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Abstract 

The transmission of malaria is among the leading public health problems in 

Ethiopia. From the total area of Ethiopia, more than 75% is malarious. Identifying 

the infectiousness of malaria by socio-economic, demographic and geographic risk 

factors based on the malaria rapid diagnosis test (RDT) survey results has several 

advantages for planning, monitoring and controlling, and eventual malaria 

eradication effort. Such a study requires thorough understanding of the diseases 

process and associated factors. However such studies are limited. Therefore, the 

aim of this study was to use different statistical tools suitable to identify socio-

economic, demographic and geographic risk factors of malaria based on the 

malaria rapid diagnosis test (RDT) survey results in Ethiopia. A total of 224 

clusters of about 25 households were selected from the Amhara, Oromiya and 

Southern Nation Nationalities and People (SNNP) regions of Ethiopia. Accordingly, 

a number of binary response statistical analysis models were used. Multiple 

correspondence analysis was carried out to identify the association among socio-

economic, demographic and geographic factors. Moreover a number of binary 

response models such as survey logistic, GLMM, GLMM with spatial correlation, 

joint models and semi-parametric models were applied. To test and investigate 

how well the observed malaria RDT result, use of mosquito nets and use of 

indoor residual spray data fit the expectations of the model, Rasch model was 

used. The fitted models have their own strengths and weaknesses. Application of 

these models was carried out by analysing data on malaria RDT result. The data 

used in this study, which was conducted from December 2006 to January 2007 by 

The Carter Center, is from baseline malaria indicator survey in Amhara, Oromiya 

and Southern Nation Nationalities and People (SNNP) regions of Ethiopia.  

The correspondence analysis and survey logistic regression model was used to 

identify predictors which affect malaria RDT results. The effect of identified socio-

economic, demographic and geographic factors were subsequently explored by 

fitting a generalized linear mixed model (GLMM), i.e., to assess the covariance 

structures of the random components (to assess the association structure of the 
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data). To examine whether the data displayed any spatial autocorrelation, i.e., 

whether surveys that are near in space have malaria prevalence or incidence that 

is similar to the surveys that are far apart, spatial statistics analysis was 

performed. This was done by introducing spatial autocorrelation structure in 

GLMM. Moreover, the customary two variables joint modelling approach was 

extended to three variables joint effect by exploring the joint effect of malaria RDT 

result, use of mosquito nets and indoor residual spray in the last twelve months. 

Assessing the association between these outcomes was also of interest. 

Furthermore, the relationships between the response and some confounding 

covariates may have unknown functional form. This led to proposing the use of 

semiparametric additive models which are less restrictive in their specification. 

Therefore, generalized additive mixed models were used to model the effect of age, 

family size, number of rooms per person, number of nets per person, altitude and 

number of months the room sprayed nonparametrically. The result from the study 

suggests that with the correct use of mosquito nets, indoor residual spraying and 

other preventative measures, coupled with factors such as the number of rooms in 

a house, are associated with a decrease in the incidence of malaria as determined 

by the RDT. However, the study also suggests that the poor are less likely to use 

these preventative measures to effectively counteract the spread of malaria. In 

order to determine whether or not the limited number of respondents had undue 

influence on the malaria RDT result, a Rasch model was used.  The result shows 

that none of the responses had such influences. Therefore, application of the 

Rasch model has supported the viability of the total sixteen (socio-economic, 

demographic and geographic) items for measuring malaria RDT result, use of 

indoor residual spray and use of mosquito nets. From the analysis it can be seen 

that the scale shows high reliability. Hence, the result from Rasch model supports 

the analysis carried out in previous models. 
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Chapter 1 

Introduction 

Malaria is the most deadly, life-threatening problem caused by Plasmodium 

parasite infection affecting the world’s most under developed countries, and 

regions lacking basic healthcare infrastructure (WHO, 2011). Through the 

disease predominates in Africa, also affects some of the well developed 

countries (Adhanom et al., 2006). The problem is extremely severe in Ethiopia 

where it has been the major cause of illness and death for many years 

(Adhanom et al., 2006, Federal Ministry of Health (FMH), 1999). According to 

records from the Ethiopian Federal Ministry of Health, 75% of the country is 

malarious with about 68% of the total population living in areas at risk of 

malaria (Adhanom et al., 2006, Federal Ministry of Health (FMH), 1999). That 

is, more than 50 million people are at risk of malaria (Lesaffre and Spiessens, 

2001), and four to five million people are affected by malaria annually (FMH, 

2004, WHO, 2006b). The transmission of malaria in Ethiopia depends on 

altitude and rainfall with a lag time varying from a few weeks before the 

beginning of the rainy season to more than a month after the end of the rainy 

season (Deressa et al., 2003, Tulu, 1993). Epidemics of malaria are relatively 

frequent (WHO, 2006c, Zhou et al., 2004) involving highland or highland fringe 

areas of Ethiopia, mainly areas 1,000-2,000 meters above sea level (Tulu, 

1993, Adhanom et al., 2006, FMH, 2006b). Malaria transmission peaks bi-

annually from September to December and April to May, coinciding with the 

major harvesting seasons. Therefore, this has serious consequences for 

Ethiopia’s subsistence economy and for the nation in general. Major epidemics 

occur every five to eight years with focal epidemics as the commonest form. 

Early diagnosis and prompt treatment is one of the key strategies in controlling 

malaria.  
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Malaria diagnosis frequently relies on the patient’s symptoms. Symptoms like 

fever, chills, sweats, headaches, muscle pains, nausea, and vomiting are not 

specific to malaria. ApprClinical diagnosis is inexpensive and can be effective. 

Clinicians often misdiagnose malarial infection. Misdiagnosis often leads to the 

unnecessary prescription of malaria medications which are becoming 

increasingly expensive as drug resistance grows globally and new medicines are 

required for effective treatment. Thus, increasing the accuracy of malaria 

diagnosis is becoming more important and will continue to be so in the future. 

There are broadly three different malaria diagnosis methods. These methods 

are microscopy, nucleic acid amplification tests and Rapid diagnostic tests 

(WHO, 2006a).  

Microscopy diagnosis method is the most popular means of detecting malaria 

infection. But, this diagnosis method is available in better-equipped clinics. 

The malaria parasite can easily be confirmed using this technique. Therefore, 

important treatment information can be provided by identifying which of the 

multiple parasite species are in circulation and which drug treatment to initiate 

(WHO, 2006a).   

The Nucleic Acid Amplification Tests (NAAT) detect parasite DNA circulating in 

the bloodstream and they are very sensitive. NAATs are currently not widely 

available in malaria endemic areas because of the expensive reagents and 

equipment as well as specialized training they require. Interpreting NAAT 

results can be challenging due to the fact that parasite DNA can remain in the 

bloodstream long after the infection has been cleared. Thus, differentiating an 

active infection from a recently cleared infection is difficult (LaBarre et al., 

2010, Mens et al., 2006).  

The Rapid Diagnostic Test (RDT) for malaria offers the potential to extend 

accurate malaria diagnosis to areas where microscopy services are not 

available in remote locations or after regular laboratory hours. RDTs have been 
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developed in the lateral flow format and use finger-stick blood, taken only ten 

to fifteen minutes, and do not require a laboratory. Even non-clinical staff can 

easily learn to perform the test and interpret the results. However, these tests 

have limitations in that they lack the ability to detect mixed infections, all 

species of Plasmodium, and infections at low concentrations of parasites, 

including the inability to monitor response to therapy (Moody, 2002, Murray 

and Bennett, 2009). Malaria RDTs rely on the detection of parasite specific 

antigens (proteins) circulating in the bloodstream. The most common of these 

antigens are Plasmodium Falciparum histidine-rich Protein2 (pfHRP2) and 

Plasmodium spp. lactose dehydrogenase (pLDH) (WHO, 2009). Tests based on 

the pfHRP2 antigen are specific to Plasmodium falciparum, the most dangerous 

species of malaria, and are more readily available and less expensive. pLDH 

based tests come in two varieties:  pan-malarial tests which detect all malaria 

species or species specific tests that detect malaria species other than 

Plasmodium falciparum; and Pan-malarial tests, which are also available which 

detect the Aldolase antigen (Kakkilaya, 2003).  

Among the three methods discussed above, microscopy remains the standard 

for diagnosing malaria. But, it is not accessible and affordable in most 

peripheral health facilities. The recent introduction of rapid diagnostic tests 

(RDT) for malaria has become a significant step forward in case detection, 

management and reduction of unnecessary treatment. RDT could be used in 

malaria diagnosis during population-based surveys and to provide immediate 

treatment based on the results (Reyburn et al., 2007, Tekola et al., 2008, 

Wongsrichanalai et al., 2007). 

Demographic and Health Surveys (DHS) were carried out in Ethiopia in 2000, 

2005  and 2011, and included a malaria module (CSA, 2000, CSA, 2006, CSA, 

2012). From these surveys, it was recognized that the coverage and use of 

malaria intervention in the country was very low. In 2005, the Government of 
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Ethiopia’s Federal Ministry of Health (FMH) developed a 5-year National 

Malaria Prevention and Control Strategy (FMH, 2006a). According to the 

strategy, areas less than 2,000 meters in altitude were considered ‘malarious’ 

and targeted to receive key malaria control interventions, including insecticide-

treated nets (ITNs), indoor residual spraying of households with insecticide 

(IRS), and rapid diagnostic tests (RDTs) for malaria coupled with prompt and 

effective case management with artemisinin-based combination therapy (ACT) 

(Shargie et al., 2008).  

Besides the demographic and health survey, various surveys were conducted to 

find malaria indicators. In 2007 Malaria Indicator Survey (MIS) was conducted 

in Ethiopia between September and December 2007 by Ministry of Health of 

Ethiopia in collaboration with CDC and USAID. The protocol for the MIS 

followed Roll Back Malaria Monitoring and Evaluation group (RBM MERG) 

guidelines (RBMM, 2005) with a few local modifications.  

This survey was nationally representative. The objective was to determine 

parasite and anemia prevalence in the population at risk and to assess 

coverage, use and access to scaled-up malaria prevention and control 

interventions. In the survey, a two-stage random cluster sample of 7,621 

households in 319 census enumeration areas (EAs; comprising approximately 

200 households) was selected as primary sampling units, stratified by several 

domains, including altitude (i.e. less than 1,500 meters vs. between 1,500 and 

2,500 meters) and degree of urbanization. The MIS household and women’s 

questionnaires were adapted to the local context, and two types of 

questionnaires were used. The questionnaires included two structured, pre-

coded ones with both closed and open ended questions: (i) a household 

questionnaire and (ii) a women’s questionnaire. Both were based on Roll Back 

Malaria Monitoring and Evaluation group (RBM MERG) MIS Questionnaires 

(RBMM, 2005), modified to local conditions. The questionnaires were translated 
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and printed in Amharic, Afaan Oromoo and Tigrigna languages and field-tested 

in non-survey EAs to determine the validity of the pre-coded answers (FMH, 

2008).  

The household questionnaire was administered to the household head or 

another adult if the household head was absent or unable to respond for any 

reason, and it elicited the following data: socio-demographic information and 

listing of household members; house construction materials and design; 

ownership of durable assets; availability, source of origin, type, condition and 

use of household mosquito net(s); and reported status of indoor residual 

spraying (IRS). The purpose of the household questionnaire was to identify 

children less than six years of age for specimen collection as well as women 

aged 15-49 years who were eligible to answer the women’s questionnaire. The 

women’s questionnaire was administered to these women as identified from the 

household questionnaire and it helped collected the following data: educational 

level; reproduction, birth history, and current pregnancy status; knowledge, 

attitudes and practices (KAP) on malaria preventive and curative aspects; 

reported history of fever among children less than five years of age in the 

previous two weeks; and reported treatment seeking behaviour for children less 

than five years of age with fever. In addition to the household and women 

questionnaires, blood samples were taken from all children less than five years 

old and from all household members in every fourth household. All children 

less than five years of age were included to ensure that no children under that 

age were missed during the survey, and only data for children under the same 

age are presented. The malaria diagnostic tests included rapid diagnostic tests 

(RDTs), blood slides for microscopic examination and haemoglobin level testing. 

RDTs were used in the survey to offer immediate treatment to individuals with 

a positive test. The RDT used (ParaScreen®, Zephyr Biomedical Systems, India) 

is a HRP2/pLDH-based antigen test detecting both Plasmodium falciparum and 

other Plasmodium spp (Graves et al., 2009).  
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After the collection of data and the release of the preliminary report, additional 

analyses were done based on the 2007 MIS survey by different researchers. 

(Jima et al., 2010) studied the coverage and use of major malaria prevention 

and control interventions of the Malaria Indicator Survey 2007 in Ethiopia. In 

their study, they found that since mid-2005, the Ethiopian national malaria 

control programme has considerably scaled-up its malaria prevention and 

control interventions, demonstrating the impact of strong political will and a 

committed partnership. Further, survey showed that efforts will have to be 

made to increase intervention access and use malaria intervention methods. To 

achieve the targets of coverage and use of malaria interventions, efforts have to 

be made to sustain and expand malaria intervention coverage and increase 

intervention access and use, and with strong involvement of the community. 

Based on these actions, Ethiopia expects to achieve its targets in terms of 

coverage and uptake of interventions in the coming years and move towards 

eliminating malaria (Shargie et al., 2010). 

Besides the 2007 Malaria Indicator Survey (MIS) of Ethiopia, The Carter Center 

conducted a baseline household cluster survey in the Amhara, Oromiya and 

Southern Nations, Nationalities and Peoples’ (SNNP) regions of Ethiopia 

between December 2006 and January 2007 during the end of the malaria 

season. The purpose was to obtain baseline information before large scale 

distribution of long-lasting insecticidal nets (LLINs) in early to mid-2007 and 

implementation of other integrated programs for prevention of malaria (Shargie 

et al., 2008). A questionnaire was developed as a modification of the survey 

household questionnaire which had two parts; the household interview, and 

malaria parasite form. The MIS was modified to survey each room in the house 

separately to ensure that all nets were in place, and to ascertain the density of 

sleepers per room as well as the number of sleeping rooms in (or outside) each 

house. This survey included peripheral blood microscopy and rapid diagnostic 

tests (RDT). The persons sleeping under each net were listed.  
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Based on the survey, routine surveillance data on malaria for the survey time 

period was obtained for comparison with prevalence survey results (Shargie et 

al., 2008). Shargie et al. (2008) found out that based on the ownership of nets, 

there were nearly a ten-fold increase as compared to the results of the 2005 

Ethiopia Demographic and Health Survey (CSA, 2006) which was fewer than 

5% of households in the Oromiya and SNNP regions. The results of the survey 

as well as the routine surveillance data demonstrated that malaria continues to 

be a significant public health challenge in these regions. However, the problem 

is more prevalent in SNNP than in Oromiya region. On the other hand, a study 

was conducted to estimate the prevalence of malaria parasites in Amhara, 

Oromiya, and Southern Nations, Nationalities and Peoples' (SNNP) regions of 

Ethiopia using the base line survey. Microscopy and RDT were used to 

investigate agreement between microscopy and RDT under field conditions. The 

samples were collected by taking fingerpick blood samples from all persons 

living in even-numbered households. The blood samples were tested using two 

methods: light microscopy of Giemsa-stained blood slides; and RDT (Tekola et 

al., 2008). From this study, they found that well conducted blood slide 

microscopy for malaria diagnosis for population based surveys remains the 

preferred option. The level of the agreement between RDT and light microscopy 

for malaria diagnosis warrants further investigations in clinical facilities in the 

Ethiopian context.  

In addition to the two malaria indicator surveys, different surveys were 

conducted in different parts of Ethiopia. In 2003 (Peterson et al., 2009) studied 

the individual and household level factors associated with malaria incidence in 

a highland region of Ethiopia. The study was conducted in an area of the city of 

Adama (formerly Nazareth) located 120 km southeast of Addis Ababa. Data on 

incident malaria infections were obtained by assigning a unique study 

identification number to study households from August 1 to November 30, 

2003. The cards were given to the heads of the households who instructed to 
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present the card on all visits to the Adama Malaria Laboratory. Using this 

method, the data was collected and analysed first by examining the univariate 

associations between malaria incidence and other factors by regressing a single 

factor against individual malaria counts. Moreover, multivariate modelling was 

also used based on the statistical performance of factors in univariate analysis, 

and correlations among the factors.  

The above study’s strengths lie in its assessment of a wide range of both 

individual and household factors with regard to malaria risk, and the use of 

multilevel modelling. The study furthermore identified important malaria risk 

factors in a highland urban setting in Africa under epidemic conditions. The 

result showed that house distance to the major vector-breeding site was 

important in determining malaria risk. It suggests that vector control strategies 

targeted at such sites could greatly reduce the malaria burden in urban 

communities.  

Other research on malaria epidemics and interventions from 1999 - 2004 was 

conducted in Kenya, Brundi, Southern Sudan and Ethiopia (Checchi et al., 

2006). The researchers reviewed Medecins Sans Frontiers (MSF) program 

reports and used the available morbidity, mortality, diagnostic and treatment 

data from five interventions.  These studies found that all four countries are 

moving to Artemisinin-based combination therapy (ACT) for outpatient 

treatment. They also suggested that further research is needed on methods to 

estimate needs (incidence) and coverage rapidly; and on strategies to expand 

treatment access efficiently.  

To introduce the most advanced level of care for people with malaria infections 

in the health care system, it is important to scale up the malaria treatment 

programmes. This process requires continuous monitoring and counselling of 

patients in order to optimize medication benefits. A recent upsurge of malaria 

in endemic-disease areas with explosive epidemics in many parts of Africa is 
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probably caused by many factors, including rapidly spreading resistance to 

antimalarial drugs, climatic changes, and population movements. Control 

efforts have been piecemeal and not coordinated. Strategies for control should 

have a solid research base both for developing antimalarial drugs and vaccines 

and for better understanding the pathogenesis, vector dynamics, epidemiology, 

and socio-economic aspects of the disease. Furthermore, for most countries in 

Africa, the costs of treatment programmes are enormous. Therefore, the 

outcome of this study not only will provide clinicians with the factors 

associated with malaria infections, but also provide between high risk patient 

differences on malaria prevention methods over time. That is, understanding 

specific barriers to medication and prevention of malaria for individual patients 

will be valuable in the development and implementation of evidence based 

interventions targeted at individual patients. The results can provide 

governmental and non-governmental organizations appropriate statistical 

models to analyze malaria indicator data in order to monitor malaria problems 

overtime. In general, after identifying a good-fitting, realistic model, the 

findings can be used to project the short-term future of the malaria epidemic, 

with the assumption that all parameter values and conditions remain constant.  

In conclusion, the results of the studies conducted so far demonstrated that 

malaria continues to be a major cause of ill-health in Ethiopia. In addition, 

population movements contributed to the reappearance of the disease because 

most of population movements are from malaria free to highly malarious areas 

(Nathaniel, 2003). Therefore, the review section of this thesis identified the 

need for an in-depth study to identify the socio- economic, demographic and 

geographic factors thus leading to the reduction of the risk of malaria.   

The current study will analyze the malaria indicator survey data by employing 

different statistical modelling approaches in order to determine the levels of 

malaria overtime. Factors that affect malaria treatment at the overall level, as 
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well as individual level, will be sought.  In general, a good-fitting, realistic 

model will be identified to project the short term future of the malaria 

epidemics. Hence, the findings will be valuable in tracking malaria patients and 

epidemics, identifying and testing different statistical methodologies which 

could be very helpful to critically understand binary response analyses and 

make recommendations on the appropriate techniques for further use.   

To achieve this objective, the following steps were used 

• The explanatory analysis was initially performed to identify the behaviour 

of the data. 

• The relationship among malaria RDT result, socio-economic, demographic 

and geographic variables was investigated using multiple correspondence 

analysis. 

• Malaria RDT result was obtained from complex sample survey. Therefore, 

to account for the survey design effect, the survey logistics method was 

used to investigate the effect of socio-economic, demographic and 

geographic factors on RDT result. 

• To account for variability between the Probabilistic Sampling Units (PSU) 

which is kebele (smallest administrative unit in Ethiopia), generalized 

linear mixed model was used to fit the malaria RDT result data.  

• The distribution of malaria is non-random across a landscape in areas of 

higher or lower transmission intensity and malaria risk. Spatial statistics 

analysis was performed to account for spatial autocorrelation and to 

check whether surveys that are near in space have similar malaria 

prevalence with the surveys that are far apart.  

• The joint model under the generalized linear mixed model was used to 

investigate the joint effect of three predictor variables on malaria RDT 

result, use of mosquito nets and use of indoor residual spray (IRS) in the 
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last twelve months with socio-economic, demographic and geographic 

factors.   

• Semiparametric model (GAMM) was applied to model the effect of age, 

family size, number of rooms per person, number of nets per person, 

altitude and number of months the room sprayed with indoor residual 

spray in the last twelve months nonparametrically while the other 

covariates (socio-economic, demographic and geographic factors) remain 

parametric. 

• Rasch model was employed to test and investigate how well the observed 

malaria RDT result, use of mosquito nets and use of indoor residual spray 

data fit the expectations of the model. 

In general, the study aims to investigate the different statistical approaches 

that are appropriate to model Malaria Indicator Survey (MIS) data.  This is with 

the view of determining the levels of malaria across socio-economic, 

demographic and geographic factors that influence the malaria RDT result. 

Specifically, the purpose of this research is to assess the risk of malaria 

through the collection of household level baseline data, including housing 

construction, social-economic status, availability of latrines and water, 

altitude, coverage of spraying anti-mosquito and use of nets so as to establish a 

model which estimates the prevalence of malaria in all age groups through a 

malaria parasite prevalence survey. In addition, this study looks at the factors 

such as a change in socio-demographic characteristics, use of nets, public 

awareness or government-sponsored campaigns etc. 

The thesis is organized as follows. The first chapter presents the introduction. 

In Chapter 2, a full description of the malaria Rapid Diagnosis Test (RDT) data 

is given with a further exploratory analysis of the data. The theory of 

correspondence analysis and its application to investigate the association 

between malaria RDT result, socio-economic, demographic and geographic 
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factors are described in Chapter 3. Chapter 4 explores the socio-economic, 

demographic and geographic factors affecting malaria RDT using the 

generalized linear models, specifically, survey logistic method. Chapter 5 

provides a comprehensive review of the generalized linear mixed models 

(GLMMs) including random effects models. Moreover, GLMMs are fitted to the 

malaria RDT data to explore socio-economic, demographic and geographic 

factors. In Chapter 6 a review and fitting of spatial statistics models to malaria 

RDT data are presented. Review and fitting of joint modelling of malaria RDT 

result and use of mosquito nets; and malaria RDT result and use of indoor 

residual spray (IRS) in the last twelve months are examined in Chapter 7. 

Chapter 8 looks at the semiparametric approaches, specifically generalized 

additive mixed models (GAMMs) while Chapter 9 presents the Rasch model 

analysis to malaria RDT result, use of indoor residual spray and use of 

mosquito nets. Finally, in Chapter 10 the discussions and conclusions as well 

as comparison of different models and possibilities for future research are 

presented. 
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Chapter 2  

The data 

Before getting into complex data analysis, it is of great importance to examine 

and get a general understanding of the data under consideration. It is this 

initial examination of the data that helps in determining the possible statistical 

techniques that could be applied to the data. The data used in this study is 

secondary data from The Carter Center (TCC) for the Malaria programme in 

Ethiopia. The Center is working in Ethiopia on two integrated disease control 

projects. These projects are malaria and onchocerciasis (MAONCHO) program; 

and Malaria and trachoma programmes. The Carter Center has committed 

itself to provide sufficient long-lasting insecticidal nets to most part of the 

country. In addition to the purchase and procurement of the requested nets, 

TCC is also helping to distribute them within and outside its current areas of 

operation in the regions of Amhara, Oromiya and the Southern Nations, 

Nationalities and Peoples Region (SNNPR). In order for TCC to assist the 

Federal Ministry of Health of Ethiopia in the assessment and evaluation of its 

malaria control, the Center needed to conduct a baseline household survey of 

net coverage and use as well as malaria prevalence within these three regions. 

The objective of the cluster survey was to assess the risk of malaria through 

the collection of household level baseline data for malaria risk indicators. The 

data included, housing construction, socio-economic status, availability of 

latrines and water, altitude, coverage of spraying and use of nets, indoor 

residual spraying, and estimation the prevalence of malaria in all age groups 

through a malaria parasite prevalence survey.  

In order to achieve the above objective, TCC conducted a baseline household 

cluster malaria survey in Amhara, Oromiya and the Southern Nations and 

Nationalities People’s (SNNP) regions of Ethiopia from December 2006 to 

January 2007. A questionnaire was developed as a modification of the Malaria 
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Indicator Survey (MIS) Household Questionnaire. The questionnaire had two 

parts: the household interview and malaria parasite form. The MIS was 

modified to survey each room. Furthermore, each room in the house was listed 

separately.   

For the baseline household cluster malaria survey, which was conducted by 

TCC, a multi-stage cluster random sampling was used. By assuming the lowest 

measurement of prevalence malaria indicator, the sample size was estimated. 

Assuming prevalence of malaria to be the lowest indicator measured, the 

prevalence in the population was estimated to be 8%. In Amhara region, each 

zone was regarded as a separate domain; while in Oromiya and SNNPR, the 

community-directed treatment with ivermectin (CDTI) areas combined were 

taken as one domain. Furthermore, to estimate the required sample size, the 

following formula was used. 

� = 	��	�	(1 − �)/�� 

where � is the expected malaria prevalence (� = 0.08), 	� is level of significance 

95% = total value = 1.96 (value in the standard normal distribution) and � is 

acceptance error (0.02). 

In addition to these values, a 10% non-response rate was factored into the 

calculation of the sample size. For TCC baseline household cluster malaria 

survey in Amhara, Oromiya and the Southern Nations and Nationalities 

People’s (SNNP) regions of Ethiopia, which was conducted in 2007, the design 

was a population-based household cluster survey. Based on these clusters, 

Zoneal-level estimates of indicators were obtained for Amhara region, and sub-

regional estimates were taken for Oromiya and SNNPR. All ten Amhara zones 

were surveyed as separate domains, with sixteen clusters in each zone (total 

160 clusters). Bahir Dar town and two woredas with less than 10% of the 

population living in malarious areas were excluded. In Oromiya and SNNPR, 
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sampling was done directly at the kebele level. From the total number of 

individuals who participated in the survey, 7,745 in Amhara, 1,996 in Oromiya 

and 1,860 in SNNP from all age groups were tested using RDT (The Carter 

Center (TCC), 2007).  

Further studies on the sampling procedure for the survey were conducted by 

different researchers (Emerson et al., 2008, Shargie et al., 2008). The sampling 

design was employed in order to select households within each first-stage 

cluster, or Kebele (smallest administrative unit in Ethiopia). From the 224 

selected Kebeles, 25 households were chosen, from which even-numbered 

households were selected for the malaria Rapid Diagnostic Tests (RDT). All 

individuals in these twelve households were eligible for individual interviews. 

Furthermore, each room in the house was listed separately. By using the 

mosquito nets as a guide, it was possible to determine the number of persons 

sleeping in each room. This information was useful in determining the number 

of sleeping rooms both within and outside the house. In addition to the number 

of rooms and number of nets, the persons sleeping under each net were listed. 

The sampled areas and domains as well as the survey sites are presented in 

Figure 2.1. 

Malaria parasite testing was performed on consenting residents. The blood 

sample subjected to the malaria Rapid Diagnostic Test was collected by taking 

finger prick blood samples from participants. The Rapid Diagnostic Test used 

was ParaScreen which is capable of detecting malaria infection with high 

degree of sensitivity. The test uses approximately 5 µl of blood and is readable 

after fifteen minutes following the manufacturer’s guidelines. Participants with 

positive rapid tests were immediately offered treatment according to national 

guidelines. 
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Figure 2. 1: Map of Ethiopia showing the surveyed households 

2.1 Variables of interest 

The variables used for the analyses in this study included malaria rapid 

diagnosis test, socio-economic, demographic and geographic variables. Malaria 

rapid diagnosis test was collected from consenting household members. The 

response variable and the covariates are given as follows. 

Response variable: The outcome of interest is the RDT result. RDTs assist in 

the diagnosis of malaria by detecting evidence of malaria parasites in human 

blood and are an alternative to diagnosis based on clinical grounds or 

microscopy, particularly where good quality microscopy services cannot be 

readily provided. Thus, the response variable was binary, indicating that either 

a person was positive or not positive. 

Independent variables: The independent (predictor) variables consisted of 

baseline socio-economic, demographic and geographic variables, which were 

collected from each household. The socio-economic variables were the 
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following: main source of drinking water, time taken to collect water, toilet 

facilities, availability of electricity, access to radio and television, total number 

of rooms, main construction material of the rooms’ walls, main construction 

material of the room’s roof and main construction material of the room’s floor, 

incidence in the past twelve months of indoor residual spray; use of mosquito 

nets and total number of nets. Geographic variables were region and altitude, 

and demographic variables were gender, age and family size. Of these variables, 

age and sex were collected at the individual level, while altitude, main source of 

drinking water, time taken to collect water, toilet facilities, availability of 

electricity, radio, television, total number of rooms, main construction material 

of walls, roof and floor, incidence of indoor residual spraying and use of 

mosquito nets were all collected at the household level. The levels and coding of 

the categorical variables are given in Table 2.1. 

Table 2. 1:  Table of variables 

Variables Levels and coding 

Region 1 = Amhara , 2 = Oromiya, 3 = SNNP 

Main source of drinking water 
1= Unprotected, 2 = protected,  
3 = Tap water 

Time  to collect water  
1=<30 minutes, 2 = 30 to 40 minutes, 
3 = 40 – 90 minutes, 4 = >90 minutes 

Toilet  facilities  
1 = No facility, 2 = pit latrine,  
3 = toilet with flush 

Availability  of electricity  1 = yes, 2 = no 
Availability  of radio 1 = yes, 2 = no 
Availability  of television 1 = yes, 2 = no 

Main  material of the room's wall  
1 = cement block,  
2 = mud block/stick/wood,  
3 = corrugated metal 

Main  material of the room's roof  
1 = thatch, 2 = stick and mud,  
3 = corrugate 

Main  material of the room's floor  
1 = earth/Local dung plaster,  
2 = wood, 3 = cement 

Spraying  of indoor residual spray 
in the past twelve months  

1 = yes, 2 = no 

Use  of mosquito nets 1 = yes, 2 = no 
Rapid Diagnosis test (RDT) 0 = Negative, 1= Positive 
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2.2 Baseline characteristics of the study population 

The data analyzed consisted of malaria rapid diagnosis tests of respondents in 

the rural parts of Amhara, Oromiya and SNNP regions of Ethiopia. During the 

study period, 5,708 households that were located in 224 clusters, covered in 

the survey. From the total 5,708 households, Amhara, Oromiya and SNNP 

regions covered 4,101 (71.85%), 809 (14.17%) and 798 (13.98%) households 

respectively. The distribution of toilet facility, source of drinking water and time 

to collect water is presented in Table 2.2. The table shows that in Amhara and 

Oromiya regions, the majority of people most frequently used unprotected 

water supplies with percentage equal to 66.30% and 79.70% respectively. In 

contrast to these regions, in SNNP, the use of unprotected water was found to 

be slightly over half (56%). On the other hand, 25.4% of the people in SNNP 

region used protected water followed by those in Amhara (17.8%) and Oromiya 

(8.8%) regions. From the total households, 18.6%  in SNNP, 16% in Amhara 

and 11.5% in Oromiya regions use tap water for drinking. Unprotected water 

includes, unprotected spring, unprotected dug well (use bucket and rope) and 

surface water (river/dam/lake/pond/stream). Similarly, protected water 

includes, capped spring, protected dug well (use hand pump), tube well or 

borehole and cart with small Tank. Furthermore, the tap water also includes 

public tap or standpipe, piped into yard and piped into dwelling.  

The total time taken to collect water is also presented in Table 2.2. Based on 

the result, more households in Amhara region (72.3%) than in the other two 

regions (62.6 – 64.6%) had to travel less than 30 minutes on average to get 

their water. Furthermore, 8.6% of the households in Oromiya region travel 

more than 90 minutes to collect water. But, in Amhara and SNNP regions 2.9% 

and 3.6% of their residents respectively took more than 90 minutes to collect 

water. 
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Table 2. 2: Distribution of toilet facility, source of drinking water and 

time to collect water by region 

Socio-economic variables 
Region 

Amhara Oromiya SNNPR 

Toilet facility       

  
No facility 73.40% 72.60% 40.90% 
Pit latrine 26.60% 26.00% 59.10% 
Toilet with flush 0.00% 1.40% 0.00% 

Source of drinking water       
  Unprotected water 66.30% 79.70% 56.00% 
  Protected water 17.80% 8.80% 25.40% 
  Tap water 16.00% 11.50% 18.60% 
Time to get water       
  Less than 30 minute 72.30% 62.60% 64.60% 
  Between 30 - 90 minutes 24.90% 28.80% 31.80% 
  Greater than 90 minutes 2.90% 8.60% 3.60% 

The great majority of households, namely 73.4% in Amhara, 72.6% in Oromiya 

and 40.9% in SNNP regions had no access to toilet facility (Table 2.2). Again, 

Amhara and Oromiya lagged behind SNNP in the use of pit latrine includes pit 

latrine with no cement slab, pit latrine with slab and pit latrine with cement 

slab and vent pipe toilet. Table 2.2 shows that more than half of houses in 

SNNP (59.1%) having a latrine toilet.  

Furthermore, the distribution of positive RDT results by toilet facility, source of 

drinking water and distance to get water is presented in Figure 2.2. In the 

figure, it is clear that respondents with no toilet facility (11%) had more positive 

RDT results, followed by pit latrine (5.9%) and toilet with flush (4.3%). 

Similarly, households who travelled long distance (5.8%) have a high 

percentage of positive RDT results than those travelling shorter distances. 

Persons who have unprotected water (6.5%) as source of drinking water have 

greater chance to be RDT positive compared to those using protected and tap 

waters.  
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Figure 2. 2: Distribution of positive RDT result by toilet facility, source of 

drinking water and distance to get water 

More than 90% of households in all regions have house walls made of wood. 

Similarly, more than 90% of the households for all regions have earth or local 

dung floor. However, the roof material varied across regions, with the majority 

of houses in Oromiya (67.3%) and SNNP (74%) regions having corrugated iron 

roofs compared to Amhara (39.8%). On the other hand, where 59.3% had 

thatch roofs in Amhara, followed by 23.1% in Oromiya and 0.5% in the SNNP 

region. 

Table 2. 3: Ditribution of material for house construction by region 

Socio-economic variables 
Region 

Amhara Oromiya SNNP 

Wall material       

  
Cement block 0.3% 2.9% 0.2% 
Mud block/stick/wood 99.6% 90.1% 99.8% 
Corrugated metal .1% 7.0% 0.0%  

Roof material       

  
Thatch 59.3% 23.1% 0.5% 
Stick and mud 0.9% 9.6% 25.5% 
Corrugate 39.8% 67.3% 74.0% 

Floor material       

  
Earth/Local dung plaster 96.2% 92.6% 96.98% 
Wood 2.0% 6.9% 1.02%  
Cement 1.8% .5% 2.0% 
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The distribution of positive RDT result by wall, roof and floor materials of the 

house is presented in Figure 2.3. The figure shows that the percentage of 

positive RDT results in cemented floors was 0.9%, 7.7% in wooden floor and 

5.9% in earth or local dung plastered. On the other hand, the percentage of 

RDT result in corrugate roof was 5.4%, 17.3% in stick and mud roof and 5.8% 

in thatch roofs. The percentage of positive RDT in corrugated metal wall was 

found to be 5.9%, 7.3% in mud/stick/wood wall and 3.2% in cement block 

(Figure 2.3). 

 

Figure 2. 3: Distribution of positive RDT result by wall, roof and floor 

materials of the house 

In the survey, representative household heads were asked if they had access to 

radio, television and electricity. From the result it was found that electricity 

and televisions were very rare in the surveyed households. In Amhara, Oromiya 

and SNNP regions 94.3%, 97.9% and 94.1% of the households did not have 
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access to electricity respectively. Similarly, more than 97% of the households in 

the three regions have no television. Unlike television access, radios were more 

common. The data show that 75.2%, 62.9% and 58.7% of the households in 

Amhara, Oromiya and SNNP regions have access to radio respectively (Table 

2.4). 

Table 2. 4: Ditribution of availability of radio, television and electricity by 
region 

Socio-economic variables 
Region 

Amhara Oromiya SNNP 

Availability of radio     

  
Yes 24.80 37.10 41.30 
No 75.20 62.90 58.70 

Availability of Television     

  
Yes 1.20 2.47 0.74 
No 98.80 97.53 99.26 

Availability of electricity     

  
Yes 5.70 2.10 5.90 
No 94.30 97.90 94.10 

 

Use of mosquito nets and indoor residual spraying drugs in the last twelve 

months were included in the survey. The use of mosquito nets was derived by 

direct questioning about who slept in each net in the household, and who slept 

without a net. The results show that 38.3% in Amhara, 43.7% in oromiya and 

48.2% in SNNP regions use mosquito nets. Besides the use of mosquito nets, 

information on the use of indoor residual spraying in the last twelve months 

was collected. The result revels that those households who live in SNNP region 

use more indoor residual spraying (30.9%) compared to Amhara (29.6%) and 

Oromiya (27.4%) regions (Figure 2.4). 
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Figure 2. 4: Distribution of use of mosquito nets and indoor residual 

spraying by RDT result 

Figure 2.5 shows the distribution of age group and family size by malaria RDT 

result. Most houses, i.e., age group 31-45 accounts for 72.9% of all positive 

malaria RDTs and 72.6% of all negative malaria RDTs. Similarly, family size 5–

10 persons accounts for 58.7% of all positive malaria RDTs and 53.2% of all 

negative malaria RDTs. 

 

Figure 2. 5: Distribution of age group and family size by RDT result 
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Table 2.5 shows descriptive characteristics of total rooms and total number of 

persons in the household. Most houses in Amhara (90.25%), Oromiya (71.2%) 

and SNNP (74.56%) regions had only one sleeping room. A very small 

proportion of people (<1%) reported having more than three sleeping rooms. 

Furthermore, the average number of rooms in Amhara, Oromiya and SNNP 

regions was found to be 1.15, 1.3 and 1.3 respectively. Furthermore, the 

average number of persons per household ranged from 4.7 to 5.6 by region and 

was 4.9 overall. In Amhara the median household size was five whereas in both 

Oromiya and SNNPR it was six persons. 

Table 2. 5: Distribution of total number of rooms and total number of 

members of the household by region 

  Region 

Amhara Oromiya SNNP 

Total Number of Rooms       
1 90.25% 71.20% 74.56% 
2 8.83% 22.62% 21.93% 
3 0.85% 4.70% 3.01% 
4 0.05% 0.99% 0.25% 
5+ 0.02% 0.49% 0.25% 

Family size       
1 2.34% 1.36% 0.75% 
2 10.59% 6.67% 4.01% 
3 16.90% 13.10% 12.91% 
4 17.32% 14.46% 15.91% 
5 17.88% 16.69% 20.05% 
6 15.22% 20.40% 20.18% 
7 9.93% 10.75% 11.15% 
8 5.27% 6.67% 5.64% 
9+ 4.56% 9.89% 9.40% 

The age and gender-specific malaria prevalence, by region is shown in Table 

2.6. This table demonstrates that there is no significant difference in 

prevalence by age group as well as by region. Moreover, the pattern of malaria 

prevalence by age is not homogeneous across the study regions. In addition, 

Table 2.6 shows that there is no difference in prevalence between males 4.05% 

and females 4.55%.  
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Table 2. 6: Malaria prevalence by region, age group and gender 

Age group  
Male  Female  Total  

Tested +ive % Tested +ive % Tested +ive % 

Amhara 

<5 643 28 4.35 603 31 5.14 1,246 59 4.74 
5-14 1,144 43 3.76 1,240 49 3.95 2,384 92 3.86 
15-49 1,316 55 4.18 1,998 94 4.70 3,314 149 4.50 
>=50 426 17 3.99 375 18 4.80 801 35 4.37 
Total 3529 143 4.05 4216 192 4.55 7745 335 4.33 

Oromiya 

<5 225 1 0.44 213 2 0.94 438 3 0.68 
5-14 293 1 0.34 368 4 1.09 661 5 0.76 
15-49 342 2 0.58 420 4 0.95 762 6 0.79 
>=50 66 2 3.03 69 0 0.00 135 2 1.48 
Total 926 6 0.65 1,070 10 0.93 1,996 16 0.80 

SNNPR  

<5 142 11 7.75 134 6 4.48 276 17 6.16 
5-14 346 23 6.65 326 20 6.13 672 43 6.40 
15-49 332 16 4.82 443 20 4.51 775 36 4.65 
>=50 78 5 6.41 59 4 6.78 137 9 6.57 
Total 898 55 6.12 962 50 5.20 1,860 105 5.65 

Three regions 

<5 1,010 40 3.96 950 39 4.11 1,960 79 4.03 
5-14 1,783 67 3.76 1,934 73 3.77 3,717 140 3.77 
15-49 1,990 73 3.67 2,861 118 4.12 4,851 191 3.94 
>=50 570 24 4.21 503 22 4.37 1,073 46 4.29 
Total 5353 204 3.81 6,248 252 4.03 11,601 456 3.93 

The prevalence of malaria by altitude is given in Tables 2.7. For each surveyed 

household the altitude was determined at the time of the survey. Based on the 

values of altitude for the households, Amhara had the greatest range of 

altitudes. For Oromiya and SNNPR the altitude for households is below 1000 

meters or above 2500 meters. The majority of households (93.4%) in all regions 

were found at altitudes between 1000 to 2500 meters. Moreover, there were a 

significant number of malaria cases detected at altitudes above 2000 meters.  

Unlike Oromiya and SNNP regions, there was an expected decline in prevalence 

by altitude up to 3000 meters in Amhara (Table 2.7). But, the prevalence of 

malaria above 2500 meters was found to be 8.3%. For persons who lived above 

3000 meters, the prevalence of malaria was 1.33%. No positive malaria cases 
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were detected above 2000 meters for Oromiya region (Table 2.7), but in SNNPR 

there was a high prevalence of 72.6% for households who lived at 1500-2000 

meters. 

Table 2. 7: Malaria prevalence by altitude and region 

Altitude class 
Amhara Oromiya SNNP Total 

Tested % Tested % Tested % Tested % 

 <=1000m 125 1.61 0 0.00 0 0.00 125 1.08 

1000-1500m  859 11.09 343 17.18 327 17.58 1529 13.18 

1500-2000m  2973 38.39 1316 65.93 1351 72.63 5640 48.62 

2000-2500m  3142 40.57 337 16.88 182 9.78 3661 31.56 

2500-3000m  543 7.01 0 0.00 0 0.00 543 4.68 

>3000m  103 1.33 0 0.00 0 0.00 103 0.89 

Total  7745   1996   1860   11601   

According to the result in Figure 2.6, there was a declining trend in percentage 

of malaria prevalence from 48.6% at 1500-2000m to 31.6% at 2000-2500m. 

Highland or highland fringe areas, mainly those at 1000 – 2000 meters are 

often described as the limit of transmission of malaria in Ethiopia. But, there 

are some cases found above 2000 meters. These cases may have resulted from 

local epidemics or from movement of people from lower altitudes. 

 

Figure 2. 6: Distribution of altitude by positive malaria RDT result 
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2.3 Summary  

An integrated malaria survey was conducted in 224 clusters covering 5,708 

households in three regions of Ethiopia between December 2006 and early 

February 2007, at the end of the peak malaria season. Blood slides from 9,352 

people of all ages living in even numbered households were examined for 

malaria parasites. Net usage was assessed from all households included in the 

survey. The maximum number of nets owned was five and the median was 

zero. Moreover, the maximum rooms in the house were found to be five. 

Furthermore, it can be seen that there was no difference in net use by gender. 

There was a declining trend of prevalence of malaria by altitude. The majority 

of the households used unprotected water. More than half of the households in 

the survey areas had no access to toilet facility and the majority of the 

households were constructed with wood or stick wall, and their floors were 

mainly earth. Roofs were mainly made of thatch in Amhara, but of corrugated 

iron in Oromiya and SNNP regions. Very low percentage of households had 

electricity and television, while quarter (25%) of the households had a radio.  

The study of assessment of variables by multiple correspondence analysis 

technique allowed the analysis of the relationship between the socio-economic, 

demographic, geographic and malaria RDT result factors. The use of the 

multiple correspondence techniques in comparison to other advanced 

statistical results was made both analytically and empirically across the 

geographic regions. The advantage of applying multiple correspondence 

analysis is that it gives more detailed information about the relationship 

between different variables. Moreover, the results will be easier to interpret. 

The application of multiple correspondence analysis with detailed theoretical 

background will be discussed in the next chapter. 
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Chapter 3 

Correspondence analysis 

3.1 Introduction  

The cross-tabulation of categorical data is perhaps the most commonly 

encountered and simple form of analysis in research. Therefore, ordering 

things in time has been the interest of many researchers. Based on this fact, 

correspondence analysis (CA) is one of a statistical visualization methods used 

to analyzing data in contingency tables. This method first developed in France 

(Benzécri, 1973, Greenacre, 1984). Different authors proposed this method 

under various names. These method names include the Dutch Homeneity 

Analysis (Gifi, 1990), the Japanese Qualification Method (Hayashi, 1954), the 

Canadian Dual Scaling (Nishisato, 1980). These analogous have different 

theoretical foundations but all methods lead to equivalent solutions (Greenacre 

and Blasius, 2006, Tenenhaus and Young, 1985). Correspondence analysis is 

thought of as a principal component method for normal, contingency table 

data. It can be used to analyze cases-by-variable-categories matrices of non-

negative data. Correspondence analysis is also a multivariate descriptive data 

analytic technique. Even the most commonly used statistics for simplification 

of data may not be adequate for description or understanding of the data. The 

correspondence analysis results provide information which are similar to those 

produced by principal component or factor analysis (Hill, 1974). Using this 

result, it is possible to explore the structure of the categorical variables 

included in the table. The simplified form data provides useful information 

about the data (Van der Heijden and de Leeuw, 1985, Hair et al., 1995). The 

relationship of the categories of rows and columns of the data can be 

represented using correspondence analysis graphs. The graphical 

representation of the relationships between the row and column categories is in 

the same space which is also produced using correspondence analysis. In 
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general, correspondence analysis simplifies complex data and provides a 

detailed description of practically every bit of information in the data, yielding a 

simple, yet exhaustive analysis (Greenacre and Blasius, 2006, Johnson and 

Wichern, 2007). 

Correspondence analysis has several features that distinguish it from other 

techniques of data analysis. The multivariate treatment of the data through 

multiple categorical variables is an important feature of correspondence 

analysis. This multivariate nature has advantage to reveal relationships which 

could occur during a series of pair wise comparisons of variable (Tian et al., 

1993). Correspondence analysis works effectively for a large data matrix, if the 

variables are homogeneous, and the data matrix structure is either unknown 

or poorly understood. There are some advantages of correspondence analysis 

over other methods. This advantage is related to joint graphical displays. This 

graphical display produces two dual displays whose row and column 

geometries have similar interpretations. This facilitates the analysis to detect 

different relationships. In other multivariate approaches for graphical data 

representation, this duality is not present (Askell-Williams and Lawson, 2004). 

Multiple correspondence analysis (MCA) which is part of a family of descriptive 

methods is an extension of correspondence analysis (CA) and allows 

investigating the pattern of relationships of several categorical dependent 

variables. It is the multivariate extension of CA to analyze tables containing 

three or more variables. In addition to this, MCA can considered as a 

generalization of principal component analysis for categorical variables which 

reveal patterning in complex data sets.  

MCA helps to describe patterns of relationships distinctively using geometrical 

methods by locating each variable/unit of analysis as a point in a low-

dimensional space. MCA is useful to map both variables and individuals, so 

allowing the construction of complex visual maps whose structuring can be 
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interpreted. Moreover, this technique offers the potential of linking both 

variable centred and case centred approaches.   

The rest of the chapter is organized as follows. An overview of the theory of 

MCA is presented in sections 3.2. Multiple correspondence analysis (MCA) is 

fitted to malaria RDT result data in section 3.3. Summary and discussion of 

this chapter is given in section 3.4. 

3.2 Review of Multiple Correspondence Analysis (MCA) 

Suppose there are � observations on � categorical variables. Assume �� 
different values for variable �. Next define a matrix, �� which is � × �� matrix. 

This matrix is known as indicator matrix. The � × � matrix �, with � the sum of �� can be obtained by concatenating the �� ’s (Greenacre, 1984). In general, 

MCA is defined as the application of weighted PCA to the indicator matrix � 
(Benzécri, 1973). Furthermore, � is divided by its grand total �� to obtain the 

correspondence matrix � = ��� �, i.e., ��� ��� = 1, where �� is an  � × 1 vector of 

ones. The vectors �	 = 	��� and �	 = 	� �� are the row and column marginals 

respectively. These marginals are the vectors of row and column masses. 

Suppose the diagonal matrices of the masses are defined as !" 	= 	#�$%(�) and           !& 	= 	#�$%(�). Note that, the ��' element of � is (�. =	 �� and the )�' element of � is 

(.* = �+�� where �* is the frequency of category ) (Greenacre and Blasius, 2006).  

MCA can be defined as the application of PCA to the centered matrix      !",�(� − ���) with distances between profiles given by the chi-squared metric 

defined by !&,�. The � projected coordinate of the row profiles on the principal 

axes are called row principal coordinates. The � × - matrix . of row principal 

coordinates is defined by 

/ = 	!",� �⁄ �123,      (3.1) 
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where �1 = !",� �⁄ (� − ���)!&,� �⁄ 	and 23 is the � × - matrix of eigenvectors 

corresponding to the - largest eigenvalues 4�, . . . , 43 of the matrix �1 �1. The 

projected row profiles can be plotted in the different planes defined by these 

principal axes called row principal planes (Greenacre and Blasius, 2006).  

The categories for column profile can be described by the column profiles. The 

value can be calculated by dividing the columns of � by their column 

marginals. Interchanging rows with columns and all associated entities can be 

used for the dual analysis of columns profiles. This is done by transposing the 

matrix � and repeating all the steps. The metrics used to define the principal 

axes (weighted PCA) of the centered profiles matrix !&,� �⁄ (6 − 	�� )  are !& and !",�.  
The �	 × 	- matrix 7 of columns principal coordinates is now defined by 

7 = 	!&,� �⁄ �1�83,      (3.2) 

where 83 is the � × - matrix of eigenvectors corresponding to the - largest 

eigenvalues 4�, . . . , 43 of the matrix �1�1�. To aid visualization and interpretation of 

the projected column profiles in the planes defined by principal axes, which are 

called column principal planes, can be plotted (Johnson and Wichern, 2007).   

The absolute contribution of the variable � to the inertia of the column principal 

component 9 in the 9�' column of 7 is given by 

:�; =	 < )=>� 	(.*?*;�*∈AB
		 

where >� is the set of categories of variable �. The relation between the absolute 

contribution :�; and the correlation ratio between the variable � and the row 

standard component 9 is given by 
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C�;� =	 < �*� (D̅*;∗ − 0)�*∈AB
= � × :�;.																																												(3.3) 

Note that factor loadings for PCA are correlations between the variables and the 

components (the correlation ratios) are known as discrimination measures. 

These values can be interpreted in MCA as squared loadings. 

Suppose /H∗ 	= 	/∗I and 7H = 	7I, where IIJ 	= 	I I = 	 KL. Let /∗7J =	/H∗7HJ. Then, 

these relations show that the lower rank approximation is not unique. 

Furthermore, the MCA solutions /∗ and 7, are not unique over orthogonal 

rotations. The non-uniqueness can be explored to improve the interpretability 

of the original solution by means of rotation. Rotation of the column principal 

coordinates matrix 7 to simple structure must be followed by the same rotation 

of the row standard coordinates matrix /∗. The interpretation of the correlation 

ratios can be simplified for the matrices 7 and /∗ by rotation (Greenacre, 2000).  

For the method of rotation, the Varimax based function can be used. After 

rotation of /∗ and 7, the relation (3.3) becomes 

CM�;	� = � < (.*?M*;�*∈AB
,																																																												(3.4) 

where CM�;	�  is the correlation ratio between the variable j and 9�' column of OP∗.  
The graphical approach to represent the correspondence approach is the biplot 

representation. Therefore, biplot information is represented by � × � data 

matrix. As the name indicates, it refers to the two kinds of information 

contained in a data matrix. The information in the rows pertains to samples or 

sampling units and that in the columns pertains to variables. The scatter plot 

can represent the information on both the sampling units and the variables in 

a single diagram. This representation is useful to visualize the position of one 

sampling unit relative to another (Dray et al., 2003). In addition to this, it helps 
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to visualize the relative importance of each of the two variables to the position 

of any variables. Matrix array can be constructed with several variables using 

scatter plots. The idea behind biplots is to add the information about the 

variables to the graph. Therefore, the construction of a biplot leads the sample 

principal components and the best two-dimensional approximation to the data 

matrix / approximates the ��' observation Q� in terms of the sample values of 

the first two principal components. Specifically, 

Q� =	/H +	?S��TS� +	?S��TS�     (3.5) 

where TS� and TS� are the first two eigenvectors of U and equivalent to /&V /& =(� − 1)U and /� denotes the mean correlated data matrix with rows WQX −	/HYV
. 

The eigenvectors determine a plane and the coordinates of the ��' unit are the 

pair of values of the principal components (?S��, ?S��). The pair of eigenvectors has 

to be considered in order to include the information on the variables in the 

plot. These eigenvectors are coefficient vectors for the first two sample principal 

components. Thus, each row of the matrix positions (Z[ = 	 \�̂�, �̂�^) a variable in 

the graph and the magnitudes of the coordinates of the variables show the 

weightings of the variables. The weightings represent each principal component 

of the variables. The plots of the variable with corresponding position are 

indicated by a vector. Singular value decomposition is the direct approach to 

obtain a biplot. Then, the singular decomposition expresses the � × � mean 

correlated /& as 

/&(� × �) = 	 8(� × �)	 ᴧ(� × �)	 2V(� × �) 
where ᴧ = #�$%(4�, 4�, . . . , 4�) and 2 =	Z[ = 	 `TS�, . . . , TSab is an orthogonal matrix 

whose columns are the eigenvector of /&V/& = (� − 1)U. The best rank two 

approximation to /& is obtained by replacing ᴧ by ᴧ	∗ = #�$%	(4�, 4�, 0, . . . ,0). 
Therefore, this result is known as Eckart-Young theorem. The approximation is 

given as   
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/& = 8ᴧ∗2V =	 \cd�, cde^	fTS�VTSeV g																																																			(3.6) 
where cd� and cde are the � × 1 vector of values for the first and second principal 

components respectively.  

The biplot represents each row of the data matrix by the point located by the 

pair of values of the principal components. The ��' column of the data matrix is 

represented as an arrow from the origin to the point with coordinates (���, ���), 
the entries in the ��' column of the second matrix `TS�, TSabV approximations. 

Furthermore, the idea of a biplot extends to canonical correlation analysis, 

multidimensional scaling and even more complicated nonlinear techniques. 

3.3 Application of multiple correspondence analysis  

The application of multiple correspondence analysis is used to visualize the 

associations between the socio-economic, demographic and geographic 

parameters and the malaria RDT result. Multiple correspondence analysis 

helps to track the impact of socio-economic, demographic and geographic 

parameters and the malaria RDT result. Therefore, applying correspondence 

analysis helps to summarize important effects including interactions in effect 

reducing the dimensionality of the problem. Beyond the better understanding 

of the structure of the data the computational time may be significantly 

reduced. Furthermore, the graphical interpretation of the data is a useful tool 

in an exploratory research and the reduction of the level of the associations 

between the investigated parameters.  

When applying MCA method, variables are divided into distinct subgroups that 

contain variables of similar types such as socio-economic, demographic and 

geographic variables. Variables analyzed with MCA generally are assumed to be 

categorical. This technique is described by (Guitonneau and Roux, 1977). To 

apply MCA to both continuous and discrete data, continuous variables could 
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be categorized through a process of mutually exclusive and exhaustive 

discretization or coding (Greenacre, 1984). Multiple correspondence analysis 

locates all the categories in a Euclidean space. To examine the associations 

among the categories, it is important to plot the first two dimensions of the 

Euclidean space. For the multiple correspondence analysis, malaria RDT result 

and the other socio-economic, demographic and geographic variables are 

considered. The demographic variables are sex, age and family size. For the 

multiple correspondence analysis, the continuous age and family size variables 

were recoded to be appropriate for the analysis. The socio-economic variables 

are source of drinking water, time to collect water, toilet facility, availability of 

radio, television and electricity, construction material for room’s floor, wall and 

roof, use of indoor residual spray, use of mosquito nets, total number of rooms 

in the house and total number of nets in the house. Besides the socio-

economic and demographic variable, there were geographic variables included 

in the analysis. These variables are region and altitude. Therefore, to perform 

the MCA analysis all socio-economic, demographic and geographic variables 

were included to the multiple correspondence analysis. 

For MCA analysis, each principal inertia values expressed as a percentage of 

the total inertia, which quantifies the amount of variation accounted for by the 

corresponding principal dimension. In addition to this the principal inertia is 

decomposed into components for each of the rows and columns. The 

decomposed rows and columns provide the numerical contributions used to 

interpret the dimensions and the quality of display of each point in the reduced 

space. The parts which are expressed as percentages are useful to explain the 

method of determination of the dimensions. The same parts of the dimensions 

can be expressed relative to the inertia of the corresponding points in the full 

space and this helps to assess how close the individual points are to the 

dimension. 
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Table 3.1 presents inertia and Chi-Square decomposition for multiple 

correspondence analysis. Correspondence analysis employs chi-square 

distances to calculate the dissimilarity between the frequencies in each cell of a 

contingency table. The calculation of the chi-square distances is cell-

independent. Table 3.1 suggested that the two dimensions accounts for 19.4% 

of the total association. The total chi-square statistic in Table 3.1, which is a 

measure of the association between the rows and columns in the full 

dimensions of the table, is 2169476 with degrees of freedom 2050. This chi-

square represents all pairwise interactions among the factors. The maximum 

number of dimensions (or axes) is the minimum of the number of rows and 

columns, minus one.  

From Table 3.1, the singular value indicates the relative importance of each 

dimension in explaining of the inertia, or proportion of variation, in the 

participant and variable profiles. The singular values can be interpreted as the 

correlation between the rows and columns of the contingency table. As in 

principal components analysis, the first dimension explains as much variance 

as possible, the second dimension is orthogonal to the first and displays as 

much of the remaining variance as possible, and so on. Singular values of 

greater than 0.2 indicate that the dimension should be included in the analysis 

(Hair et al., 1995). However, the proportion of variance explained by each 

dimension must be balanced with the cut-off point. The singular value and the 

inertia are directly related i.e., the inertia is an indicator of how much of the 

variation in the original data is retained in the reduced dimensional solution 

(Bendixen, 1996). Furthermore, the percentages of inertia accounted for by the 

first twelve axes are 10.7 per cent and 8.7 per cent, 5.73 per cent, 5.12 per 

cent, 4.61 per cent, 4.1 per cent, 4.02 per cent, 3.81 per cent, 3.61 per cent, 

3.55 per cent, 3.54 per cent and 3.45 per cent, respectively (Table 3.1). 
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Table 3.1: Inertia and Chi-Square Decomposition 

Singular 
Value 

Principal 
Inertia 

Chi-
Square 

Percent 
Cumulative 
Percent 

2    4    6    8   10 
----+----+----+----+----+--- 

0.42757 0.18282 232503 10.72 10.72 ************************** 
0.38438 0.14775 187901 8.66 19.38 ********************** 
0.3126 0.09772 124277 5.73 25.11 ************** 
0.29555 0.08735 111089 5.12 30.23 ************* 
0.28047 0.07866 100043 4.61 34.84 ************ 
0.26462 0.07002 89054 4.1 38.94 ********** 
0.26193 0.06861 87250 4.02 42.97 ********** 
0.25503 0.06504 82716 3.81 46.78 ********** 
0.24806 0.06154 78259 3.61 50.39 ********* 
0.24591 0.06047 76909 3.55 53.93 ********* 
0.24557 0.06031 76696 3.54 57.47 ********* 
0.24356 0.05932 75444 3.48 60.94 ********* 
0.23959 0.0574 73005 3.37 64.31 ******** 
0.23772 0.05651 71869 3.31 67.62 ******** 
0.23474 0.0551 70079 3.23 70.85 ******** 
0.23154 0.05361 68179 3.14 73.99 ******** 
0.22675 0.05142 65388 3.01 77.01 ******** 
0.22274 0.04961 63094 2.91 79.92 ******* 
0.21997 0.04839 61539 2.84 82.75 ******* 
0.21788 0.04747 60370 2.78 85.54 ******* 
0.2095 0.04389 55817 2.57 88.11 ****** 
0.2031 0.04125 52458 2.42 90.53 ****** 
0.1965 0.03861 49106 2.26 92.79 ****** 
0.18357 0.0337 42856 1.98 94.76 ***** 
0.17417 0.03033 38578 1.78 96.54 **** 
0.16618 0.02761 35119 1.62 98.16 **** 
0.14744 0.02174 27646 1.27 99.44 *** 
0.08754 0.00766 9745 0.45 99.89 * 
0.04423 0.00196 2488 0.11 100 

 
Total 1.70588 2169476 100 

  
Degrees of Freedom = 2025 

Based on this result, the first twelve axes accounting for 60.9 per cent of the 

amounts of variance and would expect 39.1 per cent of the inertia to be 

accounted by the remaining axes. As can be seen from the table, 93 per cent of 

the association can be represented well in twenty three dimensions. However, 

these data can be considered in just two dimensions. The first axis accounting 

for approximately 10.72 per cent of the inertia and the second axis accounts 

approximately 8.66 per cent. The percentages of inertia in MCA are low and 
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tend to be close to one another and this latter fact might lead to an assumption 

that individual axes might be unstable. 

Figure 3.1 presents the scree plot of singular values. One method to assess 

most appropriate number of dimensions for interpretation is using scree plot. 

The scree plot presents the proportions of variance explained (Hair et al., 

1995). As can be seen from the figure, the scree plot suggests that the 

proportion of variance explained drops faster up to 7th dimension and less 

rapidly up to dimension 26.  As discussed by (Hair et al., 1995), 0.2 can be 

considered as a cut-off point as a first step. But, this cut-off point suggests 

that only 90.5 per cent variation can be explained with 22 dimensions.  

 

Figure 3.1: Scree plot of singular values 

Figure 3.2 contains the multiple correspondence analysis scaling solution 

coordinates for the variables for twelve dimensions, with Dimension 1 on the 

horizontal axis and Dimension 2 on the vertical axis and so on. Multiple 

correspondence analysis locates all the categories in a Euclidean space. The 

first two dimensions of this space are plotted to examine the associations 
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among the categories.  Dimension 1 accounts for 10.72 per cent of the variance 

in the data and Dimension 2 accounts for 8.66 per cent of the variance. The 

twelve dimensions totally accounts for 60.9 per cent of the variations. It can be 

seen that variable like stick and mud roof, toilet with flush, wood floor and 

corrugated metal wall appears separately in the right hand side of the chart. 

Therefore, these variables have to be included in the interpretation of 

dimension 1 and similarly for other dimensions.  

 

 

 

a) Dimensions 1 and 2  b) Dimensions 3 and 4 

 

 

 
c) Dimensions 5 and 6  d) Dimensions 7 and 8 
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e) Dimensions 9 and 10  f) Dimensions 11 and 12 
 

Figure 3.2: Multiple correspondence analysis plot for twelve dimensions 

 

It is important to note that this two-dimensional chart is part of the twenty two 

dimensional solutions. Interpreting of each dimension is considered as the 

contribution of variables to that dimension (Clausen, 1998). This is because a 

variable that appears on the two-dimensional chart might be a major 

contributor to another dimension but might not be located in the existing two-

dimensional plane (Nishisato, 1994). As can be seen in Figure 3.2, the right 

quadrant of the plot (dimensions 1 and 2) shows that the categories stick and 

mud roof, toilet with flush, wood floor and corrugated metal wall are 

associated. To the top of the plot, altitude less than 2000 meter, use of 

electricity, cement block wall, cement floor, use of television, protected water, 

altitude between 2000 – 4000 meters are associated. On the other hand, 

positive malaria RDT result, not using indoor residual spray, thatch roof, earth 

or dung plaster floor are grouped together. Furthermore, negative malaria RDT 

result, use of indoor residual spray, use of malaria nets, pit latrine toilet and 

corrugated floor are associated. Similarly, unprotected water, 30 – 40 minutes 

to get water, no toilet facility and no radio are associated together. This 

interpretation of the plot is based on points found in approximately the same 

direction and in approximately the same region of the space.  
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So far, the association between socio-economic, demographic, geographic 

variables and malaria RDT result was assessed based on dimension 1 and 2. 

Therefore, the contribution of dimension 1 and dimension 2 has been 

interpreted. As can be seen from Table 3.1, dimension 1 and 2 constitute 19.4 

per cent of the variation. But, the other 20 dimensions all together constitute 

71.2 per cent of the variation. Except the relationships between dimension 4 

and 3, dimension 5 and 2, dimension 5 and 3 and dimension 7 and 1, the 

relationship between the variables for other combination of dimensions show 

that they are located at the center of the graphs. The relationships between 

variables show similar relationships as of dimension 1 and 2.  

3.4 Summary and Discussion 

In this study, multiple correspondence analysis was used as a way to 

graphically represent and interpret the relations between primary meanings in 

different malaria RDT result, socio-economic, demographic and geographic 

variables. Multiple correspondence analysis provides useful interpretative tools 

that can further the understanding of the conceptual context in which socio-

economic, demographic and geographic variables by malaria RDT result 

occurs. 

As it was discussed above, multiple correspondence analysis is a method for 

exploring associations between sets of categorical variables. Mathematically, it 

is a method for breaking down the value of the goodness-of-fit statistic into 

components due to the rows and columns of the contingency table. It can also 

be considered as a technique for assigned order to unordered categories. 

Therefore, the MCA approach involves defining a set of points, with associated 

masses, in a multidimensional space structured by Euclidean distance. 

Furthermore, the display is also thought of as a framework for reconstructing 

the original data as closely as possible. To display the relationship, the 

coordinate positions of the row and column points are used.  
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The association using MCA gives the relationship among coded variables and 

their associations. The technique allows the analysis of the relationships 

between the variables and different levels of one variable. Furthermore, the 

results of the analysis can be seen analytically and visually. This method of 

display gives detailed information of the relationship between variables and 

their associations. Therefore, the result from multiple correspondence analysis 

shows that there is association between malaria RDT result and different socio-

economic, demographic and geographic variables. Moreover, there is an 

indication that some socio-economic, demographic and geographic factors have 

joint effects. It is important to confirm the association between socio-economic, 

demographic and geographic factors using advanced statistical techniques. 

Therefore, future investigations need to be done to identify those variables that 

show significant relationships. By identifying those variables which could have 

joint effect, it is important to determine the principal axes and the 

identification of selection of variables to take forward for further analysis. 

Furthermore, the interaction effects between socio-economic, demographic and 

geographic variables will be included in the further analysis for this study.  

The commonly used methods for discrete (e.g binary) data are a direct 

extension of generalized linear models for independent observations to the 

context of correlated data. Therefore, a review of these models is provided in 

the next chapter. The survey conducted in the Amhara, Oromiya and SNNP 

regions involves the complex survey method. Detailed review of survey logistic 

model is also provided in the next chapter. In addition to this, these models will 

be fitted to the malaria rapid diagnosis test result data to identify socio-

economic, demographic and geographic factors that affect malaria rapid 

diagnosis test result.  
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 Chapter 4 

Prevalence and risk factors of Malaria in Ethiopia using 

Generalized Linear Models 

4.1 Introduction  

The class of generalized linear models includes many well-known statistical 

models such as: multiple regression for normal responses; logistic and probit 

regression for binary responses; binomial counts, or proportions; Poisson and 

negative binomial regression; log-linear categorical data analysis models; 

gamma regression for variance models; and exponential and gamma models for 

survival time models.   

The literature on generalized linear models and their extensions are vast 

(Berridge and Crouchley, 2011, Zuur et al., 2009, Zurr et al., 2007, Fox, 2008, 

Madsen and Thyregod, 2010). Generalized linear models have been extended in 

many ways, such as accommodating random and mixed effects, 

accommodating correlated data, relaxing distributional assumptions, allowing 

semiparametric linear predictors, etc (Schimek, 1997, Smith et al., 2004).   

In statistics, the flexible generalization of ordinary least squares regression is 

generalized linear model (GLM). The GLM generalizes linear regression by 

allowing the linear model to be related to the response variable via a link 

function and by allowing the magnitude of the variance of each measurement 

to be a function of its predicted value. Generalized linear models were 

formulated by John Nelder and Robert Wedderburn in 1972 as a way of 

unifying various other statistical models, including linear regression, logistic 

regression and Poisson regression (Nelder and Wedderburn, 1972). John Nelder 

and Robert Wedderburn proposed an iteratively reweighted least squares 

method for maximum likelihood estimation of the model parameters.  
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In summary the current chapter is organized as follows. An overview of the 

theory of GLM and survey logistic is presented in sections 4.2 – 4.5. The survey 

logistic model is fitted to malaria RDT result data in section 4.6. Summary and 

discussion of this chapter is given in section 4.7. 

4.2 Generalized Linear Model  

Generalized Linear Model (GLM) is an extension of the linear modelling process 

that allows models to be fitted to data that follow probability distributions other 

than the Normal distribution. GLM helps to include response variables that 

follow any probability distribution in the exponential family of distributions. 

The exponential family includes such useful distributions as the Normal, 

Binomial, Poisson, Multinomial, Gamma, Negative Binomial, and others. 

Hypothesis tests applied to the Generalized Linear Model do not require 

normality of the response variable, nor do they require homogeneity of 

variances. Hence, Generalized Linear Models can be used when response 

variables follow distributions other than the Normal distribution.  

Let ?�, . . . , ?� denote � independent observations on a response variable y. We 

treat ?� as a realization of a random variable i�. In the general linear model 

formulation we assume that Yi has a normal distribution with mean µi and 

variance j� i�		~		l(m�, j�), 
and further assumed that the expected value m� is a linear function of p 

predictors that take values D�V = (D��, … , D��)  for the ��'  observation, so that  m� =	/�Vo,	
where o is a vector of unknown parameters. 
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The Exponential Family of Generalized Linear Models 

Nelder and Wedderburn introduced the generalized linear model (GLIM) in 

1972. The GLM models consist of independent responses i�, �	 = 	1, 2, . . . , �, with 

an exponential family distribution as follows 

   ((?) = ((?|r, s) = 		�D�	`?tW%,�(O�Vou)Y, sb,        (4.1) 

where �D� represents an exponential family member with parameters rand ψ; 

and s may be known (Nelder and Wedderburn, 1972). The parameter r is a 

function of the mean and can be written as %,�(O�Vou) (a function of a linear 

combination of the regressors). In general, generalized linear models have three 

features (McCullagh and Nelder, 1989). These features are the random 

component, systematic component and the link function. These feature are 

explained as follows. 

• A random component consists of a response variable i from the exponential 

family with independent observations (?�, ?�, … , ?�). The density function for 

exponential family is given by 

(v(?�) = exp z?t − 	{(r)s + 	:(?�, s)| ,														� = 1, 2, . . . � 

where, i�, i�, . . . , i�, are assumed to be independent. r and s  are parameters 

while {(r) and :(?, s) are known functions. The parameter r is termed the 

canonical parameter and is related to }\i�^ through {(•). Therefore, m = }\i�^ = 	 {V(r). 
The variance of Y is a function of the mean and the scale parameter or 

dispersion parameter s, 

	�	$�\i�^ = 	s �m�r = 	s{VV	(r). 
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where, {V(r) and {VV(r) are the first and second derivatives of {(r) with 

respect to r. In general, the mean and variance of i can be derived by using 

the property �((?|r, s)#?	 = 1. Taking the first and second derivatives with 

respect to r from both sides of the equation gives 

�W? −	{V(r)Y((?/r, s)#?	 = 0 and 

� �s,�W? −	{V(r)Y� − {VV(r)� ((?/r, s)#?	 = 0. 

Therefore, }(?) = 	m = 	{V(r) and �$�(?) = 	{VV(r)s. Unlike multiple regression 

and other normal distribution based models, the variance of generalized 

linear models can depend on the mean. If {VV	(r) is expressed as a function 

a of the mean, {VV	(r) = 	�(μ), then V is called the variance function. The 

parameter s is a scale parameter. When it is unknown it must be estimated 

along with r.  
• The systematic component of a GLM relates a vector (C�, … , C	�) to the 

regressor variables through a linear model. Associated with each response ?� 
is a vector /� denote the value of predictor /� =	(D��, D��	. . . , D��)V of values of � 

explanatory variables, then the distribution of the response variable ?� 
depends on /� through the linear predictor C� where 

C� 	= 	o� 	+ 	o�D��	+	. . . +	o�	D�� . 

The systematic component of the linear form places the regressors on an 

additive scale. Therefore, this scale makes the interpretation of their effects 

simple. Moreover, the significance of each regressor can be tested with a 

linear hypothesis ��:	o	� = 	0 versus ��:	o� 	≠ 	0	for �	 = 	1, 2, . . . , -.  
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• The function %(m�) is called a link function which connects the linear 

predictor to the mean }\i^. This is done through a monotonic, differentiable 

function %(m�) = 	C� 	= 	o� 	+ 	o�D��	+	. . . +	o��	D�. 

  Here, the link is a linearizing transformation of the mean which is a 

function that maps the mean onto a scale where regressor effects are linear. 

The link is used to allow C� to range freely while restricting the range of μ�.  
For example, the inverse logit link μ	 = 	1/(1	 +	�,�	) maps (−∞,∞) onto (0, 1), which is an appropriate range if μ� is a probability. The monotonicity 

of the link function guarantees that this mapping is one-to-one. Therefore, 

the generalized linear model can be expressed in terms of the inverse link 

function, 

    }\i�^ 	= %,�(o� 	+	o�D��	+	. . . +	o��	D�	). 
For a linear predictor which is equal to canonical parameter r, the canonical 

link is given by r(μ).  The canonical link is useful and reasonable link function. 

The canonical link does the estimation method, but it is necessary to restrict 

generalized linear modelling to canonical link functions (Agresti, 2002). 

The notation 6(D�Vou) can be used for %,�(D�Vou), �	 = 	1, 2, . . . , �, stacked in a 

vector for the generalized linear mean model. Therefore, generalized linear 

model for the entire dataset can be expressed as additive form as follows 

      7	 = 	�(/ou) 	+ 	=, �ℎ���	=	 ∼ 	 (�, 〈s$(μ�)〉)	.                        (4.2) 

The application of iteratively reweighted least squares was extended to obtain 

maximum likelihood estimates (Finney, 1952, Nelder and Wedderburn, 1972). 

The term deviance was introduced as a measure of model fit. Moreover, 

generalized analysis of variance was considered as the change in deviance of a 

sequential fit of nested models (Good, 1967). (McCullagh and Nelder, 1983) first 



48 

 

introduced generalized linear models and their second edition in 1989 

(McCullagh and Nelder, 1989) serves  as the standard monograph on 

generalized linear models. The literature on generalized linear models and their 

extensions are voluminous. Generalized linear models have been extended in 

many ways, such as accommodating random and mixed effects, 

accommodating correlated data, relaxing distributional assumptions, allowing 

semiparametric linear predictors, etc (Schimek, 1997, Smith et al., 2004).   

4.3 Estimation in Generalized Linear Models 

The method of maximum likelihood (ML) can be used to estimate the 

parameters in the linear predictor C�. Assume i�	, � = 1,…� be independent, the 

joint likelihood is the product of the likelihoods for each i�. The log likelihood 

for ou, as a function of an arbitrary o, is then 

�(o|c) = 	∑ �\��t�,	�(t�)^� + 	:(?�, s)� .���� 			                   (4.3) 

The likelihood problem can be solved by taking the derivative of the log 

likelihood �(o|c) under the properties of the exponential family and the fact 

that the link % is monotonic. The score equations obtained from equating the 

first order derivatives of the log likelihood to zero gives  

�(o) = <�r��o 	\?� − {(r�)^ 	= 0.																																							(4.4)�
�  

Since  m� =	{V(r�) and �� = �(m�) = 	{VV(r�), then �m��o = {VV(r�) �r��o = �� �r��o , 
and the result implies the following equations 

�(o) = <�r��o 	��,�\?� − m�^ 	= 0.																																							(4.5)�
�  
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Solving the score equation (4.5) gives the ML estimates of o.  

The score equations can be solved iteratively. Initial solution of the equations is 

guessed and then updated until iterative algorithm converges to the solution β�, 
called the maximum likelihood estimate of o. The methods of Fisher’s scoring 

and Newton-Raphson are the two most popular and widely used iterative 

algorithms for the maximum likelihood estimation. The Fisher’s scoring method 

is equivalent to the iterative reweighted least squares. The Newton-Raphson 

method solves maximum likelihood estimates iteratively using the standard 

least-squares methods (Agresti, 1990, McCullagh, 2008). Classical inferences 

based on asymptotic likelihood theory become available, including Wald-type 

tests, likelihood ratio tests and the score tests, all asymptotically equivalent 

once the maximum likelihood estimates have been obtained. Moreover, with 

some models such as the logistic regression model, ø is a known constant. For 

models, like the linear normal model, estimation of ø may be required to 

estimate the standard errors of the elements in o. There are several ways of 

estimating ø, one of which is given by 

øS = 	 1N − p<(y£ −	μS £)�lV£(μS £)£  

where n	is the total number of observations and p is the number of parameters 

in the model. 

Detailed discussion of Fisher’s scoring and Newton-Raphson can be found in 

different literatures (Agresti, 1990, Kutner et al., 2005, McCullagh, 2008, 

McCullagh and Nelder, 1989, Schabenberger and Pierce, 2002). 
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4.4 Survey logistic regression for binary data 

The logistic regression model is classified under generalized linear models. This 

model is used to model binary data. But, the standard statistical methods are 

inappropriate for analyzing survey data due to clustering and stratification 

used in the survey design. Therefore, some adjustments to the classical 

methods that take account of the survey design are necessary in order to make 

valid inferences (Chen and Mantel, 2009). Therefore, the logistic regression 

model used to analyze data from complex sampling designs is referred to as 

survey logistic regression models. Survey logistic regression models have the 

same theory as ordinary logistic regression models. The difference between 

ordinary and survey logistic is that survey logistic accounts for the complexity 

of survey designs, i.e. sampling techniques, such as stratified random or 

cluster sampling including multi-stage sampling. But, for data from simple 

random sampling, the survey logistic regression model and the ordinary logistic 

regression model are identical. To apply survey logistic to the current problem, 

the first stage primary sampling unit (PSU), was a Kebele (the smallest 

administrative unit in Ethiopia). In the second stage, households with in a 

kebele sampled. The response of the ith person in the jth household and hth 

Kebele can be specified as ?��'	(�	 = 	1,2, . . . , §ℎ�; �	 = 	1,2, . . . , �'; and ℎ	 = 	1,2, . . . , �) 
where ?��' equals 1 if there is positive malaria rapid diagnosis test result in the 

jth household within hth Kebele (PSU), and 0 otherwise. Thus, the log-likelihood 

function in this case is given by 

�(o; c) = < <<©?��'�ª% « ¬��'1 −	¬��'­ − 	�ª% « 11 −	¬��'­®
¯°B
���

�°
���

±
'��  

and the survey logistic regression model is given by  

�ª%� W¬��'Y = 	D��'V o ,    �	 = 	1, 2, . . . , §'�; �	 = 	1, 2, . . . , �'; and ℎ	 = 	1, 2, . . . , � 



51 

 

where D��' is the row of the design matrix corresponding to the characteristics 

of the ith person in the jth PSU within hth stratum, and o is a vector of unknown 

parameters of the model. To obtain reliable inference about the effects of 

factors from the fitted model, it is important to include all design variables in 

the model as explanatory variables (Pfeffermann, 1993). 

Estimation of Parameters 

For ordinary logistic regression, a method of maximum likelihood estimation is 

used to estimate parameters of the model. But, estimation of the standard 

errors of the parameter estimates is very complicated for data which comes 

from complex designs. The complexities in variance estimation arise partly 

from the complicated sample design and the weighting procedure imposed. So 

a rough estimate for the variance of a statistic based on a complicated sample 

can be obtained either by ignoring the actual complicated sample design used 

and proceeding to the estimation process using the straightforward formulae of 

the simple random sampling or another similarly simple design (Park, 2008, 

Rabe-Hesketh and Skrondal, 2006, Biewen and Jenkins, 2006). But, the 

incorporation of sampling information is important for the proper assessment 

of the variance of a statistic (Park, 2008). Since weighting and specific sample 

designs are particularly implemented for increasing the efficiency of a statistic, 

their incorporation in the variance estimation methodology is of major 

importance (Schaefer et al., 2003). Thus, the bias induced under this 

simplifying approach depends on the particular sampling design and should be 

investigated circumstantially (Lehtonen and Pahkinen, 2004). Therefore, there 

are several methods to obtain the covariance matrix. These methods include 

the Taylor expansion approximation procedure, jackknife estimator, bootstrap 

estimator, balanced repeated replication method and random groups method 

(Wolter, 1985, Lee and Forthofer, 2006).  
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Taylor expansion approximation procedure 

The Taylor series approximation method relies on the simplicity associated with 

estimating the variance of a linear statistic, even with a complex sample design. 

By applying the Taylor linearization method, nonlinear statistics are 

approximated by linear forms of the observations (by taking the first-order 

terms in an appropriate Taylor-series expansion). But, it has to be noted that 

Taylor series linearization is, essentially used in elementary cases, while 

influence function can be deployed in complex cases.  

The estimation of variance of the general estimator is adapted from the Taylor- 

series expansion. To use the Taylor series expansion, consider a finite 

population l. Let � −dimensional parameter vector be denoted by 7 =	(i�, … , i�)V where, i� are population totals or means. The corresponding 

estimator vector is denoted by 7[ = 	 (i��, … , i��)V  based on a sample size ) of �()). 
Therefore, the estimators i��, �	 = 	1, . . . , � depends on the sampling design 

generating the sample ). Let us consider a nonlinear parameter r = ((7) with a 

consistent estimator denoted by r� = ((7[). Therefore, the interest here is to find 

an appropriate expression for the design variance of  r� and constructing a 

suitable estimator of the variance of r� (Wolter, 1985). 

Suppose that continuous second–order derivative exists for the function ((7). 
Therefore, using the linear terms of the Taylor-series expression, the 

approximate linearized expression is 

r� − 	r = 	∑ ²³(7)²vB W?S� − 	?Y,*���                           (4.6) 

where, �((7) �i�⁄  refers to partial derivation. Using equation (4.6), the variance 

approximation of r� is given by 
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�WrPY = �´<�((7)�i�
*

��� W?S� − 	?Yµ 	= <�((7)�i�
*

��� . �((7)�i3 �(W?S� , ?S3Y.														(4.7)								 
Here, the variance of nonlinear estimator 	r� has been reduced to a function of 

variances and covariances of ) linear estimators i�� (Wolter, 1985). Therefore, 

the variance estimator ��Wr�Y is obtained from (4.7) (Skinner et al., 1989). 

The resulting variance estimator in equation (4.7) is referred to as the first 

order approximation. Extending the Taylor series expansion could develop 

second or even higher-order approximations. However, in practice, the first-

order approximation usually yields satisfactory results, with the exception of 

highly skewed populations (Wolter, 1985). Standard variance estimation 

techniques can then be applied to the linearized statistic. This implies that 

Taylor linearization is not a ‘per se’ method for variance estimation, it simply 

provides approximate linear forms of the statistics of interest and then other 

methods should be deployed for the estimation of variance itself. The Taylor 

linearization method is a widely applied method, quite straightforward for any 

case where an estimator already exists for totals. However, the Taylor 

linearization variance estimator is a biased estimator. Its bias stems from its 

tendency to under estimate the true value and it depends on the size of the 

sample and the complexity of the estimated statistic. Though, if the statistic is 

fairly simple, like the weighted sample mean, then the bias is negligible even 

for small samples, while it becomes nil for large samples (Särndal et al., 1992). 

On the other hand for a complex estimator like the variance, large samples are 

needed before the bias becomes small. In any case, however, it is a consistent 

estimator.  
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Jackknife estimator 

The jackknife technique is developed by (Quenouille, 1949, Quenouille, 1956). 

The main idea of jackknife is to divide the sample into disjoint parts, dropping 

one part and recalculating the statistic of interest based on incomplete sample. 

The dropped part is re-entered in the sample and the process is repeated 

successively until all parts have been removed once from the original sample. 

These replicated statistics are used in order to calculate the corresponding 

variance. Disjoint parts mentioned above can be either single observation in a 

simple random sampling or clusters of units in multistage cluster sampling 

schemes. The choice of the way that sampling units are entered, re-entered in 

the sample leads to a number of different expressions of jackknife variance.  

It should also be noted that the jackknife method for variance estimation is 

more applicable in with replacement designs, though it can also be used in 

without replacement surveys when the sampling fraction is small (Wolter, 

1985). However, this is rarely the case when we are dealing with business 

surveys. The impact of its use in surveys with relatively large sampling fraction 

is illustrated, via simulation in (Smith et al., 1998), while, as mentioned in 

(Shao and Tu, 1995) the application of jackknife requires a modification to 

account for the sampling fractions only when the first stage sampling is 

without replacement. In any case, due to their nature, jackknife variance 

estimation methods seem to be more appropriate for (single or multistage) 

cluster designs, where in each replicate a single cluster is left out of the 

estimation.  

If the number of disjoint parts (e.g. clusters) is large, the calculation of replicate 

estimates is time consuming, making the whole process rather than time-

demanding in the case of large-scale surveys (Yung and Rao, 2000). So, 

alternative jackknife techniques have been developed (Efron, 1982).  
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Jackknife linearized variance estimation is a modification of the standard 

jackknife estimator based on its linearization. Its essence is that repeated 

recalculations of a statistic are replaced by analytic differentiation. The result 

is a formula that it is easy to calculate. For example for stratified cluster 

sample the bias adjusted variance formula, presupposing sampling with 

replacement, is (Canty and Devison, 1999): 

�S = 	<(1 − ('). 1�'. (�' − 1)_<�'�� .�°
���

±
'��  

The factor �'� is the ‘empirical influence value’ for the jth cluster in stratum ℎ 

(Canty and Devison, 1999). The effort required for calculating �'�  is based on 

the complexity of the statistic. For the linear estimator in stratified cluster 

sampling: 

    r� = 	∑ ?'�V�,'    
where,  

   ?'�V =	∑ ¸'�3. ?'�33   

is the sum of ?V) in every cluster j in each stratum ℎ, and ¸'�3 is the design 

weights then 

   �'� =	�'	. ?'�V . 

For the ratio of two calibrated estimators, �'� is: 

  �'� =	 ¹°Bº ,	t[.¹°B»
¹¼½»  

where r� = 	 ¹¼½º¹¼½¾    

while ? and ¿ are the vectors of the observations in the dataset and �'��  , �'�À  and Á are calculated from the data analytically.  
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Therefore, the main advantage of jackknife estimator is that it is less 

computationally demanding, while it generally retains the good properties of 

the original jackknife method. However, in case of non-linear statistics, it 

requires the derivation of separate formulae, as is the case with all linearised 

estimators. Therefore, its usefulness for complex analyses of survey data or 

elaborate sample designs is somewhat limited. More details can be found at 

(Canty and Devison, 1999, Rao, 1997), while an insightful application is made 

by (Holmes and Skinner, 2000). 

Bootstrap estimator 

Similar to jackknife method, bootstrap method was introduced outside survey 

sampling which was originated by (Efron, 1979, Efron, 1981, Efron, 1982). 

Bootstrap was introduced for samples of independent and identically 

distributed observations. Since then, there has been much theoretical and 

empirical research examining properties of the bootstrap estimator. Moreover, 

bootstrapping has become a popular tool for classical statistical analysis (Shao 

and Tu, 1995). The bootstrap involves drawing a series of independent samples 

from the sampled observations, using the same sampling design as the one by 

which the initial sample was drawn from the population and calculating an 

estimate for each of the bootstrap samples (Rao and Wu, 1988).  

Balanced repeated replication (BRR) method  

The balanced repeated replication method (BRR) (or balanced half samples, or 

pseudoreplication) developed for the case with a large number of strata. This 

method has a very specific application in cluster designs where each cluster 

has exactly two final stage units or in cases with a large number of strata and 

with only two elements per stratum. The aim of this method is to select a set of 

samples from the family of 2- samples, compute an estimate for each one and 
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then use them for the variance estimator in a way that the selection satisfies 

the balance property (Särndal et al., 1992).  

In the BRR technique, the formation of pseudo samples starts � strata and r=2 

sample clusters per stratum. If there are no PSUs per stratum, these form the 

replication. Therefore, the total sample can be split into 2H overlapping half-

samples each with � sample clusters. Therefore, the estimate r�� can be 

constructed for each half-samples and be used to estimate �(r�). But, it is 

computationally expensive to evaluate all 2H possible r��. Therefore, it is possible 

to select a balanced set of only - half-samples where - is minimum multiple of 

4 greater than �. Therefore, the estimator can be given as follows. 

    �Wr�Y = 	∑ (r� −	rÂ[)� -⁄3��� .       (4.8) 

The estimator (4.8) has equal asymptotic precision to the same estimator 

evaluated over all 2H half-samples. The gain in precision of the variance 

estimate compared to simple replication needs to be balanced against the 

increased computation required (Rao and Wu, 1985). The recent research 

result of (Rao and Shao, 1996) shows that any asymptotically correct estimator 

can only be obtained by using repeated division, i.e. repeatedly grouped 

balanced half samples. Therefore, the use of BRR with business surveys is 

typically difficult, as stratification is regularly used and the manipulation of 

both data and software becomes very difficult. According to (Rao, 1997) the 

main advantage of BRR method over the jackknife is that it leads to 

asymptotically valid inferences for both smooth and non-smooth functions. 

However, it is not easily applicable for arbitrary sample sizes like the bootstrap 

and the jackknife. 
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Random groups method 

For complex surveys, the random group method is one of the first methods 

developed in order to simplify variance estimation. To estimate the parameters 

using random group method, drawing sub-samples from the population is 

required. Then the variance will be assessed based on deviances from the 

union of sub-samples (Wolter, 1985). This technique is described as follows. To 

estimate the variance, the design of the survey should involve r independent 

replications of the same basic design. This process gives a final sample 

consisting of r replicates (Skinner et al., 1989). Let r� denotes the estimator of r 

from the whole sample. Hence, any statistic r� for the parent sample can be 

recomputed for each of r replicates giving r��, … , r�". r�� is the estimator obtained 

from the rth random group and r̅� = 	∑ r��"��� �⁄ . Therefore, the variance estimator �(r̅�) can be estimated by 

 � Ãr̅�Ä = 	 �"(",�)∑ (r�� −	r̅�)�"��� . 

Hence, r� can be estimated by �(r̅�) (Wolter, 1985), where 

           �Wr�Y = 	 �"(",�)∑ (r�� −	r�)�"��� . 

Random groups method can be distinguished into two main variations, based 

on whether the sub-samples are independent or not. But, in practice, survey 

sample is drawn at once and random groups technique is applied in the sequel 

by drawing, essentially, sub-samples of the original sample. In such cases, we 

have to deal with dependent random groups. For the case of independent 

random groups, random groups method provides unbiased linear estimators, 

though small biases may occur in the estimation of non-linear statistics. In 

case of dependent random groups, a bias is introduced in the results, which, 

however, tends to be negligible for large-scale surveys with small sampling 
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fraction. In such circumstances the uniformity of the underlying sampling 

design of each sub-sample is a prerequisite for safeguarding the acceptable 

statistical properties of the random groups variance estimator. 

Comparison of the methods 

The applicability of variance estimation methods depends on the sampling 

design and the adjustments. Obviously, the best approach to estimate the 

variance is exact formulae, but the exact methods for many practical cases of 

complex surveys are too difficult to be derived. There are many theoretical 

studies conducted to compare replication methods with Taylor linearization. 

These theoretical studies to compare the estimation methods were conducted 

by (Krewski and Rao, 1981, Rao and Shao, 1992). These studies showed that 

linearization and replication approaches are asymptotically equivalent and both 

methods lead to consistent variance estimators. Among the replication 

methods, jackknife methods have similar properties with linearization 

approach. But, the properties of balanced repeated replications and bootstrap 

techniques are comparable. In general, in the case of simple situations of 

sample designs and estimation features, linearization may be simpler to 

interpret and less time demanding. However, in case of complex survey design 

and estimation strategies, replication methods are equivalently flexible. 

The summarized findings for the comparison of the variance estimation 

methods are presented in (Wolter, 1985). After reviewing and summarizing from 

five different studies (Bean, 1975, Deng and Wu, 1987, Dippo and Wolter, 

1984, Frankel, 1971, Mulry and Wolter, 1981), (Wolter, 1985) concludes that 

‘… we feel that it may be warranted to conclude that the TS [Taylor series] 

method is good, perhaps best in some circumstances, in terms of the mean 

square error (MSE) and bias criteria, but the BHS [balanced half-samples] 

method in particular, and secondarily the RG [random groups] and J 
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[jackknife] methods are preferable from the point of view of confidence interval 

coverage probabilities’  (Wolter, 1985, pp. 361). 

Furthermore, the advantages of flexibility and cost compared among the 

variance estimation methods by (Wolter, 1985). Based on the comparison, 

Taylor linearization method, Jackknife estimator, Balanced repeated 

replications and Random groups methods are equally flexible. But, based on 

costs, Jackknife is more expensive than the others. Moreover, the random 

group method is slight edge in the terms of flexibility. In the stratified sampling 

setting with a fixed number of strata, bootstrap procedures are available that 

provides improvements over classical approaches for constructing confidence 

intervals based on the normal approximation. However, the improvements are 

of second order and are generally only noticeable when the sample sizes are 

small. Moreover, in the case where there are an increasing number of strata, 

replication methods are likely to lose their appealing features as they provide 

minor asymptotic improvement over the standard normal approximation.  

Model Selection and Model Checking for survey logistic 

The same selection procedure which can be used for logistic regression could 

be applied for survey logistic regression models. However, the selection 

procedures (i.e. forward, backward, and stepwise) are not yet included in SAS 

9.2 for PROC SURVEYLOGISTIC procedure. Therefore, the best alternative to 

select the best model  is to start  with the saturated model and observe the 

contribution of each effect to deviance reduction given by type III analysis of 

effects, then exclude one variable with insignificant effect (one at a time) and 

observe the contribution  of the remaining effects to deviance reduction. This 

process will continue until the model has only significant effects. 

In addition, the  Akaike’s information criterion (AIC) introduced by (Akaike, 

1974), and the Schwarz Criterion  (SC) (also known as Bayesian Information  
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criterion (BIC)) introduced by (Schwarz, 1978) can also be used to compare the 

goodness-of-fit of two  nested  models. These methods are used to adjust the 

likelihood ratio statistic −2�ª%Å which measures the deviation of the log-

likelihood of the fitted model from the log-likelihood of the maximal possible 

model (Vittinghoff et al., 2005). It is necessary to adjust −2�ª%Å. The reason for 

the adjustment is that, −2�ª%Å will always decrease as a new explanatory 

variable enters the model even if it is insignificant. Therefore, the AIC is given 

by ÆÇÈ	 =	−2�ª%Å	 + 	2� 

where � is the  number  of parameters used in the  model. This technique, 

which tolerates violation of parametric model assumptions, can be used to 

compare multiple nested models, and it does not rely entirely on p-values for 

determining significance of explanatory variables. In addition to AIC, another 

criterion, i.e. SC, adjusts the −2�ª%Å statistic for the number of parameters and 

is given by �È	 =	−2�ª%Å	 + 	�	�ª%(�) 
where � is as explained above and � is the overall sample size. Therefore, the 

smaller the value of the criteria, the better the goodness-of-fit of the model. 

The AIC and SC criteria will be used to test for the goodness-of-fit of the model. 

Since the criteria involve −2�ª%Å is only used for variable selection in the case 

of ungrouped binary data, they are used as approximations. The Hosmer-

Lemeshow goodness-of-fit statistic which is used in the case of ungrouped 

binary data, is not yet implemented in the PROC SURVEYLOGISTIC. 

Model checking 

For all types of statistical models, assessing model fit is important. Assessing 

the model includes OLS linear regression models. For such models, assessing 
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of the model is typically examined by statistics like the coefficient of 

determination (or É�) and the F-ratio. But, for other members of the generalized 

linear model, these cannot be applied. Therefore, assessing the model relies on 

a more general set of criteria for assessing model fit. Furthermore, to assess 

the goodness of fit, two different statistical methods can be used. These 

methods are the deviance and Pearson Ê�. These methods are approximates for 

small samples. But, for large samples, the two methods are statistically 

equivalent. These methods measure the discrepancy of fit between the 

maximum log-likelihood achievable and the achieved log-likelihood by the fitted 

model (Jiang, 2001, Kutner et al., 2005).   

Table 4. 1: Fit range of models 

Model Link function Fitted values 

Null model %(m�) = 	9 m̂� =	 m̂(�) 
Intermediate model %(m�) = /Vo m̂� =	%,�(/Vo) 
Saturated model %(m�) = 	9� m̂� =	 m̂�(*) 

Suppose there are � observations, the fit range of models can be given as 

follows (Table 4.4). The most widely used statistic, log-likelihood whose idea is 

similarly to sum of squares for linear models for constructing criteria for 

assessing goodness of fit for generalized linear models, is Deviance. But, the 

question is what Deviance means for goodness of fit. If the deviance is huge, 

then the model “doesn’t fit very well”. And if deviance is small, it “fits well”. 

But, it is not possible to be specific. Therefore, the scaled deviance of the 

intermediate model is given by 

 Ë(c; m̂) = 2`�Wm̂(*), s; cY − 	�(m̂, s; c)b 
   =	∑ 2�� �?� ÃrWm̂(*)Y − 	rWm̂�YÄ − 	{Wm̂(*)Y + {Wm̂�Y� sÌ����  

   = 
Í∗(c;Îd)� ≥ 0, 
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where  l(μS, ψ; y) is the log-likelihood under the current model, lWμS(Ñ), ψ; yY is the 

log-likelihood under the maximum achievable (saturated) model, μS is the MLE 

in the intermediate model, and D∗(y; μS) is called the deviance of the 

intermediate model. The general aim of the deviance is to minimize D (Ë(c; m̂)) 
by maximizing �(m̂, s; c). Furthermore, the deviance is used to compare two 

nested models having Ó� and Ó� parameters respectively, where Ó� < Ó�. Let m̂� 
and m̂� denote the corresponding MLEs. 

Therefore, the test statistic is 

Ë∗(c; m̂�) −	Ë∗(c; m̂�)s = 	−2\�(m̂�, s; c) − 	�(m̂�, s; c)^~OÔÕ,ÔÖ� . 
If s is unknown, it is normally estimated from the large model: 

s� = 1� −	Ó� <�� (?� −	m̂��)��(m̂��)
�

��� , 
where  �(m̂��) = ×Ø"(��)Ø(�) =	���$�(?�)/s. 

For unknown s, it can be estimated by s = Í�,�, where � is the number of 

observations and � is the number of parameters. Ë (or Ë∗) has an asymptotic 

chi-square distribution with �	– 	� degrees of freedom. To use this statistical 

methods, asymptotic properties of the goodness-of-fit test of the current model 

should be satisfied (Schabenberger and Pierce, 2002, Der and Everitt, 2002). 

For the measure of goodness-of-fit, Pearson O� is used. For the categorical 

dependent variable, this indicator is quite indicative of the O� statistics. 

Furthermore, Pearson’s O� test examines the sum of the squared differences 

between the observed and expected number of cases per covariate pattern 

divided by its standard error. For ordinary logistic regression, let � 
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observations are independently sampled, a covariate pattern is defined to be a 

unique set of the Q�’s, where � = 1, . . . , �, and §3 will represent the number of 

subjects with the same covariate pattern where - = 1, . . . , Ú represents the 

number of unique covariate patterns. For the estimated probabilities ¬S�, the 

values are the same for all §3 subjects in the same covariate pattern. Let ?� 
represents the outcome for all �	�'subject, and ?3 represents the sum of the 

observed outcomes in the -�' covariate pattern. The Pearson’s O� goodness-of-

fit for logistic regression is expressed as the sum of the squared Pearson’s 

residuals, that is 

O� =	< (?3 −	§3¬S3)�§3¬S3(1 −	¬S3)
Û

3��  

is distributed approximately chi-square with Ú– (� + 1) degree of freedom, §3¬S3 

is large for every -, Ú is the number of covariate patterns and � is the number 

of independent covariates model. 

In 1980, Hosmer and Lemeshow developed a set of goodness-of-fit tests to 

avoid problems associated with the asymptotic distribution of O� −test. Using 

(Hosmoer and Lemeshow, 1980) suggestion, subjects have to be grouped into % 

groups and O� – test is estimated using the amalgamated cells. Therefore, to 

use Hosmer and Lemeshow recommended method, observations have to be 

partitioned into %	 = 	10 equal-sized groups based on their ordered estimated 

probabilities. Then, 

Ü±Ý� =	< WÞ� −	}�Y�
}�W1 −	}� ��⁄ Y		~		Oß�

��
���  

where �� = number of observations in the ��' group Þ� = ∑ ?���  = observed number of cases in the ��' group  }� = ∑ �̂���  = expected number of cases in the ��' group 



65 

 

For fitting logistic regression models using complex survey data, the sampling 

weight can be calculated as the inverse of the product of the conditional 

inclusion probabilities at each stage of sampling. This represents the number 

of units that the given sampled observations represented in the total 

population. Expanding each observations by its sampling weight produces a 

dataset for the l units in the total population. Therefore, for complex survey 

Hosmer-Lemeshow goodness-of-fit test, the observed and expected cell counts 

are the total population size (Archera et al., 2007). 

4.5 Data analysis using survey logistic model 

The data analysis for this study was done using SAS version 9.2. The deviance 

was used to compare alternative models during model selection. Change in the 

deviance was used to measure the extent to which the fit of the model improves 

when additional variables were included. To avoid confounding effects, the 

model was fitted in two steps.  The model was fitted to each predictor variables 

one at a time. In stage two the significant predictors were retained in a 

multivariate logistic regression model. In addition to the main effects, possible 

combinations of up to three-way interaction terms were added and assessed to 

further avoid and mitigate the problem of confounding. Therefore, the main 

effects and the possible combinations of up to three-way interaction terms were 

fitted. The selected model was the one with the smallest change in deviance 

compared to all possible models.    

Let the response y£àá = 1 if the ��' person has been positive for malaria rapid 

diagnosis test and y£ = 0 otherwise. Therefore, the fitted survey logistic model is 

given as 

   �ª%� W¬��'Y = log ä å�B°�,	å�B°æ = D��'V o 
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where, ¬��' = }(?�) = 	P(y£ = 1), D��'V  is a vector of appropriately coded values of 

the explanatory variables and o is a vector of unknown parameters.  

The objective of the analysis is to identify the individual characteristics that 

could be associated with the malaria rapid diagnosis test outcome. On the 

other hand, this study focused on identifying the household characteristics 

which could be associated with the increase/decrease of the number of malaria 

infected household members. These household characteristics which were 

included in the model are main source of drinking water, time taken to collect 

water, toilet facilities, availability of electricity, radio and television, number of 

persons per room, main material of the room's wall, main material of the 

room's roof, main material of the room's floor, use of indoor residual spray in 

the past twelve months, use of mosquito nets, number of nets per person, 

family size, region and altitude. The individual characteristics are gender and 

age. 

To make statistically valid inferences, the analysis of the data from the study 

accounted for design effects of the study. The SAS procedure (PROC 

SURVEYLOGISTIC) which performs logistic regression for categorical responses 

in sample survey data was used (SAS, 9.2). The maximal model with significant 

effects is given in Table 4.2. These models have the smallest deviance (−2�ª%Å) 
amongst all the nested models with the three-way interaction effects. Based on 

the final model, six interactions reduced the deviance (−2�ª%Å). Therefore, the 

final model includes all the main effects and the six interaction effects.  
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Table 4. 2: Type 3 analysis of effects for the survey logistic model   

Effect DF Chi-Square Pr > ChiSq 

Age  1 14.6585 0.0001 
Gender 1 24.3933 <.0001 
Family size 1 1.9782 0.1596 
Region 2 1.7835 0.4099 
Altitude 1 0.1126 0.7372 
Main source of drinking water 2 56.4991 <.0001 
Time to collect water 1 851.0891 <.0001 
Toilet facilities 2 4.7555 0.0928 
Availability of electricity 1 0.6455 0.4217 
Availability radio 1 1.3791 0.2403 
Availability television 1 0.7465 0.3876 
Total number of rooms 1 52.2942 <.0001 
Main material of the room's wall 2 28.571 <.0001 
Main material of the room's roof 2 38.0472 <.0001 
Main material of the room's floor 2 32.909 <.0001 
use of indoor residual spray 1 24.7274 <.0001 
Number of  months room sprayed 1 38.2539 <.0001 
Use of mosquito nets 1 15.1781 <.0001 
Total number of nets 1 4.1535 0.0458 
Main source of drinking water and main 
material of the room's roof 

4 
56.5889 <.0001 

use of indoor residual spray and use of 
mosquito nets 

1 
21.7258 <.0001 

Time to collect water and main material of 
the room's floor 

2 
10.3219 0.0013 

Gender & main source of drinking water 1 160.2781 <.0001 
Gender & main material of the room's floor 2 18.9357 <.0001 
Gender, Main source of drinking water and 
electricity 

2 
5.7837 0.0162 

Toilet facilities, availability of television, number of rooms per person, main 

material for walls, number of months the room was sprayed, number of 

mosquito nets per person, age and family size were found to be significant 

main effects. In addition to the main effects, five significant two-way interaction 

terms and one three-way interaction terms was obtained. The two-way 

interaction terms were: the interaction between main source of drinking water 

and main material of the room's roof; use of indoor residual spray and use of 

mosquito nets; time taken to collect water and floor material; gender and main 
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source of drinking water; gender and main material of the room's floor; and 

gender and use of indoor residual spray. Three-way interaction between 

gender, main source of drinking water and availability of electricity was also 

significant. Age, family size, toilet facilities, availability of television, number of 

persons per room, wall material and number of months indoor residual 

sprayed in the room were the significant main effects, which were not involved 

in significant interaction terms (Table 4.2). Accordingly, the effect of these 

variables can be directly interpreted using the odds ratio (OR). 

Tables 4.3 and 4.4 present estimates of socio-economic, demographic and 

geographic factors on RDT. Based on the result for a unit increase in age, 

implies a reduction of the odds of a positive malaria test by 3.0% (OR = 0.970, 

p - value = 0.0001). Furthermore, for a unit increase in family size, the odds of 

a positive RDT increased by 5.7% (OR = 1.057, p - value < .0001). Furthermore, 

compared to households which had no toilet facilities, those with a pit latrine 

were at lower risk of malaria diagnosis (OR = 0.725, p-value = <.0001) as well 

as households with flush toilets (OR = 0.552, p - value = <.0001). Households 

who were using mosquito nets were found to be at a lower risk of malaria 

compared to the households who were not using mosquito nets (OR = 0.91, p - 

value = <.0001). Furthermore, for a unit increase in the number of nets, the 

odds of positive malaria diagnosis test decreases by 54% (OR = 0.46, p - value 

= <0.0001) for the household.   
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Table 4. 3:  Estimates and odds ratios of socio-economic, demographic 

and geographic factors on RDT 

Effects Estimate OR 
95% C.I. 

P -value 
Lower Upper 

Intercept -3.030 0.048 0.016 0.125 0.001 
Age  -0.031 0.970 0.319 0.995 0.0001 
Sex (ref. male)           
  Female -1.820 0.162 0.053 0.418 <.0001 
Family size 0.049 1.057 1.014 1.124 <.0001 
Region (ref. SNNP)           
  Amhara -0.099 0.906 0.178 16.374 0.521 
  Oromiya -0.184 0.832 0.238 8.581 0.183 
Toilet facility (Ref. No facility)     
  Pit latrine -0.3213 0.725 0.575 0.943 <.0001 
  Toilet with flush -0.5935 0.552 0.432 0.909 <.0001 
Main source of drinking water (ref. protected water) 
  Tap water -0.038 0.963 0.316 0.973 <.0001 
  Unprotected water 0.717 2.048 0.673 5.289 0.007 
Availability of television (ref. no)     
  Yes 0.304 1.356 0.446 3.500 0.024 
Number of 
rooms/person 

-0.473 0.623 0.205 1.001 0.044 

Main material of room's wall (ref. cement block)  

  
Mud 
block/stick/wood 

-2.326 0.098 0.032 0.252 0.048 

  Corrugated metal -0.620 0.538 0.471 0.826 0.001 
Main material of room's roof (ref. corrugate) 
  Thatch 1.325 3.761 1.236 9.712 <.0001 
  Stick and mud -1.960 0.141 0.046 0.364 <.0001 
Main material of room's floor (ref. earth/Local dung plaster) 
  Wood -1.701 0.183 0.149 0.443 <.0001 
  Cement -3.927 0.014 0.011 0.876 0.018 
use of indoor residual spray (ref. yes)  
  No 1.857 6.405 2.105 16.539 0.046 
Use of mosquito nets (ref. no)     
  Yes -0.095 0.910 0.299 0.949 <.0001 
Number of nets/person -0.782 0.457 0.150 0.981 <.0001 
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Table 4. 4: Estimates and odds ratios of socio-economic, demographic and 
geographic factors on RDT for interaction effects 

  
Estimate OR 

95% CI 
P -value 

Lower Upper 

Main source of drinking water and main material of the room's roof (ref. Protected 
water & cement block) 

  
Tap water and Mud 
block/stick/wood -3.339 0.035 0.007 0.177 <.0001 

  Tap water and Corrugated metal -3.377 0.034 0.007 0.184 <.0001 

  
Unprotected water and Mud 
block/stick/wood -4.008 0.018 0.003 0.130 <.0001 

  
Unprotected water and Cement 
block -1.857 0.156 0.022 1.119 <.0001 

Time to collect water and material of room's floor  (ref. Less than 30 minutes and 
earth/local dung plaster) 

  
Greater than 90 minutes and 
Cement -0.423 0.655 0.066 1.478 <.0001 

  
Greater than 90 minutes and 
Wood -0.721 0.486 0.160 1.478 0.0013 

  
Between 30 - 40 minutes and 
Cement -1.901 0.149 0.049 1.478 <.0001 

  
Between 30 - 40 minutes and 
Wood 1.554 4.729 0.821 9.220 <.0001 

  
Between 40 - 90 minutes and 
Cement -0.739 0.933 0.129 1.258 0.0011 

  
Between 40 - 90 minutes and 
Wood 0.554 3.769 1.835 7.232 <.0001 

Gender and main source of drinking water and main material of the room's roof   
(ref. Male & protected water) 
  Female and Tap water -0.069 0.933 0.624 1.397 0.0972 
  Female and Unprotected water 1.327 3.769 1.948 7.293 <.0001 
Gender and material of room's floor (ref. Male and earth/Local dung plaster) 
  Female and Cement -0.372 0.689 0.158 1.254 <.0001 
  Female and Wood -4.893 0.008 0.003 0.017 <.0001 
use of indoor residual spray and use of mosquito nets (ref. Yes &no)  
  No and Yes 0.104 1.110 0.898 1.372 0.0319 
Gender, main source of drinking water and electricity (ref. Male, protected water & 
yes) 
  Female, tap water and no 0.550 1.734 1.137 2.643 0.0172 
  Female, unprotected water and no -1.319 0.267 0.132 0.542 0.0049 
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Interaction effects  

The relationship between gender, main source of drinking water and 

availability of electricity is presented in Figure 4.1. The risk of positive malaria 

RDT is higher for unprotected water use by female respondents. However, for 

both males and females, positive RDT is low for households using tap water 

and electricity.  

 

Figure 4. 1: Log odds associated with rapid diagnosis test and gender, 
source of drinking water with availability of electricity 

With reference to households that have tap water for drinking and corrugated 

iron-roofed houses, the risk of positive malaria RDT was significantly lower 

than for households living in stick and mud-roofed houses and drinking 

unprotected water. As Figure 4.2 indicates, higher positive malaria diagnosis 

test was found for households that reportedly used unprotected water for 

drinking. 
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Figure 4. 2: Log odds associated with rapid diagnosis test and material of 

room's roof with main source of drinking water 

The OR values for the interaction between gender and main material of the 

room's floor is given in Figure 4.3. Based on the result, positive malaria 

diagnosis test was significantly higher for females than for males who reported 

that the material of the room’s floor was earth/local dung as well as those who 

reported that the material of the room’s floor was wood. There was however, 

higher positive malaria diagnosis test found for both males and females who 

reported that the material of the room’s floor was wood. 

 
Figure 4. 3: Log odds associated with rapid diagnosis test and gender with 

material of room's floor  
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Positive RDT was significantly higher for respondents living in a room with a 

wooden or earth/local dung floor than for those living in a room with a cement 

floor for respondents who took 40-90 minutes to collect water. But, for 

respondents who took less than 40 minutes to collect water, positive RDT was 

low (refer Figure 4.4).  

 

Figure 4. 4: Log odds associated with rapid diagnosis test and material of 
room's floor with time to collect water  

Prevalence of malaria was significantly higher for male than for female 

respondents who were living in a house treated with indoor residual spray 

(refer Figure 4.5). For both males and females who were living in a house that 

had not been sprayed, the risk of positive malaria was significantly higher. On 

the other hand, for males living in a house that had not been treated with 

indoor residual spraying, the risk of malaria infection for males is more than 

that of females. 
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Figure 4. 5: Log odds associated with rapid diagnosis test and use of use 
of indoor residual spray with gender  

The use of mosquito nets and applying indoor residual spray to the walls of the 

house altered the risk of malaria. The risk of malaria was low for individuals 

who lived in houses that had been sprayed and used malaria nets. It is shown 

in Figure 4.6 that the estimated risk of malaria was higher for individuals with 

no mosquito nets. 

 

Figure 4. 6: Log odds associated with rapid diagnosis test and use of use 
of indoor residual spray with use of mosquito nets  

The other result which is important to be discussed is the predictive 

accuracy/ability of the model. Therefore, the procedures used for fitting binary 

response models to data, produce statistics on the prediction ability of the 
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model, such as c, Sommer’s D (SD), Goodman-Kruskal Gamma (GKG), and 

Kendall’s Tau-a (KT). Using the SAS notation, these statistics are given by 

c = (né − 0.5(t − në −	nì)t,� 																																																											SD = (në −	nì)t,� GKG = (në −	nì)(në +	nì),� 																																																												KT = 	 (në −	nì)(0.5N(N − 1)),� 
where � is the total number of individuals in the data set, t is a total number of 

pairs given by �(�	 − 	1) 2⁄ , �& is a number of concordant pairs (a pair of 

observations is concordant if a response y is 1 and the predicted probability is 

high), �ñ is a number of discordant pairs (a pair of observations is discordant if 

the response y is 1 and the predicted probability is low), and tied pairs are 

given by t − në − nì (Agresti, 1984). The Predictive ability of the model is given 

under the association of predicted probabilities and observed responses. From 

the result it is observed that out of the 7,531,272 (informative) pairs, 86.5% 

were concordant and 0.8% were tied. The other rank correlation is the “:” 
value. This value ranges from 0 to 1. The value 0 implies there is no 

association. Moreover, : is equal to the area under the receiver operating 

characteristic (ROC) curve. Based on the values, the prediction accuracy is 

poor if c is between 0.5 to 0.6, moderate if between 0.6 to 0.7, acceptable if 

between 0.7 to 0.8 and excellent if greater than 0.8. Based on the values (c = 

0.869) the model is excellent. Furthermore, the Somers’ D (SD) statistic which 

is also related to concordance via D= 2*(c-0.5) = 0.738, is simply a rescaled 

version of concordance that takes values between -1 and 1, like a usual 

correlation coefficient instead of 0 and 1. The other value is Gamma. This value 

is the surplus of concordant pairs over discordant pairs. This value ignores 

percentage ties. Therefore, if tied pairs ignored and the ranking of two pairs 

guessed based on knowledge of the independent variable x, then it is possible 

to predict the second x. If the second value is more than the first, then the rank 
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of the second y value will be greater than the rank of the first y value. From the 

result, the gamma value is 0.542. Therefore, knowing the independent variable 

reduces our errors in predicting the rank (not value) of the dependent variable 

by 54.2%. 

4.6 Summary and discussion 

The generalized linear models using survey logistic regression provided a tool 

for assessing factors that affect malaria rapid diagnosis test. The present study 

was conducted based on the 2006 baseline malaria indicator survey in 

Amhara, Oromiya and Southern Nation Nationalities and People (SNNP) regions 

of Ethiopia. This survey was a population-based household cluster survey. 

There were 224 clusters and each cluster consists of 25 households. For this 

survey, the sampling frame was the rural population of Amhara, Oromiya and 

SNNP regions. Therefore, the data used for this study was from complex 

survey. For the statistical analysis, the study used generalized linear model. 

For this study, gender, age, family size, region, altitude, main source of 

drinking water, time taken to collect water, toilet facilities, availability of 

electricity, radio and television, total number of rooms per person, main 

material of the room's wall, main material of the room's roof, main material of 

the room's floor, incidence of indoor residual spray in the past twelve months, 

use of mosquito nets and total number of nets per person with up to three-way 

interaction effects were used for the analysis. 

Based on these facts, the findings of this study show that the following socio-

economic factors are related to malaria risk: construction material of walls, roof 

and floor of house; main source of drinking water; time taken to collect water; 

toilet facilities and availability of electricity. Besides socio-economic factors, 

there are demographic and geographic factors that also had an effect on the 

risk of malaria. These include gender, age, family size and the region where the 

respondents lived. In addition to the main effects, there were interactional 
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effects between the socio-economic, demographic and geographic factors that 

also influenced the risk of malaria. Most notable of these were the interaction 

between the main source of drinking water and the main construction material 

of the room's roof; the time taken to collect water and the main construction 

material of the room's floor; gender and the main source of drinking water; 

gender and the availability of electricity; gender and the main construction 

material of the room's floor and finally, interaction between gender, main 

source of drinking water and the availability of electricity. 

From the study, it was observed that residents living in the Amhara region 

were found to be more at risk of malaria than those living in the SNNP and the 

Oromiya regions. Similarly, houses that were treated with indoor residual spray 

were less likely to be affected by malaria. One of the most important finding to 

which may inform public health policy in the control of malaria infection was 

that households with no toilet facilities were more likely to be positive for 

malaria diagnosis test than those with good toilet facilities. From the results, it 

was observed that households with no toilet facilities were more likely to be 

positive for malaria diagnosis test. Furthermore, positive malaria diagnosis rate 

decreased with age. But, for household size, the risk of malaria increased per 

unit increase in family size. Generally, malaria parasite prevalence differed 

between age and gender with the highest prevalence occurring in children and 

females. The findings of the association between socio-economic factors and 

malaria prevalence are similar to some of the results from previous studies 

(Banguero, 1984, Koram et al., 1995, Sintasath et al., 2005). In addition to this 

in 1998 and 2000, studies were conducted by  (Ghebreyesus et al., 2000, Snow 

et al., 1998) in Ethiopia and Kenya respectively. The objectives of the studies 

were to assess different types of materials used in the construction of walls, 

roofs and floors of a house. They used generalized linear models, poisson and 

logistic models, for their study. Based on their findings, they observed 

association between any roof, wall and floor material and risk of malaria. 
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Therefore, the finding of this study gives similar findings to those from previous 

studies. 

This study suggests that having toilet facilities, access to clean drinking water 

and the use of electricity offers a greater chance of not being positive for 

malaria diagnosis. Using mosquito nets and indoor residual spray treatment on 

the walls of the house were also found to be a way of reducing the risk of 

malaria. In addition to this, having a cement floor and corrugated iron roof 

were found to be means of reducing the risk of malaria. Based on the study 

findings, different types of housing have an influence on the risk of malarial 

transmission with those houses constructed of poor quality materials having 

an increased risk. Moreover, the presence of particular structural features, 

such as bricks, that may limit contact with the mosquito vector, also reduces 

infection. Therefore, the risk of malaria is higher for households in a lower 

socio-economic bracket than for those that enjoy a higher status and who are 

able to afford to take measures to reduce the risk of transmission.   

This study suggests that with the correct use of mosquito nets, indoor residual 

spray and other preventative measures, coupled with factors such as the 

number of rooms in a house, the incidence of disease is decreased. However, 

the study also suggests that the poor are less likely to use these preventative 

measures to effectively counteract the spread of malaria.  

In this chapter, the analysis method of the study data was survey logistic 

model based and survey design effects were included. But, there are other 

variabilities in the model. These variabilities related to the errors which are 

correlated and also nonconstant variability of the error terms. Moreover, use of 

survey logistic cannot allow investigating more than one source of variation 

when modelling the explanatory variables. Furthermore, this variability was not 

included in the model. Therefore, in the next chapter, we will develop a model 

which includes the additional variabilities.  
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Chapter 5 

The risk factor indicators of malaria in Ethiopia using 

generalized linear mixed models  

5.1 Introduction 

In the previous chapter, we adopted the survey logistic model approach which 

is under generalized linear model for malaria RDT data. This model is an 

alternative statistical methodology used to identify factors affecting the malaria 

risk (Ayele et al., 2012, Natarajan, 2008). But, this model is survey based, 

whereas the kebeles are chosen at random which could result in some 

variability between the sampling units. Generalized Linear Mixed Models 

(GLMM) explore the idea of statistical models that incorporate random factors 

into generalized linear models. GLMMs add random effects or correlations 

among observations to a model, where observations arise from a distribution in 

the exponential family. The generalized linear mixed model has many 

advantages. The use of GLMMs can allow random effects to be properly 

specified and computed and errors can also be correlated. In addition to this, 

GLMMs can allow the error terms to exhibit non constant variability while also 

allowing investigation into more than one source of variations. This ultimately 

leads to greater flexibility in modelling the dependent variable. In this chapter, 

the objective is to determine the socio-economic, demographic and geographic 

factors using generalized linear mixed model.  

Classical linear models can be generalized using the Generalized Linear Models 

(GLMs) by exploring the exponential family of sampling distributions 

(McCullagh and Nelder, 1989). GLM models have an immense impact on both 

theoretical and practical aspects in statistics. To perform the analysis, there 

are a number of statistical software tools to fit the generalized linear mixed 

model. Diversified methodologies arise in the implementation and estimation in 
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the GLMMs. But, there are still plenty of room within the GLMMs framework 

for further investigation and improvements. This can overcome the over-

dispersion in the data and at the same time, accommodate the population 

heterogeneity. Therefore, the addition of random effects allows accommodating 

correlation in the context of a broad class of models for non-normally 

distributed data. These models become more applicable in practical situations. 

The generalized linear mixed model is applicable in a wide range of areas. For 

example in modelling problems in plant breading, modelling HIV infections in 

clinical trials (Jiang, 2007), for joint modelling of multivariate outcomes, etc 

(Molenberghs and Verbeke, 2005). 

Therefore, this chapter is organized as follows. The theory behind GLMM is 

presented in sections 5.2 and 5.3. The fitted result of RDT malaria data is 

presented in section 5.4. Summary and discussion of the chapter is presented 

in section 5.5. 

5.2 Generalized linear mixed models (GLMMs) 

Generalized linear mixed models are extension of the GLMs. The term 'mixed' 

in the GLMMs means that the random effects together with the fixed effects are 

both contained in a model for an outcome of interest to get a modified model.  

The word “generalized” refers to nonnormal distributions, but the model can 

include normal distributed data as a special case. This model can overcome the 

over-dispersion in the data and at the same time, accommodate the population 

heterogeneity. The main difference in the structure of GLMMs as compared 

with GLMs is the incorporation of the random effects, term ò�, into the linear 

predictor. But also the nature of the data may dictate the use of GLMMs rather 

than GLMs. Therefore, the addition of random effects allows accommodating 

correlation in the context of a broad class of models for non-normally 

distributed data. These models become more applicable in many practical 
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situations. But, the calculation becomes very complicated because of the 

inclusion of random effects. 

The structure of the generalized linear model involves three points. These 

points are the distribution of the data, the function of the mean to be modelled 

and the predictors.   

For model formulation, let i�� be the jth response measured for cluster �, �	 =	1, . . . , l, �	 = 	1, . . . , ��. In addition, let 7� denote the ni - dimensional vector of all 

measurements available for cluster i. Conditionally on random effects ò�, it 

assumes that the elements i�� of 7� are independent, following generalized 

linear mixed model, but the linear predictor extended with subject specific-

regression parameters ò�. Based on these facts, it is assumed that all i�� have 

densities of the form 

(�W?��óò� , o, sY = exp ©?��Wr��Y − 	ΨWr��Yø + 	:W?��, sY®, 
where the mean m��, the conditional mean of ?�� for a specific set of unknown 

parameters r and s, and for known functions s(. ) and È(. ) is modelled through 

a linear predictor. In the expression, r and ø are the natural parameters. The 

linear predictor contains fixed parameters o as well as subject-specific 

parameters ò�,  
  %Wm��Y = %\}W?��óò�Y^ = QôXV o + õôXV ò�      (5.1) 

for a known link function %(. ), and QôX and õôX are the fixed and random effects 

vectors containing known covariate values, o and ò� are p-dimensional and q-

dimensional vectors of known covariate values corresponding to fixed and 

random effect parameters respectively, as in the normal mixed models  

(McCullagh and Searle, 2001).  
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5.3 Estimation and prediction of the fixed and random effects 

Estimation method for fixed effects in generalized linear models which is based 

on normality assumptions is standard for linear models. For many GLMs, 

maximum likelihood is a standard method of estimation. Parameter estimates 

of the model can be obtained by partially differentiating the log-likelihood of  

(5.1) with respect to β and ò£, and iteratively solving the resulting estimating 

equations. But, evaluating the likelihood method is difficult for GLMMs.  

For a set of observations c� where, �	 = 	1, 2, . . . l, the interest is in the parameter 

estimates. The density function of c� can be denoted as (�(?��|ò�, o, ö). The 

random effects model can be fitted by maximization of the likelihood. Therefore, 

the contribution of the ��' cluster to the likelihood is given by  

	(�W?��óò�, Ü, öY = 	�∏ (��(?��|ò�, o, ö)����� (�(ò�|Ü)#{�. 
where it is important to note that the random effects ò£ are integrated out to get 

the marginal likelihood equation for the parameters of interest. Moreover, the 

likelihood for o, ö and G can be derived from the likelihood function Å. This 

function can be written as 

Å(o, Ë, s) = 	ø	(�W?��óò�, Ü, öY =	ù
��� øúø(��W?��óò�, o, sY��

��� (�(ò�|Ü)#{�
ù

��� . 
To find the estimates, there are two main approaches, Classical and Bayesian 

approaches. In classical inference, the concern is about the likelihood function Å(o, Ë, s). The parameter estimate is treated as fixed but unknown. By 

differentiating the log-likelihood function, the parameter estimate which 

maximizes the likelihood function of the observed data can be obtained. But, it 

is difficult to evaluate the marginal likelihood function when this likelihood 

involves high dimensional integral. Various methodologies were proposed in the 
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computation of the likelihood function and hence the maximum likelihood 

estimates (Wu, 2010). 

Maximum Likelihood method (ML) 

For parameter estimation, maximum likelihood method is the traditional 

methodology. Estimation method of fixed effects in GLMs is based on the well-

defined log-likelihood and is simple to construct an objective function based on 

the independence of the data. In linear mixed models, estimation of parameters 

is based on the marginal likelihood of the data and can be evaluated 

analytically (Jiang, 2007).  With GLMMs, to obtain maximum likelihood 

estimates, one would maximize the marginal likelihood 

Å(o, r, c) = 	� ((?|ò)((ò)#ò              (5.2) 

where, ((?|ò)  is the conditional distribution of the data and ((ò) is the 

distribution of random effects.  Evaluation of the likelihood involves integration 

over the distribution of random effects.  Because the random effects enter the 

model non-linearly, the integration is often complicated and even intractable 

(Littell et al., 2006, Molenberghs et al., 2001, Schall, 1991). The use of 

maximum likelihood approach in Generalized linear mixed models was studied 

by (Schall, 1991). Based on the findings of this research, the numerical 

integration method is found to be only appropriate for simple cases in which 

the likelihood function involves only integrals of low dimension where such 

integrals can be factorized into a product of low dimensional integral. 

Restricted Maximum Likelihood method (REML) 

An extension method of the ML method is Restricted Maximum Likelihood 

method. It is mainly used for estimating the variance component. This method 

maximizes the likelihood of linear combinations of elements y. Following 

similar procedures as in Maximum Likelihood method, the estimates can be 
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obtained by differentiating the log-likelihood function with respect to the 

variance components, i.e., 

Å(o, r, c) = 	ú ((?|ò)((ò)#ò. 
 This expression may be integrated as integrating the mean parameter o out of 

the likelihood function. The EM algorithm for REML estimation is given by 

(Laird, 1982). But, it is important to note that the bias of the MLE depends on 

the dimension of the mean parameter o (McCullagh and Searle, 2001, Schall, 

1991).   

Penalized quasi-likelihood, Laplace approximation and Guassi-Hermit 

quadrature methods 

To approximate the likelihood to estimate GLMM parameters, different methods 

have been proposed by different researchers. These methods include pseudo 

and penalized quai-likelihood, Laplace approximation and Gauss-Hermite 

quadrature (Breslow and Clayton, 1993, Schall, 1991, Wolfinger and O’Connell, 

1993 , Pinheiro and Chao, 2006).  

The Pseudo-likelihood Approach 

This approach is based on a decomposition of the data into the mean and an 

appropriate error term, based on a Taylor series expansion of the mean that is 

a non-linear function of the linear predictor (Molenberghs and Verbeke, 2005). 

This non-linear function arises after inverting the link function in order to 

express the conditional mean as a function of the linear predictor. The basic 

idea is to remove non-linearity by applying Taylor series (linearization) to %,�(Oo	 + 	�û) about the current estimates of o and û. Hence, this approach is 

referred to as the linearization method. SAS GLIMMIX procedure 
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documentation (SAS, 9.2) summarizes this approach in the following way.  

Once the linearization of m about (oP) and (û1) has been applied, the model  

Ó = /o + üû + 	ý 
is a linear mixed model with the pseudo-response Ó, fixed effects o and random 

effects û as well as �$�(ý) = �$�(Ó|û) = D1,�ÆÖÕÉÆÖÕD1,�
, where D1 = (²þ�Ö(�)²� )�,1�1.  The 

matrix � is a diagonal matrix containing the variance function of the model and � is a diagonal matrix, i.e � = 	s�, where � is an identity matrix. 

The marginal variance in the linear mixed pseudo model can be defined as  

�(r) = ü�üV +	D1,�ÆÖÕÉÆÖÕD1,�
     (5.4) 

where r is (� × 1) vector containing all unknowns in Ü and É.  Based on the 

linearized model, an objective function can then be defined assuming that the 

distribution of Ó is known.  The maximum log pseudo-likelihood and restricted 

log pseudo-likelihood for Ó are given as follows respectively. 

�(r, �) = − �� �ª%|�(r)| 	−	�� �V�(r)V�	 −	³� �ª%	(2¬)  
and ��(r, �) = − �� �ª%|�(r)| 	− 	�� �V�(r)V�	 −	�� �ª%|/V�(r)V/|	–	³,3� �ª%	(2¬)  
where �	 = a − /(/V2,�/),�/V2,�a, ( denotes the sum of frequencies used in the 

analysis and - denotes the rank of /. At convergence the fixed effects 

parameters are estimated and the random effects are predicted as 

o� = (/V2(	[),�/),�/V2(	[),�
 

       û[ =	Ü��V�(r�),��̂ 
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The parameter estimates are then used to update the linearization, which 

results in a new linear mixed model.  The process continues until the relative 

change between parameter estimates at two successive iterations is sufficiently 

small. 

There are two commonly used approximations based on Taylor’s expansion of 

the mean. A subject specific expansion referred to as the penalized quasi-

likelihood (PQL) approximation uses oP = 	o� and û1 = 	û[, which are the current 

estimates of fixed effects and predictors of random effects. The population-

average expansion referred to as the marginal quasi-likelihood (MQL) uses oP = 	o� and û1 = 	0, which are the same current estimates of fixed effects and the 

random effects are not incorporated in the linear predictor. 

Penalized Quasi-Likelihood method (PQL) 

The quasi-likelihood method was developed by (Wedderburn, 1974). The quasi-

likelihood function is constructed with fewer assumptions than the likelihood 

function. However, the construction of the quasi-likelihood function requires 

the relationship between the mean and variance of the data.  

Let r = 	 (r�, . . . , r&)V and Ü(r) = 	#�$%Wr�Ç�Ö , . . . , r&Ç��YV
 where Ç�B is a �� × �� identity 

matrix. Assume the random effects �� are independent and distributed as l(0, r�
�Ö) the integrated likelihood of (9, r) is 

Å(9, r) ∝ (2¬),� �⁄ |Ü|� �⁄ ú�D� �− 12ø<#�(?�; m�) −	12 {VÜ(r)�	�
��� � #� 

Therefore, a conditional algorithm of quasi-likelihood function �� is given by 

	�� = #�(?�; m�) = 	ú ?� − 	 ?� 	���(m�) 	# Î�
��  
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where, ?� are independent measurements from a distribution with density from 

the exponential family, � is the unspecified constant of proportionality relating �$�(?�) to �$�(m�) (Goldstein, 2011, Lin, 2007). 

Some researchers further included a term into the quasi-likelihood function to 

form the penalized quasi-likelihood (PQL) method. For random effects which 

follow a normal distribution with mean 0 and a variance-covariance matrix Ü, 

the penalized quasi likelihood function is given by 

  Ó�Å = 	∑�� −	��oVÜ,�o          (5.3) 

where, oVÜ,�o is the penalized term added into quasi-likelihood function. 

Moreover, arbitrary selection of the value of o can be prevented using the 

added term (Green, 1990, Wolfinger, 1993).  

Therefore, the maximum quasi-likelihood equation can be obtained by 

differentiating equation 5.3. 

But, the estimates which are obtained using PQL in GLMMs are biased towards 

zero for some variance components. Biased-corrected PQL was suggested by 

(Lin and Breslow, 1996). This study suggested a method which improves the 

asymptotic performance of PQL estimates. But, the suggested method inflates 

the variance. 

Marginal quasi-likelihood (MQL) 

The marginal quasi-likelihood method is similar to PQL method. The difference 

between the two methods is that the Taylor series expansion which is given by  

i�� =	m�� +	∈��= ℎWD��V o +	���V ��Y +	∈�� 
is considered for the mean around the current estimates o� and {�� = 0 for the 

fixed and random effects respectively. For MQL, the result is similar except for 
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the current predictor of the mean m̂�� is of the form WD�� , o�Y  instead of ℎWD��V o� +	���V {��Y. Therefore, the Pseudo data can be written as 

i�∗ =	��,�(i� −	m̂�) +	O�o� 
and satisfies the linear mixed model 

i�∗ ≈ 	 O�o +	��{� +	∈�∗. 
The calculation between pseudo-data is used to fit the model iteratively. This 

estimate is known as marginal quasi-likelihood (MQL) estimate (Breslow and 

Clayton, 1993, Goldstein, 2011). 

Approximation of the integrand using Laplace Approximation and Gausse-

Hermite quadrature 

Laplace Approximation 

Laplacian approximations are frequently used and evaluate marginal 

likelihoods or posterior means functions (Barndorff-Nielsen and Cox, 1989, 

Breslow and Clayton, 1993, Tierney and Kadane, 1986, Wolfinger, 1993). To 

standard Laplace approximation can be described as follows.  

Suppose that we want to evaluate integrals of the form (Molenberghs and 

Verbeke, 2005) 

Ç = 	� �,�(�)#ò.                     (5.5) 

Suppose ò[ is the value of ò for �	 is	 minimized.	 Then,	 the	 second-order	 Taylor	expansion	of		�({)	around	ò[	is	of	the	form		
	 	 �({) 	≈ 	�Wò[Y +	�� 	(ò −	ò[)V�VV(ò)(ò −	ò[)	
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where �VV(b) is equal to the Hessian of  �, i.e. the matrix of the second order 

derivatives of �, evaluated at ò[. The integral I can be approximated by replacing �({) in (5.5). Thus, 

  Ç	 ≈ 	 (2¬)� �⁄ ó�VVWò[Yó,� �⁄ 	�,�(�).     (5.6) 

The Laplace approximation to the integral uses many different estimates of ò as 

necessary according to the different modes of the � function. Each integral in 

(5.5) is proportional to an integral of the form (5.5), for a �({) function given by 

 �({) = ($; s),� 	∑ \?��(/��V o +	ü��V ò����� ) − 	"(/��V o +	ü��V ò)^ −	�eòV�,�ò, 

such that Laplace's method can be applied. Here, the model ò[ of � depends on 

the unknown parameters o, s and �.  

Gauss-Hermite Quadrature 

Gauss-Hermite Quadrature (GHQ) is often used for numerical approximation of 

integrals with Gaussian kernels. In generalized linear mixed models random 

effects are assumed to have Gaussian distributions, but often the marginal 

likelihood, which has the key role in parameter estimation and inference, is 

analytically intractable. Furthermore, Gauss-Hermite Quadrature is feasible 

tools for numerical evaluation of the integrals. 

The likelihood function for two level logistic models can be written as follows 

ú ¬�#W¬��Y*�BW1 −	¬��Y��B,	*�B$(({�; Ü)#��%
,%  

and ¬�� =	 #1 + exp	(D��o�$,�
  ;  o� = 	o +	�� 

where (({�; Ü) is assumed to be a multivariate normal density. 

(({�; Ü) = 	ú ÓW��Y(W��Y%
,% #�� . 
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Therefore, Gauss-Hermite quadrature approximations is  

ú Ó(�)%
,% �,×Õ#�		 ≈ 		<ÓWD�Y��

&
��� 																																												(5.7) 

where ∑ Ó(D�)��&���  is a Gauss-Hermite polynomial evaluated at a  series of 

quadrature points indexed by q. A model with a single random intercept can be 

represented as  

ÓW��Y = 	ø exp	(D��o +	��)	1 + 	exp	(D��o +	��)� . 
In general, quadrature methods can be applied to poisson, binomial, 

multinomial and ordered category models. But, Gauss-Hermite quadrature is 

effectively limited to the normal distribution because of the exponential term in 

equation 5.7.   

Simulated Maximum Likelihood method (SML) 

Simulated Maximum Likelihood (SLM) method was suggested by (Geyer and 

Thompson, 1992, Gelfand and Carlin, 1993). (McCulloch, 1997) studied the 

use of Simulated Maximum Likelihood method on the GLMMs. In SML method, 

the likelihood is estimated directly without considering the log-likelihood 

function by simulation. The simulation to estimate the value of the likelihood is 

given by 

  Å(o, f, Ü|?) = �(�|'(?|�, o, s)('(�|Ü)#� 

												= ú�(�|'(?|�, o, s)('(�|Ü)ℎ'(�) ℎ'(�)#�						 
										≅ 	 1l <(�|'W?ó�(3), o, sY('(�(3)|Ü)ℎ'(�(3)

ù
3�� 								 

where, l is the total number of simulated value, ℎ'()) is the importance 

sampling function and ) is a vector of random effects simulated from this 
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distribution by any sampling technique. In theory, the estimates of the 

parameter are independent of the choice of importance sampling function, ℎ'(�) and calculated numerically based on the likelihood function 

approximated using simulations. The efficiency of estimates depends on the 

choice of importance sampling function. If the importance function in SML is 

far away from the density of the random effects, the resulting estimator may be 

inefficient. Therefore, it is important to be careful when implementing SML 

method (McCullagh and Searle, 2001). 

Empirical Bayes Estimation 

In practice, estimation of the marginal parameters (o, Ë	and	s) of the marginal 

distribution of 7ô is important. But, estimating the random effects ò� is also 

very important. To detect special profiles, the estimate of subject variability is 

very important. For the prediction of subject-specific evolutions, estimating the 

random effects are important. Therefore, Bayesian inference is based on the 

posterior function which is given by 

 ((ò�│?, o, Ë,s) = 	 ³(�|ò�,o,s)³(ò�|u)� ³(�|ò�,o,s)³(ò�|u)ñò� 

based on a density function on ?, namely ((?|ò�, o, s) and a posterior 

distribution on the parameter (Wu, 2010). Therefore, prior information has to 

be collected on the parameter θ and assign a suitable prior density to the 

parameter θ in order to construct the posterior density. The parameter θ is 

treated as random variables in Bayesian approach (Lee, 2004). However, there 

exists arguments about the specification of the prior density, i.e., either 

conjugate prior is chosen just for convenience or the choice of prior can be 

subjective. In addition to this, the aim is also to evaluate the posterior density 

and obtain the posterior mean as the Bayesian estimate.    
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Monte Carlo Newton Raphson method (MCNR) 

Newton Raphson method is a popular iterative method to find the maximum 

likelihood estimates. If the log-likelihood function on the data ? and the 

parameter space can be denoted by Å(o, f, Ü|?). Then ÅV(o, f, Ü|?) and ÅVV(o, f, Ü|?) 
are the first and second order derivatives respectively. In each Newton Raphson 

iteration, current parameter estimates can be updated to the next iteration and 

the procedure continues until convergence is achieved. For GLMMs, the 

likelihood function and its derivatives may be difficult to evaluate in the 

Newton Raphson procedures. The use of Monte Carlo Newton Raphson method 

for calculation of the estimates in the GLMMs was proposed by (Kuk and 

Cheng, 1997). The Monte Carlo algorithm requires the random effects being 

simulated from a conditional function given the observed y and the current 

estimate. As shown by (Kuk and Cheng, 1997) the convergent rate for MCNR 

was faster than that of Monte Carlo EM. So, it is computationally more 

efficient. 

Monte Carlo EM method (MCEM) 

An iterative method for the computation of maximizer on the posterior density 

is the EM algorithm. The algorithm includes an E-step in expectation and then 

follows an M-step in maximization. The EM algorithm is popular estimation for 

data with missing values, i.e., the basic idea of EM algorithm is that for a given 

observed data, it is assumed to have some missing data to the random effects 

(Dempster et al., 1997). In the E-step, the expectation can be computed over 

the missing data to approximate the likelihood function. Afterwards, a 

maximizer of the likelihood given the working values of the parameter estimates 

in the M-step can be found. The conditional distribution is updated using the 

new maximizer and the algorithm is iterated until convergence is reached. The 

implementation of the use of Monte Carlo EM algorithm where the E- step by a 

Monte Carlo method was suggested by (McCulloch, 1994, Wei and Tanner, 
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1990). Therefore, the random effects of the GLMMs can be treated as missing 

values and apply the EM algorithm. However, the expectation is too difficult 

when the density of the data cannot be written in a closed form. 

Gibbs sampler 

Bayesian approach is an alternative method to Classical approach. In order to 

obtain Bayesian estimates, the prior distribution on each parameter is 

specified. After specifying the prior distribution, get the posterior mean of each 

parameter from its conditional distribution. The value have to be specified. 

Markov chain Monte Carlo and in particular Gibbs sampling for fitting GLMM 

for point referenced data was suggest by (Diggle et al., 1998). The Gibbs 

sampler is a special case of the Metropolis-Hastings algorithm and has been 

found to be very useful in many multidimensional applications. Therefore, the 

standard implementation of the Gibbs algorithm requires sampling from the 

full conditional posterior distributions. This application has the following 

forms: 

�(o3|o,3, 8, 7) 	∝ 	∏ ∏ +,-(/�B.�..v�B)�	/+,-	(/�B0 �/	��)���������                                       (5.8)             

�(8�|8,�, j�, s, 7) 	∝ 	∏ ∏ +,-(/�B.�..v�B)�	/+,-	(/�B0 �/	��)��������� |S�|,ÖÕ		µ         

exp(− �� (8� −	Ê,�,�S,�,�8�)� (S�),�)                     (5.9) 

�(s|8, j�) ∝ 	 |S|,ÖÕexp	(− �� (8�S,�8 + �Ö�)s,(ØÖ/�)           (5.10) 

�(j�|8,s)~	Ç����)�	Ü$§§$	($� +	�� , {� +	�� 	8��8)      (5.11) 

where, o,3 = (o�, … , o3,�, o3/�, … , o3)�, 8,� = (û�, … , û�,�, û�/�, … , û�)�,  S,�,� =	S�,,�� =Èª�(û,�, û�),S,� = Èª�	(û,�, û�), É3¹ = 	1(s; #3¹) and  

 S,� =	j� −	S�,,�S,�,�S�,,� (Wu, 2010). 

Samples from �(j�|8,s) can be drawn easily as this is a known distribution. 

The conditionals of the other parameters do not have standard forms and a 
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random walk Metropolis algorithm with a Gaussian proposal density, having 

mean equal to the estimate from the previous iteration and variance derived 

from the inverse second derivative of the log-posterior, could be employed for 

simulation. The likelihood calculations in (5.8) and (5.10) require inversions of 

the (� − 1) × (� − 1) matrices, Ê,�, i	 = 	1, . . . , n	 and the �	 × 	� matrix S, 

respectively. Matrix inversion is an order three operations, which has to be 

repeated for evaluating the conditional distribution of all � random effects û� 
and that of the s parameter, within each Gibbs sampling iteration. This leads 

to an enormous demand of computing capacity and makes implementation of 

the algorithm extremely slow (or possibly infeasible), especially for large 

number of locations (Jiang, 2007). 

Inference for fixed and random effects 

In a regression analysis, the objective is to see if an effect is associated with the 

outcome. After the analysis, if the covariates has no association with outcome, 

then o� = 0 for � = 1,… , � − 1. If the covariates associated with the outcome, then o� ≠ 0. For random effects, it can be concluded that there is no association with 

outcome when the effect has zero variability. Since GLMMs are based on 

maximum likelihood approach, the obtained estimates are asymptotically 

normally distributed; as a result, tests such as the Wald-type as well as 

likelihood ratio tests can be used as similar to linear mixed models.  Inferences 

for linear mixed model are discussed below. 

Inference for Fixed effects 

(Verbeke and Molenberghs, 2000) show that inferences about the fixed effects 

can be done using the approximate Wald tests (also referred to as Z-test), the t-

tests and F-tests.  The Wald test as well as the associated confidence of o� is 

obtained from approximating the distribution of (o�� −	o�) ). �	(o��)Ì  by a standard 

univariate normal distribution of o��, �	 = 	1, … , �.  More generally, it may be of 
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interest to construct confidence intervals and tests of hypotheses about certain 

linear combinations of the components of o.  For instance, given any known 

matrix Å, a test for hypothesis 

�� ∶ 3o = 0 versus �4 ∶ 3o ≠ 0, , 

follows from the fact that the distribution of  

Wo� 	– 	oYVÅV 5Å(</�V�
,�/)ù
���

V Å�V6
,� Å((o� 	– 	o) 

follows asymptotically a chi-square distribution with rank (L) degrees of 

freedom.  Alternatively, approximate t and F statistics can be used for testing 

hypothesis about the fixed effects. In fact, it is pointed out that the t- and F - 

statistics rectify the downward bias of the standard errors in the Wald test 

statistics due to failing to take into account the variability introduced by 

estimating the variance parameters. For large samples, large sample normality 

of estimators can be used to utilize Wald tests. This can be specified individual 

parameters as o�� −	o�,� 7�$�8%(o��)Ì 		~	Æl(0,1) or for a set of linear combinations 

of the parameters, ÅVo� −	ÅVo�	~	Æl(0, ÅVÇ,�Å) where Ç represents the observed or 

expected information matrix. An approximate F test can be carried out by 

dividing the Wald test by the numerator degrees of freedom and approximating 

the denominator degrees of freedom (�$�-	(Å)). There are several methods that 

are available for estimating the denominator degrees of freedom; one of which 

is the Satterthwaite approximation. All these tests are based on large sample 

approximation.  It is worth noting that different methods lead to different 

results. This is due to the fact that different subjects contribute independent 

information, which results in numbers of degrees of freedom which are 

typically large enough (McCullagh and Searle, 2001). The presence of single 

random effects or multiple random effects can be tested. For this test, the score 



96 

 

test can be used. This test was proposed by (Commenges and Jacqmin-Gadda, 

1997, Commenges et al., 1994, Jacqmin-Gadda and Commenges, 1995, Lin, 

1997). The advantage of this test is that, the maximum likelihood estimators 

under GLMM are not required for testing.     

The likelihood ratio (LR) test can also be used for comparison of nested models 

with different mean structure.  The likelihood ratio test for two nested models 

is constructed by comparing the maximized log-likelihoods, say ��³'¹¹ and ��"9ñ'&9ñ 

for the full and reduced models respectively.  The two models are nested in the 

sense that the reduced model is the special case of the full model.  To compare ��³'¹¹ and ��"9ñ'&9ñ, minus twice the logarithm of the ratio of these maximized 

likelihoods can be used and the test statistic is given by 

−2 �� 4ù =	−2��	:����#�:�#��(��� ; 

comparing the statistic to a chi-square distribution with degrees of freedom 

equal to the difference between the number of parameters in the full and 

reduced models.  Small values of −2��4ù are obtained when  ��"9ñ'&9ñ is similar 

to ��³'¹¹, indicating that the reduced model is a good one.  The LR test results for 

fixed effects are not valid if models are fitted using REML rather than ML.  This 

is because REML log-likelihood functions are based on different observations, 

which makes them no longer comparable (Verbeke and Molenberghs, 2000). 

Inference for random effects 

With the asymptotic normality of parameter estimates, approximate Wald tests 

for random effects can be obtained in the same way as with the fixed effects.  

However, the normal approximation fails if the parameter to be tested takes 

values on the boundary of the parameter space.  Likewise, the likelihood ratio 

test suffers from the same problems as the approximate Wald tests. For 
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instance, suppose we have a random coefficient model with a random intercept 

and slope given by 

?�� =	o� +	��� +	(o� +	���) �� +	���   and 

U£ = var	 äU�£U�£æ, var(U£) = G = 	äG�� G��G�� G��æ. 
This model is referred to as the ‘full’ model. Here, consider the possibility that 

slopes, for example, do not vary across units. That is, consider slopes as being 

fixed rather than random such that there will be a ‘reduced’ model, which is 

given by 

?�� =	o� +	��� +	o� �� +	���   and U£ = ���, var(U£) = G��.  
For both models, assume that the �$�	(��) = 	É� =	j�Ç�.  Both the full and 

reduced models have the same mean structure, }W?��Y = 	O�o. Both however 

have different covariance models, �� =	��Ü��V +	j�Ç�. The full model has the 

usual form of �� given by 

Z£ 	= 	:1 t£�⋮ ⋮1 t£@;   hence   G =	äG�� G��G�� G��æ 

whereas the reduced model takes the form 

�� =	 Ç�    hence  Ü = 	Ü�� . 
Considering the fact that the models are nested, hypothesis test of whether 

slopes vary across units seem to be applicable.  However, testing whether 

slopes do not vary across units requires that the variance G22 in the full model 

to be equated to zero.  This means that the null hypothesis involves checking 

whether G22 takes values on the boundary of the parameter space for G22.  The 

theory that underlies the use of the likelihood ratio test is no longer 

appropriate when the null hypothesis involves a parameter in the boundary 
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space.  This is because the likelihood ratio test does no longer have ×� 
distribution with degrees of freedom equal to the difference between the 

number of parameters in the full and reduced models (Fitzmaurice et al., 2004, 

Verbeke and Molenberghs, 2000). It should also be noted that in contrast to 

the likelihood ratio test for the fixed effects, valid likelihood ratio tests are 

obtained under REML instead of ML. 

Therefore, care should be taken when using output from linear mixed model 

that was fitted to the pseudo-data.  For instance, when one compares nested 

models using the likelihood ratio (LR) test, the test should be based on the 

likelihood from the observed data rather than the likelihood corresponding to 

the linear mixed model for pseudo-data.  With regard to inference on the 

variance components, approximate Wald tests and LR test can be used as long 

as parameters to be tested are not on the boundary of the parameter space.   

Generalized linear mixed models for binary response 

Binary data can be specified either as a series of zeros and ones (Bernolli form) 

or as a frequency of ‘success’ out of ‘trials’ (binomial form). Therefore, the 

development of GLMMs for dichotomous data has been an active area of 

statistical research. By adopting a logistic or probit regression model, various 

methods for incorporating and estimating the influence of the random effects, 

have been developed (Pendergast et al., 1996). 

The logistic regression model, which includes the mixed effects, is a common 

choice for analysis of multilevel dichotomous data. In the GLMM, this model 

utilizes the logit link, namely 

%Wm��3Y = �ª%� 	Wm��3Y = �ª% z m��31 −	m��3| = 	 C��3 , 
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The conditional expectation m��3 = }(i��3|��, D�) equals �(i��3 = 1|��, D��3), i.e., the 

conditional probability of a response given the random effects. Here, i��3 

corresponds to the ��' respondent in the ��' household with -�' probabilistic 

sampling unit (PSU). 

Therefore, this model can also be written as 

 ÓWi��3 = 1ó��, D��3, ¿��3Y = 	%,�WC��3Y 
where, the inverse link function %,�WC��3Y is the logistic cumulative distribution 

function (cdf), namely %,�WC��3Y = 	 \1	 + 	�D�(−C��3)^,�.  
The logistic distribution simplifies parameter estimation, because the 

probability density function (pdf) is related to the cdf (Agresti, 2002).  

5.4 Evaluation of malaria rapid diagnosis test using GLMMs 

One of the main objectives of this study is to identify socio-economic, 

demographic and geographic factors affecting malaria rapid diagnosis test. In 

our previous discussion (Chapter 4), Generalized Linear Model (the survey 

logistics model approach) was used to identify factors affecting malaria rapid 

diagnosis test. But, this method is survey based, whereas the Kebeles are 

chosen at random which could result in some variability between the sampling 

units. Therefore, effect of Kebeles on malaria rapid diagnosis test was ignored. 

When the random effect (Kebele) is included in the analysis the model becomes 

generalized linear mixed models. Generalized Linear Mixed Models (GLMM) 

explore the idea of statistical models that incorporate random factors into 

generalized linear models. GLMMs add random effects or correlations among 

observations to a model, where observations arise from a distribution in the 

exponential family. The generalized linear mixed model has many advantages. 

The use of GLMMs can allow random effects to be properly specified and 

computed and errors can also be correlated. In addition to this, GLMMs can 
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allow the error terms to exhibit non constant variability while also allowing 

investigation into more than one source of variation. This ultimately leads to 

greater flexibility in modelling the dependent variable. 

To analyze the malaria rapid diagnosis test data PROC GLIMMIX in SAS was 

used. For this analysis, malaria rapid diagnosis test was considered as a 

response variable. Moreover, the socio - economic, geographic and demographic 

variables were considered as explanatory variables. The socio-economic 

variables are main source of drinking water, time to collect water, toilet 

facilities, availability of electricity, radio and television, total number of rooms 

per person, main material of the room's wall, main material of the room's roof, 

main material of the room's floor, use of indoor residual spray in the past 

twelve months, number of months rooms are sprayed, use of mosquito nets, 

total number of nets per person and type of nets. Geographic variables are 

region and altitude, and demographic variables are gender, age and family size. 

The mean structure is examined first by evaluating whether factors that affect 

malaria rapid diagnosis test are still important. Different method of 

estimations, Pseudo-Likelihood, Maximum Likelihood with Laplace 

Approximation and Maximum Likelihood with Adaptive Quadrature methods 

were used.  

To perform analysis using PROC GLIMMIX, it is important to assume that for 

the model which contains random effects, the distribution of the data 

conditional on the random effects is known. Therefore, the distribution is a 

member of the exponential family distributions. Moreover, the conditional 

expected value of the data takes the form of a linear mixed model after a 

monotonic transformation is applied. Using PROC GLIMMIX, for models 

containing random effects, parameter estimates could be obtained by applying 

pseudo-likelihood techniques as in (Breslow and Clayton, 1993, Wolfinger and 

O’Connell, 1993 ).  This is the default method for PROC GLIMMIX. Pseudo-
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likelihood method for generalized linear mixed models uses Taylor series 

expansions of the GLMM. The expansion is either the vector of random effects 

solutions or the mean of the random effects. These expansions are also referred 

to as the subject specific and marginal expansions. The abbreviation identifies 

the method as a pseudo-likelihood technique. But, estimation using Pseudo-

likelihood method did not converge. Furthermore, GLMMs estimation of model 

parameters can be obtained by using maximum likelihood where the marginal 

distribution is numerically approximated by the Laplace method (METHOD = 

LAPLACE) or by adaptive gaussian quadrature (METHOD = QUAD).  

Therefore, the analysis was performed using classical Gaussian and adaptive 

Gaussian quadrature as well as Laplace approximations. As discussed earlier, 

the likelihood obtained is based on numerical integration. Different numbers of 

quadrature points were used to estimate the effect of socio-economic, 

demographic and geographic variables. To identify the impact of different 

number of quadrature points, different quadrature points were used. The use 

of different quadrature points, (Q = 3, 5, 10, 20), did not lead to considerable 

difference for parameter estimation. But, for quadrature points greater than 5, 

there were slight difference for the estimation of parameters. But, there is no 

difference between parameter estimates for quadrature points 10 and 20. As a 

result, for the analysis, classical gaussian quadrature with large number of 

quadrature point was used. After the estimation of parameters, appropriate 

statistical inferences for the fixed and covariance parameters of the model can 

be performed. Tests of hypotheses for the fixed effects are based on Wald-type 

tests and the estimated variance-covariance matrix. The COVTEST statement 

option in PROC GLIMMIX enables to perform inferences about covariance 

parameters based on likelihood ratio tests. 

The assessment of the model fit was performed using the log pseudo-likelihood 

and the generalized chi-square test. The minus twice the residual log pseudo-
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likelihood of the model fit was found to be 10551.76, whereas the generalized 

chi-square was 60022.2. The ratio of the generalized chi-square statistics 

divided by the degree of freedom is given by 1.07. This ratio measures the 

residual variability in the margin distribution of the data. Since the value is 

close to 1 (1.07), this indicates that the variability in the data has been 

properly modelled and hence there was no residual over-dispersion. This 

indicates that there is no lack of fit when the random effect was introduced in 

the model. 

For the analysis, statistical inferences for the covariance parameters were 

performed. Significance tests were based on the ratio of likelihoods. The 

GLIMMIX procedure distinguishes two types of random effects. Depending on 

the parameters of the covariance structure, the procedure distinguishes 

between "G-side" and "R-side" random effects. The associated covariance 

structures (� or �) are similarly termed the G-side and R-side covariance 

structure, respectively. R-side effects are also called "residual" effects. 

Therefore, if a random effect is an element of γ, it is a G-side effect and the 

model is the G-side covariance structure. The likelihood ratio test was obtained 

by fitting the model subject to the constraints imposed by the test-

specification. The test statistic was formed as twice the difference of the log 

(pseudo) likelihoods of the full and the reduced models. The dimension of the 

parameter space is one. The random effect specified through the � matrix as G- 

side effect for the variance of the random effect is Kebele effect. The estimate of 

the variance of the kebele is significant, i.e., there is kebele-to-kebele 

heterogeneity in the RDT of malaria. Tests whether the G matrix reduced to a 

zero matrix or not was performed. This eliminates all G-side random effects 

from the model. But, the result shows that the G matrix (Ê� = 2849.63, P - 

Value = <.0001), cannot be reduce to zero matrix. Therefore, there is G-side 

effects for RDT of malaria. 
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Table 5. 1: Type 3 analysis of effects for the GLMM 

Effect Num DF F Value Pr > F 

Age  1 10.16 0.0014 
Gender 1 0.12 0.7257 
Family size 1 75.32 <.0001 
Region 2 0.02 0.9761 
Altitude 1 215.47 <.0001 
Main source of drinking water 2 6.59 0.0014 
Time to collect water 3 7.46 <.0001 
Toilet facilities 2 5.2 0.0055 
Availability of electricity 1 17.61 <.0001 
Availability radio 1 2.82 0.0732 
Availability television 1 4.5 0.034 
Number of rooms/person 1 38.49 <.0001 
Main material of the room's wall 2 12.94 <.0001 
Main material of the room's roof 2 12.27 0.0262 
Main material of the room's floor 2 13.37 <.0001 
Use of indoor residual spray 1 986.9 <.0001 
Number of  months room sprayed 1 944.72 <.0001 
Use of mosquito nets 1 2.64 0.1127 
Number of nets/person 1 13.48 0.0002 

Age and gender 1 0.19 0.9918 

Main source of drinking water and main 
material of the room's roof 

4 
4.57 0.0004 

Gender and use of mosquito nets 1 11.59 <.0001 

Time to collect water and main material of the 
room's floor 

4 14.57 0.0024 

Gender & main source of drinking water 1 33.46 <.0001 
Gender and main material of the room's floor 2 5.67 0.0035 

Gender and use of indoor residual spray 1 849.57 <.0001 

Use of mosquito nets and number of nets per 
person 

1 849.57 <.0001 

Age, gender and source of drinking water 4 8.42 <.0001 
Age, gender and availability of electricity 2 7.8 0.0004 
 

Model selection was achieved by first including into the model all predictor 

variables and then evaluating whether or not any interaction terms needed to 

be incorporated. This was achieved by fitting model effects one at a time, each 

of the interaction terms formed from the predictor variables, and retaining in 
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the model only those interaction terms which were significant. This process 

continued until the final maximal model was obtained. The final chosen model 

for the malaria Rapid Diagnosis Test contained all main effects as well as six 

two-way interaction terms, and two three-way interaction terms. The final 

model is presented in Table 5.1.  

Age, family size, altitude, main source of drinking water, time taken to collect 

water, availability of toilet facilities, availability of electricity, access to radio or 

television, number of rooms per person, main construction material of the 

rooms’ walls and floors, incidence of indoor residual spray in the past twelve 

months, number of months the room was sprayed and total number of nets per 

person were found to be significant main effects. From these main effects, the 

following were involved in the interaction effects: main source of drinking 

water; time to collect water; availability of electricity; main construction 

material of the wall room, roof and floor; incidence of indoor residual spray; 

and the use of mosquito nets. There are two three-way and eight two-way 

significant interaction terms. The three-way interaction term is between age, 

gender and main source of drinking water and between age, gender and 

availability of electricity. The two-way interaction terms are between source of 

water and roof material; between number of nets per person and use of 

mosquito nets; between gender and availability of electricity; between gender 

and floor material; between time to collect water and construction material of 

room’s floor; between gender and use of indoor residual spray; and between 

gender and number of months the room was sprayed. The interpretation of the 

results is presented as follows. 
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Table 5. 2: Estimates of odds ratio for main effects 

Effect Estimate OR 
95% C.I. 

P-value 
Lower Upper 

Intercept 0.622 1.863 1.369 2.536 <.0001 
Age -0.009 0.992 0.987 0.996 0.0002 
Gender (Ref. Male) 
  Female -0.027 0.973 0.637 1.487 0.8995 
Family size 0.037 1.038 1.018 8.118 <.0001 
Region (Ref. SNNP) 
  Amhara 0.004 1.044 0.972 1.036 0.8271 
  Oromiya 0.002 1.072 0.963 1.043 0.9053 
Altitude -0.007 0.978 0.945 0.998 <.0001 
Main source of drinking water (Ref. protected water) 
  Tap water 1.591 4.909 1.892 7.751 <.0001 
  Unprotected water 0.725 2.065 1.066 3.902 0.031 
Time to collect water (Ref. less than 30 minutes) 
  30 - 40 minutes 0.721 2.056 1.066 3.900 0.031 
  40 - 90 minutes 1.470 4.349 2.284 8.373 <.0001 
  > 90 minutes 0.069 1.071 0.959 1.065 0.6932 
Availability of toilet facility (Ref. No facility) 
  Pit latrine -0.130 0.878 0.694 0.940 0.005 
  Toilet with flush -0.112 0.894 0.610 0.956 0.0141 
Availability of electricity (ref. no) 
  Yes 0.166 1.181 0.987 1.133 0.1098 
Availability of radio (ref. yes) 
  No -0.022 0.978 0.980 1.009 0.4328 
Availability of television (ref. yes) 
  No -0.104 0.901 0.845 0.960 0.0013 
Number of rooms/person -0.057 0.945 0.908 0.982 0.004 
Main material of room's wall (Ref. cement block)  
  Corrugated metal -0.329 0.719 0.700 0.740 <.0001 
  Mud block/stick/wood -0.322 0.725 0.570 0.922 0.0086 
Main material of room's roof (Ref. Corrugate)  
  Thatch 0.006 1.006 0.995 1.018 0.0269 
  Stick and mud 0.045 1.046 1.016 1.077 0.0024 
Main material of room's floor (Ref. /Local dung plaster)  
  Cement-floor -0.174 0.840 0.624 1.132 0.2532 
  Wood-floor -0.136 0.872 0.657 1.158 0.3456 
Use of indoor residual spray (ref. No) 
  Yes -0.396 0.673 0.656 0.690 <.0001 
Number of months the room 
sprayed 

-0.053 0.949 0.945 0.953 <.0001 

Use of mosquito nets (ref. No) 
  Yes -0.009 0.991 0.999 1.019 0.0778 
Number of nets/person -0.034 0.966 0.949 0.984 0.0002 
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Table 5.2 presents odds ratio estimates associated with age, gender, family 

size, region, altitude, toilet facilities, main source of drinking water, time to 

collect water, availability of electricity, radio and television, number of rooms 

per person, main construction material of room's roof, use of indoor residual 

spray, number of months the room sprayed, use of mosquito nets and number 

of nets per person. Based on the results, for a unit increase in family size, the 

odds of positive malaria RDT Test for individuals increases by 3.76% (OR = 

1.0376, P-value < 0.0001). Furthermore, for a unit increase in altitude, the 

odds of positive malaria RDT decreases by 0.2% (OR = 0.998, P - value 

<0.0001). 

With reference to individuals with no toilets facility, the odds of malaria RDT 

was seen to be positive for more individuals with toilet with flush facilities (OR 

= 0.894, P-value = 0.0141) followed by pit latrines (OR = 0.878, P-value = 

0.005). Moreover, for a unit increase in the number of total rooms, the odds of 

malaria RDT for individuals decreased by 5.5% (OR = 0.945, P-value = 0.004).  
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Table 5. 3: estimates and odd ratios for interaction effects 

Effect Estimate OR 
95% C.I. P-

value Lower Upper 

Main source of drinking water and main material of the room's roof (ref. Protected water 
and cement block) 
  Tap water and Mud block/stick/wood -0.034 0.967 0.944 0.991 0.006 
  Tap water and Corrugated metal -0.264 0.768 0.626 0.829 0.019 

  
Unprotected water and Mud 
block/stick/wood 

-0.008 0.992 0.966 1.000 0.020 

  Unprotected water and Cement block -0.032 0.968 0.906 1.035 0.549 
Time to collect water and material of room's floor  (ref. Less than 30 minutes and 
earth/local dung plaster) 
  Greater than 90 minutes and Cement -0.039 0.962 0.857 1.079 0.5048 
  Greater than 90 minutes and Wood -0.294 0.745 1.201 1.500 <.0001 
  Between 30 - 40 minutes and Cement -0.016 0.985 0.980 1.053 0.3901 
  Between 30 - 40 minutes and Wood 0.145 1.156 1.147 1.165 0.0048 
  Between 40 - 90 minutes and Cement -0.172 0.842 1.226 1.151 <.0002 
  Between 40 - 90 minutes and Wood 0.200 1.221 1.312 1.137 0.3901 
Gender and main source of drinking water (ref. Male and protected water) 
  Female and tap water  0.0169 1.017 0.941 1.099 0.0488 
  Female and unprotected water  -0.0795 0.924 0.854 0.999 0.0467 
 Gender and material of room's floor (ref. Male and earth/Local dung plaster) 
  Female and Cement -0.0175 0.983 0.619 0.998 0.0408 
  Female and Wood 0.2741 1.315 0.859 2.014 0.0075 
Gender and use of mosquito nets (ref. Male and yes) 
  Female and no -0.034 0.967 0.964 0.969 <.0001 
Gender and use of indoor residual spray (ref. Male and no) 
  Female and yes 0.0018 1.002 0.985 1.030 0.0055 
Number of nets per person and use of mosquito nets (ref. No) 
  Yes 0.00491 1.005 1.000 1.010 0.0467 
Age and gender (ref. Male) 
  Age and female 0.0336 1.034 0.992 1.002 0.4011 
Age, gender, main source of drinking water (ref. Male and protected water) 
  Female and tap water -0.00098 0.999 0.998 1.000 0.0119 
  Female and unprotected water 0.00199 1.002 1.001 1.003 <.0001 
Age, gender and electricity (ref. Male and yes) 
  Female and no 0.00335 1.003 0.995 1.105 0.0003 
 

Interaction effects  

Figures 5.1 and 5.2 show the distribution of malaria RDT against the main 

source of drinking water for both males and females respectively. As age 

increased, positive malaria diagnosis was less likely for males than for females 
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who were using protected, unprotected and tap water for drinking. 

Furthermore, as age of respondents increased, malaria RDT was less likely to 

be positive for individuals who used tap water for drinking (OR = 0.98, P - 

Value < 0.0001) for males and (OR = 1.077, P - Value < 0.0001) for females. 

More specifically, positive malaria diagnosis rates increased with age for 

females whereas it decreased for males as age increased (Figures 5.1 and 5.2). 

The Figures further show that the gap in the Rapid Diagnosis Test between 

respondents using unprotected, protected and tap water for drinking widens 

with increasing age.  

 
Figure 5. 1: Log odds associated with rapid diagnosis test and age for male 

respondents with source of drinking water 
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Figure 5. 2: Log odds associated with rapid diagnosis test and age for female 

respondents with source of drinking water 

 
The relationship between age, gender and availability of electricity is presented 

in Figure 5.3. As the Figure indicates, positive malaria RDT decreases as age 

increases for both male and female respondents, whether or not they had 

access to electricity. However, the rate of decrease was not the same for males 

and females after controlling for other covariates in the model. The rate of 

increase for females who responded positively to having electricity was 9.14% 

higher than the other categories [OR = 1.0914, p-value < 0.001]. Probabilities 

for this interaction are presented in Figure 5.3. 

 

-10

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

L
o
g
it
(P
o
s
it
iv
e
_
R
D
T
)

Source of drinking water

Unprotected water Protected water Tap water



110 

 

 
Figure 5. 3: Log odds associated with rapid diagnosis test with age for male 

and female respondents with availability of electricity  

Interaction effects between main source of water and main construction 

material of the room’s roof are presented in Figure 5.4. From the Figure, it is 

clearly seen that with respondents who reported using tap water as well as 

protected and unprotected water for drinking, positive rapid diagnosis of 

malaria was significantly higher when the roof of the house was thatched, 

followed by those who occupied a stick and mud roof and finally respondents 

living in a house with a corrugated iron roof. The difference in rapid diagnosis 

test between the respondents’ use of tap, protected and unprotected sources of 

drinking water and having a thatch or stick/mud roof was particularly 

significant. It has also shown that for a corrugated iron roof, positive rapid 

diagnosis test was significantly lower for respondents who reported using tap 

water for drinking than for those who were using protected and unprotected 

water. 
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Figure 5. 4: Log odds associated with rapid diagnosis test and source of 

drinking water with material of the room's roof  

The other two-way interaction effect which is significant is between the time 

taken to collect water and main construction material of the room’s floor (Table 

5.1). This result is presented graphically in Figure 5.5. Positive malaria rapid 

diagnosis test was significantly higher in a room with an earth or dung and 

plaster floor than in one with cement or wooden floors for respondents who 

took < 30 minutes and >90 minutes to collect water. But, for respondents who 

took less than 90 minutes to collect water and had a cement floor, positive 

rapid diagnosis test is low. Furthermore, for respondents who took between 30 

to 40 minutes to collect water, there was lower positive rapid diagnosis test for 

respondents with an earth or dung and plaster floor and a wooden floor.  
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Figure 5. 5: Log odds associated with rapid diagnosis test and time to collect 

water with material of the room's floor 

 

The relationship between the main construction material of the room’s floor 

and gender for a household is presented in Figure 5.6. As the Figure indicates, 

positive Rapid Diagnosis Test was significantly higher for males than females 

with respondents who reported having an earth or dung and plaster floor. But, 

the result is higher for females for those who reported having a wooden floor in 

their house. There was however, no significant difference in positive rapid 

diagnosis test between females and males who reported having a room with a 

cement floor.  

 
Figure 5. 6: Log odds associated with rapid diagnosis test and material of 

room’s floor with gender 
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The interaction effect between gender and main source of drinking water is 

presented in Figure 5.7. The Figure shows that the risk of malaria for 

households using unprotected water is significantly higher than for those 

households who reported having protected and tap water for both males and 

females. Moreover, for female members of the household, the risk of malaria 

was higher for those households who reported having unprotected water.  

 

Figure 5. 7. Log odds associated with rapid diagnosis test and main source of 
drinking water with gender 

Figure 5.8 presents the interaction effect between the use of indoor residual 

spray and gender for individuals. Prevalence of malaria was significantly higher 

for male than for female respondents who were living in a house treated with 

indoor residual spraying. For males living in a house, which was not treated 

with indoor residual spraying, the positive malaria result was significantly 

higher than it was for females.   
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Figure 5. 8:  Log odds associated with rapid diagnosis test and use of indoor 
residual spray of respondents with gender  

 
 

 
Figure 5. 9: Log odds associated with rapid diagnosis test and use of 
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Similarly, the interaction effect between use of mosquito nets and gender is 

presented in Figure 5.9. As the Figure indicates, the risk of malaria is higher 

for males than for females using mosquito nets when sleeping. 

 

Figure 5. 10: Log odds associated with rapid diagnosis test and use of 
mosquito nets with number of nets per person 

As the number of mosquito nets increased, the risk of malaria was less likely 

for household members with and without nets. However, the risk of malaria 

was found to be much lower for individuals as the number of nets increased 
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of mosquito nets, the risk of malaria decreased as the number of net 

ownerships in the household increased. 
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malaria rapid diagnosis test results. In addition to the main effects, three-way 

and two-way interaction effects were identified. The three-way interactions were 

between age, gender and main source of drinking water and age, gender and 

availability of electricity. The two-way interaction effects were between main 

source of drinking water and main construction material of the room's roof, 

time taken to collect water and main construction material of the room's floor, 

age and gender, gender and main source of drinking water, gender and 

availability of electricity, and gender and main construction material of the 

room's floor.  

In the present study, the effect of socio-economic factors shows that residents 

with no toilet facilities were found to be at more risk of malaria than those with 

toilet facilities. Additionally, malaria prevalence is low for households with a 

greater number of rooms in the house. On the other hand, having more 

mosquito nets over beds was found to be one way of reducing the risk of 

malaria. The prevalence of malaria for households with access to clean water 

was found to be less. Malaria rapid diagnosis was found to be higher for those 

respondents living in thatched houses, or ones with stick and mud roofs. 

Therefore, having a house with a corrugated iron roof was found to reduce the 

risk of malaria. Furthermore, the prevalence of malaria for households with 

earth and local dung and plaster floors was found to be higher. Moreover, the 

treatment of walls of houses with indoor residual spraying was found to be one 

means of reducing the risk of malaria.  

Based on demographic factors associated with malaria, our findings showed 

that females and children are at a greater risk. Furthermore, the malaria 

prevalence rate was found to be less for households with fewer people in the 

house. Malaria prevalence was similarly associated with geographic factors. 

The association between malaria and altitude showed that malaria prevalence 

is higher for households who are living at lower altitudes. 
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In conclusion, the government of Ethiopia has adopted various strategies to 

control malaria. These include early diagnosis, prompt treatment, selective 

vector control, epidemic prevention and control. In addition to this, the 

government has supporting strategies such as human resource development, 

monitoring and evaluation. One of the government’s key goals in the control of 

malaria is to achieve the complete elimination of malaria within those 

geographical areas with historically low malaria transmission and achieve near 

zero malaria transmission in the remaining malarious areas of the country. For 

this reason, evidence based strategies to prevent malaria is an attractive 

strategy for the country (Goovaerts, 1997). Therefore, the results from this 

study showed that malaria is associated with socio-economic, demographic and 

geographic factors, mainly influenced by poverty levels. Malaria is generally 

regarded as a disease of the poor or those living in poverty. The more wealthy 

households who can afford to have toilet facilities, a greater number of rooms 

in the house, clean drinking water, and well built houses were found to be less 

affected by malaria. Furthermore, it was found that women and children are 

more vulnerable to malaria. Lack of bed nets contributes to this vulnerability. 

Moreover, as our results indicate having more bed nets is one means of 

reducing malaria and evidence suggests that households who are unable to 

afford sufficient mosquito nets, due to large families and low incomes, are more 

affected by malaria. Women and children are also exposed to mosquito bites 

while they are travelling long distances to fetch water. As the wealthier 

households were found to be less vulnerable to malaria than the poor 

households, improving the living conditions of the communities could be one 

way of achieving the malaria control goals set by the health professionals. 

The method used in this chapter investigated the variability between PSU’s 

which is kebele. But, besides PSU’s variability, there might be spatial 

variability between selected households. Therefore, this variability will be 

investigated in the next chapter.  
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Chapter 6 

Spatial distribution of malaria problem in three regions 

of Ethiopia 

6.1 Introduction 

In the previous chapter (Chapter 5), the generalized mixed model was used. 

But, the distribution of malaria is non-random across a landscape in areas of 

higher or lower transmission intensity and malaria risk. The transmissions are 

separated by greater or lesser distances from each other. Based on 

geographical aggregation, there are two distinct levels. These are, the focal unit 

of malaria transmission, the area over which human malaria is actively 

transmitted originating from a specific aquatic breeding site and the household 

or other reasonably identified point of contact between a small group of 

humans and mosquito vectors. The baseline household cluster malaria survey 

which was conducted by The Carter Center from December 2006 to January 

2007 includes the geographical locations of the reference of each household. 

Therefore, it is of interest to know whether the data display any spatial 

autocorrelation. Furthermore, it is important to check whether surveys that are 

near in space have malaria prevalence or incidence that is similar with the 

surveys that are far apart. This is important because spatially correlated data 

cannot be regarded as independent observations. If the analysis does not take 

account of the correlation structure of the data, the estimates obtained from 

the analysis may be inaccurate because of the underestimated standard errors. 

Therefore, the objective of this chapter is to undertake statistical analysis of 

malaria incidence to identify important socio-economic, demographic and 

geographic variables associated with the disease and to produce prevalence 

maps of the area illustrating the variation in malaria risk using spatial 

statistics analysis.  
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Spatial statistical analysis provides useful insights about the causes, patterns, 

and prevalence of malaria transmission. There are different methods available 

to display disease distributions and analyze spatial patterns. By considering a 

variety of linkages or looking at the patterns of clustering of a malaria 

distribution, it is possible to investigate the factors at large or small scale. 

Therefore, tools for spatial representation of events have recently improved, 

with the widespread availability of geographical information systems (GIS). To 

model spatial variation of disease as well as the relationship of malaria to 

socio-economic, demographic and geographic factors and the health care 

system, GIS technology is an important tool (Craig et al., 1999, Schellenberg et 

al., 1998).  

Spatial statistics can be divided into three methods. These are: point pattern 

analysis, methods for lattice data and geostatistics (Schabenberger and 

Gotway, 2005, Cressie, 1993). Point referenced data: - is often called geocoded 

or geostatistical data. Areal data: - is often called lattice data. Some spatial 

data sets feature both point and areal-level data. Point pattern data: - The 

response occurrence of the event is often fixed and only the locations where it 

occurs are thought of at random. Of these, the geostatistical approach is most 

relevant to epidemiological analysis which is conducted at the landscape scale 

and based on remote sensing (Chiles and Delfiner, 1999, Goovaerts, 1997, 

Goovaerts et al., 2005). 

A common approach to integrate spatially correlated data with the random 

effects and proceed with maximum likelihood based approaches for estimating 

the covariate and covariogram parameters, is based on the theory of 

generalized linear mixed models (GLMM). Using GLMM, numerical 

approximation can be implemented (Lesaffre and Spiessens, 2001, 

Schabenberger and Gotway, 2005). Therefore, the aim of this chapter is to 

review the theory of spatial statistics and then fit them to malaria RDT data. 
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Specifically, interest is to model the effect of socio-economic, demographic and 

geographic factors on malaria rapid diagnosis test status. This chapter is 

organized as follows. An overview of theory of spatial statistics is presented in 

Sections 6.2 – 6.4. The spatial statistics model is fitted to malaria RDT data in 

Section 6.5. Section 6.6 gives summary and discussion of the chapter. 

6.2 Models for spatial correlations 

Non-Gaussian spatial problems may be formally analyzed in the context of 

generalized linear mixed models (GLMM). Specification of the likelihood of the 

random variable ?()) is required where ) generally denotes the location of the 

observation is made. As in classical generalized linear models (GLMs), there is 

a canonical parameter corresponding to the distribution, which is normally a 

function of the location parameter via the link function %(. ) for the distribution. 

This function is assumed to be linear in the explanatory variables. In the 

classical formulation of GLMs containing only fixed effects, %(m) 	= 	Oo, where O 

is the matrix of explanatory variables (Berridge and Crouchley, 2011, Zuur et 

al., 2009, Zurr et al., 2007, Fox, 2008, Madsen and Thyregod, 2010). To 

incorporate a spatial process, we assume ?()�|9) is conditionally independent 

for any location )� with conditional mean }\?()�)|9^ 	= 	m()�). The parameter 9 is 

used to define the distribution of ). Then, the spatially correlated random effect 

is incorporated into the linear predictor as 

%(m) = 	/o + ü9                                        (6.1) 

where O and � are the design matrices. The error term accommodates over-

dispersion relative to the mean-variance relationship implied by the 

distribution under consideration. The random effect at location )�, 9	~	Ü$�(0,Σα(θ)) and ý~Ü$�(0, jB�Ç), with spatial correlation is 

parameterized by θ in Σα(θ) (Schabenberger and Gotway, 2005). Note that )� is 
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just one location and C = ()�, . . . , )3)V denotes a vector of - locations with 

variance-covariance matrix Ʃ. 

Spatial dependence may be represented by a range of functions (Hengl, 2007). 

To describe spatial correlation of observations, there are three major functions 

used in geostatistics. These major functions are the correlogram, the 

covariance, and the semivariogram. Semivariogram is also more simply called 

the variogram. In geostatistics, the variogram is a key function and is used to 

fit a model for the spatial correlation in the data.  The model which is obtained 

using the variogram is used in kriging estimation procedures, a method which 

was first used to minimize (Goovaerts, 1997). Moreover, variogram models are 

also used to understand maximum distances of spatial autocorrelation which 

can further be used in construction of search parameters for different 

interpolation techniques. A variogram represents both structural and random 

aspects of the data under consideration. The structural part of the variogram 

model is represented by the range of a variogram. Furthermore, the variogram 

values increase with increases in the distance of separation until it reaches the 

maximum at a distance known as the “range”. To develop the variogram, 

assume m()) is a constant, that is constant mean m()), and define 

 �$�E�()�) − 	�()�)F = 	2G()� 	−	)�).                                  (6.2) 

In statement (6.2), the variance of )� and )� is through their difference )� − )� 

and the process which satisfies this property is called intrinsically stationary. 

The function 2G(. ) is called the variogram and G(. )  the semivariogram. 

The other concept here is isotropy. Suppose the process is intrinsically 

stationary with semivariogram G(H), H	 ∈ 	�ñ. If G(ℎ) = 	G�(‖ℎ‖) for some function G�, i.e. if the semivariogram depends on its vector argument H only through its 

length ‖ℎ‖, then the process is isotropic. Therefore, a process which is both 

intrinsically stationary and isotropic is also called homogeneous. Isotropic 
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processes are convenient to deal with because there are a number of widely 

used parametric forms for G�(ℎ). Using semivariance G�( ) for interval distance 

class  , lag distance interval  , :� (nugget variance) ≥ 0, :� (structural variance) 

≥ :� and É is the range parameter, some of the examples are: 

1. Linear: 
 G�( ) = J 0																									�(	 = 0,:� +	:� 												�(		 > 1.L 
 

Here c� and c� are positive constants. The function tends to ∞ as t → ∞ and 

so does not correspond to a stationary process. 

 
2. Spherical: 

G�( ) =
NOP
OQ 0																																																				�(	 = 0,:� +	:� 	 ©32	  É − 12 ä ÉæR® 															�(		0 <  ≤ É,:� +	:� 																																									�(		 ≥ É. UOV

OW
 

This is valid if # = 1; 2 or 3, but for higher dimensions it fails the non-

positive-definiteness condition. It is a convenient form because it increases 

from a positive value c� when   is small, levelling at the constant c� +	c� at  	 = 	É. This is of the "nugget/range/ sill" form which is often considered a 

realistic and interpretable form for a semivariogram.  

3. Exponential: 
 G�( ) = J 0																																													�(	 = 0,:� +	:�(1 − �,� �⁄ )												�(		 > 1.L 

This is simpler in functional form than the spherical case (and valid for all 

d) but without the finite range of the spherical form. The parameter � has a 

similar interpretation to the spherical model however, of fixing the scale of 

variability. 
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4. Gaussian: G�( ) = © 0																																															�(	 = 0,:� +	:�(1 − �,�Õ �Õ⁄ )												�(		 > 1.® 
 
5. Exponential-power form: G�( ) = J 0																																															�(	 = 0,:� +	:�(1 − �,|� �⁄ |X)												�(		 > 1.L 
Here 0	 < 	�	 ≤ 	2. This form generalizes both the exponential and Gaussian 

forms, and forms the basis for the families of spatial covariance functions 

introduced by (Sacks et al., 1989). However, in generalizing the results from 

one dimension to higher dimensions, these authors used a product form of 

covariance function in preference to constructions based on isotropic 

processes (Gaetan and Guyon, 2010). 

6. Relational quadratic: 

G�( ) = © 0																																															�(	 = 0,:� +	:� �(1 + ��Õ �⁄ )												�(		 > 1.® 
7. Wave: 

G�( ) = © 0																																															�(	 = 0,:� +	:�E1 − ��sin	(��)F											�(		 > 1.® 
8. Power law 

G�( ) = J0																																															�(	 = 0,:� +	:� Y																														�(		 > 1.L 
Non-positive-definiteness requires 0 ≤ 4 < 	2. This generalizes the linear 

case, and it is an example of a semivariogram that does not correspond to a 

stationary process (Gaetan and Guyon, 2010). 

9. The Matérn class: This method which was given by (Matérn, 1960) 

neglected in favour of simpler analytic forms. (Handcock and Stein, 1993, 

Handcock and Wallis, 1994) demonstrated the flexibility of this method in 
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handling a variety of spatial data set. The class is best defined in terms of 

isotropic covariance. Therefore,  

È�	( ) = 	 12tÕ,�Z(r�)	«2[r� r� ­tÕ ÚtÕ «2[r� r� ­ 

 where r� > 0 is the spatial scale parameter and r� > 0 is a shape of 

parameter, Z(. ) is the gamma function,  ÚtÕis the modified Bessel function. 

For most of the variograms, \�(0) = 0, but \� increases from a non-negative 

value near t = 0 (the nugget) to a limiting value (the sill) which is either attained 

at a finite value t = R (the range). The shape of the semi variograms have the 

form which is presented in Figure 6.1 (Clay and Shanahan, 2011). 

 

 

 

 

 

 

Figure 6. 1: Idealized form of variogram function, illustrating the nuggest, 

sill and range 

For positive nugget, it is paradoxical because the positive nuggets imply 

discontinuity in the covariance function. This situation is a well-known feature 

of spatial data. Furthermore, these cases have various explanations. Among 

the possible explanations, the simplest explanation related to some residual 

white noise over and above any smooth spatial variation (Waller and Gotway, 

2004). 
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To deal with anisotropic processes, there are a number of direct 

generalizations. From these methods, the simplest method is geometric 

anisotropy. A semivariogram with the form of geometric anisotropy is given by 

    \(ℎ) = 	\�(‖�ℎ‖) 
where \� is an isotropic semivariogram and � is a #	 × # matrix, representing a 

linear transformation of Éñ. If � is the identity this reduces to isotropic case, 

the process is isotropic in some linearly transformed space. Furthermore, for a 

positive definite matrix A, the contours of equal covariance are ellipses instead 

of circles. To generalize the anisotropy, let the simple independent intrinsically 

stationary process be ��, . . . , ��. Then 

� = 	��+	. . . +��, 

is also intrinsically stationary, with semivariogram given by 

\(ℎ) = 	\�(ℎ)+	. . . +	\�(ℎ), 
\�, . . . ,\� denoting the semivariograms of ��, . . . , �� respectively. Thus \(ℎ) = 	∑ \�(��ℎ)���� , 

where \� is an isotropic semivariogram and ��, . . . ,�� are matrices, is a valid 

semivariogram generalizing geometric anisotropy which is called zonal 

anisotropy (Gaetan and Guyon, 2010). 

Moreover, for some nonlinear function %()), the process �(%())), rather than �()), is a stationary isotropic process. Therefore, non-stationarity as well as 

non-isotropic cases can be handled (Sampson and Guttorp, 1992). Spatial 

covariance or semivariogram function can be defined arbitrarily. To define the 

function, positive definiteness has to be satisfied. Generally, :ª�	E�()�), �()�)F =È()�, )�). But, this equation does not support any form of stationary condition. 

Therefore, for positive definiteness, the relation 
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<<$�$�ÈW)�, )�Y 	≥ 0�� . 
This relation holds for any finite set of points )�, . . . , )� and arbitrary real 

coefficients $�, . . . , $�. Furthermore, based on Bochner’s theorem, the left hand 

side of the above relation is the variance of ∑ $��()�)� . For # dimensional 

stationary process, Bochner’s theorem implies that 

È(ℎ) = 	ú .		.		. 	ú cos(�]ℎ)%(�)#� 

where Ü(#�) = %(�)#� the integral is over Éñ and Ü is a positive bounded 

spectral measure (Cliff and Ord, 1981). For  

ú .		.		. 	ú|È(ℎ)|#ℎ	 < 		∞ 

G is automatically differentiable. For positive definiteness, %(�) ≥ 	0 for all �. 

Therefore, if the process is isotropic, È(ℎ) = 	È�(‖ℎ‖) for some function È� of 

univariate argument, then the spectral representation simplified to  

È�( ) = 	 ú iñ(� )^(#�)(�,%) , 
where Φ is non-decreasing on \0,∞) with �^(#�) < 	∞ and  

iñ( ) = 	 ä2 æ(ñ,�) �⁄ 	Z ä#2æ	_ñ,�� ( ) 
and _×(. ) denotes the Bessel function of first order v (Schabenberger and 

Gotway, 2005). Moreover, there is corresponding theory for the variogram. For 

second-order stationary process of semivariogram \(. ), if $�, . . . , $� are constants 

with ∑$� = 0, then 
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<<$�$�\W)� −	)�Y ≤ 0�� . 
Therefore, this equation is a conditional non-positive definiteness condition 

(Cressie, 1993). 

6.3 Estimation 

After developing the main concepts of spatial covariance and variogram, the 

next question is estimation. To estimate the variograms, there are different 

methods. These methods are Matheron’s (Method of moments) estimator, the 

Cressie-Hawkins robust estimator and estimators based on order statistics and 

quantiles. Therefore, the general scenario for estimation is that there is a 

process E�()), ) ∈ ËF observed at a finite number of points )�, . . . , )ù. 

For estimating the variogram, the simplest estimator is the method of moments 

(MoM) estimator. This method is also known as Matheron’s estimator and 

proposed by (Matheron, 1962). One could plot the squared differences #�()�) −	�()�)$� against the lag distance ℎ	(or	‖ℎ‖). Moreover, #�()�) − 	�()�)$� unbiasedly 

estimates the variogram at lag )� − )�. The semivariogram estimator with 

distance )� − )� = ℎ (averages of the squared differences of points) apart is 

known as the classical or Matheron. More useful estimator of the variogram is 

obtained by summarizing the squared difference. For this estimator, the 

sampling points )�, . . . , )ù lie on a regular lattice (Schabenberger and Gotway, 

2005) and defined by 

2GS(ℎ) = 	 1|l(ℎ)|	 < #�()�) − 	�()�)$�																															(6.3)(*�,*B)∈ù(')  

where l(ℎ) denotes all pairs ()�, )�) for )� − )� = ℎ and |l(ℎ)| denotes the 

cardinally of l(ℎ). Furthermore, l(ℎ) will either be empty or some reasonably 
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sized subset of the set of all pairs of sampling points. In the case where the 

points do not lie on lattice, the same equation (6.3) is applied, but the 

definition of l(ℎ)  to be changed as 

l(ℎ) = #W)�, )�Y: )� − )� 	 ∈ �(ℎ)$, 
where �(ℎ) being some small neighborhood or tolerance region around ℎ.  

Moreover, (Jurnel and Huijbregts, 1978) recommended choosing T(h) large to 

contain at least 30 pairs of points, and this can still be recommended as a rule 

of thumb (Schabenberger and Gotway, 2005). 

One of the shortcomings to use the MoM method is that it is not robust against 

outlying value of �. This arises from the skewness of the distribution. If the 

process is assumed to be Gaussian, then for a specific ) and ℎ, the distribution 

of #�()�) − 	�()�)$� is of the form 2G(ℎ)O��, and the O�� distribution is highly 

skewed. However, if O	~	O��, then O� `⁄  has a nearly symmetric distribution and 

sample averages of ó�()�) − 	�()�)ó� �⁄
 expected to be much better behaved than 

#�()�) − 	�()�)$� (Gaetan and Guyon, 2010). (Cressie and Hawkins, 1980) 

suggested another estimator. This estimator is known as Cressie-Hawkin’s 

robust estimator. Based on (Cressie and Hawkins, 1980), the fourth root 

transformation of #�()�) − 	�()�)$�yields an approximately Gaussian random 

variable with mean  

}\ó�()�) − 	�()�)ó� �⁄ ^ 		≈ 12¬,� �⁄ Г	 × 	GW)� −	)�Y� `⁄ . 
Moreover, the expected value of the fourth power of  

1|l(ℎ)|	 < ó�()�) − 	�()�)ó� �⁄
|ù(')|  
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turns out to be  

2G(ℎ) ä0.457 + 0.494|l(ℎ)| 	+ 	 0.045|l(ℎ)|�æ. 
Therefore, the suggested estimator  

2G(ℎ) = 		 10.457 + 0.494 |l(ℎ)|⁄ 	c 1|l(ℎ)|	 < ó�()�) − 	�()�)ó� �⁄
(*�,*B)∈|ù(')| d` 

is approximately unbiased estimator of 2G(ℎ). Therefore, from the equation, the 

first factor is a bias correction term. 

The Cressie-Hawkin (CH) estimator is not resistance estimator under gross 

contamination of the data. Therefore, CH estimator has small amount of 

contribution in a Gaussian process, there is a breakdown point of 50% and 

unbounded influence function using CH and Matheron estimators 

(Schabenberger and Gotway, 2005). Here, the percentage of the data can be 

replaced by arbitrary values. For example, if the median absolute deviance 

(MAD) is an estimator of scale with 50% breaks down point and a smooth 

influence function, then, for a set of numbers D�, . . . , D�, the MAD is 

>ÆË = { × §�#�$��#D� 	− 	§�#�$��(D�)$ 
where §�#$��(D�) denotes the median of D� and factor { is chosen to yield 

approximate unbiasedness and consistency. Suppose D�, . . . , D� are independent 

realization from a Ü	(m, j�). A robust estimator of scale for 50% breakdown 

point of a smooth influence function is suggested by (Rousseeuw and Croux, 

1993). Furthermore, the �� estimator is given by the -�' order statistic of the 

�(� + 1) 2⁄  inter-point distance. For ℎ = \� 2⁄ ^ + 1 and - = 	 Ãℎ2Ä,                      
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�� = È#óD� −	D�ó; � < �$(3). Therefore, �� estimator has positive small sample bias 

(Croux and Rousseeuw, 1992). 

For observed spatial data �()�),.		.		 . , �()�), let l(ℎ) denote the set of pairwise 

differences �� = 	�()�) − 	�()� + ℎ), � = 1, . . . , �(� + 1) 2⁄ . The calculation for �|ù(')| 
for �� gives the semivariogram estimator at lag ℎ 

G̅(ℎ) = 	12	�|ù(')|� .																																																																(6.4)	 
Therefore, �� has 50% breakdown point, G̅(ℎ) has a 50% breakdown point 

interms of the process of differences ��. Equation (6.4) is resistance to roughly 

30% of outliers among the �()�). This is established by (Genton, 2001) through 

simulation.  

Use of quantiles of the distribution of #�()�) − 	�()�)$� or ó�()�) − 	�()�)ó is one of 

the approaches to estimate the empirical semivariogram. Suppose  `�()�) −	�()�)bV are bivariate Gaussian with common mean. Then, 12	E�()) 	− 		�() + ℎ)F�			~			G(ℎ)D�� 
						12		|�()) 	− 		�() + ℎ)|			~			e12 G(ℎ)|û|								û	~	Ü(0,1) 

For �|ù(')|(�)  denotes the pth quantile,  

GS�(ℎ) = 	�|ù(')|(�) 	J12	\�()) − �() + ℎ)^�L. 
A median-based estimator (� = 05) gives 

GS�(ℎ) = 	12	§�#�$�|ù(')| E\�()) − �() + ℎ)^�F 0.455⁄  

																		= 	 12	(§�#�$�|ù(')| #|�()) − �() + ℎ)|� �⁄ $` 0.455⁄  

(Cressie, 1993, p. 75). 
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The sample variogram can be estimated using parametric models. Suppose 

there are samples from a homogeneous spatial process, in which the variogram 

has been estimated for a sequence of distance ℎ. The empirical semivariogram GS(ℎ) is an unbiased estimator of G(ℎ), but it provides estimates only at a finite 

set of lags or lag classes. The properties of the semivariogram estimators GS(ℎ), G̅(ℎ) and GM(ℎ) have been extensively investigated for a single value of ℎ, as a 

function over all ℎ. But, the estimators fail the condition of non-positive 

definiteness conditions and these estimators lack a very important property. 

Therefore, spatial predictions derived from such estimators might have negative 

variances. To avoid negative variances, the empirical G(ℎ) has to be replaced by 

some parametric form which is known to be conditionally non-positive definite 

(Gaetan and Guyon, 2010). Hence, it is important to seek a parametric family 

which adequately models the observed data. In general, there are three 

methods to be considered. These methods are: least square estimation, 

maximum likelihood (ML), restricted maximum likelihood (REML), and 

Bayesian estimators.  

Least square estimation 

Suppose the semivariogram G(ℎ) have been estimated at a finite set of values of ℎ, and desire to fit a model specified by the parametric function G(ℎ; r) in terms 

of a finite parameter vector r. Suppose it is assumed that MoM estimator GS has 

been used and let GS denote the vector of estimates, G	(r) the vector of model 

values at the same vector of ℎ values. Therefore, there are three well-used 

version of non-linear least-squared estimators. These estimates are: ordinary 

least squares (OLS), in which r can be minimized using EGS − 	G(r)FVEGS − 	G(r)F. 
The second one is generalized least square (GLS), r can be minimized as EGS − 	G(r)FV�(r),�EGS − 	G(r)F where �(r) denotes the covariance matrix of GS. This 

estimator depends on an unknown r because the problem is non-linear. The 

other method is weighted least squares (WLS). Here, r can be minimized using 
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EGS − 	G(r)FVÁ(r),�EGS − 	G(r)F where, Á(r) is a diagonal matrix whose diagonal 

entries are the variances of the entries of  GS. WLS is used for the variance of GS 
but not covariance. Unlike WLS, GLS allows for both variance and covariance. 

Furthermore, the three estimators (OLS, GLS, WLS) expected to be in 

increasing order of efficiency but in decreasing order of convenience to use. 

Here, OLS is immediately implementable by a nonlinear least square 

procedure, whereas GLS and WLS require specification of the matrices �(r) 
and Á(r). For Gaussian process, the following expression is given 

   �$�\E�() + ℎ) − �())F�^ = 2E2G(ℎ)F�,    (6.5) 

:ª��\E�()� + ℎ�) − �()�)F�, E�()� + ℎ�) − �()�)F�^ =  

EG()� − )� + ℎ) + 	G()� − )� − ℎ�) − 	G()� − )� + ℎ� + ℎ�) −	G()� − )�)F�4G(ℎ�)G(ℎ�) .									(6.6) 
This equation can be used to evaluate the matrices �(r) and Á(r). As one of 

least square estimator, it is possible to use GLS estimator. But, it is 

complicated to implement this method. Because of this, there is no guarantee 

for the resulting minimization problem to have unique solution (Schabenberger 

and Gotway, 2005). 

To solve the complication, the approximation of WLS criterion was proposed by 

(Cressie, 1985). Suppose GS is evaluated on a finite set #ℎ�$ and choose r to 

minimize 

∑ ól(ℎ�)ó J fd(')f('B;t) − 1L� .																																																			(6.7)�   

WLS solution can be derived under the approximation of equation (6.7) and can 

be given as 

�$�EGS(ℎ)F 	≈ 	 8G�(ℎ)|l(ℎ)| .																																																									(6.8) 
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Equation 6.8 follows from (6.7). If �()�) − �W)�Y is individual terms, then it is 

independent. This assumption is not exactly satisfied. But, it is a reasonable 

approximation. If the pairs ()�, )�) lying in l(ℎ) are widely spread over the 

sampling space, the assumption of independence can be a reasonable 

approximation. Therefore, (6.7) is not difficult to implement than OLS. 

Furthermore, this method expected to be substantially more efficient. In 

addition to MoM estimator of GS, the robust estimator G̅ can be used. Therefore, 

by derivation of equations (6.5) and (6.6), and assuming normal distribution,  

E�() + ℎ) − �())F�2G(ℎ) 		~	O��. 
as mean 1 and variance 2. Therefore, �$�\E�() + ℎ) − �())F�^ = 2E2G(ℎ)F� follows 

from this relation. The literature for this approach can be found from (Genton, 

2000, Genton et al., 2001 , Zimmerman and Zimmerman, 1991). 

Maximum likelihood estimation 

For sampling from Gaussian process, the estimation is straightforward 

principle to express likelihood function and maximize numerically. Estimation 

of the spatial process using likelihood function was first used by (Kitanidis, 

1983, Mardia, 1984). The computation of inverse and determinant of the model 

covariance matrix are required for the evaluation of the likelihood function. As 

compared to Cressie’s WLS procedure, the sampling properties of the 

maximum likelihood estimates are clear. Suppose deterministic linear 

regression terms with no essential change in the methodology are considered. 

Then the model to be considered is 

�	~	l(/o, Ʃ) 
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where � an n-dimensional vector of observations, O is an �	 × � matrix of known 

regressors, o is a �-vector of unknown regression parameters and Ʃ is the 

covariance matrix of the observations (Waller and Gotway, 2004). Therefore, Ʃ = 	9�(r) 
where 9 is an unknown scale parameter and �(r) is a vector of standard 

covariance determined by the unknown parameter vector r. Suppose there is 

exponential variogram structure. The covariance function can be given as 

Èª�E�()�), �()�)F = J :� + :�																		�(	)� =	)�:�exp	(− |)� −	)�| É			�(		)� ≠	)�												⁄ L 
and define 9 = 	 :�, ∅ =	:� (:� + :�)⁄ , which is called the nugget ratio, r = (∅, É) 
and let �(r) denote the matrix whose diagonal entries are all 1 (1 − ∅)⁄  and off-

diagonal entries are of the form ��� = exp	(−#�� É⁄ ). Moreover, #�� is the distance 

between the ith and jth sampling points. 

With � defined by �	~	l(/o, Ʃ), its density is  

(2¬),� �⁄ |Ʃ|,� �⁄ �D� J−12	(ü − /o)VƩ,�(ü − /o)L. 
The negative log likelihood is given by 

(o, 9, r) = 	�� log(2¬) + �� �ª%9 +	�� �ª%|�(r)| + ��; (ü − /o)V�(r),�(ü − /o).						(6.9)    
Therefore, for given �, define o� =	(/V2,�/),�/V2,�ü which is the GLS estimator 

of o based on covariance matrix 2, then 

(ü − /o�)V�,�O = 0, 

and 

 (ü − /o)V�,�(ü − /o) = Wü − /o� + /o� − /oYV2,�(/ − /o� + 	/o� − 	/o) 
       =Wü − 	/o�YV�,�Wü − /o�Y + Wo� − 	oYV/V�,�/Wo� − 	oY. (6.10) 
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This equation confirms that the choice of o minimizes the generalized sum of 

squares criterion and leads to a sum of squares of generalized residuals 

denoted by 

Ü� = Wü − 	/o�YV�,�(ü − /o�).                                  (6.11) 

For equation (6.9), define o�(r) = 	 (/V�(r),�/),�/V�(r),�� and Ü� by Ü�(r). Using 

equation (6.11) leads to 

�Wo�(r), 9, rY = 	�2 log(2¬) +	�2 �ª%	9 + 12 �ª%|�(r)| +	 129 Ü�(r).													(6.12) 
Minimizing this equation with respect to 9 gives 

9S(r) = 	Ü�(r)� .																																																									(6.13) 
Therefore, relation (6.12) and (6.13) is called a profile negative log likelihood 

(Kitanidis, 1983, Mardia, 1984). 

Restricted maximum likelihood 

(Patterson and Thompson, 1971) originally proposed the idea of restricted 

maximum likelihood (REML) estimation in connection with variance 

components in linear models. But, the situation proposed by Patterson and 

Thompson is similar to Gaussian models for spatial data. This idea was pointed 

out by different authors (Cressie, 1993). Suppose	i�, . . . , i� are independent 

univariate random variables, each l(m, j�) with unkown m and j�. The 

maximum likelihood estimator of m and j� are m̂ = 	 �� ∑ i��  and jS� =	 �� ∑ (i� −	ih)�� . 

But, this definition of  jS� is a biased estimator, whereas the more usual 

unbiased estimator of j� is 
��,�∑ (i� −	ih)�� . Suppose instead of basing the 

maximum likelihood estimator on the full joint density of i�, . . . , i�, it is based 
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on the joint density of vectors of contrasts, i.e., (i� −	i,H i� −	i,H 	 . . . , i�,� −		ih). 
This distribution does not depend on m. The maximum likelihood estimator of  j�, turns out to be the unbiased estimator 

��,�∑ (i� −	ih)�� . Constructing an 

estimate of j� based on an (� − 1) dimensional vector of contrasts gives usual 

maximum likelihood estimator based on the full n-dimensional data vector 

(Waller and Gotway, 2004). 

To extend this idea, let Á =	ÆV� be a vector of � − � linearly independent 

contrasts, i.e. the � − � columns of Æ are linearly independent and ÆVO = 0, then 

Á	~	l(0,�V∑�), 
and the joint negative log likelihood function based on i is 

�j(9, r) = 	 �,�� log(2¬) +	�,�� �ª%9 +	�� �ª%|�V�(r)�| + 	 ��; ÁV(�V�(r)�),�Á. 

Here, it is possible to choose �	to satisfy ��V = Ç − /(/V/),�/V, ÆVÆ = Ç. Further 

calculations given by (Harville, 1974, Patterson and Thompson, 1971) showed 

that the above equation can be simplified as follows. 

�j(9, r) = 	 �,�� log(2¬) +	���� �ª%9 −	�� �ª%|/V/| +	�� �ª%|/V�(r),�/| + �� �ª%|�(r)| +
																						 ��; Ü�(r), 
where Ü�(r) = �(9S(r)). To minimize with respect to 9, set 9S = 	Ü�(r)/(� − �) and 

the above equation is reduced to 

�j∗ (r) = 	 �j(9M, r) = 	 �,�� log(2¬) + �,�� �ª% uÕ(t)�,� − �� �ª%|/V/| + �� �ª%|/V�(r),�/| +
�� �ª%|�(r)| +	�,�� . 
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Based on (Harville, 1974, Patterson and Thompson, 1971), � is �	 × (� − �) 
matrix and let Ü denote the �	 × � matrix �,�O(OV�,�O),�, so that o� =	ÜV�. Let k =	 \Æ|Ü^, i.e, the � × � matrix formed by placing the matrices � and Ü. Then,  

|k| = 	 |kVk|� �⁄ =	 l�V� �VÜÜV� ÜVÜl� �⁄ =	 |�V�|� �⁄ óÜVÜ −	ÜV�(�V�),��VÜó� �⁄ . 
But, �V� = Ç, ��V = Ç −	/V(/V/),�/ and ÜVÜ −	ÜV�(�V�),��VÜ = 	 (/V/),�. 
Therefore, |k| = 	 |/V/|,� �⁄ . It is known that the density of Z is given by  

(m(¿) = 	 (2¬),� �⁄ 9,� �⁄ |�|,� �⁄ �D� �− ��; (ü − /o)V�,�(ü − /o)�.          (6.13) 

Let �∗ =	kV� = 	 (üV�, üVÜ)V =	 WÁV, o� VYV. The Jacobian transformation from � to �∗ 
is given by |k|,� =	 |OVO|� �⁄ . Furthermore, equations (6.10) and (6.11) give  

 (ü − /o)V�,�(ü − /o) = 	Ü�(r) +	Wo� − 	oYV/V�,�/(o� − 	o). 
Here, Ü�(r)	is a function of elements orthogonal to o� and a function of W. 

Therefore, equation 6.14 leads to  

(j,�[W�, o�Y = |/V/|� �⁄ (2¬),� �⁄ 9,� �⁄ |�|,� �⁄ �D� J−12Ü�(r) − 129 Wo� − oYV/V�,�/(o� − o)L. 
Integrating the above equation with respect to o� gives 

(j(�) = |/V/|� �⁄ (2¬),� �⁄ 9,� �⁄ |�|,� �⁄ |/V�,�/|,� �⁄ �D� J−12Ü�(r)L. 
Bayesian procedure 

(Handcock and Stein, 1993, Le and Zidek, 1992) considered using Bayesian 

procedure to spatial statistics. Models which were defined as �	~	l(Oo, Ʃ) and Ʃ = 	9�(r) are considered with the improper prior density by different authors 
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¬(o, 9, r) ∝ 	 ¬(r)9  

for some prior ¬(r). Therefore, the posterior density has the form 

¬(o, 9, r|�) 	∝ 	 å(t); (2¬),� �⁄ 9,� �⁄ |�(r)|,� �⁄ �D� �− ��; (ü − /o)V�(r),�(ü − /o)�. 
Define, o�(r) = 	 (/V�(r),�/),�/V�(r),�� 

and ignoring constants equation (6.10) gives 

¬(o, 9, r|�) 	∝ 	 å(t); 9,� �⁄ |�(r)|,� �⁄ �D� �− uÕ(t)�; � . �D� �− ��; Wo − o�YV/V�(r),�/(o − o�)�. 
(6.14) 

And integrating this equation with respect to o gives 

¬(o, 9, r|�) 	∝ 	 ¬(r)9 9,� �⁄ |�(r)|,� �⁄ �D� ©−Ü�(r)29 ® . 9� �⁄ |/V�(r),�/|,� �⁄  

and integrating with respect to 9 gives 

¬((r|�)	9	¬(r)|�(r)|,� �⁄ Ü�(r),(�,�) �⁄ |/V�(r),�/|,� �⁄  

(Handcock and Stein, 1993). 

If ¬(r) is ignored in (6.14), the posterior density of r is precisely the REML 

estimation. But, a fully Bayesian approach involves not maximizing (6.9), but 

integrating with respect to the components of r, and the two methods are 

different.  Integration with respect to r must be performed numerically. 
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MINQE estimation 

The other method of estimation is the method of minimum norm quadratic 

estimation (MINQE). This method was originally developed by C.R. Rao (Rao, 

1979). When compared to the other estimation methods, MINQE is restricted in 

scope. Even though this method is restricted in scope, it is competitive with the 

other methods (Kitanidis, 1983). 

Suppose the universal kriging model is given by 

� = /o + 	C, 

where the semivariogram of C is G	(. ; r) is of the form 

G	(ℎ; r) = 	< r3G3(ℎ)3
'�� , 

where G is a linear combination of - known semivariograms G�, . . . , G3, with 

unknown weights r�, . . . , r3. Similar to REML estimation, suppose Á =	ÆV� to be 

a vector of orthogonal contrasts to /, where the columns of O include a 

constant term, so that the covariance of Á is of the form –ÆVZ(r)Æ = 	s(r), 
where Z(r) is the matrix with entries GW)� − )�; rY, �, �, . . . , � being the sampling 

points. Let  s�, . . . , s3 denote the corresponding s matrix where G =	G3, for each 

of -	 = 	1, . . . , -. The problem is therefore to estimate the coefficient Er3F when 

observed data have the covariance matrix 

s	(r) = 	<r3s3 .3
3��  

Suppose, �V = (��, . . . , �3) is a vector, �Vr estimated by the quadratic form iV�i. 

To find the unbiased estimate, }EiV�iF = 	}E �(�iiV)F = ∑r3 �(�s3) is required. 

Thus,   �(�s3) = 	�3. In general, the idea behind MINQE is to choose minimum 
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variance unbiased estimator. The variance of  iV�i is of the form  �(����) for 

some matrix �. In the case of Gaussian process, �$�EiV�iF = 2 �(�s(r)�s(r)) 
(Schabenberger and Gotway, 2005). 

But, in practice,  � = 	s(9) for some prior guess 9 of r. A Lagrange multiplier 

solution to the resulting contained optimization problem leads us to            Æ� = s(9),�s�s(9),�. The estimator r� will be unbiased estimator of r if 

iVÆ�i =  � ÃÆ�sWr�YÄ = <r�� �(Æ�s�)�  

for all � = 1, . . . , �. Let k denote the matrix entries {�� =  �(Æ�s�), and È with 

entries :�� denotes the inverse of k, then 

r�� =	<:��7VÆ�7. 
If s(r) cannot be written as a linear function of r, then we replace the 

distribution Æ� with 

Æ� =	s(9),� J ��9� s(9)Ls(9),�. 
But, this method is less motivated compared with general procedures such as 

maximum likelihood and REML (Stein, 1987). 

Measures of Spatial Autocorrelation 

There are two types of spatial autocorrelation measures. These are Moran’s I 

and Geary's C. 

Moran's I 

This method can be used to tests for global spatial autocorrelation for 

continuous (Moran, 1950). The test is based on cross-products of the 
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deviations from the mean. The deviation is calculated for � observations on a 

variable D at locations �, � as: 

Ç = 	 ��� 	∑ ∑ ���(D� −	 D̅)(D� −	D̅)�� ∑ (D� −	D̅)�� , 
where D̅ is the mean of the D variable, �ôX are the elements of the weight matrix, 

and U� is the sum of the elements of the weight matrix: �� = ∑ ∑ �ôXXô 	. When 

compared to correlation coefficient, Moran’s I has similarity but not equivalent.  

The values vary from -1 to +1.  In the absence of autocorrelation and regardless 

of the specified weight matrix, the expectation of Moran’s I statistic is −1 (� − 1)⁄ . This value tends to zero as the sample size increases.  For a row-

standardized spatial weight matrix, the normalizing factor S� equals n, and the 

statistic simplifies to a ratio of a spatial cross product to a variance.  A Moran’s 

I coefficient larger than −1 (n − 1)⁄  indicates positive spatial autocorrelation, 

and a Moran’s I less than −1 (n − 1)⁄  indicates negative spatial autocorrelation. 

Thus, the variance is given by 

Var(I) = 	nEn� − 3n + 3)S� − nS� + 3S��F − kEn(n − 1)S� − 2nS� + 6S��F(n − 1)(n − 2)(n − 3)S�� −	 1(n − 1)� 
where S� =	 ��∑∑ (W£à +W£à)� = 2S�£qà  for symmetric W containing 0’s and 1’s 

       S� =	∑ (W£à +W£à)�£  where W£� =	∑ W£àà  and W�£ =	∑ W£àà  

Geary's C 

The other measure of Spatial Autocorrelation is Geary’s C statistic. This 

method is proposed by (Geary, 1954). It is based on the deviations in responses 

of each observation with one another: 

C =	n − 12S� 	∑ ∑ w£à(x£ − xà)�à£ ∑ (x£ − XH)�£ . 
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Geary’s C ranges from 0 (maximal positive autocorrelation) to a positive value 

for high negative autocorrelation. Its expectation is 1 in the absence of 

autocorrelation and regardless of the specified weight matrix (Sokal and Oden, 

1978).  For Geary’s C value which is less than 1, it indicates positive spatial 

autocorrelation. The variance is estimate is given by 

Var(c) = 	 1n(n − 2)(n − 3)S�� JS��\(n� − 3) − k(n − 1)�^
+ S�(n − 1)\n� − 3n + 3 − k(n − 1)^ +	14 S�(n − 1)\k(n� − n + 2)
− (n� + 3n − 6)^L 

where  ��, 	�� and �� are defined similarly as in Moran’s I. 

Comparison of Moran’s I and Geary’s C suggested that Moran’s I is a more 

global measurement and sensitive to extreme values of x, whereas Geary’s C is 

more sensitive to differences in small neighbourhoods. In general, Moran’s I 

and Geary’s C result in similar conclusions.  However, Moran’s I is preferred in 

most cases. Cliff and Ord (1975, 1981) have shown that Moran’s I is 

consistently more powerful than Geary’s C.  

6.4 Spatial Prediction 

Modelling spatial data is not only useful for identifying significant covariates 

but for producing smooth maps of the outcome by predicting at unsampled 

locations. Spatial prediction is usually referred to as kriging. Kriging is an 

optimal interpolation based on regression against observed values of 

surrounding data points, weighted according to spatial covariance values. 

Interpolation refers to an estimation of a variable at an unmeasured location 

from observed values at surrounding locations (Bivand et al., 2008). Kriging 

has some advantages. These advantages are  
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• helps to compensate for the effects of data clustering, assigning 

individual points within a cluster less weight than isolated data 

points,  

• gives an estimate of estimation error (kriging variance), along with 

estimate of the variable, 

• ensures availability of estimation error which provides a basis for 

stochasticity, 

• allows simulation of possible realization. 

The spatial prediction which is called kriging can statistically be defined as 

follows.  

Let 7� be a vector of the binary response at new, unobserved location )��, � = 	1, . . . , ��. Following the maximum likelihood approach, the distribution of i� 
is given by 

ÓWi�óo� , û[, jS�,∅[Y = 	úÓWi�óo� , û�)Ó(û�|û[, jS�,∅[Y #û�																									(6.15) 
where o� , jS�	and	∅[ are the maximum likelihood estimates of the corresponding 

parameters. As part of the iterative estimation process, for penalized quasi-

likelihood (PQL), û[ can be derived (Breslow and Clayton, 1993). ÓWi�óo� , û�Y is 

the Bernoulli-likelihood at new locations and Ó(û�|û[, jS�,∅[)  is the distribution of 

the spatial random effects û� at new sites, given û[ at observed sites and is 

assumed to follow the normal distribution that is 

ÓWi�óû[, jS�,∅[Y 	= 	l(Σ��Σ��,�û[,Σ�� −	Σ��Σ��,�
Σ��)                (6.16) 

with Σ�� = }(ûû�), Σ�� = }(ûuû��) and Σ�� =	Σ��� = }(ûuû��). The mean of the 

Gaussian distribution in (6.16) is the classical kriging estimator 

(Schabenberger and Gotway, 2005). 

The Bayesian predictive distribution of 7� is given by 
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Ó(i�	|	i	) 	= úÓ(7�|o, û�)Ó(û�|û, j�,∅)µÓ(o, û, j�,∅|i)#o#û�#û#j�#∅											(6.17) 
where Ó(o, û, j�,∅|i) is the posterior distribution of the parameters obtained by 

the Gibbs sampler or the sampling importance re-sampling (SIR) approach. 

Simulation-based Bayesian spatial prediction is performed by consecutive 

draws of samples from the posterior distribution, the distribution of the spatial 

random effects at new locations and the Bernoulli-distributed predicted 

outcome. The maximum likelihood predictor can be viewed or interpreted as 

the Bayesian predictor, with parameters fixed at their maximum-likelihood 

estimates. In contrast to Bayesian kriging, classical kriging does not account 

for uncertainty in estimation of o and the covariance parameters. 

The data was analyzed by fitting a generalized linear mixed model (GLMM) 

using SAS 9.2 PROC GLIMMIX. 

6.5 Data analysis using spatial statistics approach 

Using the identified thirteen main effects and six two-way and three-way 

interaction effects (Ayele et al., 2012) several covariance structures including 

SP(EXP) (Exponential), SP(EXPA) (Anisotropic Exponential), SP(EXPGA) ((2D 

Exponential, Geometrically Anisotropic), SP(GAU) (Gaussian), SP(GAUGA) ((2D 

Gaussian), (Geometrically Anisotropic), SP(LIN) (Linear), SP(LINL) (Linear Log), 

SP(MATERN) (Matérn), SP(MATHSW) (Matérn (Handcock-Stein-yene maWallis)), 

SP(POW) (Power), SP(POWA) (Anisotropic Power), SP(SPH) (Spherical) and 

SP(SPHGA)( (2D Spherical, Geometrically Anisotropic) were fitted but SP(GAU) 

(Gaussian) was found to be the best spatial covariance structure for the model 

(Kincaid, 2012).  

The plots presented in Figure 6.2 are a spatial scatter plot of the observed data. 

The scatter plot suggests distribution which is not indicative of a uniformly 

spread of the RDT measurements throughout the prediction area. No direct 
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inference can be made about the existence of a surface trend in the data. 

However, the apparent stratification of RDT values might indicate a non-

random trend. The Spatial Autocorrelation is an inferential statistic tool, which 

is important to test for randomness. This means that the results of the analysis 

are always interpreted within the context of its null hypothesis of a random 

occurrence of events. For the randomness test Moran’s and Geary's C tests can 

be used (Cliff and Ord, 1975, Cliff and Ord, 1981, Geary, 1954, Moran, 1950, 

Sokal and Oden, 1978).  

 

 

 

 

 
 
Figure 6. 2: Scatter plot for the malaria prevalence 

For these tests, the null hypothesis states that the spatial distribution of 

feature values is the result of random spatial processes. The result from 

Moran’s (Z value = -40.4 and p – value <.0001) and Geary's c (Z value = -11.2 

and P-value <.0001) tests indicate that the spatial distribution of feature values 

is not the result of random spatial processes. The Z values are negative for both 

Moran’s and Geary’s C tests. This indicates that the spatial distribution of high 

values and low values in the dataset is more spatially dispersed than would be 

expected if underlying spatial processes were random. A dispersed spatial 

pattern often reflects some type of competitive process, i.e., a feature with a 

high value repels other features with high values; similarly, a feature with a low 

value repels other features with low values. The observed spatial pattern of 
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feature values could not very well be one of many possible versions of complete 

spatial randomness. 

Figure 6.3 represents different semivariogram estimators using classical and 

robust estimators. The classical estimator was suggested by (Matheron, 1963). 

The classical estimator can be calculated by 

γS(h) = 	 1|N(h)| <(Z(s£) − 	Z(sà))�v(á) , 
where (s£) is the anscombe residual. 

N(h) = #Ws£ −	sàY:	ws£ −	sàw = h±∈$	and	|N(h)| 
is its cardinality. But, the classical estimator is sensitive to outliers. For this 

reason a robust estimator was proposed by (Cressie and Hawkins, 1980). 

Among the different types of isotropic covariograms given above, Gaussian type 

was selected. Thus as discussed earlier, the best spatial covariance structure 

from all possible types was found to be the SP(GAU) (Gaussian) covariance 

structure. Therefore, the Gaussian type of the variogram was used to perform 

variogram analysis. The figure (Figure 6.3) shows first a slow, then a rapid rise 

from the origin. Therefore, the shape of the graph suggests a Gaussian type 

form which is given by 

 

In general, from Figure 6.3, it is possible to distinguish three main features. 

The first one is the Y-axis well above zero, indicating the possible presence of a 

nugget effect. Moreover, the shapes of the semivariogram up through distances 

in the low 40s have roughly the shape of a spherical covariance model. Besides 

these, the semivariogram values are extremely high for the largest distances.  
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Figure 6. 3: Classical and robust semivariogram for malaria prevalence 

Table 6.1 present the significant effects for the model which incorporate spatial 

variability using SP (GAU) (Gaussian) covariance structure. Among all 

significant effects namely family size, altitude, toilet facilities, availability of 

radio, number of rooms per person, main material of the room's wall, use of 

indoor residual spray, use of mosquito nets and number of nets per person, 

were not involved in the interaction effects. The significant two-way and three-

way interaction effects found to be time to collect water and main material of 

the room's floor; age and gender; gender and availability of electricity; gender 

and main material of the room's floor; age, gender and main source of drinking 

water; and age, gender and availability of electricity. Based on these results for 

a unit increase in family size, the odds of positive rapid diagnosis test increases 

by 2.34% (OR = 1.0234, P-value < 0.0001). Furthermore, for a unit increase in 

altitude, the odds of positive rapid diagnosis test decreases by 1.4% (OR = 

0.996, P - value <0.0001) (Table 6.2). 
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Table 6. 1: Type 3 analysis of effects for the GLMM with spatial 

correlation 

Effect Num DF F Value Pr > F 

Age 1 0.59 0.9876 

Gender 1 0.5906 0.9882 

Family size 1 19.85 <.0001 

Region 2 0.74 0.476 

Altitude 1 14.25 <.0001 

Main source of drinking water 2 29.25 <.0001 

Toilet facility 3 37.15 <.0001 

Time to collect water 2 16.29 <.0001 

Availability of electricity 1 0.01 0.9185 

Availability of radio 1 14.36 <.0001 

Availability of television 1 2.67 0.1023 

Total number of rooms 1 20.88 <.0001 

Main material of the room's wall 2 49.01 <.0001 

Main material of the room's roof 2 45.3 <.0001 

Main material of the room's floor 2 27.36 <.0001 

Use indoor residual spray 1 585.68 <.0001 

Use of mosquito nets 1 22.14 <.0001 

Total number of nets 1 22.36 <.0001 

Main source of drinking water and main 
material of the room's roof 

2 28.36 <.0001 

Time to collect water and main material of 
the room's floor 

2 27.36 <.0001 

Age and gender 1 .0.691 0.9897 

Gender and main source of water 2 12.43 <.0001 

Gender and main Material of the room's 
floor 

1 10.85 0.001 

Gender and availability of electricity 2 0.08 0.9189 

Age, gender and main source of drinking 
water 

4 23.88 <.0001 

Age, gender and Availability of electricity 2 24.11 <.0001 

Age, gender and main material of the 
room's floor 

2 0.65 0.5202 
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Table 6. 2: Socio-economic, demographic and geographic of effects on 

malaria RDT test for main effects 

Effect Estimate OR SE P -value 

Intercept -0.2460 0.7819 5.8100 0.9995 
Age  0.0209 1.0212 0.0503 0.6772 
Gender (ref. male) 
  Female -2.5463 0.0784 3.0804 0.4084 
Family size 0.02311 1.0234 0.0527 <.0001 
Region (ref. SNNP) 
  Amhara -0.6896 0.5018 0.4502 0.1256 
  Oromiya -0.837 0.4330 0.5796 0.1487 
Altitude -0.0037 0.9963 0.0001 <.0001 
Main source of drinking water (ref. protected water) 
  Tap water -0.5557 0.5737 0.722 <.0001 
  Unprotected water 0.6372 1.8912 0.6871 0.005 
Time to collect water (ref. > 90 minutes)  
  < 30 minutes -0.7829 0.4571 0.252 0.0019 
  between 30 to  40 minutes -0.603 0.5472 1.2666 0.6341 
  between 40 - 90 minutes -4.0189 0.0180 2.8957 0.1652 
Toilet facility (Ref. No facility) 
  Pit latrine -0.4403 0.6438 0.6433 <.0001 
  Toilet with flush -0.9177 0.3994 0.6413 <.0001 
Availability of electricity (ref. no) 
  Yes -3.1219 0.0441 1.0961 0.0044 
Availability of television (ref. no) 
  Yes 0.6991 2.0119 0.2121 0.001 
Availability of radio (ref. no)  
  Yes -0.6991 0.4970 0.2121 0.001 
Number of rooms/person  -0.4631 0.6293 0.0688 <.0001 
Main material of room's wall (ref. cement block)  
  Mud block/wood -4.1691 0.0155 1.2646 0.038 
  Corrugated metal -3.1196 0.0442 1.2576 0.004 
Main material of room's roof (ref. corrugate) 
  Thatch 1.5031 4.4956 1.6732 0.005 
  Stick and mud 0.454 1.5746 0.6726 0.0058 
Main material of room's floor (ref. earth/Local dung plaster) 
  Wood -1.1407 0.3196 0.803 0.004 
  Cement -0.9273 0.3956 0.114 0.028 
Use of indoor residual spray (Ref. Yes) 
  No 1.237 3.4453 0.1734 <.0001 
Use of mosquito nets (ref. no) 
  Yes -0.8741 0.4172 0.1541 <.0001 
Number of months room sprayed -0.7626 0.4665 0.1274 <.0001 
Number of nets/person  -0.9349 0.3926 0.0977 <.0001 
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With reference to individuals with no toilet facilities, the odds of a positive 

malaria rapid diagnosis test is lower for those individuals using a flushing toilet 

to those who have septic tanks (OR = 0.399, P - value  <0.0001) or pit latrine 

slabs (OR = 0.644, P - value  <0.0001) compared to individuals who have no 

toilet facilities. Moreover, for a unit increase in the number of total rooms, the 

odds of malaria diagnosis test for an individual decreased by 37.07% (OR = 

0.629, P - value <0.0001).  Similarly, with a unit increase in the number of nets 

in the house, the odds of rapid diagnosis test of malaria for individuals 

decreased by 60.7% (OR = 0.393, P - value <0.0001). Furthermore, for a unit 

increase in the number of rooms in the household sprayed with indoor residual 

spray, the odds of a positive malaria diagnosis test decreased by 53.3% (OR = 

0.467,  P - value <0.0001). 

Table 6. 3:  Socio-economic, demographic and geographic of effects on 

malaria RDT test for interaction effects 

Effect Estimate OR SE P-value 

Gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -2.747 0.064 0.861 0.001 
Female and Unprotected water 1.224 3.402 1.064 0.250 

Gender and material of room's floor (ref. Male and earth/Local dung plaster) 
Female and Cement -0.839 0.432 0.571 <.0001 
Female and Wood 0.762 2.143 0.387 <.0001 

Age, gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -0.045 0.956 0.000 <.0001 
Female and Unprotected water 0.042 1.043 0.000 <.0001 

Age, gender and availability of electricity  (ref. Male & yes)  
   Female and No 0.066 1.068 0.000 <.0001 
 

Interaction effects 

Figures 6.4 and 6.5 show the distribution of malaria rapid diagnosis test 

against age, main source of drinking water for both males and females 

respectively. As age increased, positive malaria diagnosis was less likely for 

males than females who were using protected, unprotected and tap water for 

drinking. Furthermore, as age of respondents increased, malaria rapid 

diagnosis test was less likely to be positive for individuals who use tap water 
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for drinking for males and for females. More specifically, positive malaria 

diagnosis rate increases with age for females whereas it decreases as age 

increases for males (Figures 6.4 and 6.5). The figures further show that the gap 

in the rapid diagnosis test between respondents with unprotected, protected 

and tap water widens with increasing age.  

 

 

 

 

 

 

 

 

 

 

Figure 6. 4: Log odds associated with rapid diagnosis test and age for male 

respondents with source of drinking water 

 

Figure 6. 5: Log odds associated with rapid diagnosis test and age for female 
respondents with source of drinking water 
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The relationship between age, gender and availability of electricity is presented 

in Figure 6.6. As the figure indicates, positive malaria rapid diagnosis test 

decreases as age increases for both male and female respondents, whether or 

not they have access to electricity, except for females who responded to having 

electricity. However, the rate of decrease was not the same for males and 

females after controlling for other covariates in the model.  

 

 

 

 

 

 

 

 

Figure 6. 6: Log odds associated with rapid diagnosis test with age for female 

and female respondents with availability of electricity 

Interaction effects between the main source of water and the main material 

used for the room’s roof is presented in Figure 6.7. From the figure, it is clearly 

seen that positive rapid diagnosis of malaria was significantly higher for 

households with a stick and mud roof followed by thatch and lastly a 

corrugated iron roof. This occurred with respondents who reported using tap 

water as well as protected and unprotected water for drinking (Figure 6.7)). 

Furthermore, there was a significant difference in rapid diagnosis test between 

tap, protected and unprotected sources of drinking water for those who 

reported having thatch and stick and mud roofs. It is also shown that for 

corrugated iron roofs, the positive rapid diagnosis test was significantly lower 

for respondents who reported using tap water for drinking than for those who 

used protected and unprotected water for drinking. 
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Figure 6. 7: Log odds associated with rapid diagnosis test and source of 

drinking water with material of the room's roof 

The other significant two-way interaction effect was between the time taken to 

collect water and the main flooring material (Table 6.1). This result is presented 

graphically in Figure 6.8. A positive rapid diagnosis test was significantly 

higher in those rooms with earth and local dung plaster floors than for those 

with cement and wooden floors, for respondents who took < 30 minutes and 

>90 minutes to collect water. But, for respondents who took less than 30 

minutes to collect water but had a cement floor, the positive rapid diagnosis 

was low. Furthermore, with respondents who took between 30 to 40 minutes to 

collect water, there was a lower positive rapid diagnosis test for those with 

earth and local dung plaster floors compared to wooden floors. 
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Figure 6. 8: Log odds associated with rapid diagnosis test and time to collect 

water with material of room’s floor 

The relationship between the main source of drinking water and gender is 

presented in Figure 6.9. As the figure indicates, a positive rapid diagnosis test 

was significantly higher for female respondents than for male respondents who 

reported using unprotected water. There was however, no significant difference 

in a positive rapid diagnosis test between females and males who reported 

using protected and tap water for drinking.  

 

Figure 6. 9: Log odds associated with rapid diagnosis test and main source of 

drinking water with gender 
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Besides the fixed effects, Table 6.4 gives estimated spatial covariance 

parameters. An estimate of the variation between kebeles is ye = 	�. �z�{. The 

estimate of the range | was estimated using SP(GAU) spatial structure and its 

estimate is 1.3805. The estimate of the sill ye is reported as “Residual.” The 

estimate of the sill ye is 1.0506. Therefore, for the Gaussian model, the 

variance parameters, which is estimated by 4.5446, is called the partial sill. 

The sill is the sum of the partial sill and the nugget. In general, based on the 

result, it is observed that there is variability between kebeles. 

Table 6. 4: Random effects estimates 

Effect Estimate SE Pr > Z 

Variance 4.5446 0.5866 <.0001 

SP(GAU) 1.3805 0.2165 0.0178 

Residual 1.0506 0.0307 <.0001 

The spatial model which is described above was used to produce a map of 

predicted prevalence of positive diagnosis of malaria RDT incidence rates for 

Amhara, Oromiya and SNNP regions of Ethiopia. When there is spatial data, 

the basic concern is the potential for spatial correlation in the observations. 

These spatial correlations could lead to incorrect estimates (estimates with 

underestimated standard errors). Spatial clustering of disease is almost to be 

expected since human populations generally live in spatial clusters rather than 

in a random distribution of space. An infectious disease that is highly 

associated with socio-economic, demographic and geographic factors is likely to 

be spatially clustered. This spatial clustering can occur even if the population 

distribution is not clustered. The model derived in this study explains some of 

the spatial patterns of the prevalence of malaria. The predicted prevalence of 

malaria is given in Figures 6.10 and 6.11. The prediction map (Figures 6.10 

and 6.11) shows that the socio-economic, geographic and demographic factors 

are closely associated with the risk of malaria, mostly in the SNNP region 
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followed by the Amhara and Oromiya regions. As can be seen from the map, 

the risk of transmission of malaria is of a moderately high in intensity in 

almost all parts of the SNNP region. But, for the Oromiya region, the majority of 

households experience a lesser prevalence of malaria. Furthermore, from the 

map it can be seen that there is a high predicted value for the prevalence of 

malaria around the borders. This could be caused by cross-border migration of 

infected persons and the proximity of uncontrolled areas across the border 

which may further add to the intensity of transmission in border areas. 

 

Figure 6. 10: Predicted average spatial effects from the malaria prevalence 

model 
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Figure 6. 11: Predicted spatial effects from the malaria prevalence model 

6.6 Summary and discussion 

Looking at the global distribution of malaria in the world suggested that the 

concentration of the disease is in the world’s poorest continents and countries. 

Accurate information on the distribution of malaria in epidemic-prone areas on 

the ground permits interventions to be targeted towards the transmission and 

high risk locations and households. Such targeting greatly increases the 

effectiveness of control measures but the inadvertent exclusion of these 

locations causes potentially effective control measures to fail. The computerized 

mapping and management of location data assists the targeting of 

interventions against malaria at the focal and household levels, leading to 

improved efficacy and cost-effectiveness of control. 
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As the distribution of malaria infection suggests, it is important to understand 

the relationship between malaria and poverty. This relationship is important to 

enable the design of coherent and effective policies and tools to tackle the 

problem (Hay et al., 2004, Mendis et al., 2009). As is already known from the 

previous chapters, poverty is related to socio-economic factors. Therefore, it is 

important to identify those factors which are also related to the risk of malaria. 

Based on these facts, the findings from the current study show that the 

following socio-economic factors are related to the risk of malaria: main source 

of drinking water, time taken to collect water, toilet facilities, availability of 

radio, total number of rooms per person, main material of the room’s walls, 

main material of the room's roof, main material of the room's floor, use indoor 

residual spray, use of mosquito nets, total number of persons per net. Besides 

socio-economic factors, there are demographic and geographic factors which 

also have an effect on the risk of malaria. These include gender, age and family 

size. In addition to the main effects there were interactional effects between the 

socio-economic, demographic and geographic factors which also influenced the 

risk of malaria. Most notable of these were the interaction between main source 

of drinking water and main material of the room's roof, time taken to collect 

water and main material of the room's floor, age and gender, gender and 

availability of electricity, gender and main material of the room's floor, age, 

gender and main source of drinking water; and age, gender and availability of 

electricity.  

Spatially correlated data cannot be regarded as independent observations. 

Therefore, ignoring the spatial variability might lead to an inaccurate 

estimation of parameters. Accordingly, we considered the spatial correlation 

structure and the significance of the variables were checked and predictions of 

the malaria risk levels for the sampled areas were produced. A useful way of 

providing up to date information is in the use of GIS-based management 

systems. This method helps to address effective malaria vector control and 
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management. Therefore, the spatial distribution of malaria incidence was one 

of the points which were important for such GIS studies.  

Spatial clustering of malaria is almost predictable as human populations 

generally live in spatial clusters rather than in random distributions of space. 

Disease which is highly correlated to socio-economic variables is likely to be 

spatially clustered. Therefore, the model explains some of the spatial patterns 

of malaria risk for Amhara, Oromiya and SNNP regions of Ethiopia. Moran’s 

and Geary's C tests were used to test for randomness (Cliff and Ord, 1975, Cliff 

and Ord, 1981, Geary, 1954, Moran, 1950, Sokal and Oden, 1978). The 

interest was to test if the spatial distribution of feature values is the result of 

random spatial processes. However, the test favors that the spatial distribution 

of feature values is not the result of random spatial processes. Moreover, the 

spatial distribution of high values and low values in the dataset is more 

spatially dispersed than would be expected. A dispersed spatial pattern often 

reflects some type of competitive process, i.e. a feature with a high value repels 

other features with high values; similarly, a feature with a low value repels 

other features with low values. 

The results of this study provide evidence on the spatial distribution of socio-

economic, demographic and geographic risk factors in the occurrence of 

malaria. This forms the basis for this research. Therefore, the utilization of 

socio-economic, demographic and geographic data on malaria rapid diagnosis 

test, including the information on the spatial variability, clarifies the effects of 

these factors. From the study it was observed that residents living in the SNNP 

region were found to be more at risk of malaria than those living in Amhara 

and Oromiya regions. Similarly, houses which were treated with indoor 

residual spraying were less likely to be affected by malaria. However, a major 

challenge in the control of malarial infection was found to be in the type of 

toilet facilities available in the household. From the results, it was observed 
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that individuals living in households which had no toilet facilities were more 

likely to be positive for malaria diagnosis tests. Furthermore, positive malaria 

diagnosis rates decreased with age and the risk of malaria increased per unit 

increase in family size. Generally, malaria parasite prevalence differed between 

age and gender, with the highest prevalence occurring in children and females.  

From the findings of this study, it can be suggested that having toilet facilities, 

access to clean drinking water and the use of electricity offers a greater chance 

of knowing whether or not an individual in the household is at risk of malaria 

or not. In addition to this, using mosquito nets and spraying anti-mosquito 

treatment on the walls of the house were also found to be a way of reducing the 

risk of malaria. Similarly, having a cement floor and corrugated iron roof was 

found to be one means of reducing the risk of malaria. Based on the findings, 

different types of housing materials have an influence on the risk of malarial 

transmission with those houses constructed of poor quality materials having 

an increased risk. Moreover, the presence of particular structural features, 

such as bricks, that may limit contact with the mosquito vector, also helps to 

reduce infection. The risk of malaria therefore, is higher for households in a 

lower socio-economic bracket than for others who may enjoy a higher status 

and who are able to afford to take measures to reduce the risk of transmission.  

Therefore, with the correct use of mosquito nets, indoor residual spraying and 

other preventative measures, like having more rooms in a house, the incidence 

of malaria could be decreased. In addition to this, the study also suggests that 

the poor are less likely to use these preventative measures to effectively 

counteract the spread of malaria.  To provide clean drinking water, proper 

hygiene and maintaining the good condition of a house is essential in 

controlling the transmission of malaria. With other control measures, including 

creating awareness about the use of mosquito nets, indoor residual spraying 

and malaria transmission, the number of malaria cases can be reduced. 

Furthermore, spatial statistics studies significantly contribute to the 
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understanding of the distribution of malarial infections. The use of spatial 

statistics analysis is effective in monitoring and identifying high-rate malaria 

affected regions and helpful when implementing preventative measures. 

Finally, studies incorporating spatial variability are necessary for devising the 

most appropriate methodology for remedial action to reduce the risk of malaria.   

It is important statistically to jointly model variables which ideally may be 

dependent rather than as independent. Therefore, in the next chapter, joint 

model between malaria RDT result, use of mosquito nets and use of indoor 

residual spraying in the last twelve months will be investigated. 



162 

 

Chapter 7 

Modeling of the joint determinants of malaria Rapid 

Diagnosis Test result, use of mosquito nets and use of 

indoor residual spray 

7.1 Introduction  

In previous Chapters, the factors affecting malaria RDT result was explored. To 

assess malaria RDT result and the associated socio-economic, demographic 

and geographic factors, different statistical methods were used in the previous 

chapters (Ayele et al., 2012, Ayele et al., 2013a, Ayele et al., 2013b). But, in 

some studies, the interest could be with multiple outcomes. The different 

outcomes may be similar or different types (Verbeke et al., 2012). Therefore, the 

association between a primary outcome and another related outcome can 

disclose a great deal of understanding about the mechanism of changes to 

reduce risk of malaria. For this study, related outcomes for malaria RDT result 

are use of mosquito nets and use of indoor residual spray in the last twelve 

months which has been related to each individual. The aim of this study is to 

further investigate the joint effect of these predictor variables on malaria RDT 

result, use of mosquito nets and use of indoor residual spray for the last twelve 

months. Furthermore, the desire is to assess whether the explanatory variables 

that were found to be significantly related to malaria RDT result were still 

significant even when use of mosquito nets and use of indoor residual spray in 

the last twelve months were accounted for in the model. In addition to this, the 

association between these outcomes is also of interest. Therefore, the current 

problem can be addressed within the frame work of joint modelling of binary 

outcomes. Joint model has advantages over separate fitting of models. These 

advantages include that the joint models better control over type I error rates in 

multiple test, efficiency in estimating parameters and answer multivariate 

questions. 
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There are difficulties in answering the question for assessing the relationship 

between some covariates and all outcomes simultaneously. For such case of 

multiple outcomes, two types of correlations must be taken into account, i.e., 

the objectives of a multivariate analysis of binary data should include (1) the 

description of the dependency of each binary response on some covariates and 

(2) the characterization of the degree of association between pairs of responses 

and the dependence of this association on covariates (Verbeke and Davidian, 

2008, Verbeke et al., 2012). Joint models are extensively used for many 

studies. The literature related to joint modelling is vast (Guo and Carlin, 2004, 

Tsiatis and Davidian, 2004, Verbeke and Davidian, 2008, Verbeke et al., 2012). 

On the other hand, methods focusing on models that jointly analyse discrete 

and continuous outcomes have been explored (Aerts et al., 2002, Faes et al., 

2004, Faes et al., 2008, Molenberghs and Verbeke, 2005). The difficulties of 

joint modelling arise in the lack of multivariate distributions for combining 

both types of outcomes. Therefore, because the specification of a joint 

distribution of the response is not straight forward, there are two approaches 

adapted to joint modelling. The first approach is based on a conditioning 

argument that allows joint distribution to be factored in a marginal component 

and a conditional component, i.e., avoiding direct specification of a joint 

distribution (Catalano and Ryan, 1992, Faes et al., 2004, Fava Del et al., 

2011). But this method has disadvantage, i.e., do not directly lead to marginal 

inference. Furthermore, the correlation among the two outcomes cannot be 

directly estimated (Verbeke and Davidian, 2008, Verbeke et al., 2012). 

Formulating a joint model for both outcomes directly is the second approach. 

For the second approach, Plackett-Dale approach has been used. This method 

assumed Plackett latent variable to model bivariate outcomes (Molenberghs 

and Verbeke, 2005).  

 

Therefore, the main objective of joint modelling is to provide a framework 

within the interest of systematic relationships among the multiple outcomes 
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and between them and other factors. To obtain valid inferences, joint models 

must account for the correction among the outcomes and other effects of 

different factors (Fitzmaurice et al., 2008). The joint generalized linear mixed 

model assumes GLMM for each outcome. The univariate models are combined 

through specification of a joint multivariate distribution for all random effects. 

Therefore, joint model can be considered as a new GLMM. Furthermore, the 

mixed model can be used by specification of the marginal distribution, 

conditional on correlated random effect. The generalized linear mixed model 

forms a very general class of models in the exponential family. Furthermore, 

the aim of this chapter is to review the extension of GLMM approach for 

multivariate data by assuming separate random effects and then combining the 

outcomes by imposing a joint multivariate distribution on the random effect. 

This chapter, therefore, is organized as follows. In Section 7.2, a multivariate 

generalized linear mixed model for two outcomes is presented. The formulation 

of a joint model is binary outcomes in Section 7.3. Section 7.4 presents the 

results of a joint model between malaria RDT result, use of mosquito nets and 

use of indoor residual spray in the last twelve months. Section 7.5 presents 

summary and discussion. 

7.2 Joint model formulation for multivariate GLMM  

The primary objective of the joint modelling is to provide a framework where 

questions of scientific interest pertaining to relationships among and between 

multiple outcomes and other factors. Therefore, generalized linear mixed model 

introduced in previous studies can be easily be adapted to situations where 

various outcomes of a different nature are observed (Molenberghs and Verbeke, 

2005). Consider a conditional random effects model with bivariate responses. 

Let the two outcomes be y£� and y£� and denoted by }£ =	 (}£�V , }£�V )V, where }£� =	 (y£��, y£��, . . . , y£�@~Ö)V and }£� =	 (y£��, y£��, . . . , y£�@~Õ)V on the first and second 

outcome. Here, y£�à, j = 1, . . . , n£� and y£�à, j = 1, . . . , n£� are conditionally 
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independent given b£� and b£� with densities f�(. ) and f�(. ) in the exponential 

family for the first and second outcomes. Furthermore, y£� and y£� are 

conditionally independent given b£ =	 (b£�, b£�)V and the responses are 

independent. In addition to this,  g�(. ) and g�(. ) be appropriate link functions 

for f� and f�. Moreover, the conditional means of y£�à and y£�à denoted by μ£�à and μ£�à respectively. Suppose �£� = (μ£�à, . . . , μ£�@~)V	 and �£� = (μ£�à, . . . , μ£�@~)V 
(Gueorguieva and Agresti, 2011). Therefore, at the first stage the mixed model 

specification is assumed to be μ£� = g�,�(X£�β� +	Z£�b£�)       (7.1) μ£� = g�,�(X£�β� +	Z£�b£�)       (7.2) 

where β� and β� are (p� × 1) and p� × 1) dimensional unknown parameter 

vectors, X£� and X£� are (n£� × p�) and (n£� ×	p�) dimensional design matrices for 

the fixed effects, Z£� and Z£� are (n£� × q�) and (n£� ×	q�) design matrices for the 

random effects and g� and g� are applied component wise to μ£� and μ£� 
(Gueorguieva, 2001). Secondly, 

b£ =	äb£�b£�æ	~	i. i.d	MVN	(0, Ʃ) = MVN ä�00� , fƩ�� Ʃ��Ʃ�� Ʃ��gæ,																										(7.3) 
where Ʃ��, Ʃ��and Ʃ��are unknown positive definite matrices. For a given value 

of Ʃ�� = 0, the above model is equivalent to two separate GLMM’s for two 

outcome variables. This leads to the assumption of complete independence for 

both outcomes. Advantages of joint model include the control of the type I error 

rates in multiple tests. This leads to possible gains in efficiency in the 

parameter estimates and the ability to answer intrinsically multivariate 

questions (Molenberghs and Verbeke, 2005).  

The marginal means and the marginal variances of y£� and y£� for the model 

defined by (7.1), (7.2) and (7.3) are the same as those of the GLMM considering 

one variable at a time 
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E(y£�) = E\E(y£�|b£�)^ = E\μ£�^  
E(y£�) = E\E(y£�|b£�)^ =E\μ£�^ 

and 

var(y£�) = E\∅�V(μ£�)^ + Var\μ£�^  
var(y£�) = E\∅�V(μ£�)^ + Var\μ£�^  

where Var\μ£�^ and Var\μ£�^ denote the variance function corresponding to the 

exponential family distributions for the two response variables. Therefore, Var\μ£�^ = Var\E(y£�|b£�)^	 and Var\μ£�^ = Var\E(y£�|b£�)^. The marginal covariance 

matrix between y£� and y£� is found to be equal to the covariance between μ£� 
and μ£�, that is Cov	(y£�, y£�) = Cov(μ£�, μ£�). The property is a consequence of the 

key assumption of conditional independence between the two response 

variables. This property allows the method to extend model fitting methods 

from the univariate to the multivariate GLMM. 

To solve the problem of two outcomes, there are two strategies. These strategies 

accommodate mixed endpoints of the two outcomes. The product of the 

marginal distribution of one of the response variable and the conditional 

distribution of the other one given the first variable can be used to express the 

joint distribution of the binary variables. But, there is no simple expression to 

find the association between both endpoints. Therefore, to overcome this 

problem, it is important to treat the surrogate as binary variable. Therefore, the 

bivariate normal model for y£� and y£� can be described in Probit-linear model 

and an alternative can be formulated based on the bivariate Plackett density 

which  Plackett-Dale modem (Plackett, 1965).  

To use a Probit-normal formulation, assume the following models (Molenberghs 

and Verbeke, 2005). 
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y£� =	μ� +	β�X£ +	∈£�     (7.4) 

y£� =	μ� +	β�X£ +	∈£�     (7.5) 

where μ�	 and μ� are intercepts, β£’s are fixed effects and ∈£� and ∈£� are 

correlated errors. Therefore,  

�
��
∈£�

∈£��
�� 		~	N

�
���
�
��

0
0��
� ,

�
��σ

� ρ�[1 − ρ�11 − ρ� �
��
�
��� 

The bivariate normal density models are represented by (7.4) and (7.5). It is 

clear that  y£� univariate normal with variance σ�. Therefore, μ�, β� and σ� can 

be estimated with response y£� and covariate Z£. Therefore, the conditional 

density of y£� for X£ and y£� is 

y£�	~	N z«μ� −	 ρσ[1 − ρ� μ�­ +	«β� −	 ρσ[1 − ρ� β�­X£ +	«	 ρσ[1 − ρ� y£�; 1­| 
with unit variance. Therefore, the corresponding probability is 

P(y£� = 1|y£�,X£) = 	Ф�(λ� + λ,X£ +	λ�y£�)                     (7.6) 

where λ� =	μ� −	 ��[�,�Õ ,                                          (7.7) 

λ, =	β� −	 ��[�,�Õ β�,                                           (7.8) 

λ� =		 ��[�,�Õ,                                           (7.9) 

and Ф� is the standard normal cumulative density function. To find the λ 
parameters, model (7.6) can be used to y£� with covariate X£ and y£�. 
Furthermore, regression parameters from y£�(μ�, β� and σ�) and probit 
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regression (λ�, λ, and λ�) and parameters from y£� can be obtained using 

equations (7.7) – (7.9) 

μ� =	λ� +	λ�μ�,      (7.10) 

β� =	λ� +	λ,β�,      (7.11) 

ρ� =	 ��Õ�Õ�/	��Õ�Õ.      (7.12) 

Where, σd� = 2σ� N⁄ .	 The asymptotic covariance of Wλ��, 	λ�,, λ��Y yields the 

covariance matrix of the parameters. The derivation of the asymptotic 

covariance of (μ�, β�, ρ) can be obtained from the calculations of equations 

(7.10 – 7.12) with respect to the six orthogonal parameters with delta method.  

Therefore,  

∂(μ�, β�, ρ)∂(μ�, β�, σ�, λ�, λ,, λ�) = 	:λ� 0 00 λ� 00 0 h�
			1 0 μ�				0 1 β�				0 0 h�; 

where 

h� =	 12ρ 			 λ��(1 + λ��σ�)�, 
h� =	 12ρ 			 2λ��σ�(1 + λ��σ�)�. 

Furthermore, the joint estimation can be obtained by maximizing the likelihood 

based influence of (7.1) and (7.2) (Molenberghs et al., 2001). To formulate 

Plackett-Dale, it is important to assume the cumulative distribution of y£� and y£� given by F�~Ö and F�~Õ (Plackett, 1965). Therefore,  

F�~Ö,�~Õ	 = c1 +	WF�~Ö + F�~ÕY(ψ£ − 1) − cWF�~Ö ,F�~Õ , ψ£Y2(ψ£ − 1)F�~ÖF�~Õ																																										 					if		ψ£ ≠ 1
if		ψ£ = 1d	.	 
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Bivariate Plackett “density” function G£(y£�, y£�) for mixed outcomes can be 

derived. Let y£� be denoted by π£, then define G£(y£�, 0) by G£(y£�, y£�)and	G£(y£�, 1). 
In addition, the result can be a sum to f�~Ö(t). Therefore,  

G£(t, 0) = 	∂F�~Ö , F�~Õ(t, 0)∂t . 
Then, 

G£(t, 0) =
NOP
OQf�~Ö(t) «1 −	1 + F�~Ö(t)(ψ£ − 1) − F�~Õ(t)(ψ£ + 1)cWF�~Ö , 1 − π£, ψ£Y ­ if	ψ£ ≠ 1,
F�~Ö(t)(1 − π£)																																																																									if	ψ£ = 1,UOV

OW
 

and G£(t, 1) = 	 f�~Ö(t) −	G£(t, 0). 
Moreover, assume y£�	~	N(μ£,σ�)	 with μ£ =	μ� +	β�X£ and logit(π£) = 	μ� +	β�X£. 
 

For 

θ£ =	´μ£σ�π£ψµ and η£ =	´ μ£ln	(σ�)logit	(π£)ln	(ψ) µ, 

estimation of parameters ν = (μ, β�, β�, ln(σ�) , ln(ψ)) easily obtained by solving 

the estimating equation, U(ν) = 0, using Newton-Raphson iteration scheme, 

where U(ν) is given by   

<ä∂η£∂ν æV@
£�� ©ä∂η£∂θ£æV®,� : ∂∂θ£ lnG£(y£�, y£�);. 

The joint model can also be discussed based on the generalized linear mixed 

model formulation. For this approach, the formulation can be done on the 

presence of both random effects and serial correlations. The expressions 

Y£ =	μ£ +	∈£ 
is the general formulation and  
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Y£ =	 e�~�/�~�1 + e�~�/�~� +	∈£ 
is specific random effects logistic regression. For a bivariate response vectors y£ = (y£�V , y£�V )V where y£� = (y£��, . . . , y£�@~)V and y£� = (y£��, . . . , y£�@~)V are for the two 

outcomes respectively (Goldstein, 2011).  

In general,  

μ£ =	μ£(η£) = 	 g,�(X£β +	Z£b£).    (7.13) 

Assume b£	~	N	(0, Ʃ) are the q-dimensional random effects. Furthermore, the 

link function g,� are allowed to change with the nature of outcomes in i�. O� 
and �� 	are (2�� × �) and (2�� × �) dimensional matrices of the covariate values 

and β ia s p-dimensional vector of unknown fixed regression coefficients. The 

variance of ∈� depends on the mean-variance link of various outcomes. In 

addition to this, the variance contains a correlation matrix R£(α) and a 

dispersion parameter ø�. 
The variance-covariance matrix of i� can be obtained from a general first-order 

approximate expression, which is given by 

�� = �$�(i�) ≃ ∆���Ü��V∆�V +	Ʃ�    (7.14) 

with 

∆�=	Ã²Î�²��Ä |����, 
and 

�� ≃ ɸ�ÖÕÆ�ÖÕÉ�(9)Æ�ÖÕɸ�ÖÕ, 
where Æ� a diagonal matrix containing the variance from the generalized linear 

model specification of ?��	(� = 1,2) for a given random effects b£ = 0. ɸ� is a 

diagonal matrix with the overdispersion parameter along the diagonal. É�(9) is 

a correlation matrix. Furthermore, the over dispersion is normally distributed 
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with j� and the variance function 1 (Molenberghs and Verbeke, 2005). For a 

binary outcome with logit link 

μ£à	(b£ = 0)(1 − μ£à(b£ = 0)) 
can be derived from Taylor series expression of the mean component around {� = 0. When an exponential family specification is used for all components, 

with a canonical link, ∆�=	Æ�, the resulting GLMM has the variance-covariance  

matrix of ?�, i.e., 

var(y£) = 	∆£Z£GZ£V∆£V +	ɸ£ÖÕ∆£ÖÕR£(α)∆£ÖÕɸ£ÖÕ 
under conditional independence É� vanishes and  

var(y£) = 	∆£Z£GZ£V∆£V +	ɸ£ÖÕ∆£ÖÕɸ£ÖÕ. 
A model with no random effects for the marginal generalized linear model 

(MGLM) has a form 

´y£�
y£�

µ = 	¤ μ� + λb£ + αX£
+,-	(¥Õ/�~/	��~)�/	+,-	(¥Õ/�~/	��~)

¦+	´∈£�
∈£�

µ   (7.15) 

The scale parameter λ is included in the continuous of random-intercept 

model, given two outcomes are measured. Therefore, 

�� =	Ã41Ä,				∆�=	ä1 00 ���æ ,						ø = 	 Ãj� 00 1Ä 

with v£� =	μ£�(b£ = 0)W1 − μ£�(b£ = 0)Y. 
Suppose 1 is the correlation between =�� and =��. But, �� is not a design matrix, 

because it contains unknown parameters. Therefore, variance-covariance 

function (7.14) leads to  



172 

 

V£ =	«λ� v£�λv£� v£�� ­ τ� +	ä σ� ρσ√v£�ρσ√v£� v£� æ           
= « λ�τ� + σ� v£�λτ� + ρσ√v£�v£�λτ� + ρσ√v£� v£�� τ� +	v£� ­.			              (7.16) 

Therefore, the derived approximate marginal correlation function is given by 

ρ(β) = 	 v£�λτ� + 	ρσ√v£�√λ�τ� + σ�[v£�� τ� + v£� ,																																			(7.17) 
Expression (7.17) depends on the fixed effects through v£�. A model with no 

random effects, it can be given as 

´y£�
y£�

µ = 	¤ μ� + β�X£
+,-	(¥Ö/�Ö�~)�/	+,-	(¥Ö/�Ö�~)

¦+	´∈£�
∈£�

µ   (7.18) 

and expression (7.16) reduced to 1. 

Under conditional independence, 1 in expression (7.16) satisfies 1 ≡ 0 and 

equation (7.17) can be reduced to 

ρ(β) = 	 ª~Õ�«Õ√�Õ«Õ/�Õ7ª~ÕÕ «Õ/ª~Õ	.                 (7.19) 

Equation (7.19) is simpler than equation (7.17). But, equation (7.19) is a 

function of the fixed effects. For the case of binary endpoints (both outcomes), 

equation (7.17) is    

ρ(β) = 	 v£�v£�τ� + ρσ√v£�v£�[v£�� τ� + v£�[v£�� τ� + v£�.	 
Similarly, for a constant correlation ρ with no random effects and no residual 

correlation, we have 
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ρ(β) = 	 v£�v£�τ�[v£�� τ� + v£�[v£�� τ� + v£� .																																								(7.20) 
Equation (7.20) can be performed with general random effects design matrices �� and for more than two components. 

Full joint distribution is not necessary for the general model formulation. A full 

joint model specification needs full bivariate model specification, conditional 

upon the random effects. Furthermore, the generalized linear mixed model 

formulation can be extended to the hierarchical cases.  The hierarchical cases 

include repeated measures, meta-analysis, cluster data, correlated data, etc. 

Model  i� =	m� +	∈� is sufficient to generate marginal and random effects 

models. For shared parameters between models of different types, it is 

important to ensure the models to be meaningful. For correlations in the model 

with random effects, the correlation structure can be derived from                �� = �$�(i�) ≃ ∆���Ü��V∆�V +	Ʃ�. In general, the parameters from joint models can 

be estimated using numerical approximation method. These methods include 

Gaussian quadrature and Laplace approximation. Estimation based on data 

using pseudo-likelihood where pseudo data created based on a linearization of 

the mean. Furthermore, the pseudo-likelihood approach can be used to 

estimate parameters in marginal models and random effects with or without 

correlations. But, quadrature or Laplace approximations can only estimate 

parameters in the conditional independence random effects models. 

7.4 Evaluation of malaria RDT result using joint models approach 

In the malaria study, the primary outcome has been malaria RDT result of 

respondents where the overall goal has been to explore socio-economic, 

demographic and geographic factors associated with this outcome.  A related 

outcome to the RDT result is use of mosquito nets and use indoor residual 

spray for the last twelve months, which has been collected from each 
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individual. The effect of predictor variables on malaria RDT result was explored 

on the previous chapters (Ayele et al., 2012, Ayele et al., 2013a, Ayele et al., 

2013b).  In this Chapter, the aim is to further investigate the joint effect of 

these predictor variables (socio-economic, demographic and geographic factors) 

on malaria RDT result, use of mosquito nets and use of anti- mosquito spray in 

the last twelve months. More specifically, it is important to assess whether the 

explanatory variables that were found to be significantly related with RDT 

result in the previous studies would still have a significant effect on malaria 

RDT result even when use of mosquito nets and use of anti- mosquito spray is 

accounted for. Also assessing the association between the two outcomes 

(malaria RDT result and use of mosquito nets) and (malaria RDT result and use 

of anti- mosquito spray) is of interest.  The advantages of fitting a joint model 

over a separate model that would contain use of mosquito nets and use of ant-

malaria spray in a linear predictor include possible gains in efficiency of the 

parameter estimates (Gueorguieva, 2001). The respondent’s malaria RDT result 

status (positive/negative) has been modelled as a binary variable that follows 

Bernoulli distribution.   

To evaluate the association between malaria RDT result, use of mosquito nets 

and use indoor residual spray in the last twelve months, the generalized 

multivariate mixed effects model was fitted. The three response variables could 

be taken to be completely independent at any point. In this model, the 

correlation between the three outcomes as well as the correlation coming from 

the structure of the data is specified through the random effects structure. This 

is done by assuming separate random intercepts for each outcome variable and 

then combining them by imposing a joint multivariate distribution on the 

random intercepts.  The SAS procedure GLIMMIX (SAS 9.3) was used to fit the 

marginal model. This procedure allows us to jointly model outcomes with 

different distributions and/or different link functions. The estimates from 

GLIMMIX were used as initial estimates for NLIMIXED procedure.  
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Table 7. 1: Parameter estimates for a joint marginal model for malaria 

RDT result, use of mosquito nets and use of indoor residual spray 

for main effects 

Effects 

Malaria RDT result Use of mosquito nets 
Use of indoor residual 

spray 

Est SE 
P-

value 
Est SE P-value Est SE P-value 

Intercept 0.68 0.67 0.94 -9.21 2.70 0.00 -9.21 2.70 0.0001 

Age -1.01 0.00 <.0001 -1.04 0.01 <.0001 -1.04 0.01 <.0001 
Gender (ref. Male)       
  Female 2.99 0.61 0.53 4.10 0.26 <.0001 -4.78 0.73 0.99 
Family size 0.07 0.01 0.02 0.01 0.01 0.14 0.04 0.01 0.01 
Region (ref. SNNP)       
  Amhara 0.09 0.05 0.10 -0.01 0.07 0.91 0.07 0.12 0.58 
  Oromiya 0.09 0.06 0.99 0.09 0.08 0.30 0.16 0.14 0.27 
Altitude 0.00 0.00 0.00 -0.01 0.00 0.01 0.00 0.00 0.31 
Main source of drinking water (Ref. protected water)       
  Tap water -0.36 0.23 <.0001 -2.52 0.30 <.0001 -0.56 0.16 0.0001 

  
Unprotected 
water 

2.46 0.28 <.0001 2.43 0.38 <.0001 0.55 0.13 <.0001 

Time to collect water (ref. > 90 minutes)        
  < 30 minutes -1.21 0.01 0.0001 -1.23 0.08 0.00 -1.64 0.49 0.0001 

  
between 30 to  
40 minutes 

0.45 0.28 0.11 -0.12 0.05 0.03 -2.43 0.50 <.0001 

  
between 40 - 
90 minutes 

-0.12 0.09 <.0001 0.47 0.36 0.19 -0.85 0.58 0.15 

Toilet facility (ref. No facility)       
  Pit Latrine -0.74 0.23 <.0001 -0.01 0.29 0.97 -0.11 0.18 0.03 

  
Toilet with 
flush 

-0.92 0.23 <.0001 -0.54 0.29 0.06 -1.90 0.77 0.02 

Availability of electricity (ref. no)       
  Yes 2..072 0.08 <.0001 2.30 0.30 <.0001 2.04 0.12 <.0001 
Availability of television (ref. no)       
  Yes -0.43 0.16 <.0001 0.25 0.16 <.0001 0.03 0.06 0.64 
Availability of radio (ref. no)       
  Yes -0.63 0.03 0.72 -0.03 0.05 0.54 -0.60 0.16 0.0001 
Total number of 
rooms 

-0.23 0.04 0.0001 -0.49 0.14 0.00 -0.18 0.05 0.0001 

Main material of room's wall (ref. Cement Blocks)       

  
Corrugated 
Metal 

-0.53 0.11 <.0001 -3.30 0.34 <.0001 -0.76 0.03 <.0001 

  Mud Blocks 0.27 0.26 <.0001 3.05 2.65 0.25 -11.5 0.05 <.0001 
Main material of room's roof (ref. Corrugate)       
  Thatch 0.43 0.052 <.0001 0.51 0.07 <.0001 0.16 0.05 <.0001 

  
Sticks and 
mud 

1.21 0.12 <.0001 0.61 0.18 0.0001 0.24 0.18 <.0001 

Main material of room's roof (ref. earth/Local dung plaster)       
  Cement -0.26 1.29 0.25 -3.83 2.87 <.0001 -6.13 0.41 0.25 
  Wood -0.45 1.02 <.0001 -3.67 2.67 <.0001 -5.92 0.33 <.0001 



176 

 

The conditional independence random effects model was fitted with SAS 9.3 

PROC NLMIXED using the general log-likelihood option. The NLMIXED 

procedure using the general log-likelihood function allows one to impose a joint 

multivariate distribution on the random effects from separate models. All 

statistical tests were conducted at a 5% level of significance. 

The linear predictors which were used for fitted models consists the same 

variables which were used in the previous studies (Ayele et al., 2012, Ayele et 

al., 2013a, Ayele et al., 2013b). The following socio-economic, demographic and 

geographic variables were considered as explanatory variables. The socio-

economic variables are main source of drinking water, time to collect water, 

toilet facilities, availability of electricity, radio and television, total number of 

rooms, main material of the room's wall, main material of the room's roof and 

main material of the room's floor. Geographic variables are region and altitude, 

and demographic variables are gender, age and family size. In addition to the 

main effects, some two-way and three-way interaction effects which were 

significant in the previous studies were included in the model. These two-way 

and three-way interaction effects are drinking water and roof material, time to 

collect water and floor material, time to collect water and main material of 

room's roof, age and gender, gender and main source of drinking water, gender 

and availability of electricity, gender and floor material, age, gender and main 

source of drinking water, age, gender and electricity, and age, gender and floor 

material. 

For this study, malaria RDT result, use of mosquito nets and use of indoor 

residual spray the last twelve months are binary outcome variables. Therefore, 

malaria RDT result, use of mosquito nets and use of indoor residual spray in 

the last twelve months will jointly be modelled using generalized linear mixed 

models. For this model, it is assumed uncorrelated random intercepts with 

correlated residual errors. The results from the generalized linear mixed model 
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analysis are given in Tables 7.1 and 7.2. The result from joint models for 

malaria RDT result, use of mosquito nets and use of indoor residual spray in 

the last twelve months confirm the results obtained from other models in the 

previous Chapters.  

 

Table 7. 2: Parameter estimates and their corresponding standard errors 

of a joint marginal model for malaria RDT result, use of mosquito 

nets and use of indoor residual spray for interaction effects 

Effects 
Malaria RDT result Use of mosquito nets 

Est SE P-value Est SE P-value 

Age and gender (ref. male) 
Female  1.426 0.215 <.0001 0.988 0.006 <.0001 
Gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -2.107 0.114 <.0001 -2.390 0.447 <.0001 
Female and Unprotected 
water 

0.534 0.162 <.0001 -1.592 0.483 0.001 

Gender and availability of electricity  (ref. Male & yes)  
Female and No -2.152 0.291 <.0001 -3.256 0.593 <.0001 
Age, gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -0.335 0.159 0.017 -0.024 0.008 0.004 
Female and Unprotected 
water 

2.480 0.263 0.014 -0.008 0.008 0.286 

Age and gender and material of room's floor (ref. Male and earth/Local dung plaster) 
Female and Cement -0.468 1.026 <.0001 1.076 0.023 <.0001 
Female and Wood 0.353 0.039 <.0001 1.064 0.000 <.0001 

Effects 
use of indoor residual spray 

Est SE P-value 

Age and gender (ref. male) 
Female  0.988 0.006 <.0001 
Gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -2.39 0.447 <.0001 
Female and Unprotected 
water 

-1.592 0.483 0.001 

Gender and availability of electricity  (ref. Male & yes)  
Female and No -3.256 0.593 <.0001 
Age, gender and main source of drinking water (ref. Male & protected water)  
Female and Tap water -0.024 0.008 0.004 
Female and Unprotected 
water 

-0.008 0.008 0.286 

Age and gender and material of room's floor (ref. Male and earth/Local dung plaster) 
Female and Cement 1.076 0.023 <.0001 
Female and Wood 1.064 0 <.0001 
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The main significant socio-economic, demographic and geographic factors 

which were found from the joint model of malaria RDT result, use of mosquito 

nets and use of indoor residual spray in the last twelve months are age, family 

size, altitude, main source of drinking water, time to collect water, toilet 

facility, availability of radio, television and radio, total number of rooms, main 

material of room's wall, main material of room's roof and main material of 

room's floor. The two-way significant effects were drinking water and roof 

material, age and gender, gender and main source of drinking water; and 

gender and availability of electricity. Age, gender and main source of drinking 

water; and age, gender and floor material were found to be significant three-

way interaction effects (Tables 7.1 and 7.2).  

Furthermore, among the main effects age, gender, main source of drinking 

water, main material of room's roof and availability of electricity were involved 

in the interaction effects (Table 7.2). The estimates of the significant effects are 

given in Tables 7.1 and 7.2. Based on the results for a unit increase in family 

size, the odds of positive rapid diagnosis test increases by 7.6% (OR = 1.076, P-

value = 0.02). With reference to individuals with no toilet facilities, the odds of 

a positive malaria rapid diagnosis test is lower for those individuals using a 

flushing toilet to those who have septic tanks (OR = 0.397, P-value  <0.0001) or 

pit latrine slabs (OR = 0.477, P - value  <0.0001). Moreover, for a unit increase 

in the number of total rooms, the odds of malaria diagnosis test for an 

individual decreased by 20.1% (OR = 0.799, P-value = 0.0001). With reference 

to individuals with no access to radio, the odds of a positive malaria rapid 

diagnosis test is lower for those individuals who have access to radio (OR = 

0.535, P - value  <0.0001). Similarly, for those households who have electricity, 

the odd of malaria RDT result to be positive is increased (OR=7.937, P – value < 

0.0001) compared to households who have no electricity. Moreover, for 

households who have access to television, the odds of positive rapid diagnosis 

test increases (OR = 0.651, P - value <0.0001). 
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Interaction effects 

From Table 7.2, it can be seen that there are significant two-way and three-way 

interaction effects. The estimates of these significant effects are given in Table 

7.2. As the result indicates one of the three-way interaction effects which was 

found to be significant is age, gender and main source of drinking water. The 

result is presented in Figure 7.1 and 7.2.  

 

Figure 7. 1:  Log odds associated with rapid diagnosis test and age for 
male respondents with source of drinking water 

 
Figure 7. 2:  Log odds associated with rapid diagnosis test and age for 

female respondents with source of drinking water 
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From the figures it can be seen that as age increased, positive malaria 

diagnosis was less likely for males than for females who were using protected, 

unprotected and tap water for drinking. Furthermore, as age of respondents 

increased, malaria RDT was less likely to be positive for individuals who used 

tap water for drinking for males and for females. More specifically, positive 

malaria diagnosis rates increased with age for females whereas it decreased for 

males as age increased (Figures 7.1 and 7.2). The Figures further show that the 

gap in the malaria RDT Test between respondents using unprotected, protected 

and tap water for drinking widens with increasing age for females.  

 

Figure 7. 3: Log odds associated with rapid diagnosis test and age for male 

respondents with material for room’s floor 

 

Figure 7. 4: Log odds associated with rapid diagnosis test and age for 

female respondents with material for room’s floor 
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The other three-way significant interaction effect is between age, gender and 

material of room's floor (Table 7.2). The results are presented in Figures 7.3 

and 7.4 show the interaction between age, gender and material of room's floor 

for male and female respectively. From the figures it can be seen that as age 

increased, positive malaria diagnosis was also increased for males for all kinds 

of material used for roof construction. As can be seen from the figures, 

individuals who has cement floor has less risk to be positive for malaria RDT 

result followed by wood and earth. Furthermore, as age of respondents 

increased, malaria RDT test was also increasing for females. Unlike males, for 

females the risk of malaria is the same for all type of house construction. 

 

Figure 7. 5: Log odds associated with rapid diagnosis test and availability 

of electricity with gender 

Figure 7.5 presents the interaction effect between availability of electricity and 

gender for individuals. Prevalence of malaria was significantly higher for female 

than for male respondents who were living in a house with electricity. Similarly, 

a female living in a house, which has no electricity, the positive malaria result 

was significantly higher than it was for males.   

The random effects for malaria RDT result and use of mosquito nets are 

significantly negatively associated i.e., -0.468 (p-value <.0001) (Table 7.3). This 

indicates a negative correlation between malaria RDT result and use of 

mosquito nets. This means that increasing the use of mosquito nets tends to 
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decrease the chance of being positive for malaria RDT result. Similarly, the 

random effect from the joint model of malaria RDT result and use indoor 

residual spray in the last twelve months (Table 7.3) are significant (-0.310, p-

value <.0001). Based on the result, it can be seen that there is negative 

correlation between malaria RDT result and the use of indoor residual spray for 

the last twelve months. Therefore, an increase in the use of indoor residual 

spray leads to decrease for the chance of being positive for malaria RDT result.  

But, sometimes the conditional independence assumption might be too 

restrictive. Moreover, statistical tests to check the validity of the assumptions 

are not well-known in statistical literatures. Moreover, one way of solving 

conditional dependence is by including one response variable in the linear 

predictor variable for the other response. This approach was done by 

(Gueorguieva, 2001). But, models with malaria RDT result as the outcome and 

included use of mosquito nets and use indoor residual spray in the last twelve 

months as predictor variables were fitted in the previous studies (Ayele et al., 

2012). Therefore, the results from all models fitted show that malaria RDT 

result is negatively associated with use of mosquito nets and use of indoor 

residual spray after controlling for the other socio-economic, demographic and 

geographic factors. Furthermore, if the use of mosquito nets and use of indoor 

residual spraying increased in the household, household members are less 

likely to be positive for malaria RDT result. 

Table 7. 3: Variance components  

Label Est SE Pr > |t| 

Var 1(RDT result) 0.632 0.042 <.0001 
Var 2 (use of mosquito net) 0.694 0.211 <.0001 
Var 3 (use of indoor residual spraying) 0.828 0.101 <.0001 
Correlation between  Var 1 & Var 2 -0.468 0.430 <.0001 
Correlation between  Var 1 & Var 3 -0.310 0.212 <.0001 
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7.5 Summary and discussion 

Joint modelling provides efficient parameter estimates and the ability to answer 

multivariate research questions. This study makes a methodological 

contribution in the formulation and estimation of three discrete model systems 

by adopting a joint model methodology wherein flexible error dependency 

structures can be accommodated between discrete choice equations. To the 

knowledge of the researcher, this is the first instance in the malaria related 

literature of the development and application of joint model with an 

endogenous multinomial choice variable. Therefore, joint modelling provides 

efficient parameter estimates and the ability to answer multivariate research 

questions. The results from fitting a joint model of malaria RDT result, use of 

mosquito nets and use of indoor residual spray in the last twelve months 

indicate that malaria RDT result is negatively associated with use of mosquito 

nets and use of indoor residual spray for the last twelve months. That is, for 

households with less use of mosquito nets and use of indoor residual spray, 

individuals tend to be positive for malaria RDT result. Nevertheless the negative 

association between malaria RDT result and use of mosquito nets and use of 

indoor residual spray in the last twelve months further revealed that if the 

households have more nets in the house and use indoor residual spray in the 

last twelve months, the number of positive malaria RDT result might be less. 

The results reaffirm the significant determinants of socio-economic, 

demographic and geographic for malaria RDT result from previous studies, i.e., 

after accounting for the use of mosquito nets and use of indoor residual spray, 

age, family size, main source of drinking water, time to collect water, toilet 

facility, total room, main material of room's wall, main material of room's roof 

and main material of room's. The two-way significant effects were drinking 

water and roof material, age and gender, gender and main source of drinking 

water; and gender and availability of electricity. Age, gender and main source of 

drinking water; and age, gender and floor material were found to be significant 
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three-way interaction effects. Therefore, the finding of this study reveals that 

for households with toilet facilities, clean drinking water and more living space, 

the chances of testing positive for malaria decreased. Moreover, using malaria 

nets and spraying the house walls were found to be effective control measures. 

In the next chapter, to allow for more flexible trajectory of the observed data, 

semiparametric approach was used to model the effect of age, family size, 

altitude, number of nets per person and number of rooms per person non-

parametrically.  



185 

 

Chapter 8 

Semiparametric models for malaria Rapid Diagnosis 

Test result 

8.1 Introduction 

In the previous chapters, malaria rapid diagnosis test data was reviewed and 

fitted using different statistical methods. These methods are: multiple 

correspondence analysis, the generalized linear model (Survey logistic), 

generalized linear mixed models (GLMMs), spatial statistics method and joint 

models (Ayele et al., 2012, Ayele et al., 2013a, Ayele et al., 2013b). These 

methods were used to identify the association between malaria RDT result and 

socio-economic, demographic and geographic factors. These models provide a 

powerful tool for modelling the relationship between a response variable and 

covariates. These parametric mean models are simple to use. Because of many 

sophisticated applications, many computationally intensive data analytic 

modelling techniques have been invented. These invented methods are useful 

to exploit possible hidden structures and to reduce modelling biases of the 

parametric methods. Therefore, because of the restrictions to use parametric 

models, there is strong demand in recent years on developing nonparametric 

regression methods. Using this method, flexible functional forms can be 

estimated from the data to capture possibly complicated relationships between 

outcomes and covariates. These data analytic approaches are also referred as 

nonparametric techniques (Lin and Carroll, 2000). Therefore, the basic 

principle of the nonparametric approaches is to determine the most suitable 

form of the functions for the available data structure.  

The literature on nonparametric methods and their applications is discussed in 

various literatures (Devroye and Gyorfi 1985, Silverman, 1986, Eubank, 1988, 

Muller, 1988, Gyorfi  et al., 1989 , Hastie and Tibshirani, 1990, Wahba, 1990, 
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Scott, 1992, Green and Silverman, 1994, Wand and Jones, 1995, Fan and 

Gijbels, 1996, Simono 1996, Bowman and Azzalini, 1997, Hart, 1997 , Ramsay 

and Silverman, 1997, Ogden, 1997., Efromovich, 1999, Vidakovic, 1999). 

Intensive efforts have been devoted to nonparametric function estimation. Over 

the past years, many new nonparametric models have been introduced. During 

the past years, to solve nonparametric problems massive arrays of new 

techniques have been invented. Many new phenomena have been unveiled and 

deep insights have been gained. The nonparametric modelling has progressed 

steadily and dynamically. The use of nonparametric techniques is important to 

reduce possible modelling biases of parametric models. Parametric models are 

simple and convenient linear models to facilitate computational convenience 

before 1980s'. But, parametric models are not derived from physical laws and 

cannot be expected to fit all data well. The purpose of nonparametric 

techniques is to fit a much larger class of models to reduce modelling biases. 

These models allow data to search for the appropriate nonlinear forms of the 

model which best describe the available data. They also provide useful tools for 

parametric nonlinear modelling and for model diagnostics. 

For nonparametric methods, there are many regression and smoothing 

methods. The methods include kernel smoothing, spline fitting or smoothing, 

L-Smoothing, R-smoothing, M-smoothing, and Locally WEighted Scatterplot 

Smoothing (LOWESS) techniques. The techniques are mathematically related to 

each other. However, each techniques have different properties which are 

advantageous in different situations (Härdle, 1989, Wu and Zhang, 2006). 

Many researchers have looked for possible remedies to solve nonparametric 

problems. A lot of effort has been allocated to developing methods which reduce 

the complexity of high dimensional regression problems. This developed 

methods help to reduce dimensionality as well as allowance for partly 

parametric modelling. But, the parametric and nonparametric methods, one 
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follows the other. The resulting models can be considered as semiparametric 

models (Hardle, 1994, Härdle et al., 2004, Hastie and Tibshirani, 1990, 

Ruppert et al., 2003). 

In many applications, the functional form of the relationship may only be partly 

specified, because the relationships between the response and some 

confounding covariates may have unknown functional form. This motivates to 

study the semiparametric generalized additive model (GAM). The proposed 

GAM generalizes the highly popular generalized additive model (Hastie and 

Tibshirani, 1986, Hastie and Tibshirani, 1990, Wood, 2006) by adding a 

parametric nonlinear component to the additive predictor on the link scale. 

This type of model structure has wide applications in scientific studies where 

some parametric nonlinear regression relationship is of main interest. Using 

pametric methods might have confounding effects for some covariates whose 

relationship to the response is of unknown functional form. In such cases, the 

parameters could be best estimated nonparametrically.  

Therefore, the aim of this chapter is to review GAM and Generalized Additive 

Mixed Models (GAMM) and then fit them to malaria RDT result data. 

Specifically, interest is to model the effect of socio-economic, demographic and 

geographic factors on malaria rapid diagnosis test status non-parametrically. 

Application of GAMMS, a brief overview of nonparametric regression methods 

using generalized additive models (GAMs) for independent data is provided. 

This chapter is organized as follows. An overview of generalized additive models 

for independent data is presented in Sections 8.2. Section 8.3 reviews the 

generalized additive mixed models (GAMMs) data. The GAMM model is fitted to 

malaria RDT data in Section 8.4. Summary and discussion of the chapter is 

given in section 8.5. 
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8.2 Generalized Additive Models (GAMs) 

Before introducing generalized additive models, it is important to introduce the 

additive model (AM). The additive model is a nonparametric regression method 

suggested by (Friedman and Stuetzle, 1981). An AM uses a one dimensional 

smoother to build a restricted class of nonparametric regression models. 

Therefore, AM is less affected by the dimensionality of smoother. However, the 

AM is more flexible and interpretable than a standard linear model. But, there 

are some problems with the additive model. These problems are model 

selection, overfitting, and multicollinearity. The AM, which was suggested by 

(Friedman and Stuetzle, 1981) and (Hastie and Tibshirani, 1990), have been 

widely used in multivariate nonparametric modelling. An AM, is a 

generalization of the linear regression model, and is defined by  

?� = 	m +	< (�WQ��Y +	ý��
��� ,																																										(8.1) 

where ?� is the response variable, µ an intercept term, D�� is the ��' component 

of D�, (� is an unkown one-dimensional smooth component function, 

(	(�; 		 . . .		 ; 	(�) are one for each covariate and =� is a random variable with mean 0 

and finite variance j� (l(0, j�)) (Hastie and Tibshirani, 1990). The optimization 

problem of additive models in the population setting is to minimize 

Å(() = 	12 	}\(7 −	<(�WQ��Y�^,																																							(8.2)�
���  

over E¬ ∶ 	 (X 	 ∈ 	�XF. The minimizers of (8.2) can be shown to satisfy 

(� = }\(7 −	<(3)óO�b ≔ 	 Ó�(i −	<(3),																															(8.3)	3q�3q�  
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where Ó� = }\. |D�^ is the projection operator onto ��. Replacing Ó� by a linear 

smoother with smoother matrix �� in (8.3) immediately leads to a sample 

version of the above iteration procedure for fitting the additive model: 

(�� 	← 	 �� ¤? −	<(�33q� ¦ , � = 1, . . . , �.																																			(8.4) 
Therefore, this simple algorithm is known as backshifting and is essentially a 

coordinate descent algorithm (Wood, 2006). 

To fit the model, the smooth functions have to be represented. Smoothing of a 

dataset E(O�, i�)F����  involves the approximation of the mean response curve ( in 

the regression relationship 

i� = ((/�) +	∈� ,					� = 1, . . . , �,																																								(8.5) 
where, ( is a univariate function and ∈� are i.i.d. l(0, j�). This model is fitted by 

maximizing the penalized log liklihood with respect to (, i.e.,  

max³ E−12 W7 − ((D)YV( W7 − ((D)Y −	12 4_(()																																	(8.6) 
where, 7	 = (i�, i�, . . . , i�)V, ((D) = (((D�), ((D�), . . . , ((D�))V, and _(() is the 

wiggliness penality. Here, the regression curve and certain derivatives of it or 

functions of derivatives such as extrema point is the functional of interest. In 

different research approches, the data collection could have been performed in 

several ways. But, for most studies of a regression relationship, there is just a 

single response variable i and predictor variables (Wood, 2006).  

Consider representing a function of one variable, (	(D). Let E{� 	(D):	� = �	. . . §F be 

a set of functions that are chosen to have convenient properties, and to have no 

unknown parameters. Here, (	(D) can be represented as: 
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((D) = 	<o�{�(D)																																																													(8.7)¯
���  

where the o� are § unknown coefficients. So ((D) is made up of a linear 

combination of the basis functions {�(D), and estimating ( is now equivalent to 

finding the o′).  
Furthermore, for penalized regression spline, there are several examples of 

basis functions that can be considered. These examples include, cubic spline 

basis, thin plate regression splines and tensor product bases. The details for 

these examples is given in (Hastie and Tibshirani, 1990, Wood, 2006). 

To model with basis functions, it is possible to control the wiggliness of the 

fitted model. This can be done by controlling the number of basis functions 

used. However, this can cause difficulties. These difficulties are:  

• If the number of basis functions is large enough to be able to closely 

approximate the unknown underlying true function, then the model will 

overfit the data that contain any noise.  

• If the number of basis functions is chosen to be low enough to avoid this 

overfitting, it will be too restrictive to closely approximate the underlying 

truth.  

Using a relatively large number of basis functions, we can avoid over fitting by 

imposing a penalty during model fitting that is designed to ensure that the 

fitted model is smooth. This process is known as smoothing (Wood, 2006). 

For the one basis function model the governing equation is given by, }(?�) = ((D�) 
where ( is a smooth function. This smooth function can be estimated by 

minimizing 
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<(((D�) −	?�)� + 	4ú\(VV(D)�^#D																																													(8.8)�
���  

where λ is a smoothing parameter that controls the trade-off between closely 

matching the data and having a smooth model. Choosing a basis for ( requires 

a design matrix / and a penalty matrix ° to be calculated. The fitting problem 

can be written as 

‖c − /o‖� + 	4o]°o                   (8.9) 

Therefore, this function can be re-written as: 

 (c − /o)V(c − /o) + 	4oV°o = oV\/V/ + 	±°^o + 2oVOV? +	?V?. 

This function can be minimized by differentiating with respect to o and setting 

the resulting system of equations to zero. Therefore, the penalized least square 

estimator of o for a given λ is given by 

o� = (/I/ + 	±°),�/Vc                                (8.10) 

By estimating the smooth parameter λ, the degree of smoothness for the model 

can be obtained. The method of ordinary cross validation (OCV) and generalized 

cross validation (GCV) are used to estimate λ. 

As it is mensioned earlier, (Hastie and Tibshirani, 1986) proposed Generalized 

Additive Models (GAM). These models assume that the mean of the dependent 

variable depends on an additive predictor through a nonlinear link function. 

The GAM is an extension of the Generalized linear model replacing the linear 

form with the additive form. To determine the appropriate smooth function (, 

the steps in GLM are replaced by nonparametric addaptive regression steps. 

Therefore, the GAM using the notation of (Wood, 2006) can be presented as: 

%(m�) = 	/�∗r +	(�(D��) +	(�(D��) +	(R(DR�)+	. ..	          (8.11) 
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where m� 	≡ }(i�)	 and i� has a distribution that follows the exponential family 

distribution, /�∗ is the design matrix, r is the corresponding parameter vector, 

and (�(. ) are smooth functions of covariates. Model (8.11) is simply an additive 

model if % is the identity link and the response is normally distributed 

(Faraway, 2006). 

Estimation of parameters for GAM depends on the choice of smoothing bases. 

Scatterplot smoothing functions, commonly referred to as smoothers, are 

central to GAM. A smoother is a tool used for summarizing the trend of a 

response measurement as a function of independent variables (Hastie and 

Tibshirani, 1990), i.e., 

?� = ((D�) +	∈� .	
For choosing smooth function in the model, it can be seen that the basis is a 

way of defining the space of functions for which ( is an element. Choosing a 

basis amounts to choosing a basis function {� such that the regression splines ((D�) can be represented as: 

((D) = 	<o�{�(D)¯
���  

where D may be a vector quantity and  o� are coeffcient of the smooth, which 

are estimated as part of model fitting. After selecting the bases, (8.11) reduces 

to a GLM problem. Each smooth function in the model can be written in terms 

of a model matrix /²�. Let (� be a vector, so that ( = 	((D�) and o³� = \o��, . . . , o�¯^V, 
yields to (� =	/²�o³� where /²�,�3 =	{�3(D��). Therefore, model (8.11) is not 

identifiable unless each smooth function is subjected to a centering constraint. 

For the smooth terms which are re-parameterized in terms of §	– 1 new 

parameters, o�, such that o³� = üo� with ü being a matrix such that §	– 1 
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columns are orthogonal and the matrix also satisfies �V/²Xü = �, a new model 

matrix for the jth term, /�	 =	/²�ü, is obtained such that (� =	/�o� satisfies the 

centering constraint. For a given centered model matrices for the smooth 

function, (8.11) can be written as %(m�) = 	/�o, where / = \/∗:	/�:	/e: . . . ^ and oV = \r, o�V , o�V , . . . ^. The GAM is usually estimated by penalized likelihood 

maximization, where penalties are designed to suppress overly wiggly estimates 

of (� terms. In fact, this is the idea behind the penalized regression approach of 

GAM estimation. This is because, for § which is large enough, there is a 

reasonable chance of accurately representing the unknown (� 's, and β is 

estimated by ordinary likelihood maximization. But, there is a good chance of 

over-fitting (Wood, 2006).   

Interpolating the points ED�, ?�: � = 1, . . . , �F with D� 	< 	 D�/� for the natural cubic 

spline, g(x) is defined as a function composed of sections of cubic polynomial. 

For each interval \D�; 	D�^ joined together so that the function is continuous in 

value. The first and second derivatives of the function, i.e., %(D�) 	= 	 ?� and %	(D�) 	= 	%	(D�) 	= 	0 is also continious. The points at which the sections are 

joined are referred to as the knots of the spline. This function is not only the 

smoothest interpolator through any data set, but also provides interpolation 

that is optimal in various respects. The properties of spline indicates that 

splines are deemed as capable of closely approximating any smooth function. 

Therefore, splines are considered intuitively appropriate in representing smooth 

terms in the models (Hastie and Tibshirani, 1990, Wood, 2006). 

The cubic smoothing splines arise as a solution to the smoothing objective, 

which is expressed as a minimization of 

<E?� − ((D�)F� + 	4ú(VV(D)�#D�
���  
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where λ controls the trade-off between closely fitting the data and producing a 

smooth fuction. Here, computation becomes expensive in cases of many 

covariates because they have many free parameters as there are data to be 

smoothed. To retain the good properties of splines and computational 

efficiency, using penalized regression splines is a compromise solution. Cubic 

regression splines are a subset of penalized regression smoothers. There are 

many ways of defining a cubic regression spline basis. This method is 

appropriate to have the spline parameterized at its values at the knots. There 

are other spline frameworks. These are: thin plate regression splines, thin plate 

regression splines with shrinkage, cubic regression splines (CRS) with 

shrinkage and P-splines. However, CRS have the advantage that they are 

computationally cheap when compared to other splines (Hastie and Tibshirani, 

1990, Wood, 2006). 

Penalized likelihood for the model can be witten because it is possible to 

capture each smooth function in the model. Penalties, which measure 

quadratic forms in the function coefficients, are considered. For the jth function, o³�V, ��̅, 	o̅�, can be evaluated as a penalty matrix of known coefficients. By re-

parameterization through centering and re-writing the penalty in terms of the 

full coefficient vector β, it can be expressed as oV��o  where �� is UH� padded with 

zeros such that oV��o = 	oV��̅o where ��̅ =	üVUH�ü. The penalized likelihood is 

therefore defined as 

��(o) = �(o) −	12<4�oV��o�  

where 4� are smoothing parameters, which control the trade-off between model 

fit and smoothness. Given 4�, �� can be maximized with respect to o. Though, 4� 
have to be estimated as well. Assuming that 4� are known and defining � = 	∑_�4���, then 
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��(o) = �(o) −	12oV��o 

can be maximized with respect to o� using 

����o� =	 ���o� − \�o^� 
=	 1∅< ?� −	m��(m�)�

��� 	�m��o� 	− 		 \�o^� = 0 

where \. ^à denotes the jth raw vector. 

Using penalized maximum likelihood estimation for a given 4�, o� can be 

estimated by iterating the two steps to convergence. These steps are: 

1. Given the current m\3^ calculate the pseudo-data ¿\3^ and weights ��\3^ 
where,  

��\3^ =	 1�(m�\3^)%V(m�\3^)� 		and	¿� =	%V Ãm�\3^Ä Ã?� −	m�\3^Ä +	O�o� \3^, 
         g is the model link function, ¿\3^ is a vector of pseudo-data and ��\3^ is a 

diagonal matrix with diagonal elements ��\3^. 
2. Minimize 

´[Á\3^(¿\3^ − Oo)´� +	oV�o 

with respect to o to find o� |3/�|. Evaluate the linear predictor C\3/�^ =Oo\3/�^ and fitted values m�\3/�^ =	%,� ÃC�\3/�^Ä. Increment k until 

convergence. 

The influence matrix of a GAM fit is � = /(/Vi/ + U),�/Vi, the influence 

matrix of the penalized working least square problem of final step of the P-

IRLS. 
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The degree of freedom of GAM, defined as  �(�), where � is the influence 

matrix, indicate the fexibility of the fitted model. Large values of smoothing 

parameters would result in a model with very few degree of freedom. But, it is 

very inflexible. The application of penalities reduce the model degree of 

freedom. The effective degrees of freedom of the model can be divided to each 

smooth function in the model separately. The effective degrees of freedom for 

the model parameters in the general weighted case are given by the diagonal of � =	 (/Vi/ + U),�/Vi/, where � = 	∑ 4�U�� . Furthermore, � is the matrix that 

maps the un-penalized estimates to the penalized ones and 6� measures the 

effective degree of freedom of the ith penalized parameters. To estimate the 

residual variance, σ� for additive model, the procedures used for estimation in 

linear regression are applicable so that  

jS� =	‖c − �c‖�� −  �(�)  

while the despersion parameter in the case of GAMs is estimated by the 

pearson estimator. The model coefficient, o, given smoothing parameters 4 can 

be estimated by penalized likelihood maximization. There are two approaches 

suggested by (Wood, 2006) to estimate parameters. When the scale parameter, ∅, is known, then the Mallow’s È� or Un-Biased Risk Estimation (UBRE) can be 

used for estimation. For an unknown scale parameter, estimation can be done 

using genalized cross validation (GCV) (Craven and Wahba, 1979, Mallows, 

1973). The ordinary cross validation (OCV) criterion is based on minimizing the 

average mean squared error in predicting a new observation ? using the fitted 

model. To fit the model, using the model to predict }(?�), ?� is omitted. 

Repeated procedure to the data gives the estimate for OCV in additive model. 

This estimate is given by 

�� =	1�	<(?� −	m̂�\,�^)��
���  
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where m̂�\,�^ denotes the prediction of }(?�) obtained by leaving out ?�. 
Estimation of �� does not have to proceed by fitting the model � times; it can be 

estimated as 

�� =	 1�	<(?� −	m̂�)�(1 −	Æ��)�
�

���  

which simply requires fitting the original model once. Furthermore, the OCV is 

computationally expensive when there are several smoothing parameters and 

has slightly disturbing lack of invariance. Therefore, to overcome this lack of 

invariance, generalized cross validation score can be used. For AM, it can be 

given by 

�þ =	 �‖. ? − 	m‖�\� −  �(Æ)^�. 
This estimate provides valid prediction error for estimates. OCV has also valid 

prediction error, but has the invariant property. Generalization of OCV to the 

GAM can be done by writing the GAM fitting objective in terms of model 

deviance. This leads to the GCV approach. This can be given as follows: 

Ë(o) +	<4�oV��o¯
��� . 

The GVC score application can be defined as  

    �þ =	 �Í(�[)\�,�"(4)^Õ. 
Performance iteration and outer iteration are the two numerical strategies for 

estimation of the smooth parameters (Wood, 2006). 
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8.3 Generalized Additive Mixed Models (GAMMs) 

For data which consists correlated measurnment or other variabilities, the 

variabilities introduce a new source of randomness and creates an extension to 

GAM. Similar to generalized linear mixed models (GLMM) which are extensions 

of GLM, generalized additive mixed models (GAMM) are extensions of GAM and 

allows the parametric fixed effects to be modelled nonparametically using 

additive smooth functions. Therefore, GAMM’s include random effects (Breslow 

and Clayton, 1993, Hastie and Tibshirani, 1990, Lin and Zhang, 1999). 

Generalized additive mixed model (GAMM) has the following structure (Wood, 

2006). 

?� =	Q�o +	(�(D��) + (�(D��, D�R)+	. . . +	(�WD��Y 	+ 	ü�ò +	∈ô,           (8.12) 

where, ?�, �	 = 	1, . . . , � is outcome variable, p covariates O� =	 (1, D	��, . . . , D��)V 
associated with fixed effects and �	 × 1 vector of covariates �� associated with 

random effects.  Therefore, given a �	 × 1  vector of b  of random effects, the 

observations ?� are assumed to be conditionally independent with means }(?�|ò) = 	m� and variances �$�	(?�|ò) = 	∅�(m�), where �(. ) is a specified variance 

function and ∅  is a scale parameter. Moreover, %(. ) is a monotonic differential 

link function, (�(. ) is a centred twice-differentiable smooth function, the 

random effects are assumed to be distributed as lE0, �(G)F and G is a :	 × 1 

vector of variance components. To model correlations between observations, 

the adaptive nonparametrics are used (Ruppert et al., 2003).  

For a given variance component r, the log-quasi-likelihood function of Eo, (�, rF, 
a part from a constant 

exp	\�#?; o�, (�(. ), . . . , (�(. ), rb 	∝ 	 |�|,�� úexp �− 12∅<#�(?; m�) −	12òV�,�ò�
��� �#ò										(8.13) 

where 
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?� =	 (?�, . . . , ?�)V	and	#�(?; m) 	∝ 	−2ú ?� − �µ(�)#�Î�
��  

defines the conditional deviance function of Eo, (� , rF given b. 

The estimation of smooth parameters, λ, and inference on variance component r is required for GAMM statistical inference on the nonparametric functions (�(. ).	 It has to be noted that smoothing spline estimators and linear mixed 

models have close connections (Lin and Zhang, 1999, Wang, 1998, Verbyla et 

al., 1999). As explained in (Green and Silverman, 1994), for a given value of λ 

and r, the natural cubic smoothing spline estimators of (�(. ) maximize the 

penalized log quasi-likelihood 

�E?; o�, (�(. ), rF −	12<4� ú (�VV(D)�#D = �E?�; o�, (�(. ), rF −	12<4�(�V��³B
�

���
¹B

*B
�

��� 									(8.14) 
where (��,  �) defines the range of the jth covariate and 4 = (4�, . . . , 4�)V is a vector 

of smoothing parameters. The trade-off between goodness of fit and the 

smoothness of the estimated functions is controlled by 4. Furthermore, (�(. ) is 

an �� 	× 1 unknown vector of the values of (�(. ) eveluated at the �� ordered values 

of the D�� = (� = 1, . . . , �) and �� is the smoothing matrix.  

Using the matrix notation the GAMM model, which is given in (8.12), can be 

written as 

%(m�) = �o� +¶�(�+	. . . +	¶�(� + üò                   (8.15) 

where %(m�) = E%(m�), . . . , %(m�)FV, and ü = (��, . . . , ��)V (Lin and Zhang, 1999). 

The numerical integration is required to evaluate the expression given in (8.13). 

To calculate full natural cubic smoothing spline estimators of (� by directly 

maximizing (8.14) is sometimes difficult. Therefore, to avoid this problem an 
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alternative approximation is proposed by (Lin and Zhang, 1999). This proposed 

method is a double penalized quasi-likelihood (DPQL). Therefore, the 

nonparametric functions ((�	)  estimation can be obtained by using double 

quasi-likelihood. Here, (�	 (centered parameter vector) can be re-parametrized in 

terms of o� and ·X((�� − 2)	× 1) through a one-to-one transformation as  

(� =	/�∗o� +	 �̧$X,             (8.16) 

where /�∗ is �� × 1 vector containing the �� centered district values of the D�� 	(� = 1, . . . , �), and  �̧ =	Å�(Å�VÅ�),� and 3� is an �X × (�� − 2) fullrank matrix 

satisfying U� =	3X3XV and 	3XVQX∗ = �. Therefore, the double penalized quasi-

likelihood with respect to (o�, 	(�) and b becomes 

− 12∅ 	<#�(?; m�) −	12òV�,�ò −	12·Vᴧ,�·,�
��� 																			(8.17) 

where (�VU�(� =	·�V·�, · = ($�V , . . . , $�V )V	 and ᴧ = #�$%(¹��, . . . , ¹��) with ¹� =	1 4�⁄ . Note 

that small values of  ¹ =	 (¹�, . . . , ¹�)V corresponds to oversmoothing (Breslow and 

Clayton, 1993). 

Using (Breslow and Clayton, 1993) penalized-likelihood approach, by plugging 

(8.16) into (8.15), equation (8.17) suggests that r and ¹, the DPQL estimators (�� 
can be obtained by fitting the following linear mixed model 

    %(m�) = /o + ¸· + üò,           (8.18) 

where, O = (1,l�O�, . . . , l�O�), k = (1,l�k�, . . . ,k�O�), o = (o�, . . . , o�)V is a (� + 1) × 1 

vector of regression coefficients and · and ò are independent random effects 

with distribution $	~	l(0, ᴧ) and {	~	l(0, Ü). 
(�� =	O�∗o�� +	k�$S� 
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gives the DPQL estimator (��. This estimator is a linear combination of the  

penalized quasi-likelihood estimators of the fixed effects o�� and the random 

effects $S� in equation (8.10) (Breslow and Clayton, 1993). 

Using Fisher scoring algorithm, maximization of (8.17) with respect to (o,·, ò) 
can be solved as 

º/Vi/ /Vi¸ /Viü¸Vi/ ¸Vi¸ +	ᴧ,� ¸ViüüVi/ üVi¸ üViü +	�,�» º
o·ò» = º/Vi/¸Vi/üVi/» 																															(8.19) 

where ? is the working vector defined as 

? = 	o�1 +	<l�(� + �{ +	∆(? − m)�
��� , 

∆	= #�$%(%V(m�)), i = #�$%	\E∅�(m�)%V(m�)�F,�^.  
The expression (8.19) shows that it corresponds to the normal equation of the 

best linear unbiased predictors (BLUPs) of o and ($, {) under the linear mixed 

model 

    i = /o + ¸· + üò+	∈           (8.20) 

where $ and { are independent random effects with $	~	l(0, ᴧ), {	~	l(0, �) and ∈ 	~	l(0,i,�). Iteratively fitting equation (8.20) to the working vector i, the 

DPQL estimators (�� and the random effect estimators {� can be easily obtained 

using the BLUPs. 

The covariance matrix of (�� can be obtained by calculating o and $ using 

f/V�,�/ /V�,�¸¸V�,�/ ¸V�,�¸+	ᴧ,�g �o·� = �/V�,�7¸V�,�7�																													(8.21) 
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where � =	i,� + ü�üV. Let the left hand side of equation (8.21) be denoted by ° 
and �� =	 (O,k)VÉ,�(O,k), the approximate covariance matrix of o� and $S is  

:ª�Wo� , $SY = 	°,�°�°,� 
The approximate covariance matrix of (�� is WO�,k�Y:ª�Wo� ,·dY(O�,k�)V	, where :ª�Wo� ,·dY can be easily obtained from the corresponding blocks of °,�°�°,�. 
Note that (�(. ) are fixed smooth functions in calculating the covariance of the (��. 
For the nonparametric function (�, the smoothing parameters 4 and the 

variance components r are unknown. But, the estimates can be obtained from 

the data under the classical nonparametric regression model  

? = ((/)+	∈                       (8.22) 

where ∈ are independent random errors following l(0, j�).  Estimation of the 

smoothing parameter 4 by maximizing a marginal likelihood was proposed by 

(Wahba, 1985, Kohn et al., 1991). Assuming ((D) has a prior as (� =	/�∗o� +	 �̧·� 
with ·	~	l(0, ¹�) leads to the construction of ¹ =	1 4⁄ . A flat prior for o and 

integrating out a and o as follows  

expEl¼(y; τ,σ�)F 	∝ 	τ,� �⁄ ú Jl(y; β, ½,σ�) −	 12r 	½V½L d½dβ																								(8.23) 
 

where l(y; β, a,σ�) is the log likelihood (normal) of ( under (8.22). The maximum 

marginal likelihood estimator of ¹ is called the generalized maximum likelihood 

(GML) estimator. The marginal likelihood which is specified in (8.23) of ¹ is the 

REML likelihood under the linear mixed model   

? = 1o� + /o� + ¸·+	∈, 
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where $	~	l(0, ¹Ç), =	~	l(0, j�Ç) and τ is regarded as a variance component. 

Therefore, the maximum marginal likelihood estimator of ¹ is an REML 

estimator.  

The smoothing parameter 4 and the variance component r using REML with 

normally distributed outcomes and a nonparametric mean function can be 

written as 

    ? = (	(/) + üò+	∈       (8.24) 

where ((O) denotes the value of the nonparametric function ((. ) evaluated at 

the design point of /(� × 1), ò	~	lEª, �(r)F and l	E�, 2(r)F. For ((. ) which is 

estimated using a natural cubic smoothing spline, equation (8.24) can be as a 

linear mixed model using equation  (� =	/�∗o� +	 �̧·� (Zhang et al., 1998) 

    ? = 1o� + /o� + ¸$ + ü{+	∈, 

where ·	~	l(0, ¹Ç) and the distribution of ò and ∈ are the same as those in 

(8.24). Here, ¹ is treated as an extra variance component in addition to r. 

Furthermore, ¹ and r can be estimated jointly using REML. The REML 

likelihood corresponds to the marginal likelihood of (¹, r) constructed by 

assuming ( takes the form (� =	/�∗o� +	 �̧·� with ·	~	l(0, ¹�) and a flat prior for o, and integrating out $ and o as follows (Harville, 1974) 

expE�A(c; ¹, r)F 	∝ 		 |Ü|,� �⁄ ¹,� �⁄ úexp J�(c; o,·, ò) −	12òV�,�ò −	12·V·L#ò#·#o					(8.25) 
where �(?; o, $, {) = �(?; (, {) is the conditional loglikelihood of ( given the 

random effects {. The marginal likelihood given in (8.25) has a closed form 

expression. Based on the simulation result which was done by (Zhang et al., 

1998), REML performs very well in estimating both the nonparametric function ((. ) and the variance component r.  
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8.4 Fitting malaria RDT result using GAMM 

In preceding chapters, the malaria RDT result was fitted to predictor variables 

using parametric models and assumed a linear age, family size, number of 

rooms per person, number of nets per person, altitude and number of months 

the room sprayed. But, the objective of this Chapter is to model the effect of 

age, family size, number of rooms per person, number of nets per person, 

altitude and number of months the room sprayed nonparametrically while the 

other covariates remain parametric using GAMM. Recall that the final GAMM 

model consists of the following socio-economic, demographic and geographic 

factors. These factors are gender, age, family size, region, altitude, main source 

of drinking water, time taken to collect water, toilet facilities, availability of 

electricity, radio and television, total number of rooms per person, main 

material of the room’s walls, main material of the room’s roof, main material of 

the room’s floors, incidence of indoor residual spray in the past twelve months, 

use of mosquito nets and total number of nets per person. Malaria test (RDT 

result), age and sex were collected at individual level. Main source of drinking 

water, time taken to collect water, toilet facilities, availability of electricity, 

radio, television, total number of rooms per person, main material of the room’s 

walls, main material of the room’s roof, main material of the room’s floor, use of 

indoor residual spray in the past twelve months, use of mosquito nets and total 

number of nets per person were collected at household level. Therefore, malaria 

RDT result with semiparametric logistic regression model was fitting with all 

these variables including possible interaction effects. Unlike the previous 

models, age, family size, number of rooms per person, number of nets per 

person, altitude and number of months the room sprayed in the last twelve 

months were fitted nonparametically. Therefore, the final model is given as 

follows. 
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%(m��	)= o� +	o�Gender� + o�Region� + oRdrinking_water� + ò time_to_get_water� + o¾toilet_facility�+ o¿elect� + oÀtv� + oßradio� + oÁroom_wallroom_roof� + o��room_wall� + o��anti_malaria�+ o��net_use� + o�RGender ∗ drinking_water� 	+ o�`Gender ∗ elect� + o�¾Gender ∗ room_wall�+	(�(age�) + (�(altitude�) + (R(famsize�) + (̀ (total_room�) + (¾(total_nets�)+ (¿(months_sprayed�)+	{��																																																																																																																																																							(8.26) 
where %(. ) is the logit link function, o�′s and o��′s are parametric regression 

coefficients, (� are centred smooth functions and the random effects, ò�	~	lW�, �(r	)Y. Therefore, the estimation procedures discussed for fitting 

GAMMs in the previous section can be used to fit model (8.26). For the 

analysis, R package (mgcv) was used. There are many smoothing spline options 

in R package. Among the number of options, to fit model (8.26), several 

different penalized regression smoothers were used. Because of the size of the 

model and the size of the dataset, the model failed to converge for more 

interaction effects. Model (8.26) contains reduced parameters by removing the 

three-way parametric interactions.  

Thin plate shrinkage smoothers was used to fit model (8.26). The use of 

shrinkage smoothers have different advantage, i.e., these methods helps to 

avoid the knot placement. Furthermore, these methods can be constructed to 

smooth of any number of predictor variables. Construction of shrinkage 

smoothers depends on the smooth terms which can be penalized away and this 

makes no contribution to the model (Wood, 2006). 

Table 8.1 presents the significant effects for the parametric coefficients of the 

model. The result shows that gender, region, main source of drinking water, 

time to collect water, toilet facility, availability of electricity, availability of radio, 

main materials for the construction of room’s wall, main materials for the 

construction of room roofs, main materials for the construction of room floors, 
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use of indoor residual spray and use of mosquito nets were found to have 

significant effects on malaria rapid diagnosis test result. Among all significant 

effects gender, main source of drinking water, availability of electricity, main 

materials for the construction of room’s wall and main materials for the 

construction of room’s roof were involved in the intraction effects. These 

interaction effects are gender and main source of drinking water, gender and 

availability of electricity, gender and main material of room's wall  and main 

source of drinking water and main material of the room's roof (Table 8.1 and 

Table 8.2).  

The results from GAMM analysis showed that the odds of positive RDT for 

households who lives in Amhara region were 0.969 (e,�.�R�) times less likely to 

be positive for malaria rapid diagnosis test than for those who live in SNNP 

region. Similarly, the odds of positive RDT for respondents who live in Oromiya 

region were found to be 0.807 (e,�.��¾) times less likely to be positive for malaria 

rapid diagnosis test compared to SNNP region. Also, the odds of positive RDT 

for respondents who travelled greater than 40 minutes found to be 0.361 

(e,�.��Á) times less likely to be positive for malaria RDT test than those who 

travelled greater than 90 minutes followed by for respondents travelled between 

30–40 minutes (0.293 ( e,�.��¿)) and less than 30 minutes (0.291 ( e,�.�RR)). 
Similary, the odds of positive RDT for respondents who were using toilet with 

flush were found to be 0.5 (e,�.¿Á`) times less likely be positive for malaria RDT 

result compared to households who have no toilet facility followed by pit latrine 

toilet (0.656 (e,�.`��)). On the other hand, households who have no access to 

radio were 2.158 (��.À¿Á) times more likely to be positive for malaria RDT test 

result than those who have access to radio. Also, respondents who lives in 

house with cement floor where found to be 0.052 (�,�.Á¾À) times less likely to be 

positive for malaria RDT result compared to houses with earth/local dung 

floors followed by houses with wood floor (0.198 (�,�.¿��)). 
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Table 8. 1: The parameter estimates of the GAMM model of the main 

parametric coefficients 

Effects Estimate OR SE t Value Pr > |t| 

Intercept 0.260 1.297 0.849 -2.490 <.0001 
Gender (ref. Male) 
     Female -1.720 0.179 0.272 -1.080 <.0001 
Region (ref .  SNNP) 
    Amhara -0.031 0.969 0.082 -0.380 0.7041 
    Oromiya -0.215 0.807 0.094 -2.280 0.0225 
Main source of drinking water (ref. protected water) 
    Tap water -0.107 0.899 0.079 -1.360 0.1744 
    unprotected water 0.585 1.795 0.104 5.640 <.0001 
Time to collect water (ref. greater than  90 minutes) 
    Less than 30 minutes -1.233 0.291 0.159 -7.760 <.0001 
    Between 30 - 40 minutes -1.226 0.293 0.162 -7.570 <.0001 
    Between 40 - 90 minutes -1.019 0.361 0.336 -3.040 0.0024 
Toilet facility (Ref. No facility) 
    Pit latrine -0.421 0.656 0.365 2.760 0.0057 
    Toilet with flush -0.694 0.500 0.362 4.990 <.0001 
Availability of electricity (ref. no) 
     Yes 0.111 1.117 0.129 16.390 <.0001 
Availability of television (ref. no) 
     Yes 0.049 1.050 0.057 0.870 0.383 
Availability of radio (ref. yes) 
     No 0.769 2.158 7.950 92.420 <.0001 
Main material of room's wall (ref. cement block)  
     Corrugated metal -1.100 0.333 5.516 131.28 <.0001 
     Mud block/stick/wood -0.851 0.427 15.872 412.02 <.0001 
Main material of room's roof (ref. corrugate) 
     Thatch 1.192 3.294 0.073 16.380 <.0001 
     Stick and mud 0.855 2.351 0.232 -3.680 0.0002 
Main material of room's floor (ref. earth/Local dung plaster) 
     Wood -1.621 0.198 16.451 850.89 <.0001 
     Cement -2.957 0.052 15.875 411.83 <.0001 
Use of indoor residual spray (ref. yes) 
     No 1.235 3.438 0.103 -31.490 <.0001 
Use of mosquito nets (ref. no)  
    Yes -0.682 0.506 0.128 20.880 <.0001 

Interaction effects 

In addition to the main parametric effects, the fitted GAMM model contains 

four two-way interaction effects. These effects are gender and main source of 
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drinking water, gender and availability of electricity, gender and main material 

of room's wall  and main source of drinking water and main material of the 

room's roof (Table 8.2). 

Table 8. 2: The parameter estimates of the GAMM model of the 

interaction parametric coefficients 

Effects  Estimate SE t Value Pr > |t| 

Gender and main source of drinking water (ref. Male & protected water)  
    Female and Tap water 1.757 0.198 8.870 <.0001 
    Female and Unprotected water -1.605 0.183 -8.770 <.0001 
Gender and availability of electricity  (ref. Male & yes)  
   Female and No 1.851 9.964 61.510 <.0001 
Gender and main material of room's wall  (ref. Male & earth/Local dung plaster)  
   Female and wood -0.517 119.547 -65.110 <.0001 
   Female and cement -4.634 117.851 -0.140 0.888 
Main source of drinking water and main material of the room's roof (ref. Protected 
water & thatch) 
    Tap water and Mud block/stick/     
    wood 

-3.732 0.138 -6.030 <.0001 

    Tap water and Corrugated metal -3.852 258.258 -2.750 0.006 
    Unprotected water and Mud  
    block/stick/wood 

-4.003 0.143 -4.840 <.0001 

    Unprotected water and   
    corrugated metal 

-1.324 15.990 298.51 <.0001 

Interaction effects between the main source of water and the main material 

used for the room’s roof is presented in Figure 8.1. From the figure, it is clearly 

seen that positive rapid diagnosis of malaria was significantly higher for 

households with a stick and mud roof followed by thatch and lastly a 

corrugated iron roof. This occurred with respondents who reported to use tap 

water as well as protected and unprotected water for drinking (Figure 8.1). 

Furthermore, there was a significant difference in rapid diagnosis test between 

tap, protected and unprotected sources of drinking water for those who 

reported having thatch and stick and mud roofs. It is also shown that for 

corrugated iron roofs, the positive rapid diagnosis test was significantly lower 

for respondents who reported using tap water for drinking than for those who 

used protected and unprotected water for drinking. 
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Figure 8. 1: Log odds associated with rapid diagnosis test and source of drinking 

water with material of the room's roof 

The other significant two-way interaction effect was between gender and main 

source of drinking water (Table 8.2). This result is presented graphically in 

Figure 8.2. The probability of a positive rapid diagnosis test was significantly 

higher in those female household members who used unprotected water for 

drinking than for those respondents who used protected and tap water for 

females. Generally, for male households who use protected and unprotected 

water are less likely to be positive for malaria RDT result compared to female 

household members. But, for female household members who use tap water 

malaria RDT result found to be less compared to male household members. 

 

Figure 8. 2: Log odds associated with rapid diagnosis test and main source of 

drinking water with gender 
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Figure 8.3 presents the interaction effect between availability of electricity and 

gender for individuals. Prevalence of malaria was significantly higher for female 

than for male respondents who were living in a house with electricity. Similarly, 

a female living in a house, the positive malaria result was significantly higher 

than it was for males which have no electricity.  

 
Figure 8. 3: Log odds associated with rapid diagnosis test and availability of 

electricity with gender 

The interaction effect between gender and main material of floor is presented in 

Figure 8.4. The Figure shows that the odds of positive RDT for households with 

earth/local/dung floor are significantly higher than for those households with 

wood and cement floors for both males and females. Moreover, for female 

members of the household, the odds of malaria RDT was higher for those 

households who reported having earth/local dung floor. 
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Figure 8. 4: Log odds associated with rapid diagnosis test and main material of 

floor with gender 

In addition to parametric effects, there were effects which were handled non-

parametrically to the model. Therefore, age, altitude, family size, total number 

of rooms per person, total number of nets per person and number of months 

the room sprayed have been fitted as a smooth. The result in Table 8.3 shows 

that age, altitude, family size, total number of rooms per person, total number 

of nets per persons and number of months the room sprayed had a significant 

effect on malaria RDT result. The smooth term for these effects has been 

presented in Figure 8.5. The figure suggests that age, altitude, family size, total 

number of rooms per person, total number of nets per person and number of 

months the room sprayed effects departs dramatically from linearity. 

Table 8. 3: Approximate significance of the smooth terms 

Source Edf* F-value P-value 

S(age) 7.809 461.1  <.0001 
S(altitude) 7.050 39.25 <.0001 
S(family size) 8.745 25.07 <.0001 

S(total number of room) 2.939 24.56 <.0001 

S(total number of nets) 5.834 15.62 <.0001 
S(no month room sprayed) 5.387 16.01 <.0001 

* Estimated degree of freedom 
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Figure 8. 5: Smoothing components for malaria RDT with A) age, B) Altitude, C) 

Family size, D) Total number of rooms per person, E) Total number of 

nets per person and F) number of months room sprayed 

Figure 8.5 gives the estimated smoothing components for malaria RDT result 

with A) age, B) altitude, C) family size, D) total number of rooms per person, E) 

total number of nets per person and F) number of months room sprayed. In 
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each panel, the smooth line is the estimated trend from a generalized additive 

mixed model for the model with spherical Gaussian covariance structure. 

Figure 8.5a shows the estimated smooth function of age ((�($%�)) and its 95% 

confidence interval. The y-axis represents the effect of the age term, where ) is 

a smoother term and the number in parentheses is the estimated degrees of 

freedom (edf). Furthermore, the figure suggests that the malaria RDT result is 

higher at early age, i.e., increased during the first five years of life and then 

steadily decreased afterwards. The test statistic was 461.1 with 7.809 degrees 

of freedom, providing strong evidence (p-value < 0.0001) against the 

assumption that age is linearly associated with malaria RDT result (Table 8.3). 

Figure 8.5b shows the estimated smooth function for altitude. Larger edfs value 

in the figure (7.05) corresponds to increasingly nonlinear relationships. 

Moreover, the malaria RDT result is higher for the first 3000 meters then starts 

to decrease. 

In addition to this, family size had significant effect on malaria RDT test result 

(Table 8.3). The estimated smooth function for family size is presented in 

Figure 8.5c. The result in figure shows that edf is 8.745, which shows 

increasing nonlinear relationship. Moreover, the F–value is 25.07 with p-value 

<.0001 suggested that family size is not linearly associated with malaria RDT 

test result. The other significant results were found to be total number of 

rooms, total number of nets number of months the room sprayed with anti-

mosquito. The estimated degrees of freedom are 2.939, 5.834 and 5.387 

respectively. These figures suggested nonlinear relationship with malaria RDT 

result. 

8.5 Summary and discussion 

The result in this study using GAMM model with nonparametric age, altitude, 

total number of rooms, total number of nets, family size and number of months 

room sprayed presented in the above section. The result from this study 
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supports the results from the previous models fitted.  In addition to this, the 

results gave more insight regarding the distribution of age, altitude, total 

number of rooms, total number of nets, family size and number of months 

room sprayed. The results from the nonparametric part of the model confirm 

that malaria RDT test result is high for children. Moreover, persons with more 

mosquito nets and more number of rooms have greater chance to reduce the 

risk of malaria. Furthermore, with the correct use of mosquito nets, indoor 

residual spray and other preventative measures, like having more rooms in a 

house, the incidence of malaria could be decreased. In addition to this, the 

study also suggests that the poor are less likely to use these preventative 

measures to effectively counteract the spread of malaria. To provide clean 

drinking water, proper hygiene and maintaining the good condition of a house 

is essential in controlling the transmission of malaria. With other control 

measures, including creating awareness about the use of mosquito nets, indoor 

residual spraying and malaria transmission, the number of malaria cases can 

be reduced. 
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Chapter 9 

Using Rasch modeling to re-evaluate malaria Rapid 
Diagnosis Test analyses 

9.1 Introduction  

In the previous chapters, malaria rapid diagnosis test data was reviewed and 

fitted using different parametric and semiparametric statistical methods. These 

methods are: multiple correspondence analysis, the generalized linear model 

(Survey logistic), generalized linear mixed models (GLMMs), spatial statistics 

method, joint models and semiparametric modes. These methods were used to 

identify the association between malaria RDT result and socio-economic, 

demographic and geographic factors. These models provide a powerful tool for 

modelling the relationship between a response variable and covariates. Using 

these models, it was possible to identify socio-economic, demographic and 

geographic factors (variables) which have effect on malaria RDT result. The 

purpose of the current chapter is to confirm the results from the previous 

models using the Rasch model. The use of Rasch model seeks to answer 

questions like which items are biased and its source, which items define the 

trait to be measured, and which individuals are properly identified by the items 

that define the trait. Furthermore, the objective is to test how well the observed 

data fit the expectation of malaria RDT result model. Moreover, this model 

helps to identify if a person’s measure on any trait is a simple function of their 

ability and the items difficulty.  

Item response theory (IRT) is paradigm for the design, analysis and scoring of 

tests, questionnaires and similar instruments, measuring abilities, attitudes or 

other variables. Item response models (IRM) are a class of probabilistic models 

that explains the response of a person to a set of items. IRT concerns models 

and methods where the responses to variables are assumed to depend on 
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nonmeasurable respondent characteristics and on item characteristics. The 

responses to the items (generally binary or polytomous ordinal variables) and 

the latent trait are linked nonlinearly. As a link function, the logistic function is 

often used. IRT models consider a unidimensional latent trait (Van der Linden 

and Hambleton, 1997). The responses to items are influenced by a 

unidimensional variable characterizing the individuals. To perform IRT models, 

general statistical software packages, like Stata, R, or SAS, allow estimating 

parameters of IRT models in the scope of generalized linear mixed models. In 

addition to these software, RUMM software also can be used. The literature on 

the item response theory is presented in many research works and books (De 

Boeck and Wilson., 2004, Hardouin, 2007, Matschinger, 2006, Rizopoulos, 

2006, Skrondal and Rabe-Hesketh, 2004, Van der Linden and Hambleton, 

1997, Weesie, 2000). 

The Rasch model is a mathematical formula that specifies the form of the 

relationship between individuals and the items that operationalize one trait. 

The Rasch model assumes that item responses are governed by individual's 

position on the underlying trait and item difficulty. As implied by the theory’s 

name, item responses are modelled rather than sum total responses. The 

model makes no allowance for deliberate or unconscious deception, guessing, 

or any other variable that might impinge on the responses provided. Therefore, 

the Rasch model is the best known model using IRT for binary variables 

because it has useful property. Some of the properties of Rasch model includes 

the following (Fitz-Gibbon, 2000).  

• The abilities of individuals and difficulties of items are along the same 

scale so that abilities and difficulties can be compared.  

• The Rasch model produces item difficulty levels independent of examinee 

samples and individual abilities independent of the particular test 

administered. 



217 

 

• Sufficient statistics exist, i.e., all the information about the ability of 

individual on a given dimension is contained in the number of correct 

responses  

• The model is a theoretical model and is relatively simpler than other 

logistic models. Therefore, it is less expensive and easier to apply in 

solving practical measurement problems.  

Furthermore, the score in the model is a sufficient statistic on the latent trait 

and can be computed easily by summing the responses to all the items. 

Therefore, all the individuals with the same score have the same estimation of 

the latent trait.  

The aim of this chapter is to review Rasch model and then fit them to malaria 

RDT result data. Application of the Rasch model, a brief overview of the model 

for Item response theory is provided. This chapter is organized as follows. An 

overview of Rasch models is presented in Sections 9.2 and 9.3. The Rasch 

model is fitted to malaria RDT data in Section 9.4. Summary and discussion of 

the chapter is given in section 9.5. 

9.2 Rasch models 

Item response theory (IRT) 

Notations  

In discussing dichotomous items with a positive response coded 1 and a 

negative response coded 0, the following notations will be used.  

• l is the number of individuals;  

• _ is the number of items;  
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• O�� is the random variable representing the response of the ��' individual (� = 1, . . . , l) to the ��' item (�	 = 1, . . . , _), and D�� is the realization of this 

variable;  

• �� =	∑ O��Â���  is the random variable, containing the score  of the ��' 

individual, and its realization )� =	∑ D��Â��� ;  

• l* is the number of individuals with a score equal to s;  

• r� is the value of the latent trait for the nth individual (� = 1, . . . , l); and  

• ?	 = W?� 	Y, � = 1, . . . , i is a vector of size i composed of the elements ?�.  
To use IRT, certain assumptions have to be considered. These assumptions 

are: 

• One of the assumption is unidimensionality: the responses to the items 

depend on only one latent trait, r, to characterize the individuals;  

• Monotonicity: the probability Ó�(O�� 	= 1|r) is a monotone nondecreasing 

function in r;  

• Local independence: the variables O	��and O�3 with �, -	 = 1, . . . , _, and �	∫	- 

are independent conditionally to r. 

Model estimation 

In the Rasch model, a set of fixed effects r�, � = 1, . . . , l or a set of random 

variables can be considered as latent traits. But, using the Rasch model, the 

estimations of the parameters obtained by maximum likelihood are not 

consistent. Therefore, the use of conditional maximum likelihood (CML) 

method, gives possible solution as a better way to obtain consistent estimate of 

the parameters. But, for random effects, the parameters can be estimated by 

the marginal maximum likelihood (MML) method (Ghosh, 1995, Andersen, 

1970, Molenaar, 1983). 
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The item response functions (IRFs) was defined  by considering the latent trait 

as a set of fixed effects (Molenaar, 1983). Therefore, the Rasch model can be 

specified as 

PrWO�� =	D��ór�, Ã�Y = �D�#D��(r� −	Ã�)$1 + expWr� −	Ã�Y , � = 1, . . . , _																																						(9.1) 
where the Ã� parameters represents the difficulty of the ��' item (difficulty 

parameter); the probability PrWO�� =	D��ór�, Ã�Y decreases, for a given value r�, as 

the value of this parameter increases (Fisher and Molenaar, 1995). 

The Rasch model is composed of l parameters r�(� = 1, . . . , l) and of _ 
parameters Ã� 	(� = 1, . . . , _). The likelihood of the ��' individual is given by the 

following equation  

Å�(δ, r�|O�) =WO�� =	D��ór�, Ã�Y	
with O� = WD��Y	� = 1, . . . , _ and Ã = WÃ�Y	� = 1, . . . , _. This equation is appropriate 

under local independence assumption. The conditional maximum likelihood 

(CML) consists of estimating the difficulty parameters conditionally to the score ��. The equality 

Pr(O� =	D� r�, Ã, �� =	)�) = 	 exp	(−∑ D��Ã�)Â���GÅÆ(Ã)Ì = Pr	(O� =	D�|Ã, �� =	)�)									(9.2)	 
is independent of the parameters r�	(� = 1, . . . , l).  The denominator also known 

as the gamma function GÅÆ(Ã) is defined by 

GÅÆ(Ã) = 	 < exp	¤−<?�Ã�Â
��� ¦�ÇW/∑ �B��ÈBÉÖ

 

with W, is the set of possible vectors y=(?�)	� = 1, . . . , _, with values of 0 and 1 

(Ayala, 2009, Van der Linden and Hambleton, 1997).  
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Maximizing the conditional likelihood (9.2) gives 

Å&(Ã Q⁄ , C) = 	øPr	(O� =	D�|Ã, �� =	)�)ù
��� 	.																																						(9.3) 

For this estimate, an identifiably constraint is necessary. But, the difficulty 

parameter can be fixed to 0 or the sum ∑ Ã��Â���  is fixed to 0. The null score 

()� = 0) or a perfect score ()� = _) does not provide any information. As a result, 

it cannot be used to estimate the difficulty parameters (Molenaar, 1983).  

All individuals with score �� have the same estimation r� for only _ + 1 different 

parameters r� which can be estimated. For all �, �V = 1, . . . , l, )� =	)�Ê	⇒	r� =	r�Ê	. 
The value of r� parameters with )� = )() = 0, . . . , _) is denoted by r*. 
As presented in (Hoijtink and A. Boomsma, 1995), the estimation of r* 
parameters by maximizing the likelihood conditionally to CML estimations of 

the difficulty parameters are biased and cannot be estimated when )	 = 	0 or )	 = 	_ (Molenaar, 1983, Ayala, 2009, Hardouin, 2007). Furthermore, the 

weighted likelihood estimators of the r* parameters are unbiased. Therefore, 

the equation can be obtained by maximizing the quantities 

r�* =	maxt exp	()t)∏ 1 + exp	Wr − Ã��YÂ��� 	[Ç(r), ) = 0, . . . , _ 
with Ç(r), the information function, defined by 

Ç(r) = < expWr −	Ã��Y#1 + expWr −	Ã��Y$�
Â

��� 																																																								(8.4)	
The distribution of the latent trait r is assumed as a Gaussian distribution 

with parameters (m, j�) denoted (r m⁄ , j�) for model with random effects 

(Hardouin, 2007). The IRF of the ��' item under the Rasch model is written as  
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PrWO�� =	D��Y = 	 �D�#D��Wr −	Ã�Y$1 + expWr −	Ã�Y . 
The marginal likelihood is 

ÅA(Ã, m, j� O⁄ ) = 	ø ú øPrWO�� =	D�� r; Ã�⁄ YÂ
���

/%
,%

ù
��� Ü(r m, j�⁄ )#r.																			(8.5) 

To obtain consistent estimator of the parameters Ã� 	(� = 1, . . . , _), m	and	j� 
equation 8.5 have to be maximized. For such purpose, an indentifiability 

constraint is used, i.e. m = 0. Using all individuals in the estimation process, 

random effect estimations of all the r*	parameters can be obtained where () = 0, . . . , _). The estimations of the r� parameters are obtained by 

approximating the posterior mean of the latent trail for each individual as 

r�� =	� rÜ(r m̂, jS�⁄ )∏ Ó�WO�� = D�� Ã�� , r⁄ Y#rÂ���/%,%� Ü(r m̂, jS�⁄ )∏ Ó�WO�� = D�� Ã�� , r⁄ Y#rÂ���/%,% . 
In the Rasch model, the individuals who have the same score ) have equal 

posterior mean of the latent trait. Therefore, the value is equal to r�*. Moreover, 

the posterior means are also referred to as empirical Bayes prediction (Rabe-

Hesketh et al., 2004, Skrondal and Rabe-Hesketh, 2004).  

9.3 Tests for Rasch models 

For tests using Rasch model, there are different methods. These methods 

include Andersen Likelihood-ratio Z test, Splitting test, First-order test, U-test, 

outfit and infit indices. 

In the Rasch model with fixed effects, the Andersen Z test allows testing the 

assumptions that the estimations of the difficulty parameters are the same, 
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whatever the level of the latent trait (Andersen, 1970). To perform the test, the 

sample has to be divided into Ü groups, as a function of the score )�, and the 

difficulty parameters are estimated in each of these groups.  

Let ��Ë(Ã�) be the conditional log-likelihood obtained in the sample and ��&(þ)WÃ�(þ)Y 
the conditional log-likelihood obtained in the %�' group, %	 = 1, . . . , Ü. The 

statistic  

� = 	−2#��&WÃ�Y$+ 2 < ��&(þ)WÃ�(þ)Yu
þ�� 	 

follows, under the null assumption, a Ì� distribution with (_ − 	1)(Ü − 	1) 
degrees of freedom. 

To make a fair comparison, it is important to rely on the test data. If some of 

the items used as a criteria measure, then the test can be constructed on the 

other items. For only one item, the technique is called splitter-item technique 

(Molenaar, 1983). The splitting test consists of splitting the sample as a 

function of the responses to one given item. For the two groups, the equality of 

estimations is realized using the Andersen test. A graphical representation of 

the estimations of the parameters allows detecting the splitter items that give 

different estimations of the difficulty parameters of the remaining items. 

Special analysis is needed for the items that have difficulty parameters greater 

in the group of positive responses than in the group of negative responses. 

Using Rasch model, the first-order tests allow testing the fit of the data to the 

model. The first order tests are sensitive to the nonrespect of the monotonicity 

assumption.  

Let lþ� be the number of individuals in the %�' group, %	 = 1, . . . , Ü, these values 

have positive response to the ��' item. Furthermore, the expectation of the 

number under the Rasch model is represented by  l[þ�.  
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Suppose #þ� = (lþ� − l[þ�) and #þ 	= (#þ�) � = 1, . . . , _. The first-order statistic 

under the contribution of the %�' group is given by  

�þ =	#þV �þ,�#þ.																																																																(8.6) 
Therefore, from the expression (8.6) �þ is matrix of weights. In the literature, 

there exist several first-order statistics. This values depend on the nature of the 

latent trait, on the estimations of l[þ�, and on the used matrix �þ (Fisher and 

Molenaar, 1995).  

First-order tests for the Rasch model with fixed effects  

The Wright–Panchapakesan test is based on the estimations  

l[þ� =	 < l* expWr�* −	Ã��Y1 + expWr�* −	Ã��Y*∈
Í  

where Çþ is the set of scores associated with group %. The matrix �þ is a diagonal 

matrix where the diagonal elements are  

=þ�� =	 < l*¬SÁÓ*�W1 − ¬SÁÓ*�Y, � = 1, . . . , _.*∈
Í  

Therefore, the Wright–Panchapakesan statistic i is given by i = 	∑ �þuþ�� . This 

Statistic follows Ì� distribution with (Ü − 1)(_ − 1) degrees of freedom under the 

null assumption (Wright and Panchapakesan, 1969). In the construction of the 

statistic there were some logical errors. These logical errors were pointed out by 

(Van den Wollenberg, 1982) and discouraged its use, especially for small J.  
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In the R�ë test, NÎà is estimated by 

l[þ� = 	< l* expW−Ã��YG*,�WÃ�(,�)YG*WÏ[Y*Ç
Í  

where Ã�(,�) =	 WÃ�3Y - = 1, . . . , � − 1, � + 1, . . . , _. 
Furthermore, the VÎ matrix is composed of eÎàà =	N[Îà for the _ diagonal 

elements (� = 1, . . . , _) and 

eÎàÐ = < NÑ 	expW−δ�àYexp	(−δ�Ð)γÑ,�Wδ�(,à,Ð)YγÑWÑ[YÑ∈ÒÓ .																												(8.7) 
Expression (8.7) is working for the off diagonal elements (j = 1, . . . , J, k =1, . . . , J, j ≠ k with δ�(,à,Ð) = Wδ�ÕYÕ��,…,Ö,Õqà,ÕqÐ. By definition, ∀j, k = 1, . . . , J			eÕàÐ = 0. 

Under the null assumption, R�ë =	∑ TÎ×Î��  follows, a χ� distribution with (G − 1)(J− 	1) degrees of freedom. R�ë is approximated by Q� statistic (Glas 

and Verhelst, 1995). The Q� statistics is Q� = 	 Â,�Â 	∑ �þ	uþ�� and follows  χ� 
distribution with (G − 1)(J− 	1) degrees of freedom under the null 

assumption (Van den Wollenberg, 1982). 

The R�ë statistic is replaced by R�Ú  if we use the Rasch model with a 

random effect (Glas and Verhelst, 1995). This statistic is calculated using  

N[Îà = N < expW−δ�àYÑ∈ÒÓ γÑ,�Wδ�(,à)Y ú exp(s%)∏ #1 + expWθ−	δ�àY$Öà��
/%

,% G(θ μS,σd�)dθ⁄  

and the �þ matrix is composed of �þ�� = 	l[þ� for _ diagonal elements (� =1, . . . , _) and 

�þ�3 = l < expW−Ã��YÑ∈ÒÓ expW−Ã�3Y G*,�WÃ�(,�,3)Y ú exp	()t)∏ W1 + expWθ−	δ�àYYÂ��� G(θ μS,σd�)dθ⁄/%
,%  
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for the off-diagonal elements (� = 1, . . . , _, - = 1, . . . , _, � ≠ -). For s = 1, let the 

off-diagonal elements equal 0. 

The individuals with )� = _ can be used in the MML method. Let  

:� =	 Wl� − l[�Y�l[�  

and 

:Â = 	 WlÂ − l[ÂY�l[Â  

with 

l[� = l ú 1∏ #1 + �D�Wr − Ã��Y$Â���
/%

,% Ü(r m̂, jS�)#r⁄  

l[Â = l ú �D�W_r −	∑ Ã��Â��� Y∏ #1 + �D�Wr − Ã��Y$Â���
/%

,% Ü(r m̂, jS�)#r⁄  

The É�¯ statistics is 

É�¯ = 	:� +	< �þ +	:Âu
þ��  

and followsa χ� distribution with G(J− 1) − 	1 degrees of freedom under the 

null assumption. 

The contribution of each item to the first-order statistic can be estimated by 

using the vector  

< Á,� �⁄ #þ
u

þ��  

where Á,� �⁄ represents the Cholesky decomposition of the positive-definite 

matrix Á,�(Á,� �Ê⁄ Á,� �⁄ ) = Á,�. The ��' element of this vector represents the 

contribution of the ��' item to the first-order statistic, and follows, under the 

null assumption, a Ì� distribution with Ü − 1 degrees of freedom (Van den 

Wollenberg, 1982).  
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Using Rasch model, the equality of the mean slopes of the item 

characteristic curves can be tested using U test. ICCs are graphical 

representations of the IRF. The CML estimations of the difficulty parameters 

were used to develop the u test. For this estimation, the sample is divided in 

three subsamples as a function of the values of the score of the individuals.  

From these divided samples, the first subsample is composed of all the 

individuals with a score inferior or equal to a thresholdc�. On the other 

hand, the third subsample of all the individuals with a score superior or 

equal to a threshold c�. Lastly, the second subsample of the remaining 

individuals, c� and c� are computed as follows 

 <NÑ 	≥ 25%NÑ�� 	and	 < NÑ 	≥ 25%NÑ�ëÕ  

 
The statistic Uà, j = 1,… , J, is equal to  
 Uà =	 z� − z�[c� + J− c� 
 
with 

¿� = < ¬*� − ¬S*�[l*¬S*�(1 − ¬S*�)
&Ö

*�� 	and	¿� = < ¬*� − ¬S*�[l*¬S*�(1 − ¬S*�)
&Ö

*�&Õ  

where ¬*� is the observed proportion of positive responses to the ��' item. 

Moreover, for the individuals with a score )� = ), ¬S*� is an estimation of this 

quantity under the Rasch model (¬S�Ó*� or ¬S�ÉÈ*�). Furthermore,  û� statistic 

follows the assumption of equality of the slope of the item � to the mean of 

the slopes of the other items of the model. This statistic follows standardized 

normal distribution (Molenaar, 1983, Glas and Verhelst, 1995).  

The other method of the test is OUTFIT and INFIT indices. The OUTFIT and 

INFIT indices are commonly used like indices of fit of the items and of the 

individuals.  

The residuals used for the two indices are 
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��� = 	D�� −	¬S*ÆB 

The OUTFIT index for the ��' item is  

Þû�6Ç�� =	 1l < ����¬S��W1 −	¬S��Y
ù

���  

The INFIT index for the ��' item is  

Çl6Ç�� =	 ∑ ����ù���∑ W1 −	¬S��Yù��� ¬S�� 
Using }WÞû�6Ç��Y 	= }WÇl6Ç��Y 	= 1, the OUTFIT and INFIT indices can be 

standardized. Therefore,   

�WÞû�6Ç��Y = 	 1l� < È��Á���
ù

���  

�WÇl6Ç��Y = ∑ (È�� −	Á��� )ù���∑ Á���ù���  

where Á�� is the variance of D�� and È�� is the 4th order moment of D��. Since Þû�6Ç�� and Çl6Ç�� are sum of squares, using the transformations  

Þû�6Ç��∗ =	3W[Þû�6Ç�ÂÜ − 1Y[�(Þû�6Ç��) −	[�(Þû�6Ç��)3  

 

and 

Çl6Ç��∗ =	3W[Çl6Ç�ÂÜ − 1Y[�(Çl6Ç��) −	7�WÇl6Ç��Y3 . 
It is possible to obtain indices whose distributions are close to a 

standardized Gaussian distribution. The outliers can be detected using 

these two indices (Molenaar, 1983, Linacre and Wright, 1994).  
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9.4 Application of Rasch models 

In this Chapter, the malaria data was fitted to the Rasch model using the 

RUMM2030 software. The objective is to test how well the observed malaria 

RDT result data fit the expectations of the model. To check the accuracy of 

the model, the overall fit statistics can be considered. These methods are 

related to item–person interaction statistics (Fisher and Molenaar, 1995). 

Using these methods, it can be transformed to approximate a z score. The Z 

scorerepresents standardized normal distribution. Furthermore, if the items 

(socio-economic, demographic and geographic variables) and persons (RDT, 

indoor residual spraying and use of mosquito nets) fit the model, it is 

expected to see a mean of approximately zero and a standard deviation of 

one. The other method is an item–trait interaction statistic. This statistics is 

reported as a chi-square and reflects the property of invariance across the 

trait. Therefore, if the chi-square is significant, then it means the 

hierarchical ordering of the items varies across the trait. This means that 

the value compromises the required property of invariance.  

Besides these overall summary fit statistics, individual person and item-fit 

statistics are presented, both as residuals and as a chi-squared statistic. 

Therefore, residuals between ±	2.5 are deemed to indicate adequate fit to the 

model. In addition to this, misfit to the model can also be viewed graphically 

where observed model fit is groups of responders across class intervals. The 

graph can be plotted against the expected model curve (item characteristic 

curve, ICC). Items with good fit will show each of the group plots lying on the 

curve. But, plots which are steeper than the curve would be considered to be 

over-discriminating and those flatter than the curve considered being under-

discriminating. The summed chi-square within each group provides the 

overall chi-square for the item. The summary of overall chi-square for items 

is summed given as the item trait interaction statistic. In the analysis, 

Bonferroni corrections are applied to adjust the chi-squared p-value 

(Tennant et al., 2004). This is done to account for multiple testing. 
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Furthermore, examination of person fit is important for item fit. If there are 

few respondents who deviate from model expectation, this may cause 

significant misfit at the item level. In case of validation of a scale, the misfit 

runs the risk of discarding the scale. But, the scale would be more 

appropriate to find out why a few respondents may be responding in a way 

different to others. Indication of how well-targeted the items are in the 

sample can be obtained from the comparison of the mean location score 

obtained for the persons with that of the value of zero set for the items. For 

a well-targeted measure the mean location would also be around the value 

of zero. The positive mean value indicate that the sample as a whole was 

located at a higher level than the average of the scale. On the other hand, a 

negative value would suggest the opposite.  

From the analysis, an estimate of the internal consistency reliability of the 

scale can be obtained. This is obtained based on the Person Separation 

Index (PSI) where the estimates on the logit scale for each person are used to 

calculate reliability (Molenaar, 1983). To see the improvement of scale 

construction, the sources of deviation from model expectation can be 

examined. Good fitting model can be obtained for each of the items if 

respondents with high levels of the attribute being measured would endorse 

high scoring responses. But, individuals with low levels of the attribute 

would consistently endorse low scoring responses. In Rasch analysis, 

thresholds can be used to indicate ordered set of response thresholds for 

each of the items. The term threshold refers to the point between two 

response categories where either response is equally probable.  

To investigate responses to an item, the category probability curves can be 

inspected. For a well-fitting item, it is expected across the whole range of the 

trait to be measured. In addition to this, each response option would 

systematically take turns showing the highest probability of endorsement. 

Disordered thresholds indicate the most common source of item-misfit, i.e., 

the failure of respondents to use the response categories in a manner 

consistent with the level of the trait being measured. Disordered thresholds 
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occur for respondents with difficulty consistently discriminating between 

response options. The problem can occur for too many response options and 

when the labelling of options is potentially confusing. To overcome this 

problem, collapsing of categories where disordered thresholds occur 

improves overall fit to the model.  

Differential item functioning (DIF) is the other issue that can affect model fit 

in the form of item bias. This occurs when different groups within the 

sample respond in a different manner to an individual item. This can occur 

despite equal levels of the underlying characteristic being measured. From 

the analysis, two types of DIF may be identified. DIF’s also shows a 

consistent systematic difference in their responses to an item. This is 

referred as uniform DIF. When there is non-uniformity in the differences 

between the groups then this is referred to as non-uniform DIF. When non-

uniformity is detected, the problem can be remedied by splitting the file by 

group and separately calibrating the item for each group. But, there is little 

that can be done to correct the problem. Therefore, it is often necessary to 

remove the item from the scale.  

In RUMM, the statistical and graphical methods can be used to detect the 

presence of DIF. Analysis of variance is conducted for each item comparing 

scores across each level of the person factor and across different levels of 

trait. Uniform DIF is indicated by a significant main effect for the person 

factor, and the presence of non-uniform DIF is indicated by a significant 

interaction effect.  

A principal component analysis (PCA) of residuals can be used to detect the 

sign of multidimensionality when there are issues of threshold disordering 

and DIF. If there is no meaningful pattern of residuals, the result suggests 

the assumption of local independence. This leads to unidimensionality of the 

scales. Moreover, the subsets of items can be determined by allowing the 

factor loading of the first residual. The use of paired t-test helps to see if the 

person estimate derived from the subsets significantly differs from that 
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derived from all items. Furthermore, violation of the assumption of local 

independence can be detected if the person estimate is found to differ 

between the subset and the full scale (De Boeck and Wilson., 2004, Fitz-

Gibbon, 2000, Wright and Panchapakesan, 1969). 

For the RUMM analysis, baseline household cluster malaria survey which 

was conducted by The Carter Center in 2007 was used. For the study, 

malaria RDT result, indoor residual spray and use of mosquito nets were 

used as person items. The other variables which were considered as items 

are main source of drinking water, time to collect water, toilet facilities, 

availability of electricity, radio and television, total number of rooms, main 

material of the room's wall, main material of the room's roof, main material 

of the room's floor, total number of nets, region, altitude, age and family 

size. For the analysis, altitude, age and gender were categorized to be 

appropriate for the RUMM2030 analysis because RUMM 2030 is appropriate 

for categorical variables. 

The residual mean value for items in the anxiety subscale is .0205 with a 

standard deviation (SD) of 1.0187. To be a good fit, SD would be expected to 

be much closer to 1. Since the value is close to 1, the fit is adequate to the 

model. This result is supported by a non-significant chi-squared interaction 

of 96.994 with p-value = 0.3491. Therefore, the scale fits the Rasch model. 

The value of the Person-Separation-Index for the original set of sixteen items 

with the response categories was 0.832. This result indicates that the scale 

worked well to separate the persons. The Power of Test-of-Fit is a visual 

representation of the Person-Separation-Index. It is indicative of the power 

of the construction to discriminate amongst the respondents. Based on the 

values, 0.7 is the minimum accepted level of Person-Separation-Index. This 

value indicates that it is possible to differentiate statistically between two 

groups of respondents. Furthermore, a value of 0.9 means that we can 

statistically differentiate between four or more groups. The Person-

Separation-Index is also an indicator of how much we can rely on the Fit 

Statistics. If the Person-Separation-Index is low, then the Fit Statistics that 
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have been obtained may not be reliable as there will be a substantial 

amount of error surrounding them. If the Person-Separation-Index is high, 

then the Fit Statistics that have been generated can be deemed to be more 

reliable. Based on this, because our Person-Separation-Index 0.832, it can 

be concluded that the fit statistics is reliable. 

Figure 9.1 shows the person-item threshold distribution for the original set 

of items. To find person-item threshold distribution, person and item 

locations are logarithmically transformed and plotted on the same 

continuum. For the plot common unit of measurements were termed as 

logit. The ordinal data was converted as equal-interval data. Furthermore, 

Figure 9.1 illustrates how person and item locations can be plotted on the 

same continuum along the x axis. The upper part of the graph represents 

groups of respondents who have tested for malaria infection and their ability 

to respond the questions. The lower part of the graph represents the item 

locations and their distribution. Both respondent’s ability level and item 

difficulty level are being shown on the same linear scale. Some items are 

located in the same place in terms of difficulty and this common location is 

represented as one block on top of another. A lot of item thresholds are 

clustered around the central locations. The plot endpoints are known as the 

floor and ceiling of the scale. The respondents that are located outside of the 

range measured by the scale were not included in the analysis but excluded 

as extreme scores.  
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Figure 9. 1: Person-item threshold distribution (16 items)  

It can be seen that little information is being derived from those respondents 

with maximum score (at the top end of the scale). Maximum information for 

any given item is derived when the respondents have the same logit ability 

as the item’s logit difficulty. Besides the person-item threshold distribution, 

another useful function of this display screen is the option to look at the 

location, or ‘ability’, differences between person factor (RDT result, use of 

indoor residual spray and use of mosquito nets) groups. Moreover, the 

statistical relationship between person factors (RDT result, use of indoor 

residual spray and use of mosquito nets) can be assessed.  Whether there is 

a statistical difference between the person factors groups can be seen using 

the ANOVA results of the location differences between person factor 

subgroups. The ANOVA value is given in Table 9.1. The result from the 

ANOVA analysis reveals that there is statistical difference in ability between 

malaria RDT result of positive and negative subgroups (p=0.00156). 

Similarly, there is statistical difference between use of indoor residual 

spraying and not using (p=0.00327) and between respondents who are using 

and not using mosquito nets (p=0.006027). 
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Table 9. 1: ANOVA table for Malaria RDT result, indoor residual 

spraying and use of mosquito nets 

Source 
Sum of 
squares 

DF 
Mean sum 
of squares 

F-Stat Prob 

Malaria RDT result 

Between 6.28 1 6.28 14.81 0.00156 
Within 6408.78 15119 0.42     
Total 6415.06 15120       

Indoor residual spray 

Between 87.75 1 87.75 209.68 0.00327 
Within 6327.31 15119 0.42     
Total 6415.06 15120       

Use of mosquito nets 

Between 68.47 1 68.47 163.02 0.006027 
Within 6346.59 15119 0.42     
Total 6415.06 15120       

DF = degree of freedom 

Targeting and reliability is important that the measures used are 

appropriately targeted to assess the analysis. The other inspection method is 

the graphical inspection of the Item Characteristic Curves (ICC). For each 

item, the ICC was made to examine the fit between expected and observed 

values. Using the ICC graphical method the average response of persons 

within each class interval (CI) is represented graphically by a dot and 

expected values are represented by the solid curve.  

Item characteristic curve (ICC) plot for the sixteen items and three person 

items are divided into several groupings, or class intervals, of approximately 

equal size to create contingency tables of expected and observed values.  To 

assess the probability of the degree of divergence between observed and 

expected values, the chi-square can be derived. Divergence between 

observed and expected values can occur by chance.  Therefore, the number 

of intervals is determined by the size of the calibration sample. From the 

plot, the curved line represents the expected scores for the item, and the 

dots represent the observed scores for the class intervals at the different 

ability levels. The side of the expected score is represented. The plot can be 
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helpful to observe the behaviour of the variables by the class interval fit 

(Black Dots) compared with the expected model. The ICC plot for the sixteen 

items is presented in Figures 9.2 and 9.3. From the two figures, it can be 

seen that region, age group, availability of electricity, total number of rooms 

and total number of nets have classic fit pattern. On the other hand, 

material of roof, wall, availability of television, gender, family size and 

altitude have marginal under-discrimination pattern, i.e, the response from 

the lowest group are above what is expected by the model and those for the 

highest group, are below model expectation. Unlike for the two cases, source 

of drinking water, distance to fetch water, toilet facility and material for floor 

have marginal over-discrimination pattern. Thus, the response from the 

highest group are above what is expected by the model and those for the 

lowest group, are below model expectation. 

 

 

a) Region  b) Altitude 

 

 

c) Age group d) gender 
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e) Family size f) Availability of electricity 
 

g) Availability of radio h) Availability of television 
 
Figure 9. 2: ICC of an item for region, altitude, age group, gender, 

family size, availability of electricity, radio and television 
 

 

 

a) Total number of rooms  b) Total number of nets 
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c) Source of drinking water  d) Distance to fetch water 
 

e) Toilet facility  f) Wall material 
 

g) Material of roof  h) Availability of television 
 

Figure 9. 3: ICC of an item for total number of rooms, number of nets, 
source of drinking water, distance to fetch water, toilet 
facility, material for wall, roof and floor 

Another source of misfit in the data could be due to the Differential Item 

Functioning of certain items. Therefore, DIF can be used to diagnosis the 

model. For DIF analysis, there are two groups. We consider the two groups 

of equal status. In the use of DIF the perspective is that there is a standard 

or main group and that there is a subgroup, sometimes referred to as a focal 

group, which might have items which are biased. When using DIF analysis, 
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the sample sizes of the two groups should be as close as possible. This is 

because if the sample sizes are different, and there is DIF, then the 

estimates will be weighted by the estimates that would be present for group 

with the larger sample size.  

The use of analysis of variance for residuals provides the facility to identify 

two kinds of DIF: first, uniform DIF and non-uniform DIF. The two-way 

ANOVA structure involves the class intervals as one of the factors, and the 

groups as the other factor. Then it is possible to study the main effect of the 

class intervals, the main effect of the groups and the interaction between the 

two. The main effect across class intervals is a general test of fit of the 

responses to the ICC, irrespective of any classification by groups. Items can 

show fit to the model using this criterion, while showing DIF.  

Non-uniform DIF occurs where the observed means of responses in the class 

intervals of two groups are different systematically. In ANOVA, there is an 

interaction between the class intervals and the groups. If there is no non-

uniform DIF, then uniform DIF can be interpreted directly. Uniform DIF 

occurs where the observations of responses in the class intervals of two 

groups are different systematically and are parallel. This means that for the 

best estimate of locations of persons on the continuum one group tends to 

have a higher mean than the other group.  

Groups can have different means, but some items have DIF. This means 

that DIF detects an interaction between some items and the rest of the 

items, not an absolute effect. Suppose an item has DIF. Then suppose a 

whole set of items that has this characteristic are put together, and they all, 

individually show DIF in the same direction. Then these items put together 

would show no DIF, but the mean of one group would be greater than the 

other. 
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Table 9. 2: DIF Summary with Bonferroni corrected for malaria RDT 

result 

Item 
Class Interval RDT Interaction 

F P-value F P-value F P-value 

Region 15.182 0.082 4.678 0.290 2.884 0.491 
Availability of electricity 41.121 0.074 3.749 0.315 2.918 0.516 
Availability of radio 2.534 0.239 1.967 0.089 2.952 0.541 
Availability of television 4.951 0.111 4.703 0.043 2.986 0.567 

Total number of rooms 3.826 0.214 3.968 0.050 3.054 0.617 

Number of nets 1.660 0.240 3.996 0.096 3.088 0.642 

Gender 4.724 0.265 4.023 0.143 3.122 0.667 
Source of drinking water 4.387 0.290 4.050 0.189 3.157 0.692 
Distance to get water 2.686 0.315 4.077 0.235 3.191 0.717 
Toilet facility 5.329 0.340 4.104 0.282 3.225 0.743 
Wall material 4.746 0.365 4.132 0.328 3.259 0.768 
Roof material 1.220 0.390 4.159 0.374 3.293 0.793 
Floor material 3.700 0.416 4.186 0.421 3.327 0.818 

Family size 5.294 0.441 4.213 0.467 3.361 0.843 

Age group 2.685 0.466 4.240 0.513 3.395 0.868 
 

The initial summary of DIF for malaria RDT result, use of indoor residual 

spraying and use of mosquito nets show misfit across the continuum as 

evidenced by the class interval, malaria RDT result, indoor residual spraying 

and use of mosquito nets fit statistics show misfit. These items are item 5 

due to malaria RDT, items 5, 6, 7 and 11 (total number of rooms, total 

number of nets, sex and wall material) due to indoor residual spraying and 

items 1, 5 (region and total number of rooms) and due to use of mosquito 

nets. 

To resolve this problem, there are suggestions for correction of the 

significance level in the literature, and a common one is the Bonferroni 

correction. This is very simple to carry out; the chosen probability value of 

significance is simply divided by the number of tests of fit. There is some 

controversy with this correction. In RUMM, both the numbers with 

correction, and the numbers without correction are provided to give the user 

discretion in making decisions. It also permits them to report both. Tables 
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9.2, 9.3 and 9.4 show the ANOVA of residuals after misfitted items has been 

resolved. Therefore, no item shows any misfit.  

Table 9. 3: DIF Summary with Bonferroni corrected for indoor residual 

spraying 

Item Class Interval 

Use of indoor 
residual spray Interaction 

F P-value F P-value F P-value 

Region 4.672 0.516 3.056 0.214 3.056 0.111 
Availability of electricity 8.837 0.541 2.942 0.240 2.942 0.240 
Availability of radio 2.593 0.567 2.827 0.290 2.827 0.089 
Availability of television 3.582 0.592 2.712 0.315 2.712 0.050 

Total number of rooms 1.159 0.265 2.597 0.089 2.597 0.099 
Source of drinking water 8.998 0.340 2.253 0.050 1.159 0.290 
Distance to get water 4.034 0.365 2.138 0.096 1.084 0.239 
Toilet facility 3.472 0.390 2.023 0.099 5.419 0.080 
Roof material 4.744 0.441 1.793 0.087 4.034 0.062 
Floor material 1.260 0.466 1.678 0.080 3.472 0.037 
Family size 3.350 0.491 1.564 0.074 5.362 0.093 
Age group 2.772 0.516 1.449 0.068 4.744 0.068 
Altitude 3.182 0.541 1.334 0.062 5.003 0.315 

Diagnosis and detection of violations of independence can be reflected in the 

fit of data to the model. Over-discriminating items often indicate response 

dependence and under-discriminating items. This situation indicates 

multidimensionality. Response dependence increases the similarity of the 

responses of persons across items. Therefore, responses are more Guttman-

like than they should be under no dependence. Multidimensionality acts as 

an extra source of variation in the data, and the responses are less 

Guttman-like than they would be under no dependence. Violations of local 

independence can be assessed by examining patterns among the 

standardized item residuals. 

High correlations between standardized item residuals indicate a violation of 

the assumption of independence. A principal component analysis (PCA) of 

the item residuals provides further information about dependence. After 

extracting the ‘Rasch factor’ there should be no further pattern among the 
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residuals. If a PCA indicates a meaningful pattern the scale or test is not 

unidimensional.  

Table 9. 4: DIF Summary with Bonferroni corrected for indoor residual 

spraying 

Item 
Class Interval 

Use of mosquito 
nets 

Interaction 

F P-value F P-value F P-value 

Electricity 0.671 0.697 2.296 0.130 5.475 0.751 
Radio 0.884 0.519 0.933 0.335 5.633 0.189 
Television 0.468 0.858 31.943 0.000 0.513 0.825 

Number of nets 1.039 0.403 0.597 0.440 0.163 0.992 
Source of drinking water 1.044 0.400 1.124 0.290 0.892 0.512 
Distance to get water 1.281 0.258 5.049 0.025 0.989 0.439 
Toilet facility 1.617 0.128 0.819 0.366 0.487 0.844 
Wall material 1.420 0.215 8.606 0.267 0.905 0.581 
Roof material 1.472 0.180 8.409 0.282 0.899 0.590 
Floor material 1.525 0.145 8.212 0.298 0.893 0.599 
Family size 1.578 0.110 8.014 0.313 0.887 0.608 
Age group 1.631 0.075 7.817 0.328 0.881 0.617 
Altitude 1.683 0.283 7.619 0.343 0.875 0.626 

Table 9.5 shows the results of a PCA on a data set. Items are sorted 

according to their loadings on principal component one (PC1). The table 

shows that there is meaningful pattern. Therefore, the scale or test is not 

unidimentional. 

Table 9.6 shows the summary of the PCA. The Eigenvalue of 2.42 for the 

first component is considerably larger than the Eigenvalues for the other 

components. The first principal component explained 15.14% of the total 

variance among residuals. This all suggests multidimensionality with items 

1 to 16 tapping into a second factor, after the main factor had been 

extracted.  
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Table 9. 5: Results of a PCA, items sorted according to their loadings 

on principal component (PC)1  

Item PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Region -0.09 -0.05 0.02 -0.01 0.03 0.05 -0.16 -0.09 
Electricity -0.06 0.03 0.01 -0.19 -0.04 0.12 -0.09 -0.10 
Radio -0.05 -0.08 -0.01 -0.13 -0.04 -0.96 -0.02 -0.09 
Television -0.04 -0.06 0.01 0.88 -0.05 0.17 -0.07 -0.16 
Total Number of Rooms -0.03 -0.17 0.02 -0.13 0.05 0.10 0.01 0.01 
Number of nets -0.03 0.00 0.19 0.02 0.00 0.07 -0.01 -0.04 
Sex -0.03 -0.01 -0.02 -0.07 -0.03 0.10 -0.04 -0.09 
Source of drinking water -0.01 -0.03 0.01 -0.05 -0.01 0.02 0.98 -0.02 
Distance to get water -0.01 -0.06 0.03 -0.04 0.99 0.04 -0.01 -0.04 
Toilet facility -0.01 0.01 -0.98 -0.01 -0.03 -0.01 -0.01 -0.01 
Wall material 0.00 -0.02 0.00 -0.07 -0.11 0.01 0.06 -0.02 
Roof material 0.00 0.96 -0.01 -0.05 -0.06 0.08 -0.03 -0.11 
Floor material 0.01 -0.11 0.01 -0.12 -0.05 0.09 -0.03 0.97 
Family size 0.03 -0.16 -0.03 -0.19 -0.03 0.04 0.00 -0.02 
Age group 0.20 0.01 0.01 -0.06 0.00 0.04 0.12 0.01 
Altitude 0.98 0.00 0.01 -0.03 -0.01 0.04 -0.01 0.01 

  PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 

Region 0.03 0.06 -0.14 -0.04 -0.94 -0.02 -0.18 -0.05 
Electricity 0.06 0.20 -0.05 -0.93 -0.04 -0.05 -0.05 -0.09 
Radio -0.10 0.09 -0.01 0.11 0.05 -0.08 -0.03 -0.04 
Television -0.09 0.16 -0.10 0.23 0.01 0.03 -0.07 -0.24 
Total Number of Rooms -0.11 -0.94 0.02 0.19 0.06 -0.02 0.02 0.01 
Number of nets -0.01 0.01 -0.01 0.04 0.02 0.97 -0.04 -0.06 
Sex 0.97 0.10 -0.05 -0.05 -0.03 -0.01 -0.09 -0.12 
Source of drinking water -0.03 -0.01 0.06 0.07 0.14 -0.01 0.10 0.00 
Distance to get water -0.02 -0.04 -0.11 0.03 -0.03 0.00 0.00 -0.03 
Toilet facility 0.02 0.02 0.00 0.01 0.02 -0.19 -0.01 0.02 
Wall material -0.04 -0.02 0.97 0.04 0.12 -0.01 0.10 0.04 
Roof material -0.01 0.16 -0.02 -0.03 0.05 0.00 0.01 -0.15 
Floor material -0.09 -0.01 -0.02 0.09 0.08 -0.04 0.01 -0.02 
Family size -0.13 -0.01 0.04 0.09 0.05 -0.07 0.07 0.95 
Age group -0.10 -0.02 0.11 0.05 0.19 -0.04 0.94 0.07 
Altitude -0.03 0.03 0.00 0.05 0.09 -0.03 0.18 0.02 
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Table 9. 6: Summary of the PCA   

Code PC Eigen Per cent CPer cent StdErr 

I0001 Region 2.422 15.14% 15.14% 0.332 
I0002 Electricity 1.642 10.26% 25.40% 0.221 
I0003 Radio 1.539 9.62% 35.02% 0.204 
I0004 Television 1.288 8.05% 43.06% 0.169 
I0005 Total Number of Rooms 1.204 7.53% 50.59% 0.158 
I0006 Number of nets 1.105 6.91% 57.50% 0.143 
I0007 Sex 1.05 6.57% 64.06% 0.137 
I0008 Source of drinking water 0.946 5.91% 69.97% 0.121 
I0009 Distance to get water 0.879 5.49% 75.46% 0.108 
I0010 Toilet facility 0.817 5.10% 80.57% 0.107 
I0011 Wall material 0.719 4.50% 85.07% 0.098 
I0012 Roof material 0.677 4.23% 89.29% 0.093 
I0013 Floor material 0.622 3.89% 93.18% 0.086 
I0014 Family size 0.566 3.54% 96.72% 0.08 
I0015 Age group 0.483 3.02% 99.74% 0.078 
I0016 Altitude 0.041 0.26% 100.00% 0.054 
 

Response dependence occurs when a person’s response to an item 

depends on the person’s response to a previous item. Table 9.7 shows the 

correlations between the standardized item residuals for a data set in 

which a dichotomous item depend on another dichotomous item. The 

correlation between item 2 and 8 is 0.41 and is considerably larger than 

the correlations of other items, which are mostly negative. The table is 

presented as follows. 

  



244 

 

Table 9. 7: Correlations between standardized item residuals  

Item I0001 I0002 I0003 I0004 I0005 I0006 I0007 I0008 

Region 1 
Electricity -0.123 1 
Radio -0.14 0.186 1 
Television -0.092 0.386 0.08 1 
Total Number 
of Rooms 0.134 0.013 -0.272 0.013 1 
Number of nets -0.343 0.066 0.1 -0.032 -0.315 1 
Sex -0.052 -0.012 -0.041 -0.014 -0.112 0.107 1 
Source of 
drinking water -0.133 0.41 -0.117 -0.201 -0.054 0.116 0.081 1 
Distance to get 
water -0.151 0.053 0.039 -0.033 0.192 -0.092 0.069 -0.148 
Toilet facility -0.186 0.206 -0.239 -0.063 -0.04 -0.195 0.035 0.108 
Wall material -0.006 -0.008 0.061 -0.006 -0.028 -0.038 0.055 -0.036 
Roof material -0.285 -0.141 -0.356 -0.064 -0.008 -0.185 0.043 0.064 
Floor material -0.065 -0.076 -0.126 -0.057 -0.018 0.01 0.013 -0.01 
Family size -0.161 -0.046 -0.007 -0.07 -0.109 -0.114 0.063 -0.064 
Age group -0.087 0.239 0.117 -0.025 0.02 -0.065 0.214 -0.28 
Altitude -0.151 0.248 0.036 -0.009 0.04 -0.053 0.024 -0.312 

I0009 I0010 I0011 I0012 I0013 I0014 I0015 I0016 

Distance to get 
water 1 
Toilet facility -0.153 1 
Wall material -0.01 0.032 1 
Roof material -0.205 -0.066 0.021 1 
Floor material -0.061 0 0.369 0.099 1 
Family size -0.125 -0.163 -0.033 -0.198 0.133 1 
Age group -0.006 -0.099 -0.001 -0.151 0.021 0.014 1 
Altitude -0.016 -0.079 -0.011 -0.094 0.008 -0.006 0.147 1 

9.5 Summary and discussion 

The purpose of the chapter was to introduce the Rasch model and to show 

an application of the model in malaria research. Using Rasch model, 

according to standard statistical tests, it is possible to use the model to 

diagnosis the empirical ordering of the categories. The initial descriptive 

analysis of the frequency distributions indicated that the sixteen items 

(socio-economic, dempgraphic and geographic factors) scale with each 

response categories mistargeted the current sample. This conclusion was 
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confirmed and the analysis elaborated taking advantage of the Rasch model 

that places independently estimated item and person parameters.  

This was the first study to undertake an examination of the socio-economic, 

demographic and geographic factors on the malaria RDT result, use of 

indoor residual spraying and use of mosquito nets using Rasch analysis and 

to assess item bias. The Rasch analysis support for the measurement 

properties, internal consistency reliability, targeting, and unidimensionality 

of the different levels of malaria RDT result, use of indoor residual spraying 

and use of mosquito nets. During the analysis, it was necessary to remove 

some item from each of the scales to achieve fit to the Rasch model. Using 

differential item functioning analysis, it was found for malaria RDT result, 

use of indoor residual spraying and use of mosquito nets the items 

responding good. Further examination of fit of data from the malaria RDT 

result, use of indoor residual spraying and use of mosquito nets to the 

Rasch measurement model in larger and appropriately targeted samples is 

recommended to confirm the findings of the current study. The 

categorisation of the items was examined using the Rasch model for the 

ordering of the item thresholds. From the analysis, few items showed 

disordered thresholds indicating some problems with the categorization of 

items.  

In conclusion, application of the Rasch model in this study has supported 

the viability of total sixteen (socio-economic, demographic and geographic) 

items for measuring malaria RDT result, use of indoor residual spraying and 

use of mosquito nets. Therefore, from the analysis it can be seen that the 

scale shows high reliability. But, there were little disordering of thresholds 

and no evidence of differential item functioning. Therefore, the result 

supports the analysis carried out in previous chapters. 
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Chapter 10  

Discussion and conclusion 

The focus of this study was to model and analyze malaria rapid diagnostic 

test outcome data in Ethiopia using different statistical methods. Malaria is 

related to poor socio-economic factors and normally referred to as a disease 

of the poor or is a disease normally associated with poverty (Hay et al., 

2004). Malaria disproportionately affects those who cannot afford treatment 

or have limited access to health care. Families and communities are then 

trapped in a downward spiral of poverty (Worrall et al., 2002). It is known 

that socio-economic factors are related to poverty. Therefore, to introduce 

the most advanced level of care for people with malaria infections in the 

health care system, it is important to scale up the malaria treatment 

programmes. This process requires continuous monitoring and counseling 

of patients in order to optimize medication benefits. Based on this fact, it is 

important to understand the linkages between malaria and poverty. 

Identifying the factors that increase the risk of malaria can be used to guide 

government policy to create and implement more effective policies to tackle 

the problem.  

The development of in-depth advanced statistical methods for analysis of 

malaria data with discrete outcomes is important area of research. In this 

study, we have been concerned with statistical methods for binary data, 

which is used in applied statistics. Data analysis for binary response face 

the challenge of choosing the appropriate method of analysis to address the 

research questions. In addition, the other challenge relates to the estimation 

procedure. To solve the problem, there will be more than one estimation 

procedure methods to choose from. Choosing the appropriate estimation 

procedure is important to obtain the appropriate inferences. Therefore, these 

methodologies have been demonstrated with in-depth analyses of a practical 

data set with a binary outcome. The data relates malaria rapid diagnosis 

test which was collected from December 2006 to January 2007 in Amhara, 
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Oromiya and Southern Nation Nationalities and People (SNNP) regions of 

Ethiopia. 

In this study, malaria rapid diagnosis test (RDT) result was the response 

variable and the independent predictor variables consisted of baseline socio- 

economic, demographic and geographic variables. The socio-economic 

variables were as follows: main source of drinking water; time taken to 

collect water; toilet facilities; availability of electricity, access to radio and 

television; total number of rooms; main construction material of the rooms’ 

walls, main construction material of the room’s roof and main construction 

material of the room’s floor; incidence in the past twelve months of indoor 

residual spraying; use of mosquito nets and total number of nets. 

Geographic variables were region and altitude, while demographic variables 

were gender, age and family size. Of these variables, age and sex were 

collected at the individual level, while altitude, main source of drinking 

water, time taken to collect water, toilet facilities, availability of electricity, 

radio, television, total number of rooms, main construction material of walls, 

roof and floor, incidence of indoor residual spraying and use of mosquito 

nets were all collected at the household level. 

Because of the importance of malaria rapid diagnosis test outcome, the 

study began by identifying factors affecting malaria RDT status of 

respondents. Multiple Correspondence Analysis (MCA) was used to explore 

associations between sets of categorical variables. MCA is a method for 

breaking down the value of the goodness-of-fit statistic into components due 

to the rows and columns of the contingency table. Moreover, the MCA 

approach involves defining a set of points, with associated masses, in a 

multidimensional space structured by Euclidean distance. The technique 

allows the analysis of the relationships between the variables and different 

levels of one variable. Furthermore, the results of the analysis can be seen 

analytically and visually. This method of display gives detailed information 

of the relationship between variables and their associations.  
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The result from multiple correspondence analysis shows that there is 

association between malaria RDT result and the different socio-economic, 

demographic and geographic variables. Moreover, there was an indication 

that some socio-economic, demographic and geographic factors have joint 

effects. Therefore, the interaction effects between socio-economic, 

demographic and geographic variables were included for advanced statistical 

analysis techniques. For identifying socio-economic, demographic and 

geographic predictors of malaria RDT result, generalized linear models were 

employed. These include several broad model families that include survey 

logistic, GLMM, GLMM with spatial covariance structure, joint models and 

semiparametric additive models. These models can be viewed as direct 

extensions of generalized linear models for independent observations to the 

context of correlated data. Between these models, there are differences in 

the way the dependency in the data is addressed. To test how well the 

observed data fit the expectation of the model, Rasch model was used. All 

the models were used to assess the determinants of malaria RDT result and 

each one of the methods has its own strengths and weaknesses. 

The nature of data used for this study can be described as one from a 

complex survey. The first attempt of this study was to use survey logistics 

methodology. Survey logistic is a method which is able to handle complex 

survey information. The findings using this method show that some socio-

economic, demographic and geographic factors are related to malaria risk. It 

was observed that houses that were treated with indoor residual spraying 

were less likely to be affected by malaria. One of the major challenges in the 

control of malarial infection was the use of toilet facilities. From the results, 

it was observed that households with no toilet facilities were more likely to 

have occupants who are positive with malaria diagnosis test. Furthermore, 

positive malaria diagnosis rate decreased with age. For household size, the 

risk of malaria increased per unit increase in family size. Generally, malaria 

parasite prevalence differed between age and gender with the highest 

prevalence occurring in children and females.  
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Although factors associated with malaria RDT at the intial stages of the 

analysis give important information, identifying factors that are associated 

with malaria RDT with other variabilities is important. The survey logistic 

model is survey based, which only allows for a fixed clustering variable 

whereas the Kebeles are chosen at random which could result in some 

variability between the sampling units. Therefore, the survey logistic method 

does not incorporate variability between sampling units (kebeles). For this 

reason, generalized linear mixed models (GLMM) were used to explore socio-

economic, geographic and demographic factors affecting malaria rapid 

diagnosis test result. GLMM explore the idea of statistical models that 

incorporate random factors into generalized linear models. These models 

add random effects or correlations among observations to a model, where 

observations arise from a distribution in the exponential family. 

Furthermore, the use of GLMMs can allow random effects to be properly 

specified and computed and errors can also be correlated. In addition to 

this, GLMMs can allow the error terms to exhibit non constant variability 

while also allowing investigation into more than one source of variation. This 

ultimately leads to greater flexibility in modelling the dependent variable. 

The same socio-economic, demographic and geographic variables were used 

for analysis using generalized linear mixed model. The study indicates that 

socio-economic, demographic and geographic factors are correlated with the 

transmission of malaria. Compared to the survey logistic method, the 

generalized linear mixed model explains the model better. This is supported 

by the fact that the standard errors for the estimation of parameters is small 

compared to the survey logistic method. Furthermore, the number of 

significant effects was found to be more compared to the survey logistic 

methods.   

It was also of interest to the researcher to know whether the data display 

any spatial autocorrelation, i.e., to check whether regions or areas that are 

near in space have malaria prevalence or incidence that is similar with the 

surveys that are far apart. This is important because spatially correlated 
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data cannot be regarded as independent observations. If the analysis does 

not take account of the correlation structure of the data, the estimates 

obtained from the analysis may be inaccurate because of the 

underestimated standard errors. Therefore, spatial statistics analysis was 

used to identify important socio-economic, demographic and geographic 

variables associated with the malaria RDT result and to produce prevalence 

maps of the area illustrating the variation in malaria risk. The same 

variables used in GLMM were used with spatial correlation structure. From 

all possible spatial covariance structures, SP(GAU) (Gaussian) was found to 

be the best spatial covariance structure for the data.  

Therefore, the results of the study provide evidence on the spatial 

distribution of socio-economic, demographic and geographic risk factors in 

the occurrence of malaria. The utilization of socio-economic, demographic 

and geographic data on malaria rapid diagnosis test, including the 

information on the spatial variability, clarifies the effects of these factors. 

From the study it was observed that residents living in the SNNP region were 

found to be more at risk of malaria than those living in Amhara and 

Oromiya regions.  

In addition to the different models used so far fo analysis, a joint modeling 

approach was used to further investigate the joint effect of the predictor 

variables on malaria RDT result, use of mosquito nets and use of indoor 

residual spraying in the last twelve months, i.e., the customary two 

variables joint modelling approch was extended to three variables joint 

effect. The study assessed whether the explanatory variables that were 

found to be significantly related with malaria RDT result in random effect 

model would still have a significant effect on long-term malaria transmission 

even when use of mosquito nets and use of indoor residual spraying were 

accounted for. Also assessing the association among the three outcomes 

(malaria RDT result use of mosquito nets and use of indoor residual 

spraying) was of interest.  
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Joint models have different advantages. Using joint model is useful to 

control over type I error rates in multiple tests. This way, there will be 

possible gains in efficiency in the parameter estimates and the ability to 

answer multivariate questions (Gueorguieva, 2001). Joint models are useful 

to solve the problem of correlations. When using these models, two types of 

correlations must be taken into account. These correlations are correlations 

between different variables and correlations between the same variable. To 

evaluate the association between malaria RDT result, use of mosquito nets 

and use of indoor residual spraying in the last twelve months, conditional 

random-intercepts models were fitted. The variables malaria RDT result, use 

of mosquito nets and use of indoor residual spraying were specified as 

binary variables. In this model, the correlation among the three outcomes as 

well as the correlation coming from the structure of the data is specified 

through the random effects structure. This is done by assuming separate 

random intercepts for each outcome variable and then combining them by 

imposing a joint multivariate distribution on the random intercepts. The 

linear predictors which were used for joint models consist the same 

variables which were used in the previous models. The result from joint 

models for malaria RDT result, use of mosquito nets and use of indoor 

residual spraying in the last twelve months confirm the result from the 

previous models.      

Different parametric statistical models were employed for the analysis of 

malaria RDT result data. But, these models may not have been flexible 

enough to capture the main features of the data structure. A semiparametric 

approach was adopted to identify the non-parametric relationships. To 

resercher’s knowledge, this method is the first method to be used in malaria 

research. To identify the non-parametric relationships, generalized additive 

mixed models were used. To GAMM, the effect of age, family size, number of 

rooms per person, number of nets per person, altitude and number of 

months the room sprayed were fitted non-parametrically. The result from 

GAMM approach supports the results from the previous models fitted. In 

addition to this, the results gave more insight into the distribution of age, 
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altitude, total number of rooms per person, total number of nets per person, 

family size and number of months room sprayed. The results from the non-

parametric part of the model confirm that malaria RDT result is high for 

children. They reveal that persons with more mosquito nets and more 

number of rooms have greater chance to reduce the risk of malaria. 

Furthermore, with the correct use of mosquito nets, indoor residual 

spraying and other preventative measures, like having more rooms in a 

house, is a major contributing factor or determinant for the incidence of 

malaria to be decreased. 

Finally, the Rasch model was used to show an application of the model in 

malaria research (Rasch, 1960, Rasch, 1980). Rasch model can be used to 

diagnosis the empirical ordering of the categories of the socio-economic, 

demograpic and geographic variables in the model. This method was the 

first study to undertake an examination of the socio-economic, demographic 

and geographic properties on the malaria RDT result, use of indoor residual 

spraying and use of mosquito nets to assess item bias. The Rasch analysis 

supports the measurement properties, internal consistency reliability, 

targeting, and unidimensionality of the different levels of malaria RDT 

result, use of indoor residual spraying and use of mosquito nets. During the 

analysis, it was necessary to remove some item from each of the scales to 

achieve better fit to the Rasch model.  

Using differential item functioning analysis, it was found that malaria RDT 

result, use of indoor residual spraying and use of mosquito nets, the items 

answering reseasonably. Further examination model fit to the data to 

malaria RDT result, use of indoor residual spraying and use of mosquito 

nets to the Rasch measurement model in larger and appropriately targeted 

samples is recommended to confirm the findings of the current study. The 

categorisation of the items was examined using the Rasch model for the 

ordering of the item thresholds. From the analysis, few items showed 

disordered thresholds indicating some problems with the categorization of 

items.  
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Application of the Rasch model in this study has supported the viability of 

total sixteen items (socio-economic, deographic and geographic variables) for 

measuring malaria RDT result, use of indoor residual spraying and use of 

mosquito nets. From the analysis it can be seen that the scale shows high 

reliability. But, there was little disordering of thresholds and no evidence of 

differential item functioning. Differential item functioning (DIF) referred to 

measurement bias. DIF analysis provides an indication of unexpected 

behavior of items on a test. An item does not display DIF if respondents from 

different groups have a different probability to give a certain response. 

Therefore, from the analysis, there was no evidence of differential item 

functioning. 

The government of Ethiopia has adopted various strategies to control 

malaria. These include early diagnosis, prompt treatment, selective vector 

control, epidemic prevention and control. In addition to this, the government 

has supported strategies such as human resource development, monitoring 

and evaluation. One of the government’s key goals in the control of malaria 

is to achieve the complete elimination of malaria within those geographical 

areas with historically low malaria transmission and achieve near zero 

malaria transmission in the remaining malarious areas of the country. For 

this reason, evidence based strategies to prevent malaria is an attractive 

strategy for the country (FMH, 2006b).  

The results of this this study showed that malaria is associated with socio-

economic, demographic and geographic factors, mainly influenced by 

poverty levels. Malaria is generally regarded as a disease of the poor. The 

poor socio-economic condition is a major contributing factor or determinat 

for malaria burden. Hence, wealthier households who can afford toilet 

facilities, a greater number of rooms in the house, clean drinking water, and 

well built houses were found to be less affected by malaria. It was also found 

that women and children are more vulnerable to malaria. Lack of bed nets 

contributes to this vulnerability. As the results indicate having more bed 

nets is one means of reducing malaria and the evidence suggests that 
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households who are unable to afford sufficient mosquito nets, due to large 

families and low incomes, are more affected by malaria. Women and 

children are also exposed to mosquito bites while they are travelling long 

distances to fetch water. As expected wealthier households were found to be 

less vulnerable to malaria than the poor households, thus the living 

conditions of the communities could be one way of achieving the malaria 

control goals set by the health professionals. 

In conclusion, different family of models were reviewed and applied to 

malaria RDT result data. The finding of the analyses performed using 

different statistical models demonstrated that these models are useful in the 

study of binary responses. Furthermore, the analysis and the result of the 

thesis highlighted the direction and development of malaria RDT result data 

analyses. In practice, there are complicated binary data which comes from 

complex survey designs. The structure and complexity of the data pose 

major challenges. Theoretically, it is very interesting to find statistical 

methods which incorporates survey design informations. For this issue, 

several authors suggested some corrections to chi-square statistic and F –

values (Rao and Scott, 1981, Thomas, 1989, Solomon and Stephens, 1977). 

This issue provides great opportunities and the advancement of important 

research areas. On the other hand, developing a comparison of different 

models is one of the challenges. Therefore, one of the future directions of 

this thesis is to compare the different families of methods and diagnosis of 

these methods using simulations method. 
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RESEARCH Open Access
Prevalence and risk factors of malaria in Ethiopia
Dawit G Ayele*, Temesgen T Zewotir and Henry G Mwambi
Abstract

Background: More than 75% of the total area of Ethiopia is malarious, making malaria the leading public health
problem in Ethiopia. The aim of this study was to investigate the prevalence rate and the associated socio-
economic, geographic and demographic factors of malaria based on the rapid diagnosis test (RDT) survey results.

Methods: From December 2006 to January 2007, a baseline malaria indicator survey in Amhara, Oromiya and
Southern Nation Nationalities and People (SNNP) regions of Ethiopia was conducted by The Carter Center. This
study uses this data. The method of generalized linear model was used to analyse the data and the response
variable was the presence or absence of malaria using the rapid diagnosis test (RDT).

Results: The analyses show that the RDT result was significantly associated with age and gender. Other significant
covariates confounding variables are source of water, trip to obtain water, toilet facility, total number of rooms,
material used for walls, and material used for roofing. The prevalence of malaria for households with clean water
found to be less. Malaria rapid diagnosis found to be higher for thatch and stick/mud roof and earth/local dung
plaster floor. Moreover, spraying anti-malaria to the house was found to be one means of reducing the risk of
malaria. Furthermore, the housing condition, source of water and its distance, gender, and ages in the households
were identified in order to have two-way interaction effects.

Conclusion: Individuals with poor socio-economic conditions are positively associated with malaria infection.
Improving the housing condition of the household is one of the means of reducing the risk of malaria. Children
and female household members are the most vulnerable to the risk of malaria. Such information is essential to
design improved strategic intervention for the reduction of malaria epidemic in Ethiopia.

Keywords: Generalized linear model, Odds ratio, Rapid diagnosis test, Risk factors, Survey design
Background
Malaria is a life-threatening caused by Plasmodium para-
site infection. Malaria is the most deadly, and it predo-
minates in Africa [1]. The problem of malaria is very
severe in Ethiopia where it has been the major cause of
illness and death for many years [1,2]. According to
records from the Ethiopian Federal Ministry of Health,
75% of the country is malarious with about 68% of the
total population living in areas at risk of malaria [1,2].
That is, more than 50 million people are at risk from
malaria [3], and four to five million people are affected
by malaria annually [4,5]. The transmission of malaria in
Ethiopia depends on altitude and rainfall with a lag time
varying from a few weeks before the beginning of the
rainy season to more than a month after the end of the
* Correspondence: ejigmul@yahoo.com
School of Mathematics, Statistics and Computer Science, University of
KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209 South
Africa

© 2012 Ayele et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
rainy season [6,7]. Epidemics of malaria are relatively
frequent [8,9] involving highland or highland fringe
areas of Ethiopia, mainly areas 1,000-2,000 m above sea
level [1,7,10]. Malaria transmission peaks bi-annually
from September to December and April to May, coincid-
ing with the major harvesting seasons. This has serious
consequences for Ethiopia’s subsistence economy and
for the nation in general. Major epidemics occur every
five to eight years with focal epidemics as the common-
est form. Early diagnosis and prompt treatment is one of
the key strategies in controlling malaria. For areas where
laboratory facilities are not available, clinical diagnosis is
widely used [11,12]. To diagnose malaria, microscopy
remains the standard method, but it is not accessible or
affordable in most peripheral health facilities. The recent
introduction of rapid diagnostic tests (RDT) for malaria
is a significant step forward in case detection, manage-
ment and reduction of unnecessary treatment. RDT
could be used in malaria diagnosis during population-
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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based surveys and to provide immediate treatment based
on the results.
Rapid diagnostic tests (RDTs) for malaria offer the po-

tential to extend accurate malaria diagnosis to areas
when microscopy services are not available, such as in
remote locations or after regular laboratory hours. Rapid
malaria diagnostic tests have been developed in the lat-
eral flow format [13]. These tests use finger-stick blood,
take only 10 to 15 minutes to complete, and do not re-
quire a laboratory. Non-clinical staff can easily learn to
perform the test and interpret the results [14]. The ob-
jective of this paper is to identify the socio-economic,
geographic and demographic risk factors of malaria
using the rapid diagnosis test (RDT).

Methods
Study design
A baseline household cluster malaria survey was con-
ducted by The Carter Center from December 2006 to
January 2007. A questionnaire was developed as a modi-
fication of the Malaria Indicator Survey (MIS) House-
hold Questionnaire. The questionnaire had two parts;
the household interview and malaria parasite form. For
this survey, the sampling frame was the rural popula-
tions of Amhara, Oromiya and SNNP regions, which is
kebele (the smallest administrative unit in Ethiopia).
Firstly, 224 kebeles of 25 household each were selected.
From each kebele, out of the 25 households 12 even-
numbered households were selected for malaria tests.
All members of the household were tested for malaria
by using RDT. In the survey, each room in the house
was listed separately. During the study period, 5,708
households which were located in 224 clusters, covered
in the survey. From the total of 5,708 households, Am-
hara, Oromiya and SNNP regions cover 4,101 (71.85%),
809 (14.17%) and 798 (13.98%) households respectively
[15].
For the baseline household cluster malaria survey

which was conducted by The Carter Center, a multi-
stage cluster random sampling was used. By assuming
the lowest measurement of prevalence malaria indicator,
the sample size was estimated. Based on the assumption
that prevalence of malaria to be the lowest indicator to
be measured, the prevalence in the population was taken
to be 8%. In Amhara region, each zone was regarded as
a separate domain, while in Oromiya and SNNPR, the
community-directed treatment with ivermectin (CDTI)
areas combined were one domain. All ten Amhara zones
were surveyed as separate domains, with 16 clusters in
each zone (total 160 clusters). Bahir Dar town and two
woredas with less than 10% of the population living in
malarious areas were excluded. In Oromiya and SNNPR,
sampling was done directly at the kebele level. From the
total number of individuals who participated in the
survey, 7,745 in Amhara, 1,996 in Oromiya and 1,860 in
SNNP from all age groups were tested using RDT [15].
Further studies on the sampling procedure for the sur-
vey were studied by different researchers [16,17].
Malaria parasite testing was performed on consenting

residents. A blood sample was collected by taking
finger-prick blood from participants for malaria RDT.
The test is capable of detecting both Plasmodium falcip-
arum and other Plasmodium species. Participants with
positive rapid tests were immediately offered treatment
according to national guidelines.
Using the baseline household cluster malaria survey

which was conducted by The carter Center in Amhara,
Oromiya and SNNP regions, a number of research
papers have been published. Individual, household and
environmental risk factors of malaria in Amhara, Oro-
miya and SNNP regions of Ethiopia was studied by
Graves et al. in 2008 [18]. To assess malaria infections
in relation to socio-economic, demographic and envir-
onmental factors, they used univariate analysis. From the
result it can be seen that overall prevalence of malaria
was found to be low. The detailed report for this survey
is presented by The Carter Center [15]. The other re-
search paper which was conducted using this
population-based survey is evaluation of light microscopy
and rapid diagnosis test. This was done by Endeshaw
et al. in 2008 [19]. The finding of this study suggested
that blood slide microscopy found to be the best option
for population-based prevalence survey of malaria para-
sitaemia. Similarly, Sharge et al. studied net coverage in
Oromiya and SNNP regions of Ethiopia and ownership
and use of long lasting insecticidal nets in 2008 and
2010 [17,20]. The result from these studies implies that
malaria continues to be a significant public health prob-
lem in the surveyed regions of Ethiopia. The use of
mosquito nets resulted in the decline of the prevalence
of malaria in Amhara, Oromiya and SNNP regions of
Ethiopia. These studies focused only to univariate ana-
lysis, but advanced statistical analysis is very important
to identify the socio-economic, demographic and geo-
graphic factors which have influence to the risk of mal-
aria. Multivariate statistical methods used for this study.
Therefore, in this study the variables of interest are as
follows.

Response variable
The outcome of interest is malaria RDT result. RDTs as-
sist in the diagnosis of malaria by detecting evidence of
malaria parasites in human blood and are an alternative
to diagnosis based on clinical grounds or microscopy,
particularly where good quality microscopy services can-
not be readily provided. Thus, the response variable is
binary, indicating whether or not a person was positive
for malaria.
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Independent variables
The independent covariates comprised the baseline
socio-economic, demographic, and geographic variables
that included gender, age, family size, region, altitude,
main source of drinking water, time taken to collect
water, toilet facilities, availability of electricity, radio and
television, total number of rooms, main material of the
room's wall, main material of the room's roof, main ma-
terial of the room's floor, incidence of anti-malarial
spraying in the past 12 months, use of mosquito nets
and total number of nets. Malaria test (RDT result), age
and sex were collected at individual level. Altitude, main
source of drinking water, time taken to collect water, toi-
let facilities, availability of electricity, radio, television,
total number of rooms, main material of the room's
walls, main material of the room's roof, main material of
the room's floor, use of anti-malarial spray in the past
12 months, use of mosquito nets and total number of
nets were all collected at household level.

The statistical model
Data was analysed by fitting a generalized linear model
(GLM). The GLM generalizes linear regression by relat-
ing the response variable to predictor variables via a link
function and by allowing the magnitude of the variance
of each measurement to be a function of its predicted
value.
The class of GLM includes many well-known statis-

tical models such as: multiple regression for normal
responses; logistic and probit regression for binary
responses; binomial counts, or proportions; Poisson and
negative binomial regression; log-linear categorical data
analysis models; gamma regression for variance models;
and exponential and gamma models for survival time
models.
The literature on GLM and their extensions is vast

[21-24]. Generalized linear models have been extended
in many ways, such as accommodating random and
mixed effects, accommodating correlated data, relaxing
distributional assumptions, allowing semi-parametric
linear predictors [25,26].
The logistic regression model is classified under GLM.

This model is used to model binary data. The logistic re-
gression model used to analyse data from complex sam-
pling designs is referred to as survey logistic regression
models. Survey logistic regression models have the same
theory as ordinary logistic regression models. The differ-
ence between ordinary and survey logistic is that survey
logistic accounts for the complexity of survey designs.
But, for data from simple random sampling, the survey
logistic regression model and the ordinary logistic re-
gression model are identical.
For ordinary logistic regression, a method of maximum

likelihood estimation is used to estimate parameters of
the model. But, estimation of the standard errors of the
parameter estimates is very complicated for data that
comes from complex designs. The complexities in vari-
ance estimation arise partly from the complicated sample
design and the weighting procedure imposed. Therefore,
the incorporation of sampling information is important
for the proper assessment of the variance of a statistic
[27-29]. Since weighting and specific sample designs are
particularly implemented for increasing the efficiency of
a statistic, their incorporation in the variance estimation
methodology is of major importance [30]. Thus, the bias
induced under this simplifying approach depends on the
particular sampling design and should be investigated
circumstantially. Therefore, there are several methods to
obtain the covariance matrix [31]. These methods in-
clude the Taylor expansion approximation procedure,
jack-knife estimator, bootstrap estimator, balanced
repeated replication method and random groups method
[32,33].
Results
The data analysis for this study was done using SAS ver-
sion 9.2. The deviance was used to compare alternative
models during model selection. Change in the deviance
was used to measure the extent to which the fit of the
model improves when additional variables were
included. To avoid confounding effects, the model was
fitted in two steps. The model was fitted to each pre-
dictor variables one at a time. In stage two the signifi-
cant predictors were retained in a multivariate logistic
regression model. In addition to the main effects, pos-
sible combinations of up to three-way interaction terms
were added and assessed to further avoid and mitigate
the problem of confounding.
The objective of the analysis is to identify the individ-

ual characteristics that could be associated with the
malaria rapid diagnosis test outcome. On the other
hand, this study focused on identifying the household
characteristics which could be associated with the
increase/decrease of the number of malaria infected
household members. These household characteristics
which were included in the model are main source of
drinking water, time taken to collect water, toilet facil-
ities, availability of electricity, radio and television, num-
ber of persons per room, main material of the room's
wall, main material of the room's roof, main material of
the room's floor, use of anti-malaria spray in the past
12 months, use of mosquito nets, number of nets per
person, family size, region and altitude of region. The
individual characteristics are gender and age.
To make statistically valid inferences, the analysis of

the data must account for the design of the study. The
SAS procedure which performs logistic regression for
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categorical responses in sample survey data was used
[34].
The maximal model with significant effects is given in

Tables 1 and 2. These models have the smallest deviance
(−2logL) amongst all the nested models with the three-
way interaction effects. Based on the final model, six
interactions reduced the deviance (−2logL). Therefore,
the final model includes all the main effects and the six
interaction effects.
Toilet facilities, availability of television, number of

rooms per person, main material for walls, number of
months the room was sprayed, number of mosquito nets
Table 1 Estimates and odds ratios of socio-economic,
demographic and geographic factors on RDT

Estimate OR 95% CI P
-valueLower Upper

Intercept −3.030 0.048 0.016 0.125 0.001

Age −0.031 0.970 0.319 2.505 0.0001

Sex (ref. male)

Female −1.820 0.162 0.053 0.418 <.0001

Family size 0.049 1.057 1.014 1.124 <.0001

Region (ref. SNNP)

Amhara −0.099 0.906 0.178 0.183 0.521

Oromiya −0.184 0.832 0.238 8.581 0.183

Toilet facility (Ref. No facility)

Pit latrine −0.3213 0.725 2.575 2.147 <.0001

Toilet with flush −0.5935 0.552 2.632 4.909 <.0001

Main source of drinking water (ref. protected water)

Tap water −0.038 0.963 0.316 0.373 <.0001

Unprotected water 0.717 2.048 0.673 5.289 0.007

Availability of television (ref. no)

Yes 0.304 1.356 0.446 3.500 0.024

Number of rooms/person −0.473 0.623 0.205 1.610 0.044

Main material of room's wall (ref. cement block)

Mud block/stick/wood −2.326 0.098 0.032 0.252 0.048

Corrugated metal −0.620 0.538 0.471 0.826 0.001

Main material of room's roof (ref. corrugate)

Thatch 1.325 3.761 1.236 9.712 <.0001

Stick and mud −1.960 0.141 0.046 0.364 <.0001

Main material of room's floor (ref. earth/Local dung plaster)

Wood −1.701 0.183 0.149 0.443 <.0001

Cement −3.927 0.014 1.014 4.876 0.018

Anti-malarial spraying

No 1.857 6.405 2.105 16.539 0.046

Use of mosquito nets (ref. no)

Yes −0.095 0.910 0.299 2.349 <.0001

Number of nets/person −0.782 0.457 0.150 1.181 <.0001
per person, age and family size were found to be signifi-
cant main effects. In addition to the main effects, five
significant two-way interaction terms and one three-way
interaction terms was obtained. The two-way interaction
terms were: the interaction between main source of
drinking water and main material of the room's roof; use
of anti-malarial spray and use of mosquito nets; time
taken to collect water and floor material; gender and
main source of drinking water; gender and main material
of the room's floor; and gender and use of anti-malarial
spray. Three-way interaction between gender, main
source of drinking water and availability of electricity
was also significant. Age, family size, toilet facilities,
availability of television, number of persons per room,
wall material and number of months anti-malarial spray
was used were the significant main effects, which were
not involved in significant interaction terms (Table 2).
Accordingly, the effect of these variables can be directly
interpreted using the odds ratio (OR).
Tables 1 and 2 present estimates of socio-economic,

demographic and geographic factors on RDT. Based on
the result for a unit increase in age, implies a reduction
of the odds of a positive malaria test by 3.0% (OR=
0.970, p - value = 0.0001). Furthermore, for a unit in-
crease in family size, the number of persons infected by
malaria in the household increased by 5.1% (OR= 1.057,
p - value < .0001). Furthermore, compared to households
which had no toilet facilities, those with a pit latrine
were at lower risk of malaria diagnosis (OR= 0.725, p-
value = <.0001) as well as households with flush toilets
(OR= 0.552, p - value = <.0001). Households who were
using mosquito nets were found to be at a lower risk of
malaria compared to the households who were not using
mosquito nets (OR= 0.91, p - value = <.0001). Further-
more, for a unit increase in the number of nets, the odds
of positive malaria diagnosis test decreases by 54% (OR=
0.46, p - value = <0.0001) for the household.
Interaction effects
The relationship between gender, main source of drink-
ing water and availability of electricity is presented in
Figure 1 to indicate the risk of positive malaria RDT is
higher for unprotected water use by female respondents.
However, for both males and females, positive RDT is
low for households using tap water and electricity.
With reference to households that have tap water for

drinking and corrugated iron-roofed houses, the risk of
positive malaria RDT was significantly lower than for
households living in stick and mud-roofed houses and
drinking unprotected water (OR= 8.09624, p-value <
0.0001). As Figure 2 indicates, higher positive malaria
diagnosis test was found for households that reportedly
used unprotected water for drinking.
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Table 2 Estimates and odds ratios of socio-economic, demographic and geographic factors on RDT for interaction
effects

Estimate OR 95% CI P -value

Lower Upper

Main source of drinking water and main material of the room's roof (ref. Protected water & cement block)

Tap water and Mud block/stick/wood −3.339 0.035 0.007 0.177 <.0001

Tap water and Corrugated metal −3.377 0.034 0.007 0.184 <.0001

Unprotected water and Mud block/stick/wood −4.008 0.018 0.003 0.130 <.0001

Unprotected water and Cement block −1.857 0.156 0.022 1.119 <.0001

Time to collect water and material of room's floor (ref. Less than 30 minutes and earth/local dung plaster)

Greater than 90 minutes and Cement −0.423 0.655 0.066 1.478 <.0001

Greater than 90 minutes and Wood −0.721 0.486 0.160 1.478 0.0013

Between 30–40 minutes and Cement −1.901 0.149 0.049 1.478 <.0001

Between 30–40 minutes and Wood 1.554 4.729 0.821 9.220 <.0001

Between 40–90 minutes and Cement −0.739 0.933 0.129 1.258 0.0011

Between 40–90 minutes and Wood 0.554 3.769 1.835 7.232 <.0001

Gender and main source of drinking water and main material of the room's roof (ref. Male & protected water)

Female and Tap water −0.069 0.933 0.624 1.397 0.0972

Female and Unprotected water 1.327 3.769 1.948 7.293 <.0001

Gender and material of room's floor (ref. Male and earth/Local dung plaster)

Female and Cement −0.372 0.689 0.158 1.254 <.0001

Female and Wood −4.893 0.008 0.003 0.017 <.0001

Anti-malarial spraying and use of mosquito nets (ref. Yes & no)

No and Yes 0.104 1.110 0.898 1.372 0.0319

Gender, main source of drinking water and electricity (ref. Male, protected water & yes)

Female, tap water and no 0.550 1.734 1.137 2.643 0.0172

Female, unprotected water and no −1.319 0.267 0.132 0.542 0.0049

Figure 1 Log odds associated with rapid diagnosis test and gender, source of drinking water with availability of electricity.
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Figure 2 Log odds associated with rapid diagnosis test and material of room's roof with main source of drinking water.
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The OR values for the interaction between gender and
main material of the room's floor is given in Figure 3.
Based on the result, positive malaria diagnosis test was
significantly higher for females than for males who
reported that the material of the room’s floor was earth/
local dung (OR= 1.358, p - value < .0001) as well as those
who reported that the material of the room’s floor was
wood (OR= 2.415, p - value < 0.0001). There was how-
ever, higher positive malaria diagnosis test found for
both males and females who reported that the material
of the room’s floor was wood.
Positive RDT was significantly higher for respondents

living in a room with a wooden or earth/local dung floor
than for those living in a room with a cement floor for
respondents who took 40–90 minutes to collect water.
But, for respondents who took less than 40 minutes to
collect water, positive RDT was low (refer Figure 4).
Prevalence of malaria was significantly higher for male

than for female respondents who were living in a house
treated with anti-malarial spray (refer Figure 5). For both
males and females who were living in a house that had
not been sprayed, the risk of positive malaria was signifi-
cantly higher. On the other hand, for males living in a
house that had not been treated with anti-malarial spray,
Figure 3 Log odds associated with rapid diagnosis test and gender w
the risk of malaria infection for males is more than that
of females.
The use of mosquito nets and applying anti-malarial

spray to the walls of the house altered the risk of mal-
aria. The risk of malaria was low for individuals who
lived in houses that had been sprayed and used malaria
nets. It is shown in Figure 6 that the estimated risk of
malaria was higher for individuals with no mosquito
nets.

Discussion
The government of Ethiopia has developed strategies
related to human resource development, monitoring,
and evaluation to control malaria and reduce the hard-
ships it causes. However, the key goals and targets set by
the government are aimed at making those areas with
historically low malaria transmission, malaria free and a
near zero malaria transmission in the remaining malari-
ous areas of the country [35]. Some studies conducted
so far have suggested that malaria should be regarded as
a disease of the poor or a disease of poverty [36]. This
claim can be substantiated by noting the global distribu-
tion of malaria where the concentration of the disease is
in poorest continents and countries. Being a primary
ith material of room's floor.
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Figure 4 Log odds associated with rapid diagnosis test and material of room's floor with time to collect water.
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cause of poverty, some studies suggest that a better
understanding of the relationships between malaria and
poverty is needed to enable the design of coherent and
effective policies and tools to tackle the problem. Since
poverty is related to socio-economic factors, it is import-
ant to identify those factors that are also related to the
risk of malaria [37,38].
The present study was conducted based on the 2006

baseline malaria indicator survey in Amhara, Oromiya
and Southern Nation Nationalities and People (SNNP)
regions of Ethiopia. This survey was a population-
based household cluster survey. There were 224 clus-
ters and each cluster consists of 25 households. For
this survey, the sampling frame was the rural popula-
tion of Amhara, Oromiya and SNNP regions. There-
fore, the data used for this study was from complex
survey. For the statistical analysis, the study used gen-
eralized linear model. For this study, gender, age, family
size, region, altitude, main source of drinking water,
time taken to collect water, toilet facilities, availability
of electricity, radio and television, total number of
Figure 5 Log odds associated with rapid diagnosis test and anti-mala
rooms, main material of the room's wall, main material
of the room's roof, main material of the room's floor,
incidence of anti-malarial spraying in the past
12 months, use of mosquito nets and total number of
nets with up to three-way interaction effects were used
for the analysis.
Based on these facts, the findings of this study show

that the following socio-economic factors are related to
malaria risk: construction material of walls, roof and
floor of house; main source of drinking water; time
taken to collect water; toilet facilities and availability of
electricity. Besides socio-economic factors, there are
demographic and geographic factors that also had an ef-
fect on the risk of malaria. These include gender, age,
family size and the region where the respondents lived.
In addition to the main effects, there were interactional
effects between the socio-economic, demographic and
geographic factors that also influenced the risk of mal-
aria. Most notable of these were the interaction between
the main source of drinking water and the main con-
struction material of the room's roof; the time taken to
ria spray with gender.

290



Figure 6 Log odds associated with rapid diagnosis test and use of anti-malaria with use of mosquito nets.
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collect water and the main construction material of the
room's floor; gender and the main source of drinking
water; gender and the availability of electricity; gender
and the main construction material of the room's floor
and finally, interaction between gender, main source of
drinking water and the availability of electricity.
From the study, it was observed that residents living in

the Amhara region were found to be more at risk of
malaria than those living in the SNNP and the Oromiya
regions. Similarly, houses that were treated with anti-
malarial spray were less likely to be affected by malaria.
One of the major challenges in the control of malarial
infection was found to be the use of toilet facilities.
From the results, it was observed that households with
no toilet facilities were more likely to be positive for
malaria diagnosis test. Furthermore, positive malaria
diagnosis rate decreased with age. But, for households,
the risk of malaria increased per unit increase in family
size. Generally, malaria parasite prevalence differed be-
tween age and gender with the highest prevalence occur-
ring in children and females. The findings of the
association between socio-economic factors and malaria
prevalence are similar to some of the results from previ-
ous studies [39-41]. In addition to this in 1998 and 2000,
study was conducted by Ghebreyesus et al. and Snow
et al. [42,43] in Ethiopia and Kenya, respectively. The
objectives of the studies were to assess different types of
materials used in the construction of walls, roofs and
floors of a house. They used generalized linear models,
Poisson and logistic models, for their study. Based on
their findings, they observed association between any
roof, wall and floor material and risk of malaria. There-
fore, the finding of this study is similar to the previous
results.
This study suggest that having toilet facilities, access

to clean drinking water and the use of electricity offers a
greater chance of not being positive for malaria
diagnosis. Using mosquito nets and spraying anti-
malarial treatment on the walls of the house were also
found to be a way of reducing the risk of malaria. In
addition to this, having a cement floor and corrugated
iron roof was found to be one means of reducing the
risk of malaria. Based on the study findings, different
types of housing have an influence on the risk of malar-
ial transmission with those houses constructed of poor
quality materials having an increased risk. Moreover, the
presence of particular structural features, such as bricks,
that may limit contact with the mosquito vector, also
reduces infection. Therefore, the risk of malaria is higher
for households in a lower socio-economic bracket than
for those that enjoy a higher status and who are able to
afford to take measures to reduce the risk of
transmission.
This study suggests that with the correct use of mos-

quito nets, anti-malarial spraying and other preventative
measures, coupled with factors such as the number of
rooms in a house, the incidence of disease is decreased.
However, the study also suggests that the poor are less
likely to use these preventative measures to effectively
counteract the spread of malaria.

Ethical clearance
The ethical protocol received approval from the Emory
University Institutional Review Board (IRB 1816) and
Amhara, Oromiya and SNNPR regional health bureaux.
Informed consent was sought in accordance with the
tenets of the declaration of Helsinki.

Abbreviations
FMH: Federal ministry of health of ethiopia; GLM: Generalized linear model;
OR: Odds ratio; RDT: Rapid diagnosis test; SNNP: Southern nation nationalities
and people; WHO: World health organization.

Competing interests
The authors declare that they have no competing interests.
291



Ayele et al. Malaria Journal 2012, 11:195 Page 9 of 9
http://www.malariajournal.com/content/11/1/195

Appendices: Published papers
Authors’ contributions
DGA acquired the data, performed the analysis and drafted the manuscript.
TTZ and HGM designed the research. All authors discussed the results and
implications and commented on the manuscript at all stages. All authors
contributed extensively to the work presented in this paper. All authors read
and approved the final manuscript.

Acknowledgements
We thank, with deep appreciation, The Carter Center of Ethiopia, for
providing and giving permission to use the data for this study.

Received: 6 March 2012 Accepted: 30 May 2012
Published: 12 June 2012

References
1. Adhanom TDW, Witten HK, Getachew A, Seboxa T: Malaria. In The

Epidemiology and Ecology of Health and Disease in Ethiopia 1st edition.
Edited by Berhane Y, Hailemariam D, Kloos H. Ababa Addis, Ethiopia: Shama
PLC; 2006:556–576.

2. Federal Ministry of Health (FMH): Malaria and Other Vector-borne Diseases
Control Unit. Addis Ababa, Ethiopia: Federal Ministry of Health of Ethiopia; 1999.

3. Lesaffre E, Spiessens B: On the effect of the number of quadrature points
in a logistic random-effects model: an example. Applied Statistics 2001,
50:325–335.

4. Federal Ministry of Health (FMH): Guideline for malaria epidemic prevention
and control in Ethiopia. 2nd edition. Addis Ababa, Ethiopia: Federal
democratic Republic of Ethiopia, Ministry of Health; 2004.

5. World Health Organization: Health action in crises: Horn of Africa Health
Review. http://www.who.int/hac/crises/international/hoafrica/en/index.htm.

6. Deressa W, Ali A, Enqusellassie F: Self-treatment of malaria in rural
communities, Butajira, southern Ethiopia. Bull World Health Organ 2003,
81:261–268.

7. Tulu NA: Malaria. In The Ecology of Health and Disease in Ethiopia. 2nd edition.
Edited by Kloos H, Zein AZ. Boulder, USA: Westview Press Inc; 1993:341–352.

8. WHO: Systems for the early detection of malaria epidemics in Africa: an
analysis of current practices and future priorities, country experience. Geneva,
Switzerland: World Health Organization; 2006.

9. Zhou G, Minakawa N, Githeko A, Yan G: Association between climate
variability and malaria epidemics in the East African highlands. Proc Natl
Acad Sci U S A 2004, 101:2375–2380.

10. Federal Ministry of health (FMH): National five-year strategic plan for malaria
prevention and control in Ethiopia 2006 – 2010. Addis Ababa, Ethiopia:
Federal democratic Republic of Ethiopia, Ministry of Health; 2006.

11. Federal Ministry of Health (FMH): Malaria: Diagnosis and Treatment
Guidelines for Health Workers in Ethiopia. Addis Ababa, Ethiopia: Federal
democratic Republic of Ethiopia, Ministry of Health; 2004.

12. WHO: New Perspectives: Malaria Diagnosis. Report of a Joint WHO/USAID:
Informal Consultation held on 25–27 October 1999. Geneva, Switzerland:
World Health Organization; 2000:4–48. 1999.

13. WHO: Malaria rapid diagnostic test performance. Geneva, Switzerland: World
Health Organization; 2009.

14. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH:
A Review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic
Test (RDT). AmJTrop Med Hyg 2007, 77(Suppl 6):119–127.

15. TCC: Prevalence and risk factors for malaria and trachoma in Ethiopia. Addis
Ababa, Ethiopia: The Carter Center; 2007.

16. Emerson PM, Ngondi J, Biru E, Graves PM, Ejigsemahu Y, Gebre T, Endeshaw
T, Genet A, Mosher AW, Zerihun M, Messele A, Richards FO: Integrating an
NTD with one of “The Big Three”: Combined malaria and trachoma
survey in Amhara region of Ethiopia. PLoS Negl Trop Dis 2008, 2:e197.

17. Shargie EB, Gebre T, Ngondi J, Graves PM, Mosher AW, Emerson PM,
Ejigsemahu Y, Endeshaw T, Olana D, WeldeMeskel A, Teferra A, Tadesse Z,
Tilahun A, Yohannes G, Richards FO Jr: Malaria prevalence and mosquito
net coverage in Oromia and SNNPR regions of Ethiopia. BMC Publ Health
2008, 8:321.

18. Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T,
Ceccatod P, Ejigsemahu Y, Aryc W, Moshera, Hailemariame A, Zerihun M,
Teferi T, Ayele B, Mesele A, Yohannes G, Tilahun A, Gebre T: Individual,
household and environmental risk factors for malaria infection in
Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc Trop Med Hyg
2009, 103:1211–1220.
19. Tekola E, Teshome G, Jeremiah N, Patricia MG, Estifanos BS, Ejigsemahu Y,
Ayele B, Yohannes G, Teferi T, Messele A, Zerihun M, Genet A, Mosher AW,
Emerson PM, Richards FO: Evaluation of light microscopy and rapid
diagnostic test for the detection of malaria under operational field
conditions: a household survey in Ethiopia. Malar J 2008, 7:118.

20. Shargie EB, Ngondi J, Graves PM, Getachew A, Hwang J, Gebre T, Mosher
AW, Ceccato P, Endeshaw T, Jima D, Tadesse Z, Tenaw E, Reithinger R,
Emerson PM, Richards FO, Ghebreyesus TA: Rapid increase in ownership
and use of long-lasting insecticidal nets and decrease in prevalence of
malaria in three regional states of Ethiopia, 2006–2007. J Trop Med 2010
2010, pii 750978.

21. Schabenberger O: Gotway CA: Statistical Metods for Spatial Data Analysis.
New York: Chapman and Hall/CRC; 2005.

22. Goovaerts P: Geostatistics for Natural Resources Evaluation. New York: Oxford
University Press; 1997.

23. Goovaerts P, Jacquez GM, Greiling D: Exploring scale-dependent
correlations between cancer mortality rates using factorial kriging and
population-weighted semivariograms. Geogr Anal 2005, 37:152–182.

24. Chiles JP, Delfiner P: Geostatistics. Modelling Spatial Uncertainty. Chichester:
Wiley; 1999.

25. Schimek M: Non- and semiparametric alternatives to generalized linear
models. Comput Stat 1997, 12:173–191.

26. Smith D, Walker B, Cooper D, Rosenburg E, Kaldor J: Is antiretroviral
treatment of primary HIV infection clinically justified on the basis of
current evidence? AIDS 2004, 18:709–718.

27. Bivand RS, Pebesma EJ, Gomez-Rubio V: Applied Spatial Data Analysis with R.
New York: Springer; 2008.

28. Hengl T: A Practical Guide to Geostatistical Mapping of Environmental
Variables. Italy: European Commission, Joint Research Centre, Institute for
Environment and Sustainability; 2007.

29. Matheron G: Principles of Geostatistics. Econ Geol 1963, 58:1246–1266.
30. Schaefer E, Potter F, Williams S, Diaz-Tena N, Reschovsky JD, Moore G:

Comparison of Selected Statistical Software Packages for Variance Estimation
in the CTS Surveys. 600 Maryland Avenue, SW, Suite 550, Washington, DC
20024: Technical Publication; 2003.

31. Cressie N, Hawkins DH: Robust estimation of the variogram. Math Geol
1980, 12:115–125.

32. Wolter KM: Introduction to variance estimation. Tokyo: Springer; 1985.
33. Lee ES, Forthofer RN: Analyzing Complex Survey Data. California: Sage

Publications; 2006.
34. SAS 9.2: SAS/STATW 9.2 User’s Guide The SURVEYLOGISTIC Procedure (Book

Excerpt). Cary, NC, USA: In SAS Institute Inc; 2008.
35. FMH: Ethiopia National Malaria Indicator Survey 2007. Addis Ababa, Ethiopia:

Federal Ministry of Health of Ethiopia; 2008.
36. Abegunde D, Stanciole A: An estimation of the economic impact of chronic

noncommunicable diseases in selected countries. Department of Chronic
Diseases and Health Promotion (CHP): World Health Organization; 2006.

37. Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer
WH: From malaria control to eradication: The WHO perspective. Trop Med
Int Health 2009, 14:1–7.

38. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW: The global distribution
and population at risk of malaria: past, present, and future. Lancet Infect
Dis 2004, 4:327–336.

39. Banguero H: Socio-economic factors associated with malaria in Colombia.
Soc Sci Med 1984, 19:1099–1104.

40. Koram K, Bennett S, Adiamah J, Greenwood B: Socio-economic risk factors
for malaria in a peri-urban area of the Gambia. Trans R Soc Trop Med Hyg
1995, 89:146–150.

41. Sintasath DM, Ghebremeskel T, Lynch M: Malaria prevalence and
associated risk factors in Eritrea. AmJTrop Med Hyg 2005, 72:682–687.

42. Ghebreyesus T, Haile M, Witten K, Getachew A, Yohannes M, Lindsay S:
Household risk factors for malaria among children in the Ethiopian
highlands. Trans R Soc Trop Med Hyg 2000, 94:17–21.

43. Snow RW, Peshu N, Forster D: Environmental and entomological risk
factors for the development of clinical malaria among children on the
Kenyan coast. Trans R Soc Trop Med Hyg 1998, 92:381–385.

doi:10.1186/1475-2875-11-195
Cite this article as: Ayele et al.: Prevalence and risk factors of malaria in
Ethiopia. Malaria Journal 2012 11:195.
292



 

 

 
Vol. 5(7), pp. 335-347, July 2013  

DOI: 10.5897/IJMMS2013.0956 

ISSN 2006-9723 ©2013 Academic Journals 

http://www.academicjournals.org/IJMMS 

                           International Journal of Medicine  

and Medical Sciences  

 
 
 
 

Full Length Research Paper 
 

The risk factor indicators of malaria in Ethiopia 
 

Dawit Getnet Ayele, Temesgen T. Zewotir and Henry G. Mwambi 
 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, Private Bag 
X01, Scottsville 3209, South Africa. 

 
Accepted 18 June, 2013 

 

This study evaluates the effects of socio-economic, demographic and geographic indicators on the 
malaria rapid diagnosis test (RDT), using the baseline malaria indicator survey of 2007. This survey 
covered the Amhara, Oromiya and Southern Nations, Nationalities, and People’s Region (SNNPR) of 
Ethiopia. A total of 224 clusters of, on average, 25 households each were selected. In total, 28,994 
individuals participated in the survey. A generalized linear mixed model was used to analyze the data 
where the response variable was the presence or absence of malaria using the RDT. The results 
showed that for households with toilet facilities, clean drinking water and more living space, the 
chances of testing positive for malaria RDT decreased. Moreover, using malaria nets and spraying the 
house walls with anti-mosquito were found to be effective control measures. 
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INTRODUCTION 
 
While malaria has long been a cause of human suffering 
and mortality in Sub-Saharan Africa (Eisele et al., 2010), 
in Ethiopia the problem is particularly severe. Here, it is 
the major cause of illness and death (Schabenberger and 
Gotway, 2005), with 75% of the total area being 
malarious (Cressie, 1991), and approximately 68% of the 
Ethiopian population living in these affected areas. 
Annually, about 4 to 5 million Ethiopians are affected by 
malaria (Federal Ministry of Health (FMH), 2004a; World 
Health Organization (WHO), 2006a). Malaria trans-
mission in Ethiopia is seasonal, depending mostly on 
altitude and rainfall, with a lag time varying from a few 
weeks before the beginning of the rainy season to more 
than a month after the end of the rainy season (Deressa 
et al., 2003; Tulu, 1993).  

Malaria epidemics in Ethiopia are relatively frequent 
(WHO, 2006b; Zhou et al., 2004), involving highland or 
highland fringe areas, mainly 1,000 to 2,000 meters 
above sea level (Adhanom, 2006; FMH, 2006; Tulu, 
1993). Malaria transmission peaks bi-annually from 
September to December and April to May, coinciding with 
the major harvesting seasons (FMH, 2004a). This 

seasonality has serious consequences for the subsis-
tence economy of Ethiopia’s countryside and for the 
nation in general. Early diagnosis and prompt treatment 
is one of the key strategies in controlling malaria. For 
areas where laboratory facilities are not available, clinical 
diagnosis is widely used (FMH, 2004b; WHO, 1999). To 
diagnose malaria, microscopy remains the standard 
method. However, it is not accessible and affordable in 
most peripheral health facilities. The recent introduction 
of rapid diagnosis test (RDT) for malaria has become a 
significant step forward in case detection, management 
and reduction of unnecessary treatment in Ethiopia 
(Tekola et al., 2008).  

In order to estimate the prevalence of malaria parasites 
in Ethiopia, a population based survey was conducted in 
2006/2007. Rapid diagnostic tests as well as the 
conventionally accepted diagnostic tests using standard 
microscopy of peripheral blood slides were used for this 
survey. Both tests use finger-stick or venous blood. The 
level of disagreement in this survey between the results 
of microscopy and RDT was studied by Tekola et al. 
(2008) and found to be insignificant. 
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The objective of this study is to identify the socio-
economic, demographic and geographic risk factors 
associated with the prevalence of malaria obtained from 
the rapid diagnosis tests.  
 
 
METHODS AND MATERIALS 
 
Study design 

 
The Carter Center (TCC) conducted a baseline household cluster 
malaria survey in Ethiopia in 2007. The questionnaire was 
developed as a modification of the malaria indicator survey (MIS) 
household questionnaire. The questionnaire had two parts; the 
household interview and malaria parasite form.  

For the baseline household cluster malaria survey which was 
conducted by TCC, a multi-stage cluster random sampling was 
used. By assuming the lowest measurement of prevalence malaria 
indicator, the sample size was estimated. Therefore, for TCC 
baseline household cluster malaria survey in Amhara, Oromiya and 
the Southern Nations, Nationalities and People’s (SNNP) regions of 
Ethiopia which was conducted in 2007, the design was a 
population-based household cluster survey. Based on these 
clusters, zone-level estimates of indicators were obtained for 
Amhara region, and sub-regional estimates were obtained for 
Oromiya and SNNPR. Furthermore, the sampling design was 
involved to select households within each first-stage cluster, or 
Kebele (smallest administrative unit in Ethiopia). From the 224 
selected Kebeles, 25 households were chosen, from which even-
numbered households were selected for the malaria (RDT). All 
individuals in these 12 households (even-numbered households) 
were eligible for individual interviews. Furthermore, each room in 
the house was listed separately. By using the mosquito nets as a 
guide, it was possible to determine the number of persons sleeping 
in each room. This information was useful in determining the 
number of sleeping rooms both within and outside the house. In 
addition to the number of rooms and number of nets, the persons 
sleeping under each net were listed. Further studies on the 
sampling procedure for the survey were studied by different 
researchers (Emerson et al., 2008; Shargie et al., 2008). 

Malaria parasite testing was performed on consenting residents. 
The blood sample for malaria RDT was collected by taking finger-
prick blood samples from participants. The RDT used was 
ParaScreen which is capable of detecting both Plasmodium 
falciparum and other Plasmodium species. Participants with positive 
rapid tests were immediately offered treatment according to 
national guidelines. 
 
 
Variable of interest 

 
Response variables 
 
The outcome of interest is the RDT result. RDTs assist in the 
diagnosis of malaria by detecting evidence of malaria parasites in 
human blood and are an alternative to diagnosis based on clinical 
grounds or microscopy, particularly where good quality microscopy 
services cannot be readily provided. Thus, the response variable 
was binary, indicating that either a person was positive or not 
positive. 
 
 
Independent variables 
 
The independent predictor variables consisted of baseline socio- 
economic, demographic and geographic variables, which were 
collected from each household. The socio-economic variables were  

 
 
 
 
the following: main source of drinking water; time taken to collect 
water; toilet facilities, availability of electricity, access to radio and 
television, total number of rooms, main construction material of the 
rooms’ walls, main construction material of the room’s roof and 
main construction material of the room’s floor, incidence in the past 
12 months of anti-mosquito spraying, use of mosquito nets and total 
number of nets. Geographic variables were region and altitude, and 
demographic variables were gender, age and family size. Of these 
variables, age and sex were collected at the individual level, while 
altitude, main source of drinking water, time taken to collect water, 
toilet facilities, availability of electricity, radio, television, total 
number of rooms, main construction material of walls, roof and 
floor, incidence of anti-mosquito spraying and use of mosquito nets 
were all collected at the household level. 
 
 
The statistical model 

 
A generalized linear mixed model (GLMM) was used to analyze the 
data. Classical linear models can be generalized using the 
generalized linear models (GLMs) to the exponential family of 
sampling distributions. These models have an immense impact on 
both theoretical and practical aspects in statistics. The term 'mixed' 
in the GLMMs means that the random effects and the fixed effects 
are mixed together to get a modified model. This can overcome the 
over-dispersion in the data and at the same time, accommodate the 
population heterogeneity. Therefore, the addition of random effects 
allows accommodating correlation in the context of a broad class of 
models for non-normally distributed data. These models become 
more applicable in practical situations. The logistic regression 
model, which includes the mixed effects, is a common choice for 
analysis of multilevel dichotomous data. In the GLMM, this model 
utilises the logit link, namely: 
 

 
 

The conditional expectation  equals 

, i.e., the conditional probability of a response 

given the random effects. Here,  corresponds to the  

respondent in the  household within  probabilistic sampling 

unit (PSU). Therefore, this model can also be written as: 
 

 

 

Where, the inverse link function  is the logistic cumulative 

distribution function (cdf), namely: 
 

. 
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Table 1. Type 3 analysis of effects for the GLMM. 
 

Effect Num DF F value P > F 

Age  1 10.16 0.0014 

Gender 1 0.12 0.7257 

Family size 1 75.32 <0.0001 

Region 2 0.02 0.9761 

Altitude 1 215.47 <0.0001 

Main source of drinking water 2 6.59 0.0014 

Time to collect water 3 7.46 <0.0001 

Toilet facilities 2 5.2 0.0055 

Availability of electricity 1 17.61 <0.0001 

Availability radio 1 2.82 0.0732 

Availability television 1 4.5 0.034 

Number of rooms/person 1 38.49 <0.0001 

Main material of the room's wall 2 12.94 <0.0001 

Main material of the room's roof 2 2.07 0.1262 

Main material of the room's floor 2 13.37 <0.0001 

Spraying of anti- mosquito 1 986.9 <0.0001 

Number of months room sprayed 1 944.72 <0.0001 

Use of mosquito nets 1 11.62 0.0027 

Number of nets/person 1 13.48 0.0002 

Age and gender 1 0.027 0.9784 

Main source of drinking water and main material of the room's roof 4 4.57 0.0004 

Gender and use of mosquito nets 1 11.59 <0.0001 

Time to collect water and main material of the room's floor 4 14.57 0.0024 

Gender & main source of drinking water 1 33.46 <0.0001 

Gender and main material of the room's floor 2 5.67 0.0035 

Gender and spraying anti-mosquito spray  1 849.57 <0.0001 

Use of mosquito nets and number of nets per person 1 849.57 <0.0001 

Age, gender and source of drinking water 4 8.42 <0.0001 

Age, gender and availability of electricity 2 7.8 0.0004 
 

Num DF = Number difference. 
 
 

 
The logistic distribution simplifies parameter estimation because the 
probability density function (pdf) is related to the cdf (Agresti, 2002). 

The survey logistics model is an alternative statistical 
methodology (Natarajan et al., 2008) used to identify factors 
affecting the malaria risk. Studies conducted by Ayele et al. (2012), 
using survey logistic method, concluded that malaria epidemic in 
Amahara, Oromia and SNNP regions of Ethiopia is associated with 
the socio-economic, demographic and geographic factors (Ayele et 
al., 2012). But this model is survey based, whereas the Kebeles are 
chosen at random which could result in some variability between 
the sampling units. Such a study of the identification of the socio-
economic, demographic and geographic risk factors is helpful to 
identify households who are in a critical need of intervention. 
Generalized linear mixed models (GLMM) explore the idea of 
statistical models that incorporate random factors into generalized 
linear models. GLMMs add random effects or correlations among 
observations to a model, where observations arise from a 
distribution in the exponential family. The generalized linear mixed 
model has many advantages. The use of GLMMs can allow random 
effects to be properly specified and computed, and errors can also 
be correlated. In addition to this, GLMMs can allow the error terms 
to exhibit non constant variability while also allowing investigation 
into more than one source of variation. This ultimately leads to 

greater flexibility in modelling the dependent variable. 
 
 

RESULTS 
 
Model selection was achieved by first including into the 
model all predictor variables and then evaluating whether 
or not any interaction terms needed to be incorporated. 
This was determined by fitting to the model, one at a 
time, each of the interaction terms formed from the 
predictor variables, and retaining in the model only those 
interaction terms which were significant. This process 
continued until the final maximal model was obtained. 
The final chosen model for the malaria rapid diagnosis 
test contained all main effects as well as six two-way 
interaction terms, and two three-way interaction terms. 
The final model is presented in Table 1.  

Age, family size, altitude, main source of drinking 
water, time taken to collect water, availability of toilet 
facilities, availability of  television,  number  of  rooms  per 
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person, main construction material of the rooms’ walls, 
roof and floors, incidence in the past 12 months of anti-
mosquito spraying, number of months the room sprayed 
and total number of nets per person were found to be 
significant main effects. From these main effects, the 
following were involved in the interaction effects: main 
source of drinking water; time to collect water; availability 
of electricity; main construction material of the rooms’ 
walls, roof and floor; incidence of anti-mosquito spraying; 
and the use of mosquito nets. There are two three-way 
and eight two-way significant interaction terms. The 
three-way interaction term is between age, gender and 
main source of drinking water and between age, gender 
and availability of electricity. The two-way interaction 
terms are between source of water and roof material; 
between number of nets per person and use of mosquito 
nets; between gender and availability of electricity; 
between gender and floor material; between time to 
collect water and construction material of room’s floor; 
between gender and application of anti-mosquito spray; 
and between gender and number of months the room 
was sprayed. The interpretation of the results is 
presented as follows. 

Tables 2 and Table 3 presents odds ratio estimates 
associated with age, gender, family size, region, altitude, 
toilet facilities, main source of drinking water, time to 
collect water, availability of electricity, radio and 
television, number of rooms per person, main construc-
tion material of room's roof, wall and floor, application of 
anti-mosquito spray, number of months the room 
sprayed, use of mosquito nets and number of nets per 
person. Our result reveals that malaria risk is high for 
young household members (OR = 0.992, P-value < 
0.0002). Based on the results, for a unit increase in family 
size, the odds of positive RDT for individuals increases 
by 3.76% (OR = 1.0376, P-value < 0.0001). Furthermore, 
for a unit increase in altitude, the odds of positive RDT 
decreases by 2.2% (OR = 0.978, P - value <0.0001). 
With reference to individuals with no toilet facility, malaria 
RDT was seen to be positive for more individuals with 
toilet with flush (OR = 0.894, P-value = 0.0141) followed 
by pit latrines (OR = 0.878, P-value = 0.005). Moreover, 
for a unit increase in the number of total rooms, the odds 
of malaria diagnosis test for individuals decreased by 
5.5% (OR = 0.945, P-value = 0.004).  
 
 
Interaction effects 
 
Figures 1 and 2 shows the distribution of malaria RDT 
against the main source of drinking water for both males 
and females, respectively. As age increased, positive 
malaria diagnosis was less likely for males than for 
females who were using protected, unprotected and tap 
water for drinking. Furthermore,  as  age  of  respondents  

 
 
 
 
increased, malaria RDT was less likely to be positive for 
individuals who used tap water for drinking (OR = 0.98, P 
- Value < 0.0001) for males and (OR = 1.077, P - Value < 
0.0001) for females. More specifically, positive malaria 
diagnosis rates increased with age for females whereas it 
decreased for males as age increased (Figures 1 and 2). 
The figures further show that the gap in the RDT between 
respondents using unprotected, protected and tap water 
for drinking widens with increasing age.  

The relationship between age, gender and availability 
of electricity is presented in Figure 3. As the figure 
indicates, positive malaria RDT decreases as age 
increases for both male and female respondents, whether 
or not they had access to electricity. However, the rate of 
decrease was not the same for males and females after 
controlling for other covariates in the model. The rate of 
increase for females who responded positively to having 
electricity was 9.14% higher than the other categories 
(OR = 1.0914, p-value < 0.001). Probabilities for this 
interaction are presented in Figure 3. 

Interaction effects between main source of water and 
main construction material of the room’s roof is presented 
in Figure 4. From the figure, it is clearly seen that with 
respondents who reported using tap water as well as 
protected and unprotected water for drinking, positive 
rapid diagnosis of malaria was significantly higher when 
the roof of the house was thatched, followed by those 
who occupied a stick and mud roof and finally 
respondents living in a house with a corrugated iron roof. 
The difference in RDT between the respondents’ use of 
tap, protected and unprotected sources of drinking water 
and having a thatch or stick/mud roof was particularly 
significant. It has also shown that for a corrugated iron 
roof, positive RDT was significantly lower for respondents 
who reported using tap water for drinking than for those 
who were using protected and unprotected water. The 
other two-way interaction effect which is significant is 
between the time taken to collect water and main 
construction material of the room’s floor (Table 1). This 
result is presented graphically in Figure 5. Positive RDT 
was significantly higher in a room with an earth or dung 
and plaster floor than in one with cement or wooden 
floors for respondents who took < 30 min and > 90 min to 
collect water. But for respondents who took less than 90 
min to collect water and had a cement floor, positive rapid 
diagnosis is low. Furthermore, with respondents who took 
between 30 to 40 min to collect water, there was lower 
positive RDT for respondents with an earth or dung and 
plaster floor and a wooden floor.  

The relationship between the main construction 
material of the room’s floor and gender for a household is 
presented in Figure 6. As the figure indicates, positive 
RDT was significantly higher for males than females with 
respondents who reported having an earth or dung and 
plaster floor (OR = 4.911, P-value = 0.001) as well as  for
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Table 2. Estimates of odds ratio for main effects. 
 

Effect Estimate OR 
95% CI 

P-value 
Lower Upper 

Intercept 0.622 1.863 1.369 2.536 <0.0001 

Age -0.009 0.992 0.987 0.996 0.0002 
      

Gender (Ref. Male) 

Female -0.027 0.973 0.637 1.487 0.8995 

Family size 0.037 1.038 1.018 8.118 <0.0001 
      

Region (Ref. SNNP) 

Amhara 0.004 1.044 0.972 1.036 0.8271 

Oromiya 0.002 1.072 0.963 1.043 0.9053 

Altitude -0.007 0.978 0.945 0.998 <0.0001 
      

Main source of drinking water (Ref. protected water) 

 Tap water 1.591 4.909 1.892 7.751 <.0001 

 Unprotected water 0.725 2.065 1.066 3.902 0.031 
      

Time to collect water (Ref. less than 30 min) 

 30 - 40 min 0.721 2.056 1.066 3.900 0.031 

 40 - 90 min 1.470 4.349 2.284 8.373 <0.0001 

 > 90 min 0.069 1.071 0.959 1.065 0.6932 
      

Availability of toilet facility (Ref. No facility) 

 Pit latrine -0.130 0.878 0.694 0.940 0.005 

 Toilet with flush -0.112 0.894 0.610 0.956 0.0141 
      

Availability of electricity (ref. no) 

 Yes 0.166 1.181 0.987 1.133 0.1098 
      

Availability of radio (ref. yes) 

 No -0.022 0.978 0.980 1.009 0.4328 
      

Availability of television (ref. yes) 

 No -0.104 0.901 0.845 0.960 0.0013 

Number of rooms/person -0.057 0.945 0.908 0.982 0.004 
      

Main material of room's wall (Ref. cement block) 

 Corrugated metal -0.329 0.719 0.700 0.740 <0.0001 

 Mud block/stick/wood -0.322 0.725 0.570 0.922 0.0086 
      

Main material of room's roof (Ref. Corrugate) 

 Thatch 0.006 1.006 0.995 1.018 0.0269 

 Stick and mud 0.045 1.046 1.016 1.077 0.0024 
      

Main material of room's floor (Ref. /Local dung plaster) 

 Cement-floor -0.174 0.840 0.624 1.132 0.2532 

 Wood-floor -0.136 0.872 0.657 1.158 0.3456 
      

Use of anti-mosquito spray (ref. No) 

 Yes -0.396 0.673 0.656 0.690 <0.0001 

Number of months the room sprayed -0.053 0.949 0.945 0.953 <0.0001 
      

Use of mosquito nets (ref. No) 

 Yes -0.009 0.991 0.999 1.019 0.0778 

Number of nets/person -0.034 0.966 0.949 0.984 0.0002 
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Table 3. Estimates and odd ratios for interaction effects. 

 

Effect Estimate OR 
95% CI 

P-value 
Lower Upper 

Main source of drinking water and main material of the room's roof (ref. Protected water and cement block) 

 Tap water and mud block/stick/wood -0.034 0.967 0.944 0.991 0.006 

 Tap water and corrugated metal -0.264 0.768 0.626 0.829 0.019 

 Unprotected water and Mud block/stick/wood -0.008 0.992 0.966 1.000 0.020 

 Unprotected water and Cement block -0.032 0.968 0.906 1.035 0.549 

      

Time to collect water and material of room's floor (ref. less than 30 min and earth/local dung plaster) 

 Greater than 90 min and Cement -0.039 0.962 0.857 1.079 0.5048 

 Greater than 90 min and Wood -0.294 0.745 1.201 1.500 <0.0001 

 Between 30 - 40 min and Cement -0.016 0.985 0.980 1.053 0.3901 

 Between 30 - 40 min and Wood 0.145 1.156 1.147 1.165 0.0048 

 Between 40 - 90 min and Cement -0.172 0.842 1.226 1.151 <0.0002 

 Between 40 - 90 min and Wood 0.200 1.221 1.312 1.137 0.3901 

      

Gender and main source of drinking water (ref. male and protected water) 

 Female and tap water  0.0169 1.017 0.941 1.099 0.0488 

 Female and unprotected water  -0.0795 0.924 0.854 0.999 0.0467 

      

Gender and material of room's floor (ref. male and earth/local dung plaster) 

Female and cement -0.0175 0.983 0.619 0.998 0.0408 

Female and wood 0.2741 1.315 0.859 2.014 0.0075 

      

Gender and use of mosquito nets (ref. male and yes) 

Female and no -0.034 0.967 0.964 0.969 <0.0001 

      

Gender and use of anti-mosquito spray (ref. male and no) 

Female and yes 0.0018 1.002 0.985 1.030 0.0055 

      

Number of nets per person and use of mosquito nets (ref. No) 

Yes 0.00491 1.005 1.000 1.010 0.0467 

Age and gender (ref. Male) 

Age and female 0.0336 1.034 0.992 1.002 0.4011 

      

Age, gender, main source of drinking water (ref. male and protected water) 

Female and tap water -0.00098 0.999 0.998 1.000 0.0119 

Female and unprotected water 0.00199 1.002 1.001 1.003 <0.0001 

      

Age, gender and electricity (ref. Male and yes) 

Female and no 0.00335 1.003 0.995 1.105 0.0003 
 
 
 

those who reported having a wooden floor in their house 
(OR = 2.039, P-value = 0.031). There was however, no 
significant difference in positive RDT between females 
and males who reported having a room with a cement 
floor. The interaction effect between gender and main 
source of drinking water is presented in Figure 7. The 

figure shows that the risk of malaria for households using 
unprotected water is significantly higher than for those 
households who reported having protected and tap water 
for both males and females. Moreover, for female 
members of the household, the risk of malaria was higher 
for those households  who  reported  having  unprotected  
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Figure 1. Log odds associated with rapid diagnosis test and age for male respondents with 
source of drinking water. 

 
 
 

 
 
Figure 2. Log odds associated with rapid diagnosis test and age for female respondents with 
source of drinking water. 

 

 

 
water.  

Figure 8 presents the interaction effect between the 
use of anti-mosquito spray and gender for individuals. 
Prevalence of malaria was significantly higher for male 
than for female respondents who were living in a house 
treated with anti-mosquito spray. For males living in a 
house, which was not treated with anti-mosquito spray, 
the positive malaria result was significantly higher than it 
was for females. Similarly, the interaction effect between 

use of mosquito nets and gender is presented in Figure 
9. As the figure indicates, the risk of malaria is higher for 
males than for females using mosquito nets when 
sleeping. As the number of mosquito nets increased, the 
risk of malaria was less likely for household members 
with and without nets. However, the risk of malaria was 
found to be much lower for individuals as the number of 
nets increased (Figure 10). This figure shows that for 
individuals with and without the use of mosquito nets, the  

logit(Positive_RDT)  =  -5.9087 - 0.01952  *  AGE 
logit(Positive_RDT)  =  -2.7868 - 0.09047  *  AGE 

logit(Positive_RDT)  =  -1.1535  - 0.1158  *  AGE 

logit(Positive_RDT)  =  -5.5991  +  0.3865  *  AGE logit(Positive_RDT)  =  -5.8909  +  0.1541  *  AGE 

logit(Positive_RDT)  =  -5.322  +  0.0744  *  AGE 
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Figure 3. Log odds associated with rapid diagnosis test with age for male and female 
respondents with availability of electricity. 

 
 
 

 
 
Figure 4. Log odds associated with rapid diagnosis test and source of drinking 

water with material of the room's roof 

 
 
 

 
 

Time of collected water (min) 

  
 

 

 
 
Figure 5. Log odds associated with rapid diagnosis test and time to collect water with 

material of the room's floor. 

logit(Positive_RDT)  =  -1.1535  +  -0.10276  *  

logit(Positive_RDT)  =  1.5958  +  -

logit(Positive_RDT)  =  -5.322  +  

0.08744  *  AGE 

logit(Positive_RDT)  =  -1.5727  +  -

2.73066  *  AGE 
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Figure 6. Log odds associated with rapid diagnosis test and material of room’s floor 

with gender. 

 
 
 

 
 
Figure 7. Log odds associated with rapid diagnosis test and main source of drinking water 
with gender. 

 
 
 
risk of malaria decreased as the number of net 
ownerships in the household increased. 
 
 
DISCUSSION 
 
Malaria is normally referred to as a disease of poverty 
and related to poor socio-economic factors (Hay et al., 
2004). Malaria disproportionately affects poor people who 
cannot afford treatment or have limited access to health 
care. Families and communities are then trapped in a 

downward spiral of poverty (Worrall et al., 2002). Since 
poverty is related to socio-economic factors, it is 
important to understand the linkages between malaria 
and poverty. Identifying the factors that increase the risk 
of malaria can be used to guide government policy-
makers into creating and implementing more effective 
policies to tackle the disease.  

SAS version 9.2 was used for the analysis of the data. 
Because of the nature of the methodology of the study 
and socio-economic, demographic and geographic 
variables are related. This might  cause  the  confounding 
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Figure 8. Log odds associated with rapid diagnosis test and anti-mosquito spraying of respondents 
with gender. 

 
 

 
 
Figure 9. Log odds associated with rapid diagnosis test and use of mosquito nets with 

gender at individual level. 
 
 

problem. Therefore, to avoid confounding effects, the 
model was fitted in two steps. The model was fitted to 
each predictor variables one at a time. In stage two, the 
significant predictors were retained in the model. In 
addition to the main effects, possible combinations of up 
to three-way interaction terms were added and assessed 
to further avoid and mitigate the problem of confounding.  

Majority of studies conducted so far have suggested 
that malaria could be linked to poverty. The global 
distribution of malaria also supports this claim because 
malaria is concentrated to the poorest continents and 
countries. Therefore, our study supports the fact that 
malaria is related to poverty. The study indicates that 
socio-economic, demographic and geographic factors are 

responsible for the transmission of malaria. These factors 
are age, family size, region, altitude, main source of 
drinking water, time taken to collect water, toilet facilities, 
availability of electricity, availability of radio, total number 
of rooms, main construction material of the room's walls, 
main construction material of the room's floor, use of anti-
mosquito spray, use of mosquito nets and total number of 
nets were the major factors associated with malaria RDT 
results. In addition to the main effects, three-way and 
two-way interaction effects were identified. The three-way 
interactions were between age, gender and main source 
of drinking water and age, gender and availability of 
electricity. The two-way interaction effects were between 
main source of drinking water and main construction 
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Figure 10. Log odds associated with rapid diagnosis test and use of mosquito nets with 

number of nets per person. 

 
 
 
material of the room's roof, time taken to collect water 
and main construction material of the room's floor, age 
and gender, gender and main source of drinking water, 
gender and availability of electricity, and gender and main 
construction material of the room's floor. 

In the present study, the effect of socio-economic 
factors shows that residents with no toilet facilities were 
found to be at more risk of malaria than those with toilet 
facilities. Additionally, malaria prevalence is low for 
households with a greater number of rooms in the house. 
On the other hand, having more mosquito nets over beds 
was found to be one way of reducing the risk of malaria. 
The prevalence of malaria for households with access to 
clean water was found to be less. Malaria rapid diagnosis 
was found to be higher for those respondents living in 
thatched houses, or ones with stick and mud roofs. 
Therefore, having a house with a corrugated iron roof 
was found to reduce the risk of malaria. Furthermore, the 
prevalence of malaria for households with earth and local 
dung and plaster floors was found to be higher. 
Moreover, the treatment of walls of houses with anti-
mosquito spray was found to be one means of reducing 
the risk of malaria. 

Based on demographic factors associated with malaria, 
our findings showed that females and children are at a 
greater risk. Furthermore, the malaria prevalence rate 
was found to be less for households with fewer people in 
the house. Malaria prevalence was similarly associated 
with geographic factors. The association between malaria 
and altitude showed that malaria prevalence is higher for 
households who are living at lower altitudes. 

The result of this study supports the result from the 
majority of previous studies. These studies were 

conducted to understand the distribution of malaria. 
Moreover,  these  studies  have  suggested  that  malaria 
could be linked to poverty. Therefore, better understand-
ing of the relationships between malaria and poverty is 
important to design effective policies (Hay et al., 2004; 
Mendis et al., 2009). Furthermore, the findings of this 
study have similar results to some of the results from 
previous studies (Banguero, 1984; Koram et al., 1995; 
Sintasath et al., 2005). In 1998 and 2000, study was 
conducted by (Ghebreyesus et al., 2000; Snow et al., 
1998) in Ethiopia and Kenya, respectively. In this study, 
the assessment of different types of materials used in the 
construction of walls, roofs and floors of a house was 
done. Therefore, from the study, it was possible to 
observe association between any roof, wall and floor 
material and risk of malaria. Therefore, the finding of this 
study supports the result from the previous studies. 
Similarly, the use of mosquito nets was studied by diffe-
rent researchers. Therefore, the findings of these studies 
support the outcome of this study (Messina et al., 2011). 
 
 
CONCLUSION 
 
The government of Ethiopia has adopted various 
strategies to control malaria. These include early 
diagnosis, prompt treatment, selective vector control, 
epidemic prevention and control. In addition to this, the 
government has supporting strategies such as human 
resource development, monitoring and evaluation. One of 
the government’s key goals in the control of malaria is to 
achieve the complete elimination of malaria within those 
geographical  areas  with  historically  low  malaria  trans- 

logit(Positive_RDT = -4.596 - 1.47 * nets 

logit(Positive_RDT = -4.596 - 1.325 * nets 
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mission and achieve near zero malaria transmission in 
the remaining malarious areas of the country. For this 
reason, evidence based strategies to prevent malaria is 
an attractive strategy for the country (Goovaerts, 1997). 
Therefore, the results from this study showed that malaria 
is associated with socio-economic, demographic and 
geographic factors, mainly influenced by poverty levels. 
Malaria is generally regarded as a disease of poverty. 
The more wealthy households who can afford to have 
toilet facilities, a greater number of rooms in the house, 
clean drinking water, and well built houses were found to 
be less affected by malaria. Furthermore, it was found 
that women and children are more vulnerable to malaria. 
Lack of bed nets contributes to this vulnerability. 
Moreover, as our results indicate having more bed nets is 
one means of reducing malaria and evidence suggests 
that households which are unable to afford sufficient 
mosquito nets, due to large families and low incomes, are 
more affected by malaria. Women and children are also 
exposed to mosquito bites while they are travelling long 
distances to fetch water. As the wealthier households 
were found to be less vulnerable to malaria than the poor 
households, improving the living conditions of the 
communities could be one way of  achieving  the  malaria 
control goals set by the health professionals. 
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RESEARCH Open Access
Spatial distribution of malaria problem in three
regions of Ethiopia
Dawit G Ayele*, Temesgen T Zewotir and Henry G Mwambi
Abstract

Background: The transmission of malaria is the leading public health problem in Ethiopia. From the total area of
Ethiopia, more than 75% is malarious. The aim of this study was to identify socio-economic, geographic and
demographic risk factors of malaria based on the rapid diagnosis test (RDT) survey results and produce the
prevalence map of the area illustrating variation in malaria risk.

Methods: This study accounts for spatial correlation in assessing the effects of socio- economic, demographic and
geographic factors on the prevalence of malaria in Ethiopia. A total of 224 clusters of about 25 households each
were selected from the Amhara, Oromiya and Southern Nation Nationalities and People’s (SNNP) regions of
Ethiopia. A generalized linear mixed model with spatial covariance structure was used to analyse the data where
the response variable was the presence or absence of malaria using the RDT.

Results: The results showed that households in the SNNP region were found to be at more risk than Amhara and
Oromiya regions. Moreover, households which have toilet facilities clean drinking water, and a greater number of
rooms and mosquito nets in the rooms, have less chance of having household members testing positive for RDT.
Moreover, from this study, it can be suggested that incorporating spatial variability is necessary for understanding
and devising the most appropriate strategies to reduce the risk of malaria.

Keywords: Mixed model, Rapid diagnostic test, Spatial statistics, Variogram, Kriging
Background
Malaria is a life-threatening disease affecting the world’s
most under-developed countries and regions where basic
healthcare infrastructure is lacking [1] as well some devel-
oped countries. Malaria is a major cause of morbidity and
mortality in Africa, especially in sub-Saharan African coun-
tries [1]. It is a leading cause of death amongst children in
many African countries [2]. With 68% of the total popula-
tion of Ethiopia living in areas at risk of malaria [3], it is a
major public health problem and for many years the prime
cause of illness and death [3,4]. From the total population
of Ethiopia (77,127,000 in 2007), more than 50 million
people are at risk from malaria [5]. In general, 4–5 million
people are affected by malaria annually [6,7].
Epidemics of malaria are relatively frequent [8,9] involv-

ing highland or highland fringe areas of Ethiopia, mainly
areas 1,000-2,000 meters above sea level [10-12]. Notably
* Correspondence: ejigmul@yahoo.com
School of Mathematics, Statistics and Computer Science, University of
KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209,
South Africa
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reproduction in any medium, provided the or
this altitude covers 48% of the regions of Amhara, Oromiya
and Southern Nations Nationalities and People’s regions of
Ethiopia. Malaria epidemics have serious consequences for
Ethiopia’s subsistence economy as the malaria transmission
peaks during the major harvesting seasons. To control the
risk of malaria, early diagnosis and prompt treatment is one
of the key strategies. To diagnose malaria, clinical diagnosis
is the most widely used. But, laboratory facilities are not
available in all areas of the country [13,14]. The standard
method to diagnose malaria is microscopy. However, this
form of diagnosis is not accessible or affordable in most
peripheral health facilities. The recent introduction of
rapid diagnostic tests (RDT) for malaria is a significant
step forward in case detection, timely treatment and
management, and reduction of unnecessary treatment.
RDT could be used in malaria diagnosis during
population-based surveys and to provide immediate
treatment based on the results.
RDTs offer the potential to extend accurate malaria

diagnosis to areas where microscopy services are not avail-
able such as in remote locations or after regular laboratory
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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hours. Rapid malaria diagnostic tests have been developed
in the lateral flow format [15]. These tests use finger-
stick or venous blood, which takes only 10 to 15 minutes
to complete, and do not require a laboratory. Non-clinical
staff can easily learn to perform the test and interpret
the results [16].
It is essential to identify the socio-economic and demo-

graphic risk factors associated with the prevalence of mal-
aria using data obtained from the rapid diagnosis test. Such
a study of the identification of the socio-economic and
demographic risk factors is helpful in identifying house-
holds who have a critical need for intervention. In previous
studies, Ayele, Zewotir and Mwambi (2012) have concluded
that malaria problem in Amahara, Oromiya and SNNP
regions of Ethiopia are associated with key socio-economic,
demographic and geographic factors, in particular it was
noted that poverty levels of households are highly associ-
ated with the risk of malaria. Nevertheless the spatial distri-
bution of malaria was not considered or investigated [17].
Though identification of the household characteristics is
essential for grass root level intervention, the government
goals and targets are focused on achieving malaria
eradication/reduction within specific geographical areas.
Such studies are limited, and hence the conception of
this study. Therefore, the objective of this study is to
undertake a statistical analysis of malaria incidence. This
will identify important socio-economic, demographic
and geographic variables associated with the disease
and ultimately a prevalence map of the area illustrating
variations in malaria risk.

Methods
Study design
From December 2006 and January 2007, a baseline house-
hold cluster malaria survey was conducted by The Carter
Center (TCC). The questionnaire was developed as a modi-
fication of the Malaria Indicator Survey (MIS) Household
Questionnaire. The questionnaire had two parts; the house-
hold interview and malaria parasite form. For this survey,
the sampling frame in each of the rural populations of
Amhara, Oromiya and SNNP regions was a Kebele
(the smallest administrative unit in Ethiopia). The study
area with the selected households is presented in Figure 1.
From the three regions, 5,708 households located in 224
clusters were included in the survey. Out of these house-
holds, Amhara, Oromiya and SNNP regions covered 4,101
(71.85%), 809 (14.17%) and 798 (13.98%) households
respectively. Prior to conducting the survey, 224
Kebeles were selected. From each Kebele, 12 households
(even numbered households) were selected for malaria
tests. In the survey each room in the house was listed sep-
arately. In addition to the number of rooms and number of
nets, the persons sleeping under each net were listed. The
detailed sampling procedure is presented in [17-19].
Before testing for malarial parasites, consent was
obtained from the participants. To collect the sample,
finger-prick blood was collected from the participants for
the malaria rapid diagnostic test. The test used is known as
ParaScreen which is capable of detecting both Plasmodium
falciparum and other Plasmodium species. Participants
with positive rapid tests were immediately offered treat-
ment according to national guidelines.

Variables of interest
Response variable
The outcome of interest is the malaria rapid diagnosis
test (RDT) result. RDTs assist in the diagnosis of malaria
by detecting evidence of malaria parasites in human
blood and are an alternative to diagnosis based on clinical
grounds or microscopy, particularly where good quality
microscopy services cannot be readily provided. Thus, the
response variable is binary, indicating whether or not a
person is positive for malaria using the RDT.

Independent variables
The independent variables or covariates were the base-
line socio-economic status, demographic and geographic
variables including gender, age, family size, region, alti-
tude, main source of drinking water, time taken to col-
lect water, toilet facilities, availability of electricity, radio
and television, total number of rooms, main material of
the room’s walls, main material of the room’s roof, main
material of the room’s floors, incidence of anti-mosquito
spraying in the past 12 months, use of mosquito nets
and total number of nets. Malaria test (RDT result), age
and sex were collected at individual level. Altitude, main
source of drinking water, time taken to collect water,
toilet facilities, availability of electricity, radio, television,
total number of rooms, main material of the room’s
walls, main material of the room’s roof, main material of
the room’s floor, use of anti- mosquito spray in the past
12 months, use of mosquito nets and total number of
nets were all collected at household level.

The statistical model
The distribution of malaria is nonrandom across a land-
scape in areas of higher or lower transmission intensity
and malaria risk. The transmissions are separated by
greater or lesser distances from each other. Based on
geographical aggregation, there are two distinct levels.
These are, the focal unit of malaria transmission, the
area over which human malaria is actively transmitted
originating from a specific aquatic breeding site and the
household or other reasonably identified point of contact
between a small group of humans and mosquito vectors.
The baseline household cluster malaria survey which
was conducted by The Carter Center from December
2006 to January 2007 includes the geographical locations
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of the reference for each household. Therefore, it is of
interest to know whether the data display any spatial
autocorrelation. Furthermore, it is important to check
whether surveys that are near in space have malaria
prevalence or incidence that is similar with the surveys
that are far apart. This is important because spatially
correlated data cannot be regarded as independent
observations. If the analysis does not take account of the
correlation structure of the data, the estimates obtained
from the analysis may be inaccurate because of the
underestimated standard errors. Therefore, the objective
of this study is to undertake statistical analysis of malaria
incidence to identify important socio-economic, demo-
graphic and geographic variables associated with the
disease and to produce prevalence maps of the area
illustrating the variation in malaria risk using spatial
statistics analysis. Spatial statistics can be divided into
three methods. These are: point pattern analysis, methods
for lattice data and geostatistics [20,21]. Point referenced
data is often called geocoded or geostatistical data. Areal
data is often called lattice data. Some spatial data sets
feature both point and areal-level data. Point pattern data:
The response is often fixed (occurrence of the event), and
only the locations where it occurs are thought of at ran-
dom. Of these, the geostatistical approach is most relevant
to epidemiological analysis which is conducted at the land-
scape scale and based on remote sensing [22-24].
A common approach to integrate spatially correlated

data with the random effects and proceed with maximum
likelihood based approaches for estimating the covariate
and covariogram parameters, is based on the theory of
generalized linear mixed models (GLMM). Using GLMM,
numerical approximation can be implemented [20,25].
Non-Gaussian spatial problems may be formally analysed

in the context of generalized linear mixed models (GLMM).
Specification of the likelihood of the random variable y(s) is
required where s generally denotes the location the obser-
vation is made. As in classical generalized linear models
(GLMs), there is a canonical parameter corresponding to
the distribution, which is nominally a function of the loca-
tion parameter via the link function g(.) for the distribution.
This function is assumed to be linear in the explanatory
variables. In the classical formulation of GLMs containing
only fixed effects, g(μ) = Xβ, where X is the matrix of
explanatory variables [26-30]. To incorporate a spatial
process, we assume y(si|α) is conditionally independent
for any location si with conditional mean E[y(si)|α] = μ(si).
The parameter α is used to define the distribution of s.
Then, the spatially correlated random effect is incorporated
into the linear predictor as:

g μð Þ ¼ Xβþ Zα ð1Þ

where X and Z are the design matrix. The error term
accommodates over-dispersion relative to the mean-
variance relationship implied by the distribution under
consideration. The random effect at location si, α ∼Gau
(0, ∑ α(θ)) and ε∼Gau 0; σ2

ε I
� �

, with spatial correlation is
parameterized by θ in ∑ α(θ) [20]. Note that si is just one
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location. s = (sl, ,sk)’ denotes a vector of k locations with
variance-covariance matrix .
Spatial dependence may be represented by a range of

functions [31]. To describe spatial correlation of observa-
tions, there are three major functions used in geostatistics.
These major functions are the correlogram, the covariance,
and the semivariogram. Semivariogram is also more simply
called the variogram. In geostatistics, the variogram is
the key function and is used to fit a model for the spatial
correlation in the data. The model which is obtained
using the variogram is used in kriging estimation proce-
dures, a method which was first used in minimizing [23].
Moreover, variogram models are also used to understand
maximum distances of spatial autocorrelation which can
further be used in construction of search parameters for
different interpolation techniques. A variogram represents
both structural and random aspects of the data under
consideration. The structural part of the variogram model
is represented by the range of a variogram. Furthermore,
the variogram values increase with increases in the distance
of separation until it reaches the maximum at a distance
known as the “range”. To develop the variogram, assume
μ(s) is a constant, that is constant mean μ(s), and define

var Z s1ð Þ−Z s2ð Þf g ¼ 2y s1−s2ð Þ ð2Þ

In statement (2), the variance of s1 and s2 is through
their difference s1-s2, and the process which satisfies this
property is called intrinsically stationary. The function
2y(.) is called the variogram and y(.) the semivariogram.
The other concept here is isotropy. Suppose the process

is intrinsically stationary with semivariogram [y(h), h ∈ Rd.
If y(h) = Y0(‖h‖) for some function Y0, i.e. if the
semivariogram depends on its vector argument h only
through its length ‖h‖, then the process is isotropic.
Therefore, a process which is both intrinsically stationary
and isotropic is also called homogeneous. Isotropic
processes are convenient to deal with because there
are a number of widely used parametric forms for y0
(h). Using semivariance y0(t) for interval distance class
t, lag distance interval t, c0 (nugget variance) ≥ 0,c1
(structural variance) ≥ c0 and R is the range parameter R,
some of the examples are:

1. Spherical:

0 ift ¼ 0;

y0 tð Þ ¼ fc0 þ c1t
3
2
t
R
−
1
2

t
R

� �3
� �

ift < t≤R;

c0 þ c1t ift≥R:

It is a convenient form because it increases from a

positive value c0 when t is small, levelling at the
constant c0 + c1 at t = R. This is the so-called
"nugget/range/ sill" form which is often considered a
realistic and interpretable form for a semivariogram.

2. Exponential:

γ0 tð Þ ¼ 0ift ¼ 0;
c0 þ c1 1−e

−t=R
� �

ift > 1:

�

This is simpler in functional form than the spherical
case (and valid for all d) but without the finite range
of the spherical form. The parameter R has a similar
interpretation to the spherical model however, of
fixing the scale of variability.

3. Gaussian:

γ0 tð Þ ¼
0ift ¼ 0;

c0 þ c1 1−e
−t2

�
R2

� �
ift > 1:

(

4. Exponential-power form:

γ0 tð Þ ¼
0ift ¼ 0;

c0 þ c1 1−e
�jt=RjP

� �
ift > 1:

(

Here 0 < p ≤ 2. This form generalizes both the
exponential and Gaussian forms, and forms the basis
for the families of spatial covariance functions
introduced by Sacks et al. in 1989 [32]. However, in
generalizing the results from one dimension to
higher dimensions, these authors used a product
form of covariance function in preference to
constructions based on isotropic processes [33].

Spatial prediction
Modelling spatial data is not only useful for identify-
ing significant covariates but for producing smooth
maps of the outcome by predicting it at unsampled
locations. Spatial prediction is usually referred to as
kriging. Kriging is an optimal interpolation based on
regression against observed values of surrounding data
points, weighted according to spatial covariance values.
Interpolation refers to an estimation of a variable at an
unmeasured location from observed values at surrounding
locations [34]. Kriging has some advantages. These
advantages are that it

� helps to compensate for the effects of data
clustering, assigning individual points within a
cluster less weight than isolated data points,

� gives an estimate of estimation error (kriging variance),
along with an estimate of the variable,

� ensures availability of estimation error which
provides a basis for stochasticity,

� allows simulation of possible realization.

The spatial prediction which is called kriging can
statistically be defined as follows.
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Let Y0 be a vector of the binary response at a new,
unobserved location s0i, i = l, ,n0 . Following the maximum
likelihood approach, the distribution of Y0 is given by

P Y 0jβ̂; Û ; σ̂ 2;^
� �

¼ ∫P Y 0jβ̂;U0

� �
P U0jÛ ; σ̂ 2;^
� �

dU0

ð3Þ

Where β̂; σ̂ 2 and ϕ̂ are the maximum likelihood
estimates of the corresponding parameters. As part of
the iterative estimation process, for penalized quasi-

likelihood (PQL), Û can be derived [35]. P Y 0 β̂;U0

			 ��
is the

Bernoulli-likelihood at new locations and P U0 Û ; σ̂ 2; ϕ̂
		 ��

is the distribution of the spatial random effects U0 at new
sites, given Û at observed sites and is assumed to follow
the normal distribution that is

P Y 0 Û ; σ̂ 2; ϕ̂
		 � ¼ N

X
01

X1

11
Û ;

X
00
�
X

01

X1

11

X
10

� ��
ð4Þ

With Σ11 = E(UU’), Σ00 = E(UoU’0) and
X

01
¼
Xt

01
¼ E

UoU0
0

� �
. The mean of the Gaussian distribution in (4) is

the classical kriging estimator [20].
The Bayesian predictive distribution of Y0 is given by

PðY 0 Yj Þ ¼ ∫PðY 0 β;U0j ÞPðU0; U; σ2;ϕ
		 �

xPðβ;U ; σ2;ϕ Yj Þ
�dβdU0dUdσ

2dϕ

ð5Þ
Where P(β,U, σ2,ϕ|Y) is the posterior distribution of the

parameters obtained by the Gibbs sampler or the sampling
importance re-sampling (SIR) approach. Simulation-based
Bayesian spatial prediction is performed by consecutive
draws of samples from the posterior distribution, the
distribution of the spatial random effects at new locations
and the Bernoulli-distributed predicted outcome. The max-
imum likelihood predictor (3) can be viewed or interpreted
as the Bayesian predictor (5), with parameters fixed at
their maximum-likelihood estimates. In contrast to Bayesian
kriging, classical kriging does not account for uncertainty in
estimation of β and the covariance parameters.
The data was analysed by fitting a generalized linear

mixed model (GLMM) using SAS 9.2 PROC GLIMMIX.

Analysis and results
Using the identified thirteen main effects and six two-way
and three-way interaction effects [17] several covariance
structures including SP(EXP) (Exponential), SP(EXPA)
(Anisotropic Exponential), SP(EXPGA)( (2D Exponential,
Geometrically Anisotropic), SP(GAU) (Gaussian), SP
(GAUGA)( (2D Gaussian), (Geometrically Anisotropic),
SP(LIN) (Linear), SP(LINL) (Linear Log), SP(MATERN)
(Matérn), SP(MATHSW)(Matérn (Handcock-Stein-Wallis)),

ø ø
SP(POW) (Power), SP(POWA) (Anisotropic Power),
SP(SPH) (Spherical) and SP(SPHGA)( (2D Spherical,
Geometrically Anisotropic) were fitted but SP(GAU)
(Gaussian) was found to be the best spatial covariance
structure for the model [36].
The result presented in Figure 2 is a spatial scatter plot

of the observed data. The scatter plot suggests distribu-
tion which is not indicative of a uniformly spread of the
RDT measurements throughout the prediction area. No
direct inference can be made about the existence of a
surface trend in the data. However, the apparent stratifica-
tion of RDT values might indicate a nonrandom trend. The
Spatial Autocorrelation is an inferential statistic tool, which
is important to test for randomness. This means that the
results of the analysis are always interpreted within the con-
text of its null hypothesis of a random occurrence of events.
For the randomness test Moran’s and Geary's C tests can
be used [37-41]. Furthermore, the distribution of observed
malaria infected households and distribution of observed
malaria rapid diagnosis test is presented in Figures 3 and 4.
For these tests, the null hypothesis states that the

spatial distribution of feature values is the result of random
spatial processes. The result from Moran’s (Z value = −40.4
and p – value < .0001) and Geary's c (Z value = −11.2 and
P-value < .0001) tests indicate that the spatial distribution of
feature values is not the result of random spatial processes.
The Z values are negative for both Moran’s and Geary’s C
tests. This indicates that the spatial distribution of high
values and low values in the dataset is more spatially
dispersed than would be expected if underlying spatial
processes were random. A dispersed spatial pattern often
reflects some type of competitive process, i.e., a feature with
a high value repels other features with high values; similarly,
a feature with a low value repels other features with low
values. The observed spatial pattern of feature values could
not very well be one of many possible versions of complete
spatial randomness.
Figure 5 represents different semivariogram estimators

using classical and robust estimators. The classical estima-
tor was suggested by Matheron in 1963 [42]. The classical
estimator can be calculated by

Ŷ hð Þ ¼ 1
N hð Þj j

X
N hð Þ Z sið Þ−Z sj

� �� �2
;

where (si) is the anscombe residual,

N hð Þ ¼ si−sj
� �

: si−sj


 

 ¼ h� ∈

� �
and N hð Þj j

is its cardinality. But, the classical estimator is sensitive to
outliers. For this reason a robust estimator was pro-
posed by Cressie and Hawkins in 1980 [43]. Among the
different types of isotropic covariograms given above,
Gaussian type was selected. Thus as discussed earlier, the
best spatial covariance structure from all possible types was
310



Figure 2 Scatter plot for the malaria prevalence.
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found to be the SP(GAU) (Gaussian) covariance structure.
Therefore, the Gaussian type of the variogram was used
to perform variogram analysis. The figure (Figure 3)
shows first a slow, then a rapid rise from the origin.
Therefore, the shape of the graph suggests a Gaussian
type form which is given by

y tð Þ ¼ c0 þ c1 1− exp −
t2

R2


 �� �
:

In general, from Figure 3, it is possible to distinguish
three main features. The first one is the Y-axis well above
Figure 3 Distribution of observed malaria infected households.
zero, indicating the possible presence of a nugget effect.
Moreover, the shapes of the semivariogram up through
distances in the low 40s have roughly the shape of a spher-
ical covariance model. Besides these, the semivariogram
values are extremely high for the largest distances.
Tables 1 and 2 presents the significant effects for the

model which incorporate spatial variability using SP (GAU)
(Gaussian) covariant structure. Among all significant effects
namely family size, altitude, toilet facilities, availability of
radio and television, number of rooms per person, main
material of the room's wall, spraying of anti- mosquito, use
of mosquito nets and number of nets per person, were not
311



Figure 4 Distribution of observed malaria rapid diagnosis test.
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involved in the interaction effects. The significant two-way
and three-way interaction effects were found to be main
source of drinking water and main material of the room's
roof; time to collect water and main material of the room's
floor; gender and main source of water; gender and main
Material of the room's floor; age, gender and main source
of drinking water; and age, gender and Availability of
Figure 5 Classical and robust semivariogram for malaria prevalence.
electricity. Based on these results for a unit increase in fam-
ily size, the odds of positive rapid diagnosis test increases
by 2.34% (OR = 1.0234, P-value < 0.0001). Furthermore, for
a unit increase in altitude, the odds of positive rapid diagno-
sis test decreases by 1.4% (OR= 0.996, P - value <0.0001).
With reference to individuals with no toilet facilities, the
odds of a positive malaria rapid diagnosis test is lower for
312



Table 1 Socio-economic, demographic and geographic of
effects on malaria RDT test for main effects

Parameters Estimate OR SE P -value

Intercept −0.2460 0.7819 5.8100 0.9995

Age 0.0209 1.0212 0.0503 0.6772

Gender (ref. male)

Female −2.5463 0.0784 3.0804 0.4084

Family size 0.02311 1.0234 0.0527 <.0001

Region (ref. SNNP)

Amhara −0.6896 0.5018 0.4502 0.1256

Oromiya −0.837 0.4330 0.5796 0.1487

Altitude −0.0037 0.9963 0.0001 <.0001

Main source of drinking water (ref. protected water)

Tap water −0.5557 0.5737 0.722 <.0001

Unprotected water 0.6372 1.8912 0.6871 0.005

Time to collect water (ref. > 90 minutes)

< 30 minutes −0.7829 0.4571 0.252 0.0019

between 30 to 40 minutes −0.603 0.5472 1.2666 0.6341

between 40–90 minutes −4.0189 0.0180 2.8957 0.1652

Toilet facility (Ref. No facility)

Pit latrine −0.4403 0.6438 0.6433 <.0001

Toilet with flush −0.9177 0.3994 0.6413 <.0001

Availability of electricity (ref. no)

Yes −3.1219 0.0441 1.0961 0.0044

Availability of television (ref. no)

Yes 0.6991 2.0119 0.2121 0.001

Availability of radio (ref. no)

Yes −0.6991 0.4970 0.2121 0.001

Number of rooms/person −0.4631 0.6293 0.0688 <.0001

Main material of room's wall (ref. cement block)

Mud block/wood −4.1691 0.0155 1.2646 0.038

Corrugated metal −3.1196 0.0442 1.2576 0.004

Main material of room's roof (ref. corrugate)

Thatch 1.5031 4.4956 1.6732 0.005

Stick and mud 0.454 1.5746 0.6726 0.0058

Main material of room's floor (ref. earth/Local dung plaster)

Wood −1.1407 0.3196 0.803 0.004

Cement −0.9273 0.3956 0.114 0.028

Anti- mosquito spraying

No 1.237 3.4453 0.1734 <.0001

Use of mosquito nets (ref. no)

Yes −0.8741 0.4172 0.1541 <.0001

Number of months room sprayed −0.7626 0.4665 0.1274 <.0001

Number of nets/person −0.9349 0.3926 0.0977 <.0001

Table 2 Socio-economic, demographic and geographic of
effects on malaria RDT test for interaction effects

Parameters Estimate OR SE P-value

Gender and main source of drinking water (ref. Male & protected water)

Female and tap water −2.747 0.064 0.861 0.001

Female and unprotected water 1.224 3.402 1.064 0.250

Gender and material of room's floor (ref. Male and earth/Local dung plaster)

Female and cement −0.839 0.432 0.571 <.0001

Female and wood 0.762 2.143 0.387 <.0001

Age, gender and main source of drinking water (ref. Male & protected water)

Female and tap water −0.045 0.956 0.000 <.0001

Female and unprotected water 0.042 1.043 0.000 <.0001

Age, gender and availability of electricity (ref. Male & yes)

Female and no 0.066 1.068 0.000 <.0001
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those individuals using a flushing toilet to those who have
septic tanks (OR = 0.399, P - value <0.0001) or pit latrine
slabs (OR = 0.644, P - value <0.0001). Moreover, for a unit
increase in the number of total rooms, the odds of malaria
diagnosis test for an individual decreased by 37.07%
(OR = 0.629, P - value <0.0001). Similarly, with a unit in-
crease in the number of nets in the house, the odds of rapid
diagnosis test of malaria for individuals decreased by 60.7%
(OR = 0.392, P - value <0.0001). Furthermore, for a unit
increase in the number of rooms in the household sprayed
with anti- mosquito, the odds of a positive malaria diagno-
sis test decreased by 53.3% (OR= 0.467, P - value <0.0001).

Interaction effects
Figures 6 and 7 show the distribution of malaria rapid
diagnosis test against age, main source of drinking water
for both males and females respectively. As age increased,
positive malaria diagnosis was less likely for males than fe-
males who were using protected, unprotected and tap water
for drinking. Furthermore, as age of respondents increased,
malaria rapid diagnosis test was less likely to be positive for
individuals who use tap water for drinking for males and
for females. More specifically, positive malaria diagnosis
rate increases with age for females whereas it decreases as
age increases for males (Figures 6 and 7). The figures fur-
ther show that the gap in the rapid diagnosis test between
respondents with unprotected, protected and tap water
widens with increasing age.
The relationship between age, gender and availability of

electricity is presented in Figure 8. As the figure indicates,
positive malaria rapid diagnosis test decreases as age
increases for both male and female respondents, whether
or not they have access to electricity, except for females
who responded to having electricity. However, the rate of
decrease was not the same for males and females after
controlling for other covariates in the model.
313



Figure 6 Log odds associated with rapid diagnosis test and age for male respondents with source of drinking water.
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Interaction effects between the main source of water
and the main material used for the room’s roof is
presented in Figure 9. From the figure, it is clearly seen
that positive rapid diagnosis of malaria was significantly
higher for households with a stick and mud roof followed
by thatch and lastly a corrugated iron roof. This occurred
with respondents who reported using tap water as well as
protected and unprotected water for drinking (Figure 9).
Furthermore, there was a significant difference in rapid
diagnosis test between tap, protected and unprotected
sources of drinking water for those who reported having
thatch and stick and mud roofs. It is also shown that for
corrugated iron roofs, the positive rapid diagnosis test was
significantly lower for respondents who reported using tap
water for drinking than for those who used protected and
unprotected water for drinking.
The other significant two-way interaction effect was

between the time taken to collect water and the main
flooring material (Table 2). This result is presented
graphically in Figure 10. A positive rapid diagnosis test
was significantly higher in those rooms with earth and
local dung plaster floors than for those with cement and
Figure 7 Log odds associated with rapid diagnosis test and age for fe
wooden floors, for respondents who took < 30 minutes
and >90 minutes to collect water. But, for respondents
who took less than 30 minutes to collect water but had a
cement floor, the positive rapid diagnosis was low. Fur-
thermore, with respondents who took between 30 to
40 minutes to collect water, there was a lower positive
rapid diagnosis test for those with earth and local dung
plaster floors compared to wooden floors.
The relationship between the main source of drinking

water and gender is presented in Figure 11. As the figure
indicates, a positive rapid diagnosis test was significantly
higher for female respondents than for male respondents
who reported using unprotected water. There was however,
no significant difference in a positive rapid diagnosis test
between females and males who reported using protected
and tap water for drinking.
The spatial model which is described above was used

to produce a map of predicted prevalence of positive
diagnosis malaria incidence rates for Amhara, Oromiya
and SNNP regions of Ethiopia. When there is spatial
data, the basic concern is the potential for spatial correl-
ation in the observations. These spatial correlations could
male respondents with source of drinking water.
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Figure 8 Log odds associated with rapid diagnosis test with age for male and female respondents with availability of electricity.
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lead to incorrect estimates (estimates with underestimated
standard errors). Spatial clustering of disease is almost
to be expected since human populations generally live
in spatial clusters rather than in a random distribution
of space. An infectious disease that is highly associated
with socio-economic, demographic and geographic fac-
tors is likely to be spatially clustered. This spatial clus-
tering can occur even if the population distribution is
not clustered. The model derived in this study explains
some of the spatial patterns of the prevalence of malaria.
The predicted prevalence of malaria is given in Figures 12
and 13. The prediction map (Figures 12 and 13) shows
that the socio-economic, geographic and demographic
factors are closely associated with the risk of malaria,
mostly in the SNNP region followed by the Amhara and
Oromiya regions. As can be seen from the map, the risk
of transmission of malaria is of a moderately high intensity
in almost all parts of the SNNP region. But, for the
Oromiya region, the majority of households experience a
lesser prevalence of malaria. Furthermore, from the map it
can be seen that there is a high predicted value for the
prevalence of malaria around the borders. This could be
Figure 9 Log odds associated with rapid diagnosis test and source of
caused by cross-border migration of infected persons and
the proximity of uncontrolled areas across the border,
which may further add to the intensity of transmission in
border areas.

Discussion
The first priority in the acute stage of a malaria epidemic
is prompt and effective diagnosis and treatment. Having
well-planned and timely vector control can significantly
contribute to a reduction in the risk of infection and
consequently in saving lives. Vector control must be
proactive and should be implemented at an early stage
of epidemic development. Timing depends on effective
early warning and early detection. Because of this, the
government of Ethiopia has developed strategies related
to human resource development, monitoring, and evalu-
ation to control malaria and reduce the hardship it
causes. Based on this strategy, the main objective of the
government is to make those areas with historically low
malaria transmission, malaria free and a near zero
malaria transmission in the remaining malarious areas
of the country [44]. Based on some studies which were
drinking water with material of the room's roof.
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Figure 10 Log odds associated with rapid diagnosis test and time to collect water with material of the room's floor.
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conducted previously, malaria was regarded as a dis-
ease of the poor or a disease of poverty [45]. Looking
at the global distribution of malaria in the world
suggested that the concentration of the disease is in
the world’s poorest continents and countries. Accurate
information on the distribution of malaria in epidemic-
prone areas on the ground permits interventions to be
targeted towards the transmission and high-risk loca-
tions and households. Such targeting greatly increases
the effectiveness of control measures but the inadvertent
exclusion of these locations causes potentially effective
control measures to fail. The computerized mapping
and management of location data assists the targeting
of interventions against malaria at the focal and household
levels, leading to improved efficacy and cost-effectiveness
of control.
As the distribution of malaria infection suggests, it is

important to understand the relationship between mal-
aria and poverty. This relationship is important to enable
the design of coherent and effective policies and tools to
Figure 11 Log odds associated with rapid diagnosis test and main so
tackle the problem [46,47]. As is already known, poverty
is related to socio-economic factors. Therefore, it is
important to identify those factors which are also related
to the risk of malaria. Based on these facts, the findings
from the current study show that the following socio-
economic factors are related to the risk of malaria: main
source of drinking water, time taken to collect water,
toilet facilities, availability of radio, total number of
rooms per person, main material of the room’s walls,
main material of the room's roof, main material of the
room's floor, spraying of anti- mosquito, use of mosquito
nets, total number of persons per net. Besides socio-
economic factors, there are demographic and geographic
factors which also have an effect on the risk of malaria.
These include gender, age and family size. In addition to
the main effects there were interactional effects between
the socio-economic, demographic and geographic factors
which also influenced the risk of malaria. Most notable
of these were the interaction between main source of
drinking water and main material of the room's roof,
urce of drinking water with gender.
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Figure 12 Predicted average spatial effects from the malaria prevalence model.
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time taken to collect water and main material of the
room's floor, age and gender, gender and availability of
electricity, gender and main material of the room's floor,
age, gender and main source of drinking water; and age,
gender and availability of electricity.
Spatially correlated data cannot be regarded as inde-

pendent observations. Therefore, ignoring the spatial
variability might lead to an inaccurate estimation of
parameters. Accordingly, unlike Ayele, et al. (2012), the
spatial correlation structure was considered and the
Figure 13 Predicted spatial effects from the malaria prevalence mode
significance of the variables was checked and predictions of
the malaria risk levels for the sampled areas were produced.
A useful way of providing up to date information is in the
use of GIS-based management systems. This method
helps to address effective malaria vector control and
management. Therefore, the spatial distribution of malaria
incidence was one of the points which were important for
such GIS studies.
Spatial clustering of malaria is almost predictable as

human populations generally live in spatial clusters rather
l.
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than in random distributions of space. Disease which is
highly correlated to socio-economic variables is likely to
be spatially clustered. Therefore, the model explains some
of the spatial patterns of malaria risk for Amhara,
Oromiya and SNNP regions of Ethiopia. Moran’s and
Geary's C tests were used to test for randomness [37-41].
The interest was to test if the spatial distribution of feature
values is the result of random spatial processes. However,
the test favors that the spatial distribution of feature values
is not the result of random spatial processes. Moreover,
the spatial distribution of high values and low values in
the dataset is more spatially dispersed than would be
expected. A dispersed spatial pattern often reflects some
type of competitive process, i.e. a feature with a high value
repels other features with high values; similarly, a feature
with a low value repels other features with low values.
Malaria distribution is mainly related to the rainy seasons

in Ethiopia. Therefore, understanding the nature of the
Ethiopian climate is important. According to the Ethiopian
National Meteorological Services Agency (NMSA), climates
in Ethiopia can be divided into four climatic zones
based on the pattern of rainfall. There are: the two-
season type (the western half of Ethiopia) which is
divided into district wet and dry seasons; bi-two season
type (the south and southern of Ethiopia) is characterized
by double wet seasons that occur between March to May
and September to November with two dry seasons in
between; the undefined season (dry northern part of the
Ethiopian Rift Valley) mostly has irregular rainfall between
July and February without any defined season; and the
three-season type (central and south western Ethiopia).
The average annual rainfall in the highlands of Ethiopia
is above 1000 mm a year and it rises to 2000 mm and
3000 mm in the wet south western parts of Ethiopia.
Therefore, the three regions have almost similar rainy
months. Including the climate information into the analysis
is important [48]. Since the climatic information is not
included in the baseline household cluster malaria survey,
this information will be included for future study.
Therefore, the results of this study provide evidence

on the spatial distribution of socio-economic, demo-
graphic and geographic risk factors in the occurrence of
malaria. This forms the basis for this research. There-
fore, the utilization of socio-economic, demographic and
geographic data on malaria rapid diagnosis test, includ-
ing the information on the spatial variability, clarifies the
effects of these factors. From the study it was observed
that residents living in the SNNP region were found to
be more at risk of malaria than those living in Amhara
and Oromiya regions. Similarly, houses which were treated
with anti- mosquito spray were less likely to be affected by
malaria. However, a major challenge in the control of
malarial infection was found to be in the type of toilet
facilities available in the household. From the results, it
was observed that individuals living in households which
had no toilet facilities were more likely to be positive for
malaria diagnosis tests. Furthermore, positive malaria
diagnosis rates decreased with age and the risk of mal-
aria increased per unit increase in family size. Generally,
malaria parasite prevalence differed between age and
gender, with the highest prevalence occurring in children
and females.
From the findings of this study, it can be suggested that

having toilet facilities, access to clean drinking water and
the use of electricity offers a greater chance of knowing
whether or not an individual in the household is at risk of
malaria or not. In addition to this, using mosquito nets and
spraying anti- mosquito treatment on the walls of the house
were also found to be a way of reducing the risk of malaria.
Similarly, having a cement floor and corrugated iron roof
was found to be one means of reducing the risk of malaria.
Based on the findings, different types of housing materials
have an influence on the risk of malarial transmission with
those houses constructed of poor quality materials having
an increased risk. Moreover, the presence of particular
structural features, such as bricks, that may limit contact
with the mosquito vector, also helps to reduce infection.
The risk of malaria therefore, is higher for households in a
lower socio-economic bracket than for others who may
enjoy a higher status and who are able to afford to take
measures to reduce the risk of transmission. Therefore,
with the correct use of mosquito nets, anti- mosquito
spraying and other preventative measures, like having more
rooms in a house, the incidence of malaria could be
decreased. In addition to this, the study also suggests that
the poor are less likely to use these preventative measures
to effectively counteract the spread of malaria. To provide
clean drinking water, proper hygiene and maintaining the
good condition of a house is essential in controlling the
transmission of malaria. With other control measures,
including creating awareness about the use of mosquito
nets, anti- mosquito sprays and malaria transmission, the
number of malaria cases can be reduced. Furthermore,
spatial statistics studies significantly contribute to the
understanding of the distribution of malarial infections.
The use of spatial statistics analysis is effective in monitor-
ing and identifying high-rate malaria affected regions and
helpful when implementing preventative measures. Finally,
studies incorporating spatial variability are necessary for
devising the most appropriate methodology for remedial
action to reduce the risk of malaria.
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