001

Table 2. Summary of the filtered datasets and the pre-processing steps.

Dataset (GSE39582) � Number of

samples

Complete

cases

Common

samples

Total number of

genes

After

filtration

Uncorrelated

genes

DEGs (t-

test)

Common

genes

Clinical

outcomes

KRAS 585 545 307 54675 18865 13827 711 54

BRAF 512 2388

TP53 351 629

� Three datasets with the same covariates and different clinical outcome

https://doi.org/10.1371/journal.pone.0261625.t002
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We used FCS to handle the missing values in our dataset implemented in the mice package

in R using a random forest model. The FCS is considered a powerful and statistically valid

method for creating imputations in both categorical and continuous variables [26]. We gener-

ated 5 imputed datasets using random forest (rf) imputations after 100 iterations (imputation

cycles). We used 1051991 as a random seed to replicate imputation results each time a multiple

imputation analysis was performed. In addition, we followed the procedures indicated by the

work of Sterne et al. [27] for reporting and analysis of missing data. KRAS, BRAF, TP53, and

the event status were imputed as binary, while time and age imputed as numeric variables. The

rest of the variables did not contain any missing values, and were used as auxiliary variables in

the imputation model. Overall, firstly we performed a complete case analysis using Cox PH

and random survival forests models. Thereafter, we compared the final models from this anal-

ysis to those from the multiply imputed dataset.

Experimental setup. To evaluate the different methods, the resulting dataset was divided

into training set (80%) and testing set (20%). The training set was then divided into 10 subsets

to train the methods using 10-fold cross validation approach to avoid overfitting. In the

10-fold cross-validation approach the integrated brier scores (IBS) is calculated on each fold

left-out while the model is trained on the other 9 folds. Finally, the trained model is tested on

the testing set. The model performance was measured using prediction error curve (pec).

Statistical methods

Cox proportional hazard model (Cox PH). Cox proportional hazard model is the most

widely used statistical model for modeling time to event data [28]. The Cox PH evaluates the

association of the survival time of patients and one or more predictors/genes variables. The

Cox PH model relates the effect of predictors which include genes in our case to the rate or

Fig 2. Proportion and patterns of missing values in the clinical characteristics available in the GSE39582 dataset.

https://doi.org/10.1371/journal.pone.0261625.g002

PLOS ONE Predictors of colorectal cancer survival using cox regression and random survival forests models

PLOS ONE | https://doi.org/10.1371/journal.pone.0261625 December 29, 2021 6 / 22



hazard of occurrence of an event such time to infection, death, recurrence of a condition at a

certain point of time, this rate is generally referred as the hazard rate [29, 30]. In order to esti-

mate the association of the gene expression levels and the survival time, consider n cancer sam-

ples say from sample i = 1,2,. . .,n and gi = (gi1, gi2, gi3,. . .,gip) is a vector of p genes expression

level. The ith patient survival data can be represented by (Ti, δi, gi1, gi2, gi3,. . .,gip), where

i = 1,2,. . .,n; Ti and δi indicate the survival time and the censor status respectively. The Cox PH

model is mathematically represented as follow

hiðtÞ ¼ h0ðtÞe
β0gi ð1Þ

where the parameters vector β0 is the regression coefficients and gi is the covariates (genes) vec-

tor. The baseline hazard function h0(t) is unspecified and non-parametric function of an indi-

vidual with all expression levels equal to zero [12, 31]. The model has a parametric part

specified by the linear predictor and assumed to be proportional to the non-parametric base-

line hazard. This means that for two individuals, i and j, the hazard ratio is

hiðtÞ
hjðtÞ

¼
eβ0gi

eβ0gj
ð2Þ

The hazard ratio is assumed to be independent of time t. The maximum partial likelihood

method used to estimate the Cox PH model parameters is given by

L bð Þ ¼
Y

r2E

eβTgr
P

j2Rr
eβTgj

ð3Þ

where E indicates the indices of the events (e.g., deaths) and Rr represents the vector of indices

of the individuals at risk at time tr - 0. The results of the Cox PH model are easy to interpret,

however, there are key assumptions needed such as linearity and proportional hazards. We

used survival and survminer packages to implement Cox PH model in R.

Moreover, we performed the stepwise regression for developing the Cox PH model at a 5%

threshold level to find a simple model that shows the essential genes (markers) and clinical

covariates correlated with the CRC. At each time, we removed the genes/ covariates that are

not significant at α = 0.05 level of significance. Thereafter, we tested for the Cox PH assump-

tion, and the integrative analysis of the CRC data showed five genes (markers) that passed the

Cox PH assumption test. Thereafter, we used the five genes and the other clinical information

to fit the Cox PH model.

Random survival forests (RSF). Random survival forests are an ensemble of trees and a

non-parametric method constructed by bagging of classification trees for right censored data

[32, 33]. The RSF are an extension of the random forests method proposed by Breiman [34]. It

works on high dimensional data where the number of covariates exceeds the number of the

observations. Also it can handle data that consist of complex and non-linear relationships

between the dependant and the independent variables and when the covariates violate the pro-

portional hazard assumption [35]. There are several advantageous of using the RSF method,

such as, it is not based on any model assumption compared to Cox PH model. It seeks to find

a model that best represent the data in the case of limited survival data. In addition, it can han-

dle high dimensional data unlike Cox PH, and it is robust to outliers in the explanatory vari-

ables [33]. RSF employs two steps of randomizations to grow the tree. These two steps are the

bootstrap sample to select cases randomly and random selection of subset of covariates for

splitting the nodes of the tree. These two steps help to decorrelate the tree [20, 33]. The RSF

was implemented using the randomForestSRC package in R [36].

PLOS ONE Predictors of colorectal cancer survival using cox regression and random survival forests models
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Random survival forests algorithm. We used the RSF algorithm that was introduced in

the work of Ishwaran et al. [32] as shown below:

For i in 1: ntrees

• Draw bootstrap samples from the original total number of samples. For each bootstrap

exclude approximately 37% of the samples as out-of-bag (OOB) samples.

• Build a survival tree for every bootstrap sample by recursively repeating the following steps

for each node in a tree

� Randomly select v genes at random from the p genes (v ¼
ffiffiffi
p
p

)

� To split the node, pick the best gene among the v genes, that maximizes survival differences

between daughter nodes. We used log-rank and log-rank-score splitting rules as measures

of survival differences.

� Produce the tree to full size under the constraint that a terminal node should have no less

than d0>0 unique deaths.

� Calculate a cumulative hazard function (CHF) for every tree. Average the CHF for all the

ntrees trees to find the ensemble CHF.

� Calculate the OOB prediction error for the ensemble CHF, using OOB samples.

Once the survival tree is built, the ends of the tree are called the terminal nodes. Assume,

the terminal node is h and tn,h is the individual’s death time at node h, dn,h is the number of

deaths, andMn,h is the number of individuals at risk at time tn,h. Therefore, the cumulative haz-

ard function (CHF) can be estimated using the Nelson-Aalen estimator [37] as follows

Ĥh tð Þ ¼
X

tn;h�t

dn;h
Mn;h

ð4Þ

The CHF was calculated for all the terminal nodes. The CHF for new observation i given a

vector of genes as a covariate gi, can be calculated for one tree as follows

ĤhðtjgiÞ ¼ ĤhðtÞ; for gi 2 h ð5Þ

To compute an ensemble CHF, the average of the ntrees trees is calculated, and the boot-

strap ensemble CHF for an observation i is

Ĥe tjgi
� �

¼
1

ntrees

Xntrees

b¼1
ĤbðtjgiÞ ð6Þ

let,

Ii;b ¼
1 if i is an OBB observation for ntrees training sample:

0 Otherwise:
ð7Þ

(

then the OOB ensemble CHF for an observation i is given by

Ĥ�e tjgi
� �

¼

Pntrees
b¼1

Ii;bĤ �bðtjgiÞ
Pntrees

b¼1
Ii;b

ð8Þ

therefore, Ĥ �eðtjgiÞ is an average over the training samples where i is an OOB observation.

Log-rank split rule. The log-rank split-rule is a measure of a node separation which helps

in determining the best split for that node [38]. Let h be a node of a tree and let there are n
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individuals with this node. Suppose (T1, σ1), (T2, σ2), . . ., (Tn, σn) are the survival outcomes

corresponding to the n individuals. Thus, the best split at node h on covariate x at split point c,
is the one that maximize the log-rank statistic between the two daughter nodes [32] given as

follow

L x; cð Þ ¼

PN
i¼1
ðdi1 � Yi1

di
Yi
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Yi1
Yi
ð1 �

Yi1
Yi
Þð
Yi � di
Yi � 1
Þdi

q ð9Þ

The aim is to maximize the log-rank statistic by finding values of x and c that maximize L(x,

c). Specifically, we are looking to find a predictor x� and c� such that |L(x�, c�)|�|L(x, c)| for

every x and c. This process is repeated at every node until the terminal node is reach.

Log-rank-score split rule. The log-rank-score split rule is a version of the log-rank-score

split rule [39]. Consider r = (r1, r2,. . .,rn) as a vector that ranks the survival times (T, δ) = ((T1,

σ1), (T2, σ2),. . .,(Tn, δn)) [39, 40]. Assume a = a(T, δ) = (a1(r), a2(r),. . .,an(r)) indicates the

ranked score vector. Let the ranked vector r order the genes variables in such a way that g1 <

g2 < � � �< gn. Therefore, the log rank score for an observation at Ti is given by

ai ¼ ai T; dð Þ ¼ di �
XgiðTÞ

j¼1

dj

ðn � gjðTÞ þ 1Þ
; ð10Þ

where, gjðTÞ ¼
Pn

i¼1
wfTi � Tjg is the number of individuals who died or were censored

before or at time Tj.

Performance evaluation

We used integrated brier scores (IBS) measure [41] to assess and compare the accuracy of the

predictive performance of all the models in this study. The IBS represent the average squared

differences between the observed survival status and the predicted survival probability at time

t. However, the value of the IBS is always between 0 and 1, the value of 0 represent the best pos-

sible IBS value. We calculated the brier scores (BS) measure using the test sample of size ntest as

follows

BS tð Þ ¼
1

ntest

Xntest

i¼1
½0 � ŜðtjxÞ�2

Iðti � t; di ¼ 1Þ

ĜðtijxÞ
þ ½1 � ŜðtjxÞ�2

Iðti > tÞ
ĜðtjxÞ

( )

ð11Þ

where ĜðtjxÞ � PðC > tjX ¼ xÞ is the Kaplan-Meier estimate for the conditional survival

function of the censoring times. Therefore, the IBS is calculated as below

IBS ¼
Z maxðtÞ

0

BSðtÞ dt ð12Þ

Results

Cox proportional hazards analysis

The results of the survival problem based on gene expression data were obtained using R. We

used the Cox PH model based on the selected covariates that satisfy the Cox PH assumptions.

We tested the Cox PH assumptions using the Schoenfeld residual test implemented by the

function cox.zhp. The Cox PH model assumes the regression parameters are constant over

time. Therefore, the hazard ratios for any two individuals are constant over time. However, the

covariates that do not satisfy the Cox PH assumptions do not meet the criteria to be entered in

our final Cox PH model. As a first step, we fitted the Cox PH model for all the covariates
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(genes and clinical variables) in our dataset and then obtained the Cox PH assumption using

the Schoenfeld residuals Table 3. The genes and variables in violation of the Cox PH assump-

tion (p<0.05) were DUSP4, SYTL1, and molecular subtype.

From the Cox PH model in Table 3, three variables violated the Cox PH assumption, and

therefore, these genes and molecular subtype were not included in the final Cox PH model.

We fitted the Cox PH model on the genes and variables that did not violate the Cox PH

assumptions before and after imputation. The results from this analysis are shown in Table 4.

Results before imputation of missing values indicated that 218611_at (IER5) (HR = 9.51, 95%

CI 1.30, 69.58), 221522_at (ANKRD27) (HR = 34.89, 95%CI 1.91, 635.90), and late disease

Table 3. Testing the proportional hazard assumption using scaled Schoenfeld residuals.

Probeset ID (Symbol) χ2� (df) p-value

204014_at (DUSP4) 10.219 (1) 0.0014

212947_at (SLC9A8) 1.345 (1) 0.2462

218611_at (IER5) 2.045 (1) 0.1527

219973_at (ARSJ) 3.601 (1) 0.0577

221522_at (ANKRD27) 1.583 (1) 0.2083

221605_s_at (PIPOX) 1.651 (1) 0.1988

227134_at (SYTL1) 4.699 (1) 0.0302

Age at diagnosis (years) 2.589 (1) 0.1076

Molecular subtype 15.824 (5) 0.0074

Disease stages 1.173 (1) 0.2787

Sex 0.378 (1) 0.5388

Tumor location 0.951 (1) 0.3294

�Chi-square statistic

https://doi.org/10.1371/journal.pone.0261625.t003

Table 4. Multivariable Cox PH results for predictors of colorectal cancer survival among adults aged 24 years and above.

Probeset ID (Symbol) / Variables Before imputation (N = 307) After imputation (N = 566)

HR� (SE) 95%CI P-value HR� (SE) 95%CI P-value

212947_at (SLC9A8) 0.09 (0.84) (0.02, 0.49) 0.005�� 0.30 (0.66) (0.08, 1.07) 0.066

218611_at (IER5) 9.51 (1.02) (1.30, 69.58) 0.027� 6.48 (0.79) (1.37, 30.53) 0.019�

219973_at (ARSJ) 0.23 (0.48) (0.09, 0.58) 0.002�� 0.44 (0.36) (0.22, 0.89) 0.024�

221522_at (ANKRD27) 34.89 (1.48) (1.91, 635.90) 0.016� 2.49 (1.06) (0.31, 19.95) 0.393

221605_s_at (PIPOX) 0.43 (0.34) (0.22, 0.85) 0.014� 0.49 (0.27) (0.28, 0.83) 0.009��

Age diagnosis (years) 1.03 (0.01) (1.01, 1.05) 0.001��� 1.03 (0.01) (1.01, 1.04) <0.000���

Sex

Female 1.00 1.00

Male 1.23 (0.20) (0.84, 1.81) 0.281 1.40 (0.15) (1.05, 1.88) 0.024

Stages

Early 1.00 1.00

Late 1.97 (0.20) (1.33, 2.93) 0.001��� 1.96 (0.15) (1.47, 2.63) <0.000���

Tumor location

Proximal 1.00 1.00

Distal 1.06 (0.21) (0.71, 1.58) 0.783 0.86 (0.16) (0.63, 1.18) 0.356

HR: Hazard ratio, SE: Standard error, adjusted for 212947_at, 218611_at, 219973_at, 221522_at, 221605_s_at, age at first diagnosis, sex, disease stage, and tumor

location.

https://doi.org/10.1371/journal.pone.0261625.t004
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stage (HR = 1.97, 95%CI 1.33, 2.93) were associated with higher hazards of death. However,

we note that two confidence intervals for IER5 and ANKRD27 are quite wide; therefore, they

should be interpreted caution. For every year increase, the hazards of death increased by 1.03

(95%CI 1.01, 1.05). Significantly lower hazards were observed in 212947_at (SLC9A8)
(HR = 0.09, 95%CI 0.02, 0.49), 219973_at (ARSJ) (HR = 0.23, 95%CI 0.09, 0.58), and

221605_s_at (PIPOX) (HR = 0.43, 95%CI 0.22, 0.85) differentially expressed genes.

After imputation of missing values, the Cox PH model showed that sex was a significant

predictor of males having higher death hazards (HR = 1.40, 95%CI 1.05, 1.88) than females.

Also, the disease stage covariate was a significant predictor where those with late disease stage

had higher death hazards (HR = 1.96, 95%CI 1.47, 2.63) than early cases. Moreover, the results

illustrated that 219973_at (ARSJ) (HR = 0.44, 95%CI 0.22, 0.89), 221605_s_at (PIPOX)

(HR = 0.49, 95%CI 0.28, 0.83) were related with lower hazards of death. For every year

increase, the hazards of death increased by 1.03 (95%CI 1.01, 1.04). Significantly higher haz-

ards were detected with gene 218611_at (IER5) (HR = 6.48, 95%CI 1.37, 30.53) gene.

Random survival forests analysis

We fitted two random survival forests models, including survival trees built using log-rank

and the log-rank-score split rules on the datasets before and after imputation. These two mod-

els were built using the 54 genes and the other clinical information as covariates. The charac-

teristics of the two fitted models are summarized in Table 5 below.

Permutation importance measure used to identify the most important genes/ clinical vari-

ables associated with the survival of the colon patients [42–44]. We fitted a random survival

forest model before imputation and after imputation with 5000 survival trees built using log-

rank and log-rank-score and their results presented in Figs 3 and 4.

Table 5 and Fig 3 show that the log-rank split-rule is more stable than the log-rank-score

split-rule. Moreover, we fitted the model with 1000, 2000, and 3000 survival trees and noticed

that the log-rank-score spilt-rule needs more survival trees to stabilize. In addition, the error

rate for the forest built with survival trees based on the log-rank and log-rank-score split-rules

are 41.26 and 49.05, respectively. These error rates of the RSF before imputation are much

Table 5. Random survival forests results before and after imputation using log-rank and log-rank-score split rules.

Before imputation (N = 246)� After imputation (N = 453)�

Log-rank Log-rank-score Log-rank Log-rank-score

Number of deaths 88 88 157 157

Number of trees 5000 5000 5000 5000

Forest terminal node size 15 15 15 15

Average no. of terminal nodes 13.58 11.92 25.34 22.14

No. of variables tried at each split 8 8 8 8

Total no. of variables 62 62 62 62

Resampling used to grow trees swor swor swor swor

Resample size used to grow trees 155 155 286 286

Analysis RSF RSF RSF RSF

Family surv surv surv surv

Splitting rule log-rank log-rank-score log-rank log-rank-score

Number of random split points 10 10 10 10

Error rate 41.26% 49.05% 33.22% 43.01%

� Analysis performed using the 80% training set

https://doi.org/10.1371/journal.pone.0261625.t005
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higher than the error rates for RSF built after imputation, as shown in Table 5. This result indi-

cates that the imputation can improve the performance of RSF.

The genes/ covariates associated with CRC ranked using RSF according to their importance

before and after imputation based on the log-rank, and log-rank-score split-rules are presented

in Figs 5 and 6. Using RSF allows all 54 genes and other covariates regardless of their satisfying

the Cox PH assumption. However, this is a very important characteristic of the RSF, as

explained in the model building stage. The selection of the genes/ covariates in the model does

not need to satisfy the too restrictive Cox PH assumption. RSF is purely non-parametric;

hence there is no requirement of the Cox PH assumption being satisfied a prior.

We implemented RSF with 5000 survival trees built using two split-rules before and after

imputation. The RSF identified the most important genes/ covariates that explain the survival

of CRC patients by calculating the measure of the permutation importance as a variable’s

importance [32, 43]. For the RSF before imputation see (Fig 5), the top 20 genes/ covariates

that are most important and strongly associated with the CRC obtained using the log-rank

split-rule are age, SLC28A3, stages, TNFSF9, EGLN3, molecular subtype, CTSV, ANKRD27,

POLR3B, CTSA, SYTL1,MYRF, RPS27L, L3MBTL1, PIPOX, ADPRM, SLC6A4, LDLRAD3,

MSRA, and SCAND1. While the top 20 genes/ covariates that were identified by RSF using log-

rank-score are POLR3B, L3MBTL1, CTSV, EGLN3, SYTL1, age, molecular subtype, LDLRAD3,

MAP7D2, SLC28A3, ANKRD27, stages, SLC6A4, CTSA, CABLES2, TNFSF9, GIF, SCAND1,

PTP4A3, andMSRA.

Fig 3. The prediction error rate for the random survival forests of 5000 trees before imputation and the log-rank and log-rank-score in the left and right panel

used 80% training dataset.

https://doi.org/10.1371/journal.pone.0261625.g003
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However, for the RSF after imputation (Fig 6), the top 20 genes/ covariates strongly related

to CRC identified using RSF with log-rank split-rule are age, stages, molecular subtype,

PIPOX, ADPRM, CLCN2, RPS27L, IER5, POLR3B, SLC6A4, KRAS, SGMS2,DUSP4, SLC28A3,

SLC9A8, ACOT8, SYTL1, CABLES2, SCAND1, andMAP7D2. Although the RSF with log-

rank-score obtains a top 20 genes/ covariates strongly relevant to CRC, these genes/ covariates

are molecular subtypes, POLR3B, CLCN2, IER5, SLC9A8,MAP7D2, CABLES2, SYTL1, stages,

KRAS, SLC6A4, LDLRAD3, CTSA, SCAND1, PIPOX, ARSJ, PHACTR3, SLC28A3, SGMS2, and

CTSV.

The RSF with log-rank split-rule after imputation performed better in terms of the error

rate. Age and disease stage were the most important covariates that affecting CRC. However,

the PIPOX, IER5, and SLC9A8 were among the most important genes strongly associated with

CRC. These results agree with the results achieved from fitting the Cox PH model presented in

Table 4. As far as significant effects are concerned, the most striking result to emerge was that

the RSF model did pick other genes and covariates as substantial, e.g., molecular subtype and

DUSP4 which could not be included in the Cox PH model because of not satisfying the Cox

PH assumption.

Predictive performance

We assessed the predictive performance of the models using the integrated brier scores mea-

sure in R using the pec package [45, 46]. The model with lower prediction error rates is there-

fore considered useful [43, 47]. Figs 7 and 8 show the prediction error curve of the RSF (log-

Fig 4. The prediction error rate for random survival forests of 5000 trees after imputation and the log-rank and log-rank-score in the left and right

panel, respectively, using 80% training dataset.

https://doi.org/10.1371/journal.pone.0261625.g004
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rank and log-rank score) and Cox PH models before and after imputation. These prediction

curves show that Cox PH outperformed RSF with log-rank and log-rank score split rules. The

Cox PH model before and after imputation had similar prediction errors, while RSF models

under the two split-rules (log-rank and log-rank-score, respectively) after imputation had

lower prediction error rates compared to before imputation as can be seen (Fig 8). Their pre-

dictive performance exhibited that the log-rank split-rule is better than the log-rank-score

split-rule. Moreover, we noticed that the Cox PH model showed good predictive performance

compared to the two RSF under the two split-rules before and after imputation models. Thus

it is safer to say that if all covariates satisfy the Cox PH assumption, the Cox PH model can be

used [44].

Although the Cox PH model before and after imputation had better performance in terms

of the prediction error rate, we can still not use it in the event of a violation of the proportion-

ality of hazards assumption. Thus, in the presence of the non-proportional hazards genes/

covariates, using RSF is an appealing option in the analysis of survival data, especially for high

dimensional genomics data. Genomics data are usually presented in a matrix, with the col-

umns indicating the samples and the rows showing a genomic feature such as genes [48].

Table 6 shows a comparison of the model performance using the integrated brier scores.

We can notice that the prediction error estimates are lower for RSF, especially in the case of

using the log-rank as a split rule. In addition, RSF models perform substantially better than

Kaplan-Meier and Cox PH models.

Discussion

Cancer incidence and mortality are rapidly growing worldwide, exerting big physical, emotional,

and financial problems on individual, families, communities, and health systems levels. Cancer is

the first or second leading cause of death in 112 countries and is considered the third or fourth

in 23 countries [3]. According to estimates from the World Health Organization (WHO), cancer

is the leading cause of death around the world and accounting for nearly 10 million deaths in

2020. Moreover, WHO reported that CRC is the third common new cases, and it is also the sec-

ond leading cause of death worldwide since 2020 [49]. The study aimed to determine the associa-

tion between the genes and clinical covariates with CRC survival in the presence of missing

values data. We also compared the predictive performance of the Cox PH and RSF models. The

study provides essential information for CRC early detection and diagnosis.

The traditional regression-based methods to analyse survival data usually suffer from many

problems such as restrictive assumptions including the proportionality, multicollinearity,

curse of dimensionality, and lack of ability to rank the predictive performance. However, RSF

models are frequently becoming a successful alternative for the analysis of the time to event

data. In particular, the RSF is viewed as an appropriate analysing model for survival data, espe-

cially when the proportional hazards assumption is violated [39, 50]. When it comes to CRC

survival analysis the gene expression and clinical information are utilized as covariates. The

gene expression data contains many genes and most of these genes do not discriminate

between normal cells and tumors. Therefore, we select the genes in which the change or differ-

ence in read counts between two conditions of experiment is statistically significant and such

genes are known as the differentially expressed genes. In this study, the differentially expressed

genes were obtained using three mutations based on the complete cases. The preliminary

Fig 5. The rank of most predictive genes and clinical variables for colorectal cancer patients’ survival before the

imputation is based on how they influence the survival outcome. The variables importance is built using log-rank

and log-rank-score split-rules in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g005
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analysis showed that 54 potentially differentially expressed genes could be correlated with

CRC survival and important for understanding the initiation and progression of CRC. The dif-

ferentially expressed genes together with the clinical data were used to compare the predictive

performance of the Cox PH model and RSF model before and after imputation on the CRC

gene expression data.

We used stepwise regression for developing the Cox PH model at a 5% threshold level to

get a simple model capturing the association between the top genes and CRC patient survival.

Only five genes did not violate the Cox PH assumption in the final Cox PH model. The results

show that the error rates of the RSF before imputation are much higher than the error rates for

RSF built after imputation. Thus, the imputation can improve the performance of RSF.

Although the Cox PH model had a better performance than RSF, the results from the current

study demonstrate that the random survival forests models are more flexible than the models

based on the Cox PH assumption as a prerequisite for variable inclusion in the model.

After imputation, the Cox PH model indicated SLC9A8 and ANKRD27 genes were no lon-

ger significant predictors of CRC survival. This because it is expected that the number of

observations to increase, hence, statistical power to detect an effect. The variables that were

not statistically significant before imputation may now be seen as statistically significant and

vice versa. Therefore, this might affect the statistical power of some variables after imputation.

Overall, the most prominent finding to emerge from the analysis based on Cox PH is that for

one year increase in age, the hazards of death increase by 1.03, also the males are the most

exposed to the hazards of death compared to females. Thus, this study supports evidence from

previous observations [51–55].

The results of the RSF using both split-rules before and after imputation identified other

genes/ covariates such as molecular subtype, SLC6A4, KRAS, SGMS2, DUSP4, and SLC28A3.

These genes/ covariates show up as important in explaining CRC survival rates. However,

these genes/ covariates did not appear very strongly associated with CRC survival in the Cox

PH model. Thus, one interesting finding to note is that RSF models give additional informa-

tion about variable importance.

Furthermore, the results from the two RSF models before and after imputation show that

age, stages, molecular subtype, SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX greatly affected

Fig 6. The rank of most predictive genes and clinical variables for colorectal cancer patients’ survival after the

imputation is based on how they influence the survival outcome. The variables importance is built using log-rank

and log-rank-score split-rules in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g006

Fig 7. RSF with (log-rank and log-rank score) and Cox PH prediction error curve using 20% test set. The complete

case and imputed dataset plots are in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g007
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the CRC mortality rates. These are ranked in the top 20 variables important in the two RSF

models and agree with the Cox PH model results. Contrary to expectations, the RSF model did

not pick sex as an important variable, while it is significant in the Cox PH model.

The Cox PH model had a better predictive performance in the presence of only those covar-

iates that satisfy the Cox PH assumption compared to the RSF models. This result provides fur-

ther support for the hypothesis that the Cox PH model works best under this assumption. In

contrast, the out-of-bag error rate for the RSF with (log-rank and log-rank-score) before impu-

tation is higher than that after imputation. This result implies that the imputation of missing

values is a critical step and enormously improves the model’s performance.

The most striking result to emerge from the analysis of the RSF is that log-rank has a better

performance compared to the log-rank-score split-rule [44]. However, with more survival

trees the log-rank-score seems to be stabilize compared to a smaller number of survival trees.

Fig 8. RSF with (log-rank and log-rank score) and Cox PH boxplot prediction error using 20% testing set together with the complete case dataset and the

imputed data.

https://doi.org/10.1371/journal.pone.0261625.g008

Table 6. Comparison of the models using the integrated brier scores.

Methods Before Imputation After Imputation

Kaplan Meier 0.199 0.201

RSF (Log-rank) 0.192 0.198

RSF (Log-rank score) 0.198 0.202

Cox PH 0.228 0.212

https://doi.org/10.1371/journal.pone.0261625.t006
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We presented the development and validation of a robust five-gene signature (SLC9A8,

IER5, ARSJ, ANKRD27, and PIPOX), which predicted overall survival (OS) for CRC patients.

This gene signature was captured using Cox PH and RSF models based on two different sce-

narios. However, our study results successfully confirmed genes (markers) associated with

CRC directly and identified new markers to enrich the field’s literature further. Furthermore,

the results support previous studies such as Mohammed et al. [56], where age, sex, and stages

were also shown to be related to CRC survival.

Conclusion

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide annually,

making CRC the fourth common cause of death from cancer. However, the incidence of CRC

has been steadily growing around the world, especially in developing countries. Therefore, the

recent advances in technologies such as microarrays allowed for early detection screening

using the individual’s gene expression profiles.

The present study was designed to identify the genes prognosis of CRC. We developed a

robust gene marker associated with the CRC overall survival based on gene expression data

generated from microarray, using Cox PH and RSF models before and after missing data

imputation. The most prominent finding to emerge from this study is that the Cox PH model

identified five genes (SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX) related to CRC overall sur-

vival in addition to age, sex (after imputation), and clinical stages. The RSF model further con-

firmed these results and had five additional gene markers predicting CRC survival. In

addition, imputation improved the model’s performance, and the current findings support the

relevance of the missing data imputation. In summary, we recommend using a random sur-

vival forests model for survival data, especially in the high dimensional data where many genes

might violate the Cox PH assumption.
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