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Abstract

The transmission of malaria is among the leading public health problems in
Ethiopia. From the total area of Ethiopia, more than 75% is malarious. Identifying
the infectiousness of malaria by socio-economic, demographic and geographic risk
factors based on the malaria rapid diagnosis test (RDT) survey results has several
advantages for planning, monitoring and controlling, and eventual malaria
eradication effort. Such a study requires thorough understanding of the diseases
process and associated factors. However such studies are limited. Therefore, the
aim of this study was to use different statistical tools suitable to identify socio-
economic, demographic and geographic risk factors of malaria based on the
malaria rapid diagnosis test (RDT) survey results in Ethiopia. A total of 224
clusters of about 25 households were selected from the Amhara, Oromiya and
Southern Nation Nationalities and People (SNNP) regions of Ethiopia. Accordingly,
a number of binary response statistical analysis models were used. Multiple
correspondence analysis was carried out to identify the association among socio-
economic, demographic and geographic factors. Moreover a number of binary
response models such as survey logistic, GLMM, GLMM with spatial correlation,
joint models and semi-parametric models were applied. To test and investigate
how well the observed malaria RDT result, use of mosquito nets and use of
indoor residual spray data fit the expectations of the model, Rasch model was
used. The fitted models have their own strengths and weaknesses. Application of
these models was carried out by analysing data on malaria RDT result. The data
used in this study, which was conducted from December 2006 to January 2007 by
The Carter Center, is from baseline malaria indicator survey in Amhara, Oromiya

and Southern Nation Nationalities and People (SNNP) regions of Ethiopia.

The correspondence analysis and survey logistic regression model was used to
identify predictors which affect malaria RDT results. The effect of identified socio-
economic, demographic and geographic factors were subsequently explored by
fitting a generalized linear mixed model (GLMM), i.e., to assess the covariance
structures of the random components (to assess the association structure of the

\"



data). To examine whether the data displayed any spatial autocorrelation, i.e.,
whether surveys that are near in space have malaria prevalence or incidence that
is similar to the surveys that are far apart, spatial statistics analysis was
performed. This was done by introducing spatial autocorrelation structure in
GLMM. Moreover, the customary two variables joint modelling approach was
extended to three variables joint effect by exploring the joint effect of malaria RDT
result, use of mosquito nets and indoor residual spray in the last twelve months.
Assessing the association between these outcomes was also of interest.
Furthermore, the relationships between the response and some confounding
covariates may have unknown functional form. This led to proposing the use of
semiparametric additive models which are less restrictive in their specification.
Therefore, generalized additive mixed models were used to model the effect of age,
family size, number of rooms per person, number of nets per person, altitude and
number of months the room sprayed nonparametrically. The result from the study
suggests that with the correct use of mosquito nets, indoor residual spraying and
other preventative measures, coupled with factors such as the number of rooms in
a house, are associated with a decrease in the incidence of malaria as determined
by the RDT. However, the study also suggests that the poor are less likely to use
these preventative measures to effectively counteract the spread of malaria. In
order to determine whether or not the limited number of respondents had undue
influence on the malaria RDT result, a Rasch model was used. The result shows
that none of the responses had such influences. Therefore, application of the
Rasch model has supported the viability of the total sixteen (socio-economic,
demographic and geographic) items for measuring malaria RDT result, use of
indoor residual spray and use of mosquito nets. From the analysis it can be seen
that the scale shows high reliability. Hence, the result from Rasch model supports

the analysis carried out in previous models.
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Chapter 1

Introduction

Malaria is the most deadly, life-threatening problem caused by Plasmodium
parasite infection affecting the world’s most under developed countries, and
regions lacking basic healthcare infrastructure (WHO, 2011). Through the
disease predominates in Africa, also affects some of the well developed
countries (Adhanom et al., 2006). The problem is extremely severe in Ethiopia
where it has been the major cause of illness and death for many years
(Adhanom et al., 2006, Federal Ministry of Health (FMH), 1999). According to
records from the Ethiopian Federal Ministry of Health, 75% of the country is
malarious with about 68% of the total population living in areas at risk of
malaria (Adhanom et al., 2006, Federal Ministry of Health (FMH), 1999). That
is, more than 50 million people are at risk of malaria (Lesaffre and Spiessens,
2001), and four to five million people are affected by malaria annually (FMH,
2004, WHO, 2006b). The transmission of malaria in Ethiopia depends on
altitude and rainfall with a lag time varying from a few weeks before the
beginning of the rainy season to more than a month after the end of the rainy
season (Deressa et al., 2003, Tulu, 1993). Epidemics of malaria are relatively
frequent (WHO, 2006¢c, Zhou et al., 2004) involving highland or highland fringe
areas of Ethiopia, mainly areas 1,000-2,000 meters above sea level (Tulu,
1993, Adhanom et al., 2006, FMH, 2006b). Malaria transmission peaks bi-
annually from September to December and April to May, coinciding with the
major harvesting seasons. Therefore, this has serious consequences for
Ethiopia’s subsistence economy and for the nation in general. Major epidemics
occur every five to eight years with focal epidemics as the commonest form.
Early diagnosis and prompt treatment is one of the key strategies in controlling

malaria.



Malaria diagnosis frequently relies on the patient’s symptoms. Symptoms like
fever, chills, sweats, headaches, muscle pains, nausea, and vomiting are not
specific to malaria. ApprClinical diagnosis is inexpensive and can be effective.
Clinicians often misdiagnose malarial infection. Misdiagnosis often leads to the
unnecessary prescription of malaria medications which are becoming
increasingly expensive as drug resistance grows globally and new medicines are
required for effective treatment. Thus, increasing the accuracy of malaria
diagnosis is becoming more important and will continue to be so in the future.
There are broadly three different malaria diagnosis methods. These methods
are microscopy, nucleic acid amplification tests and Rapid diagnostic tests

(WHO, 2006a).

Microscopy diagnosis method is the most popular means of detecting malaria
infection. But, this diagnosis method is available in better-equipped clinics.
The malaria parasite can easily be confirmed using this technique. Therefore,
important treatment information can be provided by identifying which of the
multiple parasite species are in circulation and which drug treatment to initiate

(WHO, 2006a).

The Nucleic Acid Amplification Tests (NAAT) detect parasite DNA circulating in
the bloodstream and they are very sensitive. NAATs are currently not widely
available in malaria endemic areas because of the expensive reagents and
equipment as well as specialized training they require. Interpreting NAAT
results can be challenging due to the fact that parasite DNA can remain in the
bloodstream long after the infection has been cleared. Thus, differentiating an
active infection from a recently cleared infection is difficult (LaBarre et al.,

2010, Mens et al., 2006).

The Rapid Diagnostic Test (RDT) for malaria offers the potential to extend
accurate malaria diagnosis to areas where microscopy services are not

available in remote locations or after regular laboratory hours. RDTs have been
2



developed in the lateral flow format and use finger-stick blood, taken only ten
to fifteen minutes, and do not require a laboratory. Even non-clinical staff can
easily learn to perform the test and interpret the results. However, these tests
have limitations in that they lack the ability to detect mixed infections, all
species of Plasmodium, and infections at low concentrations of parasites,
including the inability to monitor response to therapy (Moody, 2002, Murray
and Bennett, 2009). Malaria RDTs rely on the detection of parasite specific
antigens (proteins) circulating in the bloodstream. The most common of these
antigens are Plasmodium Falciparum histidine-rich Protein2 (pfHRP2) and
Plasmodium spp. lactose dehydrogenase (pLDH) (WHO, 2009). Tests based on
the pfHRPZ2 antigen are specific to Plasmodium falciparum, the most dangerous
species of malaria, and are more readily available and less expensive. pLDH
based tests come in two varieties: pan-malarial tests which detect all malaria
species or species specific tests that detect malaria species other than
Plasmodium falciparum; and Pan-malarial tests, which are also available which

detect the Aldolase antigen (Kakkilaya, 2003).

Among the three methods discussed above, microscopy remains the standard
for diagnosing malaria. But, it is not accessible and affordable in most
peripheral health facilities. The recent introduction of rapid diagnostic tests
(RDT) for malaria has become a significant step forward in case detection,
management and reduction of unnecessary treatment. RDT could be used in
malaria diagnosis during population-based surveys and to provide immediate
treatment based on the results (Reyburn et al., 2007, Tekola et al., 2008,
Wongsrichanalai et al., 2007).

Demographic and Health Surveys (DHS) were carried out in Ethiopia in 2000,
2005 and 2011, and included a malaria module (CSA, 2000, CSA, 2006, CSA,
2012). From these surveys, it was recognized that the coverage and use of

malaria intervention in the country was very low. In 2005, the Government of



Ethiopia’s Federal Ministry of Health (FMH) developed a 5-year National
Malaria Prevention and Control Strategy (FMH, 2006a). According to the
strategy, areas less than 2,000 meters in altitude were considered ‘malarious’
and targeted to receive key malaria control interventions, including insecticide-
treated nets (ITNs), indoor residual spraying of households with insecticide
(IRS), and rapid diagnostic tests (RDTs) for malaria coupled with prompt and
effective case management with artemisinin-based combination therapy (ACT)

(Shargie et al., 2008).

Besides the demographic and health survey, various surveys were conducted to
find malaria indicators. In 2007 Malaria Indicator Survey (MIS) was conducted
in Ethiopia between September and December 2007 by Ministry of Health of
Ethiopia in collaboration with CDC and USAID. The protocol for the MIS
followed Roll Back Malaria Monitoring and Evaluation group (RBM MERG)
guidelines (RBMM, 2005) with a few local modifications.

This survey was nationally representative. The objective was to determine
parasite and anemia prevalence in the population at risk and to assess
coverage, use and access to scaled-up malaria prevention and control
interventions. In the survey, a two-stage random cluster sample of 7,621
households in 319 census enumeration areas (EAs; comprising approximately
200 households) was selected as primary sampling units, stratified by several
domains, including altitude (i.e. less than 1,500 meters vs. between 1,500 and
2,500 meters) and degree of urbanization. The MIS household and women’s
questionnaires were adapted to the local context, and two types of
questionnaires were used. The questionnaires included two structured, pre-
coded ones with both closed and open ended questions: (i) a household
questionnaire and (ii) a women’s questionnaire. Both were based on Roll Back
Malaria Monitoring and Evaluation group (RBM MERG) MIS Questionnaires

(RBMM, 2005), modified to local conditions. The questionnaires were translated



and printed in Amharic, Afaan Oromoo and Tigrigna languages and field-tested
in non-survey EAs to determine the validity of the pre-coded answers (FMH,
2008).

The household questionnaire was administered to the household head or
another adult if the household head was absent or unable to respond for any
reason, and it elicited the following data: socio-demographic information and
listing of household members; house construction materials and design;
ownership of durable assets; availability, source of origin, type, condition and
use of household mosquito net(s); and reported status of indoor residual
spraying (IRS). The purpose of the household questionnaire was to identify
children less than six years of age for specimen collection as well as women
aged 15-49 years who were eligible to answer the women’s questionnaire. The
women’s questionnaire was administered to these women as identified from the
household questionnaire and it helped collected the following data: educational
level; reproduction, birth history, and current pregnancy status; knowledge,
attitudes and practices (KAP) on malaria preventive and curative aspects;
reported history of fever among children less than five years of age in the
previous two weeks; and reported treatment seeking behaviour for children less
than five years of age with fever. In addition to the household and women
questionnaires, blood samples were taken from all children less than five years
old and from all household members in every fourth household. All children
less than five years of age were included to ensure that no children under that
age were missed during the survey, and only data for children under the same
age are presented. The malaria diagnostic tests included rapid diagnostic tests
(RDTSs), blood slides for microscopic examination and haemoglobin level testing.
RDTs were used in the survey to offer immediate treatment to individuals with
a positive test. The RDT used (ParaScreen®, Zephyr Biomedical Systems, India)
is a HRP2 /pLDH-based antigen test detecting both Plasmodium falciparum and
other Plasmodium spp (Graves et al., 2009).



After the collection of data and the release of the preliminary report, additional
analyses were done based on the 2007 MIS survey by different researchers.
(Jima et al., 2010) studied the coverage and use of major malaria prevention
and control interventions of the Malaria Indicator Survey 2007 in Ethiopia. In
their study, they found that since mid-2005, the Ethiopian national malaria
control programme has considerably scaled-up its malaria prevention and
control interventions, demonstrating the impact of strong political will and a
committed partnership. Further, survey showed that efforts will have to be
made to increase intervention access and use malaria intervention methods. To
achieve the targets of coverage and use of malaria interventions, efforts have to
be made to sustain and expand malaria intervention coverage and increase
intervention access and use, and with strong involvement of the community.
Based on these actions, Ethiopia expects to achieve its targets in terms of
coverage and uptake of interventions in the coming years and move towards

eliminating malaria (Shargie et al., 2010).

Besides the 2007 Malaria Indicator Survey (MIS) of Ethiopia, The Carter Center
conducted a baseline household cluster survey in the Amhara, Oromiya and
Southern Nations, Nationalities and Peoples’ (SNNP) regions of Ethiopia
between December 2006 and January 2007 during the end of the malaria
season. The purpose was to obtain baseline information before large scale
distribution of long-lasting insecticidal nets (LLINs) in early to mid-2007 and
implementation of other integrated programs for prevention of malaria (Shargie
et al., 2008). A questionnaire was developed as a modification of the survey
household questionnaire which had two parts; the household interview, and
malaria parasite form. The MIS was modified to survey each room in the house
separately to ensure that all nets were in place, and to ascertain the density of
sleepers per room as well as the number of sleeping rooms in (or outside) each
house. This survey included peripheral blood microscopy and rapid diagnostic

tests (RDT). The persons sleeping under each net were listed.



Based on the survey, routine surveillance data on malaria for the survey time
period was obtained for comparison with prevalence survey results (Shargie et
al., 2008). Shargie et al. (2008) found out that based on the ownership of nets,
there were nearly a ten-fold increase as compared to the results of the 2005
Ethiopia Demographic and Health Survey (CSA, 2006) which was fewer than
5% of households in the Oromiya and SNNP regions. The results of the survey
as well as the routine surveillance data demonstrated that malaria continues to
be a significant public health challenge in these regions. However, the problem
is more prevalent in SNNP than in Oromiya region. On the other hand, a study
was conducted to estimate the prevalence of malaria parasites in Ambhara,
Oromiya, and Southern Nations, Nationalities and Peoples' (SNNP) regions of
Ethiopia using the base line survey. Microscopy and RDT were used to
investigate agreement between microscopy and RDT under field conditions. The
samples were collected by taking fingerpick blood samples from all persons
living in even-numbered households. The blood samples were tested using two
methods: light microscopy of Giemsa-stained blood slides; and RDT (Tekola et
al., 2008). From this study, they found that well conducted blood slide
microscopy for malaria diagnosis for population based surveys remains the
preferred option. The level of the agreement between RDT and light microscopy
for malaria diagnosis warrants further investigations in clinical facilities in the

Ethiopian context.

In addition to the two malaria indicator surveys, different surveys were
conducted in different parts of Ethiopia. In 2003 (Peterson et al., 2009) studied
the individual and household level factors associated with malaria incidence in
a highland region of Ethiopia. The study was conducted in an area of the city of
Adama (formerly Nazareth) located 120 km southeast of Addis Ababa. Data on
incident malaria infections were obtained by assigning a unique study
identification number to study households from August 1 to November 30,

2003. The cards were given to the heads of the households who instructed to

7



present the card on all visits to the Adama Malaria Laboratory. Using this
method, the data was collected and analysed first by examining the univariate
associations between malaria incidence and other factors by regressing a single
factor against individual malaria counts. Moreover, multivariate modelling was
also used based on the statistical performance of factors in univariate analysis,

and correlations among the factors.

The above study’s strengths lie in its assessment of a wide range of both
individual and household factors with regard to malaria risk, and the use of
multilevel modelling. The study furthermore identified important malaria risk
factors in a highland urban setting in Africa under epidemic conditions. The
result showed that house distance to the major vector-breeding site was
important in determining malaria risk. It suggests that vector control strategies
targeted at such sites could greatly reduce the malaria burden in urban

communities.

Other research on malaria epidemics and interventions from 1999 - 2004 was
conducted in Kenya, Brundi, Southern Sudan and Ethiopia (Checchi et al.,
2006). The researchers reviewed Medecins Sans Frontiers (MSF) program
reports and used the available morbidity, mortality, diagnostic and treatment
data from five interventions. These studies found that all four countries are
moving to Artemisinin-based combination therapy (ACT) for outpatient
treatment. They also suggested that further research is needed on methods to
estimate needs (incidence) and coverage rapidly; and on strategies to expand

treatment access efficiently.

To introduce the most advanced level of care for people with malaria infections
in the health care system, it is important to scale up the malaria treatment
programmes. This process requires continuous monitoring and counselling of
patients in order to optimize medication benefits. A recent upsurge of malaria
in endemic-disease areas with explosive epidemics in many parts of Africa is
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probably caused by many factors, including rapidly spreading resistance to
antimalarial drugs, climatic changes, and population movements. Control
efforts have been piecemeal and not coordinated. Strategies for control should
have a solid research base both for developing antimalarial drugs and vaccines
and for better understanding the pathogenesis, vector dynamics, epidemiology,
and socio-economic aspects of the disease. Furthermore, for most countries in
Africa, the costs of treatment programmes are enormous. Therefore, the
outcome of this study not only will provide clinicians with the factors
associated with malaria infections, but also provide between high risk patient
differences on malaria prevention methods over time. That is, understanding
specific barriers to medication and prevention of malaria for individual patients
will be valuable in the development and implementation of evidence based
interventions targeted at individual patients. The results can provide
governmental and non-governmental organizations appropriate statistical
models to analyze malaria indicator data in order to monitor malaria problems
overtime. In general, after identifying a good-fitting, realistic model, the
findings can be used to project the short-term future of the malaria epidemic,

with the assumption that all parameter values and conditions remain constant.

In conclusion, the results of the studies conducted so far demonstrated that
malaria continues to be a major cause of ill-health in Ethiopia. In addition,
population movements contributed to the reappearance of the disease because
most of population movements are from malaria free to highly malarious areas
(Nathaniel, 2003). Therefore, the review section of this thesis identified the
need for an in-depth study to identify the socio- economic, demographic and

geographic factors thus leading to the reduction of the risk of malaria.

The current study will analyze the malaria indicator survey data by employing
different statistical modelling approaches in order to determine the levels of

malaria overtime. Factors that affect malaria treatment at the overall level, as



well as individual level, will be sought. In general, a good-fitting, realistic
model will be identified to project the short term future of the malaria
epidemics. Hence, the findings will be valuable in tracking malaria patients and
epidemics, identifying and testing different statistical methodologies which
could be very helpful to critically understand binary response analyses and

make recommendations on the appropriate techniques for further use.
To achieve this objective, the following steps were used

e The explanatory analysis was initially performed to identify the behaviour

of the data.

The relationship among malaria RDT result, socio-economic, demographic
and geographic variables was investigated using multiple correspondence

analysis.

Malaria RDT result was obtained from complex sample survey. Therefore,

to account for the survey design effect, the survey logistics method was

used to investigate the effect of socio-economic, demographic and
geographic factors on RDT result.

e To account for variability between the Probabilistic Sampling Units (PSU)
which is kebele (smallest administrative unit in Ethiopia), generalized
linear mixed model was used to fit the malaria RDT result data.

e The distribution of malaria is non-random across a landscape in areas of

higher or lower transmission intensity and malaria risk. Spatial statistics

analysis was performed to account for spatial autocorrelation and to
check whether surveys that are near in space have similar malaria

prevalence with the surveys that are far apart.

The joint model under the generalized linear mixed model was used to
investigate the joint effect of three predictor variables on malaria RDT

result, use of mosquito nets and use of indoor residual spray (IRS) in the
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last twelve months with socio-economic, demographic and geographic
factors.

e Semiparametric model (GAMM) was applied to model the effect of age,
family size, number of rooms per person, number of nets per person,
altitude and number of months the room sprayed with indoor residual
spray in the last twelve months nonparametrically while the other
covariates (socio-economic, demographic and geographic factors) remain
parametric.

e Rasch model was employed to test and investigate how well the observed
malaria RDT result, use of mosquito nets and use of indoor residual spray

data fit the expectations of the model.

In general, the study aims to investigate the different statistical approaches
that are appropriate to model Malaria Indicator Survey (MIS) data. This is with
the view of determining the levels of malaria across socio-economic,
demographic and geographic factors that influence the malaria RDT result.
Specifically, the purpose of this research is to assess the risk of malaria
through the collection of household level baseline data, including housing
construction, social-economic status, availability of latrines and water,
altitude, coverage of spraying anti-mosquito and use of nets so as to establish a
model which estimates the prevalence of malaria in all age groups through a
malaria parasite prevalence survey. In addition, this study looks at the factors
such as a change in socio-demographic characteristics, use of nets, public

awareness or government-sponsored campaigns etc.

The thesis is organized as follows. The first chapter presents the introduction.
In Chapter 2, a full description of the malaria Rapid Diagnosis Test (RDT) data
is given with a further exploratory analysis of the data. The theory of
correspondence analysis and its application to investigate the association

between malaria RDT result, socio-economic, demographic and geographic
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factors are described in Chapter 3. Chapter 4 explores the socio-economic,
demographic and geographic factors affecting malaria RDT wusing the
generalized linear models, specifically, survey logistic method. Chapter 5
provides a comprehensive review of the generalized linear mixed models
(GLMMs) including random effects models. Moreover, GLMMs are fitted to the
malaria RDT data to explore socio-economic, demographic and geographic
factors. In Chapter 6 a review and fitting of spatial statistics models to malaria
RDT data are presented. Review and fitting of joint modelling of malaria RDT
result and use of mosquito nets; and malaria RDT result and use of indoor
residual spray (IRS) in the last twelve months are examined in Chapter 7.
Chapter 8 looks at the semiparametric approaches, specifically generalized
additive mixed models (GAMMs) while Chapter 9 presents the Rasch model
analysis to malaria RDT result, use of indoor residual spray and use of
mosquito nets. Finally, in Chapter 10 the discussions and conclusions as well
as comparison of different models and possibilities for future research are

presented.
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Chapter 2
The data

Before getting into complex data analysis, it is of great importance to examine
and get a general understanding of the data under consideration. It is this
initial examination of the data that helps in determining the possible statistical
techniques that could be applied to the data. The data used in this study is
secondary data from The Carter Center (TCC) for the Malaria programme in
Ethiopia. The Center is working in Ethiopia on two integrated disease control
projects. These projects are malaria and onchocerciasis (MAONCHO) program;
and Malaria and trachoma programmes. The Carter Center has committed
itself to provide sufficient long-lasting insecticidal nets to most part of the
country. In addition to the purchase and procurement of the requested nets,
TCC is also helping to distribute them within and outside its current areas of
operation in the regions of Amhara, Oromiya and the Southern Nations,
Nationalities and Peoples Region (SNNPR). In order for TCC to assist the
Federal Ministry of Health of Ethiopia in the assessment and evaluation of its
malaria control, the Center needed to conduct a baseline household survey of
net coverage and use as well as malaria prevalence within these three regions.
The objective of the cluster survey was to assess the risk of malaria through
the collection of household level baseline data for malaria risk indicators. The
data included, housing construction, socio-economic status, availability of
latrines and water, altitude, coverage of spraying and use of nets, indoor
residual spraying, and estimation the prevalence of malaria in all age groups

through a malaria parasite prevalence survey.

In order to achieve the above objective, TCC conducted a baseline household
cluster malaria survey in Amhara, Oromiya and the Southern Nations and
Nationalities People’s (SNNP) regions of Ethiopia from December 2006 to

January 2007. A questionnaire was developed as a modification of the Malaria
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Indicator Survey (MIS) Household Questionnaire. The questionnaire had two
parts: the household interview and malaria parasite form. The MIS was
modified to survey each room. Furthermore, each room in the house was listed

separately.

For the baseline household cluster malaria survey, which was conducted by
TCC, a multi-stage cluster random sampling was used. By assuming the lowest
measurement of prevalence malaria indicator, the sample size was estimated.
Assuming prevalence of malaria to be the lowest indicator measured, the
prevalence in the population was estimated to be 8%. In Amhara region, each
zone was regarded as a separate domain; while in Oromiya and SNNPR, the
community-directed treatment with iwermectin (CDTI) areas combined were
taken as one domain. Furthermore, to estimate the required sample size, the

following formula was used.

n=Z7?p(-p)/e’

where p is the expected malaria prevalence (p = 0.08), Z is level of significance
95% = total value = 1.96 (value in the standard normal distribution) and e is

acceptance error (0.02).

In addition to these values, a 10% non-response rate was factored into the
calculation of the sample size. For TCC baseline household cluster malaria
survey in Amhara, Oromiya and the Southern Nations and Nationalities
People’s (SNNP) regions of Ethiopia, which was conducted in 2007, the design
was a population-based household cluster survey. Based on these clusters,
Zoneal-level estimates of indicators were obtained for Amhara region, and sub-
regional estimates were taken for Oromiya and SNNPR. All ten Amhara zones
were surveyed as separate domains, with sixteen clusters in each zone (total
160 clusters). Bahir Dar town and two woredas with less than 10% of the

population living in malarious areas were excluded. In Oromiya and SNNPR,

14



sampling was done directly at the kebele level. From the total number of
individuals who participated in the survey, 7,745 in Amhara, 1,996 in Oromiya
and 1,860 in SNNP from all age groups were tested using RDT (The Carter
Center (TCC), 2007).

Further studies on the sampling procedure for the survey were conducted by
different researchers (Emerson et al., 2008, Shargie et al., 2008). The sampling
design was employed in order to select households within each first-stage
cluster, or Kebele (smallest administrative unit in Ethiopia). From the 224
selected Kebeles, 25 households were chosen, from which even-numbered
households were selected for the malaria Rapid Diagnostic Tests (RDT). All
individuals in these twelve households were eligible for individual interviews.
Furthermore, each room in the house was listed separately. By using the
mosquito nets as a guide, it was possible to determine the number of persons
sleeping in each room. This information was useful in determining the number
of sleeping rooms both within and outside the house. In addition to the number
of rooms and number of nets, the persons sleeping under each net were listed.
The sampled areas and domains as well as the survey sites are presented in

Figure 2.1.

Malaria parasite testing was performed on consenting residents. The blood
sample subjected to the malaria Rapid Diagnostic Test was collected by taking
finger prick blood samples from participants. The Rapid Diagnostic Test used
was ParaScreen which is capable of detecting malaria infection with high
degree of sensitivity. The test uses approximately 5 ul of blood and is readable
after fifteen minutes following the manufacturer’s guidelines. Participants with
positive rapid tests were immediately offered treatment according to national

guidelines.
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Figure 2. 1: Map of Ethiopia showing the surveyed households

2.1 Variables of interest

The variables used for the analyses in this study included malaria rapid
diagnosis test, socio-economic, demographic and geographic variables. Malaria
rapid diagnosis test was collected from consenting household members. The

response variable and the covariates are given as follows.

Response variable: The outcome of interest is the RDT result. RDTs assist in
the diagnosis of malaria by detecting evidence of malaria parasites in human
blood and are an alternative to diagnosis based on clinical grounds or
microscopy, particularly where good quality microscopy services cannot be
readily provided. Thus, the response variable was binary, indicating that either

a person was positive or not positive.

Independent variables: The independent (predictor) variables consisted of
baseline socio-economic, demographic and geographic variables, which were

collected from each household. The socio-economic variables were the
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following: main source of drinking water, time taken to collect water, toilet
facilities, availability of electricity, access to radio and television, total number
of rooms, main construction material of the rooms’ walls, main construction
material of the room’s roof and main construction material of the room’s floor,
incidence in the past twelve months of indoor residual spray; use of mosquito
nets and total number of nets. Geographic variables were region and altitude,
and demographic variables were gender, age and family size. Of these variables,
age and sex were collected at the individual level, while altitude, main source of
drinking water, time taken to collect water, toilet facilities, availability of
electricity, radio, television, total number of rooms, main construction material
of walls, roof and floor, incidence of indoor residual spraying and use of
mosquito nets were all collected at the household level. The levels and coding of

the categorical variables are given in Table 2.1.

Table 2. 1: Table of variables
Variables

Levels and coding
1 = Amhara , 2 = Oromiya, 3 = SNNP
1= Unprotected, 2 = protected,
3 = Tap water
1=<30 minutes, 2 = 30 to 40 minutes,
3 =40 - 90 minutes, 4 = >90 minutes
1 = No facility, 2 = pit latrine,
3 = toilet with flush

Region

Main source of drinking water

Time to collect water

Toilet facilities

Availability of electricity

1 =yes, 2 =no

Availability of radio

1 =yes, 2 =no

Availability of television

1 =yes, 2 =no

Main material of the room's wall

1 = cement block,
= mud block/stick/wood,
corrugated metal

Main material of the room's roof

thatch, 2 = stick and mud,
corrugate

Main material of the room's floor

earth/Local dung plaster,
wood, 3 = cement

Spraying of indoor residual spray
in the past twelve months

=yes, 2 = no

Use of mosquito nets

= yes, 2 =no

Rapid Diagnosis test (RDT)

2
3
1
3
1
2
1
1
0

= Negative, 1= Positive
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2.2 Baseline characteristics of the study population

The data analyzed consisted of malaria rapid diagnosis tests of respondents in
the rural parts of Amhara, Oromiya and SNNP regions of Ethiopia. During the
study period, 5,708 households that were located in 224 clusters, covered in
the survey. From the total 5,708 households, Amhara, Oromiya and SNNP
regions covered 4,101 (71.85%), 809 (14.17%) and 798 (13.98%) households
respectively. The distribution of toilet facility, source of drinking water and time
to collect water is presented in Table 2.2. The table shows that in Amhara and
Oromiya regions, the majority of people most frequently used unprotected
water supplies with percentage equal to 66.30% and 79.70% respectively. In
contrast to these regions, in SNNP, the use of unprotected water was found to
be slightly over half (56%). On the other hand, 25.4% of the people in SNNP
region used protected water followed by those in Amhara (17.8%) and Oromiya
(8.8%) regions. From the total households, 18.6% in SNNP, 16% in Amhara
and 11.5% in Oromiya regions use tap water for drinking. Unprotected water
includes, unprotected spring, unprotected dug well (use bucket and rope) and
surface water (river/dam/lake/pond/stream). Similarly, protected water
includes, capped spring, protected dug well (use hand pump), tube well or
borehole and cart with small Tank. Furthermore, the tap water also includes

public tap or standpipe, piped into yard and piped into dwelling.

The total time taken to collect water is also presented in Table 2.2. Based on
the result, more households in Amhara region (72.3%) than in the other two
regions (62.6 — 64.6%) had to travel less than 30 minutes on average to get
their water. Furthermore, 8.6% of the households in Oromiya region travel
more than 90 minutes to collect water. But, in Amhara and SNNP regions 2.9%
and 3.6% of their residents respectively took more than 90 minutes to collect

water.
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Table 2. 2: Distribution of toilet facility, source of drinking water and
time to collect water by region

Socio-economic variables Reg101:1
Ambhara Oromiya SNNPR

Toilet facility

No facility 73.40% 72.60% 40.90%

Pit latrine 26.60% 26.00% 59.10%

Toilet with flush 0.00% 1.40% 0.00%
Source of drinking water

Unprotected water 66.30% 79.70% 56.00%

Protected water 17.80% 8.80% 25.40%

Tap water 16.00% 11.50% 18.60%
Time to get water

Less than 30 minute 72.30% 62.60% 64.60%

Between 30 - 90 minutes 24.90% 28.80% 31.80%

Greater than 90 minutes 2.90% 8.60% 3.60%

The great majority of households, namely 73.4% in Amhara, 72.6% in Oromiya
and 40.9% in SNNP regions had no access to toilet facility (Table 2.2). Again,
Amhara and Oromiya lagged behind SNNP in the use of pit latrine includes pit
latrine with no cement slab, pit latrine with slab and pit latrine with cement
slab and vent pipe toilet. Table 2.2 shows that more than half of houses in

SNNP (59.1%) having a latrine toilet.

Furthermore, the distribution of positive RDT results by toilet facility, source of
drinking water and distance to get water is presented in Figure 2.2. In the
figure, it is clear that respondents with no toilet facility (11%) had more positive
RDT results, followed by pit latrine (5.9%) and toilet with flush (4.3%).
Similarly, households who travelled long distance (5.8%) have a high
percentage of positive RDT results than those travelling shorter distances.
Persons who have unprotected water (6.5%) as source of drinking water have
greater chance to be RDT positive compared to those using protected and tap

waters.
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Figure 2. 2: Distribution of positive RDT result by toilet facility, source of
drinking water and distance to get water

More than 90% of households in all regions have house walls made of wood.

Similarly, more than 90% of the households for all regions have earth or local

dung floor. However, the roof material varied across regions, with the majority

of houses in Oromiya (67.3%) and SNNP (74%) regions having corrugated iron
roofs compared to Amhara (39.8%). On the other hand, where 59.3% had
thatch roofs in Amhara, followed by 23.1% in Oromiya and 0.5% in the SNNP

region.

Table 2. 3: Ditribution of material for house construction by region

. . . Region
Socio-economic variables Amhara Oro%n iva SNNP

Wall material

Cement block 0.3% 2.9% 0.2%

Mud block/stick/wood 99.6% 90.1% 99.8%

Corrugated metal 1% 7.0% 0.0%
Roof material

Thatch 59.3% 23.1% 0.5%

Stick and mud 0.9% 9.6% 25.5%

Corrugate 39.8% 67.3% 74.0%
Floor material

Earth/Local dung plaster 96.2% 92.6% | 96.98%

Wood 2.0% 6.9% 1.02%

Cement 1.8% .5% 2.0%
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The distribution of positive RDT result by wall, roof and floor materials of the
house is presented in Figure 2.3. The figure shows that the percentage of
positive RDT results in cemented floors was 0.9%, 7.7% in wooden floor and
5.9% in earth or local dung plastered. On the other hand, the percentage of
RDT result in corrugate roof was 5.4%, 17.3% in stick and mud roof and 5.8%
in thatch roofs. The percentage of positive RDT in corrugated metal wall was

found to be 5.9%, 7.3% in mud/stick/wood wall and 3.2% in cement block

(Figure 2.3).
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Figure 2. 3: Distribution of positive RDT result by wall, roof and floor
materials of the house

In the survey, representative household heads were asked if they had access to
radio, television and electricity. From the result it was found that electricity
and televisions were very rare in the surveyed households. In Amhara, Oromiya
and SNNP regions 94.3%, 97.9% and 94.1% of the households did not have
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access to electricity respectively. Similarly, more than 97% of the households in
the three regions have no television. Unlike television access, radios were more
common. The data show that 75.2%, 62.9% and 58.7% of the households in
Amhara, Oromiya and SNNP regions have access to radio respectively (Table

2.4).

Table 2. 4: Ditribution of availability of radio, television and electricity by

region
Socio-economic variables Region
Ambhara Oromiya SNNP
Availability of radio
Yes 24.80 37.10 41.30
No 75.20 62.90 58.70
Availability of Television
Yes 1.20 2.47 0.74
No 98.80 97.53 99.26
Availability of electricity
Yes 5.70 2.10 5.90
No 94.30 97.90 94.10

Use of mosquito nets and indoor residual spraying drugs in the last twelve
months were included in the survey. The use of mosquito nets was derived by
direct questioning about who slept in each net in the household, and who slept
without a net. The results show that 38.3% in Amhara, 43.7% in oromiya and
48.2% in SNNP regions use mosquito nets. Besides the use of mosquito nets,
information on the use of indoor residual spraying in the last twelve months
was collected. The result revels that those households who live in SNNP region
use more indoor residual spraying (30.9%) compared to Amhara (29.6%) and

Oromiya (27.4%) regions (Figure 2.4).
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Figure 2. 4: Distribution of use of mosquito nets and indoor residual
spraying by RDT result

Figure 2.5 shows the distribution of age group and family size by malaria RDT

result. Most houses, i.e., age group 31-45 accounts for 72.9% of all positive

malaria RDTs and 72.6% of all negative malaria RDTs. Similarly, family size 5—

10 persons accounts for 58.7% of all positive malaria RDTs and 53.2% of all

negative malaria RDTs.
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Figure 2. 5: Distribution of age group and family size by RDT result
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Table 2.5 shows descriptive characteristics of total rooms and total number of
persons in the household. Most houses in Amhara (90.25%), Oromiya (71.2%)
and SNNP (74.56%) regions had only one sleeping room. A very small
proportion of people (<1%) reported having more than three sleeping rooms.
Furthermore, the average number of rooms in Amhara, Oromiya and SNNP
regions was found to be 1.15, 1.3 and 1.3 respectively. Furthermore, the
average number of persons per household ranged from 4.7 to 5.6 by region and
was 4.9 overall. In Amhara the median household size was five whereas in both

Oromiya and SNNPR it was six persons.

Table 2. 5: Distribution of total number of rooms and total number of
members of the household by region

Region
Amhara Oromiya SNNP
Total Number of Rooms
1 90.25% 71.20% 74.56%
2 8.83% 22.62% 21.93%
3 0.85% 4.70% 3.01%
4 0.05% 0.99% 0.25%
5+ 0.02% 0.49% 0.25%
Family size
1 2.34% 1.36% 0.75%
2 10.59% 6.67% 4.01%
3 16.90% 13.10% 12.91%
4 17.32% 14.46% 15.91%
5 17.88% 16.69% 20.05%
6 15.22% 20.40% 20.18%
7 9.93% 10.75% 11.15%
8 5.27% 6.67% 5.64%
9+ 4.56% 9.89% 9.40%

The age and gender-specific malaria prevalence, by region is shown in Table
2.6. This table demonstrates that there is no significant difference in
prevalence by age group as well as by region. Moreover, the pattern of malaria
prevalence by age is not homogeneous across the study regions. In addition,
Table 2.6 shows that there is no difference in prevalence between males 4.05%

and females 4.55%.
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Table 2. 6: Malaria prevalence by region, age group and gender

Ase srou Male Female Total
£€ ErOUP Mpested | tive | % | Tested | +ive| % | Tested | +ive | %
Amhara
<5 643 | 28 | 4.35 603 | 31 | 5.14 1,246 | 59 4.74
5-14 1,144 | 43 | 3.76 | 1,240| 49 | 3.95 2,384 | 92 3.86
15-49 1,316 | 55 | 4.18 | 1,998 | 94 | 4.70 3,314 | 149 4.50
>=50 426 | 17 | 3.99 375| 18 | 4.80 801 | 35 4.37
Total 3529 | 143 | 4.05| 4216 | 192 | 4.55| 7745 | 335 4.33
Oromiya
<5 225 1 0.44 213| 2 |0.94 438 | 3 0.68
5-14 293 1 0.34 368 | 4 1.09 661 5 0.76
15-49 342 | 2 0.58 420| 4 | 0.95 762 6 0.79
>=50 66| 2 3.03 69| 0 |0.00 135 2 1.48
Total 926 6 /0.65| 1,070 | 10 | 0.93 | 1,996 16 0.80
SNNPR
<5 142 11 | 7.75 134| 6 |4.48 276 | 17 6.16
5-14 346 | 23 | 6.65 326 | 20 | 6.13 672 | 43 6.40
15-49 332 | 16 | 4.82 443 | 20 | 4.51 775 | 36 4.65
>=50 78| 5 6.41 59| 4 |6.78 137 9 6.57
Total 898 55 | 6.12| 962 50 |5.20| 1,860 | 105 5.65
Three regions
<5 1,010 | 40 | 3.96 950 | 39 |4.11 1,960 | 79 4.03
5-14 1,783 | 67 |3.76 | 1,934 | 73 | 3.77 3,717 | 140 3.77
15-49 1,990| 73 |3.67| 2,861 | 118 | 4.12 4,851 | 191 3.94
>=50 570 24 | 4.21 503 | 22 |4.37 1,073 | 46 4.29
Total 5353 | 204 | 3.81 | 6,248 | 252 | 4.03 | 11,601 | 456 3.93

The prevalence of malaria by altitude is given in Tables 2.7. For each surveyed
household the altitude was determined at the time of the survey. Based on the
values of altitude for the households, Amhara had the greatest range of
altitudes. For Oromiya and SNNPR the altitude for households is below 1000
meters or above 2500 meters. The majority of households (93.4%) in all regions
were found at altitudes between 1000 to 2500 meters. Moreover, there were a

significant number of malaria cases detected at altitudes above 2000 meters.

Unlike Oromiya and SNNP regions, there was an expected decline in prevalence
by altitude up to 3000 meters in Amhara (Table 2.7). But, the prevalence of
malaria above 2500 meters was found to be 8.3%. For persons who lived above

3000 meters, the prevalence of malaria was 1.33%. No positive malaria cases
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were detected above 2000 meters for Oromiya region (Table 2.7), but in SNNPR
there was a high prevalence of 72.6% for households who lived at 1500-2000

meters.

Table 2. 7: Malaria prevalence by altitude and region

. Amhara Oromiya SNNP Total
Altitude class
Tested % Tested % | Tested % Tested %

<=1000m 125 1.61 0 0.00 0 0.00 125 1.08
1000-1500m 859 11.09 343 17.18 327 17.58 | 1529 | 13.18
1500-2000m | 2973 |38.39 | 1316 |[65.93| 1351 |72.63 | 5640 | 48.62
2000-2500m | 3142 | 40.57 337 16.88 182 9.78 3661 | 31.56
2500-3000m 543 7.01 0 0.00 0 0.00 543 4.68
>3000m 103 1.33 0 0.00 0 0.00 103 0.89
Total 7745 1996 1860 11601

According to the result in Figure 2.6, there was a declining trend in percentage

of malaria prevalence from 48.6% at 1500-2000m to 31.6% at 2000-2500m.

Highland or highland fringe areas, mainly those at 1000 — 2000 meters are

often described as the limit of transmission of malaria in Ethiopia. But, there

are some cases found above 2000 meters. These cases may have resulted from

local epidemics or from movement of people from lower altitudes.

B <=1000m

B 1000-1500m [¥1500-2000m
B2000-2500m E2500-3000m E>3000m

Figure 2. 6: Distribution of altitude by positive malaria RDT result
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2.3 Summary

An integrated malaria survey was conducted in 224 clusters covering 5,708
households in three regions of Ethiopia between December 2006 and early
February 2007, at the end of the peak malaria season. Blood slides from 9,352
people of all ages living in even numbered households were examined for
malaria parasites. Net usage was assessed from all households included in the
survey. The maximum number of nets owned was five and the median was
zero. Moreover, the maximum rooms in the house were found to be five.
Furthermore, it can be seen that there was no difference in net use by gender.
There was a declining trend of prevalence of malaria by altitude. The majority
of the households used unprotected water. More than half of the households in
the survey areas had no access to toilet facility and the majority of the
households were constructed with wood or stick wall, and their floors were
mainly earth. Roofs were mainly made of thatch in Amhara, but of corrugated
iron in Oromiya and SNNP regions. Very low percentage of households had

electricity and television, while quarter (25%) of the households had a radio.

The study of assessment of variables by multiple correspondence analysis
technique allowed the analysis of the relationship between the socio-economic,
demographic, geographic and malaria RDT result factors. The use of the
multiple correspondence techniques in comparison to other advanced
statistical results was made both analytically and empirically across the
geographic regions. The advantage of applying multiple correspondence
analysis is that it gives more detailed information about the relationship
between different variables. Moreover, the results will be easier to interpret.
The application of multiple correspondence analysis with detailed theoretical

background will be discussed in the next chapter.
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Chapter 3

Correspondence analysis

3.1 Introduction

The cross-tabulation of categorical data is perhaps the most commonly
encountered and simple form of analysis in research. Therefore, ordering
things in time has been the interest of many researchers. Based on this fact,
correspondence analysis (CA) is one of a statistical visualization methods used
to analyzing data in contingency tables. This method first developed in France
(Benzécri, 1973, Greenacre, 1984). Different authors proposed this method
under various names. These method names include the Dutch Homeneity
Analysis (Gifi, 1990), the Japanese Qualification Method (Hayashi, 1954), the
Canadian Dual Scaling (Nishisato, 1980). These analogous have different
theoretical foundations but all methods lead to equivalent solutions (Greenacre
and Blasius, 2006, Tenenhaus and Young, 1985). Correspondence analysis is
thought of as a principal component method for normal, contingency table
data. It can be used to analyze cases-by-variable-categories matrices of non-
negative data. Correspondence analysis is also a multivariate descriptive data
analytic technique. Even the most commonly used statistics for simplification
of data may not be adequate for description or understanding of the data. The
correspondence analysis results provide information which are similar to those
produced by principal component or factor analysis (Hill, 1974). Using this
result, it is possible to explore the structure of the categorical variables
included in the table. The simplified form data provides useful information
about the data (Van der Heijden and de Leeuw, 1985, Hair et al., 1995). The
relationship of the categories of rows and columns of the data can be
represented using correspondence analysis graphs. The graphical
representation of the relationships between the row and column categories is in

the same space which is also produced using correspondence analysis. In
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general, correspondence analysis simplifies complex data and provides a
detailed description of practically every bit of information in the data, yielding a
simple, yet exhaustive analysis (Greenacre and Blasius, 2006, Johnson and

Wichern, 2007).

Correspondence analysis has several features that distinguish it from other
techniques of data analysis. The multivariate treatment of the data through
multiple categorical variables is an important feature of correspondence
analysis. This multivariate nature has advantage to reveal relationships which
could occur during a series of pair wise comparisons of variable (Tian et al.,
1993). Correspondence analysis works effectively for a large data matrix, if the
variables are homogeneous, and the data matrix structure is either unknown
or poorly understood. There are some advantages of correspondence analysis
over other methods. This advantage is related to joint graphical displays. This
graphical display produces two dual displays whose row and column
geometries have similar interpretations. This facilitates the analysis to detect
different relationships. In other multivariate approaches for graphical data

representation, this duality is not present (Askell-Williams and Lawson, 2004).

Multiple correspondence analysis (MCA) which is part of a family of descriptive
methods is an extension of correspondence analysis (CA) and allows
investigating the pattern of relationships of several categorical dependent
variables. It is the multivariate extension of CA to analyze tables containing
three or more variables. In addition to this, MCA can considered as a
generalization of principal component analysis for categorical variables which

reveal patterning in complex data sets.

MCA helps to describe patterns of relationships distinctively using geometrical
methods by locating each variable/unit of analysis as a point in a low-
dimensional space. MCA is useful to map both variables and individuals, so

allowing the construction of complex visual maps whose structuring can be
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interpreted. Moreover, this technique offers the potential of linking both

variable centred and case centred approaches.

The rest of the chapter is organized as follows. An overview of the theory of
MCA is presented in sections 3.2. Multiple correspondence analysis (MCA) is
fitted to malaria RDT result data in section 3.3. Summary and discussion of

this chapter is given in section 3.4.

3.2 Review of Multiple Correspondence Analysis (MCA)

Suppose there are n observations on p categorical variables. Assume gq;
different values for variable j. Next define a matrix, G; which is n X q; matrix.
This matrix is known as indicator matrix. The n X ¢ matrix G, with g the sum of

q; can be obtained by concatenating the G;’s (Greenacre, 1984). In general,

MCA is defined as the application of weighted PCA to the indicator matrix G
(Benzécri, 1973). Furthermore, G is divided by its grand total np to obtain the

. 1 . . .
correspondence matrix F = 56, ie., 15F1, =1, where 1; is an ix 1 vector of

ones. The vectors r = F1; and ¢ = F 1, are the row and column marginals

respectively. These marginals are the vectors of row and column masses.

Suppose the diagonal matrices of the masses are defined as D, = diag(r) and

D, = diag(c). Note that, the i** element of r is f; = % and the s element of c is

fs = :—; where ng is the frequency of category s (Greenacre and Blasius, 2006).

MCA can be defined as the application of PCA to the centered matrix
D;Y(F — rc*) with distances between profiles given by the chi-squared metric
defined by D;!. The n projected coordinate of the row profiles on the principal
axes are called row principal coordinates. The n X k matrix X of row principal

coordinates is defined by

X = D;'*Fv,, (3.1)
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where F =D, 1 *(F —rct)Dgl/ >and V, is the gxk matrix of eigenvectors
corresponding to the k largest eigenvalues A,,...,4; of the matrix F'F. The
projected row profiles can be plotted in the different planes defined by these

principal axes called row principal planes (Greenacre and Blasius, 2006).

The categories for column profile can be described by the column profiles. The
value can be calculated by dividing the columns of F by their column
marginals. Interchanging rows with columns and all associated entities can be
used for the dual analysis of columns profiles. This is done by transposing the

matrix F and repeating all the steps. The metrics used to define the principal

axes (weighted PCA) of the centered profiles matrix D;l/ 2(F = rett are D¢ and
D;1.

The q X k matrix ¥ of columns principal coordinates is now defined by
Y = D.Y*Ftu,, (3.2)

where U, is the n X k matrix of eigenvectors corresponding to the k largest
eigenvalues 14,..., 1, of the matrix FFt. To aid visualization and interpretation of
the projected column profiles in the planes defined by principal axes, which are

called column principal planes, can be plotted (Johnson and Wichern, 2007).

The absolute contribution of the variable j to the inertia of the column principal

component « in the a'® column of Y is given by

Ciag = Z SEM]' fsysza

SEMj

where M; is the set of categories of variable j. The relation between the absolute
contribution ¢;, and the correlation ratio between the variable j and the row

standard component «a is given by
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n
M= ) S(Ee—0) =p X Ge (33)

SEMj

Note that factor loadings for PCA are correlations between the variables and the
components (the correlation ratios) are known as discrimination measures.

These values can be interpreted in MCA as squared loadings.

Suppose X* = X*T and Y = YT, where TT® = T!T = I,. Let X'Y! = X*Yt. Then,
these relations show that the lower rank approximation is not unique.
Furthermore, the MCA solutions X* and Y, are not unique over orthogonal
rotations. The non-uniqueness can be explored to improve the interpretability
of the original solution by means of rotation. Rotation of the column principal
coordinates matrix Y to simple structure must be followed by the same rotation
of the row standard coordinates matrix X*. The interpretation of the correlation

ratios can be simplified for the matrices ¥ and X* by rotation (Greenacre, 2000).

For the method of rotation, the Varimax based function can be used. After

rotation of X* and Y, the relation (3.3) becomes

o =P ) fiFu (3.4)

where ﬁjz-a is the correlation ratio between the variable jand a* column of X*.

The graphical approach to represent the correspondence approach is the biplot
representation. Therefore, biplot information is represented by n XxXp data
matrix. As the name indicates, it refers to the two kinds of information
contained in a data matrix. The information in the rows pertains to samples or
sampling units and that in the columns pertains to variables. The scatter plot
can represent the information on both the sampling units and the variables in
a single diagram. This representation is useful to visualize the position of one

sampling unit relative to another (Dray et al., 2003). In addition to this, it helps
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to visualize the relative importance of each of the two variables to the position
of any variables. Matrix array can be constructed with several variables using
scatter plots. The idea behind biplots is to add the information about the
variables to the graph. Therefore, the construction of a biplot leads the sample
principal components and the best two-dimensional approximation to the data
matrix X approximates the j* observation x; in terms of the sample values of
the first two principal components. Specifically,

xi= X+ 918 + Jj.8, (3.5)
where e; and é, are the first two eigenvectors of § and equivalent to X:X, =
(n—1)S and X, denotes the mean correlated data matrix with rows (x; — )_()’.
The eigenvectors determine a plane and the coordinates of the j* unit are the
pair of values of the principal components (¥;1,9;,). The pair of eigenvectors has
to be considered in order to include the information on the variables in the
plot. These eigenvectors are coefficient vectors for the first two sample principal
components. Thus, each row of the matrix positions (E = [é,,é,]) a variable in
the graph and the magnitudes of the coordinates of the variables show the
weightings of the variables. The weightings represent each principal component
of the variables. The plots of the variable with corresponding position are
indicated by a vector. Singular value decomposition is the direct approach to

obtain a biplot. Then, the singular decomposition expresses the n X p mean

correlated X, as

X _ U A v’
(nxp)  (mxp)@XPp)(xp)
where a=diag(Ay,4,...,4,) and V=E = [é4, ...,&,] is an orthogonal matrix

whose columns are the eigenvector of X.X.= (n—1)S. The best rank two
approximation to X. is obtained by replacing A by a* =diag (14,4,,0,...,0).

Therefore, this result is known as Eckart-Young theorem. The approximation is
given as
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*y7/ S0 é’
X, = Un'V' = [§1,9,] [éﬂ (3.6)

where y,; and y, are the n X 1 vector of values for the first and second principal

components respectively.

The biplot represents each row of the data matrix by the point located by the
pair of values of the principal components. The it* column of the data matrix is

represented as an arrow from the origin to the point with coordinates (eq;, €5;),

. ~ ~ ! . .
" column of the second matrix [&;,8,] approximations.

the entries in the i*
Furthermore, the idea of a biplot extends to canonical correlation analysis,

multidimensional scaling and even more complicated nonlinear techniques.

3.3 Application of multiple correspondence analysis

The application of multiple correspondence analysis is used to visualize the
associations between the socio-economic, demographic and geographic
parameters and the malaria RDT result. Multiple correspondence analysis
helps to track the impact of socio-economic, demographic and geographic
parameters and the malaria RDT result. Therefore, applying correspondence
analysis helps to summarize important effects including interactions in effect
reducing the dimensionality of the problem. Beyond the better understanding
of the structure of the data the computational time may be significantly
reduced. Furthermore, the graphical interpretation of the data is a useful tool
in an exploratory research and the reduction of the level of the associations

between the investigated parameters.

When applying MCA method, variables are divided into distinct subgroups that
contain variables of similar types such as socio-economic, demographic and
geographic variables. Variables analyzed with MCA generally are assumed to be
categorical. This technique is described by (Guitonneau and Roux, 1977). To

apply MCA to both continuous and discrete data, continuous variables could
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be categorized through a process of mutually exclusive and exhaustive
discretization or coding (Greenacre, 1984). Multiple correspondence analysis
locates all the categories in a Euclidean space. To examine the associations
among the categories, it is important to plot the first two dimensions of the
Euclidean space. For the multiple correspondence analysis, malaria RDT result
and the other socio-economic, demographic and geographic variables are
considered. The demographic variables are sex, age and family size. For the
multiple correspondence analysis, the continuous age and family size variables
were recoded to be appropriate for the analysis. The socio-economic variables
are source of drinking water, time to collect water, toilet facility, availability of
radio, television and electricity, construction material for room’s floor, wall and
roof, use of indoor residual spray, use of mosquito nets, total number of rooms
in the house and total number of nets in the house. Besides the socio-
economic and demographic variable, there were geographic variables included
in the analysis. These variables are region and altitude. Therefore, to perform
the MCA analysis all socio-economic, demographic and geographic variables

were included to the multiple correspondence analysis.

For MCA analysis, each principal inertia values expressed as a percentage of
the total inertia, which quantifies the amount of variation accounted for by the
corresponding principal dimension. In addition to this the principal inertia is
decomposed into components for each of the rows and columns. The
decomposed rows and columns provide the numerical contributions used to
interpret the dimensions and the quality of display of each point in the reduced
space. The parts which are expressed as percentages are useful to explain the
method of determination of the dimensions. The same parts of the dimensions
can be expressed relative to the inertia of the corresponding points in the full
space and this helps to assess how close the individual points are to the

dimension.
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Table 3.1 presents inertia and Chi-Square decomposition for multiple
correspondence analysis. Correspondence analysis employs chi-square
distances to calculate the dissimilarity between the frequencies in each cell of a
contingency table. The calculation of the chi-square distances is cell-
independent. Table 3.1 suggested that the two dimensions accounts for 19.4%
of the total association. The total chi-square statistic in Table 3.1, which is a
measure of the association between the rows and columns in the full
dimensions of the table, is 2169476 with degrees of freedom 2050. This chi-
square represents all pairwise interactions among the factors. The maximum
number of dimensions (or axes) is the minimum of the number of rows and

columns, minus one.

From Table 3.1, the singular value indicates the relative importance of each
dimension in explaining of the inertia, or proportion of variation, in the
participant and variable profiles. The singular values can be interpreted as the
correlation between the rows and columns of the contingency table. As in
principal components analysis, the first dimension explains as much variance
as possible, the second dimension is orthogonal to the first and displays as
much of the remaining variance as possible, and so on. Singular values of
greater than 0.2 indicate that the dimension should be included in the analysis
(Hair et al., 1995). However, the proportion of variance explained by each
dimension must be balanced with the cut-off point. The singular value and the
inertia are directly related i.e., the inertia is an indicator of how much of the
variation in the original data is retained in the reduced dimensional solution
(Bendixen, 1996). Furthermore, the percentages of inertia accounted for by the
first twelve axes are 10.7 per cent and 8.7 per cent, 5.73 per cent, 5.12 per
cent, 4.61 per cent, 4.1 per cent, 4.02 per cent, 3.81 per cent, 3.61 per cent,
3.55 per cent, 3.54 per cent and 3.45 per cent, respectively (Table 3.1).
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Table 3.1: Inertia and Chi-Square Decomposition

Singular | Principal Chi- Percent Cumulative (2 4 6 8 10
Value Inertia Square Percent S S U S S S
0.42757 | 0.18282 | 232503 10.72 10.72 e
0.38438 | 0.14775 187901 8.66 19.38 okt ok ok oo
0.3126 0.09772 124277 5.73 2511 [,
0.29555 | 0.08735 111089 5.12 30.23 kR Rk
0.28047 | 0.07866 100043 4.61 34.84 RSk
0.26462 | 0.07002 89054 4.1 38.94 I
0.26193 | 0.06861 87250 4.02 42.97 kil
0.25503 | 0.06504 82716 3.81 46.78 Rk
0.24806 | 0.06154 78259 3.61 50.39 FRF A KK
0.24591 | 0.06047 76909 3.55 53.93 FRFA A KK
0.24557 | 0.06031 76696 3.54 57.47 FRFA A KK
0.24356 | 0.05932 75444 3.48 60.94 kb
0.23959 0.0574 73005 3.37 64.31 kS
0.23772 | 0.05651 71869 3.31 67.62 Sk Sk
0.23474 0.0551 70079 3.23 70.85 T
0.23154 | 0.05361 68179 3.14 73.99 bk
0.22675 | 0.05142 65388 3.01 77.01 bk
0.22274 | 0.04961 63094 2.91 79.92 bl
0.21997 | 0.04839 61539 2.84 82.75 il
0.21788 | 0.04747 60370 2.78 85.54 Fekdekkdeok
0.2095 0.04389 55817 2.57 88.11 ks
0.2031 0.04125 52458 2.42 90.53 ek
0.1965 0.03861 49106 2.26 92.79 ko
0.18357 0.0337 42856 1.98 94.76 ok
0.17417 | 0.03033 38578 1.78 96.54 FHRE
0.16618 | 0.02761 35119 1.62 98.16 FHRE
0.14744 | 0.02174 27646 1.27 99.44 ok
0.08754 | 0.00766 9745 0.45 99.89 *
0.04423 | 0.00196 2488 0.11 100
Total 1.70588 | 2169476 100
Degrees of Freedom = 2025

Based on this result, the first twelve axes accounting for 60.9 per cent of the
amounts of variance and would expect 39.1 per cent of the inertia to be
accounted by the remaining axes. As can be seen from the table, 93 per cent of
the association can be represented well in twenty three dimensions. However,
these data can be considered in just two dimensions. The first axis accounting
for approximately 10.72 per cent of the inertia and the second axis accounts

approximately 8.66 per cent. The percentages of inertia in MCA are low and
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tend to be close to one another and this latter fact might lead to an assumption

that individual axes might be unstable.

Figure 3.1 presents the scree plot of singular values. One method to assess
most appropriate number of dimensions for interpretation is using scree plot.
The scree plot presents the proportions of variance explained (Hair et al.,
1995). As can be seen from the figure, the scree plot suggests that the
proportion of variance explained drops faster up to 7t dimension and less
rapidly up to dimension 26. As discussed by (Hair et al., 1995), 0.2 can be
considered as a cut-off point as a first step. But, this cut-off point suggests

that only 90.5 per cent variation can be explained with 22 dimensions.

0.45

04 1\
0.35 \

Singular values

0 T T T T T
1 6 11 16 21 26

Dimensions

Figure 3.1: Scree plot of singular values

Figure 3.2 contains the multiple correspondence analysis scaling solution
coordinates for the variables for twelve dimensions, with Dimension 1 on the
horizontal axis and Dimension 2 on the vertical axis and so on. Multiple
correspondence analysis locates all the categories in a Euclidean space. The

first two dimensions of this space are plotted to examine the associations
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among the categories. Dimension 1 accounts for 10.72 per cent of the variance
in the data and Dimension 2 accounts for 8.66 per cent of the variance. The
twelve dimensions totally accounts for 60.9 per cent of the variations. It can be
seen that variable like stick and mud roof, toilet with flush, wood floor and
corrugated metal wall appears separately in the right hand side of the chart.
Therefore, these variables have to be included in the interpretation of

dimension 1 and similarly for other dimensions.
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Figure 3.2: Multiple correspondence analysis plot for twelve dimensions

It is important to note that this two-dimensional chart is part of the twenty two
dimensional solutions. Interpreting of each dimension is considered as the
contribution of variables to that dimension (Clausen, 1998). This is because a
variable that appears on the two-dimensional chart might be a major
contributor to another dimension but might not be located in the existing two-
dimensional plane (Nishisato, 1994). As can be seen in Figure 3.2, the right
quadrant of the plot (dimensions 1 and 2) shows that the categories stick and
mud roof, toilet with flush, wood floor and corrugated metal wall are
associated. To the top of the plot, altitude less than 2000 meter, use of
electricity, cement block wall, cement floor, use of television, protected water,
altitude between 2000 - 4000 meters are associated. On the other hand,
positive malaria RDT result, not using indoor residual spray, thatch roof, earth
or dung plaster floor are grouped together. Furthermore, negative malaria RDT
result, use of indoor residual spray, use of malaria nets, pit latrine toilet and
corrugated floor are associated. Similarly, unprotected water, 30 — 40 minutes
to get water, no toilet facility and no radio are associated together. This
interpretation of the plot is based on points found in approximately the same

direction and in approximately the same region of the space.
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So far, the association between socio-economic, demographic, geographic
variables and malaria RDT result was assessed based on dimension 1 and 2.
Therefore, the contribution of dimension 1 and dimension 2 has been
interpreted. As can be seen from Table 3.1, dimension 1 and 2 constitute 19.4
per cent of the variation. But, the other 20 dimensions all together constitute
71.2 per cent of the variation. Except the relationships between dimension 4
and 3, dimension 5 and 2, dimension 5 and 3 and dimension 7 and 1, the
relationship between the variables for other combination of dimensions show
that they are located at the center of the graphs. The relationships between

variables show similar relationships as of dimension 1 and 2.

3.4 Summary and Discussion

In this study, multiple correspondence analysis was used as a way to
graphically represent and interpret the relations between primary meanings in
different malaria RDT result, socio-economic, demographic and geographic
variables. Multiple correspondence analysis provides useful interpretative tools
that can further the understanding of the conceptual context in which socio-
economic, demographic and geographic variables by malaria RDT result

OoCccurs.

As it was discussed above, multiple correspondence analysis is a method for
exploring associations between sets of categorical variables. Mathematically, it
is a method for breaking down the value of the goodness-of-fit statistic into
components due to the rows and columns of the contingency table. It can also
be considered as a technique for assigned order to unordered categories.
Therefore, the MCA approach involves defining a set of points, with associated
masses, in a multidimensional space structured by Euclidean distance.
Furthermore, the display is also thought of as a framework for reconstructing
the original data as closely as possible. To display the relationship, the

coordinate positions of the row and column points are used.
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The association using MCA gives the relationship among coded variables and
their associations. The technique allows the analysis of the relationships
between the variables and different levels of one variable. Furthermore, the
results of the analysis can be seen analytically and visually. This method of
display gives detailed information of the relationship between variables and
their associations. Therefore, the result from multiple correspondence analysis
shows that there is association between malaria RDT result and different socio-
economic, demographic and geographic variables. Moreover, there is an
indication that some socio-economic, demographic and geographic factors have
joint effects. It is important to confirm the association between socio-economic,
demographic and geographic factors using advanced statistical techniques.
Therefore, future investigations need to be done to identify those variables that
show significant relationships. By identifying those variables which could have
joint effect, it is important to determine the principal axes and the
identification of selection of variables to take forward for further analysis.
Furthermore, the interaction effects between socio-economic, demographic and

geographic variables will be included in the further analysis for this study.

The commonly used methods for discrete (e.g binary) data are a direct
extension of generalized linear models for independent observations to the
context of correlated data. Therefore, a review of these models is provided in
the next chapter. The survey conducted in the Amhara, Oromiya and SNNP
regions involves the complex survey method. Detailed review of survey logistic
model is also provided in the next chapter. In addition to this, these models will
be fitted to the malaria rapid diagnosis test result data to identify socio-
economic, demographic and geographic factors that affect malaria rapid

diagnosis test result.
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Chapter 4

Prevalence and risk factors of Malaria in Ethiopia using

Generalized Linear Models

4.1 Introduction

The class of generalized linear models includes many well-known statistical
models such as: multiple regression for normal responses; logistic and probit
regression for binary responses; binomial counts, or proportions; Poisson and
negative binomial regression; log-linear categorical data analysis models;
gamma regression for variance models; and exponential and gamma models for

survival time models.

The literature on generalized linear models and their extensions are vast
(Berridge and Crouchley, 2011, Zuur et al., 2009, Zurr et al., 2007, Fox, 2008,
Madsen and Thyregod, 2010). Generalized linear models have been extended in
many ways, such as accommodating random and mixed effects,
accommodating correlated data, relaxing distributional assumptions, allowing

semiparametric linear predictors, etc (Schimek, 1997, Smith et al., 2004).

In statistics, the flexible generalization of ordinary least squares regression is
generalized linear model (GLM). The GLM generalizes linear regression by
allowing the linear model to be related to the response variable via a link
function and by allowing the magnitude of the variance of each measurement
to be a function of its predicted value. Generalized linear models were
formulated by John Nelder and Robert Wedderburn in 1972 as a way of
unifying various other statistical models, including linear regression, logistic
regression and Poisson regression (Nelder and Wedderburn, 1972). John Nelder
and Robert Wedderburn proposed an iteratively reweighted least squares
method for maximum likelihood estimation of the model parameters.
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In summary the current chapter is organized as follows. An overview of the
theory of GLM and survey logistic is presented in sections 4.2 — 4.5. The survey
logistic model is fitted to malaria RDT result data in section 4.6. Summary and

discussion of this chapter is given in section 4.7.
4.2 Generalized Linear Model

Generalized Linear Model (GLM) is an extension of the linear modelling process
that allows models to be fitted to data that follow probability distributions other
than the Normal distribution. GLM helps to include response variables that
follow any probability distribution in the exponential family of distributions.
The exponential family includes such useful distributions as the Normal,
Binomial, Poisson, Multinomial, Gamma, Negative Binomial, and others.
Hypothesis tests applied to the Generalized Linear Model do not require
normality of the response variable, nor do they require homogeneity of
variances. Hence, Generalized Linear Models can be used when response

variables follow distributions other than the Normal distribution.

Let y4,...,y, denote n independent observations on a response variable y. We
treat y; as a realization of a random variable Y;. In the general linear model
formulation we assume that Y; has a normal distribution with mean w; and
variance o2

Y; ~ N(u;02),
and further assumed that the expected value y; is a linear function of p

h

predictors that take values x; = (X3, ...,x;») for the i*" observation, so that

Ui = X;ﬂl

where 8 is a vector of unknown parameters.
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The Exponential Family of Generalized Linear Models

Nelder and Wedderburn introduced the generalized linear model (GLIM) in
1972. The GLM models consist of independent responses Y;, i = 1,2,...,n, with

an exponential family distribution as follows

FO) =f10,49) = exp [y (g7 (XiBe)). Y], (4.1)

where exp represents an exponential family member with parameters fand y;
and Y may be known (Nelder and Wedderburn, 1972). The parameter 6 is a
function of the mean and can be written as g '(X/B;) (a function of a linear
combination of the regressors). In general, generalized linear models have three
features (McCullagh and Nelder, 1989). These features are the random
component, systematic component and the link function. These feature are

explained as follows.

e A random component consists of a response variable Y from the exponential
family with independent observations (y;,V,, ..., ¥n). The density function for

exponential family is given by

l/) + c(y;, V)|, i=12,...n

fr(vi) = exp

where, Y;,Y,,...,Y,, are assumed to be independent. § and y are parameters
while b(8) and c(y,y) are known functions. The parameter 6 is termed the
canonical parameter and is related to E[Y;] through b(e). Therefore,

u=E[Y;] = b'(6).

The variance of Y is a function of the mean and the scale parameter or

dispersion parameter Y,

d
Varly] = w5i= b (0).
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where, b'(#) and b"(0) are the first and second derivatives of b(0) with
respect to 8. In general, the mean and variance of Y can be derived by using
the property [ f(y|6,¢)dy = 1. Taking the first and second derivatives with

respect to 8 from both sides of the equation gives
fly—= b (®)f(y/6,¢)dy =0 and
[y - p'©) = b"©®)| f5/0.w)dy =0.

Therefore, E(y) = u = b'(#) and var(y) = b"(0)y. Unlike multiple regression
and other normal distribution based models, the variance of generalized
linear models can depend on the mean. If b” (8) is expressed as a function
a of the mean, b"” () = V(n), then V is called the variance function. The
parameter Y is a scale parameter. When it is unknown it must be estimated

along with 6.

The systematic component of a GLM relates a vector (14,..,m,) to the
regressor variables through a linear model. Associated with each response y;
is a vector X; denote the value of predictor X; = (x;1,X;3 ..., X;)" of values of p
explanatory variables, then the distribution of the response variable vy;

depends on X; through the linear predictor n; where
N = Bo + Bixin +...+ Bp xip -

The systematic component of the linear form places the regressors on an
additive scale. Therefore, this scale makes the interpretation of their effects
simple. Moreover, the significance of each regressor can be tested with a

linear hypothesis Hy: f; = O versus H;:8; # Ofori = 1,2,...,k.
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e The function g(y;) is called a link function which connects the linear
predictor to the mean E[Y]. This is done through a monotonic, differentiable

function

gwi) = n; = Bo + Pixis +...+ Bip Xp.

Here, the link is a linearizing transformation of the mean which is a
function that maps the mean onto a scale where regressor effects are linear.
The link is used to allow 7n; to range freely while restricting the range of y;.
For example, the inverse logit link p = 1/(1 + e™7) maps (—,) onto
(0,1), which is an appropriate range if y; is a probability. The monotonicity
of the link function guarantees that this mapping is one-to-one. Therefore,
the generalized linear model can be expressed in terms of the inverse link

function,
ElY] =97 '(Bo + Bixis + ...+ Bip %p ).

For a linear predictor which is equal to canonical parameter 8, the canonical
link is given by 8(pn). The canonical link is useful and reasonable link function.
The canonical link does the estimation method, but it is necessary to restrict

generalized linear modelling to canonical link functions (Agresti, 2002).

The notation F(x/B;) can be used for g 1(x/B;), i = 1,2,...,n, stacked in a
vector for the generalized linear mean model. Therefore, generalized linear

model for the entire dataset can be expressed as additive form as follows
Y = F(XB;) + €, wheree ~ (0,(pa(,))). (4.2)

The application of iteratively reweighted least squares was extended to obtain
maximum likelihood estimates (Finney, 1952, Nelder and Wedderburn, 1972).
The term deviance was introduced as a measure of model fit. Moreover,
generalized analysis of variance was considered as the change in deviance of a

sequential fit of nested models (Good, 1967). (McCullagh and Nelder, 1983) first
47



introduced generalized linear models and their second edition in 1989
(McCullagh and Nelder, 1989) serves as the standard monograph on
generalized linear models. The literature on generalized linear models and their
extensions are voluminous. Generalized linear models have been extended in
many ways, such as accommodating random and mixed effects,
accommodating correlated data, relaxing distributional assumptions, allowing

semiparametric linear predictors, etc (Schimek, 1997, Smith et al., 2004).
4.3 Estimation in Generalized Linear Models

The method of maximum likelihood (ML) can be used to estimate the
parameters in the linear predictor n;. Assume Y;,i = 1,...n be independent, the
joint likelihood is the product of the likelihoods for each Y;. The log likelihood

for f;, as a function of an arbitrary £, is then

1Bly) = Ty (P20 4 cGu )] (4.3)

The likelihood problem can be solved by taking the derivative of the log
likelihood [(B|y) under the properties of the exponential family and the fact
that the link g is monotonic. The score equations obtained from equating the

first order derivatives of the log likelihood to zero gives

n
20;
S(B) = ) =2 [y = b(6)] =0. (44)
—~ 0f8
l
Since yu; = b'(6;) and V; =V(yu;) = b"(6;), then
au; 60-
Wi priop =y 2
B [)’ B’
and the result implies the following equations
n
00;
S(B) = ﬁ Vitlyi —wl = 0. (4.5)
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Solving the score equation (4.5) gives the ML estimates of 5.

The score equations can be solved iteratively. Initial solution of the equations is
guessed and then updated until iterative algorithm converges to the solution j,
called the maximum likelihood estimate of . The methods of Fisher’s scoring
and Newton-Raphson are the two most popular and widely used iterative
algorithms for the maximum likelihood estimation. The Fisher’s scoring method
is equivalent to the iterative reweighted least squares. The Newton-Raphson
method solves maximum likelihood estimates iteratively using the standard
least-squares methods (Agresti, 1990, McCullagh, 2008). Classical inferences
based on asymptotic likelihood theory become available, including Wald-type
tests, likelihood ratio tests and the score tests, all asymptotically equivalent

once the maximum likelihood estimates have been obtained. Moreover, with
some models such as the logistic regression model, @ is a known constant. For
models, like the linear normal model, estimation of @ may be required to

estimate the standard errors of the elements in . There are several ways of

estimating ¢, one of which is given by
~ 1 21
6 = N_—pz(Yi — W Vi(fy)
i

where nis the total number of observations and p is the number of parameters

in the model.

Detailed discussion of Fisher’s scoring and Newton-Raphson can be found in
different literatures (Agresti, 1990, Kutner et al., 2005, McCullagh, 2008,
McCullagh and Nelder, 1989, Schabenberger and Pierce, 2002).
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4.4 Survey logistic regression for binary data

The logistic regression model is classified under generalized linear models. This
model is used to model binary data. But, the standard statistical methods are
inappropriate for analyzing survey data due to clustering and stratification
used in the survey design. Therefore, some adjustments to the classical
methods that take account of the survey design are necessary in order to make
valid inferences (Chen and Mantel, 2009). Therefore, the logistic regression
model used to analyze data from complex sampling designs is referred to as
survey logistic regression models. Survey logistic regression models have the
same theory as ordinary logistic regression models. The difference between
ordinary and survey logistic is that survey logistic accounts for the complexity
of survey designs, i.e. sampling techniques, such as stratified random or
cluster sampling including multi-stage sampling. But, for data from simple
random sampling, the survey logistic regression model and the ordinary logistic
regression model are identical. To apply survey logistic to the current problem,
the first stage primary sampling unit (PSU), was a Kebele (the smallest
administrative unit in Ethiopia). In the second stage, households with in a
kebele sampled. The response of the " person in the j household and ht
Kebele can be specified as y;j, (i = 1,2,...,mh;; j = 1,2,...,np; and h = 1,2,...,H)
where y;;, equals 1 if there is positive malaria rapid diagnosis test result in the
Jj*h household within hth Kebele (PSU), and O otherwise. Thus, the log-likelihood

function in this case is given by

H np Mhj 1
@)=Y 3> Pntos (774—) - tog ()]
h=1j=1i=1 Lh Lh
and the survey logistic regression model is given by

logit(nijh)z x{jh,b’, [ =12,....my5j = 1,2,...,np;and h = 1,2,...,H
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where x;;, is the row of the design matrix corresponding to the characteristics
of the i person in the jth PSU within ht stratum, and f is a vector of unknown
parameters of the model. To obtain reliable inference about the effects of
factors from the fitted model, it is important to include all design variables in

the model as explanatory variables (Pfeffermann, 1993).
Estimation of Parameters

For ordinary logistic regression, a method of maximum likelihood estimation is
used to estimate parameters of the model. But, estimation of the standard
errors of the parameter estimates is very complicated for data which comes
from complex designs. The complexities in variance estimation arise partly
from the complicated sample design and the weighting procedure imposed. So
a rough estimate for the variance of a statistic based on a complicated sample
can be obtained either by ignoring the actual complicated sample design used
and proceeding to the estimation process using the straightforward formulae of
the simple random sampling or another similarly simple design (Park, 2008,
Rabe-Hesketh and Skrondal, 2006, Biewen and Jenkins, 2006). But, the
incorporation of sampling information is important for the proper assessment
of the variance of a statistic (Park, 2008). Since weighting and specific sample
designs are particularly implemented for increasing the efficiency of a statistic,
their incorporation in the variance estimation methodology is of major
importance (Schaefer et al., 2003). Thus, the bias induced under this
simplifying approach depends on the particular sampling design and should be
investigated circumstantially (Lehtonen and Pahkinen, 2004). Therefore, there
are several methods to obtain the covariance matrix. These methods include
the Taylor expansion approximation procedure, jackknife estimator, bootstrap
estimator, balanced repeated replication method and random groups method

(Wolter, 1985, Lee and Forthofer, 2006).
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Taylor expansion approximation procedure

The Taylor series approximation method relies on the simplicity associated with
estimating the variance of a linear statistic, even with a complex sample design.
By applying the Taylor linearization method, nonlinear statistics are
approximated by linear forms of the observations (by taking the first-order
terms in an appropriate Taylor-series expansion). But, it has to be noted that
Taylor series linearization is, essentially used in elementary cases, while

influence function can be deployed in complex cases.

The estimation of variance of the general estimator is adapted from the Taylor-
series expansion. To use the Taylor series expansion, consider a finite
population N. Let p—dimensional parameter vector be denoted by Y =
(Yy,....Y,)" where, Y; are population totals or means. The corresponding
estimator vector is denoted by ¥ = (¥,,...,¥,)" based on a sample size s of n(s).
Therefore, the estimators 17]-, j=1,...,p depends on the sampling design
generating the sample s. Let us consider a nonlinear parameter 6 = f(Y) with a
consistent estimator denoted by 8 = f(¥). Therefore, the interest here is to find

an appropriate expression for the design variance of 6 and constructing a

suitable estimator of the variance of § (Wolter, 1985).

Suppose that continuous second-order derivative exists for the function f(Y).
Therefore, using the linear terms of the Taylor-series expression, the

approximate linearized expression is

A of(Y) [ A
6— 0= ?:10—,,], 9= ), (4.6)

where, df(Y)/0Y; refers to partial derivation. Using equation (4.6), the variance

approximation of 8 is given by
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v(8)=v Zaf (Y)(A ) Eag(yy).af Dy 5,9 @7)

j=1 j=1

Here, the variance of nonlinear estimator 8 has been reduced to a function of

variances and covariances of s linear estimators 17] (Wolter, 1985). Therefore,

the variance estimator 17(9) is obtained from (4.7) (Skinner et al., 1989).

The resulting variance estimator in equation (4.7) is referred to as the first
order approximation. Extending the Taylor series expansion could develop
second or even higher-order approximations. However, in practice, the first-
order approximation usually yields satisfactory results, with the exception of
highly skewed populations (Wolter, 1985). Standard variance estimation
techniques can then be applied to the linearized statistic. This implies that
Taylor linearization is not a ‘per se’ method for variance estimation, it simply
provides approximate linear forms of the statistics of interest and then other
methods should be deployed for the estimation of variance itself. The Taylor
linearization method is a widely applied method, quite straightforward for any
case where an estimator already exists for totals. However, the Taylor
linearization variance estimator is a biased estimator. Its bias stems from its
tendency to under estimate the true value and it depends on the size of the
sample and the complexity of the estimated statistic. Though, if the statistic is
fairly simple, like the weighted sample mean, then the bias is negligible even
for small samples, while it becomes nil for large samples (Sarndal et al., 1992).
On the other hand for a complex estimator like the variance, large samples are
needed before the bias becomes small. In any case, however, it is a consistent

estimator.
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Jackknife estimator

The jackknife technique is developed by (Quenouille, 1949, Quenouille, 1956).
The main idea of jackknife is to divide the sample into disjoint parts, dropping
one part and recalculating the statistic of interest based on incomplete sample.
The dropped part is re-entered in the sample and the process is repeated
successively until all parts have been removed once from the original sample.
These replicated statistics are used in order to calculate the corresponding
variance. Disjoint parts mentioned above can be either single observation in a
simple random sampling or clusters of units in multistage cluster sampling
schemes. The choice of the way that sampling units are entered, re-entered in

the sample leads to a number of different expressions of jackknife variance.

It should also be noted that the jackknife method for variance estimation is
more applicable in with replacement designs, though it can also be used in
without replacement surveys when the sampling fraction is small (Wolter,
1985). However, this is rarely the case when we are dealing with business
surveys. The impact of its use in surveys with relatively large sampling fraction
is illustrated, via simulation in (Smith et al., 1998), while, as mentioned in
(Shao and Tu, 1995) the application of jackknife requires a modification to
account for the sampling fractions only when the first stage sampling is
without replacement. In any case, due to their nature, jackknife variance
estimation methods seem to be more appropriate for (single or multistage)
cluster designs, where in each replicate a single cluster is left out of the

estimation.

If the number of disjoint parts (e.g. clusters) is large, the calculation of replicate
estimates is time consuming, making the whole process rather than time-
demanding in the case of large-scale surveys (Yung and Rao, 2000). So,

alternative jackknife techniques have been developed (Efron, 1982).
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Jackknife linearized variance estimation is a modification of the standard
jackknife estimator based on its linearization. Its essence is that repeated
recalculations of a statistic are replaced by analytic differentiation. The result
is a formula that it is easy to calculate. For example for stratified cluster
sample the bias adjusted variance formula, presupposing sampling with

replacement, is (Canty and Devison, 1999):

H Np
h=1 el Tj=1

The factor [,; is the ‘empirical influence value’ for the j* cluster in stratum h
(Canty and Devison, 1999). The effort required for calculating [,; is based on
the complexity of the statistic. For the linear estimator in stratified cluster
sampling:

0= XnYn

where,

yi,zj = Yk Whjk-Yhjk
is the sum of y’s in every cluster j in each stratum h, and wj, is the design
weights then

lhj = np -yi,lj'

For the ratio of two calibrated estimators, l; is:

Y _pz.
. L= 6.7
h] lTWZ
where
T
5 Uy
1Twy,

y

while y and z are the vectors of the observations in the dataset and [}; , l;;; and

W are calculated from the data analytically.
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Therefore, the main advantage of jackknife estimator is that it is less
computationally demanding, while it generally retains the good properties of
the original jackknife method. However, in case of non-linear statistics, it
requires the derivation of separate formulae, as is the case with all linearised
estimators. Therefore, its usefulness for complex analyses of survey data or
elaborate sample designs is somewhat limited. More details can be found at
(Canty and Devison, 1999, Rao, 1997), while an insightful application is made
by (Holmes and Skinner, 2000).

Bootstrap estimator

Similar to jackknife method, bootstrap method was introduced outside survey
sampling which was originated by (Efron, 1979, Efron, 1981, Efron, 1982).
Bootstrap was introduced for samples of independent and identically
distributed observations. Since then, there has been much theoretical and
empirical research examining properties of the bootstrap estimator. Moreover,
bootstrapping has become a popular tool for classical statistical analysis (Shao
and Tu, 1995). The bootstrap involves drawing a series of independent samples
from the sampled observations, using the same sampling design as the one by
which the initial sample was drawn from the population and calculating an

estimate for each of the bootstrap samples (Rao and Wu, 1988).

Balanced repeated replication (BRR) method

The balanced repeated replication method (BRR) (or balanced half samples, or
pseudoreplication) developed for the case with a large number of strata. This
method has a very specific application in cluster designs where each cluster
has exactly two final stage units or in cases with a large number of strata and
with only two elements per stratum. The aim of this method is to select a set of

samples from the family of 2k samples, compute an estimate for each one and
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then use them for the variance estimator in a way that the selection satisfies

the balance property (Sarndal et al., 1992).

In the BRR technique, the formation of pseudo samples starts H strata and r=2
sample clusters per stratum. If there are no PSUs per stratum, these form the
replication. Therefore, the total sample can be split into 2# overlapping half-
samples each with H sample clusters. Therefore, the estimate §; can be
constructed for each half-samples and be used to estimate V(). But, it is
computationally expensive to evaluate all 2H possible ;. Therefore, it is possible
to select a balanced set of only k half-samples where k is minimum multiple of

4 greater than H. Therefore, the estimator can be given as follows.
V(6) = T (6; — 8)*/k. (4.8)

The estimator (4.8) has equal asymptotic precision to the same estimator
evaluated over all 2H half-samples. The gain in precision of the variance
estimate compared to simple replication needs to be balanced against the
increased computation required (Rao and Wu, 1985). The recent research
result of (Rao and Shao, 1996) shows that any asymptotically correct estimator
can only be obtained by using repeated division, i.e. repeatedly grouped
balanced half samples. Therefore, the use of BRR with business surveys is
typically difficult, as stratification is regularly used and the manipulation of
both data and software becomes very difficult. According to (Rao, 1997) the
main advantage of BRR method over the jackknife is that it leads to
asymptotically valid inferences for both smooth and non-smooth functions.
However, it is not easily applicable for arbitrary sample sizes like the bootstrap

and the jackknife.
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Random groups method

For complex surveys, the random group method is one of the first methods
developed in order to simplify variance estimation. To estimate the parameters
using random group method, drawing sub-samples from the population is
required. Then the variance will be assessed based on deviances from the
union of sub-samples (Wolter, 1985). This technique is described as follows. To
estimate the variance, the design of the survey should involve r independent
replications of the same basic design. This process gives a final sample
consisting of r replicates (Skinner et al., 1989). Let  denotes the estimator of 6
from the whole sample. Hence, any statistic § for the parent sample can be
recomputed for each of r replicates giving 8, ..., 0,. 8; is the estimator obtained

from the r* random group and 6= "_,0;/r. Therefore, the variance estimator

V(§) can be estimated by

V(é) - r(rl_l) 1106, — 5)2.

Hence, 6 can be estimated by V(é) (Wolter, 1985), where

V(8) = Xl - 0
Random groups method can be distinguished into two main variations, based
on whether the sub-samples are independent or not. But, in practice, survey
sample is drawn at once and random groups technique is applied in the sequel
by drawing, essentially, sub-samples of the original sample. In such cases, we
have to deal with dependent random groups. For the case of independent
random groups, random groups method provides unbiased linear estimators,
though small biases may occur in the estimation of non-linear statistics. In
case of dependent random groups, a bias is introduced in the results, which,

however, tends to be negligible for large-scale surveys with small sampling
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fraction. In such circumstances the uniformity of the underlying sampling
design of each sub-sample is a prerequisite for safeguarding the acceptable

statistical properties of the random groups variance estimator.

Comparison of the methods

The applicability of variance estimation methods depends on the sampling
design and the adjustments. Obviously, the best approach to estimate the
variance is exact formulae, but the exact methods for many practical cases of
complex surveys are too difficult to be derived. There are many theoretical
studies conducted to compare replication methods with Taylor linearization.
These theoretical studies to compare the estimation methods were conducted
by (Krewski and Rao, 1981, Rao and Shao, 1992). These studies showed that
linearization and replication approaches are asymptotically equivalent and both
methods lead to consistent variance estimators. Among the replication
methods, jackknife methods have similar properties with linearization
approach. But, the properties of balanced repeated replications and bootstrap
techniques are comparable. In general, in the case of simple situations of
sample designs and estimation features, linearization may be simpler to
interpret and less time demanding. However, in case of complex survey design

and estimation strategies, replication methods are equivalently flexible.

The summarized findings for the comparison of the variance estimation
methods are presented in (Wolter, 1985). After reviewing and summarizing from
five different studies (Bean, 1975, Deng and Wu, 1987, Dippo and Wolter,
1984, Frankel, 1971, Mulry and Wolter, 1981), (Wolter, 1985) concludes that
‘... we feel that it may be warranted to conclude that the TS [Taylor series]
method is good, perhaps best in some circumstances, in terms of the mean

square error (MSE) and bias criteria, but the BHS [balanced half-samples]

method in particular, and secondarily the RG [random groups| and J
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[jackknife] methods are preferable from the point of view of confidence interval

coverage probabilities’ (Wolter, 1985, pp. 361).

Furthermore, the advantages of flexibility and cost compared among the
variance estimation methods by (Wolter, 1985). Based on the comparison,
Taylor linearization method, Jackknife estimator, Balanced repeated
replications and Random groups methods are equally flexible. But, based on
costs, Jackknife is more expensive than the others. Moreover, the random
group method is slight edge in the terms of flexibility. In the stratified sampling
setting with a fixed number of strata, bootstrap procedures are available that
provides improvements over classical approaches for constructing confidence
intervals based on the normal approximation. However, the improvements are
of second order and are generally only noticeable when the sample sizes are
small. Moreover, in the case where there are an increasing number of strata,
replication methods are likely to lose their appealing features as they provide

minor asymptotic improvement over the standard normal approximation.

Model Selection and Model Checking for survey logistic

The same selection procedure which can be used for logistic regression could
be applied for survey logistic regression models. However, the selection
procedures (i.e. forward, backward, and stepwise) are not yet included in SAS
9.2 for PROC SURVEYLOGISTIC procedure. Therefore, the best alternative to
select the best model is to start with the saturated model and observe the
contribution of each effect to deviance reduction given by type IIl analysis of
effects, then exclude one variable with insignificant effect (one at a time) and
observe the contribution of the remaining effects to deviance reduction. This

process will continue until the model has only significant effects.

In addition, the Akaike’s information criterion (AIC) introduced by (Akaike,

1974), and the Schwarz Criterion (SC) (also known as Bayesian Information
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criterion (BIC)) introduced by (Schwarz, 1978) can also be used to compare the
goodness-of-fit of two nested models. These methods are used to adjust the
likelihood ratio statistic —2logL which measures the deviation of the log-
likelihood of the fitted model from the log-likelihood of the maximal possible
model (Vittinghoff et al., 2005). It is necessary to adjust —2logL. The reason for
the adjustment is that, —2logL will always decrease as a new explanatory
variable enters the model even if it is insignificant. Therefore, the AIC is given
by
AIC = —2logLl + 2p

where p is the number of parameters used in the model. This technique,
which tolerates violation of parametric model assumptions, can be used to
compare multiple nested models, and it does not rely entirely on p-values for
determining significance of explanatory variables. In addition to AIC, another
criterion, i.e. SC, adjusts the —2logL statistic for the number of parameters and
is given by

SC = =2logL + plog(n)

where p is as explained above and n is the overall sample size. Therefore, the

smaller the value of the criteria, the better the goodness-of-fit of the model.

The AIC and SC criteria will be used to test for the goodness-of-fit of the model.
Since the criteria involve —2logL is only used for variable selection in the case
of ungrouped binary data, they are used as approximations. The Hosmer-
Lemeshow goodness-of-fit statistic which is used in the case of ungrouped

binary data, is not yet implemented in the PROC SURVEYLOGISTIC.
Model checking

For all types of statistical models, assessing model fit is important. Assessing

the model includes OLS linear regression models. For such models, assessing
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of the model is typically examined by statistics like the coefficient of
determination (or R?) and the F-ratio. But, for other members of the generalized
linear model, these cannot be applied. Therefore, assessing the model relies on
a more general set of criteria for assessing model fit. Furthermore, to assess
the goodness of fit, two different statistical methods can be used. These
methods are the deviance and Pearson X?. These methods are approximates for
small samples. But, for large samples, the two methods are statistically
equivalent. These methods measure the discrepancy of fit between the
maximum log-likelihood achievable and the achieved log-likelihood by the fitted
model (Jiang, 2001, Kutner et al., 2005).

Table 4. 1: Fit range of models

Model Link function Fitted values
Null model g(w) = «a p; = p™
Intermediate model g(u) =X'B g = g X (X'B)
Saturated model glu) = «a; ;= ﬁl@

Suppose there are n observations, the fit range of models can be given as
follows (Table 4.4). The most widely used statistic, log-likelihood whose idea is
similarly to sum of squares for linear models for constructing criteria for
assessing goodness of fit for generalized linear models, is Deviance. But, the
question is what Deviance means for goodness of fit. If the deviance is huge,
then the model “doesn’t fit very well’. And if deviance is small, it “fits well’.
But, it is not possible to be specific. Therefore, the scaled deviance of the

intermediate model is given by
D(y; ) = 2[1(a9, ¥; y) — 1G4, ; y)]
= 3, 2w {ye (0(29) = 0(1;)) = () + () }/w

D*(y;i)
=——20,
Y
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where 1({i, {;y) is the log-likelihood under the current model, 1(i®, y;y) is the
log-likelihood under the maximum achievable (saturated) model, fi is the MLE
in the intermediate model, and D*(y;fi) is called the deviance of the
intermediate model. The general aim of the deviance is to minimize D (D(y; 1))
by maximizing [(4,y;y). Furthermore, the deviance is used to compare two
nested models having P, and P, parameters respectively, where P, < P,. Let j!

and fi* denote the corresponding MLEs.

Therefore, the test statistic is

(v 1) — D*(v- [i2
D*(y; ") . D*(y; 4%) = =2[l(a"; y) — LA ;) ~X3,_p,.-

If ¢ is unknown, it is normally estimated from the large model:
n A
b=t ZW.(:VL'_ a7)?
n— P, vy

i=1

where

. &)
V(@ap) == = wivar(r)/p.

For unknown v, it can be estimated by i = n'%p, where n is the number of

observations and p is the number of parameters. D (or D*) has an asymptotic
chi-square distribution with n- p degrees of freedom. To use this statistical

methods, asymptotic properties of the goodness-of-fit test of the current model

should be satisfied (Schabenberger and Pierce, 2002, Der and Everitt, 2002).

For the measure of goodness-of-fit, Pearson X? is used. For the categorical
dependent variable, this indicator is quite indicative of the X? statistics.
Furthermore, Pearson’s X? test examines the sum of the squared differences
between the observed and expected number of cases per covariate pattern

divided by its standard error. For ordinary logistic regression, let n
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observations are independently sampled, a covariate pattern is defined to be a
unique set of the x;’s, where i =1,...,n, and m; will represent the number of
subjects with the same covariate pattern where k =1,...,K represents the
number of unique covariate patterns. For the estimated probabilities 7;, the
values are the same for all m, subjects in the same covariate pattern. Let y;
represents the outcome for all i‘*subject, and y, represents the sum of the
observed outcomes in the k'* covariate pattern. The Pearson’s X? goodness-of-
fit for logistic regression is expressed as the sum of the squared Pearson’s
residuals, that is

K A
¥2 = (Vi — myfty)?
kzlmkﬁk(l — )

is distributed approximately chi-square with K- (p + 1) degree of freedom, m; 7
is large for every k, K is the number of covariate patterns and p is the number

of independent covariates model.

In 1980, Hosmer and Lemeshow developed a set of goodness-of-fit tests to
avoid problems associated with the asymptotic distribution of X% —test. Using
(Hosmoer and Lemeshow, 1980) suggestion, subjects have to be grouped into g
groups and X? - test is estimated using the amalgamated cells. Therefore, to
use Hosmer and Lemeshow recommended method, observations have to be
partitioned into g = 10 equal-sized groups based on their ordered estimated

probabilities. Then,

where

n.

; = number of observations in the j th group

0; = ¥;yij = observed number of cases in the jt" group

E; = Y.;p;j = expected number of cases in the jt" group
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For fitting logistic regression models using complex survey data, the sampling
weight can be calculated as the inverse of the product of the conditional
inclusion probabilities at each stage of sampling. This represents the number
of units that the given sampled observations represented in the total
population. Expanding each observations by its sampling weight produces a
dataset for the N units in the total population. Therefore, for complex survey
Hosmer-Lemeshow goodness-of-fit test, the observed and expected cell counts

are the total population size (Archera et al., 2007).
4.5 Data analysis using survey logistic model

The data analysis for this study was done using SAS version 9.2. The deviance
was used to compare alternative models during model selection. Change in the
deviance was used to measure the extent to which the fit of the model improves
when additional variables were included. To avoid confounding effects, the
model was fitted in two steps. The model was fitted to each predictor variables
one at a time. In stage two the significant predictors were retained in a
multivariate logistic regression model. In addition to the main effects, possible
combinations of up to three-way interaction terms were added and assessed to
further avoid and mitigate the problem of confounding. Therefore, the main
effects and the possible combinations of up to three-way interaction terms were
fitted. The selected model was the one with the smallest change in deviance

compared to all possible models.

Let the response y;, = 1 if the it" person has been positive for malaria rapid

diagnosis test and y; = 0 otherwise. Therefore, the fitted survey logistic model is

given as

logit(my) = log (:74) = xi;uf
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where, m;;, = E(y;) = P(y; = 1), x{;, is a vector of appropriately coded values of

the explanatory variables and f is a vector of unknown parameters.

The objective of the analysis is to identify the individual characteristics that
could be associated with the malaria rapid diagnosis test outcome. On the
other hand, this study focused on identifying the household characteristics
which could be associated with the increase/decrease of the number of malaria
infected household members. These household characteristics which were
included in the model are main source of drinking water, time taken to collect
water, toilet facilities, availability of electricity, radio and television, number of
persons per room, main material of the room's wall, main material of the
room's roof, main material of the room's floor, use of indoor residual spray in
the past twelve months, use of mosquito nets, number of nets per person,
family size, region and altitude. The individual characteristics are gender and

age.

To make statistically valid inferences, the analysis of the data from the study
accounted for design effects of the study. The SAS procedure (PROC
SURVEYLOGISTIC) which performs logistic regression for categorical responses
in sample survey data was used (SAS, 9.2). The maximal model with significant
effects is given in Table 4.2. These models have the smallest deviance (—2logL)
amongst all the nested models with the three-way interaction effects. Based on
the final model, six interactions reduced the deviance (—2logL). Therefore, the

final model includes all the main effects and the six interaction effects.
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Table 4. 2: Type 3 analysis of effects for the survey logistic model

Effect DF | Chi-Square | Pr > ChiSq
Age 1 14.6585 0.0001
Gender 1 24.3933 <.0001
Family size 1 1.9782 0.1596
Region 2 1.7835 0.4099
Altitude 1 0.1126 0.7372
Main source of drinking water 2 56.4991 <.0001
Time to collect water 1 851.0891 <.0001
Toilet facilities 2 4.7555 0.0928
Availability of electricity 1 0.6455 0.4217
Availability radio 1 1.3791 0.2403
Availability television 1 0.7465 0.3876
Total number of rooms 1 52.2942 <.0001
Main material of the room's wall 2 28.571 <.0001
Main material of the room's roof 2 38.0472 <.0001
Main material of the room's floor 2 32.909 <.0001
use of indoor residual spray 1 24.7274 <.0001
Number of months room sprayed 1 38.2539 <.0001
Use of mosquito nets 1 15.1781 <.0001
Total number of nets 1 4.1535 0.0458
Main source of drlnkllng water and main 4 56.5389 <0001
material of the room's roof
use of }ndoor residual spray and use of 1 917958 <0001
mosquito nets
Time to c'ollect water and main material of 2 10.3219 0.0013
the room's floor
Gender & main source of drinking water 1 160.2781 <.0001
Gender & main material of the room's floor 2 18.9357 <.0001
Gend(?rf Main source of drinking water and 2 57837 0.0162
electricity

Toilet facilities, availability of television, number of rooms per person, main
material for walls, number of months the room was sprayed, number of
mosquito nets per person, age and family size were found to be significant
main effects. In addition to the main effects, five significant two-way interaction
terms and one three-way interaction terms was obtained. The two-way
interaction terms were: the interaction between main source of drinking water
and main material of the room's roof; use of indoor residual spray and use of

mosquito nets; time taken to collect water and floor material; gender and main
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source of drinking water; gender and main material of the room's floor; and
gender and use of indoor residual spray. Three-way interaction between
gender, main source of drinking water and availability of electricity was also
significant. Age, family size, toilet facilities, availability of television, number of
persons per room, wall material and number of months indoor residual
sprayed in the room were the significant main effects, which were not involved
in significant interaction terms (Table 4.2). Accordingly, the effect of these

variables can be directly interpreted using the odds ratio (OR).

Tables 4.3 and 4.4 present estimates of socio-economic, demographic and
geographic factors on RDT. Based on the result for a unit increase in age,
implies a reduction of the odds of a positive malaria test by 3.0% (OR = 0.970,
p - value = 0.0001). Furthermore, for a unit increase in family size, the odds of
a positive RDT increased by 5.7% (OR = 1.057, p - value < .0001). Furthermore,
compared to households which had no toilet facilities, those with a pit latrine
were at lower risk of malaria diagnosis (OR = 0.725, p-value = <.0001) as well
as households with flush toilets (OR = 0.552, p - value = <.0001). Households
who were using mosquito nets were found to be at a lower risk of malaria
compared to the households who were not using mosquito nets (OR = 0.91, p -
value = <.0001). Furthermore, for a unit increase in the number of nets, the
odds of positive malaria diagnosis test decreases by 54% (OR = 0.46, p - value

= <0.0001) for the household.
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Table 4. 3: Estimates and odds ratios of socio-economic, demographic
and geographic factors on RDT

Effects Estimate OR 95% C.1. P -value
Lower | Upper
Intercept -3.030 0.048 | 0.016 0.125 0.001
Age -0.031 0.970 | 0.319 0.995| 0.0001
Sex (ref. male)

Female -1.820 0.162 | 0.053 0.418 | <.0001
Family size 0.049 1.057 | 1.014 1.124 | <.0001
Region (ref. SNNP)

Ambhara -0.099 0.906| 0.178| 16.374 0.521

Oromiya -0.184 0.832 | 0.238 8.581 0.183
Toilet facility (Ref. No facility)

Pit latrine -0.3213 0.725| 0.575 0.943 | <.0001

Toilet with flush -0.5935 0.552 | 0.432 0.909 | <.0001
Main source of drinking water (ref. protected water)

Tap water -0.038 0.963 | 0.316 0.973 | <.0001

Unprotected water 0.717 2.048 | 0.673 5.289 0.007
Availability of television (ref. no)

Yes 0.304 1.356 | 0.446 3.500 0.024
Number of -0.473 | 0.623 | 0.205 | 1.001 | 0.044
rooms/person
Main material of room's wall (ref. cement block)

Mud

block /stick /wood -2.326 0.098 0.032 | 0.252 0.048

Corrugated metal -0.620 0.538 0.471 0.826 0.001
Main material of room's roof (ref. corrugate)

Thatch 1.325 3.761 | 1.236 9.712 | <.0001

Stick and mud -1.960 0.141 | 0.046 0.364 | <.0001
Main material of room's floor (ref. earth /Local dung plaster)

Wood -1.701 0.183 | 0.149 0.443 | <.0001

Cement -3.927 0.014 | 0.011 0.876 0.018
use of indoor residual spray (ref. yes)

No | 1.857 | 6.405| 2.105| 16.539 0.046
Use of mosquito nets (ref. no)

Yes -0.095 0.910 | 0.299 0.949 | <.0001
Number of nets/person -0.782 0.457 | 0.150 0.981 | <.0001




Table 4. 4: Estimates and odds ratios of socio-economic, demographic and
geographic factors on RDT for interaction effects

Estimate

OR

95% CI

Lower | Upper

P -value

Main source of drinking water and ma
water & cement block)

in material of the room's roof (ref. Protected

Tap water and Mud

block/stick/wood -3.339 | 0.035] 0.007| 0.177 | <.0001
Tap water and Corrugated metal -3.377 | 0.034 | 0.007| 0.184 | <.0001
Unprotected water and Mud

block /stick /wood -4.008 | 0.018 | 0.003 | 0.130 | <.0001
Unprotected water and Cement

block -1.857 ] 0.156| 0.022 ] 1.119] <.0001

Time to collect water and material of room's floor (ref. Less than 30

earth /local dung plaster)

minutes and

Greater than 90 minutes and

Cement -0.423 | 0.655 0.066 | 1.478 | <.0001
Greater than 90 minutes and

Wood -0.721 | 0.486 0.160| 1.478 | 0.0013
Between 30 - 40 minutes and

Cement -1.901 | 0.149 0.049 | 1.478 | <.0001
Between 30 - 40 minutes and

Wood 1.554 | 4.729 0.821 | 9.220 | <.0001
Between 40 - 90 minutes and

Cement -0.739 | 0.933 0.129 | 1.258 | 0.0011
Between 40 - 90 minutes and

Wood 0.554 | 3.769 1.835| 7.232 | <.0001

Gender and main source of drinking water and main mate

(ref. Male & protected water)

rial of the room's roof

Female and Tap water -0.069 | 0.933 | 0.624 | 1.397| 0.0972

Female and Unprotected water 1.327 | 3.769 1.948 | 7.293 | <.0001
Gender and material of room's floor (ref. Male and earth/Local dung plaster)

Female and Cement -0.372 | 0.689 | 0.158 | 1.254 | <.0001

Female and Wood -4.893 | 0.008 | 0.003 | 0.017 | <.0001
use of indoor residual spray and use of mosquito nets (ref. Yes &no)

No and Yes \ 0.104| 1.110] 0.898| 1.372| 0.0319
Gender, main source of drinking water and electricity (ref. Male, protected water &
yes)

Female, tap water and no 0.550 | 1.734 1.137 ] 2.643| 0.0172

Female, unprotected water and no -1.319 | 0.267 | 0.132| 0.542 | 0.0049
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Interaction effects

The relationship between gender, main source of drinking water and
availability of electricity is presented in Figure 4.1. The risk of positive malaria
RDT is higher for unprotected water use by female respondents. However, for
both males and females, positive RDT is low for households using tap water

and electricity.
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Figure 4. 1: Log odds associated with rapid diagnosis test and gender,
source of drinking water with availability of electricity

With reference to households that have tap water for drinking and corrugated

iron-roofed houses, the risk of positive malaria RDT was significantly lower

than for households living in stick and mud-roofed houses and drinking

unprotected water. As Figure 4.2 indicates, higher positive malaria diagnosis

test was found for households that reportedly used unprotected water for

drinking.
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Figure 4. 2: Log odds associated with rapid diagnosis test and material of
room's roof with main source of drinking water

The OR values for the interaction between gender and main material of the
room's floor is given in Figure 4.3. Based on the result, positive malaria
diagnosis test was significantly higher for females than for males who reported
that the material of the room’s floor was earth/local dung as well as those who
reported that the material of the room’s floor was wood. There was however,
higher positive malaria diagnosis test found for both males and females who

reported that the material of the room’s floor was wood.
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Figure 4. 3: Log odds associated with rapid diagnosis test and gender with
material of room's floor
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Positive RDT was significantly higher for respondents living in a room with a

wooden or earth/local dung floor than for those living in a room with a cement

floor for respondents who took 40-90 minutes to collect water. But, for

respondents who took less than 40 minutes to collect water, positive RDT was

low (refer Figure 4.4).
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Figure 4. 4: Log odds associated with rapid diagnosis test and material of

room's floor with time to collect water

Prevalence of malaria was significantly higher for male than for female

respondents who were living in a house treated with indoor residual spray

(refer Figure 4.5). For both males and females who were living in a house that

had not been sprayed, the risk of positive malaria was significantly higher. On

the other hand, for males living in a house that had not been treated with

indoor residual spraying, the risk of malaria infection for males is more than

that of females.
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Figure 4. 5: Log odds associated with rapid diagnosis test and use of use
of indoor residual spray with gender

The use of mosquito nets and applying indoor residual spray to the walls of the

house altered the risk of malaria. The risk of malaria was low for individuals

who lived in houses that had been sprayed and used malaria nets. It is shown

in Figure 4.6 that the estimated risk of malaria was higher for individuals with

no mosquito nets.
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Figure 4. 6: Log odds associated with rapid diagnosis test and use of use
of indoor residual spray with use of mosquito nets

The other result which is important to be discussed is the predictive

accuracy/ability of the model. Therefore, the procedures used for fitting binary

response models to data, produce statistics on the prediction ability of the
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model, such as ¢, Sommer’s D (SD), Goodman-Kruskal Gamma (GKG), and

Kendall’s Tau-a (KT). Using the SAS notation, these statistics are given by

c=(n—05(t—n.— ng)t™?!
SD = (n. — ng)t™?!

GKG = (n, — ng)(ne + ng)~?!
KT = (n. — ng)(0.5N(N — 1))~1

where n is the total number of individuals in the data set, t is a total number of
pairs given by n(n — 1)/2, n, is a number of concordant pairs (a pair of
observations is concordant if a response y is 1 and the predicted probability is
high), n; is a number of discordant pairs (a pair of observations is discordant if
the response y is 1 and the predicted probability is low), and tied pairs are
given by t—n. —ngq (Agresti, 1984). The Predictive ability of the model is given
under the association of predicted probabilities and observed responses. From
the result it is observed that out of the 7,531,272 (informative) pairs, 86.5%
were concordant and 0.8% were tied. The other rank correlation is the “c”
value. This value ranges from O to 1. The value O implies there is no
association. Moreover, ¢ is equal to the area under the receiver operating
characteristic (ROC) curve. Based on the values, the prediction accuracy is
poor if c is between 0.5 to 0.6, moderate if between 0.6 to 0.7, acceptable if
between 0.7 to 0.8 and excellent if greater than 0.8. Based on the values (c =
0.869) the model is excellent. Furthermore, the Somers’ D (SD) statistic which
is also related to concordance via D= 2*(c-0.5) = 0.738, is simply a rescaled
version of concordance that takes values between -1 and 1, like a usual
correlation coefficient instead of O and 1. The other value is Gamma. This value
is the surplus of concordant pairs over discordant pairs. This value ignores
percentage ties. Therefore, if tied pairs ignored and the ranking of two pairs
guessed based on knowledge of the independent variable x, then it is possible

to predict the second x. If the second value is more than the first, then the rank
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of the second y value will be greater than the rank of the first y value. From the
result, the gamma value is 0.542. Therefore, knowing the independent variable

reduces our errors in predicting the rank (not value) of the dependent variable
by 54.2%.

4.6 Summary and discussion

The generalized linear models using survey logistic regression provided a tool
for assessing factors that affect malaria rapid diagnosis test. The present study
was conducted based on the 2006 baseline malaria indicator survey in
Amhara, Oromiya and Southern Nation Nationalities and People (SNNP) regions
of Ethiopia. This survey was a population-based household cluster survey.
There were 224 clusters and each cluster consists of 25 households. For this
survey, the sampling frame was the rural population of Amhara, Oromiya and
SNNP regions. Therefore, the data used for this study was from complex
survey. For the statistical analysis, the study used generalized linear model.
For this study, gender, age, family size, region, altitude, main source of
drinking water, time taken to collect water, toilet facilities, availability of
electricity, radio and television, total number of rooms per person, main
material of the room's wall, main material of the room's roof, main material of
the room's floor, incidence of indoor residual spray in the past twelve months,
use of mosquito nets and total number of nets per person with up to three-way

interaction effects were used for the analysis.

Based on these facts, the findings of this study show that the following socio-
economic factors are related to malaria risk: construction material of walls, roof
and floor of house; main source of drinking water; time taken to collect water;
toilet facilities and availability of electricity. Besides socio-economic factors,
there are demographic and geographic factors that also had an effect on the
risk of malaria. These include gender, age, family size and the region where the
respondents lived. In addition to the main effects, there were interactional
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effects between the socio-economic, demographic and geographic factors that
also influenced the risk of malaria. Most notable of these were the interaction
between the main source of drinking water and the main construction material
of the room's roof; the time taken to collect water and the main construction
material of the room's floor; gender and the main source of drinking water;
gender and the availability of electricity; gender and the main construction
material of the room's floor and finally, interaction between gender, main

source of drinking water and the availability of electricity.

From the study, it was observed that residents living in the Amhara region
were found to be more at risk of malaria than those living in the SNNP and the
Oromiya regions. Similarly, houses that were treated with indoor residual spray
were less likely to be affected by malaria. One of the most important finding to
which may inform public health policy in the control of malaria infection was
that households with no toilet facilities were more likely to be positive for
malaria diagnosis test than those with good toilet facilities. From the results, it
was observed that households with no toilet facilities were more likely to be
positive for malaria diagnosis test. Furthermore, positive malaria diagnosis rate
decreased with age. But, for household size, the risk of malaria increased per
unit increase in family size. Generally, malaria parasite prevalence differed
between age and gender with the highest prevalence occurring in children and
females. The findings of the association between socio-economic factors and
malaria prevalence are similar to some of the results from previous studies
(Banguero, 1984, Koram et al., 1995, Sintasath et al., 2005). In addition to this
in 1998 and 2000, studies were conducted by (Ghebreyesus et al., 2000, Snow
et al., 1998) in Ethiopia and Kenya respectively. The objectives of the studies
were to assess different types of materials used in the construction of walls,
roofs and floors of a house. They used generalized linear models, poisson and
logistic models, for their study. Based on their findings, they observed

association between any roof, wall and floor material and risk of malaria.
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Therefore, the finding of this study gives similar findings to those from previous

studies.

This study suggests that having toilet facilities, access to clean drinking water
and the use of electricity offers a greater chance of not being positive for
malaria diagnosis. Using mosquito nets and indoor residual spray treatment on
the walls of the house were also found to be a way of reducing the risk of
malaria. In addition to this, having a cement floor and corrugated iron roof
were found to be means of reducing the risk of malaria. Based on the study
findings, different types of housing have an influence on the risk of malarial
transmission with those houses constructed of poor quality materials having
an increased risk. Moreover, the presence of particular structural features,
such as bricks, that may limit contact with the mosquito vector, also reduces
infection. Therefore, the risk of malaria is higher for households in a lower
socio-economic bracket than for those that enjoy a higher status and who are

able to afford to take measures to reduce the risk of transmission.

This study suggests that with the correct use of mosquito nets, indoor residual
spray and other preventative measures, coupled with factors such as the
number of rooms in a house, the incidence of disease is decreased. However,
the study also suggests that the poor are less likely to use these preventative

measures to effectively counteract the spread of malaria.

In this chapter, the analysis method of the study data was survey logistic
model based and survey design effects were included. But, there are other
variabilities in the model. These variabilities related to the errors which are
correlated and also nonconstant variability of the error terms. Moreover, use of
survey logistic cannot allow investigating more than one source of variation
when modelling the explanatory variables. Furthermore, this variability was not
included in the model. Therefore, in the next chapter, we will develop a model
which includes the additional variabilities.
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Chapter 5

The risk factor indicators of malaria in Ethiopia using
generalized linear mixed models

5.1 Introduction

In the previous chapter, we adopted the survey logistic model approach which
is under generalized linear model for malaria RDT data. This model is an
alternative statistical methodology used to identify factors affecting the malaria
risk (Ayele et al., 2012, Natarajan, 2008). But, this model is survey based,
whereas the kebeles are chosen at random which could result in some
variability between the sampling units. Generalized Linear Mixed Models
(GLMM) explore the idea of statistical models that incorporate random factors
into generalized linear models. GLMMs add random effects or correlations
among observations to a model, where observations arise from a distribution in
the exponential family. The generalized linear mixed model has many
advantages. The use of GLMMs can allow random effects to be properly
specified and computed and errors can also be correlated. In addition to this,
GLMMs can allow the error terms to exhibit non constant variability while also
allowing investigation into more than one source of variations. This ultimately
leads to greater flexibility in modelling the dependent variable. In this chapter,
the objective is to determine the socio-economic, demographic and geographic

factors using generalized linear mixed model.

Classical linear models can be generalized using the Generalized Linear Models
(GLMs) by exploring the exponential family of sampling distributions
(McCullagh and Nelder, 1989). GLM models have an immense impact on both
theoretical and practical aspects in statistics. To perform the analysis, there
are a number of statistical software tools to fit the generalized linear mixed

model. Diversified methodologies arise in the implementation and estimation in
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the GLMMs. But, there are still plenty of room within the GLMMs framework
for further investigation and improvements. This can overcome the over-
dispersion in the data and at the same time, accommodate the population
heterogeneity. Therefore, the addition of random effects allows accommodating
correlation in the context of a broad class of models for non-normally
distributed data. These models become more applicable in practical situations.
The generalized linear mixed model is applicable in a wide range of areas. For
example in modelling problems in plant breading, modelling HIV infections in
clinical trials (Jiang, 2007), for joint modelling of multivariate outcomes, etc

(Molenberghs and Verbeke, 2005).

Therefore, this chapter is organized as follows. The theory behind GLMM is
presented in sections 5.2 and 5.3. The fitted result of RDT malaria data is
presented in section 5.4. Summary and discussion of the chapter is presented

in section 5.5.

5.2 Generalized linear mixed models (GLMMs)

Generalized linear mixed models are extension of the GLMs. The term 'mixed'
in the GLMMs means that the random effects together with the fixed effects are
both contained in a model for an outcome of interest to get a modified model.
The word “generalized” refers to nonnormal distributions, but the model can
include normal distributed data as a special case. This model can overcome the
over-dispersion in the data and at the same time, accommodate the population
heterogeneity. The main difference in the structure of GLMMs as compared
with GLMs is the incorporation of the random effects, term b;, into the linear
predictor. But also the nature of the data may dictate the use of GLMMs rather
than GLMs. Therefore, the addition of random effects allows accommodating
correlation in the context of a broad class of models for non-normally

distributed data. These models become more applicable in many practical
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situations. But, the calculation becomes very complicated because of the

inclusion of random effects.

The structure of the generalized linear model involves three points. These
points are the distribution of the data, the function of the mean to be modelled

and the predictors.

For model formulation, let Y;; be the j”* response measured for cluster i,i =
1,...,N,j = 1,...,n;. In addition, let ¥; denote the n; - dimensional vector of all
measurements available for cluster i. Conditionally on random effects b;, it
assumes that the elements V;; of ¥; are independent, following generalized
linear mixed model, but the linear predictor extended with subject specific-
regression parameters b;. Based on these facts, it is assumed that all Y;; have

densities of the form

vij(85) = H6y) + c(yzjﬂ#)}’

filyij|bi B W) = exp{ 5

where the mean y;;, the conditional mean of y;; for a specific set of unknown
parameters 6 and 1, and for known functions ¥ (.) and C(.) is modelled through
a linear predictor. In the expression, 8 and g are the natural parameters. The
linear predictor contains fixed parameters [ as well as subject-specific

parameters b;,
g(ui;) = glE (vij|b:)] = xi;B + zi;b; (5.1)

for a known link function g(.), and x;; and z;; are the fixed and random effects
vectors containing known covariate values, f and b; are p-dimensional and g-
dimensional vectors of known covariate values corresponding to fixed and

random effect parameters respectively, as in the normal mixed models

(McCullagh and Searle, 2001).

81



5.3 Estimation and prediction of the fixed and random effects

Estimation method for fixed effects in generalized linear models which is based
on normality assumptions is standard for linear models. For many GLMs,
maximum likelihood is a standard method of estimation. Parameter estimates
of the model can be obtained by partially differentiating the log-likelihood of
(5.1) with respect to  and b;, and iteratively solving the resulting estimating

equations. But, evaluating the likelihood method is difficult for GLMMs.

For a set of observations y; where, i = 1,2,...N, the interest is in the parameter
estimates. The density function of y; can be denoted as f;(y;;j|b; B, ¢). The
random effects model can be fitted by maximization of the likelihood. Therefore,

the contribution of the i cluster to the likelihood is given by
fi(yij|bi G, ¢) = fl_[;'lilfij(yijlbilﬂl @) fi(b;|G)db;.

where it is important to note that the random effects b; are integrated out to get
the marginal likelihood equation for the parameters of interest. Moreover, the
likelihood for f,¢ and G can be derived from the likelihood function L. This

function can be written as

N N
L(B,D,) = 1_[ fi(yij|bi, G, ¢) = HJ-l_lfij(YijlbiuBllp)fi(bilG)dbi-
i=1 i=1° j=1

To find the estimates, there are two main approaches, Classical and Bayesian
approaches. In classical inference, the concern is about the likelihood function
L(B,D,y). The parameter estimate is treated as fixed but unknown. By
differentiating the log-likelihood function, the parameter estimate which
maximizes the likelihood function of the observed data can be obtained. But, it
is difficult to evaluate the marginal likelihood function when this likelihood

involves high dimensional integral. Various methodologies were proposed in the
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computation of the likelihood function and hence the maximum likelihood

estimates (Wu, 2010).
Maximum Likelihood method (ML)

For parameter estimation, maximum likelihood method is the traditional
methodology. Estimation method of fixed effects in GLMs is based on the well-
defined log-likelihood and is simple to construct an objective function based on
the independence of the data. In linear mixed models, estimation of parameters
is based on the marginal likelihood of the data and can be evaluated
analytically (Jiang, 2007). With GLMMs, to obtain maximum likelihood

estimates, one would maximize the marginal likelihood

L(B.6,y) = [ f(yIb)f(b)db (5.2)

where, f(y|b) is the conditional distribution of the data and f(b) is the
distribution of random effects. Evaluation of the likelihood involves integration
over the distribution of random effects. Because the random effects enter the
model non-linearly, the integration is often complicated and even intractable
(Littell et al., 2006, Molenberghs et al., 2001, Schall, 1991). The use of
maximum likelihood approach in Generalized linear mixed models was studied
by (Schall, 1991). Based on the findings of this research, the numerical
integration method is found to be only appropriate for simple cases in which
the likelihood function involves only integrals of low dimension where such

integrals can be factorized into a product of low dimensional integral.
Restricted Maximum Likelihood method (REML)

An extension method of the ML method is Restricted Maximum Likelihood
method. It is mainly used for estimating the variance component. This method
maximizes the likelihood of linear combinations of elements y. Following

similar procedures as in Maximum Likelihood method, the estimates can be
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obtained by differentiating the log-likelihood function with respect to the

variance components, i.e.,

L(B,0,y) = f f(yb)f (b)db.

This expression may be integrated as integrating the mean parameter f out of
the likelihood function. The EM algorithm for REML estimation is given by
(Laird, 1982). But, it is important to note that the bias of the MLE depends on
the dimension of the mean parameter f (McCullagh and Searle, 2001, Schall,
1991).

Penalized quasi-likelihood, Laplace approximation and Guassi-Hermit

quadrature methods

To approximate the likelihood to estimate GLMM parameters, different methods
have been proposed by different researchers. These methods include pseudo
and penalized quai-likelihood, Laplace approximation and Gauss-Hermite
quadrature (Breslow and Clayton, 1993, Schall, 1991, Wolfinger and O’Connell,
1993 , Pinheiro and Chao, 20006).

The Pseudo-likelihood Approach

This approach is based on a decomposition of the data into the mean and an
appropriate error term, based on a Taylor series expansion of the mean that is
a non-linear function of the linear predictor (Molenberghs and Verbeke, 2005).
This non-linear function arises after inverting the link function in order to
express the conditional mean as a function of the linear predictor. The basic
idea is to remove non-linearity by applying Taylor series (linearization) to
g Y (XB + ZU) about the current estimates of § and U. Hence, this approach is
referred to as the linearization method. SAS GLIMMIX procedure
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documentation (SAS, 9.2) summarizes this approach in the following way.

Once the linearization of u about (#) and (U) has been applied, the model
P=XB+ZU+ ¢

is a linear mixed model with the pseudo-response P, fixed effects f and random

~1 1 1__7 ~ 0g~1(n)
effects U as well as var(¢) = var(P|U) = 4 AzRAz4 ~, where 4 = ( 7 )gg- The

matrix A is a diagonal matrix containing the variance function of the model and

R is a diagonal matrix, i.e R = I, where I is an identity matrix.

The marginal variance in the linear mixed pseudo model can be defined as

—— 1 1___
V(0) =ZGZ' + A AzRAZA | (5.4)

where 6 is (q X 1) vector containing all unknowns in ¢ and R. Based on the
linearized model, an objective function can then be defined assuming that the
distribution of P is known. The maximum log pseudo-likelihood and restricted

log pseudo-likelihood for P are given as follows respectively.

1(8,p) = —3loglV(®)] — 37'V(8)'r — Liog(2m)
and

Ir(0,p) = —%logIV(H)I - %r’V(H)’r - %logIX’V(H)’XI - %log(Zn)

where r = p — X(X'V"1X)"1X'V-1p, f denotes the sum of frequencies used in the
analysis and k denotes the rank of X. At convergence the fixed effects

parameters are estimated and the random effects are predicted as

g =XVO1X)IXV@O) P
U= GZ'V(O) 't

85



The parameter estimates are then used to update the linearization, which
results in a new linear mixed model. The process continues until the relative
change between parameter estimates at two successive iterations is sufficiently

small.

There are two commonly used approximations based on Taylor’s expansion of
the mean. A subject specific expansion referred to as the penalized quasi-
likelihood (PQL) approximation uses ff = f and U = U, which are the current
estimates of fixed effects and predictors of random effects. The population-
average expansion referred to as the marginal quasi-likelihood (MQL) uses
B = B and U = 0, which are the same current estimates of fixed effects and the

random effects are not incorporated in the linear predictor.

Penalized Quasi-Likelihood method (PQL)

The quasi-likelihood method was developed by (Wedderburn, 1974). The quasi-
likelihood function is constructed with fewer assumptions than the likelihood
function. However, the construction of the quasi-likelihood function requires

the relationship between the mean and variance of the data.

Let 0 = (6, ...,0,) and G(0) = diag(11,,, ...,Hclqc)' where I, is a q; X q; identity
matrix. Assume the random effects u; are independent and distributed as

N(0,6;;, ) the integrated likelihood of (a,0) is

1w 1
L(a,0) (Zﬂ)_Q/ZIGll/zfexP[—%z d; (yi; i) — Eb'G(G)u du

=1

Therefore, a conditional algorithm of quasi-likelihood function Q; is given by

Qi = d;i(yis 1) fﬂi Yi—t g
S v Yi T2V (1)
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where, y; are independent measurements from a distribution with density from
the exponential family, T is the unspecified constant of proportionality relating

Var(y;) to var(u;) (Goldstein, 2011, Lin, 2007).

Some researchers further included a term into the quasi-likelihood function to
form the penalized quasi-likelihood (PQL) method. For random effects which
follow a normal distribution with mean O and a variance-covariance matrix G,

the penalized quasi likelihood function is given by
PQL= %Q;— sB'G7'B (5.3)

where, B'G™1f is the penalized term added into quasi-likelihood function.
Moreover, arbitrary selection of the value of f can be prevented using the

added term (Green, 1990, Wolfinger, 1993).

Therefore, the maximum quasi-likelihood equation can be obtained by

differentiating equation 5.3.

But, the estimates which are obtained using PQL in GLMMs are biased towards
zero for some variance components. Biased-corrected PQL was suggested by
(Lin and Breslow, 1996). This study suggested a method which improves the
asymptotic performance of PQL estimates. But, the suggested method inflates

the variance.

Marginal quasi-likelihood (MQL)
The marginal quasi-likelihood method is similar to PQL method. The difference
between the two methods is that the Taylor series expansion which is given by

Yij = ﬂij + Eij: h(xl'],B + Z{]ul) + Eij

is considered for the mean around the current estimates § and b; = 0 for the

fixed and random effects respectively. For MQL, the result is similar except for
87



the current predictor of the mean f);; is of the form (x;;, ) instead of h(x{;f +

Z{;b;). Therefore, the Pseudo data can be written as
Y[ = V7MY - ) + X
and satisfies the linear mixed model
V'~ X8+ Zib; + €.

The calculation between pseudo-data is used to fit the model iteratively. This
estimate is known as marginal quasi-likelihood (MQL) estimate (Breslow and

Clayton, 1993, Goldstein, 2011).

Approximation of the integrand using Laplace Approximation and Gausse-
Hermite quadrature

Laplace Approximation

Laplacian approximations are frequently used and evaluate marginal
likelihoods or posterior means functions (Barndorff-Nielsen and Cox, 1989,
Breslow and Clayton, 1993, Tierney and Kadane, 1986, Wolfinger, 1993). To

standard Laplace approximation can be described as follows.

Suppose that we want to evaluate integrals of the form (Molenberghs and

Verbeke, 2005)
1= [e2®)gp. (5.5)

Suppose b is the value of b for Q is minimized. Then, the second-order Taylor

expansion of Q(b) around b is of the form

Q(b) ~ 9(B) + 5 (b— b)'Q"(b)(b— b)
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where Q" (b) is equal to the Hessian of Q, i.e. the matrix of the second order

derivatives of Q, evaluated at b. The integral I can be approximated by replacing

Q(b) in (5.5). Thus,
I~ @m)?2le"(B)| " e, (5.6)

The Laplace approximation to the integral uses many different estimates of b as
necessary according to the different modes of the @ function. Each integral in

(5.5) is proportional to an integral of the form (5.5), for a Q(b) function given by
- i / / ’ ’ 1., -
9(b) = (a; )" Z;‘l=1[yij(xijﬁ + Zjjb) — Y(X;B + Z;;b)] — ;b'G 'b,

such that Laplace's method can be applied. Here, the model b of Q depends on

the unknown parameters £, ¥ and G.
Gauss-Hermite Quadrature

Gauss-Hermite Quadrature (GHQ) is often used for numerical approximation of
integrals with Gaussian kernels. In generalized linear mixed models random
effects are assumed to have Gaussian distributions, but often the marginal
likelihood, which has the key role in parameter estimation and inference, is
analytically intractable. Furthermore, Gauss-Hermite Quadrature is feasible

tools for numerical evaluation of the integrals.

The likelihood function for two level logistic models can be written as follows

[oe)

j_ i (i)™ (1= 7)™ Y (b G)dy

and
_1 X

T[ij = {1 +eXp(xU,8]} 5 ,8] = ,8 + uj

where f(b;; G) is assumed to be a multivariate normal density.

Fos6) = | P(w)f(y)
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Therefore, Gauss-Hermite quadrature approximations is
Q

f_o:oP(v) e V'dv =~ Z P(xq)wq (5.7)

g=1

where ZgzlP(xq)wq is a Gauss-Hermite polynomial evaluated at a series of
quadrature points indexed by q. A model with a single random intercept can be
represented as

exp(xijﬁ + uj)
A1+ exp(xip + up)
l

P(w) =

In general, quadrature methods can be applied to poisson, binomial,
multinomial and ordered category models. But, Gauss-Hermite quadrature is
effectively limited to the normal distribution because of the exponential term in

equation 5.7.
Simulated Maximum Likelihood method (SML)

Simulated Maximum Likelihood (SLM) method was suggested by (Geyer and
Thompson, 1992, Gelfand and Carlin, 1993). (McCulloch, 1997) studied the
use of Simulated Maximum Likelihood method on the GLMMs. In SML method,
the likelihood is estimated directly without considering the log-likelihood
function by simulation. The simulation to estimate the value of the likelihood is

given by

L(:B' (b,Gl)/) = ffy|u(Y|u'ﬁl lp)fu(ulG)du
— ffylu(yluJﬁ;lp)fu(ulG)

h. () h, (w)du
~ lify|u(y|u(");ﬁ,z/))fu(u("nc)
N hyy (u®)

where, N is the total number of simulated value, h,(u) is the importance

sampling function and u is a vector of random effects simulated from this
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distribution by any sampling technique. In theory, the estimates of the
parameter are independent of the choice of importance sampling function,
h,(u) and calculated numerically based on the likelihood function
approximated using simulations. The efficiency of estimates depends on the
choice of importance sampling function. If the importance function in SML is
far away from the density of the random effects, the resulting estimator may be
inefficient. Therefore, it is important to be careful when implementing SML

method (McCullagh and Searle, 2001).

Empirical Bayes Estimation

In practice, estimation of the marginal parameters (f,D and y) of the marginal
distribution of ¥; is important. But, estimating the random effects b; is also
very important. To detect special profiles, the estimate of subject variability is
very important. For the prediction of subject-specific evolutions, estimating the
random effects are important. Therefore, Bayesian inference is based on the

posterior function which is given by

f(Y|bi'ﬁﬂ/1)f(bi|G)
[ Fb.pw)f (b|G)db;

f(bi |yr:8;D:1/)) =

based on a density function on y, namely f(y|b;[,¥) and a posterior
distribution on the parameter (Wu, 2010). Therefore, prior information has to
be collected on the parameter # and assign a suitable prior density to the
parameter 6 in order to construct the posterior density. The parameter € is
treated as random variables in Bayesian approach (Lee, 2004). However, there
exists arguments about the specification of the prior density, i.e., either
conjugate prior is chosen just for convenience or the choice of prior can be
subjective. In addition to this, the aim is also to evaluate the posterior density

and obtain the posterior mean as the Bayesian estimate.
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Monte Carlo Newton Raphson method (MCNR)

Newton Raphson method is a popular iterative method to find the maximum
likelihood estimates. If the log-likelihood function on the data y and the
parameter space can be denoted by L(B,,G|y). Then L'(B,¢,Gly) and L"(B,¢,G|y)
are the first and second order derivatives respectively. In each Newton Raphson
iteration, current parameter estimates can be updated to the next iteration and
the procedure continues until convergence is achieved. For GLMMs, the
likelihood function and its derivatives may be difficult to evaluate in the
Newton Raphson procedures. The use of Monte Carlo Newton Raphson method
for calculation of the estimates in the GLMMs was proposed by (Kuk and
Cheng, 1997). The Monte Carlo algorithm requires the random effects being
simulated from a conditional function given the observed y and the current
estimate. As shown by (Kuk and Cheng, 1997) the convergent rate for MCNR
was faster than that of Monte Carlo EM. So, it is computationally more

efficient.

Monte Carlo EM method (MCEM)

An iterative method for the computation of maximizer on the posterior density
is the EM algorithm. The algorithm includes an E-step in expectation and then
follows an M-step in maximization. The EM algorithm is popular estimation for
data with missing values, i.e., the basic idea of EM algorithm is that for a given
observed data, it is assumed to have some missing data to the random effects
(Dempster et al., 1997). In the E-step, the expectation can be computed over
the missing data to approximate the likelihood function. Afterwards, a
maximizer of the likelihood given the working values of the parameter estimates
in the M-step can be found. The conditional distribution is updated using the
new maximizer and the algorithm is iterated until convergence is reached. The
implementation of the use of Monte Carlo EM algorithm where the E- step by a

Monte Carlo method was suggested by (McCulloch, 1994, Wei and Tanner,
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1990). Therefore, the random effects of the GLMMs can be treated as missing
values and apply the EM algorithm. However, the expectation is too difficult

when the density of the data cannot be written in a closed form.
Gibbs sampler

Bayesian approach is an alternative method to Classical approach. In order to
obtain Bayesian estimates, the prior distribution on each parameter is
specified. After specifying the prior distribution, get the posterior mean of each
parameter from its conditional distribution. The value have to be specified.
Markov chain Monte Carlo and in particular Gibbs sampling for fitting GLMM
for point referenced data was suggest by (Diggle et al., 1998). The Gibbs
sampler is a special case of the Metropolis-Hastings algorithm and has been
found to be very useful in many multidimensional applications. Therefore, the
standard implementation of the Gibbs algorithm requires sampling from the
full conditional posterior distributions. This application has the following

forms:

n n;  expXijrBr.Yij)
p(ﬂklﬁ—k’ U’ Y) x i=1 H]:l 1 +exp(ij[3+ Ul) (5'8)

. ) no _SXPEikBrYi) |-
p(Ullu—llO- l¢) Y) & Hi=1nj=11+exp(xl§jﬁ+ Ul)lzvll 2 X

exp(— 2 (U; — 24 5C1U)? ()7 (5.9)
PIV, o) ec | Fexp(— 5 (UEI U+ 2@ (5.10)
p(a?|U, )~ Inverse Gamma (a, + g,bz + % U'RU) (5.11)

Where: ﬂ—k = (:811 '"lﬂk—lf :Bk+11 "":Bk)t7 U—i = (Ull ey Ul'—ll Ul'+11 ey Un)tf Z—i,i = Zf,—i =
Cov(U_, Up), 2_; = Cov (U_;, U;), Ry = p(; dy,) and
Xi=0%— % _ 2 1% _; (Wu, 2010).

Samples from p(c?|U,y) can be drawn easily as this is a known distribution.

The conditionals of the other parameters do not have standard forms and a
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random walk Metropolis algorithm with a Gaussian proposal density, having
mean equal to the estimate from the previous iteration and variance derived
from the inverse second derivative of the log-posterior, could be employed for
simulation. The likelihood calculations in (5.8) and (5.10) require inversions of
the (n—1)x(n—1) matrices, 2_;i=1,...,.n and the n X n matrix 2
respectively. Matrix inversion is an order three operations, which has to be
repeated for evaluating the conditional distribution of all n random effects U;
and that of the Y parameter, within each Gibbs sampling iteration. This leads
to an enormous demand of computing capacity and makes implementation of
the algorithm extremely slow (or possibly infeasible), especially for large

number of locations (Jiang, 2007).
Inference for fixed and random effects

In a regression analysis, the objective is to see if an effect is associated with the
outcome. After the analysis, if the covariates has no association with outcome,
then g; = 0 for j = 1,...,p — 1. If the covariates associated with the outcome, then
Bj # 0. For random effects, it can be concluded that there is no association with
outcome when the effect has zero variability. Since GLMMs are based on
maximum likelihood approach, the obtained estimates are asymptotically
normally distributed; as a result, tests such as the Wald-type as well as
likelihood ratio tests can be used as similar to linear mixed models. Inferences

for linear mixed model are discussed below.
Inference for Fixed effects

(Verbeke and Molenberghs, 2000) show that inferences about the fixed effects
can be done using the approximate Wald tests (also referred to as Z-test), the t-

tests and F-tests. The Wald test as well as the associated confidence of f; is
obtained from approximating the distribution of (,l?j — B)/s.e (,l?j) by a standard

univariate normal distribution of ﬂ}, j =1,..,p. More generally, it may be of
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interest to construct confidence intervals and tests of hypotheses about certain
linear combinations of the components of f. For instance, given any known

matrix L, a test for hypothesis
Hy: LB =0versus Hy : Lf # 0, ,

follows from the fact that the distribution of

-1

L(B- B

!

N
(B-B)L (L) XWX) I
i=1

follows asymptotically a chi-square distribution with rank (L) degrees of
freedom. Alternatively, approximate t and F statistics can be used for testing
hypothesis about the fixed effects. In fact, it is pointed out that the t- and F -
statistics rectify the downward bias of the standard errors in the Wald test
statistics due to failing to take into account the variability introduced by
estimating the variance parameters. For large samples, large sample normality

of estimators can be used to utilize Wald tests. This can be specified individual

parameters as f3; — Bio/ var.,(B;) ~AN(0,1) or for a set of linear combinations

of the parameters, L' — L'B, ~ AN(0,L'I L) where I represents the observed or
expected information matrix. An approximate F test can be carried out by
dividing the Wald test by the numerator degrees of freedom and approximating
the denominator degrees of freedom (rank (L)). There are several methods that
are available for estimating the denominator degrees of freedom; one of which
is the Satterthwaite approximation. All these tests are based on large sample
approximation. It is worth noting that different methods lead to different
results. This is due to the fact that different subjects contribute independent
information, which results in numbers of degrees of freedom which are
typically large enough (McCullagh and Searle, 2001). The presence of single
random effects or multiple random effects can be tested. For this test, the score
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test can be used. This test was proposed by (Commenges and Jacqmin-Gadda,
1997, Commenges et al., 1994, Jacqmin-Gadda and Commenges, 1995, Lin,
1997). The advantage of this test is that, the maximum likelihood estimators

under GLMM are not required for testing.

The likelihood ratio (LR) test can also be used for comparison of nested models
with different mean structure. The likelihood ratio test for two nested models
is constructed by comparing the maximized log-likelihoods, say lr,; and lrequced
for the full and reduced models respectively. The two models are nested in the
sense that the reduced model is the special case of the full model. To compare
quu and [ .quceq, minus twice the logarithm of the ratio of these maximized

likelihoods can be used and the test statistic is given by

l
—2Indy = —2in (%)
Full

comparing the statistic to a chi-square distribution with degrees of freedom
equal to the difference between the number of parameters in the full and
reduced models. Small values of —2Inly are obtained when [ .guceq iS Similar
to quu, indicating that the reduced model is a good one. The LR test results for
fixed effects are not valid if models are fitted using REML rather than ML. This
is because REML log-likelihood functions are based on different observations,

which makes them no longer comparable (Verbeke and Molenberghs, 2000).
Inference for random effects

With the asymptotic normality of parameter estimates, approximate Wald tests
for random effects can be obtained in the same way as with the fixed effects.
However, the normal approximation fails if the parameter to be tested takes
values on the boundary of the parameter space. Likewise, the likelihood ratio

test suffers from the same problems as the approximate Wald tests. For
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instance, suppose we have a random coefficient model with a random intercept

and slope given by

Vij = Bo+ uoi + (B1+ uglt;j + ¢ and

Ui G G
U; = var ( 01), var(U;) =G = ( 1 12).
! Uy ) Varto Gor Ga
This model is referred to as the ‘full’ model. Here, consider the possibility that
slopes, for example, do not vary across units. That is, consider slopes as being
fixed rather than random such that there will be a ‘reduced’ model, which is

given by

Yij = Bo+ ug; + Bity + e;j and

U; = ug;, var(U;) = Gy;.
For both models, assume that the var (e;) = R; = o¢%l,. Both the full and
reduced models have the same mean structure, E (yij) = X;$. Both however
have different covariance models, V; = Z;GZ] + 0°L,. The full model has the

usual form of Z; given by

1ty
Zi = ( : ) hence G= (gll glz)
1 21 22

tin

whereas the reduced model takes the form
Z;=1, hence G= Gi; .

Considering the fact that the models are nested, hypothesis test of whether
slopes vary across units seem to be applicable. However, testing whether
slopes do not vary across units requires that the variance Gz2 in the full model
to be equated to zero. This means that the null hypothesis involves checking
whether G2z takes values on the boundary of the parameter space for Gzo. The
theory that underlies the use of the likelihood ratio test is no longer

appropriate when the null hypothesis involves a parameter in the boundary
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space. This is because the likelihood ratio test does no longer have X2
distribution with degrees of freedom equal to the difference between the
number of parameters in the full and reduced models (Fitzmaurice et al., 2004,
Verbeke and Molenberghs, 2000). It should also be noted that in contrast to
the likelihood ratio test for the fixed effects, valid likelihood ratio tests are

obtained under REML instead of ML.

Therefore, care should be taken when using output from linear mixed model
that was fitted to the pseudo-data. For instance, when one compares nested
models using the likelihood ratio (LR) test, the test should be based on the
likelihood from the observed data rather than the likelihood corresponding to
the linear mixed model for pseudo-data. With regard to inference on the
variance components, approximate Wald tests and LR test can be used as long

as parameters to be tested are not on the boundary of the parameter space.
Generalized linear mixed models for binary response

Binary data can be specified either as a series of zeros and ones (Bernolli form)
or as a frequency of ‘success’ out of ‘trials’ (binomial form). Therefore, the
development of GLMMs for dichotomous data has been an active area of
statistical research. By adopting a logistic or probit regression model, various
methods for incorporating and estimating the influence of the random effects,

have been developed (Pendergast et al., 1996).

The logistic regression model, which includes the mixed effects, is a common
choice for analysis of multilevel dichotomous data. In the GLMM, this model

utilizes the logit link, namely

. Wi
9(piji) = logit (i) = log ll—l—]l}:kl = Nijk
ij
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The conditional expectation p;; = E(Yjj|vi, x;) equals p(Yijx = 1|v;, x;5,), i.€., the

conditional probability of a response given the random effects. Here, Y;j

h

corresponds to the i'"* respondent in the j®* household with k* probabilistic

sampling unit (PSU).

Therefore, this model can also be written as
P(Yije = 1vi xijio zijie) = 97 (nijc)
where, the inverse link function g‘l(ni ]-k) is the logistic cumulative distribution

function (cdf), namely

g (i) = 1+ exp(—ni)] ™%

The logistic distribution simplifies parameter estimation, because the

probability density function (pdf) is related to the cdf (Agresti, 2002).

5.4 Evaluation of malaria rapid diagnosis test using GLMMs

One of the main objectives of this study is to identify socio-economic,
demographic and geographic factors affecting malaria rapid diagnosis test. In
our previous discussion (Chapter 4), Generalized Linear Model (the survey
logistics model approach) was used to identify factors affecting malaria rapid
diagnosis test. But, this method is survey based, whereas the Kebeles are
chosen at random which could result in some variability between the sampling
units. Therefore, effect of Kebeles on malaria rapid diagnosis test was ignored.
When the random effect (Kebele) is included in the analysis the model becomes
generalized linear mixed models. Generalized Linear Mixed Models (GLMM)
explore the idea of statistical models that incorporate random factors into
generalized linear models. GLMMs add random effects or correlations among
observations to a model, where observations arise from a distribution in the
exponential family. The generalized linear mixed model has many advantages.
The use of GLMMs can allow random effects to be properly specified and
computed and errors can also be correlated. In addition to this, GLMMs can
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allow the error terms to exhibit non constant variability while also allowing
investigation into more than one source of variation. This ultimately leads to

greater flexibility in modelling the dependent variable.

To analyze the malaria rapid diagnosis test data PROC GLIMMIX in SAS was
used. For this analysis, malaria rapid diagnosis test was considered as a
response variable. Moreover, the socio - economic, geographic and demographic
variables were considered as explanatory variables. The socio-economic
variables are main source of drinking water, time to collect water, toilet
facilities, availability of electricity, radio and television, total number of rooms
per person, main material of the room's wall, main material of the room's roof,
main material of the room's floor, use of indoor residual spray in the past
twelve months, number of months rooms are sprayed, use of mosquito nets,
total number of nets per person and type of nets. Geographic variables are
region and altitude, and demographic variables are gender, age and family size.
The mean structure is examined first by evaluating whether factors that affect
malaria rapid diagnosis test are still important. Different method of
estimations, Pseudo-Likelihood, Maximum Likelihood with Laplace
Approximation and Maximum Likelihood with Adaptive Quadrature methods

were used.

To perform analysis using PROC GLIMMIX, it is important to assume that for
the model which contains random effects, the distribution of the data
conditional on the random effects is known. Therefore, the distribution is a
member of the exponential family distributions. Moreover, the conditional
expected value of the data takes the form of a linear mixed model after a
monotonic transformation is applied. Using PROC GLIMMIX, for models
containing random effects, parameter estimates could be obtained by applying
pseudo-likelihood techniques as in (Breslow and Clayton, 1993, Wolfinger and
O’Connell, 1993 ). This is the default method for PROC GLIMMIX. Pseudo-
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likelihood method for generalized linear mixed models uses Taylor series
expansions of the GLMM. The expansion is either the vector of random effects
solutions or the mean of the random effects. These expansions are also referred
to as the subject specific and marginal expansions. The abbreviation identifies
the method as a pseudo-likelihood technique. But, estimation using Pseudo-
likelihood method did not converge. Furthermore, GLMMs estimation of model
parameters can be obtained by using maximum likelihood where the marginal
distribution is numerically approximated by the Laplace method (METHOD =
LAPLACE) or by adaptive gaussian quadrature (METHOD = QUAD).

Therefore, the analysis was performed using classical Gaussian and adaptive
Gaussian quadrature as well as Laplace approximations. As discussed earlier,
the likelihood obtained is based on numerical integration. Different numbers of
quadrature points were used to estimate the effect of socio-economic,
demographic and geographic variables. To identify the impact of different
number of quadrature points, different quadrature points were used. The use
of different quadrature points, (Q = 3, 5, 10, 20), did not lead to considerable
difference for parameter estimation. But, for quadrature points greater than 5,
there were slight difference for the estimation of parameters. But, there is no
difference between parameter estimates for quadrature points 10 and 20. As a
result, for the analysis, classical gaussian quadrature with large number of
quadrature point was used. After the estimation of parameters, appropriate
statistical inferences for the fixed and covariance parameters of the model can
be performed. Tests of hypotheses for the fixed effects are based on Wald-type
tests and the estimated variance-covariance matrix. The COVTEST statement
option in PROC GLIMMIX enables to perform inferences about covariance

parameters based on likelihood ratio tests.

The assessment of the model fit was performed using the log pseudo-likelihood

and the generalized chi-square test. The minus twice the residual log pseudo-

101