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Abstract

Many bulk properties of gases depend linearly on the gas density at lower densities, but
as the density increases departures from linearity are observed. The density dependence
of a bulk property @ may often be discussed systematically by expanding @ as a power
series in 1/V,,, to yield
Q:AQ+€—3+‘C/—§+---,

where Bg is known as the second virial coefficient of the property (. Ag is the ideal
gas value of @, and Bg describes the contribution of molecular pair interactions to ).
Theories of @ may be regarded as having two main components, one describing how the
presence of a neighbour of a given molecule can enhance or detract from its contribution
to @, and the other the molecular interaction energy which determines the average ge-
ometry of a pair encounter. The latter component is common to all theories, and the
former requires detailed derivations for each specific bulk property ¢). In this work we
consider the second virial coefficients of five effects, namely the second pressure virial co-
efficient B(T), and also the second dielectric, refractivity, Kerr-effect and light-scattering
virial coefficients, B,, Br, Bx and B,, respectively. Using a powerful computer alge-
braic manipulation package we have extended the existing dipole-induced-dipole (DID)
theories of the second dielectric, refractivity and Kerr-effect virial coefficients to suffi-
ciently high order to establish convergence in the treatment of both linear and non-linear
gases. Together with the established linear theory of the second pressure virial coefficient,
the extended theory of the second light-scattering virial coefficient developed by Couling
and Graham, and their new non-linear theory of the second pressure and light-scattering
virial coefficients, our new theories provide a comprehensive base from which to calcu-
late numerical values for the various effects for comparison with experiment. We have
collected as much experimental data of the various second virial coefficients as possible,
for a wide range of gases. The ten gases chosen for detailed study comprise a selection of
polar and non-polar, linear and non-linear gases: the linear polar gases fluoromethane,
trifluoromethane, chloromethane and hydrogen chloride; the non-polar linear gases nitro-

gen, carbon dioxide and ethane; the non-linear polar gases sulphur dioxide and dimethyl
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ether; and the non-linear non-polar gas ethene. Using the best available measured or
calculated molecular parameter data for these gases, together with the complete theo-
ries for the second virial coefficients, we have attempted to find unique sets of molecular
parameters for each gas which explain all the available experimental data. In general,
reliable measured or calculated molecular properties are regarded as fixed, and only the
Lennard-Jones and shape parameters in the molecular interaction energy are treated as
best-fit parameters within the constraints of being physically reasonable.

Many of the apparent failures of second virial coefficient theories have been due to the
lack of convergence in the series of terms evaluated. It is essential to work to sufficiently
high orders in the polarizabilities and various multipole moments to ensure convergence
for meaningful comparison with experiment. This often requires the manipulation of
extremely long and complicated expressions, not possible by the manual methods of
our recent past. The advent of computer manipulation packages and fast processors for
numerical integration have now enabled calculation to high orders, where the degree of
convergence can be sensibly followed.

Our efforts to describe all of the effects for which data is available met with mixed
success. For four of the gases, fluoromethane, chloromethane, dimethyl ether and ethene,
a unique parameter set was found for each which described all of the available eflects
reasonably well. For the three gases, trifluoromethane, nitrogen and sulphur dioxide,
one interaction parameter set explained all but one of the effects for which data was
available to within experimental uncertainty. For trifluoromethane the parameter set
which yielded good agreement for B(T), B, and Bk could not explain the observed
values of Bp, while for nitrogen one parameter set produced reasonable agreement for
all of the effects except B, and a different set, which yielded good agreement for B,, did
not explain the remaining four effects as well as the first set. The parameter set which
explained B(T), Bx and B, very well for sulphur dioxide, yielded a value for B, which
was much larger than the experimental value, although of the correct sign and order of
magnitude. Hydrogen chloride posed a special problem as data was only available for
two of the effects, B(T") and B,. It was possible to find a set of interaction parameters
in good agreement with the measured values of B(T'), but the experimental data for B,
was an order of magnitude larger than the largest calculated values. Since the remaining
effects have not been measured for this gas it was not possible to test the theory more
rigorously. For the remaining gases carbon dioxide and ethane, it was impossible, based
on the existing measured values, to select a unique parameter set which explained all
of the effects. In many of the cases where definite conclusions could not be drawn, it
was not possible to decide whether the disagreement between theory and experiment
was due to the large scatter and uncertainty of the experimental data or failure of the
theory. However, there were very few instances of complete failure of the theory to explain



experiment, and no one effect showed consistent disagreement, so that in general it may
be said that the mechanisms of the second virial coeflicients under study are reasonably
well understood. It would require more precise measurements of the various effects, as
well as more measured or calculated molecular property tensor components, such as the
hyperpolarizability and the A- and C-tensors, to test the DID molecular interaction model
more stringently.
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Chapter 1

Introduction and Overview

1.1 Second Virial Coeflicients

There exists a range of electromagnetic phenomena in gases for which one expects pro-
portionality of the macroscopic observables with the number density of the molecules.
This proportionality is exact in a perfect gas, where each molecule is independent of its
neighbours.

However, the molecules in a real gas collide and interact with their neighbours, result-
ing in non-linear density dependence of the bulk properties of the gas. As the density of
a gas approaches zero, the bulk properties tend toward ideal gas behaviour. Studies of
the deviations in behaviour of real gases from the ideal provide a source of information
about the interactions between molecules.

The effects of these interactions can be accounted for with a virial expansion of the
relevant macroscopic observable. If ) is a suitably chosen measurable property its ob-

served value may be expanded in terms of the inverse power of V,,,, the molar volume, to

give [27]
B C
A, L 29 e _
Q Q+ v + V2 + , (1.1)
where Ag, Bg, Cq, ... are the first, second, third, ... virial coefficients, respectively,

and are independent of density. In the limit of infinite dilution (V,, — 00), when the gas
becomes an assembly of independent molecules, @ is equal to Ag, the ideal gas value.
Bg, Cg, ... represent the deviations due to pair, triplet, ... interactions respectively.

In a sample of gas containing one mole of non-interacting gas molecules, each molecule
contributes an average g to the observable (), so that

@ = Aq = Nagq. (1.2)



where N4 is Avagadro’s number. However, at higher densities, when the molecules inter-
act with one another, molecule 1 may not always contribute g to ¢) because for some of
the time molecule 1 is part of an interacting pair. If 7 is the configuration of molecule 2
relative to molecule 1, then at that instant molecule 1 contributes %qlg(T) to (), where
q12(7) is the corresponding contribution of the pair. If triplet and higher-order interac-
tions are neglected and P(7)dr is the probability that molecule 1 has a neighbour in the
range (7,7 + d7), then [27]

@=afa+ [ [jaalr) —q| PeYer}. (13

P(7) is related to the intermolecular potential Uy, by

N 1207
P(r) = mf e H (1.4)

where 2 = VL [ dr is the integral over the orientational coordinates of the neighbouring
molecule, k is Boltzmann’s constant and T is the temperature in Kelvin. Now, from
equation (1.1)

BQ = lim (Q — AQ)Vm, (15)

Vim—00

which, when combined with equations (1.2), (1.3) and (1.4), gives the general expression

N? 1 Uya(r) '

Bg =2 [ | squ(r) —q| e #r dr. (1.6)
Q 2

This basic formula can be used to determine the second virial coefficients of various
electromagnetic molecular properties, Q.

Several properties of gases have been treated in this way. The pressure-volume-

temperature (P-V-T) behaviour of a gas may be described by the virial equation of
state [1]:

PV, B(T) C(T)
ﬁ—1+v—m+ V2 +-e (1.7)
where B, C, ... are called the second, third, ... virial coefficients, or pressure virial

coefficients, and are functions of temperature and the nature of the gas. The second
pressure virial coefficient B(T') describes the initial deviation from the ideal gas law due
to pair interactions in a real gas [1].



The total polarization of a gas, or the Clausius-Mossotti function, may be written as
a virial expansion [28]:
g —1 B.  Cc

P e+2 ™ E“l_Vm—i_V,,%

+oe, (1.8)

where €, is the static dielectric constant of the gas, and A, B, and C. are the first, second
and third dielectric virial coefficients, respectively. These coefficients are functions of the
temperature of the gas.
The density-dependent deviations from the Lorentz-Lorenz equation [29,30],
n2 -1 _ N AQQ

Vip = , 1.9
n? +2 380 ( )

relating the mean polarizability «q of an isolated molecule to the refractive index n of
the bulk sample at equilibrium, are best described by a virial expansion of the molar
refractivity Ry, of a gas [31]:

’I’L2—1 BR OR
R, = m=A — =t 1.10
2 Rty Ty T (1.10)

where Ag, Br and Cp are the first, second and third refractivity virial coefficients, re-
spectively, and are dependent on the temperature of the gas and the frequency of the
refracted light.

When an isotropic gas is placed in a strong uniform electric field, the gas becomes
birefringent [32]. This is referred to as the Kerr effect, and the molar Kerr constant ,, K
of a gas is defined as [33]:

6n (ny — n1) Vi
K = "Wzmn , (1.11)
(n? + 2)%(c + 2)° 2

where n is the isotropic refractive index, € is the dielectric constant of the gas, and

(”II —-n L) is the difference in refractive index for light polarized parallel and perpendicular

to the applied electric field E. The virial expansion of the molar Kerr constant is [34]:
B K C K

where Ag, Bx and Ck are the first, second and third Kerr-effect virial coefficients,

respectively, and are functions temperature and frequency.



The depolarization ratio of light scattered by a gas may be expanded in inverse powers
of the molar volume [35]:

B, C,
p=pt g gt (1.13)
where A,, B, and C, are the first, second and third light-scattering virial coefficients,
respectively. These coefficients depend on the temperature of the gas and the frequency
of the depolarized light.

The second virial coefficients of all these properties describe the contributions of
pair interactions to the macroscopic observables. Since, the effect which two interact-
ing molecules have on one another determines the nature of the second virial coefficent of
a property, any theory which fully describes the interactions between a pair of molecules
must be applicable to all the properties of a gas. If all the effects are considered together,
then it should be possible to test the efficacy of the theory. Unfortunately, measurement
of second virial coefficents is not always a simple matter, and many gaps exist in the body
of experimental data.

In view of the evident success of the theory of the second light-scattering virial co-
efficient [7,9, 36], it has become important to establish whether a self-consistent set of
molecular parameters coupled with complete theories will serve to obtain agreement be-
tween experiment and theory for the full range of second virial coefficients of the different
effects. This work sets out to gather second virial coeflicient data for the fullest range
of molecules with data spanning the various effects, to derive complete theories to the
order necessary to ensure convergence in all cases and to evaluate the derived expres-
sions numerically for comparison with experiment. A comprehensive treatment of all
effects in this way has only recently become at all feasible through the introduction of
computer algebraic manipulation packages, such as Macsyma, which make possible the
enormous manipulative task, as well as the greater speed and capacity of the machines
which facilitate the extensive numerical integrations.

1.2 Collection of experimental data

1.2.1 Introduction

In order to assess molecular theories of the second virial coefficients it is necessary to
have data for the same molecules spanning as wide a range of effects as possible. The
data collected below was accumulated in this spirit but, inevitably, gaps remain in places.
Nevertheless, the set is as comprehensive as possible for the present purpose.



1.2.2 Tables of experimental values

The simplest and most widely measured effect is the second pressure virial coefficient.
Extensive experimental research has been carried out by numerous workers to determine
the second and third pressure virial coeffients of a comprehensive range of gases and their
mixtures. In 1980, Dymond and Smith [1] published a comprehensive compilation of
experimental values of both B(T) and C(T). Where there is good agreement between
the results of different authors for the same gas, they present a best-fit of the data over
as wide a temperature range as possible. Appendix A contains tables of the experimental
values of B(T) for the gases included in this study over a range of temperatures. These
values have been taken from Dymond and Smith [1]. Where available, their best-fit data
have been used.

The second dielectric virial coefficient has been measured for a variety of molecules
by several researchers. Table 1.1 shows experimental values of B, for spherical and quasi-
spherical gases, Table 1.2 gives values for non-polar gases, and Table 1.3 lists experimental
data for polar gases.

The second refractivity virial coefficient data is available for many of the gases under
study. In particular, By has been measured for a range of wavelengths by several workers
for spherical and non-polar gases, as shown in Tables 1.4 and 1.5, respectively. Unfortu-
nately, very little data was found for polar gases. Table 1.6 lists the data available for
the polar gases CH3F and CHF;.

For the spherical gases, second Kerr-effect virial coefficient data has been measured at
several different wavelengths, but each gas usually has only one or two values at different
temperatures for the same wavelength. The data available is shown in Table 1.7. The
data collected for polar and non-polar gases were all measured at 632 nm, for at least
seven different temperatures, as shown in Tables 1.8 to 1.10.

Very little data is available for the second light-scattering virial coeflicient as can be
seen from Table 1.11, which lists all the measured values available for the gases under
study. ‘

The calculations in Chapter 8 of this work will focus on the range of gases: fluoro-
methane, trifluoromethane, chloromethane, hydrogen chloride, nitrogen, carbon dioxide,
ethane, sulphur dioxide, dimethyl ether and ethene, where available data more or less
adequately spanned the range of different virial effects.



Table 1.1: Experimental values of B, for spherical gases

1028,

Gas Temp. Ref.  Gas Temp. 10B,  Ref.
K m®mol 2 K m®mol 2
CH,; 2422 9+0.4 [12] Ar 2422 0.6+0.7 [12]
979.8  8.14+0.29 [37] 242.95 1.84+0.07 [38]
315.0  7.3+18  [12] 296.0  1.6+0.6 [12]
3225  7.2940.32 [37] 298 0.094£0.05 [13]
3734 6.75+029 [37] 2.0640.10 [39]
303.15  1.2240.09 [38]
CF, 279.8 11.35+0.44 [37] 3062 1.0+0.7  [12]
322.5  10.544+0.64 [37] 322.2 0.39+0.20 [13]
373.4 9.17+£0.75 [37] 322.9 0.724+0.12 [40]
323 22402  [41]
SFe¢ 323.3 63.31+2.80 [42] 373 2.9+0.4  [41]
323.3 641  [43] 25+0.1  [41]
348.3  60.54+1.45 [42] 407.6 0.1+0.3  [3§]
373.9  58.89+4.70 [42] 427 23101 [41]
31401 [41]
Kr  242.95 82404 [38]
294 7494155 [44] Ne 322 -0.32+0.10 [13]
2982 0.90+0.05 [13]
3222 56403 [13]  Xe 24295 3542  [38]
323.15 4.340.7  [38] 291 24.5+£2.9  [44]
4076 21404  [38] 32315 3242 [3§]
4076 1242 [3§]




Table 1.2: Experimental values of B, for non-polar gases

Gas Temp. 10B, Ref. Gas Temp. 10B,  Ref.
K m®mol—2 K m%mol—2
N, 2422 42%10 [12] H, 3222 0.03£0.10 [13]
296.2  2.0£1.0 [12]
3062 18+1.0 [12]  CoH, 2082 315  [45]
322.2  0.60+£0.2 [13] 303.2  50.3£14 [24]
1.0+1.0 [12] 3049 443 [45]
344.2 0.0+£0.8 [12] 323.2 48.0 [45]
15425 [12] 30 [46]
9547  [47]
CO, 2732 3541  [41] 464412 [41]
2952 64+10 [48) 432412 [41]
302.6  57.6£0.9 [40] 475414 [24]
322.9  49.7+1.0 [45] 3482 622 [45]
50.7£0.9 [40] 373.2  50.8+0.9 [41]
41.4+2.4 [41] 51.740.8  [41]
348.2  46.4+1.0 [4.5] 42.0+£2.8 [24]
360.5  36+3  [49] 4232  58.8+L7  [41]
373.2  35.84+0.7 [41] 60.2+3.5 [41]
33.5+0.4 [4]_] 37.6+2.4 [24]
34.840.7 [41]
423.2 300409 [41]  CoHs 298.2 322418 [19]




Table 1.3: Experimental values of B, for polar gases

Gas

Temp. 10B, Ref.  Gas Temp. 102 B, Ref.
K m®mol 2 K m®mol 2
HCI 2925 4000£1000 [10]  CHsCI 2782  -8500+1800 [50]
36001000 [11] 298.2  -10200+1400 [50]
312.8 360041000 [10] 303.2  -6200+1200 [51]
3200+1000 [11] -7100£1400 [51]
3182 85001500 [50]
CHsF 323.2 -1188450 [52] 323.2 -3550+600  [51]
-1307437 [2] -3800+£800  [51]
3482 - 701£100  [52] _4470£200  [2]
369.5 - 606+30 2] 343.2 -2650+600  [51]
4165 - 331466  [2] 128004800  [51]
369.5 -2517450 [2]
CHF3; 292.6 31002400 [50] 404.8 -16964+60 [2]
3600-£1000 [10]
3032 13304100 [51]  CHCl, 3529 -11000:6000 [53]
13004160  [51]
3232 11204200 [51]  (CHy),0 291.2 2800 [10]
1100£160  [51] 294.7 40001000 [54]
1125452 [2] 3032 28001000 [51]
1090450 [5] 3115 2020 [55]
343.2 980+£200  [51] 313.5 260011000 [54]
353.7 1200+1600 [53] 323.2 1600400  [51]
-650041400 [53] 334.7 24001000 [54]
2000+1400 [56] 340.5 1540 [55]
4600 [57] 3432 1600£400  [51]
369.5 90320  [2]
930+100 [49] SO, 2927 1700+1000 [10]
416.5 704+10 2]




Table 1.4: Experimental values of By for spherical gases.

Gas Temp. ) 102Bj Ref. Gas Temp. A 10"2Br  Ref.
K nm mbmol 2 K nm  m®mol?
CHy 220 546.2 6.1£1.0 [58] Ar 206.8  325.1 1.81+0.34 [59]
294.5 5435 11.72+0.005 [59] (COnt.) 298 633.0 1.4930.15 [60]
3951 11.14+0.005 [59) 5770 1.4440.25 [60]
298 633.0 6.14+0.2 [61] 546.2  1.56+0.15 [60]
298.2 632.8 7.76+1.32 [62] 514.7  1.56+0.15 [60]
514.5  6.40%+0.83 [62] 501.9  1.49+0.15 [60]
488.0 8.93+057 [62] 488.1  1.4740.15 [60]
457.9  T.04+078  [62] 476.6  1.51+£0.15 [60]
299 632.8  7.15%0.35 [39] 436.0 1.4040.25 [60]
300 546.2 5.54+1.0 [58] 298.2 632.8 1.57+£0.58 [62]
302 632.8 6.6+0.38  [63] 514.5  1.5540.74 [62]
323 6.08£0.1  [64] 488.0 1.58+0.69 [62]
323.2  633.0 5.834+0.15 [65] 4579  1.53£0.32 [62]
373.4 6.13£0.15  [64] 299 632.8 2.16+0.34 [39]
303 633.0 1.75+0.05 [66]
CFs 298.2 6328 -14+144 [67] 323 - 1.76+0.05 [64]
4274138 [62]
5145 4654153 [62] Kr 2968 612.0 6.46+0.54 [59]
488.0 4.71£0.67 [62] 594.1  5.83+0.54 [59]
457.9  4.27+0.84  [62] 543.5  6.24+0.54 [59]
3251  6.90+0.54 [59]
SF¢ 298.2 632.8 27.284+5.18 [62] 289.2 633.0 6.23+1.55 [62]
514.5 19.48+4.68 [62] 514.5 5.11+£1.39 [62]
488.0 24.934+2.99 [62] 488.0 4.2841.87 [62]
457.9 20.32+3.08  [62] 4579  5.54+0.80 [62]
299 6328 29.0454  [39] 303 6330 5.96+0.06 [66]
323 36.0+1.8  [68]
373 22.740.5  [64] Xe  293.6 5435 24.58+0.80 [59]
| 325.1 23.25+0.80 [59]
Ne 2082 6328 -0.14+0.14 [62] 2041 5435 25.26+0.80 [59)
0114020  [62] 3251 23.25+0.80 [59]
299 -0.0640.09  [39] 298.2  632.8 25.50+2.85 [62]
303 633.0 -0.1140.02 [66] 514.5 18.56+2.36 [62]
488.0 14.91+2.14 [62]
Ar 206.8 594.1 2.5240.34 [59] 457.9 16.26+2.55 [62]
5435  1.73£0.34  [59] 348 6330 28.5+0.5  [66]




Table 1.5: Experimental values of Br for non-polar gases.

Gas Temp. A 102Br  Ref. Gas Temp. A\ 102Br  Ref.
K nm m®mol 2 K nm  mSmol~?

H, 323 632.8 0.13+0.08 [64] N, 298 632.8  0.74+0.65 [62]
0.75+0.10 [69]
CO, 243 632.8 46 [70] 1.040.31 [39]
263 ' [71] 323.2  633.0 0.89+0.06 [64]
298.2 3.2+1.6 [39] 0.6440.08 [65]
475+1.30 [62] 298 5771 0.76+0.10 [69]
320 633.0  0.0+1.0 [72] 546.2  0.814£0.10 [69]
323 1.940.2  [64] 5145 0.62+0.78 [62]
6328 53  [13] 0.81+0.10 [69]
331436  [68] 488.0  0.96+0.68 [62]
293.8 594.1  7.3320.53 [59] 488.1  0.85+0.10 [69]
299.3 5.74+0.53 [59] 4766 0.92+0.10 [69]
307.2 5461 0.4+0.36 [73], 457.9  0.9240.43 [62]
[13] 436.0  0.70+£0.10 [69]

293.8 543.5  8.96+0.53 [59]
299.3 6.83:053 [59] C,H, 2055 5041 17.65+0.85 [59)
298.2 514.5  0.73+£0.66 [62] 543.5 22.83+0.85 [59]
488.0 1.03+0.66 [62] 325.1 44.10%0.85 [59]
457.9 1.27+0.85 [62] 303 633.0 17.60+2.2 [74]
293.8 325.1 4.871+0.53 [59] 40.8+2.0 [75]
323.2 471~ 5.23+0.9  [76] 60  [24]
667.8 [13] 177404 [77]
3732 4471-  2.7+14  [76] 20.3+£0.8  [78]
587.6 [13] 17.440.4  [79]
C.Hs 348 633.0 9229430 [72] 373 19.50£0.50  [64]
373 96.6£0.05  [64] 17.8403  [77]
“Various” 27.8+1.0  [80] 20.1£0.5  [78]
“Various” 589.3 23.240.6  [80] 17.8+£0.3  [79]

295.5 3251 31.58+£0.90 [59]

10



Table 1.6: Experimental values of By for polar gases at room temperature

Gas A 102Br  Ref. Gas A 10?Bz  Ref.
nm  m®mol? nm  m®%mol?
CHF; 632.8 3.4+1.1 [39] CH;F 632.8 4.324£1.80 [62]
2.5441.35 [62] 5460 7100 [67]
514.5 2.44+0.89 [62] 514.5 -0.40+1.28 [62]
488.0 1.56£0.75 [62] 488.0 -1.02+1.09 [62]
457.0 1.97+£0.86 [62] 451.9 1.12+£0.88 [62]
Table 1.7: Experimental values of By for spherical gases
Gas Temp. A 103 By Ref. Gas Temp. A\ 10 By Ref.
K nm  C?m®J2mol 2 K nm  C?m®J2mol 2
CH, 249.7 632.8 30.5+3.1 [33] CF, 288.8 632.8 42.244.2 [33]
273.6 28.31+2.8 [33] 293 633.0 4248 [81]
303.7 24.542.5 [33] 302 4048 [81]
302 4580  37+5 [81]
: Kr 296 514.5 17+15 [82]
SFe¢ 296 514.5 334+45 [82] 303 458.0 16+2 [81]
303 633.0 470+90 [81]
Xe 296 514.5 72424 [82]
Ar 296 5145 41407 82] 302 4580 9817 81]
305 4580  3.840.7 81]

11



Table 1.8: Experimental values of By for polar gases at 632.8 nm.

Gas  Temp. 10%° By Ref. Gas Temp. 1039 Bk Ref.
K C?2m8J2mol? K C?’m8J2mol—2
CH;F 250.8 5.6+2.8 ] CH5Cl  304.1 1.97+0.29 [83]
252.6  9.3+4.7
259.2  3.9+2.0 (CH3),0 259.0 34.246.8 )
275.0  6.1+3.1 269.0 18.8+3.8
280.2 4.74+24 > [33] 278.4  16.14+3.2
2844  6.54+3.3 288.2 13.14£2.6 > [23]
303.1  5.14+2.6 302.4  11.142.2
3124 5.14+2.6 318.9 10.2+2.0
318.9 4.54+2.3 J 333.8  5.841.2 )
323.0 2.5+0.7 [83]
371.3  1.24+04 [83] SO, 298.7 13.8+0.8 )
. 307.3  11.440.5
CHF; 2455 9.6+4.8 3154 10.140.5
250.3  3.841.9 330.7  7.54+0.4
252.1  9.54+4.8 348.8  6.54+0.6
268.5 4.242.1 \ [33] 370.9  6.54+0.5 [ [91]
275.4  6.843.4 381.2  4.240.9
285.9 1.840.9 395.7  7.6+1.5
303.5 3.7+1.9 4237  4.7+11
308.9 3.24+1.6 ) 457.0  2.14+1.3
310.1  3.24+1.0 83] 4715  3.4+1.8
323.0 2.5+0.7 [83] 490.3  1.54+0.6 )
1.740.3 [83]

371.3
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Table 1.9: Experimental values of By for non-polar gases at 632.8 nm.
Gas Temp. 1032 By Ref. Gas  Temp. 10%2Bg Ref.
K C?2m8J2mol~2 K C2m8J2mol 2
CO, 299.2 61 C,Hs 255 18.2+3.7
314.9 0+1 9259 17.7+3.6
330.9 442 269 16.7+3.3
348.8 241 278 18.0+3.6
370.9  -6+2 > [15] 15.743.1 s [14]
394.5 249 287 16.84+3.3
422.8  -342 299 17.74+3.6
455.8  -344 304 14.943.0
489.5  -5+3 ) 309 14.242.9
252 23+19 ) 318 15.043.0 )
259 5497
267 -6+11 N, 248 -0.0840.28 )
279 1413 260 0.07+0.39
287 -3+9 > [14] 277 -0.21+0.33
301 347 286 -0.2340.45 > [14]
302 0+10 299 -0.3040.59
318 1148 315 0.040.30
337 949 ) 334 -0.4140.18

13



Table 1.10: Experimental values of By for non-polar gases at 632.8 nm. (cont.)

Gas  Temp. 10%? By Ref. Gas Temp. 10 Bg Ref.
K C?2m8J2mol 2 K CZm8J~2mol 2
C,H, 262 34+7 ) H, 196.1 0.090£0.011  (4) ]
268 2646 0.12940.011  (2)
273 2345 207.1  0.063%£0.009  (4)
280 18+3 0.1004£0.009  (2)
286 2245 219.5  0.063+£0.005  (4)
294 2445 [ [14] 0.100£0.005  (2)
298 1843 232.3  0.074%0.020  (4)
302 18+3 0.10840.020  (2)
313 16+3 247.0  0.025+0.015  (4)
314 1843 0.059+0.015  (2)
333 1743 259.5  0.103+0.014  (4)
334 1743 0.138  0.014%(2)
202.4  103.0+7.6 (2) \ 273.6  0.087£0.021  (4) | /84
100.047.8 (4) 0.120+0.021  (2)
211.0  90.1412.2 (2) 288.9  0.068-£0.007  (4)
87.4+12.2 (4) 0.101£0.007  (2)
214.8  63.3+12.8 (2) 303.7  0.05440.008  (4)
60.54+12.8 (4) 0.086+£0.008  (2)
222.2  49.942.3 (2) 328.0  0.038+0.006  (4)
47.242.3 (4) 0.069+0.006  (2)
235.6  44.5+0.8 (2) 350.4  0.0634+0.007  (4)
41.940.8 (4) 0.093+£0.007  (2)
250.0  39.640.9 2) L[5 376.5  0.083+0.009  (4)
37.140.9 (4) ( 0.113+£0.009  (2)
266.6  34.241.5 (2) 4117 0.0354£0.010  (4)
31.941.5 (4) 0.063+0.010  (2) )
284.9  32.8+1.5 (2)
| 30.61.6 (4)
303.2  19.6+2.2 (2)
17.64£2.2 (4)
333.4  15.9+1.0 (2)
14.01.0 (4)
363.7  28.442.7 (2)
26.642.7 (4)

(4): values deduced using the usual KE local-field function @ (n,e) = (#)2(5—"3@)2,

derived from the Lorentz-Lorenz and Clausius-Mossotti equations [85].
(2): values deduced using an alternative KE local-field function FA(n,e) = @%ﬂ [86,87).
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Table 1.11: Experimental values of B, for various gases.

Gas  Temp. A 10°B, Ref. Gas Temp. A 10°B, Ref.
K nm m?mol ™! K nm m®mol ™"
CO 298.2 5145 0.213+0.016 [7] Ar 290 488.0  0.21£0.03 ~ [16]
294 0.34+0.03  [88]
CHyCl 299.6 514.5 -3.30£0.26 [7] 208 5145 <04  [89]
298 ? 0.20+0.01  [90]
SO, 3384 5145 -6.9620.49 [9]
Kr 294 488.0  0.67+£0.01  [88]
N, 295.5 514.5 0.138+0.014 [7] 298 514.5 0.52+0.06  [89]
310 0.16 [91] |
290 488.0 0.14 [16] Xe 294 488.0 1.524+0.04  [88]
COq 208.2 5145 -8.29+0.16 [7] CH,; 294 488.0  0.5940.21  [88]
300 488.0 -10 [16] 298 514.5 0.65+0.09  [89]
298 7 0.403+0.013 [90]
C,Hs 2959 514.5 0.315+0.018 |[7]
SEFe¢ 294 488.0  1.08+0.10  [88]
CoHy 2949 514.5 -2.3844+0.027 [9] 298 514.5  1.374£0.04  [89]
328.0 [1.7840.07  [92]




Chapter 2

The Intermolecular Potential Energy

From the general expression for Bg in (1.6), it is clear that the explicit form of the
intermolecular potential energy U;o(7) is necessary to perform any calculations of second
virial coefficients. It has been shown [93] that Ujp(7) may be regarded as having three
components when the intermolecular separation R is large relative to the dimension of

the molecules:

(i) the electrostatic energy, Ueec, which arises from interactions of the zero-field multi-
pole moments (charge, dipole, quadrupole, et cetera) of the pair of molecules,

(ii) the induction energy, Uing, arising from the distortion of the structure due to the

action of the permanent electric moments on the neighbouring molecule, and

iii) the London dispersion energy, Ugisp, resulting from interactions of the electric mo-
p g
ments due to fluctuations in the charge distribution of the molecules.

These three interaction energies are due to well understood long-range forces [34,93-
95], for which it is assumed that negligible overlap of the electron clouds of the interacting
molecules occurs. When ‘the intermolecular separation R is small, there is significant
overlap of the molecular wavefunctions and prohibitively complex ab initio quantum-
mechanical calculations are necessary to account for the intermediate-range exchange
forces. Instead, it is usually assumed [31,96,97] that components (i), (ii), and (iii) of the
interaction energy are applicable to short-range interactions if an additional contribution
is included to accommodate the repulsive short-range interactions. This term is called
Uovertap- Thus, the intermolecular potential energy may be written as:

Ul?(T) = Uetec -+ Uind + Udisp + Uoverlap- (21)
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Most previous studies of the properties of gases [2,31, 39,40,96-98] use the central-field
Lennard-Jones 6:12 potential, U, to represent (Udisp + Uoverlap):

&3]

: . 12 .
where the term 45(%)6 describes the attractive part of the potential, 45(%’—) describes

ULJ =4¢e

the short-range repulsive contribution, and the symbols € and Ry are the Lennard-Jones
parameters. It can be seen from (2.2) that Uyp; is spherically symmetric. To allow for the
angular dependence of the repulsive short-range overlap forces of non-spherical molecules,
Buckingham and Pople [96] proposed an additional term, Uspape, to be included in the
overlap potential, so that:

(Udisp + Uoverla.p) = ULJ + Usha.pe- (23)

The form of the shape potential is discussed in detail in Section 2.2.
Thus, substituting (2.3) into (2.1), the intermolecular pair potential is given by:

Urz (T) = ULy + Ushape + Uetec + Uina- (2.4)

2.1 The relative configuration of a pair of interacting

molecules

In order to derive exact expressions for the various parts of the intermolecular potential
in (2.4) (except the Lennard-Jones potential), it is necessary to specify the relative con-
figuration 7 of the two interacting gas molecules. When describing the configuration of a
pair of molecules, three sets of orthogonal axes are required:

(1) The space-fixed axes: O(x,y,z), which are usually chosen to coincide with the di-
rection of the plane of a light wave or the direction of an applied electromagnetic
field. In the tensor notation of this work, these axes are denoted by the subscripts
o, B,7;

(ii) The coordinate system of molecule 1: O(1,2,3), with the principal axes chosen
to exploit the symmetry of the molecule. These axes are denoted by the tensor
subscripts 1, 7, k; and

(iii) The coordinate system of molecule 2: O'(1’,2',3'), similarly chosen to exploit the

symmetry of the molecule. The subscripts ¢/, 5/, k' are used to denote molecule 2’s
axes in tensor notation.

17



X 2 @

1/

Figure 2.1: The coordinates R, 6, 02 and ¢ describing the configuration of two linear
molecules [26].

2.1.1 Linear molecules

The physical property tensors of a molecule are usually specified relative to a coordinate
system of mutually perpendicular axes fixed in the molecule, such that one of the axes
co-incides with a symmetry axis of the molecule. A description of the interaction of
two identical molecules, each with its own molecular axes, requires a set of interaction
parameters. Figure 2.1 shows how the angles 0, 6 and ¢ and the separation, R, specify
systems of molecules 1 and 2 are O(1,2,3) and 07(1’,2’,3’), with axes 3 and 3' lying
along the symmetry axes of molecules 1 and 2 respectively. It can be seen that R is the
distance between the centres of the two molecules, called the line of centres; #; and 6, are
the angles between the line of centres and the dipole axes of molecules 1 and 2; and ¢ is
the angle between the two planes formed by the molecular axes and the line of centres.
A is the unit vector along R.

2.1.2 Non-linear molecules

Experimental measurements of macroscopic observables, such as the depolarization ratio,
the Kerr constant or the molar refraction of a gas, are carried out in a system of space-
fixed axes orientated with respect to the direction of the incident light beam. However,

molecular property tensors must be referred to the system of molecule-fixed axes which
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Figure 2.2: The molecule-fixed axes O(1,2,3) and O'(1,2',3') of interacting molecules 1
and 2 respectively, in the space-fixed axes O(x,y,z)

exploits the symmetry of the molecule. This set of molecule-fixed axes changes constantly
with respect to the space-fixed axes as the molecules move around in the sample. In
order to obtain the average projection of the tensor properties of the molecule, it is
necessary to refer the molecular property tensors to molecule-fixed axes, then project
these tensors into the space-fixed axes of the sample, and finally, average the projection
over the orientational motion of the molecule.

Figure 2.2 shows the axes 0(1,2,3) of molecule 1, the axes O’(1',2',3') of molecule 2,
and the space-fixed axes O(x,y,z). It is possible to specify fully the relative configuration
of a pair of interacting non-linear molecules using seven parameters:

(i) The displacement of the two molecular centres is given by the parameter R, which is
initially fixed along the z-axis. This choice of direction is possible, since the resultant
expressions will be orientationally averaged over all possible configurations, in the
absence of any bias.

(ii) The orientation of the molecule-fixed axes of molecule 1 relative to the space-fixed
axes may be described by nine direction cosines. However, in order to specify
any rotation of a Cartesian system of axes about its origin completely, only three
parameters are necessary. The three Euler angles oy, 81 and y; are often used to
describe such a rotation. Recently, Couling and Graham [36] used the Euler angles
in their work on non-linear molecules. Three successive rotations are needed to
rotate (1,2,3) into (x,y,z) [99,100]:
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(a) rotation about the 3-axis through an angle a; (0 < oy < 2m),
[ (b) rotation about the new 2-axis through an angle £ (0 < By <),
(c) rotation about the new 3"-axis through an angle 7 (0 <7 < 2m).

The nine direction cosines a® are now expressed as functions of the three Euler
angles. Thus, we have [99,100]:

cosy; siny; 0| |cosfy 0 —sinf; cosqy sina; O
af = |—siny; cosy 0 0 1 0 —sina; cosa; 0| =
0 0 1| |sinfB;y 0 cosf 0 0 1
coSs o1 €oS [ COsy; — Sin @y sin7y; sinay cos B cosy; +cosay siny;  —sin By cosyy
— cosa cos By siny; —sinay cosy;  —sina; cos By siny, +cosacosyy  sinfysiny
cos o sin B sin oy sin By cos [

(2.5)

(iii) In the same way, the relative orientation of the molecule-fixed axes of molecule 2 and
the space-fixed axes is described by nine direction cosines a, which are expressed
as functions of the three Euler angles oy, B2 and ;. The individual components of
ag have the same form as those of af in (2.5), with only the subscripts of the angles

changing from 1 to 2:

ag =
COS (g COS (B COS Yo — SIN g SIN Yo sin ay cos B3 COS Yy + COS g sinyy  — sin Bs €08 Yo
— COS (rg €08 P2 8in ¥y — SIN (g COS Yo — Sin g cos [y Sin 7yp + cos ap COS 7y sin B sin ys
COS (vp sin By sin oo sin cos 9
(2.6)

2.2 The shape potential

The Lennard-Jones potential used to represent the dispersion and overlap energies is a
spherically symmetric central-field potential with an attractive part and a repulsive part,
as can be seen from equation (2.2). The parameter Ry represents the closest approach of
two spherical molecules before the resultant force is repulsive. However, for non-spherical
molecules the distance of closest approach may differ for different relative orientations.
This angular dependence cannot be described by a spherically-symmetric potential. To
account for this, Buckingham and Pople [96] proposed the addition of a shape potential.

20



(a) Colliding spheres. (b) Colliding plates where #; and 82 are 0 or .
3[
(c) Colliding plates where 61 and 82 are x(7/2). (d) Colliding rods where 6 and 62 are (7 /2).

The 3 axis may be in or out of the page.

Figure 2.3: Collision configurations for spherical, plate-like and rod-like molecules.

For axially-symmetric molecules, they proposed that Usnape be given by:

12
Ushape = 4De (%) (3cos® ) + 3cos® B, — 2), (2.7)

where 6, and 6, are angles which describe the relative configuration of the colliding
molecules (Figure 2.1), and D is a dimensionless parameter called the shape factor with
—0.25 < D < 0.50. The form of the angular dependence was chosen as the lowest
order of spherical harmonic to give a reasonable variation of range of repulsive force with
orientation. For spherical molecules, D is obviously zero, since no correction is necessary.
It is argued below that D is positive for rod-like molecules, which are elongated in the
direction of the dipole moment axis [2], and negative for plate-like molecules, which are
fore-shortened in the direction of the axis of the dipole moment [2]. Rod-like molecules,
such as CH3F, favour an anti-parallel configuration (Figure 2.3 (d)), while plate-like
molecules, such as CHFj, 'prefer a parallel arrangement, as can be seen in Figure 2.3
(b) [101].

When two spheres of diameter Ry collide, as in Figure 2.3 (a), Uyy is zero when the
approach distance R = Ry. If R is less than Ry, Ury will be positive and, therefore,
repulsive. If two plate- like molecules collide in the configuration shown in Figure 2.3 (b),
R can be less than Ry before repulsion occurs. In order to reduce the repulsive R~
term of the Lennard-Jones potential, Ushape must be negative and it follows that the
shape factor D must be negative. In the limit of infinitely thin plates colliding as in
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from [104).
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case (i): case (ii): case (iii):
a; and as can be any angle oy and a2 can be any angle o) and a9 can be any angle
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Figure 2.4: The three extreme intermolecular approaches for two colliding ethene
molecules. For sulphur dioxide, the ethene molecules must be replaced with the equivalent
sulphur dioxide, shown above [9].

Figure 2.3 (b), where #; and 6, are 0 or 7, the smallest approach distance is zero and there
is no repulsive potential. Therefore, it can be seen from (2.2) and (2.7) that D = —0.25.
Obviously, real plate-like molecules will have non-zero thickness and the shape factor will
fall between zero and —0.25. When the two molecules collide as shown in Figure 2.3 (c),
then 6, and 6, are =7 and, since D is negative, the shape potential will be positive,
increasing the repulsive potential, which results in repulsive forces occurring when R >
Ry. For infinitely thin rod-like molecules, when 6, and 6, are =% (Figure 2.3 (d)), the
closest approach occurs for R = 0. From (2.2) and (2.7) it can be seen that D = +0.50.
For real molecules with finite thickness, D will lie between zero and 0.5.

Recently, Couling and Graham [36] constructed a shape potential to describe the im-
portant role played by the molecular shape in determining interactions between non-linear
molecules. They used the force field for axially symmetric molecules of Buckingham and
Pople [96], shown in (2.7), as the basis for a new Uspape to describe the orientation effects
due to short-range overlap repulsive forces for non-linear gases with Doy, (eg. ethene) and
Cayy (eg. sulphur dioxide) symmetry. Figure 2.4 [9] shows how the molecule-fixed axes
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(1,2,3) have been chosen so that the 1-3 plane coincides with the plane of the molecule,
with the 3 axis along the principal molecular axis. Figure 2.4 also shows the three ex-
treme intermolecular approaches possible. From the figure it can be seen that in all three
cases a; and @ may assume any value from 0 to 27 and, therefore, the shape potential
is independent of these angles. The simplest force-field which reproduces the orientation
effects of the shape of the non-linear molecules is [36]

12
Ushape = 4€ (&) {D: [3cos® B + 3 cos® B, — 2]
R (2.8)

+ D5 [3sin® B cos® 11 + 3 sin® B, cos® v, — 2] },

where Dy and D, are dimensionless parameters called the shape factors. If Dy = 0 then
(2.8) simplifies to the shape potential for axially symmetric molecules defined in (2.7).

For two planar molecules approaching as in case (iii) of Figure 2.4, the approach
distance R can be less than R, before contact forces arise. Thus, the repulsive part of the
Lennard-Jones potential must be reduced by a negative shape potential. For case (iii),
B1, B2, 11 and ¥, are all &%, therefore, from (2.8) it can be seen that if Ugape is negative
(D1 + D,) must be positive. If the planes were infinitely thin, then the closest possible
approach is R = 0. For this orientation there is no repulsive potential, so the 4e (%)12
term of the Lennard-Jones potential must be completely cancelled by the shape potential,
so that (D, + D,) = 0.50. Since real planar molecules will have finite thickness, it it likely
that (D; + D;) < 0.50 [36].

2.3 The electrostatic and induction potentials

According to convention [9,40,44,97,105], Uge. consists of potential energies resulting
from the interactions of permanent multipole moments, whereas Uj,g incorporates those
energies arising from interactions between permanent multipole moments of one molecule
and the induced moments of the second molecule. To quadrupole order in the permanent
moments and to dipole order in the induced moments,

Uelec + Uind = U[_L,/.L + U/,L,G + UG,H +U ,ind g + U(),indu + Uind woind s (29)

where U, ,, U, ¢ and Uy g are the electrostatic dipole-dipole, dipole-quadrupole and quad-
rupole-quadrupole interaction energies of the permanent moments of the pair of inter-
acting molecules, while U, ;nq,, and Ugnq, are the dipole-induced-dipole and quadrupole-
induced-dipole interaction energies. Uing pind, is the induced-dipole-induced-dipole inter-
action energy, which Buckingham and Pople [96] were the first to include in their calcu-
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lations. This term is frequently omitted, but working to this order in our calculations

produced a 7% increase in the second dielectric virial coefficient of hydrogen chloride, so

that the effect can be significant, and the term is generally included in this work.
Buckingham [26] shows that:

Ui = _M«(xl)Tc(z}f)“(ﬁQ)’ (2.10)

s =3 (0TI 02— W7 o), o)
Uso = §065Togholhrs (2.12)
Upjindp = —%a (Té}; ,ug)To%) ,uﬁf) - To%) ME;I)T&) ,ugl)) , (2.13)
Usinas = =30 (T35, 05,7500 + 183 697502 (2.14)
Uind p,indp = —GZTO(‘%)MS)T&,)T,%)M?), (2.15)

where a is the mean static dipole polarizability, and use is made of the powerful T-
tensor notation, which was formulated [26] to express the electric field E, and electric
field gradient E,s at the origin of one molecule due to the point multipole moments of
its neighbour. Thus, for the field and field gradient at molecule 1 due to the multipole
moments of molecule 2, we have:

_ (), (2) (1) A(2)
E((ll) =T, ghy — %Taﬂvgﬁ'y SE (2.16)
(1) _ (1 1) A2
Bap = Tyt = 3Tigha033 ++ -, (2.17)
where T(%), To(llﬁ),y and TO(‘?’YJ are the second, third and fourth rank T-tensors, defined
by [26]:
1 1 1 1
b 4re R~ dmey RS (3RaRs — R'dp) (2.18)
1 1
T(l) - Vv, 1
afy 47T€0 VBV’YR
3 1 (2.19)
- ATe, R [5R0¢R5R"r - R (Ra6ﬂ7 + Rgdqy + R’yéaﬂ)] ,
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1 1
Tops = “Tre; Ve VeV Vi

. 4dme R
= i— [35R RgR,YR‘s — 5R? (R Rg(s,y(; + R, R 555
471'50 R
(2.20)
+ RaR(s(Sﬂ,Y + RﬂR,y(Sa,s + RﬁR(s(Sa,y + RoyR,s(Saﬁ)
+ R* (8ap0y5 + 0ar085 + das0pn)]
where V, = 0 (2.21)
o aRa 7

and R, is the vector from the origin of molecule 1 to the origin of the second molecule.
The field and field gradient at molecule 2 due to the multipole moments of molecule 1
are defined in the same way:

E® =T W) — 119 05 + -, (2.22)
£~ 1)~ A+ o
where  T® = (—=1)"T)  for the n*" rank T-tensor, (2.24)

since the vector R, always lies in the direction from molecule 1 to molecule 2. It follows
from (2.24), that for second and fourth rank T-tensors the superscript may be omitted,
but for third rank T-tensors the superscript must be specified to accommodate the change
in sign. In this work, for simplicity, we will adopt the following notation for third rank
T-tensors:

(1 (2
Tog, =T = -T2 (2.25)

For non-polar molecules, U, ,,, U, ¢ and U, inq, are all identically zero.

2.3.1 Linear molecules

In order to determine the explicit forms of the potentials in equations (2.10) to (2.15) for
linear molecules it is necessary to express the molecular property tensors in terms of the
angles specifying their relative configurations. Figure 2.1 shows molecules 1 and 2 with
their respective systems of axes. As was stated in Section 2.1, molecular properties are
usually expressed in terms of molecule fixed axes to exploit the symmetry of the molecule.
It is then necessary to project these property tensors into the space fixed axes O(X,Y,Z).
(1)

Unit vectors, £,° and 1% along the principal axes of molecules 1 and 2, respectively, and
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Aq along the line of centres R, are related to the angles 6, 6, and ¢ describing the relative
configuration 7 of the pair of interacting molecules as follows:

¢, = cos b, (2.26)
I\, = —cos by, (2.27)
ES)K(O?) = cos 1o = — cos f; cos O3 + sin 6, sin 6 cos ¢. (2.28)

Buckingham [26] has demonstrated how the property tensors of an axially symmetric
molecule p may be expressed in terms of E(ap ).

W) = k), where = 4 = 2 (229
0% = —26) = —26)
0%) = 10 (36069 — bag ), where 0= 0D _ g _ gy - (230)
yy = "aUyy = Uy
Also, by definition,
Ry = R, (2.31)

Using the coordinate system in Figure 2.1, the electrostatic and induction potentials
for linear molecules are [26]:

1 [ p? . .
wt = e {ﬁ (2 cos 6y cos B, + sin 6y sin G, cos qﬁ)} , (2.32)
1 3 ﬂe 2
Uyp = pr {5@ [cos 8y (3 cos® B2 — 1) + cos b, (3cos® By — 1)
(2.33)
+2sin 6, sin 6 cos 02 cos ¢ + 2 sin B, cos §; sin b, cos QS} } ,
Ugg = —1— §—9i (1 — 5c0s” ) — 5cos? By + 17 cos? 0, cos? O
Y drey |4 RS ! 2 ! 2
(2.34)
+2sin” 0, sin® 6, cos? ¢ + 16 sin 6, cos §; sin O cos b, cos ) } ,
1 1ap? )
Upindp = e {—5 75 [(3cos®6y — 1) + (3cos?, — 1)] } , (2.35)
1 9 af?
Upindp = (4%50)2 {_gﬁ (4 cos* ) + 4 cos* 0 + sin® 0, + sin* 92)} , (2.36)
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1 2P o
Uind pind p = - { CLRA; (8 cos 0 cos O3 + sin 6; sin 0 cos ¢)} : (2.37)
(471'60)

It should be noted that Uy, jnq, has been written so that its unweighted orientational aver-
age is zero (i.e. so that it is purely orientational). The part of U, ina, which is independent
of orientation is assumed to be incorporated in the (%)6 term of the Lennard-Jones po-
tential [96]

2.3.2 Non-linear molecules

For polar molecules of Cy, Cy, and higher symmetries with the 3-axis along the principal
molecular axis, the dipole moment has only one independent component [26]:

u9=ﬁ“{004, (2.38)

while for molecules with Cqy, Do and Dgy, and higher symmetries, the traceless quadrupole
moment has two independent components [26]:

6y = 95?1?, =10 0, 0 . (2.39)
0 0 "(91 + 02)

Referring the T-Tensors to the space-fixed axes (x,y,z) is simple, since R is fixed along
the z-axis initially. Thus the second-rank tensor, defined in (2.18), becomes

-1 0 0
-1 2 0 10 2.40
of 47T€() R3 B ’ ( ) )
0 2 '

Similarly, the third-rank T-tensor becomes
0 0 —1 0 0 0 -1 0 0
Tlﬂ’)’ - 47?6072% 0 0 0 ? TZﬂ')’ = ?47?_60%5 0 0 -1 ’ T3ﬁ’)’ = 47‘?5()?%~§ 0 -1 0
-1 0 0 0 -1 0 0 0 2

(2.41)

The components of the electrostatic and induction potentials are referred to the space-
fixed axes. Thus, the dipole and quadrupole moments need to be projected from their
respective molecule-fixed axes to the space-fixed axes as follows:

« 1 ]
u) = agp?, D = agu; (242)
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To simplify the resulting expressions, the direction cosines may be written as

where

6

$ = azalol),

1 Ay Ay
7 Ay Ay

6%) = agalol).

A, = cos a; cos 1 cosy; — sin oy sinyy,

B, = cos o cos f3 cos y2 — sin ay sin s,

A, = sin v cos 1 cos y; + cos e sin 7y,

B, = sin as cos 35 cos 2 + €os o sin s,

Ag = —sin f; cos vy,

B, = —sin (35 cos s,

A, = —cosay cos [ siny; — sina; cos vy,
B, = — cos az cos (3 sin 3 — sin & coS Yo,
Ay = —sinay cos By siny; + cos a; €os 71,
B, = —sinaj, cos ﬂz sin 7y, + COS Qg COS Yo,

Ag = sin By sin 7y,
By = sin 3, sin 7y,
A, = cos g sin G,
B, = cosay sin (s,
Ag = sin g sin 3,
By = sinap sin f,,
Ay = cos fiy,

By = cos fs.
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Hence, for interacting non-linear Cy, and Dy, molecules in the coordinate system

shown in Figure 2.2 [9]:

2

D
M3
Upp = (dreg) B8 {6, [A(~B? + B} — B + B} + 2B: — 2B;)

+ 2By(A Ay — AgAg) + 2Bg(AgA; — AgAg) — 2B, (A3B, + AgB,)

+By(A? — A2 + A2 — A2 — 2A7 + 2A2 + 24,B; + 24 Bs) | -
+ 0, [Ag(=B3 + B — B} + B} + 2B — 2B3) + 2B3(A,Ag — A3Ay) %)
+ 2By (A5 Ag — AgAg) — 2By(A; B, + AgBy)

+By (A2 — A%+ A2 — A2 — 2A% +2A% +2A,B, + 244B;)] }

1
3(47T€0)R5

+3A2 — A2+ A2+ 4A% — AA2) + B2(A? — A2+ 3A% — 3A; — 4A% + 447)

Ugp = {02 [B} (34} — A} + A} — Al — 44} + 4A]) + B3 (—3A]
+4(AyAg — A A)(B3Bs — ByB,) + Bi(—A? + A2 — 3A] + 3A% + 442
— 4A2) + 4(A? — A2 + A2 — A% —2A2 +2A2)(B, — B,)(By + B;)

— 16(A;3Ag — A A;)(ByBy — By B;) — 16(AgAg — AyA;)(BgBy — By B;)]
+ 05 [B3(3A5 — 3A] + AL — A} ~ 4A% + 4A4%) + B3 (343 + 343

— A2+ A2+ 4A2 — 4A2) + BI(AZ — A2 £ 3A2 - 3A2 — 4A% + 4A))

+ 4(AyAg — AyAg)(ByBg — ByBg) + BE(— A2 + A2 — 3AZ + 3A2 + 442
— 4A2) + 4(A2 — A2+ AZ — A2 — 2A% 4+ 2A2)(By — Bg)(By + By)

— 16(A3Aq — AyAg)(B3By — ByBg) — 16(AgAg — AsAg)(BgBy — By By)]
+ 0,0, [BE(3A% — 3A5 + AZ — A2 — 442 + 4A2) + B2(3A7 — 342 4 A2

— A7 —4A7 + 4A%) + B; (—3(A} + A2) + 6A% — A2 — AZ + 243

+ 4( A% + Ag) — 8A3) — 4B, B,(A;A¢ — AyA) + Bi(AZ — A%+ 3AL

— 3A2 — 445 + 4AY) — AB,B,(A3Ag — AjA,) + BE(A? — A2+ 342 — 342
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U/L,indu

Uind thind p =

— 4A% + 4A7) + 4B Bs(2434g — AyAs — A1 A) + BE (A2 - A} + 243
— 3(A2 + A2) + 6AZ + 4(AZ+ A2) — 8A]) + 16B,B; (4349 — Ay Ay)

+ 16B,B,(AgAg — AsAg) — AB2(A3 — A3 + A% — A — 2A% + 247)
+16B,Bg(AgAq — A A7) + 16 By By(AgAg — AgA;) — 4BF (AT — Af + 4}
— A2 242 + 2A2) — 16B, By (24,4, — Ay Ay — Aj A7) — 16B, By(2A5 A,

— AgAg — AyA)) +4B2 (AT + A5+ A+ AZ - 2(A2 + AZ 4+ A% + A3)

+445)]}, (2.56)
a
(4—7;,3'% {342 + 3B - 2}, (2.57)

W {62 [A] — 2A3A% + A + 2A5(A] — A) + A} + 245(— A3

+ A2 — A%) 4+ AR+ AAL(AL + AY) +4AT — BA AN (A1 Ay + AgAg)
+AAL(AZ 4 A2 - 2A2) + 4AG) + 0F [AG — 2A5A% + AS + 2A3(A5 — A})
+ AL 4 2A2(—AZ 4 AZ - A) + Af + AAZ(AS + AD) + 443

— 8AgAg(A Ay + AgAg) + 4A2(AL + A2 — 2A3) + 4A]]

+20,0, [ATAS — AZ(AT + A3) + Aj + A(AS — A3) + AZ(A] - A}

+ A2) - AZ(A% 4 A2 - 242+ A2+ AY) + A+ 2A%(— AL + A]

— A2 A2) 4 dA A (A Ay + AGAL) + 2A5(— AT + AL — Af + A

+ 2A%) — 44, [A7(A As + Ay Ag) + Ag(AAs + AsAg)]

+2A2(A2 + A2 4 A2 4 A2 - 242 - 2A2) +442]}. (2.58)

Here, as for linear molecules (Section 2.3.1), the unweighted orientational average of

U,jndp 1s zero, with the orientation-independent part assumed to be accounted for in

Up;. The tensor facilities of the Macsyma algebraic manipulation package were used to

determine the terms above. When used in numerical integration, the resulting expressions

were converted directly to Fortran by Macsyma, eliminating the typographical errors

possible when programming manually.

These expressions describe the interactions of molecules with C,, and higher symme-
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tries and are generally applicable to linear or spherical molecules by appropriate simplifi-
cation of the multipole moment components. A powerful test of the computer programs
used later is to check that both sets of equations yield the same results when the simple
tensor forms for axially symmetric molecules are used in the more general expressions.
Agreement to within at least four significant figures was always obtained.

Now that exact expressions have been determined for all the components of the in-
termolecular potential energy, they may be used to calculate all of the second virial
coefficients. The second pressure virial coefficient will be considered first, since it has the
simplest form and the largest volume of experimental data of proven accuracy available
for any second virial coefficient. For these reasons, it has historically been employed to
fit the Lennard-Jones and shape parameters used in Up; and Ushape.
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Chapter 3

The Second Pressure Virial
Coefficient, B(T)

The ideal gas law, PV = nRT, decribes the relationship between pressure, volume and
temperature (P-V-T) for a sample of n moles of an ideal gas. For one mole of an ideal
gas PV,, = RT. The virial equation of state describes the departure from this ideal
behaviour of a real gas [1]:

PV, B(T) , C(T)

om oyt .. 3.1

RT TV, Tvp T (31
where B, C, ... are called the second, third, ... virial coefficients, or pressure virial

coefficients. In order to describe the P-V-T behaviour of a particular gas completely it is
necessary to know the values of these virial coeflicients.
It can be shown [95] that

N e
B(T) = —5~ //e"ulﬂ(‘)drldm—v,i , (3.2)
1 72

where dr; is the volume element in space at the position of molecule 1 in a Cartesian

coordinate system, and dr, is the corresponding volume element for molecule 2. Now,

T T2

Therefore, equation (3.2) may be written as:

B(T) = %‘// (1) drdr, (3.4)

1L T2
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or, in terms of 7, the relative configuration of molecules 1 and 2,

B(T) = %/ (1 - e*%ﬂ) dr, (3.5)

which is the general form of the integral. Note that the factor ﬁ has been cancelled out
because [ dr; = Vi,

3.1 B(T) for spherical molecules

For spherical molecules, the pair interaction energy, Uiz, depends only on the separation,

= |ry — 74|, of the molecules so the integral [ dr can be replaced by 4nR*dR. As R
approaches infinity, U;» tends towards zero and e approaches unity. Therefore, the
integrand in equation (3.5) becomes zero for large separations and the upper limit of the
integral may be set to infinity. The expression for B(T') for spherical molecules becomes

T) = 27Ny / 1—e e R2dR (3.6)

In practice, for all gases treated here, numerical calculation of B(T') shows that for sep-
arations larger than 3 nm the integrand is negligible.

3.2 B(T) for linear molecules

In order to describe the relative configuration, 7, between two interacting non-spherical
molecules, it is necessary to consider angular coordinates defining the orientation of the
two molecules, as well as the separation between them. When these angular coordinates
are included in the integral for B(T) a normalisation factor, Q, must be introduced,

resulting in the following expression for the second pressure coefficient [95]:

_ 27N
i A/// 11— e ) B2 dR dwy dw, (3.7)

where w; and wy are the angular configurations of molecule 1 and molecule 2, respectively.
The value of the normalisation factor, €2, is determined by the number of angular variables
required to specify completely the orientation of a molecule relative to fixed axes. For
linear molecules, the molecular orientation can be described fully by two angles, 6; and
¢;, therefore [95]

dw; =sinf; db; d;  and Q= 4, (3.8)
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Substituting (3.8) into (3.7) yields [96]

iy 2

0o T 2
B(T):% / / / / / (1— =) B? sin 6y sin 0, dR d1d0zdrdga,  (3.9)
m

R=0 0,=0 62=0 ¢1=0 ¢2=0

where Uyp = Usa(7).

However, it is unnecessary to retain both ¢; and ¢, separately, and they may be
replaced by a single angle ¢ = ¢; — @,. Figure 2.1 [26] on page 18 shows how the angles,
6., 6, and ¢, and the separation, R, specify the relative configuration, 7, of a pair of
interacting linear molecules [26].

By replacing ¢, and ¢, with ¢ in equation (3.9), the 5-variable integral simplifies to a
4-variable integral, which must be multiplied by 27. Thus, (3.9) becomes the well known
expression for the second pressure virial coefficient for linear molecules [56,95, 106]

T 2w

B(T):%/ // /(1—e—2¥%ﬂ) R? sin 6, sin 6, dRdf, 6y dp.  (3.10)

R=0 8;=0 62=0 ¢=0

It can be seen from equations (3.6) and (3.10) that the second pressure virial coefficient
of a gas depends on Ujs. In order to calculate B(T), it is necessary to know the pair
interaction energy. On the other hand, measurements of B(T') yield information about
the nature of Ujs. The explicit form of the intermolecular potential energy has been
discussed in Chapter 2.

3.3 B(T) for non-linear molecules

In (3.7), which gives B(T') for non-spherical molecules, w; is the angular configuration
of molecule i and the value of the normalisation factor, 2, is determined by the number
of angular variables required to specify the orientation of a molecule completely. For
non-linear molecules, the molecular orientation can be described fully by three angles, o,
B and v (Section 2.1.2), therefore [95]

dw = sin 8 da. dB dr, and Q= 8rx% (3.11)
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Substituting (3.11) into (3.7) yields [9]

3%27//”//// 1—6%2)

R=0 a1=0 81=0 71=0 a2=0 B2=0 12=

X R2 sin ,31 sin ,62 dR daldﬁld’yldagd@dq@. (312)

3.4 Summary of experimental work on the second

pressure virial coefficient

Extensive experimental research has been carried out by numerous workers to determine
the second and third pressure virial coeffients of a comprehensive range of gases and their
mixtures. In 1980, Dymond and Smith [1] published a comprehensive compilation of
experimental values of both B(T) and C(T'). Where there is good agreement between
the results of different authors for the same gas, they present a best-fit of the data over
as wide a temperature range as possible. Tables A.1, A.2 and A.3 in Appendix A show
experimental values of B(T) for various gases over a range of temperatures, taken from
Dymond and Smith’s [1] best-fit data. This tabulation is limited to gases which are to
be investigated in this study.

It can be seen from Tables A.1 to A.3 that values for B(T') are predominantly neg-
ative. It is also apparent that B(T) becomes less negative (and in some cases becomes
positive) as the temperature increases. It is possible to explain this tendency through
the intermolecular potential [106]. When the temperature is low, the mean energies of
the molecules in the gas are of the same order of magnitude as the depth of the potential
energy well, resulting in an increase in the attractive forces between interacting molecules.
This increase in attraction causes a corresponding decrease in pressure, giving rise to a
negative value for the second pressure virial coefficient. At high temperatures the average
energies of the molecules increase and become large in comparison with the maximum
energy of attraction and so the predominant contribution to the second virial coefficient is
that due to the repulsive portion of the potential [95,106,107]. The increased repulsion
between molecules results in an increase in pressure and consequently, B(T") becomes
positive. ,

Sometimes, at high temperatures, molecules may collide with such great force that
some interpenetration is possible. When this occurs the effective molecular volume de-
creases. At very high temperatures, the number of such collisions may become signifi-
cant, and the resultant decrease in the molar volume causes a decrease in B(T) [106].
An example of a molecule where this behaviour is observed is Helium [108], as can be
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seen in Table A.1.

There are several different experimental methods for measuring B(T') of gases and
their mixtures. Pool et al. [109] and Orcutt and Cole [13], amongst others, have described
methods which make use of the direct measurements of P, V and T. Orcutt and Cole’s
cyclic expansion method [13] has subsequently been used by Sutter and Cole [2], Bose
and Cole [40] and Copeland and Cole [110]. Another method of measuring B(T') is the
differential method, described by McGlashan and Potter [111]. In this procedure, the
behaviour of the relevant gas is compared with that of another appropriate gas with
almost ideal properties. B(T) may also be measured using gas adsorption, or it may
be derived from other measured properties of the gas; for example, the Joule-Thomson
coefficient [95].

It was shown in Section 3.2, that the value of B(T) is determined by the intermolec-
ular potential energy Ui, Thus, an important application of the second pressure virial
coefficient is in the study of the pair interaction potential [27,106]. Unfortunately, second
pressure virial coeflicients on their own are not sufficient to evaluate all the parame-
ters involved in pair interactions unambiguously, since they are not very sensitive to
non-spherical potentials [97]. Many authors seeking to evaluate molecular interaction
parameters investigate the second dielectric virial coefficient, B, and B(T) simultane-
ously [2,3,37,40,42,97,110,112], because B, is extremely sensitive to the form of the
intermolecular potential [2,3,11,49]. In order to determine the most reliable model of the
intermolecular potential, B, and B(T) are calculated for a variety of potentials and the
results are compared with experimental values [2,3,12,13,40,56,96,97,110,113-115].

36



Chapter 4

The Second Dielectric Virial
Coefficient, B¢

The pressure dependence of the static dielectric constant of a compressed gas is a potential
source of information about molecular interactions. As with other equilibrium properties,
a theory can be developed to relate the second and higher-order virial coefficients to the
molecular interaction energy. The second, third, ... virial coefficients can be related to
the properties of a group of one, two, three, ... molecules respectively [101]

The theory of the second dieletric virial coefficient was first examined in detail by
Buckingham and Pople [28,101] in 1955. Prior to that Harris and Alder [116-118] had
developed formulae for the density-dependence of the dielectric constant for polar sub-
stances from some simple force fields, using the Onsager [119] model for estimating the
mean dipole moment of a molecule. This equation was not yet in the virial form which
has since become the preferred method for treating molecular interaction effects. Buck-
ingham and Pople [101] were the first to show that it was possible to draw more general
and systematic conclusions about molecular interactions if one dealt only with the initial
deviation from ideal gas behaviour. In the first approximation they considered a rigid
dipole model for polar molecules with a Stockmayer [120] type potential, consisting of
the Lennard-Jones potential and the dipole-dipole interaction energy (See Chapter 2) .
The role of molecular polarizability was then estimated by comparing the earlier results
with those attained by extending the theory to consider a polarizable dipole model [101].
They also examined separately the effect of including the permanent quadrupole moment
of the molecules in the intermolecular potential, as well as considering the effect of its
shape. The various effects were considered separately due to the difficulty involved in
performing the integration of the algebraic expressions, but the relative importance of
the various contributions was established.

In the comprehensive treatment which follows, the most general intermolecular po-
tential to quadrupole order and including polarizability and shape effects is used, dipole-
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induced-dipole contributions are taken to the highest orders necessary to establish con-
vergence, whilst the field gradient effects in the interactions are also included.

If we consider an assembly of N, identical molecules placed in a uniform external field,
E,, then the electric displacement, D;, inside the sample is related to the macroscopic

internal field, E;, and the dipole moment per unit volume, P;, as follows:
D; =¢yE; + P;, (41)

where gy is the permittivity of a vacuum. Now, since D; = €,60F;, where ¢, is the
dielectric constant, (4.1) can be written as:
P

go ey — 1) = Eif‘ (4.2)

In order to develop the theory of dielectric virial coefficients, it is necessary to evaluate
-% using statistical mechanics. However, because E; is an averaged quantity it is not
suitable as a statistical-mechanical parameter, and it is usually expressed in terms of the
external field, Ey, which is an independent variable. The relationship between E; and E,
is determined by the sample shape under consideration, so it is necessary to specify the
shape of the sample. Fortunately, since ¢, is a shape-independent property of a gas, it is
possible to consider the simplest case of a spherical sample [121] without loss of generality.

From classical electrostatics, the general result for an isolated spherical sample is

3

= E,. :
€+ 2 0 (4.3)
Substituting (4.3) into (4.2) yields
Epr — 1 - 1 Pi A4
er+2 3e9 \Eg/)’ (44)
Since saturation effects are usually negliglible under experimental conditions, it is
possible to evaluate ( IE);) in the limit of zero field, and
im (21 = L (M 4.5
Eo—0 \ Fy o Vi \OE, Eo=0’ ( . )

where M (Ey) is the total mean moment of the sample. In an isotropic fluid, M(F,)
is parallel to Ey. When (4.5) is substituted into (4.4), we get the total polarization, or
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Claussius-Mossotti function [28],

e — 1 1 [OM
pPp== Vin=—| =— . 4.6
T € +2 3€0 (6Eo> Eo=0 ( )

The average moment is given by the statistical mechanical expression

— [ M(T, Ey).e e~ " dr
M(EO) = ~V(IL,EQ) ) (4'7)
fe Twrdl

where e is a unit vector in the direction of Ey and I' represents all the coordinates
(translational and rotational) of all the molecules. V(T', Ey) is the potential energy of

the system and (Mal;:i")) =—-M(T',0).e.
0 Eo=0

Carrying out the differentiation of (4.7) and letting Eg — 0 yields

@ — M e _1_ e €
<8E0)E0:0 _< 9B, >+ pr (M, 0)eHMIT0) eh (4.8)
1

- o (M, 0).e) (M(T,0).e),

where (X) represents the statistical-mechanical average of X in the absence of an external
field. Now, since the sample under consideration is isotropic [122],

({M(T,0).e} {M(T',0).e}) = 5 (M(T,0)?)
and (M(T',0).e) =0,

so that (4.8) simplifies to

(%)EFO N <8—A/Iz§11;;—m'e> + 3—;:,? (M(T,0)%). (4.10)

If (4.10) is substituted into (4.6), we obtain

er — 1 1 [ /OM(T, E,) 1
P: Vm e pp— _—’ - 9
YT e+ 3¢ {< OE, e> + 37 (M(T,0) >} , (4.11)

which, since the sample is' composed of identical molecules, may be written as follows:

e — 1 Na | /op® 1 Ja _
P= v, =4 , 2 (1,6
T &+ 2 3eg {< 0E, e> T3 — (n) 0 (4.12)
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where 9 is the dipole moment of the i*® molecule.

The two terms on the right-hand side of equation (4.12) each have a distinct physical
interpretation. The first term is a result of polarization of the molecules by the applied
field. The second term originates from the natural inclination of the molecular dipole
moments to align themselves spontaneously in the direction of the external field, in order
to assume lower energy positions. For molecules with permanent dipole moments, the
second term is the most significant. However, this second term is not necessarily zero
for non-polar molecules, since it is possible for moments to be induced in individual
molecules.

The Claussius-Mossotti function may be expanded in inverse powers of the molar
volume [28] to yield

g — 1 B, C.

=A+ =4+ =+ (4.13)

=T "y =
P £, + 2 Vi V2

where A, B. and C; are the first, second and third dielectric virial coefficients, respec-
tively. The value of A, is obtained by allowing V}, to tend to zero. Therefore, from (4.12),

N 2
A =4 (ao + ﬂ) , (4.14)

where ay is the mean static polarizability of an isolated molecule and g is the permanent
dipole moment of an isolated molecule. From equations (4.12), (4.13) and (4.14), it follows
that the second virial coefficient is given by

B.= lim {Vm lgr —Ly Ae} }

Vim —00 87- + 2

N2 -al.l;(l) 1 Uia(r)
[y )

_ M '
N 360Q i

A(p™ + u®) 1 e
) ]k - )

[\

(4.15)

where p, is the permanent dipole moment of an isolated molecule, and (p(V + @) is
the dipole moment of an interacting pair of molecules in the absence of a field.

In order to perform the integration in (4.15) to calculate B,, it is necessary to eval-
uate both the first distortion term (Section 4.1) and the second temperature-dependent
orientation term (Section 4.2). Unfortunately, no simple general theory, which is ap-

plicable to all molecules at all intermolecular separations, exists for either term [122].
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The theory of both terms is understood for large intermolecular separations (long-range
limit), but complicated ab initio quantum mechanical calculations are required at very
short range, where the the charge distributions of the molecules begin to overlap and they
can no longer be treated as individual entities. In view of this difficulty, 1t is usual to
assume [9,28,105,122] that the two molecules preserve their individual identities, even
where overlap occurs. The resulting expressions are used for the entire interaction range,
including the overlap regions, and the interaction is described in terms of the proper-
ties of molecules 1 and 2. The effect of short-range contact forces on the intermolecular
potential are handled separately, as discussed in Chapter 2.

| ®
4.1 Expression for (8” e — ao)

The expression for (%.e — ao) has been derived by various authors [122-124]. The
treatment of Graham [122] is followed here because it is the most general.

The dipole moment uz ) of molecule 1 is partly due to the direct effect of the external
field Fy, and partly a result of the fields and field gradients at molecule 1 due to the
electric moments on molecule 2. Thus, the dipole moment of molecule 1 may be written

as [26]:
= u) +a) (on + EJ('I)) + SAGER (4.16)

where ,ug? is the permanent dipole moment of molecule 1, EJ(-l) and E](,lc) are the field
and field gradient at molecule 1 due to molecule 2, a( ) is the static polarizability of
molecule 1, and A(lk is the property tensor which descrlbes the dipole induced by an
electric field gradient or the quadrupole induced by an electric field [26]. Since ,ug e;
will be differentiated with respect to Eq, only those components of (4.16) due to Eq need
be considered. For molecules with permanent moments the field ﬂ(l) at molecule 1 due
to the permanent moments of molecule 2 may be strong enough to modify the effective
polarizability of the first molecule. These modifications may be accounted for by including
the static hyperpolarizability tensors b, and g;x [26,34,125]. In addition, the field
gradient F;(jl) at molecule 1 due to permanent moments on molecule 2 may modify the
polarizabﬂity of molecule 1. In order to describe this effect, the term ¢£],11F( ) is included
in the effective polarizability. This modified polarizability, which may be referred to as

the differential polarizability pg), is given by:

pEJ) - + szkF QQEjllth(l + ¢zgll)ch(l) . (4.17)
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Thus, the dipole moment induced on molecule 1 may be written as:

1 1) (1 (1)
P (o) = (0‘531') + bgjl'l)ch(:l) + %gg;llelgl)Ft( e ¢£jl)chI§l) + - ) (Eo;' + 7; )

+ %ASI)CJ:](I? NIV (4.18)

where }"J(-l) and .7-';,? are the field and field gradient at molecule 1 due to the moments
induced on molecule 2 by the external field Ey. The dipole moment u?) induced on
molecule 2 is given by an analogous expression.

Now, using the T-tensor notation described in equations (2.18) to (2.24) of Section 2.3,

we can write:

‘Fi(l) - Tij“S'Q) (Eo) — %Tijkeﬁ) (Eo) +--+, (4.19)
fi(J,l) = Tijk“g)(EO) - %Tijklel(j)(EO) N (4.20)

where Hﬁ)(Eo) is given by:

0% (Bo) = AG) By + fl‘”) bt O FD (4.21)
where  F() = T, 4 (o) + 3T,,,,080(Bo) + -+, (4.22)
and  Fi) = =T, (Bo) = § T, (Bo) + - - (4.23)

HSZL(EO) is given by an expression analogous to (4.21).

Substituting u§2) and Hﬁ) into fi(l) in (4.19), then substituting .7-',£2) and .7-',512) into the
resultant equation, and finally substituting for ugl) and 01(,1,3 yields the following expression

for ]—"i(l), where only the simplest terms are retained:

1 2 2
‘7-—]( '= Tjkpgcz)_Em + zykpil)nﬂbpgzlEO” T

2 2
+ Tjkpscl)sznA;%nEop +o = %T]kASczznTl (1)E0p + (4.24)

mnP np

2 2
- %T,jklAgn}clEOm +ooet %Tjklcl(cl'r)nnTmnpng)qu T

A simple physical interpretation of some of the terms in this expression follows:

(1) The first term represents the field at molecule 1 due to the dipole moment pg‘;)EOl
induced on molecule 2 by the external field Fj.

(ii) The second term represents the field at molecule 1 arising from the dipole moment
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pgngmnpgp)Eop on molecule 2, initiated by the field Tmnp%)EOp due to the dipole

moment psllp)Eop induced on molecule 1 by the external field.

(iii) The third term describes the field at molecule 1 due to the dipole moment on
molecule 2 (pg)T A§,1,,)mE0p) arising from the field T, AE?mE

. I op» Which is due in

turn to the quadrupole moment on molecule 1 (AS,)mEOp) produced by Fy.

(iv) The last term describes the field at molecule 1 due to the quadrupole moment in-
(2)

duced on molecule 2 (—-C;; ..

Tmnpp,(,?qu) by the field gradient —Tmmnppby By, arising
from the dipole moment p&)EOq on molecule 1 produced by Ej.

Only a few of the possible terms have been illustrated here, but the relay effect described
above results in an infinite series of progressively higher-order terms. Unfortunately,
until the individual terms are calculated it is impossible to be sure that convergence has
been reached. In the past the point of termination of the series was determined by the
practical constraints of calculating the terms by hand, or with limited computing facilities.
As computer capablilties have improved, it has become possible to add as many terms
as necessary to ensure convergence. This is achieved by calculating sucessive terms in
the series until the point of convergence is reached. In previous work by Burns, Graham
and Weller [62], the series was arbitrarily truncated when the terms have fourteen or
more indices. In this work, all the terms considered in the past by Buckingham [31],
Kielich [124], Graham [122] and Burns, Graham and Weller [62] have been included, as
well as some terms of comparable order which were excluded by Burns, Graham and
Weller.
Thus, substituting (4.17) into (4.24), we now write [105]:
j:](l) _ Tjkal(c2l)E0l + 7.5 F(2)Eoz + %Tjkg@) F(z)F(z)EOI + T, @A 0 E,,

kO%imd'm ktmnt'm f'n k@l L im P

2 2
+ leca’l(cl)TlmagznTnpag)EOQ T %T'ka’gcl)T AG) Eop = %TjkA(Z) T, a’(l)EOP

j Imn“*pmn klm = lmn“np

(4.25)
2 2 2
- %TjklAmkl om — %TjklAsnz:lena’gp)EOp - %tz—’jkASch)'nTlmnpAgln)pEOq
1 (2) 2
- §TjklAmlemnpAz(111)pEOq + %Tjklcl(clr)nnTmnpa;}])EOq +oee,
1 _ (2) 2 2

Fiv = L@, Eom + jyklag‘nszna'SLlp)EOp + %T_’jklal('rrsznpAt(;L)pEOq

(4.26)

3T AR T oW E — 1T, AP YA T 0By 4

0¢ = 3% jkim P alm™~0n T 34 jkim‘ nim* npUpq

Substituting (4.25) and (4.26) into (4.18) results in the following expression for the
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dipole moment induced on molecule 1 by the external field Ey, in the presence of molecule 2:

1 2 W (2
u (Bo) = o)) By + a’gj)Tjkagcl)EOl + a4 Ty01 Tyl

Im™“mn

mn-—nppq

EOn

ijk ijk

1) (1) (1 1) =0
+%g§jl)chI§ )Fz( )E0j+"'+¢§jlekl)E0j+'

1 2 1 (2)
- %a’gj)TjklAgngclEOm + %Agjl)chklal Eom

m

+

3% g Imn* “‘pmn 3

ij mn“np

j T Jk7klmT m

la(DT.ka,(j)T ALY By, — lal(;)]}kA,(czzznT a(l)Eop

Imn*~"np

Im “mn*np

— 1T AR T oV By, + AT T, 0l B,

ik~ j

1
94ijk* jklm* nlm 2]

AN, AD By~ LG0T, AR T, AD B

Ilmnp“ “qnp

2 1 2
— 20 T A Trnp Ay By + §AG T 1@ T Ay Bog

mnp* qnp ijk" 3

1 2 1
~ AT, AD T aVE, — LALT

Imn =" mnp~pg

1 2
+ %a’gj)%klcl(ch)nnTmnpa;z)EOq teee

aul" (Eo)

2
ijk jklmAv(lenTnpaét)EOQ T

(4.27)

When the differentiation Tep i 18 carried out on (4.27), terms containing the

07

product e;e; of unit vectors in the direction of the applied field are produced. Since, we

require the derivative in the limit of zero field, all orientations of the molecules are equally

probable and e;e; may be replaced by its isotropic average %61-]-. Thus, differentiating
(4.27) and subtracting ag, we get:

where

1
o _
5E €, — ay —a1+a2+a3+a4+---+ﬂ1+a1ﬂ1+---+71+---+¢1+---
0
E=0

+Q1A1+Q2A1+"'+A2+OA1A2+

_1.(1)
_1.(1) (2

Q3 = %aggl')Tjkafczz)T al))

Ilm“mi>
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copCyt (4.28)

(4.29)
(4.30)

(4.31)



e = 3T, oo (43

ImYmn- np“pi

B = WGFY, (4.33)
oy =3 (AT + o TR R (434)
7= L FOEY, (4.35)
b1 = L0, (4.36)
ardy = —3 (a'z('yl')leclAglzz - Aggl'l)chkla’gz'Q)> ; (4.37)

2 1
Ay = % (,ag.)Tjkag)T AL _ ag)TjkA( ) g

Imnitmn klm=" lmn™"ni

(4.38)
_—agjl')TjklAg?clenagzli) + Agyl')Tjklagzz)Tmnagi)) )
A= = FAG T im A (4.39)
1Ay = — 5 (agjl')lrjkAanT}mnpAgfll; + a‘gjl')TjklASzzclenpAgrlL;
- Aggl'l)chkla’gfrz Tm’n,pASLi)_ + Az('Jl'I)chlclAffrznTmnpaz(J? (4.40)
+Az(';l)chklmA$12lZnTnpa1()?) ,
0 = )T, 00 T aly. (4.41)
To proceed, one must introduce the explicit forms of the parameters 7., .., , T. FY

150 “ijky Tijkl T
(%)
and Fj;".

: 1@ 1 @2 _ 2

4.2 Expression for 3= B (™ + @) pel

For the second term in B., we must consider the total dipole moment on each molecule.
That is, the combination of the permanent dipole moment of the molecule and the dipole
moment induced on it by fields and field gradients due to the total moments on the second
molecule, permanent and induced. Thus we write:

i = 1)+ dPFD D FOFD 10 P (4.42)
9 < 0 IR LB+ LA 439
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where

Fj(l) = Tjkﬂ§c2) - %Tjkzei(j) +o Fj(2) = Tjklig) + %Tjkt@/(c}) +e (4.44)

FJ(I? = Tjkl/‘?) - %Tjkzmez(frz +e Fj(lf) =~ jkl:“gl) - %Tjklmel(rlrz +- (4.45)
and

0% = 08 + AGLFD + 3B FVED + Clpn PR, (4.46)

6 = 05 + AL FD + 3B FOFD + Clip FRD. (4.47)

To obtain and expression for ugl), one must first substitute (4.45) for F ](1) and F](,? in

(4.42), then substitute (4.43) for ,uf) and (4.47) for 9,(3) into the resulting equation, as

follows:

= )+ oD (T — 1T500) + 05U (T = 3T, 0 (T = 5 T80
+ %Aggl‘l)ca}kl/ﬁ?) - %ﬂktmet(frz)
= 45 + oD T () + oD B + 0 B FD + 140 FY)
— 1T (65 + ASLED + 3B PO FD + Gl FO))
+ 0T () + 0l FD + - VT () + D FD + )
— LT () + 0D FD + - )T, (650, + )
= BT (05, + - VT (1) + P + )
30 T (05 + -+ ) Ty (O )
+ %Ag‘l)chkz(Mg) + G%Fr(f) t+oe Tt %AI(QanD
- El)_Az('Jl'l)cT’jklm(e(()?r)n +AQ FP 4. (4.48)

then for u%) and 6%,
and so on, neglecting all terms with sixteen or more subscripts, or with more than one
hyperpolarizability tensor and all terms with the g,z or Byjp tensors, yields the following
expression for the dipole moment of molecule 1:

Continuing in this way, by substituting first for Fl(Z) and F?

lm

1 1 1 2 1 2 1 1 2 2
/‘z(' ) = :“(()i) + agj)Tjk:“(()k) + az(j)Tjkagcl)Tlmu(()n)L + agj)j}kascl)ﬂma(l) T, ng) +--

mn* np

1 2 1 2
- %a(")Tjkze(()k)t + Laf )Tjkal(cl)T

1 1 2 9
i 3% 080 = 1T, DT, oD T oD 4 ..

37y Im~mn " npq”0q
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' 2 1 1 1 ) 9 (1)
+ bijll)c,‘z—,jlug)Tkmu(()zr)z + az('Jl')TjkbﬁclznTlny’gn)Tmp“gp) + bgjl)chly’Ol Tkma7(m)‘zTnpu0p
1 2
BT Tty Tttt + -
1 2 @) (1) @) @)
- %bgjl)chz/‘gz)TkmnHOmn - %bijijlmHOImTkn:u‘On

2 1 1 1) (2 1 (1
+ él_a’gjl')TjkbEdZnTlnug)n)Tmpqg(()p)q + %a’gj TjkbklmTlnpe( )OmeqlJ’Oq

+ 30T AT (AT, 60+ WOT oD, 65T, )

3Yijk" 7 km“mn*npq”0pg 3Yi5k* j1%ln ~npqg”Opg™ km

— 37 0T WIT, 65, — AT, 650 T,

@ 0
ijk= 17 p kmn”0mn 37ijk~ jlm a TP‘I'U' +

n-np Og

+ L0 T 080 T 05, + -

Flm~0lm™ knp

2 1 1 2 1
+ %Agjl'l)chklp‘g) - %ai('Jl')TjkASctgnﬂmnﬂgn) - %agj)T}sz%Tmnugi

1 2 1 1 2 @)
+ %Agjl)chklaE’”szn“gJ + %agj)Tjkagcl)ﬂmAgw}nganpql’LOq

+ LT

9 2 1 2) 1 (2)
304 jkagcl)TlmnA(l) T, /‘E)q) - %agj)TjkAklmﬂmnaleJ)T glog

pmn= pq P

2
— DT AC T T i) + LA T 08T, 0l Tg) + -

7 mkl= mn p q i7k* 5 m = mn-ni

1 2 1 2
~ ST b+ 3 T AT

(1) (1) (2) (V)
ijk? jkimY0lm ij lmnp‘9 + %a’ij TjklAmle 0

Onp mnp” Onp

+ 2A0T Q2T 05+

17k 7 mnp” 0np

2 1
LT, O T, S+ 2aD T O TnpgOspy + - (4.49)

klmn* mnp 9 “ij Opq
The order to which equation (4.49) has been expanded is partially justified in retrospect
through studies of convergence of the terms. The exclusion of terms in the hyperpolariz-
ability g;; is based on observations that the lower-order third-rank hyperpolarizability
tensor b;;; (which may be expected to make the leading hyperpolarizability contribution)
(2)

plays an insignificant role. The expression for u;” is determined by the same procedure

to yield an analogous expression. Thus:

1 1
3kT [%('ul('l) * “1('2))2 - “3] = o (2 + a1pa + ops + oz + - - -

3kT

+ oyt + agpnby + -+ 0oy + asly + by + -

+ Bips + anfips + -+ Prpgby + -

+ Aipo +onAjpp 4o+ Ay + -+ Aife + -

+a101}L2 + -+ 01101/.1,191 + - a26’102] R (450)
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where

pa = iy ey, (4.51)
| 2 2 1
Qg = (Ng? + .“é%)) (az('yl‘)lec:“(()k) + agj)Tjk/’Lgk)>
1 1 2 2 1)
= 2/1'(()i) (a’gj)Tjkp’E)k) + az('j)Tjk:u’(()k) ; (4.52)

2 1 2 1 2
Qg = (Mg) + Ng%)) (ag;)ﬂkagcz)ﬂmﬂgr% + az(j)Tjkagcz)szNgrzz)

1 2 2 1
3 (T2 + a2 T0) (T2 4 09T, 0
1 2
= 248 (o Tyal Tyl + 08 Ty 1050
(4.53)
2 2 1
+ ) Tyly) (' Tt + 0§ T

2 2 1 1
A3y = (Mg) + ug)?) (a’gjl')Tjka’l(ch)jjlma'gilenpugp) + aEJ)T']kagcl)TlmagzLTnpﬂ(()p))

+ (a(l.)T.kugi) +a

2 2

ij < g mn=np

1 ' 2 2 2 1 1
=2 [N(()i) (ag;)ﬂkaiz)ﬂmagnnpﬂgp) + a’gj)Tjkagcl)TlmagrzzZLT p:u’gp))

n
(4.54)
P T2 (DT T ) + P TinalT, 0l2)].
1 2 1 2 2 1
armby = —3 (Ngi) + :U'(()i)) (a’gj)Tjkla((lk)l - an)Tjkle(()k)l)
1 1 2 2 1
= _gﬂgi) (a’gj)Tjkte(()k)l - az('j)Tjsz(()k)z) 5 (4.55)
1 2 1 D 4l 2 1 2
aopinbh = % [(M(()i) + .U(()i)) (a'gj)rjkagcl)ﬂmne(()rin - az('j)lecal(cl)TlmnH(()n)m)
1 2 2 1 1 2 2 1
(T2 + T D) (0 20— Ty 02
1 1 2 2
= % |:iu'(()z) (agj)j—jykail)j-‘lmne(()gm - agj)iz—;kagcll)j}mne(()zr)m>
(4.56)
1 2 1 2 2 1
_a’gj)Tjk'u’(()k:) (a’gl )TlmnH((Jn)m - a’z(l )Tlmne(()n?m>] »
_ (1) 2 2 1 1 2 2 1
01202 - % (a’ij T]kla(()k)l - ag])T]kle(()k)l) (a'gnsznpe(()n)p - a’Ensznpe(()n)p)
1 2 1 2 2
- éa’fj)j—‘]kleék)l (az(nszan((]n)p - agnsznpg((J;)p) (457)
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2 1 1 (1)
oy = —3 (G’S)Tjktef(li)l - az('j)T'kLH(()k)L) (agn’szna(Q)T Ooqr

j np * pqr
- agzr)L Tmn a“(nlzz qur 0(()2q2r )
— 200700 (T, 0 DT, 06, — AT, T ) (4.58)

im + mnYnp * pgrV0gr im + mnnp * pgr’Ogr

2
01492 = 11_8 [2 (agjl')Tjklg((]i)l - ag)Tjle(()i)l) (agr)zT a(z)T a‘(l)Trstggs)t

mn-np - pqqr

0T, 0T, oD T, 02 + (0 Ty T, 6

im+ mn“np *pgigr ~rst Imn~’0mn

Imn" 0mn ip ~pqiqr ip “pggr

—ag):’}kai’?T o2 ) (a(-l)T a(Q)Trsta(()?t — T, a(l)Tm@éil)]
= 5 [2000 T80 (090700 T3 00T, 065, — 0l T 00T, 02T, o%.))

— 9 mn‘np “pgqr ~rst im-mn“np L pgrgr ~rst

T T, 00 (T, 0T, 8 - DT, 0T 02)], (459
Brus = (N(()? + :“(()3)) (bg;l)c%lugf)Tkmﬂggzz + bﬁf-;)c%ué})Tkmuéﬁ)
= 2#5)? (bggl'l)ﬂ}lﬂg)Tkmﬂ(()zr)z + bz(_flz:fz.']‘lu(()})Tkmug)ir)z) ) (4.60)
anfups = (1) + D) (0 T Lot Tty + 6 Ty b0 Tl T
+2 (1) + 17 ) (BT T 6T ) + AT T 00T, ) )
+ (T + DT (BTt Tty + V0Tt Ty
= 2up) (aﬁi)ﬂkbxﬁﬁuﬂnuéﬁ oty + at(?TjkazZnTcnufﬁTmpué?)
+ 4#5)11‘) (bgjl'l)chll‘l’g)Tkma’gLZLTnp#‘g;) + bg_?l)chll‘l’S)Tkma'gllenpug?) (4.61)
J mpHop

1 2 1 2 2 2 1 1
-+ 2a’§j)T'li’gk) (bgh?nTln“gn)Tmle‘(Op) + bglr)nTlnp“gn)T ( )) ’

1 2 1 2 2 1 2 2
Brp2bh = —§ (Ngi) + Ngi)> (bgjl)chlﬂE)l)Tkmne((Jrr)m - bgjl)chzl‘gz)Tkmng(()n)m)

) {0 2 2 1 2 2
1 2 1 2 2 1
Aipg = —3 (ﬁ‘(()i) + :u(()i)) (Agjl)chklME)l) - Az(jl)chkl/J’(()l))
1 1 2 2 1
- _%H‘(()i) (Az('ji)chkzN(()z) - Aﬁj,{Tjk,uél)) ; (4.63)
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2 1 2 1) (2) (1) (2)

051./41/1,2 = _% [(/'l’(()i) + lu’g)z)) (a’gj)r;kAl(clznﬂmnugn - a’ij kaAkle}mnMOn)
2 1 2)

+ .Ug? (3 ) (GS)C’}MA%TWM&) - a’Ej)TjklAfnzclenl'l’gn>

( +pf?

- (ME)? + M(()?) (Aggl'l)ﬂ}kzangn/ﬁgB - Agj?l)sjyklagjrsznMgi)>
(T2 4 T2 (AT 2 — A2 T, )]
= —2 |u? (0 T A Tty — AP Ty AT, )

2 1 2 1 2)
+ .“8) (az(‘gl')TjszEanTmnN(()n) - agj)TjklAinzclT /"’(()n)

mn
(4.64)
- NE)? (Aqggl'l)ﬂ}kzat(frsznﬂ&) - Ag’l)chklaﬁsznu(()i)>
AT (AD Tyl — A2 T, )],
Avaby = =3 (1) + 1) (AT, 0800 + ADT, 1050,
= 8D (AT 02, + AT 00 (469
o Arfy = % (ag)%kﬂé?z - az('yl')j}'kze(()i)z) (Az('rernTmnpqe(()?)zz + Az('frznTmnqu(ﬁ)
BT 0 (AL T+ ADT, 02, (169
a1Cig = % (M(()? + N(()f)) (a’gjl')TjleIg;menpﬂ(();) + agjz')TjszI(c}r)nnTmnpNgi))
= 316 (0 Ty Ol Ty + 0Ty Ol Tompit?) (4.67)
aCinb, = % (Ng? + N(()f)) (a’g]l'),I’jklclgr)nnTmnpqe(();ZJ - az(]?)q—}ktcl(c}gnnTmnpqe(()iL)
= 314 (0 Tkl Ty = 0 Ty Ol T2 (4.68)

aC10y = — % (az('yl‘)Tjsz(()i)z - ag)Tjkle((J}c)l) (a(l)T c® 1 oY

im = mnp~'npgr+ qrstV0st

() (1 (2)
—Qy Tmnp Cnpqr Tqrsteo.st
npqr+ grst”0st mm = mnp~ npgr qrstV0st

= 503 T3] (@ Ty O T8 — 02T, O T On) . (4.69)
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4.3 B, for spherical molecules

The general form of the second dielectric virial coefficient is given by:

Nj , op® + p Lo, @22 } v
_ LI R ol —— L + ~ 2 Ve dr

T

(4.70)

Three effects contribute to B, [28]. Firstly, if the mean polarizability is altered by the
presence of a neighbour, then <%§:"’(2)).e> will not equal 2ag, and the first term will
be non-zero. If the polarizability is reduced as in the calculations of de Groot and ten
Seldam [126], then the contribution of this term to B, will be negative. Secondly, when
a pair of molecules interact, the induced moment of one molecule may in turn induce
an additional moment on its neighbour, by dipole-induced-dipole interaction. When this
is averaged over all configurations, it may contribute to <6—(%wg>. This is the
effect first investigated in terms of a simple model by Kirkwood [127]. Thirdly, if a pair
of interacting molecules possess a resultant dipole, whether permanent or induced, in
the absence of an external field, then a contribution will arise from the second term in
equation (4.70). It is possible, for example, for the quadrupole moment of a non-polar
molecule to induce a dipole moment on a neighbouring molecule, resulting in a non-zero
moment for the pair. These transient moments may be orientated by the external field,
thereby contributing to the second term in B., which must obviously be positive. For
inert gases, however, (u,(l) + u(Z)) is always zero because, by symmetry, atomic gases
have no multipole moments of any order. Therefore, the second term in B, must be zero.
Quasi-spherical molecules, such as CH,, CF, and SFg, may have octopole, or higher,
moments, but the contribution of these to the second term is assumed to be negligible.

Thus, for spherical and quasi-spherical molecules, the second virial coefficient is given
by

2 (1) -
B, = Na {[8/1, .e—ag]}e_ﬁkz?QdT

N 3609 8E0
4nN2 T [ [Out)
(T P
0 0
0

since 7 is completely specified by the distance, R, between two interacting molecules.
Now, for spherically symmetric molecules equation (4.28) is greatly simplified, since

they possess no permanent multipole moments in their ground state, A;;x and by, are

both zero, and Cyjx has only one independent component [26]. The static polarizability
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tensor a;; is isotropic and may be written as:
Qi — aéij, (472)

where a is the static polarizability of the gas. Thus for a spherical molecule it can be
shown that [62,128]:

opt)
( oF .e — a0> =) + a3+ ag + aCy, (4.73)
0
2a3 2a*
= oM = - - 4.74
where o =a ao, o (lreo B o (reo) (4.74)
10a2C
and a201 = W (475)

The first term is the amount by which the mean intrinsic polarizability of a molecule is
modified by the presence of a neighbour. However, the classical molecular theory adopted
in this work does not account for this difference and the term (a® — aq) is assumed to
be zero. Ab initio quantum-mechanical calculations carried out by Buckingham and
Watts [129], and O’Brien et al. [130] for helium show that the polarizability of a molecule
decreases at short range. The second term is the Kirkwood “fluctuation” term [127], and
is usually the largest contribution to B, for spherical molecules. In the past, this was
often the only term considered in classical theories of of B,. However, in 1982 Logan and
Madden demonstrated the importance of the C-tensor term [131]. Unfortunately, there
is a lack of measured values for the C-tensor components.

4.4 B, for linear molecules

For linear gases the second virial coefficient is given by

N 6”(1) 1 .
B =300 / { [ 0B, © a"] + o [ + p®)? - ug]} -

a“(l ]_ 1 (1) U
— _— J1 2H2 _ ,,2 -2
350/ / / /HaEO € ao]+3kT[2(“ 1) “O]}e 7

R=0 6;=0 8,=0 ¢=0

x R?sin 6, sin 0, dR df, df, dg, (4.76)

where the general forms of the two terms are given by equations (4.28) and (4.50)
In order to determine the explicit forms of these expressions, it is necessary to express
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the molecular property tensors in terms of the angles specifying their relative configura-
tion, 7. The method for describing 7 is described in Section 2.1.1.

In 1967 Buckingham [26] demonstrated how the property tensors of an linear molecule
p may be expressed in terms of éfp , where @ M and E( are the unit vectors along the

principal axes of molecules 1 and 2, respectively:

P = pe?, (4.77)

where pu= u(l)—ug),

0D = 10 (36749 - 5, (4.78)
where 6 = 65 = —26%) = —260) = 6{2), = —20P, = 202,
ag-’) = ab;; + ka (38@)6 (5,J> : (4.79)
where a=1al) = L) and k= g~ ai) = d” —aL_ A
| R 3a 3a 3a’
bE) = b, (ZE”)djk + 0P8 + Efc”)dij) + (by — 3b1) 6767 6P, (4.80)

2)
\Vhere b“ = b333 = b§/3l31 and b = b§_13 = bl-:l})l = b3}1)1 - bllllsl = bl?:)slll = b3/1/1/;
1
gz(zpk)l (9§3)11 + §gf1)u) Okt + (9%%3 + ggé)n 398)11) éip)gz(p); (4.81)
) _
¢nkl = (‘15( 1)11 + ¢2211 + ¢3311) Ok + ( %)33 + 2‘151133 ¢§11)11
\ (4.82)
1
2211 — 33)11) gip)gl(p);
AP) = 14,0® (33?’48” 5; ) + A (e. Sit + €25, — 24 P)efg’)) . (4.83)
where A, = AQ) = —248), = —240) = 4%),, = —248), = 240, ,

1)
and A, = A§13 = A22)3 = A§3)1 = A%)2 = Aﬁ,y = A%'w = A%’l' = Aggn"
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and ngl = '116 (Céégs + 80%313 + 801111) [%wikéﬂ + 6ubjk) — %51'3'5161]
+ o (508k +4CBl; - 801, ) (3676 — 6u)oy
+ (3PP — 5)85 + (3EPLP — §58)6a + (3LP 4P — 6,04
—4(3EP6P — 6550 — 536747 5kz)5ij] (4.84) -
+ 2 (208) - 408, + o) ) 35676060 e
— 5P 8P 6 4+ 676055 + (P 6765, + PP 5y

D5 + 6P 65) + Gy + Sadn + Sade|

Also,
L L 30 = 6ug) (4.85)
ij = 47(80 R3 ’ ’
3
ijk = 471’6 R4 [5)\ Y /\k ()\i(;jk + )\jdify + )\kéaﬂ)] , (486)
3

~ e, R (4.87)

+XXe0i + AjAibin + MeMidig) + (6550k + Girbj + 0udjn)] -

Explicit forms of Fz-(p) and ﬂ(f) are also required. These are obtained by substituting
(4.77) and (4.78) into (4.45), yielding:

PO oL [“(3“ 5.;) 62 — 0 (5AN A

dmey | R 7 2Rt
(4.88)
bk — Ayban — Aibi) (34?)@53) - 5]-k) 4 ] ,
o 1 2 — b)) 4
B = e [Ra (3% )6+ g GAdh
(4.89)
~ N = A6k — M) (34”@53’ - 5jk) + ] ,
FO = L3 530 A = A — s — M) 62 - (4.90)
iJ 471'50 R4 J et 13/ ~k ’
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where Fi(jl) includes only dipole effects.

The unit vectors KS) and 2&2), and )., which is the unit vector along the line of centres
R, are related to the angles 61, 6, and ¢ as shown in equations (2.26) to (2.28). These
equations are the dot products of the unit vectors expressed in terms of the space-fixed
axes, but the results are applicable to any set of axes. In particular, they apply to the
molecule-fixed axes of molecule 1. Since the unit vector 651) lies along the 3 axis, the
expressions in equations (2.26) to (2.28) may be simplified as follows:

a¥ =19, (4.91)

£§1>£§2> = eg"‘) = cos 01, = — cos 6, cos B, + sin B sin 6, cos ¢, (4.92)
eﬁ”xi = A3 = cos b, (4.93)

£\ = — cos . (4.94)

Substituting equations (4.77) to (4.90) into equations (4.29) to (4.41) yields terms
containing Ez(p ) and X, which are eliminated using equations (4.92) to (4.94). This yields
the following expressions for the induction term of B,:

ar =aM — aq, (4.95)
a2
0y = ——= [n(l - K) (3 cos® 0, + 3cos? fy — 2) + 3k (2 cos® 0 cos® 6y
47T60R (4 96)
— sin @) cos 8y sin B, cos B cos ¢ — sin? f; sin? 6, cos? (b)] ,
B a® 3 2 2
0 = (o T [2(1 = k)* + k(2 + K)(1 = k) (3cos® Oy + 1) + k(1 — k) won

x (3cos” 0z + 1) + 3k*(2 + ) (2 cos 6, cos by + sin 6 sin 6 cos ¢)?] ,

4

———(47T;)3R9 {2 + 6K (3 cos® 0, + 3 cos® 0, — 2) + K2 [18 _54 (cos2 0, + cos? 92)

4 =
+27 (cos* 0y + cos® 5 — cos 01 cos 6 cos fy2) + 81 cos® 6y cos® Gy — 12 cos? 5]
+ &7 [54 (cos® By + cos® fy — cos® 6; — cos® 6,) — 324 cos® B cos® b,
+ 243 (cos® 0, cos* 0 + cos® 0, cos® B;) — 8 + 81 cos 5 (cos b cos® B,

+cos® 0y cos f) — 108 cos 0y cos 0z cos B3 — 12 cos® 1)

+ & [27 (cos* Oy + cos® f2) — 18 (cos® f1 + cos® 6,)
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— 243 (cos? 6, cos* 0 + cos* 6 cos® 6y — cos® 0, cos® 6;)

— 81 cosfya (9 cos® 0, cos® B, + cos 0 cos® B, + cos® 61 cos by)

+ 135 cos 8; cos B cos B3 — 729 cos? 8, cos® By cos? 015 + 24 cos? 65

—243 cos 01 cos 0 cos® 615 — 27 cos® f1a] } (4.98)
B = —=———(2cos 0 cos O + sin f; sin G, cos P)

(4.99)

(3 cos 0y cos® B, + 2 sin 0 sin 6, cos b, cos ¢ — cos 01 ),

T 3 (4nea)2R6 {1 [4(1 — k) (3cosB; cos By — cos by5)

+9x (6 cos ) cos B + cos f15) (cos® By + cos® B,) — 4 cos by cos B, — 2 cos byy) |
+ (by — 3b1) [(1 — &) (3cos® 8, + 3cos® 6 — 2) (3 cos By cos by + cos b5)

+65 (—9 cos” ) cos? B cos 1o — 6 cos By cos B cos” O — cos® 615)] }

+ %ﬁ {b1 [4(1 = &) (cos 6, + cos 6,) (1 — 2cos6; cos by + cos 012)

~ 3k (cos b1z (cos (7 cos® By — 5) + cos 6y (7 cos 6, — 5))

+cosfy (2cos?6; — 1) (15cos® @y — 1) + cos b, (2cos® 6y — 1)

x (15cos® by — 1))] + (b, — 3b1) [(1 — k) (3(cos® 6 + cos® 02)-

+(cos 01 + cos 6) ((1 — 3 cos By cos B2) (5 cos 0 cos By + 2 cos By5) — 1))

+ 3k(cos 0 + cos B;) (3 cos 61 cos b cos B15(5 cos By cos by — 1)

+ cos? 015(11 cos B, cos 6, — 1) 4 2 cos® 912)] } , (4.100)
1 w2

N 18 (47eq) RS {(3g3su + g1111) (3cos® 6, + 1)

' (4.101)
+ (393333 + 393311 — 491111) (3 cos by cos By + cos 912)2} -

¢1 = _m (¢3333 + 2(b1133 - ¢1111 - ¢2211 - ¢3311)

(4.102)
X (5 cos® 0; cos B + 2 cos 0, cos By — cos 62),
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2 a

oAy = 3 dmeo R {

(34, —24,) [(1 - k) (5cos® 6y — 3cos b))

~3k (5 cos® 0y cos fa cos B — cos By cos fro] -+ 2 cos 0y cos® 013)] (4.103)

+6A (5 cos 0 cos? 6, — cos B + 2 cos B, cos 912) } ,

(1,2

(dme)2 R {34, —241) [(1 — K)* (4cos’ by + 4 cos® ;)

2
a2A1 = ‘5

+35(2 + ) (15 cos® O, cos® 6, — 3 cos® 0 cos 05 + 11 cos 6y cos? B cos 01

— ¢os By cos By + 2 cos By cos? O12) + 3k(1 + 2k) (15 cos® 0 cos? 6,

+11 cos? 6 cos 6, cos B12 — 3cos cos? 0y + 2 cos 0, cos? 015 — cos B cos 012)
+12x(1 — k) cos® 01] + 24, [6(1 — k)*(cos 0y + cos ;)

+ K(2 + K) (4 cos” 6y cos B 4 cos B cos g — cos 6)

+3k(1 — k) (4cos® 0 + 4 cos by cos” By + cos B, cos Oy + cos 01)

9k? (15 cos® 0, cos® 0, + 11 cos® By cos By cos b1 — 3 cos b cos? 0,

+2 cos 6, cos? 01, — cos B, cos 912)] } , (4.104)

1 1

A2 - _547T€0R5

{ (34, - 2AL)2 (35 cos® 6y cos® B3 cos 15 — 5 cos” By cos b1

—5cos? 0 ¢0s 15 -+ 20 cos 0 cos B, cos® f12 + 2 cos® b1 + cos b12)
— (34,41 —4A%) (35 cos® 6y cos b, + 35 cos b, cos® B, + 15 cos® B cos b2

+15 cos? 0, cos 15 — 30 cos 8y cos By — 6 cos 012) } ) (4.105)

oAy = “)R8 {2|(a + 2%) (34) = 241)" +3x (34,41 — 441))

1

9 (47TE()

X (180 cos® 0 cos® B, — 30 cos® 6, cos B, — 30 cos 6; cos® B, + 6 cos f; cos B
+ 155 cos? 0; cos? 0 cos 015 + 38 cos By cos By cos® By — 11 cos? 1 cos Oy,

—11 cos? 8, cos 615 + 2 cos® 015 + cos 912)
+ ((1+25) (34,AL — 4A7) + 12k A7) (40 cos® 6; cos B, + 12 cos® 0 cos b1,)

+ (1 — k) (3A4,AL — 4AT) (40 cos by cos 6,3 + 12 cos” 6; cos b5
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+4(1 — k) A% (48 cos8; cos 0 + 6 cos b13)]

+3[(242 - 44%) ((1 — k) (5cos* 0y — 2cos” 6, +1)

+ 3k (25 cos 01 cos® B3 + 20 cos® 0, cos 0 cos By — 10 cos?® 6, cos? b,
—4 cos B cos 0y cos By3 + 4 cos® By cos® Oyp + cos® fy))

+4A% (2(1 — k) (2cos® 6, + 1) + 35 (5 cos? 0, cos? 6,

+ 4 cos B cos 0 cos B1y + cos? 0 + cos® b + cos” 012) )] } (4.106)

2

M;:W {(03333 + 8C313 + 8Ci111) [1 4 2K2 + %n(2 + k) (3 cos? 0, — 1)]
0

ayCh =

+ 2 (5C3333 + 4C1313 — 8C1in) [16(1 + 2k)* (3cos fp — 1) + 124(2 + &)
X (15 cos? 01 cos® By + 12 cos B cos 0 cos f19 + 3 cos?® Oy — cos? 0, — 1)]

+ % (2C3333 — 4C1313 + Ci111) [(1 ~ k)? (175 cos? By — 150 cos? 0, + 15)
+36(2 + k) (875 cos? 0 cos* 05 + 700 cos 6, cos® 8 cos b1,

+ 140 cos? 0 cos® By — 450 cos? 6 cos? By — 220 cos 0; cos B, cos b12

—20 cos? 0 — 20 cos? By5 + 23 cos? 0, + 4)] } ) (4.107)

Substituting equations (4.77) to (4.90) into equations (4.51) to (4.69) yields the fol-
lowing expressions for the orientation term of By:

p2 = pg cos by, (4.108)
2au 9
arps = ——{(1— k) (3cos® 6, ~ 1)
47!'60R (4109)
—(14 2k + 3k cos b12) (3cos b cos b + cosb12) }
QLT (1— k)% (2cos?0 20, — 3cosf cosf O1s + 1
Qolly = (dreo 0 { k)? (2 cos’ By + cos® B, — 3 cos by cos b + cos by + 1)

+ k(1 — k) [2 (3cos® B; + 1) + 3cosbia (2 — 3cos® 6y + cos” b,)
-+4 (3 cos 01 cos B, + cos 612)2 + 3cosf; cos By (4 — 9cos® 6 — 3 cos® 02)]

+9x%(1 + cos f12) (3 cos By cos b + cos 912)2} , (4.110)
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Qafly =

aypb = —

a2M191

2 3
a ,U, { 1
47(60 3R9

k)® [3 (cos 6y + cos )" — 2 (cos 012 + 1)] + 3k (1 — k)?

x [9cos® 6; + 9cos® B — 27 cos® 6; cos By + 18 cos by cos® O, — 4 cos? b5
—3cos b1 (3 cos® 0, + 2 cos? 05 + 3cos by cos by — 2) — 24 cos 0, cos 92]

+ 27k%(1 — k) [18 cos® 0; cos? 0, + 9 cos? 0, cos? B, — 27 cos® 6, cos® 6,

— 9¢cos® 0 cos By — 3 cos by cos® By — 9 cos? 6y cos? By — 3 cos by cos by

— cos B2 (27 cos? 0 cos® 0y — 9cos® 6, + 9cos b, cos by + 2 cos? 6,

+ cos? B + 1) + cos® f15 (cos® 6y — cos® B3 — 9 cos b cos by — 2) — cos® 6]
— 54k° (27 cos® 61 cos 622 + 27 cos® By cos® B, cos B2 (1 — cos B cos by)

+ 9 cos 0 cos By cos® By [1 + 3 cos B cos f) + cos® Oy, (14 9cos b cosby)

+cos* f15] } (4.111)

3aub
47T€0R4

{(1 + k(3 cosbha — 1)) (5 cos® ; cos B — cos By + 2 cos B cos 012)

+(1 4 2k) (5 cos B cos® B — cos by + 2cos Bz cosbyz) }
(4.112)

3 0
a’ M {2 [(cos 6 + cosbh) (1 — 2 cos §; cos By + cos b1)

+2 (cos3 01 + cos® 02)] + 3k(1 — k) [7cos® 6 + 3 cos® Oy — cos )
—cosfy — 15 cos‘i 0 cos Oy + 15 cos? 61 cos® By + 8 cos® 6, cos O,

+ 2 cos 0y cos? B + cos by (3cos By + cos By — 5cos® B + 4 cos® by
+5 cos? 6; cos 0y + 16 cos ; cos? 92) + 2 cos® B3 (cos B, + 2 cos 92)]
+ 9k? (cos 6y + cos fs) [15 cos? 0 cos? 0, — 3 cos 6, cos O,

+ cos B33 (15 cos® 0, cos® B + 8 cos f) cos B, — 1)

+cos” 61 (11 cos 6y cos  + 1) + 2 cos® f15] } (4.113)
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a2 92

_W{(l__

k)? (5cos* B + 3 cos® by + cos? 0y — 5 cos? 6; cos® B,
(47r8()

9
01292 = Z

4 cos 01 cos By cos B12) + 3k(1L — k) [5cos? 01 + 5cos’ 6 — cos? 0,

— 3¢0s% 0y — 25 cos* 6, cos? B, + 25 cos? 6, cos? By + 10 cos? 0 cos? 0y
42 cos 6y cos By cos 015 (15 cos® 0, — 5 cos® 6y + 2) + 8 cos? 4, c.os2 012]
+ 92 [cos2 0y (5 cos® b, — 1)2 + cos 0 cos B, cos By (25 cos® 6y cos® 6,

+15 cos? B — 5 cos® B — 3) + 2 cos® 12 (10 cos® By cos® By + cos® B,

—cos” 1) + 4 cosf; cos b cos® O] } (4.114)
azly = 9_@& {2(1 - k)3 (11cos4 0 + 3cos® 0, — 5 cos? b,
3727 9 (47meg)3R1

—11 cos? 0y cos? By — 2 cos ) cos by cos B12) + 126(1 — k)* [5 cos® 6,
+2cos* 0, — 2cos® 0y + cos? ) — 10 cos* B cos® B, + 5 cos® 6, cos? 6,

— 7cos? 0y cos? 6, — cos b cos By cos B2 (4 cos? 6, + 3 cos? Oy + 1)

—2 cos? 6 cos? 912] + 9x%(1 — k) [7 cos® 8; — cos? 0, + 75 cos? 6 cos® O,
— 75 cos* 0; cos® 8, — 20 cos? 6 cos? O, — 55 cos? 0; cos? 6,

+ 13 cos® 01 cos® 6 + cos 6, cos b cos b1, (35 cos® 6 + 2 cos® ; — 32 cos® b,
~110 cos® 61 cos® B3 + 5) + 2 cos” 015 (cos O, + 2 cos® 6; — 3 cos® by
—26 cos® 0; cos? 02) — 8cos 6 cos 0, cos® 912] + 27K3 [3 cos? 0; cos? 6,

x (5cos” 01 + 5 cos® , — 25 cos” 0 cos® 0y — 1) + cos 01 cos 6y cos B

X (8 cos? B + 11 cos® B — 75 cos” B cos® B, — 55 cos® f; cos® f, — 1)

+ cos? 0y, (ccﬁs2 01 + 2 cos® 8, — 85 cos” 6; cos* 65 — 10 cos® 0 cos® 0,

—32 cos 6y cos® B, cos® 15 — 4 cos® 5 cos* B1] }, (4.115)
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Brps =

041;31#3

Brpob =

3
22 SRo {(2b1 + (b — 3b.) (1 — cosbr2)) (3 cos by cos b + cos 012)*

(47’(’80)

+b, [3 cos B (1 — cos? 01) + 6.cos B cos b, (1 — 3cos? 91)
+3cos’ 0, + 1]}, (4.116)

ap®
(47r5 )3RY {bL [

k) (cos By cos 62(63 cos® Oy + 27 cos® b + 48

— 90 cos 0 cos By) — 6.cos® B; + 6cos® Oy + 4 + 3 cos f15(7 cos® ) + 3 cos® By
+6 cos 01 cos b + 4) + 8 cos” b12) + 9k (3 cos By cos 62 (2 + 3 cos® 01

+ 18 cos? 0, cos? 05(1 — 3 cos? 0;) + cos By cos® B;(1 + 6 cos® 6;)

+ cos 615 (3 cos® 01 + 3cos® b + 2 + 9 cos by cos 6y (cos® G, — 3 cos” 6,

+6 cos f1 cos B + 2) ) + cos® B2 (3 cos® 9, — 3 cos® ; + 18 cos 6 cos B, + 4)
+2c0s’ B13)] + (b, — 3by) [(1 — k) (6 cosb; cosfa(1 -+ 3 cos f; cos by

-+ 3 cos? 1) — 27 cos® 0y cos® fa(cos B — cos82)® + 2 cos bz (1 + 3 cos® f;
+9 cos 6 cos (3 cos 0 cos Oy — cos? 0; + 1)) + cos? 05 (4 + 3cos? 6,
—3cos® 0, + 18 cos b, cos 02) + 2 cos® 012) + 12k (27 cos® 0; cos® 0,

+ 27 cos® ) cos” 03 cos B15(1 + cos 01 cos 03) + 9 cos O cos B cos? By,

X (1 + 3 cos 6y cos By) + cos® f12(1 + 9 cos B cos B,) + cos’ 015) ]}, (4.117)

20
—(47:; iR {by [cosf (1 — 11cos® Gy + 3cos* ;) — 4cos by cos® By
0

—6
—2cos® 8, (2 + 15 cos? 91) — cos B cos Oy (3 — 7cos® 0y + 22 cos? 92)]
+ (b, — 3b.) [3 cos? 0y cos b, (1 — 5cos? 92) + cos 6, cos ;2

(1 — cos®62(8 + 15cos® 6;)) — cos 0 cos? 6 (1+ 11 cos™ 01')

—2cos 01 cos® 5] } ' (4.118)
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alAlu2 = -

Aty =

3
C¥1A162 = Z

2
———— (34, —44,) [cos 6, (5 cos® 0, + 2 cos® Oy — 1)
dmeg R (4.119)

+cos 0 cos bry (5cos” 0 +1)]

(Al—zu)ﬁ {(3Au —44,) [(1 - K) (15 cos 0, cos® 02 (cos by — 2 cos b;)
TEQ

— 5cos 0 cos® By (3cos® ) + 1) + cos B (5 cos® ) — 1)(6 cos® 8 — 1) + cos 6,
— 4cos® 0, — cos0y2(3 cosf; + cosfy — 11cos® ) — 2cos® Oy + (2cos by
+11 cos 6, cos 63)(cos 0, + 2 cos 92))) + 6k(cos by + cos b2) (3 cos 0, cos 0,

— 15 cos® B cos? B + cos f15(1 — 8 cos f) cos By — 15 cos? B, cos® 6,)

— cos? 019(11 cos B cos By + 1) — 2 cos® 912)] +4A,[(1 — k) (cos b,

—3.¢0s 0 + 4 cos 01 (cos® B, — cos® 1) + cos B12(cos b5 — 3 cos ;)

— 6 (cos 02(;1 cos® @y + 1) + 2cos 0) cos f12(2cos? By + 1)

+cos 0y cos 012)] } (4.120)

1

247, R5 { 3A(1 + cosbha) — 44 cos f1] [1 — 5cos” 6,
—5c08% 02(1 — 7 cos? 0;) + 20 cos f; cos f; cos ;5 + 2 cos 012] (4.121)

+4AL-[5 cos 01 cos B5(3 — 7 cos® 6,)] + 3 cos fro(1 — 5cos” 61)] },

af?
(dreo) 2RO

{[34,(1+2k) —4A, (1 — k)] [5 cos® 0; — cos 6,
+ 5 cos 0 cos® 0 (2(1 — 6.cos? 6;) — 5 cos? B, (1 — 7 cos? 01))
+ 2 cos B cos B12 (1 — 15 cos? 6; — 5cos? B(1 — 17 cos? 61))
—2 cos 6 cos? 012(1 — 25 cos® 03) + 4 cos 0, cos® 912]

+8A.(1 — k) [2 cos B — 5cos b cos? (1 — 3 cos? 6)

— €08 03 cos B15(1 — 5 cos? 02)] } , (4.122)
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a 2

m {%(03333 + 8C\313 + 8C1111) [(1 + 2k) (2 cos? By + 1
0

a;Crps =6

+cosbrz) — 2(1 — k) cos b cos Oy + 6k cos” 0 cos 1]

+ £(5C3333 + 4C1313 — 8C1111) [(1+25) (3cos®B5(1 +5 cos? ;) — 2
—cos?6;) +3 (1 + k(2 + 3cos 012)) cos 012(4 cos 0y cos b + cos f1a)

+ (1 — k) (cos 0 cos B2(7 — 15 cos” 1) + cos b1a(1 — 3 cos” 01))

+3k cos O, (0052 05(15cos®6; — 1) + 3 cos? B, — 2)]

+ L (203333 — 4C1313 + Cuana) [(1+ 26) (23 cos® 6y — 20 cos® b + 4

+ 25 cos? 0 cos? 05(35 cos? B — 18) 4 20 cos 6; cos B cos B12(35 cos® B, — 11)
+20 cos? f12(7 cos® 0, — 1)) — (1 — &) (cos 61 cos 0(875 cos® 6, + 133

—800 cos? 8;) + cos 15(350 cos* 65 + 16 — 230 cos? 92)) + 3k cosbys

X (23 cos? By — 20 cos® 0; + 4 + 20 cos 6 cos B, cos 012(35 cos? 6, — 11)

+25 cos? 0, cos? B5(35 cos® Oy — 18) + 20 cos® B1a(Tcos® 6 — 1))] },  (4.123)

0
a {2(Cs333 + 8C1315 + 8Ch111) [(1 — ) (5 cos® by + 4 cos b,

a1Crpn b = 3W
—5cos 0 cos® Oy + 4 cos 05 cos 912) + 3k (5 cos® 0, + cos 6y + cos 8 cos 012
+5cos® 05 cos b12) + 2(5C3333 + 4C1313 — 8C1in1) [5(1 — k) (5 cos® 6y

— 5cos6;, + 10cos f; cos? By + cos By cos O12(1 + 15 cos® 1)

+6 cos 0; cos® 012) + 3k (90 cos® 6; cos® 63 — 5 cos® §; — 7 cos b,

+ 5 c0s 0y cos 012(15 cos® B, — 2 + cos? 5(18 cos® §; — 1))

+15 cos 0, cos? 015(1 + 5 cos® 6,) + 18 cos B, cos® 012)]‘

+ %(203333 ~4C1313 + Cun) [(1 - K) (875 cos® 0 — 785 cos® 8,

+ 162 cosf; — 5 cos 0y cos® 5(1225 cos® §; — 490 cos® 0, + 83)

+ 875 cos 8; cos® 0(7 cos? §; — 1) — cos B, cos 615(3500 cos* ; — 55 cos? 8,
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+ 38 — 350 cos® 6, (17 cos? B, — 1)) + 10 cos 0 cos® b12(175 cos? 0,
—35cos® 0, — 6) + 140 cos b, cos® 012) + 3K (115 cos® ; — Tcos b,

+ 50 cos 6 cos® 0(7 — 54 cos? ;) + 875 cos By cos* 02(7 cos® 6y — 1)

— 0 8, cos 012(875 cos® B, + 1200 cos? 8, — 83 — 5 cos® (1225 cos” 6,

+ 650 cos? 8, — 47)) — 50 cos b, cos? By5(7 cos? 0, + 2 — cos® B,(119 cos? 6,

+4)) + 50 cos B cos® f15(35 cos? 1 — 1) + 140 cos A cos® 6a)] } . (4.124)

The explicit expressions for asf, and a2C105 are too long to give here. In order to
eliminate programming errors, Macsyma’s Fortran conversion facility was used to convert
the expressions directly into Fortran.

If the molecules are assumed to be isotropic and, therefore, the molecular anisotropy
% to be zero, then the terms for s, oy p2 and azpus in equations (4.108) to (4.111) reduce
to the familiar expressions derived by Buckingham and Pople [101].

4.5 B, for non-linear molecules

For non-linear gases the second virial coefficient is given by

Ni opt) Loty @2 2 } -
— e — -~ Ji _ d
B, 3509/{[6&, e—ag| + % 2 + p'?) AR T

T

L 2 2 iy 27

S T T T e

R=0 01=0 $1=0 v1=0 a2=0 B2=0 7y2=0

o [ + 1) = uf] } e~ # R sin B sin f; dR daydfrdyidas, dBydys,

(4.125)

where general expressions for the two terms are given by equations. (4.28) and (4.50). For
the non-linear gases under consideration, experimental values for some of the molecular
properties, such as the hyperpolarizabilities and the A- and C-tensors, are not available.
For this reason, and because of estimations of the relative importance of these terms
based on the results for the linear gases, terms containing hyperpolarizabilities and the
A- and C-tensors were neglected for the non-linear gases. The remaining terms in the
dipole moment, quadrupole moment and the molecular polarizabilities, were calculated
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to an order high enough to establish convergence.

The general formulae for these terms must now be expressed in terms of the elements
of the seven interaction parameters R, oy, 1, 71, @2, B2 and 79, described in Section 2.1.2.

Since the terms in equations (4.28) and (4.50) are referred to O(1,2,3), the property
tensors of molecule 2 must be projected into the axes of molecule 1. This is achieved by
first rotating the tensor from O'(1,2',3’) into O(x,y,z) using the direction cosine a$, and
then rotat'ing the resultant tensor into O(1,2,3) by means of af. Thus, the dipole moment
of molecule 2 referred to molecule 1’s axes is given by:

p = 8l ) = g affug, ), (4.126)

where 12 = 4 =[0 0 p], and 2%, may be viewed as the transpose of equation (2.5).

Using equation (2.44) we get:

u? = u[D, D, D), (4.127)

_ where

Dy = A;By + A B + A, By,
D, = AgBy + A;Bs + A, B;, (4.128)
D, = A,By + AgBy + A,B,,

where A; to Ay and B, to By are defined in equations (2.45) to (2.53).
Similarly, the quadrupole moment of molecule 2 referred to O(1,2,3) is given by:

o 0 o) _ Qn Q Qs
0;; = 2, aﬁaz ]911 @y Qo @3] (4.129)
Qi3 Qo3 Q33
where
6, 0 0
07 =01 = 0, 0 (4.130)
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and

Qu =0, [A%(B? - Bg) + A}(Bf — BY) + A}(B} — B3) — 24;By(A,Bs
+A,B;) +2A,B,(ABy + AB;)+2A,A,(B, By — B3BG)] (4.13)
-0, (4B~ BY) + AY(B: - DY)+ ANBE - B —2AB(AB,
+A,B;) + 2A;Bg(A,Bs + A, B,)+2A,A,(B,B; — B3BG)] ,

Qs = 0, [A3(B7 — Bf) + A3(Bj — B?) + A3(B} — Bj) — 243 By(As By
+A4,By) + 243 By (A By + A,By) + 24, 45(B, By — B;B)| L5
+0, [A3(B] — B) + A3(B} — Bg) + A3(B; — B3) — 245 By(A; By e
1A, By) + 243 By(As By + A,B;) + 24,A5(B,Bs — ByBy))

Q33 = 0, [A3(B? — BY) + AY(B — BY) + A3(Bi — B;) — 244 By(As By
+AyBy) 4+ 2AgBy(Ag By + A3By) + 2A;A¢(B; B, — B3 B;)]
+ 0, [A3(B] — B3) + A(B: — B}) + A3(B] — B3) — 24, By(AgBg )
+AyB,) + 24 By (AgBs + Ay B,) + 243 A¢(B,Bs — B3Byg)]

Qo = — (0, +0,)[(A,Ag + A5 A7) Bg + (A Ag + Ay A7) Bs| B,
+0, [A7A8(B$ — B2) + A A(B? — B2) + A, A, (B} — B3) + [(A,44
+A5A;) By + (A1 Ag + AyA;)Bi|Br + (A Ay + AyAy) (BB, — ByBg)|  (4.134)
+ 6, [A7A8(B§ — BY) + A A (BZ — B) + A, A, (B3 — B%) + [(A 4,
+A5A7) By + (A1 Ag + Ay A7) Bo] By + (A A5 + Ay A4) (B, Bs — B3 Bg)]

Q3 = —(0; +0,)[(AAg + AgA;)Bg + (A, Ag + A3 A;)Bs) By
+0, [A;Ag(B? — B3) + A Ag(Bf — BY) + A, A3(BS — B2) + [(A44,
+AgA;) By + (A1 Ag + A3A;) BBy + (A Ag + A3A,) (BB, — B3BG)] (4.135)
+ 0, [A7Ag(Bs — Bg) + AyAg(BS — Bg) + A Ay(B] — B3) + (A4

+AgA7)Bs + (A1 Ag + A3 A7) Bo] B + (A1 Ag + A3 Ay) (B, By — BBB6)] ;
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Qos = — (0, + 0,)[(AsAg + AgAg) Bg + (Ax 4y + A3 Ag) B3] By
+ 6, [AsAg(Bg — B3) + Ay Ag(B] - BZ) + AyA4(B} — B3) + [(As 4y
+A6A8)B4 + (AzAg + A3A8)B1]B7 + (A2A6 + AsAs)(BlB4 - BsBs)]

+ 6, [ASAQ(Bg — B}) + A;A¢(B: - B3) + A, Ay(B3 — B3) + [(As A,

AgAg)Bs + (AyAg + AgAg) Bl By + (AyAg + AgAs)(B,Bs — ByBg)| .

2

The static polarizability, a5’ is given by:
- Wy Wy Wi
2 i_J
agj) - aaa’%a’ga‘?/ai/j/ = W12 W22 W23 y
Wiy Wy Wiy
where
a; 0 O
a?j), = aﬁ}) =10 ayp O
' 0 0 ag
and

Wy = ay, [AIB} + ALB} + A3B} + 2A,A,B B, + 2A,B;(A,B, + A B))]
+ agy [A3BS + AJBE + ASBE + 24, A, B, By + 2A;Bg(ABs + A By)]
+ agy [AZBS + ASBS + A2B¢ + 2A, A, By Bg + 2A,By(A4Bg + A Bs)]
Wy, = ayy [A3B? + ALB} + A}B? + 2A,A;B, B, + 2A4B,(AyB, + A,B,)]
+ ayy [AJB] + ALB2 + A3B; + 2A4,A;By By + 243 By (A By + A3 B,)]
+ ag3 [A3B; + AZB; + A3Bj + 2A,A; B3 Bg + 243 Bo(As Bg + A, By)]
Was = ayy [AJB] + A3B; + A§B} + 2A;A¢B, B, + 24,B,(A¢B, + A;B)]
+ ayy [A3B] + AgBE + A3B; + 2A,AgB, By + 24y By (Ag By + A B,)]

+ Qg3 [Ang + AFB} + AJB] + 2A3A¢B; Bg + 2ABy(AgBg + A3B3)] ,
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(4.137)

(4.138)

(4.139)

(4.140)

(4.141)



Wi =apy [AlAzBf + A4A5Bf + A7ABB$ + B, B,(A1 A5 + AyA,)
+B; (By(AAg + A Ay) + By(A A + Ay A7) + agy [A1 A8
+ A AgB2 + A, AgBE + ByBy(A Ay + Ay A,) + By (Bs(AAg + Az A7) (4142)
+B,(AAg + A2A7))] + as, [A1A2B§ + A4A5B§ + A7A8B§
+B,By(A Ay + AyA) + By (Bg(AAs + AsA7) + By(A Ay + A A7))]
Wi = ay; [A1A3BE + AL AgBL + A, AgB7 + By B,(A Ag + A3A))
+B, (B4(A4A9 + AgA;) + B (A 4y + A3A7))] + gy [A1A3B§
+ A4A6B§ + A7A9B§ + B,B.(A;Ag + AsA,) + By (B5(A4A9 + AgA;)  (4.143)
+B, (A Ag + A3 A7))] + ags [A;A3BS + A ABS + A A B
+B;Bg (A, Ag + AjA,) + By (BG(A4A9 + AgA;) + B3 (A Ag + A3A7))] ,
Was = ay; [AyA3 By + AgAgB; + AgAgB7 + By By(AyAg + AsAs;)
+B; (B, (AsAq + AgAg) + By (AyAg + AgAg))]| + ayy [AyA3BS
+ AsAgB: + AgAgBi + B,Bg(AyAg + Ay Ag) + By (Bs(AsAg + AgAg)  (4.144)
+B,(AyAg + AgAg))| + ass [A3A3B: + Ay AgB; + AgAyBj
+B;3Bg(AyAg + AzAs) + By (Bg(AsAg + AgAg) + By(AyAg + AzAg))] -

The expressions for the second and third rank T-tensors referred to space-fixed axes

are given in equations (2.40) and (2.41). These must be projected into molecule 1’s axes
as follows:

o 11 Ty, Ty, Ty
T;= a@aﬁ,Taﬁ = Areq R? Ty Ty Ty (4.145)
Ty 1oy Ty
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where

therefore,

where

Ty, =247 - A - Aj, )
Ty, = 242 — A2 — A,
Ty = 2A§ - A?ﬁ - A%,
Ty = 24744 — AgAs — A Ay,
| T3 = 24,49 — AjAg — A1 43,
Ths = 2AgAg — AgAg — Ay As.

At
Ty = ahafasT g,
Tl].l T112 T113
_ 3
lek - 47!'60Ri T112 T122 T123 bl

_T113 T123 T133_

7
T112 T122 T123

. . 3
T2jk: T 4meoRA T122
_T123

S

222 T223 )

=3

223 T233_

T113 T123 T133

_ 3
T3jk T 4weoRA T123 223 T233 )
_T133 T233 T333_

=3

T111 = 2143 - 3A7(AZ + A%),

» T22’2 = 2‘42 - 3A8(A§ + Ag):

Tyyy = 245 — 3A44(4; + A)),

Tyyy = 247(A7 A5 — AJAs — AL A,y) — Ag(AS + AD),

Ty = 2A7(A7Ag — AjAg — A A3) — Ag(Af + AD),

122 - 2A8(A As - A4A5 - A A ) A7(A§ + A%),
Tigy = 24(ArAg — AgAg — A1Ay) — A7 (AZ + A3),

Tyos = 2A5(AgAg — AsAs — AyA3) — Ag(AZ + A7),
Thsy = 249(Agdg — AsAs — Ay A;) — Ag(AF + A3),
Tips = Ag(24745 — AgAs — A1 4,) — Ag(A A + AL As)

— A (AsAg + Ay Ay).
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(4.147)

(4.148)

> (4.149)




In

where

order to simplify the final expressions for the terms, we define an additional tensor:
- Gy G Gy
1
Gy = a'gj)Tjkakl =Gy Gy Gyl (4.150)
Gy Gz Gy
Giy = an (Wi Ty + Wi T, + WisThs), W

( )

Gy = ay (Wi Thy + WoThy + W3 Ths),

= ay1 (Wi3Thy + Was Ty + Wy Ths),

22 (Wi1 Ty + Wi T + Wi3Ths),
Gy = g (Wi Thp + Wiy Top + WisTig), r (4.151)

( )

( )

( )

( )

O Q
) et
— w
I

e 8

Gog = g (Wi3Tyg + Wi Ty + WisThs),
Gy, = ag3(Wy Ti3 + Wiy Tyy + WisTss),
Gy = a33(W1p T3 + Wi Ty + WosT3s),
Gy = a33(Wi3Ti3 + WisThg + WigT3s).

/

With these tensors defined it is now possible to use Macsyma’s tensor manipulation

facilities to evaluate the relevant terms in the integration. Thus, substituting equa-
tions (4.126) to (4.149) into equations (4.30) to (4.32), (4.51) to (4.55) and (4.57) yields:

1
- 3(4W€o)R3

1
 3(4meq)2RS

Q2 (Giy + Gy + Gyy), (4.152)

a3 {all(G13T13 + G111 + G Ty) + 699 (GosThs + Gy Ty
| (4.153)
+Gp Tyo) + ag3(G3T33 + G213 + G31T13)} )

1

U7 3 dreg) P B9 {

TII(G%I + G12G21 + G13G31) + T22(G12G21 + G%Z

+ G23G32) + T33(G13G31 + G23G32 + G§3) + TlZ[(Gll + G22)(G12 (4 154)

+ Gy1) + G13Gsy + GGy | + Ti3[(G) + Gy3) Gz + Gyy) + GG
| +G01Gaol + Tia[(Gog + Gy3)(Goz + Gyp) + GGy + G13G21]} )

pz = p*Dy, (4.155)
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2
Qg = _hz {%3(1 + D) (D1 Ty3 + DoTys + D3Ty3) + WigThy + WosThs + W33T33} ;
~ (4meo) 3

(4.156)

L 22
Qiglly = (47r—502)2—R6 {a%1[2(D1D2T11T12 + D, DyT1, T3 + DyD3Ty,Th3) + Dl

+ DITY + D3Th] + 635(2(D, DT, Ty + Dy D311 s + DyDsTi Tog) + DiTYy,
+ D3T2 + DiTa] + 633(2(D, DyT13 T + Dy D3T3 T3 + DyDsTsTa3) + DTy
+ D3T5 + DiTis) + ayy (D, Tyy + DyThp + DyTig)[2(W5 Ty + Wos Ty

+ WagTys) + Wi Thg + Wig T + Wi3Tas] + a9y (D1 Ty + DoThy + DyTog)

X [2(WisTyg + Was Ty + WigTog) + Wi Tyg + Wy Tog + WayTg] + a35(D, Tis
+ Dy Ty + D3Ti3) [3(WiThs + WasToy + W Tag) + 2(Wy Tt + W T
AWy Tiy + 2(WiyT13Ts + WisTysTas + W23T23T33))]} ;

(4.157)

24
Qlia = ( ’ {‘111(’D1T11 + DTy + D3T13)[G Ty + GagTig + G313 + Gy T

(4me9)3R®
+ G12To3 + Gi3T53] + age(D1 T + DyTp + D3T3)[GagThp + GagTog + GasThg
+ Gy T3 + GaaTog + G Ty + 2a35(Dy Th + Dy Ts + D3 T33)[ Gy T
+ GaTos + GygTg] + Wiy T13(G1y Tis + GraThs + GrsTag) + Wi Th5(Goyy Ths

-+ Gy + GosTyg) + Wyg[T33(Gay Tyg + Gao Ty + GasTiag) + Ti3To3(Gry + Gay)
+T13Ta3(Ghg + Gyy) + Ty Ty (Goy + Gyp) + Gy Ty + Gop T + Gy Ty
+ Wia[T33(GasTis + GrsThs) + Tos(GapThs + GroTos) + T15(Goy Thg + Gy Ths))]
+ Wis[Ti5(Gr5Thy + GosTha + 2Ga3Ts + GrsTys) + Tog(GraThy + GanThy
+ 2G5, 13 + G1pT53) + T13(Gri Thy + G Ty + 2G5 Ty + Gy Ty
+ Was[Ts3(G13 Ty + GogTog + 2G 33Ty + Gy Tsg) + T3 (G1oThp + Goa Ty

+2G 35T93 + GyyT33) + T13(G 1 Ty + Go Ty + 2G4, Tog + G21T33)]} ;
(4.158)
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2

2
ot = — (4_7r5'L:_)R_4 {033 [Q11T113 + Q221593 + Q331333 + 2(Q12T 193 + Q137133
' WisTysy] — 0, Was T, (4159)
+ Qu3T533)] — 01 [WasThys + WosThyg + WisThy] — 02[Wss Ty

AWosTong + WisTi] 4 (0 + 09)[WisTigy + WosThgs + W13T133]} ;

1

W {a%l [QllTlll + Q22T122 ~+ Q33T133 + 2(Q12T112 -+ Q13T113

agfy =

+ Qo3 Ts) | + 05o[Qu1 iz + Qoo Ty + Qa3 Tz + 2(QuoThon + @uaThos

+ Qo3 Thos)) + 033[Q11 Ty + Qoo Togs + Q3 Ts33 + 2(Q1oT103 + Qu3Tha

+ Qo3 T3] — 011 [Q11 Ty + Qoo Thop + Qs Th3s + 2(R12Th12 + RusTin

+ Qo3 Tioa) 110 (Wi Tiyy + WigThys + WisThus) + 0o (Wiy Thgg + WipThyy

+ WisThos) — (61 + 02) (W1 Tis3 + WinThgs + WisTiags)] — 69p[@11 Thas

+ QuuTopy + QasTogs + 2(Q15 T + Qr3T103 + Qo3 Tios) ][0 (W1, Th1
A Wy Thyg + WoaThy3) + 0, (Wi Tig + Waa o + WosThps)

— (0, + 0y) W1y T35 + Wi Togs + Wy Tagy)] — a3[@11 115 + Qa9 Th03

+ Q33 T335 + 2(Q12T123 + Qu3T133 + Qo3Tass) 1101 (WisThay + WasThyy

+ Wiy Tii) + 0(WisTiop + WosTagy + WasThas) — (6 + 05) (WisThss

+ Wy Tozy + Wi Tags)]-
(4.160)

It can be seen from the above equations, that in spite of the methods employed to
abbreviate the expressions, they become increasingly complicated. The terms a6, and
o360 have been evaluated, but are not quoted here since they are very long and it is
preferable to generate the expressions using an algebraic manipulation package such as
Magcsyma, which can convert them directly into Fortran for integration, eliminating the
introduction of typographical errors. These terms were necessary to establish convergence.
The computer programs to calculate each term are time-consuming. For a polar gas,
calculating all the terms necessary to determine B, takes more than 24 hours on a Pentium
133 MHz PC with 64 Mb of RAM.
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4.6 Summary of experimental work on the second

dielectric virial coeflficient

Tables 1.1 to 1.3 contain a comprehensive summary of the experimental second dielectric
virial coefficient data available, for the molecules under study. For many of the values the
experimental errors quoted are substantial, and the results of different workers vary con-
siderably. Thus, it is often difficult to distinguish a trend over the range of temperatures
for which data is available. Apart from some recent work by Huot and Bose in 1991 [38]
on noble gases, the majority of the data was measured in the 1960’s and 1970’s.

The earliest measurements [10, 12,45,46;53] were made using Burnett’s expansion
method [132]. This was later modified by Orcutt and Cole [13] in 1967, to provide more
accurate density measurements, and therefore, more accurate values of B, using a cyclic
expansion technique. This method has been used extensively in the measurement of
the second dielectric virial coefficient [2,24,42,43,51,110,133] . However, in both these
methods the second dielectric virial coefficient is not determined directly, but as a ratio
of %g’ with A, determined in a separate experiment. In 1970, Buckingham, Cole and
Sutter [49] reported on a simple differential technique for the direct determination of B,
which involved the use of almost identical cells, one of which is evacuated. The sum of the
capacitances in both cells was measured, the gas was allowed to expand to fill both cells,
and the the change in the sum was measured. The same principle was used by Buckingham
and Graham [39], and later by Burns and Graham [44], to measure Bp for a range of
gases. This method was also used by St-Arnaud and Bose [68] in 1979 to measure the
second refractivity virial coefficient of carbon dioxide and sulfur hexafluoride, by Bose et
al [74] in 1988 to measure Bp for ethylene-argon mixtures, and by Huot [38] to measure
dielectric virial coefficients of atomic gases. Koschine and Lehman [134] measured B,
for 1,1-difluoroethylene using a modification of the cyclic expansion method. In 1995
St-Arnaud et al. [135] designed a computer-controlled measuring system which employs
the differential expansion technique of Buckingham et al. [49] to measure the dielectric
constant as a function of pressure and temperature. They showed that the computer-
controlled system can improve the efficiency of the experimental procedures.

It can be seen from comparison of Table 1.2 and 1.3 that the second virial coeflicients
for dipolar molecules are much larger than those for molecules without a permanent
dipole. This can be understood by considering the contribution of the two terms in
equation (4.15). The first term, which represents the polarization due to the moments
induced in the molecules, is sometimes referred to as B, ,. The second term, which

represents the polarization due to the dipoles orientating themselves in the direction of
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the field, is called B,,,. Therefore, B, may be written as [40]:

Eor

B.=B._, +B (4.161)

€ind Eor*

For atomic gases, only the first term contributes to B, while for other non-polar gases,
there is some contribution from the second term, but the first term usually dominates.
For polar gases, B, is usually assumed to be negligible in comparison with Be,, [2,3,27].
There have been some attempts to separate the contributions of B, and By, [136], so
that mulitpole moments may be evaluated from B,,,, but the methods are unreliable and

there are few results available.

4.7 Summary of theoretical calculations of the sec-

ond dielectric virial coefﬁcient

The deviations of real gases from the Clausius-Mossotti formula in (4.6) have been dis-
cussed by many workers. In the 1930’s various models of dielectrics were proposed in
an attempt to explain the Clausius-Mossoti formula [119,121]. Harris and Alder [116]
later expanded Kirkwood’s correlation factor g in powers of % in an attempt to model
the density-dependence of the Clausius-Mossotti equation, and developed formulae for
the dielectric polarization from some simple force fields, using the Onsager relation [119]
for estimating the mean dipole moment of a molecule. Their model, like Kirkwood’s,
excluded induction effects.

Later, Buckingham and Pople [28,101] considered a virial type expansion of the
Clausius-Mossotti formula and presented a general statistical mechanical derivation of
the second dielectric virial coefficient by considering a macroscopic spherical volume of
gas. This generally accepted formula for B, is given in equation (4.15). They showed
that it was unnecessary to make the approximation of using the Onsager relation if one
considered only the initial deviation from the ideal gas behaviour. They introduced a
shape factor D, discussed in Section 2.2, into the intermolecular potential to account for
the orientation effects of the shape of a molecule, such as the large positive values of B,
for CHF3 and negative values for CH3F (Table 1.3). Much of the subsequent work on
the subject has been based on their model, with mixed results [3,45,97]. In order to per-
form the necessary integration they used Hj functions introduced by Lennard-Jones [137],
which they tabulated [96]. This method involves expansion of the orientation-dependent
part of the Boltzmann factor e~ in powers of % which leads to increasingly complex
functions from higher powers of U;s and problems with convergence. Due to the difficul-
ties involved in the integration, only the leading terms in the integrands were evaluated.

As numerical integration using computers became practical, it was possible to include
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more terms and consider quadrupole-quadrupole and quadrupole-induced-dipole poten-
tials together with the Lennard-Jones, dipole-dipole and shape potentials. In our work
we have included as many terms as was necessary to ensure convergence, as well as the
full DID potential model, as described in Chapter 2.

The second dielectric virial coefficients of spherical and quasi-spherical gases have
been studied by various workers. Isnard, Robert and Galatry [112] calculated B, for the
quasi-spherical CH, and CF by including the dipole-induced-dipole contribution for the
distortion term and the octopolar and hexadecapolar fields for the orientation term, and
found good agreement with experimental data. Logan and Madden [131] calculated B.
for CH, and the inert gases by considering the induced quadrupole contribution to the
induction component. They showed [138] that the induced quadrupole made a significant
contribution to B, of argon, demonstrating the importance of the C-tensor term in B, .

More recently, Huot and Bose [38] calculated B, for atomic gases from ab initio cal-
culations incorporating quantum short-range corrections. These were determined by the
Hartree-Fock self-consistent field (HF-SCF) method, but apart from helium the calculated
values were not in agreement with their measured values.

In 1994, Bulanin, Hohm and Ladvischchenko [139] calculated B, for rare gases using
accurate HFD-type interatomic interaction potentials. They compared their calculations
with experimental data and previous calculations of Hohm [140] based on a Lennard-
Jones potential, and found that improving the accuracy of the potential did not improve
the overall agreement with experiment.

The treatment of spherical and quasi-spherical gases is complex and requires consid-
eration of high-order multipoles as well as long and short-range corrections. This type of
treatment is beyond the scope of this work and shall not be considered here.

The second dielectric virial coefficient of polar and non-polar gases has been inves-
tigated by many workers. Johnston and Cole [45] generalised Buckingham and Pople’s
theory for B, of linear non-polar molecules to include molecules of lower symmetry,
such as ethene, including only the leading term in the quadrupole moment. They noted,
however, that the approximation adopted by Buckingham and Pople [141] of retaining
only the leading term in the expansion of the Boltzmann factor might be inadequate,
but were unable to improve the model due to the complex angular dependence of the
quadrupole-quadrupole interaction energy, defined in equation (2.12). Later, Bose and
Cole [40] included the quadrupole-induced-dipole interaction energy into the potential
energy and found that it made a small but significant contribution.

In 1963, Lawley and Smith [142] suggested an off-centre hard sphere dipole model for
polar molecules to account for the negative experimental values of B, for some polar gases.
Dymond and Smith [56] expanded on this model by considering a soft Lennard-Jones
spherical molecule. Spurling and Mason [143] showed that this off-centre dipole model
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can be replaced by an equivalent central dipole-quadrupole model including Buckingham
and Pople’s shape factor. The calculations for this model are simpler than for the off-
centre dipole model.

In 1969, Sutter [3] measured the first and second dielectric virial coefficients and the
second pressure virial coefficient at three temperatures for five polar linear halogenated
methanes. He used his values of A, to determine the permanent dipole moments and
static molecular polarizabilies of the gases. He then fitted Lennard-Jones parameters to
his data for B(T'). A surprising result was that the value of R, fitted for CHF3 was smaller
than the fitted value for CHsF. Using the fitted Lennard-Jones parameters and his values
for 4 and a he fitted Buckingham and Pople’s [101] B, model to his experimental data to
obtain a value for the shape factor of each molecule. In the model he omitted the effects
of the quadrupole moment and molecular polarizability anisotropy, as well as the B, ,
contribution. He obtained reasonable values of the shape factor for CH3F, CH3Cl and
CCIF;, but the value of D for CHF3 was positive, erroneously indicating a rod-shaped
molecule. He concluded that although the measured values of B, showed differences
in sign, magnitude and temperature dependence which appear to be correlated with
deviations from the spherical shape, attempts to account for them using the model for
molecular shape proposed by Buckingham and Pople [28] were unsatisfactory. However,
since the model used neglects the effects of the quadrupole moment and anisotropy of
the molecular polarizability, which may have a significant effect on the value of B,, these
findings are inconclusive. In this work we have included the effects of the quadrupole
moment, anisotropy and hyperpolarizabilities on the effective polarizability and dipole
moment, as well as including quadrupole effects on the intermolecular potential. We have
also included the B, , contribution, resulting in a more complete model.

In general, researchers use B(7T'), which is less sensitive to non-central potentials, to
fit the Lennard-Jones parameters, Ry and . These are then used in the calculations
for B, and the resultant equations used to fit the shape parameter, D. It has been
noted that fitting Ry and £ to B(T') sometimes results in unrealistically small values for
Ry [3,51,142,144]. In this work we have included the shape potential when evaluating
B(T) and have attempted to optimize the Lennard-Jones parameters and the shape factor
for both B(T') and B, simultaneously.

In order to address the problem of physically unreasonable fitted values for Ry,
Copeland and Cole [97] calculated B, for CHF3; and CH3F, by fitting Ry and £ to Cas-
parian and Cole’s [145] viscosity data, using these with a known dipole moment to fit
the quadrupole moment from B(7T'), and finally fitting the shape factor to experimental
values of the second dielectric virial coefficient. They used methods similar to that of
Sutter [3], but included the ayf; term in B, . and the effects of the quadrupole moment
on the potential energy. This method yielded values of D for CHF3 and CH3F in fair
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agreement with Buckingham and Pople’s model.

In 1974, Hosticka, Bose and Sochanski [146] included the quadrupole-quadrupole in-
teraction energy in the potential in a model for B, of ethylene, taking into account
its low symmetry. Only the leading quadrupole term in the integrand was considered
and the anisotropy of the polarizability was not included in the model. The intermolec-
ular potential was taken to be the sum of the Lennard-Jones central potential and the
quadrupole-quadrupole interaction energy with no shape potential. They used this model
to reanalyze the experimental results of Bose and Cole [24], in order to estimate the mean
quadrupole moment. From their results they concluded that ethylene can be treated as
an linear molecule without significant error. However, Couling and Graham [36] showed
that treating ethylene as a non-linear molecule improved the calculated values of both the
second light-scattering and Kerr-effect virial coefficients. Thus, we will use the non-linear
model which we have developed to calculate B, for ethylene, including as many terms as
are necessary to ensure convergence, and the shape potential introduced by Couling and
Graham [9, 36].

Powles and McGrath [11] calculated B, for HCI using several different models for
the intermolecular potential, but were unable to obtain agreement with the experimental
data of Lawley and Sutton [10], which are almost an order of magnitude larger than the
calculated values. However, in their models they consider only the two leading terms, o
and aps, of the dipole series of B, and include no induction terms in the intermolecular
potentials. For their model using the Lennard-Jones potential they include only the
dipole-dipole potential, with no shape potential and performed the integration using the
Hj, functions tabulated by Buckingham and Pople [96]. In our calculations of B, for HCI
we include as many terms as necessary to ensure convergence of both B, , and B
the full DID potential described in Chapter 2.

In 1987 Kielpinski and Murad [147] studied the effects of isotropic and anisotropic po-
larizability on properties of dilute gases, including the second dielectric virial coefficient.
They showed that polarizability makes a significant contribution to B, while the con-
tribution of the polarizability anisotropy, although smaller is still significant. Although
many earlier workers omitted the anisotropy of linear molecules [3,11,28,97,146], we have
included it in all our calculations, since we have found that it can be significant.

Joslin and Goldman [148] considered the numerical calculations of Powles and Mc-
Grath [11] and Kielpinski and Murad [147] to be unsatisfactory because B, , was omitted,
and Powles and McGrath also excluded induction effects in the intermolecular potential.
Joslin and Goldman calculated B, and By numerically for anisotropically polarizable
dipolar hard spheres using a simple intermolecular potential, claiming their method to
be essentially exact, although it does not include any quadrupole or shape. They applied
this method to CHF3 and found their results agreed with available experimental data.

and

€or
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Chapter 5

The Second Refractivity Virial
Coefficient, B

The molar refraction R, of a medium is defined as follows:

n?—1

Rm:n2+2

Vin, (5.1)
where n is the refractive index and V;, is the molar volume of the medium. An equation
relating the mean polarizability aq of an isolated molecule to the molar refraction of a bulk
sample at equilibrium was derived independently by L. Lorenz [30] and J. A. Lorentz [29]
in 1880. This formula later became known as the Lorenz-Lorentz equation:

n2 -1 . N AOQQ

m 9 52
n? + 2V 380 ( )

where N4 is Avogadro’s number and ¢ is the permittivity of a vacuum. If oy is assumed to
be independent of density, the Lorenz-Lorentz equation implies that the molar refraction
is independent of density. Early values of R,, for many gases appeared to be constant
within the experimental error for a wide range of pressure and temperature. However,
more precise experimental techniques used by subsequent workers [76,80,149-151] showed
significant variations of the molar refractivity with density. To account for this variation
Buckingham [152] wrote R,, in the form of a virial expansion:

’I’I,2 -1 BR CR
B =5 RSyt (5.3)
where Ag, Bg, Cp, ... are called the first, second, third, ... refractivity virial coeflicients.

In the limit of infinite dilution, the first refractivity virial coefficient Ag is the only
contribution to R,,, and equation (5.3) reduces to the Lorenz-Lorentz formula. Thus,
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Apg, which describes the ideal gas contribution, is given by:

N
Ap= lim R, =A% (5.4)
Vm—00 380

The second and third refractivity virial coefficients describe the mean contribution to Ry,
of interacting pairs and triplets, respectively. By describes the inital deviation from ideal
gas behaviour and has been the subject of many experimental [13,39,44,58,60,63,67,68,
80,122,150,151] and theoretical [44,105,122,124,152] investigations.

5.1 Theory of Bp

Buckingham [152] presented a general theory of the second refractivity virial coefficient Bg
for pure gas systems, which was later extended by Kielich [124] to mixtures of gases. These
theories are closely analogous to the treatment of the second dielectric virial coefficient
presented in Section 4. The two theories are associated through the relationship between
the refractive index and the dielectric constant of a gas:

n? = €pfir, (5.5)

where n and €, are the refractive index and dielectric constant of the gas at the same
frequency, and u, is the relative permeability, which for dilute non-magnetic gases is
assumed to be negligibly different from unity.

In Chapter 4 the following equation was obtained for the total polarization of a di-
electric gas in the presence of a static external field:

e — 1 Ny A 1 s .
P="—"V,=-=- _ i 1) @ _
T Er + 2 350{< dF, € +3kT;<p’ K > , (5.6)

where p® is the dipole moment of the i*® molecule. The first term on the right-hand side
of (5.6) is due to the distortion of the molecules by the external field, while the second
term is due to the tendency of the dipole moments (permanent or induced) to align
themselves in the direction of the static applied field. For alternating external fields,
equation (5.6) is only strictly correct if the molecular orientations are able to follow the
alternations exactly. For alternating fields of optical frequency, the orientation of the
dipoles is completely suppressed by the inertia of the molecules, so that the second,
temperature-dependent term of (5.6) reduces to zero. Thus, at optical frequencies w,
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equation (5.6) becomes:

. er(w) —1 N, /opu® >
— Ty =2 . 5.7

where & is an electric field alternating at optical frequency w.
If 4, 2 1, then from (5.5) it follows that:

ew)—1 n?-1

= , (5.8)
g(w)+2 n2+2
therefore, from (5.7):
n?—~1 Ny /op >
——FVm = 5 € ). 5.9
n? + 2vm 3eo < 850 ¢ ( )

From equations (5.3), (5.4) and (5.9), it follows that the second refractivity virial coeffi-
cient is given by:

(1)
Br = lim [(Rn — Ar)Va] = Na lim [<3p, .€ — a0> Vm]

Vin—00 3€0 Vim—oo 0&,
2 (1 e
= 3]6\[‘22 / [65:'9 e — ao} e~ )dT, (5.10)
0 0

T

where 7 describes the relative configuration of the pair of molecules.

o o) . .
In general four distinct contributions to P o o ] can be identified:
g 9&y

() The “fluctuation’ contribution of Kirkwood [127] and Yvon [153] is a classicial effect
first investigated by Silberstein [154]. The effective polarizability of each molecule of
an interacting pair is modified by the extra field at one due to the induced dipole on
the other. Silberstein [154] showed that if the molecules have an intrinsic isotropic
polarizability oy and are separated by R, then

Lags(R) — ap = Sag [(1— ﬂﬁg)_lm (HFZ?EE)—I —3} .

471'80

The expression diverges at separation R = ¢/ f%, and for large R

20

1

sa9(R) — g = :

zn2(B) — o0 = rc v

The divergence is unimportant since it occurs at a separation where the electron
clouds overlap extensively, so that the model is inappropriate at this distance. The
effect makes a positive contribution to Bg which can easily be determined if Uy, is

known.
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(i) When the separation R is large the intrinsic molecular polarizability changes as
a result of dispersion-type interactions. Jansen and Mazur [155] first investigated
these effects and showed that they lead to a significant positive contribution to ays
that varies as R~® at large R. Other workers [123,128,156,157] have studied the
effect, which is attributed to the distortion of the electronic structure of the pair of
molecules due to dispersion interactions.

(iii) ay2 is modified by overlap of the electron clouds at short range. Theoretical in-
vestigations of this effect [129,130,158-160] indicate that the contribution to Bpg
is probably negative and this may be attributed to the additional electron-nuclear
attraction associated with an increase in the effective nuclear charge.

(iv) Non-linear polarization effects may result from the strong intermolecular electric
fields produced by permanent electric moments. These effects are described by the
molecular hyperpolarizabilities [34,125].

The distortion terms in Bg and B, are similar in form, but the molecular polarizabili-
ties in B, are the static polarizabilities, while those in Bp are the dynamic polarizabilities
and depend on the frequency, w. For pure samples of the inert gases the second term in
B, is always zero (Section 4.3). Therefore, since the absorption frequencies for the inert
gases are found in the far ultra-violet range, dispersion effects should be small, and Bpg
and B, should be almost equal for these gases.

To evaluate Bp, the specific form of (%.e — ao) is required. The derivation of the
general expression is described in detail in Section 4.1, with the specific forms for spherical,
linear and non-linear molecules given in Sections 4.3, 4.4 and 4.5, respectively. The only
change necessary is to substitute dynamic polarizabilities for the static polarizabilities.

5.2 Summary of experimental work on the second

refractivity virial coefficient

Tables 1.4 to 1.6 contain a comprehensive summary of the experimental second refractivity
virial coefficient data available.

In almost all the work carried out before 1974, the absolute method for the determi-
nation of the second refractivity virial coefficient was employed. In this method, By is
determined from refractive index measurements made at varying gas densities, and the
accuracy of the calculated values is limited by the accuracy of the density data. Since
the contribution %‘f due to pair interactions is only a small fraction (typically 1 part in
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10* at 10°Pa) of the molar refractivity,

2

5_: _ %Vm _ Ag (5.11)
is a small difference between two large quantities and small errors in the density lead to
large errors in Bp. Errors reported by workers using this technique are often 100% or
more [13,67,150,151].

In 1974, Buckingham and Graham [39] introduced a new direct determination method,
now often referred to as the differential method, based on a technique first used by
Buckingham, Cole and Sutter [49] for the direct determination of of the second dielectric
virial coefficient. This differential-interferometric method measures directly the effects of
molecular interactions on the refractivity of gases, and consists of measuring differentially
the total optical path when a gas is decompressed from one cell into a similar evacuated
cell. This measurement, tbgether with measurements of A, yields values of Br of much
greater precision than previously possible. Buckingham and Graham [39,122] used this
new technique to measure By for a wide range of gases. This method has subsequently
been used by St-Arnaud and Bose [63,68,75], Burns, Graham and Weller [44,62], and
Bose et al. [74].

More recently, Achtermann et al. [65,77] improved the differential-interferometric tech-
nique by developing a device consisting of two coupled interferometers. One interferome-
ter, with two similar cells in series, measures differentially the the excess contribution to
R,, due to gas imperfections, while the second interferometer, with two similar cells in
parallel, measures the absolute value of the refractive index at the same time. This tech-
nique allowed measurements to be carried out to much higher pressures (up to 40 MPa)
than had previously been practical. The accuracy of the measured values was estimated
to be between 2-5% for the second refractivity virial coefficient.

There is some evidence [62,151] that Bg may depend on the wavelength of the in-
cident light, but the large experimental errors render the results inconclusive. In 1991
Hohm [161] developed a low pressure experimental method to determine the second re-
fractivity virial coefficient bp(A\) = Br/ARg relative to a given fixed value bg(A;) for various
wavelengths A. The results of the measurements for Ar, Kr and CO5 were found to be in
fair agreement with the higher pressure results of Burns, Graham and Weller [62]. In the
case of CO, dispersion effects were larger than those predicted by the small dispersion
of the molecular polarizabilities which enter Br. Hohm [59] later used this method to
measure the frequency dependence of By for a much wider range of gases, and presented
a simple theory to account for the observed dependence.
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5.3 Summary of theoretical work on the second re-

fractivity virial coefficient

There have been several theoretical approaches to the density-dependence of the molecular
polarizability by Kirkwood [127], Yvon [153], Michels, de Boer and Bijl [158], Brown [162],
Jansen and Mazur [155], Buckingham and Pople [31,96] and Levine and McQuarrie [163].

The classical statistical-mechanical theory of the second refractivity virial coefficient
presented by Buckingham and Pople [31,96] has been used by many workers [63,66,68,69,
74,75,80] to calculate values for By to compare with their measured values. Kielich [124]
developed the theory to consider mixtures of gases. The pure gas theory of Buckingham
and Pople [31,96] was later expanded by Graham [122] to include the effects of polariz-
ability anisotropy, quadrupole moments and field-gradients. This work was continued by
Burns, Graham and Weller [62,105] to include more terms in order to establish conver-
gence. Several workers have modified these theories for large quasi-spherical molecules
by substituting a generalized Lennard-Jones (7-28) potential for the more common (6-12)
potential with some success [62,68,164].

These classical theories do not include quantum-mechanical long-range or short-range
effects. Long-range dispersion-type interactions have been investigated by Jansen and
Mazur [155], Buckingham [123], Heinrichs [156], Certain and Fortune [157], Buckingham,
Martin and Watts [128] and Buckingham and Clarke [165]. Short-range overlap effects
have been studied by Michels et al. [158], ten Seldam and de Groot [159], Lim et al. [160],
O’Brien et al. [130], and Buckingham and Watts [129]. Until recently, complete calcula-
tions which include both these considerations were only available for the lightest gases,
helium and neon [166]. For these atoms, B, is negative, while the classical DID model al-
ways gives a positive value for the second refractivity virial coefficient. Thus, Achtermann
et al. [66] adopted a semiclassical approach of adding the positive classical DID contribu-
tion to the negative short-range ab initio calculations of Dacre [166-169], using potentials
presented by Aziz et al. [170-172]. Similarly, in 1994, Meinander [173] presented a the-
ory for spherical and quasi-spherical atoms and molecules using empirical intermolecular
potentials and a model for the pair polarizaibility trace which includes both long and
short-range effects. The short-range contribution is modelled with an exponential func-
tion derived from Dacre’s polarizabilities [166,168,169], while the potentials are those of
Aziz et al. [170-172]. The work on spherical gases shows that especially for the lighter
atoms, the short-range effects are significant. For non-spherical molecules, however, the
classical theory is usually adopted. In this work, we will not consider the spherical and

quasi-spherical gases and all our calculations are based on the classical theory presented
earlier in this chapter.
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Chapter 6

The Second Kerr-Effect Virial
Coefficient, B

In 1875, Kerr observed that when a strong electric field is applied across an isotropic
medium, the medium becomes birefringent [32]. In this work we will consider only gases,
where the anisotropy in the molecular distribution due to an applied field is the result of
the intrinsic anisotropy of the molecules or the anisotropy induced in the molecules by
the applied field.

parallel plate electrodes

4
N

\\
\\

y

Figure 6.1: The Kerr cell, with space-fixed axes O(x,y,z) where z is in the direction of
propagation of the light beam, x is in the direction of the applied electric field, and y is
perpendicular to the field.

In the arrangement shown in Figure 6.1, the space-fixed system of axes O(x,y,z) is fixed
in the Kerr cell with the z-axis in the direction of propagation of the incident light wave,
the x-axis in the direction of the applied static electric field, and the y-axis perpendicular
to the applied field. If a gas is introduced into the cell and a uniform electric field is
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applied in the x direction using the pair of parallel plates, then a light wave, polarized
in the xz plane and propagating in the z direction, experiences a refractive index n,.
If, however the light wave is polarized in the yz plane, it will experience a refractive
index n,, which differs from n,. This phenomenon is known as the Kerr effect. In
order to develop a theory of the Kerr effect, it is necessary to relate the macroscopically
observable quantity (ny —n,) to the molecular property tensors of the individual molecules
in the gas. Buckingham and Pople [34] developed such a theory in 1955 for gases at low
pressures. For an ideal gas, (n, — n,) is independent of density, but for real gases the
density-dependence is described by a virial expansion, with the contribution of pairs of
interacfing molecules given by the second Kerr-effect virial coefficient.

In 1995, Couling and Graham [9] extended the theory first developed by Buckingham
-and Pople [34] to include the case of non-linear gases and included many high-order terms
to ensure convergence. They did not present the specific form for linear gases, but used
the non-linear equations, for which linear gases are a special case. In this work we shall
follow the treatment of Couling and Graham, but shall include the equations for linear
gases, as these are less complex and require less time to integrate numerically.

6.1 Non-interacting molecules

For a sample of non-interacting molecules, the oscillating dipole moment uﬁ? ) of molecule
p is due only to the polarizing action of the alternating electric field & of the light wave,
since there are no molecules close enough to cause fields and field gradients at molecule
p due to their oscillating moments. However, the strong static electric field F; applied
to the sample may modify the optical-frequency polarizability a;j, resulting in a new
effective polarizability tensor 7;;, called the differential polarizability, which is written as:

oJT
Tij = B o5 + Bijk By + Vi B B + - -+ (6.1)
o9&,

where all the tensors are referred to the molecule fixed axes 0(1,2,3). The polarizability
a;j, and the first and second hyperpolarizabilities Bijr and 7,5 respectively, depend on
the frequency w of the light wave propagating through the medium.

In order to compare the refractive indices n, and n, the direction cosines aZ between
the space-fixed x axis and the molecule-fixed 4 axis, and al between the space-fixed y
axis and the molecule-fixed 4 axis are required. For a specific fized configuration o of the
molecule, the difference between the differential polarizabilities is given by:

(0, E) = m;; (afal — alal). (6.2)
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Now, by substituting (6.1) into (6.2) and writing Fa? for E;, a full expression for (o, E)
is obtained:

(0, E) = (cij + Bin B a§ + 37 B afaf + -+ ) (afaf — afal). (6.3)

This quantity must be averaged over all possible configurations of the molecule in the
presence of the biasing influence of F;. By making the assumptions that the period of
oscillation of the light wave is much smaller than the time for the molecule to rotate,
and that the rotational energy levels are close enough for the orientation to be consid-
ered continuous, a Boltzmann-type weighting factor may be used to average over the
configurations:

~ f7r(0, E) e” S dr
= I UEE ; (6.4)
e~k dr

where U(o, E) is the energy of the molecule in a specific configuration ¢ in the presence
of the applied field E;. In molecule-fixed axes this is given by:

Ulo, E) = Uy — poiE; — 505 B Ej — b BiE; By — -+ (6.5)

where Uy is the energy of the molecule in the absence of the external field, pg; is the
permanent dipole moment of the molecule, a;; is the static polarizability and by is the

static first-order hyperpolarizability. Thus, the difference between the refractive indices
is given by:

27TNA

(6.6)

In order to perform the biased average of 7 in (6.4), it is converted into isotropic
averages by Taylor expansion in powers of E. It is important to note that 7 depends on
E through both 7(o, E) and U(c, E). Since the distortion and orientation effects of E,

on gas molecules is very small, it is safe to assume that the Taylor series will converge
rapidly. Thus, we can write:
T=A+BE+CE*+ ..., (6.7)

where

A= (ﬁ)Ezo’ (6-8)
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0’7
L= 1
c 2(8E2>E=0' (6.10)

Buckingham [174] has shown that (7)g=o is zero. Differentiating equation (6.4) and then

setting F equal to zero, yields the following expressions for the coefficients B and C:

or on 1 ou
_(omy _/or\_ 1/ oY 11
5=(35),.,=(38) ~r {"35) (&1)
oo1(EEY i (&N _ L [yonoU FUN 1 (8_U
~2\3r?),_,  ®*\0E2/ 2kT \"0EOE ' "0Ez/" 2(kT)2 \ \OE) /'
(6.12)

where (X) represents the isotropic average of any quantity X (o, E) in the absence of an
external field, so that:

[ X(0,0) e~ dr

X 6.13
T (613
Differentiating (6.5) and (6.3) and setting the field to zero, yields:
on
(8_E> = ,Bz]k az (afa;” — a’lya’;{) , (614)
E=0
ou .
3E = ~Hoi a3, (6.15)
E=0
o*r
(ﬁ) = Y 2faf (a5 — afaj) (6.16)
E=0
o*U
i (2D
OE? ) ,_, 7 %% (6.17)

From (6.14) and (6.15) it can be seen that both of the terms in (6.11) will average to zero
over all directions of af. Thus, since Buckingham [174] has shown that (7)g— is zero,

the leading non-vanishing term in (6.7) is CE?. The standard isotropic averages [34,175]
are given by:

(afafaiaf) = % (6ij5kl + 6ik5jl + 5i15jk) s (618)

<a§’aga”,§af> = 51(_) (46ij5kl — 6ik5jl — 5i¢5jk) . (619)
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Therefore,

<afa§azaf — ai-’a?aﬁaf) = % (—2(51']'519[ + 35ik6jl + 361[(5]]9) . (620)

Using equation (6.20) for the isotropic averages and equations (6.3) and (6.14) to (6.17),
yields the following expressions for the terms of (6.12):

1 827T 1 A N Yy, Yy.x,.x
2\ gEz/ "~ 3 Vijkt <a‘i ajapd; — aiaja‘ka‘l>

= 35 Yiis» (6.21)
1 or oU  8*U 1 s oa .
TokT <28_E5E + W@> = k—Tﬁijkuoz (afalajal — alalafal’)
1 T T T, Y Y T T
- 15kT 1ij 40 15T i Qg , .
! ou\* 1 Ca L T T Y YT
2k \"\BE ) |~ 2(kT)> "o (afafaial — afajaa]
_3 2
 15(KT)? (Qustiotioj = o) (6.23)
where o« = (0773 and g = ai;. ThUS,
07 4 2 6 )
<@> . = %’Yiijj + mﬂiijﬂo;‘ + m (aijaij — 3aa) + W (aijIU'Oi,UOj _ auo)

(6.24)

and equation (6.7) becomes:

_ 2 1 3
T = {32—0%1';']' + mﬂu‘juw + T5ET (aujai; — 3aa) + W (aij/JOiMOj _ aug)} E?.
(6.25)

In the low density limit, the definition of the molecular Kerr constant proposed by
Otterbein [176] becomes:

, 2(ng — ny)Vin 2rNy (07
K, = lim y - , :
111 { 27(4%60)E2 }E—m 27(471’60) (8E2 E—o (6 26)

Vi —o0
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Taking the second derivative of 7 in (6.25) with respect to E, setting £ = 0 and substi-
tuting the resulting expression into (6.26) yields:

27TNA

Km = {05 (req)

| 3 ,
{27iijj + T (48505 + 3 (qija:; — 3aa)] + W (0uj poitto; — O‘ﬂo)} '
(6.27)

First derived by Buckingham and Pople [34] in 1955, this equation is a generalization of
the well-known Langevin-Born equation to include the effects of high field strengths on
the polarizability.

In the special case of a gas consisting of non-interacting spherical molecules, (6.27)
simplifies to:

K, = —ma x (6.28)

~ 81(4meg

where v = %fyij,—j. Thus, the hyperpolarizability constant v can be determined directly
from low pressure measurements of the molecular Kerr constant. Although the measured
value of y will depend on the frequency w of the incident light, it should not be significantly
different from the static value if w lies well below the electronic absorption band of the
gas [9].

6.2 Interacting molecules

For gas densities where interactions between the molecules in the sample become signif-
icant, Buckingham and Pople argued that the average contribution of a molecule 1 to
(ny — my) is not necessarily equal to (4“2#7? as shown in (6.26). If molecule 1 comes
into contact with a second molecule, then it must be treated as half of an interacting
pair. When molecules 1 and 2 are in the relative configuration 7 at a particular instant,
then molecule 1 contributes 2 {(47r52:)vm 712 (7, E)} to (ny —mny). If 7rg2) is the differential
polarizability of the interacting pair, then the difference between the differential polar-
z(; 2)afaf and Wf;z)a?ag of an interacting pair in a specific relative interaction
configuration 7 in the presence of the applied field may be written as:

izabilities 7

702 (r, B) = n}”) (afaZ — alal). (6.29)

To obtain the biased orientational average w(12)(r, F') for a pair of molecules, they
are held fixed in the relative configuration 7 and allowed to rotate as a rigid whole in
the presence of E;. As for an isolated molecule, the biased average may be converted to
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isotropic averages by Taylor expansion in powers of E, and the leading term is given by:

S 0?r(12) (1, E) )
702 (r, B) = 1 <;2> E (6.30)
OF oo

o 627T(12) 1 2a,/,r(12) 8U(12) N (12) 82U(12)
~2\\"6Ez / WT\"0E 0E ' OF?

1/ e (UN\ ] L,
T <7T( )( 3E ) >}E (6:3)

where the angular brackets indicate averages in the absence of any field. Note, U2 (1, E)

is the pair interaction energy in the presence of the external field E;. Initially, all the
quantities in the angular brackets are referred to the molecule-fixed axes O(1,2,3) because,
for a given 7, the tensor product in O(1,2,3) is fixed. By allowing the pair of molecules to
rotate isotropically as a rigid whole in the space-fixed axes O(x,y,z), the average projection
of pair properties referred to O(1,2,3) may be averaged into O(x,&,z) over all orientations.
Finally, the average over the interaction parameters 7 of the pair may be performed.
The density dependence of K, may be written as a virial expansion in powers of

density [34]:

Bx Ck
Kn=Ax+——+—+---, 6.32
where Ak, Bk, Ck ... are the first, second, third, ... Kerr-effect virial coefficients,
respectively. The definition of the molecular Kerr constant in the low density limit is
given by equation (6.26) in Section 6.1. Thus, since the first Kerr-effect virial coeffiecient
is the contribution of non-interacting molecules to K,,, we have:

. 2N 4 0*7
Ag = 1 = _
K Vm1£n>oo(Km) 27(4meg) (8E2) . (6.33)

The second Kerr-effect virial coefficient Bx describes the deviations from Ag due to pair
interactions and is given by:

BK = lim (Km - AK)Vm. (634)

Vin—00

From (6.31) and (6.32) to (6.34), we have:
2w Ny O*r(12(r E) 527
K,=A _— Lz 7 A -
K+ 27(4meo) / {2 ( o2 o <3E2>E=0 P(r)dr, (6.35)
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where P(7)dr is the probability of molecule 1 having a neighbour in the range (1, 7+dr),
and is related to the intermolecular potential as shown in equation (1.4) in Chapter 1.
Combining (6.26), (6.35) and (1.4), yields the following expression for the second Kerr-
effect virial coefficient:

2 2, (12 2 (12)(,
By = _oNy [ ] (& E) _ (21) e dr. (6.36)
CHIRE OE? 0E? ) 5,
" E=0

In order to calculate By, explicit expressions for the terms in the integral must be derived,
and the integrals are then evaluated numerically. Expressions for the second term in the
integral have been derived in Section 6.1. The first term must now be evaluated.

. 2,(12)
6.3 Expression for 3 (%ET’—E)>
| E=0

From equations (6.30) and (6.31) we have:

(PO E)\  _y /@N 1 [ 0n0D 00Uty 07000
2 OE? pe \ OE? 2kT \" 0E OE OB

1 1y ((OUODN?
+ s <7T< )(—E)E ) > (6.37)

Thus, in order to evaluate the components of this term, we need to determine 7(12) (1, E)
and U9 (7, E). The relationship between 7(12)(, E) and the differential polarizability of
the pair is given by (6.29). Now, the differential polarizability of the pair is:

12 8%("12)
7r§j ) = By (6.38)
where uf.“) (€oj) is the total oscillating dipole induced in the pair of interacting molecules
by the alternating field of the light wave. In order to proceed, it is necessary to assume
that the interacting molecules retain their separate identities. While this assumption is
always valid for large separations, it probably remains adequate at short range in most
cases and we join past workers [9,44,62,122,177] in treating the interacting molecules as
though they remain separate, even in the region of overlap, so that we have:

' =)+ p?, (6.39)
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and equation (6.38) becomes:

m (2)
1D = 0w + 1) (6.40)
0
Thus, from (6.29):
W, @
7_[_(12) (7_, E) — a(:u’z + My )(a;ca;c _ a;/ag)
0&; .
aﬂ('l) 8/1'('2) z Y,y
= L afal —a;a’
( ag()j 880]' ( J ‘7)
= (wg}) + ng)) (afaZ — aﬁ’ag-)
=aW(r, E) + (1, E), (6.41)

* since Wg-’) = %”TS';) and 7®) (1, E) = wg) (afa? — a¥a¥). Thus, to determine 70**)(r, E), it
is necessary to evaluate the total oscillating dipole moment induced on molecule p by
the light wave field &£y; and by the field .7-"]@) arising at molecule p due to the oscillating
moments of molecule q.

The pair interaction potentiai in the presence of F; may be written as follows [177]:

E
U (1, B) = UM (1,0) — / u? (r, E)ag dE, (6.42)
0
where uz(-m) is the total dipole moment of the pair in the presence of Eaf. Since, as in

equation (6.39), ugm is equal to the sum of the total dipole moments on molecules 1

and 2, in the presence of the external field and each other, (6.42) becomes [9]:

U2 (r, E) = U (1,0) + UV(r, E) + UP (1, E), - (6.43)

where the potential energy at molecule p in the presence of the external field and molecule g,
is given by:

E
UP(r,E) = / 1o dE. (6.44)
0

Thus, we need to determine the total dipole moment ugp ) (7, F) on molecule p due to the
static applied field E; and to the static field Fj(p ) at molecule p due to the permanent and
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induced multipole moments of its neighbour, molecule gq.
Since molecules 1 and 2 are identical, use of equations (6.41) and (6.43) in equa-

tion (6.37) yields [9]:

L [ *n(2(r, E) /8% 2 3U(1)> ort) U 2)>}
2 OE? o _< 8E | kT aE OF O0E OF
1 o*U) 02U Gl
I /) ¢ al )
(0% )+ (% )} (B
oU oUM JU
N
+< ( 9E ) > < 9E OF >} (6:45)

Now, it remains to determine explicit expressions for 7((r, E) and UP)(r, E).

6.3.1 Expression for 7 (7, E)

In a dense medium, the total oscillating dipole moment induced in a molecule 1 may
be due not only to the oscillating electric field &; of the incident light, but also to the
oscillating field fi(l) and field gradient ]:i(]-l) at molecule 1 due to the oscillating moments
of a neighbouring molecule 2. In addition, the polarizability of the molecule may be
distorted by the presence of the static electric field E;. Similarly, the oscillating dipole
moment of molecule 2 is induced by the light wave field, as well as by the field and field
gradients due to the oscillating moments of molecule 1. Thus, for the oscillating dipole
moments of molecules 1 and 2, we have:

(&) = (o) + BB+ 1hEeE) (8 + FO) + FAQFD +-- . (6.46)
w2 (€)= (o + BB + U (0 + ) + 3ADFD 4 (647)

where, using the T-tensor notation described in Section 2.3,
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The oscillating quadrupole moments are given by:
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The field gradient &y;; of the light wave has been neglected in these equations since the
molecular dimensions of the gases under study are very small compared to the wavelength.

Repeated substitution of ", Fi), u?, 63, F&, F@, 4l and 63 into (6.46)
results in a final expression for the total oscillating dipole moment induced on molecule 1
by the light wave field in the presence of molecule 2:
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When (6.52) is differentiated with respect to &, the resulting expression gives the
differential polarizability of molecule 1 in the presence of the applied field and molecule 2,
in a specific relative configuration 7:
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Recall that

(7, E) = mj) (afaf — ala). (6.54)

Differentiating equation (6.53), multiplied by (afa? — afa¥), with respect to E' and then

setting F = 0 yields the following expressions:

1 2 1 1 2) 1 (2)
(19) .y = (0§ + a0l + o Tuol Tl + o) Tuol) Tanol)Tog0q) +-

1 2 1 (2) (1) 2 )
- %az('k)TkZmA;h)n + %Agknglmam]’ + %aik T2 Trnnp Ay

1 2 1 1 2 1)
- %az('llc)TklAgfrznTmnpa;;) - %O‘z(k)TmmASu)anpa;(;j) + %AgkgTumagnzzTnpapj )
x (afal — alal), (6.55)

Ar(V) 2 1 2 1 1
(5) (i o+ 2T P
E=0

1 R 1
+ az('ll )T’lmﬂr(ri)sznpa;();) + ﬁz(lllc)ﬂmagzzTnpa;()j) + - ) ag (ai a; — afa?) )
(6.56)

8°nt) 1 1 2) 1 2 1 1
(G ) = (8 Tl T + 0T o5

1 2 1 1 1
+ O‘z('nszn’Yr(Lp)lepqaz(;j) + VZ(TrzszmnaSz?quagj) + - ) agay (af a;? - ai-’a?) .
(6.57)

6.3.2 Expression for UP)(r, F)

The total dipole moment u§p ) of molecule p in the presence of the static applied field E;

and molecule g, is given by:

p = @ + o (B + FY) + JADFD + - (6.58)

where ué’;) is the permanent dipole moment of the molecule, and Fj(” ) and Fj(z) are the

static field and field gradient at molecule p due to the permanent and induced dipole and
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quadrupole moments of molecule g, such that:

FP = Tyn? — §T0017, (6:59)
Fj(lzc)) = Tj(lzc’z)ﬂz(q) - %Tjklmel(gz)? (6.60)

where the total quadrupole moment of molecule ¢ due to the external field and the field
due to the permanent and induced multipole moments of molecule p is given by:

08 = 040 + A)y (B + FD) + - (6.61)

Substituting repeatedly for Fi(p), Fi(jp ), 19 and Hg-’) into equation (6.58), yields the fol-

lowing expression:
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Therefore, from equations (6.44) and (6.62), the potential energy at molecule p in the
presence of the external field and molecule g, is:
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Differentiating this equation with respect to E and then setting E to zero, yields the
following expressions:
oU® ® . ® @ 0
< oE >E—0 == (Nog + a’i;') Tjkﬂgg + af-ﬁ-’ Tjkakz Tybom + aij)Tjkagc(i)Tlmagglenpﬂ‘gZz)

+ 3T AD T ~ Y TR AT, )
+ JANTRGOT, ) + - — 1D TR
~ 30D TalT0,00, + - — LANT, 00 + ), (6.64)

oUW ), O @ L O @ 0
BE? ) ., - (a’z’j t i Ty + 0 Ty, T g

+a§‘z)Tklal(q)T aPT a(q)—l-agz)Tkla(q)T a®T T P 4 ..

m=mnnp - pgrqj Ilm =" mn“np ~pggr ~rs“sj

_ 1,0 @) 4la) + % A%T(p)

3%k LiimAjim (@) _ la(p)Tkla(q)T(q) AP

klmamj 3k Im = mnp“ jnp

1.(p) (@ g @) _ 1 @) 409 {p)
+za; T A, T q a; Tyl A T q

3k Imn*" mnp*“pj 37k “klm“ *nlm"np“pj
{P)r(p) =
+ %Aii’szf’ma%%Twaﬁf}) +- - éAEigTumnAg-?m +-- ) afa?. (6.65)

97



6.3.3 General expression for By

Substituting equations (6.55) to (6.57), (6.64) and (6.65), into equation (6.45), and sub-
tracting (6.24), yields the following expression for the integrand in (6.36):
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wvw "’ Qvw
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o) aWT AT otu
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+ a0,

j Ilmn

—2a(1)a(-1-)T.ka§j)T o) @7 T, ¢

ab iy 3 Imn”0mn“pq * gr-rs * stu” 0tu
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—4aglc)Tcdafii)a(-Jl-)T 0207 adT 9(()3

P jklV 0kl pg * griirs © stu

+ 40T da((ii)a(-;)Tjle(()i)lag)T a)T 9(()2

ac ~ ¢ 1, gr-rs * stu

2 1) (1 2 (2)
+ aglc) Tcdat(ie) Tefag"b) a'gj ) Tjkle((Jk)l a;z) Tqrs 00rs

2 1) (1 (2 (2 (1)
- 2O[t(llc) Tcdac(ie) Tef ag‘b) agj : TjkIOOkl a;q) Tqrs eOrs

2) 7 1) (2 1 1)
+ at(zlc) Tcdat(ie) Tefagcb) agj)tz—;'kle(gk)l a’?q) Tqrse(()rs }

T LT oYolUaTal
x (afafalay — a¥ajajay) . (6.87)

The isotropic averages in equations (6.67) to (6.87) are given by equation (6.20). Thus,
for example, the term o, in (6.67) becomes:

L {04
_ 2) T T T8 oY Yoo ®
o = 1 {aab G } (agafaral — alajasal

1
~ % {ar(z?“g)} 35 (—20460pg + 30ap0sg + 30ag0tp)
1
= g7 (040 —0a}, (6.88)

where a((é,) is the optical frequency polarizability tensor of molecule 1 referred to the

molecule-fixed axes O(1,2,3), a(a?,) is the static polarizability tensor of molecule 2 referred
to molecule 1’s axes, and a and @ are the mean dynamic and static polarizabilities,
respectively.

In order to calculate By, the exact forms of the tensors in equations (6.67) to (6.87)

are required. The specific cases of spherical, linear and non-linear molecules are treated
separately.
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6.4 Bpg for spherical molecules

For spherical or quasi-spherical gases, the second Kerr-effect virial coefficient given in
(6.36) becomes:

22 2 (12) 25 (12)
By — S NA / L (O (r, B) _(a_”) e "R AR,  (6.89)
ey ) 12\ om 9E% ) ,_
E=0 0

0

where U®)(R) = Upy, and the integrand is given by (6.66), the terms of which simplify
considerably due to molecular symmetry.

Spherical molecules possess no permanent dipole or quadrupole moments, and Aijk
and ;;; are both zero, so that all terms containing these property tensors are zero. The
integrand in (6.89) becomes:

0*m(12) (1, E) ( o0*x )
_1_ R S B _ - :a2+a3+a4+a5+a6+...
{ ( oF* E=0 OB ) p=o

+ron o+,

3]

(6.90)

where the terms on the right are given by equations (6.67) to (6.70), (6.72) and (6.73).
The static and dynamic polarizability tensors have only one independent component each,
and are given by:

aij = adjj and Qi = adyj, (6.91)

where a and « are the static and dynamic polarizailities, respectively. Thus, both oy and
a3 become zero and the leading term is ay:

12a%a? 6.92
oy =-——\ .
47 BkT(4meq)?RE (6.92)
The next term is:
12(c?a® + aPa?
oy = 22 ) (6.93)

BT (4me0)° R0

If one considers only the leading term, then substituting (6.92) into (6.89) yields:

32n202a? oo1 UL

By =—7~1—— | —¢ .

K 45kT(47r50)3/ e * dR (6.94)
0
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This is exactly the same expression used by Buckingham and Dunmur [82] in 1968 to
calculate the second Kerr-effect virial coefficients for the spherical atomic gases argon,
krypton and xenon, and the quasi-spherical molecule sulphur hexafluoride, for comparison
with their measured values.

It is useful to note that the second Kerr-effect and light-scattering virial coefficients
of atoms and spherical molecules are related by the following expression [178]

_ 27ekT
p NA(J,2

Bx. (6.95)

If equation (6.94) is used to calculate By for atoms and spherical molecules and the results
compared with measured values, then the ratio BE*/B%' displays a definite trend. The
ratio is less than one for the rare gases and increases above unity as the molecular size
increases [9]. Not surprisingly, Watson and Rowell [89] found a similar trend in the ratio
of calculated and measured values of the second light scattering virial coefficient of atoms
and spherical molecules. They concluded that the point-dipole approximation of the DID
model for molecular interactions is inadequate for the large quasi-spherical molecules.
However, in 1983, Dunmur et al. [88] attributed the inconsistencies between theoretical
and experimental values for B, to insufficient allowance for the effects of three-body
interactions at higher pressures. They showed that for the atomic gases and methane the
DID model for the collision-induced polarizability of pairs of atoms or spherical molecules
works well for argon, krypton, xenon and methane, although it appears to be inadequate
for sulphur hexafluoride. They suggest that the excessive collision-induced scattering and
electric birefringence from sulphur hexafluoride may be a result of contributions from
many-body interactions, which have not been determined. This seems quite probable,
due to the low vapour pressure of sulphur hexafluoride, which is a very large molecule. It
should be noted that the molecules studied in this work are much smaller than sulphur
hexafluoride and the measurements of the second virial coefficients are carried out at

pressures well below their saturation vapour pressures, so that the number of interactions
between three or more molecules should be negligible.
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6.5 By for linear molecules

For linear molecules, the second Kerr-effect virial coefficient is given by:

-t [ [ TR (), (),

R=00,=0 62=0 $=0

x R?sin 0, sin 6, dRd6,d0,d¢. (6.96)

The terms of the integrand are given by equations (6.67) to (6.87).

In order to determine the explicit forms of these terms, it is necessary to express the
molecular property tensors in terms of the angles specifying their relative configuration,
T, as described in Section 2.1.1.

The property tensors of an linear molecule p may be expressed in terms of Z(p ) , where
e§” and £§ ) are the unit vectors along the principal axes of molecules 1 and 2, respec-
tively [26].

Expressions for the dipole and quadrupole moment tensors, the static polarizability
tensor, the A-tensor and the T-tensors are given in equations (4.77), (4.78), (4.79), (4.83),
and equations (4.85) to (4.87) of Section 4.4, respectively. The dynamic polarizability
and hyperpolarizability tensors are expressed in the same way:

o) = ady;+ ko (36960 — 5ij) , (6.97)
| m_ 0
where «a = 3a£3) = aﬁ?g and =23 "% %L %;
3o 3a 3o
A =5, (é(”)é]k + 05 + 47 ) +(B) — 30.) £P 1P 4P, (6.98)
1 2
where [, = és?% é/gls' and f, = S?ﬂ, = §:13)1 = éi)l = 91)'3' = 933'1' - :§'21)'1'5
'71(521 ('Yg:la)n + 3’)’1111) Okt + (’Ygégis + ’Y:%)n ‘;7811) g(p)z P, (6.99)

Substituting equations (4.77), (4.78), (4.79), (4.83), equations (4.85) to (4.87) and
equations (6.97) to (6.99) into equations (6.67) to (6.87) results in terms containing Ez(-p )
and A;, which are eliminated using equations (4.92) to (4.94) of Section 4.4. This yields
the following expressions for the terms in the integrand of By:

2
o = mAaAa (3cos® Oy — 1), (6.100)
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Q3 =

Q4 =

Mol =

Moty =

1
15]{3T(4’7T50

I {6a,Ma(a; + Aa) (3cos® b, — 1)

+ Aa (o (3ay + Aa) — 2a; Aa) (3 cos® 0y + 3cos® 6, — 2)
—2Aala (2(Aa+ Aa) + 3(ay + ay))cos bz (3 cosby cosfy + cosbya)},
(6.101)

1
TSR (e 20 V21

3aia)(d +aja; +ab) - ad (3as + Aa— o} (3a; + Aa)]

+ 6AalAa(a® + aja) +a?) cos by (cos by — 3cos by cos by)

+ .[AaAa (3ar(ar —ayr) — 202 + a1 Aa(3cos Oy, — 1))

+3a; (2a; (@1 Aa+ a1 Aa) + af Aa)] (3cos® b + 1)

+ [Aa (Aa[al(3all +2Aa + 9, ) + oy (20 + Ac(l + 3cos? ;)]

+6a; [ar(ay +a1) —a1Ad]) +3 af Aa(2aL +ay)] (3cos® 0y + 1)

+ a3 AaAa(3a; + ay) (3 cos? 0y — 1)2 + o AaAa(3a; +a)) (3 cos® 0y — 1)2
—dayaiAada (3cos; — 1) (3cos® 6, — 1)

— AoAafaiAa+aiAa+ 6a;Aa)cos bz (3cos® 8 — 1) (3 cos b cos b + cos By2)
— AaAafoyAa+ a; Ao+ 6y A cos s (3 cos® 8y — 1) (3 cos 8 cos Oy + cos )
+ [6(a} Ad® + ¢} Ad®) + Aala (2as (A + 3Aa) + 24, (Aa + 3Aq)

+3 (ar +a1)? + (Aa® + Ad®) (1 + 3cos? b15) + AaAa(3 + cos? 012))]

X (3cos by cosy + cosb12)?} (6.102)
2
HoAa 2
THUAE {3cos? 1y + 4cosfy, — 1}, (6.103)
[

15(KT)2 (47eg) B2 {GalAa(l + cos 6y2) (3 cos? 6 — ]_)

+ [3ai + o) Aa(1 + cosbyp) — ZaLAa} (3 cos’ 0, + 3cos® O, — 2)
— [2Aa(a; + Aa) + 6ay (o + Aa) + 3Aa?

+2Aa(2(Aa + 2Aa) + 3(al + a1 )) cos by
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MGz =

+ Aa (Aa + 6Aa) cos? 912] (3 cos B, cos B, + cos 012)} , (6.104)

2
: Ho
15(kT)2(4me0)>RE

{—12ai(1 + cosfy2) + 6 [aLalAa + 02 (o) + Aa+2a))

+ Aa (62 + aya) +a3) cosbis] (cos bz — 3cos by cosby)

+ [3a1Aa(ay - a;) — 2Aa(0% +aiAa) + 307 (o +2a,)

+ Aa (4a1Aa — 202 + 3aya,) cos bz + 6a; AaAa cos? f15] (3cos® By +1)

+ [3a2l(al +2a,) + a1 Aa(2e) + Ac) +3a Aa(ar + ay)+4a; AaAa

+ Aa(2a) (o) + 2Aa) +a; (6a) + 4Aa + 3oy )) cos b2

+ 30 A cos® fyo] (3cos® 0y + 1) + ar Aafay +3al) (3cos* 6, — ]_)2

+ oy Aala) +3ay) (3cos® B, — 1)2 —4aja;Aa (3cos® 6 — 1) (Bcos? Oy — 1)
— [Aa(20 (ay + Aa) + 3a, (20, + Aa)) + 2Aa(4a; A + 3a?)

+ Aa(2Aa(as +6ay) +ayAa)cos by | (3cos®fy — 1) (3 cos by cos by + cos b1a)
— [Aa(2a (ar + Aa+ 3Aa) + ar (3Aa — 4Aa)) + 602 (Aa + Aa)

+ Aca(Aalay +6ay) +2a1Aa) cos Bz | (3cos® 8, — 1) (3 cos by cos by + cos b1y)
+ [30} (4Aa + Ae) + Ac?(Aa + 2aL + 6(aL + Aa)) + Ac[Aa(4ay + 12Aa
+3Aa) + 3a,(as +20,) +2(6Aa(a, + oy + Aa) + Aa(2Aa + 4Aa

+a) +ay))cosbis + (3% +2AaAa + 9Aa?) cos® 912)}

x (3cos ) cosfy + cosb12)*}, (6.105)
4
b = 5%@ costha (6.106)

Explicit expressions for the remaining terms defined in equations (6.67) to (6.87), are
not given here, as they are very long. In order to calculate these terms, Macsyma’s
Fortran conversion facility was used to convert the expressions directly into Fortran to

avoid programming errors. These terms are important as they establish convergence of

By.
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6.6 Bjg for non-linear molecules

For non-linear gases the second Kerr-effect virial coefficient is given by

seidie ] |1 1T ] (5

R—‘O o1=0 87=0 71=0 a2=0 B2=0 72=

2 —
_ (%) } e_'ll%"z R2 sin /81 sin ,82 dR da’ldﬂld"/]da’z, d,BQd"/z, (6107)
E=0

where the integrand is given by (6.66). Explicit expressions for the terms of the integrand
are obtained by substituting the relevant molecular property tensors, in terms of the the
interaction parameters described in Section 2.1.2, into equations (6.67) to (6.87). Since
there are no hyperpolarizabilities, or higher-order polarizabilities, such as the A- or C-
tensors, available for the non-linear gases under study, terms containing these tensors
will not be evaluated. The exact form of the static polarizability tensors and the dipole
and quadrupole moment tensors of molecules 1 and 2 for molecules with Dy, and Ca,
symmetries, are given by equations (4.126) to (4.144) of Section 4.5. The form of the
second and third rank T-tensors is given in equations (4.145) to (4.149).

The dynamic polarizability tensor has the same form as the static polarizability and

is given by:
N Zu 2y Zis a; 00
SJ) = al af;af,aﬂ al ]) Zig Zoy Zgs|, where a( ) = (1) 0 ay O
Zy3 Loz s 0 0 oy
6.108
3 (6.108)

and the coefficients Z,;, Z,,, i' , Zsy are exactly analogous to the coefficients W, of

w tj
a,(-f-) given by equations (4.139)1‘ to (4.144), with the static components a,;, @y, and as,

replaced by the dynamic components o, ay, and a4 respectively, so that
Zyy = oy [AIBY + AiB} + ATB} + 2A,A,B, B, + 2A,B,(A,B; + A, B,)]
+ oy, [A1B] + ALBS + A3B; + 2A, A, By By + 24, By(A,B; + A,B,)]  (6.109)

+ g3 [ATB] + A3BS + A2BS + 2A, A, By B, + 24, By(A,Bg + A\ Bj)],
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Zyy = oy [A3BY + AZB? 4+ ALB? +2A,A;B B, + 244B;(A;B, + A,B))]
+ ag, [AZB2 + AZB? + A2B? + 2A,A;B, By + 244 By(AsBs + A,By)]  (6.110)
+ gy [AZB2 + A2B2 + ABZ + 2A,A; By B + 2Ag Bo(As Bg + Ay Bs)|

Zas = Oigy [Ang + AZB? + A2B? + 2A,A¢B, B, + 2A,B,(A¢B, + A3B1)]
+ gy [AZB2 + AZB? + ALBE + 2A,AB,y B; + 2A4By(AgBs + A3B,)] - (6.111)
+ oy [A3BS + AZBE + AZBS + 2A3A¢B3Bg + 2AgBy(AgBg + A3B,)],

Zyy =y [A1A2B12 + A A B + A, AgB? + B By(A1 As + AJA,)
1B, (B, (A4As + AsAy) + By(A) Ag + Ay A7))] + g [A1 A, B
+ A AgBZ + A, AgBE + B,By(A  As + AyA,) + By (Bs(A4Ag + AsA;)  (6.112)
+By(A; Ag + AyA7))] + agy [A,A,B; + A A BE + A, A B}
+B, B (A Ag + AyA,) + By (Bg(AAg + AsA;) + By(A Ay + A A7)

Zy3 = oy, [A1A; B} + A AgB; + A,AyB2 + B B, (A, As + AzA,)
+B, (By(A4Ag + AgA;) + By (A Ag + A3A,))]| + oy [A1 Ay BS
+ AyAgB? + A;AgBE + BBy (A Ag + Ay A,) + By (Bs(A A + AgA;)  (6.113)
+By (A1 Ay + A3 Ar))] + oy [A1 Ay BE + AyAgBE + A, AgBS
+B;Bs(A, Ag + AgAy) + By (Bs(A4Ay + AgAy) + B3(A1A9 +A347))],

Zyy = 0y [AyA3 B} + AgAgB] + AgAyB7 + B, By(4;,Aq + A3 Ay)
+B; (By(AsAg + AgAg) + By (AyAg + Ay Ag))] + gy [A,A3B5
+ AgAgB: + AgAgB; + ByBy(AyAg + AgAg) + By (Bs(As 4y + Agdg)  (6.114)
+B,(AyAg + A3 Ag))] + agy [A,A;BS + AsAgBE + Ay AgBS
+B3Bg(AyAg + A3 As) + By (Bs(AsAg + AgAg) + By(Ay4g + A3 4y)) ]

The mean static and dynamic polarizabilities are:

a = 3a; = 3 (11 + ag + azy)

Lol
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(cyp + gy + ta3) - (6.115)

o=

and o= %a--

In addition, to simplify the final expressions, a tensor analogous to G in (4.150) is
defined:

. Hll H12 H13
H, = a(l)T kag) = |H,, Hy Hyl, (6.116)
H31 H32 H33

where

Hyy = 0y (2, Ty + Z35T15 + Z33Ths),

Hyy = ayy(Z15T + ZogThy + ZosThy),

Hyg = ay,(Zy3Ty + 25Ty + ZgyThy),

Hy = (21T + Z15Ty + Z13Th3),
02(Z15T19 + ZaToy + Zo3Ty3), > (6.117)

02(Z13T1g + Zp3Toy + Z33To3),

( )

( )

( )

=
Q L2 R

33(Z11 T3 + Z19T3 + Z13T33),
H32 = u33( 219115 + Zog Ty + Zo3133),
Hy = ay3( 2313 + ZogToz + Z33T53).

7

The tensor manipulation facilities of Macsyma may now be used to evaluate the terms of

the integrand in equations (6.67) to (6.87), resulting in expressions which, when averaged

over the interaction coordinates of the pair of molecules, yield their contribution to By.
The first term of the integrand, oy, given by (6.88), becomes:

Y = opT (e Wiy + Wy + gy Wys — 3aa) , (6.118)
while the term o0y given by (6.103), becomes:

2
u
Mo = WOT)Q {6 (04111)% + 01y D + 033D3 + 2C“337)3)

—a (D2 + D2+ D} +2D,)}. (6.119)

The final expressions generated by Macsyma for the remaining terms s, oy, ... are too
large to be quoted here. Due to their size it is best to generate the expressions in Macsyma,
(or a similar symbolic manipulation package) and convert them directly to Fortran for
integration, and thus avoid the introduction of errors which would certainly arise if such
enormous terms were produced manually.
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6.7 Summary of experimental work on the second

Kerr-effect virial coeflicient

A comprehensive list of the experimental second Kerr-effect virial coefficient data available
is given in Tables 1.7 to 1.10. The data for the spherical gases is very sparse, usually with
only one value, and at most three values, for a particular wavelength of the incident light.
For the polar gases under study, only four have been measured and, although all the data
sets contain a minimum of seven values at 632.8 nm, the experimental errors are large and
the data pbints widely scattered, especially for the two fluoromethanes. Similarly, for the
non-polar gases, Bx has been measured for a wide range of temperatures at 632.8 nm,
but the errors and the scatter are large. For nitrogen, the sign of the second Kerr-effect
virial coefficient is uncertain, as the errors exceed the measured values. Comparison
of Tables 1.8,1.9 and 1.10 shows that, in general, By values for polar molecules are
approximately a hundred times larger than those of non-polar molecules.

Experimental values of the second Kerr-effect virial coefficient are deduced from
pressure-dependence measurements of the Kerr effect. The errors are often large be-
cause of the small density-dependence of K, at the pressures used in the experiments,
with additional systematic errors due to uncertainties in the pressure virial coefficients
B(T) and C(T') used to obtain the molar volumes V;, of gas samples. Bk has been
- measured for the fluoromethanes by Buckingham and Orr [33], while Schaefer et al. [83]
measured -the effect for fluoromethane, trifluoromethane and chloromethane. Bucking-
ham et al. [14] have measured the effect for the non-polar gases carbon dioxide, nitrogen,
ethane, cyclopropane, and the non-linear gas ethene. By of carbon dioxide has also been
measured more recently by Gentle et al. [15], who then measured By for the non-linear
gas sulphur dioxide [21]. Values for the inert gases and sulphur hexafluoride have been
obtained by Buckingham and Dunmur [82]. Bogaard et al. [179] measured the Kerr effect
for the chloromethanes and deduced Ag, but due to the low pressures used were unable to
obtain reliable values for Byx. Bogaard, Buckingham and Ritchie have measured By for
the non-linear gases dimethyl ether [23] and hydrogen sulphide [180]. Recently, Tammer

and Hiittner [25] investigated the Kerr effect of gaseous ethene and obtained values for
the second Kerr-effect virial coefficient.

6.8 Summary of theoretical calculations of the sec-

ond Kerr-effect virial coefficient

In 1955, Buckingham [174] developed a statistical mechanical theory of the second Kerr-
effect virial coefficient, which was later extended by Buckingham and Orr [33] to include
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the effects of polarizability and the shape of the molecule. Using this theory they cal-
culated By for the fluoromethanes and obtained approximate agreement with their ex-
perimental values for fluoromethane, but found the calculated values of trifluoromethane
were too small. They attributed this disagreement to short-range interaction effects on
the polarizability and the potential energy, and argued that measurements of By for polar
gases would probably not yield practical information about the nature of intermolecular
potentials.

However, in 1983, Buckingham, Galwas and Fan-Chen [177] resolved the order of
magnitude discrepancy between experiment and theory for the fluoromethanes, by ex-
tending their earlier theory [174] to include collision-induced polarizability, which was
identified as the principal component of Bg. In this work, a simple Stockmayer poten-
tial [120] consisting of the dipole-dipole interaction together with a (6-12) Lennard-Jones
potential was used, but the shape potential was not included. This new theory yielded
calculated values which were in much better agreement with the experimental data, in
spite of the fact that no attempt was made to optimise the Lennard-Jones parameters.
However, although the fit between theory and experiment was improved, this was not
conclusive due to the large uncertainty in the measured values. In our work, we include
quadrupole-dipole, quadrupole-quadrupole and the induction potentials, as well as the
shape potential, in the intermolecular potential. In addition, we include the effects of
the quadrupole moment in the collision-induced polarizability for the first time. We have
been careful to ensure that all the series in the calculation of Bx have converged.

Although Bk has been measured for several non-polar linear gases, it was only recently
that theoretical values were first calculated by Couling and Graham [9] for nitrogen,
carbon dioxide and ethane. Their calculated values for nitrogen and carbon dioxide
are extremely small, which perhaps explains the poorly defined experimental values. For
ethane, where By is an order of magnitude larger than nitrogen or carbon dioxide and the
observed values are more clearly defined, their calculated values were in good agreement
with the experimental data. However, they did not include the quadrupole series in their
calculations and we will show that this series may be significant for polar and non-polar
molecules.

In 1990, Gentle et al. [21] measured the Kerr effect of sulphur dioxide for temperatures
ranging from 298.7 K to 490.3 K, and deduced fairly precise values for the second Kerr-
effect virial coeflicient. They then applied the theory of Buckingham et al. [177], Which
had proved relatively succesful for the fluoromethanes, to sulphur dioxide after approxi-
mating the molecule to be quasi-linear. However, although they optimised the Lennard-
Jones parameters by fitting a simple Stockmayer potential to the experimental values for
B(T), most of the calculated By values were more than double the experimental values.

Approximating a molecule to be quasi-linear involves setting o, = avgy, while for sulphur
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dioxide the actual values are aq; = 5.80 x 1074°C*m2J ™! and oy = 3.30 x 10740C*m?2J !
at A = 632 nm [21]. This discrepancy might explain why the theory did not fit the exper-
imental values. Recently, Couling and Graham [9] developed a molecular tensor theory of
By for molecules with non-linear symmetry, to assess the extent to which the assumption
of axial symmetry is responsible for the poor agreement between theory and experiment.
They based their theory on the earlier work of Buckingham et al. [177], extending it to
molecules with low symmetry and including the effects of molecular shape. They op-
timised the Lennard-Jones force constants and their two shape factors D; and Ds, to
obtain a very good fit of the B(T'), and the resulting set of parameters yielded calculated
values of Bk in excellent agreement with the experimental data. The same procedure
was followed for the non-linear gases dimethyl ether and ethene, with good results for
polar dimethyl ether but poor agreement for non-polar ethene. Since the experimental
values of By for ethene are very small, it was unclear whether the discrepancies were due
to systematic errors arising from uncertainities in the pressure virial coeflicients used to
determine the molar volume V,,, or due to the failure of the model. It is, however, clear
from their work that the effects of interacting non-linear molecules on molecular electro-
magnetic phenomena can only be comprehensively evaluated after due consideration of
their molecular symmetry. We have extended this work by considering the effect on By
of the dipole-quadrupole and quadrupole-quadrupole series, defined in equations (6.82),
(6.83) and (6.85) to (6.87), resulting in a more complete theory.
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Chapter 7

The Second Light-Scattering Virial
Coefficient, B,

The phenomenon of light-scattering was first studied in 1869 by Tyndall [181], who con-
ducted a series of experiments on aerosols. He passed a\stroflg beam of white light through
a colloidal suspension of particles, and viewed the light scattered at right angles to the
incident beam. The scattered light was observed to be linearly polarized blue light, pro-
viding some justification for the idea that the colour and polarization of skylight was due
to the scattering of light from the sun by small particles suspended in the atmosphere.
However, Tyndall still could not explain the mechanisms by which light was scattered,
and was quoted by Kerker [182] as saying “The blue colour of the sky, and the polariza-
tion of skylight ... constitute, in the opinion of our most eminent authorities, the two
great standing enigmas of meteorology.” '

In 1871 the enigma was explained by J. W. Strutt [183], the third Baron Rayleigh, in
his theoretical discussion of the light-scattering phenomenon. He treated the incident light
as vibrations in the ether which set up forced vibrations in the suspended particles. These
~ particles scattered the incident light by acting as secondary sources of vibrations in all
directions. Rayleigh also showed that, if a particle was assumed to be an isotropic sphere
with a diameter much smaller than the wavelength X of the incident light, the intensity
of the light scattered by the particle was proportional to /\1—4 and the component scattered
at right angles to the incident beam was completely linearly polarized perpendicular to
the plane of scattering. Thus, since blue light has a shorter wavelength than red light,
the intensity of the scattered blue light is much greater than the red, resulting in the blue
colour of the sky.

Lord Rayleigh [184] later refined his theory by proposing that the blue light of the sky
was due to sunlight scattered from the individual molecules of the air, rather than from
dust particles suspended in the atmosphere. In 1916, seventeen years later, Cabannes [185]
confirmed this theoretical postulate experimentally. He passed a strong white light beam
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through a pure, dust-free gas sample and observed that the light scattered at right angles
to the incident beam was blue in colour and linearly polarized. As was to be expected,
the light scattered by the gas molecules was far less intense than that scattered by the
larger particles in the colliodal suspensions used by Tyndall.

However, the fourth Baron Rayleigh, R. J. Strutt, discovered that the 90° scattered
light was not completely linearly polarized, and that the degree of depolarization was
a characteristic constant of the gas under study [186]. His father’s theory, which pre-
dicted complete linear polarization, had assumed that the scattering centres were 1sotropic
spheres. Thus, R. J. Strutt extended this theory by considering the anisotropy of the gas
molecules and relating the depolarization ratio to departures from spherical symmetry of
the optical properties of the molecules [187].

Within the next ten years a large number of measurements were carried out for a wide
variety of gases and vapours, in spite of the extreme difficulties involved in the experi-
mental procedures. The Raman effect, in which the scattered light undergoes well defined
frequency shifts, was discovered during this period and, subsequently, most workers con-
centrated on this new phenomenon. It was only in 1961 that the conventional Rayleigh
scattering was seriously taken up again when Powers [188] produced new values for the
depolarization ratio of several gases, which he measured using a photomultiplier to detect
the scattered light rather than the visual or photographic detection techniques used by
the earlier workers. He found that the results obtained in the 1920’s were often as much
as 10% too high. Then, in 1964, Bridge and Buckingham [189] were the first to employ
the laser, with its intense parallel beam of monochromatic light, to measure the depo-
larisation ratio. This new technology allowed Bridge and Buckingham and subsequent
workers [4,17,190-193] to make detailed and accurate measurements of the depolariza-
tion ratio of many gases and vapours. Their values were even lower than those measured

by Powers, thus confirming the inadequacy of the experimental techniques used by the
earlier workers.

7.1 General theory of light scattering

The scattering of light by a single molecule can be considered to arise when the oscillating
multipole moments, induced in the molecule by the incident light wave, produce retarded
scalar and vector potentials and therefore electric and magnetic fields at all points. These
fields have been related to the electric and magnetic multipole moments of the system
by Landau and Lifshitz [194] and Buckingham and Raab [195]. If an origin O is fixed
within the molecule’s system of oscillating charges, then at a point a distance R from the
origin, where R is much greater than the dimensions of the molecule and the wavelegth
of the radiated light, the scattered electric field E&s) may be assumed to be a plane wave
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given by [195]:

T T
(fia — Mangilg) — _€apy Ty + 30 (10 ap — NaNpNyOpy) + " |
(7.1)

1
B =~ |
@ (4meg) Re?

where n,, is a unit vector in the direction in which the wave is scattered, p, is the electric
dipole moment tensor of the system of charges, 5 is the traceless electric quadrupole
moment tensor, and myg is the magnetic dipole moment tensor, and each dot above these
moments represents a partial derivative with respect to time. These multipole moments,
as well as the primitive multipole moments, are defined in Appendix B. It must be noted
that several workers [196-199] have demonstrated that electrodynamic situations exist for
which it is necessary to retain the primitive multipole moments. In this work, however,
the traditional traceless quadrupole moment is used, and this subtlety will need to be

considered in future work.

A

macroscopic gas sample
containing N molecules

incident light wave

............

Figure 7.1: The space-fixed system of axes used to describe the scattering of light by a
macroscopic gas sample containing N molecules.

In the arrangement shown in Figure 7.1 the origin of a space-fixed system of axes
O(x,y,z) is placed within a macroscopic sample of gas containing a large number N of
identical gas molecules. A uniform, parallel beam of light, linearly polarized in the xz
plane and travelling in the z direction, is incident on the gas sample. The wavelength
of the incident light is assumed to be very much larger than the dimensions of the gas
molecules, and its frequency is assumed to lie far below the frequency of any electronic
absorption transition. The depolarization ratio of the Rayleigh-scattered light observed
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at a point on the y-axiz is given by:
I
== 7.2
=1 (7.2)

where I, and I, are the intensities of the light scattered with the electric vector parallel
to the z and x axes respectively.

For light travelling along the y-axis the unit vector n, =[0 1 0]. Therefore, since p
in (7.2) requires scattered intensities with the electric vector parallel to the x and z axes,
the expression for the scattered electric field in (7.1), summed for the contributions from

each molecule in the system of N molecules, becomes:

N
s 1 .
EY) = ~ lreg) B > (), (7.3)
p=1

where /i) is the dipole acceleration of the p molecule, and only electric dipole radiation

has been considered. The electric quadrupole and magnetic dipole are much smaller and
are therefore neglected.
Now, 1, is a function of the electrostatic field F, so that:

Opa . _ Opa OEp
ot 1T 9, ot (7:4)
and
Fu, . 0Eg OE, 0°%u, Ou,, O*F

o~ "~ "5t ot 9E,0F, " 0E; o1

Even when intense laser beams are used, the term which is non-linear in the field in
equation (7.5) can be safely neglected. Since:

E, = EOew(t=2), (7.6)
O*E
we have 8t2ﬁ = —w?Fj. (7.7)

It follows then from equations (7.3) and (7.5), that for a monochromatic incident light
beam with a wavelength ), the scattered electric field becomes:

1 21\ &k opld
B — _ 2r & (p)
a (47T60)R ( A ) ; 8E§p) E& ) (78)

where E®) implies the value of the electric field at the p"™ molecule. The differential
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polarizability ﬁfng is defined as:

o ()
) = 2 (7.9)
OEY

In general, the intensity I of a light wave with electric field vector E is given by the

following expression:

=L BE (7.10)
2upc

where the asterisk denotes the complex conjugate. Thus, from equation (7.2) and equa-
tions (7.8) to (7.10), we have:

. <Z > WZZ)W(Q)e’XW>
p= j_ _ BB \=te (7.11)

(B, Ez) <Z 3" i ezxm>’

p=lq=

where x,, is the phase difference in the light scattered by molecules p and g, as seen
at the observation point, and where the angular brackets indicate an average over all
configurations of the specimen. This equation was first obtained by Buckingham and
Stephen [35], and has been used a basis for the discussion of the effects of pair interactions
on the depolarization ratio p from linear and quasi-linear molecules by Graham [200] and
Couling and Graham [201], and for non-linear molecules by Couling and Graham [9, 36].

7.1.1 Non-interacting molecules

In a dilute gas molecular interactions are negligible and the oscillating dipole moment ug’ )
of molecule p is induced only by the polarizing effect of the applied field &g, since there are
no molecules close enough for their moments to set up significant fields and field gradients
at molecule p. Thus, the differential polarizability 7,4 is given simply by the molecular
polarizability a,g. In addition, there is no average phase relationship between the fields
from any one pair of molecules and only self-correlations contribute to the summations in
equation (7.11), which are therefore replaced by N times the contribution of an individual

representative molecule 1. Thus, (7.11) simplifies to:

N <a§? agx)>
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where the angular brackets now represent an average over all unbiased orientations of a
molecule. The molecular tensors in (7.12) are referred to the space-fixed axes (x,y,z) and
must be projected into the molecule-fixed axes (1,2,3), yielding:

<a§?agﬂ)> = agjl-)ag) <afaiafaf> , (7.13)
(aDoll)) = afj)of) (afafafaf) . (7.14)

Using the standard isotropic averages [34,175]:
(afagafal) = 55 (40051 — 6150k — irdkj) ‘ (7.15)
and (afaﬁa;?aﬂ = & (O +.6ij5k¢ + 6ulkj) (7.16)
equations (7.13) and (7.14) become:

W _a 1) (1
<a2.)agi)> = %(3%(]')%(;') - az(i)a;'j))

2.2 2 2
= = (af) + 0y + Q33 — Q11 — Q1033 — Q29¥33), (7.17)

(Do) = L (200} + o ofy)

= Tls—(3af1 + 303, + 3a§3 + 2011009 + 20011 33 + 2090033). (7.18)

(1

For linear molecules aij) is diagonal with a;; = ag = a, and ass = . The mean

polarizability « is:
o=t = 220, + o), (7.19)

while the anisotropy in the polarizability tensor is defined as:
Aa=o —ay. : (7.20)

For non-linear molecules with Doy, and Csy, symmetriés, o is diagonal with three indepen-
dent components, as shown in equation (6.108) of Section 6.6. The mean polarizability
o is: '

o= %aii = %(0111 + ag2 + as3), (7.21)

while the anisotropy in the polarizability tensor is often defined as [102,202]:

1
for= E\/(all — @g9)? + (22 — r33)? + (a3 — 1) (7.22)
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For both linear and non-linear Doy, and Cy, gases, equations (7.17) and (7.18) simplify to:

(aWall) = (7.23)
(al)al)y = o’ + %(Aa)Q. (7.24)

Thus equation (7.12) may now be written:

0o = M_ (7.25)
a? + f—S(AaP
The anisotropy in the molecular polarizability tensor was originally defined as the dimen-

sionless quantity x [190]:

2 _ Baio; — aaag))
2ai,-ajj

_ Qo) (7.26)

92

and applies to both linear and non-linear molecules. From equations (7.25) and (7.26), it
can easily be shown that p, and x are related by the expression:

3K

_r 7.27
5+ 4k2’ (7.27)

Po =
first derived by Bridge and Buckingham [190]. This equation can be used to obtain values
for k% from measured values of py.

Since non-interacting spheres are isotropic, the anisotropy  in equation (7.26) is
zero. Therefore, from (7.27) we have py = 0, confirming the well-known result that
non-interacting spheres do not depolarize the light that they scatter.

7.1.2 Interacting molecules

If the pressure of a gas is increased to the extent where molecular interactions are sig-
nificant, the depolarization ratio py of the light scattered by a dilute gas sample of non-’
interacting anisotropic molecules is modified. The density dependence of the depolariza-
tion ratio may best be described by the virial expansion [35]:

B, C
p:po+‘—/ﬁ+v—g+---, (7.28)

m
where B,,, C,, ... are the second, third, ... light-scattering virial coefficients, and describe\

\«

the contributions to p arising from interactions between pairs, triplets, ... of molecules,
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respectively.

A complete molecular tensor theory of B,, based on the treatment of Couling and
Graham [9, 36], is now presented.

In a gas the molecules are moving randomly relative to one another, so that the
scattered light waves emitted by each of the molecules arrive at the distant observa-
tion point with different and randomly fluctuating phases. Therefore, the summation in
equation (7.11), can be simplified considerably. Except for self-correlation, the only sig-
nificant correlation of phase occurs when two molecules are involved in a close encounter.
Benoit and Stockmayer [203] established that, apart from the term <w§2w§? coS X12>,
the-interaction mechanism for all the terms in (7.11) is only significant at short ranges
of approximately 0.5 nm to 2 nm, which are a small fraction of a typical wavelength
of ~ 500 nm, and the phase differences x;2 between scattered waves from interacting
molecules p and q are thus effectively zero. It is therefore not necessary to retain x,, for
all the terms, and e*X»¢ is set to unity in all but the abovementioned term. Thus, only
allowing for self-correlation and pairwise contributions to the coherent fields, the sum-
mations in equation (7.11) are replaced by N times the contribution of a representative
molecule, averaged over all pair encounters, yielding:

N <7rgc)7rgc)> + N <7T£:1v)71—§2x)>

p= )
N <7T§:12:)7T:(1:}1:)> + N <7T:(1:11;)’7f§31;) COs X1-2>

(7.29)

where the angular brackets now indicate an average of pair interactions. The probability
P(r) that molecule 1 has a neighbour in the range dr at 7 is given by equation (1.4) in
Chapter 1.

The treatment of Graham [122] is used to obtain expressions for the differential po-
larizabilities in equation (7.29), as defined in equation (7.9). Graham [122] argued that
the total oscillating dipole moment of molecule 1, u,(ll), arises in part from the direct
polarizing action of the incident light wave field &y, and in part from the fields and field

gradients at molecule 1 due to the oscillating moments of a neighbouring molecule 2, so
that [26):

B0 (E0) = ol (os + F(7) + 1400, (80[57 + ffﬁ,’) , (7.30)

where &y3 and £y, are the field and field gradient of the incident light wave at molecule 1,
and fél) and }'éfy) are the oscillating field and field gradient arising at molecule 1 due to
the oscillating multipole moments of molecule 2.

In equation (7.30), the molecular polarizability tensor aglg is assumed to be inde-
pendent of the field and field gradient at molecule 1. However, if molecule 2 possesses
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permanent multipole moments, these may set up a strong electric field Fnsl) and electric
field gradient FS) at molecule 1, which may modifiy its effective polarizability. In this
case, the non-linear hyperpolarizability teym/s should be included in equation (7.30):

W0 (€)= (o) + B + 1y FOFY 4+ 60,7+ ) (€05 + 757
T (1.31)
lA (1) '

afy

(80 oy + ;F(l)) .

The field gradient £y, of the incident light wave may be neglected since the dimensions of
the molecules under study are very small compared with the wavelength of the light wave.
In addition, proceeding on the precedent of the second refractivity virial coeflicient of
linear molecules for which Burns, Graham and Weller [62] showed the hyperpolarizability
terms to be negligible, as well as our own observations for the second dielectric virial
coefficient, the non-linear effects resulting from the intermolecular fields of permanent
multipole moments will be neglected. Thus, equation (7.31) is now written as:

D (&) = o) (€op + F§P) + 3450, 7). (7.32)

3 By

Similarly, the oscillating Quadrupole moment of molecule 1 induced by the incident light
wave field as well as the field and field gradient due to the oscillating multipole moments
of moleule 2, is given by [26]:
1) 1 1 1
653 (E0) = ALy (Eoy + FO) + 08 F. (7.33)
If the oscillating octopoles and higher-order multipoles on molecule 2 are neglected then

the field ]—'[(,1) at molecule 1 due to the oscillating dipole and quadrupole moments on
molecule 2 has the form [26]:

1) (1 (1) o(2
FM =T @ — 1Tﬂ7}9§5), (7.34)

where the T-tensors are defined in equations (2.18) to (2.21) of Section 2.3. The field

gradient .7-"7((15) at molecule 1 due to the oscillating moments on molecule 2 is given by [26]:

1 1 2 1 2
F =T ~ TISWZSEG‘;E;. (7.35)

Here ,u ) and 62 L5 are the oscillating d1pole and quadrupole induced on molecule 2 by the
fields and field gradients at 2 due to the incident light wave and the oscillating dipole and
quadrupole moments of molecule 1. Using expressions analogous to equations (7.32) and
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(7.33) for ugf) and 975 , and substituting these expressions into equation (7.34), yields

2 2
A0 = 18 (o (B + 77) + 5ADZ] 418 (A2 (0 72) 5 0258
(7.36)

The terms .7-'(%2) and f(g:) refer to the field and field gradient at molecule 2 arising from the
oscillating dipole and quadrupole moments of molecule 1, and are given by expressions
analogous to equations (7.34) and (7.35), respectively. Substituting these expressions into
equation (7.36), yields:

2) p(1 1 2 2 1
49 = T8+ T2 (T - J7E000) + 700 (1) 4

Ae'yégoi-f - _Tﬁ('ly%Agy)d( 2) (1) ;,Tezgﬂ ) (737)

1) ~(2 @) (1
T[(i'y)zSC(J)eqS ( e¢g\/"( : ) .

Substituting the equations (7.32) and (7.33) for p and Haﬂ, respectively, yields:

‘7:[(31) 1) (2)8 +T(1) (2) [Td(e { (1)(5 —I—f(l)) 1A(1) f(l)}

Ty s By Yy 37 epA
1
— 178 { AR Eor + F) + 8,70

+ AT A TS [0 (Eor + F) + 314R, 7]
(7.38)

2 2 (1
— TDAD 8 ~ YT [T {olf e+ 7P+ 13, 7)

2 1 1
478 { A+ 200 + 0, 70

AT T (ol e + )+ 1A%, Y]
Successive substitution of ]—'[(31) and .’Féi/), and of _7-"[(,2) and }"[(3}7 , leads to an extensive series
of terms. It is difficult to know a priori when the series ought to be truncated, since
it is impossible to be sure whether convergence has been reached until the terms are
calculated. Thus the procedure is to calculate successively higher-order terms until the
point is reached where the highest order term calculated makes a negligible contribution.
Thérefore, based on the observations of Couling and Graham for linear and quasi-linear
gases [200,201] and for non-linear gases [9], the series for .7-'[(31) is truncated at a point
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which will lead to scattered intensities in o, as well as all scattered intensities in oA,

o®A and o?C. Equation (7.38) then yields:
‘7:[(31) Tﬁl) 2)5 -I-Tl) (2)T(2) (1 g +T(,7 ol T(2 £1¢T(1) )80,’

By Xys

— 17 AP g, — LT QT A €05 + ST AR T 0 Eon (7.39)

v %6

1) 4(2) (2) (1 (1)
1T[§7)5A£7)5T( a( )g TfMC de e¢>\a>\n 5071

Note that the term — 1T lg? %)T56¢A/\6¢80,\ was not included in the work by Couling and
Graham [9,201], but is included here for completeness. :

To understand the physical interpretation of the terms in (7.39), consider the term

TL%C 35)5¢Te(4252\0‘§‘1n)‘90m which represents the oscillating field at molecule 1 due to the
quadrupole moment C,(Y?E ¢T(2 E\;)So,, on molecule 2 induced by the oscillating field gradi-
ent T ¢/\a S 80,, at molecule 2 arising from the dipole moment a 80,, induced in molecule 1
by the incident light wave field Eqy,.

Neglecting oscillating quadrupoles and higher order multipoles, and substituting for
,uf,z) in equation (7.35) for the field gradient at molecule 1, yields only two terms whose

contributions to B, were found to significant enough for retention:
FE = Thal) € + Tia DT al) €y + - . (7.40)

Substituting equations (7.39) and (7.40) into (7.32) yields a final expression for the
oscillating dipole moment induced on molecule 1 by the light wave field £, in the presence
of molecule 2:

p (&) = a<1>50,7 + ol )Tﬁyaﬁ])&),, +a)T 7a§% T&ag})go,, +alT 7a§?T5€a§2T A0 Eon

1) (2) (1) (1) 4 2 1 1
(L)r(1) 4(2) (1) (1) ~(2) (1) oV
—3 aﬂTﬁ76A756TE¢ gn C0n T Lol Tﬂ76076€¢T6¢/\ xn Eon

(1) (1) (1) (1)
+ 1AL, Ta 0l Eon + LAL) TS0, ,ob) 6y, + -

(7.41)

Differentiating equation (7.41) with respect to &, yields the following expression for the
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differential polarizability, defined in equation (7.9):

7@ = o) + o®)T, o0 + 0T, 9T, 08 + 0T, l9T;,00)T,, 00

1 (P) (p) 4(9) 1..(») (@) (p) 4(p) 1 (p) (9) (p) (0
-3 aﬂTﬂvéAmJ + 3%, Tﬂ7a75 T65¢Ane¢ 3 aﬂTﬂ'vAvﬁsT&waqﬁn (7 42)

( () (
B é g,)B)T(p) A'(y?eTed)anfn) + 301 p)Tﬂ(z’)ﬂSC %E¢T651\az\z7)7)

(») A(p) (q) 1 4 lp) (@) (P)
+ 348 TV 0 + LAY T 0T, o) + -

where the superscripts p and ¢ indicate molecule p and ¢ respectively. Using equa-
tion (7.42) in (7.29) yields:

_ag+a3+a4+a5+a2A1+a3A1+a3C’1+---

, 7.43
by + b3 ( )
where
= (o) + (Do), (7.44)
ag =2 <a£2a§2Tmaﬁ?> +2 < Wl Tﬂ,ya712> , (7.45)
a4 = < ()T 72:1:) 96 T5€C¥€}B)> <a§,1ﬁ)Tﬂ'7a 2 (1)T6a62x)>
(7.46)
+2(alalT, 0l T;,0) +2 ()T, 0 DT, 0l))
; 1 2 (1 1) 2
a5 = 2 < gs) E:ﬂ TﬂyaSy&)T&a ey )T /\a)\z> +2 < S:}c) zﬂTﬂ'y ol TEaE‘qS)T ,\af\lx>
(7.47)
+2(a)T, 0200 T, O T,00 ) +2 (T, oD DT, 0f) Tyl
2)
CL2-A1 = _% <a(1) Tﬂ’)’tsAi(L")’6> <a(1)a ﬂ’Y(SA$76>
(7.48)

2 (1) 4D (2) (2) 1
+ 3 < )Azﬁ'yT ’yéadz > - % < (1)Azﬁ7T 76az(5z)> )
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1 2 1 2
ady = 2 (0WalfT, AUT, o)) + 2 (o) 00T, AT, 40
— 2{a®WaT, ;,ART ol + 2 (aQaf T, AN, 0!
5 ( @z ¥p Tprs A 76 ep%oa 3 o Acns ¢¢m
1 (2 1 1) 4(2)
+3 <a DA T o T, ¢0‘<(ﬁz)> 3 <0‘( DAG, Ty 50, T, ¢0‘¢z>
(7.49)
1 2 1 (1) (2
+ % < gc) gﬂ)Tﬁ’y J/;d)Tésq&Aa:ed) % <ag:c) zﬁ Tﬂ’yagd T56¢Ame¢>
1) @ 1 ) a
/ % < (I)T a’(y%v) 26 T65¢Aa:e)¢> + % < ( )Tﬂ'ya’(‘/%:) zé)T65¢Axe) >
(1 (2) 4(2) 1)
+ % < ,B'y ’(YQI)AZJ)ET E¢a¢.’lf> % <a ﬂ'y ’yav)AzdaT e¢a¢z> ’
¢! 2 1 @ 1
asCy = 3 < (l)a )Tg750(5)5¢Te¢AO‘E\:2> +3 (e < Tﬂ'yJC'y(S)equ qua&m) gx)>
(7.50)
2 1) 2 1
+3 <a9x) ﬂfy&C deg Ed))\af\x) > + % < ( Tﬂ750§5)5¢Te¢,\aE\z) O‘(i)> )
by <a:(le) o) + (o) o cos x12), (7.51)
bs = (oBa(T vagg>+< WalT,, D). (7.52)
Here the notation 7,4, = Tam = Téﬂ)v adopted in Section 2.3 has been used. In

the azA; term the last six components were not included in the work by Couling and
Graham [9,201], who first derived this term. The first two additional components are
identically equal to components 5 and 6, which were evaluated by Couling and Graham,
and the remaining four additional components, although not identical to the first four,
are certainly similar and can be expected to have the same order of magnitude when
evaluated. Thus, adding the six new terms is comparable to multiplying the original
terms by a factor of two. We have included them at this point for completeness, but have
not, evaluated them numerically, since Couling and Graham showed the contribution of
this term to be negligible, and included it only to establish convergence. In all our
calculations we estimated the a3.4; term by doubling the first six terms and found that
the term remained negligible.

To proceed, the explicit forms of T4, T, apyr Qo A,p, and Copys are required.

7.1.3 B, for linear molecules Cheeck 43725

In molecule-fixed axes the polarizability o; is diagonal with a7 = a9 = oy and a3 = .
The component <a£m)a$£)> of the term ay in equation (7.44) has already been referred

to molecule-fixed axes by the normal tensor-projection proceduré in equation (7.23) of
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Section 7.1.1. Similarly, the term <a§c1$)a:(01$)> in equation (7.51) has been referred to

molecule-fixed axes in equation (7.24). Now, the remaining averages in equations (7.44)
to (7.47), (7.51) and (7.52) must be referred to the diagonal elements of agjl-) and ag?j),, and
the interaction parameters described in Section 2.1.1. The A- and C- tensor components
in equations (7.48) to (7.50) must also be referred to the independent elements of AE;,)C
and AE,ZJ),k,, and Ci(}lZl and Ci(,z;),k,l, respectively.

Initially, all tensors are referred to the molecule-fixed axes of molecule 1 O(1,2,3),
(2)

ij
is diagonal, will be carried out later. The reason for initially referring all tensors

including o
(2)

ilj/

which is not generally diagonal. A projection from O(1’,2',3'), where
o
to O(1,2,3) is that for a given relative configuration of the pair of molecules the tensor
product in O(1,2,3) is fixed. By allowing the pair of molecules to rotate isotropically as
a rigid whole in the space-fixed axes O(x,y,z), the average projection of pair properties
referred to O(1,2,3) may be averaged into O(x,y,z) over all orientations. Averaging over
the interaction parameters 7 of the pair may subsequently be performed.

The procedure for referring the terms to O(1,2,3) is illustrated by a specific example:
the term <ag;)aﬁ?Tﬁvag?T&a&)T@\af\?>, which is the first term in a5 given by equa-
tion (7.47). First the term must be projected from the space-fixed axes O(x,y,z) into the
molecule-fixed axes of molecule 1 as follows:

1 2 1 2
<agc) agﬁ) Tm aga) T5, 0‘£¢) T¢A O‘E\a? >

— ( Wazaz, V) 2.8 B o7 (D708 8.6 (1) e, 0 ¢oX (2 )T
= <aij aajop aray Typananopasa T aacay, agal T, aga, o ) agay

= () A T, 0 2T, 00T, o)) (afiatar) . (7.53)

For a fixed interaction configuration the term agjl-)agle i Ol Trsagi)vaafj,)l is a con-

stant, and if the rigid pair of molecules is allowed to rotate isotropically, then the standard
isotropic average, given in equation (6.20), may be used to obtain the average projection:

(1 2 1 2
< a.(zlz) azﬂ) Tmaga)Tae a£¢) T¢,\ af\x) >

= <O‘S)al(clrlemnagr)Trsa&)vaagf)l> %(45%5]‘}; — 03 0kn — 0indr;)
1
= % (30alT,,, 0BT, 00T, 0 — oo, a@T; aT, ol (759)

i nr *rs-tsv How“Swk

where the angular brackets now indicate an average over the pair interaction coordinates
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R, 01, 0, and ¢ according to the general relationship:

_ / XP(r) dr, (7.55)

in which the probability P(7) that molecule 1 has a neighbour in the range d7 at 7 has
been related to the intermolecular potential in equation (1.4). Substituting into (7.55)
yields:

[e.0] T iy

(X) = 2NTA / / Xe~ P R?sin 0, sin 0, dRd6,d0,d¢. (7.56)
mR:O 8:=0 02:_0 ¢$=0

Benoit and Stockmayer [203] were the first to establish the now familiar results:
(aDa@) = 5 (o — 1) )? (3cos B2 — 1), (7.57)

which is a contribution known as the angular correlation term; and

—2B _
(a Do cos X12) = 155 (a — o) (3cos® 013 — 1) + o (V—m) ; (7.58)
where B is the second pressure virial coefficient. Combining equations (7.23) and (7.57)
and equations (7.24) and (7.58), yields the following expressions for the a; and b, terms
defined in (7.44) and (7.51), respectively:

az = (o — )’ + g5(0y — a;)?(3 cos’ by — 1), (7.59)

by =’ + (o — ar)® + Z(oy — ar)?(3cos? b1 — 1) + o (%) : (7.60)

The property tensors of an linear molecule p may be expressed in terms of 8(” ) , Where
Zgl) and EE ) are the unit vectors along the principal axes of molecules 1 and 2, respec-
tively [26].

Expressions for the A- and C- tensors and the T-tensors are given in equations (4.83),
(4.84) and equations (4.85) to (4.87) of Section 4.4, respectively. The expression for the
dynamic polarizability is expressed in equation (6.97) of Section 6.5.

Using these expressions for the molecular property tensors in equation (7.54) and
similar equations for the other terms in the (7.43), yields lengthy expressions containing
redundant interaction parameters EEP ) and \;. Averaging according to equation (7.56)

can only be performed after these interaction parameters have been eliminated using
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equations (4.92) to (4.94) of Section 4.4. When this is done we find that:

o ] (R {36K(k — 1) — 27k(k — 1)(2£ + 3) cos? 0; + 27k(k — 1)(2k — 1)

= 30(4reg

X cos? 0y — 324k2(k + 1) cos b1 cos 0 cos by — 108x? (k + 1) cos® 012}> , (7.61)

4

Qg = . )2 <R_6 {324&2(/@2 — 2k + 1) cos* 0, + 1944k>(k — 1) cos® 01 cos b cos B1,

30(4me)?
+ ((5103k* cos® 615 + 81k2(17 + 8k + 20)) cos® Oy + 405k>(k — 1) cos® B,

— 27k (126% — 2262 + 17k — 7)) cos® 01 + (1944r°(k — 1) cos® 0, cos O,

+ (3402k* cos® B1, — 162k%(4k% — 14k — 5) cos by2) cos bs) cos 6,

+ 324K2(K2 — 2k + 1) cos® By + (4053 (k — 1) cos® b1z — 27k(8k° — 24K

+ 21k — 5)) cos® 0y + 567k cos® B15 — 27K%(9k% — 10k — 14) cos® Oy,

+ 18(2x* — 9x° + 116> — 65+ 2) 1), (7.62)

9a°

9 = 30(4re,)?

<R‘9 {243/63(I€2 — 2k + 1) cos® 0; + 1458k*(k — 1) cos® 0) cos B, cos by

+ 9k? (27&2(95 cos? 0y 4 2k — 2) cos® Oy, — 9k(7k% + 25K — 23) cos® By

— 23k3 + 75k2 — 81!% + 29) cos? 01 + 27x3 cos 05 cos 612 (54/$2 cos? 01,

— (54k(2k + 5) cos® §y + 52k% — 23k — 11)) cos® ) + 3k (81k* cos* b1y

— 3k%(243k(2k + 3) cos® O + 32k2 — 22k — 1) cos? 15 + 81k% (k2 — Tk + 6) cos™ 0
— 3k(k® ~ 228 + 225k — 55) cos® 0 + 36k — 115k° + 159k* — 117k + 37) cos” 0,
— 9k2 cos 0y cos 0,5 (27/4;2(7f$ +9) cos® 015 + 9k(k® + 3k — 4) cos? By — (55K 4 T0k?
— 86K — 21)) cos 0y — 27k*(7k + 10) cos® 012 + 3%(35k% + 50k* — 52k — 24)

x cos? 019 — 27k%(5K” — 14k% 4 13k — 4) cos® 0, + 3k (29x* — 118x> + 168x2

— 98 + 19) cos? 6, — 8 (26 — Tk + 13k° — 146% + 7k — 1)}), (7.63)
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2
agA; = ——— ) (R~ { A, [180k(x — 1) cos® 8, + cos 6 ((540k” — 540k(x — 1))

60(4meo)
X 08 By + 21682 cos? f15 — 108k (k + 1) cos B — 216K% + 108k) — (216K (k + 1)
X €082 0y — 108k cos 015 — 216&) cos 0y + 540k (K cos By — Kk — 1) cos? 6 cos b,
+ 180k(x — 1) cos® 01] + A, [-135k(k — 1) cos® 0 + (405k(k + 1) cos? 0

% ¢0s 015 + 324k% cos® O15 — 81k(k + 1) cosfyp — 162k(k — 1)) cos b,

+ (1625 (% + 1) cos® B12 — 162k cos By + 81k (k — 1)) cos O

+ 8102 cos? 0, cos O, cos B3 + 270k(k — 1) cos® 91] }> , (7.64)

3

., i
asA; = B (R7T{A, [12k (135(k — 1)” cos® 6y + 810k (x — 1) cos” 6,

X ¢08 By cos B + (27K (45K cos? fa + 11(k — 1)) cos® 1 — 45k (s + 8) cos” 0

— 182(k — 1)2) cos® ) + 3(297k> cos® B1, — k(236K — 137) cos b12

+ (9%%(3cos® 12 + 1) + 2k + 4)(15 cos? By — 7)) cos? 01 cos By + 3(54k? cos® By,
+ 27k%(11 cos? By — 2) cos® 019 — k(189K cos® by + 5(13k — 4)) cos® 015

+ (270%(k — 1) cos* Oy — (1262 — 247k — 44) cos® by — 22k — 8) cos by2

+ Tk(k + 8) cos?® B 4 20k% — 30k + 19) cos 0; + 162k cos 0, cos® B12(cos b1z — 1))
+3(995(k — 1) cos® O, — (45K” — 40k — 8)) cos By cos® 12 + 6k(10K — 1) cos by
X cos 015 + (k — 1)%(135 cos® §, — 190) cos® 6z + 3 (14k* — 48k + 19) cos b,

+ A, [-95 (135(x — 1)* cos® 61 + 810k(k — 1) cos f; cos 0, cos by,

+ (27k(45k cos® O + 11k(k — 1)) cos® 1o + 45k(5k — 2) cos® By — 2(85k* — 146k
+ 61)) cos® 8, + 3(297k2 cos® Oy + 81k*(5 cos® B, — 1) cos? B3 — k(98K — 131)

X cos 019 + 3(9k* + 2k + 4)(5 cos? By — 1)) cos? 6, cos O + 3(54k? cos® By + 27k?
X (11cos? 0y — 1) cos® 19 — k(81K cos® Oy + 35k — 41) cos? By + (270k(k — 1)

x cos® g — (54k® — 175k — 44) cos® §y — (11K + 4)) cos 15 — 3(k(5k — 2) cos? b,
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a3Cy =

— 3(k — 1)?)) cos 0y + (162k7 cos® 1, — 81k cos® 01y + 3(99k(x — 1) cos® 6,

— (27K% — 49k — 8)) cos® 13 + 3k(4k — T) cos b1z + (k — 1)7(135 cos* 6

— 154 cos? 6, +27)) cos62)] }), (7.65)
3 _
o - 2 . 6 5
——  _(R%{6C 150(k — 1)% cos® 8; + 900k (x — 1) cos® 6 cos B cos 6
10(4760)2 < { 3333K [ (f‘é ) 1 ( ) 1 2 12

+ 5 (30K (9k cos® 013 — K — 2) cos® 0 + 72k(k — 1) cos® 015 — 35(k — 1)*) cos” 6

+ 30k cos f15(36k cos” B13 — 25k + 13) cos® 0y cos 9y + 3 (50(3n2 + 2k + 1) cos* 6,
— 15(92 cos® 0y + 262 + 1) cos® B + 72K cos? 015 — 5k(13k — 10) cos® f15 + 16k2
— 28k + 15) cos® 0, + 6 (20(3&2 + 2k 4 1) cos® B, — 182 cos® B9 + (5K* — 9k

— 2)) cos 0y cos B, cos by — 10(k — 1)%cos* 6 + 3 ((33k% + 16k + 8) cos” f1o

+ 267 + 1) cos® 0 + 27k” cos® b1 — 3(7k% — 1) cos® 01, — (26 + 1)7]

— 24C3135 [T5(k — 1)% cos® 01 + 450k(k — 1) cos® 0y cos B, cos 05

+5 (15K(9% cos® 015 — £ — 2) cos® b3 + 2(18k(k — 1) cos® Oy — 11(k — 1)%)) cos 6,
+ 30%(18k cos? 012 — 17k + 11) cos® 0y cos B, cos 12 + 3 (25(3” + 2k + 1) cos® b,
— 15(92 cos® B15 + 2k + 1) cos? B + 36k cos® 1o — k(55K — 34) cos® Oy,

+ 14k% — 245 + 13) cos® 01 + 12 (5(3K% + 2 + 1) cos® B — 2(9x? cos? 015 — k?

+ 3k + 1)) cos 0 cos B cos 15 — 5(k — 1)* cos* 2 — 3 (4(3x” + 2k + 1) cos® b1

— k% — 6K + 1) cos® O + 27K% cos” 01, — 3(4k® — 6K — 1) cos® f1p + (k — 1)?]

+ 6Ch1n1k [75(k — 1)% cos® 01 + 450k (k — 1) cos® 67 cos 85 cos 1

+ 5 (155(9k cos® 613 — K — 2) cos” O + 36k(k — 1) cos® O1 — 31(k — 1)?) cos* 6,

+ 60r(95 cos® 612 — 13k + 10) cos® 01 cos b cos 12 + 3 (25(3K% + 2k + 1) cos® 6

— 30(9x? cos? By + 2% + 1) cos? B, + 36x2 cos® 15 — 4k(25k — 13) cos® 0y,

+ 2 (25k% — 22k + 18)) cos® 61 + 30 (2(3k% + 2 + 1) cos® B, — 18k7 cos® Oy, + 5x”

— 9k — 2)) cos By cos B3 cos b1 — 5(k — 1)* cos B, + 3 ((57k% + 8k + 4) cos® b,
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- _llfs2 — 30k + 2) cos? B, — 108k2 cos? 015 4+ 12(7x% — 1) cos? 0y,
-2 (¥ =266+ 7)]}), (7.66)

where the equation (7.65) describes the first six terms of as.4; in (7.49), as derived by
Couling and Graham [201].

By substituting equations (7.59) to (7.66) into equation (7.43), p takes the form:

3 4 5
(87 (0% (87
! [ al

30(dreg) 3 * 30(4meg)? 4 * 30(4mey)3

1 1
p= {1—5 (Aa)? + ?)—[)(Aa)2 (3cos® b1, — 1) +

S VRN N R,
eg) 2 60(4meg)? o' 30(dreq)? ot

: : 2 o —2B
[E (15012 + E(Aa)2) + 4—5(A04)2 <3 cos? 015 — 1> n _—8% o ( )} |

in which aj represents the part of as in equation (7.61) contained within the angular
brackets, with similar definitions for aj, af, as A}, asA] and a3C} which occur in equa-
tions (7.62) to (7.66).

Equation (7.67) must now be expressed in the virial form of equation (7.103). We
have from equation (7.25):

_ 3(Aw)? (7.68
= 1502 + 4(Aa)® 68)
This allows equation (7.67) to be written in the form:
3 4 5
= 141 (3cos?b, -1 +a—/ * y “ :
p=ro [ 2 n=1) 2(dree) (Do)t T (ameg2(Ba)2™ t 2dmee) (Do)
a? , o’ , 3ol , 1
" S B A Tirar ™ Timeraara 4O (7))
3a® 2B 1
1+ 4 1 /30082 - S A N — —
{ + 3P0 [2 < cos” 01 1> + 8(47r50)(Aa)2b3 + T +0 (V%)} } , (7.69)
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which reduces to

4,2
2B, 0 a(l+36%) , (1 +3K7)
p=rot ol =5 [V_m +3 (30050 = 1)+ e g™ T T8 (dne, P
(1 + %ﬁg)a' (14 £x?) - a1+ 3£%) sl + a(l+ %H2)a36’{
* 18(4meg)3k2 °  36(4meg)K? T 36(4meg)2k2 L B(4meg)2K?

It follows from equations (7.103) and (7.70) that:

B, = po(1 — ) (2B + G + a3 +ag +as + A1 +a3A; +a3C + by +--+), (7.71)
where

G=3(3 cos® 1y — 1) Vi, (7.72)

by 2L (7.73)

T 18(4mg)k2 ™Y

o?(1+ 3%)
=—2_‘V a 7.74
3 18(4meg)?K2 m4) (7.74)
a®(1 + 2k7)
=——>_ "V as, 7.75
% = 18(dme)Prz ™ (7.75)
(1+ 2K?)
A= ——2=V,a Al 7.76
M = S (dmeg) k2 M (7.76)
a1+ 2k?)
= GV AL 777
2shs 36(4meg)? K2 as A,y (7.77)
o1+ %fcz) ,
a3Cy = vaaBCl, (7-78>
and  by= -t Vb (7.79)
3T 30(471’80) mes '

As with the normal second pressure virial coeflicient B, the above eight coefficients are
independent of the molar volume but dependent on temperature. The second light scat-
tering virial coefficient is directly accessible from a plot of experimentally measured p
versus ‘-,1; values. If py is known, then one may calculate:

B, =(2B+G+az+as+as+aA; +asA; +a3C + by +--). (7.80)
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The appearance of 2B in this expression for B; can mask the more interesting contribu-
tions from the remaining terms, which are summed to allow comparison with 2B, giving

B, =(2B+S,), (7.81)

where the sum S, arises purely from angular correlation, dipole-dipole, field-gradient, and

induced quadrupole moment effects in the molecular interaction.

7.1.4 B, for non-linear molecules

There are no literature values for the A- and C-tensor components for non-linear molecules,
so that the contributions arising from the asA;, asA; and a3C terms cannot be calcu-
lated. Calculations by Couling and Graham for linear and quasi-linear molecules [201],
showed that the agC} term contributed less than 0.3% to the second light-scattering virial
coefficient for all linear molecules studied, and our own calculations yield similar results
(see Tables 8.8, 8.17 and 8.34). Thus, the omission of this term should not be significant.
However, Couling and Graham [201] showed that the asA; term, which only exists for
__polar molecules since the A-tensor is zero for non-polar molecules, can make significant
contributions to B, of as much as 9%. The contribution of the higher-order asA; term
was found to be less than 1% for the linear dipolar molecules investigated [201], and can
thus be assumed to be negligible. The problem of the possible significance of the as.4;
term cannot be solved until ab initio calculated estimates of the A-tensor components of
non-linear polar molecules become available. , \o‘\

The averages in equations (7.44) to (7. 47) (7.51) and (7.52) must be exprezse{}ﬁ;@
-

terms of the elements of the diagonal tensors a(l) = a(, ), as given in equation (6.10 3
the seven interaction parameters R, oy, 81, Y1, a2, B2 and s, described in Section 2.1.2. Fg‘ /P,
As for linear molecules, all tensors must initially be referred to the molecule-fixed axes
0(1,2,3) of molecule 1, to ensure that for a given relative configuration of the pair of
interacting molecules the tensor product in O(1,2,3) is fixed. If the pair of molecules is
allowed to rotate isotropically as a rigid whole in the space-fixed axes O(x,y,z), the average \
projection of pair properties referred to O(1,2,3) into O(x,y,z) may be averaged over all \/
orientations. Averaging over the interaction parameters 7 of the pair may subsequently

be carried out, the average (X) of the pair property X over the interaction coordinates
following from the probability in equation (1.4):

7

T 2n 27 7r

- [ [ ][] ] [

R=0 a1=0 B1=0 71 =0 ag=0 fa=0 72=

X R2 sin ,81 sin ﬁg dR da1 dﬁl d’)’l dag d,Bg d’)’g (782)
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The term <a§x)a§x > from equation (7.44) is now referred to molecule-fixed axes:
(oal2) = (alfall) (o)
<3a(1) 2 9a2> , (7.83)

where o2, the polarizability tensor of molecule 2 expressed in the molecule-fixed axes

z] )
of molecule 1, is given by equation (6.108) in Section 6.6. Thus, the angular brackets in

equation (7.83) may be written as:
<3a§;)a( ) _ 9a > = <3(a11211 + Qgp oy + (33 233) — 9a2> , (7.84)

where Z11, Za and Zs3 are defined in equations (6.109), (6.110) and (6.111) of Section 6.6.

Couling and Graham [9, 36] referred the <az1z)a§m) cos X12> term from equation (7.51)
to molecule-fixed axes using a procedure analogous to that of Benoit and Stockmayer [203]
and Graham [200], to obtain:

—2B
<a;(clx)of;(vzz) COS X1 > <3a(l) @ 9a2> + o? (V—)

' —-2B
= Z (3(ayy Zy1 + 0199 Zgy + (33 33) — 9a2> +ao? (V—> , (7.85)
m
where B is the second pressure virial coeflicient.
The procedure for referring the higher-order terms to O(1,2,3), and averaging over all
orientations of the average projection of the pair properties into O(x,y,z), is demonstrated
in Section 7.1.3. This procedure yields terms of the form:

< 0T, 0T, VT, Aa§2;>

<3a(1) Dp AT, of 1)vaa£}2]) all ozfclrle AT, VT, Ol(2> (7.86)

nr-rs vwwk

where the angular brackets indicate an average over the pair interaction coordinates R,
ay, f1, 11, @, P2 and 2 according to equation (7.82), and a” , 5]2) and T;; are given by
equation (6.108) in Section 6.6, and equation (4.145) in Section 4.5.

Once the Macsyma tensor manipulation facilities are invoked to evaluate the aver-

ages such as in equation (7.86), we obtain the following expressions for the terms in
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equation (7.43):

by =

as =

a4 =

15(41 ) <R_3 {a11(6a + 4Oﬁl)(leTll + Zl?Tl? + Z13T13) + a22(6a + 4a22)(Z12T12

TEY

+ ZyyTog + ZpzTa3) + gy (60 4 40i33)(Z13T13 + Zp3To3 + Z33T33)}> ; (7.87)

3()(41 £0) <R—3 {a11(3a11 — 40)(Zy, Ty + Z13Tya + Z13Ts) + 0 (3agy — 40) (21571
TEo

+ ZpyTyy + ZygTag) + 0t33(3azy — 40)(Z13T15 + ZogTos + Z33Tas) + g (T11(2121
+ Zh + Z5) + T19( 211 210+ Zh9 200 + Zy3Z93) + T13(211 203 + 219293 + Z13Z33)>
T Qg (Tm(ZuZu + Z1y 2y + Zy3Zg) + Toa( By + Ziy + Z33) + Tas (212715

+ ZypZiys + Zy3Zss) ) + Qi3 (T13(ZIIZ13 + Z19 2 + Z13Z33) + Ty3(Z19213

+ ZgpZgs + Zas Zag) + Tsa(Zis + Zis + 2323)) }> ) (7.88)
m <R—6 {36“11“22 (Z123T223 + 2T [Z12Z13T22 + T15(Z13 233 + Z13253)

+ T9(Z13 215 + Z13 29y + Z11 Z13) + 2Z12Z13Tu] + Z35T3 + 2T, [2212Z23T13

+ T12(221329y + Z11Z15) + 2Z122T11] + Z3y Tty + 2Ty [le(Z22Z23 + 211293

+ Z19213) + Z12Z23T11] + Z5Th + Thy(Z3y + 2211 Zog + 273, + Z7) + 2T, Ty
X (21929 + 2Z11Z12)) + 301, 0y <Zl23T323 + 2T [Zlests + T13(2Z13233

+ Z11243) + 2213255T15 + 2Z123Tn] +T1(235 + 221 253 + 2233 + Z3) + 23575,
+ 275 [T13(Z12233 + 213203 + 21 Z1a) + T19(Z19 203 + Z13705) + 2Z12213T11]

+ Z§3_T122 + 22132931\ Ty + Z35T7 + 2T [T12(Z23233 + 211295 + Z19733)

+ T1(Z132353 + 2211213)]> + 30155033 (Zz23T323 + 2753 [T23(2Z23Z33 + ZyyZss)

+ 223, gy + 21929315 + 2213223T12] + T55( 235 + 2200255 + 225 + Z3y) + VAN
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+ 2T [T22(Z23Z33 2293 203) + T13(Z19 233 + Z13203 + Z1aZ3) + Tha(Z13 253

+ Z19T0s + Zy3Za3)| + Z5Th + Z35Tiy + 2T(22,5 255 Ths + 213723 Tha)

+ T15T15(Z11 293 + 212Z13)) + 307, (T123(Z§3 + Zyy Zg + Zigg + 3Z7y) + 2T

X [T12(Z23Z33  ZyyZog + Zyy Loy + 3Z15213) + Ty (213233 + Zr1aZg3 + 4Z11Z13)]

+ TH(Z2% + 23 + 24y Zgy + 32%) + TuTho(Z13 205 + 21920y + 4211 Z15) + TH (7%
+ Z3 +477)) + 3ag, (T223(Z§3 + ZgyZagy + 3%35 + Z1) + 2T [T22(Z23Z33

+ 4799 D3 + Z19Z03) + T19(Zy3 233 + 3219003 + Z13 00 + Z11Z13)] + T35 (Z33 + 423
+ Z2%) + 213 Toy(Zy3 2oy + 4215200 + 711 Z19) + Tha(Z11 2o + Zi3 + 327+ 2121))

+ 303, (T323(4Z§3 + Z33 + Z3) + 2T [T23(4Z23Z33 + ZyyZioy + Z19213) + Tig

X (42,3233 + 219293 + Z11213)] + T2y( 29y 2oy + 3235 + Zy + Z3,) + 2T13Tog

X (Zy9Zigs + 32137003 + Z19 200 + Z11Z15) + Tiy(Z11 Zgy + 3235 + Ziy + Z121)) }) :
(7.89)

In spite of the compact notation employed, the a; term is exteremely large, so the

tensor H, = aS)Tjkaﬁ) defined in equation (6.116) is used to further compress the final
expression [9, 36], yielding:

1 _
s = 30(d7e,)? <R ’ {9%3 (Tss(H13H31 + HygHgy + 2H33) + Ty (Hys(2Hsy + Hyg)

+ HogHsy + HypHyy ) + HygHyyToy + T3(Hag(2Hyy + Hys) + Hy Hyy + Hyy Hy,))

+ Tyy(Hi3Hap + HysHyy ) + H13H31T11) + 90y, (H23H32T33 + T3 (HysHyg + Hyp Hyy
+ 2Hoy Hyy + Hyg Hy,) + Toy(Hos Hyy + 2Hg, + HypyHy,) + Ty(Hyy Hyy + HyyHoyy)
+T15(HysHyy + Hyp(2Hy + Hyp) + 9H Hyy) + H12H21T11) + 9oy, (H13H31T33

+ Tyg(HypHay + HygHyy) + HypHy Ty + Ty3(Hy3Hyy + Hyy Hyy + HypHos + 2H,, Hyy)

+ T15(H\ 3Hyy + HygHyy + Hy Hyy + 2H Hyy) + Ty (Hi3Hyy + HpHyy + 2H121))
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+ 3Ty (Z33(2H3s + Hyg Hyy + HyzHyy) + Zog(Hyg(2Hsy + Hyg) + HypHyy + HipHyy)
+ HygHyyZoy + Z13(Hyg(2Hzy + Hyg) + Hy Hay + Hyy Hyy ) + Zy5(HysHyy + Hos Hy, )
+ HigHy Zy,) + 3Tys (Z3(Hag(Hap + 2Hys) + HypHys + HygHy,) + Zoy(Hs,

+ 2Hy, Hyy + H3, + 2Hyy Hyy + HygHyy + Hyy + Hyy + HyyHy,) + Zoy(Hyy Hyg

+ 2HyHyy + HygHyy + HyyHyg) + Z5(Hyy(Hyy + Hyp) + Hyy Hap + HygHy

+ Hy3Hys + Hy Hyy + Hy Hyy ) + Zyy(Hyy Hyg + Hyy(Hyy + Hyp) + Hyy (Hy, + Hyy)
+ Hy Hy + Hy3Hyy) + 7y (HypHyy + HiyHy,)) + 3Ty (Hyy Hay Zgy + Zog(Hyg Hag
+ HyyHyy + 2Hyy Hyg + Hy3Hy, ) + Zoy(Hyy Hay + 2Hy, + HiyHyy) + Z3(Hyy Hay

+ HypHy) + Zy5(Hys Hyy + Hop(2Hy, + Hyp) + Hyy Hyy) + HypHy 7)) + 3T,

X (Zyy(Hys(Hyy + 2Hyy) + HigHyy + HliH13) + Zyg(Hyy(Hyy + Hyp) + Hyy(Hy,

+ H1$) + Hy3Hyy + HyyHyy + Hyy Hyp) + Zgy(Hyy Hyy + HipHyg) + Zy3(His + 2H
X Hyy + HyyHy + Hyy + 2HygHyy + HypHy, + Hiy + HYy) + Zyy(Hap Hyy + Hyy(Hy,
+Hyy) + Hy (Hyy + Hyy) + Hy Hys + HipHyy) + Z,, (Hyy Hyg + Hyy Hyy + 2H, Hy,
+ Hy)Hy3)) + 3Ty (Zs(Hyy Hyp + HogHyy) + Zyg(Hyg Hyg + Hyp Hyy + Hy,Hs,

+ Hoy(Hyy + Hyp) + Hy3Hyy + Hy Hyy) + Zoy(HygHyy + Hyy(Hy, + 2H,,)

+ Hy Hyy) + Zy5(Hyy Hyy + Hyy Hyy + Hy Hyy + Hyg(Hyy + Hyy) + HyyHy,

+ HipHig) + 2,5 (HygHyy + Hy3Hyy + H, + 2H,, Hyy + HY + 2H , Hy, + HY,

+ Hfy) + 2y (Hyy Hyy + Hyy Hyy + 2H) Hy, + Hy Hyy)) + 3Ty (Hy3Hy, Zsg

+ Zog(H\oHyy + HygHy)) + HiyHy, Zoy + Zy5(H 3 Hyy + Hy Hy + HyyHog

+2H, Hyy) + Zyy(HygHyy + HyyHyy + Hy Hyy + 2H, Hyy) + 2, (Hy, Hy,

+ HypHy +2Hy,)) — 120 (T33(H§3 + HygHyy + HygHgy ) + Ty (Hys(Ha,y

+Hyy) + HypHyy + HypHyy + HyyHyy + HygHyy) + Tyo(Hy Hy, + Hy, + Hy,Hy,)

+ T3(Hy3(Hyy + Hyg) + Hy Hayy + Hy Hyy + HyyHyy + Hy Hi3) + T)o(H, 3 Ha,
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+ HygHyy + Hop(Hyy + Hyp) + Hyy Hyy + Hyy Hyp) + Ty (HiaHyy + HipHy + H121))
— (Hy + Hyy + Hgg) (30‘33(H33T33 + HypTyg + Hy T3) + 30gg (HygThs + Hop Ty

+ HyTip) + 3oy (Hys Ty + HypTyy + Hy ) + Tyg(Hss Zgy + Hyg Zog + Hay 235)

+ To3(Hps Zss + Zog(Hyg + Hyy) + HypZgy + Hyy 235 + Hyy Z)5) + Ty (Hyy Zoy

+ HyyZoy + Hy Z1p) + Ti3(HisZsy + HypZo + Zy3(Hyy + Hyy) + Hyp 21y + Hy 2
+ Tho(Hy3Zos + HipZoy + HyyZy3 + Z15(Hyy + Hyy) + Hyy Z3y) + Ty (Hy3 73y

+ Hyoly+ HyZ)) ). (7.90)

Combining the results in equations (7.23), (7.24), (7.83) to (7.85), and (7.87) to (7.90)
equation (7.43) can be written:

3

= i(Aa)Q—I—i'—t— ! d) + ! ay + ! ag+ -
= |15 307 " 30(4meq) ™ T 30(4meo)2 1 " 30(dmeg)? S
4 2 1 2B
2+ —(Aa)? + —g¢ + ——b +a? [ == 7.91
[0‘ TR TG Bt T\ )| (7.91)

where ¢’ is the expression for <3a§;)a§?) — 9a2> given in equation (7.84), while b} repre-

sents the part of b3 in equation (7.87) contained in angular brackets, with similar defini-
tions for a3, ay and af in equations (7.88) to (7.90), respectively.

Equation (7.67) must now be expressed in the virial form of equation (7.103). We
have from equation (7.25):

_ 3(Aw)?
4502 + 4(A)?’

Po (7.92)

where A is defined in equation (7.22). This allows equation (7.67) to be written in the
form:

1 1 1 1
— 1 7 / /
p=po [ T 20801 T 2dneg) (Ba)® T Sneg) i tAa ™

/

2(4me0)3(Aa)2 s

+5.+0(g) |/ {1+ 4o [+ e R | G

140



which simplifies to

po(1 — 3p0) (

p=po+ 2B+g+a3+a4+a5+b3+---), (794)
where
g= —I——Vmg', ' (7.95)
2(Aq)?
1 1 2
_ V.d, 7.96
%= Ureq {2(Aa)2 * 48a2} % (7.96)
1 1 2
= Vi, 7.97
M= dmeo)? {2(Aa)2 * 48a2} % (7.97)
1 1 2
= Vinas, 7.98
% (4e)? {2(Aa)2 * 48012} % (7.98)
and b3 = —;V 7 (7.99)
3 15(4meg)a2 ™ '
It follows that
B,,:po(l—%po)(QB—I—g—i-ag+a4+a5+b3+---). (7100)

The coefficients in equations (7.95) to (7.99) are independent of the molar volume, but
dependent on temperature. As for linear molecules, measurements of B, together with a
measured value of p, yield values for:

B,=(2B+g+as+az+as+by+---). (7.101)

The portion of B; which is of interest, is the sum of the terms arising purely from angular
correlation and collision-induced polarizability anisotropy:

8,,=g+a3+a4+as+b3+---. (7102)

In order to extract an experimental value of S, from a value for B}, an (S,/2B) ratio of
the order of unity or greater is necessary.
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7.2 Interacting spherical molecules

Since they are isotropic, isolated spherical molecules are unable to depolarize the light
which they scatter. Nevertheless, a small depolarization ratio is observed in gases of
spherical molecules at elevated pressures, since at these pressures the molecules can no
longer be considered to be isolated. This depolarization of scattered light by interacting
spherical molecules, which depends on the pressure of the sample, has been attributed to
the alteration of the effective polarizability of the molecules resulting from the interaction
between molecules when they collide or come into close contact with one another. The
depolarization of light by spherical gases has been the subject of intensive investigation,
both experimental and theoretical [89,204,205].

The pressure-dependent depolarization ratio is described by means of a virial-type
expansion [96]

B, G,
=t =+ 7.103
where B, C,, ... are the second, third, ... light-scattering virial coefficients, and describe
the contributions to p arising from interactions between pairs, triplets, ... of molecules,

respectively. Note that since ideal gases do not depolarize the light they scatter, there
is no first light-scattering virial coefficient. From dipole-induced-dipole theory [204], the
second light-scattering virial coeflicient may be written as:

T1 _w
B, = / e # 4R, (7.104)
0

where Uy, (R) is the intermolecular potential energy between interacting molecules 1 and 2
which are a distance R apart. Thus, if we consider only pair interactions, equation (7.103)
becomes:

o

4N 4 / ViR
(47r50 2y (7.105)
0

In early calculations, the integral in (7.105) was evaluated using Buckingham and Pople’s
Hy, functions [96]:

71 v ULy R3~F
/ 7Ee R*dR = Togt Hi(y), (7.106)
0

where Upy(R) is the Lennard-Jones potential. Buckingham and Pople [96] tabulated
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values of H(y) for k ranging from 6 to 17 in integral steps.

Using equation (7.104), Watson and Rowell [89] calculated values for B,, and com-
pared them with their experimental values. They found that the ratio of BJ*P /B;‘f"lc
showed a definite trend, with the ratio increasing from less than unity for the rare gases to
values of approximately 2.5 and 7 for the large quasi-spherical molecules sulphur hexaflu-
oride and neopentane, respectively. Other workers later confirmed Watson and Rowell’s
ratios of BS*P to BS™, for argon and methane [206-209]. Watson and Rowell argued that
the apparent breakdown of the DID theory of molecular interactions for larger molecules
provides evidence of the inadequacy of the point-dipole approximation used in the DID
theory. However, as discussed in Section 6.8, Dunmur, Manterfield and Robinson [88]
have subsequently shown that at higher pressures the effects of triplet interactions con-
tribute to the depolarization of light scattered from atoms and spherical molecules. For
sulphur hexafluoride, which is a very large molecule, the evidence of three-body inter-
actions manifests itself at much lower pressures. This is probably due to the fact that
sulphur hexafluoride has a very low vapour pressure. Earlier measurements of the second
light-scattering virial coefficient did not allow for the effects of three-body interactions,
resulting in significant errors in the deduced values of B,. Dunmur et al. [88] went on
to show that the dipole-induced-dipole model for the collision-induced pair polarizability
of atoms and spherical gases is successful for argon, krypton, xenon and methane, but
appears to be inadequate for sulphur hexafluoride. This apparent inadequacy may be a
result of collisions between four or more molecules, which have not been taken into ac-
count. Extremely precise measurements of the density dependence of the depolarization
ratio would be necessary to determine these effects. Once again we note that for the
molecules in this study, which are much smaller than sulphur hexafluoride, the measure-
ments of the second virial coeflicients are carried out at pressures well below their vapour

pressures, so that the number of interactions between three or more molecules should be
insignificant.

143



Chapter 8

Calculations of Second Virial

Coeflicients

8.1 Evaluation of the second virial coefficients by nu-

merical integration

In order to calculate the various second virial coefficients discussed in this work it is
necessary to integrate the relevant functions over the molecular interaction coordinates
7. In early calculations, the integrals were evaluated using Buckingham and Pople’s
Hy, functions [96] which are described in Section 7.2. As computers became available,
evaluation of the integrals either became simpler or, in some cases, became possible.

In 1969, Sutter [3] performed the numerical integration necessary to calculate B,
by computer, since the series expansion of the Hj functions converged slowly and the
higher-order terms were complicated. He used Simpson’s rule for integration over four
interaction coordinates to calculate B, and B(T). Many subsequent second virial coef-
ficient computations [2,3,40,44,95,97,98,110] have been carried out using this method,
which is simple to program. In 1980, Whitmore and Goodings [113] performed the in-
tegration calculations of B(T) by Gaussian quadrature, but made no comment on the
superiority of the method over that of Simpson’s rule. Later, an extensive comparison of
the two integration methods was undertaken by Weller [105] who showed that for a given
precision the Gaussian method requires only half the number of intervals per integration
variable, reducing the computer time necessary for a calculation by a factor of at least
sixteen for linear molecules with four integration coordinates. Subsequently, Graham and
Couling [9, 36,200, 201] have used the method of Gaussian quadrature in all their com-
putations of the second light-scattering and Kerr-effect virial coefficients for linear and
non-linear molecules. Due to the success of the method, it has been adopted in this work.

In the integration procedure the ranges of the angles (6;, 62 and ¢ for linear molecules;
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a1, Bi, 71, @2, B2 and ¥, for non-linear molecules) were divided into sixteen intervals, while
the range of the separation R was taken from 0.1 nm to 3.0 nm and was usually divided
into sixty'four intervals. It was found that increasing the number of intervals for the
angles from 16 to 32 yielded numerical values which agreed to at least seven significant
figures, so that the lower number of intervals was used throughout to reduce computer
time. For calculations of B, it was found that using 128 intervals for the range of R rather
than 64 did change the results by up to 6%, so that for linear molecules 124 intervals
were used. Although the difference can be significant it is still less than the experimental
errors for B, for non-linear molecules, and in calculations of B, for these molecules the
lower number of intervals was retained since the programs were already very time- and
memory-consuming. For the other effects, increasing the number of intervals for the
range changed the numerical values by less than 0.5%, and 64 intervals were used for all
molecules.

The ability of the Macsyma package to translate expressions directly into Fortran code
was utilised to effectively eliminate the introduction of errors in the integration arguments,
which are often very long and complicated. Examples of the Fortran programs used are
given in Appendix C. Many of the programs were run on the University of Natal Physics
Department’s IBM RISC system/6000 workstation with a 60 MHz processor, using the
IBM Fortran compiler. Other programs were run on a 486 DX-2 66 MHz PC with 16
Mb of RAM, or a Pentium 133 MHz PC with 64 Mb of RAM, using the University of
Salford FTN77 compiler. All of our programs were run in double precision. The basic
format of the programs for the non-linear gases was designed by Couling [9]. Large arrays
are used to store the numerical values of the intermolecular potentials for all the angular
configurations required, which eliminates the repeated calculation of these values within
the Gaussian quadrature routine and increases the speed by a factor of fifty. However, the
arrays require large amounts of memory to store several million double-precision numbers,
and it is necessary to make use of the facility to page to the hard disk. These non-linear
programs each take several hours, as opposed to the linear programs which are only a few
minutes in duration.

The aim of this work is to see if known molecular properties, either experimental or
calculated, together with a self-consistent set of Lennard-Jones and shape parameters,
combined with complete molecular theories of the second virial coefficients, will yield
calculated values which agree with experiment for the full range of virial effects. To this
end, as many molecular properties as possible have been collected, both measured and
calculated. The theory for the second pressure virial coefficient presented in Chapter 3
has then been used to fit calculated values of B(T') to the experimental values given in
Appendix A over a range of temperatures, by optimising the values for the Lennard-
Jones parameters Ry and €/k and the shape factors. Due to the sensitivity of the second
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dielectric virial coefficient. to the shape of the molecule, we have attempted to fine-tune
the optimization of the molecular parameters by seeking a set of parameters which result
in good agreement between theory and experiment for both B(T) and B, in the first
instance.

A computer program was designed which calculates the values of B(T') and B over
a range of temperatures for various sets of the Lennard-Jones parameters and the shape
factor. For each set of parameters, the calculated values are compared with the exper-
imental data available and the sum of the squares of the errors (SSE) for each effect is
computed and the results stored in an array. When B(T) is calculated for the next set of
parameters, the elements of the array are sorted in ascending order of the SSE. As B is
calculated a running total of the SSE is compared with the SSE for B, of the data set in
the preceding array element, and if the SSE of the current calculation exceeds that of pre-
ceding element the calculation is abandoned and the next set of parameters is processed.
In this way, large amounts of data may be calculated and compared systematically al-
lowing a very careful search over a fine grid for a set of parameters to optimize the fit of
both B(T) and B,. This program saves a substantial amount of time, particularly since
it abandons the evaluation of a set of parameters immediately when it becomes clear that
the SSE for B, is too large. This method of selective calculation was necessary since B,
is so sensitive to the parameter set that the errors can increase very rapidly with small
changes in the shape factor. A similar process was not feasible for non-linear gases since
a single calculation of B, for a polar gas takes approximately 23 hours on a 133 MHz
Pentium!

Even with the aid of this program, it was not always possible to find a set of parameters
to fit both effects. For certain gases there appeared to be no common ground where
reasonable calculated values existed for the two effects. In these cases our policy has been
to select a set of parameters which satisfy the requirements for each effect separately and
then to test these sets on the other second virial coefficients, where available.

For the non-linear gases, careful optimization of the Lennard-Jones force constants
and the shape factors has been carried out by Couling and Graham [9], who fitted the
calculated second pressure virial coefficient to experimental data, and then used these
parameters in the calculations of the second light-scattering and Kerr-effect virial co-
efficients. For these gases we have used the their optimized parameters to calculate
the second dielectric virial coeflicient and the second refractivity virial coefficient, where
available. Where these parameters yielded calculated values which disagreed with the
measured values, we have attempted to find new parameters which improve the fit of
B, without sacrificing the good fit of B(T), which can then be tested on the remaining
second virial coefficients.

As a double check of the fortran code of both the linear and non-linear programs, the
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non-linear programs were used to calculate the various components contributing to the
second virial coefficients for linear gases and these calculated values were compared with
the values calculated by the relevant linear programs. In all cases the values were found
to be equal to at least four or more significant figures.
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8.2 C(Calculations for fluoromethane

8.2.1 Molecular properties of fluoromethane

Table 8.1 presents a list of the molecular properties of fluoromethane which have been
used in these calculations. The dynamic properties, «, 3, A and C are all for a wave-
length of 632.8 nm. The A- and C-tensor components are estimated values. Since there
are no values available for the components of the dynamic hyperpolarizability tensor f;;x,
components were estimated by setting the ratio (8,/6 1) equal to the ratio of the polar-
izability tensor components. Although this is obviously a crude approximation, it was
adopted so the relative contribution of the hyperpolarizability to B, and Bg could be
estimated. The optical-frequency values for §, and B, were used in the calculations of
B.. The contribution of the hyperpolarizability was found to be relatively insignificant, so
that this approximation appears to be justified. The components a; and a, of the static
polarizability tensors were calculated using the mean static polarizability a determined
by Sutter and Cole [2] and the static anisotropy Aa obtained by ab initio calculations at
the MP2 level of theory by Spackman and Dougherty [202,210]. Our optimized values of
the Lennard-Jones force constants and the shape factor are given in Table 8.2, together
with the fitted values of Couling and Graham [9].

8.2.2 Results of calculations of second virial coefficients for

fluoromethane

For fluoromethane our attempt to optimize the Lennard-Jones force constants and the
shape factor for both the second pressure and dielectric virial coefficients simultaneously
met with some success. Our values of Ry, €/k and D given in Table 8.2 resulted in cal-
culated values of B(T) which agreed with the measured values to within less than 3%
over the temperature range from T = 280 K to 416.5 K, as shown in Table 8.3, which
also shows the values of B(T) calculated using parameter set (2). For our optimized set
of parameters, the calculated values of B, fell within the experimental errors quoted by
Sutter and Cole [2,3], which are the most accurate measured values available. Table 8.4
shows the temperature dependence of the calculated values of B, for both sets of param-
eters, together with the measured values of Sutter and Cole [2,3]. Figure 8.1 (a) shows
graphically the relationship between the calculated curves and the experimental data.
The solid curve represents the values calculated using parameter set (1), while the dotted
line represents the values calculated using parameter set (2). Note that the measured
values of Hamann et al. [52] are higher than those of Sutter and Cole, with larger exper-
imental errors. From Tables 8.3 and 8.4, and Figure 8.1 (a) it is clear that our optimized
parameter set offers the best fit to the measured values of both B(T) and B..
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Table 8.1: Molecular parameters of fluoromethane used in
the calculations (A = 632.8 nm).

Molecular Parameter Value Reference
10%, (Cm) 6.170 [97]
10%°9 (Cm?) 7.70 [97]
104 (C?*m?J 1) 3.305 [2]
10°°Aa (C*m?J 1) 0.290 [202,210]
10%q, (C?2m2J71) 3.498

109, (C*m?J7?) 3.208

Ka 0.0292

1000 0.094 [4]
1090 (C*m2J~1) 2.916 [44,62]
10%Aa (C?m?J 1) 0.345 [4]
1040, (C?m?J71) 3.147

10%%; (C?m?J71) 3.498

Ka 0.0396 [4]
10504, (C?m3J 1) 1.720 [211]
1094, (C?2m?J™1) 2.767 [211]
106001111 (sz4J_1) 0.85 [62]
10600131.3 (C2m4.]_1) 0.67 [62]
106003333 (sz4J_1) 1.06 [62]
10%°8 (C3m3J~2%) -0.19 £ 0.15 [33]
10508, (C3m?J~2) -0.11392

10%°3, (C*m3J~?%) -0.10138

Table 8.2: Lennard-Jones parameters and shape factors for fluoromethane.

Ry (nm)  ¢/k (K) D
(1) Our fitted values 0.367 182 0.297
(3) Fitted values of Couling and Graham [9]  0.380 199 0.254
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Table 8.3: The temperature dependence of the calculated values
of B(T) for fluoromethane for two sets of parameters, and the
best fit data of Dymond and Smith [1].

(1) (2)

T 106Bexp 1oﬁBcalc % 106Bcalc %

K m’mol™! m®mol™! Error m3mol~! Error
280 -244+3 -241.23 -1.14 -23891 -2.09
300 -20643 -203.92 -1.06 -206.53 -1.18
320 -174+3 -174.01 0.01 -171.65 0.97
340 -150+3 -150.38  0.25 -152.76 1.84
360 -129+43 -130.82 1.41 -126.11 4.22 -
380 -112+3 -114.99 2.67 -118.10 5.45
400  -9942 -101.46 2.48 -104.66 5.72
420 -87+2 -89.53 2.91 -95.04 6.78

Table 8.4: Calculated values of B, for nitrogen for two sets of pa-
rameters, together with the measured values of Sutter and Cole [2,3].

0 @)
T 1012B§xp 1012B€calc % 1012B6calc %
K mSmol—2 m®mol~? Error m®mol=2  Error
323.15 -1307+37 -1327.41  1.56 -940.61 -28.03
369.45 -606430 -604.48 -0.33 -421.95 -30.37

416.45 -331+66 -264.07 -20.22 -172.72 -47.82
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A considerable number of terms was evaluated in order to establish convergence of
each series. The relative contributions of the various terms used to calculate B, are given
in Table 8.5. It is clear that the terms in the hyperpolarizability make a reasonably
small contribution to the total, but the leading term [(;p; might be worth retaining if an
accurate measured or calculated value for the static b;;; was obtained. It is important to
note the major contribution made by the leading pp0q.A; term. However, the A-tensor
components used in the calculations are only estimates, and it would be desirable to have
more accurate values to compute such a significant term. Another important term to
note is the leading apd term which contributes 22.9% of the total calculated value of
B, at 323.15 K. This term has never been considered before, and its inclusion here may
partially account for the good fit obtained for B..

Table 8.5: The relative contributions of the terms used to
calculate B, for fluoromethane at 298.2 K.
Contributing 102 x Value % Contribution

Term mbmol 2 to B,

o -1.089 0.08
o 18.623 -1.40
s 0.820 -0.06
8 7.821 -0.59
Oflﬁl -0.096 0.01
ar A, -0.445 0.03
A 2.292 0.17
Ay -0.796 0.06
011./42 -0.711 0.05
ayChy 2.216 -0.17
B.., 28.635 -2.16
o -3815.794 287.46
o Lo 1727.847 -130.17
Qi 494.765 -37.27
Qs o 28.724 -2.16
A]_,UQ -80.456 6.06
alAlug -8.413 0.61
Brus -17.266 1.30
,816!1[1,3 -2.529 0.19
a1 304.616 -22.95
042,u191 2.933 -2.93
,81/14101 , -2.336 0.18
a292 18.678 -1.41
a302 5.465 -0.41
B... ~1356.045 102.16

B, = —1327.41 x 107 2m®mol 2
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The second Kerr-effect virial coefficient was then calculated using our optimized pa-
rameter set. The results compare reasonably well with the experimental data [33] which
have very high uncertainties of approximately 50%, but are slightly higher than the val-
ues deduced from the measurements of Schaeffer et al. [83]. Figure 8.1 (b) shows how
our theoretical curve passes within the error bars of most of the measured values. The
dotted curve represents the calculated values of Couling and Graham [9], which are lower
than ours by approximately 30%. They calculated By for fluoromethane, using the «
series and the first three terms of the uo series. The additional terms we have used in
our calculations make a positive contribution of approximately 15%, due chiefly to the
leading py04.4;. Figure 8.1 (b) also shows the calculated curve of Buckingham et al. [177]
as a dashed line. A more definitive test of the theory would be possible if more precise
measured values were available.

From the relative magnitude of the terms contributing to the calculated value of
By at T=250.8 K in Table 8.6 it is clear that all the different series have converged.
The hyperpolarizability term p,3; is obviously negligible and thus may justifiably be
omitted. The large contribution from the leading term in the A-tensor is very interesting
and highlights the need for accurate calculated values of the components A4, and A, for
fluoromethane. '

Table 8.6: The relative contributions of the terms used to
calculate By for fluoromethane at 250.8 K, using parameter

set (1).
Contributing 10%0 x Value % Contribution
Term C?m®J?mol 2 to By
Qo 0.002 0.02
s -0.014 -0.13
Qy 0.130 1.23
Qg 0.011 0.11
J75184} . -3.686 -34.74
20y 9.265 87.33
U203 3.207 30.23
J25187) 0.382 3.60
o -0.010 -0.09
,LL10!1./41 1.019 9.61
/,01()[2./41 0.181 1.71
ulﬁlal 0.071 0.67

By = 10.609 x 1073°C%2m3J2mol 2

Although the second refractivity virial coefficient has been measured at three different
wavelengths, values of the optical-frequency components of the molwecular parameters
are only available at A = 632.8 nm. Table 8.7 shows the contributions to the calculated

153



Table 8.7: The relative contributions of the terms used to
calculate By for fluoromethane at 298 K for A = 632.8 nm,
using our optimized parameter set.

Contributing 10" x Value % Contribution

Term - m®mol 2 to Bg

Q9 -1.320 -23.34
o3 13.698 242.24
Oy 0.532 9.41
b1 -8.823 -156.03
alﬁl -0.086 -1.52
o Ay -0.666 -11.78
a9 A; 2.067 36.55
As -0.919 -16.25
ay As -0.702 -12.41

B¢ = 5,65 x 10~ 2m®mol 2
BR* = (4.32+£1.80) x 10~"*m°mol

Table 8.8: The relative contributions of the terms used
to calculate B, for fluoromethane at 298.15 K and
X\ = 632.8 nm, using parameter set (1).

Contributing ~ 10° x Value % Contribution

Term m3mol to B,
G 25.625 3.21
bs 0.488 0.06
as -135.625 -17.00
a 1309.982 164.28
as 93.658 11.75

32A1 -79.484 -9.97

asA; -9.547 -1.20

asCy 0.151 0.02
S, 1205.249 151.15

2B -407.840 -51.15

B, = 797.409 x 10~ %m*mol !
B, = 0.749 x 10~ ®m3mol ™"
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value of Br at T = 298 K, together with the measured value of Burns, Graham and
Weller [62]. It can be seen that the o series is definitely converging, although it might
be worth while to evaluate the o term. The surprisingly large negative contribution of
the (; term, shows that it not always justifiable to simply omit the hyperpolarizability
effects. However, since the components 3, and 3, are scaled estimates, and the value of
(3 has a very large uncertainty, the calculated Bg is unacceptably imprecise. Accurate
values for the components of the hyperpolarizability tensor §;;; are neccessary to produce
reliable calculated values.

Unfortunately, there are no measured values of B, available for fluoromethane. How-
ever, we have calculated a value for the second light-scattering virial coefficient using our
optimized parameter set. Table 8.8 shows the relative magnitudes of the various contri-
butions to B, for fluoromethane. It can be seen that the a.A; series makes a negative
contribution of more than 10% to the total, emphasizing the need for accurate measured
or calculated values for the A-tensor components. The C-tensor term is negligible.

From the comparisons between our calculated values for B(T'), B., Br and Bk and
the experimental data it would appear that our optimized set of parameters describe
all the effects reasonably well. Although the values used for the hyperpolarizability,
A- and C-tensors were only estimates they served to show the order of magnitude of
the contributions arising from these tensors. Accurate measured or calculated values for
these molecular tensor properties would further test the predictive merit of the DID model
employed. In addition, measured values for the second light-scattering virial coefficient

would allow a more comprehensive comparison of the agreement between the DID theory
and experiment.
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8.3 Calculations for trifluoromethane

8.3.1 Molecular properties of trifluoromethane

The molecular properties of triffluoromethane used in these calculations are given in Ta-
bles 8.9 and 8.10, together-with our fitted values for Ry, €/k and D. As for fluoromethane,
the values of the components of the dynamic properties §;;;, Aijx and Cjj are all esti-
mates which have been used to establish whether the terms of the various second virial
coefficients containing these components are significant. Note that the same estimates
were used for all wavelengths. The static polarizability anisotropy Aa in Table 8.10 was
obtained by extrapolating the measured optical-frequency values of Bogaard et al. [4] to
zero frequency. Once again we assume that the static hyperpolarizability b;;i is not very
different from the dynamic value and use 3 as an estimate of b.

Table 8.9: Molecular parameters of trifluoromethane
used in the calculations.

Molecular Parameter Value Reference
103%y (Cm) 5.50 [97]
1019 (Cm?) 15.0 [97]
10 (C?m?J 1) 3.970 2]
10°Aq (C*m2J 1) -0.190 9]
10%¢, (C?m?J71) 3.843

109%, (C?m?J-1) 4.033

Ke -0.016

104, (C?m3J1) 1.80

104, (C?m3J-1) 3.57

106001111 (C2m4J_1) 1.10 [62]
106001313 (C2m4J‘1) 0.75 [62]
106003333 (C2m4J_1) - 0.90 [62]
10°°8 (C*m3J—2) -0.088 [212]
10%°8, (C*m3J-2) -0.0461

108, (C*m®J~2) -0.0503

D -0.001

R, (nm) 0.404

e/k (K) 166.0

8.3.2 Results of calculations of second virial coefficients for

trifluoromethane

Although the trifluoromethane is more plate-like than rod-shaped, the best fit for B (T)
and B, was obtained for a shape factor of D = —0.001 which is negligibly different from
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Table 8.10: The components of the optical-frequency polarizability tensor as; of trifluo-
romethane, together with the values of py [4] used in the calculations.

A 100p 109« 10%Ac 10%0¢, 109 Ka
nm (C?’m?2J7Y) (C?’m2J-Y)  (C’m?2J7Y) (C*m?]7Y)

632.8 0.0504 3.097 [44,62]  -0.27 [4] 2.917 3.187  -0.029
514.5 0.07 3.139  [4] -0.32  [4] 2.926 3.246  -0.034

488.0 0.07 3.145 [4] -0.32  [4] 2.932 3.252 -0.034

zero, implying that the molecule is very nearly spherical in shape. This is however an
improvement from the value of 0.26 obtained by Sutter {3] which is not physically reason-
able. This fact led Sutter to conclude that the shape potential proposed by Buckingham
and Pople [96] was inadequate. However these conclusions were based on a model which
did not include the effects of the quadrupole moment or polarizability anisotropy. Cal-
culations of B(T') using our optimized parameters yielded values which agreed with the
experimental values quoted in Appendix A to within less than 1% over almost the en-
tire temperature range, as shown in Table 8.11. The same set of parameters resulted
in calculated values of B, which differ from the measured values of Sutter and Cole [2]
by less than 3%. Table 8.12 presents the temperature dependence of the calculated B,
in comparison with the measured values of Sutter and Cole [2], while Table 8.13 lists
the relative contributions of the terms of B,. It can be seen from Figure 8.2 (a) that
the calculated values agree remarkable well with most of the experimental data, with
the exception of the the early measurements of Lawley and Sutton [10], Turner [50] and
Dymond and Smith [56], where the experimental errors are very large.

Table 8.11: The temperature dependence of the calculated values
of the second pressure virial coefficient B(T') for trifluorometh-
ane, and smoothed values fitted to the combined experimental
data of Sutter and Cole [5], and Lange and Stein [6].

Temperature 10° Bexp 106 Beale %
K m3mol~! m3mol ! Error
243.15 -311.1+4 -310.75 -0.11
273.15 -234.944 -232.18 -1.16
298.15 -188.0+4 -187.33 -0.36
313.15 -165.8+4 -166.17 0.22
323.15 -153.0+4 -153.87 0.57
368.15 -110.4+4 -111.27 0.79
369.45 -109.444 -110.27 0.80
404.75 -84.6+3 -86.97 2.80
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Table 8.12: The temperature depéndence of the calculated values
 of B, for trifluoromethane, and the measured values of Sutter and

Cole [2,3].

Temperature 10'? B&® 1012 Bgale %
K m®mol—? m®mol 2 Error
323.15 . 1125452 1149.92 2.22
369.45 903+20 896.27 -0.75
416.45 704£10 723.84 2.82

Table 8.13: The relative contributions of the terms used to

calculate B, for trifluoromethane at 298.2 K.
Contributing 10" x Value % Contribution

Term m®mol 2 to B,
Qs -0.517 -0.04
a3 17.703 1.54
o 0.662 0.06
B -2.039 -0.17
aif -0.027 -0.002
a1 A; -2.069 -0.18
as Ay 2.420 0.21
As -0.006 -0.03
a1 A, -0.344 -0.001
01201 1.625 0.14
B.., 17.408 1.51
Lo -894.734 -77.73
Q1 g 993.160 86.37
Qiaflg 342.595 29.79
a3 lho 19.431 1.69
A -95.024 -8.26
(1’1./41,UQ -7.412 -0.64
B3 -3.834 -0.33
Bron i -0.508 -0.04
()[2#191 7.835 0.68
Bty -1.503 -0.13
a202 64.120 5.98
36 32.258 2.81
B, 1132.512 98.49

B, =1149.92 x 10~ *?m®mol 2
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Figure 8.2: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of trifluoromethane. The solid curves
represent our calculated values, while in (b) the dotted line represents the curve calculated

by Couling and Graham [9] and the dashed line is the calculated curve of Buckingham et
al. [177). 159



It can be seen from Table 8.13 that, as for fluoromethane, the leading term in the A-
tensor for the orientational term makes a significant contribution of -8.3%, which again
draws ouf attention to the need for accurate values of the A-tensor components. The
term aqp160;, which makes a contribution of 23% to the calculated value of B, of fluoro-
methane, contributes 58.8% to B, of trifluoromethane. In addition, the a8 series makes a
smaller but still significant contribution of 8.4%. The most probable reason for the highly
significant contribution of these term is the large quadrupole moment of this molecule.
Previous workers [2,3,101] considered only the first three terms in the pa series, which in
this case would yield a value of B, = 441.02 x 107*?m®mol 2 compared with our value of
B, = 1149.92 x 10~ m®mol~2! These workers also omitted the contribution of B.. ., but

this is less significant, contributing only 1.5% to B, at 323.15 K. Thus, the importance

ind?
of establishing convergence of all the series is demonstrated.

Table 8.14: The relative contributions of the terms used
to calculate Bg for trifluoromethane at 245.5 K for

A = 632.8 nm.

Contributing 10%° x Value % Contribution
Term C?m8J2mol 2 to By
Qo _ 0.0003 0.003
Qs -0.0082 0.08
Qy 0.1249 1.22
Qs 0.0113 0.11
12001 0.8872 8.68
[12%0%) 5.1436 50.33
L3 9.2180 21.70
JY5187) 0.2520 2.47
pab 0.0339 0.33
/J,10£1‘A1 1.4986 14.66
e 0.2423 9.37
,U,191a1 -0.1920 -1.88

By = 10.22 x 10739C?m8J2mol 2

Next, the second Kerr-effect virial coefficient was calculated for trifluoromethane using
the molecular parameters listed in Table 8.9. The graph of the calculated curve and
measure values is presented in Figure 8.2 (b). Couling and Graham [9] have also calculated
By for trifluoromethane, using the parameter set: Ry = 0.440 nm, ¢/k = 178.5 K and
D = -0.050; including the o series and the first three terms of the po series. Their
theoretical curve is shown as a dotted line. As for fluoromethane, their curve is lower than
ours by almost a factor of two, due in part to the positive contribution of our additional
terms, as shown in Table 8.14. These additional terms contribute approximately 18% to
our theoretical values of Bx. Figure 8.2 (b) also shows the calculated curve of Buckingham
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et al. [177] as a dashed line.

Considering the large experimental errors of the measured values the calculated values
obtained using our parameter set constitute a reasonably good fit to the experimental data
of Buckingham and Orr [33]. However, our calculated curve falls outside the experimental
error range of the more precise values measured by Schaefer et al. [83].

The calculation of the second refractivity virial coefficient met with less success. Ta-
ble 8.15 shows the wavelength dependence of the calculated values of Bp, together with
experimental data of Buckingham and Graham [39] and Burns et al. [62]. It can be seen
that the calculated values are much larger than the measured values and while the ex-
perimental values of By increase with increasing wavelength, the calculated values show
the opposite trend. The contributions of the various terms in the calculation of B at
A = 632.8 nm is given in Table 8.16. It can be seen that both the a;. A5 and a»C; terms
are significant and it may be worth investigating the next term in each series.

Table 8.15: Calculated and measured values of B R
for trifluoromethane at T = 298.2 K.

A 102 BR®  Ref. 10" Bk
nm m®mol 2 m®mol 2
632.8 3.4+1.1 [39] 7.77
2.54+1.35  [62]
514.5 2444089  [62] 8.32
4880  1.56+0.75  [62] 8.39

Table 8.16: The relative contributions of the terms used
to calculate Bg for trifluoromethane at 632.8 nm.

Contributing ~ 10'2 x Value % Contribution
Term mSmol 2 to Br
Q9 -0.739 -9.51
o3 9.762 125.60
Q4 0.289 3.72
51 -2.528 -32.53
011,81 -0.027 -0.35
oAy -1.842 -23.70
a2 Ay 1.979 25.46
As 0.039 0.50
a1 Ay -0.326 -4.19
arCh 1.166 15.00

Br = 7.773 x 107 2m®mol 2
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As for fluoromethane, there is no experimental data for the second light-scattering
virial coefficient for trifluoromethane. We have calculated B, using our optimized pa-
rameter set and Table 8.17 shows the relative contributions of the various terms used to
arrive at the calculated value. The contribution of the A-tensor terms amounts to less
than 2% for this gas, but this value is obtained using estimated A-tensor components.
Once again we note, that reliable measured or calculated values for the A-tensor are
necessary to establish conclusively the relative importance of the A-tensor contribution
to second virial coefficients. From the table it is clear that the C-tensor contribution is
negligible.

Table 8.17: The relative contributions of the terms used
to calculate B, for trifluoromethane at 298.15 K and
A =632.8 nm.

Contributing ~ 10° x Value % Contribution
Term m3mol~! to B,
G 7.189 0.56
b3 0.254 0.02
a3 -126.092 -9.81
as 1650.397 128.47
as 104.408 8.13
arA; 25.244 1.96
azA; -2.275 -0.18
83C1 0.229 0.02
S, 1659.354 129.16
2B -374.660 -29.16

B/, = 1284.693 x 10~ %m3mol !
B, = 0.647 x 10~°m*mol~*

Thus, we see that for trifluoromethane it was possible to find a parameter set which
yielded excellent fits for both B(T') and B.. Although the shape parameter of this set
is less negative than one might expect, it is more reasonable than the positive value
of Sutter [3]. The set of parameters chosen also yields a reasonably good fit to most
of the experimental data for By, although the calculated values were larger than the
measured values of Schaefer et al. [83]. In addition, values of Bg calculated using the
same set of Lennard-Jones and shape parameters were much larger than the available
measured values. Thus, although our parameter set provides a good fit for B(T), B, and
a reasonable fit for B, it fails to explain the observed values of Bg. Measurements of B,
would be desirable, as they would allow a further test of the chosen parameters. It would
also be of interest to study difluoromethane to see if the mean values for the parameters
of fluoromethane and trifluoromethane would yield satisfactory results for second virial
coefficients of difluoromethane.
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8.4 Calculations for chloromethane

8.4.1 Molecular properties of chloromethane

Table 8.18 presents a list of the wavelenght-independent molecular properties of chloro-
methane which have been used in these calculations. The dynamic polarizability tensors a
and the values of pg are given in Table 8.19. There are no 3, A- and C-tensor components
available.

Table 8.18: Wavelength-independent molecular pa-
rameters of chloromethane used in the calculations.

Molecular Parameter Value Reference

10%04 (Cm) 6.32 3]
10409 (Cm?) 4.00 [213]
1010 (C?m2J71) 5.25 [3]
10%Aqa (C?m?J1) 1.613 [4]
1040 (C2 2J7h 6.325
10%%,; (C?m 2] 4.712
Ka 0.102
} Extrapolated from the dynamic values to zero
frequency.

Table 8.19: The values of py and the components of the optical-frequency
polarizability tensor a;; of chloromethane [4] used in the calculations.

A 100p,  10%% 10Y%Aq 10%¢, 109, Ka
nm (Ctm2J7Y)  (C?m2J7Y) (C?m?2J71) (C?m2J71)
632.8 0.755 5.04 1.71 6.18 4.47 0.113
5145 0.779 0.10 1.75 6.27 4.52 0.114

Table 8.20: Lennard-Jones parameters and shape factors for chloromethane.

Ry (nm) e/k (K) D

(1) Our values fitted to B(T) 0.370 345 0.260
(2) Our values fitted to B, 0.390 337 0.260
(3) Fitted values of Couling and Graham [9]  0.395 350 0.210

For chloromethane we could not find a single set of parameters for which both B(T)
and B, fitted the experimental data available. Thus, we considered two different sets
of parameters. The first set yields calculated values of B(T') to within 0.5% of the
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experimental values quoted in Table A.2 for temperatures in the range from 7' =280 K
to 400 K, while the values for B,, which are as much as 78% too high, are at least of the
correct sign. The second set of parameters yield calculated values of B, which are within
50% of the measured values of Sutter and Cole [2], while the calculated values of B(T)
agreed with the experimental data to within less than 2.5%. Significantly better fits to
B, could only be achieved if the calculated values of B(T') were allowed to deviate from
the observed values by percentages significantly in excess of the experimental precision of
B(T). Since the measured values of the second pressure virial coefficient are more precise
and the theory better understood, this was considered to be unacceptable. These two sets
of paramé’cers are shown in Table 8.20, along with the fitted values quoted by Couling
and Graham [7,9]. It should be noted that the third significant figure in the values of D
are significant.

8.4.2 Results of calculations of second virial coefficients for
chloromethane

All three sets of parameters as shown in Table 8.20 were used to calculate values for the
second pressure, dielectric and light-scattering virial coefficients. Table 8.21 shows the
calculated values for B(T') along with the smoothed values of Dymond and Smith [1].
It is clear that both of our optimized parameter sets yield better agreement with the
experimental data for B(T) than the parameter set used by Couling and Graham [9],

due to the fact that we have included the induced-dipole-induced-dipole potential in the
intermolecular potential (Chapter 2).

Table 8.21: Calculated values of B(T') for chloromethane for three sets of parameters,
together with the smoothed values of Dymond and Smith [1].

(1) (2) (3)

T 106Bexp 106Bcalc % 1OGBca]c % 1OGBcalc %

K m’mol™ m’mol™ Error  mPmol™' Error  m3mol~! Error
280 -470£10 -469.66 -0.07 -463.33  -1.42 -465.28  -1.00
300 -400£10 -398.47 -0.38 -397.02 -0.74 -401.03  0.26
320 -345+£10 -343.62 -0.40 -345.12  0.03 -360.24  1.52
340 -300+£5 -300.21  0.07 -303.47  1.16 -309.17  3.06
360 -264+£5 -265.07  0.41 -269.37  2.03 -275.32  4.29
400 -212+5 -211.84  -0.08 -216.98  2.35 -22292 5.15
SSE: 5.58 119.06 382.27

Table 8.22 shows the relative importance of the various terms included in the cal-
culation of the second dielectric virial coefficient. For this molecule the leading dipole
series is by far the most important contribution, yielding approximately 107% of B..
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Table 8.22: The relative contributions of the terms used to
calculate B, for chloromethane at 323.15 K for the param-
eter set (D=0.260, Ry=0.390, ¢/k=337.0).

Contributing 10" x Value % Contribution

Term m®mol 2 to B,
o 21.977 -0.75
o3 73.964 -2.52
0y 4.893 -0.17

B.., 100.834 -3.44
Lo -5837.051 198.56

o iz 1668.428 5675

Qo lhg 985.353 -33.52

Qi3 fhe 45,929 -1.56

o 6 84.318 -2.87
ag,ulel 1.428 -0.05
00s 8.906 -0.30
o3lq 1.995 -0.07
B, -3040.695 103.44

B, = —2939.861 x 10~ ?m%mol 2

Table 8.23: Calculated values of B, for chloromethane for three sets of parameters,
together with the measured values of Sutter and Cole [2].

(1) (2) (3)
T 1012B§xp 1012B§alc % 1012B§alc % IOIZB:::alc %
K m®mol™!  m®mol~? Error m®mol~2 Error m®mol=2 Error
323.15 -44704+200 -2161.6 -51.6 -2939.9 -34.2 -1326.6  -70.3
369.45 -2517450 -837.5 -66.7 -1430.1  -43.2 -506.6 -79.9
404.75 -1696160 -361.2 -78.8 -846.4 -50.1 -201.3 -88.1

The only other terms to contribute significantly are the a3 Kirkwood [127] term and the
leading term in the dipole-quadrupole series which each amount to about 2.5%. Unfor-
tunately, the A-tensor contribution, which has been shown to be significant for fluoro-
and trifluoromethane, could not be calculated since no data is available for this molecule.
The temperature dependence of B, for the three parameter sets is given in Table 8.23,
while Figure 8.3 shows the relationship between the theoretical and experimental values
graphically. In the figure, the solid line represents the curve calculated using the second
parameter set, chosen to improve the B, fit. This curve lies closest to the experimental
data, while the dashed curve, representing the calculated values of parameter set (1), is
approximately 20% higher. The values calculated using the parameter set of Couling and
Graham [9] are given by the dotted line, which lies furthest from the experimental data.
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Figure 8.3: Temperature dependence of the calculated and measured values of the second
dielectric virial coefficient of chloromethane. The solid line represents parameter set (2),
the dashed line set (1), while the dotted line represents set (3), as given in Table 8.20.
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It can be seen that a negative contribution from the A-tensor term, similar to that found
for fluoromethane would improve the fit of all three parameter sets.

Although the second refractivity virial coefficients has not been measured for chloro-
methane, we have calculated values for By using all three parameter sets, for possible
future comparison. Table 8.24 shows the relative contributions of the terms used to
calculate By for a wavelength of 514.5 nm at 298.15 K. Note that, since no measured
or estimated values are available for the hyperpolarizability, A- or C-tensor components,
the contribution of these properties to Br could not be calculated.

Table 8.24: The relative contributions of the terms used to calculate Bg for chlorometh-
ane at 298.15 K for A = 514.5 nm.

® o) @
Contrib. 102 x Value % of 102 x Value % of 102 x Value % of
Term m®mol—? Bgr m®mol—2 Br m®mol 2 Bg
Qo -27.233 -38.53 -26.038 -54.89 -15.833 -32.36
Qa3 93.036 131.63 70.398 148.41 62.126 126.96
Oy 4.874 ' 6.90 3.076 6.48 2.642 5.40
Br 70.678 47.436 48.935

Table 8.25: The relative contributions of the terms used to calculate By for chloromethane
at 304.1 K for a wavelength of 632.8 nm.

0 ®) @)

10% x Value % of 10% x Value % of 10% x Value % of
Term  C*m3J-2mol~2 By C?m®J2mol~? By C?’m®J%2mol2 By
Qi ' 0.0434 0.18 0.0398 0.27 0.0258 0.14
Qs " -0.2314 -0.98 -0.2202 -1.51 -0.1363 -0.74
oy 0.7538 3.19 0.5739 3.94 0.5132 2.79
o 0.0780 0.33 0.0496 0.34 0.0434 0.24
o ey -11.7648 -49.76 -11.1701 -76.60 -8.2259 -44.78
LoQin 20.9010 88.41 15.3561 105.30 16.3967 89.25
LoQi3 11.8081 49,95 8.7531 60.02 8.5727 46.66
[hoCty 1.9779 8.37 1.1498 7.88 1.1288 6.14
w1010 0.0752 0.32 0.0513 0.35 0.0528 0.29
By 23.6413 14.5833 18.3712

Bg® = (1.97 £ 0.29) x 1073 C?m®J?mol 2 [33]

There is only one measured value [83] of the second Kerr-effect virial coefficient for
chloromethane. Table 8.25 gives the relative magnitudes of the various contributions
to Bg for a wavelength of 632.8 nm at 304.1 K. As for Bpg, the contribution of the
hyperpolarizability, A- or C-tensor components to By could not be calculated. In the
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calculation of By, the pa series makes the dominant contribution of more than 90%. All
the values calculated are an order of magnitude larger than the measured value.

The only remaining test of the parameter sets is the second light-scattering virial
coefficient. The sole measured value available is that of Couling and Graham [7,8] taken
using a wavelength of 514.5 nm at room temperature. This measured value is given in
Table 8.26, together with the theoretical values calculated using the three parameter sets.
The best agreement is obtained with parameter set (2), which also yields the best fit for
B.. The relative contributions of the terms used to calculate B, for this parameter set
are listed in Table 8.27. '

Table 8.26: Calculated values of B, for chloromethane for three sets of parameters,
together with the measured value of Couling and Graham [7,8] at A = 514.5 nm.

0 ) )
T 10°Be®  10°B& % 10°Be % 10°B& %
K m3mol™!  m3mol~! Error m3mol~! Error m®mol~! Error
299.65 -3.30-£0.26 -2.42 26.7 -3.50 6.1 -3.68 11.5

Table 8.27: The relative contributions of the terms
used to calculate B, for chloromethane at 299.6 K and
A = 514.5 nm [9].

Contributing ~ 10° x Value % Contribution

Term m3mol~! to B,
G 37.60 -8.29
bs 5.44 -1.20
as -194.64 42.93
as 464.87 -102.54
as 29.74 -6.56
S, 343.01 75,66
2B -796.38 175.66

B), = —453.37 x 10~ °®m®mol "
B, = —3.495 x 10~%m®mol !

In this work we are attempting to isolate a unique set of molecular parameters which
will explain all of the second virial coeflicient phenomena under study for each gas. The
parameter set (2), chosen to optimize the B fit, yields a value for B, which lies within the
experimental error of the measured value and fits B(T') to within 2.5%. This set appears
to be our best choice. Since all the parameter sets yield calculated values for By an order
of magnitude larger than the experimental value, it is not possible to choose which of
the sets provides the best fit, although the value calculated using set (2) is the closest
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to the measured value. It would be of great interest if reliable measured or theoretical
values were available for the A-tensor components, as well as more experimental values
for the second Kerr-effect and light-scattering virial coefficients together with measured
values for Bg. This would allow one to test the fit of the various parameter sets more
rigourously. Until such time as this data becomes available, a more definitive conclusion
is not possible.
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8.5 Calculations for hydrogen chloride

8.5.1 Molecular properties of hydrogen chloride

Table 8.28 presents a list of the molecular properties of hydrogen chloride which have
been used in these calculations. The dynamic polarizability o and hyperpolarizability
are at a wavelength of 632.8 nm. Since no experimental values for the components of Cjjp
for HCI are available, the estimated values of Burns, Graham and Weller [62] are used.
These were obtained by scaling the values for HEF quoted by Rivail and Cartier [214] in
proportion to the relative values of the components of o;; and A;j;; for HF and HCL. The
values of Ry, €/k and D are our fitted values, chosen to optimize the agreement between
theory and experiment for both B(T) and B,.

Table 8.28: Molecular parameters of hydrogen chloride used
in the calculations (A = 632.8 nm).

Molecular Parameter Value Reference
103%, (Cm) 3.646 [215]
10%%9 (Cm?) 12.4 [215]
104 (C?m2J-1) 2.867 [216]
10%Aa (C?’m?2]-1) 0.314

109, (C?m?2J71) 3.076

109, (C*m?2J7Y) 2.762

Kq 0.03639 4]
100p0 0.079 [190]
109 (C?m2J71) 2.893 [44,62]
10%Aa (C?m?2] 1) 0.317

10%¢, (C?m?J1) 3.104

109, (C?m?2J-1) 2.787

Ko 0.0365 [4]
104, (C?m?JY) 1.16 [216]
104, (C*m3J-1) 0.133 [216]
10%0C11; (C?m4J—1) 0.8144 62]
106001313 (CZm‘*J‘l) 0.6588 [62]
10%9C3333 (C?m*J-1) 1.0504 [62]
10°°4 (C3m3J~2) 0.0234 [216]

10508, (C3m®J~2) 0.009 [216]
10%°48, (C*m3J~2) 0.015 [216]
Ry (nm) 0.355

e/k (K) 204.5

D , 0.028
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8.5.2 Results of calculations of second virial coefficients for

hydrogen chloride

Unfortunately, there is a dearth of experimental second virial coefficient data for hydrogen
chloride, due to its highly corrosive nature. The only effects which have been measured
are the second pressure and dielectric virial coefficients. It was hoped that, since a more
complete set of the molecular data necessary to calculate B, is available for hydrogen
chloride than for the other gases under study, a good fit for the second dielectric virial
coefficient would be possible. However, it was impossible to obtain values of B, of the
correct order of magnitude, without altering the Lennard-Jones parameter to an unac-
ceptable degree. The measured values are an order of magnitude higher than the highest
calculated values found. The entire range of possible shape parameters was tested with-
out success. The parameter set was optimized to obtain agreement for B(T') to within
2%, with values of B, as high as possible. The temperature dependence of the second
pressure virial coeflicient is given in Table 8.29, while Table 8.30 shows measured values
of B, along with our calculated values.

Table 8.29: Calculated values of B(T') for hydrogen
chloride, together with the experimental values [1].
T 10°B(T) (exp) 10°B(T) %o

K m3mol~! m3mol ! Error
190 -456+7 -454.5 0.32
200 -392+7 -392.6 0.15
225 -287+7 -287.0 0.00
250 -22147 -221.1 0.05
275 -17547 ' -176.5 0.86
295 -147+6 -150.1 2.04
300 -142+6 -144.5 1.40
330 -114+6 -116.3 2.02

Table 8.31 shows the relative contributions of the terms used to calculate B, for
hydrogen chloride at 292.5 K. It can be seen that B, , makes a small but significant
contribution to the total, due mainly to the a3, or Kirkwood [127], term. The A-tensor
series makes a significant contribution of approximately 4%, while apart from the leading
p2 series the most important contribution is from the dipole-quadrupole 1101 series, which
yields 73% of the final value. The quadrupole series is also significant, contributing
16% to B,. Thus, once again, the importance of considering the quadrupole moment
is demonstrated, since without these terms the calculated value would be considerably
lower and thus the agreement with experiment even worse!
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Table 8.30: Calculated values of B, for hydrogen
chloride, together with the measured values of Law-
ley and Sutton® [10] and Powles and MacGrath® [11].

T 107 B 0B
K m®mol—? m®mol 2
292.5 4000410004 559.86
360041000
312.8 36004+1000% 486.93
' 320041000°

Table 8.31: The relative contributions of the terms used
to calculate B, for hydrogen chloride at 292.5 K.
Contributing 10'? x Value % Contribution

Term m®mol 2 to B,
Q9 0.632 0.11
Qa3 11.885 2.12
Oy 0.473 0.08
o 0.415 0.07
o151 0.003 0.001
a1A1 0.526 0.09
A, -0.004 -0.001
a1 As -0.001 -0.000
o Cy 1.597 0.28
B, ., 16.030 2.86
o -461.502 -82.43
o o 319.968 57.15
Qo /iy 151.477 27.06
Ao 20.436 3.65
oy A g 3.778 0.67
B3 0.578 0.10
Pronps 0.056 0.01
o 10y 404.636 72.27
Q61 3.414 0.61
Brp0161 . 0.300 0.05
00, 98.164 10.39
azb, 33.657 6.01
B, 543.832 97.14

B, = 559.862 x 10 2m®mol 2
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No measured values for the second refractivity, Kerr-effect or light-scattering virial
coefficients are available for hydrogen chloride. However, we have calculated values for
Bg, Bk and B, using our optimized parameter set.

Table 8.32 lists the relative significance of the terms used to calculate By at 298.15 K
for a wavelength of 632.8 nm. The leading pa series makes the most significant con-
tribution of 86%, while the uo.A series contributes 7%, emphasizing the importance of
including the A-tensor terms.

Table 8.32: The relative contributions of the terms used to
calculate By for hydrogen chloride at 298.15 K for a wave-
length of 632.8 nm.

Contributing 10% x Value % Contribution

Term C?m8J2mol? to Bk
Oip 0.0002 0.01
o ' 0.0029 0.21
Qy 0.0559 3.99
o5 0.0045 0.32
11201 -0.1277 2912
J17%e7) 0.7597 54.24
12 0.5108 36.47
1204 0.0579 4.13
o -0.0021 -0.15
,LL16¥1A1 00819 585
e Aq 0.0201 1.44
610y 0.0366 2.61

By = 1.4007 x 1073°C?m®J2mol 2

The relative contributions to the various terms used to calculate Bg for hydrogen
chloride are given in Table 8.33. The a3 series contributes 2.5% to B, while the A-tensor
terms make a combined contribution of 6.3%. We note that the C-tensor term contributes
almost 10%, and is thus highly significant. However, the C-tensor components used to
calculate this term are values estimated by scaling the values of hydrogen fluoride [214].
Accurate measured or calculated C-tensor components would yield a more reliable value
for this term.

Table 8.34 shows the relative magnitudes of the various contributions to our calculated
value for B,. It can be seen that, for hydrogen chloride, the A- and C-tensor terms
together contribute less than a percent to the total and are thus negligible.
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Table 8.33: The relative contributions of the terms used
to calculate Bp for hydrogen chloride at 298.15 K for

A = 632.8 nm. _
Contributing 10" x Value % Contribution

Term m8mol—2 to Br
Qo 0.621 3.83
a3 12.067 74.40
0y 0.490 3.02
B 0.404 2.49
o1 0.003 0.02
o1 Ay 0.515 3.18
as Ay 0.509 3.14
As -0.004 -0.02
alAg -0.002 -0.01
@;C) 1.616 9.96

Br = 16.219 x 10~ m%mol 2

Table 8.34: The relative contributions of the terms used
to calculate B, for hydrogen chloride at 298.15 K and

A = 632.8 nm.
Contributing ~ 10° x Value % Contribution

Term m3mol~! to B,
G 9.640 0.45
bs -0.232 -0.02
a3 75.378 0.97
EN 1378.556 109.16
as 101.307 8.02

axA; -11.461 -0.91

a3.)41 1.152 0.09

a3C1 1.541 0.12
S, 1551.881 122.88

2B -289.000 -22.88

B!, = 1262.881 x 10~°m3mol !
B, = 0.997 x 10~°m3mol !
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Thus, although we have demonstrated that it is possible to find a good fit for B(T),
we were not able to obtain calculated values of B, of the correct order of magnitude. The
measured values are large positive numbers and the best fit that we have presented here
yielded values an order of magnitude smaller. We suggest that it is possible that the order
of magnitude discrepancy may be due to problems with measuring B, experimentally,
since hydrogen chloride is highly corrosive. Only new, precise experimental measurements
can settle this question. Unfortunately, since no further data for second virial coefficients
of hydrogen chloride exists, it is not possible to test our set of parameters more rigorously.
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8.6 Calculations for nitrogen

8.6.1 Molecular properties of nitrogen

The static molecular propérties of nitrogen are listed in Table 8.35, while Table 8.36 lists
the values of the optical-frequency polarizability components and py. Since nitrogen is a
non-polar molecule the dipole moment, first-order hyperpolarizability and the A-tensor
components are all zero. No C-tensor data is available. Our optimized values for the
Lennard-Jones and shape parameters are given in Table 8.37, together with the values
used by Couling and Graham [7,9] to calculate the second Kerr-effect and light-scattering
virial coefficients. We have used both sets of parameters to obtain theoretical values for
all of the second virial coefficients under study.

Table 8.35: Wavelength-independent molecular parameters
of nitrogen used in the calculations.

Molecular Parameter Value Reference
10*°9 (Cm?) -4.72 [217]
109 (C*m?2J71) 1.936 [13]
10%Aa (C*m2J71) 0.734 9,192]
104, (C*m?2J71) 2.425

109, (C?m?2J1) 1.691

Kq 0.1263

Table 8.36: The components of the optical-frequency polarizability tensors ;; of nitrogen,
together with the values of p, used in the calculations.

A ~ 100p, 10%a 109Aa 100,  10%q, Ko
nm C?m?J-1 C?’m2J~! C?m2Jt C?m2J-!

632.8 1.042  [4] 1.961 [44,62] 0.781 2.482 1.701  0.1327
514.5  1.0587 [8] 1.979  [4] 0.794 2.509 1.715  0.1338
488.0 1.05 [16] = 1.984  [4] 0.793 2.513 1.720  0.1332

Table 8.37: Lennard-Jones parameters and shape factors for nitrogen.
Ry (nm) e/k (K) D
(1) Our fitted values 0.375 86.0 0.263
(2) Fitted values of Couling and Graham [9) 0.368 91.5 0.112
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8.6.2 Results of calculations of second virial coefficients for
nitrogen

Both sets of parameters shown in Table 8.37 were used to calculate values for the second
pressure, dielectric, refractivity, Kerr-effect and light-scattering virial coefficients. Ta-
ble 8.38 shows the calculated values for B(T) along with the smoothed values given by
Dymond and Smith [1]. Our optimized parameter set yields calculated B(T") values which
agree to within 4.5% with the experimental data, while the values calculated using the
second parameter set agree to within 6.8%. Both sets of calculated values fall within the
range of the experimental errors.

Table 8.38: Calculated values of B(T') for nitrogen for two sets of
parameters, together with the smoothed values of Dymond and

Smith [1].
m ®

T 106Bexp 106Bca1c % 106Bcalc %

K m3mol™! m3mol~! Error m3mol™! Error
200 -35.2%1.0 -35.1 -0.3 -34.3 -2.6
250 -16.2+1.0 -16.2 -0.0 -16.1 -0.6
300 -4.240.5 -4.4 -4.5 -4.77 6.8
400 9.0£0.5 9.3 3.3 8.6 -4.4
SSE: 0.14 1.23

Since nitrogen is a non-polar gas, the values of the second dielectric virial coefficient
are several orders of magnitude smaller than those of the polar gases. The experimental
data available is very imprecise, with experimental uncertainties of between 25 and 170%,
making it very difficult to distinguish the trend of the measured curve. Table 8.39 shows
the relative importance of the terms used in the calculation of B,. It can been seen
that, for nitrogen, the B, = and B
the induction component cannot be omitted, as it sometimes is for polar molecules [3].
It must also be noted that it is not sufficient to calculate only the leading term in the
quadrupole af series, as the second and third terms contribute a total of 17.5% to B..
Unfortunately, since no C-tensor data is available, the ayC term could not be calculated.
It is possible that this term may make a significant contribution to B

components are of similar magnitude, and thus

€ind €or

€ind "

The temperature dependence of the calculated values of B, for the two parameter sets
are given in Table 8.40. The relationship between theory and experiment can be seen
more clearly in Figure 8.4 (a), where the solid line represents the values of B, calculated
using our optimized parameters, and the dotted line shows the curve obtained from the
parameters of Couling and Graham [9]. It would appear that the experimental values
decrease more rapidly with increasing temperature than the theoretical curves, although
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this trend is not conclusive due to the large experimental errors. Since the solid curve
passes through more of the error bars it could be said to fit the measured values slightly
better than the dotted curve, so that our optimized parameter set would be preferred.

Table 8.39: The relative contributions of the terms used
to calculate B, for nitrogen at 242.2 K for the parameter
set (D=0.263, Ry=0.375, ¢/k=86.0).

Contributing 102 x Value % Contribution

Term m®mol 2 to B,
O -0.629 -25.87
s 1,602 65.90
oy 0.030 1.23
- 1.003 41.26
a0y 1.002 41.22
a6z 0.361 14.85
a402 0.065 2.67
B 1.428 58.74

Eor

B. = 2.431 x 10~ ?m®mol 2

Table 8.40: Calculated values of B, for nitrogen
for two sets of parameters, together with the mea-
sured values of Johnston et al.* [12] and Orcutt and

Cole® [13].
Q) )
T 1OIZB§xp 1012Bgalc 1012B§alc
K  m’mol™! m®mol 2 m®mo] 2
242.2 4.2%1.0% 2.64 3.43
296.2 2.0£1.0° 2.43 3.11
306.2 1.8%+1.0¢ 2.40 3.07
322.2  0.6+0.2° 2.36 3.00
1.0%1.0¢
3442 0.0£0.8% 2.32 2.93
-1.542.5¢

The contributions of the various terms in the calculation of By at A = 632.8 nm
for T = 298 K, using our optimized Lennard-Jones and shape parameters are given in
Table 8.41. It is clear that a3 is the dominant term and that the series is definitely
converging. As was noted for B, it is possible that the C-tensor term might make a
significant contribution and experimental or theoretical values for the C-tensor compo-
nents would allow a more complete calculation. Table 8.42 shows the measured values of
Bp, at three wavelengths. Although Bg has been measured at two different temperatures
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Figure 8.4: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of nitrogen. In both cases the solid and
dotted lines represent the values calculated using parameter sets (1) and (2), respectively.
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for a wavelength of 632.8 nm, the temperature dependence is not discernable, due to the
scatter of the experimental data. All of the values calculated using both sets of param-
eters were larger than the measured values, with those obtained from our optimized set
being slightly closer to experiment. As with the temperature dependence, it is unclear
whether Bp depends on the wavelength. The data of Montixi et al. [69] seem to indicate
an increase of Br with decreasing wavelength but the increase falls with the experimental
error, so that a definitive conclusion is not possible. It should be noted, however, that
both sets of theoretical data show a similar increase as the wavelength decreases.

Table 8.41: The relative contributions of the terms used to

calculate By for nitrogen at 632.8 nm and 298 K for the

parameter set (D=0.263, Ry=0.375, ¢/k=86.0).
Contributing ~ 10* x Value % Contribution

Term m®mol 2 to Bp
Q9 0.0299 1.15
o3 2.5166 96.61
0y 0.0584 2.24

Bg = 2.605 x 10~ ?m®mol 2

Table 8.42: Calculated and measured values of By for nitrogen.

0 )
T A 102 BY®  Ref. 102 Bgle 1012 puke
K nm m®mol 2 m®mol—2 mSmol—2
208 632.8 0.74+0.65 [62] 2.61 3.62
©0.75+£0.10  [69]
1.040.31  [39)
3232 633.0  0.80+£0.06  [64] 2.47 3.38
0.64+£0.08  [65]
298 5145  0.6240.78  [62] 2.68 3.73
0.8140.10  [69]
488.0 0.964-0.68 [62] 2.70 3.75

488.1 0.85+0.10 [69]

The second Kerr-effect virial coefficient has been measured for nitrogen by Bucking-
ham et al:, but the results are very poorly defined, with no visible trend and such large
percentage errors that the sign of the experimental values is not clear. The calculated
values for By are very small, indicating that the pressure dependence of the molar Kerr
constant K, must be very slight and, therefore, extremely difficult to measure. The
relationship between the experimental data and the values calculated from the two pa-
rameter sets is shown in Table 8.44 and Figure 8.4 (b), while the relative contributions
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of the various terms making up Bg are listed in Table 8.43. In the graph, the solid
line representing the curve calculated using our optimized parameters falls just above the
error bars of the measured values, while the dotted line showing the values of obtained
from the second parameter set are higher still. While the first set of parameters appears
to yield a slightly better fit, the large uncertainties of the experimental values render it
impossible to comment on the relative merits of the two parameter sets.

Table 8.43: The relative contributions of the terms used to

calculate By for nitrogen at 248 K for A = 632.8 nm for the

parameter set (D=0.263, Ry=0.375, ¢/k=86.0).
Contributing 10%2 x Value % Contribution

Term C?m8J—%mol~? to By
al 0.0406 8.15
o -0.3852 -77.30
0y 0.7881 158.16
ol 0.0280 5.62

020!3 0.0140 2.81
020!4 0.0101 2.03
Yo 0.0027 0.54

Br = 0.4983 x 10~32C?m8J2mol 2

Table 8.44: Calculated values of By for nitrogen for
two sets of parameters, together with the measured
values of Buckingham et al. [14], at a wavelength

of A = 632.8 nm.
0 o)

T  10%B%®  102B,  10%Bg
K  C?md)? C?m8J-2 C?m8J-2
248 -0.084+0.28 0.498 0.739
260 0.074+0.39 0.480 0.703
277 -0.214+0.33 0.456 0.658
286 -0.234+0.45 0.445 0.637
299 -0.30£0.59 0.430 0.609
315 0.04+0.30 0.412 0.578
334 -0.4140.18 0.393 0.545

Finally, both parameter sets were used to calculate the second light-scattering virial
coefficient for nitrogen at 514.5 nm and 488.0 nm. Table 8.45 shows the relative impor-
tance of the terms used to calculate B,, while Table 8.46 shows the available measured

values and the calculated values. Here it is clear that the second parameter set yields a
far better fit to the experimental data.
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Table 8.45: The relative contributions of the terms used
to calculate B, for nitrogen at 310 K and A = 514.5 nm.
Contributing ~ 10° x Value % Contribution

Term m3mol~* to B,
G 1.155 10.69
bs 0.443 4.10
as -11.607 -107.42
ay 26.328 243.66
as 0.666 6.16
S, 16.985 157.20
2B -6.18 57.20

B), = 10.805 x 10~°m’mol~"
B, = 0.123 x 10-°m*mol~!

Table 8.46: Calculated and measured values of B, for nitrogen.

® ?)
T A 102 BSXp Ref. 108 B;alc 108 Bzalc
K nm m3mol ! m3mol~! m3mol !
"295.5 bl4.5 0.138+0.014 [7] 0.065 0.142
310 0.16 01 0123 0.199
290 488.0 0.14 [16] 0.043 0.115

In conclusion, apart from the second light-scattering virial coefficient, our optimized
Lennard-Jones and shape parameter set fits the experimental data better than the pa-
rameters used by Couling and Graham [9]. However, none of these fits can be said to be
good, due in part to the large experimental errors and scatter in the measured values of
B,, Bg and Bg. In order to make more a definitive conclusion, accurate experimental
values would be necessary.
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8.7 C(Calculations for carbon dioxide

8.7.1 Molecular properties of carbon dioxide

The molecular properties of carbon dioxide are listed in Table 8.47, while the wavelength-
dependent parameters are given in Table 8.48. The dipole moment, first-order hyperpo-
larizability and the A-tensor components are all zero, since carbon dioxide is a non-polar
molecule. As for the other non-polar molecules, no C-tensor components are available.

Table 8.47: Wavelength-independent molecular parame-
ters of carbon dioxide used in the calculations

Molecular Parameter Value Reference
10%9 (Cm?) -15.0 [218]
10%%g (C?m?2J71) 3.245 [40]
109°Aq (C*m?2J-1) 2.252 [9,192]
1040, (C?m?2J1) 4.387

109, (C?m?2J?) 2.134

Ka 0.2602

Table 8.48: The components of the optical-frequency polarizability tensors a;; of carbon
dioxide, together with the values of py used in the calculations.

A 100p0 10%0¢ 10%Aa 109, 109, Ka
nm C?*m?J~? C’m?J7! C*m?J7! C?m?J!

632.8  4.049 [4]  2.907 [44,62] 2.329 4.460 2.131  0.2671
514.5  4.085 [4]  2.957  [4] 2.380 4.544 2.164  0.2683
488.0 412 [4 2965  [4] 2.398 4.563 2.165  0.2696

Table 8.49: Lennard-Jones parameters and shape factors for carbon dioxide.

Ry (nm)  ¢/k (K) D

(1)  Our values fitted to B(T) 0.420 186 0.215
(2) Our values fitted to B, 0.400 192 0.225
(3) Fitted values of Couling and Graham [9]  0.400 190 0.250

Since it was not possible to find a set of Lennard-Jones and shape parameters which
gave a good fit for both B(T) and B, we followed the same procedure adopted for
chloromethane and selected two parameter sets. We first chose a set to improve the fit of
B(T), while maintaining physically reasonable values for B,, and then chose a set which
yielded a good fit of the experimental data for B, without sacrificing the fit of B(T') too
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much. These two sets of parameters are given in Table 8.49, together with the set used
by Couling and Graham [9] to calculate B, and By. All three parameter sets were used

the calculate the full range of second virial coefficients.

8.7.2 Results of calculations of second virial coefficients for

carbon dioxide

Table 8.50 shows the values of B(T") calculated using the three parameter sets in Ta-
ble 8.49, as well as the smoothed values taken from Dymond and Smith [1]. None of the
parameter sets yield a very good fit to the experimental data, especially at the higher
temperatures. However, the first set clearly fits better than the other two, with all the
calculated values falling within 6.5% of the measured values.

Table 8.50: Calculated values of B(T') for carbon dioxide for three sets of parameters,
together with the smoothed values of Dymond and Smith [1].

0 ) @)
T 106Bexp 106Bcalc % 106Bcalc % 106Bcalc %
K  m3mol! m3mol~! Error m3mol~! Error m®mol~! Error
270 -155.442.0 -150.04 -3.45 -148.96 -4.14 -148.44  -4.48
280 -143.3+2.0 -139.71  -2.51 -138.74 -3.18 -138.26  -3.52
290 -132.5%+2.0 -130.29 -1.67 -129.45  -2.30 -128.99 -2.65
300 -122.74+2.0 -121.67 -0.84 -120.98 -1.40 -120.55 -1.75
310 -113.94+2.0 -113.75  -0.13 -113.22  -0.59 -112.82 -0.95
320 -105.842.0 -106.46 0.62 -106.09 0.19 -105.72  -0.08
330 -98.542.0 -99.71 1.23 -99.52 1.04 -99.17 0.68
340 -91.7£2.0 -93.46 1.92 -93.44 1.90 -93.12 1.55
350 -85.5+2.0 -87.65 2.51 -87.80 2.69 -87.50 2.34
360 -79.7+£2.0 -82.23 3.17 -82.56 3.59 -82.28 3.23
370  -74.442.0 -77.18 3.74 -77.68 4.41 -77.41 4.05
380 -69.5+2.0 -72.44 423 -73.12 5.21 -72.86 4.83
390 -64.84+2.0 -68.01 4.95 -68.84 6.23 -68.61 5.88
400 -60.5+2.0 -63.84 5.52 -64.84 7.17 -64.61 6.79
410 -56.5+2.0 -59.92 6.05 -61.07 8.09 -60.86 7.72
420 -52.8+2.0 ©-56.22 6.48 -57.53 8.96 -57.33 8.58
SSE: 124.83 194.89 196.47

The second dielectric virial coefficient of carbon dioxide is an order of magnitude
larger than that of nitrogen and the experimental values have correspondingly smaller
percentage errors. This is due to the fact that, whereas for nitrogen B, , and B
contribute roughly the same amount to B,, for carbon dioxide the Be,, contribution is
more than eight times larger than that of B,, . This can be seen in Table 8.51, which
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Table 8.51: The relative contributions of the terms used

to calculate B, for carbon dioxide at 295.2 K for the pa-

rameter set (D=0.225, Ry=0.400, ¢/k=192.0).
Contributing 10*? x Value % Contribution

Term mbmol =2 to B,
Qo -3.835 -7.42
o3 9.006 17.42
4 0.195 0.38

s 5.366 10.38
a0 30.937 59.83
4o 3.799 7.35
B 46.336 89.62

€or

B, = 51.702 x 10~ "*m®mol 2

shows the relative contribution of the various terms used in the calculation of B.. Here
again we see the importance of including the first three terms of the af series, as even
the third term contributes more than 7% of B.. It is clear, however, that the series is
converging and it should not be necessary to calculate any further terms.

Table 8.52: Calculated values of B, for carbon dioxide for three sets
of parameters, together with the measured values.

0 @ 3)
T 1012B§xp 1012B§alc 1012B§alc 1012B§alc
K  m°mol=2 Ref. mSmol~2 m®mol 2 m®mol 2
273.2 35.4+1.0 [41] 38.72 58.25 96.68
295.2 6410  [48] 34.81 01.70 50.34
302.6 57.6+£0.9 [40] 33.69 48.84 48.54
322.9 49.7£1.0 [45] 31.02 45.44 44.28
50.740.9  [40]
414424 [41]
348.2 46.4£1.0 [45] 28.33 41.05 40.03
369.5 3643 [49] 26.47 38.06 37.12
373.2 35.840.7 [41] 26.17 37.59 36.67
33.540.4 [41]
34.840.7 [41]
423.2 30.0+£0.9 [41] 22.92 32.42 31.65

The temperature-dependence of the calculated and measured values of B, are tabu-
lated in Table 8.52, and depicted graphically in Figure 8.5 (a). From the table we see that
the values calculated from the first parameter set are much lower than the values obtained
from the other two sets. This curve is represented in the figure by the dashed line, which

185



Orcutt and Cole [20]

Michels and Kleerckoper [28]
Bose and Cole [19]
Buckingham et al. [29]
Johnston and Cole [24]

70 1

» ¢ 04 D

60

50

10'*B,_(m’mol %)

40 -

30

20 L T T I I T T T

260 280 300 320 340 360 380 400 420 440

Temp (K)
(2)

4 Buckingham et al. [72]
35 v Gentleetal [71]

-]

10°°B (C’m*T*mol %)
s

200 250 300 350 400 450 500 550

Temp (K)
(b)

Figure 8.5: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of carbon dioxide. The solid, dashed
and dotted lines represent the values calculated using parameter set (2), (1) and (3)
respectively.
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falls below most of the experimental data. The solid and dotted lines, representing the
theoretical values obtained from the second and third parameter sets respectively, fall
between the various measured values, with the solid line giving the best fit.

As for nitrogen, the values of Bx measured by Buckingham et al. [14], and more re-
cently by Gentle et al. [15] are very poorly defined, although the latter values are more
precise than the earlier ones. This is not surprising, due to the difficulty involved in mea-
suring such small pressure dependence. Our calculated values of Bg are shown, together
with the measured values, in Table 8.53 and Figure 8.5 (b). It can be seen from the graph
that the dashed line representing the values obtained from the first parameter set provide
a marginally better fit than the solid and dotted lines, which represented the values cal-
culated using the second and third parameter sets respectively. However, compared with
the experimental errors and the scatter of the measured values, the difference between

the three curves is very slight, with all of them providing an acceptable fit to experiment.

Table 8.53: Calculated values of By for carbon dioxide for three sets of pa-
rameters, together with the measured values of Gentle et al.® [15] and Buck-
ingham et al.® [14].

(D (2) (3)

T 10323?1’ . 10323?10 10323?1c 1032B§{alc
K m®mol 1 C?m8®J2mol—2 C?m8®J2mol 2 C?m8J2mol 2
252 23+19° 3.72 5.93 5.36
259 54270 3.53 5.58 5.05
267 -6+11° 3.34 5.23 4.74
279 -1+£130 3.06 4.72 4.29
287 -3+9° 2.92 4.48 4.07
299.2  6+1@ 2.70 4.09 3.71
301 -3+7° 2.67 4.04 3.68
302 0+10° 2.66 4.02 3.65
3149  0+1° 2.46 ' 3.68 3.35
318  -1148b 2.43 3.63 3.30
330.9 4420 2.26 3.32 3.03
337 -9+9? 2.19 3.21 2.92
348.8  2+41¢ 2.07 3.01 2.75
370.9 -6+2¢ | 1.91 2.75 2.52
394.5 242 1.74 2.47 2.26
422.8  -3+2° 1.59 222 2.05
455.8  -3+4¢° 1.47 2.05 1.89
489.5  -5+3¢ 1.31 1.80 1.66

Table 8.54, which lists the relative contribution of the terms of By, shows the im-
portance of including the quadrupole terms in the calculation of the second Kerr-effect
virial coefficient. These terms, which have not been calculated before, contribute approx-
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imately 30% to By. It should be noted that while the third term in the series 6,5 makes
a small but significant contribution, the series has clearly converged. The leading « series

is converging rapidly, and no further terms are necessary.

Table 8.54: The relative contributions of the terms used to
calculate By for carbon dioxide at 299.2 K for A = 632.8 nm

for the parameter set (D=0.225, Ry=0.400, £/k=192.0).

Contributing 10°%2 x Value % Contribution
Term C2m®J%mol 2 to Bk
Lo 0.838 20.51
Qs -2.113 -51.71
7 3.939 96.40
as 0.137 3.35
frau3 0.766 18.75
Oo0ry 0.461 11.28
fras 0.058 1.42

By = 4.086 x 10732C?m®J?mol 2

Table 8.55: Experimental and calculated values of By for carbon dioxide for

three sets of parameters.

. 0 ) 3
T Y 1012B;;XP 1012B<1:zalc 1012B%a.1c 10123?1(:
K nm  m®mol~2 Ref. m®mol~? mSmol—2 mSmol—2

208.2 632.8 3.2+1.6 [39] 2.18 3.73 3.11

4754130 [62]
320 0.0+£1.0 [72]  2.22 3.64 3.07
323 1.940.2 [64] 2.23 3.63 3.06
53 [13]
3.3143.6  [69]
298 514.5 0.73+0.66 [62] 2.38 3.98 3.33
488.0 1.03+0.66 [62] 2.39 4.01 3.36

Except for the measurements of Achtermann et al. [64], the experimental data for

the second refractivity virial coefficient of carbon dioxide at 632.8 nm show wide scatter
and large experimental errors. It is impossible to discern whether there is significant
temperature dependence. At 514.5 nm and 488.0 nm, Burns et al. [62] measured Bg at
room temperature, but the experimental errors are 90% and 65%, respectively, so any
wavelength dependence is masked. Bp was calculated for carbon dioxide, using the three
parameter sets, for all the temperatures and wavelengths where experimental data is
available, and the calculated and measured values are given in Table 8.55. Although the
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wide scatter and large errors in the experimental data make comparison with the theoret-
ical values difficult, the more precise value of Achtermann et al. at 632.8 nm and 323 K
is lower than any of the calculated values. At the other wavelengths, the experimental
data is also lower than the theoretical values, leading to the tentative conclusion that the
values calculated using parameter set (1) provide a better fit to the measured values.

Table 8.56 shows the relative contributions of the three « terms used to calculate Bg
using the second parameter set for a wavelength of 632.8 nm at 298.2 K.

Table 8.56: The relative contributions of the terms
used to calculate B for carbon dioxide at 298.2 K for
A=632.8nm for the parameter set (D=0.225, Ry=0.400,

e /k=192.0).
Contributing  10*2 x Value % Contribution
Term m®mol 2 to B,
6% -3.360 -90.08
Qs. 6.959 186.57
0y 0.131 3.01

Bg = 3.730 x 10~?m5mol 2

Table 8.57: Calculated values of B, for carbon dioxide for three sets of parameters,
together with the experimental data of Couling and Graham® [7] and Dayan et
al.® [16].

(1) (2) (3)
T A 1068, 105BC % 10°B& % 105B% %
K . mm m3mol 1 m3mol~!  Eurr. m3mol~!  Err. m3mol™! Err.
298.2 514.5 -8.2940.16¢ -9.21 11.1 -8.98 8.3 -8.92 7.6
300.0 488.0 -10° -9.12 -8.8 -8.93 -10.7 -9 -10

Lastly, the second light-scattering virial coeflicient was calculated at wavelengths of
514.5 nm and 488.0 nm, and compared with the measured values. The experimental
data, together with the values calculated using the three parameter sets, are shown in
Table 8.57, while the relative contributions of the various terms are given in Table 8.58.
It can be seen in Table 8.58 that the second pressure virial coefficient contribution to B,
dominates the calculation. For this reason, all of the calculated values of B, are very
similar, so that it is difficult to choose which parameter set yields the best fit. Since the
measured value of Couling and Graham [7,9] at 514.5 nm is more precise than that of
Dayan et al. [16] at 488.0 nm, the third parameter set is most probably the best choice.
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Table 8.58: The relative contributions of the terms
used to calculate B, for carbon dioxide at 298.2 K and
)\ = 514.5 nm for the parameter set (D=0.215, Ry=0.420,

¢/k=186.0). |
Contributing  10° x Value % Contribution
Term m3mol~* to B,
G 3.477 -1.44
b3 1.408 -0.58
as -10.474 4.35
as 15.326 -6.36
N 0.103 -0.04
S, 9.840 ~1.09
2B -250.66 104.09

B!, = —240.82 x 10~*m°mol !
B, = 8.98 x 107®m?®mol

Unfortunately, the results for carbon dioxide do not allow us to choose a unique
parameter set which yields good fits for all of the second virial coefficient data available.
Except for B, where the second and third parameter sets clearly provide at better fit to
experiment, and for B(T) where the first parameter set fits best, it is very difficult to
choose which is best. In order to allow a definite conclusion, more accurate measured
values for B,, Bg and Bg would be required. However, the variation between the Lennard-
Jones parameters of the different sets is 5% or less and the shape factors are similar and
physically reasonable, so that we can conclude that any of the sets would be acceptable.
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8.8 Calculations for ethane

8.8.1 Molecular properties of ethane

The static molecular properties of ethane are listed in Table 8.59, while Table 8.60 lists the
values of the optical-frequency polarizability components and p,. Since ethane is a non-
polar molecule there are no dipole moment, first-order hyperpolarizability and A-tensor
components. No C-tensor data is available. Our optimized values for the Lennard-Jones
and shape parameters are given in Table 8.61, together with the values used by Couling
and Graham [7,9] to calculate the second Kerr-effect and light-scattering virial coefficients.
We have used both sets of parameters to obtain theoretical values for all of the second
virial coefficients under study. '

Table 8.59: Wavelength-independent molecular parameters
of ethane used in the calculations

Molecular Parameter Value Reference
10%%9 (Cm?) -3.34 [219]
109 (C?m?2J-1) 4.870 [9,140]
10Aqa (C?m?2J1) 0.638 [9,17]
1049, (C*m?2J71) 5.295

109, (C*m2J71) 4.657

Kq 0.0437

Table 8.60: The components of the optical-frequency polarizability tensor a;; of
ethane as determined from the measured values of po [17] and « [18].

A 10009 10%0¢, 10%Aa 10%,  10%a, Ka
nm C*m?2J! C’m?J71 Cm?J! C2m2J!
632.8  0.14940.006 4.9680 0.743 5.464 4.720  0.0499
514.5  0.16840.006 5.0176 0.798 5.550 4752 0.0530

Table 8.61: Lennard-Jones parameters and shape factors for ethane.
Ry (nm) e/k (K) D
(1) Our fitted values 0.420 208.3 0.375
(2) Fitted values of Couling and Graham [9] 0.4418 230.0 0.200
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8.8.2 Results of calculations of second virial coefficients for
ethane

The second pressure virial coefficient of ethane was calculated using both sets of pa-
rameters given in Table 8.61, and the results are given in Table 8.62 together with the
smoothed values of Dymond and Smith [1]. The values obtained using our best-fit pa-
rameters agree with the experimental data to within 1.5% over the temperature range
240 K to 350 K, and within 4% for the higher temperatures. The second parameter set
yields values of B(T') which differ from experiment by as much as 9.34% at 400 K.

Table 8.62: Calculated values of B(T) for ethane for two sets of
parameters, together with the smoothed values of Dymond and

Smith [1].
(1) (2)
T 106Bexp 106Bcalc % loﬁBcalc %
K m?mol™! m3mol~! Error m®mol~! Error
240 -28243 -282.93  0.33 -278.39 -1.28

260  -243£2 -240.80 -0.91 -241.33  -0.69
280  -2114£2 -207.70  -1.56 -211.07  0.03
300  -182%2 -181.01 -0.54 -185.89  2.14

325  -15441 -154.13  0.08 -159.83  3.79
350 -130.5£1 -132.48  1.52 -138.33  6.00
375 -111.0%1 -114.68  3.32 -120.30  8.38
400 -96.0%1 -99.79 3.95 -104.97  9.34
SSE: 49.42 293.21

Only one experimental value of B; is available. This was measured recently by St-
Arnaud et al. [19] and has an experimental error of 5.5%. We used both parameter sets
to calculate B, for ethane at 298.1 K and the results are given in Table 8.63. The value
calculated using our optimized parameter set is 2% lower than the measured value and
falls within the experimental error. The value obtained using the second parameter set is
almost 30% lower than the experimental value, but is of the correct order of magnitude.

Table 8.63: Calculated values of B, for ethane for two sets of pa-
rameters, together with the measured value of St-Arnaud et al. [19].

(1) (2)
T 1012B§xp 1012B§alc % 1012B§alc %
K  mbmol? m®mol? Error m®mol=2 Error
298.1 32.2+1.8 31.57 -1.96 23.01 -28.54
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The relative contribution of the various terms used to calculate the second dielectric
virial coefficient are given in Table 8.64. It can be seen that B, contributes approxi-
mately one third of the total value of B., demonstrating the importance of including the
quadrupole moment terms, which have clearly converged. The dominant contribution
comes from the as, or Kirkwood [127], term.

Table 8.64: The relative contributions of the terms used
to calculate B, for ethane at 298.1 K.

Contributing ~ 10™ x Value = % Contribution
Term mbmol 2 to B,
Oty -7.763 -24.59
Qa3 27.317 86.53
oy 1.064 3.37
- 20.618 65.31
0292 4.769 15.11
a3b, 5.879 18.62
(1462 0.304 0.96
B 10.952 34.69

Eor

B, = 31.57 x 10~ "?m®mol 2

Next, we calculated the second refractivity virial coefficient, for which two measured
values are available for a wavelength of 633.0 nm. The contributions of the various terms
in the calculation of B at A = 633.0 nm for 7" = 348 K are given in Table 8.65 for our
optimized parameter set. It is clear from the table that the series has converged. It is
possible that the a;C; term might make a significant contribution, but no measured or
calculated values exist for the C-tensor components.

Table 8.65: The relative contributions of the terms used

to calculate By for ethane at 632.8 nm and 348 K for the

parameter set (D=0.375, Ry=0.420, £/k=208.3).
Contributing 102 x Value % Contribution

Term m&mol—2 to Bg
Q9 -8.440 -32.94
Qs 32.709 127.67
Qy 1.3561 5.27

Br = 25.620 x 10~ ?m®mol 2

Table 8.66 shows the measure values of Jaeschke [72] and Achtermann et al. [64],
together with the theoretical values calculated using both parameter sets. It can be seen
that the first parameter set provides a better fit to experiment than the second set.
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Table 8.66: Calculated and measured values of By for ethane.

0 )
T A 102 B Ref. 1012 Bgl 10" Bl
K nm m®mol—2 m®mol—2 m%mol—2
348 633.0 22.9+3.0 [72] 25.62 19.61
373 26.61+0.05 [64] 24.92 19.29

The second Kerr-effect virial coefficient has been measured for a range of tempera-
tures from 255 K to 318 K at a wavelength of 623.8 nm by Buckingham et al. [14], with
experimental errors of approximately 20%. We have calculated Bk over this temperature
range using both parameter sets. Table 8.67 shows the relative contributions of the terms
used to calculate Bk, while Table 8.68 shows the temperature dependence of the theo-
retical and experimental data. Figure 8.6 shows the relationship between the calculated
and measured values graphically, with the solid and dotted lines representing the values
obtained from the first and second parameter sets, respectively.

It can be seen from Table 8.67 that for ethane, the quadrupole moment series f«
contributes negligibly to the second Kerr-effect virial coeflicient.

Table 8.67: The relative contributions of the terms used to

calculate By for ethane at 255 K for A = 632.8 nm for the

parameter set (D=0.375, Ry=0.420, ¢/k=208.3).
Contributing 1032 x Value % Contribution

Term C?m®J2mol 2 to Bg
9 0.696 2.34
O3 -13.549 -45.64
oy . 39.075 131.64
o 3.384 11.40

92&'3 0.026 0.09

B0y 0.047 0.16

62&5 0.005 0.02

By = 29.684 x 10732C?*m8J2mol ?

From Table 8.68 and Figure 8.6, it is clear that the second parameter set provides
a far better fit of the theory to experiment, since it lies within the experimental error
of the measured values. The values calculated from the first parameter set fall outside
the experimental errors over the entire range of temperatures, but they are of the correct
order of magnitude.

The only existing measurement of B, for ethane is that of Couling and Graham [7,9),
which was measured at room temperature for a wavelength of 514.5 nm. We calculated
B, for both parameter sets at this wavelength and temperature. Table 8.69 shows the
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Figure 8.6: Temperature dependence of the calculated and measured values of the second
Kerr-effect virial coefficient of ethane. The solid and dotted lines represent the values
obtained using parameter sets (1) and (2), respectively.
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Table 8.68: Calculated values of Bx for ethane for two sets of
parameters, together with the measured values of Buckingham
et al. [14], at a wavelength of A = 632.8 nm.
@ @)

T 10%Bg* 102Bx % 10*2Bg %

K m®J? CmfJ? Error C?mJ™? Error

255 18.243.7 29.68  63.08 20.81 -14.34

259 17.7+3.6 28.86  63.05 20.35  14.97

269 16.7%£3.3 27.01 61.74 19.29 15.21
278 18.0£3.6 25.54  41.89 18.43 4.61
15.74£3.1 62.68 17.39

287 16.8+3.3 24.22 4417 17.64 5.00
299 17.7£3.6 22.68  28.14 16.69 -5.71

304 14.9%+3.0 22.09  48.26 16.33 9.60
309 14.2+2.9 21.54  51.69 1598  12.53
318 15.043.0 20.61  37.40 15.39 2.60

relative importance of the terms which contribute to B,, while the calculated values are
shown, together with the measured value, in Table 8.70. While both calculated values
are larger than the experimental value and fall outside the experimental error, the value

obtained from the second parameter set is in much better agreement with the measured
value.

Table 8.69: The relative contributions of the terms used

to calculate B, for ethane at 295.9 K and A = 514.5 nm

for the parameter set (D=0.375, Ry=0.420, £/k=208.3).
Contributing ~ 10° x Value % Contribution

Term m3mol ! to B,
G 20.52 10.69
bs 2.69 4.10
as -374.40 -107.42
ag 1071.79 243.66
ag 83.05 6.16
S, 803.65 157.20

2B -372.88 57.20

B), = 403.77 x 10~°m®mol !
B, = 0.722 x 10~ ®m3mol ™

Our optimized parameter set yields good agreement with experiment for the second
pressure, dielectric and refractivity virial coefficient data available, while the parameter
set of Couling and Graham [9] yields much better agreement than ours for the second
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Table 8.70: Calculated values of B, for ethane for
two parameter sets, together with the experimental
value of Couling and Graham [7] at A = 514.5 nm.

(1) (2)
T 1012 Bzxp 106 Blc)alc 106 B;alc
K m®*mol~! m>®mol ! m3mol !
295.9 0.315+0.018 0.722 0.381

Kerr-effect and light-scattering virial coefficients. Thus it is not possible, on the basis
of the available experimental data, to choose a unique set of Lennard-Jones and shape
parameters to describe all the effects under study adequately. However, the choice of fit
for B, Br and B, is hampered by the fact that only one or two values are available for
comparison. Further experimental data would help to solve this problem.
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8.9 Calculations for sulphur dioxide

8.9.1 Molecular properties of sulphur dioxide

The sulphur dioxide molecule has C,, symmetry and is taken to lie in the 1-3 plane of
the molecule-fixed axes (1,2,3). The 3 axis is taken as the principal molecular axis and
the origin of the system is at the centre of mass of the molecule. The electric dipole
moment tensor has one component, [0 0 p3] while the traceless electric quadrupole
moment tensor has two independent components 6;; and s, with 033 = —(011 + 6a9).
The optical-frequency polarizability tensor has three independent components ay;, ag
and as3 [26].

The values of the dipole moment, quadrupole moment, static and optical-frequency
polarizability tensor components used in our the calculations are given in Table 8.71.

Table 8.71: Molecular parameters of Sulphur dioxide used in the calcula-
tions

Molecular Parameter Value Reference
10%415 (Cm) 75.4262+0.0010 [220]
1040911 (Cm ) -16.4%0.3

10%°6;5 (Cm?) | 12.940.2 [221]
104053 (Cm ) 3.540.1

10%g,, (C?m2J1) 5.661 \

10y (C?m2J-1) 3.205

105, (Cm 2J-l) 3.756 0 9]
10°Aa (C?m2J ) 2.232
04°a11(632.8 nm) (C?m?J-1) 5.80£0.06 )

104015, (632.8 nm) (C?m?J~1) 3.30-£0.04

10%035(632.8 nm) (c2 2J 1 3.88:0.06 ¢ (a)
10*°A(632.8 nm) (C?m2J-1) 2.27+0.06

106, (514.5 nm) (02 2J 1 5.9280.01 )

- 10%ag,(514.5 nm) (C?m?2J~1) 3.336+0.04

109035(514.5 nm) (C?m 2J 1) 3.90240.05 0 (b)
10°Aq(514.5 nm) (C?m2J 1) 2.36040.05

(a) Experimental derivation from the Kerr effect [21] with
a, = 4.326 x1071° C?m2J~! [4], py = 0.017940.0001 [4]
(b) Experimental derivation from: Ry = 0.21240.035 [222]
= 4.389 10740 C2m2J-1 [4], py = 0.0188£0.0001 [9]

The equilibrium dipole moment is the value which Patel et al. [220] determined pre-
cisely by molecular beam electric resonance spectroscopy. In this work we have used
the most precise set of experimental values for the electric quadrupole moment: those of
Ellenbroek and Dymanus [221] obtained from magnetizability anisotropy measurements.

198



It must be noted that since the quadrupole moment of a polar molecule is dependent on
the origin to which it is referred, it is necessary to specify that for these measurements
the origin is fixed at the molecule’s centre of mass. The optical-frequency polarizability
tensor components at 514.5 nm are those obtained by Couling and Graham [9] from their
measured value of pg, the Ry value of Murphy [222] and the a, of Bogaard et al. (4],
while the components at 632.8 nm are those deduced by Gentle et al. [21] from Kerr effect
measurements. There are no experimental estimates of the individual components of the
static polarizability tensor. However, Couling and Graham [9], scaled ab initio calculated
values [223], by comparing their trace with the mean static polarizability extrapolated
from experimental optical-frequency values [4]. The anisotropy of the scaled components
agreed to within 4.5% with the value extrapolated from the experimental data of Bogaard
et al. [4].

Table 8.72: Lennard-Jones parameters and shape factors for sulphur dioxide.
RO (nm) 8/k (K) Dl D2
(1) Our fitted values 0.388 210.0  0.1200 0.1386
(2) TFitted values of Couling and Graham [9]  0.385 220.0 0.0873 0.1008

Since the computer programs to calculate the various second virial coefficients of non-
linear gases take much longer to run than the equivalent programs for linear gases, it is
not possible to test as many combinations of the Lennard-Jones and shape parameters
when attempting to fit the theoretical values to the available experimental data. Since
a parameter set which provided good agreement for the second pressure, Kerr-effect and
light-scattering virial coefficients of sulphur dioxide had been found by Couling and Gra-
ham [9], we used this set of parameters to calculate the second dielectric virial coefficient.
Since the value we calculated for B, was more than double the only available experi-
mental value, we then attempted to find a new set of parameters which would improve
the agreement with the measured value of B, without sacrificing the fit of the second
pressure virial coefficient. We then used our new parameter set to calculate By and B,,
and compared our values with the available experimental data. Our new parameter set
and the parameter set fitted to B(T") by Couling and Graham [9] are given in Table 8.72

8.9.2 Results of calculations of second virial coeflicients for
sulphur dioxide

The values calculated for the second pressure virial coefficient of sulphur dioxide are
listed in Table 8.73, together with the experimental values of Kang et al. [20], as quoted
by Dymond and Smith [1]. The values calculated using the parameter set of Couling and
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Graham [9] fit the experimental values to within approximately 2% over almost the entire
temperature range. Our parameter set yielded calculated values for B(T') which agree
with the experimental values to within 2.6% over the temperature range from 283.15 K
to 348.15 K, but are out by 6.32% at 398.15 K.

Table 8.73: Calculated values of B(T') for sulphur dioxide for two
sets of parameters, together with the experimental values of Kang et

al. [20].
@ ®

T 106Bexp 1OGBcalc % 106Bcalc %

K m3mol ! m®mol~! Error m3mol~! Error
283.15 -500.0+20 -500.74  0.15 -501.32  0.26
293.15 -452.0+18 -453.15 0.25 -450.88 -0.24
303.15 -404.0+16 -411.32 1.81 -408.17 1.03
313.15 -367.5415 -373.07  1.52 -371.62 1.12
323.15 -332.8+13 -340.01 2.16 -340.04 2.18
348.15 -279.0%+11 27171 -2.61 27738  -0.58
373.15 -232.549 -223.98 -3.66 -231.04 -0.63
398.15 -201.0+8 -188.29 -6.32 -195.53 -2.72
423.15 -171.14&7 '-162.33  -5.13 -167.55  -2.07
448.15 -144.147 -141.98 -1.47 -144.98 0.61
473.15 -125.84+7 -121.82  -3.16 -126.43 0.50
SSE: 531.79 141.90

The second dielectric virial coefficient has only been measured once, at 292.7 K, by
Lawley and Sutton [10] in 1963 and the experimental uncertainty is very large (60%).
We have calculated B, at this temperature using both parameter sets and including as
many terms as was necessary to ensure that the series were converging. Table 8.74 shows
the relative contributions of the terms used to calculate B.. It is clear that B, , makes a
small, but significant, contribution to B, of 4.5%, while all three of the series in B, , are
highly significant. In particular, we note that the dipole-quadrupole series auf makes a
contribution of 150%. In'addition, the quadrupole series af contributes 30% of B.. If
the effects of the quadrupole moment were omitted then the calculated value would be
a large negative number, rather than a large positive number! This demonstrates that
effects of the quadrupole moment are not necessarily negligible in dipolar molecules, as
we have already seen for the halogenated methanes.

The values of B, calculated using the two parameter sets are given in Table 8.75,
together with the measured value. It can be seen that both the calculated values are
higher than the measured value, but the value obtained using our new parameter set lies
within the experimental error. We found that attempts to improve this value destroyed
the fit obtained for B(T"). While the value obtained using parameter set (2), is more than
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Table 8.74: The relative contributions of the terms
used to calculate B, for sulphur dioxide at 292.7 K for
the parameter set (D;=0.1200, D,=0.1386, R,=0.388,

¢ /k=210.0).
Contributing 102 x Value % Contribution
Term m®mol 2 to B.
Qs 29.417 1.29
Q3 68.668 3.00
Oy 4.272 0.19
2 102.357 143
2. -4791.246 -209.48
o g 1556.107 68.04
Qg lho 1070.891 46.82
(02715 91.401 4.00
o by 3107.603 135.87
oty 433.157 18.94
a3ty 138.324 6.05
B, . 2184.846 95.52

B, = 2287.20 x 10~ *m%mol~?

Table 8.75: Calculated values of B, for sulphur dioxide for two sets
of parameters, together with the measured value of Lawley and Sut-

ton [10].
| (1) (2)
T 1012B§xp 1012B§a1c % 1012B§alc %
K m%mol~! m®mol~2 Error m®mol~2  Error

292.7 1700£1000 22872  34.54 4020.9 136.47

double the measured value, it is at least of the correct order of magnitude.

The second Kerr-effect virial coefficient of sulphur dioxide has been measured by
Gentle et al. [21], at a wavelength of 632.8 nm for a large temperature range. There is
considerable scatter, but for most of measured values the experimental errors are approx-
imately 5% and the temperature dependence is reasonably well defined. When Couling
and Graham [9] developed the theory of the second Kerr-effect virial coefficient, they did
not consider the quadrupole moment terms in the integrand, although they did include
the dipole-quadrupole, quadrupole-quadrupole and quadrupole-induced-dipole potentials
in the intermolecular potential (Chapter 2). However, due to the significant contributions
of the quadrupole moment to B, we extended the theory of Bx to include these terms
and used them in our calculations of Bg. In Table 8.76 of the relative contributions
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of the various terms in the calculated value of Bk, we see that the dipole-quadrupole
pba series contributes 8.24% to By, while the quadrupole series for makes an additional
contribution of 5.62%, so that the combined contribution is almost 14% of the total Bg.
Thus, we see the importance of considering the effect of the quadrupole moment, even

when dealing with dipolar molecules.

Table 8.76: The relative contributions of the terms used to
calculate By for sulphur dioxide at 288.7 K for A = 632.8 nm
for the parameter set (D;=0.1200, D,=0.1386, Ry=0.388,

£/k=210.0).
Contributing 100 x Value % Contribution

Term C?m8J~2mol? to By

Qy -0.079 -0.52

o3 0.173 1.15

Qy 0.506 3.36

Qs 0.050 0.33
Moy 2.000 13.28
L0t 5.010 33.27

Ho (i3 4.538 30.14
Mol 0.774 5.14
[,L101011 -0.253 -1.68
/,1,101&2 1.462 9.71
613 0.031 0.21
010!3 0.178 1.18
f104 0.482 3.20
e 0.186 1.24

B = 15.058 x 1073°C?m®J2mol 2

The temperature dependence of calculated and measured values of the second Kerr-
effect virial coefficient is shown in Table 8.77. It can be seen that values obtained from
the two sets of parameters are very similar, although those calculated from our new
parameter set are slightly higher. Figure 8.7 shows the measured values, together with the
theoretical curves. The solid line and the dashed line, representing the values calculated
using parameter sets (1) and (2) respectively, lie very close together and both provide
a good fit of the experimental data. In order to demonstrate the effect of including
the quadrupole series, the figure shows the values for Bg calculated by Couling and
Graham [9] without any quadrupolar terms, as a dotted line. It can be seen that this

dotted curve lies below the dashed curve, due to the postive contribution of the quadrupole
terms.
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Figure 8.7: Temperature dependence of the calculated and measured values [21] of the
second Kerr-effect virial coefficient of sulphur dioxide. The solid and dashed lined rep-
resent the values calculated using parameter sets (1) and (2), respectively. The dotted
line represents the calculated values of Couling and Graham [9], which do not include
quadrupole terms.
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Table 8.77: Calculated values of B for sulphur dioxide for two
sets of parameters, together with the measured values of Gentle et
al. [21], at a wavelength of 632.8 nm.

0 )

T 102B3®  10¥Bg< % 1032B@k %

K  C?m8J? C?m®J~% Error C?m®J~2 Error
208.7 13.84+0.8 15.06 9.13 14.66 6.23
307.3 11.4+0.5 13.25 16.23 12.72 11.57
3154 10.1+0.5 11.55 14.36 11.13 10.20
330.7 7.540.4 9.62 28.27 9.03 20.40
348.8 6.510.6 7.65 17.69 7.18 10.46
370.9 6.5%+0.5 5.92 -8.92 5.40 -16.92
381.2 4.240.9 5.21 24.05 4.87 15.95
395.7 7.6x1.5 4.47 -41.18 4.18 -45.00
423.7 4.7+1.1 3.41 -27.45 3.27 -30.43
457.0 2.1£1.3 2.61 24.29 2.49 18.57
471.5 3.4+1.8 2.40 -29.41 2.21 -35.00
490.3 1.5%0.6 2.10 40.00 2.06 37.33

Although there are no experimental values for the second refractivity virial coefficient
of sulphur dioxide, we have calculated Bg using both parameter sets. Table 8.78 shows
the relative magnitude of the various contributions to By at 298.15 K, for a wavelength
of 632.8 nm.

Table 8.78: The relative contributions of the terms used to
calculate By for sulphur dioxide at 298.15 K for A = 632.8 nm.

(1) (2)
Contrib. 10'2 x Value % of 10'2 x Value % of
Term mSmol 2 Bpr m®mol 2 Bp
Q9 21.584 22.27 20.114 21.57
Qa3 70.842 73.11 68.942 73.94
Qy 4.480 4.62 4.180 4.49
Bg 96.906 93.236

There is only a single measured value for B, [9]. Thus, we calculated the second
light-scattering virial coefficient at 514.5 nm for a temperature of 338.4 K, using our new
parameter set and compared the result with the experimental value and the calculated
value of Couling and Graham [9]. Table 8.79 shows the relative contributions of the
terms used to calculate B,, while Table 8.80 shows the calculated values, together with
the measured value. Both of the calculated values fall outside the experimental error, but
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the agreement is still good, with the value of Couling and Graham [9] yielding a slightly
better fit.

Table 8.79: The relative contributions of the terms
used to calculate B, for sulphur dioxide at 338.4 K
and A\ = 514.5 nm for the parameter set (D;=0.1200,
D»=0.1386, Ry=0.388, ¢/k=210.0).

Contributing ~ 10° x Value % Contribution

Term m3mol ! to B,
g -17.798 10.69
bs -3.577 4.10
as 57.902 -107.42
as 195.399 243.66
as 23.111 6.16
S, 255.036 157.20

2B -594.820 57.20

Bl = —339.784 x 10~°m°mol !
B, = —6.225 x 10~®m®mol

Table 8.80: Calculated values of B, for sulphur
dioxide for two parameter sets, together with the
experimental value of Couling and Graham [7] at

A =514.5 nm.
(1) (2)
T 106 B&® 108 B2 106 e
K m3mol ! m3mol ! m3mol !
338.4 -6.961+0.49 -6.225 -6.328

The parameter set of Couling and Graham provides a much better fit to the experi-
mental data of B(T) than our new parameter set, as well as a slightly better fit for B,.
However, both parameter sets yield good agreement with the measured values of B,
and our parameter set fits the experimental value of B, far better than parameter set (2).
Unfortunately, the experimental data of Lawley and Sutton [10] for B, for other gases
shows a large scatter, so that a single value is not a definitive test. Since the parameter
set chosen by Couling and Graham provides a better fit for three of the effects and yields
a value for B, which is the correct order of magnitude, we feel that it describes all of the
available effects adequately. A precise set of B, values for a range of temperatures, would
allow a more definite conclusion.
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8.10 Calculations for dimethyl ether

8.10.1 Molecular properties of dimethyl ether

Dimethyl ether has the same C,, symmetry as sulphur dioxide and is also taken to lie in
the 1-3 plane with the 3-axis chosen to coincide with the principal molecular axis. The
values of the molecular parameters used in our calculations are given in Table 8.81.

Table 8.81: Molecular parameters of dimethyl ether used in the calcu-

lations
Molecular Parameter Value Reference
10%%u3 (Cm) -4.37+0.03 [224]
10409;; (Cm?) 11.0£2.0
104005, (Cm?) -4.3+2.0 [225]
1040033 (Cm ) -6.7£1.7
1040, (C*m2J~1) 6.584 )
04°a22 (Cz 2J_1) 5.195
10°33 (C*m?J ) 5.399 > [9,226]
104°a (c2m2J—1) 5.726
10%°Aa (C?m?J 1) 1.299 )
10%00,11(632.8 nm) (C?m?J 1) 6.69+0.17 )
10°°55(632.8 nm) (C*m 2J D) 5.46+0.14
10%¢33(632.8 nm) (C2 2J H 5.2840.13 L [23]
10°a(632.8 nm) (C*m2J 1) 5.81+0.17
10*°Ac(632.8 nm) (C?m 2J 1 1.33+0.32 )
1000p(514.5 nm 0.371 [4]
10%¢;;;(514.5 nm) (C?*m?2J~%) 6.72 )
10%aqg,(514.5 nm) (C*m?J?) 5.51
10%%0i33(514.5 nm) (C2 2J o 5.32 5 [226]
10°(514.5 nm) (C*m?J~1) 5.85
10%A(514.5 nm) (C?m 2J 1 1.32

The electric dipole moment is that determined by Blukis et al. [224] from the Stark
effect, while the electric quadrupole moment tensor components are those obtained by
Benson and Flygare [225] from measurements of magnetizability anisotropy. It must be
noted that the quadrupole moment depends on the origin of the molecular axes, and
that for the values used here the origin is at the centre of mass of dimethyl ether. The
static polarizability tensor components are the scaled ab inito values, determined by
Couling and Graham [9] using the method described for sulphur dioxide in Section 8.9.1,
from the MP2 values of Spackman and Ritchie [226]. The dynamic polarizability tensor
components at A = 632.8 nm, are the precise measured values of Bogaard et al. [23].
Since no measured values of the optical-frequency polarizability tensor components are
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available for a wavelength of 514.5nm, the ab initio values calculated by Spackman and
Ritchie [226] at the MP2 level of theory are used here.

Since a parameter set which provided good agreement for the second pressure and
Kerr-effect virial coefficients of dimethyl ether had been found by Couling and Graham [9],
we used this set of parameters to calculate the second dielectric virial coefficient for the
range of temperatures for which measured values are available. The values we calculated
for B, were much lower than the experimental values and, in most cases, negative and
we consequently attempted to find a new set of parameters which would improve the
agreement with the measured value of B, without sacrificing the fit of the second pressure
virial coefficient. We used our new parameter set to calculate By and compared our values
with the available experimental data. Our new parameter set and the parameter set fitted
to B(T) by Couling and Graham [9] are given in Table 8.82

Table 8.82: Lennard-Jones parameters and shape factors for dimethyl ether.
Ry (nm) e/k (K) D, D,
(1)  Our fitted values 0.390 400.0 0.1400 0.1556
(2) Fitted values of Couling and Graham [9]  0.390 370.0 0.1923 0.2137

8.10.2 Results of calculations of second virial coefficients for
dimethyl ether

Table 8.73 lists the values calculated for the second pressure virial coefficient of dimethyl
ether, together with the experimental values of Haworth and Sutton [22] quoted by Dy-
mond and Smith [1]. The values calculated using the parameter set of Couling and Gra-
ham [9] fit the experimental values to within 0.5%. Our parameter set yielded calculated
values for B(T) which agree with the experimental values to within 5.5%.

Table 8.83: Calculated values of B(T) for dimethyl ether for two
sets of parameters, together with the experimental values of Ha-
worth and Sutton [22].

(1) (2)
T loﬁBexp 106Bcalc % 106Bca.lc %
K mPmol™  mPmol™' Error  m3mol™! Error
298.2 -456+10 -431.2 -5.44 -455.7  -0.07
313.2 -405%10 -389.5  -3.83 -406.4 0.35
328.2 -368+10 -354.3  -3.72 -366.1 0.52

B has been measured by various workers over a range of temperature from 291.2 K to
343.2 K. The experimental errors are large and the values are not in very good agreement.
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However, all of the values are large positive numbers of the same order of magnitude.
When we used the parameter set of Couling and Graham, which provides a very good fit
for B(T), to calculate the second dielectric virial coeflicient, we found that at the lower
temperature the calculated values were large and negative, becoming less negative as the
temperature increases and, for temperatures of 330 K and higher, small and positive. This
can be seen in Table 8.84, which gives the measured values of B, together with the values
calculated using both parameter sets. Not only are these values far too low, but they
also display the opposite trend to the measured values and the values calculated using
our parameter set. This is shown clearly in Figure 8.8 (a), where the solid and dotted
lines represent the values calculated using parameter sets (1) and (2), respectively. From
the graph and the table, we see that the values obtained from our new parameter set are
of the correct sign and order of magnitude, and decrease with increasing temperature.
Although the solid curve lies below most of the experimental error bars, it is a reasonable
fit, considering the scatter of the measured values. In addition, several of the experimental
values have no quoted error, so that the fit may be better than it appears from the graph.

Table 8.84: Calculated values of B, for dimethyl ether
for two sets of parameters, together with the available
measured values.

0 @)

T 1012B§XP 1012B§alc 1012B§a.lc

K m®mol 2 m®mol—2 m®mol 2
291.2 2800 1623.8 -1300.6
294.7 4000£1000 1590.6 -1121.5
303.2  2800£1000 1512.9 -734.1
311.5 2020 14414 -420.7
313.5 2600£1000 1424.7 -354.8
323.5 16004400 1345.3 -81.1
334.7 240041000 1263.5 114.7
340.5 1540 1224.2 170.2
343.2  1600%400 1206.6 185.4

Table 8.85 shows the relative contribution of the various terms used to calculate B,
for dimethyl ether. It can be seen that B._, makes a significant contribution to B, of
7.1%, while all three of the series in B, are significant. The most significant contribution
of 57.3% is made by the dipole-quadrupole series auf, while the leading dipole-dipole au
series contributes 20% and the quadrupole series afl contributes 11% of B,. The combined
effects of the terms containing the quadrupole moment make up more than two thirds of
the total calculated value of B..
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Figure 8.8: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of dimethyl ether. The solid and
dashed lines represent the values calculated using parameter sets (1) and (2), respectively,
while the dotted line in (b) represents the curve calculated by Couling and Graham [9].
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Table 8.85: The relative contributions of the terms used to

calculate B, for dimethyl ether at 291.2 K for the parameter

set (D;=0.1400, Dy=0.1556, Ry=0.390, £/k=400.0).
Contributing 10" x Value % Contribution

Term mSmol 2 to B,
Qo 7.191 0.44
o3 102.284 6.30
Qy : 6.254 0.39
B.... 115.729 713
Lo -1444.290 -88.94
Qo o 932.999 57.46
Qo tty 835.188 51.43
Qs tia 75.106 4.63
a0 128.551 7.92
00 153.130 9.43
30, 95.015 1.54
B 1508.099 92.87

Eor

B, = 1623.83 x 10~ *m®%mol 2

The second Kerr-effect virial coefficient has been measured by Bogaard et al. [23] at
a wavelength of 632.8 nm. Although the experimental errors are approximately 20%,
there is very little scatter, so that the temperature dependence is clearly discernible.
Both parameter sets were used to calculate Bg and the relative contributions of the
terms used in the calculation are shown in Table 8.86. It is clear that the leading dipole
series pc, which contributes 85% of the total value for Be, is the dominant contribution.
The « series makes a significant contribution of 8.3%, while the dipole-quadrupole series
plo contributes 5%. The quadrupole series fa contributes less than 2% to the final
value. Thus, the combined contribution of the terms containing the quadrupole moment
is approximately 7%, which although small, is not negligible.

The calculated and measured values of Bg are listed in Table 8.87, and represented
graphically in Figure 8.8 (b). The graph shows the values calculated using parameter
sets (1) and (2) as solid and dashed curves, respectively. The dotted line represents the
calculated values of Couling and Graham [9], which do not include the dipole-quadrupole
pha or quadrupole fa series. The experimental point at 2569 K is much higher than the
next point at 269 K, and it is not clear whether this is due to experimental scatter or
if it is a true reflection of the temperature dependence of Bg. The solid line lies very
near to and within the error bars of all the measured values in the temperature range
from 269 K to 333.8 K, but is much lower than the experimental values at 259 K. The
dashed line lies above most of the measured values, but falls within the experimental
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Table 8.86:. The relative contributions of the terms used to
calculate By for dimethyl ether at 259.0 K for A = 632.8 nm
for the parameter set (D;=0.1400, D;=0.1556, R;=0.390,

¢ /k=400.0).
Contributing 10%0 x Value % Contribution
Term C?’m8J2mol 2 to By
oy 0.003 0.01
Q3 0.137 0.65
oy 1.425 6.73
as 0.201 0.95
a0 1.963 9.27
Hallg 6.916 32.68
HoQl3 7.675 36.26
12ty 1.416 6.69
161 -0.091 -0.43
,LL1910[2 1.119 5.29
/11010!3 0.045 0.21
0,03 0.039 0.18
910!4 0.215 1.02
0,5 0.103 0.49

Table 8.87: Calculated values of By for dimethyl ether for two sets
of parameters, together with the measured values of Bogaard et

By = 21.166 x 1073°C?m®J~2mol 2

al. [23], at a wavelength of A = 632.8 nm.

0 )

T 1032 BZ"P 1032 Bgle % 1032 B2 %

K C?m8J—2 C?’m8J—2? Error C’m®J~2? Error
259.0 34.216.8 21.17 -38.10 29.25 -14.47
269.0 18.8+3.8 18.20 -3.19 24.27 29.10
278.4 16.1+3.2 15.54 -0.56 20.22 25.59
288.2 13.1+2.6 13.62 3.97 16.65 27.10
3024 11.1+2.2 11.21 0.99 12.65 13.69
318.9 10.24+2.0 8.79 -13.82 9.75 -4.41
333.8 5.8+1.2 7.49 29.14 8.75 50.86

uncertainty of the experimental point at 259 K. This makes it very difficult to decide
which line represents the best fit of the experimental data. Above 259 K the values
calculated using our new parameter set definitely fit the data best, but over the entire
temperature range the values obtained from Couling and Graham’s set of Lennard-Jones
and shape parameters represent the best fit. An independent measurement in the lower
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temperature range would enable a more definite conclusion. However, it can be said that
both parameter sets yield reasonably good agreement with experiment.

The second refractivity and light-scattering virial coefficients have not been measured
for dimethyl ether. However, in order to pr'ovide possible future comparison, we have
calculated By and B, using both parameter sets. Table 8.88 shows the relative magnitude
of the various contributions to Bg, while Table 8.89 gives the relative contributions of
the terms used to calculated B,.

Table 8.88: The relative contributions of the terms used to cal-
culate Bg for dimethyl ether at 298.15 K for A = 632.8 nm.

(1) (2)
Contrib. 10'2 x Value % of 102 x Value % of

Term mSmol 2 Bg mSmol—2 Bgr
Qs 8.122 6.90 21.514 11.76
as 103.185 87.65 148.356 81.12
Qy 6.416 5.45 13.022 7.12
Bg 117.723 ' 182.892

Table 8.89: The relative contributions of the terms used to
calculate B, for dimethyl ether at 328.15 K for A = 514.5 nm.

O R

Contrib. 10 x Value % of 10% x Value % of
Term m’mol~! B, m>mol ! B,
2 3.86 0.49 19.78 1.64
bs -1.12 -0.14 -2.50 -0.21
as 87.34 11.15 201.32 16.68
ay 1273.99 162.66 1495.76 123.95
as 155.14 19.81 228.31 18.92
S, 1519.21 193.97 1942.67 160.99
2B -736.00 -93.97 -736.00 -60.99
B;, 783.21 1206.67

B, 2.89 4.46

In summary, we note that our new set of parameters yield calculated values of B(T)
which only agree with experiment to within approximately 5%, while parameter set (2)
fits B(T) to within 0.5% over the limited range of experimental data. Both sets agree
reasonably well with experiment for By, but the values of B, calculated using parameter
set (2) are of the wrong sign and are between 90% and 130% lower than the measured
values, while our new parameter set yields calculated values for B, which agree to between
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16% and 60% with experiment. Taking all of the results for dimethyl ether into account,
it would appear that our new parameter set provides a slightly better fit of the available
second virial coefficients than the parameter set of Couling and Graham [9].
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8.11 Calculations for ethene

8.11.1 Molecular properties of ethene

The ethene molecule is taken to lie in the 1-3 plane of a system of coordinate axes O(1,2,3)
with the C=C bond on the 3-axis and the origin of the molecule-fixed axes at the midpoint
of the bond. Ethene is a non-polar molecule with Dy, symmetry, so that the traceless
electric quadrupole moment tensor has two independent components: 6y, and 69, with
633 = — (011 + 02) and the polarizability tensor has three independent components: a;;,
Qoo and aszz [26].

Although the electric quadrupole moment of ethene has been the subject of exten-
sive experimental and theoretical research, the experimental investigations are usually
confined to partial determinations or combine various experimental data in order to es-
timate the two independent components. However, accurate theoretical estimates by
Spackman [202] at the MP2 (second-order Mgller-Plesset, perturbation theory) level and
Maroulis [103] at the MP4 level are available. These theoretical values are in excellent
agreement with each other and are shown, together with the experimental data available,
in Table 8.90.

Table 8.90: Selected experimental and theoretical values of the quadrupole mo-
ment tensor components of ethene.

Method 1040011 1040022 1040033
' Cm? Cm? Cm?
Measurements of collision-induced ab- 6.73 -13.33 6.60

sorption (CIA) spectra [227]

Measurements of CIA spectra [228] 5.16 -10.41 5.52
Magnetizability anisotropy measure- 4.67 -12.02 7.31
ments [229]

Measurements of induced birefringence 4.35 -10.99 6.68

+ second dielectric virial coefficients +

refractive index [74]
MP2 theory [202] 5.43 -11.03 5.60

MP4 theory [103] 5.370 & 0.22 -10.92 4+ 0.45 5.549 £ 0.22

In this work we have used the theoretical values of Maroulis [103] which are in good
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agreemenﬁ with the estimates obtained by Dagg et al. [228] from collision-induced ab-
sorption spectra measurements in mixtures of ethene and rare gases.

For linear molecules the two independent components of the dynamic polarizability
tensor can be deduced from the experimental values of py and « [4,190]. However, since
non-linear molecules have three independent components, an additional physical rela-
tionship connecting the components is necessary to evaulate the individual components.
For this reason, there are very few experimentally-deduced polarizability components for
non-linear molecules. Hills and Jones [230] measured the pure rotational Raman spec-
trum of ethene and compared it with the spectrum calculated using an asymmetric rotor
computer simulation in order to deduce a value for the dimensionless quantity Ryg, which
is defined as:

\/5 (0111 - 022)

(011 + o — 2ai33)°

Ry = — (8.1)
The polarizability anistropy defined in equation (7.22) may be determined from equa-
tion (7.25) if py and o are known. Then, solving equations (7.21), (7.22) and (8.1) yields
values for the polarizability tensor components 1, age and ass. Table 8.91 lists two sets
of values for these components at 514.5 nm. The first set is obtained from the values
for py and o measured by Bogaard et al. [4] together with the value of Ry measured by
Hills and Jones [230]. The second set was obtained using Couling and Graham’s [9, 36]
measured value for pg, the more precise value of Ry recently obtained by Barbés [231],
and a value for o interpolated from Hohm’s high-precision measurements of the frequency
dependence of « for ethene [140]. In this work we will use the second set of values. Coul-
ing and Graham [9] showed that using the first set results in a decrease of less than 0.5%

in their calculated value for S, and it should have an equally negligible effect on the other
second virial coefficients.

Table 8.91: Components of the dynamic polarizability tensor of ethene, at wavelengths
of 514.5 nm and 632.8 nm.

514.5 nm 514.5nm 632.8 nm
Set 1 Set 2

100p, 1.2475 £0.006 [4] 1.25040.002 9] 1.207+0.002 [4]
104 (CQmQJ‘l) 4.76 [4] 4.7871 [140] 4.7124 [140]
10°Aq (C?m?J-1) 2.077 2.091 2.0215

Ry 0.22 4 0.03 [230] 0.21 4 0.01 [231]  0.21 £0.03 [231]
104OC¥11 (CszJ‘l) 4341 4353 4305

1000y, (C?‘m2J“1) 3.82¢ 3.857 3.804

10033 (C?m?J—1) 6.11, 6.15, 6.029
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Since there are no experimental estimates of the individual components of the static
polarizability tensor a, Couling and Graham [9] scaled the ab initio calculated values of
of Spackman [202] according to the mean static polarizability a = (4.5717 & 0.0008) x
10-19C2m2J-! extrapolated from measured dynamic values [140]. They then combined
the dynamic values of o with values of pg [4] to obtain values for the dynamic polarizability
anisotropy, which when extrapolated to infinite wavelength agreed with the anisotropy
of the scaled static polarizability components to within 1.1%. Table 8.92 shows the
static polarizability tensor components a;;, mean static polarizability a and polarizability
anisotropy Aa calculated by Spackman, as well as the scaled values.

Table 8.92: Ab initio calculated static polarizability tensor components,
mean static polarizability and polarizability anisotropy of ethene, together
with scaled values [9].

Polarizability 10%x MP2 calculated values [202] 10%*x Scaled values

property C?m?2J1 C?m?J!
G11 4.092 4.245
a9 3.534 3.666
a11 5.594 5.803

a 4.407 4.571
Aa 1.845 1.914

For molecules with Do, symmetry the dipole moment, first-order hyperpolarizability
and the A-tensor are all zero. The second-order hyperpolarizability has six independent
components. Maroulis [102] carried out ab initio SCF calculations of the static hyperpo-
larizability tensor components of ethene, and confirmed the assumption that these values
are unlikely to differ from the optical frequency values. Couling and Graham [9] used
these static values to determine the leading term in v, for the second Kerr-effect virial
coefficient and found that it contributed only 0.04% to the total Bg. Thus, it seems

reasonable to assume that the second-order hyperpolarizability will make a negligible
contribution to the other second virial coefficients.

Table 8.93: Lennard-Jones parameters and shape factors for ethene.

Ry (nm) e/k (K) D, D, Reference
0.4232 205 [106]
0.4236 193.5 [232]
0.4232 190.0 0.22965 0.21383 [9]

Couling and Graham [9] determined values for the Lennard-Jones parameters R
and ¢/k and their shape factors D; and D, by fitting values of the second pressure
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virial coefficient B(T') to the available experimental values [1] over the temperature range
238.15 K to 448.15 K. These fitted values are given in Table 8.93 along with the force
constants quoted in the classic text of Hirschfelder et al., which are obtained from viscosity
data [106], and the more recent values of Das Gupta et al. [232] obtained from viscosity
data and second pressure' virial coefficients. Their optimized values yielded calculated
values of B(T) that fit the experimental values to within 1.0% over almost the entire
range. The shape factors were chosen to reflect the molecular dimensions [9]. They then
used the fitted parameters to calculate B, and Bg. They found that the calculated B,
agreed very well with the measured values. The calculated By values were not in good
agreement with the experimental values, with discrepancies of between 20% and 50%. It
remains unclear whether this is due to the experimental uncertainties or the failure of the
model.

The aim of this work is to attempt to find a set of molecular parameters which will
adequately describe the second virial coefficients for as many of the effects under study
as possible. With this in mind, the Lennard-Jones force constants and the shape factors
determined by Couling and Graham [9] were used to calculate all the second dielectric
and refractivity virial coeflicients.

8.11.2 Results of calculations of second virial coefficients for
ethene

‘The values of the second pressure virial coefficient calculated using the Lennard-Jones
and shape parameters of Couling and Graham [9] are given in Table 8.94, together with
the smoothed experimental values of Dymond and Smith [1]. It can be seen that the

Table 8.94: The temperature dependence of the calculated values
of the second pressure virial coefficient B(T') for ethene, and the
best fit data of Dymond and Smith [1].

Temperature 106 pexp 106 Beale %
K - m3mol~! m3mol~! Error
240.0 -218.5+2 -221.53 1.39
250.0 -20142 -202.59 0.79
275.0 -166+1 -165.15 -0.51
300.0 -138+1 -137.25 -0.54
325.0 -117+£1 -115.43 -1.34
350.0 -99+1 -97.86 -1.15
375.0 -8441 -83.41 -0.70
400.0 -71.5%1 -71.36 -0.20
450.0 -51.7+1 -52.18 0.93
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theoretical values agree with experiment to within 1.4% over the entire temperature range.

The second dielectric virial coefficient was then calculated using the same parame-
ter set. The relative magnitudes of the terms contributing to B, as defined in equa-
tions (4.152) to (4.154) and (4.160), are summarized in Table 8.95 for a temperature of
298.2 K. It is clear that the a3 and fya, terms are the most significant, although the o
term is not negligible. The « series of terms has evidently converged, while the B series

is converging rapidly.

Table 8.95: The relative contributions of the terms used to
calculate B, for ethene at 298.2 K.
Contributing 10'? x Value % Contribution

Term mbmol 2 to B,
Qo -10.640 -17.96
Qo3 24.142 40.75
Oy 0.727 1.23

B.., 14.229 24.02

Yo 40.158 67.78

920!3 4.857 8.20

B 45.015 75.98

€or

B, = 59.244 x 10~ m%mol?

It can be seen from Table 1.2 that there are large variations in the experimental data.
The fit of the calculated values to measured values is shown in Figure 8.9 (a). The solid
line represents the values for B, calculated including the two quadrupole terms, while the
dotted line shows the curve calculated using only the « series. From this graph it is clear
that the solid curve fits the most recent measured values of Bose and Cole [24] very well.
It can also be seen that the inclusion of the quadrupole series of terms improves the fit
dramatically. Table 8.96 shows the temperature dependence of the calculated values of
B, in comparison with the experimental data of Bose and Cole [24].

Table 8.96: The temperature dependence of the calculated values
of B, for ethene, and the measured values of Bose and Cole [24].

Temperature 1012 Bexe 102 Beale %

K m®mol 2 m®mol 2 Error

298.2 59.24

303.2 - 50.3+1.4 57.46 14.23

323.2 47.5+1.4 51.68 8.80

348.2 46.35

373.2 42.0+2.8 42.49 1.17

423.2 37.6+2.4 37.23 -0.98
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Figure 8.9: Temperature dependence of the calculated and measured values of (a) B, and (b)
By of ethene. The solid lines represent our calculated values. The dotted line in (a) shows
values of B, calculated without quadrupole terms. The dashed and dotted lines in (b) represent
the calculated values of Couling and Graham [9] and Tammer and Hiittner [25], respectively.
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Couling and Graham [36] calculated the temperature dependence of Bg at A =632 nm,
which they found to be consistently lower than the experimental values of Buckingham
et al. [14] by between 20% and 50%. The more recent measured values of Tammer and
Hiittner [25] are generally higher than those of Buckinhgam et al. and cover a wider
temperature range. We have recalculated By, including the new quadrupole terms a3,
6y and By05. Table 8.97 shows the relative significance of the terms used to calculate

By for ethene, including the new quadrupole series.

Table 8.97: The relative contributions of the terms used to calculate By for
ethene at 202 K and 298 K.

202 K 298K

Contributing 1032 x Value % of 10% x Value % of
Term C?m8J2mol™? By C?m®J2mol™? By
a2 25.990 56.36 3.516 20.64
o3 -57.428 -124.54 -10.140 -59.54
0y 54.801 118.84 19.905 116.88
Qs 2.926 6.35 1.139 6.69
Ba0us -5.853 -12.69 0.135 0.80
XN 17.765 38.53 1.782 10.46
e 7.910 17.15 0.693 4.07
Byx . 46.112 17.031

It can be seen from Table 8.97 that the « series has definitely converged, and that
the hyperpolarizability makes a negligible contribution. Note that terms including the
quadrupole moment make a significant contribution, clearly establishing the relative im-
portance of the quadrupole series.

The temperature dependence of the measured values is given in Table 8.98 together
with the calculated values of Tammer and Hiittner [25], Couling and Graham [9] and our
new more complete calculations. Note that the errors quoted for the measured values [14]
listed in Table 8.98 were obtained from a least-squares analysis of the experimental data.
Thus, the uncertainties do not allow for systematic errors due to errors in the pressure
virial coefficients which are used to deduce the molar volume. Figure 8.9 (b) shows
a solid curve plotted through our calculated values. The dotted line shows the values
calculated by Tammer and Hiittner using the theory of Buckingham and Dunmur [82,174]
for spherical molecules. These values of Bx are even lower than those of Couling and
Graham, which are indicated by a dashed line. It can be seen that although our solid

curve lies below many of the experimental points, it clearly provides the best fit of the
measured values.
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Table 8.98: The temperature dependence of calculated values of By for ethene, and the
measured values of Buckingham et al.® [14] and Tammer and Hiittner® [25].

Ib I 111
Spherical Non-linear Non-linear
Approx. No 6 With 0

T 10®Bg® 102 BEc % 102 B % 102 Bl %
K m®mol 2 m®mol=2  Err m®mol=%2  Err m®mol=2  Err
202.4  103.0° 23 -77.67 26.28  -74.49 46.11  -55.23
211.4 90.1° 21 -76.69

214.8 63.3° 21 -66.82

222.2 49.9° 20 -59.92 22.06  -55.79 33.34  -33.19
235.6 445 18 ° -59.55

250.0 39.6 17 -57.07

262 34472 17.06  -49.82 2147  -36.85
266.6 34.2b 15 -56.14

268  26+6° 16.54  -36.38

273 2345 16.13  -29.87

280 184+3¢ 15.60  -13.33 18.94 5.22
- 284.9 32.8° 14 -57.32

286 22450 A 15.18  -31.00

294 24450 14.66  -38.92

298 18+3¢ 14.42  -19.89 17.03  -5.399
302 18+3¢ 14.19  -21.17

302.2 19.6° 13 -33.67

313 16+3¢ 13.59  -15.06 15.78 -1.38
314 18+3¢ 13.53  -24.83

333 1743 12.60  -25.88 14.39  -15.35
333.4 15.9% 11 -30.82

334 17432 , 12.54  -26.23

363.7 28.4b 10 -64.79 11.15  -60.74 12.52  -55.92
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The second refractivity virial coefficient has been measured at several different wave-
lengths, but most of the experiments have been conducted at A = 633.0 nm. The measured
values at this wavelength are only available at two different temperatures, and the scatter
at each is so large that it is not helpful to plot a graph of the experimental and theoreti-
cal values. Table 8.99 gives the relative magnitudes of the three calculated terms which
contribute to Bg, and clearly shows that convergence has been established. Table 8.100
presents the calculated and measured values of the second refractivity virial coeflicient of
ethene for a wavelength of 633.0 nm.

Table 8.99: The relative contributions of the terms used
to calculate Bg for ethene at 303 K.
Contributing 102 x Value % Contribution

Term m®mol 2 to By
Qg -11.916 -73.03
Q3 27.390 167.87
Qy 0.842 5.16

Bgr = 12.597 x 10~ 2m®mol 2

Table 8.100: Calculated and measured values of Bg

for ethene at A = 633.0 nm.
Temperature 102 B3P Ref. 10" Bgk

K m%mol—2 m%mol 2
303 17.60+2.2 [74] 16.316
108420  [75]

6.0 [24]
177404 [77]
20.3+0.8  [78]
174404 [79]

373 19.5040.50 [64] 16.945

17.84£0.3  [77]
20.140.5  [78]
17.8403  [79]

Couling and Graham [9,36] have calculated the second light-scattering virial coefficient
at A = 514.5 nm, compared the theoretical values with their measured value and the value
of Berrue et al. [92] and found the theory and experiment to be in excellent agreement.
The relative magnitudes of the various contributions to B, at T = 294.5 K are given in
Table 8.101. Although the a5 term makes a significant contribution to S, it is obvious
that the series is converging very rapidly and the aq and higher-order terms in this series
should contribute negligibly to B,. Table 8.102 gives the experimental values of Couling
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and Graham [9] and Berrue et al. [92], together with the values calculated by Couling and
Graham allowing for the non-linearity of the molecule. They had previously calculated
B, for ethene treating it as an linear molecule [7] and found that the agreement of the
calculated B, with experiment improves when the low symmetry of the molecule is taken
into account. In particular the calculated S, increases by almost 50%, although this is
masked by the much larger 2B contribution.

Table 8.101: The relative contributions of the terms used to
calculate B, for ethene at 294.92 K and A = 514.5nm [9].

Contributing 10° x Value % Contribution
Term m>mol™ to B,
g 23.42 1201
bs 2.94 -1.53
as -68.11 35.52
ay 128.97 -67.26
as 7.14 -3.72
S, 94.36 71921
2B -286.12 149.21
B/, = —191.76 x 10 °m3mol~*

B, = —2.357 x 10~°m>mol !

Table 8.102: Measured and calculated values for Bp of ethene at A\ = 514.5 nm.

Temperature 105 Bep Ref. 10° B&le %
K m®mol~? m>®mol ! Error
294.92 -2.384+0.027 [9] -2.357 -1.13
328.0 -1.78+0.07 [92] -1.671 -6.12

Thus it seems that by taking the non-linearity of ethene into account it is possible
to find reasonable agreement between calculations based on the DID model and the
available experimental data for the second virial coefficients considered here. In all cases,

new precise measurements for a wide range of temperatures would allow a more rigorous
comparison between experiment and theory.
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8.12 Conclusions

The aim of this work has been to find a unique set of Lennard-Jones and shape param-
eters for each gas which, together with known molecular properties, either experimental
or calculated, may be combined with complete molecular theories of the second virial
coefficients to yield calculated values which agree with experiment for the full range of
virial effects.

We have studied ten linear and non-linear gases, some dipolar and some non-polar,
and have achieved mixed success. For the linear polar gas fluoromethane we were able
to find a unique set of parameters which explained the available data reasonably well,
while for trifluorométhane our set of parmaters provided good fits with experiment for all
the available effects, except the second refractivity virial coefficient. For chloromethane
we have presented the results for three slightly different sets of parameters and found
that the set chosen to fit B, also yielded a good value of B, and fits the experimental
values for B(T') to within 2%. The other linear polar gas which was studied is hydrogen
chloride for which only values of B(T') and B, have been measured. We were not able
to find any set to yield measured values for B, as large as the experimental values, but
the set of parameters which we chose fit the experimental data for B(T) very well, and
gave the closest fit to B, which we could find using physically reasonable Lennard-Jones
parameters.

Of the linear non-polar gases under study, only for nitrogen could we find a set of
parameters which yielded good values for all but one of the five effects available. For
nitrogen we compared two different sets of parameters and found that our optimized set
described all of the effects, except B,, better than the set of Couling and Graham [9]. For
carbon dioxide and ethane we were unable to choose a set of parameters which provided
good agreement between theory and experiment for all of the effects. This is due in part
to the fact that much of the experimental data available has large experimental errors
and that for some of the effects only one or two measured values are available, making it
difficult to select best-fit parameters.

We then studied three non-linear gases: the polar molecules sulpur dioxide and
dimethyl ether, and the non-polar ethene. For all three molecules, we first considered
the parameter set chosen for each by Couling and Graham [9] who extended the existing
theory of B, and By for linear molecules to the more general case of non-linear molecules
and used the new theory to calculate B, and Bk for these non-linear gases. Since their
parameters yielded good fits for B(T") we used these parameters in our new non-linear
theory for the second dielectric virial coeflicient to calculate values for B, to compare
with experiment. For the ethene molecule we found that the calculated values of B, were

in good agreement with experiment. We then re-calculated By including the quadrupole
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terms and found that the agreement with experiment improved. Since these parameters
also yield good agreement with the measured values of B, and B, we conclude that this
parameter set describes all of the available data reasonably well. For sulphur dioxide,
we found that the value of B, calculated using Couling and Graham’s parameter set was
much larger than the single measured value. Thus, we found a new set of parameters
which provided a reasonably good fit for B(T') and yielded a value of B, which fell within
the experimental error of the measured value. However, calculated values of Bk and B,
using this new set of values were not as good as those calculated with Couling and Gra-
ham’s parameters. Thus, we concluded that since the parameter set chosen by Couling
and Graham provides a better fit for three of the effects and yields a value for B, which is
the correct order of magnitude, it describes all of the available effects adequately. Only a
precise set of B, values for a range of temperatures, would allow a more definite conclu-
sion. When we used Couling and Graham’s parameter set to calculate B, for dimethyl
ether, the results were very poor. As for sulphur dioxide, we found a new parameter set
to optimize B(T') and B,. This new set also yielded values for By which agree well with
experiment, and thus we concluded that the new parameter set represents a better fit for
all the available data than the original set.

A very important fact which has been clearly demonstrated by all our calculations is
that, in general, quadrupole moment terms make a significant contribution to both the
second dielectric and Kerr-effect virial coefficients, for both non-polar and polar molecules.
No future calculations could be considered to be complete without the inclusion of these
terms. An important point to note is that it is essential to establish convergence of the
various sums to arrive at any meaningful conclusions. Many of the criticisms of the DID
model have often erroneously stemmed from the failure to include sufficient terms and to
obtain convergence. Before the advent of computers and computer algebraic manipulation
packages this was completely understandable in view of the extreme complexity of the
calculations. Even now, some of the larger terms demand large inputs of personal and
computer ‘time.

In overview, we found that for four of the gases, fluoromethane, chloromethane,
dimethyl ether and ethene, a unique parameter set was found for each which described
all of the available effects reasonably well. For the three gases, trifluoromethane, ni-
trogen and sulphur dioxide, one interaction parameter set explained all but one of the
effects for which data was available to within the experimental uncertainty. For trifluo-
romethane the parameter set which yielded good agreement for B(T), B, and By could
not explain the observed values of Bg, while for nitrogen one parameter set produced
reasonable agreement for all of the effects except B, and a different set, which yielded
good agreement for B,, did not explain the remaining four effects as well as the first
set. The parameter set which explained B(T"), B and B, very well for sulphur dioxide,
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yielded a value for B, which was much larger than the experimental value, although of
the correct sign and order of magnitude. Hydrogen chloride posed a special problem as
data was only available for two of the effects, B(T') and B.. It was possible to find a set
of interaction parameters in good agreement with the measured values of B(T'), but the
experimental data for B, was an order of magnitude larger than the largest calculated
values. Since the remaining effects have not been measured for this gas it was not possible
to test the theory more rigorously. For the remaining gases carbon dioxide and ethane, it
was impossible, based on the existing measured values, to select a unique parameter set
which explained all of the effects. Definite conclusions are very often precluded by large
scatter in one or more of the sets of observed data for some of the virial coefficients. A
rigorous test of the various molecular theories for the different effects must await more
precise measurements, but on general overview instances of complete failure in explain-
ing experimental observations are few; and it would be fair to say that the mechanisms
of the various second virial coefficients are fairly well understood, despite the daunting
complexity and volume of the theories.
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Appendix A

Second Pressure Virial Coeflicient
Tables

Second pressure virial coefficients have been measured by many researchers for many gases
and their mixtures. Tables A.1,A.2 and A.3 show the data used to fit the calculated and
observed second virial coefficients of the gases considered in this study. Where available
Dymond and Smith’s [1] smoothed values have been used. For CO,, no smoothed data is
available,but the data of Angus et al. [233] are recommended by Dymond and Smith [1].
No smoothed data is presented for CHF3, so a curve was fitted to the combined data of
Sutter and Cole [5], and Lange and Stein [6].
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Table A.1: Temperature dependence of B(T) for spherical gases

Ar Ne Kr Xe CH4 CF4 SFS

T 10°B(T) T 10°B(T) T 10°B(r) T 10°B(T) T 10°B(T) T 10°B(T) T 10°B(T)
K m3mol™! K  mPmol™! K  mPmol™! K mdmol™! K mimol™! K  m3mol! K m3mol™!
81 -276.0+5 60 -24.841 110 -364+10 160 -425+10 110 -330£10 225 -172.5+1 200 -685+15
85 -251.0%3 70 -17.941 115  -333+10 170 -3784+10 120 -273+£5 250 -137.5&£1 210 -615+12
90 -225.0%3 80 -12.8+1 120  -306+5 180 -337+8 130 -235+5 275 -109.0+0.5 220 -555412
95 -202.5+2 100 -6.0+1 130  -264+5 190 -306+8 140 -207+3 300 -87.0+0.5 240 -455+10
100 -183.5+x1 125 -0.4+1 140 -229.54+5 200 -276+7 150 -182+3 325  -69.0£0.5 260 -380+8
110 -154.5+1 150  3.2+1 150 -200.7+£2 210 -254+5 160 -161+£3 350 -55.0+£0.5 280 -323%7
125 -123.0£1 200  7.6+£1 170 -159.04£2 225 -22445 180 -129+2 400 -32.0+£0.5 300 -277+5
150 -86.2+1 300 11.3+1 200 -116.9+£1 250 -184+4 200 -105+£2 450 -16.0£0.5 325 -226+5
200 -47.4+1 400 12841 250 -75.741 275 -156+4 225 -83+2 500  -4.0£0.5 350 -190+5
250 -27.9+1 600 13.8+£0.5 300 -50.5+1 300 -133£3 250 -66+£1 600  14.0£0.5 375 -159+5
300 -15.540.5 400 -22.0+1 325 -109+2 275 -53+£1 700  25.0£0.1 400 -135+4
400  -1.040.5 500  -8.1+£0.5 350 -93.24+2 300 -42+1 800  33.0£0.1 425 -113+2
500 7.0£0.5 600 1.74£0.5 400 -69.4+2 350 -26%1 450  -9742
600  12.040.5 700 8.240.5 450 -51.842 400 -15+1 475  -8142
700 15.0%1 550 -28.0+2 500 -0.5%1 500 -67+2
800  17.7+1 650 -13.0+2 600 8.5+l 525  -5642
900  20.041

1000 22.0+1
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Table A.2: Temperature dependence of B(T) for non-polar gases

H, N, CO; [233] CoHg CoHy
T 10°B(T) T 10°B(T) T 10°B(T) T 10°B(T) T 10°B(T)
K mPmol™! K m3mol! K m3mol~! K m3mol—! K m®mol!
14 -27445 75 -27548 270 -155.4+2 200 -410+10 240 -218.5+£2
15 -2304+5 80 -24347 273.15 -151.4+2 210 -37045 250 -201+2
17 -191+5 90 -19745 280 -143.3+2 220 -336%5 275 -166+1
19 -162+45 100  -160+3 290 -132.5+2 240 -282+3 300 -138=+1
22 -13245 110 -13242 298.15 -124.5+2 260 -24342 325 -11741
25 -110+3 125 -10442 300 -122.7+2 280 -211+42 350 -99+1
30 -82+3 150 -71.542 310 -113.9+2 300 -182+2 375 -84+1
40  -5242 200 -35.241 320 -105.8+2 325 -154+1 400 -71.5%1
50 -33+£2 250 -16.2+1 330 -98.5+2 350 -130.5%1 450  -51.7+1
75 -12+41 300 -4.2+0.5 340 -91.7+2 375 -111.0%1
100  -1.9+1 400 9.0+£0.5 350 -85.5+2 400 -96.0x1
150 7.1+£0.5 500 16.9£0.5 360 -79.7+2 450  -71.0%1
200 11.3+0.5 600 21.3£0.5 370 -74.4+2 500  -52.0%0.5
300 14.8+0.5 700 24.0+0.5 380 -69.5+2 550 -36.5%0.5
400 15.240.5 ' 390 -64.8+2 600 -24.5%+0.5
400 -60.5+2
410 -56.512
420 -52.84+2

430 -49.3+2




e

Table A.3: Temperature dependence of B(T) for polar gases

CH;3F _ CHF; CH;Cl CHCl; HCI

T 10°B(T) T 10°B(T) T 10°B(T) T 10°B(T) T 10°B(T)
K  m3mol™! K m3mol~! K mdmol”! K m®mol? K m3mol!
280 -24443 243.15 -311.1+4 280 -470£10 320 -1000x50 190 -456.0+7
298.1 -209+3 273.15 -234.9+4 300 -4004+10 340 -860+30 200 -392.0L7
300 -206+3 298.15 -188.0+4 320 -345+10 360 -740+30 225 -287.0%7
320 -1744+3 313.15 -165.844 340 -300%5 380 -640+30 250 -221.0%7
323.1 -170+3 323.15 -153.0%4 360 -264+5 400 -560x30 275 -175.0%+7
340 -150+3 368.15 -110.44+4 400 -21245 295 -147.146
360 -129+3 369.45 -109.4+4 450 -155=+5 300 -142.0%6
369.5 -12143 404.75 -84.6+£3 500 -111+3 330 -114.0%=6
380 -112+3 550 -80%2 370 -90.0%6
400 -99+2 600 -57+2 400 -76.0%5
416.5 -89+2 420 -68.5+5
420 -87+2 450  -59.0+5
480  -53.04%5




Appendix B
Electric Multipole Moments

A static distribution of electric charges ¢; at positions r; relative to an arbitrarily chosen
origin O within the arrangement of charges, produces an electrical potential ¢ at all points
in space. Buckingham [234] showed that if we consider any point P, with a displacement
R from the origin, where R > r;, then the electric potential is given by the multipole

expansion:

N R, (3RaRg — R%84p)
Y= Z7T—€ E;‘h‘i‘ﬁ;q‘iria"’ 2R zi:qiriarm+... , (Bl)

where the Greek subscripts denote Cartesian tensor components x, y or z, with a repeated
subscript implying summation over these components, and d,4 is the Kronecker delta.

The summations in (B.1) are the electric multipole moments of the charge distribution,
with the electric monopole, or the total charge of the distribution given by:

7= 4 (B.2)
the electric dipole moment given by:
Ha = Z QiTias (B.3)
and the primitive electric quadrupole moment given by:
Oop = Z%‘Tiaﬁ'ﬁ- (B.4)

As for other multipole moments of higher order than the dipole moment, an alterna-
tive definition of the electric quadrupole moment has been adopted, called the traceless
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quadrupole moment:
Oop = %Z% (3riaTis — T26a8) » (B.5)

which is often used by molecular physicists because it vanishes for a spherically-symmetric
electric charge distribution, and therefore has intuitive appeal. However, Raab [196] has
cautioned against using the traceless quadrupole moment indiscriminately, since there
exist electrodynamic situations where it is necessary to retain the primitive definitions of
multipole moments. The matter is controversial and we follow all earlier workers in the
field by using the traceless quadrupole throughout.
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Appendix C

Fortran programs

C.1 Example of a program to optimize B(T) and B.

for a linear non-polar molecule

PROGRAM CO20PT

PROGRAM TO CALCULATE B(E) AND B(T) FOR C02 USING

GAUSSIAN INTEGRATION WITH 64 INTERVALS FOR RANGE AND 16
INTERVALS FOR ANGULAR VARIABLES, AND USING DOUBLE PRECISION.
DATE 01-08-95 VERSION CALCULATES BE FOR 8 TEMPERATURES AND
VARIQUS VALUES OF SHAPE, R(0) AND E/K, AND B(T) FOR 13 TEMPS.

QO aa

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION COEF2(128),COEF1(16),SEP(128),THETA1(16),
+ THETA2(16) ,PHI(16),C(3),CR(4),BETEMP(8),ABE(8),BE(8,1200),
+ BEEXP(8) ,BEEXPERR(8) ,BESSE(1200) ,BTTEMP(19),ABT(19),BT(19,1200),
+ BTEXP(19) ,BTEXPERR(19) ,BTSSE(1200),D(1200) ,R0(1200) ,EK(1200),
+ ULJ(128,16,16,16) ,USHAPE(128,16,16,16) ,UELEC(128,16,16,16)

ALPHA=3.24500
ALFOP=2.90700
AMU=0.00000
THETA=-15.000
BETA=0.0000
BPERP=0.00000
BPARA=0.00000
APERP=0.000
APARA=0.00
CZZ2=0.00000
CXX=0.00000
CXZ=0.00000
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CAP=0.26000
AMIN1=0.10
AMAX1=3.0

AMIN=0.0
AMAX=3.14159265359

BTTEMP (1)=262.650
BTTEMP(2)=273.150
BTTEMP(3)=283.150
BTTEMP (4)=299.650
BTTEMP(5)=309.650
BTTEMP(6)=323.150
BTTEMP(7)=333.150
BTTEMP(8)=343.150
BTTEMP(9)=353.150
BTTEMP (10)=363.150
BTTEMP(11)=373.150
BTTEMP (12)=423.150
BTTEMP (13)=473.150

BTEXP(1)=-159.900
BTEXP(2)=-147.400
BTEXP(3)=-136.700
BTEXP(4)=-120.500
BTEXP(5)=-111.300
BTEXP(6)=-100.700
BTEXP(7)=-93.9000
BTEXP (8)=-87.1000
BTEXP (9)=-80.9000
BTEXP (10)=-75.3000
BTEXP(11)=-69.5000
BTEXP(12)=-46.3000
BTEXP(13)=-29.1000

BTEXPERR (1)=4.00
BTEXPERR (2)=4.00
BTEXPERR(3)=4.00
BTEXPERR (4)=3.00
BTEXPERR(5)=3.00
BTEXPERR(6)=3.00
BTEXPERR (7)=3.00
BTEXPERR(8)=3.00
BTEXPERR(9)=3.00
BTEXPERR (10)=2.00
BTEXPERR(11)=2.00
BTEXPERR (12)=2.00
BTEXPERR (13)=2.00

BETEMP (2)=295. 15

245



180

+ + + + + +

BETEMP (3)=302.55
BETEMP (4)=322.85
BETEMP (5)=348.15
BETEMP (6)=369.45
BETEMP(7)=373.15
BETEMP(8)=423.15

BEEXP(2)=64.0000
BEEXP (3)=57.6000
BEEXP (4)=47.2667
BEEXP (5)=46.4000
BEEXP (6)=36.0000
BEEXP(7)=34.7000
BEEXP (8)=30.0000

BEEXPERR(2)=10.0000
BEEXPERR (3)=6.00000
BEEXPERR (4)=8.26667
BEEXPERR (5)=5.00000
BEEXPERR(6)=4.00000
BEEXPERR(7)=3.50000
BEEXPERR (8)=3.00000

NLOW=1
NSEP=128
NANGLE=16

CALL GAUSSPT(NLOW,NSEP,NSEP,AMIN1,AMAX1,SEP,COEF2)
CALL GAUSSPT(NLOW,NANGLE,NANGLE,AMIN,AMAX,THETA1,COEF1)

DG 180 N=1,NANGLE
THETA2(N)=THETA1(N)
PHI(N)=THETA1(N)

CONTINUE

DO 7040 INDX4=1,NANGLE
DO 7050 INDX3=1,NANGLE
DO 7060 INDX2=1,NANGLE
DO 7070 INDXi=1,NSEP

E1=8.98758E-26*0.75*THETA**2% (1.-5.%(COS (THETA1(
INDX2)) ) **2-5, % (COS(THETA2 (INDX4)) ) **2+17 .x (COS (
"THETA1 (INDX2) ) ) **2x (COS (THETA2 (INDX4) ) ) %%2+2 . %
(SIN(THETA1(INDX2)) ) **2%(SIN(THETA2(INDX4))) %%
2% (COS (PHI (INDX3)))**2+16.*SIN(THETA1 (INDX2) ) %
COS (THETA1 (INDX2))*SIN(THETA2 (INDX4))*COS (THETA
2(INDX4))*C0S (PHI (INDX3)))/(SEP(INDX1) **5)
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7070
7060
7050
7040

F1=8.07765E-29%(-9./8.) *ALPHA*THETA**2% (4 .*C0S

+ (THETA1 (INDX2) ) *x4+4 . *COS (THETA2 (INDX4) ) %4+
+ SIN(THETA1(INDX2) ) **4+SIN(THETA2 (INDX4)) **4)
+ / (SEP (INDX1) **8)

UELEC(INDX1,INDX2,INDX3,INDX4)=E1+F1

CONTINUE
CONTINUE
CONTINUE
CONTINUE

N=0

DO 200 1D=180,230
SHAPE=ID*0.001

DO 210 IR=390,410,5
R=IR*0.001

DO 220 IE=1860,1960,10
PARAM2=IE*0.1+0.0

M=0

BTSSERR=0.00

DO 6230 ITEMPK=1,11
TEMPK=BTTEMP (ITEMPK)

51=0.000000
52=0.000000
53=0.000000
S54=0.000000

DO 6040 INDX4=1,NANGLE
53=0

DO 6050 INDX3=1,NANGLE

52=0

D0 6060 INDX2=1,NANGLE

51=0

DO 6070 INDX1=1,NSEP

FIﬁ(6.022E23/4.)*((SEP(INDXl))**2*SIN(THETA1(INDX2))*SIN(

+ THETA2(INDX4)))
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6000
6010

6070

6060

6050

6040

6230

ULJ(INDX1,INDX2,INDX3,INDX4)=4.*PARAM2#*1.380622E-23*

+ ((R/SEP(INDX1))**12-(R/SEP(INDX1))**6)

USHAPE (INDX1,INDX2,INDX3,INDX4)=4.*SHAPE*xPARAM2*

+ 1.380622E~23%(R/SEP (INDX1) ) *%12%(3.*
+ COS(THETA1(INDX2))*%2+3.%COS(THETA2 (INDX4) ) **2-2.)

UTOT=ULJ (INDX1,INDX2,INDX3,INDX4)

+ +USHAPE (INDX1,INDX2,INDX3,INDX4)
+ +UELEC (INDX1,INDX2,INDX3,INDX4)

G3=-1.*UTOT/ (TEMPK*1.380622E-23)
IF(G3.LT.-85) GO TO 6000
G4=2.71828%%G3
GO TO 6010
G4=0
PROD=FI*(1.-G4)
S1=S1+PROD*COEF2(INDX1)
CONTINUE
$2=52+31*COEF1 (INDX2)*1.0E-09
CONTINUE
S3=53+32*COEF1 (INDX3)
CONTINUE
S4=34+S3*COEF1 (INDX4)
CONTINUE
ABT (ITEMPK)=S4%2.E-12

ERR=ABT (ITEMPK)~1.*BTEXP (ITEMPK)
BTSSERR = BTSSERR + ERR*%*2

CONTINUE

IF (N .EQ. 1) THEN
IF (BTSSERR .LT. BTSSE(1) ) THEN
M=1
ELSE
M=2
ENDIF
ENDIF

IF (N .GT. 1) THEN

DO 400 IC=1,N
IF(BTSSERR .LT. BTSSE(IC) ) THEN
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M=IC

GOTO 410
ENDIF
400 CONTINUE
M=N+1
410  ENDIF

BESSERR=0.0D0
DD 4000 ITEMPK=2,8
TEMPK=BETEMP (ITEMPK)

S1=0.000000
§2=0.000000
$3=0.000000
S4=0.000000
C __________________________________
C CALCULATION OF INTEGRAL
C __________________________________
DO 40 INDX4=1,NANGLE
$3=0 ,
DO 50 INDX3=1,NANGLE
§2=0
DO 60 INDX2=1,NANGLE
S1=0
DO 70 INDX1=1,NSEP
C __________________________________
C DETERMINE BE
C __________________________________
ST1=SIN(THETA1(INDX2))
ST2=SIN(THETA2 (INDX4))
CT1=COS(THETA1 (INDX2))
CT2=C0S (THETA2(INDX4))
CT12=-1.%C0OS(THETA1 (INDX2) ) *C0S (THETA2 (INDX4) ) +SIN(THETA1(
+ INDX2) ) *SIN(THETA2(INDX4))*COS (PHI (INDX3))
C ______________________________________________
¢ DETERMINE DELTA EPSILON THETA 2 ALPHA 2
e

T2A24A = CT1i*x2% (CAP* (1350*%CT2**4~540%CT24%2+54) +CAP**2% (675%CT2%*4
1 —270%CT2%%2+27) ) +CAP** 2% (45%CT24*4-18%CT2%%2+9) +45xCT2#x4+CAP* (
2 -90*CT2#*4+36%CT2%%2~18)+CT1*CT12* (CAP* (1080*CT2**3-216%CT2)+CA
3 P**2%(540%CT2**3-108*CT2) ) +CT12%*2% (108*4CAP** 2+ CT2**2+216*CAP*C
4  T2%%2)-18%CT2**2+9

T2A2B=-( ((675*CAP-675%CAP*%2) *CT1**2+135*xCAP*%2-135%CAP) *CT2#*4+ ( (
1 135%CAP*%2+270%CAP) *CT1-2025%CAP**2+CT1%%*3) *CT12*CT2#*3+ ((162*C
2 AP**2-1620%CAP**2%CT1%%2) *CT12%*2+(675*CAP~6T5*CAP**2) *CT1**4+ (
3 855%CAP*%2-900%CAP+45) *CT1%%2-108*%CAP**2+135%CAP-27) *CT2** 2+ ( ( (
4 135%CAP**2+270%*CAP) *CT1**3+(207*CAP**2-252*+CAP-36) *CT1) *CT12-32
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5
6
7

4*CAP**2*CT1*CT12**3)*CT2+162*CAP**2*CT1**2*CT12**2+(135*CAP**2
—135%CAP) *CT1 %% 4+ (~108*CAP*%2+135%CAP-27 ) *CT1%%2+9*CAP**2-18%CA
P+9)

c@) = ALPHA**2«THETA*%2/9 . % (T2A2A+T2A2B) /SEP (INDX1) **6%ST1%ST2

+

*0.24813987787284198000E-27/ (3. 0*TEMPK*1.380622E-23)

T2A3A = ((-54675%CAP*%3-109350%CAP**2) *CT1*%4+(6075*CAP**3+31590%C

v O N OO W N

AP*%2-4860%CAP) *CT1%%2+972%CAP**3-1944%CAP**2+972*CAP) *CT2*%4+(
(~-61965%CAP**3-123930%CAP*%2) *CT1**3+(6075%CAP**3+19926%CAP**2-
1944*CAP)*CT1)*CT12*CT2**3+(((-23328*CAP**3—46656*CAP**2)*CTi**
2+1458+%CAP**3+2916%CAP*%2) *CT 1242+ (15795%CAP*%3+26730%CAP**2-9
720%CAP) *CT1% %4+ (-405%CAP**x3-9720*CAP**2+5346*CAP-1782) *CT1%*2-
486%xCAP**3+1458%CAP*%2-1458*CAP+486) *CT2%*2+((-2916%CAP**3-5832
*CAP**2) *CT1*CT12%%3+( (9963*%CAP**3+17982*CAP**2-3888%CAP) *CT1%x*
3+ (~405%CAP**3-2430%xCAP**2+972%CAP-324) *CT1) *CT12) *CT2+(1458*CA
P*%3+2916%CAP*%2) *CT1**2%CT12%%2+ (~972*xCAP**3-972xCAP**2+1944%C
AP) *CT1%*4+(-486%CAP**3+1458%CAP**2-1458*CAP+486) *CT1**2+162*CA
P*%3-486%CAP**2+486*CAP-162

T2A3B = CT1ix%2% (CAP**2% (54675%CT2%x*6-81405%CT2**4+27459%CT2%*2-267

e O 00 NO G WN -

A -

3)+CAP**3% (-54675%CT2%*6+71685%CT2%*4-20655%CT2+*2+1701) +CAP* (9
T20%CT2%*4-6804%CT2%%2+972) ) +CAP**3% (4860*CT2**%6-4698*CT2%*4+12
96%CT2%*2-162) +CAP* (4860*CT2**6-8262+CT2x*4+3888%CT2+*2-486) +CA
Pr*2% (-9720*CT24*6+11178%CT2%*4-3888*CT24%2+486)+CT12+ (CT1* (CAP
#% 2% (25515%CT2%%5-37422%CT2%*3+7047+CT2) +CAP**3% (-25515%CT2%*5+
38394*CT2%*x3-6075%CT2) +CAP* (~972%CT2%*3-972%CT2) ) +CT1%*3% (CAP*x
3% (-164025*%CT2%*5+21870*CT2%%*3+2187*CT2) +CAP** 24 (43740*CT2**3-8
748%CT2) ) )+CT1%%4* (CAP**2% (54675*%CT2%%4-21870%CT2**2+2187) +CAP*
*3% (—-54675%CT2%*4+218704%CT2%*2-2187) ) +CT124%2% (CAP**2% (1458+CT2
*k4-3402*CT2%%2) +CAP**3% (5346%CT2**2-1458*CT24*4) +CT 1 4% 2% (CAP**
3% (-185895%CT24*4+39366%CT2%*2-2187) +8748%CAP**2xCT2#*2) ~1944*C
AP*CT2%%2) +1782%CT2%%4+CAP*%3%CT1*CT12%*3% (8748*CT2-69984*CT2%*
3)-8748*CAP**3%CT12%*4*CT2%*2-1296%CT2**2+162

C(2) = ALPHA%*3*THETA*%2/9.%(T2A3A+T2A3B) /SEP (INDX1) **9*ST1%ST2

*0.22301700027584438200E-30/ (3.0*TEMPK*1.380622E-23)

T2A4A1= ((492075%CAP**4+984150%CAP**3)*CT1%*4+(131220%CAP**2~-131

D O W N =

220*CAP*%3) *CT1#%2-3888*CAP**4+11664*CAP**3-11664*CAP**2+3888
*CAP) *CT2%%6+ ( (721710%CAP**4+1443420%CAP**3) #CT 13+ (96228+CA
P*%2-96228%CAP**3) *CT1) *CT12*CT2% %5+ ( ((395847*CAP**4+791694%C
AP#%3) *CT1%*2-17496%CAP**3+17496%CAP**2) *CT12%*2+ (-251505%CAP
*%4-448335%CAP**3+109350*%CAP**2) *CT1**4+(~18225%xCAP**4+59049%
CAP**3-91854%CAP**2+51030%CAP) *CT1%%2+2592%CAP**4-10368*CAP**
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7 3+15552*CAP**2-10368*CAP+2592)*CT2**4+((96228*CAP**4+192456*C
AP**S)*CT1*0T12**3+((—253692*CAP**4—463644*CAP**3+87480*CAP**
2)*CT1**3+(—14580*CAP**4+21870*CAP**3—34992*CAP**2+27702*CAP)
*CT1)*CT12)*CT2**3+((8748*CAP**4+17496*CAP**3)*CT12**4+((—831
OG*CAP**4-157464*CAP**3+17496*CAP**2)*CT1**2-2916*CAP**4+2916
*CAP)*CT12**2+(41553*CAP**4+61236*CAP**3—43740*CAP**2)*CT1**4
+(7290*CAP**4-17496*CAP**3+34992*CAP**2—24786*CAP)*CT1**2-162
O*CAP**4+6480*CAP**3—9720*CAP**2+6480*CAP-1620)*CT2**2+((—874
8*CAP**4-17496%CAP**3) *CT1#CT12%%3+((21870*CAP**4+34992*CAP**
3-17496%CAP*%2) *CT1%*3+(2916%CAP**4-4374*CAP**3+8748*CAP**2-7
290*CAP)*CT1)*CT12)*CT2+(2187*CAP**4+4374*CAP**3)*CT1**2*CT12
*%2+ (~2187*CAP**4-2187*CAP**3+4374*CAP*%2) *CT1%*4

©

A

N = S NV

T2A4A2 = (-T29%CAP**
3 4+2187*CAP*%3-4374%CAP**2+2916%CAP) *CT1%%2+324*CAP**4-1296%CA
4  P*%3+1944xCAP**2-1296%CAP+324

T2A4A = (T2A4A1+T2A4A2)
+ * ALPHA**4*xTHETA**2/9 . *ST1%ST2% .20043766172607939427E-33
+ /SEP (INDX1)*%12/(3.0*TEMPK*1.380622E-23)

T2A4B1 = CAP**3%((-492075%CT1%%4+207765*%CT1%*2-21870) *CT2**6+(76
545%CT1-360855%CT1%#%3) *CT12*CT2%*5+ ( (-54675*CT1**2-2187)*CT12
*%2-492075%CT1*%6+841995*%CT1%*4-262440*CT1**2+30618) *CT2%*4+(
4374%CT1*CT12% %3+ (-426465%CT1*%5+593406*CT1%*3-76545%CT1)*CT1
2) *CT2x %3+ ((-113724*CT1#%4+137781*CT1%#2+2187) *CT12+*2+185895
*CT1*%6-262440%CT1%%4+82539%CT1%%2-12636) *CT2%*2+((13122%CT1-
8748%CT1*%3)*CT12%%3+(80919%CT1%*5-98415*CT1#*3+11826*CT1) *CT
12) *CT2+(4374*CT1%*4-8748*%CT1#%2) *CT12%*2-17496*CT1%*6+21870%
CT1#**4-8262%CT1%%2+1296)+CAP**2% ( (10935~54675%CT1**2) *CT2%*6~-
21870%CT1%CT12*CT2**5+(-142155*%CT1**4+136323*%CT1**2-27702) *CT
2% %4+ (729%CT1%#3+18225%CT1) *CT12%CT2**3+ ((43740*%CT1%*2-8748) *
CT12%%2-43740%CT1%*6+136323*%CT1**4-855364%CT1%*2+16767 ) *CT2**2
+(8748%CT1*CT12%%3+ (~17496%CT1%%5+35721*%CT1*%*3~-13365+%CT1)*CT1
2) *CT2+8748*CT1%%6-18954*%CT1%%4+10206*%CT1**x2-1944) +CAP* ((8262
-34020*CT1*%2) *CT2%%4-9234*CT1*CT12*xCT2**3+(-20898*CT1**4+351
54%CT1%%2-8262) *CT2%*2+(5994*CT1-4860%CT1%*3) *CT12*CT2+5346%C
T1*x4-5346%CT1%%2+1296)+(972-2592*%CT1%*2) *CT2*x*2+324*CT1*xCT12
*CT2+972*CT1%%2-324

O 00 ~N O O W

A e ee

@ 9V

T2A4B2 = CAP**4%((492075*CT1%**4-153090%CT1**2+10935) *CT2**x6+ (147
6225%CT1**5+65610*%CT1**3-54675+%CT1) *CT12*CT2**5+((2165130*CT1
*%4-260253%CT1*%2+2187 ) *CT12%%2+492075%CT1%*%6-699840%CT1**4+1
60137*CT1*%2-11178) *CT2**4+((1187541%CT1%*3-115911%CT1) *CT12*
*3+(131220%CT1#*5-535086%CT1%*3+67554*CT1) *CT12) *CT2**3+( (288
684*CT1#*2-13122) %CT12%*4+(-201204*CT1**4-142155%CT1**2+6561)
*CT12%%2~142155%CT1%%6+147015%CT1**4-29565%CT1**24+3159) *CT2**
2+(26244%CT1*CT12%%5+(-102789%CT1%*3-15309%CT1) *CT12%*3+ (-634
23*%CT1*x5+67554%CT1%%3-4779%CT1) *CT12) *CT2-13122*CT1**x2%xCT12%

0 N O O W -
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9

*4+(8748*CT1**2—4374*CT1**4)*CT12**2+8748*CT1**6-8262*CT1**4+
2430%CT1**x2-324)

T2A4B = (T2A4B1+T2A4B2)

+
+

*ALPHA**4*THETA%*2/9 . *ST1%ST2x . 20043766172607939427E-33
/SEP (INDX1) **12/ (3.0*TEMPK*1.380622E-23)

T2A4C1 = CAP*%3% ( (984150%CT1**6-503010%CT1%*4+83106+CT1%%2-4374)

v OO N U WN R

A ~e

*CT2%%4+(1443420%CT1**5-507384*CT1#*3+43740%CT1) *CT12*CT2**3+

'((791694*CT1**4—166212*CT1**2+4374)*CT12**2—87480*CT1**6+8310

E*CT1**4-34992xCT1**x2+4374) *CT2%*2+ ( (192456*CT1%%3-17496%CT1)
*CT12%%3+ (~64152%CT1%*5+32076%CT1%*3-8748%CT1) *CT12) *CT2+1749
G6*CT1%*2%xCT12%%4-11664%CT1x*4*CT12%*2-10368*CT1**4+6480*CT1**
2-1296) +CAP** 2% ( (54675*CT1%%4-21870%CT1%*2+2187) xCT2%%4+ (4374
O*CT1%%3-8748%CT1) *CT124CT2%*3+(8748*CT1**2*CT12%%*2+174960*CT
1%x%6-118827*CT1**4+42282%CT1%%2-5103) *CT2**2+(128304*CT1**5-5
2488%CT1%%3+11664%CT1) *CT12*CT2+(23328%CT1%*%4-2916%CT1%*2) *CT
12%%2-11664%CT1**6+15552%CT1%*4-9720*CT1*%2+1944) +CAP* ((34020
*CT1%%4-16524*%CT1*%2+1944) *CT2#*2+(18468*CT1**3-4860%CT1) *CT1
2%CT2+1944%CT1%*2%CT12%%2+7776%CT1%*6-10368*CT1*%4+6480*CT1**
2-1296)+2592*CT1%*4-1620%CT1%%2+324

T2A4C2 = CAP**4x ((492075*CT1%*6-142155*CT1**4~2187%CT1#%2+2187) *

DA bW N

CT2%*4+ (721710%CT1%%5-166212%CT1%*3+4374*CT1) *CT12%CT2**3+((3
95847*CT1x*x4-65610%CT1*%2+2187) *CT12**2-87480*CT1**6+1701*CT1
*k4+9234%CT1%%2-1215) #CT2x* 2+ ( (96228%CT1#*3-8748%CT1) *CT12%%3
+(~64152%CT1%*5+1944*CT1#%*3+1944%CT1)*CT12) *CT2+8748*CT1x*2%C
T12%%4+ (972%CT1*%2-11664*CT1%%4) *CT12+x2+3888*CT1**x6+2592*CT1
*%4-1620%CT1**x2+324)

T2A4C = (T2A4C1+T2A4C2)

-4
+

*ALPHA**4*THETA**2/9 . *ST1xST2%.20043766172607939427E-33
/SEP (INDX1)**12/(3.0*TEMPK*1.380622E~23)

T2A4D1 = CAP**3*((-492075*CT1*%4+185895*CT1**2~17496) *CT2**6+ (80

e OO N O WN

A e

919*CT1-426465%CT1%%3) *CT12%CT2**5+ ( (4374~113724*CT1%*2) *CT12
*%2-492075*%CT1**6+809190*CT1#%4-260253*CT1**2+21870) *CT2**4+ (
(-426465*CT1**x5+584658*%CT1*%3-111537*CT1)*CT12-8748*CT1*CT12%
#3) *CT24*3+((-113724*CT1#*4+113724%CT1%*2-8748) *CT12**2+18589
5*%CT1%%6-260253*CT1%*x4+89100%CT1%*x2-8262) *CT2* %2+ ( (80919%CT1*
*5-111537*CT1%%3+24948%CT1) *CT12-8748*CT1**3*%CT12%*3) *CT2+ (43
T4*CT1*%4-8748%CT1%%2) *CT12%%2-17496*CT1**6+21870%CT1%%4-8262
*CT1%*2+1296) +CAP**2* ( (8748-43740*CT1**2) *CT2**6-17496*%CT1*CT
12*CT2#%5+(-142155*%CT1%*4+118827*CT1#*2-18954) *CT2#x*4+ (35721 %
CT1-34263*CT1%%3) *CT12*CT24*3+(26244*CT1**2*CT12**2-43740*CT1
*%6+118827*CT1%%4-70227*CT1%%2+10206) *CT2* %2+ (8748+CT1*CT12%x
3+(-17496*CT14*x5+35721%CT1#*3-17739%CT1) *CT12) *CT2+8748*CT 1 %%
6-18954*CT1#%4+10206*%CT1%%2-1944)+CAP*((5346-20898*CT1**2) *CT
24%4~4860%CT1*CT12%CT2%%3+ (-20898%CT1%*4+24948*CT1%*2-5346) *C
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? T2**2+(4536*CT1—4860*CT1**3)*CT12*CT2+5346*CT1**4—5346*CT1**2
@ +1296)+(972-2592*CT1**2)*CT2**2+324*CT1*CT12*CT2+972*CT1**2—3
1 24

TOA4D?2 = CAP#**4x* ((492075*CT1%*4-142155%CT14*2+8748) xCT2%*6+(1476
225*CT1**5+131220*CT1**3-63423*CT1)*CT12*CT2**5+((2165130*CT1
*%4-201204%CT1%*2-4374) *CT12%%2+492075*CT1**x6-667035*CT1**4+1
62324*CT1**2—8262)*CT2**4+((1187541*CT1**3—102789*CT1)*CT12**
3+(131220%CT1**5-491346*CT1%*3+80676+CT1) *CT12) *CT2%*3+( (2886
84%CT1%%2-13122) *CT12%%4+(-201204*CT1%%4-100602*CT1%*2+8748) *
CT12%%2-142155%CT1*%6+162324%CT1%%4-41229%CT1#*2+2430) *CT2%%2
+(26244*CT1*CT12**5+(—102789*CT1**3—2187*CT1)*CT12**3+(—63423
*CT1%*5+80676*CT1#*3-12069%CT1)*CT12) *CT2-13122+%CT1#*2*xCT12%*
4+(8748%CT1**2-4374%CT1%*4) *CT12%*2+8748%CT1%*6-8262%CT1**4+2
430%CT1*%2-324)

W0 N O WN =

T2A4D = (T2A4D1+T2A4D2)

+ *ALPHA**4xTHETA**2/9 . *xST1%ST2* . 20043766172607939427E-33

+ /SEP (INDX1)*%12/(3.0%TEMPK*1.380622E~23)
C(3)=T2A4A+T2A4B+T2A4C+T2A4D

CR(2)=ALPHA**2% (-3, *xCAP**2xST1%*2+C0S (PHI (INDX
1 3))#*2%xST2**2-3 . *CAP**2%CT1%ST1
2 *COS(PHI(INDX3))*CT2%ST2
3  +(6.*CAP**2%CT1%*2-3.*CAP**2+3.*CAP)*CT2
4  **%2+(3.%CAP-3.*%CAP#%2) *CT1%%2+2  *CAP**2-
5 2.%CAP)/SEP(INDX1)*1.22708E-3*ST1*ST2

CR(3) = ALPHA*#*3% ((3*CAP**3+6*CAP*%2)*ST1%*x2xC0S (PHI (INDX3) ) **2

+ *ST24%2+ (12*xCAP**3+24%CAP*%2) *CT1*ST1*C0S (PHI (INDX3) ) *CT2*ST2
+  +((12*CAP**3+24%CAP**2) *CT1*%*2+3%CAP**3-6xCAP**2+3%CAP) *CT2%*2
+  +(-3%CAP*%3-3%CAP**2+6%CAP) *CT1%%2-2%CAP**3+3%CAP**2~-

+ 3*%CAP+2) /SEP (INDX1) **4*1.102844E-06*ST1%ST2

CR(4) = ALPHA**4x (—27+CAP**4%CT12%%4~-243+%CAP**x4*CT1*CT2*CT12%*3
+(~729%CAP**4%xCT1#*%2%CT2%%2+24%CAP**4—12%CAP**3-12%CAP**2) *
CT12%*2+( ((81*CAP**3-81%CAP**4) *CT1-729*CAP**4*CT1%*3) *CT2**3
+((81*CAP**3-81*CAP**4) *CT1x*3+(135*CAP**4—108%CAP*%3~27*CAP**
2)*CT1)*CT2) *CT12+ ((243*CAP**3~243*CAP#*4) *CT1*%2+27*CAP**4
—~54%CAP**3+27*CAP**2) xCT2#%*4+ ( (243*xCAP*%3-243*%CAP**4) *CT1
*%k 4+ (243%CAP**4-324*CAP**3+81%CAP*%2) *CT1%*2-18*CAP**4
+54%CAP**3-54%CAP**2+18%CAP) *CT2#%2+ (27 *CAP**4-54%CAP*%3
+27*CAP**2) *CT1 % %4+ (~18*%CAP**4+54%CAP**3~54%CAP**2+18*CAP)

+ + © + O + W +
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+  *CT1**2-8*CAP**3+18*CAP**2-12+4CAP+2) /SEP (INDX1) **7*ST1%ST2
+ *9.91187E-10

c _____________________________________________

C SUM ENERGY TERMS AND DIVIDE BY (-KT)

C _____________________________________________

UTOT=ULJ(INDX1,INDX2,INDX3,INDX4)+USHAPE(INDX1,INDX2,INDX3,INDX4)
+ +UELEC (INDX1,INDX2,INDX3,INDX4)

G3=-1.*UTOT/ (TEMPK*1.380622E-23)
IF(G3.LT.-85) GO TO 5000
G4=2.71828%%G3
GO TO 5010

5000 G4=0

5010 CT0T=0.00

DO 5011 NCTOT=2,4
CTOT=CTOT+CR (NCTOT)
5011 CONTINUE
DO 5012 NCTOT=1,3
CTOT=CTOT+C (NCTOT)
5012 CONTINUE

PROD=G4*CTOT
51=S1+PROD*COEF2 (INDX1)

70 CONTINUE
52=52+S1*COEF1 (INDX2) *1.0E-09

60 CONTINUE
53=S3+52*COEF1 (INDX3)

50 CONTINUE
54=S4+S3*COEF1 (INDX4)

40 CONTINUE
ABE(ITEMPK)=S4%1.0E12

ERR=ABE (ITEMPK) -BEEXP (ITEMPK)
EXCESS=ABS (ERR) -BEEXPERR (ITEMPK)
IF (EXCESS .LT. 0.0D0) EXCESS=0.0DO

BESSERR=BESSERR+ERR**2+EXCESS**2
IF (M .GT. 1) THEN
IF (BESSERR .GT. BESSE(M-1) ) GOTO 220
ENDIF
4000 CONTINUE
IF (N .EQ. 0 ) THEN
D(1)=SHAPE
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RO(1)=R
EK (1)=PARAM2
DO 470 ITEMPK=1,1i1
BT (ITEMPK,1)=ABT (ITEMPK)
IF (ITEMPK .LE. 8) BE(ITEMPK,1)=ABE(ITEMPK)
470 CONTINUE
BTSSE (1)=BTSSERR
BESSE (1)=BESSERR
N=1
GOTO 220
ENDIF

IF (M .LE. N) THEN
DO 420 IC=M,N
IF (BESSERR .GT. BESSE(IC)) THEN

J=IC
GOTO 430
ENDIF

420 CONTINUE
J=N+1
N=M
GOTO 500

430 IGAP=J-M-1

IF (IGAP .EQ. -1) THEN
DO 440 IC=N,M,-1
D(IC+1)=D(IC)
RO(IC+1)=RO(IC)
EK(IC+1)=EK(IC)
DO 480 ITEMPK=1,11
BT(ITEMPK,IC+1)=BT(ITEMPK,IC)
IF (ITEMPK .LE. 8) BE(ITEMPK,IC+1)=BE(ITEMPK,IC)
480 CONTINUE
BTSSE(IC+1)=BTSSE(IC)
BESSE(IC+1)=BESSE(IC)
440 CONTINUE
N=N+1
ELSEIF (IGAP .GT. 0) THEN
DO 450 IC=M+1,(N-IGAP)
NC=IC+IGAP
D(IC)=D(NC)
RO(IC)=RO(NC)
EK(IC)=EK(NC)
DO 490 ITEMPK=1,11
BT (ITEMPK,IC)=BT(ITEMPK,NC)
IF (ITEMPK .LE. 8) BE(ITEMPK,IC)=BE(ITEMPK,NC)
490 CONTINUE
BTSSE(IC)=BTSSE(NC)
BESSE (IC)=BESSE (NC)
450 CONTINUE
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N=N-IGAP
ENDIF
ENDIF

500 D(M)=SHAPE
RO(M)=R
EK (M) =PARAM2
DO 495 ITEMPK=1,11
BT (ITEMPK,M)=ABT (ITEMPK)
IF (ITEMPK .LE. 8) BE(ITEMPK,M)=ABE(ITEMPK)
495  CONTINUE
BTSSE (M) =BTSSERR
BESSE (M) =BESSERR

IF (M .GT. N) N=M

220 CONTINUE
210 CONTINUE

OPEN(UNIT=6,FILE=’C02BAD3’ ,FORM="FORMATTED’)
WRITE(6,300)
300  FORMAT(1X,’C02BAD3’,/,’30/9/96°,/)

WRITE(6,2160) ALPHA

2160 FORMAT(1X,’ALPHA(STATIC):’,F10.5)
WRITE(6,2165) ALFOP ‘

2165 FORMAT(1X,’ALPHA(OPTICAL):’,F10.5)
WRITE(6,2180) AMU

2180 FORMAT(1X,’MU:’,F10.5)
WRITE(6,2190) THETA

2190 FORMAT(1X,’THETA:’,F10.5)
WRITE(6,2191)BPARA

2191 FORMAT(1X,’BPARA:’,F10.5)
WRITE(6,2192)BPERP

2192 FORMAT(1X,’BPERP:’,F10.5)
WRITE(6,2193)APARA

2193 FORMAT(1X,’APARA:’,F10.5)
WRITE(6,2194) APERP

2194 FORMAT(1X,’APERP:’,F10.5)
WRITE(6,2195)CZZ

2195 FORMAT(1X,’C3333:’,F10.5)
WRITE(6,2196)CXX

2196 FORMAT(1X,’C1111:’,F10.5)
WRITE(6,2197)CXZ

2197 FORMAT(1X,’C1313:’,F10.5)
WRITE(6,2200)CAP

2200 FORMAT(1X,’KAPPA:’,F10.5)
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2235

310

311

3220

3210

3230

61565

800

3175

3155

810

3177
460

200

QO aa

WRITE(6,2235) AMIN1, AMAX1
FORMAT(1X,’MIN AND MAX POINTS OF RANGE:’,2(F10.5,3X),/)

WRITE(6,310) NANGLE

FORMAT (1X,’ANGLES:’,I3,’ INTERVALS’)
WRITE(6,311)NSEP

FORMAT(1iX,’SEP: ’,I4,’ INTERVALS’)

DO 460 IC=1,N
WRITE(6,3220)D(IC)

FORMAT(/,1X,’°D: ’,F6.3)
WRITE(6,3210)RO(IC)
FORMAT (1X, ’RO: ?,F6.3)

WRITE(6,3230)EK(IC)
FORMAT (1X, ’E/K: » F8.3,/)

b0 800 ITEMPK=1,il
ERR=BT (ITEMPK, IC)-BTEXP (ITEMPK)
PERCERR=ERR/BTEXP (ITEMPK) *100.00

WRITE(6,6155)BTTEMP (ITEMPK) ,BT (ITEMPK,IC) ,ERR,PERCERR

FORMAT(1X, >TEMPERATURE:’ ,F10.1,° B(T):’,F10.2,

+ F10.2,F10.2)

CONTINUE
WRITE(6,3175)BTSSE(IC)
FORMAT(1X,’SUM OF SQUARES OF ERRORS:’,F20.2,/)
BESSERR=0.0d0
DO 810 ITEMPK=2,8
ERR=BE (ITEMPK , IC) -BEEXP (ITEMPK)
PERCERR=ERR/BEEXP (ITEMPK) *100. 00

WRITE(6,3155)BETEMP (ITEMPK) ,BE (ITEMPK,IC) ,ERR,PERCERR

FORMAT(1X, *TEMPERATURE:’,F10.1,° B(E):’,F10.2,

+ F10.2,F10.2)

BESSERR=BESSERR+ERR**2

CONTINUE

WRITE(6,3175)BESSERR
WRITE(6,3177)BESSE(IC)

FORMAT (1X,’SS ERRORS + SS EXCESS:’,F20.3,/)
CONTINUE

CLOSE(UNIT=6)
CONTINUE

END

Usage: Set NLOW=1
NDIM=no. of quadrature points required
NGAUSS=no. of quadrature points required
A=lower limit of integral
B=upper limit of integral
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QO

Q

X=quadrature points (array of dimension NGAUSS)
W=Weights (array of dimension NGAUSS)
The subroutine permits a little more generality than above, but you
almost certainly won’t need it.

IN X EN W KOMEN DE NGAUSS GAUSSPUNTEN EN GEWICHTEN, BEREKEND OP HET
INTERVAL (A,B);DIMENSIES VAN X EN W: NLOW:NDIM

EIS: NLOW<=1. DE ELEMENTEN VAN NLOW TOT 1 WORDEN NIET GEVULD
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION X(NLOW:NDIM),W(NLOW:NDIM)

GN=0.5/NGAUSS
EXTRA=1.0/ (.4*NGAUSS*NGAUSS+5.0)
XZ=-GN
NT=0
NTEKEN=0
PNM2=1.0
PNM1=XZ
DO 10 I=2,NGAUSS
PNM1XZ=PNM1*XZ
PN=2.0*PNM1XZ-PNM2- (PNM1XZ-PNM2) /I
PNM2=PNM1
10 PNM1=PN
MTEKEN=1
IF(PN.LE.0.0) MTEKEN=-1
IF ((MTEKEN+NTEKEN) .EQ.0) GO TO 15
GO TO 20
15 NT=NT+1
X(NT)=XZ
20 NTEKEN=MTEKEN
IF((1.0-XZ) .LE.EXTRA) GO TO 30
XZ=XZ+(1.-XZ*XZ) *GN+EXTRA
GO TO 5
30 CONTINUE

DO 60 I=1,NT
XZ=X(I)
DELTA2=1.

35 PNM2=1.0
PNM1=XZ
PNM1AF=1.0
Z=.5+1,5%XZ*XZ
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DO 40 K=2,NGAUSS
PNM1XZ=PNM1i*XZ
PN=2.0%PNM1XZ-PNM2- (PNM1XZ-PNM2) /K
PNAF=XZ*PNM1AF+K*PNM1
Z=Z+(K+0.5) *PN*PN
PNM2=PNM1
PNM1=PN
PNM1AF=PNAF
40 CONTINUE
DELTA1=PN/PNAF
XZ=XZ-DELTA1
IF(DELTA1.LT.0.0) DELTA1=-~DELTA1
IF((DELTA1.GE.DELTA2) .AND. (DELTA2.LT.1.E-6)) GO TO 50
DELTA2=DELTA1

GO TO 35
50 X(I)=Xz
W(I)=1.0/2
60 CONTINUE
O e e e e e
C TRANSFORMATIE NAAR (A,B)
o e e e

NGHALF=NGAUSS/2
NGP1=NGAUSS+1
NTP1=NT+1
APB=A+B
BMAG2=(B-4)/2.0
DO 90 I=1,NGHALF
X(NGP1-I)=B-BMAG2*(1.0-X(NTP1i-1I))
90 W(NGP1-I)=BMAG2*W(NTP1-I)
IF(NGHALF.NE.NT) GO TO 100
GO TO 110
100 X(NT)=APB/2.0
W(NT)=W (1) *BMAG2
110 DO 120 I=1,NGHALF
X(I)=APB-X(NGP1-I)
120 W(I)=W(NGP1-I)
RETURN
END
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C.2 Example of a program to calculate a component

of B, for a non-linear molecule

PROGRAM ES02A2

19 JULY 1996.

PROGRAM TO CALCULATE THE A2 TERM’S CONTRIBUTION TO B(epsilon) FOR S02
USING GAUSSTAN INTEGRATION WITH 64 INTERVALS FOR THE RANGE, AND

10 INTERVALS FOR ALL ANGULAR VARIABLES

(I.E. ALPHA1, BETA1, GAMMA1, ALPHA2, BETA2 AND GAMMA2).

DOUBLE PRECISION IS USED THROUGHOUT.

sHeoN*E*EYESELE?!

Q

(@]
w
-
w
2
—
=
—
—
—
e
e
—
N
=
|._]
=
o
=

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON COEF1,DCTC

DIMENSION COEF2(64,2),COEF1(10,2),SEP(64),AL1(10),BE1(10),GA1(10)
,AL2(10) ,BE2(10) ,GA2(10),DCTC(9,10,10,10) ,FI(10,10,10,10,10),D1(6
4) ,E1(10,10,10,10,10) ,F1(10,10,10,10,10) ,SE3(64) ,SE4(64) ,SE5(64),
SE6(64) ,SE8(64) ,SE12(64),G1(10,10,10) ,DDP(10,10,10,10,10) ,DQP(10,
10,10,10,10) ,DIDP(10,10,10,10,10)

INTEGER X1,X2,X3,X4,X5,X6,X7

+ 4+ + +

$51=0.000000
$52=0.000000

$S3=0.000000

$84=0.000000
$S5=0.000000
$S6=0.000000

$57=0.000000
DIP=-5.4262D0

A11=5.80D0

A22=3.30D0

A33=3.88D0
ALDYN=(A11+A22+A33)/3.0D0
V11=5.6610D0

V22=3.2050D0

V33=3.7560D0
ALSTAT=(V11+V22+V33)/3.0D0
Q1=-16.40D0

Q2=12.90D0

AMIN1=0.1000

AMAX1=3.0000
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OPEN (UNIT=10,FILE=’GAUSS64.DAT’)
DO 10 ICTR1=1,64
DO 20 ICTR2=1,2
READ(10,1010,END=11)COEF2(ICTR1,ICTR2)

1010 FORMAT(F18.15)

20 CONTINUE

10 CONTINUE

11 CLOSE (UNIT=10)

C ________________________________________________

SEP1=(AMAX1-AMIN1)/2
SEP2=(AMAX1+AMIN1)/2
DO 30 INDX=1,64
SEP (INDX)=SEP1*COEF2 (INDX,1)+SEP2
30 CONTINUE

OPEN(UNIT=11,FILE=’"GAUSS10.DAT’)
DO 100 ICTR1=1,10
DO 110 ICTR2=1,2
READ(11,6000,END=12)COEF1(ICTR1,ICTR2)

6000 FORMAT(F18.15)

110 CONTINUE

100 CONTINUE

12 CLOSE(UNIT=11)

C ______________________________________________

C CALCULATE THE INTEGRATION POINTS FOR ALPHA1:

C ______________________________________________
AMIN=0.0

AMAX=2.%3.14159265358979323846

AL11=(AMAX-AMIN)/2.
AL12=(AMAX+AMIN) /2.
DO 120 INDX=1,10
AL1(INDX)=AL11*COEF1(INDX,1)+AL12
120 CONTINUE

AMIN=0.0
AMAX=3.14159265358979323846

BE11=(AMAX-AMIN)/2.
BE12=(AMAX+AMIN)/2.
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DO 121 INDX=1,10
BE1 (INDX)=BE11*CDEF1(INDX,1)+BE12
121 CONTINUE

AMIN=0.0
AMAX=2.%3.14159265358979323846

GA11=(AMAX-AMIN) /2.
GA12=(AMAX+AMIN)/2.
DO 122 INDX=1,10
GA1(INDX)=GA11*COEF1 (INDX,1)+GA12
122 CONTINUE

AMIN=0.0
AMAX=2.%3.14159265358979323846

AL21=(AMAX-AMIN)/2.
AL22=(AMAX+AMIN) /2.
DO 123 INDX=1,10
AL2 (INDX)=AL21*COEF1 (INDX,1)+AL22
123 CONTINUE

AMIN=0.0
AMAX=3.14159265358979323846

BE21=(AMAX-AMIN) /2.
BE22=(AMAX+AMIN) /2.
DO 124 INDX=1,10
BE2 (INDX)=BE21*COEF1 (INDX,1)+BE22
124 CONTINUE

AMIN=0.0
AMAX=2.%3.14159265358979323846

GA21=(AMAX-AMIN)/2.
GA22=(AMAX+AMIN)/2.
DO 125 INDX=1,10
GA2(INDX)=GA21*COEF1(INDX,1)+GA22
125 CONTINUE
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C _____________
0PEN(UNIT=4,FILE=’diel_so2_a2_10_292K_d8’)
C ____________________________
C INPUT MOLECULAR PARAMETERS
C ____________________________
TEMP=292.7
TEMPK=TEMP*1.380622E-23
R=0.3850D0
PARAM2=220.0D0
SHAPE1=0.11750D0
SHAPE2=0.13570D0
i e e —

C CALCULATION OF THE LENNARD-JONES 6:12 POTENTIAL & STORAGE OF THE
C VALUES IN AN ARRAY:

DO 61 X1=1,64
D1(X1)=4.*PARAM2x%1.380622E-23%((R/SEP(X1))**12-(R/SEP (X1))**6)
SE3(X1)=SEP (X1)*%3
SE4(X1)=SEP (X1) **4
SE5(X1)=SEP (X1) %5
SE6(X1)=SEP(X1)*%6
SE8(X1)=SEP (X1)**8
SE12(X1)=SEP(X1)*%12

61 CONTINUE

DD 66 X4=1,10
DO 77 X3=1,10
DO 88 X2=1,10

C ____________________________________
C DIRECTION COSINE TENSOR COMPONENTS:
C ____________________________________
A1=C0S (AL1(X2))*CDS (BE1(X3))*COS(GA1(X4))-1.*SIN(AL1(X2))*SIN(GA1
+ (X4)) '
A2=SIN(AL1(X2))*COS(BE1(X3))*C0S(GA1(X4))+COS(AL1(X2))*SIN(GA1(X4
+))

A3=-1.*SIN(BE1(X3))*COS(GA1(X4))

A4=-1.*C0S (AL1(X2))*CDS (BE1(X3))*SIN(GA1(X4))-1.*SIN(AL1(X2))*C0S
+ (GAL1(X4))

A5=-1.*SIN(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))+COS (AL1(X2))*COS(GA
+ 1(X4))

A6=SIN(BE1(X3))*SIN(GA1(X4))

A7=C0S(AL1(X2))*SIN(BE1(X3))

A8=SIN(AL1(X2))*SIN(BE1(X3))

A9=C0S(BE1(X3))
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DCTC(1,X2,X3,X4)=A1
DCTC(2,X2,X3,X4)=A2
DCTC(3,X2,X3,X4)=A3
DCTC(4,X2,X3,X4)=A4
DCTC(5,X2,X3,X4)=A5
DCTC(6,X2,X3,X4)=A6
DCTC(7,X2,X3,X4)=A7
DCTC(8,X2,X3,X4)=A8
DCTC(9,X2,X3,X4)=A9

88 CONTINUE

77 CONTINUE

66 CONTINUE

C _____________________________________________________________
C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED
C IN ARRAYS:
G-~ e

DO 939 X7=1,10
WRITE(6,1000)X7
1000  FORMAT (1X, ’INDEX (IN RANGE 1 TO 10) IS CURRENTLY ’,I2 )
DO 40 X6=1,10
DO 50 X5=1,10

B1=DCTC(1,X5,X6,X7)
B2=DCTC(2,X5,X6,X7)
B3=DCTC(3,X5,X6,X7)
B4=DCTC(4,X5,X6,X7)
B5=DCTC(5,X5,X6,X7)
B6=DCTC(6,X5,X6,X7)
B7=DCTC(7,X5,X6,X7)
B8=DCTC(8,X5,X6,X7)
B9=DCTC(9,X5,X6,X7)

DO 60 X4=1,10

DD 70 X3=1,10
DO 80 X2=1,10

A1=DCTC(1,X2,X3,X4)
A2=DCTC(2,X2,X3,X4)
A3=DCTC(3,X2,X3,X4)
A4=DCTC(4,X2,X3,X4)
A5=DCTC(5,X2,X3,X4)
A6=DCTC(6,X2,X3,X4)
A7=DCTC(7,X2,X3,X4)
A8=DCTC(8,X2,X3,X4)
A9=DCTC(9,X2,X3,X4)
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RS S
DDP(X2,X3,X4,X5,X6)=8.98758E—24*DIP**2*(-2*A9*B9+A6*B6+A3*B3)
(mm oo m o
C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL:
C __________________________________________________
DQP(X2,X3,X4,X5,X6)=8.98758E—25*DIP*(Q2*(-2*A9*B9**2+(2*A6*B6+2*A
+ 3KB3+24AQKK D=2k ABH*k2-AGK*2+AS¥ ¥ 2~ A3k k2+A2%*2) ¥xBO+2* AG*BB** 2+ (-2%A
+ 6*B5—2*A3*B2)*B8+A9*B6**2+(2*A5*A8—2*A6*A9)*B6—A9*B5**2+A9*B3**2+
+ (2%A2%A8-2%A3%A9) *B3-A9*B2x*2) +Q1* (~2%A9*BO** 2+ (2*A6*B6+2*A3%B3+2
+ KAQKKD—kATHkD—AGK*2+A4*x2-A3%* 2+ A1%%2) *BO+2%A9*B7 %% 2+ (-2xA6%B4-2
+ %A3%B1) *B7T+A9*B6* %2+ (2% A4*AT-2%A6%A9) ¥B6-A+BA**2+A9*B3**2+ (2% A1 *
+ A7-2%A3%A9) *B3-A9%B1%%2))
C ____________________________________________________
C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL:
[ it i
DIDP(X2,X3,X4,X5,X6)=-O.SO*ALSTAT*8.07765E—27*DIP**2*(3*39**2
+ +3%A9%%x2-2)
G e e
¢ CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL:
(e e e

+ + + +

+ + + +

+ 4+ + 4+ + F + + + + + +

QUAD1=-16.* (A6*A9-A5*A8) * (B6%B9-B5*B8) -16 . * (A3*A9-A2+A8) * (B3*B9-B
2%B8) +4 . % (2., %xA9%*2~2 , kAB**k2—ABG**2+A5**k2-A3**2+A2+*2) * (B9-B8) * (B9+
B8)+(-4. %A9**2+4 % A8**2+3, kAG*¥2-3 , kAD**2+A3**2-A2%x2) % (B6**2-B5*
*2)+4, % (A3*¥A6-A2%A5) % (B3xB6-B2*B5) +(~4 . *A9%*2+4 , k AB**x2+A6%*2—-A5**
2+3 . ¥A3%*2-3 , *A2%*2) x (B3**x2-B2*%2)

QUAD2=-16.% (A6%A9~A4*AT)* (B6+xB9-B4*B7)-16.% (A3%A9-A1*A7) * (B3xB9-B
1*B7)+4 . % (2. xA9*%2-2 kAT *%2-A6%*2+A4*x*2~-A3*%*x2+A1%%2) x (B9-B7) » (BO+
B7)+(~4.%A9%*2+4  *A7*%2+3 , *AG**x2-3  kAd#x2+A3%k*2-A1%%2) % (BE**2-B4x*
*2)+4 . % (A3%A6-A1%A4) * (B3%B6-B1%B4) + (-4 . %A% 2+4 kAT %42+ A64 k2~ Adsk*
243, kA3*%2-3, ¥ A14%2) % (B3**2-B1%%2)

QUAD3=4.%(4.%A9%%2-2 % (A8**2+AT%*k2+A6% ¥ 2+ A3%%2) +AS#k 2+ A4 %% 2+ A 2% %2
+A1%%2) *xBO**x2-16, % (2, *A6*AQ-A5*A8-A4*AT) *B6%B9-16% (2, *A3*A0-A2*A8
~A1*%A7)*B3*B9—4 . % (2. % AQ**2-2 ¥ AT*¥2-A6%*x2+A4dk*2—-A3%*2+A1k*2) xBG**
2+16. % (A6*A9-A4*A7) *B5+B8+16.* (A3*AQ-A1%A7)*B2*B8~4 . % (2. *AT**2-2,
*ABk¥2-A6**2+A5k*k2—A3% ¥ 2+A2%%2) *BT**x2+16 , ¥ (A6*xA9-A5*A8) *B4*B7+16.
* (A3*A9-A2xA8) *B1*B7+ (8. *A9**2+4 . * (AB**2+AT**2)+6 . * AG**2-3 , x (A5*
*2+A4k*2) +24% A3%k2—-A2k%2—-A1%%2) ¥BO**2+4 , x (2. xA3*xA6-A2%A5-A1%A4)*B3
*BO+ (4. kAQ**2-4 kAT *%2-3 % AB* %243 kA4 **2~A34*x2+A1%%2) ¥xBS**2-4 . * (A
3#A6-A1xA4) *B2*B5+ (4. % AQ**2~-4  xA8%*2-3 , *AG**2+3 , * A5k k2—A3kk2+ADkk
2) *B44x2-4 * (A3*%A6-A2%A5) *B1#B4+ (-8, %AQ**2+4 , x (AB**2+AT#%2)+2 . % A6
*kD—ABKKkD2—Ad#*k2+6  kA3**x2-3  k (A2%*2+A1%%2) ) kB3**2+ (4, % AQ**2—4 kAT *
*2-AG* %2+ A4%%2~-3 kA% 2+3 , kA1 %% 2) ¥B2# %24+ (4 . % AQk*D—4  kAB**2-AB** 2+
AS#%2-3 ¥ A3%*2+3  *A2%*2) *B1*%2

E1(X2,X3,X4,X5,X6)=8.98758E-26%* (1./3.)*(Q2**2*QUAD1+Q1%*2*QUAD
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4

+ + + + + + + + + + + + 4+

+ + + + + + + + ++ + 4

+
+
+

2+Q1*Q2*QUAD3)

QID1=Q2**2*(4;*A9**4+(—8.*A8**2+4.*A5**2+4.*A2**2)*A9**2+(-8.*AS*
A6-8.%A2%A3) *A8*A9+4 , kAB*k4+ (4, %AG**2+4  kA3*x2) *kAB**2+AG**4+ (-2 *
AS*%2+2 . kA3%*2-2 . kA2%*2) ¥ AB* ¥ 2+ A5k *4+ (2. % A2%*%2-2 , %A3%*2) xAB**2+A3
*k4-2  kA2kkQk A3k kD+ADxkk4) +Q1k*2% (4, KAk # 4+ (—8 . AT **2+4  ¥Ad**2+4 , *
A1%%2) *AQ* %2+ (-8 . ¥A4*AB-8 ., *A1*A3) ¥ AT*AQ+4 kAT +*4+(4 . ¥AG**2+4  *A3*
*2) kAT Hk2+AG k44 (=2, kAA*k 242D kA3%k2=2 kA1 #%2) % AG**2+A4%*4+ (2. *ALx*
*¥2-2  kA3%%2) kAdkk 2+A3% %4 -2 ¥ ALk 2xkA3x*k 2+ A1 *x4) +Q1 Q2% (8. *A9* x4+ (-
8. %ABK*2-8 . *AT**2+4 *xAB**2+4 , kA4**2+4 , kA2%*%2+4 ¥ A1**2) kAQ**2+( (-8
.kAS5KAG-8. %A2%A3) *A8+ (-8 .*xA4*A6-8.¥A1*¥A3) ¥AT) % A9+ (8. xAT**2+4 . xAG*
*2—4 .k A4%*2+4  *A3x*2—-4  kA1%%2) xAB**2+ (8. xA4*xA5+8 . xA1xA2) xAT*A8+ (4
KAGRKD=4  kAGK*D+4  kA3HkKkD-4  kA2¥%D) kAT H*2+2  kAGH x4+ (-2, kAB**2-2  *
Adxx2+4  *A3%%2-2 kA2%%2—-2 *A1#*k2) % AG*k*2+ (2 . kA4**2~2  *A3%%2+2 , ¥Alx
*2) kASHk2+ (2, ¥ A%k 2=  kAZH*2) kAL k2+2 , kA3kk4+ (2, kA2%*k2-2  kAL1%*2)
*A3kk24+2 kAL k k2K A2%%2D)

QID2=Q2x*2% (4. *BO**4+ (-8, *B8**2+4 . ¥B5**2+4 . *B2#%2) ¥B9x*2+ (-8 . ¥B5%
B6-8.*B2%B3) *B8*BO+4 . ¥B8%*4+ (4. ¥B6%*244 , ¥B3**2) xB8**2+B6*#4+ (-2 . %
B5%%2+2 , ¥xB3%%2-2  *B2%*2) xBE**x2+B5**4+ (2, kB2 *2-2 , ¥B3%%2) *B5**2+B3
*x4—-2 *¥B2*k*2kB3**x2+B2*%4) +Q1 %% 2% (4, ¥BO*k*4+ (-8, *BT**2+4  ¥BA**2+4  *
B1#x%2)*BO**2+ (-8, *B4*B6-8.*B1*B3) xB7*BO+4 . *B7 x4+ (4. xBB**2+4 , *B3x
*2) *B7%%2+B6**4+ (-2, %*B4**2+2 . *B3**2-2 . xB1**2) *BE**2+B4**4+ (2. *B1x*
*2~2  %B3%%2) ¥BA%*2+B3%*4~2  *B1x*2*B3**2+B1*%4)+Q1%Q2* (8. #B9x*4+ (-
8.*B8**2-8 . %B7*%2+4 , *B5*#2+4  *B4%*2+4  *B24%2+4  *B1%*2) *BO#*2+( (-8
.*B5%B6-8.*B2*B3) #B8+ (-8 .*B4%xB6-8. *B1*B3) *B7) *B9+ (8. *B7**2+4 . *B6*
*2-4  *B4**2+4 , xB3%*2~4  *B1%%2) *B8**2+ (8, *B4*B5+8 . *B1xB2) *B7*xB8+ (4
.*B6*%2-4  xB5**2+4  #B3%%2-4  *B2**2) #B7**2+2  *xB6**4+ (-2, *B5¥*2-2  *
B4x*#2+4  xB3%%2-2  *B2%%2-2, *B1%%2) kB6**2+ (2. *xB4**2~-2 *B3**2+2 *B1lx
*2) xBE* %2+ (2. %B2x*2~2  #B3%%2) *B4**2+2 . #*B3**4+ (-2 . *B2%*2-2  *B1**x2)
*B3*%2+2 . kB1*%2%B2%*2)

F1(X2,X3,X4,X5,X6)=-0.5%8.07765E-29xALSTAT* (QID1+QID2)

T11=2. % AT*%2-A4**2-A1%%2
T22=2 , *AB**2-AB**2~A2%*2
T33=2. ¥ A0%*2-AG**2-A3*%2
T12=2.*A7T*A8-A4*A5-A1*A2
T13=2.*A7*A9-A4%A6-A1%A3
T23=2.*A8%A9-A5*A6-A2%A3

W11l = V33 (A7%%2%BO**2+(2%A4*xA7T*B6+2%A1%A7*B3) *BO+A4%*2¥B6*x*x2+2% A
1%A4%B3*B6+A1*%2%B3%%2) +V22% (A7 **2xB8**2+ (2% A4*xA7*B5+2*A1*A7*B2
) *B8+A4xx2*B5* %2+ 2% A1 % A4*B2*B5+A1 %k 2kB2%*2) + V11 (A7 **x2%B7**2+ (2
*A4*AT*B4+2%xA1*AT*B1) *B7+A4%%2%BAd**2+2% A1k A4*xB1%B4+A1%*2%B1%*2)
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W22 = V33% (A8%%2%xBO*%2+ (2% A5*A8*B6+2*%A2%A8%B3) *BO+AS**24B6**2+2% A
+  2%AG*B3%*B6+A2**2%B3%%2) +V22% (A8**2xB8* %2+ (2kA5*A8*B5+2x A2+ A8*B2
) *B8+AD**2kB5*%x2+2% A2% A5*B2*xBS+A24 % 2%B2**2) +V1 1% (AB**2%B7 *%2+(2
+  *xAGkA8%B4+2xA2%A8%B1) *B7+AD**x2%B4A**2+2% A2 A5*B1#B4+A2%%24xB1%k*2)

<+

W33 = V33% (A9**2%BO#*x2+ (2% A6%A9*B6+2*A3%A9*B3) *BO+AG**24xB6**2+2% A
+  3%A6*B3%B6+A3%x2%kB3%*2) +V22% (AQ**2%B8%* 2+ (2xA6%A9*B5+2%A3*xA9*B2
+ ) *B8+A6**x2%B5¥*2+2xA3*A6*B2*B5+A3 %% 2xB2#%2) +V11% (AO**x2%BT7**2+ (2
*AG*xA9*B4A+2%A3%A9*B1) *B7+AG* % 2xBA**2+ 2% A3*A6*xB1*B4+A3%*2%B1%*2)

+

W12 = V33 (A7*A8+BO**2+ ((A4*A8+A5*A7) *B6+(A1%A8+A2%xA7) *B3) *BO+Adx
A54B6*x2+ (A1*AB5+A2%A4) *B3*B6+A1%A2%xB3**2)+V22* (A7*A8*B8**2+( (A4
*A8+ASxA7) *B5+(A1*xA8+A2%A7) *B2) *B8+A4*xAS*B5**2+ (A1*AS+A2%A4) *B2
*B5+A1#A2%B2#%2) +V1 1k (A7T*A8*B7+%2+( (A4*xA8+A5*AT)*B4+(A1*A8+A2%A
7)*B1)*B7+A4*A5*B4%*k 2+ (A1*%AS+A2%A4) *B1%B4+A1*A2+«B1%%2)

+ + + +

W13 = V33 (A7T*A9*BO**2+( (A4*A9+A6*AT) *B6+ (A1%A9+A3*A7) *B3) *BO+A4*
A6xB6**2+ (A1xA6+A3%A4) *B3*B6+A1¥A3%B3**2) +V22% (A7*A9*B8*x2+( (A4
*A9+A6*A7) #B5+(A1*xAQ+A3%A7) *B2) *B8+A4*x AG*B5*%2+ (A1 *A6+A3%A4) *B2
*B5+A1%A3%B24%2) +V11* (A7*A9*B7#%2+ ( (A4*xA9+AG*AT) B4+ (A1*A9+A3*A
7)*B1)*B7+A4%A6%B4*%2+(A1%A6+A3%A4) *B1xB4+A1%A3%B1%*2)

+ + + +

W23 = V33%(A8*A9*B9x*2+ ( (AS*A9+A6%A8) *B6+(A2*xA9+A3*A8) *B3) *BO+A5%
A6*B6**2+(A2%A6+A3*A5) *B3*B6+A2%A3*B3*x2) +V22% (A8*xA9*B8**2+ ( (A5
*A9+A6%A8) *B5+(A2*xA9+A3%A8) ¥B2) *B8+A5*A6*B5**2+ (A2*A6+A3%A5) *xB2
*B5+A2+4A3%B2%*2) +V11% (A8 AQ*BT7+*2+( (AS*xAQ+A6*A8) ¥B4+(A2*A9+A3*A
8)*B1) *B7+AS5*A6*B4**2+ (A2%A6+A3%A5) *B1*xBA+A2*%A3%B1*%2)

+ + + +

F11=Vi1*(W11*T11+W12+«T12+W13%T13)
F12=V11%(W12+T11+W22*T12+W23%T13)
F13=V11*(W13*T11+W23*T12+W33xT13)
F21=V22* (W11%T12+W12*T22+W13%T23)
F22=V22% (W12*T12+W22+T22+W23%T23)
F23=V22% (W13%T12+W23*T22+W33%T23)
F31=V33% (W11xT13+W12*T23+W13%T33)
F32=V33* (W12%T13+W22*T23+W23%T33)
F33=V33% (W134T13+W23*T23+W33*T33)

A2 = F33+F22+F11

FI(X2,X3,X4,X5,X6)=A2/3.0%(SIN(BE1(X3))*SIN(BE2(X6)))

G1(X3,X4,X6)=4.*PARAM2*1.380622E—23*R**12*(SHAPEI*(3.*COS(BEl(XS)
+ )**2+3.*CDS(BE2(X6))**2—2.)+SHAPE2*(3.*COS(GA1(x4))**2*SIN(BE1(X3
+ ))**2+3.*CUS(GA2(X7))**2*SIN(BE2(X6))**2-2.))
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5000

5010

990

980

970

960

950

940

939

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE

$56=0.00
DO 940 X6=1,10
555=0.00
DO 950 X5=1,10
354=0.00
DO 960 X4=1,10
553=0.00
D0 970 X3=1,10
5$52=0.00
DO 980 X2=1,10
551=0.00
DO 990 X1=1,64

G3=-1.*(D1(X1)+E1(X2,X3,X4,X5,X6) /SE5(X1)+F1(X2,X3,X4,X5,X6) /SE8(
X1)+G1(X3,X4,X6) /SE12(X1)+DDP(X2,X3,X4,X5,X6) /SE3(X1)+DIDP(X2,X3,
X4,X5,%X6)/SE6(X1)+DQP(X2,X3,X4,X5,X6) /SE4(X1) ) /TEMPK

IF(G3.LT.-85) GO TO 5000
G4=2.71828%%G3
GO TO 5010
G4=0
SS1=SS1+FI(X2,X3,X4,X5,X6) /SEP(X1)*G4*COEF2(X1,2)
CONTINUE
552=552+S51*COEF1(X2,2)
CONTINUE
5S53=553+SS2%COEF1(X3,2)
CONTINUE
S554=5S4+S53*COEF1(X4,2)
CONTINUE
555=555+554*C0OEF1(X5,2)
CONTINUE
556=S56+S55*COEF1(X6,2)
CONTINUE
85S7=SS7+SS6*COEF1(X7,2)
CONTINUE
ANS=SS7*SEP1%AL11%*BE11*GA11*AL21%BE21*GA21
*0,24734494511444167800E~14
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WRITE(4,2266)

2266  FORMAT(1X,’THE A2 TERM CONTRIBUTION TO B(epsilon) FOR S02°)
WRITE(4,2268)

2268  FORMAT(1X,’AT THE WAVELENGTH 632.8 nm’,/,/)
WRITE(4,1140)ANS

1140 FORMAT(1X,’THE INTEGRAL IS’,E15.7)
WRITE(4,2150)

2150  FORMAT(1X,’INPUT DATA: )
WRITE(4,2155) TEMP

2155  FORMAT(1X,’TEMPERATURE: ’,F10.5)
WRITE(4,2156)DIP

2156  FORMAT(1X,’DIPOLE MOMENT: ’,F10.5)
WRITE(4,2911)ALDYN

2911  FORMAT(1X,’MEAN DYNAMIC ALPHA: ’,F10.5)
WRITE(4,2912)A11

2912  FORMAT(1X,’DYNAMIC ALPHA11: ’,F10.5)
WRITE(4,2913)A22

2913  FORMAT(1X,’DYNAMIC ALPHA22: ’,F10.5)
WRITE(4,2914)A33

2914  FORMAT(1X,’DYNAMIC ALPHA33: ’,F10.5)
WRITE(4,2160) ALSTAT

2160  FORMAT(1X,’MEAN STATIC ALPHA: ’,F10.5)
WRITE(4,2161)V11

2161  FORMAT(1X,’STATIC ALPHA11: ’,F10.5)
WRITE(4,2162)V22

2162  FORMAT(1X,’STATIC ALPHA22: ’,F10.5)
WRITE(4,2163)V33

2163  FORMAT(1X,’STATIC ALPHA33: ’,F10.5)
WRITE(4,2190)Q1

2190  FORMAT(1X,’THETA11: ’,F10.5)
WRITE(4,2241)Q2

2241  FORMAT(1X,’THETA22: ’,F10.5)
WRITE(4,2210)R

2210  FORMAT(1X,’R(0): ’,F6.5)
WRITE(4,2220)SHAPE1

2220  FORMAT(1X,’SHAPE FACTOR 1: ’,F10.5)
WRITE(4,2221)SHAPE2

2221  FORMAT(1X, ’SHAPE FACTOR 2: ’,F10.5)
WRITE(4,2230)PARAM?

2230  FORMAT(1X,’E/K: ’,F9.5)

WRITE(4,2235)AMIN1,AMAX1
2235  FORMAT(1X,’MIN AND MAX POINTS OF RANGE:’,2(F10.5,3X))

close(unit=4)
END
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