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Abstract

Many bulk properti es of gases depend linearly on the gas density at lower densiti es, but

as the density increases departures from linearity are observed. The density dependence

of a bulk property Q may often be discussed systematically by expanding Q as a power

series in l/Vm , to yield

where EQ is known as the second virial coefficient of the property Q. AQ is the ideal

gas value of Q, and EQ describes the contribution of molecular pair interactions to Q.
Theories of Q may be regarded as having two main components, one describing how the

presence of a neighbour of a given molecule can enhance or detract from its contribution

to Q, and the other the molecular interaction energy which determines the average ge­

omet ry of a pair encounte r. The lat ter component is common to all theories, and the

former requires detailed derivat ions for each specific bulk prop erty Q. In this work we

consider the second viri al coefficients of five effects, namely t he second pressure virial co­

efficient E(T), and also th'e second dielectric, refractivity, Kerr-effect and light-scattering

virial coefficients, E e , E R, E K and E p, respect ively. Using a powerful computer alge­

bra ic manipulati on package we have extended the exist ing dip ole-induced-dipole (DID)

theories of the second dielectric, refractivity and Kerr-effect virial coefficients to suffi­

cient ly high order to est ablish convergence in the treatment of both linear and non-linear

gases. Together wit h the established linear theory of t he second pressure vir ial coefficient ,

t he exte nded theory of the second light-scat t ering virial coefficient developed by Couling

and Graham , and their new non-linear theory of the second pressure and light-scat tering

virial coefficients, our new theories provide a comprehensive base from which to calcu­

late numerical values for t he various effect s for comparison with experiment. We have

collected as much experimental data of the various second virial coefficients as possible,

for a wide range of gases. The ten gases chosen for detailed st udy comprise a select ion of

polar and non-polar, linear and non-linear gases: the linear polar gases fluorometh ane,

t rifluoromethane, chloromethane and hydrogen chloride; the non-polar linear gases nitro­

gen, carbon dioxide and ethane; the non-linear polar gases sulphur dioxide and dimethyl
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ether; and the non-linear non-polar gas ethene. Using the best available measured or

calculated molecular parameter data for these gases, together with the complete theo­

ries for the second virial coefficients, we have attempted to find unique sets of molecular

parameters for each gas which explain all the available experimental data. In general,

reliable measured or calculated molecular properties are regarded as fixed, and only the

Lennard-Jones and shape parameters in the molecular interaction energy are treated as

best-fit parameters within the constraints of being physically reasonable.

Many of the apparent failures of second virial coefficient theories have been due to the

lack of convergence in the series of terms evaluated. It is essential to work to sufficiently

high orders in the polarizabilities and various multipole moments to ensure convergence

for meaningful comparison with experiment. This often requires the manipulation of

extremely long and complicated expressions, not possible by the manual methods of

our recent past. The advent of computer manipulation packages and fast processors for

numerical integration have now enabled calculation to high orders, where the degree of

convergence can be sensibly followed.

Our efforts to describe all of the effects for which data is available met with mixed

success. For four of the gases, fluoromethane, chloromethane, dimethyl ether and ethene,

a unique parameter set was found for each which described all of the available effects

reasonably well. For the three gases, trifluoromethane, nitrogen and sulphur dioxide,

one interaction parameter set explained all but one of the effects for which data was

available to within experimental uncertainty. For trifluoromethane the parameter set

which yielded good agreement for B(T), B, and B K could not explain the observed

values of BR, while for nitrogen one parameter set produced reasonable agreement for

all of the effects except Bp and a different set, which yielded good agreement for Bp, did

not explain the remaining four effects as well as the first set. The parameter set which

explained B(T), B K and Bp very well for sulphur dioxide, yielded a value for B, which

was much larger than the experimental value, although of the correct sign and order of

magnitude. Hydrogen chloride posed a special problem as data was only available for

two of the effects, B(T) and Bc' It was possible to find a set of interaction parameters

in good agreement with the measured values of B(T), but the experimental data for Bc
was an order of magnitude larger than the largest calculated values. Since the remaining

effects have not been measured for this gas it was not possible to test the theory more

rigorously. For the remaining gases carbon dioxide and ethane, it was impossible, based

on the existing measured values, to select a unique parameter set which explained all

of the effects. In many of the cases where definite conclusions could not be drawn it,
was not possible to decide whether the disagreement between theory and experiment

was due to the large scatter and uncertainty of the experimental data or failure of the

theory. However, there were very few instances of complete failure of the theory to explain
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experiment, and no one effect showed consistent disagreement, so that in general it may

be said that the mechanisms of the second virial coefficients und er study are reasonably

well understood. It would require more precise measurements of the various effects, as

well as more measured or calculated molecular property tensor components, such as the

hyperpolarizability and the A- and C-tensors , to test the DID molecular interaction model

more stringently.
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Chapter 1

Introduction and Overview

1.1 Second Virial Coefficients

There exists a range of electromagnetic phenomena in gases for which one expects pro­

portionality of the macroscopic observables with the number density of the molecules.

This proportionality is exact in a perfect gas, where each molecule is independent of its

neighbours.

However, the molecules in a real gas collide and interact with their neighbours, result­

ing in non-linear density dependence of the bulk properties of the gas. As the density of

a gas approaches zero, the bulk properties tend toward ideal gas behaviour. Studies of

the deviations in behaviour of real gases from the ideal provide a source of information

about the interactions between molecules.

The effects of these interactions can be accounted for with a virial expansion of the

relevant macroscopic observable. If Q is a suitably chosen measurable property its ob­

served value may be expanded in terms of the inverse power of Vm , the molar volume , to

give [27]

EQ CQQ = AQ + - + - + ···v: V 2 'm m
(1.1 )

where AQ, E Q, CQ, ... are the first, second, third, . .. virial coefficients, respectively,

and are independent of density. In the limit of infinite dilution (Vm --t (0), when the gas

becomes an assembly of independent molecules, Q is equal to AQ , the ideal gas value.

EQ, CQ, ... represent the deviations due to pair, triplet, ... interactions respectively.

In a sample of gas containing one mole of non-interacting gas molecules, each molecule

contributes an average 7j to the observable Q, so that

(1.2)
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where NA is Avagadro's number. However, at higher densities, when the molecules inter­

act with one anot her, molecule 1 may not always contribute q to Q because for some of

the time molecule 1 is part of an interacting pair. If T is the configuration of molecule 2

relative to molecule 1, then at that instant molecule 1 contributes ~q12 (T) to Q, where

q12(T) is th e corresponding contribution of the pair. If t riplet and higher-order interac­

t ions are neglected and P(T)dT is the probability that molecule 1 has a neighbour in th e

range (T, T + dT), t hen [27]

P (T) is related to the intermolecular potential U12 by

P( )
NA _~

T = --e kT

DVm '

(1.3)

(1.4)

where D = J
m

Jdr is t he int egral over the orientational coordinates of the neighbouring

molecule, k is Boltzmann 's constant and T is the temperature in Kelvin. Now, from

equation (1.1)

(1.5)

which, when combined with equations (1.2), (1.3) and (1.4), gives the general expression

(1.6)

This basic formula can be used to determine the second virial coefficients of various
electromagnet ic molecular prop erties, Q.

Several properties of gases have been treated in this way. Th e pressure-volume­

temperat ure (P-V-T) behaviour of a gas may be described by the virial equation of
state [1]:

PVm E (T ) C(T)--=1+--+--+ ...
RT 11: V 2 'm m

(1.7)

where E , C , ... are called th e second, third, ' " virial coefficients, or pressure virial

coefficients, and are functions of tem perature and the nature of the gas. The second

pressure virial coefficient E (T ) describes the initi al deviation from the ideal gas law due
to pair interactions in a real gas [1].
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The total polarization of a gas, or the Clausius-Mossotti function, may be written as

a virial expansion [28]:

e; - 1 B, Cc
TP = Vm = Ac + 17 + 1/:2 + ... ,

e; + 2 Vm m

(1.8)

where e, is the static dielectric constant ofthe gas, and Ac ' B, and Cc are the first, second

and third dielectric virial coefficients, respectively. These coefficients are functions of the

temperature of the gas.

The density-dependent deviations from the Lorentz-Lorenz equation [29,30],

(1.9)

relating the mean polarizability ao of an isolated molecule to the refractive index n of

the bulk sample at equilibrium, are best described by a virial expansion of the molar

refractivity Rm of a gas [31]:

(1.10)

where AR , BR and CR are the first, second and third refractivity virial coefficients, re­

spectively, and are dependent on the temperature of the gas and the frequency of the

refracted light.

When an isotropic gas is placed in a strong uniform electric field, the gas becomes

birefringent [32]. This is referred to as the Kerr effect, and the molar Kerr constant mK

of a gas is defined as [33]:

(1.11)

where n is the isotropic refractive index, C is the dielectric constant of the gas, and

(nil - nl..) is the difference in refractive index for light polarized parallel and perpendicular

to the applied electric field E. The virial expansion of the molar Kerr constant is [34]:

(1.12)

where AK , BK and CK are the first, second and third Kerr-effect virial coefficients,

respectively, and are functions temperature and frequency.
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The depolarization ratio of light scattered by a gas may be expanded in inverse powers

of the molar volume [35]:

(1.13)

where Ap, Bp and Gp are the first, second and third light-scattering virial coefficients,

respectively. These coefficients depend on the temperature of the gas and the frequency

of the depolarized light.

The second virial coefficients of all these properties describe the contributions of

pair interactions to the macroscopic observables. Since, the effect which two interact­

ing molecules have on one another determines the nature of the second virial coefficent of

a property, any theory which fully describes the interactions between a pair of molecules

must be applicable to all the properties of a gas. If all the effects are considered together,

then it should be possible to test the efficacy of the theory. Unfortunately, measurement

of second virial coefficents is not always a simple matter, and many gaps exist in the body

of experimental data.

In view of the evident success of the theory of the second light-scattering virial co­

efficient [7,9,36], it has become important to establish whether a self-consistent set of

molecular parameters coupled with complete theories will serve to obtain agreement be­

tween experiment and theory for the full range of second virial coefficients of the different

effects. This work sets out to gather second virial coefficient data for the fullest range

of molecules with data spanning the various effects, to derive complete theories to the

order necessary to ensure convergence in all cases and to evaluate the derived expres­

sions numerically for comparison with experiment. A comprehensive treatment of all

effects in this way has only recently become at all feasible through the introduction of

computer algebraic manipulation packages, such as Macsyma, which make possible the

enormous manipulative task, as well as the greater speed and capacity of the machines

which facilitate the extensive numerical integrations.

1.2 Collection of experimental data

1.2.1 Introduction

In order to assess molecular theories of the second virial coefficients it is necessary to

have data for the same molecules spanning as wide a range of effects as possible. The

data collected below was accumulated in this spirit but, inevitably, gaps remain in places.

Nevertheless, the set is as comprehensive as possible for the present purpose.
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1.2.2 Tables of experimental values

The simplest and most widely measured effect is the second pressure virial coefficient.

Extensive experimental research has been carried out by numerous workers to determine

the second and third pressure virial coeffients of a comprehensive range of gases and their

mixtures. In 1980, Dymond and Smith [1] published a comprehensive compilation of

experimental values of both B(T) and C(T). Where there is good agreement between

the results of different authors for the same gas, they present a best-fit of the data over

as wide a temperature range as possible. Appendix A contains tables of the experimental

values of B(T) for the gases included in this study over a range of temperatures. These

values have been taken from Dymond and Smith [1]. Where available, their best-fit data

have been used.

The second dielectric virial coefficient has been measured for a variety of molecules

by several researchers. Table 1.1 shows experimental values of B, for spherical and quasi­

spherical gases, Table 1.2 gives values for non-polar gases, and Table 1.3 lists experimental

data for polar gases.

The second refractivity virial coefficient data is available for many of the gases under

study. In particular, BR has been measured for a range of wavelengths by several workers

for spherical and non-polar gases, as shown in Tables 1.4 and 1.5, respectively. Unfortu­

nately, very little data was found for polar gases. Table 1.6 lists the data available for

the polar gases CH3F and CHF3 .

For the spherical gases, second Kerr-effect virial coefficient data has been measured at

several different wavelengths, but each gas usually has only one or two values at different

temperatures for the same wavelength. The data available is shown in Table 1.7. The

data collected for polar and non-polar gases were all measured at 632 nm, for at least

seven different temperatures, as shown in Tables 1.8 to 1.10.

Very little data is available for the second light-scattering virial coefficient as can be

seen from Table 1.11, which lists all the measured values available for the gases under

study.

The calculations in Chapter 8 of this work will focus on the range of gases: fiuoro­

methane, trifiuoromethane, chloromethane, hydrogen chloride, nitrogen, carbon dioxide,

ethane, sulphur dioxide, dimethyl ether and ethene, where available data more or less

adequately spanned the range of different virial effects.
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Table 1.1: Experimental values of Be for spherical gases

Gas Temp. 1012Be Ref. Gas Temp. 1012Be Ref.
K m6mol-2 K m6mol-2

CH4 242.2 9±0.4 [12] Ar 242.2 0.6±0.7 [12]
279.8 8.14±0.29 [37] 242.95 1.84±0.07 [38]
315.0 7.3±1.8 [12] 296.0 1.6±0.6 [12]
322.5 7.29±0.32 [37] 298 0.094±0.05 [13]
373.4 6.75±0.29 [37] 2.06±0.10 [39]

303.15 1.22± 0.09 [38]
CF4 279.8 1l.35±0.44 [37] 306.2 1.0±0.7 [12]

322.5 10.54± 0.64 [37] 322.2 0.39±0.20 [13]
373.4 9.17±0.75 [37] 322.9 0.72±0.12 [40]

323 2.2±0.2 [41]
SF6 323.3 63.31±2.80 [42] 373 2.9±0.4 [41]

323.3 64.1 [43] 2.5±0.1 [41]
348 .3 60.54±1.45 [42] 407.6 0.1±0.3 [38]
373.9 58.89±4.70 [42] 427 2.3±0.1 [41]

3.1±0.1 [41]
Kr 242.95 8.2±0.4 [38]

294 7.49±1.55 [44] Ne 322 -0.32± 0.10 [13]
298.2 0.90±0.05 [13]
322.2 5.6±0.3 [13] Xe 242.95 35±2 [38]
323 .15 4.3±0.7 [38] 291 24.5±2.9 [44]
407.6 2.1±0.4 [38] 323.15 32±2 [38]

407.6 12±2 [38]
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Table 1.2: Experimental values of Be for non-polar gases

Gas Temp. 1012Be Ref. Gas Temp. 1012Be Ref.
K m6mol- 2 K m6mol-2

N2 242.2 4.2± 1.0 [12] H2 322.2 0.03±0.10 [13]
296.2 2.0±1.0 [12]
306.2 1.8±1.0 [12] C2H4 298.2 31.5 [45]
322.2 0.60±0.2 [13] 303.2 50.3±1.4 [24]

1.0±1.0 [12] 304.9 44.3 [45]
344.2 0.0±0.8 [12] 323.2 48.0 [45]

1.5±2.5 [12] 30 [46]
25±7 [47]

CO2 273.2 35.4±1 [41] 46.4±1.2 [41]
295.2 64±10 [48] 43.2±1.2 [41]
302.6 57.6±0.9 [40] 47.5±1.4 [24]
322.9 49.7±1.0 [45] 348.2 62.2 [45]

50.7±0.9 [40] 373.2 50.8±0.9 [41]
41.4±2.4 [41] 51.7±0.8 [41]

348.2 46.4±1.0 [45] 42.0±2.8 [24]
369.5 36±3 [49] 423.2 58.8±1.7 [41]
373.2 35.8±0.7 [41] 60.2±3.5 [41]

33.5±0.4 [41] 37.6±2.4 [24]
34.8±0.7 [41]

423.2 30.0±O.9 [41] C2H6 298.2 32.2±1.8 [19]
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Table 1.3: Experimental values of B, for polar gases

Gas Temp. 1012e, Ref. Gas Temp . 1012e, Ref.
K m6mol- 2 K m6mol-2

HCI 292.5 4000±1000 [10] CH3CI 278.2 -8500±1800 [50]
3600±1000 [11] 298.2 -10200±1400 [50]

312.8 3600±1000 [10] 303.2 -6200±1200 [51]
3200±1000 [11] -7100±1400 [51]

318.2 8500±1500 [50]
CH3F 323.2 -1188±50 [52] 323.2 -3550±600 [51]

-1307±37 [2] -3800±800 [51]
348.2 - 701±100 [52] -4470±200 [2]
369.5 - 606±30 [2] 343.2 -2650±600 [51]
416.5 - 331±66 [2] -2800± 800 [51]

369.5 -2517± 50 [2]
CHF3 292.6 3100±2400 [50] 404.8 -1696± 60 [2]

3600±1000 [10]
303.2 1330±100 [51] CHCh 352.9 -11000± 6000 [53]

1300±160 [51]
323.2 1120±200 [51] (CH3) 20 291.2 2800 [10]

1100±160 [51] 294.7 4000±1000 [54]
1125±52 [2] 303.2 2800±1000 [51]
1090±50 [5] 311.5 2020 [55]

343.2 980±200 [51] 313.5 2600±1000 [54]
353.7 1200±1600 [53] 323.2 1600±400 [51]

-6500± 1400 [53] 334.7 2400±1000 [54]
2000±1400 [56] 340.5 1540 [55]

4600 [57] 343.2 1600±400 [51]
369.5 903±20 [2]

930±100 [49] 802 292.7 1700±1000 [10]
416.5 704±10 [2]
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Table 1.4: Experimental values of BR for spherical gases .

Gas Temp. x 1012B Ref. Gas Temp . x 1012BR Ref.. R
K nm m6mol-2 K nm m6mol-2

CH4 220 546.2 6.1±1.0 [58] Ar 296.8 325.1 1.81±0.34 [59]
294.5 543.5 l1.72±0.005 [59] (cont.) 298 633.0 1.49±0.15 [60]

325.1 l1.14±0.005 [59] 577.1 1.44±0.25 [60]
298 633.0 6.14±0.2 [61] 546.2 1.56±0.15 [60]
298.2 632.8 7.76±1.32 [62] 514.7 1.56±0.15 [60]

514.5 6.40±0.83 [62] 501.9 1.49±0.15 [60]
488.0 8.93±0.57 [62] 488.1 1.47±0.15 [60]
457.9 7.04±0.78 [62] 476.6 1.51±0.15 [60]

299 632.8 7.15±0.35 [39] 436.0 1.40± 0.25 [60]
300 546.2 5.5±1.0 [58] 298.2 632.8 1.57±0.58 [62]
302 632.8 6.6±0.38 [63] 514.5 1.55±0.74 [62]
323 6.08±0.1 [64] 488.0 1.58±0.69 [62]
323.2 633.0 5.83±0.15 [65] 457.9 1.53±0.32 [62]
373.4 6.13±0.15 [64] 299 632.8 2.16±0.34 [39]

303 633.0 1.75±0.05 [66]
CF 4 298.2 632.8 -14±144 [67] 323 1.76±0.05 [64]

4.27±1.38 [62]
514.5 4.65±1.53 [62] Kr 296.8 612.0 6.46±0.54 [59]
488.0 4.71±0.67 [62] 594.1 5.83±0.54 [59]
457.9 4.27±0.84 [62] 543.5 6.24±0.54 [59]

325.1 6.90±0.54 [59]
SF6 298.2 632.8 27.28±5.18 [62] 289.2 633.0 6.23±1.55 [62]

514.5 19.48±4.68 [62] 514.5 5.11±1.39 [62]
488.0 24.93±2.99 [62] 488.0 4.28±1.87 [62]
457.9 20.32±3.08 [62] 457.9 5.54±0.80 [62]

299 632.8 29.0±5.4 [39] 303 633.0 5.96±0.06 [66]
323 36.0±1.8 [68]
373 22.7±0.5 [64] Xe 293.6 543.5 24.58±0.80 [59]

325.1 23.25±0.80 [59]
Ne 298.2 632.8 -0.14± 0.14 [62] 294.1 543.5 25.26±0.80 [59]

-0.11±0.20 [62] 325.1 23.25±0.80 [59]
299 -0.06± 0.09 [39] 298.2 632.8 25.50±2.85 [62]
303 633.0 -0.11± 0.02 [66] 514.5 18.56±2.36 [62]

488.0 14.91±2.14 [62]
Ar 296.8 594.1 2.52±0.34 [59] 457.9 16.26± 2.55 [62]

543.5 1.73±0.34 [59] 348 633.0 28.5±0.5 [66]
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Table 1.5: Experimental values of BR for non-po lar gases.

Gas Temp. A 1012 BR Ref. Gas Temp. A 1012 BR Ref.
K nm m6mol-2 K nm m6mol-2

H2 323 632.8 0.13± 0.08 [64] N2 298 632.8 0.74±0.65 [62]
0.75±0.10 [69]

CO2 243- 632.8 4.6 [70] 1.0±0.31 [39]
263 [71] 323.2 633.0 0.89±0.06 [64]

298.2 3.2±1.6 [39] 0.64±0.08 [65]
4.75±1.30 [62] 298 577.1 0.76±0.10 [69]

320 633.0 0.0±1.0 [72] 546.2 0.81±0.10 [69]
323 1.9± 0.2 [64] 514.5 0.62±0.78 [62]

632.8 5.3 [13] 0.81±0.10 [69]
3.31±3.6 [68] 488.0 0.96±0.68 [62]

293.8 594.1 7.33±0.53 [59] 488.1 0.85±0.10 [69]
299.3 5.74±0.53 [59] 476.6 0.92±0.10 [69]
307.2 546.1 0.4±0.36 [73], 457.9 0.92±0.43 [62]

[13] 436.0 0.70±0.10 [69]
293.8 543.5 8.96±0.53 [59]
299.3 6.83±0.53 [59] C2H4 295.5 594.1 17.65±0.85 [59]
298.2 514.5 0.73±0.66 [62] 543.5 22.83±0.85 [59]

488.0 1.03± 0.66 [62] 325.1 44.10±0.85 [59]
457.9 1.27±0.85 [62] 303 633.0 17.60±2.2 [74]

293.8 325.1 4.87±0.53 [59] 40.8±2.0 [75]
323.2 447.1- 5.23±0.9 [76] 6.0 [24]

667.8 [13] 17.7±0.4 [77]
373.2 447.1- 2.7±1.4 [76] 20.3±0.8 [78]

587.6 [13] 17.4±0.4 [79]
C2H6 348 633.0 22.9±3.0 [72] 373 19.50±0.50 [64]

373 26.6±0.05 [64] 17.8±0.3 [77]
"Various" 27.8±1.0 [80] 20.1±0.5 [78]
"Various" 589.3 23.2±0.6 [80] 17.8±0.3 [79]
295.5 325.1 31.58±0.90 [59]
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Table 1.6: Experimental values of B R for polar gases at room temperature

Gas A 1012 BR Ref. Gas A 1012 BR Ref.
nm m6mol- 2 nm m6mol- 2

CHF3 632.8 3.4±1.1 [39] CH3F 632.8 4.32±1.80 [62]
2.54±1.35 [62] 546.0 7±100 [67]

514.5 2.44±0.89 [62] 514.5 -0.40±1.28 [62]
488.0 1.56± 0.75 [62] 488.0 -1.02± 1.09 [62]
457.0 1.97±0.86 [62] 451.9 1.12± 0.88 [62]

Table 1.7: Experimental values of B K for spher ical gases

Gas Temp. A 1033B
K Ref. Gas Temp. A 1033B K Ref.

K nm C2m8J-2mol- 2 K nm C2m8J - 2mol- 2

CH4 249.7 632.8 30.5±3.1 [33] CF4 288.8 632.8 42.2±4.2 [33]
273.6 28.3±2.8 [33] 293 633.0 42±8 [81]
303.7 24.5±2.5 [33] 302 40±8 [81]
302 458.0 37±5 [81]

Kr 296 514.5 17±15 (82]
SF6 296 514.5 334±45 [82] 303 458.0 16±2 [81]

303 633.0 470±90 (81]
Xe 296 514.5 72±24 [82]

Ar 296 514.5 4.1±0.7 [82] 302 458.0 98±17 [81]
305 458.0 3.8±0.7 [81]
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Table 1.8: Experimental values of B K for polar gases at 632.8 nm.

Gas Temp. 1030BK Ref. Gas Temp . 1030B K Ref.
K C2m8J-2mol-2 K C2m8J-2 mol- 2

CH3F 250.8 5.6±2.8 CH3Cl 304.1 1.97±0.29 [83]
252.6 9.3±4.7
259.2 3.9±2.0 (CH3hO 259.0 34.2±6.8
275.0 6.1±3.1 269.0 18.8±3.8
280.2 4.7±2.4 [33] 278.4 16.1±3.2
284.4 6.5±3.3 288.2 13.1±2.6 [23]
303.1 5.1±2.6 302.4 1l.1±2.2
312.4 5.1±2.6 318.9 10.2±2.0
318.9 4.5±2.3 333.8 5.8±1.2
323.0 2.5±0.7 [83]
371.3 1.2±0.4 [83] 802 298.7 13.8±0.8

307.3 1l.4±0.5
CHF3 245.5 9.6±4.8 · 315.4 10.1±0.5

250.3 3.8±1.9 330.7 7.5±0.4
252.1 9.5±4.8 348.8 6.5±0.6
268.5 4.2±2.1 [33] 370.9 6.5±0.5

[21]275.4 6.8±3.4 381.2 4.2±0.9
285.9 1.8±0.9 395.7 7.6±1.5
303.5 3.7±1.9 423.7 4.7± 1.1
308.9 3.2±1.6 457.0 2.1±1.3
310.1 3.2±1.0 [83] 471.5 3.4±1.8
323.0 2.5±0.7 [83] 490.3 1.5±0.6
371.3 1.7±0.3 [83]
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Table 1.9: Experimental values of BK for non-polar gases at 632.8 nm.

Gas Temp. 1032BK Ref.
K C2m8J-2mol- 2

Gas Temp. 1032BK Ref.
K C2m8J-2mol- 2

CO2 299.2 6±1 C2H6 255 18.2± 3.7
314.9 0±1 259 17.7±3.6
330.9 4±2 269 16.7±3.3
348.8 2± 1 278 18.0± 3.6
370.9 -6±2 [15] 15.7± 3.1 [14]
394.5 2±2 287 16.8±3.3
422.8 -3±2 299 17.7±3.6
455.8 -3±4 304 14.9± 3.0
489.5 -5±3 309 14.2±2.9
252 23±19 318 15.0±3.0
259 5±27
267 -6± 11 N2 248 -0.08±0.28
279 -1±13 260 0.07±0.39
287 -3±9 [14] 277 -0.21± 0.33
301 -3±7 286 -0.23±0.45 [14]
302 0±10 299 -0.30± 0.59
318 -11±8 315 0.04±0.30
337 -9±9 334 -0.41±0.18

13



Table 1.10: Experimental values of El( for non-pol ar gases at 632.8 nm. (cont .)

Gas Temp.
K

1032El(
C2m8J-2mol- 2

Ref. Gas Temp.
K

1032El(
C2m8J-2mol- 2

Ref.

[84](4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)

(4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)
(4)
(2)
(4)

0.090±0.011
0.129±0.011
0.063±0.009
0.100±0.009
0.063±0.005
0.100± 0.005
0.074±0.020
0.108±0.020
0.025±0.015
0.059±0.015
0.103±0.014
0.014±(2)
0.087±0.021
0.120± 0.021
0.068±0.007
0.101±0.007
0.054±0.008
0.086±0.008
0.038±0.006
0.069±0.006
0.063±0.007
0.093±0.007
0.083±0.009
0.113±0.009
0.035±0.010
0.063±0.010

288.9

232.3

411.7

259.5
0.138
273.6

376.5

350.4

247.0

303.7

328.0

219.5

207.1

H2 196.1

[14]

211.0

214.8

222.2

250.0

284.9

266.6

235.6

303.2

333.4

262
268
273
280
286
294
298
302
313
314
333
334
202.4

34±7
26±6
23±5
18±3
22±5
24±5
18±3
18±3
16±3
18±3
17±3
17±3

103.0±7.6 (2)
100.0± 7.8 (4)
90.1±12.2 (2)
87.4±12.2 (4)
63.3±12.8 (2)
60.5±12.8 (4)
49.9±2.3 (2)
47.2±2.3 (4)
44.5±0.8 (2)
41.9± 0.8 (4)
39.6±0.9 (2) [25]
37.1±0.9 (4)
34.2±1.5 (2)
31.9±1.5 (4)
32.8±1.5 (2)
30.6±1.6 (4)
19.6± 2.2 (2)
17.6±2.2 (4)
15.9±1.0 (2)
14.0±1.0 (4)

363.7 28.4±2.7 (2)
26.6±2.7 (4)

(4): values deduced using the usual KE local-field function j (4)(n,c) = (n2i 2f (et2)2,

derived from the Lorentz-Lorenz and Clausius-Mossotti equations [85] .

(2): values deduced using an alt ernative KE local-field function j(2) (n, c) = n2i2et2 [86,87].
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Table 1.11: Experimental values of B p for various gases.

Gas Temp. A 106B Ref. Gas Temp. A 106B Ref.p p
K nrn rrr'mol"! K nm m3mol- 1

CO 298.2 514.5 0.213±0.016[7] Ar 290 488.0 0.21±0.03 [16]
294 0.34±0.03 [88]

CH3Cl 299.6 514.5 -3 .30±0.26 [7] 298 514.5 <0.4 [89]
298 ? 0.20± 0.01 [90]

802 338.4 514.5 -6.96±0.49 [9]
Kr 294 488.0 0.67± 0.01 [88]

I--' N2 295.5 514.5 0.138±0.014 [7] 298 514.5 O.52±0.06 [89]
CJ"l

310 0.16 [91]
290 488.0 0.14 [16] Xe 294 488.0 1.52± 0.04 [88]

CO2 298.2 514.5 -8.29 ±0.16 [7] CH4 294 488.0 0.59±O.21 [88]
300 488.0 -10 [16] 298 514.5 0.65±0.09 [89]

298 ? O.403±0.013 [90]
C2H6 295.9 514.5 0.315±0.018 [7]

8F6 294 488.0 1.08±0.10 [88]
C2H4 294.9 514.5 -2.384±0.027 [9] 298 514.5 1.37±0.04 [89]

328.0 -1.78±0.07 [92]



Chapter 2

The Intermolecular Potential Energy

From the general expression for BQ in (1.6), it is clear that the explicit form of the

intermolecular potential energy U12 (T) is necessary to perform any calculations of second

virial coefficients. It has been shown [93] that U12 (T) may be regarded as having three

components when the intermolecular separation R is large relative to the dimension of

the molecules:

(i) the electrostatic energy, Ue1ec , which arises from interactions of the zero-field multi­

pole moments (charge, dipole, quadrupole, et cetera) of the pair of molecules,

(ii) the induction energy, U ind, arising from the distortion of the structure due to the

action of the permanent electric moments on the neighbouring molecule, and

(iii) the London dispersion energy, U disp, resulting from interactions of the electric mo­

ments due to fluctuations in the charge distribution of the molecules.

These three interaction energies are due to well understood long-range forces [34,93­

95], for which it is assumed that negligible overlap of the electron clouds of the interacting

molecules occurs. When the intermolecular separation R is small, there is significant

overlap of the molecular wavefunctions and prohibitively complex ab initio quantum­

mechanical calculations are necessary to account for the intermediate-range exchange

forces. Instead, it is usually assumed [31,96,97] that components (i), (ii), and (iii) of the

interaction energy are applicable to short-range interactions if an additional contribution

is included to accommodate the repulsive short-range interactions. This term is called

Uoverlap ' Thus, the intermolecular potential energy may be written as:

U12 (T) = Ue1ec + U ind + U disp + Uoverlap'
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Most previous studies of the properties of gases [2 ,31 ,39 ,40 ,96-98] use the cent ral-field

Lennard-Jones 6:12 potential, ULJ , to represent (Udisp + U overlap):

ULJ = 4£ [ ( ~ ) 12 _ (~) '] , (2.2)

where th e term 4c (~) 6 describ es the at t ract ive part of th e potential , 4c (~) 12 describes

th e short-range repulsive contribut ion, and the symbols e and Ra are the Lennard-Jones

parameters. It can be seen from (2.2) that UL J is spherically symmetric. To allow for the

angular dependence of the repulsive short-range overlap forces of non-spherical molecules,

Buckingham and Pople [96] proposed an additional term, Ushape, to be included in the

overlap potential, so that:

(Udisp + Uoverlap ) = ULJ + Ushape .

The form of the shape potential is discussed in detail in Section 2.2.

Thus, substituting (2.3) into (2.1), th e intermolecular pair potential is given by:

(2.3)

(2.4)

2.1 The relative configuration of a pair of interacting

molecules

In order to derive exact expressions for the various parts of the intermolecular potential

in (2.4) (except the Lennard-Jones potential) , it is necessary to specify th e relative con­

figuration T of the two interacting gas molecules. When describing th e configuration of a

pair of molecules, three sets of orthogonal axes are required:

(i) Th e space-fixed axes: O(x,y,z), which are usually chosen to coincide with the di­

rection of the plane of a light wave or the direction of an appli ed electromagnetic

field. In the tensor notation of this work, these axes are denot ed by th e subscripts

CY-, (J , 'Y;

(ii) The coordinate system of molecule 1: 0(1 ,2,3), with the principal axes chosen

to exploit th e symmetry of th e molecule. Th ese axes are denoted by th e tensor

subscripts i ,i ,k; and

(iii) The coordinate system of molecule 2: 0'(1',2',3'), similarly chosen to exploit the

symmetry of the molecule. The subscripts i', i', k' are used to denote molecule 2's

axes in tensor notation.
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2'

x

2

R

z

y

Figure 2.1: The coordinates R, fh, rh and cP describing the configuration of two linear
molecules [26].

2.1.1 Linear molecules

The physical property tensors of a molecule are usually specified relative to a coordinate

system of mutually perpendicular axes fixed in the molecule, such that one of the axes

co-incides with a symmetry axis of the molecule. A description of the interaction of

two identical molecules, each with its own molecular axes, requires a set of interaction

parameters. Figure 2.1 shows how the angles rh, O2 and cP and the separation, R, specify

the relative configuration T of a pair of~~eracting linear molecules [26]. The coordinate

systems of molecules 1 and 2 are 0(1,2,3) and 0'(1',2',3'), with axes 3 and 3' lying

along the symmetry axes of molecules 1 and 2 respectively. It can be seen that R is the

distance between the centres of the two molecules, called the line of centres; 01 and O2 are

the angles between the line of centres and the dipole axes of molecules 1 and 2; and cP is

the angle between the two planes formed by the molecular axes and the line of centres.

oX is the unit vector along R.

2.1.2 Non-linear molecules

Experimental measurements of macroscopic observables, such as the depolarization ratio,

the Kerr constant or the molar refraction of a gas, are carried out in a system of space­

fixed axes orientated with respect to the direction of the incident light beam. However,

molecular property tensors must be referred to the system of molecule-fixed axes which

18



x

1 2'

y

Figure 2.2: The molecule-fixed axes 0(1,2,3) and 0'(1',2',3') of interacting molecules 1
and 2 respectively, in the space-fixed axes O(x,y,z)

exploits the symmetry of the molecule. This set of molecule-fixed axes changes constantly

with respect to the space-fixed axes as the molecules move around in the sample. In

order to obtain the average projection of the tensor properties of the molecule, it is

necessary to refer the molecular property tensors to molecule-fixed axes, then project

these tensors into the space-fixed axes of the sample, and finally, average the projection

over the orientational motion of the molecule.

Figure 2.2 shows the axes 0(1,2,3) of molecule 1, the axes 0'(1',2',3') of molecule 2,

and the space-fixed axes O(x,y,z). It is possible to specify fully the relative configuration

of a pair of interacting non-linear molecules using seven parameters:

(i) The displacement of the two molecular centres is given by the parameter R, which is

initially fixed along the z-axis. This choice of direction is possible, since the resultant

expressions will be orientationally averaged over all possible configurations, in the

absence of any bias .

(ii) The orientation of the molecule-fixed axes of molecule 1 relative to the space-fixed

axes may be described by nine direction cosines. However, in order to specify

any rotation of a Cartesian system of axes about its origin completely, only three

parameters are necessary. The three Euler angles Q;1, /31 and ')'1 are often used to

describe such a rotation. Recently, Couling and Graham [36] used the Euler angles

in their work on non-linear molecules. Three successive rotations are needed to

rotate (1,2,3) into (x,y,z) [99,100]:
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rotation about the new 2'-axis through an angle (31

rotation about the new 31/-axis through an angle 1'1

(a) rotation ab out the 3-axis through an angle a 1

(b)

(c)

(0 :S a 1 :S 21f) ,

(0 :S th :S 1f ),

(0 :S 1'1 :S 21f ).

The nine dir ection cosines ai are now expressed as functions of the three Euler

angles. Thus, we have [99,100] :

[

COSa l cos (31cos 1'1 - sin a 1sin 1'1

- cos a 1cos (31sin 1'1 - sin a 1cos 1'1

cos al sin (31

sin a1 cos (31cos 1'1+ cos al sin 1'1

- sin a l cos /31 sin 1'1+ cos a l cos 1'1

sin a l sin (31

~
(

J
- sin (31cos 1'1]
sin (31sin 1'1

cos (31

(2.5)

o

- sin (31] [ CO~ a 1
o - sm e-

cos (31 0

0] [COS (31 0
o 0 1

1 sin (31 0

sm 1'l

cos 1'1

o[

COS1'1

- s~n 1'1

I

(iii) In the same way, the relative orientation of the molecule-fixed axes of molecule 2 and

the space-fixed axes is described by nine dir ection cosines a~ , which are expressed

as functions of the three Euler angles a2 , /32 and 1'2. The individual components of

a~ have the same form as those of ai in (2.5) , with only the subscripts of the angles

changing from 1 to 2:

[

COSa 2cos (32 cos 1'2 - sin a2 sin 1'2

- cos a 2cos (32sin 1'2 - sin a2 cos 1'2

cos a2 sin /32

sin a2 cos /32 cos 1'2 + cos a2 sin 1'2

- sin a 2cos (32 sin 1'2 + cos a 2cos 1'2

sin a2 sin (32

- sin (32cos 1'2]
sin (32 sin 1'2

cos (32

(2.6)

2.2 The shape potential

The Lennard-Jones potential used to represent the dispersion and overlap energies is a

spherically symmetric cent ral-field potential with an at t ract ive part and a repulsive part,

as can be seen from equat ion (2.2). The param eter Ra represents the closest approach of

two spherical molecules before the resultant force is repulsive. However , for non-spherical

molecules the distance of closest approach may differ for different relative orientations.

This angular dependence cannot be described by a spherically-symmetric potential. To

account for this, Buckingham and Pople [96] proposed the addition of a shape potential.
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(a) Collid ing spheres .

(c) Colliding plat es where 81 and 82 are ± (7r/ 2).
The 3 axis may be in or out of t he page.

3'
r--;-~" """ " " ' " ''

(b) Colliding plates where 81 and 82 are aor rr,

(d) Colliding rods where 81 and 02 are ± (7r/ 2).

Figure 2.3: Collision configurations for spherical, plate-like and rod-like molecules.

For axially-symmetric molecules, they proposed that U sh ape be given by:

U'hap, = 4D£(~) 12 (3eos' 0, + 3eos2 O2 - 2) , (2.7)

where (}1 and (}2 are angles which describe the relative configuration of the colliding

molecules (Figure 2.1), and D is a dimensionless parameter called the shape factor with

-0.25 ~ D ~ 0.50. The form of the angular dependence was chosen as the lowest

order of spherical harmonic to give a reasonable variation of ran ge of repulsive force with

orientati on. For spherical molecules, D is obviously zero, since no correct ion is necessary.

It is argued below that D is positive for rod-like molecules, which are elongated in the

direction of th e dipole moment axis [2], and negative for plate-like molecules, which are

fore-shortened in the direction of the axis of the dipole moment [2]. Rod-like molecules,

such as CH3F, favour an anti-parallel configurat ion (Figure 2.3 (d)), while plate-like

molecules, such as CHF 3 , prefer a parallel arrangement, as can be seen in Figure 2.3

(b) [101].

When two spheres of diameter Ro collide, as in Figure 2.3 (a) , ULJ is zero when the

approach distance R = Ro. If R is less than Ro , ULJ will be positive and , therefore,

repulsive. If two plate- like molecules collide in the configuration shown in Figure 2.3 (b),

R can be less than Ra before repulsion occurs . In order to reduce the repulsive R- 12

term of the Lennard-Jones potential, U sh ape must be negative and it follows that the

shape factor D must be negative. In the limit of infinitely thin plates colliding as in
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· · · · · ··· ~IJ~(fu ~ 3

0.244 nm

x

/ /
- f-

/ V
y

..~.---+
0.309 nm

~2
The et hene molecule. Molecular
geometry is taken from [102,103].

(i) (ii)

it .,

~2
The sulphur dioxide
Molecular geometry
from [104].

(iii)

molecule.
is taken

z

case (i):
0<1 and 0<2 can be any angle
(31 and (32 can be a or tt

71 and 72 can be any angle

cas e (ii):
0<1 and 0<2 can be any angle
(31 and (32 can be 1r/2 or 31r/2
7 1 an d 7 2 can be a or 1r

case (iii):
0<1 and 0<2 can be any angle
(31 an d (32 can be 1r/2 or 31r/2
7 1 and 72 can be 1r/2 or 31r/2

Figure 2.4: The three ext reme intermolecular approaches for two colliding ethene
molecules. For sulphur dioxide, the ethene molecules must be replaced with the equivalent
sulphur dioxide, shown above [9].

Figure 2.3 (b) , where ()l and ()2 are 0 or 7[ , the smallest approach distance is zero and there

is no repulsive potenti al. Therefore, it can be seen from (2.2) and (2.7) that D = - 0.25.

Obviously, real plate-like molecules will have non-zero thi ckness and the shape factor will

fall between zero and -0.25. When the two molecules collide as shown in Figure 2.3 (c),

then ()l and ()2 are ±~ and, since D is negative, t he shape potential will be posit ive,

increasing the repulsive potent ial , which results in repulsive forces occurring when R >
Ra· For infinitely thin rod-like molecules, when ()l and ()2 are ±%(Figure 2.3 (d) ), the

closest approach occurs for R = O. From (2.2) and (2.7) it can be seen that D = +0.50.

For real molecules with finite thickness, D will lie between zero and 0.5.

Recently, Couling and Graham [36] const ructed a shape potenti al to describe the im­

por tant role played by the molecular shape in determining interactions between non-linear

molecules. They used the force field for axially symmetric molecules of Buckingham and

Pople [96], shown in (2.7), as the basis for a new U sh ape to describe the orientation effects

due to short-range overlap repulsive forces for non-linear gases with D2h (eg. ethene) and

C2v (eg. sulphur dioxide) symmetry. Figure 2.4 [9] shows how the molecule-fixed axes
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(1,2,3) have been chosen so that the 1-3 plane coincides with the plane of the molecule,

with the 3 axis along the principal molecular axis. Figure 2.4 also shows the three ex­

treme intermolecular approaches possible. From the figure it can be seen that in all three

cases G1 and G2 may assume any value from 0 to 2n and, therefore, the shape potential

is independent of these angles. The simplest force-field which reproduces the orientation

effects of the shape of the non-linear molecules is [36]

U'hope = 4,(~ ) 12 {D, [3 cos' {3, + 3cos2 {3, - 2]

+ D2 [3 sin2 f31 cos"1'1 + 3sin2 f32 cos2
1'2 - 2] },

(2.8)

where D1 and D2 are dimensionless parameters called the shape factors. If D2 = 0 then

(2.8) simplifies to the shape potential for axially symmetric molecules defined in (2.7).

For two planar molecules approaching as in case (iii) of Figure 2.4, the approach

distance R can be less than Ra before contact forces arise. Thus, the repulsive part of the

Lennard-Jones potential must be reduced by a negative shape potential. For case (iii),

f31' f32' 1'1 and 1'2 are all ±~, therefore, from (2.8) it can be seen that if Ushape is negative

(D1 + D2) must be positive. If the planes were infinitely thin, then the closest possible

approach is R = O. For this orientation there is no repulsive potential, so the 4c (~) 12

term of the Lennard-Jones potential must be completely cancelled by the shape potential,

so that (D1 + D2 ) = 0.50. Since real planar molecules will have finite thickness, it it likely

that (D1 + D2 ) < 0.50 [36].

2.3 The electrostatic and induction potentials

According to convention [9,40,44,97,105], Ue1ec consists of potential energies resulting

from the interactions of permanent multipole moments, whereas U ind incorporates those

energies arising from interactions between permanent multipole moments of one molecule

and the induced moments of the second molecule. To quadrupole order in the permanent
moments and to dipole order in the induced moments,

where Uj.L ,j.L, Uj.L,e and Ue,e are the electrostatic dipole-dipole, dipole-quadrupole and quad­

rupole-quadrupole interaction energies of the permanent moments of the pair of inter­

acting molecules, while Uj.L,indj.L and Ue,indj.L are the dipole-induced-dipole and quadrupole­

induced-dipole interaction energies. Uindj.L,indj.L is the induced-dipole-induced-dipole inter­

action energy, which Buckingham and Pople [96] were the first to include in their calcu-
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lations. This term is frequently omitted, but working to this order in our calculations

produced a 7% increase in the second dielectric virial coefficient of hydrogen chloride, so

that the effect can be significant, and the term is generally included in this work.

Buckingham [26] shows that:

u = _1/(l)T(l) 1/(2)
J-L,J-L ra a(3 r: (3 ,

ti., = _la (T(l) 1/(2)T(1) 1/(2) +T(l) l/(l)T(l) 1/(1))
J-L,md J-L 2 a(3 r (3 a'Y r'Y a(3 r (3 a'Y r'Y '

U. . - - 2T(1) (l)T(l)T(l) (2)
ind J-L,md J-L - a a'Y /1'Y a(3 (38 /18 ,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

where a is the mean static dipole polarizability, and use is made of the powerful T­

tensor notation, which was formulated [26] to express the electric field Ea and electric

field gradient Ea (3 at the origin of one molecule due to the point multipole moments of

its neighbour. Thus, for the field and field gradient at molecule 1 due to the multipole

moments of molecule 2, we have:

E(l) = T(l) 1/(2) _ IT(l) ()(2) + ...
a a(3 r (3 3 a(3'Y (3'Y ' (2.16)

(2.17)

where T~4' T~4'Y and T~4'Y8 are the second, third and fourth rank T-tensors, defined

by [26]:

(2.18)

(2.19)
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(2.20)

(2.21)

and Ra is the vector from the origin of molecule 1 to the origin of th e second molecule.

Th e field and field gradient at molecule 2 due to the multipole moments of molecule 1

are defined in the same way:

where

E (2) = T (2) 1/(1 ) _ IT(2) (;(1) + ...
a a(3 f-A'(3 3 a(3"( (3"( ,

E (2) _ T (2) 1/( 1) _ IT(2) e(l ) + ...
a(3 - a(3"(f-A'''( 3 a(3"(8 "(8 ,

T~~? = ( - ltT~~? for th e nth rank T-tensor,

(2.22)

(2.23)

(2.24)

since the vector Ra always lies in th e direction from molecule 1 to molecule 2. It follows

from (2.24), that for second and fourth rank T-tensors the superscript may be omitted,

but for third rank T-tensots th e superscript must be specified to accommodate the change

in sign. In this work, for simplicity, we will adopt the following notation for third rank

T-tensors:

(2.25)

For non-polar molecules, U p. ,p. , U p' ,e and U p.,ind p. are all identically zero.

2.3.1 Linear molecules

In order to determine the explicit forms of the potentials in equations (2.10) to (2.15) for

linear molecules it is necessary to express th e molecular prop erty tensors in terms of the

angles specifying their relative configurations. Figure 2.1 shows molecules 1 and 2 with

their respective systems of axes. As was stated in Section 2.1, molecular properties are

usually expressed in terms of molecule fixed axes to exploit the symmetry of th e molecule.

It is then necessary to proj ect these property tensors into the space fixed axes O(X,Y,Z).

Unit vectors, .e~1) and .e~2) along the principal axes of molecules 1 and 2, respectively, and
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Aa along the line of centres R , are related to the angles ()l , ()2 and 4> describing the relative

configuration T of the pair of int eracting molecules as follows:

£(2) A = - cos ()2a a ,

(2.26)

(2.27)

(2.28)

Buckingham [26] has demonstrated how the prop erty tensors of an axiall y symmetric

molecule p may be expressed in t erms of £~) :

I/ (p) = /I£(p)
I-"a I-" a , (2.29)

Also, by definition,

where
{

()(l ) _ _ 2() (1) __2()(1)
33 - 22 - 11

() = (2) _ (2) _ (2) '
()3/31 - - 2 ()2/21 - -2()1/11

(2.30)

(2.31)

Using the coordinate system in Figure 2.1, the electrost atic and inducti on potentials

for linear molecules are [26]:

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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1 { a
2

p,2 ..}
Uind /L ,ind /L = 3 -9- (8 cos 01 COS O2 + sin 01 sin O2 COS <p) .

(47fco) R
(2.37)

It should be noted that U/L,ind/L has been writ ten so that its unweighted orientational aver­

age is zero (i.e. so that it is purely orientational). The part of U/L,ind/L which is independent

of orientation is assumed to be incorporated in the (~) 6 term of the Lennard-Jones po­

tential [96]

2.3.2 Non-linear molecules

For polar molecules of C2 , C2v and higher symmetries with the 3-axis along the principal

molecular axis , the dipole moment has only one independent component [26]:

(2.38)

while for molecules with C2Vl D2 and D2h and higher symmetries, the traceless quadrupole

moment has two independent components [26]:

(2.39)

Referring the T-Tensors to the space-fixed axes (x,y,z) is simple, since R is fixed along

the z-axis initially. Thus the second-rank tensor , defined in (2.18) , becomes

T - _1_~ [~01 -001 ~2]a.{3 - 47fco R3

Similarly, the third-rank T-tensor becomes

(2.40)

[
00 00 -0

1]
T - _3_...L

1{3'Y - 47l"co R 3

-1 0 0

T - _3_...L
3{3'Y - 47l"co R 3

The components of the electrostatic and induction potentials are referred to the space­

fixed axes. Thus, the dipole and quadrupole moments need to be projected from their

respective molecule-fixed axes to the space-fixed axes as follows:

1/(1) = a?' /I~I)
r a t t"t ,
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(2.43)

To simplify the resulting expressions, the direction cosines may be written as

(2.44)

where

Al = cos al cos (31 cos ')'1 - sin al sin ')'1,

A3 = - sin /31 cos ')'1 ,

A4 = - cos a l cos (31 sin ')'1 - sin al cos ')'1,

B4 = - cos a2 cos (32 sin "12 - sin a2 cos ')'2,

As = - sin a l cos (31 sin ')'1 + cos a l cos ')'1,

Bs = - sin a2 cos (32 sin ')'2 + cos a2 cos ')'2,

A6 = sin /31 sin ')'1,

Ag = cos (31,
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(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)



Hence, for interacting non-linear C2v and D2h molecules in the coordinate system

shown in Figure 2.2 [9]:

U~(J= ( J-l3) 4 {Ol [Ag(-Bi+Bi-B~+B~+2B?-2B~)
, 41rcQ R

+ 2B
3(A1A7 - A3Ag) + 2B6(A4A7 - A6Ag) - 2B7(A3B1 + A6B4 )

(2.54)

(2.55)

+ e~ [Bi(3A~ - 3A~ + A~ - A~ - 4A~ + 4A~) + Bi(-3A~ + 3A~

- A~ + A~ + 4A~ - 4A~) + Bg(A~ - A~ + 3A~ - 3A~ - 4A~ + 4A~)

- A~ - 4A~ + 4A~) + Bi (-3(Ai + A~) + 6A~ - A~ - A~ + 2A~

+ 4(A~ + A~) - 8A~) - 4B1B4(A3A6 - A2As) + B~(A~ - A~ + 3A~

- 3A~ - 4A~ + 4A~) - 4B2B5(A3A6 - A1A4 ) + Bg(Ai - A~ + 3A~ - 3A~
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- 3 (A~ + A~) + 6A~ + 4(A~ + A~) - 8A~ ) + 16B1B7(A3Ag - A2As)

+ 16B4B7(A6Ag - A5As) - 4B?(A~ - A~ + A~ - A~ - 2A~ + 2A~ )

+ 16B2Bs(A3Ag - A1A7 ) + 16B5Bs(A6Ag - A4A7 ) - 4B~(Ai - A~ + A~

- A~ - 2A~ + 2A~ ) - 16B3Bg( 2A3Ag - A2As - A 1A7 ) - 16B6Bg(2A6Ag

- A5As - A4A7 ) + 4B~ (Ai + A~ + A~ + A~ - 2(A~ + A~ + A~ + A~)

+ 4A~) ]},

Uindll, ind ll = ( a)2 S {oi [Ai - 2AiA; + Aj + 2A~(Ai - A~ ) + A: + 2A~ ( - Ai
. 2 47rcQ R

+ A~ - A~ ) + A~ + 4A~(A~ + A~) + 4Ai - 8A7Ag(A1A3 + A4A6 )

(2.56)

(2.57)

+ 4A2(A2+ A2 _ 2A2) + 4A4
] + 02 [A4

- 2A2A2+ A4 + 2A2(A2 - A2)
91 .• 4 7 9 22 233 523

+ 20102 [AiA~ - A;(Ai + A~) + Aj + A~(A~ - A~) + A~(Ai - A;

+ A~) - A~ (Ai + A~ - 2A~ + A~ + A~) + A~ + 2A~ ( -A~ + A~

+ 2A~ (Ai + A~ + A~ + A~ - 2A~ - 2A~ ) + 4A~] } . (2.58)

Here, as for linear molecules (Sect ion 2.3.1), the unweighted orientational average of

U ll ,ind ll is zero, with the orientation-independent part assumed to be accounted for in

ULJ . The tensor facilit ies of the Macsyma algebraic manipulation package were used to

determine the terms above. When used in numerical integration, the resulting expressions

were converted directly to Fortran by Macsyma, eliminating the typographical errors

possible when programming manually.

These expressions describe the interactions of molecules with C2v and higher symme-
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tries and are generally applicable to linear or spherical molecules by appropriate simplifi­

cation of the multipole moment components. A powerful test of the computer programs

used lat er is to check that both sets of equations yield the same results when th e simple

tensor forms for axially symmetric molecules are used in the more general expressions.

Agreement to within at least four significant figures was always obtained.

Now th at exact expressions have been determined for all the components of the in­

termolecular potential energy, they may be used to calculate all of the second virial

coefficients . The second pressure virial coefficient will be considered first , since it has th e

simplest form and the largest volume of experimental data of proven accuracy available

for any second virial coefficient. For these reasons , it has historically been employed to

fit the Lennard-Jones and shape parameters used in ULJ and U shape.
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Chapter 3

The Second Pressure Virial

Coefficient, B (T)

The ideal gas law, PV = nRT, decribes the relationship between pressure, volume and

temperature (P-V-T) for a sample of n moles of an ideal gas. For one mole of an ideal

gas PVm = RT. The virial equation of state describes the departure from this ideal

behaviour of a real gas [1]:

(3.1)

where B, C, . . . are called the second, third, ... virial coefficients, or pressure virial

coefficients. In order to describe the P-V-T behaviour of a particular gas completely it is

necessary to know the values of these virial coefficients.

It can be shown [95] that

(3.2)

where dr , is the volume element in space at the position of molecule 1 in a Cartesian

coordinate system, and drz is the corresponding volume element for molecule 2. Now,

JJdrldrZ = V.V = V~.
Tl T2

Therefore, equation (3.2) may be written as:

B(T) = ~~JJ(1 - «: U
1k2ir

) ) drldrZ

Tl T2
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or in terms of T the relative configuration of molecules 1 and 2,, ,

NA!( ~)B(T) = 2 1 - e" kT dr,

T

(3.5)

which is the general form of the integral. Note that the factor J
m

has been cancelled out

because Jd T l = Vm ·

3.1 B (T) for spherical molecules

For spherical molecules, the pair interaction energy, U12 , depends only on the separation,

R = ITl - T2 1, of the molecules so the integral Jdr can be replaced by 41fR2dR. As R

approaches infinity, U12 tends towards zero and e-W- approaches unity. Therefore, the

integrand in equation (3.5) becomes zero for large separations and the upp er limit of th e

integral may be set to infinity. The expression for B (T ) for spherical molecules becomes

(3.6)

In practice, for all gases treated here, numerical calculation of B (T ) shows that for sep­

arations larger than 3 nm the integrand is negligible.

3.2 B (T) for linear molecules

In order to describe th e relative configuration, T , between two interacting non-spherical

molecules, it is necessary to consider angular coordinates defining th e orientation of th e

two molecules, as well as the separation between them. When these angular coordinates

are included in the integral for B (T) a normalisation factor , 0 , must be introduced,

resulting in t he following express ion for t he second pressure coefficient [95]:

(3.7)

where W l and W 2 are the angular configurations of molecule 1 and molecule 2, respectively.

The value of the normalisation factor, 0 , is determined by the number of angular variables

required to specify completely the orientation of a molecule relative to fixed axes. For

linear molecules, the molecular orientation can be described fully by two angles, (}i and

(h th erefore [95]
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Substituting (3.8) into (3.7) yields [96]

00 7r tt 27r 27r

B(T)=~: J J J J J (l-e-W)R2sin(}1sinfhdRd(}1dfhdcP1dch , (3.9)

R=O /h=O 02=0 (h=O ep2=0

where U12 U12(7).
However, it is unnecessary to retain both cP1 and cP2 separately, and they may be

replaced by a single angle cP = cP1 - cP2. Figure 2.1 [26] on page 18 shows how the angles,

(}1, (}2 and cP, and the separation, R, specify the relative configuration, 7, of a pair of

interacting linear molecules [26].

By replacing cP1 and cP2 with cP in equation (3.9), the 5-variable integral simplifies to a

4-variable integral, which must be multiplied by 21r. Thus, (3.9) becomes the well known

expression for the second pressure virial coefficient for linear molecules [56,95,106]

(3.10)

It can be seen from equations (3.6) and (3.10) that the second pressure virial coefficient

of a gas depends on U12. In order to calculate B(T), it is necessary to know the pair

interaction energy. On the other hand, measurements of B(T) yield information about

the nature of U12. The explicit form of the intermolecular potential energy has been

discussed in Chapter 2.

3.3 B(T) for non-linear molecules

In (3.7), which gives B(T) for non-spherical molecules, Wi is the angular configuration

of molecule i and the value of the normalisation factor, D, is determined by the number

of angular variables required to specify the orientation of a molecule completely. For

non-linear molecules, the molecular orientation can be described fully by three angles, O!,

(3 and "( (Section 2.1.2), therefore [95]

dw = sin (3 do d(3 d"(,
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Substi tu ting (3.11) into (3.7) yields [9]

( -~)1 - e kT

(3.12)

3.4 Summary 'of experimental work on the second

pressure virial coefficient

Extensive experimental research has been carri ed out by numerous workers to determine

th e second and third pressure virial coeffients of a comprehensive range of gases and th eir

mixtures. In 1980, Dymond and Smith [1] published a comprehensive compilation of

experimental values of both B(T) and C(T) . Where there is good agreement between

the results of different authors for the same gas, they present a best-fit of the dat a over

as wide a temperature ran ge as possible. Tables A.1, A.2 and A.3 in Appendix A show

experimental values of B(T) for various gases over a ran ge of temperatures, taken from

Dymond and Smith's [1] best-fit data. Thi s tabulation is limited to gases which are to

be investigated in this study.

It can be seen from Tables A.l to A.3 th at values for B(T) are predominantly neg­

at ive. It is also apparent that B(T) becomes less negative (and in some cases becomes

positive) as the temperature increases. It is possible to explain this tendency through

th e intermolecular potenti al [106] . When the temperature is low, the mean energies of

th e molecules in the gas are of the same order of magnitude as the depth of the potential

energy well, resulting in an increase in the attractive forces between interacting molecules.

This increase in attraction causes a corresponding decrease in pressure, giving rise to a

negative value for th e second pressure virial coefficient . At high temperatures the average

energies of the molecules increase and become large in comparison with the maximum

energy of attract ion and so the predominant contribut ion to the second virial coefficient is

th at due to th e repulsive portion of th e potential [95,106 ,107]. Th e increased repulsion

between molecules results in an increase in pressure and consequently, B(T) becomes

posit ive.

Somet imes, at high temperatures, molecules may collide with such great force th at

some interpenetration is possible. When this occurs the effective molecular volume de­

creases. At very high temperatures, the number of such collisions may become signifi­

cant , and the resultant decrease in th e molar volume causes a decrease in B(T) [106].
An example of a molecule where this behaviour is observed is Helium [108], as can be
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seen in Table A.1.
There are several different experimental methods for measuring B(T) of gases and

their mixtures. Pool et at. [109] and Orcut t and Cole [13], amongst others, have described

methods which make use of the direct measurements of P , V and T. Orcutt and Cole's

cyclic expansion method [13] has subsequently been used by Sutter and Cole [2], Bose

and Cole [40] and Copeland and Cole [110]. Another method of measuring B(T) is th e

differential method, described by McGlashan and Potter [111]. In: this procedure, the

behaviour of the relevant gas is compared with that of another appropriat e gas with

almost ideal properties. B(T) may also be measured using gas adsorption, or it may

be derived from other measured properties of th e gas; for example, the Joule-Thomson

coefficient [95].

It was shown in Section 3.2, that the value of B(T) is determined by the intermolec­

ular potential energy U12 . Thus, an important application of th e second pressure virial

coefficient is in the study of the pair interaction potential [27,106]. Unfortunately, second

pressure virial coefficients on their own are not sufficient to evaluate all the parame­

ters involved in pair interactions unambiguously, since th ey are not very sensitive to

non-spherical potentials [97]. Many authors seeking to evaluate molecular interaction

parameters investigate the second dielectric virial coefficient, Be' and B (T) simultane­

ously [2,3,37,40,42 ,97,110,112]' because Be is ext remely sensitive to the form of th e

intermolecular potential [2,3 ,11,49]. In order to determine the most reliable model of th e

intermolecular potential, Be and B(T) are calculated for a variety of potentials and the

results are compared with experimental values [2 ,3 ,12 ,13 ,40,56 ,96 ,97,110 ,113-115].
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Chapter 4

The Second Dielectric Virial

Coefficient, Be

The pressure dependence of the static dielectric constant of a compressed gas is a potential

source of information about molecular interactions. As with other equilibrium properties,

a theory can be developed to relate the second and higher-order virial coefficients to the

molecular interaction energy. The second, third, ... virial coefficients can be related to

the properties of a group of one, two, three, ... molecules respectively [101]

The theory of the second dieletric virial coefficient was first examined in detail by

Buckingham and Pople [28, 101] in 1955. Prior to that Harris and Alder [116-118] had

developed formulae for the density-dependence of the dielectric constant for polar sub­

stances from some simple force fields, using the Onsager [119] model for estimating the

mean dipole moment of a molecule. This equation was not yet in the virial form which

has since become the preferred method for treating molecular interaction effects. Buck­

ingham and Pople [101] were the first to show that it was possible to draw more general

and systematic conclusions about molecular interactions if one dealt only with the initial

deviation from ideal gas behaviour. In the first approximation they considered a rigid

dipole model for polar molecules with a Stockmayer [120] type potential, consisting of

the Lennard-Jones potential and the dipole-dipole interaction energy (See Chapter 2) .

The role of molecular polarizability was then estimated by comparing the earlier results

with those attained by extending the theory to consider a polarizable dipole model [101].

They also examined separately the effect of including the permanent quadrupole moment

of the molecules in the intermolecular potential, as well as considering the effect of its

shape. The various effects were considered separately due to the difficulty involved in

performing the integration of the algebraic expressions, but the relative importance of

the various contributions was established.

In the comprehensive treatment which follows, the most general intermolecular po­

tential to quadrupole order and including polarizability and shape effects is used, dipole-
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induced-dip ole contribut ions are taken to the highest orders necessary to establish con­

vergence, whilst the field gradient effects in the interactions are also included.

If we consider an assembly of NA identical molecules placed in a uniform external field,

Eo , th en th e electric displacement , Di , inside the sample is related to the macroscopic

internal field, Ei,and the dipole moment per unit volume, Pi,as follows:

where co is the permittivity of a vacuum. Now, since D ,

dielectric constant , (4.1) can be written as:

Pi
co(cr - 1) = -.

E ·1

(4.1)

(4.2)

In order to develop the th eory of dielectric virial coefficients, it is necessary to evaluate

~i using stat ist ical mechanics. However, because E , is an averaged quanti ty it is not,
suit able as a statistical-mechanical param eter, and it is usually expressed in terms of th e

external field, Eo, which is an independent variable. The relationship between E; and Eo

is determined by the sample shape under considerat ion, so it is necessary to specify th e

shape of the sample. Fortunately, since e, is a shape-independent property of a gas, it is

possible to consider the simplest case of a spherical sample [121] with out loss of generality.

From classical electrostat ics, the general result for an isolated spherical sample is

Substituting (4.3) into (4.2) yields

3
E i = --Eo·

Cr + 2
(4.3)

(4.4)

Since saturation effects are usually negliglible under experimental condit ions, it is

possible to evaluat e (~~) in the limit of zero field, and

lim (Pi) = ~ (OM)
E0-70 Eo Vm oEo Eo=O'

(4.5)

where M (Eo) is the total mean moment of the sample. In an isotropic fluid, M(Eo)

is parallel to Eo. When (4.5) is subst ituted into (4.4), we get the total polarization, or
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Claussius-Mossott i function [28],

The average moment is given by the stat istical mechanical expression

V (r ,EO )

-( ) _ f M( f, E o).ee- kT df
MEo - ~ ,f e: kT df

(4.6)

(4.7)

where e is a unit vector in the direction of Eo and T represents all the coordinates

(translati onal and rotational) of all the molecules. V(f, Eo) is the potential energy of

the system and ( aVh~Eo)) = -M(f, O) .e.
o Eo=O

Carrying out the differentiation of (4.7) and letting Eo -+ 0 yields

(
OM ) (OM(f ,Eo)) 1
oE = oE .e + kT ({M(f, O).e} {M(f , O) .e})

o Eo=O 0

1
- kT (M(f, O).e) (M(f, O).e) ,

(4.8)

where (X) represents the statistical-mechanical average of X in the absence of an external

field. Now, since the sample under consideration is isotropic [122],

({M(f, O).e} {M(f, O).e}) = t (M (f, 0)2)

and (M(f ,O).e) = 0,

so th at (4.8) simplifies to

(
OM ) _ (OM (f , E o)) 1 ( 2
oE - oE .e + 3kT M (f ,O) ).

o Eo=O 0

If (4.10) is substit uted into (4.6), we obtain

p_ cr - 1 _ ~ { / OM(f, Eo ) ) 1 ( 2)}
T - e, + 2Vm - 3co \ oEo .e + 3kT M (f ,O) ,

(4.9)

(4.10)

(4.11)

which, since the sample is composed of identical molecules, may be written as follows:

p = Cr -Iv: = NA {(o/-£(l ) ) _1_~ ( (1) (i) )}
T e; + 2 m 3cO ss;: + 3kT~ /-£./-£ ,

t=1
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where J-L {i ) is the dipole moment of the i th molecule.

The two terms on th e right-hand side of equation (4.12) each have a distinct physical

interpretation. The first term is a result of polarization of the molecules by the applied

field. The second term originates from the natural inclination of th e molecular dipole

moments to align themselves spontaneously in the direction of the external field, in order

to assume lower energy positions. For molecules with permanent dipole moments, th e

second term is the most significant . However, this second term is not necessarily zero

for non-polar molecules, since it is possible for moments to be induced in individual

molecules.

The Claussius-Mossotti function may be expanded in inverse powers of the molar

volume [28] to yield

(4.13)

where Ac' B, and Cc are the first , second and third dielectric virial coefficients, respec­

tively. The value of Ac is obtained by allowing Vm to tend to zero. Therefore, from (4.12),

(4.14)

where aa is the mean static polarizability of an isolated molecule and /-La is th e permanent

dipole moment of an isolated molecule. From equations (4.12), (4.13) and (4.14), it follows
that th e second virial coefficient is given by

(4.15)

where J-La is th e permanent dipole moment of an isolated molecule, and (J-L{l) + J-L(2)) is

the dipole moment of an interacting pair of molecules in th e absence of a field.

In order to perform the integration in (4.15) to calculate Bc, it is necessary to eval­

uate both the first distortion term (Section 4.1) and the second temperature-dependent

orientation term (Section 4.2). Unfortunately, no simple general th eory, which is ap­

plicable to all molecules at all intermolecular separations, exists for either term [122].
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The theory of both terms is understood for large intermolecular separat ions (long-range

limit ), but complicated ab initio quantum mechanical calculat ions are required at very

short ran ge, where the the charge distributions of the molecules begin to overlap and they

can no longer be trea ted as individual entit ies. In view of this difficulty, it is usual to

assume [9,28, 105, 122] that the two molecules preserve their individual identi ties, even

where overlap occurs. The resulting expressions are used for th e ent ire interaction range,

including t he overlap regions, and th e interaction is described in terms of the proper­

t ies of molecules 1 and 2. The effect of short-range contact forces on the intermolecular

potential are handled separately, as discussed in Chapter 2.

(
BJL(l ) )

4.1 Expression for BEo· e - aO

The expression for (8Jt:::>.e - ao) has been derived by various authors [122-124]. The

t reatment of Graham [122] is followed here because it is the most general.

The dipole moment p,~ 1 ) of molecule 1 is partly due to the direct effect of the external

field Eo, and partly a result of the fields and field gradients at molecule 1 due to the

electric moments on molecule 2. Thus, the dipole moment of molecule 1 may be written

as [26]:

(4.16)

where p,~~) is the permanent dipole moment of molecule 1, Ey) and E;~) are the field

and field gradient at molecule 1 due to molecule 2, ag) is the static polarizability of

molecule 1, and A~~k is th e property tensor which describes the dipole induced by an

electric field gradient or the quadrupole induced by an electric field [26] . Since p,?)e,

will be differenti ated with respect to Eo, only those components of (4.16) due to Eo need

be considered. For molecules with permanent moments the field FP ) at molecule 1 due

to the permanent moments of molecule 2 may be strong enough to modify the effective

polarizability of the first molecule. These modifications may be accounted for by including

the static hyperpolarizabili ty tensors bi j k and g i j kl [26,34,125]. In addit ion, the field

gradient FS)at molecule 1 due to permanent moments on molecule 2 may modify the

polarizabili ty of molecule 1. In order to describe this effect, the term <P~~kIFR) is included

in the effect ive polarizability. This modified polarizability, which may be referred to as

the differential polarizabili ty pW,is given by:

P(l ) = a(~) + b(l) F(l) + 1.g( l ) F (1)F (l) + ~( ~) F(l) + ...
ZJ ZJ zJk k 2 ZJkl k I V'zJkl kl .
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Thus, the dipole moment induced on molecule 1 may be written as:

(1)(E ) _ ( (1) + b(l) F (1) + 19(1) F (1)F (l) + ,/,(1) F(l) + ... ) (E . + F (l »)
J-li 0 - aij ijk k 2 ijkl k I 'f' zJ kl kl 0J J

(4.18)

where F~l ) and F~~) are the field and field gradient at molecule 1 due to the moments
J J . (2) .

induced on molecule 2 by the external field Eo. The dipole moment J-li mduced on

molecule 2 is given by an analogous expression.

Now, using the T-tensor notation described in equations (2.18) to (2.24) of Section 2.3,

we can writ e:

(1) (2) ( ) 1 ()(2) (E )
F i = T ijJ-lj E o - "3T ij k jk 0 +"' ,

(1) (2) ( ) 1 ()(2) (E )
F ij = T ij kJ-lk E o - "3 T ij k1 kl 0 +"' ,

where ())~) (Eo) is given by:

(4.19)

(4.20)

e~2)(E ) = A(~) (E + ~(2») + . .. + C~2) F (2) + . . . (4.21)
Jk 0 l jk: 01 I [klm. lm ,

where '1:'(2) - rt: (1) (E) 1rtv ()(1) (E ) ...
vv .Tl - .L lmJ-lm 0 + 3 .Llmn mn 0 + , (4.22)

(4.23)

()~~(Eo ) is given by an expression analogous to (4.21).

Substi tu ting J-l)2) and (})~) into F P ) in (4.19), then substituting F~2) and F~:) into the

resultant equation, and finally substitut ing for J-l? ) and ()~~ yields the following expression

for F P ) , where only the simplest terms are retained:

'1:'(1) _ T (2) E T (2) (1)
.Tj - jkP kl . 01+ jkPkl ~mPmnEOn + ...

T (2)7', A (1) E .. . _ 1T A(2) rr (l)E ...+ jkPkl lmn pm n Op + 3 jk klm .L lmnPnp Op +
- 1T A(2) E .. . 1T C (2) T (l) E . . .

3 jkl mkl Om + + 3 jkl klmn mnpPpq Oq + .

A simple physical interpretation of some of the terms in this expression follows:

(4.24)

(i) The first te rm represents the field at molecule 1 due to the dipole moment p~~) EO!

induced on molecule 2 by the external field E o.

(ii) The second term represents the field at molecule 1 arising from the dipole moment
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pf~Tmnp~~Eop on molecule 2, initiated by the field Tmnp~~Eop due to the dipole

moment P~JE op induced on molecule 1 by the exte rnal field.

(iii) Th e third term describes the field at molecule 1 due to the dipole moment on

molecule 2 (P~~)~mnA~~nEop) arising from the field ~mnA~~nEop , which is due in

turn to th e quadrupole moment on molecule 1 (A~~nEop) produced by Eo·

(iv) The last te rm describes the field at molecule 1 due to the quadrupole moment in­

duced on molecule 2 (-Ci~~nTmnpp1~ E oq) by the field gradient -Tm npPW E Oq arising

from the dipole moment p1~ E Oq on molecule 1 produced by Eo.

Only a few of the possible terms have been illustrated here, but the relay effect described

above results in an infinite series of progressively higher-order terms. Unfortunately,

until the individual terms are calculated it is impossible to be sure that convergence has

been reached. In th e past the point of termination of th e series was determined by th e

practical const raints of calculating the terms by hand , or with limited computing facilities.

As computer capablilties have improved, it has become possible to add as many terms

as necessary to ensure convergence. This is achieved by calculat ing sucessive terms in

the series until th e point of convergence is reached. In previous work by Burns, Graham

and Weller [62], the series was arbit rarily t runcated when the terms have fourteen or

more indices. In this work, all th e terms considered in th e past by Buckingham [31],

Kielich [124], Graham [122] and Burns, Graham and Weller [62] have been included, as

well as some terms of comparable order which were excluded by Burns, Graham and

Weller.

Thus, substituting (4.17) into (4.24), we now write [105]:

:F(1) - T (2)E T b(2) F (2)E IT (2) F (2)F (2)E T (2)T, (1) E
j - jkakl Ol + jk klm m Ol + 2 j kgklmn m n Ol + j kakl lm a mn On

- IT A(2) E - I T A(2) T (l)E - I T A(2) T. A(l)
3 jkl mkl Om 3 jkl m kl mnanp Op 9 jk klm lmnp qnpE Oq

- IT A(2) T A (l ) E IT C(2) T (1) E
9 jkl mkl mnp qnp Oq + 3 jkl klmn mnpapq Oq + ... ,

(4.25)

(4.26)

Substituting (4.25) and (4.26) into (4.18) results in the following expression for the
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dipole moment induced on molecule 1 by th e exte rnal field Eo, in the presence of molecule 2:

1 (l)T (2),." A (l ) E _ 1 (l )T A (2) T (1)E+ 3 a i j jkakl .1 lmn pmn Op 3 a i j jk kl m lmn a np Op

_ 1 (l) T A(2) T (l) E lA(l )T (2)T (l) E
3aij j kl mk l mn anp Op + 3 i jk jk lalm mnanp Op

1 (1) A (2) 1 (1) A (2) t: A(l) E
- 9Ai jkTjklm nlmE On - gai j T j k klm lmnp qnp Oq

_ lA(l) T A (2) T (1)E - lA(l) T A (2) T (1)E ...
9 ijk jkl lmn mnpapq Oq 9 ij k jk lm nlm npapq Oq +
1 ( l) T 0(2) T (l) E ...+ 3 a i j j kl klmn mnpapq Oq + . (4.27)

When the differentiation 8!L~1 )(Eo)ei is carried out on (4.27), terms containing the
8EOj

product eiej of unit vectors in the direction of the applied field are produced. Since, we

require the derivative in the limit of zero field, all orientations of the molecules are equally

probable and eiej may be replaced by its isotropic average ~c5ij . Thus, differentiating

(4.27) and subtractin g ao, we get :

(4.28)

where

(4.29)

(4.30)

(4.31)
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f3 - .!.b(l)F(l)
1 - 3 i i k k ,

_ 1 (1) (1)F (l)
1'1 - "69i ikl Fk 1 ,

A
(l ) (2)T A(l) A(l)T A(2) T (1)

- i j kT j kl a lm mnp inp + ijk jkl lmn mnpapi

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

To proceed , one must introduce the explicit forms of the parameters T i j , T i j k, T i j kl , F i(i )

(i)and Fi j .

For the second term in Bc, we must consider the total dipole moment on each molecule.

That is, the combination of the permanent dipole moment of the molecule and the dipole

moment induced on it by fields and field gradients due to the total moments on the second

molecule, permanent and induced. Thus we write :

(4.42)

(4.43)
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where

(1) (2) 1T ()(2)
F j --:- TjkJ.Lk - '3 jkl kl + ... ,

(1) (2) · 1T ()(2)
F j k = T j kl J.L1 - '3 jklm lm + ... ,

and

(2) (1) 1T ()(l )
F j = TjkJ.Lk + '3 jkl kl + ... ,

Fj~) = - TjklJ.Li
l)

- ~Tjklm()i:J + ...

(4.44)

(4.45)

()(l ) _ ()(1) + A(l) F(l) + l B(l) F (l )F(l) + C(1) F(l)
kl - Okl mkl m 2 mnk l m n klmn mn'

()(2) _ ()(2) + A (2) F(2) + 1B (2) F(2) F (2) + C(2) F (2)
kl - Okl mkl m 2 mnkl m n klmn mn '

(4.46)

(4.47)

To obtain and expression for J.L~1), one must first substitute (4.45) for FP)and FR)in

(4.42), then substitute (4.43) for J.L~2) and (4.47) for ()~~) into the resulting equation, as

follows:

(1) (1) (1)( (2) I T ()(2) ) bel ) (T (2) IT ()(2) ) (T (2) IT ()(2) )
J.Li = J.Loi + aij T j kJ.Lk - 3" jkl kl + ijk jl J.L1 - '3 j lm lm knJ.Ln - 3" knp np

1 (1) ( (2) 1 ()(2))+ '3 A i j k T j klJ.Ll - '3T j klm lm

= I/(~) + a~~)T. ( 1/(2) + a(2) F(2) + b(2) F (2)F (2) + lA(2) F (2) )
rOz ZJ Jk rOk kl I klm I m 3 klm lm

+ b~ ~)T. ( 1/(2) + a(2) F(2) + .. .)T ( 1/(2) + a(2) F(2) + ...)
zJk Jl rOl lm m kn rOn np p

_ lb(l) (2) (2) F (2) . .. ) (() (2) .. . )
3 ijkTjl J.LOl + aim m + T knp Onp +

_ l b(l) T ( ()(2) . . . )T (2) (2)F(2) . . . )
3 ijk jlm Olm + kn J.Lon + anp p +

1 (1) (2) ) (2) )+ 9 bijkTjlm ()Olm + ... T knp ()Onp + ...

+ lA~~)T. ( 1/(2) + a(2) F (2) + ...+ lA(2) F (2) )
3 ,]k ]kl rOl lm m 3 lmn mn

_ lA(l ) (() (2) A(2) F (2) . .. )
9 i jkTjk lm Olm + nlm n + . (4.48)

Cont inuing in this way, by substituting first for F I(2) and Fl~ ' then for J.L~) and ()~~ ,

and so on, neglecti ng all terms wit h sixteen or more subscripts, or wit h more than one

hyperpolarizability tensor and all terms with the 9 i j kl or B i j kl tensors , yields the following

expression for the dipole moment of molecule 1:

(1) _ (1) + (l) T (2) + (l) T (2)T (1) + (l)T (2)T (1) T (2)
J.Li - J.LOi aij jkJ.LOk aij j ka kl ImJ.LOm a i j jkakl lm a mn npJ.Lop + .

- ~a~~) Tjkl ()~~ + ~ag) Tjka1~)~mn()~~n - ~a~~) Tjka~~)~ma~~Tnpq()~~) + .
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(1) (2)T (1)1', (2)+ bijkTjla ln npf.Lop kmf.LOm + .. .

- ~b~}kTjlf.L~~)Tkmn(}~~n - ~bmTjlm(}~7~Tknf.L~~

+ ~a~})Tjkb~~~Tlnf.L~~Tmpq(}~;q + ~ag)Tjkb~~~np(}( I) OpTmqf.L~~

+ ~ b~}kTjlf.L~~)Tkma~~Tnpq(}~~~ + ~ b~}kTjla~~)Tnpq(}~;qTkmf.L~~

- ~b~}kTjl a~~)Tpqf.L~~)Tkmne~~n - ~b~}kTjlm(}b~~Tkna~~Tpqf.L~~) + ...

+ 1b(l) T (}(2) T (}(2) +
9" ijk jlm Olm knp Onp . ..

1 (I) T (2)1', A(I) 1', (2) _ 1. (I)T A (2) 1', (1)1', (2)+ "3 a i j jkakl lmn pmn pqf.Loq 3 ai j jk klm lmn anp pqf.Loq

(4.49)

The order to which equation (4.49) has been expanded is partially justified in retrospect

through studies of convergence of the terms. Th e exclusion of terms in the hyperpolariz­

ability 9i j kl is based on observations that the lower-order third-rank hyperpolarizability

tensor bi j k (which may be expected to make the leading hyperpolarizability contribut ion)

plays an insignificant role. The expression for f.L~2) is determined by the same procedure

to yield an analogous expression. Thus:

3k

1
T [-21(liP) + 1I~2 ) ) 2 _ 1/20] 1 [r. r. t-: = 3kT f.L2 + Cilf.L2 + Ci2f.L2 + Ci3 f.L2 + .. .
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where

(1) (2)
f-L2 = f-LOi f-LOi , (4.51)

(4.52)

(4.53)

48

(4.54)

(4.55)

(4.56)

(4.57)



(4.58)

(4.59)

(4.60)

A _ I ((1) (2)) (A(l) (2) (2) (1))
1{t2 - - 3" {tOi + {tOi ijkTjkl{tOl - A ijkTjkl{tOl
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(4.62)

(4.63)



1 [( (1) (2)) ((1) A(2) (1) _ (2)T A(l) T, (2))
a1AUL2 = -"3 f-LOi + f-LOi a i j T j k klm~mnf-LOn a i j jk klm lmnf-LOn

(
(1) (2)) ( (1) (2) . (1) (2)T A (1) T (2))+ f-LOi + f-LOi aij TjklAmklTmnf-Lon - aij jkl mkl mnf-LOn

(
(1) (2) (2) (1)) ((1) (2) _ A(2) T (1))]

- a i j Tjkf-LOk + a i j Tjkf-LOk AilmTlmnf-LOn ilm lmnf-LOn
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(4.65)

(4.66)

(4.67)

(4.68)
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4.3 Bc for spherical molecules

The general form of the second dielectric virial coefficient is given by:

B = N1 1{[1. BpP) + /-l(1) .e - aa] + _1_ [1. (/-l(I) + /-l(2))2 - /-l~] } «: U1k2';'T) dr.
E: 3Ean 2 BEa 3kT 2

T

(4.70)

Three effects contribute to BE: [28]. Firstly, if the mean polarizability is altered by the
. / a(/-l(1)+/-l(2») ) . .presence of a neighbour, then \ aEo .e WIll not equal 2aa, and the first term WIll

be non-zero. If the polarizability is reduced as in the calculations of de Groot and ten

Seldam [126], then the contribution of this term to BE: will be negative. Secondly, when

a pair of molecules interact, the induced moment of one molecule may in turn induce

an additional moment on its neighbour, by dipole-induced-dipole interaction. When this

is averaged over all configurations, it may contribute to (a(/-l(~;t(2»).e). This is the

effect first investigated in terms of a simple model by Kirkwood [127]. Thirdly, if a pair

of interacting molecules possess a resultant dipole, whether permanent or induced, in

the absence of an external field, then a contribution will arise from the second term in

equation (4.70). It is possible, for example, for the quadrupole moment of a non-polar

molecule to induce a dipole moment on a neighbouring molecule, resulting in a non-zero

moment for the pair. These transient moments may be orientated by the external field,

thereby contributing to the second term in BE:, which must obviously be positive. For

inert gases, however, (/-l(I) + /-l(2)) is always zero because, by symmetry, atomic gases

have no multipole moments of any order. Therefore, the second term in BE: must be zero.

Quasi-spherical molecules , such as CH4 , CF 4 and SF6 , may have octopole, or higher,

moments, but the contribution of these to the second term is assumed to be negligible.

Thus, for spherical and quasi-spherical molecules, the second virial coefficient is given
by

B N1 1{[B/-£(1) ]} - U12(T)E: = -- ---.e - aa e kT dr
3Ean BEa

T

41rN1 100 { [B/-l(I) ]} _~ 2= -- --.e - aa e kT R dR,
3Ea BEa

a
(4.71)

since T is completely specified by the distance, R, between two interacting molecules.

Now, for spherically symmetric molecules equation (4.28) is greatly simplified, since

they possess no permanent multipole moments in their ground state, Ai j k and bijk are

both zero, and Ci j kl has only one independent component [26]. The static polarizability
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tensor aij is isotropic and may be written as:

(4.72)

where a is the static polarizability of the gas. Thus for a spherical molecule it can be

shown that [62,128]:

(4.73)

CY3 = (47fcO) 2R6 '

10a2C

and cy2C1 = (47fco)2R8

(4.74)

(4.75)

The first term is the amount by which the mean intrinsic polarizability of a molecule is

modified by the presence of a neighbour. However, the classical molecular theory adopted

in this work does not account for this difference and the term (a(l) - ao) is assumed to

be zero. Ab initio quantum-mechanical calculations carried out by Buckingham and

Watts [129], and O'Brien et al. [130] for helium show that the polarizability of a molecule

decreases at short range. The second term is the Kirkwood "fluctuation" term [127], and

is usually the largest contribution to B, for spherical molecules. In the past , this was

often the only term considered in classical theories of of Bi: However, in 1982 Logan and

Madden demonstrated the importance of the C-ten~or term [131]. Unfortunately, there

is a lack of measured values for the C-tensorcomponents.

4.4 B; for linear molecules

For linear gases the second virial coefficient is given by

(4.76)

where the general forms of the two terms are given by equations (4.28) and (4.50)

In order to determine the explicit forms of these expressions, it is necessary to express
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the molecular property tensors in terms of the angles specifying their relative configura­

tion, T, The method for describing T is describ ed in Section 2.1.1.

In 1967 Buckingham [26] demonstrated how the property tensors of an linear molecule

p may be expressed in terms of i~p), where i~1) and i~2) are the unit vectors along the

principal axes of molecules 1 and 2, respectively:

(4.77)

(4.78)

h 8
- 8 (1) _ 8 (1) _ (1) _ (2) _ (2) _ (2) .

w ere - 33 - -2 22 - -2811 - 8 3/31 - -282/21 - -281/11'

(4.79)

h - 1 (1) _ 1 (2) dw ere a - -3 a· · - -a 'I '1 anzz 3 Z Z

(1) (1)
a 33 - a l1

K, = --=-=----=-=--
3a

/).a

3a'

(4.80)

h (I) ' (2)
w ere bll = b333 = b3/3131 cl b - b(I ) _ (1) _ (1) _ (2) _ (2) _ (2) .

an .1 - 113 - bI31 - b311 - b I/ I /31 - b I/ 31I1 - b3/II II ,

where

(p) _ ( (1) 1 (1) ) 0 ( (1) (1) 4 (1) ) (p) (p)
g iikl - g 3311 + 3 g 1111 kl + g 3333 + g 3311 - 3g 1111 i k i l ;

A-,(i) _ ( A-,(I) A-,(I) A-,(I)) s; ((1) (1) (1)
'f'iikl - 'f' 1111 + 'f'22 11 + 'f'3311 k l + eP3333 + 2eP1133 - ePl1l1

A~~) = l A i p
) (3l P)g(p) - o· ) + A ( l P)O. + n(P) s: . . _ 2n(p) n(P)n(p))

ZJ k 2 11 Z J k Jk . .1 J ik {.k uZJ {.i {.j {.k ,

A = A (I ) - -2A (I ) - - 2 A(1 ) _ A (2) _ (2) _ (2)
11 333 - 322 - 311 - 3/3/3

'
- -2A3/2121 - -2A3/Illl

(4.81)

(4.8 2)

(4.83)
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and ci~L = 110 (Cg~3 + 8cgL + 8ciiL) [H6ik6jl + 6il6jk) - ~6ij6kl]

+ 2
1
8 (5cg L + 4cgL - 8cgL) [ (3£~P) £~) - 6ik)6jl

+ (3R~p)£fp) - 6il)6jk + (3R;p)£~) - 6jk)6il+ (3R;p)£fp) - 6jl)6ik

_ i(3£~p)lp) - 6--)6kl - i (3R(p)g(p) - 6kl)6--]
3 t J lJ 3 k I lJ

Also,

(4.84) ,

(4.85)

(4.86)

(4.87)

Explicit forms of F i(p) and FH) are also required . These are obtained by substituting

(4.77) and (4.78) into (4.45) , yielding:

(1) _ 1 [f.l (2) e
Pi - 4 7r€0 R3 (3/\A j - 6ij) I!.j - 2R4 (5AiAjAk

- Ai6jk - Aj6ik - Ak6ij\ (3R)2)R12) - 6jk) + ... ] ,
, ~::.

(4.88)

(4.89)

- Ai6jk - Aj6ik - Ak6ij) (3£;1)41)- 6jk) + ... ] ,

(1) 1 [3f.l (2) ]Fij = -4- R4 (5AiAjAk - Ai6jk - Aj6ik - Ak6ij)Rk +... , (4.90)
7rCQ
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where FS) includes only dipole effects.

The unit vectors f~l) and f~), and Aa , which is the unit vector along the line of centres

R , are related to the angles BI , B2 and <p as shown in equations (2.26) to (2.28) . These

equations are the dot products of the unit vectors expressed in terms of the space-fixed

axes, but the results are applicable to any set of axes. In particular, they apply to the

molecule-fixed axes of molecule 1. Since the unit vector f~ l ) lies along the 3 axis, the

expressions in equations (2.26) to (2.28) may be simplified as follows:

a~' = f~2)
t t ' (4.91)

(4.92)

(4.93)

(4.94)

Substituting equations (4.77) to (4.90) into equations (4.29) to (4.41) yields terms

cont aining f~p) and Ai, which are eliminated using equations (4.92) to (4.94). This yields

the following expressions for the induction term of Be:

(4.95)

(4.96)

(4.97)

+27 (cos" BI + cos" B2 - cos BI cos B2 cos ( 12 ) + 81 cos2 BI cos" B2 - 12 cos2 B12]

+ 1),3 [54 (cos2 BI + cos2 B2 - cos" BI - cos" ( 2 ) - 324 cos" BI cos'' B2
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- 243 (COS2 ()1 COS4 ()2 + COS4 ()1 COS2 ()2 - COS2 ()1 COS2()2)

- 81 cos ()12 (9 cos" ()1 cos" ()2 + cos ()1 cos" ()2 + cos" ()1 cos ()2)

+ 135 cos ()1 cos ()2 cos ()12 - 729 cos2 ()1 cos" ()2 cos2 ()12 + 24 cos2 ()12

- ~ ()b 4 (3 cos ()1 cos2 ()2 + 2 sin ()1 sin ()2 cos ()2 cos cjJ - cos ()1) ,
647fcoR .

0!1(31 = -~ ( a~2 6 {b-t [4(1- /);) (3COS()1 COS()2 - cos ()12)
3 47fco R

(4.98)

(4.99)

- 3/); (cos ()12 (cos ()2 (7cos2 ()2 - 5) + cos ()1 (7cos" ()1 - 5))

+ cos ()1 (2 cos2
()t - 1) (15 cos2 ()1 - 1) + cos ()2 (2 cos2 ()2 - 1)

X (15 cos" ()2 -1))] + (bll - 3b-t) [(1- /);) (3(COS3()1 + cos3 ()2)

+ 3/);(cos ()1 + cos ()2) (3 cos ()1 cos ()2 cos ()12 (5 cos ()1 cos ()2 - 1)

+ cos2 ()12 (11 cos ()1 cos ()2 - 1) + 2 cos'' ()12)] } ,

1 ~2 .

/ 1 = 18 (47fco)R6 {(3g3311 + 491111) (3 cos'' ()2 + 1)
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-3~ (5 cos" ()1 cos ()2 cos ()12 - cos ()2 cos ()12] + 2 cos ()1 cos2()12) ]

+6Al- (5 cos ()1 cos2()2 - cos ()1 + 2 cos ()2 cos ()12) } ,

(4.103)

+15 cos2()2 cos ()12 - 30 cos ()1 cos ()2 - 6 cos ()12) } ,

(4.104)

(4.105)

+ ((1 + 2~) (3AIIAl- - 4Ai) + 12~Ai) (40 cos" ()1 cos ()2 + 12 cos2()1 cos ()12)

+ (1 -~) (3AUAl- - 4Ai) (40COS()1 COS()23 + 12cos2()1 cos ()12)
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+4(1 - /'1;)Ai (48 cos 01 COSO2 + 6 cos ( 12 ) ]

+ 3 [GA~ - 4Ai) ((1- /'1;) (5cos4 01 - 2cos2 01 + 1)

(4.106)

(4.107)

Substituting equations (4.77) to (4.90) into equations (4.51) to (4.69) yields the fol­

lowing expressions for the orientation term of Bi:

. 2 LJ
/-l2 = /-lo cos U12 , (4.108)

(4.109)

+ /'1;(1 - /'1;) [2 (3 COS
2 01 + 1) + 3 cos 012 (2 - 3 COS

2 01 + COS
2

( 2 )

+4 (3 cos 01 cos O2 + cos ( 12 ) 2 + 3 cos 01 cos O2 (4 - 9 COS
2 01 - 3 COS

2
( 2 ) ]

(4.110)
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(4.111)

(4.112)

+5 COS
2 01 COS O2 + 16cos 01 COS

2 O2 ) + 2 COS
2 012 (COS 01 + 2 cos O2 ) ]

+ 9/'i;2 (COS 01 + COS O2 ) [15 COS
2 01 COS

2 O2 - 3 cos 01 COS O2
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CY.2(h = ~ a
2
(j2 {(I - h:? (5 cos" (h + 3cos2()1 + cos" ()2 - 5 cos2()1 cos2()2

4 (47f£0)2R8 .

+4 cos ()1 cos ()2 cos ()12) + 3h:(1 - h:) [5cos" ()1 + 5 cos" ()2 - cos2()1

(4.114)

(4.115)
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M3
2

131M3 = 2 {(2b-i + (b ll - 3h) (1 - cos ( 12 ) ) (3cos 01 COSO2 + COS ( 12 )
(4 1fEo)2R9

+ h [3 cos 012 (1 - COS
2

( 1 ) + 6cos 01 COSO2 (1 - 3cos2
( 1 )

(4.116)

+6 cos 01 COSO2 + 4) + 8COS
2

( 12 ) + 9/1; (3cos 01 COSO2(2 + 3COS
2

( 1 )

+ 18 COS
2 01 COS

2 O2(1 - 3 COS
2

( 1 ) + COS01 COS
3 O2(1 + 6 COS

2
( 1 )

(4.117)

-2 COS
3 O2 (2 + 15cos" ( 1 ) - COS01 COS012 (3 - 7 cos" 01 + 22 COS

2
( 2 ) ]

+ (bll - 3h) [3cos2 01 COSO2 (1 - 5 COS
2

( 2 ) + COS01 COS012

(1 - COS
2 O2(8 + 15 cos" ( 1 ) ) - COSO2 COS

2 012 (1 + ii COS
12

( 1)
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(4.119)

-3 cos rh + 4 cos ()l (COS
2()2 - COS

2()l) + cos ()12 (COS ()2 - 3 cos ()l))

- 6/1; (COS ()2 (4 cos2()l + 1) + 2 cos ()l cos ()12 (2 cos2()2 + 1) ,

+ cos ()2 cos2()12)]) ,

A1f-tl()1 = -~ 47r~:R5 {[3AII(1 + cos ()12) - 4Ai cos ()d [1 - 5 cos
2

()l

+4AJ.. [5cos ()l cos ()2(3 - 7 cos2()d] + 3 cos ()12(1 - 5 cos2()d]) ,

3 a()2
cy1A1()2 = "4 (

41rc
O)2R9 {[3AII (1 + 2/1;) - 4AJ.. (1 - /1;)] [5cos" ()l - cos ()l

+ 2 cos ()2 cos ()12 (1 - 15 cos2()l - 5 cos" ()2 (1 - 17 cos" ()d)

- 2 cos ()l cos2()12 (1 - 25 cos" ()2) + 4 cos ()2 cos" ()12]
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(4.122)



+ H5C3333 + 4C1313 - 8C1111 ) [(1 + 2/'i;) (3 cos" 92(1 + 5 cos2 91 ) - 2

- cos2 91) + 3 (1 + /'i;(2 + 3 cos 912) ) cos 912 (4 cos 91 cos 92 + cos 912)

+ (1- /'i;) (cos 91 cos 92 (7 -15cos2 91) + COS912 (1 - 3cos2 91) )

+3/'i; cos 912 (cos2 92 (15 cos2 91 - 1) + 3 cos2 91 - 2)]

+ 3
15 (2C3333 - 4C1313 + C1111 ) [(1 + 2/'i;) (23 cos2 91 - 20 cos" 92 + 4

+ 25 cos" 91 cos2 92 (35 cos2 92 - 18) + 20 cos 91 cos 92 cos 912 (35 cos" 92 - 11)

+25 cos2 91 cos2 92 (35 cos2 91 - 18) + 20 cos2 912 (7 cos2 91 - I))]} , (4.123)

a1C1 fJ, 191 = 3 (47r:~;R9 {HC3333 + 8C1313 + 8C1111 ) [(1 - /'i;) (5 cos" 91 + 4 cos 91
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(4.124)

The explicit expressions for 0'.4()2 and 0'.2Cl ()2 are too long to give here. In order to

eliminate programming errors, Macsyma's Fortran conversion facility was used to convert

the expressions directly into Fortran.

If the molecules are assumed to be isotropic and , therefore, the molecular anisotropy

K to be zero, then the terms for /h, 0'.1J.-t2 and 0'.2J.-t2 in equations (4.108) to (4.111) reduce

to the familiar expressions derived by Buckingham and Pople [101].

4.5 Be for non-linear molecules

For non-linear gases the second virial coefficient is given by

N
2 J{[OJ.L(l) ] 1 } ~B = _A_ --.e - a + - [1(11(1) + J.L(2))2 - J.L2] e- kT dr

e 3con oEo 0 3kT 2 r: 0

T

(4.125)

where general expressions for the two terms are given by equations (4.28) and (4.50). For

the non-linear gases under consideration, experimental values for some of the molecular

properties, such as the hyperpolarizabilities and the A- and C-tensors, are not available.

For this reason, and because of estimations of the relative importance of these terms

based on the results for the linear gases, terms containing hyperpolarizabilities and the

A- and C-tensors were neglected for the non-linear gases. The remaining terms in the

dipole moment, quadrupole moment and the molecular polarizabilities, were calculated
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to an order high enough to establish convergence.

The general formulae for these terms must now be expressed in terms of the elements

of the seven interaction parameters R, a I , (31, / 1, a2, (32 and /2, describ ed in Section 2.1.2.

Since the terms in equations (4.28) and (4.50) are referred to 0(1 ,2,3), the property

tensors of molecule 2 must be proj ected int o the axes of molecule 1. This is achieved by

first rotating the tensor from 0' (1' ,2' ,3') into O(x,y,z) using the direction cosine a~ , and

then rotating the resultant tensor into 0(1,2,3) by means of ai . Thus, the dipol e moment

of molecule 2 referred to molecule l 's axes is given by:

1/(2) = a' 1/( 2) = ai at?' JP )
t"'z Q t"'Q Q Zl t"'ZI , (4.126)

where p,~;) = p,~ l ) = [0 0 p,], and a~ may be viewed as the transpose of equation (2.5).

Using equation (2.44) we get:

(4.127)

. where

(4.128)

where Al to Ag and Bl to Bg are defined in equations (2.45) to (2.53).

Similarly, t he quadrupole moment of molecule 2 referred to 0(1 ,2,3) is given by:

(4.129)

where

(4.130)
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and

Q11 = 81 [A~(B? - B~) + A~(B~ - B~) + Ai(Bi - Bi) - 2A7Bg(A4B6

+A1B3) + 2A7B7(A4B4+ A1B1) + 2A1A4(B1B4 - B3B6)]

+ 82 [A~(B~ - B~) + A~(Bg - B~) + Ai(B~ - Bi) - 2A7Bg(A4B6

+A1B3) + 2A7Bs(A4B5+ A1B2) + 2A1A4(B2B5 - B3B6)] ,

Q22 = 81 [A~(B? - B~) + A~(B~ - B~) + A~(Bi - Bi) - 2ASBg(A5B6

+A2B3) + 2AsB7(A5B4+ A2B1) + 2A2A5(B1B4 - B3B6)]

+ 82 [A~(B~ - B~) + A~(Bg - B~) + A~(B~ - Bi) - 2ASBg(A5B6

+A2B3) + 2AsBs(A5B5+ A2B2) + 2A2A5(B2B5 - B3B6)] ,

Q33 = 81 [A~(B? - B~) + A~(B~ - B~) + A~(Bi - BD - 2AgBg(A6B6

+A3B3) + 2AgBg(A6B4+ A3B1) + 2A3A6(B1B4 - B3B6)]

+ 82 [A~(B~ - B~) + A~(Bg - B~) + A~(B~ - Bi) - 2AgBg(A6B6

+A3B3) + 2AgBs(A6B5+ A3B2) + 2A3A6(B2B5 - B3B6)] ,

Q12 = -(81 + (2)[(A4As + A5A7)B6+ (AlAs + A2A7)B3]Bg

+ 81 [A7As(B? - B~) + A4A5(B~ - B~) + A1A2(Bi - BD + [(A4As

+A5A7)B4+ (AlAs + A2A7)B1]B7 + (A1A5+ A2A4) (B1B4 - B3B6)]

+ 82 [A7As(B~ -B~) + A4A5(Bg - B~) + A1A2(B~ - Bi) + [(A4As

+A5A7)B5+ (AlAs + A2A7)B2]Bs + (A1A5+ A2A4) (B2B5 - B3B6)] ,

Q13 = -(81 + (2)[(A4Ag+ A6A7)B6+ (A1Ag+ A3A7)B3]Bg

+ 81 [A7Ag(B? - B~) + A4A6(B~ - B~) + A1A3(Bi - Bi) + [(A4Ag

+A6A7)B4+ (A1Ag+ A3A7)B1]B7+ (A1A6+ A3A4)(B1B4 - B3B6)]

+ 82 [A7Ag(B~ - B~) + A4A6(Bg - B~) + A1A3(B~- Bi) + [(A4Ag

+A6A7)B5+ (A1Ag+ A3A7)B2]Bs + (A1A6+ A3A4) (B2B5 - B3B6)] ,
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Q23 = -(e1 + e2)[(ASAg+ A6As)B6+ (A2Ag+ A3As)B3]Bg

+ e1 [AsAg(B~ - B~) + AsA6(Bl- Bi) + A2A3(Bi - B~) + [(ASAg

+A6As)B4 + (A2Ag+ A3As)B 1]B7 + (A2A6+ A3As)(B1B4 - B3B6)] (4.136)

+ e2 [AsAg(B~ - B~) + AsA6(B~ - Bi) + A2A3(B~ - B~) + [(ASAg

+A6As)Bs + (A2Ag+ A3As)B2]Bs + (A2A6+ A3As)(B2Bs - B3B6)] .

The static polarizability, a~~) is given by:

[

Wll
(2) i j a: f3 (2)

ai, = a af3a.,a ·,a ·,·, = W12tJ a: i J t J

W13

where

and

(4.137)

(4.138)

Wn = an [AiBi + A~Bl + A~B~ + 2A1A4B1B4 + 2A7B7(A4B4 + A1B1 ) ]

+ a22 [AiBi + A~Bg + A~B~ + 2A1A4B2Bs + 2A7Bs(A4Bs + A1B2)]

+ a33 [AiB~ + A~Bi + A~B~ + 2A1A4B3B6+ 2A7Bg(A4B6+ A1B3)] ,

W22 = an [A~Bi + A;Bl + A~B~ + 2A2AsB1B4 + 2AsB7(AsB4 + A2B1) ]

+ a22 [A~B~ + A;Bg + A~B~ + 2A2AsB2Bs + 2AsBs(AsBs + A2B2)]

W33 = an [A~B~ + A~Bl + A~B~ + 2A3A6B1B4 + 2AgB7(A6B4 + A3B1 ) ]

+ a22 [A~B~ + A~Bg + A~B~ + 2A3A6B2Bs + 2AgBs(A6Bs + A3B2)]

+ a33 [A~B~ + A~Bi + A~B~ + 2A3A6B3B6+ 2AgBg(A6B6+ A3B3)] ,
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+B7 (B4(A4As + AsA7) + B1(A1AS + A2A7))] + a22 [AIA2B~

+ A4AsB~ + A7AsB~ + B2BS(A1AS + A2A4) + B s (Bs(A4As + AsA7) (4.142)

+B2(A1As + A2A7))] + a33 [AIA2B~ + A4AsB~ + A7AsB~

+B3B6(A1As + A2A4) + Bg(B6(A4As + AsA7) + B3(A1As + A2A7))] ,

+B7 (B4(A4Ag+ A6A7) + B1(A1Ag+ A3A7))] + a22 [AIA3B~

+ A4A6B~ + A7AgB~ + B2Bs(A1A6+ A3A4) + Bs (Bs(A4Ag+ A6A7) (4.143)

+B2(A1Ag+ A3A7))] + a33 [AIA3B~ + A4A6B~ + A7AgB~

+B7 (B4(AsAg+ A6As) + B1(A2Ag+ A3As))] + a22 [A2A3B~

+ AsA6B~ + AsAgB~ + B2Bs(A2A6+ A3As) + B s (Bs(AsAg+ A6As) (4.144)

+B2(A2Ag+ A3As))J + a33 [A2A3B~ + AsA6B~ + AsAgB~

The expressions for the second and third rank T-tensors referred to space-fixed axes

are given in equations (2.40) and (2.41). These must be projected into molecule l's axes

as follows:

(4.145)
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where

. 2 2 2
Tl1 = 2A7 - A4 - AI '

T22 = 2A~ - A; - A~ ,

T33 = 2A~ - A~ - A~,

Tl2 = 2A7As - A4As - Al A2,
Tl3 = 2A7Ag - A4A6 - Al A3,
T23 = 2ASAg - AsA6 - A2A3·

(4.146)

_ i j kTijk - aQa{3a"(TQfh ,

therefore ,

[T111
T112 Tl13]

Tljk = 41fc~ R4 T112 Tl22 Tl23 ,

T113 Tl23 Tl33

[T
ll2 Tl22

T
123

]. T2jk = 41fc~R4 Tl22 T222 T223 ,

Tl23 T223 T233

[T
l13 T123 T133]

T3jk = 41fc~R4 Tl23 T223 T233 ,

Tl33 T233 T333

where

T111 = 2A~ - 3A7(A~ + AD ,

T222 = 2A~ - 3As(A; + A~),

T333 = 2A~ - 3Ag(A~ + A~),

T112 = 2A7(A7As - A4As - A1A2) - As(A~ + An,

T113 = 2A7(A7Ag - A4A6 - A IA 3) - Ag(A~ + AD ,

Tl22 = 2As(A7As - A4As - A1A2) - A7(A; + AD ,

Tl33 = 2Ag(A7Ag - A4A6 - A IA 3) - A7(A~ + AD,

T223 = 2As(ASAg - AsA6 - A2A3) - Ag(A; + A~) ,

T233 = 2Ag(ASAg - AsA 6 - A2A3) - As(A~ +A~) ,

Tl23 = Ag(2A7As - A4As - A IA2) - As(A4A6 + A IA 3)
- A7(AsA 6 + A2A3) ·
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In order to simplify the final expressions for the terms, we define an additional tensor:

where

Gu = a u (Wu Tu + W12T12+ W13T13) ,

G12 = a u (W12Tu + W22T12+ W23T13) ,

G13 = au (W13Tu + W23T12+ W33T13) ,

G21 = a22(Wu T12+ W12T22 + W13T23) ,

G22 = a22(W12T12 + W22T22+ W23T23) ,

G23 = a22(W13T12 + W23T22+ W33T23),
G31 = a33(WuT13 + W12T23+ W13T33) ,

G32 = a33(W12T13 + W22T23+ W23T33) ,

G31 = a33(W13T13 + W23T23+ W33T33)·

(4.150)

(4.151)

(4.152)

With these tensors defined it is now possible to use Macsyma's tensor manipulation

facilities to evaluate the relevant terms in the integration. Thus, substituting equa­

tions (4.126) to (4.149) into equations (4.30) to (4.32), (4.51) to (4.55) and (4.57) yields:

1
0:2 - 3(41rco)R3 (Gu + G22+ G33),

0:3 = 3(41rLFR6 {aU(G13T13 + G12T12+ GuTu) + a22(G23T23 + G22T22

+G21T12) + a33(G33T33+ G32T23 + G31T13)} ,

_ 1 {( 2 2
0:4 - 3(41rco)3R9 Tu Gu + G12G21+ G13G31) + T22(G12G21+ G22

+ G21) + G13G32+ G23G31] + T13[(GU + G33) (G13 + G31) + G12G23

. +G21G321+ T23[(G22+ G33)(G23+ G32) + G12G31+ G13G2d},
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+ V~T;2 + V~T;3] + a~2[2(VIV2TI2T22 + VIV3TI2T23 + V2V3T22T23) + ViT;2

+ v~Ti2 + V~Ti3] + a~3[2(VIV2TI3T23 + VIV3TI3T33 + V2V3T23T33) + ViT;3

X [2(WI3TI2+ W23T22+ W33T23) + W I2TI3+ W22T23+ W23Td + a33(VI TI3

+ V 2T23+ V3T33)[3(WI3TI3 + W23T23+ W33T33) + 2(WnT;3 + W22Ti3

+W33T:r3 + 2(W12T13T23 + WI3TI3T33 + W23T23T33))]} ,

(4.157)

. + G22T23+ G23T33) + W33[T33(G3ITI3+ G32T23+ G33T33) + TI3T23(G12+ G2I)

+ TI3T33(G13+ G3I) + T23T33(G23+ G32) + GnT;3 + G22Ti3 + G33T:r3]

+ W I2[T33(G23T13+ G13T23) + T23(G22T13 + G12T23) + TI3(G2ITI3+ GIIT23)]

(4.158)
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2/12 {
(}:1/11 01 = - (

47fc
o)R4 a33[QuTu3 + Q22T223 + Q33T333 + 2(Q12T123 + Q13T133

+ Q23T233)] - 01[W33Tu 3 + W23TU2 + W 13T1U] - 02[W33T223

+W23T222+ W13T122] + (01+ O2)[W33T333 + W23T233 + W13T133]} ,

(4.159)

(}:2 02 = (47fc~)2R8 {ail [Qu TU 1 + Q22T122 + Q33T133 + 2(Q12Tu 2 + Q13Tu 3

+ Q23T123)f + a~2[QuTu2 + Q22T222 + Q33T233 + 2(Q12T122 + Q13T123

(4.160)

It can be seen from the above equations, that in spite of the methods employed to

abbreviate the expressions, they become increasingly complicated. The terms (}:2/1101 and

(}:302 have been evaluated, but are not quoted here since they are very long and it is

preferable to generate the expressions using an algebraic manipulation package such as

Macsyma, which can convert them directly into Fortran for integration, eliminating the

introduction of typographical errors. T hese terms were necessary to establish convergence.

The computer programs to calculate each term are time-consuming. For a polar gas,

calculating all the terms necessary to determine BE; takes more than 24 hours on a Pentium

133 MHz PC with 64 Mb of RAM.
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4.6 Summary of experimental work on the second

dielectric virial coefficient

Tables 1.1 to 1.3 contain a comprehensive summary of the experimental second dielectric

virial coefficient data available, for the molecules under study. For many of the values the

experimental errors quoted are substantial, and the results of different workers vary con­

siderably. Thus, it is often difficult to distinguish a trend over the range of temperatures

for which data is available. Apart from some recent work by Huot and Bose in 1991 [38]

on noble gases, the majority of the data was measured in the 1960's and 1970's.

The earliest measurements [10,12 ,45,46,53] were made using Burnett's expansion

method [132]. This was later modified by Orcutt and Cole [13] in 1967, to provide more

accurate density measurements, and therefore, more accurate values of Bi, using a cyclic

expansion technique. This method has been used extensively in the measurement of

the second dielectric virial coefficient [2,24,42,43,51,110,133] . However, in both these

methods the second dielectric virial coefficient is not determined directly, but as a ratio

of ~~, with Ac: determined in a separate experiment. In 1970, Buckingham, Cole and
e

Sutter [49] reported on a simple differential technique for the direct determination of Bc:,

which involved the use of almost identical cells, one of which is evacuated. The sum of the

capacitances in both cells was measured, the gas was allowed to expand to fill both cells,

and the the change in the sum was measured. The same principle was used by Buckingham

and Graham [39], and later by Burns and Graham [44], to measure BR for a range of

gases. This method was also used by St-Arnaud and Bose [68] in 1979 to measure the

second refractivity virial coefficient of carbon dioxide and sulfur hexafluoride, by Bose et

al [74] in 1988 to measure BR for ethylene-argon mixtures, and by Huot [38] to measure

dielectric virial coefficients of atomic gases. Koschine and Lehman [134] measured B,

for 1,1-difluoroethylene using a modification of the cyclic expansion method. In 1995

St-Arnaud et al. [135] designed a computer-controlled measuring system which employs

the differential expansion technique of Buckingham et al. [49] to measure the dielectric

constant as a function of pressure and temperature. They showed that the computer­

controlled system can improve the efficiency of the experimental procedures.

It can be seen from comparison of Table 1.2 and 1.3 that the second virial coefficients

for dipolar molecules are much larger than those for molecules without a permanent

dipole. This can be understood by considering the contribution of the two terms in

equation (4.15). The first term, which represents the polarization due to the moments

induced in the molecules, is sometimes referred to as B~. d' The second term which
CIn ,

represents the polarization due to the dipoles orientating themselves in the direction of
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th e field, is called B e or ' Therefore, Be may be writ ten as [40] :

(4.161)

For atomic gases, only the first te rm contributes to Be, while for oth er non-polar gases,

th ere is some contribution from th e second term, but the first term usually dominates.

For polar gases, B
e ind

is usually assumed to be negligible in comparison with B e or [2,3,27].

Th ere have been some at tempts to separate th e contributions of B e in d and B e or [136], so

that mulitpole moments may be evaluated from B e or ' but the methods are unreliable and

th ere are few results available .

4.7 Summary of theoretical calculations of the sec­

ond dielectric virial coefficient

The deviations of real gases from the Clausius-Mossot ti formula in (4.6) have been dis­

cussed by many workers. In th e 1930's various models of dielectrics were prop osed in

an attempt to explain the Clausius-Mossoti formula [119,121]. Harri s and Alder [116]

later expanded Kirkwood 's correlation factor 9 in powers of ~ in an attempt to model

th e density-dependence of th e Clausius-Mossot ti equation, and developed formulae for

the dielectric polarization from some simple force fields, using th e Onsager relation [119]

for estimat ing th e mean dipole moment of a molecule. Their model, like Kirkwood 's,

excluded induction effects.

Later, Buckingham and Pople [28, 101] considered a virial typ e expansion of the

Clausius-Mossotti formula and presented a general stat ist ical mechani cal derivation of

the second dielectric virial coefficient by considering a macroscopic spherical volume of

gas. This generally accepted formula for Be is given in equation (4.15). They showed

that it was unnecessary to make th e approximation of using th e Onsager relation if one

considered only the initial deviation from the ideal gas behaviour. Th ey introduced a

shape factor D , discussed in Section 2.2, into th e intermolecular potential to account for

the orientation effects of the shape of a molecule, such as th e large positive values of Be

for CHF3 and negative values for CH3F (Table 1.3). Much of the subsequent work on

the subject has been based on their model, with mixed results [3,45,97]. In order to per­

form th e necessary int egration th ey used H k functions introduced by Lennard-Jones [137],

which th ey tabulated [96]. This method involves expansion of th e orientation-dependent

part of the Boltzmann factor e-!W in powers of k~ which leads to increasingly complex

functions from higher powers of U12 and problems with convergence. Due to the difficul­

ties involved in the integration, only the leading terms in the integrands were evaluated.

As numerical integration using computers became practical, it was possible to include
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more terms and consider quadrupole-quadrupole and quadrupole-induced-dipole poten­

tials together with the Lennard-Jones, dipole-dipole and shape potentials. In our work

we have included as many terms as was necessary to ensure convergence, as well as the

full DID potential model, as described in Chapter 2.

The second dielectric virial coefficients of spherical and quasi-spherical gases have

been studied by various workers. Isnard, Robert and Galatry [112] calculated B; for the

quasi-spherical CH4 and CF 4 by including the dipole-induced-dipole contribution for the

distortion term and the octopolar and hexadecapolar fields for the orientation term, and

found good agreement with experimental data. Logan and Madden [131] calculated Bc
for CH4 and the inert gases by considering the induced quadrupole contribution to the

induction component. They showed [138] that the induced quadrupole made a significant

contribution to B, of argon, demonstrating the importance of the C-tensor term in B e in d ·

More recently, Huot and Bose [38] calculated B; for atomic gases from ab initio cal­

culations incorporating quantum short-range corrections. These were determined by the

Hartree-Fock self-consistent field (HF-SCF) method, but apart from helium the calculated

values were not in agreement with their measured values.

In 1994, Bulanin, Hohm and Ladvischchenko [139] calculated B, for rare gases using

accurate HFD-type interatomic interaction potentials. They compared their calculations

with experimental data and previous calculations of Hohm [140] based on a Lennard­

Jones potential, and found that improving the accuracy of the potential did not improve

the overall agreement with experiment.

The treatment of spherical and quasi-spherical gases is complex and requires consid­

eration of high-order multipoles as well as long and short-range corrections. This type of

treatment is beyond the scope of this work and shall not be considered here.

The second dielectric virial coefficient of polar and non-polar gases has been inves­

tigated by many workers. Johnston and Cole [45] generalised Buckingham and Pople's

theory for Be or of linear non-polar molecules to include molecules of lower symmetry,

such as ethene, including only the leading term in the quadrupole moment. They noted,

however, that the approximation adopted by Buckingham and Pople [141] of retaining

only the leading term in the expansion of the Boltzmann factor might be inadequate,

but were unable to improve the model due to the complex angular dependence of the

quadrupole-quadrupole interaction energy, defined in equation (2.12). Later, Bose and

Cole [40] included the quadrupole-induced-dipole interaction energy into the potential

energy and found that it made a small but significant contribution.

In 1963, Lawley and Smith [142] suggested an off-centre hard sphere dipole model for

polar molecules to account for the negative experimental values of Bc for some polar gases.

Dymond and Smith [56] expanded on this model by considering a soft Lennard-Jones

spherical molecule. Spurling and Mason [143] showed that this off-centre dipole model
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can be replaced by an equivalent central dipole-quadrupole model including Buckingham

and Pople's shape factor. The calculations for this model are simpler than for the off­

centre dipole model.
In 1969, Sutter [3] measured the first and second dielectric virial coefficients and the

second pressure virial coefficient at three temperatures for five polar linear halogenated

methanes. He used his values of Ae to determine the permanent dipole moments and

static molecular polarizabilies of the gases. He then fitted Lennard-Jones parameters to

his data for B(T). A surprising result was that the value of Ra fitted for CHF3 was smaller

than the fitted value for CH3F. Using the fitted Lennard-Jones parameters and his values

for J.1 and a he fitted Buckingham and Pople's [101] B, model to his experimental data to

obtain a value-for the shape factor of each molecule. In the model he omitted the effects

of the quadrupole moment and molecular polarizability anisotropy, as well as the B e in d

contribution. He obtained reasonable values of the shape factor for CH3F, CH3Cl and

CClF3 , but the value of D for CHF 3 was positive, erroneously indicating a rod-shaped

molecule. He concluded that although the measured values of B, showed differences

in sign, magnitude and temperature dependence which appear to be correlated with

deviations from the spherical shape, attempts to account for them using the model for

molecular shape proposed by Buckingham and Pople [28] were unsatisfactory. However,

since the model used neglects the effects of the quadrupole moment and anisotropy of

the molecular polarizability, which may have a significant effect on the value of Bc, these

findings are inconclusive. In this work we have included the effects of the quadrupole

moment, anisotropy and hyperpolarizabilities on the effective polarizability and dipole

moment, as well as including quadrupole effects on the intermolecular potential. We have

also included the B e in d contribution, resulting in a more complete model.

In general, researchers use B(T), which is less sensitive to non-central potentials, to

fit the Lennard-Jones parameters, Ra and f. These are then used in the calculations

for B, and the resultant equations used to fit the shape parameter, D. It has been

noted that fitting Ra and f to B(T) sometimes results in unrealistically small values for

Ra [3,51,142,144]. In this work we have included the shape potential when evaluating

B(T) and have attempted to optimize the Lennard-Jones parameters and the shape factor

for both B(T) and B, simultaneously.

In order to address the problem of physically unreasonable fitted values for Ra,
Copeland and Cole [97] calculated B, for CHF 3 and CH3F, by fitting Ra and f to Cas­

parian and Cole's [145] viscosity data, using these with a known dipole moment to fit

the quadrupole moment from B(T), and finally fitting the shape factor to experimental

values of the second dielectric virial coefficient. They used methods similar to that of

Sutter [3], but included the (}',2(h term in Bear and the effects of the quadrupole moment

on the potential energy. This method yielded values of D for CHF 3 and CH3F in fair
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agreement with Buckingham and Pople's model.
In 1974, Hosticka, Bose and Sochanski [146] included the quadrupole-quadrupole in­

teraction energy in the potential in a model for Beor of ethylene, taking into account

its low symmetry. Only the leading quadrupole term in the integrand was considered

and the anisotropy of the polarizability was not included in the model. The intermolec­

ular potential was taken to be the sum of the Lennard-Jones central potential and the

quadrupole-quadrupole interaction energy with no shape potential. They used this model

to reanalyze the experimental results of Bose and Cole [24]' in order to estimate the mean

quadrupole moment. From their results they concluded that ethylene can be treated as

an linear molecule without significant error. However, Couling and Graham [36] showed

that treating ethylene as a non-linear molecule improved the calculated values of both the

second light-scattering and Kerr-effect virial coefficients. Thus, we will use the non-linear

model which we have developed to calculate Be for ethylene, including as many terms as

are necessary to ensure convergence, and th e shape potential introduced by Couling and

Graham [9,36].
Powles and McGrath [11] calculated Be for HCI using several different models for

the intermolecular potential , but were unable to obtain agreement with the experiment al

data of Lawley and Sutton [10], which are almost an order of magni tude larger than the

calculated values. However, in th eir models th ey consider only th e two leading terms, 1-£2

and CY1-£2, of the dipole series of Beor ' and include no induction terms in the intermolecular

potentials. For their model using the Lennard-Jones potential th ey includ e only the

dipole-dipole potential, with no shape potential and performed the integration using the

Hk functions tabulated by Buckingham and Pople [96]. In our calculations of Be for HCI

we include as many terms as necessary to ensure convergence of both B e ind and Beor and

the full DID potential described in Chapter 2.

In 1987 Kielpinski and Murad [147] studied the effects of isotropic and anisotropic po­

larizability on properties of dilute gases, including the second dielectric virial coefficient .

They showed that polarizability makes a significant contribution to Be, while the con­

tribution of the polarizability anisotropy, although smaller is still significant. Although

many earlier workers omit ted the anisotropy of linear molecules [3 ,11,28,97,146], we have

included it in all our calculations, since we have found that it can be significant.

Joslin and Goldman [148] considered the numerical calculations of Powles and Mc­

Grath [11] and Kielpinski and Murad [147] to be unsatisfactory because B e ind was omit ted ,

and Powles and McGrath also excluded induction effects in the intermolecular potential.

Joslin and Goldman calculated Be and BR numerically for anisotropically polarizable

dipolar hard spheres using a simple intermolecular potential, claiming their method to

be essentially exact, although it does not include any quadrupole or shape. They applied

this method to CHF 3 and found their results agreed with available experimental data.
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Chapter 5

The Second Refractivity Virial

Coefficient , BR

The molar refraction Rm of a medium is defined as follows:

(5.1)

where n is the refractive index and Vm is the molar volume of the medium. An equation

relating the mean polarizability ao of an isolated molecule to the molar refraction of a bulk

sample at equilibrium was derived independently by L. Lorenz [30] and J. A. Lorentz [29]

in 1880. This formula later became known as the Lorenz-Lorentz equation:

(5.2)

where NA is Avogadro's number and Eo is the permittivity of a vacuum. If ao is assumed to

be independent of density, the Lorenz-Lorentz equation implies that the molar refraction

is independent of density. Early values of Rm for many gases appeared to be constant

within the experimental error for a wide range of pressure and temperature. However,

more precise experimental techniques used by subsequent workers [76,80,149-151] showed

significant variations of the molar refractivity with density. To account for this variation

Buckingham [152] wrote Rm in the form of a virial expansion:

(5.3)

where AR, BR, OR, . . . are called the first, second, third, ... refractivity virial coefficients.

In the limit of infinite dilution, the first refractivity virial coefficient AR is the only

contribution to Rm , and equation (5.3) reduces to the Lorenz-Lorentz formula. Thus,
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AR , which describes the ideal gas contribution, is given by:

(5.4)

The second and third refractivity virial coefficients describe the mean contribution to Rm

of interacting pairs and triplets , respectively. BR describes the inital deviation from ideal

gas behaviour and has been the subject of many experimental [13,39,44 ,58,60 ,63,67,68,

80,122 ,150,151] and theoretical [44,105,122 ,124,152] investigations.

5.1 Theory of BR

Buckingham [152] presented a general theory of the second refractivity virial coefficient BR

for pure gas systems, which was later extended by Kielich [124] to mixtures of gases. These

theories are closely analogous to the treatment of th e second dielectric virial coefficient

presented in Section 4. The two theories are associat ed through the relationship between

th e refractive index and the dielectric constant of a gas:

(5.5)

where nand e; are th e refractive index and dielectric constant of th e gas at the same

frequency, and /-Lr is the r elative permeability, which for dilute non-magnetic gases is

assumed to be negligibly different from unity.

In Chapter 4 the following equation was obtained for the total polarization of a di­

electric gas in the presence of a static external field:

1 N
{(

~ (1)) 1 NA }_ Cr - _ ~ ~ __ (1) (i)
TP - cr + 2Vm - 3co BEo ' € + 3kT~ \J.-L .J.-L ) , (5.6)

where J.-L(i) is the dipole moment of the i t h molecule. The first term on th e right-hand side

of (5.6) is due to th e distortion of the molecules by the external field, while the second

term is due to the tendency of the dipole moments (permanent or induced) to align

themselves in the direction of the static applied field. For alternating exte rnal fields,

equation (5.6) is only strictly correct if the molecular orientations are able to follow th e

alternations exactly. For .alternating fields of optical frequency, the orientation of the

dipoles is completely suppressed by the inertia of th e molecules, so that the second,

temperature-dependent term of (5.6) reduces to zero. Thus, at optical frequencies w,
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equation (5.6) becomes:

(5.7)

where £0 is an electric field alternating at optical frequency w.

If /-Lr ~ 1, then from (5.5) it follows that:

(5.8)

therefore, from (5.7):

(5.9)

From equat ions (5.3), (5.4) and (5.9), it follows th at th e second refractivity virial coeffi­

cient is given by:

N1 J[8/-L{1 ) ] - UI2(r)= -- ---.e - a o e kT dr ,
3con 8£0

T

(5.10)

where T describes th e relative configuration of th e pair of molecules.

In general four distinct contributions to (a~~l).e - a o) can be identified:

(i) The'fluctuation' contribution of Kirkwood [127] and Yvon [153] is a classicial effect

first investigated by Silberstein [154]. The effective polarizability of each molecule of

an interacting pair is modified by th e extra field at one due to the induced dipole on

the other. Silberstein [154] showed th at if the molecules have an intrinsic isotropic

POlarizab;::~)a~:~e ~e:~[ar_b:£~:)n_l +2(1 + 4~~~R3 ) -1 _ 3] .

The expression diverges at separat ion R = 1i:<:°o' and for large R

1 (R) _ 2ag
2a 12 - a o - (47fco)2R6 '

The divergence is unimportant since it occurs at a separation where th e electron

clouds overlap extensively, so that the model is inappropriate at this distance. The

effect makes a positive contribution to B R which can easily be determined if U12 is

known.
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(ii) When the separation R is large the intrinsic molecular polarizability changes as

a result of dispersion-type interactions. Jansen and Mazur [155] first investigated

these effects and showed that they lead to a significant positive contribution to a12

that varies as R-6 at large R. Other workers [123,128,156, 157] have studied the

effect, which is attributed to the distortion of the electronic structure of the pair of

molecules due to dispersion interactions.

(iii) a12 is modified by overlap of the electron clouds at short range. Theoretical in­

vestigations of this effect [129,130,158-160] indicate that the contribution to BR

is probably negative and this may be attributed to the additional electron-nuclear

attraction associated with an increase in the effective nuclear charge.

(iv) Non-linear polarization effects may result from the strong intermolecular electric

fields produced by permanent electric moments. These effects are described by the

molecular hyperpolarizabilities [34,125].

The distortion terms in BR and B, are similar in form, but the molecular polarizabili­

ties in B, are the static polarizabilities, while those in BR are the dynamic polarizabilities

and depend on the frequency, w. For pure samples of the inert gases the second term in

B, is always zero (Section 4.3). Therefore, since the absorption frequencies for the inert

gases are found in the far ultra-violet range, dispersion effects should be small, and BR

and B, should be almost equal for these gases.

To evaluate BR, the specific form of (8fte~l) .e - ao) is required. The derivation of the

general expression is described in detail in Section 4.1, with the specific forms for spherical,

linear and non-linear molecules given in Sections 4.3, 4.4 and 4.5, respectively. The only

change necessary is to substitute dynamic polarizabilities for the static polarizabilities.

5.2 Summary of experimental work on the second

refractivity virial coefficient

Tables 1.4 to 1.6 contain a comprehensive summary of the experimental second refractivity

virial coefficient data available.

In almost all the work carried out before 1974, the absolute method for the determi­

nation of the second refractivity virial coefficient was employed. In this method, BR is

determined from refractive index measurements made at varying gas densities, and the

accuracy of the calculated values is limited by the accuracy of the density data. Since

the contribution ~~ due to pair interactions is only a small fraction (typically 1 part in
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104 at 1Q5Pa) of the molar refractivity,

(5.11)

is a small difference between two large quantities and small errors in the density lead to

large errors in BR. Errors reported by workers using this technique are often 100% or

more [13,67,150,151].
In 1974, Buckingham and Graham [39] introduced a new direct determination method,

now often referred to as the differential method, based on a technique first used by

Buckingham, Cole and Sutter [49] for the direct determination of of the second dielectric

virial coefficient. This differential-interferometric method measures directly the effects of

molecular interactions on the refractivity of gases, and consists of measuring differentially

the total optical path when a gas is decompressed from one cell into a similar evacuated

cell. This measurement, together with measurements of AR, yields values of BR of much

greater precision than previously possible. Buckingham and Graham [39,122] used this

new technique to measure BR for a wide range of gases. This method has subsequently

been used by St-Arnaud and Bose [63,68,75], Burns, Graham and Weller [44,62], and

Bose et al. [74].

More recently, Achtermann et al. [65,77] improved the differential-interferometric tech­

nique by developing a device consisting of two coupled interferometers. One interferome­

ter, with two similar cells in series, measures differentially the the excess contribution to

Rm due to gas imperfections, while the second interferometer, with two similar cells in

parallel, measures the absolute value of the refractive index at the same time. This tech­

nique allowed measurements to be carried out to much higher pressures (up to 40 MPa)

than had previously been practical. The accuracy of the measured values was estimated

to be between 2-5% for the second refractivity virial coefficient.

There is some evidence [62,151] that BR may depend on the wavelength of the in­

cident light, but the large experimental errors render the results inconclusive. In 1991

Hohm [161] developed a low pressure experimental method to determine the second re­

fractivity virial coefficient bR(A) = BRIAR relative to a given fixed value bR(Al) for various

wavelengths A. The results of the measurements for Ar, Kr and CO2 were found to be in

fair agreement with the higher pressure results of Burns, Graham and Weller [62]. In the

case of CO2 dispersion effects were larger than those predicted by the small dispersion

of the molecular polarizabilities which enter BR. Hohm [59] later used this method to

measure the frequency dependence of BR for a much wider range of gases, and presented

a simple theory to account for the observed dependence.
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5.3 Summary of theoretical work on the second re­

fractivity virial coefficient

There have been several theoretical approaches to the density-dependence of the molecular

polarizability by Kirkwood [127], Yvon [153], Michels, de Boer and Bijl [158], Brown [162],

Jansen and Mazur [155], Buckingham and Pople [31,96] and Levine and McQuarrie [163].

The classical statistical-mechanical theory of the second refractivity virial coefficient

presented by Buckingham and Pople [31,96] has been used by many workers [63,66,68,69,

74,75,80] to calculate values for BR to compare with their measured values. Kielich [124]

developed the theory to consider mixtures of gases. The pure gas theory of Buckingham

and Pople [31,96] was later expanded by Graham [122] to include the effects of polariz­

ability anisotropy, quadrupole moments and field-gradients. This work was continued by

Burns, Graham and Weller [62,105] to include more terms in order to establish conver­

gence. Several workers have modified these theories for large quasi-spherical molecules

by substituting a generalized Lennard-Jones (7-28) potential for the more common (6-12)

potential with some success [62,68,164].
These classical theories do not include quantum-mechanical long-range or short-range

effects. Long-range dispersion-type interactions have been investigated by Jansen and

Mazur [155], Buckingham [123], Heinrichs [156], Certain and Fortune [157], Buckingham,

Martin and Watts [128] and Buckingham and Clarke [165]. Short-range overlap effects

have been studied by Michels et al. [158], ten Seldam and de Groot [159], Lim et al. [160],

O'Brien et al. [130], and Buckingham and Watts [129]. Until recently, complete calcula­

tions which include both these considerations were only available for the lightest gases,

helium and neon [166]. For these atoms, BR is negative, while the classical DID model al­

ways gives a positive value for the second refractivity virial coefficient. Thus, Achtermann

et al. [66] adopted a semiclassical approach of adding the positive classical DID contribu­

tion to the negative short-range ab initio calculations of Dacre [166-169], using potentials

presented by Aziz et al. [170-172]. Similarly, in 1994, Meinander [173] presented a the­

ory for spherical and quasi-spherical atoms and molecules using empirical intermolecular

potentials and a model for the pair polarizaibility trace which includes both long and

short-range effects. The short-range contribution is modelled with an exponential func­

tion derived from Dacre's polarizabilities [166,168,169], while the potentials are those of

Aziz et al. [170-172]. The work on spherical gases shows that especially for the lighter

atoms, the short-range effects are significant. For non-spherical molecules, however, the

classical theory is usually adopted. In this work, we will not consider the spherical and

quasi-spherical gases and all our calculations are based on the classical theory presented

earlier in this chapter.
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Chapter 6

The Second Kerr-Effect Virial

Coefficient, B K

In 1875, Kerr observed that when a strong electric field is applied across an isotropic

medium, the medium becomes birefringent [32]. In this work we will consider only gases,

where the anisotropy in the molecular distribution due to an applied field is the result of

the intrinsic anisotropy of the molecules or the anisotropy induced in the molecules by

the applied field.

x

jllcl plate electrodes

If
f

/ /
/

/y
z

Figure 6.1: The Kerr cell, with space-fixed axes O(x,y,z) where z is in the direction of
propagation of the light beam, x is in the direction of the applied electric field, and y is
perpendicular to the field.

In the arrangement shown in Figure 6.1, the space-fixed system of axes O(x,y,z) is fixed

in the Kerr cell with the z-axis in the direction of propagation of the incident light wave,

the x-axis in the direction of the applied static electric field, and the y-axis perpendicular

to the applied field. If a gas is introduced into the cell and a uniform electric field is
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applied in the x direction using the pair of parallel plates, then a light wave, polarized

in the xz plane and propagating in the z direction, experiences a refractive index nx ·

If, however the light wave is polarized in the yz plane, it will experience a refractive

index ny, which differs from n x . This phenomenon is known as the Kerr effect. In

order to develop a theory of the Kerr effect, it is necessary to relate the macroscopically

observable quantity (nx - ny) to the molecular property tensors of the individual molecules

in the gas. Buckingham and Pople [34] developed such a theory in 1955 for gases at low

pressures. For an ideal gas, (nx - ny) is independent of density, but for real gases the

density-dependence is described bya virial expansion, with the contribution of pairs of

interacting molecules given by the second Kerr-effect virial coefficient.

In 1995, Couling and Graham [9] extended the theory first developed by Buckingham

and Pople [34] to include the case of non-linear gases and included many high-order terms

to ensure convergence. They did not present the specific form for linear gases, but used

the non-linear equations, for which linear gases are a special case. In this work we shall

follow the treatment of Couling and Graham, but shall include the equations for linear

gases, as these are less complex and require less time to integrate numerically.

6.1 Non-interacting molecules

For a sample of non-interacting molecules, the oscillating dipole moment p,~p) of molecule

p is due only to the polarizing action of the alternating electric field £0 of the light wave,

since there are no molecules close enough to cause fields and field gradients at molecule

p due to their oscillating moments. However, the strong static electric field E, applied

to the sample may modify the optical-frequency polarizability (Xij, resulting in a new

effective polarizability tensor 7rij, called the differential polarizability, which is written as:

(6.1)

where all the tensors are referred to the molecule fixed axes 0(1,2,3). The polarizability

(Xij, and the first and second hyperpolarizabilities (3ijk and ')'ijkl respectively, depend on

the frequency w of the light wave propagating through the medium.

In order to compare the refractive indices nx and ny the direction cosines ai between

the space-fixed x axis and the molecule-fixed i axis, and a; between the space-fixed y

axis and the molecule-fixed i axis are required. For a specific fixed configuration a of the

molecule, the difference between the differential polarizabilities is given by:

7r(a, E) = 7rij (afaj - a;aD .
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Now, by substituting (6.1) into (6.2) and writing Eai for Ei , a full expression for 7f(0-, E)

is obtained:

This quantity must be averaged over all possible configurations of the molecule in the

presence of the biasing influence of E i . By making the assumptions that the period of

oscillation of the light wave is much smaller than the time for the molecule to rotate,

and that the rotational energy levels are close enough for the orientation to be consid­

ered continuous, a Boltzmann-type weighting factor may be used to average over the

configurations:

(6.4)

where Uto, E) is the energy of the molecule in a specific configuration 0- in the presence

of the applied field Ei . In molecule-fixed axes this is given by:

U(o- E) = u,o - HO·B- - la ··B-E · - lb ..kB-E ·Ek - ..., t-: i i 2 ~J i J 6 ~J i J , (6.5)

where Uo is the energy of the molecule in the absence of the external field, J.LOi is the

permanent dipole moment of the molecule, aij is the static polarizability and bi j k is the

static first-order hyperpolarizability. Thus, the difference between the refractive indices

is given by:

(6.6)

In order to perform the biased average of 7f in (6.4), it is converted into isotropic

averages by Taylor expansion in powers of E. It is important to note that 7r depends on

E through both 7f(0-, E) and Ui a, E). Since the distortion and orientation effects of E,

on gas molecules is very small, it is safe to assume that the Taylor series will converge

rapidly. Thus, we can write:

where

7r = A + BE + CE2 + ... ,
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(
8rr )

B= 8E '
E=O

(
8

2
- )C= ~ 8; .

E=O

(6.9)

(6.10)

Buckingham [174] has shown that (rr)E=O is zero. Differentiating equation (6.4) and then

setting E equal to zero, yields the following expressions for the coefficients Band C:

(
8rr ) / 8n \ 1 / 8U \

B = 8E E=O = \ 8E / - kT \ n 8E / '
(6.11)

where (X) represents the isotropic average of any quantity X (Cl, E) in the absence of an

external field, so that:

J
U(u,O)

(X) = X (Cl, 0) e- kT dr

J
- U(u,O) de kT r

Differentiating (6.5) and (6.3) and setting the field to zero, yields:

(
8U ) x8E = -fjOi ai'

E=O

(6.13)

(6.14)

(6.15)

(6.16)

and (6.17)

From (6.14) and (6.15) it can be seen that both of the terms in (6.11) will average to zero

over all directions of ai- Thus, since Buckingham [174] has shown that (rr)E=O is zero,

the leading non-vanishing term in (6.7) is CE2
. The standard isotropic averages [34,175]

are given by:

(6.18)

(6.19)
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Therefore,

Using equation (6.20) for the isotropic averages and equations (6.3) and (6.14) to (6.17),

yields the following expressions for the terms of (6.12):

2= 30 '"'(iijj, (6.21)

where a = aii and a = aii. Thus,

(6.23)

and equation (6.7) becomes:

In the low density limit, the definition of the molecular Kerr constant proposed by

Otterbein [176] becomes:
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Taking the second derivative of it in (6.25) with respect to E , setting E = 0 and subst i­

tut ing th e resulting expression into (6.26) yields:

21rN A {1 )] 3 ( 2)}Km = 405(
41rc

o) 2' ii j j + kT [4fJiijJ-lOj + 3 (a ijaij - 3aa + (kT)2 a ij J-loi J-lOj - a J-lo .

(6.27)

First derived by Buckingham and Pople [34] in 1955, this equat ion is a generalizat ion of

the well-known Langevin-Born equat ion to include th e effects of high field st rengths on

th e polarizability.
In the special case of a gas consisting of non-int eracting spherical molecules, (6.27)

simplifies to:

(6.28)

where , = ~'ijij. Thus, the hyperpolarizability constant, can be determined directly

from low pressure measurement s of the molecular Kerr constant . Although the measured

value of , will depend on the frequency W ofthe incident light , it should not be significantly

different from the stat ic value if w lies well below the electronic absorption band of the

gas [9].

6.2 Interacting molecules

For gas densities where interactions between the molecules in the sample become signif­

icant, Buckingham and Pople argued that the average contribut ion of a molecule 1 to

(nx - ny) is not necessarily equal to (41f;~Vm it as shown in (6.26). If molecule 1 comes

into contact with a second molecule, then it must be treated as half of an interacting

pair . When molecules 1 and 2 are in th e relative configuration T at a particular instant,

then molecule 1 cont ributes ~ { (41f;~Vm 1r(12)(T, E)} to (nx - ny). If 1rg
2
) is t he differential

polarizability of the interacting pair, then the difference between the differential polar­

izabilities 1rg
2)af aj and 1rg

2)aya; of an interacting pair in a specific relative interaction

configuration T in the presence of the applied field may be writ t en as:

1r(12)( T E) = 1r ~ ~ 2)(a~a~ - a¥aY.)
, ~J ~ J ~ J . (6.29)

To obtain the biased orientational average 1r(12) (T, E) for a pair of molecules, th ey

are held fixed in the relative configuration T and allowed to rotate as a rigid whole in

th e presence of Ei . As for an isolated molecule, the biased average may be converted to
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isotropic averages by Taylor expansion in powers of E, and the leading term is given by:

1 / (8U{12)) 2)}+ (kT)2 \ 7f(12) 8E E
2,

(6.30)

(6.31)

where the angular brackets indicate averages in the absence of any field. Note, U(12) (T, E)
is the pair interaction energy in the presence of the external field Ei . Initially, all the

quantities in the angular brackets are referred to the molecule-fixed axes 0(1,2,3) because,

for a given T , the tensor product in 0(1,2,3) is fixed. By allowing the pair of molecules to

rotate isotropically as a rigid whole in the space-fixed axes o(x,y,z), the average projection

of pair properties referred to 0(1,2,3) may be averaged into O(x,y,z) over all orientations.

Finally, the average over the interaction parameters T of the pair may be performed.

The density dependence of Km may be written as a virial expansion in powers of

density [34]:

(6.32)

where AK , B K , OK ... are the first, second, third, ... Kerr-effect virial coefficients,

respectively. The definition of the molecular Kerr constant in the low density limit is

given by equation (6.26) in Section 6.1. Thus , since the first Kerr-effect virial coeffiecient

is the contribution of non-interacting molecules to Km' we have:

A - I' (K) _ 27fNA ( 8
2
jf )K - 1m m - --

Vm-l-OO 27(4 7fEo) 8E2 E=O'
(6.33)

The second Kerr-effect virial coefficient BK describes the deviations from AK due to pair
interactions and is given by:

(6.34)

From (6.31) and (6.32) to (6.34), we have:

(6.35)
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where P(T)dT is the probability of molecule 1.having a neighbour in th e range (T ,T+dT ),
and is related to th e intermolecular potential as shown in equation (1.4) in Chapter 1.

Combining (6.26), (6.35) and (1.4), yields the following expression for the second Kerr­

effect virial coefficient:

(6.36)

In order to calculate BK , explicit expressions for the terms in the integral must be derived,

and the integrals are then evaluated numerically. Expressions for the second term in the

integral have been derived in Section 6.1. The first term must now be evaluated.

6.3 Expression for ~ ([;27r~~~T'E))
E=O

From equations (6.30) and (6.31) we have:

1 / (8U(12))2)
+ 2(kT)2 \ 7r(12) 8E . (6.37)

Thus, in order to evaluate the components of this term, we need to determine 7r(12) (T, E)
and U(12) (T, E). The relationship between 7r(12) (T, E) and the differential polarizability of

the pair is given by (6.29). Now, the differential polarizability of the pair is:

8 (12)
(12) _ Jli

7rij - 8£oj , (6.38)

where Jl? 2)(£OJ) is th e total oscillating dipole induced in th e pair of interacting molecules

by the alternating field of th e light wave. In order to proceed, it is necessary to assume

that the interacting molecules retain their separate identities. While this assumption is

always valid for large separations, it probably remains adequate at short range in most

cases and we join past workers [9 ,44,62 ,122,177] in treating the interacting molecules as

though they remain separate, even in th e region of overlap , so that we have:

(12) _ (1) + (2)
Jli - Jli u; ',
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and equat ion (6038) becomes:

(
(1) (2) )

(12) _ 8 J-Li + J-Li7[ .. - . 0

tJ 8Soj

Thus, from (6.29):

(1) (2) )
(12) ( E) = 8(J-Li + J-Li ( a~a~ - a¥aY)7[ T , 8S

oj
t J t J

(
8 (1) 8 (2))

= :i
Oj

+ :i
Oj

(afaj - a;a;)

(6.40)

(6.41)

since 7[ ~1? ) = 8JL~p) and 7[(P)(T E) = 7[~1?)(a~a~ - a¥aY.) Thus to determine 7[(12)(T E) it
tJ 8£oj , tJ t J t J 0' , ,

is necessary to evaluate the total oscillating dipole moment induced on molecule p by

the light wave field SOj and by the field FjP)arising at molecule p due to the oscillating

moments of molecule q 0

The pair interaction potential in the presence of E, may be written as follows [177] :

E

. U(12 )(T, E)= U( 12)(T, 0) - JJ-L~ 12)(T, E)af dE,

o

(6.42)

where J-L~12) is the total dip ole moment of the pair in the presence of Eai. Since, as in

equation (6.39), J-L~12) is equal to the sum of the total dipole moments on molecules 1

and 2, in the presence of the external field and each other, (6.42) becomes [9]:

(6.43)

where the potential energy at molecule p in the presence of the external field and molecule q,

is given by:

E

U (P)(T , E ) =! J-L~p)af dE.

o

(6.44)

Thus, we need to determine the total dipole moment J-L~P)(T, E) on molecule p due to the

static applied field E, and to the static field F?) at molecule p due to the permanent and
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induced multipole moments of its neighbour, molecule q.

Since molecules 1 and 2 are identical, use of equations (6.41) and (6.43) in equa-

tion (6.37) yields [9]:

.1 (827f(12) (T, E)) = (827f(1)) _ 2- {( 87f(1) 8U(I) ) (87f(1) 8U(2) )}
2 8E2 8E2 kT 8E 8E + 8E 8E

E=O

/ (1) (8U(2)) 2) ((1) 8U(I) 8u(2) )}
+ \ 7f BE + 7f 8E 8E .

Now, it remains to determine explicit expressions for 7f(I(T, E) and U(P)(T, E).

6.3.1 Expression for 1r(1) (T, E)

(6.45)

In a dense medium, the total oscillating dipole moment induced in a molecule 1 may

be due not only to the oscillating electric field £Oi of the incident light, but also to the

oscillating field J=P) and field gradient Fi~l) at molecule 1 due to the oscillating moments

of a neighbouring molecule 2. In addition, the polarizability of the molecule may be

distorted by the presence of the static electric field Ei . Similarly, the oscillating dipole

moment of molecule 2 is induced by the light wave field, as well as by the field and field

gradients due to the oscillating moments of molecule 1. Thus, for the oscillating dipole

moments of molecules 1 and 2, we have:

where, using the T-tensor notation described in Section 2.3,

(6.46)

(6.47)

F (I ) _ T (2) 1 e(2)
j - jkJ.Lk - "3Tj k l kl + ... ,

F(I) - T (2) IT e(2) +
jk - jklJ.L1 -"3 jklm lm .•• ,

F (2) - T (1) 1T e(l)
j - jkJ.Lk +"3 jkl kl + ... ,

F
J
(k2) = T (1) 1T e(l)

- jklJ.L1 -"3 jklm lm + ....

(6.48)

(6.49)

The oscillating quadrupole moments are given by:

e(1) (£ ) = A (1) (£ + F(1)) + ...
kl 0 mkl Om m ,

e(2) (£ ) = A(2) (£ + F(2)) + ...
kl 0 mkl Om m .
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The field gradient COij of the light wave has been neglected in these equations since the

molecular dimensions of the gases under study are very small compared to the wavelength .
.. (1) (1) (2) (2) (2) (2) (1) (1). ( )Repeated substitution of r; , Fj k , ILk , ()kl , Fj , Fj k ,ILk and 0kl mto 6.46

results in a final expression for the total oscillating dipole moment induced on molecule 1

by the light wave field in the presence of molecule 2:

1 (1) E ET (2)T (1) c+ 2Timkl k 1 mnCYnp pqCYqj '-'OJ + .... (6.52)

When (6.52) is differentiated with respect to COj, the resulting expression gives the

differential polarizability of molecule 1 in the presence of the applied field and molecule 2,
in a specific relative configuration T:
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+ (l)T (2) T a(l) + ,..)1) T a(2) T a(l) + ...) E 2aXkaxl + ... .
aim mn'Ynpkl pq qj I imki mn np pq qJ

Recall that

71" (1) (T E) = 71"~ ~) (a~a~ - a'!! aY.) .
, ZJ Z J Z J

(6.53)

(6.54)

Different iating equat ion (6.53) , multiplied by (afaj - aYa;), with respec t to E and then

setting E = 0 yields the following expressions:

(6.55)

+ a~J) Tzmf3~~kTnpa~~) + f3i~~ Tlma~~Tnpa~~) + ... ) a% (af aj - afan '

(6.56)

6.3.2 Expression for U (p) (T, E)

The total dipole moment p,~p) of molecule p in the presence of the st atic applied field E,

and molecule q, is given by:

(6.58)

where p,~) is the permanent dipole moment of the molecule, and FjP) and F}r) are the

static field and field gradient at molecule p due to the permanent and induced dipole and
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quadrupole moments of molecule q, such that:

P (p) - T I/( q) - IT(P)()(q)
j - jkrk 3 jkl kl ,

P (p) - T (p) (q) I T ()(q)
jk - jkl JLl - 3" jklm lm i

(6.59)

(6.60)

where the total quadrupole moment of molecule q due to the external field and the field

due to the permanent and induced multipole moments of molecule p is given by:

()(q) - ()(q) + A (q) (E + p(q)) + ...
kl - Okl mkl m m . (6.61)

Substitut ing repeatedly for P/P), pH), JL~q) and ()~) into equation (6.58), yields the fol­

lowing expression:

+ l A (p)T(p) I/(q ) + l a (p)T A (q) r, (q) I/( p) - l a (p)T(p)A (q) T I/(P)
3 i jk jkl rOl 3 ij jk klm lmnr On 3 ij jkl mkl mnrOn

+ la(p)T A(q) T (q) a (p) E · - la~p)T(p) A(q) T a (p) E ·
3 i k kl lmn mnp PJ J 3 zk klm nlm np PJ J

(6.62)

Therefore, from equat ions (6.44) and (6.62), the potential energy at molecule p in th e
presence of the exte rnal field and molecule q, is:
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lA(p)T(P) (q) T (p) ... - lA(p) T A(q) + ... ) E 2 ~ ~+ 3 ikl klm a mn npapj + 9 ikl klmn jmn at aJ . (6.63)

Different iat ing this equation with respect to E and then setting E to zero, yields the

following expressions:

»r (q)rp (p) T (q)T (p) lA(p) T(p) (q)+ aij jkakl .L lm a mn npapq prMor + ... + 3 ijk jkl MOl

1 (p)T (q)T, (q) ()(p) lA(p) T ()(q) ) x
- 3a i j jkakl lmn mn + ... - "9 ijk j klm lm + ... ai'

- la(P)T(p) A (q) + l A(P)T(P) a(q) - la(P)T a(q)T(q) A (p)
3 ik . klm jlm 3 ikl klm mj 3 ik kl lm mnp jnp

+ lA(P)T(P) (q) T (p) 1 A(p)rp A(q) ) x x
3 ikl klma mn npapj + .. . - 9 ikl.L klmn jmn + ... ai aj .
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6.3.3 General expression for B K

Substituting equations (6.55) to (6.57), (6.64) and (6.65) , into equation (6.45) , and sub­

tracting (6.24), yields the following expression for the integrand in (6.36):

. + (}2 a3 + (}2a 4 + (}2a S + . . . + (}d31a 1 + ... ,
(6.66)

where

(6.67)

(6.68)

(6.69)
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(6.70)

+ 2oP} 1/(~} a(2}T a(1}T 1/( 2} + 2a(1} 1/( ~ } a(2}T a(1 }T / /(2)
af rOt pq qr r s st r Ot af rOt pq qr rs strOt

+ 2a(1} I/(~ } a(1}T a(2}T 1/( 1} + 2a(1)~ a(2} 1/( 1}a(l}T 1/( 2}
af rOt pq qr rs strOt ab be ef rOt pq qrrOr
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(6.72)

(6.73)

(6.74)

(6.75)

(6.76)



(6.77)

A - 1 {2 (1) (1) A (l) T (2) _ 2 (1) (2)A (2) T (1) _ (1) (1)A (2) (1)
M2 1G1 - 3(kT)2 G ae MOi pqr qrsMOs Gae MOi pqr qrsMOs 2Gae MOi pqrTqrsMOs

_ 2 (1):r. A (2) (1) (2) A (1):r. (2) (1) (1) (1) (2) (2) (2)
Gab bed ecdMOi Mop + abc bedGde MOi Mop + AabeTbcdGde MOi Mop

A - 1 {-2 (1) (1) (l)T A (2)T (1) 2 (1) (2) (2)T A(l) (2)
M2 1G2 - 3(kT)2 G ag MOi apq qr rst stu MOu + G ag MOi apq qr rstTstuMOu

_ 2 (1) (1) (l) T A (2)7'. (1) 2 (1) (2) (2) (1) (2)
Gag MOi apq qrs tr s tuMo u + Ga g MOi apq TqrsAtrsTtuMo u
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(1) (1) (2)A (1) T (2) _ 2 (1) (2)T (1)A (2) T (1)+ 2CYag aij T j k f10k pqr qrsf10s CYag aij jkf10k pqr qrsf10s

(1) (1) (2)A (2) T (1) 2 (1) (2)T (1)A (1) T (2)
- 2CYag ai j T j k f10k pqr qrsf10s + CYag aij jkf10k pqr qrsf10s

(1) (2) (1)A (1) T (2) 2 (1)1', (2) (2)A (2) T (1)+ 2CYab TbcCYC9 f10i pqr qrsf10s - CYab bcCYcg f10i pqr qrsf10s

(1) (2) (1)A(2) T (1) 2 (1)1', (2) (2)A (1) T (2)
- 2CYab TbcCYc9 f10i pqr qrsf10s + CYab bcCYcg f10i pqr qrsf10s

(6.79)

(6.80)

(6.81)
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(1) (2) (1) (1) ()(2) (1) (2)T (1) (2)T ()(1)
- aab a ij TjkJLOk a pq T qrs Ors + aab a ij jkJLOk a pq qrs Ors

_ (1) (2) (1) (l)T ()(2) 2 (l)T (2) (1) (2)T ()(1)}
2aac Tcdadb JLOi a pq qrs Ors + aac cdadb JLO z a pq qrs Ors

(6.83)

(6.84)

(6.85)

() a - 1 {2 (1) (l)T ()(2) (l)T (2)T (1) T ()(2)
2 5 - 9(kT)2 aab a ij jkl Oklapq qrars st a tu uvw Ovw

_ 2 (1) (l)T ()(2) (2)T (l)T (2) T ()(1)
aab a ij jkl Oklapq qrars st a tu uvw Ovw

_ 2 (1) (2)T ()(1) (l)T (2)T (1) T ()(2)
aab a ij jkl Oklapq qrars st a tu uvw Ovw

2 (1) (2)T ()(1) (2)T (l)T (2) T ()(1)+ aab a ij jkl Oklapq qrars st a tu uvw Ovw
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(6.87)

The isotropic averages in equations (6.67) to (6.87) are given by equation (6.20). Thus,

for example, the term a2 in (6.67) becomes:

__1_ { (1) (2) _ }
- 5kT aap aap aa, (6.88)

where aW is the optical frequency polarizability tensor of molecule 1 referred to the

molecule-fixed axes 0(1,2,3), a~~ is the static polarizability tensor of molecule 2 referred

to molecule l's axes, and a and a are the mean dynamic and static polarizabilities,

respectively.

In order to calculate BK , the exact forms of the tensors in equations (6.67) to (6.87)

are required. The specific cases of spherical, linear and non-linear molecules are treated

separately.
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6.4 B K for spherical molecules

For spherical or quasi-spherical gases, the second Kerr-effect virial coefficient given in

(6.36) becomes:

u(12) (R)

e kT R2 dR, (6.89)

where U(12)(R) = ULJ , and the integrand is given by (6.66), the terms of which simplify

considerably due to molecular symmetry.

Spherical molecules possess no permanent dipole or quadrupole moments, and Aij k

and f3ijk are both zero, so that all terms containing these property tensors are zero. The

integrand in (6.89) becomes:

(6.90)

where the terms on the right are given by equations (6.67) to (6.70), (6.72) and (6.73).

The static and dynamic polarizability tensors have only one independent component each,

and are given by:

and (6.91)

where a and a are the static and dynamic polarizailities, respectively. Thus, both a2 and

a3 become zero and the leading term is a4:

(6.92)

The next term is:

(6.93)

If one considers only the leading term, then substituting (6.92) into (6.89) yields:

(6.94)
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This is exactly the same expression used by Buckingham and Dunmur [82] in 1968 to

calculate the second Kerr-effect virial coefficients for the spherical atomic gases argon ,

krypton and xenon , and th e quasi-spherical molecule sulphur hexafiuoride, for comparison

with their measured values.
It is useful to not e that the second Kerr-effect and light-scattering virial coefficients

of atoms and spherical molecules are related by th e following expression [178]

(6.95)

If equation (6.94) is used to calculate BK for atoms and spherical molecules and the results

compared with measured values, then the ratio B';? / BC;lc displays a definite trend. The

ratio is less than one for the rare gases and increases above unity as th e molecular size

increases [9]. Not surprisingly, Watson and Rowell [89] found a similar t rend in the ratio

of calculated and measured values of th e second light scat tering virial coefficient of atoms

and spherical molecules. They concluded that the point-dipole approximation of the DID

model for molecular interactions is inadequat e for the large quasi-spherical molecules.

However, in 1983, Dunmur et al. [88] attributed the inconsistencies between theoretical

and experimental values for Bp to insufficient allowance for the effects of three-body

interactions at higher pressures. They showed that for th e atomic gases and methane the

DID model for the collision-induced polarizability of pairs of atoms or spherical molecules

works well for argon , krypton, xenon and meth ane, although it appears to be inadequate

for sulphur hexafiuoride. They suggest that the excessive collision-induced scattering and

electric birefringence from sulphur hexafiuoride may be a result of contributions from

many-body interactions, which have not been determined. This seems quite probable,

due to the low vapour pressure of sulphur hexafiuoride, which is a very large molecule. It

should be noted that the molecules studied in this work are much smaller than sulphur

hexafiuoride and th e measurements of the second virial coefficients are carried out at

pressures well below their saturation vapour pressures, so that th e numb er of interactions

between three or more molecules should be negligible.
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6.5 B K for linear molecules

For linear molecules, the second Kerr-effect virial coefficient is given by:

(6.96)

The terms of the integrand are given by equations (6.67) to (6.87).

In order to determine the explicit forms of these terms, it is necessary to express the

molecular property tensors in terms of the angles specifying their relative configuration,

T , as described in Section 2.1.1.

The prop erty tensors of an linear molecule p may be expressed in terms of f~p), where

f~1) and f~2) are th e unit vectors along the principal axes of molecules 1 and 2, respec­

tively [26].

Expressions for the dipole and quadrupole moment tensors, the stati c polarizability

tensor, the A-tensor and the T-tensors are given in equations (4.77), (4.78), (4.79), (4.83),

and equations (4.85) to (4.87) of Section 4.4, respectively. The dynamic polarizability

and hyperpolarizability tensors are expressed in the same way:

(6.97)

h - 1 (1) _ 1 (2)were a - -a·· - -a ·",3 n 3 t t
and

.6.a
3a'

(6.98)

h 13 - ,q(I) - 13(2) d 13 - 13(1) _ (1) _ (1) _ (2) _ (2) _ (2) .
w ere 11 - 1-'333 - 3'3' 3' an 1. - 113 - 13131 - 13311 - 131' 1' 3' - 131' 3'1' - 133' 1' 1"

(p) _ (1) 4 (1) ) s (1) (1) 4 (1) ) (p) (p)
"Ii i k l - "13311 + 3 "11111 vu + "13333 + "13311 - 3"1 1111 f k f l . (6.99)

Substituting equations (4.77), (4.78), (4.79), (4.83), equations (4.85) to (4.87) and

equat ions (6.97) to (6.99) into equations (6.67) to (6.87) results in terms containing f~p)

and Ai, which are eliminated using equations (4.92) to (4.94) of Section 4.4. This yields
th e following expressions for th e terms in th e integrand of B K :

(6.100)
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a3 = (1) 3 {6al-~a(al- + ~a) (3cos
2

(}1 -1)
15kT 47rco R

+ ~a (al-(3al- + ~a) - 2al-~a) (3 cos" (}1 + 3 cos2(}2 - 2)

- 2~a~a (2(~a + ~a) + 3(al- + al-)) COS(}12 (3COS(}1 COS(}2 + cos (}12)} ,
(6.101)

+ [~a~a (3al- (al- - al-) - 2ai + al-~a(3 cos2(}12 - 1))

+ 3al- (2al-(al-~a+ al-~a) + ai~a)] (3cos2(}2 + 1)

+ [~a (~a[al-(3al- + 2~a + gal-) + al-(2al- + ~a(l + 3 cos2(}12))]

+ 6al- [al-(al- + «i) - al-~a]) + 3 ai~a(2al- + al-)] (3 cos2(}1 + 1)

+ al-~a~a(3al- + al-) (3 cos2(}1 - 1)2 + al-~a~a(3al- + «i) (3 cos2(}2 - 1)2

- 4al-al-~a~a (3COS2(}1 -1) (3COS2(}2 -1)

+ [6(ai~a2 + ai~(2) + ~a~a (2al-(~a + 3~a) + 2al-(~a + 3~a)

+ 3 (al- + al-)2 + (~a2 + ~(2) (1 + 3 cos2(}12) + ~a~a(3 + cos"(}12))]

2

/12 a2 = 15(kT)~~7rco)R3 {6al-~a(1 + cos (}12) (3 cos" (}1 - 1)

+ [3ai + al-~a(l + cos (}12) - 2al-~a] (3 cos2(}1 + 3 cos2(}2 - 2)

- [2~a(al- + ~a) + 6al-(al- + ~a) + 3~a2
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(6.104)

+ [3al-6.a(al- - al-) - 26.a(ai + al-6.a) + 3ai(al- + 2al-)

+ 6.a (4al-6.a - 2ai + 3al-al-) cos 012+ 6al-6.a6.acos2 012] (3cos
2O2+ 1)

+ [3ai(al- + 2al-) + al-6.a(2al- + 6.a) + 3al-6.a(al- + «i) + 4al-6.a6.a

+ 6.a(2al-(al- + 26.a) + al-(6al- + 46.a + 3al-)) cos 012

+3al-6.a2 COS2012] (3COS201 + 1) +al-6.a(al- +3al-) (3COS201-1)2

+ al-6.a(al- + 3al-) (3cos2O2 _1)2 - 4al-al-6.a (3cos201-1) (3cos2O2 -1)

- [6.a(2al-(al- + 6.a) + 3al-(2al- + 6.a)) + 26.a(4al-6.a + 3ai)

+ 6.a(26.a(al- + 6al-) + al-6.a) cos 012 ] (3 cos" ()1 - 1) (3 cos ()1 cos O2 + COS ()12)

- [6.a(2al-(al- + 6.a + 36.a) + al-(36.a - 46.a)) + 6ai(6.a + 6.a)

+ 6.a(6.a(al- + 6al-) + 2al-6.a) COS ()12 ] (3 cos" ()2 - 1) (3 cos ()1 cos ()2 + cos ()12)

+ al- + al-)) cos ()12 + (3ai + 26.a6.a + 96.a2) cos'' ()12)]

x (3 cos ()1 cos ()2 + cos ()12)2} , (6.105)

(6.106)

Explicit expressions for the remaining terms defined in equations (6.67) to (6.87) , are

not given here, as they are very long. In order to calculate these terms, Macsyma's

Fortran conversion facility was used to convert the expressions directly into Fortran to

avoid programming errors. These terms are important as they establish convergence of

BK ·
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6.6 B K for non-linear molecules

For non-linear gases th e second Kerr-effect virial coefficient is given by

(6.107)

where the integrand is given by (6.66). Explicit expressions for th e terms of the integrand

are obtained by subst ituting the relevant molecular prop erty tensors, in terms of the the

interaction parameters described in Section 2.1.2, into equations (6.67) to (6.87). Since

there are no hyperpolarizabilities, or higher-order polariz abilities, such as the A- or C­

tensors, available for the non-linear gases under study, terms containing these tensors

will not be evaluated. The exact form of the static polarizability tensors and th e dipole

and quadrupole moment tensors of molecules 1 and 2 for molecules with D2h and C2v

symmetries, are given by equations (4.126) to (4.144) of Section 4.5. The form of th e

second and third rank T-tensors is given in equations (4.145) to (4.149).

The dynamic polarizability tensor has the same form as the stat ic polarizability and

is given by:

Q~J
(6.108)

o
(2) (1)where a ·, ·, = a ·· =t J tJ

~~
and th e coefficients Zll ' Z12 ' P,Z33 are exactly analogous to the coefficients Wij of

a~J ) given by equations (4.139) to (4.144), with the static components all ' an and a 33

replaced by the dynamic components a ll ' a 22 and a 33 respectively, so th at

Zll = a ll [AiB~ +A~B~ +A~Bi + 2AIA4BIB4 + 2A7B7(A4B4 + AIBI)]

+ a 22 [AiBi + A~Bg + A~B~ + 2A1A4B2Bs + 2A7B8(A4Bs + A1B2 ) ]

+ a 33 [AiBi +A~Bi + A~B~ + 2AIA4B3B6 + 2A7Bg(A4B6 + AIB3 ) ] ,

(6.109)
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Z22 = an [A~B~ + A;B~ + A~B? + 2A2AsB1B4+ 2AsB7(AsB4+ A2B1) ]

+ an [A~Bi + A;Bg + A~B~ + 2A2AsB2Bs + 2AsBs(AsBs + A2B2) ]

+ a33 [A~B; + A;B~ + A~B~ + 2A2AsB3B6+ 2ASBg(AsB6+ A2B3)] ,

Z33 = an [A~B~ + A~B~ + A~B? + 2A3A6B1B4+ 2AgB7(A6B4+ A3B1) ]

+ a22 [A~Bi + A~Bg + A~B~ + 2A3A6B2Bs + 2AgBs(A6Bs + A3B2) ]

+ a33 [A~B; + A~B~ + A~B~ + 2A3A6B3B6+ 2AgBg(A6B6+ A3B3)] ,

(6.110)

(6.111)

+B7 (B4(A4As + AsA7) + B1(A1As + A2A7) )] + a22 [AIA2B~

+ A4AsBg + A7AsB~ + B2Bs(A1As + A2A4) + Bs (Bs(A4As + AsA7) (6.112)

+B2(A1As + A2A7) )] + a33 [A1A2B; + A4AsB~ + A7AsB~

+B3B6(A1As + A2A4) + Bg(B6(A4As + AsA7) + B3(A1As + A2A7) )] ,

+B7 (B4(A4Ag+ A6A7) + B1 (A1Ag+ A3A7) )] + a22 [A1A3Bi

+ A4A6Bg+ A7AgB~ + B2Bs(A1A6+ A3A4) + Bs (Bs(A4Ag+ A6A7) (6.113)

+B2(A1Ag+ A3A7))] + a33 [A1A3B; + A4A6B~ + A7AgB~

+B7 (B4(AsAg+ A6As) + B1(A2Ag+ A3As))] + a22 [A2A3Bi

+ AsA6Bg + AsAgB~ + B2Bs(A2A6+ A3As) + Bs (Bs(AsAg+ A6As) (6.114)

+B2(A2Ag+ A3As))] + a33 [A2A3B; + AsA6B~ + AsAgB~

The mean static and dynamic polariz abili ties are:
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(6.115)

In addition, to simplify the final expressions, a tensor analogous to Gil in (4.150) is

defined:

where

(6.116)

u., = an (ZnTn + Z12T12 + Z13T13) ,

H 12 = a n (Z12Tn + Z22T12 + Z23T13) ,

H 13 = an (Z13Tn + Z23T12 + Z33T13) ,

H 21 = a 22(ZnT12 + Z12T22 + Z13T23) ,

H 22 = a 22(Z12T12 + Z22T22 + Z23T23) ,

H 23 = a 22(Z13T12 + Z23T22 + Z33T23)'

H 31 = a 33(ZnT13 + Z12T23 + Z13T33) ,

H 32 = a 33(Z12T13 + Z22T23 + Z23T33) ,

H 31 = a 33(Z13T13 + Z23T23 + Z33T33)'

(6.117)

The tensor manipulation facilities of Macsyma may now be used to evaluate the terms of

the integrand in equations (6.67) to (6.87), resulting in expressions which, when averaged

over the interaction coordinates of the pair of molecules, yield their contribution to BK·

The first term of the integrand, a2, given by (6.88), becomes:

(6.118)

while the term /--l2al given by (6.103), becomes:

2

/--l2 al = 15~~)2 {6 (an'Di + a22'D~ + a33'D~ + 2a33'D3)

(6.119)

The final expressions generated by Macsyma for the remaining terms a3, a4, . .. are too

large to be quoted here. Due to their size it is best to generate the expressions in Macsyma

(or a similar symbolic manipulation package) and convert them directly to Fortran for

integration, and thus avoid the introduction of errors which would certainly arise if such

enormous terms were produced manually.
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6.7 Summary of experimental work on the second

Kerr-effect virial coefficient

A comprehensive list of the experimental second Kerr-effect virial coefficient data available

is given in Tables 1.7 to 1.10. The data for the spherical gases is very sparse, usually with

only one value, and at most three values, for a particular wavelength of the incident light.

For the polar gases under study, only four have been measured and, although all the data

sets contain a minimum of seven values at 632.8 nm, the experimental errors are large and

the data points widely scattered, especially for the two fiuoromethanes. Similarly, for the

non-polar gases, BK has been measured for a wide range of temperatures at 632.8 nm,

but the errors and the scatter are large. For nitrogen, the sign of the second Kerr-effect

virial coefficient is uncertain, as the errors exceed the measured values. Comparison

of Tables 1.8,1.9 and 1.10 shows that, in general, BK values for polar molecules are

approximately a hundred times larger than those of non-polar molecules.

Experimental values of the second Kerr-effect virial coefficient are deduced from

pressure-dependence measurements of the Kerr effect. The errors are often large be­

cause of the small density-dependence of Km at the pressures used in the experiments,

with additional systematic errors due to uncertainties in the pressure virial coefficients

B(T) and C(T) used to obtain the molar volumes Vm of gas samples. BK has been

measured for the fiuoromethanes by Buckingham and Orr [33], while Schaefer et al. [83]

measured the effect for fiuoromethane, trifiuoromethane and chloromethane. Bucking­

ham et al. [14] have measured the effect for the non-polar gases carbon dioxide, nitrogen,

ethane, cyclopropane, and the non-linear gas ethene. BK of carbon dioxide has also been

measured more recently by Gentle et al. [15], who then measured BK for the non-linear

gas sulphur dioxide [21]. Values for the inert gases and sulphur hexafiuoride have been

obtained by Buckingham and Dunmur [82]. Bogaard et al. [179] measured the Kerr effect

for the chloromethanes and deduced AK , but due to the low pressures used were unable to

obtain reliable values for BK. Bogaard, Buckingham and Ritchie have measured BK for

the non-linear gases dimethyl ether [23] and hydrogen sulphide [180] . Recently, Tammer

and Hiittner [25] investigated the Kerr effect of gaseous ethene and obtained values for

the second Kerr-effect virial coefficient.

6.8 Summary of theoretical calculations of the sec­

ond Kerr-effect virial coefficient

In 1955, Buckingham [174] developed a statistical mechanical theory of the second Kerr­

effect virial coefficient, which was later extended by Buckingham and Orr [33] to include
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the effects of polarizability and the shape of the molecule. Using this theory they cal­

culated B K for the fluoromethanes and obtained approximate agreement with their ex­

perimental values for fluoromethane, but found the calculated values of trifluoromethane

were too small. They attributed this disagreement to short-range interaction effects on

the polarizability and the potential energy, and argued that measurements of BK for polar

gases would probably not yield practical information about the nature of intermolecular

potentials.

However, in 1983, Buckingham, Galwas and Fan-Chen [177] resolved the order of

magnitude discrepancy between experiment and theory for the fluoromethanes, by ex­

tending their earlier theory [174] to include collision-induced polarizability, which was

identified as the principal component of BK. In this work, a simple Stockmayer poten­

tial [120] consisting of the dipole-dipole interaction together with a (6-12) Lennard-Jones

potential was used, but the shape potential was not included. This new theory yielded

calculated values which were in much better agreement with the experimental data, in

spite of the fact that no attempt was made to optimise the Lennard-Jones parameters.

However, although the fit between theory and experiment was improved, this was not

conclusive due to the large uncertainty in the measured values. In our work, we include

quadrupole-dipole, quadrupole-quadrupole and the induction potentials, as well as the

shape potential, in the intermolecular potential. In addition, we include the effects of

the quadrupole moment in the collision-induced polarizability for the first time. We have

been careful to ensure that all the series in the calculation of BK have converged.

Although B K has been measured for several non-polar linear gases, it was only recently

that theoretical values were first calculated by Couling and Graham [9] for nitrogen,

carbon dioxide and ethane. Their calculated values for nitrogen and carbon dioxide

are extremely small, which perhaps explains the poorly defined experimental values. For

ethane, where B K is an order of magnitude larger than nitrogen or carbon dioxide and the

observed values are more clearly defined, their calculated values were in good agreement

with the experimental data. However, they did not include the quadrupole series in their

calculations and we will show that this series may be significant for polar and non-polar

molecules.

In 1990, Gentle et al. [21] measured the Kerr effect of sulphur dioxide for temperatures

ranging from 298.7 K to 490.3 K, and deduced fairly precise values for the second Kerr­

effect virial coefficient. They then applied the theory of Buckingham et al. [177], which

had proved relatively succesful for the fluoromethanes, to sulphur dioxide after approxi­

mating the molecule to be quasi-linear. However, although they optimised the Lennard­

Jones parameters by fitting a simple Stockmayer potential to the experimental values for

B(T), most of the calculated B K values were more than double the experimental values.

Approximating a molecule to be quasi-linear involves setting an = a22, while for sulphur
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dioxide the actual values are an = 5.80 x 1O-4oC2m2J-1 and a22 = 3.30 x 1O-4oC2m2J-1

at). = 632 nm [21]. This discrepancy might explain why the theory did not fit the exper­

imental values. Recently, Couling and Graham [9] developed a molecular tensor theory of

BK for molecules with non-linear symmetry, to assess the extent to which the assumption

of axial symmetry is responsible for the poor agreement between theory and experiment.

They based their theory on the earlier work of Buckingham et al. [177], extending it to

molecules with low symmetry and including the effects of molecular shape. They op­

timised the Lennard-Jones force constants and their two shape factors D1 and D 2 , to

obtain a very good fit of the B(T), and the resulting set of parameters yielded calculated

values of BK in excellent agreement with the experimental data. The same procedure

was followed for the non-linear gases dimethyl ether and ethene, with good results for

polar dimethyl ether but poor agreement for non-polar ethene. Since the experimental

values of BK for ethene are very small, it was unclear whether the discrepancies were due

to systematic errors arising from uncertainities in the pressure virial coefficients used to

determine the molar volume Vm , or due to the failure of the model. It is, however, clear

from their work that the effects of interacting non-linear molecules on molecular electro­

magnetic phenomena can only be comprehensively evaluated after due consideration of

their molecular symmetry. We have extended this work by considering the effect on BK

of the dipole-quadrupole and quadrupole-quadrupole series, defined in equations (6.82),

(6.83) and (6.85) to (6.87), resulting in a more complete theory.
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Chapter 7

The Second Light-Scattering Virial

Coefficient , Bp

The phenomenon of light-scattering was first studied in 1869 by Tyndall [181], who con­

ducted a series of experiments on aerosols. He passed astrong beam of white light through

a colloidal suspension of particles, and viewed the light scattered at right angles to the

incident beam. The scattered light was observed to be linearly polarized blue light, pro­

viding some justification for the idea that the colour and polarization of skylight was due

to the scattering of light from the sun by small particles suspended in the atmosphere.

However, Tyndall still could not explain the mechanisms by which light was scattered,

and was quoted by Kerker [182] as saying "The blue colour of the sky, and the polariza­

tion of skylight ... constitute, in the opinion of our most eminent authorities, the two

great standing enigmas of meteorology."

In 1871 the enigma was explained by J. W. Strutt [183], the third Baron Rayleigh, in

his theoretical discussion of the light-scattering phenomenon. He treated the incident light

as vibrations in the ether which set up forced vibrations in the suspended particles. These

particles scattered the incident light by acting as secondary sources of vibrations in all

directions. Rayleigh also showed that, if a particle was assumed to be an isotropic sphere

with a diameter much smaller than the wavelength A of the incident light, the intensity

of the light scattered by the particle was proportional to ;4 and the component scattered

at right angles to the incident beam was completely linearly polarized perpendicular to

the plane of scattering. Thus, since blue light has a shorter wavelength than red light,

the intensity of the scattered blue light is much greater than the red, resulting in the blue
colour of the sky.

Lord Rayleigh [184] later refined his theory by proposing that the blue light of the sky

was due to sunlight scattered from the individual molecules of the air, rather than from

dust particles suspende.d in the atmosphere. In 1916, seventeen years later, Cabannes [185]

confirmed this theoretical postulate experimentally. He passed a strong white light beam
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through a pure, dust-free gas sample and observed that the light scattered at right angles

to the incident beam was blue in colour and linearly polarized. As was to be expected,

the light scattered by the gas molecules was far less intense than that scattered by the

larger particles in the colliodal suspensions used by Tyndall.
However, the fourth Baron Rayleigh, R. J. Strutt, discovered that the 90° scattered

light was not completely linearly polarized, and that the degree of depolarization was

a characteristic constant of the gas under study [186]. His father's theory, which pre­

dicted complete linear polarization, had assumed that the scattering centres were isotropic

spheres. Thus, R. J. Strutt extended this theory by considering the anisotropy of the gas

molecules and relating the depolarization ratio to departures from spherical symmetry of

the optical properties of the molecules [187].

Within the next ten years a large number of measurements were carried out for a wide

variety of gases and vapours, in spite of the extreme difficulties involved in the experi­

mental procedures. The Raman effect, in which the scattered light undergoes well defined

frequency shifts, was discovered during this period and, subsequently, most workers con­

centrated on this new phenomenon. It was only in 1961 that the conventional Rayleigh

scattering was seriously taken up again when Powers [188] produced new values for the

depolarization ratio of several gases, which he measured using a photomultiplier to detect

the scattered light rather than the visual or photographic detection techniques used by

the earlier workers. He found that the results obtained in the 1920's were often as much

as 10% too high. Then, in 1964, Bridge and Buckingham [189] were the first to employ

the laser, with its intense parallel beam of monochromatic light, to measure the depo­

larisation ratio. This new technology allowed Bridge and Buckingham and subsequent

workers [4,17,190-193] to make detailed and accurate measurements of the depolariza­

tion ratio of many gases and vapours. Their values were even lower than those measured

by Powers, thus confirming the inadequacy of the experimental techniques used by the

earlier workers.

7.1 General theory of light scattering

The scattering of light by a single molecule can be considered to arise when the oscillating

multipole moments, induced in the molecule by the incident light wave, produce retarded

scalar and vector potentials and therefore electric and magnetic fields at all points. These

fields have been related to the electr ic and magnetic multipole moments of the system

by Landau and Lifshitz [194] and Buckingham and Raab [195]. If an origin O· is fixed

within the molecule's system of oscillating charges, then at a point a distance R from the

origin, where R is much greater than the dimensions of the molecule and the wavelegth

of the radiated light, the scattered electric field Eis) may be assumed to be a plane wave
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given by [195]:

() 1 [ 1 1... ... )]
Ea

s = - (
4 7fE

o)Re2 (jla - n anf3jl(3) - ~Eaf3"fnf3m"f + 3e (nf3 () af3 - n anf3n"f () f3"f +... ,
(7.1)

where na is a unit vector in the direction in which the wave is scattered, Ma is the electric

dipole moment tensor of the system of charges, (}af3 is the traceless electric quadrupole

moment tensor, and m., is the magnetic dipole moment tensor, and each dot above these

moments represents a partial derivative with respect to time. These multipole moments,

as well as the primitive multipole moments, are defined in Appendix B. It must be noted

that several workers [196-199] have demonstrated that electrodynamic situations exist for

which it is necessary to retain the primitive multipole moments. In this work, however,

the traditional traceless quadrupole moment is used, and this subtlety will need to be

considered in future work.

x

z

incident light wave

y
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Figure 7.1: The space-fixed system of axes used to describe the scattering of light by a
macroscopic gas sample containing N molecules.

In the arrangement shown in Figure 7.1 the origin of a space-fixed system of axes

O(x,y,z) is placed within a macroscopic sample of gas containing a large number N of

identical gas molecules. A uniform, parallel beam of light, linearly polarized in the xz

plane and travelling in the z direction, is incident on the gas sample. The wavelength

of the incident light is assumed to be very much larger than the dimensions of the gas

molecules, and its frequency is assumed to lie far below the frequency of any electronic

absorption transition. The depolarization ratio of the Rayleigh-scattered light observed
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at a point on the y-axiz is given by:

I z

P=T'
x

(7.2)

where Ix and Iz are the intensities of the light scattered with the electric vector parallel

to the z and x axes respectively.

For light travelling along the y-axis the unit vector na = [0 1 0]. Therefore, since P

in (7.2) requires scattered intensities with the electric vector parallel to the x and z axes,

the expression for the scattered electric field in (7.1), summed for the contributions from

each molecule in the system of N molecules, becomes:

N

1 "" ,,(p)(t')
( 4 7rEo)Rc2 ~/-La ,

(7.3)

where jj~) is the dipole acceleration of the pth molecule, and only electric dipole radiation

has been considered. The electric quadrupole and magnetic dipole are much smaller and

are therefore neglected.

Now, /-La is a function of the electrostatic field E, so that:

(7.4)

and

(7.5)

Even when intense laser beams are used, the term which is non-linear in the field in

equation (7.5) can be safely neglected. Since:

we have

(7.6)

(7.7)

It follows then from equations (7.3) and (7.5), that for a monochromatic incident light

beam with a wavelength A, the scattered electric field becomes:

(7.8)

where E~p) implies the value of the electric field at the pth molecule. The differential
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polarizability 1f~J is defined as:

(7.9)

In general, the intensity I of a light wave with electric field vector E is given by the

following expression:

1= _l_E.E*,
2j.Loc

(7.10)

where the asterisk denotes the complex conjugate. Thus, from equation (7.2) and equa­

tions (7.8) to (7.10), we have:

(7.11)

where Xpq is the phase difference in the light scattered by molecules p and q, as seen

at the observation point, and where the angular brackets indicate an average over all

configurations of the specimen. This equation was first obtained by Buckingham and

Stephen [35], and has been used a basis for the discussion of the effects of pair interactions

on the depolarization ratio p from linear and quasi-linear molecules by Graham [200] and

Couling and Graham [201], and for non-linear molecules by Couling and Graham [9,36].

7.1.1 N on-interacting molecules

In a dilute gas molecular interactions are negligible and the oscillating dipole moment j.L~)

of molecule p is induced only by the polarizing effect of the applied field Eo, since there are

no molecules close enough for their moments to set up significant fields and field gradients

at molecule p. Thus, the differential polarizability 1fCif) is given simply by the molecular

polarizability cxCif)' In addition, there is no average phase relationship between the fields

from anyone pair of molecules and only self-correlations contribute to the summations in

equation (7.11), which are therefore replaced by N times the contribution of an individual

representative molecule 1. Thus, (7.11) simplifies to:

(7.12)
N / (1) (1))

\ CXzx CXzx

Po = / (1) (1))'
N \ CXxxCXxx
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where the angular brackets now represent an average over all unbiased orientations of a

molecule. The molecular tensors in (7.12) are referred to the space-fixed axes (x,y,z) and

must be projected into the molecule-fixed axes (1,2,3), yielding:

(7.13)

(7.14)

Using the standard isotropic averages [34,175]:

(7.15)

(7.16)

equations (7.13) and (7.14) become:

(7.17)

(7.18)

For linear molecules ag) is diagonal with an = an = a.l and a33 = all' The mean

polarizability a is:

(7.19)

while the anisotropy in the polarizability tensor is defined as:

(7.20)

For non-linear molecules with D2h and C2v symmetries, aij is diagonal with three indepen­

dent components, as shown in equation (6.108) of Section 6.6. The mean polarizability

a is:

(7.21)

while the anisotropy in the polarizability tensor is often defined as [102,202]:

(7.22)
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For both linear and non-linear D2h and C2v gases, equations (7.17) and (7.18) simplify to:

/ (1) (1)) _ l(A )2
\ G zx G z x - 15 uG ,

Thus equation (7.12) may now be written:

(7.23)

(7.24)

(7.25)

The anisotropy in the molecular polarizability tensor was originally defined as the dimen­

sionless quantity K, [190]:

(7.26)

and applies to both linear and non-linear molecules. From equations (7.25) and (7.26), it

can easily be shown that Po and K, are related by the expression:

(7.27)

first derived by Bridge and Buckingham [190]. This equation can be used to obtain values

for K,2 from measured values of Po.

Since non-interacting spheres are isotropic, the anisotropy K, in equation (7.26) is

zero. Therefore, from (7.27) we have Po = 0, confirming the well-known result that

non-interacting spheres do not depolarize the light that they scatter.

7.1.2 Interacting molecules

If the pressure of a gas is increased to the extent where molecular interactions are sig­

nificant, the depolarization ratio Po of the light scattered by a dilute gas sample .of non­

interacting anisotropic molecules is modified. The density dependence of the depolariza­

tion ratio may best be described by the virial expansion [35]:

(7.28)

where Bp, Gp, ... are the second, third, ... light-scattering virial coefficients, and describe

the contributions to p arising from interactions between pairs, triplets, : .. of molecules,
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respectively.
A complete molecular tensor theory of Bp, based on the treatment of Couling and

Graham [9,36], is now presented.
In a gas the molecules are moving randomly relative to one another, so that the

scattered light waves emitted by each of the molecules arrive at th e distant observa­

tion point with different and randomly fluctuating phases. Therefore, the summation in

equation (7.11), can be simplified considerably. Except for self-correlation , the only sig­

nificant correlation of phase occurs when two molecules are involved in a close encounter.

Benoit and Stockmayer [203] established that , apart from the term (7r~~ 7r~~ cos X12 ),

the interaction mechanism for all the terms in (7.11) is only significant at short ranges

of approximately 0.5 nm to 2 nm, which are a small fraction of a typical wavelength

of cv 500 nm , and the phase differences X12 between scattered waves from interacting

molecules p and q are thus effectively zero. It is therefore not necessary to retain X pq for

all the terms, and eiXpq is set to unity in all but the abovementioned term. Thus, only

allowing for self-correlation and pairwise contributions to the coherent fields, the sum­

mations in equation (7.11) are replaced by N t imes the contribution of a representative

molecule, averaged over all pair encounters, yielding:

(7.29)
N / (1) (1» ) + N / (1) (2» )

\ 7rzx 7rzx \ ttzx 7rzx

p= / (1) (1» ) / (1) (2) ) 'N \ 7rx x 7rx x + N \ 7rx x 7rx x cos X 12

where the angular brackets now indicate an average of pair interactions. The probability

P(T) that molecule 1 has a neighbour in the range dr at T is given by equation (1.4) in

Chapter 1.

The treatment of Graham [122] is used to obtain expressions for the differential po­

larizabilities in equation (7.29), as defined in equation (7.9). Graham [122] argued that

the total oscillating dipole moment of molecule 1, /-l~1 ) , arises in part from th e direct

polarizing action of the incident light wave field £0, and in part from the fields and field

gradients at molecule 1 due to the oscillating moments of a neighbouring molecule 2, so

that [26]:

(l)(C ) _ (1) (C 'L'(1») 1A(1) (C (1))
/-lo: "0 - a ofJ "OfJ + J" fJ + :3 OfJf "OfJf + FfJf ' (7.30)

where £ofJ and £OfJf are the field and field gradient of the incident light wave at molecule 1,

and F~l ) and F~~ are the oscillating field and field gradient arising at molecule 1 due to

the oscillating multipole moments of molecule 2.

In equation (7.30), the molecular polarizability tensor a~lJ is assumed to be inde­

pendent of the field and field gradient at molecule 1. However, if molecule 2 possesses
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j
permanent multipole moments, these may set upa:"s; ;ong electric field F~I) and electric

field gradient F~~) at molecule 1, which may pic>difiy its effective polarizability. In this

case, the non-linear hyperpolarizability teJ~ should be included in equation (7.30):
//

(7.31)

The field gradient £of3'Y of the incident light wave may be neglected since the dimensions of

the molecules under study are very small compared with the wavelength of the light wave. ,
V

In addition, proceeding on the precedent of the second refractivity virial coefficient of

linear molecules for which Burns, Graham and Weller [62] showed the hyperpolarizability

terms to be negligible, as well as our own observations for the second dielectric virial

coefficient, the non-linear effects resulting from the intermolecular fields of permanent

multipole moments will be neglected. Thus, equation (7.31) is now written as:

(7.32)

Similarly, the oscillating quadrupole moment of molecule 1 induced by the incident light

wave field as well as the field and field gradient due to the oscillating multipole moments

of moleule 2, is given by [26]:

(7.33)

If the oscillating octopoles and higher-order multipoles on molecule 2 are neglected then

the field :FhI
) at molecule 1 due to the oscillating dipole and quadrupole moments on

molecule 2 has the form [26]:

(7.34)

where the T-tensors are defined in equations (2.18) to (2.21) of Section 2.3. The field

gradient :F~~) at molecule 1 due to the oscillating moments on molecule 2 is given by [26]:

(7.35)

Here fJ,~2) and ()~~ are the oscillating dipole and quadrupole induced on molecule 2 by the

fields and field gradients at 2 due to the incident light wave and the oscillating dipole and

quadrupole moments of molecule 1. Using expressions analogous to equations (7.32) and
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(7.33) for p,~2) and ()~~ , and substituting these expressions into equation (7.34) , yields

F (l ) = T (l ) [ (2) (E + F (2)) + lA(2) F (2)] _ IT(l ) [A (2) (E + ;::(2)) + 0 (2) F (2)]
{3 {3, Ct,6 06 6 3 , 6f: 6f: 3 (3,6 q 6 Of: e , 6f:rP f:rP •

(7.36)

The terms Fy) and FJ; ) refer to the field and field gradient at molecule 2 arising from the

oscillating dipole and quadrupole moments of molecule 1, and are given by expressions

analogous to equations (7.34) and (7.35) , respectively. Substituting these expressions into

equation (7.36), yields:

(7.37)

Substituting the equat ioris (7.32) and (7.33) for p,~1 ) and ()~~ , respectively, yields:

(7.38)

- IT(2) {A(l ) (E + ;::(1)) + 0(1) ;::(1)}]
3 f:cPA 1/rPA 01/ 1/ cPA1/V 1/v

Successive substitution of F~l) and F~; , and ofF~2) and F~; , leads to an extensive series

of terms. It is difficult to know a priori when the series ought to be t runcated, since

it is impossible to be sure whether convergence has been reached until the terms are

calculated. Thus the procedure is to calculate successively higher-order terms until the

point is reached where the highest order term calculated makes a negligible contribution.

Therefore, based on the observations of Couling and Graham for linear and quasi-linear

gases [200,201] and for non-linear gases [9], the series for F~l) is truncated at a point
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which will lead to scattered intensities in a5 , as well as all scattered intensities in a2A,

a3A and a 3C. Equation (7.38) then yields:

(7.39)

Note that the term -~T~~)a~~T8~1A~~4>£0'\ was not included in the work by Couling and

Graham [9,201], but is included here for completeness.

To understand the physical interpretation of the terms in (7.39), consider th e term

- ~T~;8C~~~4>T;~~a~~ £01] ' which represents th e oscillating field at molecule 1 due to th e

quadrupole moment C~~~4>T;~~a~~ £01] on molecule 2 indu ced by th e oscillating field gradi­

ent T;~~a~~ £01] at molecule 2 arising from the dipole moment a~~ £01] induced in molecule 1

by the incident light wave field £01].

Neglecting oscillating quadrupoles and higher order multipoles, and substituting for

fL~2) in equation (7.35) for the field gradient at molecule 1, yields only two terms whose

contributions to Bp were found to significant enough for retention:

(7.40)

Substi tuting equations (7.39) and (7.40) into (7.32) yields a final expression for the

oscillating dipole moment induced on molecule 1 by th e light wave field £0 in the presence

of molecule 2:

(7.41)

Differentiating equation (7.41) with respect to £01] yields the following expression for th e
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differential polarizability, defined in equation (7.9):

1f(p) = alp) + a/p)T o:(q) + o:(p)T o:(q)T o:(p) + o:(p)T o:(q)T o:(p)T o:(q)
~ ~ ~ ~TI ~~ ~ ~ ~ ~~ ~ ~~ ~ ~

(7.42)

where the superscripts p and q indicate molecule p and q respectively. Using equa­

tion (7.42) in (7.29) yields:

(7.43)

where

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)
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bz = /a(1)a(1)) + /a(l)a(Z) cos X'lZ)\ xx xx \ xx xx ,

(7.49)

(7.50)

(7.51)

(7.52)

Here the notation T a(37 = T~47 = - T~~7 adopted m Section 2.3 has been used. In

the a3A1 term the last six components were not included in the work by Couling and

Graham [9,201], who first derived this term. The first two additional components are

identically equal to components 5 and 6, which were evaluated by Couling and Graham,

and the remaining four additional components, although not identical to the first four,

are certainly similar and can be expected to have the same order of magnitude when

evaluated. Thus, adding the six new terms is comparable to multiplying the original

terms by a factor of two. We have included them at this point for completeness, but have

not evaluated them numerically, since Couling and Graham showed the contribution of

this term to be negligible, and included it only to establish convergence. In all our

calculations we estimated the a3A 1 term by doubling the first six terms and found that

the term remained negligible.

To proceed, the explicit forms of T a(3, T a(37' aa(3, Aa(37 and Ca (378 are required.

"r
7.1.3 Bp for linear molecules ct '-L 0\C: f~ '1..>

In molecule-fixed axes the polarizability aij is diagonal with an = aZZ = a..L and a33 = all'

The component \ a1~ a1~) of the term az in equation (7.44) has already been referred

to molecule-fixed axes by the normal tensor-projection procedure in equation (7.23) of
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Section 7.1.1. Similarly, the term \ cy~~ cy~~) in equation (7.51) has been referred to

molecule-fixed axes in equation (7.24). Now, the remaining averages in equations (7.44)

to (7.47), (7.51) and (7.52) must be referred to the diagonal elements of cyg) and CY~;J" and

the interaction parameters described in Section 2.1.1. The A- and C- tensor components

in equations (7.48) to (7.50) must also be referred to the independent elements of Am
(2) (1) 0(2) . Iand Ai'jlk" and 0ijkl and i'j'k'l' respective y.

Initially, all tensors are referred to the molecule-fixed axes of molecule 1 0(1,2,3),

including a~~) which is not generally diagonal. A projection from 0(1',2',3'), where

cy~;], is diagonal, will be carried out later. The reason for initially referring all tensors

to 0(1,2,3) is that for a given relative configuration of the pair of molecules the tensor

product in 0(1,2,3) is fixed. By allowing the pair of molecules to rotate isotropically as

a rigid whole in the space-fixed axes O(x ,y,z), the average projection of pair properties

referred to 0(1,2,3) may be averaged into O(x,y,z) over all orientations. Averaging over

the interaction parameters T of the pair may subsequently be performed.

The procedure for referring the terms to 0(1,2,3) is illustrated by a specific example:

th tei / (1) (l)T (2)T (l)T (2)) hi b i h fi . . be erm \ CYzx CYz(3 (3-P-yo OEP€rP rP>.CY>.x , w 1C 1S t e rst term m a5 given y equa-
tion (7.47). First the term must be projected from the space-fixed axes O(x,y,z) into the

molecule-fixed axes of molecule 1 as follows:

(7.53)

F fi d i t . fi . h / (1) (1) (2) (1) (2)) .or a xe m eraction con guration t e term \ CYij CYkmTmnCYnr TrsCYsv TVWCYw h 1S a con-

stant, and if the rigid pair of molecules is allowed to rotate isotropically, then the standard

isotropic average, given in equation (6.20), may be used to obtain the average projection:

(7.54)

where the angular brackets now indicate an average over the pair interaction coordinates
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R, rh, ()2 and cl> according to the general relationship:

(X) = JXP(T) tlr,

T

(7.55)

in which the probability P(T) that molecule 1 has a neighbour in the range dr at T has

been related to the intermolecular potential in equation (1.4). Substituting into (7.55)

yields:

00 1r 1r 21r

(X) = ~ JJJJXe-!f¥ R2sin()lsin()2dRd()ld()2dcl>.

R=O 61=0 62=0 </!=O

(7.56)

Benoit and Stockmayer [203] were the first to establish the now familiar results:

/ (1) (2)) _ 1 ( )2/3 2() -1)\azx a zx - 30 all - a-l \ cos 12 ,

which is a contribution known as the angular correlation term; and

(7.57)

(7.58)

where B is the second pressure virial coefficient. Combining equations (7.23) and (7.57)

and equations (7.24) and (7.58), yields the following expressions for the a2 and b2 terms

defined in (7.44) and (7.51), respectively:

(7.59)

(7.60)

The property tensors of an linear molecule p may be expressed in terms of g~p), where

.e~1) and .e~2) are the unit vectors along the principal axes of molecules 1 and 2, respec­

tively [26].
Expressions for the A- and C- tensors and the T-tensors are given in equations (4.83),

(4.84) and equations (4.85) to (4.87) of Section 4.4, respectively. The expression for the

dynamic polarizability is expressed in equation (6.97) of Section 6.5.
Using these expressions for the molecular property tensors in equation (7.54) and

similar equations for the other terms in the (7.43), yields lengthy expressions containing

redundant interaction parameters g~p) and Ai. Averaging according to equation (7.56)

can only be performed after these interaction parameters have been eliminated using
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equations (4.92) to (4.94) of Section 4.4. When this is done we find that:

a 3
a3 = (R-3{361);(1); - 1) - 271);(1); - 1)(21); + 3) cos2()1 + 271);(1); - 1)(21); - 1)

30(47fco)

X cos2()2 - 3241);2 (I); + 1) cos ()1 cos ()2 COS()12 - 1081);2 (I); + 1) cos2()12} ) , (7.61)

a 4
a4 = (R-6 {3241);2 (1);2 - 21); + 1) cos" ()1 + 19441);3 (I); - 1) cos" ()1 cos ()2 cos ()12

30(47fcO)2

+ ((51031);4 cos2()12 + 811);2 (171);2 + 81); + 20)) cos2()2 + 4051);3 (I); - 1) cos2()12

- 271); (121);3 - 221);2 + 171); - 7)) cos2()1 + (19441);3 (I); - 1) cos" ()2 cos ()12

(7.62)

9a 5

a5 = 30(47fco )3 (R-9 {2431);3 (1);2 - 21); + 1) cos" ()1 + 14581);4 (I); - 1) cos" ()1 cos ()2 cos ()12

+ 91);2 (271);2(9I);cos2()2 + 21); - 2) cos2()12 - 91);(71);2 + 251); - 23) cos2()2

- (541);(21); + 5) cos2()2 + 521);2 - 231); - 11)) cos" ()1 + 31); (811);4 cos" ()12

- 31);2(2431);(21); + 3) cos2()2 + 321);2 - 221); - 1) cos" ()12 + 811);2(1);2 - 71); + 6) cos" ()2

- 31);(1);3 - 2281);2 + 2251); - 55)cos2()2 + 361);4 - 1151);3 + 1591);2 - 1171); + 37) cos" ()1

- 91);2 cos ()2 cos ()12 (271);2(71); + 9) cos2()12 + 91);(1);2 + 31); - 4) cos2()2 - (551);3 + 701);2

(7.63)
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a 2

a2A1 = - (R-4 {A-L [180K;(K; -1) cos" 82 + cos(h ((540K;2 - 540K;(K; -1))
60(41rEo)

x cos 812+ 216K;2 COS2812 - 108K;(K; + 1) cos 812 - 216K;2 + 108K;) - (216K;(K; + 1)

(7.64)

+3 (99K;(K; -1) cos282 - (45K;2 - 40K; - 8)) cos 82COS2812+ 6K;(10K; -1) cos 82

x cos 812 + (K; - 1)2(135 cos" 82 - 190) cos" 82 + 3 (14K;2 - 48K; + 19) cos 82]

+ All [-9K; (135(K;- I? cos" 81+ 810K;(K; - 1) cos" 81cos 82cos 812

+ (27K;(45K;COS282+ llK;(K; - 1)) cos" 812 + 45K;(5K; - 2) cos" 82 - 2(85K;2 -146K;
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- 3(/'1; - 1)2)) COS ()1 + (162/'1;2 cos" ()12 - 81/'1;2 cos" ()12 + 3(99/'1;(/'1; - 1) cos'' ()2

- (27/'1;2 - 49/'1; - 8)) cos2()12 + 3/'1;(4/'1; -7) COS()12 + (/'1; -1?(135cos4 ()2

(7.65)

3 .

a3Cl = a (R-8 {6C3333 /'1; [150(/'1; - 1)2cos" ()1 + 900/'1;(/'1; - 1) cos" ()1 cos ()2 cos ()12
10(47fco)2

+ 5 (30/'1;(9/'1;cos2()12 - /'1; - 2) cos2()2 + 72/'1;(/'1; -1) cos2()12 - 35(/'1; _1)2) cos" ()1

+ 30/'1; cos ()12(36/'1; cos2()12 - 25/'1; + 13) cos" ()1 cos ()2 + 3 (50(3/'1;2 + 2/'1; + 1) cos" ()2

- 28/'1; + 15) cos2()1 + 6 (20(3/'1;2 + 2/'1; + 1) cos2()2 - 18/'1;2 cos2()12 + (5/'1;2 - 9/'1;

- 2)) cos ()1 cos ()2 cos ()12 - 10(/'1; - 1)2cos" ()2 + 3 ((33/'1;2 + 16/'1; + 8) cos" ()12

+ 2/'1;2 + 1) cos2()2 + 27/'1;2 cos" ()12 - 3(7/'1;2 - 1) cos" ()12 - (2/'1; + 1)2]

- 24C1313 /'1; [75(/'1; - 1? cos" ()1 + 450/'1;(/'1; - 1) cos" ()1 cos ()2 cos ()12

+ 3/'1; + 1)) cos ()1 cos ()2 cos ()12 - 5(/'1; - 1)2 cos" ()2 - 3 (4(3/'1;2 + 2/'1; + 1) cos2()12

- /'1;2 - 6/'1; + 1) cos" ()2 + 27/'1;2 cos" ()12 - 3(4/'1;2 - 6/'1; - 1) cos2()12 + (/'1; - 1)2]

+ 6C l1 l1 /'1; [75(/'1; - 1)2cos" ()1 + 450/'1;(/'1; - 1) cos" ()1 cos ()2 cos ()12

+ 5 (15/'1;(9/'1;cos2()12 - /'1; - 2) cos" ()2 + 36/'1;(/'1; - 1) cos2()12 - 31(/'1; - 1)2) cos" ()1

+ 60/'1;(9/'1; cos2()12 - 13/'1; + 10) cos" ()1 cos ()2 cos ()12 + 3 (25(3/'1;2 + 2/'1; + 1) cos" ()2
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(7.66)

where the equation (7.65) describes the first six terms of a3A1 in (7.49), as derived by

Couling and Graham [201] .
By substituting equations (7.59) to (7.66) into equation (7.43), p takes the form:

in which a~ represents the part of a3 in equation (7.61) contained within the angular

brackets , with similar definitions for a~ , a~ , a2A~ , a3A~ and a3C~ which occur in equa­

tions (7.62) to (7.66).
Equation (7.67) must now be expressed in the virial form of equation (7.103). We

have from equation (7.25):

(7.68)

This allows equation (7.67) to be written in the form:

(7.69)
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which reduces to

4 [2B 1 2 a(l + ~f\;2) I a
2
(1 + ~ f\;2) I

P = Po + Po(l- sPo) V
m

+ 2" (3cos 012 - 1) + 18(41Tco)f\;2a3+ 18(41Tco)2f\;2a4

a3(1 + ~f\;2 ) I (1 + ~f\;2) I · a (l + ~f\;2 ) A' + a( l + ~ f\;2) C'
+ 18(4?fco)3f\;2as + 36(41Tco)f\;2a2A1+ 36(41Tco)2f\;2a3 1 6(41Tco)2f\;2 a3 1

- 30(:1TCO) b~ + 0 (~~) ] .

It follows from equations (7.103) and (7.70) that:

(7.70)

where

and

a(l + ~f\;2) I

a3 = 18(41Tco)f\;2 Vma31

a2(1 + ~ f\;2) I

a4 = 18(41Tco)2f\;2Vma41

a3(1 + ~ f\;2 ) I

as = 18(41Tco)3f\;2Vmas,

(1 + ~f\;2) I

a2Al = 36(41Tco)f\;2Vma2A11

a (l + ~ f\;2 ) I

a3
Al = 36(41Tco)2f\;2Vma3A11

a( l + ~f\;2 ) I

a3 Cl = 6(41Tco)2f\;2Vma3C1,

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

As with the normal second pressure virial coefficient B 1 the above eight coefficients are

independent of the molar volume but dependent on temperature . The second light scat­

tering virial coefficient is directly accessible from a plot of experimentally measured P

versus J
m

values. If Po is known, then one may calculate:
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The appearance of 2B in this expression for B~ can mask the more interesting contribu­

tions from the remaining terms, which are summed to allow comparison with 2B, giving

(7.81)

where the sum Sp arises purely from angular correlation, dipole-dipole, field-gradient, and

induced quadrupole moment effects in the molecular interaction.

7.1.4 Bp for non-linear molecules

There are no literature values for the A- and C-tensor components for non-linear molecules,

so that the contributions arising from the a 2A l, a 3A l and a3Cl terms cannot be calcu­

lated. Calculations by Couling and Graham for linear and quasi-linear molecules [201],

showed that the a3Cl term contributed less than 0.3% to the second light-scattering virial

coefficient for all linear molecules studied, and our own calculations yield similar results

(see Tables 8.8, 8.17 and 8.34). Thus, the omission of this term should not be significant.

However, Couling and Graham [201] showed that the a2A l term, which only exists for

polar molecules since the A-tensor is zero for non-polar molecules, can make significant
~---------

contributions to Bp of as much as 9%. The contribution of the higher-order a3A l term

was found to be less than 1% for the linear dipolar molecules investigated [201], and can

thus be assumed to be negligible. The problem of the possible significance of the a2A l

term cannot be solved until ab initio calculated estimates of the A-tensor components.of

non-linear polar molecules become available. . \ o~

'-- The averages in equations (7.44) to (7.47), (7.51) and (7.52) must be expres~e~
terms ofthe elements of the diagonal tensors ag) = a1~' as given in equation (6.10~and 11./}

the seven interaction parameters R, al, 131, /'b a2, 132 and /'2, described in Section 2.1.2.~n ~r
As for linear molecules, all tensors must initially be referred to the molecule-fixed axes

0(1,2,3) of molecule 1, to ensure that for a given relative configuration of the pair of

interacting molecules the tensor product in 0(1,2,3) is fixed. If the pair of molecules is v'\ . /
allowed to rotate isotropically as a rigid whole in the space-fixed axes O(x,y,z), the average

projection of pair properties referred to 0(1,2,3) into O(x,y,z) may be averaged over all

orientations. Averaging over the interaction parameters T of the pair may subsequently

be carried out, the average (X) of the pair property X over the interaction coordinates

following from the probability in equation (1.4):

(7.82)
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The term (a~~a~~) from equation (7.44) is now referred to molecule-fixed axes:

1 / (1) (2) 2)= 30 \ 3ai j a i j - 9a , (7.83)

where a~), the polarizability tensor of molecule 2 expressed in the molecule-fixed axes

of molecule 1, is given by equation (6.108) in Section 6.6. Thus, the angular brackets in

equation (7.83) may be written as:

(7.84)

where Zn, Z22 and Z33 are defined in equations (6.109), (6.110) and (6.111) of Section 6.6.

Couling and Graham [9,36] referred the \ a~~a~~ cos X12) term from equation (7.51)

to molecule-fixed axes using a procedure analogous to that of Benoit and Stockmayer [203]

and Graham [200], to obtain:

(7.85)

where B is the second pressure virial coefficient.

The procedure for referring the higher-order terms to 0(1,2,3), and averaging over all

orientations ofthe average projection of the pair properties into O(x,y,z), is demonstrated

in Section 7.1.3. This procedure yields terms of the form:

(7.86)

where the angular brackets indicate an average over the pair interaction coordinates R,

a1, /31, rY1, a2, /32 and "12 according to equation (7.82), and ag), a~~) and Ti j are given by

equation (6.108) in Section 6.6, and equation (4.145) in Section 4.5.

Once the Macsyma tensor manipulation facilities are invoked to evaluate the aver­

ages such as in equation (7.86), we obtain the following expressions for the terms in
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(7.88)

equation (7.43):

b3 = 1 / R-3{an(6a + 4an)(ZnTn + Z12T12+ Z13T13) + a22(6a + 4a22) (Z12T12
15(47rco) \

+ Z22T22 + Z23T23) + a33 (6a + 4a33) (Z13T13+ Z23T23 + Z33T33) } ) , (7.87)

a3 = 1 / R-3{ an (3an - 4a)(ZnTn + Z12T12 + Z13T13) + a22(3a22 - 4a)(Z12T12
30(47rco) \

+ Z22T22 + Z23T23) + a33(3a33 - 4a)(Z13T13 + Z23T23 + Z33T33) + an (Tn(Z;l

+ Z;2 + Z;3) + T12(Zn Z12+ Z12 Z22 + Z13Z23) + T13(Zn Z13 + Z12 Z23 + Z13 Z33))

+ a22 (T12(Zn Z12 + Z12 Z22+ Z13 Z23) + T22(Z;2 + Z~2 + Z~3) + T23(Z12Z13

+ Z22 Z23 + Z23 Z33) ) + a33 (T13(Zn Z13+ Z12 Z23+ Z13 Z33) +T23(Z12Z13

+ Z22Z23 + Z23Z33 ) + T33(Z;3 + Zi3+ Z~3)) } ) ,

a4 = 30(4~co)2 \ R-
6

{3a n a 22 (Z;3Ti'3 + 2T23 [Z12Z13T22 + T13(Z12Z33+ Z13Z23)

+ T12(Z12Z13 + Z13 Z22 + z., Z13) + 2Z12Z13Tn] + Z;2Ti'2 + 2T22 [2Z12Z23T13

+ T12(2Z12Z22 + Zn Z12) + 2Z;2Tn] + Zi3Tl'i + 2T13 [T12(Z22 Z23 + Zn Z23

+ Z12 Z13) + Z12 Z23Tn] + Z;2T{1 + T1
2
2(Zi2 + 2ZnZ22+ 2Z;2+ Z;l) + 2TnT12

X (Z12Z22 + 2Zn Z12)) + 3an a33 ( Z;3T;3+ 2T33 [Z12 Z13T23 + T13(2Z13Z33

+ Zn Z13) + 2Z13Z23T12+ 2Z;3Tn] +T{3(Z~3 + 2ZnZ33+ 2Z;3+ Z;l) + Zi2Ti'3

+ 2Ti'3 [T13(Z12Z33+ Z13Z23 + Zn Z12) + T12(Z12Z23+ Z13 Z22) + 2Z12Z13Tn]

+ Zi3T{2 + 2Z13Z23TnT12 + Zi3T{1 + 2T13 [T12(Z23 Z33 + Zn Z23+ Z12 Z13)

+ Tn(Z13Z33+ 2ZnZ13)]) + 3a22a33 (Z~3T;3 + 2T33 [T23(2Z23Z33+ Z22 Z23)

+ 2Z~3T22 + Z12 Z23T13 + 2Z13Z23T12] + Ti'3(Z~3 + 2Z22Z33+ 2Z~3 + Zi2) + Zi3Ti'2
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+ Z12Z23 + Z13Z22)] + Z~2Tf3 + Z~3Tf2 + 2T22(2Z12Z23T13 + Z13 Z23T12)

+ T12T13(ZnZ23 + Z12Z13)) + 3ail (Tf3(Z~3+ Zn Z33 + Z~3 + 3Z~3) + 2T13

X [Tl2 (Z23Z33 + Z22Z23 + Zn Z23 + 3Z12Z13) +T« (Z13 Z33 + Z12 Z23 + 4Zn Z13)]

+ Tl~ (Z~3 + Z~2 + Zn Z22 + 3Z~2) +Tn T12(Z13 Z23 + Z12 Z22 + 4Zn Z12) + Tfl (Z~3

+ Z~2 + 4Z~1)) + 3a~2 (Ti3(Z~3 + Z22 Z33 + 3Z~3 + Z~3) + 2T23 [T22(Z23 Z33

+ 4Z22Z23+ Z12Z13) +T12(Z13Z33 + 3Z12Z23+ Z13 Z22 + Zn Z13)] + Ti2(Z~3 + 4Z~2

+ Z~2) + 2T12T22(Z13 Z23 + 4Z12Z22+ Zn Z12) +Tf2(Zn Z22 + Z~3 + 3Z~3 + Z~l))

+ 3a~3 (Ti3(4Z~3 + Z~3 + Z~3) + 2T33 [T23(4Z23Z33+ Z22 Z23 + Z12 Z13) + T13

X (Z12Z33 + 3Z13Z23+ Z12Z22 + ZnZ12) + Tf3(Zn Z33 + 3Z~3 + Z~2 + Z~l))})'

(7.89)

In spite of the compact notation employed, the a5 term is exteremely large, so the

tensor Hit = ag)Tjka~~) defined in equation (6.116) is used to further compress the final

expression [9,36], yielding:
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+ 3T33 (Z33 (2Hi3 + H23H32+ HI3H3I) + Z23(H33(2H32+ H23) + HnH32+ HI2H3I)

+ H23H32Z22 + ZI3(H33(2H3I + H13) + H2IH32+ HllH3I) + Z12(H13H32 + H23H3I)

+ HI3H3IZll) + 3T23 (Z33 (H33(H32+ 2H23) + H22H23+ HI3H2I) + Z23(Hi3

+ 2H22H33+ Hi2 + 2H23H32+ HI3H3I + Hi3 + Hi2 + HI2H2I) + Z22(H32H33

+ 2H22H32+ HI2H3I+ HnH23) + Z13(H33(H2I + H12) + H3IH32+ H23H3I

+ HI3H23+ H2IH22+ n.,H2I) + ZI2(H3IH33+ H32(H2I + H12) + H3I(H22 + Hll)

+ H2IH23 + H13H22) + Zll (HI2H3I + HI3H2I)) + 3Tn (H23H32Z33 + Z23(H23H33

+ HnH32+ 2H22H23+ HI3H2I) + Z22(H23H32+ 2Hi2 + HI2H2I) + Z13(H2IH32

+ H12H23) + Z12(H23H3I + H22(2H2I + H12) + HllH2I) + HI2H2IZll) + 3TI3

X (Z33(H33(H3I + 2H13) + HI2H23+ HllHI3) + Z23(H33(H2I + H12) + H32(H3I

+ H13) + HI3H23+ HI2H22+ HllHI2) + Z22(H2IH32+ H12H23) + Z13(Hi3 + 2Hll

X H33+ H23H32+ HiI + 2HI3H3I + HI2H2I + Hr3 + HrI) + Z12(H32H33 + H32(H22

+ Hll) + H3I(H2I + H12) + HllH23 + HI2H13) + Zll(H3IH33+ H2IH32+ 2HllH3I

+ HllHI3)) + 3TI2 (Z33(HI3H32 + H23H3I) + Z23(H13H33+ HI2H32+ H22H3I

+ H23(H2I + H12) + HI3H22+ HllHI3) + Z22(H13H32+ H22(H2I + 2H12)

+ HllHI2) + Z13(H23H33+ HllH32+ H2IH3I + H23(H22+ Hll) + HI3H2I

+ H12H13) + Z12(H23H32 + HI3H3I + Hi2 + 2Hll H22+ HiI + 2HI2H2I + Hr2

+ HrI) + Zll(H23H3I + H2IH22+ 2HllH2I + HllHI2)) + 3Tll (H13H3IZ33

+ Z23(H12H3I + HI3H2I) + HI2H2IZ22 + Z13(H13H33+ HllH3I + HI2H23

+ 2HllH13) + Z12(H13H32 + HI2H22+ HllH2I + 2HllH12) + Zll(HI3H3I

+ HI2H2I + 2Hll)) - 12a (T33(Hi3 + H23H32+ HI3H3I) + T23(H33(H32

+ H23) + H22H32+ HI2H3I + H22H23+ HI3H2I) + T22(H23H32 + Hi2 + HI2H2I)

+ TI3(H33(H3I + H13) + H2IH32+ HllH3I + HI2H23 + HllHI3) + T12(H13H32
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(7.90)

Combining the results in equations (7.23), (7.24), (7.83) to (7.85), and (7.87) to (7.90),

equation (7.43) can be written:

[
2 4 )2 2, 1 , 2 (-2B)]

a + 45(~a + 45g + 15(47fEo) b3 + a V
m

'
(7.91)

where g' is the expression for \ 3ag) a~) - 9(2
) given in equation (7.84), while b~ repre­

sents the part of b3 in equation (7.87) contained in angular brackets, with similar defini­

tions for a~, a~ and a~ in equations (7.88) to (7.90), respectively.

Equation (7.67) must now be expressed in the virial form of equation (7.103). We

have from equation (7.25):

Po = 45a2 + 4(~a)2' (7.92)

where ~a is defined in equation (7.22). This allows equation (7.67) to be written in the

form:

2B ( 1 )] / { 4 [ 1, 3 , 2B] }+ Vm + 0 V~ 1+ "3Po 2(~a)2g + 2(47fEo)(~a)2b3 + V
m

'
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which simplifies to

Po(1- 1po)
P = Po + 3 (2B + g + a3 + a4 + as + b3+ ... ) , (7.94)

Vm

where

It follows that

and

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

(7.100)

The coefficients in equations (7.95) to (7.99) are independent of the molar volume, but

dependent on temperature. As for linear molecules, measurements of Bp together with a

measured value of Po yield values for:

B~ = (2B + g + a3 + a4 + as + b, + ... ). (7.101)

The portion of B~ which is of interest is the sum of the terms arising purely from angular

correlation and collision-induced polarizability anisotropy:

(7.102)

In order to extract an experimental value of Sp from a value for B~, an (Sp/2B) ratio of

the order of unity or greater is necessary.
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7.2 Interacting spherical molecules

Since they are isotropic, isolated spherical molecules are unable to depolarize the light

which they scatter. Nevertheless, a small depolarization ratio is observed in gases of

spherical molecules at elevated pressures, since at these pressures the molecules can no

longer be considered to be isolated. This depolarization of scattered light by interacting

spherical molecules, which depends on the pressure of the sample , has been attributed to

the alteration of the effective polarizability of the molecules resulting from the interaction

between molecules when they collide or come into close contact with one another. The

depolarization of light by spherical gases has been the subject of intensive investigation,

both experimental and theoretical [89,204,205].

The pressure-dependent depolarization ratio is described by means of a virial-type

expansion [96]

(7.103)

where Bp, Gp, . . . are the second, third, ... light-scattering virial coefficients, and describe

the contributions to p arising from interactions between pairs, triplets, . .. of molecules,

respectively. Note that since ideal gases do not depolarize the light they scatter, there

is no first light-scattering virial coefficient. From dipole-induced-dipole theory [204], the

second light-scattering virial coefficient may be written as:

00

B 41fN A 6a2 J 1 _UJ2(R)

P = (41fcO)2 5 R4 e kT dR,
o

(7.104)

where U12(R) is the intermolecular potential energy between interacting molecules 1 and 2

which are a distance R apart. Thus, if we consider only pair interactions, equation (7.103)
becomes:

(7.105)

In early calculations, the integral in (7.105) was evaluated using Buckingham and Pople's
tt; functions [96]:

(7.106)

where ULJ(R) is the Lennard-Jones potential. Buckingham and Pople [96] tabulated
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values of Hk(y) for k ranging from 6 to 17 in integral steps.

Using equation (7.104), Watson and Rowell [89] calculated values for Bp, and com­

pared them with their experimental values. They found that the ratio of B~xp / B~alc

showed a definite trend, with the ratio increasing from less than unity for the rare gases to

values of approximately 2.5 and 7 for the large quasi-spherical molecules sulphur hexaflu­

oride and neopentane, respectively. Other workers later confirmed Watson and Rowell's

ratios of B~xp to B~alc, for argon and methane [206-209]. Watson and Rowell argued that

the apparent breakdown of the DID theory of molecular interactions for larger molecules

provides evidence of the inadequacy of the point-dipole approximation used in the DID

theory. However, as discussed in Section 6.8, Dunmur, Manterfield and Robinson [88]

have subsequently shown that at higher pressures the effects of triplet interactions con­

tribute to the depolarization of light scattered from atoms and spherical molecules. For

sulphur hexafluoride, which is a very large molecule, the evidence of three-body inter­

actions manifests itself at much lower pressures. This is probably due to the fact that

sulphur hexafluoride has a very low vapour pressure. Earlier measurements of the second

light-scattering virial coefficient did not allow for the effects of three-body interactions,

resulting in significant errors in the deduced values of Bp. Dunmur et al. [88] went on

to show that the dipole-induced-dipole model for the collision-induced pair polarizability

of atoms and spherical gases is successful for argon, krypton, xenon and methane, but

appears to be inadequate for sulphur hexafluoride. This apparent inadequacy may be a

result of collisions between four or more molecules, which have not been taken into ac­

count. Extremely precise measurements of the density dependence of the depolarization

ratio would be necessary to determine these effects. Once again we note that for the

molecules in this study, which are much smaller than sulphur hexafluoride, the measure­

ments of the second virial coefficients are carried out at pressures well below their vapour

pressures, so that the number of interactions between three or more molecules should be

insignificant.
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Chapter 8

Calculations of Second Virial

Coefficients

8.1 Evaluation of the second virial coefficients by nu­

merical integration

In order to calculate th e various second virial coefficients discussed in this work it is

necessary to int egrate the relevant functions over th e molecular interaction coordinates

T . In early calculations, .the integrals were evaluated using Buckingham and Pople 's

Hk functions [96] which are described in Section 7.2. As computers became available,

evaluation of the integrals either became simpler or, in some cases, became possible.

In 1969, Sutter [3] performed the numerical integration necessary to calculate B;

by computer, since th e series expansion of the H k functions converged slowly and the

higher-order terms were complicated. He used Simpson 's rule for integration over four

interaction coordinates to calculate B, and B(T). Many subsequent second virial coef-

. ficient computations [2 ,3 ,40 ,44 ,95 ,97 ,98 ,110] have been carr ied out using this method,

which is simple to program. In 1980, Whitmore and Goodings [113] performed the in­

tegration calculat ions of B (T ) by Gaussian quadrature, but made no comment on th e

superiority of the method over that of Simpson's rule. Later, an extensive comparison of

the two integration methods was undertaken by Weller [105] who showed that for a given

precision the Gaussian method requires only half the number of intervals per integration

variable, reducing the computer t ime necessary for a calculat ion by a factor of at least

sixteen for linear molecules with four integration coordinates. Subsequently, Graham and

Couling [9, 36, 200, 201] have used the method of Gaussian quadrature in all t heir com­

putations of the second light-scattering and Kerr-effect virial coefficients for linear and

non-linear molecules. Due to the success of the method, it has been adopted in this work.

In th e integration procedure the ranges of the angles ((}1, (}2 and cP for linear molecules;
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(}1, (31, 11, (}2, (32 and 12 for non-linear molecules) were divided into sixteen intervals, while

the range of the separation R was taken from 0.1 nm to 3.0 nm and was usually divided

into sixty four intervals. It was found that increasing the number of intervals for the

angles from 16 to 32 yielded numerical values which agreed to at least seven significant

figures, so that the lower number of intervals was used throughout to reduce computer

time. For calculations of Bc it was found that using 128 intervals for the range of R rather

than 64 did change the results by up to 6%, so that for linear molecules 124 intervals

were used. Although the difference can be significant it is still less than the experimental

errors for B, for non-linear molecules, and in calculations of B, for these molecules the

lower number of intervals was retained since the programs were already very time- and

memory-consuming. For the other effects, increasing the number of intervals for the

range changed the numerical values by less than 0.5%, and 64 intervals were used for all

molecules.
The ability of the Macsyma package to translate expressions directly into Fortran code

was utilised to effectively eliminate the introduction of errors in the integration arguments,

which are often very long and complicated. Examples of the Fortran programs used are

given in Appendix C. Many of the programs were run on the University of Natal Physics

Department's IBM RISC system/6000 workstation with a 60 MHz processor, using the

IBM Fortran compiler. Other programs were run on a 486 DX-2 66 MHz PC with 16

Mb of RAM, or a Pentium 133 MHz PC with 64 Mb of RAM, using the University of

Salford FTN77 compiler. All of our programs were run in double precision. The basic

format of the programs for the non-linear gases was designed by Couling [9]. Large arrays

are used to store the numerical values of the intermolecular potentials for all the angular

configurations required, which eliminates the repeated calculation of these values within

the Gaussian quadrature routine and increases the speed by a factor of fifty. However, the

arrays require large amounts of memory to store several million double-precision numbers,

and it is necessary to make use of the facility to page to the hard disk. These non-linear

programs each take several hours, as opposed to the linear programs which are only a few

minutes in duration.

The aim of this work is to see if known molecular properties, either experimental or

calculated, together with a self-consistent set of Lennard-Jones and shape parameters,

combined with complete molecular theories of the second virial coefficients, will yield

calculated values which agree with experiment for the full range of virial effects. To this

end, as many molecular properties as possible have been collected , both measured and

calculated. The theory for the second pressure virial coefficient presented in Chapter 3

has then been used to fit calculated values of B(T) to the experimental values given in

Appendix A over a range of temperatures, by optimising the values for the Lennard­

Jones parameters Ra and Elk and the shape factors. Due to the sensitivity of the second
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dielectric virial coefficient.to the shape of the molecule, we have attempted to fine-tune

the optimization of the molecular parameters by seeking a set of parameters which result

in good agreement between theory and experiment for both B(T) and Be, in the first

instance.
A computer program was designed which calculates the values of B(T) and Be over

a range of temperatures for various sets of the Lennard-Jones parameters and the shape

factor. For each set of parameters, the calculated values are compared with the exper­

imental data available and the sum of the squares of the errors (SSE) for each effect is

computed and the results stored in an array. When B(T) is calculated for the next set of

parameters, the elements of the array are sorted in ascending order of the SSE. As Be is

calculated a running total of the SSE is compared with the SSE for Be of the data set in

the preceding array element, and if the SSE of the current calculation exceeds that of pre­

ceding element the calculation is abandoned and the next set of parameters is processed.

In this way, large amounts of data may be calculated and compared systematically al­

lowing a very careful search over a fine grid for a set of parameters to optimize the fit of

both B(T) and Be. This program saves a substantial amount of time, particularly since

it abandons the evaluation of a set of parameters immediately when it becomes clear that

the SSE for Be is too large. This method of selective calculation was necessary since Be
is so sensitive to the parameter set that the errors can increase very rapidly with small

changes in the shape factor. A similar process was not feasible for non-linear gases since

a single calculation of Be for a polar gas takes approximately 23 hours on a 133 MHz

Pentium!

Even with the aid of this program, it was not always possible to find a set of parameters

to fit both effects. For certain gases there appeared to be no common ground where

reasonable calculated values existed for the two effects. In these cases our policy has been

to select a set of parameters which satisfy the requirements for each effect separately and

then to test these sets on the other second virial coefficients, where available.

For the non-linear gases, careful optimization of the Lennard-Jones force constants

and the shape factors has been carried out by Couling and Graham [9], who fitted the

calculated second pressure virial coefficient to experimental data, and then used these

parameters in the calculations of the second light-scattering and Kerr-effect virial co­

efficients. For these gases we have used the their optimized parameters to calculate

the second dielectric virial coefficient and the second refractivity virial coefficient, where

available. Where these parameters yielded calculated values which disagreed with the

measured values, we have attempted to find new parameters which improve the fit of

Be without sacrificing the good fit of B(T), which can then be tested on the remaining

second virial coefficients.

As a double check of the fort ran code of both the linear and non-linear programs, the
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non-linear programs were used to calculate the various components contributing to the

second virial coefficients for linear gases and these calculated values were compared with

the values calculated by the relevant linear programs. In all cases the values were found

to be equal to at least four or more significant figures.
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8.2 Calculations for fluoromethane

8.2.1 Molecular properties of fluoromethane

Table 8.1 presents a list of the molecular properties of fiuoromethane which have been

used in these calculations. The dynamic properties, a , 13, A and C are all for a wave­

length of 632.8 nm. The A- and C-tensor components are estimated values. Since there

are no values available for the components of the dynamic hyperpolarizability tensor 13ijk ,
components were estimated by setting the ratio (13II/13JJ equal to the ratio of the polar­

izability tensor components. Although this is obviously a crude approximation, it was

adopted so the relative contribution of the hyperpolarizability to Be: and BR could be

estimated. The optical-frequency values for 13
11

and 131. were used in the calculations of

Be: . The contribution of the hyperpolarizability was found to be relatively insignificant , so

that this approximation appears to be justified. The components all and al. of the static

polarizability tensors were calculated using the mean static polarizability a determined

by Sutter and Cole [2] and the static anisotropy !:la obtained by ab initio calculations at

the MP2 level of theory by Spackman and Dougherty [202,210]. Our optimized values of

the Lennard-Jones force constants and the shape factor are given in Table 8.2, together

with the fitted values of Couling and Graham [9].

8.2.2 Results of calculations of second virial coefficients for

fluoromethane

For fiuoromethane our attempt to optimize the Lennard-Jones force constants and the

shape factor for both the second pressure and dielectric virial coefficients simultaneously

met with some success. Our values of Ra, e/k and D given in Table 8.2 resulted in cal­

culated values of B(T) which agreed with the measured values to within less than 3%

over the temperature range from T = 280 K to 416.5 K, as shown in Table 8.3, which

also shows the values of B(T) calculated using parameter set (2). For our optimized set

of parameters, the calculated values of Be: fell within the experimental errors quoted by

Sutter and Cole [2,3], which are the most accurate measured values available. Table 8.4

shows the temperature dependence of the calculated values of Be: for both sets of param­

eters, together with the measured values of Sutter and Cole [2 ,3]. Figure 8.1 (a) shows

graphically the relationship between the calculated curves and the experimental data.

The solid curve represents the values calculated using parameter set (1), while the dotted

line represents the values calculated using parameter set (2). Note that the measured

values of Hamann et al. [52] are higher than those of Sutter and Cole, with larger exper­

imental errors. From Tables 8.3 and 8.4, and Figure 8.1 (a) it is clear that our optimized

parameter set offers the best fit to the measured values of both B(T) and Be:.
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Table 8.1: Molecular parameters of fluoromethane used in
the calculations (,\ = 632.8 nm).

Molecular Parameter
1030jL(Cm)

104°0 (Cm2
)

1040a (C2m 2J-1)
1040~a (C2m2J- 1)
1040all (C2m 2J- 1)
104oa-L (C2m2J- 1)
I\,a

100po
1040a (C2m 2J-1)
1040~a (C2m 2J- 1)
1040a ll (C2m 2J-1)
104oa -L (C2m2J- 1)
I\,Q

1050All (C2m 3J-1)
1050A-L (C2m3J-1)

106°0 1111 (C2m4J- 1)
106°01313 (C2m4J-1)
106°03333 (C2m4J-1)
105°,8 (C3m3J-2)
105°,811 (C3m3J-2)
1050,8-L (C3m 3J- 2)

Value
6.170
7.70
3.305
0.290
3.498
3.208
0.0292
0.094
2.916
0.345
3.147
3.498
0.0396
1.720
2.767
0.85
0.67
1.06

-0.19 ± 0.15
-0.11392
-0.10138

Reference
[97]
[97]
[2]

[202,210]

[4]
[44,62]

[4]

[4]
[211]
[211]
[62]
[62]
[62]
[33]

Table 8.2: Lennard-Jones parameters and shape factors for fluoromethane.
Ra (nm) clk (K) D

(1) Our fitted values 0.367 182 0.297
(3) Fitted values of Couling and Graham [9] 0.380 199 0.254
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Table 8.3: The temperature dependence of th e calculated values
of B(T) for fluoromethane for two sets of parameters, and the
best fit data of Dymond and Smith [1].

(1) (2)

T 106 B exp 106B cak % 106B cak %
K rrr'mcl " m3mol- 1 Error m3mol-1 Error

280 -244±3 -241.23 . -1.14 -238.91 -2.09

300 -206±3 -203.92 -1.06 -206.53 -1.18

320 -174±3 -174.01 0.01 -171.65 0.97

340 -150±3 -150.38 0.25 -152.76 1.84

360 -129±3 -130.82 1.41 -126.11 4.22

380 -112±3 -114.99 2.67 -118.10 5.45

400 -99±2 -101.46 2.48 -104.66 5.72

420 -87±2 -89.53 2.91 -95.04 6.78

Table 8.4: Calculated values of B, for nitrogen for two sets of pa­
rameters, together with the measured values of Sutter and Cole [2,3].

T
K

323.15
369.45
416.45

-1307±37
-606±30
-331±66

(1)
1012B cak

e
m6mol-2

-1327.41
-604.48
-264.07

150

%
Error
1.56
-0.33

-20.22

(2)
1012

B cak
e

m6mol-2

-940.61
-421.95
-172.72

%
Error
-28.03
-30 .37
-47.82



A considerable number of terms was evaluated in order to establish convergence of

each series. The relative contributions of the various terms used to calculate B, are given

in Table 8.5. It is clear that the terms in the hyperpolarizability make a reasonably

small contribution to the total, but the leading term (31J-Ll might be worth retaining if an

accurate measured or calculated value for the static bijk was obtained. It is important to

note the major contribution made by the leading J-L2alAl term. However, the A-tensor

components used in the calculations are only estimates, and it would be desirable to have

more accurate values to compute such a significant term. Another important term to

note is the leading aJ-L(J term which contributes 22.9% of the total calculated value of

B, at 323.15 K. This term has never been considered before, and its inclusion here may

partially account for the good fit obtained for Bi:

Table 8.5: The relative contributions of the terms used to
calculate B, for fluoromethane at 298.2 K.

Contributing 1012 x Value % Contribution
Term m6mol-2 to B,
a2 -1.089 0.08
a3 18.623 -1.40
a4 0.820 -0.06
(31 7.821 -0.59
al(3l -0.096 0.01
alAl -0.445 0.03
a2A l 2.292 -0.17
A2 -0.796 0.06
a l A2 -0.711 0.05
a 2Cl 2.216 -0.17
BCin d 28.635 -2.16
J-L2 -3815.794 287.46
alJ-L2 1727.847 -130.17
a2J-L2 494.765 -37.27
a3J-L2 28.724 -2.16
A1J-L2 -80.456 6.06
a lA1J-L2 -8.413 0.61
(31J-L3 -17.266 1.30
(31 al J-L3 -2.529 0.19
alJ-Ll(Jl 304.616 -22.95
a2J-Ll(Jl 2.933 -2.93
(31J-Ll(Jl . -2.336 0.18
a2(J2 18.678 -1.41
a3(J2 5.465 -0.41
e.; -1356.045 102.16
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Figure 8.1: Temperature dependence of the calculated and measured values of the second
(a) dielectri c, and (b) Kerr-effect virial coefficients of fluoromethane. The solid curves
represent our calculated values, the dotted lines represent the values calculated using the
parameter set of Couling and Graham [9], and the dashed line is the calculated curve of
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The second Kerr-effect virial coefficient was then calculated using our optimized pa­

rameter set. The results compare reasonably well with the experimental data [33] which

have very high uncertainties of approximately 50%, but are slightly higher than the val­

ues deduced from the measurements of Schaeffer et al. [83]. Figure 8.1 (b) shows how

our theoretical curve passes within the error bars of most of the measured values. The

dotted curve represents the calculated values of Couling and Graham [9], which are lower

than ours by approximately 30%. They calculated BK for fluoromethane, using the a

series and the first three terms of the iux series. The additional terms we have used in

our calculations make a positive contribution of approximately 15%, due chiefly to the

leading /-lla1A1. Figure 8.1 (b) also shows the calculated curve of Buckingham et al. [177]

as a dashed line. A more definit ive test of the theory would be possible if more precise

measured values were available.

From the relative magnitude of the terms contributing to the calculated value of

BK at T=250.8 K in Table 8.6 it is clear that all the different series have converged.

The hyperpolarizability term /-l1f31 is obviously negligible and thus may justifiably be

omitted. The large contribution from the leading term in the A-tensor is very interesting

and highlights the need for accurate calculated values of the components All and A.i for

fluoromethane.

Table 8.6: The relative contributions of the terms used to
calculate BK for fluoromethane at 250.8 K, using parameter
set (1).

Contributing
Term
a2

a3

a4
as
/-l2al

/-l2 a2
/-l2 a3

/-l2 a4
/-l2f31

/-lla1A1

/-lla2A1

/-ll()lal

1030 x Value
C2m8J-2mol- 2

0.002
-0.014
0.130
0.011

-3.686
9.265
3.207
0.382

-0.010
1.019
0.181
0.071

% Contribution
to BK

0.02
-0.13
1.23
0.11

-34.74
87.33
30.23
3.60

-0.09
9.61
1.71
0.67

BK = 10.609 x 10

Although the second refractivity virial coefficient has been measured at three different

wavelengths, values of the optical-frequency components of the molwecular parameters

are only available at A = 632.8 nm. Table 8.7 shows the contributions to the calculated
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Table 8.7: The relative contributions of the terms used to
calculate BR for fluoromethane at 298 K for >.. = 632.8 nm,
using our optimized parameter set.

Contributing 1012 x Value
Term · m6mol-2

% Contribution
to BR

a2
a3
a4

/31
ad3 l

alAl
a 2A l

A2

a l A2

a 2Cl

-1.320
13.698
0.532

-8.823
-0.086
-0.666
2.067

-0.919
-0.702
1.873

-23.34
242.24

9.41
-156.03

-1.52
-11.78
36.55

-16.25
-12.41
33.12

BRale = 5.65 x 10 l2m6mol 2
B~? = (4.32 ± 1.80) x 1O-12m6mol-2

Table 8.8: The relative contributions of the terms used
to calculate Bp for fluoromethane at 298.15 K and
>.. = 632.8 nm, using parameter set (1).

Contributing 106 x Value % Contribution
Term rrr'mol"! to Bp

G 25.625 3.21
b, 0.488 0.06
a3 -135.625 -17.00
a4 1309.982 164.28
as 93.658 11.75

a2A1 -79.484 -9.97
a3Al -9.547 -1.20
a3Cl 0.151 0.02
s, 1205.249 151.15
2B -407.840 -51.15

B~ = 797.409 x 1O-6m3mol-l
Bp = 0.749 x 1O-6m3mol-l
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value of BR at T = 298 K, together with the measured value of Burns, Graham and

Weller [62]. It can be seen that the a series is definitely converging, although it might

be worth while to evaluate the a s term. The surprisingly large negative contribution of

the /31 term, shows that it not always justifiable to simply omit the hyperpolarizability

effects. However, since the components /311 and /31. are scaled estimates, and the value of

/3 has a very large uncertainty, the calculated BR is unacceptably imprecise. Accurate

values for the components of the hyperpolarizability tensor /3ijk are neccessary to produce

reliable calculated values.

Unfortunately, there are no measured values of Bp available for fluoromethane. How­

ever, we have calculated a value for the second light-scattering virial coefficient using our

optimized parameter set. Table 8.8 shows the relative magnitudes of the various contri­

butions to Bp for fluoromethane . It can be seen that the aA1 series makes a negative

contribution of more than 10% to the total, emphasizing the need for accurate measured

or calculated values for the A-tensor components. The C-tensor term is negligible.

From the comparisons between our calculated values for B(T), Be, BR and BK and

the experimental data it would appear that our optimized set of parameters describe

all the effects reasonably well. Although the values used for the hyperpolarizability,

A- and C-tensors were only estimates they served to show the order of magnitude of

the contributions arising from these tensors. Accurate measured or calculated values for

these molecular tensor properties would further test the predictive merit of the DID model

employed. In addition, measured values for the second light-scattering virial coefficient

would allow a more comprehensive comparison of the agreement between the DID theory

and experiment.
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8.3 Calculations for trifl.uoromethane

8.3.1 Molecular properties of trifluoromethane

The molecular prop erties of trifiuoromethane used in th ese calculations are given in Ta­

bles 8.9 and 8.10 , together.with our fitted values for Ro , ej k and D. As for fiuoromethane,

th e values of the components of the dynamic properties {3ijk, A i j k and Ci j k l are all est i­

mates which have been used to establish whether th e terms of th e various second virial

coefficients containing these components are significant. Note that the same estimates

were used for all wavelengths. The static polarizability anisotropy l::1a in Table 8.10 was

obtained by extrapolating the measured optical-frequency values of Bogaard et al. [4] to

zero frequency. Once again we assume th at the static hyperpolarizability bi j k is not very

different from th e dynamic value and use (3 as an estimate of b.

Table 8.9: Molecular parameters of t rifiuoromethane
used in the calculations.

Molecular Parameter
1030 J.l (Cm)
104°0 (Cm2

)

1040a (C2m2J- 1)
1040 l::1a (C2m2J- 1)
1040all (C2m 2J- 1)
104oaJ.. (C2m2J-1)
Ka

1050All (C2m 3J-1)
1050 AJ.. (C2m3J-1)
1060Cllll (C2m4J-1)
1060C1313 (C2m4J-1)

1060C3333 (C2m4J - 1)

1050{3 (C3m 3J-2)
1050{311 (C3m3J-2)
1050{3J.. (C3m3J- 2)
D
Ro (nm)
clk (K)

Value
5.50

15.0
3.970

-0.190
3.843
4.033

-0 .016
1.80
3.57
1.10
0.75
0.90

-0.088
-0.0461
-0.0503
-0.001
0.404

166.0

Reference
[97]
[97]
[2]
[9]

[62]
[62]
[62]
[212]

8.3.2 Results of calculations of second virial coefficients for

trifluoromethane

Although the trifiuoromethane is more plate-like than rod-shaped, the best fit for B(T)
and B, was obtained for a shape factor of D= -0.001 which is negligibly different from
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Table 8.10: The components of the optical-frequency polarizability tensor O:ij of trifluo­
romethane, together with the values of Po [4] used in the calculations.

A 100po 1040
0: 1040~o: 1040

0: 11 1040
0: .1

nm (C2m2J- l) (C2m2J- l) (C2m2J- l) (C2m2J- l)
632.8 0.0504 3.097 [44,62] -0.27 [4] 2.917 3.187
514.5 0.07 3.139 [4] -0.32 [4] 2.926 3.246
488.0 0.07 3.145 [4] -0.32 [4] 2.932 3.252

-0.029
-0.034
-0.034

zero, implying that the molecule is very nearly spherical in shape. This is however an

improvement from the value of 0.26 obtained by Sutter [3] which is not physically reason­

able. This fact led Sutter to conclude that the shape potential proposed by Buckingham

and Pople [96] was inadequate. However these conclusions were based on a model which

did not include the effects of the quadrupole moment or polarizability anisotropy. Cal­

culations of B(T) using our optimized parameters yielded values which agreed with the

experimental values quoted in Appendix A to within less than 1% over almost the en­

tire temperature range, as shown in Table 8.11. The same set of parameters resulted

in calculated values of B, which differ from the measured values of Sutter and Cole [2]

by less than 3%. Table 8.12 presents the temperature dependence of the calculated B,

in comparison with the measured values of Sutter and Cole [2], while Table 8.13 lists

the relative contributions of the terms of Bc' It can be seen from Figure 8.2 (a) that

the calculated values agree remarkable well with most of the experimental data, with

the exception of the the early measurements of Lawley and Sutton [10], Turner [50] and

Dymond and Smith [56], where the experimental errors are very large.

Table 8.11: The temperature dependence of the calculated values
of the second pressure virial coefficient B(T) for trifluorometh­
ane, and smoothed values fitted to the combined experimental
data of Sutter and Cole [5], and Lange and Stein [6].

Temperature 106 Bexp 106 Beak

K rrr'mol"! rrr'rnol"!
243.15 -311.1±4 -310.75
273.15 -234.9±4 -232.18
298.15 -188.0±4 -187.33
313.15 -165.8±4 -166.17
323.15 -153.0±4 -153.87
368.15 -110.4±4 -111.27
369.45 -109.4±4 -110.27
404.75 -84.6±3 -86.97
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Error
-0.11
-1.16
-0.36
0.22
0.57
0.79
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Table 8.12: The temperature dependence of the calculated values
of Be for trifluoromethane, and the measured values of Sutter and
Cole [2,3].

Temperature
K

323.15 .
369.45
416.45

1012 Bexp
e

m6mol-2

1125±52
903±20
704±10

1012 Beak
e

m6mol-2

1149.92
896.27
723.84

%
Error
2.22
-0.75
2.82

Table 8.13: The relative contributions of the terms used to
calculate Be for trifluoromethane at 298.2 K.

Contributing 1012 x Value % Contribution
Term m6mol-2 to Be
a2 -0.517 -0.04
a3 17.703 1.54
a4 0.662 0.06
131 -2.039 -0.17
al131 -0.027 -0.002
a 1A1 ~2 . 069 -0.18
a 2A1 2.420 0.21
A2 -0.006 -0.03
a 1A2 -0.344 -0.001
a201 1.625 0.14
Beind 17.408 1.51
!-L2 -894.734 -77.73
a1!-L2 993.160 86.37
a2!-L2 342.595 29.79
a3!-L2 19.431 1.69
A1!-L2 -95.024 -8.26
a 1A1!-L2 -7.412 -0.64
131!-L3 -3.834 -0.33
131 a1!-L3 -0.508 -0.04
a1!-L1()1 . 676.121 58.80
a2!-L1()1 7.835 0.68
131 !-L1 ()1 -1.503 -0.13
a2()2 64.120 5.58
a3()2 32.258 2.81
Bear 1132.512 98.49
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It can be seen from Table 8.13 that, as for fluoromethane, the leading term in the A­

tensor for the orientational term makes a significant contribution of -8.3%, which again

draws our attention to the need for accurate values of the A-tensor components. The

term 0'.1Jl1B1 , which makes a contribution of 23% to the calculated value of B, of fluoro­

methane, contributes 58.8% to B, of trifluoromethane. In addition, the aB series makes a

smaller but still significant contribution of 8.4%. The most probable reason for the highly

significant contribution of these term is the large quadrupole moment of this molecule.

Previous workers [2,3,101] considered only the first three terms in the JlO'. series, which in

this case would yield a value of B, = 441.02 xlO-12m6mol- 2 compared with our value of

B, = 1149.92 x 1O-12m6mol-2! These workers also omitted the contribution of Bc in d , but

this is less significant, contributing only 1.5% to B, at 323.15 K. Thus, the importance

of establishing convergence of all the series is demonstrated.

Table 8.14: The relat ive contributions of the terms used
to calculate B K for trifluoromethane at 245.5 K for
A - 632.8 nm.

Contributing
Term
0'.2

0'.3

0'.4

0'.5

Jl20'.1

Jl20'.2

Jl20'.3

Jl20'.4

Jl2f31

JlIO'.lA1

JlI0'.2A1

Jll B10'.1

1030 x Value % Contribution
C2m8J-2mol-2 to BK

0.0003 0.003
-0.0082 0.08
0.1249 1.22
0.0113 0.11
0.8872 8.68
5.1436 50.33
2.2180 21.70
0.2520 2.47
0.0339 0.33
1.4986 14.66
0.2423 2.37

-0.1920 -1.88

Next, the second Kerr-effect virial coefficient was calculated for trifluoromethane using

the molecular parameters listed in Table 8.9. The graph of the calculated curve and

measure values is presented in Figure 8.2 (b) . Couling and Graham [9] have also calculated

B K for trifluoromethane, using the parameter set: Ro = 0.440 nm, £ / k = 178.5 K and

D = -0.050; including the a series and the first three terms of the JlO'. series. Their

theoretical curve is shown as a dotted line. As for fluoromethane, their curve is lower than

ours by almost a factor of two, due in part to the positive contribution of our additional

terms, as shown in Table 8.14. These additional terms contribute approximately 18% to

our theoretical values of BK . Figure 8.2 (b) also shows the calculated curve of Buckingham
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et al. [177] as a dashed line.

Considering the large experimental errors of the measured values the calculated values

obtained using our parameter set constitute a reasonably good fit to the experimental data

of Buckingham and Orr [33]. However, our calculated curve falls outside the experimental

error range of the more precise values measured by Schaefer et al. [83].

The calculation of the second refractivity virial coefficient met with less success. Ta­

ble 8.15 shows the wavelength dependence of the calculated values of BR, together with

experimental data of Buckingham and Graham [39] and Burns et al. [62]. It can be seen

that the calculated values are much larger than the measured values and while the ex­

perimental values of BR increase with increasing wavelength, the calculated values show

the opposite trend. The contributions of the various terms in the calculation of BRat

A = 632.8 nm is given in Table 8.16. It can be seen that both the a 1A2 and a 2C1 terms

are significant and it may be worth investigating the next term in each series.

Table 8.15: Calculated and measured values of BR
for trifiuoromethane at T = 298.2 K.

A 1012 B~? Ref. 1012 BRa[c
nm m6mol-2 m6mol-2

632.8

514.5
488.0

3.4±1.1
2.54±1.35
2.44±0.89
1.56±0.75

[39]
[62]
[62]
[62]

7.77

8.32
8.39

Table 8.16: The relative contributions of the terms used
to calculate BR for trifiuoromethane at 632.8 nm.

Contributing
Term

1012 x Value % Contribution
m6mol-2 to BR

a2

a3

a4
(31
al(31
alAI

a 2A 1

A2

a l A2

a2Cl ·

-0.739
9.762
0.289

-2.528
-0.027
-1.842
1.979
0.039

-0.326
1.166

-9.51
125.60

3.72
-32.53
-0.35

-23.70
25.46
0.50

-4.19
15.00

BR = 7.773 x 10
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As for fluoromethane, there is no experimental data for the second light-scattering

virial coefficient for trifluoromethane. We have calculated Bp using our optimized pa­

rameter set and Table 8.17 shows the relative contributions of the various terms used to

arrive at the calculated value. The contribution of the A-tensor terms amounts to less

than 2% for this gas, but this value is obtained using estimated A-tensor components.

Once again we note, that reliable measured or calculated values for the A-tensor are

necessary to establish conclusively the relative importance of the A-tensor contribution

to second virial coefficients. From the table it is clear that the C-tensor contribution is

negligible.

106 x Value % Contribution
m3mol-1 to Bp

Contributing
Term

Table 8.17: The relative contributions of the terms used
to calculate Bp for trifluoromethane at 298.15 K and
,\ - 632.8 nm.

a3

a4
as

a2A1

a3 Al
a3 Cl

7.189 0.56
0.254 0.02

-126.092 -9.81
1650.397 128.47
104.408 8.13

25.244 1.96
-2.275 -0.18
0.229 0.02

Sp
2B

1659.354 129.16
-374.660 -29.16

B~ = 1284.693 x 1O-6m3mol- l
Bp = 0.647 x 1O-6m3mol- l

Thus, we see that for trifluoromethane it was possible to find a parameter set which

yielded excellent fits for both B(T) and Bi: Although the shape parameter of this set

is less negative than one might expect, it is more reasonable than the positive value

of Sutter [3]. Theset of parameters chosen also yields a reasonably good fit to most

of the experimental data for BK, although the calculated values were larger than the

measured values of Schaefer et al. [83]. In addition, values of BR calculated using the

same set of Lennard-Jones and shape parameters were much larger than the available

measured values. Thus, although our parameter set provides a good fit for B(T), B, and

a reasonable fit for BK , it fails to explain the observed values of BR' Measurements of Bp

would be desirable, as they would allow a further test of the chosen parameters. It would

also be of interest to study difluoromethane to see if the mean values for the parameters

of fluoromethane and trifluoromethane would yield satisfactory results for second virial

coefficients of difluoromethane.
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8.4 Calculations for chloromethane

8.4.1 Molecular properties of chloromethane

Table 8.18 presents a list of the wavelenght-independent molecular prop erties of chloro­

methane which have been used in these calculations. The dynamic polarizability tensors a

and the values of po are given in Table 8.19. There are no (3 , A- and C-tensor components

available.

Table 8.18: Wavelength-independent molecular pa­
rameters of chloromethane used in the calculations.

Molecular Parameter Value
1030 J.L (Cm) 6.32
10400 (Cm2) 4.00
1040a (C2m2J-1) 5.25
104o~a (C2m2J-1) 1.613
1040a ll (C2m2J- 1) 6.325
104oa-L (C2m2J-1) 4.712
/1,a 0.102

Reference
[3]

[213]
[3]
[4]t

t Extrapolated from the dynamic values to zero
frequency.

Table 8.19: The values of Po and th e components of the optical-frequency
polarizability tensor aij of chloromethane [4] used in the calculations.

x 100po 1040a 1040~a 1040all 1040a-L

nm (C2m2J-1) (C2m2J-1) (C2m2J-1) (C2m2J-1)
632.8 0.755 5.04 1.71 6.18 4.47
514.5 0.779 5.10 1.75 6.27 4.52

0.113
0.114

Table 8.20: Lennard-Jones parameters and shape factors for chloromethane.
Ro (nm) el k. (K) D

(1) Our values fitted to B(T)
(2) Our values fitted to BE;
(3) Fitted values of Couling and Graham [9]

0.370 345 0.260
0.390 337 0.260
0.395 350 0.210

For chloromethane we could not find a single set of parameters for which both B(T)

and BE; fitted the experimental data available. Thus , we considered two different sets

of parameters. The first set yields calculated values of B (T) to within 0.5% of the
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experimental values quoted in Table A.2 for temperatures in the range from T =280 K

to 400 K, while the values for BE' which are as much as 78% too high, are at least of the

correct sign. The second set of parameters yield calculated values of BE which are within

50% of the measured values of Sutter and Cole [2], while the calculated values of B(T)

agreed with the experimental data to within less than 2.5%. Significantly better fits to

BE could only be achieved if the calculated values of B(T) were allowed to deviate from

the observed values by percentages significantly in excess of the experimental precision of

B(T). Since the measured values of the second pressure virial coefficient are more precise

and the theory better understood, this was considered to be unacceptable. These two sets

of parameters are shown in Table 8.20, along with the fitted values quoted by Couling

and Graham [7,9]. It should be noted that the third significant figure in the values of D

are significant.

8.4.2 Results of calculations of second virial coefficients for

chloromethane

All three sets of parameters as shown in Table 8.20 were used to calculate values for the

second pressure, dielectric and light-scattering virial coefficients. Table 8.21 shows the

calculated values for B(T) along with the smoothed values of Dymond and Smith [1].

It is clear that both of our optimized parameter sets yield better agreement with the

experimental data for B(T) than the parameter set used by Couling and Graham [9],

due to the fact that we have included the induced-dipole-induced-dipole potential in the

intermolecular potential (Chapter 2).

Table 8.21: Calculated values of B(T) for chloromethane for three sets of parameters,
together with the smoothed values of Dymond and Smith [1].

T 106Bexp

K rrr'mol""
280 -470±10
300 -400±10
320 -345±10
340 -300±5
360 -264±5
400 -212±5
SSE:

(1) (2)
106B cak % 106B cak %
m3mol-1 Error m3mol-1 Error
-469.66 -0.07 -463.33 -1.42
-398.47 -0.38 -397.02 -0.74
-343.62 -0.40 -345.12 0.03
:-300.21 0.07 -303.47 1.16
-265.07 0.41 -269.37 2.03
-211.84 -0.08 -216.98 2.35

5.58 119.06

(3)
106Bcak

m3mol-1

-465.28
-401.03
-350.24
-309.17
-275.32
-222.92
382.27

%
Error
-1.00
0.26
1.52
3.06
4.29
5.15

Table 8.22 shows the relative importance of the various terms included in the cal­

culation of the second dielectric virial coefficient. For this molecule the leading dipole

series is by far the most important contribution, yielding approximately 107% of BE '
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Table 8.22: The relative contributions of the terms used to
calculate B, for chloromethane at 323.15 K for the param­
eter set (D=0.260, Ro=0.390, c/k=337.0).

Contributing 1012 x Value % Contribution
Term m6mol-2 to B,

21.977 -0.75
73.964 -2.52

4.893 -0.17
100.834 -3.44

/L2 -5837.051 198.56
CX1/L2 1668.428 -56.75
CX2/L2 985.353 -33.52
CX3/L2 45.929 -1.56

CX1/L1B1 84.318 -2.87
CX2/L1B1 1.428 -0.05

cx2B2 8.906 -0.30
cx3B2 1.995 -0.07
B -3040.695 103.44Cor

B, = -2939.861 X 10 12m6mol 2

Table 8.23: Calculated values of B, for chloromethane for three sets of parameters,
together with the measured values of Sutter and Cole [2].

T
K

(1) (2)
1012Bexp 1012Bcak % 1012Bcak %

c c £

nr'mol"! m6mol-2 Error m6mol-2 Error

(3)
1012Beak

e
m6mol-2

%
Error

323.15
369.45
404.75

-4470±200
-2517±50
-1696±60

-2161.6
-837.5
-361.2

-51.6
-66.7
-78.8

-2939.9
-1430.1
-846.4

-34.2
-43.2
-50.1

-1326.6
-506.6
:.201.3

-70.3
-79.9
-88.1

The only other terms to contribute significantly are the CX3 Kirkwood [127] term and the

leading term in the dipole-quadrupole series which each amount to about 2.5%. Unfor­

tunately, the A-tensor contribution, which has been shown to be significant for fluoro­

and trifluoromethane, could not be calculated since no data is available for this molecule.

The temperature dependence of B, for the three parameter sets is given in Table 8.23,

while Figure 8.3 shows the relationship between the theoretical and experimental values

graphically. In the figure, the solid line represents the curve calculated using the second

parameter set, chosen to improve the B, fit. This curve lies closest to the experimental

data, while the dashed curve, representing the calculated values of parameter set (1), is

approximately 20% higher. The values calculated using the parameter set of Couling and

Graham [9] are given by the dotted line, which lies furthest from the experimental data.
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It can be seen that a negative contribution from the A-tensor term, similar to that found

for fluoromethane would improve the fit of all three parameter sets.

Although the second refractivity virial coefficients has not been measured for chloro­

methane, we have calculated values for BR using all three parameter sets, for possible

future comparison. Table 8.24 shows the relative contributions of the terms used to

calculate BR for a wavelength of 514.5 nm at 298.15 K. Note that, since no measured

or estimated values are available for the hyperpolarizability, A- or C-tensor components,

the cont ribut ion of these prop erties to BR could not be calculated.

Table 8.24: The relative contributions of the terms used to calculate BR for chlorometh­
ane at 298.15 K for>' - 514.5 nm.

(1)
Contrib. 1012 x Value
Term m6mol-2

(2)
1012 x Value

m6mol-2

(3)
1012 x Value

m6mol-2

-27.233
93.036

4.874
70.678

-38.53
131.63

6.90

-26.038
70.398
3.076

47.436

-54.89
148.41

6.48

-15.833
62.126

2.642
48.935

-32.36
126.96

5.40

Table 8.25: The relative contributions ofthe terms used to calculate B K for chloromethane
at 304.1 K for a wavelength of 632.8 nm.

(1) (2) (3)
1030 x Value % of 1030 x Value % of 1030 x Value %of

Term C2m8J- 2mol- 2 BK C2m8J- 2mol- 2 B K C2m8J-2mol- 2 BK

a2 0.0434 0.18 0.0398 0.27 0.0258 0.14
a3 ' -0.2314 -0.98 -0.2202 -1.51 -0.1363 -0.74
a4 0.7538 3.19 0.5739 3.94 0.5132 2.79
as 0.0780 0.33 0.0496 0.34 0.0434 0.24
J.12a1 -11.7648 -49.76 -11.1701 -76.60 -8.2259 -44.78
J.12 a2 20.9010 88.41 15.3561 105.30 16.3967 89.25
J.12a3 11.8081 49.95 8.7531 60.02 8.5727 46.66
J.12 a4 1.9779 8.37 1.1498 7.88 1.1288 6.14
J.11 ()1a 1 0.0752 0.32 0.0513 0.35 0.0528 0.29
BK 23.6413 14.5833 18.3712

B~? = (1.97 ± 0.29) x 10 30 C2m8J-2mol- 2 [83]

There is only one measured value [83] of the second Kerr-effect virial coefficient for

chloromethane. Table 8.25 gives the relative magnitudes of the various cont ributions

to B K for a wavelength of 632.8 nm at 304.1 K. As for BR, the contribution of the

hyperpolarizabili ty, A- or C-tensor components to B K could not be calculated. In the
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calculation of BK, the J.LO'. series makes the dominant contribution of more than 90%. All

the values calculated are an order of magnitude larger than the measured value.

The only remaining test of the parameter sets is the second light-scattering virial

coefficient. The sole measured value available is that of Couling and Graham [7,8] taken

using a wavelength of 514.5 nm at room temperature. This measured value is given in

Table 8.26, together with the theoretical values calculated using the three parameter sets.

The best agreement is obtained with parameter set (2), which also yields the best fit for

Bi: The relative contributions of the terms used to calculate Bp for this parameter set

are listed in Table 8.27.

Table 8.26: Calculated values of Bp for chloromethane for three sets of parameters,
together with the measured value of Couling and Graham [7,8] at A = 514.5 nm.

299.65 -3.30±0.26 -2.42 26.7 -3.50 6.1 -3.68 11.5

Table 8.27: The relative contributions of the terms
used to calculate Bp for chloromethane at 299.6 K and
A = 514.5 nm [9].

Contributing
Term

Sp
2B

106 x Value
m3mol-1

37.60
5.44

-194.64
464.87

29.74
343.01

-796.38

% Contribution
to Bp

-8.29
-1.20
42.93

-102.54
-6.56

-75.66
175.66

B~ = -453.37 x 10 6m3mol- l
Bp = -3.495 X 1O-6m3mol- l

In this work we are attempting to isolate a unique set of molecular parameters which

will explain all of the second virial coefficient phenomena under study for each gas. The

parameter set (2), chosen to optimize the B, fit, yields a value for Bp which lies within the

experimental error of the measured value and fits B(T) to within 2.5%. This set appears

to be our best choice. Since all the parameter sets yield calculated values for BK an order

of magnitude larger than the experimental value, it is not possible to choose which of

the sets provides the best fit, although the value calculated using set (2) is the closest
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to the measured value. It would be of great interest if reliable measured or theoretical

values were available for the A-tensor components, as well as more experimental values

for the second Kerr-effect and light-scattering virial coefficients together with measured

values for BR. This would allow one to test the fit of the various parameter sets more

rigourously. Until such time as this data becomes available, a more definitive conclusion

is not possible.

169



8.5 Calculations for hydrogen chloride

8.5.1 Molecular properties of hydrogen chloride

Table 8.28 presents a list of the molecular properties of hydrogen chloride which have

been used in these calculations. The dynamic polarizability a and hyperpolarizability (3

are at a wavelength of 632.8 nm. Since no experimental values for the components of Oijkl

for HCI are available, the estimated values of Burns, Graham and Weller [62] are used.

These were obtained by scaling the values for HF quoted by Rivail and Cartier [214] in

proportion to the relative values of the components of aij and Aij k for HF and HCI. The

values of Ro, elk and D are our fitted values, chosen to optimize the agreement between

theory and experiment for both B(T) and Bi:

Table 8.28: Molecular parameters of hydrogen chloride used
in the calculations (>' = 632.8 nm),

Molecular Parameter Value Reference
1030JL (Cm) 3.646 [215]
104°0 (Cm2) 12.4 [215]
1040a (C2m2J-1) 2.867 [216]
1040~a (C2m2J-1) 0.314
1040a

ll (C2m2J-1) 3.076
104oa.1 (C2m2J-1) 2.762
/'I,a 0.03639 [4]
100po 0.079 [190]
1040a (C2m2J-1) 2.893 [44,62]
1040~a (C2m2J-1) 0.317
1040a

ll (C2m2J-1) 3.104
104oa.1 (C2m2J-1) 2.787
/'I,a 0.0365 [4]
1050A

II (C2m3J-1) 1.16 [216]
1050A.1 (C2m3J-1) 0.133 [216]
106°0

1111 (C2m4J-1) 0.8144 [62]
106°01313 (C2m4J-1) 0.6588 [62]
106°03333 (C2m4J-1) 1.0504 [62]
1050(3 (C3m3J-2) 0.0234 [216]
1050(311 (C3m3J-2) 0.009 [216]
105°(3.1 (C3m3J-2) 0.015 [216]
Ro (nm) 0.355
elk (K) 204.5
D 0.028
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8.5.2 Results of calculations of second virial coefficients for

hydrogen chloride

Unfortunately, there is a dearth of experimental second virial coefficient data for hydrogen

chloride, due to its highly corrosive nature. The only effects which have been measured

are the second pressure and dielectric virial coefficients. It was hoped that, since a more

complete set of the molecular data necessary to calculate Be is available for hydrogen

chloride than for the other gases under study, a good fit for the second dielectric virial

coefficient would be possible. However, it was impossible to obtain values of Be of the

correct order of magnitude, without altering the Lennard-Jones parameter to an unac­

ceptable degree. The measured values are an order of magnitude higher than the highest

calculated values found. The entire range of possible shape parameters was tested with­

out success. The parameter set was optimized to obtain agreement for B(T) to within

2%, with values of Be as high as possible. The temperature dependence of the second

pressure virial coefficient is given in Table 8.29, while Table 8.30 shows measured values

of Be along with our calculated values.

Table 8.29: Calculated values of B(T) for hydrogen
chloride, together with the experimental values [1].

T 106B(T) (exp) 106B(T) %
K m3mol-1 m3mol-1 Error

190 -456±7 -454.5 0.32
200 -392±7 -392.6 0.15
225 -287±7 -287.0 0.00
250 -221±7 -221.1 0.05
275 -175±7 -176.5 0.86
295 -147±6 -150.1 2.04
300 -142±6 -144.5 1.40
330 -114±6 -116.3 2.02

Table 8.31 shows the relative contributions of the terms used to calculate Be for

hydrogen chloride at 292.5 K. It can be seen that Be in d makes a small but significant

contribution to the total, due mainly to the a3, or Kirkwood [127], term. The A-tensor

series makes a significant contribution of approximately 4%, while apart from the leading

/L2 series the most important contribution is from the dipole-quadrupole /Llfh series, which

yields 73% of the final value. The quadrupole series is also significant, contributing

16% to Be· Thus, once again, the importance of considering the quadrupole moment

is demonstrated, since without these terms the calculated value would be considerably

lower and thus the agreement with experiment even worse!
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Table 8.30: Calculated values of BE for hydrogen
chloride, together with the measured values of Law­
ley and Sutton" [10] and Powles and Macfl rat h" [11].

T 1012 B exp 1012 B eak
E E

K m6mol-2 m6mol-2

292.5 4000± 1000a 559.86
3600±1000b

312.8 3600±1000a 486.93
3200±1000b

Table 8.31: The relati ve cont ributions of the terms used
to calculate BEfor hydrogen chloride at 292.5 K.

Contributing 1012 x Value % Contribution
Term m6mol- 2 to BE
(Y2 0.632 0.11
(Y 3 11.885 2.12
(Y4 0.473 0.08
{31 0.415 0.07
(Y1{31 0.003 0.001
(Y1 A 1 0.526 0.09
(Y2 A 1 0.504 0.09
A2 -0.004 -0.001
(Y1A2 -0.001 -0.000
(Y2C1 1.597 0.28
BEin d 16.030 2.86
/l2 -461.502 -82.43
(Y1/l2 319.968 57.15
(Y2/l2 151.477 27.06
(Y3 /l2 8.870 1.58.
A 1/l2 20.436 3.65
(Y1A 1/l2 3.778 0.67
{31/l3 0.578 0.10
{31(Y1/l3 0.056 0.01
(Y1 /l 1(}1 404.636 72.27
(Y2/l1 (}1 3.414 0.61
{31/l 1(}1 . 0.300 0.05
(Y2(}2 58.164 10.39
(Y3(}2 33.657 6.01
BEar 543.832 97.14
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No measured values for the second refractivity, Kerr-effect or light-scattering virial

coefficients are available for hydrogen chloride. However, we have calculated values for

BR, BK and Bp using our optimized parameter set.

Table 8.32 lists the relative significance of the terms used to calculate B K at 298.15 K

for a wavelength of 632.8 nm. The leading /-LCX series makes the most significant con­

tribution of 86%, while the /-LcxA series contributes 7%, emphasizing the importance of

including the A-tensor terms.

Table 8.32: The relative contributions of the terms used to
calculate BK for hydrogen chloride at 298.15 K for a wave­
length of 632.8 nm.

Contributing
Term
CX2

CX3

CX4

CX5

/-L2 CXl

/-L2 CX2

/-L2 CX3

/-L2 CX4

/-L2(3l

/-LlcxlAl

/-Llcx2Al

/-Ll ()l CXl

1030 x Value
C2m8J-2mol- 2

0.0002
0.0029
0.0559
0.0045

-0.1277
0.7597
0.5108
0.0579

-0.0021
0.0819
0.0201
0.0366

% Contribution
to BK

0.01
0.21
3.99
0.32

-9.12
54.24
36.47
4.13

-0.15
5.85
1.44
2.61

The relative contributions to the various terms used to calculate BR for hydrogen

chloride are given in Table 8.33. The cx(3 series contributes 2.5% to BR, while the A-tensor

terms make a combined contribution of 6.3%. We note that the C-tensor term contributes

almost 10%, and is thus highly significant. However, the C-tensor components used to

calculate this term are values estimated by scaling the values of hydrogen fluoride [214].

Accurate measured or calculated C-tensor components would yield a more reliable value

for this term.

Table 8.34 shows the relative magnitudes of the various contributions to our calculated

value for Bp. It can be seen that, for hydrogen chloride, the A- and C-tensor terms

together contribute less than a percent to the total and are thus negligible.

173



1012 x Value % Contribution
m6mol-2 to BR

Contributing
Term

Table 8.33: The relative contributions of the terms used
to calculate BR for hydrogen chloride at 298.15 K for
A - 632.8 nm.

a2

a3

a4

/31
ad31

a 1A1

a 2A1

A2

a 1A2

a 2C1

0.621 3.83
12.067 74.40
0.490 3.02
0.404 2.49
0.003 0.02
0.515 3.18
0.509 3.14

-0.004 -0.02
-0.002 -0.01
1.616 9.96

Table 8.34: The relative contributions of the terms used
to calculate Bp for hydrogen chloride at 298.15 K and
A - 632.8 nm.

Contributing
Term

106 x Value % Contribution
nr'mol"! to Bp

a3

a4
as

a2A 1

a3A1

a3Cl

5.640 0.45
-0.232 -0.02
75.378 5.97

1378.556 109.16
101.307 8.02
-11.461 -0.91

1.152 0.09
1.541 0.12

1551.881 122.88
-289.000 -22.88

B~ = 1262.881 x 10 6m3mol- 1
Bp = 0.997 x 1O-6m3mol-1
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Thus, although we have demonstrated that it is possible to find a good fit for B(T),

we were not able to obtain calculated values of B, of the correct order of magnitude. The

measured values are large positive numbers and the best fit that we have presented here

yielded values an order of magnitude smaller. We suggest that it is possible that the order

of magni tude discrepancy may be due to problems with measuring B, experimentally,

since hydrogen chloride is highly corrosive. Only new, precise experimental measurements

can settle this question. Unfortunately, since no further data for second virial coefficients

of hydrogen chloride exists , it is not possible to test our set of parameters more rigorously.
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8.6 Calculations for nitrogen

8.6.1 Molecular properties of nitrogen

The stat ic molecular prop erties of nitrogen are listed in Table 8.35, while Table 8.36 lists

the values of the optical-frequency polarizability components and Po· Since nitro gen is a

non-polar molecule the dipole moment , first-order hyperpolarizability and the A-tensor

components are all zero. No C-tensor data is available. Our optimized values for the

Lennard-Jones and shape parameters are given in Table 8.37, together with the values

used by Couling and Graham [7,9] to calculate the second Kerr-effect and light-scattering

virial coefficients. We have used both sets of parameters to obtain theoretical values for

all of the second virial coefficients under study.

Table 8.35: Wavelength-independent molecular parameters
of nitrogen used in the calculations.

Molecular Parameter Value Reference
104°0 (Cm2 ) -4.72
1040a (C2m2J-1) 1.936
104°.6.a (C2m2J- 1) 0.734
1040a ll (C2m 2J - 1) 2.425
1040 a .L (C2m2J- 1) 1.691
K a 0.1263

[217]
[13]

[9 ,192]

A 100po 1040a 104°.6.a
nm C2m2J-1 C2m2J - 1

Table 8.36: The components of the optical-frequency polarizability tensors a i j of nitrogen,
together with the values of Po used in the calculations.

632.8 1.042 [4] 1.961 [44,62] 0.781
514.5 1.0587 [8] 1.979 [4] 0.794
488.0 1.05 [16] 1.984 [4] 0.793

2.482
2.509
2.513

1.701
1.715
1.720

0.1327
0.1338
0.1332

Table 8.37: Lennard-Jones parameters and shape factors for nitrogen.
n; (nm) el k (K) D

(1) Our fitted values 0.375 86.0 0.263
(2) Fitted values of Couling and Graham [9] 0.368 91.5 0.112
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8.6.2 Results of calculations ofsecond virial coefficients for

nitrogen

Both sets of parameters shown in Table 8.37 were used to calculate values for the second

pressure, dielectric, refractivity, Kerr-effect and light-scattering virial coefficients. Ta­

ble 8.38 shows the calculated values for B(T) along with the smoothed values given by

Dymond and Smith [1]. Our optimized parameter set yields calculated B(T) values which

agree to within 4.5% with the experimental data, while the values calculated using the

second parameter set agree to within 6.8%. Both sets of calculated values fall within the

range of the experimental errors.

Table 8.38: Calculated values of B(T) for nitrogen for two sets of
parameters, together with the smoothed values of Dymond and
Smith [1].

T
K

200
250
300
400
SSE:

-35.2±1.0
-16.2±1.0

-4.2±0.5
9.0±0.5

(1)
106B cak

rrr'mol""
-35.1
-16.2
-4.4
9.3
0.14

%
Error
-0.3
-0.0
-4.5
3.3

(2)
106Bcak

m3mol-1

-34.3
-16.1
-4.7
8.6
1.23

%
Error
-2.6
-0.6
6.8
-4.4

Since nitrogen is a non-polar gas, the values of the second dielectric virial coefficient

are several orders of magnitude smaller than those of the polar gases. The experimental

data available is very imprecise, with experimental uncertainties of between 25 and 170%,

making it very difficult to distinguish the trend of the measured curve. Table 8.39 shows

the relative importance of the terms used in the calculation of Bi, It can been seen

that, for nitrogen, the BCin d and Bc or components are of similar magnitude, and thus

the induction component cannot be omitted, as it sometimes is for polar molecules [3].

It must also be noted that it is not sufficient to calculate only the leading term in the

quadrupole aB series, as the second and third terms contribute a total of 17.5% to Bi,

Unfortunately, since no C-tensor data is available, the a2C1 term could not be calculated.

It is possible that this term may make a significant contribution to B c ind '

The temperature dependence of the calculated values of B, for the two parameter sets

are given in Table 8.40. The relationship between theory and experiment can be seen

more clearly in Figure 8.4 (a), where the solid line represents the values of B, calculated

using our optimized parameters, and the dotted line shows the curve obtained from the

parameters of Couling and Graham [9]. It would appear that the experimental values

decrease more rapidly with increasing temperature than the theoretical curves , although
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this trend is not conclusive due to the large experimental errors. Since the solid curve

passes through more of the error bars it could be said to fit the measured values slightly

better than the dotted curve, so that our optimized parameter set would be preferred.

Table 8.39: The relative contributions of the terms used
to calculate B, for nitrogen at 242.2 K for the parameter
set (D=0.263, Ro=0.375, E/k=86.0).

Contributing 1012 x Value % Contribution
Term m6mol-2 to B,

-0.629 .
1.602
0.030
1.003
1.002
0.361
0.065
1.428

-25.87
65.90
1.23

41.26
41.22
14.85
2.67

58.74

Table 8.40: Calculated values of B, for nitrogen
for two sets of parameters, together with the mea­
sured values of Johnston et al." [12] and Orcutt and
Coleb [13].

(1) (2)
T 1012Bexp 1012Bcak 1012B cake e e
K m3mol-1 m6mol-2 m6mol-2

242.2 4.2±1.0a 2.64 3.43
296.2 2.0±1.0a 2.43 3.11
306.2 1.8±1.0a 2.40 3.07
322.2 0.6±0.2b 2.36 3.00

1.0±1.0a

344.2 0.0±0.8a 2.32 2.93
-1.5±2.5a

The contributions of the various terms in the calculat ion of BR at A = 632.8 nm

for T = 298 K, using our optimized Lennard-Jones and shape parameters are given in

Table 8.41. It is clear that a3 is the dominant term and that the series is definitely

converging. As was noted for Bc, it is possible that the C-tensor term might make a

significant contribution and experimental or theoretical values for the C-tensor compo­

nents would allow a more complete calculation. Table 8.42 shows the measured values of

BR at three wavelengths. Although BR has been measured at two different temperatures
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Figure 8.4: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of nitrogen. In both cases th e solid and
dotted lines represent the values calculated using parameter sets (1) and (2), respectively.
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for a wavelength of 632.8 nm, the temperature dependence is not discernable, due to the

scatter of the experimental data. All of the values calculated using both sets of param­

eters were larger than the measured values, with those obtained from our opt imized set

being slightly closer to experiment. As with the temperature dependence, it is unclear

whether BR depends on the wavelength. The data of Montixi et al. [69] seem to indicate

an increase of BR with decreasing wavelength but the increase falls with the experimental

error, so that a definit ive conclusion is not possible. It should be noted, however, that

both sets of theoretical data show a similar increase as the wavelength decreases.

Table 8.41: The relative contr ibutions of the terms used to
calculate BR for nitrogen at 632.8 nm and 298 K for the
parameter set (D=0.263, Ro=0.375, c j k=86.0).

Contributing 1012 x Value % Contribution
Term m6mol- 2 to BR

a2 0.0299 1.15
a 3 2.5166 96.61
a4 0.0584 2.24

Table 8.42: Calculated and measured values of BR for nitrogen.
(I} (2)

T A 1012 B exp Ref. 1012 B calc 1012 B calc
R R R

K nm m6mol-2 m6mol- 2 m6mol-2

298 632.8 0.74±0.65 [62] 2.61 3.62
0.75±0.10 [69]
1.0±0.31 [39]

323.2 633.0 0.89±0.06 [64] 2.47 3.38
0.64±0.08 [65]

298 514.5 0.62±0.78 [62] 2.68 3.73
0.81±0.10 [69]

488.0 0.96±0.68 [62] 2.70 3.75
488.1 0.85±0.10 [69]

The second Kerr-effect virial coefficient has been measured for nitrogen by Bucking­

ham et ol., but the results are very poorly defined, with no visible trend and such large

percentage errors that the sign of the experimental values is not clear. The calculated

values for B K are very small , indicating that the pressure dependence of the molar Kerr

constant Km must be very slight and , therefore , extremely difficult to measure . The

relationship between the experimental data and the values calculated from the two pa­

rameter sets is shown in Table 8.44 and Figure 8.4 (b), while the relative contributions
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of the various terms making up BK are listed in Table 8.43. In the graph, the solid

line representing the curve calculated using our optimized parameters falls just above the

error bars of the measured values, while the dotted line showing the values of obtained

from the second parameter set are higher still. While the first set of parameters appears

to yield a slightly better fit, the large uncertainties of the experimental values render it

impossible to comment on the relative merits of the two parameter sets.

Table 8.43: The relative contributions of the terms used to
calculate BK for nitrogen at 248 K for A = 632.8 nm for the
parameter set (D=0 .263, Ro=0.375, c/k=86.0).

Contributing 1032 x Value % Contribution
Term C2m8J-2mol-2 to BK

a2 0.0406 8.15
a3 -0.3852 -77.30
a4 0.7881 158.16
as 0.0280 5.62

()2a3 0.0140 2.81
()2a4 0.0101 2.03
()2aS 0.0027 0.54

Table 8.44: Calculated values of B K for nitrogen for
two sets of parameters, together with the measured
values of Buckingham et al. [14], at a wavelength
of A = 632.8 nm.

T
K

248
260
277
286
299
315'
334

-0.08±0.28
0.07±0.39

-0.21±0.33
-0.23±0.45
-0.30±0.59
0.04±0.30

-0.41±0.18

(1)
1032B

K
C2m8J - 2

0.498
0.480
0.456
0.445
0.430
0.412
0.393

(2)
1032B

K
C2m8J-2

0.739
0.703
0.658
0.637
0.609
0.578
0.545

Finally, both parameter sets were used to calculate the second light-scattering virial

coefficient for nitrogen at 514.5 nm and 488.0 nm. Table 8.45 shows the relative impor­

tance of the terms used to calculate Bp, while Table 8.46 shows the available measured

values and the calculated values. Here it is clear that the second parameter set yields a
far better fit to the experimental data.
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Table 8.45: The relative contributions of the terms used
to calculate Bp for nitrogen at 310 K and), = 514.5 nm.

Contributing 106 x Value % Contribution
Term rrr'mol" to Bp

G 1.155 10.69
b3 0.443 4.10
a3 -11.607 -107.42
a4 26.328 243.66
as 0.666 6.16
s, 16.985 157.20
2B -6.18 57.20

B~ = 10.805 x 10 6m3mol 1

Bp = 0.123 x 1O-6m3mol- 1

Ref.
nm

T
K

Table 8.46: Calculated and measured values of Bp for nitrogen.
(1) (2)

106 Bcak 106 Bcak
p p

rrr'mol"! m''mol"!
·295.5

310
290

514.5

488.0

0.138±0.014
0.16
0.14

[7]
[91]
[16]

0.065 0.142
0.123 0.199
0.043 0.115

In conclusion, apart from the second light-scattering virial coefficient , our optimized

Lennard-Jones and shape parameter set fits the experimental data better than the pa­

rameters used by Couling and Graham [9]. However, none of these fits can be said to be

good , due in part to the large experimental errors and scatter in the measured values of

Bc, BR and BK · In order to make more a definitive conclusion, accurate experimental

values would be necessary.
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8.7 Calculations for carbon dioxide

8.7.1 Molecular properties of carbon dioxide

The molecular properties of carbon dioxide are listed in Table 8.47, while the wavelength­

dependent parameters are given in Table 8.48. The dipole moment , first-order hyperpo­

larizability and the A-tensor components are all zero, since carbon dioxide is a non-polar

molecule. As for the other non-polar molecules, no C-tensor components are available.

Table 8.47: Wavelength-independent molecular parame­
ters of carbon dioxide used in the calculations

Molecular Parameter
104°0 (Cm2)

1040a (C2m 2.r')
1040 .6.a (C2m2J- l)
1040a ll (C2m 2J- l)
104oa .L (C2m2J-l)

Value
-15.0

3.245
2.252
4.387
2.134
0.2602

Reference
[218]
[40]

[9,192]

Table 8.48: The components of the opti cal-frequency polarizability tensors a i j of carbon
dioxide, together with the values of Po used in the calculations.

A 100po 1040a 104°.6.a 1040
a ll

nm C2m2J-1 C2m2J-1 C2m2J-1

632.8 4.049 [4] 2.907 [44,62] 2.329 4.460
514.5 4.085 [4] 2.957 [4] 2.380 4.544
488.0 4.12 [4] 2.965 [4] 2.398 4.563

2.131
2.164
2.165

0.2671
0.2683
0.2696

Table 8.49: Lennard-Jones parameters and shape factors for carbon dioxide.
Ro (nm) elk (K) D

(1) Our values fitted to B(T)
(2) Our values fitted to B,
(3) Fitted values of Couling and Graham [9]

0.420 186 0.215
0.400 192 0.225
0.400 190 0.250

Since it was not possible to find a set of Lennard-Jones and shape parameters which

gave a good fit for both B(T) and Bc, we followed the same procedure adopted for

chloromethane and selected two parameter sets. We first chose a set to improve the fit of

B(T), while maintaining physically reasonable values for Bc, and then chose a set which

yielded a good fit of the experimental data for Be, without sacrificing the fit of B(T) too
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much. These two sets of parameters are given in Table 8.49, together with the set used

by Couling and Graham [9] to calculate Bp and BK . All three parameter sets were used

the calculate the full range of second virial coefficients.

8.7.2 Results of calculations of second virial coefficients for

carbon dioxide

Table 8.50 shows the values of B (T ) calculated using the three parameter sets in Ta-

ble 8.49, as well as the smoothed values taken from Dymond and Smith [1] . None of th e

parameter sets yield a very good fit to the experimental data, especially at the higher

temperatures. However, the first set clearly fits better than th e other two, with all the

calculated values falling within 6.5% of the measured values.

Table 8.50: Calculated values of B(T) for carbon dioxide for three sets of parameters,
together with the smoothed values of Dymond and Smith [1].

(1) (2) (3)
T 106Bexp 106Bcalc % 106Bcalc % 106Bcalc %
K m3mol-1 rrr'mol"! Error m3mol- 1 Error m3mol-1 Error

270 -155.4±2.0 -150.04 -3.45 -148.96 -4.14 -148.44 -4.48
280 -143.3±2.0 -139.71 -2.51 -138.74 -3.18 -138.25 -3.52
290 -132.5±2.0 -130.29 -1.67 -129.45 -2.30 -128.99 -2.65
300 -122.7±2.0 -121.67 -0.84 -120.98 -1.40 -120.55 -1.75
310 -113.9±2.0 -113.75 -0.13 -113.22 -0.59 -112.82 -0.95
320 -105.8± 2.0 -106.46 0.62 -106.09 0.19 -105.72 -0.08
330 -98.5±2.0 -99.71 1.23 -99.52 1.04 -99.17 0.68
340 -91.7±2.0 -93.46 1.92 -93.44 1.90 -93.12 1.55
350 -85.5±2.0 -87.65 2.51 -87.80 2.69 -87.50 2.34
360 -79.7±2.0 -82.23 3.17 -82.56 3.59 -82.28 3.23
370 -74.4±2.0 -77.18 3.74 -77.68 4.41 -77.41 4.05
380 -69.5±2.0 -72.44 4.23 -73.12 5.21 -72.86 4.83
390 -64.8±2.0 -68.01 4.95 -68.84 6.23 -68.61 5.88
400 -60.5±2.0 -63.84 5.52 -64.84 7.17 -64.61 6.79
410 -56.5±2.0 -59.92 6.05 -61.07 8.09 -60.86 7.72
420 -52.8±2.0 . -56.22 6.48 -57.53 8.96 -57.33 8.58
SSE: 124.83 194.89 196.47

The second dielectric virial coefficient of carbon dioxide is an order of magnitude

larger than that of nitrogen and the experimental values have correspondingly smaller '

percentage errors. This is due to th e fact th at , whereas for nitrogen B . and B
Cl nd Co r

contribute roughly the same amount to Bc, for carbon dioxide the B, contribut ion is
--or

more than eight times larger than that of Beind • This can be seen in Table 8.51, which
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Table 8.51: The relative contributions of the terms used
to calculate Be for carbon dioxide at 295.2 K for the pa­
rameter set (D=0.225, Ro=0.400, cjk=192.0).

Contributing 1012 x Value % Contribution
Term m6mol-:-2 to Be

a2 -3.835 -7.42
a3 9.006 17.42
a4 0.195 0.38

Be in d 5.366 10.38
a2()2 30.937 59.83
a3()2 11.600 22.44
a4()2 3.799 7.35
Be or 46.336 89.62

shows the relative contribution of the various terms used in the calculation of Be. Here

again we see the importance of including the first three terms of the a() series, as even

the third term contributes more than 7% of Be. It is clear, however, that the series is

converging and it should not be necessary to calculate any further terms.

Table 8.52: Calculated values of Be for carbon dioxide for three sets
of parameters, together with the measured values.

(1) (2) (3)
T 1012Bexp 1012Bcak 1012Bcak 1012Bcak

e e e e
K m6mol-2 Ref. m6mol-2 m6mol-2 m6mol-2

273.2 35.4±1.0 [41] 38.72 58.25 56.68
295.2 64±10 [48] 34.81 51.70 50.34
302.6 57.6±0.9 [40] 33.69 48.84 48.54
322.9 49.7±1.0 [45] 31.02 45.44 44.28

50.7±0.9 [40]
41.4±2.4 [41]

348.2 46.4±1.0 [45] 28.33 41.05 40.03
369.5 36±3 [49] 26.47 38.06 37.12
373.2 35.8±0.7 [41] 26.17 37.59 36.67

33.5±0.4 [41]
34.8±0.7 [41]

423.2 30.0±0.9 [41] 22.92 32.42 31.65

The temperature-dependence of the calculated and measured values of Be are tabu­

lated in Table 8.52, and depicted graphically in Figure 8.5 (a). From the table we see that

the values calculated from the first parameter set are much lower than the values obtained

from the other two sets. This curve is represented in the figure by the dashed line, which
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Figure 8.5: Temperature dependence of the calculated and measured values of the second
(a) dielectric, and (b) Kerr-effect virial coefficients of carbon dioxide. The solid, dashed
and dotted lines represent the values calculated using parameter set (2), (1) and (3)
respectively.
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falls below most of the experimental data. The solid and dotted lines, representing the

theoretical values obtained from the second and third parameter sets respectively, fall

between the various measured values, with the solid line giving the best fit.

As for nitrogen, the values of B K measured by Buckingham et al. [14], and more re­

cently by Gentle et al. [15] are very poorly defined, although the latter values are more

precise than the earlier ones. This is not surprising, due to the difficulty involved in mea­

suring such small pressure dependence. Our calculated values of BK are shown, together

with the measured values, in Table 8.53 and Figure 8.5 (b). It can be seen from the graph

that the dashed line representing the values obtained from the first parameter set provide

a marginally better fit than the solid and dotted lines, which represented the values cal­

culated using the second and third parameter sets respectively. However, compared with

the experimental errors and the scatter of the measured values, the difference between

the three curves is very slight, with all of them providing an acceptable fit to experiment.

Table 8.53: Calculated values of BK for carbon dioxide for three sets of pa­
rameters, together with the measured values of Gentle et al." [15] and Buck­
ingham et al.b [14].

T
K
252
259
267
279
287
299.2
301
302
314.9
318
330.9
337
348.8
370.9
394.5
422.8
455.8
489.5

23±19b

5±27b

-6±l1b

-1±13b

-3±9b

6±la

-3±7b

0±10b

O±la

-11±8b

4±2a

-9±9b

2±la

-6±2a

2±2a

-3±2a

-3±4a

-5±3a

3.72
3.53
3.34
3.06
2.92
2.70
2.67
2.66
2.46
2.43
2.26
2.19
2.07
1.91
1.74
1.59
1.47
1.31

5.93
5.58
5.23
4.72
4.48
4.09
4.04
4.02
3.68
3.63
3.32
3.21
3.01
2.75
2.47
2.22
2.05
1.80

5.36
5.05
4.74
4.29
4.07
3.71
3.68
3.65
3.35
3.30
3.03
2.92
2.75
2.52
2.26
2.05
1.89
1.66

Table 8.54, which lists the relative contribution of the terms of BK, shows the im­

portance of including the quadrupole terms in the calculation of the second Kerr-effect

virial coefficient. These terms, which have not been calculated before, contribute approx-
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imately 30% to BK . It should be noted that while the third term in the series ()2CiSmakes

a small but significant cont ribution, the series has clearly converged. The leading Ci series

is converging rapidly, and no further terms are necessary.

Table 8.54: The relative contribut ions of the terms used to
calculate BK for carbon dioxide at 299.2 K for A = 632.8 nm
for the parameter set (D=0 .225, Ro=0.400, c/k=192.0).

Contributing 1032 x Value % Contribut ion
Term C2m8J-2mol-2 to B K

Ci2 0.838 20.51
Ci3 -2.113 -51.71
Ci4 · 3.939 96.40
Cis 0.137 3.35

()2Ci3 0.766 18.75
()2Ci4 0.461 11.28
()2 CiS 0.058 1.42

Table 8.55: Experimental and calculated values of BR for carbon dioxide for
three sets of parameters.

(1) (2) (3)
T A 1012B exp 1012BJrIc 1012Bealc 1012B'kalc

R R
K nm m6mol- 2 Ref. m6mol-2 m6mol-2 m6mol-2

298.2 632.8 3.2± 1.6 [39] 2.18 3.73 3.11
4.75±1.30 [62]

320 0.0±1.0 [72] 2.22 3.64 3.07
323 1.9±0.2 [64] 2.23 3.63 3.06

5.3 [13]
3.31±3.6 [68]

298 514.5 0.73±0.66 [62] 2.38 3.98 3.33
488.0 1.03±0.66 [62] 2.39 4.01 3.36

Except for the measurements of Achterniann et al. [64], the experimental data for

the second refractivity virial coefficient of carbon dioxide at 632.8 nm show wide scatter

and large experimental errors. It is impossible to discern whether there is significant

temperat ure dependence. At 514.5 nm and 488.0 nm, Burns et al. [62] measured BR at

room temperature, but th e experimental errors are 90% and 65%, respectively, so any

wavelength dependence is masked. BR was calculated for carbon dioxide, using the three

parameter sets , for all the temperatures and wavelengths where experimental data is

available, and the calculated and measured values are given in Table 8.55. Although the
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wide scatter and large errors in the experimental data make comparison with the theoret­

ical values difficult , the more precise value of Achtermann et al. at 632.8 nm and 323 K

is lower than any of the calculated values. At the other wavelengths, the experimental

data is also lower than the theoretical values, leading to the tentative conclusion that the

values calculated using parameter set (1) provide a better fit to the measured values.

Table 8.56 shows the relative cont ribut ions of the three Cl: terms used to calculate BR

using the second parameter set for a wavelength of 632.8 nm at 298.2 K.

Table 8.56: The relative contribut ions of the te rms
used to calculate BR for carbon dioxide at 298.2 K for
A=632.8nm for the parameter set (D=0.225, Ro=0.400 ,
£/ k= 192.0).

Contributing
Term

1012 x Value
m6mol-2

% Contribution
to Be

-3.360
6.959
0.131

BR = 3.730 X 10

-90.08
186.57

3.51

Table 8.57: Calculated values of Bp for carbon dioxide for three set s of parameters ,
together with the experimental data of Couling and Graham" [7] and Dayan et
al.b [16].

(1) (2) (3)
T A 106BexP 106B cak % 106B cak % 106B cak %p p p p

K nm m3mol-1 m3mol-1 Err. m3mol-1 Err. m3mol- 1 Err.
298.2 514.5 -8.29±0.16a -9.21 11.1 -8.98 8.3 -8.92 7.6
300.0 488.0 -lOb -9.12 -8.8 -8.93 -10.7 -9 -10

Lastly, the second light-scattering virial coefficient was calculated at wavelengths of

514.5 nm and 488.0 nm, and compared with the measured values. The experimental

data, together with the values calculated using the three parameter sets, are shown in

Table 8.57, while the relative contributions of the various terms are given in Table 8.58.

It can be seen in Table 8.58 that the second pressure virial coefficient contribut ion to Bp

dominates the calculat ion. For this reason , all of the calculated values of B p are very

similar, so that it is difficult to choose which parameter set yields the best fit. Since the

measured value of Couling and Graham [7,9] at 514.5 nm is more precise than that of

Dayan et at. [16] at 488.0 nm , the third parameter set is most prob ably the best choice.
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Table 8.58: The relative contributions of the terms
used to calculate Bp for carbon dioxide at 298.2 K and
). = 514.5 nm for the parameter set (D=0.215 , Ro=0.420 ,
c j k= 186.0).

Contributing
Term

Sp
2B

106 x Value
rrr'mol"!

3.477
1.408

-10.474
15.326
0.103
9.840

-250.66

% Contribution
to Bp
-1.44
-0.58
4.35

-6.36
-0.04
-4.09

104.09
B~ = -240.82 x 10 6m3mol

Bp = 8.98 x 1O-6m3mol- l

1

Unfortunately, the results for carbon dioxide do not allow us to choose a unique

parameter set which yields good fits for all of the second virial coefficient data available.

Except for B, where the second and third parameter sets clearly provide at better fit to

experiment, and for B(T) where the first parameter set fits best , it is very difficult to

choose which is best. In order to allow a definite conclusion, more accurate measured

values for Bc, BR and B K would be required. However, the variation between the Lennard­

Jones parameters of the different sets is 5% or less and the shape factors are similar and

physically reasonable, so that we can conclude that any of the sets would be acceptable.
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8.8 Calculations for ethane

8.8.1 Molecular properties of ethane

The st at ic molecular prop erties of ethane are listed in Table 8.59, while Table 8.60 lists the

values of the optical-frequency polarizability components and Po . Since ethane is a non­

polar molecule there are no dipole moment , first-order hyperpolarizability and A-tensor

components . No C-tensor data is available. Our optimized values for the Lennard-Jones

and shape parameters are given in Table 8.61, together with the values used by Couling

and Graham [7,9] to calculate the second Kerr-effect and light-scattering virial coefficients.

We have used both sets of parameters to obtain theoretical values for all of the second

virial coefficients under study.

Table 8.59: Wavelength-independent molecular parameters
of ethane used in the calculations

Molecular Parameter Value
104°8 (Cm2) -3.34
1040a (C2m 2J-1) 4.870
1040.6.a (C2m2J-1) 0.638
1040a ll (C2m 2J- 1) 5.295
104oal. (C2m 2J- 1) 4.657
K,a 0.0437

Reference
[219]

[9,140]
[9 ,17]

Table 8.60: The components of the optical-frequency polarizability tensor aij of
ethane as determined from the measured values of Po [17] and a [18].

A · 100po 1040a 104°.6.a 1040a ll 104oal.
nm C2m2J-1 C2m2J- 1 C2m2J- 1 C2m2J-1

632.8 0.149±0.006 4.9680 0.743 5.464 4.720
514.5 0.168±0.006 5.0176 0.798 5.550 4.752

0.0499
0.0530

Table 8.61: Lennard-Jones parameters and shape factors for ethane.
Ro (nm) el k (K) D

(1) Our fitt ed values 0.420 208.3 0.375
(2) Fitted values of Couling and Graham [9] 0.4418 230.0 0.200
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8.8.2 Results of calculations of second virial coefficients for

ethane

The second pressure virial coefficient of ethane was calculated using both sets of pa-
l

rameters given in Table 8.61, and the results are given in Table 8.62 together with t he

smoothed values of Dymond and Smith [1]. The values obtained using our best-fit pa­

rameters agree with the experimental data to within 1.5% over the temperature range

240 K to 350 K, and within 4% for the higher temperatures . The second parameter set

yields values of B(T) which differ from experiment by as much as 9.34% at 400 K.

Table 8.62: Calculated values of B(T) for ethane for two sets of
parameters, together with the smoothed values of Dymond and
Smith [1].

(1) (2)
T 106 Bexp 106 Bcalc % 106 Bcalc %
K m3mol-1 m3mol- 1 Error m3mol-1 Error

240 -282±3 -282.93 0.33 -278.39 -1.28
260 -243±2 -240.80 -0.91 -241.33 -0.69
280 -211±2 -207.70 -1.56 -211.07 0.03
300 -182±2 -181.01 -0.54 -185.89 2.14
325 -154± 1 -154.13 0.08 -159.83 3.79
350 -130.5±1 -132.48 1.52 -138.33 6.00
375 -111.0±1 -114.68 3.32 -120.30 8.38
400 -96.0±1 -99.79 3.95 -104.97 9.34
SSE: 49.42 293.21

Only one experiment al value of B E: is available. This was measured recently by St­

Arnaud et al. [19] and has an experiment al error of 5.5%. We used both parameter sets

to calculate B E: for ethane at 298.1 K and the results are given in Table 8.63. The value

calculated using our optimized parameter set is 2% lower than the measured value and

falls within the experimental error. The value obtained using the second parameter set is

almost 30% lower than the experimental value, but is of the correct order of magnitude.

Table 8.63: Calculat ed values of BE: for ethane for two sets of pa­
rameters, together with the measured value of St-Arnaud et al. [19].

298.1 32.2±1.8

(1)
1012Bcalc

E:
m6mol- 2

31.57

192

%
Error
-1.96

(2)
1012B calcE:
m6mol-2

23.01

%
Error
-28.54



The relative contribution of the various terms used to calculate the second dielectric

virial coefficient are given in Table 8.64. It can be seen that Be or contributes approxi­

mately one third of the to tal value of Be, demonstrating the importance of including the

quadrupole moment terms, which have clearly converged. The dominant contribution

comes from the CY3 , or Kirkwood [127], term.

Table 8.64: The relative contributions of the terms used
to calculate Be for ethane at 298.1 K.

Contributing 1012 x Value % Contribution
Term m6mol-2 to Be

CY2 -7.763 -24.59
CY3 27.317 86.53
CY4 1.064 3.37

B
e ind

20.618 65.31
CY20 2 4.769 15.11
CY30 2 5.879 18.62
CY402 0.304 0.96
B 10.952 . 34.69

Cor

Next , we calculated the second refractivity virial coefficient , for which two measured

values are available for a wavelength of 633.0 nm. The contributions of the various terms

in the calculation of BR at A = 633.0 nm for T = 348 K are given in Table 8.65 for our

optimized parameter set. It is clear from the table that the series has converged. It is

possible that the CY2C1 term might make a significant contribution, but no measured or

calculated values exist for the C-tensor components.

Table 8.65: The relative contributions of the terms used
to calculate BR for ethane at 632.8 nm and 348 K for the
parameter set (D=0.375 , Ro-0.420, c/ k= 208.3).

Contributing 1012 x Value % Contribution
Term m6mol-2 to BR

CY2 -8.440 -32.94
CY3 32.709 127.67
CY4 1.351 5.27

Table 8.66 shows the measure values of Jaeschke [72] and Achtermann et al. [64],

together with the theoretical values calculated using both parameter sets. It can be seen

that the first parameter set provides a better fit to experiment than the second set.
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19.61
19.29

25.62
24.92

[72]
[64]

Ref.

22.9±3.0
26.6±0.05

nm
633.0

Table 8.66: Calculated and measured values of BR for ethane.
(1) (2)

1012 B<tlc 1012 B<tlc

m6mol-2 m6mol-2
T
K

348
373

The second Kerr-effect virial coefficient has been measured for a range of tempera­

tures from 255 K to 318 K at a wavelength of 623.8 nm by Buckingham et al. [14], with

experimental errors of approximately 20%. We have calculated BK over this temperature

range using both parameter sets. Table 8.67 shows the relative contributions of the terms

used to calculate BK , while Table 8.68 shows the temperature dependence of the theo­

retical and experimental data. Figure 8.6 shows the relationship between the calculated

and measured values graphically, with the solid and dotted lines representing the values

obtained from the first and second parameter sets, respectively.

It can be seen from Table 8.67 that for ethane, the quadrupole moment series ()O'.

contributes negligibly to the second Kerr-effect virial coefficient.

Table 8.67: The relative contributions of the terms used to
calculate BK for ethane at 255 K for ). = 632.8 nm for the
parameter set (D=0.375, R o=0.420, c/k=208.3).

Contributing 1032 x Value % Contribution
Term C2m8J-2mol-2 to BK

0'.2 0.696 2.34
0'.3 -13.549 -45.64
0'.4 . 39.075 131.64
0'.5 3.384 11.40

()20'.3 0.026 0.09
()20'.4 0.047 0.16
()20'.5 0.005 0.02

From Table 8.68 and Figure 8.6, it is clear that the second parameter set provides

a far better fit of the theory to experiment. .since it lies within the experimental error

of the measured values. The values calculated from the first parameter set fall outside

the experimental errors over the entire range of temperatures, but they are of the correct

order of magnitude.

The only existing measurement of Bp for ethane is that of Couling and Graham [7,9],

which was measured at room temperature for a wavelength of 514.5 nm. We calculated

Bp for both parameter sets at this wavelength and temperature. Table 8.69 shows the
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Table 8.68: Calculated values of BK for ethane for two sets of
parameters, together with the measured values of Buckingham
et al. [14], at a wavelength of >. = 632.8 nm.

(1) (2)

T 1032Bexp 1032B K % 1032B K %
K

K C2m8J - 2 C2m8J - 2 Error C2m8J - 2 Error

255 18.2±3.7 29.68 63.08 20.81 ' 14.34

259 17.7±3.6 28.86 63.05 20.35 14.97

269 16.7±3.3 27.01 61.74 19.29 15.21
278 18.0±3.6 25.54 41.89 18.43 4.61

15.7±3.1 62.68 17.39
287 16.8±3.3 24.22 44.17 17.64 5.00
299 17.7±3.6 22.68 28.14 16.69 -5.71
304 14.9±3.0 22.09 48.26 16.33 9.60
309 14.2±2.9 21.54 51.69 15.98 12.53
318 15.0±3.0 20.61 37.40 15.39 2.60

relative importance of the terms which cont ribute to Bp, while the calculated values are

shown, together with the measured value, in Table 8.70. While both calculated values

are larger t han the experimental value and fall outside the experimental error, the value

obtained from the second parameter set is in much better agreement with the measured

value.

Table 8.69: The relative contributions of the terms used
to calculat e Bp for ethane at 295.9 K and>. = 514.5 nm
for the parameter set (D=0.375 , R o=0.420, E/k=208.3) .

Contributing 106 x Value % Contribution
Term rrr'mcl" to Bp

G 20.52 10.69
b, 2.69 4.10
a3 -374.40 -107.42
a4 1071.79 243.66
as 83.05 6.16
s, 803.65 157.20
2B -372.88 57.20

B~ = 403.77 x 10 6m3mol- l
Bp = 0.722 x 1O- 6m3mol- l

Our optimized parameter set yields good agreement with experiment for the second

pressure, dielectric and refractivity virial coefficient data available, while the parameter

set of Couling and Graham [9] yields much better agreement than ours for the second
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T
K

Table 8..70: Calculated values of Bp for ethane for
two parameter sets, together with the experimental
value of Couling and Graham [7] at A = 514.5 nm.

(1) (2)
106 B cak 106 B cak

p p

m3mol-1 rrr'mol""
295.9 0.315±0.018 0.722 0.381

Kerr-effect and light-scattering virial coefficients. Thus it is not possible, on the basis

of the available experimental data, to choose a unique set of Lennard-Jones and shape

parameters to describe all the effects under study adequately. However, the choice of fit

for Bc, BR and Bp is hampered by the fact that only one or two values are available for

comparison. Further experimental data would help to solve this problem.
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8.9 Calculations for sulphur dioxide

8.9.1 Molecular properties of sulphur dioxide

The sulphur dioxide molecule has C2v symmetry and is taken to lie in the 1-3 plane of

the molecule-fixed axes (1,2,3). The 3 axis is taken as the principal molecular axis and

the origin of the system is at the centre of mass of the molecule. The electric dipole

moment tensor has one component, [0 0 JL3] while the traceless electric quadrupole

moment tensor has two independent components Oll and 022, with '033 = -(Oll + (22),

The optical-frequency polarizability tensor has three independent components all, a22

and a33 [26].

The values of the dipole moment, quadrupole moment, static and optical-frequency

polarizability tensor components used in our the calculations are given in Table 8.71.

Table 8.71: Molecular parameters of sulphur dioxide used in the calcula­
tions

Molecular Parameter Value
1030JL3 (Cm) -5.4262±0.0010
10400ll (Cm2

) -16.4±0.3
104°022 (Cm2

) . 12.9±0.2
104°833 (Cm2

) 3.5±0.1
1040a ll (C2m2J- l ) 5.661
104oa22 (C2m2J- l ) 3.205
104oa33 (C2m 2J- l ) 3.756
1040~a (C2m2J- l) 2.232

1040all(632.8 nm) (C2m2J- l ) 5.80±0.06
1040a22(632.8 nm) (C2m2.r') 3.30±0.04
1040a33(632.8 nm) (C2m2J- l ) 3.88±0.06
1040~a(632.8 nm) (C2m2J- l) 2.27±0.06

1040all (514.5 nm) (C2m2J- l) 5.928±0.01
. 1040a22(514.5 nm) (C2m2J-l) 3.336±0.04

1040a33(514.5 nm) (C2m2J-l) 3.902±0.05
1040~a(514.5 nm) (C2m2.r') 2.360±0.05

Reference
[220]

} [221]

) [9]

) (a)

(b)

(a) Experimental derivation from the Kerr effect [21] with
all = 4.326 x 10-40 C2m2J-1 [4]' Po = 0.0179±0.000l [4]

(b) Experimental derivation from: Ra = 0.212±0.035 [222]
all = 4.389 x 10-40 C2m2J-1 [4], Po = 0.0188±0.000l [9]

The equilibrium dipole moment is the value which Patel et al. [220] determined pre­

cisely by molecular beam electric resonance spectroscopy. In this work we' have used

the most precise set of experimental values for the electric quadrupole moment: those of

Ellenbroek and Dymanus [221] obtained from magnetizability anisotropy measurements.
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It must be noted that since the quadrupole moment of a polar molecule is dependent on

the origin to which it is referred, it is necessary to specify that for these measurements

the origin is fixed at the molecule's centre of mass . The optical-frequency polarizability

tensor components at 514.5 nm are those obtained by Couling and Graham [9] from their

measured value of Po, the R20 value of Murphy [222] and the CYv of Bogaard et al. [4] ,

while the components at 632.8 nm are those deduced by Gentle et al. [21] from Kerr effect

measurements. There are no experimental estimates of the individual components of the

static polarizability tensor. However, Couling and Graham [9], scaled ab initio calculated

values [223], by comparing their trace with the mean static polarizability extrapolated

from experimental optical-frequency values [4]. The anisotropy of the scaled components

agreed to within 4.5% with the value extrapolated from the experimental data of Bogaard

et al. [4].

Table 8.72: Lennard-Jones parameters and shape factors for sulphur dioxide.
Ra (nm) elk (K) D 1 D2

(1) Our fitted values 0.388 210.0 0.1200 0.1386
(2) Fitted values of Couling and Graham [9] 0.385 220.0 0.0873 0.1008

Since the computer programs to calculate the various second virial coefficients of non­

linear gases take much longer to run than the equivalent programs for linear gases, it is

not possible to test as many combinations of the Lennard-Jones and shape parameters

when attempting to fit the theoretical values to the available experimental data. Since

a parameter set which provided good agreement for the second pressure, Kerr-effect and

light-scattering virial coefficients of sulphur dioxide had been found by Couling and Gra­

ham [9], we used this set of parameters to calculate the second dielectric virial coefficient.

Since the value we calculated for B, was more than double the only available experi­

mental value, we then attempted to find a new set of parameters which would improve

the agreement with the measured value of B, without sacrificing the fit of the second

pressure virial coefficient. We then used our new parameter set to calculate B K and Bp,

and compared our values with the available experimental data. Our new parameter set

and the parameter set fitted to B(T) by Couling and Graham [9] are given in Table 8.72

8.9.2 Results of calculations of second virial coefficients for

sulphur dioxide

The values calculated for the second pressure virial coefficient of sulphur dioxide are

listed in Table 8.73, together with the experimental values of Kang et al. [20], as quoted

by Dymond and Smith [1]. The values calculated using the parameter set of Couling and
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Graham [9] fit the experimental values to within approximately 2% over almost the entire

tem perature range. Our parameter set yielded calculated values for B (T ) which agree

with the experimental values to within 2.6% over the temperature range from 283.15 K

to 348.15 K, but are out by 6.32% at 398.15 K.

Table 8.73: Calculated values of B(T) for sulphur dioxide for two
sets of parameters, together with the experimental values of Kang et
al. [20].

(1) (2)

T 106Bexp 106B calc % 106B calc %
K rrr'mol"! rrr'mol"" Error m3mol-1 Error

283.15 -500.0±20 -500.74 0.15 -501.32 0.26
293.15 -452.0±18 -453.15 0.25 -450.88 -0.24

303.15 -404.0±16 -411.32 1.81 -408.17 1.03
313.15 -367.5±15 -373.07 1.52 -371.62 1.12
323.15 -332.8±13 -340.01 2.16 -340.04 2.18
348.15 -279.0±11 -271.71 -2.61 -277.38 -0.58
373.15 -232.5±9 -223.98 -3.66 -231.04 -0.63
398.15 -201.0±8 -188.29 -6.32 -195.53 -2.72
423.15 -171.1±7

l

-162.33 -5.13 -167.55 -2.07
448.15 -144.1±7 -141.98 -1.47 -144.98 0.61
473.15 -125.8±7 -121.82 -3.16 -126.43 0.50
SSE: 531.79 141.90

The second dielectric virial coefficient has only been measured once, at 292.7 K, by

Lawley and Sutton [10] in 1963 and the experimental uncertainty is very large (60%).

We have calculated B, at this temperature using both parameter sets and including as

many terms as was necessary to ensure that the series were converging. Table 8.74 shows

the relati ve cont ributions of the terms used to calculate Bi: It is clear that BCind makes a

small, but significant, cont ribution to B, of 4.5%, while all three of the series in Bc or are

highly significant. In particular, we not e that the dipole-quadrupole series aJ-lO makes a

contribution of 150%. In addit ion, t he quadrupole series aO contributes 30% of Bi : If

the effects of the quadrupole moment were omit ted then the calculated value would be

a large negati ve numb er, rather than a large positive number! This demonstrates that

effects of the quadrupole moment are not necessarily negligible in dipol ar molecules, as

we have already seen for the halogenated methanes.

The values of B, calculated using the two parameter sets are given in Table 8.75,

together with the measured value. It can be seen that both the calculated values are

higher than the measured value, but the value obtained using our new parameter set lies

within the experiment al error. We found that attempts to improve this value destroyed

the fit obtained for B(T). While the value obtained using parameter set (2), is more than

200



Table 8.74: The relative contributions of the terms
used to calculate B, for sulphur dioxide at 292.7 K for
the parameter set (D 1=0.1200, D2=0.1386, R o=0.388,
cjk=210.0).

Contributing
Term

!L2

Cl'.1!L2

Cl'.2!L2

Cl'.3!L2

Cl'.1!L1 ()1

Cl'.2!L1 ()1

Cl'.2()2

Cl'.3()2

1012 x Value
m6mol-2

29.417
68.668
4.272

102.357
-4791.246
1556.107
1070.891

91.401
3107.603

433.157
578.609
138.324

2184.846

% Contribution
to Bc

1.29
3.00
0.19
4.48

-209.48
68.04
46.82
4.00

135.87
18.94
25.29
6.05

95.52
B, = 2287.20 x 10

Table 8.75: Calculated values of B, for sulphur dioxide for two sets
of parameters, together with the measured value of Lawley and Sut­
ton [10].

T 1012Bexp
e

K m6mol-1

292.7 1700±1000

(1)
1012B cak

e
m6mol-2

2287.2

%
Error
34.54

(2)
1012Bcak

e
m6mol-2

4020.9

%
Error
136.47

double the measured value, it is at least of the correct order of magnitude.

The second Kerr-effect virial coefficient of sulphur dioxide has been measured by

Gentle et al. [21], at a wavelength of 632.8 nm for a large temperature range. There is

considerable scatter, but for most of measured values the experimental errors are approx­

imately 5% and the temperature dependence is reasonably well defined. When Couling

and Graham [9] developed the theory of the second Kerr-effect virial coefficient, they did

not consider the quadrupole moment terms in the integrand, although they did include

the dipole-quadrupole, quadrupole-quadrupole and quadrupole-induced-dipole potentials

in the intermolecular potential (Chapter 2). However, due to the significant contributions

of the quadrupole moment to Bc, we extended the theory of BK to include these terms

and used them in our calculations of BK . In Table 8.76 of the relative contributions
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of the various terms in the calculated value of BK , we see that the dipole-quadrupole

J1()0'. series contributes 8.24% to B K , while the quadrupole series ()O'. makes an additional

contribution of 5.62%, so that the combined contribution is almost 14% of the total BK ·

Thus, we see the importance of considering the effect of the quadrupole moment, even

when dealing with dipolar molecules.

Table 8.76: The relative contributions of the terms used to
calculate BK for sulphur dioxide at 288.7 K for>. = 632.8 nm
for the parameter set (D 1=0.1200, D2=0.1386, Ro=0.388,

c/k=210.0).
Contributing 1030 x Value

Term C2m8 J-::2mol- 2

0'.2 -0.079
0'.3 0.173
0'.4 0.506
0'.5 0.050

J120'.1 2.000
J120'.2 5.010
J120'.3 4.538
J120'.4 0.774

J11()10'.1 -0.253
J11()1 0'.2 1.462
J11()1 0'.3 0.031

()10'.3 0.178
()10'.4 0.482
()10'.5 0.186

% Contribution
to BK

-0.52
1.15
3.36
0.33

13.28
33.27
30.14
5.14

-1.68
9.71
0.21
1.18
3.20
1.24

The temperature dependence of calculated and measured values of the second Kerr­

effect virial coefficient is shown in Table 8.77. It can be seen that values obtained from

the two sets of parameters are very similar, although those calculated from our new

parameter set are slightly higher. Figure 8.7 shows the measured values, together with the

theoretical curves. The solid line and the dashed line, representing the values calculated

using parameter sets (1) and (2) respectively, lie very close together and both provide

a good fit of the experimental data. In order to demonstrate the effect of including

the quadrupole series, the figure shows the values for BK calculated by Couling and

Graham [9] without any quadrupolar terms, as a dotted line. It can be seen that this

dotted curve lies below the dashed curve, due to the postive contribution of the quadrupole

terms.
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%
Error

(2)
1032B~lc

C2m 8J - 2

%
Error

(1)
1032B~lc

C2m8J - 2

1032B~?

C2m8J - 2

T
K

Table 8.77: Calculated values of B K for sulphur dioxide for two
sets of parameters, together with the measured values of Gentle et
al. [21], at a wavelength of 632.8 nm.

298.7
307.3
315.4
330.7
348.8
370.9
381.2
395.7
423.7
457.0
471.5
490.3

13.8±0.8
11.4±0.5
10.1±0.5
7.5±0.4
6.5±0.6
6.5±0.5
4.2±0.9
7.6±1.5
4.7±1.1
2.1±1.3
3.4±1.8
1.5±0.6

15.06
13.25
11.55
9.62
7.65
5.92
5.21
4.47
3.41
2.61
2.40
2.10

9.13
16.23
14.36
28.27
17.69
-8.92
24.05
-41.18
-27.45
24.29
-29.41
40.00

14.66
12.72
11.13
9.03
7.18
5.40
4.87
4.18
3.27
2.49
2.21
2.06

6.23
11.57
10.20
20.40
10.46
-16.92
15.95
-45.00
-30.43
18.57
-35.00
37.33

Although there are no experimental values for the second refractivity virial coefficient

of sulphur dioxide, we have calculated BR using both parameter sets. Table 8.78 shows

the relative magnitude of the various contributions to BR at 298.15 K, for a wavelength

of 632.8 nm.

Table 8.78: The relative contributions of the terms used to
calculate BR for sulphur dioxide at 298.15 K for A = 632.8 nm.

Contrib.
Term

(1)
1012 x Value

m6mol-2

(2)
1012 x Value

m6mol-2

21.584
70.842
4.480

96.906

22.27
73.11
4.62

20.114
68.942
4.180

93.236

21.57
73.94
4.49

There is only a single measured value for Bp [9]. Thus, we calculated the second

light-scattering virial coefficient at 514.5 nm for a temperature of 338.4 K, using our new

parameter set and compared the result with the experimental value and the calculated

value of Couling and Graham [9]. Table 8.79 shows the relative contributions of the

terms used to calculate Bp, while Table 8.80 shows the calculated values, together with

the measured value. Both of the calculated values fall outside the experimental error, but
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the agreement is still good, with the value of Couling and Graham [9] yielding a slightly

better fit.

Table 8.79: The relative contributions of the terms
used to calculate Bp for sulphur dioxide at 338.4 K
and A = 514.5 nm for the parameter set (D1= 0.1200,
D2=0.1386, Ro=0.388, cjk=210.0).

Contributing 106 x Value % Contribution
Term rrr'mol"! to Bp

g -17.798 10.69
b3 -3.577 4.10
a3 57.902 -107.42
a4 195.399 243.66
as 23.111 6.16
s, 255.036 157.20
2B -594.820 57.20

Table 8.80: Calculated values of Bp for sulphur
dioxide for two parameter sets, together with the
experimental value of Couling and Graham [7] at
A = 514.5 nm.

T
K

338.4 -6.96±0.49 -6.225 -6.328

The parameter set of Couling and Graham provides a much better fit to the experi­

mental data of B(T) than our new parameter set, as well as a slightly better fit for Bp.

However, both parameter sets yield good agreement with the measured values of B K ,

and our parameter set fits the experimental value of BE: far better than parameter set (2).

Unfortunately, the experimental data of Lawley and Sutton [10] for BE: for other gases

shows a large scatter, so that a single value is not a definitive test. Since the parameter

set chosen by Couling and Graham provides a better fit for three of the effects and yields

a value for BE: which is the correct order of magnitude, we feel that it describes all of the

available effects adequately. A precise set of BE: values for a range of temperatures, would

allow a more definite conclusion.

205



8.10 Calculations for dimethyl ether

8.10.1 Molecular properties of dimethyl ether

Dimethyl ether has the same C2v symmetry as sulphur dioxide and is also taken to lie in

the 1-3 plane with the 3-axis chosen to coincide with the principal molecular axis. The

values of the molecular parameters used in our calculations are given in Table 8.81.

Table 8.81: Molecular parameters of dimethyl ether used in the calcu­
lations

Molecular Parameter
1030 J.L3 (Cm)
104°011 (Cm2

)

104°022 (Cm2
)

104°033 (Cm2
)

1040a ll (C2m2J- 1)
104oa22 (C2m2J- 1)
104oa33 (C2m2J-1)
1040a (C2m 2J- 1)
1040~a (C2m2J- 1)
104oa 11(632.8 nm) (C2m2J-1)
1040a22(632.8nm) (C2m2J-1)
1040a33(632.8 nm) (C2m2J-1)
1040a(632.8 nm) (C2m2J- 1)
1040~a(632.8 nm) (C2m2J- 1)
100po(514.5 nm
104oa 11(514.5 nm) (C2m2J- 1)
1040a22(514.5 nm) (C2m2J-1)
1040a33(514.5 nm) (C2m2J- 1)
1040a(514.5 nm) (C2m2J- 1)
1040~a(514.5 nm) (C2m2J- 1)

Value
-4.37±0.03
11.0±2.0
-4.3±2.0
-6.7±1.7

6.584
5.195
5.399
5.726
1.299

6.69±0.17
5.46±0.14
5.28±0.13
5.81±0.17
1.33±0.32

0.371
6.72
5.51
5.32
5.85
1.32

Reference
[224]

} [225]

[9 ,226]

[23]

[4]

[226]

The electric dipole moment is that determined by Blukis et al. [224] from the Stark

effect, while the electric quadrupole moment tensor components are those obtained by

Benson and Flygare [225] from measurements of magnetizability anisotropy. It must be

noted that the quadrupole moment depends on the origin of the molecular axes, and

that for the values used here the origin is at the centre of mass of dimethyl ether. The

static polarizability tensor components are the scaled ab inito values, determined by

Couling and Graham [9] using the method described for sulphur dioxide in Section 8.9.1,

from the MP2 values of Spackman and Ritchie [226]. The dynamic polarizability tensor

components at A = 632.8 nm, are the precise measured values of Bogaard et al. [23].

Since no measured values of the optical-frequency polarizability tensor components are
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available for a wavelength of 514.5nm, the ab initio values calculated by Spackman and

Ritchie [226] at the MP2 level of theory are used here.

Since a parameter set which provided good agreement for the second pressure and

Kerr-effect virial coefficients of dimethyl ether had been found by Couling and Graham [9],

we used this set of parameters to calculate the second dielectric virial coefficient for the

range of temperatures for which measured values are available. The values we calculated

for Be were much lower than the experimental values and, in most cases, negative and

we consequently attempted to find a new set of parameters which would improve the

agreement with the measured value of Be without sacrificing the fit of the second pressure

virial coefficient. We used our new parameter set to calculate BK and compared our values

with the available experimental data. Our new parameter set and the parameter set fitted

to B(T) by Couling and Graham [9] are given in Table 8.82

Table 8.82: Lennard-Jones parameters and shape factors for dimethyl ether.

(1) Our fitted values
(2) Fitted values of Couling and Graham [9]

Ra (nm) el k (K) o. D2

0.390 400.0 0.1400 0.1556
0.390 370.0 0.1923 0.2137

8.10.2 Results of calculations of second virial coefficients for

dimethyl ether

Table 8.73 lists the values calculated for the second pressure virial coefficient of dimethyl

ether, together with the experiment al values of Haworth and Sutton [22] quoted by Dy­

mond and Smith [1]. The values calculated using the parameter set of Couling and Gra­

ham [9] fit the experimental values to within 0.5%. Our parameter set yielded calculated

values for B(T) which agree with the experimental values to within 5.5%.

Table 8.83: Calculated values of B(T) for dimethyl ether for two
sets of parameters, together with the experimental values of Ha­
worth and Sutton [22].

T
K

298.2
313.2
328.2

-456±10
-405±10
-368±10

(1)
106B calc

m3mol- 1

-431.2
-389.5
-354.3

%
Error
-5.44
-3.83
-3.72

(2)
106B calc

m3mol- l

-455.7
-406.4
-366.1

%
Error
-0.07
0.35
0.52

Be has been measured by various workers over a range of temperature from 291.2 K to

343.2 K. The experimental errors are large and the values are not in very good agreement.
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However, all of the values are large positive numbers of the same order of magnitude.

When we used the parameter set of Couling and Graham, which provides a very good fit

for B(T), to calculate the second dielectric virial coefficient, we found that at the lower

temperature the calculated values were large and negative, becoming less negative as the

temperature increases and , for temperatures of 330 K and higher, small and positive. This

can be seen in Table 8.84, which gives the measured values of Bs, together with the values

calculated using both parameter sets. Not only are these values far too low, but they

also display the opposite trend to the measured values and the values calculated using

our parameter set. This is shown clearly in Figure 8.8 (a), where the solid and dotted

lines represent the values calculated using parameter sets (1) and (2), respectively. From

the graph and the table, we see that the values obtained from our new parameter set are

of the correct sign and order of magnitude, and decrease with increasing temperature.

Although the solid curve lies below most of the experimental error bars, it is a reasonable

fit, considering the scatter of the measured values. In addition, several of the experimental

values have no quoted error, so that the fit may be better than it appears from the graph.

Table 8.84: Calculated values of B, for dimethyl ether
for two sets of parameters, together with the available
measured values.

T
K

291.2
294.7
303.2
311.5
313.5
323.5
334.7
340.5
343.2

1012Bexp
e

m6mol-2

2800
4000±1000
2800±1000

2020
2600±1000
1600±400
2400±1000

1540
1600±400

(1)
1012Bcak

e
m6mol-2

1623.8
1590.6
1512.9
1441.4
1424.7
1345.3
1263.5
1224.2
1206.6

(2)
1012Bcak

c
m6mol-2

-1300.6
-1121.5
-734.1
-420.7
-354.8
-81.1
114.7
170.2
185.4

Table 8.85 shows the relative contribution of the various terms used to calculate B,

for dimethyl ether. It can be seen that BCind makes a significant contribution to Be of

7.1%, while all three of the series in Bear are significant. The most significant contribution

of 57.3% is made by the dipole-quadrupole series a/l,{}, while the leading dipole-dipole ou

series contributes 20% and the quadrupole series aB contributes 11% of Be. The combined

effects of the terms containing the quadrupole moment make up more than two thirds of

the total calculated value of Be.
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Table 8.85: The relative contributions of the terms used to
calculate B, for dimethyl ether at 291.2 K for the parameter
set (D 1=0.1400, D2=0.1556, Ro=0.390, c/k=400.0).

Contributing 1012 x Value % Contribution
Term m6mol-2 to B,

j.12

a1j.12

a2j.12

a3j.12

a1j.11 ()1

0'.2j.11 ()1

a2()2

a3()2

7.191 0.44
102.284 6.30

6.254 0.39
115.729 7.13

-1444.290 -88.94
932.999 57.46
835.188 51.43

75.106 4.63
802.400 49.42
128.551 7.92 .
153.130 9.43
25.015 1.54

1508.099 92.87
B, = 1623.83 x 10 12m6mol 2

The second Kerr-effect virial coefficient has been measured by Bogaard et al. [23] at

a wavelength of 632.8 nm. Although the experimental errors are approximately 20%,

there is very little scatter, so that the temperature dependence is clearly discernible.

Both parameter sets were used to calculate BK and the relative contributions of the

terms used in the calculation are shown in Table 8.86. It is clear that the leading dipole

series tu», which contributes 85% of the total value for Bc, is the dominant contribution.

The a series makes a significant contribution of 8.3%, while the dipole-quadrupole series

j.1()a contributes 5%. The quadrupole series ()a contributes less than 2% to the final

value. Thus, the combined contribution of the terms containing the quadrupole moment

is approximately 7%, which although small, is not negligible.

The calculated and measured values of B K are listed in Table 8.87, and represented

graphically in Figure 8.8 (b). The graph shows the values calculated using parameter

sets (1) and (2) as solid and dashed curves, respectively. The dotted line represents the

calculated values of Couling and Graham [9], which do not include the dipole-quadrupole

j.1()a or quadrupole ()a series. The experimental point at 259 K is much higher than the

next point at 269 K, and it is not clear whether this is due to experimental scatter or

if it is a true reflection of the temperature dependence of BK. The solid line lies very

near to and within the error bars of all the measured values in the temperature range

from 269 K to 333.8 K, but is much lower than the experimental values at 259 K. The

dashed line lies above most of the measured values, but falls within the experimental
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Table 8.86:. The relative contributions of the terms used to
calculate BK for dimethyl ether at 259.0 K for A = 632.8 nm
for the parameter set (D1=0.1400, D2=0.1556, R o=0.390,

E/k=400.0).
Contributing 1030 x Value

Term C2m8J-2mol-2

a2 0.003
a3 0.137
a4 1.425
a5 0.201

f-J,2al 1.963
f-J,2a2 6.916
f-J,2a3 7.675
f-J,2a4 1.416

f-J,lfhal -0.091
f-J,lB1a2 1.119
f-J,l B1a3 0.045

B1a3 0.039
B1a4 0.215
B1a5 0.103

% Contribution
to BK

0.01
0.65
6.73
0.95
9.27

32.68
36.26
6.69

-0.43
5.29
0.21
0.18
1.02
0.49

Table 8.87: Calculated values of BK for dimethyl ether for two sets
of parameters, together with the measured values of Bogaard et
al. [23], at a wavelength of A = 632.8 nm.

T
K

(1)
1032BKlc %
C2m8J-2 Error

(2)
1032BKlc

C2m8J - 2

%
Error

259.0
269.0
278.4
288.2
302.4
318.9
333.8

34.2±6.8
18.8±3.8
16.1±3.2
13.1±2.6
11.1±2.2
10.2±2.0
5.8±1.2

21.17
18.20
15.54
13.62
11.21
8.79
7.49

-38.10
-3.19
-0.56
3.97
0.99

-13.82
29.14

29.25
24.27
20.22
16.65
12.65
9.75
8.75

-14.47
29.10
25.59
27.10
13.69
-4.41
50.86

uncertainty of the experimental point at 259 K. This makes it very difficult to decide

which line represents the best fit of the experimental data. Above 259 K the values

calculated using our new parameter set definitely fit the data best, but over the entire

temperature range the values obtained from Couling and Graham's set of Lennard-Jones

and shape parameters represent the best fit. An independent measurement in the lower
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temperature range would enable a more definite conclusion. However, it can be said that

both parameter sets yield reasonably good agreement with experiment.

The second refractivity and light-scattering virial coefficients have not been measured

for dimethyl ether. However, in order to provide possible future comparison, we have

calculated BR and Bp using both parameter sets. Table 8.88 shows the relative magnitude

of the various contributions to BR, while Table 8.89 gives the relative contributions of

the terms used to calculated Bp.

Table 8.88: The relative contributions of the terms used to cal­
culate BR for dimethyl ether at 298.15 K for A = 632.8 nm.

Contrib.
Term

(1)
1012 x Value

m6mol-2

(2)
1012 x Value

m6mol-2

8.122
103.185

6.416
117.723

6.90
87.65

5.45

21.514
148.356
13.022

182.892

11.76
81.12

7.12

% of
Bp
1.64

-0.21
16.68

123.95
18.92

160.99
-60.99

3.86 0.49 19.78
-1.12 -0.14 -2.50
87.34 11.15 201.32

1273.99 162.66 1495.76
155.14 19.81 228.31

1519.21 193.97 1942.67
-736.00 -93.97 -736.00
783.21 1206.67

2.89 4.46

Table 8.89: The relative contributions of the terms used to
calculate Bp for dimethyl ether at 328.15 K for A = 514.5 nm.

(1) (2) [9]

Contrib. 106 x Value % of 106 x Value
Term m'mol"! Bp m3mol-1

In summary, we note that our new set of parameters yield calculated values of B(T)

which only agree with experiment to within approximately 5%, while parameter set (2)

fits B(T) to within 0.5% over the limited range of experimental data. Both sets agree

reasonably well with experiment for BK , but the values of B, calculated using parameter

set (2) are of the wrong sign and are between 90% and 130% lower than the measured

values, while our new parameter set yields calculated values for B, which agree to between
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16% and 60% with experiment. Taking all of the results for dimethyl ether into account,

it would appear that our new parameter set provides a slightly better fit of the available

second virial coefficients than the parameter set of Couling and Graham [9].
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8.11 Calculations for ethene

8.11.1 Molecular properties of ethene

The ethene molecule is taken to lie in the 1-3 plane of a system of coordinate axes 0(1,2,3)

with the C=C bond on the 3-axis and the origin of the molecule-fixed axes at the midpoint

of the bond. Ethene is a non-polar molecule with D2h symmetry, so that the traceless

electric quadrupole moment tensor has two independent components: On and 022 , with

033 = - (On + (22 ) and the polarizability tensor has three independent components: an,

an and a33 [26].
Although the electric quadrupole moment of ethene has been the subject of exten­

sive experimental and theoretical research, the experimental investigations are usually

confined to partial determinations or combine various experimental data in order to es­

timate the two independent components. However, accurate theoretical estimates by

Spackman [202] at the MP2 (second-order Meller-Plesset perturbation theory) level and

Maroulis [103] at the MP4 level are available. These theoretical values are in excellent

agreement with each other and are shown, together with the experimental data available,

in Table 8.90.

Table 8.90: Selected experimental and theoretical values of the quadrupole mo­
ment tensor components of ethene.

Measurements of collision-induced ab-

sorption (CIA) spectra [227]

Measurements of CIA spectra [228]

Magnetizability anisotropy measure­

ments [229]

Measurements of induced birefringence

+ second dielectric virial coefficients +
refractive index [74]

MP2 theory [202]

MP4 theory [103]

6.73

5.16

4.67

4.35

5.43

5.370 ± 0.22

-13.33

-10.41

-12.02

-10.99

-11.03

-10.92 ± 0.45

6.60

5.52

7.31

6.68

5.60

5.549 ± 0.22

In this work we have used the theoretical values of Maroulis [103] which are in good
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agreement with the estimates obtained by Dagg et al. [228] from collision-induced ab­

sorption spectra measurements in mixtures of ethene and rare gases.

For linear molecules the two independent components of the dynamic polarizability

tensor can be deduced from the experimental values of Po and a [4,190]. However, since

non-linear molecules have three independent components, an additional physical rela­

tionship connecting the components is necessary to evaulate the individual components.

For this reason, there are very few experimentally-deduced polarizability components for

non-linear molecules. Hills and Jones [230] measured the pure rotational Raman spec­

trum of ethene and compared it with the spectrum calculated using an asymmetric rotor

computer simulation in order to deduce a value for the dimensionless quantity R20 , which

is defined as:

(8.1)

The polarizability anistropy defined in equation (7.22) may be determined from equa­

tion (7.25) if Po and a are known. Then, solving equations (7.21), (7.22) and (8.1) yields

values for the polarizability tensor components an, a22 and a33. Table 8.91 lists two sets

of values for these components at 514.5 nm. The first set is obtained from the values

for Po and a measured by Bogaard et al. [4] together with the value of R20 measured by

Hills and Jones [230]. The second set was obtained using Couling and Graham's [9,36]

measured value for Po, the more precise value of R20 recently obtained by Barbes [231],

and a value for a interpolated from Hohm's high-precision measurements of the frequency

dependence of a for ethene [140]. In this work we will use the second set of values. Coul­

ing and Graham [9] showed that using the first set results in a decrease of less than 0.5%

in their calculated value for Sp and it should have an equally negligible effect on the other

second virial coefficients.

Table 8.91: Components of the dynamic polarizability tensor of ethene, at wavelengths
of 514.5 nm and 632.8 nm,

100po
1040a (C2m2J-1)
1040~a (C2m2J-1)
R20

1040a n (C2m 2J - 1)
104oa 22 (C2m 2J- 1)
104oa 33 (C2m2J- 1)

514.5 nm
Set 1

1.2475 ± 0.005 [4]
4.76 [4]
2.077

0.22 ± 0.03 [230]
4.341

3.826

6.112

514.5nm
Set 2

1.250 ± 0.002 [9]
4.7871 [140]
2.091

0.21 ± 0.01 [231]
4.353

3.857

6.151

632.8 nm

1.207 ± 0.002 [4]
4.7124 [140]
2.0215

0.21 ± 0.03 [231]
4.305

3.804

6.029

215



Since there are no experimental estimates of the individual components of the static

polarizability tensor a, Couling and Graham [9] scaled the ab initio calculated values of

of Spackman [202] according to the mean static polarizability a = (4.5717 ± 0.0008) x

1O-40C2m2J-1 extrapolated from measured dynamic values [140]. They then combined

the dynamic values of a with values of Po [4] to obtain values for the dynamic polarizability

anisotropy, which when extrapolated to infinite wavelength agreed with the anisotropy

of the scaled static polarizability components to within 1.1%. Table 8.92 shows the

static polarizability tensor components aij, mean static polarizability a and polarizability

anisotropy L}.a calculated by Spackman, as well as the scaled values.

Table 8.92: Ab initio calculated static polarizability tensor components,
mean static polarizability and polarizability anisotropy of ethene, together
with scaled values [9].

Polarizability 1040x MP2 calculated values [202]
property C2m2J-1

all 4.092
a22 3.534
all 5.594
a 4.407

L}.a 1.845

1040x Scaled values
C2m 2J - 1

4.245
3.666
5.803
4.571
1.914

For molecules with D2h symmetry the dipole moment, first-order hyperpolarizability

and the A-tensor are all zero. The second-order hyperpolarizability has six independent

components. Maroulis [102] carried out ab initio SCF calculations of the static hyperpo­

larizability tensor components of ethene, and confirmed the assumption that these values

are unlikely to differ from the optical frequency values. Couling and Graham [9] used

these static values to determine the leading term in '"'(ijk for the second Kerr-effect virial

coefficient and found that it contributed only 0.04% to the total B K . Thus, it seems

reasonable to assume that the second-order hyperpolarizability will make a negligible
contribution to the other second virial coefficients.

Table 8.93: Lennard-Jones parameters and shape factors for ethene.

Ro (nm)
0.4232
0.4236
0.4232

clk (K)
205

193.5
190.0 0.22965 0.21383

Reference
[106]
[232]

[9]

Couling and Graham [9] determined values for the Lennard-Jones parameters Ro
and clk and their shape factors D1 and D2 by fitting values of the second pressure
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virial coefficient B(T) to the available experimental values [1] over the temperature range

238.15 K to 448.15 K. These fitted values are given in Table 8.93 along with the force

constants quoted in the classic text of Hirschfelder et al., which are obtained from viscosity

data [106], and the more recent values of Das Gupta et al. [232] obtained from viscosity

data and second pressure virial coefficients. Their optimized values yielded calculated

values of B(T) that fit the experimental values to within 1.0% over almost th e entire

range. The shape factors were chosen to reflect th e molecular dimensions [9] . They then

used the fitted parameters to calculate Bp and B K . They found that the calculated Bp

agreed very well with the measured values. The calculated BK values were not in good

agreement with the experimental values, with discrepancies of between 20% and 50%. It

remains unclear whether this is due to the experimental uncertainties or th e failure of the

model.
The aim of this work is to attempt to find a set of molecular parameters which will

adequately describe th e second virial coefficients for as many of the effects under study

as possible. With this in mind , the Lennard-Jones force constants and the shape factors

det ermined by Couling and Graham [9] were used to calculate all th e second dielectric

and refractivity virial coefficients.

8.11.2 Results of calculations of second virial coefficients for

ethene

The values of the second pressure virial coefficient calculated using the Lennard-Jones

and shape parameters of Couling and Graham [9] are given in Table 8.94, together with

the smoothed experimental values of Dymond and Smith [1]. It can be seen that the

Table 8.94: The temperature dependence of the calculated values
of the second pressure virial coefficient B(T) for ethene, and the
best fit data of Dymond and Smith [1] .

Temperature 106 B exp 106 B ealc
K m3mol-1 m''mol"!

240.0 -218.5±2 -221.53
250.0 -201±2 -202.59
275.0 -166±1 -165.15
300.0 -138±1 -137.25
325.0 -117±1 -115.43
350.0 -99±1 -97.86
375.0 -84±1 -83.41
400.0 -71.5±1 -71.36
450.0 -51.7±1 -52.18
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Error
1.39
0.79
-0.51
-0.54
-1.34
-1.15
-0.70
-0.20
0.93



theoretical values agree with experiment to within 1.4% over the entire temperature range.

The second dielectric virial coefficient was then calculated using the same parame­

ter set . The relative magni tudes of the terms contributing to Bc, as defined in equa­

tions (4.152) to (4.154) and (4.160), are summarized in Table 8.95 for a temperature of

298.2 K. It is clear that the a a and ()2a2 terms are the most significant , although the a 2

term is not negligible. The a series of terms has evidently converged, while the ()a series

is converging rapidly.

Table 8.95:. The relative contributions of the terms used to
calculate B, for ethene at 298.2 K.

Contributing 1012 x Value
Term m6mol-2

% Contribution
to Bc

-10.640
24.142
0.727

14.229
40.158
4.857

45.015
B, = 59.244 x 10

-17.96
40.75

1.23
24.02
67.78
8.20

75.98

It can be seen from Table 1.2 that there are large variations in the experimental data.

Th e fit of the calculated values to measured values is shown in Figure 8.9 (a). The solid

line represents the values for B, calculated including the two quadrupole terms, while the

dotted line shows the curve calculated using only the a series. From this graph it is clear

that the solid curve fits the most recent measured values of Bose and Cole [24] very well.

It can also be seen that the inclusion of the quadrupole series of terms improves the fit

dramatically. Table 8.96 shows the temperature dependence of the calculated values of

Bc in comparison with the experimental dat a of Bose and Cole [24].

Table 8.96: The temperature dependence of the calculated values
of Bc for ethene, and the measured values of Bose and Cole [24].

Temperature 1012 B;xp 1012 B~alc %
K m6mol-2 m6mol-2 Error

298.2 59.24
303.2 50.3±1.4 57.46
323.2 47.5±1.4 51.68
348.2 46.35
373.2 42.0±2.8 42.49
423.2 37.6±2.4 37.23
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Figure 8.9: Temperature dependence of the calculated and measured values of (a) Bc, and (b)
BK of ethene. The solid lines represent our calculated values. The dotted line in (a) shows
values of B; calculated without quadrupole terms. The dashed and dotted lines in (b) represent
the calculated values of Couling and Graham [9] and Tammer and Hiit tner [25], respectively.
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Couling and Graham [36] calculated the temperature dependence of BK at A= 632 nm,

which they found to be consistently lower than the experimental values of Buckingham

et al. [14] by between 20% and 50%. The more recent measured values of Tammer and

Hiittner [25] are generally higher than those of Buckinhgam et al. and cover a wider

temperature range. We have recalculated BK , including the new quadrupole terms (}20(3 ,

(}20(4 and (}20(S' Table 8.97 shows the relative significance of the terms used to calculate

BK for ethene, including the new quadrupole series.

Table 8.97: The relative contributions of the terms used to calculate BK for
ethene at 202 K and 298 K.

Contributing
Term
0(2

0(3

0(4

O(s

(}20(3

(}20(4

(}20(S

B K

202 K
1032 x Value

C2m8J-2mol- 2

25.990
-57.428
54.801

2.926
-5.853
17.765
7.910

46.112

56.36
-124.54
118.84

6.35
-12.69
38.53
17.15

298K
1032 x Value

C2m8J-2mol- 2

3.516
-10.140
19.905
1.139
0.135
1.782
0.693

17.031

20.64
-59.54
116.88

6.69
0.80

10.46
4.07

It can be seen from Table 8.97 that the 0( series has definitely converged, and that

the hyperpolarizability makes a negligible contribution. Note that terms including the

quadrupole moment make a significant contribution, clearly establishing the relative im­

portance of the quadrupole series.

The temperature dependence of the measured values is given in Table 8.98 together

with the calculated values of Tammer and Hiittner [25], Couling and Graham [9] and our

new more complete calculations. Note that the errors quoted for the measured values [14]

listed in Table 8.98 were obtained from a least-squares analysis of the experimental data.

Thus , the uncertainties do not allow for systematic errors due to errors in the pressure

virial coefficients which are used to deduce the molar volume. Figure 8.9 (b) shows

a solid curve plotted through our calculated values. The dotted line shows the values

calculated by Tammer and Hiittner using the theory of Buckingham and Dunmur [82,174]

for spherical molecules. These values of BK are even lower than those of Couling and

Graham, which are indicated by a dashed line. It can be seen that although our solid

curve lies below many of the experimental points, it clearly provides the best fit of the
measured values.
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Table 8.98: The temperature dependence of calculated values of B K for ethene, and the
measured values of Buckingham et al." [14] and Tammer and Hiittner" [25].

Ib Il III
Spherical Non-linear Non-linear
Approx. No (1 With (1

T 1012
B~? 1012 Bl{lc % 1012 Bcalc % 1012 B cak %K K

K m6mol-2 m6mol-2 Err m6mol-2 Err m6mol-2 Err
202.4 103.0b 23 -77.67 26.28 -74.49 46.11 -55.23
211.4 90.1b 21 -76.69
214.8 63.3b 21 -66.82
222.2 49.9 b 20 -59.92 22.06 -55.79 33.34 -33.19
235.6 44.5 b 18 -59.55
250.0 39.6b 17 -57.07
262 34±7a 17.06 -49.82 21.47 -36.85
266.6 34.2 b 15 -56.14
268 26±6a 16.54 -36.38
273 23±5a 16.13 -29.87
280 18±3a 15.60 -13.33 18.94 5.22

. 284.9 32.8b 14 -57.32
286 22±5a 15.18 -31.00
294 24±5a 14.66 -38.92
298 18±3a 14.42 -19.89 17.03 -5.399
302 18±3a 14.19 -21.17
302.2 19.6b 13 -33.67
313 16±3a 13.59 -15.06 15.78 -1.38
314 18±3a 13.53 -24.83
333 17±3a 12.60 -25.88 14.39 -15.35
333.4 15.9b 11 -30.82
334 17±3a 12.54 -26.23
363.7 28.4b 10 -64.79 11.15 -60.74 12.52 -55.92
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The second refractivity virial coefficient has been measured at several different wave­

lengths, but most of the experiments have been conducted at A= 633.0 nm. The measured

values at this wavelength are only available at two different temperatures, and the scatter

at each is so large that it is not helpful to plot a graph of the experimental and theoreti­

cal values. Table 8.99 gives the relative magnitudes of the three calculated terms which

contribute to BR, and clearly shows that convergence has been established. Table 8.100

presents the calculated and measured values of the second refractivity virial coefficient of

ethene for a wavelength of 633.0 nm.

Table 8.99: The relative contributions of the terms used
to calculate BR for ethene at 303 K.

Contributing 1012 x Value
Term m6mol-2

% Contribution
to BR

-11.916
27.390
0.842

-73.03
167.87

5.16

Table 8.100: Calculated and measured values of BR
for ethene at A = 633.0 nm.

373

Temperature 1012 B'l?
K m6mol-2

303 17.60±2.2
40.8±2.0

6.0
17.7±OA
20.3±0.8
17A±OA

19.50±0.50
17.8± 0.3
20.1±0.5
17.8± 0.3

Re£.

[74]
[75]
[24]
[77]
[78]
[79]
[64]
[77]
[78]
[79]

16.316

16.945

Couling and Graham [9,36] have calculated the second light-scattering virial coefficient

at A = 514.5 nm, compared the theoretical values with their measured value and the value

of Berrue et al. [92] and found the theory and experiment to be in excellent agreement.

The relative magnitudes of the various contributions to Bp at T = 294.5 K are given in

Table 8.101. Although the a5 term makes asignificant contribution to Sp it is obvious

that the series is converging very rapidly and the a6 and higher-order terms in this series

should contribute negligibly to Bp. Table 8.102 gives the experimental values of Couling
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and Graham [9] and Berrue et al. [92], together with the values calculated by Couling and

Graham allowing for the non-linearity of the molecule. They had previously calculated

Bp for ethene treating it as an linear molecule [7] and found that the agreement of the

calculated Bp with experiment improves when the low symmetry of the molecule is taken

into account. In particular the calculated Sp increases by almost 50%, although this is

masked by the much larger 2B contribution.

Table 8.101: The relative contributions of the terms used to
calculate Bp for ethene at 294.92 K and A = 514.5nm [9].

Contributing 106 x Value % Contribution
Term nr'mol"! to Bp

g 23.42 -12.21
b3 2.94 -1.53
a3 -68.11 35.52
a4 128.97 -67.26
as 7.14 -3.72
s, 94.36 -49.21
2B -286.12 149.21

B~ = -191.76 x 10 6m3mol- l
Bp = -2.357 x 1O-6m3mol- l

Table 8.102: Measured and calculated values for Bp of ethene at A = 514.5 nm.

Temperature 106 Bexp Ref. 106 Beak %p p

K m3mol-1 m3mol-1 Error
294.92 -2.384± 0.027 [9] -2.357 -1.13
328.0 -1.78±0.07 [92] -1.671 -6.12

Thus it seems that by taking the non-linearity of ethene into account it is possible

to find reasonable agreement between calculations based on the DID model and the

available experimental data for the second virial coefficients considered here. In all cases,

new precise measurements for a wide range of temperatures would allow a more rigorous

comparison between experiment and theory.
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8.12 Conclusions

The aim of this work has been to find a unique set of Lennard-Jones and shape param­

eters for each gas which, together with known molecular properties, either experimental

or calculated, may be combined with complete molecular theories of the second virial

coefficients to yield calculated values which agree with experiment for the full range of

virial effects.
We have studied ten linear and non-linear gases, some dipolar and some non-polar,

and have achieved mixed success. For the linear polar gas fiuoromethane we were able

to find a unique set of parameters which explained the available data reasonably well,

while for trifluoromethane our set of parmaters provided good fits with experiment for all

the available effects, except the second refractivity virial coefficient. For chloromethane

we have presented the results for three slightly different sets of parameters and found

that the set chosen to fit B, also yielded a good value of Bp and fits the experimental

values for B(T) to within 2%. The other linear polar gas which was studied is hydrogen

chloride for which only values of B(T) and B, have been measured. We were not able

to find any set to yield measured values for B, as large as the experimental values, but

the set of parameters which we chose fit the experimental data for B(T) very well, and

gave the closest fit to B, which we could find using physically reasonable Lennard-Jones

parameters.

Of the linear non-polar gases under study, only for nitrogen could we find a set of

parameters which yielded good values for all but one of the five effects available. For

nitrogen we compared two different sets of parameters and found that our optimized set

described all of the effects, except Bp, better than the set of Couling and Graham [9]. For

carbon dioxide and ethane we were unable to choose a set of parameters which provided

good agreement between theory and experiment for all of the effects. This is due in part

to the fact that much of the experimental data available has large experimental errors

and that for some of the effects only one or two measured values are available, making it

difficult to select best-fit parameters.

We then studied three non-linear gases: the polar molecules sulpur dioxide and

dimethyl ether, and the non-polar ethene. For all three molecules, we first considered

the parameter set chosen for each by Couling and Graham [9] who extended the existing

theory of Bp and B K for linear molecules to the more general case of non-linear molecules

and used the new theory to calculate Bp and B K for these non-linear gases. Since their

parameters yielded good fits for B(T) we used these parameters in our new non-linear

theory for the second dielectric virial coefficient to calculate values for B, to compare

with experiment. For the ethene molecule we found that the calculated values of B, were

in good agreement with experiment. We then re-calculated BK including the quadrupole
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terms and found th at the agreement with experiment improved. Since these parameters

also yield good agreement with the measured values of Bp and BR, we conclude that this

parameter set describes all of the available data reasonably well. For sulphur dioxide,

we found that the value of Bc calculated using Couling and Graham's parameter set was

much larger than the single measured value. Thus , we found a new set of parameters

which provided a reasonably good fit for B(T) and yielded a value of B, which fell within

the experiment al error of the measured value. However, calculated values of BK and Bp

using this new set of values were not as good as those calculated with Couling and Gra­

ham 's parameters. Thus, we concluded that since the parameter set chosen by Couling

and Graham provides a better fit for three of the effects and yields a value for B, which is

the correct order of magnitude, it describes all of the available effects adequately. Only a

precise set of B, values for a range of temperatures, would allow a more definite conclu­

sion. When we used Couling and Graham 's parameter set to calculate B, for dimethyl

ether, the results were very poor. As for sulphur dioxide, we found a new parameter set

to optimize B(T) and Bc. This new set also yielded values for BK which agree well with

experiment, and thus we concluded that the new parameter set represents a better fit for

all the available data than the original set.

A very important fact which has been clearly demonstrated by all our calculations is

that, in general , quadrupole moment terms make a significant contribut ion to both the

second dielectric and Kerr-effect virial coefficients, for both non-polar and polar molecules.

No future calculations could be considered to be complete without the inclusion of these

terms. An important point to note is that it is essential to establish convergence of the

various sums to arrive at any meaningful conclusions. Many of the criticisms of the DID

model have often erroneously stemmed from the failure to include sufficient terms and to

obtain convergence. Before the advent of computers and computer algebraic manipulation

packages this was completely understandable in view of the extreme complexity of th e

calculations. Even now, some of the larger terms demand large inputs of personal and

computer t ime.

In overview, we found that for four of the gases, fluoromethane, chloromethane,

dimethyl ether and ethene, a unique parameter set was found for each which described

all of the available effects reasonably well. For the three gases, trifluoromethane, ni­

trogen and sulphur dioxide, one interaction parameter set explained all but one of the

effects for which data was available to within the experimental uncertainty. For t rifluo­

romethane the parameter set which yielded good agreement for B(T), B, and BK could

not explain the observed values of BR, while for nitrogen one parameter set produced

reasonable agreement for all of the effects except Bp and a different set, which yielded

good agreement for Bp, did not explain the remaining four effects as well as the first

set . The parameter set which explained B(T) , BK and Bp very well for sulphur dioxide,
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yielded a value for Be which was much larger than the experimental value, although of

the correct sign and order of magnitude. Hydrogen chloride posed a special problem as

data was only available for two of the effects, B(T) and Be. It was possible to find a set

of interaction parameters in good agreement with the measured values of B(T), but the

experimental data for Be was an order of magnitude larger than the largest calculated

values. Since the remaining effects have not been measured for this gas it was not possible

to test the theory more rigorously. For the remaining gases carbon dioxide and ethane, it

was impossible, based on the existing measured values, to select a unique parameter set

which explained all of the effects. Definite conclusions are very often precluded by large

scatter in one or more of the sets of observed data for some of the virial coefficients. A

rigorous test of the various molecular theories for the different effects must await more

precise measurements, but on general overview instances of complete failure in explain­

ing experimental observations are few; and it would be fair to say that the mechanisms

of the various second virial coefficients are fairly well understood, despite the daunting

complexity and volume of the theories.
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Appendix A

Second Pressure Virial Coefficient

Tables

Second pressure virial coefficients have been measured by many researchers for many gases

and their mixtures. Tables A.1,A.2 and A.3 show the data used to fit the calculated and

observed second virial coefficients of the gases considered in thi s study. Where available

Dymond and Smith's [1] smoothed values have been used. For CO2 , no smoothed dat a is

available,but the data of Angus et al. [233] are recommended by Dymond and Smith [1].

No smoothed data is presented for CHF3, so a curve was fitted to the combined data of

Sutter and Cole [5], and Lange and Stein [6].
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Table A.I: Temperature dependence of B(T) for spherical gases

Ar Ne Kr Xe CH4 CF4 SF6

T 106B(T) T 106B(T) T 106B(T) T 106B(T) T 106B(T) T 106B(T) T 106B(T)
K m3mol- 1 K m3mol-1 K m3mol-1 K m3mol-1 K m3mol-1 K m3mol-1 K m3mol-1

81 -276.0±5 60 -24.8±1 110 -364±10 160 -425±10 110 -330±1O 225 -172.5±1 200 -685±15
85 -251.0±3 70 -17.9±1 115 -333±10 170 -378±1O 120 -273±5 250 -137.5±1 210 -615±12
90 -225.0±3 80 -12.8±1 120 -306±5 180 -337±8 130 -235±5 275 -109.0±0.5 220 -555±12
95 -202.5±2 100 -6.0±1 130 -264±5 190 -306±8 140 -207±3 300 -87.0±0.5 240 -455±10

100 -183.5±1 125 -0.4±1 140 -229.5±5 200 -276±7 150 -182±3 325 -69.0±0.5 260 -380±8
110 -154.5±1 150 3.2±1 150 -200.7±2 210 -254±5 160 -161±3 350 -55.0±0.5 280 -323±7
125 -123.0±1 200 7.6±1 170 -159.0±2 . 225 -224±5 180 -129±2 400 -32.0±0.5 300 -277±5
150 -86.2±1 300 11.3±1 200 -116.9±1 250 -184±4 200 -105±2 450 -16.0±0.5 325 -226±5
200 -47.4±1 400 12.8±1 250 -75.7±1 275 -156±4 225 -83±2 500 -4.0±0.5 350 -190±5
250 -27.9±1 600 13.8±0.5 300 -50.5±1 300 -133±3 250 -66±1 600 14.0±0.5 375 -159±5
300 -15.5±0.5 400 -22.0±1 325 -109±2 275 -53±1 700 25.0±0.1 400 -135±4
400 -1.0±0.5 500 -8.1±0.5 350 -93.2±2 300 -42±1 800 33.0±0.1 425 -113±2
500 7.0±0.5 600 1.7±0.5 400 -69.4±2 350 -26±1 450 -97±2
600 12.0±0.5 700 8.2±0.5 450 -51.8±2 400 -15±1 475 -81±2
700 15.0±1 550 -28.0±2 500 -0.5±1 500 -67±2
800 17.7±1 650 -13.0±2 600 8.5±1 525 -56±2
900 20.0±1

1000 22.0±1
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Table A.2: Temperature dependence of B(T) for non-polar gases

H2 N2 CO2 [233] C2H6 C2H4

T 106B(T) T 106B(T) T 106B(T) T 106B(T) T 106B(T)
K m3mol-1 K m3mol-1 K m3mol-1 K m3mol-1 K m3mol-1

14 -274±5 75 -275±8 270 -155.4±2 200 -410±1O 240 -218.5±2
15 -230±5 80 -243±7 273.15 -151.4±2 210 -370±5 250 -201±2
17 -191±5 90 -197±5 280 -143.3±2 220 -336±5 275 -166±1
19 -162± 5 100 -160±3 290 -132.5±2 240 -282±3 300 -138±1
22 -132±5 110 -132± 2 298.15 -124.5±2 260 -243±2 325 -117±1
25 -110±3 125 -104±2 300 -122.7±2 280 -211±2 350 -99±1
30 -82±3 150 -71.5±2 310 -113.9±2 300 -182±2 375 -84±1
40 -52±2 200 -35.2±1 320 -105.8±2 325 -154±1 400 -71.5±1
50 -33±2 250 -16.2±1 330 -98.5±2 350 -130.5±1 450 -51.7±1
75 -12±1 300 -4.2±0.5 340 -91.7±2 375 -111.0±1

100 -1.9±1 400 9.0±0.5 350 -85.5±2 400 -96.0±1
150 7.1±0.5 500 16.9±0.5 360 -79.7±2 450 -71.0±1
200 11.3±0.5 600 21.3±0.5 370 -74.4±2 500 -52.0±0.5
300 14.8±0.5 700 24.0±0.5 380 -69.5±2 550 -36.5±0.5
400 15.2±0.5 390 -64.8±2 600 -24.5±0.5

400 -60.5±2
410 -56.5±2
420 -52.8±2
430 -49.3±2



Table A.3: Temperature dependence of B(T) for polar gases

CH3F CHF3 CH3CI CHCl3 HCI

T 106B(T) T 106B(T) T 106B(T) T 106B(T) T 106B(T)
K rrr'mcl"! K m3mol- 1 K m3mol-1 K rrr'mol" K m3mol- 1

280 -244±3 243.15 -311.1±4 280 -470±10 320 -1000±50 190 -456.0±7
298.1 -209±3 273.15 -234.9± 4 300 -400±10 340 -860±30 200 -392.0±7

300 -206±3 298.15 -188.0±4 320 -345±10 360 -740±30 225 -287.0±7
~ 320 -174±3 313.15 -165.8±4 340 -300±5 380 -640±30 250 -221.0±7
,j:::..
f-' 323.1 -170±3 323.15 -153 .0±4 360 -264±5 400 -560± 30 275 -175.0±7

340 -150± 3 368.15 -1l0.4±4 400 -212±5 295 -147.1±6
360 -129±3 369.45 -109.4±4 450 -155±5 300 -142.0±6

369.5 -121±3 404.75 -84.6±3 500 -1l1±3 330 -1l4.0±6
380 -1l2±3 550 -80±2 370 -90.0±6
400 -99±2 600 -57±2 400 -76.0±5

416.5 -89±2 420 -68.5±5
420 -87±2 450 -59.0±5

480 -53.0±5



Appendix B

Electric Multipole Moments

A static distribution of electric charges qi at positions r, relative to an arbitrarily chosen

origin 0 within the arrangement of charges, produces an electrical potential ip at all points

in space. Buckingham [234] showed that if we consider any point P, with a displacement

R from the origin, where R » r., then the electric potential is given by the multipole

expansion:

(B.1)

where the Greek subscripts denote Cartesian tensor components x, y or z, with a repeated

subscript implying summation over these components, and oa{3 is the Kronecker delta.

The summations in (B.1) are the electric multipole moments of the charge distribution,

with the electric monopole, or the total charge of the distribution given by:

(B.2)

the electric dipole moment given by:

(B.3)

and the primitive electric quadrupole moment given by:

(BA)

As for other multipole moments of higher order than the dipole moment , an alterna­

tive definition of the electric quadrupole moment has been adopted, called the traceless
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quadrupole moment:

(B.5)

which is often used by molecular physicists because it vanishes for a spherically-symmetric

electric charge distribution, and therefore has intuitive appeal. However, Raab [196] has

cautioned against using the traceless quadrupole moment indiscriminately, since there

exist electrodynamic situations where it is necessary to retain the primitive definitions of

multipole moments. The matter is controversial and we follow all earlier workers in the

field by using the traceless quadrupole throughout.
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Appendix C

Fortran prograll1s

C.l Example of a program to optimize B(T) and Be

for a linear non-polar molecule

PROGRAM C02OPT
C
C PROGRAM TO CALCULATE B(E) AND B(T) FOR C02 USING
C GAUSSIAN INTEGRATION WITH 64 INTERVALS FOR RANGE AND 16
C INTERVALS FOR ANGULAR VARIABLES, AND USING DOUBLE PRECISION.
C DATE 01-08-95 VERSION CALCULATES BE FOR 8 TEMPERATURES AND
C VARIOUS VALUES OF SHAPE, R(O) AND ElK, AND B(T) FOR 13 TEMPS.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION COEF2(128),COEF1(16),SEP(128),THETA1(16),

+ THETA2(16),PHI(16),C(3) ,CR(4) ,BETEMP(8) ,ABE(8),BE(8,1200),
+ BEEXP(8),BEEXPERR(8),BESSE(1200),BTTEMP(19),ABT(19),BT(19,1200),
+ BTEXP(19),BTEXPERR(19),BTSSE(1200),D(1200) ,RO(1200) ,EK (1200),
+ ULJ(128,16,16,16),USHAPE(128,16,16,16),UELEC(128,16,16,16)

C---------------------------------------
C MOLECULAR DATA FOR C02
C---------------------------------------

ALPHA=3.24500
ALFOP=2.90700
AMU=O.OOOOO
THETA=-15.000
BETA=O.OOOO
BPERP=O.OOOOO
BPARA=O.OOOOO
APERP=O.OOO
APARA=O.OO
CZZ=O.OOOOO
CXX=O.OOOOO
CXZ=O .OOOOO
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CAP=O.26000
AMIN1=O.10
AMAX1=3.0
AMIN=O.O
AMAX=3.14159265359

BTTEMP(1)=262.650
BTTEMP(2)=273.150
BTTEMP(3)=283.150
BTTEMP(4)=299.650
BTTEMP(5)=309 .650
BTTEMP(6)=323.150
BTTEMP(7)=333.150
BTTEMP(8)=343.150
BTTEMP(9)=353.150
BTTEMP(10)=363.150
BTTEMP(11)=373.150
BTTEMP(12)=423.150
BTTEMP(13)=473.150

BTEXP(1)=-159.900
BTEXP(2)=-147.400
BTEXP(3)=-136.700
BTEXP(4)=-120.500
BTEXP(5)=-111 .300
BTEXP(6)=-100.700
BTEXP(7)=-93.9000
BTEXP(8)=-87.1000
BTEXP(9)=-80.9000
BTEXP(10)=-75.3000
BTEXP(11)=-69.5000
BTEXP(12)=-46.3000
BTEXP(13)=-29.1000

BTEXPERR(1)=4.00
BTEXPERR(2)=4.00
BTEXPERR(3)=4 .00
BTEXPERR(4)=3.00
BTEXPERR(5)=3.00
BTEXPERR(6)=3.00
BTEXPERR(7)=3 .00
BTEXPERR(8)=3.00
BTEXPERR(9)=3.00
BTEXPERR(10)=2.00
BTEXPERR(11)=2.00
BTEXPERR(12)=2.00
BTEXPERR(13)=2 .00

BETEMP(2)=295.15
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BETEMP(3)=302.55
BETEMP(4)=322.85
BETEMP(5)=348.15
BETEMP(6)=369.45
BETEMP (7) =373.15
BETEMP(8)=423.15

BEEXP(2)=64.0000
BEEXP(3)=57.6000
BEEXP(4)=47.2667
BEEXP(5)=46.4000'
BEEXP(6)=36.0000
BEEXP(7)=34.7000
BEEXP(8)=30.0000

BEEXPERR(2)=10.0000
BEEXPERR(3)=6.00000
BEEXPERR(4)=8 .26667
BEEXPERR(5)=5.00000
BEEXPERR(6)=4.00000
BEEXPERR(7)=3.50000
BEEXPERR(8)=3.00000

NLOW=l
NSEP=128
NANGLE=16

CALL GAUSSPT(NLOW,NSEP,NSEP,AMIN1,AMAX1,SEP,COEF2)
CALL GAUSSPT(NLOW,NANGLE,NANGLE,AMIN,AMAX,THETA1,COEF1)

DO 180 N=l,NANGLE
THETA2(N)=THETA1(N)
PHI (N)=THETAl (N)

180 CONTINUE

DO 7040 INDX4=1,NANGLE
DO 7050 INDX3=1,NANGLE

DO 7060 INDX2=1,NANGLE
DO 7070 INDX1=1,NSEP

C-----------------------------------------------------
C CALCULATE QUADRUPOLE-QUADRUPOLE POTENTIAL
C-----------------------------------------------------

El=8.98758E-26*0.75*THETA**2*(1.-5.*(COS(THETA1(
+ INDX2)))**2-5.*(COS(THETA2(INDX4)))**2+17.*(COS(
+ 'THETA1(I NDX2) ) )**2*(COS(THETA2(I NDX4) ) )**2+2 .*
+ (SIN(THETA1(INDX2)))**2*(SIN(THETA2(INDX4)))**
+ 2*(COS(PHI(INDX3)))**2+16.*SIN(THETA1(INDX2))*
+ COS(THETA1(INDX2))*SIN(THETA2(INDX4))*COS(THETA
+ 2(INDX4))*COS(PHI(INDX3)))/(SEP(INDX1)**5)
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C---------------------------------------------------
C CALCULATE QUADRUPOLE-INDUCED DIPOLE POTENTIAL
C---------------------------------------------------

F1=8.07755E-29*(-9./8.)*ALPHA*THETA**2*(4.*COS
+ (THETA1(INDX2))**4+4.*COS(THETA2(INDX4))**4+
+ SIN(THETA1(INDX2)) **4+SIN(THETA2(INDX4)) **4)
+ /(SEP(INDX1)**8)

UELEC(INDX1,INDX2,INDX3,INDX4)=E1+F1

7070 CONTINUE
7060 CONTINUE
7050 CONTINUE
7040 CONTINUE

N=O

DO 200 ID=180,230
SHAPE=ID*0.001

DO 210 IR=390,410,5
R=IR*0.001

DO 220 IE=1860,1960,10
PARAM2=IE*0 .1+0 .0

M=O
BTSSERR=O.OO
DO 6230 ITEMPK=1,11

TEMPK=BTTEMP(ITEMPK)

S1=0.000000
S2=0.000000
S3=0.000000
S4=0.000000

C-----------------------------------
C CALCULATION OF INTEGRAL
C-----------------------------------

DO 6040 INDX4=1,NANGLE
S3=0
DO 6050 INDX3=1,NANGLE

S2=0
DO 6060 INDX2=1,NANGLE

S1=0
DO 6070 INDX1=1,NSEP

C-------------------------------------
C DETERMINE BT
C-------------------------------------

FI~(6.022E23/4.)*((SEP(INDX1))**2*SIN(THETA1(INDX2))*SIN(

+ THETA2(INDX4)))
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C---------------------------------------
C CALCULATE LENNARD-JONES POTENTIAL
C---------------------------------------

ULJ(INDX1,INDX2,INDX3,INDX4)=4.*PARAM2*1.380622E-23*
+ «R/SEP(INDX1))**12-(R/SEP(INDX1))**6)

C-------------------------------------
C CALCULATE SHAPE POTENTIAL
C-------------------------------------

USHAPE(INDX1,INDX2,INDX3,INDX4)=4.*SHAPE*PARAM2*
+ 1.380622E-23*(R/SEP(INDX1))**12*(3.*
+ COS(THETA1(INDX2))**2+3.*COS(THETA2(INDX4))**2-2.)

C----------------------~--------------------

C SUM ENERGY TERMS AND DIVIDE BY (-KT)
C-------------------------------------------

UTOT=ULJ(INDX1,INDX2,INDX3,INDX4)
+ +USHAPE(INDX1,INDX2,INDX3,INDX4)
+ +UELEC(INDX1,INDX2,INDX3,INDX4)

G3=-1.*UTOT/(TEMPK*1.380622E-23)
IF(G3.LT.-85) GO TO 6000
G4=2.71828**G3
GO TO 6010

6000 G4=O
6010 PROD=FI*(1.-G4)

Sl=Sl+PROD*COEF2(INDX1)
6070 CONTINUE

S2=S2+S1*COEF1(INDX2)*1.0E-09
6060 CONTINUE

S3=S3+S2*COEF1{INDX3)
6050 CONTINUE

S4=S4+S3*COEF1(INDX4)
6040 CONTINUE

ABT(ITEMPK)=S4*2.E-12

ERR=ABT(ITEMPK)-l.*BTEXP(ITEMPK)
BTSSERR = BTSSERR + ERR**2

6230 CONTINUE

IF (N .EQ. 1) THEN
IF (BTSSERR .LT. BTSSE(l) ) THEN

M=l
ELSE

M=2
ENDIF

ENDIF

IF (N .GT. 1) THEN
DO 400 IC=l,N

IF(BTSSERR .LT. BTSSE(IC) ) THEN
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M=IC
GOTO 410

ENDIF
400 CONTINUE

M=N+1
410 ENDIF

BESSERR=O.ODO
DO 4000 ITEMPK=2,8

TEMPK=BETEMP(ITEMPK)

S1=O.OOOOOO
S2=0.000000
S3=0.000000
S4=0.000000

C-------~--------------------------

C CALCULATION OF INTEGRAL
C----------------------------------

DO 40 INDX4=1,NANGLE
S3=0
DO 50 INDX3=1,NANGLE

S2=0
DO 60 INDX2=1,NANGLE

S1=O
DO 70 INDX1=1,NSEP

C----------------------------------
C DETERMINE BE
C----------------------------------

ST1=SIN(THETA1(INDX2))
ST2=SIN(THETA2(INDX4))
CT1=COS(THETA1(INDX2))
CT2=COS(THETA2(INDX4))
CT12=-1.*COS(THETA1(INDX2))*COS(THETA2(INDX4))+SIN(THETA1(

+ INDX2))*SIN(THETA2(INDX4))*COS(PHI(INDX3))
C--------- -------------------------------------
C DETERMINE DELTA EPSILON THETA 2 ALPHA 2
C----------------------------------------------

T2A2A = CT1**2*(CAP*(1350*CT2**4-540*CT2**2+54)+CAP**2*(675*CT2**4
1 -270*CT2**2+27))+CAP**2*(45*CT2**4-18*CT2**2+9)+45*CT2**4+CAP*(
2 -90*CT2**4+36*CT2**2-18)+CT1*CT12*(CAP*(1080*CT2**3-216*CT2)+CA
3 P**2*(540*CT2**3-108*CT2))+CT12**2*(108*CAP**2*CT2**2+216*CAP*C
4 T2**2)-18*CT2**2+9

T2A2B=-(((675*CAP-675*CAP**2)*CT1**2+135*CAP**2-135*CAP)*CT2**4+((
1 135*CAP**2+270*CAP) *CT1-2025*CAP**2*CT1**3) *CT12*CT2**3+((162*C
2 AP**2-1620*CAP**2*CT1**2)*CT12**2+(675*CAP-675*CAP**2)*CT1**4+(
3 855*CAP**2-900*CAP+45)*CT1**2-108*CAP**2+135*CAP-27)*CT2**2+(((
4 135*CAP**2+270*CAP) *CT1**3+(207*CAP**2-252*CAP-36) *CT1 )*CT12-32
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5 4*CAP**2*CT1*CT12**3)*CT2+162*CAP**2*CT1**2*CT12**2+(135*CAP**2
6 -135*CAP) *CT1**4+(-108*CAP**2+135*CAP-27) *CT1**2+9*CAP**2-18*CA
7 P+9)

C(1) = ALPHA**2*THETA**2/9 .*(T2A2A+T2A2B)/SEP(INDX1)**6*ST1*ST2
+ *O.24813987787284198000E-27/(3.0*TEMPK*1.380622E-23)

C---------------------------------------------
C DETERMINE DELTA EPSILON THETA 2 ALPHA 3
C---------------------------------------------

T2A3A = «-54675*CAP**3-109350*CAP**2)*CT1**4+(6075*CAP**3+31590*C
1 AP**2-4860*CAP)*CT1**2+972*CAP**3-1944*CAP**2+972*CAP)*CT2**4+(
2 (-61965*CAP**3-123930*CAP**2)*CT1**3+(6075*CAP**3+19926*CAP**2­
3 1944*CAP)*CT1)*CT12*CT2**3+«(-23328*CAP**3-46656*CAP**2)*CT1**
4 2+1458*CAP**3+2916*CAP**2)*CT12**2+(15795*CAP**3+26730*CAP**2-9
5 720*CAP)*CT1**4+(-405*CAP**3-9720*CAP**2+5346*CAP-1782)*CT1**2­
6 486*CAP**3+1458*CAP**2-1458*CAP+486)*CT2**2+«-2916*CAP**3-5832
7 *CAP**2)*CT1*CT12**3+«9963*CAP**3+17982*CAP**2-3888*CAP)*CT1**
8 3+(-405*CAP**3-2430*CAP**2+972*CAP-324)*CT1) *CT12) *CT2+(1458*CA
9 P**3+2916*CAP**2)*CT1**2*CT12**2+(-972*CAP**3-972*CAP**2+1944*C

AP)*CT1**4+(-486*CAP**3+1458*CAP**2-1458*CAP+486)*CT1**2+162*CA
P**3-486*CAP**2+486*CAP-162

T2A3B = CT1**2*(CAP**2*(54675*CT2**6-81405*CT2**4+27459*CT2**2-267
1 3)+CAP**3*(-54675*CT2**6+71685*CT2**4-20655*CT2**2+1701)+CAP*(9
2 720*CT2**4-6804*CT2**2+972))+CAP**3*(4860*CT2**6-4698*CT2**4+12
3 96*CT2**2-162)+CAP*(4860*CT2**6-8262*CT2**4+3888*CT2**2-486)+CA
4 P**2*(-9720*CT2**6+11178*CT2**4-3888*CT2**2+486)+CT12*(CT1*(CAP
5 **2*(25515*CT2**5-37422*CT2**3+7047*CT2)+CAP**3* (-25515*CT2**5+
6 38394*CT2**3-6075*CT2)+CAP*(-972*CT2**3-972*CT2))+CT1**3*(CAP**
7 3* (-164025*CT2**5+21870*CT2**3+2187*CT2)+CAP**2* (43740*CT2**3-8
8 748*CT2)))+CT1**4*(CAP**2*(54675*CT2**4-21870*CT2**2+2187)+CAP*
9 *3*(-54675*CT2**4+21870*CT2**2-2187))+CT12**2*(CAP**2*(1458*CT2

**4-3402*CT2**2)+CAP**3*(5346*CT2**2-1458*CT2**4)+CT1**2*(CAP**
3* (-185895*CT2**4+39366*CT2**2-2187)+8748*CAP**2*CT2**2)-1944*C

< AP*CT2**2)+1782*CT2**4+CAP**3*CT1*CT12**3*(8748*CT2-69984*CT2**
3)-8748*CAP**3*CT12**4*CT2**2-1296*CT2**2+162

C(2) = ALPHA**3*THETA**2/9.*(T2A3A+T2A3B)/SEP(INDX1)**9*ST1*ST2
+ *0.22301700027584438200E-30/(3 .0*TEMPK*1 .380622E-23)

C---------------------------------------------
C DETERMINE DELTA EPSILON THETA 2 ALPHA 4
C---------------------------------------------

T2A4A1= «492075*CAP**4+984150*CAP**3)*CT1**4+(131220*CAP**2-131
1 220*CAP**3)*CT1**2-3888*CAP**4+11664*CAP**3-11664*CAP**2+3888
2 *CAP)*CT2**6+«721710*CAP**4+1443420*CAP**3)*CT1**3+(96228*CA
3 P**2-96228*CAP**3)*CT1)*CT12*CT2**5+«(395847*CAP**4+791694*C
4 AP**3)*CT1**2-17496*CAP**3+17496*CAP**2)*CT12**2+(-251505*CAP
5 **4-448335*CAP**3+109350*CAP**2)*CT1**4+(-18225*CAP**4+59049*
6 CAP**3-91854*CAP**2+51030*CAP)*CT1**2+2592*CAP**4-10368*CAP**
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C

7 3+15552*CAP**2-10368*CAP+2592)*CT2**4+((96228*CAP**4+192456*C
8 AP**3)*CT1*CT12**3+((-253692*CAP**4-463644*CAP**3+8748O*CAP**
9 2)*CT1**3+(-14580*CAP**4+21870*CAP**3-34992*CAP**2+27702*CAP)

*CT1)*CT12)*CT2**3+((8748*CAP**4+17496*CAP**3)*CT12**4+((-831
06*CAP**4-157464*CAP**3+17496*CAP**2)*CT1**2-2916*CAP**4+2916

< *CAP)*CT12**2+(41553*CAP**4+61236*CAP**3-43740*CAP**2)*CT1**4
= +(7290*CAP**4-17496*CAP**3+34992*CAP**2-24786*CAP)*CT1**2-162
> 0*CAP**4+6480*CAP**3-9720*CAP**2+6480*CAP-1620)*CT2**2+((-874
? 8*CAP**4-17496*CAP**3)*CT1*CT12**3+((21870*CAP**4+34992*CAP**
@ 3-17496*CAP**2)*CT1**3+(2916*CAP**4-4374*CAP**3+8748*CAP**2-7
1 290*CAP)*CT1)*CT12)*CT2+(2187*CAP**4+4374*CAP**3)*CT1**2*CT12
2 **2+(-2187*CAP**4-2187*CAP**3+4374*CAP**2)*CT1**4

T2A4A2 = (-729*CAP**
3 4+2187*CAP**3-4374*CAP**2+2916*CAP)*CT1**2+324*CAP**4-1296*CA
4 P**3+1944*CAP**2-1296*CAP+324

T2A4A = (T2A4A1+T2A4A2)
+ *ALPHA**4*THETA**2/9.*ST1*ST2*.20043766172607939427E-33
+ /SEP(INDX1)**12/(3.0*TEMPK*1.380622E-23)

T2A4B1 = CAP**3*((-492075*CT1**4+207765*CT1**2-21870)*CT2**6+(76
1 545*CTl-360855*CT1**3)*CT12*CT2**5+((-54675*CT1**2-2187)*CT12
2 **2-492075*CT1**6+841995*CT1**4-262440*CT1**2+30618)*CT2**4+(
3 4374*CT1*CT12**3+(-426465*CT1**5+593406*CT1**3-76545*CT1)*CT1
4 2)*CT2**3+((-113724*CT1**4+137781*CT1**2+2187)*CT12**2+185895
5 *CT1**6-262440*CT1**4+82539*CT1**2-12636)*CT2**2+((13122*CT1­
6 8748*CT1**3)*CT12**3+(80919*CT1**5-98415*CT1**3+11826*CT1)*CT
7 12)*CT2+(4374*CT1**4-8748*CT1**2)*CT12**2-17496*CT1**6+21870*
8 CT1**4-8262*CT1**2+1296)+CAP**2*((10935-54675*CT1**2)*CT2**6­
9 21870*CT1*CT12*CT2**5+(-142155*CT1**4+136323*CT1**2-27702)*CT

2**4+(729*CT1**3+18225*CT1)*CT12*CT2**3+((43740*CT1**2-8748)*
CT12**2-43740*CT1**6+136323*CT1**4-85536*CT1**2+16767)*CT2**2

< +(8748*CT1*CT12**3+(-17496*CT1**5+35721*CT1**3-13365*CT1)*CT1
2)*CT2+8748*CT1**6-18954*CT1**4+10206*CT1**2-1944)+CAP*((8262

> -34020*CT1**2)*CT2**4-9234*CT1*CT12*CT2**3+(-20898*CT1**4+351
? 54*CT1**2-8262) *CT2**2+(5994*CTl-4860*CT1**3) *CT12*CT2+5346*C
@ T1**4-5346*CT1**2+1296)+(972-2592*CT1**2)*CT2**2+324*CT1*CT12
1 *CT2+972*CT1**2-324

T2A4B2 = CAP**4*((492075*CT1**4-153090*CT1**2+10935)*CT2**6+(147
1 6225*CT1**5+65610*CT1**3-54675*CT1)*CT12*CT2**5+((2165130*CT1
2 **4-260253*CT1**2+2187)*CT12**2+492075*CT1**6-699840*CT1**4+1
3 60137*CT1**2-11178)*CT2**4+((1187541*CT1**3-115911*CT1)*CT12*
4 *3+(131220*CT1**5-535086*CT1**3+67554*CT1)*CT12)*CT2**3+((288
5 684*CT1**2-13122)*CT12**4+(-201204*CT1**4-142155*CT1**2+6561)
6 *CT12**2-142155*CT1**6+147015*CT1**4-29565*CT1**2+3159)*CT2**
7 2+(26244*CT1*CT12**5+(-102789*CT1**3-15309*CT1)*CT12**3+(-634
8 23*CT1**5+67554*CT1**3-4779*CT1)*CT12)*CT2-13122*CT1**2*CT12*
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C

C

9 *4+(8748*CT1**2-4374*CT1**4)*CT12**2+8748*CT1**6-8262*CT1**4+
2430*CT1**2-324)

T2A4B = (T2A4B1+T2A4B2)
+ . *ALPHA**4*THETA**2/9 .*ST1*ST2*.20043766172607939427E-33
+ /SEP(INDX1)**12/(3.0*TEMPK*1.380622E-23)

T2A4C1 = CAP**3*((984150*CT1**6-503010*CT1**4+83106*CT1**2-4374)
1 *CT2**4+(1443420*CT1**5-507384*CT1**3+43740*CT1)*CT12*CT2**3+
2 ((791694*CT1**4-166212*CT1**2+4374)*CT12**2-87480*CT1**6+8310
3 6*CT1**4-34992*CT1**2+4374)*CT2**2+((192456*CT1**3-17496*CT1)
4 *CT12**3+(-64152*CT1**5+32076*CT1**3-8748*CT1)*CT12)*CT2+1749
5 6*CT1**2*CT12**4-11664*CT1**4*CT12**2-10368*CT1**4+6480*CT1**
6 2-1296)+CAP**2*((54675*CT1**4-21870*CT1**2+2187)*CT2**4+(4374
7 0*CT1**3-8748*CT1)*CT12*CT2**3+(8748*CT1**2*CT12**2+174960*CT
8 1**6-118827*CT1**4+42282*CT1**2-5103)*CT2**2+(128304*CT1**5-5
9 2488*CT1**3+11664*CT1)*CT12*CT2+(23328*CT1**4-2916*CT1**2)*CT

12**2-11664*CT1**6+15552*CT1**4-9720*CT1**2+1944)+CAP*((34020
*CT1**4-16524*CT1**2+1944)*CT2**2+(18468*CT1**3-4860*CT1)*CT1

< 2*CT2+1944*CT1**2*CT12**2+7776*CT1**6-10368*CT1**4+6480*CT1**
= 2-1296)+2592*CT1**4-1620*CT1**2+324

T2A4C2 = CAP**4*((492075*CT1**6-142155*CT1**4-2187*CT1**2+2187)*
1 CT2**4+(721710*CT1**5-166212*CT1**3+4374*CT1)*CT12*CT2**3+((3
2 95847*CT1**4-65610*CT1**2+2187)*CT12**2-87480*CT1**6+1701*CT1
3 **4+9234*CT1**2-1215)*CT2**2+((96228*CT1**3-8748*CT1)*CT12**3
4 +(-64152*CT1**5+1944*CT1**3+1944*CT1)*CT12)*CT2+8748*CT1**2*C
5 T12**4+(972*CT1**2-11664*CT1**4)*CT12**2+3888*CT1**6+2592*CT1
6 **4-1620*CT1**2+324)

T2A4C = (T2A4C1+T2A4C2)
+ *ALPHA**4*THETA**2/9 .*ST1*ST2*.20043766172607939427E-33
+ /SEP(INDX1)**12/(3.0*TEMPK*1.380622E-23)

T2A4D1 = CAP**3*((-492075*CT1**4+185895*CT1**2-17496)*CT2**6+(80
1 919*CTl-426465*CT1**3)*CT12*CT2**5+((4374-113724*CT1**2)*CT12
2 **2-492075*CT1**6+809190*CT1**4-260253*CT1**2+21870)*CT2**4+(
3 (-426465*CT1**5+584658*CT1**3-111537*CT1)*CT12-8748*CT1*CT12*
4 *3)*CT2**3+((-113724*CT1**4+113724*CT1**2-8748)*CT12**2+18589
5 5*CT1**6-260253*CT1**4+89100*CT1**2-8262)*CT2**2+((80919*CT1*
6 *5-111537*CT1**3+24948*CT1)*CT12-8748*CT1**3*CT12**3)*CT2+(43
7 74*CT1**4-8748*CT1**2)*CT12**2-17496*CT1**6+21870*CT1**4-8262
8 *CT1**2+1296)+CAP**2*((8748-43740*CT1**2)*CT2**6-17496*CT1*CT
9 12*CT2**5+(-142155*CT1**4+118827*CT1**2-18954)*CT2**4+(35721*

CTl-34263*CT1**3)*CT12*CT2**3+(26244*CT1**2*CT12**2-43740*CT1
**6+118827*CT1**4-70227*CT1**2+10206)*CT2**2+(8748*CTl*CT12**

< 3+(-17496*CT1**5+35721*CT1**3-17739*CT1)*CT12)*CT2+8748*CT1**
6-18954*CT1**4+10206*CT1**2-1944)+CAP*((5346-20898*CT1**2)*CT

> 2**4-4860*CT1*CT12*CT2**3+(-20898*CT1**4+24948*CT1**2-5346)*C
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? T2**2+(4536*CT1-4860*CT1**3)*CT12*CT2+5346*CT1**4-5346*CT1**2
@ +1296)+(972-2592*CT1**2)*CT2**2+324*CT1*CT12*CT2+972*CT1**2-3
1 24

T2A4D2 = CAP**4*«492075*CT1**4-142155*CT1**2+8748)*CT2**6+(1476
1 225*CT1**5+131220*CT1**3-63423*CT1)*CT12*CT2**5+«2165130*CT1
2 **4-201204*CT1**2-4374)*CT12**2+492075*CT1**6-667035*CT1**4+1
3 62324*CT1**2-8262)*CT2**4+«1187541*CT1**3-102789*CT1)*CT12**
4 3+(131220*CT1**5-491346*CT1**3+80676*CT1)*CT12)*CT2**3+«2886
5 84*CT1**2-13122)*CT12**4+(-201204*CT1**4-100602*CT1**2+8748)*
6 CT12**2-142155*CT1**6+162324*CT1**4-41229*CT1**2+2430)*CT2**2
7 +(26244*CT1*CT12**5+(-102789*CT1**3-2187*CT1)*CT12**3+(-63423
8 *CT1**5+80676*CT1**3-12069*CT1)*CT12)*CT2-13122*CT1**2*CT12**
9 4+(8748*CT1**2-4374*CT1**4)*CT12**2+8748*CT1**6-8262*CT1**4+2

430*CT1**2-324)

T2A4D = (T2A4D1+T2A4D2)
+ *ALPHA**4*THETA**2/9.*ST1*ST2*.20043766172607939427E-33
+ /SEP(INDX1)**12/(3.0*TEMPK*1.380622E-23)

C(3)=T2A4A+T2A4B+T2A4C+T2A4D
C---------------------- ~----------- -----------

C DETERMINE DELTA 2
C---------------------------------------------

CR(2)=ALPHA**2*(-3.*CAP**2*ST1**2*COS(PHI(INDX
1 3))**2*ST2**2-3 .*CAP**2*CT1*ST1
2 *COS(PHI(INDX3))*CT2*ST2
3 +(6.*CAP**2*CT1**2-3.*CAP**2+3.*CAP)*CT2
4 **2+(3.*CAP-3.*CAP**2)*CT1**2+2.*CAP**2­
5 2.*CAP)/SEP(INDX1)*1.22708E-3*ST1*ST2

C---------------------------------------------
C DETERMINE DELTA 3
C---------------------------------------------

CR(3) = ALPHA**3*«3*CAP**3+6*CAP**2)*ST1**2*COS(PHI(INDX3))**2
+ *ST2**2+(12*CAP**3+24*CAP**2)*CT1*ST1*COS(PHI(INDX3))*CT2*ST2
+ +«12*CAP**3+24*CAP**2)*CT1**2+3*CAP**3-6*CAP**2+3*CAP)*CT2**2
+ +(-3*CAP**3-3*CAP**2+6*CAP)*CT1**2-2*CAP**3+3*CAP**2-
+ 3*CAP+2)/SEP(INDX1)**4*1.102844E-06*ST1*ST2

C---------------------------------------------
C DETERMINE DELTA 4
C---------------------------------------------

CR(4) = ALPHA**4*(-27*CAP**4*CT12**4-243*CAP**4*CT1*CT2*CT12**3
+ +(-729*CAP**4*CT1**2*CT2**2+24*CAP**4-12*CAP**3-12*CAP**2)*
3 CT12**2+«(81*CAP**3-81*CAP**4)*CT1-729*CAP**4*CT1**3)*CT2**3
+ +«81*CAP**3-81*CAP**4)*CT1**3+(135*CAP**4-108*CAP**3-27*CAP**
6 2)*CT1)*CT2)*CT12+«243*CAP**3-243*CAP**4)*CT1**2+27*CAP**4
+ -54*CAP**3+27*CAP**2)*CT2**4+«243*CAP**3-243*CAP**4)*CT1
9 **4+(243*CAP**4-324*CAP**3+81*CAP**2)*CT1**2-18*CAP**4
+ +54*CAP**3-54*CAP**2+18*CAP)*CT2**2+(27*CAP**4-54*CAP**3
+ +27*CAP**2)*CT1**4+( -18*CAP**4+54*CAP**3-54*CAP**2+18*CAP)
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+ *CT1**2-8*CAP**3+18*CAP**2-12*CAP+2)/SEP(INDX1)**7*ST1*ST2
+ *9.91187E-10

C---------------------------------------------
C SUM ENERGY TERMS AND DIVIDE BY (-KT)
C---------------------------------------------

UTOT=ULJ(INDX1,INDX2,INDX3,INDX4)+USHAPE(INDX1,INDX2,INDX3,INDX4)
+ +UELEC(INDX1,INDX2,INDX3,INDX4)

G3=-1.*UTOT/(TEMPK*1.380622E-23)
IF(G3.LT.-85) GO TO 5000
G4=2.71828**G3
GO TO 5010

5000 G4=0

5010

5011

5012

CTOT=O.OO
DO 5011 NCTOT=2,4

CTOT=CTOT+CR(NCTOT)
CONTINUE
DO 5012 NCTOT=1,3

CTOT=CTOT+C(NCTOT)
CONTINUE

PROD=G4*CTOT
S1=S1+PROD*COEF2(INDX1)

70 CONTINUE
S2=S2+S1*COEF1(INDX2)*1.0E-09

60 CONTINUE
S3=S3+S2*COEF1(INDX3)

50 CONTINUE
S4=S4+S3*COEF1(INDX4)

40 CONTINUE
ABE(ITEMPK)=S4*1.0E12

ERR=ABE(ITEMPK)-BEEXP(ITEMPK)
EXCESS=ABS(ERR)-BEEXPERR(ITEMPK)
IF (EXCESS .LT. O.ODO) EXCESS=O.ODO

BESSERR=BESSERR+ERR**2+EXCESS**2

IF (M .GT. 1) THEN
IF (BESSERR .GT. BESSE(M-1) ) GOTO 220

ENDIF
4000 CONTINUE

IF (N .EQ. 0 ) THEN
D(1)=SHAPE
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RO(1)=R
EK(1)=PARAM2
DO 470 ITEMPK=1,11

BT(ITEMPK,1)=ABT(ITEMPK)
IF (ITEMPK .LE. 8) BE(ITEMPK,1)=ABE(ITEMPK)

470 CONTINUE
BTSSE(1)=BTSSERR
BESSE(1)=BESSERR
N=1
GOTO 220

ENDIF

IF (M .LE. N) THEN
DO 420 IC=M,N

IF (BESSERR .GT . BESSE(IC)) THEN
J=IC
GOTO 430

ENDIF
420 CONTINUE

J=N+1
N=M
GOTO 500

430 IGAP=J-M-1
IF (IGAP .EQ. -1) THEN

DO 440 IC=N,M,-1
D(IC+1)=D(IC)
RO (IC+1) =RO (lC)
EK(IC+1)=EK(lC)
DO 480 ITEMPK=1,11

BT(ITEMPK,IC+1)=BT(ITEMPK,IC)
IF (ITEMPK .LE. 8) BE(ITEMPK,IC+1)=BE(ITEMPK,IC)

480 CONTINUE
BTSSE(IC+1)=BTSSE(IC)
BESSE(IC+1)=BESSE(IC)

440 CONTINUE
N=N+1

ELSEIF (IGAP .GT. 0) THEN
DO 450 IC=M+1,(N-IGAP)

NC=IC+IGAP
D(IC)=D(NC)
RO(IC)=RO(NC)
EK ere: =EK (Ne)
DO 490 ITEMPK=1,11

BT(ITEMPK,IC)=BT(ITEMPK,NC)
IF (ITEMPK .LE. 8) BE(ITEMPK,IC)=BE(ITEMPK,NC)

490 CONTINUE
BTSSE(IC)=BTSSE(NC)
BESSE(IC)=BESSE(NC)

450 CONTINUE
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N=N-IGAP
ENDIF

ENDIF

500 D(M)=SHAPE
RO(M)=R
EK(M)=PARAM2
DO 495 ITEMPK=1,11

BT(ITEMPK,M)=ABT(ITEMPK)
IF (ITEMPK .LE. 8) BE(ITEMPK,M)=ABE(ITEMPK)

495 CONTINUE
BTSSE(M)=BTSSERR
BESSE(M)=BESSERR

IF (M .GT. N) N=M

220 CONTINUE
210 CONTINUE

oPEN(UNIT=6,FILE='Co2BAD3',FoRM='FoRMATTED')
WRITE(6,300)

300 FORMAT(1X,'Co2BAD3',/,'30/9/96',/)
C---------------------------------------------
C OUTPUT OF INPUT DATA
C---------------------------------------------

WRITE(6,2160)ALPHA
2160 FoRMAT(1X,'ALPHA(STATIC):',F10.5)

WRITE(6,2165)ALFOP
2165 FoRMAT(1X,'ALPHA(oPTICAL) :',F10.5)

WRITE(6,2180)AMU
2180 FORMAT(1X,'MU:',F10.5)

WRITE(6,2190)THETA
2190 FoRMAT(1X, 'THETA:' ,F10.5)

WRITE(6,2191)BPARA
2191 FoRMAT(1X,'BPARA:',F10 .5)

WRITE(6,2192)BPERP
2192 FORMAT(1X,'BPERP:',F10.5)

WRITE(6,2193)APARA
2193 FoRMAT(1X,'APARA:',F10.5)

WRITE(6,2194)APERP
2194 FoRMAT(1X,'APERP:' ,F10.5)

WRITE(6,2195)CZZ
2195 FORMAT(1X,'C3333:',F10.5)

WRITE(6,2196)CXX
2196 FoRMAT(1X,'C1111:',F10.5)

WRITE(6,2197)CXZ
2197 FoRMAT(1X,'C1313:',F10 .5)

WRITE(6,2200)CAP
2200 FoRMAT(1X, 'KAPPA:' ,F10.5)
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WRITE(6,2235)AMIN1,AMAX1
2235 FORMAT(1X,'MIN AND MAX POINTS OF RANGE:',2(F10.5,3X),/)

WRITE(6,310)NANGLE
310 FORMAT(1X,'ANGLES:',I3,' INTERVALS')

WRITE(6,311)NSEP
311 FORMAT(1X,'SEP: ',I4,' INTERVALS')

DO 460 IC=1,N
WRITE(6,3220)D(IC)

3220 FORMAT(/,1X,'D: ',F6.3)
WRITE(6,3210)RO(IC)

3210 FORMAT(1X,'RO: ',F6.3)
WRITE(6,3230)EK(IC)

3230 FORMAT(1X,'E/K: ',F8.3,/)

DO 800 ITEMPK=1,11
ERR=BT(ITEMPK,IC)-BTEXP(ITEMPK)
PERCERR=ERR/BTEXP(ITEMPK)*100.00
WRITE(6,6155)BTTEMP(ITEMPK),BT(ITEMPK,IC),ERR,PERCERR

6155 FORMAT(1X,'TEMPERATURE:',F10.1,' B(T) :',F10.2,
+ F10.2,F10.2)

800 CONTINUE
WRITE(6,3175)BTSSE(IC)

3175 FORMAT(1X,'SUM OF SQUARES OF ERRORS:',F20.2,/)
BESSERR=O.OdO

DO 810 ITEMPK=2,8
ERR=BE(ITEMPK,IC)-BEEXP(ITEMPK)
PERCERR=ERR/BEEXP(ITEMPK)*100 .00
WRITE(6,3155)BETEMP(ITEMPK),BE(ITEMPK,IC),ERR,PERCERR

3155 FORMAT(1X,'TEMPERATURE:',F10 .1,' B(E) :',F10.2,
+ F10.2,F10.2)

BESSERR=BESSERR+ERR**2
810 CONTINUE

WRITE(6,3175)BESSERR
WRITE(6,3177)BESSE(IC)

3177 FORMAT(1X,'SS ERRORS + SS EXCESS:',F20.3,/)
460 CONTINUE

CLOSE (UNIT=6)
200 CONTINUE

END

C Usage: Set NLOW=1
C NDIM=no. of quadrature points required
C NGAUSS=no. of quadrature points required
C A=lower limit of integral
C B=upper limit of integral
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C X=quadrature points (array of dimension NGAUSS)
C W=Weights (array of dimension NGAUSS)
C The subroutine permits a little more generality than above, but you
C almost certainly won't need it.
C---------------------------------------------------------------------------

SUBROUTINE GAUSSPT(NLOW,NDIM,NGAUSS,A,B,X,W)
C---------------------------------------------------------------------------
C IN X EN WKOMEN DE NGAUSS GAUSSPUNTEN EN GEWICHTEN, BEREKEND OP HET
C INTERVAL (A,B)jDIMENSIES VAN X EN W: NLOW:NDIM
C EIS: NLOW<=l. DE ELEMENTEN VAN NLOW TOT 1 WORDEN NIET GEVULD
C---------------------------------------------------------------------------

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION X(NLOW:NDIM),W(NLOW:NDIM)

C---------------------------------------------------------------------------
C ZOEK STARTWAARDEN
C---------------------------------------------------------------------------

GN=0.5/NGAUSS
EXTRA=1 .0/(.4*NGAUSS*NGAUSS+5.0)
XZ=-GN
NT=O
NTEKEN=O

5 PNM2=1.0
PNM1=XZ
DO 10 I=2,NGAUSS
PNM1XZ=PNM1*XZ
PN=2.0*PNM1XZ-PNM2-(PNM1XZ-PNM2)/I
PNM2=PNMl

10 PNM1=PN
MTEKEN=l
IF(PN.LE.O.O) MTEKEN=-l
IF((MTEKEN+NTEKEN).EQ.O) GO TO 15
GO TO 20

15 NT=NT+l
X(NT)=XZ

20 NTEKEN=MTEKEN
IF((1.0-XZ).LE.EXTRA) GO TO 30
XZ=XZ+(l.-XZ*XZ)*GN+EXTRA
GO TO 5

30 CONTINUE
C---------------------------------------------- _
C BEPAAL NULPUNTEN EN GEWICHTEN
C---------------------------------------------------- _

DO 60 I=l,NT
XZ=X(I)
DELTA2=1.

35 PNM2=1.0
PNM1=XZ
PNM1AF=1.0
Z=.5+1.5*XZ*XZ
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DO 40 K=2,NGAUSS
PNM1XZ=PNM1*XZ
PN=2.0*PNM1XZ-PNM2-(PNM1XZ-PNM2)/K
PNAF=XZ*PNM1AF+K*PNMl
Z=Z+(K+0.5)*PN*PN
PNM2=PNMl
PNM1=PN
PNM1AF=PNAF

40 CONTINUE
DELTA1=PN/PNAF
XZ=XZ-DELTAl
IF(DELTA1.LT.0.0) DELTA1=-DELTAl
IF((DELTA1.GE.DELTA2).AND.(DELTA2.LT.l.E-6)) GO TO 50
DELTA2=DELTAl
GO TO 35

50 X(I)=XZ
W(I)=!. O/Z

60 CONTINUE
C---------------------------------------------------------------------------
C TRANSFORMATIE NAAR (A,B)
C---------------------------------------------------------------------------

NGHALF=NGAUSS/2
NGP1=NGAUSS+l
NTP1=NT+l
APB=A+B
BMAG2=(B-A)/2.0
DO 90 I=l,NGHALF
X(NGP1-I)=B-BMAG2*(1.0-X(NTP1-I))

90 W(NGP1-I)=BMAG2*W(NTP1-I)
IF(NGHALF.NE.NT) GO TO 100
GO TO 110

100 X(NT)=APB/2.0
W(NT)=W(1)*BMAG2

110 DO 120 I=l,NGHALF
X(I)=APB-X(NGP1-I)

120 W(I)=W(NGP1-I)
RETURN
END
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C.2 Example of a program to calculate a component

of Be for a non-linear molecule

PROGRAM ES02A2
C
C 19 JULY 1996.
C PROGRAM TO CALCULATE THE A2 TERM'S CONTRIBUTION TO B(epsilon) FOR S02
C USING GAUSSIAN INTEGRATION WITH 64 INTERVALS FOR THE RANGE, AND
C 10 INTERVALS FOR ALL ANGULAR VARIABLES
C (I.E. ALPHA1, BETA1, GAMMA1, ALPHA2, BETA2 AND GAMMA2).
C DOUBLE PRECISION IS USED THROUGHOUT.
C

C ----------------------
C SYSTEM INITIALIZATION:
C ----------------------

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON COEF1,DCTC
DIMENSION COEF2(64,2) ,COEF1(10,2) ,SEP(64) ,AL1(10) ,BE1(10) ,GA1(10)

+ ,AL2(10),BE2(10),GA2(10),DCTC(9,10,10,10),FI(10,10,10,10,10),Dl(6
+ 4),El(10,10,10,10,10),Fl(10,10,10,10,10),SE3(64),SE4(64) ,SE5(64) ,
+ SE6(64),SE8(64) ,SE12(64) ,Gl(10,10,10),DDP(10,10,10,10, 10),DQP(10,
+ 10,10,10,10),DIDP(10,10,10,10,10)

INTEGER Xl,X2,X3,X4,X5,X6,X7
C-----------------------------------
C MOLECULAR DATA FOR S02 (632.8 NM):
C-----------------------------------

SSl=O.oooooo
SS2=0.000000
SS3=0.000000
SS4=0.000000
SS5=0.000000
SS6=0.000000
SS7=0.000000
DIP=-5.4262DO
A11=5.80DO
A22=3 .30DO
A33=3.88DO
ALDYN=(All+A22+A33)/3.0DO
V11=5.6610DO
V22=3.2050DO
V33=3.7560DO
ALSTAT=(Vll+V22+V33)/3.0DO
Ql=-16.40DO
Q2=12.90DO
AMIN1=O.1000
AMAX1=3.0000
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C---------------------------------------------------------------
C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS64.DAT:
C---------------------------------------------------------------

OPEN(UNIT=10,FILE='GAUSS64.DAT')
DO 10 ICTR1=1,64

DO 20 ICTR2=1,2
READ(10,1010,END=11)COEF2(ICTR1,ICTR2)

1010 FORMAT(F18.15)
20 CONTINUE
10 CONTINUE
11 CLOSE(UNIT=10)
C------------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR THE RANGE:
C------------------------------------------------

SEP1=(AMAX1-AMIN1)/2
SEP2=(AMAX1+AMIN1)/2
DO 30 INDX=1,64

SEP(INDX)=SEP1*COEF2(INDX,1)+SEP2
30 CONTINUE
C--------------------------------------------------------------
C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS10.DAT:
C--------------------------------------------------------------

OPEN(UNIT=11,FILE='GAUSS10.DAT')
DO 100 ICTR1=1 ,10

DO 110 ICTR2=1,2
READ(11,6000,END=12)COEF1(ICTR1,ICTR2)

6000 FORMAT(F18 .15)
110 CONTINUE
100 CONTINUE
12 CLOSE(UNIT=ll)
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR ALPHA1:
C----------------------------------------------

AMIN=O.O
AMAX=2.*3.14159265358979323846

ALll=(AMAX-AMIN)/2.
AL12=(AMAX+AMIN)/2 .
DO 120 INDX=l, 10

AL1(INDX)=ALll*COEF1(INDX,1)+AL12
120 CONTINUE
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR BETA1:
C----------------------------------------------

AMIN=O.O
AMAX=3.14159265358979323846

BEll=(AMAX-AMIN)/2.
BE12=(AMAX+AMIN)/2.
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DO 121 INDX=1,10
BE1 (INDX)=BE11*COEF1(INDX, 1)+BE12

121 CONTINUE
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR GAMMA1:
C----------------------------------------------

AMIN=O.O
AMAX=2.*3.14159265358979323846

GA11=(AMAX-AMIN)/2.
GA12=(AMAX+AMIN)/2.
DO 122 INDX=1,10

GA1(INDX)=GA11*COEF1(INDX,1)+GA12
122 CONTINUE
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR ALPHA2:
C----------------------------------------------

AMIN=O.O
AMAX=2.*3.14159265358979323846

AL21=(AMAX-AMIN)/2.
AL22=(AMAX+AMIN)/2.
DO 123 INDX=1,10

AL2(INDX)=AL21*COEF1(INDX ,1)+AL22
123 CONTINUE
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR BETA2:
C----------------------------------------------

AMIN=O.O
AMAX=3.14159265358979323846

BE21=(AMAX-AMIN)/2.
BE22=(AMAX+AMIN)/2.
DO 124 INDX=1,10

BE2(INDX)=BE21*COEF1(INDX,1)+BE22
124 CONTINUE
C----------------------------------------------
C CALCULATE THE INTEGRATION POINTS FOR GAMMA2:
C----------------------------------------------

AMIN=O.O
AMAX=2.*3.14159265358979323846

GA21=(AMAX-AMIN)/2.
GA22=(AMAX+AMIN)/2.
DO 125 INDX=1,10

GA2(INDX)=GA21*COEF1(INDX,1)+GA22
125 CONTINUE
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C -------------
C MAIN PROGRAM:
C -------------

OPEN(UNIT=4,FILE='diel_so2_a2_10_292K_d8')
C----------------------------
C INPUT MOLECULAR PARAMETERS
C----------------------------

TEMP=292.7
TEMPK=TEMP*1 .380622E-23

R=O.3850DO
PARAM2=220.0DO
SHAPE1=O .11750DO
SHAPE2=O .13570DO

C------------------------------------------------------------------
C CALCULATION OF THE LENNARD-JoNES 6:12 POTENTIAL & STORAGE OF THE
C VALUES IN AN ARRAY:
C------------------------------------------------------------------

DO 61 X1=1,64
D1(X1)=4.*PARAM2*1.380622E-23*«R/SEP(X1))**12-(R/SEP(X1))**6)
SE3(X1)=SEP(X1)**3
SE4(X1)=SEP(X1)**4
SE5(X1)=SEP(X1)**5
SE6(X1)=SEP(X1)**6
SE8(X1)=SEP(X1)**8
SE12(X1)=SEP(X1)**12

61 CONTINUE
C----------------------~-------------------------------------------

C THE DIRECTION COSINE TENSOR COMPONENTS ARE STORED IN AN ARRAY:
C------------------------------------------------------------------

DO 66 X4=1,10
DO 77 X3=1,10

DO 88 X2=1,10
C------------------------------------
C DIRECTION COSINE TENSOR COMPONENTS:
C------------------------------------

A1=CoS(AL1(X2))*CoS(BE1(X3))*CoS(GA1(X4))-1.*SIN(AL1(X2))*SIN(GA1
+ (X4))

A2=SIN(AL1(X2))*CoS(BE1(X3))*CoS(GA1(X4))+CoS(AL1(X2))*SIN(GA1(X4
+))

A3=-1.*SIN(BE1(X3))*CoS(GA1(X4))
A4=-1.*CoS(AL1(X2))*CoS(BE1(X3))*SIN(GA1(X4))-1 .*SIN(AL1(X2))*COS

+ (GA1(X4))
A5=-1.*SIN(AL1(X2))*CoS(BE1(X3))*SIN(GA1(X4))+COS(AL1(X2))*CoS(GA

+ 1(X4))
A6=SIN(BE1(X3))*SIN(GA1(X4))
A7=CoS(AL1(X2))*SIN(BE1(X3))
A8=SIN(AL1(X2))*SIN(BE1(X3))
A9=CoS(BE1(X3))
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DCTC(1,X2,X3,X4)=Al
DCTC(2,X2,X3,X4)=A2
DCTC(3,X2,X3,X4)=A3
DCTC(4,X2,X3,X4)=A4
DCTC(5,X2,X3,X4)=A5
DCTC(6,X2,X3,X4)=A6
DCTC(7,X2,X3,X4)=A7
DCTC(8,X2,X3,X4)=A8
DCTC(9,X2,X3,X4)=A9

88 CONTINUE
77 CONTINUE
66 CONTINUE
C---------------------------------------~---------------------

C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED
C IN ARRAYS:
C-------------------------------------------------------------

DO 939 X7=1,10
WRITE(6,1000)X7

1000 FORMAT (lX, 'INDEX (IN RANGE 1 TO 10) IS CURRENTLY ',12 )
DO 40 X6=1,10

DO 50 X5=1,10
C--------------------------------------------------
C MOLECULE 2'S DIRECTION COSINE TENSOR COMPONENTS:
C--------------------------------------------------

Bl=DCTC(1,X5,X6,X7)
B2=DCTC(2,X5,X6,X7)
B3=DCTC(3,X5,X6,X7)
B4=DCTC(4,X5,X6,X7)
B5=DCTC(5,X5,X6,X7)
B6=DCTC(6,X5,X6,X7)
B7=DCTC(7,X5,X6,X7)
B8=DCTC(8,X5,X6,X7)
B9=DCTC(9,X5,X6,X7)

DO 60 X4=1,10
DO 70 X3=1,10

DO 80 X2=1,10
C--------------------------------------------------
C MOLECULE l'S DIRECTION COSINE TENSOR COMPONENTS:
C--------------------------------------------------

Al=DCTC(1,X2,X3,X4)
A2=DCTC(2,X2,X3,X4)
A3=DCTC(3,X2,X3,X4)
A4=DCTC(4,X2,X3,X4)
A5=DCTC(5,X2,X3,X4)
A6=DCTC(6,X2,X3,X4)
A7=DCTC(7,X2,X3,X4)
A8=DCTC(8,X2,X3,X4)
A9=DCTC(9,X2,X3,X4)
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C--------------------------------------------------
C CALCULATION OF THE DIPOLE-DIPOLE POTENTIAL:
C--------------------------------------------------

DDP(X2,X3,X4,X5,X6)=8 .98758E-24*DIP**2*(-2*A9*B9+A6*B6+A3*B3)
C--------------------------------------------------
C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL:
C--------------------------------------------------

DQP(X2,X3,X4,X5,X6)=8.98758E-25*DIP*(Q2*(-2*A9*B9**2+(2*A6*B6+2*A
+ 3*B3+2*A9**2-2*A8**2-A6**2+A5**2-A3**2+A2**2)*B9+2*A9*B8**2+(-2*A
+ 6*B5-2*A3*B2) *B8+A9*B6**2+(2*A5*A8-2*A6*A9) *B6-A9*B5**2+A9*B3**2+
+ (2*A2*A8-2*A3*A9)*B3-A9*B2**2)+Q1*(-2*A9*B9**2+(2*A6*B6+2*A3*B3+2
+ *A9**2-2*A7**2-A6**2+A4**2-A3**2+A1**2)*B9+2*A9*B7**2+(-2*A6*B4-2
+ *A3*B1)*B7+A9*B6**2+(2*A4*A7-2*A6*A9)*B6-A9*B4**2+A9*B3**2+(2*A1*
+ A7-2*A3*A9)*B3-A9*B1**2))

C----------------------------------------------------
C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL:
C----------------------------------------------------

DIDP(X2,X3,X4,X5,X6)=-O.50*ALSTAT*8 .07765E-27*DIP**2*(3*B9**2
+ +3*A9**2-2)

C----------------------------------------------------
C CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL:
C----------------------------------------------------

QUAD1=-16.*(A6*A9-A5*A8)*(B6*B9-B5*B8)-16.*(A3*A9-A2*A8) *(B3*B9-B
+ 2*B8)+4.*(2.*A9**2-2.*A8**2-A6**2+A5**2-A3**2+A2**2)*(B9-B8)*(B9+
+ B8)+(-4 .*A9**2+4 .*A8**2+3.*A6**2-3.*A5**2+A3**2-A2**2)* (B6**2-B5*
+ *2)+4 .*(A3*A6-A2*A5)*(B3*B6-B2*B5)+(-4 .*A9**2+4.*A8**2+A6**2-A5**
+ 2+3.*A3**2-3.*A2**2)*(B3**2-B2**2)

QUAD2=-16. *(A6*A9-A4*A7)*(B6*B9-B4*B7)-16. *(A3*A9-A1*A7) *(B3*B9-B
+ 1*B7)+4. *(2. *A9**2-2. *A7**2-A6**2+A4**2-A3**2+A1**2) *(B9-B7)*(B9+
+ B7)+(-4 .*A9**2+4.*A7**2+3.*A6**2-3.*A4**2+A3**2-A1**2)* (B6**2-B4*
+ *2)+4.*(A3*A6-A1*A4)*(B3*B6-B1*B4)+(-4.*A9**2+4.*A7**2+A6**2-A4**
+ 2+3.*A3**2-3.*A1**2)*(B3**2-B1**2)

QUAD3=4.*(4.*A9**2-2.*(A8**2+A7**2+A6**2+A3**2)+A5**2+A4**2+A2**2
+ +A1**2)*B9**2-16.*(2. *A6*A9-A5*A8-A4*A7)*B6*B9-16*(2. *A3*A9-A2*A8
+ -A1*A7)*B3*B9-4.*(2.*A9**2-2.*A7**2-A6**2+A4**2-A3**2+A1**2)*B8**
+ 2+16. *(A6*A9-A4*A7)*B5*B8+16. *(A3*A9-A1*A7)*B2*B8-4. *( 2 .*A9**2-2.
+ *A8**2-A6**2+A5**2-A3**2+A2**2)*B7**2+16.*(A6*A9-A5*A8)*B4*B7+16.
+ *(A3*A9-A2*A8)*B1*B7+(-8 .*A9**2+4.*(A8**2+A7**2)+6.*A6**2-3.*(A5*
+ *2+A4**2)+2*A3**2-A2**2-A1**2)*B6**2+4.*(2.*A3*A6-A2*A5-A1*A4)*B3
+ *B6+(4.*A9**2-4.*A7**2-3.*A6**2+3.*A4**2-A3**2+A1**2)*B5**2-4.*(A
+ 3*A6-A1*A4)*B2*B5+(4.*A9**2-4.*A8**2-3.*A6**2+3.*A5**2-A3**2+A2**
+ 2)*B4**2-4 .*(A3*A6-A2*A5)*B1*B4+(-8. *A9**2+4. *(A8**2+A7**2)+2.*A6
+ **2-A5**2-A4**2+6.*A3**2-3.*(A2**2+A1**2))*B3**2+(4.*A9**2-4.*A7*
+ *2-A6**2+A4**2-3.*A3**2+3 .*A1**2)*B2**2+(4.*A9**2-4.*A8**2-A6**2+
+ A5**2-3.*A3**2+3.*A2**2)*B1**2

E1(X2,X3,X4,X5,X6)=8.98758E-26*(1./3.)*(Q2**2*QUAD1+Q1**2*QUAD
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+ 2+Ql*Q2*QUAD3)
C---------------------------------------------------------
C CALCULATION OF THE QUADRUPOLE-INDUCED DIPOLE POTENTIAL:
C---------------------------------------------------------

QID1=Q2**2*(4 .'*A9**4+(-8.*A8**2+4.*A5**2+4.*A2**2)*A9**2+(-8 .*A5*
+ A6-8.*A2*A3)*A8*A9+4. *A8**4+(4. *A6**2+4. *A3**2) *A8**2+A6**4+(-2.*
+ A5**2+2.*A3**2-2.*A2**2)*A6**2+A5**4+(2.*A2**2-2.*A3**2)*A5**2+A3
+ **4-2.*A2**2*A3**2+A2**4)+Ql**2*(4.*A9**4+(-8.*A7**2+4.*A4**2+4.*
+ Al**2)*A9**2+(-8 .*A4*A6-8.*Al*A3)*A7*A9+4.*A7**4+(4.*A6**2+4.*A3*
+ *2)*A7**2+A6**4+(-2.*A4**2+2.*A3**2-2.*Al**2)*A6**2+A4**4+(2.*Al*
+ *2-2. *A3**2)*A4**2+A3**4-2. *Al **2*A3**2+Al **4)+Ql *Q2*(8.*A9**4+(­
+ 8.*A8**2-8.*A7**2+4.*A5**2+4.*A4**2+4.*A2**2+4.*Al**2)*A9**2+«-8
+ .*A5*A6-8 .*A2*A3)*A8+(-8.*A4*A6-8.*Al*A3)*A7)*A9+(8.*A7**2+4.*A6*
+ *2-4.*A4**2+4.*A3**2-4.*Al**2)*A8**2+(8.*A4*A5+8.*Al*A2)*A7*A8+(4
+ .*A6**2-4.*A5**2+4.*A3**2-4.*A2**2)*A7**2+2.*A6**4+(-2.*A5**2-2.*
+ A4**2+4.*A3**2-2 .*A2**2-2.*Al**2)*A6**2+(2.*A4**2-2.*A3**2+2.*Al*
+ *2)*A5**2+(2.*A2**2-2.*A3**2)*A4**2+2.*A3**4+(-2.*A2**2-2.*Al**2)
+ *A3**2+2.*Al**2*A2**2)

QID2=Q2**2*(4 .*B9**4+(-8.*B8**2+4.*B5**2+4.*B2**2)*B9**2+(-8.*B5*
+ B6-8.*B2*B3)*B8*B9+4.*B8**4+(4.*B6**2+4.*B3**2)*B8**2+B6**4+(-2.*
+ B5**2+2.*B3**2-2.*B2**2)*B6**2+B5**4+(2.*B2**2-2.*B3**2)*B5**2+B3
+ **4-2.*B2**2*B3**2+B2**4)+Ql**2*(4.*B9**4+(-8.*B7**2+4.*B4**2+4.*
+ Bl**2)*B9**2+(-8.*B4*B6-8.*Bl*B3)*B7*B9+4.*B7**4+(4.*B6**2+4.*B3*
+ *2)*B7**2+B6**4+(-2.*B4**2+2.*B3**2-2 .*Bl**2)*B6**2+B4**4+(2.*Bl*
+ *2-2. *B3**2)*B4**2+B3**4-2. *Bl**2*B3**2+Bl**4)+Ql*Q2*(8.*B9**4+(­
+ 8.*B8**2-8.*B7**2+4.*B5**2+4.*B4**2+4 .*B2**2+4.*Bl**2)*B9**2+«-8
+ .*B5*B6-8.*B2*B3)*B8+(-8.*B4*B6-8.*Bl*B3)*B7)*B9+(8.*B7**2+4.*B6*
+ *2-4.*B4**2+4.*B3**2-4.*Bl**2)*B8**2+(8.*B4*B5+8.*Bl*B2)*B7*B8+(4
+ .*B6**2-4.*B5**2+4.*B3**2-4.*B2**2)*B7**2+2.*B6**4+(-2.*B5**2-2.*
+ B4**2+4.*B3**2-2.*B2**2-2.*Bl**2)*B6**2+(2.*B4**2-2.*B3**2+2.*Bl*
+ *2)*B5**2+(2.*B2**2-2 .*B3**2)*B4**2+2 .*B3**4+(-2.*B2**2-2.*Bl**2)
+ *B3**2+2 .*Bl**2*B2**2)

Fl(X2,X3,X4,X5,X6)=-O.5*8.07765E-29*ALSTAT*(QID1+QID2)
C------------------------------------------
C CALCULATION OF THE INTEGRATION ARGUMENT:
C------------------------------------------

Tll=2.*A7**2-A4**2-Al**2
T22=2.*A8**2-A5**2-A2**2
T33=2.*A9**2-A6**2-A3**2
T12=2.*A7*A8-A4*A5-Al*A2
T13=2.*A7*A9-A4*A6-Al*A3
T23=2.*A8*A9-A5*A6-A2*A3

Wll = V33* (A7**2*B9**2+(2*A4*A7*B6+2*Al*A7*B3) *B9+A4**2*B6**2+2*A
+ 1*A4*B3*B6+Al**2*B3**2)+V22*(A7**2*B8**2+(2*A4*A7*B5+2*Al*A7*B2
+ )*B8+A4**2*B5**2+2*Al*A4*B2*B5+Al**2*B2**2)+Vll*(A7**2*B7**2+(2
+ *A4*A7*B4+2*Al*A7*Bl)*B7+A4**2*B4**2+2*Al*A4*Bl*B4+Al**2*Bl**2)
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W22 = V33* (A8**2*B9**2+(2*A5*A8*B6+2*A2*A8*B3) *B9+A5**2*B6**2+2*A
+ 2*A5*B3*B6+A2**2*B3**2)+V22*(A8**2*B8**2+(2*A5*A8*B5+2*A2*A8*B2
+ )*B8+A5**2*B5**2+2*A2*A5*B2*B5+A2**2*B2**2)+V11*(A8**2*B7**2+(2
+ *A5*A8*B4+2*A2*A8*B1)*B7+A5**2*B4**2+2*A2*A5*B1*B4+A2**2*B1**2)

W33 = V33* (A9**2*B9**2+(2*A6*A9*B6+2*A3*A9*B3) *B9+A6**2*B6**2+2*A
+ 3*A6*B3*B6+A3**2*B3**2)+V22*(A9**2*B8**2+(2*A6*A9*B5+2*A3*A9*B2
+ )*B8+A6**2*B5**2+2*A3*A6*B2*B5+A3**2*B2**2)+V11*(A9**2*B7**2+(2
+ *A6*A9*B4+2*A3*A9*B1)*B7+A6**2*B4**2+2*A3*A6*B1*B4+A3**2*B1**2)

W12 = V33*(A7*A8*B9**2+«A4*A8+A5*A7)*B6+(A1*A8+A2*A7)*B3)*B9+A4*
+ A5*B6**2+(A1*A5+A2*A4) *B3*B6+A1*A2*B3**2)+V22* (A7*A8*B8**2+«A4
+ *A8+A5*A7)*B5+(A1*A8+A2*A7)*B2)*B8+A4*A5*B5**2+(A1*A5+A2*A4)*B2
+ *B5+A1*A2*B2**2)+V11*(A7*A8*B7**2+«A4*A8+A5*A7)*B4+(A1*A8+A2*A
+ 7) *B1)*B7+A4*A5*B4**2+(A1*A5+A2*A4)*B1*B4+A1*A2*B1**2)

W13 = V33*(A7*A9*B9**2+«A4*A9+A6*A7)*B6+(A1*A9+A3*A7)*B3)*B9+A4*
+ A6*B6**2+(A1*A6+A3*A4)*B3*B6+A1*A3*B3**2)+V22*(A7*A9*B8**2+«A4
+ *A9+A6*A7)*B5+(A1*A9+A3*A7)*B2)*B8+A4*A6*B5**2+(A1*A6+A3*A4)*B2
+ *B5+A1*A3*B2**2)+V11*(A7*A9*B7**2+«A4*A9+A6*A7)*B4+(A1*A9+A3*A
+ 7)*B1)*B7+A4*A6*B4**2+(A1*A6+A3*A4)*B1*B4+A1*A3*B1**2)

W23 = V33*(A8*A9*B9**2+«A5*A9+A6*A8)*B6+(A2*A9+A3*A8)*B3)*B9+A5*
+ A6*B6**2+(A2*A6+A3*A5) *B3*B6+A2*A3*B3**2)+V22* (A8*A9*B8**2+«A5
+ *A9+A6*A8)*B5+(A2*A9+A3*A8)*B2)*B8+A5*A6*B5**2+(A2*A6+A3*A5)*B2
+ *B5+A2*A3*B2**2)+V11*(A8*A9*B7**2+«A5*A9+A6*A8)*B4+(A2*A9+A3*A
+ 8) *B1)*B7+A5*A6*B4**2+(A2*A6+A3*A5)*B1*B4+A2*A3*B1**2)

F11=V11*(W11*T11+W12*T12+W13*T13)
F12=V11*(W12*T11+W22*T12+W23*T13)
F13=V11*(W13*T11+W23*T12+W33*T13)
F21=V22*(W11*T12+W12*T22+W13*T23)
F22=V22*(W12*T12+W22*T22+W23*T23)
F23=V22*(W13*T12+W23*T22+W33*T23)
F31=V33*(W11*T13+W12*T23+W13*T33)
F32=V33*(W12*T13+W22*T23+W23*T33)
F33=V33*(W13*T13+W23*T23+W33*T33)

A2 = F33+F22+F11

FI(X2,X3,X4,X5,X6)=A2/3.0*(SIN(BE1(X3))*SIN(BE2(X6)))
C------------------------------------
C CALCULATION OF THE SHAPE POTENTIAL:
C------------------------------------

G1(X3,X4,X6)=4.*PARAM2*1.380622E-23*R**12*(SHAPE1*(3.*COS(BE1(X3)
+ )**2+3.*COS(BE2(X6))**2-2.)+SHAPE2*(3.*COS(GA1(X4))**2*SIN(BE1(X3
+ ))**2+3.*COS(GA2(X7))**2*SIN(BE2(X6))**2-2.))
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80 CONTINUE
70 CONTINUE
60 CONTINUE
50 CONTINUE
40 CONTINUE
C------------------------------------
C THE INTEGRAL IS CALCULATED:
C------------------------------------

SS6=0.00
DO 940 X6=1,10

SS5=0.00
DO 950 X5=1,10

SS4=0 .00
DO 960 X4=1,10

SS3=0.00
DO 970 X3=1,10

SS2=0.00
DO 980 X2=1,10

SSl=O.OO
DO 990 Xl=1,64

C------------------------------------------------------------------
C SUMMATION OF THE ENERGY TERMS WITH SUBSEQUENT DIVISION BY (-kT):
C------------------------------------------------------------------

G3=-1.*(Dl(Xl)+El(X2,X3,X4,X5,X6)/SE5(Xl)+Fl(X2,X3,X4,X5,X6)/SE8(
+ Xl)+Gl(X3,X4,X6)/SE12(Xl)+DDP(X2,X3,X4,X5,X6)/SE3(Xl)+DIDP(X2,X3,
+ X4,X5,X6)/SE6(Xl)+DQP(X2,X3,X4,X5,X6)/SE4(Xl»/TEMPK

IF(G3.LT.-85) GO TO 5000
G4=2.71828**G3
GO TO 5010

5000 G4=0
5010 SSl=SSl+FI(X2,X3,X4,X5,X6)/SEP(Xl)*G4*COEF2(Xl,2)
990 CONTINUE

SS2=SS2+SS1*COEF1(X2,2)
980 CONTINUE

SS3=SS3+SS2*COEF1(X3,2)
970 CONTINUE

SS4=SS4+SS3*CoEF1(X4,2)
960 CONTINUE

SS5=SS5+SS4*COEF1(X5,2)
950 CONTINUE

SS6=SS6+SS5*COEF1(X6,2)
940 CONTINUE

SS7=SS7+SS6*COEF1(X7,2)
939 CONTINUE

ANS=SS7*SEP1*ALll*BEll*GA11*AL21*BE21*GA21
+ *0. 24734494511444167800E-14
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C----------------------------------------------------------
C THE INTEGRAL IS PRINTED TOGETHER WITH MOLECULAR DATA USED
C----------------------------------------------------------

WRITE(4,2266)
2266 FORMAT(lX,'THE A2 TERM CONTRIBUTION TO B(epsilon) FOR S02')

WRITE(4,2268)
2268 FORMAT(lX,'AT THE WAVELENGTH 632.8 rum',/,/)

WRITE(4,1140)ANS
1140 FORMAT(lX,'THE INTEGRAL IS',E15.7)

WRITE(4,2150)
2150 FORMAT(lX,'INPUT DATA: ')

WRITE(4,2155)TEMP
2155 FORMAT(lX,'TEMPERATURE: ',F10.5)

WRITE(4,2156)DIP
2156 FORMAT(lX,'DIPOLE MOMENT: ',F10.5)

WRITE(4,2911)ALDYN
2911 FORMAT(lX,'MEAN DYNAMIC ALPHA: ',F10.5)

WRITE(4,2912)A11
2912 FORMAT(lX,'DYNAMIC ALPHA11: ',F10.5)

WRITE(4,2913)A22
2913 FORMAT(lX,'DYNAMIC ALPHA22: ',F10.5)

WRITE(4,2914)A33
2914 FORMAT(lX,'DYNAMIC ALPHA33: ',F10.5)

WRITE(4,2160)ALSTAT
2160 FORMAT(lX,'MEAN STATIC ALPHA: ',F10.5)

WRITE(4,2161)V11
2161 FORMAT(lX,'STATIC ALPHA11: ',F10.5)

WRITE(4,2162)V22.
2162 FORMAT(lX,'STATIC ALPHA22: ',F10.5)

WRITE(4,2163)V33
2163 FORMAT(lX,'STATIC ALPHA33: ',F10.5)

WRITE(4,2190)Q1
2190 FORMAT(1X,'THETA11: ',F10.5)

WRITE(4,2241)Q2
2241 FORMAT(lX,'THETA22: ',F10.5)

WRITE(4,2210)R
2210 FORMAT(lX,'R(O) : ',F6.5)

WRITE(4,2220)SHAPE1
2220 FORMAT(lX,'SHAPE FACTOR 1: ',F10.5)

WRITE(4,2221)SHAPE2
2221 FORMAT(1X,'SHAPE FACTOR 2: ',F10.5)

WRITE(4,2230)PARAM2
2230 FORMAT(lX,'E/K: ',F9.5)

WRITE(4,2235)AMIN1,AMAX1
2235 FORMAT(lX,'MIN AND MAX POINTS OF RANGE: ',2(F10.5,3X))

close (unit=4)
END

269


	Hohls_Jeanette_1997.front.p001
	Hohls_Jeanette_1997.front.p002
	Hohls_Jeanette_1997.front.p003
	Hohls_Jeanette_1997.front.p004
	Hohls_Jeanette_1997.front.p005
	Hohls_Jeanette_1997.front.p006
	Hohls_Jeanette_1997.front.p007
	Hohls_Jeanette_1997.front.p008
	Hohls_Jeanette_1997.front.p009
	Hohls_Jeanette_1997.front.p010
	Hohls_Jeanette_1997.front.p011
	Hohls_Jeanette_1997.front.p012
	Hohls_Jeanette_1997.front.p013
	Hohls_Jeanette_1997.front.p014
	Hohls_Jeanette_1997.front.p015
	Hohls_Jeanette_1997.front.p016
	Hohls_Jeanette_1997.front.p017
	Hohls_Jeanette_1997.front.p018
	Hohls_Jeanette_1997.p001
	Hohls_Jeanette_1997.p002
	Hohls_Jeanette_1997.p003
	Hohls_Jeanette_1997.p004
	Hohls_Jeanette_1997.p005
	Hohls_Jeanette_1997.p006
	Hohls_Jeanette_1997.p007
	Hohls_Jeanette_1997.p008
	Hohls_Jeanette_1997.p009
	Hohls_Jeanette_1997.p010
	Hohls_Jeanette_1997.p011
	Hohls_Jeanette_1997.p012
	Hohls_Jeanette_1997.p013
	Hohls_Jeanette_1997.p014
	Hohls_Jeanette_1997.p015
	Hohls_Jeanette_1997.p016
	Hohls_Jeanette_1997.p017
	Hohls_Jeanette_1997.p018
	Hohls_Jeanette_1997.p019
	Hohls_Jeanette_1997.p020
	Hohls_Jeanette_1997.p021
	Hohls_Jeanette_1997.p022
	Hohls_Jeanette_1997.p023
	Hohls_Jeanette_1997.p024
	Hohls_Jeanette_1997.p025
	Hohls_Jeanette_1997.p026
	Hohls_Jeanette_1997.p027
	Hohls_Jeanette_1997.p028
	Hohls_Jeanette_1997.p029
	Hohls_Jeanette_1997.p030
	Hohls_Jeanette_1997.p031
	Hohls_Jeanette_1997.p032
	Hohls_Jeanette_1997.p033
	Hohls_Jeanette_1997.p034
	Hohls_Jeanette_1997.p035
	Hohls_Jeanette_1997.p036
	Hohls_Jeanette_1997.p037
	Hohls_Jeanette_1997.p038
	Hohls_Jeanette_1997.p039
	Hohls_Jeanette_1997.p040
	Hohls_Jeanette_1997.p041
	Hohls_Jeanette_1997.p042
	Hohls_Jeanette_1997.p043
	Hohls_Jeanette_1997.p044
	Hohls_Jeanette_1997.p045
	Hohls_Jeanette_1997.p046
	Hohls_Jeanette_1997.p047
	Hohls_Jeanette_1997.p048
	Hohls_Jeanette_1997.p049
	Hohls_Jeanette_1997.p050
	Hohls_Jeanette_1997.p051
	Hohls_Jeanette_1997.p052
	Hohls_Jeanette_1997.p053
	Hohls_Jeanette_1997.p054
	Hohls_Jeanette_1997.p055
	Hohls_Jeanette_1997.p056
	Hohls_Jeanette_1997.p057
	Hohls_Jeanette_1997.p058
	Hohls_Jeanette_1997.p059
	Hohls_Jeanette_1997.p060
	Hohls_Jeanette_1997.p061
	Hohls_Jeanette_1997.p062
	Hohls_Jeanette_1997.p063
	Hohls_Jeanette_1997.p064
	Hohls_Jeanette_1997.p065
	Hohls_Jeanette_1997.p066
	Hohls_Jeanette_1997.p067
	Hohls_Jeanette_1997.p068
	Hohls_Jeanette_1997.p069
	Hohls_Jeanette_1997.p070
	Hohls_Jeanette_1997.p071
	Hohls_Jeanette_1997.p072
	Hohls_Jeanette_1997.p073
	Hohls_Jeanette_1997.p074
	Hohls_Jeanette_1997.p075
	Hohls_Jeanette_1997.p076
	Hohls_Jeanette_1997.p077
	Hohls_Jeanette_1997.p078
	Hohls_Jeanette_1997.p079
	Hohls_Jeanette_1997.p080
	Hohls_Jeanette_1997.p081
	Hohls_Jeanette_1997.p082
	Hohls_Jeanette_1997.p083
	Hohls_Jeanette_1997.p084
	Hohls_Jeanette_1997.p085
	Hohls_Jeanette_1997.p086
	Hohls_Jeanette_1997.p087
	Hohls_Jeanette_1997.p088
	Hohls_Jeanette_1997.p089
	Hohls_Jeanette_1997.p090
	Hohls_Jeanette_1997.p091
	Hohls_Jeanette_1997.p092
	Hohls_Jeanette_1997.p093
	Hohls_Jeanette_1997.p094
	Hohls_Jeanette_1997.p095
	Hohls_Jeanette_1997.p096
	Hohls_Jeanette_1997.p097
	Hohls_Jeanette_1997.p098
	Hohls_Jeanette_1997.p099
	Hohls_Jeanette_1997.p100
	Hohls_Jeanette_1997.p101
	Hohls_Jeanette_1997.p102
	Hohls_Jeanette_1997.p103
	Hohls_Jeanette_1997.p104
	Hohls_Jeanette_1997.p105
	Hohls_Jeanette_1997.p106
	Hohls_Jeanette_1997.p107
	Hohls_Jeanette_1997.p108
	Hohls_Jeanette_1997.p109
	Hohls_Jeanette_1997.p110
	Hohls_Jeanette_1997.p111
	Hohls_Jeanette_1997.p112
	Hohls_Jeanette_1997.p113
	Hohls_Jeanette_1997.p114
	Hohls_Jeanette_1997.p115
	Hohls_Jeanette_1997.p116
	Hohls_Jeanette_1997.p117
	Hohls_Jeanette_1997.p118
	Hohls_Jeanette_1997.p119
	Hohls_Jeanette_1997.p120
	Hohls_Jeanette_1997.p121
	Hohls_Jeanette_1997.p122
	Hohls_Jeanette_1997.p123
	Hohls_Jeanette_1997.p124
	Hohls_Jeanette_1997.p125
	Hohls_Jeanette_1997.p126
	Hohls_Jeanette_1997.p127
	Hohls_Jeanette_1997.p128
	Hohls_Jeanette_1997.p129
	Hohls_Jeanette_1997.p130
	Hohls_Jeanette_1997.p131
	Hohls_Jeanette_1997.p132
	Hohls_Jeanette_1997.p133
	Hohls_Jeanette_1997.p134
	Hohls_Jeanette_1997.p135
	Hohls_Jeanette_1997.p136
	Hohls_Jeanette_1997.p137
	Hohls_Jeanette_1997.p138
	Hohls_Jeanette_1997.p139
	Hohls_Jeanette_1997.p140
	Hohls_Jeanette_1997.p141
	Hohls_Jeanette_1997.p142
	Hohls_Jeanette_1997.p143
	Hohls_Jeanette_1997.p144
	Hohls_Jeanette_1997.p145
	Hohls_Jeanette_1997.p146
	Hohls_Jeanette_1997.p147
	Hohls_Jeanette_1997.p148
	Hohls_Jeanette_1997.p149
	Hohls_Jeanette_1997.p150
	Hohls_Jeanette_1997.p151
	Hohls_Jeanette_1997.p152
	Hohls_Jeanette_1997.p153
	Hohls_Jeanette_1997.p154
	Hohls_Jeanette_1997.p155
	Hohls_Jeanette_1997.p156
	Hohls_Jeanette_1997.p157
	Hohls_Jeanette_1997.p158
	Hohls_Jeanette_1997.p159
	Hohls_Jeanette_1997.p160
	Hohls_Jeanette_1997.p161
	Hohls_Jeanette_1997.p162
	Hohls_Jeanette_1997.p163
	Hohls_Jeanette_1997.p164
	Hohls_Jeanette_1997.p165
	Hohls_Jeanette_1997.p166
	Hohls_Jeanette_1997.p167
	Hohls_Jeanette_1997.p168
	Hohls_Jeanette_1997.p169
	Hohls_Jeanette_1997.p170
	Hohls_Jeanette_1997.p171
	Hohls_Jeanette_1997.p172
	Hohls_Jeanette_1997.p173
	Hohls_Jeanette_1997.p174
	Hohls_Jeanette_1997.p175
	Hohls_Jeanette_1997.p176
	Hohls_Jeanette_1997.p177
	Hohls_Jeanette_1997.p178
	Hohls_Jeanette_1997.p179
	Hohls_Jeanette_1997.p180
	Hohls_Jeanette_1997.p181
	Hohls_Jeanette_1997.p182
	Hohls_Jeanette_1997.p183
	Hohls_Jeanette_1997.p184
	Hohls_Jeanette_1997.p185
	Hohls_Jeanette_1997.p186
	Hohls_Jeanette_1997.p187
	Hohls_Jeanette_1997.p188
	Hohls_Jeanette_1997.p189
	Hohls_Jeanette_1997.p190
	Hohls_Jeanette_1997.p191
	Hohls_Jeanette_1997.p192
	Hohls_Jeanette_1997.p193
	Hohls_Jeanette_1997.p194
	Hohls_Jeanette_1997.p195
	Hohls_Jeanette_1997.p196
	Hohls_Jeanette_1997.p197
	Hohls_Jeanette_1997.p198
	Hohls_Jeanette_1997.p199
	Hohls_Jeanette_1997.p200
	Hohls_Jeanette_1997.p201
	Hohls_Jeanette_1997.p202
	Hohls_Jeanette_1997.p203
	Hohls_Jeanette_1997.p204
	Hohls_Jeanette_1997.p205
	Hohls_Jeanette_1997.p206
	Hohls_Jeanette_1997.p207
	Hohls_Jeanette_1997.p208
	Hohls_Jeanette_1997.p209
	Hohls_Jeanette_1997.p210
	Hohls_Jeanette_1997.p211
	Hohls_Jeanette_1997.p212
	Hohls_Jeanette_1997.p213
	Hohls_Jeanette_1997.p214
	Hohls_Jeanette_1997.p215
	Hohls_Jeanette_1997.p216
	Hohls_Jeanette_1997.p217
	Hohls_Jeanette_1997.p218
	Hohls_Jeanette_1997.p219
	Hohls_Jeanette_1997.p220
	Hohls_Jeanette_1997.p221
	Hohls_Jeanette_1997.p222
	Hohls_Jeanette_1997.p223
	Hohls_Jeanette_1997.p224
	Hohls_Jeanette_1997.p225
	Hohls_Jeanette_1997.p226
	Hohls_Jeanette_1997.p227
	Hohls_Jeanette_1997.p228
	Hohls_Jeanette_1997.p229
	Hohls_Jeanette_1997.p230
	Hohls_Jeanette_1997.p231
	Hohls_Jeanette_1997.p232
	Hohls_Jeanette_1997.p233
	Hohls_Jeanette_1997.p234
	Hohls_Jeanette_1997.p235
	Hohls_Jeanette_1997.p236
	Hohls_Jeanette_1997.p237
	Hohls_Jeanette_1997.p238
	Hohls_Jeanette_1997.p239
	Hohls_Jeanette_1997.p240
	Hohls_Jeanette_1997.p241
	Hohls_Jeanette_1997.p242
	Hohls_Jeanette_1997.p243
	Hohls_Jeanette_1997.p244
	Hohls_Jeanette_1997.p245
	Hohls_Jeanette_1997.p246
	Hohls_Jeanette_1997.p247
	Hohls_Jeanette_1997.p248
	Hohls_Jeanette_1997.p249
	Hohls_Jeanette_1997.p250
	Hohls_Jeanette_1997.p251
	Hohls_Jeanette_1997.p252
	Hohls_Jeanette_1997.p253
	Hohls_Jeanette_1997.p254
	Hohls_Jeanette_1997.p255
	Hohls_Jeanette_1997.p256
	Hohls_Jeanette_1997.p257
	Hohls_Jeanette_1997.p258
	Hohls_Jeanette_1997.p259
	Hohls_Jeanette_1997.p260
	Hohls_Jeanette_1997.p261
	Hohls_Jeanette_1997.p262
	Hohls_Jeanette_1997.p263
	Hohls_Jeanette_1997.p264
	Hohls_Jeanette_1997.p265
	Hohls_Jeanette_1997.p266
	Hohls_Jeanette_1997.p267
	Hohls_Jeanette_1997.p268
	Hohls_Jeanette_1997.p269

